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BOOK X. e

INTRODUCTORY NOTE.

The discovery of the doctrine of incommensurables is attributed to
Pythagoras. Thus Proclus says (Comm. on Eucl. 1. p. 65, 19) that Pythagoras
“discovered the theory of irrationals'”; and, again, the scholium on the begin-
ning of Book x., also attributed to Proclus, states that the Pythagoreans were
the first to address themselves to the investigation of commensurability, having
discovered it by means of their observation of numbers. They discovered,
the scholium continues, that not all magnitudes have a common measure.
“ They called all magnitudes measurable by the same measure commensurable,
but those which are not subject to the same measure incommensurable,
and again such of these as are measured by some other common measure
commensurable with one another, and such as are not, incommensurable with
the others. And thus by assuming their measures they referred everything to
different commensurabilities, but, though they were different, even so (they
proved that) not all magnitudes are commensurable with any. (They showed
that) all magnitudes can be rational (pnre) and all irrational (dAoya) in a
relative sense (ds mpds 7t); hence the commensurable and the incommensurable
would be for them natural (kinds) (¢doe), while the rational and irrational
would rest on assumption or convention (@éoe).” The scholium quotes further
the legend according to which “ the first of the Pythagoreans who made public
the investigation of these matters perished in a shipwreck,” conjecturing that
the authors of this story “ perhaps spoke allegorically, hinting that everything
irrational and formless is properly concealed, and, if any soul should rashly
invade this region of life and lay it open, it would be carried away into the
sea of becoming and be overwhelmed by its unresting currents.” There
would be a reason also for keeping the discovery of irrationals secret for the
time in the fact that it rendered unstable so much of the groundwork of
geometry as the Pythagoreans had based upon the imperfect theory of
proportions which applied only to numbers. We have already, after Tannery,
referred to the probability that the discovery of incommensurability must
have necessitated a great recasting of the whole fabric of elementary geometry,
pending the discovery of the general theory of proportion applicable to
incommensurable as well as to commensurable magnitudes.

It seems certain that it was with reference to the length of the diagonal of
a square or the hypotenuse of an isosceles right-angled triangle that Pythagoras
made his discovery. Plato (Zkeaefetus, 147 D) tells us that Theodorus of
Cyrene wrote about square roots (8vwvdpuets), proving that the square roots of

1 I have already noted (Vol. 1. p. 351) that G. Junge (Wann haben dic Griecken'das
Irrationale entdeckt?) disputes this, maintaining that it was the Pythagoreans, but not
P, oras, who made the discovery. Junge is obliged to alter the reading of the passage
of Proclus, on what seems to be quite insufhcient evidence; and in any case I doubt whether
the point is worth so much labouring.

H. E. 11l I
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YUy BOOK X

three square feet and five square feet are not commensurable with that of one
squarg fodt, and so on, selecting each such square root up to that of 17 square
feet, 4t which for some reason he stopped. No mention is here made of /2,
daubtless for the reason that its incommensurability had been proved before,
i.e. by Pythagoras. We know that Pythagoras invented a formula for finding
fight-angled triangles in rational numbers, and in connexion with this it was
_~.Hevitable that he should investigate the relations between sides and hypotenuse
: “+dni other right-angled triangles. He would naturally give special attention to
** the isosceles right-angled triangle ; he would try to measure the diagonal, he
... would arrive at successive approximations, in rational fractions, to the value
& of JJ2; he would find that successive efforts to obtain an exact expression for
it failed. It was however an enormous step to conclude that such exact
expression was smpossible, and it was this step which Pythagoras (or the
Pythagoreans) made. We now know that the formation of the side- and
diagonal-numbers explained by Theon of Smyrna and others was Pythagorean,
and also that the theorems of Eucl. 11. 9, 10 were used by the Pythagoreans
in direct connexion with this method of approximating to the value of ,/2.
The very method by which Euclid proves these propositions is itself an indica-
tion of their connexion with the investigation of ./2, since he uses a figure
made up of two isosceles right-angled triangles.

The actual method by which the Pythagoreans proved the incommensura-
bility of /2 with unity was no doubt that referred to by Aristotle (Anal. prior.
1.23, 418 26—7),a reductio ad absurdum by which it is proved that, if the diagonal
is commensurable with the side, it will follow that the same number is both
odd and even. The proof formerly appeared in the texts of Euclid as x. 117,
but it is undoubtedly an interpolation, and August and Heiberg accordingly
relegate it to an Appendix. It is in substance as follows.

Suppose AC, the diagonal of a square, to be commen- A )
surable with 4.3, its side. Let a : 8 be their ratio expressed
in the smallest numbers.

Then a > B and therefore necessarily > 1.

2

Now AC': AB'=a': B,
and, since AC?*=24B, [Eucl. 1. 47]
a?= 23 [J]

Therefore a? is even, and therefore a is even.
Since a : B is in its lowest terms, it follows that 8 must be odd.

Put a=2y;
therefore ’ 47 =28,
or B =2y
so that 8% and therefore 8, must be even.

But B8 was also odd :

which is impossible.

This proof only enables us to prove the incommensurability of the
diagonal of a square with its side, or of /2 with unity. In order to prove
the incommensurability of the sides of squares, one of which has #4ree times
the area of another, an entirely different procedure is necessary ; and we find
in fact that, even a century after Pythagoras’ time, it was still necessary to use
scparate proofs (as the passage of the Zheaetetus shows that Theodorus did)
to establish the incommensurability with unity of /3, /5, ... up to ./17.
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This fact indicates clearly that the general theorem in Eucl. X. g that sguares
whick have not to one another the ratio of a square number to a square number
have their sides incommensurable in length was not arrived at all at once, but
was, in the manner of the time, developed out of the separate consideration
of special cases (Hankel, p. 103).

The proposition x. 9 of Euclid is definitely ascribed by the scholiast to
Theaetetus. Theaetetus was a pupil of Theodorus, and it would seem clear
that the theorem was not known to Theodorus. Moreover the Platonic
passage itself (Z%eact. 147D sqq.) represents the young Theaetetus as striving
after a general conception of what we call a surd. “The idea occurred to
me, seeing that square roots (Suvdpers) appeared to be unlimited in multitude,
to try to arrive at one collective term by which we could designate all these
square roots. ... I divided number in general into two classes. The number
which can be expressed as equal multiplied by equal ({oov izdxis) I likened
to a square in form, and I called it square and equilateral....The intermediate
number, such as three, five, and any number which cannot be expressed as
equal multiplied by equal, but is either less times more or more times less, so
that it is always contained by a greater and less side, I likened to an oblong
figure and called an oblong number. ... Such straight lines then as square the
equilateral and plane number I defined as length (u7xos), and such as square
the oblong sguare roofs (dvvapess), as not being commensurable with the
others in length but only in the plane areas to which their squares are
equal.”

There is further evidence of the contributions of Theaetetus to the theory
of incommensurables in a commentary on Eucl. X. discovered, in an Arabic
translation, by Woepcke (Mémoires présentés @ I Académie des Sciences, xiv.,
1856, pp. 658—720). It is certain that this commentary is of Greek origin.
Woepcke conjectures that it was by Vettius Valens, an astronomer, apparently
of Antioch, and a contemporary of Claudius Ptolemy (2nd cent. A.D.).
Heiberg, with greater probability, thinks that we have here a fragment of the
commentary of Pappus (EZwklid-studien, pp. 169—71), and this is rendered
practically certain by Suter (Dse Mathematiker und Astronomen der Araber
und ithre Werke, pp. 49 and 211). This commentary states that the theory
of irrational magnitudes “ had its origin in the school of Pythagoras. It was
considerably developed by Theaetetus the Athenian, who gave proof, in this
part of mathematics, as in others, of ability which has been justly admired.
He was one of the most happily endowed of men, and gave himself up, with a
fine enthusiasm, to the investigation of the truths contained in these sciences,
as Plato bears witness for him in the work which he called after his name. As
for the exact distinctions of the above-named magnitudes and the rigorous
demonstrations of the propositions to which this theory gives rise, I believe
that they were chiefly established by this mathematician; and, later, the
great Apollonius, whose genius touched the highest point of excellence in
mathematics, added to these discoveries a number of remarkable theories
after many efforts and much labour.

“For Theaetetus had distinguished square roots [pusssances must be the
Swdpess of the Platonic passage] commensurable in length from those which
are incommensurable, and had divided the well-known species of irrational
lines after the different means, assigning the medial to geometry, the dinomial
to arithmetic, and the apofome to harmony, as is stated by Eudemus the
Peripatetic.

« As for Euclid, he set himself to give rigorous rules, which he established,

I—2
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relative to commensurability and incommensurability in general ; he made
precise the definitions and the distinctions between rational and irrational
magnitudes, he set out a great number of orders of irrational magnitudes, and
finally he clearly showed their whole extent.”

The allusion in the last words must be apparently to x. 115, where it is
proved that from the medial/ straight line an unlimited number of other
irrationals can be derived all different from it and from one another.

The connexion between the medial straight line and the geometric mean
is obvious, because it is in fact the mean proportional between two rational
straight lines *“commensurable in square only.” Since } (x +y) is the arithmetic
mean between x, y, the reference to it of the binomial can be understood.
The connexion between the apotome and the harmonic mean is explained by
some propositions in the second book of the Arabic commentary. The
harmonic mean between x, y is % , and propositions of which Woepcke
quotes the enunciations prove that, if a rational or a medial area has for one
of its sides a dinomial straight line, the other side will be an apofome of corre-
sponding order (these propositions are generalised from Eucl. X. 111—4); the

. 2y 2xy
fact is that iy B (x=y).

One other predecessor of Euclid appears to have written on irrationals,
though we know no more of the work than its title as handed down by
Diogenes Laertius’. According to this tradition, Democritus wrote wepi
aAdywv ypappov xai vactav 8, two Books on irrational straight lines and
solids (apparently). Hultsch (Neue Jakrbiicher fiir Philologie und Pidagogik,
1881, pp. 578—9) conjectures that the true reading may be wepi dAdywy
ypappdv xAaordv, “on irrational broken lines.” Hultsch seems to have
in mind straight lines divided into two parts one of which is rational
and the other irrational (“Aus einer Art von Umkehr des Pythagoreischen
Lehrsatzes iiber das rechtwinklige Dreieck gieng zunichst mit Leichtigkeit
hervor, dass man eine Linie construiren konne, welche als irrational zu
bezeichnen ist, aber durch Brechung sich darstellen lisst als die Summe
einer rationalen und einer irrationalen Linie”). But I doubt the use of xAaoros
in the sense of breaking one straight line into parts; it should properly mean
a bent line, i.e. two straight lines forming an angle or broken short off at their
point of meeting. It is also to be observed that vasrov is quoted as a
Democritean word (opposite to xevay) in a fragment of Aristotle (202). I see
therefore no reason for questioning the correctness of the title of Democritus’
book as above quoted.

I will here quote a valuable remark of Zeuthen’s relating to the classifi-
cation of irrationals. He says (Geschichte der Mathematik im Altertum und
Mittelalter, p. 56) “Since such roots of equations of the second degree as are
incommensurable with the given magnitudes cannot be expressed by means
of the latter and of numbers, it is conceivable that the Greeks, in exact
investigations, introduced no approximate values but worked on with the
magnitudes they had found, which were represented by straight lines obtained
by the construction corresponding to the solution of the equation. That is
exactly the same thing which happens when we do not evaluate roots but content
ourselves with expressing them by radical signs and other algebraical symbols.
But, inasmuch as one straight line looks like another, the Greeks did not get

! Diog. Laert. IX. 47, p. 239 (ed. Cobet).
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the same clear view of what they denoted (i.e. by simple inspection) as our
system of symbols assures to us. For this reason it was necessary to under-
take a classification of the irrational magnitudes which had been arrived at by
successive solution of equations of the second degree.” To much the same
effect Tannery wrote in 1882 (De la solution géométrique des problémes du
second degré avant Euclide in Mémoires de la Société des sciences physiques et
naturelles de Bordeaux, 2° Série, 1v. pp. 395—416). Accordingly Book x.
formed a repository of results to which could be referred problems which
depended on the solution of certain types of equations, quadratic and biquad-
ratic but reducible to quadratics.
Consider the quadratic equations
x*tzax.p+f.p'=0,

where p is a rational straight line, and a, B are coefficients. Our quadratic
equations in algebra leave out the p; but I put it in, because it has always to
be remembered that Euclid’s x is a straight /ine, not an algebraical quantity,
and is therefore to be found in terms of, or in relation to, a certain assumed
rational straight line, and also because with Euclid p may be not only of the

. m
form a, where @ represents @ units of length, but also of the form Pl

which represents a length “commensurable in square only” with the unit of
length, or /4 where A4 represents a number (not square) of units of area.
The use therefore of p in our equations makes it unnecessary to multiply
different cases according to the relation of p to the unit of length, and has the
further advantage that, e.g., the expression p + ,/4.p is just as general as the
expression ,/&.p+ ./A.p, since p covers the form ,/£.p, both expressions
covering a length either commensurable in length, or “commensurable in
square only,” with the unit of length.
Now the positive roots of the quadratic equations

x*+2ax.p+B.p*'=0

can only have the following forms )

x=p(a+ ~/"‘fﬂ—)r x'=p(a— va'-B) }

H=p(WP+B+a), x/=p(Wa?+B-a) |

The negative roots do not come in, since x must be a straight line. The

omission however to bring in negative roots constitutes no loss of generality,
since the Greeks would write the equation leading to negative roots in another
form so as to make them positive, i.e. they would change the sign of x in the
equation.

Now the positive roots x;, ¥y, x,, x, may be classified according to the
character of the coefficents a, 8 and their relation to one another.

I. Suppose that a, 8 do not contain any surds, i.e. are either integers or
of the form m/n, where m, n are integers.
Now in the expressions for x,, x," it may be that

2
(1) B is of the form %a’.

Euclid expresses this by saying that the square on ap exceeds the square

on p~a®— B by the square on a straight line commensurable in length with ap.
In this case x, is, in Euclid’s terminology, a firs? binomial straight line,

and x,’ a first apolome.
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2

(2) In general, 8 not being of the form %a’,

x, is a _fourth binomial,

x,' a fourth apotome.
Next, in the expressions for x,, x;" it may be that

3
(1) B is equal to % (a? + B), where m, n are integers, i.e. B is of the form
m’ 3
ﬂ’ — m’ [

Euclid expresses this by saying that the square on p/a®+ B exceeds the
+ square on ap by the square on a straight line commensurable in length with

pNa*+B. o
In this case x, is, in Euclid’s terminology, a second binomial,

x, a second apoltome.

(2) In general, B8 not being of the form ”—;’ita—m,a’,
x, 1s a fifth binomial,
x, a fifth apotome.

II. Now suppose that a is of the form J 1:—, where m, n are integers, and

let us denote it by J/A.
Then in this case
K =p(JA+VA=B), x'=p(JA-~A=B),
x=p (VA + B+ JA), 2 =p (WA+ B — JN).
Thus x,, x," are of the same form as x,, x,.
If JA- B in x,, x,"is not surd but of the form m/n, and if J)TB in x5, &,

is not surd but of the form m/n, the roots are comprised among the forms
already shown, the first, second, fourth and fifth binomials and apotomes.

If VA= Bin x,, x, is surd, then

3
(1) we may have B of the form :—‘, A, and in this case

x, is a third binomial straight line,
x,' a third apotome;

m’
n
x, is a séxth binomial straight line,
%, a sixth apotome.

) Wi_th the expressions for x,, x,’ the distinction between the third and sixth
binomials and apotomes is of course the distinction between the cases

3
(1) in which 8= % (A + B), or B is of the form A,

and (2) in which B is not of this form. _
. If we take the square root of the product of p and each of the six
binomials and six apotomes just classified, ie.

(et Va'—p), p*(Va’+ B ta),

(2) in geheral, B not being of the form — A,

m?

w3 —m?
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in the six different forms that each may take, we find six new irrationals with
a positive sign separating the two terms, and six corresponding irrationals with
a negative sign. These are of course roots of the equations
x'+ 2ax?.p'+ B.p*=0.
These irrationals really come before the others in Euclid’s order (x. 36—
41 for the positive sign and x. 73—78 for the negative sign). As we shall
see in due course, the straight lines actually found by Euclid are

1. p+ J%. p, the binomial (7 éx dvo dvopdrwr)
and the apotome (dworopy),

which are the positive roots of the biquadratic (reducible to a quadratic)
H—2(1+R)p*. 2+ (1-A)p'=

2. Bp + Blp, the first bimedial (éx 8o péowy mpurn)
and the first apotome of a medial (péons dworopy wpurry),
which are the positive roots of
-2,k (1+R)p*. 2+ A(1-A)p'=

3 o4 % p, the second bimedial (éx dvo péowy Sevrépa)

and the second apotome of a medial (péoms dworopy) devrépa),
which are the positive roots of the equation

BN ey B
x‘z—‘\/—k— a2 p =0.

* V2 \/I*J1+k' ~/2J ~/1+k'

the mayjor (irrational straight line) (uei{wv)
and the minor (irrational straight line) (éAdooev),
which are the positive roots of the equation

H-2pt. 2t

k’ 4
L
—— ) jm—
5- J2(I+P)JJI+E+k+m:£;3 \/]-{.k’—k,

the “side” of a rational plus a medial (area) (pyrov xai péoov 8uva;u'vq)

and the “side” of a medial minus a rational area (in the Greek 1 perd pyrov
péoor 10 GAov wowoboa),

which are the positive roots of the equation
x—

_ 2 g
~/1+k’p .x’+(‘+k,),p =0,

o

Mo/ \/
W2 J 1+ Pt J 1+ 42
the “side” of the sum of two med:al areas (1 dbo péoa vaa;u'm)

and the ‘side” of a medial minus a medial area (in the Greek 5 pera péoov
péoov 16 GAov mowdoa),

which are the positive roots of the equation

A
-— 3 =
2JX.x’g+Al+k’p o.
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The above facts and formulae admit of being stated in a great variety of
ways according to the notation and the particular letters used. Consequently
the summaries which have been given of Eucl. x. by various writers differ
much in appearance while expressing the same thing in substance. The first
summary 1n algebraical form (and a very elaborate one) seems to have been
that of Cossali (Origine, trasporto in Italia, primi progressi in essa dell
Algebra, Vol. 1. pp. 242—65) who takes credit accordingly (p. 265). In
1794 Meier Hirsch published at Berlin an Algebraischer Commentar diber das
sehente Buch der Elemente des Euklides which gives the confents in algebraicgl
form but fails to give any indication of Euclid’s methods, using modern forms
of proof only. In 1834 Poselger wrote a paper, Ueber das sehnte Buch der
Elemente des Euklides, in which he pointed out the defects of Hirsch’s repro-
duction and gave a summary of his own, which however, though nearer to
Euclid’s form, is difficult to follow in consequence of an elaborate system of
abbreviations, and is open to the objection that it is not algebraical enough
to enable the character of Euclid’s irrationals to be seen at a glance. Other
summaries will be found (1) in Nesselmann, Diec Algebra der Griechen,
pp. 165—84; (2) in Loria, /7 periodo aureo della geometria greca, Modena,
1895, pp. 40—9; (3) in Christensen’s article “Ueber Gleichungen vierten
Grades im zehnten Buch der Elemente Euklids” in the Zeitschrift fiir Math. u.
Physik (Historisch-literarische Abtheilung), xxx1v. (1889), pp. 201—17. The
only summary in Engllsh that I know is that in the Penny Cyclopaedia, under
“Irrational quantity,” by De Morgan, who yielded to none in his admiration of
Book x. “Euclid investigates,” says De Morgan, “every possible variety of lines
which can be represented by ./(J/a + \/6), @ and 5 representing two commen-
surable lines....This book has a completeness which none of the others (not
even the fifth) can boast of : and we could almost suspect that Euclid, having
arranged his materials in his own mind, and having completely elaborated
the 1oth Book, wrote the preceding books after it and did not live to revise
them thoroughly.”

Much attention was given to Book x. by the early algebraists. Thus
Leonardo of Pisa (fl. about 1205 A.p.) wrote in the 14th section of his Liber
Abaci on the theory of irrationalities (de fractatu binomiorum et recisorum),
without however (except in treating of irrational trinomials and cubic irra-
tionalities) adding much to the substance of Book X.; and, in investigating
the equation

£*+ 2x% + 10X = 20,

propounded by Johannes of Palermo, he proved that none of the irrationals
in Eucl. x. would satisfy it (Hanke] PP- 344—6, Cantor, 11,, p. 43). Luca
Paciuolo (about 1445—1514 A.D.) in his algebra based himself largely, as he
himself expressly says, on Euclid x. (Cantor, 11, P. 293). Michael Stifel
(1486 or 1487 to 1567) wrote on irrational numbers in the second Book of
his Arithmetica integra, which Book may be regarded, says Cantor (11,, p. 402),
as an elucidation of Eucl. x. The works of Cardano (1501—76) abound in
speculations regarding the irrationals of Euclid, as may be seen by reference to
Cossali (Vol. 11, especially pp. 268—78 and 382—gg); the character of
the various odd and even powers of the binomials and apotomes is therein
investigated, and Cardano considers in detail of what particular forms of
equations, quadratic, cubic, and biquadratic, each class of Euclidean irrationals
can be roots. Simon Stevin (1548—1620) wrote a Zraité des incommensurables
grandeurs en lagquelle est sommairement déclaré le contenu du Dixiesme Livre
d Euclide (Oeuvres mathématiques, Leyde, 1634, pp. 2195qq.); he speaks thus
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of the book: *“La difficulté du dixiesme Livre d’Euclide est & plusieurs
devenue en horreur, voire jusque a l'appeler la croix des mathématiciens,
matiére trop dure 4 digérer, et en la quelle n’apergoivent aucune utilité,” a
passage quoted by Loria (// periodo aurco della geometria greca, p. 41).

It will naturally be asked, what use did the Greek geometers actually
make of the theory of irrationals developed at such length in Book x.? The
answer is that Euclid himself, in Book x111., makes considerable use of the
second portion of Book x. dealing with the irrationals affected with a negative
sign, the apofomes etc. One object of Book xii1. is to investigate the relation
of the sides of a pentagon inscribed in a circle and of an icosahedron and
dodecahedron inscribed in a sphere to the diameter of the circle or sphere
respectively, supposed rational. The connexion with the regular pentagon of
a straight line cut in extreme and mean ratio is well known, and Euclid first
proves (X111. 6) that, if a rational straight line is so divided, the parts are the
irrationals called apofomes, the lesser part being a first apotome. Then, on
the assumption that the diameters of a circle and sphere respectively are
rational, he proves (x111. 11) that the side of the inscribed regular pentagon is
the irrational straight line called minor, as is also the side of the inscribed
icosahedron (xi11. 16), while the side of the inscribed dodecahedron is the
irrational called an apofome (x111. 17).

Of course the investigation in Book x. would not have been complete if
it had dealt only with the irrationals affected with a negative sign. Those
affected with the positive sign, the dinomials etc., had also to be discussed,
and we find both portions of Book x., with its nomenclature, made use of by
Pappus in two propositions, of which it may be of interest to give the enun-
ciations here.

If, says Pappus (1v. p. 178), 4.8 be the rational diameter of a semicircle, and
if A8 be produced to C so that BC is equal to the radius, if CD be a tangent,

D

A F B o}

if £ be the middle point of the arc 8D, and if CE be joined, then CE is the
irrational straight line called minor. As a matter of fact, if p is the radius,

CE = (5 - 2./3) and CE=J@ _ \/Sﬁ
2

If, again (p. 182), CD be equal to the radius of a semicircle supposed
B

F

A H C )

rational, and if the tangent DB be drawn and the angle 403 be bisected by
DF meeting the circumference in , then DF is the excess by which the
binomial exceeds the straight line which produces with a rational area a medial
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whole (see Eucl. x. 77). (In the figure DX is the binomsal and KF the other
irrational straight line.) As a matter of fact, if p be the radius,

KD=p.J'3/: l,andKF=p.J~/3——l=p.(,\/‘/3+“/2-—~/‘/3—;£).

Proclus tells us that Euclid left out, as alien to a selection of elements, the
discussion of the more complicated irrationals, “the unordered irrationals which
Apollonius worked out more fully” (Proclus, p. 74, 23), while the scholiast -
to Book x. remarks that Euclid does not deal with all rationals and irrationals
but only the simplest kinds by the combination of which an infinite number
of irrationals are obtained, of which Apollonius also gave some. The author
of the commentary on Book X. found by Woepcke in an Arabic translation,
and above alluded to, also says that ‘“it was Apollonius who, beside the
ordered irrational magnitudes, showed the existence of the unordered and by
accurate methods set forth a great number of them.” It can only be vaguely
gathered, from such hints as the commentator proceeds to give, what the
character of the extension of the subject given by Apollonius may have been.
See note at end of Book.

DEFINITIONS.

1. Those magnitudes are said to be commensurable
which are measured by the same measure, and those incom-
mensurable which cannot have any common measure.

2. Straight lines are commensurable in square when
the squares on them are measured by the same area, and
incommensurable in square when the squares on them
cannot possibly have any area as a common measure.

3. With these hypotheses, it is proved that there exist
straight lines infinite in multitude which are commensurable
and incommensurable respectively, some in length only, and
others in square also, with an assigned straight line. Let
then the assigned straight line be called rational, and those
straight lines which are commensurable with it, whether in
length and in square or in square only, rational, but those
which are incommensurable with it irrational.

4- And let the square on the assigned straight line be
called rational and those areas which are commensurable
with it rational, but those which are incommensurable with
it irrational, and the straight lines which produce them
irrational, that is, in case the areas are squares, the sides
themselves, but in case they are any other rectilineal figures,
the straight lines on which are described squares equal to
them.
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DEFINITION 1.

Svpperpa peyétny Aéyerar 1& 16 adrg pérpy perpovpeva, dovpperpa 8¢, dv
pndév évléxerar xowov pérpov yevéolar.

DEFINITION 2.

Edfeiar dvvdper avpperpol eow, otav 1a dn° adrdv Terpdywra 1@ adrg xwply
perpijtas, dovpperpor 8, drav Tols dx’ abrdv Terpaywvois undéy dvdéxmrar xwpiov
xowdv pérpov yevéobar.

Commensurable in square is in the Greek Swdper ovpperpos. In earlier
translations (e.g. Williamson’s) durauer has been translated “in power,” but,
as the particular power represented by duvaps in Greek geometry is sguare,
I have thought it best to use the latter word throughout. It will be observed
that Euclid’s expression commensurable in square only (used in Def. 3 and
constantly) corresponds to what Plato makes Theaetetus call a sgware root
(8vaps) in the sense of a surd. If a is any straight line, a and a,/m, or
aJm and a,/n (where m, n are integers or arithmetical fractions in their
lowest terms, proper or improper, but not square) are commensurable in square
only. Of course (as explained in the Porism to X. 10) all straight lines
commensurable in length (pixet), in Euclid’s phrase, are commensurable iz
square also ; but not all straight lines which are commensurable in sguare are
commensurable sn Jength as well. On the other hand, straight lines sncom-
mensurable in square are necessarily incommensurable in Jength also; but not
all straight lines which are incommensurable in /ength are incommensurable
in square. In fact, straight lines which are commensurable in square only are
incommensurable iz lengtk, but obviously not incommensurable in square.

DEFINITION 3.

Tovrev vwoxup.cvmv Suxvv'm(, o'n 4] 1rpor¢0¢w~g wﬂag. mrapxomrw ebletar
wAjfe d dwepor (ru[l.'l.(‘rpoc Te Kal va.p.:rpon ai ;uv ke povov, ai de Kai Suva.p.u.
xakewom oty 7 pev wpo‘r¢0¢wa. ebleia p prrrq, xal m TaVTy TUppMETPOL €iTE pIIKEL Kai
Suvdper eire Suvdpe povov pyrai, ai 8¢ TavTy dovpperpor dAoyor kakeloGwoav.

The first sentence of the definition is decidedly elliptical. It should,
strictly speaking, assert that *“with a given straight line there are an infinite
number of straight lines which are (1) commensurable either (2) in square
only or (4) in square and in length also, and (2) incommensurable, either
(@) in length only or (%) in length and in square also.”

The relativity of the terms rationa/ and srrational is well brought out in
this definition. We may set out any straight line and call it rational, and it
is then with reference to this assumed rational straight line that others are
called rational or irrational.

We should carefully note that the signification of ratfona/in Euclid is wider
than in our terminology. With him, not only is a straight line commensurable 7z
length with a rational straight line rational, but a straight line is rational which
is commensurable with a rational straight line ¢n sguare only. That is, if p is a

rational straight line, not only is 2P rational, where m, # are integers and
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- . m ..
m|n in its lowest terms is not square, but J 5P rational also. We should

in this case call \/ %‘ . p irrational. It would appear that Euclid’s termino-

logy bhere differed as much from that of his predecessors as it does from
ours. We are familiar with the phrase appyros dwdperpos Tijs mepmwados by
which Plato (evidently after the Pythagoreans) describes the diagonal of a
square on a straight line containing 5 units of length. This “inexpressible

diameter of five (squared)” means /5o, in contrast to the gnry) Sudperpos, the
“expressible diameter” of the same square, by which is meant the approxi-

—_— m
mation «/ so—1, or 7. Thus for Euclid’s predecessors nP would

apparently not have been rational but dppyros, “inexpressible,” i.e. irrational.

I shall throughout my notes on this Book denote a rational straight line in
Euclid’s sense by p, and by p and o when two different rational straight lines are
required. Wherever then I use p or o, it must be remembered that p, ¢ may
have either of the forms a, /4. a, where a represents a units of length, a being
either an integer or of the form m/n, where m, n are both integers, and 4 is an
integer or of the form m/n (where both m, n are integers) but not square. In
other words, p, o may have either of the forms @ or /A4, where 4 represents
A units of area and A4 is integral or of the form m/n, where m, n are both
integers. It has been the habit of writers to give @ and ,/a as the alternative
forms of p, but I shall always use /4 for the second in order to keep the
dimensions right, because it must be borne in mind throughout that p is an
irrational straight line.

As Euclid extends the sxgmﬁcatlon of rational (pyros, literally expressible),
so he limits the scope of the term dAoyos (literally having no ratio) as applied
to straight lines. That this limitation was started by himself may perhaps be
inferred from the form of words “/¢ straight lines incommensurable with it
be called irrational.” Irrational straight lines then are with Euclid straight lines
commensurable nesther in length nor in square with the assumed rational
straight line. /4. a where % is not square is not irrational ; Y4. a is irrational,
and so (as we shall see later on) is (\/£+ \/A) a.

DEFINITION 4.

Kai 7o ;uv amd ‘n)q wpofcoaoqs ebleias rerpdywvov prrrov, xal TG TOUTQ
o'uy.p,cfpa pm'a, Ta 8( ‘rolmn a(ruy.y.ﬂ'pa a:\oya. xdtwow, mu ai Suvapeva avra.

dAoyou, € pév Terpaywva €y, alrai ai wAevpal, €l 8¢ Erepd Twa fvypappa, ai
{oa airois rerpdywva dvaypdovoa.

As applied to areas, the terms rational and irrational have, on the other
hand, the same sense with Euclid as we should attach to them. According
to Euclid, if p is a rational straight line in Ais sense, p? is rafiona/ and any
area commensurable with it, i.e. of the form 4p* (where £ is an integer, or of
the form m/n, where m, n are integers), is rational ; but any area of the form
Jk.p* is irrational. Euclid's rational area thus contains A wunits of area,
where 4 is an integer or of the form m/n, where m, n are integers ; and his
irrational area is of the form /2. A. His irrational area is then connected
with his irrational sfrafght line by making the latter the square root of the
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former. This would give us for the irrational straight line Y. \/A, which of
course includes /4. a.

ai Swaperar abdrd are the straight lines the squares on which are equal to
the areas, in accordance with the regular meaning of 8dvacfac It is scarcely
possible, in a book written in geometrical language, to translate Swauévy as
the sguare root (of an area) and Svvacfar as fo be the square root (of an area),
although I can use the term “square root” when in my notes I am using an
algebraical expression to represent an area ; I shall therefore hereafter use the
word “side” for Swapéry and “to be the side of” for Svvacfar, so that
“side” will in such expressions be a short way of expressing the “side of
a square equal to (an area).” In this particular passage it is not quite practi-
cable to use the words “side of ” or “ straight line the square on which is equal
to,” for these expressions occur just afterwards for two alternatives which the
word dwauém covers. I have therefore exceptionally translated *the straight
lines which produce them ” (i.e. if squares are described upon them as sides).

ai ioa avrols Terpdywva civa:yp«fcbowm, literally “ the (straight lines) which
describe squares equal to them”: a peculiar use of the active of dvaypddew,
the meaning being of course “the straight lines on which are descrsbed the
squares ” which are equal to the rectilineal figures.



BOOK X. PROPOSITIONS.

ProprosiTION 1.

Two unequal magnitudes being set out, if from the greater
there be subtracted a magnitude greater than its half, and from
that which is left a magnitude greater than its half, and if
this process be repeated comtinually, there will be left some
magnitude which will be less than the lesser magnitude set out.

Let AB, C be two unequal magnitudes of which 428 is

the greater: . .
I say that, if from 425 there be A—+— B
subtracted a magnitude greater D - . E

than its half, and from that which

is left a magnitude greater than its half, and if this process be
repeated continually, there will be left some magnitude which
will be less than the magnitude C.

For C if multiplied will sometime be greater than A425.
[cf. v. Def. 4]

Let it be multiplied, and let D£ be a multiple of C, and
greater than 45 ;
let DE be divided into the parts DF, FG, GE equal to C,
from AZ let there be subtracted B/ greater than its half,
and, from AH, HK greater than its half,
and let this process be repeated continually until the divisions
in A are equal in multitude with the divisions in DE.

Let, then, AKX, KH, HB be divisions which are equal in
multitude with DF, FG, GE.

Now, since DE is greater than A5,
a:ld from DE there has been subtracted £G less than its
half,
and, from 4B, BH greater than its half,
therefore the remainder G D is greater than the remainder /7 A4.
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And, since G D is greater than /A4,

and there has been subtracted, from GO, the half GF,

and, from A A4, HK greater than its half,

therefore the remainder D F'is greater than the remainder 4 X.
But DF is equal to C;

therefore C is also greater than 4K

Therefore 4K is less than C.
Therefore there is left of the magnitude 4.8 the magnitude
AK which is less than the lesser magnitude set out, namely C.
Q. E. D.

And the theorem can be similarly proved even if the parts
subtracted be halves.

This proposition will be remembered because it is the lemma required in
Euclid’s proof of xi11. 2 to the effect that circles are to one another as the
squares on their diameters. Some writers appear to be under the impression
that x11. 2 and the other propositions in Book xi1. in which the method of
exhaustion is used are the only places where Euclid makes use of x. 1; and it
is commonly remarked that X. 1 might just as well have been deferred till the
beginning of Book x11. Even Cantor (Gesch. d. Math. 15, p. 269) remarks
that “ Euclid draws no inference from it [X. 1], not even that which we should
more than anything else expect, namely that, if two magnitudes are incom-
mensurable, we can always form a magnitude commensurable with the first
which shall differ from the second magnitude by as little as we please.” But,
so far from making no use of x. 1 before x11. 2, Euclid actually uses it in the
very next proposition, X. 2. This being so, as the next note will show, it
follows that, since X. 2 gives the criterion for the incommensurability of two
magnitudes (a very necessary preliminary to the study of incommensurables),
X. 1 comes exactly where it should be.

Euclid uses X. 1 to prove not only xi1. 2 but x11. 5 (that pyramids with the
same height and triangular bases are to one another as their bases), by means
of which he proves (x11. 7 and Por.) that any pyramid is a third part of the
prism which has the same base and equal height, and x11. 10 (that any cone
is a third part of the cylinder which has the same base and equal height),
besides other similar propositions. Now x11. 7 Por. and x11. 10 are theorems
specifically attributed to Eudoxus by Archimedes (On the Sphere and Cylinder,
Preface), who says in another place (Quadrature of the Parabola, Preface) that
the first of the two, and the theorem that circles are to one another as the
squares on their diameters, were proved by means of a certain lemma which
he states as follows: “Of unequal lines, unequal surfaces, or unequal solids,
the greater exceeds the less by such a magnitude as is capable, if added
[continually] to itself, of exceeding any magnitude of those which are
comparable with one another,” i.e. of magnitudes of the same kind as the
original magnitudes. Archimedes also says (/oc. cit.) that the second of
the two theorems which he attributes to Eudoxus (Eucl. xi1. 10) was
proved by means of ‘‘a lemma similar to the aforesaid.” The lemma
stated thus by Archimedes is decidedly different from X. 1, which, however,
Archimedes himself uses several times, while he refers to the use of it
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in xX11. 2 (On the Sphere and Cylinder, 1. 6). As I have before suggested
(The Works of Archimedes, p. xlviii), the apparent difficulty caused by the
mention of #70 lemmas in connexion with the theorem of Eucl. x11. 2 may be
explained by reference to the proof of x. 1. Euclid there takes the lesser
magnitude and says that it is possible, by multiplying it, to make it some time
exceed the greater, and this statement he clearly bases on the 4th definition of
Book v., to the effect that “magnitudes are said to bear a ratio to one another
which can, if multiplied, exceed one another.” Since then the smaller
magnitude in x. 1 may be regarded as the difference between some two
unequal magnitudes, it is clear that the lemma stated by Archimedes is in
substance used to prove the lemma in x. 1, which appears to play so much
larger a part in the investigations of quadrature and cubature which have come
down to us.

