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PREFACE 

The treatment of the tides, and of tidal datum planes, contained 
in the first four chapters of this text, and of the reduction of measured 

tidal currents, in chapter X, is drawn from the manuals issued by the 
United States Coast and Geodetic Survey, and from Harris’s Manual 
of Tides, published in past reports of that Survey, but now out of 

print. As no engineer outside that Survey may expect the occasion 
to undertake the laborious harmonic analysis of the tides at a station, 
the voluminous tables required for the purpose are not included. 

The cubature of a channel, described in chapter VI, is set forth in 
a number of French texts. The detailed procedure explained is that 

developed in the United States Engineer office at Philadelphia. 
A method is developed in chapters V and VIII for computing tidal 

currents from the constants commonly used for steady flow, by a 
procedure somewhat analogous to that used in ordinary hydraulic 
computations. Quite obviously, the varying and periodically revers- 
ing flow in a tidal channel has somewhat the same relation to steady 
flow that an alternating electric current has to a direct current. As 
alternating currents depend upon the reactance and capacity of the 
circuit as well as upon its resistance, so tidal currents depend upon 
the acceleration head and the storage and release of water in the 
channel as well as upon frictional resistance. When these factors 
are included, computations of tidal flow should be as reliable as are 

those for steady flow. The application of these principles to natural 
tidal channels is taken up in chapter IX. 

(IIT) 
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GENERAL DEFINITIONS 

1. The tide is the regular periodic rise and fall of the surface of the 
seas, observable along their shores. The concurrent horizontal move- 
ments of the water, whether the almost imperceptible drift in the 
open sea, or the strong flow through a contracted entrance to a tidal 
basin, are designated, in accordance with the practise of the United 
States Coast and Geodetic Survey, as tidal currents. 

2. High and low water.—The maximum height reached by each rising 
tide is called high water, and the maximum depression of the falling 
tide is called low water. On the Atlantic coast of the United States 
the tide rises and falls twice daily—or more accurately twice during 
the lunar day of 24 hours and 50 minutes. The two high waters and 
the two low waters are each so nearly equal that for ordinary purposes 
no distinction need be made between them. On the Pacific coast the 
two high waters and the two low waters occurring daily are in general 
markedly different, and are designated as the higher high water, the 
lower high water, the lower low water, and the higher low water. On 
the Gulf of Mexico the tides are small, and toward its western end 
but one tide occurs each day during a part of the month. 

The heights of the high waters and of the low waters vary from day 
to day. In many parts of the world, the high waters reach their 
greatest height, and the low waters the least height, soon after the 

(1) 
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time of full and new moon. These tides are called spring tides. The 
term ‘‘spring’”’ as applied to tides has nothing to do with the season 
of the year, but is the greater upspringing of the waters at intervals 
of about a fortnight. Similarly the daily high waters are usually at 
their least height, and the daily low waters their greatest height, soon 
after the moon is in quadrature. These tides are called neap tides. 
On the Atlantic coast of Europe and along the British Isles the differ- 
ence between low or high water of spring tides and low or high water 

of neap tides may amount to several feet, and is a matter of moment 
to navigators. On the coasts of the United States the difference 
between spring and neap tides is not particularly noticeable, and the 
terms “spring” and “neap” tides are not in ordinary use. In this 
country spring tides are commonly referred to as ‘‘tides at full (or 
new) moon” or occasionally as ‘‘moon tides.”’ 

3. Datum planes.—The average height of all low waters at any place 
over a sufficiently extended period of time is called mean low water 
and is the official reference plane for the depths shown on navigation 
charts, and of improved channels, in the waters of the Atlantic and 

Gulf coasts of the United States. The average height of the lower of 
the two daily low waters is called mean lower low water and is the 
official reference datum in the waters of the Pacific coast of the 
United States. In British waters the datum is usually the mean low 
water of spring tides, or low-water springs. This reference plane is 
also used at the Pacific entrance to the Panama Canal. The average 
height of the sea, as determined usually by the average of the observed 
hourly heights over an extended period of time, is called mean sea 
level, and is the standard datum to which elevations on land are 

referred. 
4. Tidal ranges.—The difference in height between high water and 

low water at a tidal station is called the tidal range. The mean range 
is the average of the differences between all high waters and all low 
waters; or, as is the same thing, the difference between mean high 
water and mean low water at the station. The diurnal range, or great 

diurnal range, is the difference between mean higher high water and 
mean lower low water. The eatreme range is the maximum that has 

been observed. The spring range is the difference between mean 
high water and mean low water of spring tides, and the neap range 

the difference between mean high water and mean low water of neap 
tides. 

5. Tidal currents —The tidal current setting into the bays and 
estuaries along the coast is called the flood current. The return cur- 
rent toward the sea is called the ebb current. The maximum velocities _ 

reached during each fluctuation of the current are called the strength 
of the flood and the strength of the ebb, or, indifferently, the strength of 

the current. Slack water is the period during which the current is 
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negligible while it is changing direction. It is specifically defined 
by the United States Coast and Geodetic Survey as the period during 
which the current is less than one-tenth of a knot; i.e., less than 0.169 

feet per second. The slack water occurring nearest the time of high 
water is called the high-water slack, and that nearest the time of low 

water the low-water slack. The moment at which the current is zero 

as it changes direction may be distinguished by terming it the turn 

of the current. 
In open waters, the direction of the current normally veers around 

the compass and the current does not pass through intervals of slack 
water. Such currents are called rotary, to distinguish them from the 
reversing currents in a tidal channel. 

6. These definitions are narrower than the common usage of the 
terms. ‘Tide’ is commonly applied both to the rise and fall of the 
sea and to the accompanying tidal currents. Thus the expressions 
“head tide’ and ‘favoring tide” designate tidal currents that retard 
or accelerate the movement of a vessel, and the term ‘“‘the ebb and 
flow of the tide” is standard legal nomenclature. The term ‘ebb 

tide” is often used to designate low water as well as the outflowing 

tidal current. The maximum tidal stage is frequently designated as 
‘high tide’ instead of “high water.’’ Its more general meaning is, 
however, the higher stages of the tide. Thus it is more accurate to 
say that a channel is “navigable only at high tide,” than to say that 
it is “navigable only at high water.” 

7. Lunitidal intervals —Casual observation shows that the tides at 
any place occur a little less than 1 hour later each succeeding day. 

Thus if high water is at 3 p. m. today, it will be shortly before 4 
p. m. tomorrow. Closer observation shows that the high and low 

waters at any place follow, by about the same time interval, the pas- 

sage of the moon across the meridian of the place. Obviously, the 
moon must cross the plane of the meridian twice daily—once over- 
head and once underneath. These are called respectively the upper 

and lower meridian transits. They mark in fact the noon and mid- 
night of the lunar day. If a clock were regulated on mean lunar 
time, instead of mean solar time, it would show the times the high 
and low waters at a given place at about the same hour every day, 

but these times would vary largely from place to place. 
8. The average time interval, in solar hours and minutes, from a 

lunar transit to the next succeeding high water at a given place, as 
determined by an extended set of observations, is called the high- 
water interval, (HWI) or the high-water lunitidal interval of the place. 

Similarly the low-water interval (LW1), or the low-water lunitidal inter- 
val is the average time, in solar hours and minutes, from a lunar transit 
to the next succeeding low water. The high- and low-water intervals 
usually are larger at the full and change of the moon, at about 
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the time of spring tides, than at other times in the month. Charts 
of foreign waters sometimes give the intervals at such times, instead of 

the mean intervals, designating them as HWI, F. & C., and LWI, 

F. & C., respectively. 
9. The charts of the United States Coast and Geodetic Survey and 

other publications show the average lunitidal intervals at representa- 

tive tidal stations. By computing from the Nautical Almanac the 
times of upper and lower meridian transits of the moon at the place 
on any day, the times of high water on that day can be approximately 
determined. Although rarely of practical importance, the method of 
computation is of interest. 

The Nautical Almanac gives the Greenwich mean solar time of the 
moon’s upper and lower transits across the meridian of Greenwich 
for each day in the year. This time obviously is the interval, or hour 

angle, between passage of the (mean) sun and the passage of the 
moon over the Greenwich meridian. This interval increases at the 
average rate of 25.2 minutes every 12 hours, or 2.1 minutes per hour. 

If then the longitude of a given place is Z° west of Greenwich, the 
transit of the (mean) sun over its meridian will be Z°/15 hours later 

than the transit over the Greenwich meridian, and the interval between 
the transits of the (mean) sun and of the moon over the meridian 

of the place, or the local mean solar time of the moon’s transit, will be 

the Greenwich time of transit increased by 2.1 Z°/15 minutes. For 
example, the high-water interval at Sandy Hook, long. 74° W., at the 
entrance to New York Harbor, is 7°.35™. For April 12, 1936, the 
Almanac gives: 

Upper Lower 

IMI@outs Teas, (Creemyn@ll = eee eee 3555" 16521™ 

Correction to\Sandy Hook (74/15) 2:12 5222-2 = 10™ 10™ 

Local time moon’s transit, Sandy Hook__________ 4h05™ 16531™ 

Correction to standard time 75° meridian________. —04™ —04™ 

Standard time moon’s transit, Sandy Hook ___-___- 4bQim 16427™ 

Adding the high-water interval to the times of the moon’s transits, 
the approximate times of high water at Sandy Hook are found to be 
11°36™ and 24°02™; or 11:36 a. m. April 12 and 12:02 a. m. on April 

13. The times given in the tide tables are 11 a. m. and 11:24 p. m. 
on April 12. The time of high and low water found from lunitidal 
intervals may be in error by half an hour or more. 

10. The difference between the lunitidal intervals at two tidal sta- 
tions, corrected if necessary for the difference in the longitudes of the 
stations, gives the average difference between the times of high, or 

low, water at these stations. The formula for this correction is at 

once derived from the process of finding the time of high (or low) 
water from the Greenwich meridian transit of the moon and lunitidal 
interval, as set forth in paragraph 9. Let @ be the time, in hours, of 
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a Greenwich lunar transit, J, and J, the lunitidal intervals at the two 
stations, LZ, and J, their longitudes in degrees west of Greenwich, S 
the longitude of the standard time meridian of the locality, and 7, 
and 7, the standard time, in hours, of high (or low) water at the two 

stations. Then: 

T,=G+ (2.1/60) (L,/15) + (L,—S)/15+L, 

= G+ (4.14/60) LZ,—S/15+], 
T,—G-+ (4.14/60) L,—S/15+1 

Whence: 

T,—T,=I,—I,+ (4.14/60) (L,—L2) (1) 

The correction for longitude is therefore 4.14 minutes of time for 

each degree of difference between the longitudes of the two stations, 
due regard being had to the algebraic sign of the correction resulting 
from the application of the formula. Obviously for easterly longi- 
tudes the sign of the correction would be reversed. 

For example, the high-water interval at Portlard, Oreg., long. 
122°40’ W., is 6943™, and at Astoria, near the mouth of the Columbia 
River, long. 123°46’ W., the high-water interval is 0"°41™. The dif- 
ference in the time of high water between Portland and Astoria is 
therefore 6'43™—0'41™+4.14 (122.56 —123.77)™=6"02™—05™=5"57™. 

High water at Portland is therefore 5°57™ later, on the average, than 
high water at Astoria. 

11. Since the time of high water cannot be determined from 

observation within a range of several minutes, the correction for the 
difference in longitude between two stations may be neglected unless 
it exceeds 1 minute of time. The corresponding difference in longi- 
tude is about 15’ of are. No correction for longitude need be made 
therefore unless the two stations are at least 10 miles apart in an east 
and west direction. 

12. Greenwich lunitidal intervals—A Greenwich high- (or low) 
water interval at a station is the interval from a transit of the moon 
over the meridian at Greenwich, as given in the Nautical Almanac, 
to the Greenwich time of the following high (or low) water at the 
station. For convenience, high- and low-water intervals usually are 
computed by subtracting the tabulated Greenwich times of upper or 
lower transits from the time of the next ensuing observed high and 
low waters, as recorded on standard time at the station. The average 
differences so found are then converted to Greenwich intervals by 
adding the west longitude, in hours, of the standard-time meridian. 
If the result exceeds the average interval of 12.42 hours between 
successive lunar transits, that interval is subtracted. The local luni- 
tidal intervals may then be found by subtracting the product of the 
west longitude of the station, in degrees, times 0.069 hours (4.14 



6 

minutes), from the Greenwich intervals, increased if necessary by 

12.42 hours. 
Thus, the mean interval from the tabulated Greenwich transits to 

standard times of observed high water at Seattle, Wash., in January 
1928 was found to be 4.98 hours. As the standard time meridian at 

the locality is 120° west of Greenwich, the Greenwich interval is 
found by adding 120/15=8 hours. As the sum, 12.98 hours, exceeds 
the interval between lunar transits, the average Greenwich interval 
at the station during the month is recorded as 12.98—12.42=0.56 
hours. The longitude of the station is 122°20’ W. The correction 
to be subtracted from the Greenwich interval to give the local lunitidal 
interval is (122%) X0.069=8.44 hours. The average local high-water 

interval for the month is then 12.98—8.44=—4.54 hours. 

While lunitidal intervals are conventionally given as local intervals, 
the Greenwich intervals are more convenient for most purposes, 
since the difference between the times of high (or low) water at any 
two stations is given directly by the differences in their Greenwich 
intervals, without correction for the different longitudes of the 

stations. 
13. Establishment of the port—The high-water interval at the full 

and change of the moon is called, in England, the ‘“‘establishment of 
the port,’ and the high-water interval at spring tides the “corrected 

establishment.’’ These terms are not current in the United States. 
While the time of full moon is commonly thought of as a day, it is 

in fact an instant, duly set forth in the Nautical Almanac. The 
moon’s transit nearest the moment of full or change evidently is 
nearly but not quite at noon or midnight, and the mean solar time of 
high water is close to the high-water interval. The establishment of 
the port is also defined therefore as the local time of high water at the 
full and change of the moon. The term is not further used in the 
treatment of the tides herein followed. 

THE TIDE-PRODUCING FORCES 

14. It is an elementary principle of physics that the gravitational 
attraction between two bodies varies inversely as the square of the 
distance separating them; and an elementary theorem that the 
attraction between two spheres, such as the moon and the earth, is 
the same as though their respective masses were concentrated at their 
centers. But the attraction between the moon and any individual 
unit of mass in the earth depends upon the distance of this unit from 
the center of the moon, which is not, in general, the same as the dis- 

tance from the earth’s center to the center of the moon. The conse- 
quent varying differential in the force of attraction over the earth’s 

surface as compared with the average attraction per unit of mass of 
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the earth as a whole, tegether with a similar differential with respect 
to the attraction of the sun, are the tide-producing forces. 

15. The tide-producing force of the moon.—In figure 1, CO is the center 

of the earth, O the center of the moon, and P any point at or within 

the earth’s surface, 7 the distance CP, a the radius of the earth, R 

the distance between the center of the earth and the center of the 

moon, D the distance from P to the center of the moon, @ (theta) the 
angle between CO and CP, and P the angle between PO and CP 
produced. 

Let M be the mass of the moon, 

uw (mu) the gravitational attraction between two units of mass 
at one unit’s distance. 

The attraction of the moon on a unit of mass at the point P is then 
Mu/D? acting in the 
direction of PO, and 
its component in the 
durection CP is 
(Mu/D*) cos P. Sim- 

larly the attraction 
of the moon on a unit 
of mass at the center 
of the earth is My/R? 

acting in the direction 

CO, and its component in the direction CP is (Mu/R?) cos 6. The com- 
ponent of the difference of these forces, in the direction CP, is: 

FIGURE 1. 

fr=(Mu/D’) cos P—(Mu/R?) cos 6 (2) 

Let A be the foot of a perpendicular from the center of the moon, 
O, tc the line CP produced. Then: 

Deos P=PA. R cos 02=CA=PA-+r. 

whence: 

R cos 0=D cos P+r. cos P=(R cos 6—7r)/D. 

Giving: 

fr=Mu [(R cos 0@—7r)/D?—cos 6/R?| 

= Mu [(cos @—r/R) (R?/D*) —cos 6]/R?. (3) 

From the triangle POC: 

D?=hk?-+-r?—2Rr cos 0. 

Whence: 

D*/R?=1—2(r/R) cos 6+ (7/R)?. 



Placing, for convenience, r/R=p: 

R3/D?=(1—2p cos 6+ p?) 3? 

=[1—p(2 cos 6—p)]?°”. 

Expanding the second member into the binomial series: 

R?/D?=1+3/2 p(2 cos @—p)+15/8 p?(2 cos 6—p)?+ -:- 
=1+3p cos 6@—3/2 p?(1—5 cos? 6)+ terms in the 

cubes and higher powers of p. 

Since the distance from the moon to the earth is approximately 60 
times the earth’s radius, the cubes and higher powers of p=r/R have 

values of 1/216,000 or less, and the terms containing them are too 
small to be considered. Substituting, in equation (3), the expression 
derived for R?/D*, reducing and again dropping the cubes of p: 

fr=Mau [p83 cos? 6—1)+3/2 p?(5 cos* 6—3 cos 6)]/R? 

= Muy (r/R*) (8 cos? 2—1)+3/2 Mu(r?/R*) (5 cos? 6—8 cos @). (4) 

The numerical value of the coefficient of the second term of equa- 
tion (4) is 37/2R times, or in the order of 1/40th or less of, the numerical 
value of the coefficient of the first term. For the accuracy in general 
necessary, the second term may be disregarded, giving: 

fr=Mu(r/R*) (8 cos? 6—1). (5) 

The distance of the moon from the earth is astronomically measured 
by its parallax, which may be defined as the angle subtended by the 
radius of the earth at the distance of the moon. The parallax varies 
as the reciprocal of the distance, or as 1/R. Since the second term of 

equation (4) contains 1/R to the fourth power, it is called the term 
dependent on the fourth power of the moon’s parallax. 

16. The component of the lunar differential attraction in the direc- 
tion perpendicular to CP, in the plane CPO, is similarly: 

fh=(Mu/D?) sin P—(Mu/R?) sin 6 

from figure 1: 

Disn? —OA— Ty simag 

giving: 

sin P=R sin 6/D, 

so that: 

fh=Mu(R sin 6/D®—sin 6/R?) 
= Mu sin 6(R?/D®—1)/R?. 
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Substituting the expression for f?/D*® previously found, but drop- 
ping the squares and higher powers of p: 

fh=Mu sin 0(11+3p cos 6—1)/R? 

=3Mu/(r/R’) sin 6 cos 0=3/2 Mu(r/R?) sin 20. (6) 

The terms containing “‘the fourth power of the moon’s parallax”’ 
being omitted. 

17. When P is at the surface of the earth, r becomes a, the earth’s 
-radius. The line CP is evidently the vertical at P. Therefore the 
vertical component of the lunar tide-producing force is: 

fr=Mu(a/R’) (8 cos? @—1) (7) 

and the horizontal component, in the direction of the moon, is: 

fh=3/2 Mu(a/R*) sin 20. (8) 

Since the vertical line CP is directed toward the zenith of the place 

P, it is also clear that the angle @ is the zenith distance of the moon, 
or the complement of the moon’s altitude above the horizon. 

18. Characteristics of the lunar tide-producing force.—It is evident 
from equation (7) that the vertical component of the tide-producing 

Moon 

FIGURE 2.—Directions of tide-producing force. 

force is a maximum when §6=—0 and 180° and is then 2Mua/R*. It 

is zero when cos @=4/1/3; i.-e., when 6 is 54°44’, 125°16’, 234°44’, 

and 305°16’. It reaches a maximum negative value of —Muya/R* 
when 6=—90° and 270°. Similarly the horizontal component increases 
from zero, when §6=0, to a maximum of 3/2 Mua/R* when 6=45°, and 

then decreases to zero when §=90°, repeating this variation with 
appropriate changes in sign in each quadrant. The resultants of 
the horizontal and vertical components of the tide producing force, 
for various values of 6, are shown graphically in figure 2. 

The attraction of the moon tends to pull the water of the oceans 
toward it on the side of the earth nearest the moon, and to pull the 
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earth away from the water on the other side. The resultant tide- 

producing forces on the side of the earth away from the moon must 

balance the tide-producing forces on the side toward the moon, for 

otherwise the total attraction between the earth and the moon would 

not be the same as though the respective masses of these two bodies 

were concentrated at their centers. Because, however, of the some- 

what greater attraction by the moon on the nearer area of the earth, 

the tide-producing forces on the two sides of the earth are not exactly 

symmetrical. This variation in the tide-producing force is expressed 

by the term containing the fourth power of the moon’s parallax. 

It tends to mould the surfaces of the ocean into a very slightly pear- 

shaped variation from a perfect oval (fig. 8, par. 32). 

19. The solar tide-producing force——Designating the mass of the 

sun by S, and its distance from the earth by R,, and its zenith distance 

at the point P by 6;, the vertical component of the solar tide-producing 

force at the earth’s surface is evidently, from equation (7): 

Fri=Sp (a/R) (8 cos? 6,—1) (9) 

and the horizontal component, from equation (8): 

fh, =3/2Sy(a/R,3) sin 26; (10) 

The maximum value of the vertical component is 2Sua/R,’. Its 

ratio to the maximum value of the vertical lunar component is: 

(2:Spa/R,*)/(2Mya/R*) = (S/M) (B?/h,’) 

The mass of the sun, S, is 27,000,000 times the mass of the moon, 

M,; but the distance of the sun from the earth, A,, is about 389 times 
the distance, R, of the moon from the earth. Substituting these 
values, the ratio of the maximum values of the solar to the lunar 

tide-producing force becomes 27,000,000/58,863,869=0.46. Despite 

its enormously greater mass, the tide-producing force of the sun is 
less than half that of the moon, because of its greater distance. 

20. A consideration of figure 3 shows that when the moon is full, 
M’’, or at change, M’, the solar tide-producing force will tend to 
increase the lunar tide-producing force, while when the moon is at 

quadrature, at MM’ ’’ and M* the solar tide-producing force will tend 
to decrease the lunar tide-producing force. At the full and change 
of the moon, therefore, high waters tend to be higher and low waters 

lower, than at other phases of the moon, thus producing the spring 
tides at full and change, and neap tides at quadrature (par. 2). 

21. The tide-producing forces are minute.—The force of gravity at 

every point on the earth’s surface is Hy/a?, EK being the mass of the 
earth, a its radius, and y» the gravitational attraction between two 
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units of mass at one unit of distance. The ratio of the vertical com- 

ponent of the lunar tide-producing force to the force of gravity is, 
from equation (7): 

(Mua/R?)(3 cos? @—1)/(Eu/a?) = (M/F) (a*/R?)(3 cos? 6—1) 

This ratio reaches a maximum of 2(//E)(a?/R*) when 6=0. 

Since the mass of the earth is approximately 80 times the mass of 

the moon, and its distance from the moon approximately 60 times the 
earth’s radius: 

M/E=1/80 a/R=1/60 

a 

a ee 

, \ 
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FIGURE 3.—Phases of moon. 

The substitution of these values shows that the maximum value of 

the vertical component of the lunar tide-producing force is about 
1/8,640,000 of the force of gravity. The maximum value of the hori- 
zontal component is similarly found to be about 1/17,280,000 of the 
force of gravity. The maximum values of the components of the 
solar tide-producing force are less than half of those of the lunar com- 

ponents. Such small forces evidently are not directly measurable 
by the most delicate instruments, nor can they sensibly affect the 
levels of limited bodies of water even as large as the Great Lakes. 
The accumulated effect of these small forces over the vast areas of 

the oceans is however sufficient to produce the tides. 

THE TIDE-PRODUCING POTENTIAL 

22. The effect of the tide-producing forces upon the waters of the 

oceans is indicated by the potentials of these forces. The potential 
of a force at any point is defined as the work required to move a 
unit of mass against the force to a position where the force is zero. 
Since the tide producing force is zero at the earth’s center, the tide- 
producing potential at P, distant 7 from the center C (fig. 4) is the 

192750—40——2 
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work required to move a unit of mass against the force, from P to C. 

If the mass be moved along the radius PC, the radial component is 

the only part of the force against which work is done. The radial 

a aN 

FIGURE 4. 

component of the lunar tide-producing force is as shown in equation 

(5): 
Mu(r/R*) (3 cos? @—1) 

As derived, this force is positive in the direction CP. 
The lunar tide-producing potential at P is therefore: 

‘ 

0 

v=—| Mu(r/R*) (3 cos? 6@—1)dr= — (Muy/R?*) (3. cos? oa) J om 
= 4Mu(r"/R*)@ cos’ @—1) - 

23. Relation of potential to force—It follows from the definition of 
the potential of a force, that its rate of change, in any direction, is 

the component of the force acting in that direction. Thus the rate 
of change of the lunar tide-producing potential in a direction per- 
pendicular to the radius (in the plane of the moon, the point, and 
the earth’s center) is: 

dV ,/d(ré) =dV,/rd6=%Mu(r/R?)d(3 cos? 6—1)/de 
=—3Mu(r/R*) cos 6 sin 6=—3/2 Mu(r/R?) sin 26 

as found in equation (6). The negative sign results from the fact 
that the direction of the force is opposite to the direction in which 
§ is increasing, as will be apparent from a reference to figure 1. 

24. It is evident from the preceding paragraph that when the po- 

tential varies from point to point over a water surface, such as the 
surface of the oceans, the water tends to move from areas of low 

potential toward areas of high potential, just as it would tend to 
move from areas having a higher elevation toward the areas having a 

lower elevation. When a water surface is in equilibrium, the total 
potential of all forces acting upon it evidently must be the same at 
all points on the surface. 

25. The lunar tide-producing potential at any point P on the sur- 

face of the earth is found at once by substituting the earth’s radius 
a for r in equation (11), and is: 

Vi=%Mu (a/R) (3 cos? 6— 1) (12) 
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This potential is evidently a maximum at P, and P,, figure 5, 
where 6=0 and 180°, respectively, and a minimum on the great 

circle P3;P,, where 0=90°. The difference in the potential will 

therefore tend to cause the water of the oceans to pile up toward P, 
and P; as was shown from the analysis of the tide-producing forces 
in paragraph 18. To an observer at any point on the great circle. 

ie 3 

cae Sos nU 

% 
FIGURE 5. 

P,P, the moon is on the horizon; at P, directly overhead. The tide- 

producing potential at any point is therefore a minimum when the 
moon is on the horizon, and a maximum when it attains its greatest 

altitude above (or below) the horizon. 

THE SURFACE OF EQUILIBRIUM AND THE EQUILIBRIUM TIDE 

26. Lunar equilibrium tide—If the earth, instead of rotating daily 
about its axis, rotated once in a lunar month, so that the same side 

of the earth was al- 
ways presented to the 
moon, the lunar tide- 

producing force evi- 
dently would create 
two permanent bulges 

or distortions in the 
surface of the oceans, 
which would be di- 
rected toward the 
moon on one side 
of the earth, and in 
the opposite direction 
on the other. The surface of the oceans would then conform 

to the surface of equilibrium resulting from the joint action of 
the force of gravity and the lunar tide-producing force. If 
the oceans entirely covered the earth, this surface of equilibrium 
evidently would take the form of a prolate spheroid of revolution, 
with its axis pointing toward the moon, as shown in figure 6. The 
displacement of this theoretical tidal surface of equilibrium from the 

FIGURE 6.—Tidal surface of equilibrium. 
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spherical equilibrium surface produced by the action of gravity alone, 
affords a yardstick for measuring the effect of the tide-producing 
force of the moon, and is called the lunar equilibrium tide. 

27. Equation of the tidal surface of equilibrium.—Let r be the dis- 

tance OP (fig. 6) from the center of the earth to any point P on the 
equilibrium surface, 6 the angle between CP and the axis of the sur- 
face, and as before H and M the masses of the earth and moon, respec- 
tively, R the distance between their centers, a the radius of the earth, 
and u the coefficient of gravitational attraction. Let V, and V, be, 

respectively, the lunar tide-producing potential and potential due to 
eravity at P. 

The force of gravity becomes zero when 7 is infinite. The gravity 
potential is then, from the definition in paragraph 22: 

Wee { (Bal dr= Bul. (13) 

Since, as shown in paragraph 24, the total potential at all points on 
the surface of equilibrium is constant: 

Vea — Ce 

Substituting the expression for V, found in equation (11), and for 

V, in equation (13), the equation of the surface of equilibrium be- 

comes: 

YMu(r?/R*) (8 cos? 6—1)-+ Ep/r=C. (14) 

28. An indefinite number of surfaces are given by this equation as 

various values are assigned to C. If the oceans were continuous, the 
particular surface to be chosen would have a volume equal to that of 
the sphere with radius a, since the volume cannot be altered by the 
tidal disturbance. It will be shown that this condition is fulfilled by 
the surface whose radius vector is equal to the earth’s radius where the 

tide-producing potential is zero, 1. e., where cos? 6=1/3. Such asurface 
will intersect the sphere in the small circles P,P:, and P3P, in figure 6. - 

The resulting value of the constant is found by placing r=a and cos? 6= 

1/3 in equation (14), giving: 

HH} 

and the equation of the surface of equilibrium is therefore: 

¥Mu(r?/R) (3 cos? 0—1) 4+ Hy/r= Ep/a 

which reduces to: 

¥ (Ma?/ER?) (3 cos? 6—1) =a (r—a) /r° 

Representing the height of the equilibrium tide by w, it follows from 
the definition in paragraph 26: 

T—G=—U. 
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Substituting this expression in the preceding equation, 

¥, (Ma?/ ER?) (3 cos? 6—1)=a7u/(a+u)?. (15) 

Since wu is very small in comparison with a, the value of (a+)? is 
always very close to that of a’. Equation (15) then becomes: 

u=\(Ma'/ER?®)a(3 cos? 6—1) (16) 

‘This is the equation of the lunar equilibrium tide. 

29. The volume of the tidal surface of equilibrium evidently is the 
same as the volume of the undisturbed sphere if the total positive tidal 
volume over the zones P,P2P; and P3P.P, in figure 6 is equal to the 

negative tidal volume over the zone P,P;P,P;; or, what is the same 

thing, if the positive and negative tidal volumes in the hemisphere 
P2P’P™ are equal. 

In figure 7, P is any point on the tidal-equilibrium surface; CP its 
radius vector, 7; P,P the equilibrium tide, wu, at that point; CP, the 

FIGURE 7. 

radius, a, of the undisturbed sphere; 6 its angle with the line CO 
directed toward the moon; and CP’,P’ the position of CP,P when 6 

is increased by the differential angle dé. The equilibrium surface is, 
as has been seen, a surface of revolution whose axis is CO. <A well 

known theorem establishes the volume of a solid formed by rotating 
a plane figure about an axis in the same plane as the product of the 
area of the plane figure by the length of the circumference of the circle 
‘described by its center of gravity. 

The area of the differential triangle PP’C is 4 r? dé and the radius of 
the circle described by its center of gravity is 2/37 sin 6. The differ- 
ential volume resulting from the rotation of the triangle about CO 
is therefore: 

2/3 ar? sin 6d0=2/3 r(a+u)? sin 6dé 

The corresponding differential volume of the sphere is 

2/3 ma® sin 6 dé 

The difference between these volumes is the elementary tidal 

volume, dq, generated by the rotation of PP,P,;’P’ and is: 

dq=2/3 z[(a+u)?—a’] sin 6 dé 
=2/3 ra3(3u/a+3u?/a?+u?/a?) sin 6 dé 
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Since the ratio u/a is extremely small, its squares and higher powers. 
may be dropped, giving: 

dq=2ra’u sin 6dé 

Substituting the expression for uw in equation (16) and integrating: 

q= S 1(Ma'‘/ER*) (3 cos? @—1) sin 6dé0 
=1(Ma‘/ER*)(f3 cos? 6 sin 6dd— f sin 6d@) 
= 7 (Ma‘/ER*) (—cos? @+cos 0) +C (17): 

Taking gq=0 when @=0, the constant of integration becomes zero, 
and the expression for the tidal volume in the zone measured by the: 
angle 6 is: 

q=7 (Ma'‘/ ER?) (cos 6—cos? 6) (18) 

This volume reaches a maximum when 3 cos? 6—1=0 and is then 

a (Ma®/ ER?) (¥/1/3—1/3-+/1/3) =2/9 «(Ma*/ER®)/3 

which is the volume of the positive tide over the zone P;P,P, in figure 

6. The volume of the negative tide is the same, as q reduces again to. 
zero When 06=90°. The condition of continuity is therefore fulfilled 
by the expression for the equilibrium tide given in equation (16). 

30. Magnitude of the lunar equilibrium tide.—Assigning to the con- 
stants in equation (16) their numerical values, the ratio, M/E, of the 
mass of the earth to the mass of the moon is 1/81.45; a, the mean 
radius of the earth, 3,959 statute miles; R, the mean distance to the 

moon, 238,857 statute miles. The coefficient %(Ma?/ER*)a then is. 

0.584 feet. The corresponding height of the lunar equilibrium tide 
in feet is therefore: 

u=0.584(3 cos’ 6—1) 

The factor 3 cos? @—1 has a maximum value of 2 when 6=0, and 

a minimum value of —1 when 6=90°. The maximum range of the 

lunar equilibrium tide is then 3X0.584=1.752 feet. This distortion 
of the water surface of the earth is very small in comparison with the 
distortion due to the earth’s rotation, since the latter, as measured by 
the difference between the equatorial and polar radii, is 13.35 miles. 
The tidal distortion is however superimposed upon and not measur- 
ably affected by the distortion due to the earth’s rotation. 

31. Solar equilibrium tide.-—The solar equilibrium tide is, by trans- 
posing in equation (16); 

u,= %(Sa?/ER,’)a(38 cos? 6,—1) 
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The numerical value of S/H is 333,432; and the mean distance, Ry, 

from the earth to the sun, is 92,897,416 statute miles. The substitu- 
tion of these values gives: 

U,=0.270(8 cos? 6,—1) 

The maximum range of the solar equilibrium tide is 3 X0.270=0.810 
feet. 

32. Equilibrium tide dependent on the fourth power of the moon’s 
parallax.—lf the second term of equation (4), paragraph 15, is included 
in the derivation of the lunar tide-producing potential, paragraph 22, 

- and of the lunar equilibrium tide, paragraph 28, the equation of the 
latter (equation 16) becomes: 

u='4(Ma?/ER*)a(3 cos? 6—1)+%(Ma*/ER*)a(5 cos? @—3 cos 6) = (20) 

The second term of this equation, 4(Ma‘*/ER*)a(5 cos? 6@—3 cos 8), is 

the “lunar equilibrium tide dependent on the fourth power of the 
moon’s parallax.” 

Substituting the numerical values for the constants in the coefficient 
of this term, this part of the tide has the value, in feet, of 

0.007(5 cos? @—3 cos 84) 

The factor (5 cos? @—3 cos 6) has a maximum value of 2 when @=0, 
decreases to — 0.894 when §6=63°26’, 

increases to 0.894 when 6=116°34’ 
and again decreases to a minimum 
of —2 when 6=180°, repeating this 

variation in the third and fourth 
quadrants. This part of the equili- 
brium tide is shown, on a greatly 
exaggerated scale, in figure 8. 

It will be noted that the equili- 
brium tide dependent upon the 
fourth power of the moon’s parallax 
goes through three fluctuations from 
maxima to minima as 6 goes through 
a cycle from 0 to 360°; but that its 
maximum range is but one-quarter 

of aninch. It is superimposed upon and produces but an immaterial 
distortion of the principal equilibrium tide due to the third power of 
the moon’s parallax, previously developed. 

Since the ratio of the radius of the earth to its distance to the sun 
is but 1/389th of its ratio to the distance to the moon, the equilibrium 
tide dependent upon the fourth power of the sun’s parallax is too 

small to be considered. 

FIGURE 8.—Surface of equilibrium dependent on 

fourth power of moon’s parallax. 
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EFFECT OF ROTATION OF THE EARTH AND THE MOVEMENT OF THE MOON 

AND THE EARTH IN THEIR ORBITS 

33. The effect of the rotation of the earth.—As shown in paragraph 25, 
the lunar and solar tide-producing forces each create two areas of high 

potential on the surface of the earth, one facing the moon, or sun, 

and the other opposite. As the earth spins around its axis, these 

areas make the circuit of the earth and set up the slight oscillations of 
the oceans which make the tides. The rise and fall of the actual tide 
at any locality, and the times of high water and low water, depend on 
the conformation of the ocean shores and beds and on the momentum 

of the water masses as well as on the tide-producing potential. The 
equilibrium tide affords a measure of the effect of tide-producing 

potentials alone. The variations of equilibrium tides resulting from 
the movements of the moon and earth in their orbits indicate the 

variations to be expected in the actual tides because of these move- 
ments. 

34. Effect of the declination of the moon and sun.—The surface of 
equilibrium of the oceans due to the lunar tide-producing potential 

S 

FIGURE 9. FIGURE 10. 

Effect of moon’s declination on tides. 

has been shown to be a prolate spheroid, with its axis pointing to the 
moon (par. 26). When the moon is in the plane of the earth’s equator, 

as shown in figure 9, the equilibrium tide at any point P on the earth’s 
surface quite evidently goes through two equal fluctuations during 
one rotation of the earth around its axis NS, as measured from the 
position of the moon; i. e., two equal lunar equilibrium tides then 

occur each lunar day. At the earth’s equator the range of these two 
tides is 1.75 feet when the moon is at its mean distance from the earth 

(par. 30), this range decreasing with the latitude of the tidal station. 
When, on the other hand, the moon is above or below the plane of the 

earth’s equator (fig. 10) the two daily fluctuations of the lunar equi- 
librium tide quite obviously are unequal, except on the earth’s equator, 

the inequality depending on the latitude of the tidal station, and the 
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angular distance of the moon from the equator. This angle is the 
declination of the moon. The solar equilibrium tides vary similarly 
with the declination of the sun. It may be noted that the solar 
equilibrium tides are equal when the days and nights have the same 
length, and that the inequality of the two daily tides when the moon 

or sun are off the equator is for a cause analogous to that of the 
inequality of the days and nights. 

35. Periodic variations in the declinations of the sun and moon.—The 
changes in the form and range of the equilibrium tide at a given station 

produced by the changing declinations of the moon and sun, and the 

corresponding changes in the actual tides, obviously run through 
cycles whose respective periods are the periods of the declinations. 

It will be recalled that as the sun moves along the ecliptic, its apparent 
path on the celestial sphere, it crosses the celestial circle of the earth’s 
equator, and has therefore a zero declination, at the vernal equinoz, 
passing this point yearly in the latter part of March. It then ascends 
north of the equator and its declination reaches a maximum angle of 
23°.452 at the summer solstice, late in June.. This angle is the in- 

clination of ecliptic to the equator, and may be considered as constant 
so far as tidal computations are concerned. At the summer solstice 

the sun is directly overhead at noon on the tropic which separates the 
torrid from the temperate zone in the northern hemisphere. The sun 

again crosses the equator at the autumnal equinox in late September, 

and reaches its maximum negative (south) declination of —23°.452 at 
the winter solstice in late December. The period of its travel from 
vernal equinox to vernal equinox is the tropical year of 365 days, 
5.813 hours. 

The moon, in its movement along the celestial circle marking its 
orbit, similarly crosses the earth’s celestial equator monthly at the 

ascending intersection, reaches a maximum north (positive) declination 

in about a week, again crosses the equator at the descending intersec- 
tion in another week, to reach its maximum south (negative) declina- 
tion. The period of its travel, from ascending intersection to ascend- 

ing intersection, is the tropical month of 27 days, 7.718 hours. 
The points at which the moon’s celestial orbit crosses the ecliptic 

are called its ascending and descending nodes, respectively. The plane 
of the moon’s orbit has a constant inclination of 5°.145 to the plane 

of the ecliptic, but because of a slow retrograde movement of the 
moon’s nodes along the ecliptic, the inclination of the moon’s orbit to 
the equator, and hence the maximum monthly declination of the 
moon, slowly varies. The moon’s node makes the circuit of the eclip- 

tic in approximately 19 years. 
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In figure 11: 
U is the vernal equinox. 
O the moon’s ascending node. 

Yi I the intersection of the moon’s 
orbit with the equator. 

Vee a UO the ecliptic. 

eee” UT the celestial equator. 
IO the moon’s orbit on the celestial 
sphere. 

When the moon’s ascending node coin- 
cides with the vernal equinox the inclina- 
tion of the moon’s orbit to the equator has 

its maximum value of 23°.452+5°.145=28°.597. When 9% years 

later it coincides with the autumnal equinox the inclination of the orbit 
has a minimum value of 23°.452—5°.145=18°.307. The maximum 
monthly declinations of the moon, both positive and negative, range 
between the same limits. 

36. Longitude of the moon’s node.—The angular distance on the 

ecliptic from the vernal equinox U to the moon’s ascending node 0, 
figure 11, is the longitude of the moon’s node, and is designated by the 
letter N. It determines the inclination, J, of the moon’s orbit to the 

equator. The value of J may be found from N by the solution of the 
spherical triangle ZUO, since in this triangle the angle JUO is the 
known inclination of the ecliptic to the equator and JOU is the known 
inclination of the orbit to the ecliptic. The values of J in terms of N 
are tabulated in manuals on tidal analysis. 

37. The lunar equilibrium tide in terms of the latitude of the tidal 
station and the moon’s declination.—In figure 12, CN is the axis of the 
earth, Nits north pole, 
P,M, the equator, the 

angle P,CP the lati- 

tude, \ (lambda), of a 
tidal station P, NPP, 

the meridian through 

P, the angle ,CM 
the declination, 6 
(delta), of the moon, 
NM’'M, the hour cir- 

cle through the line OM joining the centers of the earth and 
the moon, and the spherical angle PNM, the hour angle, H, of the 
moon with respect to the meridian through P. The angle PCM’ is 

then 6, the zenith distance of the moon. 

From the spherical triangle PNM’: 

FIGURE 11.—Moon’s orbit and the 

ecliptic. 

FIGURE 12. 

cos 6=cos (90°—X) cos (90°—6)-+sin (90°—X) sin (90°—6) cos H 
=sin \ sin 6-++cos \ cos 6 cos H (21) 



21 

The expression for the equilibrium tide, uw, in terms of cos @ is given 
in equation (16): 

u=4(Ma?/ER?*) (3 cos? @—1)a=3a(Ma*/ER*) (cos? 6— 3) 

Substituting the value of cos 6 given in equation (21): 

=3 a(Ma?/ER®) (cos” d cos? 6 cos? H+2 cos \ cos 6 sin 2X sin 6 cos H 
+sin? d sin? 6— 4) (2) 

Since cos? H= (1-+ cos 2H), sin \ cos A= sin 2X etc., this equation 
reduces to: 

u=%*%, a(Ma?/ER?) (cos? d cos? 6 cos 2H+sin 2X sin 2 6 cos H 
+ cos? \ cos? 6+2 sin? \ sin? 6—% (23) 

Substituting for cos? \ and cos? 6 in the third term their equivalents, 
1—sin? \ and 1—sin? 6 respectively, and reducing, the equation for w 
becomes: 

u=%*% a (Ma3/ER?*) cos? ) cos? 6 cos 2H+ % a(Ma?/ER?*) sin 2) sin 26 cosH 
4 a(Ma?/ER*) (1—3 sin? \) (1—8 sin’ 6) (24) 

38. Semidwurnal and diurnal parts of the lunar tide —Equation (24) 
shows that the lunar equilibrium tide at any tidal station is composed 

of the following parts: 
(a) That represented by the term * a(Ma?/ER?*) cos? \ cos? 6 cos 2H. 

Since the angle 2H obviously goes through two complete cycles from 0 
to 360° while H is making one cycle in a lunar day, this part goes 

through two cycles every lunar day and i is therefore called the sem- 
diurnal part of the tide. 

(6) That represented by the term % a(Ma?/ER?*) sin 2 \ sin 6 cos H. 
This part goes through one cycle each lunar day and is the diurnal part 

of the tide. 
(c) That represented by the term: 

\ a(Ma3/ER?*) (1—3 sin?A) (1—3 sin? 6). 

Since this term is independent of the angle H, it undergoes no change 
because of the rotation of the earth. It is therefore the height of the 
daily mean sea level above that of a sea undisturbed by tidal forces. 
Its variation due to the changing declination of the moon will be 
later discussed (par. 42). 

39. A typical example of the diurnal and semidiurnal fluctuations 
of the lunar equilibrium tide, and of the total tidal fluctuation re- 
sulting therefrom (disregarding the variation due to the changing 
distance between the moon and the earth) is illustrated in figure 13, 
which shows these fluctuations at a station at 40° north latitude during 

a lunar day in which the declination of the moon increases from 7° 

to 13°. 
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Upper Transit 
Lower Transit 

Upper Transit 

Total Tide 

Diurnal Tide 

Semidiurnal Tide 

Q 90° 180° 270° fe) 

Lunar hour angle 

FIGURE 13.—Diurnal, semidiurnal, and resu!tant tides. 

It will be noted that the semidiurnal part of the lunar equilibrium 
tide follows the sinusoidal curve of the cosine function, with a very 
slight skew because of the change in the moon’s declination during the 

day. The skew of the diurnal part of the tide because of this change 
is more pronounced. The combination of these two parts produces 

the inequalities of the daily tides inferred in paragraph 34. The 
ranges of the two parts of the equilibrium tide are affected differently 

by the latitude of the tidal station. At high latitudes the diurnal 
part may mask the semidiurnal fluctuations and produce an equili- 

brium tide which is predominantly or wholly diurnal. 
40. Variations in the amplitude of the diurnal and semidiurnal parts 

of the lunar equilibrium tides with the moon’s declination —The ampli- 

tude of the fluctuations of the semidiurnal part of the lunar equilib- 
rium tide evidently varies with the coefficient of cos 2H in the first 
term of equation (24). At a tidal station whose latitude is 4, it con- 
sequently varies with cos? 6. It is therefore a maximum when the: 
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declination of the moon is zero, as the moon crosses the ascending 
intersection of the moon’s orbit with the celestial Equator. The 
amplitude then decreases to a minimum when, a week later, the moon 
has its maximum north declination; again increases to a maximum 
when, in another week, the moon is at its descending intersection; 
and decreases to a second minimum when the moon reaches its maxi- 

mum south declination. The amplitude of the fluctuations of the 

semidiurnal part of the lunar equilibrium tide therefore varies between 
a maximum and a minimum twice during a tropical month. 

The amplitude of the fluctuations of the diurnal part of the lunar 

equilibrium tide at any tidal station (except those on the earth’s 
Equator) varies with sin 26. It therefore increases twice during the 

tropical month from zero, when the moon has a zero declination, to a 

maximum when the moon has its maximum declination north or south 
of the Equator. 

The amount of the variation in the amplitudes of the fluctuations 
both of the semidiurnal and the diurnal parts of the lunar equilibrium 

tide slowly changes with the inclination of the moon’s orbit to the 
Equator (par. 35) and hence with the longitude of the moon’s node 
(par. 36). 

41. Variations in the range of the actual tide with the:moon’s declina- 

tion.—Since the equilibrium tides are a measure of the astronomical 

causes of the actual tides, 1t may be expected that the part of the actual 
tide due to the moon is made up of diurnal and semidiurnal elements, 
each varying with the declination of the moon in the same manner 

manner as the equilibrium tides; the amount of the variation slowly 

changing with the longitude of the moon’s node. It does not follow 

however that the diurnal and semidiurnal parts of the actual tides 

change with the latitude in the same manner as the parts of the 

equilibrium tide; for the latter, while affording a measure of the 

astronomical causes of the variation in the tide at a particular station, 

afford no indication of the relationship between 
the tides at two different stations. 

42. Lunar fortnightly tide.—In figure 14, JM, 

is the celestial Equator, // the celestial circle 

of the moon’s orbit, J the intersection, MW the ae ee 
position of the moon at any time, N/M, the 

hour circle through M@. M,M is then the moon’s 
declination, 6. Let IM, the angular distance of 
the moon from the intersection, be represented uae) | 

by/. Then in the right spherical triangle J1/,M: ; 

sin 6=sin / sin J (25) 

where J is the inclination of the moon’s orbit to the Equator. 
Substituting this expression for sin 6 in the last term of equation 

(24), % a (Ma*/ER*) (1—3 sin? dA) (1—3 sin? 6), this becomes 
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¥, a (Ma?/ER*) (1—3 sin? A) (1—3 sin?/sin? I). Again substituting for 

sin? 1 its equivalent, 4 (1—cos 2/) the term reduces to the two terms: 

34 a (Ma?/ER?) (1—8 sin? d) sin? I cos 21 
V a (Ma?/ER*) (1—3 sin? \) (1—3/2 sin? J) 

The first of these terms evidently goes through two cycles from 0 
to 360° while J is making one cycle in the tropical month. It is called 
the lunar fortnightly component of the tide. 

The last term remains constant as the earth revolves about its 
axis and the moon changes its declination. It represents therefore a 
permanent distortion of the ocean surface, so far as these movements 
are concerned. 

The substitution of the numerical of the constants in the expression 
for the lunar fortnightly equilibrium tide shows that, at the earth’s 
Equator, its range varies from 0.086 foot when the inclination of the 
moon’s orbit is a minimum, to 0.20 foot when the inclination is a 

maximum. The range decreases to zero at a latitude of 35°16’ north 

or south of the Equator, increasing again toward the poles. The 
actual fortnightly tide is correspondingly small. At most tidal sta- 

tions this component produces, however, a fortnightly fluctuation of 
an inch or more in the daily mean height of the sea. 

43. Effect of eccentricity of the moon’s orbit—As the moon travels its 
orbit, its distance, R, from the earth varies. The point at which it is 
nearest the earth is its perigee, and the point at which it is the most 
distant is its apogee. Because of the disturbing effect of the attraction 

of the sun, the moon’s orbit varies somewhat, but its distance from the 
earth at apogee ordinarily exceeds by more than 10 percent the dis- 
tance at perigee. The moon makes the circuit from perigee to perigee 

in the anomalistic month of 27 days, 13.309 hours. Since the coeffici- 

ents of the terms in equation (24) each contain the factor 1/R®, the 

amplitudes of the diurnal and semidiurnal parts of the lunar equilib- 
rium tides, as derived from these terms, tend to vary from a maximum 
to a minimum once during the anomalistic month, as well as varying 

twice during the tropical month because of the changing declination 
of the moon. A corresponding variation may be expected in the actual 

tides. 
To gage the amount of the variation in the tides because of the 

elliptical form of the moon’s orbit, let P be the distance of the moon 
at perigee and A—P-+d its distance at apogee. The ratio of the ampli- 
tude of the equilibrium tides at perigee to those at apogee is then 

(4Mat/EP®)/(4Mat/EA®) = A3/P*= (P+ d)/P® 
=1-+3 d/P+3 (d/P)?+ @/P) (26) 
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Neglecting the squares and cubes of the ratio d/P, it is apparent 
that the variation in the equilibrium tide is three times the variation in 
the distance to the moon. As the ratio d/P usually exceeds 10 per- 
cent, the amplitudes of the diurnal and semidiurnal lunar equilibrium 
tides are subject to a variation of 30 percent or more during the 
anomalistic month. This variation is sometimes called the parallax 
umequality, since the distance to the moon is measured by its parallax 
(par. 15). 

The lunar fortnightly component of the tide is so small that its 
parallax inequality is not taken into consideration. The variation in 
R produces, however, a variation in the fixed term: 

4, a (Ma?/ER?)/(1—3 sin? d) (1—% sin? 1) 

developed in paragraph 42, giving rise to a small monthly tidal com- 
ponent with the period of an anomalistic month. 

44, The solar equilibrium tides —The equilibrium tide due to the 
sun is similarly made up of a semidurnal part, which goes through 
two complete cycles in a mean solar day of 24 hours; a diurnal part 
which goes through one cyle per day; both of which vary with the 
declination of the sun; together with a semiannual component of rela- 
tively small range. Since the eccentricity of the earth’s orbit around 

the sun is much less than the eccentricity of the moon’s orbit, the 
parallax inequalities of the solar equilibrium tides are small in compar- 
ison with those of the lunar equilibrium tides. 

45. As will be shown in the following chapter, the varying semi- 
diurnal and diurnal fluctuations of the tide, because of the changing 
declinations of the sun and the moon, and the varying distances 
of the earth from these bodies, may be resolved into components of 

fixed amplitudes with periods not far from 12 hours and 24 hours 
respectively. 

THE ACTUAL TIDES 

46. The actual fluctuations of the surfaces of the oceans because of 
the tide-producing forces are somewhat akin to the slopping around 
of the water in a basin on a moving train. The momentum of the 

moving masses in the deep seas tends to pile up the water in the 
shallow depths along the coasts, producing tides whose ranges may 
greatly exceed the range of the equlibrium tide. The tidal ranges at 
different points along the shores, and the times of high and low water, 
depend upon the contour of the ocean beds and the conformation of 
the coasts and cannot be determined by abstract calculation. The 

relation of the times of the actual to the equilibrium tides may possibly 
be more apparent if the varying pull upon the waters of the oceans 

due to the attraction of the moon and sun be conceived to be replaced 
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by the varying push that would come from a heaving of the beds of 
the oceans of the magnitude and sequence of the equilibrium tides. 

Since the equilibrium tides move across the oceans at the same speed 
as the moon and the sun, or upward of 660 miles per hour in the 
range of latitudes of the United States, the actual tides generally lag 

behind the equilibrium tides by a substantial interval of time. But 
while the range and the times of high and low water vary widely 
from those of the equilibrium tide, the periods of the fluctuation of the 
components of the actual tide must clearly be exactly the same as 
the periods of the forces which cause them, and consequently conform 
exactly to the periods of the equilibrium tides. Since however the 
oceans may be expected to respond differently to the diurnal fluctua- 
tions of the tide producing forces than to the semidiurnal fluctuations, 
the diurnal and semidurnal elements of the actual tides are generally 
displaced with respect to the respective timing of these elements of the 
equilibrium tides. Similar displacements may be expected in the 
various components into which the diurnal and semidurnal tides may 
be resolved. Last of all the ranges of the various components of the 

actual tides bear a definite relationship to the range of the like com- 
ponents equilibrium tides, in that small components of the latter will 
produce small fluctuations in the actual tide; and the variations of the 
various components at any tidal station, due to the longitude of the 
moon’s node (par. 36) correspond to the variations in the equilibrium 
tide. 

47. Meteorological tides —Besides the systematic fluctuations due to 
the tide-producing forces, irregular fluctuations of the oceans are 
caused by winds and the varying barometric pressure over their sur- 
face. These accidental fluctuations are called meteorological tides. 

48. Hramples of tides —The recorded tides at a few representative 
places are shown in figure 15. It is apparent that these tides vary 

widely as to type. The effect of the diurnal tidal variations in the 
tide at San Francisco and Galveston may be especially noted. 
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49. Harmonic components of the tide—It is reasonable to assume, 
and will later be shown, that, except as affected by irregular meteoro- 

logical disturbances, the tide curve at any station is the resultant of 
a limited number of sinusoidal (cosine or sine) curves, whose periods 

are determined by the periods of the tide-producing forces. This 
relation is expressed by the equation: 

y=H)+ A; cos (at-+-a,) + Az cos (dat a) + Az cos (agt-+a3)+ * * * (27) 

in which y is the height, at the time ¢, of the tide above an arbitrarily 
chosen datum, H) is the height of mean sea level above this datum, 

and the subsequent terms in the form A cos (at-+a) are the component 
tides. Of each component the coefficient A is the amplitude or 
semirange, a is the speed, the angle at-++a is the phase at the time ¢, and 

a (alpha) is the initial phase. Placing: 

a=—3607/f oral=360° (28) 

| it follows that at increases from zero to 360° as ¢ increases from zero 

to 7; and again as ¢t increases from 7 to 27, and soon. Tis therefore 

the period in which the component goes through its cycle of fluctua- 

192750—40——3 _ (27) 
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tion. From the discussion in paragraph 46 it is clear that the speed, 
a, of each component is determined by the astronomical movements 
of the moon or sun, or both. The amplitude A, and the initial phase 
a may be determined from the recorded tides at the place, by a 
method hereinafter described. In the ensuing discussion, the ampl- 
tude A will be expressed in feet; the time ¢ and the period 7’, in mean 

solar hours; the speed, a, in degrees per hour (unless otherwise indi- 

cated) and the initial phase a in degrees. 
Each component is graphically represented by the projection on the 

Y axis (fig. 16), of a generating radius CP, of length equal to the 

FIGURE 15.— Generating radius and tide curve of a component. 

amplitude of the component, rotating at the constant speed of the 
component around the origin, C, its initial angle with the Y axis being 

the initial phase of the component. 
The direction of the rotation of the generating radius is taken as 

positive in a counterclockwise direction, in accordance with the usual 
trigonometric convention. 

The graph of the component is the sinusoidal cosine curve shown 
on the right in figure 16, in which the abscissas represent time and the 

ordinates the height of the component above mean sea level. 
It is sometimes more convenient to write equation (27) in the form: 

y=Ho+ A, cos (ayt— $1) + Az cos (d2t— 2) + As cos (ast—f3) + +--+ (29) 

in which the angles designated as ¢ (zeta) are numerically equal to the 
respective initial phases, a, of the several components but opposite 
in sign. Since each component reaches its maximum when at —¢=0, 

and hence when t=¢/a, it is evident that ¢/a is the time of high water 

of the component next after the origin of time. 

50. ‘“‘Astres Fictifs.’’—The tide represented by a single component 

would have high waters and low waters of constant heights occurring 
at equal intervals of time. Such a tide would be generated by a 
moon traveling at a constant angular speed along a circular orbit in 

the plane of the earth’s Equator. Hach component of the tide is 

therefore sometimes treated as the tide due to a fictitious moon, or 

‘“ostre fictif,’’ moving at a uniform speed along the earth’s celestial 
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Equator. This conception appears, however, to complicate rather 

than to simplify a consideration of the tidal components and is not 
herein pursued. 

51. Combination of components.—A consideration of the manner in 
which two or more components combine with each other will afford 
a basis for the selection of the speeds of the particular components 

which reproduce the tide at any station as it varies with the changing 

positions and distances of the moon and sun. 
Taking the two components: 

Yi=A, cos (at+ ay) Y2—= A, cos (dgt+ a») (30) 

let CP, and CP, (fig. 17) be the positions of their generating radii at 

FIGURE 17.—Resultant of com ponents of unequal speeds. 

any instant of time. Completing the parallelogram CP,P;P, it is 

at once apparent that the projection on the Y axis of the resultant 

vector CP; is the algebraic sum of the ordinates of the two compo- 

nents y; and y, at that instant. This resultant vector CP, will there- 
fore generate the tide curve of the resultant of the 
two components, as shown on the right of the 
figure. 

If CP,, CP2, and CP; (fig. 18), are the generat- 

ing radii of three components at any instant, 
the length and position of the resultant vector 
is given by the line CP, found by drawing P,P; 

parallel and equal to CP:, and P; P parallel sige agi 

and equal to CP;. The resultant vector of any 
number of components may be drawn in a similar manner. 

52. Two components of the same speed—-If two components have 
the same speed, the angle between the generating radii CP; and CP; 
(fig. 17), remains constant, the parallelogram CP,P3P, does not change 
its shape as the radii rotate around C, and the resultant vector CP; 
therefore remains of constant length and rotates at the constant 

speed of the two components. It will therefore generate a sinusoidal 

curve as shown in figure 19. 
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FIGURE 19.—Resuitant of two components of the same speed. 

Designating the common speed of the two components by a, the 
constant length of the resultant radius by <A3, and its initial angle 
with CY (when t=0) by az, it follows that 

A, cos (at-+-a,)-+ A, cos (at+a,) =A; cos (at+ az) (81) 

It will be seen therefore that any two components having the same 
speed unite into a component of the identical speed. 

53. Two components of different speeds ——If two components have 

different speeds, the faster of the two generating radii CP, or CP; is 

continuously gaining on the slower, the angle between these radii 
progressively changes, the parallelogram CP,P;P, steadily changes 
its form, and the length of the resultant vector CP;, together with 

its speed, varies with the time. The curve generated by the result- 
ant vector takes various forms, depending on the amplitudes and 

speeds of the components; but the periodic variations in the length 

and speed of the resultant vector only need be here considered. 
54. Variation in the length of the resultant vector—When the ampli- 

tudes of the two components differ, A; may be taken as the amplitude 

of the major component, a, its speed; and A, the amplitude of the 

minor component. Let 6 be the algebraic difference between the 
speeds of the components, so that a,=a,+6. The faster of the gener- 

ating radii of the two components evidently will overtake and pass 
periodically the slower. Taking for convenience the origin of time 
at a moment when the generating radu coincide, the two components 

then have the form 

Y= A, Cos At Yo= Az cos (a,-+b)t (32) 

In figure 20, CP, and CP, are the positions of the generating radii 
of the two components at any time ¢t, and CP; the resultant. Since 

the angle YOP, represents a,t and the angle YCP, represents (a,+))t, 

the angle between the radii, P,;CP,, is (a,+6)t—at=0t. 
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FIGURE 20. FIGURE 20 A; 

Variation in length of resultant vector. 

If then in figure 20A, Op, is laid off equal to A,, the angle Wp,p; 
equal to bt, and p,p; equal to A,, the triangle Op,p; in figure 20A 
reproduces the triangle CP,P; in figure 20, and Op, is the length of 
the resultant vector CP;. As the time increases the point p3 evi- 
dently describes a circle of radius A, around p, as a center. The 

length of the resultant vector fluctuates between O/=<A,-+ A, and 

ON=A,—A,. The period in which the point p; completes the circuit 
around p; as a center obviously is 360°/b. This interval is called the 
synodic period of the two components, and, without regard to the 

algebraic sign of 6, is the interval between the successive times at 
which the resultant vector reaches its maximum length, and also 
between the times at which this vector has its minimum length. 

55. Variation in the speed of the resultant vector —A consideration 
of figure 20A makes it apparent that the resultant vector alternately 
leads and lags behind the radius vector of the major component; and 
that its mean speed is the speed of the major component. A study 
of the figure shows further that when 6 is positive, the point p; rotates 
around p, in the same direction that CP, rotates around C, and the 

speed of the resultant is a maximum at the point M, when the length 

of the resultant isa maximum. When 6 is negative, p; rotates in the 
opposite direction and the speed of the resultant is a maximum at 

the point N, when the length of the resultant is a minimum. 
56. Speed of the resultant of two components of equal amplitudes.—It 

the amplitudes of the two components are equal, the resultant CP; 

(fig. 20), evidently bisects the angle P,CP2:, and the angle YCP; is 

therefore equal to (a,+%b)t. The speed of the resultant therefore 

has the constant value of a,+ 4b, the average of the speeds of the two 

components. 

57. Form of resultant of two components whose speeds are nearly 
equal.—lIf the difference between the speeds of two components is 
relatively small, so that the length of their resultant vector changes 
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little during one revolution of the component radi, the curve repre- 
senting the resultant of the two components evidently takes the general 
form of a sinusoidal curve, with an amplitude slowly fluctuating be- 
tween the sum and difference of the amplitudes of the components, 
as shown in figure 21. 

FIGURE 21.—Tide curve of two components whose speeds are nearly equal. 

If A, is the amplitude of the major component and 6 the numerical 
difference between the speeds of the two components, the equation of 

the resultant has the form: 

y=A, cos (a;t-+ a) +A, cos [(ai+b)t+ a] (33) 

when the speed of the minor component is the greater, and: 

y—Ay cos (at-+ a) + Ae cos [(a,—b)t+ ars] (34) 

when the speed of the minor component is less than that of the major. 
From the discussion in paragraph 55 it is apparent that in the first 
case, (equation 33), the speed of the resultant is greater than that of 
the major component when the amplitude of the resultant is large, 

and less when it is small. The high and low waters of the resultant . 

shown in figure 21 will then progressively lead those of the major com- 
ponent when the amplitude of the resultant is large, and progressively 
drop back again when its amplitude is small. In the second case 
(equation 34), the high and low waters of the resultant will progres- 
sively lag behind those of the major component when the amplitude 

of the resultant is large, and progressively catch up with them when 

the amplitude is small. By taking the sum of the three components: 

y= A, cos (a,t+ a) + Ap cos [(a,-+b) t+ a2] + As cos [(a; —b) t+ a] (35) 

the timing of the high and low waters of the resultant may be made, 
by the selection of the relative values of A, and A;, to conform to a 
systematic variation from the timing of the high and low waters of the 

principal component. If A, is equal to A;, the timing of the high 
and low waters of the resultant will conform exactly to those of the 

simple harmonic component A; cos (at-+ a), since the speed of the 

resultant of the last two terms in equation (35) is, as shown in para- 

graph 56: 

% [(a, +6) + (—6)]=ay. (36) 
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58. If the amplitudes of two components are equal, A,—A,—0 

and if their speeds are nearly equal, the curve of the resultant takes 
the form shown in figure 22. 

FIGURE 22.—Tide curve of two components of equal amplitudes. 

Since the speed of the resultant in this case is the average of the 
speeds of the two components, the equation of the resultant con- 

veniently may be written: 

y=A cos [(a+b)t+a:]+A cos [(a—b) t+ ay] (37) 

where a is the speed of the resultant and 6 the difference in the 

speeds of the two components. 
59. The form of the curves shown in figures 21 and 22 indicates the 

manner by which the periodical variations in the semidiurnal and 
diurnal parts of the tidal fluctuations at any station, due to the 
changing declinations and distances of the moon and sun (pars. 
40-44), may be represented by a combination of components of prop- 
erly chosen speeds, fixed by the accurately established periods and 

speeds of the movements of the moon and sun. 

ASTRONOMICAL PERIODS DETERMINING THE SPEEDS OF 

TIDAL COMPONENTS 

60. Mean solar and lunar days.—The intervals between the suc- 

cessive transits of the true sun across the meridian of a place vary 

slightly with its declination and distance, increasing as its declination 

increases either north or south of the equator, and increasing also as 

its distance decreases. The mean interval is the mean solar day of 24 

mean solar hours. The speed at which the hour angle of the true sun 

increases obviously must be the least when the interval between its 

transits is the greatest. The speed of the hour angle of the true sun, 

in degrees per mean solar hour, as influenced by the declination, is 

therefore a maximum when the declination is zero, and a minimum 

when the declination is at its maximum. As influenced by the 

distance, the speed is a minimum at perihelion, when the distance to 

the sun is the least, and a maximum at aphelion, when the distance 

is the greatest. The angular speed of the hour angle of the moon goes 

through similar but more rapid changes, with further disturbances 

because of the attraction exerted by the sun on the moon. The mean 
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interval between the upper, or visible, transits of the moon across the 

meridian of a place is the mean lunar day of 24.841,202,4 mean solar 

hours. 
61. It may be noted that the slow tilting to and fro of the plane of 

the moon’s orbit with respect to the plane of the earth’s Equator 
because of the changing longitude of the moon’s node (par. 36) does 

not affect the length of the mean lunar day, the mean speed of the 
lunar hour angle, or the mean period of the travel of the moon from 

intersection to intersection. The intersection moves to and fro along 
the Equator in a small are on either side of the equinox, its mean posi- 
tion being the equinox itself. 

62. The mean periods and the speeds, or mean angular changes per 
mean solar hour, of the movements of the sun and moon pertinent to 

the development of the speeds of the tidal components are as follows: 

TABLE I 

Period in Speed in 
Cycle mean solar degrees per 

hours solar hour 

Migantsolanidayi=s-- bees aoe Sot eS Ce ee ee ee eee 24 15 
VT sara rir saree Cl hye oe ee ne ee ee ea 24.841,202,4 | 14. 492, 052, 1 
Tropical month—moon’s travel from intersection to corresponding intersec- 

BLOTS ect ee eek Sea en ae ge ne Se tere ce a gals REE) ee ee 655. 717, 96 . 549, 016, 5 
Anomalistic month—moon’s travel from perigee to perigee (par. 43)__________ 661. 309, 20 . 544, 374, 7 
Synodichmonth— tual sare orto wir) Lira 0 ora eee ee 708. 734, 1 . 507, 947, 9 
Tropical year—sun’s travel, equinox to corresponding equinox_-_--_--_- 5 8765. 812, 7 . 041, 068, 6 
Anomalistic year—sun’s travel, perihelion to perihelion_________-__-_-_-_____ 8766. 230, 9 - 041, 066, 7 

63. The “speeds” in the preceding tabulation are the quotients of 

360° divided by the corresponding period, in accordance with the de- 

finition expressed in equation (28). The speed of the mean lunar 

day is the mean hourly change in the angle between the hour circle 
through the moon and the meridian of the place. The speed of the 
tropical month is the mean hourly change in the angle between the 
hour circle through the moon and that through the intersection of the 

moon’s orbit with the Equator. The sum of these two speeds is 
therefore the mean hourly change between the meridian and the inter- 
section. Similarly the sum of the speeds of the solar day and the 
tropical year is the mean hourly change between the meridian of the 

place and the equinox. Since the mean position of the intersection 

is at the equinox, the two sums are the same, i. e., 

15.000, 000, 0 14.492, 052, 1 

.041, 068, 6 .549, 016, 5 

15.041, 068, 6 15.041, 068, 6 
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SPEEDS OF THE TiDAL COMPONENTS 

64. Semidiurnal lunar components.—It has been shown in para- 
eraphs 40 and 41 that the amplitude of the semidiurnal part of the 
lunar tide increases and decreases twice during the tropical month 

because of the changing declination of the moon, and in paragraph 43 
that it increases and decreases once during the anomalistic month 

because of its changing distance. Since the effect of one of these 
variations on the other is small, these variations may be reproduced 
by a combination of a major component and two pairs of minor com- 

ponents in the form indicated in paragraph 57; i. e., 

y=Mb cos (msf+a,)+K,y cos [(m.+b)t+a]+K5 cos[(m:,—b)t+as] 

+L, cos [(m2+¢)t+ as]+ No cos [(m,—c)t-+ as] (38) 

In equation (38), Mz, is the amplitude of the major component. 

