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PREFACE

ALTHOUGH written primarily for engineers, it is hoped that this

book may be of service to students of physics and others who
wish to acquire a working knowledge of elementary thermo-

dynamics from the physical standpoint.
In presenting the fundamental notions of thermodynamics,

the writer has adopted a method which his experience as

a teacher encourages him to think useful. The notions are

first introduced in a non-mathematical form
;
the reader is made

familiar with them as physical realities, and learns to apply
them to practical problems; then, and not till then, he studies

the mathematical relations between them. This method appears
to have two advantages: it prevents the non-mathematical

student from becoming bewildered on the threshold, and it

saves the mathematical student from any risk of failing to

realize the meaning of the symbols with which he plays. When
the non-mathematical student comes to face the mathematical

relations, which he must do if he is to pass beyond the rudiments

of the subject, he finds it comparatively easy to build on the

foundation of physical concepts he has already laid: there is

perhaps no better way to learn the meaning and use of partial

differential coefficients than by applying them to thermo-

dynamic ideas, once these ideas are clearly apprehended.

Accordingly the plan of the book is to begin with the

elementary notions and their interpretation in practice, and to

defer the study of general thermodynamic relations till near the

end. Finally these relations are illustrated by applying them

to characteristic equations of fluids, and in particular to steam,

following Callendar's method.

The chapter on Internal Combustion Engines gives occasion

for introducing some results of experiments on the internal

energy and specific heats of gases, and this matter is dealt

with further in an appendix which attempts an elementary

account of the molecular theory.
In any exposition of the first principles of thermodynamics

it is important to choose a way of dealing with temperature

such that students may be led by simple and logical steps to

understand the thermodynamic scale. The course followed
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here is first to imagine an ideal gas which serves as thermometric

substance, and also as the working substance in a Carnot engine.

This gives a perfect-gas scale by reference to which the efficiency

of any Carnot cycle is provisionally expressed, and from that

the step to the thermodynamic scale is easy.

The writer is indebted to Professor Callendar and his

publisher, Mr Edward Arnold, for permission to include a

much abbreviated version of his Steam Tables. By the recent

publication of complete Tables, Professor Callendar has added

substantially to the many obligations under which he has

put all students of thermodynamics. The writer would also

thank Mr J. B. Peace, of the Cambridge University Press, for

various suggestions and for the interest he has taken in bringing
out the book; and also Dr E. M. Horsburgh, of the Mathematical

Department of this University, for his great kindness in reading
the proofs.

THE UNIVERSITY, EDINBURGH.

March 1920.



CONTENTS

CHAPTER I

FIRST PRINCIPLES
ART. PAGE
1. The Science of Thermodynamics ...... 1

2. Heat-Engine and Heat-Pump 1

3. Efficiency of a Heat-Engine . 2

4. Coefficient of Performance of a Refrigerating Machine . . 2

5. Working Substance 2

6. Operation of the Working Substance in a Heat-Engine . . 3

7. Cycle of Operations of the Working Substance ... 4

8. The First Law of Thermodynamics . . . . . 5

9. Internal Energy . 5

10. Work done in Changes of Volume of a Fluid .... 6

11. Indicator Diagrams 7

12. Units of Force, Pressure, and Work 8

13. Units of Heat 9

14. Mechanical Equivalent of Heat 10

15. Scales of Temperature 10

16. Reckoning of Temperature from the "Absolute Zero'* . . 12

17. Properties of Gases: Charles' Law and Boyle's Law... 13

18. Notion of a "Perfect" Gas . . . . . , . 14

19. Internal Energy of a Gas: Joule's Law 15

20. Specific Heats of a Gas 17

21. Constancy of the Specific Heats in a Perfect Gas ... 19

22. Reversible Actions 20

23. Adiabatic Expansion . 21

24. Isothermal Expansion 22

25. Adiabatic Expansion of a Perfect Gas 22

26. Change of Temperature in the Adiabatic Expansion of a Perfect
Gas 23

27. Work done in the Adiabatic Expansion of a Perfect Gas . . 24

28. Isothermal Expansion of a Perfect Gas 24

29. Summary of results for a Perfect Gas 25

30. Fundamental Questions of Heat-Engine Efficiency ... 26

31. The Second Law of Thermodynamics 26

32. Reversible Heat-Engine. Carnot's Cycle of Operations . . 27

33. Carnot's Principle 28

34. Reversibility the Criterion of Perfection in a Heat-Engine . 29

35. Efficiency of a Reversible Heat-Engine 29

36. Carnot's Cycle with a Perfect Gas for Working Substance . 30

37. Reversal of this Cycle 32

38. Efficiency of Any Reversible Engine 34

39. Summary of the Argument 34



viii CONTENTS

ART.

40. Absolute Zero of Temperature 35

41. Conditions of Maximum Efficiency
36

42. Thermodynamic Scale of Temperature 39

43. Reversible Engine receiving Heat at Various Temperatures . 42

44. Entropy 44

45. Conservation of Entropy in Carnot's Cycle . .45
46. Entropy-Temperature Diagram for Carnot's Cycle ... 46

47. Entropy-Temperature Diagrams for a series of Reversible

Engines 47

48. No change of Entropy in Adiabatic Processes .... 48

49. Change of Entropy in an Irreversible Operation . . 48

50. Sum of the Entropies in a System ... .49
51. Entropy-Temperature Diagrams .... .50
52. Perfect Engine using Regenerator 52

53. Stirling's Regenerative Air-Engine ...... 53

54. Joule's Air-Engine . . .
55

CHAPTER II

PROPERTIES OF FLUIDS

55. States of Aggregation 59

56. Formation of Steam under Constant Pressure . . . 60

57. Saturated and Superheated Steam . . . . . . 61

58. Relation of Pressure to Temperature in Saturated Steam . 62

59. Tables of the Properties of Steam 62

60. Relation of Pressure to Volume in Saturated Steam . . 64

61. Boiling and Evaporation 65

62. Mixture of Vapour with other Gases: Dalton's Principle . . 65

63. Evaporation into a space containing Air: Saturation of the

Atmosphere with Water-Vapour ..... 66

64. Heat required for the Formation of Steam under Constant
Pressure: Heat of the Liquid and Latent Heat... 67

65. Total External Work done . 69

66. Internal Energy of a Fluid 69

67. The "Total Heat" of a Fluid 70

68. Change of the Total Heat during Heating under Constant
Pressure . . . . . . . . . . 71

69. Application to Steam formed under Constant Pressure, from
Water at C 71

70. Total Heat of a mixture of Liquid and its Saturated Vapour . 73

71. Total Heat of Superheated Vapour 73

72. Constancy of the Total Heat in a Throttling Process . . 74

73. Entropy of a Fluid 75

74. Mixed Liquid and Vapour: Wet Steam 76

75. Specification of the State of any Fluid ..... 77

76. Isothermal Expansion of a Fluid: Isothermal Lines on the
Pressure-Volume Diagram 78

77. The Critical Point: Critical Temperature and Critical Pressure . 80



CONTENTS ix

ART. PAGE

-78. Adiabatic Expansion of a Fluid 81

79. Supersaturation 84

80. Change of Internal Energy and of Total Heat in Adiabatic

Expansion. "Heat-Drop" 86

CHAPTER III

THEORY OF THE STEAM-ENGINE
81. Carnot's Cycle with Steam or other Vapour for Working

Substance . 88

82. Efficiency of a Perfect Steam-Engine. Limits of Temperature 90

83. Entropy-Tmperature Diagram for a Perfect Steam-Engine . 91

84. Use of "Boundary Curves" in the Entropy-Temperature
Diagram.......... 92

85. Modified Cycle omitting Adiabatic Compression . . . 94

86. Engine with Separate Organs . . . . . . 96

87. The Rankine Cycle 98

88. Efficiency of a Rankine Cycle . . . . . . . 99

89. Calculation of the Heat-Drop 100

90. The Function G 102

91. Extension of the Rankine Cycle to Steam supplied in any State 104

92. Rankine Cycle with Steam initially Wet .... 104

93. Rankine Cycle with Steam initially Superheated ... 106

94. Reversibility of the Rankine Cycle ..... 109

95. Conditions of High Efficiency 110

96. Effect of Incomplete Expansion 112

97. Ideal Engine working with No Expansion . . . .114
98. Clapeyron's Equation .115
99. Application of Clapeyron's Equation to other Changes in

Physical State 116

100. Entropy-Temperature Chart of the Properties of Steam . . 118

101. Holder's Chart of Entropy and Total Heat . . . . 121

102. Other Forms of Chart . . 125

103. Effects of Throttling . . 126

104. The Heat-Account in a Real Process . . . . .129

CHAPTER IV

THEORY OF REFRIGERATION
105. The Refrigeration Process 133

106. Reversible Refrigerating Machine 134

107. Conservation of Entropy in a Perfect Refrigerating Process . 135

108. Ideal Coefficients of Performance 136

109. The Working Fluid in a Refrigerating Process . . .137
110. The Actual Cycle of a Vapour-Compression Refrigerating

Machine .......... 138

111. Entropy-Temperature Diagram for the Vapour-Compression
Cycle 141



x CONTENTS

AET. PAGE

112. Refrigerating Effect and Work of Compression expressed in

Terms of the Total Heat 144

113. Charts of Total Heat and Entropy for Substances used in the

Vapour-Compression Process 145

114. Applications of the /< Chart in studying the Vapour-Compres-
sion Process ......... 149

115. Vapour-Compression by means of a Jet. Water-Vapour
Machine 155

1 16. The Step-down in Temperature. Use of an Expansion Cylinder
in Machines using Air 157

117. Air-Machines. Joule's Air-Engine reversed . . . .158
118. Direct Application of Heat to produce Cold. Absorption

Machines 160

119. Limit of Efficiency in the Use of High-temperature Heat to

Produce Cold 164

120. Expression in Terms of the Entropy 166

121. The Refrigerating Machine as a means of Warming . . 168

122. The Attainment of Very Low Temperature. Cascade Method 169

123. Regenerative Method . 171

124. First Stage ........... 172

125. Second Stage 175

126. Linde's Apparatus 176

127. Liquefaction of Air by Expansion in which Work is done.

Claude's Apparatus . . . . . . .178
128. Separation of the Constituents of Air 180

129. Baly's Curves 185

130. Complete Rectification . . . . . . .188

CHAPTER V
JETS AND TURBINES

131. Theory of Jets 191

132. Form of the Jet (De Laval's Nozzle) 193

133. Limitation of the Discharge through an Orifice of Given Size 197

134. Application to Air 198

135. Application to Steam 199

136. Comparison of Metastable Expansion with Equilibrium Ex-

pansion 203

137. Measure of Supersaturation 206

138. Retarded Condensation 207

139. Action of Steam in a Nozzle, continued 208
140. Effects of Friction 209
141. Application to Turbines 214
142. Simple Turbines 215
143. Compound Turbines 216
144. Theoretical Efficiency-Ratio . . . . . . .216
145. Action in Successive Stages 217

146. Stage Efficiency and Reheat Factor 218



CONTENTS xi

ABT. PAGE

147. Real Efficiency-Ratio 219

148. Types of Turbines . .220
149. Performance of a Steam Turbine . . . . . 222

150. Utilization of Low Pressure Steam 223

CHAPTER VI
INTERNAL-COMBUSTION ENGINES

151. Internal Combustion 225

152. The Four-Stroke Cycle 226

153. The Clerk or Two-Stroke Cycle 226

154. Ideal Action 227

155. Air Standard 229

156. Constant-Pressure Type 232

157. Diesel Engine . 234

158. Combustion of Gases. Molecular Weights and Volumes . . 235

159. The Gramme-Molecule or Mol 237

160. The Universal Gas-Constant 238

161. Specific Heats of Gases in Relation to their Molecular Weights.
Volumetric Specific Heats ...... 239

162. Summary of Methods of expressing the Specific Heats . . 241

163. Measured Values of Specific Heats 241

164. Variation of Specific Heat with Temperature.... 243

165. Internal Energy of a Gas 245

166. Adiabatic Expansion of a Gas with Variable Specific Heat . 247

167. Ideal Efficiency as affected by the Variation of the Specific

Heat with Temperature 249

168. Curve of Internal Energy for Typical Gas-Engine Mixture . 251

169. Action in a Real Engine. Analysis of the Indicator Diagram . 254

170. Measurement of Suction Temperature 257

171. The Process of Explosion 257

172. Effect of Turbulence 259

173. Radiation in Explosions 260

174. Molecular Energy of a Gas 261

175. Dissociation 265

CHAPTER VII

GENERAL THERMODYNAMIC RELATIONS

.176. Introduction 266

177. Functions of the State of a Fluid 266

178. Relation of any one Function of the State to two others . . 267

179. Energy Equations and Relations deduced from them . . 270

180. Expressions for the Specific Heats Kv and Kp . . . . 272

181. Further deductions from the Equations for E and / . . 275

182. The Joule-Thomson Effect 276

183. Unresisted Expansion 279



xii CONTENTS

AET. PAGE

184. Slopes of Lines in the /<, T0, and IP charts, for any Fluid . 280

185. Application to a Mixture of Liquid and Vapour in Equilibrium :

Clapeyron's Equation. Change of Phase.... 283

186. Compressibility and Elasticity of a Fluid .... 286

187. Collected Results . 286

CHAPTER VIII

APPLICATIONS TO PARTICULAR FLUIDS

188. Characteristic Equation 290

189. Characteristic Equation of a Perfect Gas .... 290

190. Isothermal and Adiabatic Expansion of Ideal Gas . . . 292

191. Entropy, Energy, and Total Heat of Ideal Gas . . .293
192. Ratio of Specific Heats. Method of inferring y in Gases from

the Observed Velocity of Sound . . . . .293
193. Measurement of y by Adiabatic Expansion. Method of Cle-

ment and Desormes 294

194. Effect of Imperfection of the Gas on the Ratio of Specific Heats 295

195. Relation of the Cooling Effects to the Coefficients of Expansion 296

196. Forms of Isothermals. Diagrams of P and V, and of PV and P 298

197. Imperfect Gases. Amagat's Isothermals of PV and P . . 299

198. Isothermals on the Pressure-Volume Diagram . . . 303

199. Continuity of Liquid and Gas 304

200. Van der Waals' Characteristic Equation 306

201. Critical Point according to Van der Waals' Equation . . 309

202. Corresponding States 311

203. Van der Waals' Equation only Approximate . . / . . 313

204. Other Characteristic Equations: Clausius, Dieterici . . 315

205. Calendar's Equation 318

206. Deductions from the Callendar Equation . . . .321
207. The Specific Heats in Calendar's Equation .... 324

208. The Entropy, Energy, and Total Heat, in Calendar's Equation 325

209. Application to Steam 327

210. Total Heat and Entropy of Water . . . . . .334
211. Relation of Pressure to Temperature in Saturated Steam . 336

212. Formulas for the Latent Heat of Steam, and for the Volume
of a Wet Mixture 338

213. Collected Formulas for Steam 338

214. Tables of the Properties of Steam 340

APPENDIX I

EFFECTS OF SURFACE TENSION ON CONDENSATION
AND EBULLITION

215. Nature of Surface Tension . . . . . . . 342
216. Need of a Nucleus 344
217. Kelvin's Principle 345
218. Ebullition .... 349



CONTENTS xiii

APPENDIX II

MOLECULAR THEORY OF GASES
ART. PAGE

219. Pressure due to Molecular Impacts . . . . .351
220. Boyle's, Avogadro's, and Dalton's Laws .... 355

221. Perfect and Imperfect Gases 356

222. Calculation of the Velocity of Mean Square .... 356

223. Internal Energy and Specific Heat 357

224. Energy of Vibration 361

225. Planck's Formula 362

226. Effect of Extreme Cold on the Diatomic Molecules of Hydrogen 366

APPENDIX III

TABLES OF THE PROPERTIES OF STEAM
TABLE

A. Properties of Saturated Steam, in relation to the Temperature 368

A*. Properties of Water at Saturation Pressure .... 369

B. Properties of Saturated Steam, in relation to the Pressure . 370

C. Volume of Steam in any Dry State 372

D. Total Heat of Steam in any Dry State 374

E. Entropy of Steam in any Dry State 376

F. Specific Heat, at constant pressure, of Steam in any Dry State 378

INDEX 379





CHAPTER I

FIRST PRINCIPLES

i. The Science of Thermodynamics treats of the relation of
heat to mechanical work. In its engineering aspect it is chiefly con-
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through the critical point has zero curvature there, though it does not suffer

inflection."

Page 140, line 5, delete "in the same figure."

Page 149, line 1,/or "coincides with " read "is a little above ".

Page 328, second last line, for "1-982" read "1-984".

Page 363, line 6, for "ergs" read "c.g.s."

some of the heat disappears in the process of being let down : it is

converted into the work which the engine does.

In a Refrigerating Machine work has to be spent upon the

machine to enable it to take in heat at a low level of temperature,
and discharge heat at a higher level of temperature, just as work
would have to be spent upon a water-wheel if it were used as a

means of raising water by reversing its action, in such a way that

the buckets were filled at a low level and emptied at a higher level,

so that it should serve as a pump. It would be quite correct to

speak of a refrigerating machine as a heat-pump. But again there

is an important difference between the refrigerating machine and

E.T. 1





CHAPTER I

FIRST PRINCIPLES

1. The Science of Thermodynamics treats of the relation of

heat to mechanical work. In its engineering aspect it is chiefly con-

cerned with the process of getting work done through the agency of

heat. Any machine for doing this is called a Heat-Engine. It is

also concerned with the process of removing heat from bodies that

are already colder than their surroundings. Any machine for doing
this is called a Refrigerating Machine.

It is convenient to study the thermodynamic action of heat-

engines and refrigerating machines together, because one is the

reverse of the other, and by considering both we arrive more easily

at an understanding of the whole subject.

2. Heat-Engine and Heat-Pump. In a Heat-Engine heat is

supplied, generally by the combustion of fuel, at a high tempera-

ture, and the engine discharges heat at a lower temperature. Thus

in a steam-engine heat is taken in at the temperature of the boiler

and discharged at the temperature of the condenser. In any kind

of heat-engine the heat is let down, within the engine, from a high
level of temperature to a lower level of temperature, and it is by
so letting heat down that the engine is able to do work, as a

water-wheel is able to do work by letting water down from a high

level to a lower level. But there is this important difference, that

some of the heat disappears in the process of being let down : it is

converted into the work which the engine does.

In a Refrigerating Machine work has to be spent upon the

machine to enable it to take in heat at a low level of temperature,

and discharge heat at a higher level of temperature, just as work

would have to be spent upon a water-wheel if it were used as a

means of raising water by reversing its action, in such a way that

the buckets were filled at a low level and emptied at a higher level,

so that it should serve as a pump. It would be quite correct to

speak of a refrigerating machine as a heat-pump. But again there

is an important difference between the refrigerating machine and

E.T. l
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the reversed water-wheel : the refrigerating machine is a heat-pump
which discharges more heat than it takes in, for the work which is

spent in driving the machine is converted into heat, which has to

be discharged at the higher level of temperature in addition to the

heat that is taken in at the low temperature.

3. Efficiency of a Heat-Engine. From the point of view of

practical thermodynamics the object of a heat-engine is to get

work done with the least possible expenditure of fuel. In other

words the ratio of the work done to the heat taken in should be as

large as is practicable. This ratio is called the Efficiency of the

engine as a heat-engine. The theory of heat-engines deals with the

conditions that affect efficiency, and with the limit of efficiency that

can be reached when the conditions are most favourable.

4. Coefficient of Performance of a Refrigerating Machine.

In a refrigerating machine the object is to get heat removed from

the cold body and pumped up to a higher level of temperature at

which it can be discharged, and what is wanted is that this should

be done with the least possible expenditure of work. The ratio of the

heat taken in by the machine from the cold body to the work that

is spent in driving the machine is called the Coefficient of Perform-

ance. The theory of refrigeration deals with the conditions that

will allow this ratio to be as large as possible.

5. Working Substance. In the action of a heat-engine or of

a refrigerating machine there is always a working substance which

forms the vehicle by which heat passes through the machine. It is

because the working substance has a capacity for taking in heat

that it can act as a vehicle for conveying heat from one level of

temperature to another. In this process its volume changes, and it

is by means of changes of volume on the part of the working sub-

stance that the machine does work, if it is a heat-engine, or has work

spent upon it, if it is a refrigerating machine. Accordingly, an

important part of the science of thermodynamics deals with the

properties of substances in relation to heat, and the connection

between such properties in any substance. The substances with

which we are chiefly concerned are fluids in the gaseous or liquid
states. They include air and other gases, water and water-vapour,
and also some fluids more easily vaporized than water, such as

ammonia and carbonic acid, which are used as the working sub-

stance in certain refrigerating machines. Each fluid has of course
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its own characteristics ; but many of the relations between its pro-

perties are of a general kind and may be studied without limitation

to individual fluids. It will be seen, as we go on, that much of

what has to be said applies equally, whatever fluid serves for

working substance, and that in any one fluid the various properties
are connected with one another in a way that is true for all fluids.

The study of the thermodynamic relationships between the various

properties of a fluid is useful, not only because of the direct light it

throws on the action of heat-engines, but also because it enables

a practically complete knowledge of the properties of a fluid in

detail to be inferred from a comparatively small number of experi-

mental data. We shall see later, for example, how such relation-

ships have been made use of in calculating modern tables of the

properties of steam from the results of careful measurements, made
in the laboratory, of a very few fundamental quantities.

6. Operation of the Working Substance in a Heat-Engine.
In general the working substance is a fluid which operates by chang-

ing its volume, exerting pressure as it does so. But it is easy to

imagine a heat-engine having a solid body for working substance,

say a long rod of metal arranged to act as the pawl of a ratchet-

wheel with closely pitched teeth. Let the rod be heated so that it

lengthens sufficiently to drive the wheel forward through the space
of one tooth. Then let the rod be cooled, say by applying cold water,

the ratchet-wheel being meanwhile held from returning by a

separate click or detent. The rod on cooling will retract so as to

engage itself with the next succeeding tooth, which may then be

driven forward by heating the rod again, and so on. To make it

evident that such an engine would do work we have only to suppose
that the ratchet-wheel carries round with it a drum by which a

weight is wound up. The device forms a complete heat-engine, in

which the working substance is a solid rod, doing work in this case

not through changes of volume but through changes of length.

While its length is increasing it is exerting force in the direction of

its length. It receives heat by being brought into contact with

some source of heat at a comparatively high temperature; it trans-

forms a small part of this heat into work; and it rejects the re-

mainder to what we may call a receiver of heat, which is kept at a

comparatively low temperature. The greater part of the heat may
be said simply to pass through the engine, from the source to the

receiver, becoming degraded as regards temperature in the process.

12
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This is typical of the action of all heat-engines : they convert some

heat into work only by letting down a much larger quantity of heat

from a high temperature to a relatively low temperature. The

engine we have just imagined would not be at all efficient; the

fraction of the heat supplied to it which it could convert into work

would be very small. Much greater efficiency can be obtained by

using a fluid for working substance and by making it act so that

its own expansion of volume not only does work but also causes it

to fall in temperature before it begins to reject heat to the cold

receiver.

7. Cycle of Operations of the Working Substance. Generally

in the action of a heat-engine or of a refrigerating machine the

working substance returns periodically to the same state of tem-

perature, pressure, volume and physical condition in all respects.

Each time this has occurred the substance is said to have passed

through a complete cycle of operations. For example, in a con-

densing steam-engine, water taken from the hot-well is pumped
into the boiler; it then passes into the cylinder as steam, then from

the cylinder into the condenser, and finally from the condenser

back to the hot-well; it completes the cycle by returning to the

same condition in all respects as at first, and is ready to go through
the cycle again. In other less obvious cases a little consideration

shows that the cycle is completed although the same portion of

working substance does not go through it again: thus in a non-

condensing steam-engine the steam which has passed through the

engine is discharged into the atmosphere, where it cools to the tem-

perature of the feed-water, while a fresh portion of feed-water is

delivered to the engine to go through the cycle in its turn.

In the theory of heat-engines it is of the first importance to con-

sider as a whole the cycle of operations performed by the working
substance. If we stop short of the completion of the cycle matters

are complicated by the fact that the substance is in a state different

from its initial state. On the other hand, if the cycle is complete we

know that whatever heat or other energy the substance contained

within itself to begin with is there still, for the state of the substance

is the same in all respects, and consequently any work that it has

done must have been done at the expense of heat which it has

taken in during the cycle. The total amount of energy it has parted
with must be equal to the amount it has received, during the cycle,

for its stock of internal energy is the same at the end as at the
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beginning. We can at once apply the principle of the Conservation

of Energy and say that for the cyclic process as a whole this equa-
tion must hold good,

Heat taken in = Heat rejected + Work done by the substance.

And similarly, when the working substance in a refrigerating

machine has been carried through a complete cycle of operations,
the equation holds for the cycle as a whole,

Heat taken in = Heat rejected Work spent upon the substance.

8. The First Law of Thermodynamics. The principle of the

Conservation of Energy in relation to heat and work may be ex-

pressed in the following statement, which constitutes the First Law
of Thermodynamics : When mechanical energy is produced from
heat a definite quantity of heat goes out of existence for every unit

of work done; and, conversely, when heat is produced by the expendi-
ture of mechanical energy the same definite quantity of heat comes into

existence for every unit of work spent.

9. Internal Energy. We have used in Art. 7 a phrase which

requires some further explanation the internal energy of a sub-

stance. No means exist by which the whole stock of energy that

a substance contains can be measured. But we are concerned only
with changes in that stock, changes which may arise from the sub-

stance taking in or giving out heat, or doing work, or having work

spent upon it. If a substance takes in heat without doing work its

stock of internal energy increases by an amount equal to the heat

taken in. If it does work without taking in heat, it does the work

at the expense of its stock of internal energy, and the stock is

diminished by an amount equal to the work done. In general, when

heat is being taken in and the substance is at the same time doing

work, we have

Heat taken in = Work done + Increase of Internal Energy.

For any infinitesimalJy small step in the process, we may write

dQ = dW + dE,

where dQ is the heat taken in during the step, dW is the work

done, and dE the increase of internal energy.

In a complete cycle there is, at the end, no change of the internal

energy E, and consequently for the cycle as a whole,

i
-

2
- W,

where Qj
- Q2 is the net amount of heat received, namely the
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difference between the heat taken in and the heat rejected in the

complete cycle, and W is the work done in the complete cycle.

In this notation we are supposing W to be expressed in units of

heat, as well as Q and E. It would be more correct to speak of W
as the thermal equivalent of the work done.

10. Work done in Changes of Volume of a Fluid. In an

engine of the usual cylinder and piston type the working fluid

does work by changes of volume. The amount of work done de-

pends only on the relation of the pressure to the volume in these

changes, and not on the form of the vessel or vessels in which the

changes of volume take place. Let the intensity of pressure of the

fluid (that is to say the pressure on unit of area) be P while the

piston moves forward through a small distance 8/. If the area of the

piston is S the total force on it is PS and the work done is PS$l.

But S81 SF, the change of volume: hence the work done is PSF
rV

for the small change of volume SF, or PdV for a finite change
Jrt

of volume from a volume Vl to a volume F2 during which the

pressure may vary.

In any complete cycle of operations the volume at the finish

is the same as at the start, and the work done is \PdV taken

round the cycle as a whole.

It is very useful to represent graphically the work which a

fluid does in changing its volume. Let a diagram be drawn in

which the relation of the pres-

sure of any supposed working
substance to its volume is shown

by rectangular coordinates as in

fig. 1. Beginning with the state

represented by the point A, where

the pressure is AM and volume

OM, suppose the substance to

expand to a state B, where the

pressure is BN and the volume
|_ |M

ON, and let the curve AB repre-
Volume

sent the intermediate states of FlS- l

pressure and volume. Then the work done by the substance in this
rON

expansion, which is PdV, is represented by the area MABN
.

]

under the curve AB.
OM
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Again, if the substance undergoes any complete cycle of change
(fig. 2) by expanding
from A through B to C
and by beingcompressed
back through D to A,
work is done by it while

it is expanding from A
to C, equal to the area

MABCN, and work is

spent upon it while it is

being compressed from Volume

C through DtoA, equal
FiS- 2

to the area NCDAM. The net amount of work which the

substance does during the cycle is equal to the algebraic sum of

those areas: in other words it is equal to the area of the closed

figure ABCDA representing the complete cyclic operation, which

area is
|

PdV.

If on the other hand the operation were such as to trace the

figure in the opposite direction, the substance being expanded
from A to C through D and compressed from C to A through J?,

the enclosed area would be a measure of the work expended upon
the substance in the cycle.

ii. Indicator Diagrams. This pressure-volume diagram is an

example, and a generalization, of the method of representing work

which Watt introduced by his invention of the Indicator, an

instrument for automatically drawing a diagram to represent the

changes of pressure in relation to changes of volume in the action

of an engine. The figure ABCDA may be called the Indicator

Diagram of the supposed action.

The indicator consists of a small cylinder containing a piston

which can move in it without sensible friction but is controlled by
a stiff spring. This is put in free communication with one end of the

working cylinder of the engine, so that the working substance

presses on the indicator piston and displaces it, against the spring,

through distances that are proportional to the pressure at every

instant. Connected with the indicator piston is a pencil which rises

or falls with it, the connection being made, generally, through a

lever that gives the movements of the indicator piston a convenient

magnification. A sheet of paper on which the pencil marks its
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movements is caused to move through distances proportional to

the motion of the engine piston, and at right angles to the path of

the pencil. Thus a diagram is drawn like that of fig. 2, exhibiting

a closed curve for each double stroke of the engine piston, and with

coordinates which represent the changes of pressure and changes
of volume. The enclosed area, when interpreted by reference to

the appropriate scales of pressure and volume, measures the net

amount of work done in the engine cylinder during the double

stroke, so far as one side of the piston is concerned. If the engine

is double-acting that is to say, if the working substance acts

successively on the two sides of the engine piston during successive

strokes a similar indicator diagram is taken for the other end of

the cylinder as well.

12. Units of Force, Pressure, and Work. For engineering

purposes, in speaking of pressure and of work, the common unit of

force in British and American usage is the weight of 1 Ib. and in

continental usage the weight of 1 kilogramme*. By the word

"weight" we mean here the force with which the earth attracts

these masses. When it is necessary to give scientific precision to

either of these units of force one must specify a locality, or rather a

latitude, because gravity acts rather more strongly as we go from

the equator towards the pole. The same piece of material is more

strongly attracted by the earth in London than in Paris, to the

extent of one part in 5000, and more strongly in London than in

New York to the extent of one part in 1000. If the weight of 1 Ib.

of matter in mean latitude (45) be taken as unity, its weight in

any other latitude A is

0-99735(1 + 0-0053 sin2
A).

The differences due to latitude are so small that for nearly all

purposes they may be ignored.
The usual units of pressure are the pound per square inch and the

kilogramme per square centimetref. Another unit often used is the

"Atmosphere," which means the pressure of the atmosphere with

the barometer standing at 760 mm. in latitude 45, or 759-6 mm.
in London. This is equal to a pressure in London of 14-689 pounds
per square inch or 1-03274 kilogrammes per square centimetre.

For scientific purposes the absolute (c.g.s.) unit of pressure, the
* One kilogramme is 2-20462 Ibs.

f Since 1 centimetre is 0-393702 inch, 1 kilogramme per sq. cm. is 14-223 pounds
per sq. in., when both are measured at the same place, so that gravity acts alike on
the pound and the kilogramme.
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dyne per sq. cm., has the advantage that it is independent of

gravity. One "Atmosphere" is equal to T0133 x 106
dynes per

sq. cm., at any place.

Pressures are also sometimes given in inches, or in millimetres,

of mercury. One inch of mercury (at C.) is equivalent to 0-4912

pounds per square inch; one millimetre of mercury to 1*3596

grammes per sq. cm. jg,>

The usual engineering units of work are the foot-pound and the

metre-kilogramme or kilogrammetre. One kilogrammetre is 7-233

foot-pounds.

13. Units of Heat. For the purpose of reckoning quantities of

heat we compare them with the quantity that is required to warm
a unit mass of water from the temperature of melting ice to the

temperature at which water boils under a pressure of one atmo-

sphere. These two points serve to determine two fixed states of

temperature that are quite definite and are independent of the

particular way in which temperature may be measured. The unit

of heat which is obtained by taking a certain fraction of this

quantity of heat is described as the m,ean thermal unit. The mean
thermal unit which will be used here is one-hundredth part of the

heat required to warm one pound of water from the melting point
to the boiling point at a pressure of one atmosphere. This unit

is called the Pound-Calory. The reason why one-hundredth part is

taken is that on the Centigrade scale of temperature the interval

between these fixed points is divided into 100 degrees : consequently
the pound-calory is the average amount of heat required to warm a

pound of water through one degree Centigrade, between the melting

point and the boiling point as limits. The actual amount required

per degree need not be the same for each degree of the scale, and

in fact is not the same, for the specific heat of water is not quite

constant.

Similarly, what is commonly called the BritishThermal Unit (when
the Fahrenheit scale is employed) would be defined as 1/180 of

the quantity of heat required to warm 1 Ib. of water from the

melting point to the boiling point, because on the Fahrenheit scale

there are 180 degrees between the two fixed points.

Again, the
"
Kilo-Calory" is one-hundredth of the amount of heat

required to wrarm 1 kilogramme of water from the melting point to

the boiling point, and the "gramme-calory" is one-thousandth of

a kilo-calory
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14. Mechanical Equivalent of Heat. The experiments of

Joule, begun in 1843 and continued for several years, demonstrated

that when work is expended in producing heat a definite relation

holds between the amount of heat produced and the amount of

work spent. Causing the potential energy of a raised weight to be

used up in turning a paddle which generated heat by stirring water

in a vessel, and observing the rise of temperature so produced, Joule

made the first determination of the number of units of work that

are spent in producing a unit of heat. This number is called the

mechanical equivalent of heat. Joule found that 772 foot-pounds

were required to raise the temperature of one pound of water

through one degree (Fahrenheit) on the thermometer he employed,
at a particular part of the scale.

Many later and more exact determinations were made by Joule

himself and by other observers, using various methods of experi-

ment. They agree in showing that Joule's original figure was

rather low. The general result is to fix 1400 as the number of foot-

pounds (in the latitude of London) that are equivalent to one

Pound-Calory as defined in Art. 13. The corresponding value

of the mechanical equivalent of the "British Thermal Unit" is

777-8 foot-pounds, and that of the Kilo-Calory is 426-7 kilogram-

metres*.

The mechanical equivalent of heat enters into many of the for-

mulas of thermodynamics. It is often called Joule's Equivalent,

and is generally represented by the symbol J. The symbol A is

used for the reciprocal of Joule's equivalent, or 1/J.

15. Scales of Temperature. In the construction of an ordin-

ary thermometer a fine tube of uniform bore is chosen, and a bulb

is formed on it to contain the mercury or other liquid whose expan-
sion is to be used as an indication of temperature. When it is filled

the two fixed points are determined by placing the instrument (a) in

melting ice, and (b) in the steam coming from water boiling under

a pressure of one atmosphere. The position taken by the end of the

column of liquid in the tube is marked for each of these two points.

The distance between them is then divided into equal parts which

are called degrees, 100 parts for the Centigrade scale and 180 for the

Fahrenheit scale. By this construction equal steps in temperature
are defined by equal amounts of expansion on the part of the

* In absolute. (c.g.s.) units the gramme-calory will be taken in this book as

equivalent to 4*1868 x 107
ergs, or cm-dynes.
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selected liquid, or rather by equal amounts of difference between
the expansion of the liquid itself and that of the glass in which it

is contained, for it is the difference of expansion that determines

the rise of the column in the tube. This common method of

measuring temperature gives results that vary for different liquids
and for different sorts of glass. Each of two mercury thermometers,
for example, may have the fixed points correctly marked, and be

of uniform bore, and yet if they are made of different sorts of

glass they may give readings that differ by as much as half a

degree (Centigrade) at the middle of the range between the fixed

points, and may show very serious discrepancies sometimes

amounting to as much as five degrees or more when they are

applied to measure higher temperatures such as that of steam on its

way to an engine. This illustrates the fact that the measurement of

temperature by an ordinary thermometer gives an arbitrary scale,

which cannot even be relied on to be the same in different instru-

ments.

Measurements of temperature are much less capricious if we
select for the expanding substance any one of the so-called perman-
ent gases, such as air, or nitrogen, or hydrogen, taking care of

course to keep the pressure of the gas constant while it is employed
to measure temperature by its changes of volume. Such an instru-

ment is called a constant-pressure gas thermometer. It would be

inconvenient for ordinary use
;
but it serves to supply a scale with

which the readings of an ordinary thermometer can be compared.
Thus the readings of any mercury thermometer can be corrected to

bring them into agreement with the scale of a gas thermometer if

that scale be adopted as the standard scale in stating temperatures.

Experiments on the expansion of various gases by heat have

shown that all gases which are far from the conditions that would

cause liquefaction expand very nearly alike. Thus if we compare an

air thermometer with a nitrogen or a hydrogen thermometer we get

practically the same scale except at extremely low temperatures
such as those at which the gas is approaching the liquid state.

Gases expand by almost exactly the same amount between the

two fixed points, namely by 100/273 of the volume they have at the

temperature of melting ice ; and at intermediate points, or at points

beyond the range, their agreement with one another is almost

perfect. Hence the scale of the gas thermometer is much to be

preferred to that of any mercury thermometer as a means of stat-

ing temperature. But there is another and even stronger reason for
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this preference. We shall see later that it is possible to imagine a

scale of temperature, based on general thermodynamic principles,

which does not depend on the properties of any particular sub-

stance : that scale is called the thermodynamic scale of temperature,

and much use is made of it in thermodynamic reasoning. The

scale of a gas thermometer is practically identical with the thermo-

dynamic scale. Taking the hydrogen thermometer, in which the

agreement is closest, Callendar has shown* that midway between the
fixed points the scale correction (that is, the difference between the

numbers which state the same temperature on the hydrogen
scale and the thermodynamic scale) is only 0-0013 of a degree,

and that the temperature has to go up to about 1000 or down
below 150 before the correction becomes as much as 0-1 of a

degree. These figures are for hydrogen expanding under a constant

pressure of one atmosphere. The differences between the scale of the

gas thermometer and the thermodynamic scale are even less if a con-

stant-volume type of gas thermometer be used, in which increments

of temperature are measured by the increments of pressure that are

required to keep the volume of the gas constant while it is heated.

1 6. Reckoning of Temperature from the "Absolute Zero."

Experiment shows that the amount by which air or hydrogen or

any other so-called "
permanent

"
gas expands between the two

fixed points that is to say in passing from the temperature of

melting ice to that of boiling water (at a pressure of one atmo-

sphere) is about 100/273 of the volume at the lower fixed point,

care being taken that the pressure does not change. Hence if we

adopt the scale of the gas thermometer as our scale of tempera-

ture, and use Centigrade divisions, this result may be expressed

by saying that when 273 cubic inches of gas at C. are heated

under constant pressure to 1 the volume alters to 274 cubic inches.

When the gas is heated to 2C. its volume becomes 275 cubic inches,
and so on. Similarly if the gas be cooled from C. to 1 C. its

volume changes from the original 273 cubic inches to 272, and so on.

Putting this in a tabular form, let the volume be

273 at C.

It will become 272 at - 1 C.

and finally would be at - 273 C.,
* H. L. Callendar,

" On the thermodynamical correction of the Gas Thermometer,"
Proc. Phys. Soc. vol. xvin, or Phil. Mag. January, 1903.
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if the same law could be held to apply down to the lowest tempera-
tures. Any actual gas would change its physical state before so low
a temperature were reached, becoming first liquid and then solid,

and the volume to which it would contract would consequently be

not zero but the volume of the substance in the solid state.

The above result may be concisely expressed by saying that if

temperature be reckoned not from the ordinary zero but from a

zero which is about 273 Centigrade degrees below it (more exactly

273-1), the volume of a gas, heated under constant pressure, is

proportional to the temperature reckoned from that zero. The
zero in question is spoken of as the Absolute Zero of temperature.

Denoting any temperature on the ordinary scale by i and the

corresponding temperature reckoned from the absolute zero by T,
we have (using Centigrade degrees)

T = / + 273-1.

The absolute zero has been defined here by reference to the ex-

pansion of a gas. But it will be seen later that the thermodynamic
scale of temperature starts from a zero which is absolute in the

sense that no lower temperature can possibly exist, and that the

zero of the thermodynamic scale coincides with the zero of the gas
scale as defined above*.

17. Properties of Gases : Charles' Law and Boyle's Law.
The experimental fact that all "permanent" gases expand by very

nearly the same fraction of their volume for a given increase of

temperature, the pressure being kept constant, is known as Charles'

Law. Another fundamental property of gases, discovered by the

experiments of Boyle, is that when the volume of a gas is altered by
altering the pressure, the temperature being kept constant, the

volume varies inversely as the pressure.

Thus if V be the volume of a given quantity of any gas, and P
the pressure, then so long as the temperature remains unchanged,
V varies inversely as P, or PV = constant. This is Boyle's Law.

It is very nearly though not exactly true in gases such as air or

oxygen or nitrogen or hydrogen: the deviations from it are very

slight in any gas that is in conditions far removed from those which

produce liquefaction.

* The exact position of the absolute zero is uncertain to the extent of about

one-tenth of a degree. Callendar places it at - 273-1 C. That figure is used in his

determinations of the properties of steam, and is adopted in this book.
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18. Notion of a " Perfect'* Gas. In dealing with the pro-

perties of gases and with the thermodynamics of heat-engines it is

convenient to imagine a gas which exactly conforms to laws that

are only very nearly true of real gases. Such a gas is called a

"perfect" gas. The properties of real gases are most easily treated

as small deviations from those of imaginary "perfect" gases obey-

ing simple laws. Among real gases hydrogen probably comes

nearest to the ideal of a perfect gas, but no real gas is in this sense

strictly perfect.

In a gas which is perfect in the sense of conforming exactly to

Boyle's Law we should find PV strictly constant, so long as

the temperature is constant. If we define the temperature scale by
reference to the expansion of the gas we should also have V varying
as the temperature T (reckoned from the absolute zero) under any
constant pressure. Combining these two statements we should have

PV = RT ........................... (1),

where R is a constant.

We may write, for any gas assumed to be perfect,

where P and F are the pressure and volume at C. When the

volume is reckoned per unit quantity of the gas we have a definite

constant value of R for each gas, depending on the units employed
and on the specific density of the gas in question.

It should be noticed that when a gas satisfying this equation is

heated under constant pressure and consequently expands, R is a

measure of the amount of work done by the gas in this expansion
for each degree through which the temperature rises. Let the

original temperature of the gas be Tl and its volume Vl and let it

be heated under constant pressure P till the temperature is T2 and

the volume F2 . Then we have RT = PV^ and RT2
= PF

2 ,
from

which R (T2 -T1)=P (F2
- F^, which is the work done by the

gas in expanding from Vl to F2 . Let the interval of temperature be

1, then R is equal to the work done.

Thus R is numerically expressed in units of work per unit of mass

and per degree: in foot-pounds per Ib. or in kilogrammetres per

kilogramme. If we use the Centigrade degree in both cases the

ratio of the number which expresses R in foot-pounds per Ib. to the

number which expresses it in kilogrammetres per kilogramme is

3-28085, namely the number of feet in a metre.

According to measurements by Regnault a cubic metre of dry air,
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at a temperature of C. and pressure of 1 atmosphere as denned

in Art. 12. contains 1*2928 kilogrammes. We should accordingly
have for dry air, if it were "perfect,"

R = 1-03274 x 100 2
/l-2928 x 273'1 = 29-25,

in kilogrammetres per kilogramme, at the latitude of London. The
factor 1002 is required to convert the pressure into kilogrammes per

square metre. The corresponding value of R in foot-pounds per

Ib. is 96-0.

In this calculation air is treated as if it conformed exactly to

Boyle's Law For the present it is to be understood that the

symbolT stands for temperature measured on the scale of a gas ther-

mometer, from a zero which is 273'1 below the melting point of ice.

19. Internal Energy of a Gas: Joule's Law. The Internal

Energy of a given quantity of a gas depends only on the temperature.

This is an inference from the fact established by experiments of

Joule, that when a gas expands without doing external work and

without taking in or giving out heat, and therefore without changing
its stock of internal energy, its temperature does not change.

Joule's Law is to be regarded as strictly true only of imaginary

perfect gases: in any actual gas there is a slight departure from it,

which is very small indeed in a nearly perfect gas such as hydrogen.
The law was originally established by means of the following

experiment.
Joule connected a vessel containing compressed gas with another

vessel which was empty, by means of a pipe with a closed stop-cock.

Both vessels were immersed in a bath of water and were allowed to

assume a uniform temperature. Then the stop-cock was opened,
and the gas distributed itself between the two vessels, expanding
without doing external work. After this the temperature of the

water in the bath was found to have undergone no appreciable

change. The temperature of the gas appeared unaltered, and no

heat had been taken in or given out by it, and no work had been

done by it.

Since the gas had neither gained nor lost heat, and had done no

work, its internal energy was the same at the end as at the begin-

ning of the experiment. The pressure and volume had changed, but

the temperature had not. The conclusion follows that the internal

energy of a given quantity of gas depends only on its temperature,

and not upon its pressure or volume; in other words, a change of

pressure and volume not associated with a change of temperature
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does not alter the internal energy. Hence in any change of tempera-
ture the change of internal energy is independent of the relation of

pressure to volume during the operation: it depends only on the

amount by which the temperature has been changed.
The apparatus used by Joule in this experiment is shown in

fig. 3. The vessel A was filled with air compressed to more than

20 atmospheres, and B was exhausted. Both vessels were immersed

in a bath of water. The water in the bath was stirred and the

temperature noted before the stop-cock C was opened. After the

gas had come to rest in the two vessels the water was again stirred,

and was found to have the same temperature as before, so far as

tests made by a very sensitive ther-

mometer could detect.

In another form of the apparatus
Joule separated the bath into three

portions, one portion round each of

the vessels and one round the con-

necting pipe. When the stop-cock
was opened the water surrounding A
was cooled, but this was compensated

by a rise of temperature in the water
Fig. 3

surrounding B and C. The gas in A became colder in the act of

expanding, but heat was given up in B and C as its eddying motion

settled down, and when all was still there was neither gain nor loss

of heat on the whole, so far as could be detected in this form of

experiment.
It is now, however, known that a very slight change of tempera-

ture does in fact take place when a real gas expands without doing
work. In later experiments by Joule and Thomson (Lord Kelvin)

a more delicate method was adopted of detecting whether there is

any change of internal energy when the pressure and volume change
under conditions such that external work is not done. The gas was

forced to pass through a porous plug by maintaining a constant

high pressure on one side of the plug and a constant low pressure

on the other. Care was taken to prevent any heat being gained or

lost by conduction from outside. In this operation work was done

upon the gas in forcing it up to the plug, and work was done by it

when it passed the plug, by displacing gas under the lower pressure

on the side beyond the plug. If no change of temperature took

place, and if the gas conformed to Boyle's Law, these two quantities

of work would be exactly equal, and consequently no external work



i] FIRST PRINCIPLES 17

would be done on the whole. For let Pl be the pressure and V the

volume before passing the plug, and P2 the pressure and V2 the

volume after passing the plug, the volumes being in both cases

stated per Ib. of the gas. Then the work done upon the gas (per Ib.)

as it approaches the plug is P^i ,
and the work done by it as it

leaves the plug is P2F2 . If the temperature is the same on

both sides these quantities are. equal in a gas for which PV is con-

stant at any one temperature. Thus a gas which is
"
perfect

"
in the

sense that it conforms strictly both to Boyle's Law and to Joule's

would in its passage of the plug have expanded without (on the

whole) doing any work, and therefore without changing its

internal energy, no heat being gained or lost. In such a gas no

change of temperature should accordingly be found, as it passes
the plug, and if a change of temperature is observed in any real

gas it is due to the fact that real gases are not strictly "perfect."
In the experiments of Joule and Thomson* small changes of tem-

perature were in fact detected and measured in air and other real

gases, on passing the porous plug. This Joule-Thomson effect, as it

is called, is in general a cooling. Observations of the Joule-Thomson

effect are of great value in determining exactly the properties of

gases and vapours which are not perfect; and (as we shall see later)

certain practical methods of liquefying gases under extreme cold

depend upon the existence of this effect.

In the imaginary perfect gas, however, the Joule-Thomson

effect is entirely absent. There is no change of temperature in

passing the plug, and there is also no change of internal energy, for

no work is done and (by assumption) no heat is taken in or given out.

It is important to notice that we assume the imaginary perfect

gas to satisfy two conditions: it obeys Boyle's Law exactly and

also Joule's Law exactly. These characteristics are independent
of one another : it would be possible to have a gas satisfy one and

not the other, but a gas is said to be perfect in the thermodynamic
sense only when it satisfies both, and in that case certain other

properties follow which will now be pointed out.

20. Specific Heats of a Gas. The Specific Heat of any sub-

stance means the amount of heat required per degree to raise the

temperature of unit quantity of the substance, under any assumed

mode of heating. Thus when a substance is heated through a

small interval of temperature dT the heat taken in (per Ib.) is

* See Kelvin's Mathematical and Physical Papers, vol. i, p. 333.

E. T. 2
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KdT, where K is the specific heat for the particular conditions

and mode of heating. In dealing with gases or other fluids two

important modes of heating must be distinguished : we may heat

them under conditions of constant pressure or of constant volume.

We shall use the symbol Kp to represent specific heat at constant

pressure, and Kv to represent specific heat at constant volume.

Consider first the operation of heating unit quantity of a perfect

gas at constant volume, from temperature Tt up to temperature

To. The heat taken in is ^ (rr \K v (^2
-

*!)

No external work is done, for the volume (by assumption) does

not change, and consequently all this heat goes to increase the

stock of internal energy contained in the gas. But by Joule's Law
the internal energy depends only on the temperature. Therefore if

we heat the same quantity of the same gas in any other manner

from Tx to T2 ,
the same change of internal energy must take place.

Suppose then another manner of heating, namely at constant

pressure. In that case the heat taken in is

K, (Tt
-

2\).

During this process external work is done, because the gas ex-

pands, and its amount is

P (r z
~~

PI)

where Fj and F2 represent the volumes at the beginning and end of

the operation respectively, and P is the pressure, which by assump-
tion is constant. Since PF2

= RT2 and PF1
=RTl ,

we may write

the expression for the external work in the form

R (T,
-

Z\).

This is in work units : in heat units it is

AH (Tt
- TJ,

where A is the reciprocal of Joule's equivalent (Art. 14).

The difference between the heat taken in and the work done,

namdy
(Kv - AR) (T2

- TJ,
is simply an addition to the stock of internal energy. But as was

pointed out above, the change of internal energy must be the same
in both modes of heating, and therefore

KV
= KP -AR (2).

This important relation between the two specific heats in a perfect

gas follows from the Laws of Boyle and of Joule.

We have here taken Kv and Kv as applying throughout a finite
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range of temperature from T1
to T2 . But this range may be made

infinitesimally small without affecting the argument* and in that

case Kv and Kv become the specific heats at a definite temperature.
The conclusion holds that for any condition of the gas

KV -KV
= AH,

and this is true whether the specific heats are or are not inde-

pendent of the temperature.

21. Constancy of the Specific Heats in a Perfect Gas. From
the above result it follows that if either of the two specific heats

is constant the other must also be constant. To be constant the

specific heat has to be independent both of the pressure and of

the temperature.
First as to independence of pressure: we have seen (Art. 19)

that the internal energy of a perfect gas depends only on the

temperature and is independent of the pressure. If we heat a

perfect gas through 1 at any one temperature the change of

internal energy is measured (Art. 20) by KV) no matter what is

the pressure. Hence Kv is independent of the pressure ; and since,

by equation (2), Kv is equal to Kv + ^41?, it follows that K9 also

must be independent of the pressure.

But a gas may conform to the Laws of Boyle and Joule without

having Kv and Kv independent of the temperature, and if we are

to treat them as constant we must make a further assumption

regarding the properties of that convenient imaginary substance a

perfect gas. Regnault's experiments showed that in some gases K9 is

nearly constant through a moderate range of temperature. But it is

now known that in most gases the specific heat becomes distinctly

greater at high temperatures. This variation will be discussed in

Chapter VI ;
for our present purpose it will simplify matters to think

of an ideal gas in which the specific heat is constant. Accordingly,
in dealing with a perfect gas, it is assumed that Kp in such a gas is

strictly independent of the temperature. This is a third assumed

*
Suppose the heating to be through a very small interval of temperature dT.

In heating at constant volume, the heat taken in is KvdT, and all of it goes to

increase the internal energy by an amount dE. Hence

KvdT=dE.
In heating at constant pressure through the same interval of temperature the

heat taken in (dQ) does work dW and also adds to the internal energy by the

amount dE. dQ is KvdT; and dW is PdV, which is equal to RdT. Hence

From which KP -KV
=AR.

22
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characteristic of a perfect gas, additional to the two already de-

scribed in Arts. 18 and 19. It does not in anyway conflict with them :

each of the three characteristics is independent of the others. With

this further assumption we have, for any perfect gas, Kp constant

under all conditions, and consequently Kv also constant under all

conditions, since the difference between them is constant.

22. Reversible Actions. We have now to consider particular

modes in which a working substance may be expanded or com-

pressed and may take in or give out heat, and at the outset it is

important to distinguish between actions that are reversible and

those that are irreversible.

in expansion or compression is reversible if it is carried out in

such a manner that the operation can be reversed, with the result

that the substance will pass back through all the stages through
which it has passed during the expansion or compression and be in

the same condition in all respects at each corresponding stage in

This implies that the substance must expand smoothly, without

setting up any motions within itself of a kind such that their kinetic

energy is frittered down into heat through internal friction. The

whirls and eddies which occur as a fluid enters or expands in the

cylinder of an engine are irreversible, and in ideal reversible expan-
sion we must suppose them absent. Reversible expansion implies

that there are no losses of mechanical effect from any sort of inter-

nal friction. It excludes throttling, such as occurs when a sub-

stance expands through a valve or other constricted opening into

a region of lower pressure where the kinetic energy of the stream

and eddies is dissipated. In such cases the motion of the stream

and eddies cannot be reversed. To get the substance back to the

region of higher pressure would require an expenditure of more

work than was done upon it during its expansion, and if we were

to force it back we should find it had gained heat through the

subsidence of the internal eddying motions, though no heat had

come in from outside.

The kind of expansion which takes place in Joule's experiment

(Art. 19) is an extreme instance of irreversible expansion.
A transfer of heat to or from any substance is reversible only if

the substance is at the same temperature as the body from which it

is taking heat or to which it is giving heat. Suppose, for instance, that

a substance is taking in heat from a hot source and is expanding as
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it does so. The expansion may be reversible in itself, that is to say
it may involve no internal friction, but unless the temperature of

the substance be the same as that of the source, the operation as a
whole considered in its relation to the source cannot be reversed.

So considered it is reversible only when the further condition is

fulfilled that compression of the substance will reverse the transfer

of heat, giving back to the source the heat that was taken from it.

Any thermal contact between bodies at different temperatures
involves an irreversible transfer of heat.

Neither the expansions and compressions nor the transfers of heat

that occur in a real engine are ever strictly reversible, some of them
indeed are far from being reversible. But the study of an ideal

engine, in which all the operations are reversible, is of fundamental

importance in the science of thermodynamics, and it furnishes a

basis for the critical analysis of actions in a real engine.

23. Adiabatic Expansion. There are two specially important
kinds of reversible expansion, (1) Adiabatic and (2) Isothermal.

Adiabatic expansion or compression means expansion or com-

pression, carried out reversibly, in which no heat is allowed to

enter or leave the substance. A curve drawn to show the relation of

pressure to volume during the process is called an adiabatic line.

Adiabatic action would be realized if we had a substance expanding,
or being compressed, without change of chemical state, and without

any eddying motions, in a cylinder which (along with the piston)
was totally impervious to heat.

From this definition it follows that the work which a substance

does while it is expanding adiabatically is all done at the expense of

its stock of internal energy; and the work which is spent upon a

substance when it is being compressed adiabatically all goes to

increase its stock of internal energy.
In actual heat-engines the action is never strictly adiabatic, for

there are always some exchanges of heat between the working sub-

stance and the surface of the cylinder and piston. Very rapid com-

pression or expansion may come near to being adiabatic by giving
little time for any transfer of heat to occur.

After what has been said already about reversibility, it is

scarcely necessary to add that expansion through a throttle-valve

is not adiabatic, though it may be (and generally is) done without

letting heat enter or leave the substance.

. In the adiabatic expansion of any substance work is done, and
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since no heat is taken in or given out, there must be a decrease of

internal energy equivalent to the amount of the work done by the

substance.

Taking the general equation (Art. 9)

dQ = AdW + dE,

which applies to any small change of state on the part of any sub-

stance, we have dQ = when the action is adiabatic, and hence for

an adiabatic expansion
AdW = - dE.

Here dW is the work done, A is the factor required to convert an

expression for work into heat units (Art. 14), and dE is the change
of internal energy.

24. Isothermal Expansion. Isothermal expansion or com-

pression means expansion or compression carried out reversibly

(as regards internal action) and without change of temperature.
A curve drawn to show the relation of pressure to volume during
isothermal expansion or compression is called an isothermal line.

When a substance is expanding isothermally it takes in heat

to maintain its temperature constant; it therefore must be in

contact with a source of heat. When it is being compressed iso-

thermally it gives out heat, and must be in contact with a receiver

which can take heat from it.

25. Adiabatic Expansion of a Perfect Gas. Consider next

the behaviour of a perfect gas during adiabatic expansion or com-

pression. We have seen that in a small adiabatic expansion of any
substance (Art. 23) dE = _

In a perfect gas dE = KvdT (Art. 20). Hence in the adiabatic

expansion of a perfect gas

APdV = - Kv dT.

But P = ETJV (Art. 18). Hence

ARTdVjV + KvdT = 0,

or, dividing by T,

ARdV/V + KvdT/T = 0,

which gives on integration

AR loge V + Kv loge T = constant ............ (3).
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Writing K9
- Kv for AR (Art. 20), and dividing by Kv , which

is constant (Art. 21),

(KV/KV
-

1) loge V 4- loge T = constant.

We shall write y for the ratio of the two specific heats, namely

K,/K9 .

Thus we have

y loge V loge V + logeT = constant ............ (4).

Further, since PV'/T is constant,

loge P + loge V loge T = constant.

Adding these two equations

loge-P + y loge V = constant ............... (5),

which gives PVy = constant ........................ (6)

as the equation of any adiabatic line in the pressure-volume

diagram, for the adiabatic expansion of a perfect gas*.

26. Change of Temperature in the Adiabatic Expansion
of a Perfect Gas. When a gas is expanding adiabatically its stock

of internal energy is, as we have seen, being reduced, and hence its

temperature falls, the change of internal energy being propor-

tional to the change of temperature (Art. 20). Conversely, in

adiabatic compression the temperature rises. The amount by
which the temperature is changed (in a perfect gas) may be

found by combining the equations

PJTf = P2F2
v and PjrjPjr, = T./T,.

Multiplying them together we have

r, JW
T iV \y-i

whence -
,
or T2

= T,

This result of course applies to compression as well as to expansion

along an adiabatic line. It may be got directly from equation (4),

which can be written logeT + (y
-

1) loge F = constant; whence

TF?-1 = constant ..................... (7).

Combining equations (6) and (7) and eliminating F, we obtain

nl
the further relation T/P y = constant.

* It is to be remembered that loge , the
* '

hyperbolic
"
or "

Napierian
"
or " natural

logarithm of any number, is 2-302585 times the common logarithm of the number.
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27. Work done in the Adiabatic Expansion of a Perfect

Gas. In any kind of expansion of any fluid the work done in

expanding from volume F-, to volume F2 is

W= {
Vi

PdV.

If the nature of the expansion be such that PVn
is constant,

n being any index, then P at any point when the volume is V is

P
1
F

1
n
/F

n
, P! and Fx being the pressure and volume in the

initial state. In that case, for expansion from Fx to F2 ,

W =

which gives on integration

W = P,VS (F,
1- - F1

1
-)/(l

-
n),

or ................................. >

rl/ x

So far we have made no assumption as to the nature of the working
substance.

Apply this result to a gas expanding adiabatically, for which

the index n is equal to y (by Eq. 6, Art. 25). We then have

since P
1FI

= RT
t and P

2F2
- RT

2 .

Further, it follows from Art. 23 that this expression (mul-

tiplied by A) is the decrease of internal energy produced by the

28. Isothermal Expansion of a Perfect Gas. In a gas which

satisfies the equation PF == RT, PV is constant during isothermal

expansion or compression, and any isothermal line on the pressure-
volume diagram is a rectangular hyperbola, the pressure varying

inversely as the volume.

To find the work done in the isothermal expansion of a gas
from Fj to F2 we have .^

W =
2

PdV
.'F,

and P = PjFj/F,

from which W = P
3
F

3 f

^^ .

J F, V
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Integrating, W = P1
V

1 (log, F2
-

log, V&

FF-P^lo&p.*i
Instead of writing P1V1 we may write PF, since the product of P
and F is constant throughout the process, and again, since

PF - RT, v
? ........................ (10),

where T is the temperature at which the process takes place.

This expression serves to give either the work that is done by a

gas in isothermal expansion, or the work that is spent upon it in

isothermal compression;

During the isothermal expansion or compression of a perfect

gas there is no change of internal energy, since there is no change
of temperature and the internal energy depends only on the

temperature (Art. 19). Hence during isothermal expansion a

perfect gas must take in an amount of heat equivalent to the

work it does, namely ART loge
F2/F1} and during isothermal com-

pression from F2 to Fx it must give out that amount of heat.

29. Summary of results for a Perfect Gas. It may be con-

venient at this point to collect the results that have been found

for actions occurring in perfect gases.

It is assumed that the gas satisfies Boyle's Law (Art. 17) and

Joule's Law (Art. 19) and that the specific heat (at constant

pressure) is independent of the temperature. Further, the tem-

perature is measured on the scale furnished by the expansion of

the gas itself. Under these conditions we have the following

results : PF TITrid. ,

where R is a constant depending on the specific density of the gas ;

where Kv is the specific heat at constant pressure, Kv the specific

heat at constant volume and A is the reciprocal of Joule's equiva-
lent. Kv and Kv are both constant.

In adiabatic expansion:

PF* = constant, or P
ly
/P2

=

where y is KVJKV .

TVy-1 = constant, or Ty/T, =
7-1

T/P y = constant, or
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Heat taken in = 0.

R(Ti-TJ PiFi-PjFaWork done = ^ *-
y = -- * 2

.

y-1 y-1
Decrease of Internal Energy =

AR
(
T
^~

T*>
.

In isothermal expansion :

PV = constant, since T = constant.

Heat taken in = ART ioge ^-
2

,

"l

Work done = RTloge ^.
"i

Change of Internal Energy = 0.

30. Fundamental Questions of Heat-Engine Efficiency. We
are now in a position to deal with the most fundamental

questions of heat-engine efficiency, which may be stated in the

following terms:

(1) Having given a source from which heat may be taken in

at a high temperature, and a sink or receiver to which heat may
be rejected at a lower temperature, how may heat taken from the

source be utilized to the best advantage for the purpose of producing
mechanical effect ? In other words, how may the greatest amount
of work be done by each unit of heat taken from the hqt source?

(2) What fraction of the heat taken from the hot source is it

theoretically possible to convert into work? In other words, what

is the limiting efficiency of conversion?

31. The Second Law of Thermodynamics. So far as the P^irst

Law of Thermodynamics (Art. 8) goes, it is not obvious that there is

anything to prevent all the heat which the source can supply from

being converted into work. But it will presently be seen that a

limit is imposed as a consequence of the following principle, which

is known as the Second Law of Thermodynamics :

It is impossible for a self-acting machine, unaided by any external

agency, to convey heatfrom one body to another at a higher temperature.

The Second Law says, in effect, that heat will not pass up

automatically from a colder to a hotter body. We can force it

to pass up, as in the action of a refrigerating machine, but only by

applying an "external agency" to drive the machine. A heat-

engine acts by letting heat pass down from a hotter to a colder body,
not of course by direct conduction from one to the other, for that
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is a mode of transfer in which the heat would do no work, but by
making the working substance alternately take in heat from the

hot body and reject heat to the cold body, and thereby undergo

expansions and contractions in which its pressure is on the whole

greater during expansion than during contraction, with the result

that a part of the heat that is passing down through the engine is

converted into work. In consequence of the Second Law it is only
a certain fraction of the whole heat supplied by the hot body that

can be converted into work by any such process.

32. Reversible Heat-Engine. Carnot's Cycle of Opera-
tions. To the first of the above two questions (Art. 30) a correct

answer was given by Sadi Carnot in a remarkable essay, published
in 1824, entitled Reflexions sur la puissance motrice du feu el sur

les machines propres a developper cette puissance. In this essay
Carnot maybe said to have laid the foundation of thermodynamics.
He pointed out that the greatest possible amount of work was

to be obtained by letting the heat pass from the source to the

receiver through an engine working in a strictly reversible manner

not only as regards its own internal actions but also as regards
the transfer of heat to it from the source and from it to the

receiver. The engine conceived by Carnot is an engine every one

of whose operations is reversible in the sense explained in Art. 22.

He further showed how an engine might (theoretically) work in

such a way as to satisfy this condition, its cycle consisting of

these four reversible operations :

(1) Isothermal expansion at the .temperature of the hot source

(7\). During this operation heat is taken in reversibly from the

hot source.

(2) Adiabatic expansion, during which the temperature of the

working substance falls from Tl to T2 (the temperature of the

receiver).

(3) Isothermal compression at the temperature of the receiver.

During this operation heat is rejected reversibly to the receiver.

(4) Adiabatic compression, by which the temperature of the

working substance is raised from T. to Z\ . This completes the

cycle by bringing the substance back to the condition in which it

was assumed to be at the beginning of the first operation.

In the cycle as a whole work is done by the substance: the

average pressure in (1) and (2) being greater than in (3) and (4).
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This cycle of operations, which is known as Carnot's Cycle, is

entirely reversible. The working substance might be forced to

go through it in the reversed direction, taking in heat from the

cold body and giving out heat to the hot body. The transfers of

heat would be exactly reversed, and at every stage the pressure

and volume and temperature of the substance would be the same

as when working direct. The work spent upon it would be equal

to the work got from it in the direct action. Carnot's ideal engine

accordingly affords a strictly reversible means of letting heat

down from the hot source to the cold receiver.

The argument by which Carnot proved that no heat-engine can

utilize heat more completely than a reversible heat-engine utilizes

it, in letting heat down from a given source to a given receiver,

is substantially as follows.

33. Carnot's Principle. To prove that no other heat-engine,

working between the same source and receiver of heat, can do the

same amount of mechanical work as a reversible engine by taking
in a smaller quantity of heat.

Suppose there are two heat-engines R and S, one of which (R)

is reversible, working between the same hot body or source of heat

and cold body or receiver of heat, and each producing the same

amount of mechanical work. Let Q be the quantity of heat which

R takes in from the hot body. Now if R be reversed it will by the

expenditure on it of the same amount of work give to the hot body
the'amount of heat it formerly took from it, namely Q. For this

purpose set the engine S to drive R reversed. The work which S

produces is just sufficient to drive R, and the two machines (S

driving R) form together a self-acting machine unaided by any
external agency. One of the two, namely S, takes heat from the

hot body and the other, R, which is reversible, gives back to the

hot body the amount of heat Q. Now if S could do its work by

taking less heat than Q from the hot body the hot body would on

the whole gain heat. No work is being done on the system from out-

side, nor is any heat supplied from other sources, so whatever heat

the hot body gains must come from the cold body. Therefore if S
could do as much work as the reversible engine jR, with a smaller

supply of heat, we should be able to arrange a purely self-acting

machine through which heat would continuously pass up from a

cold body to a hot body. This would be a violation of the Second

Law of Thermodynamics.
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The conclusion is that S cannot do the same amount of work
with a smaller supply of heat than a reversible engine ; or, in modern

language, that no other engine can be more efficient than a reversible

engine, when they both work between the same two temperatures
in source and receiver.

Further, let both engines be reversible. Then the same argu-

ment shows that each cannot be more efficient than the other.

Hence all reversible engines taking in and rejecting heat at the

same two temperatures are equally efficient.

34. Reversibility the Criterion of Perfection in a Heat-

Engine. These results imply that, in the thermodynamic sense,

reversibility is the criterion of what may be called perfection in

a heat-engine. A reversible heat-engine is perfect in the sense that

it cannot be improved on as regards efficiency: no other engine

taking in and rejecting heat at the same two temperatures can

obtain from the heat taken in a greater proportion of mechanical

effect. Moreover, if this criterion be satisfied, it is, as regards effi-

ciency, a matter of complete indifference what is the nature of the

working substance or what, in other respects, is the mode of the

engine's action.

It is, therefore, a complete answer to the first question in Art. 30

to say that the greatest amount of work that is theoretically

possible will be done by each unit of heat if the heat is supplied to

an engine which works in such a way that every one of its operations

is reversible.

35. Efficiency of a Reversible Heat-Engine. The second

question in Art. 30 could not be answered by Carnot because in

his time the doctrine of the Conservation of Energy was unknown,
and it was not recognized that part of the heat disappears, as heat,

in passing through the engine. Carnot realized that work is done

by an engine through the agency of heat, but he did not know that

it is done by the conversion of heat. It is remarkable that he was

nevertheless able to conceive the idea of a reversible engine and

to see that it is the most effective possible means 0*1" getting work

done through the agency of heat. His argument as to this is per-

fectly valid though it makes no use of the First Law of Thermo-

dynamics. It is moreover extraordinarily general. There is no

assumption in it as to the properties of any substance, nor as to

the nature of heat, nor as to the way in which temperature is to

be measured. All that he assumes about the temperatures of the
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source and the receiver is that one is hotter than the other. The

argument stands by itself, and the whole passage in which it is

reproduced here (Art. 33) does not involve a reference to any of

the results stated in earlier Articles.

But for the purpose of answering the second question of

Art. 30 we shall in the first place deal with one particular reversible

heat-engine, namely a reversible engine which has a perfect gas

for working substance, and shall calculate its efficiency with the

help of the results previously obtained for perfect gases. It will

be easy to go on from that to find a general answer to the

question, What is the limiting efficiency of any heat-engine?

Fig. 4. Carnot's Cycle, with a gas for working substance.

36. Carnot's Cycle with a Perfect Gas for Working Sub-

stance. Consider then an ideal engine in which a substance may
go through the operations of Carnot's Cycle (fig. 4). Imagine
a cylinder arid piston composed of perfectly non-conducting

material, except as regards the bottom of the cylinder, which is

a conductor. Imagine also a hot body or indefinitely capacious
source of heat A, kept always at a temperature T19 also a perfectly

non-conducting cover B, and a cold body or indefinitely capacious
receiver of heat C, kept always at some temperature T2 which is

lower than T1 . It is supposed that A or B or C can be applied at
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will to the bottom of the cylinder. Let the cylinder contain 1 Ib.

of a perfect gas, at temperature Tl9 volume F , and pressure Pa

to begin with. The suffixes refer to the points on the indicator

diagram, fig. 4. There are four successive operations :

(1) Apply A, and allow the piston to advance slowly through

any convenient distance. The gas expands isothermally at Tt ,
tak-

ing in heat from the hot source A and doing work. The pressure

changes to Pb and the volume to F6 . The line ab on the indicator

diagram represents this operation.

(2) Removed and apply B. Allowthe piston to go on advancing.

The gas expands adiabatically, doing work at the expense of its

internal energy, and the temperature falls. Let this go on until the

temperature is T2 . The pressure is then Pc , and the volume F c .

This operation is represented by the line be.

(3) Remove B and apply C. Force the piston back slowly.

The gas is compressed isothermally at Tz ,
since the smallest in-

crease of temperature above T2 causes heat to pass into C. Work
is spent upon the gas, and heat is rejected to the cold receiver C.

Let this be continued until a certain point d is reached, such that

the fourth operation will complete the cycle.

(4) Remove C and apply B. Continue the compression, which

is now adiabatic. The pressure and temperature rise, and, if the

point d has been properly chosen, when the pressure is restored to

its original value Pa ,
the temperature will also have risen to its

original value T . [In other words, the third operation cd must be

stopped when a point d is reached such that an adiabatic line drawn

through d will pass through a.] This completes the cycle.

To find the proper place at which to stop the third operation,

we have (by Art. 26), for the cooling during the adiabatic ex-

pansion in stage (2),

(F^r^-iv/r.-zyr,,
and also, for the heating during the adiabatic compression in

stage (4), (F./FJV-
1 = TajTd

- T /T2 .

Hence Fc/F6 =Fd/Fa ,

and therefore also Fc/Fd
= F&/Fa .

That is to say, the ratio of isothermal compression in the third

stage of the cycle is to be made equal to the ratio of isothermal

expansion in the first stage, in order that an adiabatic line through
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d shall complete the cycle. For brevity we shall denote either of

these last ratios (of isothermal expansion and compression) by r.

The following are the transfers of heat to and from the working

gas, in the four successive stages of the cycle; quantities of heat

are here expressed in work units :

(1) Heat taken in from A = RT loge
r (by Art. 28).

(2) No heat taken in or rejected.

(3) Heat rejected to C = RT2 log. r (by Art. 28).

(4) .No heat taken in or rejected.

Hence, the net amount of external work done by the gas, being
the excess of the heat taken in above the heat rejected in a com-

plete cycle, is R^ _ Tj logg r .

this is the area enclosed by the four curves in the figure.

The Efficiency in this cycle, namely the fraction

Heat converted into work

Heat taken in

is accordingly

Another way of stating the result is to say that if we write Qa for

the heat taken in from the hot source, and Q.2 for the heat rejected
to the cold receiver, then

In these expressions the temperatures T and T2 are understood

to be measured on the scale of a perfect gas thermometer, and
from the absolute zero.

37. Reversal of this Cycle. This cycle, being a Carnot cycle,

is reversible. To realize the fact more fully we may consider in

detail what will happen if we make the imaginary engine work

backwards, forcing it to trace out the same indicator diagram in

the opposite order. For this purpose we must expend work upon
it from some other source of work. Starting as before from the

point a (fig. 4) and with the gas at T19 we shall require the following
four operations :

(1) Apply B and allow the piston to advance. The gas expands

adiabatically, the curve traced is ad, and when d is reached the

temperature has fallen to T2 .
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(2) Remove B and apply C. Allow the piston to go on advanc-

ing. The gas expands isothermally at T2 , taking in heat from C,
and the curve dc is traced.

(3) Remove C and apply B. Compress the gas. The process
is adiabatic. The curve traced is cb, and when b is reached the

temperature has risen to Tlt

(4) Remove B and apply A. Continue the compression, which

is now isothermal at Tl . Heat is now rejected to A, and the cycle

is completed by the curve ba.

In this process the engine is not on the whole doing work; on the

contrary, a quantity of work is spent upon it equal to the area of the

diagram, or R (T^ T2 ) logg r, and this work is converted into heat.

Heat is taken in from C in the first operation, to the amount
RT2 loge

r. Heat is rejected to A in the fourth operation, to the

amount RT^ loge
r. In the first and third operations there is no

transfer of heat. The machine js acting as a heat-pump.
The action is now in every respect the reverse of what it was

before. The substance is in the same condition at corresponding

stages in the two processes. The same work is now spent upon the

engine as was formerly done by it. The same amount of heat is now

given to the hot body A as was formerly taken from it. The same

amount of heat is now taken from the cold body C as was formerly

given to it. This will be seen by the following scheme:

Carnot's Cycle with a perfect gas. Direct.

Work done by the gas = R(T1
- T2 ) loge r;

Heat taken from A = RTl loge r;

Heat rejected to C = RT2 loge
r.

Carnofs Cycle with a perfect gas. Reversed.

Work spent upon the gas = R (Tl
T2 ) loge r;

Heat rejected to A = RT
1 loge r;

Heat taken from C = RT2 loge
r.

In the second case the heat rejected to the hot body is equal

to the sum of the heat taken in from the cold body and the

work spent on the substance. This of course follows from the

principle of the Conservation of Energy.

E. T. 3
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38. Efficiency of Any Reversible Engine. The imaginary

engine, then, of Art. 36 is reversible. Its efficiency, as we have seen,

IS rr\ rp

where 2\ is the temperature of the source from which it takes heat

and T2 is the temperature of the receiver to which it rejects heat.

But we saw, by Art. 33, that all reversible heat-engines taking

in and rejecting heat at the same two temperatures are equally

efficient. Hence the expression

measures the efficiency of any reversible heat-engine, and therefore

(by Art. 33) also expresses the largest fraction of the heat supplied

that can possibly be converted into work by any engine whatever

operating between these limits.

In other words, if we have a supply of heat at a temperature

Tj ,
and a means of getting rid of heat at a temperature T2 ,

then

there is no possibility of converting more than that fraction of

the heat into work. This is the measure of perfect efficiency.

it is the theoretical limit beyond which the efficiency of a heat-

engine cannot go. No engine can conceivably surpass this stan-

dard, and as a matter of fact any real engine falls short of it,

because no real engine is strictly reversible.

39. Summary of the Argument. Briefly recapitulated the

steps of the argument by which we have reached this immensely

important result are as follows. Following Carnot, we considered

how any heat-engine works by taking in heat from a hot source

and rejecting heat to a cold receiver, and established (by means

of the reductio ad absurdum of a hypothesis which would conflict

with the Second Law of Thermodynamics) the conclusion that no

engine could do this more efficiently than a reversible engine does,

that is to say, an engine which goes through a reversible cycle of

operations. This led to the inference that all reversible engines

working between the same temperatures of source and receiver were

equally efficient, and consequently that an expression for the

efficiency of any one of them would apply to all, and would mean
the highest efficiency that is theoretically possible. Still following

Carnot, we imagined a cycle which would be reversible, consisting

of four stages, namely (1) isothermal expansion during which heat

is taken in from the source, (2) adiabatic expansion during which
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the temperature of the substance falls from the temperature of

the source to that of the receiver, (3) isothermal compression

during which heat is rejected to the receiver, (4) adiabatic com-

pression during which the temperature of the substance rises again
to that of the source. Up to this point there had been no assump-
tion as to the use of any particular working substance. We next

enquired what would happen in this cycle if a perfect gas were used

as working substance. Taking for the scale of temperature a scale

based on the expansion of a perfect gas *, and expressing on this

scale the temperatures of source and receiver as Tx and T2 respec-

tively, we found that a reversible engine, using a perfect gas for

working substance, has an efficiency of

Hence it was concluded that this expression measures the effi-

ciency of any reversible engine working between these limits, and

that this is the highest efficiency theoretically obtainable in any

heat-engine.

This general conclusion may also be stated, with equal gener-

ality (for any reversible engine), in the form

QJT, - Q2/2V
where Ql

is the heat taken in by the engine from the source at Tl ,

and Q2 *s the heat rejected by it to the receiver at T2 .

The efficiency of any heat-engine may be written

whether the engine be reversible or not. In a reversible engine,

or, as we may now call it, a thermodynamically perfect engine,

this becomes , //r-
J-2/^l'

In an engine which falls short of reversibility a smaller fraction

of the heat supply is converted into work and the heat rejected is

relatively larger; Q2/T2 is greater than d/j^.

40. Absolute Zero of Temperature. The zero from which

2\ and T2 are measured is the zero of the gas thermometer, which

was denned (Art. 16) as the temperature at which the volume of the

gas would vanish if the same law of expansion continued to apply.

* That is to say, a scale in which the temperature is proportional to the

volume of the gas, when the pressure is kept constant.

32
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But we can now give it another meaning. Taking the expression
for the efficiency of a reversible heat-engine

we see that if the cold receiver were at the temperature of the

absolute zero (so that T2
= 0) the efficiency would be equal to 1 :

in other words, all the heat supplied to the engine would be converted

into work. It is clearly impossible to imagine a receiver colder than

that, for it would make the efficiency greater than 1 and thereby
violate the First Law of Thermodynamics by making the amount of

work done greater than the heat supplied. Hence the zero which

we found on the gas scale is also an absolute thermodynamic zero,

a temperature so low that it is inconceivable on thermodynamic

grounds that there can be any lower temperature. The term

"absolute zero" has consequently acquired a new meaning: with-

out reference to the properties of any substance we see that it

represents a limit below which temperature cannot go. This

justifies the use of the word "absolute" as applied to a zero of

temperature.