Besides being employed in Eucl. X. 1, the “ Axiom of Archimedes” appears
in Aristotle, who also practically quotes the result of x. 1 itself. Thus he
says, Physics viil. 10, 266 b 2, ““ By continually adding to a finite (magnitude)
I shall exceed any definite (magnitude), and similarly by continually subtract-
ing from it I shall arrive at something less than it,” and 7. n1. 7, 207 b 10
“For bisections of a magnitude are endless.” It is thus somewhat misleading
to use the term *Archimedes’ Axiom” for the “lemma” quoted by him,
since he makes no claim to be the discoverer of it, and it was obviously much
earlier.

Stolz (quoted by G. Vitali in Questions riguardants la geometria elementare,
PP- 91—2) showed how to prove the so-called Axiom or Postulate of Archimedes
by means of the Postulate of Dedekind, thus. Suppose the two magnitudes
to be straight lines. It is required to prove that, given two straight lines, there
always exists a multiple of the smaller whick is greater than the other.

Let the straight lines be so placed that they have a common extremity and
the smaller lies along the other on the same side of the common extremity.

If AC be the greater and 4.8 the smaller, we have to prove that there
exists an integral number # such that . A8 > AC.

Suppose that this is not true but that there are some points, like B, not
coincident with the extremity A4, and such that, 7 being any integer however
great, n. AB < AC; and we have to prove that this assumption leads to an
absurdity.

A X Y 8 (>

The points of 4C may be regarded as distributed into two “parts,” namely
(1) points A for which there exists no integer # such that n. 44> AC,

(2) points X for which an integer # does exist such that n. AKX > AC.

This division into parts satisfies the conditions for the application of
Dedekind’s Postulate, and therefore there exists a point A such that the
points of AM belong to the first part and those of MC to the second part.

Take now a point ¥ on MC such that Y < AM. The middle point (X)
of AY will fall between 4 and A and will therefore belong to the first part ;
but, since there exists an integer n» such that n. 4Y > AC, it follows that
2n. AX > AC: which is contrary to the hypothesis.
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ProrosiTION 2.

If, when the less of two unequal magnitudes is continually
subtracted in turn from the greater, that whick is left never
measures the ome before it, the magnitudes will be incom-
mensurable. :

For, there being two unequal magnitudes 48, CD, and
AB being the less, when the less is continually subtracted
in turn from the greater, let that which is left over never
measure the one before it;

I say that the magnitudes 48, CD are incommensurable.
E A—2 B

%

For, if they are commensurable, some magnitude will
measure them.
Let a magnitude measure them, if possible, and let it be £;

let AB, measuring 7D, leave CF less than itself,
let CF measuring BG, leave AG less than itself,

and let this process be repeated continually, until there is left
some magnitude which is less than £.

Suppose this done, and let there be left 4G less than £.
Then, since £ measures A8, :

while A8 measures DF,

therefore £ will also measure F~D. .
But it measures the whole CD also;

therefore it will also measure the remainder CF.
But CF measures BG ;

therefore £ also measures BG.
But it measures the whole 423 also;

therefore it will also measure the remainder A4 G, the greater
the less:
which is impossible.

Therefore no magnitude will measure the magnitudes A4 5,
CD;
therefore the magnitudes 45, CD are incommensurable,

[x. Def. 1]
Therefore etc.
H, E. IIL. 2
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This proposition states the test for incommensurable magnitudes, founded
on the usual operation for finding the greatest common measure. The sign
of the incommensurability of two magnitudes is that this operation never
comes to an end, while the successive remainders become smaller and smaller
until they are less than any assigned magnitude.

Observe that Euclid says “let this process be repeated continually until
there is left some magnitude which is less than £.” Here he evidently
assumes that the process wi// some time produce a remainder less than any
assigned magnitude £. Now this is by no means selfevident, and yet
Heiberg (though so careful to supply references) and Lorenz do not refer to
the basis of the assumption, which is in reality x. 1, as Billingsley and
Williamson were shrewd enough to see. The fact is that, if we set off a
smaller magnitude once or oftener along a greater which it does not exactly
measure, until the remainder is less than the smaller magnitude, we take away
from the greater more than its kalf. Thus, in the figure, D is more than the
half of CD, and BG more than the half of 4B. If we continued the process,
AG marked off along CF as many times as possible would cut off more than
its half ; next, more than half 4G would be cut off, and so on. Hence along
CD, AB alternately the process would cut off more than half, then more than
half the remainder and so on, so that on 4ot/ lines we should ultimately
arrive at a remainder less than any assigned length.

The method of finding the greatest common measure exhibited in this
proposition and the next is of course again the same as that which we use and
which may be shown thus:

b)a(s
Y.

c)b(qg
gc
d)c(r
rd
¢

The proof too is the same as ours, taking just the same form, as shown in the
notes to the similar propositions vii. 1, 2 above. In the present case the
hypothesis is that the process never stops, and it is required to prove that a, &
cannot in that case have any common measure, as /. For suppose that £ is a
common measure, and suppose the process to be continued until the remainder
¢, say, is less than /.

Then, since f measures a, 4, it measures a — g4, or ¢.

Since f measures &, ¢, it measures 4 — ¢g¢, or 4; and, since f measures ¢, d,
it measures ¢ — 7d, or ¢: which is impossible, since ¢ < f. :

Euclid assumes as axiomatic that, if / measures 4, 4, it measures ma + nb.

In practice, of course, it is often unnecessary to carry the process far in
order to see that it will never stop, and consequently that the magnitudes are
incommensurable. A good instance is pointed out by Allman (Greek Geometry
JSrom Thales to Euclid, pp. 42, 137—8). Euclid proves in xu1. 5 that, if 458
be cut in extreme and mean ratio at C, and if
DA equal to AC be added, then DB isalso cut D A ¢ B8
in extreme and mean ratio at 4. This is indeed ) '
obvious from the proof of 11. 11. It follows conversely that, if BD is cut into
extreme and mean ratio at 4, and 4C, equal to the lesser segment 4.0, be
subtracted from the greater 4B, 4B is similarly divided at C. We can then
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mark off from 4 C a portion equal to CB, and 4C will then be similarly divided,
and so on. Now the greater segment in a line thus divided is greater than
half the line, but it follows from xii1. 3 that it is less than twice the lesser
segment, i.e. the lesser segment can never be marked off more than once from
the greater. Our process of marking off the lesser segment from the greater
continually is thus exactly that of finding the greatest common measure. If,
therefore, the segments were commensurable, the process would stop. But it
clearly does not ; therefore the segments are incommensurable.

Allman expresses the opinion that it was rather in connexion with the line
cut in extreme and mean ratio than with reference to the diagonal and side
of a square that Pythagoras discovered incommensurable magnitudes. But
the evidence seems to put it beyond doubt that the Pythagoreans did discover
the incommensurability of ,/2 and devoted much attention to this particular
case. The view of Allman does not therefore commend itself to me, though
it is likely enough that the Pythagoreans were aware of the incommensura-
bility of the segments of a line cut in extreme and mean ratio. At all events
the Pythagoreans could hardly have carried their investigations into the in-
commensurability of the segments of this line very far, since Theaetetus is
said to have made the first classification of irrationals, and to him is also,
with reasonable probability, attributed the substance of the first part of Eucl.
XIIL., in the sixth proposition of which occurs the proof that the segments of a
rational straight line cut into extreme and mean ratio are apofomes.

Again, the incommensurability of ,/2 can be proved by a method
practically equivalent to that of X. 2, and without carrying the process very
far. This method is given in Chrystal’s Zexs-

book of Algebra (1. p. 270). Let d, a be the B a A

diagonal and side respectively of a square

ABCD. Mark off 4F along AC equal to a.

Draw FE at right angles to 4C meeting BC

in E. IS

It is easily proved that SN d
BE = EF= FC, o & £
CF=AC-AB=d-a.......... (1) | 7
CE=CB-CF=a-(d-a) &
=2a—-d......... (2)

Suppose, if possible, that 4, @ are commensurable. If 4, a are both
commensurably expressible in terms of any finite unit, each must be an
integral multiple of a certain finite unit.

But from (1) it follows that C# and from (2) it follows that CE, is an
integral multiple of the same unit.

And CF, CE are the side and diagonal of a square CFEG, the side of
which is lss than half the side of the original square. 1f a,, d, are the side and
diagonal of this square,

a=d-a }
dy=2a-d)°
Similarly we can form a square with side @; and diagonal 4; which are less

than half q,, 4, respectively, and a,, 4, must be integral multiples of the same
unit, where

ay=d, - a,
dy=2a,—d,;
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and this process may be continued indefinitely until (x. 1) we have a square
as small as we please, the side and diagonal of which are integral multiples of
a finite unit: which is absurd.

Therefore a, d are incommensurable.

It will be observed that this method is the opposite of that shown in the
Pythagorean series of side- and diagonal-numbers, the squares being
successively smaller instead of larger.

ProrosITION 3.

Given two commensurable magnitudes, to find their greatest
common measure.

Let the two given commensurable magnitudes be 45, CD
of which 428 is the less;
thus it is required to find the greatest common measure of
AB, CD.

Now the magnitude 425 either measures CD or it does

not.

If then it measures it—and it measures itself also—AZB is
a common measure of A8, CD.

And it is manifest that it is also the greatest ;
for a greater magnitude than the magnitude 48 will not
measure AB5.

8 a-f 8

C E D

Next, let A8 not measure CD.

Then, if the less be continually subtracted in turn from
the greater, that which is left over will sometime measure
the one before it, because A58, CD are not incommensurable;

[cf. x. 2
let AB, measuring £D, leave E£C less than itself, :

let £C, measuring FB, leave AF less than itself,
and let AF measure CE.
Since, then, AF measures CE,
while CE measures 5,
therefore 4F will also measure ~5.
But it measures itself also ;
therefore 4 F will also measure the whole 45.
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But A8 measures DE ;
therefore A F will also measure £D.
But it measures CZ also ;
therefore it also measures the whole CD.
Therefore AF is a common measure of A8, CD.

I say next that it is also the greatest.

For, if not, there will be some magnitude greater than 4/
which will measure A8, CD.

Let it be G.

Since then G measures 4B,

while 4.8 measures £D,
therefore G will also measure £D.
But it measures the whole CD also ;
therefore G will also measure the remainder CE.
But CE£ measures FB;
therefore G will also measure F~5.
But it measures the whole 453 also,
and it will therefore measure the remainder 47, the greater
the less:
which is impossible.
Therefore no magnitude greater than AF will measure
AB, CD;
therefore AF is the greatest common measure of 48, CD.
Therefore the greatest common measure of the two given
commensurable magnitudes 45, CD has been found.
Q. E. D.

Porism. From this it is manifest that, if a magnitude
measure two magnitudes, it will also measure their greatest
common measure.

This proposition for two commensurable magnitudes is, mutatis mutandss,
exactly the same as vi1. 2 for numbers. We have the process
b)a(p

»

)b(q
il
d)e(r

rd

where ¢ is equal to 77 and therefore there is no remainder.
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It is then proved that 4 is a common measure of a, 4; and next, by a
reductio ad absurdum, that it is the greafest common measure, since any
common measure must measure @, and no magnitude greater than d can
measure d. The reductio ad absurdum is of course one of form only.

The Porism corresponds exactly to the Porism to vilL. 2.

The process of finding the greatest common measure is probably given in
this Book, not only for the sake of completeness, but because in X. 5 a
common measure of two magnitudes 4, B is assumed and used, and therefore
it is important to show that such a measure can be jfound if not already
known.

PROPOSITION 4.

Given three commensurable magnitudes, to find their greatest
common measure.

Let A, B, C be the three given commensurable magnitudes;
thus it is required to find the greatest
common measure of 4, B, C. A—
Let the greatest common measure B————
of the two magnitudes 4, B be taken, ¢—
and let it be D ; [x. 3] D
then D either measures C, or does
not measure it.
First, let it measure it.
Since then D measures C,
while it also measures A4, B,
therefore D is a common measure of 4, B, C.
And it is manifest that it is also the greatest ;
for a greater magnitude than the magnitude 2 does not
measure A4, B.

Next, let D not measure C.
I say first that C, D are commensurable.
For, since A, B, C are commensurable,

some magnitude will measure them,
and this will of course measure 4, B also;

so that it will also measure the greatest common measure of
A, B, name]y D. [x. 3, Por.]

But it also measures C;
so that the said magnitude will measure C, D;
therefore C, D are commensurable.
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Now let their greatest common measure be taken, and let
it be £. [x. 3]
Since then £ measures D,
while D measures 4, 5,
therefore £ will also measure 4, B.
But it measures C also;
therefore £ measures A4, B, C;
therefore £ is a common measure of 4, B, C.

I say next that it is also the greatest.
For, if possnble, let there be some magnitude / greater than
E, and let it measure 4, B, C.

Now, since # measures 4, B, C,
it will also measure 4, B,

and will measure the greatest common measure of 4, 5.
[x. 3, Por.]
But the greatest common measure of 4, Bis D;

therefore /" measures D.
But it measures C also;
therefore / measures C, D ;
therefore 7 will also measure the greatest common measure
of C, D. [x. 3, Por.]
But that is £';
therefore 7 will measure £, the greater the less :
which is impossible.
Therefore no magnitude greater than the magnitude £
will measure 4, B, C;

therefore £ is the greatest common measure of 4, B, C if D
do not measure C,

and, if it measure it, 2 is itself the greatest common measure.

Therefore the greatest common measure of the three given
commensurable magnitudes has been found.

PorisM. From this it is manifest that, if a magnitude
measure three magnitudes, it will also measure their greatest
common measure.

Similarly too, with more magnitudes, the greatest common
measure can be found, and the porism can be extended.

Q. E. D.
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This proposition again corresponds exactly to vii. 3 for numbers. As
there Euclid thinks it necessary to prove that, a, 4, ¢ not being prime to one
another, 4 and ¢ are also not prime to one another, so here he thinks it
necessary to prove that d, ¢ are commensurable, as they must be since any
common measure of a, 4/ must be a measure of their greatest common
measure 4 (X. 3, Por.).

The argument in the proof that ¢, the greatest common measure of 4, ¢, is
the greatest common measure of a, 4, ¢, is the same as that in vii. 3 and X. 3.

The Porism contains the extension of the process to the case of four
or more magnitudes, corresponding to Heron’s remark with regard to the
similar extension of viI. 3 to the case of four or more mumbers.

ProrosITION 5.

Commensurable magnitudes have to ome another the ratio
whick a number has to a number.

Let 4, B be commensurable magnitudes ;

I say that 4 has to B the ratio which a number has to a
number. :

For, since 4, B are commensurable, some magnitude will
measure them,
Let it measure them, and let it be C,

A B c
D

And, as many times as C measures 4, so many units let
there be in D;

ztl)gd, as many times as C measures B, so many units let there
in £,

Since then C measures 4 according to the units in D,
while the unit also measures D according to the units in it,

thet:efore the unit measures the number D the same number
of times as the magnitude C measures A4 ;

therefore, as Cis to A4, so is the unit to D ; [vir. Def. 20]
therefore, inversely, as A4 is to C, so is D to the unit.
[cf. v. 7, Por.]

Again, since C measures B according to the units in £,
while the unit also measures £ according to the units in it,
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therefore the unit measures £ the same number of times as C
measures 5 ;

therefore, as C is to B, so is the unit to £.
But it was also proved that,
as A is to C, so is D to the unit ;
therefore, ex aeguals,
as A is to B, so is the number D to £. [v. 22]

Therefore the commensurable magnitudes 4, B have to
one another the ratio which the number D has to the number £.
Q. E. D.

The argument is as follows. If a, 4 be commensurable magnitudes, they
have some common measure ¢, and

a = me,
b = ne,
where m, n are integers.
It follows that CLB=T M euininniniineiniiiinininnnen wee(1),
or, inversely, a:c=m:1;
and also that c:b=1:m,
so that, ex aequali, a:b=m:n.

It will be observed that, in stating the proportion (1), Euclid is merely
expressing the fact that @ is the same multiple of ¢ that m is of 1. In other
words, he rests the statement on the definition of proportion in viL Def. zo.
This, however, is applicable only to four numbers, and ¢, a are not numbers but
magnitudes. Hence the statement of the proportion is not legitimate unless
it is proved that it is true in the sense of v. Def. § with regard to magnitudes
in general, the numbers 1, m being magnitudes. Similarly with regard to the
other proportions in the proposition.

There is, therefore, a hiatus. Euclid ought to have proved that magnitudes
which are proportional in the sense of vi1. Def. 20 are also proportional in the
sense of v. Def. 5, or that the proportion of numbers is included in the
proportion of magnitudes as a particular case. Simson has proved this in his
Proposition C inserted in Book v. (see Vol. 11. pp. 126—8). The portion of
that proposition which is required here is the proof that,

if a=mb
c=md } !
then a:b=c:d, in the sense of v. Def. 5.
Take any equimultiples pa, ¢ of a, ¢ and any equimultiples ¢3, ¢d of , d.
Now pa=pmb }
pc=pmd)’

But, according as pmb > = < gb, pmd > = < ¢d.
. Therefore, according as ga > =< ¢b, pa>=< gd.

And pa, pc are any equimultiples of a, ¢, and ¢4, ¢d any equimultiples
of 4, d.

Therefore a:b=c:d. [v. Def. 5.]
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ProrosiTiON 6.

If two magnitudes have to one another the ratio whick a
number has to a number, the magnitudes will be commensurable.

For let the two magnitudes 4, /3 have to one another the
ratio which the number D has to the number £ ;

s | say that the magnitudes 4, B are commensurable.
A 8 C

[
E F
For let 4 be divided into as many equal parts as there
arc units in D,
and let C be equal to one of them ;
and let 7/ be made up of as many magnitudes equal to C as
10 there are units in £.
Since then there are in 4 as many magnitudes equal to C
as there are units in D,
whatever part the unit is of D, the same part is C of A also;
therefore, as C is to A4, so is the unit to D. [vi1. Def. 20)
18 But the unit measures the number D ;
therefore C also measures 4.
And since, as C is to A, so is the unit to D,
therefore, inversely, as A is to C, so is the number D to the
unit. [cf. v. 7, Por.]
o  Again, since there are in F as many magnitudes equal
to C as there are units in £,
therefore, as C is to F, so is the unit to £. [vi1. Def. 20]
But it was also proved that, .
as 4 isto C, so is D to the unit;

as therefore, ex aegnall, as A is to F, sois D to E. [v. 22)
But, as Disto £, sois A to B;
therefore also, as A is to B, so is it to F also. [v. 11]

;herefore A has the same ratio to each of the magnitudes
B F;
» therefore A is equal to £. [v. 9]
But € measures F';
therefore it measures A also.
Further it measures A also;
therefore C measures A, 5.
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35 Therefore 4 is commensurable with B.
Therefore etc.

PorisM. From this it is manifest that, if there be two
numbers, as D, £, and a straight line, as 4, it is possible to
make a straight line [#]such that the given straight line is to

4o it as the number D is to the number £.-

And, if a mean proportional be also taken between 4, F,
as B,

as A is to £, so will the square on A be to the square on 5,
that is, as the first is to the third, so is the figure on the first

45 to that which is similar and similarly described on the second.
[vi. 19, Por.]
But, as 4 is to £, so is the number D to the number £;

therefore it has been contrived that, as the number D is to
the number £, so also is the figure on the straight line 4 to
the figure on the straight line 5. Q. E. D.

15. But the unit measures the number D; therefore C also measures A.
These words are redundant, though they are apparently found in all the Mss.

The same link to connect the proportion of numbers with the proportion
of magnitudes as was necessary in the last proposition is necessary here. This
being premised, the argument is as follows.

Suppose a:b=m:n,
where m, n are (integral) numbers.

Divide a into » parts, each equal to ¢, say,

so that a = mc¢.
Now take 4 such that d=nc
Therefore we have aic=m:1,
and c:d=1:n,
so that, ex aeguali, a:d=m:n
= a : , by hypothesis.

Therefore 4 =d = ne,
so that ¢ measures 4 » times, and @, 4 are commensurable.
The Porism is often used in the later propositions. It follows (1) that, if
a be a given straight line, and m, » any numbers, a straight line x can be
found such that
a:x=m:n.
(2) We can find a straight line y such that
a*:y*=m:n.
For we have only to take y, a mean proportional between a and x, as
reviously found, in which case , y, x are in continued proportion and
Fv. Def. 9]
a:y=a:x
=m:.n.
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ProrosiTION 7.

Incommensurable magnitudes have not to one another the
ratio whick a number has to a number.

Let 4, B be incommensurable magnitudes ;
I say that A has not to B the ratio which a number has to a
number.

For, if A has to B the ratio which a number has to a
number, 4 will be commensurable with 5. [x. 6]

But it is not ;
therefore 4 has not to B the ratio which a
number has to a number.

Therefore etc.

>

ProrosiTION 8.

If two magnitudes have not to one another the ratio whick
a number has to a number, the magnitudes will be incom-
mensurable. '

For let the two magnitudes A4, B not have to one another
the ratio which a number has to a number ;
I say that the magnitudes 4, B are incom-
mensurable.

For, if they are commensurable, 4 will have to B the
ratio which a number has to a number. [x. 5]

But it has not;
therefore the magnitudes 4, B are incommensurable.

Therefore etc.

A
8

ProrosiTION 9.

The squares on straight lines commensurable in length have
to one another the ratio whick a square number has to a square
number; and squarves whick have to one another the ratio
whick a square number has to a square number will also have
their sides commensurable in length. But the squares on
straight lines incommensurable in length have mot to one
another the ratio which a square number has to a square
number ; and squares whick have not lo one another the ratio
which a square number kas to a square number will not kave
their sides commensurable in length either.
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For let 4, B be commensurable in length ;

I say that the square on 4 A 8
has to the square on A3 the G
ratio which a square number o
has to a square number. I

For, since 4 is commensurable in length with 5,
therefore 4 has to B the ratio which a number has to a
number. [x. 5]

Let it have to it the ratio which C has to D.

Since then, as 4 is to B, sois Cto D,
while the ratio of the square on A to the square on B is
duplicate of the ratio of 4 to B,
for similar figures are in the duplicate ratio of their corre-
sponding sides; [v1. 20, Por.]
and the ratio of the square on C to the square on D is duplicate
of the ratio of C to D,

for between two square numbers there is one mean proportional
number, and the square number has to the square number the
ratio duplicate of that which the side has to the side ; [vi. 11]

therefore also, as the square on A is to the square on B, so
is the square on C to the square on D.

Next, as the square on A is to the square on 7, so let
the square on C.be to the square on D ;

I say that A4 is commensurable in length with 5.

For since, as the square on A is to the square on B, so is
the square on C to the square on D,

while the ratio of the square on A4 to the square on B is
duplicate of the ratio of 4 to 5,

and the ratio of the square on C to the square on D is duplicate
of the ratio of C to D,
therefore also, as 4 is to B, so is C to D.

Therefore A4 has to B the ratio which the number C has
to the number D ;

therefore A4 is commensurable in length with 5. [x. 6]

Next, let 4 be incommensurable in length with B ;

I say that the square on 4 has not to the square on 3 the
ratio which a square number has to a square number.

For, if the square on A has to the square on B the ratio
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which a square number has to a square number, 4 will be
commensurable with 5.
But it is not ;

therefore the square on 4 has not to the square on 5 the
ratio which a square number has to a square number.

Again, let the square on 4 not have to the square on 5
the ratio which a square number has to a square number ;

I say that 4 is incommensurable in length with 5.

For, if A is commensurable with B, the square on 4 will
have to the square on B the ratio which a square number has
to a square number.

But it has not;

therefore A4 is not commensurable in length with B.
Therefore etc.

PorismM. And it is manifest from what has been proved
that straight lines commensurable in length are always com-
mensurable in square also, but those commensurable in square
are not always commensurable in length also.

[Lemma. It has been proved in the arithmetical books
that similar plane numbers have to one another the ratio
which a square number has to a square number, [vii 26]

and that, if two numbers have to one another the ratio which
a square number has to a square number, they are similar
plane numbers. [Converse of vi11. 26)

And it is manifest from these propositions that numbers
which are not similar plane numbers, that is, those which
have not their sides proportional, have not to one another
the ratio which a square number has to a square number.

For, if they have, they will be similar plane numbers:
which is contrary to the hypothesis.

Therefore numbers which are not similar plane numbers
have not to one another the ratio which a square number has
to a square number.]

A scholium to this proposition (Schol. x. No. 62) says categorically that
the theorem proved in it was the discovery of Theaetetus.

If a, & be straight lines, and

a:b=m:n,
where m, n are numbers,
then a:b=m
and conversely.
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This inference, which looks so easy when thus symbolically expressed, was
by no means so easy for Euclid owing to the fact that a, 4 are straight lines,
and m, n numbers. He has to pass from a : 4 to a* : 4* by means of vi. 20, Por.
through the duplicate ratio; the square on a is to the square on 4 in the
duplicate ratio of the corresponding sides a, 5. On the other hand, m, »
being numbers, it is vii. 11 which has to be used to show that m®: »® is the
ratio duplicate of m : n.

Then, in order to establish his result, Euclid assumes that, &f fwo ratios are
egual, the ratios whick are thesr duplicates are also equal. This is nowhere
proved in Euclid, but it is an easy inference from v. 22, as shown in my note
on VI. 22,

The converse has to be established in the same careful way, and Euclid
assumes that ratios the duplicates of which are equal are themselves equal.
This is much more troublesome to prove than the converse; for proofs I refer
to the same note on vi. 22.

The second part of the theorem, deduced by reductio ad absurdum from
the first, requires no remark.

In the Greek text there is an addition to the Porism which Heiberg
brackets as superfluous and not in Euclid’s manner. It consists (1) of a sort
of proof, or rather explanation, of the Porism and (2) of a statement and
explanation to the effect that straight lines incommensurable in length are
not necessarily incommensurable in square also, and that straight lines
incommensurable in square are, on the other hand, always incommensurable
in length also.

The Lemma gives expressions for two numbers which have to one another
the ratio of a square number to a square number. Similar plane numbers
are of the form pm . pn and gm . gn, or mnp® and mng®, the ratio of which is
of course the ratio of g* to ¢°.

The converse theorem that, if two numbers have to one another the ratio
of a square number to a square number, the numbers are similar plane
numbers is not, as a matter of fact, proved in the arithmetical Books. It is
the converse of viii. 26 and is used in 1X. 10. Heron gave it (see note on
viIL. 27 above).

Heiberg however gives strong reason for supposing the Lemma to be an
interpolation. It has reference to the next proposition, X. 10, and, as we shall
see, there are so many objections to X. 10 that it can hardly be accepted as
genuine. Moreover there is no reason why, in the Lemma itself, numbers
which are nof similar plane numbers should be brought in as they are.

[ProrosITION 10.

To find two straight lines incommensurable, the one in
length only, and the other in square also, with an assigned
straight line.

Let 4 be the assigned straight line ;

thus it is required to find two straight lines incommensurable,
the one in length only, and the other in square also, with 4.

Let two numbers B, C be set out which have not to one
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another the ratio which a square number has to a square
number, that is, which are not similar plane

numbers ; A
and let it be contrived that, o
as B is to C, so is the square on A4 to E
the square on D c
—for we have learnt how to do this—
[x. 6, Por.]
therefore the square on 4 is commensurable with the square
.on D, [x. 6]

And, since B has not to C the ratio which a square number
has to a square number,

therefore neither has the square on A4 to the square on D the
ratio which a square number has to a square number ;

therefore A4 is incommensurable in length with D. [x. 9]
Let £ be taken a mean proportional between 4, D ;

therefore, as A is to D, so is the square on A4 to the square
on £, [v. Def. 9]

But A4 is incommensurable in length with D;

therefore the square on A is also incommensurable with the
square on £ ; [x. 11]
therefore A is incommensurable in square with £.

Therefore two straight lines D, £ have been found in-
commensurable, D in length only, and £ in square and of
course in length also, with the assigned straight line 4.]

It would appear as though this proposition was intended to supply a
justification for the statement in x. Def. 3 that if s proved that there are an
infinite number of straight lines (2) incommensurable in length only, or
commensurable in square only, and () incommensurable in square, with any
given straight line.

But in truth the proposition could well be dispensed with; and the
positive objections to its genuineness are considerable.

In the first place, it depends on the following proposition, X. 11 ; for the
last step concludes that, since

a@:y'=a:ux,
and a, x are incommensurable in length, therefore a% y* are incommensurable.
But Euclid never commits the irregularity of proving a theorem by means of
a later one. Gregory sought to get over the difficulty by putting x. 10 after
X. 11; but of course, if the order were so inverted, the Lemma would still be
in the wrong place.

Further, the expression éuafouev ydp, “for we have learnt (how to do this),”
is not in Euclid’s manner and betrays the hand of a learner (though the same
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expression is found in the Sectlo Canonis of Euclid, where the reference is
to the Elements).

Lastly the manuscript P has the number 10, in the first hand, at the top
of X. 11, from which it may perhaps be concluded that x. 10 had at first no
number. .

It seems best therefore to reject as spurious both the Lemma and x. 1o.

The argument of X. 10 is simple. If @ be a given straight line and m, »
numbers which have not to one another the ratio of square to square, take x
such that :

a’:x*=m:n, [x. 6, Por.]
whence a4, x are incommensurable in length. [x. 9]
Then take y a mean proportional between a, x, whence
a’:yl=a:x [v. Def. 9]
[= m : Jn],

and x is incommensurable in length only, while y is incommensurable in
square as well as in length, with a.

PRoOPOSITION 11.

If four magnitudes be proportional, and the first be com-
mensurable with the second, the third will also be commensurable
with the fourth ; and, if the first be incommensurable with the
second, the thivd will also be incommensurable with the fourth.

Let A, B, C, D be four magnitudes in proportion, so
that, as 4 is to B, so is C
to D, A B8
and let 4 be commensurable C——7Mm— D
with B ;

I say that C will also be commensurable with D.

For, since A is commensurable with 5,
therefore 4 has to A the ratio which a number has to a
number. [x. 5]

And, as A isto B, sois Cto D;
therefore C also has to D the ratio which a number has to a
number ;
therefore C is commensurable with D, [x. 6]

Next, let 4 be incommensurable with 7 ;
I say that C will also be incommensurable with D.

For, since A is incommensurable with 3,
therefore A has not to B the ratio which a number has to a
number. [x. 7]

H. E. 1L 3
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And, as A is to B, sois C to D ;

therefore neither has C to D the ratio which a number has to
a number ;

therefore C is incommensurable with D. [x. 8]
Therefore etc.

I shall henceforth, for the sake of brevity, use symbols for the terms
“commensurable (with)” and “incommensurable (with)” according to the
varieties described in X. Defl. 1—4. The symbols are taken from Lorenz
and seem convenient.

Commensurable and commensurable with, in relation to areas, and com-
mensurable in length and commensurable in length with, in relation to straight
lines, will be denoted by ~.

Commensurable in square only or commensurable in square only with (terms
applicable only to straight lines) will be denoted by ~.

Incommensurable (with), of areas, and incommensurable (with), of straight
lines will be denoted by .

Incommensurable in square (with) (a term applicable to straight lines only)
will be denoted by .

Suppose a, b, ¢, 4 to be four magnitudes such that

a:b=c:d.
Then (1), if @ ~ 4, a:b=m:n, where m, n are integers, [x. 5]

whence c:d=m: n,
and therefore cn~d. [x. 6]
(2) Ifacvsd, a:b+m:n, [x. 7]

so that c:d+m:n,
whence cvd. [x. 8]

ProrosiTION 12.

Magnitudes commensurable with the same magnitude are
commensurable with one another also.

For let each of the magnitudes 4, B be commensurable
with C;
I say that A is also commensurable with 5.

A c ;]

—F —K
G —_—

For, since A is commensurable with C,

therefore 4 has to C the ratio which a number has to a
number. [x. 5]
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Let it have the ratio which D has to £.
Again, since C is commensurable with B,

therefore C has to B the ratio which a number has to a
number. [x. 5]

Let it have the ratio which # has to G.

And, given any number of ratips we please, namely the
ratio which D has to £ and that which # has to G,

let the numbers /A, K, L be taken continuously in the given
ratios ; [cf. vinL. 4]

so that, as D isto £, sois H to K,
and, as Fisto G, sois K to L.
Since, then, as A isto C, so is D to E,
while, as D is to £, so is H to KX,
therefore also, as 4 is to C, so is A to K. [v. 11]
Again, since, as C is to B, so is F to G,
while, as Fisto G, sois K to L,

therefore also, as Cis to B, so is K to L. [v. 11]
But also, as A isto C, sois A to K;
therefore, ex aequali, as A is to B, sois A to L. [v. 22]

Therefore 4 has to B the ratio which a number has to a
number ;

therefore A4 is commensurable with 5. [x. 6]

Therefore etc.
Q. E. D.

We have merely to go through the process of compounding two ratios in
numbers.

Suppose a, b each ~c.
Therefore a:c=m:n, say, [x. 5]
c:b=p:gq, say.
Now m:n=mp: np,
and pig=np: ng
Therefore a:c=mp: np,
c:b=np: ng,
whence, ex aequali, a:b=mp: nq,
so that anb. [x. 6]
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ProrosiTiON 13.

If two magnitudes be commensurable, and the one of them
be incommensurable with any magnitude, the rvemaining one
will also be incommensurable with the same.

Let A4, B be two commensurable magnitudes, and let one
of them, A, be incommensurable with

any other magnitude C; ) A
I say that the remaining one, B, will ¢
also be incommensurable with C. B8

For, if B is commensurable with C,
while A4 is also commensurable with 5,
A is also commensurable with C. [x. 12]
But it is also incommensurable with it :
which is impossible.
Therefore 2 is not commensurable with C;
therefore it is incommensurable with it.
Therefore etc.

LEMMA.

Given two unequal straight lines, to find by what square the
square on the greater is greater than the square on the less.

Let 4B, C be the given two unequal straight lines, and
let A8 be the greater of them ;

thus it is required to find by what D
square the square on 45 is greater
than the square on C.

c
Let the semicircle ADZB be de- A B
scribed on A58,
and let 4D be fitted into it equal to C; [wv. 1]

let DB be joined.
It is then manifest that the angle AD2A is right, [ 31]

and that the square on A28 is greater than the square on
AD, that is, C, by the square on D2B5. [r 47]

Similarly also, if two straight lines be given, the straight
line the square on which is equal to the sum of the squares
on them is found in this manner.
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Let AD, DB be the given two straight lines, and let it be
required to find the straight line the square on which is equal
to the sum of the squares on them.

Let them be placed so as to contain a right angle, that
formed by 4D, DB ;
and let 423 be joined.

It is again manifest that the straight line the square on
which is equal to the sum of the squares on 4D, DB is AB.
[ 47]

Q. E. D.

__The lemma gives an obvious method of finding a straight line (¢) equal to
a* =8, where a, b are given straight lines of which a is the greater.

ProrosiTION 14.

If four straight lines be proportional, and the square on
the first be greater than the square on the second by the square
on a straight line commensurable with the first, the square on
the thivd will also be greater than the square on the fourth by

5 the squave on a straight line commensurable with the third.

And, of the square on the first be greater than the square
on the second by the square on a straight line incommensurable
with the first, the square on the third will also be greater than
the square on the fourth by the square on a straight line in-

10 commensurable with the third.

Let 4, B, C, D be four straight lines in proportion, so
that,as 4 isto B, sois C to D ;

and let the square on A4 be greater than |
the square on A by the square on £, and

15 let the square on C be greater than the
square on D by the square on F;

I say that, if 4 is commensurable with Z|
C is also commensurable with 7,

and, if A is incommensurable with £, C is
20 also incommensurable with 7.

For since, as 4 is to B,so is C to D,

therefore also, as the square on A4 is to the square on 7, so is
the square on C to the square on D. [vr. 22]

But the squares on £, B are equal to the square on 4,
25 and the squares on [, £ are equal to the square on C.
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Therefore, as the squares on £, B are to the square on
B, so are the squares on D, F to the square on D ;

therefore, separando, as the square on £ is to the square on
B, so is the square on F to the square on J; [v. 17]

30 therefore also, as £ is to B, sois /7 to D ; [v1. 22]
therefore, inversely, as B is to £, so is D to F.
But, as 4 is to B, so alsois C to D ;
therefore, ex aequali, as A is to £, so is C to F. [v. 22]

Therefore, if 4 is commensurable with £, C is also com-
35 mensurable with 7|

and, if 4 is incommensurable with £, C is also incommen-
surable with #. [x. 11]

Therefore etc.