Its speed m,; is the mean speed of the semidiurnal component of the 
tide, and is therefore twice the speed of a lunar day, or 28.°984,104,2 

per mean solar hour (par. 55). 

Either or both of the next two terms will produce a variation in 

the amplitude of the resultant, of the same period as the varia- 
tion in the amplitude of the actual tide due to the changing decli- 
nation of the moon, if 360°/b is made equal to that period (par. 54). 

Since the period of these fluctuations is one half of a tropical month, 
b is twice the ‘‘speed”’ of the tropical month, or 1.°098,033,0 per 
mean solar hour. The relative amplitudes of this pair of minor 

components should produce a variation in the speed of the resultant 

conforming to the variation in the speed of the semidiurnal tide, and 
hence in the true speed of the hour angle of the moon, due to the 
changing declination of the moon. Since, when the effect of the vary- 
ing declination is alone considered, the hour angle reaches its maxi- 
mum speed when the declination is zero (par. 60) and the ampli- 
tude of the semidiurnal part of the lunar equilibrium tide is then 
a maximum (par. 40), the component with the greater speed, 

K, cos [(m,+6)t+ a] must be the dominant one of the pair (par. 57). 

A mathematical derivation of the tidal components, later outlined, 
shows that this component correctly reproduces the entire variation 

in the amplitude of the semidiurnal part of the lunar equilibrium tide, 

and hence of the actual tide as well, because of the changing declina- 
tion of the moon. The third term in equation (38) therefore dis- 

appears. 
Similarly either or both of the fourth and fifth terms of equation 

(38) will produce a variation in the amplitude of the resultant of the 

same period as that of the actual tide due to the changing distance 
of the moon if 360°/c is made equal to the anomalistic month, or if ¢ 

is the speed of the anomalistic month, 0.°544,374,7 per mean solar hour. 
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Since the speed of the hour angle of the moon tends to become a 
minimum at perigee, when the increase in the amplitude of the semi- 

diurnal part of the lunar equilibrium tide because of the decreased 
distance of the moon is a maximum, the component with the lesser 

speed, Nz cos [(m,—c)t+-as], is the larger. Both of this pair of com- 

ponents are found necessary, however, to represent the variations in 
the tide because of the changing distance of the moon. 

65. Writing then equation (38) in the form: 

y= Mz cos (Msf-+a;) + Ky cos (ket-+ a2) +L» cos (t+ a3) Nz cos (nett ax) 

(39) 
M,—28°.984,104,2 per mean solar hour. 

k,»=m,+6=30°.082,137,2 per mean solar hour. 

],=m,)+c=29°.528,478,7 per mean solar hour. 

Ny=M,—C= 28°.439,729,5 per mean solar hour. 

The detailed mathematical analysis shows that components having 
these speeds are sufficient to reproduce with substantial accuracy 

the lunar semidiurnal part of the tide. Certain other small compo- 

nents are developed by that analysis, principally to account for the 
variations in the tides due to the irregularities in the movement of 

the moon because of the sun’s attraction, but these are of no sub- 

stantial importance. 
66. Designation of components.—The capital letters designating the 

amplitudes of the components whose speeds are identified in the pre- 

ceding paragraphs are those conventionally assigned to these com- 
ponents. The subscript 2 indicates that the component is a semi- 

diurnal one; i. e., that its speed is in the vicinity of 30° per mean 
solar hour. Diurnal components, with a speed not far from 15° per 
hour, are given the subscript 1. The speed of the component is 

conventionally designated by the corresponding small letter of the 
alphabet, and is given the same subscript. Components are custom- 
arily referred to by the letter and subscript designating the amplitude; 
1. e., as the ““M. component,” and “‘K, component,” etc. The com- 

ponents previously identified are named as follows: 

Mp, the principal lunar component, 
No, the larger lunar elliptic, semidiurnal, 
Ly, the smaller lunar elliptic, semidiurnal, 
Ks, the discussion in paragraph 63 indicates that a solar com- 

ponent of the same speed is to be anticipated. This 
component is therefore called the lunar portion of the 

lunisolar semidiurnal. 

67. Solar semidiurnal components.—The speeds of the solar semi- 
diurnal components corresponding to the lunar semidiurnal compo- 

nents already identified may be written at once by substituting the 
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solar for the lunar day and the tropical year for the tropical month. 
These components are: 

S., the principal solar. Since its speed is twice that of a mean 
solar day, s:=30° per hour. 

Ts, the larger solar elliptic, semidiurnal. Its speed is the differ- 
ence between that of the principal solar and that of the 
anomalistic year and is therefore tz=30—0°.041,066,7= 
29°.958,933,3 per hour. 

Ro, the smaller solar elliptic, semidiurnal. Its speed is the sum 
of that of the principal solar and of the anomalistic year, 

and is therefore r,.=30+0°.041,066,7=30°.041,066,7 

per hour. 

K;, the solar portion of the lunisolar semidiurnal. Its speed is 
twice the sum of the speeds of the solar day and the 
tropical year, and is therefore 30°.082,137,2 per hour. 

Since the eccentricity of the earth’s orbit around the sun is rela- 

tively small, the T, and R, components are small in comparison with 
the N» and L, components respectively. Since the lunar and solar 

parts of the lunisolar semidiurnal components have the same speed, 
they unite into a single component of that speed (par. 52), designated 

as the lunisolar semidiurnal component Kg. 

68. Lunar diurnal components.—The amplitude of the lunar diurnal 
part of the tide has been shown to increase from zero to a maximum 

and back again to zero twice during a tropical month because of the 
changing declination of the moon. This part of the tide follows 
therefore a curve of the characteristic form shown in figure 22. Such 

a curve is represented by the sum of the two components: 

y=A< cos [(a+ 4b)t+a|+A cos [(a— 4b) t+ ay] (40) 

in which a is the speed of the resultant of the two components, and 

360°/6 is the period of the fluctuation of the resultant (par. 58). The 

speed of the resultant lunar diurnal tide is the speed of the lunar day, 
designated as m,. If Tis the period of the tropical month 

360°/b=% 

whence 360°/4%6=T 

It follows from the definition in paragraph 63 that 'd is the ‘“‘speed”’ 

of the tropical month. 
The data given in paragraph 62 show that the numerical values of 

the speeds of the two components in equation (40) are respectively: 

m,-+ 4b=14°.492,052,1-+-0°.549,016,5=15°.041,068,6 
— b= 14°.492,052,1—-0°.549,016,5=13°.943,035,6 
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The first of these speeds is one half of the speed of the lunisolar semi- 
diurnal component K;. It is therefore designated as k;. The second 

is conventionally designated as 0}. 

Since the amplitude of each of the lunar diurnal components just 
developed also fluctuates during the anomalistic month because of the 

varying distance between the earth and the moon, each should be 
made up of a principal and two minor components, giving the six 
components in the form 

y=K, cos (k,t-+-a)+K’, cos [(k,; +e) ¢+a]+K’’; cos [(ki—c)t+ a] 

+O, cos (o;¢+-a)-+-O’, cos [(0;+¢)t+a]+0’’; cos [(0;—¢)t+a] (41) 

where c is the speed of the anomalistic month, and the value of a in 
the various terms is not generally the same. 

The speeds of the minor components then have the values: 

k, te=15°.041,068,6-+0°.544,374,7 =15°.585,443,3 

kj —c=15°.041,068,6—0°.544,374,7 = 14°.496,693,9 

0, te=13°.943,035,6-+0°.544,374,7=14°.487,410,3 

0;—¢=13°.943,035,6—0°.544,374,7 = 13°.398,660,9 

The component having the speed k,-++c is designated as the J; com- 
ponent and that having the speed of 0,—c¢ the Q, component. The 

other two have speeds so close to that of the lunar day, besides being 
intrinsically small, that they are replaced by a component designated 
as M,, with the speed of the lunar day. 

69. The components identified in the preceding paragraph are 

named as follows: 

K,, lunar portion of the lunisolar diurnal, whose speed is the 
sum of those of the lunar day and tropical month. 

O,, principal lunar diurnal, whose speed is the difference 
between those of the lunar day and tropical month. 

J,, small lunar elliptic, whose speed is the sum of those of the 

lunisolar diurnal and the anomalistic month. 

Q., larger lunar elliptic, whose speed is the difference between 
those of the principal lunar diurnal and of the anomal- 
istic month. 

M,, smaller lunar elliptic, whose speed is that of the lunar day. 
70. The corresponding solar diurnal components are: 

K,, solar portion of the lunisolar diurnal, whose speed is the 
sum of those of the solar day and the tropical year, or 

15°.041,068,6. This unites with the lunar tide of the 
same speed to form the lunisolar diurnal component. 
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P,, principal solar diurnal, whose speed is the difference 

between those of the solar day and tropical year, 
15—0°.041,068,6=14°.958,931,4. 

The solar elliptic diurnal components corresponding to J, and Q, 
are too small to be recognized. Daily land and sea beeezes and daily 
variations in atmospheric pressure may however give rise to small 
fluctuations having the period of the mean solar day. A meteoro- 
logical component, S,, with a speed of 15° per hour is therefore 
recognized. 

71. Long period components.—The following long period compo- 

nents have already been developed in the discussion of the solar and 
lunar equilibrium tides: 

The lunar fortnightly (par. 42).—This component is conventionally 
represented by the symbol Mf. Its speed is twice that of the tropical 
month, or 1°.098,033,0 per mean solar hour. 

The lunar monthly (par. 43).—Conventionally represented as Mm. 

Its speed is that of the anomalistic month, or 0°.544,374,7 per mean 
solar hour. 

The solar semiannual (par. 44).—Conventionally represented as Ssa. 
Its speed is twice that of the tropical year, or 0°.082,137,2 per mean 
solar hour. 

In addition, recurring seasonal meteorological effects produce a 
solar annual component, designated Sa, whose speed is that of the 
tropical year, or 0°.041,068,6 per solar hour. 

72. Overtides.—A distortion of the tides is produced in the compara- 
tively shallow waters of estuaries and other coastal areas. This dis- 

tortion gives rise to tidal components whose speeds are multiples of 

the speeds of the astronomical components heretofore developed. 
They are called overtides because of their analogy to overtones in the 

theory of musical tones. The only overtides of sufficient magnitude 
to be of importance are those of the principal lunar and solar com- 
ponents M, and S,. They are designated M., Ms, Ms, and S, and 

S,, the subscripts denoting the ratio of their speeds to that of the mean 
lunar or solar day. 

73. Compound tides—Besides producing overtides, the distortion 
of the tides in shallow water gives rise to components whose speeds 

are the sums or differences of the speeds of the elementary components. 
The recognized compound tides are MS, with a speed of m;-++s,; MN 

with a speed of m.+ns, MK with a speed of m.+k,, 2MK with a 
speed of my—k,, and 2 SM with a speed of s;—m,. These components 
are generally quite small. Certain other compound tides have the 
same speed as some of the primary components and therefore unite 
with them. 

74. Tide depending on the fourth power of the moon’s parallax.—tit 

has been shown in paragraph 32 that the lunar equilibrium tide due to 
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the fourth power of the moon’s parallax is very small, and that it goes 
through three maxima and minima as the zenith distance of the moon 
makes‘a cycle from 0° to 360°; while the principal part of the tide, 
due to the third power of the moon’s parallax, goes through two 

maxima and minima during this cycle. It is not difficult to see, 
therefore, that the fluctuations of both the equilibrium and the actual 

tides due to the fourth power of the moon’s parallax go through three 
fluctuations each lunar day. This tide is therefore approximated by 
the component: 

y=Ms cos (m3t+a) (42) 

where m; is three times the speed of the lunar day, or 43°.476,156,3 per 
mean solar hour. Additional components to account for the variations 

in this part of the tide due to the changing declination and distance of 
the moon, and other variations from this primary component, are too 

small to be recognized. 
75. Résumé of components identified —For the purpose of harmonic 

analysis, it is convenient to group together the components whose 

speeds are multiples of another. The components identified in the 
preceding paragraphs fall into groups and individual components as 

follows: 
TaBLeE II 

Speed in 

Symbol Name See 
hour 

M Groupe 
Mi Smailleninnariellipiicraiinn a) ees ee ee ee ee 14. 492, 052, 1 
Me Lenebovenjoye) [itbuarene GspoaIOhIDE OC eo aes eh ee esate Sees Sesoses =e 28. 984, 104, 2 
M3 IVconaa Zura NODE weaoVN ide TmNE Me — = ee Le ne BaP S/T De cle ® 43. 476, 156, 3 
My LunllarOvertide 23225 = ae ee ee ee ee eee 57. 968, 208, 4 
Ms © Ge eae ES et TAR Dias tsa ce SOF TUE es Oa) ee 86. 952, 312, 6 
Mighe HL Sse8 Oe ee a es Se es ee ae ee ee 115. 936, 416, 8 

S Group 
S: Meteorological: Sat.- ee SES ee Sa ae a SE ee 15. 000, 000, 0 
So 1Brhavor oul Cole Genooviobiby moe ne ee eee 30. 000, 000, 0 
S4 Solar overtide 2.22.2 2see2 Ses Se a aes eo es ee ae 60. 000, 000, 0 
Se. lessee (6 Uo pen em me mc eS ee Ee Oe oe Re 90. 000, 000, 0 

K GROUP 
Ki Ljnisolar:- diurnal. == oe 15. 041, 068, 6 
Ko Lunisolar'semidiurnal. - .22_-2 12 ea ee ee ee eee 30. 082, 137, 2 

INDIVIDUAL DIURNAL COMPONENTS 

O; Pprincipaldunaridiurial= 32 et ae ee ee ee oe ee 13. 948, 035, 6 
P, Prineipalisolaridivrn alee Se Re ee a ee ee 14. 958, 931, 4 
Q; Larger lunarellipticidtirimal 2 Se ees Se ee eee eee 13. 398, 660, 9 
Jy Smaildunarielliptici@ivutmal = === saa ee ee 15. 585, 443, 3 

INDIVIDUAL SEMIDIURNAT, COMPONENTS 

Na NGA TOTS LUA TET Np GL CSE TINT CU UL Te a a a 28.439, 729, 5 
Le Smallerlunanellipticisem diurnal ee sss ae nee 29. 528, 478, 7 
T. IGS ool eMlbhoa Ve Ceraenolibin Mls 2 eee eet See ee ee 29. 958, 933, 3 
Ro ShaeylDecoleie cllbyoynte cecan Gera ON. a ee eee ee eS 30. 041, 066, 7 
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Taste I]—Continued 

Speed in 
r. degrees per 

Symbol Name mean SAG 
hour 

a LONG PERIOD COMPONENTS 
Mf Une O Gen oh Ghyjaeeaa eae oo eee oe ee ee ee SUR ae oa eee 1. 098, 033, 0 
Mm UTE AT ATA OM GL Veaes pean Same ee a ae ea, ee a ee eS . 544,374, 7 
Ssa Solbirgaeaey aa elle ees eS oe eee Se SRS Se ee ae ee . 082, 137, 2 
Sa Solariannuale -22--25 = ee ee ee ee ee ee ee - 041, 068, 6 

COMPOUND TIDES 
TRUS) 1) oa oe me pe og eRe am RR ep ET 58. 984, 104, 2 
WONT 2228 5 2 Lies ee ees ee er ee ee ee ee ee ee ee ee 57. 423, 833, 7 
FY 1G en | Pn yt Seen Mire em oe as A ev dee ee we Se 44.025, 172,9 
DINK fas Sete 5 Sees wee RR aa a ee aie Ree ee ee ee eee 42. 927, 139,8 
GIN lla sa ace ae SUR PRR CS SRE AE ee is ae i ee ei a 31. 015, 895, 8 

76. Other components.—Additional small components disclosed by 
the mathematical analysis later outlined are here appended for 
convenient reference. 

TaBLeE II] 

Symbol Name Speed 

2N Lunar elliptic, 2d order, semidiurnal______- x 27. 895, 354, 8 
y2(nu) Larger lunar evectional, semidiurnal ______ 28. 512, 583, 1 

Ax(ambda) | Smaller lunar evectional, semidiurnal 29. 455, 625, 3 
wo(mu) Wariationales san as: See nae s oe aes eset ao 27. 968, 208, 4 
OO Munarciirnalpodiordersa: = =a. 2eee ee a ee eee ee 16. 139,101, 7 
2Q unavellipticn2drorderidiuria lea e222 ee aes ee 12. 854, 286, 2 

pi(rho) ILanaar loa Oyacitoroe |, Chupa a = ee ee ee a 13.471, 514,5 
MSf MIMisolaTsyNo die MOntnl Sh thy = see aa = ee ee 1.015, 895, 8 

HARMONIC ANALYSIS OF TIDES 

77. The amplitude and initial phase of each component of the tide 
at any tidal station may be computed from the observed hourly tidal 

heights for a sufficient period of days, and the predetermined speed 
of the component, by the process of harmonic analysis, which will now 

be explained. The observed heights used for this computation are 
taken at (mean solar) hourly intervals, beginning at midnight (0 hour) 

each day, giving 24 observations per day. The observations ordi- 
narily are on standard time; but early records may be on local time. 

78. Separation of S group of components.—The repeating form of 

the sinusoidal curve representing any component (fig. 16) shows at 

once that the value of the component at any instant is repeated at the 

intervals of time given by the period of the component, and by any 
multiple of that period. Thus since the period of the S, component 
is 360°/30°—12 hours, this component has exactly the same value at 

say 3 p.m. on any day as at 3 a. m.; and has the same value at 3 a. m. 

on every succeeding day. The solar overtides S, and S,, with periods 
of 6 hours and 4 hours respectively, each have similarly the same value 

at the same hour each succeeding day, as has the small S; component. 

All other components have values which progressively vary at the 
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same solar hour each succeeding day. The progressive variation of 

the M, component, whose period is 12.420 hours, is illustrated for 

example, in figure 23, in which P; P2, and Ps, etc., show the relative 

values of the component at 3 a. m. on 3 successive days; the amplitude 

and initial phase of the component being taken at random. In this 

FIGURE 23.—Variation in Ms component at given solar hour. 

progressive variation, these components run through their entire 

range of values, both positive and negative. 

While, therefore, the sum of the successive values of the S group of 

components at a given hour over a period of days increases directly 

with the number of days in the period, the average value remaining 

constant, the sum of all other components at that hour does not so 

increase. On the contrary, at the intervals at which the positive 

and negative values of a component offset each other, the sum of the 

values of that component nearly disappears. If the number of days 

in the period is suitably chosen, the average value of the resultant of 

all of the components at a given hour reduces therefore to nearly the 

value of the S group at that hour. 

79. The observed hourly tidal heights are ordinarily scaled from 

the record of a recording tide gage, and give these heights above an 

arbitrarily chosen datum, usually set low enough to make all of the 

readings positive. Each of the recorded heights is then the algebraic 

sum of the height of mean sea level above datum, plus the resultant 

of all the tidal components at the hour, plus the accidental variations 

due to meteorological disturbances, as well as to inaccuracies of 

observation. The average of the heights at a given hour of the day 

over a suitably chosen number of days, then closely approximates 

the height of the resultant of the S group of components at that hour 

above the datum plane, the other components, together with the 

accidental variations, being averaged out by the process. 

80. Example.—The period of the diurnal component K, is so close to 
that of the S,; component that 6 months of observations are necessary to 

segregate the S group of components as a whole. The principal 

solar component, S, (with the overtides) may however be approxi- 

mately determined from a set of observations extending over 15 days, 
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by averaging the hourly tidal heights at the 12-hour period of this 
component. For example, the hourly tidal heights at Sitka, Alaska, 

for the first 3 days, and the average of both the morning and after- 
noon hourly tides for a 15-day period beginning July 1, 1893, are shown 

below, the heights during the other days of the period being omitted 
for brevity. 

Hourly height of tide, in feet 

Total Total 
DD nyeeeeenen -AC Le | -- 1 2 3 3 days 15 days Average 

Hour a.m p.m. a.m p.m a.m. | p.m. 
(eee ot 13.9 9.5 13.1 8.4 11.6 Tell 63. 6 309. 2 10. 31 
ios Jao ee es 14.5 11.4 14.1 10.5 13.0 9.2 PRT 317.9 10. 60 
2. 14.2 12.5 14.4 alzyal 13.8 T1s2 78. 2 319.5 10. 65 
ena em = 13.0 12.8 13.8 12.9 13.8 12.4 78.7 313.5 10. 45 
epennmerrar eee 10.9 12.3 12.2 12.8 12.9 12.8 73.9 301.4 ° 10.05 
Geter 8.5 Tals 1 10.1 12.0 2, 12.4 65.3 287.0 9. 57 
Gane eer Ls 6.0 9.8 aD) 10.7 8.9 11.3 54. 2 272.9 9.09 
eee te Fs 4.3 8.8 5.5 9.4 6.8 10.0 44.8 264. 6 8. 82 
Cp ies) 3b) 8.4 4.1 8.5 4.9 8.8 38. 2 262. 0 8.73 
O63. 3 3.9 8.8 3.9 8.3 4.1 7.9 36.9 268. 0 8. 93 
il) =. 2 eee 5.3 10.0 4.7 8.9 4.2 8.0 41.1 280.5 9.35 
ii. =. ee abt) Tile 6.5 10. 2 5.83 8.7 49.7 296. 2 9. 87 

AQ 0s se sees Eesessee | Stee see |e Sess ces aaa elle nee I oer ee eee S| Pe ae ete 9. 70 

The average heights derived in the last column are then the ap- 
proximate hourly heights of the S, component, and its overtides, 
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FIGURE 24.—S: component at Sitka, Alaska. 

above datum. The recorded hourly heights for the first day, and of 

the S, component as thus computed, are plotted in figure 24. 

81. The amplitude of the S, component at Sitka shown by the plotted 

curve conforms well with value of 1.137 feet found from a year’s 

observations. The symmetry of the curve indicates that this com- 

192750—40——-4 
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ponent is not affected by overtides of any substantial amplitude. 
A complete analysis for a year confirms this fact. This symmetry 
shows also that a summation for even this short period nearly elimi- 
nates the other components. 

82. The computation of the S, component in paragraph 80 is ar- 
ranged to illustrate the process most directly. In the conventional 
form of computation, the observed hourly heights, numbered from 0 

to 23 each day, are entered in daily vertical columns on standard 

sheets. The S group of components is computed by summing the 

observed heights horizontally, the aggregates of these sums being 

checked against the aggregate of the sums of the daily columns. 
The amplitude and the initial phase of each component of the S 
group are then computed from the average hourly heights of the whole 
set of observations by a method to be explained later. 

83. Separation of other components—The observed tidal heights at 
each mean /unar hour similarly could be taken off and tabulated by 
lunar days, and the M group of components segregated by averaging 

the tidal heights at each hour of the lunar day. In like manner all 
of the components could be determined by averaging the tidal heights 

at their component hours, tabulated by component days. The process 

of taking off new observed tidal heights for each of the several com- 

ponents would be a laborious one. Instead, the height at each lunar 
or other component hour is taken as the observed height at the nearest 

mean solar hour. These heights are sometimes a little greater and 
sometimes a little less than the true heights at the component hour, 

but their average over a sufficient number of days closely approximates 
the average at the given component hour. The same process of averag- 
ing which separates the component sought from the others, reduces 

the observed heights as taken at the nearest mean solar hour to the 
heights at the component hour. The correction for a small systematic 
error resulting from the process is developed in paragraph 97. 

84. Component days and hours.—To select the observed mean solar 
hourly heights which are to be taken as the component hourly heights, 
a tabulation is prepared showing the component hour nearest to each 

solar hour on each successive calendar day. For diurnal components, 
the component day is the period of the component, and the component 
hour, one twenty-fourth part of that period. For semidiurnal com- 

ponents, the component day is twice the period of the component, 

and the component hour is one-twelfth of the period. For components 

of shorter periods, the component day is that multiple of the period 
nearest to a mean solar day. It will be observed that the com- 

ponents M,, Mz, M;, My, Me, and Msg all have the same component 

hour; and that the components K, and Kg, similarly have the same 
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component hour. Since the period, in mean solar hours, of a com- 

ponent whose speed is a, is 360°/a, the length of the component hour 
of a diurnal component is 360/24a=15/a solar hours, and 1 solar 
hour is a/15 component hours. For semidiurnal components, 1 solar 
hour is a@/30 component hours. 

85. Tabulation of component hours.—A tabulation of the mean 
lunar hours corresponding to mean solar hours will illustrate the 
process of preparing such a tabulation for any component. Since 

the speed of the lunar day (and of the M; component) is 14°.492,052,1 

per hour, 1 solar hour is equal to 14.492,052,1/15=0.966,136,8 lunar 
hours. In the tabulation at the end of this paragraph, the left-hand 

column lists the mean solar hours each day. The next column gives, 
in parentheses, the corresponding lunar hours, to three places of 

decimals, for the first 15 hours of the first calendar day, and the third 
column, the corresponding nearest whole lunar hour. Succeeding 

columns give these whole lunar hours on the following calendar days. 
It will be observed that the values of the corresponding lunar hours 
diminish hourly by 1.—0.966,136,8=0.033,863,2. Between the four- 

teenth and fifteenth mean solar hours the cumulative diminution 
passes half a unit, so that in whole numbers the fourteenth lunar hour 
corresponds to both the fourteenth and fifteenth mean solar hours. 

Obviously from the fifteenth solar hour on, until the progressive 
diminution passes 1.5, the corresponding lunar hours are 1 hour less 

than the solar hours. After 1.5/0.033,863,2=44.296 hours, i. e., 

beginning with the twenty-first hour of the second day, the corre- 
sponding lunar hours drop back another unit, and may be found by 

subtracting 2 from the solar hour (or adding 22 if the remainder 
would be negative), and so on. ‘To fill out the tabulation it is neces- 

sary only to find the solar hours at which the lunar hours drop back a 
unit. These occur at intervals of 1/0.033,863,2 =29.53058 hours begin- 

ning with 0.5/0.033,863,2=14.76529 hours. They are, therefore, the 

integers following: 

14.76529, or 1st day—15 hours. (—1) 
44.29586, or 2d day—21 hours. (—2) 

73.82644, or 4th day— 2 hours. (—3) 

and so on. 
The hours beginning at which successive numbers are to be added or 

subtracted to give the nearest component hour of each of the har- 
monic components are tabulated in Manuals of Harmonic Analysis 
of Tides under the heading “Tables for the Construction of Primary 
Stencils; ”’ from which the data for the M group of components, up 
to the twenty-ninth day, is extracted. 



46 

M components 

Differences | Day | Hour Differences | Day | Hour 

! 1 0 +16 —8 10 6 
+23 —1 1 15 +15 -—9 11 12 
+22 —2 2 21 +14 —10 12 17 
+21 —3 4 2 +13 —11 13 23 
+20 —4 5 8 +12 = 114 15 4 
+19 —5 6 13 +11 —13 16 10 
+18 —6 7 19 +10 —14 17 15 
+17 —7 9 0 +9 =15 18 21 

Differences | Day | Hour 

+8 —16 20 2 
+7 —17 21 8 
+6 —18 22 13 
+5 —19 23 19 
aL || =) | 25 0 
+3) —21 26 6 
+2 —22 27 iy 
+1 —23 28 17 
1 29 22 

It is for the preparation of such tables for 369 or more days that 
the speeds of the components are extended to seven places of decimals. 

The application of these tables is illustrated in the extension of the 
subjoined tabulation to include the seventh day. 

Calendar days Calendar days 

Mean Mean 
solar Mea lunar 1 2 3 4 5 6 7 solar Mea lunar 2 3 4 ay. |) 8 ef 
inaiiie our hour our 

Nearest whole lunar hour Nearest whole lunar hour 

© || Meeese-=- ON 23225522) e 21s 20, 19 nln (G01 593) ee 1) Wal |) 1) 9 8 8 7 
ie (0966) =e 1 (@) |) PS¥ || Fas Be |) Za 20 Tle} |) (IP ae) ese) fp lP2 j) ANIL |). 0) 9 8 8 
2a e932) eae 2 1 ON e23ele2an ieee 21 145) (32525) es 14 LS |e ee 9 9 
3, | (22898) 222 == 3 2 1 0 One23 22 15 | (14.491)_____ 14) | 4) SS ese LD 10 

4 | (3.864) _____ 4 3 2 1 1 0 23 LOpiee eae ees ly | Palsy pach) ai) We) sal inl 

i) GeeBn)) 5 4 3 2 2 1 0 BY ig |e ea NG aKey |) ales aes |p alee |). tp 12 

Gl) Gian) s2-. 6 5 4 3 3 2 1 ARS} eset Ee eS V7) LZ |) 16 Vom ts 13 

7 |) (@7G8)) = 5= TEM GN ee) Gb eet] 83 2 OR Reeeaese =. se TEM alee 1K} |) 1G) |) EL |) 713 

Sein(@Ai29) Se By wp 4b 4 3 Pty || See eae 19 | 19 | 18| 17] 16] 15} 14 

9 | (8.693) -_-_- 9 8 7 6 5 5 4 Zils Petes OL ees 20 | 19 | 19 | 18 |] 17 | 16 15 

10 | (9.661) _---- 10 9 8 ili 6 6 5 22} eis = ee 21} 20) ||) 20) |) LSS Ss a7, 16 

Tit |) (Oz). |) Wl |} 30) 9 8 qf i 6 Pia el oe 5 eee 2a 2 PPL PAW Nera |) 720) || ik) || ike} 17 

The height of the M group of components at zero component hour 

is found by summing and averaging the observed heights at the hours 

marked 0 on the tabulation; the height at the first component hour 

by averaging those marked 1, and so on for the 24 component hours. 

86. Example —The hourly heights of the M components found from 

the application of this process to the observed heights at Sitka, Alaska, 

over a period of 29 days beginning July 1, 1893, are as follows: 

Component raeriie 0 1 2 3 4 5 6 i 8 9 10 11 

Sumses -e2 == 334.9 |370.4 |369.9 [371.8 |345.4 |277.7 |239.9 |203.8 |187.3 |197.0 |233.6 |272.3 

Divisors.—----- 29 29 28 29 30 28 29 29 29 29 29 28 

Component 
height__.____] 11.55 | 12.77 | 13.21 | 12.82) 11.51) 9.92] 8.27) 7. 03 | 6.46] 6.79 | 8.06) 9.72 

Component : 4 
ote 12 13 14 15 16 17 18 19 20 21 22 23 

SumsSes3---==—— 334.7 |882.9 |386.2 |373.8 |341.3 |289.6 |241.8 |213.6 |182.2.|197.6 |244.4 |288.8 
Divisors- - ----- 29 30 29 29 29 29 29 30 28 29 30 29 

Component 
hehtaes==—= 11. 54 | 12.76 | 13.32 | 12.89 | 11.77 9.99 8. 34 7.12 6. 51 6. 81 8.15 9. 96 
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The heights of the M components thus computed, and for compari- 
son the recorded ‘heights for the first day’s observations are shown 

in figure 25. 

Foy 

> 10 
o 
o 
oH 

& ae 

a Complete Tide 

sey M Components —--—— 

n 
Lunar Hours 

24 

Mean Solar Hours 

FIGURE 25.—M components at Sitkr, Alrska. 

87. Stencils —The summation of the hourly heights is facilitated by 
the ingenious device of cutting stencils which, when laid over the 
tabulated observed heights on a sheet in standard form, show through 
the openings the heights to be added to give the sums for each com- 
ponent hour. Two stencils are prepared for each successive 7-day 
period shown on a standard sheet, one for the even component hours 

and one for the odd, lines being drawn on the stencil to connect the 
observations to be taken for each component hour. 

88. The stencils ordinarily used are prepared for the program of 
computation illustrated for the M component, in which each observed 
height enters once and only once in the summations of the 24 com- 

ponent hours. On the stencils for those components whose component 
hour, like the lunar hour, is longer than the mean solar hour, a com- 

ponent hour is repeated at the intervals at which its tabulation must 

shift back a unit to most nearly correspond to the mean solar hour; 
and both of the observed values so indicated are included in the sum- 

mation for the component hour. If the component hour is shorter 
than a mean solar hour, a component hour is omitted from the stencil at 
the corresponding intervals at which the tabular values must shift 
forward a unit. The aggregate of the sums for the 24 component 

hours taken from stencils in this form may be checked against the 
sum of all of the observations for the period, but the divisors for com- 

puting the averages may not be the same as the number of component 
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days in the period. Stencils may be prepared in which the summations. 

are made for 1 and only 1 component hour in each component day. 
In such stencils 1 of the observed heights is omitted at the shifts of the 
component hour when it is longer than the mean solar hour, and 2 com- 
ponent hours are assigned to the same observed height at the shifts 
when the component hour is shorter than the mean solar. The latter 
system is not generally favored. 

89. Secondary stencils —The speed of the K, component is so nearly 
that of the solar day that its component hours shift with respect to 
the solar hours but once in about 8 days. To facilitate the computa- 
tion of this component from a year’s observations, it is permissible to 
assemble on standard sheets the 7-day sums of the observed hourly 
heights, and to use these sums, instead of the daily observations, in 
computing the hourly heights of this component. A number of com- 
ponents similarly have speeds so close to those of others that they may 
be computed from the 7-day hourly sums of their primary component. 

The stencils prepared for such computations are called secondary 

stencils. 
90. Number of days of observations required—To eliminate a com- 

ponent by harmonic analysis, the tidal observations should extend 
over a period, or multiple thereof, in which the successive values of 
the component to be eliminated, at the component hours of the com- 

ponent sought, run through their entire range of values, both positive 
and negative (par. 78). If ais the speed of the component A, which is 
to be segregated, and 6 the speed of a component B which is to be 
eliminated, component B gains 6—a degrees on component A each 
solar hour. Its successive daily values at any component hour of A 
will then run through their whole range of values in 360°/24 (b—a) = 
15/(b—a) days, or 360/(b—a) hours, the synodic period of the two 

components (par. 54). A consideration of the relative speeds of the 
tidal components establishes a minimum period of 14 days for diurnal 
and 15 days for semidiurnal components. The periods adopted by the 
United States Coast and Geodetic Survey are 14-15, 29, 58, 87, 105, 
134, 163, 192, 221, 250, 279, 297, 326, 355, and 369 days. The stand- 
ard period for a complete analysis for tide predicting purposes is 369 
days. A period of 29 days affords, however, fair determinations if 
corrections are applied to eliminate the residual effect of interfering 

components. 

91. Computation of amplitude and initial phase-—The determination 
of the heights of the various components at their component hours has: 
been described in the preceding paragraphs. The amplitude and initial 
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phase of each component are computed from its hourly heights by a 
process based on the arithmetical integration of the coefficients of 
Fourier’s series. Components having the same component hour are 
separated by the process. 

92. Using the form indicated in equation (29), the height, at any 
time ¢, of the resultant of a group of components having the same 
component hour is given by the equation: 

y=H,+A, cos (at—£1) +A, cos (2at—§) +A; cos (Bat—f3) + . . .(43) 

where H) is the height of mean sea level above datum, A, the ampli- 
tude of the diurnal component, a its speed, and ¢/a the time of its 

high water (par. 49); A, is the amplitude of the semidiurnal compo- 
nent and ¢/2a the time of its high water; and the other terms similarly 

represent minor components and overtides. But a few terms are 
needed in any group of components having the same component hour, 

and for single components the equation reduces to one variable term 
in addition to the constant term HH. 

The expansion of the cosines in equation (43) gives the equation: 

y=H),+ <A, cos at cos £,+ A; sin at sin £,+ A, cos 2at cos f 

-+- A, sin 2at sin ¢,+ A; cos 3at cos (3+ A; sin dat sin f3... (44) 

Placing: 

PPCOStG =e pA Siti =——65, As COS Ca—Cz, Ay SIN (o>—G>, etc. (45) 

equation 44 becomes: 

y=H)+c, cos at+s, sin at+c: cos 2at+s2 sin 2at-+-c; cos 3at 

+s, sin 3af+ ... > *46) 

The values of the angles and coefficients in equation (43) may be 
found readily from the coefficients ¢;, 81, C2, S2, ¢3, 83, etc., of equation 

(46), since, from equations (45): 

tan C/G tan 62=So/C2 tan 63=S83/C¢s, etc. (47) 

and: 
i=¢,/Cos G—s;/sin Az =C/cos f2=S,/sin fo, ete. (48) 

It may be noted that by expressing equation (43) in the form indi- 
cated by equation (29), rather than equation (27), negative signs are 

avoided in equations (46), (47), and (48). 
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93. The demonstration of Fourier’s series shows that if y is any 
function of x, its values between the limits of r=0 and r= are given 
by the series: 

y=B,+B, cos all) +(Q, sin (r2/l) +B, cos (27x/l) -+C, sin (272/L) 

+B; cos (87rx/1) +0; sin (87z/l)+ ... (49) 

in which: 

= (UN) | ude, 

B,=2/d) | y cos (ra/l)dz, C= 2/) |, y sin (rax/l)dz, 

B= (2/1) ii ee CAD ee OO) ie y sin Omen 

i l 
B= ein |. y cos (872/l)dx, C3= @/d |. y sin (bra/l)dz, (50) 

and so on. The angles in these equations are expressed in radians. 
94. If 7'is the length (in mean solar hours) of the component day, 

then since 27 radians=360°, 27/7'=a, the speed of the diurnal com- 

ponent. 

Placing x=t and /=T, equation (49) becomes: 

y=B,+ B, cos %at+C, sin %at+B, cos at+C, sin at+-B; cos 3/2 at 

+0; sin 3/2 at+B, cos 2at+C, sin 2at+ ... (51) 

Equation (51) is the development of any function of ft. It becomes 

the development of the particular function of t expressed by equation 
(46) if it is identical with the latter, 1. e., if the coefficients of the identi- 

cal terms in the two equations are equal, the coefficients of the terms 
in equation (51) not appearing in equation (46) becoming zero. It 
follows therefore that 

T 
Hy=B)=(1/T) |, at 

T T 
C=) — ein) |. y cos at dt, b= || y sin at dt, 

T T 
o=B=Q/D) |) y cos 2 at dt, ow y sin 2 at dt, ete. (52) 

An examination of the form of the integrals in equations (52) dis- 

closes that (1 i) |, "yat is the mean value of y between the limits of 
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ii 
0 and T; @/) [ y cos at dt is twice the mean value of y cos at 

0 

between the same limits; and that similarly all of the remaining values 
of the coefficients are twice the mean values of the expressions inte- 

grated. If then the values of y, or the determined heights of the 
component at its successive component hours, are designated as ho, 

hy, hz *** hoz, it immediately follows that: 

Ay=Vea(ho thy t+he+ cee + hy3) (53) 

ie) 

The angle at has the value of == 15° at the end of the first com- 

ponent hour, 30° at the end of the second component hour, etc. 
Twice the average values of y cos at; y sin at; y cos 2at; y sin 2at 
are then: 

C1=Mo2(hy cos O+h; cos 15°+ he cos 80°+.+hy3 cos 345°) (54) 
S:= Mo(ho sin O+/, sin 15°+hAy sin 80°-+.+A,3 sin 845°) ~— (55) 
C2= Ye(ho cos O+h, cos 380°+h,z cos 60°-+.+h23 cos 330°) (56) 
So= Vo(hy sin O+h, sin 30°+-f2 sin 60°-+.-+-Az3 sin 330°) (57) 

and so on. 
Equation (53) merely expresses the evident fact that the elevation 

of mean sea level is the mean of the heights at the component hours. 
The amplitude and initial phase of the diurnal component are de- 

termined by computing c, and s, from equations (54) and (55) and 

applying to them the relations expressed by equations (47) and (48). 

The amplitude and initial phase of the semidiurnal component are 
similarly derived from the computed values of cz; and s,; and those of 

other components from the corresponding coefficients, the equations 
for determining which may be written by analogy to equations (54) 
to (57). 

The computations of the coefficients from equations (54) to (57) 

may be greatly abbreviated by combining the terms whose sine or 
cosine factors have the same numerical value. For example, in find- 

ing the values of c. and s, from equations (56) and (57), it is apparent 

that these factors for hi. are respectively cos 360° and sin 360°, those 

for hy; are cos (360°+30°) and sin (360°+30°) and so on. The suc- 

cessive factors for the last 12 terms are consequently the same as for 

the first 12 terms. Furthermore, the factors for hg are cos 180° and 
sin 180°, respectively. Since cos (180-+¢)=—cos¢ and sin (180°+¢) 

——sin ¢, the successive factors for the second 6 terms are equal but 

opposite in sign to those of the first 6 terms. 
95. Erample.—Taking the heights of the M group of components 

at their component hours at Sitka, computed in paragraph 86, the 
computation of the amplitude and initial phase of the M, component 
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(1) Hourly heights ho—hy, 11.55 12.77 13.21 12.82 11.51 9.9? 8.27 7.03 6.46 
(2) Hourly heights hyz—ho3 11.54 12.76 13.32 12.89 11.77 9.99 8.34 7.12 6.51 

KO) ENS UTS As oe te ee 23.09 25.53 26.53 25.71 23.28 19.91 16.61 14.15 12.97 
(4) Sums he to hyy------__ 16.61 14.15 12.97 13.60 16.21 19.68 

(5) Differences. -________- GxAS Ie SSimlos Onell olemn ye ON 23 

1 2 3 4 5 6 | 

Com- 
bined | Angles| Cosines | Products (1X3) Sines | Products : (1X5) 
heights 

6. 48 0 1 6. 48 0 0 
11. 38 30° . 866 9. 855 ao 5. 690 
1183, Bie) 60° a5) 6. 780 . 866 11. 748 
12.11 90° 0 1 12.110 
7.07 120° —.5 —3. 535 . 866 6. 123 
573) 150° —.866 —.199 ae) eras 

23.115 —3. 734 35. 781 
—3. 734 

12c2=19. 381 12s9=35. 781 
c= 1.6151 s= 2.9818  o= 

The expression for the M, component is therefore: 

y=3.391 cos (m,t—61.6°) 

period of the observations may be arranged 

6.79 8.06 9.72 
6.81 8.15 9.96 

13.60 16.21 19.68 

log s2 = 0. 47448 
- log c2 = .20820 

log tané = .26628 
=61°.6 

log 82 = .4744% 
log sin ¢ = 9.94414 

log Mz = .53034 
Mz = 3.391 

237. 27 
oA =9. 886 

Figure 26 shows the graph of the M, component and the plotted 
heights (referred to mean sea level) of the resultant of all of the M 

It is apparent that at this station the other components as derived. 

Lunar Hours. 

FIGURE 26.—M:2 component and hourly values of M group, Sitka, Alaska. 

components of the group are small and that the summation has 
nearly effected the elimination of components outside of the M group. 

It is of interest to note that in the computation as set forth, the 

summation of lines (1) and (2) automatically elimmates the M,; and M; 
components, and the subtraction of line (5) from line (4) eliminates the 

constant height of mean sea level and the M, and M, components. 

96. A reference to the list of components in paragraph 75 shows 
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that the complete analysis of the M group of components at a station 
includes the separation of six components. Computation programs 
for this purpose are shown on standard forms of the United States 
Coast and Geodetic Survey. The analysis of the S group of com- 

ponents includes the separation of four components; and of the K 
group 2. All other components require but a single analysis. 

97. Augmenting factors ——In the computations of the components 
(except those of the S group) the tidal height at each component 
hour is taken as the average of the observed heights at the nearest 

mean solar hour (par. 83). When the computation is made from 
stencils in the form ordinarily used (par. 88), these observed heights 

are scattered quite uniformly over an interval extending from one- 
half a component hour before to one-half a component hour after 
the exact component hour. 

It is graphically apparent from 
figure 27 that on a sinusoidal curve 
the average of these heights is 

always somewhat less, numeri- | 
cally, than the height at the | 

middle of the period, and that a | at 
small systematic error is intro- | 
duced by using the average value. | | | 
This error is readily corrected, 

- since on a cosine curve the mid 

height has a constant ratio to the mean height over an are of given 
length. This ratio is called the augmenting factor. 

98. To determine the augmenting factor for a component whose 
equation is y= cos (at+a), let 7 be the length of the componen thour. 
The average value of y, between the limits of t)—%r and t)-+ ris then: 

FIGURE 27. 

(1/r) ay tot A A cos (at+a)dt 

=(A/ar)[sin (at) + kar+a)—sin (at)—%ar+a)] 

=(A/ar)[sin (at)+ a+ Kar) —sin (atf)+a—ar)| 

=2(A/ar) cos (atp+a) sin %ar (58) 

The ratio of the mid value to the mean value is then: 

A cos (at)+a)/(2A/ar) cos (at) +a) sin Yar=ar/2 sin Yar (59) 

in which ar is an angle expressed in radians, whose equivalent, in 
degrees, is war/180°. The expression for the augmenting factor is 
therefore: 

mwar/360° sin kar 
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For diurnal components, the length of the component hour, 7, is 
15°/a, for semidiurnal components 30°/a, and so on. The values of 
the augmenting factor are then: 

Diurnal components, a4 = aan = 1.00286 

Semidiurnal components, D4 at 15° = 1:01 152 

Ms, 24 Sap 102br4 

M,, ST gg = 1.04720 

M,, si st ago He 

Mg, om =1.20920 
24 sin 60° 

99. A review of the process by which the amplitude and initial 
phase of each component are found (par. 94), shows that the appli- 

cation of the augmenting factor to the hourly component heights. 

(above mean sea level) will increase the amplitude in the same ratio, 
but will not affect the initial phase. The augmenting factor is there- 
fore applied directly to the computed amplitude. The application 

ef this correction to the amplitude of the M, component at Sitka, 

for example, gives a corrected value of 3.391 1.01152=3.430 feet. 

Evidently, no augmenting factor should be appled to the S com- 
ponents. The more complicated factors for computations from 

secondary stencils are given in the Manual of Harmonic Analysis 
of Tides. 

100. Elimination.—The hourly component heights derived from 
the process of averaging that has been described will contain the 
residuals of components other than that sought. After a first deter- 

mination has been made of the amplitudes and initial phases of the 

several components, corrections may be computed from them to 

eliminate from each the effect of the other components. The process 

is explained in the Manual of Tides, but is not of sufficient general 

interest to be here included. 
101. Long period components.—The components listed in para- 

graphs 75 and 76 include 2 having a fortnightly, 1 a monthly, 1 a 

semiannual, and 1 an annual period. The first 3 of these are too small 

to be of much importance, but periodic meteorological causes may 
produce substantial annual and semiannual variations in the sea 

level. Since a long period component does not change appreciably 

during a calendar day, the daily averages of the observed tidal heights, 
instead of the hourly heights, may be used for its determination, or 
the daily sums may as well be used, the final result being divided by 



15) 

24. The computation of the amplitude and initial phase follows the 
general method heretofore described for the diurnal, semidiurnal, 
and short-period components. For the fortnightly and monthly 

components, a component month replaces the component day. It is 
divided into 24 parts, corresponding to the component hours. A pre- 

pared tabulation designates the daily sums to be taken as the height 
at each component ‘“‘hour.’”? These heights are then summed and 

averaged, and the amplitude and phase of the component computed 

therefrom. For the annual and semiannual components, the com- 

ponent year similarly replaces the component day. Since the average 

of the observed heights during a calendar day contains residuals of 
the short-period components (other than the S components) the 

amplitudes and phases of the long-period components are corrected 

by the process of elimination heretofore referred to. 

MEAN VALUES AND EPOCHS OF COMPONENTS 

102. Mean values —The amplitude of each component of the actual 
tide increases and decreases with the changing inclination of the 

moon’s orbit to the plane of the earth’s Equator, and the amplitudes 

computed from a particular set of observations must therefore be 
corrected before they may be used at another period. The correction 

is based on the logical assumption that the change in the actual 
components is proportional to the change in the corresponding equilib- 

rium components. For convenience, the amplitude of each com- 

ponent of the actual tide is reduced to its mean value, which is obvi- 

ously independent of the period from which it was derived. 
103. Hpochs.—The computed initial phase of each component is 

that at the beginning of the particular set of observations from which 

the component was derived. The phase of a component of the actual 
tide depends upon the accidental configuration of the sea bed, while 

that of the corresponding component of the equilibrium tide is depend- 

ent upon astronomical causes alone. Since both components have 
the same speed, the difference in their phases, at any tidal station, 

is constant at all times. This difference is called the epoch of the 
component and is conventionally represented by the general symbol x 
(kappa). It may readily be found by taking the difference between 
the initial phase of the equilibrium component, at the zero hour of the 

observations (as determined from astronomical data) and the initial 

phase of the actual component, as determined from the observations. 

The phase of the actual component at any other origin of time can 

then be found by applying its epoch to the phase of the equilibrium 

tide at that time. The epoch of a particular component is designated 
by the symbol for its amplitude with a degree mark. Thus the epoch 
of the M, component is designated as M,°. 
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104. Mathematical derivation of lunar equilibrium tide.—To derive 
the formulae for reducing the components of the actual tide to their 

mean values, for converting these mean values to the amplitudes 
applicable at any given period, and for determining the epochs of 
the components, it becomes necessary to develop the mathematical 
expressions for each component of the equilibrium tide in terms of 
astronomical constants. The expressions for the lunar and solar 

equilibrium tides in terms of the hour angle and declination of the 
moon and sun, derived in equation (24), afforded the means for 

developing the characteristics of the tide, and for inferring therefrom 
the speeds of most of the components. The much more elaborate 
expression necessary to develop the coefficients and phase relations 

of the components of the lunar and solar equilibrium tides will now 
be developed in outline. 

105. In figure 28, Nis the north pole of the earth’s axis on the celes- 
tial sphere, UIS,M/,P, the 

celestial Equator, UOS 
the ecliptic (the path of 
the sun), U the vernal 
equinox and S the posi- 
tion of the mean sun 

at a given instant; JOM 
the moon’s path (orbit), 
I its intersection with 

the Equator, O the 
moon’s node, M the 

position of the moon, 
P the zenith of a tidal 
station, NPP, its celes- 

tial meridian, NMM, the hour circle of the moon, NSS, the hour 

circle of the mean sun, and U, the foot of the great circle drawn 

through the vernal equinox perpendicular to the moon’s orbit. 
Then: 

§ (theta), the are PM, is the zenith distance of the moon. 
5 (delta), the arc M,M, the declination of the moon. 

 (lamda), the are P,P, the latitude of the station. 

H, the angle PNM, the hour angle of the moon. 
N, the are UO, the longitude of the moon’s node. 
T, the angle M4,IM, the inclination of the moon’s orbit. 

The symbols conventionally assigned to other arcs and angles, 
and to pertinent astronomical constants are: 

T, the are P,S;, the hour angle of the mean sun. 

s+k, the arc U,M, the true longitude of the moon. 

s, the mean longitude of the moon; i. e., the longitude which it 

would have it if travelled at the average rate along its orbit. 

FIGURE 28. 
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k, the correction to be added to the mean longitude of the 
moon to give its true longitude. 

h, the are US;, the mean longitude of the sun. 

p, the mean longitude of lunar perigee, the arc measured from 

U, to the position of lunar perigee, if the latter moved at its 
mean rate. 

£ (xi), the are U;J, the longitude, in the moon’s orbit, of the 
Intersection. 

vy (nu), the are UJ, the right ascension of the Intersection. 

€=0.05490, the eccentricity of the moon’s orbit. 

m=0.074804, the ratio of the mean motion of the sun to that 
of the moon. 

R, the true distance from the center of the earth to the center 
of the moon at a given moment. 

€=238,857 statute miles, the mean distance, earth to moon. 

a=3,958.89 statute miles, the mean radius of the earth. 

The values of e and m given are those for January 1, 1900, but 
they change but little with the time. 

106. The height of the lunar equilibrium tide is, from equation (16): 

u=\(Ma?/ER?*)a(3 cos? 6—1) (16) 

In which JM is the mass of the moon and £ the mass of the earth. 

The ratio M/E has a value of 1/81.45. 

As shown in equation (21): 

cos 6=sin ) sin 6+ cos \ cos 6 cos H (21) 

From the right spherical triangle JM4,M: 

sin 6=sin J sin JM (60) 

From the right spherical triangle 1/M/,P, 

cos 6 cos H=cos P.M (61) 

And from the spherical triangle 7P,M: 

cos P,;M=cos IM cos JP;+sin IM sin IP, cos I (62) 

From the figure: 

IM=U,M— U,I=s+k—£ (63) 

IP,\=US,+8,P,— UI=h+T—» (64) 
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107. By substituting, in equation (21), the expressions for sin 6, and 

cos 6 cos H, derived from equations (60) to (64), an expression for 

cos 6 may be derived in terms of s, k, h, T, £, and ». 

The astronomical formula for the correction k (in radians) is: 

k=2e sin (s—p)+5/4 e sin 2(s—p)+15/4 me sin (s—2h+p) 

+11/8 m? sin 2 (s—h) (65) 

and since k is small, its angle, in radians, may be substituted for its 

sine. 

The astronomical formula for 7/R, in equation (16) is 

1/R=1/e+e cos (s—p)/c—e?) +e? cos 2(s—p)/cU—e’) 

+15/8 me cos (s—2h+-p)/c(1—e?) +2? cos 2(s—h)/e(1—e’) (66) 

108. The expression for the lunar equilibrium tide in terms of the 

angles \, 7, s, h, £, and v, and astronomical constants, is then derived 

by substituting these expressions for cos @ and 1/f in equation (16) 

and successively converting the products of the sines and cosines of 

the angles 7, s, h, &, and v, into sines and cosines of their sums and 

differences, by the application of the elementary trigonometric for- 

mulas: 

cos x cos y= cos (x—y) + cos (x+y) 

sin x sin y= cos (x—y)— 8 cos (x+y) 

sin z cos y= sin (x+y)+% sin (xy) 

cos z sin y= sin (x7+y)—% sin (e#—y) (67) 
cos? z= (1+ cos 22) 

sin? r= %(1—cos 22) 
sin x cos c= sin 2x 

109. The result is an equation for w which contains 63 terms, and 
which would cover more than a printed page. It is not here repeated. 

But 21 of the variable terms have coefficients of sufficient numerical 
value to require consideration. These give the following working 
equation for the lunar equilibrium tide, now designated as y: 

V—=3)2) (Masi yay. 

{cos?  cos* KI [(4—5/4 e?) cos (27+ 2h—2s+2&—27) M, 

4+7/4 e cos (2T+2h—3s-+p+2é—2y) Np 
+1/4 e cos 27T+2h—s—p+2é—2y+180°) [L,] 
+17/4 e cos (27T+2h—4s+2p+2&— 2p) 2N 

+105/32 me cos (27+4h—3s—p- 2é—2yp) V2 

4115/32 me cos (2T—s+p+2é—27+180°) ne 
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+23/16 m? cos (27+ 4h—4s+2£—27)| Le 

+cos? \ sin? J [(1/4+3/8 e?) cos (27+2h—27) [K,] 

+3/8 e cos (27+ 2h—s+ p—2y7)] [Lo] 

+sin 2) sin I cos? J [(1/2—5/4 e?) cos (T-+h—2s+2&—7+90°) O, 

+7/4 e cos (+h—3s+p+2é—7+ 90°) Q, 

+1/4 e cos (T+h—s—p+2é—v—90°) [M,] 

+17/4 e cos (T+h—4s+2p+2&—»+90°)  2Q 

+105/32 me cos (T+3h—3s—p+2E—7+90°)] 01 

+sin 2d sin J sin? I (1/2—5/4 e?) cos (T+h+2s—2t—vy—90°) OO 

+sin 2 sin 27 [(1/4+3/8 e?) cos (T+h—v—90°) [KK] 

+3/8 e cos (T+h+s—p—v—90°) Ji 

+3/8 e cos (T+h—s+p—v—90°)] [M,] 

+ (1/2—3/2 sin? \) sin? [(1/2—5/4 e?) cos (2s—2¢) Mf 

+ (1/2—3/2 sin? \) (1—3/2 sin? J) [e cos (s—p) Mm 

+m? cos (2s—2h)]}. [Msf] 

(68) 

110. Solar equilibrium tide—The corresponding equation for the 
solar equilibrium tide may be written at once from equation (68) by 
substituting: 

S, the mass of the sun, for / the mass of the moon. 
¢;, the mean distance of the sun, for c. 

é,, the eccentricity of the sun’s orbit, for e. 

w (omega), the obliquity of the ecliptic, for J. 
pi, the longitude of the sun’s perigee, for p. 

The angle s, the mean longitude of the moon, becomes identical 
with h, the mean longitude of the sun. The angles ¢ and », the longi- 
tude and right ascension of the intersection, become zero, as does m, 
the relative motion of the moon and the sun; and e, is so small that a 

number of terms dependent upon this constant may be dropped. 
The equation of the solar equilibrium tide then becomes: 

y=3/2 (Sa?/Ec3)a{cos? \ cost ’w [(1/2—5/4 e,) cos 27 Se 
+7/4 e, cos (2T—h+ 9) ahs 

+1/4 e, cos 27-+h—p,+180°)] Rs 

+ cos? \ sin? w(1/4+3/8 e,7) cos (27+ 2h) [K,| 

+ sin 2X sin cos? 4w(1/2—5/4 e,7) cos (T—h+90°) P, 

+ sin 2X sin 2w(1/4+3/8 e) cos (T+h—90°) [Ky] 

-- (1/2—3/2 sin? \) sin? w(1/2—5/4 e,) cos 2h}. Ssa 

(69) 

111. Tide depending on fourth power of moon’s parallaz.—This may 
be derived by substituting in the second term of equation (20) an 

192750—40——_5 
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expression for cos @ derived as explained in paragraph 107 and reducing, 
by the general method pursued in determining the tides due to the third 
power of the moon’s parallax. All of the resulting terms are very 
small, the only one recognized being: 

y=3/2 (Ma'/Ec*)a[5/12 cos*)d cos® 4I cos (3874+ 3h—38 +3£—3r)]. M3 (70) 

112. Hquilibrium argument.—Each term of equation (68) contains 

the general factor 3/2 (Ma*/Ec*)a, which has a constant value of 1.7527 

feet; a factor composed of a function of the latitude of the tidal sta- 
tion, which is constant at a given station; a factor composed of a 
function of J, which changes very slowly, a constant factor containing 
e and m, and the cosine of an angle formed by the algebraic sum of 

simple multiples of the angles 7h, s, p, , andy. This angle is called 

the equilibrium argument. The term in equation (70) is in the same 

form but with a different general factor. 
Similarly each term of equation (69) contains the general factor 

3/2 (Sa*/Ec,*?)a, which has the constant value of 0.8091 feet; a factor 
composed of a function of the latitude of the tidal station; a factor 
composed of a function of w, which does not change; a constant factor 
containing ¢, and the cosine of an equilibrium argument containing 7’, 
h, and 7, only. 

113. Since 7 is the hour angle of the mean sun at the tidal station, 
it is zero at noon, mean local time, at the station, and increases at the 

rate of 15° per mean solar hour. 

The values of the angles h, s, p, and p,, the longitudes of the mean 
sun, moon, and lunar and solar perigee, respectively, at the beginning 

of each calendar year at Greenwich are given in Manuals on Harmonic 
Analysis of Tides. Their rates of change remain practically constant 
for a century of time, and are as follows: 

Angular change in degrees per 
mean solar hour 

Angle 

Symbol Value 

4h 6 (theta) 145) 
h n (eta) . 041, 068, 64. 
8 go (sigma) . 549, 016, 53. 

D w (omega) . 004, 641, 83. 
pi w1 - 000, 001, 96. 

That part of the equilibrium argument made up of the angles T, h, 
s, p, and p; which change at a constant rate, together with any con- 
stant term formed by the introduction of 90° or 180°, is convention- 

ally represented by the symbol V. This part then has the form: 

=mT+nh+ngs-+nsgp+nspi+n90° (71) 

where 7;, 72, 73, etc., are small positive or negative integers, or zero. 
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114. The remaining part of the equilibrium argument is made up 
of simple multiples of the angles » and é, the longitude and right 
ascension of the intersection, represented by the arcs UJ and U,J, 

figure 28. The are UO is the longitude of the moon’s node, conven- 
tionally represented as N; the angle WOS=JOU is the constant angle 
~ between the moon’s orbit and the ecliptic, and the angle JUO is the 
constant angle w between the equator and the ecliptic. The value of 
y in terms of N and these known angles may therefore be determined 
by the solution of the spherical triangle JOU and the value of ¢ then 

found from the right spherical triangle JUU,. As the moon’s node, 

O, makes the circuit of the ecliptic in its period of 19 years, the ascend- 
ing intersection, 7, moves to and fro over a comparatively small arc 

on either side of the vernal equinox, U, the angle » increasing slowly 

from 0 to 13°.02, then decreasing to —13°.02 and increasing again to 
zero. The angle é similarly fluctuates between the limits of 11°.98 
and —11°.98. The maximum change in these angles during a year is 
about 5°. The slowly fluctuating part of the equilibrium argument 
formed by these two angles is conventionally designated by the 

symbol uw. The total equilibrium argument is then represented by 
V+u. 

The value of N at the beginning of each calendar year at Greenwich 
is tabulated with those of h, s, p, and p,. Its rate of change is 

—19°.326,19 per calendar year, or —0°.002,206,41 per mean solar 

hour. Its value at any instant is therefore readily found. The 
values of vy and é at that instant can then be found from a table giving 
these angles for each degree of N. 

115. Components of the equilibrium tide —If Vo is the value of V at 
any given instant, taken as the origin of time, then at any time ¢ there- 
after, 

V=V,-+at, 

in which a is a constant whose value is: 

A=7N04+ Noy tnzgotmotnsar (72) 

Each term of equations (68), (69), and (70) then has the form: 

y=A cos (_V+u)=A cos [at+(Vo)+4u)] (73) 

The form of this expression shows at once that each term represents 
a component of the equilibrium tide. For lunar components the 
values of A and wu change slowly with the longitudes of the moon’s 
node, but may be considered as constant during a limited period of 

time such as a month or even a year. For solar components, A is 
constant and w is zero. 

116. The numerical value of the speed of each component of the 
equilibrium tide may be readily computed from the speeds of the 
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constituents of V given in paragraph 113. Thus the speed of the 
component represented by the first term of equation (68), viz, 

3/2(Ma?/Ec*)a cos?  cos* ¥I(1/2—5/4 e?) cos (27 +2h—2s+2é+4+ 2p) 

is 

a=20+2n—2c0=30°+0°.082,137,28— 1°.098,035,06=28°.984,104,22 

This is then the M, component of the equilibrium tide, its speed 
being identical with that previously identified for that component 
(par. 75). All of the other terms in equations (68), (69), and 
(70) may be similarly identified as the equilibrium components corre- 
sponding to the components listed in paragraphs 75 and 76. Their 

conventional symbols, conforming to those previously listed, are shown 

opposite each term. It will be noted that the semidiurnal components 
are those whose arguments contain the term 27; the diurnal compo- 
nents are those whose arguments contain the term 7, and the long- 

period components are those in whose arguments 7’ does not enter. 

The lunar and solar components designated as K, and K,, each have 
the speed of 26+2n and 6+ 7, respectively. As previously pointed 

out, these pairs each unite into a single component. Their symbols 

are therefore enclosed in brackets to indicate that they are parts of a 
combined component. Two other lunar components, L, and Mb, 

appear twice in the list in brackets. The speed of the L, component 
represented by the third term in equation (68) is 20+27—c—6= 
29°.528,478,92 and that of the ninth term is 20+2y—o+6= 

29°.537,762,58. The difference in these speedsis evidently 24 =0.00928366 

and the synodic period of the two components (par. 90) is 

15/0.009 283,66 days=1,720 days. They therefore cannot be separated 

by analysing observations over a period of even a year, and conse- 
quently are treated as a single component. The evaluation of the 

coefficients of the two terms shows that the first is the larger, and its 
speed is therefore assigned to both. The speed of the M, component 

represented by the twelfth term is similarly 0+-y—o—6 while that of 
the eighteenth term is 6+y—c+6. Since the difference in these 
speeds is also 26 they also cannot be separated by a year’s observa- 

tions. For convenience they are treated as a single component having 
a speed of 14°.492,052,1 whose component hour is the same as that 

of the principal lunar diurnal component M,. The speed of the lunar 
fortnightly component MSf is exactly the same as that of a compound 

tide whose speed is the difference of the speeds of the M, and S, 
components, and this component is therefore also bracketed. 

117. Determination of the epoch of a component of the actual tide.— 
As shown in paragraph 103, the phase of a component of the actual 
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tide differs from that of the corresponding equilibrium component by 
a fixed angle, which is designated as its epoch, and is conventionally 
represented by the symbol x. If then the equation of the equilibrium 
component is (equation (73)) : 

y=A, cos [at+ (Vo+u)] 

the equation of the component of the actual tide is: 

y=A cos [at+ (Vo. +u—x)] (74) 

Comparing this equation with the equation for a component of the 
actual tide in the form given in equation (29): 

y=A cos (at—f), (75) 

it is evident that: 

Qa U=K==6, (76) 

whence: 

K—Vo-U-6 (77) 

The computation of ¢ from a series of tidal observations was shown 
in paragraphs 94 and 95, the origin of time being taken at the beginning 
of the series. To determine the value of «, the value of V, at the same 

origin of time must be computed. Since w is regarded as constant 
during the period of the observations, its value is taken as that at the 

middle of the period. 
118. Computation of V +u.—For simplicity, the hourly tidal 

heights from which the components of the actual tide are computed 
begin at 0 hour (midnight). The time is usually the standard time 
at a time meridian, whose longitude, S, differs from the longitude, LZ, 

of the tidal station. Taking longitude west of Greenwich as positive, 
and east as negative, the Greenwich time of the beginning of the 
observations is then the S$/15th hour of the initial date. The expres- 

sion for V)+w for each component is in the form: 

Vo tu=mTo+ noho+Ng8o+ NsPot Ns (P1)0-+-7690° +néiit+ngy, (78) 

in which 7), ho, So, Po, and (p;)o are the values of the respective angles 

at 0 hour on the initial date of the observations, and é,, and »; are the 

values of £ and v at the middle of the period. 
Since 7, the hour angle of the mean sun, is zero at noon, mean 

local time of the tidal station, it is +180° at midnight (0 hour) mean 
local time, and (S—L)+180° at midnight, standard time. For 

dirunal components, n,;=1, and n,7)>=S—L+180°; for semidiurnal 

components n,=2, and n,Ty=2(S—L) +360°=2(S—L). 
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As has been stated, the values of h, s, p, p1, and N, at 0 hour Green- 

wich mean civil time on January 1 of each calendar year are given in 
tables contained in manuals for the harmonic analysis of tides, to- 
gether with the differences to be added successively to give these values 
on the first day of each month, on each day of the month, and at 
each hour of the day, Greenwich time. The values of ho, 89, 9, and 
(p1)o are the values of h, s, p, and p;, at Greenwich time of 0 hour on 
the initial date of the observations. The value of N, the longitude of 
the moon’s node, is similarly taken off for the middle of the period of 
observations, and from it the values of £, and v, taken from the table 

showing the value of these angles for each degree of N. Entering these 
values in equation (78), the value of V)+-u is immediately determined. 
This value, added (algebraically) to the value of ¢ found from the 
observations, gives the value of «. The value of « so derived is, it 
may be observed, independent of the meridian on which the times of 
the observations are based. 

If the observations are made on local time, instead of standard 
time, S=Z, and the angle S—LZ becomes zero. 

119. Example——The computation in paragraph 95 shows that for 
the M, component of Sitka, Alaska, long. 135°20’ W., for the 29-day 

period beginning at 0 hour, mean local time, July 1, 1893, ¢=61° .6. 
The Greenwich time of the beginning of the period is then 9.02h, 

July 1. The equilibrium argument for the M; component is from 

equation (68): 

Vtu=2T+2h—2s+2&—2p. 

Since the observations are on mean local time,27=0. The values 

of h and s, at 9.02h, July 1, 1893, Greenwich time, found from the 

tables, are: 

hy=99°.64 SUS OS 

and the value of N for 9.02A July 15, 1893, is 24°.17. The corre- 

sponding tabular values of »; and &, are: 

Tyseea ALS esa Oil, 

Then 

Vo tu=0+199°.28—256°.06+8°.02—8°.90= — 57°.66=302°.34 

K=61°.6-+302°.3—360°=3°.9. 

The value of « derived from observations for a year is 3°. (Table 
V, par. 134.) 

120. Greenwich epochs —The Greenwich epoch of a component at a 
station is the difference between the phases of the equilibrium com- 
ponent at Greenwich and of the actual component at the station. 
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At any given origin of Greenwich time, the initial phase of the equilib- 
rium component at Greenwich is, since S and L are both zero: 

Votu=m(+180°) + nho+ns8o4 NsPotNs(Ps)o+N90°+u (79) 

while the initial phase of the actual tide at a station whose latitude 
is J is: 

Votu-—c=n(—L+ 180°) + Ngho+ N38 + NsPo+ Ns (Di )o+n90°-+u . (80) 

The difference is: 

_ It may be observed that 7, is the same as the subscript of the com- 
ponent. The formula for Greenwich epoch is usually written: 

Gales. 2 re) 

In which G' is the Greenwich epoch, p the subscript of the component, 
L the west longitude of the station and «x the local epoch. 