41. Conditions of Maximum Efficiency. From the above

result it will be obvious that the availability of heat for trans-

formation into work depends essentially on the range of tempera-
ture through which the heat is let down, from that of the hot

source to that of the cold body into which heat is rejected; it is

only in virtue of a difference of temperature between bodies that

conversion of any part of their heat into work becomes possible.

No mechanical effect could be produced from heat, however great
the amount of heat present, if all bodies were at a dead level of

temperature. Again, it is impossible t<5 convert the whole of any

supply of heat into work, because it is impossible to have a body
at the absolute zero of temperature as the sink into which heat is

rejected.

If Tl and T2 are given as the highest and lowest temperatures
of the range through which a heat-engine is to work, it is clear

that the maximum of efficiency can be reached only when the

engine takes in all its heat at T
1 and rejects at T

2
all that is re-

jected. With respect to every portion of heat supplied to the engine
the greatest ideal efficiency is

Temperature of reception temperature of rejection

Temperature of reception
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Any heat taken in at a temperature below T
1 ,

or rejected at a

temperature above T2 ,
will be less capable of conversion into

work than if it had been taken in at T1 and rejected at T2 , and

hence, with a given pair of limiting temperatures, it is essential to

maximum efficiency that no heat be taken in by the engine except
at the top of the range, and no heat rejected except at the bottom
of the range. Further, as we have seen in Art. 33, when the tem-

peratures at which heat is received and rejected are assigned, an

engine attains the maximum of efficiency if it be reversible.

It may be useful to repeat here that in the transformation into

work of heat supplied from a given source, the condition of reversi-

bility is satisfied in the whole operation from source to receiver

if (1) no part of the working substance is brought into contact

during the operation with any body at a sensibly different tempera-

ture, and (2) there is no dissipation of energy through internal

friction. The first condition excludes any unutilized drop in tem-

perature; the second excludes eddying motions and such like

sources of waste, which arise in consequence of expansion through
throttle-valves or constricted orifices, or in consequence of any
cause that sets up dissipative motions within the substance.

In a piston and cylinder engine we have to think of the substance

as expanding by the gradual displacement of the piston, doing
work upon it, and not wasting energy to any sensible extent by
setting portions of itself into motion. There are to be no local

variations of pressure within the cylinder, such as might occur in

a fast-running engine through the inertia of the expanding fluid.

When we proceed to deal in a later chapter with steam jets in

relation to steam turbines, we shall see that it is possible to have

(in theory) a reversible action, though the work done by the sub-

stance in expanding is employed to give kinetic energy to the

substance itself as a whole by forming a jet, because in that case

the energy of the jet is recoverable when proper care is taken to

control the formation of the jet. But the eddying motions spoken
of here are of a different class: their energy is irrecoverable and

for that reason they violate the condition of reversibility.

It may also be worth while to repeat here that no real heat-

engine can work between the source and the receiver in a strictly

reversible manner. It cannot wholly escape eddying motions: it

cannot wholly escape transfers of heat between the working sub-

stance and bodies at other temperatures. In particular, since the

working substance must in practice take in heat at a reasonable
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rate from the hot source, the source is usually much hotter than

the substance while heat is being taken in. This is, in practice,

the most serious breach of reversibility in the transformation of

heat by a steam-engine. It means that between the temperature of

the source and the highest temperature reached by the working
substance in its cycle of operations, there is a wasteful drop, a drop
that is not utilized thermodynamically. If it were practicable

in the steam-engine to avoid the drop between the temperature
of the furnace gases and that of the water in the boiler a greatly

increased efficiency of conversion would be attainable.

If we leave this drop out of account, and take for the upper
limit Tj ,

not the temperature of the furnace gases but the tempera-
ture in the boiler, and if we also take for T2 the temperature in the

condenser, the fraction

will measure the greatest fraction of the heat supplied to the

boiler that can be converted into work, under ideally favourable

(in other words, strictly reversible) conditions between the boiler

and the condenser. The performance of any real engine falls

short of this because it includes irreversible features, the chief of

which are throttling actions in the steam-passages and exchanges
of heat between the steam and the metal of the cylinder and piston.

But although this limit of efficiency cannot be actually reached,

it affords a valuable criterion with which to compare the per-

formance of any real engine, and establishes an ideal for engine

designers to aim at.

It is important to realize that a substance may expand re-

versibly although it is taking in heat from a source hotter than

itself: in other words, there may be an irreversible drop of heat

between the source and the substance, but no irreversible action

within the substance. Thus the fluid in a boiler is at a definite

temperature lower than that of the furnace while it is taking in

heat from the furnace; there is accordingly an irreversible drop
in this transfer of heat: but the formation and expansion of the

steam may go on in a reversible manner. We can imagine all the

internal actions of the working substance to be reversible, although
as regards transfers of heat from the source or to the receiver.

there is not reversibility. In that event the engine will still work

as efficiently as possible between its own limits of temperature,

namely the limits at which the substance takes in and rejects
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heat, though it is no longer the most efficient possible con-

trivance for utilizing the full range of temperature from source to

receiver.

Thus if we interpret Tl and T2 as the limits of temperature of

the working substance itself without any reference to a source

or a receiver T
1 being the temperature of the substance while it

is taking in heat, and T2 the temperature of the substance while it

is rejecting heat, and if the internal actions of the substance are

reversible, then (T^
- T2)/2\ still measures the efficiency of the

engine. This fraction still expresses the greatest efficiency that is

theoretically possible in any heat-engine working between the

limits 2\ and T2 .

When we speak of a substance as taking, in heat at a stated

temperature, or rejecting heat at a stated temperature, it is to be

understood that the temperature of the substance itself is meant,

though that may not be the temperature of the source or receiver;

and when we speak of a substance as expanding or being com-

pressed in a reversible manner we do not imply that it may not be

taking in heat from a source hotter than itself or rejecting heat to

a receiver colder than itself. A cycle of operations may be internally

reversible, that is to say, reversible so far as actions within the

working substance are concerned, although it happens to be

associated with an irreversible transfer of heat to the working
substance from the source or from the working substance to the

receiver*.

42. Thermodynamic Scale of Temperature. Reference was

made in Art. 15 to the fact (first pointed out by Lord Kelvin f) that

thermodynamic principles allow a scale of temperature to be

defined which is independent of the properties of any particular

substance, real or imaginary. Up to the present we have based the

scale on the properties of a perfect gas, taking a scale in which

the degrees (or equal intervals of temperature) correspond to

equal amounts of expansion on the part of a perfect gas kept

at constant pressure. Using this scale we have seen that a rever-

sible engine which works between the limits T1 and T2 ,
and takes

in any quantity of heat Qx at T
a , rejects at T2 a quantity Q2 equal

to Q! T2/Tl ,
and has an efficiency equal to (T1

- T2)/T1 .

* We may imagine a source at T^ and receiver at Tz to be substituted for the

actual source and receiver, if these have a wider range of temperature, without

affecting the action of the working substance.

t Mathematical and Physical Papers, vol. I, p. 100; also pp. 233236.
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Now imagine that the heat Q2 ,
which is rejected by this engine,

forms the supply of a second reversible engine taking in heat at T2

and rejecting heat at a lower temperature T3 ,
such that the interval

of temperature through which it works (T2
T3 )

is the same as the

interval through which the first engine works (Tx
T2 ).

Call each

of these intervals AT. Let the heat Q3 rejected by this second

engine pass on to form the supply of a third reversible engine, work-

ing through an equal interval AT and rejecting heat Q^ to a fourth

reversible engine, and so on. We imagine a series of engines, every
one of which is reversible, each passing on its rejected heat to form

the supply of the next engine in the series, and each working

through the same number of degrees on the perfect gas thermo-

meter, AT. The efficiencies of the successive engines are

AT/T1; AT/T2 , AT/T3 , etc.

The amounts of heat supplied to them are

Qt , Q2
= Qi ra/Z\ , Q3

= Q2 T3/T2
= ^ TJ/T! ,

etc.

Multiply in each case the heat taken in by the efficiency to find the

amount of work done by each engine in the series, and we find that

the amount of work done is the same for all the engines, namely

Accordingly, we might define the interval of temperature for

each engine, without reference to a perfect gas or to any other

thermometric substance, as that interval which makes every

engine in the series do the same amount of work ; and if we did so

we should get a scale of temperature which is identical with the

scale of the perfect gas thermometer.

The above method of obtaining a thermodynamic scale of

temperature may be put thus: Starting from any arbitrary con-

dition of temperature at which we may imagine heat to be supplied,

let a series of intervals be taken such that equal amounts of work

will be done by every one of a series of reversible engines, each

working with one of these intervals for its range, and each handing
on to the engine below it the heat which it rejects, so that the

heat rejected by the first forms the supply of the second, and so

on. Then call these intervals of temperature equal. What the

above proof shows is that the intervals thus defined to be equal
are also equal when measured on the scale of the perfect gas

thermometer: in other words, the thermodynamic scale and the
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perfect gas scale coincide at every point. Any temperature T
reckoned from zero on the scale of a perfect gas thermometer is

also an absolute temperature on the thermodynamic scale.

The conception, then, of a chain ot reversible heat-engines, each

working through a small definite range, furnishes for the statement

of temperature a scale which is really absolute in the sense of being

independent of all assumptions about expansion or other behaviour

of any substance. As the heat goes down from engine to engine
in the chain, part of it is converted into work at each step, and the

remainder passes on to form the heat-supply of the next engine.

We have only to think of the steps as being such that the amount
of heat converted into work is the same for each step, and that the

remainder passes from engine to engine till all is converted. Thus

if we have n engines in the chain, and if the whole quantity of heat

supplied to the first engine is Qj ,
then the steps are such that each

engine converts the quantity Q1/n of heat into work. When n steps

are completed there is no heat left: all is converted into work.

This means that the absolute zero of temperature has been reached :

we may in fact define the absolute zero as the temperature which

is reached in this manner. It is imagined to be reached by coming
down through a finite number of steps of temperature, each step

representing a finite fall in temperature. We define the absolute or

thermodynamic scale by saying that these steps are to be taken as

equal to one another. From this it will be seen that the conception
of an absolute zero, and of an absolute thermodynamic scale with

uniform intervals, does not depend an any notion about perfect

gases or about the properties of any particular substance. We
reach the absolute zero when, on going down through the chain

of perfect engines, we come to a point at which the last fraction

of the heat has been converted into work. That fixes the absolute

zero. And we call the steps by which we have come equal steps of

temperature, the steps being determined by the consideration that

each engine in succession is to do the same amount of work out of

the residue of heat received from the engine immediately before it

in the series. That fixes the scale. Moreover the steps can be so

taken, that the scale they give will agree at two fixed points with

the ordinary thermometric scale, and will contain between those

fixed points the same number of steps as the ordinary scale contains

degrees. Thus suppose the initial temperature, at the top of the

chain, is that of the boiling point of water, and that we have 373

engines in the chain. Then we find that it takes 100 steps to come
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down to the temperature of melting ice, and 273 more steps* to

complete the conversion of the remaining heat into work. This

means that the uniform step of temperature on the thermodynamic
scale is equal to the average of the intervals called degrees on any

centigrade thermometer, when that average is taken between the

freezing point and the boiling point (0 and 100), and that the

absolute zero is at a point 273 of such steps* below the freezing

point. But the thermodynamic scale would agree from point to

point with the indications of the thermometer throughout the whole

of the scale only if the thermometer could use a perfect gas as its

expanding substance. Even with hydrogen, which is very nearly

a perfect gas, there are slight divergences which were mentioned

in Art. 15.

43. Reversible Engine receiving Heat at Various Tempera-
tures. In Carnot's cycle it was assumed that there was only one

source and one receiver of heat. All the heat that was taken in

was taken in atT^; all the heat that was rejected was rejected atjT2 .

But an engine may take in heat in stages, at more temperatures
than one, and may also reject heat in stages. With regard to

every quantity of heat so taken in, the result still applies that the

greatest fraction of it that can be converted into work is repre-

sented by the difference between its temperatures of reception and

rejection, divided by the absolute temperature of reception. And
this is the fraction that will be converted into work provided the

processes within the engine are reversible.

Thus if Qj represents that part of the whole supply of heat which

is taken in at T and Q2 represents what is taken in at some other

temperature T2 , Q3 at T3 ,
and so on, and if T be the temperature

at which the engine rejects heat, the whole work done, if the

engine is reversible, is

Q. (2\
-

TQ) Q2 (T,
- T) Qi (f,

- r )

7ft m T BSC.
2

1 *2 2 3

We here take, for simplicity of statement, a single temperature of

rejection T .

A mechanically analogous machine would be a great water-

wheel, working by gravity, and receiving water into its buckets

from reservoirs at various levels, some of which are lower than the

top of the wheel. Let M
1 , M2 and so on be the weights of water

* More exactly 273 and a fraction (Art. 16).
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received at heights l^ ,
12 etc. above any datum level, and let Z

be the height above the same datum level at which the water

leaves the wheel. If the wheel is perfectly efficient (and here again
the test of perfect efficiency is reversibility) the work done is

^i (*i
- W + ^2 (I*

~ W + ^3 (*s
~ W + etc.

Comparing the two cases we see that the quantity Q1/T1 is the

analogue in the heat-engine of M1 in the water-wheel, Q2/^2 is

the analogue of M2 ,
and so on. The amount of work which can

be got out of a given quantity of heat by letting it down to an

assigned level of temperature is not simply proportional to the

product of the quantity of heat by the fall of temperature, but to

the product of Q/T by the fall of temperature. On the strength of

this analogy Zeuner has called the quantity Q/T the "heat weight"
of a quantity of heat Q obtainable at a temperature T.

Another way of putting the matter has a wider application.

Let the engine as before take in quantities of heat represented by

Qi , Q2 , Q3 etc. at 7\ ,
T2 ,

T
3 ,
and let it reject heat at T', T", T'" etc.,

the quantities rejected being respectively Q', Q", Q'" etc. Then by
the principle that in a reversible cycle the heat rejected is to the

heat taken in as the absolute temperature of rejection is to the

absolute temperature of reception, we have

Q' Q" Q"' Qi Q2 QsjL i ::__i :*__i _ _r 4_ _r? 4_ _5? J_
rr\i i

rpff
i

rpttt
i rri i

rjj
t rri i )

from which S^=0,

when the summation is effected all round the reversible cycle.

In this summation heat taken in is reckoned as positive and heat

rejected as negative. If the cycle is not reversible, the heat re-

jected will be relatively greater, and therefore, for a non-reversible

cycle, 2 (Q/T) will be a negative quantity.

Some of the processes may be such that changes of temperature
are going on continuously while heat is being taken in or given out,

and if so we cannot divide the reception or rejection of heat into

a limited number of steps, as has been done above. But the equa-

tion may be adapted to the most general case by writing it

integration being performed round the whole cycle.

This holds for any internally reversible cycle. It means thatwhen
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a substance has passed through any series of reversible changes
which cause it to return to its initial state, the quantities of heat

which it has taken in and given out are so related to the tem-

perature of the substance at each stage as to make this integral

vanish for the cycle as a whole. If the cycle is not reversible

SdQ/T is a negative quantity, because the amount of heat

rejected is relatively larger than when the cycle is reversible.

44. Entropy. We have now to introduce an important thermo-

dynamic quantity which serves many useful purposes. The Entropy
of a substance is a function of its state which is most conveniently

denned by reference to the heat taken in or given out when the

state of the substance undergoes change in a reversible manner.

In any such change, the heat taken in or given out, divided by
the absolute temperature of the substance, measures the change of

entropy. Thus if a substance which is either expanding reversibly

or not expanding at all takes in heat SQ when its temperature is

T, its entropy increases by the amount SQ/T. We shall see that the

entropy of any substance in a definite state is a definite quantity,
which has the same value when the substance comes back again to

the same state after undergoing any changes. To give the entropy
a numerical value we must start from some arbitrary point where,

for convenience of reckoning, the entropy is taken as zero. We
are concerned only with changes of entropy, and consequently it

does not matter, except for convenience, what zero state is chosen

for the purpose of calculating the entropy. \
Starting then from any suitable zero, each element SQ of the

heat taken in has to be divided by T, which is the absolute tempera-
ture of the substance when SQ is being taken in. The sum

measures the entropy of the substance, on the assumption that

no irreversible change of state has occurred during the process.
We shall denote the entropy of any substance by <j>.

If the tem-

perature is changing continuously while heat is being taken in, the

change of entropy from any state a to any other state b is

,
[ dQ.

-*.=] -Y

provided there is no irreversible action within the substance during
its change of state.
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This definition of the entropy of a substance as a quantity

which is to be measured by reckoning
|

-~ while the substance
a *

passes by a reversible process from any state a to any other state

b, is consistent with the fact that the entropy is a definite function

of the state of the substance, which means that it has only one

possible value so long as the substance is in the same state. To

prove this we must show that the same value is obtained for the

entropy no matter what reversible operation be followed in passing

from one state to the other: in other words, that is the same
a -*

for all reversible operations by which a substance might pass from

state a to state b. Consider any two reversible ways of passing
from state a to state b. If we suppose one of them to be reversed

the two together will form a complete cycle for which (by Art. 43)

= 0. Hence
|

~ for one of them must be the same as
J J> a *-

for the other. It is therefore a matter of indifference, in the reckon-

ing of entropy, by what
"
path

"
or sequence of changes the substance

passes from a to b provided it be a reversible path: starting from

any zero state the reckoning of the entropy in a given state will

always give the same value, which shows that the entropy is

simply a function of the actual state and does not depend on

previous conditions.

It is chiefly because the entropy of a substance is a definite

function of the state, like the temperature, or the pressure, or the

volume, or the internal energy, that the notion of entropy is im-

portant in engineering theory. The entropy of a substance is

usually reckoned per unit of mass, and numerical values of it

reckoned in this manner are given in tables of the properties of

steam and of the other substances which are used in heat-engines

and refrigerating machines.

But we may also reckon the entropy of a body as a whole when

the state of the body is fully known, or the change of entropy which

a body undergoes as a whole when it takes in or gives out heat.

And we may also reckon the total entropy of a system of bodies

by adding together the entropies of the several bodies that make

up the system.

45. Conservation of Entropy in Carnot's Cycle. As a simple

illustration of the uses to which the idea of entropy may be put,
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consider the changes of entropy which a substance undergoes
when it is taken through Carnot's cycle (Art. 32). All four opera-

tions are reversible. In the first, which is isothermal expansion
at Tj , the entropy of the substance increases by the amount Qi/T1

where Q1 is the amount of heat taken in from the hot source.

In the second operation no heat is taken in or given out and there

is no change of entropy. In the third operation a quantity of

heat Q2 is rejected at T2 : the entropy of the substance accordingly
falls by the amount Q2/^2 ^n the fourth operation there is again
no transfer of heat and no change of entropy. It is only in the first

and third operations that changes of entropy occur. Moreover

they are equal, for Q.ilTl
= Q2/T2 ,

which shows that the substance

has the same entropy as at first, when it has returned to the

original state.

During the first operation, while it was taking in heat, its entropy
rose from the initial value, which we may call

<f)a , to a value
<f>b

such that , , n /rr
9b = 9a + ^i/^l-

During the third operation, while the substance was rejecting

heat, its entropy fell again from
cf>b

to
<j>a ,

and

</>,.
=

</>>- Q2/2V

Taking the cycle as a whole, the thermal equivalent of the

work done by the substance is Q Q2 , and is accordingly equal to

Further, the source of heat has lost an amount of entropy

equal to Qi/Tlt and the receiver has gained an equal amount of

entropy, namely Q2/T2 We may therefore regard the reversible

engine of Carnot as a device which transfers entropy from the

hot source to the cold receiver without altering the amount of

the entropy so transferred. The amount of heat alters in the

process of transfer, for an amount of heat Q 3 Q2 disappears, which

is the thermal equivalent of the work done; but the amount of

entropy in the system as a whole does not change.

If, on the other hand, we had to do with an engine which is

not reversible, working between the same source and receiver, Q2

would be relatively larger, since less of the heat taken in is con-

verted into work. Hence Q2/T2 would be greater than QijT^ and

the amount of entropy would therefore increase in the transfer.

46. Entropy-Temperature Diagram for Carnot's Cycle. It

is instructive to represent the changes of entropy in a Carnot
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cycle by means of a diagram the two coordinates of which are the

entropy of the working substance and its temperature (fig. 5).
The first operation (isothermal expansion) is represented by ab,
a straight line drawn at the level of temperature 2\: during this

operation the entropy of the substance rises from
<f>a to < 6 . This

is followed by adiabatic expansion be during which the tem-

perature falls but the entropy does not change. Then isother-

mal compression cd at tempera-
ture jT2 , during which the entropy
returns to the initial value. Finally
adiabatic compression da com-

pletes the cycle.

The area of the closed figure

abed measures (in heat units) the

work done during the cycle. The
area mabn measured to the base

line, which is the absolute zero of

temperature, is the heat taken in

from the source. The area mdcn is

the heat rejected to the receiver.

These figures are rectangles.

m
Entropy

All this is true whatever be the working substance. Neither in

Art. 45 nor here is any assumption made as to that. The diagram

(fig. 5) applies to any engine going through the reversible cycle of

Carnot whether it use a gas (as in Art. 36) or any other substance.

47. Entropy-Temperature Diagrams for a series of Rever-

sible Engines. We may apply this

method of representation to exhibit

the action of the imaginary chain of

reversible engines which was used

in Art. 42 to establish a thermody-
namic scale of temperature.

Starting from any temperature
T

1 let a reversible engine take in

heat at that temperature, and go

through the Carnot cycle of opera-
tions represented by the rectangle

abed. For this purpose it takes in

heat equivalent to mabn and rejects

heat equivalent to mdcn. Let its

rejected heat pass on to the next

Temperature
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engine of the series, which goes through the Carnot cycle dcef,

and let the interval of temperature df be so chosen as to make the

work done by the second engine equal to the work done by the

first. From the geometry of the figure it is obvious that this

requires df to be equal to ad, so that the area abed may be equal
to the area dcef. Similarly in order that the work done by the

third engine should be the same, we must have//* = df= ad, and

so on. Thus these intervals constitute equal steps in a scale of

temperature which is* based entirely on thermodynamic considera-

tions, the condition determining the steps being simply this, that

the same amount of work shall be done by the heat as it passes

down through each step.

48. No change of Entropy in Adiabatic Processes. It fol-

lows from the definition of entropy given in Art. 44 that when
a substance is expanded or compressed in an adiabatic manner

(Art. 23) its entropy does not change. An adiabatic line is con-

sequently a line of constant entropy, or, as it is sometimes called,

an isentropic line. Just as isothermal lines can be distinguished

by numbers Tlf T2 etc. denoting the particular temperature for

which each is drawn, so adiabatic lines can be distinguished by
numbers

</>x , </> 2
etc. denoting the particular value of the entropy

for each.

We might accordingly define the entropy of a substance as that

characteristic of the substance which does not change in adiabatic

expansion or compression, and this definition would be consistent

with the method of reckoning entropy described in Art. 44. It is

only in a reversible process that the change of entropy of a sub-

stance is to be determined by reference to the heat it takes in or

gives out. The definition of an adiabatic process (Art. 23) excludes

any process that is not reversible.

49. Change of Entropy in an Irreversible Operation. It is

important in this connection to realize that a substance may in-

crease its entropy without having any heat communicated to it

from outside. When a substance expands in an irreversible manner,
as by passing through a throttle-valve from a region of high pres-

sure to a region of lower pressure, it gains entropy. Work is then

done by the substance on itself, in giving energy of motion to each

portion as it passes through the valve, and this energy of motion

is frittered down into heat as the motion subsides through internal

friction. The effect is like that produced by the communication
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of some heat, though none is taken in from outside the substance.

Expansion through a throttle-valve may be regarded as consisting
of two stages. The first stage is a more or less adiabatic expansion

during which the substance does work in setting itself in motion:

the second stage is the loss of this motion and the consequent

generation within the substance itself of an equivalent amount
of heat. There is accordingly a gain of entropy, which occurs

because the process as a whole is not reversible.

We cannot directly apply the definition of entropy given in

Art. 44 to determine the amount by which the entropy of a sub-

stance changes in an irreversible operation such as throttling.
But when the final state is known it is in general easy to calculate

the entropy corresponding to that state, by considering the amount

by which the entropy would have changed if the substance had
come to that state by a reversible operation for which $dQ/T
measures the change.
When a substance has passed through any complete cycle of

operations its entropy is the same at the end as at the beginning,
for the original state has been restored in all respects. This is true

of an irreversible cycle as well as of a reversible cycle. But for an

irreversible cycle $dQ/T does not vanish. It has a negative value

(Art. 43) and it does not measure change of entropy, for it is only in

an internally reversible action 'that the change of entropy is dQ/T.

50. Sum of the Entropies in a System. It is instructive to

enquire how the sum of the entropies of all parts of a thermo-

dynamic system is affected when we include not only the working
substance but also the source of heat and the sink or receiver

to which heat is rejected. Consider a cyclic action in which the

working substance takes in a quantity of heat Q1 from a source

at T1 and rejects a quantity Q2 to a sink at T2 . WT

hen the cycle

is completed the source has lost entropy to the amount Qi/Tl : the

working substance has returned to the initial state, and therefore

has neither gained nor lost entropy : the sink has gained entropy
to the amount Q2/T2 . If the cycle is a reversible one Q^IT^ = Q2/^*2 >

and therefore the system taken as a whole, consisting of source,

substance and sink, has suffered no change in the sum of the

entropies of its parts. But if the cycle is not reversible the action

is less efficient, Q2 bears a larger proportion to Q and Q2/T2 is

greater than Qi/Ti . Hence in an irreversible action the sum of

the entropies of the system as a whole becomes increased. This

E. T. 4
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conclusion has a very wide application: it is true of any system
of bodies in which thermal actions may occur. It may be

expressed in general terms by saying that when a system under-

goes any change, the sum of the entropies of the bodies which

take part in the action remains unaltered if the action is reversible,

but becomes increased if the action is not reversible. No real

action is strictly reversible, and hence any real action occur-

ring within a system of bodies has th'e effect of increasing the

sum of the entropies of the bodies which make up the system.

This is a statement, in terms of entropy, of the principle that in all

actual transformations of energy there is what Lord Kelvin called

a universal tendency towards the dissipation of energy*. Any
system, left to itself, tends to change in such a manner as to increase

the aggregate entropy, which is calculated by summing up the

entropies of all the parts. The sum of the entropies in any system,

considered as a whole, tends towards a maximum, which would be

reached if all the energy of the system were to take the form of

uniformly diffused heat; and if this state were reached no further

transformations would be possible. Any action within the system,

by increasing the aggregate entropy, brings the system a step

nearer to this state, and to that extent diminishes the availability

of the energy in the system for further transformations.

This is true of any limited system. Applied to the universe

as a whole, the doctrine suggests that it is in the condition of a

clock once wound up and now running down. As Clausius, to

whom the name entropy is due, has remarked, "the energy of the

universe is constant: the entropy of the universe tends towards

a maximum."
An extreme case of thermodynamic waste occurs in the direct

conduction of a quantity of heat Q from a hot part of the system,
at Tlt to a colder part at T2 ,

no work being done in the pro-

cess. The hot part loses entropy by the amount Q/2\: the cold

part gains entropy by the amount Q/T2 ,
and as the latter is

greater there is an increase in the aggregate quantity of entropy
in the system as a whole.

51. Entropy-Temperature Diagrams. We shall now con-

sider, in a more general manner, diagrams in which the action of

a substance is exhibited by showing the changes of its entropy in

relation to its temperature. Such a diagram forms an interesting

* Mathematical and Physical Papers, vol. I, p. 511.
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and often useful alternative to the pressure-volume or indicator

diagram. One example, namely the entropy-temperature diagram
for a Carnot cycle, has already been sketched in fig. 5.

Let
ckf>

be the small change of entropy which a substance under-

goes when it takes in the small quantity of heat dQ at any tem-

perature T, it being assumed that in the process the substance

undergoes only a reversible change of state. Then, by the definition

of entropy (Art. 44), d

whence Td<f>
=

and JTd0=
the integration being performed between any assigned limits.

Now if a curve be drawn with T and
c/>

for coordinates, fTcty is the

area under the curve. This by the above equation is equal to fdQ,
which is the whole amount of heat taken in while the substance

passes through the states which that portion of the curve repre-
sents. Let ab, fig. 7, be any portion of the curve of

(/>
and T. The

area of the cross-hatched strip, whose breadth is 80 and height 2\
is T8</>, which is equal to 8Q, the heat taken in during the small

change 80. The whole area mabn or

JTd0 between the limits a and b is

the whole heat taken in while the sub-

stance changes in a reversible manner
from the state represented by a to

the state represented by b. Simi-

larly, in changing reversibly from

state b to state a by the line ba the

substance rejects an amount of heat

which is measured by the area nbam.

The base line ox corresponds to the

absolute zero of temperature.
When an entropy-temperature curve is drawn for any complete

cycle of changes it forms a closed figure, since the substance returns

to its initial state. To find the area of the figure we have to inte-

grate throughout the complete cycle, and provided there has been

no irreversible action within the substance,

Entropy X

Fig. 7. Entropy-Temperature
Curve.

Q! being the heat taken in and Q2 tne neat rejected. But the

difference between these is the heat converted into work, hence

= W,

42
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when the integration extends round a complete cycle and W is

expressed in thermal units. Thus an entropy-temperature diagram,
so long as it represents changes of state all of which are reversible,

but not otherwise, has the important property in common with a

pressure-volume diagram that the enclosed area measures the work

done in a complete cycle.

But the entropy-temperature diagram has an advantage not

possessed by the pressure-volume diagram, in that it exhibits not

only the work done, but also the heat taken in and the heat

rejected, by means of areas under the curves. An illustration of this

has already been given in speaking of the Carnot cycle (Art. 46),

and others will be found in Chapter III.

52. Perfect Engine using Regenerator. Besides the cycle of

Carnot there is (theoretically) one other way in which an engine

can work between a source and receiver so as to make the whole

action reversible, and thereby transform into work the greatest

possible proportion of the heat that is supplied. Suppose there is,

as part of the engine, a body (called a "regenerator") into which

the working substance can temporarily deposit heat,, while the

substance falls in temperature from the upper limit T to the lower

limit T2 ,
and suppose further that this is done in such a manner

that the transfer of heat from the substance to the regenerator is

reversible. This condition implies that there is to be no sensible

difference in temperature between the working substance and the

material of the regenerator at any place where they are in thermal

contact. Then when we wish the substance to pass back from T2

to T we may reverse this transfer, and so recover the heat which

was deposited in the regenerator. This alternate storing and

restoring of heat serves instead of adiabatic expansion and com-

pression to make the temperature of the working substance pass

from T1 to T2 and from T2 to Tx respectively. It enables the tem-

perature of the substance to fall to T2 before heat is rejected to the

receiver, and to rise to Tx before heat is taken in from the source.

This idea is due to Robert Stirling, who in 1827 designed an

engine to give it effect. For the present purpose it will suffice to

describe the regenerator as a passage (such as a group of tubes)

through which the working fluid can travel in either direction,

whose walls have a very large capacity for heat, so that the amount

alternately given to or taken from them by the working fluid

causes no more than an insensible rise or fall in their temperature.
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The temperature of the walls at one end of the passage is T1 , and
this falls continuously down to T2 at the other end. When the

working fluid at temperature T1 enters the hot end and passes

through, it comes out at the cold end at temperature T2 , having
stored in the walls.of the regenerator a quantity of heat which it

will pick up again when passing through in the opposite direction.

During the return journey of the working fluid through the re-

generator from the cold to the hot end its temperature rises from

T2 to T! by picking up the heat which was deposited when the

working fluid passed through from the hot end to the cold. The

process is strictly reversible, or rather would be so if the regenerator
had an unlimited capacity for heat, if no conduction of heat took

place along its walls from the hotter parts towards the cold end,

and if there were no loss by conduction or radiation from its ex-

ternal surface. A regenerator satisfying these conditions is of

course an ideal impossible to realize in practice.

53. Stirling's Regenerative Air-Engine. Using air as the

working substance, and employing his regenerator, Stirling made
an engine which, allowing for practical imperfections, is the

earliest example of a reversible engine. The cycle of operations in

Stirling's engine was substantially this (in describing it we treat

air as a perfect gas):

(1) Air, which had been heated to T
1 by passing through the

regenerator, was allowed to expand isothermally through a ratio r,

taking in heat from a furnace and raising a piston. Heat taken

in (per Ib. of air)
= RTt loge

r (by Art. 28).

(2) The air was caused to pass through the regenerator from

the hot to the cold end, depositing heat and having its tempera-
ture lowered to T2 , without change of volume. Heat stored in

regenerator = Kv (Tx T2 ). The pressure of course fell in propor-
tion to the fall in temperature.

(3) The air was then compressed isothermally at T2 , through the

same ratio r to its original volume, in contact with a receiver of

heat. Heat rejected = RT2 loge r.

(4) The air was again passed through the regenerator from

the cold to the hot end, taking up heat and having its temperature
raised to T1 . Heat restored by the regenerator = Kv (Tl

T
z).

This completed the cycle.
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The efficiency is

RTl loge r
- RT2 loge r _ Tt

- T2

~RT1 log.r T!
The indicator diagram of this action is shown in fig. 8. Stirling's

engine is important, not as a present-

day heat-engine (though it has been

revived in small forms after a long
interval of disuse), but because it is

typical of the only mode, other than

Carnot's plan of adiabatic expansion
and adiabatic compression, by which

the action of a heat-engine can be made
reversible.

A modified form of regenerative en-

gine was devised later by Ericsson, who

kept the pressure instead of the volume

constant while the working substance

passed through the regenerator, and so

got an indicator diagram made up of

Volume

Fig. 8. IdealIndicator diagram
of Air-Engine with Regener-
ator (Stirling). jj

two isothermal lines and two lines of constant pressure.
1

The entropy-temperature diagram of a regenerative engine is

of the type shown in fig. 9. r
l

The isothermal operation of taking in heatfatT is represented by
db ; be is the cooling of the substance from

Tl to T2 in its passage through the re-

generator, where it deposits heat : cd is the

isothermal rejection of heat at T2 ;
and da

is the restoration of heat by the regenerator

while the substance passes through it in

the opposite direction, by which the tem-

perature of the substance is raised from T2

to Tj. Assuming the action of the re-

generator to be ideally perfect, be and ad

are precisely similar curves whatever be

their form. The area of the figure is then

equal to the area of the rectangle which

would represent the ordinary Carnot cycle

(fig. 5). The equal areas pbcq and ndam measure the heat stored

and restored by the regenerator.

When the working substance is air and the regenerative changes
take place either under constant volume, as in Stirling's engine,

Fig. 9. Entropy-tempera-
ture diagram of perfect

engine using a Regene-
rator.
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or under constant pressure, as in Ericsson's, the specific heat K
being treated as constant, ad and be are logarithmic curves with

the equation ,g^
(f>
=

| Y~
= ^ lge T + constant,

K being Kv in Stirling's process and Kv in Ericsson's.

54. Joule's Air-Engine. A type of air-engine was proposed

by Joule which, for several reasons, possesses much theoretical

interest. Imagine a chamber C (fig. 10) full of air (temperature T2),

which is kept cold by circulating water or otherwise; another

chamber A heated by a furnace and full of hot air in a state of

Fig. 10. Joule's proposed Air-Engine.

compression (temperature 2\) ; a compressing cylinderM by which

air may be pumped from C into A, and a working cylinder N in

which air from A may be allowed to expand before passing back

into the cold chamber C. We shall suppose the chambers A and

C to be large, in comparison with the volume of air that passes in

each stroke, so that the pressure in each of them may be taken as

sensibly constant. The pump M takes in air from C, compresses

it adiabatically until its pressure becomes equal to the pressure

in A> and then, the valve v being opened, delivers it into A. The

indicator diagram for this action on the part of the pump is the

diagram fdae in fig. 11. While this is going on, the same quantity

of hot air from A is admitted to the cylinder N, the valve u is Ihen

closed, and the air is allowed to expand adiabatically in N until

its pressure falls to the pressure in the cold chamber C. During
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the back stroke of N this air is discharged into C. The operation
of N is shown by the indicator diagram ebcf in fig. 11. The area

fdae measures the work spent in driving the pump; the area ebcf

is the work done by the air in the working cylinder N. The

difference, namely, the area abed, is the net amount of work

obtained by carrying the given quantity of air through a complete

cycle. Heat is taken in when the air has its temperature raised

Fig. 11. Indicator diagram in Joule's Air-Engine.

on entering the hot chamber A. Since this happens at a pressure
which is sensibly constant, the heat taken in

QA = KV (^6
~-

^V)

where Tb
= Tlt the temperature of A, and Ta is the temperature

reached by adiabatic compression in the pump. Similarly, the

heat rejected Q - K (T T \

where Td
= T2 ,

the temperature of C. and Tc is the temperature
reached by adiabatic expansion in N. Since the expansion and

compression both take place between the same terminal pressures,

the ratio of expansion and compression is the same. Calling it r,

we have y T

(Art. 26), and hence also

T/TT7i Jt"m

T~ ZV

_ T T T-*- a -*-
c *

i

Hence 'a T,

Qc Tt Tc

'

and the efficiency
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This is less than the efnciencyof a perfect engine working between

the same limits of temperature (
-1

-J
because the heat is not

taken in and rejected at the extreme temperatures.
The atmosphere may take the place of the chamber C: that

is to say, instead of having a cold chamber, with

circulating water to absorb the rejected heat, the

engine may draw a fresh supply at each stroke

from the atmosphere, and discharge into the

atmosphere the air which has been expanded

adiabatically in N.
The entropy-temperature diagram for this

cycle is drawn in fig. 12, where the letters refer

to the same stages as in fig. 11. After adiabatic

compression da, the air is heated in the hot

chamber A, and the curve ab for this process
has the equation

= K,(] g.T-log.T^.

Fig. 12. Entropy-
temperature dia-

gram in Joule's
Air-Engine.

Then adiabatic expansion gives the line be, and cd is another

logarithmic curve for the rejection of heat to C by cooling under

constant pressure. The ratio
-^ ,

which is represented by -=- in
J- 5 CO

fig. 11 and by -j-
in fig. 12, shows the proportion which the

volume of the pump M must bear to the volume of the working

cylinder N. The need of a large pump would be a serious draw-

back in practice, for it would not only make the engine bulky but

would cause a relatively large part of the net indicated work to

be expended in overcoming friction within the engine itself.

In the original conception of this engine by Joule it was in-

tended that the heat should reach the working air through the

walls of the hot chamber, from an external source. But instead

of this we may have combustion of fuel going on within the hot

chamber itself, the combustion being kept up by the supply of

fresh air which comes in through the compressing pump, and, of

course, by supplying fuel either in a solid form from time to time

through a hopper, or n a gaseous or liquid form. In other

words, the engine may operate as an internal-combustion engine.

Internal-combustion engines, essentially of the Joule type, em-

ploying solid fuel have been used on a small scale, but by far the
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most important development of the type is to be found in engines

which work by the explosion or burning of a mixture of air with

combustible gas or the vapour of a combustible liquid. The

thermodynamics of internal-combustion engines will be con-

sidered in a later chapter.

We shall also see later (Chapter IV) that a practicable re-

frigerating machine, using air for working substance, is obtained

by making Joule's Air-Engine work as a heat-pump.



CHAPTER II

PROPERTIES OF FLUIDS

55. States of Aggregation. In the previous chapter the only
substances whose properties were discussed were imaginary ones,

namely perfect gases. We have now to treat of real substances,

such as steam, carbonic acid, or ammonia, which serve as work-

ing substances in heat-engines or refrigerating machines, and to

examine their action and properties in the light of thermodynamic

principles.

Any such substance may exist in three states of aggregation,

solid, liquid and gaseous. We are mainly concerned with the liquid

and gaseous states, in either of which the substance is spoken of

as a fluid. The working fluid in an engine is often a mixture of the

same substance in the two states of liquid and vapour; but in some

stages of the action it may consist entirely of liquid, in others

entirely of vapour. The vapour of a substance may be either

saturated or superheated. A vapour mixed with its liquid, and in

equilibrium with it, must be saturated. Any attempt to heat the

mixture would result in more of the liquid turning into saturated

vapour. But when a vapour has been removed from its liquid it

may be heated to any extent, thereby becoming superheated.
Thus when steam is formed in a boiler it is necessarily saturated

when the bubbles leave the water, but it may be superheated on

its way to the engine by passing through hot pipes which cause its

temperature to rise above that of the boiler.

Any of the so-called permanent gases, such as hydrogen, or

oxygen or nitrogen, is a superheated vapour which can be reduced

to the saturated condition by greatly lowering its temperature.

At any one pressure the saturated vapour of a substance can

have but one temperature: the superheated vapour at the same

pressure may have any temperature higher than that.

In the change of state from solid to liquid, and again in the
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change from liquid to vapour, heat is taken in, though the substance

does not rise in temperature while the change is going on. The

heat so taken in was said in the phraseology of old writers to be-

come latent, and the name Latent Heat is still applied to it. Thus

the heat taken in by unit mass of a substance in passing, without

change of pressure, from the solid to the liquid state is called the

latent heat of the liquid, and the heat taken in by unit mass in

passing, without change of pressure, from the state of liquid

to 'that of vapour is called the latent heat of the vapour. The

latent heat of water is 80 thermal units, which means that unit

mass of ice takes in 80 thermal units while it melts, the thermal

unit being one-hundredth part of the quantity of heat required to

warm a unit mass of water from to 100 centigrade.

The temperature at which ice melts is only very slightly affected

by the pressure (see Art. 99), and the latent heat of water is

practically the same at all pressures ordinarily met with. If we
assume the pressure to be one atmosphere, ice melts at the tem-

perature which is taken for the lower fixed point (0 C.) in gradua-

ting a thermometer (Art. 15).

At a pressure of one atmosphere water boils at the temperature
which is taken for the upper fixed point of the thermometer

(namely 100 C.), and the latent heat of the vapour is 539-3 thermal

units. We shall see immediately that the temperature at which the

change from liquid to vapour occurs, and also the amount of heat

taken in during the change, depends greatly on the pressure. At

higher pressures the temperature of boiling is higher and the

amount of latent heat is less.

In describing the properties of fluids it will save circumlocution

to speak usually of water, taking it as typical of the rest. It is

itself of special interest to the engineer, being the working substance

of the steam-engine, and the numerical values by which its pro-

perties are expressed are. better known than those that relate to

other fluids. But the definitions and thermodynamical principles

which will be stated must be understood as applying to fluids in

general.

We have now to consider in more detail some of the points that

have been briefly summarized in this Article.

56. Formation of Steam under Constant Pressure. The

properties of steam, or of any other vapour, are most conveniently

stated by referring in the first instance to what happens when it is
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formed under constant pressure. This is substantially the process
which occurs in the boiler of a steam-engine when the engine is at

work. To fix the ideas we may suppose that the vessel in which

steam is to be formed is a long upright cylinder fitted with a

frictionless piston which may be loaded so that it exerts a constant

pressure on the fluid below. Let there be, to begin with, at the foot

of the cylinder a quantity of water (which for convenience of state-

ment we shall take as one unit of mass, 1 Ib. say), and let the piston
rest on the surface of the water with a pressure P. Let heat now
be applied to the bottom of the cylinder. As heat enters the water

it produces the following effects in three stages :

(1) The temperature of the water rises until a certain tem-

perature Ts is reached, at which steam begins to be formed. The
value of T

s depends on the particular pressure P which the piston

exerts. Until the temperature Ts is reached there is nothing but

water below the piston.

(2) Steam is formed, more heat being taken in. The piston,

which is supposed to continue to exert the same constant pressure,

rises. No further increase of temperature occurs during this stage,

which continues until all the water is converted into steam. During
this stage the steam which is formed is saturated. The volume

which the piston encloses at the end of this stage the volume,

namely, of unit mass of saturated steam at pressure P and con-

sequently at temperature T3 will be denoted by Vs .

(3) If more heat be allowed to enter after all the water has

been converted into steam, the volume will increase and the tem-

perature will rise. The steam is then superheated: its temperature
is above the temperature of saturation.

57. Saturated and Superheated Steam. The difference

between saturated and superheated steam may be expressed by

saying that if water (at the temperature of the steam) be mixed

with steam, some of the water will be evaporated if the steam is

superheated, but none if the steam is saturated. Steam in contact

with water, and in thermal equilibrium with it, is necessarily

saturated. When saturated its properties differ considerably, as

a rule, from those of a perfect gas, but when superheated they

approach "those of a perfect gas more and more closely the farther

the process of superheating is carried, that is to say, the more the

temperature is raised aboveTs,the temperature of saturation corre-

sponding to the given pressure P.
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58. Relation of Pressure to Temperature in Saturated

Steam. The temperature Ts at which steam is formed under the

conditions described in Art. 56, which is called the temperature of

saturation, depends on the value of P. The relation of pressure to

the temperature of saturation was determined with great care by

Regnault, in a series of classical experiments to which much of our

knowledge of the properties of steam is due*. Regnault's obser-

vations extended from temperatures below the zero of the centi-

grade scale, where the vapour whose pressure was measured was

that given off by ice, up to 220 C. The pressures found by him,

expressed in millimetres of mercury, were as follows, omitting those

below C. as not relevant to steam-engine calculations :

Pressure of saturated steam

Temperature C. in mm. of Mercury
4-60

25 23-55

40 54-91

50 91-98

75 288-50

100 760-00

130 2030-0

160 4651-6

190 9426

220 17390

It will be seen from these figures that the pressure of saturated

steam rises with the temperature at a rate which increases rapidly
in the upper regions of the scale. Various empirical formulas have

been devised to express the relation of pressure to temperature in

saturated steam and to allow tables to be calculated in which inter-

mediate values are shown. When a table is available, however, it

is more convenient to find the pressure corresponding to a given

temperature, or the temperature corresponding to a given pressure

directly from it, either interpolating or drawing a portion of the

curve connecting pressure with temperature when the values con-

cerned lie between those that are stated in the table.

59. Tables of the Properties of Steam. At the end of this

book a number of Tables will be found showing not only the re-

lation of the pressure to the temperature of saturation, but also

various other properties of steam which are of use in engineering

* M4m. Inst. France, 1847, vol. xxi. An account of Regnault's methods of

experiment and a statement of his results expressed in British measures will be

found in Dixon's Treatise on Heat (Dublin, 1849).
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calculations. Tables of the properties of steam have been calculated

by Professor Callendar, by methods which will be explained later,

and have been published under the title of The Callendar Steam

Tables*. From Callendar's tables, which give the most authori-

tative results now available, a selection has been made, with his

permission, for the purposes of this book.

The figures which are given for the pressure of saturated steam

at various temperatures are not taken directly from the measure-

ments of Regnault, but are inferred from a characteristic equation
which Callendar has devised to express the relation between pres-

sure, volume and temperature within the working range. The

validity of that equation (within the range to which the tables

apply) is demonstrated by the general agreement of the quantities

calculated from it with the best experimental results, in measure-

ments not only of the pressure at saturation but of other properties
of steam. The pressures, however, which are stated in these tables

do agree very closely with the results of Regnault's observations

quoted above. It is only at the highest pressures that an appreci-
able difference will be found, and even there it is not material.

In other respects the Callendar tables will be found to differ

somewhat widely from the earlier tables of such authorities as

Rankinef or ZeunerJ, which have been accepted as standards and

copied into many text-books. When these were calculated the only
available data of value were those furnished by the experiments of

Regnault. But more recent researches have supplied additional

data which in some particulars modify his, and it is now clear that

Regnault's figures require revision and in some cases considerable

amendment. The various properties of steam, or of any other

vapour, are linked together in such a manner that the relations

between them must satisfy certain thermodynamic equations. This

affords a test of consistency, and in the light of such investigations

the figures given in the old tables are now known to be not even

mutually consistent. Callendar's tables give a set of values that

are* consistent amongst themselves and are also in good agree-

ment with the most trustworthy experimental results. Further re-

searches may in time lead to a still closer adjustment of the figures

to the results of observation, but Callendar's values for the various

* London, Edward Arnold, 1915. Students should obtain a copy of these

Tables, which contain fuller particulars than are quoted here.

f Rankine, A Manual of the Steam Engine and other Prime Movers.

J Zeuner, Technische Thermodynamik, vol. n. (Trans, by J. F. Klein, 1907-).
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quantities may be accepted not only as mutually consistent, from

the thermodynamic point of view, but as certainly correct enough
for the purposes of the engineer.

60. Relation of Pressure to Volume in Saturated Steam.

Among the quantities shown in the tables is the volume F
fi ,

in cubic

feet per lb., of saturated steam at various temperatures and at

various pressures. The volume of a given quantity of saturated

steam at any assigned temperature or pressure is a quantity
difficult to measure by direct experiment, and the volumes which

are given in steam tables are generally inferred from the results of

experiments on other properties which can be more easily measured.

Successful measurements of volume have however been carried out*

and the results are in general agreement with the figures stated in

these tables.

The relation of P to F8 in saturated steam is approximately

expressed by an empirical formula

PF/* = constant.

With P in pounds per sq. inch and Vs in cubic feet per lb. this gives

PFS
H = 490.

WithP in kilogrammes per square centimetre and Vs
in cubic metres

per kilogramme, it becomes

PFS
H - 1-786.

This formula applies well from a pressure of say 1 pound per

square inch up to 300 pounds per square inch. Within these limits

it gives values which agree to one part in a thousand with those

in the tables.

The student will find it useful to draw curves, with the data

of the tables, showing the relation between the pressure and the

temperature of saturated steam, and also the relation of pressure to

volume, especially within the range usual in steam-engine practice.

He will observe that the rate of change of pressure with respect to

change of temperature increases rapidly as the temperature rises,

and hence that in the upper part of the range a very small elevation

of temperature in a boiler is necessarily associated with a large

increment of pressure.

The pressure shown by a pressure-gauge on a boiler is the excess

of pressure in the boiler above the pressure of the atmosphere.

* See especially 0. Knoblauch, R. Linde and H. Klebe, Mitteilungen tiber For-

schungsarbeiten herausgegeben vom Verein deutscher Ingenieure, Heft 21, 1905.



n] PROPERTIES OF FLUIDS 65

Consequently the true or "absolute" pressure in the boiler is to

be found by adding, to the reading of a correct gauge, the pressure
which corresponds to the height of the barometer at the time

; this

is generally about 14-7 pounds per square inch or 1*033 kilogrammes

per square centimetre.

61. Boiling and Evaporation. The familiar case of water

boiling in a kettle or other open vessel is only a special example of

the formation of steam under constant pressure. There the constant

pressure is that of the atmosphere, and consequently the tempera-
ture at which the water boils is about 100 C.*

Water in the open evaporates slowly at any temperature lower

than that at which it boils. Though the pressure of the vapour so

formed is lower than that of the atmosphere and may be very
much lower the vapour is able to escape from the surface by
diffusion : the atmosphere is not displaced and the pressure on the

surface of the water is still that of the air. As the temperature of

water in the open is raised this slow evaporation from the surface

becomes more rapid, but it is only when the temperature reaches

the value which corresponds (for saturated steam) to the given atmo-

spheric pressure that the water boils : the vapour is then formed in

bubbles at the pressure of the atmosphere, and it escapes not by
diffusion but by displacing the superincumbent air.

62. Mixture of Vapour with other Gases: Dalton's Prin-

ciple. In what has been said about the relation of pressure

and volume to temperature in the saturated state, it has been

assumed that in the process of formation there is simply a mixture

of the liquid with its vapour, no other substance being present.

This is substantially true in a steam boiler or in the evaporator of

a refrigerating machine. But the case is different when the vapour
has to mix with another gas or gases. A principle discovered by
Dalton then applies, that the pressure in any closed space con-

taining a mixture of two or more gases at any given temperature
is very approximately equal to the sum of the pressures which each

of the gases would exert separately if the others were absent, that

is to say if each of the gases (at the same temperature) alone

occupied the whole space. These pressures, which are added

together to make up the actual pressure, are called "partial

* Water in the open boils at 100 C. when the atmospheric pressure has its

standard value, which corresponds to a barometer reading (corrected to 0C.) of

760 mm. at sea level in latitude 45, or 759-6 mm. in London (see Art. 12).

E.T. 5
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pressures." An important instance of the application of Dalton's

principle is considered in the next article.

63. Evaporation into a space containing Air: Saturation

of the Atmosphere with Water-Vapour. When water evapor-
ates in a closed space containing air, the process goes on until a

definite amount of it has become mixed, as vapour, with the air

already there. When this has happened, and a state of equilibrium
is reached, the air is said to be saturated with water-vapour. The

amount of water-vapour that a given volume of air will take up in

this way depends upon the temperature : it is very nearly the same

amount as would be required to fill the same space with saturated

steam at that temperature if the air were not present. By Dalton's

principle the pressure of the mixed gases, namely the air and the

water-vapour mixed with the air, is very nearly the same as the

sum of the pressures which each would exert separately: that is

to say the pressure in the given space after the water-vapour has

been formed is greater than the pressure which the air would exert

in that space, if the water-vapour were not there, by an amount
which is nearly equal to the pressure of saturated steam at the

temperature of the mixture. It is approximately true to say that

each of the constituents of the mixed atmosphere in the closed

space behaves as if it occupied the whole volume, and contributes

to the pressure just as if the other constituent were absent. This is

very nearly accurate at ordinary pressures. It becomes less accurate

when the pressure is high : the amount of water-vapour required to

saturate the atmosphere is then somewhat less than the rule would

require.

As an example, suppose air at 25 C. (77 Fah.) to be saturated

with water-vapour. At that temperature one Ib. of saturated steam

would (by the Tables) occupy 692*4 cubic feet, and therefore one

cubic foot weighs 0-00144 Ib. Consequently each cubic foot of the

air takes up 0-00144 Ib. of water-vapour in reaching the state

of saturation at that temperature. And since the corresponding

pressure of water-vapour is 0-46 pound per sq. inch, the pressure
in an enclosed space containing this moist air is greater by 0-46

pound per sq. inch than it would be if the water-vapour were

removed and the dry air alone were left to fill the same space at

the same temperature. In other words 0-46 pound per sq. inch is

the "partial pressure" of the water-vapour present in the air under

the assumed conditions.
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When the amount of water-vapour present in air is less than

enough to cause saturation the water-vapour is held in a super-
heated state. If the temperature of the mixture be lowered, a point
is reached at which the air becomes saturated, and any further

lowering of the temperature causes some of the vapour to be de-

posited as liquid on the walls of the containing vessel, or on any

particles of dust that may be present. Any solid particles will serve

as nuclei for condensation. The water condensed on such nuclei

forms a mist of minute drops which fall so slowly that they seem to

be held in suspension. The temperature at which water begins to

be deposited from moist air is called the dew-point. Condensation

of some of the water contained in air will also occur on any cold

surface (colder than the dew-point) with which the air comes in

contact : this results from local cooling of the air close to the surface

in question. Thus in a refrigerating plant with pipes that convey a

liquid colder than the freezing point through the warm atmosphere
of the engine-room, a coating of ice forms round the pipes. For the

same reason an effective way to dry air is to make it cold and drain

away the water condensed in the process : at the lowest temperature
the air remains saturated, but the amount of water required to

saturate it at a low temperature is very small, and when it is allowed

to become warm again without taking up more water it will be far

from saturation.

64. Heat required for the Formation of Steam under

Constant Pressure: Heat of the Liquid and Latent Heat.

Return now to the imaginary experiment of Art. 56, where steam

is formed under the constant pressure of a loaded piston, nothing
but water or water-vapour being present and enquire what

amount of heat has to be supplied in each stage of the operation.

In the first stage the substance is wholly in the condition of water

which is being heated from the initial temperature to Ts ,
the

temperature at which the second stage begins. During this first

stage the heat taken in (per Ib. of the water) is approximately equal
to one thermal unit for each degree by which the temperature of the

water rises. It would be exactly equal to that if the specific heat

of water were constant and equal to unity, but this is not the case.

At about 30 C. the specific heat of water is less than unity; it

passes a minimum value thereabouts of 0-9967, and then increases,

becoming appreciably greater than unity at such temperatures as

are found in steam boilers. Thus for instance to heat 1 Ib. of water
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from C. to 80 C. requires 79-9-thermal units instead of 80. On
the other hand, to heat it from C. to 200 C., under a pressure
sufficient to prevent steam from forming, requires nearly 203-2

thermal units instead of 200. These figures will indicate how far

it is legitimate to estimate the heat taken in during the first stage
as one unit per degree. More accurate values of the heat of the

liquid, that is to say the heat taken in during the first stage, can

be found by means of the Steam Tables (see Art. 69).

During this first stage, while the substance is still liquid, nearly all

the heat that is taken in goes to increase the stock of internal energy.
There is scarcely any external work done, for the volume is only

slightly increased. Thus in heating water from C. to 200 C.

(under a pressure of 225 24 pounds per sq. inch) the volume of the

water changes from 0-0160 cubic ft. per Ib. to 0-0185. The external

work done during this heating is therefore 225-24 x 144 x 0-0025

or 81 foot-pounds. This is equivalent to barely 0-06 thermal unit,

and is negligible in comparison with the 203-2 units of heat that

are taken in.

In the second stage, the liquid changes into saturated steam with-

out change of temperature. The heat that is taken in during this

stage constitutes what is called the Latent Heat of the vapour.
We shall denote it by L. Values of the latent heat of saturated

steam are given in the tables. For steam formed under a pressure
of one atmosphere (saturation temperature 100 C.) the latent heat

is 539-3: with lower pressures of formation it is greater, and with

higher pressures it is less. At the end of the second stage the sub-

stance contains no liquid; it is spoken of as dry saturated steam:

at any earlier point, when the substance consists partly of saturated

steam and partly of water, it may be spoken of as wet steam.

The latent heat of a vapour may be defined as the amount of

heat which is taken in by unit mass of the liquid while it all changes
into saturated vapour under constant pressure, the liquid having
been previously heated up to the temperature at which the vapour
is formed.

A considerable part of the heat taken in during this process is

spent in doing external work, since the substance expands against
the constant pressure P. It is only the remainder of the so-called

latent heat L that can be said to remain in the fluid and to con-

stitute an addition to its stock of internal energy. The amount

spent in doing external work during the second stage is

AP (V, - Vw ),
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where Vs is the volume of the saturated vapour and Vw is the

volume of the liquid at the same temperature and pressure, A being
the factor for converting units of work into thermal units. The
excess of L above this quantity measures the amount by which

the internal energy increases during the second stage.

Thus for instance when water at 200 C. and a pressure of 225-24

pounds per sq. inch is converted into steam, of the 467-41 thermal

units taken in, 47-61 units are spent in doing external wprk* and

419-8 units go to increase the stock of internal energy.

65. Total External Work done. In the two stages together
the whole amount of external work done is to be found by taking
the whole increase of volume and multiplying it by the pressure.

If we assume that the water is originally at C. its volume may
be taken as 0-0160. In converting water from C. to saturated

steam at 200 C. under constant pressure the external work done is

found thus to be equivalent to 47-67 thermal units: this is 0-06

units more than the external work of the second stage, for it in-

cludes the small amount already referred to as having been done

during the first stage. The whole increase of internal energy, from

water at C. to saturated steam at any temperature, is equal to

the whole amount of heat taken in, less the equivalent of the

external work done. This in fact is only a particular example of the

general principle stated in Art. 9, that when any substance ex-

pands in any manner, taking in heat and doing work, the heat taken

in is equal to the work done plus the increase of internal energy.

In the case here considered the action is going on under constant

pressure, but the statement applies to any change of state whatever.

66. Internal Energy of a Fluid. No matter what changes a

substance may undergo, its internal energy will return to the same

value when the substance returns to the same condition in all

respects. In other words the internal energy is a function of the

actual state of the substance and is independent of the way in

which that state has been reached. Thus the internal energy of

1 Ib. of saturated steam at a particular pressure is a definite

quantity which is the same whether the steam has been formed by

boiling under constant pressure or in any other manner. Steam

formed in a closed vessel of constant volume, for example, would

have the same internal energy as steam at the same pressure but

formed under conditions of constant pressure, though the amount of

* The volume of the water is 0-0185 cubic ft. and of the steam 2-0738 cubic ft.

The value of AP(VS
- Vw ) is therefore 47-61.
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heat taken in during its formation would be different, for no external

work is done in the process of formation in a closed vessel of con-

stant volume. In that case the heat taken in would be equal to

the increase of internal energy.

We have no means of measuring the total stock of internal

energy in a substance, and can deal only with changes in the stock.

But by taking some arbitrary starting point as a zero from which

the internal energy E is reckoned we can give E a numerical value

for any other state of the substance. That value really expresses

the difference from the internal energy in the zero state. The usual

convention is to write E = when the substance is in the liquid

condition at a temperature of C., and at a pressure equal to the

vapour-pressure corresponding to that temperature. We may call

this, for brevity, the zero state of the substance.

Following this convention we take E = for water at C. The

value of E for saturated water-vapour at C. will then be 564-21

thermal units (see Tables in Appendix). That this agrees with other

figures in the tables will be seen by considering the conversion of

water at C. to steam at C. under constant pressure. The only
heat taken in is L, which is 594-27 units, and of this the external work

AP (Vs Vw ) represents 30-06 units: the difference measures E.

Values of E for saturated steam at various temperatures are

given in the tables. It will be seen that they increase slowly with

the temperature.

67. The "Total Heat "
of a Fluid. We come now to another

function of the state of any substance, a function which is of very

great use in thermodynamic calculations. It is generally called the

"Total Heat" and is represented* by the letter /.

The "total heat" / is defined for any state of the substance by
the equation I = E + APF.

That is to say / is equal to the sum of the internal energy and the

external work which would be done if the substance could be

imagined to start from no volume at all and to expand to its actual

volume, under a constant pressure equal to its actual pressure.

Since the pressure, volume, and internal energy are all functions of

the actual state, I is also a function of the actual state : its value is

independent of how the state has been reached. In steam, for

example, the heat taken in during formation depends on how the

* Callendar in his Tables uses H to represent this function. In view of the fact

that Rankine and other writers have used H in another sense the author prefers

to use a different symbol.
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steam is formed, but the "total heat" / depends only on the final

condition. The total heat can be calculated for any condition of a

substance, whether in the state of liquid or of saturated or super-
heated vapour. It is measured in thermal units per Ib. Values of

the total heat of saturated steam and also of water under satura-

tion pressure at various temperatures are given in the tables. The
total heat of steam increases progressively with the temperature,
rather more rapidly than does the internal energy.

It follows from the definition of / that in the zero state of any
substance, at which E is reckoned to be zero, / is not equal to zero

but to a small positive quantity depending on the volume of the

liquid and its pressure at that state. Since E is then zero / is equal
to AP VQ ,

where P is the pressure at the zero state, namely the

vapour-pressure at C., and V is the volume of the liquid at C.

and pressure P . For water this quantity APQVQ is quite negligible,

amounting as it does to 0-000146 thermal unit. For carbonic

acid it is about 1 thermal unit, for ammonia and sulphurous acid

it is much less.

68. Change of the Total Heat during Heating under Con-
stant Pressure. An important property of the function / is that

when any substance is heated under constant pressure the change
of / is equal to the amount of heat taken in. To prove this, let Q
be the amount of heat taken in while the substance expands under

constant pressure P from a state in which the volume is V^ and the

internal energy is E
1
to another state in which the volume is V2

and the internal energy is E2 . Then the amount of external work
done is P (V2 V-^) and, by the conservation of energy,

Q-Ez-Et + AP (F2
- Fx ),

which may be written

Q = E2 + APV<2
- (El + APV^

or Q = /2
- I19

where I
I
is the total heat in the first state and /2 is the total heat

in the second state.

69. Application to Steam formed under Constant Pressure,

from Water at o C. The above proposition applies to every stage

of the imaginary experiment of Art. 56. Referring to that experi-

ment, assume that to begin with there is under the piston 1 Ib. of

water at C. and at the pressure P at which steam is to be formed.

By definition of the total heat,

/ = E + APV,



72 THERMODYNAMICS [CH.

E at the beginning may be taken as zero *. Hence the value of /

for the water at C. may be taken as APVQ , where F is the volume

of 1 Ib. of water at C. and P is the pressure at which steam is to

be formed. At the end of the first stage

where Iw represents the value of I for water at the temperature at

which steam is about to form f. When values of /, are known this

allows Q1? the heat taken in during the first stage, to be more

accurately calculated than by the rough method of Art 64. Values

of Iw are included in the steam tables.

During the second stage an amount of heat equal to L is taken

in at constant pressure, and the total heat changes from Iw to Is ,

where I is the total heat of saturated steam. Hence

The sum L + Ql is the whole heat of formation, in the experi-

ment of Art. 56. Thus the "total heat" of steam is equal to

the heat of formation under constant pressure, plus a small

quantity which is the thermal equivalent of the work that would be

done in lifting the piston far enough to admit the original volume

of the water. The quantity APV forms a very small part of the

"total heat": it is only 0-37 thermal unit when the temperature of

formation is 200 C. and it is much less at lower temperatures.
These remarks and the following tabular scheme will serve to

show how the total heat of saturated steam (or other vapour) is

related to the heat of formation under constant pressure. But the

student should accustom himself to think of the total heat without

reference to any process of formation, as a property which a

substance possesses in its actual state a property which is just as

simply a function of the state as is the temperature, or the pressure,

or the volume, or the internal energy, or the entropy, which we
shall have to consider presently J.

* The convention of Art. 66 makes E= for water at C. and pressure P . Here

we havewater at C. and pressureP,which is higher than P : but the higher pressure

does not cause the internal energy of water at C. to differ appreciably from zero.

f In Calendar's Tables this quantity Iw is written h.

J The function here called Jbhe total heat /, namely E +APV, was introduced by
Willard Gibbs (Trans, of the Connecticut Academy, vol. m; Collected Scientific

Papers, vol. I, page 92), and was first called the " Total Heat "
by Callendar (Phil.

Mag, 1903, vol. v, p. 50). Its great importance in technical thermodynamics was

emphasized by Mollier, who employed it in charts for exhibiting the properties

of steam and other substances. The use of such charts will be described later.
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total heat of the superheated vapour directly for any condition of

temperature and pressure, without reference to the mode of forma-

tion. This will be described in a later chapter, and a selection of

numerical values will be found in the tables. From them the heat

taken in during superheating at constant pressure may be found

as /' Is ,
where /' is the total heat in the superheated state

and Is the total heat in the saturated state at the same pressure.

In engineering practice, the superheating of steam is generally
carried out at constant pressure: the steam on leaving the boiler

passes through a group of tubes forming a superheater, kept hot by
the furnace gases, and while taking up heat from these tubes its

pressure remains equal (or nearly equal) to that in the boiler. Super-

heating is rarely carried further than 400 C. and not often so far.

72. Constancy of the Total Heat in a Throttling Process.

An important property of the function /, in any substance, is that

it does not change when the substance passes through a valve or

other constricted opening, such as the porous plug of the Joule-

Thomson experiment mentioned in Art. 19, by which it becomes

throttled or "wire-drawn" so that its pressure drops. A practical

instance of this kind of action occurs when steam passes through a

partially closed orifice or "reducing valve." Eddies are formed in

the fluid as it rushes through the constricted opening, and the energy

expended in forming them is frittered down into heat asthey subside.

Fig. 13

To prove that / is constant in such an operation we shall consider

what happens while a unit quantity of the substance passes through
a constricted opening (as in fig. 13), and, to make the matter clear,

imagine this unit quantity to be separated from the rest of the

substance by two frictionless pistons, one of which (A) slides in the

pipe that leads to the constriction and the other (B) slides in the

pipe that leads away from it. On one side, as the substance comes

up, let its pressure be P2 , volume Fx and internal energy E1 . On
the other side, after passing the constriction, let its pressure be P2 ,

volume F2 and internal energy E2 . As each portion approaches the

constriction, work is done upon it by the substance behind pushing
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in the imaginary piston A, and the amount of that work done

while unit quantity is passing is P^Vi. After each portion has

passed the constriction it does work upon the substance in front

by pushing out the imaginary piston B, and the amount of that

work is P2V2 for the whole unit quantity. Any excess of the work

done by the substance on piston B over the work done upon it by

piston A must be supplied by a reduction in its stock of internal

energy. Hence

from which E
2 + AP2V2

= E
l + AP1V1 ,

or /2 = Ji-

Thus the total heat does not change in consequence of the thrott-

ling. The imaginary pistons were introduced only to make the

reasoning more intelligible ;
the argument holds good whether they

are there or not. It applies to any fluid, and to any action in which

there is a frictional fall of pressure.

We might accordingly describe the quantity / as that property ofa

substance which does not change in a throttling process*.

73. Entropy of a Fluid. In reckoning the entropy of a fluid

we follow the same convention as in reckoning internal energy : the

entropy of the liquid at C. is taken as zero. Consider, as before,

a process in which the liquid is first heated under constant pressure

and then vaporized at that pressure. During the heating of the

liquid from an initial temperature T to any temperature T (on the

absolute scale) the entropy increases by the amount

f
T dQ _
T
~

To

where a is the specific heat at constant pressure.

If cr could be treated as constant this would give on integration

a(loge T-log6
T ).

In the case of water a is not far from constant and equal to unity.

Hence a rough value of the entropy of water
<f>w at any temperature

T is given by the expression

loge
T -

loge
273.

* It is assumed that no heat is taken in or given out, and "also that the velocity

in the pipes is so small that no account need be taken of any difference in the kinetic

energy of the stream in the pipes before and after passing the constriction, once

the eddies have subsided. If the stream has acquired an appreciable amount of

kinetic energy after the process, there will be a corresponding reduction in /. (See

Art. 104.)
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More accurate values of
</>

are obtained by using a formula

devised by Callendar which will be given when the derivation of his

tables is described (Chap. VIII). In the tables there is a column

for the entropy of water at various temperatures, the pressure in

each case being the saturation pressure at that temperature. It is

the amount of entropy which the water has at the end of the first

stage in Art. 56, when steam is just about to be formed.

During the second stage an additional amount of heat L is taken

in at constant temperature Ts , namely the temperature at which

steam is formed under the given pressure. Hence the entropy

increases by the amount ^- , and we have, for the entropy of
* s

saturated steam, L
<f>s
=

<l>w + 7p* s

Values of
cf>s

are given in the tables.

During superheating there is a further increase of entropy as the

substance takes in more heat. The entropy of superheated steam

at various pressures and temperatures will be found in one of the

tables. It can be calculated by means of a formula which will be

given later.

74. Mixed Liquid and Vapour : Wet Steam. In many of the

actions that occur in steam-engines and refrigerating machines we
have to do not with dry saturated vapour but with a mixture

of saturated vapour and liquid. In the cylinder of a steam-engine,

for example, the steam is generally wet; it contains a proportion of

water which varies as the stroke proceeds. When any such mixture

is in a state of thermal equilibrium the liquid and vapour have the

same temperature, and the vapour is saturated. What is called the

dryness of wet steam is measured by the fraction q of vapour which

is present in unit mass of the mixture. When the dryness is known
it is easy to determine other quantities. Thus, reckoning in every
case per unit mass of the mixture, we have :

Latent Heat of wet steam = qL = q (Is Iw ) (1),

Total Heat of wet steam, IQ = Iw + qL = Is
-

(1
-

q) L ...(2),

Volume of wet sleam, Vq
= qVs + (1

-
q) Vw (3),

which is very nearly equal to qVs unless the mixture is so wet

as to consist mainly of water;

Entropy of wet steam, </>Q
=

</>w + ^ =
cf>s

- (1
"

g) L
...(4).

* *
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From (2) it follows that when the total heat Iq of wet steam is

known, the dryness may be found by the equation

Combining (2) and (4), and eliminating q t
we have

IQ
= IW + Ts (fa

-
fa) (6),

which is a convenient expression for finding the total heat of wet

steam when the data are the temperature and the entropy. An
alternative form is

In these expressions Iw is the total heat of water, and Is that of

dry saturated steam, at the temperature of the wet mixture.

All these formulas apply to a mixture of any liquid with its

vapour.

75. Specification of the State of any Fluid. We have now

spoken of the following quantities, which are functions of the state

of the substance. They all depend on the actual state, not on how
that state has been reached:

The temperature, T.

The pressure, P.

The volume, V.

The Internal Energy, E.

The Total Heat, /.

These four are reckoned per unit

quantity of the substance.

The Entropy, fa

A substance may change its state in many different ways : it may
for instance take in heat at constant volume or while expanding;

it may expand or be compressed with or without taking in heat;

expansion may take place through a throttle-valve or under a

piston. But in any change of state whatever, the amount by which

each of these quantities is altered depends only on what the initial

and final states are, and not at all on the particular process by
which the change of state has been effected.

There are other quantities, such as the heat taken in, or the work

done, which depend on how the change of state has taken place.

In dealing with them we have to distinguish between one process

of change and another, even when both processes bring the sub-

stance from the same initial to the same final condition.
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The working substance may be a liquid, or a mixture of liquid and

vapour, or a dry-saturated or superheated vapour. The condition

of a dry-saturated vapour is only a boundary condition between

that of wetness and that of superheat. To specify completely the

state at any instant it is enough to give either the pressure or the

temperature and one of the other four quantities named in this list.

Thus if P and V are given the state is fully denned : all the other

quantities can then be determined, provided, of course, we have

sufficient experimental knowledge of the characteristics of the

substance. Or we may specify the state by giving another pair of

quantities, such as T and
(/>.

or P and 7, or < and /.

More generally, any two of these six quantities will serve as data

in specifying the state, so long as the substance is homogeneous ;

but when the substance is a mixture of liquid and vapour the

pressure and temperature do not suffice without some other par-

ticular such as the dryness q.

With regard to these functions it may be useful to repeat here

that

T is constant in isothermal expansion;

</>
is constant in adiabatic expansion;

/ is constant in expansion through a throttle-valve or porous plug.

76. Isothermal Expansion of a Fluid: Isothermal Lines on

the Pressure-Volume Diagram. A saturated vapour can expand

isothermally only when it is wet: the process corresponds to the

second stage in the experiment of Art. 56 ;
it goes on at constant

pressure and involves change of part of the liquid in the wet

mixture into vapour. Similarly, isothermal compression of a wet

vapour involves condensation of part of it. Isothermal lines on the

pressure-volume diagram for a mixture of vapour and liquid are

straight lines of uniform pressure.

It is instructive to consider the general form of the isothermal

lines as the fluid passes successively through the stages of being

(1) entirely liquid, (2) a mixture of vapour and liquid, (3) entirely

vaporous, by having its pressure gradually reduced under con-

ditions such that the temperature remains constant throughout the

process. Imagine for instance a cylinder to contain a quantity of

the liquid under pressure applied by a loaded piston, and let the

cylinder stand on a body at a definite constant temperature, which

will supply enough heat to it to maintain the temperature un-

changed when the pressure of the piston is gradually relaxed and
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the volume consequently increases. Starting from a condition of

very high pressure, say at A (fig. 14), when the contents of the

cylinder are wholly liquid, let the load on the piston be slowly
reduced so that the pressure gradually falls. The contents at first

remain liquid, until the pressure falls to the saturation value for the

given temperature, namely the pressure at which vapour begins to

form. Thus we have in the pressure-volume diagram a line A tB t

to represent what happens while the pressure is falling during this

first stage; the contents are then still liquid. The volume of the

liquid increases, but only very slightly, in consequence of the

pressure being relaxed, and hence A1Bl
in the diagram is nearly but

not quite vertical. At B vapour begins to form, and continues

forming until all the liquid becomes vapour. This is represented

by BlCl ,
a stage during which there is no change of pressure. At

Cj there is nothing but saturated vapour. Then, if the fall of

pressure continues, a line C1D1

is traced, the progressive fall

of pressure being associated

with a progressive increase of

volume. The temperature, by

assumption, is kept constant

throughout. At D19 or at any

point beyond C19 the vapour
has become superheated, be-

cause its pressure is lower than

the pressure corresponding to

saturation, and hence its tem-

perature is higher than the

temperature corresponding to

saturation at the actual pres-

sure. Any such lineABCD is an

isothermal for the substance in

the successive states of liquid

(A to B), liquid and vapour
mixed (B to C), saturated

vapour (at C), superheated vapour (C to D). Now take a much

higher temperature. We get a similar isothermal A 2B2C2D2 ; and

at a still higher temperature another isothermal A3B3C3D3 , and

so on. The higher the temperature the nearer do B and C

approach each other, and if the temperature be made high enough

the horizontal portion of the isothermal line vanishes.

VOLUME

Fig. 14. Isothermal Lines.
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77. The Critical Point: Critical Temperature and Critical

Pressure. A curve (shown by the broken line) drawn through

B^BJEtz ,
etc. is continuous with one passing through C^CgCg ,

and

it is only within the region of which this curve is the upper boundary
that any change from liquid to vapour takes place. The branch

B1B2
B

3 ,
which shows the volume of the liquid, meets the branch

CjCgCg, which shows the volume of the saturated vapour, in a

rounded top. The summit of this curve represents a state which

is called the Critical Point. The temperature for an isothermal line

E that would just touch the top of this curve is called the Critical

Temperature. We might define the critical temperature in another

way by saying that if the temperature of a vapour is above the

critical temperature no pressure, however great, will cause it to

Jiquefy. The pressure at the critical point is called the Critical

Pressure; at any higher pressure the substance cannot exist as a

non-homogeneous mixture, partly liquid and partly vapour.

Starting from D and increasing the pressure, the temperature

being kept constant, we may trace any of the isothermals back-

wards. The initial state is then that of a gas (a superheated vapour) .

If the temperature is low enough we have a discontinuous process

DCBA : as the pressure increases C is reached when the vapour is

saturated and condensation begins : at B condensation is complete,

and from B upwards towards A we are compressing liquid. At any

point between C and B the substance exists in two states of

aggregation; part is liquid and part is vapour. But if the tem-

perature is above the critical temperature the isothermal is one

that lies altogether outside of the boundary curve, shown by the

broken line; in that case the substance does not suffer any sharp

change of state as the pressure rises. It passes from the state of

a gas to that of a liquid in a continuous manner, following a course

such as is indicated by the lines F or G, and at no stage in the

process is it other than homogeneous.
The critical temperature for steam is about 365 C., and the

corresponding pressure is about 2950 pounds per square inch. In

the action of an ordinary steam-engine the critical point is never

approached. But with carbonic acid, whose critical temperature
is only about 31 C., the behaviour in the neighbourhood of the

critical point, and above it, is of great practical importance in

connection with refrigerating machines which employ carbonic

acid as working substance.

Gases such as air, hydrogen, oxygen and so forth, are vapours
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which under ordinary conditions are very highly superheated.
Their critical temperatures are so low that it is only by extreme

cooling that they can be brought into a condition which makes

liquefaction possible. The critical temperature of hydrogen is

241 C. or 32 absolute. Even helium, the most refractory of

the gases, has been liquefied, but only by cooling it to a temperature
within about 5 degrees of the absolute zero.

78. Adiabatic Expansion of a Fluid. When a saturated

vapour expands adiabatically it becomes wet; and if it is initially

wet (unless very wet*) it becomes wetter. Its temperature,

pressure, and total heat fall. The fact that its entropy remains

unaltered allows the change of condition to be investigated as

follows, if we assume that the liquid and vapour in the mixture

are in thermal equilibrium throughout the process.

For greater generality we shall suppose the vapour to be wet to

begin with. Let the initial temperature be T and the initial dry-
ness ql . In this state the entropy is

L
x being the latent heat of the vapour and

</>Wi
the entropy of the

liquid, both at the temperature 2\. These quantities are found in

the tables. Let the substance expand adiabatically to any lower

temperature T2 , at which the latent heat is L2 and the entropy of

the liquid is
(f>W2

: we have to find the resulting value of the dryness,

q2 . The entropy may now be expressed as

and since there has been no change of entropy this is equal to the

initial value
<f>.

