
:

THE,

By CHARLES MOHR, Ph. D.

TOGETHER WITH
A discussion of the structure of their ivood.

By Filibert ROTH.

PREPARED UNDER THE DIRECTIGN OF B. F. FERNOW, CHIEF OF THE DIVISION OF FORESTRY.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1896.
. 95
M6
C. 2

The Timber Pines Of The Southern United States Charles Miohr

A Discussion Of The Structure Of Their Wood
.Filibert Roth

The White Pine....................V. M. Spalding
Insect Enemies of The White Pine.
.F. H. Chittenden
The Wood of The White Pine...Filibert Roth

$$
\cdot
$$

LETTER OI* TRANSMIT'IAL.

United States Department of Agriculture,
 Division of Forestry, W'ashington, D. C., May 26, 1896.

Sir: I have the honor to submit herewith for publication a series of monographs on the five pines of economic importance in the Southern United States, a resnlt of many years' study by 1)r. Charles Mohr, the well-known authority on the botany of the Southern States and agent of the Division of Forestry.

The first draft of these monographs was prepared several years ago, but it was then found that in order to make them fully satisfactory and useful to the practitioner much additional information was needed, especially regarding the rate of grovth and other sylvicultural as well as technological questions. This information has been gradually aceumulated as our facilities have permitted. The extended investigations carried on in this division may be considered quite exhaustive, especially in regard to the mechanical properties of the wood of these pines. An interesting chapter on the wood structure by Mr. Filibert Roth has been added, and a comparative study of the economic, sylvicultural, and technical characteristics and value of the pines under consideration-a résumé, as it were, of the contents of the monographs-is to be found in the introduction by the writer.

The pineries of the South furnish now, or will in the near future, the most important staples of our lumber industry. According as they are treated, carefully or wastefully, they will continue for a longer or shorter time to be a wealth-producing resource of the South. To aid in securing a true conception of the extent, condition, and value of this resource, and of the nature, development. characteristics (botanical, sylvicultural, and technological) of these pines, these monographs have been written, with the hope of inducing rational forestry methods in their use and reproduction.

> Respectfully,
B. E. Fiernow,

Chief of Dirision.

Hon. J. Sterling Morton, Secretary of Agriculture.

CONTENTS．

Pay
Introduction．J3y B．F．Eersonw 11
Botanical diagnosis of the fonr principal pines occurring in the Sonthern States 12
Nomenclature of southern pines． 18 1.
Characteristics of the wood of Sonthern pines
Mechanieal properties 14
Relation of strength to waight 15
W゙び号lat relitions $11 ;$
Instribution of weirht and strength thronghout the trex 17
Effect of are 18
hange of values for weight and strength． $1 \times$
Inllnence of locality $1!1$
Influence of moisture $\because 1$
Wright amd moisture 20
Shinkage 21
Elfect of＂luying，＂or＂bleming 21
Lse of the wood $1 \cdot 9$
Rate of growth ？：
Statisties and ronelusions $\because 7$
Longleat I＇ine（I＇inus palustris Millev）．By Chanles Monis，I＇h．U 은
Introductory 29
Historical 31
（iengraphioal distribution ：3）
Characteristics of distribution in difterent regions． 31
Timber regions－supply and production 31
The Itlantic pine 1 exion $3 i$
The maritime pine belt of the eastern Gulf region 11
The central pine lielt of Alabama 11
The forests of longleaf Pine in north Alabana 11
The rerrion of Longleaf Pine west of the Mississippi liver 16
Prollacts 16
Value and uses of the wood 1人
Resinous prolucts of the Longleaf Pine is
Prolnets obtained from the leaves of Longleaf Pine IN
Nomenclature ami classitication is
Botanical description and morplalogy 19
IRoot，＇stem，aud branch systom $1!$
Leaves and their moditiontions 5
Flural orgiane 51
seculs． $5:$
The wool 5.3
Growth and development （i）
（＇onditions of darebopment fir
lhomands upon soil and climate 61
dssoriated speries （i）
linemies 41
lixploitation tiz
lires （i）
Live stock il
Storms bis
Funci $6: 3$
Inserts 5
Longleaf I'ino (I'inus palustris Miller). IBy Cimabres Monts, Mh. D.-Contimmed. Page.
Natural reprodnction fit
Forest management 61
('ont-lusion 66
Appentix. Who Naval Store Imbustry (i)
Resin, or crude thrpentine 617
Spirits of turpentine, or oil of turpentine 67
Liwin of colouhony fir
Pine tar (is
Common pitcla fis
Historical remarks. 68
Turpentino orcharding in the forests of Lonsrleaf I'ine. 19
I)istillation 30
Cost of establishing a plant and working tho crops 71
Effects of the production of maval stores upon the timber, tho lifo of tho tree and the conditions of the forest 72
The Cuhan Pine (l'inu* heterophylla (Ell.) Sudworth). By Cinariess Monle, I'h. D) 7.3
Iutroductory 75
Gengraphical distribution. 7.5
Prolucts $7 i$
Resinous problucts 76
Classitication and nomeuclature 76
Description and morphological characters 77
Flowers 7
The wowl $7!$
I'rogress of development $\times 1$
Requirements for development $k 1$
soil
The Shortleaf Pino (Pimus echinaia Miller). 13y Cuarles Momr, I'h. I). K
Iatroluction 87
Historical 87
Geographical distrihution. 87
Characteristics of distribution in difterent regions $8 \times$
Prodncts 93
Nomenclature and classification 43
Botanical description 45
Leaven. 45
llowers ! 1.
Cones. $!5$
Secrl. 9.5
The woot 97
Progress of development :18
Conditions of development. 101
soil and clinato 101
Lelation to light and assoriated species 102
Enemies 102
Forest management. 101
The Lohbolly line (I'inns finda Limn). Jy Chambes Monr, I'h. U 10.5
Introduction. 107
Historical. 107
Georraphical distribution and comomic history 108
Prorlucts 111
Value and uses of the wood 111
Resinous prothets 112
Nomenclatmre and classifiation 113
Iotanical description and morphology 113
Root, stem, and branch system 113
Iraves 115
Floral organs 11.5
The wood 117
Progress of development 11*
Rate of growth 118
Conditions of development 121
Soil and climate $1 \% 1$
Relation to light and associated species. 1212
Enemies 129

CONTENTS.

The Loblolly Pine (Pimus frda Linn). By Cimanles Momr, 1ph, D.-Continuert. I'agr
Natural reproduction 12:"
Conclusion 121
The Spruce Pine (Pinuy glabra Walter). By Cimarles Moine, Ph. D 12.
Introductory 127
Historical 127
Distribution 127
Economic importance 127
Botanical description $12 \times$
Progress of development $1 \cdot 9$
Enemies $1: 11$
Requirements of development 130
Notes on the structure of the wood of the fire pines, Pimus phluslrix, helerophylla, cchinate, tada, and glabra. J3y Filimert Rotif 131
Sap and heart wood 1:3:
Annual rings $13!$
Spring and summer wood 136
Grain of the wood $13 \times$
Mimute anatomy 138
-

ILLUSTRATIONS.

PlATEN.
Page
I. Longleaf Pine (Pinus palustris) Frontispiece.
II. Fig. 1.-Longleaf Pine forest in Louisiana llats, virgin, scorchell by fire, as usual; Fig. 2.- Longleaf Pine forest after removal of merchantable timber 27
III. Map showing distribution of Longleaf Pine and Cuban Pine 30
IV. Pinus palustris, bud and leaf 50
Y. I'inus palnstris, male and female llowers 52
VI. I'inus palustris, cone aud seed 5:
VII. Pinus palustris, seedlings and young plant 54
VIII. "I"urpentiue orcharding in Lonisiana 69
IX. Cuban pine flatwoods of Florila 73
X. Pinus heterophylla, male and female llowers 78
XI. Pimus hetcrophylla, cone and seed 80
XiII. Shortleaf Pine (Pinus echinata), forest grown specimens in Missouri $8 i$
XIII. Shortleaf l'ine (Pinus echinata), a roalside specimen in North Carolina 81
XIV. Map showing distribution of Shortleaf Pine. 87
XV. Pinus echinata seedling; male and female flower, and leaf sections 04
SVY. Pinus echinata cone, seerl, and leaves \mathscr{H}
SVII. Loblolly Pine (Pinus toda) 10.
XVIII. Map showing distribution of Loblolly Pine. 108
SIX. Pinus teda, male flowers and leaves 114
XX. Pinus tada, female flowers, cone, and seed 116
XXI. TEpical cross sections of Pimus tada, heterophylla, anl glabra 141
XXII. Typical cross sections of Pinus palustris and echinata, and radial sections of Pinus palustris aud glabra 114
XXIII. Radial sections of Pinus echinata and heterophylla $1+8$
XXIV. Radial sections of Pimus tade and tangential sections of Pimus palustris and echinata 150
XXV. Tangential sections of Pinus tada, heferophylla aud glabra $15:$
XXVI. Tangential sections of Pinus cchinate, heterophylle, and glabra, showing aumber aud distribution 154
of pith rays and proportion of pith-ray cells
of pith rays and proportion of pith-ray cells of pith rays and ducts-tangential views. 156
XXVII. Transverse resin ducts-tangentat FigUREsFig. 1. Diagram showing variation of weight with height of tree16
2. Schematic section through stem of Longleaf Pine, slowing variation of specific weight with height, diameter, aud age at 20 (ava), 60 (lal), 120 (ecc), and 200 (fiff) years 17
3. Diagram showing varistion of compression strength with moisture 14 14
4. Diagram showing loss of water in kiln drying and reabsorption in air, shrinking and swelling. 20
5. Diagram showing comparative progress of height growth in average trees. 20)
6. Diagram showing comparative progress of diameter growth in arerage trees 23
7. Diagram showing comparative progress of volume growth in arerage trees -4
8. Growth of Longleaf Pine in height, alimeter, and rolume 60
9. Tools used in turpentiue orcharding 70
10. Improved methor of turpentine orcharding 7
11. Growth of shortleaf line 101
12. Growth of Loblolly lime $1 \because 1$
13. Variation of summerwool per cent from pith to hark 136
14. Variation of specifie gravity with summerwond per cent and age of section. 137
15. Variation of summerwool per cent with rate of growth (width of ring) 13: 13:
16. Schematic represcutatiou of coniferous wood structure 139)
17. Cell eudings in pine 139
18. Cross section of normal and stuuted growth 140

INTRODUCTION.

In ignorance of the nature and without appreciation of the economic value of their resources, pioneers squander and destroy without regard to the future the riches they find. We have done so in the United States and are continning to do so although the pioneering stage should have been passed, especially with our forest resources. We have exploited them as if they were mines, instead of crops which can be harvested and reproduced continuonsly, and we have doue so in a most wasteful manner; nay, we have by irrational methods of exploitation, no doubt due in part to the necessities of a rapidly developing country, in many cases destroyed the conditions for natural reproduction of the more valuable timber species. Fire and indiscriminate pasturing have also assisted in the process of deterioration.

We are just begiming to realize that our timber supplies are not unlimited; that our maguificent forest resources have been despoiled and need at least more consideration; that sooner or later forestry will become, nay, is now, a necessity.

Forestry is the art of producing, managing, and harvesting wood crops. To be successful in this art it is of course necessary to understand the nature of the crop-to be acquainted with the life history, the conditions of development required by each species of tree composing the crop. Such knowledge can be in part, at least, derived from observations made in the natural forests, and from these observations the manner in which the different species should be treated and rules of management may be determined.

The time for the application of forestry-that is, rational methods of treating the wood crophas not, as many seem to suppose, come only when the natural forest growths have been despoiled and deteriorated. On the contrary, when the ax is for the first time applied, then is the time for the application of forestry, for it is possible so to cut the original natural forest crop that it can reproduce itself in a superior manner. The judicions and systematic use of the ax alone, in the hands of the forester, will secure this result.

Hence these monographs on the life history of the Southern pines have been written primarily to enable the owners of Southern pineries, who are now engaged in exploiting them, to so modify their treatment of the same as to insure continued reproduction iustead of complete exhaustion, which is threatened under present methods.

The pines are the most important timber trees of the world. They attain this importance from a combination of properties. In the first place, they possess such qualities of strength and elasticity, combined with comparatively light weight and ease of working, as to fit them specially for use in construction which requires the largest amount of wood; next, they occur as forests in the temperate zones, often to the exclusion of every other species, so that their exploitation is made easy and profitable; thirdly, they are readily reproduced and tolerably quick growers; and, lastly, they occupy the poorest soils, producing valuable crops from the dry sands, and hence are of the greatest value from the standpoint of national economy.

The Southern States abound in those sandy soils which are the home of the pine tribes and were once covered with seemingly boundless forests of the same. There are still large areas untouched, yet the greater portion of the primeval forest has not ouly been culled of its best timber, but the repeated conflagrations which follow the lumbering, and, still more disastrously, the turpentine gatherers' operations have destroyed not only the remainder of the original growth, but the regetable mold and the young attergrowth, leaving thousands of square miles as blackened wastes, devoid of usefulness, and reducing by so much the potential wealth of the Sonth.

There are, in general, four belts of pine forest of different types recognizable, their boundaries running in general direction somewhat parallel to the coast line: (1) The coast plain, or pine barren flats, within the tidewater region, 10 to 30 miles wide, once occupied mainly by the most valuable
of Southern timbers, the Longleat Pine, now being replaced by Cuban and Loblolly Pines; (2) the rolling pine hills, or pine barrens proper, with a width of 50 to 120 miles, the true home of the Longleaf line, which occupies it almost by itself; (3) the belt of mixed growth of 20 to 60 miles in width, in which the Longleaf Pine loses its predominance, the Shortleaf, the Loblolly, and the hard woods associating and disputing territory with it; and (\mathbf{t}) the Shortleaf line belt, where the species predominates on the saudy soils, the Longleaf being entirely absent and the Loblolly only a feeble competitor, hard woods being interspersed or occupying the better sites. Within the territory the species that occur occupy different situations. Thus the Cuban, which acempanies the Longleaf, usually oceupies the less well-drained situations, together with the Loblolly, which, althongh it can accommodate itself to all soils, reaches its best development in the rich lowlands and is specially well developeti in the flat woods which border the coast marshes of eastern Texas, where it assomates with the Shortleaf Pine it also seeks the moister situation.

The Longleat and Shortleaf pines are, in quantity and quality combined, the most important, while the Loblolly or Oldfield Pine, as yet not fully appreciated, comes next, occupying large areas. The Cuban P'ine, usually known as Slash Pine-always cut and sold without distinetion with the Longleaf Pine-a tree of as fine quality and of more rapid growth than the Longleaf Pine, is associated with the latter in the coast pine belt, seattered in single individuals or groups, but appears to increase in greater proportion in the young growth, being by its manner of development in early life better fitted to escape the dangers to which the aftergrowtin is exposed.

Besides these four most important pines, there are a number of others of less significance. The White Pine (Pinus strobus) of the North extends its reign along the higher momtain regions of North Carolina into Georgia, forming a valuable timber tree, but of small extent. The Spruce Pine, to which a short chapter is devoted in this bulletin, develops into timber size, but is found only in small quantities and mostly seattered, and has therefore as yet not received attention in lumber markets; but its qualities, and especially its forestal value, being a pine which endures shade, will probably be appreciated in the future. The other four species of pine found in the South, which appear in the table below, which gives their botanical distinctions, do not develop into timber trees of value, excepting that the Scrub line, occupying large areas of abandoned fields in Virginia, furnishes a considerable amount of firewood.

BOTANICAI DHAGNOKIS OF THF FOUR DRINCIPAL PINES OCCURHING IN THE NOUTHERN STATES.

The greatest confnsion exists with regard to the vermacular mames of these pines, in consequence of which information regarding them, given by the native population, most always be carefully scrutinized to determine exactly to what species it refers. Even in the lumber market and amons wood consmmers, engincers, architects, and carpenters the same confusion exists; Longleaf and Cuhan pines are never distinguisherl; Shortleat and Loblolly pines are mixed indiscriminately, and often "Southern Pine," or "Yellow Southern line," satisfies the specitication of the architect and may come from any of the four species.

To assist in clearing this confusion the following synopsis of botanical and vernacular names is here inserted:

NOMENCLATULE OF SOUTHEIRN PINES.

While it is casy enongh to recoguize the species in the field by their botanical characters, it is difficult and often impossible to distinguish them in the wood by mere macroscopic inspection or examination with the magnifier and without the aid of the microscope, nor are the miscroscopic foatures so far recognized sufticient for specific distinction.

A long-continued study of these woods by Mr. Filibert Roth, of the Division of Forestry, has not developed any characteristics which would be always reliable in distinguishing the species. The best that can be done is to give a synopsis of characters, by which they differ generally when larger quantities, as in the log or lumber pile, are under inspection.

CHARACTERISTICS OF THE WOOD OF NOUTHERN PINES.

Diagnostic features of the rood.

Name of speries.	Longleaf Pine (I'inus palustris Miller).	(inloan Pine (Pinu* heterophylla (Ell.) sindw.).
Specific gravits of f Possible range	. 50 to . 90	. 50 to 910
kila-dried wood. M Most frequent range....	.5510 .65	. 55 to. 70
Weight, pounds per cubic foot, kiln-dried wool, a erage.	36	37
Character of grain seer in cross section.....	Fine and even; annual rings quite uniformly narrow on large logs, areraging generally 20 to 25 rings to the inch.	Variable and coarse; rines mostly wide, averaging on larger logs 10 to 20 rings to the inch.
Coinr, general apruaramen	Even dark reddish-yellow to reddlish-brown.-	Mark strat color, with tinge of itesh color.
Sapwrod, proportion .	Little; rarely over 2 to 3 inches of radius....	Hroad. 3 tu 6 inches.
Resiu........	Very abmolant; parts often turning into "light woon;" pitchy throughout.	Abundant, sometimes yielding more pitch than Longleat; "bleeds" freely, yieldius little scrape.
-		
Name of species.	Shortleaf I'ine (I'inus echinafa Miller).	Lobolly Pine (I'intes teila Linn.).
Specitic gravity of Possible range	.4010 .80	. 40 to. .80
kiln-rtried woonl. (Most frequent range	. 4510.5 .5	.45 to . 55
Weimht, pounds per cubic toot, kiln-dried wood, average.	(3)	31
Character of grain sceu in cross section.....	Very variable; medium, coarse; rings wild near heart, followed by zone of narrow rings; not less than 4 (mostly alont 10 to 15) ringe to the inch, but often very tinegratioed.	Fariable, mostiy very coarse; 3 to 12 riaga to the isch, generally wider than in shortleaf.
Color, general appearance.		Yellowish to reddish and orange brown.
sapwood, proportion		Very rariable, 3 to 6 inches of the rastius.
Kresin...........	Monerately ahmalat. leat pitw onls near stumps, binta, and hanhes.	Abumdant: more than shortlenf, less than Longleafand Cuban, but does not " bleed" if tapped.

It is clear from the above dagnosis that Longleaf Pine may be distinguished from Cuban Pine by its diner 出rain and small amount of sapwood; also that both of these differ from the Shortleaf and Loblolly in their greater weight and the more resinots character of their wood, but that the wood of the two last-named species is rarely distinguishable beyond doubt.

Technically the wood of the pines differs about as follows: 'The wood of the Longleaf and Cuban pines are about equal in strength, Longleaf excelling by its finer grain and smaller amomet of sapwood. The same comparison may be made with regard to Loblolly and Shortleaf Pine. Being much more variable, however, in weight and grain, exceptions to the general rule here are very mumerons. Of the last-named species it may be said that the wood derived from more southern localities is generally heavier and stronger than northern grown-a fact especially apparent in the case of the Shortleat l'ine.

The extensive investigations carried on by the Division of Forestry during the last three to four years mainly on these pines permit us to give the following résume of their mechanical properties derived from not less that 20,000 tests and as many measurements and weighings. We quote this information from Circular 12 of the division:

MECHANICAL PIROPRTIES.

In general the wood of all these pines is heavy for pine (31 to 40 pounds per cubic foot, when (lry), soft to moderately hard (hard for pine), requiring abont 1,000 pounds per square inch to indent one-twenticth inch; stifl, the modulus of elasticity being from $1,000,000$ upward; strong, requiring from 7,000 pounds per square inch and upward to break in bending and over 5,000 pounds in compression when yard-dry.

The values given in this circular are averages based on a large number of tests from which only defective pieces are excluded.

In all cases where the contrary is not stated the weight of the wood refers to kiln-dried material and the strength to wool containing 15 per cent moisture, which may be conceived as just on the border of ardried condition. The first table gives fairly well the range of strength of commercial timber.

Average strength of Southern Pine.
[Air-ntry material (about 15 per cent moisture).]

RELATION OF STRLNGTH TO WHIGHT.

The intimate relation of strength and specific weight has been well established by the experiments. The average results obtaned in connection with the tests themselves were as follows:

Cuhan. Lomploati Iobblolly. i Shortleat.

100
100
100
$\begin{array}{lll}41 & x! & 77 \\ 94 & n 2 & 78\end{array}$

Since, in the determination of the specife gravity above given, wood of the same per cent of moisture (as is the case of the values of strength) was not always involved, and also since the test pieces, owing to size and shape, can not perfectly represent the wood of the entire stem, the following results of a special inquiry into the weight of the wood represents probably more accurately the weight and with it tho strength relations of the four species.

WHIGHT RELATIONN.
[These data refer to the average specitio weight for all the wood of each tree, only troes of approximately the rame age being involved.]

	Cuban.	Longleaf.	Loblolly.	Shortleaf.
Average age of trees..................... . years.	171	127	137	131
Number of trees incolved.	6	22	14	10
Specific gravity of dry woml.	0.63	0.61	0, 53	0.81
Weight jer cubic foot................... pounds..	39	38	3.3	32
Relative weight	100	97	84	81
(Transverse strength *)	(100)	(91)	(84)	(7i)

*The values of sirangth refer to all tests, and therefore involre trees of wide range of age and consequently of quality, eapecially those of Longleaf; involve much wood of old trees, hence the relation of weight and strength appears less distinct.

From these results, although slightly at variance, we are justified in concluding that Cuban and Longleaf Piue are nearly alike in strength and weight and excel Loblolly and Shortleaf by about 20 per cent. Of these latter, contrary to common belief, the Loblolly is the heavier and stronger.

The weakest material would differ from the average material in transverse strength by about 20 per cent, and in compression strength by about 30 to 35 per cent, except Cuban Pine, for which the difference appears greater in transverse and swaller in compression strength. It must, of course, not be overlooked that these figures are obtained from full-grown trees of the virgin forest, that strength varies with physical conditions of the material, and that therefore an intelligent inspection of the stick is always necessary before applying the valnes in practice. They can only represent the average conditions for a large amount of material.

DISTRIBUTION OF WEIGHT AND STRENGTH THROUGHOUT THE TREE.

Weight and strength of wood at different heights in the tree.

Note,-Relative values are indicated by italic tigures.

In any one tree the wood is lighter and weaker as we pass from the base to the top. 'This is true of every tree and of all four species. The decrease in weight and strength is most jrononnced iu the first 20 feet from the stump and grows smaller upward. (See fig. 1.)

Fig. 1.-Diagram bhowing variation of weight with height of tree.
This great differenco in weight and strength between butt and top finds explanation in the relative width of the summerwood. Since the specific weight of the dark summerwood band in each ring is in thrifty mrowth from 0.90 to 1 , while that of the springwood is only about 0.40 , the relative amount of summerwood furnishes altogether the most delicate and accurato measure of these differences of weirht as well as strength, and hence is the surest criterion for ocular inspection of quality, especially since this relation is free from the distmbing influence of both resin and moisture contents of the wood, so conspicuous in weight determinations.

The following figures show the distribution of the summerwood in a siugle tree of Longleaf line, as an example of this relation:

	In the 10 rings nuxt to tho bark.	$\begin{aligned} & \text { In the } 10 \\ & \text { rings yos. } \\ & 100 \text { to } 110 \\ & \text { from birk. } \end{aligned}$	Average for entire diak.	Spectific weight.
At the stump...... 32 fe+t from sinmp. 8ifent from stump.	Per cent. 37 25	Jer cont. 5: 38 37	ler cent. 50 33 $\because 6$	0.73 .59 .55

Logs from the top can usmally be recognized by the larger percentage of sapwood and the smatler proportion and more regular outlines of the bands of summerwood, which are more or less wayy in the butt logs.

Both weight and strength vary in the different parts of the same cross section from center to periphery, and though the variations ippear frequently irregular in single individuals, a definite law of relation is nevertheless discernible in large averages, and once determined is readily observable in every tree.

A separate inquiry, avoiding the many variables which enter into the mechanical tests, permits the following deductions for the wood of these pines, and especially for Longleaf; the datareferring to weight, but by inference also to strength:

1. The variation is greatest in the butt log (the heaviest part) and least in the top logs.
\because. The variation in weight, hence also in strength, from center to periphery depends on the rate of growth, the heavier, stronger wood being formed during the period of most rapid growth, lighter and weaker wood in old age.
2. Aberrations from the normal growth, due to unusual seasons aud other disturbing causes, clond the uniformity of the law of variation, thus occasionally leading to the formation of heavier, broad-ringed wood in old, and lighter narrow-ringed wood in young trees.
3. Slow-growing trees (with narrow rings) do not make less heavy, nor heavier wood than thriftily grown trees (with wide rings) of the same age. (See fig. 2.)

EFFECT OF AGE.

The interior of the butt \log, representing the young sapling of less than fifteen or twenty years of age, and the central portion of all logs containing the pith aud two to five rings adjoining, is always light and weak.

The heaviest wood in Longleaf and Cuban Pine is formed between the ages of fifteen and one hundred and twenty years, with a specific weight of over 0.00 and a maximum of 0.66 to 0.68 , between the ages of forty and sixty years. The wood formed at the age of about one hundred years will have a specific weight of 0.62 to 0.63 , which is also the average weight for the entire wood of old trees; the rood formed after this age is lighter but does not fall below 0.50 up to the two bundredth year; the strength varies in the same ratio.

In the shorter-lived Loblolly and Shortleaf the period for the formation of the heaviest rood is

Fig. 2.-Schematic section through stem of Longleaf Pise, showing variation of specitic weight with height, dianeter. andiage at twenty (aba), sixty (dcd), onc huudred and twenty (eere), and two hundred (ffff) years. between the ages of fifteen and eighty, the average weight being then over 0.50 , with a maximum of 0.57 at the age of thirty to forty. The average weight for old trees (0.51 to 0.52$)$ lies about the seventy-fifth year, the weight then fallimg off to about 0.45 at the age of one hundred and forty, and continuing to decrease to below 0.38 , as the trees grow older.

That these statements refer only to the clear portions of each log, and are variably atfected at each whorl of knots (every 10 to 30 inches) according to their size, and also by the variable amounts of resin (110 (1) 20 per cent of the dry veight), must be selfevident.

Sapwood is not necessarily weaker than heartwood, only usually the sapwood of the largesized trees we are now using is represented by the narrow-ringed outer part, which was formed during the old-ade period of growth, when naturally lighter and weaker wood is made; but the wood formed during the more thrifty diameter growth of the first eighty to one hundred yearssapwood at the time, changed into heartwood later-was even as sapwood the heaviest and strougest.

RANGF OF VALUES FOR WEIGITT AND STIRENGTH.

Althongh the range of values for the individual tree of any given species varies from butt to top, and from center to periphery by 15 to 2^{2} per cent, and occasionally more, the deviation from average values from one individual to another is not usually as great as has been believed; thus, of 56 trees of Longleaf Pine, 42 trees varied in their average strength by less than 10 per cent from the average of all 56 .

The following table of weight (which is a direct and fair indication of strength), representing all the wood of the stem and excluding knots and other defects, gives a more perfect idea of the range of these values:

Jange of specific weight with age (kiln-dricd wood).
[To avoid fractions the values are multiphied by 100.]

Thongh occa: onally some very exceptional trees occur, especially in Loblolly and Shortleaf, the range on the whole is sencrally within remarkably narrow hmits, as appears from the following table:
liange of sperific weight in trees of the same age approximately; averages for whole trees.
[sirecilic gravity multiplied by 100 to avoid fractions.]

From this table it would appear that single individuals of one species would approximate single individuals of another species so closely that the weight distinction seems to fail, but in large numbers, for instance carloads of material, the averages above given will prevail.

INHLUENUE OF LOCALITY.

In both the Cuban and Longleaf Pine the locality where grown appears to have but little influence on weight or strength, and there is no reason to believe that the Longleaf Pine from one State is better than that from any other, since such variations as are clamed can be found on any 40-acre lot of timber in any State. But with Loblolly, and still more with Shortleaf, this seems not to be the case. Being widely distributed over many localities diflerent in soil and climate, the growth of the Shortleaf Pine seems materially influenced by location. The wood from the Southern Coast and Gulf region and even Arkansas is generally heavier than the wood from localities farther north. Very light and tine grained wool is seldom met near the southern limit of the range, while it is almost the rule in Missouri, where forms resembling the Norway Pine are by no means rare. The Loblolly, occupying both wet and dry soils, varies accordingly.

INFLUEYOE OH MOISTURE.

This influence is among the most important, hence all tests have been made with due regard to moisture contents. Seasoned wood is stronger than green and moist wood; the difference bet ween green and seasoned wood may amount to 50 and even 100 per cent. The influence of seasoning consists in (1) bringing by means of shrinkage about 10 per cent more fibers into the same square inch of cross section than are contained in the wet wood; (2) shrinking the cell wall itself by about 50 per cent of its cross section and thus hardening it, just as a cowskin becomes thinner and harder by drying.

In the following tables and diagram this is fully illustrated; the values presented in these tables and diagramsare based on large numbers of tests and are fairly safe for ordinary use. They still require further revision, since the relations to density, etc., have had to be neglected in this study.

Influence of moisture on strength.

	Per cent of mois. ture.	Average of all valid teats.				Helative values.					
		Cuban.	Longleaf.	Lob. lolly.	short. leaf.	Caban.	Long. leaf.	Lob. lolly.	Short. leaf.	Aver. age.	
Bending strength:											
Green.-.	$33+$	8,450	7,660	7,370	6,900	100	100	100	100	100	
Half dry.	20	10, 050	8,900	8,650	8,170	118	116	117	118	117	
Fard dry	15	11,950	10,900	10,100	9,230	142	142	138	134	139	
Room dry .-...	10	15,300	14,000	12,400	11,000	181	182	168	160	173	
Crushing endwise:											
Green...........	$33+$	5,000	4,450	4, 370	4, 160	100	100	100	100	100	
Half dry	20	6,600	5,450	5,350	5,100	132	122	1:8	122	126	
Yard dry	15	7,850	6,850	6,500	5,900	157	154	156	142	152	
Mean of both bending and crushing strength: ${ }_{\text {M }}$											
Green..........	$33+$					100	100	100	100	100	
Half dry.	20	,				125	119	122	120	122	
Yard dry	15					149	148	147	138	146	
Room dry.	10					182	194	187	164	182	

It will be observed that the strength increases by about 50 per cent in ordinary good yard seasoning, and that it can be increased about 30 per cent more by complete seasoning in kiln or house.

Large timbers require several years before even the yard-seasoned condition is attained, but 2 -inch and lighter material is generally not used with more than 15 per cent of moisture.

WFIGIIT AND MOISTURE.

So far the weicht of only the kiln-dry wood has been considered. In fresh as well as all yard and aid dried material there is contained a variable amount of water. The amount of water containoll in fresh wood of these pines forms more than half the weight of the fresh sapwood, and alont ane-fifth to one-fourth of the heartrood. In yard-dry wood it falls to about 12 to 18 per cent. while in wool kept in well-ventilated, and especially in heated rooms it is about 5 to 10 per cent, virying with size of piece, part of tree, species, temperature, and lumidity of air. Heated to $150{ }^{\circ} \mathrm{F} .(6.0 \mathrm{C}$.$) , the wool loses all but about 1 \underline{2}$ to ${ }_{2}^{2}$ per cent of its moisture, and if the temperature is raised to $175 \mathrm{~F}^{\circ}$. there remains less than 1 per cent, the wood dried at 2120 F . being issmmed to be (though it is not really) perfectly dry. Of course, large pieces are in practice never left long emong exposed to become truly kiln dry, though in factories this state is often approached.

As long as the water in the wood amounts to about 30 per cent or more of the dry weight of the wool there is no shrinkage ${ }^{1}$ (the water coming from the cell lumen), and the density or specific gravity change: simply in direct proportion to the loss of water. When the moisture per cent falls below about 30 , the water comes from the cell wall, and the loss of water and weight is accompanied by a loss of volume, so
 that both factors of the fimetion

$$
\text { Specific gravity }=\frac{\text { weight }}{\text { volume }}
$$

are affected, and the change i_{11} the specific gravity no longer is simply proportional to the loss of water or weight. The loss of weight and vol. ume, however, being unequal auddisproportionate, amarked reduction of the specifie gravity takes place, amounting in these pines to about 8 to 10 per cent of the specific weight of the dry wood.

SIIRINK゙AGE.

The behavior of the wool of the Sonthern pines in shrinkage does not differ materially. Generally the heavier wood shrinks the most, and sapwood shrinks about one-fourth more than heartwood of the same specific weight. Very resinous pieces ("light wood") shrink much less than other wood. In keeping with these general facts, the shrinkage of the wood of the upper lors is usually 15 to 20 per cent less than that of the butt pieces and the shrinkage of the heavy hen'twood of ohl trees is greater than that of the lighter peripheral parts of the same, while the shrimkage of the heavy wood of saplings is greatest of all. On the whole, the wood of these pines shrinks abont 10 per "ent in its volune -3 to 4 per cent along the radins, and 6 to 7 per cent along the tangent or along the yearly rings.

After leavince the kiln the wood at once begins to absorb moisture and to swell. In ant experiment with shont pieces of hoblolly and shortleaf, representing ordinary flooring or siding

In ordinary lumher and all large size material the oxterior parts commonly dry so much sooner than the liulk of the stick that checkiug often occurs thongh the moisture per cent of the whole stick is still far abovo 30 .
sizes, these regained more than half the water and underwent over half the total swelling during the first ten days after leaving the kiln (see fig. 4). Even in this less than air-dry wood the changes in weight far excel the changes in volume (sum of radial and tangential swellingp), and, therefore, the specific gravity even at this low per cent of moisture was decreased by drying and increased by subsequent absorption of moisture. Immersion and, still more readily, boiling cause the wood to return to its original size, but temperatures even above the boiling point do not prevent the wood from "working," or shrinking and swelliug.

In fig. 4 are represented the results of experiments on the rate of loss of water in the dry kiln and the reabsorption of water in the air. The wood used was of Loblolly and Shortleaf Pine kept on a shelf in an ordinary room before and after kiln drying. The measurements were made with caliper.
EFFEC' OF "BOXING," OR "BLEEDING."
"Bleeding" pine trees for their resin, to which only the Lougleaf" and Cuban Pine are subjected, has generally been regarded as injurious to the timber. Both durability and strength, it was claimed, were impaired by this process, and in the specifications of many architects and large consumers, such as railway companies, "bled" timber was excluded. Since the utilization of resin is one of the leading industries of the South, and since the process affects several millions of dollars, worth of timber every year, a special investigation involving mechanical tests, physical and chemical analyses of the wood of bled and unbled trees from the same locality were carried out by this division. The results prove conclusively (1) that bled timber is as stroug as unbled if of the same weight; (3) that the weight and shrinkage of the wood is not affected by bleeding; (3) that bled trees contain practically neither more nor less resin than unbled trees, the loss of resin referring only to the sapwood, and therefore the durability is not affected by the bleeding process.

The following table shows the remarkable numerical similarity between the average results for three groups of trees, the higher values of the bled material being readily explained by the difference in weight:

Lungleaf Pine.	Number of tests.	Specific weight of test pieces.	Bending streugth per square inch.	Compression strongth per square inch.
Unboxed trees	400	per cent. 0.74	rounds. 12. 358	Tounds. 7, 166
Boxed and recently abanto	390	. 79	12,961	\%,813
Boxed and abandoned tive ye	535	. 76	12,586	7.55

The amount of resin in the wood varies greatly, and trees growing side by side differ within very wide limits. Sapwood contains but little resin (1 to 4 per cent), even in those trees in which the heartwood contains abundance. In the heartwood the resin forms from 5 to $2 t$ per cent of the dry weight (of which about one-sixth is turpentine), and can not be removed by bleeding, so that its quantity remains unaffected by the process.

Bled timber, then, is as useful for all purposes as unbled.

USE OF 'THE WOOD.
In its use the wood of all four species is much alike. The coarse grained, heavy, resinous forms are especially suited for timbers and dimension stufi; while the fine grained wood, whatever species it may belong to, is used for a great variety of purposes.

At present distinction is but rarely made in the species and in their use; all four species are used much alike, although differentiation is very desirable ou account of the difierence in quality. Formerly these pines, except for local use, were mostly cut or hewn into timbers, but especially since the use of dry kilns has become general and the simple oil finish has displaced the unsightly painting and "graining" of wood, Sonthern pine is cut into every form and grade of lumber. Nevertheless, a large proportion of the total cut is still being sawed to order in sizes above (; by 6 inches and lengths above 20 feet for timbers, for which the Longleaf and Cuban Pine furnish ideal material. The resinous condition of these two pines make them also desirable for railway ties of lasting quality.

Since the custom of painting and graining woodwork has given way to natural grain with oil finish, the wool of these hard pines is becoming very popular for inside fimish.

Kiln-lrying is successfully practiced with all four species, but especially with the Shortleat and Joblolly pines which, if not artificially seasoned, are liable to "blue." The wood can be dried without great injury at high temperatures.

RATE OF GHOWTII.
Tho species maturally develop somewhat differently, according to the soil conditions in which they oceur. Without going into a detailed discussion, which will be found in the body of this work umder each species, a comparison of the rate of growth of the four species, based on a large number of measurements, gave, for average trees and average conditions, the results shown in the accompanying diagrams (figs. 5 to 7), which permit the determination of the rate of growth at different periods of their life.

Fio. 5.-Diagram showing comparative progress of height growth in average trees.
From these it appears that the Cuban Pine is by far the most rapid grower, while the Longleaf Pine, which usually grows associated with the former, is the slowest, Loblolly and Shortleaf occupying a position betwen the two.

The Longleaf shows for the first five to seven years hardly any development in height and begins then to grow rapidly and evenly to the fiftieth or seventicth year, and even after that period, though the rate is somewhat diminished, progresses evenly and steadily, giving to the height curve a smooth and persistent character.

The diameter growth shows the same even and persistent progress from the start, and the volume growth also progresses evenly after the rapid height-growth rate is passed at seventy years.

The Cuban line ceases in its maximum rate of height growth at thirty years, starts with its diameter growth at about the rate of the Loblolly, but after the twenty-fifth year leaves the latter
behind for the next twenty five to thirty years, then proceeds at about the same rate, but persisting longer than the Loblolly. At the age of fifty years the Caban Pine with 46 cubic feet has made nearly twice the amount of the Loblolly and more than four times that of the Longleaf, but at one hundred years the difference is reduced, being then 115,90 , and 50 cubic feet, respectively, for the three species.

Both Loblolly and Shortleaf Pine reach their maximum growth sooner than the other two species. While these still show a persistently ascending line at one hundred and twenty to one hundred and forty years, the rate of growth in the Loblolly shows a decline after the one hundredth year, and the Shortleaf has done its best by the eightieth year. These facts give iudications as to the rotation under which these various species may be managed.

Fig. 6.-Diagram showing comparative progress of diameter growth in aperage trees.
As stated before, the growth of trees, especially in the virgin forest, is quite variable even for the same species and same soil conditions; an average, therefore, like the one presented in the diagrams, however perfect, could apply only when large numbers are considered. Thus there are fast-growing trees of Longleaf and slow-growing of Cuban or Loblolly Pine. Yet the diagraws will fairly well represent the average growth, with the possible exception of the Cuban Pine, for which the number of measurements was too small to furnish reliable data.

STATISTICS AND CONCLUSIONS.

The greatest difficulty Dr. Mohr has found is in the statistical portions of his work. To deter: mine the amounts of remaining timber supplies of the various species is almost an impossibility without a very elaborate and laborious canvass, which, to be sure, it would appear our duty to
undertake, but for which the means at the disposal of the Division of Forestry have never been sullicient. Eyen the amome of ammal consumption can only be approximated, partly because the species are not always kept separate and partly becanse information is not always readily given by the operators or shippers.

The statisties for Longleaf l'ine can be more nearly approximated, for the majority of the mills engaged in its exploitation cut hardly any other timber; moreover, its geographical limits are more clearly defined, so that even the area of remaming supplies is not entirely beyond our ken.

When it comes to using such statistics for a prognostication as regards available supplies, another difliculty arises in the change of standards of material recognized as marketable and the change of demand or use, and hence consumption, of any of the varieties. But we can now safely assume that the standard of size and quality, which was high when the census figures of 1880 were

Fig. T.-Diagram showing comparative progress of volume growth in average trees.
estimated and hence made them appear below the truth, has now sumk nearly to the lowest level, any stick that can be phaced on the mill down to $\mathbf{1 0}$-inch and 5 -inch being fit material. There is also no danger of any reduction in the cut for any reason except a temporary one due to such general business depression as that experienced throughout the last two years. Increase of consmmption of southern timber is bound to follow the imminent exhaustion of the pine supplies of the North. And with the exception of Pacific Coast timbers, which, owing to their great distance, have so far made but little competition in Eastern markets, no new undiscovered timber resource will intluence the cut of Southern pine.

Venturing on the basis of the meager data furnished in this publication to make a guess at the probable supply and demand, we may with due reserve state that the amount of pine timber ready for lumber manfacture standing in the South can not be above $250,000,000,000$ feet, and
more likely will fall fir below $200,000,000,000$ feet, while the figure for present and lowest future annual consumption may be approsimated at near $7,000,000,000$ feet, board measure. ${ }^{1}$

There is nobody who knows or can know the actual condition of supplies, and whoever has an opinion on the subject will have to bring at least as good a basis or a better one for such opinion than the data furnished in the following monographs.

There is no attempt to predict from the foregoing figures the absolute exhanstion of the pine supplies of the South within forty or tifty years, although such a result would appear not unlikely. Competition of other timbers, and substitutes for the use of wood (which, to be sure, never in the history of the world have reduced wood consumption), and especially changes in present methods of exploitation, may lengthen ont supplies for a short time; or, if we begin rational forestry now, these forests may be kept a source of continuous supplies, even though reduced.

Those who rely upon the spontancous natural reproduction of these pines to till the gaps made in the virgin timber will do well to read the chapters on natural reprodnction and the incidental remarks regarding the conditions for renewal and the appearance of the aftergromth; or, better, tramp through the vast region of culled pine woods and observe what the basis of their reliance is, as the writer of these monographs has done throngh forty years of his life. If, in addition, they study the chapters on conditions of development, they will realize that the Longleaf Pine is bound to disappear largely even in the regions where it reigued supreme; that the Cuban Pine, no despicable substitute, will take its place in the lower pine belt, if allowed to propagate at all; but on large burnt areas the growth of scrubby oaks and brush will forever exclude this species which (minently needs light. Loblolly and Shortleaf, better fitted for warfare with other species, will do much in their respective habitats to recuperate, except in the mixed forest, where they are culled and the hard woods are left to shade out the aftergrowth; or where the continuous conflagrations have destroyed the mold and aftergrowth and given over the soil to scrubby brushgrowth, which for ages will either prevent the gradual return of the pines or impede their renewal and growth. Considering that the timber on which we now rely aud on which we base our standards comes from trees usually from one humdred and fifty to two hundred years or more old, and that none of these pines makes respectable timber in less than from sixty to one Inundred and twenty-five years, the necessity of timely attention to their renewal is further cmphasized.

The owners of timber land and the operators of mills are the only people who can improve these conditions, and this by a more rational treatnent of their property. If they can be made to realize now that what they own and hold as a temporary speculation will, in a short time, when supplies have visibly decreased, become a first-class investment, and, by its revenues, become a greater source of wealth under competent management with a view to reproduction than that which they have derived from it by the mere robbing of the old timber, they might take steps at least against the mnecessary damage done to it by fire and cattle. Permanency and continuity of ownership appear to be the first condition to insure such results, and therefore corporations which are not of an ephemeral character and men of large wealth are most desirable forest owners.

The monographs here presented will, it is hoped, aid in this realization, and the information regarding the conditions of development of the different species will furnish suggestions as to the forest management which, modified according to local conditions and economic considerations, may be employed to secure the perpetuity of the Southern pineries.

B. E. Fernow.

Washington, D. C., Jume 5, 1896.

[^0]-
:

THE LONGLEAF PINE.
 (PINUS PALUSTRIS Miller.)

Geographical distribution.
Products and uses.
Botanical description.
Description of wood.
Progress of development.
Conditions of development.
Forest management.
Appendix: The Naval Store Industry.

"IIE J,ONGI,EAF IPINE.

(I'inus palusiris Miller.)
Nynonyms: I'imes palusfris Milher, Gard. Dict. ent. X, No. 11 (176x). J'inus lutca Walter, Fl. Car. 237 (1788).
l'inus anstralis Michatux f., Hist. Arls. Am. i, 6t, t. 6 (1803).
J'inus serotina Mort. (if. Bon Jard. !16 (1837) ex Antoine, Conif. 23 (1810-'47), not Michx. (1803), I'inus I'almiensis Irr. Gard. ex Gotdon, I'inetum ed. 1, Suppl. 63 (1862).
l'imus l'almieri Manetti ex (forl., 1. c. (1860응).
LOCAL, OR COMDON NAMEA.
L.ongleared P'ine (Del., N. C., S. C., (in., Ala., Flar., Miss., Pitch Pine (Atlantic region).

Lai., Tex.).
Sonthern Pino (N. C., Ala., Miss., La.).
L'ellow D'ine (I)el, N. C., S. C., Ala, Kla., Iat., Tex.).
Turpentine l'ine (N.C.).
Rosemary Pine (N. C..).
IBrown I'ine (Tonn.).
Hard line (Ala., Miss., Ia.).
(ieoryial lino (Del.).
Lost l'ine (Southern States).
Sonthern lellow l'ino (\&enaral).
Southern Ilarl Pine (general).
Southorn Ifeart IVine (general).
Southern l'iteh Pino (general).
Ileart Pino (N. C. and Sonthern Atlantic region).

Longleaved Yellow Pine (Atlantic region.)
Longleaved D'itch l'ine (Atlantic region).
Long-straw line (Atlantic rerrion).
North Carolina litch l'ine (Vil., N. C.).
Georgia Yollow Pino (Atlantic regiou).
Georgia line (general).
Georgia IIeart l'ine (general).
Georgia Longleaved Pine (Atlantic region).
Georgia Pitch l'ine (Atlantic region).
Florida Vellow Pine (Atlantic region).
Floritar Pine (Atlantic region).
Florida Longreaved Pine (Atlantic regrion).
Texas Vellow line (Atlantic region).
Texas Longleaved Piue (Atlantic region).

THE LONGLEAF PINE.

By Cimarles Moins, P'h. D.

INTRODUCTORY.

The Longleaf Pine is the tree of widest distribution and of greatest commercial importance in the Southern Atlantic forest region of eastern North America, covering, with scarcely any interruption, areas to be measured by tens of thousands of square miles and furnishing useful material.

The timber wealth of the forests of Longleaf Pine, much of which is still untouched, has given rise to industries which involve the outlay of vast capital and an extensive employment of labor, thus closely affecting the prosperity of a large part of the Southern States as well as the industrial and commercial interests of the whole country.

With the impending exhaustion of the pine forests of the North, the lumber interests of the country are steadily tending to center in the South, attracted chietly by the forests of Longleaf Pine.

The Old World, which has heretofore depended almost entirely upon the pine forests of Canada and of the Northern United States for timber for heavy construction, is already importing a large amount of hewn and sawn square timber and of lumber from the Southern pine forests. Most of the lumber used for ordinary building purposes in the West Indies, on the coast of Mexico, and in many of the States of South America is furnished by the mills situated in the Longleaf Pine region. The unprecedented increase, during the last quarter of a century, of the population in the timberless regions of the far West, as well as in the country at large, enormously augment the drafts made upon these forests, threatening their eventual exhanstion and ultimate destruction unless measures are taken by which these supplies may be perpetuated. The solution of the difficult problem of devising such measures can come only as a result of a study of the life history of the Longleaf Pine, of the conditions required for its growth and best development, of the laws regulating its distribution, and of the possibilities for its natural or artificial restoration.

HISTORICAL.

The economic importance of the Longleaf Pine was well recognized in early times. Bartram, ${ }^{3}$ in the year 1777 , in his wanderings along the western shore of Mobile Bay, had his attention attracted by three very large iron pots, or kettles, each with a capacity of several hundred gallons, near the remains of an old fort or settlement, which he was informed were used for the purpose of boiling down the tar to pitch, there being vast forests of pine in the vicinity of this place. "In Carolina," this writer proceeds, "the inhabitants pursue a different method. When they are going to make pitch they dig large holes in the ground, which they line with a thick coat of good clay, into which they conduct a sufficient quantity of tar and set it on fire, suffering it to burn and evaporate for some time, in order to convert it into pitch, and when cool, put it into barrels until they have consumed all the tar and made a sufficient quantity of pitch for their purposes."

Humphrey Marshall, one of the earliest writers on North American forest trees, ${ }^{2}$ mentions the Longleaf Pine under the name of the "largest three-leaved marsh pine, as accounted equal to any for its resinous prodncts." In North Carolina crude resin, tar, and pitch figured as important and valuable exports during the later colonial times. During the period from 1766 to 1769, s 130,000

[^1]worth of these stores were exported yearly; among them were 88,111 barrels of erude resin, valued at $811,24.85 .17$. . Michaux, in his travels west of the Alleghany Mountains, speaking of the low country of the Carolinas, says: "Seven-teuths is covered with pine of one species, l'inus palustris, which, as the soil is drier and lighter, grows loftier; these pines, encumbered with very few branches and which split even, are preferced to other trees for building fences on plantations." In his subsequent work Michaux gives for the first time an accurate and detailed account of the products of this tree and their industrial and commercial importance, as well as of its distribution and a description of its specific characters. ${ }^{2}$

Note:-In sketching the topographical features of those regions of the Longleaf Pine foreste, which did not come under the personal observation of tho writer, the physiographical descriptions of the Cotton States on the Atlantic Coast and tho Gulf region published in Professor Hilgard's report on cotton production in the fifth and sixth volumes of the Census of 1880 were freely drawn upon, and these reports were also consulted, together with Table VII in the statistics published in the census report on productions of agriculture in the computation of forest areas.

In the statements of the amount of Longleaf Pino standing in the several States in 1880 and of the cut during the same year, the digures given in l'rof. Charles S. Sargent's report, Vol. IX of the 'Tenth Consus, were introduced, and for those which relate to Alamai and Mississippi the writer is mostly responsible. No efforts have been spared $t o$ arrive at a correct estimate of the total amount and value of square timber, lumber, and naval stores produced during the decade ending with the year 1890 and during the business year 1893 , in order to place in a proper light the economic importance of the tree and its bearings upon the industrial and commercial interests of the country, and also to show the rapid increase of the industries depending directly upon the resources of this tree. The statements given are, however, of necessity only approximations falling below the limits of truth, as it was impussible to ascertain with any degree of accuracy the quantities ontering into home consumption. Thus a factor of no little importance had to be neglected.

The thanks of the writer are due to the gentlemen who kindly assisted him by their prompt replies to his inquiries in his search for information, and who in other ways havo afforded him aid.

GEOGRAPHICAL DISTRIBUTION.
The Longleaf Pine is principally confined to a belt about 125 miles in width in the lower parts of the Southern States which border upon the Atlantic and the Gulf shores. The northern limit of the tree is found on the coast near the southern boundary of Virginia below Norfolk, north latitude $36^{\circ} 30^{\prime}$. From here the forests of the Longleaf Pine extend southward along the coast region to Cape Canaveral, across the peninsula of Florida a short distance south of Tampa Bay, westward along the Gulf Coast to the uplands which border upon the alluvial deposits of the Mississippi. West of that river forests of this species continue to the Trinity River in Texas; in that State its northern limit is found to reach hardly 32° north latitude, while in Louisiana and Mississippi it extends hardly more than half a degree farther north, and in Alabama under $34^{\circ} 30^{\prime}$ the tree is found to ascend the extreme southern spurs of the Appalachian chain to an altitude of between 900 and 1,000 feet. Thus the area of the distribution of the Longleaf Pine extends from 76° to 96° west longitude and from $28^{\circ} 30^{\prime}$ to $36^{\circ} 30^{\prime}$ north latitude. (See P'l. HI.)