The difference between the Greenwich epochs of a component of 

the tide at any two stations is the constant difference between the 
phases of the component at the two stations. 

121. Hquilibrium arguments of overtides and compound tides.—The 
equilibrium argument of an overtide is taken as the indicated mul- 
tiple of that of the primary tide. The equilibrium arguments of com- 

pound tides are the sums or differences of those of the components com- 

pounded. 

122. Expression for u of the Ky, Ke, Le, and M, components.—A 

reference to equations (68) and (69) shows that the K, component is 

the resultant of a lunar component whose 
equilibrium argument is 7’+h—v—90° and a 

solar component whose argument is T-+h—90°. 
The relation of the resultant to the components 

is graphically shown in figure 29, in which CP, 
is the amplitude of the lunar component, CP; 
the amplitude of the solar component, and CP; 
the amplitude of the resultant. The angle 
YCP, is T+h—90°—», the angle YCP, is 
T+h—90°, and the angle P,CP, is v. Placing 
the angle P;CP,=v’ the equilibrium argument 

of the resultant is 7+A—90°—»’. If Ais the foot of the perpendicular 

drawn from P; to CP, produced, then 

FIGURE 29, 

sin v’ = AP;/CP;— P,P, sin v [CP;=CP, sin v [CP; (83) 

cos 7 — (CP, + P,A)/CP;= (CP,+ CP, cos v) (OP. (84) 
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whence 

tan v’=CP, sin »/(OP2+ CP, cos vy) =sin y/(cos y+ CP,/OP,) (85) 

The amplitude CP, is, from equation (69), after substituting the 
numerical value of the general factor of this equation (par. 112): 

0.8091 (1/4+3/8 e?,) sin 2w sin 2X, 

and the amplitude CP, is, from equation (68): 

1.7527 (1/4+3/8 e?) sin 27 sin 2d 

The substitution of these values in equation (85) gives, after 

applying the numerical values of e, e; and w 

sin vy sin 27 (86) | 
cos vy sin 2/+0.3357 

py bane 

The equilibrium argument for the K, component may similarly be 
shown to be: V+-u=27-+2h—2’’, where 

sin 2ysin? J (87) 
cos 2y sin? [+0.0728 

iy oa 

Since »y and J are both functions N, the longitude of the moon’s 

node, v’ and 2y’’ are also functions of N. The values of v’ and 27’’ 

for each degree of N are included in the tables showing the values of v 
and & (par. 114). 

The equilibrium arguments for the L, and M, components are taken 

from special tables, contained in Manuals for the Harmonic Analysis 
of Tides. These components are not important, and the derivation 
and application of these tables is here omitted. 

MEAN VALUES 

123. Equilibrium components—Kach component of the lunar. 
equilibrium tide developed in equation (68) is in the form: 

y=ZJ cos (V+u) (88) 

in which J is made up of factors formed by astronomical constants; a 
factor formed of a trigonometric function of \, the latitude of the 
tidal station, which is constant at any given station; and a factor 
formed of a trigonometric function of J, the inclination of the moon’s 
orbit to the Equator, which slowly changes with the longitude of the 
moon’s node. If this last factor is represented by ¢ (J), then 

J=C 91) (89) 
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In the first term of equation (78), for example: 

C=3/2 (Ma3/Ec*)a(1/2—5/4 e?) cos? dX, and ¢(1)=cos* %4/. 

The amplitude, J, of the equilibrium component fluctuates slowly 

between fixed limits with the changing values of J. A rigid analysis, 
which need not be here repeated, shows that the mean value of J 
during the circuit of the moon’s node around the ecliptic, is 

Jv=C [o(L)o X [eos u]>=CM (90) 

where [¢(J)|, is the mean value of ¢ (J), [cos uw] is the mean value of 

cos uw, and M is the numerical value of their product. 
From equations (89) and (90) 

Jo/J=M/9(L) (91) 

124. Mean value of amplitudes of the actual components.—As a basic 
assumption, the fluctuation of the amplitude of a component of the 
actual tide with the changing values of J is proportional to the con- 
current fluctuation of the corresponding equilibrium component 
(par. 102). If then R is the value of the amplitude of a component 
of the actual tide as determined from a particular set of observations, 
H the mean value of the amplitude, and J the amplitude of the 
corresponding component of the equilibrium tide when J has the value 

prevailing during the period of the observations: 

A/R=J)/J=M/¢() (92) 

The factor M/¢(J) is conventionally designated as F. Its recipro- 
cal, ¢(1)/M is designated as f. Hence 

H=FR ee (93) 

125. Expressions for F.—A reference to equation (68) shows that 
the expressions for ¢ (J) and for uw in the terms representing the 

various components are as follows: 

Components (1) u 

M,, Np, 2N, Vo, Noy Mey cos* 1 ) 2E—2p 

O;, Q:, 2Q, pi, sin I cos? J, Qi—y 

OO, sin J sin? \J, — (2é+ p) 

Ji, sim 2) I, —y 

Mf, sin? I, —2¢ 
Mn, 1—3/2 sin? J, 0 

The mean values of these functions of J, and of the corresponding 
expressions for cos u are found by deriving the expressions for J, &, 
and » in terms of N from the spherical triangles OUJ and JUV, figure 
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28; transforming the functions of J, and the expressions of u above 
listed into functions of N; and finding the mean value of these 
expressions as N varies from 0 to 360°. This somewhat lengthy 
derivation, which need not be here repeated, shows that the prod- 
ucts of these mean values are as follows: 

c M, numer- 
Function [¢(Z) Jo[cos wo “ell walbre 

Costaeie eo cos! 14 w cos! Yi__-____________ 0. 9154 
sin J cos? 4I______- sin » cos? Y4w cost Wi__________ . 3800 
sin J sin? 47______- sin w sin? lgw cos! Yi__________ . 0164 
sin at Bi os 2 ee gin Pi) (I= BYP Stee 7) . 7214 
Sl 2b Sai Sin2i@iCOSeto a ee . 1578 
l= 3/2 Sinceeeeee (1—3/2 sin? w) (1—3/2 sin? 7) __ - 1532 

The numerical values in the last column are found by substituting 
the values of w=23°.452; and 7=—5°.145 in the expressions in the 
second column. It may be noted that as the moon’s orbit tilts to 
and fro, the median value of its inclination J to the Equator is the 
inclination w of the ecliptic to the Equator. Since the values of 
cos! 4 and of (1—3/2 sin? 7) are very close to unity, the mean values 
differ but little from the value of the function when J~wo. 

The expressions for the reduction factor F' are then: 

For Mz, No, 2N, v2, Ae, and we, F=0.9154/cos* % 

For O,, Q;, 2Q, and pi, F=0.3800/sin I cos? 4I 
For OO, F=0.0164/sin I sin? 

For J,, Hy 2 WAY Sime 2h 

For Mf, HO. 1578/sme yh 

For Mm, F=.0.7532/(=3/2, sina) (94) 

126. The reduction factors for the lunisolar components K, and K, 

are more lengthy functions of J, and those for the L, and M, compo- 
nents are still more complicated. The derivation of these factors is 

explained in full in Special Publication No. 98; United States Coast 
and Geodetic Survey, and is not here described. 

127. Application of reduction factors.—The logarithms of the reduc- 

tion factors for the several lunar and lunisolar components, corre- 
sponding to each tenth of a degree of J, are tabulated in Manuals on 
the Harmonic Analysis of Tides, special tables being included from 

which the factors for the L, and M, may be found. To find the mean 

value of the amplitude of a component from the value determined . 
from a particular set of observations, the value of N at the middle of 
the period is taken off as described in paragraph 118, the corresponding 
value of J taken from a table, and from it the logarithm of F ascer- 
tained. Thus the amplitude of the M, component at Sitka, Alaska, 
for the 29-day period beginning July 1, 1893, corrected by the aug- 
menting factor, was found in paragraph 99 to be, R=3.430 feet. 
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The value of N at the middle of the period was found in paragraph 
119 to be 24°.17. The corresponding tabular value of I is 28°.22; 
and for this value the tabular value of log F' for the 14, component is 
0.0148. 

Then log R=0.5353 
log F= .0148 

lost 5501 
H=3.549 

The value of H derived from a year’s observation is 3.591 (table V, 
par. 134). 

Since solar components do not vary with J, no reduction factor is 
to be applied to them. 

128. Reduction factors for other components.—It has been seen that 
for the M, component 

(1) =cos* ¥I Uu=2—E—2p 

The corresponding expressions for the M; component are, from 
equation (80): 

o(1)=cos® kl U=3&—3p 

Since cos® 4J= (cost J) */?, it may be presumed that the reduction 

factor for the M; component is 

i Cok Vip) 2 

and this relation is established by a detailed analysis. 
Similarly the reduction factor for the lunar overtides are taken as 

the squares, cubes, etc., of the fundamental tide. These factors are 

then: 
For M,, F=(f of M.)?; Me, F=(F of M.)’, and so on. 

No reduction factors are to be applied to the solar overtides. 
The factors for compound tides are taken as the products of the 

factors of the components compounded, the factor for any solar 

component entering into the compound tide being unity. 
129. “Mean values of coefficients.’”—An examination of equations 

(68) and (69) shows that the amplitude of each semidiurnal com- 

ponent of the equilibrium tide is the product of a coefficient, whose 

numerical value may be determined from astronomical data, times 
cos?\; the amplitude of each diurnal component is a coefficient times 
sin 2\; and the amplitude of each long period component a coefficient 
times (1/2—3/2 sin?\). The mean values of these coefficients there- 

fore show the relative magnitudes of the mean values of the ampli- 
tudes of the semidiurnal, diurnal, and long-period equilibrium com- 

ponents, respectively, at a given station. The “mean values of the 
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coefficients’ conventionally used, and shown in table IV at the end 
of this paragraph, are the complete coefficients divided by 1.7527, 
the numerical value of the general factor 3/2 (a?/Hc?)a, in equation 

(68); but these afford an equally good measure of the relative magni- 

tudes of the mean amplitudes of the equilibrium components in the 
three classes. Thus the mean value of the coefficient of the M, com- 
ponent is (1/2—5/4 e?)M, in which M has the numerical value of 0.9154 
derived in paragraph 125. The mean value of the coefficient of the 
S; component is G(1/2—5/4 e?,) cos? kw, in which G is the ratio of the 

general factor in equation (69) to the general factor in equation (68), 
this ratio being 0.46164. . 

TasBLE 1V.—Mean value of coefficients 

Semidiurnal Diurnal Long period 

Moe 0. 4543 Ky 0. 2655 
Se 2120 O; . 1886 Mf 0. 0763 

Noe 0880 Py . 0880 Mm 0414 
Ko 0576 Qi . 0365 Msf 0042 
Lo 0126 M, . 0149 Ssa 0365 
To 0124 Ji 0149 
V2 0123 (exe) 0081 

2N 0117 P1 0051 
jt) 0074 2Q 0049 

. 0018 
do . 0018 

INFERENCE OF AMPLITUDES AND EPOCHS 

130. It has been found that the mean values of the amplitudes of 
the semidiurnal components of the actual tides at any station are 
generally proportional to the mean values of the amplitudes of their 
corresponding equilibrium components, as are the amplitudes of the 

diurnal components. The amplitudes of the minor components may 

therefore be approximately determined from those of the larger com- 
ponents of the same type by applying this proportion, without gomg 
through the laborious process of determining them by harmonic 

analysis. The ratio of the amplitudes of the equilibrium compo- 
nents is given by the ratio of the ‘‘mean values of the coefficients” 
listed in table IV. It has also been found that the difference in the 
epochs of components of the same type is proportional to the differ- 
ence in their speeds. Thus if x, «2, x; are the epochs of three com- 

ponents, and a’, a’’, and a’’ their speeds 

(k3—k1) | (kg) = (@’’’ —a") /(@” —’) 
whence 

kg=K1+ (ky—K1) (a —’)/(a" —a’) (95) 
If then the epochs x; and x, have been determined by analysis, the 

epach x; can be determined by inference. 
131. In the harmonic analysis of small components, accidental 

variations in the tidal heights may conceal, to a relatively large meas- 
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ure, the systematic variation sought for, and the amplitudes and 
epochs derived by inference may be preferable to those determined 
by direct analysis, particularly if the period of observations is short. 
A considerable number of these small components are customarily 

determined by inference. 

SUMMARY OF THE METHOD OF HARMONIC ANALYSIS 

132. The harmonic analysis of the tide at a station comprises: 
(a) Some six or more separate summations of the observed hourly 

tidal heights for a period generally of 369 days to obtain the hourly 
component heights of the S, M, and K group of components, and the 
larger individual components (pars. 78 to 89). 

(b) The computation of V, for each component at the initial hour 
of the observations and of wu at the middle of the period (par. 118). 

(c) The preliminary determination of the epochs, x, and of the 

amplitudes, R (corrected by the augmenting factor) of the compo- 
nents of each group, and the larger individual components, from their 
computed hourly component tidal heights (pars. 91-99, and 118), 
and the preliminary inference of the remainder for use in elimination 
(par. 130). 

(d) The elimination of the effect of one component on another 

(par. 100). 

(e) The reduction of the corrected amplitudes to their mean values, 

HT (par. 127) and the final inference of the constants of the compo- 

nents not analyzed. 
133. Standard forms to systematize these computations, and tables 

giving the requisite data are published in the Manual of Harmonic 
Analysis and Prediction of Tides of the United States Coast and Geo- 
detic Survey. The labor entailed in the analysis of the tide at a 
station is apparent. The dependability of the results of a tidal 
analysis is illustrated by a comparison between the separate deter- 
minations of the harmonic constants at Fort Hamilton, New York 

Harbor, for three periods of 369 days beginning January 1, 1900, 1904, 
and 1928, respectively. Omitting the constants derived by inference, 

the determinations are as follows: 

Amplitude H, in feet Epoch x, in degrees 
Com- Pid au 
ponent | 

1900 1904 1928 1900 1904 1928 

M2 25212 2. 208 2. 256 PPC es 220°. 7 220°. 7 
No 459 . 496 473 203°. 9 204°. 5 202°. 1 
S2 440 . 450 461 248°: 8 247°.0 248°. 6 
Ki 320 . 324 316 103°. 1 104°. 0 102255 
O; 178 . 167 171 98°. 1 98°. 9 100°. 5 
P; 102 . 095 096 102207 109°. 1 108°. 8 
Ko 148 . 132 120 244°. 1 235°. 8 2o2ae 
Mi 008 . 007 012 86°.8 123°.0 123°. 0 
M! 028 . 030 055 333°. 4 345°. 3 S13e56 
Ms 051 053 063 35°.8 34°.9 35°. 8 
S1 044 036 050 68°. 5 58°. 6 60°. 1 
Sy 035 042 030 75°.8 63°.9 59°.8 
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134. Principal tidal components at representative stations—The 
harmonic components of the tide have been determined at a large 
number of tidal stations throughout the world. The amplitudes, in 
feet, and the epochs, in degrees, of the five principal components at 
stations used in the ensuing chapters to illustrate the characteristics 
of the tide and the determination of tidal datums, are abstracted as 

follows from the extensive data given in Special Publication, No. 98, 
United States Coast and Geodetic Survey (1924). 

TasBLe V.—Principal tidal components 

Station Mz: M,.° Se S2° Ne N2®° Ky Keo O; 0;° 

| 

iMastport, Maine: == === 2 8. 576 326 1. 399 6 25) 298 0. 480 129 0. 377 ill 
Pulpit Harbor, Maine_-_-__-__- 4.899 | 320 777 | 355 | 1.049 | 288 -457 | 129 . 365 108 
IPo;ilandaeViainea==- = 4.372 324 . 699 0 . 949 292 - 462 132 2000 111 
BOSOM IVIASS = ase aes 4. 371 330 . 699 5 . 995 300 - 449 134 . 348 117 
Fort Hamilton, New York 
Lar hOnecs seer See wee ane as 2. 210 221 «445 248 - 478 204 . 322 104 iP 98 

Hemandina, Was =) == 2. 854 228 - 509 258 - 585 213 - 345 127 a 7ay? 129 
Galveston auexe eae ee . 308 108 . 094 111 . 074 91 . 386 315 . 358 309 
MristobalG@.. Zee seree ee ee . 268 6 .044 | 197 -087 | 329 cen ||. Gil . 196 160 
Balboa, C. Li Bin PINE) ye Za eat 6. 000 89 1.616 146 1. 260 58 - 443 343 . 128 355 
Presidio, San NREIMGISIED) Califa|) La 330 -404 | 335 .376 | 304 1.208 | 106 . 756 89 
Seattle; Wash. --2=-222-2==2 3.494 128 . 846 154 - 686 97 2. 697 156 1. 502 133 
Ketchikan, ALASK AS oe aoe 6. 138 if 2.014 28 1. 241 342 1. 648 129 1.014 114 
Sitka Alaskan 5: = 22s eee 3. 591 3 1.145 34 . 758 335 1. 504 125 - 905 110 
Sheerness, England_____---__| 6.297 1 1. 750 56 1.046 337 .377 14 - 451 193 
Do Son, Indochina__--------- SIBaL |) 1g} .098 | 140 - 025 99 | 2.362 OT 252970 35 

HARMONIC PREDICTION OF THE TIDES 

135. The chief use made of the harmonic constants is in the predic- 
tion of the heights and times of high and low waters at a tidal station. 

The height of the tide at any time during a particular year is given 

by the equation: 

y=H,+fd: cos (t+ Vetu—di°) +fKy cos (t+ Vo+u—Kya°)+ - 
+-fK2 cos (katt Votu—K,°)+ - - - (96) 

in which H, is the height of the mean sea level above any standard 
reference plane, 

J,, K,, Ky, ete. are the mean values of the amplitudes of the 
several tidal components, 

f is the mean value during the year (taken as the value at the 
middle of the year) of the factor to reduce the mean value of 
the amplitude to its value for the year (par. 124), 

t is the time in hours after the beginning of the year, 
j1, ki, ks, ete., are the speeds of the several components, 
V, is the value of V for the component at the beginning of the 

year, 
u is the value of wu for the component at the middle of the year, 
J1°, Ky°, K2°, etc., are the epochs of the components. 
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The times of high water and of low water are those at which y is a 
maximum or minimum respectively, and therefore at which dy/dt=0. 
They are then given by the equation: 

dy/dt= —jifJ, sin (j,¢-+ Vot+u—Ji°) —kif Ky sin (kit+ Vo +u—K,°) 

ea Rte tar ave ee 0... (97) 
136. Tide-predicting machine.—The arithmetic evaluation of y for 

successive values of ¢ from equation (96) would be too laborious to 
be practicable. The solution of equation (97) for the successive 

values of ¢ at high and low water could be accomplished mathematically 

only by an even more laborious process of successive approximations, 
An elaborate machine, called the tide-predicting machine, has been 
devised and constructed, by which the values of y and of dy/dt in 
these equations are mechanically summed for values of ¢ measured 
by the angular travel of the mechanism. The height of mean sea 
level, Hy, the values, fH, of the amplitudes of the several components 
for the year of prediction, and the values of the initial phases, V,+u—x«x 
of the several components at the beginning of the year, are all set 
on the dials of the machine. The machine is then put in motion. 
When the pointer indicating the value of dy/dt (the sine summation) 
crosses its zero mark, the machine is stopped, the height of the tide is 
read off the dial which indicates the summation of y, and the time of 

the tide is read off a dial which mdicates the time corresponding to 
the angular travel of the mechanism. These are the height and time 
of the first high or low water of the year. The machine is again set 
in motion, the height and time of the next low or high water read off, 
and the process continued until the predictions for the year are 
completed. 

137. Tide Tables published annually by the Coast and Geodetic 

Survey give the predicted heights and times of the tides at some one 
hundred reference stations throughout the world, with data showing 

the corrections to be applied to give these heights and times at nu- 
merous secondary stations. 

138. Accuracy of tide predictions—The predicted times of high and 
low water which are published in the tide tables, obviously must be 
those which would occur without the accidental disturbances due to 
winds and other meteorological causes. A comparison between the 
actual and the predicted tides at Portland, Maine, and at Seattle, 
Wash., in May and November 1919, shows that the maximum de- 
parture in the time of the actual from the predicted high and low 
waters was 24 minutes; but that the times were generally in much 
closer agreement. The height of one of the tides at Portland differed 
by 1.9 feet from the predicted height; and it was not unusual for the 
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tides at both stations to differ by more than half a foot from those 
predicted; but most of the observed heights were within half a foot 
of the predictions (The Tide, Marmer, p. 205, et seq.). 

AM PM 

June 25,1935 Tuly 7, 193s 
FIGURE 30.—Recorded and predicted tides, San Francisco (predicted tides enclosed in circles). 

The plot in figure 30 of the recorded tides and the predicted high 
and low waters at San Francisco, Calif., on 2 days chosen at random, 

indicates the correspondence ordinarily to be expected. 



Cuapter III 

CHARACTERISTICS OF THE TIDES 
Paragraphs 

Tr SPURS) DAR LAOS A a ek eS 139-140 

Mercamponent, semidiurnal tides_=-:.---==+--------.----.-2.-24L.- 141-142 

SAECOMPOMeMG SpRINembIdes — 9 588. See 2 ee eee ee eee 143 

IANO AGO. 22 See esas ee Se ene ee ae ee eee 144 

NeEIcoMponent= pemseannideS= 2 5.— 5 -=-5= s=—- SS e ee Skee ee see 145 

Pella Q. S252. OAS Sees eee eS ee a ae reese 146 

Compimed effect of S; and No components. —--_....-.----.-1----==-- 147-148 

K, and O; components, tropic tides, and diurnal inequalities ___-_-_-_-___- 149-152 

anne ea cc meee sete ee ae Fe ea Se ee Se ee 153 

(SD UORIMELG SL 2c 5 See OS = EE es 155 

139. Types of tides—The tides throughout the world are of three 
general types, which are determined by the relative magnitude of the 
semidiurnal part of the tide (as indicated by the amplitudes of the 
principal semidiurnal components, My, S2, and N,) and of the diurnal 
part of the tide (as indicated by the principal diurnal components, 

Kk, and O,). These types are: 

(a) The semidiurnal or semidaily tides —Tides of this type have two 
nearly equal high waters and two nearly equal low waters each lunar 
day of 24 hours 50 minutes. They occur when the amplitudes of the 

diurnal components are small in comparison with those of the semi- 
diurnal components. This type is found along both coasts of North 
and South Atlantic Oceans, and at other places as well. 

(b) Mixed tides —This type is characterized by two markedly un- 
equal high waters, or two markedly unequal low waters, or both, on 
each lunar day, during most of the month. Tides are of this type 

when the amplitudes of the diurnal components are considerable in 

comparison with those of the semidiurnal components, but do not 

greatly exceed the latter. Such tides are common, but not universal, 

along the coasts of the Pacific Ocean. 

(c) Diurnal tides —Tides of this type have but one high water and 

but one low water each day during a substantial part of or all of the 

month. Such tides are common along the coasts of large enclosed 

seas with restricted entrances, such as the Gulf of Mexico, the Carib- 

bean, the waters of the East Indies, and the Mediterranean; and some- 

times at oceanic islands. Diurnal tides are usually quite small and 

irregular. 

140. Tides of the semidiurnal type usually have some diurnal in- 

equality during the two periods in each month when the moon is 

192750—40——6 (75) 
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farthest from the Equator and the diurnal tidal impulses are conse- 
quently a maximum (paragraph 40). In tides of the mixed type, the 
two daily high waters and the two daily low waters become nearly 
equal when the moon is near the Equator, and the diurnal tidal im- 
pulses are a minimum. When the moon is at its maximum declina- 
tion, near the celestial tropics, one of the two daily low waters or high 
waters of tides of the mixed type occasionally may disappear, pro- 
ducing a diurnal tide. On the other hand, tides of the diurnal type 
usually break down into two daily tides during a part of the month, 
although in the Gulf of Tongking in Indo-china, the tide remains 

diurnal throughout the month. 
Obviously the types of tide merge into each other. The accepted 

criterion distinguishing the types is the ratio (K,+0O,)/(M:+S,), 
derived from the harmonic components at the station. If this ratio 

is less than 0.25, the tide is classed a semidirunal; if between 0.25 and 
1.25 as mixed; and if over 1.25 the tide is classed as diurnal. 

THE EFFECT OF THE PRINCIPAL SEMIDIURNAL COMPONENTS 

ON THE TIDES 

141. The M, component, semidiurnal tides—When the tide is of 

the semidiurnal type, the M, component, with rare exceptions, is the 
dominant one, with an amplitude nearly but not quite one-half of the 

mean tidal range. Generally, its amplitude may be taken as 0.47 

times the mean range. 
142. Relation of epoch of M2 component to lunitidal intervals —-As has 

been seen (paragraph 117), the expression for the M, component of the 
actual tide may be written in the form: 

y=M;, cos (m.t+ Vo tu—M.°) (98) 

in which 

Mm, is the speed of the component, and has the numerical value 

of 28.984° per solar hour. 
V,+w is the value of the equilibrium argument at any arbi- 

trarily chosen origin of time. 
M.° is the epoch of the component. 

The expression for the M, equilibrium component is 

y=M, cos (m2t+ Vo+4) (99) 

At the high water of the actual tide 

m¢+ V,tu—M.°=0 

whence 

t=[M.°— V,>—u]/m,z (100) 
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Similarly, at each high water of the equilibrium tide 

The nature of the equilibrium tide is such that the high waters of 
its M, component must occur at the moon’s transits across the meri- 

dian of the tidal station. When the origin of time is taken at a lunar 
transit, equation (101) shows that V,+~ must be zero. The time of 

high water of the M, component of the actual tide is then, from equa- 

tion (100), M.°/m, hours after a lunar transit. 

The M, component is the dominant one when the tide is of the semi- 
diurnal type, and largely determines the time of high water of the 
entire tide. The other semidiurnal components, alternately advance 
and retard the time of high water. The diurnal components and lunar 
overtides may produce a systematic difference in the time of high 
water. Denoting this systematic difference by At, the average inter- 

val between a lunar transit and the time of high water at a station is 
then (M;°/m,)+At. This average interval is the high-water interval at 
the station (paragraph 8) and is designated as HWI. It follows 
therefore that: 

M,.°=m,(HWI— At?) (102) 

The low water of the Mz component similarly occurs when: 

m.t—M,.°= == 180° 

or when 

t= (M,.°+180°)/m, (103) 

Since the diurnal components and lunar overtides retard (or 
advance) the time of low water by the same amount that they advance 
(or retard) the time of high water 

M,°=m,(LWI-+ Af) F 180° (104) 

where LW] is the low-water interval at the station. 

Combining equations (102) and (104) to eliminate Af, and sub- 

stituting for m, its numerical value: 

M.°=14°.492 (HWI+LWI) + 90° (105) 

The negative sign is applied to the last term when the HW1 is less 
than the LWI. 

For example, at Fort Hamilton, New York Harbor, the high-water 
interval is 7.67 hours and the low-water interval is 1.64 hours. The 
epoch of the M:; component, from formula (105), then is: 

14°.492(7.67-+1.64) +90°=225° 

Its values from harmonic analysis is 221°. 
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At Philadelphia, the high-water interval is 1.49 hours, and the 
low-water interval 8.97 hours. The epoch of the Mz component 
from formula (105) then is 

14°.492(1.49-+-8.97) —90°=62° 

Its value from harmonic analysis is 49°. 
Formula (105) gives evidently only an approximate value of the 

epoch of the M2 component. 
143. The S. component—spring and neap tides.—At stations having 

a tide of the semidiurnal type, the amplitude of the S, component is 
generally from one-sixth to one-half of that of the M2 component. 
Since the difference in the speeds of these two components is relatively 
small, the resultant of the two fluctuates slowly from a maximum 
of M.+S., when the generating radu of these components coincide, 
to aminimum ot M,;—S, when they are 180° apart (par. 54), the period 

of the fluctuation, from maximum to minimum, being the synodic 

period of the two components, or 360°/(s;—m,:)=354.367 hours. 

This period is one-half of the lunar synodic month, the average 

interval from full moon to full moon. 
Other tidal influences disregarded, the high and low waters occur- 

ring nearest the time at which the resultant of the M, and S, com- 

ponents is at a maximum are respectively higher and lower than at 
other times, and the tidal range is the greatest. These are the spring 

tides, and their range is the spring range (pars. 2 and 20). The tides 
nearest the time at which the resultant is a minimum are similarly 
the neap tides. The times at which the generating radii of the M; 

and S, components are in coincidence, and their resultant a maximum, 
may be called the time of spring tides, although this time is not 

generally the exact time of either spring high water or spring low water. 
Similarly, the time at which these generating radii are opposed may 

be called the time of neap tides. Because of the effect of the other 
components, the average spring range somewhat exceeds 2 (M2++S2) 

and the average neap range somewhat exceeds 2 (M:—S)). 
144. Phase age.—The interval between the instant of full or new 

moon, and the time of spring tides is called the phase age. At the 

instant of full or new moon, the S; and M, components of the equilib- 
rium tides quite evidently are in conjunction, and the difference in 
their phases is zero. Since the phases of the corresponding com- 

ponents of the actual tides differ from those of the equilibrium com- 

ponents by their respective epochs, S.° and M,°, the difference in the 
phases of these components of the actual tides at the instant of full 
or new moon is S.°—M.,°; and since the S, component gains on the 

M; component at the rate of s;—m,° per hour, they are in conjunction 
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(S:°— M,°)/(ss—mz) hours after the time of full or new moon. There- 

fore: 

Phase age (in hours) 

= (S,°—M,°)/(30° —28°.984) =—0.984 (S,°— M,°) (106) 

It is easily shown that this expression gives also the time of neap tides 
after the instants at which the moon is in quadrature. 

For example, at Fort Hamilton, New York Harbor, S,°=248° and 

M.°=221°. The phase age is therefore 0.984 (248—221) hours=26.5 

hours. At this station therefore spring tides occur a little more than 

one day after the moon is at full or change (new), and neap tides at 
the same interval after the moon is at quadrature. 

The phase age at tidal stations throughout the world ranges up 

to 3 days. It rarely is negative. 
145. The Nz component—perigean and apogean tides——The ampli- 

tude of the Nz component generally is between one-sixth and one- 
third of that of the M, component. At stations on the Atlantic 
coast of the United States, the N. component usually has a larger 
amplitude than the S, component, but at stations on the Atlantic 
coast of Europe, and along the British Isles, the amplitude of the 

Ns component is materially less than that of Sy. 
It is evident from the preceding paragraphs that the resultant of 

the M, and N; components fluctuates between a maximum of M,+Ne 

and a minimum of M;—Nb, the period from maximum to maximum 

being 

360° (m.— nz) =360°/ (28.9841 — 28.4397) =360°/0.5444=661 hours. 

This is the length of the lunar anomalistic month (par. 62). 

The maximum amplitude of the resultant obviously is due to the 
maximum attraction of the moon at perigee, and is called the perigean 
tide. Its minimum amplitude results from the minimum attraction 
of the moon at apogee, and is called the apogean tide. The average 
perigean range of the entire tide slightly exceeds 2 (M.+N2) and the 

average apogean range 2 (M.—N,). 
146. Parallax age—The interval between lunar perigee and the 

time of perigean tides is called the parallax age. Since the M» and 
N. components of the equilibrium tides are in conjunction at lunar 
perigee, the phases of these components of the actual tides then differ 

by the difference in their epochs, M.°—N2°; and these components 
of the actual tides come into conjunction (M2°—N2°)/(m:—n,) hours 

later. The expression for the parallax age is then: 

Parallax age (in hours)= (M.°— N,°)/0.5444=1.837 (M2°—N2°) (107) 
As is readily shown, the parallax age gives also the interval between 

lunar apogee and apogean tides. 
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For example, at Fort Hamilton, New York Harbor, M,°=221° 

and N2°=204°. The parallax age is therefore 

1.837 (221°—204°)=31 hours. 

Perigean tides occur at this station, therefore, a little more than one 
day after lunar perigee; and apogean tides a little more than one day 

after lunar apogee. 
The parallax age at stations throughout the world ranges up to 

3 days. In some regions it has a negative value. 
147. Combined effect of S, and Nz components.—Perigean and apogean 

tides tend to obscure the spring and neap tides at stations at which 

FIGURE 31.—Predicted high and low waters at Boston, Mass., January 1937. 

the amplitude of the N. component exceeds that of the S, component. 
A typical monthly variation of high and low water at such a station 
is shown by the plot, in figure 31, of the predicted tides during January 
1937, at Boston, Mass., where the amplitude of the N, component is 

the larger. These tides may be contrasted with the predicted tides 

at Sheerness, England, during the same month, shown in figure 32. 
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FICURE 32.—Predicted high and low waters at Sheerness, England, January 1937. 

At Sheerness the amplitude of the S, component considerably exceeds 
that of the N. component. The figures illustrate quite strikingly 

the reason why the terms “spring” and ‘‘neap’’ tides are commonly 
used in England, but not in the United States. 
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The tidal datum plane at Boston is mean low water, and the times 
of high and low water are on the standard time of the 75th meridian. 
At Sheerness the tidal-datum plane is mean low water of spring 
tides, and the time is Greenwich time. 

The harmonic constants of the three principal semidiurnal com- 
ponents at these stations are taken as follows from table V, paragraph 
134. The last two columns show the phase and parallax ages, com- 
puted from the epochs as indicated in equations (106) and (107). 

Amplitudes Epochs Ages in hours 

Station = 

M; Sy N: | M.° | 8° | No | Phase | Paral: 

TBO SHOTS os ne 4.371 0. 699 0.995 330° Be 300° 34.4 5b. 2 
ISheGnmesseee ee Se Se re Pe ese 6.297 | 1.750] 1.046 il? 56° 337° 54.1 44.1 

The Greenwich times of the moon’s phases, apogee and perigee, in 
January 1937 were, from the Nautical Almanac: 

Moon’s phases 

= Apogee Perigee 

Last quarter Change First quarter Full 

Day Hour | Day Hour Day Hour Day Hour Day Hour | Day Hour 
4 2:22 p.m.| 12 4:47p.m.] 19 2:02p.m. | 26 5:15 p.m. 6 &p.m. 22 3a.m. 

—— 

The times of spring, neap, apogean and perigean tides at Sheerness. 
are immediately determined from these astonomical data by adding 
the tidal ages. For Boston, they are similarly determined after 
correcting the times for the difference in longitude by subtracting 5 
hours. The times of these tides then are: 

Station Spring tide Neap tide Apozgean Perigean 

Day Hour Day Hour Day Hour | Day Hour 
14 SHECENICSS werner: fot Thy oe ee 11 p.m. (GQ Dios, |) sy alilmssens ye GAO wiljop sen 
7).3ae oe 0 os PP) er Aire leg 2 Ole 

ESOS OTe esa Ses ree ee oe at ee oe 13 10 p.m. Se Sipamle|) Soe ope miel 245 oie m7. 
Pay “Nil yo), aoa PAL «VG, adele 

These times are indicated in figures 32 and 33. 
148. Exceptionally high and low waters are to be anticipated when 

the perigean and spring tides nearly coincide. Since the next succeed- 
ing apogean tide occurs one-half of an anomalistic month, or a little 

less than 14 days later, and the next succeeding spring tide one-half 
a synodic month, or a little more than 14 days later, it follows that 

when the tides after say the new moon are especially large, those after 
the next (or preceding) full moon are not. 
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As the length of the anomalistic month is approximately 27% days 

while that of the synodic month is 29 days, lunar perigee gains 2 
days a month on the moon’s phases. It follows therefore that perigean 
tides will most nearly coincide with spring tides at intervals of 7 

months. Similarly, at stations having tides of the semidiurnal type, 
an exceptionally small tidal range is to be anticipated once during 
the month at 7 month intervals, occuring half way between the 
months at which exceptionally high and low waters occur. 

EFFECT OF THE PRINCIPAL DIURNAL COMPONENTS 

149. The K, and O, components—tropic tides.—Since the difference 

between the speeds of these components is relatively small, they 
combine to form a diurnal tidal fluctuation with an amplitude ranging 
from a minimum of K,—O, to a maximum of K,+0O,;. The period 

from maximum to maximum is: 

360°/(k;—0,) =360°/(15.041,068,6 — 13.943,035,6) 

= 360°/1.098033=327.859 hours. 

This period is one-half of the tropical month (par. 62). 

When the amplitide of the resultant of these two diurnal compo- 
nents is a minimum, the tides are called equatorial tides, since the 
moon is then near the Equator. When it is a maximum, the tides are 
called tropic tides, since this maximum results from the maximum in- 
equality of the two daily tidal impulses, and therefore occurs when 
the moon has its greatest declination, near the celestial Tropics (par. 

40). 
150. Effect of the diurnal components on high and low waters.—Since 

the diurnal part of the tide rises once and falls once daily, it has a zero 
elevation (at mean sea level) at semidaily intervals approximating the 

period of the semidiurnal components. If the epochs of the Ky, Oi, 
and M, components are such that the resultant ordinate of the diurnal 

components is nearly zero at the two daily low waters of the M, com- 
ponent, the diurnal part of the tide evidently increases one of the two 

daily high waters and decreases the other, producing a diurnal in- 
equality of the high waters, as may perhaps be seen more clearly by 
turning back to figure 13, page 22. Similarly, if these epochs 
are such that the diurnal part of the tide is nearly zero at the two daily 
high waters of the M, component, a diurnal inequality of the low waters 
is produced. Obviously, both the high and the low waters usually 
will show an inequality because of the diurnal components, but the 
inequality of the high waters is not, in general, the same as that of the 
low waters. As has been shown, these inequalities in the two daily 

tides vary from a minimum at the time of equatorial tides to a maxi- 
mum at the time of tropic tides. 
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A characteristic fluctuation of tides of the mixed type is exemplified 

by the tide curve at San Francisco, Calif., at the time of a tropic tide, 
June 29, 1935, shown in figure 33. 

Hours. 
FIGURE 33.—Tropic tide, San Francisco, June 29, 1935. 

A is the lower low water (LLW), B the lower high water (LHW), Cthe 

lagher low water (HLW), and D the higher high water (HHW). 
151. As shown in paragraph 68, the mean speed of the lunar diurnal 

part of the tide is m,, the speed of the lunar day. It is therefore 

exactly one-half of the mean speed, mz, of the lunar semidurnal part. 
Consequently, the resultant of the lunar diurnal components keeps in 

general step, from month to month, with the resultant of the lunar 
semidiurnal components. In most regions, the lunar components 
are so much larger than the solar that they determine the general shape 

of the daily tide curves. Usually, therefore, the higher and lower high 

and low waters at a tidal station always follow one another in the same 
sequence. If the higher high follows the lower low water, the lower 
high must follow the higher low, and vice versa, so that the sequence 
is established either as “HHW to LLW” or as “LLUW to HHW.” 
At San Francisco, for example, the sequence is HHW to LLW. At 

some stations, but exceptionally, the sequence changes during the 

year. Such a condition is to be anticipated when the principal solar 
diurnal component, P,, is relatively large. 

152. Tropic and diurnal ranges, high- and low- water inequalities.— 
The average difference, from month to month, in elevation between 

the higher high and the lower low waters of tropic tides is called the 
great tropic range, and the corresponding difference between the lower 

high and the higher low waters of tropic tides is called the small tropic 
range. ‘The difference in the average heights of all higher high waters 
and the average heights of all of the lower low waters from day to day 
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for one or more tropical months is called the great diurnal range, or 
the diurnal range. The corresponding difference between the average 

heights of all of the lower high waters and the higher low waters is 

called the small diurnal range. These are all called dechinational 
ranges, since they depend on the declination of the moon. 

The diurnal high water inequality (DHQ) is defined as the difference 
between mean higher high water and mean high water. The diurnal 

low water inequality (DLQ) is similarly the difference between mean 
low water and mean lower low water. It is apparent that the great 
diurnal range is equal to the mean range plus (DHQ+DLQ) and the 
small diurnal range is equal to the mean range minus (DHQ+ DLQ). 

153. Diurnal age.-—The diurnal age is the interval between the in- 
stant at which the moon is at its maximum monthly declination, either 
north or south of the Equator, and the time of tropic tides. 

Since the K, and O,; components of the equilibrium tides are in con- 

junction when the moon is at its maximum declination, the phases of 
these components of the actual tides then differ by the difference of 
their epochs and these components of the actual tides are in con- 
junction (K,°—O,°)/(ki—o;) hours later. Therefore: 

Diurnal age (in hours) = (K°;—O,°)/1.098=0.911(K,°—O,°) (108) 

For example, at Fort Hamilton, New York Harbor, K,°=104° 
and O,°=98°. The diurnal age at this station is therefore 

0.911 (104-98) =5.5 hours. 

The diurnal age at a station may amount to several days, and not in- 
frequently is negative. 

154. As was shown in paragraph 40, the amplitude of the semi- 
diurnal part of the tide decreases as the declination of the moon 
increases, while that of the diurnal part increases with the declination. 
As a consequence the mean daily tidal range tends to decrease with 
the declination, but this decrease is overshadowed by the increasing 
range from lower low to higher high water. In tides of the semidiurnal 
type, the diurnal components do not obscure, to any marked degree, 
the spring and neap, perigean, and apogean variations due to the 

S, and N. components. In tides of the mixed type the variations 
in higher high and lower low waters, culminating twice a month in 
the tropic tides, become the outstanding characteristic, and obscure, 
more or less completely, the spring, neap, perigean, and apogean 
tides. In tides of the diurnal type, the diurnal components completely 
dominate the semidiurnal during a considerable part of the month. 
The fluctuations of the diurnal tides are, however, frequently so small 
that meteorological disturbances become their outstanding 
characteristic. 
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EFFECT OF OVERTIDES 

155. Since the periods of the lunar overtides are one-half, one-third, 
and one-fourth of the period of the M, component, they unite with 
the latter to produce a tidal curve which is distorted from a sinusoidal 
curve, but is repeated without change in each successive period of that 
component. The form of the curve resulting from the combination 
of the M, and M, components at Philadelphia is shown in figure 34. 

At this station the amplitude of the M, component is 2.367 feet, and of 
the M, component 0.368 feet, their epochs being 49° and 7°, respectively. 

+3 

+2 

-—3 6 2 1S 24 

Luner Hours. 

FIGURE 34.—Resultant of Mz and Ms components at Philadelphia. 

The effect of the overtide in this case in increasing the interval from 
high water to low water and in decreasing the interval from low water 

to high water is apparent. 
156. If a high water of the M, component nearly coincides with a 

high water of the M, component, the next high water of the overtide 
will nearly coincide with the low water of the primary component. 
The overtide will therefore raise the elevation of both the high and 
low waters with respect to mean sea level. Similarly if the epochs 
are such that a low water of the overtide nearly coincides with the 
high and low waters of the primary component, it will lower both the 
high and low waters of the resultant tide with respect to mean sea 
level. In the case illustrated in figure 34, the epochs differ by about 
45° and the overtide has little effect in altering the relation of the 
high and low waters of the resultant with respect to mean sea level. 
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157. Principal tidal datums.—The mean height of sea level, and the 
mean heights of low or high waters of various descriptions, afford the 
datums to which the elevations of upland areas, and of the bottom of 
the sea and of tidal waterways, ordinarily are referred. The datums 
which need be especially considered, and the abbreviations by which 
they are designated, are as follows: 

Mean sea level, MSL. 

Half tide level, HTL. 
Mean low water and mean high water, MLW and MHW. 

Mean lower low water and mean higher high water, LLW and 
HHW. 

Mean low and high water of spring tides. In England, these 

datums are taken as mean low and high water of ordinary 
spring tides, after rejecting any spring tides which differ 
substantially from the usual, and are designated as LWOST 

and HWOST respectively. 

In some cases channel depths at foreign ports are referred to mean 

high or low water of neap tides. Mean low and high waters of peri- 

gean, apogean, and tropic tides are rarely if ever used as a reference. 

158. Tidal ranges—The symbols conventionally assigned to the 
tidal ranges determined by the datums listed in the preceding para- 

eraph, are as follows: 

Mean range, Mn=MHW—MLW. 
Diurnal or great diurnal range, GG=HHW—LLW. 
Spring range, Sg, mean low water to mean high water of spring 

tides. 
(87) 
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MEAN SEA LEVEL 

159. Use.—This datum is the basic plane of reference and the zero of 
the ordinates of the harmonic components of the tide. It is deter- 
mined by averaging the observed hourly tidal heights, measured from 
a fixed bench mark, over a sufficient period of time. Because of the 

variation in the density of the waters of the oceans with changes in 
their temperature and salinity; because of the variation in the mean 
barometric pressure upon them; and because of the effect of winds, 
evaporation, and precipitation; mean sea level at different tidal sta- 
tions may not be on precisely the same geodetic level surface. Thus 
mean sea level at Balboa, at the Pacific entrance to the Panama Canal, 
as determined from observations extending over 25 years, is nearly 0.7 
foot higher than at Cristobal at the Atlantic entrance. In general, 
however, mean sea level at tidal stations which have a free connection 
with the sea, when determined from observations extending over a 
number of years, are so nearly on the same level surface that the 
difference between the elevation of any point on land above mean 
sea level at one station, as determined by a line of levels from that 

station, and the elevation of the same point above mean sea level at 
another station, is within the error inherent in long lines of levels. 
Mean sea level is therefore the standard reference datum for land 
elevations. At tidal stations on tidal rivers, or on land-locked bays 
and sounds with restricted entrances, the mean tidal height may be 
above mean sea level and is more correctly designated as mean river (or 
bay) level. 

160. Fluctuations in mean sea level—Small fortnightly, monthly, 
and semiannual fluctuations of mean sea level result from the long 
period harmonic components established by the attraction of the sun 

“and moon (par. 71). These are, however, completely overshadowed 
by the disturbances resulting from storm tides, and smaller systematic 
meteorological disturbances. 

161. Storm tides—Occasional violent fluctuations of the water 
levels at a tidal station result from strong onshore or offshore winds. 
When these are of hurricane velocity, the water may be raised many 
feet. In the long run, storm disturbances raise (or lower) both the 

high and the low waters by substantially the same amount, and may 
be considered, therefore, as affecting primarily the heights of mean 

sea level. 
162. Systematic meteorological variations in mean sea level —lLesser 

atmospheric disturbances produce a less apparent, but more con- 

tinuous, variation in mean sea level. The seasonal variations in the 
density of the water on the continental shelf and in the mean baro- 
metric pressure over wide areas of the oceans, with concurrent varia- 
tions in the prevailing winds, and perhaps other meteorological causes, 
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result in fairly regular and consistent seasonal variations in the 
monthly mean sea level, even at stations not affected by the varying 
inflow from large rivers. <A study of these variations at stations on 
the coasts of the United States, contained in Special Publication, No. 
135, United States Coast and Geodetic Survey, shows that at North 
Atlantic ports mean sea level is quite consistently 0.2 feet or more 
higher during the summer months than during the winter months. 
The annual variation im mean sea level at the South Atlantic ports of 
Charleston and Fernandina approximates a foot, the highest eleva- 

tions occurring in the fall. On the Gulf coast, the annual variation is 
about three fourths of a foot; and on the Pacific coast about half a 

foot. A comparison between the monthly changes in mean sea level 
at Portsmouth, N. H., and at Ketchikan, Alaska, and the monthly 

mean barometric pressure in the two regions, shows a striking corre- 
spondence in each case (Special Publications, No. 150 and 127, U. 

S. Coast and Geodetic Survey). At Balboa, at the Pacific entrance 
to the Panama Canal, an annual variation of about a foot in the eleva- 
tion of the monthly mean sea level follows closely an annual variation 
of about 15° F. in the monthly mean water temperature. These 

seasonal variations are reflected in the values of the long-term com- 
ponents Sa and Ssa derived from harmonic analysis. 

163. Variations from year to year.—Because of varying occurrence 
of storm tides from year to year, and the varying intensities of the 
causes of the seasonal variations in mean sea level, the mean annual 

sea level at a station varies from year to year. At stations on the 
coasts of the United States, where long-term observations have been 

made, these variations are, however, not often greater than 0.1 feet. 
The variations from year to year are quite uniform at all stations on 
the same sea coast. 

Because of these small meteorological variations, mean sea level at 
a tidal station cannot be expected to be identically the same during 
any two periods, no matter how long these periods may be. A 9-year 

average is accepted by the United States Coast and Geodetic Survey 
as a primary determination which gives the elevation of mean sea 
level with sufficient accuracy for all practical purposes of that 
survey. Strictly speaking, however, it should be designated as the 
mean sea level during the particular period from which it was derived 

HALF TIDE LEVEL 

164. This datum is the elevation midway between mean low water 

and mean high water. Because of the distortion of the tide curves 

by the diurnal components and the lunar and solar overtides (par. 
156), half tide level generally does not coincide exactly with mean sea 
level. On the Atlantic coast of the United States it usually is below 
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mean sea level, while on the Pacific coast, except in Alaska, it usually 
is above. Thus at Fort Hamilton, New York Harbor, it is 0.05 feet 

below mean sea level, at Philadelphia 0.16 feet below, and at San 

Francisco, 0.06 feet above that datum. Quite obviously, half tide 

level varies from month to month and from year to year by amounts 
that closely approximate the variations in mean sea level. Half tide 

level is rarely if ever used as a datum plane for land elevations and 
soundings, but affords a convenient reference for the correction of 
mean high and mean low waters. 

LOW AND HIGH WATER DATUMS IN GENERAL 

165. Since it clearly is desirable that the soundings on navigation 
charts, and the designated depths of improved channels, show the 

depths that generally can be counted on by navigators, they ordinarily 

are referred to one of the low water tidal datums, and not to mean sea 

level. Different low water datums are used for this purpose in dif- 
ferent countries. The datums adopted in the United States are the 

most definitely determinable, but are not as low as those generally 

used in other countries. When comparing the channel depths in 

foreign ports with those in this country, the respective datums must 
be taken into consideration. Thus a channel 28 feet in depth at the 
adopted datum in a Canadian port might be 30 feet or more in depth 

if referred to the low water datum officially adopted in the United 
States for the region in which the harbor lies. 

High water datums, while not suitable for charting, establish the 

tidal ranges, which are usually noted on charts to indicate the depths 

available at high water. In regions where the range between spring 
and neap tides is considerable, the elevation of neap high water is of 

especial importance, since it indicates the least depths at high water 

which can be counted on throughout the month. 
166. Low and high water datums do not establish a level surface.— 

Obviously, as any of the several low and high water datums may be at 

a different height below or above mean sea level at different stations, 

these datums do not establish the same level surface from station to 
station, and are applicable only to the area in the vicinity of each 

station. Thus mean low water at the head of the Bay of Fundy is 
some 15 feet below the level of mean low water at the entrance to the 

bay. The change in the elevation of each of these datums, from 

station to station is, however, generally so gradual as to present no 

practical complications. 
167. Meteorological variations in high and low water datums.—The 

variations in mean sea level from month to month, and from year to 
year, produce nearly identical variations in the several low and high 
water datums. They do not, however, produce any substantial 
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variation in the height of these datums with respect to mean sea 
level or to half tide level. The variations peculiar to the low and 

high water datums, and the corrections to be made therefor, may 
therefore be determined by taking the height of these datums with 

respect to mean sea level, or half tide level, during the period of the 
observations. The corrected heights, subtracted from or added to 
the elevation of mean sea level, give them the corrected elevations of _ 
the datums. 

168. Changes caused by channel improvements—A major enlarge- 
ment of a tidal waterway, by dredging for the improvement of its 

navigability, may change materially the elevations of the low and 
high water datums along it. A classic example is the effect of the 
improvement of the Clyde in Scotland, which during the last century 

was converted from a shallow stream, fordable at low tide, to a water- 

way for deep-draft vessels. The enlargement lowered the low water 
levels at Glasgow by more than 8 feet, raised the high water levels by 
some 2 feet, and consequently lowered the midtide level by 3 feet. 
In exceptional cases, the low water datum may even be raised by 
channel enlargement. Extensive channel improvements may there- 
fore require a revision of established tidal datum planes. 

MEAN LOW AND MEAN HIGH WATER 

169. Definition.—-Mean low water is, as its name implies, the 

average height of ali low waters over a long period of time, and mean 

high water is the average height of all high waters. Because of 

variations in the heights of high and low waters between springs and 
neaps in the half synodic month, between perigean and apogean tides 

in the anomalistic month, and between tropic and equatorial tides 
in the half tropic month, a determination of mean high or low water, 

with respect to mean sea level, from observations extending over a 
day or a week, might differ quite widely from the long time mean. 

To eliminate these variations the tides must be averaged over a 
period in which these variations go through almost, if not quite, their 

entire range one or more times. For a determination of mean low 
or mean high water, the shortest period suitable for this purpose is 

29 days. This period, which is sometimes called a /unation, is so 

close to the synodic month of 29% days as to practically eliminate the 
spring and neap variations. It is sufficiently close to the anomalistic 

month of 27 days, 13 hours, to nearly eliminate the perigean variation, 
and to the tropical month of 27 days, 8 hours, to nearly eliminate the 

declinational variation. Longer periods theoretically should be multi- 
ples of 29 days. For convenience of computation it is more usual to 

take successive 29-day periods, beginning say on the first of each 

192750—40—_—7 
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month. If the observations extend over a year, no sensible error is 

introduced by taking all of the low or high waters for the 365 or 366 
days. 

170. Use.—Mean low water datum is the most readily determined 
of the several low water planes, and adequately serves as a plane of 

reference for navigation charts and for the designation of channel 
depths when the tidal range is moderate. It is the official reference 
plane for navigation charts and for federally improved channels on 
the Atlantic and Gulf coasts of the United States. Obviously low 
water of the varying tides is as often as not below this datum. At 
Eastport, Maine, where the mean tidal range is 18.2 feet, the normal 

tide occasionally falls 3 feet or more below mean low water datum; 
but at most of the other stations on the Atlantic coast of the United 

States, where the tidal range is much less, such minus tides (except 
those due to storms) do not often exceed 1 or 2 feet, and ordinarily 
are less. 

171. Correction for longitude of the moon’s node.—Because of the 

variation in the amplitudes of the tidal components with the chang- 
ing inclination of the moon’s orbit to the Equator (par. 102), the 

several tidal ranges and high and low water datums go through a 
small variation in a period of 19 years. The mean range derived 
from observations extending over a month or a year may be reduced 

to its true mean value by applying a reduction factor, conventionally 
designated as F(Mn). The corrected mean low water datum is 
then found by subtracting one-half of the corrected mean range from 
half tide level; and the corrected mean high water datum by the 
corresponding addition. ‘These corrections are called the corrections 
for the longitude of the moon’s node, since this longitude determines 
the inclination of the moon’s orbit. 

172. The numerical values of the reduction factor /(Mn) are 

derived by deducing an expression for the mean range, Mn, in terms 
of the amplitudes of the tidal components, and applying to these 
amplitudes the reduction factors derived in paragraphs 124-126, 
determined by the inclination, J, of the moon’s orbit during the 

period of the observations. To simplify the correction, the ampli- 
tudes of the semidiurnal components are assumed to be proportional 

to the mean values of the coefficients of their equilibrium components, 
given in table IV, paragraph 129; and the amplitudes of the diurnal 
components also proportional to the mean values of the correspond- 

ing coefficients. The relation between the amplitudes of the diurnal 

and semidiurnal components is established by the ratio, (K,+0,)/Mao, 

of these actual components at the station, as determined by harmonic 

analysis, or inferred from available data. The derivation of these 

factors is explained at length in appendix II. 
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173. The accepted values of /(Mn) corresponding to successive 
values of J, and of (K,+0,)/Mz ranging from 0 to 1, are shown in 

table VI. This table is abstracted from table 14 of the Manual of 
Tides by Harris, published in the Report of the United States Coast 
and Geodetic Survey for 1894, part IT. . 

TaBLeE VI. —Factor F(Mn) for correction of Mn for longitude of the moon’s node 

I= TS7-51 192 ||) 2028!) BIS" B20" |e eage 4) 99457 || “one! |) ogo =| 979) || ogo | Role 

Ki F019. _| 0.970 | 0.972 2 2 2 Some 00 --| .972 | 0.977 | 0.982 | 0.988 | 0.994 | 1.000 | 1.006 | 1.012 | 1.019 | 1.026 | 1.029 
2 .2,-| .971 | .973 | .978| .982| 988 .994 | 1.000 | 1.006 | 1.012 | 1.019 | 1.026 | 1.029 

4| .972| .974]| .979] .983| .988| .994 | 1.000 | 1.006 | 1.012 | 1.018 | 1.025 | 1.028 
6.__| .974| .976 | .980] .984| .989 | .994 | 1.000 | 1.006 | 1.011 | 1.017 | 1.023 | 1.026 
8.__| .977 | .979 | .982| .986] .990 | .995 | 1.000 | 1.005 | 1.010 | 1.015 | 1.020 | 1.022 

1.0.--| .980 | .982| .985 | .989| .992| .996 | 1.000 | 1.004 | 1.008 | 1.013 | 1.017) 1.019 

174. The values of J at the middle of each calendar year from 1890 
to 1969 are shown in table VII. 

TaBLE VII.—/nelination, I, of moon’s orbit at middle of year 

Year 0 1 2 3 4 5 6 7 8 9 

{SQ meee ee eS. PEI) | AOoal ||— 27eeh |) A | PRG) PN PYESE) | AGRO) || Baieh by 23°. 9 
POG eee Se ee PRN PUP Ne ae 18°. 4 18°.4 | 19°.0 Zirers |) PALS GS |) “PRE, DE Be 
ef Qin ee ee AEG || BE oi) eee | EEG | PS | aa | ieee eb |p ee) |) Reo) ions 
Qe eee eee Se = 20°. 0 18°.8 18°.3 Wes 5S || Teed AOS |) 2ASa |)  2EoSe |) SARS Zick 
19 5— ee Ses 28250) || 282.70) |) 28°75) |) 28°50 ZUBIN PAB PEGS || SORE |) OF50) 19QR5 
Cys eee ee ASSIA G Loan TEES || UGE @ |) Palais || PREY AEG) Bie ey | Bye 28°.3 
UGG Be Se es ASG |) Boe | PSoS |) AGsoy | Zao | PBER@ |) Pies) |) Pe 8} 19°.0 18°. 4 
OG—— Pe 28 sees. 18°. 4 1G? 2 |) AUP |) 2 BRC as Gs || AR) 790) || SOG 28°. 6 

175. Application of corrections —The correction to the observed 
tidal range in any month or year is readily determined from tables 
VI and VII if the harmonic constants M:, K,, and O, have been 

determined for the station. If these constants are not available, the 

ratio of (K,+0,)/M, at the nearest station for which they are deter- 
mined may be used, if the tide is of a similar type. Otherwise the 

ratio is taken as equal to 2 (DHQ+DLQ)/Mn, as explained in 
appendix IT. 

176. Example —At Fort Hamilton, New York Harbor, K,;—0.322 
feet, O,=0.172 feet, and M,—2.210 feet. The value of (K,+0,)/Msg is 

then 0.22. For comparison the great diurnal range is 5.29 feet and 
the mean range is 4.73 feet. The value of 2(DHQ+DLQ)/Mn is then 
0.24. The mean tidal range for 1902 was 4.79 feet. The value of J 
for 1902 is, from table VII, 19°.2. The corresponding value of F(Mn) 
for (K,+0,)/M.=0.2 is, from table VI, 0.974. The mean range cor- 

_rected for the longitude of the moon’s node is then 4.79 < 0.973 =4.67; 
which is 0.12 feet less than the observed range. Observed mean low 

water for the year was 2.44 feet below mean sea level, and mean high 
water 2.35 above mean sea level. Applying half the correction to 

each, these elevations, corrected for the longitude of the moon’s node, 

become respectively 2.38 feet and 2.29 feet. 
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177. The annual mean tidal ranges at Fort Hamilton, as observed, 

and after correction for the longitude of the moon’s node, for the years 
1893 to 1932 are plotted in figure 35 from the data given in Special 
Publication, No. 111 of the United States Coast and Geodetic Survey 
(1935 edition). 

The variation in the observed annual ranges with the longitude of 
the moon’s node, N, is apparent in the figure. The increase in the 

Mean Range 

Feet 

Observed Range o Corrected + 
FIGURE 35.—Observed and corrected annual mean tidal range Fort Hamilton, New York, Harbor. 

corrected ranges between 1902 and 1912 coincides with the major 
enlargement of the harbor entrance in the dredging of the Ambrose 
Channel during this period. 

178. Table VI is not extended to give the values of F(Mn) for values 

of (K,+0,)/M, in excess of unity. When this ratio exceeds unity the 

tides are decidedly of the mixed type, and the diurnal inequalities 

become their important feature. A study included in Special Publica- 
tion, No.115, United States Coast and Geodetic Survey, of the annual 
mean tidal ranges at San Francisco, Calif., where the ratio (K,+0,)/M, 

is 1.1,shows that any effects of the longitude of the moon’s node on the 

annual mean tidal ranges during the 26-year period from 1898 to 1923 

are completely overshadowed by accidental variations in the ranges, 

and that the correction of the observed ranges for the longitude of 
the moon’s node serves little purpose in reducing the observations to 

better concordance. 

179. The correction for the longitude of the moon’s node is applied 

only in an independent determination of mean low and high water 
datums at a station. Ordinarily these datums are determined by a 
comparison of the high and low waters with those at an established 
base station (par. 196 et seq.) at which the correction already has 

been applied. The approximations inherent to this correction are 

practically eliminated when the datums are determined from observa- 
tions extending over nine years, the period in which the nioon’s node 
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retrogresses through substantially 180°. The corrections are of im- 
portance in a close study of the effect of a channel improvement upon 
the mean tidal ranges. 

180. Precision of observations —Observations extending over 9 years 
are considered by the United States Coast and Geodetic Survey to 
afford a primary determination of the mean low and high water datums 
at a tidal station. In general observations for a year, corrected for 
the longitude of the moon’s node, determine the relation of these 

datums to mean sea level, or half tide level, at the station, within 

0.05 foot of the 9 year mean; and observations for a month within 0.1 

foot (Special Publication 135, U. S. Coast and Geodetic Survey, 
p 107). 

MEAN LOW AND HIGH WATERS OF SPRING TIDES 

181. Differing definitions —Spring low waters and high waters are 

most accurately defined as the low waters and high waters nearest 
the time of conjunction of the principal lunar and solar semidiurnal 

components of the tide, M, and 8, (par. 143); but may be more loosely 

taken as the lowest low waters and highest high waters occurring 
semimonthly soon after new and full moon. At English ports and in 

other regions where the lowest low waters and highest high waters 

follow consistently the conjunction of these components, and the 
tides run through a regular variation from springs to neaps, with small 

diurnal differences, spring tides are readily identified in the recorded 

low and high waters, and their means over a number of months afford 
fairly definite datums. Because of the small number of spring tides 
in a half year or a year, a single abnormal tide would have a relatively 

large effect on the mean value. Thus a storm disturbance of 3 feet 
would change the mean low water of spring tides during a 6-month 
period by a quarter of a foot, while it would change the mean of all 

low waters during the same period by less than one hundredth of a 
foot. It is therefore the English practise to reject abnormal spring 

tides from the computations, and to designate the datums as mean 
low and high water of ordinary spring tides. These datums depend 

to some extent, consequently, on the judgment of the computer. 
182. In regions where the tides have a considerable variation from 

apogee to perigee, or from equatorial to tropic tides, the spring tides 

may not be as readily identified; and when the diurnal components of 

the tide are large, the low and high waters occurring next before the 

time of conjunction of the M, and S, components may differ widely 
from those next following. In some countries the datums designated 
as mean low and high waters of spring tides are in fact the means of 
the lowest low and highest high waters which occur soon after the 
successive full and new moons. Such determinations obviously are 

somewhat haphazard, but afford a low water datum below which the 
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tide does not often fall. It might be better named the mean lower 
low water of spring tides. 

183. In the United States, mean low water of spring tides is taken 
by the Coast and Geodetic Survey as the average of the two low waters 
nearest the successive times of spring tides, these times being deter- 

mined by adding the phase age (par. 144) to the hour of new or full 

moon. The variations in the diurnal inequality at the times of spring 
tide are thereby eliminated. With this procedure four tidal heights 
per month enter the computation both of mean low water and of mean 
high water of spring tides; but observations must extend over a long 

period to afford a mean in which the other systematic and the acci- 
dental variations in the tide are satisfactorily eliminated. 

184. Approximate values—It is shown in appendix II that the 
height of mean high water above half-tide level, and of mean low 
water below half-tide level is equal to the amplitude of the M, com- 
ponent increased by a relatively small correction due to the displace- 
ment by the other components of the time of high and low water. 
The S, component does not have, therefore, any large effect on the 
elevation of mean high or low water or the mean tidal range. At the 
time of spring tides, however, the S,; component is in conjunction with 
the M, component, and the height of high water is increased, and of 

low water decreased, by substantially its amplitude. It follows there- 
fore that mean high water of spring tides, as the term is used in the 
United States, is closely approximated by adding the value of S., as 

computed by harmonic analysis, to the corrected elevation of mean 
high water, as determined by observation; and mean low water of 
spring tides by subtracting this value from the established mean low 
water. In other words: 

LWOST=MLW-—S, (109) 

HWOST=MHW-+S, (110) 

Se—Mn+28, (111) 

For example, the elevation of mean low water below half-tide level 
at Fort Hamilton, New York Harbor, is determined from observations 
extending over a long period, to be 2.37 feet, and the value of S, at this 
station is 0.44. The elevation of low water of spring tides, from equa- 
tion (109) is then 2.81 below half-tide level. Its value computed 

directly from observations extending over several years is 2.79. Sim- 
ularly at the Presidio of San Francisco, the elevation of low water of 
spring tides from equation (109) is 2.37 feet below half-tide level, 
while its elevation from direct observation, is 2.36 feet. The corre- 

spondence is, therefore, very close at these stations. 
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If then the harmonic components at a station have been computed, 
and a good determination made of the mean low water datum, 
formula (109) generally affords a satisfactory determination of the 
mean low water of spring tides. After a satisfactory determination of 
mean low water of spring tides has been made at one station, that at 

other stations in the vicinity may be derived by comparison (par. 202). 
185. Use.——Mean low water of ordinary spring tides is the reference 

plane for the British Admiralty charts and generally for works of 
harbor improvement in the British Empire. It is used in some other 
countries as well. In Canada, low water datum is taken as from 0.5 to 

1.5 feet below the mean of the lowest low waters of spring tides. In 
the United States, mean low water of spring tides is used as a datum 

by the Coast and Geodetic Survey only on the Pacific coast of the 
Panama Canal Zone, where the range from springs to neaps 1s marked 

and regular. 

MEAN HIGH AND LOW WATERS OF NEAP, PERIGHAN, APOGEAN AND 

TROPIC TIDES 

186. These datums are determined in the same manner as the high 
and low waters of spring tides. Thus the mean high water of neap 
tides is taken as the mean of the successive pairs of high waters nearest 
the time of neap tides, and is approximately equal to MHW—S,, the 

neap range being approximately equal to Mn—2S,. Mean high 
water of perigean tide is similarly the mean of the successive pairs of 
high waters nearest the time of perigean tide, as determined by adding 
the parallax age to the time of lunar perigee. It is approximately 

equal to MHW-+N,, while mean high water of apogean tide is approxi- 
mately equal to MHW—N>. The lower low, higher high, higher low, 
and lower high waters of tropic tides are the averages of the lower low, 
higher high, higher low, and lower high waters at the time of tropic 

tides as derived from the diurnal age. As has been stated, these 

datums are rarely if ever used as reference planes for charts. The 
elevations of mean high and low waters of neap tides, are however of 
importance at stations having a marked and regular range from springs 
to neaps, and especially at ports where navigation is on the tide. 

MEAN LOWER LOW AND HIGHER HIGH WATERS 

187. These planes are sometimes called declinational planes, since 

the lower low and higher high waters vary with the declination of the 
moon and sun. Mean lower low water is the average height of the 
lower of the two daily low waters of tides of the semidiurnal and mixed 
types. Since the lunar day is longer than the calendar day, occasion- 
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ally but one low water occurs (about noon) during the calendar day 
even when the tide is wholly semidiurnal. It is included in, or ex- 
cluded from, the summation according to its relation to the preceding 
low water. If two low waters of the same height occur on a calendar 

day, but one is included. When, however, the tide becomes tempo- 
rarily dirunal, each low water is included in the summation. Mean 
higher high water is similarly computed. 

188. Use——wWhere the tides are of the mixed type, mean lower low 
water affords a more suitable reference plane than mean low water, 

and is the official reference plane for navigation charts and channel 

improvements on the Pacific coast of the United States. While this 
datum is below mean low water (by as much as 1.8 feet at Seattle) yet 
one of the two daily tides is as like as not to fall below it, sometimes 
considerably. Thus at Seattle normal tides occasionally fall as much 
as 3 feet below mean lower low water. 

At localities having a tide which is wholly diurnal, mean low water 

and mean lower low water become synonomous. On the Gulf of 

Mexico, where the tides are generally of the diurnal type, but small and 
irregular, mean low water affords a more satisfactory reference plane 
than mean lower low water, and is the officially adopted plane in the 
United States. 