Hence

This equation serves to determine the dryness after expansion, and

once it is known the volume Vq is readily found as in Art. 74. Its

exact value is q2 V8t
+ (1 #2 ) PW,, which is practically equal in

ordinary cases to q2 VSz ,
V

'

s<i
being the volume of saturated vapour at

* When the mixture is very wet to begin with, it becomes drier during adiabatic

expansion, because so much of the portion which was initially liquid vaporizes under

the reduced pressure that this more than makes up for condensation in the portion

which was initially vapour (see Art. 100).

E. T. 6
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the temperature T2 . The pressure is the saturation pressure corre-

sponding to T2 . Thus the calculation fixes a point in the adiabatic

line of the pressure-volume diagram, for expansion from the initial

conditions. A series of points may be found in the same way, corre-

sponding to successive assumed temperatures which are reached in

the course of the expansion, if it is desired to trace the line.

In the special case when the vapour is dry and saturated to begin

with, the constant entropy </>
is equal to

</>Si
and the expression for

the wetness after expansion to any temperature T2 becomes

= T2

As an example of the calculation, let steam initially dry and

saturated at a temperature of 190 C. (Px
= 182-1 pounds per sq.

inch) expand adiabatically to a pressure of one atmosphere (tem-

perature 100 C.). The entropy, which remains constant during

expansion, is 1-5613, <f>Wa
is 0-3119, and L 2 is 539-3. With these data

q2 is 0-864, 13-6 per cent, of the steam has become liquefied, and the

volume which was originally 2-534 cub. ft. per Ib. is 23-157 cub. ft.

after expansion.

Similarly, if the substance is entirely liquid in the initial state,

the pressure being sufficient to prevent vapour from forming,

adiabatic expansion will cause some of it to vaporize. Its initial

entropy is
<j>w^

,
and since this does not change,

?--(, -&,),L2

after expansion to a temperature T2 .

Thus, when water initially at 190 C., and at the corresponding

saturation pressure of 182-1 pounds per sq. inch, expands adia-

batically to a pressure of one atmosphere, q2 becomes 0-154: in

other words 15 per cent, of the water vaporizes in consequence of

the expansion. The resulting volume is 4-127 cub. ft. per Ib.

Conversely, if the wet mixture in this condition were compressed

adiabatically it would become wetter during compression, and

would be wholly condensed by compression when the pressure

reached 182-1 pounds per square inch.

An approximation to the form of the pressure-volume curve

for the adiabatic expansion of wet steam is sometimes obtained by

using an equation of the type PVm = constant, and selecting a value

of the index m appropriate to the initial state. Zeuner gives for

the index m the formula m = 1-035 + 0-1<? where q is the dryness
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at the beginning of expansion. But the use of such a method is un-

satisfactory, for a curve whose equation is PVm = constant, starting

from any given initial condition, will agree with the actual adiabatic

curve at one other point only. The curves cross at that point.

A value of m can be selected which will make the equation
pym _ constant give the right volume when the pressure has fallen

from the initial pressure P1
to any assigned pressure P2 . For this

purpose we may write

m= logP1 -logP2

log V2
~~ 1 ^i

'

in which V\ represents the initial volume and V2 the actual volume

reached by expansion to P2 ,
V2 being determined by the method

already given, namely by first finding the dryness and then calcu-

lating the volume from that. It will be found that the value of m
obtained in this way becomes less the further the expansion is

carried, and also that it is greater when the steam is Initially dry
than when it is wet. To take an example, let the initial state be

that of dry saturated steam at 200 C., for which the pressure is

225-24 pounds per square inch. Adiabatic expansion to various

lower temperatures and pressures gives the following results:

Temperature Pressure Volume Index
C. pounds per sq. in. Dryness (cub. feet) m

(Initial) 200 225-24 1 2-0738

190 182-08 0-9828 2-4906 1-162

170 115-06 0-9525 3-717 1-151

140 52-48 0-9085 7-400 1-145

100 14-69 0-8528 22-849 1-138

40 1-07 0-7693 240-35 1126

At each stage the calculated value ofm is that which would make a

curve having the equation PVm = P1F1
r"

pass through the point
reached at that stage in adiabatic expansion. The Zeuner formula,

quoted above, makes the index for initially dry steam 1-135, but

that would make the curve lie too high in the early stages and too

low after the pressure has fallen below one atmosphere. No constant

index can give a really good approximation to the actual curve.

So far, this Article has dealt with the expansion of saturated or

wet vapour. When a superheated vapour expands adiabatically its

expansion is divisible into two distinct stages. The first stage brings

it down to the state of saturation; in the second stage it is a wet

vapour and the foregoing methods of calculation apply. Callendar

62
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has shown that, in the first stage, superheated steam expanding

adiabatically follows closely the equation

p (V - 6)i-3
= constant,

where b is the volume of water at C., namely 0-016 cubic ft.

per Ib. Except at high pressures b is negligibly small compared
with F, and may be omitted without serious error. This equation

applies down to the point at which the steam becomes saturated.

The amount of adiabatic expansion which will bring a super-

heated vapour down to that point is determined from the fact that

the entropy is constant. We have only to find at what temperature

(or pressure) the entropy of saturated vapour is equal to that of the

superheated vapour in the given initial state. This comparison is

readily made when tables or charts are available giving the pro-

perties of the substance in both states, superheated and saturated.

Callendar's tables give the necessary data for steam: their use in

such calculations will be illustrated in the next chapter. The charts

which will also be described there serve well for the examination of

cases in which the vapour is superheated before expansion. Such

cases occur frequently in steam-engine practice. With a suitable

chart it is easy to trace the whole course of any adiabatic expansion

through the region of superheat, past the point of saturation, and

finally in the region of wetness.

It must not be supposed that the expansion of steam in an actual

engine is adiabatic, for there is always some transfer of heat be-

tween the working fluid and the metal of the cylinder and piston.

If it were practicable to use a perfectly non-conducting material

for the surfaces in contact with the steam, the ideal of adia-

batic expansion could be realized. It is approximated to in cases

where the action occurs too fast to allow any considerable transfer

of heat to take place.

Sudden, and therefore practically adiabatic, expansion from a

high pressure may be used to produce a very low temperature. It

was in this way that gases such as oxygen and nitrogen were for the

first time liquefied. The gas was compressed and was cooled in the

compressed state to a fairly low temperature. It was then suddenly

expanded, and the further cooling which resulted from this ex-

pansion caused a portion of it to become liquid.

79. Supersaturation. In discussing adiabatic expansion we

have assumed that there is at every step in the expansion a con-

dition of equilibrium in the fluid, that is to say equilibrium between
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the part that is vapour and the part that is liquid. But it is known,
as a result of experiment, that when a vapour is suddenly cooled

by adiabatic expansion the condition of equilibrium is not reached

at once. Suppose the vapour to be initially dry and saturated : on

expansion a part of it must condense if equilibrium is to be estab-

lished. This condensation takes an appreciable time; it is a surface

phenomenon, taking place partly on the inner surfaces of the

containing vessel and partly by the growth of drops throughout
the volume. Consequently the sudden expansion of a vapour may
produce temporarily a condition that is called supersaturation,

in which the substance continues for a time to exist as a homo-

geneous vapour, although its pressure and temperature are such

that the condition of equilibrium would require a part of it to be

condensed. In this supersaturated state the density of the vapour
is abnormally high, higher than the density of saturated vapour at

the actual pressure. The temperature is also abnormally low, lower

than the temperature of saturation at the actual pressure : for this

reason the supersaturated vapour might be called supercooled. The

supersaturated condition is not stable: it disappears through the

condensation of a part of the vapour, and the resulting mixture of

vapour and liquid has its temperature raised by the latent heat

which is given out in this condensation. We shall see later, in

connection with the theory of steam jets (Art. 135), that ex-

pansion involving supersaturation may occur under practical

conditions *.

The supercooling of a vapour without condensation is analogous
to the supercooling of a liquid without crystallization. In both

cases there is a departure from the state of equilibrium, and in both

cases the restoration of equilibrium involves an irreversible action

within the substance. The normal adiabatic expansion of a vapour,
dealt with in Art. 78, is reversible, but if there has been super-

cooling there is an irreversible development of heat within the fluid

* An interesting example of supersaturation occurs when dust-free air saturated

with water-vapour is suddenly expanded. So long as particles of dust are present

a mist forms (on slight expansion) by the condensation of water on them as nuclei,

but if they are removed before such an expansion the mist does not form and the

vapour becomes supersaturated. If however the ratio of expansion is large, so that

there is much supercooling, a mist forms even hi the absence of dust: in that case

it appears that drops of the liquid form about smaller nuclei, which are not of foreign

matter, but probably consist of groups of molecules accidentally linked in the course

of the molecular collisions that occur in any gas. (See Aitken, Trans. R.S.E. vol. 30,

and Nature, March 1, 1888 and Feb. 27, 1890: also C. T. R. Wilson, Phil. Tran*.

E. S. vol. 189, 1897.)
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when the supercooled vapour passes into the stable state of a

mixture of liquid and saturated vapour.

During supercooling by adiabatic expansion steam expands

according to the formula P (V 6)
1 '3 = constant. The formula is

the same as for the adiabatic expansion of superheated steam. It

applies whether the steam be initially superheated or saturated,

and continues to apply so long as the steam expands in a homo-

geneous dry state, as a result of supersaturation.

80. Change of Internal Energy and of Total Heat in

Adiabatic Expansion. "Heat-Drop." When a fluid expands

adiabatically from any condition a to any other condition b the

decrease of internal energy Ea Eb is equal to the thermal equiva-

lent of the work done in the expansion. This is because it takes in

no heat and consequently the

work which it does in expand-

ing is done at the expense of its

stock of internal energy.

Referring to the pressure-

volume diagram (fig. 15) the

work done during expansion
from a to b is measured by the

area mabn, consequently in

adiabatic expansion

Ea Eb
= A (area mabn).

Further, the decrease of total heat which the substance under-

goes during the process is equal to the thermal equivalent of the

area eabf. To prove this, we have, by the definition of the total

heat (Art. 67),

Ia = Ea + APaVa>

and Ib
= Eb + APbVb ;

from which

Ia -Ib
= Ea

- Eb + A (PaVa
- PbVb )

= A (area mabn + area eamo area/Zwo)

= A (area eabf).

This is true whatever be the condition of the fluid before expansion :

it applies for example to superheated as well as to saturated or wet

steam, or to any gas.

Volume

Fig. 15
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It may be instructive to the student to have the same proof put
in a somewhat different form. From the equation which defines the

total heat / in any state, namely,

/ = E + APV,

we have by differentiation

dl = dE + Ad (PV)

= dE + APdV + AVdP.

But in any small change of state it follows from the conservation

of energy that the increase of internal energy plus the work done

by the fluid is equal to the heat taken in, or

dE + APdV = dQ,

where dQ is the heat taken in during the change. Hence in any
small change of state dl = dQ + AVdP.

In an adiabatic operation dQ = 0, and hence in that case

dl = AVdP. '

Therefore if the fluid expands adiabatically from state a to state /;

the resulting decrease in its total heat, namely

- / = A I" VAP.
. h

This integral is the area eabf of the pressure-volume diagram

(fig. 15). It is the whole work done in a cylinder when the fluid is

admitted at the pressure corresponding to state a, then expanded

adiabatically to state b, and then discharged at the pressure corre-

sponding to state b.

The decrease of total heat in expansion, Ia Ib ,
is called

the "Heat-drop." It is a quantity of much importance in the

theory of heat-engines. The above equation shows that under

adiabatic conditions the whole work done in the cylinder, when

expressed in heat units, is measured by the heat-drop. In the

next chapter this principle will be applied to infer from the heat-

drop the work that can be done in steam-engines under various

assumed conditions, and it will be shown how to calculate the heat-

drop which occurs in adiabatic expansion from any initial state.



CHAPTER III

THEORY OF THE STEAM-ENGINE

81. Carnot's Cycle with Steam or other Vapour for Work-

ing Substance. We are now in a position to study the action of

a heat-engine employing water and steam, or any other liquid and

its vapour, as the working substance. To simplify the first con-

sideration of the subject as far as possible, let it be supposed that

we have, as before, a long cylinder, composed of non-conducting
material except at the base, and fitted with a non-conducting

piston ; also a source of heat A at some temperature 2\ ;
a receiver

of heat, or as we may now call it, a condenser, C, at some lower

temperature T2 ;
and also a non-conducting cover B (as in Art. 36).

Then Carnot's cycle of operations can be performed as follows.

To fix the ideas, suppose that there is unit mass of water in the

cylinder to begin with, at the temperature Tx .

(1) Apply A, and allow the piston to rise against the constant

pressure P1 which is the saturation pressure corresponding to the

temperature 2\. The water will take in heat and be converted into

steam, expanding isothermally at the temperature 2\. This part of

the operation is shown by the line ab in fig. 16.

(2) Remove A and apply B. Allow the expansion to continue

adiabatically (be), with falling pressure, until the temperature falls

to T2 . The pressure will then be P2 , namely, the pressure which

corresponds in the steam table to T2 ,
which is the temperature of

the cold body C.

(3) Remove B, apply C, and compress. Steam is condensed by

rejecting heat to C. The action is isothermal, and the pressure
remains P2 . Let this be continued until a certain point d is

reached, which is to be chosen so that adiabatic compression will

complete the cycle.

(4) Remove C and apply B. Continue the compression, which

is now adiabatic. If the point d has been rightly chosen, this will

complete the cycle by restoring the working fluid to the state of

water at temperature Tt .
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The indicator diagram for the cycle is drawn in fig. 16, the lines

be and da having been calculated by the method of Art. 78, for a

particular example in which the initial pressure is 90 pounds per

square inch (Tx
= 433), and the expansion is continued down to the

pressure of the atmosphere, 14-7 pounds per square inch (T2
= 373).

a Isothermal ft

sm

i
Fig. 16. Garnet's Cycle with water and steam for working substance.

Since the process is reversible, and since heat is taken in only at

Tl and rejected only at T2 ,
the efficiency (by Art. 38) is

The heat taken in per unit mass of the liquid is Ll9 and therefore

the work done is L (T T
)

a result which may be used to check the calculation of the lines

in the diagram by comparing it with the area which they enclose.

It will be seen that the whole operation is strictly reversible in the

thermodynamic sense.
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Instead of supposing the working substance to consist wholly of

water at a and wholly of steam at b, the operation ab might be

taken to represent the partial evaporation of what was originally

a mixture of steam and water. The heat taken in would then be

(qb <7 )L,/and as the cycle would still be reversible the area of

the diagram would be

82. Efficiency of a Perfect Steam-Engine. Limits of Tem-

perature. If the action here described could be realized in

practice, we should have a thermodynamically perfect steam-

engine using saturated steam. Like any other perfect heat-engine,

an ideal engine of this kind has an efficiency which depends upon
the temperatures between which it works, and upon nothing else.

The fraction of the heat supplied to it which such an engine would

convert into work would depend simply on the two temperatures,
and therefore on the pressures, at which the steam was produced
and condensed respectively.

It is interesting therefore to consider what are the limits of

temperature between which steam-engines may be made to work.

The temperature of condensation is limited by the consideration

that there must be an abundant supply of some substance to

absorb the rejected heat; water is actually used for this purpose,
so that T2 has for its lower limit the temperature of the available

water-supply.
To the higher temperature TI and pressure Px a practical limit

is set by the mechanical difficulties, with regard to strength and

to lubrication, which attend the use of high-pressure steam. In

steam motor-cars pressures of 1000 pounds per sq. inch have been

used, but with engines and boilers of the ordinary construction

the pressure ranges from about 300 pounds per sq. inch downwards.

This means that the upper limit of temperature, so far as satur-

ated steam is concerned, is about 215 C. A steam-engine, there-

fore, under the most favourable conditions, comes very far short of

taking full advantage of the high temperature at which heat is

produced in the combustion of coal. From the thermodynamic

point of view the worst thing about a steam-engine is the irre-

versible drop of temperature between the combustion-chamber of

the furnace and the boiler. The combustion of the fuel supplies

heat at a high temperature : but a great part of the convertibility
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of that heat into work is at once sacrificed by the fall in temperature
which is allowed to take place before the conversion into work

begins.

If the temperature of condensation be taken as 20 C., as a lower

limit, the efficiency of a perfect steam-engine, using saturated

steam and following the Carnot cycle, would depend on the value

ofPl ,
the absolute pressure of production of the steam, as follows :

Perfect steam-engine, with condensation at 20 C.,

P! in pounds per sq. inch being 50 100 150 200 250 300

Highest ideal efficiency
= -288 -330 -355 -373 -384 -399

These numbers express what fraction of the heat taken in by
the working substance would be convertible into work under the

ideally favourable conditions of the Carnot cycle.

But it must not be supposed that these values of the efficiency

are actually attained, or are even attainable. Many causes con-

spire to prevent steam-engines from being thermodynamically

perfect, and some of the causes of imperfection cannot be removed.

These numbers will serve, however, as one standard of comparison
in judging of the performance of actual engines, and as illustrating

the advantage of high-pressure steam from the thermodynamic

point of view. We shall see in Art. 87 that there is another standard

with which the performance of a real steam-engine may more

appropriately be compared.

83. Entropy-Temperature Diagram for a Perfect Steam-

Engine. The imaginary steam-engine of Art. 81 has the same

very simple entropy-temperature diagram as any other engine
which follows Carnot's cycle. The four operations are represented

by the four sides of a rectangle (fig. 17). The first operation

changes water (at the upper limit of temperature) into saturated

steam at the same temperature; the entropy accordingly changes
from

(f>w to
<f>s

. This is shown by the constant-temperature line

ab in fig. 17. In the second operation which is adiabatic ex-

pansion the entropy does not change, and the temperature falls

to the lower limit, at which heat is to be rejected: this is repre-

sented by the line of constant entropy be. In the third operation,

cd, the temperature remains constant and the entropy is restored

to its original value, heat being rejected to the cold body. In the

fourth operation which is adiabatic compression the entropy
does not change, and the temperature rises to the upper limit;
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m
Entropy

Fig. 17

the substance has returned to its initial state in all respects. In

order to be comparable with

other diagrams which will follow,

fig. 17 is sketched for a particular

example in whichP1 i s 180 pounds

per sq. inch, and P2 is 1 pound
per sq. inch: consequently ^ is

189-5 C. and /2 is 38-7 C.

Expressed in terms of entropy,
the heat taken in (during ab) is

T1 (c/)s <f>w ).
This is represented

by the area under ab measured

down to the absolute zero of

temperature, namely the area

mabn. The heat rejected (during

cd) is T2 ((f>s cf)w ) and is repre-

sented by the area ncdm. The
thermal equivalent of the work
done in the cycle is accordingly

(T1
- T2 ) (cf)s

-
</>w ),

and is represented by the area abed, enclosed

by the lines which represent the four reversible operations. The

efficiency is
(y,

-
j.) 0. -

&.) = 2\ - T.
_

In the example for which the diagram is drawn, with the data

stated above, the numerical value of this is 0-326.

84. Use of "Boundary Curves" in the Entropy-Tempera-
ture Diagram. In fig. 18 the diagram of fig. 17 is drawn over

again, with the addition of a curve through a which represents the

values at various temperatures of
(f>w ,

the entropy of water when

steam is just about to form, and a curve through b which repre-

sents at various temperatures the value of
cf)s9

the entropy of dry
saturated steam. These curves are called Boundary Curves. They
are readily drawn from the data in the steam tables. Any point on

the boundary curve through a would relate to the entropy of water;

between the two curves any point in the diagram relates to a

mixture of water and steam
;
to the right of the boundary curve

through b any point would relate to steam in the superheated state.

We are not at present concerned with the outlying regions but only
with the space between the two curves, within which the points c

and d fall. Let the line cd be produced both ways to meet the
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boundary curves in e and s. Then the ratio of cs to es represents
the fraction of the steam which becomes condensed during the
adiabatic expansion be from the condition of saturation at b.

To prove this we may first consider the meaning of any hori-

zontal (isothermal) line such as se on the entropy-temperature
diagram between the two

boundary curves. It re- aL \b

presents complete con-

densation of 1 Ib. of dry
saturated steam, under

constant temperature
and pressure. During its

conversion from the con-

dition of dry saturated

steam (at s) to water (at

e) the steam gives out a

quantity of heat which is

measured by the area

under the line, namely
the area osel. Any inter-

mediate point in the line

represents a mixture of

water and steam; thus c

m
Entropy

Fig. 18

represents a mixture which, though it has actually been produced by
adiabatic expansion from 6, might have been produced by partial

condensation from s under constant pressure, a process which would

be represented by sc, or by partial evaporation under the same

constant pressure from e, a process which would be represented

by ec. Now if the mixture at c were completely condensed under

constant pressure to e, the heat given out would be measured by
the area ncel. This heat is given out by the condensation of that

part of the mixture which consisted of steam. Hence the fraction

which existed at c as steam, or in other words the dryness of the

mixture at c, is measured by the ratio of the areas ncel to osel,

which is equal to the ratio of the lengths ec to es. Hence also the

ratio cs to es measures the wetness of the mixture at c.

An entropy-temperature diagram on which the boundary curves

are drawn therefore gives a convenient means of determining the

wetness of steam at any stage in the process of adiabatic expansion.
It is only necessary to draw a vertical line through the point repre-

senting the initial condition. That line represents the adiabatic



THERMODYNAMICS [CH.

process, and the segments into which it divides a horizontal line

drawn from one boundary curve to the other at any level of

temperature represent the proportions of water and steam in the

resulting mixture. This is true not only of the final stage, when

adiabatic expansion is complete, but of any intermediate stage;

for the argument given above obviously applies to a horizontal

line drawn at any temperature between the two boundary curves.

Similarly the point d which represents the wet mixture at the

beginning of adiabatic compression da, shows by the ratio of

segments ds to de what is the proportion of water to steam at which

the third stage of the cycle has to be arrested, in order that adiabatic

compression may bring the mixture wholly to the state of water

when the cycle is completed by the operation da.

The student should compare this graphic method of studying
the wetness resulting from adiabatic expansion with the calcula-

tions given in Art. 78. He will observe that both have the same

basis. At any temperature T the length es of the isothermal line

drawn from the water boundary curve at e to the steam boundary
curve at s is L/T, and the intercept ec up to any intermediate point

c on that line is qL/T9
where q is the dryness of the mixture at the

point c. The same principle of course holds for the entropy-tem-

perature diagram of any other fluid.

85. Modified Cycle omitting Adiabatic Compression. Con-

sider next a modification of the Carnot cycle of Art. 81. Let

the first and second operations occur as they do there, but let the

third operation be continued until the steam is wholly condensed.

The substance then consists

of water at T2 ,
and the cycle /

a

is completed by heating it, in

the condition of water, from

T2 to 2\. In the simple

engine of Art. 81, where all

the operations occur in a single ^

vessel, this could be done by

increasing the pressure exert-
Fig 19

ed by the piston from P2 to

P15 after condensation is complete, then removing the cold body
C and applying the hot body A. The water is therefore heated at

P! and no steam is formed till the temperature reaches 2\.

The pressure-volume diagram (or indicator diagram) of a cycle
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modified in this manner is shown by abce in fig. 19. The sketch is

not drawn to scale. As before, ab is the operation of forming-

steam, from water, at Tl and Px ; be is adiabatic expansion from Tl

and Pj to T2 and P2 . Then ce is complete condensation at T
2 and

P2 . The fourth operation ea now involves two stages, first raising

the pressure of the condensed water from P2 to Pj and then heating
it from T2 to 2\. During both of these stages the changes of

volume are negligible in comparison with those that take place

in the other operations.

The entropy-temperature diagram for this modified cycle is shown

by abce in fig. 20, where the same letters as in fig. 19 are used for

corresponding operations.

As in the Carnot cycle,

ab represents the conver-

sion of a pound of water

at T into dry saturated

steam at T13 and be re-

presents its adiabatic ex- ^ 7

pansion to T2 , resulting in

a wet mixture at c, the

dryness of which is mea-

sured by the ratio ec/es.

Then ce represents the

complete condensation at

T2 of the steam in this wet

mixture, and ea, which

practically coincides with m
the boundary curve, repre-

sents the re-heating of the

\

fntropy

Fig. 20

condensed water from T2 to Tl ,
after its pressure has been raised

to Pl so that no steam is formed during this operation*.

The working substance behaves reversibly throughout all these

operations, and therefore the work done in the cycle is represented

by the area abce in the entropy-temperature diagram of fig. 20.

The diagram further exhibits the heat taken in and the heat re-

jected. The whole heat taken in is measured by the area leabn, and

of this the area learn measures the heat taken in during the last

* The line ea in both diagrams, figs. 19 and 20, really stands for a broken line

ea'a, where ea' represents the raising of pressure from P2 to Px at constant tempera-

ture T2 ,
and a!a represents the heating from T2 to T^ at constant pressure PI. In

fig. 19 a' practically coincides with a; in fig. 20 a' practically coincides with e.
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operation, while the water is being re-heated, and the area mabn
measures the heat taken during the first operation, while the

water is turning into steam. The area ncel measures the heat re-

jected, namely during the condensing process ce.

To express algebraically the work done in the cycle, refer to the

indicator diagram, fig. 19, and let the lines ba and ce be produced
to meet the line of no volume in j and k. Then, by Art. 80, the

areajbck is an amount of work equivalent to the difference of total

heats /-/,
namely the "heat-drop" of a pound of steam in expanding adia-

batically from the condition at b to the condition at c. The small

area jaek is (Px P2 ) VWt
where F

Wg
is the volume of a pound of

water at T2 ,
which we may take to be practically constant for the

purposes of this calculation.

Hence the expression

It -Ie
-A (P1

- P2 )
V
Wl

is the thermal equivalent of the work done in the cycle. If figs. 19

and 20 were both carefully drawn to scale for any particular

example, a measurement of the enclosed area abce in either figure

would give a result in agreement with this calculation.

86. Engine with Separate Organs. The importance of the

modified cycle described in Art. 85 lies in'the fact of its being the

Fig. 21

nearest approach to the Carnot cycle that can be aimed at when the

operations of boiling, expanding and condensing are conducted in

separate vessels. The imaginary engine of fig. 16 had one organ



Illj THEORY OF THE STEAM-ENGINE 97

only a cylinder which also served as boiler and as condenser.

We come nearer to the conditions that hold in practice if we think

of an engine with separate organs, shown diagrammatically in

fig. 21, namely a boiler A kept at Tl9 a non-conducting cylinder and

piston By and a surface condenser C kept at T2 . To these must
be added a feed-pump D which returns the condensed water to

the boiler. Provision is made by which the cylinder can be put
into connection with the boiler or condenser at will.

With this engine the cycle of fig. 19 can be performed. An in-

dicator diagram for the cylinder B is sketched in fig. 22. Steam is

admitted from the boiler, giving the line jb. At b
"
cut-off

"
occurs,

that is to say the valve which admits steam from the boiler to the

cylinder is closed. The steam in the cylinder is then expanded

adiabatically to the pressure of the condenser, giving the line be.

At c the "exhaust" valve is opened which connects the cylinder
with the condenser. The piston then returns, discharging the

steam to the condenser and giving the line ck. The area jbck

Fig. 22 Fig. 22 a

represents the work done in the cylinder B. The condensed water

is then returned to the boiler by the feed-pump, and the indicator

diagram showing the work expended upon the pump during this

operation is sketched in fig. 22 a. It is the rectangle keaj; where

ke represents the up-stroke in which the pump fills with water

at the pressure P2 ,
and aj represents the down-stroke in which it

discharges water to the boiler against the pressure Px . If we

superpose the diagram of the pump on that of the cylinder we get

their difference, namely abce (fig. 19), to represent the net amount

of work done by the fluid in the cycle. It is the excess of the work

done by the fluid in the cylinder over that spent upon it in the

pump.
Taking the two parts separately, the adiabatic heat-drop,

B. T.
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is the thermal Tequivalent of the work done by the fluid in the

cylinder, and /p j> \v
1*1

~~ r 1) y wa

is the work spent upon the fluid in the feed-pump. Accordingly
the difference, namely

is, as before, the thermal equivalent of the work obtained in the

cycle as a whole.

87. The Rankine Cycle. This cycle is commonly called the

Rankine Cycle. Like the Carnot cycle it represents an ideal that

is not practically attainable, for it postulates a complete absence

of any loss through transfer of heat between the steam and the

surfaces of the cylinder and piston. But it affords a very valuable

criterion of performance by furnishing a standard with which the

efficiency of any real engine may be compared, a standard which

is less exacting than the cycle of Carnot, but fairer for comparison,
inasmuch as the fourth stage of the Carnot cycle is necessarily

omitted when the steam is removed from the cylinder before con-

densation. A separate condenser is indispensable, in any real

engine that pretends to efficiency.

The use of a separate condenser was in fact one of the great

improvements which distinguished the steam-engine of Watt from

the earlier engine of Newcomen, where the steam was condensed

in the working cylinder itself. The introduction of a separate con-

denser enabled the cylinder to be kept comparatively hot, and

thereby reduced immensely the loss that had occurred in earlier

engines through the action of chilled cylinder surfaces upon the

entering steam. But a separate condenser, greatly though it adds

to efficiency in practice, excludes the compression stage of the

Carnot cycle, and consequently makes the Rankine cycle the

proper theoretical ideal with which the performance of a real engine
should be compared.
The efficiency of the Rankine cycle is less than that of

a Carnot cycle with the same limits of temperature. This is

because, in the Rankine cycle, the heat is not all taken in at the

top of the range. In the Rankine cycle, as in Carnot's, all the

internal actions of the working substance are, by assumption,

reversible, and consequently each element of the whole heat-

supply produces the greatest possible mechanical effect when

regard is had to the temperature at which that element is taken in.
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But part of the heat is taken in at temperatures lower than Tlt

namely while the working substance is having its temperature
raised from T2 to T in the fourth operation. Hence the average

efficiency is lower than if all had been taken in at Tlt as it would

be in the cycle of Carnot.

Each pound of steam does a larger amount of work in the

Rankine cycle than it does in the Carnot cycle. This will be

apparent when the areas are compared which represent the work

in the corresponding diagrams : the area abce with the area abed in

fig. 20. But the quantity of heat that has to be supplied for each

pound in the Rankine cycle is also greater, and in a greater ratio:

it is measured by the area leabn, as against mabn. Hence the

efficiency is less in the Rankine cycle. One may put the same thing
in a different way by saying that, in the Rankine cycle, of the

whole heat-supply the part learn does only the comparatively small

amount of work ead, and the remainder of the heat-supply, namely
mabn, does the same amount of work as it would do in a Carnot cycle.

88. Efficiency of a Rankine Cycle. Taking in the first instance

a Rankine cycle in which the steam supplied to the cylinder is dry
and saturated, the whole amount of heat taken in is the quantity

required to convert water at Pl and T
2 into saturated steam at

Px . This quantity is I
S1
-

{I
w?
+ A(P1

- P2 ) F^}, for the total

heat of the water at P and T2 is greater than I
Wt by the quantity

A(P1
-P

2)VWz
.

The work done is (by Art. 85) equal to the heat-drop minus the

work spent in the feed-pump, or I
S}

Ic A (Pl P2 )
Vw^ where

I
c

is the total heat of the wet mixture after adiabatic expansion.
The efficiency in the cycle as a whole is therefore

The feed-pump term A (Px P
2 )
Vw^

is relatively so small that

it is often omitted in calculations relating to ideal efficiency, just

as it is omitted in stating the results of tests of the performance of

real engines. In such tests it is customary to speak of the work

done per Ib. of steam, without making any deduction for the work

that has to be spent per Ib. in returning the feed-water to the

boiler. But in the complete analysis of a Rankine cycle the feed-

pump term has to be taken into account, and it is only then that the

area of the entropy-temperature diagram gives a true measure of

the work done. It should be clearly understood that the heat-drop,

72
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by itself, is not an accurate measure of the work done in the

Rankine cycle as a whole, nor is the heat-drop equal to the enclosed

area of the entropy-temperature diagram, until the thermal equiva-
lent of the work spent in the feed-pump has been deducted from it.

If however we are concerned only with the work done in the

cylinder of the ideal engine, then the heat-drop alone has to be

reckoned. It is the exact measure of that work. The ratio of the

heat-drop to the heat supplied shows what proportion of the supply
is converted into work in the cylinder, under the ideal conditions

of adiabatic action : it is a ratio nearly identical with the efficiency

of the Rankine cycle, and even more useful as a standard with which

to compare the performance of a real engine. In the actual per-

formance of any real engine the amount of work done in the

cylinder necessarily falls short of the adiabatic heat-drop because

the working substance loses some heat to the cylinder walls. The

extent to which it falls short is a matter for trial, and once that

has been ascertained by trials of engines of given types, estimates

may be made of the performance of an engine under design, using

the adiabatic heat-drop as the basis of the calculation, with a suit-

able allowance for probable waste.

89. Calculation of the Heat-Drop. It is therefore essential

to be able to calculate the heat-drop in ideal engines under any

assigned initial and final con-

ditions. For this purpose we / \
have to find /c ,

the total e/ c \s
heat of wet steam after adia- / \^
batic expansion. One way
of doing so would be first to

calculate the dryness q and

then apply equation (2) of

Art. 74, Iq
= Iw + qL. But

equations (6) and (7) of

that Article give a more con-

venient method, which is

available here because we

know the entropy of the

mixture. These expressions may be directly obtained by considering

what amount of heat the wet mixture would have to part with if it

were to be wholly condensed, and what amount of heat it would have

to take up if it were to be wholly evaporated, under the constant

Fig. 23
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pressure corresponding to the temperature of saturation T in either

case. To bring a mixture at c (fig. 23) into the condition of water
at e would require the removal of a quantity of heat equal to the

area under ec, namely T ((/> <f>w ), where < is the entropy at c and

cf)w is the entropy of water (at e). On the other hand, to bring it to

the condition of saturated steam would require the addition of a

quantity of heat equal to the area under cs, namely T
(< s </>).

Hence the total heat of the mixture at c is

Of these two expressions the second is the more convenient

because steam tables generally give more complete sets of values

of
(f>s

than of
c/>w .

The entropy <j)
of the wet mixture is the constant entropy under

which adiabatic expansion has taken place: it is to be calculated

from the initial conditions. This method of finding the total heat

after adiabatic expansion makes no assumption as to what the

state of the steam was before expansion : it is equally valid whether

the steam was dry, wet, or superheated to begin with. What is

assumed is that after expansion the steam is wet, and that will in

general be true even if there be a large amount of initial superheat.
It is also assumed (Art. 78) that the vapour and liquid in the

wet mixture are in equilibrium.
In the Rankine cycle of Art. 87 it was assumed that the steam

was dry and saturated at the beginning of the adiabatic expansion.

Consequently its initial total heat was Is ,
and

</ throughout ex-

pansion was equal to
</>Si

. Under these conditions the total heat

after adiabatic expansion is

I.~IH-T^H -4^'
and the heat-drop is

i*-i.-i-i*+Tt (tH -<i>j.
To take a numerical example, let the steam be supplied in a dry

saturated state at a pressure P1 of 180 pounds per square inch, and

let it expand adiabatically to a pressure P2 of 1 pound per square

inch, at which it is condensed. With these data we find from the

tables Z\ = 462-58, T2
= 311-84, ^ = 1-5620, ^ = 1-9724,

I
Sl
= 668-53, /,f

= 612-46.

Hence the total heat after adiabatic expansion to the assumed

pressure of condensation is

Ic
= 612-5 - 311-8 (1-9724

-
1-5620) = 484-5.
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And the heat-drop,

I
Si

- Ic
= 668-5 - 484-5 = 184-0.

If we consider the Rankine cycle as a whole, the feed-pump
term A (P1

- P2 ) Vw is

(180
-

1) 144 X 0-0161

1400

Deducting this from the heat-drop we have 183-7 pound-calories

as the thermal equivalent of the net amount of work done in the

Rankine cycle.

The heat supplied is

I
8i

- Iw^

- A (Pi
- P2 )

V
W2
= 668-5 - 38-6 - 0-30 - 629-6.

Hence the efficiency of this Rankine cycle is

i^l7 = 0-2918.
629-6

This example will serve, incidentally, to show how unimportant
is the feed-pump term. It reduces the amount of work done by less

than one part in six hundred. If we had left it out of account, and

taken the heat-drop in full as the numerator in reckoning the

efficiency, the figure obtained would have been 0-2923: the

difference is insignificant*.

A Carnot cycle with the same limits of temperature would (Art.

81) have the efficiency 0-326. The difference between this and 0-292

shows the loss which results in the Rankine cycle from not supplying
all the heat to the best possible thermodynamic advantage, namely
at the top of the temperature range. It amounts in this instance

to not quite 3| per cent, of the whole heat-supply.

90. The Function G. In his steam tables Callendar gives

numerical values of a function G, defined by the equation

G =
Tcf>

-
I,

which applies to steam in any state, wet, dry-saturated, super-

heated, or supercooled. By the help of this function the process of

calculating the heat-drop may be slightly shortened. G has the

important property that it is constant during a process of evapora-

tion or condensation at constant pressure. For in any step of such a

*
Accordingly a good approximation to the efficiency of the Rankine cycle is

obtained by leaving out the term A (Px
- P2) ^w 2

in both numerator and denomi-

nator of the complete expression in Art. 88, and writing it simply

irA
/.. -i,.'



in] THEORY OF THE STEAM-ENGINE 103

process 87 = T8<f> and T is constant; consequently SG = 0. Hence
the value of G for a wet mixture at temperature T and entropy <,

such as the mixture at c (fig. 20) resulting from adiabatic expansion,
is the same as Gs ,

the (tabulated) value of G for dry-saturated
steam at the same pressure. Therefore to find Ic ,

the total heat of

the wet mixture, we have

The heat-drop is then determined as before, by subtracting Ic

from the total heat before expansion.

Taking the same numerical example as in Art. 89, T is 311-84,

c/)
is 1-5620 and Gs (for saturated steam at a pressure of 1 pound

per square inch) is 2-61 by the tables. This gives

Ic
= 311-84 x 1-5620 - 2-61 = 484-5,

and the heat-drop from the dry-saturated state before expansion
is 668-5 - 484-5 or 184 as before.

Or we may obtain the heat-drop even more directly thus, when
tabulated values of G are available. The relation

/ = Tcj>
- G

holds for any state of the substance. Hence between any two

points (b) and (c) on the same adiabatic line the heat-drop

/,-/.= (T, -Tt)i- (G,
-

G.).

In the present example Gb is the value of G for saturated steam

at P = 180, which (by the tables) is 54-10. Gc is equal to the

value for saturated steam at P = 1, which is 2-61. The difference

of temperature Tb Tc is 150-74 degrees. Hence the heat-drop is

150-74 x 1-5620 - (54-10
-

2-61) = 184-0,

which agrees with the result found above by less direct methods.

The use of the function G in this connection is only a matter of

convenience. The procedure in Art. 89 gives the heat-drop readily

enough, though not quite so shortly, without the help of G*.

*
(with its sign reversed) is one of three functions to which Willard Gibbs

gave the name of
"
Thermodynamic Potentials ": see his Scientific Papers, vol. I.

He represented them by the symbols \f/t %, and f. Of these, ^ is E -
T<f>. This

function was called by Helmholtz the "Free Energy"; it is used in the

theory of solution and other applications of thermodynamics to chemistry, a

subject outside the scope of this book. The function x is the total heat /, namely
E +APV, and is, as we have seen, of particular importance in the thermodynamics
of engineering. The function f is E-T<f>+APV or / -T<f>; hence 0= -f. This

function is useful in treating of the equilibrium of different states or "phases" of

the same substance. One example of such equilibrium occurs in wet steam, which
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91. Extension of the Rankine Cycle to Steam supplied in

any State. In the Rankine cycle described in Arts. 86-87 the

steam was supplied to the cylinder in the dry-saturated state. But
the term Rankine cycle is equally applicable whatever be the con-

dition of the working substance on admission, whether wet, dry-

saturated, or superheated. As regards the action in the cylinder,

all that is assumed is that the substance is admitted at a constant

pressure P19 is expanded adiabatically to a pressure P2 and is

discharged at that pressure, and that in the process there is no

transfer of heat to or from the metal, nor any other irreversible

action. In these conditions the heat-drop in adiabatic expansion
from Px to P2 is the thermal equivalent of the area jbck in fig. 22

(compare also Art. 80) and therefore measures the work done in

the cylinder, no matter what the condition of the substance on

admission may be. This applies to wet steam or superheated
steam just as much as to dry-saturated steam.

92. Rankine Cycle with Steam initially Wet. A complete
Rankine cycle for steam that is wet on admission to the cylinder
is shown on the entropy-temperature diagram by the figure ab'c'e

(fig. 24). The point b' is placed so that the ratio ab' to ab

is a mixture of two "phases," liquid and vapour. The functions
\f/
and f or -

will be referred to again in Chap. VII.

From the engineering point of view it may be useful to point out that these

functions have the following property. Referring to Art. 80, fig. 15, we have seen

that when any fluid expands adiabatically from any state a to any other state b,

the thermal equivalent of the area eabf, or A
j VdP, is the heat-drop, /-/&; and

that the area mabn or A\PdV is the loss of internal energy, Ea -E b . Similarly,
if ab in that diagram represent an isothermal process, we have two corresponding

propositions, with regard to the functions G and
\f/:

When any fluid expands

isothermally from any state a to any state b, the thermal equivalent of the area

eabf, or AjVdP, is Oa
- Gb ;

and that of the area mabn, or AjPdV, is ^a ~^b-
To prove this, we have by definition \f/=E- T$. Hence in an isothermal process,

But Td<(> is the heat taken in, which is equal to the gain of internal energy plus
the work done, or

Td(f)=dE +APd V.

ri

Therefore d^= -APdV, and ^a -^b=A I PdV.
J a

Again, we have by definition G T(f>
- 1. Hence in an isothermal process,

dG = Td<j>-dL

But (by definition) I=E +APV, from which

= Td<j>+AVdP.

Therefore dG= -A VdP, and Ga -Gb=Al
l>

VdP.
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is equal to qt
the assumed dryness on admission. The line b'c'

represents adiabatic expansion from Px to P
2 ,

c'e represents

condensation at P2 ,
and ea. re-

presents as before the heating of

the condensed water.

The total heat before adia-

batic expansion is I
Wi + q-J^i or

I
8l (1 qj L 1 and the heat

supplied is the excess of this e

quantity above
Fig. 24

The entropy </> during adiabatic expansion is

<f>Wi
+ q.L./T, or <

Si

-
(1
-

The total heat after adiabatic expansion is

The heat-drop is got by subtracting this from the total heat

before adiabatic expansion. Or the heat-drop may be found, as

soon as
<j>

is calculated, by using the expression

The efficiency which, as before, is practically equal to the heat-

drop divided by the heat supplied, is slightly less than when the

steam is saturated before expansion; the reason being that the

proportion of heat supplied at the upper limit of temperature is

now rather less, because part of the water remains unconverted

into steam.

As a numerical example let q1
be 0-9, and let the limits of pressure

be the same as in the example of Art. 89. Then the total heat

per Ib. of the mixture before expansion, which is I
Sj

0-lLl5 is

668-53 - 0-1 X 476-2 = 620-9.

The heat supplied is 620-9 - 38-9 = 582-0. The entropy is

i
= 1-5620 - ~ 1 '4591 '

The total heat after expansion /
Sj5

- T2 (< S2
-

<f>),
or - G2 ,

is 452-4; the heat-drop is therefore 168-5, and the same figure is

obtained for it by the direct formula (T1
- T2 ) </>

-
(Gl

- G2 ).

Allowing for the feed-pump term, the efficiency in the complete
Rankine cycle is 0-289, as against 0-292 when there was no initial

wetness.
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In practice the steam supplied to an engine would be wet only
if there were condensation in the steam-pipe, such as would occur

if it were long or insufficiently covered with non-conducting

material, or if the boiler "primed." Priming is a defective boiler

action which causes unevaporated water to pass into the steam-

pipe along with the vapour. The above example will show that a

moderate amount of wetness reduces the ideal efficiency only very

slightly; it has no more than a small effect on the figure for the

Rankine cycle. But its practical effect in reducing the efficiency

of an actual engine is much greater, because the presence of wrater

in steam increases the exchanges of heat between it and the metal

of the cylinder, and consequently makes the real action depart
more widely from the adiabatic conditions which are assumed in

the ideal operations of the Rankine cycle.

93. Rankine Cycle with Steam initially Superheated. On
the other hand if the steam be superheated before it enters the

engine, the exchanges of heat between it and the metal are reduced ;

the action becomes more nearly adiabatic, and the performance
of the real engine approaches more closely the ideal of the Rankine

cycle. This is the chief reason why superheating improves the

efficiency of a real engine of the cylinder and piston type. In

steam turbines it is beneficial partly for the same reason and partly
because it reduces internal friction in the working fluid by keeping
it drier than it would otherwise be during its expansion through the

successive rings of blades. Superheating is now very generally em-

ployed in steam engineering. It is therefore important to consider in

some detail the Rankine cycle for steam that is initially superheated.
In the entropy-temperature diagram (fig. 25) the line bb

r

repre-

sents the process of superheating steam that was dry-saturated at

b. During this process its entropy and its temperature both in-

crease, and when the pressure and temperature at any stage in

the superheating are known the corresponding entropy is found

from the tables relating to superheated steam. If we assume that

the pressure during superheating is constant, and equal to the

boiler pressure, the line bb' is an extension, into the region of

superheat, of the constant-pressure line ab. During the process
of superheating the steam takes in a supplementary quantity of

heat equal to the area under the curve bb', measured down to the

base line, namely nbb'n'. This quantity of heat may also be found

from the tables, being equal to the excess of the total heat /b',



Ill THEORY OF THE STEAM-ENGINE 107

over that of saturated steam of the same pressure. Callendar's

tables give values of the

total heat of superheated

Steam, as well as its en-

tropy, for a wide range of

pressures and temperatures.

During the subsequent pro-

cess of adiabatic expansion
b'c' the steam loses super-

heat, and if the process is

carried so far that the adia-

batic line through b' crosses

the boundary curve, it be-

comes saturated and then

wet, and the final condition

is that of a wet mixture at

c'. The total heat of this

wet mixture is found by the

method already described.

The work done in the

Rankine cycle as a whole

is the area eabb'c', and the

heat taken in is the area
L ntropy

leabb'ri. Both these quan- Fi 25
tities are readily calculated

without the help of the diagram. To find the work done in the

cycle we have only to calculate the heat-drop during adiabatic

expansion, namely, Ib
> /

c',
and subtract from that the small

term which is the thermal equivalent of the work done in the feed-

pump, nam'ely, A (P^ P2 )
Vw^.

The heat supplied is

As a numerical example we may again take P = 180 and P2
= 1,

and assume that superheating is carried so far as to raise the tem-

perature of the steam to 400 C., which is a limit very rarely ex-

ceeded in practice. As a rule the temperature after superheating
is considerably lower than this. With these data the steam tables

show that the total heat of the superheated steam is 780-8 and

its entropy is 1-7633. The heat-supply is 780-8 - 38-9 = 741-9.

After adiabatic expansion the steam is wet, and its total heat,

which is I
8f
- T2 (</>S2

- <) or T2 c/>

- G2 ,
is 547-2. The adiabatic

heat-drop is therefore 233-6.
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Or we can find the heat-drop very directly by help of Callendar's

values of G. By Art. 90 it is (T/ - T2 ) </
- (G^ - G2 ), where 2\'

and GI refer to the initial state after superheating. This gives

361-3 X 1-7633 - (406-09
-

2-61) which again is 233-6.

If we deduct the small feed-pump term (0-3) the efficiency of

the cycle as a whole is 233-3/741-9
= 314. This is rather better

than the figure for saturated steam (0-292) because a portion of

the heat is now supplied at a higher temperature. Even with the

extreme amount of superheating, however, which is assumed in

this example, the main part of the heat is still supplied at the tem-

perature of saturation, and therefore there is no great gain in

theoretical efficiency as expressed by the ideal figure for the

Rankine cycle. The practical advantage of superheating is much
more considerable, for reasons which have already been indicated,

than might be expected from this comparison of the two ideal

cycles.

In the adiabatic expansion of superheated steam a state of

saturation is reached when the pressure falls to such a value that

(f)s
for saturated steam at that pressure is equal to the entropy

during expansion. In the numerical example the entropy during

expansion is 1-7633, and the tables show that this corresponds to

saturation at a pressure of 13-6 pounds per square inch. Any
further expansion produces wetness, or else supersaturation.

If it be desired to trace the changes of volume during the adia-

batic expansion of superheated steam, the initial volume (corre-

sponding to the assigned pressure and temperature) will be found

in one of the steam tables (see Appendix III). The formula

P (F 6)
1 * 8 = constant then applies, down to the pressure at

which the steam becomes saturated. In this formula, as was

explained in Art. 78, b is the volume of water at C., namely,

0-0160 cubic feet; a term so small that it can usually be left out.

During further expansion, when the steam has become wet, the

volume at any stage may be determined (as in Art. 78) by first

calculating the dryness q.

More directly, and very exactly, the volume of a wet mixture

is found (without calculating q) by Callendar's formula (Art. 211)

77 _ V (
7 ~

**)
V- "*

Ig
_ Kt

where K is the minimum specific heat of water, namely 0-9967, and

t is the temperature measured from C. Since K: is very nearly
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unity it makes no sensible difference in this formula to write t for

Kt and we therefore have

V - V (/^
Q s Is -t

'

as a convenient means of finding the volume of a wet mixture at any

temperature t, when the total heat (Iq )
of the mixture is known.

To exemplify these methods of finding the volume we may take

the same case as before, namely the expansion of steam at P
l
= 180

pounds per sq. inch and temperature 400, down to a final

pressure of 1 pound per sq. inch. By the tables the initial volume

is 3-9605 cub. ft. We therefore have, during the first part of the

expansion, while the steam still retains some superheat,

1-3 log (V - 0-016) = 1-3 log 3-9445 + log 180 - log P.

This applies down to P = 13-62, the pressure at which saturation

is reached. Applying it to that pressure we find V = 28-7, which

agrees as it should do with the volume given in the table for satur-

ated steam. Assuming that in the subsequent part of the expan-
sion the steam is in equilibrium, it will be wet, and its volume Vq

is found at any stage by first finding Iq at that stage and applying
the method given above. In the final condition, when P = 1 and

IQ
= 547-2 the volume so calculated is 295-2 cub. ft. and the dry-

ness is 0-886.

94. Reversibility of the Rankine Cycle. Whatever the

initial state be, whether dry-saturated, wet, or .superheated, the

internal action of the working substance in the Rankine cycle is

reversible. An ideal engine performing a Rankine cycle may be

regarded as a strictly reversible engine taking in heat at various

temperatures (Art. 43), and consequently extracting the greatest

possible amount of work out of each element of the heat supplied,

having regard to the temperature at which the element of heat was

supplied. In the heating of the feed-water a part of the heat-

supply is taken at temperatures ranging from T2 to Tl . But any
element of heat, taken in at a temperature T, acts as efficiently as

it would do in a Carnot cycle : the efficiency of conversion of that

T T
element is equal to ^ -. Consequently the general efficiency

of an ideal engine working on the Rankine cycle is the highest

possible efficiency that is compatible with the condition that the

substance is to be completely condensed at the lower limit of

temperature and returned to the boiler by a separate pump, instead
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of having its cycle completed by adiabatic compression as in the

engine of Carnot.

In other words, the work which the steam does in the cylinder

of an ideal Rankine engine is the greatest amount of work that

can conceivably be done by the steam in passing through any

engine, having regard to the temperature at which the working
substance has taken in its heat, and to the temperature at which

it rejects heat during its complete condensation before being re-

turned to the boiler. But we know that this work is measured by
the adiabatic heat-drop. Consequently the adiabatic heat-drop
measures the greatest conceivable performance of the steam in

passing through any engine when the conditions of supply and

of condensation are assigned.

Whatever therefore be the nature of the engine, the adiabatic

heat-drop serves as an ideal standard with which to compare the

actual performance. Thus a steam turbine, equally with an engine

of the cylinder and piston type, cannot exceed, and necessarily

falls short of, the ideal performance as measured by that heat-

drop. In the design of steam turbines the calculated value of the

adiabatic heat-drop, after making a deduction which is determined

by experience with similar machines, accordingly forms the basis

on which the designer estimates the performance to be expected*.

In any engine the ratio of the actual amount of work done

per Ib. of steam to the amount that would be done in the ideal

Rankine engine under corresponding conditions of supply and

exhaust, is called the Efficiency Ratio^. Tests of good engines show

that in favourable cases the actual performance is about 70 per

cent, of the Rankine ideal. About 70 per cent, of the adiabatic

heat-drop is actually converted into work.

95. Conditions of High Efficiency. To secure high efficiency

in the conversion of heat into work there are obviously two separate

conditions to be aimed at: (1) that there shall be a large heat-

drop relatively to the heat of formation of the steam: in other

words a high value for the ideal efficiency; (2) that there shall be

* To facilitate such estimates tables are published giving the heat-drop under

a wide range of initial conditions as to pressure and superheat, and final conditions

as to pressure of condensation. These are founded on Calendar's Steam Tables.

See Heat Drop Tables, H. Moss (Edward Arnold, 1917). The student will find it a

useful exercise to compare the values there given with the heat-drop as calculated

by the methods of Arts. 89, 90 and 93.

t See Report of a Committee on the Thermal Efficiency of Steam-Engines,
Min. Proc. Inst. Civ. Eng., vol. cxxxrv, 1898.
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a large Efficiency Ratio. The second condition depends on practical

features of design with which we are not at present concerned.

But as regards the ideal efficiency it is important to notice that

while some advantage is obtained by increasing the admission

pressure, a far greater advantage is obtained by lowering the ex-

haust pressure.

That this is so will be clear from the following tabulated results

which relate to saturated steam. The first table shows how the

heat-drop and the efficiency of the Rankine cycle are affected by

taking different initial pressures, ranging from 100 to 300 pounds

per square inch, but with the same pressure of exhaust throughout.

Rankine Cycle for Saturated Steam. Effect of varying the

Initial Pressure.

Initial Heat-drop, to

pressure a final pres-

(pounds per sure of 1 Ib.

square inch, per square
absolute) inch



112 THERMODYNAMICS [CH.

pressure. In this example the admission pressure P is assumed

to be 180 pounds per square inch, and only P2 is altered.

Rankine Cycle for Saturated Steam. Effect of varying the

Final Pressure.

Final Heat-drop Work done per <

pressure from an Ib. of steam Heat

(pounds per initialpressure allowing for supplied

square inch, of 180 Ibs. work spent in per Ib.

absolute) per square inch feed-pump of steam
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from the cylinder by opening the exhaust-valve, we produce the
same effect within the cylinder itself

(as might be done in the engine of Art.

81) by applying a receiver of heat

which will bring the pressure down to

the lower limit P2 by causing part of

the contents to condense before the

piston begins its return stroke. The

piston being stationary, the volume of
J

'/"

the working substance does not alter Fig. 26

during this process. If we imagine the receiver of heat to have
a temperature which falls progressively from that of the steam
at c to the final temperature (T2 )

at /, this removal of heat takes

place reversibly. The work done by the steam is not affected by
substituting this reversible process for the action of the condenser,
because the pressure in the cylinder is in no way altered by the

substitution, but we are now able to draw a curve that will

represent the process on the entropy-temperature diagram.
This is done in fig. 27, where the curve cf represents the con-

densation of part of

the steam at constant

volume, while the

piston is at rest be-

fore beginning its re-

turn stroke. The con-

stant volume in this

process is to be reek-

Fig. 27
oned per Ib. of steam :

it is the volume of

the cylinder divided by the quantity of fluid in it : in other words

it is the volume per Ib. of the wet steam at c. Call that volume Vc .

Then at any level of temperature such as gih, a point i on the con-

stant-volume curve which represents the process is found by

taking

where Vn is the volume of 1 Ib. of saturated steam at that tem-

perature. The area of the figure within the shaded lines represents

the thermal equivalent of the work done in the complete cycle.

The corner cut off by the curve cf shows what is lost by incom-

plete expansion as compared with the work flone in a Rankine
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cycle. In the example sketched in fig. 27 the initial pressure (at b)

is 180 pounds per square inch, and the steam is released after

adiabatic expansion to 15 pounds per square inch.

97. Ideal Engine working with No Expansion. If adia-

batic expansion were entirely absent, and steam were admitted

at PI during the whole of the forward stroke of the piston, and

discharged at P2 during the backward stroke, the entropy-tem-

perature diagram would take the form shown in fig. 28, where bif

is a constant-volume

line representing the
*-

fall of pressure from

PjtoPa. This corre-

sponds, in the ideal

cycle, to the action

of primitive steam-

engines such as New-

comen's, before Watt
-pi- 2g

introduced the prac-

tice of cutting off the supply of steam at an early stage in the stroke

and allowing the remainder of the stroke to be performed by

expansion under falling pressure. Points in the curve bif are found

as in Art. 96.

In this case the work done in the cylinder, per Ib. of steam, is

(P1 P2 )
F

Sj
. The net amount of work done, allowing for the

feed-pump, is (P1 P2 ) (FSj
F
Wa ), and the thermal equivalent

of this quantity should be equal to the area within the shaded

lines of the entropy-temperature diagram. As a numerical example,
assume P to be 180 pounds per sq. inch, and P2 to be 1 pound

per sq. inch, which are the pressures for which fig. 28 has been

drawn. Then the work done per Ib. is 179 x 144 x (2-562
-

0-016)

foot-pounds or 47-17 calories, in comparison with the 183-7 calories

of the Rankine cycle for the same initial and final pressures (see the

table in Art. 95). The heat supplied per Ib. is 629-6 calories ; the effi-

ciency of the ideal engine without expansion is therefore only 0-0749.

The efficiency of actual primitive engines working without ex-

pansion was much less than this, not only because the pressure

was less, but because at every stroke a large part of the steam

entering the cylinder became at once condensed upon the walls,

and consequently the volume of steam taken from the boiler was

greater than the volume swept through by the piston.
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98. Clapeyron's Equation. This name is given to an im-

portant relation between the latent heat of steam or any other

vapour, the change of volume which it undergoes in being vapor-

ized, and the rate at which the saturation pressure varies with the

temperature. To establish it we may revert to the ideally perfect

steam-engine of Art. 81, in which Carnot's cycle is followed with

a liquid and vapour for working substance. We saw that this gave
an indicator diagram (fig. 16) with two lines of uniform pressure

(isothermals) connected by two adiabatic curves. The heat taken

in was L per unit of working substance, and since the engine
was reversible its efficiency was (2\ T^/Tlt from which it

followed that the work done, or the area of the diagram, was

L (T! T^jT^. This is in thermal units: to reduce it to units

of work we multiply by J. Now suppose that the engine works

between two temperatures which differ by only a very small

amount. We may call the temperatures T and T ST, ST being
the small interval through which the engine works. The above

expression for the work done becomes

JLST
T

The indicator diagram is now a long narrow strip (fig. 29). Its

length ab is Vs
- Vw ,

Vs being the

volume of unit mass of the vapour and

Vw the volume of unit mass of the liquid.

Its height is SP, where SP is the differ-

ence between the pressure in ab and

that in cd. In other words, since the

vapour is saturated in cd as well as in

ab, SP is the difference in the pressure

of saturated vapour due to the differ-

ence in temperature ST. When SP is

made very small, the area of the diagram becomes more and more

nearly equal to the product of the length by the height, namely
SP (Vs Vw ).

This is equal to the work done, whence

SP (V8 Vw )
-

This equation is only approximate when the interval SP (or ST)

is a small finite interval. In the limit, when the interval is made

indefinitely small, it becomes exact, and may then be written

8-2

v _ F -
3 w T UP/,'
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where ^p means the rate at which the temperature of saturated

vapour changes relatively to the pressure : in other words it is the

slope of the saturation curve of temperature and pressure. This

is Clapeyron's Equation. It may be applied to find the volume of

a saturated vapour, at any temperature, when the volume of the

liquid, the latent heat, and the rate of change of temperature with

pressure along the saturation curve are known.

The values of pressure, volume and latent heat given in steam

tables in relation to temperature, must, if the tables are accurate,

be such as will satisfy this equation. Take, for example, steam at

150 C. Callendar gives 67-313 pounds per square inch for the

saturation pressure at 149 C. and 71-025 at 151 C. The rate at

which P is changing per degree at 150 may be taken as half the

difference, or 1-856 x 144 pounds per square foot. Fw is 0-017

cubic feet, and the latent heat is 506-56 calories. Hence by

Clapeyron's formula we should find, for the saturation volume in

cubic feet,

V = 0-017 + - - = 6-289.*
423-1 X 1-856 X 144

This agrees with the tabulated value (6-2895).

We might have obtained the Clapeyroii equation by considering

that the entropy-temperature diagram corresponding to the in-

dicator diagram of fig. 29 is a long narrow strip, whose length

</>s </>
is L/T and height is ST. Its area is the thermal equivalent

of the work done; hence SP (Vs
- Vu.)

= JLST/T, as before.

In the vaporization of a liquid Vs
is greater than Vw ,

and heat

(JfT1\-jp J
is positive, which

means that increasing the pressure raises the boiling point. When
the change of volume Vs Vw is known for any substance, the

equation may evidently be used to find the amount by which the

boiling point is raised per unit increase of pressure.

99. Application of Clapeyron's Equation to other Changes
in Physical State. The reasoning by which this equation was

arrived at was general: it applies to any reversible change in

the state of aggregation of any substance, to the change from

solid to liquid as well as to the change from liquid to vapour. The

engine whose indicator diagram was sketched in fig. 29 may have

anything for working substance, and the isothermal line in the
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first operation, during which heat is taken in, may be drawn to

represent the change of volume corresponding to any change of

state. In the example already dealt with, the change was from

liquid to vapour. But we might begin with a solid substance pre-

viously raised to the temperature at which it begins to melt (under
a given pressure), and draw the line to represent the change of

volume that occurs in melting, while the pressure remains con-

stant. The substance does external, work against that pressure if

it expands in melting; or has work spent upon it if (like ice) it con-

tracts in melting. The steps of the argument are not affected, and
hence the equation may be written thus, with reference to any
such transformation of state,

V" V = ^
T dP'

where V is the volume of the substance (per unit of mass) in the

first state, V" its volume in the second state, A is the heat absorbed

in the transformation, and dT/dP is the rate at which the tempera-
ture of the transformation (say the melting point or boiling point)
is altered by altering the pressure.

If a solid body expands in melting V" is greater than V and

(since the latent heat A is positive) it follows that dT/dP is positive:

in other words the melting point is raised by applying pressure.

On the other hand if the body contracts in melting V" V is

negative and dP/dT is negative: in other words the melting point
is lowered by applying pressure. This is the case with ice. From
the known amount by which ice contracts when it melts, James

Thomson (in 1849) applied this method of reasoning to predict

that the melting point of ice would be lowered by about 0-0074 C.

for each atmosphere of pressure, and the result was afterwards

verified experimentally by his brother, Lord Kelvin*.

The lower of the two fixed points used in graduating a thermo-

meter (Art. 15) is the temperature at which ice melts under a

pressure of one atmosphere. If this pressure were removed, as

it might be by putting the ice in a jar exhausted of air by means of

* See Kelvin's Mathematical and Physical Papers, vol. I, p. 156 and p. 165. The

numerical result stated in the text is obtained as follows: A pound of water

changes its volume in freezing from 0-0160 to 0-0174 cub. ft., and gives out 80 calories.

HenCG dT _ 0-0014 x 273 _
dp' 80x1400

-

and if dP be one atmosphere or 2160 pounds per sq. ft., 8T is 2160 x 0-00000341

or 0-0074 C.
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an air-pump, the temperature of melting would be raised. The

water-vapour given off at the melting point has a pressure of only
O09 pounds per square inch, and consequently if no air were

present, and if the only pressure were that of its own vapour,
ice would melt at approximately 0-0074 C., for the pressure would

be reduced by nearly one atmosphere. The temperature at

which ice melts under these conditions is called the Triple Point,

because (in the absence of air) water-stuff can exist at that par-

ticular temperature in three states, as ice, as water, and as vapour,
in contact with one another and in equilibrium.

100. Entropy-Temperature Chart of the Properties of

Steam. Besides serving to illustrate the operations of ideal

engines, a diagram in which the coordinates are the entropy and

the temperature may be used as a general chart for exhibiting

graphically the properties of steam or of any other fluid. The

student will find it instructive to draw for himself a chart for

steam, on section paper, to a scale large enough for reasonably
accurate measurement.

The general character of such a chart will be apparent from

fig. 30. It includes the boundary curves already described, which

represent the relation of entropy to temperature in saturated steam

and in water at the same temperature and pressure. Between these

is the wet region, where the substance can exist in equilibrium

only as a mixture of liquid and vapour. Beyond the steam

boundary, to the right, is the region of superheated vapour.
Now let a system of Lines of Constant Pressure be drawn. Each

of these shows the relation of
</>

to T while the substance changes
its state in the manner of the imaginary experiment of Art. 56.

Starting from the extreme left, a line of constant pressure for water

is practically indistinguishable from the boundary curve; strictly

it lies a little to the left of that curve, reaching it only when the

temperature is such that steam begins to form. Then it crosses the

wet region as a horizontal straight line, T being constant during
the conversion of the substance from liquid into vapour. After

reaching the steam boundary the line of constant pressure rises

rapidly during the process of superheating. In the figure, five

representative lines of constant pressure are drawn, namely those

for P = 2, 20, 80, 200 and 500 pounds per square inch. When a

sufficient number of such lines are drawn it is easy, by graphic

interpolation, to mark on the chart the position of a point
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corresponding to any assigned condition of the substance as to

pressure and temperature, and to trace, by measurement instead of

by calculation, the changes which ensue during adiabatic expansion.
The convenience of the chart for such purposes is increased by

including a system of Lines of Constant Total Heat. Examples of

these lines are shown in fig. 30, for each interval of 25 calories from

;oc.

0-25 0-75 1-50 1751-0 1-25

Entropy

Entropy-temperature Chart for Water and Steam.

2-0 2-25

Fig. 30.

/ = 600 to / = 800 calories. They are specially useful in the region

of superheat ; they may however be drawn in the wet region also.

As an example the line for / = 650 is continued into the wet

region; it undergoes a sharp change of direction in crossing the

steam boundary. Each of these lines represents what occurs in a

throttling process. The lines of constant total heat tend, at the

extreme right, to become nearly straight lines of constant tempera-
ture : this is because the vapour behaves more nearly like a perfect
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gas the more the pressure is reduced. In a perfect gas, as we saw

in Art. 19, T is constant when the expansion is of such a nature

as to keep / constant.

Another useful addition is a set of Lines of Constant Dryness in

the wet region. These are drawn in the figure for q ='0-1, 0-2, 0-3,

0-4, 0-5, 0-6, 0-7, 0-8, and 0-9. They divide each horizontal width

between the two boundary curves into equal parts (see Art. 84).

Lines of Constant Volume may also be drawn in the manner already

described (Art. 96).

With the aid of such a chart one may find, for example, by

drawing the appropriate adiabatic (vertical) line, that steam with

an initial pressure of 200 pounds per square inch, superheated to

400 C., becomes saturated when its pressure falls, by adiabatic

expansion, to 16 pounds. Continued into the wet region the adia-

batic cuts the constant dryness line q = 0-9 at 50 C., showing that

there is 10 per cent, of water present when the pressure has fallen

to 1*8 pounds. The heat-drop may be inferred, but for its measure-

ment a better form of chart is one which will be described in the

next Article.

By drawing a vertical line to represent the adiabatic expansion
of a mixture of steam and water, it is easy to trace the changes

that occur in the proportion of water to steam. In the region of

ordinary working pressures the line for q
= 0*5 is nearly vertical.

Hence if there is about 50 per cent, of water present at the begin-

ning of adiabatic expansion, nearly the same percentage will be

found as the expansion goes on. When the steam is much wetter

than this to begin with, adiabatic expansion makes it drier.

In fig. 30 a conjectural curve has been added (shown by a

broken line) connecting the water and steam boundary curves in

the region of high pressure, where, at present, there are no data

for a precise determination of the entropy. This broken line is

simply a smooth curve forming a continuation of each boundary

curve, and drawn so that it touches the isothermal for 365 C., that

being the critical temperature for water. It is at the critical tem-

perature that the distinction between
(f>s

and
<f)w disappears. The

horizontal intercept between the water and steam boundary

curves, which corresponds to the taking in of latent heat, there

vanishes : the critical point is therefore at the summit of the T<f>

curve. At sufficiently high pressures the lines of constant pressure

would pass, in the form of continuous curves, clear of the rounded

top, from the region of water to that of superheated steam.
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The water boundary curve is concave on the left for tempera-

tures below 250 C., because the rise of entropy per degree, which is

o-/T, where o- is the specific heat of water, becomes less as T in-

creases, o- being nearly constant at low temperatures. But at

higher temperatures the specific heat of water increases so fast as

to make cr/T increase with rising temperature: the curve accord-

ingly bends over to the right as it approaches the critical point.

In the next chapter we shall have occasion to refer to examples

of entropy-temperature charts for other fluids. In one of these

carbonic acid the region which is practically important, in con-

nection with refrigerating processes, includes the rounded top

whose summit is the critical point. In that diagram the lines of

constant pressure in the liquid are clearly distinguishable from the

boundary curve of the liquid state.

101. Mollier 's Chart of Entropy and Total Heat. While

the entropy-temperature diagram is invaluable as a means of

exhibiting thermodynamic cycles and as a help towards under-

standing them, another diagram, introduced in 1904 by Dr R.

Mollier *, is of greater service in the solution of practical problems.

By taking for coordinates the entropy and the total heat, Mollier

constructs a chart which from this point of view has advantages

that entitle it to the first place among devices for representing

graphically the thermodynamic action of steam in steam-engines,

or of the working fluids in refrigerating machines. Its applica-

tions in refrigeration will be dealt with in the next chapter. As

regards steam it furnishes the most convenient way to measure

the heat-drop in adiabatic expansion, whatever be the initial

state as to superheat, and consequently to find the greatest

theoretical output that is attainable when the initial pressure and

temperature, and the final pressure, are assigned. We have seen

that this can be calculated when tables as complete as Callendar's

are available; and also that it can be found by the aid of an

entropy-temperature chart on which lines of constant total heat

have been drawn. But the Mollier chart allows a graphic solution

to be obtained with great directness and ease.

For practical purposes the Mollier
I(f>

chart is drawn so as to

show only the steam boundary curve and the region immediately

above and below it, but it is instructive to consider the complete
* R. Mollier, "Neue Diagramme zur technischen Warmelehre," Zeitschrifl des

Vereines deutscher Ingenieure, 1904, p. 271. See also his Neue Tabdlen und Diagramme

fur Wasserdampf, Berlin (Julius Springer), 1906,



122 THERMODYNAMICS [CH.

chart for water and steam, which is sketched in skeleton form and

to a very small scale in fig. 31. There ea is the water boundary
curve and bs is the steam boundary curve. The straight lines

between them, such as db and es, are constant-pressure lines : one

of these (for P = 200 pounds per sq. inch) is continued across the

boundary into the region of superheat; the curve bb
r

represents

the process of superheating at that pressure. The slope of any line

of constant pressure is a measure of the temperature, for at con-

800 .,/

700

600

500

400 9=0-7

200

100

Entropy <p

^r
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is not at the summit of this line, but at its point of inflection,

which is also its point of maximum slope. At the critical point
the continuous boundary curve, shown by the broken line, would

touch a curve of constant pressure, and consequently its slope

there, dl/d(f>, is equal to the critical temperature, the absolute

value of which is 638. The broken line is accordingly drawn to

have a slope of 638 units of / for 1 unit of < at its steepest part

where, for some distance, it is very nearly straight*.

Each constant-pressure line in the wet region may have its

length between the two boundary curves divided into parts which

express the dryness q at successive stages in the process of vapori-

zation, just as in the T(f> chart. Since the heat taken in up to any

stage of that process is proportional to q (Art. 70), equal distances

along the line, corresponding as they do to equal increments of

total heat, correspond to equal changes of dryness. In this way lines

of constant dryness are determined, some of which are shown in

the sketch.

It is useful to have a system of lines of constant temperature
drawn in the region of superheat : two such lines are shown in fig. 31.

When they and the constant-pressure lines in that region have

been drawn it is easy to mark the point which corresponds to any

assigned condition of the steam as to temperature and pressure.

Thus b' is the point corresponding to steam with a pressure of

200 pounds, superheated to 400 C. Then by drawing a vertical

straight line through the point so found, we exhibit the process of

adiabatic expansion. The length of that line, down to the final

pressure, measures the adiabatic heat-drop, and therefore gives a

very simple and direct means of finding the greatest amount of

work ideally obtainable from a pound of the working substance.

Thus the heat-drop in adiabatic expansion down to a pressure of

one pound per square inch is determined by measuring b'c on the

scale of /. The position of c among the lines of constant dryness

* The slope of the boundary curve, which is
(

-=-
)

, is equal, at the critical point,

to the slope of the constant-pressure line which touches it there, namely ( -=- } . But

i-\ = T, since in any constant-pressure change dl = Td<j>. Hence at the critical

point ~) =T. Hence also, at that point, 2̂
= (~ . But

"
,
which

\d(f> / \atpr/ t \<*0/8 \* (/> /8

is the slope of the boundary curve in the entropy-temperature chart (fig. 30), is

zero at the critical point. Hence at the critical point (

^ , 2
j

=
; that is to say

the boundary curve in the /0 chart there undergoes inflection.
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shows how much of the steam is condensed by this adiabatic

expansion. The advantage of a high vacuum, to which attention

was drawn in Art. 95, will be obvious from the effect of the final

pressure on the length of b'c.

A throttling process is represented by a horizontal straight line,

since / is constant. Lines of constant temperature in the super-

heated region become nearly straight and horizontal at very low

pressures, for the behaviour of the vapour then approximates to

that of a perfect gas.

800 m

3 1-4 1-5 1-6 1-7 1-8 1-9 2

Fig. 32. Mollier's Chart of Total Heat and Entropy.

2-2

A complete Rankine cycle is shown by the closed figure eaWce,
where ea is the heating of the feed-water, ab the formation of steam

in the boiler, W its subsequent superheating, b'c its adiabatic

expansion to the pressure of the condenser, and ce its condensation

at that pressure. For the practical use of the diagram, however,

there is no need to include the whole cycle. What is wanted is

the region to the right, where the quality of the steam before

and after expansion is exhibited, especially the from
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<f>
= 1-5 to 2 and from / = 450 to 800; and by restricting the

chart to this region open scales may be used without making it

unduly large.

Fig. 32 gives, in miniature form, a Mollier Chart for the useful

region, showing a few lines of constant pressure, also lines of

constant temperature in the region of superheat, and lines of

constant dryness in the wet region*.

1 02. Other Forms of Chart. Besides the foregoing diagram
Mollier introduced another in which the coordinates are the

800
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superheat above, lines of constant volume are drawn. They are

straight in the region of superheat, and sensibly straight in the

wet region, but they undergo an abrupt change of direction on

crossing the boundary. (See Arts. 208 and 209.)

Various other charts may be devised by selecting for the two

coordinates other pairs of properties from the list given in Art. 75.

In any such chart the characteristics of the fluid are exhibited by

drawing systems of curves, each of which represents the relation

that holds between the two properties chosen for coordinates when
the state alters in such a manner that some third property is kept
constant. By drawing several such systems of curves a compre-
hensive graphical substitute for numerical tables may be con-

structed. The particular properties selected for the coordinates,

and for the curves, may depend on the type of problem or problems
for which the chart is wanted. Callendar gives, as an adjunct to

his steam tables, a chart in which the coordinates are the total

heat and the logarithm of the pressure.

With respect to all such devices it may be said that, so far as

steam is concerned, the publication of full tables, which include

the region of superheat, render graphic tabulation less necessary.

It is now comparatively easy to find any required quantities

directly from the tables, or by interpolation from them, with

greater accuracy than is reached in measuring from a chart. But
for certain purposes the graphic process is sufficiently exact and

more convenient. All students should in any case make themselves

acquainted with the entropy-temperature chart, and also with the

Mollier chart of entropy and total heat : the former because it will

help them to understand cyclic processes ;
the latter as an instru-

ment for dealing with practical problems in steam engineering and

mechanical refrigeration.

103. Effects of Throttling. We have already seen (Art. 72)

that when a throttling process is carried out under conditions that

prevent heat from entering or leaving the substance the total

heat / does not change. Lines of constant total heat on any of

the diagrams accordingly show the changes in other quantities

which are brought about by throttling. It is the process that

occurs when a .fluid passes through a "reducing valve" or other

constricted orifice such as the porous plug of the Joule-Thomson

experiment (Art. 19). It is not what occurs when a jet is formed,

as in the nozzle of steam turbines. In that process, which will be
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dealt with later, the stream of vapour acquires kinetic energy that

may be turned to useful account; whereas in throttling, any
kinetic energy acquired in passing through the constriction is

immediately dissipated by internal friction.

In a perfect gas throttling produces no change of temperature

(Art. 19), but in steam and other vapours it produces a cooling

effect which is measured as the fall of temperature per unit fall

of pressure under the condition that / is constant, or

Cooling effect =
( j= }
\a"/

Values of this quantity for steam under various conditions can

be deduced from Callendar's tables. In steam that is highly

superheated, especially at low pressure, it is small, for the con-

dition of the steam then approaches that of a perfect gas, but if

the steam is saturated or only slightly superheated the cooling

effect of throttling is much greater. Thus with steam at a pressure

of 20 pounds per square inch, the cooling effect is only 0-0513 at

400 C. but is 0-338 at the temperature of saturation. These are

the falls of temperature, due to throttling, for a drop in pressure
of one pound per square inch. The cooling effect plays an im-

portant part in determining the values of the total heat and other

properties of the vapour, in the method used by Callendar*.

Using the values given in his tables for the total heat of

* Callendar tabulates for steam a quantity (called by him SC) which is the

product of the cooling effect and the specific heat at constant pressure. It is a

quantity of heat, namely the number of calories which would have to be given
to each Ib. of the throttled steam to restore it, at constant pressure, to the tempera-
ture it had before throttling, when the amount of throttling is such that the pressure

((J.T\-jpj
: it is equal to

~
( TIP )

aa(*
'

IB mdependenfc f tne pressure (as will be shown later). The values of

"$(7" or p which are given in the table for saturated steam therefore apply also

to superheated steam at the same temperature.
The cooling effect C may be found by dividing the tabulated values of "/SC"' by

the specific heat. The specific heat, which is
( -y^ )

, changes only slowly with the
\al )p

temperature. It may therefore be found from the tables, for any given pressure
and temperature, by noting the difference between values of / at that pressure and

at temperatures above and below the given temperature, and taking the amount by
which / changes per degree. Thus, for example, at a constant pressure of 20 Ibs.

the rate at which / changes with the temperature is 0-509 calory per degree in

the neighbourhood of saturation. For saturated steam of that pressure "SO" is

given as 0-172; hence the cooling effect of throttling, per pound drop of pressure, is

0-172/0-509 or 0-338, as has been stated in the text.
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superheated steam, it is easy to calculate how much the steam is

cooled by any given drop of pressure in throttling. Let saturated

steam, for example, at 200 pounds per square inch be throttled

down to a pressure of 20 pounds. The value of /, which remains

constant, is 669-7. At 20 pounds the table shows that this value

corresponds to a temperature of 163-8. The saturation tempera-
ture for 20 pounds is 108-9. The original temperature was 194-3.

Throttling has therefore cooled the steam by 30-5; but at the same

time it has caused it to become superheated to the extent of 54-9.

The apparent paradox, that throttling both cools a vapour and

superheats it, is due to the fact that when the pressure is reduced

by throttling the saturation temperature has fallen more than the

actual temperature has fallen. Hence saturated steam is super-
heated by throttling, and steam that is initially superheated
becomes more superheated. Similarly, a mixture of vapour and

liquid is partially dried by throttling; it may be completely dried

and even superheated if there is not much initial wetness and if

there is a sufficient pressure-drop. This is illustrated in fig. 30 by
the line of constant total heat for / = 650, which is drawn partly
in the wet region and partly beyond it. It shows the effect of

throttling on a wet mixture that contains 6-8 per cent, of water at

a pressure of 500 pounds ;
the steam becomes dry when the pressure

is reduced to 37 pounds, corresponding to the temperature of 128

at which the line crosses the saturation curve or steam boundary.
The process of throttling is still more simply shown by horizontal

lines (/
= constant) in the Mollier diagram (fig. 31). By drawing

such lines through the points on the saturation curve for P = 1

and P = 15 it will be seen that 12 per cent, of water can be re-

moved from steam at 200 pounds pressure by throttling it down
to 1 pound, or fully 6 per cent, by throttling it to atmospheric

pressure. Similarly, it is easy to trace the extent to which liquid

will evaporate in escaping through a throttle-valve from a region

of high pressure to a region of lower pressure.