With reference to the distribution of this species as depending upon geological formation, it may be said that its forests are chiefly confined to the sandy and gravelly deposits desiguated by Professor Hilgardas the orange sand, or Lafayette strata of Post-Tertiary formation, which of late isregarded as the most recent member of the Tertiary formation. Thesesiliceous sands and pebbles, which to such vast extent cover the lower part of the Sonthern States and form also more or less the covering of the surface throughout the older Tertiary region, offer the physical conditions most suitable to the growth of this tree.

CIIARACTERISTICS OF DISTRIBUTION IN DIFFERENI REGIONS.

This great maritime pine belt east of the Mississippi River presents such differences in topographical features and such diversity of physical and mechanical conditions of the soil as to permit a distinction of three divisions going from the coast to the interior:

1. The coastal plain, or low pine barcus within the tide-water region, extends from the seashore inland for a distance of from 10 to 30 miles and over. The forests of the Longleaf Pine which

[^2]
ocenpy the poorly drained grassy flats of the plain are very open, intersected by numerous inlets of the sea and by brackish marshes. They are also interrupted by swamps densely covered with Cypress White Cedar, White and Red Bay, Water Oak, Live Oak, Magnolia, Tupelo (ium, and Black Gum and again by grassy savanas of greater or less extent. On the higher level, or what might be called the first terrace, with its better drained and more loamy soil, the Longleaf Pine once prevailed, but almost everywhere in the coastal plain the original timber has been removed by man and replaced by the Loblolly Pine and the Cuban Pine.
2. The rolling pine lands, pine hills, or pine barrens proper are the true home of the LongLeaf Pine. On the Atlantic Coast these uplands rise to hills over 600 feet in height, while in the Gulf region they form broad, gentle undulations rarely exceeding in elevation of : 300 feet. Thus spreading out in extensive table-lands, these hills are covered exclusively with the forests of this tree for many hundreds of square miles without interruption. Here it reigns supreme. The monotony of the pine forests on these table-lands is unbroken.
3. The upper division, or region of mixed growth. With the appearance of the strata of the Tertiary formation in the upper part of the pine belt, the pure forests of the Longleaf Pine are confined to the ridges capped ly the drifted sands and pebbles and to the rocky heights of siliceous chert, alternating with open woods of oak (principally Post Oak), which occupy the richer lands of the calcareous loams and marls. However, where these loams and marls, rich in plant food, mingle with the drifted soils, we find again the Longleaf Pine, but associated with broad-leaved trees and with the Loblolly and Shortleaf Pine. Here the Longleaf Pine attains a larger size and the number of trees of maximum growth per acre is found almost double that on the lower division.

> TIMBER REGIONS-SUPILY AND PIRODUCTION.

The forests of Longleaf Pine can be conveniently discussed by referring to the following geographical and limited areas:

The Atlantic pine region;
The maritime pine belt of the eastern Gulf States;
The central pine belt of Alabama;
The forests of Longleaf Pine of north Alabama (Coosa basin, etc.);
The regions of Longleaf Pine west of the Mississippi River.

THE ATLANTIU PINF REGION.
The Atlantic pine region in its extent from the southern frontier of eastern Virginia to the peninsula of Florida embraces the oldest and most populous States of the Longleaf Pine district, and here the forests have suffered most severely by lumberiug, the production of naval stores, and clearing for purposes of agriculture.

Virginia.-The forests of the Longleaf Pine on the sontheastern border of Virginia have almost entirely disappeared, and are, to a great extent, replaced by a second growth of Loblolly Pine.

North Carolina.-In North Carolina the area over which this tree once prevailed may be estimated at from 14,000 to 15,000 square miles, leaving ont of calculation the coastal plain with its extensive swamps, wide estuaries, and numerous inlets. From the northern frontier of the State southward, some distance beyond the Neuse River, in the agricultural district, the forest growth on the level or but slightly undulating pine land is of a mixed character, the Longleat species being largely superseded by the Loblolly Pine, together with widely scattered Shortleaf Pine and deciduous trees-White Oak, Red Oak, Post Oak, Black Oak, and more rarely Mockernut and Pignut Hickory, and Dogwood. In this section the lumbering interests are chiefly dependent unon the Loblolly P'ine (Pinus teda), better known to the inhabitants as the Shortstraw, or Shortleaf Pine (not to be confounded with the true Shortleaf Pine). The forests of Longleaf Pine begin at Bogue Inlet, extend along the coast to the southern boundary of the State, and inland for a distance varying between 50 and 135 miles.

The highly siliceous soil of these pine barrens offers but little inducement for its cultivation; the inhabitants, therefore, from the carliest time of the settlement of the State have chiefly been engaged in pursuits based on the products of the pine forests. Here the production of naval
stores was finst carried on; rosin, tar, and pitch figured in early colonial times among the most important axticles of export. In consernence, the forests of the Longleaf Pine have been, with but slight exceptions, invaded by turpentine orcharding, and at the present time by far the greater part of the timber standing has been tapped for its resin. The forests of the Longleaf Pine in this State cover the largest area in the basin of Cape Fear River, with Wilmington the main port of export for their products. The export from this port had increased from $21,000,000$ feet of lumber in 1880 , to nearly $40,000,000$ anmally, on the average, for the years $1 s 87$ to 1891 .

The forests of the Longleaf line on the banks of the Neuse liver, in dohnston Connty and in Wayne County, are almost exhansted; about 40 to 50 per cent of the timber sawn at Goldsboro and Dover is Longleaf Pine timber from that section, and is invariably bled. A considerable number of the trees from the old turpentine orchards, with the excoriated surface of the trunk ("chip") over 9.5 feet in length and bled again after a lapse of years, show that they have been worked for their resin for twenty to twenty-four years in succession, and after a longer or shorter period of rest have been subjected to the same treatment continually for the same number of years. Such old martyrs of the turpentine orchard are unfit for lumber, but, imprequated as they are with resin, are used for piling and for posts of great durability.

Last of the Nicuse River, from the upper part of Johnston County, in an almost southern direction to Newbern, no Longleaf l'ine has been observed. Single trees of the Shortleaf Pine (limus echinati) have been found scattered among the growth of deciduous trees which cover the ridges between the Trent and Neuse rivers, and isolated tracts of a few acres of the Longleaf species are met with in the low tlats of the same section, which were in 1894 almost exclusively occupied by the Loblolly Pine.

As reported for the Tenth Census, the amonnt of Longleaf Pine standing in North Carolina at the begimning of the census year was estimated to be $5,229,000,000$ feet, board measure. No reliable information could be obtained as to the amount of timber cut since 1580 , consequently no data are at hand from which to compute the amount now standing. The cut for the year 1880 is given in the census report at $108,400,000$ feet, board measure. In 1890 , eighteen bills were entmerated as engaged in sawing exclusively longleaf Pine timber, almost all situated in the basin of Cape Fear River, with a daily aggregate capacity of 475,000 feet, board measure. Such capacity would point to an anmual cut of at least $65,000,000$ feet, board measure.

Statement of the shipments of naral stores from Hilmington, N. C.
[From T. I. Cantwelk, necretary Wilmington l'rouluee Vxchange.]

Total value. $\times 34,500 .(200)$.
Statement of ahipments of lumber to foreign and alomestir ports from Hibmington, N. G.

South Carolina.-The forests of Longleat Pine in this State follow more closely the coast line, with an extension intand averaging 100 miles. The lower parts of the pine belt, or the Satannaln region, is low and that, rising but slowly above the brackish marshes and altuvial lands bordering the sea. Traversed by eight large rivers with wide estuaries and bordered by extensive swamps of Cypress, Magnolia, lied and White Bay, Lamel Oak, ete., its area has been estimated to be 7,000 square miles, 4,500 square miles of which are occupied by swamp lands, inchuing the grassy marshes on the coast. In the low, perfectly level pine barrens, with a soil of fine, compacted, almost impervious sand, covered with the Saw Palmetto, the Pond Pine, and a stunted growth of the Cuban and Loblolly Pine, the Longleaf Pine is rarely seen, and always of dwarfed growth. In the that woods bordering the alluvial swamps, heavily timbered with Loblolly and Cuban Pine, the Longleaf l'ino makes its appearance more frequently, and finally pevails almost exclusively on the broad, dry, sandy vidges, associated with the Barren or Turkey Oak (ouerous cotesheci), stunted Spauish Oak, and Upland Willow Oak (Guercus cineren), trees of smaller size forming the undergrowth. The timber growth on these ridges is rather open and of good quality. As has beeu observed near Ridgeland, in the connties of beanfort and Hampton, the forests have to a large extent given way to the plow, and along the railroads they have been destroyed by turpentine orcharding. Upon 1 acre, representing fairly the original timber growth of the forests on these ridges, 48 trees of a diameter of from 12 to 24 inches at breast high, with a height of from 50 to 110 feet, were found. Of these, 4 yielded sticks of clear timber averaging 45 feet in length with mean diameter of 18 inches, equal to 2,000 feet, board measure, of first-class lumber. These trees varied in age from 130 to $14 \tilde{J}$ years; 8 trees yielded sticks of timber free from limbs 40 feet in length with mean diameter of 17 inches, equal to $3,-00$ feet, board measure, age on the average 140 years; 12 trees yielded 35 feet length of clear timber with mean diameter of 16 inches, equal to 3,600 feat of merchantable lumber, age from 130 to 136 years; s trees averaged 12 inches mean diameter, length of timber 30 feet, equal to 950 feet, board measure, age from 110 to 11 s years; 4 trees averaged 10 inches mean diameter, length of clear timber 24 feet, wood sappy thronghout, yielding 200 feet of lumber, age from so to 85 years.

The total yield of merchantable lumber of this acre would be 9,950 feet, board measure, representing the average of the better quality of these timber lands. As in the adjoining States, the forests along the railroad lines for a wide distance have been subjected to turpentine orcharding, and but a small percentage of the timber standing has escaped the ax of the "box" cutter. The receipts of naval stores at Charleston during the ten years from 1880 to 1830 averaged anmally 57,570 casks (50 gallons to a cask) of spirits of turpentine and 225,920 barels of rosin, with the largest receipts in 1880 of 60,000 casks of spirits of turpentine and 259,940 barrels of rosin, and the smallest of 40,253 casks of spirits in 1885 , and 170,060 barrels of rosin in 1886 .

Tabular statement of the shipments of naval stors at Charleston, $\therefore . C_{0}$., from the begiming of 1880 to the cloxe of the year 1s9.

*The annual receipts on the average equal the pxporta.
The rolling pine hills bordering upon the that woods, or swamps, reach elevations of 130 to 250 fect above the sea, with a width of from 20 to 40 miles, and, as on the pine ridges of the low pine barrens mentioned before, the upland oaks form the sparse undergrowth in the forests of Longleaf Pine. Nearly one third of the area (estimated at about 4,500 square miles) has been opened to cultivation. These rolling pine lands rise on their northern borders abruptly to a range of steep hills over 600 feet above sea level, covered with a rather scanty growth of Longleaf 17433-No. 13 -3

Pine anong the Shortleat Pine and fine uphand oaks, the latter largely prevailing. On the south and west the e hills merge into an elevated platean with a loose soil of coarse white sand. Here the Longleaf lime is fomm in its full perfection and furnishes timber of excellent quality. ${ }^{1}$ About 12 per cent of these pine clad table-lands are under cultivation, and about $2 \underline{2}$ per cent of the hills, with their generons red soil, are covered with a mixed growth of pine and oak; both of these divisions cover an area of not less than 4,000 square miles. ${ }^{2}$

The Longleaf l'ine timber standing in South Carolina in the census year 1880 was estimated at $5,316,000,000$ feet, board measure, ${ }^{3}$ with an ammal cut of $124,000,000$ feet.

In 1890 forty mills sawing exclusively Longleaf Pine timber have been reported ' with an aggregate daily capacity of about 510,000 fect, taken at the lowest figure. This would indicate for that year a cut of $68,000,000$ feet, board measure, which may also be considered the average ammal cut for the last fifteen years.

The exports of lumber from Charleston, the chief port, have since the year 1880 steadily increased, the excess in 1890 over the amount in 1880 reaching over 400 per cent, as is exhibited in the following statement:

Slatcment of lamber cxporterl from (harleston, S. (', fo forcign and domestic ports from the heginning of $18 S O$ to the close of 18%

Gempia.-The great pine State of the South, which has given to the Longleaf Pine the name of Georgia Pine, by which this lumber is known the world over, embraces the largest of the Atlantie pine forests. At a rough estimate, these cover over 10,000 square miles, including the narrow strip of live oak lands bordering the seashore. The flat woods and savamos of the coast plain are from 10 to 15 miles wide. They are almost entirely stripped of their growth of Longleaf Pine.

The upland pine forests, the pine harrens proper, or wire-grass region, ${ }^{5}$ embrace over 17,000 square miles. This region forms a vast plain, nearly level except on the north, covered exclusively with Longleaf Pine. About 20 per cent of these lands have been cleared for cultivation.

Formerly the principal sites of the lumber industry were Darien, Brunswick, and Savamah The logs were rafted hundreds of miles down the Savamah, the Ogeechee, the Altamaha and its large tributaries, the Oconee and Ocmulgee. A limited quantity is carried down the Flint and Chattahoochee rivers to Apalachicola. The railroads, however, supply the mills now to the largest extent.

The forests of these pine uplands are in quality, and originally in quantity, of their timber resoures equal to any found east of the Mississippi River. The soil is a loose sand, underlaid by a more or less sandy bulf-colored or reddish loam. The almost level or gently undulating plain becomes slightly broken along the water courses, and the forests of Longleaf Pine are interrupted by wide, swampy bottoms which inclose the streams and are heavily timbered with the Loblolly Pine, Cuban Pine, Laurel Oak, Water Oak, Magnolia, White and Red Bay, and Cypress. On the better class of the pine-timber lamds the anome of marketable timber found varies between 3,000 and 10,000 feet to the acre. The trees yielding lumber and sinure-sawn timber of the highest

[^3]grade were found to make sticks of from 40 to 45 feet long, perfectly clear of limb knots, and 18 to 22 inches mean diameter, giving from 450 to 750 feet of lumber, with the sapwood from $1 \frac{1}{2}$ to 2 inches wide.

The following measurements of trees from a small tract of forest untouched by the ax serve as a fair average sample of its timber growth :

Along the numerous milroad lines aud the navigable streams and their tributaries admitting of the driving of logs, the forests have been completely stripped of their nerchantable timber, and the denuded areas to a considerable extent are at present under cultivation. The magnificent forests on the Altahama River and betweeu its tributaries, the Ocmulgee and Oconee rivers, and als: on the Ogecehco River, have been practically exhausted and are utterly devastated by the tapping of the trees for turpentine. In fact, more than two-thirds of all the timber sawn at present has been bled. Tho timber from the turpentino orchards, abandoned for years past, is being rapidly removed to the mills, and the vast areas occupied by them will, within a short time, be almost completely denuded of the Longleaf Pine, its place being taken by scrubby oaks, dwarf hickories, and Persimmon. The timber is transferred to the mills mostly by steam-equipped tramroads, and the products of the turpentine distilleries in the remoter districts are hauled to the highways of commerce by ox teams for distances of 12 miles and over.

Considering the removal for their timber of trees far below medium size and during the best period of their growth, the destruction of still younger trees by turpentine orcharding, and of the young seedlings by fire, the prospect for the future of the lumber industry and the renewal of the forests of Longleaf l'ine in this region are gloomy. Many of the intelligent men practically interested in the timber lands of this State aver that the exhanstion of the forests of the Longleaf Pine is a question of but a short space of time, to be accomplished before another gemeration has passed.

The amount of timber standing at the end of the census year 1850 had been computed at $16,778,000,000$ feet, board measure, and the cut at $272,743,000$ feet.

From the jublication quoted, it appears that in the year 1890 there were $S S$ sawmills in operation in the great pine belt of Georgia, sawing exclusively Longleaf Pine timber. On the basis of lowest figures cited, the daily cut at these establishments during that year would not fall short of $1,667,000$ feet.

No statistical returns of the lumber trade previous to 1884 could be obtained at Savannal, Darien, or Brunswick. The export from the first of these ports averaged about $73,000,000$ feet, board measure, a year, showing but slight fluctuation during the period beginning with 1884 to the close of 1889 , when in the subsequent two years the anmal average increased to $118,000,000$ feet, board measure. The exports from I arien and Brunswick, averaging $S_{2}, 000,000$ and $85,000,000$ feet, respectively, for a similar period of time, show also but small differences from one year to another. About $30,000,000$ to $33,000,000$ feet are rafted down the Flint and Chattahoochee rivers, to be sawn at Apalachicola. With the spread of the sawmills along the malroad lines in the upper part of the pine region, the shipments of lumber by rail to distant Northern markets increased steadily, until in 1892 it was found that the production of Lougleaf Pine lumber shipped by rail to Northern markets exceeded $60,000,000$ feet.
 "nul shipments by railroal to inland markets firme 1853-8/ to 18\%3-9.8.

This makes a gramd total for the ten years ended 1894 of $2,536,000,000$ feet, board measure, with an aggregate value, at present export rates (\$11 per 1,000 feet), of at least $\$ 31,196,000$.

In the production of maval stores Georgia takes the lead. By the statements of the census of 1870 , only 3,208 casks of spirits of turpentine and 13,810 barrels of rosin, valued at $\$ 95,970$, were produced during that year in the State. In the course of the following ten years this industry progressed steadily and rapidly. In 1888 exports from Savanuah, at present the greatest market in the work for these products, had increased to 168,000 casks of spirits of turpentine and $6.5,000$ barrels of rosin, of a total value of $\$ 3,880,000$.

Natement of exports of nave slores from senannah during the years 18so-189.

- The highest prices for these stores in Savannah were obtained in 1850, with \$19.50 per cask of 50 gallons for spirits of turpentine and 82.25 per barrel of rosin of 280 pounds gross; and the lowest in 1887-8S, with the price of spirits of turpentine at $\$ 14.25$ per cask and $\$ 1.40$ per barrel of rosin. On close serutiny of the prices ruling at Wilmington, for the eleven years after 1880 the price of a cask of spirits of turpentine averaged $\$ 18$ and of a barrel of rosin $\$ 1.90$, lowest grades of the latter exchuded.

Florint.-That part of the State between the Suwance River and the Atlantic Coast, ans far sonth as St. Augnstine, can be considered as part of the Atlantic pine region, and covers an area of about 4,700 square miles. In the basin of the St. Johns River a large part of the land has been devoted to the cultivation of the citrus fruits. The principal sites of the manufacture of lumber in this section of the State are Ellaville, in Madison County, on the Suwance Liver, and Jacksonville. The supplies once existing along the Cedar Keys and Fernandina Railroad are at present well nigh exhausted. South of St. Augnstine the Longleaf Pine is less common and in gencral inferior in size. The timber on the extensive flat woods to the Exerglades, covered with the Saw Pametto, is stunted and the forests are very open, and in the more fertile soils Longleaf Pine is largely replaced by Cuban Pine. In the central section of the peninsula, with its numerous lakes, the Longleaf Pine is largely associated with the Sand line (P'mus clausa), and hard woods prevail on the upland hummock lands.

From the banks of the Sumance River to the uplands borlering the alluvial lands of the Mississippi this pine belt, varying from 90 to 125 miles in width, covers an area roughly estimated
at a little over 40,000 square miles. It presents no material differences from the Athatio region, of which it is a direct continuation, being similar to it in both soil and climate.

This eastern Gulf region is unsumassed in the advantages it offers for the development of the industries based on the products of the pine forests. Its genial climate thronglont the year permits the minterrupted exploitation of its abundant resonrees of resinous protucts and of timber of the best quality. The fine harbors and sate roadsteads on the Gulf Coast are reached by navigable rivers, which, with their tributaries, cross the lower division in every direction, and give ready and cheap transportation to its ports, while great railway lines afford easy communication with inland markets. This region thus presents inducements scarcely found elsewhere for the investment of capital and labor in the development of the resonces of its forests.

It is impossible to arrive at anything like an acearate estimate of the amount of timber stauling at present, or of the rate of its consumption, since in the returns of the anmal lumber product that needed for home consumption has not been included.

Western Floridt.-Placiug the enstern limit of that part of Florida to be considered as belonging to the Gulf pine region at the lower course of the Suwance River, the area included comprises about 7,200 square miles, exclusive of the swamps and marshes of the coast. The forests of Lougleaf Pine form a narrow stripalong the comse of the Sumanee liver and along the coast to the Appalachicola liver, covering about $1,280,000$ acres. At their northern limit they merge into the oak and hickory uplands of middle Florida. Along the coast they are surrounded by marshes and swamps, renderiug them difticult of access, cousernently they have remained untouched. The same may be said of the pine forests between the Appalachicola and the Choctawhatchee rivers. These have been invaded to some extent along the banks of the latter river to supply the small mills situated on the bay of the same name.

The pine lauds of western Florida rise slowly above the coastal plain and form a vast expanse of slightly undulating surface. Those surrounding Perdido, Pensacola, Blackwater, and Mary St. Galves Bay, the oldest sites of active lumber industry in the Gulf region, were stripped of their valuable timber more than thirty years ago, and since that time have been cut over again.

The largest tracts of tiuely timbered virgin forests of Longleaf Pine are found in the undulating uplands from the Perdido and Escambia rivers along the Alabama State line to the banks of the Choctawhatchee River. East of this river, in the same direction, where the younger Tertiary strata make their appearance, Longleaf l'ine becomes associated with lard woods, with southern Spruce Pine added in the valleys. Since the opening of the Pensacola and Atlantic Railroad considerable quautities of sawn square timber find their way to Pensacola from these remoter forests.

A large portion of the timber supplied to the mills along the coast having been derived from Alabama, it is impossible to arrive at an exact estimate of the products of the forest of western Florida.

Statement of export of hemn square timber, saun square limber, and lumber fo foreign and domestic ports from l'ensacola, Flet., from 18\%0-s0 to 1593-58.

In the shipment of these products in 188.5 , valued at $\$ 0,305,500$, there were 471 vessels engaged, of 294,595 tons, of which 370 of 95,922 tons cleared for foreign ports.

During those formeen years the price of square timber and lumber taken in the agregrate averaced about slono per 1 , oto feet, bord measure. On this basis the value of the mill products for thes parts of the forests of Longleaf line amounted to si 3,15 , 6 , 60 a year.

For the past forty years, during which the lands of the peninsula part and in middle Florida have passed mostly into possession of small proprietors, no naval stores have been produced in this section. In western Florida, however, in proximity to the homisville and Nashville and Pensamola ralmods, large areas have been subjected to the tapping of the trees, and the forests close to these railroads having been exhausted, the products of the turpentine stills are hauled for a distance often exceeding 10 miles and find their maket mostly at Mobile.

Alabrmu.-Owing to the diversity in geological conditions and in topographical features prevailing in this State, the distribution of the Longleaf l'ine presents within its borders peculinities not found clsewhere. It appears in three separate regions- the maritime pine belt, the central pine belt, and the pine forests of the Coosa Basin and other outlying forests in north Alabama.

The coast pine belt extends from the Gulf shore inland for a distance of from 90 to 100 miles, and has been estimated to cover about 13,750 square miles, or $8,800,000$ acres, outside of the swamps and Hatwoods of the coast plain. The latter, perfectly level or rising in gentle swells above the tidewater marshes, is almost completely stripped of its original timber growth. After its removal the Loncleaf Pine has largely been replaced by Cuban I'ine.

The rolling pine uplands rise to a height of from 200 to 350 feet above the lowlands of the coast. In the lower part of this pine belt, where the sandy and gravelly deposits of the latest tertiary stratal prevail, the Longleaf Pine forms pure forests, with the exception of the narow strips of hardwood timber bordering the water courses. This lower division covers about $4,250,000$ acres. In the extent and quality of their timber resources these Longleaf Pine forests can be considered equal to those found in the adjoining parts of Florida and in Mississippi, and unsurpassed by those of the most favored sections of the Atlantic pine forest.

The following measurements of trees felled near Wallace, Escambia County, in collecting the material for the United States timber tests, will serve to represent farly the quality of the merchantable timber in conformity with the standard in vogue at the mills in 1880 , and the relation of age to growth:

Measurements of five trees.

At a lumber camp near Lumberton, in Washington County, ((imber trees were measmed showing on the arerage a mean diameter of 17 inches, the clear sticks averaging fo feet in length.

Upon 1 acre, selected at random in the untouched forests north of Springhill, Mobile County, very open aud free from smaller trees or undergrowth, 10 trees were counted above 16 inches in diameter at breast high, namely, 2 trees 23 inches in diameter at breast hish, estimated Jength of timber, 40 feet; 2 trees 20 inches in diameter at breast high, estimated length of timber, 40 feet; 12 trees 16 to 18 inches in diameter at breast high, estimated length of timber, 35 feet; which in the argrequte would yield about 5,000 feet, board measure.

Upon another acre plat of the same quarter section $6 . f$ trees above 12 inches in diameter at breast high were found; of these 2 trees measured 20 inches in diameter at breast high, estimated length of timber, 40 feet; 20 trees measured 17 jnches in diameter at breast high, estimated length of timber, 36 feet; 36 trees measured 13 inches in diameter at breast high, estimated length of timber, 24 fect.

Upon a third plat exceptionally heavily timbered, 45 trees were comnted, of which $\%$ thees were 25 inches in diameter at breast high, the clear timber averaging 50 feet in length; 12 trees 22 inches in diameter at breast high, length of timber 50 feet, and 28 trees 16 to 18 inches in diameter, average length of timber estimated at 30 feet. Such a stand would indicate a yield of merchantable timber of at least 15,000 feet, board measure, to the acre. All over this lower division boggy tracts are frequently met with, in which the sour, black soil is covered with sphagnum, or bog moss; these support only a few seattered pines. On many of the steeper ridges the soil is pure sand and the pine growth is small and inferior, being largely replaced by Barren Oak, Sparkleberry, and the evergreen heather-like shrub Cerutiola cricoides.

In this lower division of the maritime pine belt the manufacture of lumber and the production of naval stores is carried on most actively. These products find their outlet chiefly at Mobile, while more than one-third of the lumber exported from Pensacola (to the amomit of at least 100,000,000 feet annually for the past few years) is also derived from this division. In the upper half of the maritime pine belt, with the appearance of the outcrops of limestones and limy marls of the Lower Tertiary (Eocene) formation, the country becomes more broken, with steeper hills and wider valleys, and a change in the character of the flora takes place, particularly manifest in the nature and distribution of the tree growth. In the fertile valleys and on the lower flanks of the hills broad-leaved trees, mostly Post Oak, Black Oak, Mockernut, Bitternut, Pignut, and Magnolia prevail, interspersed with Shortleaf Pine, Loblolly Pine, and Red Cedar-the Longleaf Pine occupying sporadic patches of drifted sands and pebbles. On the stepp and frequently wide ridges capped by these deposits, and on the rugged hills of the buhrstone and flinty cherts this tree forms the principal growth, and is in the openings more or less associated with broad-leaved trees. From this commingling of cone-bearing and deciduous trees and the alternations of pine forest and oak woods, this upper division has been designated as the region of mixed growth, which at a rough estimate can be said to cover about 5,000 square miles.

In the deep soil of light loam aud strong loany sands the Longleaf Pine attains a splendid growth and the number of large trees on a given area is greater than found in the lower division. The following measurements of 5 trees felled for test logs fairly represent the average dimensions of the timber from these hills in the vicinity of Thomasville, Clarke County:

Measurements of five trees.

Many of the trees of larger size were found affected by wind-shake in the direction of the rings of growth (ring-shake), in many instances impairing greatly the quality of the timber. The forests on these hills are open, with a comparatively small number of young trees. Upon 1 acre selected at random 46 trees were connted; of this number were found 4 trees of a diameter of 25 inches breast high, and the length of timber about 40 feet; 10 trees of a diameter of 22 inches breast high, and the length of timber about 36 feet; 26 trees of a diameter of 18 inches breast high, and the length of timber about 30 feet; 6 trees of a diameter of 15 inches breast high, and the leugth of timber about 25 feet.

On the average each one of these trees wond yield about 400 to 450 feet, board measure. On another acre 44 trees were found differing in their average dimension but slightly from the above, and indicating a yield between 18,000 and 19,000 feet of lumber to the acre. In this upper part of the coast pine belt lumbering and turpentine orcharding have not developed to any great extent, owing to its inaccessibility. However, where railroads traverse the section, the manufacture of
lumber is carrim on extensively，the output going to Northern markets．Much of the heavy hewn timber that is exported from Mobile and Densteola is furnished by this section．

In collerting the statistics on the lambering interests in the maritime pine belt of Alabama the information kindly furnished by firms engaged in the sawmill husiness or the lumber trade has whitly been relied upon．＇The anmal production was arrived at by multiplying the average daily output monted hy 200 ，the assumed mumber of working days of the year．From these data it appans that during the year $18: 3$ the daly output of the $2-5$ points reported from amonted in the deglegate forbout 76 b，000 feet，or to $102,000,000$ feet，board measure，for the year．This figure can be sath torepresent the averate of the anmal production for the past three years．To this amonnt， at a low estimate， 8 ，$, 000,000$ feet of round timber are to be aldel，cut in Alabama and sawn in western Filorida，inchuding the hewn square timber shipped from the State to Pensacola，thus swellins the present annmal production of lumber and square timber in the maritime pine belt of Alabama to a total of abont $275,000,000$ feet，board measure．The statement of the anmal exports of these products from Mobile by water and by mail for the past fourteen yeara will aptly illustrate the steady increase of the lumbering interests during this period．

Statement of erports of syutre timber，heven and sann，and of lumber shipped from Mobile to foreign and domestic ports from the year 15：9－s0 to the end of the year 1594.

The first statement of the production of maval stores in Alabama is that reported to the census of 1550 ，mentioned in that year as of a value of $\$ 17,500$ ．In 1570 the production had increased to 8,200 casks of spisits of turpentine and 53,175 barcels of rosin，valned at 8250,203 ．In 1873 the receipts in the market of Mobile had fully doubled，amonnting to nearly 20,000 casks of spirits of turpentine aml to from 75,000 to 100,000 barrels of rosin，besides 1,000 barrels of tar and pitch， of a total ralne of 5750,000 ．The largest production was reached $i n 1575$ ，when the receipts reached a value of $=1,200,000$ ，up to the present only approximated in 1883 with 43,570 casks of spirits of tupentine and 200,025 barrels of rosin，valued at $51,100,760$ ．Since 1885 a steady decline in the receipts of these products has taken place，due to the exhaustion of the supplies near the commer－ cial hiflways．

Table of exports of naval stores from Mobile durimg the period of 18S0－1804．

licar．	Spirits ［11！）31－ tille．	liosin．	Total value．	Vear．	Spirits turpen． tine．	Rosin．	Total value．
1－76．－ 1.		$\begin{aligned} & \text { lintrip. } \\ & 15 \mathrm{~A} .4 \mathrm{nin} \end{aligned}$		1887－83．	$\begin{aligned} & \text { r'ashs. } \\ & 2 A, 725 \end{aligned}$	$\begin{aligned} & \text { Jarrels. } \\ & 132,1055 \end{aligned}$	
1－－1 $\times 1$	$\because \because 1$	170，614			23， 197	106，124	
$\|-x\| \sim 2$	（1） 11.7	172，4188		18－8）－54．	21，029		
1－x－x	1：87\％	$\because 06.125$		$1896-11$	$\because 1.688$	898810	呇3．7，690
1－－－－	41．$=14$	210.572		1841－62．	2．3．172	87，4\％6	458，1102
1－al Ni ．	11． 11.6	？10． lim		1842－43	14．010	69.120	
$1-\mathrm{C}=1$	．1．4． 7 ． 1.6	175． 178		1893－31	24， 0151	$\times 5,419$	453，65t
$1=8$－ 7 \％	40．113	1＊゙ッ， 015					

THE CFNHKAL MJKR BHLT OF゙ ALAIBAMA.
The middle portion of the State is crossed from its eastern boumdary mearly to its western, with a decided northern trend along the western border, by a belt of drifted loamy sands, pebbies, and light loans covered in the eastern and central parts with an almost contimous forest of Longleaf l'ine, intermpted only by strips of hard:wood which occupy the bottom lands. In its eastern extent the Longleaf Pine becomes associated with upland oaks, hickories, and Shortleaf Pine, the Longleaf Pine being entirely replaced in the northern extension of this belt by the latter species.

This region of gravelly hills, as it is designated in the agricultural reports, ${ }^{3}$ is 200 miles in length, 5 to 35 miles in width, and extends over about 2,000 square miles. In the sections where the forest consists almost exclusively of Longleaf line the stand of timber is heary and of fue quality. Operators claim for these timber lands a yield of from $\overline{5}, 000$ to 6,000 feet of merehantable timber to the acre, excluding all trees under 12 inches diameter.

Ever since the opening of the great ralroad lines leading to Northern markets the manufare of lumber in this central pine belt has been carried on with umabated activity. In 1880 not less than $80,000,000$ feet, board measure, were transported by the Louisville and Nashville Railroad alone, mostly to the great Northwestern centers of commerce. In 1886 the production declined to $50,000,000$ feet. At present most of the older mill sites lave been abandoned and a few new ones established in other localities. Colonel Wadsworth reports 1 mills in operation located alongr the Louisville and Nashville Railroad, with an output of a little over $40,000,000$ fect a year on the average of the past few years. To this is to be added the production of the few mills on the Mobile and Birmingham Railroad, which will increase the present production in the central pine belt to about $50,000,000$ feet a year.

> THE FORESTS OF LONGLEAF PINL IN NOIRTII ALAIBAMA.

Forests of Longleat I'ine prevail with more or less interruption in the basin of the Coosa River, principally on the beds of tlinty pebbles and light, saudy loam which follow the upper course of the river from the base of the Lookout Monntain range near Gadsten to a short distance beyond the State line in Floyd County, Ga., where the Longleaf Pine finds its northern limit in about 34° north latitude, at an elevation above the sea of about 600 feet. With the reappearance of the above deposits south of Calhoun County the pine forests extend on the eastern side of the valley south to Childersburg. On the isolated ridges of old Silurian sandstone (Potsdam), and the metamorphic region adjoining, the Longleaf Pine is scattered and stmed and is not found at a greater height than 1,000 feet above the sea. In proximity to the mineral region the rugged hills and mountain sides have been completely denuded, the pine having been cnt for charcoal to supply the blast firnaces. In the valleys the forests of Longleaf Pine are of average density and the timber is considered of excellent quality, particularly in the northern part of the valley in Etowah and Cherokee counties. On the lower hills the timber is less abundant and somewhat inferior in size. The measurements of five trees felled in the hills near Renfroe, Talladega County, can be satid to fairly represent the average quality of this pine timber. The undergrowth in the open forest covering the low ridges and the narrow valleys is dense, consisting of Blackjack, Spanish Oak, Pignut, and Bitternut Hickory.

Measurements of fire tres.

${ }^{1}$ E. A. Smith: Agricultural Rescurces of Alabama, Vol. V. Reports of Geological Survey of Alabama.

The extinetion of Longleat Pine in the forests of north Alabama, as far as economic value is roncerned, appears to be certain. The dense unlergrowth of decidnons trees suppresses completely the second growth of the Longleat bine in tho closed forest as well as in the openings. On the momutain slopes a young pine is rarely seen, no tree being left to serve for the finture dissemination of the species, and the lew seedlings sporadically springing up are invariably destroyed by the diving of the herbage one year after another.

The output of the mills at Gadsten ant the mills in 'lalladega County along the Birmingham and Atlantic Railroad combined appears searcely to exceed $50,000,000$ feet, board measure, on the average per year. A tine forest of Longleaf Pine is found in Watker Comoty, strictly contined within an isolated patch of silicious pebbles and sands, sad to cover about $\mathbf{6 0 , 0 0 0}$ acres. Distant about 10 miles from the nearest railroad this forest has been but slightly invaded, and that to serve a small local demand.

Summary statement of shipments of lumber and square timber from chief centers of production in Alnbama during the ygar 189?

> Fret, 13. ג.

Transported by rail, mostly to northern markets ${ }^{2}$... 4. 9, 200), (000
Central pine leelt ${ }^{3}$.. $51,000,000$

Total... . . . $125,0000,000$
Wississippi.-What has been said of the forests of the maritime pine belt in Alabama applies in general to the same region in Mississippi. The coastal plain above the extensive grassy marshes lining the seashore and the wide estuaries of the streams covers a larger area, being from 10 to 20 miles in width and embracing, at a rough estimate, about 728,000 acres of the 16,410 square miles within the limits of the pine belt. The broad, scarcely perceptible swells, with a soil of sandy loam and loamy sand, were originally well timbered, the widely spreading depressions with soil of fine, compacted sand, poorly draned, bearing a sparse and inferior timber growth. The timber produced on these flat woods, or "pine meadows," as they are aptly called in the adjoining section of Alabama, being of slow growth, is hard and of fine grain, frequently with the fibers of the gounger wood contorted and of varied tints of color. This so-called curled pine is susceptible of high finish and is much appreciated for fine cabinet work. There is comparatively little valuable timber left in this coastal plain. The remainder serves largely for the making of charcoal and cord wood for the New Orleans market.

The rolling pine lands, rising suddenly above the plain, almost exchsively covered by the Longleaf Pine, cover (roughly estimated) about $7,712,000$ acres. The western limits of these forests are dificult to define, numerous ontlying tracts being found to extend into or even beyond the region of the loany hills. The region of mixed growth, characterizing the upper division of the maritime pine belt in Alabama, enters the State in the shape of a triangle, with the base along the Alabama State line from Bucatunna to Lauderdale and its apex near Brandon, in Rankin Connty. The generous soil of the arable lands in this region is mostly under cultivation. The forests of Longleaf Pine covering the stecp hills, rather remote from the high roads of commerce, have been as yet but little exploited. About $12,000,000$ feet, board measure, of lumber are shipped anoually by the way of the Mobile and Ohio Railroad, mostly to Mobile, from this region of mixed growth.

From the information that could be obtained, it appears that the cut of Longleaf line timber in this State on the arerage for the past three years reached between $420,000,000$ and $425,000,000$ feet. The chief center of the lumbering industry is located above the Pascagoula River, at Scranton and Mosspoint, where it has made great progress during the past thirteen or fourteen years. In $1850,60,000,000$ feet, boand measure, were shipped to foreign and domestic ports, which in the

[^4]year 1892 had increased to $127,000,000$. Comparatively much larger increase is noticeable in the shipments by rail to inland markets. By the reports courteously furnished by the auditor of the Illinois Central Railroad in Chicago, in $1880,12,000,000$ feet, board measure, reached Northern markets by this line, which in 1888 had risen to $62,000,000$, with a falling off in the succeeding year to $52,000,000$. In 1892 the shipments increased again to $78,240,000$, and reached in 1893 $181,4-4,000$ feet, board measure.

With the opening of the New Orleans and Northeastern IRailroad, in 1883, the lumbering iudustry took an active start in the virgin pineries. In 1892 fourteen mills are on record, with a daily capacity of not less than 400,000 feet; this amount corresponding fully to the actual ontput for 1891 as well as 1892. According to Mr. Rich, of Richburg, in consequence of the depression during the year 1893 , the output was rednced about one-half.

The following table of partial data regarding ammal shipments, made during the thirteen years ending with 1893 , from the chief centers of production shows clearly the constant increase of the lumbering industry since the close of the year 1880:

Tabular statement of lumber shipped annually by water and by rail from the centers of production in Mississippi, 15:3-SO, 1883-93.

a From $60,000,000$ to $90,000,000$.
RECAPITULATION FOR 1891-92.

From this amount are to be deducted about $15,000,000$ feet of lumber received fiom Mobile to complete cargoes, and $12,000,000$ feet of timber cut on the western frontier of Alabama and finding an ontlet at Pascagoula by the Escatawpa River, leaving a round $300,000,000$ feet, board measure, for the cut in Mississippi in 1892, arainst $108,000,000$, the cut reported to the census in 1880.

With the exhaustion of the forests along the Pascagoula and Escatawpa rivers and a few points between these streams and the Pearl River, which had been accomplished before the beginning of 1850, the naval-store industry remained almost dormant in the State until it began to receive a new start by the opening of the New Orleans and Northeastern Railroad. The production of the distilleries along this roail can be said to average about 15,000 casks of spirits of turpentine and 75,000 barrels of rosin annually since 1890 , which are mostly disposed of in the New Orleans market.

Eastern Lowisiona.-Forests of Longleaf Pine cover the upper part of eastern Lonisiana to the extent of abont 3,880 square miles. Their western limit might be said to follow the Amite River, but can not be clearly detined, since these forests toward the west pass gradually into the mixed growth of Shortleaf Pine, oaks, and hickories on the uplands which border the bottom linds of the Mississippi River. Slightly undulating tlat woods cover fully one fifth of the area, and, with a somewhat loamy, porous soil, support a better timber growth than is generally fomd in the that pine barrens of the plain. Owing to their proximity to the coast, these forests have been extensively invaded. The pine hills cmbrace about $1,619,200$ acres. Their forests have remained almost intact, their resources having been drawn upon only along the Illinois Central Railroad line and the tributaries of the Pearl River.

In 1890 seren sammills were reported, with a daily capacity, in the agyregate, of about 120,000 feet, board measure. It can sately be assumed that their amual output would not exceed $15,000,000$ feet, board measure. The products of these mills timd their market chietly at New Orleans. In former gears a considerable duantity of naval stores was produced in St. Tammany Parish, while at present only a few turpentine orchards are worked in the upper districts.

The importance of the pine forests in the western Gulf region can not be overestimated, ansidering the development of the immense timberless area beyond their western limit. The rapidy increasing population of the Western plains depends chielly upon them for the supply of the material neeted to build up the homes of civilization.

The forests of the Longleaf Pine west of the Mississippi River, as in regions so far considered, are geographically limited to the sands and gravels of the latest Tertiary formation. They make their first appearance in Lousiana above the great alluvial plain in the uplands bordering the valley of the Ouachita and follow its course for 50 miles, then extend west, skirting Lake Catahoula and the alluvial lands of the Red liver. These pine forests to the north of this river cover an area estimated at $1,625,000$ acres, extending northward for a distance averaging 55 miles. Toward their northern limit the forests pass gradually into a mixed growth of decidnous trees and shortleaf Pine. In the center of this region the pine ridges alternate with tracts of White Oak and Hickory. Tending toward the Red liver, the pure forest of Longleaf Pine which covers the undulating uplauds is mbroken and has up to the present been but slightly invaded by the ax. On the low hills of this northern division of the pine belt of northwestern Lonisiana the forests are somewhat open, and are composed of trees of the first order as regards their dimensions, the well-drained, warm, and deep soil of sandy loam being highly farorable to their development. This fact is clearly shown in the following statement of the ages and dimensions of six trees felled for test logs:

Mcasurements of six tras.

Upon 1 acre of the same plat, with the timber standing rather above the average, 38 trees were found. Of these there were 14 of 24 inches thiameter at brast high, estimated length of timber, 45 feet; 6 of 19 inches diameter at breast high, estimated length of timber, 40 feet; 9 of 17 inches diameter at breast high, estimated length of timber, 35 feet; 9 of 13 inches diameter at breast high, estimated length of timber, 30 feet.

In the opinion of experts, the average yield of 1 acre of these pine lands at a fair estimate is not less than 6,000 feet, board measure.

According to the statements of Mr. Sues, at Levins Station, $56,000,000$ feet, board measure, were shipped, in 1892, from the mills of this section.

South of the Red Liver bottom the forests of Longleaf I'ine continue unbroken to the Sabine liver and south to the treeless savanas of the coast in Calcasien Parish, their eastern boundary parallel with the eastern boundary of that parish. lioughly estimated, these forests cover an area of about $2,665,000$ aeres. From the marshy lowlands of the coast to the upper tributaries of the Calcasien River, up to Hickory and Beekwith creeks, the comntry is poorly drained, almost perfectly level, with a highly retentive and somewhat impervious clay subsoil. In consequence, these pine dlats are, for the sreater part of the year, more or less covered with water. These low, wet pine forests were stripped some years ago of all their werehantable timber, and only a comparatively small number of trees of less than 12 iuches in diameter were left stauding. On
these abandoned timber lands a young pine is rarely seen, the seeds shed in the fall being apt to rot in the water-soaked soil, or, if they happen to germinate, the seedlings are drowned during the winter rains. On the lands rising gently above the flat woods, with the ridges still low and wide and often more or less imperfectly drained, Longleaf line is fond of an exceedingly tine growth. The trees in the dense forest are tall and slender, and their timber is equaled only by the timber of the same class growing in the valley of the Neches River, in Texas.

The following measurements of five trees felled for test logs in the forests in the upper part of Calcasieu Parish, between Hickory and Beckwith ereeks, will serve as a fair representation of the timber growth on these low, broad ridges:

Number of tree.	Rings on stump.	Diameter breast high.	Ihameter below crowll.	Mean diameter.	Length of timber.	Total berght of tree.
201.	196	Inches. 28	Iuches. 23	Thehes. 24	Fret.	Feef. 119
502	195	23	16	119	50	127
203	100	31	14	17	40	117
204	180	19	15	17	40	102
205.	167	16	13	14	31	127
Arerase...	185	$\pm!$	16	18	43	110

Upon 1 acre, selected on the back of a low swell which might be said to represent the average of the timber standing, 44 trees in all were counted. Of these, 3 trees measured 95 inches diameter at breast high, with a length of clear timber estimated at 50 feet; 6 trees measured 23 inches diameter at breast high, with a length of clear timber estimated at 50 feet; 19 trees measured 18 inches diameter at breast high, with a length of clear timber estimated at 40 feet; 14 trees measured 14 inches diameter at breast high, with a length of clear timber estimated at 36 feet, corresponding in the aggregate to somewhat over 15,000 feet, board measure.

On another acre considered first class, rather level land, the soil fresh to wet throughout the year, 72 trees were counted. Of this number, 14 were found 27 inches diameter at breast-high, with an estimated length of timber of 50 feet; 5 were found 24 inches diameter at breast high, with an estimated length of timber of 50 feet; 13 were found 23 inches diameter at breast high, with an estimated length of timber of 50 feet; 8 were fond 21 inches diameter at breast high, with an estimated length of timber of 40 feet; 10 were found 20 inches diameter at breast high, with an estimated length of timber of 40 feet; 11 were fomm 18 inches diameter at breast high, with an estimated length of timber of 40 feet; 11 were found 18 inches diameter at breast high, with an estimated length of timber of 36 feet.

According to these figures the timber standing on this acre would amount to not less than 35,000 feet, board measure.

The chief site of the lumber industry of western Lonisiana is at Lake Charles. According to the information furnished by Mr. George Lock, of Lockport, La., the annual output of the sawmills in the vicinity of Lake Charles for the years 1892 and 1893 a veraged about $154,000,000$ feet, board measure, all shipped West and Northwest. It can be assumed that over one-half of the lumber sawn at Orange, in Texas, is cut on the eastern banks of the Sabine River, which amoment has to be credited to the cut of Lonisiana.

Summary of the production of Longleaf Pine lumber in the State of Louisiand in 150.3.

Texas.-The forests of Longleaf Pine extend from the Sabine west to the Trinity River and from the grassy savaunas of the coast region north to the center of Sabine, Sin Augustine, and

Angelina counties, and include an area of about $2,8,30,000$ acres. In amount and quality of the timber these forests are unsurpassed and are only equaled by the forest of the adjoining region in lonisiana. Toward their southern borders the comotry, like the pine flats of southwestern Lonisiana, is perfectly level and poorly dramed, with the soil water-soaked for a greater part of the year. These hats have been almost completely stripped of their merchatable timber. North of Cona the surface rises gradually above the water level in broad, low swells, and, being underlaid by strata of stiff loans, is more or less deficient in drainage. The intervening wide tlats are fiequently covered with a dense growth of large shrubs aud small-sized trees, consisting of varions species of hawthorn (Crategus crusgalli, C. rividis, C. mollis, C. berberidifolia), the Deciduous Holly (Ilex llecidua), Dahoon Holly (Ilex ctroliniana), Privet (Adelia acuminata), plane trees, and masnolias. These impenetrable thickets are common, and often cover many square miles, like the so-called Big Thicket in the lower part of Hardin County, said to be from 10 to 15 miles wide, cither way. The growth of Longleaf Pine which covers the gentle, wide swells, is dense, of tine proportions, and of remarkably rapid development. The average age of five trees felled northwest of Nona, 15 to 25 inches in diameter, is but little over one hundred and fifty yeurs, as the following measurements slow:

Measurcments of five trees.

In this region, owing to the direct communication of several ralload lines with the great centers of trade in the North and with the treeless plains of the far West, the manfacture of lumber has made a wonderful progress during the past twelve years. In 1880 the cut of Longleaf Pine in this State has been estimated at $66,450,000$ feet. From information received from parties engaged in the lumber business, the cut during the year 1892 can safely bo estimated at $440,000,000$ feet. The centers of lumber production are Orange aud Beanmont, but a great amount is cut at the mills along the several lines of railway passing through this region.

Output of Longleaf line lumber in Texa8 during the ycar 152~.
Feet, IB. M.
Orange (inclusive of $40,000,000$ of feet derived from Calcasien)........................ 45, 000, 000

Sabino Valley, Toxas and Northern Railroad.. 157,000,000
Missouri, Ǩansas and loxas linilruad.. . . . 143, 000, 0000
Houston, Kinsas and Texas Railroad.. 20,000, 000
Total.. . . $110.000,1010$
lor the renewal of the forests of Longleaf Pine in this resrion there is as little hope under their present management as in the adjoining region in Louisiana. In this cold, wet soil the seeds find but a poor chance for germination, and the surviving plantlets soon succumb to the same cause. In the pine flats seedlings are rarely observed among the tall broom sedge grasses (Andropogon) which, under the influence of light and a damp soil, thrive luxuriantly in the flat woods denuled of their timber growth, imparting to them the aspect of waving meadows or savamas.

1RODUC'IS.

V゙AtuF ANB USBE Ok THE: WOOD.
The wool of the Longleaf l'ine is hardly surpassed by any of our timber trees of economic importance, and is practically unsurpassed by any member of its own order in the qualities which are required for purposes of construetion, thas taking the dirst place among its congeners.

The timber from the damp flat woods of the coastal plain east of the Mississippi River, with a soil of almost pure, fine, closely compacted sand, is of slow growth and generally of the finest grain, oftell exhibiting in the sapwood that irregulanity known as "curly pine." In the perpetually damp to wet soil of the pine flats in sonthwestern Louisiana and in Texas, with a deep retentive subsoil richer in mutritive elements, causing a better and quicker development of the tree, the wood is of a more open grain. Owing to the excellent qualities of the wood of Longleaf Pine, its use in the varions mechanical arts and industries is as extensive as it is manifold. Its greatest value rests in its adaptability for heavy constructions-in naval atchitecture, for masts and spars; in civil engineering, for the building of bridges, viaducts, trestlework, and for supports in the construction of buildings. Large quantities of long and heavy sticks of square timber sawn or hewn fur such purposes are shipped to the British ports aud to the dockyards of the European continent, with a constantly iucreasing demand.

In the building of railroad cars, where great strength and elasticity is needed, the timber of Longleaf Pine is preferred to any other. For this purpose sticks from 36 to 4^{2} feet, 10 by 12 inches, are required, free from blewish.

Enormons quantities of the younger timber of this tree are eut every year to serve for crossties, used by the railroads not only in the pine regions, but in other parts of the country. The demand for these ties forms a constant and increasing draft upou the forest. The ties delivered are, on the average, $8 \frac{2}{2}$ feet long, 9 inches wide, and 7 inches thick, and must be all heartwood and free from blemish. The trees selected for this purpose are from 15 to 16 inches in diameter, and preferably only the butt ents are accepted. On an average 10 cross-ties are cut from 1 acre, each tie representing a \log which would make at least 75 superficial feet of lnmber. Since such a tie, ready for the roadbed, contains not more than 50 feet, board measure, it will be readily seen what au enormous waste results from this practice.

On the damp, sandy tracts of the lower Sonth, such ties will last tive or six years, and 3,000 ties are needed for 1 mile of road. Hence, for the construction of the 3,240 miles of railroad traversing the forest of Longleaf Pine east of the Mississippi River, nearly $10,000,000$ ties have been required, which being renewed every six years involves an anual cut of $116,000,000$ feet, board measure, to which must be added the amount exported to other regions.

In the Southern States, the West Indies, many places on the coast of Mexico, and Central and South America the lumber of the Longleaf Pine forms the chief, if not the only, material in the construction of houses. For similar purposes considerable quantities are of late years shipped to ITorthern markets, East and West, replacing in many cases, at least in parts of the buildings, the lumber of the White Pine, on account of its increasing scarcity. The fine-grained and "curly" varieties of Longleaf Pine lumber, by their beauty and the high polish of which they are susceptible, begin, of late years, to take a place among the higher-priced kinds of mood for ornamental inside work.