189. Corrections to short term determinations—An independent 

determination of mean lower low or higher high water at a station, 
like that of mean low or high water, must extend over a minimum 
period of 29 days to eliminate the monthly variations in the tidal 
range. Furthermore, the elevations of mean lower low and higher 

high waters vary with the changing declination of the sun from month 

to month during the year, as well as varying with the changing incli- 
nation of the moon’s orbit during a period of 19 years. The correc- 

tions to reduce to their true mean values, determinations based on 

observations during a month or a year, are derived by applying a 
reduction factor, conventionally designated 1.02 F;, to the diurnal 
low and high water inequalities, DLQ and DHQ (par. 152). The 

corrected diurnal low water inequality is then subtracted from the 
corrected mean low water datum, derived as explained in paragraphs 

171 to 177; and the corrected diurnal high water inequality added to 

the corrected mean high water datum. 
190. The derivation of the reduction factors, 1.02 F,, is explained 

in appendix IJ. The computed values for each month of the year 

from 1891 to 1950, are given in table 7, Special Publication No. 135, 
United States Coast and Geodetic Survey (Tidal Datum Planes), 

pages 114-115. The values from 1921 to 1950 are extracted there- 

from in the following table: 
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TasLe VIII.—Factors 1.02 F,, for correcting diurnal inequality to mean value 

Year Jan. | Feb. | Mar.| Apr. | May | June | July | Aug. | Sept.} Oct. | Nov.| Dec. | Mean 

1.18 | 1.42 | 1.31 | 1.06 | 0.95 | 0.99 | 1.21 | 1.46 | 1.32 | 1.07 | 0.96 1.160 
1.22 | 1.46 | 1.34 | 1.08 SOG AO0n eo2a e427 | e330) 107 . 96 1.177 
1.22 | 1.46 | 1.34 | 1.08 SOG SOOM te 20n | teAGa ele ole 06 .95 1.171 
12200} 1242) 15300) 1-'05 . 94 OSs ee | 39) | e267 02 .92 1.138 
TRE aR) |p alloy U8) . 90 OE Maal) tei | i ike) 98 . 88 1. 084 
ess |) GER |) th ity . 96 . 87 89) || 1506) 12:23) )) Tas 93 . 85 1.029 
VS(ORS |) WG wh |) ale aN) 91 . 83 86 | 1.00 | 1.16 | 1.07 89 . 81 . 978 
AE) |) aA Tt al e(0 88 - 80 83 296 he LOE L022 . 86 .79 . 938 
.95 | 1.08 | 1.01 85 78 80 OSM ON .99 . 84 5 el . 908 
925) 1805 .99 . 83 . 76 79 SO aEO# .97 . 82 . 76 . 887 
.91 | 1.03 97 82 . 76 78 .91 | 1.04 . 96 . 82 . 76 . 879 
nhl |) si (083 .97 82 . 76 78 .91 | 1.04 . 96 . 82 . 76 . 879 
.91 | 1.04 . 98 . 83 ahs) 79 .92 | 1.05 .98 . 83 = (i . 888 
OD) LOOM 00 84 .78 80 .94 | 1.08 | 1.01 85 . 78 . 905 
om melee! OMe Os . 87 . 80 83 OTe leew ieueOo 88 .81 . 937 
(0) |) we wes) ss 90 . 83 86 | 1.01 | 1.19 | 1.10 92 . 84 .978 
1.04 | 1.22 | 1.14 94 . 86 90 | 1.07 | 1.26 | 1.16 96 . 88 1.026 
ILS) 1] ale eka) |] ae Pal 99 . 90 OAT soa lel 4s leone Ol 392 1. 082 
aby Wy WEB Wey leg! . 94 ORE WTS ei) 1425) 12:29) 05 . 95 1.136 
WGA || WZ!) TIER BY |) ers AOD | We 1) 1E GA) |) eet eS Rs Ue 07 . 96 eA. 
1,22) | 1.46) 1.34) 1.07 58 OD |) eae zy tae BBY! IL yy . 96 1.176 
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Usa} ales || ileal 99 . 89 OPN LOOM Pe 2Ont Leal? . 96 . 87 1.065 
LS OG ele le 94 . 85 88 | 1.04 | 1.20 | 1.10 .91 . 83 1. 007 
TE Con |) We als}. |) SIs 90 . 82 84 OO) elena pelOb . 88 . 80 . 962 
alii |) Usa |) aOR} 87 79 82 95 | 1.09 | 1.01 . 85 . 78 925 
.94 | 1.07 | 1.00 84 his 80 93 | 1.06 98 . 83 = Ns) 899 
-91 | 1.04 . 98 . 83 76 78 91 | 1.04 96 . 82 76 882 
.90 | 1.03 97 . 82 76 78 91 | 1.04 96 . 82 76 878 

The mean annual values of the correction, given in the last column, 
are the reduction factors to be applied the diurnal inequalities derived 
from observations extending through the year. 

The approximations introduced by these corrections are practically 
eliminated in a determination of these datums from observations 

extending over 9 years. 
191. Example.—The application of the reduction factors to obtain 

the corrected mean lower low and mean higher high waters is ilus- 
trated by the determination of these corrections to the observed 

annual mean tidal heights above an arbitrary datum plane at Ketch- 
ikan, Alaska, in 1922, given in Special Publication, No. 127, United 
States Coast and Geodetic Survey (Tides and Currents in Southeast 
Alaska). 

The observed heights are: 

Mean higher high water (HHW) =21.55. 
Mean high water (MHW)=20.75. 

Mean lower low water (LLW)=6.06. 

Mean low water (MLW) =7.43. 

Annual half tide level (HTL)=% (20.75-+-7.43)=14.09. 

Mean high water above HTL=6.66. 

Mean low water below HTL=6.66. 
Mean range (Mn)=20.75—7.43=13.32. 
Annual high water inequality (DHQ)=21.55—20.75=0.80. 
Annual low water inequality (DLQ)=7.43—6.06=1.37. 
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From table V, paragraph 134: 

K,=1.648 O,=1.014 M,.=6.138 

Whence (K,-+O,)/M2=0.43. 

From table VII, paragraph 174, 7=18°.3. 
From table VI, paragraph 173, #(Mn)=0.971. 

Corrected Mn=13.32 * 0.971=12.93. , 

Correction to MHW and MLW=4%(13.32—12.93)=0.20. 
Corrected MHW above HTL=6.66—0.20=6.46. 

Corrected MLW below HTL=6.46. 

1.02 F, rom table VIII)=1.177. 

Corrected DHQ=0.80 < 1.177=0.94. 

Corrected DLQ=1.38 X1.177=1.62. 
Corrected HHW above HTL=6.46+0.94=7.40. 

Corrected LLW below HTL=—6.46+1.61=8.08. 

Corrected HHW on staff=14.09+7.40=21.49. 

Corrected LLW=14.09—8.08=6.01. 

It may be noted that in this case the corrections to DHQ and 
DLQ nearly counterbalance the corrections to Mn. The correction 
factor 1.02 F, to the mean annual diurnal inequalities decreases with 

I, while the correction factor F(Mn) to the mean range increases 
with that angle. <A glance at table VIII shows, however, that the 

plane of lower low water goes through marked variations from month 
to month. 

192. Precision of determinations.—As with the other datum planes, 

a determination of mean lower low or higher high water from corrected 
observations extending over a period of 9 years is considered by the 
Coast and Geodetic Survey as a primary determination. In general, 
observations for a year, similarly corrected, determine the relation of 
these datums to mean sea level, or half tide level, within 0.1 foot of 
the 9 year determination; and observations over a month with a 

quarter of a foot. At least 3 days observations should be used to 
determine this datum within a foot of the long term value. (Special 
Publication 135, U. S. Coast and Geodetic Survey, p. 124.) 

OTHER DATUM PLANES 

193. Harmonic tide plane.—A tidal plane often referred to, and used 
at some ports in India, is that at an elevation of M.+S,+K,+0, 
below mean sea level. It nearly coincides with what might be called 
tropic lower low water of spring tides. It has the advantage of being 
so low that normal tides rarely fall below it. 

194. Arbitrary datum planes.—As will later be shown, the tidal 
datums herein before listed, after being determined from a more or 
less extended set of observations, are referred to standard bench marks 
which thereafter become the controlling reference for charts, tide 
tables, and channel depths. In some countries local datum planes, 
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established by reference to such a bench mark, are arbitrarily adopted 
for these purposes, without particular relation to one of the character- 
istic tidal planes. 

TYPICAL RELATIONS BETWEEN DATUM PLANES 

195. The relations between these planes at Fort Hamilton, New 
York Harbor, where the tide is of the semidiurnal type, and at the 

Presidio, San Francisco Harbor, where the tide is of the mixed type, 
are as follows: 

Elevations below mean sea level (feet) 

New York San Francisco 
(1912-30) (1898-1923) 

INeanplOowawateree ne. . secre won LEP eet ee ees ORD ils SY7/ 

Mieanslower low waters ===) 222 ese Ses 2. 64 3. 02 

Mowawater of spring tidesss i= eo be he se 2. 88 2. 26 

Fanmoniestideplane ost is 21 Ys es yt” a0) 4.14 

DETERMINATION OF TIDAL DATUMS BY COMPARISON 

196. Because of the variation from day to day, from month to 
month, and from year to year in the elevation of mean sea level, and 

the periodic variations in the height of the successive high and low 
waters with respect to mean sea level, long-continued observations are 

_ necessary to establish, with good precision, the several tidal datums 

at a station; but after these datums have been established at one 

primary or base station they may be determined at other stations in 
the same region, where the tidal variations are due to like causes, by 
comparing, during a relatively short period, the high and low water 
elevations at the secondary station with those at the base station. 

This method is applicable only when the tides at the base and second- 
ary stations are similar; 1. e. when the ratio 2 (DHQ+DLQ)/Mn at 

the two stations is substantially the same, and the higher high and 
lower low waters are in the same sequence (par. 151). Such condi- 

tions are to be anticipated at stations on the same general embayment 
of the coast line, and with free connections with the sea. They may 
be fulfilled at stations several hundred or even a thousand miles apart. 
The method of comparison is not applicable to stations on tidal rivers 
and estuaries in which the water levels are sensibly affected by the 
inflow from large rivers. 

197. Establishment of half-tide level by comparison.—While the violent 
disturbances produced by storms may vary considerably even at 
stations in the same bay, the ordinary fluctuations of mean sea level, 

and of half-tide level, when averaged over a sufficient period of days, 
generally affect the elevations of these datums by substantially the 
same amount over quite extensive areas. ‘To determine the half-tide 
level at a secondary station from the established datum at a base 
station, concurrent observations are therefore made for a suitable 
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period of the heights of high and low waters above arbitrarily selected 
zero elevations at the two stations. These heights are called the 
respective high and low waters on the staff. The mean high and low 
waters, and the half-tide levels on the staff at the two stations during 
the period of observation are computed. The difference between the 
established half-tide level and the observed half-tide level at the pri- 
mary or base station gives the correction to be applied to the observed 
half-tide level at the secondary station. 

198. Mean sea level by comparison.—lf the base and secondary sta- 
tions both have a free connection with the sea or are freely connected 

with each other by deep water, so that they both may be presumed to 

have the same overtides, the difference between mean sea level and 
half-tide level should be the same at both. This difference, as deter- 

mined at the base station, applied to the corrected half-tide level at 
the secondary station, gives mean-tide level at the secondary station. 

199. Mean high and low waters by comparison.—While the tidal 

range often varies materially from station to station in the same region, 
the heights of the successive low and high waters with respect to half- 

tide level at one station are proportional to those at another if the 

amplitudes of the components of the tide at one of the two stations 
have a constant ratio to those at the other, and the epochs of the 

several components at one station differ from those at the other by 

a constant angle. These conditions are to be expected when the tides 
at the two stations are both produced by the same offshore fluctua- 
tions of the ocean. They are exemplified by the relationship of the 

principal tidal components at stations on the New England coast 

north of Cape Cod. Harmonic constants have been determined at 
Portland, Maine, at Pulpit Harbor, 80 miles to the northeast, at East- 

port, 190 miles northeast, and at Boston, 90 miles to the south of Port- 

land. The ratio of the amplitudes of the principal tidal components at 
these stations to those at Portland, and the difference in the epochs 

of the respective components, are shown in the following tabulation, 

prepared from the data set forth in table V, paragraph 134. To 

extend the comparison, the ratios of the amplitudes of the principal 

components at Fernandina, Fla., 1,000 miles to the southward, to 
those at Portland are added, together with the difference in their 
epochs. 

Pulpit Harbor Eastport Boston Fernandina 

H/Ho | x—xo | H/Ho k—xo | H/Ho k—xo | H/Ho K—K0 

M2 1h, 2 —4° 1. 96 2° 1.00 6° 0. 65 She 
S2 1.11 —5° 2. 00 6° 1.00 5° 73 —13° 
N2 1.11 —4° 1. 82 6° 1.05 8° 62 =i 
Ky 299 —3° 1.04 | —3° o Be 22 ad —5° 
O1 1.03 —3° 1.07 0° 58) 6° a ((il seit 
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It may be noted that the ratios of the amplitudes of the semidiurnal 
components at Eastport to those at Portland are quite consistent, as 
are the ratios of the diurnal components, but the ratios of the semi- 
diurnal differ widely from the diurnal. At Fernandina a similar 
divergence occurs in the differences of the epochs. 

200. Since the successive heights of high waters and low waters 
with respect to half-tide level at one station are found to have a 

substantially constant ratio to these heights at another station in 

the same region, the long-term means of the high and low waters at 

the two stations are proportional to the respective mean values 

during any period of concurrent observations. The ratio of the 
mean range at the primary station during a period of concurrent 

observations to its established long-term mean, applied to the mean 

range during the same period at the secondary station, gives therefore 

the corrected mean range at the secondary station. The corrected 
heights of mean high water and mean low water on the staff are then 
obtained by adding and subtracting one-half of the corrected mean 
range to the corrected height of half tide on the staff. 

201. It may be observed that a comparison, if based on a fairly long 
set of concurrent observations, will give reliable results even when 

the timing of the components is not the same at the two stations, 

for, as shown in appendix IJ, mean range at each station depends on 

the M, component and the ratios of the other components thereto, 
and not on the epochs of these components. 

202. Mean low water and mean high water of spring tides by com- 
parison.—it has been shown (par. 184) that the spring range may be 

taken as Mn+28,. Since the amplitude, S, ordinarily has a constant 

ratio to the amplitudes of the other principal components at stations 
in the same region, and hence to the respective mean ranges at these 

stations, the ratio of the spring range to the mean range should be 

the same at all such stations. After this ratio has been determined 

at a base station, it may be applied to the corrected mean range at 
any secondary station, as derived by comparison, to determine the 

spring range at the secondary station. Mean low water of spring 
tides at the secondary station is then one-half the spring range below 

the corrected half-tide level, and mean high water of spring tides 
one-half of the spring range above the corrected half-tide level. At 

stations on the Pacific coast of the Panama Canal Zone, for example, 
the ratio of spring range to mean range is 1.26, and the elevation of 
low water of spring tides is taken as HTL—0.63 Mn. 

203. Mean lower low and mean higher high waters by comparison.— 

It has been seen that the elevation of mean higher high water exceeds 

that of mean high water by the diurnal high water inequality, DHQ, 
and the elevation of mean lower low water is that of mean low water 
less the diurnal low water inequality, DLQ. The elevation of mean 
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high water and of mean low water depends principally on the semi- 
diurnal components of the tides, while the diurnal inequalities depend 
wholly on the diurnal components. Since the ratio of the amplitudes 
of the diurnal components at two stations tends to differ from the 

ratio of the amplitudes of the semidiurnal components, even when 
the two stations are in the same region, the diurnal inequalities are 
separately compared. The ratios of the observed mean inequalities 
at the base station, during a period of concurrent observations, to the 

established long term mean values of these inequalities at the base 

station, applied to the observed mean inequalities at the secondary 
station, give the corrected values of the inequalities at the secondary 
station. These, added to and subtracted from the corrected mean 
high and low waters on the staff, give the corrected mean higher 
high and lower low waters on the staff at the secondary station. 

204. Example-——The computation of the mean lower low water 
datum at Anacortes, Wash., from concurrent observations extending 

over 7 days at this station and at a base station at Seattle is shown 

below. The ‘‘accepted datums” in the second column are the estab- 
lished long-term means at Seattle. 

Seattle Anacortes 

Observed | Accepted ae aulO Oe Observed | Corrected 

HHW 18. 40 S74 pads |e = epee eae 22:94 7% |: Soe ae 
MHW 17. 84 BSR walt See Ate ae ee 22.47 Oe ele 
MLW 10. 35 LON ZAS 7 eee ee eee ae L780" ~ -|| 2-5 es 
LW 7.86 (ee IU Ae eee Oe 15 57 | eee 
Mn 7.49 7. 64 1. 020 P60! See 

4Mn 75 3. 82 1. 020 Ph, Bali) 2. 38 
13k 14.10 14. 06 —.04 20. 14 20. 10 
DLQ 2. 49 2. 83 IE ati 2e23) 2. 54 

Mean lower low water at Anacortes, corrected =HTL—14Mn—DLQ=20.10—2.38—2.54=15.18 

205. In the usual form of computation, the difference in the height 
and time of each tide at the two stations is computed, and any tide 
showing an abnormal difference in height or time is rejected. When 
a record of the actual high and low waters at a suitable base station is 
not available, a comparison based on the predicted tides at a suitable 
station, as given in the tide tables, affords a better determination than 
a short-term record at the secondary station alone, although clearly 
not as reliable as a comparison with the actual tides at the base station. 

206. Precision of a determination by comparison.—The precision of a 
determination of tidal datums by comparison depends on the water 

distance between the stations, the freedom of the movement of the 

tide between them, and the length of the observations. When the 

secondary station is only a few miles from the base station, on an open 
and unrestricted waterway, observations extending over a short time 
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will give the datum with the precision to which the gages can be read. 
To establish the datum for a project survey of a harbor or waterway 

where no reliable datum is available, the observations should extend 

over at least one period of 29 days. Such a comparison should es- 
tablish the datum within a tenth of a foot if the base station is not too 
remote. If less accuracy is needed, a comparison for a week may be 
sufficient. 

207. In general a comparison with a suitable base station extending 

over a year will give a determination of mean sea level within 0.05 
foot of the long-term mean at the secondary station, and a comparison 
extending over 4 years within 0.02 foot. (Special Publication 135, U.S. 
Coast and Geodetic Survey.) The determination of mean sea level 
at a station where a long record is not available is always improved by 
comparing it with a primary station. 

FIXATION OF DATUM PLANES 

208. It has been seen that even the long-term means of the eleva- 

tions of the various tidal datums change slightly as the records are 

extended. Since changes in the datum on which successive surveys 
are based tends to confusion and error, and makes a comparison be- 
tween surveys a difficult and laborious process, an accepted elevation 

of the adopted datum is established with respect to a stable bench 
mark, or preferably a group of bench marks, as soon as this datum is 
determined with sufficient precision. This datum is not thereafter 
changed, unless new conditions make it grossly erroneous. 

209. Accuracy required. —So far as the usual purposes of navigation 
and of harbor improvement are concerned, no high degree of precision 

is required in the determination of a reference datum. The surface 
of tidal waters is constantly changing in elevation, and may occasion- 

ally be a foot or more below any of the datums used in the United 
States. The squat of a vessel underway, and its pitch in rough water, 
also render useless any refinements in the indicated depths. Hydro- 
graphic charts therefore show the depths of inshore soundings to the 
nearest foot, and offshore soundings in shoal areas to the nearest 
quarter fathom (1.5 feet), and to the nearest fathom in deep water. 
Channel depths are usually laid out to the nearest foot, although ordi- 
narily the sounding from which estimates of dredging are prepared 

are taken to the nearest tenth of a foot. The fixation of the reference 

datum within a tenth of a foot or more of its true long-term mean is 
therefore ordinarily sufficient. The stabilization of the datum is more 
important than its inherent accuracy. 

210. Datums for dredging contracts.—In the administration of dredg- 
ing by contract the definite fixation of the datum plane to cited shore 
bench marks is essential. If the material removed is measured and 
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paid for in place, as computed from soundings taken before and after 

dredging, the systematic error introduced by the variation of even a 
tenth of a foot between the datums of the two surveys might, in a large 
contract, result in overpayments or under payments amounting to 

thousands of dollars. Even when the material is measured in the 
scows into which it is loaded, the difference in the deductions made for 

material removed below the plane of tolerance for payment might. 
amount to a considerable sum. The reference bench marks cited in 

the specifications should be verified before the specifications are issued. 
211. Unless the tidal range differs materially in different parts of a 

harbor or waterway, the datum for harbor improvement is taken as 

that at one selected tidal station. The datum at all other points is 

then taken as at the same elevation, this elevation being determined 

either by lines or levels on shore, or by water levels established by the 
half tide level corrected by comparison with the base station. When, 
however, the tidal range, and consequently the elevation of the adopted 
low water datum below mean sea level, differs materially along the 
waterway, a succession of reference planes should be used, each applhi- 
cable to definitely defined sections or areas, and all correlated to a 
common datum, preferably mean sea level. Thus on successive sec- 

tions of the East River, N. Y., some 8 datum planes of mean low water 

are used, varying in elevation from 1.96 to 3.51 feet below mean sea 

level. 
TIDAL OBSERVATIONS 

212. Staff and automatic gages.—Tidal observations to establish 

tidal datums, to provide the data for the harmonic analysis of the 

tide, or to show the varying height of the water with respect to the 

datum during surveys and dredging operations, are taken on staff 

or on automatic gages. The staff gage is a graduated board, usually 
set vertically, on which the height of tide is read by an observer. It 
is ordinarily graduated in feet and tenths, with bold markings so 

that it can be read at a distance. An automatic gage is a device by 

which the elevation of a float is recorded, on a reduced scale, on a 
moving paper driven by clockwork. The float is enclosed in a box 
or pipe, with a restricted entrance near the bottom, to dampen the 

fluctuations due to wind waves. In cold climates this box is filled 

with kerosene to prevent freezing. A staff gage is always installed 
with an automatic gage, the zero of the staff establishing by direct 

comparison the zero of the record. Two types of automatic gages 
have been developed by the United States Coast and Geodetic Survey, 
one a more elaborate instrument for permanent stations at which 

long-term records are maintained, and the other a portable type for 
the temporary occupation of a station. 
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213. Uses—The automatic gage is especially useful for the estab- 
lishment of tidal datum planes, for securing the data for the harmonic 

analysis of the tides, and for hydrographic surveying when it is not 

possible to establish a gage within sight of the area surveyed. The 

staff gage is usually more convenient for determining the varying 
elevation of the water during surveys made in the vicinity of the 
gage, and for regulating the operation of dredges, since the elevations 

are immediately available and can be read from a distance. For 

establishing a low water datum by comparison, only the heights of 
the high and low waters need be taken off the record; although the 
times of their occurrence may be taken off also as a check, or to 
determine the lunitidal intervals, if a determination of the latter is 

desired. 
214. Reference to bench marks.—A staff gage is easily destroyed and 

usually lasts for but a short time, unless at least it is built into a per- 
manent structure. Even in the latter case the structure may settle 
or suffer enough disintegration to displace the zero of the gage. The 
record of an automatic gage is dependent on its accompanying staff 

gage. No tide gage serves much useful purpose, therefore, unless its 

zero is referred to stable shore bench marks, and if a valuable record 
is desired it should be referred to at least three bench marks well 

separated from each other. Staff gages for surveys and for the opera- 
tion of dredges are ordinarily set from bench marks, with their zero 
at the established datum. 

215. Operation of an automatic gage.—No clock keeps perfect time, 
and a clock mechanism driving a relatively heavy recording device 
cannot be expected to. The registering apparatus of the gage may 

bend or lag or get out of order, the intake and the well may clog, the 
float may leak and the wharf or other structure on which the gage is 
installed may settle. An automatic gage must therefore be tended 
daily to see that it is functioning properly, and the height of the tide 
on the staff, with the time at which it is taken, inscribed on the record 

of the gage. The gage must be inspected by an engineer at intervals, 
and the zero of the staff gage checked against the reference bench 
marks. The detailed technique for the installation and operation of 

automatic tide gages and the tabulation of the record, is given in a 
Manual of Tide Observation, Special Publication 196, United States 

Coast and Geodetic Survey. Because of the cost of securing them, 
reliable records of the tide over any considerable period are available 
only at a relatively limited number of stations in the harbors of the 
United States; but these are sufficient to afford a good determination, 
by comparison, of the datums at any point on the coast line. 

192750—40——8 





TIDAL CURRENTS 
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RELATION OF CURRENT TO SURFACE SLOPE 
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216. General equation for varying flow in a channel.—The velocity 
of the current in a tidal channel is continuously increasing or decreas- 
ing, and the direction of the flow is periodically reversed. ‘To become 

applicable to tidal flow, the familiar equations for steady flow must 
therefore be elaborated to account for the work done in the accelera- 

tion and deceleration of the current. The most casual consideration 
of tidal flow shows, however, that in a channel whose width and 

depth are small in comparison with the length, the lateral and vertical 

movements of the water may be neglected, as they are in the equations 
for steady flow. Similarly, in the derivation of the equations for tidal 
flow, the velocity at a given instant may be taken as of the same 
value throughout a cross section of the channel perpendicular to the 

channel axis. 
217. Units—lIn the ensuing development and application of the 

equations for tidal flow, the time, f, will be expressed in seconds, unless 

otherwise stated; lengths, heads, and other dimensions in feet; veloci- 
ties in feet per second and acceleration in feet per second per second. 
Conforming to these units, the speeds of the harmonic components 
(par. 49) are derived in radians (or degrees) per second; but in the 

application of the formulas, it ordinarily will be more convenient to 
convert these speeds into degrees per hour. 

(109) 
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218. Derivation of equation of motion.—Taking the X axis of coordi- 
nates as a horizontal line in the direction of the axis of the channel, and 
the Y axis as vertical, let: 

» be the velocity of the current at the time f, and at a cross 
section of the channel distant x from the origin of coordinates; 
» is taken as positive when the direction of flow is in the 

positive direction of z, and negative when the flow is in the 
opposite direction. 

Ov/dt, the acceleration of the velocity at a given cross section 
with respect to time. 

07/Oxr, the rate at which the velocity is increasing (algebraically) 
at a given instant with the distance of the cross section from 

the origin. 
dx, the distance, along the direction of the X axis, traveled by 

a particle of water during the elementary time interval di. 
(Oy/O0xr)dxr, the (algebraic) increase in the elevation of the water 

surface in the distance dz; this increase being positive if the 
slope of the water surface is upward, and negative if down- 

ward in the direction x positive. 

X, the area of the cross section of water prism of the channel, 

at the point z, and at the time f. 
Q, the discharge through the cross section. 

w, the weight of 1 cubic foot of water. 
g, the acceleration due to gravity. 

m, the mass of the water discharged through the cross section — 

during the time interval dt. 

r, the hydraulic radius of the channel at the section under 
consideration. 

C, the Chezy coefficient applicable to this section. 
hens v— dads 

Q=Xv= Xdz/di. 

The volume of the discharge, during the time dt is Qdt = Xdz, and 

its mass, m, Is: 

m=wQdt/g=wXdzr/q. 

The mass of the water in an elementary section of the channel of 

length dz is also: 
wXdr/g=m. 

219. During the time interval dt, work is done in an elementary 
section of the channel of length dz: 

(a) In raising the mass of the discharge the distance (dy/dx)dz in its 

passage through the channel. 
The work so done is: 

mg (oy/Ox)dx. 
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(b) In increasing the kinetic energy of this mass because of the 
increase (0v/Oz)dz, in its velocity in the distance dz. The kinetic 

energy of the moving mass is mv?/2. The force required to increase 

this energy is: 
O(mv?/2)/Ox=mvov/dxr 

and the work done by this force over the distance dz is: 

mv(Ov/Ox) dz. 

(c) In the acceleration of the mass of water in the section, with 

respect to time. The work so done is: 

m(Ov/Ot)dz. 

(dq) In overcoming frictional resistance in the section. The fric- 
tional resistance in a channel is due to the turbulence which the flow 
produces and is dependent upon the velocity of the current. The 
turbulence created at any instant by the slowly varying velocity in a 
tidal channel cannot differ sensibly from that which would be produced 
by the same constant velocity. The work done in overcoming fric- 

tional resistance in the section of length dz may then be taken as that 
developed from the usually accepted formula for steady flow. This 
work is mg(v?/C?r)dx. To become applicable to the reversing flow in 

tidal channels, the algebraic sign of this expression must be considered, 
since the work is positive when the flow is in the positive direction of 
a, and negative when the flow is in the opposite direction. Since v? 
does not change its sign in passing through zero, and the other quanti- 

ties are not directional, this item of work will be written: 

+ mg (v?/C?r) dz. 

The positive sign is to be applied when vis positive, and the negative 
sign when vis negative. 

220. Each of the items of work developed in the preceding para- 
graph may be either positive or negative. The work done in raising 

the mass of the discharge (item @) is positive if 0y/Oz is positive, and 
negative if negative. Item (6) is positive if the kinetic energy is 
increasing in the positive direction of x, and negative if decreasing, 

while item (c) changes its sign with 0v/dt, and item (d) with v. 
Since no external work is done by the flow in the channel, the sum 

of all of the items must be zero, giving: 

mg (Oy/Ox)dx-+ mv(dv/dx)dx-+ m(dv/ Ot) dx + mg (v?/C?r) dr =0 

Dividing by mgdz, this equation reduces to: 

oy/Ox+ (v/g) Ov/Ox-+ (1/g) Ov/ Ot + v?/C?r=0. (112) 

Thus is the basic equation of motion in a tidal channel. 
221. Discussion.—The first term, dy/Oz, in equation (112) is the 

slope of the water surface in the channel at the given cross section and 
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at the given time. The second term, (v/g)0v/0z, is the rate of change 

of v?/29 and may therefore be regarded as the component slope due to 
the velocity head. The third term represents the effect of the accelera- 
tion or deceleration of the current, and the last term is due to the 

frictional resistance. 
The velocity, v, at a given instant, varies in fact from point to 

point in a cross section of a channel carrying tidal flow, as it does 

in a cross section of a channel when the flow is steady. In both cases, 
vis taken as the mean velocity at the section. 

In the derivation of equation (112) the flow is regarded as contin- 
uously turbulent, even during the short interval in which the velocity 
becomes very small in passing through zero, as the current reverses. 

It is evident, however, that a change in the character of the flow during 

so brief a period may be disregarded, even if such change in fact 

occurs. 
222. Application of general equation to steady uniform flow.—When 

the flow is steady and uniform, the velocity throughout the channel 
remains constant, and 0v/Oz and Ov/ot are zero. Taking the velocity 

as in the positive direction, equation (112) reduces to 

oy/Oxr+v?/C?r=0. (113) 

Designating the slope of the water surface as s, and observing that 

when the flow is steady the slope is downward, so that 0y/0x=—s, 

equation (113) becomes: 

—st7?/C’r=0. 

Whence 
v=COyrs. (114) 

Equation (114) is the generally accepted basic formula for steady 
flow, in which the Chezy coefficient, C, may be determined from the 

Kutter, Bazin, Manning, or other formulas. 
223. Selection of Chezy coefficient for tidal flow.—It is apparent from 

the preceding discussion that the value of C to be used in equation 

(112) when the flow is tidal should be that applicable to the channel 

were the flow steady. While the value of C determined from the 
Kutter formula varies somewhat with the slope in the channel, and this 
slope fluctuates between limits when the flow is tidal, this variation in 
Cis so small with the slopes usually found in tidal channels that either 
the maximum or the numerical mean or median slope during the tidal 
cycle may be used in the application of the formula without affecting 
the value of C to a greater degree than that inherent in the uncertainty 

in the selection of the proper coefficient of roughness. 
224. Expression for the friction term when the velocity has a harmonic 

fluctuation.—It has been seen that the friction term in equation (112) 

changes its sign in passing through zero, while the expression for the 
friction term, v?/C?r, does not change its sign. A mathematically con- 
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tinuous expression for the friction term may be derived when the 
velocity has the simple harmonic variation: . 

v=B sin (at+ 8), (115) 

in which B is the maximum numerical value of v during the tidal cycle. 
Designating the friction term as F’, then: 

F=-+ (B?/C’r) sin? (at+8). (116) 

The positive sign is to be applied when (at+ 8) has values between 
0 and a, 27 and 37, 47 and 57, etc.; and the negative sign when (at-+ 6) 
has values between z and 27, 3m and 47, etc. 

The graph of such a function is shown by the solid line in figure 36. 

=sin *(at+B) 
\\ 3rsin (at+B) 

FIGURE 36.—Graph of friction term of an harmonic current. 

225. Placing, for convenience, at-+ 6=z, the function +sin? x is by 
definition such that sin? (—z)=—sin? z. By Fourier’s theorem it 

should therefore be expressed by the series: 

A, sin z+ A, sin 27+ A; sin 82+ ...A,sinnx... (117) 

In which the coefficients, for values of « between 0 and 7, are: 

A,= elm) f Siierhcinny Ga, AG — in) | sin? x sin 22 dz, 
0 0 

A, —(2/m) j, sin? z sin nx dr. 
J0 

And, for values of « between 7 and 27, the coefficients are: 

20 Qr 

A= ein) f Sina sii de, “As ln) { sin? x sin 2x dz, 

20 

A= ela) | sin? z sin nz dr 
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In these expressions, n is any integer. Since: 

sin? r= % (1—cos 2z), and cos 2z sin nr==\ sin (2-+-n)r— sin (2—n)a, 

A,,= (2/7) i) eae x sin nx dz 
0 

= c/n) {sin nx dx— A/a) {cos 2x sin nx dr 
0 0 

= (fn) | sinnrde— 12x) { “sin (2+n)x dx 

+ (1/2) { “sin (2—n)x dx 

__ COS NX cos (n+2)x]|*, cos (n—2) a |F (118) 

Sn [+ 2(n+2)a if 2(n—2)r ] 

The values of cos nz, cos (n+2)x and cos (n—2)x are +1 when 

x=0. If nis odd their value is —1 when r=z7; but if n is even their 

value is +1 when z=. Therefore, for values of x between 0 and z, 
the value of A, is, when n is odd: 

2 1 1 8 (119) 
Aree, (n+2)r  (n—2)r n(n? —4) 

but when n is even, A,=0. 

Substituting successive odd values of n: 

A,=8/(37), A;s=—8/(157), A;=—8/(1057r), A,=—8/(3157), ete. 

For values of z between 0 and 7, therefore: 

sin? x=(8/37) (sin r—1/5 sin 3x—1/35 sin 5r—1/105 sin 7z. . .) (120) 

Similarly, for values of x between a and 27: 

i oes “| cos al cos eel 

i Ne nT 2(n+2)r |, 2(n—2)r |, 
(121) 

Since, when n is odd, the functions cos nz, cos (n+2)x and cos (n—2)x 

have a value of —1 when z=z and of +1 when r=2r7, the value of 

A,, becomes, between these limits. 

8 

A,= = —4) 7 Uae 

But when 7 is even the values of these cosine functions is -+1 both 

when z=7 and when r=2z, and the coefficient is zero. 
For values of « between a and 27, therefore; 
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sin? = — (8/37) (sin z—1/5 sin 3x—1/35 sin 52—1/105 sin 7/x. . . )(123) 

It similarly may be shown that for values of « between 27 and 3r 
the expression for sin2z is given by equation (120); for values of z 
between 37 and 47, by equation (123) and so on. 

226. Therefore, when v=B sin (at+ 8) the value of Fis represented 

by the continuous function: 

F= (8/37) (B?/C’r)[sin (at+ 8)—1/5 sin 3(at-+ 8) 

=i doysia oO) (Gt-19)).- (124) 

The friction term is then the resultant of a principal component, 

F,= (8/37) (B?/C’r) sin (at+ 8) = (8/32) Bo/C?r (125) 

with the speed of the velocity, and minor components whose speeds 

are 3, 5, 7, etc., times the speed of the principal component. The 
correspondence between the principal component and the complete 

value of F is shown in figure 36. 
The derivation of a mathematically continuous expression for F 

when the velocity is the resultant of two or more harmonic components 

would be difficult, if not impossible. 

SURFACH, VELOCITY, ACCELERATION, AND FRICTION HEADS 

227. It is the generally accepted practice to apply the formulas for 
steady flow to sections or reaches of a channel of considerable length, 

even though the velocity is not entirely uniform throughout such 
reaches because of a variation of successive cross sections of the water 

prism in the channel. For the computation of the friction term, the 

velocity throughout the reach is taken as the average velocity, as 

determined usually by the discharge through the average cross sec- 
tion. The error introduced by the assumption, as well as the error 
introduced by considering the velocity at any point in the channel 
as the mean velocity in the cross section, is generally small in com- 

parison with the uncertainty in the selection of the proper coefficient 

of roughness to derive the value of C. The equation for varying flow 

may similarly be applied to sections of channel of considerable length, 

so long as the velocity and the slope at any instant are tolerably con- 
‘stant throughout the section. In deep channels these conditions are 
fulfilled in sections several miles in length. Denoting the length of 
such a section by J, equation (112) establishes the relationship: 

loy/O0x+1(v/g) Ov/Ox-+ (L/g) Ov/ Ot Llv?/C’r=0. (126) 

228. The end of the section from which distances in the section 

extend in the positive direction may be designated the initial end. 



116 

The elevation of the water surface at the initial end of the section at 
the time ¢ will be designated yo, at the other end at the same instant, 

y,; the velocity at the initial end, v7, and the velocity at the other end, 
V4. 

229. In the first term of equation (126) the slope, dy/Oz, may be 
considered the average slope through the section. This term is then - 

the difference, y;—Yo, between the elevations of the water surface at 
the ends of the section: it will be called the surface head and desig- 
nated h;. Then 

h,=loy/0x=Yi— Yo (127) 

It may be noted that the surface head is positive when the water is 
sloping wpward in the positive direction along the channel, and nega- 
tive when sloping downward. 

230. The second term of equation (126), (v/g)dv/ox is the change in 

v?/2g between the ends of the section, and is therefore the velocity 
head, h,, giving: 

h,=l(v/9) 0v/or=v?2 /2g—v2/29 (128) 

It may be noted that the velocity head is positive when the velocity 
is increasing numerically in the positive direction, and negative when 
the velocity is numerically decreasing in that direction. 

231. The third term of the equation may be called the acceleration 
head, and designated h,, giving . 

ha= (l/g) Ov/ ot (129) 

In which 0v/ot is the acceleration of the average velocity through the 
section. ; 

The acceleration head is positive when the average velocity through 
the section is increasing algebraically with respect to time. 

232. The fourth term is the friction head, h,, giving: 

hy= £lv?/Or (130) 

in which v may be taken as the average velocity through the section 
at the given instant, C is the Chezy coefficient applicable to the sec- 
tion, and 7 the hydraulic radius. The friction head has the same 
sign as the velocity. 

233. Substituting the symbols for the various heads in equation 
(126): 

ose Opens = 0 == 0 (131) 

In this equation, h,, h,, and hy; have the same significance as in | 
steady flow, except that A, and hy, as well as h, may be negative. 
The acceleration head is the additional term which must be included 
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in tidal flow. It is readily evaluated when the rate of change in the 
velocity is known. Thus if the velocity is algebraically decreasing 

at a given time at the rate of 0.003 feet per second per second in a 
‘section of channel 10,000 feet in length, the acceleration head is 

— 10,000 X0.003/32.16= —0.93 feet. 

234. Entrance and recovery heads—In steady flow, the head due to 
the increase in velocity at the entrance to a contracted section of a 
channel is termed the entrance head. Its commonly accepted 
value is: 

h=m(v2—2°)/2g (132) 

In this equation 7% is the velocity in the approach to the contrac- 
tion, 2, the velocity in the contracted section, and m a coefficient to 

account for the increased turbulence at the contraction. The entrance 
head is then the change in 2?/2g at the entrance, times a suitable 

coefficient. If the velocity in the contracted section is not large, m is 
often taken as unity. 

At the outlet of the contracted section, the decrease in the kinetic 

energy of the flowing water gives rise to a recovery of head whose 
value is given by the same formula by taking v as the velocity in 
the contracted section, and 2, the velocity in the expanded channel. 
The recovery head is then also the change, in the positive direction, 
of v?/2g, times a suitable coefficient. Since, however, the recovery of 
energy is never complete, the value of m for the recovery head is 

always less than unity, and frequently is taken as 0.5. 
235. In reversing tidal flow each end of a contracted section of 

channel is alternately the entrance and the outlet. At the initial end 
the flow is into the contracted section when the velocity is positive, 
and out when the velocity is negative; but since the numerical value 
of the velocity remains the greater in the contracted section, the 
change in v?/2g at the entrance is positive, whichever the direction of 

the flow. At the other end the flow is out of the contracted section 
when the velocity is positive, and into the section when negative; 
but the change (in the positive direction) of v?/2g is always negative. 

At both ends, therefore, the change (in the positive direction) of 

v’/2g represents an entrance head when it has the same sign as the 

velocity, and a recovery head, to which a reducing factor should be 
applied, when it is of opposite sign to the velocity. On an expanded 
section of the channel, the contrary condition obviously exists. 

236. Contraction heads.—At a sudden local contraction in a section 
of channel that otherwise may be taken as uniform, such as at a bridge, 
the increased turbulence resulting from the increase and decrease of 
the current produces a net head, of the same nature as an increase in 
the friction head. Such a contraction head may be introduced in 
computations of tidal flow by determining, from the applicable for- 
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_mulas developed for steady flow, its numerical value at the given 
velocity in the section, and giving it the sign of the velocity. 

CURRENTS PRODUCED BY A SIMPLE HARMONIC FLUCTUATION OF THE 

SURFACE HEAD AND SLOPE IN A SHORT SECTION OF A CHANNEL 

237. The surface head in a section of a tidal channel is the differ- 

ence between the elevation of the tides at the ends of the section. 
These tides are, as has been seen, the resultant of a number of har- 

monic components, of various amplitudes, speeds, and phases, occa- 

sionally modified by meteorological disturbances. Quite obviously, 
the surface head likewise is the resultant of harmonic components of 

the same speeds; but it does not follow that the amplitudes of the 
components of the head are proportional to the amplitudes of the 
tides. On the contrary, the amplitudes of the diurnal components of 

the head may be, and frequently are, proportionally less than the 

amplitudes of the diurnal components of tides of the mixed type; and 
overtides of the head often are relatively more important than those 
of the tides themselves. Generally, the head in a short section of a 
tidal channel during a single tidal cycle does not depart widely from 
a simple harmonic fluctuation with the speed, m:, of the principal 

lunar component of the tides. The currents derived from such a 
simple harmonic fluctuation of the head often afford a sufficient indi- 
cation of the strength and timing of the actual currents; and in any 

case provide a basis for a determination of the currents resulting from 
a head which has a given variation from the simple harmonic fluctua-. 
tion assumed. 

238. Relation of surface head to a sumple harmonic fluctuation of the - 
tides at the ends of a short section of channel.—lIf the tides at the ends 
of the section are taken to have simple harmonic fluctuations of the 
same speed, the head likewise has a simple harmonic fluctuation of 
the same speed. Let O and A be two stations on a tidal channel, at 
such a limited distance, /, apart that at any instant the variation in 

the velocity and slope between the stations is immaterial. Let: 

Up =A cos (at+ ao) (133): 

be the elevation of the water surface at O, taken as the initial sta- 

tion, and let: 
Y,=A, cos (at-+ a) (134): 

be the elevation of the water surface at A. 
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The surface head in the section is then: 

h,=Yi—Yo= A; cos (at+a,) — Ay cos (at+ a) 

=A, cos (at-+a,)+ Ap cos (at+a)+180°) (135) 

Since two components of the same speed unite into a single com- 
ponent of that speed, equation (135) may be written: 

h,=H cos (at+H°) (136) 

In which 7 is the amplitude, and H° the initial phase, of the fluctua- 
tion of the surface head during the tidal cycle. 

239. Computation of H and H°®.—The amplitude and phase of the 
surface head in the section readily may be determined from the 

amplitudes and phases of the tides at the ends of the section, through 
the relation established in equations (135) and (136): 

H cos (at+H°) =A, cos (at+a,)— Ay cos (at+ay) (137) 

Equation (137) is identically true for all values of ¢. By placing 
at=0, the equation of condition is derived: 

H cos H°=A, cos a,— Ap COS ay (138) 

and by placing at= 90° 

Hsin H°= <A, sin a,— Ap sin ap (139) 

The values of 7° and H may then be determined from the equations: 

tanec EE cose” (140) 

H=H sin H°/sin H°=H cos H®/cos H° (141) 

The amplitude, H, is directionless. The quadrant in which H° lies 
is determined by the algebraic signs of H sin H® and H cos H’°. 

240. EKxample.—The curve showing the average height of the tide 

at station 180-+30 on the Cape Cod Canal, after the time of a lunar 

transit, prepared from observations during the period September 28 

to October 6, 1932, is represented by the equation: 

y=3.74 cos (m:t+58°34’) 

and at station 225 by: 

y=3.18 cos (m,¢+61°10’) 
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Taking station 180-+30 as the initial station: 

A, cos o,=3.18 cos 61°10’=1.534 A, sin a,=3.18 sin 61°10’ =2.786 

Ap COS a=3.74 cos 58°34’=1.950 Ay sin a=3.74 sin 58°34’=3.191 

H cos H=—.416 H sin H°=—.405. 

tan H°=—0.405/0.416=0.9736 

The corresponding angle, from a table of natural tangents, is 
44°14’. Since the sine and cosine are both negative, H° les in the 
third quadrant, and is: 

EP=180°+44°14’ =224°14’ 

and 
H=0.416/cos 44°14’=0.58 

The equation of the surface head in the section between the two 
stations is therefore: 

h,=0.58 cos (Mm t+224°14’) 

241. Generating radius of head.—The rela- 

Y tion between the generating radii of the 
curves representing the tidal heights at 
the two ends of the channel and that of the 
head in the channel is shown in figure 37, 
in which CP,)= A), is the generating radius 
of the tide at the initial end, CP,;=A, that 

c at the other end of the channel, CP2=P P; 

is the generating radius of the curve showing 

the surface head. 
242. Equation of primary current.—As will later be made apparent, 

the currents produced by a simple harmonic fluctuation of the surface 

head in a short section of the channel depart somewhat from a simple 
harmonic fluctuation. These distortions of the current are due to 

the form of the velocity head term, (v/g) Ov/Ox, in the general equation 
of motion, to the minor components of the friction term produced by a 
harmonically varying current (par. 226) and to the variation in the 
hydraulic radius and Chezy coefficient with the rise and fall of the 
tide. Under usual conditions of tidal flow the velocity head in a 
short section of a channel is relatively so small that the velocity head 
term may be omitted. The other disturbing elements may be treated 

Fic URE 37.—Relation of head to tides. 
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as corrections to a harmonically varying primary current, BEES Se Ue. 
by equation (115) 

v=B sin (at+ 8) 

243. Dropping the velocity head term, (v/g)0 v/dz, from equation 

(112), and substituting for the friction term its principal component 
for an harmonically varying current (equation 125), the differential 
equation of the primary current is: 

dy/dx-+ (1/9) dv/dt-+ (8/37) Bu/C2r =0 (142) 

In this equation C and 7 are the values of the Chezy coefficient 
and hydraulic radius at mean tide. 

In equation (142): 

oy/0x=h,/l=(H/l) cos (at-+-H°)=S cos (at+ HA), (143) 

in which S=H// is the numerical value of the maximum slope in the 
channel during the tidal cycle. 
From equation (115): 

0v/O0t=aB cos (at+ 8) (144) 

Equation (142) then becomes: 

S cos (at-+-H°) + (aB/g) cos (at+ 8) + (8/37) (B7/Cr) sin (at+ 8) =0 

(145) 
In which a is expressed in radians per second. 

244. Solution of equation.—By placing at=0 and at=—7/2 in 

equation (145), two equations of condition are established from 

which expressions for B and 6 may be derived. When at=0, equation 
(145) reduces to: 

S cos H°-+ (aB/g) cos B+ (8/37) (B?/O?r) sin B=0 (146) 

and when at=—7/2, to: 

S sin H°+ (aB/g) sin B— (8/37) (B?/C?r) cos B=0 (147) 

Multiplying equation (146) by cos 8 and equation (147) by sin B 
and adding: 

S(cos H® cos 6+sin H° sin 8)+ (aB/g) (cos? B-+sin2 8) =0 

or: 

S cos (H°— 8)+Ba/g=0 (148) 

Multiplying equation (146) by sin 6 and equation (147) by cos 6 and 
subtracting: 
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S(cos H® sin B—sin H® cos £)+ (8/37) (B?/C’r) (sin? B+-cos? B)=0 

te _§ sin (EP—8) + (8/32) B/O%r=0 (149) 

It is convenient to place: 

H°—B=¢+7/2 (150) 

So that equations (148) and (149) become: 

S sin ¢=aB/g (151) 

S cos ¢= (8/32) B?/C’r (5?) 

Whence 
B/C’r= (81/8) (a/g) cot ¢ (153) 

Eliminating B from equations (151) and (153): 

sin @ tan ¢= (32/8) (a/g)?C?r/S (154) 

And from equation (152): 

B=31/8 C-yrS yecos ¢ (155) 
Or, from equation (151): 

B=G/a) S sin ¢ (156) 

It may be seen from equations (151) and (152) that both sin ¢ and 

cos ¢ are intrinsically positive. @ is therefore an angle between 0 

and 90°. 
245. Computation of ¢ and B.—Equation (154) may be written: 

(g/a)aJsin ¢ tan ¢=y37/8-CyrS/S (157) 

Placing for convenience, 

P=732/8 C yrS (158) 

= 1.0854 OyrS 

This equation reduces to: 

(gia)ysin @ tan ¢=P/S 2 Nae) 
The numerical values of P and P/S are readily computed from 

the amplitudes, S, of the slope in the section during the tidal cycle, 

and the Chezy coefficient C and hydraulic radius, 7, at mean tide. 
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TABLE IX 

’ P/S log P/S 4/ 0s @ | log Vcos } fo) PIS log P/S 

0 0 1 0 
it 3,995 | 3.60147 1,000 9. 99997 46° | 197,500 | 5. 29563 
2° 7,990 | 3.96253 1. 000 9. 99986 47° | 202,700 | 5.30681 
32 11,990 | 4. 07848 . 999 9. 99970 48° 207,900 | 5.31790 
4° 15, 980 | 4. 20369 . 999 9, 99947 49° | 218,300 | 5.32889 
6° 19,980 | 4.30070 . 998 9. 99917 50° | 218,700 | 5.33980 

( 23,990 | 4. 38002 . 997 9. 99880 one 224,200 | 5.35065 
i 28,000 | 4.44710 . 996 9. 99837 io 229,900 | 5. 36144 
8° 32,010 | 4. 50526 - 995 9. 99788 Dom 235, 600 | 5. 37220 
g° 36, 030 | 4. 55660 . 994 9, 99731 54° 241, 500 | 5, 38292 

10° 40,050 | 4.60257 . 992 9. 99667 oe 247, 500 | 6.39365 

inl? 44,080 | 4.64420 991 9. 99597 56° 253, 700 | 5. 40437 
i932 48,110 | 4.68226 . 989 9. 99520 57° | 260,100 | 5.41512 
13° 52, 160 | 4.71731 . 987 9. 99426 58° 266, 600 | 5. 42589 
14° 56, 210 | 4. 74980 . 985 9. 99345 59° 273,400 | 5.43672 
15° 60, 270 | 4.78010 . 983 9. 99247 60° 280, 300 | 5.44762 

16° 64, 340 | 4, 89850 . 980 9, 99142 61° 287, 500 | 5. 45861 
ig. 68, 430 | 4.83522 . 978 9. 99030 §2° 294,900 | 5. 46971 
18° 72,520 | 4.86046 . 975 9. 98910 63° 302, 600 | 5. 48094 
19° 76,630 | 4.88438 972 9. 98783 64° 310, 700 | 5 49232 
20° 80,750 | 4.90714 - 969 9. 98649 65° 319, 100 | 5. 50388 

PANE 84,890 | 4.92883 . 966 9. 98507 66° 327, 800 | 5. 51565 
222 89,040 | 4. 94957 . 963 9, 98358 67° 337, 000 | 5. 52767 
Dae 93,210 | 4.96944 . 959 9. 98201 68° 346, 700 | 5. 53996 
24° 97, 390 | 4.98853 . 955 9. 98036 69° 356, 900 | 5. 55257 
5c 101,600 | 5, 00689 - 952 9. 97864 79° 367, 700 | 5. 56554 

26° 105, 800 | 5.02459 . 948 9. 97683 “ae 379, 300 | 5. 57893 
ie 110,100 | 5, 04168 . 944 9. 97494 ee 391,600 | 5. 59279 
28° 114, 300 | 5, 05822 . 940 9. 97297 ABS 404, 800 | 5.60721 
29° 118, 700 | 5.07424 . 935 9, 97091 74° 419, 000 | 5.62225 
30° 123,000 | 5, 08978 . 931 9. 96876 Ue 434, 500 | 5.63803 

31° 127, 300 | 5, 10489 926 9. 96653 76° 451, 500 | 5.65465 
32 131, 700 | 5.11958 921 9. 96421 Uae 470, 200 | 5.67226 
3B 136, 100 | 5. 13389 916 9. 96179 78° 491,000 | 5.69104 
34° 140, 509 | 5, 14785 911 9. 95929 79° 514, 390 | 5.71123 
Shi 145, 000 | 5, 16149 905 9. 95668 80° 540, 900 | 5. 73309 

36° 149, 600 | 5. 17482 899 9. 95398 81° 571, 500 | 5. 75703 
Byte 154, 100 | 5. 18787 894 9 95117 2° 607, 500 | 5.78356 
38° 158, 700 | 5. 20065 888 9, 94826 83° 650, 700 | 5.81338 
39° 163, 400 | 5. 21320 882 9. 94525 84° 704, 000 | 5.84758 
40° 168, 100 | 5. 22552 875 9, 94212 Sie 772, 300 | 5.8877. 

41° 172, 800 | 5. 23763 869 9. 93889 86° 864, 400 | 5.93673 
42° 177, 600 | 5. 24955 862 9. 92554 Si 999, 000 | 5. 99958 
43° 182, 500 | 5. 26130 855 9. 93206 88° |1, 224,300 | 6.08790 
44° 187, 500 | 5, 27288 . 848 9. 92847 89° |1, 732, 200 | 6. 23859 
45° 192, 500 | 5. 28432 . 841 9. 92474 

log cos & 

9. 92088 
9. 91689 
9.91275 
9. 90847 
9. 90403 

9. 89943 
9. 89467 
9. 88973 
9. 88461 
9. 87929 

9. 87378 
9. 86805 
9. 86210 
9. 85592 
9. 84948 

9. 84278 
9. 83580 
9. 82852 
9. 82092 
9. 81297 

9. 80466 
79594 
78679 
77716 
76702 

75632 
74499 
73297 
72017 
70650 

69184 
9. 67604 
9. 65894 
9. 64030 
9. 61983 

{  OWwWOw sss 10 

59716 
57178 
54295 
50962 
47015 

42179 
35940 
27141 
12093 DOOD ww s9 0 

P=1.0854CyrS log 1.0854=0.03559 

246. In table LX the values of P/S=(g /a)sin ¢ tan @ with their 

corresponding logarithms, are tabulated for each degree of ¢ from 0 

to 89°, when a is the speed, ms, of the principal lunar semidiurnal 

component, in radians per second. 

the value of mz, in degrees per hour, is 28° .9841. 

per second is then (28.9841/3600) (m/180)=0.000,140,52. 

From table II, paragraph 75, 

Its value in radians 

This 
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value is used in the preparation of the table. The value of g is taken 
as 32.16. By entering table 1X with the computed value of P/S or 

of its logarithm, the value of ¢ for a simple tidal fluctuation with a 
speed of mg, is readily determined by interpolation. 

The value of B is then, from equation (155): 

B= Py cos o , (160) 

247. If the tidal fluctuation has a speed, a, differing from that of 
the principal lunar semidiurnal component, m,, on which table [X is 

constructed, equation (159) may be written: 

(g/m>)+/sin ¢@ tan ¢=(a/m,) P/S (161 

To determine the value of ¢, table IX is then entered with the 

computed value of (a/m,)P/S. It may be noted that the speeds, a 

and ms, may be expressed in any common units. 

248. Value of 8—KFrom equation (150): 

pB=M—¢—7n/2 

Or, when angles are expressed in degrees: 

Boo 90° (162 

The equation of the primary current is then: 

v=B sin (at+ H°—¢—90°) (163) 

The values of B and ¢ are determined as shown in paragraph 246; 
and H°, the initial phase of the head, is determined as shown in 
paragraph 239. 

249. Hramples.—The surface head between stations 180+30 and 

225 in the Cape Cod Canal, at the time ¢ after a lunar transit, was 

found in paragraph 240 to be: 

h,;=0.58 cos (mst+224°147’) 

The length of the section is 4,470 feet, giving: S=0.58/4470= 
0.000,130. The hydraulic radius, at mean tide, at the time of the 
observations, is given as 22.7 feet. As the bed is exceptionally rough, 
an appropriate value of Kutter’s “n” is 0.030. Taking the mean 
slope as 0.0001, the corresponding value of Cis 90. From these data: 

P=1.0854Cy7S=5.31, P/S=40,820. 
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From table IX the corresponding value of ¢ is 10°12’, and from 
equation (160): 

B=5.31ycos 10°12’=5.27 feet per second. 

From equation (163), the primary current, at the time ¢ after a 

lunar transit is then: 

p=5.27 sin (mt+124°02’) 

250. The head and the primary current are plotted in figure 38.. 
As station 180+30 has been taken as the initial station, and as the 
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FIGURE 38.—Primary current and head in section of Cape Cod Canal. 

stationing is from east to west, westerly currents are positive, and 
sasterly currents are negative. 

251. As asecond example, the value of Sin a section of the Delaware 
River near the mouth is 0.0000146, the hydraulic radius in the section, 

The value of C corresponding to a. at midtide, being 19.3 feet. 

Then: coefficient of roughness of 0.025 is 120. 

P=218  P/S=149,300 

o=36° B=2.18ycos 36°=1.95 feet per second. 
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252. The relation between the head in a section 5,000 feet in length 
and the velocity is shown in figure 39, the origin of time being taken 
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FIGURE 39.—Primary current and head in section of Delaware River near entrance. 

at a moment when the head turns from negative to positive. 

253. For a third example, a channel may be taken with a hydraulic 

radius of 100 feet, and a maximum slope, S, of 0.000,01 during the 

tidal cycle. An appropriate value of Cis 150. 
Then: 

Paseo PG aaec0r 

o—19- B=5.1354/cos 79° =2,24 feet per second. 

The relation between the head in a 5,000-foot section of such a 

channel and the velocity is shown in figure 40, the origin of time being 
as in the preceding example. 
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FIGURE 49.—Primary current and head in deep channe!. 

254. Lag of primary tidal current.—It may be observed that positive 
directions have been so assigned to heights and velocities that the 
water is running down hill when the head is positive and the velocity 
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is negative, or vice versa; and is running uphill when both the head 
and the velocity have the same algebraic sign. While this convention 
may appear unnatural, it removes the confusion that would result 
were vertical distances taken as positive in a downward direction. 

In each of the diagrams illustrating the preceding examples, the head 
reaches a maximum at the time marked C, and the primary current 
reaches its strength, in the opposite direction, at a subsequent time 
marked ). The strength of the primary current in a tidal channel 

therefore lags behind the maximum surface head and slope by the 
time interval CD. The turn of the primary current lags behind the 
turn of the surface head and slope by the equal interval AB. 

Designating the time C as fy, and the time D as t,, then from the 
equation of the surface head (equation 136): 

h,=H cos (at+H°) 

it is evident that 

atj+H°=0. 

From the equation of the primary current (equation 163): 

v=B sin (at+ H°—¢—90°). 

and 

at, + H°— ¢@—90°=— 90°. 

Whence 

at,—at)=¢. 

The intervals CD and AB are then equal to ¢/a; and the angle ¢ may 
be designated the angular lag of the primary current. 

255. Characteristics of tidal flow.—In each of the preceding examples 
the water flows downhill during the intervals indicated as BA on the 
diagrams. At the moments marked A the water surface is level, but 
the momentum of the moving water continues to carry it in the direc- 
tion of its motion. During the intervals from A to B the water flows 

uphill until the momentum is checked. At the instants marked C, 

when the current reaches its maximum velocity in either direction, 

the acceleration is zero, and the velocity is determined by the slope 
and frictional resistance only, and is the same as though the flow 

were steady; but as the velocity lags behind the head, the maximum 
velocity does not occur when the head is a maximum. When the lag 

is very large, the maximum velocity occurs at a moment when the 
head is very small. 
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256. “Hydraulic” or “frictional” flow—The first of the preceding 
examples (fig. 38) shows that if the head in a tidal channel is sufficient 
to produce strong currents, and the channel is not of great depth, the 
lag of the current with respect to the head is small, and the current at 
any instant is substantially the same as that which would be produced 
by the instantaneous head were the flow steady. The flow under 
these conditions is often termed ‘“‘hydraulic.”’ A better name is 

“frictional tidal flow.’’ Currents of this character are found in the 
East River, N. Y., and in other tidal straits of moderate depths which 
are subject to a considerable tidal head. 

If the lag is small, the value of cos in equation (155) is close to 

unity, and the amplitude, B, of the velocity varies from day to day 

-as the square root of the amplitude, S, of the slope, and hence as the 
square root of the amplitude of the head, H, during the tidal cycle. 
‘Since the tides at the ends of a tidal strait keep in general step as their 

amplitudes change from day to day with the changing declinations 
and distances of the moon, the daily variation in H/ is nearly propor- 
tional to the daily variation in the tidal range. When therefore the 
flow in a strait is largely frictional, or “hydraulic,” the ‘strength 
of the current” in each section of the channel varies from day to day 
approximately as the square root of the tidal range. 

257. Frictionless tidal flow—The lag of the current increases as the 

slopes in the channel and the current velocities decrease. It increases 

also as the depth of the channel and the coefficient C increase. As 
shown in the last example (fig. 40), the lag becomes very large in deep 

channels with small slopes. Most of the potential energy due to the 
head in the channel is then taken up in the acceleration and decelera- 

tion of the current and little in overcoming frictional resistance. The 

flow under these conditions is sometimes termed ‘‘tidal,” as distin- 

guished from the “hydraulic” flow determined principally by fric- 

tional resistance. A better name is “frictionless flow.”’ 
258. In a section of channel which is so deep, or in which the cur- 

rents are so weak, that the flow is nearly frictionless, ¢ 1s nearly 90°. 

A small error in taking off its value from table [X would then produce 
a large error in the computation of the amplitude, 6, from equation 

(160). When ¢ is large, the value of B is better derived from equa- 

tion (156): 

B=(g/a)S sin ¢ 

For tidal fluctuations having the speed of the M, component, and 

for g=32.16, the value of g/a is 228,900; and its logarithm is 5.35958. 
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For wholly frictionless flow, 6=90°, and 

B=gS/a=gH/al (164) 

The amplitude of the fluctuations of the current then varies from 
day to day directly as the head, and hence nearly as the amplitude 
of the tide. 

Obviously, in the fiords of Alaska, where depths of 1,000 feet are 

common, and in other deep channels such as the Florida straits, the 
tidal flow is essentially frictionless. 

259. If the depths in a channel are small enough and the currents 

sufficiently marked to be of consequence to shipping, the tidal flow is 
not frictionless and the currents depend upon both the friction head 

and the acceleration head, as indicated in the second example (fig. 40). 
The so-called hydraulic state of flow is one of degree only, and merges 
without distinction into conditions of flow in which the acceleration 

head becomes of increasing importance. The maximum velocity, or 

the “strength of the current”’ is always less than that which would be 
produced by the maximum head were the flow steady. The accelera- 
tion head acts as a brake on the currents as the friction head diminishes. 

DISTORTIONS OF PRIMARY CURRENT 

260. The primary current has been derived by taking the surface 
slope as a simple harmonic fluctuation; dropping the velocity head 
term from the general equation of motion (equation 112); substituting 
for the friction term its principal harmonic component (8/37) Bo/C?r; 

and taking the hydraulic radius, 7, and the Chezy coefficient, C, at 

mean tide. The corrections for these approximations will now be 
developed. These corrections produce a velocity-time curve which is 
more or less distorted from the simple harmonic curve of the primary 
current. 

261. Corrections for the variation of frictional resistance with the re- 
versing square of the velocity—The corrections to fulfill the condition 

that the friction term is +v?/C*r, may be computed, to any desired 

degree of refinement, by a somewhat laborious process explained in 
detail in appendix IJ. As there shown, these corrections, designated 
as 7, are proportional to the amplitude, B, of the primary current and 
depend upon its angular lag, ¢, and its phase, af+ 6. The correction 
factors, 2/B, as so computed for successive values of ¢, and for values 
of at+ 8 from 0 to 180°, are shown in table X. For values of at+ 

between 180° and 360° the table is entered with at-+ 8—180° and the 

algebraic sign of correction reversed. As will be seen from the table, 

the corrections are small when ¢ is large, and the flow consequently 

is nearly frictionless. They become zero when ¢=90°. 
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TABLE X.—Correction factor 1/B 

o= 0 5° 10° 20° 30° 40° 50° 60° 70° 80° 

at+B=0 0 —0.18 | —0.18 | —0.16 | —0.14 |—0.11 |—0.08 |—0.05 |—0.03 |—0.01 
5° +. 18 —.14 —.16 —.15 =.13 9} =.10 «|| =.07 |>=.104 | — 1035 se Ss01 

10° +. 21 0 —.09 =p WH =r = 308) 06) 2 OF 02 eae 
15° +. 21 +. 12 0 — 0%) — 0 |) = 0 | = 0S || — 0 | S| = 
20° +. 20 +. 16 +. 08 —.01 —.04 | —.04 | —.03 |) =7027 |) — 209 0 
25° +. 18 +. 18 +. 138 +. 04 0 —.01 | —.01 0 0 0 

30° +. 15 apo lla =. 14 +. 07 +.03 | +.01 0 +. 01 0 0 
35° +. 12 +. 14 =. 14 +. 09 +.05 | +.03 | +.02 | +.01 | -+.01 0 
40° SF ll) Spo Lil +. 12 +. 10 SOG) ol OFe st OSie ct O2 ictal Leen 
45° +. 07 +. 08 +. 10 +. 09 spo || SO |) apoB | se O2 | se 0% | ss. 
50° +.04 +. 06 +. 07 +. 08 =506 |) 005) |) 2103) nO) Nn O2 ene taOk 
55° +. 02 +. 03 +. 04 +. 06 soe | SAOee PSB) SeeR} ese |) sell 

60° =o (Hil 0 +. 02 +. 03 sro oe |) sa | 402 |) se.02 |) se. 0 
65° —.02 —.02 —.01 +. 01 = O2 a 02) iO 2Ns | -t-O2ia etn On ton 
70° —.05 — 704 —.03 —.01 spoil | SO | se Ol | ae O | seW |) se il 
75° —. 06 —.05 —. 05 —.03 =o (Ul 0 0 0 +. 01 0 
80° —.07 =, O7 —. 06 —. 04 =. 08} |} =p (dil —.01 0 0 0 
85° —.08 =o (0 =o (07 —.06 = (028) 508} |) 5 | Sil | 0 0 

90° —.08 —.08 —. 08 0 —.05 | —.04 | —.03 | —.02 | —.01 | —.01 
95° —.08 —.08 —. 08 = Uy 309 |) = 05 || =U | 04 || = 02 || = 

100° = (i = 07 —. 08 =, (07 —.06 | —.05 | —.04 | —.03 | —.02' >} —- 01 
105° —. 06 —.06 =p Wi —.07 —.06 | —.05 | —.04 | —.03 | —.02 | —.01 
110° —.05 —.05 —.06 —. 06 —.06 | —.05 | —.05 | —.03 | —.02) | —. 01 
115° —.02 —. 04 —. 04 —.05 03 |) 30) |) 05) = 08 | = 0) Sn 

120° (Mil —.02 —.03 =o (UH! —.05 | —.05 | —.04 | —.03 | —.02 | —.01 
125° +. 02 0 —.01 —.02 —.03 | —.04 | —.04 | —.03 | —.02 | —.01 
130° +. 04 +. 03 +. 02 0 —.02 | —.03 | =.03' | —.02 9) —202) |= 70% 
135° +. 07 +. 05 +. 04 +. 02 0 —.01 | —.02 | —.02 |} —.01 0 
140° +. 10 +. 08 aro We +. 04 +. 02 0 Sil | oO | =. Wil 0 
145° +. 12 Sp ll +. 09 +. 06 sro | se.O% | ars Oil 0 0 0 

150° +. 15 +. 13 =. 12 +. 09 +.06 | +.04 | +.02 | +.01 | +.01 | +.01 
155° app Ils) +. 16 “pale +. 11 = 308) | tn05) 1 S035 0-02. sO ln en 
160° +. 20 +. 18 +. 16 +. 13 S510 see |) =O | ae0R | = || =p, 0 
165° +. 21 +. 20 +. 18 +. 15 a Fp ili! sralis |) sO i) S30 | oe || seo 
170° +. 21 ap Zl ro ly) +. 16 +.13 | --.09 | —.07 | +.05 | —-.03) | --201 
175° +. 18 +. 20 +. 20 Spo Uz Spelsy aces) orate apathy |] se) | Se5 il 
180° 0 +. 18 +. 18 +. 16 +.14 | +.11 | +.08 | +.05 | +.03 | +.01 

262. Hxramples.—The primary current in a section of the Cape Cod 
Canal, at the time ¢ after a lunar transit, as derived in paragraph 249, 

ee v=5.27 sin (mt+124°02’) 

and its angular lag, ¢, is 10°.2. 
The corrected velocity at say 3 lunar hours after a lunar transit 

is to be found. When ¢ is reckoned in lunar hours m,=30°. Then, at 

the given time, at-+ B=90°+124°02’=214°.03. Since this angle les 

between 180° and 360°, table X is entered with ¢=10°.2 and 

at-+ B=214.03°—180°=34°.03 

The corresponding value of 7/B is, by interpolation, +0.14. Revers- 
ing the sign, and multiplying by B=5.27, the correction is —0.74 feet 

per second. The primary current at the given hour is 

5.27 sin 214°.02’=-—2,95 

and the corrected velocity is —3.69 feet per second. 
263. The distortion of the primary current curve in this section of 

the canal, derived by applying the correction at successive lunar hours, 

is shown in figure 41. The distortion of the primary current curve in 
a section of the Delaware River (par. 251 and fig. 39), is shown in 

figure 42. In the latter case B is 1.96 feet per second, and ¢ 1s 36°. 
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264. Correction for remaining approximations—The correction of 
the primary current for the remaining approximations introduced in 

its derivation may be computed by a variation of the procedure by 

which the corrections shown in table X are derived. The computations 
determine the corrections at selected time intervals through the tidal 
cycle. In order that they may apply to repetitions of the cycle, the 
intervals should be parts of the component hour of the simple har- 
monic fluctuation of the head used for the determination of the 

primary current, ordinarily the lunar hour of 1.035 mean solar hours. 
Since the computations depend, in part, on the changes in the velocity 

during these intervals, their accuracy is increased, but the labor mul- 



132 

tiplied, as the interval is decreased. Intervals of half a lunar hour 
usually are sufficiently small to give acceptable determinations. 