The method of drying by throttling has been applied as a means

of determining the percentage of water present in steam. For this

purpose a device is used that is called, rather inappropriately, a
"
throttling calorimeter." Its essential feature is a pipe through

which a sample of the steam to be tested can be passed, containing

within it a diaphragm with a pin-hole orifice, or a throttle-valve

or porous plug, through which the steam has to pass. There are

pressure-gauges on both sides, and a thermometer to read the
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temperature of the steam immediately after passing the obstruc-

tion. Both parts of the pipe must be thermally insulated, so that

no heat is lost, nor conveyed by conduction from one part to the

other. The amount of steam passing, which may be regulated by
means of another valve beyond the obstruction, should be such

that the steam after throttling is appreciably superheated, in order

that no wetness may be left in it
; complete dryness is ensured by

seeing that the temperature after throttling is somewhat higher
than the saturation temperature. Then from the tables we find /'

the total heat which corresponds to the temperature and pressure
as observed after throttling. Since there has been no change in

the total heat, this must be equal to Iw + qL, where these quan-
tities refer to the state before throttling. Hence the initial dryness
is found, namely I' I I' I

9= ~TT
= 7^V

In practical applications of this method a porous plug is to be

preferred to a throttle-valve because the thermometer can be

placed close to it and the temperature measured after the

throttled stream has lost its kinetic energy and before it has

suffered loss of heat. It is difficult in any case to secure that the

sample tested by any such apparatus shall be properly representa-

tive, in respect of the moisture it carries ; and consequently little

reliance can be placed on tests that are carried out by diverting

a portion of a steam supply into a throttling calorimeter, as

a means of determining the general wetness of the supply.

104. The Heat-Account in a Real Process. The processes

which have been considered in this chapter as going on in a steam-

engine are ideal in the sense that they have been assumed to be

adiathermal: that is to say, there is no transmission of heat to or

from the working substance except what is originally taken from

the source or finally rejected to the receiver; in all the intermediate

operations the working substance has been enclosed in vessels that

are assumed to transmit no heat. The assumed processes are also

ideal in the sense that they are internally reversible. The process of

throttling, which is a typically irreversible process, did not occur

in the ideal engine cycles. In dealing with it also, however, we

postulated adiathermal conditions; it was assumed in the argument
of Art. 72 that no heat passed by conduction through the con-

taining walls to or from the space outside.

E. T. 9
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Discarding these limitations we may now draw up, in general

terms, a balance-sheet or heat-account for any real process, which

will include thermal loss to the space outside and also irreversible

actions within the engine or other apparatus.

Whether the apparatus considered be an engine cylinder, or the

series of cylinders of a compound engine, or a turbine, or a thrott-

ling device, we may in all cases compare the state of the fluid at

entry and at exit, as for example in the admission pipe of an engine

and in the exhaust pipe. We imagine a steady flow of the working
fluid through the apparatus. At entry let its pressure be P

1 ,
its

volume (per Ib.) Vlt and its internal energy E1 . At exit let its

pressure be P2 ,
its volume V2 and its internal energy E2 . To make

the comparison complete we may write K1
for the kinetic energy

(also per Ib.) of the stream as it enters, and K2 for its kinetic

energy as it leaves. In passing through the apparatus the fluid

will, in general, do external work, and also lose by conduction

some heat to external space. Let W represent, in thermal units,

this output of work, and let Q t represent the heat lost by conduc-

tion to external space, both of these quantities (like the others)

being reckoned per pound of the fluid that passes through.

Each pound that enters the apparatus represents a supply of

energy equal to Kj_ + E1 + APJf^ ,
for E is the internal energy it

carries, and P^Vi is the work done by the fluid behind in pushing
it in. But E + AP1V1 is equal to /x ,

the total heat per pound of

the fluid in its actual state at entry. Similarly, each pound that

leaves the apparatus represents a rejection of energy amounting to

K2 + E2 + AP2V2 ,
for E2 is the internal energy which the fluid

carries out, and P2V2 is the work spent upon it by the fluid behind

in pushing it out. E2 + AP2V2 is equal to 72 ,
the total heat per

pound of the fluid in its actual state at exit. Hence, by the con-

servation of energy, for the apparatus as a whole,

K1 + I1
= K2 + I2 + W +Q Z

.

The terms on the left of this equation represent the energy that

enters the apparatus ; the terms on the right showhow it is disposed
of in the issuing stream, in output of useful work, and in leakage
of heat.

The terms K and K2 are usually very small, except when the

apparatus is one for forming a steam jet, in which case K2 is the

useful term: this will be considered in a later chapter. When the

change of kinetic energy in the stream is practically negligible,
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as it is between the admission pipe and exhaust pipe of an engine,
we have

/,
=

/, + FT + Q,.

And when, in addition, the apparatus does not allow any appreci-
able amount of heat to escape to the outside (Q t

=
0), we have

A - /2
= w.

This means that when there is a steady flow of a working sub-

stance through any thermodynamic apparatus, the output of work
is measured by the actual Heat-Drop, whether the internal action

is or is not reversible, provided there is no loss of heat to the outside

by conduction through the walls.

The actual heat-drop must not be confused with the adiabatic

heat-drop, which is the difference between I1 and that value

which the total heat would reach if there were adiabatic expansion
to the exit pressure P2 . The actual heat-drop /j 72 is identical

with the adiabatic heat-drop only when there is no loss of heat to

the outside and when, in addition, the internal action is wholly
reversible.

Any irreversible feature in the internal action will increase /2

above the value which would be reached by adiabatic expansion,
and will consequently diminish the output of work.

In the extreme case of a throttling process there is no output
of work, and therefore I2

= I19 provided there is no loss of heat to

the outside. Any loss of heat to the outside in a throttling process
will make 72 correspondingly less, for we then have /2

= II Q t
.

The losses of thermodynamic effect in a real engine, which make
W less than the ideal output, namely the value corresponding to the

adiabatic heat-drop, arise partly from loss of heat to the outside

and partly from two kinds of irreversible internal action. One of

these two kinds is mechanical; the other is thermal. In the

mechanical kind, the action involves fluid friction within the

working substance. It is of the same nature as that which occurs

in throttling: there is irreversible passage of the working substance

from one part of the engine to another where the pressure is lower,

as for instance the passage of steam through somewhat constricted

openings into the cylinder, or its passage, on release after incom-

plete expansion, into the exhaust pipe, with a sudden drop of pres-

sure: or again, there is the same kind of irreversibility in a turbine

in the frictional losses that attend the formation of steam jets or

in the friction of the jets on the turbine blades. These are all

instances of mechanical irreversibility. In the second kind of

92
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irreversible action there is exchange of heat between the working
substance and the internal surface of the engine walls. The hot

steam, on admission to a cylinder which has just been vacated by
a less hot mixture of steam and water, finds the surfaces colder

than itself. A part of it is accordingly condensed on them, which re-

evaporates after the pressure has fallen through expansion. This

alternate condensation and re-evaporation involves a considerable

deposit and recovery of heat in a manner that is not reversible,

for it takes place by contact between fluid and metal at different

temperatures. The action may occur without loss of heat to the

outside : it would occur, for instance, in an engine with a conducting

cylinder covered externally with a "lagging" of non-conducting

material. Its effect, like that of throttling or fluid friction gener-

ally, is to reduce the output of work below the limit that is

attainable only in a reversible process, and it does this by making
the actual heat-drop I1

/2 less than the adiabatic heat-drop.

The equation W = It I2 takes account of both kinds of irre-

versibility of the effect of thermal exchanges within the apparatus,

as well as of any throttling or frictional effects in the action of the

working substance. But it does not take account of heat lost to

the outside, and for that the term Q z
has to be deducted, making

W = I1 -I2 -Q l
.

The full statement of the heat-account in a real process may be

expressed as follows: When there is a steady flow of a working
substance through any thermodynamic apparatus, the output of

work is measured by the actual heat-drop from entrance to exit,

less any heat that escapes by conduction to the outside, and less

any gain of kinetic energy of the issuing stream over the entering

stream; or, in symbols

W = /!
- 72

- Q z

- (K2
- KJ,

all these quantities being expressed in thermal units, and reckoned

per unit quantity of the working substance.

This equation also applies to reversed heat-engines, or heat-

pumps, which will be considered in the next chapter, but in them
the quantity W is negative: work is expended on the machine

instead of being produced by the machine. In such machines Q l

is also generally negative, for as a rule the apparatus is colder than

its surroundings and the leakage of heat is inwards.



CHAPTER IV

THEORY OF REFRIGERATION

105. The Refrigeration Process. Refrigeration is the re-

moval of heat from a body that is colder than its surroundings.

In cold storage, for example, the contents of a chamber are kept
at a temperature lower than that of the air outside, by extracting

the heat which continuously leaks in through the imperfectly in-

sulating walls. To maintain a refrigerating process requires ex-

penditure of energy. It is generally done by means of a mechani-

cally driven heat-pump, working on what is essentially a reversed

heat-engine cycle. It may also be done by the direct use of high-

temperature heat without intermediate conversion of that heat

into work. We shall consider later the direct application of heat

to effect refrigeration, but shall in the first instance treat of re-

frigerating machines driven by the expenditure of mechanical

power.

Any process of refrigeration involves the use of a working
substance which can be made to take in heat at a low temperature
and discharge heat at a higher temperature. The heat is discharged

by being given up to the air outside or to any water that is available

to receive it. The process is a pumping-up of heat from the level of

temperature of the cold body, at which it must be taken in, to the

level at which it may be discharged. These levels should be as near

together as is practicable, in order that no unnecessary work may
be done: in other words the action of the working substance should

be confined to the narrowest possible range of temperature. The

temperature of discharge should be no higher than is necessary to

get rid of the heat, and the lower limit should be 110 lower than

will ensure transfer of heat into the refrigerating substance from

the cold body whose heat is to be extracted.

Let Tl
be the temperature at which heat is discharged and T2

the temperature at which it is taken in from the cold body. Con-

sider a complete cycle in the action of the working substance. Let

Ql
be the quantity of heat which is discharged and Q2 the quantity

which is taken in from the cold body; and let W be the thermal
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equivalent of the work spent in driving the refrigerating machine.

Then, by the conservation of energy,

Q! = Q2 + W.

The useful refrigerating effect is measured by Q2 >
and the

tw
co-

efficient of performance," which is the ratio of that effect to the

work spent in accomplishing it (Art. 4) is =* .

1 06. Reversible Refrigerating Machine. We have first to en-

quire what is the highest possible coefficient of performance when
the limits of temperature 2\ and T2 are assigned. We know by
the principle of Carnot (Arts. 33, 39) that when heat passes down
from Tj to T2 through a heat-engine, the ideally greatest efficiency

in the conversion of heat into work is obtained when the engine is

thermodynamically reversible. In that case

Qj = 3

*i 2V
The output of work W is Qx Q2 . Hence the ideally greatest

output of work is related to Q2 ,
the heat rejected at the lower limit

of temperature, by the equation

A corresponding proposition in the theory of refrigeration is that

the ideally greatest coefficient of performance of a refrigerating

machine, working to pump up heat from T2 to T19
is obtained when

the machine is thermodynamically reversible. In that case the

same relation holds, namely

Qi = Q2

T, zy
and the amount of work W which is spent in driving the machine

(and is equal to Q1 Q2 ) is related to Q2 by the equation

w ^2 \ i
~

2)

T2 z

In other words, the greatest amount of work that is theoretically

obtainable in letting heat pass down through a given range of

temperature is the least amount of work that will suffice to pump
up the same quantity of heat through the same range.

To show that no refrigerating machine can be more efficient than

one that is reversible, we shall use an argument like that of Art. 33.

Let E, fig. 34, be a reversible refrigerating machine, reversed and
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Cold

Body

therefore serving as a heat-engine. It takes a quantity of heat,
say Qi> from the hot body
and delivers a quantity Q2

to the cold body, converting
the difference into work.

Let all the work W which

it develops be employed
to drive a refrigerating

machine R; and assume

that there is no loss of power
in the connecting mech-

anism. Accordingly the two

machines, thus coupled,
form a self-acting combina-

tion.

If it were conceivable

that the machine R could

have a greater coefficient

of performance than the

reversible machine J5, that Fig. 34

would mean that the ratio of Q2 to W would be greater in R than

in E. Hence (W being the same for both) R would take more heat

from the cold body than E gives to it, and R would also^give more

heat to the hot body than E takes from it. The result would be

a continuous transfer of heat from the cold body to the hot body by
means of a purely self-acting agency. This would be contrary to the

Second Law of Thermodynamics : we conclude therefore that no re-

frigerating machine can have a higher coefficient of performancethan

a reversible machine workingbetween the same limits oftemperature.
It follows that all reversible refrigerating machines, working

between the same limits of temperature, have the same coefficient

of performance. It also follows that the value of this coefficient

is that which would be found in a reversed Carnot cycle, namely

W T! - T2

'

This is the ideally highest coefficient it measures the performance
ofwhatmay be called a perfect refrigerating machine. The coefficient

of performance in any real machine is necessarily less, for the cycle

of a real machine falls short of reversibility.

107. Conservation of Entropy in a Perfect Refrigerating Pro-

cess. We saw in Art. 45 that a perfect, or reversible, heat-engine,
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such as Carnot's, may be regarded as a device which transfers

entropy from a hot body to a cold body without altering the

amount of the entropy so transferred, although the amount of

heat which enters the engine is greater than the amount of heat

which leaves the engine. The entropy taken from the hot body,

namely Q1/T1 ,
is equal to the entropy given to the cold body,

namely Q2/T2 ;
it may be said to pass through the engine without

change, though the heat that passes through is reduced in the

process by the amount which is converted into work, namely, by
the amount Q1 Q^

Similarly a perfect, or reversible, refrigerating machine or heat-

pump may be regarded as a device which transfers entropy from

a cold body to a hot body without altering the amount of the

entropy so transferred, although the amount of heat which enters

the machine is less than the amount which leaves the machine.

The action is in every particular a reversal of that of the perfect

heat-engine. Entropy to the amount Q2/T2
is taken from the cold

body, and entropy to the equal amount Q^T^ is given to the

warmer body to which heat is discharged. The amount of heat

which is pumped up increases from Q2
to Qj in the process, because

an amount of work equivalent to Q Q2 is expended in driving
the machine and is converted into heat within the machine.

1 08. Ideal Coefficients of Performance. The following table

shows the values of the coefficient of performance in a perfect or

reversible refrigerating process, for various ranges of temperature.
These are ideal figures, representing a theoretical limit which

cannot be reached in practice. Though they relate to conditions

of reversibility which are not fully attainable in a real machine,

they illustrate clearly the practical importance of making the range
of temperature as small as possible, by taking in the heat at a tem-

perature no lower than can be helped and by discharging it after

the least practicable rise.

Coefficients of Performance of a Perfect Refrigerating Machine.

Lower limit Upper limit of temperature
of temperature (Centigrade)
(Centigrade) 10 20 30 40 50

- 20 8-4 6-3 5-1 4-2 3-6

- 15 10-3 7-4 5-7 4-7 4-0'

- 10 13-1 8-8 6-6 5-3 4-4

- 5 17-9 10-7 7-7 6-0 4-9

27-3 13-6 9-1 6-8 5-5

5 55-6 18-5 11-1 7-9 6-2

10 28-3 14-1 9-4 7-1
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B

The importance of a narrow range of temperature in refrigeration

is further illustrated by

fig. 35. It gives the en-

tropy-temperature dia-

grams of three reversible

refrigerating processes, in ^

all of which the upper
limit of temperature (TJ I-

is the same, and the

same amount of work is .

spent. Each of the three

supposed processes is

Entropy

Fig. 35

ideally efficient: it is a reversed Carnot cycle, and its entropy-

temperature diagram is a rectangle. The area of the rectangle

represents the work spent, and the area under it, down to the

absolute zero of temperature, represents the amount of heat that

is taken from the cold body, and therefore measures the refrigerat-

ing effect. The three processes for which the diagram is sketched

differ only in the temperature T2 of the cold body from which heat

is extracted. That temperature is relatively high in the first case

(a), lower in case (b) and lower still in case (c). The refrigerating

effect is measured by the area AD in the first case, by BD in the

second, and by CD in the third. The result of lowering T2 is very

apparent, in reducing the amount of refrigeration that is ideally

capable of being done by a given expenditure of work.

109. The Working Fluid in a Refrigerating Process. The

working substance in a refrigerating cycle may be a gas which

remains gaseous throughout, such as air. More commonly it is a

fluid which is alternately condensed and evaporated. During

evaporation at a low pressure the fluid takes in heat from the cold

body: it is then compressed and gives out heat in becoming con-

densed at a relatively high pressure. The selection of the fluid is

governed by practical considerations. Water is used in some cases,

but a serious drawback to its use is the very large volume and low

pressure of the vapour at low temperatures. There are obvious

advantages in using a fluid whose vapour-pressure is neither incon-

veniently small at the lower limit of temperature nor inconveniently

large at the upper limit. The fluids most commonly used are

ammonia and carbonic acid. Ammonia has a very convenient

range of vapour-pressure throughout the range of temperature with

which we are concerned in practical refrigeration. With carbonic
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acid the vapour-pressure is considerably higher, the critical point

is reached at a temperature that may come within the range of

operation, and the thermodynamic efficiency is somewhat less.

Notwithstanding these objections carbonic acid is frequently pre-

ferred, especially on board ship, where it is more harmless should

any of the fluid escape by leakage into the room containing the

machine. For use on land, especially where the highest thermo-

dynamic efficiency is aimed at, ammonia is usually chosen. Other

fluids with lower vapour-pressures are occasionally used, such as

sulphurous acid, ethyl chloride, and methyl chloride.

no. The Actual Cycle of a Vapour-Compression Refri-

gerating Machine. If the reversed Carnot cycle were actually

followed, the choice of working fluid would make no difference to

the efficiency: the coefficient of performance for any fluid would

have the value shown in Art. 106, namely T2/(T1
- T2 ).

But a

part of the reversed Carnot cycle is omitted in practice, with the

result that the coefficient is reduced, and the extent of the reduction

depends on the nature of the fluid; it is greater in carbonic acid

than in ammonia.

To carry out a reversed Carnot cycle, with separate organs for

the successive events which make up the cycle, would require :

(1) A compression cylinder in which the vapour is compressed
from the pressure corresponding to T2 to the pressure corresponding
to Tj.

(2) A condenser in which it is condensed at Tx . A typical form

of this organ would be a surface condenser in which the working
fluid gives up its heat to circulating water.

(3) An expansion cylinder in which it expands from Tl to T2 .

(4) An evaporator in which it takes up heat at T2 from the

cold body from which heat is to be extracted. This vessel is some-

times called the "refrigerator."

In nearly all refrigerating machines the expansion cylinder is

omitted for reasons of practical convenience, and the fluid streams

from (2) to (4) through a throttle-valve with an adjustable opening,

called the "regulator" or "expansion-valve." In passing the ex-

pansion-valve the pressure of the working fluid falls to that of the

evaporator: its temperature falls to T2 and part of it becomes

evaporated before it begins to take in heat from the cold body.
The omission of an expansion cylinder, with the substitution for

it of an expansion-valve, reduces the coefficient of performance for
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two reasons. The work which would be recovered in the expansion

cylinder is lost; and also the refrigerating effect in the evaporator
is reduced, for more of the liquid is vaporized in the act of streaming

through the expansion-valve than would be vaporized in adiabatic

expansion, consequently less is left to be evaporated by subse-

quently taking in heat from the cold body. The loss of efficiency

from these two causes is not, however, very important under

ordinary conditions. To omit the expansion cylinder is a consider-

able simplification of the machine, all the more as the effective

volume of such a cylinder would need adjustment relatively to that

of the compression cylinder in order to secure the best effect under

varying conditions as to the limits of temperature. Rather than

Fig. 36. Organs of a Vapour-Compression Refrigerating Machine.

introduce this complication it is worth while to make a slight

sacrifice of thermodynamic efficiency.

In the usual type of vapour-compression refrigerating machine,

accordingly, the expansion cylinder is omitted, and the organs are

those shown diagrammatically in fig. 36. They are, (1) the com-

pression cylinder B; (2) a condenser A such as a coil of pipe, cooled

by circulating water, in which the working substance is condensed

under a relatively high pressure and at the upper limit of tem-

perature Tx ; (3) an expansion-valve or regulator R through which

it streams from AtoC; (4) the evaporator C, in which it is vaporized
at a low pressure by taking in heat from the cold body at the lower

limit of temperature. The evaporator may for instance be a coil

of pipe taking in heat from the surrounding atmosphere of a cold

chamber; often it is a coil surrounded by cold circulating brine
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which serves as a vehicle for conveying heat to the working sub-

stance from a cold chamber or from cans for ice-making or other

objects that are to be refrigerated.

The action of the compression cylinder is shown by the indicator

diagram, fig. 37, in the same figure. During the forward stroke of

the compressor the valve leading to A is shut and that leading from

C is open. A volume V1 of the working vapour is taken in from C
at a uniform pressure corresponding to the lower limit T2 . In

most actual cases what is taken in is not dry-saturated vapour but

a wet mixture, the wetness of which is regulated by adjusting the

expansion valve R. This is in order that the subsequent compression

may not produce much (if any) superheating. It is possible to

make the compression wholly "wet" by taking in a sufficiently wet

mixture: more generally the expansion-valve is adjusted so that

the vapour is moderately wet to begin with, and becomes slightly

Fig. 37. Indicator Diagram of Compression Cylinder.

superheated by compression. At the end of the forward stroke the

valve leading from C closes and the piston is forced to move back

compressing the vapour or wet mixture in the cylinder until its

pressure becomes equal to that in A. This compression reduces

the volume of the fluid in the cylinder to V2 . The valve leading to

A then opens, and the back-stroke is completed under a uniform

pressure while the working substance is discharged into A and

condensed there. The valves of the compressor are spring valves

which open and close automatically in consequence of the changes
in pressure, and are situated in the cover of the cylinder in such

a manner as to make the clearance negligibly small. To complete
the cycle, the same quantity of working substance is allowed to

pass directly from A to C through the expansion-valve R. This

step is not reversible (Art. 22).

The temperature Tx at which condensation takes place, is in

practice necessarily a good deal higher than that of the circulating

water by which the condenser is kept cool, for a large amount of
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heat has to be discharged from the condensing vapour in a limited

time. But it is important that the condensed liquid should be no

warmer than is unavoidable before it passes the expansion-valve.

Accordingly the condenser is arranged (sometimes by the addition

of a separate vessel called a "cooler") so that the condensed liquid

is brought as nearly as possible to the lowest temperature of the

available water-supply before it passes the valve, though it may
have been condensed at a considerably higher temperature. The

d

ff f ah
Fig. 38. The Vapour-Compression Cycle, using Ammonia.

b

'9 f ~^ U
Fig. 39. The Vapour-Compression Cycle, using Carbonic Acid.

advantage of this will be obvious when we consider, in the next

article, the thermal effects of each step in the cycle.

in. Entropy-Temperature Diagram for the Vapour-Com-
pression Cycle. The complete cycle is exhibited in the entropy-

temperature diagram of fig. 38, which is drawn for ammonia as

working substance, and fig. 39, which is drawn for carbonic acid.

There dg and ch are portions of the boundary curves. The point a

represents the condition of the mixture which is drawn into the

compression cylinder, when compression is about to begin; its
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d

wetness is measured by the ratio ah/gh. The line ab represents

adiabatic compression to the pressure of the condenser. The next

process consists of cooling and condensation at this constant pres-

sure: it is made up of three stages, be, cd and de. In the first stage,

be, the superheated vapour is cooled to the temperature at which

condensation begins; in the next stage, cd, the vapour is completely

condensed ;
in the third stage, de, the condensed liquid is cooled to

the lowest available temperature before it passes the expansion-

valve. The lines be, cd, and de form parts of one line of constant

pressure. In fig. 38 de is practically indistinguishable from the

boundary line, but in fig. 39 the
^

distinction is very apparent be-

cause we are there dealing with

a liquid that is highly com-

pressible in consequence of its

nearness to the critical state.

The line ef represents the pro-

cess of passing through the

expansion valve, in which the

pressure falls to that of the

evaporator. This is a throttling

process, for which / is constant

(Art. 72) : ef is therefore a line

of constant total heat; its

direction changes in fig. 39 in

crossing the boundary curve.

By passing the expansion-valve

the working substance comes

into the condition shown by
the point /. The proportion

which is converted into vapour

by the mere act of passing

the valve is shown by the ratio

gf/gh. Lastly we have the

process of effective evaporation

when the substance is usefully

extracting heat from the brine

or other cold body by evapo-

rating in the refrigerator. This

is represented by the line fa,

during which the dryness changes from gf/gh to ga/gh.

om
Fig. 40
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The refrigerating effect, that is to say, the amount of heat taken

in from the cold body, is represented by the area under the line

fa, measured down to a base-line corresponding to the absolute

zero of temperature, namely the area mfan (fig. 40).

The amount of heat rejected during cooling and condensation

of the vapour and subsequent cooling of the condensed liquid, is

the area under the lines be, cd and de, namely the area nbcdeo.

The thermal equivalent of the work spent in carrying the working
substance through the complete cycle which is simply the work

spent on it in the compressor is the difference between those two

quantities, namely the area nbcdeo minus the area mfan. It should

be noted that the work spent is not measured by the area abcdefa,

/' \

a

Fig. 41. Cycle for Carbonic Acid, with compression above the Critical Pressure.

enclosed by the lines which represent the complete cycle, because the

cycle includes an irreversible step ef (see Art. 51). In consequence
of that the work spent is greater than the enclosed area by the

amount oefm.

As a further example we may take a compression process (fig. 41),

with carbonic acid for working substance, in which the temperature
of the cooling water is so high that the pressure during cooling is

above the critical pressure. The line be is accordingly a continuous

curve lying entirely outside of the boundary curve. The working
substance passes from the state of a superheated vapour at b to

the state at e without any stage corresponding to cd in fig. 39, in

which it is a mixture of liquid and vapour. As before, the refri-

gerating effect is measured by the area under fa: the heat rejected

to the cooling water is measured by the area under be : the difference
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between these two quantities measures the work spent, and is

greater than the area of the closed figure abefa by the area under

the irreversible step ef.

112. Refrigerating Effect and Work of Compression ex-

pressed in Terms of the Total Heat. While it is instructive

to state, as in the preceding article, the refrigerating effect, the

work of compression, and the heat rejected, in terms of areas on

the entropy-temperature diagram, it is much more useful, for

purposes of practical calculation, to express these as follows in

terms of the total heat of the substance at the various stages of

the operation.

The refrigerating effect, that is to say the amount of heat taken

in from the cold body, is Ia Ift where Ia is the total heat at a

and If is the total heat at/. This is because the (reversible) opera-
tion fa is effected at constant pressure (Art. 68). For the same

reason the amount of heat rejected to the condenser and cooler

is Ib Ie ,
where those quantities designate the total heat at b

and at e respectively. Further, in the process ef of passing the

expansion-valve there is no change of total heat, by the principle

proved in Art. 72. Consequently, If = Ie . We may therefore state

the amount of heat rejected as Ib If .

Again, the work spent in the compressor is (in thermal units)

Ib Ia . It is the thermal equivalent of the area of the indicator

f*
diagram in fig. 37, namely A

J

VdP, which is equal to 7& Ia by
a

the general principle proved in Art. 80. We are dealing here with

the increase of total heat in adiabatic compression instead of its

decrease in adiabatic expansion.

That these results are in agreement with one another is seen by

considering the heat-account of the cycle as a whole :

Work spent = Heat rejected Heat taken in.

It ~Ia = (A-//) -
(/.-/,).

The coefficient ofperformance, which is the ratio of the heat taken

in from the cold body to the work spent in the compressor, is

It will be obvious that the numerical value of this coefficient

would be reduced if we were to omit the cooling after condensation,

which is represented by the line de. For in that case f would be
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shifted to the right, to a point on a line of constant total heat through
d, and If would be increased. The refrigerating effect would be

lessened; but the work spent in producing it would be the same
as before, for the indicator diagram of the- compression process,

which is measured by Ib Ia ,
is not affected. The values of Ia

and Ib depend only on the state of the substance at a and at b

respectively, and are the same as before.

113. Charts of Total Heat and Entropy for Substances

used in the Vapour-Compression Process. The above results

will show that calculations of performance, as regards refrigerating

effect, heat rejected, and work expended, become very easy when
we can find the total heat of the liquid just before the expansion
valve and that of the vapour before and after compression. This

is readily done if data are available for drawing a Mollier chart of

entropy and total heat for the working substance. Fairly complete
data are available for ammonia, carbonic acid, and sulphurous acid.

I(f>
charts for these substances will be found in a Report of the

Refrigeration Research Committee of the Institution of Mechanical

Engineers*.
In drawing these charts a geometrical device is resorted to for

the purpose of making the diagrams at once open and compact,
with the effect that measurements may be made with sufficient

accuracy on a chart of reasonable size. This device, which Mollier

originally adopted in drawing his
/</>

chart for carbonic acid, is to

use oblique coordinates, as illustrated in fig. 42. The lines of con-

stant / are horizontal: the lines of constant
<fi

instead of being

perpendicular to them are inclined at a small angle. The result is

that when the chart is drawn the curves on it are sheared over,

as compared with the form they would take on a chart with rect-

angular axes. Any figure which when drawn with rectangular
coordinates is relatively long in one diagonal direction may with

advantage be opened out by the use of oblique coordinates. This

* Min. Proc. Inst. Mech. Eng., Oct. 1914. The charts given there are drawn by
Professor C. F. Jenkin. The chart for carbonic acid embodies results of experiments

by Messrs Jenkin and Pye our the thermal properties of that substance (Phil

Trans. Roy. Soc., vols. A 499, p. 67 and A 534, p. 353, which involve some correc-

tion of an earlier chart published by Dr Mollier. The data for ammonia are those

given by Messrs Goodenough and Mosher (Bulletin No. 66 of the University of

Illinois, 1913). More recently, complete tables of the thermodynamic properties of

ammonia have been calculated with somewhat different numerical results by
Messrs Keyes and Brownlee (New York, John Wiley and Sons, 1916). In each of

these publications a Mollier 70 chart is included.

E. T. 10
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is true of
Icf> charts; as applied to them, the device gives a better

separation of lines that run more or less diagonally across the sheet,

like the lines in fig. 31 (Art. 101). There is consequently a great

gain in clearness and in the power of accurately measuring those

changes of I that take place in refrigerating processes. The in-

clination selected for the oblique axis will depend on the degree
of opening out that is convenient in any particular chart. In the

case of fig. 42 it is 5 along the slope to 1 vertically, and hence a

measurement of / if made along a line of constant
(/>
would have to

Fig. 42. Use of oblique coordinates in the 70 chart.

be interpreted on a scale five times as coarse as the normal scale

for/.

An
I(f>

chart for ammonia drawn with oblique coordinates is

shown (on a small scale*) in fig. 43. In this case the amount of

shearing is moderate, for the slope of the lines of constant entropy
is only two to one. The diagram, for the useful region, consists of

a fan-like group of lines of constant pressure extending as straight
lines through the region of wetness from the liquid boundary to

the vapour boundary or saturation curve, and then as curves into

* For similar charts drawn in fuller detail and on a scale large enough for use in

solving problems, reference should be made to the publications cited above.
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the region of superheat. Lines of constant temperature are also

drawn in the region of superheat, and lines of constant dryness

(shown as broken lines in the chart) are drawn by dividing the

160-

140-

100

tool

^=200

1=150

1-100

70C-

30-

2tf-

fo-2

Fig. 43., 70 chart for Ammonia.

straight portion of each line of constant pressure into a number
of equal parts. This chart should be compared with that shown for

water and steam in fig. 31 (Art. 101) in which, however, there was

no shearing, for rectangular coordinates were employed. Allowing

102
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for that difference the remarks made in Art. 101 apply here. The

slope of any constant-pressure line, when properly interpreted

with reference to the coordinates used in the drawing, measures

the temperature, for T = dl/d(f>. Hence there is no abrupt change
of direction between the straight part of any such line and its

1-70

Fig. 44. 70 chart for Carbonic Acid.

curved continuations into the liquid region at one end and into

the region of superheat at the other. This of course applies to any
substance. The

/</>
chart for sulphurous acid is generally similar

to the chart for ammonia.

The
I(f>

chart for carbonic acid is shown on a small scale in fig. 44.

It shows the region round about the critical point. That point
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coincides with the point of inflection of the continuous boundary
curve (Art. 101 ). Constant-pressure lines are drawn for pressures that

are higher than the critical pressure as well as for the wet region.
The principle already stated applies to these lines, that the slope
at any point (due regard being had to shearing) measures the tem-

perature. In passing up along any line of constant pressure above
the critical pressure, the

slope, which measures the tem-

perature, increases continu-

ously*. The straight portions
of the constant-pressure lines,

within the boundary curve, are

divided by broken lines which

are lines of constant dryness.
Lines of constant temperature
are also drawn in the region
outside the boundary curve. In

the region within the boundary,
where the state is that of a

mixture of .saturated vapour
and liquid, these lines would of

course be straight, and would

coincide with lines of constant

pressure. To avoid confusion

the straight portions of the

constant-temperature lines are

omitted in the figure.

114. Applications of the

!</> Chart in studying the Va-

pour-Compression Processf.
We are now in a position to

represent the vapour-compres-
* As Messrs Jenkin and Pye have pointed out (loc. cit., p. 365) in correcting the

earlier chart of MolJier, there is no point of inflection in any of these lines. For, since

j~ } =T, --S = --

Fig. 45. Refrigeration cycle Uac-ed on
the 70 chart for Carbonic Acid.

, which is a positive quantity throughout Uie whole

course of any line above the critical pressure, as will be seen by reference to the

entropy-temperature diagram. A point of inflection would require ( -y-~ )
to be zero.

\a0Vp
Some of the constant-pressure lines were erroneously drawn with inflections in

Mollier's original /0 chart for carbonic acid, which was reproduced in the author's

book on The Mechanical Production of Cold.

t Parts of this article are taken from an appendix (by the present writer), to the

Report of the Refrigeration Research Committee of the Institution of Mechanical

Engineers, 1914.
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sion refrigerating process by diagrams which exhibit the changes
of total heat in relation to entropy. With the help of

/</>
charts

numerical values of the total heat are readily found by measure-

ment at each stage in the assumed cycle.

To trace a refrigerating cycle on the appropriate chart, begin as

before at a point a (fig. 45) which represents the state of the sub-

stance when it is about to enter the compressor. This point is on

the constant-pressure line corresponding to the process of evapora-

tion in the cold body or evaporator (fig. 36), and its distance from

the two boundary curves corresponds to the proportion of vapour
to liquid in the mixture. If the compression is to be completely

"dry," a will be on the boundary curve (at a^) : more generally the

substance is slightly wet when compression begins. The straight

line ab, drawn parallel to the lines of constant entropy on the chart,

is the process of adiabatic compression. The position of b is deter-

mined by the intersection of this line with a line of constant pressure

corresponding to the known upper limit of pressure at which con-

densation is to occur. The temperature reached in the process of

compression is seen by the position of b among the lines of constant

temperature. In general there will be some superheating. But if

the mixture is so wet to begin with that the adiabatic line through
a does not cross the boundary curve during compression before

the upper limit of pressure is reached there is none, and in that

case the process is spoken of as
" wet" compression. This would be

the case if compression had begun at ac instead of a. By beginning
at a it carries the substance into the region of superheat before

compression is completed at b. Next we have the constant-pressure

process of cooling and condensation and further cooling, repre-

sented in its three stages by the lines be, cd, and de, the position of

e being fixed by the temperature to which the liquid is known
to be cooled before it reaches the expansion-valve. Then a hori-

zontal straight line through e (a line of constant total heat)

represents the process of passing through the expansion -valve,

and determines a point f, on the evaporation line, which exhibits

the condition in which the substance enters the evaporator. The

process of evaporation fa, which is the effective refrigerating

process, completes the cycle. The values of /
,
7& ,

Ie and If (which
is the same as Ie )

are read directly by measurement from the chart.

As has been already pointed out, the work spent in compressing
the substance is Ib /a , and the refrigerating effect is Ia If .

We may illustrate the use of the chart by some examples. Take

first a case in which the working substance is carbonic acid, with
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10 C. as the temperature of evaporation, 25 C. as the tem-

perature of condensation, and 1 5 C. as the temperature to which

the substance is cooled before passing the expansion-valve. The

diagram for the performance of an ideal machine under these con-

ditions is sketched in fig. 45, assuming various degrees of dryness
at the beginning of the compression. If the substance is then

entirely dry the operation starts at alt namely, the end of the

evaporation line for 10 C., and compression brings it to fex

which is on a line of constant pressure equal to the pressure of

saturated vapour at 25 C., namely, 930 pounds per sq. inch. But
the vapour is considerably superheated at bl9 its temperature there

(as the lines of constant temperature show) being 58 C. The work

spent in compression, which is most accurately found by reading
off the length of the line aj)-^ on a scale which makes that length
a direct measure of the change of /, is 8*7.

We next trace the process of condensing and cooling, under the

constant pressure of the condenser. From
bj_

to c the gas is losing
its superheat; from c to d it is being condensed; and from d to e

it is being cooled as a liquid. The point e is found by the intersection

of the line of constant pressure under which the process is carried

out with the line of constant temperature for 15 C. Next draw

^/parallel to the lines of constant total heat to meet the evaporation
line for - 10 C. The refrigerating effect /

flj

- If is 47-9. The
coefficient of performance is therefore -5-5. This cycle corresponds
to completely dry compression.

Suppose on the other hand that the compression is just wet

enough to avoid any superheating. In that case it must commence
at ac in order that the adiabatic line representing the compression

may pass through c on the boundary curve. Then the work done

in compression is smaller than before, for a cc is smaller than a-Jb^

The refrigerating effect is also smaller, for fac is smaller than /tip

The coefficient of performance is now found to be 5-54.

Between these two there is a certain degree of dryness which

gives a slightly higher coefficient of performance than either. This

may be shown by taking a succession of points for various states

of dryness between a c and a^ as the starting point of the cycle, and

working out the coefficient of performance for each. But we may
reach the same conclusion more directly as follows, by a general

method which is applicable to any Iff)
chart:

The refrigerating effect for any state of initial dryness, a, is

proportional (on some scale) to the length fa. The work done is
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proportional (on another scale) to the length ab. Hence the position

of b which will give the highest coefficient of performance is that

which gives the smallest ratio of ab tofa. This is found by drawing a

tangent from/to the line of constant pressure on which b lies. By
applying this method the point b has been determined in the figure,

and hence the point a is found at which compression should begin

if the coefficient of performance is to have its maximum value.

In the example that value is 5-72, and is obtained when the initial

dryness is about 0-87.

As another example, still with carbonic acid, take the same con-

ditions as before, except that the condensed liquid, instead of being

cooled at 15 C. before expansion, reaches the valve at the tem-

perature of condensation, namely 25 C. In that case the process

of expansion corresponds to the line dfd in fig. 45, the rest of the

cycle remaining as before. For maximum coefficient of performance,
under these conditions, compression should no longer start from a

but from a point so chosen that the adiabatic line through it reaches

the constant-pressure curve b^c at the point where the tangent from

fd meets that curve. This corresponds to an initial dryness of about

0-95, and the maximum coefficient so obtained is 4'39. When this

value is compared with that found in the previous example, namely

5-72, it will be obvious that a serious loss of efficiency is caused by

omitting to cool the condensed liquid before it reaches the expansion-
valve*.

A further example will serve to illustrate the application of the

I<f)
chart to carbonic acid working under tropical conditions, so

that the higher limit of pressure is above the critical pressure of the

substance. Still taking 10 C. as the temperature of evaporation,
we shall suppose the pressure in the condenser to be 1200 pounds

per sq. inch, and the temperature to which the liquid is cooled

before expansion to be 30 C. With these data the diagram takes

the form shown in fig. 46, where a^ represents a process of com-

pletely dry compression, and ab a process of compression in which

the position of a has been so chosen as to give the maximum co-

efficient of performance. The line ab consequently cuts the curve

of constant pressure for 1200 pounds per sq. inch at the place where

a tangent from/would meet that curve. The point e is determined

* The numbers given in these examples were found by measurement from

Mollier's original chart for carbonic acid. If the chart published by the Refrigeration
Committee of the Institution of Mechanical Engineers were used instead the numbers
would be slightly different, but the general results would not'be affected.
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The maximum coefficient of
by following the curve of constant pressure till it cuts the

line of temperature for

performance is obtained

when the dryness before

compression is about 0-95.

Its value is 3-1, and under

these conditions the va-

pour is superheated to

70 C. at the end of com-

pression. The coefficient

calculated for completely

dry compression, when the

compression line is a^b^ has

almost the same value.

In all these examples it

is interesting, and practi-

cally important, to notice

how little the coefficient of

performance in the theo-

retical cycle is affected

even by considerable

changes in the dryness
before compression. This

is true not only of car-

bonic acid but of any

working substance.

Fig. 46. Refrigeration cycle
with Carbonic Acid when
the upper limit of pressure

f^-

r
exceeds the critical pressure.

The application of the Mollier diagram to ammonia is illustrated

in fig. 47, by an example referring to tropical conditions. There,

as in former examples, the temperature of evaporation is taken as

10 C. The substance is supposed to be condensed at 35 C.

(pressure 197-3 pounds per sq. inch) and to remain at that tem-

perature until it reaches the expansion-valve. The cycle is abcdfa.

For ammonia under these conditions the following results are

obtained by measurement from the diagram for various values

of the initial dryness :

Dryness
before

Compression
1-0
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Here the maximum coefficient of performance is reached with

a vaJue of the initial dryness only very slightly greater than that

which just gives wet compression. We may take the coefficient got

by using wet compression, with b on the boundary curve, as

practically equal to that maximum.

Fig. 47. Refrigeration cycle with Ammonia under Tropical Conditions.

As a final example, take ammonia working in the same con-

ditions as those that were assumed for carbonic acid in the first

example, namely an evaporation temperature of 10 C., a con-

densation temperature of 25, and the liquid cooled to 15 C.
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before passing the valve. We then have these results for various

values of the initial dryness :

Dryness
before

Compression

1-0
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been evaporated to the high-pressure region in which it is to be

condensed. But this pumping up may be effected in more than

one way. The usual way is by means of a cylinder and piston, and

so long as the vapour-pressure is moderately high the use of a

compressing piston is quite satisfactory. But when the vapour-

pressure is very 'low, as it would be if water were used for the

working substance, the volume to be swept throiigh by a com-

pressing piston would be so large as to be very inconvenient, and

the amount of work which wrould be wasted through friction

between the piston and cylinder would be an excessive addition

to the legitimate work of compression. Not only would the machine

be exceedingly bulky but its practical efficiency would be exceed-

ingly low. At C., for example, the density of water-vapour is

so small that about 365 cubic feet of it are required to absorb as

much latent heat as one cubic foot of ammonia vapour. Hence to

use water-vapour as a refrigerating agent some appliance must be

resorted to which will avoid the bulk and frictional waste of an

ordinary compression pump. One such appliance is a centrifugal

pump or reversed turbine: another is an ejector or jet pump, in

which an auxiliary stream of vapour, supplied at a comparatively

high pressure, forms a motive jet which drags with it the vapour
to be "aspirated," namely the vapour which has been formed by

evaporation at low pressure, so that both pass on together to be

condensed. This device is applicable to any fluid, and closed-

circuit systems which operate on this principle have been devised

for other working substances besides water-vapour. The vapour of

the motive jet necessarily mixes with the vapour to be aspirated
and both are condensed together : there are thus two circuits which

coalesce in the condenser. Part of the condensed liquid returns

through the expansion-valve to the cold evaporator, and acts as

the effective working substance in producing refrigeration: the

other part is forced by a feed-pump into a boiler where it is vaporized
at a relatively high pressure, so that it may act as the motive jet:

the two then meet again in the ejector on their way to the con-

denser.

It is however when water is the working substance that such a

system is specially applicable. An independent supply of boiler

steam forms the motive jet. It acquires a high velocity in passing

through a discharge nozzle, which converges to a place at which

the low-pressure vapour to be aspirated is allowed access. The high

velocity jet communicates part of its momentum to that vapour,
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and the two pass on in one stream to the condenser through a

divergent pipe in which the stream loses velocity and gains pressure
as it proceeds. This enables the pressure of the working substance

to rise from the lower to the upper of the limits between which the

machine works, namely from the low pressure at which the

aspirated vapour is formed to the higher pressure at which it is

condensed. In refrigerating machines constructed to act in this

way the quantity of vapour in the motive jet is as much as three

or even five times the quantity that is aspirated. The thermo-

dynamic efficiency of the method is found on trial to be only

moderate, but the apparatus has advantages in point of simplicity,

and in the absence of any working substance other than water.

It has been applied not only to cool water, but also to maintain

a temperature considerably below C., in which case brine is

substituted for fresh water as the working substance whose vapour
is aspirated, and the cooled brine is prevented from becoming too

dense by systematically returning to it a quantity of water to

make good the amount that is evaporated.

1 1 6. The Step-down in Temperature. Use of an Expansion

Cylinder in Machines using Air. So long as the working sub-

stance in a refrigerating machine is a vapour which becomes

liquefied during the operation, it is practicable, as we have seen, to

dispense with an expansion cylinder and still have a large amount
of refrigerating effect. The step-down in temperature, which is

necessary in any refrigeration cycle, occurs as a consequence of

the process of throttling, while the substance passes the expansion-
valve. This is true also of a gas near its critical point, and hence

a machine using carbonic acid under tropical conditions can be

effective without an expansion cylinder although the substance

may not undergo liquefaction. A gas near its critical point is very
far from perfect and does not even approximately conform to

Joule's Law. A gas which conforms to that law would suffer no

step-down of temperature in passing an expansion-valve (Art. 19).

With a gas such as air, which is nearly perfect at the temperatures
and pressures that occur in ordinary refrigeration, the step-down
would be too small to serve the desired purpose. Hence with air

for working substance an expansion cylinder becomes an essential

element of the machine. Refrigerating machines using air, and

cooling it by means of expansion in a cylinder in which it does

work against a piston, are amongst the oldest effective means of
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producing cold by mechanical agency. They are still used for the

direct cooling of the atmosphere of cold stores, but their use is

now less common, because machines in which the working substance

is a condensable vapour are not only more compact but give a better

thermodynamic return for the work spent in driving them.

117. Air-Machines. Joule's Air-Engine reversed. The air-

machines which are in actual use operate by taking in a portion

of air from the chamber that is to be kept cold, compressing it

more or less adiabatically with the result that its temperature
rises considerably above that of the available water-supply, then

extracting heat from it in the compressed state by means of cir-

culating water, then expanding it in a cylinder in which it does

work, with the result that its initial pressure is restored and its

Cooler A

Fig. 48. Organs of an Air-Machine.

temperature falls greatly below the initial temperature. It is then

returned into the atmosphere of the cold chamber, with which

it mixes; the object being either to lower the temperature in the

chamber or to keep it from rising through leakage of heat from

outside. This type is known as the Bell-Coleman air-machine.

The cycle is a reversal of that of Joule's Air-Engine, described

in Art. 54. As applied in refrigeration the apparatus takes the

form shown diagrammatically in fig. 48. In the phase of action

shown there the pistons are moving towards the left. Air from the

cold chamber C is being drawn into the compression cylinder M.
In the return stroke it will be compressed from one atmosphere
to about four, with the result that its temperature may be raised

to 130 C. or higher. It is delivered under this pressure to the
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cooler A where it gives up heat to the circulating water and comes

down to near atmospheric temperature. It then passes, still at

high pressure, to the expan- t

sion cylinder N, where it does

work in expanding to the

initial pressure of one atmo-

sphere and thereby becomes

very cold, reaching a tem-

perature of perhaps 60 C.

or _ 70 C.
,
in which condition /

it is returned to the cold

chamber. An ideal indicator

diagram for the whole cycle
FiS' 49 - Indicator Diagram of Air Machine.

is given in fig. 49, where fcbe shows the action of the compression

cylinder and eadf shows that of the expansion cylinder. The area

abed measures the net amount of work that is expended. In the

diagram the compression and expansion are both treated as adiabatic

and the volume of A as well as that of C is assumed to be so large

that during delivery of the air its pressure does not sensibly change.

Writing Ta ,
T6 ,

T
c
and Td for the temperature of the working air,

at the points a, b, c and d of the diagram, we have QA = Kv (Tb
- Ta )

for the heat rejected to the cooling water, and Qc = Ky (Tc
- Td )

for the heat usefully extracted from the cold chamber. The net

amount of work expended is equal -to QA - Qc* The coefficient of

performance is Q
QA - Qc

'

For the reason explained in Art. 54

=r
6 =

; &om which
_ rr\

Hence '?-
= and

This coefficient of performance is low because of the very large

range of temperature through which the working air is carried.

For this reason, and also because of greater frictional losses, an

actual air-machine gives results that compare unfavourably with

those obtained in the vapour-compression process.

Considered as a means of pumping up heat from Tc the tem-

perature of the cold chamber from which heat is taken in, to Ta

the temperature of the circulating water to which heat is discharged,

the air-machine has two serious thermodynamic defects. There is
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an irreversible transfer of heat when the working air, after being-

heated by compression to Tb comes into thermal contact with the

circulating water at Ta ; and there is another irreversible transfer

when the working air, chilled by expansion to 2'd ,
mixes with the

less cold atmosphere of the chamber at Tc . An ideally efficient

refrigerating machine, namely a reversed Carnot engine, working
between Ta and Tc as upper and lower limits would have (Art. 105)

a coefficient of performance equal to

The coefficient found above for the reversed Joule cycle is sub-

stantially less, because 2\ is higher than Ta .

In the practical working of such machines the presence of

moisture in the air has to be reckoned with. The air coming from

the cold chamber is more or less saturated: during expansion it

becomes supersaturated and the water from it would be deposited
as snow in the expansion cylinder, and might interfere with the

action of the mechanism, if preventive devices were not intro-

duced. One such device is to divide the whole expansion into two

stages by making it compound. In the first stage the expansion
is carried only far enough to cool the air to a temperature just above

the freezing point. In that way nearly all the moisture is deposited
in the form of water, and is easily drained away before the final

stage, which would freeze it, begins. Another device is to condense

out most of the moisture before expansion, by passing the com-

pressed air through pipes which bring its temperature down to

near the freezing point before it enters the expansion cylinder.

These "drying pipes" are kept cold by air from the cold chamber:

that air is consequently warmed by them, but the loss is made good

by the lower temperature which the working air reaches in ex-

pansion, as a consequence of the precooling it has undergone in

the drying pipes.

118. Direct Application of Heat to produce Cold. Absorption
Machines. In another class of refrigerating appliances there

is no application of mechanical power: the agent is heat, which is

supplied from a high-temperature source, and is employed in such

a way as to cause another quantity of heat to pass from a cold body
and to be discharged at a temperature intermediate between that

of the cold body and the hot source. In such machines the effi-

ciency of the action from the thermodynamic point of view is
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measured by the heat ratio
-^

where Q2 is the heat extracted

from the cold body, and Q is the high-temperature heat which is

supplied to carry out the operation.

A typical example is the ammonia-absorption refrigerating

machine. Essentially this is a device in which the vapour of

ammonia is alternately dissolved by cold water under a relatively

low pressure, and distilled from solution in water under a relatively

high pressure by the action of heat. The ammonia vapour, driven

off by applying heat to a solution, is condensed in a vessel which

is kept cool by means of circulating water. This gives anhydrous

liquid ammonia at high pressure which (just as in a compression

machine) is allowed to pass through an expansion-valve, into a

coil or vessel forming the evaporator. A low pressure is maintained

in the evaporator by causing the evaporated vapour to pass into

another vessel, called the absorber, where it comes into contact

with cold water in which it becomes dissolved. When the water

in the absorber has taken up a sufficient proportion of ammonia
it in turn is heated to give off the vapour again under high pressure.

In the simplest form of the apparatus the same vessel serves

alternately as absorber and as generator or distiller. For con-

tinuous working there are separate vessels, and the rich solution

is transferred from the absorber to the generator by a small pump,
while the water from which ammonia has been expelled flows back

to the absorber to dissolve more ammonia. The scheme of such an

apparatus is shown in fig. 50. Heat is applied to the solution in

the generator by means of a steam-coil. The gas passes off at top
to the condenser, then through the expansion-valve to the evapor-

ator, and then on to the absorber, where it meets a current of water

or very weak solution that has come over from the bottom of the

generator. Between the generator and absorber is the interchanger,

a device for economizing heat by taking it from the water that is

returning to the absorber, and giving it to the rich solution that

Js being pumped into the generator. This rich solution is delivered

at the top of the column in the generator; as the liquid parts with

the ammonia it becomes denser and falls to the bottom
;
where it

escapes to the absorber through an adjustable valve. When water

absorbs ammonia a large amount of heat is given out. Hence the

absorber as well as the condenser has to be kept cool by means of

circulating water or otherwise. Under the most favourable con-

ditions the quantity of heat which such a machine takes in from

E.T. 11
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the cold body is considerably less than the quantity of high tem-

perature heat that has to be supplied, for it needs more thermal

units to separate ammonia gas from solution in water than simply
to evaporate the same amount of liquid ammonia.

In another type of absorption machine water-vapour is the sub-

stance which is absorbed : it is taken up by sulphuric acid, from

which it may again be separated by the agency of heat. Such a

machine has been used for ice-making, the evaporation of part
of the water serving to freeze the rest. In this case also the heat

Steam

Condenser

Regulating Value

Fig. 50. Organs of an Ammonia Absorption Machine.

ratio, namely the ratio of heat usefully extracted to heat supplied,

is less than unity, for it takes more heat to separate the vapour
of water from a sulphuric-acid solution than from pure water. It

is a familiar fact that when water is mixed with sulphuric acid

much heat is given out.

It is obvious that a better thermodynamic result would be

attainable if the process of absorption of the vapour were attended

by the giving out of less heat than is equivalent to the latent heat

of the vapour itself. This is the case when ammonia vapour unites

with certain anhydrous salts, for which it has much affinity, such

as the sulphocyanide of ammonium (NH4CNS), or the nitrate,

bromide or iodide. Any one of these salts forms a suitable absor-
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bent. The ammonia vapour unites with the dry salt to form a

liquid solution, from which the ammonia vapour can again be

driven off by the application of heat, leaving the salt dry and

ready to serve again as the absorbent. The vapour is strictly

anhydrous, for no water is present in the working substance at any

stage. The heat given out during absorption of the ammonia

vapour by the salt is substantially less than the latent heat of

the vapour itself at the same pressure, for part is taken up in

liquefying the salt. Similarly the heat required to effect a separation
of ammonia vapour from the salt is substantially less than the

latent heat of the vapour, for part is supplied by the solidification

of the salt. Consequently, when this process is made use of for the

purpose of refrigeration, the ratio of the heat which is extracted

from the cold body to the high-temperature heat, which is supplied

to the generator, would be greater than unity, if it were not for

such losses as occur through imperfection in the working.
This process is the subject of patents by Mr W. W. Seay*. In

his refrigerating apparatus the working substance is made up of

about 3 Ib. of the salt to one of anhydrous ammonia. There are

two (or more) similar vessels each of which serves alternately as

absorber and as generator. These are cylinders which are kept

slowly revolving as a means of stirring the mixture. Precau-

tions have to be taken, by selecting a suitable material for the

vessels or for their lining, to avoid chemical action on the part of

the salt. In each vessel there is a coil of pipe through which cold

water circulates while the vessel is acting as absorber, and hot water

or steam while it is acting as generator. The other organs are the

same as in any other compression or absorption plant. The

ammonia vapour passes from the generator to a surface condenser

where its latent heat is discharged to circulating water, then through
an expansion-valve to the evaporator, where it takes up heat from

the brine or other body that is to be cooled, and then passes on

to the absorber. In the generator and condenser its pressure is

relatively high : in the evaporator and absorber it is low.

Tests of a Seay machine show that, even in small sizes, there is

a much greater amount of refrigerating effect for the same expen-

diture of heat than is found in machines which work by the absorp-

tion of ammonia in water. As applied to ice-making it appears that

the Seay machine will produce as much ice, per Ib. of coal consumed,

* British Patent (Marks), No. 25806 of 1907.

112
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as can be obtained by employing a good steam-engine to drive a

good vapour-compression refrigerating machine.

119. Limit of Efficiency in the Use of High-temperature
Heat to Produce Cold. Any appliance, such as an absorption

machine, for the direct production of cold by the agency of heat,

requires a supply of heat at a temperature higher than that of the

surroundings. There are necessarily three temperatures to be

considered: (1) the low temperature T2 of the cold body from which

heat is being extracted; (2) the intermediate temperature T of the

available condensing water or other "sink" into which heat can

be rejected; and (3) the high temperature T of the source from

which heat is supplied to perform the operation. Any such ap-

Motor

and

Refrigerator

T,

Fig. 51

pliance may be regarded as equivalent to the combination of a

motor or heat-engine driving a refrigerator or heat-pump (fig. 51).

A quantity Q of high-temperature heat goes in at one place, and

thereby causes a quantity Q2 of low-temperature heat to go in at

another place. Heat is rejected at the intermediate temperature
T19 and the heat so rejected is equal to the sum of Q and Q2 ,

for no

work is done by the appliance or spent upon it, as a whole. This

description applies whether the appliance is actually a mechanical

combination of a heat-engine with a heat-pump, or is an absorption
machine with no conversion of heat into work and work into heat.

In either case we have to consider what is the ideally greatest ratio

of the low temperature heat Q2 ,
which is extracted from the cold

body, to the high-temperature or driving heat Q, when the three

temperatures T2 ,
T19 and T are assigned.
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Suppose, first, that the machine consists of a perfect (reversible)

heat-engine driving a perfect (reversible) heat-pump. Then it is

easy to calculate the ratio of the heat extracted Q2 to the heat

supplied Q. Writing W for the heat-equivalent of the work de-

veloped in the heat-engine and employed to drive the heat-pump,
we have (by Art. 38) Q(T T )

~T~~'
since the heat-engine is reversible. Again, since the heat-pump is

also reversible,

by Art. 106. Hence f
-

which gives the required ratio of heats.

The importance of this result lies in the fact that no other

method of applying heat to produce cold can give a higher ratio

of Q2 to Q, the three temperatures T, T
t and T2 being assigned.

To prove this, imagine the combination of reversible heat-engine
and reversible heat-pump to be reversed : it will then give out an

amount of heat equal to Q to the hot body and an amount equal
to Q2 to the cold body, and it will take in an amount equal to

Q + Q2 from the intermediate body at Tv It will still develop
no work as a wr

hole, nor require work to be spent in driving it.

Imagine further that between the hot body and the cold one there

are two appliances working both using the same intermediate

temperature one of which is this reversed combination, and the

other is a refrigerating machine (such as an absorption machine)
whose efficiency we wish to compare with that of the combination.

Then if it were possible for that machine to have a higher efficiency

than the combination, it would extract more heat than Q2 from

the cold body for the same expenditure of high-temperature heat

Q. Hence, when both work together, namely the combination

working reversed and the other machine working direct, the cold

body would lose heat while on the whole the hot body would lose

none. In other words we should then have an impossible result,

namely a simple transfer of heat, by a purely self-acting agency,

from the cold body at T2 to a warmer body at Tl9 the inter-

mediate temperature. The agency would be self-acting in the sense

of being actuated by no form of energy, mechanical or thermal.

Such a result would be a violation of the Second Law (Art. 31).

The conclusion is that no means of employing heat to produce cold,
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whether directly, as in an absorption machine, or indirectly as in

a compression machine driven by an engine, can be more efficient

(for the same three temperatures) than the combination of a

reversible heat-engine driving a reversible heat-pump. Hence the

expression T-T

measures the ideally greatest ratio of heat extracted to heat

supplied. Any real appliance will show a smaller heat ratio in

consequence of irreversible features in its action. The action of

an ammonia-and-water absorption machine, for example, is very
far from being reversible: the heat ratio in it is much less than

unity. But, as the above expression shows, when T2 is not much
lower than T and T is much higher, Q2 may be much greater than

Q in the ideal use of heat to produce cold.

120. Expression in Terms of the Entropy. The above ex-

pression for the ideal performance under reversible conditions may
be written f\ n

T,

from which

This expresses the conservation of entropy for the complete
reversible operation. The entropy of the system as a whole does

not change. For the term on the left is the gain of entropy by the

body at T
l
to which heat is rejected: the two terms on the right

are the losses of entropy by the hot body and cold body respectively.

The whole action may be regarded as a transfer of entropy from

two sources at T and T2 ,
to an intermediate sink at Tv So long as

the action is reversible this transfer occurs without affecting the

aggregate entropy, but if it is not completely reversible the ag-

gregate entropy will increase; in that case the term on the left

becomes greater than the sum of the terms on the right.

Again, the equation shows that, under reversible conditions, the

product of the entropy lost by the hot source (through the removal

of the heat Q) into the drop in temperature which that heat under-

goes, namely from T to T
19

is equal to the product of the entropy
lost by the cold body into the rise of temperature of the abstracted

heat Q2 . Each of these products is in fact a measure of W, the work

which the heat-engine produces, and the heat-pump consumes, in

the ideal combination of reversible engine with reversible pump.
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A mechanical analogue is illustrated in fig. 52. Here a quantity
of water M, supplied at a high level H, descends to a lower level

H1 and serves to raise another quantity M2 from a still lower level

H2 up to 7/j. Both quantities are discharged at the level Hlf The

operation is reversible, and the energy equation may be written

M (H - HJ = M2 (Ht
- H2 ).

H

Fig. 52. Mechanical analogue of the use of heat to produce cold.

On comparing this with the equation given above, for a correspond-

ing reversible thermal operation, it will be noticed that the analogue
of weight (of water) is not heat but entropy, namely the quantity
of heat divided by the temperature of supply.
The reversible thermal operation may be represented on the

entropy-temperature diagram as in fig. 53. There the area abon

represents the high-temperature heat which is supplied at tem-

perature T, and the area abed represents the work which would
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be done in a perfect heat-engine by letting down that quantity
of heat from T to the lower level Tr Between the given levels of

temperature T-, and T2 draw a rectangle defg whose area is equal to

the area abed, and produce ef to meet the base line for zero tem-

perature in m. Then the area fgnm represents the refrigerating

effect, namely the heat extracted from the cold body at T2 . The

a

f

m no
Fig. 53

amount of heat discharged at the intermediate level Tl is equal to

the area ecom, which is equal to the sum of the areas abon and

fgnm.

121. The Refrigerating Machine as a means of Warming.
In any such appliance, whether reversible or not, the quantity of

heat delivered at the intermediate temperature T is greater than

the quantity supplied at T by the amount of the heat raised from

T2 ,
and may, as we have seen, be much greater. This fact is the

basis of an interesting suggestion made by Kelvin in 1852, that

in the warming of rooms it would be thermally more economical

to apply the heat got from burning coal in this indirect way than

to discharge it into the room to be warmed. The thermodynamic
value of high-temperature heat is wasted if we allow it directly to

enter a comparatively cold substance. That value might be better

utilized by employing the heat to pump up more heat, taken in

from say the outside atmosphere, to the level to which the room is
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to be warmed. By using, for example, an efficient steam-engine
to drive an efficient heat-pump, a small quantity of heat supplied

at a high temperature will suffice to raise a much greater quantity

of heat through the small range that is required, and consequently
to produce a much greater warming effect. Similarly, if a supply
of power from any source is available as a means of warming to

a moderate temperature, it will be turned to better account if we

set it to drive a heat-pump than if we simply convert it into heat.

The suggestion that some of the coal which is used for heating-

rooms might be saved by applying heat in this indirect manner

has at present no more than a theoretical interest.

122. The Attainment of Very Low Temperature. Cascade

Method. Another part of the science of refrigeration deals with

methods of producing cold so extreme as to liquefy air and other

so-called permanent gases. This is now the basis of an important

industry, which employs the liquefaction of air as a step towards

the separation of its constituents, with the object of making com-

mercial use of the oxygen or the nitrogen or both. To liquefy

any gas the temperature must be reduced below the critical point

(Art. 77), and for nitrogen this means a cooling below 146 C.

Temperatures much lower than this have been reached by the

methods which will now be described. Hydrogen, whose critical

temperature is 241 C., has not only been liquefied but solidified:

its melting point under atmospheric pressure is about 258 C.

or 15 absolute. Even helium, the most refractory of all known

gases, has been liquefied under conditions that lowered the

temperature to within three or four degrees of the absolute zero.

One way of reaching a very low temperature, called the
"
cascade"

method, is to have a series of compression refrigerating machines

so connected that the working substance in one, when cooled by
its own evaporation, acts as the circulating fluid to cool the

condenser of the next machine of the series, and so on. Different

working fluids are selected for the successive machines, so that

each in turn reaches a lower temperature than its predecessor.

The general idea of the method is illustrated in fig. 54. In that

diagram the first working substance is carbonic acid, which is

represented in the sketch as supplied from a reservoir on the left,

into which it has been compressed. It expands through a throttle-

valve into the vessel A, from which it escapes at atmospheric

pressure (this part of the apparatus might be completed by a
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compression pump restoring the substance to the reservoir). The
effect is that the vessel A is kept at a temperature of about 80 C.

Within it is another vessel which serves as the condenser of a

machine using ethylene as working substance. Ethylene has a

critical temperature of - 10 C., and needs only a moderate

pressure to liquefy it at 80 C. It is pumped into the inner part
of the condenser A, is there liquefied, and passes on through an

expansion-valve to the outer part of the vessel B in which it eva-

porates, producing a temperature of say 130 C. at the low

pressure which is maintained by the pump. This cools the vessel

B below the critical point of oxygen (namely 118 C.); accord-

Ethylene Oxygen

-130C. -200C.

Fig. 54. Cascade Method of reaching very Low Temperatures.

ingly oxygen may be used as the working substance of the next

machine. It is condensed in the inner part of the condenser B,

and after passing through an expansion-valve it may produce a

temperature of 200 C. or less in the vessel C by evaporating
there under a low pressure. Each machine of the series is a vapour-

compression machine, working on the principle already described,

and made up of an evaporator, a compressing pump, a condenser,

and an expansion-valve. The essential feature in the combination

is that the working substance in any one machine must be eva-

porated at a temperature that is lower than the critical point of

the working substance of the next machine in the series.
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123. Regenerative Method. But it is in a different way that

low temperatures are now attained for the commercial liquefaction
of air. The usual process is a regenerative one, first successfully

developed by Linde, in which the Joule-Thomson effect of irrever-

sible expansion in passing a constricted orifice serves as the step-

down in temperature, and a cumulative cooling is produced by
causing the gas which has suffered this step-down to take up
heat in a thermal interchanger from another portion of gas that

is on its way to the orifice.

Consider first what would happen if there were no such thermal

interchange. Imagine a gas such as air to have been compressed
to a high pressure PA, and to have had the heat developed by com-

pression removed by circulating water or otherwise, so that its

temperature is that of the surroundings. Call this initial tem-

perature Tx . Let the compressed gas at that temperature enter an

apparatus in which it expands irreversibly (through an expansion-
valve or plug or constricted orifice of any kind) to a much lower

pressure PB , at which pressure it leaves the apparatus. If the gas
were an ideal perfect gas this irreversible expansion would cause no
fall in temperature. In a real gas there is in general a fall, from

T! to some lower temperature T'. The fall T^ - T measures the

Joule-Thomson cooling effect of the given drop in pressure. In

Joule and Thomson's experiments on air it was about a quarter
of a degree for each atmosphere of drop in pressure*.
The cooling effect of the drop in pressure may be measured by

the quantity of heat which would have to be supplied to the gas,

per lb., after expansion, to restore it to tWe temperature at which

it entered the apparatus. Call that quantity Q : then

where Kv is the mean specific heat of the gas between these tem-

peratures, at the lower pressure PB .

We may define Q as the quantity of heat which each pound of the

gas would have to take up within the apparatus if its temperature
on leaving the apparatus were made equal to its temperature on

entry. It measures the available cooling effect due to each pound
of gas that passes through the apparatus.

*
According to their results for air, the fall of temperature expressed in degrees

centigrade is

0-275 (PA - ^

where PA and PB are the pressures in atmospheres.
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So long as there is no communication of heat to the gas, by
thermal interchange or otherwise, while it is passing through the

apparatus, the gas simply passes off at a lower temperature T''.

The gas that passes off has the same total heat / as the gas that

enters (Art. 72), though its temperature has dropped. If we were

to restore it to the original temperature T before letting it pass

off, it would take away more total heat than it brings in, the differ-

ence being equal to Q. Its total heat / at exit would then be greater

than its total heat on admission by the quantity Q, though its

temperature would be the same. The existence of a Joule-Thomson

cooling effect in any gas depends on the fact that the total heat 1

is a function of the pressure : for a given temperature the total heat

is greater when the pressure is low.

Suppose now that there is a counter-current interchanger by
means of which the stream of gas which has passed the orifice takes

up heat from the stream that is on its way to the orifice, with the

result that the outgoing stream, before it escapes, has its tem-

perature restored to T or very near it. This is easily accomplished

by having, within the apparatus, a long approach pipe or worm

through which the compressed gas passes before it reaches the

orifice, and round the outside of which the expanded gas passes

away, so that there is intimate thermal connection between the

two streams. For simplicity we may assume the interchanger to

act so perfectly that when the outgoing gas reaches the exit it has

acquired the same temperature T as the entering gas. Each
Ib. of it will therefore have taken up a quantity of heat equal to

Q as defined above.

124. First Stage. Under these conditions the apparatus will

steadily lose heat at the rate of Q units for every pound of gas that

passes through. If we suppose the apparatus as a whole to be

thermally insulated against leakage of heat into it from outside,

there will consequently be a continuous reduction of the stock of

heat that is held by the pipes and the gas in them. The result is a

progressive cooling which constitutes the first stage of the action.

It may help to make the action clear if we draw up an account

of the energy received and discharged by the apparatus. Gas

enters at A (fig. 55) under the pressure PA and at the temperature
Tv Gas leaves the apparatus at B under the pressure PB and at

the same temperature T19 having taken up, through the action of

the interchanger, a quantity of heat equal to Q. The pipes and
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expansion orifice are not shown in the sketch : they are within the

enclosing case, which is assumed to be a perfect non-conductor of

heat. During the first stage of the action the stop-cock C is closed,

and all the gas that has gone in at A goes out at B; it is only by
the entr\r of gas at A and by its escape at B that energy enters

or leaves the apparatus.
Each Ib. of entering gas contains a quantity of internal energy

EA ,
and the work that is done upon it as it goes in is PAVA . Each

Ib. of outgoing gas contains a quantity of internal energy EB , and
does work, against external pressure, equal to PB VB . Hence, for

each Ib. that flows through, the net amount of heat which the

apparatus loses is

EB +PBVB -(EA + PA VA ), or IB -IA ,

But the amount so lost is Q, namely the heat that is required to

restore the gas to the temperature at which it makes its exit.

Hence Q = IB - IA .

Fig. 55

The contents of the apparatus become colder and colder in

consequence of this continued abstraction of heat. But it is im-

portant to notice that their fall in temperature does not affect

the value of Q. We assume that the action of the thermal inter-

changer continues to be perfect; in that case the exit temperature
will still be equal to the initial temperature Tl however cold the

interior becomes in the neighbourhood of the expansion-valve.

There will be no change in the value of either IB or JA ,
and conse-

quently no change in Q. The value of Q, as the above expression

shows, depends entirely on the conditions at A and at B; with

perfect interchange this means that it depends only on PA ,
PB , and

Tj. It is independent of any temperature conditions within the

apparatus. It is therefore not affected by the progressive cooling,

and retains the same value as the action proceeds*.

* It will be shown in Chapter VII that the quantity Q, which measures the

available cooling effect within the apparatus when the pressures PA and PB and

admission temperature TI are assigned, can be calculated if we know the coefficient
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This stage of progressive cooling continues until the temperature
of the gas at the place where it is coldest, namely on the low-

pressure side of the expansion-valve, falls not only below the critical

point, but to a value T2 which is low enough to let the gas begin

to liquefy under the pressure PB . In other words T2 is the boiling

point corresponding to PB. This is the lowest temperature that is

reached.

Fig. 56

Fig. 56 a. Ideal process of Regenerative Cooling.

A continuous gradient of temperature has now become estab-

lished along the flow-pipe within the apparatus from the point of

entrance, where it is Tl9 to the high-pressure side of the expansion-

valve, where it exceeds T2 by the amount of the Joule-Thomson

of expansion of the gas under constant pressure for various pressures, and also the

volume (per Ib.) for various pressures, at the temperature TI. Writing V for the

volume at any pressure, and ( -=
)

for the coefficient of expansion, namely the

rate of change of volume per unit of change of temperature when the pressure is

constant, we shall see there (Art. 182) that

;frsft->j"
the temperatures being taken as TI throughout.

Q may also be found experimentally, by observing the drop of temperature

TI - T' which takes place when the gas expands from PA to PB through a Joule-

Thomson orifice without any interchange of heat.
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drop. There is also a continuous gradient along the return pipe
from T2 ,

on the low-pressure side of the valve, to T1 at the exit.

The flow and return streams are in close thermal contact, and at

each point there is an excess of temperature in the flow which

allows heat to pass by conduction into the return, except at the

entrance where, under the ideal condition which we have postulated
of perfect interchange, the temperature of both flow and return

is 2V
This state of things is diagrammatically represented in fig. 56.

There the flow and return are represented as taking place in straight

pipes, one inside the other to provide for interchange of heat.

Entering along the inner pipe A the compressed gas expands

through a constricted orifice E (equivalent to an expansion-valve)
into a vessel from which it returns by the outer pipe B. The
vessel is provided with a stop-cock C by which that part of the fluid

which is liquefied can be drawn off when the second stage of the

operation has been reached. In the temperature diagram (fig. 56 a)

MN represents the length of the interchange^ DM is the initial

(and final) temperature Tl9 GN is T2 ,
and FG is the Joule-Thomson

drop. DF is the gradient for the flow-pipe, and GD for the return.

125. Second Stage. When this gradient has become established

the gas begins to liquefy, the apparatus does not become any colder,

and the action enters on the second stage, which is one of thermal

equilibrium. A certain small fraction of the gas is continuously

liquefied and may be drained off as a liquid through the stop-cock

C. The larger fraction, which is not liquefied, continues to escape

through the interchanger and to leave the apparatus at the same

temperature as before, namely the temperature T1 equal to that

of the entering gas. Call this unliquefied fraction q; then 1 q

represents the fraction that is drawn off as a liquid at the tempera-
ture T2 . Since the apparatus is now neither gaining nor losing

heat on the whole, its heat-account must balance; from which

where IA is the total heat per Ib. of the gas entering at A, IB is the

total heat per Ib. of the gas leaving at /?, and Ic is the total heat

per Ib. of the liquid leaving at C. In this steady working the

aggregate total heat of the fluid passing out is equal to that of the

fluid passing in. The fluid, as a whole, takes up no heat in passing

through the apparatus.
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Suppose now that the liquid leaving at C were evaporated at

its boiling point T2 ,
and then heated at the same pressure from T2

to T
lt

The heat required to perform that operation would be

(1
-

q) (L + Kv (2\
-

T,)].

But that hypothetical operation would result in this, that the

whole of the fluid then leaving the apparatus would b restored

to the temperature of entry, namely T
19 since the part which

escapes at B is already at that temperature. Hence the heat re-

quired for it is equal to the quantity Q as defined in Art. 123. We
therefore have

from which 1 - q
=

r
.L+ K,9 (l l

-r- 1 2)

This equation allows the fraction that is liquefied to be calculated

when Q is known*. The fraction so found is the ideal output of

liquid, for we have assumed that there is no leakage of heat from

without, and that the action of the interchanger is perfect in the

sense that the outgoing gas is raised by it to the temperature of

entry. Under real conditions there will be some thermal leakage,

and the gas will escape at a temperature somewhat lower than

Tl : the effect is to diminish the fraction actually liquefied.

The fraction 1 q is increased by using a larger pressure-drop.
It is also increased by reducing the initial temperature T ; thus

the output of a given apparatus can be raised by using a separate

refrigerating device to pre-cool the gas. Pre-cooling is indispensable
if the method is to be applied to a gas in which, like hydrogen, the

Joule-Thomson effect is a heating effect at ordinary temperatures,
but becomes a cooling effect when the initial temperature is suffi-

ciently low.

126. Linde's Apparatus. The principle of regenerative cooling

described in the preceding article was first successfully applied

by Linde in 1895 for the production of extremely low temperatures,
and for the liquefaction of air, by means of an apparatus shown

diagrammatically in fig. 57. It consists of an interchanger CDE
formed of two spiral coils of pipes, one inside the other, enclosed

in a thermally insulating case. A compressing pump P delivers

air under high pressure through the valve H into a cooler J where

* The specific heat of the vapour is here treated as constant from T2 to T
lf

which is very nearly true at low pressures.
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the heat developed by compression is removed by water circulating
in the ordinary way from an inlet at K to an outlet at L. The

highly compressed air then passes on through the pipe BC to the

inner worm and after traversing the worm it expands through the

throttle-valve R into the vessel T, thereby suffering a drop in

temperature. Then it returns through the outer worm F and, being
in close contact with the inner worm, gives up its cold to the gas
that is still on its way to expand. Finally it reaches the com-

pression cylinder P through the suction-valve G, and is compressed
to go again through the cycle. During the first stage it simply goes
round and round in this way; but when the second stage is reached

and condensation begins, the part that is liquefied is drawn off at V
and the loss is made good by pumping in more air through the stop-
valve at A by means of an auxiliary low-pressure pump, not shown

Fig. 57. Linde's Regenerative Apparatus.

in the sketch, which delivers air from the atmosphere to the low-

pressure side of the circulating system.
Linde showed that by keeping this lower pressure fairly high, it

is practicable to reduce the amount of work that has to be spent
in liquefying a given quantity of air. He pointed out that while

the cooling effect of expansion depends upon the difference of

pressures PA and PB on the two sides of the expansion-valve, the

work done in compressing the air in the circulating system depends
on the ratio ofPA to PR . It is roughly proportional to the logarithm
of that ratio, for it approximates to the work spent in the isothermal

compression of a perfect gas, which (by Art. 28) is RT loge r,

where r is the ratio of the volumes or of the pressures. If, for

example, PA is 200 atmospheres and PB is one atmosphere, the

cooling effect is proportional to 199 and the work of the compressing

pump is roughly proportional tojog 200. If on the other hand the

E. T. 12
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back pressure PR is 50 atmospheres, the cooling effect is propor-
tional to 150 and the work of the main compressing-pump to log 4.

The cooling effect is reduced by only about one-fourth, while the

work is reduced by nearly three-fourths. After allowing for the

extra amount of work that has, in the second case, to be spent on

the auxiliary pump in supplying air at 50 atmospheres to replace

the fraction which is liquefied, there is still a marked advantage,

in point of thermodynamic efficiency, in using a closed cycle with

a moderately high back pressure.

The Linde process is employed on a commercial scale to liquefy

air as a first step in the separation of its constituents. A Linde

plant at Odda, in Norway, liquefies about one hundred tons of

air daily for the purpose of supplying nitrogen for use in the manu-

facture of cyanamide, an artificial nitrogenous fertilizer which is

formed by passing gaseous nitrogen over hot calcium carbide. The

method by which the constituent gases are separated will be

presently described.