3, 5, 8, 10. Euclid speaks of the square on the first (third) being irca!er than the square
on the second (fourth) by the square on a straight line commensurable (incommensurable)
““ with #tself (éavrp),” and similarly in all like phrases throughout the Book. For clearness’
sake I substitute ** the first,” * the third,” or whatever it may be, for ‘“itself ” in these cases.

Suppose a, 4, ¢, 4 to be straight lines such that
a:b=c:d ....c... i (1).
It follows [vi. 22] that @:P=cd e, (2).
In order to prove that, convertendo,
a:(@-0)=c:(*-ad%

Euclid has to use a somewhat roundabout method owing to the absence of a
convertendo proposition in his Book v. (which omission Simson supplied by
his Prop. E).

It follows from (2) that

(@-8)+ 8} B ={(@-d) +d% : &,

whence, separando, (@*- &) : = (r2—d°) : d?, [v. 17]
and, inversely, B:(a-8)=da*:(*-d?.
From this and (2), ex aeguali,
a':(a'— ) =c*: (c-d?). [v. 22]
Hence a:Na=F=c: N [vi. 22]
According therefore as @~ or v Va'— &,
crorudEa- A, [x. 11]

If @ ~ Ja*— 4, we may put Ja’—bf:ka, where £ is of the form m/n
and m, n are integers. And if ~a?-/4*=#ka, it follows in this case that

Net —di=ke.



X. 15] PROPOSITIONS 14, 15 39

ProrposiTION 15.

If two commensurable magnitudes be added together, the
whole will also be commensurable with eack of them,; and, if
the whole be commensurable with one of them, the original
magnitudes will also be commensurable.

For let the two commensurable magnitudes 45, BC be
added together ; 8
I say that the whole AC is also A - c
commensurable with each of the

magnitudes A8, BC. °

For, since A5, BC are commensurable, some magnitude
will measure them.

Let it measure them, and let it be D.

Since then D measures A5, BC, it will also measure the
whole AC.

But it measures 4B, BC also;
therefore 2 measures A8, BC, AC;

therefore 4C is commensurable with each of the magnitudes
AB, BC. [x. Def. 1]

Next, let AC be commensurable with A5 ;
I say that A8, BC are also commensurable.

For, since AC, AB are commensurable, some magnitude
will measure them.

Let it measure them, and let it be D.

Since then D measures CA, AZB, it will also measure the
remainder BC.

But it measures A5 also;

therefore D will measure AB, BC;
therefore A8, BC are commensurable. [x. Def. 1]
Therefore etc.

(1) If a, b be any two commensurable magnitudes, they are of the form
mc, nc, where ¢ is a common measure of a, 4 and m, #» some integers.

It follows that a+b=(m+n)c;
therefore (a + 4), being measured by ¢, is commensurable with both a and 4.

(2) If a +4 is commensurable with either @ or 4, say a, we may put
a + b= mc, a=nc, where ¢ is a common measure of (e +4), a, and m, » are
integers.

Subtracting, we have b= (m—n)e,
whence 4 ~ a.
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ProrosiTION 16.

If two incommensurable magnitudes be added together, the
whole will also be incommensurable with each of them ; and, if
the whole be incommensurable with one of them, the original
magnitudes will also be incommensurable.

For let the two incommensurable magnitudes 45, BC be
added together ;

I say that the whole AC is also incommensurable A
with each of the magnitudes 48, BC.

For, if CA, AB are not incommensurable, some

magnitude will measure them.
Let it measure them, if possible, and let it be D. st
Since then D measures CA, AB,

therefore it will also measure the remainder BC.

But it measures AR also; c
therefore D measures AB, BC.

Therefore AB, BC are commensurable ;
but they were also, by hypothesis, incommensurable : *
which is impossible.

Therefore no magnitude will measure CA, A8 ;
therefore CA, A B are incommensurable. [x. Def. 1]

Similarly we can prove that 4C, CB are also incom-

mensurable.
Therefore AC is incommensurable with each of the magni-

tudes A5, BC.

Next, let 4C be incommensurable with one of the magni-

tudes A8, BC.
First, let it be incommensurable with 45 ;

I say that 42, BC are also incommensurable.

For, if they are commensurable, some magnitude will
measure them.

Let it measure them, and let it be D.

Since then D measures A8, BC,
therefore it will also measure the whole 4AC.

But it measures A28 also ;

therefore D measures CA, AB.
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Therefore CA, AB are commensurable ;
but they were also, by hypothesis, incommensurable :
which is impossible.
Therefore no magnitude will measure 45, BC;
therefore AB, BC are incommensurable. [x. Def. 1]
Therefore etc.
LEMMA,
If to any straight line there be applied a parallelogram
deficient by a square figure, the applied parallelogram is equal

Lo the rectangle contained by the segments of the straight line
vesulting from the application.

For let there be applied to the straight line 42 the
parallelogram 40D deficient by the

square figure DB ; 2
I say that 4D is equal to the rectangle
contained by 4C, CA. K S

This is indeed at once manifest ;
for, since DA is a square,
DC is equal to CB;
aglg AD is the rectangle AC, CD, that is, the rectangle 4C,

Therefore etc.

If a be the given straight line, and x the side of the square by which the
applied rectangle is to be deficient, the rectangle is equal to ax — 2%, which is
of course equal to x(a—=x). The rectangle may be written xy, where
x+y=a. Given the area x(a - x), or xy (where x+y=a), two different
applications will give rectangles equal to this area, the sides of the defect
being x or @ - x (x or y) respectively; but the second mode of expression
shows that the rectangles do not differ in form but only in position.

ProrosiTION 17.

If there be two unequal straight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and tf
it divide it into parts whick ave commensurable in length, then

s the square on the greater will be greater than the square on
the less by the square on a stvaight line commensurable with
the greater.

And, tf the square on the greater be greater than the square
on the less by the square on a straight line commensurable with
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10 the greater, and if there be applicd to the greater a parallelogram
equal to the fourth part of the square on the less and deficient
by a square figure, 1t will divide it into parts whick are com-
mensurable in length.

Let A, BC be two unequal straight lines, of which BC is

15 the greater, 4

and let there be applied to BC a parallel- A

ogram equal to the fourth part of the

square on the less, A4, that is, equal to -7

the square on the half of 4, and deficient | '
2o by a square figure. Let this be the &+ é 6 ©

rectangle BD, DC, [cf. L.emma)

and let BD be commensurable in length with DC;

I say that the square on BC is greater than the square on 4
by the square on a straight line commensurable with BC.
25 For let BC be bisected at the point £,
and let £/ be made equal to DE.
Therefore the remainder DC is equal to BF.
And, since the straight line BC has been cut into equal
parts at £, and into unequal parts at D,
30 therefore the rectangle contained by 2D, DC, together with
the square on £, is equal to the square on £C; (1. 5]
And the same is true of their quadruples ;
therefore four times the rectangle 8D, DC, together with
four times the square on DE, is equal to four times the square
sson £C.
But the square on A4 is equal to four times the rectangle
BD, DC;
and the square on DF is equal to four times the square on
DE, for DF is double of DE.
49  And the square on BC is equal to four times the square
on EC, for again BC is double of CE.
Therefore the squares on A, DF are equal to the square
on BC,
so that the square on BC is greater than the square on 4 by
a5 the square on DF.
It is to be proved that BC is also commensurable with DF.
Since BD is commensurable in length with DC,

therefore BC is also commensurable in length with CD. [x.15]
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But CD is commensurable in length with CD, BF, for
so CD is equal to BF. [x. 6]

Therefore BC is also commensurable in length with BF,
CD, [x. 12]

so that BC is also commensurable in length with the remainder
FD; [x. 15]

ss therefore the square on BC is greater than the square on A4
by the square on a straight line commensurable with BC.

Next, let the square on BC be greater than the square on
A by the square on a straight line commensurable with ZC,

let a parallelogram be applied to BC equal to the fourth part
6o of the square on A4 and deficient by a square figure, and let
it be the rectangle 2D, DC.
It is to be proved that B0 is commensurable in length
with DC.
With the same construction, we can prove similarly that
65 the square on BC is greater than the square on A4 by the
square on FD.
But the square on AZC is greater than the square on A
by the square on a straight line commensurable with BC.
Therefore BC is commensurable in length with /D,
70 so that BC is also commensurable in length with the remainder,
the sum of BF, DC. [x. 15]
But the sum of BF, DC is commensurable with DC, [x. 6]
so that Z2C is also commensurable in length with CD; [x. 12]
and therefore, sgparando, BD is commensurable in length
75 with DC. [x. 15]
Therefore etc.

45-  After saying literally that *“the square on BC is greater than the square on A by the
square on DF,” Euclid adds the equivalent expression with vraras in its technical sense,
% BT dpa 7is A ueifor Stwarar 7 AZ. As this is untranslatable in English except by a
paraphrase in practically the same words as have preceded, I have not attempted to
reproduce it.

This proposition gives the condition that the roots of the equation in x,
b!
ax—f:ﬁ(:‘ 4'" say),
are commensurable with a, or that x is expressible in terms of a and integral

numbers, i.e. is of the form ga. No better proof can be found for the fact

that Euclid and the Greeks used their solutions of quadratic equations for
numerical problems. On no other assumption could an claborate discussion
of the conditions of incommensurability of the roots with given lengths or
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with a given number of units of length be explained. 1In a purely geometrical
solution the distinction between commensurable and incommensurable roots
has no point, because each can equally easily be represented by straight lines.
On the other hand, on the assumption that the numerical solution of quadratic
equations was an important part of the system of the Greek geometers,
the distinction between the cases where the roots are commensurable and
incommensurable respectively with a given length or unit becomes of great
importance. Since the Greeks had no means of expressing what we call an
irrational number, the case of an equation with incommensurable roots could
only be represented by them geometrically ; and the geometrical representations
had to serve instead of what we can express by formulae involving surds.

Euclid proves in this proposition and the next that, x being determined
from the equation

x, (a - x) are commensurable in length when v/a*—-#, a are so, and incom-
mensurable in length when ~/a® — &, a are incommensurable ; and conversely.

Observe the similarity of his proof to our algebraical method of solving
the equation. a being represented in the figure by BC, and x by CD,

EF:ED:S—x

and x(a-x)+ (g - )a =2 , by Eucl. 11. s.
If we multiply throughout by 4,

4x(a—x)+4(g—xy=aﬂ

whence, by (1), P+ (a—2x)=a?,
or a’— §=(a—2x)},
and Nt = F _a- 2z,

We have to prove in this proposition
(1) that, if &, (@ — x) are commensurable in length, so are a, Va: - &,
(2) that, if @, Ja* - /* are commensurable in length, so are x, (2 — x).

(1) To prove that a, @ — 2x are commensurable in length Euclid employs
several successive steps, thus.

Since (a — x) ~ x, an~x. [x. 15]
But x ~2x. [x. 6]
Therefore an2x [x. 12]
~ (a - 2x). [x. 15]
That is, an~ o - &
(2) Since a ~ Na'— &, an~a-zx,
whence an~ 2x. [x. 15]
But 2x ~nx; [x. 6]
therefore an~ x, [x. 12]

and hence (@-x)~=x. [x. 15]
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It is often more convenient to use the symmetrical form of equation in
this and similar cases, viz.

:ry—f
4 .
X+y=a

The result with this mode of expression is that
(1) if x ~y, then a ~ J/a?— #*; and
(2) if an \/d’;ﬁ’, then x ~ y.

The truth of the proposition is even easier to see in this case, since
(x=y)=(a*-#)

ProposiTiON 18.

Lf there be two unequal stvaight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and
if ot divide it into parts which are incommensurable, the square
on the greater will be greater than the squarve on the less by
the square on a straight line incommensurable with the greater.

And, if the square on'the greater be greater than the square
on the less by the square on a straight line incommensurable
with the greater, and if theve be applied to the greater a
parallelogram equal to the fourth part of the square on the

less and deficient by a square figure, it divides it into parts
which are incommensurable.

Let A4, BC be two unequal straight lines, of which BC is
the greater, :
and to BC let there be applied a parallelogram equal  ®
to the fourth part of the square on the less, 4, and _|
deficient by a square figure. Let this be the rect- ©
angle BD, DC, [cf. Lemma before x. 17] gl A
and let 2D be incommensurable in length with DC;

I say that the square on BC is greater than the ©
square on A by the square on a straight line incom-
mensurable with ZC.

C

For, with the same construction as before, we can prove
similarly that the square on BC is greater than the square on
A by the square on FD.

It is to be proved that BC is incommensurable in length
with DF.
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Since BD is incommensurable in length with DC,

therefore BC is also incommensurable in length with CD.
[x. 16]

But DC is commensurable with the sum of BF, DC; [x. 6]
therefore BC is also incommensurable with the sum of BFZ,

DC; [x. 13]
so that BC is also incommensurable in length with the remainder
FD. [x. 16]

And the square on BC is greater than the square on 4
by the square on FD;
therefore the square on BC is greater than the square on A4
by the square on a straight line incommensurable with BC.

Again, let the square on BC be greater than the square on
A by the square on a straight line incommensurable with BC,
and let there be applied to BC a parallelogram equal to the
fourth part of the square on 4 and deficient by a square figure.
Let this be the rectangle 5D, DC.

It is to be proved that BD is incommensurable in length
with DC.

For, with the same construction, we can prove similarly
that the square on ZC is greater than the square on 4 by
the square on F2.

But the square on BC is greater than the square on A4 by
the square on a straight line incommensurable with ZC;

therefore BC is incommensurable in length with /D,
so that BC is also commensurable with the remainder, the

sum of BF, DC. [x. 16]
But the sum of BF, DC is commensurable in length with
DC; [x. 6]

therefore BC is also incommensurable in length with DC,

[x. 13]
so that, s¢parando, BD is also incommensurable in length with
DC. [x. 16]

Therefore etc.

With the same notation as before, we have to prove in this proposition that
(1) if (a - x), x are incommensurable in length, so are 4, Ja* — 5, and
(2) if a, ¥a*— 8 are incommensurable in length, so are (a - x), x.
Or, with the equations 5
Xy = Z } ,
x+y=a




X. 18, 19] PROPOSITIONS 18, 19 47

(1) if x vy, then a v J&® = #, and
(2) if a v Ja* =7, then x © y.

The steps are exactly the same as shown under (1) and (2) of the last
note, with o instead of ~, except only in the lines “x ~ 2x” and “2x ~ x”
which are unaltered, while, in the references, x. 13, 16 take the place of x.
12, 15 respectively.

[LeEMMA.

Since it has been proved that straight lines commen-
surable in length are always commensurable in square also,
while those commensurable in square are not always com-
mensurable in length also, but can of course be either
commensurable or incommensurable in length, it is manifest
that, if any straight line be commensurable in length with a
given rational straight line, it is called rational and commen-
surable with the other not only in length but in square also,
since straight lines commensurable in length are always
commensurable in square also.

But, if any straight line be commensurable in square with
a given rational straight line, then, if it is also commensurable
in length with it, it is called in this case also rational and
commensurable with it both in length and in square; but, if
again any straight line, being commensurable in square with a
given rational straight line, be incommensurable in length
with it, it is called in this case also rational but commensurable
in square only. ]

ProrosiTION 19.

The rectangle contained by rational straight lines commen-
surable in length is rational.

For let the rectangle 4AC be contained by the rational
straight lines A8, BC commensurable in

length ; (1)
I say that AC is rational.
For on 4B let the square A0 be de- ©
scribed ;
therefore 4D is rational. [x. Def. 4] ‘
And, since AB is commensurable in A B8

length with BC,
while 4B is equal to BD,
therefore B0 is commensurable in length with BC.
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And, as BD is to BC, sois DA to AC. [vi. 1]
Therefore DA is commensurable with 4C. [x. 11]
But DA is rational ;

therefore AC is also rational. : [x. Def. 4]

Therefore etc.

There is a difﬁculty in the text of the enunciation of this proposition
The Greek runs 7o v1ro prrov paxe o'uy.y.crpmv xatd TWa TGOV wpoftpn;uvwv
Tporwv evbadv mepiexopevoy opooyww.ov pyrov éorw, where the rectangle is
said to be contained by ‘rational straight lines commensurable in length 7»
any of the aforesaid ways.” Now straight lines can only be commensurable
in length in one way, the degrees of commensurability being commensurability
in length and commensurability in square only. But a straight line may be
rational/ in two ways in relation to a grven rational straight line, since it may
be either commensurable 7 length, or commensurable in square only, with the
latter. Hence Billingsley takes xard Twa rév mpoepypévov Tpemrwy with pyrav,
translating “straight lines commensurable in length and rational in any of the
aforesaid ways,” and this agrees with the expression in the next proposition
‘“a straight line once more rational in any of the aforesaid ways”; but the
order of words in the Greck seems to be fatal to this way of translating
the passage.

The best solution of the difficulty seems to be to reject the words “in
any of the aforesaid ways” altogether. They have rcference to the Lemma
which immediately precedes and which is itself open to the gravest suspicion.
It is very prolix, and cannot be called necessary; it appears moreover in
connexion with an addition clearly spurious and therefore relegated by
Heiberg to the Appendix. The addition does not even pretend to be<Euclid’s,
for it begins with the words “for /e calls rational straight lines those....”
Hence we should no doubt relegate the I.emma itself to the Appendix.
August does so and leaves out the suspected words in the enunciation, as I
have done.

Exactly the same arguments apply to the L.emma added (without the
heading “ Lemma”) to X. 23 and the same words “in any of the aforesaid
ways ” used with “medial straight lines commensurable in length” in the
enunciation of X. 24. The said Lemma must stand or fall with that now in
question, since it refers to it in terms: “And in the same way as was explained
in the case of rationals....”

Hence I have bracketed the Lemma added to x. 23 and left out the
objectionable words in the enunciation of x. 24.

If p be one of the given rational straight lines (rational of course in the
sense of X. Def. 3), the other can be denoted by 4p, where £ is, as usual, of
the form m/n (where m, n are integers). Thus the rectangle is 4p% which is
obviously rational since it is commensurable with p%.  [x. Def. 4.]

A rational rectangle may have any of the forms ad, 4q*, 24 or A4, where
a, b are commensurable with the unit of length, and 4 with the unit of area.

Since Euclid is not able to use 4p as a symbol for a straight line
commensurable in length with p, he has to put his proof in a form corre-
sponding to

P’ kp*=p: kp,
whence, p, £p being commensurable, p?, 4p* are so also. [x. 11]
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ProrposiTION 20.

If a rational area be applied to a rational straight line, it
produces as breadth a straight line vational and commensurable
in length with the straight line to which it is applied.

For let the rational area 4C be applied to A5, a straight
line once more rational in any of the aforesaid
ways, producing BC as breadth ;

I say that BC is rational and commensurable in
length with B4.

For on A2 let the square 4D be described ; 8 A

therefore 4D is rational. [x. Def. 4]
But AC is also rational ;

therefore DA is commensurable with 4C.

And, as DA is to AC, so is DB to BC. c

VI. I
Therefore DA is also commensurable with 2C; [x. 11]

and DB is equal to B4 ;
therefore A28 is also commensurable with BC.
But AZA is rational ;

therefore BC is also rational and commensurable in length
with 4 8.

Therefore etc.

The converse of the last. If p is a rational straight line, any rational area
is of the form £p® If this be “applied” to p, the breadth is #4p commensurable
in length with p and therefore rational. We should reach the same result if
we applied the area to anot/ker rational straight line . The breadth is then

2 2
Wk

m
=— k.o or £, say.
o o n » Sy

ProrosiTION 21.

The rectangle contained by rational strvaight lines commen-
surable in square only ts irrational, and the side of the square
equal lo it is irrational. Let the latter be called medial.

For let the rectangle 4C be contained by the rational
straight lines A4 B, BC commensurable in square only ;

H. E. IIL. 4
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I say that AC is irrational, and the side of the square equal
to it is irrational ;

and let the latter be called medial. D
For on AR let the square 4D be described ;
therefore 4D is rational. [x. Def. 4] 8 A

And, since A7 is incommensurable in length
with BC,

for by hypothesis they are commensurable in ¢

square only,

while A8 is equal to BD,

therefore DA is also incommensurable in length with BC.
And, as DB is to BC, sois AD to AC; [vi. 1]

therefore DA is incommensurable with 4C. [x. 11]
But DA is rational ;

therefore AC is irrational,

so that the side of the square equal to 4C is also irrational.
[x. Def. 4]

And let the latter be called medial.
Q. E. D.

A medial straight line, now defined for the first time, is so called because
-it is a mean proportional between two rational straight lines commensurable
in square only. Such straight lines can be denoted by p, p /& A medial

straight line is therefore of the form /p* /£ or #p.  Euclid’s proof that this is
irrational is equivalent to the following. Take p, p/# commensurable in
square only, so that they are incommensurable in length. -

Now pipJk=p': PR,
whence [x. 11] p*s/£ is incommensurable with p? and therefore irrational
[x. Def. 4], so that J/p>\/# is also irrational [#d.).

A medial straight line may evidently take either of the forms /a./B or
Y4B, where of course B is not of the form 44.

LEMMA.

If there be two straight lines, then, as the first is to the
second, so is the square on the first
to the rectangle contained by the
two straight lines.

Let FE, EG be two straight
lines.

I say that, as /£ is to £G, so is the square on F£ to
the rectangle FE, EG.

G

D
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For on FE let the square DF be described,
and let GD be completed.

Since then, as FE is to £G, so is FD to DG, [vi. 1]
and FD is the square on FZ,
and DG the rectangle DE, EG, that is, the rectangle FE, EG,
therefore, as /£ is to £G, so is the square on FE to the
rectangle FE, EG. ' :

Similarly also, as the rectangle GE, EF is to the square
on £F, that is, as GDis to FD, so is GE to EF.

Q. E. D.

If a, 5 be two straight lines,
a:b=a*:ab.

ProrosiTION 22.

The square on a medial straight line, if applied to a
rational straight line, produces as breadth a straight line
rational and incommensurable in length with that to whick it
is applied.

Let A4 be medial and CA rational,

and let a rectangular area B0 equal to the square on 4 be
applied to BC, producing CD as
breadth ;
I say that CD is rational and incom-
mensurable in length with CB. a
For,since A is medial, the square
on it is equal to a rectangular area
contained by rational straight lines
commensurable in square only.
X. 21
Let the square on it be eqfla] to GF.
But the square on it is also equal to 8D ;

therefore B0 is equal to GF.
But it is also equiangular with it;
and in equal and equiangular parallelograms the sides about
the equal angles are reciprocally proportional ; [v1. 14]
therefore, proportionally, as BC is to £G, so is EF to CD.
Therefore also, as the square on BC is to the square on
EG, so is the square on £/ to the square on CD. [v. 22]

4—2

G DO E F
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But the square on CAB is commensurable with the square
on £G, for each of these straight lines is rational ;

therefore the square on £F is also commensurable with the

square on COD. [x. 11]
But the square on £F is rational ;
therefore the square on CD is also rational ; [x. Def. 4]

therefore CD is rational.

And, since £F is incommensurable in length with £G,
for they are commensurable in square only,
and, as £F'is to £G, so is the square on £F to the rectangle

FE, EG, [Lemma]
therefore the square.on EF is incommensurable with the
rectangle FE, EG. [x. 11]

But the square on CD is commensurable with the square
on EF, for the straight lines are rational in square ;

and the rectangle DC, CB is commensurable with the rect-
angle FE, EG, for they are equal to the square on A4 ;

therefore the square on CD is also incommensurable with the

rectangle DC, CAB. [x. 13]
But, as the square on CD is to the rectangle DC, CB, so
is DC to CB; [Lemma)

therefore DC is incommensurable in length with CB.  [x. 11]

Therefore CD is rational and incommensurable in length
with CA.
Q. E. D.

Our algebraical notation makes the result of this proposition almost self-
evndent We have seen that the square of a medial straight line is of the form
J&.p*. 1If we “apply” this area to another rational straight line o, the

2

breadth is “- '-B .

~/ o

straight line, which we may express, lf we please, in the form /#'. o, is Clearly
commensurable with ¢ in square only, and therefore rational but incom-
mensurable in length with o.

Euclid’s proof, necessarily longer, is in two parts.

Suppose that the rectangle /2. p*=0. x.

Then (1) oc:p=.Jk.p:x, [vi. 14])
whence o’ p?=Ap*: a2t [v1. 22]

But o® ~ p?% and therefore 4p* ~ a2 [x. 11]

m . }
This is equal to = Jk.= i) where m, n are integers. The latter
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And #p? is rational ;

therefore x*, and therefore x, is rational. [x. Def. 4]
(2) Since JJ&.p ~p, JE.pvp.
But [Lemma] JE.pip=ko: Jk.p,

whence ko' v JE . P2 [x. 11]
But /4. p* = ox, and £p* ~ 2* (from above) ;

therefore oox; [x. 13]

and, since 2:0x =x:0, [Lemma)

X v o

ProrosiTiON 23.

A straight line commensurable with a medial straight line
s medial,
Let A be medial, and let 2 be commensurable with 4 ;

[ say that A2 is also medial.
For let a rational straight line CD

. A ;]

be set out,
and to CD let the rectangular area CE c
equal to the square on A4 be applied,
producing £D as breadth ;
therefore £ is rational and incommen-
surable in length with CD. [x. 22]

And let the rectangular area CF E D ¥

equal to the square on A be applied to
CD,. producing DF as breadth.
Since then 4 is commensurable with B,

the square on A is also commensurable with the square on 5.
But £C is equal to the square on 4,
and CF is equal to the square on 5; .
therefore £C is commensurable with CZ.
And, as £Cisto CF,sois ED to DF; [vt. 1]
therefore £ is commensurable in length with DF.  [x. 11]
But £D is rational and incommensurable in length with
DC;
therefore DF is also rational [x. Def. 3] and incommensurable
in length with DC. [x. 13]

Therefore CD, DF are rational and commensurable in
square only.
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But the straight line the square on which is equal to the
rectangle contained by rational straight lines commensurable
in square only is medial ; [x. 21]

therefore the side of the square equal to the rectangle CD,
DF is medial.

And B is the side of the square equal to the rectangle
CD, DF;
therefore B is medial.

PorisM. From this it is manifest that an area commen-
surable with a medial area is medial.

[And in the same way as was explained in the case of
rationals [Lemma following x. 18] it follows, as regards medials,
that a straight line commensurable in length with a medial
straight line is called medial and commensurable with it not
only in length but in square also, since, in general, straight
lines commensurable in length are always commensurable in
square also.

But, if any straight line be commensurable in square with
a medial straight line, then, if it is also commensurable in
length with it, the straight lines are called, in this case too,
medial and commensurable in length and in square, but, if in
square only, they are called medial straight lines commen-
surable in square only.]

As explained in the bracketed passage following this proposition, a straight
line commensurable with a medial straight line in sguare only, as well as a
straight line commensurable with it in length, is medial.

Algebraical notation shows this easily.

If k*p be the given straight line, )«k*p is a straight line commensurable

in length with it and J/A. k*p a straight line commensurable with it in square
only.

But Ap and ,/A.p are both rational [x. Def. 3] and therefore can be
expressed by p’, and we thus arrive at kip', which is clearly medial.

Euclid’s proof amounts to the following.

Apply both the areas ,/4.p* and A%/4.p* (or A Jk.p?) to a rational
straight line o.

2 2 2:
The breadths Jk.s_— and A* /4 .% (or AJE. %) are in the ratio of the

areas ,/£.p* and A%/&.p* (or AJ4.p?) themselves and are therefore com-
mensurable.

2
Now [x. 22] /4 .% is rational but incommensurable with a.

2 2:
Therefore A*/%. :—; (or AV %) is so also;
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whence the area A, /%.p* (or AJ£. p?) is contained by two rational straight

lines commensurable in square only, so that )«k*p (or ,,/)\.k*p) is a medial
straight line.

It is in the Porism that we have the first mention of a medial area. It is
the area which is equal to the square on a medial straight line, an area, there-

fore, of the form kip’, which is, as a matter of fact, arrived at, though not
named, before the medial straight line itself (x. 21).

The Porism states that M’}p’ is a medial area, which is indeed obvious.

ProrosiTION 24.

The rectangle contained by medial straight lines commen-
surable in length is medial.

For let the rectangle 4C be contained by the medial
straight lines 48, BC which are commensurable
in length ; o
I say that AC is medial.

For on A2 let the square 4D be described ;
therefore A0 is medial.

And, since A8 is commensurable in length

with BC,
while 428 is equal to BD, o

therefore DB is also commensurable in length
with BC;

>
o

so that DA is also commensurable with AC. [vi. 1, x. 11]
But DA is medial ;
therefore 4AC is also medial. [x. 23, Por.]
Q. E. D.

There is the same difficulty in the text of this enunciation as in that of
X. 19. The Greek says “medial straight lines commensurable in length in
any of the aforesaid ways” ; but straight lines can only be commensurable in
length in one way, though they can be medial in two ways, as explained in the
addition to the preceding proposition, i.e. they can be either commensurable
in length or commensurable in square only with a grven medial straight line.
For the same reason as that explained in the note on X. 19 I have omitted
“in any of the aforesaid ways ” in the enunciation and bracketed the addition
. to X. 23 to which it refers.

Hp and M'*p are medial straight lines commensurable in length. The

rectangle contained by them is Mip?, which may be written 2% and is there-
fore clearly medial.

Euclid’s proof proceeds thus. Let x, Ax be the two medial straight lines
commensurable in length.

Therefore Bix. Ax=x:\x.
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But x ~ Ax, so that 2>~ x. Ax. [x. 11]
Now x* is medial [x. 21];
therefore x . Ax is also medial. [x. 23, Por.]

We may of course write two medial straight lines commensurable i_n__le_ngth
in the forms . mk*p, nktp; and these may either be ma. /B, nJ/aJB, or
m¥ AB, n¥4B.

PRroPOSITION 25,

The rectdng/e contained by medial straight lines commen-
surable in square only is either vational or medial.

For let the rectangle 4C be contained by the medial
straight lines 48, BC which are

commensurable in square only ; A F a
I say that AC is either rational
or medial.
For on AB, BC let the ; 5 c -
squares 4D, BE be described ;
therefore each of the squares o &
AD, BE is medial. k N
Let a rational straight line L

FG be set out,

to /G let there be applied the rectangular parallelogram GA
equal to 4D, producing FH as breadth,

to /M let there be applied the rectangular parallelogram #X
equal to A C, producing /7K as breadth,

and further to X'V let there be similarly applied V'L equal to
BE, producing KL as breadth ;

therefore 7/, HK, KL are in a straight line.
Since then each of the squares 4D, BE is medial,
and 4D is equal to GH, and BE to NL,
therefore each of the rectangles G/, NL is also medial.
And they are applied to the rational straight line /G ;

therefore each of the straight lines /4, KL is rational and
incommensurable in length with #G. [x. 22]

And, since 4D is commensurable with BE,
therefore GH is also commensurable with VL.

And, as GH isto NL, sois FH to KL ; (vt 1)
therefore //7 is commensurable in length with KZ.  [x 11]
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Therefore #H, KL are rational straight lines commen-
surable in length ;

therefore the rectangle /4, KL is rational. [x. 19]
And, since DB is equal to BA, and OB to BC,
therefore, as DA is to BC, so is AB to BO.
~ But, as DB is to BC, sois DA to AC, [vi. 1]
and, as AB is to BO, sois AC to CO; [¢d.]
therefore, as DA is to AC, sois AC to CO.
But AD is equal to GH, AC to MK and CO to NL;
therefore, as GH is to MK, so is MK to NL ;
therefore also, as #H is to HK, so is HK to KL ; [vi.1,v. 11]
therefore the rectangle #/, KL is equal to the square on /K.
VI. 1
But the rectangle /A, KL is rational ; . 27)
therefore the square on /K is also rational.
Therefore ZK is rational.
And, if it is commensurable in length with /G,
HN is rational ; [x. 19]
but, if it is incommensurable in length with #G,

KH, HM are rational straight lines commensurable in square
only, and therefore /N is medial. [x. 21]

Therefore AN is either rational or medial.
But AN is equal to AC;

therefore AC is either rational or medial.
Therefore etc.

Two medial straight lines commensurable in square only are of the form
kip, JA k*p

The rectangle contained by them is .\/A.kip’. Now this is in general
medial ; but, if /A = £ /4, the rectangle is 2%'p% which is rational.

Euclid’s argument is as follows. Let us, for convenience, put x for k*p, so

that the medial straight lines are x, J/A . x.
Form the areas 2%, x. \/A. x, Aa?,

and let these be respectively equal to ow, ov, ow, where o is a rational
straight line.
Since 2% Ax? are medial areas,
SO are o, auw,
whence #, w are respectively rational and ~ o.
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But 2% A Axd

so that ou ~ ow,

or TR (x).
Therefore, », w being both rational, w is rational .. .................. (2)-
Now 2 A= /A At At

or ou oV =0v: 0w,

so that “u:9=v:w,

and vw =10
Hence, by (2), 2%, and therefore 9, is rational ........................... (3)-

Now (a) if.7 ~ o, ov or \/A. 2? is rational;
(B) if v v @, so that v ~ o, av or /A . x? is medial.

ProposITION 26.

A medial area does not exceed a medial area by a rational
area.

For, if possible, let the medial area 48 exceed the medial
area AC by the rational area

DB, A E F E
and let a rational straight line

EF be set out; "

to £F let there be applied the T« a
rectangular parallelogram F/ 8

equal to 4B, producing £/ as H
breadth,

and let the rectangle /~G equal to 4C be subtracted ;
therefore the remainder B0 is equal to the remainder K'A.
But D2ZA is rational ;
therefore K/ is also rational.
Since, then, each of the rectangles 45, AC is medial,
and A28 is equal to £/, and AC to FG,
therefore each of the rectangles #/, FG is also medial.
And they are applied to the rational straight line £F;

therefore each of the straight lines /£, EG is rational and
incommensurable in length with £F. [x. 22]

And, since [ D2 is rational and is equal to K/,
therefore] K/ is [also] rational ;
and it is applied to the rational straight line £F;
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therefore G/ is rational and commensurable in length with
EF. [x. 20]

But £G is also rational, and is incommensurable in length
with £F;
therefore £G is incommensurable in length with GA. [x. 13]

And, as £G is to GH, so is the square on £G to the
rectangle £G, GH ;

therefore the square on £G is incommensurable with the
rectangle £G, GH. [x. 11]

But the squares on £G, GH are commensurable with the
square on £G, for both are rational ;

and twice the rectangle £G, GH is commensurable with the

rectangle £G, GH, for it is double of it ; [x. 6]
therefore the squares on £G, GH are incommensurable with
twice the rectangle £G, GH ; [x. 13]

therefore also the sum of the squares on £G, GH and twice
the rectangle £G, GH, that is, the square on £H [iL 4), is

incommensurable with the squares on £G, GH. [x. 16]
But the squares on £G, GH are rational ;
therefore the square on £/ is irrational. [x. Def. 4]

Therefore £H is irrational.
But it is also rational :
which' is impossible.
Therefore etc.
Q. E. D.

“ Apply ” the two given miedial areas to one and the same rational straight

line p. They can then be written in the form p. # , P A’}p.

The difference is then (,/2— \/A) p*; and the proposition asserts that this
cannot be rational, i.e. (,/£— /A) cannot be equal to #. Cf. the proposition
corresponding to this in algebraical text-books.

To make Euclid’s proof clear we will put x for k*p and y for K&p.
Suppose p(x-y)=ps

and, if possible, let pz be rational, so that £ must be rational and ~ p ...(1).
Since px, py are medial,

x and y are respectively rationaland v p ............... (2).
From (1) and (2), Yoz
Now y:z=3ys

so that y oy
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But - y+22~5
and 2yz ~ ys.
Therefore . y+22 o 2ys,
whence (y+2)P v (P+29,
or x?o (P +32%).

And (3 + 29 is rational ;

therefore % and consequently x, is irrational.
But, by (2), x is rational :

which is impossible.
Therefore pz is not rational.

ProrosiTION 27.
7o find medial straight lines commensurable in square only
which contain a rational rectangle.