265. The corrected velocities must be such as to satisfy equation 
(lene 

he late —O 

Let v be the velocity of the primary current, corrected by i, from 
table X, on a given lunar half hour, 

6, the further correction to 2, 

69, the correction at the preceding half hour, 

1, the length of the section. 

266. For purposes of the computations, the surface head, h;, should 

have a fluctuation which, although not necessarily a simple harmonic, 
identically repeats itself every 12 lunar hours if the tides and the 
surface head are wholly semidiurnal, or every 24 lunar hours if the 
diurnal components of the head are so large as to require consideration. 
This result may be accomplished by selecting tidal fluctuations at the 
ends of the section which identically repeat themselves every 12 or 24 

lunar hours. Under ordinary circumstances it is indeed apparent 
that the tides on one day have but little effect upon the currents of the 
next. 

267. The expression for the acceleration head is, from equation (129) 

ha= (U/g) 0(v+6)/ot 
= (I/g) (Ov/ot-- 06/0t) 

Since this relation remains approximately true when small finite incre- 
ments are substituted for the differentials, it is permissible to place: 

ha= (I/g) (Av/At+ A6/At) 
= (1/gAt) (Av+ A6) (165) 

In which At is the selected time interval, in mean solar seconds, and 

Av and Aé are the increases in v and 6 corresponding thereto at the 

given half hour. 
268. It will be convenient to place: 

L/gAt=b (166) 

When the time interval is a half lunar hour: 

At=% 1.035 X3,600 seconds 
and: 

b—0.00001671 | (167) 
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The values of Av are computed from the successive values of 2. 
As the best approximation, Aé will be taken as the increase, 6— 6p, in 

the preceding interval. Equation (165) then becomes: 

ha=bAv+b(6—6)) (168) 

269. The friction head, h;, is, from equation (130): 

hy= +1 (0+6)?/Cr 

in which C and r vary with the stage of the tide. A diagram may be 
prepared showing the values of: 

Gee (169) 

corresponding to the stages of the tide. 
The expression for the friction head may be written: 

hy=+F+6)? 

= + Fy +2 Fv + Fe (170): 

Since 6 is a comparatively small correction, at least a first approxi- 

mation may be derived by dropping its square and neglecting any 
effect that it may have upon the algebraic sign of the corrected veloc- 
ity, v-+6; giving: 

hy= + Fv? +26(+0) F (171) 

in which the positive sign is to be applied when v is positive, and the 
negative sign when negative. Obviously, therefore, the factor (+) 
is always positive. Representing the numerical value of v, on the 
given half hour, as 7, equation (171) becomes: 

h,=+ Fv? +25Fo (172) 

270. The velocity head, h,, remains to be considered. The deriva- 

tion of the tidal currents in a short section of channel was predicated 
on the assumption that the section is so short that at any instant the 
variation of the velocity between the ends of section is immaterial. 
Under this assumption the velocity head would disappear. While the 
derivation remains valid even though there be a sufficient difference 

between the velocities at the ends of the section to produce some veloc- 

ity head, yet in the ordinary case 1t is too small to be worth computing. 
It may be included in the computations by determining the velocities 
at the ends of the section at the successive intervals of time. For this 
purpose the change in the discharge between the ends of the section 

because of the storage and release of water with the rise and fall of the 
tide, as developed in subsequent chapters, must be taken into consider- 
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ation as well as the cross section of the channel. In any case the 
effect of the correction 6 upon the velocity head may be neglected. 

271. Substituting in equation (131) the expressions derived for the 

several heads: 

h,th,+bAv+ Fv?+b(6—6,) +26Fo=0 

and, placing: 
h,+th,+bAavitk’?=—R (173) 

1t becomes: 

b(6—6)) +26Fv—R=0 
whence: 

5= (6 +R/b)/(1+2Fv/b) (174) 

It should be observed that if » and Av were the correct velocity and 
its increment for the given time, R would be zero. FR is then the 
residual head which 6 is to remove. 

272. The computation of 6 from equation (174) is most readily ex- 
plained by applying it to the concrete example of the final adjustment 
of the currents produced by the average tides in the section of the Cape 
Cod Canal between stations 180-+30 and 225, as of September—October 

1932. In the computation, these tides are referred to a datum 10 feet 
below mean sea level, so that all tidal elevations are positive. At 

mean sea level, elevation 10, the hydraulic radius of the section has 

been taken as 22.7 feet, and C at 90 (par. 249). From the cross sec- 

tions of the canal, the value of 7 at elevation 14 is found to be 24.6 

feet, and at elevation 6 to be 20.9 feet. The corresponding values of 
C will be taken as 91 and 89, respectively. Since /=4,470, the values 

of F=l/C*r are: 

Values of F 

Tide (y) | Tr (6 F 

14 24.6 91 0. 0219 
10 PP Eve 90 . 0243 

6 20.9 89 . 0270 

| 

A diagram prepared from this data gives the value of F for any 
value of y between 6 and 14. 

The coefficient 6, for intervals of a half lunar hour, is, from equation 

GiGi): 

b=0.0000167 x 4470 =0.0746 

The lag of the primary current has been found to be 10°12’, and its 
equation, with a lunar transit as the origin of time, to be (par. 249): 

y=5.27 sin (mot+124°02’) 

273. The computation of the residuals, R, may be made in the form 

ulustrated in the following tabulation. 
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RESIDUALS 

| ’ 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

. = so at — | | } 

| | 
t v v= Av Yo uN y iP hs bAv +R | R | 

| | 

| 

0 4.32 | —0.38 | —0.45 11.95 11. 54 11.75 |, 0.0233 | —0. 41 —0. 03 +0. 44 0 
5 3. 80 —. 52 —.63 11. 06 10. 76 10. 92 . 0238 —.30 —.05 +. 34 | +.01 

1.0 3. 06 =. 7 —.90 10. 09 9. 94 10. 01 . 0243 =, Ie —.07 +. 23 | —. 01 
.5 2.01 | —1.05 | —1.30 9.14 9.11 9.13 . 0249 —.03 —.10 +. 10! | +5. 03 

2.0 .47 |} —1.54 | —2.04 |] 8.21 8. 35 8. 28 . 0255 +. 14 wo +. 01 0 
.5 | —2.06 | —2.53 | —2.08 7.42 Tes! 7. 56 . 0259 +. 28 — 16 =, ili |) Sou 

3:0) || —3.69 | —1.63 | —1.19 81 7. 21 7.01 . 0263 +. 40 —.09 —.36 | +.05 

* * * * * * * 

10.0 4.70 +. 26 +. 21 13. 73 13.18 13. 46 0222 —.55} -+.02 +.49 | +. 04 
5 4.85 +. 15 +. 08 13. 63 13. 06 13. 35 0223 tl 0 +. 52 | --..05 

11.0 4,85 0 —.08 13. 28 12. 72 13. 00 0225 —. 56 0 } -—+.53 | +.03 
Bt) 4.70 =. 1s) =. 21 12.71 12. 20 12. 46 0228 = dL) =102 +. 50 | +. 03 

i2.0 4,32 —. 38 —. 45 11.95 11. 54 11.75 0233 = 4H! —.03 +. 44 0 
| j | 

The time in lunar hours after a lunar transit is entered in column (1) 

and the primary current corrected by 7, table X, in column (2). 
Column (3) shows the increase in the velocity during the preceding 
interval, the entry for 0 hour being repeated from the twelfth hour. 

The values of Av, column (4) are the means of the entries for the given 

and the following half hours, and are consequently the average of the 
increments in v during the preceding and following intervals. The 
tidal elevations, y, at the initial end of the section, station 180+30, 

taken from the equation of the tide at this station, paragraph 240, 

are entered in column (5), and those at station 225 in column (6). 

The tidal elevation, y, in the section, column (7) is the average of the 
entries in columns (5) and (6). The corresponding values of /’, from 

the diagram, are entered in column (8). 
The surface heads, h,, column (9) are the algebraic differences, 

¥1—Yo, from columns (6) and (5). The entries in column (10) are the 

products of Av, column (4) times the constant b=0.0746. The slide 

rule affords satisfactory accuracy for these and the subsequent com- 
putations. The entries in column (11) are obtained by multiplying 

v2, from column (2) by F, column (8) and have the algebraic sign of v. 

The residuals, R, column (12) are then the algebraic sum of the entries 

in columns (9), (10), and (11), with the sign reversed; the sums of the 

entries in columns (9), (10), (11), and (12) being zero. 

The computation for hours 3.5 to 9.5 is not shown, but is carried 

out by the same procedure. In the example chosen, the tides at 

the ends of the section, and consequently the surface head, have in 
fact a simple harmonic fluctuation, but the computation would be in 

the same form if they had any other repeating fluctuation. The 

velocity head is omitted. If computed, it would be entered in an 

additional column and included in the derivation of FR. 
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274. The computation of the corrections is completed in the follow- 
ing tabulation. 

Corrections 

(1) (2) (13) (14) (15) (16) (17) (18) (19) 

t v R/b 1+2Fv/b | d0+R/b 6 60+R/b 6 vo! 

0 +4, 32 0 3 56Q)Pa || Meee 0 Br YE Ga eC 
3H i) SESE) 5,78) 3.42 +0. 13 +. 04 st, ili +.05 | +3.85 

1.0 +3. 06 —.13 3. 00 —.09 —.03 —.08 —.03 +3. 03 
§ | 22.01 +. 40 2. 34 SL 3 +. 16 erate 29) il7/ 

2.0 +. 47 0 1.32 +.16 =f TOF ll Sle bs ees eee +.59 
5) —2.06 —.13 2. 48 —.01 QPP a nies || eee ae —2.06 
30 | =a +. 67 3. 60 +. 67 SSOP |lh, cee Seta |e a —3. 50 
3 | Saw +. 94 4.16 +1. 13 AES OT Aa Soe Saas eae Siti 
A0 | =4,70 +. 80 4.35 +1.07 AES Obit Sevilla —4, 45 
.5 | —4.85 +. 80 4,45 +1.05 STIESGY toate le PY yi. = —4 61 
G0 | =A.05 +.80 4.49 +1. 04 Uy Phe ko MNS oo oe —4 61 
a | Sao) +. 54 4.26 ea78 LENT Saltese Seay? lh crea —4. 52 
GO | =coey +.54 3.95 dL Hea kstra| Pater te ee lode ce a —4,14 
B | Ske 4b ig 3.53 SL, Bil 2 409)01|| SENS 8 | ei eC Al 
iO | = 8.08 aL ig 2.99 4D Oise aoe pee —2.99 
36 | 2.0 —.40 2. 28 = 88 —.13 OE A ce —2.14 

8.0 SL 0 1.29 =, 13) SEO ee ae = 
.5 | +2.06 JE oy 2.26 AL, 7 E108 4| hos 8 2 eee +2.14 

9.0 | -+3.69 at, 113 3.23 se Dil SUA Meee Ie +3. 76 
15 | (44.44 s6 D7 3. 65 +, 34 S400) a lens: J2e oe |S +4, 53 

10.0 | +47 +. 54 3. 80 +. 63 EG (fae (eae eae +4, 87 
5 | +485 +. 67 3.89 +, 84 zl EA eal le Uae coll on Se +5.07 

11.0 | +4.85 +. 40 3.91 +, 62 S16) hips ee |e +5. 01 
6 | ee +. 40 3. 87 +. 56 te aA, | Noe an Te ee eae +4, 84 

| iq | +4oe 0 3. 69 +. 14 SER la || Meee PSS +4, 36 
| | 

The residuals from column (12), divided by 6=0.0746 are entered 
in column (13). The divisor, 1+2F%/b, of equation (174) is derived 

from the numerical value of v, column (2) and of F, column (8), and 

entered in column (14). Since an initial value of 6) is not known, 

the computation of 6 in columns (15) and (16) is started with an 

initial correction of zero at 0 hour. At 0.5 hour, 6,+A/b=0+.13= 

13. Applying the divisor, column (14) the first determination of 6 

at 0.5 hour is 0.04. At 1.0 hour 6,+R/b=0.04—0.13=—0.09; and 6 

at 1.0 hour is —0.03. A continuation of the process gives 6=0.04 
at 12 hours. With this initial value the computation is repeated in 
columns (17) and (18) until, at 1 hour, the value of 6 becomes that 

previously found. “The adjusted velocities are then found, in column 

(19) by applying the final values of 6 to the velocities in column (2). 
'The velocities, before and after this final adjustment, are shown in 

figure 43. 
975. Discussion—The final corrections, 6, developed in the pre- 

ceding example, are so small that the corrected velocities do not differ 

substantially from those used in their determination, and a recompu- 

tation is unnecessary. Since the surface head assumed in their 

derivation has a simple harmonic fluctuation, these corrections are 

due only to the variation of r and C with the rise and fall of the tide. 
Such corrections depend upon the relative timing of the tide and cur- 

rent and on the relation between the tidal range and channel depth. 
For a given tidal range and channel depth they are the greatest when, 
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FIGURE 43.—Final adjustment of computed current in Cape Code Canal. 

as in the example chosen, the timing is such that the maximum cur- 

rents occur at high and low tide. They become smaller as the angular 

lag, ¢, of the primary current increases and the frictional resistance 
consequently has a less effect upon the currents. 

276. The residuals developed in the example chosen amount to but 

a few hundredths of a foot. Much larger residuals, and consequently 
much larger corrections to the velocity, would be produced if during 

the tidal cycle the surface head varied from a simple harmonic fluctua- 
tion by as much as a tenth of a foot. As will later be shown, consid- 
erable distortions of the surface heads in successive sections of a long 
tidal channel may be produced in the filling and emptying of the tidal 
prism at different tidal stages, and other distortions are produced by 
the diurnal components of the head. If the first computation devel- 
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ops comparatively large corrections to the velocity, the computations 
should be repeated with the corrected velocities derived from the first 
computation. 

277. The relatively small distortions of the tides needed to produce 
a large distortion of the surface head and currents is illustrated in 
figure 44. The current there shown has the equation: 

v=sin mt+sin 3mot 

Neglecting the velocity head, the equation of motion becomes: 

dy/Oxr-+ (m>/g) (cos mat+3 cos 3mozt) + (sin mot+sin 3m,t)?/C’r=0 

Whence: 

= (loy/oz) 
—— (Im,/g) (cos myt+3 cos 38mg) + (1/C’r) (sin myt+sin 3mof)?. 
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SANE 
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Ficuri 44.—Comparative distortions of current and tides. 

The surface head, A,, in a section 10,000 feet long, when r=20 
and C=90, is plotted in the figure. Taking the tide at the initial end 
of the section as a simple harmonic fluctuation with an amplitude of 
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2 feet, the tide at the other end would be distorted only to the extent 
shown. 

278. Comparison with measured current curves—The form of the 
computed tidal current curves derived in the preceding paragraphs 
may be compared with curves of measured velocities, and with those 
derived by the method of cubature hereafter described. It should be 
recollected that the computed curves show the mean velocity at a 
cross section of the channel during a tidal cycle. A meter measure- 
ment of the mean velocity in a tidal channel is quite a difficult under- 
taking, as the velocity in each area of the cross section is changing 
continuously, while its fluctuations are not identically repeated from 
day to day. Available records often show the velocities only at a 
single point in the cross section; but these indicate the characteristic 
shape of the current curve. Current curves derived by the cubature 
of an estuary show, on the other hand, the mean velocities at the 
cross section. 

279. The currents in the Cape Cod Canal afford a typical example 
of the form of the current curve when the flow is markedly frictional. 
The average measured midstream current velocities at 0.3 depth, at 
station 225, after the time of a lunar transit, compiled from a series 

made by the United States Engineer Department, September 28- 
October 6, 1938; and the corresponding mean tide curve in the section 

from station 180+30 to station 225, are shown in figure 45. The 

velocity curve has, it will be seen, the characteristics of the computed 

curve of mean velocities, shown in figure 43. As is to be expected, 
the midstream velocities are about 25 percent in excess of the mean 
velocities throughout the cross section. 

280. The current in the estuary of the Delaware at the head o 
Delaware Bay, as determined by a mean cubature made by the 
United States Engineer Office in Philadelphia, shown in figure 49, 

page 154, affords an example of a typical velocity curve when the 
flow is of a less frictional character, and is not greatly modified by 

overtides. This curve may be compared with the curve of computed 
velocities shown in figure 42. 

281. The marked effect of overtides on the currents is illustrated 
by the velocity curve at Philadelphia 63 miles further up the Delaware 

estuary, determined by the same cubature, and shown in figure 50, 
page 155. 

282. The even greater distortions of the current in some tidal chan- 

nels is illustrated by the curve of measured channel velocities in 
Seekonk River, R. I., shown in figure 46, page 141, taken from the 

Manual of Current Observations, United States Coast and Geodetic 
Survey. 

192750—40——10 
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283. Summary.—The preceding formulas and examples show that 
the deformation of the primary current because of the variation of 
frictional resistance with the square of the velocity is not large unless 

the currents are unusually strong and the channel is of moderate depth, 

so that the flow is largely frictional. Its deformation because of the 
varying channel depth depends on the relation between the timing of 
the tide and the timing of the current, as well as on the ratio of the 

tidal range to the mean depth in the channel, and usually is quite 
small in deep channels. The deformation because of the effect of over- 

tides may be quite large. If the ascertained variation in the surface 
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head in a short section of a tidal channel can be closely reproduced by 
a simple harmonic fluctuation, and the proper coefficient of friction 

selected, the computed primary current affords a fair representation 
of the actual currents, but a closer approximation would be secured 
by applying the corrections developed in the preceding paragraphs. 
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FIGURE 46.—Current in Seekonk River, R. I., showing effect of short-period constituents. 

LIMITATIONS ON THE COMPUTATION OF CURRENT VELOCITIES FROM THE 

OBSERVED HEADS IN A SHORT SECTION OF TIDAL CHANNEL 

284. As is well recognized, the velocity in a natural channel cannot 
be reliably determined from the observed head even when the flow is 
steady. Ina short section of a tidal channel, the computation of the 
velocities from the observed heads presents further complications. 
These heads are the relatively small differences between the changing 
tidal heights at gaging stations at the two ends of the selected section 
of channel. Considerable accidental errors are inevitable in taking 
off the tidal heights from the somewhat irregular curve produced by a 
recording tide gage, and even greater errors in the timed readings of a 
staff gage. When these departures happen to be in opposite directions 
they produce errors which are large in proportion to the head. The 

heads derived from the differences of observed hourly readings are apt, 
therefore, to vary so erratically as to afford little basis for a determi- 
nation of the velocities. The most workable procedure is to find the 
harmonic fluctuations which most nearly represent the actual fiuctua- 

tions of the tides at the ends of the section, and to derive therefrom 

the corresponding harmonic fluctuation of the head. Obviously, more 
consistent results may be secured from average tide curves than from 
observations made during 1 day. 

285. In a long tidal channel, the heads between the entrances 

usually are so large that accidental errors in the observed tidal heights 
at these entrances become of minor importance; but in such a channel 

the currents may be due more to the storage and release of water in 
the tidal prism than to the head between the entrances. 

286. In short, a direct measurement of the actual velocities in a 

channel, however crude, is more reliable than the most refined calcu- 
lation from the varying head and an assumed coefficient of roughness. 
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The relation between the surface head and the velocity in a short sec- 
tion of a channel, derived in this chapter, affords, however, a basis for 

estimating the currents in a projected long canal, by a procedure which 
is developed in detail in chapter VIII. 

CURRENTS IN A SHORT SECTION OF CHANNEL WHEN THE 

FRICTIONAL RESISTANCE IS NEGLIGIBLE 

287. If a channel is so deep, and the current velocities are so small, 
that the flow is essentially frictionless (par. 257), the currents pro- 

duced in a short section of the channel by any fluctuation of the tides 
at the ends of section have a simple relation to the amplitudes and 
speeds of the harmonic components of these tides. Designating the 
amplitudes of the several harmonic components of the tide at the 
initial end of the section as M,’, S.’, ete., and at the other end as M,’’, 

S,’’, ete., the equation for the tide at the initial end becomes: 

Yo= M2’ cos (met-+ ay’) +S.’ cos (Soft ae’): - - 

and at the other end: 

Yi= Mb” cos (met a,”)-+S2” cos (Sef- a2”) => > > 

The surface head through the section is then: 

hs=Yi— Yo M2” cos (met-+a,”) — Mb)’ cos (mzt+ a’) 

+5,” cos (Sof + ay”) —S,’ COs (Sof + Qs’) 

+ete. (175) 

288. Since the respective pairs of components of the same speed 
unite into components of that speed, equation (175) reduces to one in 

the form: 

h,=H, cos (m t+ A,°) +H, cos (sot+ H2°)+: - - 

In which the amplitudes, /7,, (7, and the phases 77,°, 72° of the com- 

ponent surface heads could be computed by the process indicated in 

paragraph 239. 

When both the velocity head term and the friction term in equation 
(112) are dropped, this equation becomes: 

oy/Ox+ (1/g) 0v/ot=0 (176) 

Whence: 

p=—9 | (2y/d2) ot (177) 
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And in a section of channel so short that the change in slope in 
the section is negligible: 

oy/Ox=h,/l= (A, /l) cos (m.t+ H°) + (A2/l) cos (sot-+ Ae?) +: - - 

=I, cos (mt+H,°)+J, cos (s.¢-+H2°)+° - > (178) 

289. The slopes, J;, Jo, ete., in this equation quite evidently approach 

definite limits as the length, /, of the section is reduced. 
Substituting in equation (177) and integrating: 

j= =o | (@ylanat 

= — (/ig/me) sin (m2t-+ A,°) — (tog/se) sin (s2t+H2°)—---+K (179) 

The constant of integration, K, is readily interpreted as an adven- 
titious constant current through the channel, apart from the currents 
due to tidal fluctuations, and may be disregarded. 

If then the flow in a tidal channel is essentially frictionless, the 
velocity of the current at any point in the channel is the resultant of 
component velocities with the speeds of the tidal components. 

290. The inference should not be drawn from equation (179) that 
the amplitudes of the components of the velocity are proportional to 
the ratios of the amplitudes of the tidal components to their respective 
speeds; for the component heads and slopes, from which the velocities 
are derived, are determined by the changes in the amplitudes and 
phases of the tidal components at successive points along the channel, 

and not by the magnitude of these amplitudes. 

COMPONENT CURRENTS 

291. As shown in paragraph 289, when the tidal flow is essentially 
frictionless the current may be resolved into component currents, 
fluctuating at the same speeds as those of the tidal components. If 
the flow is not frictionless, each fluctuation of a tide of the semidiurnal 
type has been shown to produce a primary current with a simple 
harmonic fluctuation, to which minor corrections are to be applied. 
The amplitude of the primary current must vary from day to day 
with the variation in the amplitude of the resultant tide. The primary 
current should then be resolvable into components of fixed amplitudes, 
with the speeds of the tidal components. The corrections to the pri- 
mary current, and its distortions due to overtides, are repeated almost 
identically in each successive tidal fluctuation, and are then reproduced 
by overcurrents whose speeds are antes al ignite of the speeds of the 
principal tidal component. 
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292. Further minor current components are to be anticipated be- 
cause of the variation of the friction term with the square of the 
velocity; for, if the primary current components are: 

Bsin (mt+ 8), B, sin (s+ ,), and so on, the friction term becomes: 

F=-+[B sin (m.f+ 6) +B, sin (s.t+6,)+ ... P/C?r 

— + (B?/C’r) sin? (m t+ B) + (B,/C?r) sin? (st+B,) ... (180) 

++ (2BB,/C’r) sin (m.t+ B) sin (sot+ B;) 

The terms in this expression for F which contain the squares of the 
sines of functions of the speeds my, s:, etc., afford components of the 
friction term with speeds of the corresponding harmonic components, 

and their overtides. The terms which contain the products of the 
sines of functions of these speeds may be replaced by the algebraic 

sum of the proper trigonometric functions of the sums and difference 
of the angles, and hence of the speeds. Components of the friction 
term, and corresponding components of the current, with speeds which 

are the sums and. differences of the speeds of the principal tidal com- 
ponents, may therefore be anticipated. These may be termed 
compound current components. 

293. The currents set up by tides of the mixed or of the diurnal 

types should equally well be resolvable into components with the 
speeds of the harmonic tidal components, together with overcurrents 
and compound current components. Furthermore, in the propagation 
of the tide through a long channel, the overcurrents and compound 

currents may create corresponding overtides and compound tides. 
294. The mathematical relation between the components of the tide 

and. the componenets of the current, when irictional resistance must 
be taken into consideration, does not appear to offer a profitable field 
for investigation; but, as explained in chapter X, the component cur- 

rents may be determined by an harmonic analysis of the observed 
currents in a channel. 
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DEFINITIONS 

295. A few definitions may simplify the ensuing discussion: 
The tidal prism of a channel is the prism between low water and 

high water. 
A long tidal channel is one of such length that the fillimg and empty- 

ing of the successive sections of its tidal prism affects, more or less 

profoundly, the tidal currents and the tidal heights through the 
channel. 
A connecting tidal channel connects two tidal seas. In a long con- 

necting channel the tides and tidal currents through the channel are 
caused both by the surface head between the tides at the entrances 
and by the storage and release of water in its tidal prism. As a special 
case, a connecting channel may join a tidal with a tideless body of ° 
water.. A natural connecting channel is usually termed a strait, 
and a short connecting channel leading from the ocean to a tidal or 
tideless bay or sound is termed an inlet. 
A closed tidal channel leads inland from a tidal sea and terminates. 

in a dead end. Its tides and currents are due solely to the filling 
and emptying of its tidal prism, together with the discharge of any 

flow which may enter the channel from the uplands. 
A tidal canal is an artificially excavated tidal channel of regular 

dimensions. 

EQUATION OF CONTINUITY 

296. Equation of continuity for steady flow.—Let: 
X be the area of a cross section of a channel, 

@ the quantity of water passing through the cross section in 
a unit of time; designated as the discharge at the section. 

v the mean velocity of the current at the section. Then 
obviously: 

OLX (181): 

(145) 
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In steady flow, Q is by definition the same constant at all cross 
sections, and equation (181) affords a complete expression of the con- 
dition of continuity of flow. 

297. Equation of continuity for tidal flow.—In tidal flow, water is 
stored and released throughout a channel as the tide rises and falls, 
and @ therefore varies from section to section as well as varying 
at each section with the time. 

Let So, figure 47, be a cross section of a tidal channel at a distance 
x from the point chosen as the origin of distance, and Sj, an adjacent 

FIGURE 47. 

cross section at the elementary distance dz from Sj. At section So, 
and at the time ¢, let: 

z be the surface width of the channel, 
X the area of the cross section, 

D=X/z its mean depth, 
y the elevation of the water surface above any assumed hori- 

zontal plane of reference, 

oy/Ot the rate at which y is increasing with the time, 
v the mean velocity in the cross section, 
Q the discharge. 

The volume of water passing S) during the elementary time interval 
dt is then Qdt. During the same interval the water surface between 
So and S;, rises the distance (Oy/0t)dt. The volume of water passing 

S; during the interval is then decreased by the contents of the prism 
whose width is z, whose length dr and whose height is (dy/Ot)dt. 
Designating the rate of decrease in discharge with the distance as 
— 0/0x, the decrease in the discharge in the distance, dz, between 
the sections, is —(0Q/0xr)dz, and the decrease in volume of water 
passing section S,; in the time dt is —(0Q/0zx)drdt. Obviously, there- 

fore: 

— (0Q/0xr)drdt= zdx(Oy/Ot)dt 
whence: 

0Q/or-+ 2dy/dt=0 (182) 
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Equation (182) is the general equation of continuity in a tidal 

channel. 
298. Since Q=vX=vzD, equation (182) may be written: 

O(veD)/d0x+ zoy/0t=0 (183) 

If a channel is of both constant width and constant depth below 
mean tide level, and the tidal fluctuation is so small with respect to 
the depth that the variation in D may be neglected, equation (183) 

becomes: 
2Dov/dx+ zoy/ot=0 

or: 
Dov/dx-+ oy/ot=0 (184) 

299. Distinction between mean depth and hydraulic radius.—Chan- 
nels, whether natural or artificial, are usually so wide with respect to 
their depth that, if the tide does not overflow the banks of the channel 

proper, the mean depth, D, in the equation of continuity does not 
differ materially from the hydraulic radius, 7, in the friction term of 
the equation of motion. On the other hand, if the channel is bordered 
by tide flats and sloughs, in which water is stored and released as the 
tide rises and falls, but which carry no appreciable current, the value 
of D may be much less than the value of 7. In other words, D is 
computed from the gross width of the channel and r from the net 

width after deducting areas which carry no substantial flow. 

CUBATURE OF A CLOSED CHANNEL 

300. Method of cubature —The currents in a closed tidal channel are 
caused by the filling and emptying of the tidal prism, and by the fresh- 
water discharge from any rivers and streams which may enterit. By 
taking simultaneous readings of the height of the tide at a sufficient 
number of stations between a given tidal station and the head of tide, 
the changes in the volume of water in the tidal prism from hour to 

hour, or at shorter intervals, may be computed, and the positive and 
negative discharges at the station due to the filling and emptying of 
the tidal prism ascertained therefrom. The total discharge is then 

the algebraic sum of the tidal discharge and the measured or estimated 
upland discharge. The mean velocity at the station at any given 

time may be determined by dividing the total discharge by the area 
of the cross section at the station at that time. This process is termed 
the cubature of the channel. It is essentially the arithmetic integra- 
tion of the general equation of continuity. 

301. Basic data—The tidal stations established for a cubature 
should be spaced at such distances that no material error is intro- 

duced by taking the water surfaces between them as planes. This 
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condition ordinarily will be met by stations spaced some miles apart, 
but suitably placed with respect to marked changes in the cross section 
of the channel. The stations used in the cubature of the Delaware 
River by the United States Engineer Office at Philadelphia are as 
follows: 

Distance from Distance from 
head of tide in head of tide in 

Station statute miles Station statute miles 

1. Trenton municipal pier _ __ __ ORAS 3 ME Shortie Mathie ee ee 41. 67 

20 Mrenton marine terminaias =o) 199) | SZ ae BS aildsyins 48, 45 

3, Bordlemionas 2o.—-2.53-2--- =~ 5V AO) Sy Marcus h00 k= === 53. 83 

AL IMC OCRO st aoe Se 6525) 4 shd¢ee Mocrs= 60. 42 

Diet] OREM CEL eee eyo oa ee ee HOSS: New Castles ===. == 67. 52 

Gay Burling tone = 2.2 ena 15. 32,16, Reedy Pomt: 2 === 75. 15 

Hee DEVEL Vee oe eee es eee SAGO) Alive ckecdy lislandas =e 78. 88 

Seorresd ale: sens a eee 23. 58) 18. Artificial Island _______—_= joe sehr 

Qe ul) Slants pn ney eee A ed 29. 11|19. Woodland Beach__—__--___- 92. 48 

1@, oilkeyooiie 2 eee 39-.20))/20) Ship Johni=. 2. 222s 97. 33 

It may be necessary to establish as well tidal stations on any long 
tidal tributaries which enter the channel. For the convenience of the 
computations the tide of all stations should be referred or reduced to 
the same horizontal datum, preferably taken so low that all tidal 
heights are positive. 

A reliable contour map is needed to show the tidal areas from low 
water to high water and measurements must be made of the cross 

sections of the channel at the stations where the velocities are to be 

determined. 

302. A tidal channel whose cubature is to be made usually is the 
tidal portion of a river with a considerable drainage area. In the 
United States, gaging stations with established rating curves have 
been established above the head of tide on most rivers, and the upland 

discharge of the main stream, and of any important tributaries which 
enter the tidal section can be ascertained therefrom. If satisfactory 
rating curves have not been established, meter measurements should 
be made, at suitable stations above the head of tide, of the upland 

inflow from the main stream and any important tributaries entering 

the tidal section. The discharge from other drainage areas into the 
tidal channel, including those below the gaging stations, is relatively 
so small that it ordinarily can be derived with sufficient accuracy by 

estimating, from general data, the run-off per square mile. 
303. Selection of representative tides for cubature-—The process of 

cubature would become an overwhelming task if repeated through the 
tides occurring during a considerable number of days. If the tides 
are of the semidiurnal type, with no great variation in range during 

the month, the cubature of the tides on a single day, chosen almost 
at random, will develop the characteristic fluctuations in the discharge 
and in the velocity at stations along the channel. The effect of the 
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diurnal inequality may be ascertained by extending the cubature 
through two semidiurnal tidal cycles; 1. e., through a period of 25 
hours. If the difference between spring and neap tides is large, a 

cubature might be made of a representative tide of each kind. If the 
tides are of the mixed or diurnal types, a cubature of a representative 

tropic tide and of a representative equatorial tide would be necessary 
to determine the characteristic currents produced by each. 

304. Average tide curves.—A cubature based on average tide curves 
gives a better general picture of the discharges and currents in a tidal 
channel than one based on the tides during a single day. Cubatures 
prepared from average tide curves before and after a major change has 

been made in a channel afford a conclusive determination of the effect 
of the change upon the tidal discharge and currents. Average curves 

of tides of the semidiurnal type may be prepared by averaging the 
tidal heights, taken from the graphic record of an automatic tide gage, 
at hourly or half-hourly intervals for the 12 hours beginning with the 
time of each lunar transit. The observations should extend over a 
period of 15 or 29 days, or a multiple of the latter. A consideration 

of the principles of harmonic analysis, explained in chapter II, indi- 
cates that an average curve so prepared is substantially that of the M2 
component of the tide and its overtides. 

Average curves of spring and neap tides may similarly be prepared 
by averaging the recorded tidal heights at hourly or half-hourly inter- 
vals after the lunar transit immediately preceding the times of spring 
and neap tides respectively; and average-curves of tropic or equatorial 
tides by averaging the heights at the same intervals for a period of 25 
hours after the lunar transits next preceding the times of such tides. 
Obviously, a long continuous record of the tides at each of the stations 
must be available to prepare good averages of tides which occur but 

twice a month. 
305. Composite curves of mean tidal fluctuations.—The range of an 

average curve of all semidiurnal tides, prepared by the process out- 
lined in the preceding paragraph, is less than the actual mean tidal 
range during the period. For the mean cubatures of the Delaware 

River made by the United States Engineer Office at Philadelphia, tide 

curves were prepared by computing, by the ordinary methods, the ele- 

vations and lunitidal intervals of mean low and high water, and con- 
necting them with a composite curve derived from 10 recorded tide 

curves whose range, duration of rise and fall, and half-tide level were 

nearly the same as the range, duration of rise and fall and half-tide 
level of the mean tide. The composite curve is prepared by adjust- 
ing, proportionally, the duration and height of the rise and of the 

fall of each of the recorded tides to the mean duration and mean rise 
and fall, and averaging the results. For this purpose the periods 
from low water to high water and from high water to low water on 
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each of the recorded curves are divided into, say, 10 equal intervals, 

the recorded rise or fall during each interval is multiplied by the 
ratio of the total mean rise or fall to the total recorded rise or fall, and 

the results added successively to the computed elevation of low water. 

The tides at the proportional intervals are then averaged, and plotted 

at the corresponding mean intervals. The tides at semihourly inter- 
vals after a lunar transit then may be taken off the plotted curve. 
The result is a tide whose high water and low water are at the times 

and elevations of mean high and low water, and whose semihourly 
rates of rise or fall are the composite of those of the selected tides. 

This composite tide curve has a total period, from high water to high 

water, or from low water to low water, of half of a mean lunar day, 

12.42 mean solar hours. 

306. Similar composite curves of spring or neap tides could be pre- 
pared by adjusting a number of tides near the time of spring or neap 
tides to the computed times and elevations of mean low and mean 

high water of spring tides; and composite curves of tides of the mixed 

type by similarly adjusting suitable recorded tides to the times and 

elevations of mean lower low, higher low, lower high, and higher high 
waters. It may be observed that the sum of the durations of the rise 
and fall of spring and neap tides differs slightly from the mean lunar 

half day or day. 

307. Computations —Designating the successive tidal stations along 
the channel, beginning at or near the head of tide, as station 0, station 

1, station 2- - - station JN, let: 
Yor Yt) Yoo + * * Yn be the heights of the tide at these stations at 

the time ft, this time usually being on the hour and half hour. 
At, the time interval used in the computations, usually \% hour, 

or 1,800 seconds. 

Yo’, Yr’, Yo’ + + + Yn’, the tidal heights at the time ¢+ Af. 

U,, U2, U; - - - U,, the mean area of the water surface between 

stations 0 and 1, | and 2, etc., during the time interval 

between ¢ and ¢-+ At. 

Ay;, Ay2, Ay3 - - + Ayn, the mean rise in the water surface 
between the successive stations during the same interval. 

AV,, AV2, AV; - - » AV,, the algebraic increase in the volume 

of water between the successive tidal stations during the 

same interval. 
Then evidently 

A Wo U,Ay,, AV= U,Ay2, a suey tr, AV = (OLIN 

If the stations are sufficiently close together, the mean rise in the 
water surface between any two stations during the time interval Af 
may be taken as the increase in the mean elevation of the tides at 

the two stations during that period so that: 
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AV,= UI (y’o+y'1)/2— (Yoty:)/21, 
AV2= Uf (y’:+y’2)/2— (yit+ye)/2], cte. (185) 

The total increase in the volume of water in the tidal prism from 
the head of tide to any station, N, is then: 

SAVE AVA Aetna = AV (186) 

This summation obviously should include the increase in volume in 
any long tidal tributary above station N which is separately cubatured. 

Taking the origin of distances at the entrance to the channel, the 
tidal discharge and the velocity at a given station are positive during 
the tidal flood currents, when the total volume of tide water between 

the station and the head of tide is increasing, and negative during the 
ebb, when this volume is decreasing. 

The mean tidal discharge, Q,, at station N, during the time interval 
At, is then: 

Q,=ZAV/At (187) 

The fresh water discharge, Q;, at the station is similarly the sum of 

the fresh-water discharges entering the channel above that station. 

This discharge may be regarded as constant during the period of cuba- 

ture. Since it is an outward discharge, it is intrinsically negative. 
The total discharge. Q, is then 

Q=0.-Q,; (188) 

Designating the mean area of the cross section at station N during 
the interval At as X, the mean velocity during this interval is: 

v=Q/X (189) 

308. The mean areas U,, U2, etc., of the water surface between the 

tidal stations during the successive intervals may be derived by tak- 

ing off with a planimeter, from a map of the waterway, the areas at 

successive stages of the tide, and constructing a diagram from which 
the area at any elevation may be read. Ordinarily, it is sufficient to 
take off from the map the areas at high and low water and to join 

them on the diagram with a straight line. The area at each semi- 
hourly interval is read from the diagram at the mean elevation of 
the mean of the tides at the ends of the section. 

The areas between the stations should include any tidal tributaries 
which enter the section, and should extend to the head of tide in these 

tributaries, unless tidal volumes in the tributary are cubatured from 
stations thercon. They should include also the effective storage area 
in any tidal marshes adjacent to the channel. 
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The cross section areas, X, at the tidal stations at which discharges 
and velocities are to be computed, similarly may be read from a 
diagram, constructed by taking off with a planimeter the area of the cross 
section at high and low water, and at intermediate elevations if necessary. 

309. Form for computations —The computations proceed from the 
head oi tide downstream. A convenient form, developed for the 
cubature of the Delaware River, is shown in figure 48. To briefly 
illustrate the process, the computations for six half-hourly intervals 
only in the first two reaches below the head of tide and in the lowest 
reach, are entered on the same sheet. In the actual computation a 

separate sheet is used for each successive reach between the tide 
stations. The computation shown for the first reach is abbreviated 

as explained in paragraph 310. 
The times and the heights of the tides at the upper and lower sta- 

tions, selected for the cubature as explained in paragraphs 303 to 306 

are entered in columns (1), (2), and (3), and the mean oi columns (2) 

and (3) is entered in column (4). Column (5) designates the interval 

to which the entries in the succeeding columns apply. Column (6) 
is the mean of the given and preceding entries in column (4) and is 
therefore the mean elevation, during the interval, of the mean tides in 

the section. Column (7) is the surface area in the reach at the cleva- 

tion shown in column (6). Column (8) is the algebraic increase in 

the entries in column (4) during the interval. The product of columns 
(7) and (8) is the value of AV for the interval (equation 185); entered in 

column (9). The increases, during the interval, in the tidal volumes 
of any separately cubatured tidal tributaries which enter the reach are 
inserted in columns (10) and (11). The total tidal volume, column 
(12), is the sum of columns (9) to (11). The total increase in volume 

during the interval in the upstream reaches, as previously computed 
for these reaches, is entered in column (13). The addition of the 

increase in the reach, column (12), gives the total increase, ZAV, at 

the lower station (column 14). The division by At=1,800 seconds, 

gives the mean discharge during the period, column (15), and the 

addition of the fresh-water inflow (with the negative sign) give the 

total discharge, column (16). The mean elevation of the tide at the 
lower station, column (17), is the mean of the given and preceding 

entries in column (3). The corresponding area of the cross section at 
this station is entered in column (18); and the mean current velocity 

during the interval, column (19), obtained by dividing the entries in 
column (16) by those in column (18). 

310. Because of the steady increase in the width of nearly all natural 
tidal channels from the head oi tide to the entrance, the increases in 

the tidal volume between the stations near the head of the estuary are 
relatively very small. The upstream station may therefore be placed 
below the head of tide, and the successive values of AV at this 
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station determined by multiplying the area U, between this station 
and the head of tide, by the half-hourly increases in the tide at the 
station, as shown in tabulated computations in figure 48. 

311. Graph of discharges and velocities —The fluctuations in the dis- 
charge and in the velocity at the successive tidal stations during the 
tidal cycle, and the relative importance of the tidal and fresh-water 
discharges, are made apparent by plotting the tidal heights, discharges 
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FIGURE 49.—Discharges and velocities at Ship John Light, Delaware Bay, from mean cubature. 

and. velocities through the tidal cycle. The discharges and velocities 
at Ship John Light, near the head of Delaware Bay, and at Phila- 

delphia, 64 miles up the estuary of Delaware River, as derived from 
the mean cubature of this channel, are shown in figures 49 and 50. 

312. The tidal discharges computed in the cubature of a channel 
(column 15 of fig. 48) are the mean discharges during successive half- 

hour intervals. These are shown by the stepped lines in figures 49 

and 50. The curve of instantaneous tidal discharges is then so drawn 
that the area under the curve during each time interval is the same as 

the area of the rectangle of mean discharge for the interval. 
The fresh-water discharge is plotted as a horizontal line above the 

zero line of tidal discharges. Since the fresh-water discharge is flowing 
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outward, and therefore intrinsically negative in sign, the difference 
between the ordinates of the instantaneous tidal and the fresh-water 
discharge is the total discharge at the instant. These total discharges 
are then the ordinates measured from the line of the fresh-water 

discharge. 
The area of the cross section at the Ship John at the heights shown 

by the tide curve is plotted on the diagram for the station. By taking 
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FIGURE 50.—Discharges and velocities in Delaware River at Philadelphia, from mean cubature. 
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& 

off from the diagram the total discharge and the cross sectional area at 
a given instant, a refined value of the current velocity at that instant 
may be computed. 

313. An examination of these curves shows that at Ship John Light 
the average duration of the rise of the tide is about 1 hour less than 

the duration of the fall; and that the duration of the ebb current is 

nearly 45 minutes longer than the duration of the flood. At Phila- 
delphia, the average duration of the rise of the tide is about 2 hours 

less than the average duration of the fall; and the duration of the ebb 

192750—40-—11 
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exceeds the duration of the flood by more than 2% hours. A study of 
the figures shows that the differences in the durations of the flood and 
ebb currents is to be ascribed principally to the larger areas of the 
cross sections of the river during the flood; because of which the tidal 
prism is filled in a shorter period. The fresh-water discharge evi- 
dently is insufficient to have any large effect upon the tidal flow 
except in the upper reaches of the river. 

314. Other characteristics of the flow in the estuary, such as the 
relative timing of the tides and currents, the average and maximum 
discharges and currents, are quantitatively and definitely brought 
out by the diagrams at the successive stations. The total volumes 
of the inflow and outflow at the stations during the tidal cycle are 
readily derived by measuring the areas between the instantaneous 
discharges and the line of fresh-water discharge. 

315. Conclusion —The cubature of a tidal channel affords complete 
and reliable data on the discharge and mean velocities at successive 

stations along the channel. It is perhaps the only means by which 
a satisfactory determination of the discharge in the wide sections in 
the lower part of an estuary may be secured. On the other hand the 
cubature of a long tidal channel is a costly undertaking. It affords 
no information on the distribution of the velocities in a cross section 
of the channel, or of the distribution of the flow through the channels 

on either side of islands and through other secondary channels. 
Direct measurements of the current velocities in the ship channel of 

an estuary are of far greater value to navigators than most refined 
computations of the mean velocities throughout the entire cross 

section, and are more readily made. The proper design of training 

works also may depend principally upon the distribution of the 
velocities in the cross section. For these reasons, extensive cubatures 
of tidal channels have not often been made. Nevertheless the com- 

plete and convincing data afforded by a detailed cubature of the tides 
in a channel is of such value in the planning of works dependent upon 
the discharges and velocities that its cost is fully justified when major 
works of this character are under consideration. “Thus the applica- 

tion of the principles of cubature to the estuaries of the Sacramento 
and San Joaquin Rivers in California afforded information essential to 
the study of a proposal to construct, at great cost, a barrier dam to 

prevent the intrusion of salt water into the lower reaches of these 
rivers. The cubature of the Delaware River has corrected misconcep- 
tions of the influence of fresh-water discharge upon its tides and 
currents, and has contributed to the measures by which the large 
expense of maintaining the ship channel in the river has been greatly 
reduced. 

In summary, a cubature of an estuary affords much desirable infor- 
mation, but is not warranted unless the information is worth its cost. 
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| FRICTIONLESS FLOW IN A LONG CANAL OF 
UNIFORM DIMENSIONS 
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316. Frictional resistance to flow must, in fact, be considerable in 

the deepest artificial channel that can be conceived of, if the currents 
are sufficient to be of any consequence; but the inclusion of frictional 

resistance imposes insuperable limitations on a general analysis of 
the flow in a long tidal canal. An analysis of the tides and currents 
that would be created by frictionless flow in a long canal of uniform 
cross section, while not affording a quantitive determination of the 
tides and currents in an actual canal, develops certain general char- 

acteristics of the flow in such canals, and affords a background for the 
procedure, explained in the next chapter, for computing the actual 
tides and currents. In this analysis of frictionless flow, the currents 
are considered to be so moderate that the velocity head term of the 

general equation of motion also may be dropped; and the channel so 

deep with respect to the tidal range that the variations in the mean 
depth of the channel, as the tide rises and falls, may be disregarded. 

317. The tide at any station in long tidal canal, whether connecting 

or closed, may be presumed to be the resultant of semidiurnal and 

diurnal harmonic components of the speeds established in chapter IT. 

The height of the tide above mean sea level at the time ?, at a station 
distant x from the origin of distances, is then: 

y=M2 Cae (mot+ a;) +S, cos (Sef-+a2)+: ° : (190) 

(157) 
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The amplitudes, Mz, S:, etc., and the phases a;, a2, ete., of the 
several components may vary with the distance z, of the station from 
the origin. This origin is conveniently taken at either entrance to a 
connecting canal, or at the single entrance to a closed canal. The end 

so chosen will be termed the initial end. 
Expanding the cosines in equation (190): 

y—M, cos a cos mat— Mp sin ay Sin Mgt+S; COS az COS Sof— 

Ss sin (eo) sin Sot +: < he (191) 

Equation (191) may be written: 

y= X, cos mt+ Y; sin mot-+X2 cos s,t+ V2 sin sof - - (192) 

In which X,, Y,, X5, Yo, etc., are functions of z. 

318. When the flow is frictionless, the current is likewise the result- 

ant of component currents having the speeds of the harmonic com- 

ponents of the tide (par. 289). 
The velocity at the time ¢ is then given by an equation in the form: 

v=V, cos mt+Z, sin m:f+ V2 cos st-+Z, sin sof: - - (193) 

in which V,, Z, V2, Zs, etc., are similarly functions of z. 

The form of the functions, Y, Y, Z, and V necessary to satisfy the 

equation of fluid motion for frictionless flow, and the equation of con- 
tinuity, is then to be determined. 

319. When the frictional and velocity head terms are omitted the 

equation of motion is (equation 176): 

oy/Or+ (1/g) 0v/0t=0 

And in a channel of uniform width and depth, with a tidal fluctua- 

tion small in comparison with the depth, the equation of continuity is 

(equation 184): 
dy/Ot+ Dodv/dor=0 

Substituting the differential coefficients derived from equations 
(192) and (193), the equation of motion becomes: 

(OX,/dxr)cos mot+ (O0Y;/Ozx)sin mot+ (OX2/dzx)cos sof 

+ (O0Y,/0zx)sin st+ - > > —(m:Vj/g) sin mt+ (m2Z,/g)cos mot 

— (s)V2/g)sin set (S:Z2/g)cos st— - - - =0 

or: 

(ONX,/0r+m,Z,/g)cos mzt+ (0 Y;/0z—m;V;/g)sin mot 

+ (0X2/Oxr-+-s2Z2/g) cos sof-+ (0 Y2/0x—s_V2/g)sin st * + - =0 (194) 



159 

And the equation of continuity becomes: 

—m,X; sin mot+m,Y;cos mot—s,X2 sin sot+s,¥>, cos st+ -- } 

+ D(OV,/dzr)cos mat+ D(0Z,/dxr)sin myt+ D(OV2/dxr)cos sot 

+D(0Zs/Oxr)sin sot - - + =0 

or: 

(DOoV,/Or+m:Y;) cos mot+ (DOdZ,/or—m,zX,) sin mot 

+ (DOoV,/dx-+s, Y2)cos sot + (DOZ,/O0xr—s,X2)sIn Sof + ett at &——(() (195) 

Equations (194) and (195) are satisfied by all values of f, if: 

oX,/d0r-+m,Z,/g=0 0.X,/0r-+s.Z,/g=0, etc. 

OY,/0r—m,V,/g=0 0 Y,/0r—s.V2/g=0, etc. 

DoV,/o0rz+m,Y,=0 DOoV,/0x+s2¥2=0, ete. 

DoZ,/o0r—m2X,=0 DOoZ,/O0x—s,X,=0, etc. 

320. Expressions for the components of the tide —An examination of 
these equations shows that the variable coefficients for each of the 
tidal and current components are related by the equations: 

OX /dr+aZ/g=0 (196) 

OY /orx—aV/g=0 (197) 

DoV/ox+aY=0 (198) 

DoZ/or—aX=0 (199) 

in which a@ is the speed of the component. 

From equations (196) and (197) 

Z=— (g/a)0X/0x V=(g/a)0Y/0x (200) 

whence: 

OZ/0x= — (g/a) 0?X/Ox? OVi0r— (Gi @oP (0x7 (201) 

Substituting these expressions in equations (198) and (199): 

0? Y /02?+- (a@?/gD) Y=0 (202) 
NX/02?+ (a/gD)X=0 (203) 

Evidently the solution of equation (203) will afford also the solution 
of equation (202). 

Placing for convenience, gV=c’, and multiplying the termsin equa- 
tion (203) by 20.X/d2 this equation becomes: 

2(0.X/Ox) (07.X?/Ox?) +2 (a?/c?) XOX/Or=0 (204) 

The integration of which gives the equation: 

(0.X/0x)?+ (a?/c?) X?= K? (205) 

in which K? is a constant of integration. . 
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From equation (205): 

OX/+/K2— (aX/c)?= dx (206) 

The integration of which gives: 

sin [(aX/c)/K]=az/c+FR’, (207) 

in which K’ is a second constant of integration. 
From equation (207): 

X= (cK/a) sin (ax/e+K’) (208) 

This expression for X may be placed in the form: 

X=WM cos (az/c)+WN sin (az/c) (209) 

in which M and WN are constants. 
’ Since the differential equation (202) for Y is the same as that for_X, 

the expression for Y is similarly: 

Y=P cos (az/c)+Q sin (az/c), _ (210) 

in which P and Q are constants whose values are independent of those 
of M and N. 

The height of a component of the tide in the canal at a station dis- 
tant x from the origin of distances, is then given by an equation in 
the form: 

y=[M cos (az/c)+N sin (az/c)] cos at 

+[P cos (az/c)+Q sin (az/c)] sin at (211) 

321. Expressions for components of the current—The component of 

the current due to the same component of the tide is, from equation 
(193): 

v=V cos at+Z sin at (212) 

From equations (200) and (210): 

V=(g/a) 0Y /Ox= (g/a)[— (a/c) P sin (az/c)+ (a/c)Q cos (az/c)] 

= (g/c)[Q cos (az/c)—P sin (az/c)] (213) 

And from equations (200) and (211): 

Z=— (g/a)0X/dx=— (g/a){[— (a/c) M sin (az/e) + (a/e) N cos (az/e)] 

=—(qg/c)[N cos (az/c)—M sin (az/c)] (214) 
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The component of the current at a point distant x from the origin is 
then: 

v=(g/c)[Q cos (ax/c)—P sin (az/c)] cos at 
—(g/e)LN cos (ax/c)—M sin (az/c)] sin at. (215) 

The constants VM, N, P, and Q in the equation of the current are the 

same as those in the expression for the corresponding component of 
the tide. 

322. Determination of the. constants—The constants in equations 
(211) and (215) may be determined from the amplitudes and phases 

of the corresponding component of the tide at the two ends of the 
canal. 

Let L be the length of the canal, Ay the amplitude and a the phase 

of the component at the initial end, and A, and ,a, the amplitude and 

phase of this component at the other end. 
The equation of the component tide at the initial end is then: 

Yo= Ay cos (at+ ap) = Ay cos at cos a—Ay sin at sin a (216) 

and at the other end: 

y= A, cos (at-+a,) =A, cos at cos a,— A, sin at sin a (217) 

At the initial end, x=0, and equation (211) becomes: 

Yo= M cos at+P sin at (218) 

Since this equation must be identical with equation (216) 

M=A), cos a (219) 

P=— Ay sin a (220) 

At the other end of the canal, r=Z and equation (211) becomes: 

4¥:=[M cos (aL/c) +N sin (aL/c)] cos at 
+[P cos (a L/e)+Q sin(aL/c)] sin at 

Therefore: 

M cos (aL/c)+N sin (aL/c) =A, cos ay (221) 

P cos (aL/e) +Q sin (aL/c) =— A, sin ay (222) 

It will be convenient to place: 

aL/c=y (223) 
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It may be noted that y (gamma) is an angle which is measured in 

radians, if a@ is expressed in radians per second, or in degrees, if a is 
expressed in degrees per second: 

Substituting the expressions for M/Z and P, from equations (219) and 

(220) in equations (221) and (222), and solving for N and Q 

N= (A, cos a,;— Ap COS a cos y)/sin + (224) 

Q=— (A, sin a;— Ap sin ay cos y)/sin (225) 

323. Component tides.—Substituting the expressions for the con- 
stants found in the last paragraph, equation (211) becomes: 

Y= [Apo cos ap cos (az/c) 

+ (A; cos a,— Ap COs ay Cos y) sin (axz/c)/sin y] cos at 

—|[Ap sin a) cos (ax/c) 

+ [(A; sin ay— Ay sin ap Cos y) sin (ax/e)/sin y)] sin at 

={Ap COS ay [sin y cos (ax/c)—cos y sin (az/c)] 

+A, cos a sin (az/e)}cos at/sin y 

—{Apo sin a)[sin y cos (az/c)—cos y sin (az/c)] 

-- A, sin aq sin (az/c)} sin at/sin > 

=[A) cos ay sin (y—az/c) + A, cos a sin (az/c)| cos at/sin 

—[Ap sin ap sin (y—az/c)+ A, sin a, sin (az/c)| sin at/sin + 

=[(A)y cos ap cos at— Ay sin ap sin at) sin (y—az/c) 

-++ (A, cos a, cos at— A, sin a, sin at) sin (ax/e)]/sin 

= A) cos (at+ ao) sin (y—az/c)/sin 

+A, cos (at+a,) sin (az/c)/sin y (226) 

Since, from equation (223): 

ax/e= (a/L)y (227) 

equation (226) also may be written: 

y= Ap cos (at+ ao) sin (1—a/L)y/sin y 

+A, cos (at-+a;) sin (2/L) y/sin vy (228) 

324. Component currents —The equation of the corresponding com- 
ponent of the current, obtained by substituting in equation (215) the 
same expressions for M/, N, P, and Q, similarly reduces to: 

v= (g/c) Ap sin (at+ ao) cos (y—az/c)/siny 

— (g/c) A, sin (at-+a,) cos (az/c)/sin y (229) 

And this equation may be further transformed into: 

v= (g/c) Ap sin (at+ a9) cos (1—2/L) y/sin 

— (g/c) A; sin (at+a,) cos (2/L)y/sin (230) 



163 

325. Computation of tides and currents produced by frictionless flow 
in a connecting canal.—The tides and currents in a connecting canal 
are determined by the known amplitudes Ay and A,, and initial phases 
a and ay, of the several components at the two entrances to the canal. 

As shown in paragraph 239, equation (228) may be reduced to the 
form: — 

y=A cos (at+a) 

by placing: 

A cos a= Ay Cos a sin (L—2/L)y/sin y+ A; cos a sin (x/L)y/sin y (231) 

A sin a= Ap sin op sin (1—2/L) y/sin y+ A, sin a sin (2/L)y/sin y (232) 

_ The value of y in degrees, for any component of the tide, is given 
by equation (223): 

y=aL/e=aL|\gD 

in which ZL is the length of the canal, D its mean depth, and a the 

speed of the component, in degrees per second. Thus the value of a 
for the M, component is 28°.9841/3600=0°.00805. 

The initial phase, a, and the amplitude A of each component of the 

tide at a point distant « from the origin of distances may be deter- 
mined from the values of A cos a and A sin a, equations (231) and 

(232). 
The equation of the @ component of the current in the canal at a 

point distant « from the origin, equation (23C), may be reduced to 
the form: 

v=B sin (at+ B) 

by a similar procedure. 
326. Instantaneous profiles and wave lengths —The longitudinal sec- 

tion of the water surface in a long tidal channel at any instant is a 
curve designated as the instantaneous profile. The instantaneous 

profile of a component of the tide at any time, fo, in a long connecting 
canal of uniform cross section with frictionless flow, is derived at once 

by placing t=¢) in equation (226). 
This equation then takes the form: 

y=C sin (axr/e—y)+C’ sin (az/ec) (233) 

in which 

C=— Ay cos (dtp ap)/sin y, and C’=A, cos (at)+a,)/sin y 
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This equation is readily transformed into: 

y=W sin (az/c+w) (234) 

The graph of this equation, if sufficiently extended, is the sinusoidal 
curve shown in figure 51. 

FIGURE 51.—Instantaneous Profile. 

The distance, } (lambda) from crest to crest of the profile is desig- 
nated its wave length. The crests of the sinusoidal curve representing 
equation (234) are at the poits at which: 

at%/c+w=7/2, arx,/c+w=5n7/2, etc. 

So that: 

\=2)—2)=5me/2a—1e/2a=21e/a=2rygD/a (235) 

In which a is the speed of the component, in radians per second, D 
the mean depth of the canal, and g the acceleration of gravity. The 
wave length of the M; component of the tide, in a channel whose 

mean depth is 30 feet, is, for example 

204/309 = 1,389,000 feet=263 mil 
0.00014053 % a 

Evidently, the length of a canal is usually but a small fraction of 
the wave length of its principal tidal components. 

The form of equation (229) shows that the graph of the instan- 
taneous component velocities through a long canal of uniform dimen- 

sions with frictionless flow is a similar sinusoidal curve with the same 

wave length as the instantaneous profile. 
327. Relation between y and \.—From equations (223) and (235) 

y=aL/c=2rL/d (236) 

It may be noted that if the length, Z, of a connecting canal is one- 

half the wave length, , of a component of the tide, y=a and 
sin y=0. As subsequently discussed in paragraph 347, the tides and 
currents in a canal of this length would become infinite if there were 
no frictional resistance to flow. 
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328. Example of frictionless tides and currents in a long connecting 
canal.—The characteristics of frictionless flow in a connecting canal 
whose length is less than one-half of the wave length of the tidal 

components, may be exemplified by the tides and currents that would 
be produced in a canal 200,000 feet (37.8 miles) in length, of uniform 
width, and with a mean depth of 30 feet, by the M, component of the 
tide, if its range at the initial entrance is 8 feet, and at the other en- 

trance 4 feet, high water at the latter being 2 lunar hours, or 60°, 
earlier than at the former. Taking the origin of time at an instant 
of high water at the initial entrance, the given data are: 

Ap=4 feet; a=0; A\=2 feet; a:=60°; 

L=200,000 feet; D=30 feet; c=WgD=31.06; 
a@=m,=0°.00805 per second; y=m2L/e=51°.83=51°50’. 

The computation of the amplitudes and phases of the tide and cur- 
rent at the entrances to the canal (r=0 and x=Z) and at its quarter 

and mid points (r=\L, 4%L, and %Z) is summarized in the following 

tabulation: 

# 0 44D YeL 345 L 

(a1) py ne 51°50’ 38°52’. 5 25°55’ 12°57’. 5 
(GID) 7a ne eee 0 12°57’. 5 25°55’ 38°52’. 5 51°50’ 
PAUSIN (sa 0 0. 494 0. 963 1. 383 1. 732 
PAU COSI ana wee 4 3. 478 2. 780 1,9) 1. 000 
(972 525 0 8°05’ 19°06’ 35°30! 60° 
il a eee 4 3. 513 2. 942 2. 382 2. 000 
PBESII Beene —2, 281 —2. 223 —2. 052 S11, 778 —1. 410 
IB COS} Se 1. 938 2. 818 3. 554 4. 109 4, 454 

eteaeat a or Shatin — 49°39’ —38°15/ —30°0’ — 23°22! —17°34! 
PES ape eae 2. 993 3. 588 4.104 4.476 4, 672 

The equations of the tides and currents then are: 
At the initial end: 

y=4 cos mof 

v=2.99 sin (m,t—49°39’) 

At the first quarter point: 

y=3.51 cos (mt+8°5’) 

v=3.59 sin (m,t—38°15’) 

At the middle: 

y=2.94 cos (m.t+19°6’) 
v=4.10 sin (m,t—30°) 

At the third quarter point: 

=2.38 cos (mt+35°30’) 

v=4.48 sin (myt— 23°22’) 
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At the further end: 

y=2 cos (m,é+60°) 

v=4.67 sin (m,t—17°34’) 

Since the speed of any competent, in degrees per component hour 

(par. 84) is 360°/12=30°, and the component hour of the M, com- 

ponent is the mean lunar hour of 1.035 mean solar hours, the tides and 

currents represented by these equations are most conveniently 
plotted in terms of lunar hours, by placing m.t=0, 30°, 60°, ete. The 

tides and currents at the entrances and at the middle of the canal, and 

the instantaneous profiles at the successive lunar hours, designated as 
0, I, II, iI, etc., are plotted in figure 52. 

It will be noted that the amplitudes and phases of the tides and 

currents go through a progressive, but not uniform, variation from 

one end of the canal to the other, and that the amplitude of the 
current increases as that of the tide decreases. 

329. Progression of high and low waters, and of the strength and turn 
of the current, through a connecting canal—The times of high and low 

water, of the strengths of the positive and negative currents, and of 

the turn of the current, at points along the canal may be determined 

immediately from the phases of the tides and currents at these points. 
Thus in the example set forth in paragraph 328, in which the origin of 

time was taken at a high water at the initial entrance to the canal, 
the current at this entrance turns when v=0 and mfi—49°.6=0. As 

the speed of the component is 28°.98 per solar hour, the turn of the 
current occurs 49°.6/28°.98=1.71 solar hours after high water; and 

the strength of the positive current 90°/28°.98=3.11 hours after the 
turn, or 4.82 hours after high water. Similarly, at the first quarter 
point the phase of the tide is 8°.1, and high water occurs when 
t= —8°.1/28°.98, or 17 minutes before high water at the entrance; so 

that if high water at the entrance is at noon, high water at the quarter 

point is at 11.43 a.m. <A plot of these times at successive points along 

the canal (fig. 53, page 168) shows how high and low water and the 
strength of and turn of the current, progress through it. 

Obviously, high water and low water must travel through a connect- 

ing canal at such rates as to reach the far end at the time of high and 
low waters at that entrance, the total time of travel being fixed by the 
difference in the timing of the tides at the two entrances; but the rate 
of travel is not in genera! uniform. The progress of the strength and 

turn of the current through the canal is determined, on the other 

hand, by the rate of storage and release of water in the successive 

sections of the canal, and is dependent on the depth of the canal. No 

fixed relation exists therefore in the general case between the progress 

of high water and of the strength of the current through a connecting 

canal. 
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FIGURE 52.—Frictionless tides and currents in connecting canal. 

330. Tides and currents at the middle of a connecting canal.—At the 

middle of a canal, c=%L and equation (228) becomes: 

Ym=Ay cos (at+ao) sin %y/sin y+A; cos (at+ a1) sin 4y/sin ¥ 

Since sin y=2 sin 4 y cos 4 y this equation reduces to: 

Ym='s[Ap cos (at+ ao) +A; cos (at+a)]/cos hy (237) 
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FIGURE 53.—Progression of tide and current through connecting canal. 

The height of the tide at the middle of the canal is then the mean 
of the heights at the entrances, increased by the factor 1/cos ky. 

The velocity at the middle of the canal is, similarly, from equation 

(230): 

Um=(g/c)[Ao sin (at+a)— A, sin (at+a)] cos y/sin + 
=34(g/c)[Ay sin (at+-a9) —A; sin (at+a)]/sin by (238) 

The total surface head between the two entrances to the canal is: 

h,=A, cos (at+a;)— Ap cos (at+ a) 

Tf the effect of the tidal storage were neglected, the water surface 

would have the uniform slope of: 

oy/Or—=[A, cos (at-+a,)—Ap cos (at+ap)]/L (239) 

And from equation (177) the velocity through the canal would be: 

— —9 | (y/r) Ot=(g/aL)[Ap sin (at+ ay) —A, sin (at-+a)] (240) 

The ratio of the velocity at the middle of the canal, when tidal 
storage is considered, to the velocity through the canal without tidal 
storage, is then, from equations (238) and (240): 

,— 2(g/e)/sin by _ 
Vm|[Vi= gjaL 

In equation (241), y is measured in radians. Its relation to the 
wave length, \, of the component is given by equation (236): 

y=2rL/X=L/(A/277) 

= (aL/c)/2 sin ¥y=y/2 sin by (241) 

331. The nature of the ratios, 1/eos %y and y/2 sin %y can perhaps 

be shown more clearly on a diagram. 
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Let A B CF figure 54, be a circle 
of radius \/27, and hence with a cir- 
cumference of length equal to ; and © 
let A B C be an arc of length L. 
The subtended central angle AOC is 
then L/(\/27)=y radians, and the 

length of the chord AC is 2(A/27). sin }y. 
The ratio v/v, 1s therefore the ratio 
of the arc ABC to the chord AC; 

and 1/cos sy is the ratio of OC to OD. 

It is apparent therefore, that if the 
length of a canal is not too large a 
part of the wave length of the tidal 
components, frictionless tides and cur- ; 
rents at its middle do not differ greatly from the values which they 
would have if the effect of tidal storage were neglected. 

FIGURE 54. 