The importance and value of Longleaf Pine lumber as a material for constructions can not be better evidenced thau by the fact that little less than $1,500,000,000$ feet, board measure, or about one-third of all the lumber manufactured in the South, is being exported from Southern ports annually to domestic and foreign ports, besides furnishing almost the ouly material used at home in the construction of dwellings and all kinds of buildings. It also supplies material for furniture, as well as fuel, both in the form of firewood and charcoal, and its exploitation affords the means of subsistence to thousands.

Lightwood. - Whenever the saprood of the tree is laid bare copious exudation of resin takes place and the surrounding wood becomes charged with it. Thus the wood of the trunks of the trees tapped for the extraction of their resin soon becomes charged with this along the searified surface, aud, as with the evaporation of water from the dead roon, the resinification proceeds and the wood increases in weight and durability. In low, damp places particularly this process takes place more extensively. This resin-charged wood is termed lightwood. The lightwood timber, considered very durable when exposed to alternating conditions of moisture and dryness, is much preferred for posts, etc. Being highly inflammable, it serves for torches and kindling, and hence its name. Of late years a profitable industry has been started to utilize the resinous stumps of abandoned orchards as kinding material by cutting the same close to the ground and then, veneer
fashion, into long, narrow strips threc fourths of an inch thick, which are subsequently steamed and rolled in suall bumbles to make a convenient paekage for shipment. The knots, limbs, rootsparticularly" "fat," i. e., highly charged with resin-are nsed in the making of tar.

Sharconl buming.-Where a market is found the trees left standing, after the removal of the Jarger timber fit for sawlogs, are burned for charcoal. This industry is carried on to a greater or less extent in the mineral regions to supply the blast fumaces operated for the manfacture of charcoal iron. Large areas of the forests of the Longleaf, covering the hills in north Alabama, have been entirely denuded of their tree covering to meet the demands for such purpose.

Fuel ralue. -The air-dry wood of the Longleaf Pine is much esteemed for fied; containing but a small percentage of ash-not over 0.2 per cent-with a small amome of water, and adense and close fiber, as indicated by its high specific gravity, its fuel value is necessarily high. Being also casily inflammable, it is preferred where quick and intense heat is required, as, for instance, in bakeries, brick kilns, potteries, etc., and in the raising of steam for stationary engines on steamboats and railroad locomotives throughont the pine region, where mineral coal can not be cheaply obtained.

It can safely be asserted that among the trees of the same order there is found no other equally rich in resin. The manufacture of naval stores from the resin of the Longleaf Pine forms one of the most widely developerl industries in the pine forests of the eoast pine belt of the Southern States, and is searedy less important than the manufacture of its lumber, A full account of these industries will be fonnd in the accompanying appendix. Concerning the manufacture of tar, pitch, tar oils, and other products of destructive distillation of the wood and of rosin oil, see the Report of the Chief of Forestry, 1892, page 350 , etc.

The green leaves of the tree furnish by distillation an essential oil of balsamic olor closely resembling spirits of turpentine. The so-called pine wool is made from their cellular tissue, being treated with a strong alkaline solution at boiling heat, the remaining fiber being cleaned and carded. This pine wool is used in upholstery, and is said to be of value as an antiseptic dressing for wounds. Of late years it is manufactured into various kinds of textile fabrics. One fabric is a carpet which resembles cocoa matting somewhat, but is closely woven and is naturally of a ricl-brown color and very durable. This industry, only recently established, has already met such success that the manufacturers have added twenty nine looms to their work.

NOMENCLATUIRF AND CLASSIFICATION.

This tree was first described by Miller in the year 1668 under the name of Pinus palustris. The younger Michaux substituted for it the more approprate one of Pinus australis, under which name it was described by succeeding writers and generally known to botanists of recent date. To satisfy the law of priority, the name given by Michanx has recently been dropped and the old one reinstated, in the Catalogue of North American Forest 'Trees, ${ }^{1}$ published in the ninth volume of the census reports of 1850 . (See vernacular nomenclature in introduction.)

motanicat dheschirivon anb molrilioloory.

Lonves three, in a long light-colored sheath; commonly from 3 to 13 (sometimes 14 to 15) inches long; of a bright Lreen color and cloself set in brush-like chasters at the emds of thes stout branches. Cones large, dark tan colored, foto sometines x inches long an 2 to $_{2} \frac{1}{2}$ inches in diameter whon closed, 5 to 6 inches when open; scales abont 2 inches long athd one-half to 1 inch wide-rather uniform in width-somewhat thickened at the ends, and bearing a rather delicate incurved prichle; secol large, slightly triangular, three-eighths to soven sixteentis of an inch long and onefourth of an inch wide; often with two or three longitudinal ridges on one faco; whitish, with fow or abundant brown npecks; wing $1 \frac{1}{2}$ to 2 inches long and of a glossy brownish to deep purple-brown color.

The most conspicnous and distinguishing feature of this species is the silvery thick terminal bud, or rather the bud-like clusters of the youns leaves inclosed in their finely fringed subtending scales. Its branches are rough, covered with the bases of the imbricated leaf scales, the elongated silvery fringes having fallen ofl.

[^5]BOOT, STEM, ANID HRANCH SYSTEM.
The Longleaf Pine attains a height averaging 100 feet, ravely exceeding 110 feet, with a diameter breast high, when fully grown, varying between 20 and 36 inches, rarely more. The tall, straight, very gradually tapering trunk arises from a massive taproot which, in favorable situations, penetrates the soil to a depth of from 12 to 15 feet, and sometimes much more. It has several stont, comparatively short lateral roots, which assist the tree in its hoh by slanting deeply into the ground, aud some of greater length are placed more or less near the surface. Its crown is open and elongated, of irregular shape, about one hall to one-third of its height. The stont limbs are rarely over 20 feet in length, twisted and gnarled and sparingly branched. The trunk is covered with a reddish-brown bark, one-fourth to three-fourths of an inch thick, furrowed thronghout its full length, crossed horizontally by deep fissures, and scaling off in thin, bluish, almost trausparent rhombic flakes.

LEAVES AN1) TIEIR MOIIFICATIONS.
Like all the pines, this species produces during various stages of its growth seven different modifications of leaves as recoguized by botanists, all more or less specific in character:
(1) Cotyledouary, or seed leaves (first leaves of the embryo), which soon wither and disappear (P1. VII, a, b). (2) Primary leaves succeeding the former immediately on the main axis (Pl. V II, c), Which either wither or later on are transformed into, or succeeded by, more or less permanent bracts or scales covering the branches (Pl. V, a). (3) The secondary or foliage leaves rising from the buds produced in the axils of the primary leaves or of the bud scales by which they are represented (PI. VII, d), permanent foliage of the tree, with three leaves in one sheath. (4) The bud scales forming the sheaths of the folinge leaves (PI, IV $, b, c, d$) at base. (5) Involucral bracts of the male flower (Pl. V, f). (6) Involucral scales of the female inflorescence (ament) (Pl. V, c). (7) The bracts which support the carpellary scale bearing the seed (Pl. V, h). ${ }^{2}$

The primary leaves, which succeed the cotyledons on the primary axis, are in form and structure true leaves. They are softer than the final foliage leaves, have a broad base, are rounded on the dorsal side and not chaneled, the whitish transparent margins being finely but distinctly deuticulate. It is rave that secondary leaves proceed from the axils of these chlorophyll-bearing primary leaves. With the more frequent appearance of the ordinary leaves, these primary leaves wither and henceforth appear as triangular scale-like coriaceous persistent bracts, with broad, hyaline, long-fringed edges, in the axils of which the undeveloped branchlets are produced bearing the secondary or foliage leaves.

The chlorophyll-bearing primary leaves exhibit a simple structure. The fibro-vascular bundle is single, embedded in a wider ring of large cells free from chlorophyll, and the resinous ducts fetrer in number, one, or rarely more than two, beiug irregularly situated in the chlorophyll-bearing parenchymatous tissues, and mostly external, i. e., close to the thick epidermis. But fer of these leaves are formed after the appearance of the foliage leaves, and a few of them persist throughout the first season. ${ }^{2}$ The cataphyllary leaves forming the sheath of the foliage leaves are in this species composed of eight successive pairs of bud scales; those of the first pair are blunt, Hat, deeply coucave and coriaceous, with sharp edges; the others are more membranaceons and with fringed edges, the closely interwoven edges entwining the base of the fascicle. In the secondary leaves the very numerous stomata form, on both sides, regular longitudinal rows. Parallel with these, at regular distances between them and embedded in the parenchymatons tissue, are found bundles of numerous, elongated, thick-walled cells, the so-called hypodermal or strengtheuing cells. The resin ducts, not over five in number, described by Engelmann as internal, have been foud in the specimen examined rather parenchymatous, invariably so on the dorsal side.

Three of the secoudary or true foliage leaves are united into one bundle, inclosed at the base by a persistent sheath from oue-half inch to an inch in length, formed by the bud scales or cataphyllary leaves. On the older trees the leaves are rarely over 8 inches in length, but during the periods of most active growth they are found 12 to 18 inches long. They are finely serrulate, rounded on the back, channeled, and obtasely triangular in cross section.

[^6]
EXPL ANATION OF Plate IV.

Fig. ", branch showing the termina! spring shoot of the season with characteristic, large silvery white winter bud; the bundles of leaves arise from the axils of the leaf-bracts of the last two seasous, the first leaves of the second rear alrealy shen; b, detached bundlo of mature leaves with sheath; c, d, scales of the sheath, magnitied three and nine times; e, transverse section throngh hase of leaf bundle showing imbrication of sheath scales, magnified 30 llameters; f, transperse section of an immature leaf, magnified 30 diameters; g, transyerse section of a mature leaf, magnilied fo diameters, showing the microscopic structure (as pointel out for f^{\prime}. echinata, f, f); h, longitudinal section of the dorsal sinte of a mature leaf showing two rows of stomata and the sorrated edge, magnitied 45 diameters.
Ω

σ

8
6

Owing to the shedding of the older leaves at the end of the second year and to the short annual growth of the axis, the leaves on the older trees are conspicuously crowded into dense tufts or tassels on the tips of the branchlets.

The high development of the organs of transpiration, as shown by the immense number of breathing cells, clearly indicates that forests of the Longleaf Pine, and in fact of most evergreens, are not less important than forests of deciduous trees in intluencing atmospheric conditions, particularly when it is considered that in the former, clothed with perpetual foliage, this function suffers but little interruption of its activity.

FLORAL ORGANS.

The male and female flowers are sometimes found on the same branch; they are, however, more frequently situated on different branches, the male nlowers mostly on the lower (P1. V, b). The male flowers consist of a slender axis, the staminodial column, around which the numerous naked anthers are densely crowded, forming a cylindrical catkin-like flower from 2 to 212 inches and over in length, surrounded at the base by a calyx-like involucre consisting of twelve ovate somewhat leathery bracts, of which the lowest pair or exterior ones are laterally compressed, strongly keeled, and much smaller. The connective of the dark-rose purple anthers spreads out in a semiorbicular denticulate crest; a number of these male flowers are crowded around the base of this year's shoot, forming a dense whorl. After the discharge of the pollen the withered flowers remain for several mouths on the tree. The pollen remaining for a long time suspended in the air is often wafted to widely distant localities. In the latitude of Mobile its discharge takes place duriug or shortly after the second week of March.

The female flowers (see Pl. V, a) are united in a subterminal oval, erect, short-stalked catkin, which is also surrounded by an involucre, the bracts being more numerous, longer, more acuminate, and membranaceous than those of the male flower.

The carpellary scales bearing ovules are oblong oval, tipped with a strong reflexed point, aud are almost hidden by the thin tlat scales by which they are subtended, which, however, they soon surpass in size. During the first year the young cones make but slow progress in their growth. On the opening of the second season they are scarcely over an inch long; during the summer they increase rapidly and reach their full size during the latter part of the fall. The cones are placed horizontally on the branches below the terminal bud (subterminal), sessile, slender, conical with at slight curve and from 6 to 8 inches long; of a dull tan color; the thick seales are light to dark chestnut brown on the inside, 2 inches or slightly over in length, and bear on their exposed end, or apophysis, a small but prominent tubercle armed with a short recurved prickle (see Pl. VI). Plate VI exhibits truly and fully the open cone and especially the fine markings on the apophysis of the scale. The cones are shed in the latter part of the winter of the second year, rarely remaining to the following spring. On breaking from the branches they leave the lowest rows of the seales behind.

sfeds.

The seeds are strongly convex, oblong, oval, less than a half inch long, and surrounded by the long oblique wing (see Pl. VI). The shell is whitish, at the front face marked by three prominent ridges, flat, smooth, and darkly spotted on the posterior side. It incloses an oily kernel, covered by a white seed coat; rich in nutritions matter and palatable, the seeds furnish in fruitful years an abundance of mast. They are shed before the fall of the cone during the dry weather, most abundantly during the latter part of the fall (end of October or November the best time for their collection) and in a lesser degree during the wiuter. They germinate easily after reaching maturity, and it often happens, in wet, sultry weather, that they begin to sprout before leaving the cone, in which event the whole crop is destroyed. This, together with the killing of the flowers by late frosts, seems to be one of the main causes of failure of the seed crop so frequently observed. From the behavior of the seed just mentioned and from itsoleaginons character it is to be inferred that the period of time during which the seeds retain the power of germination under ordinary circumstances is but a short one, but as a matter of fact seeds a little over a year old have been known to germiuate.

EXPlanation of plates v and vi.

Plate V. Fig. a, branch with two female aments (second week of March), at the end of terminal young shoot of the season clensely covered with fimbriato silvery bract subtending the leaf buls which aro still hidden in their axils; helow are two immature cones of one season's growth and mature closel cone of two seasons' growth (October); b, branch with the malo inflorescence, the leaves cut away to show the dense cluster of maie towers which closely surround the apex of the young shoot; c, female ament with basal scales forming the calyx-like iuvolucre; d, d, d, carpellary or seed-bearing scales of female flowers more advanced, lateral, ventral, and dorsal views-magnified 5 diameters; c, detacherl male flower with basal involncral scales, belore opening (dehiscence); f, male flower, after discharge of the pollen; g, three detached anthers, lower sides showing longitudinal slits of the pollen sacs just opening; lateral view of an effete anther; another seen from upper side showing the transverse semilunar crestall magnified 5 diameters; h, detached female flower seen from above; the cuspidate carpellary, or seed scale, bears twostrongly bifid naked ovules at its base; i, female flower riewed from below, dorsal side; the bract almost covers the carpellary scale, leaving only the tip of the latter and the cusps of the ovules visible; magnified 5 diameters.

I'late. V' Vig. a, mature open cone, after shedding seed; b, cone scale scen from lower or dorsal side shoving the apoplysis with low umbo and small, weak prickle; c, cone scale seen from upper or ventral side with seed in place; d, seed, upper sile; e, seed detached from c, lower side; f, seed detached from wing, upper side, and g the same seen from lower side.

Plate V.

The wood of the Longleaf Pine is heavier and stronger than that of any other pine offered in the market. The average weight of the kiln dry wood is about ; pounds, that of the lumber where the outer lighter portion of the \log is largely cut away about 40 pounds, per cubic foot. The kiln dry wood of the butt weighs about 45 pounds per cubie foot; that of a $\log 50$ to 60 feet from the ground only about $: 33$ pounds, a decrease of weight (and with it of strength) of about $2 \overline{5}$ per cent. Similarly the wood of imer portions of a log are 15 to 20 per cent heavier than those of the outer portions; or, in other words, the wood laid on when the tree is young is heavier than that laid on when it is old, quite contrary to the common belief which seems to associate the light sapwood color of the young sapling with inferior material. The wood shrinks about 10 per cent of its volume in drying, about 6 to 7 per cent along the rings (tangentially) and 3 to 4 per cent along the radius; seasons easily and without great injury. As in other pines, the greatest amount of water is contained in the silpwood, varying from 30 to 50 per cent of the weight of the fresh wood, while the heartwood contains but about 20 per cent.

In its stiffuess and strength the wood is remarkable. The average of a great number of tests indicates for the dry wood of Longleaf Pine au elasticity of $1,540,000$ pounds per square inch; strength in cross breaking, 10,900 pounds per square inch; strength in compression, $6,8,0$ pounds per square inch; strength in tensiou, 15,200 pounds per square inch; strength in shearing, 706 pounds per square inch.

In its structure the wood of the Longleaf Pine resembles that of the other Sonthern pines. Sapwood and heartwood are well defined; on the fresh cross section the former is light yellowish white, the latter a yellowish brown; drops of limpid resin ooze from every resin duct in the sapwood, the surface of the heartwood remains dry (exceptions only in "lightwood"). The sapwood contains much more water, but is fur less resinous than the heartwood. This latter contains 5 to 10 per cent of resin (1 part turpentine to 15 to 20 parts resin), while in the former the resin rarely exceeds 2 per cent. If not kilu-dried, fresh sapwood rapidly "blues" on exposure; heartwood does not, and in general excels the sapwood in durability. On drying, the sapwood shrinks more than the heartwood of the same weight. Contrary to common belief, the wood substance, or cell wall, is not increased in the change from sapwood to heartwood, the walls do not grow thicker, the cavities of the cells do not fill up with foreign matter, nor does the strength of the wood seem to be increasel by the change. In general the width of the sapmood is greatest in young and thrifty trees, grows smaller in old and stuated trees, is greatest in the lower parts of the stem and smaller in the top and branches. In old logs the sapwood is made up of from 60 to 100 rings, showing that the wood of any one ring remains in older trees seventy to one hundred years in the sapwood condition before it changes to heartrood. In young trees this period is much shorter, twenty five to forty years commonly sufficing for thrifty trees at the age of sixty to seventy years, but in stunted individuals it is materially prolonged. The share of the sapwood in the total volume of the stem is always considerable; even in typical old trees of this species it forms 40 per cent and more, while thrifty stems mider one hundred years are practically all sapwood.

The annual, or yearly, rings are clearly defined; they are widest near the pith and grow rather uniformly uarrower toward the bark. In the inner part a width of one-twelfth of an inch is quite common; the rings near the bark of old logs usually measure less than one twenty-fifth of an inch, often scarcely one fiftieth of an inch. For old trees the average width for the entire stem may be set at about one twentieth to one-twenty fifth of an inch. Each ring consists of two well-marked parts, an inner, softer, whiter part, the springwood, and an outer, havder, and darker portion, the summerwood, so called becanse formed during the latter part of the growing season.

The amount of the summerwood in each ring differs in different parts of the tree. It forms about 45 per cent of the volume of all the wood of the stmop, and only about 24 per cent of the wood 60 feet from the butt. It is greater in the heary inner part of an old log than in the lighter outer portions, and being of a darker color furnishes a convenient means of distinguishing heary wood. In its finer anatomy (histology) the wood resembles that of the other pines of the fida group. (For the details of structure see the comparative study by Mr. Roth appended to these monographs.)
'This statement is furnished by Mr. Filihert hoth, in charge of timher investigations in tho Division of Forestry.

foxplanation of plate Vif.

[Figures nathral size, except where otherwisn noted.]
Fig. a, germinating seed; b, young seedling (early spring) with the 8 cotyledons just unfolded; c, seedling a few weeks older, showing central chuster of primary leaves just unfolding; d, seedling at the end of the first or begiming of the second scason, showing bundes of true foliage (secondary) leaves succeeding the primary leaves which have disappeared; e, young tree, 3 to 1 sears old, with characteristic large root system; one-third natural size.

GBOWTII AND DEVRLOPMENT.
In a fruitful year, before the close of the season, with the advent of spring, a dry and sumy state of the atmosphere favoring the fall of the seed, the seedlings are fonnd to come up abundantly in every opening of the forest where the rays of the sun strike the dry sround. The lower (hypocotyledonary) part of the axis of the plantlet is close to the ground, with right to ten erect colyledons from 1 to $1 \frac{1}{2}$ inches in length, their tips inclosed in the shell of the seed, with the Jong wing persistent and borne banner-like at the top of the plantlet (Pl. VII, u). The elongation of the ascending axis proceeds slowly, growth in length being retarded until a certain thicliness has been attained, resembling in this respect the growth of the stem of endogenons trees.

Upon examination of a seedling in the latter part of April the cotyledons had disappeared and the canlicle was found to be from one eighth to one-fourth of an inch long, its length not exceeding its diameter, hidden by a dense tuft of the needle-shaped primary leaves, which closely invest the terminal bud. At this stage a few fascicles of secondary leaves are already showing themselves, still inclosed in their sheaths.

During the first three or four years its energy of growth is mainly expended upon the development of its powerful root system (see PI. VII, e). Before the first spring season has passed, the stout spindle-shaped taproot of the seedling is found to be over 3 inches in leugth and provided with several fine lateral rootlets, sometimes nearly as long as the man root.

With the opening of June the primary leaves covering the axis are nearly all withered, only a few remaining to the end of the season. With the development of the suppressed secondary axes from which the foliage leaves proceed, the primary leaves are reduced to chafy fimbriate bracts. Only few of these primary leaves retain the needle shaped form and green color, namely, those from which no leaf-bearing brauchlets were developed. During the first season many of the fascicles of the foliage leaves contain only two leaves, and sheaths inclosing only one leaf are frequently observed.

By the end of the first year the stem of the plantlet is rarely over three-fourths of an inch in length, the main root having attained a length of from 8 to 10 inches.

Haviug reached the end of the second year the taproot is found from 2 to 3 feet in length, the stem scarcely $1 \frac{1}{2}$ inches long, with an increase of diameter hardly perceptible. The conical termination of the spring shoot is now densely covered with the delicately fringed bracts inclosing the buds of the foliage leaves, which impart to it the appearance of a silvery white tuft, by which this species is recognized at first sight.

During the following two years the growth proceeds but slowly, the length by the end of the fourth year averaging not more than 5 inches with a thickness of three fourths to seven-eighths of an inch. During the same time the taproot is found to gain constantly both in thickness and length (see P'l. VII, e). A few single branches now make their appearance on the main axis. The increase of growth from one season to another up to the seventh or eighth year is difficult to follow, since the difference in the appearance of the spring and summer wood cells in the spongy wood of young trees is hardly perceptible, and the rings of annual growth, even as seen in cross sections prepared for microscopical examination, are mostly too indistinct to atiord a safe criterion of their age. As far as could be observed the growth proceeds equally slowly during the fifth and sixth years, the plant at the end of that period being from 5 to 7 or $7 \frac{1}{2}$ inches in length.

Stage of ropill growth.-With its seventh year the tree may be said to enter on its most vigorous growth. Henceforth the stem (primary axis) increases rapidly in length, and the development of branches (lateral axes) proceeds at an equal rate in regular whorls, to which the symmetry of the tree in that stage of its development is due. During the seventh year, generally, the tree doubles its length, and during a number of successive years the rate of growth in that direction varies between 10 and 20 inches annually, as is clearly shown by the length of the internodes separating the whorls. As the branches increase in length they produce, in the same order mostly, two opposite secondary branches. With the rapid expansion of the leat surface, the formation of wood keeps pace. The rate of growth in diameter, as well as in height, during this period, is of course variable according to differences in the physical condition of the soil as well as in the available amount of plant food and moisture it contains, and no less upon difierences in temperature and of exposure to light and air. These variations are clearly shown
in the amexal fables, exhbiting the rate of growth of the tree during its most active stage. With the increasing aceretion of wood the ammal rings become sharply detined, leaving no doubt as to the age of the tree.

To make sure as to the relation between the annual rings and the age of the ree, the age of secoud growth was ascertained by close inquiries directed to settlers who knew the time that had elapsed since this second growth made its appearance in the abandoned fields or in the forest. In every instance it was found that the number of rings accorded closely with the information elicited.

To ascertain the diflerence in rate of growth and quality of wood between trees grown upon ground once thrned by the plow and those sprung up in the original forest on the same soil, suveral trees of nearly the same size were felled in what clearly appeared to be the remant of virgin forest, and in a grove grown up, in a field abandoned years ago. It was made evident that trees in the original forest required almost double the length of time to attain the same dimension.

A field covered with saplings quite uniform in growth and known to have heen thrown ont of cultivation during the years 1863 and 1864 afforded a good opportmity for these investigations. A number of trees, varying in diameter between $10 \frac{1}{2}$ and 11 inches, and in height between 45 and 50 feet, showed from 30 to 35 rings of growth. The length of the spring shoots on the main stem of these trees was found (Jume 8) to be from 21 to 24 inches.

In another fine grove, covering a field which was known to have been cultivated for the last time during the years 1835 and 1830, a number of trees were cut down for measurement. The number of rings was found not to exceed 45 . These trees also showed great uniformity in size, measuring near the base $11 \frac{1}{2}$ to 12 inches in diameter and from 68 to 72 feet in height. The wood was sappy thronghout and useless, except for fuel and for making chareoal. For this purpose the land is rented at 4 to 55 per acre. In this grove, ranking as best pine-woods land, the soil of which was nearly level, well drained, and with a light, loamy subsoil, 110 trees of the above dimensions were counted on 1 acre.

Among the trees taken from the forest for determining the difference between forest growth and field trees, one measuring 12 inches in diameter and 76 feet in height showed 85 rings of annual growth, with 9.2 inches of heartwood. Two others, 34 and 15 inches in diameter and 70 and il feet high, showed 96 rings each. The shoots of the year (June 8) on the primary and lateral axes of these trees were found to be but little over 1 inch in length.

In a third grove, upon poor, sandy, undulating ground, a mumber of trees below medium size were fomd cut down to serve for posts and logs. In 25 of these trees the diameter varied between $7{ }^{3}$ and 8 inches, with a nearly uniform height of 60 to 62 feet, the first lint being 18 to 20 feet above the gromid. The number of rings saried between 48 and 50 . The forests in the same vicinity were stripped of their more valuable timber a mumber of years before. The largest trees of the original forest growth remaining were from 12 to 15 inches in diameter. Several were bronght down for measurement and fomen to be 73 feet in height by 14 inches in diameter, with 126 rings and 9 inches of heartwood; 73 feet in height by 13 inches in dianeter, with 94 rings and 6 inches of heartwood; and 89 feet in height ly 14 inches in diameter, with 107 rings and 8 inches of heartwoot.

When the tree has reached its second decade it begins to produce flowers and fruit. Ifaving during the course of the following ten to fifteen years reached a length of from 40 to 4 , feet, with the man stem clear of limbs, the growth of branches does not proceed with the same regnlarity; consequently, they are no longer arranged in regular whorls, but appear irregularly, and thus the symmetry of the tree is lost.

[^7]Thasiv I．－Measuremonts of young trees of Imagleaf I＇ine．

Number ol trees．	Num． bevo of rings．	1）iamme	Mejerlit．		J，ociality．	ISemarks．
		breast high．	$\begin{gathered} \text { To } \\ \text { erown. } \end{gathered}$	＇lıfil．		
		Inches．	Find．	Fut．		
2	8	19		${ }_{1 / 2}$	Sprin	Opening in forent ；pasturn jratacted from tire．
3.	10	4		$2{ }^{2}$	do	Odd firld；last time plowetlin 1sit．
4.	10	2		人 ${ }_{\text {\％}}$	．do	Intlu－3nilst of forest．
18.	10	2	5	10	Levins station，Lat．	（）x．nima in forent．
5.	11	23		11	Springlaill，11a．．．．	theple forest．
6.	11	5		23	－．． 10 ．．．．．．．．	dod tielal．
319	11	3	6	17	Hiducland，s．（	（Juen forest．
7.	12	21		16	－．dio	Paxture in lineat ；irmond never thrnmet．
19.	12	4	9	29	Levins Station，Lal．	Ohal clearing；furimed gronmis．
8.	13	21		15	．．．dlo ．．．．．．．．．．．．．	Do．
$32)$	12	2	9	14	Ridgeland，心．C	Opening in forast ；Aambly bplaruls．
318.	13	4	8	24	．．．do．．．．．．	1）9．
9.	13	93		15	Sprinehill．Ala	Woorl pasture．
10.	13	31		19	－．．．．dr ．．．．．．	Old fielil．
248	13	4	8	20	Thomasville Ala ．．．	Opening in forest：hills．
317	14	4	7	24	Hukrelamb，© C．．．	Opuning in forest：dry uplands．
11.	15	$5 \frac{1}{2}$		3	Springlill，Alar．	Field alondoned in $180^{2} \pm$.
260	16	2^{2}	8	16	Thomadsvilc，Δ la ．	Indosed forest ；hills ；turdor cover，
199	18	2	16	23	Nona，Tux ．．．．．．．	Flat，damp；operning in forest：exposurn free．
198	13	2	13	约	．．．．do ${ }^{\text {d }}$ ． ．	1）o．
194	$\because 0$	6	18	4	．．do	Light swell in opre forest ：expmenre frem．
12.	80	10		43	Springhill，．11a	（hal field；deep soil ；almandonal in 18f4：from onm ofn＋1 grove．
13	91	10		4.5	＇．－．．do ．－．．．．．．．	Ik\％．
14.	91	10		50	－－．．do	Io．
15.	25	11		50	．do	Ohl field：poor，broken fround．
259	22	\because	11	$\because 1$	｜Thomasville，Ala．．．	Virgin forest；ilnder cover．
246	20	4	14	24	．．．．．dlo ．．．．．．．．．．．．．	Virgin forest ；is oprning ；fres．
316.	21	6	10	28	Ritlgelaud，s．C	Open forest；mandy uplands：free．
195.	$\because 5$	7	$\stackrel{2}{4}$	47	Nona，＇lex．	Flat，damp，deuso forest in opmongy expmantefros．
194	25	4	20	44	．．．do．${ }^{\text {do．．．．．．．．．．}}$ ．	1）0．
196	$\because 0$	6	17	44	¢．．．do．	Ion．
209.	36	4	15	35	Ryansville，Calca－ siphl I＇aribl．La．	Hlat，damp；omen forest．
210.	39	4	17	3.	．．．．do ．－－．．．．．．．．．	10．
208	40	6	21	5.1	－．indo	10.
315.	40	8	17	6：）	liidgeland，S．C ．．．．．	bonmulary field：open．
207.	43	6	33	5.3	livausville，La．．．．．．	Flat，damp；spen forent．
256	43	6	28	47	Thomasville，Ala	Itense oak openimit：sipuressal．
$\because 58$.	43	4	34	56	－．．．（1）	In open forest．
16.	48	8	－	60	Springhill，$\pm 1 \times \ldots$	Old pasture，on pont howken ground．
17－21．	32	8		61	．．．．do．do．－．．．．．．．．．．．	6 trees from grove of old jasture：yielth，sticks and ynats fur fencing and bulnling ；arronging： 0 feet in ！ongth．
22－：5	$4 \times$	11		73	． 10	and rented to chareoal bumuers．
${ }^{29} 9$	55	\％		58	－ 11	Old pasture．
723.	71	5		40	Chmachatin，Ala．．．	Ohl furpentine orchard：hed；expused lor over 20 years，ont seasunt after anotber，to dire．
2.53	78	G	47	62	Thomanville，Ila．	Under cover of forest．Whel
236	80	6		50	Chatehchala，Ala．．．	bleeding ame repated burning of the wowls by their retarded gronth．
$\because 4 a$	87	8		59	－－．．do ．．．．．．．．．．．．．．	Io．
254	9.5	7		58	－do	$1)$ o． I）
26.	105	8		50	－－．．do－－－．．．．－－－－－－	Io．
$27 \ldots$	105	8	．．．．．．	59	．．．．dlo．．．．．．．．．．．．．．．	Do．

Stage of slow growth．－Rapit as is the increase in length of the primary axis or trumk，amomnt－ ing during the first half century，in the average，to $1 \frac{1}{9}$ or 1 inches ammally，the rate is sulase－ quently greatly diminished，averaging from the fiftieth to about the one lmmdred and fifteenth year but from 4 to 5 inches，and from this time to the age of two hundred and fifty years only $1 \underset{b}{ }$ inches－that is，at a relative rate of 10,3 ，and 1 in the threo successive periods．The decrease in the accretion of wood corresponds with the reduction in the growth of the branches and conse－ quent reduction of foliage．From what has been said，it is seen that the Longleaf Pine attains maturity of growth，with the best qualities of its timber，at an age of from one hundred and eighty to two humdred years．After having passed the second century the trees are found frequently to be wind shaken and otherwise defective．The deterioration of the weather－beaten crown lessens the vitality of the tree，aud the soil，momer prevailing comlitions，becomes less and less faromble． In consequence，the trees become liable to disense and mostly fall prey to the attacks of parasitic fungi（red heart）．Instances of trees which have reached the maximmon age of two hundred and seventy－five or three hundred years are exceptional．

In order to ascertain the age required to furnish merchantable timber of first quality，meas． urements were made of a number of logs in a log camp in the rolling pine nplands of the lower division of the coastal pine belt near Lumberton，Washington Connty，Ala．From the results obtained is appears that in this section of the eastern Gulf region，at the lowest digure，two hundred years are requisite to produce logs of the dimensions at present cut at the sawmills．

Wable：If．－Meaburamenta of Iongledf line－poriot of slorer growth from one humdred to tro hundred years．

			Height． 要 E E E	Ibatmeter below rrown．		Jactanap in diam． mer for ach macrestive half contury，in inchers．	Numbiner of yeara re－ yurtal for every inch ol wod for each nil＇ cessivelaaf century．	lomality．	Rernarka．
	bis	I 14，		$\begin{aligned} & I n \\ & 11 \end{aligned}$	$I n .$				
$1!0$	10.3	4	6211.					Nonti，Tex	Flat；anil，teop andy loam，damp；vir－ gin forest close；expusure free．
21	110	17	16 92			．．．．．．	｜	Wallace，Ala	Gently rolling，pine upland，close；vir． gin forest；mbintly under cover and appressed．
71	1115	1	$\therefore 8.7$		．．			Wilson，Ala	liored timber：abandoned for five yeara； dry bine，rollins pine foront；exjosure frew．
	10.7	11	4118				51.61	Chunchula，Ala．	（）pers forest ；exposure freg．
1：	111	11	4． 78				11.10 .5	d 10	J！口．
（1）	11：	1.1	S117	11			．．．．．．．．．．．．．．．．．．	Ievinsstation，La．	1）o．
1111	11：	－11	5.61111	1．7	11			Nonit，Tex ${ }^{\text {N }}$	Flat woods；closed forest：damp，etc．
：15：	$11!$	12	310 x 3					Kidryeland，S．C	Cloaring in forest；soil elry，sandy．
9	11.	12	：3．4 \quad \％		3	Bi） 41	0.111 .1	Chumehula，Ala	Leolling pine lands；dry，sindy．
： 0	115	17	7！1 91					Vınat，l＇ex	Flat wouls ：moildampicrownoppresmed．
	115	1：3	46			－1． 5	9． 710	Chimehula．Ala	Kolling pine woonls ；dry，mandy．
171	116	1\％	4x 7					Wilsou，Ala	Loresl；dry uplauds；open fornst；par－ tially tre\％．
2：	118	1.5	4．） xd	11	21			Eastman，（ia．．．．．．	Gently rolling uplands，dry；open for－ est：exposure free．
21	123	17	4178		21	6i Cig	7.7 7．8	Chunchula，Ali．	Du．
23	1：\％	18	（i）10゙			951	$5.5 \quad 9.1$	Springhill，Ala．	Expuserl wlope；open forest ；noil，Joamy sand；exposure free．
2\％1	033	18	$44 \quad 43$	13				Fenstman，（sa．	Open forast：dry，sandy；exposure froe．
20	10.5	17	it 95	10		1		Lenfroe，Ala．．．．．．．	Liocky hillside；try subsoil，loam；expo－ sure frec．
25	145	1！）	43 （n）	14		．．		d1	Rocky hillside；dry subsoil，loam；par－ tially free．
：	14.7	20	6210	．．	5			6idytumb	Gently umbulating open forest；loamy sand；exposure free．
$\because 10$	1411	21	$6: 99$		$\because 3$.	Open pine forest；eandy loam，dry； exposure free．
177	150	$\because 3$	63129	16				I．evins Station，Iam．	Do．${ }^{\text {d }}$ ，
21	15.3	$1 \times$	（i．）！${ }^{\text {a }}$			$(\mathrm{t}$ 5 5	8.38 .70 .1	Spriwghill，Ala．．．．	Open pine forest ；loamy nand，dry；ex． posure free．
$1!$	160	$\because 1$	4＊ 111					Wrallace，dla	Close forest；deep sandy loam；expo－ sure free．
$22 \times$	165	$\because 1$	387	1.5		1		Penfroe，Ala	Rock－hallside；forest open；dry；expo． sure trea．
$\because 110$	167 170	11 $\because 1$	－1 125 i0 108	H	2	．．．．．${ }^{\text {a }}$		Kyanswille，Calca． sieu l＇arish，La．	Flat woods damp；close forent；expo－ sure tree． Do
	170	21	6\％ 117	$1: 3$				Levins Station lapides l＇arjela， La．	Rolling open forest；samuly loan；expo－ sure frec．
204	1×0	1：1	（i） 102	11				W゙allace，Ala	Rolling pine woods；deep samly loam： partially free．
1	$1 n^{-2}$	1！	70 11：3				．．．．．．．．．．．．．．．．	da	Lholling pine wools；deep sandy loam； sligtaty uppressed．
：	J．i	13	5：11：				｜		liolling pine woods；deep sandy loam； partialy free．
f	1 l 3	11%	$\therefore 111$					．．．．do	lwlling pine woots；depp sandy loam； partially under cover．
$2 \cdots$	$1!10$	$\because 1$	5×117	11				leyanaville，Calca－ sien l＇arish，La．	Flat wouds；loamy，damp；freo．

TABLe III.-Measurements of Longleaf l'ine-period of slowest yrowth from two hundred to tro humbred and sixty-nis ycurs.

The following table and diagram (fig. s) present the average results of a detailed study of over sixty trees collected in different localities. Since only the part of the stem from stump upward is represented, the seedling period of slow growth finds no expression. It will be observel that the growth in height is a maximum between the age of ten and thirty years, amonnting to 1.4 feet for each decade; that it is but half of this at sixty and little over one-third at the age of one hundred years. As plainly indicated in the fine, uniform grain of the woon, the growth in diameter is remarkably uniform until the tree reaches the age of about one hundred years. From this on it decreases rapidly and is scarcely more than one-fourth as great at one hundred and eighty as it is at oue hundred. The rate of growth in volume increases steadily up to the one humdredth year, reaching a maximum of over 1.2 cubic feet per year, but decreases, though very slowly, from that time forward, being only about one-half cubie foot per year when the tree reaches the age of one hundred and eighty years.

Rate of grouth of Longleaf line.

Fic. 8.-Growth of Longleaf line: Height, diameter, and cubic rontents of average trose at 10, 20, etc., years of age.

(ONDITMONS OF DUVEELOPMENT.

Demands repon suil and climate.-In its demands upon the soil this pine is to becounted among the most frugal as far as mineral constituents, which are considered as plant food, are concerned, if only the mechanical conditions which inhluce favorable soil moisture are not wanting. It thrives best on a light siliceous soil, loamy saud or pebbles or light sandy loam, with a slighty clayey subsoil sufficiently porous to insure at least a partial underdrainage and to permit unimpeded development of the long taproot. Whenever the tree meets an obstacle to the development of this root it remains more or less stunted.

The luxuriance of the growth and increase in size of the timber, however, is greatly influenced by the quantity of chay present, particularly in the deeps subsoil, which improves mechanical and moisture conditions. This is strikingly exhibited in the timber of the level pine flats west of the Mississippi River, althongh the surface dramage is almost wating and the underdrainage througla the loamy strata slow, so that the surface of the soil remains damp or water-soaked for the greater part of the year: the stam of timber of first-class dimensions exceeds considerably that of the rolling pine uphands on the Athantic slope and the lower part of the pine belt in the Eastern (inlf region, which are poorer in clay. Kividently, athough the underdranage is less perfere, the moisture conditions during the dry season of the year, the time of most active growth, must be most firmathe. The same fact is apparent in the upper part of the coast pine belt in Dlabama and Mississippi, where upon the same area, with a smaller mumber of trees, the crop of timber may be consiblered almost twice as lave as that found on the pine barrens proper farther south. On the soil of fine, closely vompacted sand, entirely deficient in dramage as found in the so-called phomemons along the coast of western Forida, dabama, and Mississippi, as well as on the siliferons rocky ridges of central and northern Alabama, the tree is so stunted as to be of little or no valur for its timber.
"It is meither temperature alone, nor rainfall and moistme conditions of the atmosphere alone, that intlaence tree growth, but the relation of these two climatic factors, which determines the
amount of transpiration to be performed by the foliage, and again with most species we must place this transpiration movement into relation with avaibable soll moisture, in order to determino what the requirements and the most sutable habitat of the species are" (B. E. Fernow). Hence we find that east of the Mississippi liver the Longleaf l'ine occurs in gratest frequency along the isotherm of $60{ }^{\circ} \mathrm{F}$. ranging to the 34° north latitude, while west of the Mississippi it follows a line betreen the isotherms of 63° and $6 t^{\circ} \mathrm{I}^{\prime}$. and is scasely found north of the thirty second parallel of north latitude. Within this area of its distribution it is exposed to wide variation of temperature aud moisture conditions.

Under the influence of the vapor-laden breezes from the Mexican Gulf and an evenly distributed rainfall ranging from 4'丷 $^{\prime}$ to 63 inches during the year, the Longleaf Pine appears of the same thrift and vigor of growth in the interior of Alabama under '3. to sho north latitude, with the thermometer falling as low as $4 \circ \cdot(16 \circ$ C.) and a range of temperature of 930 (at 'luscaloosat), as it is found in the subtropical belt of the coast with a maximum temperature of $10 . \mathrm{F}^{\circ} \mathrm{F}^{*} .\left(10^{\circ} 0 .\right)^{\circ}$ and a range of temperature of $9 t^{\circ}$ west of the Mississippi Liver, although the temperature reaches rarely a minimum of 15 and 120 , respectively, at the northern limit of the tree in these States, the diminished humidity of the atmosphere and lesser rainfall, particulnly during the warmer season, account for its abseuce. There can be no doubt that the greater exposure to the violence of the sudden gusts of dry and cold wind known in Texas as "dry northers" exercises also no small influence in limiting the Longleaf Pine.

The Longleaf Pine is eminently aregarions tree, covering areas of wide extent, to the almost complete exclusion of any other species. In the hat woods of the coastal phan, particularly near its northern limit on the Atlantic Slope, it is not infrequently associated with the Loblolly Pine; further sonth and along the Gulf Coast to the Mississippi River, more or less firequently with this tree and the Cuban Pine. In the upper part of the maritime pine belt it not rarely ocenrs together with the Shortleaf Pine and the Loblolly Pine intermixed with the deciduons trees of the uplands, viz, the Black Oak, Spanish Oak, Black-jack, Bitternut, Mockernut Hickories, and Black Gum.

It will be apparent, from what has been said regarding the demands for light, that the asso. ciated species must be either slower growers or later comers, if the Longleaf line is to survive in the mixture. As has been pointed out elsewhere, with the culling of the Longleaf Pine from the mixed growths it must soon cease to play a part in them, since its renewal under the shate of the remaining associates is impossible.

ENEMIEs.

The greatest danger threatening the existence of the forests of Longleaf Pine must be ascribed to the agency of man, since their destruction is caused chietly by the reckless manner in which they are depleted without heed to recuperation. The right of ownership has been generally acquired on such low terms that since no valne has been attached to the land without the timber, despoliation has been carried on with no other object than the quickest return of momentary profits.

Such management could not but entail tremendons waste, a large pereentage of the body of the trees felled being left on the ground to rot or to serve as finel for the conthgrations which seonr these woods almost every year. Infinitely greater than the injuries inflected upon the forest by the logger and by getting ont ross-ties and hewn square timber, which consist chiefly in the accumulation of combustible waste, are those cansed by the production of naval stores. When the fact is considered that the production of the 40,000 barrels of spinits of turpentine, which on an average duriug the latter half of this decade annoally reached the maket of Mobile alone, implies the devastation of about 70,000 acres of virgin forest, the destruction caused by this industry appears in its full enormity. Under the mauagement of the turpentine orehards prevailing at present, trees of such small size are tapped that they are unable to resist the force of the winds, and in a few years are inevitably prostrated, while the larger trees, weakened by the severe gashes on almost every side, become largely wind-shaken and the timber after a few years almost worthless.

While a indicions tappiner is not only justified, but demanded, by an economic system of exploitation, the prevailing methorls of orcharding are unceessarily destructive.

The tappine of sappling timber not yet ripe bor the saw, and the destructive fires started in connection with this julustry, amihilating all young growth, prevent any renewal of the forest, while the working of large bodies of timber years before milling facilities are avabable leads often to "0 per cent and more of loss in both quality and quantity of the merchantable product.
JIREN.

The greatest injury to which the pine forests are subject in consequence of turpentins orcharding arises from the fires which are started every spring for the purpose of getting rid of the combustible matter raked from around the tapped trees in order to protect them from accidental conflagrations while they are worked. These forest fires, spreading far beyond their intended limits, destroy entirely the yomgent progeny of the pines, stunt the growth of the more advanced trees, and eanse the ruin of a lage number of older ones in the abandoned turpentine orchards. Bumbing deeply into the gashes and other exposed surfaces of the tapped trees, these fires hasten their prostration by the gales. Moreover, the fire causes cracks in the surfaces laid bare by the ax and the puller occasions greater exposure to atmospheric action, thas inducing more or less rapid decay. A test, mate by sawing through twenty-two logs taken at random from a turpentine orchard after it had been abandoned for a period of sixteen to eighteen pears, showed that about one-half of the timber was partially decayed and shaky.
besides the production of naval stores as a canse of forest fires, there is another scarcely less potent. This is the practice prevailing among the settlers of burning the woods upon the approach of every spring in orter to hasten the growth of grass for their famished stock. Fires are also frequently started through the carelessuess of loggers and hunters, in the preparation of the ground for tillage, and by narks from locomotives. These fires, occurring at least once during every year, "anse the total destruction of the young growth of the Longleaf Pine. The danger to this species is much greater than to any other Southern wood, becanse of the greater length of time it reguires to reach a size at which it can offer some resistance to fire. In the open forests of Longleaf Pine the fires are not so destrnctive to the larger timber as in the dense forests of coniferous trees farther north, trees of larger size being, with some exceptions, but slightly, if at all, directly damaged.

Another serious damare, however, resulting from the frequent recurrence of fires is the destruction of all veretable matter in the soil. Deprived of the mulching needed for the retention of moisture, the maturally porous and dry soil, now rendered absolutely arid and barren, is no longer capable of supporting any larger tree growth or other useful vegetation.

> LIVE STOCK.

Of no less danger to the existence of the forests of Longleaf Pine is the injury caused by live stock. This arency, slow in its action, is sure to lead to their destruction unless restricted to some extent. liesides the damage due to the trampling down and mutilation of the young growth by herds of rattle roaming through the woods, the smaller domestic animals-goats and sheep-eat the tufts of the tender foliage of the seedlings, while hogs are seen digging up and chewing the spongy and tenter roots of the young plants. As a further agency in the way of the renewal of this species, the destrnction of the mature cones might be mentioned, caused principally by the sifuirrels, which peel off the scales clean to the core in search of the sweet, nutritious seed.

> storms.

Foull-grown trees are frefuently uprooted by the hurricanes which from time to time pass through the pine belt. Those having the taproot shortened by impenctrable layers of indurated clay interposed in the subsoil at varying depths are iuvariably the first victims of the high wiuds. In trees grown in such places the taproot is found with a tumid and round base as smooth as if polisheal.
fiongi.
Frequently full-grown trees are found to show signs of rapid decay. These are recognized by the gradually dying of the smallew limbs and their falling off, in consergence of the rutting of the wood surrounding their base; and after having been cast off it hole or diseased spot remains in the trunk, which is infested by a large fungus of the genus Polyporus (punk holes, punk stools). The heartwood of such trees is of a redlish color, soft, sappy, and full of small channels, caused by the breaking down of the walls of the wood cells, filled with the mycelimm, the so-called spawn of the fungus, the threads of which also penetrate the medullary rays. Such punky or red-heart timber is found mostly on the ridges in the poorest soil. Apparently superamuated trees are most frequently found aftlicted with this rot.

INSECTS.

The Longleaf Pine, throughout its existence, is exposed to the danger of destruction by the ravages of insects, hosts of which, belonging to varions orders, are found to infest it irom the earliest stages of its development. Upon the tufts of the tender mimary leaves of the seedling are often found feeding large numbers of a yellow, black-striped caterpillar, the larvie of a species of sawfly (Lophyrus).

The cambium of trees felled in the latter part of the summer is soon found swarming with the larval brood of bark beetles, which after a short time infest the trees growing near by, causing, ats has been again and again observed, the death partionlarly of the trees of younger growth over extensive areas. Hence the necessity of stopping the practice of felling trees during the summer season. According to information kindly furnished by Mr. Schwarz, of the Entomological Division of the United States Department of Agriculture, most if not all the species of the bark beetles, the family Tomicide have more than one annual generation, and in the Southern States they have, in all probability, three. The summer generation develops in a very short time, possibly within four or five weeks, and the perfect beetles issuing from the trees felled in August will in September attack the healthy trees near by for want of more suitable food. The ravages spoken of by Michaux refer, no donbt, to these species of Tomicide beetles which enter the solid wool of trees, e. g., Gnathotrichus materiarius and Jylcborus: pubescens. The galleries of these timber beetles or allied species are found to penetrate the wood to the heart. The grating noise made by the larve of the large ceramboid beetle, the Monohammus, while engaged in its work of destruction frequently strikes the ear in the forest. That there is a large number of species belonging to different orders preying on the Longleaf Pine and more or less destructive to the life of this tree is apparent from the following communication from Mr. Schwarz:

The number of insects to be found on the Longleaf I'ine is rery large and comprises species of most orders, but a complete list of them has never been published and the habits of most of them have mever been carefully studied. Only those which are really injurious to the tree need to be considered.

Order Hymenoplera: Several species of sawties (Tenthredinide), occasionally very injurious to the younger tress, the larva defoliating the branches. The species thus far observed are Lophyrus Abbotii, Leach; Lophyrus Lecontci, Fitch, and three or four less common species.

Order Colcoptera, slip B: Round-headed borers (larvio of Cerambycide) afiect tho trees similarly to the IBuprestidu, but their burrows are always cylindrical, and some species bore only under the birk. The most abnadant and destructive is Monohammus titillator, Fabr., but there are many other spocies, of which the following is a partial list: Scaphines soharicollis, Lec.; Ascmum moestum, Hald.; Criocephahıs nubilus, Lec.; Eupogonins tomento*ns, Hald. ; Icanthocinus nodosus, Fabr. In the family Curculionide, the worst enemy of the pine tree in the more Northern States. Pissodes strobi is rare in the region of the Longleaf Pine, hut another species, P'achylobins picirorus, (ierm., the larvil of which bore under the bark, is quito common and rreatly injurious to tho Longleaf line. Of its more dangerous enemies the Scolytid beetles, which mostly bore their galleries under the bark, only a fow spocies entering the solid wood, the following are known to infest Pinus palustris: L'tyophthorus pulcarius, Kim.; I'. anuectens, Lee.; Tomicus calligraphus, Ger.; T. ar'ulsus, Eich.; T. cacographus. Lec.; C'rypturgus atomus, Lec.; Dentroctonus terebrans, Oliv. : D. frontalis, Zim.; Mylastes porcuhus, Er.; H. exilix, Chap.

The few species entering the solid wool are Platypus quadridentatus, Oliv; Gnathotrichus materiurius, Fitel, anel Fyloborus pubescens, Zim. Most of these Scolytide are oxtremely mumerous in specimens, and although they usually infest injured or disensed trees, yet in cases of excessive multiplication or for want of proper food they often attack healthy trees, which within one or two years succumb to their attacks.

NATGRAI REPRODUURION.