127. Liquefaction of Air by Expansion in which Work is

done. Claude's Apparatus. The drop in temperature which a

gas undergoes in passing from a region of high pressure to a region

of low pressure would be greater if the process were conducted

reversibly, as by expansion in a cylinder in which the gas does

mechanical work. We should still have the small Joule-Thomson

cooling effect, but in addition there would be the (generally much

larger) cooling effect that is due to the energy which the gas loses

in doing work. Early attempts made by Siemens, Solvay ,
and others

to reach very low temperatures by applying a thermal interchanger
to an expansion cylinder, failed mainly because the cylinder soon

reached a temperature at which the lubricant froze. This difficulty

was successfully overcome in 1902 by Claude, who found that the

difficulties attendant on expansion in a working cylinder down to

a temperature below the critical point of air could be overcome by

using certain hydrocarbons as lubricants. A hydrocarbon such as

petroleum-ether does not solidify but remains viscous at a tem-

perature as low as 160 C. Using a lubricant of this kind Claude

succeeded, as an experimental tour de force, in liquefying air in

an expansion cylinder furnished with a regenerative counter-

current thermal interchanger : the expansion cylinder simply

taking the place of the expansion-valve in an apparatus such as that

of Art. 126. He also found that the liquid, once it begins to form,
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serves itself as a lubricant, and no other need then be supplied.

Under these conditions, however, there is little if any advantage
in using an expansion cylinder, for the volume of the fluid at the

lowest extreme of temperature is so small as to make the work of

expansion insignificant. There is not much additional cooling: at

the same time it is far less practicable to secure thermal insulation

with an expansion cylinder than with a Joule-Thomson orifice.

Claude subsequently obtained a more economical result by giving

the apparatus the modified form shown in fig: 58. In that arrange-
ment part of the compressed air expands in a working cylinder to

a temperature which may be just below the critical temperature,
and the air which is cooled (but not liquefied) by that expansion
is used as a cooling agent on the remainder of the air, with the

Fig. 58. Claude's method.

result that some of the latter is liquefied under the higher pressure

at which it is supplied. The supply comes in, at a pressure of 40

atmospheres or so, through the central pipe of the counter-current

interchanger M. Part of it passes into the expansion cylinder D
where it expands doing work, and is then discharged through the

condensing vessel L, where it serves as the cooling agent to maintain

a temperature somewhat lower than 140 C., the critical tem-

perature of air. The remainder of the compressed air enters the

tubes of L and is condensed there, under pressure, dropping as a

liquid into the chamber below from which it can be drawn off.

In a further development of this invention Claude made the

expansion compound, and caused the expanded gas to act as a

cooling agent after each stage, becoming itself warmed up in the

process. The expanded gas is thereby prepared to suffer further

122
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expansion without an excessive fall of temperature. During its

expansion the gas in the cylinder is not so near the liquid state

as to make expansion in a working cylinder of little use. The

arrangement with compound expansion is illustrated in fig. 59. Air

under pressure enters, as before, through the central pipe of M.
Part of it goes to the first expansion cylinder A, does work there, and

proceeds at reduced pressure, and at a temperature below the critical

point, through the outer vessel of the condenser L19 in the inner tube

of which some of the compressed air is being condensed. This warms

up the expanded air- to some extent, and it then passes on to

complete its expansion in B, which again brings its temperature
down sufficiently to allow it to act as condensing agent for the

Eig. 59. Claude's later method with compound expansion.

remaining portion of the air under pressure, in the second con-

denser L 2 . This division of the expansion into two (or it may be

more than two) stages is equivalent to making the process as a

whole more nearly isothermal, so that the air need not at any stage

deviate very widely from a temperature which is just sufficiently

below the critical point to allow liquefaction to go on under the

pressure at which the air is supplied*.

128. Separation of the Constituents of Air. The lique-

faction of air enables the constituent gases to be separated because

* G. Claude, Comptes Rendus, 11 June 1906, and 22 Oct. 1906. See also his book

on Liquid Air, Trs. Cottrell, 1913. An article by Professor E. Mathias in Revue

generate, des Sciences, 15 Sept. 1907, contains an interesting account of the whole

subject of the industrial liquefaction of air.
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in re-evaporation they have different boiling points. The boiling

point of nitrogen, under atmospheric pressure, is about 195 C.

or 13 lower than that of oxygen, which is 182 C. When a quan-

tity of liquefied air evaporates freely both gases pass off, but not

in the original proportion in which they are mixed in the liquid.

The nitrogen evaporates more readily, and the liquid that is left

becomes richer in oxygen as the evaporation proceeds. This

difference in volatility between oxygen and nitrogen makes it

possible to carry out a process of rectification analogous to the

process which is used by distillers for extracting spirit from the

"wash" or fermented wort, which is a weak mixture of a ohol

and water, by means of a device known as the Coffey Still.

In the still patented by Aeneas Coffey in 1880 there is a rectifying

column consisting of a tall chamber containing many zig-zag
shelves or baffle plates. The wash enters at the top of the column

and trickles slowly down, meeting a current of steam which is

admitted at the bottom and rises up through the shelves. The

down-coming wash and the up-going steam are thereby brought
into close contact and an exchange of fluid takes place. At each

stage some of the alcohol is evaporated from the wash and some of

the steam is condensed, the heat supplied by the condensation of

the steam serving to evaporate the alcohol. The condensed steam

becomes part of the down-coming stream of liquid : the evaporated
alcohol becomes part of the up-going stream of vapour. Finally
at the top a vapour comparatively rich in alcohol passes off: at

the bottom a liquid accumulates which is water with little or no

alcohol in it. A temperature gradient is established in the column :

at the bottom the temperature is that of steam, and at the top
there is a lower temperature approximating to the boiling point
of alcohol. The wash enters at this comparatively low temperature,
and takes up heat from the steam as it trickles down.

Linde applied the same general idea in a device for separating
the less volatile oxygen from the more volatile nitrogen of liquid

air. In this device, the primary purpose of which was to obtain

oxygen, there is a rectifying column down* which liquid air trickles,

starting at the top at a temperature a little under 194 C. or

79 absolute, which is the boiling point of liquid air under at-

mospheric pressure. As the liquid trickles down it meets an up-going
stream of gas which consists (at the bottom) of nearly pure oxygen,

initially at a temperature of about 91 absolute, that being the

boiling point of oxygen under atmospheric pressure. As the gas
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rises and comes into close contact with the down-coming

liquid, there is a give and take of substance: at each stage

some of the rising oxygen is condensed and some of the nitrogen
in the down-coming liquid is

evaporated; the liquid also be-

comes rather warmer. By the

time it reaches the bottom it

consists of nearly pure oxygen:
the nitrogen has almost completely

passed off as gas, and the gas
whr t passes off at the top con-

sk s very largely ofnitrogen. More

precisely it consists of nitrogen
mixed with about 7 per cent, of

oxygen : in other words, out of the

whole original oxygen content of

the air (say 21 per cent.) two-

thirds are brought down as liquid

oxygen to the bottom of the

column, while one-third passes

off unseparated along with all

the nitrogen. The oxygen that

gathers at the bottom is with-

drawn for use, and is evaporated
in serving to liquefy fresh com-

pressed air, which is pumped into

the apparatus to undergo the pro-

cess of separation. The cold

gases that ^ire leaving the ap-

paratus, namely the oxygen
which is the useful product, and

the nitrogen which passes off as

waste gas at the top of the column,
are made to traverse counter-

current interchangers on their

way out, so as to give up their cold

to the incoming compressed air
Fig 60 Linde

>

s apparatus of 1902 for

that is on its way to be liquefied. extracting oxygen by rectification.

In the diagram, fig. 60, these counter-current interchangers are

omitted for the sake of clearness, but the essential features of the

condensing and rectifying apparatus are shown. The figure is
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based on one given in Linde's patent of June 1902, which describes

the invention by which a process of rectification has been success-

fully applied in the extraction of oxygen from air.

There A is the rectifying column, consisting in this instance of

a vertical chamber stacked with glass balls, through the interstices

of which the liquid trickles down. The lower part B contains an

accumulation of fluid which, when the apparatus has been at work

long enough to establish a uniform regime, consists of nearly pure

liquid oxygen. Compressed air, which has been cooled by passing

through a counter-current interchanger, enters at C, becomes

liquefied in the vertical condenser pipes D, which are closed at

the top, and drops down into the vessel E. It gives up its latent

heat to the oxygen in B, thereby evaporating a part of that, and

so supplying a stream of gaseous oxygen which begins to pass up
the rectifying column. On its way up, this stream of gas effects

an exchange of material with the liquid air which is trickling

down: gaseous oxygen is condensed and returns with the stream

to the vessel B, while nitrogen is evaporated and passes off at the

top of the column, at N
9
mixed with some oxygen. The escaping

gas goes through an interchanger, taking up heat from the in-

coming compressed air.

The accumulation of nearly pure liquid oxygen inB overflows into

the lower vessel F, where a supplementary supply of compressed air

entering at G is employed to evaporate it by means of a similar

arrangement of condenser tubes open at the bottom and closed

at the top, this air becoming itself condensed in the process, and

falling as a liquid into the vessel H. The liquefied air from E
and from H is still under pressure: it passes up through expansion-
valves K to the top of the rectifying column, where it is discharged

over the glass balls at a pressure not materially above that of the

atmosphere. This secures the necessary difference in tempera-
ture between the bottom and top of the column. The com-

pressed air plays the part of heater and evaporator of the liquid

oxygen at the bottom, at the comparatively high temperature of

about 91 absolute, before it undergoes rectification. In other words,

it not only corresponds to the "wash" of the Coffey still, but it

also serves as the equivalent of the heater by which the liquid at

the bottom of the still gives off an upward current of steam.

Gaseous oxygen, the desired product in this case, passes off at 0,

and like the waste gas, consisting mainly of nitrogen, which escapes

atA7
,
it goes through a counter-current interchanger, taking up heat
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from the compressed air which enters partly at C and partly at G.

It is the waste gas in this process that forms the analogue of the

rectified spirit which is the useful product of the Coffey still.

At first, when the machine begins working, the air is highly com-

pressed, but after the operation has gone on for some time, and a

steady state is approached, a much lower pressure is sufficient. It

must be high enough to make the air liquefy at the temperature of

the liquid oxygen bath, say 91 absolute, and in practice it is kept
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129. Baly's Curves. The action of the rectifying column will

be made more intelligible if we refer to the results of experiments

published in 1900 by Baly*, which deal with the nature of the

evaporation in mixtures of liquid oxygen and nitrogen. Given a

mixture of these liquids in any assigned proportion, equilibrium

between liquid and vapour is possible only when the vapour
contains a definite proportion of the two constituents, but this

proportion is not the same as that Jn the liquid mixture. Say for

example that the liquid mixture is half oxygen and half nitrogen,

then according to Baly's experiments the vapour proceeding from

such a mixture will consist of about 22 per cent, of oxygen and

78 per cent, of nitrogen. With these proportions there will be

equilibrium. If however a vapour richer than this in oxygen be

brought into contact with the half-and-half liquid, part of the

gaseous oxygen will condense and part of the liquid nitrogen
will be evaporated, until the proportion giving equilibrium is

reached. The curve, fig. 61
, shows, for each proportion in the mixed

liquid, what is the corresponding proportion in the vapour necessary
for equilibrium: in other words what is the proportion which the

constituents have in the vapour, when that is being formed by

evaporation of the mixed liquid, in the first stages of such an eva-

poration, before the proportion in the liquid changes. In this curve

the base-line specifies the proportion of oxygen in the liquid mixture,

from to 100 per cent., and the ordinates give the proportion of

oxygen in the corresponding vapour, when the vapour is formed

under a pressure equal to that of the atmosphere. Much the same

general relation will hold at other pressures. It will be seen from

the curve that when the evaporating liquid mixture is liquid air

(oxygen 21 per cent., nitrogen 79 per cent.), the proportion of

oxygen present in the vapour that is coming off is about 7 per cent,

or a little less.

This is what occurs at the top of the rectifying column in the

apparatus of fig. 60. The liquid that is evaporating there is freshly

formed liquid air, and hence the waste gases carry off about 7 per

cent, of oxygen. Coming down the column the liquid finds itself

in contact with gas containing more oxygen than corresponds to

equilibrium. Accordingly oxygen is condensed and nitrogen is

evaporated at each stage in the descent, in the effort at each level

to reach a condition of equilibrium between the liquid and the

vapour with which it is there in contact.

*
Baly, Phil. Mag., vol. XLIX, p. 517, 1900.
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Fig. 62 is another form of Baly's curve, the form, namely, in

which the results of the experiments were originally shown. There
the ordinates represent the absolute temperature (in centigrade
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degrees) at which, under atmospheric pressure, the mixed liquid
Kr

ils, and two curves are drawn which show by means of the scale

ve base-line the percentage constitution of (1) the liquid,

vapour, when the condition of equilibrium between liquid
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and vapour is attained*. A horizontal line drawn across the curves

at any assigned level of temperature shows the composition of

vapour and liquid respectively for that temperature, when the two
are in equilibrium. Taking an intermediate point between the top
and bottom of the rectifying column, and drawing the line for

the corresponding temperature, we should find the respective

compositions of liquid and vapour there to approximate to the

values found from the two curves, this approximation being closer

the more slowly the liquid trickles down, and the more intimate

the contact between liquid and gas.

If a similar condition of equilibrium holds at each stage in the

process of liquefying a mixture of the gases, these curves may also

be taken as showing what is the proportion of the constituents in

the mixed liquid at each stage while condensation of the mixed gas

proceeds. Thus when air containing 21 per cent, of oxygen begins
to liquefy, the liquid initially formed should, under equilibrium

conditions, be much richer in oxygen: the proportion of oxygen
in it, according to the curve, is 48 per cent.

These conditions are approximately realized when the process
known as "scrubbing" is resorted to in the liquefaction of air.

By this process, which will be presently described in the form in

which it has been practically carried out by Claude, a partial

separation between the two constituents is effected during the act

of liquefaction.

* The following figures are given
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130. Complete Rectification. In Linde's invention of 1902

the rectifying process is incomplete, for although the process yields

nearly pure oxygen it leaves a part of the oxygen to escape
in the waste gas and it does not yield pure nitrogen. In a commer-

cial process for the manufacture of oxygen this is of no consequence :

for the raw material costs nothing, and the nitrogen is not wanted.

But a modification of the process enables the separation to be

made substantially complete, should it be desired to complete it,

and allows approximately pure nitrogen to be obtained, as well as

pure oxygen.
The modification consists in extending the rectifying column

upwards and in supplying it at the top with a liquid rich in nitrogen.

A fractional method of liquefaction is adopted, which separates

the condensed material at once into two liquids, one containing

much oxygen and the other little except nitrogen. The latter is

sent to the top of the rectifying column, while the former enters

the column at a lower point, appropriate to the proportion it

contains of the two constituents. Practically pure nitrogen passes

off as gas at the top, and practically pure oxygen from the bottom.

Fig. 63 is a diagram showing this modified process in a form given
to it by Claude. The counter-current interchangers which are of

course part of the actual apparatus are omitted from the diagram.

Compressed air, cooled by the interchanger on its way, enters the

condenser at A. The condenser consists of two sets of vertical

pipes, communicating at the top, where they all open into the vessel

J5, but separated at the bottom. The central pipes, which open
from the vessel A, are one set : the other set form a ring round them

and drain into the vessel C. Both sets are immersed in a bath, S,

of liquid which, when the machine is in full operation, consists of

nearly pure oxygen. The condensation of the compressed air causes

this oxygen to be evaporated. Part of it streams up the rectifying

column Z>, to be condensed there in carrying out the work of

rectification and consequently to return to the vessel below. The

rest of the evaporated oxygen, forming one of the useful products,

goes off by the pipe E at the side. In these features the apparatus
is substantially the same as Linde's, but there is a difference in

the mode of condensation of the compressed air. Entering at A it

first passes up the central group of condenser pipes, and the liquid

which is formed in them contains a relatively large proportion of

oxygen. This liquid drains back into the vessel A, where it collects,

and the gas which has survived condensation in these pipes goes
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COMPRESSED
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Fig. 63. Claude's apparatus for the complete separation of oxygen and nitrogen.



190 THERMODYNAMICS [CH. iv

on through B to the outer set of pipes, is condensed in them, and

drains into the other collecting vessel C. It consists almost wholly

of nitrogen. Then the liquid contents of C are taken (through an

expansion-valve) to the top of the rectifying column, while those of

A enter the column lower down, at a level L, chosen to correspond

with the proportion of the constituents. The result is to secure

practically complete rectification, and the second product of the

machine commercially pure nitrogen passes off at the top

through the pipe N and may be collected for use.

The action in the central pipes of the condenser is to be inter-

preted in the light of Baly's curves. The first portions of the air

to be condensed trickle down the sides of these pipes and are
" scrubbed" by the air as it ascends : that is to say they are brought
into such intimate contact with the ascending air that a condition

of equilibrium between liquid and vapour is at least closely ap-

proximated to. The condition of equilibrium when gases of the

composition of air are being condensed requires, as we have seen,

that about 48 per cent, of the liquid should consist of oxygen*.

Accordingly the liquid which collects in the vessel A is of this

degree of richness, or near it. And by making the condenser pipes

long enough it is clear that little or no oxygen will be left to pass

over through B into the other pipes. It is true of course that in

the upper parts of the central pipes the liquid that is formed con-

sists largely of nitrogen, but as this trickles down the pipe in which

it has been condensed there is a give and take between it and the

ascending gas, precisely analogous to that which occurs in a rectify-

ing column, and when the liquid reaches the bottom it has been so

much enriched in oxygen as to be nearly or completely in equili-

brium with the gaseous air, and therefore contains about 48 per cent.

When the 48 per cent, liquid from A is discharged through

an expansion-valve into the rectifying column at L, it produces an

atmosphere which has the composition of air (21 per cent, of

oxygen). Hence the part of the column which extends above this

point has for its function to reduce the percentage of oxygen in

the ascending gas from 21 per cent, to nil, and this is done in the

second stage of rectification, by means of the liquid from C which

consists almost wholly of nitrogen f.

* That proportion, as has been pointed out in speaking of Baly's curves, relates

to experiments made at atmospheric pressure. At the higher pressure under which

condensation takes place in Claude's apparatus it may not be exactly the same.

f For further particulars of some of the subjects treated in this Chapter reference

should be made to the author's book on The Mechanical Production of Cold.



CHAPTER V

JETS AND TURBINES

131. Theory of Jets. We have now to consider the manner
in which a jet is formed in the discharge, through an orifice, of steam

or any other gas under pressure. To simplify matters it will be

assumed that the fluid takes in no heat and gives out no heat to

other bodies during the operation; in other words that the jet is

formed under adiathermal conditions. Suppose a gas to be flowing

through a nozzle or channel of any form, from a region where the

pressure is relatively high to one where it is lower. Each element

of the stream expands, and the work which it does in expanding

gives energy of motion to the

element in front of it. The whole

stream therefore acquires velocity

in the process and also increases

in volume. Let A and B (fig. 64)

be imaginary partitions, across

which it flows, taken at right angles
to the direction of the stream lines,

A being in the region of higher F -

64

pressure. Let Pa be the pressure
at A, va the velocity there, and Va the volume which unit

quantity of the gas has as it passes the imaginary partition at A.

Similarly let Pb ,
vb and Vb be the pressure, velocity, and volume of

unit quantity at B. Let Ea and Eb be the internal energy of the

gas at A and B respectively. In flowing from A to B the velocity

changes from va to vb and there is consequently a gain of kinetic

energy amounting, per unit of mass, to -
.

Each unit quantity of gas that enters the space between A and
B has work done upon it by the gas behind, amounting to PaVa .

In passing out of this space at B it does work on the gas in front

amounting to PbVb . In flowing from A to B it loses internal

energy amounting to Ea
- E

b . Hence by the principle of the
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conservation of energy, since by assumption no heat is taken in or

given out, 2 _ v 2
6

^r
= Ea -Eb + Pa Va -Pb Vb ............ (1).

But Ea + PaVa is Ia> the total heat at A, and Eb + PbF6 is Ib>

the total heat at B, and the equation may consequently be written

2g
"> ..................... '

The gain in kinetic energy is therefore equal to the loss of total

heat, or what is commonly called the "heat-drop." We are

treating E and / as if they were expressed in work units : when ex-

pressed in heat units they have to be multiplied by the mechanical

equivalent J.

The equation applies as between any two places in the flow,

and taking the process as a whole, from the initial condition in

which the velocity is v1 and total heat I1 to the final condition in

which the velocity is v2 and total heat /2 we have

r-A-
In many practical cases the initial velocity is zero or negligibly

small, and then vz

where v is the velocity acquired in consequence of the heat-drop.
This is the fundamental equation from which to calculate the

velocity which an expanding fluid acquires in a jet, starting from

rest.

So far there has been no assumption as to absence of losses

through friction or eddy currents. If we assume, as an ideal case,

that in the formation of the jet the fluid is expanding under such

conditions that there is no conduction of heat to or from or within

the fluid and also no dissipation of energy through friction or

eddies, the heat-drop in the equation

is that which occurs in expansion with constant entropy. Wr

e have

already seen (Art. 80) that this heat-drop is equal to the area

ABCD of the ideal indicator diagram (fig. 65) for adiabatic ex-

eP\

pansion from the initial to the final state, or I VdP.
J p.2

Hence ft
- ^ = ^^ AECT> =

f
'VdP (5).
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This result might also be inferred from the fact that, under the
assumed conditions, the gas is

doing all the work of which it is A_

ideally capable, as it expands from

the first to the second state, in giving
kinetic energy to its own stream.

The gain of kinetic energy is, there-

fore, equal to the area of the ideal
Fig 65

indicator diagram.
Assume that we may, with sufficient accuracy, express the ex-

pansion in the ideal indicator diagram by a formula of the type
pym = constant. Then the area of the diagram, namely

VdP = ??-- (R V, - P. Fo)m 1 A & '

Hence when the expanding fluid starts from rest, at pressure Pl ,

to form a jet, we have

v2 m=

=^^L ] -w 'J
PiFi -

as an equation from which to find the velocity v when the pressure
has fallen to any lower pressure P, under the assumed conditions of

flow without friction or eddies and with no conduction of heat.

Equation (6) is a particular case of Equation (4), namely the case

where the expansion is isentropic and where the relation of pressure
to volume in isentropic expansion admits of being expressed by
the formula PVm = constant.

132. Form of the Jet (De Laval's Nozzle). As expansion of

the fluid in a jet proceeds, the volume and velocity both increase.

It is easy in frictionless adiabatic flow to calculate both, and in

that way to determine the proper form to give to the nozzle or

channel, to make provision for the increased volume, having regard
to the increased velocity. At any stage the area of cross-section

of the channel required for each Ib. of fluid discharged is equal to

the volume per Ib. divided by the velocity. It is convenient to

reckon the area of section per unit of mass in the discharge, and

afterwards multiply by the number of Ibs. or kilogrammes.

E.T. 13
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Let M represent the discharge, namely the mass which passes

through the nozzle per second, X the area of cross-section of the

stream at any part of the nozzle, v the velocity there, and V the

volume of the fluid there (per unit of mass); then

vX X VM = and = .V M v

On making the calculation for a gaseous fluid starting from rest

and discharged into a region of much lower pressure, it will be

found that in the earliest stages the gain of velocity is relatively

great, but as expansion proceeds the increase of volume outstrips

the increase of velocity. The result is that the ratio of volume to

velocity at first diminishes, passes a minimum value, and then

increases; and hence the channel to be provided for the discharge,

after passing a minimum of cross-section, expands in the later

stages. The proper form for the nozzle, to allow the heat-drop

corresponding to a large drop in pressure to be utilized as fully as

possible in giving kinetic energy to the stream, is therefore one in

which the area of section at first contracts to a narrow neck or

"throat" and afterwards becomes enlarged to an extent that is

determined by the available fall of pressure.

It is on this principle that De Laval's "convergent-divergent"
nozzle /fig. 66) is designed. The throat, or smallest section, is ap-

proached through a more or

less rounded entrance which

allows the stream lines to con-

verge, and from the throat out-

wards to the discharge end the

nozzle expands in any gradual

manner, generally in fact as a simple cone, until an area of section

is reached which will correspond to the proper area of discharge
for the final volume and velocity, the values of which depend

upon the final pressure..

The divergent taper from the throat onwards is made sufficiently

gradual to preserve stream-line motion as completely as is practic-

able, and so avoid the formation of eddies which would dissipate

the kinetic energy of the stream. A very short rounded entrance

to the throat is sufficient to guard against eddies in the convergent

portion of the stream, but in the divergent portion a much more

gradual change of section is required. The nozzle shown in the

figure was designed for an initial pressure of 250 pounds per

sq. inch and a back pressure of about Ij pounds. By the back
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pressure is meant the pressure in the space into which the fluid

is discharged.

In the design of such a nozzle the purpose is (1) to make the

discharge have a given value, and (2) to give the stream as high
a final velocity as possible by utilizing completely the energy of

the fluid in expanding down to the back pressure. The data for the

design are the initial pressure, the back pressure, and the intended

amount of the discharge. It will be shown as we proceed that the

area of section at the throat depends only on the initial pressure
and the intended discharge; and that the enlargement from the

throat to the final section depends further on the back pressure

against which the stream is to escape.

At any place in the nozzle the discharge per unit area of cross-

section is

At the throat, where the cross-section is least, this is a maximum.
Consider now the ideal case of isentropic expansion in a nozzle

when the fluid is one for which PVm is constant during such ex-

pansion. Equation (6) is then applicable. The velocity at any
point, the pressure there having fallen to P, is

/

and the volume is V = V
l (

Hence for the discharge per unit area of section at the place where

the pressure is P, we have

m - 1

This may be applied to calculate the proper section X for a given

discharge M when the pressure has fallen from the initial pressure

PI to any assigned lower pressure P. For the purpose of designing
a nozzle there are only two places where this calculation has to be

made, namely at the throat, and at the end where the fluid escapes

against the assigned back pressure. When the throat-section X
t

and the final section Xf have been calculated, a suitable form for the

nozzle is readily drawn; any smooth curve will serve for the con-

vergent entrance, and any conical taper may be selected for the

divergent extension from the throat to the end, provided it is

neither so abrupt as to interfere with stream-line flow, nor so

132
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gradual as to make the nozzle unduly long and thereby introduce

unnecessary friction.

To calculate the final section Xf which will allow the energy of

the fluid to be fully utilized by expansion down to the assigned
back pressure, that pressure is to be taken for the value of P in

Eq. (7). To calculate the section at the throat the pressure there

has first to be found. The pressure at the throat is determined by
the consideration that the discharge per unit of section (M/X) is

there a maximum. If the expression for M/X in Eq. (7) is differ-

entiated with respect to P/Pj and the differential written equal to

zero, the resulting value of P/Pt w
r
ill be that for which M/X is a

maximum ; in other words it will be the value of P
tjPl ,

where P
t

is the pressure at the throat.

Eq. (7) may be written

M 2gm Pl /PN /P
ar

'

V.irn PW \ft/ uv
The condition for a maximum is found by differentiating the

quantity under the second root :

m

2 (~

p
from which

Further, by substituting this in Eq. (6a), we have for the velocity

" aiethro"

The volume (per Ib.) of the fluid at the throat is

By combining these an equation is obtained for the discharge

per unit of cross-section at the throat,

X
t V

t m+l (m+\)Vl

'

From this equation the cross-section at the throat is found

which will give an assigned discharge when the initial pressure is

known. The ratio of the cross-section at any place, where the
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pressure is P, to the cross-section at the throat, is readily found

from Eq. (7 a) :

_ m+l

ni + l
.(12).

This expression is convenient in determining the proper amount
of enlargement of the nozzle from the throat to the end when the

back pressure is assigned.

133. Limitation of the Discharge through an Orifice of Given

Size. It follows from these equations that the discharge through
a given orifice under a given initial pressure P1 depends only on

the cross-section at the narrowest part of the orifice, and is indepen-
dent of the back pressure, provided the back pressure is not greater

than P
t as calculated by Eq. (8). By continuing the expansion in

a divergent nozzle after the throat is passed, the amount of the

discharge is not increased, but the fluid acquires a greater velocity

before it leaves the nozzle, because the range of pressure which is

effective for producing velocity is increased. To put it in another

way, we may say that the heat-drop down to the pressure at the

throat determines the amount of the discharge, and the remainder

of the heat-drop, which would be wasted if there were no divergent

extension of the nozzle, is utilized in the divergent portion to give

additional velocity to the escaping stream. This velocity is given
in a definite and useful direction, whereas if there were no divergent

extension of the nozzle the fluid, after leaving the

nozzle, would expand laterally, and its parts would

acquire velocity in directions such that no use could

be made of the kinetic energy so acquired.

Consider what happens with a nozzle such as that

of fig. 67, which has no divergent extension. Fluid

is expanding from a chamber where the pressure
is P1 into a space where the pressure is P2 .

Assume the back pressure P2 to be less than Pt as

calculated by Eq. (8). In that case the pressure in FiS- 67

the jet, where it leaves the nozzle, will be Pt ,
and the further

drop of pressure to P2 will occur through scattering of the

stream. The discharge is determined by Eq. (11). It is not in-

creased by any lowering of the back pressure P2 ,
because any
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lowering of P2 does not affect the final pressure in the nozzle,

which remains equal to P
t

. Osborne Reynolds* explained the

apparent anomaly by pointing out that the stream is then leaving
the nozzle with a velocity equal to that with which sound (or any
wave of extension and compression) is propagated in the fluid, and

consequently any reduction of the pressure P2 cannot be com-

municated back against the stream : its effects are not felt at any

point within the nozzle. The pressure in the stream at the orifice

therefore cannot become less, however low the back pressure
P

2 may be. But if P2 is increased so as to exceed P
t ,

the lateral

scattering close to the orifice ceases, the velocity is reduced, the

pressure at the orifice then becomes equal to P2 ,
the discharge is

reduced, and its amount is to be calculated by writing P2 for P
inEq. (7) or (Id).

In applying these results to a nozzle of any form, the least

section is to be regarded as the throat: if there is a divergent
extension beyond the least section the amount of the discharge is

not affected, though the final velocity of the stream is increased.

Taking a nozzle of any form, and a constant initial pressure Pl ,
if

we reduce the back pressure P2 from a value which, to begin with,

is just less than Pl9 the discharge increases until P2 reaches the
m

value P! f
- -

J
. After that, any further reduction of P2 does

not increase the discharge. But the velocity which the fluid acquires
before it leaves the nozzle may then be augmented by lowering-

Pa and adding to the divergent portion of the nozzle. The nozzle

will be rightly designed when it provides for just enough expansion
to make the final pressure equal to the back pressure; the jet then

escapes as a smooth stream, and the energy of expansion is

utilized to the full. If the nozzle does not carry expansion far

enough; if in other words the final pressure exceeds the back

pressure, energy will be wasted by scattering. If on the other hand

the back pressure is too high for the nozzle, so that the nozzle

provides for more expansion than can properly take place, vibra-

tions are set up which cause some wastej". We shall now consider

the application of these general results to air and to steam.

134. Application to Air. In applying the above formulas to

* Phil Mag. March, 1886; Collected Papers, vol. n, p. 311.

f For experiments on the effects of nozzles which carry expansion too far, or

not far enough, see Stodola's book on the Steam Turbine.
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any permanent gas, such as air, the index m is y, the ratio of

the two specific heats (Art. 25). Its value for air may be taken as

1-40. Substituting this number in Eq. (8) we have, for a jet of

air expanding under isentropic conditions,

Hence if the jet is being delivered against a back pressure less

than 0-528Pj a divergent extension of the nozzle is required to

give the greatest possible velocity to the issuing stream, though
the quantity delivered will be the same as that which would be

delivered against a back pressure of 0-528P1 . If the back pressure
be increased it must exceed 0-528P1 before there is any diminution

in the discharge.

As a numerical example, suppose that air, with an initial pressure
of 300 pounds per sq. inch, is discharged through a convergent-diver-

gent nozzle into the atmosphere, or against a back pressure of say
15 pounds per sq. inch. The pressure at the throat is 158-4 and,

since the final ratio of pressures is one to twenty, the ratio of the

final cross-section to the cross-section of the throat should, by

Eq. (12), be
Xf _ A/0-4019 - 0-3349 _
X*

~
VO'01385 - 0-00588

This is for the ideal case of isentropic expansion. Effects of friction

are disregarded; they will be considered in Art. 140.

135. Application to Steam. In applying the general equations
for isentropic expansion to steam, we have to distinguish between

the type of expansion which occurs in a jet and the type of expan-
sion which was treated of in Art. 78. In that article the expansion
was assumed to be isentropic (adiabatic); </

was constant. But Jt

was also assumed that at each stage in the expansion the fluid was

in thermal equilibrium; it therefore consisted of a mixture of

saturated steam with the proportion of water necessary to keep
the entropy constant. The expansion dealt with in that article

may be described as the equilibrium type of adiabatic or isentropic

expansion.
It is now recognized that the equilibrium type of adiabatic ex-

pansion does not occur in the formation of a steam jet. For

reasons which will be apparent as we proceed, the steam in the jet

is not a mixture of saturated vapour and water: it is more or less
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supersaturated when the equilibrium condition would be one of

wetness. At any stage of expansion, the steam, instead of being
in the stable state corresponding to its pressure, is in what is

called a metastable state, a state that cannot be permanent in any

vapour. In the metastable state the steam is supersaturated; it

may be completely dry, or it may have some water mixed with it,

but necessarily less than there would be in a stable mixture at

the same pressure. In other words a metastable state exists only
before the proper fraction of the vapour has become liquid. In

passing from the metastable state to the stable or equilibrium

state, at the same pressure, part of the vapour is condensed; heat

is accordingly given out, the temperature rises, and the entropy
of the fluid as a whole is increased.

If the steam is superheated to begin with, it behaves like a

gas in the initial stages of the expansion, and its equilibrium at

each stage is stable until it crosses the boundary or saturation line,

that is to say, until its temperature falls to a value which corre-

sponds to saturation at the pressure then reached. It is only in

further expansion, beyond that stage, that a metastable condition

can be produced. If the steam is initially saturated a metastable

condition is produced as soon as expansion begins.

According to Callendar's equation, the adiabatic expansion of

superheated steam follows the law (Art. 78)

P(V -b)
1

'

3 = const.,

where b is a small term representing the volume of water at C.,

namely 0-016 cub. ft. per Ib.

The same formula continues to apply in expansion beyond the

saturation line provided no water condenses out, that is to say,

provided the metastable condition of supersaturation is so com-

plete that the steam remains quite dry. It also applies, under the

same proviso, in the expansion of initially saturated steam.

The experiments of C. T. R. Wilson (already referred to in

Art. 79) have shown that in the absence of foreign nuclei, such as

dust particles, and of nuclei due to ionization*. water-vapour
does not condense when it is suddenly expanded until its pressure

is largely reduced, and then a cloud of small water-particles is

observed. Even then, however, the conditions are not those of

equilibrium, for when the expansion is continued a much denser

cloud, composed of many more particles, appears at a later stage

*
Wilson, Phil Trans. A, vol. 192, p. 403, and vol. 193, p. 289.
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Wilson's experiments were made by expanding air (or other gas)

saturated with water-vapour, but the general conclusion would no

doubt apply if water-vapour were expanded alone.

Given plenty of time, a condition of equilibrium would be

reached by condensation of part of the vapour on the walls of

the containing vessel, but in the very rapid expansion which occurs

during the passage of steam through a nozzle, condensation on the

inner surface of the nozzle can do little towards bringing it about.

The effects of surface condensation are insignificant. Hence in the

earlier stages of the expansion, as far as the throat and for some

way beyond it, steam behaves like the vapour in Wilson's experi-

ments before the cloud of water-particles appeared; it is super-

saturated and practically dry. This is true of steam that is initially

saturated, and a fortiori of steam that is initially superheated.
It follows, as Callendar has pointed out*, that in calculating the

discharge of steam through a nozzle with a given size of throat,

or the size of throat required for an assigned amount of discharge,

the proper formula to use, in the ideal case of isentropic expansion,
is that which refers to supersaturated, as well as superheated,

steam, namely P (V - b)
1

'3 = const.

The term b is relatively so small (except at very high pressure)

that it may as a rule be neglected, in which case the equations

already given will apply with the value 1-3 for the index m.

Thus if we take the formula as PV1 3 = constant (omitting b)

and apply it in Equation (8) to find the pressure at the throat, we
have p = 0-5457.

"i

If account were taken of the term b Callendarf shows that this

expression would become

^ = 0-5457 - 0-139 T*! .

*| "i

The small term depending on b amounts to less than 0-001 when

the initial pressure is even as high as 200 pounds per sq. inch : it

may, therefore, be omitted in any practical calculation ofP
t ,
and we

may take 0-545 as the ratio of throat pressure to initial pressure

for a steam jet. This applies whether the steam is saturated or

superheated to begin with
;
in either case the steam is dry when it

* "On the steady flow of steam through a nozzle or throttle." Proc. Inst. Mech.

Eng., Feb. 1915.

| Loc. cit. p. 64.
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passes the throat, and it will be supersaturated there unless there

has been much initial superheat.

Before it was recognized that a jet of initially saturated steam

is necessarily supersaturated when it passes the throat, it was

usual to calculate the throat pressure by taking, for the index m, a

value appropriate to the equilibrium type of adiabatic expansion.
The index 1*135 was generally taken as applicable*, with the result

of making Pt
= 0-577P1 . The equilibrium theory, which is cer-

tainly incorrect, therefore made the pressure in the throat too high ;

consequently the calculated discharge for a given size of throat

was too small. Experiments on the flow of steam through nozzles

were then found to give a discharge which was actually greater

than that which had been calculated for the ideal case of no

friction, although the effect of friction would be to make the

actual discharge less than the ideal discharge. When, however,

account is taken of the fact of supersaturation, by using 1-3 as

the index, the calculated discharge is brought into harmony with

the results of experiment. The revised theory gives a calculated

discharge slightly greater than the actual discharge, but with no

more difference than can properly be ascribed to friction.

Using the index 1-3 in Eq. (11) we have, for the discharge

per unit area of section at the throat,

M
2j< T3 l

8~' V *

= 3-786 . !. /?!v j

with pounds and feet as units throughout. With the units more

commonly employed this gives

M in Ib. per sec. /P
1
in pounds per sq. inch

~X
t
in sq. inches V Fx in cub. ft. per Ib.

as a formula for calculating the size of throat in a nozzle that is

supplied with either saturated or superheated steam. On the

equilibrium theory the numerical factor was 0-3003 instead of

0-3155. The corrected theory makes the discharge about 5 per

cent, greater.

After passing the throat some condensation no doubt occurs in

the form of a cloud of small water-particles, as in Wilson's experi-

ments. But the process takes time, and the whole time occupied

*
Compare, for example, the author's book on The Steam-Engine and other Heat-

Engines, Edition of 1910, p. 214.
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by the steam in passing through the nozzle is so short that it may
be doubted whether the condensation that occurs within the nozzle

does much to restore equilibrium. It is probable that the steam is

still to a large extent supersaturated when it escapes*. As regards
calculation of the final area of cross-section no great error will

be introduced if we consider the formula PF1 ' 3 to be applicable

throughout, and this formula will also give a good approximation
in estimating the final velocity of the jet.

136. Comparison of Metastable Expansion with Equili-
brium Expansion. It may help to make this matter intelligible

if we compare more fully the adiabatic expansion of steam under

such conditions that it is a wet mixture in a state of equilibrium

throughout, with its adiabatic expansion in a metastable state, in

which it remains completely dry. Let steam expand from an
e a

Volume

Fig. 68

initial state represented by a (fig. 68), in which we will assume it

to be dry and saturated. The curve ac represents adiabatic ex-

pansion of the type treated in Chapters II and III. At each stage
of that process the fluid is a mixture, in stable equilibrium, of

saturated vapour and water. Its volume at any pressure is deter-

mined by the method explained in Art. 78. The curve ab represents
metastable adiabatic expansion during which the steam remains

quite dry. Its form is determined by the equation
P (V -

j8)

1>3 = const.t
In both cases the expansion is isentropic and therefore

* Observations of the appearance of escaping jets support this conclusion. They
show that when steam initially dry (but not necessarily superheated) escapes from

a divergent nozzle in which it has expanded through a considerable ratio, no particles

of water become visible until the steam has travelled some distance from the

orifice. See Stodola, Zeitschrift des Vereines deutscher Ingenieure, 1913.

f Here, and on p. 204, the 6 of Calendar's equation is written /3, to avoid con-

fusion with the 6 of the diagram.
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But though the entropy and the pressure are the same at b as at c,

the fluid is intwo very different states. At b it is a homogeneous gas ;

at c it is a wet mixture. At c its temperature is the temperature of

saturation corresponding to its pressure there
; at b its temperature

is much lower, being determined by the equation P (V ]8)
= RT,

3^

which makes T/Pw = const. The volume is of course less at b.

The heat-drop from a to c is the thermal equivalent of the work

represented by the area eacf, and the heat-drop from a to & is the

thermal equivalent of the work represented by eabf, since both

types of expansion are adiabatic (see Art. 80). Hence the heat-

drop is less in the metastable expansion, by an amount that is

equivalent to the area abc, and the total heat at b is therefore

greater than the total heat at c by that amount.

The total heat Ic of the mixture at c, after equilibrium expansion,

may be found by the method described in Art. 89 or Art. 90.

The total heat /& in the metastable fluid at b may be found by

reckoning the heat-drop from the initial value Ia . Since

the volume at any stage in the metastable expansion is

10

Then, since Ia -Ib
= A (Area eabf)

= A VdP,

Ia -Ib
= APp (Va

-
0) dPIPu+ Al dP

j pb
q

Suppose now that after sudden expansion to b, along the curve

ab, the metastable fluid at b is allowed to become stable by partially

condensing under constant pressure, without any gain or loss of

heat. Its temperature will rise to the saturation value for that

pressure; it will, therefore, come to have the same temperature
as the mixture at c, but it will be somewhat drier, because its total

heat remains equal to 7& which, as we have seen, is greater than

the total heat I
c
of the mixture at c. Its volume will, therefore,

increase to a point d, which is beyond c.

If we write qc for the dryness at c of steam that has expanded in

a stable state, or state of equilibrium as a whole, from a to c, and



v] JETS AND TURBINES 205

qd for the dryiiess at d of steam that has expanded in a metastable

state to b and has subsequently attained equilibrium, by water

separating out at constant pressure, without loss or gain of heat,

the difference of total heats is

Id - I
c
- L (qd

-
qc ).

But Id = Ib and Ib
= Ic + A (Area abc).

Hence L (qd qc )
= A (Area abc).

In attaining equilibrium the fluid as a whole has gained entropy,
for

<f)d is greater than < & ,
or

cf>a ,
or < c in the equilibrium state, by

the amount that would convert the equilibrium mixture at c into

the equilibrium mixture at d. Thus

L(qd -qc )
A (Area, abc)

<f>d <Pb
=

7p T
-

L d d

This increase of entropy is not due to any gain of heat, for no heat

has been communicated to the fluid ;
it is due to the fact that there

has been an irreversible internal change in passing from the meta-

stable to the stable state.

We may think of the substance as undergoing a cycle of changes.

Starting from a let it expand suddenly and adiabatically to b;

then let it change from b to d at constant pressure without taking
in or giving out heat. Then let it be partially condensed, under

constant pressure, from d to c; during this stage a quantity of heat

must be given out equal to L (qd qc ). Then let it be slowly com-

pressed along the equilibrium adiabatic curve from c to a. This

completes the cycle. Work has been expended, equal to the area

abc, and a corresponding quantity of heat has been removed.

During its transition (along bd) from the metastable to the

stable state, the fluid passes through a state in which its pressure

and volume are the same as those of the equilibrium mixture at

c. But its state in other respects is by no means the same; it is

then a mixture of supersaturated vapour with some liquid, not in

equilibrium; its temperature is lower and its total heat is greater.

It is scarcely necessary to add that the remarks which were made

in Art. 75 about the specification of the state of a fluid assumed

that the fluid as a whole was in equilibrium. They do not apply
to metastable or transition states.

As a numerical illustration of the comparison made in this

article, assume dry saturated steam at 100 pounds per square inch

to expand adiabatically to 35 pounds. In the initial state the total
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heat is 661-82, the temperature is 164-28 C., and the entropy is

1-6082.

Suppose first that the expansion occurs without any water

separating out. We then have

Heat-drop Ia - Ib
= 42-62; 7&

= 619-20.

The temperature falls from 164-28 C. to 70-2 C.

The volume at b is 9-962 cubic feet.

If, after this expansion, the metastable vapour attains equi-

librium under the constant pressure of 35 pounds per square inch,

without gaining or losing heat, it changes into wet steam at a

temperature of 126-25 C. with a dryness qd = 0-9423 and a volume

V d
= 11-210 cubic feet. Its entropy increases to 1-6142.

Suppose, on the other hand, that adiabatic expansion from the

initial state at a occurs along the equilibrium curve ac. We then

Ic
= 616-80; heat-drop Ia - I

c
= 45-02.

At the end of the expansion the temperature has fallen only to

126-25, and the steam is a wet mixture with dryness qc
= 0-9377

and volume Vc
= 11-155.

The area abc, which represents work that is lost in the first

method of expansion, is equivalent to the difference between the

two heat-drops, namely 2-40 thermal units. The loss which results

from supersaturation is therefore nearly six per cent, of the avail-

able heat-drop. This loss of available energy, which occurs in a

nozzle as a result of supersaturation, is distinct from and addi-

tional to any loss that may occur through friction.

137. Measure of Supersaturation. Supersaturation involves

supercooling] that is to say, the vapour is cooled below the

saturation point corresponding to its pressure*. In the above

example the supercooling at b is 56, namely 126-2 - 70-2. Super-
saturation also involves an excess of pressure, and a corresponding
excess of density, when comparison is made between the pressure
or the density of a supersaturated vapour and that of a saturated

vapour at the same temperature. Thus at b in the example the

pressure of the supersaturated vapour is 35 pounds, whereas the

pressure of saturated steam at the same temperature is only 4-55

pounds. The ratio of densities is nearly the same as the ratio of

* This is called "undercooling" by some writers, but the word "supercooling"
is more appropriate as a description of cooling which is in excess of the normal

amount. The expanding vapour is cooled too much, not too little.
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pressures. Supersaturated vapour behaves like a gas with PV
nearly constant at constant temperature. Either ratio serves as

a convenient means of specifying the degree of supersaturation.

138. Retarded Condensation. Wilson found that when dust-

free air, saturated with water-vapour at 20 C., was adiabatic-

ally expanded by suddenly enlarging the vessel in which it was

contained, a cloud of fog particles did not form until the volume

of the vessel was increased in the ratio of 1-375 to 1. This corre-

sponds to a nearly eight-fold supersaturation of the vapour; that

is to say the ratio of the vapour densities, or of the actual vapour-

pressure after expansion to the pressure of saturated vapour at

the temperature reached by the expansion, was then nearly 8.

He found that the time-rate of the expansion might be varied

considerably without affecting this result; and also that when the

expansion was carried further a much denser fog cloud was

formed, containing many more particles. It follows from these

results that the growth of those fog particles which were first

formed did not go on fast enough to restore and maintain equi-
librium in the expanding fluid.

Condensation of expanding steam, by the formation of water

particles suspended in the vapour, is accordingly retarded in two
different ways. There is what may be called a static retardation

which does not depend on the time-rate of expansion, for the fog
does not begin to form until the volume has increased by a definite

and considerable amount. In addition, there is a time-lag which

prevents equilibrium from being reached while the expansion
continues. One reason for this is that the drops, once they have

formed, must have time to cool in order that they may continue

to act as centres for condensation. Hence the more rapid the

expansion the less near will be the approach to equilibrium at any
stage after condensation has begun.

It may be questioned whether, even in such slow expansion as

occurs in steam-engines of the cylinder and piston type, equi-
librium of the working fluid is approximately attained, notwith-

standing the assistance which is given by condensation on the

metal surfaces. It is quite possible that exhaust steam discharged
to the condenser may consist in part of supercooled vapour

though it also contains water*. Supersaturation in it would be
*
Compare Callendar and Nicholson, "On the Law of Condensation of Steam,"

Min. Proc. Inst. C. E. vol. xxxi, pp. 171-174, where experimental evidence is

mentioned of supersaturation during expansion and exhaust.



208 THERMODYNAMICS [CH.

readily detected if we could observe the temperature and compare
that with the pressure; but attempts to measure the temperature
of supersaturated steam directly, by means of a thermometer,

give fallacious results on account of condensation of water on

the bulb, or on the pocket in which it is enclosed, or on the

wire if it is an exposed thermometer of the resistance type. The

theory of ideal steam-engines using adiabatic expansion, which

was discussed in Chapter III, and from which efficiencies of the

"Rankine Cycle" were calculated, assumed a condition of equi-

librium on the part of the working fluid throughout the whole

operation. So far as there is any departure from that condition

in a real engine it makes for reduced efficiency: in this as well as

in other respects the real performance of an engine falls short of

the standard set by the Rankine Cycle.

In the more rapid expansion which steam undergoes while it

passes through a turbine of any type, it appears that the state is

far from being one of equilibrium even in the later stages. This

view is supported by an examination of the results of trials of the

performance of turbines, working under various conditions as to

exhaust pressure and initial superheat*.

The reason why drops of liquid do not form freely enough to

prevent an expanding vapour from becoming superheated will be

dealt with more fully in Appendix I. It will be explained there

that the static retardation referred to in this article occurs as an

effect of surface tension in the liquid.

139. Action of Steam in a Nozzle, continued. Returning
now to the action of steam in a

nozzle, we may note in passing /

how metastable expansion may L \l

be represented on the entropy- /

temperature diagram, or on /

the Mollier diagram of entropy /
and total heat. '/

Taking first the entropy- /
temperature diagram (fig. 69),

adiabatic expansion from an

initial state a where the pres-

sure is Pl5 to any lower pressure P2 ,
under equilibrium conditions, is

represented by the isentropic ac, where c is on the equilibrium line

* See H. M. Martin, "A New Theory of the Steam Turbine," Engineering,

vol. cvi. 1918.
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of constant pressure for a wet mixture at P2 . But if the expansion
is so sudden as to occur without condensation, it is represented by
the isentropic ab, where b is a point on the constant-pressure curve

bh for supersaturated vapour. That curve is a continuation, below

the boundary line ah, of the constant-pressure curve for super-
heated steam at P2 The ultimate state d which would be reached

if equilibrium were attained at constant / and constant P (as in

fig. 68, Art. 136), may be calculated, but it would serve no useful

purpose to attempt to represent on this diagram the irreversible

transition from state b to state d. The diagram shows clearly

the amount of supercooling cb.

In the
Icf) diagram (fig. 70) adiabatic expansion under equilibrium

conditions is again represented by the

isentropic line ac, the straight line ch

being the equilibrium line of constant

pressure for a wet mixture at pressure
P

2 - Adiabatic expansion under dry

supersaturated conditions is repre-

sented by ab; b is again a point on

the constant-pressure curve bh for

supersaturated vapour, which is a

continuation below the boundary
curve ah of the constant-pressure
curve for superheated steam at P2 .

Here we may determine d graphically

by drawing a horizontal straight line

through b to meet the equilibrium

constant-pressure line in d; the as-

sumption being, as before, that the

metastable vapour, after expansion,

ultimately comes to a stable state in d

without change of pressure and with-

out gain or loss of heat. The horizontal

straight line bd is a line of constant Fig. 70

total heat.

In these diagrams, as well as in fig. 68, we have assumed that

the steam is saturated to begin with. But the construction can

obviously be modified to apply to steam with initial superheat;
the point a may be anywhere in the constant-pressure line for Pl .

140. Effects of Friction. The losses that occur in jets or

turbines through friction and through supersaturation cannot be

E. T. 14
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separated in practice; but for the purpose of considering the

thermodynamic effect of friction it will be convenient to treat

that separately by imagining a case in which there is no super-
'

saturation. Such a case may be realized by using steam that is

highly superheated before expansion.
Let BC be the equilibrium adiabatic curve on the pressure-

volume diagram drawn, say,

for 1 Ib. of steam; then the

area ABCD (fig. 71) repre-

sents the amount of work

available for setting the steam

in motion as a jet, or for

getting mechanical effect out *

of it in any manner. The area ABCD is equivalent to the whole

heat-drop in adiabatic expansion under equilibrium conditions,

and measures the utmost work obtainable in any method of

utilizing the energy of the steam. It is on this basis that the work

of the Rankine Cycle (Art. 87) is calculated, which forms an ideal

standard with which the actual output of any steam-engine or

steam turbine may be compared. The actual output per Ib. of

steam is necessarily less in all cases than the area ABCD, and the

ratio of the actual output to that area is called the "efficiency

ratio
"
of the engine or turbine (Art. 94). In a steam jet the output

is the kinetic energy of the jet itself.

Consider now the effect of friction in a nozzle. Assume the

conditions to be adiathermal. If there were no friction (as well as

no supersaturation) the whole work represented by ABCD would

be utilized in giving velocity to the jet and would appear in it as

kinetic energy : in that case we should have

|-
= Area ABCD = I1

- /2 ,

where v is the velocity produced in the jet (starting from rest) and

/! J
2

is (in units of work) the heat-drop in adiabatic expansion.
But in any real nozzle there is some friction between the fluid

and the sides of the channel, and the flow is to some extent tur-

bulent, which means that eddies are formed in which there is

dissipation of the energy of flow through internal friction. We
shall apply the word friction broadly to all such losses. Their

effect is as follows. On discharge, or at any stage during the ex-

pansion, the jet has less kinetic energy, and therefore less velocity,

than it would have at the same stage if there were no friction.
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But its volume, after expansion to any given pressure, is greater
than it would be if there were no friction, because the energy that

has been dissipated through friction has taken the form of heat.

Thus up to any stage in the expansion there has been a loss of

kinetic energy, but there has also been a gain of heat. Conse-

quently the fluid has a greater volume than it would have in the

absence of friction. Moreover it has a greater stock of heat still

available for conversion into work in the later stages of expansion,

though that advantage cannot in any event compensate completely
for the loss of energy to which the increased stock of heat is due.

The heat that is restored at any stage as a result of friction has

lost availability for conversion into a mechanical form, for the

working substance then has a lower temperature than it had in

the earlier stages when the mechanical energy was generated out

of which that heat has been produced. Thus the net result is to

reduce the kinetic energy of the jet below the standard for no

friction, although part of the energy that has been lost through
friction up to any stage is recovered in subsequent stages.

The matter may be put in another way by saying that, in con-

sequence of friction, the fluid, after expansion to any pressure, has

suffered less drop of total heat than it would have suffered had

there been no friction. There is less mechanical effect; but there

is more heat left in it and its volume is greater, at each stage.

A progressive increase of entropy occurs during expansion, as a

result of the irreversible processes that are going on within the fluid,

whereas with no friction the entropy would be constant.

Taking the pressure-volume diagram, fig. 71, the effect of friction

is to give the actual expansion curve a form such as BC'
,
in which

the fluid has a greater volume at each stage than it would have in

the adiabatic process represented by BC. But though this ap-

parently implies a gain of work there is really a loss. The area

ABC'D does not measure an actual output of work, but an

artificial quantity which we may call the "gross apparent work."

Of this gross apparent work, a part is reconverted into heat, as

the expansion proceeds, namely a quantity sufficient to supply

enough heat at each stage to bring the expansion curve out from

BC to BC' . At the end of the operation the net amount of work

that is obtained, far from being greater than the adiabatic area

ABCD, is less than that area by the equivalent of /2

'

^2 where

I
2

'

is the total heat at C' and /2 is the total heat at C. In

other words it is less by the quantity of heat which would be
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required to change the condition of the expanded fluid at constant

pressure from C to C' .

To prove this we may think of what happens when the substance

is carried through an imaginary cycle. Starting from state B let

it expand, with friction, to C'. Let W be the net amount of work

actually done by it in this expansion. Then let it be changed from

state C f

to state C by removal of heat under constant pressure.

The quantity of heat so removed is I2

'

I2 . Then let it be com-

pressed adiabatically from C to B. The work W done upon it

during the compression (which is reversible) is the same as the

B

D C' G D C G

MM' MM'
Fig. 72 Fig. 73

work that would be done by it in adiabatic expansion. The cycle

is now complete, and by the conservation of energy we have

W + (//
- 12 )

- W = 0,

or W = W -
(//

- /2 ).

Hence also W f = I1 I2
-

(I2
f

/2 )
= ^ - /2 ',

or the net amount of work done is equivalent to the actual heat-

drop, in agreement with Art. 104.

Turning to the entropy-temperature diagram (fig. 72), the ideal

case, without friction, is represented by ABCD. Friction gives

the expansion curve some such form as BC', in which the entropy
increases progressively as the temperature falls. The area MBC'M'
represents the heat produced by friction ;

it is the heat required to
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give the expansion curve its actual form, and since no heat comes

from outside sources it is supplied at the expense of the kinetic

energy of the jet, by a conversion which is going on from the

beginning to the end of the expansion. The gross apparent work
is represented* by the area DABC', but from this we have to deduct

the area MBC'M' to find the net amount of work which finally

appears as kinetic energy in the jet. Thus allowing for friction the

net amount of work W is

Area DABC' - Area MBC'M',
or Area DABC - Area MCC'M'.

Hence the net loss, as compared with the work W that would be got
in adiabatic expansion (with no friction), is the area MCC'M'',

which is 72

'

/
2 ,

as above.

In fig. 72 the steam is initially saturated. If it be superheated,
let B be the initial condition

(fig. 73), AEB being the con-

stant-pressure line for P
l
and

DGC' the constant-pressure
line for P2 . Frictionless ex-

pansion (in equilibrium)

would be represented by BC.

The actual expansion is along
some such line as BC' . The

gross apparent work is repre-

sented by the area DAEBC'G,
and the net amount is found

by deducting from that the

area MBC'M', which repre-
Fig. 74

sents the heat developed through friction.
* The net effect of friction

is to deduct an amount of work equal to the area MCGC'M' from

the ideal performance DAEBC. This deduction is equivalent to

12

'

/2 as before.

For practical purposes it is more useful to represent the effects

of friction on the Mollier diagram of entropy and total heat (fig. 74).

Let B represent the initial state (in this example there is some

superheat; the broken line is the boundary curve). BC represents
an ideal adiabatic process of expansion and BC' the actual process.

I
l is the initial total heat, 7

2 the total heat that would be left in

the steam after adiabatic expansion to P2 ,
and I2

f

is the total heat

actually left in the steam after expansion to that pressure. The
*

Subject to the small correction mentioned in Art. 88.
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actual heat-drop, to which the net amount of work done is

equivalent, is BK or I1 I2 ', and the net loss resulting from friction

is#Cor/2'-/2 .

When the proportion is known beforehand of the frictional loss

KC to the total theoretically available heat-drop EC we can mark
the point K on the adiabatic line through B and draw a horizontal

line through K to find C'. When there are experimental data for

estimating the frictional losses in expansion down to various inter-

mediate pressures we can apply this construction to trace the actual

expansion curve BC' in a series of steps. The method is applied
to compound steam turbines, as a means of determining the state

of the steam after each of a series of stages in the passage of steam

through the turbine (Art. 145).

The student may find it useful to express the effect of friction

thus. When there is no friction, and the expansion is adiabatic

(Art. 80), dj ^ ydp
where dl represents (in units of work) the drop of total heat

which takes place while the pressure drops by dP. When there is

friction dl' = V'dP - dQ,

where dl
f

represents the drop of total heat as affected by friction,

and V the volume as affected by friction, dQ being the quantity
of heat generated by friction at the expense of the gross apparent
work and restored to the fluid as heat. Hence

dl-dl' = dQ- (V - V)dP.

Integrating between the limits (1) and (2)

A - A - Vi - 1) - - 1C7
' - V) dP,

where Q is the whole quantity of heat generated by friction.

Since I and // are the same, this gives

/2

' _ /2
= Q - Area BCC' of fig. 71,

which expresses the fact that in consequence of friction the net

loss of mechanical effect is equal to the heat generated, less the

work that is recovered through the augmentation of volume

which friction brings about.

141. Application to Turbines. The above discussion of the

effects of friction relates, in the first place, to jets, but it may
readily be extended to turbines. When a jet is considered alone

the "efficiency-ratio" (Art. 94) of the process, regarded as a con-

version of energy, is measured by comparing the actual kinetic
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energy of the issuing stream with the energy obtainable under

ideal conditions, that is to say with the adiabatic heat-drop. But
in a turbine, of any type, the process of conversion goes further:

the object is,to do mechanical work on the rotor or revolving part
of the machine, and the efficiency of the process as a whole is

measured by comparing the work done by the fluid on the rotor

with the adiabatic heat-drop.

142. Simple Turbines. In one type of turbine (De Laval's) the

two operations are entirely distinct. The steam enters the turbine

through a fixed nozzle of the convergent-divergent type (fig. 66)

in which its pressure drops in a single step through the whole

available range from the initial pressure P to the back pressure
P2 . Subject to frictional losses all the energy takes a kinetic form

in the jet. The jet then impinges on blades that project from the

circumference of a very rapidly revolving wheel, acting on them

just as a jet of water acts on the blades of a Pelton water-wheel,

with an impulse which is measured by the loss of momentum of

the stream. The jet thereby converts its kinetic energy into work

done on the wheel. This second conversion is a purely hydraulic

process, a question of dynamics but not of thermodynamics. It

involves frictional losses (distinct from the earlier frictional losses

in the nozzle) as well as losses arising from the fact that the stream

is not wholly deprived of momentum by its impact on arid passage
over the revolving blades. The efficiency-ratio of the whole process

is therefore determined as the product of two factors, namely,
the efficiency-ratio of conversion of the steam's heat-energy into

energy of motion on the part of the jet, and the ratio in which

that energy is afterwards converted into work on the rotor.

It is only in what are called simple turbines that these factors

are independent, namely, turbines in which the whole expansion
occurs in a single step before the action on the blades begins. In

some such turbines the rotor has more than one ring of moving

blades, and between successive rings of moving blades there are

rings of fixed guide-blades which alter the direction of the stream

but do not contribute any addition of kinetic energy, for there is

no expansion in them. Turbines of this kind are still "simple"
in the thermodynamic sense, for the whole pressure-drop is com-

plete before the momentum of the stream is utilized; and in all

such turbines it is possible to distinguish clearly between the two

factors.



216 THERMODYNAMICS [CH.

143. Compound Turbines. Most turbines, however, are com-

pound; the expansion takes place in a series of steps or stages in

each of which work is done on the rotor. Each stage uses only a

fraction of the whole heat-drop, leaving the remainder to be used

in later stages. In each stage there is a conversion of part of the

steam's heat-energy into work and there is frictional loss both in

the nozzle and the blades. The heat produced by that loss augments
the quantity of total heat which the steam carries on to the next

stage; there is, therefore, in the subsequent stages a recovery of

part of the loss. When the stages are very numerous, as they are

for instance in a Parson's turbine, the steps in the resulting ex-

pansion process are so short that the process becomes approxi-

mately continuous and may be represented by a continuous curve

on the pressure-volume dia-

gram or on other diagrams.

A diagram such as fig. 75

then exhibits the complete

action; the outer curve BC'

is a continuous line drawn

through points which repre- D C C'

sent the volume of the steam

at the beginning of each stage, and the difference between it and

the adiabatic curve BC shows how the volume is increased as a

consequence of all the internal losses that occur as the operation

proceeds. The diagram differs from fig. 71 only in this, that the

curve BC' is now to be understood as including all internal

frictional losses instead of only nozzle friction. What was said in

Art. 140 applies to the efficiency of the turbine as a whole, and so

long as no heat is lost by conduction the equation holds good,

// - /
2
- Q - Area BCC'',

where Q is the heat generated within the turbine by fluid friction,

I2

'

is the total heat actually present in the steam at its exit from

the turbine, and I
2 is, as before, the total heat which would be

found in it after adiabatic expansion to the same final pressure.
/

144. Theoretical Efficiency-Ratio. Whether the stages are

many or few, provided no heat escapes to the outside by conduction

or by leakage of steam, and provided the kinetic energy of the

current of steam is negligible on its exit from the turbine, the

actual heat-drop I
1

I
2

is all represented by work done upon the
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rotor. Let
r) t

stand for the ratio of the actual heat-drop to the

adiabatic heat-drop. By this definition,

Under the conditions stated above this fraction expresses the

efficiency-ratio of the turbine as a whole, namely the ratio of the

work done on the rotor to the work ideally obtainable by adiabatic

expansion through the same range. The whole adiabatic heat-drop

I
1

I2 would be converted into work only if the turbine were

reversible and therefore thermodynamically perfect. Owing to

internal irreversibility the heat converted into work is less, apart

from any loss of heat by conduction to the outside.

We may call
rj t

the theoretical efficiency-ratio. It is what the

efficiency-ratio would be if the whole actual heat-drop I1 I2

were converted into work.

145. Action in Successive Stages. The action of a com-

pound turbine is most clearly shown by using the Mollier diagram

Fig. 76

of entropy and total heat to exhibit what happens in each step.

Beginning with the initial pressure, let a series of constant-pressure

lines be drawn, plt p2 , pB ,
etc. (fig. 76), corresponding to the

pressures at which the steam enters the successive stages. In the

first stage the pressure drops from pt to p2 ,
in the second stage

from p2 to p3i and so on. In the first stage, adiabatic expansion

from p1 to p2 would be represented by a^ ,
and the length of that

line would be a measure of the adiabatic heat-drop ;
but the actual

heat-drop is the smaller quantity a^ . Still treating the action as

adiathermal, a^ is the heat converted into work while the steam

passes through the first stage. The condition of the steam at the
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end of the first stage, and beginning of the second, is represented

by the point a2 ,
which is found by drawing a line of constant

total heat through b to meet the constant-pressure curve p2 . In

the second stage adiabatic expansion would give the line a2c2 .

The actual heat-drop, which also measures the work done, is a 2b 2 ,

and the condition of the steam as it passes on to the third stage

is represented by a.6 . Similarly in the third stage the work done is

a3b3 ,
the steam passes to the fourth stage in the condition 4 ,

and

so on. The diagram shows the process, as carried down to the

boundary curve, with steam initially superheated; it is readily

extended into the wet region. In each stage the fraction db/ac

measures the ratio of the work done to the adiabatic heat-drop for

that stage. The points al ,
a2 ,

a3 , etc., lie on what is called the

"curve of condition," a curve showing what the condition of the

steam would be as it passes from stage to stage on the assumption
that no heat is lost to the outside. The curve of condition conse-

quently corresponds to the outer curve EC' of fig. 75. The total

work done on the rotor is the sum of the amounts of work done

in the successive stages, namely,

146. Stage Efficiency and Reheat Factor. Taking any

stage of a compound turbine, the ratio of the work done to the

adiabatic heat-drop, in that stage, may be called the stage efficiency

and denoted by rjs
; thus ab

*"S-
The total work done on the rotor

Safe = HT? S (ac),

and if
TJS

can be treated as constant from stage to stage,

The quantity Sac is called by some writers the "cumulative heat-

drop*." This quantity is greater than the whole adiabatic heat-

drop between the initial and final pressures, I1 I2 ,
to an extent

that depends upon the stage efficiency. The ratio

I1 i 4 j

is called the Reheat Factor. The reheat factor is relatively high

when the stage efficiency is low, or, in other words, when there is

much loss through irreversible action within each stage.

* See Mr W. J. Goudie's book on Steam Turbines (Longmans, 1917), p. 190.
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s as co

=
adiabatic heat-drop

'

under the conditions postulated, which make the actual heat-drop
a measure of the work done on the rotor.

From the equation
rj
= w R

it will be seen that in a compound turbine
r) t

is greater than the

stage efficiency r)s , since R is greater than unity.
We might have defined the reheat factor by reference to fig. 75 as

area ABC'D
~
areaABCD '

for in a compound turbine of many stages the curve of condition

is represented by BC' and the area ABC'D, which was called the

"gross apparent work" in Art. 140, is the mechanical equivalent of

the "cumulative heat-drop" Sac. The work done on the rotor is

rjs
x area ABC'D, and is less than the area ABCD, the efficiency-

ratio being
^ ^ x area ABC'D

^~ area ABCD *

147. Real Efficiency-Ratio. The foregoing expressions in-

volve the proviso that there is no leakage of heat. But when there

is leakage of heat, or appreciable kinetic energy in the steam at its

exit from the turbine, the actual heat-drop I
1

I2

'

includes a

quantity representing the loss due to these causes, in addition to

the work done on the rotor. Let that loss be expressed as a

fraction of the adiabatic heat-drop, namely,

* (A - jy.

Then I
I
- I2

' - x (/!
- /2 )

is that part of the actual heat-drop which is converted into work

on the rotor.

Hence allowing for this loss, the net or real efficiency-ratio of

the turbine becomes

I, -I,
since

77, is, by definition (Art. 144), the ratio of the actual heat-drop
7
X /2

'

to the adiabatic heat-drop.
The amount of work obtained from the steam is therefore

(T?,
-

X) (/!
- /2 ).
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Writing r] r
for the real efficiency-ratio, its relation to the other

quantities is given by the equation

In the process of designing a turbine a value is estimated for the

stage efficiency r)s ;
then the curve of condition is deduced, which

allows the reheat factor to be found and also the probable volume and

velocity of the steam at each stage. In this way data are obtained

for determining the form of the steam passages. Details of the

process will be found in books on the steam turbine*.

148. Types of Turbines. An "impulse" turbine is one in

which the rotor is driven entirely by the impulse of a jet or jets

against blades which are attached to it. In such turbines the

expansion of the steam occurs in fixed nozzles, or passages which

act as nozzles. The turbines of De Laval, Curtis, and Zolly or

Rateau are examples of the impulse type. In De Laval's the whole

expansion takes place in one step, and the extraction of energy
from the jets also takes place in one step. There is a single ring of

blades, which must have an extremely high velocity if it is to utilize

a fairly large fraction of the kinetic energy of the jets. De
Laval's turbine is used only for small powers ;

its efficiency is limited

by the difficulty of making a wheel that will run safely at an

enormous speed. The distinguishing characteristic of the Curtis

turbine is that the kinetic energy of the jets is extracted in steps,

by making the jets impinge successively on two or more rings of

moving blades, with fixed guide-blades between to deflect the jets,

as already indicated in Art. 142. This device allows of a more

perfect conversion of the energy of the jets without requiring

excessive speed on the part of the revolving blades.

In some Curtis turbines the expansion takes place in a single

stage. Others are compound in the thermodynamic sense; the

whole expansion is divided into a small number of stages, and the

kinetic energy acquired in each stage is extracted by the use of

a series of two or three rings of moving blades. In the Rateau or

Zolly type of turbine there are many stages, each involving a small

drop of pressure and consequently a moderate velocity of jet; the

jets in each stage give up their energy by impinging on a single

ring of moving blades. Each ring runs in a separate chamber, and

* See also Baumann on "Recent Steam Turbine Practice," Journ. Inst. Elect.

Engineers, vol. XLVIII, May, 1912.



v] JETS AND TURBINES 221

the jets are formed by nozzles or passages in the diaphragm which

separates one chamber from the next.

A "reaction" turbine is one in which the nozzles or passages in

which the steam expands are themselves the moving part, and are

driven by the reaction which results from the fact that the steam

is acquiring momentum as it passes through them. An ancient

toy described by Hero of Alexandria, in which nozzles were caused

to revolve backwards by discharging steam into the air, is an

example of a pure reaction turbine. The type has not come into

use; it would require an enormous speed of recoil to work efficiently.

But a combination of reaction and impulse is applied in the most

important turbine of all, that of Sir Charles Parsons, which was the

first to be developed on economic lines, and is. more extensively

used than any other for generating power on a large scale. Parsons'

is a compound turbine with many stages. Each stage comprises a

ring of fixed blades, projecting inwards from the case and making

up convergent passages which act as nozzles, and & ring of moving
blades projecting outwards from the rotor. The rings of fixed

blades and moving blades alternate from end to end of the turbine

and are alike in shape. The moving blades, like the fixed ones,

make up convergent passages which are completely filled by the

steam as it passes through. In each set of passages, moving as

well as fixed, there is some expansion; consequently any ring of

moving blades is urged to move not only by the impulse of the jets

which strike it, but by the reaction that arises from the expansion
of steam within it, since that expansion gives the steam new

velocity. The general direction in which the steam flows through
the turbine is parallel to the axis.

In an early form of the Parsons turbine the general direction of

flow was radial, the fixed blades being attached to a fixed disc, and

the moving blades to a parallel disc which revolved about an axis

through the centre of the fixed disc. An interesting modification

of this arrangement has been made by Ljungstrom, who lets both

discs revolve, but in opposite directions. In the Ljungstrom tur-

bine (which is also compounded of many stages) there are, there-

fore, no fixed blades ;
both sets are urged by impulse as well as by

reaction, and a high relative velocity, on which the stage efficiency

depends, is obtained with a lower frequency of revolution.

Other turbines are made up by combining the various types
which have been named.

It may be added that in compound turbines with many stages
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the drop of pressure in each stage is so small that the nozzles, or

blade passages which act like nozzles, are not of the convergent-

divergent kind described in Art. 132. They are only convergent, for

the drop of pressure in each stage does not involve expansion beyond
the "throat." In each stage the passages must be made sufficiently

larger than those of the preceding stage to allow for the increase

of volume that has taken place; in the final stages, when the

pressure is approaching that of the condenser, the passages are

relatively very large.

149. Performance of a Steam Turbine. In practice the

steam turbine, especially in large sizes with high initial pressure
and high vacuum (that is to say, low pressure in the condenser) is

more efficient than the piston engine, in the sense that it converts

into effective work a larger fraction of the heat which is supplied
to it. For this reason, as well as for its greater mechanical sim-

plicity, it has quickly come to be the chief means of converting
heat into work -on a large scale, in power-stations and in the

propulsion of ships.

As an example of its performance the following figures may be

quoted from a trial of a Parsons' turbine employed to drive an

electric generator which developed about 5000 kilowatts. The elec-

trical output was measured, along with the amount of steam which

passed through the turbine in a given time. The turbine was

found to use 13-19 Ibs. of steam per kilowatt-hour of electrical

output. One kilowatt-hour is the equivalent of 1896 thermal units

(pound-degrees centigrade). Hence of the heat-energy supplied

in each Ib. of steam ^^~ or 143*7 thermal units were converted
io*iy

into electrical energy.

If we allow for the loss of power in the friction of bearings and
in the electrical generator, by taking the electrical output as

94 per cent, of the work done on the rotor, it follows that each

Ib. of steam was doing work on the rotor equivalent to - or

152-9 thermal units.

The steam was supplied at an initial pressure of 214-7 pounds per

square inch (absolute) and was superheated 67 to 264-7 C. The
initial total heat was therefore 709-1 and the initial entropy was

1-6257.

The condenser pressure was 0-47 pounds per square inch. Adiabatic

expansion down to that pressure (under equilibrium conditions)
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would produce a wet mixture with a total heat of 484-0. The

adiabatic heat-drop was therefore 225-4 thermal units.

Hence the ratio of the work actually done on the rotor to the

152*9
adiabatic heat-drop was

'

or 0*68. This is the real efficiency-
L '_ .)' 1

ratio
rj r

. If one might assume that the heat losses amounted to

6 per cent, 'of the adiabatic heat-drop, so that x = 0-06, then the

theoretical efficiency-ratio rj t
would be

ij t
=

v) r + 0-06 = 0-74.

If, further, the stage efficiency were, say, 0-7 the corresponding
reheat factor would be about 1-06. These numbers are conjec-

tural, but they may serve to illustrate the meaning of the several

quantities, and their general order of magnitude.

150. Utilization of Low Pressure Steam. As was briefly

pointed out in Art. 95, the chief reason why the steam turbine is a

more efficient means of converting heat into work than the piston

engine, is its greater power of making effective use of the energy
in low pressure steam. In the region of high pressure it has no

advantage over the piston engine, but in the later stages of ex-

pansion it is a far better agent of conversion, for it continues to be

efficient down to the lowest pressure that is practically attainable

in a condenser. In a piston engine, on the other hand, it would be

useless to carry expansion so far, for not only would the bulk of

the cylinder become impracticable, but the increased waste of power

through friction between the piston and the cylinder would become

greater than the gain of indicated work. Hence, with a piston

engine, expansion in the cylinder is seldom in practice carried beyond
an absolute pressure of 7 pounds or even 10 pounds per square inch.

With a turbine the expansion is continued effectively almost

down to the condenser pressure, and it is a matter of the utmost

consequence to make that as low as the temperature of the con-

densing water will allow.

This point will be apparent if we use the entropy-temperature

diagram and compare the work obtainable (under ideal adiabatic

conditions) when expansion is complete down to a low condenser

pressure, with the work obtainable when release takes place at a

pressure of say 10 pounds absolute. In the diagram (fig. 77) the area

ABCD represents the work obtainable in the complete adiabatic

expansion of initially saturated steam from a pressure of 130 pounds
to a condenser pressure of 0-5 pound; and the area ABCEF repre-

sents the work obtainable when release takes place after expansion
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down to 10 pounds absolute, EF being a line of constant volume

(Art. 96). The same condenser pressure is assumed in both cases.

The area FED represents what is lost by incomplete expansion,

such as necessarily occurs in a piston engine. The figure applies

to an ideal performance in each case, with adiabatic expansion,

but in the conditions of actual work the steam turbine would save

most of the area FED. It is to be noticed that any reduction of

vacuum will diminish the output of work from the turbine much
more than it will diminish the output from the piston engine;

for when the line AD is raised it affects the turbine area ABCD

175
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along the whole length of ^4D,
n

whereas it affects the piston-engine
area ABCEF only along the short distance AF.
The importance of high vacuum in a steam turbine is best real-

ized by working out values of the adiabatic heat-drop with various

back pressures. Taking initial conditions such as are found in prac-

tice, with pressure anywhere between, say, 100 and 200 pounds

per square inch, and moderate superheat, the adiabatic heat-drop
is increased about 10 per cent, when the condenser pressure is

reduced from 0-98 to 0'49 pound, which corresponds to an im-

provement of vacuum from 29 to 28 inches, with the barometer

at 30 inches.



CHAPTEK VI

INTERNAL-COMBUSTION ENGINES

151. Internal Combustion. In an internal-combustion engine
the fuel which is to supply heat-energy for conversion into work

forms part of the working substance, and its combustion takes

place within the vessel or system of vessels in which the working
substance does work by expanding. The working substance, there-

fore, undergoes a chemical change during its operation and the

thermodynamic process is not cyclic. In the early stages, before

combustion, the substance is a mixture of fuel with air, generally
in excess of what is required to provide enough oxygen for complete
combustion. In the later stages, after combustion, it is a mixture

of the products of combustion with nitrogen and with any surplus
of air. The fuel commonly enters as a gas or vapour, drawn in along
with a suitable proportion of air; but it may be injected as a liquid,

becoming vaporized after admission or directly burnt on entry.

As a rule the only chemically active constituents of the fuel are

hydrogen, hydrocarbons and carbonic oxide. In their combustion

they unite with oxygen to form water-vapour and carbonic acid.

The nitrogen of the air takes no part in the chemical process

beyond acting as a diluent.

Typical examples of internal-combustion engines are the ordinary

gas-engine or the petrol motor, in which a "charge" of air mixed
with combustible gas or vaporized liquid fuel is drawn in by the

piston, then compressed into a clearance space, and there ignited

by an electric spark or other means, so that explosive combustion

takes place while the volume of the charge is nearly constant.

The heat thus internally developed gives the working substance

a high temperature and pressure: it then expands, doing work as

the piston advances. In all modern engines of this class the charge
is brought to a fairly high pressure before being ignited. It will

be shown later that this compression secures thermal efficiency;

with increased compression a larger fraction of the heat of com-

bustion of the fuel is converted into effective work.

E. T. 15
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From the thermodynamic point of view internal-combustion

engines have this advantage over the steam-engine, that their

working substance "takes in" heat (by its own combustion) at a

much higher temperature. In the combustion of the charge a tem-

perature of 2000 C. or so is reached. The average temperature at

which the heat is developed is far above that at which heat is

received by the working substance of a steam-engine. On the other

hand it is not practicable to discharge heat at nearly so low a

lower limit. But the actual working range of temperature is so

wide that a gas-engine can in fact convert into work a larger

fraction of the heat-energy of the fuel than is converted by any

engine which burns its fuel to raise steam in a boiler, and uses the

steam, however efficiently, as working substance. A good gas-engine

will convert about 36 per cent, of the energy of its fuel into work :

the best steam-engines convert no more than about 20 per cent.