Let two rational straight lines 4, B commensurable in
square only be set out ;

let C be taken a mean proportional between

A, B, [v. 13] ?
and let it be contrived that, 6
as Aisto B,sois Cto D. [v112] A 8

Then, since 4, B are rational and com-
mensurable in square only,
the rectangle A, B, that is, the square on C
[vr. 17], is medial. [x. 21]

Therefore C is medial. [x. 21]

And since, as A is to B, sois C to D,

and A, B are commensurable in square only,

therefore C, D are also commensurable in square only. [x. 11]
And C is medial ;

therefore D is also medial. [x. 23, addition]
Therefore C, D are medial and commensurable in square

only.
I say that they also contain a rational rectangle.
For since, as 4 is to B, sois C to D,

therefore, alternately, as 4 is to C, so is B to D. [v. 16]
But, as 4 isto C, sois Cto B;

therefore also, as Cis to B, so is B to D ;

therefore the rectangle C, D is equal to the square on 5.
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But the square on 2B is rational ;
therefore the rectangle C, D is also rational.
Therefore medial straight lines commensurable in square
only have been found which contain a rational rectangle.
Q E. D.

Euclid takes two rational straight lines commensurable in square only, say
P Ao,

Find the mean proportional, i.e. 27

Take x such that piMp=Bpix i (1).

This gives x = o,
and the lines required are B, A,

For (a) #p is medial.

And (B), by (1), since p ~ i,

# p~— I3 P
whence [addition to X. 23], since Hp is medial,
kip is also medial.
The medial straight lines thus found may take either of the forms
(1) VaJB, 88 or (2) ~NAB, \/Bj—ﬁ

a

ProrosiTioN 28.

70 find medial straight lines commensurable in square only
whick contain a medial rectangle.

Let the rational straight lines 4, B, C commensurable in
square only be set out;

let D be taken a mean proportional between 4, B, [v1. 13]
and let it be contrived that,

as Bisto C,sois D to E. [v1. 12]
A
— D
c E

Since A, B are rational straight lines commensurable in
square only,
therefore the rectangle 4, B, that is, the square on D [vi. 17],
is medial. ’ [x. 21]
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Therefore D is medial. [x. 21]
And since B, C are commensurable in square only,

and, as Bisto C,sois D to £,

" therefore [, E are also commensurable in square only. [x. 11]
But D is medial ; '

therefore £ is also medial. [x. 23, addition]

Therefore D, £ are medial straight lines commensurable
in square only.

I say next that they also contain a medial rectangle.

For since, as Bis to C, sois D to £,

therefore, alternately, as B is to D, so is C to £. [v. 16]
But,as Bisto D, sois Dto A4 ;

therefore also, as D is to 4, so is C to £;

therefore the rectangle A4, C is equal to the rectangle D, £.

VL. 16

But the rectangle A, C is medial ; [[x. 21:]|

therefore the rectangle D, £ is also medial.

Therefore medial straight lines commensurable in square
only have been found which contain a medial rectangle.
Q. E. D.

Euclid takes three straight lines comimensurable in square only, i.e. of the
form p, Ao, A , and proceeds as follows.

Take the mean proportional to p, k*p, i.e. k*p.
Then take x such that

k*p:)\%:k*p:x .............................. (1),
so that x = Abp/&t.
k*p, Xip/k* are the required medial straight lines.
For k*p is medial.
Now, by (1), since k*p ~ N X

p X

whence x is also medial [x. 23, addition], while ~ &%p,

Next, by (1), )@p ix= k‘p : k*p
= k* PP
whence x. k*p =al ?, which is medial.

The strlaight lines 4tp, A"p/k* of course take different forms according as
the original straight lines are of the forms (1) a, J/B, \/C, (2) J4, /B, J/C,
(3) ¥4, 8, J/C, and (4) /4, JB, <. T
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E.g. in case (1) they are Ja,/B, \/JB’

in case (z) they are V425, %4,
and so on.
LEMMA 1.

To find two square numbers suck that their sum is also
square.

Let two numbers 45, BC be set out, and let them be
either both even or both odd.

Then since, whether an even A& D ¢ B
‘number is subtracted from an
even number, or an odd number from an odd number, the
remainder is even, . [1x. 24, 26]
therefore the remainder AC is even.

Let AC be bisected at D.

Let 4B, BC also be either similar plane numbers, or
square numbers, which are themselves also similar plane
numbers.

Now the product of 48, BC together with the square on
CD is equal to the square on BD. (1. 6]

And the product of 4B, BC is square, inasmuch as it
was proved that, if two similar plane numbers by multiplying
one another make some number, the product is square. [ix. 1]

Therefore two square numbers, the product of 458, BC,
and the square on CJ), have been found which, when added
together, make the square on BD.

And it is manifest that two square numbers, the square
on BD and the square on CJ, have again been found such
that their difference, the product of AB, BC, is a square,
whenever A8, BC are similar plane numbers.

But when they are not similar plane numbers, two square
numbers, the square on BD and the square on 2DC, have been
found such that their difference, the product of AB, BC, is
not square.

Q E.D.

Euclid’s method of forming right-angled triangles in integral numbers,
already alluded to in the note on 1. 47, is as follows.

Take two similar plane numbers, e.g. mnp?®, mng®, whick are either both even
or both odd, so that their difference is divisible by 2.
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Now the product of the two numbers, or m*#’6’¢, is square, [x. 1]

and, by 1. 6,
mnp® . mng® + (’ﬂ'p’_"_ mng’\* - (M)z,

2

so that the numbers mnpg, } (mnp? — mng*) satisfy the condition that the sum
of their squares is also a square number.

It is also clear that } (mnp®+ mng®), mnpg are numbers such that the
difference of their squares is also square.

LEMMA 2.

To find two square numbers suck that theirr sum is not
square. '

For let the product of 48, BC, as we said, be square,
and CA even,
and let CA4 be bisected by D.

Y .. E .
A G HD F [ 8
It is then manifest that the square product of 45, BC

together with the square on CD is equal to the square on BD.
[See Lemma 1]

Let the unit DE be subtracted ;
therefore the product of 48, BC together with the square on
CE is less than the square on BD.

I say then that the square product of 428, BC together
with the square on CE£ will not be square.

For, if it is square, it is either equal to the square on BE,
or less than the square on ABZ, but cannot any more be
greater, lest the unit be divided.

First, if possible, let the product of 425, BC together
with the square on CZ£ be equal to the square on BE,
and let GA4 be double of the unit DE.

Since then the whole AC is double of the whole CD,
and in them AG is double of DE,
therefore the remainder G'C is also double of the remainder £C;
therefore G'C is bisected by £.

Therefore the product of G5, BC together with the square
on CE is equal to the square on BE. (1. 6]

But the product of 4.8, BC together with the square on
CE is also, by hypothesis, equal to the square on BE;
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therefore the product of GB, BC together with the square on
CE is equal to the product of 4B, BC together with the
square on CE.

And, if the common square on CZ£ be subtracted,
it follows that 43 is equal to GB:
which is absurd.

Therefore the product of 428, BC together with the square
on CE is not equal to the square on BE.

I say next that neither is it less than the square on BE.

For, if possible, let it be equal to the square on BF,
and let /A4 be double of DF.

Now it will again follow that /ZC is double of CF';
so that CH has also been bisected at 7,
and for this reason the product of 75, BC together with the
square on FC is equal to the square on BF. [1. 6]

But, by hypothesis, the product of 45, BC together with
the square on CZ is also equal to the square on BF.

Thus the product of /B, BC together with the square
on CF will also be equal to the product of 48, BC together
with the square on CE£':
which is absurd.

Therefore the product of 48, BC together with the square
on CE is not less than the square on BE.

And it was proved that neither is it equal to the square
on BE.

Therefore the product of 48, BC together with the square
on CE is not square.

Q. E. D.

We can, of course, write the identity in the note on Lemma 1 above (p. 64)
in the simpler form

.t (2550) o (2520

where, as before, mp®, mg® are both odd or both even.
Now, says Euclid,

- 3
mp® . mqg® + (mp—’;—’f—?—’ - x) is not a square number.

This is proved by reductio ad absurdum.
H. E. IIL 5
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_ 3
The number is clearly less than mp®. mg* + (Q’Z_M') , i.e. less than

(mp’ + mq’ :
If then the number is square, its side must be greater than, equal to, or
less than ( mprmy l) the number next less than a :M

But (1) the side cannot be > (M— x) without being equal to
mﬁ’+ mq*

, since they are consecutive numbers.
(2) (mp2 = 2) mg* + mp— mq" 1)2 = ('ﬁf%’f - 1)’. [11. 6]

2 _ 2
If then mp* . mg* + (’fipz—mq - 1) is also equal to (_”_‘_}”_IL"_?’ - l) ,
we must have (mp? — 2) mg* = mp? . mg*,

or mp — 2 = mp?:
which is impossible.

G) It mp.omp+ (’L’I”_—ﬁ’ e (’i}ﬂ’_ Y,
(mp’+mg r)’.

suppose it equal to

But [11. 6] (mp*— 27) mg* + ("’” mg’ r)' - (M_ r)’.
Therefore .
(mf—zr)M+(M—r)’ mp’ mq’+( mp—mg’_ 1)’:

which is impossible.
Hence all three hypotheses are false, and the sum of the squares

2 _
mp? . mg® and (m)_zfﬂ’_ 1)’ is not square.

ProrosiTiON 29.

To find two rational straight lines commensurable in square
only and suck that the square on the greater is greater than
the square on the less by the square on a straight line commen-
surable in length with the greater.

For let there be set out any rational straight line 425,
and two square numbers CD, DE such that their difference
CE is not square ; [Lemma 1]

let there be described on 428 the semicircle A F2B,
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.

and let it be contrived that,
as DC is to CE, so is the square on BA to the square
on AF. [x. 6, Por.]

Let 7B be joined. F
Since, as the square on B4 is to
the square on AF, so is DC to CE,

therefore the square on BA has to

the square on AF the ratio which the 2 8

number DC has to the number C£; 5 & B

therefore the square on BA4 is com-

mensurable with the square on AF. [x. 6]
But the square on A2 is rational ; [x. Def. 4]

therefore the square on A F'is also rational ; (id.)

therefore AF is also rational.

And, since DC has not to CE the ratio which a square
number has to a square number,
neither has the square on B4 to the square on 4AF the ratio
which a square number has to a square number ;
therefore 4B is incommensurable in length with AF. [x. 9]

Therefore BA, AF are rational straight lines commen-
surable in square only.

And since, as DC is to CE, so is the square on BA4 to
the square on AF,
therefore, convertendo, as CD is to DE, so is the square on
AB to the square on BF. [v. 19, Por,, n1. 31, 1. 47]

But CD has to DE the ratio which a square number has
to a square number ;
therefore also the square on 428 has to the square on BF
the ratio which a square number has to a square number ;
therefore 4B is commensurable in length with BF. [x. 9]

And the square on A5 is equal to the squares on AF, FB;
therefore the square on A2 is greater than the square on A/
by the square on BF commensurable with 45.

Therefore there have been found two rational straight
lines BA, AF commensurable in square only and such t%at
the square on the greater 428 is greater than the square on
the less 4 by the square on BF commensurable in length
with 45.

Q. E. D.

5—2
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Take a rational straight line p and two numbers m? 7 such that (m® — 7?)
is not a square.
Take a straight line x such that

mim—nt=p (1),
mt—n?

whence xt= s
and x=pVN1 -4, wherek:.;'.

Then p, pa/1 — 4 are the straight lines required.

It follows from (1) that 2~
and x is rational, but x v p

By (1), convertendo, m®:n®=p?: p? - 23,

so that v/p* —a® ~ p, and in fact = 4p.
According as p is of the form a or ,/4, the straight lines are (1) a, Va* — 8
or (2) /4, NA-#A.

ProrosiTioN 30.

7o find two rational straight lines commensurable in square
only and suck that the square on the grealer is greater than
the square on the less by the squarve on a straight line incom-
mensurable in length with the greater.

Let there be set out a rational straight line 425,
and two square numbers CE, ED
such that their sum CD is not

square ; [Lemma 2] 2

let there be described on A8 the

semicircle 4AFB,

let it be contrived that,

as DC is to CE, so is the square A 8
on BA to the square on AF, I )

[x. 6, Por.]
and let /B be joined.

Then, in a similar manner to the preceding, we can prove
that BA, AF are rational straight lines commensurable in
square only.

And since, as DC is to CE, so is the square on BA to
the square on AF,
therefore, convertendo, as CD is to DE, so is the square on
AR to the square on BF. [v. 19, Por., 111 31, 1. 47)

But CD has not to DE the ratio which a square number
has to a square number ;
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therefore neither has the square on 423 to the square on BF
the ratio which a square number has to a square number ;

therefore 43 is incommensurable in length with BF.  [x. 9]

And the square on A2 is greater than the square on AF
by the square on 7B incommensurable with 425.

Therefore AB, AF are rational straight lines commen-
surable in square only, and the square on 4B is greater than

the square on A4/ by the square on /B incommensurable in
length with A425.

Q. E. D.
In this case we take 2 7* such that 7?+ #? is not square.
Find x such that m+ n?m? = p?: &Y,
3
whence X2 = ';,%? o,
p n
or X = , where 2= —.
i+ m

Then p, J1P+_k§ satisfy the condition.

The proof is after the manner of the proof of the preceding proposition
and need not be repeated.
According as p is of the form a or ,/4, the straight lines take the
> o

form (1) e, \/a’—l—ﬁ—z,, that is, a, ¥a® — B, or (2) /4, ¥4 - B and
J4, Ja-F.

ProrosiTiON 31.

To find two medial straight lines commensurable in square
only, containing a rational rectangle, and suck that the square
on the greater is greater than the square on the less by the
square on a straight line commensurable in length with the
grealer.

Let there be set out two rational straight lines 4, B
commensurable in square only and such that the
square on A, being the greater, is greater than
the square on B the less by the square on a
straight line commensurable in length with 4.

[x. 29]
And let the square on C be equal to the

rectangle 4, 5. .
Now the rectangle 4, B is medial ; [x. 21]

therefore the square on C is also medial ;
therefore C is also medial. [x. 21]
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Let the rectangle C, D be equal to the square on 5.
Now the square on B is rational ;
therefore the rectangle C, D is also rational.
And since, as A4 is to B, so is the rectangle 4, B to the
square on B,
while the square on C is equal to the rectangle 4, B,
and the rectangle C, D is equal to the square on 5,
tC}}erefore, as A is to B, so is the square on C to the rectangle
, D.
But, as the square on C is to the rectangle C, D, so is C
to D;
therefore also, as 4 is to B, so is C to D.
But A4 is commensurable with B in square only ;
therefore C is also commensurable with D in square only. [x. 11]
And C is medial ;
therefore D is also medial. [x. 23, addition]
And since, as A4 is to B, so is C to D,
and the square on A is greater than the square on B by the
square on a straight line commensurable with A4,
therefore also the square on C is greater than the square on
D by the square on a straight line commensurable with C.
[x. 14]
Therefore two medial straight lines C, D, commensurable
in square only and containing a rational rectangle, have been
found, and the square on C is greater than the square on D

by the square on a straight line commensurable in length
with C.

Similarly also it can be proved that the square on C
exceeds the square on D by the square on a straight line
incommensurable with C, when the square on A4 is greater
than the square on B by the square on a straight line incom-
mensurable with A. [x. 30]

I. Take the rational straight lines commensurable in square only found
in x. 29, i.e. p, pV1 = 2.
Take the mean proportional p (1 — k’)* and x such that
p(1-FP oV T R=pV1-2:

Then p (1 -#} x0rp (1- 21 (1- k’)g are straight lines satisfying the
given conditions. .



X. 31, 32] PROPOSITIONS 31, 32 _ 71

For (a) p*V1 -4 is a medial area, and therefore p (1 -k’)* is a medial
straight line ........ccoooiiiiiiiiii (1);

and x.p(1- k’)* = p?(1 — &%) and is therefore a rational area.

B) pyp(1- k’)*, p¥1 - A, x are straight lines in continued proportion, by
construction.
Therefore p:pVI—k’:p(x-—k’)*:x ........................ (2).

(This Euclid has to prove in a somewhat roundabout way by means of the
lemma after x. 21 to the effect that a : 6 = ab : 4*)

From (2) it follows [x. 11] that x ~ p (1 -k’)* ; whence, since p (1 - k’)* is
medial, x or p (1 — k’)’ is medial also.
(y) From (2), since p, p¥/1 — 42 satisfy the remaining condition of the

problem, p (1 -k’)i, p(1 —k’)* do so also [x. 14)
According as p is of the form a or /4, the straight lines take the forms

J—— -
(I) s/a‘\/a’—b’, m’
Y v T oY A -4

or (2) \/A (A —k’A), :/Z__(—_Z:—_—_%.

II. To find medial straight lines commensurable in square only contain-
ing a rational rectangle, and such that the square on one exceeds the square
on the other by the square on a straight line incommensurable with the former,
we simply begin with the rational straight lines having the corresponding

property [x. 30}, viz. p, -‘\/—_f:;_; , and we arrive at the straight lines
1+

P_ . P

+ (+m)i

According as p is of the form a or /4, these (if we use the same
transformation as at the end of the note on x. 30) may take any of the forms

Vadi—F, _2=8

) wWE-B s
A- B

JAd-5)
A-5

Ta@-)

or (2) N4 (4-B),

or ¥4(4-5),

ProposiTION 32.

7o find two medial straight lines commensurable in square
only, containing a medial rectangle, and suck that the square
on the greater is greater than the squarve on the less by the
square on a straight line commensurable with the greater.
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Let there be set out three rational straight lines A4, B, C
commensurable in square only, and such that the square on 4
is greater than the square on C by the square on a straight
line commensurable with 4, ' [x. 29]

and let the square on D be equal to the rectangle 4, 5.

A

D
8

E
C

Therefore the square on 0 is medial ;
therefore 2 is also medial. [x. 21]

Let the rectangle D, £ be equal to the rectangle B, C.
Then since, as the rectangle 4, B is to the rectangle B, C,
sois A to C,

while the square on D is equal to the rectangle 4, 5,

and the rectangle D, £ is equal to the rectangle B, C,

%etzfore, as A4 is to C, so is the square on D to the rectangle
But, as the square on D is to the rectangle D, £, so is D

to £ ;

therefore also, as 4 is to C, so is D to E.
But A4 is commensurable with C in square only ;

therefore D is also commensurable with £ in square only. [x.11]
But D is medial ;

therefore £ is also medial. [x. 23, addition]
And, since, as A isto C,sois D to E,

while the square on A is greater than the square on C by
the square on a straight line commensurable with A4,

therefore also the square on D will be greater than the square
on £ by the square on a straight line commensurable with D.

[x. 14]
I say next that the rectangle D, £ is also medial.

For, since the rectangle B, C is equal to the rectangle D, £,
while the rectangle B, C is medial, [x. 21]
therefore the rectangle D, £ is also medial.

Therefore two medial straight lines D, £, commensurable
in square only, and containing a medial rectangle, have been
found such that the square on the greater is greater than the
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square on the less by the square on a straight line commen-
surable with the greater.

Similarly again it can be proved that the square on D
is greater than the square on £ by the square on a straight
line incommensurable with 2, when the square on A is
greater than the square on C by the square on a straight line

incommensurable with 4. [x. 30]
I. Euclid takes three straight lines of the form p, p JA, p¥1-43,
takes the mean proportional pk* between the first two ...............oeell (1),
and then finds x such that
A oA oW TR (2),

whence x=pAt V1 -4,
and the straight lines pA}, pA? /T — 2 satisfy the given conditions.

Now (a) p)«i is medial.

(B) We have, from (1) and (2),

' p:p\/l—k’:p)&*:x ........................... (3)

whence x ~ p)\* ; and x is therefore medial and ~ pk*.

() x.pM=p M. pN1-A.

But the latter is medial ; [x. 21]
therefore x. pAd, or pAt. pA¥ V1= 2, is medial.

Lastly (8) p, p ~/1 — # have the remaining property in the enunciation ;
therefore pAf, pAt VT2 have it also. [x. 14]

(Euclid has not the assistance of symbols to prove the proportion (3) above.
He therefore uses the lemmas @b :bc=a:c and d?:de=d: ¢ to deduce from
the relations

ab=d?
and d:b:::e}
that a:c=d:e)

The straight lines pad, pki\/ 1— 4 may take any of the following forms
according as the straight lines first taken are

(I) a, ~/B’ \/;"—‘a: (2) ~/A’ \/Bv JA—k’A’ (3) '\/‘4) 5, N/A_PA'

VB(@—-2

(1) JaJB, 7%-5—);
NB(A-#A4
(2) V4B, _(TA_B—);
__ bNA-P4

(8) VEJA, —ag
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II. If the other conditions are the same, but the square on the first
medial straight line is to exceed the square on the second by the square on a
straight line incommensurable with the first, we begin with the three straight

lines p, p /A, P ., and the medial straight lines are
Vi+#

prd
Nk
The possible forms are even more various in this case owing to the more

various forms that the original lines may take, e.g.
(1) a JB, Na*=C;
(2) JA4, 4, NA -
(3) \/A) b’ v A - E;
(4) V4, JB, JA-7;
(s) 'JA: I\/B’ \/A -C;

the medial straight lines corresponding to these being

pA,

(1) vaJB, —J‘%’;
(2) V&J4, é://;:i/;}
(3) ~&JA4, Q#TTTC?
(4) V4B, i@%ﬂ;
(s) Y4B, ‘-’%%9.
LeEMMA.

~ Let ABC be a right-angled triangle having the angle 4
right, and let the perpendicular 4D be

drawn; A

I say that the rectangle CB, BD is

equal to the square on BA,

the rectangle BC, CD equal to the # c
square on CA,

the rectangle 8D, DC equal to the square on AD,

and, further, the rectangle BC, AD equal to the rectangle
BA, AC.
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And first that the rectangle CB, BD is equal to the square
on BA4.

For, since in a right-angled triangle 4D has been drawn
from the right angle perpendicular to the base,
therefore the triangles ABD, ADC are similar both to the
whole 4 BC and to one another. [v1. 8]

And since the triangle 4 BC is similar to the triangle 43D,
therefore, as CBis to BA, so is BA to BD; [v1. 4]
therefore the rectangle CB, BD is equal to the square on 45.

[vi 17]

For the same reason the rectangle BC, CD is also equal

to the square on AC.

And since, if in a right-angled triangle a perpendicular
be drawn from the right angle to the base, the perpendicular
so drawn is a mean proportional between the segments of the
base, [v1. 8, Por.]
therefore, as BD is to DA, sois AD to DC;

therefore the rectangle 8D, DC is equal to the square on AD.

fve. 17]
I say that the rectangle BC, 4D is also equal to the rect-
angle BA, AC. _
For since, as we said, ABC is similar to ABD,
therefore, as BC is to CA, so is BA to AD. [v1. 4]
Therefore the rectangle BC, AD is equal to the rectangle
BA, AC. [v. 16]
Q. E. D.

ProrosiTioN 33.

To find two straight lines incommensurable in square whickh
make the sum of the squares on them rational but the rectangle
contained by them medial.

Let there be set out two rational straight lines 45, BC
commensurable in square only
and such that the square on the
greater A4 B is greater than the F
square on the less BC by the
square on a straight line in- ,
commensurable with 423, A : Es o0 ¢
[x. 3°]
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let BC be bisected at D,

let there be applied to A8 a paralle.logram equal to the square
on either of the straight lines 2D, DC and deficient by a
square figure, and let it be the rectangle AE, EB; [v1. 28]

let the semicircle 4FB be described on A B,
let £F be drawn at right angles to A5,
and let AF, FB be joined.

Then, since AB, BC are unequal straight lines,

and the square on 4B is greater than the square on BC by
the square on a straight line incommensurable with 425,

while there has been applied to 425 a parallelogram equal to
the fourth part of the square on BC, that is, to the square on
half of it, and deficient by a square figure, making the rect-
angle AE, EB,

therefore A F is incommensurable with £25. [x. 18]

And, as AE is to £B, so is the rectangle B4, AE to the
rectangle A5, BE,

while the rectangle BA, AE is equal to the square on 4 F,
and the rectangle 48, BE to the square on BF;

therefore the square on AF is incommensurable with the
square on FB;

therefore 4 F, FB are incommensurable in square.
And, since AR is rational,
therefore the square on A2 is also rational ;

so that the sum of the squares on AF, FB is also rational.
(1 47]
And since, again, the rectangle AE, £B is equal to the
square on EF,

and, by hypothesis, the rectangle 4£, £B is also equal to the
square on B0,

therefore FE is équal to BD;
therefore BC is double of FE,

so that the rectangle 4.8, BC is also commensurable with the
rectangle A B, EF.

But the rectangle A5, BC is medial ; [x. 21]
therefore the rectangle 48, £F is also medial. [x. 23, Por.]
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But the rectangle 45, EF is equal to the rectangle A,
FB; [l.emma)

therefore the rectangle AF, FAB is also medial.

But it was also proved that the sum of the squares on these
straight lines is rational.

Therefore two straight lines A/, FB incommensurable
in square have been found which make the sum of the
squares on them rational, but the rectangle contained by them
medial.

Q E. D.

Euclid takes the straight lines found in x. 30, viz. p, 7—"_:? .
I+

He then solves geometrically the equations

x+y=p
,_ p’ b eereerresiiciiiiiiiine (l)
VIR }
If x, y are the values found, he takes », v such that
w=px
2= py } ................................. (2),
and u, v are straight lines satisfying the conditions of the problem.
Solving algebraically, we get (if x > y)
2221+ =), y=8(1- =)
2 Jiv#/’ 2 Ji+ &/
A
whence . =L \/ +
‘ V2 l LI SR (3)-

0P \/ -k
NE i+
Euclid’s proof that these straight lines fulfil the requirements is as follows.

(a) The constants in the equations (1) satisfy the conditions of x. 18;

therefore x vy
But x:y=4:9
Therefore ut o P,

and u, v are thus incommensurable in square.

(B) #*+v*=p* which is rational.

=P
(7) By (l)’ “/’;:—y_z ~/I +k,'
By (2)’ W=p.\/;—_y
PS

T
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2
But —*
N1+ B

therefore »v is medial.

is a medial area,

Since p, may have any of the three forms

P
N
(l) a, 'Va"'Bv (2) N/A’ \/A—"B) (3) JA» \/A.-——b’,

u, v may have any of the forms

o P, [T

ProrosiTiON 34.

To find two straight lines incommensurable in square whick
make the sum of the squares on them medial but the rectangle
contained by them rational.

Let there be set out two medial straight lines 45, BC,
commensurable in square only, such that the rectangle which
they contain is rational, and the square on A2 is greater than
the square on BC by the square on a straight line incom-
mensurable with 45 ; ' [x. 31, ad fin.]

A F B8 E [

let the semicircle ADAB be described on A28,
let BC be bisected at £,

let there be applied to 42 a parallelogram equal to the square

on BE and deficient by a square figure, namely the rectangle

AF, FB; [v1. 28]

therefore 4/ is incommensurable in length with #B. [x. 18]
Let /D be drawn from £ at right angles to A5,

and let AD, DB be joined.
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Since A F is incommensurable in length with 23,
therefore the rectangle B4, 4 F is also incommensurable with
the rectangle A8, BF. [x. 11]

But the rectangle B4, AF is equal to the square on 4D,
and the rectangle 48, BF to the square on DB ;
therefore the square on 40 is also incommensurable with the
square.on D2B.

And, since the square on A2 is medial,
therefore the sum of the squares on 4D, DA is also medial.

(1. 31, 1. 47]
And, since BC is double of DF,
therefore the rectangle 4.8, BC is also double of the rectangle

AB, FD.
But the rectangle 4.5, BC is rational ;

therefore the rectangle A8, FD is also rational. [x. 6]
But the rectangle AB, FD is equal to the rectangle 4D,
DB; [Lemma]

’
so that the rectangle 4D, DB is also rational.

Therefore two straight lines A0, DB incommensurable
in square have been found which make the sum of the squares
on them medial, but the rectangle contained by them rational.

Q E.D.

In this case we take [x. 31, 2nd part] the medial straight lines

P P
(+at +p)t

Solve the equations

x+y=—"F

(1 +

r=_"r__

e )

and », v are straight lines satisfying the given conditions.
Euclid’s proof is similar to the preceding.

(a) From (1) it follows [x. 18] that

X vy,
whence 7 RVE /A
and », v are thus incommensurable in square.
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3
(B) u’+v’=~/%’,whichisamedialarea.
1

(1) uy = d . A
T M
1 P c . .
= -. —=;, which is a rational area.
2 1+4

Therefore »v is rational.
To find the actual form of », v, we have, by solving the equations (1)
(if x>y),

x=—2-F (W12 +2),
z(1+ 2(1+ )
=;(l+—kz>2(~/l+k’—k);
and hence u= NAF +AB2+ A
Jz(1+
0=J;(I_J~/1+k’ k.

Bearing in mind the forms which may take (see note

(1+ k’)i (1 + k')*
on X. 31), we shall find that », ¥ may have any of the forms

- J(a+JBZJd—B \/(;ﬁBzJT_

’ )

(2) \/(JA+~/1:)~/A—B’ \/(JA—Jf)JA—B;
3) \/(JA+&Z~/A—6” \/(JA-&Z,JA__&S.

ProrosiTION 35.

7o find two straight lines incommensurable in square whick
make the sum of the squares on them medial and the rectangle
contained by them medial and moreover incommensurable witk
the sum of the squares on them.

Let there be set out two medial straight lines 458, BC
commensurable in square only, containing a medial rectangle,
and such that the square on 425 is greater than the square on
BC by the square on a straight line incommensurable with

B; [x. 32, ad fin.]
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let the semicircle 4.DB be described on A8,
and let the rest of the construction be as above.

D

A —F® E ¢
Then, since 4 is incommensurable in length with 725,
[x. 18]
AD is also incommensurable in square with D2A. [x. 11]
And, since the square on 47 is medial,

therefore the sum of the squares on 4D, DB is also medial. |
[ 31, 1. 47]
And, since the rectangle AF, FB is equal to the square

on each of the straight lines BE, DF,

therefore BE is equal to DF’;
therefore BC is double of 7D,

so that the rectangle 48, BC is also double of the rectangle
AB, FD.

But the rectangle 48, BC is médial;
therefore the rectangle 45, FD is also medial. [x. 32, Por.]
And it is equal to the rectangle AD, DB ;

[Lemma after x. 32]
therefore the rectangle 4D, DB is also medial.
And, since A8 is incommensurable in length with BC,
while CB is commensurable with BE,
therefore A8 is also incommensurable in length with BE,
[x. 13]

so that the square on 42 is also incommensurable with the
rectangle 45, BE. [x. 11]

But the squares on 4D, DB are equal to the square on
AB, [r 47]

and the rectangle 4B, FD, that is, the rectangle 4D, DB, is
equal to the rectangle 48, BE;

therefore the sum of the squares on 4D, DB is incommen-
surable with the rectangle 4D, DBA.

H. E III. 6
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Therefore two straight lines 4D, DB incommensurable
in square have _been found which make the sum of the squares
on them medial and the rectangle contained by them medial
and moreover incommensurable with the sum of the squares

on them.
Q. E. D.

Take the medial straight lines found in x. 32 (2nd part), viz.
[SURRS LN oy )

Solve the equations

x+y= pat
_ PR e (1),
e 4(1+A)
and then put W= p;\* .x (2)
= pA* 4
where x, y are the ascertained values of x, y.
Then », v are straight lines satisfying the given conditions.
Euclid proves this as follows.
(a) From (1) it follows [x. 18] that x v y.
Therefore [T RVE /A
and U 0.
8) #* + o8 =p* /A, which is a medial area .................. (3)-
() uv=pt. Vzy
_1 A c o .
= Vi P which is a medial area ............ (4);
therefore »v is medial.
;
8 VL i
©) A %
? VA
h I, WA,
whence P Ny
That is, by (3) and (4),
(ll’ + 1/') v #Y.

The actual values are found thus. Solving the equations (1), we have

x=’£(l + —k —
2 NIEY N

$
LS S
’=3 (I N1+ 2/’
t] — %
whence =&\/ _L_
n u VT I+ ="

S
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According as,p is of the form a or ,/4, we have a variety of forms for
u, v, arrived at by using the same transformations as in the notes on X. 30
and X. 32 (second part), e.g.

o S, fEE,
 JUEAOLIE [0 E,

WA+ N8B W4-9NB.
@ |JeLravE JA9JE,
and the expressions in (2), (3) with 4 in place of ,/B.

ProrosiTiON 36.

If two rational straight lines commensurable in square
only be added together, the whole is irrvational; and let it be
called binomial.

For let two rational straight lines 45, BC commen-
ssurable in square only be added
together ;

I say that the whole AC is ir- A & ¢
rational.
For, since A8 is incommensurable in length with BC—
10 for they are commensurable in square only—
and, as AB is to BC, so is the rectangle A58, BC to the
square on BC,
therefore the rectangle 43, BC is incommensurable with the
square on BC. [x. 11]
15 But twice the rectangle 4B, BC is commensurable with
the rectangle 425, BC [x. 6], and the squares on 45, BC are
commensurable with the square on BC—for 4B, BC are
rational straight lines commensurable in square only— [x. 15]
therefore twice the rectangle 45, BC is incommensurable
20 with the squares on 425, BC. [x. 13]
And, componendo, twice the rectangle AB, BC together
with the squares on 4B, BC, that is, the square on AC [u. 4],
is incommensurable with the sum of the squares on 458, BC.

[x. 16]
But the sum of the squares on A8, BC is rational ;

25 therefore the square on A C is irrational,
so that AC is also irrational. [x. Def. 4]
And let it be called binomial. Q. E. D.

6—2
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Here begins the first hexad of propositions relating to compound irrational
straight lines. The six compound irrational straight lines are formed by
adding two parts, as the corresponding six in Props. 73—78 are formed by
subtraction. The relation between the six irrational straight lines in this and
the next five propositions with those described in Definitions 11. and the
Props. 48—53 following thereon (the first, second, third, fourth, fifth and
sixth binomials) will be seen when we come to Props. 54—59 ; but it may be
stated here that the six compound irrationals in Props. 36—41 can be found
by means of the equivalent of extracting the square root of the compound
irrationals in Xx. 48—s3 (the process being, strictly speaking, the finding of the
sides of the squares equal to the rectangles contained by the latter irrationals
respectively and a rational straight line as the other side), and it is therefore
the further removed compound irrational, so to speak, which is treated first.

In reproducing the proofs of the propositions, I shall for the sake of
simplicity call the two parts of the compound irrational straight line x, 3,
explaining at the outset the forms which x, y really have in each case ; x will
always be supposed to be the greater segment.

In this proposition x, y are of the form p, \/4. p, and (x +y) is proved to
be irrational thus.

x ~y, so that x v ».

Now x:y=x":xy,

so that : x* o xy.
But 2* ~ (2* +?), and xy ~ 2ay;

therefore (= + 3% v 2xy,

and hence (=* + 9 + 2xy) v (2 + 7).

But (x? + 37) is rational ;
therefore (x + )%, and therefore (x + ), is irrational.

This irrational straight line, p + \/4. p, is called a &inomsa/ straight line.
This and the corresponding apgotome (p— /k.p) found in x. 73 are the
positive roots of the equation

—2(1+4)p*. 2+ (1-4)p2p'=0.

ProrosiTioN 37.

If two medial straight lines commensurable in square only
and containing a rational rectangle be added together, the
whole is irvational; and let it be called a first bimedial
straight line.

For let two medial straight lines 48, BC commensurable
in square only and containing
a rational rectangle be added 4 ) c
together ; '
I say that the whole AC is irrational.

For, since A8 is incommensurable in length with BC,

therefore the squares on 428, BC are also incommensurable
with twice the rectangle 4B, BC; [cf. x. 36, 1. g—z0)
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and, componendpo, the squares on AB, BC together with twice
the rectangle 425, BC, that is, the square on AC [ 4), is
incommensurable with the rectangle 425, BC. [x. 16]

But the rectangle 48, BC is rational, for, by hypothesis,
AB, BC are straight lines containing a rational rectangle ;
therefore the square on 4C is irrational ;

therefore AC is irrational. [x. Def. 4]
And let it be called a first bimedial straight line.
Q. E. D,

Here x, y have the forms k*p, k?p respectively, as found in x. 27.
Exactly as in the last case we prove that
22+ v 2xp,
whence (x+)* v 2xy.
But xy is rational ;
therefore (x + y)?, and consequently (x + y), is frrational.

The irrational straight line Bo+ k*p is called a first bimedial straight line.

This and the corresponding first apofome of a medial (k*p - k!p) found in
X. 74 are the positive roots of the equation

-2, k(1+R)p. B+k(1—R)p'=0.

ProrosiTION 38.

If two medial straight lines commensurable in squarve only
and containing a medial rectangle be added together, the whole
is trrational,; and let it be called a second bimedial straight
line.

s For let two medial straight lines 458, BC commensurable
in square only and containing
a medial rectangle be added A B o
together ; N H a
I say that AC is irrational.

1o For let a rational straight
line DE be set out, and let the

parallelogram DF equal to the g F

square on A4 C be applied to DE,

producing DG as breadth. (1. 44]
15 Then, since the square on A4C is equal to the squares on

AB, BC and twice the rectangle A5, BC, (1. 4]

let £/, equal to the squares on 4258, BC, be applied to DE;
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therefore the remainder A F is equal to twice the rectangle
AB, BC.