Certain peculiarities inherent to this species form a series of obstacles in the way of its spontaneons reproduction. These are, tirst, the rare occurrence of seasons of abundant crops of seed, and, second, its slow growth during the earliest part of its development, rendering the young ollspring of this pine liable to be suppessed by competing species of quicker growth. To these anses is to be further added its dependence upon the influence of direct sumight, which is required for its germination as well as during the subsequent stages of its growth to maturity, and the sensitiveness of the seeds and seedlings to moisture; placed in a wet, undrained soil, the germinating power of the first is destroyed and the latter will perish on exposure to the same conditions. A study of the young growth of the Longleaf Pine over the different regions of its habitat leads unavoidably to the conclusion that the chances for the reproduction of its forests, left to the ordinary course of nature, are quite limited, even if the adverse conditions arising from human agencies are left out of consideration. On the lowlands of the Athatic Coast toward its northern limit this pine is almost invariably replaced by the Loblolly Pine, while farther south and in the coastal phain of the Gulf States east of the Mississippi liver, after its removal, it is replaced partly by the Loblolly Pine and largely by the Cuban l'ine. On the wide expanse of uplands rising above the coastal phan with their broad ridges of a soil of sandy loam, the young trees of the Longleaf l'ine are met with in every stage of growth. Attaining, however, during the first five or six years scarcely a greater height than the surrounding herbage, the seedlings are irredemably ruined by the varions destructive agencies to which they are exposed. On lamd liable to repeated conflagrations, a scrubly growth, chiefly of barren oak and other uphand oaks already mentioned, takes possession and excludes by its shade the pine. If upon the rolling pine lands or dry pine barens the removal of most of the original tree covering is followed by a succession of barren years, the groum will surely he invaded by the hard-wood trees mentioned, which will retain possession. Under the shate of these trees the Longleaf Pine can never again find a home. In the stronger soil of the upper division of the maritime pine belt, the region of mixed growth, where the seetlings of the Longleaf Pine spring up simultanconsly with the hard wood trees and the seedlings of the Shortleaf l'ine, these latter will eventually gain the supremary aud suppress those of the Longleat Pine; consequently the latter is seldom observed in mixed forests of second growth. In the llat woods, particularly in the pine flats of southwestern Lonisiana and Texas, with a soil water-soaked during the winter and spring, the offipring of the Longleaf Pine is still more rarely met with for the reasons stated. From these facts it is evident that, owing to natural causes, combined with the unestricted sway of the influences leading to its destruction by humanagency, the offspring of the Longleaf Pine is rarely seen to occupy the place of the parent tree, even in the region most favorable to its natural renewal, and that tinal extinction of the forests of the Longleaf Pine is inevitable unless proper forest management is applied.

FORESJ MANAGEMENT.

The time for the acquisition of timber lands or of the right of working them for their products at prices far below what conld be considered as an adequate return for their instrinsic value has well-nigh passed away. The opportunities which existed during the last twenty-five years for acquiring Longleaf line lands, which were open to purchase by the hundrels of thonsands of acres have now in a great measure ceased to exist. The greater part of this kind of property has passed into the possession of capitalists, and the rest will soon be similaly controlled. Under this new order of things the price of these timber lands is gradually approaching figures more in proportion to their tru value. The depredations committed unblushingly on the public lands, and on the lands of railroad corporations and privateowners, are rendered less easy every year under a mutnal protection of interest. Lieckless waste and devastation, heedless of the interests in the fiture, are giving way to a more eronomical managenent of the timber resources in the logging camp and in the mill. No moasures have been attempted to maintain these resonrces by sparing the younger timber in its best stage of grow th from the ax, or to provide in any other way for the protection and preservation of the younger growth.

What has been said of the geographical distribution of this tree and its demands upon climate, soil, and exposure, demonstrates that east of the Mississippi River it can be suceessfully grown all over the maritime plain of the Southern States (Austro-riparian zone) and in the interior of Alabama, throngh a large region of the Caroliaian and the extreme southern extension of the Appalachian zone to an elevation above the sea falling little short of 1,000 feet. And the sandy soils of this region, largely too poor for agricultiral use, are par excellence Longleaf pinelands. In the renewal of the forests of Longleaf Pine, upon areas demuded, the fact must be borne in mind that to produce timber which is under present conditions considered of far merchantable quality a period of not less than one hundred and fifty years is required, and that to produce timber of the strength, clearness, and durability for which it is held in such high esteem the slow growth under the severe and hardening conditions involved in the struggle for light in the crowded forests is necessary. Hence, economic reasons wonld point to the maintenance and conservative management of the existing forests of Longleaf Pine and their renewal by natural reproduction, and perhaps best the method of selection which under the present conditions appears the most practicable, involving chiefly methods of protection.

By this method all or most of the mature trees, corresponding in their proportions to the most desirable quality of timber, are cut and the rest left to grow till they reach similar dimensions, to be in their turn replaced by the second growth, which in the openings firom time to time springs up. In fact, this method was followed in the earlier days of the timber industry in the several regions of the Longleaf Pine, where the forests were being culled for the best sizes at intervals of from fifteen to thirty years. But owing to the exhaustion of the mature pine from forests within distance of railroad lines and water courses, which necessitates great outlays of capital for constructing tramroads or waterways, the original practice of selection has been abandoned, no tree being spared at present that will make a stick of timber, however small, as long as it finds a sale in the market. Care should of course be taken to leave always euough seed trees evenly distributed, and the chief care is to be directed to the protection of the seedlings and other young growth from the destructive agencies mentioned-ire, cattle, and the encroachment of invading species. A forest under such management would necessarily present a great diversity in the growth of the trees, and the length of time between one cutting and the next would be equally variable. It must be remarked that the demand of this species for the unhin. dered access of direct sunlight during the time of germination and successive stages of growth might prove a serious obstacle to the continued success of this method of selection; and the "group method," as described in the report of the chief of the Division of Forestry for 1594 , might be sub. stituted with advantage. Where it is desired to reestablish the growth of Longleaf l'ine upon denuded areas, the ground must be cleared of every obstacle in the way of free access of the rays of the sun before the sowing. Owing to the ease with which the seeds germinate and the seedlings take root in the ground, but slight preparation of the same wonld be required, and there would be no difficulty in procuring a good stand. If transplanting is to be resorted to, the seedlings should be taken up during the fall or wiuter succeeding the first season of their growth, before the further development of the rapidly growing taproot, the precaution always being taken to prevent any injury to the rootlets and their drying out before their transfer to the ground. Since the trees clear themselves easily of branches, the stand in the plantation in the earlier stages does not need to be as dense as with other species. In order to secure improvement aud permanency of favorable soil conditions, the litter from the shedding of the leaves and gradual decay of herbage should be left undisturbed on the ground.

There can be hardly any doubt that the introduction of other shady species would greatly assist in improving soil conditions and producing more rapid development of the pine. Care would have to be taken to bring in these species later, say between fifteen and twenty years, when the pine has begun to make its rapid leight grow th and can escape the shade of its neighbors.

For the present, however, the economic conditions are hardly yet ripe for any artiticial reforestation, but the great importance of this valuable forest resource to the industrial and commercial development and prosperity of the people living within its limits should be apparent enough to keep them at least from preventing its natural reproduction. The growth of the young timber after the first few years is rapid enough, as may be seen from the table on page $\overline{9}$, aud
after fifteen or twenty yoars, when the trees have reached a diameter of 12 inches, they can be tapped for resin and will give a continuons revenue. Under careful management, and by tapping only the trees which should be removed in thinnings to make light for the rest, this revemue can be obtained without in any way impairing the final harvest value.

CONCLUSION.

From the sonthern frontier of Virginia, throughout the lower part of the Southern States, to the limits of hifh and compact forest growth west of the Mississippi River, spread over an area of from 90,000 to 100,000 square miles, the forests of the Longleaf Pine present yet a stupendous tim. ber weath. Yet, if we deduct the farm lands, and consider that large areas have been culled or entirely denubed of the original growth, we may estimate that the amount of timber standing can at best not exceed $100,000,000,000$ feet, aud is probably much less, while the cut, which at present does not fall short of $3,700,000,000$ feet, board measure, is bound, as the Northern pine is giving out, to increase at even greater rate than in the past: Under such a strain, outstripping by far the possibilities of their reproduction, the exhaustion of the resources of these forests within the near future is inevitable, and if the devastation under present management by the naval store industry and the destruction caused by fire and domestic animals is continued their extermination as far as practical purposes are concerned must be recrarded as equally certain.

APPENDIX.

THE NAVAL STORE INDUSTRY.

The resinous product of the Longleaf Pine furnishes the raw material for the production of naval stores, one of the most important industries in connection with the resources of the American forests. At present the bulk of these stores used in the world is derived from the forests of Longleaf Pine, and hence this industry is almost entirely confined to the coast pine belt of the Southern States, the proportion contributed by France, Austria, and other countries being insignificant.

For the year 1892 the foreign export of spirits of turpentine alone amounted to over 260,000 casks aud the total production exceeded 350,000 casks. To produce this amount of spirits at least $2,500,000$ acres must have been in orchard, and since over one-third of the total production is furnished by orchards being worked for the first year, over 800,000 acres of virgin forest must be attacked annually to supply present demands.

Under the name of naval stores are comprised the products derived directly or indirectly from the resinous exudation of cone-bearing trees, mostly pines, including tar, the product of the destructive distillation of the wood of pines highly charged with resinous matter. The name is undoubtedly derived from their extensive consumption in the shipyards and on board of vessels. These products are:

```
IEESIN, OR CRUDE TURPENTINE.
```

The resin of the Longleaf Pine recently exuded is almost colorless, or of a pale straw color, of the consistency of honey, having a terebinthinous odor and taste, and like all substances of the same class is insoluble in water, but soluble in alcohol, ether, and spirits of turpentine. It consists of a volatile oil and a solid resin held in solution partially suspended in the former. The best quality is obtained during the first year the tree is worked, known as "virgin dip" or "soft white gum," which is almost colorless and contains the largest quantity of volatile oil. In the following year it is of a deeper yellowish color, the "yellow dip," which with each succeeding year becomes darker in color, more viscid, and poorer in volatile oil. ${ }^{1}$

The resin toward the close of the season produced on the tree under the influence of a cooler temperature is called hard gum, or scrape. This solidified resin of whitish to yellowish color contains only half of the quantity of the spirits of turpentine obtained from the dip or soft gum. By the distillation of the crude turpentine the naval stores of most importance to trade are obtained.

Spirits of turpentine, or oil of turpentine, is the volatile constituent of the resin. This liquid when freshly prepared is colorless, of a peculiar odor and taste, of a density varying between 0.85 and 0.87 , volatile at ordinary temperatures, boiling between 3040 and $320{ }^{\circ} \mathrm{F}$. It turns polarized light to the right, a chatacteristic feature of the American spirits of turpentine, most of the spirits from other sources polariziug the light to the left. In its pure state this volatile oil is free from oxygen, being a hydrocarbon of the composition of $\mathrm{C}_{10} \mathrm{H}_{16}$. It is highly intlammable aud
${ }^{1}$ It is still an open ${ }^{\text {rnestion whether this deterioration is necessary or only owing to falty manipulation. }}$ Experiments to settle this question are now in prorress in the l'orestry Division.
burns with a sooty dame. It is a good solvent for many resins, wax, fats, caoutchouc, sulphur, and phosphorus, and is used in the arts and industries for the preparation of varnishes, in paints, the rubber industry, ate. liefore the introduction of kerosene oil it was used extensively for an ilmminator; it is also used in medicine internally and externally and often as an adulterant of Various essential oils.

> Hosis, on cololdionv.

The solid constituent of the crude turpentine which forms the residue remaining after its dis. tillation. It is of ditherent degrees of heaviness, according to the quantities of volatile oil retained after distillation, is bittle, easily powdered, of a glassy luster, and of the specific gravity of 1.07 , almost withont taste, of a fint terebinthinous odor. It becomes soft at about $\mathbf{1 7 6} \mathbf{o l}^{\circ} \mathrm{F}$., melts between 191° and 2120 F ., and is soluble in the same solvents as crude resin. According to the nature of the crude turpentine, depending upon the number of seasons the trees have been worked, it shows different properties in regard to the transmission of light, and in color. It is either perfectly transparent, translucent, or almost opaque and almost colorless, or a pale straw color to golden yellow, redilish yellow, through all shades to dark brown and almost black. The market value of this article is entirely regulated by these properties. In the American market the follow. ing grades are distinguished: WW (Water White) and WG (Window Glass), the lightest and highest-priced grades, obtained from the "virgin dip;" N (Extra Pale), M (Pale), K (Low Pale), I (Good Šo. 1), LI (No. 1), F (Good No. 2), 1s (No. 2), 1) (Good Strain), C (Strain), B (Common Strain), and A (Black).

PINE TAIR.
This is not exactly a by-product of the turpentine orchard, but is produced by the destructive distillation of the wood itself. It is chietly produced in North Carolina, where this industry has been carried on since the earliest colonial times. Small quantities are produced in other sections of the Southern pine belt, mostly for home consumption. Perfectly dry wood of the Longleaf Pine, dead limbs and trunks seasoned on the stump, from which the sapwood has rotted, are cut in suitable billets, piled into a conical stack, in a circular pit, lined with clay, the center communicating ly a depressed channel with a receptacle-a hole in the ground-at a distance of 3 to 4 feet from the pile. The pile is covered with sod and earth, and otherwise treated and managed like a charcoal pit, being fired from apertures at the base, giving only enough draft to maintain slow smoldering combustion. After the ninth day the tar begins to flow and continues for several weeks. It is dipped from the pit into barrels of 320 pounds, the standard weight. One cord of dry "fat" or " lightwood" fumishes from 40 to 50 gallons of tar. The price of pine tar is quoted as low as $\$ 1.05$ a barrel. Since considerable quantities of tar are produced incidentally in the destructive distillation of wood in iron retorts for charcoal and other products, the price has beem ireatly depressed.
common jitche
The best quality is obtained by boiling down tar until it has lost about one-third or more of its weight. 'The naval pitch of commerce has more or less rosin of the lowest grade added to it. Pitch is also obtained as the residue remaining from the dry distillation of rosin for rosin oil.

The tapping of the trees for the crude turpentine and the manufacture of tar and pitch was first resorted to by the earliest settlers of North Carolina, and in later colonial times these products firmished the largest part of the exports of the colony. In the three years from $\mathbf{1 7 6 8}$ to $\mathbf{1 7 7 0}$ the exports of crude turpentine, tar, and pitch represented on the average for each year at value of צ-15, 000 of our present currency. Most of the crude turpentine was shipped to England. Later the distillation of spirits of turpentine was earried on in chumsy iron retorts in North Carolina and in Nowthern cities. The introduction of the copper still in 1834 resulted in a largely jnereased yiell of spirits of turpentine, and the industry received a great impetus. With the new demand for spirits of turpentine in the manufacture of rubber goods, and its increased use as an illuminator, the number of stills increased greatly, and turpentine oreharding was rapidly extended sonth and west beyond its oriminal limit. The large consumption of spirits of turpentine

caused such an increase in its production that the residuary product, rosin, became largely in excess of the demand, and, in consequence, much depreciated. This reduction of profits in the business caused the transfer of the stills from the leading mankets to the source of the ram material, the forest. From that time, $\mathbf{1 8 4}$, dates the great progress made in the extension of this industry. Up to that time more than half of the crude tupentine was distilled in North Carolina, but thenceforth the industry spread into the States of South Cabolina, Cicorgia, Florida, and the Gulf States to the Mississippi River.

At the close of the war the demand for spirits of turpentine was not so great as before, petroleum products of several kinds having been found to take its place not only for illuminating, but also for other purposes. With the general extension of arts and manufactures all over the world, there has since been an increasing demand for spirits of turpentine and rosin. The exports of these articles in the year 1890 amounted to $\$ 8,135,339$ in value.

TURPFNTINE ORCHARDING IN THE FORESTS OF LONOLFAF IPINHE
In the establishment of a turpentine orchard and a still, two points must be considered, namely, proper facilities of transportation to shipping points and a suficient supply of water for the condenser connected with the still. The copper stills gencrally in use have a capacity of about 800 gallons, or a charge of 20 to 25 barrels of crude turpentine. For such a still to be charged twice in twenty-four hours during the working season, 4,000 acres of pine land of a good average stand of timber are required. This area is divided into twenty parcels each of 10,000 boxes, as the receptacles are called, which are cut into the tree to receive the exuding resin. Such a parcel is termed a crop, constituting the allotment to one laborer for the task of chipping. The work in a turpentine orchard is started in the carlier part of the winter with the cutting of the boxes. Until some years past no trees were boxed of a dianeter less than 14 inches; of late, however, saplings under 10 inches in diameter are boxed. Trees of full growth, according to their circumference, receive from two to four boxes, so that the 10,000 boxes are distributed among 4,000 to 5,000 trees on an area of 200 acres.

The boxes are cut (see Pl. VIII) from 8 to 12 inches above the base of the tree, 7 inches deep and slanting from the outside to the interior, with an angle of about $35{ }^{\circ}$. In the adult trees they are 14 inches in greatest diameter and 4 inches in greatest width, of a capacity of abont 3 piuts. The cut above this reservoir forms a gash of the same depth and about 7 inches of greatest height. In the meantime the ground is laid bare around the tree for a distance of 94 to 3 feet, and all combustible material loose on the ground is raked in heaps to be burned, in order to protect the trees against danger of catching fire during the conflagrations which are frequently started in the pine forests by design or carelessness. The employment of fire for the protection of the turpentine orchard against the same destructive agency necessarily involves the total destruction of the smaller tree growth, and if left to spread without control beyond the proper limit, often carries ruin to the adjoining forests.

Drring the first days of spring the turpentine begins to flow and chipping is begun, as the work of scarification is termed, by which the surface of the tree above the box is laid bare beyond the youngest layers of the wood to a depth of about an inch from the outside of the bark. The removal of the bark and of the ontermost layers of the woor-the "chipping" or "hacking"—is done with a peculiar tool, the "hacker" (fig. $9, e, f$), a strong knife with a curved edge, fastened to the end of a handle bearing on its lower end an iron ball about 4 pounds in weight, to give increased force to the stroke inflicted on the tree, and thus to lighten the labor of chipping. As soon as the scarified surface ceases to discharge turpentine freely, fresh incisions are made with the hacker. The chipping is repeated every week from Mareh to October or November, extending generally over thirty-two weeks, and the height of the chip is increased abont $1 \frac{1}{2}$ to 2 inches every month. The resin aceumulated in the boxes is dipped into a pail by at that trowel-shaped dipper (fig. $9, a$) and then transferred to a barrel for trausportation to the still. In the first season from six to eight dippings are made. The 10,000 boxes yield at each dip 10 barrels of "dip" or "sott gum," as it is reckoned in Alabama, to be of 940 pounds net weight. The flow is most cophons during the height of the summer (July and August), diminishes with the adrent of the cooler season, and ceases in October or November. As soon as the exulation of the resin is arrested and
the resin begins to harden under the intluence of a lower temperature it is carefully seraped from the searified surface and the boxes with a narrow, keen-edged knife attached to along wooden hantle (ifg. $9 . b, c_{0}$. In the first season the average yield of dip amounts to 280 barrels and of the hard gum or serape to 70 barrels. The first yields $6 \frac{2}{2}$ gallons spirits of turpentine to the barrel of 240 pounds net, and the latter 31 pounds to the barrel, resulting in the production of 2,100 gallons spirits of turpentine and 200 pounds of rosin of higher and highest grades. The dippings of the first season are called "virgin dip," from which the finest quality of rosin is obtained, graded in the market as Water White (WW) and Window Glass (WG). In the second year from five to six dippings are made, the crop averaging 225 barrels of soft turpentine and 120 barrels of serape, making altogether about 1,900 gallons spirits of turpentine.

The rosin, of which about soo barrels are produced, is of a lighter or deeper amber color, and perfectly transparent, of medium quality graded as I, H, and G. In the third and fourth years the number of dippings is reduced to three. With the flow over a more extended surface, the turpentine thickens under prolonged exposure to the air and loses some of its volatile oil, partly by evaporation and partly by oxidation. In the third season the dip amounts to abont 120

Fin. 9.-Tonls used in torpentine orcharding: a, dipper; b, pusher; c, open puller; d, closed puller; e, f, hacker (front and rear view).
barrels and the scrape to about 100 barcels, yiclding about 1,100 gallons spirits of turpentine and 100 barrels of rosin of a more or less dark color, less transparent, and graded as 1 , E , and I. In the fourth and last year three dippings of a somerrhat smaller quantity of soft turpentine than that obtained the season before and 100 barrels of scrape are obtained, with a vield scarcely realizing 300 gallons of spirits of turpentine and 100 barrels of rosin of lowest quality, classed as C, B and Λ. After the fourth year the turpentine orchard is generally abandoned. Owing to the reduction in quantity and quality of the raw product, it is not considered profitable by the larger operators to work the trees for a longer time. It is only in North Carolina that the smaller landowners work their trees for ten or more successive seasons, protect the trees against fire, and after giving them rest for a series of years, apply new boxes on spaces left between the old chips"reboxing."

HIRTILLATION.
The process of distillation is carried on in the ordinary way, and requires care and experience to obtain largost dnantities of rosin of highest grade and to guard against overheatmg. After heating the still, somewhat above the melting of the crude turpentine, a small stream of tepid Water from the top of the condenser is combured into the still and allowed to run until the end of the process. A large quantity of water runs over with the spirits of turpentiue, which is
collected in a barrel, where it separates from the water and is then immediately transferred into barrels. After the oil has ceased to run freely the heating of the still and the inthx of water has to be carefully regulated. After all the spirits of turpentine has been distilled over, the fire is removed and the contents of the still are drawn off by a tap connected with the bottom. This residuum, molten rosin, is at first allowed to run through a wire cloth and is immediately strained again through coarse cotton cloth or cotton batting, made for the purpose, into a large trough, from which it is ladled into barrels. The legal standard weight of the commercial package is 280 pounds gross. A turpentine distillery on the basis of twenty crops produces on the average during the four years that the boxes are worked 2,400 casks or 120,000 gallons of spirits of turpentine and about 12,000 barrels of rosin or $2,500,000$ pounds, the lowest grades, Is and \mathbf{A}, excluded, a total ralue of about 60,000 at average prices. The prices of spirits vary at present from '28 to 40 cents a gallon, even through the same season, according to supply and demand in the market. The average quotations on December 30, 1892, at Wimington were 28 cents for spirits and $\$ 1.91$ for a barrel of rosin down to grade C.

COST OF FSTABLISHING A PLANT AND WORKLNG THE CROPS.

Timber lands with the privilege of boxing the timber for a term of four years are rented at the rate of $\$ 50$ per crop of 10,000 bozes, or 200 acres. The establishment of a plant for the working of twenty crops, or 4,000 acres of timber land, requires an investment of about $\$ 5,000$, including the buildings, stills, machinery for pumping water, tools, and teams. According to the statements of an experienced operator, the cost of working the trees of one crop during the four years, which is mostly done by the job-that is, the making and cornering of the boses, inspecting the same, raking around the trees, chipping, dipping, scraping, hauling the crude turpentine to the still, including cost of barrels for spirits of turpentine, and for the rosin and superintending the crop-amounts to about 82,300 per crop, or $\$ 46,000$ for the twenty crops. If to this amount the interest, 6 per cent per annum, on the capital invested and the depreciation in the value of the plant during the four years is added, with s me other incidental expenses (taxes, etc.), the cost of the production of the 120,000 gallons of spirits of turpentine and 12,000 barrels of merchantable rosiu' foots up to not less than $\$ 50,000$.

A method of improving on the present practice by employing an earthen pot instead of the iujurious "box" has been patented and practically introdnced by J. C.
 Schuler, of West Lake, La. The arrangement is repre- Frg. 10.-Improved method of turpertine orcharding. sented in fig. 10, its main feature being an earthen pot which can be moved as the sear is lengthened, thus reducing the distance over which the resin has to flow, and with this the amount of volatilization and loss of spirits of turpentine. The method resembles that employed in France (see Report of Chief of Forestry, United States Department of Agriculture, 1892, page 347), and, thongh its general application in this country is not yet secured, it is certainly a step in the right direction.

Mr. Schuler admits that the first cost for providing the cups, putting them up, and removing them the second season raises the expense of working a crop of $10,000 \mathrm{cups}$ for two seasons to \& 460 , against $\$ 190$ for cutting 10,000 boxes expended under the old system in working one erop for two seasons, all other expenses connected with the work being considered equal. On the other hand, Schuler claims that the difference is vastly overbalanced by the increased yield of crude turpentine obtained by his cup methods, amounting for one crop worked two years to 195 barels, at 83.50 per barrel; after deducting the extra expense involved by his method, this would leave a net balance of $\$ 410$ per crop in favor of the cup system. He also claims that this amonnt is still further augmented if the larger quantity of spirits of turpentine aud the higher quality of resiu obtained
from the dippings under his system are taken into account. On the first point he says that fully one-eighth of the crule turpentine brought to the still from the boxes consists of chips, sand, and other foreign matter, contaminations from which the product of the cups is entirely free. On the secomb point he refers to the high grades of rosin resulting from the distillation of the crude turpentine from the cups, which almost entirely classes with the highest and higher grades.
 OF THE FOOHEST.

In the present management of the turpentine orchards in the Southern pine forests a great deal of crude turpentine is wasted, much of the valuable spirits of turpentine is lost by volatilization in passing over the long chip fice on its way to the box, and much of the resin is lowered in its grade and value by oxidation consequent to exposure and by admixture of foreign substancesbark, coal, dust, ete.

Concerning the eflect of the tapping of the trees upon the timber, there cxists no reason on physiological or anatomical grounds for considering it iujurious, and the opinion held by many, that the qualities of timber are impaired by bleeding, finds no support when it is considered that the heartwood remains unatfected. The resinous contents of the heartwood being solidified and the formation of the resin taking place only in the newly formed wood, the heartwood can not participate in the flow of the resin, the discharge being necessarily confined to the sapwood. This fact has been fully substantiated by the work of the Division of Forestry, by which it has not only been shown that the strength of the heartwood, the most important if not the ouly part of the tree used for lumber, has in no wise been diminished, but also that the durability of the timber, as far as it depends upon its resinous contents, can not be impaired by bleeding. It is only in that part of the butt \log around the chip that the quality of the timber becomes somewhat impaired-the wood becoming highly charged with resin is rendered more brittle and harder to work, with a tendency to gum up the tools. Indirectly, however, a considerable proportion of the boxed timber becomes damaged if not utilized shortly after having been bled. It is often left standing for a number of years, exposed to various destructive agencies, such as insects and fire, followed by parasitic fungoid growth. Large capricorn beetles bore their way through the callus surrounding the chip and throngh and beyond the sapwood. Through the innumerable tissures which are caused by fires, air and water charged with the spores of parasitic fungi find entrance to the borly of the tree, casing disease and decay. The damage from these causes increases every year, so that from them alone the timber from a turpentine orchard abahdoned for a dozen years was found damaged to the extent of fully 20 per cent. Although the loss of its resin by bleeding results physiologically in no direct injury to the tree, the wound intlicted by tapping, like any other wound, interferes with its healthy growth and, particularly in the case of trees of smaller size, canses their early decaty. While the exuded resin covering the excoriated surface of the tree acts as an eflicient antiseptic, affording a firm protection against the access of the spores of fungi, it endangers the life of the tree, if exposed to fire, by its greater inflammability, the heat produced by its Hame being capable of killing the trees ontright. Under the crude and inconsiderate manner of cutting the boxes, all of the trees of smaller size and many of the larger trees are blown down, and a considerable number of those remaining with their excoriated surfaces out of proportion to the recuperative power of the trees are doomed to perish sooner or later in consequence of such treatment.

These injuries inflicted unon the individual trees, in connection with the fires started with the opening of the season one year after another, canse such damage to the forests as to effect finally their total destruction. Fire being allowed to sweep over large areas, its force increased in the turpentine orchards by the exposed resinous surfaces of the trees, and by trees blown down and the debris covering the ground, an immense amount of timber is destroyed. Trees which have not been lilled outright by the fire, or have altogether escaped the danger, are doomed to speedy destruction by bark beetles and pine borers, which find a breeding place in the living trees prostrated by the winds during the summer, the broods of which rapidly infest the standing trees, which invariably sucemb to the pest the same season. In consequence, the forests invaded by turpentine orcharding present, in tive or six years after they have been abamdoned, a picture of ruin and desolation painfill to behold, and in view of the destruction of the seedlings and the younger growth all hope of the restoration of these magnificent forests is excluded.

THE CUBAN PINE.

(PINUS HETEROPHYLLA (ELL.) Sudw.)

Geograitimal Distribution.
Producis.
Classification and Nomenclaturf.
Description and Morphológrcal Cimaracters.
Progress of Development.
Requirements for Development.

FIIE CUIBAN IMINE,

(l'imus heterophylla (E11.) Sutw.)

Symonyms: l'mus luva var. heterophylla Elliott, Sk. ii, li36 (1821),
J'mus cuhenxiv (irisebach in Mem. An. Acal., viii, pt. ㄹ, 530 (1863), not Mort. ex Gord. (1858). Jinus rubensis var. lerthrocarpe Wright in (trisehach, Cat. I'l. Cuhen., "17 (1Ni60).
Jinus elliothi Fingelmann ex Vasser, ('at. l'orest Trees, 30 ; in Rep. Com. Ag. 1875, 178 (1876). J'imux elliotlii Engelmann in Trans. St. Louis Acal., iv, 186, t. 1, 2, 3 (1879). finushetcrophylla (Ell.) sudworth in Bull. Torr. Bot. Cl. XX, 55 (1893).

COMMON OR LOCAI NAMDN:

Shalb Fine (Ala., Miss。, (ia., Fla,).
swampline (l'la.. Miss., Na.), in part.
Hastarll I'ine (Ala. Iumbermen, Fola.).
Meatow l'ine (Cal., Vla., K. Miss.), in part.
7.1

Pitch Pine (Fla.).
She l'itch l'ine (Ga.).
She Pino (Gia. and Fla,).
Spruce line (So. Ala.).

THIE CUBAN PINE.

13y (Halsess Mohr, Mh. I).

INTRODUCTORY.
Confined within narrow limits along the coast of the extreme Southern States east of the Mississippi liver, little known and mostly confoumled with its allied species, the valne of the Cuban I'ine has been searcely recognized. A closer investigation of the properties of its wood, of its life history, and of the part it plays among the forest growth soon discloses its economic importance. Convinced that to meet proper appreciation the merits possessed by this pine need only to be made more gencrally known, their consideration in this place amoug the biological investigations of the more important timber trees of the coniferons order will explain itself.

This tree was not known to the earlier American botanists. Elliott first ${ }^{1}$ took notice of it as a distinct form, and he regarded it as a variety of the Loblolly Pine. It remained still practically unknown as a separate species for another lalf century, until near the beginning of the past decade, when it was again brought to notice of botanists by Dr. Millishamp, of Jluffon, S. C.; Dr. Engelmann exhibited clearly its specific characters, and for the first time directed attention to the ceonomic value of this pine by discussing the development of the tree and the qualities of its timber. ${ }^{2}$ On account of the coarser grain of its wood and the large amonnt of sapwood, this timber was held to be of little value, and the tree received little or no attention by the lumberman. It is only very lately, especially since kiln-drying has become more general, that its value is being recognized and appreciated, and under the name of" "Slash Pine" it is cut and sold without discrimination with the Longleaf Pine, with which it is usually associated.

GEOGRAPIIIGAL DISTLIBUTION.

The Cuban Pine is a tree of the coast region in the subtropical region of North America cast of the Mississippi River, and also of the neighboring tropies, being found in IIonduras and Cuba (see Pl. III). In the United States the tree is confined to the eastern belt of the dustro-riparian or Louisianian life zone of American biologists, from $33 \circ$ north latitude in South Caxolina along the coast to the extremity of the peninsula of Ilorida. Toward the west the tree extends along the coast of the Gulf to the Pearl River Valley. It is principally restricted to the coast plain, but on the Gulf Coast and along the water courses it extends inland to a distance of fully 00 miles from the sea. On the Atlantic Coast it penetrates the interior nearly to the limit of the coast pine belt, as has been observer in (ieorgia in the valley of the Ocmulgee River, over 100 miles distant from tide water. Groves of the Cuban pine skirt the low shores of the mumerous inlets and estuaries of these coasts, and cover the outlying islands. More or less associated with the Loblolly and the Longleaf Pine, it forms a part of the timber growth of the open pine forests which in unbroken monotony cover the flats for long distances. It is only in the lower part of Florida, where the tree extends from the Atlantic across to the Gult of Mexico, south of Cape Canaveral and Biscayne Bay, that, as the only pine there, the Coban pine forms forests by itself. Toward the interior it occurs scattered among the varicd growth of broad-leafed evergreens and cone-bearing trees which cover the swamps along the streams. Since it is invariably cut and sold

[^8]withont distinction, no ligures can be given of its ammal consumption, nor is it possible to form evell an approximate estimate of the standing supplies. The old timber goes, of course, as fast as that of the Longleaf Pine, but in its reproduction it outstrips the latter. Wherever in the coast plain the original growth of the Longleaf Pine has been removed, the Cuban line takes, in a great measure, possession of the ground, in some localities associated with the Loblolly l'ine. Young forests in every stage of growth are seen covering tracts of greater or lesser extent, promising important supplies of resinous products, timber, and fuel.

> pronuets.

As a timber tree the Cuban line is little inferior to the Longleaf Pine. It furnishes sticks of large dimensions free from blemish, rivaling in that respect that superior variety of the Loblolly l'ine called Rosenary Pine, and there is no doubt that it was often confounded with this tree in the shipments of masts and long spars made in former years from the southern Athatic and eastern Gulf ports. In the lumber mills on the Atlantic Coast the timber of this tree is indiscriminately sawn and shipped with that of the Longleat Pise.

It remains yet to be proved whether the coarser structure of the wood of the Cuban Pine would render it less durable. It is certain, however, that this very cause, which might interfere with its resistance to atmospheric influences or to contact with the soil, will be found an advantage if the preservation of the timber is to bo secured by its impregnation with antiseptic solutions, more open structure permitting readier infiltration.

Resinomes protucts.-This pine abounds in resinous matter. The oleoresin, resin, or crude turpentine, when freshly exuded, is perfectly limpid, of honey-yellow color, less viscid than the resinous product of the Longleaf Pine, and to all appearances richer in volatile oil or spirits of turpentine, judging by the smaller amount of hard gum or scrape formed on the trec. A sample of the dip of the first year from South Carolina was to all appearance exposed for at short time in the box to atmospheric intluences. Examined by Irof. E. Kremers, University of Wisconsin, the resin showed an emulsion-like appearance and separated upoustanding into heavier granules and into a lighter, transparent, yellowish liquid. Its specific gravity at $20^{\circ} \mathrm{C}$. was found $1.0253 . \quad \mathrm{D}=32.423^{\circ}$ (determined in 16.26 per cent alcoholic solution). Distilled with water, the sample yielded 16 per cent of oil of the specifice gravity 0.865 ($20^{\circ} \mathrm{C}$.). $\mathrm{D}=9.620$.

In view of the rapid destruction of the forests of Longleaf Pine, the principal source of resin, the future importance of the Cuban P'ine in the proluction of naval stores becomes at once apparent, especially when it is considered that it reproduces itself so much more readily. Even now, on the coast of South Carolina and Georgia, a large proportion of resinous products is derived from the young growth of this pine, which, after the removal of the original timber growth, took possession of the ground. It is claimed by the turpentine gatherers in these States that at an age of from thirty to forty years the trees are sufficiently large for tapping with advantage, and that protected against fire a spontancous renewal takes place, and after a period of forty years the new crop is ready for profitable exploitation.

In Washington Connty, Ala., on the more or less extensive flats that intervene between the low ridges covered with Longleaf Pine, the Cuban Pine furnishes considerable supplies of crude turpentine of superior quality. In this section the tree is known under the name of Spruce Pine, a misnomer, leading to its confusion with an entirely different tree, the true Southern Spruce Pine (l'inus !labra).

CHASSIFICATHON AND NOMHNCLATURE:

I'inus heterophylle is closely allied to the Longleaf Pine, forming with this and two other species inhabiting the nearest tropical regions-Cuba and Mexioo-under the subgenus pinaster, a natural sroup of trees with heavy resinons wood, rigid long leaves from two to five in a sheath, and sulbterminal or lateral, horizontal or reflexed cones, designated by Englemann as the group of the Euanstrales, or longleaf pines. First distinguished by Llliott as Pinus teda var. heterophyllu and remaining subsequently manown for more than fifty years, the specific characters of this pine were first recognized and fully described by Dr. Engelmann, who in honor of its discoverer distinguished the tree under the name of l'inus. elliothi, findiug himself soon afterwards conviuced of the identity
of his species with Pinus cubensis of (irisebach. Recently these various forms were found to be the same as Elliott's, to which they have been referred with his varietal name heterophylla raised to specific rank. The tree is little known among the inhabitants of the region of its growth; it is generally regarded as a mere variety or bastard form of the Longleaf or the Loblolly Pine. In Florida, where best known, it is distinguished as the Slash Pine, or Swamp Pine; and in the flat woods along the seashore in Alabama and Mississippi as Meadow Pine. In a few localities in Alabama it is generally called Spruce Pine.

DESCRYPTION ANIO MORPHOLOGICAL (HAHACTERS.

The leaves, two or three in a bundle, are surrounded by a smooth sheath from one-half to nearly an inch in length, which, elose and smooth during the first season, become lonse and shriveled in the second year (PI. X, l). The leaves are from 8 to 12 , mostly 9 inches in length and three-fourths of a line wide, glossy, of a deep-green color and closely serrulate with a short, rigid point, rounded ou the back, the binary leaves deeply concave and the ternate bluntly keeled. They arise from the axils of fringed deciduous bracts, are densely cromded toward the end of the branches, and are shed by the close of the second season. Bundles with two leaves are most frequently observed in younger trees and almost invariably on the fertile branchlets.

The resin ducts are internal, variable in size, and in number from four to six and over, close to the thin-walled bondle sheaths, which inclose two closely approximate fibrovascular bundles, often coalescing. The fibrovascular region, like the ducts, shows no hypodermal or strengthening cells. The hypodermal cells underlying the epidermis are as large as the epidermal cells, in the angles of one or several layers.

Flowers.-The catkin-like male flowers (Pl. X, a, b), from $1 \frac{1}{2}$ to 2 inches long, are of dark purple (royal purple) color, supported on a short stalk and surrounded by about a dozen involucral coriaceous bracts, of which the lowest pair is strongly keeled (PI. X, b, slightly magnified), the others being oblong with fringed edges. From ten to twenty of these cylindrical flowers are crowded in dense clusters below the apex of the youngest shoots, and are shed almost immediately after the discharge of their abundant pollen. The anthers are crowned with a purplish crescent-shaped denticulate crest. The female flowers form an oval, pink-colored ament borne on a stalk, from onehalf to 1 inch in length, which singly, more frequently several in number, are produced close to the terminal bud of the shoot of the season ($\mathrm{Pl} . \hat{X}, \mathbb{d}$). First erect, they are, at the lapse of a month, horizontally reflected, the shoot bearing them increasing rapidly in length during the same time, long before the unfolding of its leaf buds. The involucral scales or bracts which surround the female catkin are more numerous, narrower, longer, and more membranaceous thau those forming the involucra of the male flowers. The carpellary seales are round with a slender, erect tip, their lower half covered by the broad retuse bract.

A tree discovered by Dr. Mellichamps near Bluffton, S. C., showed the remarkable anomaly of producing androgynous flowers regularly every season. In most of the specimens examined every one of the male flowers clustering around the base of the terminal bud of the very young shoot had the upper part of the floral axis covered with female flowers, appearing like a distinct inflorescence superimposed upon the staminodial column, occupying generally one-third of its height. In one of the flowers they were seen to extend near to its base. In a single instance it was observed that the female flowers extended on one side of the staminodial column in a narrow streak among the stamens.

In a specimen from the same locality the terminal shoot of the season, exceeding in length the male flowers by which its base was surrounded, was bearing a normal subterminal female ament. The short-stalked cones are ovate or conical, rather obtuse, horizontally retlexed, from 4 to 5 inches long, about $2 \frac{1}{2}$ inches greatest width, of glossy leather-brown or hazel color (PI. XI, a and b); scales about 3 inches long averaging five-eighths of an inch in width, somewhat tlexible, the prominent ridge of the pyramidal striated umbo with a short, mostly straight, strong prickle (Pl. XI, e and d). By the end of the first season the conclets are scarcely an inch long (Pl. X, d). Before the close of the summer of the succeeding year, the cones have reached their full size, maturing during the month of October. In the ripe cones, already described, the apophyses of the scales in the lower rows are almost pointless, becoming on the upper strongly mucronate. The cones remain on the tree until the approach of the next summer, leaving on their separation the lowest rows of the seales behind.

EXPLANATION OF PLATE X.

'Voigures atatural size, exerpi whern otherwise noted.
Fig. a, branch with young shoot of the season bearing a clustor of mate flowers; b, male dower detached showing hasal involucral bracts, magnitied threo diameters; c, branch hearing three subterminal femalo flowers; d, d, characteristically retlexed immature cones of one season's growth.

The triangular black roughish seeds $\frac{21}{2}$ to a little over 3 lines long, with a few faint ridges; the brown, obtuse, and somewhat oblique wing (PI. XII, e, f, g) about 1 inch in length is deciduous in germination. This species at all stages of growth can be distinguished from the Loblolly Pine by the deep-green foliage, the glaucons hue of the young, tender shoots, and varying number of leaves in a bundle-from the Longleaf Pine by the thinner, almost smooth, terminal buds, and in the adult state, from both of these species, with which it is found frequently associated, by its cones.

THE WOOD.

As in the Loblolly, the sapwood is wide in the young trees, measuring usually about 4 inches and forming in thrifty trees fifty to seventy years old about 80 per cent of the total volume. As the trees grow older, however, this preponderance of sapwood ceases, and in trees one hundred and fifty to two hundred years old only 35 to 50 per cent of the total volume of the trunk was found to be composed of sapwood. As in the case of the pines already mentioned, the change from sappwood to heartwood begins when the tree (or disk) is about twenty-five to thirty years old, and the process is retarded as the tree (or disk) grows older, so that when any one disk is sixty years old the saprood contains abont forty rings, and reaches eighty rings or more by the time the tree (or disk) is two hundred years of age. As a consequence the sapwood of the disks of the main part of the trunk in old trees is formed of nearly the same number of rings, and only near the top a marked diminution appears, while in a tree sisty years old the sapwood of the stump may have forty rings and that of a disk 40 feet from the ground only twenty-five rings. As in other pines, the width of the sapwood is quite variable and is always greatest in young and thrifty trees.

When green the wood of this species is too heavy to float well; its weight varies chiefly with the amount of sapwood, and is therefore greatest in sapling timber. The sapwood itself is frequently heavier than water, and where the water in the sapwood and a large amount of resin in the heartrood combine, the weight of the entire disk freguently approaches 60 pounds to the cubic foot.

Kiln-dried, the wood of trees one hundred to one hundred and fifty years old was found on an average to weigh about 39 pounds per cubic foot, thus excelling in weight even the valuable Longleaf Pine. The wood of very young trees is decidedly lighter, as is also that of very old trees, the heaviest wood being formed during the age of thriftiest growth or between the trentieth and eightieth year. The presence of resin in the heartwoorl, as conspicuons in this species as in Longleaf Pine, materially adds to the weight of the wood, so that the heartwood of old trees is invariably heavier than the same wood had been while in a sapwood condition. As in other pines, the butt is heaviest and the toplog lightest; thus in trees over one huudred and fifty years of age the wood at the butt weighs 44 pounds per cubic foot, 37 pounds at 38 feet, and ouly 32 pounds at 60 feet from the stump, a difference amounting to over $2 \overline{5}$ per cent. This difference is greatest in the young sapling and is remarkably uniform for all adult trees examined.

In strength, as in weight, the wood of Cuban Pine excels. The following figures represent the general average of a long series of experiments on trood especially collected:

Modulus of elasticity.	Lls. per sq. inclı. 2, 300, (000
Transverse strength.	11,900
Compression endwise.	7,850
Shearing	(ix)
Tension	11, 3(\%)

The average weight of the pieces tested was 49 pounds per cubic foot, the outer lighter part of the old trees having largely been cut away in shaping the pieces, so that only heavy wood had been tested. The above figures require, therefore, a reduction of about 20 per cent to represent the true average strength of all the wood of entire trees.

The amount of water contained in the fresh wood depends on the proportion of sapwood. In this latter it forms about 60 per cent of the weight of fresh wood; in the heartwood ouly about 20 per cent. Accordingly, fresh logs of sapling timber seventy years old have about to per cent, logs of trees over one hundred and fifty years old only about 30 per cent of water. The woold dries easily and without great injury, oven if seasoned in the dry kiln.

EXPLANATION OF P'LATE XI

Fig. a, section of a branch bearing a mature closed cone (Ochober); b, mature open cone after shedding seed; ℓ, e, f, tips of cono scales showing variation in form of apoplysis and stont prickle; d, cone scale, onter or dorsal side; e, inucr or ventral side of cone scale with seed in place; f, seed with wing detacled; g, seed and wing intact.

The shrinkage during drying is very considerable for sapwood, and therefore all young timber, but is not as great for old timber as might be expected on account of the great weight of the wood. Young timber shrinks from 12 to 13 per cent of its volume, the wood of old trees (over one lundred and fifty years) only about 11 per cent, and in all trees the amont of shrinkage is greatest in the heaviest disk of the butt and decreases upward very much in proportion of the decrease in weight.

In its structure the wood resembles that of the Loblolly in every respect. Summerwood and springwood are sharply defined, giving rise to alternating bands of light-colored, soft and dark-colored hard bands of wood conspicuous in every section. For details of structure see the comparative study by Mr. Roth appended to these monographs.

PROGRESS OF DEVELOPMENT.

This is the earliest flowering of the Southern pines. The buds of the male flowers make their appearance in the early part of December, and the flowers open during the last days of Jannary and during the first week of February. This species produces abundant crops of cones every year, almost without failure; they ripen in the fall of the second year; the seeds are discharged through the winter of the second year until spring. Germinatiog easily, their seedlings are found to come up copiously from early in the spring to the beginning of the summer in old fields and on every opening in the vicinity of the parent trees, wherever the rays of the sun reach the ground. The plantlets bear six to seveu seed-leaves (cotyledons). As soon as these have fairly expanded the terminal bud develops rapidly, and the first interno 'e of the stem, increasing quickly in length, is densely covered with the soft, narrow, linear, pointed, primary leaves, which are fully an inch long. Before the end of the second month, in the axils of some of the leaves, the undeveloped branchlets, bearing the fascicle of the foliage leaves, make their appearance. With the further develonment of the foliage leaves, increasing in number during the growing season, the primary leaves wither away. By the close of the first season the plantlets are from 8 to 9 inches high, with a very sleuder taproot and many lateral rootlets near its upper end. After the begimning of the second season but few of the primary leaves are found to support the buds of the ioliage leaves. The tendency to the production of secondary axes becomes manifest by the appearance of a single branchlet; on having reached the end of their second year the plauts are from 12 to 15 inches high, with a taproot not more than 4 inches long; at the end of their third year they average little less than 2 feet in height, with the taproot 6 inches loug-the laterals being much longer. The crown from this period develops in regular whorls for a long succession of years.

The Cuban Pine, in its rate of growth and when fully grown, exceeds in its dimensions the Longleaf Pine. The taproot, less powerful than in its allies, is assisted by mighty lateral roots running near the surface of the ground to support the tall, sturdy trunk, rising to a height of 110 or $11 \tilde{0}$ feet, with a diameter of $2 \frac{1}{2}$, not unfrequently exceeding 3 , feet, clear of limbs for a height of from 60 to 70 feet above the ground. The heavy limbs are horizoutally spreading, from 22 to 24 feet at their greatest length, somewhat irregularly disposed; they form in the trees of full growth a rather dense crown of rounded outline. Trees of the dimensions mentioned, having passed the fullness of their growth, are found to be from one hundred to one hundred and forty years old, according to the surrounding conditions. The thick bark is of a clear, reddish color, laminated, and exfoliatiug in thin, broad, purplish thakes.

Scedlings of the Longleaf Piue, which those of the Cuban Pine somerhat resemble, can be readily distinguished at this period by the disproportion of height and diameter and absence of branch growth in the former. The rate of growth differs, of course, according to the conditions of soil and exposure.

Saplings showing tive rings of annual growth were found from $4 \frac{1}{2}$ to nearly 6 feet in height, with a diameter of from three-fourths to seven-eighths of an inch; between the age of from ten to twelve years the trees measure from 10 to 18 feet in height, with the stem clear for over half its length-even when grown in the open-and from 2 up to 4 inches in diameter. From this stage ou the rate of growth proceeds most rapidly. At eighteen and twenty years heights of 40 to 50 feet and over, and diameters from 9 to 10 inches across the stump, cut close to the ground, are attained.

17433 -No. 13 - 6

The trees of the extensive groves of Cuban Pine in the vicinity of Mobile umon the loamy lands of the coast plain, which have sprung up since 1 shif, when these lands were completely stripped of all arboreal growth, average at present between 50 and 60 feet in height by a diameter of from 14 to 16 inches breast high. Trees of second growth, forming open groves on lands of similar character, and also more or less deticient in drainage, forty-five to sixty-five years old, measure from 65 to 85 feet in height and from 15 to 20 inches in diameter breast high.

At the elge of a heavily wooded swamp, in a perpetually wet, sandy, and mucky soil and skirted by large Longleaf Pines occupying the steep slope rising from the bottom, a tree measur ing 114 feet in height, with a diameter of 24 inches breast high, the trunk clear of limbs for a length of fully 60 feet, showed one humbed and thirty-five rings of annal growth. Another tree felled deeper in the same swamp, of lank growth, with a poorly developed crown, rising to a height of 85 feet and towering above the dense grow th of black gums, swamp maples, and white bays, was found to measure only lis inches in diameter, with almost the same number of annual rings. Trees of second growth which have sprung up in clearings with a drier surface soil underlaid by a clayey substratum, with iree exposure to sunlight and air, reach in little over hall the time the full size of those produced in the forest-covered swamps.

Table: I.-(irowth of Cuban I'ine during first stages of life, from four to twenty years.

Table II.-Growth of Cuban l'ine during middle and last stages of life, from forly to one hundred and forty-fiey yours.

From Table III the rapid growth of this species is quite apparent. It will he observed that yood trees are about 20 feet high at ten, 45 feet at twenty, and over so feet high at filty years of age, when the rapid rate of upward growth comes to a stop. It appears, also, that the greatest mass of wood for any decade is found at the early age of fifty, the growth in volume being nearly 15 cubic feet for these ten years, and that at ninety the growth in volume is only about two-thirds of the maximum; that at one hundred years the average annual growth nearly equals the cureut growth, thus indicating that the age of proper exploitation has been reached, i. e., that now the tree is ripe for the ax, as far as profitable growth, represented in volume accretion, is concerned.

Table III.-Growth of Cuban Pine.

Age.	Diameter with bark (breast higly).	Length of \log with upper diameter of 5 inches.	Height of treb. -	Volume.		Periodical growth for each decade.				Volume.	$\begin{aligned} & \text { Arerago Current } \\ & \text { anmual } \\ & \text { accretion. } \end{aligned}$	
				Tree.	$\begin{aligned} & \text { Low up to } \\ & 5 \text { Inches } \\ & \text { diameter. } \end{aligned}$	Decade.	Diameter.	Height.	Area of cross section.			
10.	Inches. 2.9	Feet.	Feet. 20	Cubic feet. 0.50	Cubic feet.	First	Inches. 2.1	Feet. 20	$\begin{array}{r} s+j \text { ject. } \\ 0.02 \end{array}$	$\begin{array}{r} \text { C'ubic feet. } \\ 0.50 \end{array}$	$\begin{gathered} \text { Cub. feet. } \\ 0.05 \end{gathered}$	$\begin{aligned} & \text { Cub. feet. } \\ & 0.05 \end{aligned}$
20.	5.9	5	45	4.24	2.44	Second	2.6	25	. 10	3.74	$\therefore 1$. 37
30...-	9.3	24	66	14.95	13.06	Third.	3.0	21	$\therefore 0$	10.71	. 50	1.07
40..	12.3	40	75	29.70	29.23	Fourth	2. 6	9	.20	14.75	. 74	1.47
$50 \ldots$	14.8	50	83	47.01	45.53	Fifth	2.5	-	. 31	17.31	. 94	1. 73
60....	16.0	60	89	59.65	58.35	Sixth	1.2	0	. 18	12.64	. 94	1.26
70....	17.6	69	93	72, 25	81.17	Seventh	1. 2	4	. 19	12. 60	1. 03	1. 26
80.	18.8	76	96	84.05	83.15	Ejghth	1.2	3	. 21	11.80	1.05	1.18
30.	20.0	83	99	95.03	94.31	Ninth	1.2	3	- 2\%	10. 88	1. 115	1. 10
100..	21.4	90	101	105.97	105. 48	Ternth	1.0	2	$\therefore 20$	10.94	1. 06	1.09
110...	22.4	96	103	115.58	115.27	Eleventh	1.0	2	- 91	9.61	1.05	- 910
$120 \ldots$	23.4	100	105	125,18	124.96	Twelfth	1.0	2	$\therefore 5$	9. 60	1. 14	.96

HEQUILBMENTS ROH DEVBLOMMHNT.

Soil. - For its best development the Cuban Pine requires a light, sandy, but constantly damp soil, which is attaned where the sandy suffer is underlaid by a loamy subsoil retentive of moisture but sufticiently loose to give the roots unhindered access. Such conditions are found on the lands rising above the perpetually wet swamps. On the thats, with a soil of fine, compact sand, devoid of all drainage and underlaid by a hardpan, where nothing but the Saw Palmetto appears to thrive, the tree remains of low, stunted growth, scarcely ever reaching medium size. In the deptls of the swamp, with the soil wet and shashy throughont the year, where the tree is commonly met with, closely surrounded by White Bay, Red Bay, Black Gum, Titi, and White Cedar towering high above it, it is of slow growth and frequently affected by red heart or red rot, particularly near its northern limit. It is never found in alluvial bottoms, and eschews the dry, piue barren hills, requiring a moderate but sure and even supply of soil moisture.