SPECIAL CASES 

332. A canal connecting a tidal with a tideless sea.—If the sea at one 

end of the canal is tideless, all of the components there have a zero 

amplitude and equations (228) and (230) become: 

y=A) cos (at+a) sin (1—2/L)y/sin y (242) 

v=(g/c) Ap sin (at+ a9) cos (1—2/L)y/sin (243) © 

It is apparent that, when the equations reduce to this form, y be- 

comes a Maximum and v becomes zero, for all values of x, when at--a,.= 

0, or when t=—a,/a; and that y=0 and v is a maximum, when t= 

—a,/at+7/a. Both high water and low water occur therefore at the 

same respective instants throughout the canal, and the current turns 

at the same instants. 
If, for example, the canal described in paragraph 328 entered a 

tideless sea at its further end, the tides and currents at the entrances 
and at the middle of the canal, and the instantaneous profiles at suc- 
cessive lunar hours, would take the forms shown in figure 55, page 170, 

were the flow frictionless. 
333. When high water occurs at the same time at both entrances, or 

when the tides at these entrances are exactly opposite —If the phases of 
the tides at both entrances are the same, a;=ap, and equations (228) 

and (230) reduce to: 

y=cos (at+a)[Ay sin (1—2/L)y+A, sin (x/L)y]/sm y (244) 

v=(g/c) sin (at-++ay)[Ap cos (1—2/L)y— A, cos (x/L)y\/sin y (245) 

In this case, also, high water and low water each occur at the same 

instants throughout the canal, and the currents turn throughout the 

canal at these instants. It is readily shown that the same conditions 

result if the phases of the tides at the ends of the canal differ by 180°. 
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FIGURE 55.—Frictionless tides and currents in canal connecting a tidal with a tideless sea. 

334. Meeting the tides —If the tides at the two entrances are identi- 
cal in range and in timing, equations (244) and (245) further reduce to: 

y=Ay cos (at+a)[sin (1—2/L)y+sin (a/L)-y]/sin > (246) 

v=(g/c) Ap sin (at+a)[cos (1—a2/L)y—cos (a/L)y]/sin y (247) 

and at the middle of the canal: 

v= (g/c) Ap sin (at-+ a) (cos ’y—cos Ky) /sin y=0 
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Obviously, under such conditions, the total surface head through 
the canal is always zero, and the currents are due solely to the filling 
and emptying of the canal from the two entrances. At the middle of 
the canal the currents disappear, and the tides are said to meet. 

FRICTIONLESS TIDES AND CURRENTS IN A CLOSED CANAL 

335. The amplitude and initial phase of each component of the tide 
at the head of a closed canal is determined by the condition that the 

currents are there zero. Taking the open end of the canal as the initial 
entrance, the equation of a component of the tide at this entrance is 

Yo= Ap cos (at+ ay) and at the other end, at the head of the canal, y,= 

A, cos (at-++a;). At the head of the canal xz=Z, the length of the canal, 
and the velocity of the corresponding component of the current is, 
from equation (230): 

v= (g/c) Ay sin (at+ap)/sin y— (g/c) A; sin (at-++a,) cos y/sin y=0 

Whence: 

A, sin (at+ Bn) — Al sin (at+ a) /Cos a (248) 

Since this equation is identically true for all values of ft: 

Ag —Ay/ Cosi (249) 

Ql = ay (250) 

Substituting these equivalents in equation (228), the equation of a 

component of the tide at any point in a closed canal becomes: 

y= Ap cos (at+ ao) sin(1—2/L)y/sin + 

+ Ay cos (at+ap) sin (x/L)y/siny cos 

== Ay cos (at+ ay) [(sin y cos (z/L) y—cos yx sin (x/L)y) cos 

+sin (z/L)-y]/sin y cos 

= Ay cos (at+ay)[sin y cos (x/L)y cos ¥ 

+(1—cos? y) sin (2/L)y|/sin y cos 

= Ay cos (at-+-a)[cos (x/L)y cos y+sin (2/L)y sin y]/cos 

=A) cos (at-+ao) cos (l—2/L)y/cos y. (251) 

The substitution of the same values of A; and a, in equation (230) 

gives the equation of the corresponding component of the current, 
which similarly reduces to: 

v=—(g/c) Ay sin (at+-ao) sin (1—2z/L)y/cos y (252) 

336. The form of equations (251) and (252) shows that, if the flow 
were frictionless, high water and low water each would occur simul- 

taneously throughout a closed canal, and the current would turn at 
these instants at every point in the canal. The maximum currents 

192750—40—12 
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would occur at mean tide. The tides and currents at the 
entrance, the middle, and the end of a closed canal 30 feet in mean 
depth and 200,000 feet in length, which would be produced by a 
simple harmonic fluctuation of the tide at the entrance with the speed 
of the M, component, and a range of 8 feet, were the flow frictionless, 
are shown in figure 56, with the instantaneous profiles through the 

canal. , 
337. Relation of amplitudes of the components of the current to those 

of the components of the tide in a closed canal—From equation (251), 
the amplitude of a component of the tide at a point distant x from the 
entrance is: 

A=A) cos (1—2/L)y/cos (253) 

and from equation (252) the amplitude of the corresponding compo- 
nent of the current is: 

B=(g/c) Ay sin (1—2/L)y/cos y (254) 

so that: 

B=(g/c)A tan (1—2/L)y (255) 

Designating the amplitude of any other component of the current 

at the same point as B,, the amplitude of the corresponding component 
of the tide as A;, and the value of y for this component as 7, then: 

i=(g/e) A; tan (1—2/L) 1 

and: 

B,/B=(A,/A) tan (1—2/L)y,/tan (—2z/L)y (256) 

If the length of the canal is a small part of the wave lengths of the 
components, the angles (1—z/Z)y and (1—2/L)y; are small, and are 

approximately proportional to their tangents. 
Then, approximately: 

B,/B= (Aj/A) (1/7) (257) 

Since y=aL/c and y,=a,L/c, equation (257) becomes: 

B,/B= A,a,/Aa (258) 

It follows, therefore, that unless a closed canal is quite long, the 
amplitudes of the components of the current produced at a given 
point by frictionless flow, are nearly proportional to the products of 

the amplitudes and speeds of the corresponding components of the 

tide at that point. These speeds, it may be observed, may be ex- 
pressed in any units. 
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The diurnal components of the current in a closed canal have there- 
for a much smaller ratio to the semidiurnal current components than 
the diurnal components of the tide have to the semidiurnal tidal com- 
ponents. It is easy to see, indeed, that the filling and emptying of the 
tidal prism of the canal by the diurnal components is at but half the 
rate of the filling and emptying by the semidiurnal components. In 
a connecting canal, on the contrary, the ratio of the diurnal to the 
semidiurnal components of the current may be increased because of 
the proportionally large acceleration heads set up by the semidiurnal 

components. 

PROGRESSIVE, RETROGRESSIVE, AND STATIONARY WAVES 

338. The progressi -A special condition of frictionless tidal 
flow arises when aay am ana of a component of the tide is the same 

at both entrances of a connecting canal, and the phases of the compo- 
nent at the two entrances differ by the snclle vy. Taking first the case 
in which high water at the further entrance is later than at the initial 
entrance, and placing in equation (226), A;=Ao, and a;=a,—y, this 

equation becomes: 

y= Ay cos (at+ ao) sin (y—az/e)/sin 

+ Ay cos (at+a y—vy) sin (az/c)/sin y 

Expanding by the formula: 

cos A sin B=% sin (A+8B)—% sin (A—B) (259) 

y=%A)[sin (at+a+y—aa/c)—sin (at+a—y+az/c) 

+sin (at+a)—y+az/c) —sin (at+-a—y—az/e)|/sin y 

—¥A)|sin (at+a)—az/e+y)—sin (at+a,—az/e—y)]/sm 7 

— Ay cos (at-+ a )—azx/c) sin y/sin (260) 

=A, cos (at—ax/c+ ao) 

The expression for the current is most readily derived by applying 

equation (177): 

= —9 | (y/dn)01 

From equation (260): 

Oy/Or=(Aya/e) sin (at—azx/c+ av) 

Whence: 

r=—9 | (Atle) sin (at—azx/e+a9) Ot=(g/c)Ao cos (at—az/e+-a9) (261) 
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339. From equation (260) it is seen that the component tide has, 
under these conditions, a constant amplitude throughout the canal. 

At a point distant v7 from the origin its high water occurs when 

at —axJe+-a,=0; or when t=2/¢—a)/a. 

The time of high water therefore increases with the distance x at 

the uniform rate of c=VgD feet per second. Successive instantaneous 
profiles when sufficiently extended, have the relation shown in figure 

She 

eI Te oh 

At dnE ag ane 

FIGURE 57.—Successive instantaneous profiles of progressive wave. 

Evidently, in this case, a wave progresses through the canal with a 

speed, <i gD, which depends only on the depth, D, of the canal and is 

independent of the speed of the tidal fluctuations and of the wave 
length of the component, and independent also of the maximum cur- 
rents in the canal. 

The current velocities (equation 261) similarly have the constant 

amplitude, Aogle= Avy g/D throughout the canal. At every station 
along the canal the strength of the current occurs at high water. 

340. Example of a frictionless progressive wave.—In a canal 200,000 
feet in length, with a mean depth of 30 feet, the value of y tor the Mz 
component of the tide has been found to be 51°50’. The tidal flow 
through a canal of these dimensions will then have the form of a pro- 

gressive wave if the tides at the entrances have a simple harmonic 
fluctuation with the speed of the M, component, the same amplitude, 
and the phase of the tide at the initial entrances 1s 51°50’ larger than 
that at the other entrance. The tide at the farther entrance is then 

51°.83/28°.98=1.79 solar hours, or 51°.83/30°=1.73 lunar-hours later 
than at the initial end. Ii tidal range at the entrances is 8 feet, the 
equations of the tides and currents in the canal are, when the origin 

of time is at the time of high water at the initial entrance: 

y=4 cos (mf—0°.000259z) 

v=4.14 cos (mst—0°.000259z) 

The currents and tides at the entrances and at the midpoint of the 

canal, and the instantaneous profiles at successive lunar hours, are 

shown in figure 58, page 176. 
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FIGURE 58.—Tides and currents of frictionless progressive wave. 

341. It readily may be shown that a progressive wave would be 
propagated through an endless deep canal of uniform section, from any 

fluctuation of the water surface at the entrace, whether harmonic or 

otherwise, if the flow were frictionless. Such a wave would also be 

propagated, under the same conditions, through a canal of finite 

length, if the energy transmitted could be wholly absorbed at the far 
end. As will be shown later, the tidal flow in an estuary of the usual 
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shape, in which the cross section diminishes at such a rate as to counter- 
balance the friction losses, also takes the form of a progressive wave, 

but with the current out of phase with the tide. The progressive 

wave is commonly regarded, therefore, as a normal form of tidal 
motion in a long channel; but tidal flow does not take the form of a 
progressive wave in all cases. 

342. The retrogressive wave. —If the amplitude of a tidal component 
is the same at both ends of the canal, and its phase at the far end 
exceeds by the angle y the phase at the initial end, so that high 

water is later at the initial end, equations (260) and (261) become: 

y=Ay cos (at+ar/e+ a) (262) 

v= — (g/c) Ay cos (at-+az/c+ ay) (263) 

A wave then retrogresses through the canal at the rate of + gD 
feet per second. 

343. Resolution of frictionless tides in a connecting canal into pro- 
gressive and retrogressive waves.—The application of equation (259) 
to the equation of any component of the tide in the form derived in 
equation (226): 

y=Ay cos (at-+ao) sin (y—az/c)/sin y+A, cos (at-+ a) sin (azx/c)/sin Y 

gives: 

y='%Ay sin (at+ao+y—az/c)/sm y—%Ap sin (at+a,—y+az/c)/sin v 

+%A, sin (at+a,;+az/c)/sin y—%A, sin (at+a,—az/c)/sin y 

The first and fourth terms of this equation may be combined into a 
term in the form: 

W, cos (at—azr/e+u) 

and the second and third into one in the form: 

W, cos (at+ax/e+ wu») 

giving: 
y= W, cos (at—az/e+w,)+W, cos (at+at/e+u,). (264) 

From the form of equation (264) it is seen that if the flow were 
frictionless, the water surface in a connecting canal produced by a 

component of the tide at the entrances would be the resultant of two 

waves, one progressive and the other retrogressive. Since the speed, 
gD, of the waves produced by each component of the tide depends 

only on the depth in the channel, the resultant of all of the compo- 
nents of the tide is similarly resolvable into two compound waves 
traveling in opposite directions through the canal. The combination 
of these two component waves produces, in general, a wave which 
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travels through the canal with changing amplitude and varying 
speed. The currents may be correspondingly resolved. 

344. The resolution of the frictionless tides in a connecting canal 
200,000 feet in length and 30 feet in mean depth, into component 

waves, when the equation of the tide at the initial and farther entrances 
are respectively: 

y=4 cos mot y=2 cos (mt+60°) 

gives the equation: 

y=1.30 cos (mat—myx/e—46°10’) +3.24 cos (met+myr/e+16°47’) 

It may be seen, therefore, that the amplitudes and phases of the 

progressive and retrogressive waves in a long connecting canal generally 

differ widely from the amplitudes and phases of the tides at the en- 
_trances, and have no simple relation thereto. 

345. The stationary wave.—In a closed canal, and in certain special 

cases In a connecting canal, as has been seen, the phase of the tide and 

of the current produced by frictionless flow is the same at all points, 
so that high and low water and the strength and turn of the current, 

each occurs simultaneously throughout the canal. When the tide in 

a closed canal, derived in equation (251), is resolved into progressive 

and retrogressive waves by the process indicated in paragraph 343, its 
equation becomes: 

y='%Ap> cos (at—az/c+a+y)/cos y 

+A, cos (at+azr/e+a,—vy)/cos (265) 

These two component waves have the same amplitude, A)/2 cos y. 

The retrogressive wave may be regarded as the reflection of the pro- 

eressive wave from the end of the canal. The resultant of the 

progressive and retrogressive (or reflected) waves of the same ampli- 
tude is a wave which neither advances or retreats, but remains 

stationary. It will be noted that when a stationary wave is produced 

by frictionless flow, the current turns at high and low water; while if 
a simple progressive wave is produced, the strength of the current at 
each station along the canal occurs at high and low water, and the 

current turns at midtide. 

Frictional resistance must modify the conditions of flow in a long 
closed canal, since the lag of the current increases as the currents 

decrease toward the head of the canal. From another viewpoint, the 
absorption of energy by friction reduces the amplitude of the reflected 
wave. The tides at the head of a closed channel are therefore always 
later than those at the entrance, and a completely stationary wave is 
never found. It is nearly realized in such deep channels as the fiords 
of Alaska. Thus in the Portland Canal, a fiord from 600 to 1,000 feet 



Wy 

in depth, and of quite regular section, the published high water inter- 

vals show that high water at Eagle, at the head of the fiord, is but 2 
minutes later than at Halibut Bay, 55 miles down the channel and 
not far from the entrance. In closed channels of more usual depths, 

the frictional resistance is considerable if the length of the channel 

is sufficient to set up any appreciable currents, and the tidal fluctu- 
ations may more nearly resemble a wave of the progressive type. 

CRITICAL LENGTHS OF A CANAL WERE THE FLOW FRICTIONLESS; NODES 

IN A CLOSED CANAL 

346. Critical lengths of a closed canal—The formulas for the tides 
and currents which would be produced in a closed canal by a com- 
ponent of the tide at the entrance, were the flow frictionless (equations 

(251) and (252)) shows that these would reach infinite proportions if 

the length of the canal were such that y=7/2, 37/2, 57/2, etc., since 

cos y would then become zero. Since y=27 L/\ (equation 236) these 

critical lengths occur when L=)/4, 3\/4, 5X/4, etc.; 1. e., when the 

length, Z, of the canal is one-quarter, three-quarters, etc., of the 

wave length, \, of the component. 

It is apparent that if a closed canal is not of great length, the cur- 
rents set up by the fillmg and emptying of the tidal prism are 
moderate, and the slopes produced by a small increase in the tidal 

ranges in the canal are sufficient to check the momentum of the mov- 

ing water. As the length of a canal increases, the increase in the tidal 
ranges in the canal further accentuates the currents, and if these 
were not restrained by frictional resistance, they would reach infinite 
proportions if the canal had the critical length of one quarter of the 

wave length of the component. If the length of the canal exceeds 
this critical length, the currents at the head of the canal are in the 
opposite direction to those at the entrance, and the momentum of 

the water is correspondingly controlled. The currents then are finite 
until the length of the canal reaches thesecond critical length ;andso on. 

347. Critical lengths of a connecting canal——Unless the amplitudes 
and timing of the component of the tide at the entrances to a con- 

necting canal are such as to produce a simple progressive (or retro- 

eressive) wave, a critical length for the component is reached when 

sin y=0, and hence when L=15X, A, 14d, etc. The condition of flow 

in each half of the canal at the first of these critical lengths is like that 

in a closed canal of one quarter of the wave length of the component. 

The water entering through both entrances would pile up in the 

canal without limit, were there no frictional resistance. When the 
length of the canal is equal to the wave length of the component, the 
positive and negative currents exactly balance each other, and the 
net work done in the acceleration and deceleration of the current 

becomes zero, so that frictional resistance would alone limit the flow. 
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Obviously, frictional resistance must control the currents when a 
connecting or a closed canal approaches its critical lengths. 

348. Nodes in a closed canal.—The equation of a component of the 
tide at a point in a closed canal distant x from the entrance is, equation 
@oald: 

y= Ay cos (at+-ay) cos (1—2/L)y/cos 

The tide, y, becomes zero, for all values of ¢, at the points at which 
(1—a2/L)y=n/2, 32/2, 57/2, etc. At these points c=L—7L/2y, 

L—3rL/2y, L—5rL/2y, etc., and hence s=Z—)/4, L—3)/4, L-5)/4, 

etc. 

If the flow were frictionless and the canal long enough, each com- 
ponent of the tide would then disappear at points one-quarter, three- 
‘quarters, etc., of its wave length from the head of the canal. At 
these points the component current would reach a maximum ampli- 

tude of (g/c)Ao/cosy. These points are termed nodal points. 

Similarly a component current in a closed canal would become zero 
at the points at which sin (1—2/L)y=0, and hence at which: 

r=L, 1—%d, L—X, ete. 

And at these points the component of the tide would have a maxi- 
mum amplitude of A,/cos y. 

It is perhaps needless to point out that true nodal points have no 
counterpart in actual channels. 

349. Shallow water components of frictionless tides and currents.— 
The variation of the mean depth, D, in the equation of continuity 
(equation 184) with the rise and fall of the tide has been neglected in 
the preceding analysis of the tides and currents in a canal without 
frictional resistance. This variation must in fact produce distortions 
of the simple harmonic fluctuations of the components of the tides 

and currents that have been deduced. It may be shown that these 
distortions, like those due to the form of the friction term, may be 
reproduced by overcurrents and compound currents, and overtides 

and compound tides. As illustrated in the cubature of the Delaware 

River, in chapter VI, this variation in the depth may produce marked 
distortions of the current in a long and comparatively shallow channel; 
but a mathematical analysis of the distortion with frictionless flow 
does not serve much useful purpose. 

SEICHES 

350. An accidental tilting of the surface of a deep lake or enclosed 
sea, such as may be produced by wind, or a variation in the barometric 
pressure, or by any other cause, often is followed by periodic oscilla- 
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tions of the surface before it returns to normal level. These oscilla- 
tions are called seiches. Since the currents set up by seiches are 

never strong, the characteristics of a seiche in a long canal of uniform 
dimensions, closed at both ends, may be derived from the equations 
for frictionless flow in such a canal. The frictionless tides and cur- 
rents in a canal open at the initial end and closed at the other have 
been derived in equations (251) and (252). If the canal is closed at 

both ends, the currents at the initial end are zero. Placing r=0 in 
equation (252) the equation of the current at the initial end becomes: 

v=—(g/c) Ap sin (at+ ay) tan y 

This current is zero if the speed of the oscillations, a, is such that 
tan y=0, or if: 

y=aLl/c=x 

whence: 

a=re/L 

The period, 7, of these oscillations is therefore, from equation (28), 
paragraph 49: 

T=2n/a=2L/e=2L/VgD (266) 

Thus the period of free oscillation in a canal 5,000 feet in length, 

and 30 feet in mean depth is 10,000/+/30g=322 seconds=5}4 minutes. 
Jf then the entrance were closed, an oscillation of this period, once 

started, would continue, like the oscillations of a pendulum, until 
damped out by friction. 

At a point distant x from the initial end of the canal, and at the 
time ¢, the height of the water surface above its normal level, is found 

by placing y=7 in equation (251), and is: 

y= Ap cos (at-+ ao) cos (rx /L) (267) 

and the current is, from equation (252): 

v=—(g/c) Ay sin (at+ ao) sin (rr/L) (268) 

At the middle of the canal, x=, so that rz/L=7/2; and y=0 
The middle of the canal is then the node of the oscillation. The 
currents there reach the maximum amplitude of gAo/c. 

Since the current at the initial entrance also is zero when the oscil- 
lations have such a period that y=2r7, 32, 47, etc., similar oscillations 

with periods of one-half, one-third, one-fourth, etc., of the first may 
be set up in a canal closed at both ends. These have two, three, 

four, etc., nodal points respectively. 
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The corresponding oscillations of a deep lake or arm of the sea are 
more complicated, but those observed at any locality often have one 

or more fairly well defined periods. In a deep narrow lake with a 
regular shore line, the observed period of the oscillations usually 
agrees with the computed period for a canal of equivalent dimensions, 

closed at both ends. Even when the conformation of the bed and 
shores of the lake is not so regular, the observed periods may agree 

with those computed for an equivalent canal extending to a selected 
poit on an opposite shore; but as the selection of the point must be 

based on the known period, the analogy does not serve much useful 

purpose. 
Seiches are damped out by the frictional resistance of the currents 

which they produce. For an oscillation of a given amplitude these 

currents decrease as the depth of the lake increases. Seiches there- 

fore are most marked in deep bodies of water. At many localities on 
the Great Lakes, seiches of a foot or more occur with such frequency 
that an allowance is made for them in the design of navigation channels. 

Seiches in tidal waters are superimposed upon, and more or less 

obscured by, the fluctuations of the tide; but the tide gage records at 
some stations occasionally are marked by saw-toothed irregularities 

produced by seiches. Their characteristics may be ascertained by 
taking off their departures from a smooth tide curve. In San Fran- 

cisco Bay, seiches produced by variations in the barometric pressure 

and winds have a period of about 45 minutes, and may have a range 

of as much as a third of a foot. It has been observed that earthquake 
waves reaching the bay from distant points set up oscillations of the 

same period. 

At some of the ports on the Pacific coast in California, the currents 

set up by seiches often cause a surging of large vessels at wharves, 

sometimes with sufficient violence to break the mooring lines. The 
surge 1s experienced chiefly at the wharves in the less enclosed parts 
of the harbors. The reason for the prevalence of a troublesome surge 

in this region is not clear. It is possible that the characteristic 
periods of the seiches may agree with the period in which a vessel, as 

customarily moored to a wharf, comes and. goes with the stretching 

and slackening of its lines. The usual remedy is to make fast to the 
wharf with short, taut lines. 
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CONNECTING CANALS 

351. General considerations—Perhaps the most important applica- 
tion of the principles of tidal hydraulics is in the computation of the 
currents which may be expected in a projected long open connecting 

canal because of the tides at the entrances; and in the concurrent de- 

termination of the elevation of low and high water through the canal. 
As has been pointed out, no artificial canal can be so deep that the 
tidal flow approaches a frictionless condition, if the currents are of 

any consequence whatever. Frictional resistance to flow has there- 
fore an important effect upon the tides and currents. The variation 
in the depth and width of the water prism as the tide rises and falls 

also may have a sufficient effect to warrant consideration, and the 
entrance, recovery and velocity heads may be more than negligible. 

352. Accuracy required —The usual purpose of such computations is 

to ascertain whether the currents will be strong enough to affect ad- 

versely the use of the canal for navigation, or to cause serious erosion 
of the bed and banks. The computations also show the depths to 
which the successive sections of the channel must be excavated to 

afford the designed depth for navigation at the selected low-water 
datum. These purposes are fulfilled if the maximum current ordin- 

arily to be expected in any part of the canal is reliably determined to 
- say the nearest half of a foot per second, and the elevation of low water 

in the successive sections to the nearest half foot; but good workman- 
ship in the calculations usually requires that they check to the nearest 
tenth of a foot per second, and tenth of a foot of elevation respectively. 

(183) 
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It is well to recollect that the results rest on the selection of the coeffi- 
cient of friction, and that this depends upon the undeterminable 
irregularities of the channel as actually excavated. Furthermore, the 
actual currents will vary from day to day with the varying range and 
even the varying form of the tides at the entrances. These variations 
may be intensified by winds and storms, which may pile up the water 
at one entrance and draw it away from the other. <A precise deter- 
mination of the currents and tides produced by a particular fluctuation 

of the entrance tides is of academic interest only. The computations 
call therefore for reliability rather than precision. 

353. Selection of representative entrance tides —The computation of 
the tides and currents in a canal is far too laborious to warrant repe- 
tition for each successive tidal fluctuation at the entrances, even if 

any useful purpose would be served thereby. Representative tidal 

fluctuations at each entrance should therefore be selected from a study 
of the actual tidal fluctuations during a month or more. 

If the tides at both entrances are of the semidiurnal type, with no 
large variations between springs and neaps, and are not much de- 
formed by overtides, the representative tide at each entrance may be 
taken as a simple harmonic fluctuation with the speed of the M, com- 
ponent and the amplitude of the mean semirange of the tide. The 
most convenient origin of time in this case is at a high water at the 
initial entrance. The initial phase of the tide at this entrance is then 
zero. The initial phase at the other entrance may be obtained from 

the difference between the average lunitidal intervals at the two en- 
trances, corrected, if necessary for the differences in longitude (par. 10). _ 
The corrected difference, in solar hours, multiplied by the speed of 

the M; component, 28°98 per hour, gives the initial phase of the tide 
at the far entrance. This phase is positive if the tide at the far en- 
trance is the earlier, and negative if it is later than at the initial en- 

trance. Published data on the lunitidal intervals at stations near the 
ends of the canal may be based on such a limited number of observa- 
tions as to have no great weight. If a reliable determination of the 
lunitidal intervals is not available, the recorded differences in the 

times at high water at the two entrances, and in the times of low 
water, Over a period of 29 days, or a multiple thereof, should be 
averaged. A material discrepancy between the average difference in 

the times of high water at the two entrances to the canal and the 
average difference in the times of low water, indicates that overtides 
are of sufficient importance to warrant consideration. 

354. If the tides at the entrances are of the same general type as 

those considered in the preceding paragraph, but the daily tide curves 
at one or both entrances are so distorted by overtides that they cannot 
be represented satisfactorily by a simple harmonic fluctuation, either 
average or composite tide curves may be prepared by the methods 

aT 
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outlined in paragraphs 304 and 305. The tidal heights on these 
curves should, however, be taken off at lunar hourly intervals, begin- 
ning generally either at a lunar transit or at the time of high water at 
the initial entrance to the canal. 

355. If the tides at an entrance have a marked variation between 
springs and neaps, it may be advisable to determine the tides and 
currents in the canal at mean spring tides, or at ordinary spring tides 

(par. 181); and perhaps at the corresponding neap tides as well. If 

the daily tide curves show no marked distortions, the representative 
spring and neap tides may be taken, without introducing errors which 

will affect the results materially, as simple harmonic fluctuations with 

the speed of the M, component, and amplitudes of one-half of the 

spring and neap ranges respectively; otherwise average or composite 
curves of spring and neap tides may be prepared. 

356. Probably the most satisfactory method for dealing with an 
entrance tide of the mixed type is the preparation of a composite 
curve whose timing and elevations conform to the times and elevations 

of mean lower low, higher low, lower high and higher high waters, as 
outlined in paragraph 306; or a representative tropic tide could be 
selected from the records. 

357. If the entrance tides are of the semidiurnal type, the currents 
produced by the repetition of a single properly selected average, or 
spring, or neap semidiurnal fluctuation will afford an adequate indica- 
tion of the average, spring or neap currents and tides to be expected 

in the canal. To facilitate the computations, the representative 
entrance tides of this type should be adjusted as necessary to afford 
a smooth curve when identically repeated in successive periods of 12 

lunar hours. When either or both of the entrance tides are of the 
mixed or diurnal types, the representative tides similarly should follow 
curves which are identically repeated every 24 mean lunar hours. 

358. The representative tides at the two entrances to a canal should 

be referred to the same horizontal datum. If either end of the canal 
takes off from the upper part of a generally shallow bay or river 

estuary, the mean level of the tides at the two entrances may not be 
at the same elevation. The same situation may arise if the canal 

connects two oceans or seas in which the water density and mean 

meteorological conditions are not the same. Any uncertainty may 
be removed by connecting the tide stations at the proposed entrances 
by a line of precise levels. Daily variations due to winds, freshets, 
and other meteorological causes may produce a constant component 
of the head between the entrances, of sufficient magnitude to have a 

marked effect upon the currents. It may, therefore, be advisable to 
select one or more typical concurrent storm tides at the two entrances, 

which would produce large differences in the head through the canal, 
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and determine the currents due to these, as well as those produced by 
the representative normal tidal fluctuations. 

359. Primary currents and tides in the canal.—If the selected repre- 
sentative entrance tides are not simple harmonic fluctuations of the 

- same speed, they may be approximated more or less closely by such 
fluctuations. These may be termed the primary entrance tides. The 

primary currents and tides in the canal which would be produced by 
the primary entrance tides are first computed. These computations 
are based on the depth and width of the canal at mean tide, and omit 
the effect of the minor components oi the friction term (par. 226). The 
primary currents and tides may then be adjusted to develop the 
deformations produced by the minor components of the friction term, 

by the variation in the width, depth, and area of the cross section of 

the water prism as the ride rises and falls, and by the entrance, recovery, 
and velocity heads; and to develop also the variations because of a 
departure of the representative entrance tides from the simple har- 
monic fluctuations from which the primary currents and tides were 

derived. 
The primary currents and tides usually afford a fair representation 

of the currents and tides to be expected in the canal because of the 
ordinary tidal fluctuations; but their adjustment, although a laborious 
procedure, may be warranted to give a more complete and assured 
picture of the anticipated tidal flow. The effect of storm tides can 
be ascertained only by going through the latter process. 

360. Determination of primary entrance tides.—The primary tides 
most nearly conforming to the selected representative tides ordinarily 
will have the speed of the M, component, whose component hour is 

the mean lunar hour of 1.035 mean solar hours. By taking off from 
the representative tide curves the heights on 24 successive lunar hours 
after any assumed origin of time, the amplitude A, and the initial 

phase, a, of the primary tide at this origin of time, may be computed 

from equations (56), (57), (47), and (48) developed in Chapter IJ, viz: 

12¢,= (hp cos O+h; cos 30°+hz cos 60°+. . .+hs3 cos 330°) (56) 

12s,= (ho sin 0+, sin 30°+h, sin 60°+. . .+/o3 sin 330°) (57) 

tan (=8)/c2 A=s,/sm ¢=c,/cos ¢ (47) (48) 

In which ho, fy, etc., are the tidal heights at the successive lunar hours, 

and ¢=—a. 

The abbreviation of the computations is explained in paragraph 94. 
A consideration of the derivation of these equations shows that if 

the representative entrance tides are taken as a fluctuation which is 
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identically repeated every twelve lunar (or other component) hours, 
the values of c, and s, may be derived from the equations 

6¢:= (ho—he) cos 0+ (hi—hz) cos 30°+. . .+(As—hi) cos 150° (56.4) 

652= (Ao—he) sin 0+ (i—hz) sin 30°+. . .+(hs—Au) sin 150° = (57A) 

The mean tide elevation of the primary entrance tides should be the 
mean of the elevations computed from the representative tides at the 
two entrances. 

COMPUTATION OF PRIMARY TIDES AND CURRENTS IN 

A CONNECTING CANAL 

361. A general mathematical analysis of the tides and currents in 
a long canal appears impossible if the friction term in the general 
equation of motion is taken as a reversing function which varies with 
the square of the current velocity. A general solution when the 
frictional resistance is assumed to vary with the first power of the 
velocity is given by Maurice Lévy in ‘“Lecons sur la Théorie des 

Marées” (Gauthier-Villars, 1898); and its application to the Cape 

Cod Canal is presented in a paper by William Barclay Parsons con- 
tained in the Transactions of the American Society of Civil Engineers, 
volume LXXXII (1918), pages 1-157. The equations developed by 

this analysis are lengthy and unwieldy, and the established coefficients 
of frictional flow are not applicable thereto. Another method for 

determining the tides and currents is presented by Col. Earl I. Brown, 
Corps of Engineers, United States Army, in a paper on the Trans- 

actions of the American Society of Civil Engineers, volume 96 (1932), 
pages 753 et seq. The solution therein presented proposes that the 

currents at high water be determined from the mean depth of the 
canal at high water, and the currents at low water from the mean 
depth at low water. 

362. A better method is to compute the primary currents and 
tides from established frictional coefficients, by a process of successive 

approximations, on a line of procedure somewhat similar to that 
applied in computations of steady flow. The canal is divided into 
subsections so short that the variation in the velocity of the current 
because of channel storage is not material in any subsection. The 
primary currents in the subsections, and the primary tides at the 

ends of the subsections, must satisfy the two conditions: 

(a) The fluctuations of the current in each subsection must 

conform to the fluctuations of the surface head set ue by the 

tides at the ends of the subsection. 

(b) The currents in the subsections must also conform to the 

storage and release of water from subsection to subsection 
because of the rise and fall of the tides. 

192750—40-—_13 
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The computations are started by determining the tides which 

would be produced if the instantaneous profiles were straight lines. 
The primary current in the subsection at the middle of the canal is 
then computed from the surface head established by these tides, and 
the currents in the other subsections determined therefrom by com- 
puting the increments in the velocity due to tidal storage between the 
successive subsections. The surface heads corresponding to these 
currents are next computed and adjusted to the total head through 
the canal. These subsection heads establish corrected primary tides, 

and corrected instantaneous profiles, more nearly conforming to the 
true profiles than the straight lines initially assumed. The primary 
current in the middle subsection is then recomputed from the adjusted 
surface head in this subsection, and corresponding currents in the 

other sections from the storage and release of water with the corrected 
tidal fluctuations. The process is repeated until the further corrections 

become negligible. 
363. It may be noted that the computations are started by taking 

the instantaneous profiles as straight lines, and the current at the 
middle of the canal as unaffected by channel storage. As shown in 
paragraph 331 both of these conditions would be approximately 
realized in as long a canal as is likely to be undertaken, if frictional 
resistance were neglected. An examination of the recorded instan- 
taneous profiles in actual canals shows that they do not, in fact, 
depart widely from straight lines. The procedure will be found 
applicable to any case likely to be encountered. 

364. Coordinate components of the primary tides and currents.— 
The equation of the primary tide at any station on the canal is in 
the form: 

y=A cos (at+a) 

The speed, a, at all stations is that selected for 
at the primary entrance tides, but the initial phase, 

a, differs from station to station. To carry out 
the computations outlined in the preceding 
paragraphs, these tides are resolved into com- 
ponents with common initial phases. As is 
apparent from figure 59, the primary tide at a 
given point may be resolved into two com- 
ponents; the Y component with an amplitude 

Ficure 59—Coordinate com- of A cos a and an initial phase of 0°, and the 
ponents of the tide. 3 : 5 

X component with an amplitude of A sin a, 
and an initial phase of 90°. 

The equation of the primary surface head in a subsection of the 
canal is similarly 

h,=H cos (at+H°) 
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and the surface heads may likewise be resolved into Y components 
whose amplitudes are H cos H° and whose initial phases are 0°; and 
X components whose amplitudes are H sin H°, and whose initial 

phases are 90°. 
Designating the amplitudes of the Y and X components of the 

tide at the initial entrance as Ay cos ap and Apo sin ay respectively, the 

amplitudes of the Y and X components of the tide at any point in: 
the canal ‘are: 

A cos a=A,y cos a +2H cos H° (269) 

A sin a=A) sin m+2H sin H° (270) 

In which 2H cos H° and YH sin H® are respectively the sums of the 
amplitudes of the Y and X components of the heads in the successive 
subsections of the canal between the initial entrance and the given 
point. 

365. The primary tides and heads may. then be computed in terms 
of the amplitudes of their coordinate components. After the values 

of the components have been satisfactorily established, the amplitude 
and phase of the resultant tide is readily determined from the 
equations: 

tan a=A sin a/A cos a, A=A sin a/sm a=A cos a/cos a (271) 

The quadrant in which a lies is fixed by the algebraic signs of 
Asinaand A cosa. A schedule of the values of a corresponding to 
the value, (a), taken from a table of tangents, is set down for con- 
venient reference. 

Asine | Acose 

The primary current at a given point in the canal: 

v=B sin (at+ B) 

similarly may be resolved into two components, one with the ampli- 
tude of B sin 6 and the initial phase of 0°, and the other with the 

amplitude of B cos 6, whose amplitude differs by 90° from the first. 

366. Coordinate amplitudes of the tides for first computation The 
computations are started with the tides which would be produced if 
the instantaneous profiles were straight lines. 
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The equations of the entrance tides are: 

p= Alp cos (at+ Qo) iA cos (at+ a4). 

If the instantaneous profiles were straight lines the equation of the 
tide at a point in the canal distant x from the initial end would be: 

A cos (at+a)=Yyot (2/L) Yi—Yo) = Ao Cos (at+ a) 
+ (2/L)[A; cos (at+- ayo) — Ap cos (at+ ay)]. (272) 

The coordinate amplitudes of the tide at the point z are then: 

A sin a=Ap sin ay+ (2/L) (A, sin a,— Ap sin a) (273) 

A cos a= Ay cos apt (x/L) (A; cos a,— Ap COS a). (274) 

367. First computation of primary currents in subsections.—The 

primary current in each subsection may be taken as that at the middle 
of the subsection, and the midpoints of the successive subsections will 

be designated the velocity stations. The amplitude, H, and the initial 

phase, H°, of the head, and the amplitude, S, of the slope in the middle 

subsection of the canal are computed, as described in paragraph 239, 
from the components of the tide at the ends of the subsection, derived 
from equations (273) and (274). The amplitude, Bo, the initial phase, 

GB, and the resulting coordinate amplitudes, By sin B) and By cos Bo, of 

the primary current at the velocity station at the middle of the sub- 
section are then computed by the process set forth in paragraphs 246 
and 248. 

368. The corresponding primary currents at the other velocity sta- 

tions are determined by the general equation of continuity (equation 
S2)e . 

0Q/or+ zdy/dt=0. 

Since differential equations remain approximately true when small 
finite increments are substituted for the differentials, equation (182) 

may be written 
AQ/Az+ zoy/ot=0 

or 
AQ=— zAroy/dt. (275) 

In this equation AQ is the algebraic increase, at any instant,in the 

discharge from one velocity station to the next, z the mean width of 

water surface between the stations at mean tide and Az the distance 

between the sections. It should be noted that Az may be large when 
expressed in feet while being small in relation to the change which it 
produces in the discharge. 
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Designating the area, zAz, of the water surface, at mean tide, 

between successive velocity stations as U, equation (275) becomes: 

AQ=— Udy/ot. (276) 

369. Strictly speaking, the rate of rise of water surface, Oy/Ot, should 
be computed at the center of gravity of the water surface between the 

‘two velocity stations, but its location need not be determined with 

mathematical precision. If the canal has a constant width at mean 

tide, the storage stations, at which oy/Ot is to be computed, are mid- 

way between the velocity stations; and if the subsections are also all 

of the same length, these storage stations are at the ends of the sub- 

sections. If the width of the canal is tolerably constant, the storage 
stations also may be taken at points half way between the velocity 
stations; otherwise the location of the center of gravity of the water 
surface may be roughly estimated and the storage stations selected 

accordingly. 

The equation of the primary tide at a storage station is in the form: 

y=A cos (at+a). 

Differentiating: 
oy/Ot=—aA sin (at+a). 

Substituting this value in equation (276): 

AQ=aUA sin (at+a). (277) 

370. Designating respectively the area of the cross section of the 
velocity station at the middle of the canal, at mean tide, as 14); the area 
at any other velocity station as M; the discharges at these stations 

at a given instant as Q) and Q; the amplitudes of the currents as Bo 

and B; and the initial phases of the currents as 8) and 6; then; 

Qo=Mv=B,.M sin (at+ Bo) 

and 

Q=Q+2AQ=B,M sin (at+ B)+=aUA sin (at+a). (278) 

Since G@= WB sin (at+ 8), equation (278) becomes, after dividing 

both members by , 

_Bsin (at+ 8) = (MG/M) By sin (at+ Bo) +(o/M)=(aU/M,)A sin (at+a). 

The coordinate amplitudes of the current at the velocity station are 
then: 

B sin B=(M,/M)B,y sin By) + (M,/M)>(aU/M,)A sna (279) 

B cos B=(M,/M)B) cos B+ (M,/M)=(aU/M,)A cos a. (280) 
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371. Placing for brevity: 
M,/M=m (281) 

aU/M,=1 (282) 

equations (279) and (280) may be sniiion. 

(B/m) sin B=By sin &+2Z/IA sin a (283) 

(B/m) cos B=B) cos {y+21A cos a. (284) 

In equations (283) and (284), m is the ratio of the areas, at mean 

tide, of the cross section at the middle velocity station to that at the 
given station, A sin a and A cos a are the coordinate amplitudes of the 
tides at the intervening storage stations, and the values of J are deter- 

mined from the surface areas, U, at mean tide, between the successive 
intervening velocity stations and the speed, a, of the primary tidal 
fluctuations, whose usual value is 0.0001405 radians per second. 

372. If the canal has a uniform width and cross section, and con- 
sequently a uniform mean depth, D, at mean tide; m=1, and 
T=azAxr/M,=aAz/D._ If, further, all of the sections are of the same 
length, the value of J is the same for all. 

The computations indicated in equations (283) and (284) establish 

the first values of the amplitudes B, and the initial phases, 8, of the 
currents in the subsections of the canal. 

373. Heads corresponding to computed velocities in subséclpreenne 
relations between the amplitude, B, of the primary current in a short 

section of channel of length, J; its angular lag, ¢, and the amplitude, S, 
of the slope in the section, have been developed 1 in chapter V. From 

equation (153) in that bay tpn. 

tan ¢= (37/8) (a/g)C?r/B. (285) 

It is convenient to place: 

p= (32/8) @/g) Cr (286) 

in which a is the speed of the fluctuation, in radians per second, 

g=32.16, and C and r the Chezy coefficient and hydraulic radius in 
the section at mean tide. 

If the speed of the primary tidal and current fluctuations has its 
usual value of 0.0001405 radians per second, equation (286) becomes: 

p=0.000,005,148 C?r. (287) 

The logarithm of the coefficient is 4.71160—10. 
From equations (285) and (286): 

tan ¢=p/B. | (288) 
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Again, from equation (151): 

S sin ¢=aB/g 
whence: 

H=IS=l(a/g)B/sin ¢. (289) 

If a=0.0001405 and g=32.162, the value of a/g is 0.000,00437 and 

its logarithm is 4.64042—10. 
The relation between the initial phase, H°, of the head and the 

initial phase, 8, of the primary current is, from equation (150): 

5 Sa-O=R 00". (290) 

The values of H and /7°, derived from equations (288), (289), and 

(290) give the values of the coordinate amplitudes, H cos H° and 
H sin H°, of the heads in the subsections corresponding to the first 
computation of the currents. 

374. Corrected tides and velocities—The computed coordinate ampli- 
tudes of the heads in the subsections are so adjusted that their sums 

are equal to the differences between the coordinate amplitudes of the 
tides at the entrance. The corrected coordinate amplitudes of the 

tides at the ends of the subsections produced by the adjusted coor- 
dinate amplitudes of the heads are computed from equations (269) 

and (270). The coordinate amplitudes, By sin By) and By cos Bo, 

of current in the middle subsection are next recomputed from the 

adjusted head in the subsection, but the recomputation may be 
somewhat abbreviated. Let /7 and H’ be the initial and adjusted 

values of the amplitude of the head, and S=H/I and S’=H’/l the 

corresponding values of the amplitude of slope in the subsection. 
The ratio of the corrected value of P’=1.0854 C./rS’ (par 245) to 
the value, P=1.0854 Cy7rS, initially computed, is: 

P'/P= 8" /JS=1H'/VH 
So that: 

log P’=log P+ (log H’—log H) (291) 
and similarly: 

log (P’/S’)=log (P/S)—%dog H’—log HA). (292) 

The corrected values of ¢, By and 8; are determined from the corrected 

values of P’/S’ and P’ as explained in paragraph 246. 
The currents in the other subsections are then recomputed from 

equations (283) and (284). In applying these equations, the coordi- 
nate amplitudes of the tide at any storage station which does not 
coincide with the end of a subsection are interpolated between the 
corrected values at the ends of the subsection in which it lies, on the 
assumption that the instantaneous profiles in each subsection are sub- 
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stantially straight lines. The corresponding heads are then recom- 
puted and the process repeated until a satisfactory concordance of the 
currents and heads is attained. 

375. First excample-—The computations of the primary tides and 
currents in a canal of uniform dimensions will be illustrated by apply- 
ing the procedure outlined in the preceding paragraphs to a canal 

200,000 feet (37.8 miles) in length, and of uniform cross section, with 

a bottom depth of 40 feet at mean tide, a bottom width of 250 feet, and 
side slopes of 1 on 3% (fig. 60). 

<— — — 2go'— — — > 
FIGURE 60.—Cross section of assumed canal. 

The representative tide at the initial end of the canal has an ampli- 

tude of 4 feet and the speed of the M2, component (28°.98 per mean 

solar hour, or 30° per mean lunar hour). The representative tide at 
the other entrance has an amplitude of 2 feet, and. the-same speed. 
Its high water occurs 2 lunar hours, or 60°, before that at the 
initial entrance. Taking the origin of time at high water at the 

initial entrance, the equation of the tide at this entrance is then 
y=4 cos mf and at the other entrance, y=2 cos (mt+60°). 

The area of the cross section of the water prism at mean tide is 

15,000 square feet and the surface width is 500 feet, giving a mean 
depth of 30 feet at mean tide. The hydraulic radius at mean tide is 
also taken as 30 feet, as the refinement of computing the wetted 
perimeter is superfluous in view of the uncertainty in the Chezy 

coefficient. The Chezy coefficient at mean tide is taken as 120. 
376. Division into subsections—The canal will be divided into a 

middle subsection and two subsections on either side, total of 5 sub- 

sections, each 40,000 feet in length, as shown in figure 61. 

I \ | I 

@) 20 40 60 8o 100 =: 18O 140 160 (80 00 
FIGURE 61.—Division of canal ir to subsections. 

A canal of uniform dimensions should always be divided into an 
odd number of sections each of the same length; but shorter sub- 
sections are required in a shallower canal. The ends and midpoints 
of the subsections are conveniently indicated by station numbering, 
as shown in the figure, the stations being taken as 1,000 feet in length. 
In the present example the velocity station at the middle of the 
canal is at station 100, and the velocity stations of the other sub- 
sections at stations 20, 60, 140, and 180. The storage stations 
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coincide with the ends of the subsections, at stations 40, 80, 120 

and 160. 

377. Initial component tides at the storage stations.—These are com- 
puted from equations (273) and (274): 

Ay=4 ajp=0 AG a,=60° 

Yay Sit) oe == An cos a,— 10 

Ap sin a=0 Ay cos a=4.0 

ae =a3.0 

Initial component tides 

(1) (2) (3) (4) (5) (6) 

Station |  2/L YEE) GID, Nat COGS reieta Cerenll D ana eayr 

0 0 0 0 0 4.0 
40 2 346 =f 346 3.4 
80 4 693 =F) 693 2.8 

120 6 1.039 21.8 1. 039 2.2 
160 ‘8 1. 386 2.4 1. 386 1.6 
200 1.0 1. 732 a0 1, 732 1.0 

378. Coordinate currents in middle subsection—The head in the 

middle subsection is computed from the component tides at stations 
80 and 120. 

A sin H°=A sin ajyy—A SIN ag=1.039—0.693=0.346 

EL Cos Heli Vl cos Qy99— A sin Ago = 2.2 —2.8= — 0.600 

tan H° =0.346/(—0.600) = —0.577 Ho N80 7—30-— 502 

H=0.6/cos 30°=0.693 

Then S=H/I—0.693/40,000—0.00001732. 

L—s, 

And from the given data: 

Cg I20 rS=0.0005196 

The coordinate components of the current in the middle subsection 
are computed as described in paragraphs 246 and 248: 

log rS=6.71567—10  logycos ¢=9.93987—10 

log-¥7S=8.35783—10 log P= .47260 

log 1.0854= .03559 loess ye — 

log C=2.07918 Bo 

41247 

= 2.580 

loot 4 7260 
log S=5.23855—10 

log P/S=5.23405 
From table IX: ¢=40°.7=40°40’ 

From equation (162): 

plel Gi 0" 

—150°—40°40’—90° 

—= 92207 

By cos Byp=2.440 

By sin Byp=0.854 
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379. Primary currents in other subsections —The amplitudes and 
phases of the currents which would be produced at the other velocity 
stations under the initial assumption are computed from equations 
(283) and (284). These computations are tabulated in figure 62, 

facing page 198. The coordinate components of the tide at the 
entrances and at the storage stations, found in paragraph 377, are 
entered in columns (2) and (38). Since the canal has a constant 

cross section. 

I=aAz/D=0.000,140,5 X40,000/30=0.187. 

This value is entered in column (4). A much larger value of J would 

indicate that the canal should be divided into shorter subsections. 
The resulting coordinate velocity increments, JA sin a and IA cos a, 
are entered in columns (5) and (6). For these and for the subsequent 

computations, the slide rule affords satisfactory accuracy. 
The coordinate amplitudes, B) sin 6) and By cos Bo, of the current 

at station 100, determined in paragraph 378, are entered opposite this 

station in columns (7) and (8). The values of (B/m) sin 6 and 

(B/m) cos B at station 60 are found by subtracting, algebraically, the 
coordinate velocity increments JA sin a and JA cos a at station 80 from 
the coordinate amplitudes of the currents at station 100 (since the 
summation is in the negative direction); and the values at station 20 

by subtracting the increments at station 40 from the values found at 
station 60. The values of (B/m) sin 6 and (B/m) cos 8 at station 

140 are similarly found by adding, algebraically, the coordinate 
increments at station 120 to the coordinate amplitudes at station 100; 
and at station 180 by again adding the increments at station 140. 
The totals of columns (5) and (6) may be checked against the differ- 
ences between the last and first lines of columns (7) and (8) respec- 

tively. 
The values of tan 8, from columns (7) and (8) are entered in column 

(9), and the corresponding values of 6 in column (10). Since, in the 

present example, the area of the cross section of the canal is the same 
at all stations, m=1 and B/m=B. The entries in columns (11) and 

(12) therefore are omitted, and the amplitudes, B, of the current at the 
velocity stations entered in column (13) from the relation: 

B=(B/m) sin-B/sin B= (B/m) cos B/cos B. 

The values of 6 and B at station 100 derived in columns (10) and 

(13) should check with those found in paragraph 378. 
380. Surface heads corresponding to computed currents in subsec- 

tions—The computation is continued in columns (14) to (24) of 
figure 62. The value of p, column (14) for all subsections is, from 

equation (287): 

p=0.000,005,148 X 120? X30=2.224. 
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Dividing by B, the values of tan ¢ (equation 288) are entered in column 
(15) and the corresponding values of ¢ in column (16). The com- 

puted value of ¢ at station 100 should check with that derived in 

paragraph 378. 
The value of /a/g, column (17), for all subsections, is (par. 373): 

la/g=0.000,004,37 40,000 —0.175. 

The values of Bla/g are entered in column (18) and those of 
H= (Bla/q)/sin ¢, from equation (289), in column (19). Tne values of 

H°, derived from the computed values of 6 and ¢, are entered in 

column (20), and the corresponding computed coordinate amplitudes 
H sin H° and H cos H° in columns (21) and (22). The computed 
values at station 100 should check with those found in paragraph 

378. The initially computed values at this station should be entered 
in these columns, even if minor inaccuracies have produced slight 
differences in this check computation. A material difference would 

indicate the need for reviewing the entire work. 
381. Adjustment of coordinate heads.—As is to be expected, the sums 

of the computed cvordinate amplitudes of the surface heads in the 
subsections, in columns (21) and (22) differ by small residuals from 
the total coordinate amplitudes of the heads between the entrances 

shown in columns (2) and (3). The computed values are adjusted 

in columns (23) and (24), by dividing the residuals as equally as may 

be between them, so that the sums agree with the actual coordinate 
amplitudes of the head between the entrances. 

382. Recomputation of tides, currents, and heads.——The corrected 
coordinate amplitudes of the tides at the storage stations, which in 
this case are at the ends of the subsections, are next recomputed in 

columns (2) and (3) of figure 62, by successively adding the adjusted 
values of H sin H° and H cos H°, found from the first computation, 
to the coordinate amplitudes of the tide at the initial entrance. The 
coordinate amplitudes of the tide at the further entrance, station 200, 

afford a check on the results. It will be seen that the corrected coor- 
dinate amplitudes of the tides at the storage stations differ materially 
from those used in the first computation. The currents and the 
resultant heads are therefore recomputed as shown in figure 62 from 
the corrected data. In the present example, the adjusted coordinate 

amplitudes of the head in the middle subsection, station 100, in col- 
umns (23) and (24) of the initial computation, differ so little from 

- their original values, in columns (21) and (22) that a recomputation 
of the coordinate amplitudes of the currents in the middle subsection 

is unnecessary. 
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383. Final computation—The values of H cos H° derived from the 
second computation are practically the same as those determined from 
the first. While the recomputed values of H sin H° also are in suffi- 

cient concordance to be reasonably acceptable, a third computation, 

as shown in figure 62, affords a desirable check. In this final compu- 
tation the primary currents at the entrances to the canal are derived 
by correcting those at the adjacent velocity stations for the inter- 
vening storage. The primary current at the initial entrance, station 0, 

is derived from that at station 20 by subtracting the increment of the 
velocity due to the fluctuation of current at station 10. The values 
of A sin a and A cos a at station 10 are obtained by interpolation 

between their values at station 0 and station 40. For the half sub- 
section, 0 to 20, Ar=20,000 and 7=0.0935. The primary current at 

the other entrance, station 200, is similarly derived from that at 

station 180, by correcting for the storage due to the tidal fluctuations 
at station 190. 

384. Summary of computations.—The results of the computations 

are tabulated below. The values of A sin a and A cosa, derived from 

the final computations of the subsection heads, are shown in columns 
(2) and (3), and the resulting amplitudes A, and initial phases a@ of 
the tides at the ends of the subsections in columns (6) and (5). Those 

at the middle of the canal are inserted by interpolation. The ampli- 

tudes, B, and initial phases, 6, of the primary currents are the final 
values found in figure 62. 

Summary 

(1) (2) (3) (4) (5) (6) (7) (8) 

Station Asina | A cosa tan a a A B B 

0 0 4. 000 0 0 4. 00 1.14 47°20’ 
20) aati ay Bil pee cee S| ited all Rae ae 1.41 36°10 
40 —.014 sees —. 003 0°10’ 3.7 Se Uh 
GO EM eee eh ee Fe ey AlN eee 2.01 24°20/ 
80 +. 134 3. 246 +. 043 +2°30/ 3. 24 =s22 ieee 

100 306 | 2.944 . 104 6° 0! 2. 93 2.58 19°20’ 
120 478 2. 642 . 181 10°20’ 2. 68 32 eee 
LAH hal) gee ee et A ae eh oes ae 3.08 17°50’ 
160 1. 022 1. 899 . 540 28°20 2, Ld ee 
TRSKO MPa HG es ASE | ae ee 1) | cee Sete || [oe = es = 3.48 19° 0’ 
200 32 1. 000 576 SOS (OY 2. 00 3. 65 20°30 

This summary affords the data fer writing the equations of the 
primary currents and tides at the stations. Thus the equation of the 
primary current at station 0 is: 

v=1.14 sin (m.t+ 47°20’), 

and of the primary tide at station 40: 

Y=. 10) COsm mist — O10): 
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The primary tides and currents at the entrances and at the middle of 
the canal are shown in figure 73, page 218. 

385. Shape of instantaneous profiles.—The characteristic shapes of 
the instantaneous profiles developed by the successive approxima- 
tions is readily shown by plotting the values of A sin a and A cos @ 
successively derived in figure 62, since A cos a is the tidal height at a 

station at 0 hour and A sin a=A cos (—90°+<a) is that at —3 lunar 

hours. The instantaneous profiles at 0 hour are shown by the lines: 

marked 0—0 in figure 63. The differences between the first and secondi 

{so 

FIGURE 63.—Instantaneous profiles at 0 and III hour. 

recomputations are too small to be distinguishable. The successive 
determinations at —3 lunar hours are shown by the lines marked 
JII—III on the figure. 

386. Sufficiency of subdivision.—The question may arise whether 

subsections 40,000 feet in length, in a canal having a mean depth of 
30 feet, are sufficiently short to afford a reliable determination of the 
currents. An independent computation, based on a subdivision into 

9 subsections, each 22,222 feet in length, affords the following com- 

parative figures in the equations of the currents at the entrances: 

Computed from 9 subsections Computed from 5 subsections 

PANU eTIGGAN CO sess ee oe US 2Siny (Qt-|-4ijcl 00) ee eee v=1.14 sin (at+47°20’). 
Mtiouherentrance.-9-.). 45-5 22 D=3260) Sim (Qt-+-20°40)) eae v=3.57 sin (at+20°50’). 

It is apparent, therefore, that the results are but little improved 
by using the shorter sections. 
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387. Effect of frictional resistance —The effect of frictional resistance 
upon the primary tides and currents in the canal selected for the first 
example is shown by a comparison between the results of the preced- 
ing computations and of those derived in Par. 328, Chapter VH, for 
frictionless flow in the same canal with the same entrance tides. The 
origins of time and distance are the same in the two cases. Angles are 
written to the nearest 10 minutes of arc. 

Frictionless flow Friction considered 

VELOCITIES 

NF hawiell Gh he RNC v=2.99 sin (m2f—49°40’)___________. v=1.14 sin (mof+47°20’). 
PANG arr d Gee eee sk nee ee v=4.10 sin (mot—30°)______________ v=2.58 sin (mof+19°20’). 
ACUGunermenthancesssa= == =e v=4.67 sin (Mmof—17°30’)___-________ v=3.65 sin (m2f+20°30’). 

TIDE 

/ip MCL OF GEMEN ee y=2.94 cos (mot-+19°10’) ___________ y=2.96 cos (msf-+6°). 

As is to be expected, frictional resistance reduces considerably the 
amplitude of the currents. Its effect upon the timing of the currents 
is even more marked. When frictional resistance is neglected, the 
strength of the positive current at the initial entrance was found to 
be (90°+49°40’)/28°.98=4.82 solar hours after high water, while 

when frictional resistance is considered, the strength of the positive 
current is (90°—47°20’)/28°.98=1.47 hours after high water. 

Frictional resistance advances therefore the strength of the current 

at the initial entrance by 3% hours. At the other entrance, it ad- 
vances the current by 1% hours. ; 

In the present example, the amplitude of the tide at the middle of 

the channel is but little affected by frictional resistance, but the rela- 
tive phases of the tide at this station show that the time of high water 
is altered by nearly half an hour. 

388. Relation between channel storage and the primary currents and 

discharges at the entrances to a cana/.—The primary discharge at an 
entrance to the canal is derived immediately by multiplying the cur- 
rent velocity by the area of the cross section at mean tide. Obviously, 
the difference in the discharges at the two entrances at any moment 
must be equal to the rate of storage or release of water in the tidal 
prism of the canal at that moment. 

In the present example, the area of the cross section at both 
entrances is 15,000 square feet. The entrance velocities and dis- 
charges and the rates of filling and emptying of the canal during 
successive tidal cycles are shown diagrammatically in figure 64. 

389. The discharge at the initial entrance, station 0, is an inflow 
into the canal when positive, and an outflow when negative; while 
at the further entrance, station 200, it is an outflow when positive 

and an inflow when negative. During the time interval marked AB 
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on the diagram the discharge is in the positive direction at both 
entrances, and the outflow at station 200 largely exceeds the inflow 
at station 0. The tidal prism in the canal is therefore emptying 
through the further entrance. During the interval BC it is emptying 
through both entrances; and during the brief period CA’ through 
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FIGURE 64.—Discharges and storage, canal 200,000 feet long. 

the initial entrance. The filling of the tidal prism during the interval 
A’ A’’ follows a similar sequence. 

It is apparent from the figure that, in this case, the discharges and 
velocities at the further end of the canal are caused principally by the 
filbng and emptying of the tidal prism. Because the filling and empty- 
ing is largely through this entrance, the currents are there the strong- 
est, although the tidal range is the least. 

390. The strength and timing of the currents in a connecting canal 
depend upon the relative timing of the tides at the entrances, as well 
as upon the amplitudes of these tides. Thus if in the example devel- 
oped in the preceding paragraphs, high water at the further entrance 
is taken 2 lunar hours (60°) after, instead of 2 lunar hours before, that 
at the initial entrance, the equations of the current are found to be: 

At the initial entrance: v=3.04 sin (at+108°30’). 

At the further entrance: v=2.30 sin (at+52°20’). 

The change in the timing of the tide produces therefore the strongest 
currents at the initial entrance, where the tidal range is the greatest, 
instead of at the further entrance, where the range is the least. A 

diagram of these velocities, and consequent discharges and the storage 
and release of water in the tidal prism of the canal, is shown in figure 65, 
page 202. 

In this case the interval, AB, during which the prism is emptying 

because of the greater outflow through the further entrance, station 
200, is shorter than the interval CA’, during which the outflow 
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through the initial entrance is the greater; and the mterval BC, 
during which the prism is emptying through both entrances, is rela- 
tively long. The tidal prism fills and empties through both entrances, 

but somewhat more water enters and leaves through the initial 
entrance than through the other. 
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FIGURE 65.—Discharges and storage, with different timing of entrance tides. 

391. The longer a canal the less is the net slope set up by given 
tides at the entrances, and the more are the currents determined by 
the storage and release of water in the canal prism. It may be 
expected that in a very long canal the tidal prism will fill and empty 
from both ends during most of the tidal cycle, and that the currents 
will be stronger at the two entrances than in the interior of the canal. 
Thus a computation of the primary currents in a canal 360,000 feet 
(68.5) miles in length, and 30 feet in mean depth at mean tide, with 
the same entrance tides as in the first example, 1. e., 

You= COs 4Mot Y,;=2 cos (mt+60°) 

and with the same coefficient of roughness, shows the strength of the 

current decreasing from 2.3 feet per second at the initial entrance to 
1.0 foot per second at a point 100,000 feet from that entrance; thence 
increasing to 3.8 feet per second at the further entrance. The equa- 
tions of the entrance tides are: 

Initial entrance: v=2.3 sin (m.t+149°). 

Further entrance: v=3.8 sin (m,t+10°50’). 

The diagram of the entrance velocities, discharges, and channel 

storage, figure 66, shows that in this case the entrance currents are 
due principally to the filling and emptying of the tidal prism through 

both ends of the canal. 
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It further may be expected that in an even longer canal the currents 
would become so small at some point near the middle of the canal that 

the tides could be said to meet. 
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FIGURE 66.—Discharges and storage, canal 360,000 feet long. 

392. Second example.—The computations of the tides and currents 
in a connecting canal whose width and cross section is not uniform 

throughout may be illustrated by applying them to the Chesapeake 

and Delaware Canal, connecting the estuary of the Delaware River 
with the head of Chesapeake Bay, after it had been converted into a 
sea level canal for barge traffic but before it was enlarged to accom- 

modate ocean shipping. The canal then had a horizontal bottom at a 

project depth of 12 feet below Delaware River low water datum, a 

designed bottom width of 150 feet from the 12 foot depth contour in 
the Delaware (station 3+ 400) to station 10+300, a distance of 9,900 

feet; and of 90 feet thence to Back Creek, a tributary of Chesapeake 
Bay, at station 77-++000; a distance of 66,700 feet. Between -Reedy 

Point Bridge, station 9+780, and Biddles Point, station 19+600, 
the canal was bordered by wide marshes having a large tidal storage. 
A second outlet to the Delaware, with a depth of 6 feet below datum, 
and a bottom width of 50 feet, entered the canal near Biddles Point. 

Some tidal storage outside of the prism proper extended to the deep 

cut beginning at about station 50, but thence almost to station 77 

the only tidal storage was in the prism of the canal. The upper part 
of Back Creek afforded a tidal basin inside of the bridge at station 77. 
The canal was designed with side slopes oi one on two, but as 
excavated the cross section generally was somewhat in excess of that 

projected. 

393. Representative entrance tides selected —To afford a comparison 
between the computed and measured currents, the representative 

entrance tides will be taken as the recorded tides at stations 5-000 

192750—40—14 
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and 77 +000 on November 27-28, 1928 when tide and current measure- 

ments were made at these stations, at Biddles Point (station 19-+600) 
and at Summit Bridge (station 51-+-200). The day selected is one on 
which the tides had little diurnal variation. The origin of time is 
taken at 7 a.m. on November 27, when the record of the observations 

begins. 

394. Primary entrance tides—The amplitude, initial phase, and 
mean elevation of the primary tide at station 5+000, are computed 
in the following tabulation from the recorded tidal heights at this 
station, by the method explained in paragraph 360. 

Primary entrance tide, station 5-+-000 

GQ) eiaumnarihours==s5 nd 1 2 3 4 5 6 7 8 9 10 11 

(2) Mime se == 2288 7. 00 8. 04 9.07 | 10.11 | 11.14 | 12.18 |18.21 |14. 25 |15. 28 |16.31 | 17.35 | 18.38 
@Ovhide === .6 2.4 3:9 5.0 5.5 5.0 3.5 2.3 1.2 nt) —.2 —.7 

(4) Lunar hour__-_| 12 13 14 15 16 17 i} | Tey |i oy | on Op} || 98 

(5) im eee 19.42 | 20.45 | 21.49 | 22.52 | 23.56 | 0.59 | 1.63 | 2.66 | 3.70 | 4.738 5.77 | 6.80 
(Gewide: 23s s—-= 12 2.7 4.1 Ayal 5. 5 4.7 3.2 2.2 ils al =} —.2 +.3 

(@) (@RH@)s-s-2-5- 1.8 tis al 8.0 10.1 11.0 9.7 6.7 4.5 7733 .8 | —.4 | —.4 
(S)eheitovnaee se 6.7 4.5 2.3 8 —.4 —.4 
(°) (0) eel (:) —4.9 +.6 | +5.7 | +9.3 |+11.4 |+10.1 

The mean solar time in lines (2) and (5) corresponding to the lunar 

hours in lines (1) and (4) is derived by successively adding the length 
of the lunar hour, 1.035, to the initial time at zero hour. The repre- 

sentative tidal heights, taken in this case from a plot of the recorded 

tidal heights, on mean solar time, are entered in lines (3) and (6) and 
summed in line (7). The last six entries are subtracted from the first 

six in lines (8) and (9). The values of s) and ¢, and of Ay and ¢ are 

then computed from the equations: 

12s.=hp sin 0+h, sin 30°+. . .h; sin 150°. 

12c,=hy cos 0O+hz cos 30°+. . .hs cos 150°. 

Products Products 

Angle Sin h SS Cos 

+ = =F = 

0 0 —4.9 0 1.00 4.90 tan ¢= bar se 85. 
30° . 500 +.6 0. 30 . 866 0. 52 €=180 © —§1°40’ =118°20', 
60° . 866 +5.7 4.94 500 2. 85 Ao=s82/sin [=2.79., 
90° 1. 000 +9.3 9. 30 0 Ho=Zh/24=2.48, 

120° . 866 +11.4 9. 87 —. 500 5. 70 
150° . 500 +10. 1 5. 05 —. 866 8. 69 

L 

12s2=29. 46 3.37 19.29 
Se= 2.45 3. 37 
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The sum of the tidal heights in line (7) divided by 24 gives the mean 

tide elevation, Hy, above the tidal datum, which in this case is Dela- 
ware River low water datum. The equation of the primary entrance 
tide at station 5+-000 is then: 

y=H)+ A) cos (at—f£). 

=2.48+-2.79 cos (at—118°20’). 

395. The equation of the primary tide at station 77 +000, derived by 
the same procedure, is: 

y=2.79-+1.45 cos (at—73°50’). 

The computed primary tides and the recorded tidal heights at the 
two stations are plotted in figure 67. They show a satisfactory 
concordance. 

PES) 

o oO 
° 

STA. 5+000 

STANDARD TIME 
NOV. 27 NOV. 28 

7 3 1s at 3 6 

° 3 3 12 is (8 2) 24 

LUNAR HOUR 

PRIMARY. TIDE ————— RECORDED. SIDE. o> 

FIGURE 67.—Primary and observed entrance tides, Chesapeake and Delaware Canal, 



206 

396. Mean sea level of primary tides —The mean sea level at the two 
entrances as found in the preceding paragraph differs by 0.31 feet. 

Long period observations show a similar difference. For the com- 
putation of the primary currents and tides the elevation of mean sea 
level is taken as the mean of the elevations at the entrances, or 2.63 
feet above Delaware River datum. The depth of the bottom of the 
canal is then 14.63 feet throughout. . 