152. The Four-Stroke Cycle. In the most usual type of in-

ternal-combustion engine the mechanical cycle is completed in four

strokes or two revolutions. During the first forward stroke, gas and

air are drawn in, so that the whole cylinder is filled with explosive

mixture, at practically atmospheric pressure. During the first back-

stroke this mixture is compressed into a clearance space at the end

of the cylinder. The mixture is then ignited, while the piston is at

or close to the *'

dead-point" or extreme of its travel. The pressure

consequently rises to a much higher value than was reached by

compression. During the second forward stroke the fired mixture

expands, doing work and falling in pressure. During the second

backstroke it is discharged through an exhaust-valve into the

atmosphere. A small quantity of the burnt mixture remains in

the clearance space, and is mixed with the next charge unless

special means are taken to remove it, by what is called "scaven-

ging." As a rule there is 110 scavenging.

The four-stroke cycle was first described by Beau de Rochas in

1862; it was brought into use by Otto in 1876, and is often called

by his name. It is still the most usual mode of action, notwith-

standing the practical drawback of having only one working stroke

out of four, a drawback which arises from the fact that the working

cylinder serves also as inhaler and compressing pump.

153. The Clerk or Two-Stroke Cycle. To escape this defect

of the Otto cycle, Sir Dugald Clerk introduced in 1881 an engine

which completes its action in two strokes. Clerk's Engine has a
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separate pump or displacer which inhales the charge and delivers

it to the working cylinder just after the piston has completed its

working stroke. The fresh charge drives the products of combustion

before it, expelling them through exhaust ports, and filling the

working cylinder. It is then compressed into the clearance space
before ignition, just as in the four-stroke cycle. There is accordingly

a compression stroke before firing and an expansion stroke after

firing, and these two strokes complete the cycle, the displacer

enabling the other two strokes of the four-stroke cycle to be dis-

pensed with. Clerk's device is used in many of the largest gas-

engines, but for most small engines the greater mechanical sim-

plicity of the four-stroke cycle is preferred. The thermodynamic
action now to be described is essentially the same in both.

154. Ideal Action. In any real engine the action is complicated

by exchanges of heat, through conduction and radiation, between

the working gas and the walls of the containing vessel, and also by
the fact that the process of explosive combustion of the charge is not

instantaneous, but takes an appreciable time to be completed. It is

convenient, however, to consider an ideal action in which (1) there

is no exchange of heat between the gas and the walls, and (2) all the

heat of combustion is generated at a particular instant, namely
when the volume is constant at the end of the compression stroke,

before expansion begins. Such an ideal action affords a useful

standard for comparison with the performance of a real engine.

Consider -then an ideal engine in which there is no transfer of heat

to or from the cylinder walls, and in which combustion occurs only

while the piston is at the dead-point. The indicator diagram of this

ideal engine, working on the Otto or four-stroke gycle,
would take

the form shown in fig. 78. OM is the volume of the clearance space

into which the charge is compressed, and this is the constant volume

which the charge occupies during its combustion. MN is the vol-

ume swept through by the piston in each stroke. AB represents

the process of admitting the charge at atmospheric pressure ;
BC

represents the compression, which by assumption is adiabatic ;
CD

is the rise of pressure caused by the explosion; DE is the expansion,

also adiabatic, which constitutes the effective working stroke; at

E the exhaust-valve opens, with the result that part of the gas at

once escapes and the pressure falls to that of the atmosphere, giving

the line EB; BA represents the exhaust stroke by which the

cylinder is emptied of gas preparatory to receiving a fresh charge

15-2
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in the first stroke of the next cycle. If the ideal engine were of the

two-stroke cycle type, the lines AB and BA would be omitted from

the indicator diagram for the working cylinder, which would then

consist simply of the figure BCDEB.
From C to D the whole heat-energy developed by the combustion

of the charge goes to heat the working substance, since by hypothe-
sis none is lost by conduction or radiation to the walls. The heat

of combustion can be calculated when the composition of the charge
is known, or may be measured directly by burning a sample of the

gas in a calorimeter. In all cases one of the products of the com-

bustion is water-vapour, and as any water-vapour formed in the

cylinder of an internal-combustion engine remains uncondensed

Fig. 78

throughout the
auction

it is proper to take, in calculating the heat

developed by combustion, what is called the "lower" value, that

is to say, a value which does not include the latent heat of the

water-vapour.
Between C and D the mixture undergoes a chemical change

which may or may not affect its specific volume : that is to say, the

burnt products when brought to the same pressure and temperature
as the unburnt mixture may not fill exactly the same volume. In

general the specific volume after combustion is a little less, but

with such mixtures as are used in gas-engines or petrol-engines the

effect of this "chemical contraction," as it is called, on the specific

volume is so small as to be unimportant. With mixtures of coal-gas

and air it amounts to between two and three per cent, in ordinary
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cases. With some explosive vapours the specific volume is slightly

increased (see Art. 158). The changes being in any case small, it is

convenient in considering an ideal engine to ignore them, and to

treat the working substance as if it were a gas whose specific

volume does not alter. Further, the largest constituent of the un-

burnt charge is air, and that of the burnt charge is nitrogen, and the

specific heat of nitrogen is, for equal volumes, the same as that of air.

Hence for the purpose of obtaining a simple standard with which

real engines may be compared, a practice has sometimes been

adopted of treating the working substance as if it were air, to which

between C and D there is imparted a definite quantity of heat,

namely the heat of combustion of the charge.

155. Air Standard. It was on this basis that a Committee of

the Institution of Civil Engineers* devised what is known as the

"Air Standard" as a measure of the ideal efficiency of an internal-

combustion engine.

Besides assuming (as in Art. 154) for the purposes of their ideal

standard

(1) No transfer of heat between the working substance and

the metal;

(2) Instantaneous complete combustion;

and (3) No change of specific volume;

they made the further assumption

(4) That the specific heat might be treated as constant (inde-

pendent of temperature as well as pressure).

It is now recognized that this last assumption is by no means

true even of air, and is still more untrue of the mixed gases in the

cylinder of a gas-engine. It is known that the specific heat increases

with rise of temperature to an extent which greatly affects the

action of the engine. This point will be considered later: but it

should be said here that because the specific heat of the working gas

is much greater at high temperatures than at low temperatures, the

"air standard," as defined by the Committee, is an unreasonably

high criterion to apply to any actual performance. The efficiency

of a real engine must fall greatly short of that standard, not only

*
Report of a Committee on the Efficiency of Internal-Combustion Engines,

Min. Proc. Inst. C. E. vols. 162 and 163 (1905 and 1906). The Report gives examples
of calculations relating to actual and ideal performances. Reference should also be

made in this connection to Sir Dugald Clerk's book on The Gas, Petrol and Oil

Engine, vol. I.
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because of such more or less avoidable losses as occur through
radiation and conduction of heat to the cylinder walls, but because

the standard postulates, on the part of the working substance, an

essential quality that is widely different from the quality of the real

gases of which it is composed. Even if there were no loss of heat,

the limit of temperature which the gases reach after explosion
must be much lower than that which would be reached if the

specific heat were constant. However much the heat losses are

minimized, the hypothesis of constant specific heat makes the air

standard an impossible ideal.

It is nevertheless instructive to study the air standard with

constant specific heat as a means of examining some of the effects

that follow from varying the conditions of

working. We may apply it for instance

to show how the efficiency of the gas-

engine cycle is improved by increasing the

compression.
Let T and T1 be the absolute tempera-

tures of the charge before and after com-

pression, and let T2 and T3 be the tempera-
tures before and after expansion. Fig. 79

shows the cycle with its stages numbered
to correspond with these suffixes. Write r

for the ratio in which the charge is corn-
Fig. 79

pressed before ignition, which is also the ratio in which it is

afterwards expanded during its working stroke. Then by Art. 26,

since the compression and expansion are assumed to be adiabatic,

from which also
T T-* o JL r\

and T^'r* 2 \' '

ixy-1

T -

Here y is the ratio of Kp the specific heat at constant pressure
to Kv the specific heat at constant volume, and is treated as a con-

stant because the specific heats are assumed to be constant in the

"air cycle" whose efficiency we are now finding.

The heat supplied, namely the heat generated in the explosion, is

Kv (T2
-

Tj). The heat rejected is Kv (T3
- T ), for it makes no

difference whether the products of combustion are cooled on release

to the atmosphere, or kept in the cylinder and cooled there to

atmospheric temperature, at constant volume, before being released.
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Hence the thermal equivalent of the work done in the air

cycle is KV (Ta
_

TI)
__ KV (TS

_
TQ)

and the "air-standard" efficiency is

_'

which is equal to l
( J

This expression is important as showing the beneficial influence

of compression. Much of the practical improvement of gas-engines
has in fact resulted from progressively increasing the extent to

which the charge is compressed before ignition.

With increased ratios of compression the "air-standard" effi-

ciency increases as follows, taking y to be 1-4.

Ratio of Air-Standard

Compression Efficiency

2 0-242

3 0-356

4 0-426

5 0-475

6 0-511

7 0-541

8 0-565

10 0-602

15 0-661

20 0-698

It will be seen from these figures and from the curve (fig. 80)

that there is at first a very rapid gain of efficiency with increased

compression, but that when the compression is high the thermo-

dynamic advantage of increasing it becomes slight. When account

is taken of variation in specific heat, figures are obtained for the

theoretical efficiency which fall short of the air standard by about

20 per cent, (see Art. 167), but the proportion between the effi-

ciencies for different amounts of compression is not greatly altered.

The efficiencies actually obtained in trials of engines are of course

considerably lower, owing to heat losses and to the fact that the

combustion of the charge is not instantaneous. In very favourable

cases the measured thermal efficiency is as high as 0-37, correspon-

ding to about 68 per cent, of the air standard, or to about 83 per

cent, of the theoretical standard that is obtained when account is

taken of variations in specific heat. This is for engines of the
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ordinary type in which combustion occurs at approximately con-

stant volume, after the compression of a mixed charge.
In all such engines there is a practical limit to the amount of

compression: it must not be so great as to cause pre-ignition by
unduly raising the temperature before the end of the compression
stroke. This limit differs with different kinds of fuel; it is com-

paratively low when there is much hydrogen. In engines using

ordinary coal-gas the ratio of compression is in practice as high as

6 or 7; in petrol-engines it is usually about 4 or less. We shall see in

the next article that by departing from the constant-volume type of

combustion, higher ratios of compression become practicable, with

some increase in theoretical thermal efficiency.

U-f

06

05

04

J
1 3

02

01

o
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We may further imagine the rejection of heat to occur at constant

pressure, if we suppose that the products of combustion are ex-

panded adiabatically down to atmospheric pressure before they are

discharged. The ideal indicator diagram would then take the form

sketched in fig. 81. Under these conditions (which are not realized

in practice) we should have an engine of constant-pressure type,

rejecting as well as receiving heat at constant pressure. Its air-

standard efficiency is readily expressed in a form corresponding
to that found for an engine of constant-volume type. We are

concerned here with the specific heat at constant pressure, Kv .

Fig. 81. Constant-pressure type.

Treating it as constant, the heat taken in is Kv (T2 TJ, the

heat rejected is Kv (T3
- T

), and the efficiency is

_

The ratio of adiabatic expansion is equal to the ratio r of adiabatic

compression, T /T1
= T3/T2 . Hence the air-standard efficiency is

given by the same expression as before *, namely

- er
* It is interesting to note that this same expression applies to three ideal types of

engine :

(1) The constant-volume type, in which heat is received and rejected only at

constant volume.

1
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It follows that for equal ratios of compression there would be no

thermodynamic advantage in substituting a constant-pressure

type of engine for the constant-volume type. But by avoiding any
admixture of the fuel with the air before compression it becomes

practicable to use a higher ratio of compression, and consequently
to obtain a higher efficiency.

157. Diesel Engine. This advantage is in part secured in the

Diesel Engine, which compresses the air separately to a pressure
of 500 pounds per square inch or more, before the fuel is admitted.

The air is compressed by the backward stroke of the piston. The

fuel is oil, which is delivered by a separate pump into the highly

compressed air while the piston begins its forward stroke. The oil

at once ignites, because of the high temperature to which the air

has been brought by compression. Its combustion keeps the pres-

sure nearly constant until the supply of oil is cut off. The products
then expand, but not to the extent shown in the imaginary engine
of fig. 81, for expansion is continued only to a volume equal to that

of the air before compression, so that when release takes place,

the pressure is much higher than that of the atmosphere. As regards

reception of heat the action of the Diesel engine approximates to

the constant-pressure type, but as regards rejection of heat it

approximates to the constant-volume type, and in that respect its

theoretical efficiency is somewhat reduced. The high initial com-

pression enables it, however, to convert more of the thermal energy
of the fuel into indicated work than is converted in other internal-

combustion engines. The practical advantage of this is to some

extent counterbalanced by its greater mechanical friction, which

brings the net output of effective work down to a figure more nearly

comparable with that of other engines.

In a trial of a Diesel engine indicating nearly 400 horse-power*
a thermal efficiency (with regard to indicated power) of 0-47 is

claimed, with a mechanical efficiency of 0-76. If these figures are

correct the engine was converting 36 per cent, of the thermal energy
of the fuel into effective work, available for driving other machines.

(2) The constant-pressure type, in which heat is received and rejected only at

constant pressure.

(3) The constant-temperature type (Carnot's engine of fig. 4, Art. 36) in which

heat is received and rejected only at constant temperature. For its

T T / 1 \ v " l

efficiency is 1 - ~- , and =- =
(

-
) , using r to denote the ratio of

J- 1 J- 1 \ rJ

adidbatic compression (not isothermal, as in Art. 36).
* Quoted by Mr Mathot, Journ. Inst. Mech. Eng., Dec. 1916, p. 628.
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158. Combustion of Gases. Molecular Weights and Volumes.

In calculations that relate to the combustion of gases the

quantities involved are most conveniently reckoned per unit of

volume, at a standard condition as to temperature and pressure.

A chief reason for this is that the densities of gases are proportional

to their combining weights, and consequently the volumes in which

they unite have a very simple ratio.

The combining weights for the substances with which we are now
concerned are (in round numbers*),

Hydrogen H = 1

Oxygen O = 16

Nitrogen N = 14

Carbon C = 12

Hydrogen, oxygen and nitrogen are diatomic gases; that is to

say their molecules, H2 ,
O2 ,

N2 ,
each comprise two atoms, and their

molecular weights are accordingly 2, 32 and 28 respectively. The

volumes represented by these weights are the same for all three,

when brought to the same pressure and temperature.

The equation 2H
2 + O

2
= 2H

2
O

means that in the combustion of hydrogen two molecules of hydro-

gen unite with one molecule of oxygen to form two molecules of

water. As regards weights, it means that 4 parts by weight of

hydrogen unite with 32 parts by weight of oxygen to form 36 parts

by weight of water, and that the molecular weight of water is 18.

As regards volumes, it means that two volumes of hydrogen unite

with one volume of oxygen to form two volumes of water-vapour,

assuming that the comparison of volumes is made under such con-

ditions of temperature and pressure that the water-vapour may be

treated as perfectly gaseous.

Again, the equation 2CO + O
2
= 2CO2

means that two molecules of carbonic oxide (56 parts by weight)
unite with one molecule of oxygen (32 parts by weight) to form two

molecules of carbonic acid (88 parts by weight). It also means that

two volumes of carbonic oxide unite with one volume of oxygen
to form two volumes of carbonic acid.

In the combination of any gases the proportion by volume is

given directly by the relative number of molecules. The principle

involved known as Avogadro's Law is that equal volumes of all

* More exactly, taking as 16, H is 1-008 and N is 14-01.
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gases (in the perfectly gaseous state and under the same conditions

as to pressure and temperature) contain the same number of mole-

cules. The weight contained in unit volume in other words the

density is therefore proportional to the molecular weight.

A few further illustrations may be useful :

Weights
Volumes

Weights
Volumes

Weights
Volumes

Weights
Volumes

Marsh gas (Methane) CH4

CH4 + 2O2
= CO2 + 2H2O

16 + 64 = 44 +36
1 + 2 form 1+2

Ethylene C2H4 .

C2H4+ 3O2

28 + 96 =
1 + 3 form

2CO2 + 2H2O
88 + 36

2 + 2

Butylene C4H8 .

C4H8

56 + 192 = 176 + 72

1 + 6 form 4 + 4

6O2
= 4CO2 + 4H2O

Alcohol C2H6O.

C2H6O + 3O2
= 2CO2 + 3H2O

46 + 96 = 88 + 54

1 + 3 form 2 + 3

It will be observed that with alcohol and with the heavy hydro-

carbons, of which C4H8 is one, the specific volume is increased by
combustion

;
with marsh gas and ethylene it undergoes no change ;

and with hydrogen and carbonic oxide it is reduced. The change
of specific volume which any given gas mixture will undergo on

complete combustion is readily predicted by applying this method
of calculation to each of the constituents of the fuel, when the

composition of the mixture is known. Another obvious application
is to calculate the volume of oxygen, and by inference the volume

of air, required for the complete combustion of a given gaseous fuel.

For the purpose of such calculations, dry air may be taken as a

mixture of 20-9 per cent, by volume of oxygen with 79-1 per cent.

by volume of nitrogen.

The following example will serve to show how the air required
for the complete combustion of a gas of known composition is

calculated, and also the change of specific volume, or the "chemical
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contraction," which will take place on combustion. The fuel is

coal-gas, of the composition shown in the first column.

Vol. of oxygen
Composition of required for
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A quantity of heat stated in gramme-calories per mol may be con-

verted into foot-pounds per cubic foot by multiplying by

0-002205 x 1400

(0-032808)
3 x 22,400

or 3-90,

since 1 gr.-calory
= 0-002205 Ib.-calory, 1 Ib.-calory

= 1400 foot-

pounds, and 1 cm. = 0-032808 ft.

1 60. The Universal Gas-Constant. The gas equation

PV = RT,

is strictly applicable only to ideal gases which are "perfect" in the

sense of obeying Boyle's Law and also Joule's Law (Art. 19), T

being the absolute temperature on the thermodynamic scale. It is

approximately true of all gases at low or moderate pressures, pro-

vided the conditions as to pressure and temperature are not such

that the gas approaches liquefaction. At any given temperature
a real gas is more and more nearly "perfect" the more the pressure

is reduced. Writing the equation in the form

P '

by m,
molecular weight, we have

and multiplying both sides by m, the number which expresses the

r, mRTmV = .

Here mV is the volume ofm units of mass. But that volume, as we

saw in Art. 159, is very nearly the same for all gases under the same

conditions of pressure and temperature. Hence mR
f

is also very

nearly the same for all gases. The quantity mR is called the uni-

versal gas-constant. Like R (Art. 18) it is a quantity of work, to be

expressed in work units or equivalent heat units. Its numerical

value depends on the unit of mass that is used in the reckoning.

Let the unit of mass be the gramme; thenmV represents the volume

of a gramme-molecule or mol, which is 22,400 cubic centimetres

when the temperature is 0C. and the pressure is one atmosphere

(equal, by Art. 12, to 1032-7 grammes per sq. cm., or, in absolute

measure to 1-0133 x 106
dynes per sq. cm.).

Hence the universal gas-constant

1032-7 x 22,400mR =- - = 84,700 gramme-centimetres.*
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We may also express the gas-constant in heat units. Since, by Art.

14, the gramme-calory is equivalent to 426-7 gramme-metres or

42,670 gramme-centimetres,

84,700mR = = 1-985 gramme-calories*.
4w*O /v

Again, if the unit of mass be the lb., the gas-constant expressed in

Ib.-calories is l-985t, which is equivalent to 1-985 x 1400 = 2779

foot-pounds.
The gas-constant may be interpreted as the work that is done

by expansion when m units of a gas are heated under constant

pressure through one degree.

Knowing the gas-constant we can readily calculate the value of

K in the equation PV = RT for any gas to which that equation

applies, by dividing the constant by m. Values of R calculated in

this manner are given below.

Calculated values of R

in gramme-calories per gramme in foot-pounds
or lb. -calories per lb. per lb.

Oxygen 0-0620 86-8

Nitrogen 0-0709 99-3

AirJ 0-0688 96-3

Hydrogen 0-993 1390

Carbonic oxide 0-0709 99-3

It should be recalled that the value of R is equal to the differ-

ence between the specific heats at constant pressure and at con-

stant volume, Kv and Kv (Art. 20).

161. Specific Heats of Gases in Relation to their Mole-

cular Weights. Volumetric Specific Heats. In Art. 20 we

*
Using absolute (c.g.s.) units, the standard atmosphere as denned in Art. 12 is

1-0133 x 106
dynes per sq. cm. Hence the gas constant

1 -0133 x!06 x 22,400 .

273-1
=83-11 xlO6

ergs.

The gramme-calory as defined in Art. 14 is equivalent to 4-1868 x 107
ergs: hence

83-1IxlO6

4-1868 x 107 gramme-calories,

as in the text.

f The numerical value is not altered, 1 lb. -calory per lb. being equal to 1 gramme-
calory per gramme.

{ Taking m for the mixture of nitrogen and oxygen as 28-85, namely

79-1 x 28 20-9 x 32

100
+
~100~

'
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reckoned the specific heats Kv and Kv per unit of mass. For many
purposes it is more convenient to reckon the specific heats of gases

per unit of volume: when so reckoned they are sometimes called

volumetric specific heats. Most convenient of all is to reckon them

per gramme-molecule or mol. This is in effect a volumetric method,

for the volume of the mol is the same in all gases that satisfy the

equation PV = RT. When the specific heats of such gases are

reckoned per mol their difference is equal to the gas-constant.

Thus
K9

= KV + 1-985,

when Kv and Kv are reckoned in gramme-calories per mol.

It follows that in all such gases the ratio y ofKv to Kv is

1-985
v = 1 _|__ '

The volumetric method of reckoning specific heat has this further

advantage that when so reckoned the specific heat (Kv or Kv )

of the simpler gases is nearly the same, provided the gases have

the same number of atoms in the molecule. All the gases named
in the list in Art. 160 are diatomic, and they have nearly the same

specific heat when that is reckoned per unit of volume, or per mol.

This is found to be true when the specific heats of these gases are

experimentally measured and compared ;
but it can also be inferred

from the kinetic theory of gases. (See Appendix II.)

The kinetic theory shows that in an ideal* diatomic gas

Kv
= %R. Therefore in any such gas KP

= ^R and y f = 1'40.

This is found to agree well with the values ofy got by direct measure-

ment in air, oxygen, nitrogen and other diatomic permanent gases.

It follows also that the values ofKv andKv deduced from the theory,

when expressed in calories per mol, are for all such gases

and K^_ 4-963.
ft

From these figures the following values of the specific heats are

* Ideal in the sense that the gas satisfies the equation PV=ET and also that

its molecules have no sensible energy of vibration (Art. 174).
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deduced for various diatomic gases, by dividing by the value of m
appropriate to each.

Calculated specific heats in

gramme-calories per gramme
or Ib. -calories per Ib.

KV K
t,

Oxygen 0-2171 0-1551

Nitrogen 0-2481 0-1772

Air 0-2408 0-1720

Hydrogen 3-474 2-481

Carbonic oxide 0-2481 0-1772

The observed specific heats differ a little from these, because

the gases are not ideal.

162. Summary of Methods of expressing the Specific
Heats. A short summary of methods of statingKv and Kv in gases

may help to avoid confusion. Either of these quantities may be

stated as follows:

(a) In gramme-calories per gramme-molecule or mol, the

gramme-molecule or mol being a mass equal to m grammes, where
m is the number which expresses the molecular weight.

(b) In gramme-calories per gramme.
(c) In Ib.-calories per Ib.

(d) In foot-pounds per cubic foot.

(e) In foot-pounds per Ib.

To convert from (a) to (b) or to (c) divide by m. The numbers in

(b) and in (c) are the same. To convert from (a) to (d) multiply

by 3-90. To convert from (c) to (e) multiply by 1400.

The difference between Kv and Kv ,
which is nearly constant in

all gases, has the following values :

In (a), 1-985 calories.

. 1-985
In (b) and (c), calories.

fit

In (d), 7-74 foot-pounds.

T / x
2779 fIn (e), foot-pounds.m

163. Measured Values of Specific Heats. It is to be expected
that the actual specific heats of gases should slightly exceed the

values calculated from the kinetic theory, owing to the departure
or real gases from the ideal conditions assumed in the theory.
Measurements of K v by Regnault for a number of gases gave

values which are somewhat less than the theoretical values, but

E. T. 16
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the method used by him is now believed to have been affected by
a systematic error, the effect of which was to make the measured

values too small, apparently by about 2 per cent. *

A modern measurement of Kp for air by Swann j, by means of

electric heating under constant pressure, gives (when reduced to the

mean calory used in this book) Kv
= 0-2413 calories per unit of

mass, at C. and one atmosphere, which is, as we should expect,

slightly greater than the theoretical number.

The corresponding value of Kv would be 0-1725, taking R to

be 0-0688 as in Art. 160.

Kv has been directly measured by Joly for several gases, by
the device of applying steam externally to heat a copper globe

containing the gas, and comparing the amount of steam thereby
condensed on the surface with the amount condensed on another

exactly similar but empty globej. His observed value of Kv for

air, under standard conditions, that is to say at C. and one atmo-

sphere, when corrected for the revised value of the latent heat of

steam and for the mean calory, is 0-1729 in calories per unit of mass.

This is in good agreement with the value of Kv inferred from

Swann's measurement of Kv . The mean of the two is 0-1727.

Taking Swann's and Joly's results together, it may be concluded

that the measured value of Kv for air is about 0-1727 calory per
unit of mass, or 4-98 calories per gramme-molecule, at C. and one

atmosphere. The same figure may be taken as nearly true of other

diatomic permanent gases (oxygen, nitrogen, carbonic oxide).

There is conclusive evidence that the specific heat 6f these gases
rises with the temperature. This point, which is important in

relation to gas-engines, will be considered in the next article.

Swann also applied the method of electric heating to determine

Kv for carbonic acid, and found it to be 0-2017 calory per gramme
at 20 C. and 0-2211 at 100 C. If we assume the rate of change
with temperature to be uniform from to 100, the figure for KP

at would be 0-1968, equivalent to 8-66 calories per gramme-mole-
cule, m being 44. The corresponding value of Kv is 6-68, and y is

barely 1-3. These results are in fair agreement with those obtained

by Joly in direct measurements of the specific heat of carbonic

acid at constant volume*

* Swann, Phil. Trans. A, vol. 210, p. 231. Also Report of the British Association

Committee on Gaseous Explosions. B. A. Rep. 1908.

t loc. cit.

t Joly, Phil. Trans. A, vol. 182, 1891, p. 73.

Reduced to mean calories.
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164. Variation of Specific Heat with Temperature. It

was pointed out in Art. 21 that a gas might be perfect in the sense

of conforming to Boyle's Law and to Joule's Law, so that the equa-
tion PV = RT is strictly applicable, and still have its specific heat

vary with the temperature, though there would be no variation

with the pressure.

Any variation of specific heat with pressure is due to imperfection

of the gas. In the permanent gases, there is but little departure
from the equation PV RT except at pressures much higher than

those that are found in gas-engines. Hence their specific heat is

nearly independent of the pressure. Even the mixture produced by
a gas-engine explosion, comprising some water-vapour and car-

bonic acid along with much nitrogen, conforms to the equation
PF= RT nearly enough to allow that equation to be applied in

calculating the temperature from the observed pressure. Although
the specific heat of such a mixture is undoubtedly somewhat greater

at high pressures than at low pressures, the difference is not so

considerable as to be taken into account in gas-engine calculations.

On the other hand, the specific heat of such a mixture, and of

most gases, varies largely with the temperature, becoming greater

as the temperature rises, and the effect of this on the working of

gas-engines is fundamentally important.
In monatomic gases, such as argon or helium, there is little, if

any, increase of specific heat with rise of temperature ; in diatomic

gases such as oxygen or nitrogen the increase is considerable; in

gases of more complex constitution, such as the triatomic gases

H
2
O and CO

2 ,
it is larger still. The presence of these constituents

in a gas-engine mixture makes its rate of change of specific heat

with temperature greater than that of air. The specific heat of a

gas-engine mixture at 2000 C. is about 1'8 times what it is at 0C.
An obvious result of the increase of specific heat with tempera-

ture is that when a definite quantity of heat is given to a gas or a

mixture of gases as for instance by the explosion at constant

volume in a gas-engine, the rise of temperature is less than it would

be were the specific heat to keep constant, for as the gas gets hotter

each degree of rise absorbs more and more of the available heat.

When the experiment is made of exploding a charge in the cylinder

of an engine or in any closed vessel, it is found that the temperature

actually reached is far short of that calculated on the basis of con-

stant specific heat, after making full allowance for loss of heat to the

walls of the vessel. When this fact was first observed it was put

16-2
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down to imperfect or rather delayed combustion of the charge;

the suggestion was that a large part of the heat of combustion was

developed gradually, in a comparatively slow process called
"
after-

burning," which was supposed to continue after the explosion had

spread through the whole vessel and after the temperature and

pressure had risen suddenly to the observed maximum. The notion

that there is any considerable effect due to "after-burning" is now

abandoned, and it is recognized that the facts are sufficiently ex-

plained by reference to the increase of specific heat with rise in

temperature.
Measurements of specific heat, showing this increase, have been

made in various ways
*

: by direct heating, up to high temperatures,

under constant pressure; by observing the rise of temperature in

explosions; and also by a method due to Clerkf, in which the gas

in an engine cylinder is successively expanded and compressed
several times while the valves are kept closed. In that process, the

work done by or upon the gas between any two points of the stroke

is determined by measuring the area under the indicator curve,

and is used as a basis for reckoning the change of internal energy,

while the change of temperature is inferred from the change in the

product of pressure and volume. The method can be applied either

to imprisoned air or to an exploded charge. It is subject to some

uncertainty in the estimate that has to be made of the heat which

is given to, or taken from, the gas by the cylinder walls.

The results of these various methods of experiment are not very
accordant. In general the figure got for the specific heat of a hot

gas, when the heating is done by internal combustion or by com-

pression, is greater than when the gas is heated under constant

pressure. All the methods are liable to errors which are difficult

to allow for. They agree in showing that there is an important rise

in specific heat with temperature, greater in triatomic gases such

as water-vapour or carbonic acid than in nitrogen or air. The rate

of increase is probably not uniform in diatomic gases ; it is certainly

not uniform in triatomic or more complex gases.

The results are often expressed by means of a formula implying
a uniform rate of increase,

Kv
= (KV )Q + at,

* Particulars of these, and a valuable discussion of the results, will be found in

the Reports of the British Association Committee on Gaseous Explosions, from 1908.

See also Sir D. Clerk's book on The Gas, Petrol and Oil Engine, vol. I.

f D. Clerk, Proc. Roy. Soc. A, vol. 77.
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where (Kv )
is the specific heat at C., Kv is the specific heat

at any temperature t, and a is a coefficient that is constant for the

particular gas.

Similarly, Kv
= (KV )Q + at.

The coefficient a is the same for any one gas as in the formula for

Kv , since (assuming the law PV RT to hold) the difference be-

tween Kv and Kv is a constant, independent of the temperature.
More probably, however, the rate of iricrease of specific heat

with temperature is not constant, and formulas of the type

are required to express the relation, especially in gases where there

is much change.
In the absence of more exact data a linear formula may serve

roughly, through a moderate range, for air, nitrogen, oxygen, and

carbonic oxide, namely
Kv

= 4-98 + 0-001*,

in calories per gramme-molecule.
For carbonic acid Langen* gives, as applying from 1400 to

1700 C., a formula (based on explosion experiments) equivalent to

Kv
= 6-7 + 0-0052*,

and for water-vapour he gives

Kv
= 5-9 1 + 0-0043*,

both in calories per gramme-molecule.
There can be little doubt, however, that a linear formula is not

really applicable to these gases through any wide range. A term in

t
2

is required as well as a term in *, especially at temperatures such

as are reached in gas-engines.

Results collected by the British Association Committee, for a

typical gas-engine mixture, will be discussed in Art. 168, and it will

be shown that they involve a formula of the type
Kv

= (Kv )Q + at + pt*.

165. Internal Energy of a Gas. What we are practically con-

cerned with in the gas-engine is not so much the specific heat as a

*
Langen, Zeits. des Vereines deutscher Ingenieure, vol. 47, 1903, p. 622.

f Probably this is too low. In an ideal triatomic gas K v would be 3R or 5-955

(Art. 174) : in water-vapour it should be higher. Values of the specific heat of water-

vapour found by Pier in explosion experiments (quoted in Sackur's "Thermo-

chemistry and Thermodynamics," Trs. Gibson, p. 72) make K v nearly 6-1 for t = 0.
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quantity closely related to it, namely the internal energy E. When
the charge is exploded at constant volume its internal energy

increases by the amount of heat developed, less what is lost to the

cylinder walls.

In adiabatic compression the gas gains internal energy equivalent

to the work spent in compressing it; in adiabatic expansion it loses

internal energy equivalent to the work done. Between any two

points a and b on the curve of expansion or compression in an actual

engine, if there is no combustion between a and 6, the equation

holds 771 7? j_ 117 _i_ f)&a = % + W at + ^a6 ,

where Ea is the internal energy at a, Eb is the internal energy at b,

Wab is the work done by the gas in changing from state a to state b,

and Qab is the heat lost to the walls during that change of state.

If there is any internal combustion between a and &, generating

heat represented by Q'cj, the equation takes the more general

form* Ea +Q.'^ = E,+ Wall +qat .

Hence if we know the values of E for all states we may, by study-

ing the indicator diagram and so measuring Wab for any step,

determine completely the transfer of heat between gas and metal.

A knowledge of the values of E for the working gas throughout
a range of temperature from say 100 C. to 2000 C. is therefore

of great practical importance. What is wanted is a curve showing
the relation ofE to the temperature j\

The relation between the internal energy E and the specific heat

isthat dE = Kv dT.

Hence, at any temperature, the slope of the curve of E and T,

namely -= measures Kv ,
and E = JKV dT.

dJ

If Kv were constant the curve of internal energy would be a

straight line and we should have

E=Kv t.

Here t is the temperature on the centigrade scale, and the con-

stant of integration is zero if the usual convention be adopted of

* As for instance when a is a point on the compression curve, before ignition, and
6 is a point on the expansion curve, after combustion is complete. Q' then represents
the whole thermal energy of the explosion.

f The importance, in gas-engine work, of a curve of the internal energy of the gas
in relation to the temperature appears to have been first pointed out by Hopkinson
(see Min. Proc. Insi. C. E., vol. 169, p. 157; also his paper on ''The Thermal

Efficiency of Gas Engines." Proc. Insi. Mech. Eng., April, 1908).
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reckoning the energy of the gas from an arbitrary starting-point at

C. This of course does not mean that a gas at C. has no in-

ternal energy, but only that the stated value at any temperature
is the excess above the value at (compare Art. 66).

If Kv
= (Kv) + at,

Or, if Kv
= (K^ + at + fit*,

F (K \ t 4-** + &*'& = (&vkt + Y IT*

We may accordingly construct a curve of E and t when an ex-

pression for Kv is given, or conversely find an expression for Kv

from a given curve of E and L

Further, when the curve of E and t for a gas or mixture of gases

is drawn, the value of Kv at any temperature is readily found by

measuring the slope of the curve there. From that Kp may be

deduced by adding the gas-constant R to Kv , namely 1-985 ifKv

is expressed in gramme-calories per gramme-molecule (Art. 161).

In this way the ratio y of Kv to Kv may be determined for any

temperature.

1 66. Adiabatic Expansion of a Gas with Variable Specific

Heat. In any gas whose specific heat increases with the tempera-

ture, y is not constant but becomes less as the temperature rises.

This is an obvious consequence of the fact that while the specific

heats increase with rising temperature the difference between them

keeps constant, since the gas still conforms to the equation
PF= RT. Hence in attempting to draw an adiabatic curve for the

expansion (or compression) of such a gas, through any given ratio

of volumes, by means of the equation PVy = constant, we have

to do with a continuous variation in the index y.

When we know the relation ofE to the temperature we may obtain

an approximation to the curve by substituting for the variable

index y a constant index n, chosen so that the gas does not on the

whole gain or lose heat in the process. For this purpose an average
value of y is guessed at and provisionally used as the value of n.

The formula PVn = constant is then applied to compute the work

done, and also the final temperature. The initial temperature is

assumed to be known, as well as the initial pressure and volume.

It is then seen whether the amount of work so computed agrees
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with the difference between the values of E for the initial and final

temperatures. If they agree, the gas has on the whole neither gained

nor lost heat. If there is any discrepancy, it is to be corrected by

using a somewhat different value of n. This process of trial and

error gives a PV curve which does not exactly coincide with the

true adiabatic curve but represents it fairly well. It falls rather

too fast at first, for the value of y is less than n in the early stages;

later it crosses the true curve and finally lies a little above it. At

the beginning there is some slight loss of heat in the assumed expan-
sion with constant n; towards the end there is a gain of heat which

balances that loss. The final temperature in the assumed expansion
is a little higher than in true adiabatic expansion, and conse-

quently the work area is a little less*. The process can be made to

give as close an approximation to the true adiabatic curve as may
be desired, if we divide the whole expansion or compression into

several steps, and deal in this manner with each step in succession,

finding an appropriate value of the index n for each step.

When a formula connecting the specific heat with the tempera-
ture is established, a relation between V and T during adiabatic

expansion can be obtained as follows in terms of the coefficients

used in the formula, and from that relation the form of the adiabatic

curve can be determined. Let

Kv
= a + bT

and K9
= a' + bT

T being as usual the absolute temperature. .

Since in adiabatic expansion the work done by the gas is equal
to the loss of internal energy

= -dE=- KdT.
dT PdV

Dividing by T, Kv ^ + = 0,

dT RdV

R/V being equal to P/T.

But Kv
= a + bT + cT* and R = a' - a.

Hence a
d~ + bdT + cTdT + (a'

-
a)
~ = 0.

* This process of approximating to the adiabatic curve is described by Hopkinson,
Proc. Inst. Meek. Eng., April, 1908, p. 443.
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Integrating,
cT2

a log T + bT + + (a'
-

a) loge V = const.

bT+ --
or Ta Va'~ a 2 = const.,

being 2-7183, the base of the Napierian logarithms. This equation
connects T with V in the adiabatic expansion or compression of the

gas. The most convenient way to apply it is to work out the value

of the constant for the initial volume and temperature of the gas :

then take another value of the temperature (lower for expansion,

higher for compression) and find V for that, and so on. By drawing
a curve of V in relation to T it is easy to find the temperature for

any assigned ratio of expansion or compression, and then to infer P
PV

by means of the relation -=- = constant.

Since, by that relation T = PaVa x constant, the above equation
for adiabatic expansion or compression may be put in this form,

bT+
paya 2 =

M+
Or, eliminating F, p-T'e

2 =

which directly connects P with T. But neither of these alternative

forms is so convenient as the first for drawing the adiabatic curve.

167. Ideal Efficiency as affected by the Variation of the

Specific Heat with Temperature. We saw (Art. 155) that

the standard of efficiency known as the "air standard" assumed

constant specific heat. When the working substance is a gas, or

mixture of gases, in which the specific heat increases with the

temperature, the ideal efficiency, which the engine would reach if the

compression and expansion were adiabatic and the explosion were

completed at the dead-point without giving up any heat to the

cylinder walls, is necessarily much less in consequence of the lower

maximum of temperature. The ideal efficiency with variable

specific heat may be determined when we can express Kv as a

function of the temperature, or when we know the relation of the

internal energy to the temperature, but it does not admit of any

simple expression. It may be computed by working out the ideal

indicator diagram, with adiabatic curves, assuming a heat of com-

bustion appropriate to the given mixture, and then comparing
the work which the diagram represents with the assumed heat of

combustion.
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When we can express the specific heat as a function of the tem-

perature we can calculate the ideal efficiency as follows. Taking as

before

Kv = a' + bT + cT\

assume an initial temperature T at the beginning of compression.

This, which is called the suction temperature, is generally taken as

100 C. Then apply the adiabatic equation

bT+ C-^
TVa'- 2 = const.

to find Tj , the temperature at the end of compression. Next calcu-

late T
2 ,

the temperature after explosion, by equating the change
ofE to the heat given out by the burning of the charge. Then again

apply the adiabatic equation to find T3 ,
the temperature after

expansion. When these four temperatures are known the corre-

sponding values of E are determinate. The work spent in compres-
sion is E

1 E
; the work done in expansion is E2 E3 ;

the heat

supplied is E2 E1 . Hence the ideal efficiency is

EZ-ES- (E1
-. E.)

EZ-EI
'

When this calculation is made for a typical gas-engine mixture

the result is to give an ideal efficiency about 20 per cent, less than

the air standard, for such ratios of compression as are in common
use *. We saw in Art. 155 that with constant specific heat and there-

fore constant y the air-standard efficiency was

-1 / 1\'4

A good approximation to the efficiency of the ideal cycle with

variable specific heat is given by the empirical formula

/1\0'3

Here the index 0-3 may be said to represent a general average of

the values of y 1 throughout the action (assumed to be adia-

batic) of a typical gas-engine mixture. (Compare with Art. 168

where values of y are given for various temperatures.)

* See Mr H. E. Wimperis' text-book of The Internal-Combustion Engine, Chap, iv,

where results are given in detail, for various values of r. The specific heats are

there expressed as linear functions of the temperature (the term cTz
being omitted).

For reasons which will appear in Art. 168 the term in T2 should be retained.
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It should be noted however that the ideal efficiency, for a mixture

in which the specific heat varies, depends not only on the ratio of

compression but also on the strength of the charge. A strong

charge gives on combustion a higher temperature than does a weak

charge, because of the greater development of heat, and it also

produces a mixture which contains a larger proportion of water-

vapour and carbonic acid. For both of these reasons the influence

of variation in specific heat, in reducing the ideal efficiency below

that of the air standard, is greater for a strong charge than for a

weak one. In an example given by Hopkinson*, where the ratio of

compression was 6-37 and the air-standard efficiency was therefore

0-522, the ideal efficiency (allowing for variation of specific heat)

was computed to be 0-424 for a mixture containing 8-8 per cent,

of coal-gas before combustion, and 0-394 for a stronger mixture

containing 11-4 per cent. From these figures it would appear that

a mixture containing about 9J per cent, of coal-gas would have

an ideal efficiency 20 per cent, less than the air standard.

To determine the ideal efficiency is a matter of importance

because, by comparing it with the efficiency actually realized, we

are able to say what is the margin of improvement for reducing

the thermodynamic losses that occur in the action of a real engine.

1 68. Curve of Internal Energy for a Typical Gas-Engine
Mixture. The British Association Committee on Gaseous Explo-
sions give in their first Report (1908), a curve of internal energy and

temperature for a typical gas-engine mixture, namely the mixture

used by Clerk in the experiments to which reference has been made.

This mixture was the product of combustion of a charge of one part

by volume of coal-gas to about nine parts of air, together with the

burnt gases in the clearance space: it contained 5 per cent, by
volume of carbonic acid and 12 per cent, of water-vapour, the

remaining 83 per cent, being made up of nitrogen and surplus

oxygen.
The curve, which is reproduced in fig. 82, is based partly on Clerk's

experiments, in which the hot mixture was expanded and compres-
sed in an engine, partly on early explosion experiments by Mallard

and Le Chatelier| and later ones by LangenJ, and partly on direct

measurements of the specific heat of gases at constant pressure,

* Proc. InsL Mech. Eng., April, 1908, p. 425.

f Mallard and Le Chatelier, Ann. des Mines, 1883, p. 274.

J Langen, loc. cit., also Mitteil. iiber Forschungsarbeiten vom Ver. deutsch. Ing.,

Heft 8, 1903.
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by Holborn and Henning*. The curve shows the value, in relation

to the temperature, ofE expressed in gramme-calories per gramme-
molecule that is to say in gramme-calories for a volume of the mix-

ture equal to 22,400 cubic centimetres at C. and one atmosphere.
To reduce E to foot-pounds per cubic foot multiply by 3-90 1.

The curve as originally given in the Committee's Report starts

from 100 C., which is taken as the zero in reckoning E. As here

reproduced it is extended down to C., and E is reckoned from that

point in accordance with the convention already mentioned.

A careful examination of the curve shows that no formula of the

type K v
= (KV }Q + at will fit it. Kv must increase slowly at low

temperatures and faster at high temperatures to give values of E
that will agree with the curve. It is, however, well represented by
the formula E = 5 . 2t + .0004^2 + 0-000000223

,

which corresponds (Art. 165) to

K v
= 5-2 + 0-00086* + 0-00000062 2

.

Values of E measured from the curve and calculated from the

above formula are compared in the table below:

Internal Energy of Gas-Engine Mixture.

E in calories per gramme-molecule
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contains 30 per cent, more internal energy than it would contain

if the specific heat were constant at 5-2.

The specific heat at C. agrees fairly well with the value which

we might calculate from the known composition of the mixture,

using the figures given in Art. 164, namely 6-7 for CO2 ,
5-9 for H

2O,

and 4-98 for the remainder of the mixture. Since the proportions

by volume were 5 per cent, of CO2 ,
12 per cent, of H

2
O and 83 per

cent, of other gases, we should expect Kv to be

5 x 6-7 + 12 x 5-9 + 83 x 4-98

100
5-18.

If 6-1 were taken for H2O instead of 5-9 the agreement would be

exact. (See footnote on p. 244.)

Values of Kv , K^ (taken as equal to Kv + 1-985), and of y, for

this mixture at various temperatures are given below:

Temp. C.
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which expresses the ratio of the specific volume after combustion

to the specific volume before combustion. This makes

T1 a & 6

~aP~V~
'

Thus, if we know the
"
suction temperature" T of the charge when

compression begins, it is easy to find from the indicator diagram
the temperatures at any other

Lb.pers<j.in.

points, such as the end of com-

pression, the end of expansion,

and the point of maximum

pressure. These temperatures

are of course in all cases the

mean temperature throughout

the whole volume of the gas.

Take for example fig. 83, an

indicator diagram in one of

Hopkinsoivs tests* of a gas-

engine with a compression ratio

of 6-37. In this instance the

gas-mixture at the beginning of

compression had a temperature

of 100 C., and a pressure of

14-7 pounds per sq. inch. It con-

tained 11 per cent, of COal-gaS Fig 83. Indicator Diagram from a Crossley

and the chemical contraction
Otto Engine, 1908 (Hopkinson).

was 3 per cent., making cr = 0-97. When the charge was ignited

the combustion was so rapid that the pressure rose to its maxi-

mum before the piston had moved perceptibly forward. Using the

same suffixes as in fig. 79, we see from the diagram that P1 at

the end of compression was 165 pounds, P2 after explosion was

482 pounds, and P3 at the end of expansion was 49-5 pounds, as

measured by prolonging the expansion curve to the end of the

stroke, beyond the point at which the release-valve began to open.

Hence (using absolute temperatures),

x 165

500

40

300

200

too

aP,-
1980 x

14-7 x 6-37

657 x 482

0-97 x 165

49-5 x 6-37

= 657 C

1980 C

482
= 1295'

* Proc. InsL Mech. Eng., 1908, p. 420.
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Or, calculating direct from the initial state,

_T,P3 _ 373x49-5
1 3

~
<jP

~
0-97 x "14-7

Hence, if a curve of E and T for the mixture is available, it is

easy to find the values of E at successive stages, and, by comparing

them with the work done from stage to stage, to determine the heat

given to or taken from the walls during compression, explosion,

and expansion.

In the example quoted, Hopkinson found that the indicated work-

represented 33 per cent, of the heat of combustion, and that the

gases at the temperature of release (T3 )
carried off 39 per cent.,

leaving 28 per cent, as the net loss by radiation and conduction.

Most of this last item is taken up by the circulating water of the

water-jacket which is used to keep the cylinder cool enough for

lubrication. The 33 per cent, converted into work represents an

efficiency-ratio of 0-83, for the ideal efficiency under these conditions

of compression and mixture strength was 0-40.

With a weaker mixture, containing 8-5 per cent, of coal-gas, he

found that a larger fraction, namely 37 per cent., of the heat of

combustion was converted into indicated work. This corresponds

to a higher efficiency-ratio, namely 0-87. As Hopkinson observes
"
the weaker mixtures, in addition to giving a higher ideal efficiency,

come nearer in practice to realising that ideal." This is because

they lose relatively less heat to the walls during explosion and ex-

pansion. "The difference is sufficient to counterbalance an influ-

ence tending the other way, namely the more rapid combustion

of the stronger mixtures." The less rapid combustion of weak

mixtures is apparent in their indicator diagrams : it shows itself by
the maximum pressure occurring later and with amore rounded top.

In extreme cases the combustion is prolonged throughout the whole

expansion stroke, and the exhaust gases contain unburnt products.

Incidentally these figures illustrate the most obvious weakness of

the ordinary internal-combustion cycle that the ratio of expansion
is no greater than the ratio of compression. Consequently the pro-

ducts of combustion are discharged at a high temperature with much
unutilized internal energy. Attempts have been made to avoid

this loss, notably by Atkinson, who designed forms of engine in

which the expansion stroke was much longer than the compression

stroke. The advantage, in respect of thermal efficiency, was con-

siderable, but the complication of Atkinson's engines stood in the
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way of their success, and in modern engines the thermodynamic
advantage of high expansion is sacrificed to mechanical simplicity.

170. Measurement of Suction Temperature. In the above

analysis of the diagram it is obvious that the results depend on

the accuracy with which the temperature is known after the admis-

sion valves are closed. A resistance thermometer of very fine wire

will serve to measure it when furnished with an electrical contact

on the shaft by means of which its indication is given only at the

right moment in the stroke. But such a thermometer will not stand

the high temperature which is reached in the explosion. Messrs

Callendar and Dalby* have devised an ingenious plan for over-

coming this difficulty. In their device a fine wire of platinum forms

the thermometer. It is fixed to a tube which slips through a hole in

the spindle of the admission valve, and projects into the gas. The
tube has a valve-shaped end which closes when it is drawn back ;

the wire is then screened from the action of the gas, and no gas can

escape. Before the end of the compression stroke it is drawn back

(by means of a cam on the valve-shaft), and remains screened

during explosion and expansion. It is again projected into the gas
before the compression stroke begins. The valve-shaft of the engine,

which rotates once for each cycle of four strokes, carries a cam which

completes the electric circuit of the thermometer at the proper

point, just when the admission of the charge is complete and com-

pression is about to begin.

171. The Process of Explosion. Much light has been thrown

on what takes place when a gas-engine mixture explodes, by experi-

ments in which gas mixtures have been exploded in closed vessels

of constant volume, with devices for registering the rise of pressure

in relation to the time, and also the progressive changes of tempera-
ture at various points within the vessel. The experiments of Hop-
kinson on explosions of coal-gas and air should be specially referred

to in this connection |.

Let an explosive mixture, homogeneous and at rest to begin with,

be ignited at any point. A flame spreads in all directions from the

point of ignition, travelling at a rate which depends on the pres-

sure, so that each portion of the mixture ignites in turn, the most

* Proc. Roy. Soc. A, vol. 80, 1907. See also the Seventh Report of the British

Association Committee on Gaseous Explosion (1914).

f B. Hopkinson, Proc. Roy. Soc. A, vol. 77, p. 387, 1906; also vol. 84, p. 155, 1910.

E.T. 17
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distant portions last. When the initial pressure is that of the atmo-

sphere, the flame may travel at the rate of only about five feet per

second to begin with, even in a rich mixture such as one of gas to nine

of air. The rate depends on the richness of the mixture as well as on

the pressure : in a weak mixture it takes much longer for the ignition

to spread through the whole volume. When the initial pressure

of the mixture is high the ignition flame travels much faster.

The portion which is first ignited, close to the ignition plug, burns

at nearly constant pressure, being surrounded by a large elastic

cushion of unignited gas. Its combustion is practically completed
before the pressure has risen. Then the spread of the flame brings

more of the gas into action; the pressure rises, and the portion

which was first burnt is compressed. This compression is nearly

adiabatic : its effect is to raise the temperature of that portion much
above the temperature to which it was brought by combustion, and

above thetemperature which is reached in combustion by the outlying

parts of the gas, which are compressed before they become ignited.

In Hopkinson's experiments a mixture of nine parts of gas to one

of air was fired at atmospheric pressure in a cylindrical vessel with

a capacity of about 6 cubic feet. It was ignited by an electric

spark at the centre, and developed a maximum pressure of about

80 pounds per sq. inch, which was reached a quarter of a second after

firing. The temperature was observed near the centre and at other

points. On ignition the temperature at the centre rose very rapidly
to 1225 C., while the pressure remained nearly constant. In the

later stages of the explosion, when the burnt gas at the centre was

being adiabatically compressed, its temperature rose above the

melting point of platinum, probably to 1900. This is a higher tem-

perature than was reached in the outlying portions, which were first

compressed adiabatically and then heated by combustion. When the

maximum pressure was reached, the mean temperature inferred

from it was 1600. Hopkinson concluded that even in a vessel

impervious to heat, the portion of the mixture first fired would be

hotter than the outlying portions by about 500, when the combus-

tion of the whole was practically complete. An interesting conse-

quence, pointed out by him, follows from the fact that when the

combustion is complete the gas is not in thermal equilibrium.

Imagine the loss of heat to the walls to be arrested while the burnt

gas settles into equilibrium of temperature. If the specific heat were

constant this settlement would make no difference to the mean

temperature and therefore no difference to the pressure. But
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because the specific heat of the hotter portions is higher than that

of the cooler portions, the temperature which the gas assumes when

it is equally hot all through will be somewhat higher than the

previous mean, and there will consequently be some rise of pressure

as the gas settles into thermal equilibrium.

These experiments go to show that there is no substantial

amount of "after-burning," and that the effects formerly ascribed

to after-burning are due to the increase of specific heat with tem-

perature. Practically the full evolution of heat in each portion of

the gas takes place at once when the flame reaches that portion,

but there is some delay in completing the ignition of those portions

which are in proximity to the cold walls, especially when the

mixture is weak.

In explosion experiments with weak mixtures the spread of the

flame is much slower, so slow indeed that it is largely affected by
convection currents set up by the ignition of the gas nearest to the

spark. The gas in the upper part of the vessel may be completely

ignited while the lower part of the vessel is still full of unburnt

gas. By stilling the contents of the vessel, so that the gases are

in motion when the spark passes, a much more rapid combustion

of the whole can be secured.

172. Effect of Turbulence. This effect of turbulence in

promoting rapid ignition of the whole contents is felt, though to

a less degree, in strong mixtures as well as weak mixtures. It is,

as Clerk has pointed out, an important factor in the working of an

internal-combustion engine. When a fresh charge is drawn in and

compressed the gases are still in more or less violent motion at

the moment of ignition. This has the great advantage that com-

bustion is rapidly propagated throughout the charge and the maxi-

mum pressure occurs early in the expansion stroke. Clerk observed

that when the explosive charge in a gas-engine was not fired after

the first compression, but was fired after three successive compres-

sions, so that the turbulence set up on its entry had time in part
to subside, the process of combustion was generally prolonged,
with the result of giving a flat diagram and a wasteful action. In a

high-speed engine the whole expansion stroke may take only one-

twentieth of a second, or less, and the explosion is over in a small

fraction of that time : this would be impossible were it not for the

effect of turbulence in causing the flame to spread quickly through
the cylinder.

172
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173. Radiation in Explosions. In closed-vessel experiments,
the maximum of pressure is reached a little before the combustion

is complete, for it occurs when the rate of loss of heat by radiation

and conduction to the walls just balances the rate at which heat

is being generated in the gas. Hopkinson has investigated the effect

of radiation by comparing the rate of cooling in an explosion vessel

which was lined with highly-polished silver, with the rate in the

same vessel when its inner surface was blackened*. The rate of

cooling after explosion was notably greater when the walls were

blackened, and the maximum pressure was less for charges of the

same composition. The rate at which heat was lost to the polished

walls was on the average about two-thirds of the rate of loss to

blackened walls. It varied with the exact state of the polished

surface, which was never perfectly reflecting. Hopkinson conclu-

ded that of the heat given by the gas to the walls of a blackened

enclosure during the first quarter-second after maximum pressure,

at least 30 per cent, is radiant heat, and possibly a good deal more,
for the reflecting quality of the polished walls may have been im-

paired by the deposit of a film of moisture at an early stage of the

cooling. Further experiments ,
in which the vessel was fitted with

a fluorite window to allow the radiation to fall on an absorbing
screen outside, confirmed the view that radiation accounts for more
than 30 per cent, of the whole heat loss. Its effects were still per-

ceptible after the temperature of the gas had fallen to 1200.

In later measurements by W. T. David the total loss by
radiation after the explosion of a mixture of coal-gas and air in

a closed vessel, was found to be about 25 per cent, of the whole

heat of combustion. The rate at which radiant energy was

emitted, through a fluorite window, was greatest a little before

the pressure reached its -maximum: it fell off rapidly as the

exploded gas cooled, but radiation could still be detected when
the temperature had fallen below 700 C., about a second after

the charge was firedf.

The energy of the radiation from an exploded gas-engine
mixture is due almost wholly to two or three bands of rays of

definite wave-length, corresponding to much slower vibrations

than those which produce the visible spectrum. The existence

of these bands may be demonstrated 'by examining the heat

* Proc. Roy. Soc. A, vol. 84, 1910, p. 155. See also the Third Report of the British

Association Committee on Gaseous Explosions, 1910.

f W. T. David, Phil. Trans. A, vol. 21 1, p. 375 : Phil. Mag. Feb. 1913 and Jan. 1920.
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which is radiated from a gas flame when it is made non-luminous

by using a Bunsen burner.

Experiments with such flames show that when hydrogen is burnt

to form water-vapour most of the radiant heat that is given off is

in a band with a wave-length of about 2'fyi*, but some has a longer

wave-length : also that when carbonic oxide is burnt most of the

radiant heat is in a band with a wave-length of about 4*4/>i, but

some is in two bands whose wave-lengths are about 2*7//, and

between 14 and 15/>t.
In one case the radiation comes from vibrating

molecules of H2O, in the other from vibrating molecules of CO2 .

It is also found that cold CO2 absorbs strongly the radiation from

a CO flame, and water-vapour absorbs strongly the radiation from

a hydrogen flame. It may be concluded that the modes of free

vibration of a molecule of cold CO2 or water-vapour have periods

corresponding to the chief wave-lengths which the gas gives out

when it is so violently agitated as to become a source of radiation.

This happens when the molecules are formed by the coming

together of their constituent atoms.

It is further found | that a mixed or compound gas burning to

form CO2 and H2O gives out both wave-lengths (4'4/x, and 2'8/x),

and that the whole energy it radiates is equal to the sum of the

energies separately computed for the molecules of H
2
O and CO2

that are formed by its combustion. For equal volumes of H2O
and CO2 ,

at the same flame temperature, the radiation from CO2

appears to be about 2J times that from H2O.

These results point to the conclusion that when -a gas-engine

mixture is fired, the energy that is radiated comes almost entirely

from molecules of CO2 and H2O in the burnt gases : very little of it

comes from the nitrogen or the surplus oxygen.

174. Molecular Energy of a Gas. According to the kinetic

theory of gases, the internal energy E of a gas is made up of the

communicable energies of its molecules, and each molecule may,
in general, have communicable energy of these three kinds:

(1) Energy of translation of the molecule as a whole,

(2) Energy of rotation of the molecule about an axis through
its centre of mass,

(3) Energy of vibration.

*
/m. stands for millionths of a metre. The wave-lengths in the visible spectrum

range from about 0'39 to 0'77/u.

f R. von Helmholtz : see the Third Report of the British Association Committee.
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It is to energy of the first kind that the pressure of the gas is due.

The kinetic theory shows* that, in a gas for which PV = RT, the

energy of translation is ^RT. The pressure, in kinetic units, is

numerically equal to two-thirds of the energy of translation of

the molecules in unit volume of the gas. When the gas is heated,

this energy increases in direct proportion to T. Hence if all the

internal energy of the gas were in this form we should have

(reckoning E from the absolute zero of temperature), and the

specific heat would be constant. Kv would then be equal to f R,

which would make Kv
= %R, and y = f or T667. This is nearly

true of actual monatomic gases : in such gases E consists entirely,

or almost entirely, of energy of translation of the molecules.

The second kind, energy of rotation, becomes an important part

of the whole when the molecule comprises two or more atoms. We
may conceive the molecule of a diatomic gas such as O2 or N2 to

consist of paired atoms held at a definite distance apart like the

heavy ends of a dumb-bell. Such a structure may, in the course of

its encounters, acquire energy of rotation about any axis per-

pendicular to the line joining the two atoms, but riot about that

line. In addition to its three degrees of freedom of translation it

consequently has two effective degrees of freedom of rotation ;
hence

five in all are effective out of the six degrees of freedom which it

possesses as a rigid body.

According to the kinetic theory the encounters between the mole-

cules, when the gas is in a steady state as to pressure and tempera-

ture, cause the energy of translation and rotation, (1) and (2)

together, to become equally divided among as many of these six

degrees of freedom as are effective.

Hence in a perfect diatomic gas, besides the energy of translation,

which is tj>RT, there is an amount of energy of rotation equal to

RT due to the two freedoms of rotation, making fRT in all for the

five effective degrees of freedom. Consequently in such a gas, if

there were no energy except what is comprised in (1) and (2), we

should find E = %RT; the specific heat would be constant, Kv

would be fR, Kv would be \R, and y would be \ or 1-4.

These values agree well with those found in actual diatomic

gases such as nitrogen or air, so long as the gases are cold. But, as

* See Appendix II.
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we have already seen, the specific heats become distinctly higher
at high temperatures and y becomes less. This means that, in

addition to items (1) and (2), there is in these gases some energy
of vibration (3), the amount of which is insignificant at low tem-

peratures, but becomes comparatively important when the gas is

highly heated. It does not increase proportionally to T but in a

more rapid ratio.

In triatornic gases such as H2O or CO2 ,
and in gases of a more

complex constitution, there are three effective freedoms of rotation

as well as three freedoms of translation, making six in all, between

which the energy comprised under items (1) and (2) is equally

shared. Thus items (1) and (2) account for an amount of energy

equal to fRT . If there were no more, namely no energy of vibra-

tion, the specific heat would be constant, Kv would be 3/2, Kp

would be 47?, and y would be f or 1-333.

In water-vapour and carbonic acid the value of y even at low

temperatures is less than 1-333: in water-vapour it is about 1-3

and in carbonic acid it is a little lower. (Art. 163.) From this, and

also from the fact that moderate heating considerably raises the

specific heat, it may be inferred that even at low temperatures the

molecules of these gases have some energy of vibration. Its pro-

portion to the whole energy is increased by heating the gas.

The amount by which the energy of vibration augments the

specific heat in any gas may be inferred from the value of y if we

assume the gas-law PV = RT to apply. Take for instance a tri-

atomic gas. Kv ,
if there were no vibration, would be 37?; let nR

be the amount by which vibrational energy increases it. Then

from which y = (4 + n)/(3 + n).

Suppose that y has the value 1-30 instead of 1-333: this makes

n =
,
and the specific heat K

v
is therefore 10 per cent, greater

because of vibration. The value of n increases with the tempera-
ture. At the temperature reached in a gas-engine explosion y for

CO2
is probably not much more than 1-14, which would correspond

to a specific heat approaching 67?. (See Art. 224.)

The phrase "energy of vibration" is to be understood as including

all the kinds of energy which the molecule may acquire in the course

of its encounters with other molecules, except energy of rotation

as a whole and energy of translation as a whole. All such forms

of energy are internal to the molecule itself: they may be due to
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relative motions of its parts or to electrical disturbances within it,

or within its atoms. It is to energy of vibration that the radiation

given out by a heated gas is attributed.

When a gas-engine mixture is fired the energy generated by the

explosion is at first concentrated in the newly-formed molecules

of CO2
and H

2O and spreads to the other molecules as a result

of encounters. We may conjecture that it is at first mainly

vibratiorial, and the encounters transform part of it into energy
of translation. It is clear that the newly-formed molecules possess

much more than their normal proportion of energy of vibration;

much more, that is to say, than they would possess if the burnt

mixture were kept without loss of heat long enough to let

equilibrium be attained between the different kinds of energy,
or were re-heated to the same temperature after being cooled.

Some time, perhaps only a very short time, must elapse before a

condition of equilibrium is reached. If the gas were enclosed, after

combustion, in a vessel impervious to heat, while this process is

going on, the energy of translation would increase at the expense
of the energy of vibration, and the temperature would therefore

rise though the total energy undergoes no change. So far as it goes,

this process of attaining equilibrium has an effect like continued

combustion or "after-burning." The time taken to reach equili-

brium is not known. If the process is not very soon completed it

may account for the fact that measurements of specific heat made

by means of an explosion in a closed vessel give values somewhat

greater than those that are got when the gas is heated in other

ways.
It has been suggested that the molecules of a hot gas emit

radiation mainly when they undergo structural change. If this view

be correct we should expect a gas mixture to radiate more energy

immediately after explosion than when it is maintained at the same

temperature, or re-heated to the same temperature after cooling.

Hopkinson's and David's experiments show that in an explosion
the gas continues to radiate for a second or so after maximum
pressure. This may only mean that the special vibrations (special

in violence or in kind) that are set up during the act of formation,
to which radiation is ascribed, subside rather slowly. There is

in any case an action going on. in all hot gases, that tends to

maintain such vibrations, namely the breaking up of some mole-

cules by exceptionally violent encounters, which is called dissocia-

tion, and their subsequent re-formation.
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175. ''Dissociation. In any gas, however homogeneous, and at

any temperature, the molecules at a given instant have widely
various speeds. Some of the encounters may be so violent as to

break up compound molecules, separating them into parts which

after a time meet fresh partners and re-combine. The probability

of such disruptive encounters is obviously greater the hotter

the gas is. In a hot gas in equilibrium, a process of dissociation

and re-combination goes on continually, to an extent depending
on the temperature, with the result that at any instant a,

certain proportion of the gas is in the dissociated state. The

proportion dissociated depends also on the pressure: at high pres-

sure it is less than at low pressure, for the same temperature.

According to measurements by Nernst and others the amount

of H
2O dissociated, under a pressure of one atmosphere, is barely

2 per cent, at a temperature of 2000 C., barely 1 per cent, at 1800,
and 0-02 per cent, at 1227 C. At a pressure of ten atmospheres
these numbers are about halved. In CO2 , at one atmosphere, the

proportion dissociated at 1650 C. is about 1 per cent, and at 1200

about 0-03 per cent. At such temperatures there is probably no sen-

sible dissociation in nitrogen. These figures are open to some doubt*,

but if they can be accepted as applying to the conditions of a gas-

engine mixture after explosion (conditions which are not those of

equilibrium) it appears that dissociation plays no considerable part

in that action. So far as it has any effect it reduces, very slightly,

the chemical contraction, by substituting some molecules of H2 and

O2 for molecules ofH
2O, and some molecules of CO and O2 for mole-

cules of CO2 ;
for the same reason it reduces slightly the immediate

development of thermal energy, leaving a small proportion of the

available chemical energy of the gaseous fuel to be developed later,

as the proportion of dissociated molecules diminishes with falling

temperature. The effect is therefore equivalent to a continued

combustion or "
after-burning." Or, if we regard the whole thermal

energy as being developed at once, and then a small portion of it

as being absorbed by the breaking up of some of the molecules

in consequence of their encounters, the effect of dissociation is

indistinguishable from that of increased specific heat.

* See the Second Report of the British Association Committee on Gaseous Ex-

plosions, 1909.



CHAPTER VII

GENERAL THERMODYNAMIC RELATIONS

176. Introduction. In the earlier chapters but little use was

made of formal mathematics in introducing the reader to the

fundamental ideas of thermodynamics. To most students there

is an advantage in having these ideas so presented : their physical

significance is more likely to be appreciated. Once that is grasped,

the student may proceed to a more mathematical treatment with

less risk that the real meaning of the symbols will be obscured in

the analysis. But a mathematical treatment must be resorted to

if we wish to express with anything like completeness the relations

that hold between the various properties of a fluid.

One of the uses to which these relations can be put is in framing
tables or charts of the properties of the fluid. By their aid such

tables can be compiled from a small number of experimental data,

and the experimental data themselves, as well as the numbers com-

puted from them, can be tested for thermodynamic consistency.

The purpose of this chapter is to show how the methods of the

differential calculus may be applied to obtain, by inference from

the First and Second Laws of Thermodynamics, certain general

relations between the properties of any fluid. With some of these

results the reader of the earlier chapters is already acquainted.
In the next chapter some applications of these general relations

to particular substances will be considered, including imperfect

gases, or real fluids in the state of vapour. In particular it will be

explained how Callendar has employed them in calculating his

tables of the properties of steam.

177. Functions of the State of a Fluid. Assume that we

are dealing with unit mass of a homogeneous fluid. As was pointed
out in Art. 75, the six quantities named there, P, V, T, E, /, and

(/>,
are all functions of the state of the fluid, that is to say their value

depends only on the actual state. When the fluid passes in any
manner from one state to another, each of these quantities changes
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by a definite amount which does not depend on the nature of the

operation by which the change is effected, but only on what the

state was before and what it is after the operation has taken place.

This fact is expressed in mathematical language by saying that the

differential of any of these quantities is a "perfect" differential.

Other quantities might be added to the list, which are also functions

of the state of the fluid, such as the quantities G (or ,
which is G)

and
i/r
mentioned in Art. 90.

In what follows it is to be understood that T means (as usual) the

absolute temperature on the thermodynamic scale (Art. 42).

We defined the entropy cf>
in Art. 44 by the equation d(f>

in

a reversible operation ; and the fact that ^ is a function of the state

was proved there as a consequence of the result that I = for a

reversible cycle, a result which follows from the Second Law of

Thermodynamics. The Second Law is therefore involved in treating

</>
as a function of the state. Hence the fact that

d</>
is a perfect

differential is sometimes spoken of as a mathematical expression

of the Second Law. It is important to notice that while -^ ,
which

is
d<f),

is a perfect differential, dQ itself is not a perfect differential,

for the amount of heat involved in a change is not a function of

the state alone. When a substance changes from one state to an-

other, the amount of heat taken in depends not simply on what

the two states are, but also on the nature of the operation by which

the change occurs. For the same reason, if W represent the work

done during a change of state, dW is not a perfect differential.

Since E, P, and V are all functions of the state, it follows that

the total heat /, which is equal to E -f PV, is also a function of the

state. And since T and
(f>

are also functions of the state, it follows

that this is also true of , which is / Tcf>,
and of

i/r,
which is E T<f).

Hence dl, dt, and dfi, as well as (ty, dE, dP, dV and dT, are perfect

differentials.

178. Relation of any one Function of the State to two

others. The state of the fluid (assumed to be homogeneous) is

completely specified when any two of the functions of the state are

known. Any third function is then determinate; that is to

say, it can have only one value in any particular substance.

Thus if any two functions (such for example as the pressure and the
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volume) be selected as "independent variables." by reference to

which the state is to be specified, then any third function (such for

example as the temperature, or the total heat) may be represented
in relation to them by the familiar device of drawing a figure in

which the two functions selected as independent variables are repre-

sented by rectangular coordinates X and F, and the third function

is represented by a third coordinate Z, perpendicular to the plane
of X and F. This gives a solid figure, the height of which shows,

for any given state of the substance, the value of the function Z in

relation to the values of the functions X and F which serve to

specify that state. The surface of such a figure may be called a

thermodynamic surface.

Suppose now that the substance undergoes an infinitesimal

change of state,, so that the independent variables change by dX
and dY respectively. That is to say, we suppose X to change to

X + dX and F to change to F + dY. Then the third function

changes from Z to Z + dZ, by an amount dZ which may be ex-

pressed thus:
+ my........................ (1)>

where M and N are quantities depending on the relations of the

functions to one another, and are therefore also functions of the

state.

This expression applies whether both functions X and F vary,

or only one of them. If X varies but not F, then dY = and

dZ = MdX : similarly if F varies but not X, dX = and dZ = NdY.-

Hence ,
7

T /dZ

In this notation, [3^] means the rate of variation of Z with
\dXJjr

respect to X when F is constant. In the language of the calculus,
r!7 \

[STR] is the partial differential coefficient of Z with respect to
VaA/ Y

X when F is constant, and (-7^1 is the partial differential co-
\dY jx

efficient of Z with respect to F when X is constant.

We might regard the change of Z as occurring in two steps. In

the first step suppose X to change and F to keep constant. The

corresponding part of the change of Z is MdX, and M is the slope of

the thermodynamic surface in a section-plane ZX. In the second

step X is constant and F changes. The corresponding part of the

change of Z is NdY, and N is the slope of the thermodynamic
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surface in a section-plane ZY. The whole change of Z is the sum of

these two parts, as expressed in equation (1). The slopes along the

two section-planes are expressed in equation (2).

Combining these equations we have

These equations apply when X, Y, and Z are interpreted as any
three functions of the state of a fluid. Thus, for instance, if we think

of a small change of state in which the temperature changes from

T to T + dT, and the pressure from P to P + dP, the consequent

change of volume will be

Similarly, if the volume and pressure change, the consequent

change of temperature is

Or again, the change of entropy consequent on a change of tem-

perature and pressure is

and so on. It will be obvious that a very large number of similar

equations might be written out, each using one pair of functions

of the state as independent variables, and expressing in terms of their

variation the variation of some third function of the state. These

are merely forms of the general equation (3).

Returning now to the general form in X, F, and Z, suppose a

small change of state to occur of such a character that the function

Z undergoes no change. In that special case dZ = 0; the steps

MdX and NdYcancel one another. Consequently

g) dX - - (g) dY,
\dXJ Y \dY/x

when dX and dY are so related that there is no variation of Z.

Hence the general conclusion follows that

U)
dXJr~ dY x dx z

-

This relation between the three partial differential coefficients
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holds, in all circumstances, for any three functions of the state of

any fluid. It may be expressed in these alternative forms :

'dX\ fdY^

'dX\

'

Returning now to equation (1),

dZ = MdX + NdY,
the principles of the calculus show that when dZ is a perfect differ-

ential, but not otherwise,

(dM\
fdN\=

In dealing with functions which depend only on the actual state

of the fluid the condition that dZ is a perfect differential is satisfied,

and consequently equation (5) applies. We shall see immediately
some of the results of its application.

179. Energy Equations and Relations deduced from them.
Consider now the heat taken in when a small change of state

occurs in any fluid. Calling the heat dQ we have, by the First Law,

dQ = dE+dW ........................ (6),

where dE is the gain of internal energy and dW is the work which

the fluid does through increase of its volume. Since dW = PdV the

equation may be written

dE= dQ-PdV ........................ (7).

Here and in what follows we shall assume that quantities of heat

are expressed in work units. This simplifies the equations by allow-

ing the factor J or A to be omitted.

We are concerned for the present only with reversible operations.
In any such operation dQ =

Tdcj) ; hence

dE = Tdcf>-PdV .............................. (8).

Again, I = E + PV, by definition of /.

Hence dl = dE + d (PV)
=

Td<f>
- PdV + PdV + VdP

VdP ...... . ..... ..................... (9).
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Again,
= / - T</>, by definition of *.

Hence dTs = dl - d (T<f>)

= VdP -
<f>dT (10).

Again, iff
= E

T<f>, by definition of
i//.

Hence <ty
= dE - d (T<j>)

=
Td</>

- PdV -
(Tdcf) + <f>dT)

= - PdV -
<l>dT (11).

But dE, dl, d, and
dtfj

are all perfect differentials. Hence,

applying Eq. (5) in turn to Eqs. (8), (9), (10), and (11) we obtain

at once the following four relations between partial differential

coefficients :

From (8), (%} - - (%\ ...(12).

These are known as Maxwell's four thermodynamic relations.

Expressed in words, the first one means that when any fluid ex-

pands adiabatically (cf>
= const.) the rate at which the temperature

falls per unit increase of volume is equal to the rate at which the

pressure would rise, per unit increase of entropy, if the fluid were

heated at constant volume. The second means that when a fluid

is compressed adiabatically the rate at which its temperature rises,

per unit increase of pressure, is equal to the rate at which the vol-

ume would increase per unit increase of entropy if the fluid were

heated at constant pressure. The third means that when a fluid

is heated at constant pressure, the rate at which the volume in-

creases with the temperature is equal to the rate at which the

entropy would be reduced per unit increase of pressure if the fluid

were compressed isothermally. The fourth means that when a fluid

is heated at constant volume the rate at which the pressure rises

with the temperature is equal to the rate at which the entropy

* For the sake of symmetry f, which is - G, is used here rather than G.
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would increase with increase of volume if the fluid were expanded

isothermally.

The following further relations are immediately deducible from

Eqs. (8) to (11). Taking Eq. (8), imagine the fluid to be heated

at constant volume. Then dV = and dE =
Tdcf> ; hence

\ - T

Again, imagine the fluid to expand adiabatically. Then d$ =
and dE = - PdV; hence

dE
\ - P,__ I

"~"
J.

Similarly from Eq. (9) we obtain

from Eq. (10) , F. and - *

fromEq.(n)

Collecting these results,

1 80. Expressions for the Specific Heats Kv and Kv . In

general the specific heats of a fluid are not constant; they are

functions of the state of the fluid. We shall proceed to find

differential expressions connecting them with the temperature,
volume and pressure. Such expressions enable other properties

to be calculated when the relation between T, F, and P is known.

Consider, as before, a small change of state during which the fluid

takes in an amount of heat dQ while it expands in a reversible

manner. Its entropy accordingly increases by an amount
dc/>

such

that Tdcf>
= dQ. Its temperature changes from T to T + dT and its
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volume from V to V + dV'. Take, in the first place, the temperature
and volume as the two independent variables by means of which

the state of the fluid is specified. The change in any third quantity

may be stated with reference to the changes in T and in V. Thus

the heat taken in may be written

dQ = KvdT + IdV (20).

Here K v , which is the specific heat at constant volume, is
(
~u

\al ) v

and / is a symbol for
( -^7 )

.

\(Lv / p

Since dQ =
Td<j>, I = T (^} .

b^'< W,-Wr'
Hence I = T (^} , (21),

\ai / y

and dQ = KvdT + T f-j=) dV.
\dl I v

Dividing both sides by T, we have

r7P\

dVT
This is a perfect differential, and therefore, by Eq. (5),

-

KV = (^\ (dP<

Hence

or

dV) T T \dTJ v \dT)r

1 fdKA /d*P\

This is an important property of K v .

To obtain a corresponding property ofKP ,
take the temperature

and pressure as the two independent variables and express the heat

taken in with reference to them. The heat taken in, dQ, is the same

as before, being still equal to Td<f>. We may write

dQ = K^dX + I'dP (24).

Here K^, which is the specific heat at constant pressure, is

dQ\ , ., . . (dQ ,

- and / is a symbol tor -==
CLJ. ]p \ClJ. Jy

Since dQ =
Tdfi. I' = T (^ .

E. T. 18
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, **,.!, <$),-- <).
(251 '

and dQ = KvdT-T dP.

Dividing both sides by T, we have

And by Eq. (5), since this is a perfect differential,

(A\ *. (A\ (
dK\

\dP) T T '\dTJp\dTjf-

(),"* (5),
............ .....<>

, ,

which is the property ofKv corresponding to that ofKv in Eq. (23).

Further, from Eqs. (20) and (24),

KpdT + I'dP = KvdT + IdF,

or (K9 -Kv)dT =

By writing dP = it follows that

K K dV

- i'

'dp
Or by writing dV = 0,

V

By Eq. (21) or (25), either of these gives this important expres-

sion for the difference between the two specific heats,

.-.-',(),
And since by Eq. (4)

dP T \dT v
>

this result may be written

From Eq. (28 a) it will be seen that Kv can never be less than Kv ,

for [5=] is essentially negative, increase of pressure causing
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decrease of volume in any fluid, and therefore the whole expression

on the right is positive. Accordingly Kv is always greater than

Kv , except in the special case when one of the factors on the right-

hand side is equal to zero, in which case Kv is equal to Kv . This

is possible in a fluid which has a temperature of maximum density

(as water has at about 4 C.). At the temperature of maximum

density [-3=] =0, and consequently at that point Kv Kv
= 0.

\al Jp
Return now to Eqs. (22) and (26). In heating at constant

volume dV = 0; hence by Eq. (22)

In heating at constant pressure dP = 0; hence by Eq. (26)

In an adiabatic operation ckf>
= 0; hence by Eq. (22)

K
*(
dT

\ (
dp

\"

and by Eq. (26) ^(^) = (~) (32).