Climate.-The range of its distribution colncides with the area of greatest rainfall in the Southern States, which, evenly distributed through all seasons, amounts for the year, in the mean, to 60 and $6 t$ inches.

The Cuban Pine demands a warm climate, free from excesses in the range of temperature, as is afforded by the vicinity of the sea. It is found in greatest abundance and most perfect within the isothermal lines of 64° and $68^{\circ} \mathrm{l}^{\prime}$., with a minimum of but a few degrees below the freezing point. The tree, as observed at Mobile, has escaped minjured the severe and unprecedented long spell of ice and snow during the latter part of dannary and first week of February, 1895, When the thermometer fell as low as $11^{\circ} \mathrm{F}$., the flowers unfolding mimpaired by frost during the succeeding first days of milder weather.

In its dependence on light it is less exacting than either the Longleaf Pine or the Loblolly Pine. It appears to thrive, from the earliest stage of its deveiopment, as well when partially shaded as in the open, in this respect resembling the Southern Spruce Pine. It is due to these facts, combined with the rapid progress of its growth from the earliest stage, that the Cuban Pine is gaining the upper hand over the oftspring of the light-requiring Longleaf Pine, which, on the damp soil of the coast plain, is soon outstripped and finally almost completely suppressed by the seedlings of this tree.

In the inherent capacity for natural reproduction, or in the advantages for the renewal of its forests by man, the Cuban Pine is not surpassed by any other of the species with which it is found associated. This tree commends itself strongly to the tree planter in the coast plain of the lower South. Producing seeds in abundance regularly and with certainty, being less exacting in its demands for direct sunlight, and hence successfully resisting the encroachment of competing species, being less liable to succumb to the destructive agencies of fire on account of its more rapid development in early life, it has greater promise of success than the others. If to this is added the rapid rate of growth, the great value of its timber, being equal to the Longleaf, if not superior, and the abundant yield of its valuable resinous product, it becomes evident that in the reforestation of the low pine lands of the Southern coast region the Cuban pine is to be preferred to any other, not only withiu its original boundaries, but as far beyond its range of natural distribution as the climatic requirements of the tree will permit.

'THE SHORTLEAF PINE.
 (PINUS ECHINATA Miller.)

Economic History and Dintlibution.
botanical Dencleiption.
Descriptrion of Woon.
Profress of Devilophent.
Conditions of IDevelorment.
Forest Management.

THE SHORTLEAF PINE.

(I'inus echinata Miller.)

Synonyms: Tinus echinata Miller, Gard. Dict., ed. 8, No. 12 (1768).
Pinus ciroiniena var. echinata Mu Roi, Marbl., ii, 38 (1752).
P'inus (nda fr rariabilis Aiton, Hort. Kew., ed. 1, iii, 368 (1785).
Pinus mitis Michans, Fl. Bor. Am., ii, 204 (1803).
Pinus rariabilis I ambert, Jimus, ed. 1, i, 22, t. 15 (1803).
Pinu* roylctha Jamieson ex Lindley, in Journ. Hort. Soc., ix, 52 (1855) .
Pimus intermedia Fischer ex Gurdon, I'inetum, ed. 1, 170 (1858), not 1)u Roi (1772).
I'imus rigila l'orcher, liesources s. States, $504(1863)$, not Miller (176x).
Pimus luita l.onliges ex Gordon, Pinetum, ed. 1, 170 (1858), not W'alter (1788).
'imus roylei Lindley ex Gord., 1. e.

COMMON OR I,OCAL NAMES.

Yellow Pino (N. Y., Ň. J., Pa., Del., Va., N. C., Ala., Miss., La., Ark., Mo., Ill., Inl., Kans. (scarce), Ohio).
Shortlearel I'ine (N. C., S. C., Cia., Ala., Miss., Plia, La., Tex., Arks)
Spruce Pino (Del., Miss., Ark.).
Bull Pine (V゙a.)
Short Schat Pino (I)el.).
Piteh I'ine (Mo.).
Poor l'ine (Fla.).

Shortleaved Yellow Pine.
Yellow Pine (N. C., Va.; Lng. lit.)
Virginia lellow Pine (Va.) in part.
North Carolina Yellow I'ine (N. C., Va.) in part.
Nortle Carolina Pine ($N . C ., V a$.) in part.
Carolina Pine (N. C., Via.) in part.
Slash Pino (N.C., Va.) in part.
Oldfield Pine (Ala., Miss.).

THE SHORTLEAF PINE.

by Charlef Mohir, Ph. D.

INTLODUCTORY.

Among the timber trees of the Atlantic forest region the Shortleaf Pine ranks with the first of those noted for their economic importance. Equally abundant, distributed over a wider area, and in the quality of its wood but little inferior, it takes its place next to the Longleaf Pine. When maintenance of forest aud production of timber under a rational system of forestry is to become the rule, this species above all others of southerly distribution will claim attention, for it can be safely asserted that of the coniferous trees adapted to the climatic conditions of the Southern Atlantic forest, no other can be found of better promise for the production of valuable timber in the shortest time.

IIISTORICAL.

The Shortleaf Pine, besides furnishing to the colonists the supplies of pine timber required for the construction of their dwellings, formed in early colonial times an article of export to the mother country and the West Indies. Michaux, the younger, writing in the first years of this century, speaks of this timber tree as becoming scarce near the ports. It seems that the specific characters of this tree were but imperfectly understood by the carlier investigators of our sylva. They were first accurately defined by Michaux, the father, who described this tree in his Flora Americana Borealis II, 204 (1803), under the name of Pinus mitis. A still more detailed description was soon afterwards given by Michanx, the son, in his work on American forest trees (Hist. Arb. Amer., $1,52, \uparrow .3,1810$), with a full account of its value as a timber tree, the qualities and uses of its wood, and all that was known in those days of its place in the forest. Besides the account given of the tree by the Rev. M. A. Curtis, of North Carolina, in his "Trees of North Carolina," little has been added to our knowledge of this pine until the publication in Professor Sargent's report on the Forests of North America, ${ }^{2}$ of the results of the investigation which the writer had carried on in the Gulf States, ${ }^{2}$ and Professor Harvey in Arkansas. ${ }^{3}$

For valuable information on the occurrence of this pine on the Atlantic Coast and west of the Alleghany Mountains, the writer is indebted to the kinduess of correspondents active in the field of botany. In regard to the area over which this species is found distributed in the Southern States, the information contained in the physiographic descriptions of the several counties of the cotton States, in Professor Hilgard's report on cottou production, ${ }^{\text {t }}$ were chiefly relied upon.

GEOGRAPHICAL DISTRIBU'TON.

The Shortleaf Pine is widely distributed from the Atlantic Seaboard to the treeless plains of the Indian Territory under 95° west longitude over 233° froun east to west and 10° from south to north, namely, from 31° north latitude to Long Island, New York, or 41° north latitude along the Atlantic Coast, while in the interior it only reaches to 39° in western Virginia. According to F. A. Michaux, the Shortleaf Pine estended originally as far north as Albang, N. Y. The tree is at present not known in New York outside of Long Island, and its existence even in Pennsylvania is considered

[^9]at present donbtinh. Its northern limit west of the Alleghanies can be described by a line drawn from the lower part of Wood Connty, in West Virginia, to Menifee County, castern Kentucky. Beyond the wide wap covered by the deciduous forests of the lower Ohio Valley and the flood plain of the Jississippi the tree appears on the southeastern spur of the Ozark Hills in Cape (iimarleat County, Mo., latitude $37^{\circ} 30^{\prime}$, and on the opposite side of the viver on the bludis in Union ind Jackson counties, Ill., the line dropping gradually half a deqree southward to the westerulimit of its range. (I'I. XIV.)

The Shortleaf I'ine is a tree of the phain and the foothills, in the South rarely ascending to an elevation over $\quad 3,300$ feet, and at its northern confines not over 1,000 feet (in the Ozark Jills). East of the Mississippi laver the tree appears sparsely scattered among the hard-wood trees; along the horder of the Gavolinian and within the Austro-riparian zoue it becomes more frequent, and often the predominating tree. West of the Mississippi River the Shortleaf Pine finds its region of greatest profusion, forming forests of vast extent on the uplands of the undulating phan and the table-lands of the hill country, which in their timber wealth and conomic importance rival the sreat lumbering regions farther south.

CHARACTLKISTICS OF DISTRIBUTION IN DIFFERENV IREGIONS.
On the Atlantic Coast, from southern New York to Virginia, jurging from the statements of earlicr writers, this tree must have formed originally a considerable part of the forests of coniferous evergreens covering the belt of light silicious soils of the Tertiary strata. A. Michaux mentions this species "as not found beyond certain districts in Connecticut, it being multiplied in the lower pant of New. Jersey, and still more on the eastern shore of Maryland and the lower part of Virginia." From the remarks of this writer on the extensive use of the timber of the Vellow Pine (Shortleaf) it appears that at the time of his writing-the beginning of this century-it must have been quite abundant in those parts.

This appears clearly by his statement that "in the Northern and Middle States (of the Atlan. tic Seaboard) and in Virginia, where, to a distance of 150 miles from the sea, all houses are built of wood, the floors, casings of doors, wainscots, and sashes are made of this species, as being more solid and lasting than any other indigenous wood. In the upper part of the Carolinas the houses are constructed wholly of Yellow Pine, and are covered with it." Further on we learn that immense puantities were used in the dockyards of New York, Philadelphia, and Baltimore, and that Vellow Pine lumber formed a considerable part of the exports to Great Britain and the West Indies. Since that time this tree has in the region mentioned not only long ceased to be a source of timber, but has generally become quite scarce. According to the information of 1)r. N. I. Britton, "it grows on the coast of New York naturally only on Staten Island, and only about twenty-five trees are to be found in Richmond County. It is fairly abumbant in the portion of New Jersey from the Raritan River to Delaware Bay, forming forests, on a tract not more than 8 miles, and it is also found in Delaware on the same formation onterop of Green Sand."

With the appearance of the Longleaf Pine south of Virginia the Shortleaf Pine recedes from the coast and is found chielly in the upper (interior) part of the Southern coast pine belt, scattered among the mixed growth of coniferons and deciduous trees. Nbove the upper limit of the Longleaf Pine belt the Shortleaf Pine extends, in the Southern Atlantic States, throughont the interior to the lower ranges of the mountain region.

West of the Alleghany Mountains, in western Virginia and eastern Tennessee, it occurs only widely scattered, and hence is practically of no importance to the lumbering industry.

In Nortl Carolina the Shortleaf Pine is fonnd from the coast to the mountains, though in the lower districts enters more rarely into the composition of the upland forests. According to IIale's report on the woods of North Carolina the tree is found in the majority of counties of the State, but is most abmulant in the midde district, where, with uphand oaks and hickories, it is the prevailing tree. It is found about Asheville, at an altitude of 2,500 feet. The Shortleaf Pine used to form 25 per cent or more of the forest growth in many places, but such areas are not now frequent anywhere. In the latest report on the forests of North Carolina it is stated that there
'W. W. Asho: 'The Foorests, Forest Lands, aud Forest Resources of Eastern North Caroliua. Bulletin 5, Geol, survoy, N. C., 1891, hage 11.
are possibly $300,000,000$ feet, board measure, shortleaf Pine standing in tho comuties iordering the oak uplands in the eastern part of the state.

In Sonth Carolina this pine is similarly distribnted sparingly in the coast region and more frequent in the midland comntry to the lower mountain ranges.

In Georgia, in the lower part of the coast pine belt, the Shortleal Pine is rarely met with. On the saudhills in the center of the state, forming the northern border of the pine belt, it occurs mixed with the Longleaf Pine among the inferior hard wood timber. In the region of erystalline rocks, which embraces the more or less monntainous upper half of the State, covering over 19,000 square miles, at an average elevation of about 2,500 feet, this tree is most frequeut, in many parts predominating.

In the three States last named the Shortleaf line was originally most abundant in the regions now most densely populated, and hence their supplies of timber are more or less exhansted, much of the so-called North Carolina l'ine sent to market being Loblolly Pine. Young forests, however, of this tree are seen everywhere on the hills and mountain slopes, where the original timber growth has been removed, and on the worn-ont lands abandoned by the cultivator.

In F'lorida the Shortleaf Pine is contined to the mplands along the northern border of the State, scattered among the Longleaf Pine and lard wood trees. In the northmestern part, it approaches the seashore within a distance of from 25 to 30 miles on the isolated patches of red loam lands, where, together with the Longleaf I'ine, it is associated with the sonthern Spruce Pine (Pimus glabra).

In Alabama aud Mississippi the Shortleaf Pine is rarely scen in the lower part of the coast pine belt, but forms a more or less conspicuous part of the forest covering of the uplands in the central and upper sections, and sometimes predominates to such an extent over the hard woods as to impart to the woodlands the somber aspect of a pure pine forest. In the region of crystalline rocks, with its arid ranges in Alabama, covering an area a little over 3,000 square miles, between the Coosa River and the southern tributaries of the Tallapoosa, the tree is less firequent than in the region of the same formation in Georgia, the Longleaf here taking its place. In the northern part of Alabama, on the table-hand of the Warrion coal field over an area of fully 5,000 spuare miles, mostly in forest, the Shortleaf Pine forms a more prominent feature of the growth. This is the case particularly in the eastern part of this area, where the tree occupies mostly the summits and steep declines with a thin, dry soil, while in the deeper and moister soils the Loblolly I'ine takes its place. In Cullman County, altitude 800 feet, where numerons acre measuremeuts have been made, rarely over 2,000 feet, board measure, of this timber have been foum upon one acre, and it can safely be said that in the localities where it is more frequently met with the average stand does not exceed 1 , boo feet to the acre on this table-land. The supplies of Shortleaf Pine timber are rapidly diminishing before the demands of a rapidly increasing population and of the adjacent centers of the mining industry, and their total exhanstion is sure to be effected within a short time.

Wherever the original timber growth has been removed on these uplands the young growth of the Shortleaf Pine is rapidy spreading and predominates over the deciduons trees. The timber trees of full growth average on these table-lands about $2 x$ inches in diameter breast high and 9.3 feet in height, furnishing clear sticks of from 35 to 45 feet in length. Such trees have been found with from 90 to 183 rings of annual growth on the stump.

Four trees felled in the vicinity of Cullman showed the following dimensions:

Diameter loreasthigh.	Length of timber.	Height of tree.	Finge on stuml.
Inches.		Feet.	109
21	11	75	111
± 0	40	87	132
24	45	92	120

On the gravelly hills of the northern extension of the central pine belt in Aabama the Shortleaf Pine becomes freruently the predominating tree in the forest of oak and hickory. In Lamar County, Ala., and in northenstern Mississippi it forms forests which in the latter State give
rise to a considerable lumbering imdustry. These forests are, however, rapidly decimated along the Memphis and Charleston Railroad, where the products of the mill find ready market throughont north Mississippi and at Memphis. Through the northern half of Mississiphi, on the divide which separates the waters flowing into the Mississippi River from those of the Tombighee, extends a region of undulating uplands of oak, hickory, and shortleaf l'ine over an area little short of 5,000 square miles; on this long, narrow belt the Shortleaf Pine can be said to form 12 to 1.5 per cent of the tree covering. These forests furnish an ample supply of pine lumber for local demands. It appears, however, that in the eastem Gulf States generally the existing supplies of shortleaf Pine are scarcely sufficient to cover home demand. On these uplands the Shortleaf Pine takes rapid posecssion of the openings in the forest and the old fields. Here, as has been elsewhere observed in the central and northern parts of these states, this tree can truly be considered the timber tree of the future. Since it is rarely foum in compact bodies, but associated with other trees widely scattered, any attempt at an estimate of the amonnt of the timber standing in these states must appear futile. The amount of timber cut can also hardly be approximated, since it forms only a part of the cut of the mills in these States.

West of the Mississippi River, north of the region of the Longleaf Pine, the Shortleaf Pine is foum most abondant and in fullest perfection. It is in these Western forests that the Shortleaf Pine fimds its best development, and forms pure forests, extending over many hudreds of s!puare miles with but little interruption. The forests of Shortleaf Pine in northwestern Louisiana, Arkansas, sonthern Missouri, and northeastern 'Tesas are searcely surpassed in their timber wealth. The Tenth Census estimates the amount of merchantable timber of Shortleaf Pine standing in 1880 in these Western forests at $87,000,000,000$ feet, board measure, exclusive of the forests in southern Missouri and the Indian Tervitory.

In Lonisiana the Shortleaf Pine is unerqually distributed over the uplands north of the Longleaf Pine region between the Onachita River and the eastern boundary of Texas, embracing an area of a little over 8,000 square miles. Along the northern extent of the Louisiana and Texas State line this pine forms pure forests, and also prevails in many localities on the upland along the border of Arkansas. The resources of pine timber in these mixed forests of oaks, hickories, and Shortleaf Pine, removed as they are from the highways of trafic, have been but slightly drawn upon.

In Arkansas, in the hilly and monntainous region on both sides of the Arkansas liver, over 19,000 square miles in extent, the Shortleaf Pine forms a large part of the tree covering of the siliceons rocky soil and frequently extensive forests on the wide table-lands. On the uplands of yellow loam south of the hills the tree predominates, especially on the low ridges of gravel and, loan, the hard woods encroaching where the soil conditions become more favorable.

The low ridges rising above the Loblolly l'ine forests of the flool plain of the Ouachita and Little Missomi rivers are covered with open forests almost exclusively of Shortleaf Pine, interspersed with a few White Oaks, Post and Spanish Oaks, rarely above medium size. In the vicinity of Gurdon, in Clark County, upon one acre representing average conditions, $2:$ Shortleaf lines have been connted from 12 to 25 inches in diameter, with no pines of smaller growth anong the scattered undergrowth of dogwood, hnckleberries, serubby oaks, Black Gum, and hickories. Of this muber, 8 trees measured from 21 to 25 inches; $;$ trees from 18 to 20 inches; 6 trees from 15 to 16 inches and 2 trees 1 2 to 14 inches in diameter breast high, indicating a stand per aere of about 6,000 feet, board measure.

Five trees, representing the average timber growth of the forest selected for timber tests, were found of the following dimensions:

Measurements of fire trces.

biameter breagthigh.	Lengeh of timber.	$\begin{aligned} & \text { IIci,nt of } \\ & \text { trre. } \end{aligned}$	Lings on stump.	Sapwood.
Inches. 20	Fret.	Fect. 1111	120	Inches. $2 \frac{1}{2}$
21	45	10 m	1:\%	$\because 1$
14	4)	10:	110	3
18	30	4.3	12	3
8	4.5	717	113	3

On the arid hills of finty sandstone the trees are of inferior growth, as observed in Hot Springs County, in the vicinity of Malvern. On their steep slopes the pines are rarely found to exceed 18
inches in diameter breast high and 75 feet in height, clear of limb for the length of about 33 feet. In a number of trees from 120 to 125 rings were counted on the stump. The wood produced on these hills is of a lighter color, less resinous, and of a fine grain. Specimens of tinished lumber from such timber resemble somewhat that of the White Pine. The hard-wood trees, mostly Spanish Oak and Post Oak, scattered beneath the pines, are scrubby and of no value for their timber.

Along the railroad lines the forests have become exhausted for a distance of from 5 to 10 miles on either side, and the timber from the virgin forests is conveyed to the mills on steam tramroads. It appears that of late years about $550,000,000$ to $560,000,000$ feet, board measure, of pine timber are sawn aunually in Arkansas south of the Arkansas River. In this amonnt the Loblolly Pine lumber is included, which is indiseriminately sawn and put with the Shortleaf Pine on the market as Arkansas Yellow Pine. The bulk of the product of the sawmills in this section is shipped by rail to the markets of the Northwest.

In the northern part of Texas, east of the prairie region, from the Red River Valley to the northern border of the Longleaf Pine region (under latitude 320 N.), extends an area of oak, hickory, and Shortleaf Pine uplands, stated in the agricultural report as covering 35,000 square miles. In the sonthern extent of this area the districts where the Shortleaf Pine prevails are popularly known as the "Pineries." North of the Sabine River, from Longview through Cass and Bowie counties, the Shortleaf Pine forms compact forests over many hundreds of square miles. Near Bevins, in Cass County, where the pine forests were more closely investigated, the moderately dense timber growth covers the undulating country down to the lowlands of the lied River in Louisiana. The sandy gray loam forming the rather compact soil of the surface is underlaid by laminated stiff' clayey marls, which at the depth of about 4 feet become quite impervions to water. Blackjack, Spanish Oak, and Post Oak of stunted growth are seattered beneath the pine. The pine appears to be of slower growth; trees of full size-that is, from 20 to 24 inches in diameter-were found to have reached an age of from 195 to 210 years. The upper part of the timber of such old trees is frequently affected by rot, a defect undoubtedly to be ascribed to the cold, innervious subsoil.

From 6,000 to 7,000 feet of merchantable timber are claimed as an average stand for these timber lands. Every tree above 10 inches in diameter at breast height is cut for the mills. After the removal of the pine the hard woods gain rapidly in the rate of their growth, soon shading the ground completely. Young pines are rarely seen in the natural openings, the seediings being too frequently destroyed by fire. In the clearings, where the original tree growth has been completely removed and the pine takes quick possession of the ground, the second growth, if not killed outright by the fires which again and again devour the surrounding tall weeds and broom grasses, becomes too severely injured to be of any promise.

Four trees, selected as representing fairly the average merchantable timber of the Shortleaf Pine forests of northeastern Texas, showed the following record:

Mcasurements of four trees.

Diameter breasthigh.	Length of timber.	Meight of tree.	Rings in stump.	Sapwood on stump.
Inches.	Feet.	Feet.		
24	36	120	195	Inches.
23	49	109	305	3
18	45	95	102	3
17	42	94	102	$5 \frac{2}{2}$

The forests of Shortleaf Pine near Longvier, which was in 1880 the site of a most active lumber industry, have been nearly exhausted, and with diminished supplies along the New Orleans and Pacific Railway the business has greatly declined. The anmal output of the 30 mills situated along this road, and its branch from Carthage to Panola, does not at present in the aggregate exceed $70,000,000$ feet, board measure. From the information obtained in 1892 it appears that in 1891-92, 200,000,000 feet, board measure, were handled in Texarkana, the product of the mills at that place and immediate vicinity, and also that the shipments of the mills south of the Red River in the same year reached about $105,000,000$ feet, board measure.

In Miscomri the rugged hills and table-lands of the sonthern slone of the Ozark Monntains, rising to atl elevation of from 800 to 1,000 feet, are covered with forests of Shortleaf l'ine, which, monghly estimated, extend over little more than $3.000,000$ acres. In the connties bordering on the Arkansas state line (Tery, Ozark, and Douglas counties) the pine is said to yield on the average not wrer 2,000 feet of timber to the acre. The forests in the basin of the Current and black rivers are heavily timbered, as observed at Grandin. The density of the timber growth varies, however, on these broken lands with the soil conditions, a fact demonstrated by actual measurements on several plats, upon which the amount per acre varied from 3,000 to 15,000 feet of timber. After years of experience, the average yield of the timber lands of the Graudin Lumber and Mining Company is estimated at 6,000 feet of merchantable timber to the acre, including trees of 10 inches in diameter.

The trees felled to serve as material for the United States timber tests, and fairly representing the areane timber growth, showed the following record:

Mcasurements of five trees.

a Sapwoorl on radius of stump averaging 23 inches.
The timber from these most northern of the forests of Shortleaf Pine is remarkably free from resin, of a fine, close grain, almost white, and claimed to be lighter and softer than the timber grown further south, and like the timber occasionally found on the dry, rocky hills in Hot Spring County, Ark., resembling the wood of the White Pine. In these forests the fine tall pines tower high above the stunted Scarlet, Black, and White Oaks and hickories, but the growth of these hard woods almost completely overporers the second growth of pine.

In close connection with the great markets of the North, and nearest to the timberless region of the Northwest, the manufacture of lumber in this region is fully developed. According to information received at Grandin, the output of the mills located along the Current liver Valley Railroad, the Iron Mountain lailway; the Kansas City, Fort Scott and Memphis laitroad, and the Cape Ginardeau and Southwestern road amounted for the year 1891-92 to fully $300,000,000$ feet, boarl measure. At such rates the depletion of the timber wealth of this forest is to be expected before another generation has passed away.

Vinder the existing method of exploitation, which involves the almost total destruction of the smaller timber growth, nothing remains to be depended upon for the future. Considering the dilticulties in the way of their natural renewal, there is no hope left for their restoration on these knolls. The dense undergrowth and brush of decidnous trees and shrubs which completely shade the soil, the rocky surface being hidden by an abundant and intlammable leaf covering, deprives the pine of every possibility of reproduction by natural sceding, even if the seedlings could escape destruction by fire.

According to the census of $1880,{ }^{1}$ extensive bodies of Shortleaf Pine timber exist in the eastern pate of the Indian Territory. It occurs mixed among the hard woods on the higher ridges of the timber bett in the Choctaw Nation, 60 miles in length, and considerable bodies of Shortleaf pine timber in belts of from 10 to 30 miles in length and 2 to t miles wide are found on the tributaries of (xramd Hiver in the Cherokee Nation, and in a large body of timber extending for 25 miles west of leam this tree appears to reach its western limit.

The ereat importance of the forests of Shortleaf Pine to the industrial and commercial interests of the conntry west of the Mississippi Iaver, and to the development of the adjacent timberless Slates and Territories, is forcibly exhibited by the enormous production of lumber for the past ten years. Juring the year $18: 1-12$ at a low estimate not less than $1,270,000,000$ feet, board measure,
have been shipped from points in Texas, Arkansas, and southern Missouri to Northern markets. This amount may be swelled by the production east of the Mississippi to round numbers of $1,500,000,000$ feet, board measure.

As stated before, an estimate of the timber of this species standing is impossible on account of its seattered distribution and prevalent occurence in mixed growths. But considering the extent of the areas within which it oceurs and the average cut on the same, or comparing with the amounts of Longleaf Pine, which on account of the compact bodies in which it occurs, can be more readily approximated, it is safe to assume that very much less than $100,000,000,000$ feet remain available, while the cut can be roughly estimated at $1,500,000,000$ feet, board measure.

PRODUCTS.

Among the coniferous trees of eastern North America the Shortleaf Pine stands next to the Longleaf line in importance to the lumber industry and in the valne of its timber. Freer from resinous matter, softer, more easily worked, not less susceptible of a good finish, the lumber of the Shortleaf Pine is often preferred by the cabinetmaker and the house carpenter to that of the Longleaf Pine. Less tenacious, and of less power of resistance under strain, it is principally used for the lighter framework in buildings, for weatherboarding, Hooring, ceiling, wainscoting, cases for windors and doors, for frames and sashes of all kinds, and for shingles. Most of the dwellings located within the districts where this tree prevails are built almost eutirely of Shortleaf Pine lumber, which bears ample testimony to its wide usefuluess. It is also extensively employed in car building, for cross-ties, and in the manufacture of furniture.

NONENCLATURE AND CLASSIFICATION.

This species, like all of the same genus of a decidedly Southern distribution in the Atlautic forest, belongs to the section Pinaster as defined by Engelmann, with cones of tongh, woody' seales their exposed ends thickened by an umbonate swelling (apophysis), which is armed with a weaker or stronger deciduous or persistent prickle or muero. It was first described by Miller in the year 1768 as Pinus cehinata, ${ }^{1}$ and under that name recognized by the carliest writers on North American forest trees; ${ }^{2}$ it was subsequently named by an obscure writer Pinus tirginiana, var. echinate, Du Roi. ${ }^{3}$ Michanx described this tree in his North American Flora ${ }^{4}$ under the name of Pinus, mitis, which received general recognition and by which it is known to botanists to the present day. Pimus variabilis, the name under which it was described at about the same time by Lambert, ${ }^{5}$ was adopted by Wildenow, and following that author by Pursh, Nuttall, Elliott, and a few others of the writers on the botany of this country. In following strictly the rule of priority, at present most strongly advocated as the only measure to avoid further the coufusion arising from an endless number of synonyms, limes mitis, the name under which it is generally known, will have to be abandoned, and the more obscure one, Pimus echinata, under which this species was tirst published, restored.

Great confusion is caused by the various appellations this tree has received in the English vernacular, being indiscriminately called Shortleaf Pine, Yellow Pine, and Spruce Pine, although most widely known under the first of these names, and in the markets it is now somewhat doubtfully established under the name of North Carolina Pine. In the States of the lower Sonth it is frequently coufounded with the Loblolly Pine, as the timber of the two is often, if not mostly, mired. M. A. Curtis, in his "Trees of North Carolina," selected for this tree the name of Vellow Pine, strongly recommending its general adoption in order to introduce greater uniformity in the designations of our forest trees. Unfortunately the same hame is in many of the Sonthern lumbering districts bestowed upon the Longleaf Pine, particularly when the timber is spoken of. It is often quite impossible to determine to which of the tro species the timber is to be referred when under that name it is quoted in the reports of the lumber markets.

[^10]
hXILANATION OF PLATE XV

[Figures natural size, except where otherwise noted.]

Fig. a, loranch from a lower limb hearing male indorescence with flowers in a dense cluster (first week of Δ pril, sonthern Alabama) ; b, c, branch with two subterminal aments of femalo howers below which are two immaturecones of ono season's mrowth; d, detached male tlower showing basal involucral scales, magnified 3 dianeters; e, germinating seed (February) ; f, same seedling ono month later (March) with 7 cotyledons in the midst of which the terminal bud shows the primary leases appearing; g, seedling about the close of the first season with terminal cluster of true (secmary) leaves, below which are seen the withered primary leaves; h, i, iransverse section through base of two and three leafed leaf bundle, magnilied 50 diameters, showing outer small hypodermal cells, the ntomata appearing as marginal white spots; next a broad band of large in-walled parenchymatous cells bearing chlorophyll, within which, at tho angles of the leaf, resin ducts appear as largo openings; the dark areas in the center are tibrovascular bumdles surrounded by a single row of thin-walled cells (bundle sheath).

Pinus echinata: Seedling. Male and Female Flower, and Leaf Sections,

Under the name of Spruce Pine, in the extreme Sonthern districts, it is invariably confounded with the true Southem Spruce Pine (I'inus glabru), the species which in several points it closely resembles and to which it is most closely related.

BOTANICAL DESCRIPTION.

Leaves mostly 2 (sometimes 3) in a short sheath, 3 to 5 inches long; cones $1 \frac{1}{2}$ to 2 inches long, oval or somewhat conical; seales with a short, tender, straight, and fimally incurved prickle, light brown. Seeds rather small, two-fifths of an inch long, by one tenth to one-cighth of an inch wide, with dark, scattered or contluent specks; the wings are reddish brown and about one-half of an inch long. The young shoots are of a glaucous violet color. The bark of mature trees is rather thick and broken up in squarish plates. The different general appearance of the tree will almost always serve to quickly distinguish it from the closely related Scrub l'iue (Pimes cirginiana) which is distinguished by its shorter and more rigid leaves. Auy doubt can be removed by trying the twigs; those of the Scrub Pine are tough while those of the Shortleaf Pine snap off readily. The bark is of a light reddish brown color, and on the lower part of the trunk in full-grown trees three-fourths to fully oue inch thick crossed by deep furrows, and flaky.

The limbs are arranged in more or less regular whorls, under full exposure, forming a crown with the outline of a truncated pyramid, by which the tree can be recognized from a distance and distinguished from kindred species with which it happens to be associated. The oldest and stoutest limbs are rarely over 20 to 25 feet in length, and are somewhat drooping.

It is indeed a beantiful tree, with its stately, gently tapering trunk and its finely shaped full crown clothed in au abundance of foliage, bearing the stamp of thrifty aud vigorous growth.

Leares.-The secondary or foliage leaves are found mostly 2 in a sheath, and on shoots of vig. orous growth often 3 are found in a bundle; occasionally whole trees are seen with 3 leaves in a sheath and in some rare instances on young trees even 4 have been counted ($\mathrm{Pl} . \mathrm{XVI}, g, h$). The leaves vary from 3 to 4 inches and a little over in length; they are slender, about one-eighteenth of an inch wide, strongly concave, slightly twisted, faintly sermate, and abruptly sharp pointed, while young of a yellowish and later on of a deeper green color. In the cross section (Pl. XV, h, i) they present a semicircular outline; examined under the microscope they show on both sides about ten rows of minute stomata (breathing pores) the small epidermal cells underlaid by a single layer of rather thin-walled hypodermal or streugthening cells; in the specimens examined from 3 to 4 peripheral resin ducts were found, the bundle sheath consisting of a single row of cells. The sheath invests the leaves closely and rarely exceeds at any stages of growth three-sisteenths of an inch; the leaves are shed during the latter part of their second year.

The bract-like scales (Pl. XV, b. c.), modified primary leaves, which densely cover the young shoots and in the asils of which the foliage leaves are producel, are while young of a grayish color, closely appressed, lanceolate, acuminate, and fringed; with the subsequent development of the foliage leaves and the increase of the shoot in length, their tips become dried and are cast otti. As the tender shoots become hardened they assume a glancous purplish color.

Flowers.-The flower buds make their appearance during the latter part of the winter and begin, in stations of southern latitudes, to opeu near the end of March (Baldwin Comity, Ala., March 26), and farther north from three to four weeks later (Cullman, Ala., April 28). The staminate florers are closely sessile, to the number of fifteen to trenty surrounding the terminal bud (Pl. XV, a), which at the time has scarcely grown to the length of an eighth of an inch. The staminal column, of a pale purplish color, does not exceed three-fourths of an inch in length, is less than one-eighth of an inch in thickness, and is surronded by eight or nine decussate scales, those of the first pair being strongly keeled and searcely half the size of the others (Pl. $\mathbf{X Y}, d$). The crest of the anthers is nearly circular and slightly denticulate. The male flowers are shed immediately after the discharge of the pollen. The female tlowers are united in an oblong, obtuse, short-stalked catkin of a delicate rose-pink color, about one-fourth of an inch in length. They are rarely single, but mostly from two to four, proluced closely below the apex of the youngest shoot ($\mathrm{Pl}, \mathrm{XV}, b$). The stipe of the catkin, not over three-eighths of an inch in length, is invested by twenty to twenty four hyaline lanceolate, pointel, involucral seales, those immediately surrounding the flowers being widely spreading. The bracts subteuting the carpellary scales cover the latter to the base of their long, subulate, erect tips.

EXPLANA'TLON OE PLATEXVI.

Fig. R, hranch with matnre elosed cones (October of stecom season); h, mature cone; cone scale, onter or dormal view showing apmphysis; d, vontral view of the same with seed in phace; e, seed dotached from wing; foed with wing intact; g, leati forms, two and three leafed bundles.

4

.

After fertilization has taken place the shoots bearing the fertile flowers increase rapidly in length. Fertile catkins aro frequently found on the older branches, produced on branchlets from adventitions buds. The tree begins to produce flowers when from ten to twelve years old, according to exposure; male flowers have been observed one or two seasons earlier.

Cones.-Every season cones are produced in great abundance. The conelets of the first year, borne on a short, horizontal stalk, are oval in shape, scarcely one-half an inch in length, the squarrose tips of the scales giving them the echinate appearance from which the botanical name dirst given to this species was undoubtedly derived (Pl. XV, c).

Fully matured by the end of the second year, the cones are nearly sessile, oval, of dull or leather brown color, $1 \frac{1}{2}$ to rarely 2 inches long, and when open, nearly as wide; they are frequently smooth (Pl. XVI, a, b). The scales are hard, with a slightly swelled apoplysis, devoil of or armed with the weak, more or less deciduous prickle (I'l. XVI c, d). The cones open early in the fall, and remain, after the discharge of their seeds, for several years on the branches. In consenuence, the older trees are covered with them through all seasous.

Secd.-The Shortleaf Pine produces seeds in greatest abundance; its crops seem never to fail. The seeds are small, triangular, three-sixteeuths of an inch long by one-eighth of an inch wide, the hard, ronghish testa marked with three indistiuct ridges and more or less with confluent suecks; the wing is of a light, reddish brown, half an inch in length and deciduons during germination (Pl. XV $, e, f$). The seeds retain their vitality for several years; fresh, they will germinate in from ten to fifteen days. The number of seeds to the ounce is about 5,000 ; wafted by the wind over wide distances and germinating early during the first days of spring, their offspring are found to take possession of every opening in the forest and of the old fields in localities favorable to their growth.

THE WOOD.

The wood of Shortleaf Pine resembles that of the Loblolly in almost every respect. The sapwood is clearly defined, being quite broad, and even in very old trees forms fully oue half of the total volume of the trunk. In thirteen trees one hundred to one hudred and fifty years old, the average width of sapwood was found to be about 4 inches, while even in thees over one hundred and fitty years old its average width was 3 inches. In the former case, the sapwood formed 65 to 70 per cent of the volume of the logs; in the latter, 50 to 55 per cent, while in a set of trees fifty to one hundred years old it formed fully 80 per cent of all the wood. The change from sapwood to hardwood proceeds much as in Loblolly Pine. It begins when the tree (or any disk) is about twenty-five to thirty years old, and is retarded more and more with age, so that in old trees as many as eighty or even one hundred rings are counted in the sapwood, while in young ind thrifty trees not more than thirty to forty may occur.

In keeping with the large amount of sapwood, the weight of green Shortleaf Pine is rather great, varying, for entire logs, from 45 to 55 pounds per cubic foot, commonly approaching 60 pounds in the largely water-filled outer portions of the sapwood.

When kiln dried, the wood of trees one hundred to one handred and fifty years old Weighs on the average about $3:$ pounds per cubic foot. As in other pines, the butt is 15 to 20 per cent heavier than the top, and the wood of the inner forty to fifty rings excels in weight and strength the wool of the outer parts of old logs. As was stated for Loblolly, the sapwood may be light, heavy, weak, or strong, according to the age of the tree from which it is obtained. As might be expected from the great range of distribution of this tree, its wood, like that of Loblolly, raries within very wide limits. Specimens from Missouri (near its northern limits) are generally lighter and less resinous than those from farther south, aud frequently resemble the wood of the Norway Pine, while many select specimens from the Gulf and South Atlantic States rival in weight and strength the best grades of Longleaf Pine. In its strength, as in its weight, the Shortleaf follows Loblolly Piue.

The average of a large series of tests furnishes the following average values for dry pieces of this species:

Modulus of elasticity	Lbs. per st, inclis. $\ldots .1,000,000$
Transverse strength	:1,
Compression endwise".	5, 900
shearing along the tibe	688

17433-No. 13— 7

As the arerago weight of this series was 3 pounds per cubic foot, or about 16 per cent heavier than the abrage wight involving all parts of all the trees, these figmes should be reduced by that per cent to represent the true average for the wood of the species.

In drying, 100 ponnds of wood lose from 40 to 50 pounds of water, the bulk of which comes from the salpood, which contains 60 per cent and more, while the heartwood, like that of most pines. contains abont 25 per cent.

The shrinkade in volume consequent on drying amonnts to about 11 per cent. It is about 13 per cent in the wood of the butt and about 10 per cent in that of the upper logs, varying in this respect directly as the weight of the dry wood. Of the 11 per cent, about s per cent fall to the tangent on oceur along the vings and :3 to 5 per cent along the radius.

The structure of the wood of Shortleaf Pine is essentially the same as that of Loblolly. Summerwood and springwood are shaply defined. The proportion of the former to the wood on the whole varies, as in Loblolly, in the same manner as the weight of the wood, being greater in the butt than top, greater in the wood of the inner rings than in the wood farther out, and greatly reduced in all cases where the growth of the tree is suddenly retarded by unfavorable seasons, but is otherwise quite independent of the width of the rings.

For details of structure, consult the comparative study of Mr. Roth, appended to these monographs.

PROGRFSN OF DEVELOPMENT.

Tho seeds beain to swell and to germinate in the early days of spring. In Mobile Connty, on the end of the first week of March, the plantlets had their cotyledons fully unfolded, which were found to vary from six to seven in number, with the lower (hypocotyledonary) part of the axis from $1 \frac{1}{2}$ to 2 inches long, the rootlets being somewhat less in length (Pl . $\mathcal{N} V \mathbf{V}, e, \eta$). The development of the upper part of the axis (caticle) from the terminal budlet and of the primary acerose leaves proceeds now rapidly. These primary leaves succeeding the cotyledons are stifl and spreading, about three-fourths of an inch long and covering the stem densely (Pl。XV, g), remain during the first season, withering from below duriug the warmer part of the season. By the close of the tirst season the canlicle or first shoot has attained a length of from 3 to 4 inches. On the shoot of the second season (rarely before) the secondary leaves, which constitute the foliage, make their appearance from the undeveloped branchlets in the axis of the primary leares (PI. $\mathcal{I V}, g$). It the end of the sccond year the plants are 6 to 8 inches high, with a taproot 2 to 3 inches long. During this season adventitions buds appear at the collar of the stem, which bring forth vigorous spronts, particulamy il the stem has sustained the slightest injury. These shoots are covered with primary leaves, which are retaned for one season. They are apt to form strong branches before the tree has reached its fourth or fifth year; such branches, which are produced profusely from the stomps of larger trees, seareely survive another season. It is rarely that branches are produced in the second year, the first branches appeariug generally in the third season in whorls of three to four. In the third year foliage leaves alone are produced in the axils of scalles with their bases close to the stem. At the close of the third year the plants are firom 12 to 18 inches high. Now the development of the root system advances rapidly; the taproot being by this time about 8 or 10 inches bong, with strong lateral roots often double that length. Both taproot and lateral poots are dinally vigorously developed, penetrating deep into the ground, so that trees of this species are rately blown down by winds. At the end of the fourth year the plants are from 2 to $: 3$ feet high, with the stem at best from fiveeighths to seven-eighths of an inch thick.

The branches of the mhorls begin now in their turn to develop branchlets in whorls of secondary order. 'The development of the primary axis and its branch system proceeds henceforth in the regular acropetal order. Is in all pines, the shoot of the main axis takes the lead in rapidity and vigor of growth. By a mumber of measurements made at Cullman, north Alabama, of trees from the rpenings in the forest, as well as from clearings, it was found that by the end of the difth year they hat attaned a height vanym between : and fleet, rarely over, the stem being from five-cighths to seven-eighths of in ind in thickness; hy the end of tho sixth year, from 6 to 9 feet high and from one half to 2 inches in dianeter; and at the tenth yew, from 10 to 16 feet high and from $2 \ddot{ }$
to $2 \frac{2}{2}$ inches in diameter. At the age of fifteen to twenty years, with a total height of from 20 to 30 feet and a diameter breast high of 4 to 5 inches, the crown of the tree occupies from one half to five-cighths of its height. Henceforth throughout the period of quickest growth its rate is greatly induenced by conditions of light aud soil. At the age of fifty years the height of the trees varies between 40 and 60 feet and the diameter breast high between 10 and 14 iuches. About this age, or perhaps a short time before, the leight growth begius to decline and the branches become somewhat reclining below and spreading toward the top, and conserpently the head of the tree becomes more rounded in outline. Between the ages of sixty and seventy years the trees are from 50 to 70 feet high and from 12 to 15 inches in dianeter, with the trum clear of limbs for 30 to rarely over 40 feet. From this period on the growth proceeds at a slower rate. On reaching its one hundredth year the tree has attained a height between 90 and 95 feet and a diameter of from 16 to 19 inches at most. Having now passed its period of vigorous life, the growth is henceforth insignificant. Between the ages of one hundred and twenty and one humdred and thirty years trees were found 90 to 110 feet high and from 18 to 24 inches in diameter. The oldest tree encountered in the measurements, with two hundred and eight rings of anuual growth in the stump, scarcely exceeded 109 feet in height and measured 24 inches in diameter. The largest tree felled was 117 feet high and 25 inches in diameter, with one hundred and forty-three rings in the stump. Occasionally trees are found of a diameter exceeding 3 feet, but such are exceptional.

Table I.-Growth of shortleaf I'ine (I'mus echinata), from eight to fifty years.

Numiner nt	$\begin{gathered} \text { Sing } \\ \text { 181 } \\ \text { N } 111111 \mathrm{l} . \end{gathered}$	$\begin{aligned} & \text { Hi:am } \\ & \text { If } \\ & \text { horeant } \\ & \text { hinh. } \end{aligned}$	$\begin{aligned} & \text { riter- } \\ & \text { lielow } \\ & \text { crown. } \end{aligned}$	Juixht (t) firsi famberr -10w!.	$\begin{aligned} & \text { Total } \\ & \text { lu-ight. } \end{aligned}$	$\begin{aligned} & \text { tevighth } \\ & \text { wi } \\ & \text { timbrer. } \end{aligned}$	I,oculity.	lismarks.
$1{ }^{\circ} \cdot$	6-2	Jumis. 6)	fuchers.	$\begin{array}{r} 1 \because, 1 . \\ \quad \because \end{array}$	$\begin{gathered} J: r t \\ i l \end{gathered}$	Frot.		In forest : snil cold, underdrainago leficient; exposure free.
11,	58.	1)		$\because 1$	"11		do	Exposilme free; oprning in formst.
	bill	1\%	1.	*1		L:aldwin ('unuf: A la Hearlithean liser.	Coamblat ; loamy sand, with Cuban l'ine; expownec free.
117	73	$1: 3$	\cdots	\cdots	$\cdots 1$:12	livins, fes	Opmonis in forest ; exposure partially fred.
$11:$	10	16.1	1i\%	91		. . . dos	oppressed.
11.4	1103	15	. .	15	5	tor...............	
$1 \therefore=$	$10 \pm$	148		in	[11:	$3{ }^{3}$	(inulon, Ark	
	10.\%	15	里	1id!	:11	Cullman, dla	Partially freo on cravelly ridge.
	10:0	:	4	191*	11ılı.......	Exposure partially iree; ofen forest; dry hill: sandy, gravelly loam.
1	111	21		11	it		la	Exposurefree; gravelly loam.
$1 \cdots$	111	17		$11 ;$	4.3	115	Bivins, I Ax.	Oppressed on all sides; red heart nhove 36 feet.
$1 \ldots \ldots$.	118	32	191	15	6.	12	('ullmatn, Ala	Exposure free; uncil foreat; rocky, and mandy Joall.

I'able III.- (irowth of Shortleaf J'ine during slage of slow grouth, latest stage of life.

From the general table (No. IV) and the corresponding diagram it seems that in the average the tree at twenty is about 30 feet high, reaches 50 feet at the age of forty, and that its growth in height is in the main finished at the early age of 70 . In keeping with this, the growth in diameter is quite rapid during the first fifty years, contimes at a moderate pace up to 80 , when the age of extrome slow growth is entered.

RATE OF GROWTH OF SIIOKTLEAF PINE.
Table IV.- Iate of growth of Shortleaf I'ine.

HEIGHT

IN FEET.

Fig. 11. - firowth of Shortleaf line: Height, diameter, and cubic contents of arerage trees at 10, 20, ctc., jears of age.

CONDITIONS OF DEVELOPMENT.

Soil and climate.-The Shortleaf Pine prefers a well-drained, light sandy or gravelly clay soil or warm loan, even if deficient in the clements of plant food. Soils of this character which are found widely prevailing over the undulating or broken mplands, if only of sulficient depth, will produce this tree in greatest perfection. It avoids the strongly calcareous and the rich alluvial soils, as well as purely silicious, being dependent on the presence of a certain amount of clay by which the mechanical condition of the soil is improved, reudering it more compact and more
retentive of monsture. That a purely sandy and highly porous soil is not favorable to this tree is shown by the stunted growth of the waifs sometimes found in the openings of the forests of Longleaf fime on the sandy, arid uplands in the lower part of the coast pine belt.

Distributed in its range over 10 degrees of latitude and exposed to wide differences of temperature, it shows almost the same thrilt of growth near its northern limits under the isotherm of 500 Fo, and in reqions where the thermometer falls to near 20° below zero, as in lower latitudes with a mean anmal temperature of $64^{\circ} \mathrm{F}$. It ean, therefore, endure a considerable range of temperature.

The conditions of atmospheric moisture evidently exercise a much more decided influence over its distribution, and, without doubt, upon its individual development. The tree is found in greatest abundance and of best growth where, within the limits of its distribution, the annual rainfall varies between 48 to 52 inches, it is less frequent in the districts where the precipitation exceels 56 inches, still searcer where the anmal rainfall averages below 44 inches, and entirely wanting where this is less than 40 inches. Hence it is found best developed in the upper part of the Gulf States and west of the Mississippi River in adjacent northern districts from the interior of Georgia to northeastern Texas, where the most favorable conditions in regard to atmospherie precipitation prevail. The tree seems to avoid the humid air of the coast along the Gulf, as well as along the seashore of the Southern Atlantic States, nor does it ascend the mountains in these States above an altitude of 2,500 feet.

relation to ligit and ansociated specien.

The Shortleaf l'ine, like most pines, is a light neeling species, being, hovever, less sensitive to a deficiency in this direction than the Longleaf and Cuban pines, which latter succumb in competition with the Shortleaf Pine. Originally the Shortleaf l'ine is fond more or less associated with various oaks (Spanish Oak, Blackjack, Scarlet Oak, Post Oak, and Black Oak), the Mockernut and the Pignut Hickory, and more rarely with the Chestnot, the Mountain Oak, and the Scrub Pine. All of these species prefer the warm, lighter soils of the uplands. These companions of the Shortleaf line are joined in the lower Southern States by the Loblolly and Longleaf Pine. Wherever in these upland forests an opening is made the Shortleat Pine gains over its associates, finding its only successful rival in the Loblolly Pine. It is in the Southern States proverbial that in the upland forests "the pine is crowding out the hard-wood timber," a fact early olserved. The displacement is etiected either gradually in the course of time, or instantly when the removal of the original timber growth has been sudden. In the upper part of the maritime pine belt, where it is associated with the Longleaf Pine, the latter is sure to be replaced by the Shortleaf species, otten joined in the course of such invasion by the Loblolly Pine.

ENEMIES.

Little is known of the fungoid parasites and of the insects endangering the life of the Shortleaf l'ine. From my own observation, it seems that this tree is less affected by the former than the other pines of the same region. In the lumbering distriets of Alabama a disease called redheart or redrot, cansed by the mycelium of a large species of Polyporns, which is so highy destructive to the Longleaf Pine, is in this species almost unknown. In northeastern Texas this disease was fomb to affect the superamuated timber trees, which were over two hundred years old. A'cording to A. S. Packard the hosts of insects aflecting this pine serionsly are scarcely less in number than those infesting the Longleaf Pine; its enemies belong to the same or very nearly relatell kinds. Among the borers the Monshemmes confusor and other species of the same genus dig burrows in the timber to the heart; the larve of momerous Buprestide, Cerambicide, and C'urouliomide burrow under the bark, and the Tomicus celligraphus, cacogrophus, cicelatus, and other species of scolytider, at certain seasons are in immense numbers carrying on their work of destruction in the cambium layer, leaving in wonderful delineation on the inside of the bark the marks of their pernicions activity and causing the speedy death of the tree.

Mr. E. A. Shway, of the Division of Entomology, Department of Agriculture, remarks in this comention that of more than usual interest is the remarkable and disastrons invasion of one of

[^11]these bark-boring Scolytid beetles (Dendroctomus froutalis), which in former years was universally considered a rare species. This invasion started in 1888 from the monntainous regions of Wrest Virginia and within four years spread throughout the Mlleghany Mountains and adjacent lowlands from I'ennsylvania to the Carolinas. The amonnt of damage caused by this beetle within that time to the Shortleaf Pine and other pine trees has been chomous. A contagions disease, probably of a fungoid character, teminated in 1892 this invasion just as suddenly as it had commenced, and in 1893 not a single living beetle conld be found throughout the infested region. The white froth hiding the larva of a tree jumper (Aphrophora purullela) is very common on the summits of the twigs, the larve of the sawties are seen at the sume season to feed on the tender, young foliage, which is also infested by a small white Gelechia depositing its eygs on the leaves, the larvie boriug into them to provide shelter for their pupe; and according to Mr. Schwarz the leaves of the Shortleaf Pine are frequently found completely covered by a scale insect (Ifytiluspis pinifolire), causing what is termed in New England the "white malady" of the pine. Of the flat-headed borers, larve of the Buprestide, the most injurions species are Ohrysobothris dentipes (Germ.), Calcophora virginiensis (Drury); less common, Calcophora georyiuna (Lec.) and Duprestis lineata Fab. (Schwarz).

Exposed to the same dangers of destruction by forest fires and by live stock of every kind, which threaten the Longleaf species with extermination, the chances of this pine to resist them and to escape such eventually are more favorable in consequence of the greater facilities for its reproduction and of its rapidity of growth during the earliest stages of its existence.