397. Division into subsections.—A subdivision based on the variation 

in the cross section and in the storage areas is shown in figure 68; 
station 5+000 being selected as the initial entrance. 

oe aK ma 
ae ol ce 91 cae al l 3 
ce) ol S| | O| | Q| \ 9! 

bl %. » R 98 1 fe) 4 +| 

+ 2 +| a + + # 

Bestar we es i gee ee 

Back.Cr 

Delaware River. 
FIGURE 68.—Diagram of Chesapeake and Delaware Canal. 

The subsections and their constants are: 

1 2 3 4 5 6 7 8 9 10 

Subsection (sta- Velocity a no 
tion to station) Length / siipsrisiara Area M |m=Mo/M|Widthz| r C ) la/g 

5+000 | 10-+-000 5, 000 7+500 3080 0. 78 260 11.8 g4 0. 537 | 0.022 
10-+000 | 29-++000 19,000 | 19-+-500 2400 1: 00 190 12.6 95 . 585 . O83 
29+-000 | 45-+-000 16,000 | 37-++000 2400S || aaa eee 190 12.6 95 . 585 . 070 
45+000 | 61-+-000 16,000 | 53-+-000 2400 1.00 170 14.1 97 . 683 . 070 
61-+-000 | 77-+-000 16,000 | 69-+-000 2400 1. 00 170 14.1 97 . 683 . 070 

72, 000 

The velocity stations, column (3), are the midpoints of the swbsec- 

tions. Station 37, nearest the middle of canal, is taken as the base 

station for velocities. The cross section areas, M/, column (4), and 

the surface widths of the canal, z, column (6), are at mean tide, 2.63 
feet above datum, and are taken from a sheet of measured cross sec- 

tions. Since the area at the base station is 2400, the values of m, 
column (5), are 2400/M. The hydraulic radius, 7, column (7), is taken 

as M/z, and the Chezy coefficients C, column (8), are from the Bazin 

formula, C=87/(0.552+‘m’’/+/r), with “m’=1.30. The “m” in this 

formula has no relation to the ratio m in the tabulation. The cor- 
responding values of p (equation 286) and of la/g (par. 373) are shown 

in columns (9) and (10). 

398. The surface areas, U, at mean tide, between the velocity sta- 
tions, and between the entrances and the adjacent velocity stations, 
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derived from a topographic survey made in 1928; and the consequent 

values of J=aU/M)=0.000, 1405 U/2400 are shown in the following 
tabulation. 

Surface 

From To area, U Storage z : (1.000’s of IE F 
station station square station 

feet) 

5+000 7+500 325 0.019 6+250 
7-++500 19++500 9, 907 . 580 13-++500 

19-+-500 37-+-C00 6, 900 . 404 28-+-250 
37-+000 53-++000 5, 300 .310 45+-000 
53-+000 69-++-000 2, 720 . 159 61++000 
69-+000 77+000 1, 847 . 108 73-+-+-000 

The storage stations are midway between the velocity stations. 

399. Initial computation of primary tides and currents.—The compu- 
tation of the tides and currents, by the procedure previously explained, 

is tabulated in figure 69 facing page 208. In columns (2) and (3) the 

coordinate amplitudes, A sin a and A cos a, of the tides at stations 5 
and 77 are computed from the values of A and a@ at these stations, 

found in paragraphs 394 and 395. In the initial computation the 
values at the other stations are interpolated from equations (273) and 
(274). The values of By sin B) and By cos By at station 37, columns 

(7) and (8), are determined from the head between stations 29 and 45. 

From columns (2) and (3) ,in this subsection: 

Een $P=—i1 = (— D1) = 

Hs cos H° = —0.37— (— 0.75) =+0.38 

Ee 322200 el — OAS) S— 0.4 5/16,000— 000050281 

loge P=0.28785, los P/S=4.83914 

@=17°10’, f=F°—e—90°=—74°50’ 

Bo— 190, By sin 6j——".83, Bo cos 65 —0:50 

The initial computation is completed as explained in the first ex- 
ample, with due regard to the algebraic sign of the items. The minor 
discharge through the branch outlets from Biddles Point to the Dela- 
ware is neglected. 

400. Recomputation of primary tides and currents ——In the recom- 
putation, also shown in figure 69, the primary currents at the entrances, 

and the primary tides and currents at Biddles Point (station 19+ 500), 

and at Summit Bridge (station 51+200) are included. The under- 
lined coordinate amplitudes of the tides in columns (2) and (3) are 

at the ends of the subsections, and are derived from the adjusted 
coordinate amplitudes of the heads found in the initial computation. 
Those at the other stations shown are interpolated. As in the pre- 
vious example, no correction of the values of By sin By) and By cos Bo 
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at the base velocity station (station 37)is required. The coordinate 
increments to the current due to the flow through the branch channel 
extending from near Biddles Point to the Delaware are computed 
from the head in this channel. As this correction is small, the tides 
at the Delaware entrance to this branch may be taken as the same 
as those at the entrance to the main canal, at station 5. From the 

tabulated data, in this branch: 

Hf sin H°=—2.29—(—2.45)=+0.16 

H cos H°=—1.30—(—1.33) = +0.03 

ane ==" a2 0% HONG 

The length of the branch channel is 9,000 feet. Taking the bottom 

depth as 6 feet below datum, or 8.63 feet below mean tide, the bot- 
tom width as 50 feet, and the side slopes as 1 on 2, the area of the 
cross section is 580 square feet, the surface width is 85 feet and the 
hydraulic radius, 7, is 6.8 feet. The corresponding value of C is 82. 
From this data: 

p=13°40’ B=0.965 B=— 24°20’ 

m=2400/580=4.14 
Whence 

(B/m) sin B=—0.10 (B/m) cos B=+0.21 

These increments evidently are to be subtracted, together with the 

intervening storage, from the values of (B/m) sin 6 and (B/m) cos 6 
at station 19-+500 to give the values at station 7+500. 

The values of (B/m) sin B and (B/m) cos B at station 51+200, 
enclosed in parentheses, are interpolated between those at the adja- 
cent velocity stations. These values are disregarded in the summa- 
tions by which the entries in columns (7) and (8) are derived. 

The recomputed amplitudes and phases of the currents at the 
velocity stations are so close to those derived from the first computa- 
tion that a recomputation of the heads is not made. 

401. Summary of results —The amplitudes and phases of the com- 
puted primary tides and currents, at the stations at which the actual 
tides and currents were observed, are shown in the following tabu- 
lation. 

Computed primary tides and currents, Chesapeake and Delaware Canal 

Station | Asina | Acosa| tana a A B B 

5-++-000 —2.45 = 33) | see —118°20’ 2.79 ise} +19°30’ 
19-++500 —2. 29 —1.31 1.755 —119°40’ 2. 65 1.39 —43°10’ 
51+200 —1. 84 —. 66 2.78 —109°50’ 1.95 2. 39 —83°40’ 

1.45 2.90 —86°0’ 77-+-000 S11, 81) sro4i0) |s2osscse- —73°50! 
| | 
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402. Primary discharges and storage -—Multiplying the area of the 
cross section at the entrances by the amplitude of the primary cur- 

rents, it is found that, with the given tidal fluctuations, the primary 
discharge at Reedy Point reaches a maximum of 4,096 c. f. s.; and at 
the Chesapeake City entrance, 6,960 c. f. s. Evidently, the larger 

part of the filling and emptying of the canal is through the latter 
entrance. 

403. Hiffect of the flow through the canal upon the primary entrance 
tides —At Reedy Point the canal opens into the wide estuary of the 
Delaware, and the flow in and out of the canal obviously is insuffi- 
cient to produce a measurable effect upon entrance tides. At the 

other entrance, at Chesapeake City, the discharge is into the com- 
paratively restricted channel in Back Creek, whose area of cross 
section, in its upper part, is given as but 3,700 square feet. The 
discharge through the canal therefore, is sufficient to effect the cur- 
rents and tides in this approach to the canal. The computation of 

the tides and currents in the canal has been made from the actual 
recorded elevations at Chesapeake City, after the canal was opened. 
If equally good records were available at the mouth of Back Creek, 

‘and physical data were at hand to determine the constants for the 
successive reaches in that approach, the computations profitably 
could have been extended to include this approach as a part of the 
canal prism. 

DISTORTIONS OF THE PRIMARY CURRENTS 

404. The distortions of the primary current in a short section of a 
tidal channel have been developed in paragraphs 260 to 276 ot chapter 

V. In a long tidal canal, further distortions are introduced by the 
variation, with the rise and fall of the tide, in the area of the water 

surface between successive velocity stations, and in the area of the 
cross section of the water prism at these stations. The corrected 
velocities at any stations at which a determination is desired may be 

computed by a procedure which now will be described. 
405. Intervals —The corrected velocities are computed at selected 

intervals of time which, like those chosen for deriving the corrections 
in a short section of a tidal channel, should be parts of the component 

hour of the primary tides and currents. This component hour usually 
is the lunar hour of 1.035 mean solar hours. Intervals of one-half a 
lunar hour, or 1,863 mean solar seconds, ordinarily are sufficiently 

small to afford reliable results. 
406. Procedure.—A first adjustment of the currents, which usually 

is sufficient for all practical purposes, may be accomplished through 
the following procedure: 

(a) The primary tides at the ends of the subsections of the canal 
are adjusted to the selected representative tides at the entrances, if 
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these depart from the simple harmonic fluctuations of the primary 
entrance tides. The simplest adjustment, and one which appears as 
tenable as any other, is to assign the departures of the total head 

between the entrances to the primary heads in the subsections in 
proportion to the length of the subsection. 

(b) The primary current in the subsection in which the amplitude, 
B, is the greatest 1s corrected to conform to the adjusted tides at the 
ends of the subsection, and for its other deformations, by the pro- 
cedure described in chapter V. The currents in this subsection may 
be expected to have the largest influence upon the currents through 

the canal. 

(c) The discharges at the velocity station of this base subsection 
are determined by multiplying the corrected velocity by the area of 
the cross section at this station at the given time. 

(d) The currents at other stations are computed from those at 

this base station by a cubature of the adjusted tides through a modi- 
fication of the process developed in chapter VI. 

407. Example——To illustrate the procedure, the corrected currents 
in the Chesapeake and Delaware Canal will be computed from the 

primary tides and currents derived in the preceding paragraphs, and 
entrance tides conforming to the observed tides. To curtail the 
computations, the small diurnal variation of the entrance tides is 
omitted and the tidal cycle is completed in 12 lunar hours. The 
representative tide at each entrance at zero hour (7 a. m., November 
27, 1928) is taken as the mean of the recorded tides at 0 and 12 lunar 

hours; that at 0.5 lunar hour as the mean of the tides at 0.5 and 12.5 

lunar hours; and so on. A minor adjustment at 11.5 hours produces 
fairly smooth repeating tide curves with a period of 12 lunar hours. 
The heights, above Delaware River datum, of the entrance tides so 

derived are as follows: 
Selected entrance tides 

a ae 

Tunat | station 5 | Station77| Tuma | station 5 | Station 77 

0 0.90 3.35 6 3.35 2. 50 
B 1.75 3. 55 cB 2. 80 2.10 

1 2. 55 3. 85 7 2,95 1.75 
5 3. 30 4.05 5 1.65 1.45 

2 4. 00 4.15 8 115 1.35 
5 4. 60 4. 20 5 "80 1.35 

3 5. 05 4.10 9 "40 1.35 
es 5.35 400 B “10 1.50 

4 5. 50 3. 80 10 — 20 1.80 
A 5. 30 3. 52 6 — 35 2.07 

5 4. 85 3.15 u — 35 2. 40 
4 4. 20 2.90 +10 2. 87 

408. Adjustment of primary tides at ends of subsections —The primary 

heads in the subsections are given by the equation: 

h,=H cos (at+H°) 
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in which H and H° may be taken as the unadjusted values shown in 
columns (19) and (20) of figure 69, and at increases by 15° at each 

successive half lunar hour. Thus the surface head in the subsection 

between stations 61 and 77 at zero hour is: 

0.770 cos 22°30’=+0.71 

and at 0.5 lunar hour it is: 

0.770 cos (15°-+ 22°30’) =+0.61 

and so on. 
The tides at 0 hour are then adjusted to the selected entrance tides 

as follows: 

(1) (2) (3) (4) (5) (6) 

- Primary . Adjusted | Adjusted 
Station Head Factor Correction iron tide 

ee eee aire [vey eS meme! (pet oe te A eee | ee ee 0. 90 
—0. 04 10/72 +0. 05 SBQR017 hoo ae 

i () ee eaten NS ee ca Se A ve ee Bt nt SE) [fe ts | Le han ee -91 
+.11 19/72 18 = eo REE Baza 

DAD) pei at ee eee ee a eee 2 Vee See ee ee ee 1. 20 
+. 40 16/72 15 Sn | ee ee 

A te a oS |e as Ree ale Byte eG oe PS a eI ES ake Sh eS Se io 7) 
+. 58 16/72 15 a ET (Yall |e es 

Geen Se |= ee he ak eee ee ee Sa 2. 48 
+. 71 16/72 16 Suey bei eee = 

TO Se RE | MES Ste Tee ee Se ee es ce ee Lees Pee 3.35 

Swain 1.76 72/72 69 2y45) Messen ee 

Motalahea amen tran Conti d Stes meee Seen en ene ew ee ee 3. 35—0. 90= ze 45 
Primary tides 5S ENE oe a ee ee SS ee ee eee 76 

FRO UAICOLLE CLIO Nes eee ee Sa ee ee oe eee ee . 69 

The primary heads in the subsections, column (2), total 1.76 feet, 
while the head between the selected entrance tides is 2.45 feet, giving 
a correction of 0.69 feet. The correction factors, column (8), are the 

lengths of the sections divided by the total length of the canal. The 
corrections derived by applying these factors to the total correction 
are shown in column (4), an odd hundredth being assigned to the 

subsection with the largest head. The adjusted tides, column (6), 

are found by successively adding the adjusted heads, column (5), to 
the tide at station 5, the initial entrance. 

The tides at ends of the subsections at subsequent intervals of time 
are adjusted by a repetition of the process. The corrections generally 

are much smaller than those which, in this case, happen to occur at 0 
hour. 

409. The heights above Delaware River datum, of the adjusted tide 
- at any other stations on the canal may be found, at half lunar hour 

intervals, by linear interpolation between the adjusted tides at the 

ends of the subsections. The adjusted and observed tides at Biddles 
Point (station 19+500) and at Summit Bridge (station 51-+200) are 
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plotted in figure 70. The computed tides are seen to be in satisfactory 
concordance with the observed tides. 

Feet 

Feet 

8 
Standard Time 

Adjusted tides 

Recorded tides 0 9 Oo 

FIGURE 70.—Adjusted and observed tides, Chesapeake and Delaware Canal, November 27-28, 1928. 

410. Adjusted velocities and discharges at base velocity station——The 
primary currents are the largest in the subsection between stations 61 
and 77. The corrected velocities at station 69, the velocity station of 
this subsection, are determined from the adjusted tides at stations 61 
and 77, by the procedure described in paragraphs 260 to 276 of chapter 
V. The value of the hydraulic radius, 7, as derived from the given 
cross section of this part of the canal, varies from 12.3 at 0 tide to 16.9 
when the tidal height is 6.0 feet. The corresponding values of C, from 
the Bazin formula, with the coefficient used in the determination of 
the primary tides and currents, are 94.3 and 100, respectively. The 
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computations which are not here repeated, give the corrected velocities 
shown in column (3) of the following tabulation, from which the dis- 
charges are computed. 

Discharges at station 69 

(1) (2) (3) (4) (5) (6) 
Cor- 

Lunar Primary | rected Tide BE Q 
hour current | current 

0 —2.73 —2.81 2.92 2, 410 —6, 770 
5 —2. 59 —2. 59 3. 20 2, 450 —6, 350 

1 —2. 26 —2.31 3. 58 2, 520 —5, 820 
5 —1.80 —2.02 3. 87 2, 570 —5, 200 

2 —1.20 —1.61 4.08 2, 600 —4, 190 
5 —.52 —1.03 4,23 2, 640 —2, 720 

3 +.19 —.22 4. 24 2, 640 — 58 
5 +. 87 +1. 05 4. 22 2, 630 +2, 760 

4 +1. 56 +1. 94 4.10 2, 610 +5, 060 

The tidal heights at station 69, column (4), are the means of the 

adjusted heights at stations 61 and 77. From a sheet of typical cross 
sections, the area of the water prism at station 69 is found to be 1,900 
square feet at 0 tide and 2,944 square feet at a 6-foot tide. The areas, 

X, of the cross section at the tidal heights shown in column (4) are 

taken off a straight line diagram and entered in column (5). These 
areas, multiplied by the velocities in column (3), give the discharges, 

Q, in cubic feet per second at half lunar hour intervals, shown in column 
(6). These, and subsequent computations, are by slide rule. The 
discharges through the rest of the 12 hour tidal cycle are computed in 

the same way. 
411. Discharges and velocities at other stations—The adjusted dis- 

charges and velocities at any other station on the canal are determined 
from the discharge at station 69 by the cubature of the adjusted tides 
through successive intervening reaches. As shown by equation (276), 
paragraph 368, the increase, AQ, in the discharge between two succes- 

sive velocity stations is: 
AQ=— Uody/ot 

in which U is the area of the water surface between the stations and 
Oy/dt is the rate at which the average tidal height between the stations 
1S increasing with the time. For sufficiently small increments of 
time, At, this equation may be written: 

Q=— UAy/At 

in which U is the area of the water surface at a given time, At is the 
selected time interval, and Ay may be taken as the mean increase in 
the average tide between the stations during the preceding and follow- 

ing intervals. In the present case, At is the half lunar hour of 1,863 
seconds. 
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412. The cubature between stations 69 and Summit Bridge, station 
51-+200, takes the following form: 

Cubature—stations 69 to 51+ 200 

Tides Increments Q 

Tunars| aman ee = ay, Area 
hour Sta- Sta- ah ee a Sia. Sta- xX i 

eas tion ean | Prior Ay see tion 
tion 69 51-4200 tion 69 51-+200 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

0 2. 92 2.05 2.48 +0. 54 | +0. 46 1,795 | —830 | —6,770 | —5,940 | 2,250 | —2. 64 
aii) 3. 20 2. 51 2. 85 +. 37 +. 42 1,815 | —760 | —6,350 | —5, 590 | 2,330 | —2.39 

1 3. 58 3. 04 3. ol +. 46 +.42 | 1,840 | —770 | —5,820 | —5,050 | 2,430 | —2.00 
5) 3. 87 3. 52 3. 69 +. 38 +.35 1,855 | —650 | —5, 200 | —4,550 | 2,520 | —1.80 

2 4.08 3. 93 4. 00 +. 31 +. 29 1,870 | —540 | —4,190 | —3,650 | 2,580 | —1.41 
50) 4.23 4.29 4. 26 +. 26 +.19 1,880 | —360 | —2,720 | —2,360 | 2, 640 —.90 

3 4.24 4. 51 4.37 +.11 +.09 1,890 | —170 — 580 —410 | 2,680 —.15 
.5 4, 22 4. 66 4.44 +. 07 +. 02 1, 890 —40 | +2, 760 | +2, 800 | 2,710 | +1.03 

4 4.10 4. 69 4. 40 —.04 —.14 1,890 | +270 | +5,060 | +4, 790 | 2,720 | +1. 76 
-5 3. 85 4. 50 4.17 —.23 

The tides at station 69, column (2), are those shown in column (5) of 
the preceding tabulation. Those at station 51-+200, column (3), are 

derived by linear interpolation between the adjusted tides at stations 

45 and 61. The mean tide in the reach from station 51+200 to 

station 69 is shown in column (4). The increase in the mean tide in 

the preceding interval is entered in column (5), the entry at 0 hour 
being repeated from that for 12 hours (not shown). The mean of the 

entries on the half hour and on the succeeding half hour, in column (5), 

gives the mean rise during the preceding and following intervals, and 
is the value of Ay, column (6). The area, U, of the water surface 
between stations 69 and 51+200, from topographical maps of the 

canal, is 3,128,000 square feet at zero tide, and 3,662,000 square feet 

at a 6.0 foot tide. Dividing by At=1863, the value of U/At at 0 tide 
is 1,679, and at 6-foot tide, 1,966. The values of U/At at the mean 

tidal heights shown in column (4) are taken off a straight line diagram 
and entered in column (7). The values of AQ, column (8), are then 

the products of the entries in columns (6) and (7), with the sign 

reversed. The discharges at station 69, previously found, are entered 
in column (9). Since the cubature is in the negative direction, the 

values of AQ are subtracted therefrom, algebraically, to give the 
discharges at station 51+ 200, column (10). The typical cross sections 

of the canal show the same section at station 51+ 200 as at station 69, 

and the areas X of the cross section at the latter station, at the tidal 

heights shown in column (3) are taken from the diagram previously 
prepared. The quotient of the entries in columns (10) and (11) then 



215 

gives the velocities at station 51+200, in column (12). The compu- 
tation for the rest of the 12-hour cycle is in the same form. 

413. The velocities at the entrance to the canal at Chesapeake City 

Bridge, station 77, are similarly derived by cubature from station 69. 
The discharges at station 37 are derived from those at 51-+200, and 

thence successively the discharges and velocities at station 19+ 500 
(Biddles Point) and at station 5 (Reedy Point). The flow through 
the branch canal which makes off from near Biddles Point is too small 

to warrant the labor involved in including it in the adjustment. The 
surface areas, U’, and the areas of the cross sections, used for these 

computations, are as follows: 

Surface areas, U (square feet) 

Reach 0 tide 6.0. foot tide 

Stagione 09s toni(—— phism a= 1, 406, 000 1, 646, 000 

Back Creek. .-.____ 583, 000 4, 294, 000 

AICO eas a no Re ee ee 1, 989, 000 5, 940, 000 

Stations: 

HET 2 OORCO LOOMS Te Sethe 2 oe 3, 128, 000 3, 662, 000 

SevOnola 200 ee a a ee 3, 505, 000 7, 699, 000 

NOE HOOhtO: i= ke ee ae 4, 294, 000 9, 447, 000 

HevOmlOat =) OQCE eames 2s a8 se 8, 208, 000 13, 568, 000 

Cross sections, X (square feet) 

Stations: 0 tide 6.0-foot tide 
> [reo 2) WO Weegee Fo Ses 1, 900 2, 944 

MOE) Qe ee raat ts ene lH 1, 936 3, 065 

i pe wets, ee NINE eer AOE a 2, 428 4, 060 

414. Comparison with observed velocities —The computed primary 
currents and adjusted currents, at Reedy Point (station 5) and at 

Biddles Point (station 19+500) and the mean velocities from meter 

measurements at these stations on November 27-28, 1928, are shown 

in figure 71, page 216. It may be seen that the adjustments produce 
large distortions of the primary velocity curves at these stations. 

While the recorded velocities are somewhat erratic, the adjusted 
velocities conform fairly well to the observations. The computed 
and observed currents at Summit Bridge (station 51+200) and at 

Chesapeake City Bridge (station 77) are shown in figure 72, page 217. 
The recorded velocities at these stations are much more consistent, 

and with some minor variations the adjusted currents resulting from 
the computations are in close accordance therewith. Although the 
constants and data used in the computations were selected without 

regard to the observed currents, the agreement is perhaps closer than 

could ordinarily be expected. 
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415. Second approximation.—The corrections applied to the veloci- 

ties in the subsections of the canal must change, to some extent, the 
distribution of the total surface head between the subsections. A 

second adjustment may be made by computing the surface heads 
produced by the corrected velocities in each subsection of the canal, at 

Lunar Hours 

O 6 12 [s} 23 
2 eS ES Eee) 

Feet per sec. 

oO 

Feet per sec. 

oO 

Nov.28 

75 12 18 fe) 67 
Standard Time 

Computed primary current ——-— 

Adjusted current 

Recorded currents o 0 o 

FIGURE 71.—Computed and observed currents, Chesapeake and Delaware Canal, November 27-28, 1928 

the adopted half lunar hour intervals. These heads are determined 
from the equation: 

hst+h,+hat+h;=0 

by computing the values of hf», ha, and h; from the corrected velocities. 
The surface heads so computed may then be adjusted to the heads 
established by the selected entrance tides, corrected tidal heights at 
the ends of the subsections derived therefrom, and a second determina- 

tion of the velocities made from the corrected tides. The procedure 

is too laborious to be warranted in any ordinary case. The results of 
its application to the tides and currents in the canal chosen for the first 
example, in which the entrance tides were taken with a simple harmonic 
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fluctuation, are shown in figure 73, page 218; and the instantaneous 

profiles derived therefrom in figure 74, page 219. In these figures 

the tides are referred to a datum 10 feet below mean sea level. It 
may be noted that the changes produced in the tides by the adjust- 

Lunar Hours 

Feet per sec. 

Summit Bridge— Sta. 514200 

per sec. 

Feet 

18 
Standard Time 

Computed primary current ——-- 

Adjusted current 
Recorded currents 000 

FIGURE 72.—Computed and observed currents, Chesapeake and Delaware Canal, November 27-28, 1928 

ment are very small. The currents derived from the second adjust- 
ment do not differ materially from those derived in the first. The 
weaker currents at the initial entrance show a considerable distortion. 
A plot of the distorted discharges at the two entrances, not here 

- shown, develops no material departures from the relation between 
the storage and discharges due the primary currents in the canal, 

discussed in paragraph 388. 
416. Preponderance of flow in a connecting canal.—The flow in the 

two directions through a connecting canal ordinarily is at different 
stages of the tide. Because of the consequent difference in the mean 
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areas of the cross section of the water prism while the flow is in the 
opposite directions, and because of the distortions of the currents, the 
total volume of flow in one direction may be expected to differ from 
that in the other. This preponderance of flow may be estimated by 

computing the arithmetical mean of the adjusted discharges at 
the given intervals. 

417. In the canal selected in 
the first example the algebraic 
mean of the finally computed 
discharges at the initial en- 
trance is —275 c. f. s. and at 
the further entrance it is —158 
ce. f. s. A closer adjustment 
would be necessary to remove . 

the discrepancy between these 

two figures. The maximum 
discharges at these entrances 
are 22,220 c. f. s. and 50,700 
ce. f. s., respectively. These 
figures show that in this case 
the total volume of flow is 

nearly the same in both direc- 
tions, but indicate a slight 
preponderance of flow toward 
the initial entrance, where the 

tidal range is the greater. 

418. In the Chesapeake and 
Delaware sea-level barge canal, 

taken as the second example, 
the adjusted discharges pro- 

duced by entrance tides on the 
day selected show a prepon- 

Ficure 73.—Primary and adjusted currents in frst derance of flow averaging —441 
example sane 

ce. f. s. at the initial entrance, 
station 5, and of —376 c. f. s. at the further entrance, station 77. 
These figures indicate an average net discharge during the day of 

about 400 ec. f. s. through the canal in the negative direction, from 

Chesapeake Bay into Delaware River. This preponderance of flow 

may be attributed to the higher mean tide elevation in the head of 
Chesapeake Bay. 

419. It is not difficult to see that in a comparatively short canal, 
with a wide difference in the tidal range at the two entrances, the tidal 

elevations and the surface heads through the canal are dominated by 

the tide at the entrance having the larger tidal range; and because of 

the greater cross section and less resistance to flow at the higher tidal 

Feet per sec. 

Feet 

Lunar Hour 

Primary Tides and Currents —---— 

Adjusted 
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stages at that entrance, more water will flow through the canal from 
that entrance than will flow back at low tide when the direction of the 
flow is reversed; provided at least that no adverse constant component 
of the head is produced 

4, 0 by a difference in the 1-X! 

elevation of mean tide ~ pee Ne 

at the two entrances. IX-xI 

The more _ intricate raed pO rae 

tides and currents in « te 

a longer canal and re WV 

differences in the ele- 

vation of mean tide ae 

at the entrances may ee 
Sta O 40 80 120 160 200 

produce a preponder- 
Fi 2 FIGURE 74.—Instantaneous profiles (adjusted). 

ance of flow which is 

not necessarily from the entrance having the larger tidal range. 

CLOSED CANALS 

420. A computation of the currents and tides in a projected closed 

canal seldom is necessary, as usually it may be taken for granted that 
the currents in such a canal will not be troublesome; but should the 

occasion arise, the primary tides and currents may be computed by 
a procedure paralleling that applied in the preceding paragraphs to 
connecting canals. Aside from a practical application, the develop- 

ment of the effect of frictional resistance upon the primary tides and 
currents in a long closed canal of uniform dimensions will cast some 
light upon the characteristics of tidal flow in closed channels in general. 

421. Computation for closed canals of moderate length.—If a projected 
canal is so short that the instantaneous profiles will not depart widely 
from horizontal lines, the computations may be started by determining 
the currents that would be produced in successive subsections of the 
canal if the primary tides in each subsection had the same amplitude 
and phase as at the entrance. The surface heads in the subsections 
are then computed, corrected tides derived therefrom, the currents 

recomputed, and the computations repeated until further corrections 
become negligible. 

422. Since the discharge at the head of the canal is zero, the dis- 
charge, Q, at a velocity station at the middle of any subsection is, 
from equation (278): 

Q= MB sin (at+ 8) =SaUA sin (at+a) (293) 

in which M is the area of the cross section at the velocity station, B 
the amplitude and @ the initial phase of the primary current at the 
station; and 2aUA sin (at-+a@) is the summation, from the head of the 

192750—40- 15 
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canal to the velocity station, of the products of the surface areas, 

U, between the successive velocity stations, at mean tide, and 
aA sin (at+a), the rate of increase of the tide at the storage stations 

midway between the velocity stations. 

Designating the area of any typical cross section of the canal as 

M), and placing, as in equations (281) and (282): 

M,/M=m 

aU/M)=I 

equation (293) may be written: 

B sin (at+ 8)=m2Z/A sin (at+ a) 

whence: 
(B/m) sin B=Z/JA sin a (294) 

(B/m) cos B=ZIA cos a. (295) | 

If the canal is of uniform dimensions, and the subsections of equal 
length, Mo>=M, 1/m=1, and J=aAz/D. 

The component currents in the subsections are computed from 
equations (294) and (295), and the resulting surface heads from 

equations (288), (289), and (290). 

423. Hxample-—The computations may be illustrated by applying 
them to a closed canal of uniform cross section, 60,000 feet (11 miles) 

in length, with a mean depth of 16 feet at midtide, when the tidal 
fluctuation in the entrance has a 

range of 6 feet, and the speed of 
the Ms, component, 0.0001405 

bon SOO eo =o . 18 © radians per second. The origin 
FIGURE poem mney state stations (stations of distances is at the head of the 

canal, and the origin of time at 

a high water at the entrance. The canal will be divided into three 

subsections, each 20,000 feet in length, as shown in figure 75. 

Station 0 is at the head of the canal. The velocity stations, at the 

middle of the subsections, are at stations 10, 30, and 50. The storage 

stations are at stations 5, 20, and 40. As the currents near the head of 

the canal are extremely small, the surface head in the quarter section 

between stations 0 and 5 is always negligible, and the components of 

the tide at station 5 may be taken as those at station 0. 

424, Coefficients —An appropriate value of Chezy coefficient, C, is 

100. The storage coefficient, J, at all storage stations, exeee for the 

half section at the head of the canal, is: 

T=aAz/D=0.0001405 X 20,000/16=0.176. 

For the half section at the head of the canal, J=0.088. 

Since the canal is of uniform dimensions, m=1. The coefficients 

for the determination of the subsection heads (par. 373) are: 
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p=0.000,005,148 C?r=0.823 

la/g=0.000,004,37 < 20,000=0.0874. 

425. First computation of the primary currents and heads —The com- 

putations are started by taking the equation of the tide throughout 
the canal as: 

Y—3s COS Ct. 

At all storage stations therefore: 

A cos a=3 A sin a=—0. 

The computations are conveniently made in the form previously 

used for connecting canals, and are shown on figure 76, facing page 
222. The value of (B/m) cos 6 at station 10, is the storage increment 

for the half subsection, 0 to 10; that at station 30 is obtained by 
adding the storage increment between stations 10 and 30, and so on. 

The subsection velocities and heads are then computed, but since the 

tide at the entrance to a closed canal is alone fixed, the computed 
coordinate heads are not subject to adjustment. 

426. Recomputation of currents and heads.—The currents and heads 
are next recomputed as shown in figure 76 from the tides established 
by the heads determined in the initial computation. The component 
tides, A sin a and A cos a, at stations 40, 20, and 0 are obtained 

by successively subtracting, algebraically, the component heads, 
H sm H° and H cos H°, found in the first computation, from the 
component tides at station 60. 

In the final computation the current at the entrance, station 60, is 
determined by adding to the component currents at station 50, the 
storage increments from stations 50 to 60. The component tides at 
the storage station, station 55, are interpolated. 

427. Results of computation —The amplitudes and initial phases of 
the tides at the ends of the subsections, derived from the final com- 
putation, are: 

Station: At = 

(5) eee ey Se Ei eS eS eS 3. 00 0 

A () Ee ene ee ernie eh he 1 DO NO yl eee ee & NAB ae 33, 11% — 3°50’ 

AO) es cot Re Ie Ce een ee ge 3. 19 — 5°10’ 

(Ree ease See ae ie Re eh eet eas Ad Ly 3. Wil — 5°20’ 

The tidal range therefore increases from 6.0 feet at the entrance to 
6.42 feet at the head of the canal. High water at the head of the 
canal is 5°.33/28°.98=0.18 hours=11 minutes later than at the 

entrance. The strength of the current at all sections is nearly at 
midtide, and decreases from 1.66 feet per second at the entrance to 
zero at the head of the canal. The currents are so weak that the 
tides and currents approach the condition of frictionless flow. 

428. Computations for a longer canal.—The procedure which has 
been described is applicable only to a comparatively short canal. As 
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the length increases, the successive approximations converge more 

slowly, and after a certain length is reached, run completely wild. To 
compute the primary tides and currents in a long closed canal, the 

amplitudes and initial phases of the currents produced by tides of 

successive amplitudes at a station at a moderate distance from the 

head of the canal may be determined by the method that has been 
described. The tides and currents set up when another section is 
added are derived therefrom. By continuing the process, the primary 

tides and currents in a closed canal of any length may be computed. 
429. Hxample.—The primary currents produced by tides of succes- 

sive amplitudes at the entrance to a canal 60,000 feet in length, and 
16 feet in mean depth, determined by the same procedure as that set 
forth in figure 76, are: 

At entrance (station 60) At head (station 0) 

TIDE CURRENT TIDE 
a B B A a 

Se ees ee eerie. 2: 0 LO Anas ee — 4°50’ 3s — 6°10’ 

es ens ee Mes AS 0 k(G} Oyen ae wai — 4° 3.2 — 5°20’ 

DHS a De SSRN ENE aes (0) pA es ey BONY 2.4022 — 4°30’ 

The computation from this data of the primary currents at the 
entrance to a canal 80,000 feet long and of the same mean depth, 

when the tide at the entrance has an amplitude of 3 feet, is shown at 
the bottom of figure 76. For the initial computation the tide at 
station 60 is taken as the same as at station 40 of the 60,000 foot 

canal, the amplitude of which is 3.12 feet and the initial phase is 
—3°50’. The corresponding amplitude of the current is, by inter- 

polation from the tabulated data, 1.73 feet per second, and its initial 
phase, for a zero phase of the tide at station 60 is —4°10’. Since 
the phase of the tide at station 60 is —3°50’, the phase of the current 

at this station is —4°10’—3°50’=-—8°. The coordinate amplitudes 
of the velocity at station 60 are then: 

1.73 sin (—8°)=—0.240 —«‘1..73 cos (—8°) =a 

The current at station 70 is derived by adding the velocity increment, 
stations 60 to 70, determined by the tide at station 65, and the resulting 
coordinate heads, stations 60 to 80 derived therefrom. The recom- 

putation from the corrected tides at station 60, develops heads in 
satisfactory agreement with those first found. In the final computa- 
tion, the current at station 80 is determined by adding to the corrected 
velocity components at station 60 the storage due to the tide at 
station 70. The current at the entrance to the 80,000 foot canal is 
found to have an amplitude of 2.27 feet per second, and an initial 
phase of —10°30’. 

The final determination of the amplitude of the tide at station 60 
of the 80,000-foot canal is 3.13 feet and its phase is —8°20’. The 
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corresponding amplitude of the tide at the head of the canal is, by 
interpolation from the tabulated data, 3.34 feet; and its initial phase 

is —5°30’—8°20’=—13°50’. The primary tides and currents at 
any other station on an 80,000 foot canal could be determined in a 
similar manner by establishing their relation to the amplitude of the 

tide at station 60. 
Perhaps a better method for computing the tides and currents in a 

very long closed canal is to determine those that would be produced 

in the successive subsections by tides of several amplitudes at the 
head of the canal. If the subsections are 20 stations in length, the 
current produced at station 10 by a tide of given amplitude at the 
head of the canal is derived from the velocity increments from the 
tide at station 5, and the coordinate heads, tides and currents at 

station 20 computed therefrom. The coordinate amplitudes of the 
tide at station 25 can then be set forward with fair assurance and 
the currents at station 30 determined by adding the velocity incre- 
ments due to the tide at station 25 to the coordinate currents at 

station 20; and so on to the station at the entrance. The amplitudes 
and phases of the tide and current at any station on the canal can 
then be plotted against the several computed amplitudes of the 
tide at the entrance, and those corresponding to an entrance tide of 
a given amplitude taken off these diagrams. 

430. Characteristics of the tides and currents in a long closed canal of 

uniform cross section.—The primary tides and currents in a canal 
140,000 feet (about 26.5 miles) in length, of uniform cross section, 16 
feet in mean depth, produced by an entrance tide of 3 foot amplitude, 

as computed by the step by step process just outlined, are as follows: 

Primary tides and currents in closed canal 140,000 feet long, with a mean depth of 
16 feet at mean tide , 

[C=100] 

Tide Current 

Station — 
(1,000 feet : : 

z Ampili- Ampili- 
ee Phase mala 7D Phase 

140 3.0 0 3.2 —44°30' 
120 256 —18°30’ 2.8 —50°30’ 
100 2.0 —36°10’ 2.4 — 54°50’ 
80 2.6 —48°20’ 2.0 —57°50’ 
60 2.0 —55°40’ 15 —59°20' 
40 2.8 — 59°20’ 1.0 —60°20’ 
20 2. 86 —60°40’ a) —60°40’ 
0 2.9 —60°50’ Ome Tees eee 

The angular lag, ¢, of the current increases from 15° in the entrance 
subsection, station 120 to 140, to 90° at the head of the canal. To- 
ward the entrance the flow becomes largely frictional, while near the 

head it is essentially frictionless. 
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The range of the tide decreases from 6 feet at the entrance to 5.0 
feet at a point 40,000 feet (about 8 miles) up the canal, and thence 

increases to 5.8 feet at the head of the canal. High water at the 

head of the canal is 60°.8/28.98=2.1 mean solar hours later than at 

the entrance. The rate at which the tide progresses up the canal is 
far from uniform. In the first subsection next the entrance it pro- 
eresses at the rate of 8.2 fect per second, while in the upper 40,000 
feet it progresses at an average rate of over 200 feet per second. The 

rate of advance of a progressive wave in a canal of the given depth 

would be /16g=22.7 feet per second. 
The instantaneous profiles in the canal at successive lunar hours 

are shown in figure 77. 
In an even longer canal of the same depth the rate of progress of 

the tide is found to decrease slowly from the entrance for some dis- 

tance up the channel and thence increase rapidly toward the head. — 

431. The primary current at the entrance reaches a maximum of 
3.2 feet per second, and the strength of the positive current occurs 
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FIGURE 77.—Instantaneous profiles in closed cana} 140,000 feet long and 16 feet mean depth. 

ad 

1.5 mean solar hours before high water, or 1.6 hours after midtide. 

The strength of the current decreases nearly uniformly to the head 
of the canal. Near the head of the canal the strength of the positive 

current is 30 minutes later than at the entrance, and occurs nearly 
at midtide at the head of the canal. 

Considerable deformations of the primary currents are to be ex- 
pected in so long and shallow canal; but the many successive approxi- 

mations necessary to bring the deformations of the tides and currents 
into concordance would render their computation excessively laborious. 

432. Computation for canal of varying cross section.—If the surface 
width and the mean depth of a closed canal are not the same through- 
out, the values of the coefficients, J, p, and la/g are determined for 
each subsection, and the form of the computations is modified in the 
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same manner as those of a connecting canal of varying cross section, 
illustrated in the second example (pars. 392-401). 

MIDSTREAM CURRENTS 

433. The computations developed in this chapter should afford 
substantially as reliable an indication of the mean velocity at a given 
cross section of a tidal canal as is to be expected of a computation of 

the mean velocity set up by steady flow with a constant head. In 

both cases, the reliability of the results depends upon the completeness . 
of the data on the actual widths and depths in the canal, and on the 
selection of the coefficient of roughness. The procurement of the 
data for the computations generally entails much more effort than do 

the computations themselves. 
434. It should be recollected that the currents which will be en- 

countered in the navigation of the canal are those in midstream and 

that their velocity considerably exceeds the mean velocity in the 
cross section. An analysis of the detailed meter measurements made 
in the Cape Cod Canal in 1915, when its designed depth was 25 feet 

at low water and its bottom width 100 feet, shows that the average 

velocity in a vertical section at the middle of the canal was 25 percent 
in excess of the average velocity in the entire cross section. While 

the ratio of the midstream velocity to the mean velocity must depend 
upon the contour of the bed of the channel in the vicinity of the cross 

section, available data indicates that in general the strength of the 
midstream current in a channel of regular dimensions should be taken. 

as 1.3 times the mean strength. 
435. The midstream current also turns later and reaches its maxi- 

mum velocity after the mean current in the cross section. In a canal 

of regular section this difference in timing usually does not exceed a 
few minutes. In a wide natural channel differences of half an hour 

or more in the time of the turning of the current near the shore and 
at midstream are quite common (Manual of Current Observations, 
Special Publication 215, U.S. Coast and Geodetic Survey, 1938). 
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TIDES AND CURRENTS IN ESTUARIES AND INLETS 
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436. Definition of estuary.—The reversing currents produced by the 
filling and emptying of the tidal prism of a river that enters a tidal sea, 

generally dominate the river flow for a considerable distance up the 
stream. This part of the river usually is funnel shaped, flaring to- 

wards the entrance. A river mouth of such a shape is called an 
estuary. The term may be applied as well to any tidal channel of 
similar shape, even if it does receive any considerable inflow from the 

uplands. 
437. Characteristic tides and currents in an estuary—In a typical 

estuary, the currents often have nearly the same strength and tides 
nearly the same range at all cross sections; except in the upstream 
reaches where the tidal flow merges into steady flow. The rate at 
which high water and low water, and the strength and turn of the 

current, advance up an estuary is often so close to gD, the rate of 

advance of a frictionless progressive wave in a channel of uniform 
dimensions (par. 339), that this is commonly regarded as the normal 

rate of progress of the tide. 
438. The ideal estuary.—In the preceding chapter it was shown that 

the currents in a long closed canal of uniform cross section diminish 
from the entrance to the head of the canal and the rate at which the 
tide advances up the canal increases toward the head. The uniformity 

of the currents in an estuary, and of the rate of advance of the tide, 
evidently is due to its shape. It is of interest to determine the special 

(227) 
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shape that a closed tidal channel of constant depth must have, in 
order that a simple harmonic fluctuation of the tide at the entrance 

will produce throughout the channel primary tides of constant range 
and primary currents of uniform strength. In the lack of a better 
term, a channel of this shape may be called an ideal estuary. 

439. Derivation of the form of an ideal estuary—Taking the origin 
of distances at the entrance from the sea, the positive direction up- 
stream, and the origin of time at a high water at the entrance, let: 

D, be the constant mean depth of the channel at mean tide. 
2, its width at a point distant x from the origin. 

r, its constant hydraulic radius at mean tide. 
C, the applicable Chezy coefficient; also taken as constant. 
A, the constant amplitude of the primary tide. 

B, the constant amplitude of the primary current. 
a, the speed of the primary tides and currents. 

S, the amplitude of the surface slope at a point distant x from 
the origin. 

H°, the initial phase of the slope at Ahe same point. 
¢, the angular lag of the current. 

The relations established in paragraph 373 show that if B, 7, and 
C have constant values in a given channel, the values of ¢ and S also 

are constant throughout the channel. 
The equation of the tide at the entrance is: 

SAN COSROE: 

Since the tide at a station within the entrance occurs at a later 

time, its equation is in the form: 

y=A cos (at—f) (296) 

in which ¢ (zeta) is a positive angle which varies with z. 
The surface slope at a point distant x from the origin, and at the 

time ft, is then: 

S cos (at+ H°) = dy/or=A sin (at—¢) 0¢/dxr 

=A cos (at—f—71/2) 0¢/Oz. (297) 

Since equation (297) is identically true: 

S=Aodt/oz (298) 
BP = eae (299) 

From equation (298) 

Oe Aor. 
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The integration of which gives, since ¢=0 when r=0: 

¢=(S/A)z. (300) 

It will be convenient to place: 

S/A—n. (301) 

So that: 

—t (302) 

The equation of the current at any cross section of the channel may 
be written: 

v—B sin (at+ B) 

in which, from equation (150): 

B=H°—¢—n/2 

From equations (299) and (302): 

B=—nzr—o—T. 

The equations of the tide and current in an ideal estuary are then: 

y=A cos (at—nz) . (303) 

v=B sin (at—nx—¢—7)=—B sin (at—nr—¢). (304) 

These equations show that the tides and currents progress up an 
ideal estuary at the constant rate of a/n. 

440. The differential equation of the primary current has been 
derived in equation (142), paragraph 243: 

oy/Ox+ (1/9) Ov/Ot-+ (8/37) Bo/C?r=0 

Substituting the differential coefficients and the expression for » 
obtained from equations (303) and (304): 

An sin (at—nx) — (aB/g) cos (at—nr— 9) 

— (8/37) (B?/C?r) sin (at—nr— ¢) =0 (305) 

By placing at—nx=0, the equation of condition is derived: 

— (aB/g) cos 6+ (8/37) (B?/C?r) sin ¢=0 (306) 

and by placing at—nz=72/2: 

An— (aB/g) sin ¢— (8/37) (B?/C?r) cos ¢=0 (3807) 
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Multiplying equation (306) by cos ¢ and equation (307) by sin ¢ and 
adding: 

An sin ¢—aB/g=0 (308) 

441. The equation of continuity is (equation 183): 

O(w2D) /dx-+ zdy/0t=0 

When the depth, D, is constant, this equation becomes: 

Dvoz/0r+ Dz0v/dxr-+ 2dy/dt=0 (309) 

Substituting the differential coefficients and the expression for 2, 
from equations (803) and (804): 

—DB sin (at—nzx—¢)02z/0x-+nDBz cos (at—nx— ¢) 
—aAz sin (at—nx) =0 (310) 

The equations of condition, derived by placing at—nxz=0 and 
at—nxz=1/2, are: 

DB sin $02/0z+nDBz cos ¢=0 (311) 

—DB cos ¢02/07+nDBz sin ¢—aAz=0 (312) 

Multiplying equation (811) by cos @ and equation (312) by sin 4, 
adding and dividing by 2z: 

nDB—aA sin ¢=0 (313) 

Combining equations (808) and (313) to eliminate sin ¢: 

aB/gAn=nDB/aA 

whence: has 
TOG) n=a/VgD (314) 

The rate of advance of the tide and current in an ideal estuary is 
then gD, the rate of advance of a frictionless progressive wave. 

442. From equation (311): 

0z/z=—n cot dx 

The integration of which gives: 

e— Ke-™ cote (315) 

in which K is the constant of integration. When z=0, K=z. K is 
then the width of the estuary at the entrance, which conveniently may 
be designated z. Then: 

en ea (316) 
Or: 

log z=log z,.—(az cot ¢ log e))-/gD (317) 
a 

If, then, the depth of an estuary is constant, and the width varies in 
accordance with the law expressed by equations (316) or (817), its 



231 

primary tides and currents will have a constant amplitude, and will 
advance up the channel at the rate of /gD. 

443. To determine the amplitude of the currents, the value of 

P=1.084 07S and P/S may be computed from the value of S 
derived from equation (301): 

S=An=Aa/VgD (318) 

The value of ¢ may then be obtained from table IX, chapter V. The 
amplitude of the current is, from equation (308): 

B=(Ag/VgD) sin 6=AYgQ/D sin ¢ (319) 

As shown in paragraph 338, the amplitude of current of a friction- 

less progressive wave, in a channel of uniform dimensions, is: 

Ayg/D 

The currents in an ideal estuary are therefore less than those set up 
by a frictionless progressive wave: 

Example—The mean tidal range at the entrance to the estuary 
proper of the Delaware River, at Woodland Beach, is 5.63 feet. The 
mean depth of the estuary at mean tide between Woodland Beach and 
Philadelphia, taken from maps of about 1918, was found to be 21.5 
feet. A reasonable value of the Chezy coefficient, C, is 120. Taking 

the tides as simple harmonic fluctuations with a speed of the M, 
component, the constants for computing the form of the ideal 
estuary are: 

A=2.815 feet 
a=0.0001405 radians per second 

D728 
C=120 

These values give: 
S=0.00001504 

log P/iS=5.19235 
o—o1 2 

The scaled width of the Delaware at Woodland Beach is 23,000 

feet, the logarithm of which is 4.36173. The logarithm of the width 
of an ideal estuary at a point distant x feet upstream, is then, from 

equation (317): 

log z=4.36173—0.000,0030405z 

In figure 78, page 232, the outline of this ideal estuary is shown 
in broken lines on a small-scale map of the Delaware. It will be 
seen that the general shape of the river conforms quite closely to an 
ideal estuary. 
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FIGURE 78.—Delaware River, Philadelphia to Woodland Beach. 

444, The actual mean tidal range in the Delaware increases from 
5.63 feet at Woodland Beach to 5.85 feet at the contraction at Artificial. 
Island, then decreases to 5.09 feet at Philadelphia. The rate of 
advance of the tide up the ideal estuary would be 21.5g=26.3 feet 
per second. The actual rate of advance of the high water from Wood- © 

land Beach to Philadelphia averages 23 feet per second, and of low 
water, 19.5 feet per second. 

The amplitude of the primary current, computed from equation 

(319) with the given data, is 2.09 feet per second. The actual mean 
current velocities at various cross sections of the Delaware, determined 
by cubature, have strengths generally of about 2.00 feet per second, 
increasing to 2.6 feet at contracted sections. 

445. The equation of the tide in an ideal estuary (equation 303) 
shows that high water at a point distant x from the entrance occurs 
when afp—nz=0, or when f=nz/a. Similarly equation (304) shows 

that the current turns from positive to negative, or from flood to ebb, 
when at;—nz—@¢=0, or when t;=(nz+¢)/a. The interval between 
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high water and the turn of the current is then ¢/a. If then the Dela- 
ware were an ideal estuary, the primary current at any station would 
turn from flood to ebb 37°.35/28.98=1.29 hours after high water. 
The actual currents turn in this direction from an hour to an hour and 
a half after high water at the station. 

The general characteristics of the tides and currents in the tidal 
portion of the Delaware conform therefore to those deduced for an 
ideal estuary. 

446. Prevalence of estuaries of typical form.—The depth of a natural 
tidal channel is far from constant, and the variation in its width which 

would be required to produce currents of constant strength departs 
somewhat from that of the ideal estuary deduced in the preceding 
paragraphs. However, as a natural channel carrying a constant steady 
flow tends toward a general uniformity of width, a tidal estuary tends 

toward the funnel-shaped form of an ideal estuary. In a tidal channel 
which has not such a form, the currents have different strengths from 
section to section and the bed tends to scour where the currents are 
the stronger, and to fill where they are the weaker. Tidal channels in 
alluvial material therefore mold themselves into the typical estuary 
shape. The result of this process is strikingly shown in the natural 
channels through the tidal mud flats bordering a sheltered bay or 
coastal sound, in which the wave action does not cause enough littoral 
drift to contract the outlets. A glance at a chart of such a region, or a 
view from the air, shows that the many channels cut through these 

flats by drainage from the uplands have molded themselves into the 
typical estuary form, generally with a sinuous alignment. 

447. Large rivers which enter the sea through an alluvial coastal 
plain also usually cut for themselves a typical estuary channel; unless 
they carry down silt and sand at a faster rate than can be molded by 
the tidal currents, when they maintain a generally uniform cross 

section to an ever-growing delta at their junction with the sea. A 
delta generally is found at the mouth of a silt-bearing river which, 
like the Mississippi, enters a sea having a small tidal range; but the 

burden of detritus may be sufficient to form a delta at the mouth of a 
river where the tidal range is large. Thus deltas are found at the 

mouths of the heavy silt-bearing rivers which enter Puget Sound, 
although the diurnal tidal range in the sound is generally 10 feet or 
more. 

448. Many rivers enter the sea through submerged valleys, which’ 
ordinarily widen toward the sea and have the general shape of a self- 
made estuary. If the valley has become filled with alluvial deposits of 
fairly uniform consistency, the tidal flow generally has molded an 

estuary of typical form, often subdivided by islands and _ shoals. 
The entrance to an estuary from the open sea usually is contracted 

by deposits from the littoral drift along the coast line; but this contrac- 
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tion does not affect greatly the tides and currents inside of the entrance. 
In short, long natural tidal channels, other than tidal straits, are 
usually of estuary form; and if they are not too deep, their tides and 
currents ordinarily have the general characteristics of those of an 
ideal estuary. 

449. Effect of local contractions and enlargements upon the range and 
rate of the tide.-—Variations in the consistency of the bed and banks of a 
natural estuary result in local contractions and enlargements of the 
cross section, so that the strength of the current is no more uniform 
than is the current velocity in a natural upland stream whose bed and 

banks are of similar material. The consequent variation in the 
amplitude of the surface slope produces variations both in the tidal 
range and in the rate at which the tide advances up the channel. The 
nature of these variations may perhaps be developed most readily from 

a diagram. 
In figure 79, CP» is the generating radius 

of the primary tide at the downstream, or 
initial, end of a short section of a tidal 

‘ estuary. If the currents were of uniform 
strength, and the tides of constant range 
throughout the estuary, the generating 
radius of the tide at the upstream end of 
the section would be CP,, equal in length, 
but lagging behind CP, by an angle deter- 
mined by the rate of progress of the tide, 

A gH. The surface head in the section 
would then be CH, equal and parallel to 
PoP, (par. 244); and the generating radius 

of the primary current would be CB, making an angle of —¢—90° 
with CH (par. 248). Upland inflow disregarded, this current is due 

wholly to the discharge at the section produced by the filling and 
emptying of the tidal prism upstream therefrom. The phase of the 

current CB has therefore a fixed relation to the phase of the tide CP,. 
If, because of a local contraction at the section, the discharge pro- 

duces a current of increased amplitude CB’, the amplitude of the head 
is increased to CH’, but the angular lag, ¢, of the current with respect 
to the head is decreased, so that the angle H’CH is greater than B’CB. 
The generating radius of the tide at the upstream end of the section 

becomes CP’,. The angle P,CP’, is nearly or quite equal to BCB’, 
and the angle P,P,P’; is equal to HCH’. It is apparent from the 
figure that the increase in the current results in a decrease in the tidal 
range and an increase in time of the tide at the upstream end, with a 

consequent decrease in the rate at which the tide travels through the 
section. The decrease in the tidal range at the upstream end tends to re- 
duce the discharge at the section, and checks the increase in the current. 

FIGURE 79. 
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450. A local increase in the strength of the current in a section of an 
estuary therefore decreases the tidal range upstream, and retards the 
progress of the tide up the estuary. A local decrease in the strength 
of the current tends to increase the tidal range, and speeds up the 
progress of the tide. The decrease in the range as the tide passes 
through the contracted sections usually results in a less range in the 
wider and deeper sections upstream, while because of the tendency 
toward an increase in the wide and deep sections, the range of the 
tide normally increases as it approaches a contracted section. The 
larger tidal ranges are therefore found ordinarily at the contractions, 
and the smaller ranges in the wide and deep sections of an estuary. 
The advance of the tide up the estuary is more rapid where the tidal 
range is increasing than it is when the range is decreasing. 

451. Deep channels of estuary form.—Submerged valleys, unfilled by 
alluvial deposits, afford some long closed tidal channels, flaring toward 
the entrance like an estuary, but so deep that the frictional resistance to 
flow is very small. The convergence of the shores of the ideal estual 
becomes less as the depth increases and the frictional resistance to 
flow decreases. In a channel so deep that the flow is essentially 
frictionless, ¢ is so close to 90° that cot ¢ is practically zero. The 
width of the ideal estuary then closely approximates, from equation 

(316): 
2% 

The ideal estuary becomes an endless channel of uniform width and 
depth. It follows, therefore, that in a closed channel of finite length 
the tides maintain a constant range, and the currents a constant 
strength, only when the channel is so shallow that the frictional 
resistance to flow is material. When its depth is so great that the 
frictional resistance is negligible, the tides and currents take the 
general characteristics of those produced by frictionless flow in a 
closed canal, discussed in chapter VII. The wave lengths of the 
principal tidal components become so long in a deep channel (par. 326) 
that the length of nearly all natural channels is but a fraction of these 
wave lengths, and the range of the tide characteristically increases from 
the entrance to the head. If the effective length of the channel approxi- 
mates one-quarter of the component wave lengths corresponding to its 
depth, the range of the tide at the head of the channel may be very 
large. In timing, the tides approach the condition of a stationary 
wave, which rises and falls simultaneously. 

452. Tides and currents in the Bay of Fundy—The Bay of Fundy, 
on the Atlantic coast of Canada, just north of the State of Maine, 
affords the outstanding example of the heights to which the tide may 
rise at the head of a fairly deep natural channel. An interesting 

192750—40 —16 
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description of the tides in the bay is given by Marmer in “The Tide”, 
from which the figures herein have been abstracted. The bay ex- 
tends 170 miles inland and there subdivides into two comparatively 
small and shallow branches. The entrance to the bay is 85 miles wide, 
and has a mean depth of 280 feet. The bay gradually narrows to 30 
miles at the junction of the branches, where the mean depth becomes 
130 feet. The mean tidal range increases from about 13 feet at the 
entrance to 40 feet or more at the heads of the two branches, reaching 
50 feet at spring tides. This is the greatest tidal range in the world. 
The midchannel currents at the entrance to the bay have a strength 
of 1% knots. The tide tables indicate that high water progresses 90 

miles in 15 minutes in the deep water in the main part of the bay, but 
the progress of the tide slackens in the shallower branch channels. 

The current turns nearly at high and low water. 
The mean depth in the bay may be taken at 240 feet. The corre- 

sponding wave length of the principal lunar semidiurnal component, 
M,, is 663 miles (par. 326). The length of the bay is therefore nearly 
one-quarter of this wave length. As shown in paragraph 346, this is a 

critical length of a closed canal of uniform dimensions, at which the 
tides are limited only by frictional resistance. While the analogy is 
far from accurate, it affords an explanation for the great tidal range 

at the head of the Bay of Fundy. 
453. Other examples of the increase in the tidal range in deep chan- 

nels.—The Gulf of California, inside of the peninsula of Lower California, 
is a deep channel extending inland over 700 miles from the Pacific 
Ocean to the delta cone at the mouth of the Colorado. The mean tidal 
range decreases from 4 feet at the entrance to 3 feet in a zone about 

300 miles up the gulf, and then increases to 22 feet at the mouth of the 
Colorado. In Cook Inlet, in Southwestern Alaska, a deep, funnel- 
shaped channel about 200 miles in length, the mean tidal range in- 

creases from about 12 feet at the entrance to 30 feet at the head. 

Long Island Sound affords another and often quoted example of the 
increase in the tidal range in a fairly deep closed channel whose length 

and depth have the relation which should lead to this increase. The 
sound has a prevailing depth of 65 feet and a length of 70 miles. This 
length is approximately one-quarter of the wave length of the principal 
semidiurnal tidal components at the given depth. The entrance from 

the sea, at the eastern end, is contracted by a chain of islands, in the 

passage between which the currents are strong, but these passages 
are so deep and so short that the currents do not appear to produce 

any considerable head. Inside the entrance the tidal currents are 
weak. As is to be expected under these conditions, the tidal range 
increases from 21 feet at the eastern entrance to 74 feet at the western 

end of the sound. High water travels through the sound in about 
half an hour. 



237 

In contrast, the Lynn Canal, in southeastern Alaska, is a narrow 
fiord, 80 miles long, with a prevailing depth of 1,000 feet or more. Its 

length is but one-twentieth of the wave lengths of the principal semi- 
diurnal components at the depth. The mean tidal range increases 
from 12.6 feet at Barlow Cove, near the entrance, to but 14.6 feet at 
Skagway, at the head of the fiord. The tide is so nearly a stationary 
wave that high water at the head occurs but 5 minutes after high water 
at the entrance. 

454, Hffect of fresh water discharge.—The fresh-water discharge of a 
river increases the ebb currents in its tidal reaches and decreases the 
flood currents. In the wide part of a typical estuary, nearer its 

junction with the sea, the tidal discharge from the storage in nearly 
the whole of its tidal prism may be so much greater than the fresh 
water discharge that the latter has but little effect upon the currents 

Trenton gage — feet 
O 50000 lIOOO00O cfs 

Discharge of Delaware River above Trenton 

FIGURE &.—Relation of high and low water to fluvialdischarge at Trenton, N. J. 

The discharge from tidal storage steadily diminishes upstream, the 
ebb currents increase, and the flood currents decrease until a point 
is reached at which the flood current disappears. Above this point, 

the current fluctuates in velocity, but does not change direction. 
The mean tide elevation in the river slopes upward from the sea at 

an increasing rate as the ebb currents become the stronger. If the 
river has so ample a cross section that the slope is small, the fluctua- 

tions of the tide may extend far up the stream, diminishing as the 
backwater from a dam diminishes, until at some point the tides 
disappear, and with them the tidal storage, and the last traces of 
tidal fluctuation in the river current. 

Quite obviously, the range of tides in the upper reaches of a tidal 
estuary diminishes when the fresh-water discharge increases, and may 
disappear when the river is in flood; as the backwater from a dam 
diminishes and eventually disappears with the increasing river dis- 
charge. The observed heights of high water and of low water at a 
tidal station may be plotted against the upland discharge to afford a 
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diagram showing the effect of the discharge upon the tides. Such a 
diagram for the Delaware River at Trenton, near the head of tide, 
prepared from selected monthly mean high and low waters and dis- 
charges during the period 1922 to 1926, is shown in figure 80. 

455. The tidal part of many of the larger streams entering the 
Atlantic Ocean in the United States, terminates abruptly in the rapids 
at which these rivers drop into the Coastal Plain, or into the sub- 
merged valleys in which their tidal courses lie. The upstream tidal 
reaches usually have the capacity to carry the ordinary river discharge. 
During periods of low discharge the flow in these reaches becomes 
almost entirely tidal, and in many cases the tidal range then increases 
toward the head of tide, instead of gradually decreasing upstream. 

456. Distribution of the currents due to fresh-water discharge.—As 
fresh water has a less specific gravity than salt water, the salt water 
usually underruns the fresh at the turn of the current, so that the ebb 
continues on the surface while the flood current is running in beneath. 

Numerous meter measurements made at various depths at the mouth 

of the Hudson River show that the strengths of the ebb currents 
generally are relatively less than the strengths of the flood in the 
deeper part of the channel (Special Publication No. 111, U. S. Coast 
and Geodetic Survey). 

457. Difference in tidal range on the opposite sides of a wide estuary 
because of the earth’s rotation —Unexpected as it may seem, the rota- 

tion of the earth produces a measurable difference in the tidal ranges 
on the opposite sides of a wide estuary. Consideration will show that 
the earth rotates under the moving water in the channel, as it rotates 
under a Foucault pendulum. At a place whose latitude is \, the rate 
of rotation is 360° sin ) per (siderial) day or 0.000,072,9 sin \ radians 

per second. In the northern hemisphere the currents, if unrestrained, 
would rotate clockwise at this rate with respect to the earth. Since 
the direction of the current in a channel is restrained by the banks, 
the rotation sets up a slight transverse slope of the water surface. 

Designating the rate of rotation of the earth about its axis, in 
radians per second as w (omega) and the velocity of the current in 
the direction of the channel by v, the transverse component of the 

velocity, due to the earth’s rotation, if unrestrained, would be wv sin X. 

Since the steadily exerted force required to restrain a body from mo- 
tion at a given velocity is twice that necessary to accelerate it to the 
velocity, the pressure acting on each unit of mass of the flowing water, 

to restrain it in the direction of the channel is 2wv sin \, and the trans- 

verse slope to produce this pressure is 2w” sin \/g. The difference in 

level between the two banks of the channel is then 2wvz sin X/g, 2 

being the width of the channel. 

458. Ordinarily the flood current in an estuary is near its strength 
at high water, and the ebb current near its strength at low water. 
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Looking upstream, as is customary in regarding channels which lead 
in from the sea, the rotation of the earth therefore tilts the water 

surface upward to the right at high water, and upward to the left at 
low water; with the consequence that the tidal range on the right 
(ascending) bank is greater than that on the left bank by 4wvz sin X/g. 
Since w=0.0000729, and the value of g is not far from 32.16, this 

increase in range becomes, when Zz is expressed in statute miles and v 
in feet per second, 0.05 vz sin X._ If z is expressed in nautical miles of 
6,080.2 feet, and v in knots, the difference in range is 2.92vz sin X/g, or 

0.09 vz sin X. 
459. The observed differences in the tidal ranges on the two banks 

of a wide estuary conform fairly well with this formula. Thus at the 
entrance to Delaware Bay the distance between the two shores is 10 
nautical miles, and the average current at high and low water is 

about 1 knot. The entrance is at latitude 38°20, whose sine is 0.62. 

The difference in range between the two shores from the formula is 
0.56 fect while the observed difference is 0.6 foot. At the head of the 
bay the width is 4 nautical miles, the current is 1.3 knots, and the 

latitude 39°23, giving a calculated difference of 0.3 foot, while the 
actual range on the right, ascending, bank is 0.2 foot greater than on 
the left. A similar concordance with the formula is observed in other 
tidal waters. 
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FIGURE §1.—Tide curve of Delaware River at Philadelphia October 11-12, 1924. 

460. Overtides and overcurrents in an estuary.—As is to be expected, 
the tide advances more rapidly up an estuary, or any long closed 
tidal channel, at high water, when the depth in the channel is the 

ereatest, than it does at low water when the depth is the least. The 
further a tidal station is up an estuary, the earlier is the time of high 
water with respect to the time of low water. The time interval from 
low water to high water, or the “‘duration of the rise,” steadily be- 
comes less as the distance of the station from the entrance increases, 
and the time interval from high water to low water, or the ‘duration 
of the fall” becomes greater. The tide curve takes the typical saw- 
tooth form exemplified by the tides on the Delaware at Philadelphia, 
shown in figure 81. 
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As pointed out in paragraph 155, these deformations of the tide 

curves are reproduced by overtides and compound tides whose periods 
are multiples or sums or differences of the periods of the principal 
tidal components. The corresponding deformation of the velocity 

curve at a tidal station is the accumulated effect of the tidal distortions 

at the stations upstream upon the rate of tidal storage and release of 
water, and is consequently greater than the deformation of the tide 
at the station. A typical shape of the velocity curve at Philadelphia 
was shown on figure 50, page 155. 

461. It should be noted that the deformation of the tides and cur- 
rents as they travel up an estuary is due primarily to the difference 
between the depth in the channel at high and at low tide, and depends 
therefore on the ratio of the tidal range to the mean depth. Although 

the deformation may be increased because of the stronger ebb and 
weaker flood currents resulting from fresh-water discharge down the 
estuary, the latter is not the essential reason for these deformations. 

462. Slope of mean river level—Since in each section of an estuary 
the ebb current runs out at the lower tidal stages and the flood current 

runs in at the higher stages, the frictional resistance to the flow of the 
ebb is greater than that to the flow of the flood current. As a con- 
sequence the mean river level in an estuary has an upward slope from 
the sea, even though the fresh-water flow is negligible. In a channel 
deep enough to be navigable by ocean shipping at low tide, this slope 
is very small. In a shallow estuary it may be considerable. 

463. The tidal bore-—The successive instantaneous profiles in a 
tidal estuary show the water surface advancing up the channel as a 

long wave, outwardly resembling, in a general way, the advance of a 
wind wave toward the shore. In nearly all estuaries the slope of the 

front of the advancing wave is very small. This slope steepens as the 
depth of the channel decreases, and as the currents increase with the 

rate of rise of the tide. The rate of rise of the tide rarely is sufficient 
to create an excessive slope on the front of the wave even when the 

estuary is so shallow that much of its bed runs bare at low tide; but 

if the range of the tide is so large that its rise is exceptionally rapid, 
and if the fast rising tide encounters a strong outflowing current, the 
advancing wave may trip and break, like a wind wave breaking on the 
shore. The incoming tide then rushes up the shallows in a breaking 
wave, generally called the tidal bore, but otherwise known as the 

‘“Aegre” or ‘“Hygre” in England, the ‘“Mascaret” in France, and the 
“Proroca”’ in South America. <A bore is formed in one of the shallow 

tidal branches at the head of the Bay of Fundy; it forms also in the 
mouth of the Colorado, at the head of the Gulf of California; and in 

the shallow waters at the head of Cook Inlet, Alaska; but does not 
appear to form in any other estuaries on the North American Conti- 
nent. Because of the large tidal range at many localities on the 
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coasts of England and France, bores occur in a number of the shallower 
estuaries of these countries. The most noteworthy tidal bore re- 
ported is that in the Tsien-Tang-Kiang River, which enters Hangchau 
Bay, some distance south of Shanghai, in China. The tidal range in 

the mouth of the river, at ordinary spring tides, is given as 25 feet, 
sometimes reaching as much as 34 feet. The bed of the river runs 

nearly bare at low tide. The incoming tide advances in a breaking 
wave which is described as from 8 to 12 feet in height, rushing with a 

loud noise up the estuary at a rate of 14 miles per hour (Wheeler, 
Practical Manual of Tides and Waves, pp. 142-144). 