Further, by Eq. (4fo)

(dT)p __ JT

(dP\ KV fdT\
\dT) v T (dr)t

or ^=(^} (^} (33).

(dV\ K,(dT\
fdV\ \dTjp T \dPJ

\dP)T

This is the ratio usually called y.

Thus in the adiabatic expansion of any fluid the slope of the

PV line is y times its slope in isothermal expansion,

181. Further deductions from the Equations for E and /.

ByEq.(7) dE = dQ-PdV.
Hence by Eq. (20) dE = KvdT + Zr/F - P^F

= KvdT + (l-P) dV.

In heating at constant volume dV = ; hence

dE\
v

182
(SI-*-
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In isothermal expansion dT = 0; hence, using Eq. (21),

We may therefore write

V ......... (36).

Again, by Eq. (9) dl = dQ + VdP.

Hence by Eq. (24) dl -- KvdT + I'dP + VdP
= KvdT + (l

f + V) dP.

In heating at constant pressure dP = 0; hence

In isothermal compression dT = 0; hence, using Eq. (25),

(),-' *'-
F - r

(5),
We may therefore write

di = ff,dr +
[V

- T
(^)J

dP (39).

182. The Joule-Thomson Effect. In a throttling process
dl = (Art. 72); hence, from Eq. (39),

This is the "cooling effect" in the Joule-Thomson porous plug

experiment of Art. 19; the cooling effect which the working fluid

of a refrigerating machine undergoes in passing the expansion-valve

(Art. 110); the cooling effect used cumulatively by Linde for the

liquefaction of gases (Art. 123). It expresses the fall of temperature

per unit fall of pressure when any fluid suffers a throttling operation,

during which it receives no heat from outside.

From Eq. (40) it follows that the cooling effect vanishes when

\dT)p T'

This occurs in any ideal "perfect" gas under all conditions, that

is to say in a" gas which exactly satisfies the equation PV = RT.
But it also occurs in real gases under particular conditions of

temperature and pressure. A gas tested for the Joule-Thomson

effect at moderate pressure, and at various temperatures, will be

found to become warmer instead of colder on passing the plug if
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the temperature exceeds a certain value. At that temperature,
which is called the temperature of inversion of the Joule-Thomson

effect, throttling produces no change of temperature. Above the

temperature of inversion the effect of passing the plug is to heat the

fdV\ V
gas ;

f

j

is then less than and the expression for the "
cooling

effect" is negative. Below the temperature of inversion the cooling

effect is positive. The temperature of inversion depends to some

extent on the pressure, in any one gas. It differs widely in different

gases. In air, oxygen, carbonic acid, steam and most other gases

it is so high that the normal effect of throttling is to make the gas

colder ;
in hydrogen, on the other hand, the normal effect of throttling

is to make the gas warmer, for the temperature of inversion is

exceptionally low, about 80 C.* In the Linde process it is

essential that the gas to be liquefied should enter the apparatus
at a temperature below its temperature of inversion: the process

can be applied to hydrogen only by cooling the gas beforehand to

a suitably low temperature.

Taking Eqs. (38) and (40) together we have

*.,-'(,---(), .........<">

This product, Kv I
J

,
is the quantity of heat that would just

suffice to neutralize the Joule-Thomson cooling effect per unit

drop in pressure, if it were supplied to the fluid in the process of

throttling. It may conveniently be represented by the single symbol

p. It measures the cooling effect, per unit drop in pressure by

throttling, as a quantity of heat (expressed in work units), while

dT
( jrl measures that effect as a change in temperature^.
\ (Mr i

It follows that if the range through which the pressure falls in

a throttling process is from PA to PB ,
the whole quantity of heat

that would have to be supplied to neutralize the cooling effect is

as was stated in a footnote to Art. 124 J.

* This was found by Olszewski for a pressure-drop from 117 atmospheres to

1 atmosphere.
t In Calendar's Steam Tables the quantity here called p is tabulated for steam

under the heading "SC" (See Art. 103.)

J Cf. E. Buckingham, Bulletin of the Bureau of Standards (Washington), vol. 6,

1909, p. 125.



278 THERMODYNAMICS [CH.

Since / = E + PV we may write Eq. (41) in the form

...............<->

This is instructive as showing the analysis of the Joule-Thom-

son effect into two parts. When an imperfect gas or vapour is

throttled, that part of the effect which is measured by the first

term arises from the fact that the internal energy is not constant

at any one temperature but depends to some extent on the pressure.

In other words, the first term is due to departure from Joule's

Law. There is in general an additional part of the effect, measured

by the second term. It is due to departure from Boyle's Law,

according to which PV should be constant for constant tempera-
ture. A gas may conform to Boyle's Law at a particular tempera-
ture and still be imperfect : in that case it will show a cooling effect

due to the first term alone. It is only when both terms vanish

that the gas is perfect.

Experiments which will be mentioned in the next chapter show

that in an imperfect gas the term
( ) may be either
V dr / T

negative or positive according to the conditions of pressure and

temperature (Art. 197). Hence that part of the Joule-Thomson

effect which is due to deviation from Boyle's Law will under some

conditions assist, and under other conditions oppose, that part of

the effect which is due to deviation from Joule's Law. The latter

part is always a cooling effect
;
the former may be either a cooling

or a heating effect. At the temperature of inversion the two parts

cancel one another.

It may help the student to understand Eq. (41 a) if we put the

physical interpretation of that equation in another way. Suppose
unit quantity of any fluid to undergo unit drop of pressure in passing

a porous plug or other throttling device. We may then putdP = 1.

Suppose also a quantity of heat p to be supplied to it from outside

which just prevents any change of temperature. Then Eq. (41 a)

takes the form
p = dE + d (PV),

which is equivalent to saying that in the complete process,

"Heat supplied = Increase of internal Energy -f WT

ork done by
the fluid.

Here d (PV) is the net amount of work done by the fluid, because

it is the excess of P2
F2 ,

which is the work done by the fluid as it
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leaves the apparatus, over P^V^ ,
which is the work spent upon the

fluid as it enters the apparatus.

183. Unresisted Expansion. In the Joule-Thomson porous

plug experiment the fluid, in expanding from a region of constant

high pressure to a region of constant lower pressure, does some work

on things external to itself, the net amount of which is

P2F2
- P.V,.

This quantity is not zero except in special cases,

But in the original Joule experiment with two closed vessels

(Art. 19) the fluid did no work on anything external to itself.

The expansion there may therefore be described as strictly un-

resisted. This distinction between it and the Joule-Thomson mode
of expansion is important.

Imagine the two closed vessels of the Joule experiment to be

completely impervious to heat, so that no heat passes out of, or into,

the fluid as a whole during the process. Imagine also that heat may
pass freely from the fluid in one vessel to the fluid in the other

through the opening between them, so that after expansion T
becomes the same in both as well as P. Under these conditions

the internal energy E of the fluid as a whole is not altered by the

expansion; for no heat is taken in or given out, and no work is done.

This is true of any fluid. The characteristic, therefore, of such

expansion is that E is unchanged, just as the characteristic of the

Joule-Thomson expansion is that / is unchanged.
In the unresisted Joule expansion each vessel may of course be

of any size. Think of the second vessel, into which the fluid ex-

pands, as consisting of a group of very small chambers which are

successively opened, so that the volume of the fluid increases by

steps, each dV. We still suppose the temperature of the fluid to

attain equilibrium at each step, and no heat to come in from out-

side. Then for each step dE = 0. With infinitesimal steps the

process becomes continuous. The cooling effect in this imaginary

process is not identical with the cooling effect in the Joule-Thomson

experiment. In this process it is
( -y^ ) , namely the rate at
\dv J^

which the temperature falls with increase of volume, under the

condition that E is constant.

By Eq. (36), writing dE = 0,
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and this, along with Eq. (35). gives

dT\ _ fdP\ = fdE\

Eq. (42) expresses the cooling effect in this imaginary process

as a fall of temperature, per unit increase of volume; Eq. (43)

expresses it as a quantity of heat, per unit increase of volume,

namely the quantity that would have to be supplied from outside

to neutralize the change of temperature caused by the expansion.
We may call this quantity of heat a.

Hence in unresisted expansion from any volume V
'

A to any
volume VB ,

under adiathermal conditions (Joule's expansion with

vessels made perfectly impervious to heat), the whole quantity
of heat that would have to be supplied to neutralize the cooling

effect is, for any fluid,

A further interesting relation follows. By Eq. (28), we had

K KK*- K =

But by Eq. (35),

A,so, byEq.(41 ),

On substituting these values, Eq. (28) takes the new form

This, like all the relations given in the present chapter, is true of

any fluid. We shall return to it later in connection with imperfect

gases (Art. 194).

184. Slopes of Lines in the /<, T(f>, and IP charts, for any
Fluid. The slope of any constant-pressure line in the

I<f>
chart is

equal to the absolute temperature, for, by Eq. (16),

It follows that all constant-pressure lines in that chart have the

same slope at points where they cross any one line of constant

temperature,
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To find an expression for f .

J
, which is the slope of a constant-

temperature line in the
/</> chart, we shall proceed by a process

of substitution which may be followed in finding other partial

differential coefficients. It will serve as an example of a general

method.

Starting with Eq. (9)

dl = Td</> + VdP,

we shall eliminate dP by substituting for it an expression in terms

of
dcf)

and dT, got by applying the general relation of Eq. (4),

namely,

This substitution gives

-h
Hence, writing dT = 0,

(U - T + V (45)

P
...............(45a) '

rince.Eq.d4),

Similarly, to find an expression for (-=7 ] , which is the slope of
' 09/17

a constant-volume line in the Ifi chart, we start from the same

equation for dl, but eliminate dP by substituting an expression for

it in terms of
d<f>

and dV, namely

This substitution gives

di -\T

Hence, writing dV = 0,

............... (46a) '

since, by Eq. (12),
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Turning next to the T<f> chart, the slope of a constant-volume

line is given by Eq. (29), (dT\
T"

arid the slope of a constant-pressure line by Eq. (30),

(-)=:r-
To find the slope of a line of constant total heat

(rr)
we mav

again apply the method of substitution. Starting with the equation

Td<j>
= dl - VdP,

substitute for dP an expression in dT and dl (Eq. (4)),

dp = AT
\dl J i

This gives Td* =
[l-r (g)J

a - F QdT,
from which, writing dl = 0,

dT\ Tdf

But by Eq. (40),

dT\
_ T(d\ (

V\dPh

K dTp
-rldT

-

j- ,

(dT\ T r T (dV\ 1
Hence =-^-1 -

T/ ^ ............ (47 a).

\d<f>JI K v |_
V \dljp]

Also, since

dV\ dV\ dl\ . dl

we may put this result in the form

\ T

In the IP chart the slope of an adiabatic, or line of constant

entropy, is given by Eq. (17),

V-F
dPV

from which it follows that all adiabatics have the same slope at

points where they cross any one line of constant volume.

The slope of a line of constant temperature is given by Eq. (38),

a -V-T (*?
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To find expressions for the slope of a line of constant volume,

( 7P )
?
we may Proceed thus :

dl = dE + d (PV) = dE + VdP + PdV.

(dE
(dp

it follows that
(g) F

= V + Kv (g)^
.................. (48).

By Eq. (31) this may be written,

.Two other expressions which are sometimes useful may conveni-

ently be given here, one for
(
-r= ) and one for (

-
)

:

\dP ) T \av Ip

Hence
(S)T

= - T(̂ ]
- p(^ (49) -

*di\ m&
di

'} -ffi) f*)-^*) ,byEq.(16).
vdF/p \dcf>'p\dVjP \dV p

Hence, by Eq. (13)

.(50).

185. Application to a Mixture of Liquid and Vapour
in Equilibrium: Clapeyron's Equation. Change of Phase.

Equation (50) is applicable not only to homogeneous fluids, but to

a mixture of two phases of the same substance, in equilibrium with

each other and therefore both at the same pressure and the same

temperature. / and V are then to be reckoned for the mixture

as a whole. Say for instance that the substance is a mixture, part

liquid and part saturated vapour. Suppose the proportion of

liquid to vapour to be changed by vaporizing some of the liquid part

at constant pressure, and therefore also at constant temperature.

During that process f-j^J is constant, for the volume of the
\dv )
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mixture as a whole increases in proportion to the heat taken in.

Instead of
( -^, )

in equation (50) we may therefore write
\Q>VIP

orV V V V* s y w v
s

y w

where the suffixes s and w relate to the two states, when all is vapour
and all is liquid respectively. Further, the condition that

</>
is con-

stant may be dropped in writing the coefficient -
,
which is

Ci-L

no longer a partial differential coefficient. Since the vapour present

in the mixture is always saturated, P is a function of T only ; -==,

is simply the rate at which the pressure of saturation rises with

the temperature. While the mixture is vaporizing or condensing
under variable pressure it makes no difference in the relation of

P to T whether the process is conducted with = constant, or

with V = constant, or in any other way: during that process
dP\ dP

is the same as -r- . Hence when applied to an
dl/v dl

equilibrium mixture of liquid and vapour, or of any two phases,

Eq. (50) may be written in the form

fdP\ (
I 3= ]

or
\dl J $ \

V,-VW
~
AT'

This is Clapeyron's Equation, which was arrived at in Art. 98 in

another way.
The same result may be got from Eq. (21):

dV T dT v
'

During vaporization at constant temperature [^21] is constant
\dV J T

and its value is - . Hence, dropping the suffix V for the
' s

~ * w
reason just given, we have as before

V V -
Ld̂

w TdP'
This result may be extended to any reversible change of phase

which a substance undergoes at constant pressure. During any
such change the two phases of the substance are in equilibrium
with one another, and the temperature is constant. Writing A for
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the heat taken in during the change of phase, and F'and V" for the

volumes of the first and second phases respectively (as in Art. 99),

we have \ rfT

Similarly, the expression for (--- )
in Eq. (47 b), namely

\d<pJi

(|3--(S),
may be adapted to a mixture of liquid and vapour in equilibrium,

during the change of phase which occurs in vaporization at con-

stant pressure (and temperature). In this process K v is infinite,

for heat is taken in without rise of temperature ;
arid also

(dV\ ^VS -VW

(dljp L

The equation therefore takes the form*

/AT\ T% V V

,=-F-^ <52) -

This applies at any stage in the process of vaporization, V being
the volume of the mixture at that stage, namely qVs + (1

--
q) Vw ,

where q is the fraction that has been vaporized (Art. 74). It gives

the slope of a line of constant total heat in the wet region (the

region within the boundary curve) of the
T</> chart.

A still more direct means of getting Clapeyron's Equation is to

use the function G, which is
Tcf)

I or .

By Eq. (10) ,a :

In any change of phase which occurs at constant temperature and

constant pressure, such as the conversion of water into steam at

constant pressure, dT and dP are both zero. Hence in such a

change G is constant, as was pointed out in Art. 90, where this

property of G was turned to account.

Compare now the state of any substance at the beginning and

end of a change of phase, during which G is constant. Use the

suffix w for the first state (say water), and the suffix s for the second

state (say steam): =

$sdT - V8dP =
</>wdT - Vw dP.

* Used by Jenkin and Pye (Phil. Trans. A, vol. 534, p. 366) in correcting the T<f>

chart for carbonic acid.
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Therefore F
s -^ =

(^-^)g.
But

cf> s cf>w
=

. Hence this again gives Clapeyron's Equation,

V V =
TdP'

1 86. Compressibility and Elasticity of a Fluid. Let a fluid

be subjected to an increase of pressure dP, with the result that the

dV
volume is reduced from V to V dV . Then - -=- measures the

volume strain, and the ratio of this strain to dP measures the com-

pressibility.

The reciprocal of the compressibility or
^(-TT?)

measures what

is called the elasticity of the fluid. Its value will obviously depend
on the circumstances under which the compression takes place.
We may for instance keep the temperature constant during the

compression. In that case the expression for the elasticity becomes

- V
(jy\

This is called the isothermal elasticity of a fluid, and

will be denoted here by e
t . Or we may prevent any heat from

leaving or entering the fluid during the compression. In that case

the expression becomes - V [-~J . This, which is called the
\&r/4

adiabatic elasticity of a fluid, will be denoted here by e^ . We have

accordingly the two elasticities

byEq. (33). That is to say, the ratio of the adiabatic to the isother-

mal elasticity is equal to y, the ratio of the specific heats. Since Kp

is greater than Kv (Art. 180) ^ is greater than e
t

.

187. Collected Results. All the foregoing relations are true

of any fluid. Before proceeding to apply them (in the next chapter)
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to particular fluids, it will be useful to collect them here for con-

venience of reference.

dE =
Td<f>

- PdV (8),

dl =
Td<f> + VdP (9),

d =VdP-</>dT (10),

d*/j
= - PdV -

cf)dT (11),

-
.- ,

....................."

(15)
dV)T

..................... (15))

dl\ fdE

dp T

),--*-(*)
..................(19) '

dv ''

(27)-

K -K -T(dP\ (
dV

\ (28)A, K v
- 1 ............... (28),



288 THERMODYNAMICS [en.

I
(30),

P

,
<>

*,- (5),
<*

r' ....... :" ........ (35) '

dE = K vdT + IT
(^r) v

- p
]
dv '--- (86) '

-18"-

dl = KdT + v - T dP ......... (39),
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or T^ s
-I

s
=
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CHAPTER VIII

APPLICATIONS TO PARTICULAR FLUIDS

1 88. Characteristic Equation. The general thermodynamic
relations considered in Chapter VII can be applied to determine the

properties of a particular fluid when an equation connecting one

of its properties with two others is known. An equation of this

kind is called the "Characteristic Equation" or "Equation of

State" for the given fluid. It is based upon experimental know-

ledge of how the numerical values of some one property, such as

the volume, depend upon those of two other properties, such as

the pressure and the temperature, these two being used as inde-

pendent variables for specifying the state. The most usual form of

characteristic equation is one connecting V with P and T. Such

an equation, when it can be established, is of fundamental impor-
tance in the calculation of other properties. But taken by itself it

does not allow all the thermodynamic quantities to be determined :

for that purpose it must be supplemented by data regarding the

specific heat, or (what comes to the same thing) by data as to the

relation of the internal energy to the temperature.

189. Characteristic Equation of a Perfect Gas. The simplest
case to consider is that of an ideal gas conforming exactly to the

equation py __ j^j
1

where R is a constant and T is the absolute temperature. on the

thermodynamic scale. We discussed some of the properties of such

a gas in Chapter I, but it will be instructive now, as a first example
of the method, to show how certain results which were obtained

there follow directly when this characteristic equation is inter-

preted by applying to it some of the general relations of Art. 187,

which hold for all fluids.

By differentiating the characteristic equation of the ideal gas,
we have PdV + VdP - RdT.
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Hence in such a gas,

(dP\
R P

(dV\ =
R

==
V

(dP\
P

\dTJ v~V~~T' \dTJp~ P~T ;

\dV)T
~ ~

V ;

By Eqs. (23) and (27) of Chap. VII, in any fluid,

\w)T
~

Hence in the ideal gas,

Thus it follows from the characteristic equation that both Kv and

K v are constant at any one temperature ;
in other words they are

independent of the pressure. They may however vary with tempera-
ture: the characteristic equation gives no information on that

point.

By Eq. (28) of Chap. VII, in any fluid,

K K = T (\ (}
Hence in the ideal gas,

K V T R R
7?

Aj,
- K v

= 1 .

y. p
= K.

This agrees with Art. 20. The factor A is omitted because quan-
tities of heat are here expressed in work units (Art. 179).

By Eq. (40), Chap. VII, in any fluid the cooling effect in the

Joule-Thomson porous plug experiment is

_L|W^ -v \

fdV\ V
In the ideal gas (

-.--
}

=
; hence the quantity in square brackets

\al )p 1

vanishes and there is no cooling effect.

By Eq. (36), Chap. VII, in any fluid,

In the ideal gas T ( T= )
= P, hence

\dl )v

dE = Kv dT,

192
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and since Kv is independent of the pressure it follows that the

internal energy of the ideal gas depends upon the temperature
alone.

By Eq. (39), Chap. VII, in any fluid,

In the ideal gas T ( -j^ }
= F, hence

\dTJp
dl = KdT,

and since Kv is independent of the pressure it follows that the

total heat of the ideal gas also depends upon the temperature alone.

These results show that a gas which conforms exactly to the

characteristic equation PV = RT (T being the temperature on the

thermodynamic scale) conforms exactly both to Boyle's Law (PV
constant for any one temperature) and to Joule's Law (E a function

of the temperature alone). It is therefore "perfect" in the sense of

Art, 19.

When the equation PV = RT was introduced in Art. 18 the

symbol T denoted temperature on the scale of the gas thermometer,
that is to say a scale denned by the expansion of the gas itself, and

the gas was assumed to conform exactly to Boyle's Law. But if it

also conforms exactly to Joule's Law, the scale of the gas ther-

mometer coincides with the thermodynamic scale (Art. 42).

190. Isothermal and Adiabatic Expansion of Ideal Gas.

In the ideal gas, since E depends upon the temperature alone, it is

constant during isothermal expansion, and therefore the work done

by the gas is equal to the heat it takes in. The pressure varies in-

versely as the volume.

By Eq. (33 a), Chap. VII, for the adiabatic expansion of any fluid,

dP\ dP

Hence in the ideal gas
dP

So that in the adiabatic expansion of an ideal gas,

dP dV
^ + r-F

=
-

If now we make the further assumption that y is constant, which
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is equivalent to assuming that the specific heat does not vary with

temperature, this gives on integration

loge P + y loge V = constant,

or PVy = constant,

which is the adiabatic equation of a perfect gas with constant

specific heat, arrived at otherwise in Art. 25.

191. Entropy, Energy, and Total Heat of Ideal Gas. By
Eqs. (8) and (9), Chap. VII, in any fluid,

dE + PdV dl - VdP
~~T~ ~T~

In the ideal gas
dE = Kv dT; dI = Kv dT,

P R
and since ^^*

Hence if we again assume that the specific heat does not vary with

the temperature,

E = KVT + constant,

/ - K PT + constant,

(f>

= Kv loge T + R loge V + constant

= Kp loge T - R loge P + constant.

The values of the constants depend on what initial state is chosen

as the starting-point of the reckoning. It is only changes in E, /,

and
c/>

that can be determined by these formulas.

192. Ratio of Specific Heats. Method of inferring y in Gases

from the Observed Velocity pf Sound. We saw (Art. 186) that

in any fluid the ratio y of the two specific heats, KV/KV ,
is equal

to the ratio of the adiabatic elasticity e^
to the isothermal elasticity

e
t

. Also that /dP\

Hence in a gas for which PV RT,

ci= V (^] = P
>
and ^ - yP.
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This relation has been used as a means of finding y experi-

mentally in air and other gases which at ordinary temperatures
and pressures very nearly conform to the equation PV = RT.
The method is based on Newton's theory of the transmission of

waves of sound. Newton showed that waves of compression and

dilatation, such as those of sound, travel through any homogeneous
fluid with a velocity which may be expressed as VeV, where V is

as usual the volume of the fluid per unit mass (the reciprocal of the

average density) and e is the elasticity, in kinetic units. It was

afterwards pointed out by Laplace that in applying this result to

the passage of sound through air or other gases e should be taken

as the adiabatic elasticity e^,
for the compressions and dilatations

follow one another so fast as to leave no time for any substantial

transfer of heat from the portions that are momentarily heated by

compression to those that are momentarily cooled by expansion.
Hence in air under atmospheric conditions, or in any other nearly

perfect gas, sound travels at a rate equal to A/yPF. This fact is

used as a means of determining y by measuring the velocity of

sound or (what comes to the same thing) by measuring the wave-

length in sound of a known pitch.

In air at C. and a pressure of one atmosphere the values given

by various observers for the velocity of sound range from 33,060
to 33,240 centimetres per second *. Under these conditions the

volume of one gramme of air is 773-1 cubic cms., arid P is

1-0133 x 106
dynes per sq. cm. (Art. 12). Hence, taking an average

of 33,150 for the velocity,

33,150 = V-y x 1-0133 x 10 6 x 773-1,

which gives y = 1-403.

193. Measurement of y by Adiabatic Expansion. Method
of Clement and Desormes. Another method of determining the

value of y in a.gas is by an experiment due originally to Clement
and Desormes and improved on by Gay-Lussac and others. A
quantity of the gas is contained in a large vessel at a pressure some-

what higher than that of the atmosphere, and at atmospheric

temperature. There is a pressure-gauge attached, and a tap which

may be opened to allow some of the gas to escape quickly. On
opening the tap, the pressure falls suddenly to that of the atmo-

sphere: when this happens the tap is at once closed. Then the

* See Rayleigh's Theory of Sound, vol. II.
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pressure of the gas that remains in the vessel slowly rises, because

the temperature, which had been reduced by the sudden expansion
of the gas in the vessel while the tap was open, rises gradually to

the value which it had at first, namely the temperature of the

surrounding atmosphere. When this process is complete the final

pressure is noted. Let the original pressure be Plt the pressure of

the atmosphere P2 and the final pressure P3 . The change from

P! to P2 is approximately adiabatic on account of its suddenness :

the change from P2 to P3 occurs at constant volume. Let V
, Vz

and V be the volumes of the gas per unit mass, at the three corre-

sponding stages. Then F2
= F3 . We have, in the adiabatic ex-

pansion, p y y _ p 77 y

and since the initial and final temperatures are the same,

P77 ._ p 77 ._ p 77i*l -* 3" 3
~~ r Z y 2*

Hence ^ = (Wl = \^\ ,

teg P. -log P.

y-iogp^iogp,-
Values ofy are accordingly found by observing these three pressures.

Experiments by Lummer and Pringsheim, using this method in

an improved form, give 1-4025 as the value of y for normal air. An
earlier application of the method by Rontgen gave 1-405*.

194. Effect of Imperfection of the Gas on the Ratio of

Specific Heats. It has been already mentioned that in a perfect

diatomic gas the ratio y, as deduced from the molecular theory

(see Appendix II), should not exceed 1-4. In air the ratio, according
to all the evidence, is, at ordinary temperatures and pressures,

slightly greater. This is due partly to the presence of about

one per cent, of (monatomic) argon, but mainly to the fact that

air is an imperfect gas, deviating to a small extent both from

Boyle's Law and from Joule's Law.

By Eq. (44), Chap. VII, in any fluid,

(P + a) (V + p)
^p &v= y >

where p is the cooling effect in the Joule-Thomson porous plug

experiment (Art. 182), and a is the cooling effect that would be

* See Preston's Theory of Heat, Chap. IV.
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found in unresisted expansion (Art. 183), without gain or loss of

heat in either case. In a perfect gas p and a are both nil, and the

expression on the right becomesPF/T, as it should. With air (under

usual conditions) both p and or are small positive quantities : p was

measured in the Joule-Thomson experiments, and cr, though it has

not been directly measured, can be inferred from known experi-

mental data. HenceKv K v is a little greater than PF/T, which is

the value it would have in a perfect gas.

The ratio y is also a little greater in normal air than it would be

in a perfect gas. In any fluid

(P + q)(F + g)
V KVT

In air at ordinary temperatures the imperfection increases

(P + a) (V + p) more than it increases Kv . and consequently
makes y slightly exceed the ideal value 1*4. But at high tempera-
tures Kv is much increased (because the molecules then acquire

energy of vibration) and y is substantially reduced.

195. Relation of the Cooling Effects to the Coefficients

of Expansion. The expressions for p and a given in Eqs. (41) and

(43) of Chap. VII may be put in another form which is convenient

in dealing with imperfect gases.

By these equations, in any fluid,'

Here
(
-==.

) may be written F, where a is the fractional increase
\aljp

of volume per degree, on the thermodynamic scale, when the fluid

is heated at constant pressure. Measured at C. a is the co-

efficient of expansion at constant pressure, or what is sometimes

called the "volume-coefficient."

Similarly f
J
may be written f$P, where /3

is the fractional

increase of pressure per degree, on the thermodynamic scale, when
the fluid is heated at constant volume. Measured at C. ft

is wrhat

is called the "pressure-coefficient."

Hence at C.

F + PQ
= 273-la F

,
and P + a = 273-l&>POJ

the suffix being introduced to show that the quantities concerned

are all to be taken as at C.

The results of the Joule-Thomson porous plug experiments may
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be used to calculate p . They showed that with air the cooling

effect of passing the plug was nearly proportional to the drop in

pressure. It was different for different initial temperatures, be-

coming less when the initial temperature was raised. With air at

C. the cooling effect (according to the formula in Art. 123) was

0-275 for a pressure-drop of one atmosphere in passing the plug.

Hence, using C.G.S. units, for air at C. we should have

dT\ 0-275= ~
10*'

We may take Kv as 0-241 calory (Art. 161) equivalent in C.G.S.

units of work to 0-241 x 4-1868 x 107
. Multiplying the values of

Kv and
(
-^= )

we obtain
\dP/I

p,
= 2-74.

This is in cubic centimetres per gramme, the dimensions of p

being the same as those of F, namely

work volume
^_ _ ______
pressure x mass mass

We may apply this result of the porous plug experiment to

calculate the coefficient of expansion when air, at C., is heated

under a constant pressure of one atmosphere through one degree
of the thermodynamic scale. We had

_ ^o + />o

273-1F
*

In air at C. and a pressure of one atmosphere, the volume of one

gramme is 773-5 cub. cms. Hence under these conditions we should

a , :
. = 0-003675.

273-1 x 773-5

This is slightly larger than the mean coefficient that is found when
the expansion of air at a constant pressure of one atmosphere is

measured over a range of temperature from C. to 100 C.

Again, taking the relation

a value of cr can be inferred when the pressure-coefficient is known.

If for air be taken as about 0-003674, P + a becomes 1-0034P ,

making <JQ
= 0-0034P .

In a perfect gas both coefficients, a and /? ,
would be equal to

,
or 0-0036617. The scale of the perfect-gas thermometer,

27o*l
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whether of the constant-volume or constant-pressure type, would

coincide at all points with the thermodynamic scale*.

196. Forms of Isothermals. Diagrams of P and V, and of

PV and P. Taking any ideal gas, which satisfies the characteristic

equation PV RT, let us draw its "isothermals" on a diagram
whose coordinates are the volume and the pressure. The character-

istic equation shows that these curves are rectangular hyperbolas

Volume

Fig. 84. Pressure-Volume Isothermals for a Perfect Gas.

(fig. 84), for while any temperature remains constant P varies in-

versely as V. These isothermals for an ideal gas should be com-

pared with those for a liquid and its vapour already illustrated in

fig. 14 (Art. 76), to which we shall recur presently.

Another kind of isothermal curve, which Amagat showed to be

useful in dealing with real gases, is drawn by taking as coordinates

the product PV and the pressure. When this method is applied to

an ideal gas the isothermals are simply horizontal straight lines

(fig. 85), since at any temperature PV is constant. This is an obvious

* Reference should be made to Calendar's paper "On the Thermodynamical
Correction of the Gas Thermometer" (Phil. Mag. Jan. 1903) for an account of how
the absolute zero may be determined and intervals on gas and thermodynamic scales

compared, by making use of the Joule-Thomson cooling effect and the measured

coefficients of expansion.



vm] APPLICATIONS TO PARTICULAR FLUIDS 299

test of whether a gas obeys Boyle's Law. If it does, then the iso-

thermals of PV in relation to P will be horizontal straight lines

200 C

100C

0C

-
1 00 C

Fig. 85. Amagat Isothermals for a Perfect Gas.

whether the gas also obeys Joule's Law or no. Any curvature in

these lines, or any deviation from the horizontal, means a departure
from Boyle's Law.

197. Imperfect Gases. Amagat 's Isothermals of PV and P.

No real gas conforms strictly to Boyle's Law. The experiments of

cj

i

Pressure

Fig. 86. Typical Amagat Isothermal for an Imperfect Gas.

Andrews, Amagat and others have shown that the departure from

Boyle's Law becomes more and more marked as the critical point
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is approached. Amagat's experiments^)!! the compressibility of

gases, which extended up to very high pressures, show that when
a line is drawn to exhibit the relation of PV to P at a constant

temperature, its general form is that illustrated in fig. 86. Instead

of being a horizontal straight line, as Boyle's Law would require,

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

Fig. 87. Amagat's Isothermals for Carbonic Acid.

it consists as a rule of two nearly straight parts, A and C, one

sloping down and the other sloping up, united by a smooth curve.

There is consequently on each isothermal a minimum value of PV
at a particular pressure. For pressures less than this

(

* '
\

\ dP JT
is negative; for greater pressures it is positive. The particular
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pressure at which the minimum of PV is found depends on the

temperature. With rising temperature the position of the minimum

point B shifts first to the right and then to the left; and if the

<lb

44

42

40

38

36

34

32

30

28

26
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figs. 87, 88 and 89, which are representative examples of Amagat's
curves*. The temperature for which each isothermal is drawn is

1-3

1-2

4-100

1-0

0-9

0-8

0-7

0-6

0-6

0-4

03

02

01

-35 e

-78-5

- 103-5

20 40 60 80 100

Fig. 90. Witkowski's Isothermals for Air.

120

marked on it. In fig. 87, which relates to carbonic acid, the tem-

peratures for which the selected curves are drawn are all above the

critical point, but the lowest is not far from it. The left-hand

* E. H. Amagat, Annales de Chimie et de Physique, vol. xxn, 1881. See also

vol. xxix, 1893.
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branch of the curve consequently slopes down very fast; if an

isothermal were drawn for the critical temperature its direction at

the critical pressure would become vertical, for at the critical point

( j } is infinite. At higher temperatures the left-hand branch
\ ar J T

slopes down less steeply, and within the range of this diagram the

minimum point moves to the right; but (as further experiments

proved) at higher temperatures still it moves to the left. This

feature is apparent in the curves of fig. 88, which relate to nitrogen.

There the measurements were made at temperatures much more
remote from the critical temperature. The downward sloping
branch is short, and becomes shorter when the temperature is

raised. Finally, with hydrogen (fig. 89), where the critical point
was even more remote, the minimum has disappeared, and each

isothermal is a line sloping up along its whole course. At any very
low temperature, however, an isothermal for hydrogen would have

a branch sloping downwards, for moderate values of P, followed by
a minimum of PV and then an upward slope just as in other gases.

Experiments on air, by Witkowski*, whose curves are reproduced
in fig. 90, show that for moderate pressures a PV, P isothermal for

air slopes upwards all the way at 100 C. (or over), but at low

temperatures such as 100 C. it slopes steeply downwards towards

a minimum value of PV and then rises. The locus of the mini-

mum ofPV is indicated in fig. 90 by a dotted line. These conclusions

are in full accord with the results that have just been stated.

198. Isothermals on the Pressure-Volume Diagram. An-
other method of exhibiting the departure of real gases from Boyle's
Law is to draw isothermal lines on a diagram of the type of

fig. 84, the coordinates of which are simply the pressure and the

volume. An example of such a diagram was described in Art. 76.

For convenience of reference it is reproduced as fig. 91. At any
high temperature an isothermal (such as G) does not differ very

obviously from a rectangular hyperbola, but at lower temperatures
it exhibits a point of inflection as in F or E.

Below the critical temperature each isothermal consists of

separate parts, namely the part AB, in which the substance is a

homogeneous liquid, and the part CD, in which it is a homogeneous

vapour. These are joined by the straight Jine BC which exhibits

the change of phase from liquid to vapour. During that change the

* Phil. Mag., April, 1896.
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substance is not homogeneous ; it consists of a mixture of the two

phases, liquid and vapour. The loci ofB and of C together constitute

the boundary curve, the apex of

which is the critical point.

The isothermal for the critical

temperature E, fig. 91, touches

the boundary curve at the criti-

cal point. Its direction at the

critical point is horizontal and

it has a point of inflection there ;

consequently at that point

'dP^ = and -
dV

199. Continuity of Liquid
and Gas. The essential conti-

nuity of the liquid and gaseous
states in any substance will be

realized if one thinks of a process

by which the substance may
actually pass from one to the

VOLUME.

m8- 9L Isothermal Lines.

other state without any abrupt change, such as that which

occurs in the boiling of a liquid. Starting from B (fig. 92), where the

substance is a liquid, we might heat it at constant volume to a

temperature equal to the critical temperature (or higher). This

brings it to H. Then it might expand isothermally along the line

HI, and then be cooled at constant volume from 7 to C. At C it is

a saturated vapour. During each of these steps the substance has

remained homogeneous; the passage from liquid to vapour has

taken place in a continuous manner: it would be impossible to

point to any stage of the process as the stage of transition from one

phase to the other. It is obvious that any isothermal higher than

the critical isothermal E would serve equally well for the step in

which the substance expands.
The idea of continuity between the liquid and gaseous states re-

ceived a remarkable development in the speculations of James

Thomson*. He suggested that we might think of the curves AB
and CD as parts of one continuous curve ABJKLCD (fig. 93). The

parts BJ and LC correspond to real phenomena of the kind referred

to in Art. 79. For in certain circumstances the pressure of a liquid

* Proc. Roy. Soc.. Nov. 1871. Collected Papers, pp. 276-333.
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Volume

may be reduced below the saturation pressure corresponding to

the temperature, without vaporization, and a vapour may be com-

pressed beyond its satu-

ration pressure without

condensation. Points be-

tween B and J, and

between C and L, ac-

cordingly represent con-

ditions in which a homo-

geneous fluid may tem-

porarily exist in meta-

stabJe states (compare
Art. 135). But points be-

tween J and L cannot be

realized in a homogene-
ous fluid : they would be

completely unstable, for

they would require the

pressure and the volume

to increase together.

Hence the connecting portion of the curve is no more than a

mathematical abstraction, but it allows a continuous expression

for P in relation to V to be

interpreted for isothermals

below the critical tempera-
ture as well as for isother-

mals above that tempera-
ture. The straight line BC
represents the ordinary

process of vaporization or

condensation at constant

pressure. It is interesting to

notice that the theoretical

connecting curve, which we

may call theJames Thomson

wave, must satisfy this

thermodynarnic condition,

/K

Volume

Fig. 93. James Thomson's ideal isothermal.

that the area BJK is equal to the area KLC. For we may
conceive the fluid to be taken through a complete cycle, from B

through JKL to C, and then back to B by the straight line CB.

During this cycle its temperature does not change, and therefore.

E. T. 20
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by Carnot's principle, the work done in the cycle as a whole is nil.

Accordingly \PdV for the complete cycle must vanish: hence

the positive area KLC must be equal to the negative area BJK.
It follows that when we are able to draw for any fluid the theo-

retical isothermal AJLD, from a knowledge of the characteristic

equation, we may go on to determine the saturation pressure

corresponding to the temperature for which the curve is calculated,

since .that is the pressure at which the straight line BC must be

drawn to make the area BJK equal to the area KLC.

200. Van der Waals' Characteristic Equation. A form of

characteristic equation, applicable to any fluid, was devised by
Van der Waals* which approximately expresses the relation of P,

V and T under all conditions of the fluid through any range of

density and temperature, from the state of liquid to that of gas or

vapour at low pressures, when the behaviour approaches that of a

perfect gas. Although Van der Waals' equation cannot be accepted
as exact it gives results which correspond in a remarkable manner

with the broad features that are exhibited by real fluids, in all

possible liquid or gaseous states, and throws light on the phe-

nomena of the critical condition and on the question of continuity

of state between liquid and gasH

Van der Waals' equation was based on the kinetic theory of gases,.

No more than a rough outline can be given here of the considerations

involved in framing itf. The kinetic theory shows that a gas which

consists of colliding molecules will conform to the ideal equation
PV= RT only if (1) the size of the molecules is indefinitely small

compared with the space traversed by them between their en-

counters, and (2) no appreciable part of the energy of the gas is due

to the mutual attraction of the molecules for one another. Neither

of these conditions holds in a real gas. In a real gas the volume of

the molecules is an appreciable part of the whole volume occupied

by the gas, and it is only after making a deduction for it that we have
the volume which can be reduced by applying more pressure. Again,

during their encounters the molecules attract one another across

short distances so that internal work is done in separating them.

The result is that this attraction between the molecules assists the

* The Continuity of the Liquid and Gaseous States of Matter, published in Dutch in

1873; Eng. Trans, in Physical Society's Physical Memoirs, vol. I, part iii, 1891.

f Students wishing to pursue the matter should consult Jeans' Dynamical Theory

of Gases, second edition, Chap. VI.
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pressure exerted by the envelope in preventing the gas from ex-

panding. If the first of these two effects stood alone we should have

P(V -
b)
= RT,

where b, which is called the "co-volume." represents the deduction

due to the volume of the molecules. But in consequence of the.

second effect we have to add to P a term depending on the attrac-

tion between the molecules. Taking any imaginary plane of

separation between two portions of the gas, the attraction between

molecules across that plane will depend on the number of molecules

which are at any moment so near as to be exercising mutual forces :

in other words upon the number of encounters that occur on the

separating plane per unit of time. But that wr
ill depend on the

square of the density, for it is proportional to the product of the

numbers of molecules per unit of volume on the two sides of the

plane. Accordingly Van der Waals takes a/F
2 as the term which is

to be added to P to represent the effect of the mutual molecular

attractions. He treats a and b as constants for any particular fluid.

His characteristic equation therefore takes the form

Numerical values of the constants can be found for any fluid

by observing experimentally the relations of pressure, volume

and temperature in different conditions of the fluid, or they

may be inferred from other experimental results. Van der

Waals' equation is intended to apply to any homogeneous state,

gaseous or liquid. It does in fact reproduce with remarkable com-

prehensiveness the chief phenomena of both states, and also those

of the critical point, though in some particulars it fails to give exact

quantitative results.

It may help towards an appreciation of the physical meaning of

the term =^ if we consider the isothermal expansion of a gas to

which Van der Waals' equation applies. When any fluid expands
in any manner the heat taken in, dQ, is, by Eq. (21) of Chap. VII,

If the expansion is isothermal this becomes

= T(d
}
dv -

al )v

202
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Now in a Van der Waals gas

JIT a^~
y _ b 772

from which
(dTj F

Hence in the isothermal expansion of such a gas

dr .............................. (3).

But PdV is dW 9
the external work done during the expansion.

Comparing this with the general equation

dQ = dW + dE,

we see that in a Van der Waals gas there is an increase of internal

energy (dE) during isothermal expansion, which is equal to -==- dV.

We may regard this as internal work done against a cohesive force

=2 resisting the expansion, independently of the external pressure

P. In a perfect gas there would be no change of E in isothermal

expansion (Art. 189).

On assigning various constant values to T the Van der Waals

equation gives isothermal curves which have all the general charac-

teristics of those shown in figs. 86 to 93. When the substance is in the

gaseous condition and at any very low pressure, V is so large that

the terms a/V
2 and b become negligibly small : the gas then approxi-

mates to the ideally perfect state and the equation gives nearly the

same results as those of the perfect-gas equation PV RT. At

higher pressures both of the modifying terms become important.
The equation may be written thus, as a cubic in F,

(16).

This gives three roots, real or imaginary, for F, corresponding to

any assigned value of P, on any isothermal. When the temperature
for which the isothermal is drawn is higher than the critical tem-

perature, only one of the three roots is real : that is to say there is

only one value of F for each value of P on any isothermal above

the one that passes through the critical point. For any tempera-
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ture below the critical temperature all three roots are real in the

mathematical sense. The isothermal curve calculated from the

equation then takes the continuous form conceived by James

Thomson, and illustrated in fig. 93. One of the three roots corre-

sponds to a point on the curve AJ, one to a point on Z/Z), and the

third to a point (not realizable experimentally) on JL,

Van der Waals' equation makes the product PF, for constant T,

vary in the manner indicated by Amagat's isothermals, showing a

minimum at a particular value of the pressure that depends on the

temperature for which the isothermal is drawn. Writing the equa-

tion in the form RTV a
= ~~~

and differentiating with respect to P, keeping T constant, we have

(d(PV)\ _
I"
- RTb a^fdV]

( dP )T ~ [(V -by
+

V*\ (dPjT
"

Since on any isothermal
'
is zero at the minimum of PF, the

CLi

quantity within the square brackets must vanish at that point.

Hence, on any isothermal, the minimum of PV is found when the

volume is such that

bRT

This shows that the volume at which the minimum of PV occurs

on any isothermal becomes greater as the temperature is raised.

In the particular case when the temperature is so high that the

minimum occurs on the PV axis, where P is zero, V is indefinitely

large; 1 ^ then becomes equal to 1, and T is given by the

equation T =^ . Hence in a fluid which satisfies Van der Waals'
oK

equation an Amagat isothermal for a temperature equal to =-=_

would slope upwards along its whole course, with increasing P,

but an isothermal for any temperature lower than this would first

dip towards a minimum of PV and then rise.

20 1. Critical Point according to Van der Waals' Equation.
To find the critical point of a fluid which satisfies Van der Waals'

equation, we may most conveniently write the equation in the form

RT aP =
V -b F2 '
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(dP\
- RT

from which
(-^ T

=
-p ^

1 -w-w-r-rt I / T/"

At the critical point

dP\ - RT 2a

F*

2RT 6a

Hence, writing Tc . Pc and Fc for the critical temperature, pressure,

and volume, we should have, in a Van der Waals fluid,

RTC
2a 2RTC _ 6o_

r 7T5
==

TT- o and. 7~ TT-O rr A \"/*

o o
This gives =

,

C C

from which Fc
= 36 (9).

It follows from this result and from (8) above that

RTC
2a

(86- 6)
2

from which T
c
= ^^ .....(10).

Also, from the original equation,

RTC a a _ ^ a
c 3b-b 962 27 b2 9b2 27b*

"

Thus if the constants a and & as well as R were known for a gas
which strictly satisfied Van der Waals' equation, the critical volume,

temperature and pressure might be calculated : or conversely the

constants might be inferred from known values of Tc ,
P

c and Vc .

It follows also that in such a gas the three critical quantities
would be connected by the relation

PcVc
= lUTe (12),

which shows how widely the condition of the fluid then differs

from that of a perfect gas.
In applying his equation to carbonic acid, Van der Waals de-

duced from the experiments of Regnault and of Andrews these

values: a = 0-00874, b = 0-0023, R = 0-003685, the unit of pres-
sure being one atmosphere, and the quantity of gas considered

being that which occupies unit of volume at a pressure of one

atmosphere and a temperature of C. With these constants the

calculated critical temperature is 32 C., which agrees fairly well with

the value observed by Amagat, namely 31-3 C. In other particulars
the agreement is less good ; thus the calculated critical pressure is
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61-2 atmospheres, whereas Amagat's observed value is 72-9 atmo-

spheres. This discrepancy may be due in part to errors of experi-

ment arising from the presence of some air in the gas*, but it is

found that the Van der Waals equation fails to represent the

behaviour of a gas very accurately in the neighbourhood of the

critical point.

202. Corresponding States. If we have two or more different

fluids to which Van der Waals' equation applies, with different

constants for each fluid, an important relation between them can

be established by selecting scales of temperature, pressure and

volume such that the critical temperatures of the different fluids

are expressed by the same number, the critical pressures by the

same number, and the critical volumes by the* same number.

Isothermal curves drawn to these scales for the different fluids will

then coincide: in other words a single diagram will show the re-

lation of P to V in all the fluids, when it is read by reference to

the appropriate scales. Similarly a single diagram will show the

Amagat curves (PV and P) for all. Any point taken in such a

diagram, interpreted on the proper scale, marks a definite state for

each fluid; and for the different fluids it marks what are called

"corresponding states." The critical points for the different fluids

furnish an obvious example of corresponding states.

Thus fluids are said to be at corresponding pressures when

their pressures bear the same ratio to the respective critical

pressures : they are said to be at corresponding volumes when their

volumes bear the same ratio to the respective critical volumes, and

at corresponding temperatures when their temperatures bear the

same ratio to the respective critical temperatures. If substances

conform to a characteristic equation of the Van der Waals type all

three quantities P, V, and T, simultaneously have "corresponding"
values in the sense here defined. To put this statement in another

form, let the unit of temperature chosen for each fluid be its

(absolute) critical temperature, the unit of volume its critical

volume, arid the unit of pressure its critical pressure. Then the

same family of curves, either on the pressure-volume diagram or

the Amagat diagram, will serve to represent the isothermals for

all fluids that conform to a characteristic equation of the Van der

Waals type.

That
'

this is true of any fluid to which the Van der Waals

* Van der Waals, Physical Memoirs, p. 408.
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equation applies will be seen by reducing the equation to a more

general form. Take any such fluid, in any given state, and write

its pressure P as prPc where pr is the number by which the pressure

is stated when wTe use the critical pressure Pc as the unit of pressure.

Similarly for V write vrVc
where vr is the number by which the

volume is stated when we use the critical volume Vc as the unit of

volume
; and for T write trTc

where tr is the number that expresses

the (absolute) temperature when we use the critical temperature
Tc as unit of temperature. The quantities pr ,

vr and tr are called

the "reduced" pressure, volume and temperature respectively.

Then a

T _
t T _

t
A

T 27bR'

On substituting these values in Van der Waals' equation,

it will be seen that the constants ,
b and R cancel out, and the

equation becomes

<*<- 4) -H .................. (13).

The constants that characterized a particular fluid have disap-

peared. Accordingly this "reduced" characteristic equation, as it

is called, is true of any substance that satisfies a Van der Waals

equation, and consequently the forms of the curves connecting pr ,

vr and t.r are the same for all such substances.

In other words, if we compare any two such substances, using

say the temperature and pressure as independent variables for the

purpose of specifying the state, and choose "corresponding" values

of the temperature and pressure for the two. then the volumes will

also have "corresponding" values.

This is the theorem of corresponding states, first enunciated by
Van der Waals. It was tested by Amagat and found by him to be

nearly true of a number of fluids which he examined through a

wide range of conditions, and it has been shown to hold approxi-

mately in many substances*. The validity of the principle does

not depend on the precise form of the characteristic equation : Van
der Waals' equation is by no means the only one that would lead

to the same conclusion. Any characteristic equation connecting
* See S. Young, Phil. Mag., Feb. 1892; also his book on Stmchiometry.
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P, V, and T with no more than three independent constants

(two adjustable constants in addition to R), and giving a critical

point, can be brought in like manner to the form of a "reduced"

equation in which the constants peculiar to the fluid have dis-

appeared. Hence any such equation serves equally well as a basis

for the theorem of corresponding states.

203. Van der Waals' Equation only Approximate. Useful

as Van der Waals' equation is in exhibiting broadly the behaviour

of a gas even in extreme variations of state, it cannot be brought

by any adjustment of the constants into exact agreement with the

results of experiment. It appears that the actual properties of a

gas are too complex to admit of complete statement by the use of

so small a number of constants. The quantities a and b of the

equation are not strictly constant; they are to some extent func-

tions of the temperature, or the density, or both. If constants

are selected which fit observations of the compressibility, the

equation fails to agree with measured values of the critical volume

and critical pressure. "Further, from Equation (12) of Art. 201 we
should expect the ratio RT/PF to have at the critical point the

value | or 2-667, whatever be the values of the constants a and b.

But the observations of Young* show that this ratio is not the

same in all gases at the critical point, that in most gases it is

about 3-7, but in some it may be less than 3-5 and in others more
than 4. The relations of the critical temperature, pressure, and

volume are in fact less simple than is consistent with the formula

of Van der Waals : the critical points in different actual fluids are

not strictly "corresponding" states, and there is some departure
from the theorem of Art. 202.

Again, taking the Van der Waals equation

P= RT
<L

V -b V*'

arid differentiating with respect to T, keeping V constant, we have

which means that when a Van der Waals fluid is heated at constant

volume the increment of pressure per degree of rise in temperature
is constant. Hence with such a fluid, whether liquid or gaseous, a

thermometer of the constant-volume type would give readings on

the thermodynamic scale without correction. In other words the
* Loc. cit.
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observed pressure coefficient would be independent of the tem-

perature. This is not true of real fluids.

Again, if a substance conformed strictly to the equation of Van
der Waals it would follow that K v ,

the specific heat at constant

volume, would be constant at any one temperature, arid would

therefore be the same for the liquid as for the gas at any temperature
at which both states of aggregation are possible. For taking Eq.

(14) and again differentiating with respect to T, we have

Hence by Eq. (23), Chap. VII,
)
=0: that is to say K v

\ ay J%
would be constant at any one temperature. This, however, is not

confirmed by measurements of the specific heat.

Another important particular in which Van der Waals' equation
fails to give results that agree with those of experiment is in the

cooling effect of throttling. This effect has been measured in various

gases and vapours by experiments like the porous-plug experiments
of Joule and Thomson. Such experiments show that in any real gas
the effect suffers an inversion when the initial temperature of the

gas is sufficiently high; that is to say, at high temperatures the

effect of throttling is to heat the gas instead of cool it. The fact

of this inversion can be deduced from the Van der Waals equation*,

* To show this we may use Eq. (41 a) of Chap. VII, which expresses the cooling
effect in any fluid as

^
.

^ (d(PV}-~~-~-
In a Van der Waals fluid, by Eq. (4) above,

fd(PV}\ _ r -RTb _oH f dV
\ d

~

by Eq. (35), Chap. VII. Hence we should have

dE RT a . dE\ a dV- p =
*>

a l

Adding the two terms, the whole cooling effect in a fluid which obeys Van der

Waals' equation would be
RTb

By making T sufficiently large the second term within the square brackets

exceeds the first, which means an inversion of the effect. When the fluid is a gas at

low pressure, and V is consequently very large compared with 6, the condition for

inversion is that RTb =2a: in other words the inversion temperature in a gas at

very low pressure would be 2a/Rb.
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and to that extent the equation is satisfactory. But the amount
of the cooling effect in such a gas as carbonic acid, when calculated

from the Van der Waals equation (with constants which suit the

form of the isothermal curves) falls much short of the cooling effect

that is actually observed
;
and if the constants of the equation are

adjusted to make the observed and calculated cooling effects agree,

then the equation does not accord with the observed figures for

compressibility*.

204. Other Characteristic Equations: Clausius, Dieterici.

Enough has been said to show that Van der Waals' equation cannot

be brought into exact agreement with the deviations from Boyle's
Law and Joule's Law which are found in an actual gas. The reason

has already been indicated that the "constants" of the equation
are not strictly constant. In particular the attraction between the

molecules, on which a depends, is probably a function of the tem-

perature, although it is treated in the equation as independent of the

temperature. Various attempts have been made to modify the

equation so as to bring it into closer accord with the known pro-

perties of gases. None of these have been completely successful in

giving a formula which will stand all tests throughout a very wide

range of states, though in some respects the modified equations

approximate better to the observed facts.

Clausius | gives a characteristic equation which we may write in

the form
p =

where a' and b'
9 as well as b and /?, are constants. On com-

paring this with Eq. (1 a), it will be seen to differ from Van der

Waals mainly by the presence of T in the denominator of the

last term, which expresses the addition to P that is due to inter-

molecular attractions. Clausius assumes that these attractions

become reduced when the temperature rises; he thereby gets an

equation which, while it gives to the isothermals the same general
form as is given by the equation of Van der Waals, agrees better

with the Joule-Thomson cooling effect. When the same method

of finding the critical quantities is applied to it, by writing

dP\ /d*P\
-,-== =0 and

(
-=

)
=0,ay J \dr V

* See Callendar, Phil. Mag., Jan. 1903, pp. 58-60.

f Phil. Mag., June, 1880.
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one finds that V
c
= 3b + 26',

V-y j;27R (b + b')

P - ~

216 (b

For carbonic acid Clausius gives his constants the following values :

R = 0-003688, b = 0-000843, a' = 2-0935, b' 0-000977, the unit

of pressure being again one atmosphere, and the quantity of gas

considered being that which occupies unit volume at one atmo-

sphere and C. With these constants the calculated critical

temperature is 31 C. and the calculated critical pressure is 77

atmospheres.
Clausius draws a theoretical isothermal curve of pressure and

volume for carbonic acid at 13-1 C. calculated from his formula.

This curve, which is reproduced in fig. 94, shows the form assumed

by the James Thomson wave in the Clausius type of characteristic

equation. The horizontal straight line BC, which exhibits the

process of liquefaction, is so drawn that the crest and hollow of the

wave shall have equal areas (Art. 199): this consideration deter-

mines its height and therefore fixes the saturation pressure. The

dotted portions of the curve exhibit imaginary states, comprised

within the characteristic equation, which serve to establish

theoretical continuity between the real state of homogeneous

liquid AB and the real state of homogeneous vapour CD.

A modified and more general type of Clausius equation is ob-

tained by writing
RT a'f(T)-
v -b (v + vy

'

where /(T) is a function of T such as to diminish with rising tem-

perature. In the original equation of Clausius, f(T) = . Van

!..!'
der Waals has suggested* thatf(T) may be e T

C, where e is 2-7183,

the base of the Napierian logarithms, and T
c is the critical tem-

perature. In that case, at the critical temperature f(T) would

become equal to 1.

This form of characteristic equation was adopted by Mollier in

calculating his tables of the properties of carbonic acid*.

*
Mollier, Zeitechri/l fiir die gesammte Kalte-Industrie, vol. n, 1895 and vol. HI,

1896.
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Still another characteristic equation of the same comprehensive
kind is that of Dieterici *, who writes

P(V -b) = UT V
..................... (18),

where is again the number 2*7183, and a, b arid R are constants.

Like the others, this formula is founded on the kinetic theory,

h o

3(

20

10

Volume
i i

Fig. 94. Theoretical isothermal of C02 at 13-1 C. according to the

equation of Clausius.

and like them it reproduces the general features of isothermal

curves under all conditions and gives a critical point. Since it

has only two constants besides R, the principle of corresponding
states holds good for the relation it establishes between P, V and T.

It makes the critical temperature Tc
= -=-=

,
the critical

* Annalen der Physik, vol. v, p. 51, 1901.
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volume F c
= 26, and the critical pressure Pc

=
rp-^

Hence at

the critical point the ratio RTJPV becomes equal to Je
2 or 3-695,

a value which is in much better agreement with observed results

than was the value 2-667 calculated from Van der Waals' equation

(Art. 201). In respect also of the Joule-Thomson cooling effect

and its inversion* Dieterici's equation gives a better agreement
with experiment than does Van der Waals'.

A more general form of the Dieterici equation is obtained by

writing Tn instead of T in the index term, thus introducing one more

adjustable constant : - a

P (V - b)
= RT RTnV

.................. (19).

The critical temperature then becomes */ ^ . The principle of

corresponding states would still apply to any group of substances

for which n had the same value, since each substance in the group
would still have only two constants individual to itself.

205. Callendar 's Equation. None of these equations is com-

pletely successful in representing the behaviour of a fluid in all

possible states. But for the practical purpose of enabling tables

to be calculated which will show the properties of a fluid throughout

a limited range of variation of state, it is not impossible to frame a

characteristic equation which, by empirical adjustment of the con-

stants, can be made to apply with sufficient accuracy and even

with great accuracy within that range, though it may fail

entirely when carried beyond the range. A conspicuous example
of this less ambitious type of characteristic equation is one which

Callendar has devised and applied to calculate his tables of the

properties of steamf . It serves to express very exactly the observed

properties of steam within the limits of pressure and temperature
that are usual in steam-engine practice, but it has no application
to higher pressures, and it makes no attempt to represent the

continuity of the gaseous and liquid states.

This equation, which Callendar takes as characteristic of any

vapour, saturated or superheated, provided the pressure is much
lower than the critical pressure, is

(20),

* See Porter, Phil. Mag., April 1906 and June 1910.

t Callendar, Proc. Hoy. Soc. vol. 67, p. 266, 1900; Phil Mag., Jan. 1903; Encyc.
Brit.. Articles "Thermodynamics" and "Vaporization."
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T>nn

where =- is, as usual, the ideal volume of a perfect gas : b is a

constant representing the co-volume, as in other characteristic

equations ;
and c is a term which is not constant but is a function

of the temperature. Callendar takes c = where C is a constant

and n is a number depending on the nature of the gas. The term c

represents the effect of inter-molecular forces, but instead of re-

garding these forces as augmenting the influence of the external

pressure (which Van der Waals did by adding the term
-^ 2

to P) 9

Callendar represents by c their effect in reducing the volume below

its ideal value, in consequence of the
"
co-aggregation

"
or tem-

porary interlinking of some of the molecules during their en-

counters. He calls c the "co-aggregation volume" and treats it, at

the moderate pressures within which he applies the equation, as a

function of the temperature only. This assumption would not be

true under conditions of high density, but for a gas or saturated

vapour at moderate pressures it gives results which agree remark-

ably well with those of experiment.
Before proceeding to apply Callendar's equation, it may be useful

to point out its relation to that of Clausius. We may write the

equation of Clausius (Eq. (16) of Art. 204) in the form

RT a'(V-b)
p

Now at low or moderate pressures the volume will be large, and the

modifying terms on the right will be comparatively small. When
V is large the effect of the second term will not be much altered if

we take 7, as approximately equal to = , and also take P

in that term as approximately equal to RTJV. When these sub-

stitutions are made the equation becomes

RT a'
j/ _ _ __ I /}'

P

which we may write in Callendar's form

V RT C
_u h

-p~T^ + b>

where the more general index n is substituted for 2 as the index of

T, and C is written for a' JR.

Callendar finds that the best agreement with observed results,
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especially with observations of the Joule-Thomson cooling effect,

is got by giving to n a value which is not necessarily 2 but may be

greater or less than 2 according to the nature of the gas*. For

oxygen or nitrogen or hydrogen he takes n to be 1-5: for carbonic

acid at low pressure good results are got by taking it as 2
; and for

steam, in the calculation of his tables, he has taken it as -V .

It must be emphasized that Callendar's equation applies only to

gases and vapours at low and moderate pressures. That this is so

will be obvious when one considers the form of the isothermal lines

which it gives on a diagram of PV and P. We may write it

PF = RT - cP + bP ..................(20).

Since c is a function of T only, and is therefore constant along any
one isothermal, this gives

Hence in a gas which obeys Callendar's equation the isothermal

lines would be straight, inclined downwards, with increasing P, if

c is greater than b, and inclined upwards if b is greater than c. There

would be no minimum of PV nor change of inclination along any
isothermal line. The equation therefore can apply only under con-

ditions such that the lines are substantially straight, namely at

low or moderate pressures. Starting from P = the Jines are in

fact nearly straight for some distance; and. as we saw in Art. 197,

they slope down when the temperature is low and slope up when
it is high. In any gas, at a sufficiently low temperature c is greater

than b, and an isothermal line there will slope down. As the tem-

perature increases for which the isothermal is drawn, c becomes less,

C
since c =

=-^ ,
and a temperature is reached at which the line runs

level (c
=

b). For any higher temperature than this the line slopes

up, like the lines for hydrogen in fig. 89.

The temperature at which the sign of the slope changes will be

relatively low in a gas which, like hydrogen, has a very low critical

temperature, and will be relatively high in a gas like carbonic acid,

as might be inferred from the principle of corresponding states.

In dealing with steam, the limits within which Callendar has

applied his equation are from zero pressure to 500 pounds per square
inch or 34 atmospheresf. Within this range it is not probable that

* Phil. Mag., Jan. 1903, p. 95.

f The critical pressure in water-vapour is about 200 atmospheres, or say six times

as high as the pressure up to which Callendar's equation is held to apply.
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any important error is introduced by treating the isothermals as

straight lines on the diagram of PV and P.

Besides representing accurately the behaviour of the substance

within this range, when suitable values are chosen for the con-

stants, Callendar's equation has the very convenient property that

differential expressions deduced from it for the various quantities

E, /, cf>,
Kp ,

Kv and so forth, by applying the general thermo-

dynamic relations of Chap. VII, take forms s.uch as may be readily

integrated. Hence it enables numerical values of these quantities

to be calculated, to any desired number of figures, which will be

thermodynamically consistent with one another.

It would be possible to fix the constants by reference only to

experiments on the compressibility of the gas at various tempera-

tures, if sufficiently accurate data of that kind were available. But

Callendar prefers to fix them by reference mainly to observed values

of the Joule-Thomson cooling effect. Their relation to the cooling

effect will be apparent from what follows.

206. Deductions from the Callendar Equation. Taking the

Callendar equation, ^y
V = -- - c + b,

since c =
2^'

we have

dc nC _nc <Pc_ _ n(n+I)C n (n + 1) c
"

' 8 ~

c I dc d fc\ (n+ l)c
Also, since ^

= ~
ndf 3 dT\T)

=
~~T*~~

'

Differentiating the equation with respect to T, keeping P constant,

dV\ R dc R nc ,

}T

n(n + I)c

\dT*p~ dT* T*

Differentiating with respect to P, keeping T constant,

Now by Eq. (27) of Chap. VII, in any fluid

dJ*\ -
dP)T

~

21



322 THERMODYNAMICS [CH.

Hence in a gas or vapour to which Callendar's equation applies.

*(* + !)_*
(25)

dP

Integrating, we have

Kt=,Jfi
+ *l* + K f

>

...............(26) ,

where Kp
f

is the constant of integration. It is the limiting value of

the specific heat Kv when P = 0, at the temperature T. But since

any gas in that infinitely rarefied condition may be treated as

perfect, Callendar assumes that Kv
'

may be taken as having the

same value at all temperatures to which the equation is applied.

It should be noticed that this integration is performed along

an isothermal line, and that the constant of integration is not

necessarily the same for other temperatures. To treat Kp
'

as con-

stant when the temperature is varied therefore involves an assump-
tion which is independent of anything in the equation itself.

Again, by Eq. (41) of Chap. VII we had for the measure of the

Joule-Thomson cooling effect in any fluid

.,-' (),-'
Hence for a gas to which the Callendar equation applies, the cooling

effect is

RT
+ nc

(n + l)c -b ........................... (27).

As was explained in Art. 182, -gp
is the fall of temperature

per unit fall of pressure when the gas passes through a porous plug
or any other throttling device, and p is the quantity of heat that

would serve to maintain the original temperature, if it were

supplied from outside during the process. From the above result

it follows that Callendar's formula provides for the inversion of the

cooling effect which is known to occur in real gases. When (n + 1) c

is greater than b the expression for p is positive ; the gas is then

cooled by throttling. This is the usual case. But when (n + I) c is

less than b, p is negative; the gas is then warmed by throttling, as
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hydrogen is at ordinary temperatures, and as any gas will be if the

initial temperature is sufficiently high. By raising the initial tem-

perature the quantity (n + 1) c is reduced
} since c =

-^n
. Inversion

of the Joule-Thomson effect occurs when (n + 1) c = 6, or when

nc = c + b. But, as we saw above, c + b is the slope of any

isothermal line on the diagram of PV and P, namely f ,p
j

.

Hence if the isothermal slopes up with a gradient steeper than nc

the Joule-Thomson effect will be a heating; if it slopes up less

steeply than this, or runs level, or

slopes down, the effect will be a

cooling. It will be apparent from

these considerations that measure-

ments of the cooling effect furnish an

important means of settling the

values of the constants in Callendar's

equation, apart from direct determi-

nation of the isothermal lines. Cal- ^
lendar in fact assumes that the co- ^
volume b is equal to the volume is

which would be occupied if the gas g
were all condensed to a liquid, and Q-

then calculates the values of n and

c from observations of the cooling

effect*.

An illustration may help to make

some of the above points clear. In

fig. 95, which is a diagram of the

Amagat type, with PV and P for co-

ordinates, isothermals are sketched
Fig. 95. Amagat isothermals ac-

(not to scale) for a gas obeying cording to Callendar's charac-

Callendar's equation. They are, as we teristic e1uation-

saw, straight lines within the range to which the equation is

applied. AS is an isothermal drawn for a temperature such that

the vapour becomes saturated at a moderate pressure, which is

assumed to be within the range of pressure for which the equation

holds good. Accordingly the line AS is straight, up to the saturation

point S. The curved line through S is a portion of the boundary

curve, below which lies the "wet" region, where the beginning of

w

Pressure

Phil. Mag., Jan. 1903, p. 87.

212
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condensation would be represented by a vertical straight line, SW,
P as well as T being then constant. AS slopes downwards, and the

effect of throttling, at that temperature, is to cool the gas. A'S' is an-

other isothermal, drawn for a lower temperature, to which the same

remarks apply. The effect of throttling is still to cool the gas at the

higher temperature for which the horizontal isothermal BB is drawn

(c
=

b), and at any temperature up to that of CC, which is the

isothermal corresponding to the inversion of the Joule-Thomson

effect, namely that for which (n + 1) c = b, the upward gradient
of CC being equal to nc. At any higher temperature, such as that

for which DD is drawn, the upward gradient is steeper and the

effect of throttling is to heat the gas.

207. The Specific Heats in Callendar's Equation. The ex-

pression given in Eq. (26) for Kp ,
in a gas that conforms to

Callendar's equation, enables the specific heat at constant pressure
to be calculated for any temperature and any pressure within the

range to which the equation applies, when the value of Kp
r

(as-

sumed constant) for the given gas is known, as well as the constants

of the characteristic equation. In order to obtain a corresponding

expression for the specific heat at constant volume it is most con-

venient to write the characteristic equation in the form

PU = RT,

where U stands for V b + c. U is a function of V and T only.

Differentiating with respect to T, keeping V constant,

dU\ dc nc .

But = = -
' and "

Substituting these values, and remembering that =
,
we obtain

from Eq. (28),

Then from Eq. (29),

/d?P\
_
Pnc r 2nc\ _ Rnc

\dT*) v
~

7î r̂ --^r\
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Now by Eq. (23) of Chap. VII, in any fluid,

= T
dV T

Hence in a gas or vapour to which Callendar's equation applies

(dKv \ Rncf^ 2nc\~=- l - n + -

In integrating we have to remember that at constant temperature
dU = dV. Accordingly,

r;r
Rnc ( nc\Kv

=
-jj-

f n - 1
] + constant.

Writing this in the form

PmrV I 1
""^

\ i 17" f /OT \Kv
=

~7fr( n
- l ~77 }

+ K* (31),

we see that the constant of integration Kv
'

is the limiting value of

Kv when P =
0, which (like KP

'

9 Art. 206) is taken as having the

same value at all temperatures to which the equation is applied.

Next, to find an expression for Kv
- K v . By Eq. (28) of Chap.

VII, in any fluid,

Hence in a gas to which Callendar's equation applies we obtain the

relation

(32),

by substituting the values already found in Eqs. (28 a) and (22)

for these two differential coefficients.

In the limit when P = the volume becomes indefinitely great,

TIC
the term

jj vanishes, and

K9
' -Kv

' = R ........................ (33),

as we should expect from the fact that this gas is then to be regarded
as perfect (compare Art. 189). It should be noted that the assump-
tion that Kp

f

is constant requires that Kv
'

should also be constant.

208. The Entropy, Energy, and Total Heat, in Callendar's

Equation. To find an expression for the entropy we shall apply

Eq. (26) of Chap. VII. which is true of any fluid,
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Here, and in what follows, the factor A. which is 1/J (Art. 14),

is introduced in order that heat quantities (including R) may be

numerically stated in thermal units.

By Eqs. (26) and (22), Art. 206, we have, using thermal units,

An (n + 1
)
cP

, j . (dV\ R AncK = -

f-
- + K and A

\dT)P
=
p + ^r

in any gas that obeys CalJendar's equation. Hence in any such gas

, - IT + il^a - * a- _ tr,

Integrating, this gives
AncP

f - K,' log. T- Slog. P--T- +B ...... (35),

or <f>
= Kp'l g,T-Rlogi P-- + B ......(35 a),

where B is the constant of integration.

To find an expression for the internal energy E we may most

conveniently use the general equation (8) of Chap. VII,

dE -
Tdt/>

- APdV.

In a gas that satisfies Callendar's equation

.

By substituting this and the value of
dc/>

in Eq. (34) we have

dE = (Kp
f

-R)dT + An (^dT
- cdP\

= Kv'dT - And(cP) ........................... (36),

from which E = Kv
f T - AncP + B r

.................. (37),

where B' is the constant of integration. Note that the internal

energy falls short of the value it would have in a perfect gas by
the amount AncP.
To find the total heat we have, by definition / = E + APV .

Hence, from Eqs. (37) and (20 a), in a Callendar gas

/ = (K9
' + R)T-A(n + I)cP + AbP + B'

= K9'T
- A [(n + 1) c - b] P + B' ............... (38).

Further, since A[(n + l)c b] is, by Eq. (27), equal to the Joule-
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Thomson cooling effect p expressed in thermal units per unit drop
of pressure, we may write this expression for the total heat in the

form / = KV'T -pP+B' (38 a).

On differentiating Eqs. (37) and (38) with respect to P, keeping
T constant, we have

T I 1 AVI t\ LT

\df}T \dPjT~
These results agree with the expressions already given for the

cooling effect. The whole cooling effect is
(
-r=

)
; by Art. 182

\dJr J y
it is made up of

fd (PV)\or Anc, and A I -^= J
or ^4 (c b).

Further, since
[ 35 ]

is constant for any one temperature, the slope
\drjT

of any constant-temperature line is constant, on a chart of / and P
for steam (compare Art. 102). The lines slope downwards, with

increasing P, and the slope is less at high temperatures, since c is

then less.

To complete the list, expressions may be added for the function

(which is G) and the function 0, in a Callendar gas. These are

found at once from the above results :

= K9
'

T(l -
loge T) + RTlogeP- A(c-b)P-BT + 5'.. .(89),

= E -
Tcf>

= KV'T - Kv'TlogeT + RTlogeP - BT + B' ...(40).

All the foregoing deductions from Callendar's equation hold good
for any gas or vapour to which the equation applies, whatever be

the values of the constants, provided the specific heat at zero pres-

sure may be taken as independent of the temperature within the

range of application.

209. Application to Steam. In applying his equation to steam,

Callendar assigns to the constant n a value such that

nR = Kv '.

This relation, which is not true for all gases, gives a value of n for

steam that is consistent with the observed effects of throttling. It

has the practical advantage of allowing expressions for the be-

haviour of the gas during adiabatic changes to take a very simple

form.
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When Kv
' = nR it follows from Eq. (33) that Kv

' - (n + 1) R,

and in that case the expression for
</>, Eq. (35 a), becomes ,

4>
= (n+I)R loge T - R log, P - AnC^+B

B ...(41).

Now in adiabatic expansion (/>
remains constant, and that can

p
happen in this expression only if _-^ is constant. Hence in the

adiabatic expansion of a Callendar gas in which the relation

nR = Kv
'

holds, the pressure and temperature are connected by

the equation p
constant ........................ (42).

Further, it follows that in all such cases ^-=-- is constant

during adiabatic expansion, because by the characteristic equation

we have p (V _ b) x^
J-

L
yn+l

and under the condition stated both terms on the right-hand side

are constant.

Again, under the same condition that nR = Kv ',

Tn+l P(P-b)
-p-

- = constant,

i

whence T (V - b)
H = constant ............... (43),

and, multiplying by - --
,

n+l

P (V - b)
n = constant .................. (44).

All these results for adiabatic expansion are true of steam, within

the limited range through which Callendar's equation is applicable.

They hold good so long as the substance remains in the homo-

geneous state of a gas, whether superheated, saturated, or super-

cooled (Art. 79), and they cease to apply when part of it liquefies.

In the calculation of his steam tables Callendar takes for the

numerical value of the co-volume b the volume of unit mass of

water at C., namely 0-01602 cubic feet per Ib. For R he takes

0-11012 in mean calories, corresponding to 1-982 per mol, and

equivalent to 154-17 foot-pounds per Ib. For n he takes -g -. This
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figure is based mainly on throttling experiments by Grindley*,

Peakef, and Callendar himself J.

He takes for C a value such that c is 0-4213 cubic foot at 100 C.

This makes
157-52 x 106

C= 0-4213 (373-1) *, or 157-52 x 106
; and c = ^ .

Hence when V is the volume of 1 Ib. in cubic feet,

P is the pressure in pounds per square foot, and

T is the absolute temperature in centigrade degrees,

the Callendar equation jgy
V = -c + b

becomes, for dry steam in any state,

F=
154_^_l^|_xlO

+ .01602 (45).

As a numerical example, let it be required to find the volume of

1 Ib. of steam at a pressure of 400 pounds per square inch and a

temperature of 240 C. Here P = 400 x 144 and T = 513-1, making

V = 1-3733 - 0-1456 + 0-0160 = 1-2437 cub. ft.

This will be found to agree with the value in Table C (Appendix III)

where the volume is tabulated for various pressures and for tempera-
tures ranging from 400 C. down to the temperature of saturation

and below it. The volumes below the temperature of saturation refer

to water-vapour in a supercooled (metastable) state, such as that

which is set up by adiabatic'expansion in the absence of nuclei on

which condensation may occur. In this example the steam is

slightly superheated, the saturation temperature for a pressure
of 400 pounds being just under 230 C.

Callendar also tabulates separately the "co-aggregation volume"
c for various temperatures. Some of the values are given below.

Co-aggregation volume c for Dry Steam in any state, in

cubic feet per Ib.

Temp.
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In further illustration of Eq. (45) various isothermal lines for

steam are drawn to scale in fig. 96, showing PV in relation to P as

800

Pressure, Pounds per Sy. Inch .

100

100 200 300 400 500
Fig. 96. Isothermals for steam, from Callendar's equation,

calculated from that equation. Here the pressures are expressed
in pounds per sq. inch ; consequently the numerical values of PV
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given in the figure must be multiplied by 144 if it is desired to have

them in foot-pounds. The dotted continuations of the isothermal

lines for 200 and 100 below the saturation curve represent values

for supercooled or, as it is sometimes called, supersaturated vapour.
The full lines drawn at constant pressure represent the first stages
in the condensation of a wet mixture. It will be observed that at

the highest temperature at which Callendar applies his formula

to steam, namely 500 C., the isothermal still slopes down with

increasing P. Throughout the whole working range the throttling
of steam produces a cooling effect.

Since the value assigned to R is 0-11012 calory, and that of n
is V-, the relation Kv

' = nR requires that Kv
'
shall be 0-36707

and Kv
f

, which is Kv
' + R, shall be 0-47719.

We have next to show how the tabulated values of the total heat

are calculated. The formula for /, Eq. (38), becomes, for steam in

any homogeneous condition, whether superheated, saturated, or

supercooled, Z = KP'T - A (*fc
-

b) P + ',

giving, in calories per lb.,

I = 0-47719T - - =- + B' ............ (46),1400

where c and b are expressed in cubic feet per Jb., and P in pounds

per sq. foot.

To obtain a numerical value for #', which comes in as a constant

of integration, we must fix some zero state from which the total

heat of the substance is to be reckoned, or, what conies to the same

thing, we must assign a numerical value to the total heat in some

known state. In the calculation of his tables Callendar assumes that

the total heat of water is zero at C. and is 100 at 100 C., under

saturation pressure in each case*.

* This assumption not only fixes the zero from which the total heat is to be

reckoned, but also gives to the thermal unit a value very slightly greater than the

mean calory as defined in Art. 13. The thermal unit of Callendar' s tables and

formulas is one-hundredth of the change in total heat which water undergoes when

it is heated from to 100 under the (varying) pressure of saturation, whereas the

ordinary mean calory is one-hundredth of the change in total heat when water is

heated through the same interval of temperature under a constant pressure of one

atmosphere. Callendar' s unit is the larger of the two by about one part in four

thousand. This difference is of no practical importance : it is so small as to be well

within the limits of error of experiment. The figures for the mechanical equivalent

of heat given in Art. 14 relate, strictly, to the larger unit, which is the one used in

the tables. Callendar takes his calory to be equivalent to 4-1868 x 107
ergs; the

corresponding value of the constant-pressure mean calory would be 4-1858 x 107
ergs.

The relation between the two units will be made clear if we write out an energy
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In passing from the state of water at 100 C. to that of dry

saturated steam at 100, under a constant pressure of one atmo-

sphere, the fluid takes in 539-30 calories, that being the latent heat

as determined by experiment. Hence / for steam when T is 373-1

and P is 14-689 x 144 is 639-30. The value of c at that temperature
is 0-4213; and b is 0-01602. Substituting these figures in the ex-

pression for /, Eq. (46), we have

639-3 0-47719 x 373-1 -
X 144

+ B',

from which B' = 463-995. For most purposes B' is taken as 464.