»  And, since each of the straight lines 458, BC is medial,
therefore the squares on A28, BC are also medial.

But, by hypothesis, twice the rectangle A8, BC is also
medial.

And £H is equal to the squares on 4B, BC,
25 while /A is equal to twice the rectangle A8, BC;
therefore each of the rectangles £/, A F is medial.
And they are applied to the rational straight line DE';

therefore each of the straight lines DA, HG is rational and
incommensurable in length with DE. [x. 22]

3  Since then A28 is incommensurable in length with BC,

and, as A8 is to BC, so is the square on A5 to the rectangle
AB, BC,

therefore the square on 428 is incommensurable with the rect-

angle AB, BC. [x. 11]

35 But the sum of the squares on 4258, BC is commensurable
with the square on 425, [x. 15]
and twice the rectangle 48, BC is commensurable with the

- rectangle A8, BC. [x. 6]
Therefore the sum of the squares on 4B, BC is incom-

4 mensurable with twice the rectangle 458, BC. [x. 13]

But £H is equal to the squares on 45, BC,
and /A F is equal to twice the rectangle 45, BC.
Therefore £H is incommensurable with /A7,

so that D/ is also incommensurable in length with ZG.
[vi 1, x. 11]

45 Therefore DH, HG are rational straight lines commen-
surable in square only ;

so that DG is irrational. [x. 36]
But DE is rational ;

and the rectangle contained by an irrational and a rational
so straight line is irrational ; [cf. x. 20]

therefore the area DF is irrational,
and the side of the square equal to it is irrational.  [x. Def. 4]
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But AC is the side of the square equal to DF;
therefore AC is irrational.

55 And let it be called a second bimedial straight line.
Q E. D.

After proving (1. 21) that eack of the squares on 4B, BC is medial, Euclid
states (IL 24, 26) that £, which is equal to the sum of the squares, is a
medial area, but does not explain why. It is because, by hypothesis, the
squares on 4B, BC are commensurable, so that the sum of the squares is
commensurable with either [x. 15] and is therefore a medial area [x. 23, Por.}

In this case [x. 28, note] x, y are of the forms kip, Aip/k* respectively.
Apply each of the areas (x*+5*) and 2ay to a rational straight line o, ie.
suppose
2+ =ou,
2%y = ov.
Now it follows from the hypothesis, x. 15 and X. 23, Por. that (2* + %) is
a medial area ; and so is 2xy, by hypothesis ;
therefore ou, ov are medial areas.

" Therefore each of the straight lines «, v is rationaland v & ..:..... (1).
Again xvy;
therefore 22 o xp.
But Brnxt+y and xy ~ 2xy;
therefore x4y o 2xy,
or oK% v 00,
whence B OV e ieieeaenenecaeniaes (2).

Therefore, by (1), (2), », v are rational and ~-.

It follows, by x. 36, that (¥ + v) is irrational.

Therefore (» + v) o is an irrational area [this can be deduced from x. 20
by reductio ad absurdum),

whence (x + »)%, and consequently (x + y), is irrational.

3
The irrational straight line 4%p + %’ is called a second bimedial straight

line.
This and the corresponding second apotome of a medial (k*p— ‘i/; p)

found in x. 75 are the positive roots of the equation
A+ (A—Ay

—_ e 3
x‘kap.x’d- %

pt=o.

ProrosiTION 39.

If two straight limes incommensurable in square whick
make the sum of the squares on them rational, but the rectangle
contained by them medial, be added together, the whole straight
line is irrational : and let it be called major.
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For let two straight lines A58, BC incommensurable in
square, and fulfilling the given con-
ditions [x. 33), be added together ; A 3 c
I say that AC is irrational.
For, since the rectangle 45, BC is medial,
twice the rectangle 45, BC is also medial.  [x. 6 and 23, Por.]
But the sum of the squares on 4258, BC is rational ;
therefore twice the rectangle 45, BC is incommensurable
with the sum of the squares on 48, BC,
so that the squares on 45, BC together with twice the rect-
angle A B, BC, that is, the square on AC, is also incommen-

surable with the sum of the squares on 45, BC; [x. 16]
therefore the square on AC is irrational,
so that AC is also irrational. [x Def. 4]

And let it be called major.
Q. E. D.

Here x, y are of the form found in x. 33, viz.

P /\/ T+ .L P \/ I - _k—
NE Ji+ B 2 i+ &
By hypothesis, the rectangle xy is medial ;
therefore 2xy is medial.
Also (x* + 7 is a rational area.
Therefore x1+ 2 o 2xy,
whence (x+y) v (2 +3),
so that (x + y)? and therefore (x + ), is irrational.

. . . k k
The irrational straight line L,\/l + ——+—P-\/r - == i
8 N2 Niv® W2 Y
called a major (irrational) straight line.
This and the corresponding minor irrational found in x. 76 are the
positive roots of the equation

A
—2p? ¢ =
xt— 2p .x’+l+!,p o.

ProrosITiON 40.

If two straight lines incommensurable in square which
make the sum of the squares on them medial, but the rectangle
contained by them rational, be added together, the whole straight
line 1s irrational ; and let it be called the side of a rational
plus a medial area.
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For let two straight lines 48, BC incommensurable in
square, and fulfilling the given con-
ditions [x. 34], be added together ; A B o
I say that 4C is irrational. '
For, since the sum of the squares on 4B, BC is medial,
while twice the rectangle A58, BC is rational,
therefore the sum of the squares on 48, BC is incommen-
surable with twice the rectangle A8, BC;
so that the square on AC is also incommensurable with twice
the rectangle 45, BC. [x. 16]
But twice the rectangle 4B, BC is rational ;
therefore the square on AC is irrational.
Therefore AC is irrational. [x. Def. 4]
And let it be called the side of a rational plus a
medial area.

Q. E. D.
Here x, y have [x. 34] the forms

,—-—z(i-:k’)J\/l+k’+k, Jz i+k’ NNy )

In this case (x* + 3?) is a medial, and 2xy a rational, area ; thus
a2+ o 2xp.
Therefore (x+y)? o 2xy,
whence, since 2xy is rational,
(x + )% and consequently (x + y), is irrational.
The irrational straight line

J—EU_+k’3JJI+P+k+Jz iR JJ1+k’ &

is called (for an obvious reason) the “side” of a ratwnal Plus a medial (area).

This and the corresponding irrational with a minus sign found in x. 77
are the positive roots of the equation
2 2

kz ¢
x‘——ﬁp .x’+m—),p =0

ProrosITION 41.

If two straight lines incommensurable in square whick
make the sum of the squares on them medial, and the rectangle
contained by them medial and also incommensurable with the
sum of the squares on them, be added together, the whole straight
line s irrational ; and let it be called the side of the sum
of two medial areas.
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For let two straight lines 48, BC incommensurable in
square and satisfying the given conditions
[x. 35] be added together;

I say that AC is irrational.

Let a rational straight line D£ be set out,
and let there be applied to D £ the rectangle
DF equal to the squares on A8, BC, and a
the rectangle G /7 equal to twice the rectangle

K H

m

AB, BC;
therefore the whole DA is equal to the square
on AC. (1. 4]

Now, since the sum of the squares on
AB, BC is medial,
and is equal to DF,
therefore DF is also medial.

And it is applied to the rational straight line DE ;

therefore DG is rational and incommensurable in length with
DE. [x. 22]
For the same reason GK is also rational and incommen-
surable in length with GF; that is, DE.
And, since the squares on 48, BC are incommensurable
with twice the rectangle A8, BC,

DF is incommensurable with GH ; .

so that DG is also incommensurable with GX. [vt. 1, x. 11]
And they are rational ;

therefore DG, GK are rational straight lines commensurable

in square only ;

therefore DK is irrational and what is called binomial. [x. 36]
But DE is rational ;

therefore DA is irrational, and the side of the square which

is equal to it is irrational. [x. Def. 4]
But AC is the side of the square equal to ZD;

therefore AC is irrational.
And let it be called the side of the sum of two medial

areas.

D E

A8 o

Q. E. D.
In this case x, y are of the form -
et

% ot )T
:/;\/l * Ji+ 2 72 \/I—J1+k"
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By hypothesis, (2* + %) and 2xy are medial areas, and

B+PPU2XY e, (1).
‘ Apply’ these areas respectively to a rational straight line o, and suppose
B o } .............................. (2).
xy = oy
Since then ox and ov are both medial areas, , v are rational and both
2 8 A Seetessceeresesscessesasssecssssesestsonas (3).
Now, by (1) and (2),
ou v ov,
so that uvo.

By this and (3), », v are rational and ~.

Therefore [X. 36] (# + v) is irrational.

Hence o (» + v) is irrational [deduction from x. 20].
Thus (x + »)*, and therefore (x + y), is irrational.
The irrational straight line

pki \/ & pki 3
— I+ ey
NES Ji+B  J2 i+ 2
is called (again for an obvious reason) the “side” of the sum of two medials
(medial areas). ) )
This and the corresponding irrational with a minus sign found in x. 78
are the positive roots of the equation

=2 JA. atp+ A

B
1+l ="

LEMMA.

And that the aforesaid irrational straight lines are divided
only in one way into the straight lines of which they are the
sum and which produce the types in question, we will now
prove after premising the following lemma.

Let the straight line 458 be set out, let the whole be cut
into unequal parts at each of
the points C, D,
and let 4 Cbe supposed greater
than DB ;

I say that the squares on 4C, CB are greater than the squares
on AD, DB.

For let AB be bisected at £.
Then, since AC is greater than D25,
let DC be subtracted from each ;

therefore the remainder 4D is greater than the remainder C5.
But AE is equal to £B;

therefore DE is less than £C;

A o E © B
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therefore the points C, D are not equidistant from the point
of bisection.

And, since the rectangle 4C, CB together with the square

on £C is equal to the square on £5, (1. 5]
and, further, the rectangle 4.0, DB together with the square
on DE is equal to the square on £25, [id.]

therefore the rectangle 4C, CB together with the square on
EC is equal to the rectangle 4D, DB together with the
square on DE.

And of these the square on DE is less than the square
on EC;

therefore the remainder, the rectangle AC, CB, is also less
than the rectangle 4D, DB,
so that twice the rectangle 4AC, CB is also less than twice
the rectangle 4D, DB.
Therefore also the remainder, the sum of the squares on
AC, CB, is greater than the sum of the squares on 4D, DB.
Q. E. D.

3. and which produce the types in question. The Greek is rowovedv & wpoxeluera
37, and I have taken eldn to mean ‘‘types (of irrational straight lines),” though the expression
might perhaps mean * satisfying the conditions in question.”

This proves that, if x + y=w + 9, and if », v are more nearly equal than
%, y (i.e. if the straight line is divided in the second case nearer to the point

of bisection), then
(2 +5°)> W+ ).
It is first proved by means of 11. § that
2xy < 2uv,
whence, since (x +y)? = (» + v)%, the required result follows.

ProposITION 42.

A binomial straight line is divided into its terms at one
point only.

Let AB be a binomial straight line divided into its terms
at C; _

therefore AC, CB are rational 4 58 B
straight lines commensurable in
square only. [x. 36]

I say that 4B is not divided at another point into two
rational straight lines commensurable in square only.
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For, if possible, let it be divided at D also, so that 4D,
DB are also rational straight lines commensurable in square
only. '

It is then manifest that 4C is not the same with D2A.

For, if possible, let it be so.

Then 4D will also be the same as CB,

and, as AC is to CAB, so will BD be to DA;

thus A28 will be divided at D also in the same way as by the
division at C:

which is contrary to the hypothesis.

Therefore AC is not the same with D2B.

For this reason also the points C, D are not equidistant
from the point of bisection.

Therefore that by which the squares on AC, CAB differ
from the squares on 4D, DB is also that by which twice
the rectangle 40, DA differs from twice the rectangle
AC, CB,
because both the squares on 4C, CB together with twice the
rectangle AC, CB, and the squares on A0, DB together
with twice the rectangle 40, DB, are equal to the square
on AB. ~ [ 4]

But the squares on AC, CAB differ from the squares on
AD, DB by a rational area,

for both are rational ;

therefore twice the rectangle 4D, DB also differs from twice
the rectangle 4C, CB by a rational area, though they are
medial [x. 21]:

which is absurd, for a medial area does not exceed a medial

by a rational area. [x. 26]
Therefore a binomial straight line is not divided at different

points ;

therefore it is divided at one point only.

Q. E. D.
This proposition proves the equivalent of the well-known theorem in
surds that,
if a+ Jb=x+ [y,
then a=x, b=y,
and if Na+ Jb=Jx + [y,

then a=x, b=y (ora=y, b=x).
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The proposition states that a dinomial straight line cannot be split up into
terms (évopara) in two ways. For, if possible, let
x+y=x"+y,
where x, y, and also x', y', are the ferms of a binomial straight line, ', y'
being different from x, y (or y, x).

One pair is necessarily more nearly equal than the other. Let x', 5’ be
more nearly equal than x, y.

Then (2 +3°) — (2 + y?) = 22y’ — 22y.
\ I:ow by hypothesis (x*+3?), (2" + ") are rational areas, being of the form
P+ Aot;
but 2x'y’, 2xy are medial areas, being of the form /%. p*;
therefore the difference of two medial areas is rational :
which is impossible. [x. 26]
Therefore &/, ' cannot be different from x, y (or y, x).

ProrosITION 43.

A first bimedial straight line is divided at one point only.

Let A8 be a first bimedial straight line divided at C, so
that 4C, CB are medial straight
lines commensurable in square
only and containing a rational
rectangle ; [x. 37]

I say that 428 is not so divided at another point.

For, if possible, let it be divided at 2 also, so that 4D,
DB are also medial straight lines commensurable in square
only and containing a rational rectangle,

Since, then, that by which twice the rectangle 4D, DB
differs from twice the rectangle 4C, CAB is that by which the
squares on A C, CA differ from the squares on 4D, DB,

while twice the rectangle 40D, DB differs from twice the
rectangle 4C, CB by a rational area—for both are rational—

therefore the squares on AC, C2A also differ from the squares
on AD, DB by a rational area, though they are medial :

which is absurd. [x. 26)

Therefore a first bimedial straight line is not divided into
its terms at different points;

therefore it is so divided at one point only.

D ¢ B
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In this case, with the same hypothesis, viz. that
x+y=x"+y,

and x', ' are more nearly equal than x, y,
we have as before (x2+ %) — (22 + 3% = 25"y’ — 229.

But, from the given properties of x, y, and &', ¥/, it follows that 2xy, 2xy
are rational, and (x*+y%), (x*+ ') medial, areas.

Therefore the difference between two medial areas is rational :
which is impossible. [x. 26]

PRrorosITION 44.

A second bimedial straight line is divided at one point only.

Let 4B be a second bimedial straight line divided at C,
so that AC, CB are medial straight lines commensurable in
square only and containing a medial rectangle ; [x. 38]

it is then manifest that C is not at the point of bisection,
because the segments are not commensurable in length.

I say that A2 is not so divided at another point.

A D 6 B
E M H N
F L <] K

For, if possible, let it be divided at D also, so that AC is

, not the same with D25, but AC is supposed greater ;

it is then clear that the squares on AD, DB are also, as we

proved above [Lemma), less than the squares on AC, CB ;

and suppose that 4D, DB are medial straight lines commen-

surable in square only and containing a medial rectangle.
Now let a rational straight line £ be set out,

let there be applied to £/ the rectangular paralle]ogram EK

equal to the square on A5,

and let £G equal to the squares on 4C, CB be subtracted ;

therefore the remainder /K is equal to twice the rectangle

AC, CB. (1. 4]
Again, let there be subtracted £LZ, equal to the squares

on AD, DB, which were proved less than the squares on
AC, CB [Lemma];
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therefore the remainder #/X is also equal to twice the rect-
angle AD, DB.

Now, since the squares on 4C, CAB are medial,
therefore £G is medial. }

And it is applied to the rational straight line £F;
therefore £/ is rational and incommensurable in length with
EF. [x. 22]

For the same reason :

HN is also rational and incommensurable in length with £F.

And, since AC, CB are medial straight lines commen-
surable in square only,
therefore 4C is incommensurable in length with CA.

But, as AC is to (B, so is the square on AC to the rect-
angle AC, CB;
therefore the square on 4AC is incommensurable with the rect-
angle AC, CB. [x. 11]

But the squares on AC, CB are commensurable with the
square on AC; for AC, CB are commensurable in squa{e. ]

- X. 1§

And twice the rectangle AC, CB is commensurable with

the rectangle AC, CB. [x. 6]
Therefore the squares on 4C, CAB are also incommen-
surable with twice the rectangle AC, CAB. [x. 13)

But £G is equal to the squares on AC, CB,
and AKX is equal to twice the rectangle AC, C5;
therefore £G is incommensurable with /KX,
so that £/ is also incommensurable in length with AN,

VL I, X. IT

And they are rational ; [ ]
therefore £/, HN are rational straight lines commensurable
in square only.

But, if two rgtional straight lines commensurable in square
only be added together, the whole is the irrational which is
called binomial. [x. 36]

Therefore £N is a binomial straight line divided at /.

In the same way EM, MN wi]% also be proved to be
rational straight lines commensurable in square only ;
and £N will be a binomial straight line divided at different
points, /7 and M.
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And EH is not the same with MV,

For the squares on 4C, CAB are greater than the squares
on AD, DB.

But the squares on AD, DB are greater than twice the
rectangle AD, DB ;

therefore also the squares on AC, CB, that is, £G, are much
greater than twice the rectangle 4D, DB, that is, MK,

so that £/ is also greater than MNV.

Therefore £H is not the same with M. 0 E D

As the irrationality of the second bimedial straight line [x. 38] is proved by
means of the irrationality of the binomial straight line [x. 36}, so the present
theorem is reduced to that of X. 42.

Suppose, if possible, that the second bimedial straight line can be divided
into its terms as such in two ways, i.e. that

x+y=x"+y,

where %', y' are nearer equality than x, y.

Apply x* +5?, 2xy to a rational straight line o, i.e. let

%% + 3% = ou,
2xy =o0v.

Then, as in x. 38, the areas 2+ )% 2xy are medial, so that ox, ov are
medial ;
therefore », v are both rational and v & .....e.covviiiiiiiiiiiiiiiiiinieae (1)

Again, by hypothesis, x, y are medial straight lines commensurable in
square only ;

therefore xoy.
Hence x% v xy.
And 2*~ (x*+5%), while xy ~ 2xy;
therefore (x* + %) v 2xy,
or oU v ov,
and hence BOV i, (2).

Therefore, by (1) and (2), #, v are rational straight lines commensurable
in square only;

therefore » + v is a binomial straight line.
Similarly, if 2" +y? =04’ and 2x'y' =07/,
#' + 7 will be proved to be a binomial straight line.

And, since (x +y)*=(x"+5')’, and therefore (¥ + v) = (' + '), it follows that
a binomial straight line is divided as such in two ways:
which is impossible. [x. 42]

Therefore x +y, the given second bimedial straight line, can only be so
divided in one way.

In order to prove that  + v, #’ + ¥/ represent a different division of the
same straight line, Euclid assumes that x*+3*> 2xy. This is of course an
easy inference from 11. 7; but the assumption of it here renders it probable
that the Lemma after x. 59 is interpolated.

H. E. IIL 7
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ProposiTION 45.

A major straight line is divided at one and the same point
only.

Let AB be a major straight line divided at C, so that

AC, CB are incommensurable in b o

square and make the sum of the £ ——3
squares on AC, CAB rational, but the
rectangle 4C, CB medial ; [x. 39]

I say that 45 is not so divided at another point.

For, if possible, let it be divided at D also, so that 4D,
DB are also incommensurable in square and make the sum
of the squares on 4D, DB rational, but the rectangle con-
tained by them medial.

Then, since that by which the squares on 4C, CB differ
from the squares on 4D, DB is also that by which twice the
rectangle 4.0, DB differs from twice the rectangle AC, CB,

while the squares on AC, CB exceed the squares on AD,
DB by a rational area—for both are rational—

therefore twice the rectangle 4D, DB also exceeds twice the
rectangle AC, CB by a rational area, though they are medial :

which is impossible. [x. 26]
Therefore a major straight line is not divided at different

points ;

therefore it is only divided at one and the same point.

Q. E. D.

If possible, let the major irrational straight line be divided into terms in
two ways, viz. as (¥ +y) and (x' +y’), where x', ' are supposed to be nearer
equality than x, y.

We have then, as in X. 42, 43,

(x? + %) — (22 +y7) = 2x"y' — 2.

But, by hypothesis, (x?+3?), (x®+y?) are both raffonal, so that their
difference is rational.

Also, by hypothesis, 2x'y’, 2xy are both media/ areas ;
therefore the difference of two medial areas is a rational area :
which is impossible. [x. 26]

Therefore etc.
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ProrposiTiON 46.

The side of a rational plus a medial area is divided at one
point only.

Let AB be the S|de of a rational plus a medial area
divided at C, so that AC, CB are

incommensurable in square and make A § ¢ 8
the sum of the squares on AC, CB
medial, but twice the rectangle 4AC, C2B rational ;  [x. 40]

"I say that 428 is not so divided at another point.

For, if possible, let it be divided at D also, so that 4D,
DB are also incommensurable in square and make the sum
of the squares on 4D, DB medial, but twice the rectangle
AD, DB rational.

Since then that by which twice the rectangle 4C, CB
differs from twice the rectangle 4D, DB is also that by
which the squares on 40, DB differ from the squares on
AC, CB,
while twice the rectangle 4C, CB exceeds twice the rectangle
AD, DB by a rational area,
therefore the squares on 4D, DB also exceed the squares
on AC, CB by a rational area, though they are medial :
which is impossible. [x. 26]

Therefore the side of a rational plus a medial area is not
divided at different points ;
therefore it is divided at one point only.

Q E.D.

Here, as before, if we use the same notation,

(' +%) — (&7 +7) = 22y = 2,
and the areas on the left side are, by hypothesis, both medial, while the areas
on the right side are both rational.
Thus the result of x. 26 is contradicted, as before.
Therefore etc.

ProrosiTION 47.
The side of the sum of two medial aveas is divided at one
point only.
Let AZB be divided at C, so that AC, CB are incommen-
surable in square and make the sum of the squares on 4C,

7—2
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CB medial, and the rectangle AC, CB medial and also in-
commensurable with the sum of the squares on them;

I say that A2 is not divided at another point so as to fulfil
the given conditions.

M H

A E N
D
G

F ) K
8 .

For, if possible, let it be divided at [, so that again AC
is of course not the same as B0, but AC is supposed greater;

let a rational straight line £/ be set out,

and let there be applied to £F the rectangle £G equal to the
squares on AC, CB,

and the rectangle /K equal to twice the rectangle AC, CB;
therefore the whole £X is equal to the square on AB. [u.4]

Again, let £, equal to the squares on 40, DB, be applied
to EF;

therefore the remainder, twice the rectangle 4D, DB, is equal
to the remainder /K.

And since, by hypothesis, the sum of the squares on 4C,
CAB is medial,

therefore £G is also medial.
And it is applied to the rational straight line £F;

therefore A E is rational and incommensurable in length with
EF. [x. 22]
For the same reason

HWN is also rational and incommensurable in length with £,

And, since the sum of the squares on AC, CB is incom-
mensurable with twice the rectangle 4C, CB,

therefore £G is also incommensurable with G/,
so that £/ is also incommensurable with ZA.  [v. 1, x. 11]
And they are rational ;
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therefore £/, NV are rational straight lines commeﬁsurable
in square only ;

therefore £V is a binomial straight line divided at A. [vc 36]

Similarly we can prove that it is also divided at /7. .
And E£HA is not the same with /N ; AR
therefore a binomial has been divided at different points : '
which is absurd. [x. 42]

Therefore a side of the sum of two medial areas is not
divided at different points;

therefore it is divided at one point only.

Using the same notation as in the note on X. 44, we suppose that, if
possible,
x+y=x"+y,

x~‘+y’=¢m} and x"+e"‘l‘=w,'} )
2xy=0v 2x’y' = ov
Then, since x* +?%, 2xy are medial areas, and o rational,
u, v are both rational and v & ...cceeeeenniiill, (1).
Also, by hypothesis, x4y v 2xy,
whence RV R (2).
Therefore, by (1) and (2), , v are rational and ~.
Hence « + v is a éinomial straight line. [x. 36]
Similarly #' + ¢/ is a binomial straight line.
But u+v=u'+7;
therefore a binomial straight line is divided into terms in two ways:
which is impossible. [x. 42]
Therefore etc.

and we put

DEFINITIONS II.

1. Given a rational straight line and a binomial, divided
into its terms, such that the square on the greater term is
greater than the square on the lesser by the square on a
straight line commensurable in length with the greater, then,
if the greater term be commensurable in length with the
rational straight line set out, let the whole be called a first
binomial straight line; :

2. but if the lesser term be commensurable in length
with the rational straight line set out, let the whole be called
a second binomial;
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3.%.-and if neither of the terms be commensurable in length
witlf:the rational straight line set out, let the whole be called
a third binomial.
“.%4. Again, if the square on the greater term be greater
.’-than the square on the lesser by the square on a straight line
‘..incommensurable in length with the greater, then, if the
greater term be commensurable in length with the rational

straight line set out, let the whole be called a fourth

binomial ;
5. if the lesser, a fifth binomial ;
6. and if neither, a sixth binomial.

ProposiTiON 48.

7o find the first binomial straight line.

Let two numbers AC, CB be set out such that the sum
of them AB has to BC the ratio
which a square number has to a
square number, but has not to C4
the ratio which a square number
has to a square number ; A c 8

[Lemma 1 after x. 28]

let any rational straight line D be set out, and let £F be
commensurable in length with D.
Therefore E£F is also rational.
Let it be contrived that,
as the number B4 is to AC, so is the square on £F to the
square on £G. [x. 6, Por.]
But A8 has to AC the ratio which a number has to a
number ;
therefore the square on £/ also has to the square on FG
the ratio which a number has to a number,
so that the square on £F is commensurable with the square
on FG. [x. 6]
And E£F is rational ;
therefore /G is also rational.
And, since BA4 has not to AC the ratio which a square
number has to a square number,

D H
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neither, therefore, has the square on £ to the square on FG

the ratio which a square number has to a square number ;

therefore £F is incommensurable in length with 7G.  [x. 9]
Therefore £F, FG are rational straight lines commen-

surable in square only;

therefore £G is binomial. [x. 36]

I say that it is also a first binomial straight line.
For since, as the number B4 is to AC, so is the square
on E£F to the square on /G,
while BA4 is greater than AC,
therefore the square on £F is also greater than the square
on FG.
Let then the squares on /G, H be equal to the square on
EF.
Now since, as BA4 is to AC, so is the square on £F to the
square on FG,
therefore, convertendo,
as AB is to BC, so is the square on £/ to the square on 4.
[v. 19, Por.]
But A28 has to BC the ratio which a square number has
to a square number ;
therefore the square on £/ also has to the square on A the
ratio which a square number has to a square number.
Therefore £F is commensurable in length with Z; [x. 9]
therefore the square on £F is greater than the square on FG
by the square on a straight line commensurable with £F.
And EF, FG are rational, and £/ is commensurable in
length with D.
Therefore £F is a first binomial straight line.

Q. E. D.

Let %p be a straight line commensurable in length with p, a given rational
straight line.

The two numbers taken may be written p (m® — #%), pn*, where (m*~ %) is
not a square.

Take x such that

M p(m —n)=Rp i Xt coiies e, (1),
/g3 g2

whence . x=kp X2 %

Then Ap+x, or kp+ kp Jmi - , is a first binomial straight line ...... (2).
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To prove this we have, from (1),
&~ Bpl,

and x is rational, but x v 4p;
that is, x is rational and ~ Zp,
so that &p + x is a binomial straight line.

Also, #%p? being greater than x%, suppose &% — ="

Then, from (1), pmt i pnt =Rp? : y
whence y is rational and ~ Zp.

Therefore &p + x is a first binomial straight line [x. Deff. 1. 1].

This binomial straight line may be written thus,

: ko+ hp N1 = AL

When we come to Xx. 85, we shall find that the corresponding straight line

with a negative sign is the firs? apotome,
ko —kp N1 =N

Consider now the equation of which these two" expressions are the roots.

The equation is
x*—2kp. x + N&p*=o.

In other words, the first binomial and the first apotome correspond to the

roots of the equation
x*— 2ax + Na’ =,

where a = &p.

ProrosiTION 49.
To find the second binomzial straight line.

Let two numbers AC, CB be set out such that the sum
of them AAB has to BC the ratio which
a square number has to a square number,

but has not to AC the ratio which a * €
square number has to a square number ; D H
let a rational straight line D be set out, Ft

and let £F be commensurable in length

with D; e

therefore £F is rational. G

Let it be contrived then that, )
as the number CA is to A5, so also is the square on £F to

the square on FG; [x. 6, Por.]
therefore the square on £/ is commensurable with the square
on FG. [x 6]

Therefore FG is also rational.
Now, since the number CA4 has not to 48 the ratio which
a square number has to a square number, neither has the
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square on £F to the square on /G the ratio which a square
number has to a square number.
Therefore £F is incommensurable in length with G ;

[x. 9]
therefore £F, FG are rational straight lines commensurable
in square only ;
therefore £G is binomial. [x. 36]

It is next to be proved that it is also a second binomial
straight line.

For since, inversely, as the number BA is to AC, so is
the square on GF to the square on FE,

while BA4 is greater than AC,

therefore the square on GF is greater than the square on FE.
Let the squares on £F, A be equal to the square on GF;

therefore, convertendo, as AB is to BC, so is the square on

FG to the square on A. [v. 19, Por.]
But 428 has to BC the ratio which a square number has

to a square number ;

therefore the square on FG also has to the square on /A the

ratio which a square number has to a square number.
Therefore #G is commensurable in length with /A; [x. 9]

so that the square on FG is greater than the square on FE

by the square on a straight line commensurable with #G.

And FG, FE are rational straight lines commensurable
in square only, and £F, the lesser term, is commensurable in
length with the rational straight line D set out.

Therefore £G is a second binomial straight line.

Q. E. D.

Taking a rational straight line £Zp commensurable in length with p, and
selecting numbers of the same form as before, viz. p (m* — »%), pn*, we put

p(m—nd) i pm* =R 1 & i, (1),
m
=Akp ———
so that x P\/m’—n’
1
=kp I.T——x;, SAY  ceceeccciiiiitisensaionenes (2)-

Just as before, x is rational and ~ Zp,
whence &p + x is a binomial straight line.
By (1), . x> Bpl.



106 BOOK X - [x. 49, 50

Let xt— Bp? =33,
whence, from (1), i pnt =2 : R,
and y is therefore rational and ~ x.

The greater term of the binomial straight line is x and the lesser 4p, and

4
Nt i = + &p

satisfies the definition of the second binomial straight line.

The corresponding second apotome [x. 86] is

p

—_——— k o
Ji-N P

The equation of which the two expressions are the roots is

2kp A? .
x’ JI—A’-x‘*‘i—'—-—A’k’P—O,
or %% — 2ax + Aa’ =0,
kp

NFES T

where a=

ProrosiTION 50.

To find the third binomial straight line.

Let two numbers AC, CB be set out such that the sum
of them A28 has to BC the ratio which a square number has
to a square number, but has not to 4C the ratio which a square
number has to a square number.

K A c B

E
F— g H

Let any other number D, not square, be set out also, and
let it not have to either of the numbers 84, AC the ratio
which a square number has to a square number. '

Let any rational straight line £ be set out,

and let it be contrived that, as D is to 4B, so is the square

on £ to the square on /G ; [x. 6, Por.]
therefore the square on £ is commensurable with the square
on FG. [x. 6]

And £ is rational ;
therefore G is also rational.
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And, since D has not to 4B the ratio which a square
number has to a square number,
neither has the square on £ to the square on FG the ratio
which a square number has to a square number ;
therefore £ is incommensurable in length with ~G. [x. 9]

Next let it be contrived that, as the number BA4 is to AC,

so is the square on FG to the square on GH ; [x. 6, Por.]
therefore the square on G is commensurable with the square
on GH. [x. 6]

But ~G is rational ;
therefore G A is also rational.
And, since BA has not to AC the ratio which a square
number has to a square number,
neither has the square on #G to the square on ZG the ratio
which a square number has to a square number ;
therefore G is incommensurable in length with GA. [x. 9]
Therefore /G, GH are rational straight lines commen-
surable in square only ;
therefore /#/ is binomial. [x 36]

I say next that it is also a third binomial straight line.
For since, as D is to AB, so is the square on £ to the
square on FG,
and, as BA4 is to AC, so is the square on G to the square
on GH,
therefore, ex aegualt, as D is to AC, so is the square on £ to
the square on GA. [v. 22]
But D has not to AC the ratio which a square number
has to a square number;
therefore neither has the square on £ to the square on GH
the ratio which a square number has to a square number ;
therefore £ is incommensurable in length with GA. [x. 9]
And since, as BA is to AC, so is the square on FG to
the square on GH,
therefore the square on FG is greater than the square on GA.
Let then the squares on G/, K be equal to the square
on FG;
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therefore, convertendo, as AB is to BC, so is the square on FG
to the square on X. [v. 19, Por.]

But A28 has to BC the ratio which a square number has
to a square number ;

therefore the square on FG also has to the square on X the
ratio which a square number has to a square number ;
therefore /G is commensurable in length with X. [x. 9]

Therefore the square on /G is greater than the square on
GH by the square on a straight line commensurable with #G.

And FG,-GH are rational straight lines commensurable
in square only, and neither of them is commensurable in length
with £.

Therefore /#H is a third binomial straight line.

Q E. D.

Let p be a rational straight line.

Take the numbers ¢ (m? — »?), gn?,
and let p be a third number which is not a square and which has not to ¢gm?
or ¢ (m®— n%) the ratio of square to square.

Take x such that Digm=p" X" i (1).
Thus xisrationaland v p ..ooeeiiiiiiiiiiiiiiil, (2).
Next suppose that  gm?:g(m*—nY)=x*:5" ... e (3)-
It follows that y is rational and ~~ X .......ccocviuiiiiinns il (4)-

Thus (x +y) is a sinomial straight line.
Again, from (1) and (3), ex aequali,

2:qgmM—m)=p": 9 (5)
whence PUP e (6).
Suppose that x—yr=2

Then, from (3), convertendo,
gm i gnt=x*: 3,
whence gNx.
Thus NE—p Az,
and x, y are both v p;

therefore x + y is a third binomial straight line.
/

Now, from (1), x=p-m7-;?.
Nt =n.
and, by (), y=p. —JP—W
Thus the third binomsal is

\/g.p(m“/m;,

which we may write in the form

mJk.p+mJk.pN1T— AL
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The corresponding tksrd apotome [x. 87] is
mk.p—m Jk.pNT=A.
The two expressions are accordingly the roots of the equation
x? —2m Jk . px + N'mhp* = o,
or 2*— 2ax + Ma'=o,
where a=m.Jk.p.
See also note on x. 53 (ad fin.).

ProrosiTION 5I.

To find the fourth binomial straight line.

Let two numbers AC, CB be set out such that A58
neither has to BC, nor yet to AC, the ratio
which a square number has to a square number.

Let a rational straight line D be set out, A €

and let £F be commensurable in length with D; o
therefore £F is also rational.
Let it be contrived that, as the number B4 ©

is to AC, so is the square on EF to the square T
on FG; [x. 6, Por.] B u
therefore the square on £/ is commensurable

with the square on FG ; [x. 6] a

therefore /G is also rational.

Now, since BA4 has not to AC the ratio which a square
number has to a square number,

neither has the square on £F to the square on G the ratio
which a square.number has to a square number ;

therefore £F is incommensurable in length with #G.  [x. g]

Therefore £F, FG are rational straight lines commen-
surable in square only ;

so that £G is binomial.

I say next that it is also a fourth binomial straight line.
For since, as BA is to AC, so is the square on £F to the
square on FG,
therefore the square on EF is greater than the square on FG.

Let then the squares on /G, / be equal to the square
on EF;
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therefore, convertendo, as the number A8 is to BC, so is the
square on £F to the square on /. [v. 19, Por.]
But A28 has not to BC the ratio which a square number
has to a square number;
therefore neither has the square on £F to the square on /A
the ratio which a square number has to a square number.
Therefore £F is incommensurable in length with /& ;[x. 9]
therefore the square on £/ is greater than the square on G/
by the square on a straight line incommensurable with £

And EF, FG are rational straight lines commensurable in
square only, and £F is commensurable in length with D.
Therefore £G is a fourth binomial straight line.

Q. E. D.

Take numbers m, n such that (m + n) has not to either m or » the ratio of
square to square.

Take x such that (m+n) :m=~p*: 22,
whence x=kp~/ i -
m+n
__k
Ji+d’ y.

Then 4p + x, or Ap + JTk—pTX , is a fourth binomial straight line.