EFFECT OF ARTIFICIAL CHANGES IN AN ESTUARY 

464. Comprehensive enlargement—A comprehensive enlargement of 
the channel in a long tidal estuary, to afford greater depth and width 
for navigation, generally increases the tidal range in the upstream 
reaches and increases the rate at which high and low water travel up 

the channel. The increase in range depresses the plane of mean low 
water, and other low water datums. Additional excavation is there- 
fore required to afford the projected increase in depth at a designated 
low water datum. Thus, after the navigation channel in the upper 

part of the estuary of Hudson River was deepened from 14 feet to 
27 feet at mean low water, the mean low water datum at the head 

of the improvement was lowered by a foot. The increase in the depth 
of the navigation channel between Philadelphia and Trenton, from 12 

feet to 25 feet, also depressed the low water datum at Trenton by a 

foot. 
465. Contractions.—A radical local contraction of an estuary by 

training works, piers, or land reclamation, decreases the tidal range 

upstream. The consequent reduction in the volume of the tidal prism 
decreases the currents below the contraction and tends to increase 

the tidal range at and below it. The removal of a marked local 
contraction at midlength of a long estuary similarly increases the 
storage and release of water upstream, increases the currents below 
the contraction and may decrease the tidal range at and below the 
site. A decrease of about half a foot in the mean tidal range on the 

Delaware at and below Philadelphia, shown by a comparison of the 
tide gage records prior to 1890 with those after 1900, usually is 
ascribed to the contractions at the extensive training works which 

were constructed in the lower part of the estuary during the interval. 
The decrease in range may have been due partly, as well, to the major 

enlargement of the river at Philadelphia during this period. This 
enlargement included the removal of several islands which had so 

contracted the cross section as to create excessive currents. The 

enlargement was followed by a considerable increase in the tidal range 

at the head of the estuary. 
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466. Dams.—The construction of a dam across an estuary, to 
maintain the upstream reaches at low tide level in the interest of the 
reclamation of tidelands, or at high tide level in the interest of naviga- 
tion, recreation, and sightliness, obliterates the tidal storage up- 

stream. The tidal currents in the downstream reaches are diminished, 
and disappear at the dam. The tidal range at the dam is increased 
by an amount dependent upon the length and depth of the remaining 
part of the estuary. The accumulation of silt in the channel below 
the dam ordinarily is to be expected. 

467. Character of computations of the effect of enlargements or con- 
tractions.—In the preceding chapter a method was developed for 
computing the tides and currents in an artificial channel of such 
regular dimensions that the Chezy coefficient in the successive sub- 
sections could be selected with sufficient assurance from precedent. 
A somewhat different problem arises in estimating the changes in 
the tidal ranges and currents that may be expected from projected 
enlargements or contractions which merely will modify, without 
essentially changing, the characteristics of the flow in a long tidal 
channel. The latter problem is somewhat analogous to an estimation 
of the changes in the slopes and currents of an upland river because 
of similar enlargements or contractions. In both cases the imme- 
diate effect upon the currents at the locality is easily determined, but 
a reliable computation of the consequent effect in other parts of the 
channel can be secured only from an elaborate and painstaking 

analysis of the existing flow in the successive subsections, based on 

adequate survey and records. 
468. Fortunately, a computation of the changes in the tidal ranges, 

tidal datums, and currents because of projected enlargements or con- 
tractions of a tidal channel is called for but rarely. If a closed chan- 
nel is relatively short, the datum throughout it can be taken as the 
established datum at the entrance, whatever the scope of the proposed 
improvement; for while, as shown in paragraph 427, the tidal range 

at the head of such a channel may be greater than at the entrance, the 

increase in range and the lowering of the low water datum at the head 
of the channel generally is too small to be of real consequence. 

Projected local enlargements or contractions of a long tidal estuary 
rarely are so extensive that any material change in the low water 
datums need be apprehended. Because of the daily variation in low 
water, a change of even a foot in the low water datum, resulting from 

major channel enlargements, is not immediately apparent. An early 
redredging of the channel often is required in any event to remove 
material which has slid in from underwater slopes or has been deposited 
from other sources. If a projected improvement has been cut so close 
that a shortage of a foot or so in the depth at low water is of any real 
consequence to shipping, its further enlargement is to be foreseen. 
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Except, perhaps, for providing initially a reasonable margin of in- 
creased swept depth over areas that must be drilled and blasted, the 
sensible procedure in nearly every case is to lay out the work from 
existing low water datums, and to determine any required changes in 
these datums by direct observation after the improvement has been 
made. Only in most exceptional cases will doubt or controversy over 
the consequences of the effect of enlargements or contractions justify 
a prior computation. In the following paragraphs, an outline is 
suggested of computations which should afford results in which some 
confidence may be placed when the flow is essentially tidal. If the 
fresh-water flow dominates the currents and tides, recourse to a 

hydraulic laboratory might be necessary. 
469. Computation of changes in mean low water datum.—If the tides 

are of the semidiurnal type and if the ordinary fresh-water flow is 
small in comparison with the tidal flow, or if the adopted mean low 
water datum is established from the tides during periods in which the 

fresh-water flow is inconsiderable, the changes in mean tidal range at 
stations along an estuary, resulting from proposed enlargements or 

contractions of the channel, should be substantially proportional to 
the changes in the primary tides corresponding to the mean tidal 
fluctuations. The mean primary tides before improvement may be 
determined from the tide records, and those after improvement 
computed by the formulas developed in chapter VIII, paragraph 422, 
with coefficients derived from the corresponding primary currents 
before improvement. 

470. Primary tides and heads before wmprovement—To afford the 
requisite data for the computations, tide gages must be established at 
suitable stations from the head of tide to a point at which the cross 
section of the estuary is so large that the effect of the improvement 
upon the currents will become too small to be considered. These 
stations should be placed at the more marked changes in the cross 
section of the estuary, and at such distances from each other that the 
water surface between them will not depart materially from a plane 

surface. They establish the ends of the subsections into which the 

channel is to be divided. From the tide records during a period of 15, 
or preferably 29, consecutive days of low upland flow, average tide 
curves are prepared for each station as described in paragraph 304, 

and the corresponding primary tides computed from the heights at 
successive lunar hours as explained in paragraph 360. The coordi- 
nate amplitudes of the primary tides are then determined. Their 
differences between the successive stations give the coordinate 
amplitudes of the primary heads between the stations, from which 
the amplitudes, H, and initial phases, H°, of the heads in the sub- 
sections are determined. 
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471. Primary currents before improvement.—The velocity stations 
are midway between the established tide stations, and the storage 
stations, generally, should be midway between the velocity stations. 

The coordinate amplitudes, A sin a and A cos a, of the primary tide 
at the storage stations are obtained by linear interpolation between 
those at the established tide stations. Taking any representative cross- 

section area of the estuary as a base, Mj, the values of J=aU/M, 
between the velocity stations are computed from the surface areas U 
at mean tide, a being 0.0001405 radians per second. The summation 
from the head of tide of the values of JA sin a and JA cos a then gives 
the values of (B/m) sin B and (B/m) cos 6B at the velocity stations, 

from which the values of 6 and B/m may be determined. The average 
or effective cross-section area, (/, in each subsection may be deter- 

mined from a consideration of a sufficient number of plotted actual 
cross sections. The multiplication of B/m by m=M,/M then gives 
the amplitude B of the primary current in the subsection before 
improvement. 

472. Subsection coefficients before improvement.—Since the values of 
H* and 6 in each subsection have been found, the angular lag, ¢, of 

the current is determined from the relation expressed in equation 
(290), paragraph 373: 

¢=H°— B—90°. 

This value should also satisfy the relation, from equation (289): 

sin ¢=Bla/gH. 

While the values of ¢ computed from these two equations should not 
be widely apart, a complete agreement cannot be expected. The 
vaiue of ¢ should therefore be computed from equation (290), the 
length, /, in equation (289) taken as the virtual length of the subsec- 
tion, and the value of the coefficient Ja/g computed from the relation: 

la/g=(A/B) sin ¢. 

The value of the coefficient p in each subsection is determined from 
the relation, from equation (288): 

p=B tan ¢. 

473. Subsection coefficients after improvement.—If the area, U, of the 

water surface between any of the velocity stations is changed by the 
proposed improvement, the coefficient J=aU/M, must be recomputed 
for the value of MM) originally chosen. The effective cross section 
M,’ in each subsection after improvement, determined by a procedure 
paralleling that used in the selection of the value, \/, before improve- 
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ment, gives the value of m’=M,/M’. The coefficient la/g remains un- 
changed. Since p= (32/8) (a/g) Cr its value after improvement is 

Pi=p(C?r/Cyr,) 

in which CO and C,, r and 7; are the values of the Chezy coefficient and 

the hydraulic radius before and after improvement. Often C, may 
be taken as the same as C, so that 

Pi=pr/ry. 

The value of 7, should be computed by a procedure paralleling 

that used in the computation of 7. 
474. Completion of computation —The primary currents that would 

be produced in the improved channel, if the tides were unchanged, 

are first computed. If the values of J are not changed, the phases, 8, 
are those already determined, and the amplitudes, B, are derived by 
multiplying the values of B/m, previously found, by the new ratio m’; 

otherwise the values of JA sin a and JA cos a are recomputed from 
the primary tides at the storage stations and the values of (B/m’) 

sin 6 and (B/m’) cos 6 found by their summation from the head of 

tide. The coordinate amplitudes of the heads in the subsections cor- 
responding to these currents are then computed from the values 

ascertained for Ja/g and p,; the corrected coordinate amplitudes of the 
tides derived therefrom; and the process repeated until the tides and 

currents are in satisfactory concordance. The elevation of mean low 
water after improvement is then found by multiplying the mean semi- 
range of the tide at the station, as established by comparison or other- 

wise, by the ratio of the computed amplitudes of the primary tides 

after and before improvement, and subtracting the result from es- 
tablished half-tide level. 

475. Computation of changes in mean lower low water datum.—lIf the 
tides are of the mixed type, and the adopted datum is mean lower low 
water, the changes resulting from an extensive channel improvement 

might be computed on the assumption that the ratio of the mean 
range to the diurnal range will remain the same after and before the 

improvement. The primary tides after and before improvement could 
then be computed as outlined in the preceding paragraphs. The ratio 
of their amplitudes at a station would then give the ratio of the ele-- 
vations of mean lower low water below established half-tide level after 

and before the improvement. 
476. Application to the approach to a sea-level canal.—The changes 

that may be expected in the tides and currents in a confined approach 

to a sea-level canal because of the flow in and out of the canal entrance, 

could best be computed by determining the subsection coefficients in 
the approach channel from tidal observations made before the canal 
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was opened. The computations of the tides and currents in the canal 
would then be extended through the approach channel. The co- 
ordinate amplitudes of the tides at the storage stations in the approach 
channel used in the initial computation would be determined from the 
primary tides at these stations derived from the observations. 

477. Computation of the effect of dams or other works decreasing the 
tidal prism.—The effect of a projected dam, or of other works which 
would decrease materially the area of the tidal prism, upon the cur- 
rents in an estuary or other channel, is definitely ascertained by mak- 
ing a cubature of the channel with the prism unimpaired, and a 
cubature from the same tides with the reduced prism. While some 
increase in the tidal ranges below the dam is to be anticipated, the 
counterbalancing effect of the increase ordinarily is not sufficient to 

warrant consideration. Similarly any question that might arise on 

the effect of the excavation of a considerable tidal basin in the upper 
reaches of an estuary may be settled by comparative cubatures. 

TIDAL INLETS 

478. Prevalence of inlets—The littoral drift of sand and shingle 
along the seacoast tends to build up beaches across the entrances to 

the identations of the shore line. This process has formed the coastal 
sounds and lagoons which are the prevailing feature of the coast line 
of the United States from Maine to the Rio Grande, and which are 

found occasionally on the Pacific and even the Alaskan coasts as well. 
Inlets into most of these sounds are preserved by the currents set up 
in these channels by the filling and emptying of the tidal prism. The 
entrances to nearly all tidal estuaries are similarly contracted by 
littoral drift, sometimes sufficiently to produce typical inlet channels. 

479. Typical shape of inlet channels—The material carried by 
littoral drift into an inlet channel is removed by the currents through 
the inlet. At an inlet into a coastal sound, it is deposited in fan- 

shaped bars in the approaches both from the sea and from the sound. 

A typical natural inlet channel has a deep, narrow gorge through the 
barrier beach, from which it spreads in both directions with diminish- 
ing depth. The sea approach to the gorge often is through ill-defined 

and shifting channels between sand bars. In the sheltered waters of 

the sound, the bars may even build up into islands. If the basin is 
small and shallow the approaches may become so prolonged and con- 
stricted that the currents are no longer sufficient to cope with the 
encroaching littoral drift, and the inlet closes. The entrance to a 
large estuary, in which the ebb currents predominate, is often en- 

circled by a crescent-shaped bar, well out to sea. 
480. Hydraulics of inlet channels —The improvement of tidal inlets, 

to afford stable and adequate channels for navigation across their 
ocean bars, or for other purposes, has an important place in harbor 
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engineering. It often is accomplished by constructing jetties to im- 
pound the littoral drift and to concentrate and direct the currents 
over the sea bar. In the design of these works consideration must be 

given to the cross section of the channel that can be maintained by 
the tidal flow, and to the effect of a contraction or enlargement of the 
channel on the tidal ranges in the basin and the consequent currents 
through the inlet. A mathematical analysis of the relation between 
the capacity of an inlet channel, the tides in a basin of given surface 
area, and the currents in the inlet, is necessarily based on the assump- 

tion that the inlet channel is of determinable length and regular cross 
section, and the basin so deep and of such limited area that its tides 

have the same timing and the same amplitude at all points. The 

approach channels of a natural inlet depart so far from these ideal 
conditions that the computation of the tidal currents in them is as 
uncertain as is the computation of the currents in an irregular shoal 
reach of an upland stream. Even a channel between parallel jetties 

is apt to have an unpredictably irregular cross section. Furthermore, 
the tides at stations on a wide and comparatively shallow basin do not 

rise and fall simultaneously, but become progressively later the more 

distant the station from the entrance. Space will not therefore be 
taken for a mathematical analysis of inlet tides. Their outstanding 
characteristics may be inferred from elementary hydraulic relations. 

481. It is fairly evident that the frictional resistance in the con- 

stricted channels through an inlet must reduce the amplitude of the 
tides in the basin, and delay the rise and fall of these tides, so that high 

and low water in the basin are later than in the sea off the inlet. If 
the constricted channels of the inlet are relatively short, the currents 
must become excessive before the friction head can be sufficient to 
have any material effect upon the tides in the basin. Stable short 
inlets through erodible material therefore are usually so large that the 
tidal range inside the inlet is practically the same as that outside. If 
the improvement of such an inlet is so designed that the discharge, 

determined from a cubature of the recorded tides in the basin, will 

not produce excessive currents, no apprehension need be felt that the 
improvement will have any material effect upon the tides in the basin, 

or reduce the tidal discharge. Again, the straightening and deepen- 

ing of inlet approach channels which have become so filled and pro- 
longed as to throttle the tidal range in the basin may be expected to 
increase the currents in these channels, and increase the tides in the 

basin, until the channels have been viven a sufficient capacity to nearly 
equalize the tidal range in the basin and in the sea. In either case 
the maximum cross section of a self-maintaining channel is determined 

by the volume of the unimpaired tidal prism jn the basin. 
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482. Observed relations between the volume of the tidal prism and the 
capacity of inlets on the Pacific coast of the United States —A compilation, 
made by Prof. M. P. O’Brien of the University of California, printed 
in Civil Engineering, May 1931, shows that the area, at mean tide, of 
the cross section at the throat of the entrances to the estuaries and 
bays on the Pacific coast of the United States, conforms quite closely 
to the relation: 

Mele QOMV2 => 

in which M is the area of the entrance in square feet, and V is the 
volume of the tidal prism of the basin between MLLW and MHHW, 
in square mile-feet. 

It should be observed that the tides on this coast are of the mixed 
type, whose sequence is such that lower low follows higher high water. 
The diurnal range, from MLLW to MHHW,, therefore affords a measure 

of the stronger ebb currents. 
483. A study made in office of the Pacific Division, United States 

Engineer Department, by Mr. Grimm, principal engineer, shows that 

the area of the cross section over the ocean bars of the larger estuaries 
of the Pacific coast of the United States, at MLLW, is from 1.04 to 
1.26 square feet per acre-foot of tidal prism in the basin between 

MLLW and MHHW. The corresponding average strength of the 

ebb currents is about 2 feet a second. 
484. Overcurrents in inlets —The currents in some inlets are much 

distorted by the overcurrents produced by the variation in the area 
of the water surface in the basin, and in the area of the cross section 

of the inlet, with the rise and fall of the tide. The curve of the flood 

velocities in such an inlet may rise rapidly to a maximum, fall off, and 
again rise to a second maximum, before turning to the ebb. The ebb 
currents may go through a similar variation. 
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OFFSHORE TIDAL CURRENTS 

485. Rotary tidal currents —The tidal flow heretofore considered has 
been that in a confined channel, in which the currents periodically 
reverse their direction and pass through zero at each reversal. A 

consideration of the tide producing forces, developed in chapter I, 
shows that their direction is rotary rather than reciprocating. As is 
perhaps to be expected, the action of these forces on the whole mass of 
water in the oceans tends to produce rotary movements of the current 
at offshore tidal stations. At such stations, the currents usually veer 
around the compass during the tidal cycle, and have no periods of 
slack water. These are called rotary currents. At most offshore 
stations in the Northern Hemisphere the direction of the current 
turns clockwise, and in the Southern Hemisphere, counterclockwise. 
The velocity usually varies during the semidiurnal tidal cycle between 
two maxima, in approximately opposite directions, and two minima 

whose directions are nearly at right angles to the directions of the 
maximum velocities. 

486. Nontidal currents—The periodic tidal currents at offshore 
stations are generally weak and may be much modified by permanent 
currents of fairly constant strength and direction produced by the 
circulation of ocean waters, and by temporary currents due to winds 
and other meteorological causes. The Gulf Stream and the Japan 
Current are well known permanent currents. 

487. Polar current diagrams.—Offshore currents are conveniently 
represented by laying off the current strengths at say hourly intervals 

on radiating lines (radii vectores) drawn from a common center (pole) 

in the direction of the current. The curve through the ends of these 

vectors is the polar curve of the current. The time is marked on the 

(249) 
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vectors. Since the directions and velocities of the current are 

repeated, with some variation, at intervals of the periods of the tidal 

cycles, and since high and low water at any tidal station in the same 
region are repeated at nearly the same intervals, the times marked on 

the diagram generally are re- 

ferred to the times of high and 
low waters, or of the principal 
current phases, at a well-estab- 
lished tidal station. 

488. Shapes of polar current 
curves.—In regions where the 
tides are of the semidiurnal type 
the currents are nearly identi- 
cally repeated during each suc- 
cessive semidiurnal tidal cycle, 
and the current curve usually 
has an elliptical shape, exempli- 

fe) |Knots fied by the mean current curve 
; at Nantucket Shoals Lightship, 

FIGURE 82.—Mean current curve for Nantucket Shoals 

Lightship, referred to tides at Boston. figure 82, taken from. the Man- 

ual of Current Observations, 

United States Coast and Geodetic Survey (Special Publication No. 
215). The times marked on the diagram are referred to the times of 
high and low water at Boston. Thus “H—2” marks the current 2 
mean solar hours before high water at Boston, and ‘‘L+3” the current 

3 hours after low water at Boston. 
489. In regions where the diurnal inequality of the tides is con- 

L+3 

LH+3 
Oo 0.5 1.O Knots 
ea ee) Se ee 

FIGURE 83.—Tidal Current Curve, Swiftsure Bank Lightship. Refer-red to predicted time of tide at 

Astoria, Oreg. 

siderable, the currents during the two semidiurnal cycles have a 
corresponding inequality, and the daily tide curve describes a double 
loop, exemplified by the mean current curve at Swiftsure Bank Light- 
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FicuRE 84.—Tidal Current Curve, San Francisco Lizhtship. Referred to predicted time of tide at 

San Francisco (Golden Gate), Calif. 

ship, off the entrance to the Strait of Juan de Fuca, figure 83, taken 
from the same source. 

The times of the currents on this diagram are referred to higher high 

water (HH), lower low water (LL), lower high water (LH) and 

higher low water (HL) at Astoria, Oreg. 
490. At some tidal stations the second current loop may become 

very small, as shown in the mean current curve at the San Francisco 
Lightship, 10 miles off the entrance to San Francisco Bay (fig. 84). 

The current swings through a nearly complete circle, and then 
swings backward and forward through a limited are before it resumes 
its swing around the compass. The behavior of the currents at this 
and other similar stations varies greatly with the declination of the 
moon. “At the time of equatorial tides the curve has two nearly 
equal loops and the current swings around the compass twice during 

the day. At the time of tropic tides, the secondary loop becomes 

very small or vanishes altogether, and the current makes but one 

daily swing entirely around the compass. 
491. Combination of constant and rotary currents.—In figure 85, 

PP,P, is the current curve, and QO, at its geometrical center, is the 

pole, of a rotary tidal current. The vector OP then represents the 

direction and velocity of the tidal current at a given time. 
192750—40 17 
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If a constant (nontidal) current at the station has the direction 

and strength O’O, the resultant of the tidal and constant currents at 
the given time is O’P. Since P may be any point on the tidal curve, 

the current curve of the resultant is the same as the curve of the rotary 
tidal current; but the pole is 
shifted to O’. This shift is in 

the direction opposite to that 
ot the constant current and 

through the distance repre- 
senting its velocity. If the 
velocity of the constant cur- 
rent exceeds the tidal, when 

the latter has an opposing di- 
FIGURE 85.—Combination of constant and rotary rection, the pole O shitts to a 

currents. 3 ‘ 

point O’’, outside of the curve. 
The direction of the resultant current then swings to and fro in 
the limited arc between the tangent vectors O’’P, and O’’ Py. 

The position of the pole of the diagram in figure 84 shows a pro- 
nounced constant set of the current toward the north west at the 
station. 

HARMONIC ANALYSIS AND PREDICTION OF TIDAL CURRENTS 

492. Current tables—Advance information of the time at which 
the currents in tidal waterways will change direction, and will reach 
their strength at the flood and ebb; and of the maximum velocities of 

the surface currents in the navigation channel at each flood and ebb, 
is of such value to navigators that yearly current tables giving this 
information for the tidal waterways in and adjacent to the United 
States are prepared and printed by the United States Coast and 
Geodetic Survey. The tables give the predicted times of slack water 
as the current turns from ebb to flood, or ‘‘slack before flood,” and 

from flood to ebb, or ‘‘slack before ebb,’’ and the times and velocities 

of the maximum flood and ebb currents, on each day of the year, 
at a considerable number of reference stations. They also give the 
corrections to be added to or subtracted from these times to obtain 
the predicted times at a large number of secondary stations, and the 
factors for reducing the predicted current strengths at a reference 
station to those at the secondary stations. Most of the stations 
listed are in confined channels at which the currents are of the revers- 
ing type. Needless to say, the velocities in the tables are not the 
mean velocities in the cross section of the waterway, which have 

heretofore been dealt with, but are the surface velocities at definitely 
located points or stations, so selected as to represent the currents 
which will be encountered in the navigation of the fairway. 

493. Preparation of current tables ——The fluctuations of the tidal 
currents, like the tides, are caused by the tide producing forces of the 
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moonandsun. The currents at any station may therefore be resolved 
into harmonic components of constant amplitudes, whose speeds 
are the same as the speeds of the tidal components. The mean 
amplitudes and the epochs of the several current components at the 
selected reference stations are determined from an harmonic analysis 
of the actual current velocities and directions at the station, measured 

by float or current meter, at hourly or half-hourly intervals for a. 

sufficient number of days. The dials of a tide-predicting machine are: 
set at the component current amplitudes reduced to the current year; 

and at the component phases at the beginning of the year; and the 

current predictions at the reference stations are run off like the pre- 
dictions of the tides. At stations where the tide is of the rotary 
type, the harmonic constants of the east-west and north-south com- 
ponents of the tide may be similarly computed, their resultants in 

the prevailing direction of the maximum and minimum currents 
ascertained, and the predicted times and strengths of the currents in 
these directions run-off from the machine. 

494. The corrections to be applied to the predicted times and 

strengths of the current at a designated reference station to obtain 
those at a secondary station are derived from the average intervals 
between a lunar transit and the times of slacks and strengths at the 

two stations, and the average tidal current velocities at the strengths 

of the current. The compilation of this data is termed the non- 

harmonic reduction of the observations, as distinguished from the 
harmonic reduction by which the harmonic constants at the reference 
stations are obtained. 

495. Accuracy of tidal current predictions—The actual times of 

slack or strength of the current at a station occasionally differ by as 
much as half an hour from the predicted times, and in rare instances 

by as much as an hour. Comparisons of the predicted and observed 

times show that more than 90 percent of the slack waters have been 

within half an hour of the predicted. Both the times and the strengths 
of the currents in tidal estuaries may be greatly altered by unpredict- 
able variations in the fresh-water discharge, and in inlets and straits 
by the storm tides and lesser variations due to winds and other meteor- 
ological disturbances. 

496. Methods employed for current observation and reduction.—The 
procedure adopted by the Coast and Geodetic Survey in taking, re- 

cording, and reducing current observations is set forth in detail in the 
Manual of Current Observations (Special Publication No. 215, U.S. 

Coast and Geodetic Survey). The harmonic reduction and predic- 
tion of tides has been explained in chapter IJ. The harmonic con- 

stants of the tides, besides providing the means for tidal predictions, 

afford an understanding of the variations in the tide, and of the tidal 

datum planes to which works in tidal -waters are referred. Because 
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of the variation in the currents at different points in a cross section of 
a tidal waterway, the harmonic constants at individual current sta- 

tions are not of such general interest, but a summary description of 
some of the processes employed in their computation may not be out 
of place. 

497. Harmonic analysis of reversing currents.—Current measure- 

ments at a station in tidal waters usually must be made by a party of 
some size, from a suitable boat, anchored accurately in position. 
Consequently current measurements generally are fewer than the tidal 
observations used for harmonic analysis. If hourly current obser- 
vations for a 29-day period are available, the harmonic constants for 
the groups of the principal lunar and solar components, M and S, 
including their overtides, and the N», K, and O, components, usually 
are determined directly from the observations by precisely the process © 
used in determining the tidal harmonic constants. These compo- 
nents are sufficient for current prediction. The overcurrents, such 
as M, and M,, generally are proportionally larger than the correspond-_ 
ing overtides. If a longer series of observations is available, other 
components may be included. If hourly observations for a 29-day 
period are not available, harmonic analyses are made both of the 
currents at the station during the limited period of the observations, 
and of the concurrent tides at a standard tide station. The mean 
value of the amplitude of each current component and of its over- 

currents is then found by multiplying the amplitude computed from 
the observations by the ratio of the established mean amplitude of the 
corresponding component of the tide at the base station to the tidal 
amplitude computed from the concurrent observations. The epoch 
of each current component is found by applying the differences be- 
tween the initial phases of the current at the current station and the 

tide at the base station, computed from the concurrent short-term 

observations, to the established epoch of the tide at the base station, 
corrected for the difference in the longitudes of the two stations. 

The predicted hourly heights of the tide at the base station, instead 

of the recorded heights, usually are preferred for this comparison, 
since accidental meteorological disturbances of the tide may not 
produce corresponding changes in the current at another station. 

498. Prediction of currents in tidal straits —It was shown in para- 
eraph 256 that if a channel is so short that its currents are but little 
modified by the storage and release of water in its tidal prism, and if 
the fluctuating surface head between the entrances produces such 
strong currents that the flow is essentially frictional, or “hydraulic,” 

the current lags behind the head by but a small angle, and the square 
of the successive strengths of the current is closely proportional to the 
nearly concurrent maximum surface heads. The amplitude and phase 
of each component of the surface head in the strait may be determined, 
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phases, referred to a common origin of time, of the corresponding 
components of the tides at stations at the two entrances. The tabu- 
lated epoch of each of the tidal components is the difference between 
the phases of the equilibrium and actual tidal components at the 
station. To transform these epochs to a common origin of time, they 
may be converted into Greenwich epochs, by adding the longitude 
of the station multiplied by the subscript of the component (paragraph 
120). After the harmonic constants of the head have been deter- 

mined, the predicted heights and times of the two daily maximum 
heads in the strait may be run off on a tide-predicting machine. The 
relation between the square of the strength of the current at a selected 
station in the strait and the corresponding head, and the lag of the 

current with respect to the head, are both determined from the 
averages of an adequate number of current measurements at the 
station. From these relations, the predicted times and heights of the 

heads are readily converted into predicted times and strengths of 
the current. By applying suitable scales to the tide-predicting ma- 
chine, the times and strengths of the currents may be read off directly. 

499. Harmonic analysis of rotary currents—Data on the rotary off- 
shore currents are provided principally by hourly measurements of 
the current directions and velocities at the lightships operated by the 
Lighthouse Service of the United States. The south-north and west- 
east components of the observed currents are analyzed, and their 

harmonic constants in each direction determined. It is not difficult 
to show that the current curve of the resultant of each of the harmonic 
components, produced by combining its coordinate components in 
the two directions, is an ellipse. The resultant currents of the com- 
ponent are a maximum and a minimum in the direction of the major 

and minor axes of the ellipse. The azimuths of these maximum and 
minimum currents are determined from the coordinate amplitudes 

and epochs of the component, by a formula whose derivation and 
application need not be repeated here, and the harmonic constants 

of the component in these directions determined. The direction of 
the maximum and minimum velocities of the resultant of all of the 
components nearly coincides with the axes of the principal lunar 
semidiurnal component, M>. By transforming all of the components 
to these axes, the strengths and times of the current in these directions 
may be predicted. 

500. Computation of average times of reversing currents.—The succes- 
sive times of slack water and of the strengths of the current at a station 
ordinarily are taken off a plot of the hourly or half-hourly current 
measurements. The respective intervals after the preceding pre- 
dicted high or low water at an established reference tidal station in 
the vicinity, or the intervals after the times of slack and strength at 
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an established reference current station, are ascertained and averaged. 
If the tides and currents have much diurnal inequality the intervals 
of the greater flood and ebb strengths preferably are referred to the 
times of higher high and lower low water. By adding the established 
intervals between a lunar transit at Greenwich and the times of the 
tide or current phases at the reference station, the Greenwich intervals 
at the given station are then determined. These Greenwich intervals 
are preferred to lunitidal intervals reckoned from the time of a lunar 
transit at the station, because the difference between the Greenwich 

intervals at any two stations gives the difference between the respective 
times of their currents directly, without any correction for the differ- 
ence in the longitudes of the stations. If the current had a simple 
harmonic fluctuation with the speed of the M, component, the dura- 

tion of each increase in velocity from slack to strength, and of each © 
decrease from strength to slack, would be one-quarter of the semilunar 
day of 12.42 mean solar hours. To establish a single time interval 
for all four slacks and strengths at a station, the ‘“‘mean current hour” 
at the station is computed by averaging the Greenwich intervals of 
the strength of the flood, the slack before flood increased by 3.10 
hours, slack after flood decreased by 3.10 hours, and strength of flood 

increased or decreased by 6.21 hours, after bringing all of these sums 
into the same semilunar day by adding or subtracting 12.42 hours 
as ay be necessary. 

501. In estuaries and tidal rivers the fresh-water flow may be so 

great that the current remains in one direction and the velocity varies 
from a maximum to a minimum without passing through slack. 
Again, the overcurrents at some stations are so large that the current 

reaches two maximum velocities during each flood, or ebb, or both. 
The direction of the current may even reverse between these maxima. 
The measures taken in these special cases need not be elaborated here. 

502. Reduction of average current strengths.—Since the tidal currents 
in estuaries and other closed channels, and in inlets to a closed basin, 
are due to the filling and emptying of the tidal prism of the channel 
or basin, the successive strengths of the tidal flood and ebb at a current 
station in the channel are nearly proportional to the concurrent 
ranges of the tide at a representative tide station on the waterway. 

The average tidal flood and ebb strengths, determined from a short 
series of observations, therefore may be converted into long-term 

averages by multiplying them by the ratio of the established mean 
tidal range at the tidal station to the average observed range during 
the period of the current observations. Obviously, this correction 
is not to be applied to any constant component of the current which 
may be produced by fresh-water outflow, or other cause, during the 

period of the observations. 
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503. Because the strengths of the flood and of the ebb occur at 

different heights of the tide, the areas of the cross sections of the 
channel are not the same at both and their velocities would differ 
somewhat even if the flow were wholly tidal. For the purpose of 
applying the correction, the tidal parts of flood and ebb strengths are 
considered to be equal. The tidal current strength at the station 
during the period of the observations is then taken as one-half of the 
arithmetic sum of the mean observed flood and ebb strengths, and the 
nontidal current as one-half of their algebraic sum, with the flood cur- 

rent positive and the ebb negative. These tidal current strengths are 
corrected to their long-term values by applying the factor derived 

from the comparative tidal ranges at the reference station. The cor- 
rected average flood strength is then derived by adding, algebraically, 
the nontidal current to the corrected tidal current strength; and the 
corrected ebb strength by the algebraical subtraction of the nontidal 
current. 

504. At stations in tidal straits, in which the flow is largely frictional 
and determined almost entirely by the surface head between the 

entrances, the average tidal current strength derived from a short 
series of observations is multiplied by the square root of the ratio of 
the established mean range at a suitable tidal station in the water- 

way to the average observed range during the period of the current 
observations. 

505. Average polar curves of rotary currents —The rotary currents at 

offshore stations usually are weak and irregular. To prepare anaverage 
current curve at a station where the tides and currents are of the 
semidiurnal type, such as that shown in figure 82, the directions and 
velocities of all currents observed within half an hour before or after 
a predicted time of high water at the reference station are summed 
and averaged to give the average direction and velocity at the time 
of high water at the reference station; those observed between half 
an hour and an hour and ahalf after high water, to give the average 
direction and velocity 1 hour after high water at the reference station; 
andsoon. The reference times usually extend from 2 hours before to 
3 hours after both high and low water at the reference station. Cur- 
rents of the mixed type, such as those shown in figures 83 and 84, are 
similarly grouped at the nearest hours at, before and after, higher 

high, higher low, lower high and lower low water at the reference 

station. 
506. Any average constant current at the station may be determined 

by resolving either the original observations or their hourly compila- 

tions into south-north and west-east components. The algebraic 
average value of these components in each direction quite evidently 

is the component of the constant current in that direction. The 
summation of the component velocities to derive these averages and 
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the subsequent subtraction of the constant component current, is 
facilitated by adding to each component velocity an arbitrary con- 
stant sufficiently large to make all of the quantities positive. The 
direction and velocity of the resultant constant current may be 
obtained from its components, after the subtraction of any arbitrary 

constant that may have been added for the convenience of computa- 
tion. The algebraic subtraction of the constant component of the 
velocity from the hourly current components in either direction, gives 
the hourly components of the tidal velocity in that direction. The 
curve of the average tidal velocities proper may then be constructed 
by finding the resultant hourly tidal currents. If the period of 
observation is less than a month, the tidal velocities may be reduced 
to better mean values by multiplying them by the ratio of the estab- 
lished mean tidal range at the reference station to the average range 
during the period in which the current observations were made. 

507. Wind currents.—Analyses of the current observations at light- 
ships have afforded useful information on the strength and directions 
of the currents produced by winds in open waters. The results 
indicate that as a general rule, along the Atlantic coast, the velocity, 
in knots, of the current, produced by a wind of some duration, is 

about 114 percent of the wind velocity in miles per hour; and along the 

Pacific coast, about 2 percent. Because of the rotation of the earth, 
the direction of the current tends to lie to the right of the direction of 
the wind in the Northern Hemisphere, and to the left in the southern. 
A Swedish mathematician, V. W. Ekman, has shown that if the depth 

of the ocean was unlimited, the surface wind currents would have a 

direction 45° to the right of the wind in the Northern Hemisphere, 
and 45° to the left in the southern. (Arkiv for Mathematik, Astro- 

nomic, 1905). A comparison between the recorded deviation of 

vessels from their courses and the direction and strength of the winds 
causing the currents to which the deviations may be attributed, is 
said to confirm these relative directions of wind and current (Marmer, 

The Tide, p. 165). Near the coasts, the direction of the current with 

respect to the wind is modified by the configuration of the coast line. 
Thus the current observations at the light vessels from San Francisco 
to Cape Flattery show that the winds from the northeast, southeast, 
and northwest quadrants produce currents which set 20° to the right 

of the wind direction, winds from the southwest quadrant produce 
currents 20° to the left, and winds from the south and west produce 
currents which set with the wind. 

It need not be remarked that these offshore currents are of more 

concern to the navigator than to the engineer. 
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EQUIVALENTS AND CONSTANTS 

EQUIVALENT VELOCITIES 

1 knot=1.69 feet per second=1.15 miles per hour. 

1 foot per second=0.592 knot=0.682 mile per hour. 

1 mile per hour=0.868 knot=1.467 feet per second. 

LUNAR TIMES 

Mean interval between lunar transits=12.42 mean solar hours. 

1 mean lunar hour=1.035 mean solar hours. 

1 mean solar hour=0.966 mean lunar hours. 

MEAN SPEED, Myo, OF SEMIDIURNAL LUNAR TIDE 

In degrees per hour, 28.9841 log 1.46216 
In degrees per second, 0.008051 log 7.90586 —10 
In radians per second,  0.00014052 log 6.14774—10 

TABLE XI.—mgt in degrees and minutes, for integral values af t from 0 to 69 

t 0 1 2 3 4 5 6 7 8 £ 

| | 
OBS ee 0 28°59’ 57°58’ 86°57’ | 115°56’ | 144955’ | 173°54’ | 202°53’ | 231°52/ | 260°51” 
eS eee 289°50’ | 318°50’ | 347°49’ 16°48’ 45°47’ 74°46’ | 103°45’ | 132°44” | 161°42” | 190°42’ 
Vie See 219°41’ | 248°40’ | 277939’ | 306°38’ | 335°37’ 4°36’ 33°35/ 62°34’ | 91°33’ | 120°327 
Oat ae 149°31’ | 178°30’ | 207°29’ | 236929’ | 265°28’ | 294927’ | 323°26’ | 3529257 21°24’ 50°23” 
Ae so, 79°22’ | 108°21’ | 137°20’ | 166°19’ | 195°18’ | 224°17’ | 253°16’ | 282915’ | 311°14’ | 340°13/ 
Gan a aes wii 38°11’ 67°10 S6n08 125°87 154°8’ 183°7/ 212°6’ 241°5’ 270°4’ 
(See 299937 328°2/ 357°! 26°0/ 54°59’ 83°58’ | 112°57’ | 141°56’ | 170°55’ | 199°54’ 

Acceleration of gravity, g, at sea level, varies from 32.089 feet per. 
second at earth’s equator, to 32.234 at poles. 

Taking g=32.16 log 1.50732 
m,/g=0.000,00437 log 4.64042 —10 
g/M,= 228,890 log 5.35958 

CIRCULAR CONSTANTS 

ASS log 0.49715 
In /360=0.01745 log 8.24188 

8/3r=0.8488 loz 9.92882 
3n/8=1.1781 log 0.07118 

4/37/8=1.0854 loz 0.03559 
(259) 
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REDUCTION FACTORS F(Mn) AND 1.02 F, AND CORRECTION 
FACTOR i/B. 

DERIVATION OF F’ (Mn) 

1. As pointed out in paragraph 171, the mean range, Mn, at a tidal 
station varies slightly with the inclination, /, of the moon’s orbit. 

The factor F(Mn) is applied to reduce a mean range derived from 
observations extending over a month or year to the true mean value 
during the 19-year period in which the orbit tilts to and fro as the 
moon’s node makes the circuit of the ecliptic (par. 35). The values 

of F(Mn) are derived from the relation between the mean range and 
the harmonic components of the tide at a station. 

2. Relation of high water to the amplitude of the Ms, component.—At 
most tidal stations the M, component is so much larger than the 
others that high water occurs near the time at which the ordinate of 
this component is a maximum. 

In figure 1, CP is the generating radius of the M, component at an 

instant when its ordinate is a maximum, CR is the radius vector of the 

resultant of all of the compo- 
nents at that instant, deter- 

mined by drawing successive 
lines parallel and equal to the 
generating radii of the other 
components (par. 51), and TH 

Bini is the ordinate of the resultant 
on the tide curve. At the high 

water immediately ensuing (or preceding), the radius vector of the 
resultant is CR’, nearly, if not quite, coinciding with the Y axis, 

its ordinate on the tide curve is T’H’, and CP’ is the position of the 
generating radius of the dominant component. Let At be the time 
interval in which R moves to R’ and P to P’; v, the corresponding 
angle between CP and OP’; and let T’H’—TH—ay. 

3. The height of mean high water above sea level is the mean of the 
successive values of TH plus the mean value of Ay. Since the succes- 
sive values of TH occur at intervals equal to the period of the prin- 
cipal component, and at the instants at which this component is a 

maximum, their mean is the amplitude, Mo, of this component, 

(260) 
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increased or decreased by the constant values of any of its overtides 
at these instants (par. 78). As the overtides are relatively small, the 
mean value of 77 may be taken, for purposes of computing a cor- 

rection, as M»). Ay is always positive, whether high water occurs 
before or after the high water of the principal component. In the 
long run, for every value of Ay occurring when high water is in the 

lead, an equal value will occur when high water lags behind. Neg- 
lecting the effect of overtides, the height of mean high water above 
mean sea level is therefore the amplitude, M2, of the principal com- 
ponent plus one-half of the numerical mean value of Ay. 

4. Representing, for generality, the ordinate of the dominant com- 

ponent as A cos (at+-a), and the ordinates of the other components 

as B, cos (0,t+ 8,), By cos (bst+- Bo), ete., the equation of the tide takes 
the form: 

y=A cos (at+a)+B, cos (b)t+ B:)+By cos (bf + B.)+ ° + - (1A) 

Since Ay is the change in y due to a relatively small increase, At, in f, 
its value is approximated by differentiating the right-hand member 
of equation (1), and is: 

Ay= 

—[Aa sin (at) a) +B,b; sin (bif>-+ 81) +-Byb2 sin (bof)+ 62+) - * > JAt 2A) 

in which % is a time at which the ordinates of the dominant com- 

ponent isa maximum. Such times occur when at+a=0, 27, 47, 67, 

ete. The value of t is given by the equation: 

atyta=2nr 

whence: 

thy=2nr/a—a/a (3A) 

where 7 is any integer. 
Substituting this value in equation (2A): 

Ay=—[Aa sin 2n7+B,b, sin (2n7b,/a—ab,/a+ B,) 

+ Bobo sin (2n7b2/a— ab:/a+ Bo) + oe eS JAt. (4A) 

Since the generating radius CP of the dominant component moves 

through the angle v with the speed a in the time Af: 

At=—av 

Placing for convenience 

2n7b,/a—ab;/a+ pia 2nrb,/a— ab,/a+ Bu=o, etc. (5A) 

Then, since sin 2n7=0, equation (4A) reduces to: 

Ay=—[B,b, sin t+B2b2 sin % * * * Jav. (6A) 
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An expression for v remains to be found. 

5. The maximum values of y, equation (1A), occur when dy/dt=0, 
or when 

— Aa sin (at,+ a) — B,b, sin (6,t+ B,)—Byby sin (Ost Go) =— + ae) 

At these maxima, the radius vector, CR’, is so close to the Y axis 

that the angle R’CP’ may be taken as equal to PCP’=v. Since the 
generating radius of the dominant component is at CP’ at the maxi- 
mum values of y, 

at; ta=2nr-+v. 

whence 

t,=2n7/a—a/a+ov/a. (SA) 

Substituting this value in equation (7A): 

Aa sin (2nx+v)+B,6, sin (2n76,/a—ab;/a+vb,/a+ B;) 

+B5b. sin (2n7b2/a—ab,/a+vb,/a+ B.)+ °° > =0. (9A) 

The first term in equation (9A) reduces to Aa sin ». Simplifying 
the remaining terms by substituting z,, 72, etc., for the equivalent 
expressions given in equation (5A), the equation reduces to: 

Aa sin v+B,b; sin (7,-+6,v/a) +.B2b, sin (a%+630/a)-+ - - -=0 

Expanding the sine functions: 

Aa sin v+8,6, sin 2, cos vb,/a+B,b; cos a sin vb,/a 

+ Bb, sin x cos vb./a+Byb2 cos z2 sin vb,/a+ -*- -=0 (10A) 

The fractions 6,/a, 63/a, etc., are the ratios of the speeds of the various 
components to that of the dominant component. For semidiurnal 

components these ratios are close to unity, and for diurnal compo- 

nents close to one-half. The angle vis not large at any time unless the 
tide approaches the diurnal type. The values of sin vb,;/a, sin vb./a, 

etc., are therefore approximately equal to b,v/a, b v/a, etc., respectively, 
and the values of cos vb,/a, cos vb2/a, etc., are nearly unity. Sub- 
stituting these values, equation (10A) becomes: 

Aav+B,b, sin 7, +.B,b;70/a cos 2; +.B.b2 sin 2.+.Bb,"v/a cos %2+ * > *=0 

whence: 

ee By,b, sin #,+.B,b. sin %-+- >> * (1A) 

iat Aa+B,bi7/a COS XY + Bb27/a Cos Lo-|- see 
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Substituting this value in equation (6A): 

Aq= —Pibi sin Bobs sin tyr + + +)? 
y A@+B,b2 cos 2,-+Brbs? COS 2: 

esate sin? Ty + Bb? sin? Yo+ $ +2B,B5b,b, sin Ly sin Lo+ : 

Ad+B,b,? cos 7, + Bb? cos + +: (12A) 

6. Mean value of Ay.—The symbols 2, x, ete., in equation (12A) 
represent angles in the form (equation 5A): 

r=2n7b/a—ba/a+ B 

where 7 is an integer. 

As successive integral values are assigned to n, x increases by: 

27b/a=27(b—a)/a+2r. 

At each increase in n, the value of x increases, therefore by 

27(b—a)/a. As the speed, 6, of any semidiurnal component does not 
differ greatly from a, the speed of the dominant component, the 
fraction 27 (6—a)/a is comparatively small for such components. 
The successive values of x steadily increase (or decrease) with each 
increase in n by an angle which describes a small fraction of the cir- 

cumference. The speeds of the diurnal components (except My,) 

differ by a relatively small amount from one-half of that of the domi- 
nant component M,. For these components the value of x steadily 

increases by a little more or less than 180° with each increase in n. 
In either case the values of x fall uniformly, in the long run, over the 

entire range of angles from 0 to 27, and the mean values of the trigono- 
metric functions of x in equation (12A) become their true mean 
values as x varies from 0 to 27. The mean value of sin 2x between 

these limits is one-half, while that of cos z,and of the products of the sines 
of the differently varying angles 7, x2, etc., is zero. Aside then from 
the effects of the M; component and the lunar overtides, the mean 
value of Ay, becomes: 

Ayo= }s(B,b/?+.B,7b2’+ °° *)/Aa? (13.A) 

7. Mean high water in terms of the harmonic components.—Since the 

height of mean high water above mean sea level is the amplitude of 
the dominant component increased by one-half of the mean value of 
Ay, it is given by the expression: 

MHW=4A-+ 14(B,7b+By7b?+ * + -)/Aa? 
= Af +4(Bb2/A?a?+ B,b.?/A’a?-+ + + *) (14.A) 
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in which A= M2,a=my); B,, Bo, etc., are the amplitudes of the other 

harmonic components (except M, and the lunar overtides) and 6,, 
bs, etc., are the respective speeds of these components. 

Since the speeds of the lunar overtides are two, three, and four times 
the speed of M:, the successive increments of z in equation (12A) 
for these components, as 7 increases by successive integers, are 47, 67, 

and 8a respectively. The successive values of the trigonometric 
functions of « in that equation are therefore all identical. Similarly 
the successive increments of x for the M, component are each equal z, 
and for the M; component 3/2.¢ For all of these components the 

mean value of sin? zis not %. The effect of these components on the 
elevation of mean high water does not therefore follow the law 

expressed by equation (144A). These components are however gen- 
erally too small to affect the elevation of mean high water appreciably, 
and the terms to be added to account for them need not be developed 
here. 

8. Mean tidal range —The elevation of mean low water below mean 
sea level may be derived in the same manner as the elevation of mean 
high water above: sea level, and with the identical result. The 
expression for the mean tidal range is therefore: 

Mn=2A(1-+ ¥,(By2b,2/A2a?+By?bs?/A2a2+ + + -)) (5A) 

The factors 6,2/a?, 6.2/a?, etc., are close to unity for thesemidiurnal 

components, and close to }4 for the diurnal. The ratios B,?/A?, B,?/A?, 
are very small for those components whose amplitude is less than one- 

twentieth of that of the M, component. Omitting the components 
that rarely if ever exceed this ratio, equation (15A) becomes: 

Mn= 2M.[1 + V (S75825/ Mecmas? + N.?no?/M.?m,.? + Ko2k,2/M,2m,? 

+ Ky?k,?/M.?m,’-+0,70,?/M2?m3?+ P?p,?/M2’m2? + Q,q:?/M2"m2’)| 
(164) 

9. The numerical value of the mean tidal range derived from 
equation (16A) is always substantially less than that derived from 

direct observation. Aside from the effect of overtides and the approx- 
imations introduced in the derivation of the formula, this deficiency 
may be attributed to the fact that any accidental variation in the 
water elevation occurring near the time of computed high water 

increases the observed high water by substantially the maximum 

amount of the variation if positive, but decreases the observed high 
water by but substantially the minimum amount of the variation if 
negative. In the long run, therefore, these variations effect a cumu- 
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lative increase in the observed high water, and, similarly a cumulative 
depression of the observed low water. Equation (16A) establishes, 

however, a logical basis for determining the corrections to be made 
for the changing inclination of the moon’s orbit to the Equator. 

10. Numerical value of F(Mn)—The amplitudes of the various 

lunar tidal components during any particular year (or month) are 
determined by applying the appropriate factor f=1/F to the recorded 
mean values of these amplitudes (par. 125). For solar components, 
the value of fis unity. The expression for the mean tidal range during 
any particular year is then: 

Mn’>= 2fM,{1 + il (Soso/fMo.my»)?-+ (fNon2/fM.m,)?+ (fKoke/fMom»)? 

+ (fKaki/fMome)*-+ (f0,0:/fMsm»)?+ (Pipi/fM.m_2)? 
cm (fQiqi/fM2m:)?}} (17A) 

The factor to be applied to reduce the mean tidal range, as deter- 
mined from observations during a particular year, to its true mean 
value is therefore: 

F(Mn)=Mn/Mn’ (18 A) 

in which the value of Mn is given by equation (16A) and the value of 
Mn’ is given by equation (17A). 

11. The computation of the value of # (Mn) for the true ratios of 
the amplitudes of the actual components of the tide at a tidal station, 
and for the successive values of the reduction factors f corresponding 
to the inclination J of the moon’s orbit to the equator, would be a 
very laborious process, not justified by the accuracy of the results 
secured. A sufficient approximation is afforded by taking for the 
ratios of the semidiurnal components the ratios of the mean values of 

the coefficients of the corresponding equilibrium components, set 
forth in table IV, paragraph 129. The ratios of the amplitudes of 
the diurnal components to M, vary widely at different tidal stations, 

but these amplitudes have a fairly consistent ratio between themselves. 
The index for the amplitude of the diurnal components is therefore 
taken as the ratio of K,+O, to M,2 at the tidal station, the ratio of 

the diurnal components to K,+O, being taken as that of the mean val- 

ues of the coefficients of the corresponding equilibrium components, 

as given in the same table. 
12. Equation (16A) may be written: 

Mn=2M,{1 + (S_82/2.Mom.)?-++ (None 2M.m,)?-+ (K3k»/2M.m,)? 

+[(K,+0,)?/M.?] [(K,k,/2 (K,+0O,)m,)?-++ (O,0;/2 (K,+0;)m,)? 

+ (Pip:/2 K+ O,)mz)?+ (Qiqi/2 (K,+0,)m:)’}}. 
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Applying the numerical values of the speeds of the various com- 
ponents and the mean values of the coefficients of the corresponding 
equilibrium components, this reduces to: 

Mn=2M,{1.0717 +0.03585 (K,+0,)?/M,7}. (19A) 

Designating the reduction factors of the several components as 
f(M.), f(Ne), f(Ke), ete., and their squares as {?(Mo), /?(Ka),. etc., 

and noting that f(M2)=f(N2) and f(Q,)=f(O;) and that 1/f(M2)= 

F(M,); equation (17A) similarly reduces, after applying the same 
numerical values to the amplitudes and speeds of the components, to: 

Mn’ =2M.f(M,){1.009 + F2(M.) [0.0583 +.0.0043/?(K,)] 

+ F?(Mz) ((K,+0:)/Mz)?[0.0025-+ 0.0230f2(Ky) 

+0.0103/2(0,)]}. (20A) 

Designating for brevity the expressions within the brackets in 
equations (19A) and (20A) as R& and R#’ respectively: 

F(Mn)=Mn/Mn’=2M,2/2M,f(M,)R’ =F (M2) R/R’.. (217A) 

The M, component may be considered the dominant one when it 
is not less than K,+0O,. The values of F(Mn) for a given value of 

the inclination of the moon’s orbit, J, and of the ratio (K,+0,)/Ms, 

when the latter does not exceed unity, may then be found from 
equation (21A) by substituting in this equation and in the expression 
for R’ the values of F(M,), #(K2), ete., corresponding to the value 

of J, as given in the tables contained in manuals on the harmonic 
analysis of the tides.. The determination of the values of /(Mn) for 
values of (K,+0,)/M, exceeding unity becomes more complicated 

and need not be here described. The values of F(Mn) are shown 

in table VI, paragraph 173. 

DERIVATION OF 1.02F, 

13. The factor 1.02F; is applied to the low- and high-water in- 

equalities, DLQ and DHQ, derived from observations during a month 
or more, to reduce these inequalities, and the consequent elevations 

of mean lower low and higher high waters, to their astronomical 

long-term means (par. 189). The diurnal inequalities are due to 
the diurnal components of the tide at the station. Since the equi- 
librium components have the same relation to their long-term means 
as the actual components, the expression for the reduction factor 

may be derived from the diurnal equilibrium components. For this 

purpose only the K,, O,, and P; components need be considered; 
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since, as shown in table IV, paragraph 129, the amplitudes of the 
other diurnal equilibrium components are relatively small. 

14. The resultant of the diurnal components may be termed the 
diurnal wave, and its varying amplitude designated D,. The diurnal 
wave increases one of the two daily high waters of tides of the semi- 
diurnal and mixed types, and decreases the other. Since the diurnal 
wave keeps in general step with the semidiurnal tidal fluctuations, 

the consequent diurnal inequalities during any period is taken as 
proportional to the mean value of D, during that period. 

15. Long-term mean value of D,—As K, is the largest diurnal 

equilibrium component, the approximate long-term mean value of 

D, is, from equation (14A): 

Dm=Ky|1+- (Oy01/2 Kyky)?-+ (Pipi /2 Kak;)’]. 

The corresponding long-term mean value of the resultant of the 
K, and O, components only is: 

Rm=K,[1 + (O,0;/2Kik;) ale 

Whence: 
Dm/Rmn= 1 -— (Pyp,/2K,k,)?/f1 + (O,0;/2K,k;)7]. 

By substituting the speeds and the mean values of the coefficients 
of the components, the long-term mean value of D, is found to be 

approximately 1.02 times the mean value of the resultant of the K, 
and O, components only. 

The amplitude of the resultant of the K, and O, components 

fluctuates between K,+O,, and K,—O, during the period of one-half 

a tropical month. Its mean value may be written: 

In which C is a constant which need not here be determined. 

The long-term mean value of D, is then: 

Dm=1.02C(K,+0,). (22 A) 

16. Monthly mean value of D,—During a month in which the moon’s 
declination is J, the amplitudes of the K, and O, equilibrium com- 
ponents are K,f(K,) and O,f(O;) respectively, f(K,) and /(O;) being 

the reduction factors for this value of 7. Since P; is a solar com- 
ponent, its amplitude remains constant. It combines with the K, 

component into a resultant whose amplitude fluctuates between a 
maximum and a minimum in a period of the half tropical year. The 

angle between this resultant and the K, component changes but 

192750—40——18 
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little in a half tropical month. Designating the length of this re- 
sultant at the middle of the month as K’, the mean value of D, 

during the month is, very nearly: 

Dm’ =C(K’ +0,f(O)) (23A) 

in which C has the same numerical value as in equation (22A). 
The correction to be added to the value of K, for the month, to 

give the value of K’, is to be derived. 
17. Correction for P,;.—As shown in paragraph 122 the equation of 

the K, equilibrium component is: 

4,=K, cos (T+h—90°—»’) 

and, from equation (69) that of the P; component is 

ee COs (T—h+90°). 

The angle between them is: 

6’ =2h—180°—»’. 

in which h is the mean longitude of the sun (par. 105). Its value on 
any given day of the year is substantially the same from year to 
year. It increases at the rate of 0.041° per solar hour, or about 1° 
per day. v’ is a small angle, which varies with N, the longitude of 
the moon’s node. Its values corresponding to values of N are tabu- 

lated in manuals on the harmonic analysis of tides. The value of 6’ 
on any date may be corrected for »’ by taking the value of h on half 
as many days before the given date as there are degrees in »’ when 
v’ is positive and after the given date when »’ is negative. When 
so corrected the value of 8’ is 

p’ =2h—180° 

The length, K’, of the resultant of the K,; and P; components is 
easily shown to be 

K’=VK2+ P?—2K,P, cos 8’ 

— 1 K2+P2—2K,P, cos 2h 

Placing K’=ck, 

c= K’/K,=+V1+ P?/K2—2(P,/K;) cos 2h (24A) 

Taking the value of P,/K, as the ratio of the mean values of the 

coeflicients of the corresponding equilibrium components, or as 

0.0880/0.2655=0.3315, equation (22A) becomes: 

c=71.11—0.663 cos 2h (25A) 
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The value of ¢ on any day of the year may be computed from equa- 
tion (25A) by substituting the value of h on that day. At the vernal 

and autumnal equinoxes, March 22 and September 21, A=0 and 180° 
respectively, and ¢ has a minimum value of 0.668. At the summer 
and winter solstices, June 22 and December 22, h=90° and 270°, 
and c has a maximum value of 1.331. 

The correction to be added to the value of K, for the month, to 

give the value of A’, is then 

K’—K,=cK,—K,= (ec—1)K, (26A) 

18. Expression for 1.02 F,.—Substituting in equation (23A) the ex- 
pression for A’ given in equation (26A) 

Dm’ =C{K,f (Ky) + (e—1) K, + 0,f(0;)] 

and the reduction factor is: 

Dm/Dm'=1.02C(K,-+- 01) /C[((e—1+F(Ki)) Ki +0,f(0))] 
=1.02(1-+K,/0,)/[((e—1+f(K,))K,/0,+fO)] 

The ratio K/O, of the mean values of the equilibrium components is 
taken as 1.4066. 

The reduction factor is written: 

1:02F, 

in which: 

F,=2.4066/(1.4066 (e—1+/(K,)) +f(O,)] 

By substituting the values of c, f(K,) and f(O;) at the middle of 
each month, the values of 1.02 7, may be found as shown in table 

VIII, paragraph 189. 

APPROXIMATE VALUE OF (K,+0O,)/M, 

19. The statement was made in paragraph 175, that in the lack of 
better information the ratio (K,+0O,)/M, for entering table VI is 

taken as 2 (DHQ+DLQ)/Mn. It is not difficult to see that the 
daily high water inequality, DHQ, closely approximates D; cos a, 
where D, is the length of the resultant of the diurnal components and 

a is the angle between the position of its radius vector at high water 
and the Y axis. At the next low water the radius vector of the re- 
sultant of the semidiurnal components has moved through approxi- 

mately 180°, and that of the diurnal components through approxi- 
mately 90°. The daily low water inequality is therefore about equal 
to D, sin a, and the sum of the two daily inequalities to 

D, (cos a+sin a) 
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As cos a and sin a are both essentially positive, the factor 

(cos a+sin a) 

has values lying between the comparatively restricted range of a 
minimum of unity, when a is 0 or 90°, and a maximum of 1.414 

when a—45°. The value of DHQ+DLQ is the mean value of 

D, (cos a+sin a). 

The value of C, in equation (22A) of this appendix may be shown to 
be approximately 0.66. The mean value of DHQ+ DLQ is then close 
to but generally less than K,+O,. The value of Mn is similarly close 
to, but a little more than 2M). It follows therefore, that very roughly: 

(DHQ+ DLQ)/Mn= (Ki+-01)/2M, 

2(DHQ+ DLQ)/Mn= (Ki-+-01)/M2 

The ratio 2 (DHQ+DLQ)/Mn generally is somewhat less than that 
of (K,+0,)/Mgz, but the values of /(Mn) in table VI change so slowly 

with this ratio that no large error is introduced by using this approxi- 
mation in entering the table. 

CoRRECTION FACTOR 1/B 

20. As stated in paragraph 261, chapter V, the correction to the 

primary current therein designated as 7 is such that the corrected 
velocity: 

B sin (at+ 6) +71=Blsin (at+ B) +7/B] 

satisfies the general equation of motion (equation 112) when the sur- 

face slope has the simple harmonic fluctuation, S cos (at+H°), and 
the velocity head term is dropped. Placing, for convenience, 1/B=z, 
equation (112) therefore becomes: 

S cos (at+ H°) + (1/9) 0B[sin (at+ B)-+2]/0t+ B*[sin (at-+ 8) +2]?/C?r=0 

or: 

S cos (at+ H°) + (aB/g) cos (at-+ 8) + (B/g) 0z/ot 

+ B{sin (at+ B) + 2]?/C?r=0. (27A) 

‘he values of B and 6 are such that equation (145), paragraph 243, 

S cos (at+ H°)+ (aB/g) cos (at+ B) + (8/37) (B?/C?r) sin (at+ B)=0 

is identically true for all values of ¢. Equation (27A) therefore may 
be written: 

(B/g) 02/0t— (8/37) (B?/C’r) sin (at+ B) + (B?/C?r)[sin (at+ B)+2]??=0. 
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Dividing by B?/C’r; 

(C*r/Bg) 0z/0t— (8/37) sin (at+ 8) +[sin (at+ 8) +2)?=0. 

From equation (153), paragraph 244: 

C’r/Bg= (8/37) tan ¢/a. 

Giving: 

(8/37) tan d2/dat— (8/37) sin (at-+8)+[sin (at+8)+<2)?=0. (28A) 

Expanding the last term of equation (28A), the differential equation 
for z becomes: 

(8/37) tan ¢0z2/dat— (8/37) sin (at+ 8) +sin? (at+ 6) 

+22 sin (at+ 8) +2?=0. (29A) 

The correction factor, z=71/B, is therefore a function of the angular 
lag, ¢, and the phase, at-+8, of the primary current. 

21. Since z is relatively small, a first approximation to its value 
for given values of ¢ and ai+ 6 may be derived by dropping its square 

from equation (29A) and neglecting its effect upon the sign of the 

velocity. 
Rearranging, equation (29A) then becomes: 

(8/37) tan ¢0z2/0at+2z2[+sin (at+ B)] 

— (8/3) sin (at-+ 6) +sin? (at+ B)=0 (830A) 

in which the positive sign is to be applied when sin (at+-8) is positive 
and the negative sign when it is negative. Angles are in radians. 

Equation (30A) does not appear integrable, but the values of z for 
a given value of ¢, and itor successive values oi at+ 8 increasing by 
sufficiently small increments may be derived by a somewhat laborious 
arithmetical solution. The increment selected, in degrees, will be 
designated Aat®. Its value in radians is then mAat°/180. Since 

differential equations remain approximately true when small finite 

increments are substituted for the differentials, the first term may be 

written: . 

(8/3) tan @Az/(rAat°?/180) 

in whichAz is the increase in z due to an increment oi Aat° degrees in 

the phase of the primary current. If Aaf° is sufficiently small, the 
value of Az does not differ materially from the increase in 2 during 
the preceding increment in the phase. Designating the preceding 

value of z as 2, the first term of equation (830A) then becomes: 

(480/n?Aat®) tan 6(2—2) =b(2—2) 
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in which the coefficient b= (480/7’Aat°) tan @¢ may be computed from 

the given value of ¢ and the selected increment Aat°. 
In the second term of equation (30A) the negative sign is prefixed 

to sin (ai-+ 8) when this function is negative. The factor+sin (at+ 8) 

is then positive for all values of at, and will be so distmgu‘shed by 

writing it as sin (af+8). The algebraic sum of the last two terms, for 

values of at at the selected intervals, may be designated as —R. 
Equation (380A) then becomes: 

b(z—2) +22 sin (at-+ 6) —R=0 

whence 

2=(29—R/b)/[1+2 sin (at+ B)/B]. (31A) 

22. The values of z for successive values of at-+ 8 may be computed 

from equation (31A) after an initial determination of 2) has been made. 

By taking A at° as an integral factor of 180°, these values are repeated 

after at+ 8 has passed through 360°. Taking then 2 as zero at any 

value of af+ 8, such as zero, the resulting values of z may be succes- 

sively computed through 360°, a corrected initial value of 2) derived, 
and the procedure repeated. Since the divisor of the second term of 
equation (31A) is greater than unity, the new values of z successively 
approach and finally coincide with those previously found. The 

process is in fact abbreviated, since the values of z repeat themselves, 
with the sign reversed, after passing 180°. 

23. Second correction.—When the flow is largely frictional, and ¢ 
consequently is a relatively small angle, the values of 2 derived from 
the foregoing procedure are so large that their squares are not negli- 
gible, and are sufficient, also, to reverse the sign of the velocity when 

the primary current is small. A further correction, 6, is therefore 

required. Designating the first determination of the correction factor 
as 2, the corrected current becomes B [sin (at+6)+2;+6]. 

Equation (112) then takes the form: 

S cos (at+H°) + (aB/g) cos (at+ 8) + (B/g) (02/0t-+- 06/02) 
+B{sin (at-+ B)+2,+6]?/C7r=0 

which, by a procedure paralleling that in paragraph 20, may be 
transformed into: 

(8/37) tan 6(06/a0t+ 02,/a0t) — (8/37) sin (at+ 8) 

+[sin (at+ 8) +2)?+26[sin (at+ 8) +2,]+°=0 
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The approximate values of 6 may be derived by dropping its square 
and neglecting its effect on the sign of the velocity. The errors intro- 

duced by these approximations are, it may be observed, much less 
than those resulting from the same approximations in deriving the 
initial values of z. The resulting equation may be written: 

(8/37) tan $06/adt-+ 26{ + [sin (at+ B)+2,]} 

+ (8/87) tan ¢02,/ad0t— (8/37) sin (at-+ 8) 

+ [sin (at-+ 8) +2,)’=0 (32A) 

in which the positive sign is to be used when the primary current, 
corrected by 2, is positive, and negative when it is negative. 
By using the same increment, Aat®, as in the first determination of 2, 

equation (32A) becomes: 

6(6—6)) +26[sin (at+ B)-+2,]—R=0 (383A) 

in which 6 has the value previously determined, sin (at+ )+2, 
is the numerical value of the velocity as first corrected and: 

—R= (8/37) tan ¢02,/O0at— (8/37) sin (at+ 8) +[sin (at+ 8) +2)? (384A) 

The first term in this expression for R may be evaluated by placing 

(8/37) tan ¢02,/dat= (8/37) tan bAz,/(rAat?/180)=bAz, 

in which Az, is the average of the increments of 2, for the preceding and 

ensuing increments of af+ 8. 
It may be observed that F is the residual by which the first member 

of equation (28A) differs from zero when the first approximation to 
a value of z is substituted therein. . 

From equation (383A): 

d= (6—F/b)/[1+-2[sin (at+ 6) +-2:]/6] (35A) 

The values of 6 for successive values of af+8 may be computed 

from equation (35A) by the same process as that employed in comput- 

ing z from equation (31A). 
A second correction may be applied, by the same procedure, if the 

corrected values of 22,6 give residuals of more than negligible 

magnitude when substituted in equation (34A). 

24. The increments Aat° used in computing the correction factors 
shown in table X, paragraph 261, ranged from 23°, for small values of 
¢, up to 10° for the small values of 7/B when ¢=80°. 
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When ¢=0, equation (28A) reduces to: 

— (8/37) sin (at+ 8) +[sin (at+ 8) +2?=0 

Whence 

2=4/ + (8/37) sin (at+ 8)—sin (at+ 8) (36A) 

As the positive sign is applied when (at-+8) is positive, and the 
negative sign when it is negative, all of these values are real. 

The limiting values of 1/B=z, for ¢=0, shown in table X, are 
derived from equation (386A). 
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