The formula for the total heat of steam, in any condition within

the Callendar range, accordingly becomes

/ = 0-47719T - + 464 .....(46 a).
1400

Values of / calculated in this way are given in the tables. As an

example, take the same case as before, namely steam at a pressure

of 400 pounds per sq. inch and a temperature of 240 C. With these

data the numbers are

/ = 244-84 - 25-29 + 464 = 683-55.

The tabulated value (Table D) is 683-54.

account for the process of warming water. Let E be the internal energy of unit mass

of water at C. and the corresponding saturation pressure P , which is 0-892 x 144

pounds per sq. ft., and let 7 be the total heat in that state. I
[)
=E +AP V . Let

E
IOQ be the internal energy of water at 100 C. and the corresponding saturation

pressure P10o which is one atmosphere or 14-689 x 144 pounds per sq. ft., and let

/100 be its total heat in that state. I10Q=E100 +AP100 VWQ. V is the volume at

C., namely 0-016 cub. ft., and F1CO is the volume at 100. Imagine the water,

initially at and P to be under a piston. Increase the load on the piston till the

pressure is PJOO . Since water is almost incompressible this does not sensibly change
the volume, or the temperature, or the internal energy, which may be taken as

still equal to EQ . Then heat the water under constant pressure to 100 : this requires
the addition of 100 constant-pressure calories. In being heated the water expands
from F to F100 and therefore does work on the piston equal to AP1CO (F100 - F ).

Hence the net gain of internal energy in the whole operation, expressed in constant-

pressure calories, is F v ,
ftn

. p . v v .

^loo-^o^W-^/iootKioo- K ),

from which

or 7100 - 7 = 100 + A (P100 - P ) F = 100-023.

Thus the same change of total heat which is measured by 100 of Callendar' s units is

measured by 100-023 constant-pressure units.
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It follows from Eq. (37) that in steam

E = 0-36709T - + 464 ............... (47).

The above expressions are in terms of P and T. We may also

express both E and / for steam in terms of P and F, eliminating T.

Since Kv
'

nR, Eq. (37) may be written

E = nRT - AncP + B'.

But by the characteristic equation (20 #), when R is expressed in

thermal units, RT - AcP = AP (V - b). Hence, in steam,

E = AnP (V - b) + B' .................. (48),

which gives, in thermal units,

Again /, being equal to E + APV, becomes

I = A(n + I)Pr- AnbP + B' ............ (49),

giving, in thermal units,

- 0-534P

1400

This relation may be written in the form

/ - B' nb

A(n + 1)P n+ 1

10

13

-(50),

Tr 3 x 1400 (J
- 464) 10

F. - -J + -X0.016

^ > + 0-0123 ;..().

Hence if we use p to denote the pressure in pounds per square inch,

the volume, in cubic feet, of 1 Ib. of steam in any dry state, super-

heated, saturated, or supercooled, is given by the formula

2-2436(7-464)

P
This affords a convenient means of calculating the volume when

the total heat is known. Take again the same example as before :

steam at 400 pounds per square inch and 240 C. The tabulated

value of / is 683-54. Substituting it in the formula we find V to be

1-2314 -f 0-0123 = 1-2437 cubic feet, in agreement with the figure

got from Eq. (45) and with the tabulated value of V.
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By differentiating Eq. (49) with respect to P, keeping V constant,

we obtain, in steam,

).,-
A(n + l)V- Anb ............... (51),

which is constant for any chosen value of F. It follows that lines

of constant volume on a steam chart with P and / for coordinates

are straight in the region of superheat*, as in fig. 33 (Art. 102).

We shall next obtain a working formula for the entropy of steam

in any dry state, by using Eq. (35) and finding the value of the

constant B. The constant is found by working out, from indepen-
dent data, the entropy of saturated steam at 100 C.

Following the usual convention, the entropy of water at C. is

taken as zero. It follows from what is known about the specific

heat of water, as will be shown in the next article, that the entropy
of water at 100 C. and a pressure of one atmosphere is 0-31186.

In passing at that constant pressure from the state of water at 100

to the state of saturated steam, the substance takes in 539-3 units

of heat at the absolute temperature 373-1 : its entropy therefore

increases to 0-31186 + -=^- or 1-75732. At that temperature c is
373*1

0-4213, and P is 14-689 x 144. Hence by Eq. (35),

1-75732 = 0-47719 loge 373-1 - 0-11012 loge (14-689 x 144)

10 0-4213 x 14-689 x 144

3
*

373-1 x 1400

From which B = _ .21964>

Substituting this, and introducing the factor 2-302585 to convert

common to Napierian logarithms, the formula for the entropy of

dry steam in any state becomes

(/)
= 1-09876 Iog10 T - 0-25356 Iog10 P - 0-002381 ^ - 0-21964

...... (52).

Values of
cj>

are given in the tables (Table E) for the same range of

pressure and temperature as was used in tabulating V and /.

21 o. Total Heat and Entropy of Water. It is known from

the researches of Regnault and others that the specific heat of water

is not constant, but increases with rising temperature. Callendar

* In the wet region the constant-volume lines remain very nearly straight, for

the above relation still holds with regard to that part of the steam which is uncon-

densed, and its volume constitutes nearly the whole volume of the wet mixture.
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suggests
* that this increase may be due to the presence of water-

vapour dissolved in the water. He supposes that when water and

its vapour are in equilibrium at any temperature a volume of the

vapour equal to the volume of the water is contained within the

water. Consequently when water is heated its total heat increases

more rapidly than it would do if the specific heat were constant,

for the heat that is required to form the dissolved vapour becomes

a larger proportion of the whole heat. This theory gives results

which are consistent with the experimental data, and Callendar

adopts it in calculating, for his tables, the total heat and the

entropy of water. It has the advantage of allowing each of these

two quantities to be expressed in a simple manner.

Let V9
be the volume of 1 Ib. of saturated steam at any assigned

temperature T, and let Vw be the volume of 1 Ib. of water at

the same temperature and pressure. Then, according to the

theory, 1 Ib. of "water" in that state is really 1 Ib. of a solution,

containing dissolved vapour; the water conceals within it a

volume of saturated steam equal to Vw . If the remainder were

also turned inCc vapour, under constant pressure, we should have

a total volumr of vapour equal to Vw + (V8
Vw )

or V8J and

the heat taken ii- during the process would be the latent heat L.

Hence -=="=. represents the heat that is required to produce the
r* I .,.

vapour initially ^resent in the water before the formation of any

separate stearr hr-?ins. This heat had to be supplied while the

water was being Banned up to the temperature of saturation ; it

constitutes a part of the total heat of water /, .

The other (and chief) part of the total he'at of water is supposed
to increase at a uniform rate as the temperature rises : it may there-

fore be represented by K (T T ),
where AC is a constant and

T T is the excess of temperature above C., which is taken as

the starting-point in reckoning the total heat. Hence, adding the

two parts, the total heat of water under saturation pressure at

any temperature T is

/irn rri \ ,

*** W "()" tt?u /KQ\
w = K (T- T

) + = JT~V
--

v~ ......
( )

y ~ * ' ~ ^

Here L
,
V

Wo
and V,o

refer to the state at C. At that temperature
the latent heat is 594-27, the volume of water is 0-016, and that of

saturated steam is 3726 cub. ft. Hence p
'

gf
= 0-0029 calory.

*So~ Y WQ

* Phil Trans. A, vol. 199, p. 147, 1902.
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This is the constant which has to be subtracted to make Iw =
when the temperature is C.

To calculate K, we* have Iw = 100 when T - T = 100, by Art.

209. L is then 539-3, Vw is 0-01671 and F, is 26-789. Hence"

from which K = 0-99666. The formula for I thus becomes

Iw = 0-99666 (T - 273-1) + = ^-
- 0-003. ..(53 a).

' s * w

Values of /, calculated by this formula are given in the tables.

y
Throughout the working range the ratio ~ ^TT~ is very nearly

the same as VWJVS9 and its numerical value is approximately

equal to 0-00004^?, where p is the saturation pressure in pounds

per sq. inch.

To find the entropy of water under saturation pressure at any

temperature T, we may think of the water as being brought to its

actual condition by two stages. Imagine it to be heated to that

temperature in an "ideal" manner, namely without the formation

of any dissolved steam, and then the dissolved steam to be formed

at that temperature. The entropy depends only on the actual con-

dition (Art. 44). Taking, as before, the entropy of water at C.

to be zero, we therefore have

zr. LO F_.

T TV
= 0-99666 lbge + " - 0-00001 (54),

^0 *
\
y 8

~ y V))

which is the formula used by Callendar for the entropy of water

under saturation pressure*.

It follows that the value of G, or
T<f> /, for water under satura-

tion pressure is

Gw = KT loge
- - 0-00001T - K (T - T

) + 0-003... (55),
^o

the term ^ ^- cancelling out.
* 3

~ ' W

2ii. Relation of Pressure to Temperature in Saturated

Steam. A formula connecting the pressure with the temperature
of steam in the saturated state is most easily obtained by making

* Steam Tables, p. 7.
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use of the fact that G, or
T(f> /, has the same value tor the

saturated vapour, at any temperature, as for the liquid at the same

temperature and pressure (Arts. 90 and 185). By Eq. (39) of Art.

208 the value of G for steam in any state is

Kv
' T loge T - Kv

' T - RT loge P + A (c
-

b) P + BT - B' .

Hence for dry steam at saturation pressure Ps

Gs
= Kv

' T logeT -KV'T- RT loge Ps + A (c
-

b) P3 + BT - B'

(56).

Since Gs
= Gw we get, by equating (55) with (56),

R loge Ps
- ^ (C

~ 6)Ps = B + K - K ' + AC loge T + 0-00001

B' + KT + 0-003
-(K -K9')log.T ...(57).

This expression allows the saturation pressure Ps
to be found for

any temperature. On giving the various constants the values

a]ready stated, it becomes

0-11012 loge Ps
- ~-8 = 5-89094 - - 0-51947 log, T

......... (57 a).

Callendar* puts this in a form more suitable for calculation, by

substituting 2-302585 log]0 for loge ,
and 144^>s for P8 , ps being the

saturation pressure in pounds per square inch :

- 2 1.07449 - - 4.71734.oglo T

......... (576).

The saturation pressure corresponding to any given temperature
is found by working out the right-hand side of the equation
and then adjusting the value of log ps

until the two sides become

equal.

The pressures of saturated steam, thus deduced from Callendar's

characteristic equation, agree very closely, throughout the range
to which the equation applies, with those measured by Regnault,
and the agreement between the calculated and measured figures is

evidence of the soundness of Callendar's method. Further con-

firmation is obtained when the volumes, as calculated by his

equation, are compared with experimentally measured volumes

both of saturated and of superheated steam.

* Steam Tables, p. 27.

E. T. 22
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212. Formulas for the Latent Heat of Steam, and for the

Volume of a Wet Mixture. From the equations

LV-
V ~I

S
-IW and Iw = id + =- ~ *003

>

where t is the temperature on the centigrade scale, we have

1(1 += ^=-
)

= /.- irf + 0-008,
\ ' $

~ * w'

or L =
(Is

- kT + 0-003)
(l

-
j&\ (58),

which Callendar* writes

L = (/,
- KT) (l

-
j*} (58 a),

dropping the 0-003 as negligible in this calculation.

For the volume of a wet mixture, V
q (Art. 74), he gives the

. formula* y J Kt

Y = f^t (59) '

To obtain this we have

/= L+I - l + Kt+ LVw
y s ' w

on again dropping the 0-003
; also

IQ
- Kt qL(V e

- V,
Hence

W

I.- id L(VS -VW )

r,_
V V *

* s y s

213. Collected Formulas for Steam. For convenience of

reference and use the formulas are collected here by means of which

the quantities in the Steam Tables may be calculated.

In these formuJas V is the volume of 1 Ib. in cubic feet
;
P is the

pressure in pounds per square foot, and p in pounds per square
inch. Centigrade degrees are used in the reckoning of temperature
and quantities of heat. T is the absolute temperature and t the

temperature from C.

The following expressions for V, /, E and
</> apply to dry steam

* Steam Tables, p. 10.



vin] APPLICATIONS TO PARTICULAR FLUIDS 339

in any state, that is to say, superheated, saturated, or supercooled,
but not to a mixture of steam and water.

The volume: 154 .17T 167 .52 x 10.

p -^lo- - + 0-01602 (45).

The total heat :

where c is the "co-aggregation volume" iu cubic feet, namely

= 157-52 x 10^ = .4213
/373.1NV-

yV- \ T /

Equation connecting the volume with the pressure and total heat :

V =

The internal energy :

2-2436 (/
- 464)V = - }- + 0-0123 (506).

10 P(V- 0-016) +464
The entropy :

</>
= 1 -09876 Iog10T - 0-25356 Iog10P - 0-002381^ - 0-21964. . .(52).

The following equation, which applies only when the steam is

at saturation pressure, determines the relation of pressure to

temperature in saturated steam :

0-4057 (c - 0-016) ps

Iog10 /?s
-

'-jr-

2903*39= 21-07449- ^ - 4-71734 loglor ...(576).

When the saturation pressure for any given temperature T has

been determined by means of this equation, the volume, total heat,

energy and entropy of saturated steam at that temperature (Vs ,

I
s ,
Es and c/>J are found by the above formulas.

The latent heat :

/ y \
L =

(Is
- 0-99666* + 0-003) 1 - =2-1 ......... (58),

\ ' s /

where Vw is the volume of 1 Ib. of water at saturation pressure.

Within the range usual in practice, the ratio VwjVs is very nearly

equal to 0-00004^s ,
where pg is the saturation pressure in pounds

per square inch, and the working formula is

L = (I8
-

0-99666*) (]
-

0-00004j9s).

22-2
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The total heat of water at saturation pressure :

TV
Iw = 0-99666* + TF-^ - 0-003 ......... (58 a),

' s
' w

or, very nearly, within the working range,

Iw = 0-99666* + 0-00004psL.

The entropy of water at saturation pressure :

T IV
<f>w

= 0-99666 loge
- +

r(Ff _Vj
~ O'OOOOl ...(54).

The function G, which is
T</>

- /:

For dry steam in any state,

which gives

G = 1-09877T Iog10 T - 0-69683T - 0-25356T Iog10 P
P(c- 0-016)

-1400-

For saturated steam, or water at saturation pressure, or a mixture

of water and steam in equilibrium,

GS
= GW = KT loge Jr

- K (T - T )
- 0-OOOOlT + 0-003 . . .(55),

^o
which gives

Gs
= Gw = 2-2949T Iog10

- 0-99666*

214. Tables of the Properties of Steam. The Steam Tables

in the Appendix contain some representative numbers, but refer-

ence should be made to Callendar's Tables for a more complete set.

Tables A and B relate to the special case of saturated steam. When
steam is saturated a single property, such as either the temperature
or the pressure, fixes its state. In Table A the property which is

assumed to be known is the temperature, and the table gives corre-

sponding values of the pressure, volume, total heat, and entropy-
all for the saturated state. It also gives the latent heat. Similarly

Table A* gives the volume, total heat and entropy of water at

saturation pressure. It also gives the function G, which is the same

for water and for saturated steam. In Table B the property which

is assumed to be known is the pressure, and corresponding values

are given of the other properties in the saturated state, namely the

temperature, volume, total heat, entropy, latent heat, and the

function G.
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Tables C, D and E relate to the general case of steam in any dry

state, whether superheated or supercooled. A knowledge of two

properties is then required to specify the state ; the two that are

selected as independent variables in the tables are the temperature
and the pressure. Table C gives the volume, Table D the total

heat, and Table E the entropy, in relation to these two variables.

In each table a zig-zag line indicates the boundary between the

superheated state (above) and the supercooled state (below). In

crossing this line the substance passes through the state of satura-

tion.

From Table D it is easy to find the heat of formation, under

constant pressure, of steam in any condition of superheat. The

total heat, at the given pressure and temperature, is obtained from

the table, and the heat of formation is found by subtracting from

that the total heat of water, at the same pressure and at the

temperature of the feed.

Again, from Table D, values may be inferred of the specific heat

(Kv )
of steam at temperatures and pressures within the range of

the table. KP for any condition of the steam is equal to the amount

by which / increases per degree of rise in temperature, at constant

pressure. The change of / per degree is found by noting, in the

appropriate pressure column, the amount by which / changes for

an interval of-10, and dividing that by 10; this gives the mean
value of Kv over the interval, which is practically the same thing

as Kp at the middle temperature. Values of the specific heat at

various constant pressures and for various temperatures have been

deduced in this way from the tabulated values of the total heat,

and are given separately in Table F. The zig-zag line has the same

meaning as in the other tables
;
the figures above it relate to super-

heated steam. They show a decrease ofKv with rising temperature,

but at higher temperatures (beyond the range to which Calendar's

equation applies) there is a marked increase, as was pointed out

in Chap. VI.



APPENDIX I

EFFECTS OF SURFACE TENSION ON CONDENSATION
AND EBULLITION

215. Nature of Surface Tension. In Arts. 135-138 it was pointed

out that when water-vapour is suddenly expanded it assumes a

metastable state, becoming supersaturated owing to what was

there called a static retardation in the formation of drops. Wilson's

experiments were cited to show that, in the absence of foreign

nuclei, a vapour will become much supersaturated before drops
will form, and it was mentioned that this is an effect of surface

tension in the liquid. In this note some account will be given of

what is meant by surface tension, and how it retards the formation

of drops in a cooled vapour; also how it retards the formation of

bubbles within a liquid when the liquid is boiled.

The cohesive forces which the molecules of any liquid exert upon
one another make the free surface of the liquid behave as if it

were a stretched elastic skin. It is to this that the phenomena of

capillarity are due the rise of a liquid column in a tube when the

liquid is one that wets it, and the depression of the column when
the liquid does not wet the tube. To this also are due the forms

assumed by liquid films and by drops. It is the tension of the

surface layer that makes a drop take a spherical shape when there

are no disturbing forces: the drops of molten metal in a shot-

tower, for example, become spheres as they fall freely, and solidify

into spherical shot before they reach the bottom. A drop of mer-

cury on a plate, or of dew on a leaf wrhich it does not wet, would

be spherical were it not for the upward pressure of the support
on which the drop rests ; the smaller the drop is the nearer does it

come to being a sphere, for the disturbing force due to the weight
is relatively unimportant in a small drop. As a result of surface

tension, the energy contained in a drop of liquid is greater than

the energy contained in an equal quantity when that forms part of

a big mass of the same liquid at the same temperature, for energy
is stored in the surface layer in much the same way as it would

be stored by the stretching of an elastic skin.



APP. l] EFFECTS OF SURFACE TENSION 343

We are concerned here only with thermodynamic aspects of sur-

face tension, and especially with its influence on the formation of

drops in an expanding vapour. We shall see that, as a consequence
of surface tension, a small drop will evaporate into an atmosphere
of supersaturated vapour, because the vapour pressure which is

required to prevent evaporation from the curved surface of a drop
is greater than the vapour pressure which is sufficient to prevent

evaporation from a flat surface of the same liquid at the same

temperature; in other words, that at any given temperature the

saturation pressure for a small drop is greater than the normal

saturation pressure.

The film that is formed when a soap-bubble is blown, or when a

soapy liquid is smeared over a ring or hoop of wire, consists of two

surface layers, back to back, with some of the liquid between.

When the film is very thin, as, for instance, when it looks black in

reflected light just before it breaks, it may be said to consist of

two surface layers only; but it can be made a hundred or more

times thicker than that and have just the same tension, for the

state of tension exists in the surface layers only. The tension of

such a film, whether thick or thin, is the tension of two surface

layers; in other words, it is twice the surface tension. The tension

in a liquid film differs from that of a stretched sheet of india-rubber

or other elastic membrane in these important respects : it does not

change when the film contracts or is stretched, and it has necessarily

the same value in all directions along the surface.

Let a liquid film be formed on a U-shaped frame (fig. 97) by

wetting a wire AB with the

liquid, placing it over C, and

then drawing it away in the

direction of the arrow. The

force that will have to be

applied to draw it away or to Q
hold it from coming back is

2SI where / is the length AB
and S is the tension of the

surface layer on each side of

the film per unit of length.

The quantity S so defined

B

Fig. 97

measures the surface tension of the liquid. In drawing the rod

away through any distance x in the direction of the arrow the

work done is 2Slx. Hence S also measures the work done in
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forming a single surface layer, per unit of area of the layer; in

other words, S measures the potential energy that is stored in each

unit of area of the free surface of a liquid in consequence of its

surface tension.

It follows that the surface energy of a spherical drop (that is to

say the potential energy which is due to its surface tension) is

4f7TT
2S where r is the radius of the drop.

The spherical form which a free drop assumes is the form which

will make the surface energy (for a given volume) a minimum. A
drop resting on a support takes such a form as will make its total

potential energy a minimum, namely the sum of the energy of

surface tension and the energy of position which the drop has in

consequence of the height of its centre of gravity above the level

of the support.

216. Need of a Nucleus. Imagine a drop to be evaporating under

conditions that keep its temperature constant. Energy has to be

supplied in proportion to its loss of mass to provide for the latent

heat of the vapour that is formed. But the drop is losing surface

energy in consequence of its diminution of surface, and to some

extent this reduction of surface energy supplies the latent heat

that is required; only the remainder has to be supplied from out-

side the drop. Consequently a drop is more ready to evaporate
than the same liquid in bulk, at the same temperature, and it will

continue to evaporate into an atmosphere which would be saturated

with respect to the same liquid in bulk. Moreover, as the drop

gets smaller and smaller (if we assume that the reduction of size

may go on without altering the nature of surface tension), a stage
would be reached when the loss of potential energy due to con-

traction of the surface would become sufficient to supply all the

latent heat of the vapour that is passing off. In that event, no

heat would have to be supplied from outside to complete the

evaporation of the drop : it would become inherently unstable and

would flash into vapour.
For the same reason a drop cannot form except around a nucleus,

and the larger the nucleus the more readily it forms. When

particles of dust are present in expanding vapour, the first drops
to be formed use them for nuclei, as was shown by Aitken (Art.

79), and only a small amount of supersaturation occurs before such

drops begin to form. The cloud of particles observed by Wilson

when dust-free air containing water-vapour is expanded enough to
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cause an eight-fold supersaturation are formed around much
smaller nuclei which consist, probably, of accidental co-aggrega-
tions of the molecules of the gas itself, or of electrically charged

molecules, such as are always present in small numbers. It should

be added that the presence of an electric charge greatly favours

condensation of the vapour upon any nucleus. As an electrified

drop evaporates, the charge remains behind
;
the potential energy

due to electrification therefore increases as the drop becomes smaller,

for the energy due to a constant charge varies inversely as the radius

of the sphere that carries it. In this respect the effect of an electric

charge is opposite to that of surface tension. Hence when a drop is

charged more energy has to be supplied from outside to make it

evaporate than would be required if it were uncharged. An electri-

cally charged drop will therefore evaporate less readily than an

uncharged drop of the same size, and may grow larger in an atmo-

sphere that is but little supersaturated or even not supersaturated
at all. In vapour which is slightly supersaturated it is found that

any "ionizing" action, such as that of an electric spark, or of

Rontgen rays or of ultraviolet light, which sets free the ions or

particles conveying unbound electric charges, brings about a cloud

of condensation, by creating fresh nuclei, or by stimulating the

powers of existing nuclei through causing them to acquire an

electric charge*.

217. Kelvin's Principle. Confining our attention, however, to

drops which are not electrically charged, we shall now consider how,
as a consequence of surface tension, the equilibrium of a drop of

given size depends on the state of supersaturation of the vapour
around it. Assume the liquid and the vapour to be at the same

temperature. Liquid with a flat surface is in equilibrium with the

vapour above it when the vapour is at the pressure of saturation :

there is then no tendency on the whole for the liquid to evaporate
or for the vapour to condense, any evaporation that occurs being

exactly balanced by an equal amount of condensation. Liquid in

the form of a small drop is, owing to its curved surface, in equi-

librium with the surrounding vapour only when the pressure of the

vapour surrounding it exceeds the normal saturation pressure by a

definite amount; in other words, only when the vapour is super-

saturated. The degree of supersaturation necessary for equi-

librium depends on the curvature of the surface, and therefore on
* See Sir J. J. Thomson, On the Conduction of Electricity through Oases,

Chap. VII; C. T. R. Wilson, Phil. Trans. A, vol. 192, 1889.
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B

the smallness of the drop. This principle was first established by
Lord Kelvin *. It is of fundamental importance in explaining the

retarded condensation of expanding steam.

We may apply Kelvin's general method as follows to find a

relation between Ps the normal pressure of saturation (which is the

equilibrium vapour-pressure over the flat surface of a liquid f) and

P' the equilibrium vapour-pressure over a curved surface, such as

the surface of a small drop. Take for this purpose the curved

surface at A, fig. 98, which is formed by __^
holding in the liquid a capillary tube of a

material such that the liquid does not wet

it. The column of liquid in the tube is

accordingly depressed through some distance

h, and if the bore is small enough the free

surface at A is sensibly part of a sphere.

Imagine the liquid to be contained in a

closed vessel, and that the space C above

it contains nothing but the vapour of the

liquid. Let all be at one temperature T.

The whole system is in equilibrium. Over

the flat surface at B there is vapour whose

pressure is Ps : over the curved surface at

A there is vapour of a higher pressure P''.

The difference P' - Ps is equal to the

weight of the column of vapour in the tube

(per unit area of cross section) from the

level of A to the level of B. Let a be the

weight of unit volume of the vapour. If

this were constant, the weight of the column

of vapour in the tube (per unit area of section) would be simply

ah. But a depends upon the pressure P; it is equal to 1/F and

may therefore be written p

The difference in the

integrated between the level at B and the level at A.

Compare next the hydrostatic pressures within the liquid just

* Proc. Roy. Soc. Edin. vol. vn, 1870; Popular Lectures and Addresses, vol. I, p. 64.

f Namely, the saturation pressure for any assigned temperature as given in tables

of the properties of saturated steam.

Fig. 98

if we take the equation PV= RT to apply.

two vapour pressures is p f _ p
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under the surface at B and just under the surface at A. Just under

the flat surface at B the hydrostatic pressure in the liquid is equal
to the pressure of the vapour over the surface ;*t is therefore equal
to P8 . As we go down through the liquid to the level of A, the

hydrostatic pressure increases by the amount ph, where p is the

weight of unit volume of the liquid. Therefore just under the

curved surface at A its value is Ps + ph.

But we may also calculate the hydrostatic pressure under the

curved surface at A in another way. The top of the liquid column

at A, which has a surface layer in tension, may be treated as a

segment of a sphere of radius r. Its surface layer forms a cap
whose surface tension S causes it to press down upon the liquid

below with a pressure p such that rrr^p
= 27rrS. That this is so

will be seen at once by considering the equilibrium of a complete

hemisphere of the same curvature and with the same surface

tension. Round the circumference (27rr) of the horizontal plane

forming the base of such a hemisphere there would be a vertical

force 2nrS balancing the resultant force due to the pressure p
acting on the area of the base, 77T

2
. Hence

2S

and the hydrostatic pressure just under the curved surface is

therefore equal to
;

2S
L ~\~

r

Equating the two expressions for this hydrostatic pressure, we have

,

or ~ = ph~ (P'
~

PS).

Hence, since P' P
s
= fadh,

2S- = ph fadh = /(/> cr) dh.

And since dP = adh,

2S p_-Gr dp = p dp n
IPs*

because or is small compared with p.

On substituting P/RT for a this approximation gives

. P' 2S
or loge ^ =

*
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This applies to any liquid surface whose radius of curvature is r. It

therefore expresses the relation of the pressure P' in the super-

saturated vapour around a spherical drop of radius r to the normal

pressure of saturation Ps (over a flat surface) for the same tempera-

ture, when the drop is in equilibrium, in the sense that it is neither

growing by condensation nor shrinking by evaporation. The

expression shows how the degree of supersaturation P'/P8 necessary

for the equilibrium of the drop increases when the size of the drop
is reduced. For a drop of given radius any increase of P above the

value so calculated would cause the drop to grow. The expression

also shows what is the least size of drop that can exist in an

atmosphere with a given degree of supersaturation: any drop for

which r is smaller would disappear by evaporation.

It is only when the drop is very small that the excess of P'

over Ps is at all considerable. This is best shown by numerical

examples. If we take water-vapour at 10 C. or 283 absolute, and

use c.g.s. units, RT (which is treated as equal to PV) is 1-30 x 109
.

The surface tension of water at that temperature is about 76 dynes

per linear centimetre, and p is 1 gramme per cubic centimetre. Hence

P' 2 x 76
.

1-01
gl

P,
=

F-30 x 109 x r x 2-303*
~
~D '

where D is the diameter of the drop in millionths of a millimetre.

The formula accordingly gives these results :

Ratio of vapour-pressure
Diameter of drop in equilibrium with the
in millionths of drop to normal satura-

a millimetre tion pressure for the same

temperature (P'/PS )

100 1-02

50 1-05

10 1-26

5 1-59

2 3-2

1 10-2

This means, for instance, that a drop of water two millionths of a

millimetre in diameter will grow if the ratio of supersaturation in

the vapour around it is greater than 3-2, but will evaporate if

that ratio is less. Hence when the ratio of supersaturation is 3-2,

drops will not form unless there are nuclei present which are at

least big enough to be equivalent to spheres with a diameter of two

millionths of a millimetre.

In Wilson's experiments a cloud of mist was produced when the

supersaturation was 8, which corresponds, by the formula, to a

* To convert from Napierian to common logarithms.
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diameter of about 1-1 millionths of a millimetre. On the assumption
that the formula may still be applied to such small nuclei, it might
be inferred, if there were no ionization, that water-vapour contains

many nuclei of that order of magnitude, which may be pairs or

small groups of molecules co-aggregated by chance encounters.

It will be obvious from Kelvin's principle that a drop of water

cannot continue to exist in an atmosphere of saturated vapour.
When the drop and the atmosphere are at the same temperature,
the drop can exist only if the atmosphere around it is super-

saturated. For any given degree of supersaturation there is a

value of r (determined by the formula) such that a drop of smaller

radius will evaporate and a drop of larger radius will grow. Thus

the bigger drops in a cloud will tend to grow at the expense of the

smaller drops.

218. Ebullition. Similar considerations govern the formation

of bubbles in a boiling liquid. We may treat any small bubble as a

spherical space of radius r, containing gas, bounded by a spherical

envelope in which there is surface tension. Outside of that is the

liquid, at a pressure P. In consequence of the surface tension in the

envelope, the pressure inside the bubble P
z
must exceed P by the

amount 2S/r, where S is the surface tension in the boundary surface

of the bubble, making 2$p
i

- p -

-j-

When r is very small this implies a great excess of pressure within

the bubble. If no particles of air or other nuclei were present to

start the formation of bubbles, boiling would not begin until the

temperature were raised much above the point corresponding to

the external pressure, and would occur with almost explosive

violence. Once formed a bubble would be highly unstable, for as

the radius increases the tension of the envelope becomes less and

less able to balance the excess of pressure within it. This happens,
to some extent, when water is boiled after being freed of air in

solution: it is then said to boil with bumping.
It follows that a pure liquid may be superheated, that is to say,

raised above the temperature of saturation corresponding to the

actual pressure. This is an example of a metastable state like the

state that is produced when a vapour is supercooled without

condensing, or when a liquid is supercooled without solidifying.

Water at atmospheric pressure may be heated to 180 C. or more

when it has been freed of air and when it is kept from contact with
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the sides of the vessel by supporting it in oil of its own density, so

that the water takes the form of a large globule immersed in oil.

In the ordinary process of boiling, a bubble contains in general

some air or other gas besides the vapour of the liquid itself. With-

out gas in it, the bubble could not exist in stable equilibrium.

With gas in it, the bubble will be in stable equilibrium when the

partial pressure due to the gas provides the necessary excess of

the whole internal pressure P4
over the external pressure P. Any

reduction of the bubble's size would then raise the pressure of the

gas more than enough to balance the increase of 2S/r. Let Pv be

the vapour-pressure inside the bubble. If we assume that the

external pressure and temperature remain constant, the partial

pressure due to the gas may be expressed as a/r
s where a is a con-

stant. Then P
z
= Pv + a/r

3
,
and the equation

a 2S 2S a
P* + ^

= P +^> OT Pv- P =~--3 >

determines the value of r at which the bubble is in equilibrium.

The quantity Pv P is the excess of the vapour-pressure in the

bubble over the pressure in the liquid. Differentiating this with

respect to r, to find the limiting condition for stability, we have

d(Pv -P) a 1 2S

and therefore when Pv P = -
.

3r

Hence for stability Pv
- P must be less than 4S/3r. This

means that when a liquid containing bubbles of radius r is

heated, the temperature will rise until the vapour-pressure within

the bubbles exceeds the pressure in the liquid by the amount -
,

but when that point is reached the bubbles will become unstable

and ebullition will begin. Callendar* calculates on this basis that

with bubbles one millimetre in diameter water (under one

atmosphere) will boil at a temperature of 100-05 C., and that

to produce 10 of superheat the diameter of the bubbles must not
i

"2017

Enc. Brit., Article "Vaporization.'
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MOLECULAR THEORY OF GASES

219. Pressure due to Molecular Impacts. According to the

molecular theory, a gas consists of a very large number of particles

called molecules moving with great velocity. Each molecule moves

freely, with uniform velocity in a straight line, except when it

encounters another molecule or the wall of the containing vessel.

In an encounter the velocity changes in direction, and generally
in amount, but there is no dissipation of energy; the mole-

cules behave like perfectly elastic bodies. As a result of

many encounters, a stable distribution of speed among the mole-

cules is established, but the speed of any one molecule is being

constantly changed, by its encounters, within very wide limits.

The length of the free path, which it traverses between one en-

counter and the next, is also quite irregular. The average of that

length, or what is called the "mean free path," is very long com-

pared with the dimensions of the molecule itself. This characteristic

distinguishes a gas from a liquid. In a gas the average time during
which a molecule is moving in its free path is very large compared
with the time of an encounter. By the time of an encounter is

meant the lime during which the molecule is either in contact

with another, or so near it that there is a sensible force acting

between them. When a gas is compressed, the mean free path
is reduced, and the encounters become more frequent between

one molecule and another and also between the molecules and

the walls of the vessel. When a gas is heated the speed with

which the molecules move is increased; we shall see immediately
that their average kinetic energy is proportional to the temperature.
The molecular theory is now well established: there is conclusive

evidence that actual gases do consist of particles moving in the

manner which the theory prescribes.

The pressure of the gas, that is to say, the pressure which the

gas exerts on every unit of surface of the containing vessel, is due

entirely to the blows of the molecules upon the surface : the mo-

mentum given to the surface by their blows, per unit of area and

per unit of time, measures the pressure in kinetic units.
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In any gas that is chemically homogeneous, all the molecules

have the same mass. Call that mass m. Let N be the number of

molecules present in unit of volume of the gas in any actual state

as to pressure and temperature. Then mN represents the density,

namely, the whole mass per unit of volume, and F, the volume

per unit of mass, is equal to 1/mN.
Before proceeding to consider the pressure caused by molecular

blows, we shall make the following postulates:

(1) That the molecules are perfectly free except during en-

counters, -and therefore move in straight lines with uniform

velocity, from one encounter to the next;

(2) That the time^during which an encounter lasts is negligibly

small in comparison with the time during which the molecule is

free;

(3) That the dimensions of a molecule are negligibly small in

comparison with the free path.

These three postulates are equivalent to assuming that the gas

is perfect in the sense of Art. 18. They are not strictly true of any
real gas ;

but we shall assume them to be true in what immediately

follows, and shall thereby deduce from the molecular theory a

result which corresponds to the ideal formula PV= RT.

Suppose the gas to be in equilibrium in a vessel at rest, and let

the velocity v of any molecule be resolved into rectangular com-

ponents vx ,
vy and vz , along three fixed axes.

Consider the pressure due to molecular blows upon a containing

wall, of area S, forming a plane surface at right angles to the

direction of x. The contribution which any molecule makes to the

pressure on that wall is due entirely to the component velocity

vx : nothing is contributed by the components vy or vz . Any molecule

which strikes the wall has the normal component of its velocity

reversed by the collision. Hence the momentum due to the blow

is 2mvx where vx is the normal component of the velocity and m is

the mass of the molecule.

Consider next how to express the sum of the effects of such

blows in a given time. For this purpose we may think of the mole-

cules as divided into groups according to their velocities at any
instant. Let n be the number, in unit volume of the gas, whose

^-component of velocity, vx ,
has the same numerical value. Since

the number of molecules is very great, we may take the number

to be the same in one cubic inch (say) as in another. There will of

course be very many such groups, each with a different value of
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vx . Think, in the first place, only of those in the group n. Half of

the whole number of molecules in the group are moving towards

S ;
the other half are moving away from it. At any instant of time

there will therefore be within a small distance S# of the surface S,

and moving towards it with component velocity vx ,
a number of

molecules of that group equal to %nS8x. A molecule distant 8a?

from S, and having a component velocity vx towards S, would

reach S in a time $t = -
, provided it did not encounter any other

molecule on its way. Hence the number of blows delivered to S

by molecules of that group, in the time 8t, would (on the same

proviso) be equal to the number of such molecules as originally

lay within a distance 8x, namely the number ^nSSx.
Hence also the momentum due to the blows on the area S in the

time 8t would be equal to ^nSSx x 2mvx ,
which becomes, per unit

of area and per unit of time,

Sx
nmvx ~- = nmvx

2
,

ot

Sx
since vx = -K- .

This is the momentum contributed by one group only. The

pressure P is made up of the sum of the quantities of momentum
contributed by all the groups ;

hence

P = ZnmVy? = mLnvx
2

,

or P = mNv^,

where N is as before the whole number of molecules per unit of

volume, and vx
2

is the average of vx
2 for all the molecules.

Now the velocity v of any molecule is related to its components

by the equation v z = vj + Vy
2 + ^2>

Hence, if we write v2 for the average value of v 2 for all the molecules,

il*
=
vJ + vS + vf

= 3vx
2

,

since the motions take place equally in all directions.

The square root of v'2 is called the
"
velocity of mean square." It

is not the same thing as the average velocity, but is the velocity a

molecule would have whose kinetic energy is equal to the average

kinetic energy of all the molecules.

The expression for P may therefore be written

P = $mNv*.
23
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Further, since mN is the quantity of gas in unit volume, or 1/F,

where V is (as usual) the volume of unit mass, this gives

PF = J^.

In obtaining this result we made (in order to simplify the argu-

ment) a proviso that each molecule of a particular group, lying

initially within the distance $x of the wall, struck the wall without

encountering other molecules on the way. This is not true, but any
encounter on the way does not affect the final result in a gas to

which the three postulates apply. For in any encounter, some

momentum, perpendicular to the wall, is simply transferred to

another molecule, and reaches the wall without loss. The molecule

which takes it up has to travel the full remainder of the distance

in the direction of #, neither more nor less, since the dimensions of

the molecules are negligibly small (Postulate 3), and no time is

lost in the encounter (Postulate 2). Hence the general result of

the encounters is not to alter the amount of momentum which

reaches the wall in any given time, and the conclusion remains

valid that py _ j~
3 *

Comparing this with the perfect-gas equation

we see that v2 is proportional to the absolute temperature; and

consequently the average kinetic energy which the molecules

possess in virtue of their velocity of translation is proportional to

the absolute temperature. We shall call their energy of translation

E'
; they may, in addition, have energy of other kinds.

The energy of translation of the molecules E' is equal to |r;
2
per

unit mass of the gas. Hence by the molecular theory

and the pressure is equal to two-thirds of the energy of translation,

per unit volume of the gas.

It may be noted in passing that the molecular theory explains

why a gas is heated by compression. Think of the gas as contained

in a cylinder, and being compressed by the pushing in of a piston.

Then any molecule which strikes the piston recoils with an increased

velocity because it has struck a body that is advancing towards

it. The component velocity vx normal to the piston is not simply
reversed by the blow, but is increased by an amount 2z/, where v'

is the velocity with which the piston is moving when the molecule
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strikes it, for the quantity which is reversed is the relative

velocity vx + v'. The result is that the motion of the piston in

compressing the gas augments the average velocity of the molecules,

and consequently increases v2
,
on which the temperature depends.

220. Boyle's, Avogadro's, and Dalton's Laws. These laws

follow from the molecular theory, for gases that obey the three

postulates. Keeping v2
constant, we have the law of Boyle,

PV = constant, since PV = ffi.

If there are two gases at the same pressure, since P =
in each

'

Maxwell has shown that if two gases are at the same tem-

perature, the average kinetic energy of a molecule is the same
in both, or

Hence if they are at the same pressure and the same temperature

N = N2 ,

that is to say, the number of molecules in unit volume is the same
for both, which is Avogadro's Law. It follows that the density, or

mass of unit volume, differs in the two gases in the ratio of the masses

of their molecules
; or, in other words, the density is proportional

to the molecular weight (Art. 158)*.

Again, the molecular theory shows that in a mixture of two or

more gases, each of which obeys the three postulates,

P = m 2 + mNV 2 + etc.

In other words, the partial pressure due to each constituent of the

mixture is the same as it would be if the other constituents were

not there. This is in agreement with Dalton's Law (Art. 62).

* The number N of molecules per cubic centimetre, which is the same for

different gases at the same temperature and pressure, is about 27-5 x 1018 for any

gas at C. and a pressure of one atmosphere (see Jeans' Dynamical Theory of

Gases, p. 8). Their average distance apart, which is JT~ , is therefore about one
V-tv

three -millionths of a centimetre. The number of molecules per mol is 22400 N or

6-16 x 1033
.

The mass m of a molecule in any gas may be found by dividing the density
mN by N. Since the density of oxygen is 0-001429 gramme per c.c. the mass of

an oxygen molecule is about 52 x 10^24
grammes. The mass of a hydrogen molecule

is one-sixteenth of that, or about 3-3 x 10~24 grammes, the ratio of the molecular

weights being 2 to 32.

232
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221. Perfect and Imperfect Gases. Thus the molecular theory,
for gases which satisfy the three postulates, gives results identical

with those we already know as laws of ideal perfect gases.

In a real gas the postulates do not strictly hold. The size of the

molecules is not negligible, and in any encounter there is an appre-
ciable time during which the molecules concerned exert forces on

one another. There may even be temporary pairing or co-aggrega-
tion on the part of some molecules. It is interesting to enquire, in

a general way, how these departures from the ideal conditions affect

the calculation of the pressure.

For this purpose, consider the simple case in which one of a

group of molecules, advancing towards the wall, meets a molecule,

initially at rest, to which it passes on the whole of it's momentum,
and the other molecule then completes the journey and delivers

the blow. If there were no loss of time in the encounter, and if the

second molecule could be regarded as travelling over exactly the

remainder of the distance, the rate at which the wall receives

momentum would be exactly the same as if the encounter had not

taken place. But if there were loss of time in any encounter, such,

for example, as would occur if the two colliding molecules nloved

together for any appreciable time, with their velocity reduced

below that of the molecule which was originally moving, then

the rate at which the wall receives momentum would be reduced,

with the result of reducing P. On the other hand, if the molecules

have a finite size, so that the one which was initially at rest had

less distance to travel in completing the journey, the rate at which

the impacts succeed one another on the wall would be increased.

with the result of increasing P.

This indicates that the pressure in a real gas will differ from the

ideal pressure, which is given by the equation PV =
Jz;

2
, by two

small terms, one positive, depending on the size of the molecules,

and one negative, depending on their cohesion. Such, in effect,

is the kind of modification which finds expression in characteristic

equations like those of Van der Waals, Clausius, or Callendar.

222. Calculation of the Velocity of Mean Square. Taking, for

any gas that may be treated as sensibly perfect, the equation

P =

it is easy to calculate the value of the velocity of mean square v

when we know the density of the gas at a given pressure. The
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product mN is the density, and we do not need to know m or N
separately to find v. In oxygen, for example, at C., the density
is 0-001429 gramme per c.c., when the pressure is one atmosphere,
or 1-0133 x 10 6

dynes per sq. cm. (Art. 12). Hence in oxygen at

/a x^roiss x~To6

standard temperature and pressure, VISA/ --^.rirnToo^ '
C(

l
ua'

V \J vlV/J.TP^Jt7

to 461 metres per second. Similarly in nitrogen it is 4&3 metres per

second, and in hydrogen 1839 metres per second.

223. Internal Energy and Specific Heat. Consider next the

bearing of the molecular theory on the internal energy and specific

heats of a gas. We have seen that, in an ideal gas,

where E' is the energy of translation of the molecules, or

This may be written

RT = \E' or E' = *RT.

E' is therefore proportional to the temperature. Now E' may or

may not be the whole internal energy, E, which the gas acquires

when it is heated. It will be the whole if, when the gas is heated,

the molecules can only take up energy of translation, and cannot

take up energy of rotation or energy of vibration (Art. 174).

Suppose, for instance, that each molecule behaved like a perfectly

smooth rigid billiard ball, or like a massive point with no appreci-

able moment of inertia about any line passing through it. In that

case, it could not have any energy of vibration, nor acquire any

energy of rotation in the course of its encounters with other mole-

cules, and the only kind of communicable kinetic energy would

be energy of translation. We should then find E = E', and con-

sequently E = \UT.
When a gas of this kind is heated, we should therefore have

dE = RdT.

But in any gas (regarded as perfect)

dE = K vdT and KP =KV + R.

Hence for a gas whose molecules have energy of translation only

Kv
=

fl?, Kp
=

|J?,

K ^
and y or -=2 = - or 1-667.A v 6

This value of y would not apply if E were only a part of E. But

it is found that in a monatomic gas, such as argon, or helium, or the
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vapour of mercury, the value of y is in fact equal to 1-667 or very
near it. The inference is that in a monatomic gas, the structure of

the molecule is such that substantially all its communicable

energy consists of energy of translation.

In any gas each molecule possesses three degrees of freedom of

translation, namely, freedom to move along each of three inde-

pendent axes. Since E' = ^RT, each degree of freedom of trans-

lation accounts for a quantity of kinetic energy equal to \ET.
This is .true whatever be the number of atoms in the molecule,

and whether or no the molecules have other energy besides energy
of translation.

Consider next a diatomic gas, each molecule of which consists

of two atoms. According to modern views* an atom is a complex

system made up of a minute positively charged central nucleus in

which the mass of the atom is almost all concentrated, with

electrically negative particles called electrons distributed around

it, at distances which are large compared with the dimensions of

the nucleus f. The structure of the atom and the nature of the

forces between one atom and another in the molecule are still

uncertain, but for our present purpose it will suffice to picture

an atom as a massive point, surrounded by a massless quasi-elastic

fender due to forces which keep other atoms at a distance. Under

normal conditions a diatomic molecule is equivalent, as regards

inertia, to two masses held some distance apart: dynamically it

may be compared to a dumb-bell ;
a more exact comparison would

be to a light stick capable of some elastic extension and carrying
a heavy ball at each end. Considered as a rigid body it has five

effective degrees of freedom effective as regards the storing and

communication of kinetic energy namely, three of translation and

two of rotationf . The two effective degrees of freedom of rotation

are about axes in a plane perpendicular to the line joining the two

atoms : about that line itself, the system has no effective moment of

* See Rutherford, Phil May., May, 1911; Bohr, Phil. Mag., July, Sept. and

Nov. 1913; J. J. Thomson, Phil. Mag., April, 1919.

f In an electrically neutral atom the positive electricity in the nucleus is equal
to the negative electricity in the electrons. Removal of one or more of the electrons

would therefore leave the atom as a whole positively charged : this happens when
a gas is "ionized."

J A free rigid body has six degrees of freedom : it can move parallel to itself

along three independent axes, and it can rotate about these axes. Any possible

movement is made up of these six components. In a diatomic molecule one of the

degrees of freedom of rotation is ineffective as regards the communication of

energy from one molecule to another in an encounter.
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inertia. Under these conditions it can be shown that the ultimate

result of collisions is that the kinetic energy becomes equally
shared by each of the five degrees of freedom. The energy of

translation E f

is equal to ^RT, and each degree of freedom of

translation accounts for an amount of energy equal to %RT. It

follows that each of the two degrees of freedom of rotation accounts

in addition for %RT, and that the energy of translation and rotation

together amounts to ^RT. Hence if there were no sensible energy of

vibration as well, we should have the whole energy E = %RT and

Kv
=

ffl, Kv
= \U, and y = \ or 1-4.

Now in most diatomic gases, such as oxygen (O 2 ), nitrogen (N2),

air, hydrogen (H2), nitric oxide (NO), or carbonic oxide (CO), it

is in fact found that y is equal, very nearly, to 1-4 at ordinary tem-

peratures, and the inference is that the structure of their molecules

is such as to give five effective degrees of freedom, namely the five

that have just been described, and that their molecules do not, at

ordinary temperatures, hold any considerable amount of communi-

cable energy in any other form than as energy of translation and

energy of rotation. But when such gases are strongly heated we
know that the specific heat increases and y is reduced. This means

that energy of vibration is then developed, which at high tempera-
tures becomes an important part of the whole energy.

In triatomic gases it may be conjectured that the three

atoms of any molecule group themselves not in one straight

line which would be an unstable arrangement but so that

the massive centres lie at the corners of a triangle. Similarly

when there are more than three atoms in the molecule, they
will place themselves with their massive centres at the corners

of a polyhedron. In any such triangular or polyhedral structure,

considered as a rigid system, there are six effective degrees of

freedom, namely three of rotation as well as three of trans-

lation, for there is a finite moment of inertia about any axis,

and the structure is such that the molecule can be set spinning

about any axis by encounters with other molecules. As an ultimate

result of many such encounters, it may be shown that each of the

three degrees of freedom of rotation takes up a share of the kinetic

energy equal to that of each of the three degrees of freedom of

translation, namely, \RT, and consequently that the six degrees

together account for a total of SRT. That is the energy which

the molecules possess in virtue of their movements as rigid
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structures. If there were no other way in which they could take

up energy when the gas is heated, wre should consequently find,

in a triatomic or polyatomic gas,

Kv
= 3R, Kv

= 472, and y = f or 1-333.

The actual value of y, as experimentally measured, in the tri-

atomic gases CO 2 and H 2O, is rather less than this, and in gases of

more complex constitution it is generally a good deal less. It is

also found that the specific heats are greater than 3R and 4/2. The

inference is that in such gases the molecule generally takes up a

considerable amount of energy of vibration in addition to its energy

of translation and rotation. It appears that a complex molecule

can absorb energy not only by moving as a rigid body but by
internal vibratory movements which arise through quasi-elastic

deformation of its own structure. (Compare Art. 174.)

The main part of this energy of vibration probably consists of

to and fro movements on the part of the massive centres of the

linked atoms. It is obvious that such a motion might occur in

any molecule that is made up of more than one atom. The effect

in a complex molecule is such as would occur if the lines joining

the massive centres of the constituent atoms behaved like stiff

springs. Thus in a diatomic molecule we might think of the

"dumb-bell" as having an elastic shank which allowed the distance

between the two masses to vary. The fact that in a diatomic gas

at ordinary temperatures the observed specific heats are approxi-

mately %R and ^R, and y is approximately 1-4, shows, however,
that the diatomic molecule then behaves like a dumb-bell with a

nearly inextensible shank. But when the temperature is high, the

vibratory motion becomes relatively more important, and it

accounts for an appreciable part of the whole energy, even in a

diatomic molecule, and still more in a triatomic or polyatomic
molecule. To this we must ascribe the progressive increase in

specific heat, and the fall in y, which are observed when any gas
is heated that has two or more atoms in the molecule.

In a monatomic gas there is no possibility of this kind of vibra-

tory motion, and there is no experimental evidence of any change
of specific heat with temperature. The energy depends only on

motion of translation, and when the gas is heated its energy
increases in simple proportion to the temperature. But when

diatomic, triatomic, or polyatomic gases are strongly heated, the

energy increases in a more rapid ratio than the temperature. This
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means that the ratio of the total energy E to the energy of trans-

lation E' is not constant.

In any gas that satisfies the equation PV = RT,

R
^>r/

If the total energy E preserved a constant ratio to E', the specific

heat would be constant, and in that case we should have y constant

and equal to 1 + %E/E
r

,
since E, reckoned from the absolute zero,

is KVT, and E' is \RT. The fact, however, that y falls with rising

temperature shows that the total energy does not preserve a con-

stant ratio to the energy of translation, and hence that there

is not equipartition of the energy among the possible modes of

motion.

In any gas we may write

E =-- E' + E" + E'".

The energy of translation E' varies as T, being equal to fRT. The

energy of rotation E" bears, in any given type of molecule, a

constant ratio to E'
t and therefore also varies as T. If the energy

of vibration E'" also bore a constant ratio to E'
9
the whole energy

would vary as T, which is inconsistent with the experimental
results stated in Chap. VI.

224. Energy of Vibration. The term E'" includes not only

energy due to vibrations of the constituent atoms relatively to one

another within the molecule (Em'") but energy due to vibrations

(movements of electrons) within the constituent atoms themselves

(Ea
" r

).
It is known that Ea

'"
is a very small part of the whole

energy, even at temperatures as high as 2000 C. The vibrations

that make up Ea
"'

have much higher frequencies than those that

make up Em'". It is to vibrations within the constituent atoms that

one attributes the bright lines which make up the visible spectrum
of an incandescent gas, and the corresponding dark lines due to

absorption in the visible spectrum of light transmitted through
a cold gas. The longer-period vibrations that make up Em

'" emit

or absorb ray's which lie in the infra-red region, beyond the range

of the visible spectrum. It is these longer-period vibrations that

constitute the main part of the vibratory energy when a gas is

strongly heated, as in a flame or an explosion, and give rise to

most of its radiant energy.

From the theory that has been outlined above, of the consti-
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tution of a diatomic molecule, we should expect it to have one

well-marked period of free vibration, and therefore to show a strong
emission band when heated, or when excited by electric discharge
in a vacuum tube, and also a corresponding strong absorption
band when cold. A good example is furnished by carbonic oxide

(CO), whose infra-red spectrum is found to consist almost entirely

of one characteristic band, the wave-length of which is about

4-7/z when the gas is emitting radiant energy, and 4-6//, when
the gas is absorbing it*. The fact that these wave-lengths are so

nearly the same is evidence that what may be called the stiffness

of the quasi-elastic link between the atoms, due to chemical

affinity, suffers little change when the gas passes from the cold to

the radiant state.

Again, in the infra-red spectrum of the triatomic gas CO2 we
should expect to find three prominent bands corresponding to the

three modes of vibration that can be set up within a CO2 mole-

cule by relative movements of the carbon and oxygen atoms
j*.

This is in agreement with what is observed. There are, both in

absorption and emission, three distinct infra-red bands, namely
a strong band whose wave-length is about 4-4/x, a weak band

with a wave-length of 2-7/z, and another with a much longer wave-

length, between 14ju, and 15/z (Art. 173). This long-period vibra-

tion accounts for the fact that even at ordinary temperatures the

specific heat of CO 2 exceeds the value it would have if there were

no vibratory energy, making y distinctly less than 1-333. For the

principle holds that vibrations of long period require no more than

a comparatively low temperature to excite them into taking up
some considerable share of the energy, so that they then contribute

substantially to the specific heat, whereas those of short period do

not begin to take up an appreciable share until the gas is strongly

heated.

225. Planck's Formula. This principle finds expression in a

formula devised by Max Planck to connect the energy of any

particular frequency of vibration with the frequency and with

the temperature, when a state of equilibrium has been reached.

* See W. W. Coblentz, Investigations of Infra-red Spectra, Publications of the

Carnegie Institute, Washington, No. 35, 1905, No. 65, 1906, No. 97, 1908.

t N. Bjerrum, Vorkandlungen der deutschen Phys. Gesellschaft, 1914, p. 737, dis-

cusses the hypothetical configuration of a C02 molecule which would vibrate with

periods corresponding to the three observed wave-lengths, which he takes as 2-7/i,

4-3/z, and 14-7/x.
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According to Planck's theory the vibratory energy, per mol,

corresponding to any particular frequency v is*

Here N^ is the number of molecules per mol, namely 6-16 x 10 23
,

and h is a constant, known as Planck's constant, which is the same
for all gases and is approximately equal to 6-55 x 10~27

eg?T 'J?,"as

usual, is the gas-constant, whose value per mol is 1-985 thermal units

or 83-1 x 106
ergs, and e is the base of the Napierian logarithms,

2-71828. The frequency v is equal to c/A, where c is the velocity of

light, or 3 x 1010 cms. per second, and A is the wave-length in cms.

In a gas whose molecules are capable of more than one mode of

vibration the whole vibrational energy E'" would be the sum of as

many terms, in the above form, as are required to express the

various modes. Thus in carbonic acid, for example, there would

be three terms for frequencies of vibration corresponding to the

three observed wave-lengths.
At any one frequency v, let the quantity N-Jiv/RT be represented

bv x. Then ^ T>>T> T>>T<\n n A n .~n \=
..... . = - r _ = o9/ A,

x N-Jiv N-Jic

and Planck's formula becomes

where - is a factor the value of which depends on both v and T :

for any given v it tends to an upper limit of 1 when T is indefinitely

increased and to a lower limit of zero when T is indefinitely reduced.

Hence, if we accept the formula as valid, it follows that when the

molecules of a gas are free to vibrate in any one mode, the gas will

take up, in respect of that freedom, a quantity of energy which

approaches the limit RT when the gas is strongly heated. This will

be true also of any other mode of free vibration which the molecules

possess. When the gas is heated to any given temperature the

fraction of RT which is taken up will in general be different for

different modes of vibration, for it depends on the frequency, being

smaller when the frequency is high. This, according to the theory,

is why the high-frequency modes of vibration which are revealed

by the visible spectrum do not contribute substantially to the

* For a discussion of the theoretical basis of Planck's formula, see Jeans'

Dynamical Theory of Oases, Chap. XVIII.
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whole energy of a gas, even at temperatures such as are reached in

an ordinary flame or in a gas-engine explosion, and why, in the

reckoning of energy and of specific heat it is only vibrations of

infra-red frequency that need be taken into account. For the same

reason a gas whose molecules have one or more long-period types
of vibration may, at ordinary temperatures, hold a considerable

quantity of energy in the vibratory form, and have a specific heat

markedly greater than the ideal (vibrationless) value.

The amount by which any one mode of vibration will augment
the specific heat is found by differentiating (with respect to T) the

expression for the extra internal energy that is due to that mode.

We may write it ^771 \x~&
CK- \ _ a^ v _ x

T>
\AWf ~j7ff

~~ T^ ::TS **
dT -

I)

vo

0-8
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-

02 0"4 0-6 08 TO

Fig. 99

V2 V4 V6 V8 2'0

Here is a factor, depending on the wave-length and the

temperature, which ranges from zero to unity as the quantity

I/a? is increased from zero to infinity. Fig 99 exhibits the manner

in which this factor increases relatively to I/a;. It shows that there

is a very rapid rise in the factor, and therefore in the specific heat,

after I/a? has reached a value of about 0-1, but up to that point the

effect of vibration on the specific heat is quite insignificant. At

C. the value of A which corresponds to I/a;
= 0-1 is 0-00052;

hence it is only those modes of vibration whose wave-lengths are

greater than say S/z that sensibly affect the specific heat of a gas

at normal temperature.
As an example, take the diatomic gas CO with its characteristic
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vibration for which A is about 4-7/z or 0-00047 cm. For that wave-

length the value of I/a?, at C, is 0-09; and at 2000 C. it is 0-74.

The factor exx*l(e
x -

I)
2 is therefore insignificantly small at C.,

but becomes about 0-86 at 2000 C. Hence the calculated specific

heat Kv ,
which is f72 at C., rises, as a consequence of this

vibrational energy, to (f + 0-86) R at 2000 C. ; and the correspond-

ing value of y falls from 1-4 to barely 1-3.

Again, take the triatomic gas CO 2 ,
one of whose characteristic

vibrations has a wave-length of nearly 15/>t. So slow a vibration

contributes substantially to the specific heat even when the gas is

cold. At C. a wave-length of 15/x makes \\x = 0-24 and

XX2
/(

X
-1)

2 = 0-28.

Hence a single mode of vibration with that frequency should bring
the specific heat of the cold gas up to about (3 + 0-28) R, and
reduce y from 1-333 to 1-305. When the gas is strongly heated,

account has to be taken of three modes of vibration whose wave-

lengths are long enough to be important. In respect of the three

together, Kv obviously tends, at very high temperatures, to in-

crease towards a limit of 6R, and y to fall to ^, apart from any-

thing that other vibrations may contribute, and apart from effects

of dissociation.

Though the ideas underlying Planck's theory are open to

dispute, there can be little doubt that a curve more or less like

that of fig. 99 does represent the way in which molecular

vibration of a given type contributes to the specific heat. At

first, when the gas is being heated from a cold state, the contri-

bution is practically nil; then there is a sharp rise, and finally

an asymptotic approach towards a limit. The temperature at

which the sharp rise begins depends upon the frequency of free

vibration, being higher when the frequency is high.

The fact that in polyatomic gases generally the specific heats, at

normal temperature, are greater than the ideal (vibrationless) values,

and y is notably less than 1-333, is to be ascribed to their possessing

long-period modes of vibration which are responsive to low-

temperature encounters. A complex polyatomic molecule may
have many such modes, each producing a substantial augmenta-

tion of the specific heat.

Similarly the characteristic mode of vibration in a diatomic gas

may be so slow as to affect the specific heat at normal or com-

paratively low temperature, making Kv greater than ^R, and Kp
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greater than ^R, and y less than 1-4. This is notably the case with

the vapours of the halogen elements C12 ,
Br2 ,

I2 . These elements

have high atomic weight, and it would seem that in each of them

the pair of heavy atoms in the molecule, perhaps rather loosely

held together, have a slow type of vibration, which explains the

observed high specific heats and low value of the ratio y. When
a hydrogen atom is substituted for one of the pair, this character-

istic disappears, for the gases HC1, HBr and HI, when cold, are

found to have specific heats that approximate to the normal values,

with the ratio 1*4.

226. Effect of Extreme Cold on the Diatomic Molecules

of Hydrogen. It has been found that when hydrogen is cooled

to about 200 C. its specific heat falls progressively to a value

not much greater than that for a monatomic gas, and y rises

to a value not much short of that for a monatomic gas (1-667). This

remarkable result, first observed in measurements ofKv ,
has been

confirmed by independent measurements of Kv and of y*. It

appears therefore that under extreme cold the hydrogen molecule

tends to assume a different structure, becoming in effect quasi-

monatomic, presumably by the coalescence of the two atoms which,

at ordinary temperatures, are held apart. The pair of atoms

apparently behave as if the forces which usually hold them apart
what we called their fenders in Art. 223 cease to be effective in

preventing the massive nuclei from coming together, to form

what is virtually a single-atom molecule of double mass. It may be

conjectured that this happens when the rotational speed of the

diatomic molecule falls below a certain limit, and that the molecule

then retains the coalesced state until its constituent atoms are forced

apart by a sufficiently violent encounter. While it remains in the

quasi-monatomic state it takes up energy of translation only, and

when a large proportion of the molecules are in that state the

gas behaves approximately as a monatomic gas in respect of its

specific heats. So far as is known this action is peculiar to hydrogen ;

it does not occur in oxygen, nitrogen, or carbonic oxide.

* Eucken, Sitzungsberichte d. k. Preuss. Alcad., Berlin, Feb. 1912; Scheel and

Heuse, do., Jan. 1913, also Ann. d. Physik, Vol. 40, p. 473, 1913; M. C. Shields,

Phys. Review, Nov. 1917.



APPENDIX III

TABLES OF THE PROPERTIES OF STEAM

Table A. Properties of Saturated Steam, in relation to the

Temperature.

A*. Properties of Water at Saturation Pressure.

B. Properties of Saturated Steam, in relation to the

Pressure.

C. Volume of Steam in any Dry State.

D. Total Heat of Steam in any Dry State.

E. Entropy of Steam in any Dry State.

F. Specific Heat, at constant pressure, of Steam in any
Dry State.

These Tables are based on Callendar's formulas, and will serve

to illustrate his methods. The figures are, for the most part, taken

from The Callendar Steam Tables published by Edward Arnold,

1915, which will be found to give much more complete particulars.
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TABLE A. Properties of Saturated Steam.

Temp.
Cent.

t
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TABLE A*. Properties of Water at Saturation Pressure.

Temp.
Cent.

t
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TABLE B. Properties of Saturated Steam.

Pressure,

pounds
per sq.
inch

P
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TABLE B (continued). Properties of Saturated Steam.

Pressure,

pounds
per sq.
inch

P
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TABLE C. Volume, in cubic feet per lb.,

Temp.
Cent.
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of Steam in any Dry State.

Temp.
Cent.
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TABLE D. Total Heat /, in lb.-calories per lb.,

Temp.
Cent.
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of Steam in any Dry State

Temp.
Cent.
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TABLE E. Entropy </> of Steam

Temp.
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in any Dry State,

Temp.
Cent.
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Absolute zero, 12, 35

Absorption bands in spectrum, 361

machinesforrefrigeration, 160
of radiation by gases, 263, 361

Adiabatic elasticity, 286

expansion, 21

effect on dryness, 81

of a fluid, 81
of a perfect gas, 22
of steam, 328

Adiathermal process, 129
After-burning, 244, 264

Aggregation, states of, 59

Air, isothermals of, 302

separation of the constituents of, 180

standard, 229

Air-engine, regenerative, 53

Joule's, 55
Air machines for refrigeration, 158

Aitken, 85, 344

Amagat, E. H., 299, 302, 310, 312

Amagat's isothermals, 299

according to Cal-

lendar's equation of state, 323
Ammonia absorption machine, 161

data for, 145
use of in refrigeration, 137

Andrews, 310

Atkinson, 256

Atmosphere, pressure of standard, 8
Atomic structure, 358

Avogadro's law, 235, 355

Baly's curves, 185
Beau de Rochas, 226
Bell-Coleman refrigerating machine, 158

Bjerrum, N., 362

Bohr, N., 358

Boiling, 349

Boundary curves, 92

Boyle's law, 13, 355
Brinkworth, 329
British Association Committee on

gaseous explosions, 242, 244, 245, 251,

257, 265
British Thermal Unit, 9

Bubbles, equilibrium of, 350

Buckingham, E., 277

Callendar, H. L., 12, 70, 72, 73, 76, 83,

102, 108, 127, 201, 257, 298, 315, 329,

335, 338, 350, 367
Callendar and Nicholson, 207
Callendar's characteristic equation, 318

steam tables, 63, 340, 367

Calory, mean, 331
Carbonic acid, critical temperature of, 80

data for, 145
isothermal for, according

to Clausius, 317
isothermals of, 300

- molecular vibration in,
362

specific heat of, 245, 364
use of, in refrigeration,

138
Carnot's cycle, conservation of entropy

in, 45
of operations, 27
reversed in refrigerating

machine, 138
- with a perfect gas for

working substance, 30
with steam for working

substance, 88
Cascade method of liquefying gases, 169
Characteristic equation, 290

Callendar's, 318

Clausius', 315

Dieterici's, 317
of a perfect gas,

290
Van der Waals',

306
Charles' law, 13
Chart of entropy and temperature, 118

total heat, 121
Charts of properties of fluids, slopes of

lines in, 280
Chemical contraction, 236

Clapeyron's equation, 115, 283

application of, to

changes of state, 116
Claude's apparatus for complete rectifi-

cation, 188

liquefaction of air,

178

Clausius, 50, 315
Clausius' characteristic equation, 315
Clement and Desormes, 294

Clerk, Sir Dugald, 226, 229, 244, 251,259
Clerk's gas-engine, 226
Co-aggregation volume, 319

in steam, 329

Coblentz, W. W., 362
Coefficient of performance, 2, 134, 136

Coffey still, 181

Collected thermodynamic relations, 287
Combustion of gases, 235

Compound turbine, 216, 220
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Compressibility' of a fluid, 286

Compression, advantage of, in gas-

engines, 231
Condensation in expanding steam, 207

of water-vapour in air, 67
Conservation of entropy in Carnot's

cycle, 45
in refriger-

ating process, 135

Continuity of state, 304

Convergent-divergent nozzle, 194

Cooling effect of throttling, 127, 276,

296, 314, 318

Corresponding states, 311, 317

Co-volume, 307, 319
in steam, 328

Critical point, 80, 304, 309
in steam, 320
on the 70 chart, 123

T<j) chart, 120

temperature of carbonic acid, 80
of hydrogen, 81
of steam, 80

Curtis steam turbine, 220
Curve of condition, 218

Cut-off, 97

Cycle of operations, 4

Dalby, W. E., 125, 257
Dalton's principle, 65, 355
David, W. T., 260

Degrees of freedom in gas molecules,
261, 358

De Laval's nozzle, 193
steam turbine, 215, 220

Diatomic gases, 261, 358

specific heats of, 240, 359
molecules of hydrogen, effect

of extreme cold, 365
Diesel engine, 234
Dieterici's characteristic equation, 317

Discharge through nozzle, 194

orifice, limitation of, 197

Dissipation of energy, 50
Dissociation, 264

Drops, formation of, in supersaturated
vapour, 85, 344

Drying air by application of cold, 67

Drying-pipes, 160

Dryness, change of, in adiabatic ex-

pansion, 93

fraction, 76, 81
Dust-free air, condensation in, 85

Ebullition, 349

Efficiency, conditions of maximum, 36
of a heat-engine, 2
of a perfect steam-engine, 90
of a reversible heat-engine, 29
of Rankine cycle, 99
-ratio, 110

in a steam turbine, 216,
219

Elasticity of a fluid, 286

Energy due to surface tension, 344

internal, 5, 15

molecular, 260, 357
of a gas, 245, 357
-

gas-engine mixture, 251
of vibration in molecules, 361

Engine with separate organs, 96

working without expansion, 114

Entropy, 44

change of, in an irreversible opera-
tion, 48

of a fluid, 75
of water, 334
sum of, in a system ofbodies, 49

-temperature chart for steam.. 118

-temperature diagram for re-

frigerating cycle, 141

-temperature diagram of perfect

steam-engine, 91

-temperature diagrams, 46, 50

Equilibrium of drops, 345

Equipartition of energy in translation
and rotation, 359

Ethyl chloride, 138

Eucken, A., 366

Evaporation, 65

Exhaust, 97

Expansion cylinder, omission of, in re-

frigerating machines, 138

cylinder in refrigerating
machines using air, 157

Explosion, radiation in, 260
External work in formation of steam, 69
Extreme cold, production of, 169

Feed-pump, work spent in, 97
First law of thermodynamics, 5

Flames, experiments with, 262

Fluid, characteristic equation of, 290, 306
functions of the state of, 77, 266

Fluids, properties of, 59

Force, unit of, 8
Four-stroke cycle, 226
Free energy, 103

Friction, effects of, in jets and turbines,
209

Function G, 102

Functions, Gibbs' thermodynamic, 103
of the state of a fluid, 77, 266

Gas, perfect, 14, 290, 352

thermometer, 11

Gas-constant, 238

Gas-engine, 225

mixture, energy of, 251

Gases, combustion of, 235
molecular energy of, 357

theory of, 351

properties of, 13

specific heats of, 239, 357

Gauge-pressure, 65
General thermodynamic relations, 266
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Gibbs, Willard, 72, 103

Goodenough and Mosher, 145
Goudie, W. J., 218

Gramme-molecule, 237

Grindley, J. H., 329

Heat account in a real process, 129
direct use of, to produce cold, 160,

164, 167

latent, 60, 68
mechanical equivalent of, 10
of formation of steam, 67
unit of, 9

Heat-drop, 86, 131

application to the theory of

jets, 192
calculation of, 100

tables, 110

Heat-engine, definition of, 1

efficiency of, 2

Heat-pump, 1, 133, 136
Helium, liquefaction of, 169
Helmholtz, H. von, 103

Helmholtz, E. von, 261
Hero's reaction turbine, 221

Heuse, W., 366

High vacuum, benefit of, 112

importance of, in steam
turbines, 223

Holborn and Henning, 253

Hopkinson, B., 246, 248, 251, 255, 256,
257, 258, 260

Hydrogen, critical temperature of, 81
isothermals of, 301

liquefaction of, 169

specific heat of, at very low

temperatures, 366

Ice, effect of pressure on the melting
point of, 117

Ideal steam-engine following Carnot's

cycle, 88

Imperfect gas, 295, 299

Impulse turbine, 220

Incomplete expansion, 112, 113

Independent variables, 268
Indicator diagram, 7

Infra-red spectrum of gases, 361
Internal-combustion engine, 57, 225
Internal energy, 5, 15

of a fluid, 69
of a gas, 245, 357

Inversion of cooling effect, 277, 314
Irreversible processes, 131
Isothermal curves, 298

elasticity, 286

expansion, 22, 78
of a perfec t gas, 24

lines on the pressure-volume
diagram, 78

Isothermals for steam, 330

Jeans, J. H., 306, 363

Jenkin, C. F., 145, 285

Jet-pump, use of, in refrigeration, 156
Jets, theory of, 191

Joly, J., 242
Joule's air-engine, 55

reversed, 158

equivalent, 10

law, 15
Joule-Thomson cooling effect, 17, 127,

276, 296, 314, 318
Joule-Thomson cooling effect according

to Callendar's equation of state, 322
Joule-Thomson cooling effect, use of, by

Linde, 171

porousplugexperiment, 74

Kelvin, Lord, 16, 39, 50, 117, 345

Keyes and Brownlee, 145

Kilo-calory, 9
Kinetic theory of gases, 306, 351

Langen, 251
Latent heat, 60, 68

Linde, C., 171, 176, 181, 276

Liquefaction of gases, Linde's method,
176

Liquid films, tension in, 343

Ljungstrom turbine, 221
Low pressure steam, use of, in steam

turbines, 223
Lummer and Pringsheim, 295

Mallard and Le Chatelier, 251

Martin, H. M., 208

Mathot, 234
Maximum efficiency, conditions of, 36
Maxwell's four thermodynamic relations,

271
Mean free path, 351

thermal unit, 9, 331
Mechanical equivalent, 10

Melting point, effect of pressure on,

Metastable state, 200
and equilibrium expansion,

203, 208
Mixed gases, pressure of, 65
Mixture of a liquid with its saturated

vapour, 73, 76, 283

Mol, 237
Molecular energy of a gas, 261, 357

theory of gases, 351
velocities in gases, 356

weights and volumes, 235

Molecules, energy of, 357
number of, in a cubic centi-

metre, 355
in a gramme -

molecule, 355

Mollier, R., 121, 316
chart of total heat and entropy,

124

pressure 125

charts for substances used in

refrigeration, 145
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Monatomic gas, 261, 357

Moss, H., 110

Nernst, W., 265

Newcomen, 98
Newton's theory of transmission of

sound, 294

Nitrogen, isothermals of, 301

separation of, 181

Nucleus, need of, in the formation of a

drop, 344

Oblique coordinates, use of, in the /</>

chart, 145

Olszewski, 277

Organs of a heat-engine, 96

Otto, 226

Oxygen, separation of, 181

Parsons' turbine, 216, 221
Partial pressures, 65

Peake, A. H., 329
Perfect and imperfect gases, 356

differential, 270

engine, criterion of, 29

engine using regenerator, 50

gas, 14, 238, 325
characteristic equation of,

290

expansion of, 22, 24

steam-engine, 88

efficiency of, 90

entropy-tempera-
ture diagram of, 91

Petrol-engine, 225

Phase, change of, 283
Phases of a substance, 103

Pier, 245
Planck's constant, 363

formula for energy of vibration
in molecules, 362

Polyatomic gases, specific heats, 364
molecules, 359

Porter, 318

Pound-calory, 9

Pressure, of a gas, explanation of, on
the molecular theory, 352

unit of, 8
-volume diagram, 6

Preston, 295

Radiation in explosions, 260
from flames, 262

Rankine, 63, 70

cycle, 98

efficiency of, 102
for steam in any state,

104

reversibility of, 109
Rateau steam turbine, 220

Rayleigh, Lord, 294
Re-action turbine, 221

Rectification, 181

Rectification, complete, 188

Reducing-valve, 74, 126

Refrigerating machine as a means of

warming, 168
coefficient of per-
formance of, 2

definition of, 1

Refrigeration process, 133

Regenerative air-engine, 53
method of producing ex-

treme cold, 171

Regenerator, Stirling's, 52

Regnault, 14, 62, 241, 310
Re-heat factor, 218

Report of Refrigeration Research Com-
mittee, 145

Reversibility, 20
conditions of, 37
the criterion of perfection,

29
Reversible engine, efficiency of, 34

receiving heat at

various temperatures, 42

heat-engine, 27

refrigerating machine, 134

Reynolds, Osborne, 198

Rontgen, 295

Rutherford, Sir E., 358

Saturated steam, 61, 62, 64, 368, 370
relation of pressure to

temperature in, 336

vapour, 59
Saturation due to curvature, 345

of air with water-vapour, 66
Scale of temperature, thermodynamic,

12,39
Scheel, K., 366

Seay process, 163
Second law of thermodynamics, 26

Shields, M. C., 366

Simple turbine, 215, 220

Specification of state of any fluid, 77, 267

Specific heat of water, 67
variation of, with temp-
erature, 243

heats constantinaperfectgas, 19

expressions for, 272
in Callendar's equation of

state, 324
measurement of values of,

241
of a gas, 17, 239, 357
of a gas, influence of

molecular vibration, 363
of gases on the molecular

theory, 357
of hydrogen at very low

temperatures, 365
ratio of, 23, 275, 293, 357

Stage efficiency in turbines, 218

State, specification of, 77
States of aggregation, 59
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Steam, Calendar's formulas for, 327,
336, 338

collected formulas for, 338
critical pressure of, 320
critical temperature of, 80

entropy of, 376
formation of, under constant

pressure, 60, 67

jets, supersaturation in, 203

properties of, 62, 367

saturated, 61, 62, 64

properties of, 368

specific heat of, 378

superheated, 61

tables, 340, 367
total heat of, 374

turbine, performance of, 222
turbines, compound, 216

simple, 215

types of, 220
volume of, 372

Steam-engine working without com-

pression, 94

Stirling, R., 52

Stodola, 203
Suction temperature in a gas-engine,

257
Sudden expansion, effect of, 84

Sulphurous acid, 138

Supercooling, 85, 206

Superheated vapour, 59
adiabatic expan-

sion of, 83
total heat of, 73

water, 349

Supersaturation, 84
of steam discharged
from a nozzle, 201

Surface tension, 342

Swann, 242

Tables of properties of steam, 367

Temperature, scales of, 10
of inversion of cooling

effect, 277

thermodynamic scale of,

12,39

Temperatures in a gas-engine cylinder,
255

Tension of liquid film, 343
Thermal unit used in Callendar's

tables, 331

units, 9

Thermodynamical correction of the gas
thermometer, 298

Thermodynamic potentials, 103

relations, 266

collected,287
scale of temperature,

12, 39

surface, 268

Thermodynamics, science of, 1

Thomson, James, 117, 304, 316

Thomson, James, his ideal isothermal,
305, 317

Thomson, Sir J. J., 345

Thomson, W., Lord Kelvin, 16, 39, 50,
117, 345

Throttling calorimeter, 128

cooling effect of, 127, 276,
296

process, 74
Total heat, constancy of. in a throttling

process, 74
of a fluid, 70, 72

- of water, 334
Triatomic gas, 261

molecules, 359

Triple point, 118

Turbines, types of, 220
Turbulence, effect of, 259
Two-stroke cycle, 226

Unit of force, 8

heat, 9

pressure, 8

work, 8

Unresisted expansion, 279

Van der Waals' characteristic equation,
306

theory of corresponding
states, 311

Vapour-compression refrigerating mach-
ine, 138

Vapour-pressure over a curved surface,
345

Velocity of mean square, 353, 356
Vibration of atoms in molecules, 360
Volumetric specific heats, 239

Water at saturation pressure, properties
of, 369

specific heat of, 67, 335

superheating of, 349
total heat and entropy of, 334

Water-vapour refrigerating machine, 155

Watt, James, 98
Watt's indicator, 7

Weight, variation of, with latitude, 8

Wet steam, 76

Wilson, C. T. R., 85, 200, 207, 344, 349

Wimperis, H. E., 250

Witkowski, 303
Work done by change of volume, 6

- done in adiabatic expansion, 86
unit of, 8

Working substance, 2

cycle of operations
'of, 4

in refrigerating pro-
cess, 137

Young, Sydney, 313

Zeuner, 63, 82
Zollv steam turbine, 220
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