For v/#p'—a* is incommensurable in length with #p, and #p is com-
mensurable in length with p.
The corresponding fourth apotome [x. 88] is

kp
kp— .
Ny
The equation of which the two expressions are the roots is

A 3
x’—zkp.x+mk’p =0,

A,
T+A% "2
where a=4p.

or x?—2ax +

ProrosiTiON 52.

To find the fifth binomial straight line.

Let two numbers AC, CB be set out such that 48 has
not to either of them the ratio which a square number has
to a square number ;

let any rational straight line D be set out,
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and let £/ be commensurable with D ;
therefore £F is rational.
Let it be contrived that, as CA is to AB, so is the
square on £F to the square on FG. [x 6, Por.]
But CA has not to A8 the ratio which a 4
square number has to a square number;
therefore neither has the square on £F to the
square on FG the ratio which a square number FT
has to a square number.

Therefore E£F, FG are rational straight g
lines commensurable in square only ; [x. 9] lu Q

therefore £G is binomial. [x. 36]

I say next that it is also a fifth binomial straight line.
For since, as CA is to AB, so is the square on E£F to
the square on FG,

inversely, as BA is to AC, so is the square on G to the
square on FE ;

therefore the square on G F is greater than the square on FE.

Let then the squares on £/, // be equal to the square
on GF;

therefore, convertendo, as the number 4B is to BC, so is the
square on G/ to the square on /. [v. 19, Por.]

But 428 has not to BC the ratio which a square number
has to a square number ;

therefore neither has the square on G to the square on A
the ratio which a square number has to a square number.

Therefore /G is incommensurable in length with /; [x. 9]

so that the square on #G is greater than the square on FE
by the square on a straight line incommensurable with ~G.

And GF, FE are rational straight lines commensurable
in square only, and the lesser term £/ is commensurable in
length with the rational straight line D set out.

Therefore £G is a fifth binomial straight line.

Q. E. D.
If m, n be numbers of the kind taken in the last proposition, take x such

that
m:(m+n)=~p: x>
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In this case x=kp\/"%‘
=kax + A, say,
and x> £p.

Then #p N1 + A + 4p is a fifth binomial straight line.

For N = &', or JA . 4p, is incommensurable in length with Zp NI
orx;

and 4p, but not £p #/1 + A, is commensurable in length with p.
The corresponding fifth apotome [x. 89] is
ko N1+ A —kp.

The equation of which the fifth binomial and the fifth apotome are the
roots is
A —2kpNT+A. x4 M =0,

or a'—2ax + a’=o,
I+A
where a=kpA1+A

ProrosiTION 53.

To find the sixth binomzial straight line.

Let two numbers AC, CB be set out such that 48 has
not to either of them the ratio which a
square number has to a square number ; A F
and let there also be another number D D €
which is not square and which has not to
either of the numbers B4, AC the ratio ¢

which a square number has to a square la
number. 8 K

Let any rational straight line £ be set
out, H
and let it be contrived that, as D is to A5,
so is the square on £ to the square on /G ; [x. 6, Por.]
therefore the square on £ is commensurable with the square
on FG., [x. 6]

And £ is rational ;
therefore FG is also rational.

Now, since D has not to A8 the ratio which a square
number has to a square number,
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neither has the square on £ to the square on G the ratio
~which a square number has to a square number ;
therefore £ is incommensurable in length with £G. [x- 9]
Again, let it be contrived that, as B4 is to AC, so is the
square on /G to the square on GA. [x. 6, Por.]
Therefore the square on /G is commensurable with the
square on /HG. [x. 6]
Therefore the square on G is rational ;
therefore /G is rational.
And, since BA4 has not to AC the ratio which a square
number has to a square number,
neither has the square on #G to the square on G/ the ratio
which a square number has to a square number ;
therefore /G is incommensurable in length with GAZ.  [x. 9]
Therefore G, GH are rational straight lines commen-
surable in square only ;
therefore '/ is binomial. [x. 36]

It is next to be proved that it is also a sixth binomial
straight line.
For since, as D is to AB, so is the square on £ to the
square on £G,
and also, as B4 is to AC, so is the square on ~G to the
square on G/,
therefore, ex aequalz, as D is to AC, so is the square on £
to the square on G/A. [v. 22]
But D has not to AC the ratio which a square number
has to a square number ;
therefore neither has the square on £ to the square on GA
the ratio which a square number has to a square number ;
therefore £ is incommensurable in length with GA. [x. 9]
But it was also proved incommensurable with #G ;
therefore each of the straight lines /G, G/H is incommen-
surable in length with £.
And, since, as BA4 is to AC, so is the square on /G to
the square on G/,
therefore the square on FG is greater than the square on GA.
Let then the squares on G/, K be equal to the square
on FG;

H. E. 1L 8
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therefore, convertendo, as AB is to BC, so is the square on FG
to the square on X. [v. 19, Por.]

But A B has not to BC the ratio which a square number
has to a square number ;

so that neither has the square on /G to the square on X the
ratio which a square number has to a square number.

Therefore FG is incommensurable in length with X7; [x. 9]

therefore the square on FG is greater than the square on G//
by the square on a straight line incommensurable with #G.

And FG, GH are rational straight lines commensurable in
square only, and neither of them is commensurable in length
with the rational straight line £ set out.

Therefore FH is a sixth binomial straight line.

Q. E. D.

Take numbers m, n such that (m + n) has not to either of the numbers
m, n the ratio of square to square ; take also a third number p, which is not
square, and which has not to either of the numbers (m + n), m the ratio of
square to square.

Let pi(m+n)=p*: 2 i (1)
and (m+n):m=a2:9 . i (2).

Then shall (x + y) be a sixth binomial straight line.

For, by (1), x is rational and v p.
By (2), since x is rational,

y is rational and v x.

Hence x, y are rational and commensurable in square only, so that (x +y)
is a binomial straight line. ,

Again, ex aeguali, from (1) and (2),

whence y v p.

Thus x, y are both incommensurable in length with p.
Lastly, from (2), convertendo,

(m+n):n=x:(x*-3%,
so that V3 — 3 U 2.

Therefore (x + y) is a sixth binomial straight line.
Now, from (1) and (3),

m+n
x=p.n) 5" = ok, say,
m
y=e-a/ 3 = pa/A, say,
and the séxtk dinomsal straight line may be written
JE.p+ A p.
The corresponding sixth apotome is X. 9o]
VE.-p—JA.p;
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and the equation of which the two expressions are the roots is
x— 2, Jk.px+(R—Q)p*=0,

A

or 2 - 2ex + al=o,

where a = ,/Z. p.

Tannery remarks (“De la solution géométrique des problémes du second
degré avant Euclide” in Mémoires de la Société des sciences physigues et naturelles
de Bordeaux, 2¢ Série, T. 1v.) that Euclid admits as binomials and apotomes
the #Asrd and sixth binomials and apotomes which are the square roots of first
binomials and apotomes respectively. Hence the third and sixth binomials
and apotomes are the positive roots of diguadratic equations of the same form
as the quadratics which give as roots the first and fourth binomials and
apotomes. But this remark seems to be of no value because (as was pointed
out a hundred years ago by Cossali, 11. p. 260) the squares of a// the six
binomials and apotomes (including the first and fourth) give frs¢ binomials
and apotomes respectively. Hence we may equally well regard them all as
roots of biquadratics reducible to quadratics, or generally as roots of equations

of the form
P 42a. 2" +g=0;

and nothing is gained by raising the degree of the equations in this way.
It is, of course, easy to see that the most general form of binomial and

apotome, viz.
p-NEtp. A
give first binomials and apotomes when squared.

For the square is p {(£+A)p+2 ~/ZA.p}; and the expression within the
bracket is a first binomial or apotome, because

(1) &+A>2J2
(2) V(£+A)P—4&A=k— ), which is ~ (£+]),
(3) (A+X)p~p.

LEMMA.

Let there be two squares 45, BC, and let them be placed
so that DB is in a straight line with BE;

therefore /B is also in a straight line with G ¢
BG.
Let the parallelogram A4 C be completed; © Bl e

I say that 4C is a square, that DG is a
mean proportional between 4258, BC, and
further that DC is a mean proportional A F H
between AC, CB.

For, since DA is equal to BF, and BE to BG,
therefore the whole DZ is equal to the whole ~G.

But DE is equal to each of the straight lines 44, KC,
and FG is equal to each of the straight lines AKX, AC; [1. 34]

8—2
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therefore each of the straight lines A/, KC is also equal to
each of the straight lines 4K, AC.

Therefore the parallelogram AC is equilateral.
And it is also rectangular ;

therefore AC is a square.
And since, as /B is to BG, so is DB to BE,
while, as FB is to BG, so is AB to DG,
and, as DA is to BE, so is DG to BC, [v1. 1]
therefore also, as A8 is to DG, so is DG to BC. [v. 11]

Therefore DG is a mean proportional between A5, BC.

I say next that DC is also a mean proportional between
AC, CB.

For since, as AD is to DK, so is KG to GC—
for they are equal respectively—
and, componendo, as AK is to KD, so is KC to CG, [v. 18]
while, as AK is to KD, sois AC to CD,
and, as KC is to CG, so is DC to CAB, [vi. 1]
therefore also, as AC is to DC, so is DC to BC. [v. 11]

Therefore DC is a mean proportional between AC, CA.
Being what it was proposed to prove.

It is here proved that
xixy=ay:5,
and (x+yy:i(x+y)y=(x+y)y: 5"
The first of the two results is proved in the course of x. 25 (lines 6—8 on
p- 57 above). This fact may, I think, suggest doubt as to the genuineness
of this Lemma.

PRroPOSITION 54.

If an area be contained by a rational straight line and the
Sirst binomial, the “side” of the area is the irrational straight
line whick is called binomial.

For let the area 4C be contained by the rational straight
line A8 and the first binomial 4D ;

I say that the ‘“side” of the area 4AC is the irrational straight
line which is called binomial. :

For, since AD is a first binomial straight line, let it be
divided into its terms at £,

and let A £ be the greater term.
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It is then manifest that A, £D are rational straight lines
commensurable in square only,

the square on A £ is greater than the square on £D by the
square on a straight line commensurable with 4 £,

and A £ is commensurable in length with the rational straight

line A B set out. [x. Deff. 1. 1]
Let £D be bisected at the point /.
A GE _F D R_Q
M N—1°
B HK L G©
s P

Then, since the square on A is greater than the square

on £D by the square on a straight line commensurable with
AE,

therefore, if there be applied to the greater 4 £ a parallelogram
equal to the fourth part of the square on the less, that is, to
the square on £F, and deficient by a square figure, it divides
it into commensurable parts. [x. 17]

Let then the rectangle 4G, GE equal to the square on
EF be applied to AE;

therefore 4G is commensurable in length with £G.

Let GH, EK, FL be drawn from G, £, F parallel to
either of the straight lines A5, CD;

let the square SV be constructed equal to the parallelogram
AH, and the square NQ equal to GX, [ 14]

and let them be placed so that #/V is in a straight line with
NO;
therefore RV is also in a straight line with V2.
And let the parallelogram SQ be completed ;
therefore SQ is a square. [Lemma]

Now, since the rectangle 4G, GE is equal to the square
on EF,

therefore, as AG is to EF, so is FE to EG; [vi. 17]
therefore also, as AH is to EL, sois EL to KG; [vi. 1]
therefore £L is a mean proportional between 4/, GK.

But A/ is equal to SA, and GK to NQ;
therefore £L is a mean proportional between SN, N Q.
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But MR is also a mean proportional between the same
SN, NQ; [Lemma]
therefore £L is equal to /R,
so that it is also equal to PO.

But AH, GK are also equal to SN, NQ;

therefore the whole 4C is equal to the whole SQ, that is, to
the square on MO ;

therefore MO is the ‘“side” of AC.

I say next that /O is binomial.
For, since AG is commensurable with G £,

therefore 4 £ is also commensurable with each of the straight
lines AG, GE. [x. 15]

But AE is also, by hypothesis, commensurable with 4.5 ;
therefore AG, GE are also commensurable with 45, [x. 12]

And AB is rational ;
therefore each of the straight lines 4G, GE is also rational ;
therefore each of the rectangles 4H, GK is rational, [x. 19]
and 4 A is commensurable with GX.

But AH is equal to S¥, and GK to NQ;

therefore SN, NQ, that is, the squares on MN, NO, are
rational and commensurable.

And, since AE is incommensurable in length with £D,

while AFE is commensurable with 4G, and DE is commen-
surable with £F,

therefore 4G is also incommensurable with £F, [x. 13]
so that 4/ is also incommensurable with £Z. [vi. 1, x. 11]
* But AH is equal to SN, and £L to MR ;
therefore S/ is also incommensurable with //R.
But, as SNV is to MR, so is PN to NR; [v1. 1]
therefore PV is incommensurable with VA, [x. 11]
But PN is equal to N, and NR to NO;
therefore MV is incommensurable with NVO.

And the square on MV is commensurable with the square
on NO,

and each is rational ;

therefore N, NO are rational straight lines commensurable
in square only.
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Therefore MO is binomial [x. 36] and the “side” of 4AC.
Q. E. D.

2. ‘‘side.” I use the word “side” in the sense explained in the note on X. Def. 4
(ap. 13 above), i.e. as short for “side of a square equal to.” The Greek is % 7d xwplor
Wﬂﬂ-"’].

A first binomial straight line being, as we have seen in x. 48, of the form
o+ ko TR,
the problem solved in this proposition is the equivalent of finding the square
root of this expression multiplied by p, or of
p (ko +Ap N1 - N3),
and of proving that the said square root represents a dinomial straight line
as defined in x. 36.

The geometrical method corresponds sufficiently closely to the algebraical
one which we should use.
First solve the equations

u+v==~hp )
w0 = W (1 — \Y) } ........................ (1)
Then, if «, v represent the straight lines so found, put
XV = pu } .
Pompp [ (2);

and the straight line (x + y) is the square root required.
The actual algebraical solution of (1) gives

u—v="~p.]},
so that u=3%kp(1 + ),
v=3%4p(1—A),
and therefore x=p\/§ (1 +1),

y=P\/§(I‘A)v
and x+y=p«/§(l+)‘)+p\/_§(l—h)-

This is clearly a dinomial straight line as defined in X. 36.

Since Euclid has to express his results by straight lines in his figure, and
has no symbols to make the result obvious by inspection, he is obliged to
prove (1) that (x + ) is the square root of p(%p+4p ~/1—A%), and (2) that
(x +) is a binomial straight line, in the following manner.

First, he proves, by means of the preceding Lemma, that

xy:fp’«/l-—/\’ .............................. 3);
therefore (x+y)=2"+y"+ 2xy
=p(u+7)+2xy

=kp* + kp* V1 =N, by (1) and (3),
so that x+y=p(kp + ko V1 - ).
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Secondly, it results from (1), [by x. 17], that
u~ v,
so that , v are both ~ (% +9), and therefore ~p ..........ccoceeeiiiiiins 4);
thus », 2 are rational,
whence px, pv are both rational, and
pu ~ pv.

Therefore a2 y? are rational and commensurable ........................ (s)-

Next, 2p v Ap V1 — A3,
and 4p ~ u, while £p VT —X* ~ }4p V1 —N;

therefore uv 3o N1 N
whence pu v 3 N1 =N,
or 2% v ay,
so that Xy
By this and (5), x, y are rational and ~, so that (x+y) is a binomial
straight line. [x. 36]

X. 91 will prove in like manner that a like theorem holds for apotomes,

viz. that
p\/f(x +A)=p A /é(x—l)=~/p(kp—kp V1-a).

Since the first binomial straight line and the jfirst apolome are the roots of
the equation

x—2kp . x+ A%’ =0,
this proposition and Xx. g1 give us the solution of the biquadratic equation
xt—2kp* . X + A%t = 0.

ProrosiTION §55.

If an area be contained by a rational strvaight line and the
second binomial, the * side” of the area is the irrational straight
line whick is called a first bimedial.

For let the area ABCD be contained by the rational
s straight line 48 and the second binomial 40D ;

I say that the “‘side” of the area A C is a first bimedial straight
line.

For, since 4D is a second binomial straight line, let it be
divided into its terms at £, so that A £ is the greater term ;

10 therefore AE, ED are rational straight lines commensyrable
in square only,

the square on AE is greater than the square on £D By the
square on a straight line commensurable with A,

and the lesser term £ is commensurable in length with 4 5.

[x. Deff. 11. 2]
15 Let £D be bisected at 7,
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and let there be applied to 4 Z the rectangle AG, GE equal
to the square on £/ and deficient by a square figure ;

therefore AG is commensurable in length with GE.  [x. 17]
Through G, £, Flet GH, EK, FL be drawn parallel to
0 AB, CD,
let the square SNV be constructed equal to the parallelogram
AH, and the square NQ equal to GX,

and let them be placed so that MV is in a straight line with
NO;

25 therefore RV is also in a straight line with V2.
R Q

B8 H K L C

] P

Let the square SQ be completed.

It is then manifest from what was proved before that /R
is a mean proportional between SN, NVQ and is equal to £L,
and that MO is the *‘side” of the area AC.

30 Itisnowto be proved that /70 is a first bimedial straight line.
Since AE is incommensurable in length with £D,
while £D is commensurable with 425,
therefore AE is incommensurable with 45. [x. 13]
And, since AG is commensurable with £G,
35 AE is also commensurable with each of the straight lines
AG, GE. [x. 15]
But A E is incommensurable in length with 45 ;
therefore AG, GE are also incommensurable with 48, [x. 13]

Therefore BA, AG and BA, GE are pairs of rational
4o straight lines commensurable in square only ;

so that each of the rectangles 4/, GK is medial. [x. 21]

Hence each of the squares SV, NQ is medial.
Therefore MN, NO are also medial.
And, since 4G is commensurable in length with GE,

45 A H is also commensurable with GX, [vi. 1, x. 11]
that is, SV is commensurable with NV Q,
that is, the square on MV with the square on NO.
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And, since AF is incommensurable in length with £D,
while A E is commensurable with 4G,
scand £D is commensurable with £F,
therefore 4G is incommensurable with £F; [x. 13]
so that 4/ is also incommensurable with' £,
that is, SV is incommensurable with /R,
that is, PNV with VR, [vi. 1, x. 11]
ss that is, MV is incommensurable in length with /VO.

But MN, NO were proved to be both medial and com-
mensurable in square ;

therefore MN, NO are medial straight lines commensurable
in square only.

60 I say next that they also contain a rational rectangle.
For, since DE is, by hypothesis, commensurable with each
of the straight lines 458, EF,

therefore £F is also commensurable with £X. [x. 12]
And each of them is rational ;
65 therefore £L, that is, MR is rational, ' [x. 19]

and MR is the rectangle M N, NO.

But, if two medial straight lines commensurable in square
only and containing a rational rectangle be added together, the
whole is irrational and is called a first bimedial straight line.

(x. 37]
70 Therefore MO is a first bimedial straight line.
Q E. D.

39 Therefore BA, AG and BA, GE are pairs of rational straight lines com-
mensurable in square only. The text has ‘‘Therefore B4, 4G, GE are rational straight
lines commensurable in square only,” which I have altered because it would naturally convey
the impression that any fwo of the three straight lines are commensurable in square only,
whereas 4G, GE are commensurable in length (l. 18), and it is only the other two pairs
which are commensurable in square only.

A second binomial straight line being [X. 49] of the form

the present proposition is equivalent to finding the sguare root of the expression

kp
—~—+k).
P(Jl_” P




x. 55] PROPOSITION 355 v 123

As in the last proposition, Euclid finds «, » from the equations

u+v= Ap
NS Y } .............................. (1),
uy = }%p?
then finds x, y from the equations
x% = pu
— :v } .................................... (2),

and then proves (a) that

x+y= \/ +kP)’

and (B) that (x + y) is a first bimedial straxght line [x. 37])

The steps in the proof are as follows.
For (a) reference to the corresponding part of the previous proposition
suffices.

(8) By (1) and x. 17,
un~vy,

therefore #, v are both ratlonal and ~ (#+9), and therefore v p [by (1)]...(3)-
Hence pu, pv, or x3, 3, are medial areas,

so that x, y are also medial .............. cooiiiiiiiiiiiin e (4).
But, since # ~ 7,

A ABAP (5)
Again (¥ +v), or ﬁ’, v 4p,
so that u v 3kp,
whence pu v 3Ap,
or x* v xy,
and ZUP e (6).

Thus [(4), (5), (6)] #, ¥ are medial and ~.

tly, xy = 34p’, which is rational.
Therefore (x + y) is a first bimedial straight line.
The actual straight lines obtained from (1) are

I+A

“=r =t
1I—A ’

v=3%- - _— A

1}«/1—)\’ P

1+A\} A (1—a\}
so that xX+y=p (I—)\ +p —(m)

The corresponding first apotome of a medial straight line found in x. 92
being the same thing with a msnus sign between the terms, the two expressions
are the roots of the biquadratic

2kp? A? .
m A+ 1_—Ai A P =0,

being the equation in x? corresponding to that in x in X. 49.
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ProposITION 56.

If an avea be contained by a rational straight line and the
third binomial, the “side” of the area is the irvational straight
line called a second bimedial.

For let the area ABCD be contained by the rational
straight line 48 and the third binomial 4D divided into its
terms at £, of which terms 4 £ is the greater;

I say that the “side” of the area 4 C is the irrational straight
line called a second bimedial.

For let the same construction be made as before.

R_Q
A GE F D
L m—1
B \

s P

Now, since AD is a third binomial straight line,

therefore AE, ED are rational straight lines commensurable
in square only,

the square on A £ is greater than the square on £D by the
square on a straight line commensurable with 4 £,

and neither of the terms A £, £D is commensurable in length
with 4 5. [x. Deff. 1. 3]

Then, in manner similar to the foregoing, we shall prove
that MO is the *‘side” of the area AC,

and MN, NO are medial straight. lines commensurable in
square only ;

so that MO is bimedial.

It is next to be proved that it is also a second bimedial
straight line.

Since DE is incommensurable in length with 425, that is,
with £K,

and DE is commensurable with £F,
therefore £F is incommensurable in length with £K.  [x. 13]
And they are rational ;
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therefore /£, EK are rational straight lines commensurable
in square only.
Therefore £L, that is, MR, is medial. [x. 21]
And it is contained by N, NO;
therefore the rectangle MV, NO is medial.
Therefore MO is a second bimedial straight line.  [x. 38]
Q. E. D.

This proposition in like manner is the equivalent of finding the square
root of the product of p and the tAkird binomial [x. 50), i.e. of the expression

p(Jk.p+ Jk.pJ1 =A%)

u+v=,[k.
uv:ikp’(l)l—A') } .......................... (I).

As before, put

"Next, », v being found, let
x? = pu,
»=pv;
then (x +y) is the square root required and is a second bimedial straight line.
[x. 38]
For, as in the last proposition, it is proved that (x +y) is the square root,
and x, y are medial and ~.

Again, xy = } JJ£.p* /1 - A%, which is medval.

Hence (x +y) is a second bimedial straight line.

By solving equations (1), we find
u=3(Jk.p+\ Jk.p),
v=3(Jk.p-\Jk.p)

and x+y:p\/“/7k(1+-k_)+p~/‘/7k(l—k).

The corresponding second apotome of a medial found in X. 93 is the same
thing with a minus sign between the terms, and the two are the roots (cf. note
on x. 50) of the biquadratic equation

2= 2 Jk. p%® + Nhpt=o.

ProrosiTiON §57.

If an area be contained by a rational strvaight line and the
Sourth binomial, the ‘' side” of the area is the irvational straight
line called major.

For let the area 4C be contained by the rational straight
line A8 and the fourth binomial 40 divided into its terms
at £, of which terms let 4£ be the greater;

I say that the “side” of the area AC is the irrational straight
line called major.
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For, since AD is a fourth binomial straight line,
therefore AE, ED are rational straight lines commensurable
in square only,
the square on A £ is greater than the square on £0 by the
square on a straight line incommensurable with 4 £,
and AE is commensurable in length with 48.  [x.Deff. 1. 4]

Let DE be bisected at £,
and let there be applied to 4 £ a parallelogram, the rectangle
AG, GE, equal to the square on £F;
therefore 4G is incommensurable in length with GE. [x. 18]

Let GH, EK, FL be drawn parallel to 425,
and let the rest of the construction be as before ;
it is then manifest that MO is the “side” of the area AC.

R_Q
A G E F D
M N (o]
HK L C
) P

It is next to be proved that MO is the irrational straight
line called major.

Since AG is incommensurable with £G,
AH is also incommensurable with GKX, that is, SNV with NV Q;

. [vi 1, x. 11]
therefore M N, NO are incommensurable in square.
And, since AE is commensurable with A5,
AK is rational ; [x. 19]

and it is equal to the squares on N, NO;

therefore the sum of the squares on MV, VO is also rational.
And, since DE is incommensurable in length with 425,

that is, with £X,

while DE is commensurable with £7F,

therefore £F is incommensurable in length with £X.  [x. 13]
Therefore £K, EF are rational straight lines commen-

surable in square only;

therefore L E, that is, MR, is medial. [x. 21]
And it is contained by MN, NO;

therefore the rectangle MV, NO is medial.
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And the [sum] of the squares on M/, NO is rational,
and MN, NO are incommensurable in square.

But, if two straith lines incommensurable in square and
making the sum of the squares on them rational, but the
rectangle contained by them medial, be added together, the

whole is irrational and is called major. [x. 39]
Therefore MO is the irrational straight line called major
and is the “‘side” of the area AC. Q. E. D.

The problem here is to find the square root of the expression [cf. X. 51]

Ap
kp + )
P ( P VT +X
The procedure is the same.
Find %, v from the equations

u+v=rkp
B e (1),
W= 1+A}
and, if 2 =pu
y,='m} .................................... (2),

(% +y) is the required square root.

To prove that (x +y) is the major irrational straight line Euclid argues
thus.

By x. 18, uv,
therefore - p v pv,
or E2RY) }",
so that LR PN (3)-
Now, since (#+ v) ~ p,
(# +v) p, or (x*+ %), is a rational area.................. (4)
Lastly, zy:}———fﬁ_, which is a medial area ........................ (s).
NFESN
Thus [(3), (4), (5)] (x +) is a major irrational straight line. [x. 39]

Actual solution gives

BAGVENE
(/i)
md  zaymp g2 (i 2 eV E (- /)

The corresponding square root found in X. 94 is the minmor irrational
straight line, the terms being separated by a minus sign, and the two straight
lines are the roots (cf. note on X. 51) of the biquadratic equation

A
2 4
x* ka .x’+—l JPP—O.
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ProrosiTION 58.

If an arvea be contained by a rational stvaight line and the
Jfth binomial, the “side” of the area is the irrational straight
line called the side of a rational plus a medial area.

For let the area 4C be contained by the rational straight
line A8 and the fifth binomial 4D divided into its terms at
E, so that AE is the greater term;

I say that the “side” of the area 4C is the irrational straight
line called the side of a rational plus a medial area.

For let the same construction be made as before shown;
it is then manifest that 70 is the “side” of the area AC.

A QE F D R_Q
M N—1°
HK L ¢
3 P

It is then to be proved that MO is the side of a rational
plus a medial area.

For, since AG is incommensurable with G £, [x. 18]
therefore A/ is also commensurable with Z £, [vi 1, x. 11]
that is, the square on M/ with the square on VO ;
therefore M N, NO are incommensurable in square.

And, since 4D is a fifth binomial straight line, and £D
the lesser segment,

therefore £ is commensurable in length with 425.
[x. Deff. 1. 5]

But A4 £ is incommensurable with £D ;
therefore A8 is also incommensurable in length with 4.
[x. 13]
Therefore AK, that is, the sum of the squares on MAN,

NO, is medial. [x. 21]
And, since DE is commensurable in length with 425, that

is, with £K,
while DE is commensurable with £7,
therefore £/ is also commensurable with £X. [x. 12]
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And E£KX is rational ;

therefore £L, that is, MR, that is, the rectangle MN, NO, is
also rational, [x. 19]
Therefore MN, NO are straight lines incommensurable
in square which make the sum of the squares on them medial,
but the rectangle contained by them rational.
Therefore MO is the side of a rational plus a medial area
[x. 40] and is the ‘“side” of the area AC.

Q. E. D.
We have here to find the square root, of the expression [cf. X. 52]
: plkp J1 + X+ Ap).
As usual, we put
u+v=hpJ1+A
wv =} A%t } ........................... (1).
Then, », v being found, we take
;;:: } ................................. (2),
and (x +y), so found, is our required square root.
Euclid’s proof of the class of (x + y) is as follows :
By x. 18, uvv;
therefore pU v pv,
so that 2y,
and X P eeieiiirnreeienteeeeraiaaaan (3)
Next u+vohp
v p
whence p(# +v), or (2*+3*), is a medial area .................. (4)-
Lastly, xy = }4p% which is a rational area ........... ...... (5)-
Hence [(3), (4), (5)] (x +y) is the side of a rational plus a media[l area:.I
X. 40

If we solve algebraically, we obtain

w="2 (JTTX+ ),
o= (TTR- 0,
and x+y=p \/f(,/x_+7\+~/)~)+p\/§(.h+)\—~/:\).

The corresponding “side ” found in X. 95 is a straight line which produces
with a rational area a medial whole, being of the form (x —y), where x, y
have the same values as above.

The two square roots are (cf. note on X. 52) the roots of the biquadratic
equation

= 2kp* J1+A. 2+ M =0,
H. E. 1L 9
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ProrosiTiON 59.

If an arvea be contained by a rational stvaight line and the
sixth binomial, the “side” of the avea is the irvational stvaight
line called the side of the sum of two medial areas.

For let the area ABCD be contained by the rational
straight line 45 and the sixth binomial 420, divided into its
terms at £, so that A £ is the greater term ;

I say that the “side” of AC is the side of the sum of two
medial areas.

Let the same construction be made as before shown.
A GE F D R Q

M; N o

S p

It is then manifest that M0 is the “side” of AC, and
that MV is incommensurable in square with NV O.

Now, since £A4 is incommensurable in length with 425,
therefore £4, AB are rational straight lines commensurable
in square only ;
therefore AKX, that is, the sum of the squares on MN, NO,

is medial. [x. 21]
Again, since £D is incommensurable in length with 425,
therefore ~£ is also incommensurable with £K; [x. 13]

therefore /£, EK are rational straight lines commensurable
in square only ;
therefore £L, that is, MR, that is, the rectangle MN, NO, is

medial. [x. 21]
And, since AE is incommensurable with £7,
AK is also incommensurable with £L. [vi. 1, x. 11]

But AKX is the sum of the squares on MN, NO,
and £L is the rectangle MN, NO;

therefore the sum of the squares on MN, NO is incommen-
surable with the rectangle MV, NO.

And each of them is medial, and N, NO are incom-
mensurable in square.



X. 59, Lemma) PROPOSITION 59 131

Therefore MO is the side of the sum of two medial areas
[x. 41], and is the ““side” of AC.
Q. E. D.
Euclid here finds the square root of the expression [cf. X. 53]

p(NJE.p+ A p)

As usual, we solve the equations

u+v=,[k.
v = ;/AP’P } .............................. (1);
then, u, v being found, we put
x* = pu
P } ................................. (2),

and (x + y) is the square root required.

Euclid proves that (x + y) is the séde of (the sum of ) two medial areas, as
follows.
~As in the last two propositions, x, y are proved to be incommensurable
in square.

Now ,/£. p, p are commensurable in square only ;

therefore p(u +v), or (x* + %), is a medial area .................. (3)-
Next, xy =3 /A p% which is again a medial area ............... (4)
Lastly, NE.pv 3 a/Aop,

so that N/ 2V EVE ) W -F

that is, (B+Y) v ry i (5).

Hence [(3), (4), (5)] (x +) is the side of the sum of two medial areas.
Solving the equations algebraically, we have

“=£(Jk+ﬁtx)’
v=2(yk-JEN,
and a4y=pJE(JE+ VE=N)+pE(VE— JE-D).

The corresponding square root found in X. 96 is x —y, where x, y are the

same as here. ) )
The two square roots are (cf. note on X. 53) the roots of the biquadratic

equation

xt—2 Jh.px?+ (A= A)p*=0.

[LEMMA.

If a straight line be cut into unequal parts, the squares
on the unequal parts are greater
than twice the rectangle con-
tained by the unequal parts.

Let A28 be a straight line, and let it be cut into unequal
parts at C, and let AC be the greater ;

I say that the squares on AC, CB are greater than twice the
rectangle AC, CB.

4 2 ¢ ®

Yy—2
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For let AB be bisected at D.
Since then a straight line has been cut into equal parts
at D, and into unequal parts at C,

therefore the rectangle AC, CB together with the square on
CD is equal to the square on 4D, . [ 5]
so that the rectangle AC, CB is less than the square on AD;
therefore twice the rectangle 4C, CAB is less than double of
the square on 4D.

But the squares on AC, CA are double of the squares on
AD, DC; (1. 9]
therefore the squares on 4C, CB are greater than twice the
rectangle AC, CB.

Q. E. D.]

, We have already remarked (note on x. 44) that the Lemma here proving
that
2+ > 2xy

can hardly be genuine, since the result is used in Xx. 44.

ProrosiTiON 60.

The square on the binomial straight line applied to a
rational straight line produces as breadth the first binomial.

Let A28 be a binomial straight line divided into its terms
at C, so that AC is the greater term;
let a rational straight line DE be
set out,
and let DEFG equal to the square
on AB be applied to DE producing
DG as its breadth ; E e
I say that DG is a first binomial i ¢ B
straight line.

For let there be applied to DE the rectangle DA equal
to the square on AC, and KL equal to the square on 5C;
therefore the remainder, twice the rectangle 4C, CAB, is equal
to MF.

Let MG be bisected at AV, and let VO be drawn parallel
[to ML or GF].

Therefore each of the rectangles MO, NF is equal to
once the rectangle AC, CAB.

Now, since 4B is a binomial divided into its terms at C,

D K M N (¢}
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therefore AC, CB are rational straight lines commensurable
in square only ; [x. 36]
therefore the squares on AC, CAB are rational and commen-
surable with one another,

so that the sum of the squares on AC, CA is also rational.

. [x. 15]
And it is equal to DL ;
therefore DL is rational.
And it is applied to the rational straight line D£;

therefore DM is rational and commensurable in length with
DE. [x. 20]

Again, since AC, CB are rational straight lines commen-
surable in square only,
therefore twice the rectangle AC, CB, that is MF, is medial.

[x. 21]
And it is applied to the rational straight line /L ;

therefore MG is also rational and incommensurable in length
with ML, that is, DE. [x. 22]

But MDD is also rational and is commensurable in length
with DE ;
therefore DA/ is incommensurable in length with M#G. [x. 13]
And they are rational ;

therefore DM, MG are rational straight lines commensurable
in square only;

therefore DG is binomial. [x. 36]

It is next to be proved that it is also a first binomial
straight line.

Since the rectangle 4C, CB is a mean proportional between
the squares on AC, CB5, [cf. Lemma after x. 53]
therefore MO is also a mean proportional between DA, KL.

Therefore, as DH is to MO, so is MO to KL,

that is, as DK is to MN, so is MN to MK ; [vi. 1]
therefore the rectangle DK, KM is equal to the square
on MN. [vi. 17]

And, since the square on 4C is commensurable with the
square on CAB,

DH is also commensurable with X,
so that DX is also commensurable with A/, v 1, x. 11],
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And, since the squares on AC, CB are greater than twice

the rectangle 4C, CB5, [Lemma]
therefore DL is also greater than MF,
so that DM is also greater than MG. [vi. 1]

And the rectangle DK, KM is equal to the square on
MN, that is, to the fourth part of the square on MG,

and DK is commensurable with A //.

But, if there be two unequal straight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and
if it divide it into commensurable parts, the square on the
greater is %reater than the square on the less by the square
on a straight line commensurable with the greater; [x. 17]

therefore the square on DA/ is greater than the square on
MG by the square on a straight line commensurable with DA/.

And DM, MG are rational,

and DM, which is the greater term, is commensurable in length
with the rational straight line DE set out.

Therefore DG is a first binomial straight line. [x. Deff. 1. 1]
Q E. D.

In the hexad of propositions beginning with this we have the solution of
the converse problem to that of X. 54—59. We find the sguares of the
irrational straight lines of X. 36—41 and prove that they are respectively equal
to the rectangles contained by a rational straight line and the frss, second,
third, fourth, fifth and sixth binomials.

In x. 6o we prove that, p + \/%. p being a binomial straight line [x. 36],

(p+ JE.p)
[
is a first binomial straight line, and we find it geometrically.
The procedure may be represented thus.
Take x, y, 2 such that
ox = Pay
oy = kp*
.23 =2 ,/k.p
p', %p® being of course the squares on the terms of the original binomial,
and 2z ,/A. p? twice the rectangle contained by them.