The pernicious intluences of the tirst of these agencies is, however, painfully visible near the settlements where the forest is exposed to its effects one season after another. In such localities the pines are of stunted growth; in the middle stage-their very prime of life-they exhibit signs of decay and early death. But few of the younger trees exposed to fire were found on close examination to be free from defects and marks of impending disease.

Coufined to the gentle slopes of the low hill country, to rolling uplands, and to broad table-lands, this tree is scarcely exposed to destruction by torrents and floods. Unsought for its resinous juices, it is not subjected to the wholesale destruction cansed by the prevalent methods employed in the mannfacture of naval stores. No other timber tree found in the southern portion of the Atlantic forest region is more easy of natural reproduction than this species thronghout the wide range of its distribution. This is readily accounted for by its great fecundity, the seeds produced in great abundauce almost without failure every year being profusely spread far and ride, and germinating easily wherever the proper soil and a chance is offered for their reception. By their thrifty growth the seedliugs soou gain the upper hand over the contemporary growth of other species.

Throughout the interior of the Atlantic and the Guli States tracts of upland, originally covered with fine oak forests, which had been cleared for cultivation and but little over half a century ago abandoned, are found at present occupied by the Shortleat Pine, forming dense groves of trees 65 feet and over in height, with a diameter of 10 to 12 inches, standing 18 to 20 feet apart, with no undergrowth whatever. ${ }^{1}$ Such young forests, met with in every stage of growth, afford highly instructive lessons of the ways taken by nature in the spontancous restoration of the forest. In such spontaneous growths of the Shortleaf Pine the saplings form from the first mostly dense thickets. Before having arrived at their tenth year the work of thiming has actively begun by the death and speedy decay of the weakest. Thus favored by the access of light and air, the surviving trees shoot rapidly upward, the most aspiring individuals spreading out their crown, overshadowing those lagging behind, which being thus cut off fom the influences above all others required for their existence, one after another die. Before the trees have reached the middle stage of their growth the stand of timber in the young forest appears to be firmly establisued, and during the following period, embracing less than half a century, they have attained the fullness of their growth, furnishing timber fully matured and of the dimensions and quality required by the present standard. Unchecked by destructive influences the rotation of a crop of timber of the Shortleaf Pine produced without the interference or assistance of man, can be said to be accomplished within a period of from eighty five to ninety-five years.

[^12]
FOREST MANAGEMENT.

From the place this species is taking among the second growth it can be safely predicted that it is destinel to be the timber tree of the future, as far as the Sonthern States of the Atlantic forest region north of the Longleaf Pine belt are concerned. It is upon this tree that in this section succeeding generations will have to depend for their supplies of pine timber of superior yuality, and in which the nearest substitute is to be found for the supplies furnished at present by the longleaf Pine. That the resonrees of the latter under the increasing strain to which it is subjected will be completely exhansted before its restoration can be eflected is too evident to admit of any doubt.

Among the timber trees of the coniferous order found in the Atlantic forests, there is, then, scarcely a species presenting stronger claims to the attention of the forester than the Shortleaf l'ine. As far as its demands upon climate and soil are concerned, it is capable of successfully establishing itself over the immense territory reaching from 30° to 35° north latitude and from the Atlantic Slope to the treeless plains of the West, embracing within these limits areas of wide extent, with all the conditions required for the best development of this species, and in great measure adipted to nothing better than the growth of timber. Of not less importance than its value as a timber tree are its facilities for natural renewal, resulting from the abundant crops of seed prohuced almost without failure every year and its aggressive behavior toward competing species in the successful struggle for the possession of the soil.

From a closer observation of the young forests of spontancons growth at different stages, it is apparent that in the establishment and rearing of a forest of Shortleaf Pine, where mother trees exist, nature requires comparatively little assistance from the hands of the forester, and that the efforts of the latter will be chiefly confined to measures of protection against destruction by fire and against the injuries caused by inroads of live stock during the earlier stages of growth. That by thinning out, practiced after the first to the middle or end of the third decade, the forest growth would be benefited, there can be but little donbt. To what extent, by such interference, the production of merchantable timber can be promoted and in quantity and quality improved at the least cost remains a matter of future experiment. In the total absence of facts, based on experiment, no suggestions can be offered on these points other than such as can bededuced from the natural requirements of this species, as already discussed.

In conclusion, it can be safely asserted that the Shortleaf Pine is destined to take a prominent place in the forest management of the future throughont the regions favorable to its growth, not only on account of its economic value in the natural forest, but also in holding out better prospects to the forest planter for the production of timber of ligher quality in the shortest time tham any tree of the same order in the Southern Atlantic forest region. That the methods of a rational forest management will have to be resorted to at no distant time can with certainty be predicted, although the timber wealth existing at present in the vast territory of its growth may appear enormons.

Of great importance in the reforestation of large areas, this tree is of no less signiticance to the farmer who is aware of the advantages resulting from the restoration of the treecovering on his demuded uplands, either originally unfit for profitable tillage or thrown out of cultivationafter their exhanstion. By the facility of its natural renewal the Shortleaf Pine atfords within a short time a firm protertion to the light soil, preventing it from being carried away hy wind and rain, providing a shelter for the crops and for insectivorous birds, a lasting income of increasing supplies of timber and finel on lands that yied no other profit whatever, and to the lands abandoned after their exhaustion a chance for their recuperation while resting under the cover of its shade.

THE LOBLOLLY PINE.

(PINUS TADA Linn.)

History and Distribution.
Produciss.
Description, botanical.
Dencription of Wood.
Progress of Imevelopment.
Conditions of Development.
Reproduction.
'TIIE J,OBI, OLJ, I' INNE,
(Pimas teda Limn.)

 f'inus twda latinesque, F'lor. Itulovic. 162 (1817), nomon madum.
(XOMMON OLE LOCAL, NAMEA.

Loblolly Pine (Del., Va., N. (., S. C.. (rat., Ala, Fila, Miss., La, Tex., Ark.).	Bull line (Tex. and (inlf reqion). Viryinialine.
	Saplome (Va., N. C.).
Lal., Tex., Ark.).	Mealow Pine (Fla.).
'Gorch line (Enge lit.)	Cornstalk line (Va.).
Shortleat lime (lat.).	l3ack Pino (Van.).
Rinsemary line (Ma., N. C.).	Foxtail Pino (Var, Mel.).
Shash line (Va., N. C.), in part.	Imbian Pine (Va., N. C.).
Long Nehat l'ino (Del.).	Spruce l'ine (Va.), in part.
Iomer Murks (Mel. Vit.)	lastard lino (Va., N. C.).
Iblack Slash line (S.C.).	lellow Pino (N. Alar, N. (\%).
l'rankinceuse l'ine (lit.).	swampline (Va, N. C).
Shortleaf l'ine (Vid., N. C., S. (.).	Lougstriw Pino (Va., N. (.), in 1

THE LOBLOLLY PINE.

By Charles Mohr, 1'h. D.

INTRODUCTION.

Among the trees remarkable for the part they take in the spontaneous renewal of the furests in the Sonthern Athantic region after the destructive interference by man, the Loblolly Pine is most prominent. This readiness to occupy the ground lends to it a special economic significance in forest growth, aside from its value as a source of timber and as an abundaut sonrce of fuel. There can be no donbt that in the future management of the forests of the lower Southern States the Loblolly Pine will be assigned a highly important place. This view is confirmed by the fact that in the older of the States within the limits of its distribution, where the original timber growth has suffered greatest reduction, as in North Carolina, the second growth of this tree is largely depended upon to furnish the timber supply for the existing lmmbering industry.

Although known to have contributed to the necessities of the earliest settlers of these coasts, and forming at present a large part of the lumber supplies reaching the markets east and west of the Mississippi River, the merits of the Loblolly Pine and its economic bearings are generally but little understood, wide differences of opinion about its value as a timber tree prevailing. Such diversity of opinion is in itself a sufticient reason for a fuller investigation of its life history.

In the preparation of this monograph the writings of F. A. Michanx ${ }^{1}$ and Rev. M. A. Curtis ${ }^{2}$ and the report of the Tenth Census ${ }^{3}$ have been consulted. To Prof. Lester Ward and Mr. Canby thanks are due for valuable information on the distribation of the Loblolly Pine toward its northern limits. Much information of practical value was elicited by the Division of Forestry from numerous manufacturers of and dealers in lumber in the lower part of Virginia and in North Carolina, which has been largely quoted.

HISTORICAL.

The Loblolly Pine was recognized as a timber tree of value by the earliest settlers of lower Virginia and North Carolina. Its timber was largely used in the construction of their dwellings. Michaux states that three fourths of the houses in lower Virginia were built of Loblolly I'ine, aud that its mighty trunks, furnishing shafts of clear timber of largest size, were in early days held in high esteem for masts by the navies of the world. The distinctive characters of the tree were clearly understood by the earliest writers on North American botany. Ir. A. Michanx defined the northern limits of the tree and its distribution in the sonthern Atlantic States, and first pointed to its economic value. The liev. M. A. Curtis gives an account of its distribution in North Carolina aud recognized the form distinguished in that State as Slash Pine or Rosemary Pine. Investigations of the forest growth by the writer, under the direction of Prof. Charles S. Sargent, for the Tenth Census, and later investigations made in the transmississippi region, under the direction of the Division of Forestry, have led to a more accurate knowledge of the

[^13]distrihntion of this tre in the Southwestern States, to the establishment of its western and northern bounday lines, and to a more general appreciation of its economic importance in its eastern and western range.
(MEOGRAPHCAL DISTRIBUTION AND ECONOMIC IMSTORY.
The Loblolly Pine extends from the Delaware and Maryland peninsula through lower Virginia to Cane Malabar, in Florida, and all over the Guff States and sonthern Arkansas to the Colorado liver in Texas (see I'l. XVIII). The northern limit of the Loblolly Pine can be deseribed by a line drawn from the lower part of Newcastle County, Del., through the District of Columbia, to Petersburg, Va., thence toward middle North Carolina, following in its western course nearly the thirty fifth degree of north latitude to the southern boundary of Tennessee, through southern Arkansas to the sontheastern confmes of the Indian Territory. Its most western station is an isolated tract of small extent near Bastrop, Tex., the sole and last representative of the Atlantic pines in the Southwest.

Michanx the younger established the northern limit of the Loblolly Pine near Fredericksburg, Va., between the Rappahamock and Potomac rivers; M. A. Curtis placed it in or close to the District of Cohmoia. Its occurrence in the District was, however, considered donbtful, or merely accidental, until in 1888 it was confirmed by Ir. George Vasey, who discovered a group of fullgrown trees in the woods near the Reform School. Mr. William Canby states that he "found in the lower part of Neweastle County, Del, a good many Loblolly L'ines, and from the point mentioned it becomes more and more plentiful and widespread in the Delaware-Maryland peninsula."

On the Atlantic Slope, near its northern limit, the Loblolly L'ine occurs most frequently in the flat lands of the tidewater districts, forming rarely continuous forests, more frequently less compact bodies of timber, associated with the Shortleaf Piue, oaks, and other hard-wood trees.

In Virginia this tree is not found beyond the northern limit of the Tertiary strata of the coast region, and is not met with west of Petersburg and Richmond.

In the lower part of this State, as in North Carolina, the Loblolly Pine was formerly found in great perfection and abundance-broad forest belts of Loblolly alternating with forests of Shortleaf i: Michaux's time. The original forests have, however, in a great measure disappeared, aud their progeny, of second or third growth, is now depended upon as the principal source of lumber. On the lams exhansted by the earlier planters, and which have been abandoned for several generations, the timber of this Sip Pine, or Oldield Pine, has in many localities attained dimensions and a degree of maturity fitting it for all purposes for which timber of the original growth is employed. This important fact is confirmed by parties engaged in the lumber business in southeastern Virginia and in eastern North Carolina.

From information received it is evident that in these parts the second growth of Loblonly Pine is chiefly depended upon for the manufacture of lumber. It is, however, to be presumed that the Shortleaf line contributes not a small part of the timber supply. Both of these trees are kncwu by the inhabitants as Shortleaf, or Shortstraw, l'ine, and their timber is sawn indiscriminately; the proportions of the lumber of either reaching the markets can therefore not be determined. Mr. Joseph Allard, jr., of Richmond, reports that most of the Virginia Pine is Loblolly Pine, and that every fifty years will produce trees large enough for sawlogs, three to each tree, averaging 16 fect in length. Mr. Sparrow, of Brooke, Stafford County, states that the pine of this county, and in Caroline Counts, is almost entirely of the Oldfield Pinc (Loblolly Pine), and that in the latter from thirty to forty sawmills are cutting this pine. Messrs. J. E. and Edward liogers, from Suffolk Connty, (ach remark that "large quantities of lumber are mannfactured from Oldield line, which is finst taking the place of Yellow line (Pinus echinata), the latter having been used up by the sawmills in this section." The young timber is, according to the same accounts, cut into joists, uprights, atul wther square stufl for framing; the best quality is selected for flooring, ceiling, and other inside finish, the lumber being sold under the name of Virginia Pine in the markets of Waslaington, Baltimore, and Philadelphia.

On the coast of sonthern Virginia the Loblolly P'ine forms about 75 per cent of the timber standing. According to all accounts the original growth is rapidly disappearing, but the exceed-

ingly large area of exhansted lands abandoned in that section by the cultivators during a long period of time has been taken entire possession of by this tree.

In North Carolina the Loblolly is the predominating tree throughont the eastern coast piain and in the lower part of the State, where it forms extensive forests, more or less freruently interspersed with Longleaf Pine. South of Cape Fear River, however, the latter prevails almost exclusively. In the extensive region watered by numerous streams Howing into Abemarle and Pamlico sounds, in the rich, moist soil of the wide swamps above tide water, the Loblolly reaches its best development, attaining dimensious which place this tree among the timber trees of first order. The primeval forests of this pine have, however, almost completely disappeared in this region, and with them the gigantic trees of this species known by the people as liosemary Pine, once so highly prized and eagerly sought in shipbuilding. Farther south, in the low pine barrens, this tree is largely superseded by the Longleaf Pine, and is principally confined to the borders of the swamps and to the bottoms along the water courses. Throughout the lower part of the coast pine belt, after the removal of the original timber growth, the progeny of the Loblolly Pine immediately takes possession of every opening, and particularly of the fields thrown out of cultivation.
"The principal kinds of Loblolly recognized by the lumbermen under distinct names are:
"1. Rosemary Pine, the best kind from the trees of best development, of a fine grain but heavy, hard, durable, with but a small proportion of sapwood. At present scarcely known by name at the mills in the section where half a ceutury ago it abounded.
"2. Swamp or Slash Pine, of a coarser grain, with about one-half of the diameter of the tree in sapwood. This lind comprises most of the timber of original growth, and the oldest and best matured second growth.
"3. Oldfield Pine, by the rapidity of its growth, is very coarse-grained aud for the greater part sap, scarcely one-fourth of the diameter being heart. At present the principal source of the timber supplies in the coast region." ${ }^{1}$

At the sawmills at Goldsboro, close to the borler of the Longleaf Pine region, over 50 per cent of the lumber sawn is Loblolly Pine. On a trip through the forests between the Neuse and Trent rivers it was observed that the Loblolly Pine forms over two-thirds of the tree covering, almost entirely of second growth, of dimensions to furnish sawlogs of from 10 to 18 inches mean diameter by a length of from 15 to 30 feet. The sandy swells and knolls rising above the tlats origiually covered with the Longleaf Pine are not infrequently occupied by a young growth of Loblolly. The mills at Nembern and vicinity are almost solely depending for their lumber supplies upon these forests of second growth. The same conditions are prevailing in Duplin and in Pender County, by the reports of operators. Mr. C. C. Williams, at Teacheys, in Duplin County, states that 66 per cent of the timber sawn is Loblolly Pine, mostly of second growth, furnishing timber for creosoting and lumber for building purposes.

Mr. Bauman, at Burgaw, reports that the Oldfield Pine (Loblolly of second growth) is coming more and more into use every year, and the demand for this kind of lumber is greatly increasing. In a number of the Newbern journals of 1891 it is stated that over $60,000,000$ feet of lumber, board measure. were produced in 1891 by the mills of that place and the vicinity. In the bulletin quoted the output of the nine mills in operation during 1893 is given at $38,000,000$ feet, board meas. ure. The timber delivered at the mills sells for about $\$ 5$ per 1,000 feet, and the price of rough lumber averages $\$ 12$.

In the latest report on the forests of North Carolina the acreage of the Loblolly Pine, inchding the land covered with the second growth, and where the Loblolly Pine is takiug the place of the Longleaf Pine, is stated as exceeding $\$, 000,000$ acres. The standing merchantable timber can be said to cover $1,150,000$ acres. Allowing 4,000 feet, board measure, to the acre, this will make $4,600,000,000$ feet of standing Loblolly I'ine in 1893. The total cut of Loblolly Pine for the same year has been reported at $290,000,000$ feet, board measure. ${ }^{2}$

In South Carolina and Georgia the Loblolly Pine is conlined all over the coast pine belt to the more or less swampy borders of the pine barrens scattered among the broad-leaf evergreens and

[^14]decidums thees pecoliar to these latitudes-the Magnolia, sweet and Red IBay, lblack Gum, and Titi, assoobated with the C'uban Pine. The timber of the Loblohy l'ine produced in these swamps is of inferion quality, with the sapwod from to to inches on a rathe of from 8 to 12 inches. It has been moticed that among the original treecovering Loblully Pines above 2 feet in diameter were frequently fonnd anfected with dry or red rot.

On the dry rolling pine uphands of these States to the foot of the mountain ranges, rising to an elevation of sou to 1,000 feet above sea level, as well as of the Gulf States east of the Mississippi, this pine is foumb more or less dispersed among the hard-wood timber, but is considered of no value exerpt for finel; the trees brancla a short distance above the ground and the timber is too knotty to be fit for lumber.
live trees from the damp, flat pine barrens bordering upon the swamps, felled for test logs in Hampton Comnty, S. U., showed the following dimensions:

Mensurements of fiec trees.

Sumber of ringe on stilup.	1)iametur at breast high.	Hoight of tree.	Lenistlo of timber.	Siancter below crown.	Sapwoud on radius of butt.
10:3	Inches,	Fepl. 118	Fect. 55	Inches. 17	Inclies. 51
103	22	118	70	14	41
± 10	17	103	66	13	$3{ }^{\text {3 }}$
45	19	112	53	11	
63	14	90	54	9	3

In peninsular Florida the Loblolly line is more rarely found, its place in the old fields being taken either by Cuban Dine or the Florida Oldfield Pine (I'mus clausut).

In the eastern Gulf States throughout the coast pine belt the Loblolly Pine is scattered along the swamps bordering the water courses. Until of late years it has been cut only on special orders for low-priced stutl intended for temporary purposes. As an instance, the fact may be eited that the millions of feet of'square sawn timber and of lumber required tor the buildings of the New Orleans World's Exposition were mostly Loblolly Pine, sawn at Pealington, Miss. Since the introdurtion of the dry-kiln it is extensively used for flooring and inside finish. In the fresh, deep soil of light loam of the coast platn and the valleys in the upper part of the pime belt-the region of mixed growth-this tree is found in great perfection. In these districts it furnishes clear sticks of from 50 to 60 feet and over in length. A considerable proportion of the long and heavy sticks of hewn timber reaching the Mobile market for export as "pitch pine" coming from the upper division of the coast pine belt in Alabamare Loblolly Pine. The timber of the Loblolly line from the table-lands of north Alabama is of excellent quality, with but a small proportion of sapwood from $-\frac{2}{-}$ to 3 inches on a radius of from 10 to 12 iucbes, heayy, of a fine close grain and hence of greater durability and strength. The lumber from that region tinds aready market, being used for all the purposes on the honse carpenter, and is indiscriminately sold with the product of the Shortleaf Pine.

On the table-fands of the Warrior coal field the Loblolly Pine is better developed than in any other part of this or the adjoining State of Mississippi. If not found in compact forests of any considerable expanse, it forms bodies of heavy timber covering the flat and badly draned tracts, from a few to many acres in extent, associated with the hard wood growth peculiar to a moist soil. It might be said that about one-half of the pine timber growth of these highlands consists of the Loblolly I'ine.

The following measurements have been taken of trees felled in Cullman County, Ala., from heavily timbered land several acres in extent:

Ringa on stump.	Diamoter breast ligh	Height of tres.	Length of timber.
	Inchers.	Feet.	Frep.
788	21	101	41
1119	20	101	45
137	1:1	106	57

In Louisiana, rest of the Mississippi bottom, the Loblolly I'ine is found frequently scattered in the level woods bordering upon the grassy marshes of the coast. North of the region of the Lougleaf Pine on the pine llats with a poor, sandy, undrained soil, between Lake beandean and Bayon Danchitt, extending to the Arkansas State line, this species forms the principal tree covering. The tree is cut ouly for local consamption in the absence of means of transportation.

In Arkansas heavily timbered forests of Loblolly I'ine cover the that woods in the southeastern part of the State and the region of the 'Tertiary and Post-Tertiary formation. The lower levels in the rolling uplands are covered with heavily timbered forests of the Loblolly Pine. It forms in this State an important factor in the mannacture of lumber. From observations made in the logging camps in connection with the principal points of production along the St. Louis and Iron Mountain Railroad south of Gurdon and on the St. Louis and Southwestern Railroad it can be safely assumed that about one-half" of the lumber cut and shipped as "Yellow Pine" to Northern markets from southwestern Arkansas is Loblolly Pine, the other half being Shortleaf. The flood plain of the Little Missouri River and the Otachita River is covered with extensive forests of this tree. The deep soil, a stiff sandy loam, flooded after every rainfall, produces a heavy and finely developed timber growth. Upon one acre, representing fairly the average of the merchantable timber standing, 30 trees were connted of from 12 to 48 inches in diameter at breast high; of this number were fonnd: One tree 48 inches in diameter at breast high, length of timber estimated at 40 feet; one tree 36 inches in diameter at breast high, length of timber estimated at 35 feet; three trees 30 inches in diameter at breast high, length of timber estimated at 35 feet; seven trees 23 inches in diameter at breast high, length of timber estimated at 35 feet; three trees 15 inches in diameter at breast high, length of timber estimated at 35 feet; fifteen trees 12 to 15 inches in diameter at breast high, leugth of timber estimated at 24 feet.

Measurements of four trees.

The timber of these trees was almost free of any defects; sap from 3 to 4 inches on radius.
In Texas this species is distributed in greater or less abundance to the south and southwest of the Shortleat Pine region over an area exceeding 6,800 square miles. There is even less basis for statistical statements regarding timber standing at present aud cousumption than for the Shortleaf Pine, since it is not even recognized as a particular species, and always cut together with the latter, especially between the Trinity and the Brazos rivers. No data have lately been obtained of the annual production of lumber derived from the Loblolly P'ine forests in this State, but in the light of the statements of the Teuth Census' it must contribnte largely to the timber supplies of this State. According to this anthority, the merchantable timber of Loblolly standing in 1880 was estimated at $20,907,000,000$ feet, board measure, and the cut for the same year at $61,500,000$ feet, board measure.

PRODUCTN゙.

VALUE AND USES OF THE WOOD.
Considered solely as the source of furnishing an abundant and cheap material for purposes where strength and durability are not the tirst considerations, the Loblolly I'ine would be entitled to take its place ammag the timber trees of greater importance. The average tree of full growth, as it is generally found in the original forest on a poorer soil, furnishes timber with a fair proportion of heartwood, with sticks of from 30 to 50 feet and over in lensth, free from blemish and in some points scarcely inferior to the timber of the Shortleaf and sometimes even of the Longleaf Pine. In fact, the selected lumber of Loblolly classes with the latter in many of the markets for the same

[^15]nses by the house earpenter, while the inferior grades are largely consumed for secondary purposes. Ot late years the value of the lumber even of lower grades has been much enhanced by the process of kiln-drying, now universally introduced into the mills. After the removal of the water fom the sapwod by exposure to a current of heated air, the lumber loses its proneness to wet discolored or to "blue" by the rapid development of the mycelimm of a fungos and greatly gains in its calpability of a good finish, as well as in durability, and is thus rondered suitable for many purposes for which, without such treatment, it wouk be rejected.

The consumption of Loblolly Pime lumber is constantly on the increase in the markets of the North, as the lumber of the White Pine becomes scarce and more expensive. The sappy timber of second grawth is every year coming more in demand, especially in foreign markets, where this cheap, timber is rendered durable by creosoting. In the highest state of perfection, which is only attained in the regions most favorable to its development, no other pine was deemed of higher value or was more eagerly sought after for masts and other heavy spars of ships. Before the use of iron in naval construction for these purposes, the Loblolly Pine timber of largest size was eagerly contracted for in all the Southern ports by every one of the maritime powers of Europe. In consequence, the trees which could fumish timber of the dimensions and qualities reguired for such purposes have become exceedingly searce, and can be said to have almost cotinely disappeared.

The Rov. M. A. Curtis, in his account of the Loblolly l'ine, ${ }^{1}$ quotes the following statement on the habitat and the dimensions of this tree, from the pen of Mr. H. Rufin, of Virginia, which, illustrating a feature of the life of the Southern forest forever past, I can not refrain from introducing here:
'This (slash l'ine) treegrows ouly on low, moist lands, and is the better for timber and grows larger in proportion to the richness of the lanel. Among ofher gigantic forest trees on the rich and wet Roanoke swamps, mostly of oak, poplar. stumps of others which havo benn cut down and which measured 5 feet in diametor, amd wero supposed to have been from 150 to 170 feet high.

In evilence of the dimensions of the trees, the writer gives the sizes of the squared sticks cut in Bertie County, made into a raft, and shipped in 1850 by way of the Dismal Swamp Canal to New York. These sticks varied from 50 to 86 feet in length by a mean diameter of from 26 to 31 inches, containing from 347 to 537 cubic feet each. Remarking further:

All of theso sticks are nearly all heartwood; thence it follows that the proportion of heartwood must have been very large, the timber must havo been resinous or it would not be good, and it must bo durable or it would not servo for masts and other lons spars for ships exposed to the alternations of wetting and drying, and for which only the lest inaterials are permitted to bo used.

The inferior growth of the Loblolly Pine furnishes vast supplies of cordwood. Immense quantities are shipped from the coast of Virginia and North Carolina to the large cities on the Athantic seaboard. It is chictly used where a brisk flame with a quick heat is required, viz, in bakeries, brickkilns, and the kilns of potteries. In its fuel value, the wool of this tree ranks with tho better class of resinous trees. Large quantities of the wood are also used for the burning of charcoal.

> hesinous phoducte.
liegarding the prodnction of resinous products from this pine there has existed a wide divergence of statements. A. F. Michanx states that this tree affords turpentine in abundance, but of a le'ss thidity than that of the Longleaf Pine, and suggests that as it contains morce sapwood a rleepre incision would yieh alarger product. Rev. M. A. Curtis follows Michanx in this statement, and the writer, relying upon the information from operators in sonth Alabama, was also led into the error of supposing this tree to yield an abundance of resin for distilling, similar to the freeHowing resin of the Cuban Pine, and published a statement to the effect that this tree was tapped wherever fonnd. A trial box made at the request of the writer seemed to confirm the opinion as to the character of the resin. It appears now, however, that the tree boxed (not inspected by the writer) could not have been a Loblolly, for lately a number of true Loblolly Pines, tapped aceidentally in a turpentine orchard, were fonnd in Washington Connty, Ala., and showed that the resin

[^16]of this pine does not flow freely and hardens so rapidly on exposure that it can not be profitably worked. An experienced operator at the place confirmed this to be the experience everywhere with this kind of pine. The statements regarding the use of this tree for its resinots product can therefore only be explained by a confusion of names applied to the different pines, and it was most likely the Cuban Pine to which the operators referred.

In a report lately published by the State geologist of North Carolina the remark is made: "It is said that the crude turpentine of the Loblolly line has so much water in it that it yields only a poor spirits of turpentine." This, to be sure, is a misconception; but the statement confirms the fact that this species is not tapped for its resin, which had also been observed by the writer a short time previously in the Loblolly Pine forests of North Carolina as well as South Carolina and Georgia.

From an extensive series of analyses of the resin of fresh specimens of both Longleaf and Loblolly Pine collected in Georgia and South Carolina, it appears that the wood of Loblolly contains but little less resin than that of Longleaf; that the distribution of resin in the \log is practically the same, and, what seems most remarkable, that the composition of the resin, as far as the relation of spirits of turpentine and rosin is concerned, is nearly the same (being (puite variable in both), so that the absence of free "bleeding" or abundant resin exudation can not be due to a lack of liquid oil, but must be caused by other physiological peculiarities.

NOMENCLATUIE AND CLASSIFICATION.

The Loblolly and half a dozen other species, mostly Pacific and Mexican, ${ }^{2}$ form a natural group of timber trees included in Euglemann's Eutader, which might fitly be designated as the group "torch pines," and can be characterized as embracing trees, mostly of larger size, with more or less resinons, coarse grained wood, long leaves by threes in a fascicle, and with lateral cones provided with thick, woody scales bearing a stout, sharp prickle. The distinctive characters of this species have been early recognized by Pluckenet, one of the earliest writers on American plants ${ }^{3}$ and Limmeus described the tree under the name of Pimus ted a ${ }^{4}$ which was adopted subsequently by all botanists. The name given to this pine by Linneus in 1753 has never been changed. In 1789 Aitan established a variety, P. Treda var. tenuifolia (Hort. Kew., III, 368), which, however, has not received recognition.

BOTANICAL DESCRIPTION AND MORPHOLOCY.

Abstract

Leaves three in the close, elongated sheath, 6 to 9 inches long, slender, stiff, rigidly pointed, channeled, and strongly keelerl on the upper side, of a pale green color; cones nearly sessile, single, in twos or threes, roundish-orate or ovate-oblong, about 3 inches long, with the scales harl and woody, the pyramilal apophysis with a strong, recurved prickle; seeds small, their wing an inch or over long.

This species is easily distinguished from its most frequent associates-the Longleaf and Shortleaf Pine-by its slightly glancous foliage at all seasons, and by its more slender and almost smooth terminal buds; from the former and from the latter by the more robust shoots and buds; and from both the species named, and also from the Cuban Pine, by its characteristic cones.

> ROOT, STEM, AND BRANCH SYSTEM.

The stout taproot of this pine is assisted by powerful laterals which divide into mumerous branches and descend into the soil, usually at a short distance from the trunk; but where a hard, compact subsoil is encountered they are often seen to run for a greater or less distance near the surface. In the localities most favorable to its growth, the massive trunk of the Loblolly l'ine is in its dimensions not surpassed by any other pine of the Atlantic forest region. In such cases the tree attains a height of 120 to 150 feet and over, with a diameter of from 4 to 5 feet breast high, and with the trunk clear of limbs for a length of from 60 to 80 feet.

[^17]
EXP'LANATION OF PLATE XIX.

[Figures natural size, except when otherwise noted.]

Fig. a, branch hearing male intorescence; b, young fascicle of leaves (spring) ; c, d, forms of mature leaves; c, transerse section of leaf bundle showing structural characters of the leaf (as explained for l'inus echinata, f, f); magnilied 20 diameters.
11.

$$
2
$$

.

Such trees, however, have at no time been plentiful and at present are rarely met. In its average growth the diameter of the trunk, breast high, measures from 20 to 24 inches, and the height from 95 to 110 feet. In wet places, somewhat distended at its base, the trunk tapers very gradually to the crown, which covers from one-third to one half of its height. The lowest limbs are horizontally spreading, and toward the upper part of the tree they become gradually more erect. The largest limbs are rarely found over 20 feet in length. The primary branches dividing in a regular order of ramification into numerous branches and branchlets, the crown becomes full and compact toward the top. The bark of the full grown tree is, in the lower part of trunk, from 1 to $1 \frac{1}{2}$ inches thick, generally rough, of a grayish color, becoming smoother, thay, and reddish brown as the tree grows older.

Leaves.
The leaves are united, to the number of three, in a smooth, close sheath, which in the young

In the bushy growth of less than ten years the leaves are scarcely 5 iuches in leagth, resembling closely the foliage of the Shortleaf Pine of equal age. Prof. L. Ward notes this resemblance as a singular fact, which, as he very pointedly remarks, has the effect of obscuring the gradual appearance of this species among the young growth of the Shortleaf Pine. ${ }^{1}$ In the following years the leaves are from 7 to 9 inches long, less densely crowded on the slender branches than in the Longleaf and Cuban Pine, and persisting to the third year; the foliage is of a more open spray. The leaves are stiff, slightly twisted, roughish on the finely serrulated edges and the prominent midrib, chamneled on the upper side, abruptly tipped by a rigid, sharp point (PI. XIX, c, d), and of a pale green color. They are scarcely one-sixteenth of an inch wide, about half as thick, and present in the cross section on the dorsal side a convex and on the ventral side a strongly triangular ontline. Examined under the microscope they show on both surfaces from 10 to 12 rows of rather large breathing pores (stomata), alternating with rows of numerous hypodermal or strengthening cells, in several layers. The cells of the bundle sheath are thin walled; the fibrovascular bundles are, on their ventral side, surrounded by a single row of small strengthening cells. The rather large resinous ducts, from 3 to 5 in number, are peripheral, and placed irregularly mostly about the augles (PI. XIX, e); sometimes smaller ducts are observed close to the bundle sheath.

FLORAL OIGGNS.
The staminate flowers are crowded, from 18 to 20 in number, below the apex of the youngest shoot. (Pl. XIX, a.) They are from three-fourths to one inch long, of sulphur-jellow color, and surrounded at the base by from 8 to 10 ovate to lanceolate, leathery, involucral scales; the lowest pair is much shorter than the others and strongly keeled; those of the uppermost row are longest, narrow, lanceolate, and reflexed. The anthers are crowned with an erect orbicular crest. After the discharge of the pollen the flowers are gradually shed. The pistillate flowers form an oblong, erect catkin, borne on a short stalk, singly, in pairs, sometimes 3 to t, below the apex of the shoot (Pl. XX, a) of the season, which by the time of blooming has already reached a leugth of several inches and is covered with the well-advanced leaf buds. Inchuding their stipe, the female aments are about one-half to three-fourths of an inch long, surrounded by from 15 to 20 involucral scales similar to those of the staminate flower. The carpellary seales are ovate, lanceolate, tapering to a sharp, erect, and somewhat reflexed and twisted point. The small bracts subtending the scales are orbicular, scarcely covering their base.

The flowers open, in the coast region of the lower Southern States, about the second reek of March (Mobile, Ala., March 15 to 20), and in the interior from four to five weeks later (Cullman, Ala., April 25).

Immediately after pollination the female catkins increase rapidly in size; before ten days hare passed the carpellary scales have doubled in size, and their tips become stifHy erect, the bracts having remained stationary in their growth, and the fertile shoots having grown to the length of S inches and over. This period passed, the growth of the conelets during the rest of the season proceeds very slowly.

[^18]
EXPLANATION OF PLATE XX.

Fig. a, branch bearing two subterminal aments of female tlowers at end of shoot of the season; b, immature cone of one season's giowth; c, mature closed cone of two seasons' growth; d, suature open cone alter shedding seed; e, cone scalc, outer or dorsal side, showing the broal umbonate apophysis eml with its sharp transverse rilges and the stont reflexed prickle; f, inner or ventral view of the same with the seed in place; g, seed and wing detached.

At the beginning of the second season the immature cones are scarcely one half inch wide and less than an inch long ($\mathrm{Pl} . \mathrm{XX}, b$), and from that time on increase in size and by the following October have reached their maturity. The ripe cones are lateral, almost sessile, broadly conical or ovate in shape, rarely over 3 inches in length (${ }^{\prime}$ I. $\left.X X, c, 1\right)$, when fully opened 1.1 to 2 inches wide, and of a light wood-brown color. The pyramidal, swelled, exposed ends (apophyses) of the hard, roody scales with a sharp transversal ridge are armed with a stout, straight, or slightly reflexed prickle. (Pl. XX, e_{0}) Having reached their maturity, the cones open slowly, the seeds being gradually discharged during the fall and winter seasons. The cones are apt to remain on the tree till the end of another year, and when they tinally separate from the branch by the breaking loose of their very short stalk, leave none of their basal scales behind. The seeds are irregularly truncate or rhomboid in outline, inflated, sharp edged, with two to three more or less distinct ridges, roughish, dark brown to almost black, and surrounded to the base by the narrow border of their delicate wing (Pl. XX, g, f), which is over an inch long and from one-fourth to one-eighth of an inch wide.

THE WOOD.

Among the pines of the southern Atlantic forests noted for their economic importance the Lobloly is held least in value as a timber tree. This opinion is chiefly founded on the lesser durability of its wood, being more speedily given to decay under the combined intluences of dampness and air, and also on the supposition of its being of less strength than the other pine timbers. There is scarcely a timber tree existing that shows wider differences in the quality and value of the timber. This is strikingly demonstrated when the timber of a tree of full average growth, grown on land broken by the plow, is compared with the timber of a tree in its highest perfection taken from the primeval forest. In the former case the wood is crossgrained, sappy, and quick to decay. In the latter it is finer grained, resinous, has less sapwood, and approaches the timber of the Longleaf Pine.

In general, the well-marked, lighter-colored sapwood is quite broad, and usually about 4 inches, frequently 6 inches and more. It is wider in young, thrifty trees, narrower in old and stunted or slow-grown timber; forms about 60 to 70 per cent of the total volme of stems over one hundred years of age, and 80 to 90 per cent of trees sixty to one hundred years old. The formation of heartwood does not begin before the age of twenty-five, the process being retarded as the tree, or better the particular part of the stem, grows older, so that while the innermost sapwood in a log or disk with twenty-six rings is twenty-five years old, the innermost sap ring is thirty-five years old when the \log attains the age of forty-five; it is forty-five years old when the \log is sixty-five, and about seventy or even more years old when the log reaches the age of one hundred and fifty or two hundred. It fullows that the saprood is formed of fewer rings in young trees and in the upper part of older stems, but owing to the greater rapidity of growth in these parts the width of the sapwood does not always follow this same law. Since neither width of the ring, nor that of the denser summerwood, the thickness of the cell walls, nor any other important structural feature is changed when the wood of any ring changes from sap to heart wood, the prevalent notions of sapwood being necessarily either coarse or fine grained, light, and weak, are erroneous. The sapwood of a young, well-grown tree is coarse-grained, heavy, and strong; that of an old tree is fine grained, light, and weak. Since durability on exposure is not to be expected of the saprood of any pine, the prejudices against the sapwood, and therefore all young timber of this particular kind, are unwarranted. With proper treatment, it will serve all purposes for which any pine wood of its grain and weight can be employed.

Owing to the great amount of water soaked sapwood the weight of green Lobloly timber is very great, varying chietly between 50 and 55 pounds to the cubic foot, with the sapwood commonly approaching 60 pounds to the cubic foot. Kiln-dried, the wood of the entire trunk of trees one hundred to one hundred and fifty years old weighs about 33 pounds per cubic foot. In such trees the wood of the $\log 50$ feet from the ground is about 20 per cent lighter (and meaker) than that of the butt \log, and the wood next to the bark in the butt \log is 15 to 20 per cent lighter than the wood of the inner fifty to sixty rings.

In strength the wood of the Loblolly varies chiefly with weight (the same degree of seasoning always presumed), and keeping this in mind, compares favorably with that of any other coniter.

For well-spasoned wood, the following figures represent the average of hundreds of tests on specimens specially collected for this purpose:
Lhe. per sif. inch.

odulus o	- 1,950,000
Transverse strength	10, 100
('onnpression entwise	6,500
-harime with the fib	6:11)

Since the average weight of the test pieces was 40 pounds per cubie foot, being heavier than the average weight of the woon, these figures must be taken abont one-sixth lower than given above to represent the true average for the wood of the species.

Like the wood of most conifers, that of Loblolly dries easily and rapidly. In doing so the green lumber loses a large amount of water, dependent chicfly on the proportion of sapwood. Though quite variable, the water in fresh sapwool commonly forms 50 to 60 percent of the weight, while in heartwood it little oxceeds 25 per cent.

The shrinkage consequent on drying amounts to 11 to 12 per cent of the volume; is greater in the lumber of the butt than in that from the top logs, varying in this respect from $1: 3$ per cent at the butt to about 10 per cent in the top, a difference which appears due to the difference in the weight of the wood of the different sections. As in other pine, about two-thirds or seven-eights per cent of this shrinkage falls to the tangent (i.e., is along the rings) and about 4 to 5 per cent to the radius.

In kiln-drying, the wood may be taken fresh from the saw and behaves extremely well, suffering no great injury, a fact which has greatly enhanced its value by facilitating its exploitation.

For the details of wood structure, consult the comparative study by Mr. Roth appended to these monographs.

PROGRFSS OF DEVELOPMHNT.
The crops of seed are produced quite abundantly every year and copiously dispersed over the vicinity of the mother trees by the wind, the oftspring quickly taking possession of old fields and clearings in the forest.

The seeds germinate in the early spring. The ends of the cotyledons remain for a short time after germination inclosed in the endosperm. The number of the germinal leaves (cotyledons) is mostly six, rarely seven. At the time of the unfolding of the cotyledons the lower (hypocotyledonary) part of the axis of the plant is abont 1 inch in length. The rootlets are half that length, and are provided with several acropetal secondary rootlets. The caulicle grows rapidly, and is soon covered with the stifl, needle shaped, and strongly serrulated primary leaves. Before the spring season has passed the bundles of secondary or foliage leaves make their appearance in the axils of the former. At the close of the summer season the plantlet has attained a height of from 6 to S inches, the upper part of the stem covered with foliage leaves, the acerose primary leaves of the lower part having completely withered. In examining a large number of young plants never less than three leaves in a bundle have been found during this or any subsequent stage of the wrowth. With the second year the primary leaves have all become reduced to the ordinary form of the leaf bract-lanceolate, acuminate, with fimbriate white hyalime edges and tips.

In all the specimens examined it was found that the growth of the main axis proceeded less rapidly haring the second session, but produced a regular whorl of from three to four lateral axes. At the close of the secoud year the main stem rarely exceeds 10 inches in heinht.

At the end of their third year the plants are from 18 to 20 inches high, the stem being from ons-fonrth to five-sixteenths of an inch in thickness. The branches, forming regular whorls, are erect and produce in their turn whorls of secondary order. The root system shows a corresponding incrase, the taproot beiug from 6 to 8 inches long, with mumerous stout lateral roots.

RATE OF GHOWTH.

With the fourth year the Loblolly line enters seemingly upon the period of quickest growth. As ascertaned hy many measurements, the treas at the end of their fourth year average 3 feet in height and from one-half to seven-eighths of an inch in diameter, and at the end of the lifth year measure nearly of feet and from 1 to 1 个 inches in diameter. At the becriming of tho seventh year
the tree attains a height of 10 feet, and with the close of the first decade trees are found 12 to 16 feet high and from 33 to 3 inches in diameter. Some trees begin to mature their first cones by the tenth year.

The above measurements were made in 1890 in the vicinity of Cullman, Ala, on trees taken indiscriminately from the midst and near the border of a dense pine thicket covering a field plowed for the last time in 1882, and from an adjoining $\overline{\text { pening in }}$ in forest protected from fire and but rarely used for pasture.

According to a number of measurements made of trees in the sonthern Atlantic States, the Gulf region, and southern Arkansas, the Loblolly Pine reaches at the tenthyear, on the average, a height of 20 feet, doubling this height during the succeeding decade. During this period of quickest growth the increase in height proceeds at the rate of a feet per anmum, and trees twenty years old average $4 y$ inches in diameter breast high. At the age of fifty years the trees are from 65 to 75 feet in heigit (average about 70 feet) and 15 inches in diameter breast high. The annual increase for this period of thirty years is about 1 foot in height and 0.35 inch in diameter. From numerous observations it appears that the Loblolly Pine attains the fullness of its growth at the age of one hundred years, with a height, on the average, of 110 feet and a diameter breast high of 2 feet, the length of merchantable timber varying between 50 and 60 feet. The annual rate of height growth during the second half century is about eight-tenths of a foot, and the diameter growth eighteen one-hundredths of an inch. Henceforth the growth in height remains almost stationary. A dozen trees from one hundred to one hundred and fifty years old were found to vary from 99 to 125 feet in height, with a length of trunk free from limbs of from 60 to 68 feet and from 19 to 27 inches in diameter at breast height.

From the annexed tabulated records of growth it becomes evident that under similar conditions of soil and exposure the rate of increase for the varions stages of growth show but slight differences in localities widely distant from each other.

Taible I.-Grouth from five to fifty years.

No. of tree.	No. of rings.	Diameter (breast high)	Height to first limb.	Total beight.	Locality.	Hemarks.
1	5	Inches.	Feet.	Fect.	Cullman	se made for masture in 1879; dense pine thicket.
2.	5	1		4^{12}do..	Do.
3.	6	2		10	.do	1)0.
4.	6	$1 \frac{1}{2}$		7	-..do..........	Do.
5.	6	$1 \frac{1}{2}$		$8{ }^{\frac{3}{2}}$	Whistler. Ala...	Edge of swamps hummock.
6.	7	23		10^{12}	Cullman, Ala...	Clearing, dense prine thicket.
7.	7	31	..--......	12	-...do --...-.	Do.
8.	9	21		13_{18}^{6}	.do .-.........	$1{ }^{1}$
9.	9	22		$12{ }^{\text {\% }}$. do	Do.
10.	10	23		18	. . do	Do.
224.	11	2	8	23	...ds	Do.
12.	12	37		20 do	1 \%o.
13	12	3		24	\therefore do	Do.
$2 \because 3$.	12	21	10^{-}	21	Whistler, Ala...	Eilme of hummock.
1×9.	13	2	13	19	Gurdon, Ark. . .	Open forest; oxpmosure free.
271.	13	21	13	20	Eastman, Ga....	Do.
222	14	3	10	25	Whistler, Ala...	Edge of hummock; slightly oppressed; partialls corered.
148	14	21	8	21	Eastman, Ga. ...	(hpening in forest; under cover freshe soil.
27.	14	2	7	21	Gurdon, Ark....	Openinir in furest ; exposure free ; dampsoil.
221.	15	4	12	35	Whistler, Ala...	On gento decline ; 品ening in forest ; soil frest.
29.3	16	6	13	30	.-. ${ }^{\text {do }}$-.....	Do.
219	17	6	16	39	-.... do	Natural openiog near swamp; soil damp.
220	18	6	17	43	. . . do	Do.
291	20	4	28	33	do	Oppressed.
270.	21	4	22	45	Eastman, Ga.	Natural openium in forest; under corer.
146	26	$4 \frac{1}{2}$	28	33	Gurdon, Ark. .	Natural openins in forest; exposure free.
269	22	$4 \frac{1}{2}$	32	43	Eastman, (ia.	Natural opening in forest; suppressed.
2107	92	8	25	55	- . . do	Ond field: fresh, derp loam; free.
26\%.	24	6	17	39	-...do	Old tithl: oppressed.
18.	24	$4 \frac{1}{4}$	30	47	Gurdon, Ark	In open forest; expusure frue.
114.	33	6	38	5.5	-do	Open furest; esposure free.
145.	32	6	36	56		De).
266.	35	12	51	77	Eastman, (ia.	Ohd tield; decp, rich loam; fresh, fyoung forest trees of similar size.
143.	18	16	30	66	Gurion, Ark	Open forest : soil damp.
14-6--.-.-	44	15	33	68	Stockton, Ala...	Flat near banks of Tensas liver; open forest ; exposure free; March 10, 18 sq, just past towering.

TABts：Il．－（irouth of hoblolly line（l＇inus tidd）from firty to one hendred and fifly－nix years．

So．of tres．	$\left\|\begin{array}{c} \text { Limgs } \\ \text { in } \\ \text { stump. } \end{array}\right\|$	$\begin{aligned} & \text { liverast } \\ & \text { ligh. } \end{aligned}$		Helow crown．	Theight （1）filat lian （luspeth of tim． ber＂）．	$\left\lvert\, \begin{gathered} \text { Total } \\ \text { height. } \end{gathered}\right.$	1acality．	Habitat，amb other remarke．
A1）	6.3	Inclies. 14	Inches． $1: 3\}$	Inches． 9.2	Feet． 5	$\begin{gathered} \text { Fiet. } \\ 90 \end{gathered}$	Hidgelami，S．C．．．	Luw pinc bartena，edge of hum posuri frec．
20.	70	16	161	923	$5 i$	86	Eusthan，Ga．	Ohd field，abandoned one handred yeara ago；typical for tilleat secont growth．
$\cdots 1$	73	22			50	92		Close to colgo of awamp；open forest；anil wet ；axjob sure fren：sapwornt dos inches．
\therefore 二	71	12	103	61	35	80	Rinpelamik．C	（＇lose to edgu of hwamp；monewhat suppressed．
－4	20	21	1×4		11	101	Cullman，Ala．．．	Swampy swale；open forest ；exposurn tree．
$23+$	80	18	16.	48	66	103	Itilctand，－C	swampy hummork；exposure partially free．
111	83	$\because 0$	20	1鲛	37	96	（ itrilon，Ark	Low，wet．piny woodv；exposure partially frec．
$1:$	8	17	$15 \pm$	12	4	$\stackrel{8}{8}$	d／a	Low，wet，diny woods ；exposure free．
$\because 15$	87	$\because 1$			40	1105	Whistler，－bla	low，open forest ；soil damp；exposure free．
－	94	哭			46	104	Cultuan，Ala．	Wetawabe mandy loam；opea forest ；free．
＇	95	19	194	12	8	112	Rindrcland，S．C	Figeedfswamp，slighty oppresect；napwood 5inches．
27.	100	7	26	18］	56	118		Low，pine barrens；soil damp；near swamp；exposure free：sapwoul 5 inches．
216	101	3	$2!$	18	31	111	Whintler，Ala	Open forest，on slight decline；soil drained；fresh； expmsure fre：sapwowl $4 \frac{1}{2}$ inches．
1：3	110	22	22	12	68	109	Guwim，Ark．	Low，rather dense forest：wet；exponare iree．
2tic	117	\pm	\％15		69	116	Castman，Cia	Bige of swamp；soil damp；partialy suppressed．
$\because 1$.	118	19	18.3		53	125	Whintler，Ala．．	slight dedivity；soil well drainet；auppressen．
？	1：10	2	22\％		98	199	Fastuan，（ia．．．． Whistler Ala．	Near border of awanp；soil damp；exposure jree．
\because	128	23 19	$2 \cdot \frac{1}{2}$		59	109	Whistler，Ala． Cullman，Ala	Open forest ；soil iresh；exposaro iree． （bien forest damp awale；exposure fres．
21：	137 142	19	2 k		5	115	Cullman，Ala	EApo of swamp，damp to wet；exposure almont free．
140.	150	21	2	153	58	108	Gurdon，${ }^{\text {ark }}$	Flait，wet，rather denso forest；exposurefree；wlightly
－5 ．．．．．．	150	24	25）		39	103	Cullman，Ala．	Wet swale；sandy loam；exposure free．

From Table II and the corresponding diagram，based upon a considerable number of trees，it appears that the Loblolly Pine is nearly 40 feet high when twenty years old；that the length of the morchantable timber（ 60 feet）is attained at the age of forty；that this shaft has a basal diameter of 20 inches at the age of one hundred years，and that the age of thrifty growth is practically at an end when the tree is one hundred and ten years old．Comparing this table with those for Longleaf and Shortleaf pines，the excellence of the Loblolly becomes apparent．

Table ILI.- Riate of grouth of Loblolly Pine.

		Length of		Yol	1 mos .	$\mathrm{I}^{\text {c }}$ I	014		d			
Age.	with bark (breast high).	log with upper diameter of 5 incles.	height of tree.	'Tree.	Log up to 5 incluts dianeter.	Decade.	Diameter.	Heright.	Area of crons seetion.	Volume.	thnual accretion	Current ceretioll.
Frs.	Inches.	Feet.	Feet.	('il. ft,	Cu. ft.		Incher.	Feet.	N't. fect.	Cu. fl .	C'u.fl.	('u. ft.
10	3.4		18	0.60		First	2.4	18	0.43	0.60	0.015	0. 06
20	5.6		37	3. 05		Second	2.3	19	, ed	\cdots	.14	-24
30	7.8	23	50	8. 72	7.49	Third.	2. ${ }^{2}$	13	. 11	5.67	- 29	. 57
410	10.0	35	61	16. 63	15. 45	Fonrth	2.0	11	.17	7.91	- 41	74
50	11.8	44	70	25.30	24.13	Fifth	1.8	9	.19	8.67	- 57	. 87
60	13.3	5%	78	35. 65	34. 47	Sixth	1.6	8	. 19	10. 33	- 53	1. 0.3
70	15.5	60	85	49.02	47.88	Sevputh	1.5	7	21	13. 37	- 70	1. 33
80	17.1	68	90	62. 41	61.41	Kimhth	1.4	5	21	13.42	- is	1.31
90	18.7	76	05	78.02	77.16	Nintl.	1.1	5	. 19	15.58	. $\times 7$	1.50,
100	19.5	80	98	89.41	88. 59	Tenth	. 9	3	, 15 ${ }^{13}$	11. 39	-89	1.18
110	20. 2	83	100	96.00	95. 23	Eleventh	. 8	2	-13	6.59,	. 87	. 66
120	20.7	85	102	$10 \pm .00$	101.23	Twelftli	. 5	2	. 10	6.00	.85	. 60

HEIGHT
IN FEET.