Then (x+y)+zz=(‘_’+_:/f'_")”

and we have to prove that (x + y) + 23 is a first binomial straight line of which
(x+), 23 are the terms and (x + y) the greater.

Euclid divides the proof into two parts, showing first that (x + y) + 23 is
some binomial, and secondly that it is the £7s# binomial.
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(a) p ~ J#.p, so that p*, &p® are rational and commensurable ;

therefore p?+ 4p% or o (x +y), is a rational area,

whence (x+y)isrationaland ~o ... (1).
Next, 2p . /4. p is a medial area,

so that o . 22 is a medial area,

whence 2z isrational but v o ... (2).
Hence [(1), (2)] (x +y), 25 are rational and commensurable in square

ONIY toviitiiiiies crrraer et e ee et et e e aan saeeaaas 3);

thus (x +y) + 22 is a binomial straight line. [x. 36]

8 PRk pr=JR. P A

so that oX : 03 =08 :0),

and x:8=8:Y,

or xy=8=}(28) e (4).

Now p? %p® are commensurable, so that ox, oy are commensurable, and
therefore

. AP ies v, (5).
And, since [Lemma] p* + £p* > 2 J/£. p%,
x+y> 23
.. . P + Apt
But (x +y) is given, being equal to T e (6).

Therefore [(4),-(5), (6), and x. 17] J(x +y)* - (22)* ~ (x + ).

And (x + ), 23 are rational and ~ [(3)},
while (x +) ~ o [(1)]

Hence (x +y) + 23 is a first binomial.

The actual value of (x +y) + 22 is, of course,

§(m+ka).

PROPOSITION 61.

The square on the first bimedial straight line applied to a
rational straight line produces as breadtk the second binomial.

Let A28 be a first bimedial straight line divided into its
medials at C, of which medials 4AC
is the greater;
let a rational straight line D £ be set
out,
and let there be applied to DE the
parallelogram D F equal to the square
on A B, producing DG as its breadth; E HL o0 F
I say that DG is a second binomial A ¢ 8
straight line.

For let the same construction as before be made.
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Then, since AR is a first bimedial divided at C,
therefore AC, CB are medial straight lines commensurable in

square only, and containing a rational rectangle, [(x 37]
so that the squares on AC, CAB are also medial. [x. 21]
Therefore DL is medial. [x. 15 and 23, Por.]

And it has been applied to the rational straight line DE;
therefore MD is rational and incommensurable in length
with DE. [x. 22]

Again, since twice the rectangle AC, CB is rational, MF is
also rational.

And it is applied to the rational straight line /7L ;
therefore MG is also rational and commensurable in length
with ML, that is, DE ; [x. 20]
therefore DM is incommensurable in length with #/G. [x. 13]

And they are rational ;
therefore DM, MG are rational straight lines commensurable
in square only ;
therefore DG is binomial. [x. 36]

It is next to be proved that it is also a second binomial
straight line.

or, since the squares on 4C, CB are greater than twice
the rectangle AC, CB,

therefore DL is also greater than MF,
so that DM is also greater than MG. [vi. 1]

And, since the square on 4C is commensurable with the
square on CA5,

DH is also commensurable with XL,

so that DK is also commensurable with KM, = [v. 1, x. 11]
And the rectangle DX, KM is equal to the square on MNV;

therefore the square on DA/ is greater than the square on

MG by the square on a straight line commensurable with DM/

[x. 17
And MG is commensurable in length with DE. .

Therefore DG is a second binomial straight line. [x. Deff. 1. z]

In this case we have to prove that, (k*p +k!p) being a first bimedial
straight line, as found in x. 37,

(#p + Aoy

is a second binomial straight line.
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The form of the proposition and the figure being similar to those of x. 6o,
I can somewhat abbreviate the reproduction of the proof.

Take x, y, z such that
ox = k*p’,
oy = k§P”
o.23=2kp%
Then shall (x + y) + 22 be a second binomial.
(a) #p, #p are medial straight lines commensurable in square only and
containing a rational rectangle. [x. 37]
The squares kip’, k}p’ are medial ;
thus the sum, or o (x + ), is medial. [x. 23, Por.]
Therefore (x + y) is rational and © o.
And o . 2z is rational ;

therefore 2zisrationaland Ao ................cooee (1)
Therefore (x + y), 2z are rational and ~ ..........cccoeeiviiniininnnnnnn. (2),
so that (x +y) + 22 is a binomial.
(B) As before, (x+y) > 22
Now, #3p, #%? being commensurable,
x A~y
And xy = 2%,
32 28
while x + y =/_§%kp.
Hence [x. 17] JE+P (23 A (X +)) oo, (3).

But 2z ~ g, by (1).
Therefore [(1), (2), (3)] (x +y) + 22 is a second binomial straight line.

Of course (¥ +y) + 25 = %’ {JE(1 + ) + 24},

ProrosITION 62.

The square on the second bimedial stvaight line applied to
a rational straight line produces as breadth the third binomial.

Let 45 be a second bimedial straight line divided into
its medials at C, so that AC is the
greater segment ; o KM N G
let DE be any rational straight line,
and to DE let there be applied the
parallelogram DF equal to the square
on AB and producing DG as its H L 0 1
breadth ;
I say that DG is a third binomial
straight line.

Let the same construction be made as before shown.




138 BOOK X [x. 62

Then, since A8 is a second bimedial divided at C,
therefore AC, CB are medial straight lines commensurable in
square only and containing a medial rectangle, [x. 38]
so that the sum of the squares on 4C, CAB is also medial.

[x. 15 and 23 Por.]

And it is equal to DL ;
therefore DL is also medial.

And it is applied to the rational straight line DE ;
therefore MD is also rational and incommensurable in length
with DE. [x. 22]

For the same reason,

MG is also rational and incommensurable in length with 7L,
that is, with DE';

therefore each of the straight lines DM, MG is rational and
incommensurable in length with DE.

And, since AC is incommensurable in length with C25,
and, as AC is to CB, so is the square on AC to the rectangle
AC, CB,
therefore the square on AC is also incommensurable with the

rectangle AC, CB. [x. 11]
Hence the sum of the squares on 4C, CB is incommen-
surable with twice the rectangle 4C, CB, [x. 12, 13]

that is, 2L is incommensurable with MF,

so that DM is also incommensurable with #G.  [v1. 1, x. 11]
And they are rational ;

therefore DG is binomial. : [x. 36)

Itis to be proved that it is also a third binomial straight line.
In manner similar to the foregoing we may conclude that
DM is greater than MG,
and that DX is commensurable with XA/.

And the rectangle DK, KM is equal to the square on
MN;
therefore the square on DA/ is greater than the square on
MG by the square on a straight line commensurable with
DM.

And neither of the straight lines DM, MG is commen-
surable in length with DE.

Therefore DG is a third binomial straight line. [x. Deff. 1. 3]

Q E. D.
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We have to prove that [cf. x. 38]

is a third binomial straight line.
Take x, y, z such that

(e) Now k*p, ! P are medial straight lines commensurable in square only

and containing a medsa/ rectangle. [x. 38]
The sum of the squares on them, or o (x +y), is medial
therefore (r+y)isrationaland v o .........ceeiennil (1).
And o . 23 being medial also,
2zisrationaland v o .....ooeiiiniiiia (2).
o Mo i M
Now kp.k* (kip)kgpk*
=ox: 03

whence ox v 03.

But (k*p)’ ~ {(k*p)’ (k* } ,or ox~o(x+y), and o3~0. 23;
therefore o(x+y)vo.a2s
or (X+P) v 28 i (3)
Hence [(1), (2), (3)] (x +y) + 25 is a binomial straight line............ (4).
(B) As before, (x +y) > 23,
and ' x Ny,
Also xy = 3%

Therefore [x. 17] ¥/(x +y)* —(23)* ~ (x +y).
And [(1), (2)] neither (x + y) nor 23 is ~ o.
Therefore (x + y) + 23 is a third binomial straight line.

Obviously (x+y) +28="= {k‘j; J)L}

ProrosITION 63.

The square on the major straight line applied to a rational
straight line produces as breadth the fourth binomial.

Let 4B be a major straight line divided at C, so that 4C
is greater than CB;
let DE be a rational straight line,
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and to DE let there be applied the parallelogram DF equal
to the square on 48 and producing DG as its breadth ;

I say that DG is a fourth binomial

straight line. D KM N a

Let the same construction be
made as before shown.

Then, since A8 is a major
straight line divided at C, L I
AC, CB are straight lines incom- ~ _
mensurable in squgre which make A ¢ s
the sum of the squares on them
rational, but the rectangle contained by them medial.  [x. 39]

Since then the sum of the squares on AC, CBA is rational,
therefore DL is rational ;

therefore DM is also rational and commensurable in length
with DE. . [x. 20]

Again, since twice the rectangle AC, CB, that is, MF, is
medial,
and it is applied to the rational straight line /7L,
therefore MG is also rational and incommensurable in length

with DE ; [x. 22]
therefore DA/ is also incommensurable in length with #/G.
[x 13]

Therefore DM, MG are rational straight lines commen-
surable in square only ;

therefore DG is binomial. [x. 36]

It is to be proved that it is also a fourth binomial straight line.
In manner similar to the foregoing we can prove that
DM is greater than MG,
and that the rectangle DK, KM is equal to the square on M.

Since then the square on AC is incommensurable with the
square on (2B, .
therefore DH is also incommensurable with XL,
so that DK is also incommensurable with KA/, [vi 1, x. 11]
But, if there be two unequal straight lines, and to the
greater there be applied a parallelogram equal to the fourth
part of the square on the less and deficient by a square
figure, and if it divide it into incommensurable parts, then the
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square on the greater will be greater than the square on the
less by the square on a straight line incommensurable in
length with the greater ; [x. 18]

therefore the square on DM is greater than the square on
MG by the square on a straight line incommensurable with

And DM, MG are rational straight lines commensurable
in square only,

and DM is commensurable with the rational straight line DE
set out.

Therefore DG is a fourth binomial straight line. [x. Deff. 1. 4]

Q. E. D.
We have to prove that [cf. X. 39]

Ha VoA V- A

is a fourth binomial straight line.
For brevity we must call this expression

;r (» + ).

ox = u?
oy =17 ’
o.28=2uV

wherein it has to be remembered [x. 39] that #, v are incommensurable in
square, (#* + 2*) is rational, and v 1s medial.

Take x, y, z such that

(a) (#*+9*), and therefore o (x + ), is rational ;

therefore (x+y)isrationaland ~ o ............ .oee... L (1).
2uv, and therefore o. 22, is medial ;

therefore 2gisrationaland v o ..., (2).
Thus (x + ), 22 are rational and ~ ..... e (3),

so that (x +y) + 2z is a binomial straight line.

(B) As before, X +y> 22,

and xy =123

Now, since #* v 7%,
gx v ay, or xvy.

Hence [x. 18] NE+y)P— (22 o (X 4) s veeeenn, (4)-
And (x +y) ~a, by (1).
Therefore [(3), (4)] (x +) + 28 is a fourth binomial straight line.

. P I
It is of course = {1 + ———} .
Ji+ B

(-4
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ProposiTION 64.

The square on the side of a rational plus a medial area
applied to a rational straight line produces as breadth the fifth
binomzal.

Let AB be the side of a rational plus a medial area,
divided into its straight lines at C,
so that AC is the greater; D KM N a
let a rational straight line D £ be set
out,
and let there be applied to DE the
parallelogram D F equal to the square
on AB, producing DG as its breadth; & K_iié_o'a f
I say that DG is a fifth binomial
straight line.

Let the same construction as before be made.

Since then 4B is the side of a rational plus a medial
area, divided at C,
therefore 4 C, CAB are straight lines incommensurable in square
which make the sum of the squares on them medial, but the
rectangle contained by them rational. [x. 40]

Since then the sum of the squares on AC, CAB is medial,
therefore DL is medial,
so that DM is rational and incommensurable in length with
DE. [x. 22]

Again, since twice the rectangle 4C, CB, that is MF, is
rational,
therefore MG is rational and commensurable with DE. [x. 20]

Therefore DM is incommensurable with 4G ; [x. 13]
therefore DM, MG are rational straight lines commensurable
in square only ;
therefore DG is binomial. [x. 36]

I say next that it is also a fifth binomial straight line.

For it can be proved similarly that the rectangle DX, KM
is equal to the square on M/,
and that DK is incommensurable in length with K/ ;
therefore the square on DA/ is greater than the square on #G

by the square on a straight line incommensurable with DJ/.
[x. 18]
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And DM, MG are commensurable in square only, and the
less, MG, is commensurable in length with DE.
Therefore DG is a fifth binomial.
Q. E. D.

To prove that [cf. x. 40]
1
{Jz—_(1+k’ ~/~/;+k=+1e+Jz_l__%,7 JirE -4

is a fifth binomial straight line.
For brevity denote it by (# + v)% and put
ox =1,
ay =17,
0. 23 = 2uv.

Remembering that [X. 40] #® v %, (#® + 7*) is medial, and 2uv is rational,
we proceed thus.

(a) o(x+y)is medial ;

therefore (x+y)isrational and v & ...covveniiiinennenn. (1)
Next, o . 22 is rational ;
therefore 2z is rational and A o.......ocoeeeeeieennnnn.. (2).
Thus (% +), 2z are rational and ~ ..................... (3)
so that (x + y) + 2z is a binomial straight line.
(B) As before, x+y> 23,
xy =9
and X vy,
Therefore [x. 18] VJE+)P =@ o (x+5) e, (4).

Hence [(2), (3), (4)] (x +y) + 22 is a fifth binomial straight line.

It is of course

? {ren
o Wi+ 1+4°

PROPOSITION 65.

The square on the side of the sum of two medial areas
applied to a rational straight line produces as breadth the
suxth binomaial.

Let AB be the snde of the sum of two medial areas,
divided at C,

let DE be a rational straight line,

and let there be applied to DE the parallelogram DF equal
to the square on 4B, producing DG as its breadth ;
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I say that DG is a sixth binomial straight line.

For let the same construction be made as before.
Then, since AB is the side of
the sum of two medial areas, divided
at C, 2

therefore 4C, CB are straight lines
incommensurable in square which
make the sum of the squares on
them medial, the rectangle contained € H L F
by them medial, and moreover the A ¢ 8
sum of the squares on them incom-

mensurable with the rectangle contained by them, [x. 41]

so that, in accordance with what was before proved, each of
the rectangles DL, MF is medial.

And they are applied to the rational straight line D £ ;

therefore each of the straight lines DM, MG is rational and
incommensurable in length with DE. [x. 22]

And, since the sum of the squares on 4C, CB is incom-
mensurable with twice the rectangle 4C, CB,

therefore DL is incommensurable with A/F.

Therefore DM is also incommensurable with /G ;
' [ve 1, x. 11]
therefore DM, MG are rational straight lines commensurable
in square only ;

therefore DG is binomial. [x. 36]

I say next that it is also a sixth binomial straight line.
Similarly again we can prove that the rectangle DX, KM
is equal to the square on M N,

and that DX is incommensurable in length with K47 ;

and, for the same reason, the square on DA/ is greater than
the square on MG by the square on a straight line incom-
mensurable in length with DM/,

And neither of the straight lines DM, MG is commen-
surable in length with the rational straight line DZ set out.
Therefore DG is a sixth binomial straight line.

Q. E. D.
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To prove that [cf. x. 41]

1 ;_:ltf k ;&% _ J ] 2
w{,Jz‘V T l+k’+~/2V ! ~/1+k’}

is a séxth binomial straight line.

Denote it by ; (% + v), and put

ox =1,
oy =7
T.22 = 2uU0.

Now, by x. 41, #* 7% (4 +9®) is medial, 2wz is medial, and
(#* + 2%) v 2uv.

(a) In this case o (x +y) is medial ;

therefore (x+y)isrational and v & ..c.covvenniiiiniinnnn. (1)
In like manner, 2z is rational and v & ....cciiniiiiiiiniann wee(2)
And, since o (x +y) v 0. 23,

(F+Y) v 22 ciiiiiiiiiiicniii, (3)-
Therefore (x + y) + 2z is a binomial straight line.
(B) As before, X +y> 23,
xy =2,
xoy;

therefore [x. 18] NE+yP (8o (X +9) oo, (4)-

Hence [(1), (2), (3), (4)] (x + ) + 23 is a séxth binomial straight line.
C P JA } )
It is obviously - {J)t + Tiad

ProrosiTioN 66.

A straight line commensurable in length with a binomial
straight line is itself also binomial and the same in ovder.

Let A8 be binomial, and let CD be commensurable in
length with 48 ;

A + B
C D

[ say that CD is binomial and the same in order with 425.
For, since AR is binomial,

let it be divided into its terms at £,

and let AE be the greater term ;

H. E. IIL 10
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therefore AL, EB are rational straight lines commensurable

in square only. [x. 36]
Let it be contrived that,

as AB isto CD, so is AE to CF; [vi. 12]

therefore also the remainder £2 is to the remainder FD as

AR is to CD. [v. 19]

But 4B is commensurable in length with CD ;
therefore A is also commensurable with CF, and £25 with
FD. [x. 11]
And AE, ERB are rational ;
therefore CF, FD are also rational.

And, as AE is to CF, so is EBR to FD. [v. 11]
Therefore, alternately, as A£ is to £B, so is CF to FD.
[v. 16]

But AE, EB are commensurable in square only ;
therefore CF, FD are also commensurable in square only.

[x. 1]

And they are rational ;
therefore CD is binomial. [x. 36]

I say next that it is the same in order with A25.

For the square on A £ is greater than the square on £5
either by the square on a straight line commensurable with
AE or by the square on a straight line incommensurable
with it.

If then the square on A £ is greater than the square on
E B by the square on a straight line commensurable with 4 £,

the square on CF will also be greater than the square on #D
by the square on a straight line commensurable with C/.

[x. 14]

And, if AE is commensurable with the rational straight
line set out, CF will also be commensurable with it, [x. 12]
and for this reason each of the straight lines 45, CD is a
first binomial, that is, the same in order. [x. Deff. 11. 1]
But, if £B is commensurable with the rational straight line

set out, /D is also commensurable with it, [x. 12]

and for this reason again CD will be the same in order with
AB,
for each of them will be a second binomial. [x. Deff. 1. 2]
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But, if neither of the straight lines A£, £B is commen-
surable with the rational straight line set out, neither of the
straight lines CF, D will be commensurable with it, [x. 13]
and each of the straight lines A5, CD is a third binomial.

[x. Deff. 1. 3]

But, if the square on AZ is greater than the square on
EB by the square on a straight line incommensurable with
AE,
the square on CF is also greater than the square on D by
the square on a straight line incommensurable with CF. [x. 14]

And, if AE is commensurable with the rational straight
line set out, CF is also commensurable with it,
and each of the straight lines 48, CD is a fourth binomial.

[x. Deff. 11. 4]

But, if £B8 is so commensurable, so is /D also,

and each of the straight lines 4.8, CD will be a fifth binomial.
[x. Deff. 11. 5]

But, if neither of the straight lines 4 £, £B is so com-
mensurable, neither of the straight lines C/, D is commen-
surable with the rational straight line set out,
and each of the straight lines 4 B, CD will be a sixth binomial.

[x. Deff. 11. 6]

Hence a straight line commensurable in length with a

binomial straight line is binomial and the same in order.
Q. E. D.

The proofs of this and the following propositions up to x. 70 inclusive are
easy and require no elucidation. They are equivalent to saying that, if in each

of the preceding irrational straight lines %’p is substituted for p, the resulting

irrational is of the same kind as that from which it is altered.

ProrosiTiON 67.
A straight line commensurable in length with a bimedial
straight line is itself also bimedial and the same in order.

Let A8 be bimedial, and let CD be commensurable in
length with A5 ;

[ say that CD is bimedial and the same A E 8
in order with 425. c F O

For, since AR is bimedial, A
let it be divided into its medials at £';

10—2
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therefore A£, EB are medial straight lines commensurable

in square only. [x. 37, 38]
And let it be contrived that,

as ABisto CD,sois AE to CF;

therefore also the remainder £2 is to the remainder D as
AR is to CD. [v. 19]

But A8 is commensurable in length with CD ;
therefore AE, EB are also commensurable with CF, FD

respectively. [x. 11]
But AE, EB are medial ;

therefore CF, FD are also medial. [x. 23]
And since, as AE is to £B, so is CF to FD, [v. 11]

and AE, EB are commensurable in square only,

CF, FD are also commensurable in square only. [x. 11]

But they were also proved medial ;
therefore CD is bimedial.

I say next that it is also the same in order with 45. -
For since, as AE is to £B, so is CF to FD,

therefore also, as the square on A£ is to the rectangle 4 £,
EB, so is the square on CF to the-rectangle CF, FD;

therefore, alternately,

as the square on AE is to the square on CF, so is the rect-
angle AE, EB to the rectangle CF, FD. [v. 16]

But the square on A £ is commensurable with the square
on CF;

therefore the rectangle AE, £B is also commensurable with
the rectangle CF, FD.

If therefore the rectangle A £, EB is rational,
the rectangle CF, FD is also rational,

[and for this reason CD is a first bimedial]; [x. 37]
but if medial, medial, [x. 23, Por.]
and each of the straight lines 48, CD is a second bimeElial. ]

X. 38

And for this reason CD will be the same in order with 4 5.
. Q. E. D.
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ProrosiTiON 68.

A straight line commensurable with a major straight
line is itself also major.

Let A B be major, and let CD be commensurable with 4 5;
I say that CD is major.

Let A8 be divided at £ ; A
therefore AE, EB are straight lines incommensur- c
able in square which make the sum of the squares ¢
on them rational, but the rectangle contained by
them medial. [x. 39] gl o

Let the same construction be made as before.

Then since, as AB is to CD, so is AE to CF, and EB
to /D,
therefore also, as A £ is to CF, so is £EB to FD. [v. 11]

But A8 is commensurable with CD;
therefore AE, EB are also commensurable with CF, FD
respectively. [x. 1]

And since, as AE is to CF, so is £B to FD,

alternately also,

F

as AE isto EB, sois CFto FD; [v. 16]
therefore also, componendo,

as AB isto BE, sois CD to DF; [v. 18]
therefore also, as the square on A5 is to the square on BE,
so is the square on CD to the square on DF. [v1. 20]

Similarly we can prove that, as the square on 475 is to
the square on A, so also is the square on CD to the square
on CF.

Therefore also, as the square on 428 is to the squares on
AE, EB, so is the square on CD to the squares on CF, FD;
therefore also, alternately,
as the square on A8 is to the square on CJD, so are the
squares on A £, EB to the squares on CF, FD. [v. 16]

But the square on 45 is commensurable with the square
on CD;

therefore the squares on AE, EB are also commensurable
with the squares on CF, FD.
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And the squares on AE, EB together are rational ;
therefore the squares on CF, FD together are rational.

Similarly also twice the rectangle 4£, £B is commen-
surable with twice the rectangle CF, FD.

And twice the rectangle A £, £B is medial ;

therefore twice the rectangle CF, FD is also medial.
[x. 23, Por.]

Therefore CF, FD are straight lines incommensurable in
square which make, at the same time, the sum of the squares
on them rational, but the rectangle contained by them medial;
therefore the whole CD is the irrational straight line called
major. [x. 39]

Therefare a straight line commensurable with the major

straight line is major.
Q. E. D.

ProprosITION 69.

A straight line commensurable with the side of a rational
plus a medral area s itself also the side of a rational plus a
medial area.

Let AB be the side of a rational plus a medial area,
and let CD be commensurable with 4253
it is to be proved that CD is also the side of a A
rational plus a medial area.

Let 42 be divided into its straight lines at £';
therefore AE, EB are straight lines incommensur-
able in square which make the sum of the squares €t
on them medial, but the rectangle contained by them
rational. [x.40) B

Let the same construction be made as before.

We can then prove similarly that
CF, FD are incommensurable in square,
and the sum of the squares on AZ£, £B is commensurable
with the sum of the squares on CF, FD,
and the rectangle AE, EB with the rectangle CF, FD
so that the sum of the squares on CF, FD is also medial, and
the rectangle CF, FD rational.

Therefore CD is the side of a rational plus a medial area.
Q. E. D.
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ProrosiTiON 70.

A straight line commensurable with the side of the sum
of two medial areas is the side of the sum of two medial areas.

Let AR be the side of the sum of two medial areas, and
CD commensurable with 458 ;

it is to be proved that CD is also the side of the A
sum of two medial areas. c

For, since AB is the side of the sum of two
medial areas, el

let it be divided into its straight lines at £ ;

therefore A£, EB are straight lines incommensur-
able in square which make the sum of the squares 8

on them medial, the rectangle contained by them

medial, and furthermore the sum of the squares on A £, £B
incommensurable with the rectangle A£, £B. ' [x. 41]

Let the same construction be made as before.
We can then prove similarly that
CF, FD are also incommensurable in square,

the sum of the squares on A£, £B is commensurable with
the sum of the squares on CF, FD,

and the rectangle 4 £, EB with the rectangle CF, FD;
so that the sum of the squares on CF, FD is also medial,
the rectangle CF, FD is medial,
and moreover the sum of the squares on CF, FD is incom-
mensurable with the rectangle CF, FD. ,
" Therefore CD is the side of the sum of two medial areas.
Q. E. D.

o

ProrposITION 71.

If a rational and a medial area be added together, four
irrational stvaight lines arise, namely a binomial or a first
bimedial or a major or a side of a rational plus a medial
area.

Let A2 be rational, and CD media] :

I say that the “side” of the area 4D is a binomial or a first
bimedial or a major or a side of a rational plus a medial
area.
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For AB is either greater or less than CD.

First, let it be greater;
let a rational straight line £ be set out,
let there be applied to £F the rectangle £G equal to AB,
producing £H as breadth,
and let A7, equal to DC, be applied to £F, producing /K
as breadth.

A c

8 D

Then, since 4B is rational and is equal to £G,
therefore £ is also rational. :
And it has been applied to £F, producing £/ as breadth;

therefore £/ is rational and commensurable in length with
EF. [x. 20]

Again, since CD is medial and is equal to 4/,
therefore /7 is also medial.

And it is applied to the rational straight line £F, pro-
ducing //K as breadth ;

therefore //K is rational and incommensurable in length
with EF. [x. 22]

And, since CD is medial,
while 4B is rational,
therefore A8 is incommensurable with CD,
so that £G is also incommensurable with A/,
But, as £G is to H/, so is EH to HK ; [vi. 1]

therefore £/ is also incommensurable in length with /X
[x 11
And both are rational ; :
therefore £/, HK are rational straight lines commensurable
in square only ;
therefore £X is a binomial straight line, divided at /7. [x. 36]



X. 71] PROPOSITION 71 153

And, since 425 is greater than CD,
while A8 is equal to £G and CD to H1,
therefore £G is also greater than /A7 ;
therefore £/ is also greater than /K.

The square, then, on £/ is greater than the square on
HK either by the square on a straight line commensurable
in length with £/ or by the square on a straight line in-
commensurable with it.

First, let the square on it be greater by the square on a
straight line commensurable with itself.

Now the greater straight line /£ is commensurable in
length with the rational straight line £F set out;
therefore £K is a first binomial. [x. Deff. 1. 1]

But £F is rational ;
and, if an area be contained by a rational straight line and the
first binomial, the side of the square equal to the area is
binomial. . [x. 54]

Therefore the “side” of £/ is binomial ;
so that the ‘‘side” of 4D is also binomial.

Next, let the square on £/ be greater than the square
on K by the square on a straight line incommensurable
with EH.

Now the greater straight line £/ is commensurable in
length with the rational straight line £F set out;
therefore £K is a fourth binomial. [x. Deff. 11. 4)

But £F is rational ;
and, if an area be contained by a rational straight line and the
fourth binomial, the “side” of the area is the irrational straight
line called major. [x. 57]

Therefore the “side” of the area £/ is major ;
so that the “side” of the area 4D is also major.

Next, let A8 be less than CD;
therefore £G is also less than A/,
so that £/ is also less than A K.

Now the square on /K is greater than the square on £/4
either by the square on a straight line commensurable with
HK or by the square on a straight line incommensurable
with it.
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First, let the square on it be greater by the square on a

strai\glht line commensurable in length with itself.
ow the lesser straight line £/ is commensurable in

length with the rational straight line £ set out;
therefore £K is a second binomial. [x. Deff. 11. 2]

But £F is rational ;
and, if an area be contained by a rational straight line and
the second binomial, the side of the square equal to it is a
first bimedial ; [x. 55]
therefore the ‘““side” of the area £/ is a first bimedial,
so that the “side” of 4D is also a first bimedial.

Next, let the square on /K be greater than the square
on HE by the square on a straight line incommensurable
with /K.

Now the lesser straight line £/ is commensurable with
the rational straight line £/ set out;
therefore £K is a fifth binomial. [x. Deff. 1. 5]

But £F is rational ;
and, if an area be contained by a rational straight line and the
fifth binomial, the side of the square equal to the area is a
side of a rational plus a medial area. [x. 58]

Therefore the “side” of the area £/ is a side of a rational
plus a medial area,
so that the “side” of the area 4D is also a side of a rational
plus a medial area.

Therefore etc. Q. E. D.

A rational area being of the form Zp% and a media/ area of the form
“JA. p% the problem is to classify

JE + A pt
according to the different possible relations between £, A.
Put ou=kp?,
ov=,/\.p%

Then, since the former rectangle is rational, the latter medial,
 is rational and ~ o,
v is rational and « o.
Also the rectangles are incommensurable ;
so that RVE /A
Hence «, v are rational and ~;
whence (¥ +v) is a bi.nomial straight line.



X. 71, 72] PROPOSITIONS 71, 72 155

The possibilities now are as follows :
L u>o
Then either
(1) V-2 ~uy,
or (2) JiE—viou,
while in both cases # ~ o.
In case (1) (¥ + v) is a _first binomial straight line,
and in case (2) (¥ +7) is a_fourth binomial straight line.
Thus / o (4 + v) is either (1) 2 dinomial straight line [x. 54] or (2) a major
irrational straight line [x. 57].

.

II. 9> u
Then either
(1) JP-sutn~y,
or (2) Jrr-woo,
while in both cases v v o, but u~o.
Hence, in case (1), (2 + ») is a second binomial straight line,
and, in case (2), (v + %) is a fifth binomial straight line.

Thus Vo (v + ) is either (1) a first bimedial straight line [x. 55], or (2) a
side of a rational plus a medial area [x. 58]

ProrosiTION 72.

If two medial arveas incommensurable with one another be
added together, the remaining two irrational straight lines
arise, namely either a second bimedial or a side of the sum of
two medial areas.

For let two medial areas A8, CD incommensurable with
one another be added together ;
I say that the ‘side” of the area AD is either a second
bimedial or a side of the sum of two medial areas.

A [¢]

H (¢]
B D K |

For AB is either greater or less than CD..
First, if it so chance, let 45 be greater than CD.
Let the rational straight line £/ be set out,

and to EF let there be applied the rectangle £G equal to
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AB and producing E/ as breadth, and the rectangle /77
equal to CD and producing /K as breadth.

Now, since each of the areas 458, CD is medial,
therefore each of the areas £G, H/ is also medial.

And they are applied to the rational straight lme FE,
producing £/, HK as breadth;
therefore each of the straight lines £/, AKX is rational and
incommensurable in length with £, [x. 22]

And, since A8 is incommensurable with CD,
and A2 is equal to £G, and CD to H/,
therefore £G is also incommensurable with ~7/.

But, as £G is to A7, so is EH to HK ; [vi. 1]
therefore £/ is incommensurable in length with 7K. [x. 11]

Therefore EH, HK are rational straight lines commen-
surable in square only ;.
therefore £K is binomial. [x. 36]

But the square on £/ is greater than the square on /X
either by the square on a straight line commensurable with
EH or by the square on a straight line incommensurable
with it.

First, let the square on it be greater by the square on a
straight line commensurable in length with itself.

Now neither of the straight lines £/, AKX is commen-
surable in length with the rational straight line £/ set out ;
therefore £K is a third binomial. [x. Deff. 1. 3]

But £F is rational ;

and, if an area be contained by a rational straight line and the
third binomial, the “side” of the area is a second bimedial ;

[x. 56]
therefore the “side” of £/, that is, of A D, is a second bimedial.

Next, let the square on £/ be greater than the square
on HK by the square on a straight line incommensurable in
length with £A4.

Now each of the straight lines £/, HK is incommen-
surable in length with £F; :

therefore £K is a sixth binomial. [x. Deff. 1. 6]
But, if an area be contained by a rational straight line and
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the sixth binomial, the “side” of the area is the side of the
sum of two medial areas; [x. 59]
so that the “side” of the area 4D is also the side of the
sum of two medial areas.

Therefore etc.
Q. E. D.

We have to classify, according to the different possible relations between

%, A, the straight line )
JJE. '+ JA. Y

where /£.p* and ,/A. p* are incommensurable.
Suppose that ou=,[k. p
ov=JA. ph
It is immaterial whether ./£.p? or J/A.p? is the greater. Suppose, e.g.,
that the former is.
Now, . p% JJA. p* being both medial areas, and o rational,

%, v are both rational and v o ...l (1).
Again, by hypothesis, ou v av,
or R /N (2).

Hence [(1), (2)] (# + 2) is a binomial straight line.
Next, V/a?=9? is either commensurable or incommensurable in length
with #.
(a) Suppose Vi@ =27 ~ u.
In this case (« + v) is a third binomial straight line,
and therefore, [x. 56]
Vo (4 +v) is a second bimedial straight line.

B If Ve—2 oy,
(# + ) is a sixth binomial straight line,
and therefore [x. 59]
Na (4 +v) is a side of the sum of two medial areas.

The binomial straight line and the irrational straight lines
after it are neither the same with the medial nor with one
another.

For the square on a medial, if applied to a rational straight
line, produces as breadth a straight line rational and incom-
mensurable in length with that to which it is applied. [x. 22]

But the square on the binomial, if applied to a rational
straight line, produces as breadth the first binomial. [x. 60]

he square on the first bimedial, if applied to a rational
straight line, produces as breadth the second binomial. [x. 61]
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The square on the second bimedial, if applied to a rational
straight line, produces as breadth the third binomial.  [x. 62]
he square on the major, if applied to a rational straight
line, produces as breadth the fourth binomial. [x. 63]
The square on the side of a rational plus a medial area, if
applied to a rational straight line, produces as breadth the fifth
binomial. ' [x. 64]
The square on the side of the sum of two medial areas, if
applied to a rational straight line, produces as breadth the
sixth binomial. [x. 65]
And the said breadths differ both from the first and from
one another : from the first because it is rational, and from
one another because they are not the same in order ;

so that the irrational straight lines themselves also differ from
one another.

The explanation after x. 72 is for the purpose of showing that all the
irrational straight lines treated hitherto are different from one another, viz. the
medial, the six irrational straight lines beginning with the binomial, and the
six consisting of the first, second, third, fourth, fifth and sixth binomials.

ProrosiTiON 73.

If from a rational straight line theve be sublvacted a
rational straight line commensurable with the whole in square
only, the remainder is irrational; and let it be called an
apotome.

For from the rational straight line 42 let the rational
straight line ZC, commensurable with
the whole in square only, be sub- A ¢ B
tracted ;

I say that the remainder AC is the irrational straight line
called apotome.

For, since AB is incommensurable in length with BC,
and, as A8 is to BC, so is the square on 4B to the rectangle
AB, BC,
therefore the square on 4B is incommensurable with the

rectangle 4B, BC. [x. 11]
But the squares on 48, BC are commensurable with the
square on 458, [x. 15]

and twice the rectangle A8, BC is commensurable with the
rectangle A8, BC. : _ [x. 6]
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And, inasmuch as the squares on A5, BC are equal to
twice the rectangle 45, BC together with the square on C4,

[11. 7]
therefore the squares on A8, BC are also incommensurable
with the remainder, the square on 4C. [x. 13, 16)

But the squares on 45, BC are rational ;
therefore AC is irrational. [x Def. 4]
And let it be called an apotome.
Q E. D.

Euclid now passes to the irrational straight lines which are the difference
and not, as before, the sum of two straight lines. 4pofome (“portion cut off )
accordingly takes the place of dinomial and the other terms follow mutatis
mutandis. The first hexad of propositions (73 to 78) exhibit the six irrational
straight lines which are really the result of extracting the sguare root of the six
irrationals in the later propositions 85 to go (or, strictly speaking, of finding
the sides of squares equal to the rectangles formed by each of those six
irrational straight lines respectively with a rational straight line). Thus, just
as in the corresponding propositions about the irrational straight lines formed
by addition, the further removed irrationals, so to speak, come first.

We shall denote the apotome etc. by (x — y), which is formed by subtracting
a certain lesser straight line y from a greater x. In X. 79 and later propositions
yis called by Euclid the annex (7 mpocappi{ovaa), being the straight line which,
when added to the apotome or other irrational formed by subtraction, makes
up the greater x.