Fira. 12.-Growth of Lollolly Pine: Height, diameter, and cubic contents of arerage trees at 10,20 , etc., years of age.

CONDITIONS OF DEVELOPMENT.

soil AND Climate.
The Loblolly Pine prefers a moist, cool, sandy or light loamy soil, which, if not always moist, should have a greater retentiveness for moisture than is required by most of the other upland pines. It reaches its greatest perfection in the perpetually moist or fresh forest lands, with a soil of a sandy loam, rich in vegetable mold-the accumulation of ages-which border the swamps of the coast region. The tree is not found on the porous, highly siliceons soils of the more elevated uplands, where the Longleaf Pine almost exclusively prevails; it also avodus heavy clay and calcareous soils of the uplands and the alluvial lands.

The Loblolly Pine is a tree of austral regions confined to the hmmid belt of the Austro-riparian or Louisiana zone aud the lower border of the Carolinian life zone, which, on the Atlantic Coast,
follows yuite chasely the isothermal line of 50 F . ; westwand, in the direction of the Gulf Coast, tho isothomal line of 100 . The mean temperature of the winter along the northern limit is about 1.i with the bowest temperature only occasionally falling below 100 F . This tree approaches the I ppalachian zone only wnder the intuence of a peninsular clime between the Delaware and Chesapeake bays.

The Loblolly appears to be indifferent to the wide dinerences in the amount of atmospheric precipitation existing within the vast range of its distribution. Extending from lilorida (isotherm. TE) to the 390 of north latitude on the Athantic Coast (isotherm, 56°), it is foned of equal thrift on the Gulf shore, with its tamp air and annual rainfall exceeding 64 inches, and in the flat woods of 'Texas. Wheve the mean anmal precipitation is only one-half that amount, with a mean of 6 inches during the winter months. In fact, the Loblolly Pine is found most frequently and is more widely distributen in the districts of lesser precipitation. It is certanly more dependent on the supplies of soil moisture tham upon atmospheric humidity.

IRELATION TO LIGHT AND ASSOCIATED SPECLES.

This species is less exacting in its demands for direct sunlight than the kindred species within its range. To this relation may be ascribed the success which it achieves in the struggle for the possession of the soil with the Shortleaf Pine. Observing this contest as it is going on between the competing species in the forest, the conditions of the soil being equally farabere, the Loblolly Pine. under the cover of shade, outstrips the Shortleaf Pine nuder the same conditions; and, on tho other hand, where the sunlight has had unhindered access, it gives way to its competitor, being then subjected to the disadvantage resulting from a speedier desideation of the soil. Through such influences it is that, under conditions seemingly equally favorable to either one of these pines, now the one and now the other is found to predominate.

In the deep forests covering the rich swampy lands of tho coast regions, the Loblolly Pine forms comparatively a small part of the rich and varied growth consisting chichy of deciduous trees, fback Gum, Sweet or Red Gum, Water Oak, aud Mockernut, to which in the lower Sonth the Magnolia, sweet Bay, Red Bay, and Cuban Pine are to be added. Nlthough requiring less sunlight than most pines, in the gloomy impenetrable shade of these dense forests the progeny of the Lohbolly Pine has no future, especially as these lands once cleared are devoted to tillage, being of great agricultural value.

On the lands of a poorer, more exposed soil in the maritime plain of the southern Atlantic States, in Virginia and North Carolina, and in southwestern Texas, this pine forms more or less compact forests. In these forests the tree is always succeeded by its own progeny, either in the course of mature or after the artificial removal of the original forest growth. On the coast of Georgia, in Florida, and in the coast plain of the eastern Gulf States, the Loblolly Pine is scattered among the Cuban fud the Longleaf Pine; there its second growth meets a formidable competitor in the first named of these speries. In the flat woods, deprived of drainage, the Cuban Piue is always fonnd to vastly outnumber the Loblolly among the young forest growth. In the upper part of the great maritime pine belt the looblolly Pine is frequently found among the mixed growth of Magnolia, Spanish, Red, l'ost, and Blackjack oaks, Mockernut and Pignut Hickory, Shortleaf Pine, and Sonthern Spruce Pine. Thronghont this region the tree takes almost undisputed possession of the old fields.

In the interior, on the uphands of oaks and Shortleaf line, the Loblolly is sure to gain the upper land aml to retain its hold among tho young forest grow th, giving way to its most agressive conpetitor, the Shortleaf l'ine, only when under the disadvantage of a greater exposure and a ereater lanck of moisture in the soil.

FNEMIEN:

I'rincipally confined to low, damp localities, not easily liable to invasion by the frequent conflagrations whiola sour the Southern pine forests, the I,oblolly line sulfers less from destruction by fire than any othop species. In virtue of the inherent facilities for its natural renewal resulting from its feromdity and lionn the rapility of its development from the earliest stages of growth, any damages inflicted by that agency are more easily repaired. The same causes atiord it also
greater protection against incursions of live stock. As also observed in the Shortleaf Pine, the rapidly growiug seedlings form, after a few years, thickets of such density as to be avoiled by the larger quadrupeds, and by the time such thickets, in the course of natural thinning out have become more open, the trees have reached dimensions which phace them beyond the danger of being tramped down or otherwise injured by live stock. The rapid spread and thrift of the second growth, unprotected and uncared for, observed everywhere within the range of the distribation of this pine, are witnesses to its greater immunity from such dangers.

Owing to the large amount of sapwood, the timber of the Loblolly is more liable to the attacks of fungi and to the ravages of insects. The nycelium (spawn) of large polyporons fungi is found frequently infesting the woody tissue of the living tree, the hyphe (filaments) of the spawn destroying the walls of the wood cells, causing the wood to assume a reddish color and rendering it brittle in the same way as is observed in the living Longleaf Pine timber affected with the disease called "red heart." It serms that the destruction caused by this disease in the Loblolly l'ine is from the start more rapid in consequence of the larger proportions of sapwood, and perhaps also on account of the broader bands of soft sprimgwood naturally accompanying wood of rapid growth.

In a piece of wood examined in north Alabama, the tilaments of the spawn of one of these fungi crossing each other in every direction were found to form a dense fim interposed between the spring and summer wood, causing its easy separation in the direction of the concentric rings, and, as the destruction of the wood proceeds, forming finaily a compact layer of the nature of amadou, or tinder. In the longitudinal section the rays were found full of cavities, caused by the breaking down of the cell walls, and these cavities were filled with the white film of these filameuts, which similarly affected the adjoining tracheids of the resinons summerwood.

The felled timber left on the ground is soon infested by a host of fungi of the genera Agaricus, Tramites, Lentinus, Iolyporus, and others, the nearer identification of which has not been undertaken.

From the very limited observations that have been made it clearly appears that this pine suffers equally as much, if not more than the other pines of Southern growth from insect enemies of various kinds. The larve of the same capricorn beetles (Cerambicille) burrow in the body of the timber. Those of the round-headed borers (Caleophort) dis their channels in the sapwood, as is indicated by the occurrence of several species of jumping beetles (Buprestide) which are found clinging to the leaves and branches of this tree. The most fatal injury it sustains is caused by the bark borers (Tomicidre); this pest particularly affecting the trees duriug the formation of the last cambium layer in the later summer months. Trees felled in August are immediately infested by multitudes of these destroyers. Favored by a high temperature and an abundance of nourishment, several generations of them succeed each other before the close of the season, the countless broods soon infesting every tree in the viciuity and carrying their mork of destruction over the full expanse of the young forest growth. Uuder this aftliction the forests often present, by their drooping rusty-colored foliage, a sad picture of disease and decay. Weevils (Curoulionidea) deposit their eggs in the youngest tender shoots; the larvae which hatch from them eat their way into theso shoots, causing their decay, and thas destroy the symmetry of the tree aud impair the usefulness of the resulting timber. Other species of the same family puncture the older branches, lay their eggs in the exuded resin, their larve injuring the tree in a similar way. The larve of spittle insects injure the terminal buds, which are also found infested by the larvie of Pitch-moths (Retinie), causing them to wither. The foliage seems to be less frequently attacked loy sawflies (Lophymus) than the tender young leaves of the Longleaf Pine, as by the rapidity of their growth the young leaves sooner harden, and are therefore less relished by these depredators. The evidences of the work of the pine-leaf miners (caterpillar of Gelechin) have been freequently observed in Alabama, and everywhere are seen the deformities caused by gall flies and scale insects.

NATURAL REPRODUCTION.

If the Shortleaf Pine has been spoken of emphatically as the future timber tree of the limht rolling uplands of the interior, the Loblolly Pine might be fitly designated as the timber tree ot greatest promise in a large part of the coast plain from the middle Atlantic States to the limits of compact forest growth beyoud the Mississippi River. The promptness with which it colonizes the
old hields and other clearings, and the tenacity with which it retains from one generation to another the ground one taken possession of, clearly point to the important part this tree is to take when the ruthless stripping of timber lamds practiced at present gives place to the management of the forests muler a system of fostering care, tending to their future maintenance and to the disposal of their resources on the principle of true economy with an eye to the future welfare of the country. No timber tree will be found better adapted for forest planting in the sonthern part of the Athantic forest division. It is only in the narrow belt of flat woods along the shores of Flobida, (icorgia, and the castern Gulf region that it is likely to find its superior in the Cuban Pine (Limus heterophyllat.

Besides the advantages of adaptability to varied soil and climate, it excels in rapidity of growth during the earliest stages, and the copions production of seeds, which, almost without fail, are plentifully distributed every year over the vicinity of the parent trees. As an evidence of the facility with which the reproduction of a compact forest by this pine is effected, it is ouly necessary to point out the spontaneons groves near the settlements, representing, as they do, every stage of development.

In the coast region the second growth, if not interfered with under proper soil conditions, yields in fifty to sisty years timber of dimensions reudering it fit to be sawn into lumber well adapted for various uses, as already mentioned.

CONCLUSION.

In this attempt at a sketch of the life history of this tree, the object was constantly kept in view of placing its value among the products of the Southern forests in the proper light. From the consideration of the structure of the wood and its physical properties it clearly appears that although inferior to the wood of the Longleaf and Cuban pines, the timber of this species fully equals that of Shortleaf Pine, and that the present practice of treating them as equivalent seems therefore justified.

As an abundant and cheap source of timber of inferior grades, and especially when the rapidity of its growth is considered, the Loblolly Pine is of no less economic importance than the other timber trees of the same section. At present held in low esteem in the great lumbering districts of the lower South, where the supplies of the superior timber of the Longleaf line still abound and receive the preference, the value of the timber of the Loblolly line is quickly recognized in other districts which, but a short while ago boasting of similar resources, are now stripped of them. Its physiological peculiarities make it an important factor in the future forestry of this section. Its propagation is successful over a vast expanse in the southern section of the Atlantic forest region, and by its productive capacities, mode of development, and behavior toward competing species in the struggle for existence, the Loblolly Pine possesses great advantages for its natural and artificial renewal, adapting it particularly for the restoration of the forests on the lowlands of the maritime region.

THE SPRUCE PINE.

(PINUS GLABRA Walt.)

Histonical.

Disthibution.
ECONOMiC IMportance.
Botanical Description.
Progress and Development.
Enemies.
Requiremints of Development.

THE SPRUCE PINE.

(l'inus glabra Walt.)
Synonyms: Pimes glabra Walter, Fl. Caroliniana, 237 (1788). Pinis milis, 3 (?) paupera Wood, Cl. Book, ed. 11, 660 (1855).
(OMMON OR LOCAL NAMES.

Spruce Pine (S. C., Ma., Fla.).
Cedar line (Miss.).
White I'ine (Fla.).
,

Walter's Pine (S. C.).
Lowland Suruce Pine (Fla.).
Poor l'ine (Fla.).

THE SPRUCE PINE.

By Charles Mohr, Ph. D.

INTRODUCTORY.

The Spruce Pine is the least common of the pines found in the lower Southern States. The tree is frequently confounded by the inhabitants with the Shortleaf Pine, to which it is closely related. Its veruacular names are, in different sections of its range, applied to several other pines; in Florida to the Sand Pine (Pimus cluusa), in north Alabama to the Scrub Pine (Pimus virginiunu), and in the southern part of this State even to the Cuban Pine. Although never forming extensive bodies of timber, being for the most part widely scattered among the broadleaf evergreens and deridnous trees with which it is associated, and in the quality of its wood of low rank, this little known tree has been given a place here among the monographs of the timber pines of the South Atlantic forest region in order to dispel for the future its confusion with some of these trees, and at the same time to attract the atteution of the tree planter to it as the only one of its kind which thrives and propagates in the shade, keeping its ground closely surounded by the luxuriant and varied tree growth with which it is associated, and soon outstripping the same by the rapidity of its growth. Considering that among all others of its kind in the same region it attains the fullness of its growth in the shortest time, with dimensions which render it valuable for many of the purposes for which the softer and lighter kinds of timber are used, its economic importance can not be ignored.

HISTORICAL.

The Spruce Pine was first recognized as a distinct species and described as Pinus glabra by Walter, in his Flora Carolineusis in 17S8, having since that time been known under this name by the botanists. Hidden in the remote semiswampy dense forests, it escaped the attention of later botanists. Neither the Michauxs, father aud sou, nor Nuttall were aware of its existeuce. It was unknown for fully three-fourths of a century until rediscovered by Professor Ravevel in the swamps of Berkeley County, S. C. Ten years later the tree was described in Chapman's Flora, 1860. It was recognized by Professor Hilgard in the Pearl River Valley, Mississippi. In 1880 its distribution was traced by the writer through the Gulf region to its western limit in the easteru parishes of Louisiana.

DISTRIBUTION.

The Spruce Pine is a tree of the southeastern Atlantic forest, confined to the subtropical region or the Louisianian zone of American botanists, within that part of the coastal plain of the southern Atlantic and the Gulf States embraced between the thirty-first and thirty-third degrees of north latitude; from South Carolina through middle and northwestern Florida to Louisiana, with its western limit between the Pearl and Mississippi rivers. This tree is mostly found single or in groups on the low terraces with a fiesh or damp soil rich in humus, rising above the swamps subject to frequent overflow. It is seldom seen to form compact bodies of timber; such have only been observed between the Chattahoochee and Choctawhatchee rivers, in northwestern Florida, where, to all appearances, this tree finds its best development on isolated tracts of fertile red loam lands.

ECONOMIC IMPORTANCE.

Nowhere forming pure forests of any extent, this pine is of little importance to the lumbering interests of the present, and its timber has never become an article of commerce. Althongh the timber is of inferior quality, it furnishes lumber of dimensions equaling the best of our timber
pines. It is light, soft, easily worled, and capable of mood finish, and is without doubt fit for many uses of the honse carpenter and cabinetmaker in the mannfacture of furniture and other purposes. Owing to the large percentage of ash and smaller quatity of resinons matter, the actual fuel value of the wood of the Spruce Pine is lower than that of the other Southern pines: for its resinous product the tree is considered of $n o$ value, since the resin does not run when it is tapped. ${ }^{3}$

In its wood the Spruce Pine resembles Loblolly. The sapwood is wide, and even in trees seventy-five to eighty years old it forms more than three-fourths of all the wood. The change from sap to heart wool begins as early as in the pines mentioned, and as in these is retarded with age and also with any suppression of growth, so that in stunted young trees the change begins later, and the sapwood of these, as well as old trees, is always composed of a greater number of rings. While green, the wood is very heavy, weidhing 45 to 50 pounds per cubic foot, varying in this respect chietly with the proportion of sapwood. When kiln-dried, the wood weighs abont 27 pounds to the cubic foot; it is heavier at the butt, weighing about 31 pounds to the cubic foot, and lightest near the top, where its weight falls as low as 25 pounds to the cubie foot. As in other pines, the heaviest wood is produced by young trees. The amonnt of water contancel in the fresh wood is quite variable-very great in the sapwood, and consequently in young timber-but falls little below 50 per cent of the weight of green timber on the whole. Its behavior in drying is the same as in light grades of Loblolly; it dries rapidly and without much injury, shrinking, during this process, by about 10 per cent of its volume.

The strength of this wood is, as in other conifers, closely related to its weight. Accordingly, the spruce Pine is inferion to both Shortleaf and Loblolly.

From careful experiment it appears that its-
Lles. persat. incl.

In its structure the wood resembles too closely that of the Loblolly to enable as yet any ilentification on this feature, and the description for the wood of the Loblolly answers perfectly for the product of this species. As in Loblolly and other hard pines, summerwood and springwood are always well defined, the summerwood forming from 15 up to 40 per cent of the total volume, differing in this respect from the White Pine which it has been claimed to resemble. Thms while decidedly softer on the whole than Ioblolly it is by no means to be expected that the Spruce Pine can hope to serve as a general substitute for the true White Pine.

BOTANICAL DESCRIPMION.

Leaves invariably in pairs, with short and close sheath; soft, slender, $1 \frac{1}{2}$ to 3 inches long, tristed; cones short-stalked, horizontal or reflexed, the cone scales with a flat apophysis, the depressed umbo unarmed or with a minute weak erect prickie.

The spruce Pine is readily distinguished by the close bark of its trunk which in the crown and the limbs is perfectly smooth and of a light gray color; in foliage and in cones it resembles most closely the Sand l'ine (Pimus clausa) of the coast region of Florida and the eastem Gulf States, which howerer is distinguished by the more prominent apophysis of the cone seales, armed with a short, stont, reflexed prickle. The Shortleaf Pine, to which it is next related, is distinguished by the same characters and further by the fascicles of two and three leaves and the rigid young shoots of the season covered with slender, long, loosely fimbriated bud seales.

Lhe lonves are concave, faintly serrulate, short pointed, and are shed during the latter part of the second season or the beginning of the third.

In the detalls of their structure they differ little from the leaves of the Shortleaf Pine; the rows of breathinif pores (stomatal) are numerous on both surfaces; the strengthening cells of the cortical fissue ire smaller and less mmerous; the resin ducts two or three, are parenchymatous, the eells of the bundle sheath thin walled. The two fibro-vasenlar bundles distant and withont strengthoning rells.
' liarenel: I'rocecd, of Elliott Society, Charleston, I, 52.

The male flowers are lateral, sessile, and about one-half to three-fourths of an inch long, slender, surrounded by five to six pairs of short ovate, rather obtuse stiff scales, with a narrow, membranaceons lacerated border. The crest of the anther is elliptical, with fine denticulations. The small female aments are mostly single, short stalked, the carpellary scales lauce-shaped with sleuder tips and subtended by the short infertile bract.

The cones are mostly single with a short stalk and of varions shapes on the same tree, from round to oblong ovate or more or less cone-shaped, from $1 \frac{1}{1}$ to 2 inches long, and, on the opening of the scales from three-fourths to one inch wide, of a light tawny color. The scales are softer and more flexible than in the Shortleaf Pine, the apophysis broader, with the umbo depressed, unarmed, or with a minute, weak, erect, and deciduous pickle, the ridge faint, hazel-brown on the inside. The somewhat triangular roughish seeds, black with brown specks, about threesixteenths of an inch long and one-eighth inch wide, separating easily from the wing which is little over one-half inch long and surrounds the seed to the base.

PIOGRESS OF DEVELOPMENT.

The Spruce Pine begins to flower and to produce perfect seeds at an age of trelve to fifteen years, in greatest abundance between twenty and forty years; the flowers appear during the earliest part of March; shortly after pollination the female aments assume a horizontal position, and finally become more or less retlected. At the end of the first season the conelets are of the size of a large pea. The cones mature in the second year in the month of September; the seeds are freely shed early in the fall. They germinate during the fall and eanly in the coming spring; the plantlets, with eight to ten slender, soft cotyledons, are over an inch long. The terminal bud develops rapidly, densely covered with the sleuder, soft primary leaves which are sharp pointed and frequently over au inch in length. Early in April seedlings are found over one-half toot long, later in the season fascicles of the foliage leaves appear in the axils of the upper primary leaves, when the lower wither and disappear near the end of the season. At this stage the seedlings are generally a foot high with the root system less developed than in its kindred species at the same age; the taproot scarcely 2 inches in leugth with a few short lateral roots.

With the twentieth year the trees are generally from 30 to 35 feet high and 4 to $4 \frac{1}{3}$ inches in diameter, the stem clear of limbs for the length of about 12 feet. They attain their full growth at an age of from sixty to seventy-five years.

The trees for the United States timber tests from the border of the swamps on the banks of the Tensaw River in Baldwin County, Ala., showed the following dimensions and age:

From these figures it appears that the two trees forty-six and fifty-three (average forty-nine) years old have an average volume of 63 cubic feet and grew at the rate of about 1.3 cubic feet, while the three trees seventy-five to eighty-three (average seventy-eight) years old have an average volume of about 152 cubic feet and an average yearly growth of about 2 cubic feet. The following represents a typical case:

Growth of Spruce I'ine.

Rings on stump. a	Height of tree.	Diameter without bark.	Volume of wood.	Average yearly growthin-		
				Heisht.	Diameter.	Folumo.
10	Feet. 37	Inches. 5	C'ubic ft.	Fect. 3.7	Inches. 0.5	Cubicfl. 1. 2
20	51	8.5	9.5	1.4	. 3	. 7
30	67	12	26	1.6	. 3	1. 6
45	84	15	51	1.1	.	1.6

The sprnce Pine attains a height of from sin to 110 feet and over; the trunk is clear of limbs for a length of from to to 60 feet, and it is from $2 \sim 21$ feet in diameter breast high, seldom exceeding 3 feet. The largest trees observed were about 120 feet in height by a girth of fuily 10 feet breast high.

The taproot appears to be less strongly developed than in the Shortleaf, the lower lateral roots rum for in short distance close to the surface before penetrating the ground; the bark is close, with deep, narrow furows, separating in narrow thin seales and of a reddish-brown color. The limbs are horizontal, dividing in rectangular spreading branches and branchlets. The leaves also become in the latter part of the season widely spreading, the density of the foliage being reenforced by the leaves of the short branchlets produced on the older branches from adventitious buds. To this spreading habit of the ultimate division of the branches and of the leaves is due the peculiar spray of the foliage, similar to that of the true cedars.

ENEMIEN.

No observations have been made of the injuries inflicted upon this tree by insects. Trees, after having passed the period of full growth, at the age of about 100 years are very frequently affected with decay in the stump and with redheart in the top. In the damp hummock lands the tree is rarely tonched by fire. Where the underbrush and the vegetable matter of the soil covering has been destroyed by repeated contlagrations, however, the trees begin to sicken and soon die.

REQUIREMENTS OF DEVELOPMENT.

The spruce Pine requires the warm climate of the subtropical zone, with a mean annual temperature of about $66^{\circ} \mathrm{F}$, and a mean temperature of $49^{\circ} \mathrm{F}$. in the winter months (in central Alabama the thermometer falls sometimes to an extreme of $5^{\circ} \mathbf{F}^{\circ}$), and the humid atmosphere of the coastal plain, with a mean annual rainfall of 54 inches, eveuly distributed thronghout the year. This tree will endure, during the early stages of its growth, more shade than any other of the pines of the Atlantic forest region, perhaps the White Pine (Pinus strobus) excepted. Refarded in its growth under severe oppression, it will finally force its way through its close surroundings, and having gained a freer access to light, it pushes its cromn rapidly above the broad-leaved evergreens and deciduous trees which luxuriate on the same ground. It demands a loose soil, rich in humus, fresh to moist but not wet, with a deep porous subsoil, which in these lands is frequently a light, sandy loam.

The Spruce Pine is never found in the forest of the alluvial bottoms with their heary soil, subject to frequent overflow, nor in the dry, sandy pine forests. Where it tiuds the soil conditions most favorable to its growth, Magnolias, Cucumber trees, Sweet Gum, Mockermut Hickory, and leech are foum of greatest thrift, not infrequently associated with the Shortleaf and the Loblolly pines. The mudergrowth on such lands is luxuriant, consisting of Dogwood, Holly, Summer Haw, and a variety of shrubs, Bush Huckleberries (Veccinium rirgatum), Farkleberries (V. arboreum), Storax lbushes (Styrax grendifolium), Cornals (Cornus sericea), and Blue Palmetto, forming dense brush interlaced by numerous woody climbers (Vitis, Ampelopsis, Wistaria).

As has been observed in northwestern Florida, where it finds the proper soil conditions, the second growth of this pine soon occupies the clearings made in the original forest. Tracts of young forests of much promise have been met with between the Choctawhatchee and Chattahoochee rivers. The hummock land, forming the home of the Spruce Pine, being with the increase of the population rapidly claimed for cultivation, this beautiful pine will soon be solely contined to the most remote and inaccessible localities. Being the only really soft pine of the Southern States, and having by its shade endurance a peculiar forest value, this tree will probably form an important part in the future, when forestry has become an established business.

NoTES OA TIIE STRUCTURE OF TIIE WOOD OF TILE FIVE SOCTHERN PLNES.
(I'inus palustris, fucha, pchinate, heterophylla, glabra.)

SAP AND LIEARTwood.
Annual Ringr.
Sprina and Summer Wood.
Grain of the Wood.
Minute Anatomy.

NOTES ON THE STRUCTURE OF THE WOOD OE TIIE FITE SOUTHERX PINES.

(Pinus palustris, heteroplylla, echinata, lada, glabra.)
By Filibert lRotif,
In charge of Timber Physics, Division of Forestry.

The wood of these pines is so much alike in appearance and eren in minute structure that it can be discussed largely without distinction of species. The distinctions, as far as there are any, have been pointed out in the introduction. Here it is proposed to give in more detail the characteristics of the wood structure.

SAP AND HEART WOOD.
All five species have a distinct sap and heartwood, the sap being light yellow to whitish, the heart yellowish to reddish or orange brown. The line of demarcation between the two is well defined, without any visible transition stage. The location of this line does not as a rule coincide with the line of any annual ring, so that the wood of the same year's growth may be sap on one side of the tree and heart on the other. The difference in this condition may amount to ten or twenty rings, which on one side of the same section will be heart, on the other side sap.

There is considerable variation in the relative width of the two zones as well as the number of rings involved in either and also in the age at which the transition from sap to heartwood begins. This age was rarely found to be below twenty jears; as a rule the transformation begius in young trees when the particular section of the tree is between twenty and twenty-five years old, but the progress of heart formation does not keep pace with the annual growth, being more and more retarded as the tree grows older, so that while in a section twenty-five years old twenty-two rings may be sapwood, at thirty-five years the sapwood will comprise only thirty rings; at forty-five years, forty rings; at cighty years, fifty rings; and in sections two hundred years old the outer eighty to ono hundred rings will still be sap. A young tree of Longleaf Pine (No. 22) was, for instance, found to show the following relations:

section.	Height frow stump.	$\begin{aligned} & \text { Age of } \\ & \text { section. } \end{aligned}$	$\begin{aligned} & \text { Jings of } \\ & \text { sap. } \end{aligned}$
III.	Feet. ${ }_{6}$	Tears. 40	Number. 40
IV.	14	38	33
VII.	22	30	27
IX.	30	24	23
XII.	42	18	17

The change from sap to heart wood begins eariier in young trees than in the younger portions of older trees; in these latter, sections thirty-six and forty years old are quite commonly found still entirely made up of sapwood, while in young trees, as stated above, the chauge begins before the age of thirty years.

The progress of the transformation is somewhat influenced by the rate of growth; it is slower in slow-growing trees and usually also on the slower-growing radius, i. e., there are more rings of
sapmoon. The width of the sapwood, on the other hand, stands in relation to the rate of growth in an epposite manner; it is wider in young and thrifty than in old and stunted trees, and widest along the greatest radius of any section; similarly, it is wider in the faster-growing Loblolly, Cuban, and sprnce pines than in the slow growing Longleaf.

Besides being of a lighter color the sapwood difters from the heartwood in several respects. Its resin is limpid and oozes nut of the pores or resin ducts of any fresh cut; that of the heartwood does not llow, except in rare cases, from saturated pieces or "light wood." The sapwood contains much less rosin-both rosin and turpentine-than the heart wood. Thus in a section of Longleaf the sapwood contained only 0.2 per cent of turpentine and 1 per cent of rosin, while the heart contained from 2 to 4 per cent of turpentine and 12 to 24 per cent of rosin, and though this is an extreme case the heart generally has three to five times as much resinous matter as the sap. The fresh sapwood contains three to five times as much free water as the heartwood and is, even when seasoned, more hygroscopic and subject to relatively greater shrinkage than the heart. This capacity for taking up water readily is probably one of the reasous why sapwood decays more readily. In addition, the parenchyma cells of the medullary rays and resin ducts (see further on) contain, at least in the outer parts of the sapwood, living protoplasm and reserve food materials which are readily seized upon by fungi which canse "bluing" and decay. Such living tissue does not exist in the heartwood. The heartwood in old logs generally is heavier than the sapwood. This is not due to any later thickening or growth of its cell walls, after their original formation, but is due chictly to two causes:

1. The heartwood of old $\log s$ was formed when the tree was younger, and made, naturally, heavier wood.
2. The accumulation of resin in the heart already referred to increases often very considerably the weight of the heartwood.

In the same way the sapwood of old $\log s$, such as supply the sawmills, is weaker than the heartwood of the same logs, but this is not because the wood is in the saprood condition, but because it is lighter and its summerwood per cent smaller, being, as stated before, the product of old age when heavy and stroug wood is no longer formed. Chemically the wood substance of sapwood is practically like that of heartwood; the coloring substances which permeate the cell walls in heartwood appear to be infiltrations, i. e., deposited in the walls from solutions; they are insignificant in amount, and their true nature, especially the processes learling to their formation, are not yet fully understood. The most modern views which consider these coloring bodies or heartwood substances as products of oxidation of tannin still require confirmation.

ANNUAL RIN゙GN.

The layers of growth, known and appearing on any cross section as annual rings, show very distinctly in the wood of these pines. In a section 8 or 10 feet from the ground the rings are widest at the center, of considerable width for the first thirty to tifty rings, the period of most rapid growth in height; then they grow more and more narrow toward the periphery. In the last sixty to one lundred rings of very old logs the decrease is very small, the rings remaining practically of the same width. The same year's grow th is usually wider in the upper part of the stem, both in young and ohl trees, but the average width of the rings is naturally greater in the upper part only of young trees; in old and also in stmed trees it is smaller, since in these the upper portions do not share in the more rapid growth of the early years.

Rings over half an inch wide are frequently seen in Loblolly and oceur in Spruce P'ine; rings one-fouth of an inch in width occur in very thrifty saplings of all five speries, but the average width of the rings for sapling timber is usually less than one-fourth of an inch, commonly one-eighth. In trees over one hmired years old it drops to one-twelfth of an inch and even below. The average width of the rings is momally smallest in Longleaf Pine, being one twenty-fifth of an inch and less. (Sce also tables and diagrans of rate of growth in the introduction, as well as in the several monographs.)

The intluence of orientation on the width of the rings is completely obscured by other, more potent influences, so that sometimes the radius on the north side, other times that of some other
side, is the greatest; and it is a common observation to see this relation vary within wide limits. even in the trunk of the same tree.

Stmed trees of Longleaf l'ine over one hundred years old with an average width of ring of one-fiftieth of an inch are frequently met with in old timber; of the other species no such trees were observed. The decrease of the width of the rings from center to periphery is never perfectly uniform. Not only do consecutive rings differ within considerable limits, but frequently zones of narrower rings, including thirty or more years' growth, disturb the general regularity. Where these zones consist of very narrow rings, one-fiftieth of an inch or less, the wood is of distinctly lighter color and weight. Since the value of this class of wood depemls not only on its strength and stiffness but also on the fineness of its rings (grain), in so far as the grain intluences both the appearance and the ease of shaping as well as other mechanical properties, the width of the annual ring is of great importance, from a technical point of view, the liner-ringed (grained) wood of the same weight always deserving and mostly receiving preference.

The rings of the limbs are narrower than the corresponding rings of the stem. Moreover, they are usually of different widths on the upper and lower side of the same branch, those of the latter excelling in width those of the former. Frequently the wider lower part of a ring of a brauch appears like a "lune" on the cross section, quite wide (one-eighth of an inch and more) in its lower median part, and scarcely visible, often entirely fading out, on the upper side. This difference is commouly accentuated by the appearance of the wood itself. In the upper"part the wood of the ring is normal and light colored, owing to a very small summerwool per cent; ou the lower wide part, the "lune," the wood is commonly of reddish color, either even throughont the entire width of the ring, or else in several varicolored bands, which give the appearance of two or more separate ill-defined rings. Sometimes the carliest formed springwood is included in this unusual coloration, at other times only the median portion of the ring. This. "red wood," as it has been termed by the French and German writers, is composed of very thick walled cells and increases markedly the weight of the wood, so that the wood of the side containing it is usually much the heaviest. It is of interest that the several "lunes" in any cross section occur rarely, if ever, exactly one above the other, but commouly the radius passing through the middle of one "lune" makes an angle of 20 to 40 degrees with the radins passing through the middle of another "lune." Often successive "lunes" show considerable deviation in position and commonly differ in width or degree of development. Accepting the most recent explanation of this phenomenon as expressed by Hartig and Cieslar, ${ }^{1}$ it would appear that the formation of these broad "lunes" of especially strong cells is due to pressurestimulus on the growing cambium, cansed by the weight of the limb and its peculiar position, increased at all times by morements of the limb due to the wind. Moreover it seems that the formation of one well-developed "lone" relieves for a time the pressure, and with it the necessity for a repetition of this formation. These "lunes" are most conspicuous in the limbs of these pines near the trunk, and disappear at variable distances from the trunk amd with them disappears the eccentricity and the difference in appearance and weight of the wood of the limbs. Immediately at the junction of limb and stem the pressure is constant, and the result is the formation of almost miformly thick-walled tissue in all parts of the ring, giving to the "kuot" its great weight and hardness.

Lunes similar to those of the limb are frequently observed in the stems of small trees; wherever this has been noted it was found on the underside of a leaning or curved portion. ${ }^{2}$ Occasionally such a "lune" extends for 12 and more feet up and down.

Quite distinct from this modification of the annual ring is another modification frequently seen, especially in young trees, giving rise to so-called "false" rings. It consists in the appearance of one or more, rarely two, dark-colored lines, which precede the true summerwood band of the ring. These lines, resembling the summerwood in color and composed like it of thick-walled cells, follow the true springwood of the year and are separated from the summerwood and from each other (if there are more than one), by a light-colored line resembling springwood. While occasionally this is somewhat misleading in counting the riugs, a moderate magnification usually suffices to

[^19]distinguish tho real character of the tissues, as described later on. A more serious dificulty arises in very old, slowly growing trees, where the ring sometimes is represented by only one to three cells (see fig. 18) and occasionally disappears, i. e., is entirely wanting in some parts of the cross sedotion. (ienerally these cases, due to various causes, are too rare to seriously interfere in the establishment of the age of a tree.

SPIRIN゙G AND SUMCMER WOOD.
The difference between spring and summer wood is strongly marked in these pines, the transition from the former to the latter being normally abrupt and giving to the anmal ring the appearance of two sharply delined bands. (See figs. 13 and 18 B .) In wide rings the transition is sometimes gradual. The springwood is light colored, has a specifie gravity of about 0.40 , and thus weighs somewhat less than half as much as the darker summerwood, with a specifie gravity of about 0.90 to 1.05 , so that the weight and with it the strength of the wood is greater, the larger the amount of summerwood. (See diagram, fig. 14.)

Fia. 13.-Varintion of summerwool per cent from pilh to bark.
The absolute width of the summerwood varies generally with the width of the ring (see diagram, fig. 15), i. e., the wider the ring the wider the summerwood band. It decreases in a cross section of an old log from near the pith to the periphery, and in the same layer, from the stump to the top of the tree. Where the growth of the stem is very eccentric, the wood along the greater radins has the greatest pronortion of summerwood; thas, in a disk of Longleaf, for instance, there is on the north side a radius of 152 mm . with 27 per cent summerwood; on the sonth side a radius of 'S mm. and a summerwood per cent of only 20 per cent. In the stump section the great irregularity in the contour of the rings is accompanied by a corresponding irregnlarity in the outline of the summerwool.

The summerwond senerally forms less than haff of the total fohme of the whole log (see fig. 1:3) it limms ancater part of the coarse graned wood which was grown while the tree was young than in the fine-ringed onter parts of the log, grown in the old age period. It also forms a greater part in the volume of the butt than of the top \log, and thus fully explains the well-known difference in the wright, strength, and vilue of the various parts of the tree. The following table serves to illustrate this point. The mmbers in cach line refer to the average values for the same ten anmual layers throngh three sections of the tree at varying height. The fignres in italics below refer to sprefife gravity for the same layer. The values for specific gravity were calculated on the basis of
allowing a specific gravity of 0.40 for springwood and 0.90 for summerwond, the values for the entire disks as actually observed being given below:

Summerwood per cent and specific gravity in various parts of a tree of Longleaf Pine.

Rings from periphery.	1 to 10	11 to 20	21 to 30	31 to 40	41 to 50	51 to 60	61 to 70	71 to 80	81 to 90	91 to 100	$\begin{gathered} 101 \\ \text { to } \\ 110 \end{gathered}$	$\begin{gathered} 111 \\ \text { to } \\ 120 \end{gathered}$	$\begin{array}{\|c} 121 \\ \text { to } \\ 130 \end{array}$	$\begin{gathered} 131 \\ \text { to } \\ 1 \not 40 \end{gathered}$	$\begin{gathered} 141 \\ \text { to } \\ 150 \end{gathered}$	$\begin{gathered} 151 \\ \text { to } \\ 160 \end{gathered}$	161 to 170	$\begin{gathered} 171 \\ \text { to } \\ 180 \end{gathered}$	$\begin{gathered} 181 \\ \text { to } \\ 190 \end{gathered}$	$\begin{gathered} 191 \\ \text { to } \\ 200 \end{gathered}$	$\begin{gathered} 201 \\ \text { to } \\ 210 \end{gathered}$	$\begin{gathered} 211 \\ \text { to } \\ 220 \end{gathered}$	$\begin{gathered} 221 \\ \text { to } \\ 2: 3 \end{gathered}$	$\begin{gathered} 231 \\ \text { to } \\ 236 \end{gathered}$	$\begin{aligned} & \text { Aver. } \\ & \text { age } \\ & \text { for } \\ & \text { total. } \end{aligned}$
Section I, 3 feet from ground.	39	44	40	42	38	35	45	32	44	66	43	43	52	56	48	46	48	43	47	47	52	4.5	42	a15	4.5
	. 59	. 63	. 10	. 61	. 59	. 57	.68	. 56	. $\%$ 澴	.73	. 61	. 61	. 66	.6s	. 64	.fis	, 81	. 61	. 6.3	. 63	. 66	. 6%	. 61	. 47	- 625
Section IV, 35 feet from ground	26	24	25	34	28	24	26	24	35	49	31	33	43	34	40	31	34	33	33	31	22	1.6			29
	. 53	. 56	. 5.3	. 57	. 51	. 52	. 53	. 5.8	. 57	. 64	. 55	. 540	. 61	.. 57	go	. 6.5	. 5	, 56	. 6	. 5	fl	4.			71.
Section VII, 70 feet from ground.	23	16	17	18	18	20	16	20	18	26	21	24	19	19	23	16	18	c^{3}							18
	. 51	. 48	. 48	. 49	.19	. 50	. 48	. 50	. 49	- 5	. 50	$\therefore \%$	19	4!)	, 1		19	11							1**

The observed values of specific gravity for tho three sections are $0.700,0.560$, and 0.400 , respectively.
It will be noticed that the greatest difference between the calculated and the actual valuo of specific gravity occurs in the section at the stump. This is fully accounted for by the fact that large amounts of resin, not considered in the values of summerwood per cent, always occur in this portion, adding from 5 to 20 per cent to the weight of the wood.

Frg. 14.-Variation of specific gravity with summerwood per cent and age of section in Longleaf Pine, the solid lines reforring to a section 3 feet from the ground, the dotted lines to one 14 feet from the ground. (Specific gravity as actually obserred on pieces of 1 inch radial extent.)

In stunted trees the summerwood forms nearly as great a per cent of the total volume for the whole tree as in thrifty trees of the same age, but in the stunted growth, or extremely narrow ringed portion of otherwise normal trees, the per cent of summerwood is markedly decreased, a feature which becomis conspicuous in the lighter color of the wool of such portions. (See diagram, fig. 15.) Where, on the other hand, the rate of growth in an old tree is suddenly increased by the accessibility of more light, for instance, the summerwood per cent also is disproportionately increased, but this disproportion appears to be more transient, i. e., a decrease in the summerwood per cent sets in sooner than for the rate of growth or the width of the rings. (See fig. 15.) In some of the rapidly grown Loblolly and Spruce Pine the summerwood forms but a small part of the first ten to twenty years' growth, and in all cases the first few rings about the pith have but little summerwood. In general, the summerwood per cent varies in the several species as well as in the individual with the weight of the wood, which is least in the Spruce Pine, greatest in Cuban and Longleaf Pine, and stands between these in Loblolly aud Shortleaf. It furnishes a very useful criterion to distinguish between theso groups and especially to select strong timber.

In the limb the summerwood is most abundant in the knot (all wood practically partaking of the character of summerwood, at least as far as the thickness of cell walls is concerned) and in the part next to the stem, decreasing with the distance from the trink. As might be expected, it also forms a larger per cent of the wood of the underside of limbs and the concave portions of bent trunks.

Fio. 15.- Fariation of summerwool per cent with rate of growth (width of ring), in tree No. 3, Longleaf line.
Note.-()nly the beary line repreacnts nummerwood per cent; the others indicate the actual width of the rings (upprepair) and of the liand of enmmerwool (lower pair).

GRAIN OF THE WOOD.

Though usually quite straight grained, the wood of these species is by no means always so. Spiral growth leading to "cross-grained" lumber occurs frequently, is usually more pronounced in the basal portions of the tree, and commouly varies from pith to bark in the same log. Wavy grain resembling that of the maple (curly maple) has not been observed, but an irregular wavy grain, due to the fact that the surface of the trunk for many years is covered with small, low eninences, 1 to a fer inches across, is frequently seen, especially in Longleaf Pine, and leads to remarkably pretty patterns. Unfortunately the contrast of spring and summer wood being so very prononnced, the figures are somewhat obtrusive and, therefore, not fully appreciated.

MNUTK ANATOMV.

The minute structure or histology of the wood of the five species under consideration is that of a gronp whose position in a general classitication of the wood of pines is indicated in the follow. ind scheme, suguested by 1)r. J. Schroeder, and more completely by Dr. H. Mayr, ${ }^{1}$ in which they appear as part of group '2 of Section I.

Ibr. J. Schrocter, Holz der Coniferen, I)roslen, 1×72, p. 65; I)r. H. Mayr, Waldumgen von Nordamerika, Minchen, 1890 , 1. 426.
section I. Walls of the tracheids of the pith ray with dentate projections.
a. One to two larye, simplo pits to each tracheid on the radial walls of the cells of the pith ray.-Group 1. Representel in this country by l '. resinosa.
b. Three to six simple pits to each tracheid on the walls of the colls of the pith ray, -Group '2. I '. Arda, palustris, cte., including most of our "hard" and "yellow" pines.
Nection II. Walls of tracheids of pith xay smooth, without dentate projections.
a. One or two large pits to each tracheid on the radial walls of each cell of the pith ray.-Group 3. I's strobus, lamberfiana, and other true white pines.
b. Three to six small pits on the radial walls of each cell of the pith ray.-Group 4. I. parryana, and other nut pines, including also I^{\prime}. balfouriana.

The general features of structure of coniferous woods are represented in the accompanying cut (fig 16).

The structural elements, as in all pine, are few and simple and consist of (a) tracheids, the common wood fibers, forming over 90 per cent of the volume; (b) medullary or pith rays, minute cell aggregates composed of two kinds of cells, scarcely visible without magnifier and then only on the radial section, yet forming about 7 to 8 per cent of the volume and weight of the wood in these species; (c) resin ducts, small passages of irregular length surrounded by resin-secreting cells, scattered through the wood, but forming two more or less connected systems, one rnnuing in the direction of the fibers, the other at

Fig. 16.-Schematic representation of conitermes wrot structure: wood of siruce-1, natural size, 2, namall part of one ring magnificl 100 times. The rertical tubes are wood fibers, in this case all "trucherils." m, medullary or pith rat ; n, transterse tracheins of pith ray; a, b, and c, bordered pits of the tracheids more enlarged. right angles to the first, the individual ducts of the latter system always occupying the midde portion of medullary rays (see I'l. XXVII).

The tracheids, or common wood fibers, are alike in all five species, and resemble those of

FiG. 17.-Cell emblings in pine. other pines; they are slender tubes, 4.5 to 6 mm . (about onefourth inch) long, forty to one hundred times as long as thick, usually hexagonal in cross section, with sharp or more or less rounded outlines (see Pl. XXI), tlattened in tangential direction at both ends (see P'I. XXI, A f), the diameter in radial direction being 45 to 55μ (about 0.00 inch) in the springwood, and about half that, or ' 61 to 25μ, in the summerwood, and in tangential direction about 40μ on the average in their middle. They are arranged in regular radial rows (see Pl. XXI), which are continuous through an indefinite number of rings, but the number of rows increasing every year to accommodate the increasing circumference of the growing stem. (See Pl. XXII, $\mathrm{C} c_{0}$) The fibers of the same row are practically conterminous, i. e., they all have about the same length, though at their ends they are ofteu bent, slightly distorted, and usually separated (see Pl. XXI, B c'; also fig. 16), their neighbors filling out the interspaces. There is no constant difference in the dimensions of these fibers in the difterent species here considered. In every tree the fibers are shortest and smallest near the pith of any section, rapidy increasing in size from the pith outward, and reaching their full size in about the tenth to twentio thing from the pith. To illustrate: In a section of Longleaf Pine, 10 feet from the ground, the diameter of tracheids in radial direction is in $\mu=0.001 \mathrm{~mm}$:

Sumber uf rinus from arnter	$\begin{aligned} & \text { Apring } \\ & \text { wrooul. } \end{aligned}$	Sumamer- worme.	A eragu.
1	${ }^{\prime 2}$	${ }^{\mu} 15$	${ }^{\mu}$
2	31	23	32
3	45	21	40
4	43	26	31
7	5	26	3 de
10	52	$\because 8$	36
24-33	52	24	36
11-53	52	$\because 7$	37

As usual in comifers, the tracheids are bargest in the roots and smallest in the limbs. In these pines, especially in longleaf l'ine, they are larger in well-grown wool than in that of extremely stunted trees, thongh very narrow rings in otherwiso normal trees do not share this diminutive size of tho tracheid. (See fig. $18, A$ and ll, where a few very marrow rings are made up of elements of normal size.)

The following average fignres illustrate the diflerence between wood from very stunted trees and that of nomal trees in Longleat l'ine, of which we give an average from an extensive series examined:

As soon as the average width of the annual rings gets above 0.5 mm . the dimensions of tho elements approach the normal. Thus, in trees Nos. 1 and "2, with average width of annual rings 0.5 to 0.6 mm ., the average diameter of the tracheids in radial direction is 35 to 48μ.

Normally, the diameter in radial direction is greatest in the first-formed or imer part of any ring, and decreases even before the summenwood is reached. In narrow rings with an abrupt beginning of the summerwood, so common in these Southern pines, the diameter is quite constant throughout the springwood, but changes, together with the thickness of the wall, quite suddenly with the beginning of the summerwood, thus adding to the sharpness of the ontlines of the two parts. (See Pl. XXI; also fig. 18, B.) In nearly all sections there is an additional marked decrease in radial diameter in the last 3 to 5 cells of each row, which helps to emphasize the limits of the ring. In the so-called "false" rings, mentioned before, the cells of the false summerwood part resemble those of the normal summerwood. The recognition of the false ring as such rests upon the difference in shape and dimensions of the last cell rows in comparison with those adjoining. In the true summerwood the last cells are much flattened, with small lumen and somewhat reduced walls making a sharp definition toward the springwood of the next ring, which is still further accentuated by the wide lumen and thin wall of the cells of the latter. In the "false" summerwood, ou the contrary, the end cells are not dattened, and the cells of the light-colored adjoining zone of wood have but a moderately wide lumen and comparatively thick walls. The fact that the outlime is less regular and commouly incomplete-i. e., it does not extend around the entire section-also aids in recognizing the false rings. In the "lunes" of both limb and stem referred to above the fibers are smaller, more rounded in cross section, and commonly exhibit conspicuons intercellular spaces between them. The walls of these are often much thicker than those of the summerwood of the same ring at this point. Since the radial diameter of the fibers of the summerwood is ouly about half as great as that of the springwood, it is clear that the number of fibers of the summerwood forms a much greater per cent of the total number of fibers than is indicated in the per cent of summerwood given above and based upon its relative width. Thus, in wood having 50 per cent of summerwood there are, in number, twice as many tracheids in the summerwood as in the springwood.

The walls of the cells are generally about 3 to $3 \frac{1}{2} \mu$ thick in the springwood, while in the summerwood they are 6 to 7μ thick on the tangential side and 8 to 11μ thick on the radial side of the fiber. Generally it may be said that the thickness varies inversely as the extent of the wall, i. e., the greater any diameter the thinner the walls parallel to this diameter, which gives the impression that each cell is furnished an equal quantum of material ont of which to construct its house and had the tendency of giving an equal amount to each of its four or six sides.

Generally the absolute width of the ring does not affect the thickness of the cell walls, the fibers of wide rings having no thicker walls than those of narrow rings; but when the growth of a tree is unusually suppressed, so that the rings are less than $0.5 \mathrm{~mm} .(0.02$ iuch $)$ wide and each row consists of only a few fibers, the walls of the fibers of the summerwood, like those of the lastformed 2 or 3 fibers of nermal rings, are thinner, so that in these cases the wood is lighter in color and weight not only because there is relatively less summerwood, but also because the fibers of this summerwood have thinner walls. (See fig. 18, A and B.) In very stunted trees, where the rings are all very narrow, the reduced thickness of the walls is counterbalanced by the smaller size of the cells.

All tracheids communicate with each other by means of the characteristic "bordered"pits. the structure of which is shown in tig. 16. These pits occur only on the radial walls of the fibers, They are most abundant near the ends of each fiber, fewest in the middle, form broken rows, single or occasionally double. (Pl. XXIII, C.) As in other pines the pits of the summerwood differ in appearance from those of the springwood. In the latter the pit appears in the cell lumen (radial view) as a perforated saucer-like eminence; in the former as a mere cleft, elongated in the direction of the longer axis of the fiber. (See Pl. XXI, B, d and e; Pl. XXIV, D, d and E, a.) In both the essential part of the pit is similar, a circular or oval cavity resembling a double convex lens, with a thin membrane dividing it into two equal plano-convex parts. (This membraue is shown only in the drawings, Pl. XXIV, D and E.) In keeping with the small radial diameter of
the fibers of the summerwood, these pits are much smaller in the summerwood than springwood, and usually are very much fewer in number.

The simple pits are in sets and oceur only at the points where the fiber touches the cells of a mednllary ray. (see fig. 17 , also Pl. XXIV, L, spo, and other figures of this plate and I'l. $X X V$.) Above and below these simple pits occur very small bordered pits, communicating with those of the short transverse fibers or tracheids which form part of all medullary rays. (See Pl. XXIII, 1), b. p.)

As in all pines, the mednllary or pith rays are of two kinds, the one small, 1 cell winle, and 1 to 10 -in large averages 5 to 7 -cells high; the other large, and each contaning in the middle part a transverse resin duct. (See Pls. XXII, XXIII, XXV, and XXVII.) Of the former there ocenr about 21 to 27 on each square millimeter (about 15,000 per square inch) of taugential section. The second class are much less abundant and scattered very irregularly, so that sometimes areas of several square millimeters are found without any of these rays. Generally about one of these rays occurs to every 1.5 or 2 square millimeters, or about 300 to 400 per square inch of tangential section. In all rays the cell rows forming the upper and lower edge (see Pl. XXIII, are composed of short fibers or tracheids (transverse tracheids), while the inner rows contain only parenchyma cells. Occasionally small rays oceur which are composed of tracheids only. (See Pl. XIII, C.) Frequently the rows of parenchyma are separated by one, rarely by two, series of tracheids (see Pl. XXIV, D, and I'l. XXV, D), giving rise to "double" or "triple" rays.

The number of cell rows in each medullary or pith ray varies from 2 to 10 , on an average from $\overline{5}$ to $\overline{7}$, and of these the rows of tracheids or fibers form more than half. (See Il. XXVI, where the outer cells or tracheids are marked with dots.)