The methods of proof are exactly the same as in the preceding propositions
about the irrational straight lines formed by addstion.

In this proposition x, y are rational straight lines commensurable in square
only, and we have to prove that (x — y), the apolome, is irrational.

X~y sothat x v y:

therefore, since x:y=2":xy,
2o xy.
But x* ~ (x* +)°), and ay ~ 2xy;
therefore X%+ y o 2xy,
whence (x=p) v (x*+5°).
But (2* +5?) is rational ;

therefore (x — y)?% and consequently (x - y), is irrational.

The apotome (x — y) is of the form p ~ /4. p, just as the binomial straight
line is of the form p + /4. p.

ProrosiTION 74.

If from a medial straight line there be subtracted a medial
straight line which is commensurable with the whole in square
only, and which conlains with the whole a rational rectangle,
the remainder is irrational. And let it be called a first
apotome of a medial straight line.
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For from the medial straight line A28 let there be sub-
tracted the medial straight line BC
which is commensurable with A8 in A ¢ B
square only and with 45 makes the
rectangle A5, BC rational ;

I say that the remainder AC is irrational; and let it be
called a first apotome of a medial straight line.

For, since AB, BC are medial,
the squares on 4B, BC are also medial.
But twice the rectangle 425, BC is rational ;

therefore the squares on A8, BC are incommensurable with
twice the rectangle A8, BC;

therefore twice the rectangle 458, BC is also incommensurable
with the remainder, the square on 4C, [cf. 1. 7]

since, if the whole is incommensurable with one of the magni-
tudes, the original magnitudes will also be incommensurable.

[x. 16]
But twice the rectangle 48, BC is rational ;
therefore the square on AC is irrational ;
therefore AC is irrational. [x. Def. 4]

And let it be called a first apotome of a medial straight
line.

The first apotome of a medial straight line is the difference between straight

lines of the form k*p, kip, which are medial straight lines commensurable in
square only and forming a rational rectangle.

By hypothesis, 2% y* are medial areas.
And, since xy is rational, (2?+)°) v xy
v 2%y,
whence ' (x—y)* v 2xy.
But 2xy is rational ;
therefore (x — y)? and consequently (x — y), is irrational.
This irrational, which is of the form (k*p ~k§p), is the first apolome of a

medial straight line ; the term corresponding of course to firs¢ bimedial, which
applies where the sign is positive.
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ProrosiTION 75.

If from a medial straight line there be subtracted a medial
straight line whick is commensurable with the whole in square
only, and whick contains with the whole a medial rectangle,
the remainder is trrational; and let it be called a second
apotome of a medial straight line.

For from the medial straight line 423 let there be sub-
tracted the medial straight line CB which is commensurable
with the whole 48 in square only and such that the rectangle
AB, BC, which it contains with the whole A4 B, is medial; [x. 28]

I say that the remainder A C is irrational; and let it be called
a second apotome of a medial straight line.

A ¢ 8

HE

For let a rational straight line D7 ke set out,

let DE equal to the squares on 45, BC be applied to D/,
producing DG as breadth,

and let D/ equal to twice the rectangle A8, BC be applied
to D7, producing DF as breadth ;

therefore the remainder /£ is equal to the square on 4AC.
(1. 7]
Now, since the squares on A5, BC are medial and
commensurable,

therefore DE is also medial. [x. 15 and 23, Por.]

And it is applied to the rational straight line 2/, producing
DG as breadth;

therefore DG is rational and incommensurable in length
with DJ/. [x. 22]

Again, since the rectangle A5, BC is medial,

therefore twice the rectangle 458, BC is also medial.
[x. 23, Por.]

H. E. IIL. 11
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And it is equal to DH ;
therefore DA is also medial.

And it has been applied to the rational straight line D7,
producing DF as breadth ;

therefore DF is rational and incommensurable in length
with D/ [x. 22]

And, since AB, BC are commensurable in square only,
therefore 4B is incommensurable in length with BC;
therefore the square on 42 is also incommensurable with the

rectangle A8, BC. [x. 11]

But the squares on 4B, BC are commensurable with the
square on A8, [x. 15]
and twice the rectangle 48, BC is commensurable with the
rectangle A8, BC; [x. 6]
therefore twice the rectangle 4 B, BC is incommensurable with
the squares on A5, BC. [x. 13)

But DE is equal to the squares on 45, BC,
and DH to twice the rectangle A8, BC;
therefore DE is incommensurable with DA,
But, as DE is to DH, sois GD to DF; [vi. 1]
therefore G D is incommensurable with DF. [x. 11]
And both are rational ;
therefore GO, DF are rational straight lines commensurable
in square only ;
therefore /G is an apotome. [x. 73]
But D/ is rational,
and the rectangle contained by a rational and an irrational
straight line is irrational, [deduction from x. zo]
and its “side” is irrational.
And AC is the “side” of FE ;
therefore AC is irrational.
And let it be called a second apotome of a medial
straight line.
Q. E. D.

We have here the difference between k*p, Jh.p/k*, two medial straight
lines commensurable in square only and containing a medial rectangle.
Apply each of the areas (2 +3?%), 2xy to a rational straight line o, i.e.
suppose that
x4+ y’ = O¥,

2xy = ov.
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Then ou, ov are medial areas,

so that », v are both rational and v o ...l (x).
Again, xvy;

therefore x* v xy,

and consequently x4+t o 2xy,

or o v o,

and B oD et eees (2).

Thus ((1), (2)] #, v are rational and ~;
therefore [x. 73] (¥ — v) is an apotome,
and, (¥ — v) being thus irrational,
(¥ —v)o is an irrational area.
Hence (x - y)*, and consequently (x — ), is irrational.

The irrational straight line kip ~ J:i.P is called a second apotome of a

medial straight line.

ProrosiTioN 76.

If from a straight line there be subtracted a straight line
which is incommensurable in square with the whole and which
with the whole makes the squares on them added together
rational, but the rectangle contained by them medial, the
remainder is irvational; and let it be called minor.

For from the straight line A5 let there be subtracted the
straight line BC which is incom-
mensurable in square with the whole A [ B
and fulfils the given conditions. [x. 33]

I say that the remainder 4C is the irrational straight line
called minor.

For, since the sum of the squares on 45, BC is rational,
while twice the rectangle 4B, BC is medial,

therefore the squares on A8, BC are incommensurable with
twice the rectangle A8, BC;

and, convertendo, the squares on A8, BC are incommensurable
with the remainder, the square on 4C. (1. 7, x. 16]
But the squares on 48, BC are rational ;
therefore the square on AC is irrational ;
therefore AC is irrational.
And let it be called minor.

Q. E. D.

11—2
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x, y are here of the form found in x. 33, viz.

p / % p ,\/ A
75 l+~/l+k” $ I_\/1+k’.
By hypothesis (2* + )?) is a rational, xy a medial, area.
Therefore (x*+5°) v 2xy,
whence (x=y) v (2* +5°).
Therefore (x— y)?% and consequently (x — y), is irrational.
The minor (irrational) straight line is thus of the form

-

[x. 76, 77

Observe the use of convertendo (dvaorpéparr) for the inference that, since
(x*+5%) v 23y, (x*+5°) v (x=y)". The use of the word corresponds exactly

to its use in proportions.

ProrosiTION 77.

If from a straight line there be subtracted a straight line
whick is incommensurable in square with the whole, and whick
with the whole makes the sum of the squaves on them medial,
but twice the rectangle contained by them rational, the remainder
is irrational: and let it be called that which produces with

a rational area a medial whole.

For from the straight line 42 let there be subtracted the
straight line BC which is incommensurable in square

with 428 and fulfils the given conditions ;

[x.34] A

I say that the remainder 4C is the irrational straight

line aforesaid.

For, since the sum of the squares on 4B, BC is

medial,
while twice the rectangle 4B, BC is rational,

therefore the squares on 48, BC are incommensurable 8

with twice the rectangle 45, BC;

therefore the remainder also, the square on AC, is incom-

mensurable with twice the rectangle 45, BC.

And twice the rectangle 4B, BC is rational ;
therefore the square on AC is irrational ;
therefore AC is irrational.

[11. 7, x. 16]

And let it be called that which produces with a

rational area a medial whole.

Q.

. D.
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Here x, y are of the form [cf. x. 34]

J_+k,)~/m+k -,__._2(;3 ~/—~_/l+k’ k.

By hypothesis, (x? + 3?) is a medial, xy a rational, area;
thus (*?+5°) v 2xy,
and therefore (x—=9) v 2xy,
whence (x — )% and consequently (x - y), is irrational.
The irrational straight line

. NNy Y- d J 1+A%—

N2 (1+4) v V2(1+& Jiv#

is called that whick produces with a rational area a medial whole or more
literally that which with a rational area makes the whole medial (q pera pyrod
pégov 76 GAov mowica). Here “produces” means “produces when a square
is described on it.” A clearer way of expressmg the meaning would be to call
this straight line the ‘““side” of a medial minus a rational area corresponding
to the “side” of a rational plus a medial area [X. 40).

ProrosiTiON 78.

If from a straight line there be subtracted a straight line
whickh is incommensurable in square with the whole and whick
with the whole makes the sum of the squares on them medial,
twice the rectangle contained by them medial, and further the
squares on them incommensurable with twice the rectangle
contained by them, the remainder is trrational; and let it be
called that which produces with a medial area a
medial whole.

For from the straight line 423 let there be subtracted the
straight line BC incommensurable in
square with 428 and fulfilling the p Fa
given conditions ; [x. 35]
I say that the remainder AC is the
irrational straight line called that
which produces with a medial
area a medial whole. ! HE
For let a rational straight line D7 A6 8
be set out,
to DI let there be applied DE equal to the squares on 45,
BC, producing DG as breadth,

and let DA equal to twice the rectangle 4B, BC be
subtracted.
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Therefore the remainder FE is equal to the square
on AC, [ 7)
so that AC is the “side” of FE.

Now, since the sum of the squares on 45, BC is medial
and is equal to DE,

therefore DE is medial.

And it is applied to the rational straight line D/, producing
DG as breadth ;

therefore DG is rational and incommensurable in length
with D7, [x. 22]

Again, since twice the rectangle 458, BC is medial and is
equal to DH,

therefore DA is medial.

And it is applied to the rational straight line D7, producing
DF as breadth ;

therefore DF is also rational and incommensurable in length
with D/. [x. 22]

And, since the squares on 45, BC are incommensurable
with twice the rectangle 45, BC,

therefore DE is also incommensurable with DA.
But, as DE is to DH, so also is DG to DF; [vr. 1]
therefore DG is incommensurable with DF. [x. 11]
And both are rational ;

therefore GD, DF are rational straight lines commensurable
in square only.

Therefore /G is an apotome. [x. 73]
And FH is rational ;

but the rectangle contained by a rational straight line and an
apotome is irrational, [deduction from x. 20]
and its “side” is irrational.

And AC is the “side” of FE ;
therefore AC is irrational.

And let it be called that which produces with a
medial area a medial whole.

Q. E. D.
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In this case x, y have respectively the forms [cf. x. 35]

Suppose that X+ Y =ou,
2ay = ov.
By hypothesis, the areas o, ov are medial ;
therefore u, z are both rational and v o .........cceeeeiiiiiiiiiiiiiiiininnn., (1).
Further ou v oy,
so that BOoU iviiiiien e (2).

Hence [(1), (2)] #, v are rational and ~,

so that (# —v) is the irrational straight line called agotome [x. 73]
Thus o (¥ - v) is an irrational area,

so that (x —y), and consequently (x —y), is irrational.
The irrational straight line

A I A
NE N -EENE i+ A

is called tkat which produces [i.e. when a square is described on it] with a
medial area a medial whole, more literally that whick with a medial area makes
the whole medial (7 pera pégov péoov 16 SAov wowodoa). A clearer phrase (to
us) would be the “side” of the difference between two medial areas, correspond-
ing to the “side” of (the sum of ) two medial areas [X. 41].

ProrosiTION 79.

To an apotome only ome rational stvaight line can be
annexed which ts commensurable with the whole in square only.

Let A8 be an apotome, and AC an annex to it ;
therefore AC, CB are rational
straight lines commensurable in
square only. [x. 73]

I say that no other rational
straight line can be annexed to 48 which is commensurable
with the whole in square only.

For, if possible, let BD be so annexed ;
therefore AD, DB are also rational straight lines commen-
surable in square only. [x. 73]

Now, since the excess of the squares on 4D, DB over
twice the rectangle 4D, DB is also the excess of the squares
on AC, CB over twice the rectangle AC, CB5,

for both exceed by the same, the square on A5, (1. 7]
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therefore, alternately, the excess of the squares on 4D, DB
over the squares on AC, CB is the excess of twice the rect-
angle AD, DB over twice the rectangle 4C, CB.

But the squares on 4D, DB exceed the squares on AC,
CAB by a rational area,

for both are rational ;

therefore twice the rectangle 4D, DA also exceeds twice the
rectangle AC, CAB by a rational area :

which is impossible,
for both are medial [x. 21], and a medial area does not exceed
a medial by a rational area. [x. 26]

Therefore no other rational straight line can be annexed
to A8 which is commensurable with the whole in square only.
Therefore only one rational straight line can be annexed
to an apotome which is commensurable with the whole in
square only.
Q E. D.

This proposition proves the equivalent of the well-known theorem of surds
that,

ifa— /b=x—,Jy,thena=x, b=y;
and, if \Ja — /b= \/x - [y, then a=x, b=y.
The method of proof corresponds to that of x. 42 for positive signs.

Suppose, if possible, that an ggofome can be expressed as (x —y) and also
as (x"—y’), where x, y are rational straight lines commensurable in square only,
and &, y" are so also.

Of x, x', let x be the greater.
Now, since x—y=x"-y,
2+ 32— (2457 = 22y — 22y
But (x* +37%), (" + y) are both rational, so that their difference is a
rational area.

Ji Or’n the other hand, 2xy, 2x'y’ are both medial areas, being of the form
-0
therefore the difference between two medial areas is rational :
which is impossible [x. 26).
Therefore etc.

ProrosiTion 8o.

To a first apotome of a medial straight line omly one
medial straight line can be annexed whick is commensurable
with the whole in square only and whick contains with the
whole a rational rectangle.
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For let A8 be a first apotome of a medial straight line,
and let BC be an annex to A5 ;
therefore AC, CB are medial A L ¢ 0
straight lines commensurable in
square only and such that the rectangle 4C, CB which they
contain is rational ; (x. 74]

I say that no other medial straight line can be annexed to
AB which is commensurable with the whole in square only
and which contains with the whole a rational area.

For, if possible, let DB also be so annexed ;

therefore 4D, DB are medial straight lines commensurable
in square only and such that the rectangle 4D, DB which
they contain is rational. [x. 74]

Now, since the excess of the squares on 4D, DB over
twice the rectangle A0, DB is also the excess of the squares
on AC, CB over twice the rectangle AC, CA5,

for they exceed by the same, the square on 45, [ 7]

therefore, alternately, the excess of the squares on 4D, DB
over the squares on AC, CB is also the excess of twice the
rectangle AD, DB over twice the rectangle AC, CB.

But twice the rectangle 4D, DB exceeds twice the rect-
angle AC, CB by a rational area,

far both are rational.

Therefore the squares on 4D, DA also exceed the squares
on AC, CB by a rational area :

which is impossible,

for both are medial [x. 15 and 23, Por.), and a medial area does

not exceed a medial by a rational area. [x. 26]
Therefore etc.

Q. E. D.

Suppose, if possible, that the same first agotome of a medial straight line

can be expressed in terms of the required character in two ways, so that
x—y=x'-y,

and suppose that x > x’.

In this case x?+ 3% (x + ) are both medial areas, and 2xy, 2x7y’ are both
rational areas ; :
and 22+ 32— (x4 = 23y — 227y,

Hence X. 26 is contradicted again ;
therefore etc.
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ProposiTION 81.

To a second apotome of a medial straight line only one
medial straight line can be annexed whick is commensurable
with the whole in square only and whick contains with the
whole a medial rectangle.

Let AB be a second apotome of a medial straight line
and BC an annex to A5 ;
therefore AC, CB are medial straight A 8
lines commensurable in square only and
such that the rectangle AC, CB which
they contain is medial. [x. 75]

I say that na other medial straight line
can be annexed to 428 which is commen-
surable with the whole in square only and
which contains with the whole a medial
rectangle.

For, if possible, let BD also be so
annexed ;
therefore 4D, DB are also medial straight
lines commensurable in square only and
such that the rectangle 4D, DB which
they contain is medial. [x. 75]

Let a rational straight line £ be set out,

let £G equal to the squares on 4C, CB be applied to £F,
producing £ as breadth,

and let G equal to twice the rectangle 4C, CB be sub-
tracted, producing /M as breadth ;

therefore the remainder £ is equal to the square on A5,

(1. 7]
so that A28 is the “side” of EL.

Again, let £/ equal to the squares on 4D, DB be applied
to £/, producing £/ as breadth.
But £L is also equal to the square on 45;

therefore the remainder /A7 is equal to twice the rectangle
AD, DB. (1. 7]

3]

T m lo

Now, since AC, CB are medial straight lines,
therefare the squares on AC, CB are also medial,
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And they are equal to £G ;
therefore £G is also medial. [x. 15 and 23, Por.]

And it is applied to the rational straight line £/, producing
EM as breadth ;

therefore £A/ is rational and incommensurable in length-
with EF. [x. 22]

Again, since the rectangle 4C, CB is medial,

twice the rectangle 4C, CB is also medial. [x. 23, Por.]
And it is equal to /G ;

therefore AZG is also medial.

And it is applied to the rational straight line £, producing
HM as breadth ;

therefore M/ is also rational and incommensurable in length
with £F. [x. 22]

And, since AC, CB are commensurable in square only,
therefore 4C is incommensurable in length with CA5.,

But, as 4C is to CB, so is the square on AC to the rect-
angle AC, CB;

therefore the square on 4C is incommensurable with the
rectangle AC, CB. [x. 11]

But the squares on AC, CB are commensurable with the
square on AC,

while twice the rectangle 4C, CB is commensurable with the '

rectangle AC, CB; [x. 6]
therefore the squares on AC, CB are incommensurable with
twice the rectangle AC, CAB. o [x13]

And £G is equal to the squares on 4C, CB,
while GH is equal to twice the rectangle AC, CB;
therefore £G is incommensurable with ZG.
But, as £G is to HG, so is EM to HM ; [ve. 1]
therefore £M is incommensurable in length with /A, [x. 11]
And both are rational ;

therefore £M, M H are rational étraight lines commensurable
in square only ;

therefore £/ is an apotome, and /M an annex to it. [x. 73]
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Similarly we can prove that Z is also an annex to it;

therefore to an apotome different strai%ht lines are annexed

which are commensurable with the wholes in square only :

which is impossible. [x. 79]
Therefore etc.

L

Q. E. D.

- As the irrationality of the second apotome of a medial straight line was
deduced [x. 75] from the irrationality of an apotome, so the present theorem
is reduced to x. 79.

Suppose, if possible, that (x-y), (x'-y') are the same second apotome of
a medial straight line ;

and let (say) x be greater than x’.
Apply (x*+5%), 2xy and also (x? + "), 2x"' to a rational straight line o,

i.e. put
- '3 e __ ’
XF+y=ou } and ¥ +{',—¢m' }
2%y = 0V 2x'y’ = o?/
Dealing with (x - y) first, we have:
(x*+)") is a medial area, and 2xy is also a medial area.

Therefore 4, v are both rationaland v o ... (1).
Also, since x ~ y, x vy,

so that 2o ay,

whence, as usual, 2+ v 2xy,

that is, ou v ov,

and therefore UOV i e (2).

Thus [(1) and (2)] , v are rational and ~,

so that (¥ — v) is an apotome.
Similarly («' — ¢) is proved to be the same apotome.
Hence this apotome is formed in two ways :

which contradicts x. 79.

Therefore the original hypothesis is false, and a second apotome of a
medial straight line is uniquely formed.

ProrosiTioN 82.

To a minor straight line only one straight line can be
annexed whick ts incommensurable in square with the whole
and which makes, with the whole, the sum of the squares on
them rational but twice the vectangle contained by them medial.

Let A8 be the minor straight line, and let BC be an
annex to AF;
therefore AC, CB are straight A 8 ¢ o
lines incommensurable in square
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which make the sum of the squares on them rational, but
twice the rectangle contained by them medial. [x. 76]
I say that no other straight line can be annexed to 45
fulfilling the same conditions.
For, if possible, let B0 be so annexed ;
therefore AD, DB are also straight lines incommensurable
in square which fulfil the aforesaid conditions. [x. 76]
Now, since the excess of the squares on 4D, DB over
the squares on AC, CB is also the excess of twice the rect-
angle AD, DB over twice the rectangle AC, C5,
while the squares on 4D, DB exceed the squares on AC,
CAB by a rational area,

for both are rational,

therefore twice the rectangle 4D, DB also exceeds twice
the rectangle 4C, CB by a rational area:

which is impossible, for both are medial. [x. 26]

Therefore to a minor straight line only one straight
line can be annexed which is incommensurable in square with
the whole and which makes the squares on them added
together rational, but twice the rectangle contained by them
medial.

Q. E. D.

Suppose, if possible, that, with the usual notation,
x—y=x-y;

and let x (say) be greater than .

In this case (x*+3?), (x™ + ™) are both rational areas,
and 2xy, 2x'y’ are both medial areas.

But, as before,  (x?+3%) — (27 +y") = 2xy — 2x7Y/,
so that the difference between two medial areas is rational :
which is impossible [x. 26].

Therefore etc.

ProrosiTiON 83.

To a straight line whick produces with a rational area a
medial whole only one straight line can be annexed whick is
incommensurable in squarve with the whole straight line and
whick with the whole straight line makes the sum of the squares
on them medial, but twice the rectangle contained by them
rational.
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Let AB be the straight line which produces with a rational
area a medial whole,
and let ZC be an annex to A5 ; A 8 c Do
therefore AC, CB are straight lines
incommensurable in square which fulfil the given conditions.
(x. 77]
I say that no other straight line can be annexed to A5
which fulfils the same conditions.
For, if possible, let BD be so annexed ;
therefore AD, DB are also straight lines incommensurable in
square which fulfil the given conditions. [x. 77]
Since then, as in the preceding cases,
the excess of the squares on 4D, DB over the squares on
AC, CB is also the excess of twice the rectangle AD, DB
over twice the rectangle 4C, C5,

while twice the rectangle 4D, DA exceeds twice the rectangle
AC, CB by a rational area,

for both are rational,

therefore the squares on 40D, DB also exceed the squares
on AC, CB by a rational area:

which is impossible, for both are medial. [x. 26]

Therefore no other straight line can be annexed to 453
which is incommensurable in square with the whole and which
with the whole fulfils the aforesaid conditions ;
therefore only one straight line can be so annexed.

Q. E. D.

Suppose, with the same notation, that
x—y=x'-y. (x>2)

Here, (x*+5%), (x*+3") being both medial areas, and 2xy, 2x'y’ both
rational areas,

while (5°43) = (574 = 229 — 22,
X. 26 is contradicted again. o
Therefore etc. :

ProrosiTION 84.

70 a straight line whick produces with a medial area a
medial whole only ome stvaight line can be annexed whickh is
incommensurable in square with the whole straight line and
which with the whole straight line makes the sum of the squares
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on them medial and twice the rectangle contained by them both
medial and also incommensurable with the sum of the squares
on them.

Let 4B be the straight line which produces with a medial
area a medial whole,

and AC an annex to it;
therefore AC, CB are straight lines incommensurable in square

which fulfil the aforesaid conditions. [x. 78]
A_ B ¢ D
EH M N
FL e}

I say that no other straight line can be annexed to 458
which fulfils the aforesaid conditions.

For, if possible, let BD be so annexed,
so that 4D, DB are also straight lines incommensurable in
square which make the squares on 4D, DB added together
medial, twice the rectangle 40, DB medial, and also the
squares on 4D, DB incommensurable with twice the rectangle
AD, DB. [x. 78]

Let a rational straight line £/ be set out,

let £G equal to the squares on AC, CB be applied ta EF,
producing £M as breadth,

and let /G equal to twice the rectangle AC, CB be applied
to £F, producing A M as breadth ;

therefore the remainder, the square on AZ [u. 7], is equal
to £L; .
therefore A8 is the “side” of £L.

Again, let £7 equal to the squares on 4D, DB be applied
to £F, producing £V as breadth.

But the square on 428 is also equal to £L ;
therefore the remainder, twice the rectangle 4D, DA [u. 7),
is equal to /7.



176 BOOK X [x. 84

Now, since the sum of the squares on AC, CB is medial
and is equal to £G,
therefore £G is also medial.

And it is applied to the rational straight line £/, pro-
ducing £M as breadth;
therefore £AM is rational and incommensurable in length
with £F. : [x. 22]

Again, since twice the rectangle 4C, CB is medial and is
equal to G,

therefore G is also medial.

And it is applied to the rational straight line £F; pro-
ducing A M as breadth;

therefore /A is rational and incommensurable in length
with £F, [x. 22]

And, since the squares on AC, CB are incommensurable
with twice the rectangle AC, CB,

EG is also incommensurable with /G ;
therefore £/ is also incommensurable in length with M/ A.

[vr 1, x. 11]
And both are rational ;

therefore £M, MH are rational straight lines commensurable
in square only ;

therefore £/ is an apotome, and /M an annex to it. [x. 73]

Similarly we can prove that £/ is again an apotome and
AN an annex to it.

Therefore to an apotome different rational straight lines
are annexed which are commensurable with the wholes in
square only:

which was proved impossible. [x. 79]

Therefore no other straight line can be so annexed to A5.

Therefore to 4B only one straight line can be annexed
which is incommensurable in square with the whole and which
with the whole makes the squares on them added together
medial, twice the rectangle contained by them medial, and
also the squares on them incommensurable with twice the
rectangle contained by them.

Q E. D.
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With the usual notation, suppose that

x—y=x"-y. (x> )
Let x’+y’=cu} x”+y"=ou’}
and ), .
2xy = ov 2xy = ot/

Consider (x—y) first ;
it follows, since (x? + »?), 2xy are both medial areas, that

%, v are both rational and v 0 .......eoeiiivuiiiniiiiieie i e (1).
But 2+ v 2xy,

that is, o% v oY,

and therefore T s (2).

Therefore [(1) and (2)] #, v are rational and ~;
hence (¥ —v) is an apotome.
Similarly (&' - ) is proved to be the same apotome.
Thus the same apotome is formed as such in two ways :
which is impossible [x. 79].
Therefore, etc.
DEFINITIONS III

1. Given a rational straight line and an apotome, if the
square on the whole be greater than the square on the annex
by the square on a straight line commensurable in length with
the whole, and the whole be commensurable in length with
the rational straight line set out, let the apatome be called a
first apotome,

2. But if the annex be commensurable in length with
the rational straight line set out, and the square on the whole
be greater than that on the annex by the square on a straight
line commensurable with the whole, let the apotome be called
a second apotome.

3. But if neither be commensurable in length with the
rational straight line set out, and the square on the whale be
greater than the square on the annex by the square on a
straight line commensurable with the whole, let the apotome
be called a third apotome.

4. Again, if the square on the whole be greater than
the square on the annex by the square on a straight line
incommensurable with the whole, then, if the whole Ee com-
mensurable in length with the rational straight line set out,
let the apotome be called a fourth apotome;

5. if the annex be so commensurable, a fifth ;
6. and, if neither, a sixth.

H. E. 1IL 12
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ProrosiTioN 85.

To find the first apotome.
Let a rational straight line 4 be set out,
and let BAG be commensurable in length with A ;
therefore BG is also rational.
B ¢ G

A
H

E F D

Let twa square numbers DE, EF be set out, and let their
difference /D not be square ;
therefore neither has £D to DF the ratio which a square
number has to a square number.

Let it be contrived that,
as £D is to DF, so is the square on BG to the square on GC;

[x. 6, Por.]
therefore the square on BG is commensurable with the square

on GC. [x. 6]
But the square on BG is rational ; _
therefore the square on GC is also rational ;
therefore G'C is also rational.
And, since £D has not to DF the ratio which a square
number has to a square number,
therefore neither has the square on BG to the square on GC
the ratio which a square number has to a square number ;
therefore BG is incommensurable in length with GC.  [x. 9]
And both are rational ;
therefore BG, GC are rational straight lines commensurable
in square only ;
therefore BC is an apotome. [x. 73]

I say next that it is also a first apotome.

For let the square on / be that by which the square on
BG is greater than the square on GC.

Now since, as £D is to FD, so is the square on BG to
the square on GC,
therefore also, convertendo, [v. 19, Por.]

as DE is to EF; so is the square on G B to the square on /.
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But DE has to £F the ratio which a square number has
to a square number,

for each is square ;

therefore the square on G 2B also has to the square on / the
ratio which a square number has to a square number ;

therefore BG is commensurable in length with /4. [x. 9]

And the square on BG is greater than the square on GC
by the square on /;

therefore the square on ZG is greater than the square on G(
by the square on a straight line commensurable in length
with BG.

And the whole BG is commensurable in length with the
rational straight line 4 set out.
Therefore BC is a first apotome. [x. Deff. 1. 1]
Therefore the first apotome BC has been found.
(Being) that which it was required to find.

Take %p commensurable in length with p, the given rational straight line.
Let m*, n* be square numbers such that (m* - ?) is not square.

Take x such that m i (m—n)=Rp i axt (1),
—
so that x=4kp S —
=kp N1=AY, say.

Then shall 2p —x, or 2p —4p /1 = X3, be a first apotome.

For (a) it follows from (1) that x is rational but incommensurable with Zp,
whence 4p, x are rational and ~,
so that (4p — x) is an apotome.
(B) If y* = A%*— x% then, by (1), convertendo,

mt = By,

whence y, that is, V/Z%* — 23, is commensurable in length with Zp.

And 4p~p;
therefore 4p — x is a first apotome.

As explained in the note to X. 48, the first apotome

ko—kp/1—X3
is one of the roots of the equation
a—2kp.x + N&%p'=o0.

12—2
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ProposiTioN 86.

To find the second apotome.

Let a rational straight line A4 be set out, and GC com-
mensurable in length with 4 ;
therefore GC is rational.

Let two square numbers DE, & ¢ G
EF be set out, and let their H
difference DF not be square.

Now let it be contrived that, £ t D
as FD is to DE, so is the square
on CG to the square on GAB. [x. 6, Por.]

Therefore the square on CG is commensurable with the
square on GA. [x. 6]

But the square on CG is rational ;
therefore the square on G 2B is also rational ;
therefore BG is rational.

And, since the square on GC has not to the square on GB
the ratio which a square number has to a square number,

CG is incommensurable in length with G25. [x. 9]

And both are rational ;
therefore CG, GB are rational straight lines commensurable
in square only ;
therefore BC is an apotome. (x. 73]

I say next that it is also a second apotome.
For let the square on /7 be that by which the square on
BG is greater than the square on GC.
Since then, as the square on BG is to the square on GC,
so is the number £D to the number DF,
therefore, convertendo,
as the square on BG is to the square on A, so is DE to EF.
v. 19, Por.
And each of the numbers DE , EF is square ; v 19 ]
therefore the square on BG has to the square on /7 the ratio
which a square number has to a square number ;
therefore BG is commensurable in length with /7. [x. 9]
And the square on BG is greater than the square on GC
by the square on /A ;

therefore the square on BG is greater than the square on GC
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by the square on a straight line commensurable in length

with BG.

And CG, the annex, is commensurable with the rational
straight line A4 set out.

Therefore BC is a second apotome. [x. Deff. 1. 2]
Therefore the second apotome BC has been found.
. Q E. D

Take, as before, £4p commensurable in length with p.
Let m* n* be again square numbers, but (- 7?) not square.
Take x such that (M =nd):m =R i x e, (1),

= A d
R T
=y

Ji=a’

whence

Thus x is greater than Zp.

Then x ~ 4p, or ~Tkp~—;-)t’ — kp, is a second apotome.
For (a), as before, x is rational and ~ Zp.
(B) If 2*~ Ap®=y?* we have, from (1),
mnt=x: )0
Thus y, or ¥a®— #%? is commensurable in length with x.
And 4p is ~ p.
Therefore x — £p is a second apotome.
As explained in the note on X. 49, the second apotome

Ap

-k
N1-A P
is the lesser root of the equation
2kp A2 .
f—m.x+ I—A'PP =o.

ProrposiTiON 87.
To find the third apotome.

Let a rational straight line A4 be set out,

let three numbers £, BC, CD be
set out which have not to one
another the ratio which a square F__H a
number has to a square number,

but let CB have to BD the ratio £
which a square number has to a e
square number. .

Let it be contrived that, as £ 8 © ¢

is to BC, so is the square on 4 to the square on FG,
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and, as BC is to CD, so is the square on FG to the square
on GH. [x. 6, Por.]

Since then, as £ is to BC, so is the square on A4 to the
square on FG,

therefore the square on A4 is commensurable with the square
on FG. [x. 6]

But the square on A is rational ;
therefore the square on FG is also rational ;
therefore G is rational.

And, since £ has not to BC the ratio which a square
number has to a square number,

therefore neither has the square on A4 to the square on FG
the ratio which a square number has to a square number ;

therefore A is incommensurable in length with #G: [x. 9]

Again, since, as BC is to CD, so is the square on G to
the square on G/,

therefore the square on /G is commensurable with the square
on GH. [x. 6]

But the square on /G is rational ;
therefore the square on G/ is also rational ;
therefore GH is rational.

And, since BC has not to CD the ratio which a square
number has to a square number,
therefore neither has the square on #G to the square on GA
the ratio which a square number has to a square number;
therefore /G is incommensurable in length with GA.  [x. 9]
And both are rational ; '

therefare /G, GH are rational straight lines commensurable
in square only ;

therefore /#/ is an apotome. [x. 73]

I say next that it is also a third apotome.
For since, as £ is to BC, so is the square on A4 to the
square on FG,

and, as BC is to CD, sa is the square on FG to the square
on HG,

therefore, ex aegualz, as E is to CD, so is the square on A4
to the square on ~ZG. [v. 22]
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But £ has not to CD the ratio which a square number
has to a square number ;
therefore neither has the square on 4 to the square on G/
the ratio which a square number has to a square number ;
therefore A is incommensurable in length with GA. [x. 9]
Therefore neither of the straight lines /G, GH is
commensurable in length with the rational straight line A4

set out.
Now let the square-on X be that by which the square on

FG is greater than the square on GA.
Since then, as BC is to CD, so is the square on /G to
the square on GH,
therefore, convertendo, as BC is to BD, so is the square on
FG to the square on X. [v. 19, Por.]
But BC has to BD the ratio which a square number has
to a square number ;
therefore the square on FG also has to the square on X the
ratio which a square number has to a square number.

Therefore G is commensurable in length with X, [x. 9]

and the square on FG is greater than the square on G/ by
the square on a straight line commensurable with ~G.

And neither of the straight lines /G, GH is commen-
surable in length with the rational straight line 4 set out ;

therefore 7/ is a third apotome. [x. Deff. m. 3]
Therefore the third apotome F/7 has been found.
Q. E. D.

Let p be a rational straight line.
Take numbers p, gm? g (m?— %) which have not to one another the ratio
of square to square.
. Now let x, y be such that

2gM=p"xY e (1)
and gm g (M —n) =22 P, (2).

Then shall (x - y) be a third apotome.
For (a), from (1),

xisrational but v p .ooiiiiiiiii e (3)

And, from (2), y is rational but v x.
Therefore x, y are rational and ~,

so that (x — y) is an apotome.



184 BOOK X [x. 87, 88

(B) By (1), (2), ex acquali,
Pigm—n)=p:y,
whence y v p.

Thus, by this and (3), , yareboth v p ..coooiiiiiiiiiiiin (4)-
Lastly, let 5? = x* — 33 so that, from (2), convertendo,

gmd i gni=x: 2%,
therefore 2, OF AXT =32 A X ...evviiiiiiiiiiiiiie e (5).

Thus [(4) and (5)] (x—y) is a third apotome.
To find its form, we have, from (1) and (2),

Yy=p. m’:/;’-\/f’
so that x- =~/§ -
y },-P(m Nm - n).

This may be written in the form
mJk.p—mk.pN1 =A%
As explained in the note on X. 50, this is the lesser root of the equation
x—2m,[k.px + N'mikp*=o0. .

ProrosiTion 88.

To find the fourth apotome.

Let a rational straight line 4 be set out, and BG com-
mensurable in length with it ;

therefore BG is also rational.

A B ¢ d

H

) F E
Let two numbers DF, FE be set out such that the whole
DE has not to either of the numbers DF, EF the ratio

which a square number has to a square number.
Let it be contrived that, as DE is to £F, so is the square

on BG to the square on GC; [x. 6, Por.]
therefore the square on BG is commensurable with the square
on GC. [x. 6]

But the square on BG is rational ;
therefore the square on G'C is also ratio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>