The tracheids of the rays have thick walls covered with point-and bar like projections, the boldest of which are on the upper and lower walls and surround the bordered pits. (See I'ls. XXII and XXIII.) These short tracheids communicate with the common wood fibers, with each other, as well as with the parenchyma cells, by means of small bordered pits, which in this last case are bordered on one side (side of the tracheid) and simple on the other (half-bordered pits). The parenchyma cells occupying the inner rows of each ray communicate in the springwood part of the ring with each neighboring tracheid by 3 to 6 , commonly 4 to 5 , simple elliptical pits, in the summerwood by a single narrow, elongated slit-like pit (see PIs. XXII and XXIII), and with each other by sinall, irregular, scattered simple pits.

The walls of these cells are generally smooth, but local thickenings, especially on the upper and lower walls and surrounding the pits, occur quite frequently, though not regularly.

The parenchyma cells of the rays are usually somewhat broader and higher than the fibers, the average height for both being about 21 to 27μ, the average width about 20μ, while the leugth of each cell and fiber, greater in springwood and least in the summerwood, is from tro to ten times as great as the height. Assuming 25μ and 20μ to represent the average height and width, and allowing "25 rays of 6 cell rows each to each square millimeter of tangential section, then the rays form about 7.5 per cent of the total volume and weight of the wood of these species. An attempt to utilize for purposes of identification the difference in the number, size, and distribution of these rays, or the proportion between the number of rows of tracheids and those of parenchyma cells, as was done by Dr. J. Schroeder, has not been successful, and appears of little promise.

The large rays with transverse resin ducts resemble the smaller rays described. On Pl. XXV at A such a ray is seen both in radial and tangential section. Series of transverse tracheids oceupy the upper and lower edge, but the interior, unlike that of common rays, is several cells wide, and contains an open duct in its widest portion. (See Pl. XXV11, r, d.) This duct is commonly more or less filled with resin (see Pl. XXVII, E); it is surrounded by thin-walled secreting cells, and, in the heart wood, often divided or filled up by thylosis, i. e., by very thin walled, much puffed out cells, growing out of the surrounding secreting cells before the latter perish.

The walls of the secreting cells are quite thin, those of the remainder of the parenclyma vary to some extent in the different species. In the Longleaf and Loblolly Pines the walls of the parenchyma composing the princinal part of the ray are generally quite thick (see Pl. NXVII, A-E),

[^20]thicker than those of the cells of ordinary rays, and especially thickened near the simple pits by which these cells communicate with each other. In Cuban and Shortleat this thickening is much less couspicuous, and absent entirely in many cases (see Pl. XX゙V, A), while in the Spruce Pine it seems wanting altogether.

These ducts exist even in the very first ring (next to the pith), are smaller and more numerons near center, but have essentially the same structure in the wood of the fifth and later years.

The tracheids of the pith rays are wanting next to the pith, but occur in all rays in the outer part of even the first ring. The rays in this ring are generally lower, composed of fewer cell rows, but the cells are larger than in the rest of the wood.

Both shape and size of these medullary rays are very variable; an average of about 0.4 mm . for the height of the ray and 60μ for the width at the resin duct was observed. An attempt to utilize the shape, especially the appearance of the two edges, as a means of separating the wood of these species has so far failed entirely.

The large resin ducts running lengthwise in the wood or parallel to the common wood fibers are much larger than the transverse ducts, measuring, inclusive of the secretive cells, on an average about 0.2 mm . (0.008 inch) on their smaller radial diameter and about 0.3 mm . on the tangential. (See Pl. XXI, A, r. ll.) They are usually situated in the summerwood of each ring, often in narrow rings, cansing an irregular outline. They are smaller and more numerous near the pith, here usually forming several series in one annual ring, more numerous in wide rings than in narrow ones, but their number per square inch of cross section as well as their dimensions appear to be independent of the width of the rings. In their structure they resemble those of other pines. They are surrounded by thin-walled resin-secreting parenchyma, part of which often appears as if not directly comnected with the duct. (See Pl. XXI, A.) In many cases all the tissue between two neighboring ducts is of this parenchyma. Longitudinal and transverse ducts frequently meet and thus form a continuous network of ducts thronghout the wood.

PLATE XXI.-CROSS SECTIONS.

 ray; b, the ray leaves the phan of the section at this point, small parts of it reappearing further on; c, simple pits connecting parenchymat cells of the ray; d-e, part of a row of tracheids formed during one season; f, flattenol terminal part of a tracheid.
 luring one season; r, terminal parts of tracheids; d, bordered pit in spriugwood; e, same in summerwood; other letters as in A.
C, I'sus (ilabris, ${ }^{1} \$^{\prime \prime}$. c, row of tracheide donbled; other letters as in B.
Origimals, all ${ }^{3} \eta^{0}$ 。

TYpical Cross sections of Pinus teda, heterophylla, and glabra
.

PLATE XXII.

A, Pinus fchinata. Cross section of two rings; sp. w., springwood; su. w., summerwood.
Jh, linu's balustms. Cross section of a very narrow ring. Of the two medullary rass one is cut throngh a row of parenchyma, the other through a row of tracheids.
C and I, lines glabba. Liadial sections; m. r., medullary rays; t_{0}, tracheids of the medullary rays; p., parenchyma of the same; 8. p., simple pits leading from the parenchyma to the neighboring tracheids or common filers c. lr.; $^{\text {b }}$.p., bordered pit. The ray at \mathbb{C} is made up of tracheids only.
l; finces palustris. Radial section; lettering is in D.
 146

Typical Cross Sections of Pinus palustris and echinata, and Radial Sections of pinus palustris and olabra.

PLATH XXIII. -IRADIAT, SECTIONS.

1 and h, Pinus ncifnata. m. r., medullary rays; p., parenchyma of same; tr., trinsverso tracheids of rays; s. p, simple pits; b. p., bordered pits; c. tr., common tracheids.
C, Pinvis netriofhicla. su. u°, shmmerwood; other letters as in \mathcal{A}.
Originals magnified spo; illustrations, ${ }^{200}$.
118

Radial Sections of Pinus echinata and heterophylla.

PLATE XXIV.-RADIAI, ANI) TANGENTIAL SECTIONS.

A and h, Pinv's tivd. ladial sections; m. r., mednllary rays; tr., tracheids; p., parenchyma of the rays; s. p., simple pit; b. p., bordered pit; c. tr., common tracheids.
$C-E$, tangratial sections.
C, Pinus d'slustris. Left-hand part in springwood, right-hand portion in summerwood.
H-L, l'inc echmata. J, Section in springwood; a-c, medullary rays; a, a small ray composed of tracheids only; c, as "triple" ray; d, bordered pit showing the membrane in place. E, Section in summerwood; a borderad pit, other letters as in 1 and $/$.
 150

PLATE XXV.

 lary ray; tio, tracheids of tho medullary ray; p., parenchyma cells of the same; c. tr., common tracheids or wood filiers.
1;- 1 , PiNUS glabra. B, tangential section of a transverse resin duct and parts of three fibers; b. p., bordered pit; other letters as above; $C-G$, tangential sections of modullary rays, of which E is made up of tracheids only, while D is a "triple" ray.
II, I'INUs TADA. Tangential sections of medullary rags in spring and summer wood.
Original magnified 500 times, illustrations about ${ }^{3} p{ }^{\circ}$.
152

$$
\downarrow
$$

plate divir-TANGENTIAL SECTIONS.
$A-C$ and F, pinus heteropiflela. D, pinus echinata. E, linus glabba.
$A-C$, sections of medullary rays; tro, tracheils; p., parenchyma; C is a "donble" ray.
In $H-F$, histological details are onitted; they are camera drawings showing number and distribution of medullary rays, and also the proportion of the tracheids to parenchyma in each ray, the former being indicated hy dots; r.el., trausverse resin ducts; m. r., medullary rays.

154

:

PIATE X゙XVII-TANGENTIAL SECTIONS OF TIRANSVERSE IRESIN DDCTS.
 verse tracheids; p. , parenchyma.
Maynification of originals, syo; of illustrations, aqo.
156

Transverue Resin Ducts Tangential Views.
.

INDIX゙。

	Tage．		rage．
Age，ctiect on pine mood		Distillation of turpentine，methods．	70
Alabama central pine belt，description	41	Enemies of Loblully Pine，remarks．	12
Longleaf Pine forests，lescription	38	Longleal Pine，remarks	61
north，Longleaf Pine furests，descriphion	41	Shortleaf Pine，remarks	102
shipments of timber and lunber in 1892.	42	Sproce l＇ine，remarks．	130
Anatomr，minute，of pine womd	138	Exploitariou methols，injurious，in Longleaf Pine forests	61
Annual rings of wood，description	134	Exports of lumber from Savannab，Drunswick，Darien，and St．	
false	141	Marys，1884－1894	3
Atlantic pine region，description	31	spirits turpentine aud rosin from Mobile，1880－1894．	0
Bleeding，effect	21．72	timber and lumber from Pensacola，1880－1893．．	37
Botadical description and morphologr of Cuban Pine．	77	Molite，Ala．，amount and	
Loblolly Pine．	113	value，1880－1894	40
Longleaf Pine．．．．．．．	48	False rings	111
of Shortleaf Pin	95	Fernow，B．E．，introduction to bulletin	11
Spruce line	128	Fire，injury to Longleaf Pine forests．	02
diagnosis of Principal Southern Pines	12	Florida，eastern，Lougleaf Pine helt．	36
names of pines，list．	13	Western，Longleaf I＇ine forests，description．	37
Boxing，effect．	21	Flowers of Cuban Pine，description．	－ 77
Branch，root，and stem system of Loblolly Pin	113	Loblolly Pine，description	115
Longleaf I＇ine．．．．．．．．．．．．．．．．．		Shortleaf Pine，description	95
Brunswick，Ga．，exports of lumber for years 188t－1894．．．．．．．．．．	36	Longleaf Pine，description．	51
Ceutral pine lelt of Alabama，description ．．．．．．．．．－．．．．．．．．．．．．．．	41 13	Forestry，description．．．．．．．．．．．．．．．．．．	11
Clarateristics of distribution in different regions of Shortleaf		time for the application．．．．．．．．．．	72
Charcoal burning，use of Longleaf Pine	48	Loblolly Pine，natural reproduction	23
Charleston，S．＂C．，lumber trade，1880－1894．	34	Longleaf Pıne，in Alabama，description	41
number of barrels and total value of rosin		Georgia，description	34
shipped 1880－1894．	33	Louisiana，descriptio	3
casks and total value of epirits		Mississippi，description	42
turpentine shipped 1880－1894 ．．	33	Texas，description	4
trade in uaval stores，1880－1894．．．．．．．．．．．．．．．	33	injurious methods of exploitation	61
Classification and nomenclature of Cuhan Pine．	76	injury from fire．	62
Loblolly Pine	115	live stock	62
Longleaf Pin	48	management	64
Shortleaf Pine	93	natural reproluction．	4，123
of rosin，or colophony	68	turpentine orcharding	69
Climate and soil，effect on derelopment of Longleaf line．．．．．．	60	Shortleaf Pine，management	104
required by Lohlolly Pine	12	Fuel value of Longleaf Pine woork	
Shortleaf I＇ine	101	Fungi injurious to Longleaf Pines．	63
Spruce Pine．	130	Georgia forests of Longleaf line，descriptio	34
suitable to growth of C＇uban I＇jue．	84	shipments of lumber，1884－1894．	36
Colophony，or rosin，descriptive classification	68	statistics of Longleaf Pine	35
Crude turpentine，amount shipped from Wilmington，N．C．，		Grain of the pine woods，remarks．	139
with total talue，1880－1894．	32	Growth，rate compared	
Cuban Pine，article by Charles Mohr	75	Gulf region，eastern，maritime pive belt，descript	36
characteristics of woorl．	79	Heart and sap wool，general remark	133
classification and nomencla	76	Height of Longleaf I＇ine，hy decades	0
conditions required for development	84	History，economic，of Loblolly Pine	10.
descripfion and morphological characters ．．．．．．．．	77	of Longleaf l＇ine．	29
of flow	77	of naval－stores industry	68
economic importanco．	75	the use of Loblolly Pine	107
geugraphical distribution	75	Shortleaf line	玄
growth by decades for 120 sears	83	Insects injurious to Longleaf line trees	63
from 4 to 20 years	82	Leares of Loblully Pinn，description．	5
progress of development	81	Longleaf Pine and their moditications	49
products	76	Shortlear Pine，deseription	95
rate of growth．	81	Leaf products of Longleaf l＇ine．	48
from 40 to 145 years	83	Light，relation to Loblolly Pino and associated species．	122
requirements of	84	Shortleaf Pine and associated species	102
resinous products	76	Lightwool，formation and uses．	
syuonyms，scientific and common	13， 74	Livestock injury to Longleaf Pine forests	63
Cubic contents of Longleaf Pine，by decades．	60	Loblolly Pine－articlo ley Charles Mohr．	107
Darien，Ga．，export of lumber，188t－1894．	36	associatent species and relation to light	12 O

I'age.
121
115
107
122
108 21 1 0 107 115 leaver, descrjution 10,111
nomenclatere nmt clasaitication products.

111
proyress of derelopmeat
reproduction, natural
118

-
syronyms, acientific and cownon 13, 106 111
Locality, inthence on value of pines. 18
associatod species.
belt of eastern Florida, description
blown down by storms
48,113
conditions of development
60
cubic contents, by decades
cconomic importance
mata-stores industry
estimato of timber standing
Howers, deacription
injurions methols of exploitation.
hanagement.
64, 123
f Alabama, description
eastern Lousiana, description.
Mississippi, description
North Carolina, description
South Carolina, description
western Florida, description
western Lonisiana, description .
gengraphical distributiou
rowth and derelopment.....
rate of growth br decares
stage of rapid yrowth
stage of slow growth
li*iflit, hiameter, and cubic contents, by tlecades.
injured by fungi (Polyporus)
leaf producta
leaves and their monlitiontion.
(11) 1892

Texns in 1892.............................. $38,39,41,44,45,46$
rom 100 to 200 yeare old
200 to 266 years old
nomenclature תnd classification
prombluets.
rewion west of tho Missiakippi, deacription.
reprowhetion, nat ural.
roat, sfem, and liranch systom

- +iv lutilic abd cormmon ayoungms.
utatinticy of Georria...

Longleaf lise, statistics of Mississippi..
South Carolin
4
summerwond, fev cent, and epecilic gravity in varioun parts of trees.

137
turpentine orcharding in forests..................... 69
variation of specific gravity with mommerwood and per cent and age of section.

137
wood, description ... 53
fuel value.
48
tue's aml value
43
Louisiana, castern Longleaf Pine forests, description.............. 43
Lungleaf Pine lamber, production in 1892.
Low pine barrens, description. 30
Iamber, Longleaf Pine, production in Louisiana in 3892.
Texas in 1842 46
shipments frum Alabama in 1892.
46
Mississippi in 1879-80 and 18*3-1893.
Mobile in 1880-1 991
Pensacola in 1880-1893.
43

Savannah, Brunswick, Darien, and St.
Marys, 1884-183!
36
shipped to foreign and domestic ports from Charleston, S. C., $1880-1894$
shipped to foreigu and domestic ports from Wilmiug ton, X. C. 1880-1894.

32
Maritime pine belt of the eastern Gulf region, description..... 30
Measurements of Loblolly I'ine, by decades........................... 121 from ditferent regions........ 110, 111
Longleaf l'ine trees............... 38, 39, 41, 44, 45, 46
from 100 to 200 years old. 58 200 to 2c6yearsold.. 59
Shortleaf Pine trees at different ages......... 100
of dillerent regions..... 89-92
Spruce line trees at ditlerent ages 129
trees from virgin forests.
roung Longleaf Pine trees........................ 57
Mechanical properties of wood of Southern pines compared... it

Mississippi Longleaf l'ine forests, description.................... 43
lumber shipments, 1879-80 and 1883-1893............ 43
statistics, 1891-92
43
statistics of Longleaf I'ine.................................. 42
Mobile, casks of spirits of turpentine exported, 1880-1891..... 40
exports of naval stores, 1880-1894.............................. 40
rosin in barrels, 1880-189f....................... 40
timber and lumber, 1880-1894..................... 40
Mohr, Charles, article on Caban P'ine (P'inus heterophylla)...... 75
Loblolly I'ine (I'inus tadd)............. 107
Longleaf Pine (I'inus palustris)....... 27
Shortleaf I'ine (I'inus cehinata)....... 87
Spruce line (Pinus glabra)............ 127
Moisture and weight of pines.. 20
intluence on strength of pine............................... 19
Morphology and botanical description of Loblolly l'ine......... 113
Longleaf Pine
of Cuban I'ine... 77
Naval atores, definition .. 67
effects of production upon the timber and life of tree and tho conditions of f, e . 18.
exports from Charleston, S. C., 1880-1894
Mobile, Ala., 1880-1894
72
oxports from Chari'ston, S. C., 1800-1894......... 33
Mobile, Ala., 1880-1894 40
Savanmah, Ga., 1880-1894............ 30
Wilmington, X゙. C., and total ralue. 1880-1894

32
history of the industry... 68
statistics ... 67
Nomenclatare amil claswitication of Loblolly I'ine.................. 113
Longleaf rine................. 48
Shortleaf Pine 93
of Culan line
3
Sonthern pines .. 13
Sorth Carolina LonqJaf l'ino forests, description................ 31
Orcharding turpentino in forests of Longleaf line................... 69
improved methods.
Orchard, 'urgentine, cost of establishing is plant for working. 69 tools usul. . .. 70
Pemacola, Fla, extorts of timber and lumber, 1880-1893...... 37

	I'age.		I'age
line barrens proper	31	Sivannah, (Ga., number of casks of spirits turpentine exported,	
leelt, central, of Δ labiom	41	1880-18:34	36
belts of the Sonth, description	11	Shortloaf Pine, article ly Charles Mohr	87
Cuban. (Sec Cuban lino.)		botanical description	9%
diagnostic features of the wo	13	characteristics of distribution in different	
distribution of strongth and weight throughout the tree.	16	gioms	$8 \times$
rffect of age on woonl	17	climate and soil suitable	101
furests in Virgibia, descript	31	conditions of development	101
graiu of wools, remarks	138	crowding out other apecres	102
inllucace of locality on value.	18	description of flowers and lea	95
Loblolly. (See Loblally Pine.)		characteristics	37
Longleat. (Nee Longleaf Pime.)		economic importance	87
minute auatomy of wood.	138	enemies	102
rango of value for weight and	18	forest management	104
relation of strength to weiglit.	14	geographical distribution	87
Scrub, only raluable for firewood	12	growth after 120 years	100
Shortleaf. (See Shortleaf Pro.)		from 8 to 50 years	99
Spruce. (See Spruce l'ine.)		50 to 1:0 years	100
tar, methods of production.	68	height, diameter, and cubic contents	
timber, estimated annual consumption	24	trees at various ages.	100
estimate of quantity	24	history of its use.	$k 7$
statistics	23	measurement of trees of difierent reyions. 89,	91, 93
use of the wood	21	nomenclature and classification	93
weight ame moisture	20	products	93
weight and strength of wool at ditlerent heights in the		progress of development	98
tree.	15	rate of growth during differen	101
relations	15	relation to liglut and associated species	102
White, habitat	12	requirements as to light.	102
Pines, best common nam	13	shrinkage of wood	19
botanical names	13	synonyms, scientific aud common	13,86
local common names	13	Soil and climate, demands by Longleaf Pine	60
mechanical properties	14	required by Loblolly Pine	121
most important timber of world	11	Spruce pine.	130
notes on the structure of the wood of the five southern,		suitable to Shortlear Pine..	101
article by Filibert Roth......................	133	required for development of Cuban Pine	81
remarks ou shrinkage	20	Suath Carolina Longleaf Pine furests, descriptio	33
Southern, nomenclat	13	statistics of Longleaf Pino.	33
wood character	13	Sonthern pines, nomenclature	13
statistics..	23	wood characteristics.	13
Pinus echinata, article by Charles Mohr	85	Spring and summer wood, ditlerence.	136
synouyms, scientitic and common-	86	Spruce Pine, article by Charles Mohr	127
flabra, article by Charles Mohr (See Spruce I'ine)	125	botanical description	128
synonyms. scientific and common.	126	climate and soil required	130
heterophylla, article liy Charles Mohr (See Culan Pines).	73	distribution	127
botanical diagnosis	12	economic importan	$12 \overline{1}$
synonyms, scientific and common	13	enemiss.	130
palustris, article by Charles Mohr (See Longleaf Pine) ..	27	growth (height, diameter, and eubic contents) at	
lrotanical diagnosis	12	different ages	129
synonyms, scientific and common.	13,28	history	127
strobur, habitat.	12	progress of derelopment	129
toeda, article by Charles Mohr	105	requirements of development	130
botanical diarnosis.	12	statistics of supply and production	23
corumon names and synony	13	synonyms, scientific and common	120
Pitch, common, how oltainel.	68	Stera, root, and branch system of Loblolly Pine	113
Resin ducts.	143	Longleaf l'ine	49
Resin from Longleaf l'ine, description and composition	67	St. Marys, Ga., export of lumber, 1884-1894.	36
Resinons protucts of Cuban Pine.	76	Storms, injurions to Longleaf Pine forests	62
Loblolly Pine	112	Strength of wood of Southera linis.	14
Longleaf Pine	48	Summer and spring wood, difleronce	136
Rings, aunual, description.	$13 \pm$	Summerwood, per cent, and age of section in Longleaf line...	137
false...........	141	specitic gravity of various parts	
Lioot, stem, and hranch system of Loblolly Pino....	113	of Longleaf l'ine	137
Longleaf Line.	49	variation, per cent, from pith to lark	136
Rosin or colophony, description and classification...............	68	with rate of growth in	
exported from Charleston, S. C., in barrels, and total		Longleaf Pine tree.....	138
value, 1880-1894	33	Synonyms, scientitic and common, of Cuban Pine (linushefero-	
Mobile, Ala. in barrels, 1880-1894.	34	$\text { phy }(l a)$	34
Stwannal, Ga.. in barrels, 1880-1894.....	36	Loblolly Pine (l'inus	
Wilmington, \mathbb{N}, C. , and total value,		tceda)..................	106
1880-1894		Longleaf l'ine (linus	
Roth, Filibert, article on the structure of the wood of five		palustris)..............	28
Southern pines..		Shortleaf Pine (Pinus	
Sap and heart wood, remarks--...........................	133	crhinata)	8
Savannah, Ga., amount of naval stores exported, 1880-1894.....		Spruce pine (linus ala-	
exports of lumber, 1884-1894..................	36		126
number of larrels of rosin exported, 1880-1894.	36	Tar, amount shipped from Wilmington, N. C., 1880-1894.... ..	32

	1rage.
Tar, jine, methouls of production	$6{ }^{6}$
Lexan forests of Longleaf l'ine, description	45
lumber production from Longlear Pine.	45
'Aimber, eftects of pronluction of naval atores on the timber, life of the treo and the conditions of the forestw..........	- 72
cstimate of Longleaf l'ino standing.	60
expreted from l'ensacola, Fla, 1880-1893	37
exports from Mobile, Ala., 1880-1894.	40
regions, supply and production.	31
shipments from Alabama, 1892.	42
'Tuols used in turpentine orcharding.	70
Trasheida.	139
Turpentine, cost of establishing a plant for worling an orchard.	71
crude (or resin) from Lougleaf P'ine, composition. oil (see spirits.)	67
methods of distillation.	70
orchard, cost of catablishing a plat for working..	69
orcharding, an improved uethod..	71
injury to trees and forents..	72
in the forests of Lougleaf Pine.	69
truls..	70
spirits, amount shipperl from Wilmington, N. C., and total value, $1880-1894$.	- 32
number of casks shipped, and total value from Charleston, s. C., 1880-1894	33
number of caska shippel from Mobile, Ala,	
1880-1894..............................	36
or oil, chemical composition...............	67

Weight and strength of wood.. 14
Wilmiugton, N゙. C., shipments of lumber to forcign and domestic ports, 1880-1894.............................. 32
trade in naval ntores, 1880-1894.............. 32
Woorl, diagnostic features of pine... 13
effect of age... 17
grain of ... 138
of Cuban I'ide, characteristics.. 79
Loblolly l'ine, characteristics................................ 117
description.. 83,187
use and value.................................... 111
Longleaf Pine, characteristics.............................. 53
fuel value.. 48
minuto anatomy of ... 138
pine, remarks on grain.. 138
Shortleaf l'ine, characteristics................................... 47
southern pines, characteristics................................ 13
mechanical proprties................... it
relation of strength to weight....... It
inthences of locality 18 noisture...................... 10
shrinkago................................. 20
the five Southern pines, article by Filibert Joth...... 133
sap and h'art, remarks .. 133
spring and sumzer, difference................................ 130
weight and streugth at different heights in treo.......... 15
:

White Pine Furest.

Bulletin No. 22.

U. S. DEPARTMENT OF AGRICULTURE. DIVISION OF FORESTRY.

THE WHITE PINE.
 (PINUS STROBUS Linnæus.)

13

V. M. SPALDING, Professor of Botany in the University of Michigan.

REvised and enlarged by
B. E. FERNOTV, Chief of the Division of Forestry.

WITH CONTRIBUTIONS:

INSECT ENEMIES OF THE WHITE PINE . . By F. H. CHITTENDEN, Division of Entomology.
THE WOOD OF THE WHITE PINE By FILIBERT ROTH, Division of Forestry.

WASHINGGTON:
GOVERNMENT PRINTING OFEICE。
I 899.

LETTER OF TRANSMITTAL.

U. S. Departaent of Agriculture, Division of Forestry, Washington, D. C., March 15, 1898.

SIR: I have the honor to submit herewith for publication a monograph on the White Pine of the Northern United States.

The first draft of this monograph, like the one on "The Timber Pines of the Southern United States" (Bulletin No. 13, Division of Forestry), by Dr. Charles Mohr, was prepared more than ten years ago by Prof. V. M. Spalding, of Ann Arbor, Mich.; but it was then fonnd that much information of practical value was still lacking, and hence publication was delayed until the deficiencies could be supplied. Professor Spalding, after having made several revisions, under the pressure of other work had to abandon the idea of amplifying and perfecting the monograph itself, and this was left to the undersigued, with the collaboration of the staff of the Division of Forestry.

The undersigued is responsible not only for the plan of the work, but especially for the portions referring to forest conditions, forestal treatment, and for the discussion on the rate of growth, to which Mr. Mlodziansky also contributed.

Mr. Filibert Roth, of the Division, besides furnishing the study on the wood of the species, has also contributed the portions on the history of the lumbering operations, while the discussion on the injurious insects is by Mr. F. H. Chittenden, of the Division of Entomology.

A very comprehensive investigation into the rate of growth of the White Pine las been carried on since 1892 as opportunity afforded and funds permitted. The results of this investigation, comprising the analysis of over seven hundred trees, in the form of tables and notes, will be found in the Appendix. The measurements in the field were mainly executed by Mr. Austin Cary, of Bangor, Me., and by Mr. A. K. Modziansky, of the Division. The latter also performed the calculations and tabulations in the Division, and in this work developed a short and satisfactory method of tabulating, analyzing, and using the large mass of data readily for the purpose of summarizing, averaging, and generalization. This method is described in Bulletin No. 20, Division of Forestry.

The situation regarding White-Pine supplies has materially changed since this monograph was first conceived, so that it might almost be charged that this publication comes too late. This would be a misconception both as to the situation aud the objects of the monograph. No information of any kind could have arrested the decimation of our White-Pine supplies, which proceeds through the momentum of economic laws; and even now, when it is well known that a few years will see their exhaustion, no change in the methods of milling with a view to length. ening the supplies is contemplated by the manufacturer, who is only concerned in liceping his mill running. The manufacturer is a harvester, not a forest grower.

The object of this monograph is to lay the basis for an intelligent recuperation of the virain growth by the forest grower of the future, work which will surely be begnn presently, but which would not have been undertaken teu Jears ago.

In the preparation of this monograph use has been made of all available sources of information. Acknowledements are due to a large number of correspondents, named in tho proper connection, who have rendered valuable aid by contributing notes ou distribution or have assisted in other ways.

The botanical illustrations showing external characters are by Mr. George B. Sudworth; those of the anatomy of the wool are by Mr. N. B. Pierce and Mr. Filibert Roth, and those of parasitic organisms and disease conditions are from Hartig's "Lehrbuch der Bammkrankheiten" and "Yersetzungserscheimungen des Itolzes." The illustrations accompanying the section on injurious insects were furnished by the Division of Entomology. The map of distribution was prepared in the Division of lorestry.

The monograph is believed to be just in time for the use for which it is intended, namely, to prepare for the application of sylviculture to the remant of our pineries.

Respectfully,

B. E. Fernow,
Chief of Division.

Hon. Jantes Wilson, Secretary of Agriculture.

CONTENTS

1 are
Introduction 11
Georraphical distrıbution 11
Character of clistribution, by regions 12
Notes on general clistribution 1.5
Conclusions regarding natural distribution 16)
The White line lumber industry 16
Original stand and present supplies 19
Natural history 20
Botanical description ≥ 0
Relationship $\because 1$
Morphological characters "1
Root, stem, and branch system 21
Leaves $2 \cdot 2$
Floral urgans 29
Seeds. 23
Seed supply $\because 3$
The wool 21
Growth and development $\because 6$
Rate of growth \because
Height growth $\because 7$
Seedling stage \because
Development in open stand 28
Development in the forest 30
Effect of composition of forest upon height growth 8
Effect of locality upon height growth ::;
Growth in thickness :3
Detail measurements of annual gain in circumference in
Area accretion :it
Form development, or taper : $: 6$
Growth in rolume $: i$
Cubic coutents of trees : 2
Lumber contents of trees :3
Comlitions of development 39
Demands upon climato and soil 39
Associated species 40
Light reguirements 43
Yield of White Pine 41
Dangers and disease's $4!$
Injuries by human agency 49
Injuries loy storms 0)
Diseases $\therefore 1$
Etiect of heat and drought 51
Parasitic cliseases. 1
Insect enemies of the White Pine. By F. H. Cumtenden, Division of Eutomology π
Introluction 5
The destructive pine bark-beetle 5.5
Remedies 6
Other injurions bark-beetles it
Timber-beetles and other Scolytida 57
Pine sawyers aud other borers 5
The white-pine weeril 5x
Moth caterpillars and plant-lice on trunks ant limbs 59
Leaf-feeding insects 60
Page
Forest manampment 61
N:atural repmoduction 62
Sofes on natural reproduction 62
Irtitictal upporlnction 63
Plantiug notes 61
The White l'ine ats a forest tree in Germany 67
The wood of the White Pine. By Fribent loth, Division of Forestry 73
Character and physical properties of the wood 73
Sueritic weight 7.3
shrinkagre 77
strength 78
1burahulity 80
Comparison with other woods 80
I'nes of Whito I'ine 81
. Ap proulis:
Tables of measurements 85

ILLUSTRATIONS.

PLATESPage
White Pine forest Frontispiece
Plate I. Map showing original distribntion of White Pine (Pinus strobus L.) 11
II. Fig. 1.-White Pine mixed with hardwoods in ceutral New York. Fig. - - Old White Pine tree in mixed forest (young pine in the foreground) in New lork State 12
III. Map showing forest conditions of northern Wisconsin 14
IV. Fig. 1.-Transporting logs over ice road in Michigan. Fig.2.-Lumuer camp in Michigan 20
Y. Leaves and hud of the White Pine 92
VI. Cones, seeds, etc., of the White Pine 23
YII. Sections of joung shoot of White Pine 26
YIII. Sections of wood of White Pine 26
IX. Seedlings of White Pine 27
X. Fig. 1.-A thinned pine grove in Sew Hampshire. Fig. 2.-Yonwr pine in New Hampshire 48
II. Fig. 1.- Foung pine in need of pruning. Fig. 2.- Young pine pruned 50
XII. Disease of White Pine: Agaricus mellens 54
XIII. Disease of White Pine: Polyporus annosus 54
TEST FIGTHES
Fig. 1. Bark of old White Pine „1
2. Diagram showing height growth of mixed and of pure growth White Pine in Iresrue Isle County, 3
Mich 33
3. Diagram showing height growth of White Pino in forest of varying composition in Penusylvania
49
49
4. Girdled White Pine continuing to grow
5
5
5. Dendroctonus frontalis
5. Dendroctonus frontalis
56
6. Tomicus cacographus 57
7. Galleries of Tomicus cacographus
57
57
8. Gnathotrichus materiarius
58
9. Gallery of Gnathotrichus materionits 58
10. Chalcophora virginiensis
50
50
11. Pissodes strohi 59
12. Larval mines under bark and pupal cells of P'issodes strobi
60
60
13. Lophyrus abbotii.
60
60
14. Tubes of pine leares made by pine tube-builder 60
15. Chionaspis pinifolice
16. Diagram showing specific weight of wood at different cross sections of the stem; also a decrease of weight from the stump upward, and the similarity of the wood of different trets. 66
17. Diagram showing specific weight of kiln-dry wood at diderent points in the stem from ground unwarl. -16
18. Diagram showing effect of moisture on crushing streugth so
19. Diagram showing rate of height growth of clominant trees 93
20. Diagram showing rate of height irow th uf codomiunt trees 41
21. Diagram showing rate of height growth of oppressell trecs 4.5
22. Diagram showing height growth of dominant, codominant, and oppressen trees throughout range 96
23. Diagran showing volume grow th of dominant, colominant, and oppressed.trees throughout range 9 9
24. Diagram showing height growth of dominant trees, by States 100
25. Diagram showing height growth of codominant trees, by States 101
26. Diagram showing height growth of oppressed trees, by States 101
27. Diagram showing volume growth of dominant trees, hy States. $10 \cdot$
28. Diamram showing volune growth of collominant trees, ly States 103
29. Diagram showing volune growth of oppressed trees, hy states $10 \pm$
Page.
Fig. Bu. Diagram showing areage progress of diameter growth (breast high) of dominant trees 108
$: 31$. Diagram showimg diameter growth of dominant trees at varions heights from ground (average throughont range) 108
32. Diagran showing dianmer hrowth of codominant trees at various heirhts from ground (average thronghont range) 109
3a. Diagram showing diancter growth of oppressed trees at various heights from ground (average throughont range 109
34. Diagram showing diameter growth of dominant trees at various heights from ground in Wisconsin. 111
3.5. Diagram showing diameter growth of oppressed trees at various heights from ground in Wisconsin.. 111
30. Dingram showing diametergrow th of dominant trees at various heights from ground in lennsylvania. 113
37. Diayran showing diameter growth of codominant trees at various heights from ground in Penusylvania 113
$3 \times$. Diagram showing diameter growth of dominant trees at various heights from ground in Michigan... 115
39. Dingram showinis diameter growth of codominant treos at varions heights from ground in Michigan. 115
40. Diagram showing diameter growth of oppressed trees at various heights from ground in Michigan. 116

THE WHITE PINE.

(PINUS STROBUS Linnæus.)
SYNONYMS.
Pimus strobus Linnuas, spec. 1'l. ed. 1, 1001 (1731). J'inus tenuifolia Salishury, Prodr. 399 (1796).

LOCAL OL COMMON NAMES
White Pine (Maine, New Hampshire, Massachusetts, Rhole Island, Connecticut, New lork, New Jerser, Rennsylvania, Delaware, Virginia, West Virginia, North Carolina, Georgia, Indiana, Illinois, Wisconsin, Michigan, Minuesota, Ohio, Ontario, Nelraska).
Weymouth Pine (Massachusetts, South Carolina, European literature).
Soft Pine (Pennsylvania).
Northern Pine (Sonth Carolina).
Spruce Pine (Temnessee)

THE WHITE PINE.

INTRODUCTION.

For two centuries and a half the White Pine has been universally employed for purposes of construction in the Northern United States. Its abundance and the combination of qualities which adapts it to au almost unlimited number of uses have made it the most important and the most highly prized of all the timber trees of the region to which it is indigenons. In several of the Northern States it has been a more constant source of wealth aud has yielded larger returns than any other single product. Thus, for instance, in 1879, a fair year for comparison, the natural products of the State of Michigan were estimated by Governor Jerome as follows: ${ }^{1}$

According to this estimate the value of the timber products, chiefly White Pine, was at that time, in round numbers, six times that of the iron, seven and one-half times that of the copper, and thirty times that of the salt product of the State, and amonnted to about $3 \bar{J}$ per cent of all the products of the State combined; and if the value of the entire White Pine product of the present year (1898), some 7 billion to S billion feet B. M., be taken into consideration, it will exceed in value at first points of production the entire gold and silver output of the comtry, which is not much less than $\$ 100,000,000$.

Commercial interests of great magnitude, dependent upon the handling and transportation of the White Pive proluct, have been built up in Chicago and other northern cities, and the diminution or failure of the supply must inevitably result in the transfer of the capital thus employed to other purposes or to other centers of distribution. In fact, such changes have already been and are now being made with great rapidity, and much of the capital formerly invested in the pine lands and mills of the northern lake region has been transferred to those of the Gulf States and the I Pacific coast.

A multitude of industries is dependent upon a continued and large production of pine lumber, and its failure, though perhaps not threatening such a collapse of business interests as alarmists have pictured, will nevertheless involve serions if not disastrons consequences to the communities relying upon its continuance. The maintenance of an adequate future supply, especially in view of the well-known fact that the existing forests of White Pine can last but a few years longer, at most, is therefore a matter of great economical importance and can not receive too prompt attention.

GEOGRAPHICAL DISTRIBUTION.
The White Pine is a tree mainly of northern distribution, although it oceurs along the mountain ranges as far south as northern Georgia. It occupies in this distribution the Boreal aud Transition life zones, as defined by Dr. C. Hart Merriam.
${ }^{1}$ Michigan and its Resources, Lansing, 1881.

The botanical range of the White Pine may be circumseribed as follows: From Nerfoundland and the Atlantic coast morth of the Gulf of St. Lawrence its northern limit runs in a wavy lime between the forty-ninth and fifty-first degree of latitude, its most northern extension occurring near its western hmit, when, skirting the sontheastern end of Lake Winuipeg, it turns sonthward, following more or less closely the ninetysixth meridian of longitude, and in a sontheastern direction the line which demareates the bomblary between forest and prairie to the Ceflar liver at the Iowa line, and along the Mississippi River, crossing it near Rock Riser, when, following this river for some time, it takes an easterly course to the head of Lake Michigan, then in a mortheasterly direction through Michigan to the shores of Lake St. Clair and across Ontario, skirting the southern shores of Lake Erie in the two most northeasterly counties of Ohio, then turns sonthwarl through the eastern combies of that State, and following into West Virginia near the 1,000 -foot contour line along the foothills of the Alleghenies through Kentucky and Temessee, gradually withdrawing to higher elevations (1,200 feet) into northeastern (ieorgia; the line then returning northward along the eastern slope and crossing upper Delaware, reaches the Atlantic coast in southern New Jersey.

The distribution of commercially valuable timber is, to be sure, very different and much more contined. The northern parts of Minnesota, Wisconsin, and Michigan contained probably the largest amount of White Pine, the broad belt of commercial pine of these States contiming castward through Ontario, northern New York, and the northern New England States to New Brunswick and Newfoundland, and following the New England coast, while the higher elevations of the New England States showed preponderantly spruce with pine intermixed. The northern comnties of western Pemsylvania also contained a large amount of White l'ine timber mixed with Hemlock and hardwoods. The character of this distribution is exhibited by general outlines and shadings on the accompanying map (\mathbf{l}^{\prime} l. I). The extreme limits of its sporatic occurrence can not be fixed with absolute precision, and from the nature of the case most remain more or less indefinite. Similarly, the limits of greater or less development can only be approximately stated.

The oceurrence of the White Pine was generally as a component of the mixed hardwood forest of the Atlantic, even in the best developed portions of its range, and under such conditions, that is, in mixture with other species, it seems to attain its most perfect development.

The finest specimens of the highly esteemed "Cork Dine" of Michigan grew among hardwoods on a better quality of soils than those which produced less valued grades. On the lighter sands true pinery (pure or nearly pure growth of White Pine) occurs. Here its admixtures are most frequently of Red Pine (Pinus resinosa) and in its nothern limits of Jack Pine (Pinus dicar. icata), while on the better and cooler situations it accompanies the spraces (licen moriamand I'. chmadensis) with Balsam Fir (Abies bulstmen) and Hemlock (Tsugt conadensis).

CHARACTER OF DISTRIBUTION, BY REGIONS.

The character of the occurrence of the White Pine in the forest within its field of distribution will readily appear from the dessiptions in the tables of are yield in the Appendix.

In Maine, the lower altitudes, along the coast and some of the river valleys, contained in their hardwood forests the White Pine in fine development, which gave to that State its cognomen of the "Pine Tree State." Reports of trees if to 7 feet and over in diameter and up to 250 fiet in height testify to the capacity of the species in this region. The original stand of this pine in the State is practically entirely removed, while the young growth furnishes now again small quantities of logring material. The higher altitudes, with their slate and granite soils, are stocked entirely with the spruce and hardwood forest in which the pine occurs only as a scattering mixture and of interion develoment.

This same manner of distribution applies more or less to. Nen Hompshive and northern Ver Forl: In the Allirondacks the pine, now almost entirely removed, fringes with tho sprnce and Balsam Fir the many lakes and water courses and keeps to the lower altitudes; mixed in with the Maples, Birches, Bech, and Spmee, it towers 50 to 60 feet above the general level of the woods, with diameters of 3 to to inches. Its reprohturtion under the shade of its competitors, however, is prevented, young pine being rarely seen excent on old abandoned openings in the forest. (See l1]. 11.)

Fig. 1. White Pine mixed with Hardwood in Central New York.

Fig. 2. - Old White Pine Tree in mixed Forest (Young Pine in the Fcregroundi in New York State.

In western New Fork the White Pine was once quite abundant as a concomitant of the hard. wood forest. Ioung growth is now creeping into every wood lot, while in l'enusylranin the White Pine oceurred undoubtedly in the lower eastern comenties in commervial ruantities as well as in the adjoining counties of Vew Jersey, where it begins to be a treb of the monntains, the ligher slopes, ridges, and tops becoming its favorite habitat. It is here largely associated with Hemlock, which often becomes the preponderant tree. P'ure pine growth is rare, but the mixed hardwood forest is seldom without an admixture of White l'ine to the extent, as a rule, of about 30 per cent numerically, the soils within the range of its orcurrence being seemingly everywhere fuite favorable to its growth.

Besides the Hemlock, the coniferous species with which it is found associated are ['itch Pine (Pimus rigidd) and Spruce, while Red Pine (Pinus resinosu), the most successful rival of the White Pine in the lake region, is here marely met, and then only in single individuals. The hardwoods most frequently represented we Maple, Beech, and Birch, more rarely Oak and Chestnut, with Basswood, Cucumber, Hickory, Cherry, etc., interspersed in single individuals.

The best development of the White Pine is usually found along the water courses. Thus, in Pennsylvania, in Luzerne County the White Pine is situated along Bear Creek and its tributaries; in Clinton County the pine is found on both branches of Hyner Ruu and along Youngwomans Creek; in Clearfield County there were 20,000 acres along Sandy Creek and its tributaries heavily timbered with White Pine, of which about 2,000 acres of primeval timber are left, which would cut about 100 million feet B. M. of White Pine. In Jefferson County a tract of Hemlock and White Pine forest of about 90 square miles, known as the Hay's tract, is traversed by the North Fork and its tributaries. In Forest County the areas heavily covered with pine were situated along Hickory and Tionesta creeks. There is as yet standing over 100 million feet B. M. of White Pine along Hickory Creek and its tributaries.

The heavy cut of pine in Elk County came from Medix Run, Dents Run, and their tributaries. The courses of the streams follow the trend of the ridges, the substrata of which are usually of a porous nature, consisting in most cases of slate or laminated shale, a soil very favorable to piue situated on moderately elevated gronuds and slopes along the hollows and gorges, which, on account of the pervious substratum, offer most satisfactory soil-moisture conditions.

From New Jersey the White line has practically vanished long ago as a factor in lumber production, and almost as a tree of common occurrence.

With the extension of the distribution southward, the White Pine becomes less frequent and of iuferior development; the climate forces it to higher and higher altitudes. It occurs in quantity only in islands or in small bodies on the crests and allong the slopes of the Alleghenies, both east and west, usually accompanying water courses in broader or narrower belts.

Regarding the manner of occurrence of the White Pine in these sonthern regions, the remarks of Mr. W. W. Ashe on the distribution in North Carolina (Bulletin No. 6, North Carolina geological surcey, 1898) are more or less applicable:

The woodlaud in which White Pine is the dominant coniferous tree is not extensive, but lies in isolated, small bodies aloug the crest and southern and eastern slopes of the Blue Ridge, or on the low hills on the west, * * " extensive forests seldom being found above the higher limit (3,000 feet in Macon aurl Jackson conaties), or perfoct individual development attained below the lower (2,800 feet). In a few places on the sonthern slope of the blue Ridge * * * the Whito Pino is as ociated with Yellow Pines as well as with decidnous trees, hut the trees are generally short-boled, and neither so large nor tall as those growing at a higher elevation to the west of this range. Single specimens or smail groups of trees are locally dispersed in the broad-leaf forests throughout the monntain connties between the limits of altitude given abore.

It appears trom these statements that in these latitudes below the 2,000 -foot level this pine can hardly be expected to be of commereial or forestal value for the future.

The area of greatest quantitative development is found around the Great Iakes and in the basin of the St. Lawrence and its tributaries, in the very places most perfectly adapted to its ready and economical exploitation and easy shipment to markets, the large number of streams that are capable of carrying logs, the accessibility of natural ports of distribution, and favorable climatic conditions inviting the logger and lnobberman. Michigan, Wisconsin, and Minnesota have thus become known as the great lumber region of the United States.

In Wichigan the distribution of the species is entirely controlled by the character of the soil, all sundy areas being pinery proper, with large areas of pure growth of several square miles in extent containing only White Pine. Occasionally, and especially on the driest and poorest sandy gravels, the Red Pine (l'inus resinosa) associates and sometimes predominates, the White Pine not representing more than 10 to 20 per cent of the number of trees. In the northern regions Jack Pine (l'mus divericuta) takes the place of the Red line.

The typical pine forest on fresh sandy soils consists of White Pine (45 to 55 per cent of the dominant growth) mixed with Red line (25 to 45 per cent) with scattering Hemlock (10 to 15 per cent) and occasional Fir and hardwoods. The undergrowth, usually moderately dense, consists mainly of small Hemlock, Fir, and young hardwoods.

On moister sand with loam or clay subsoil Hemlock and hardwoods replace the pines, the Red Pine vanishing entirely and the White Pine occurring only in large isolated individuals. Into wet or swampy places the White l'ine also penetrates in single individuals among Arborvitie, Hackmatack, and Spruce.

As the loam in the composition of the soil increases, the hardwoods increase numerically, the White Pine occurring only in single individuals and groups, and Red Pine and Hemlock only occasionally. Finally, the heary clay soils toward the southern range of the species give absolute preponderance or exclusive possession to the hardwoods, mainly Sugar Maple, Yellow Birch, and Beech, althongh occasionally White Pine appears scattered, or even in smaller or larger groups.

Lumbering of White Pine in Michigan began about 1835, and was at its best in 1883, but now the virgin pine is nearly cut out. Reproduction is satisfactory on the sandy areas wherever fires are lept out, which is rare; on the clay-loam areas reproduction under the shade of the hardwoods is practically impossible.

In Wisconsin the same dependence on soil conditions in the distribution of the species prevails as in Michigan. The accompanying map of the forest areas of Wisconsin, taken from Bulletin No. 16, of the Division of Forestry, will serve to give an idea of the manner in which this distribution appears within the belt of best development. (See Pl. III.) From this map it will be seen that the distribution is to the largest extent dependent on soil conditions, the sandy soils representing the pinery areas, in which merchantable hardwoods and Hemlocks are wanting; the loam and elay areas are stocked with the hardwood forest, in which both Hemlock and Pine occur seattering or in isolated groves, represented almost entirely by mature old timber. Saplings, bushy young trees, and seedlings are comparatively scarce, an active reproduction of the piue evidently not groing on. This condition is found especially on the heaviest soils, where the hardwoods crowd out the pine, while on the sandy or gravelly soils the pine holds its own and forms a fair proportion of the sapling timber. In the true pinery of the sandy soils the hardwoods are scantily represented by small White Birch, Aspen, and Maple. The Hemlock is entirely wanting. On the barrens proper the White Pine is replaced by Jack Pine and Red Pine, one, or both together, forming forests of considerable extent, usually with hardly any undergrowth or admixture save some scattering Serub Oak.

In Minnesofa climatic conditions again begin to assert themselves in influencing the distribution of the White Pine.

The conifers become preponderant over the hardwoods everywhere. lines, both hed and White, together with Tamarack (Larix levicina) and Arborvite (Cedar-Thuja occillentalis) and some admixture of Spruce oceupy those sites, both swamp and dry lands, which elsewhere would be occupied by hardwoods. With this change in composition soes a decrease in development; the sizes both in diameter and height are reduced.

It is an interesting fact that both in Wisconsin and Minnesota the pine area does not, as in the eastern didd of distribution, gradually fade out toward the prairie, but the true pine woods cease abruptly within 30 or 40 miles at most from the demarcation line of the prairie, leaving the interveniug ground to birch and Aspen or Scrubby Oak and Jack line openings.

In the Canadian extension of the species pure pinery is very rave. The great bulk of the most productive pine conntry lies northward and westward from the mouth of the Ottawa River to Georgian Bay in mixed growth, which consists mainly of hardwoods, with Hemlock, Spruce, Arborvite (Cedar), and Balsam, while the lower tiers of Ontario are of the same character of hardwools, with little scattering pine, as in southern Michigau. The castern extension of the

field of commercial pine in Canada followed mainly the St. Latwrence liver as far as Quebec. On Newfoundland the species is indigenous to nearly the whole of the island, and in some parts produces considerable quantities of merchantable timber. At its northwestern limit the forest fates out into prairie, the White Pine gradually disappearing, while at the northern limit the change is into Spruce forest.

NOTES ON GENERAL DISTRIBUTION.

Dr. N. L. Brittuu, for some years connocted with the geological survey of New Jerser, writes of the occurrence of White Pine in that State as follows:

Pine Brook Station and sparingly northward atong the southern Railroad of New Jersey (Britton); sparingly 3 miles sonth of Woodbury, Gloucester Connty (Canby), ad frequent in the middle and nortbern portions of the state. There are no White Pine forests in New Jersey, and the largest grove known to me is of lut a few acres in extent. It evidently prefers a heaver soil than does P. rigida, which forms the forests of the pine barrens. On Staten Island, New York, there are a few scattered trees of 1 . strobus.

Mr. William M. Canby, of Wilmington, Del, reports the existence of a grove of White Pine trees in upper Delaware, and Mr. Thomas Meehan, of Germantown, Pa., states that White Pine grows (or did recently) at the Soapstone quarry, on the east side of the Schuylkill, some 8 or 10 miles above Philadelphia. Mr. Canby adds: "It is a very difficult thing to define the limit of a species that is being so rapidly destroyed, and doubtless the southern line is being rapidly ettraced."

Prof. Lester F . Ward, of Washington, D. C., is of the opinion that Pinus strobus is not indigenous around Washington, and that the few trees met with in wild situations in its vicinity grew from seeds blown from planted trees. He has never met it in his lotanical excursions into southeastern Maryland and Virginia.

Mr. F. E. Boynton writes from Highlauds, N. C.:
I have seen some rery fine specimens growing in Pickens and Oconee counties, S. C., but I have never seen it in this part of the country except in high altitudes, say from 2,500 to 3,000 feet usually. I have never seen or heard of its forming forests here. I have seen groves of a few acres where it might bo said to predominate. As a rule, it is found scattered among other forest trees. It nearly always grows in or quite near lihododendron and Montain Laurel thickets, which indicate a moist soil. It often grows to be a very large tree here I measured a log in the mill yard near here last night that was 37 inches throigh. Considerable lumber is cut from White Pine in this mountain region, but, as a rule, the lumber is of inferior quality, being very knotty and often shaky. Cultivated specimens thrive and grow very fast. It is usually found most common on southern exposures. The rock formation is granite, and soil usually a sandy or gravelly loam wherever I have observed the White line in this region.

The following has been furnished by Prof. W. R. Lazenbs, of the State agricultural experiment station at Columbus, Ohio:

From all the data in my possession, I shonld say that white Pine is rarely met with in Ohio outside the borders of two of our northeastern counties, viz, Ashtabula add Lake. Uccasionally a sporadic patch has been noted along the banks of streams in some of the eastern comnties. I have nerer heart of its spontaneous occurrence anywhere throughont the cental or sonthern portions of the State. It appears to thrive well here at Columbus and sumits kindly to change of soil. Wherever I have seen it in Ohio uncler artificial cultivation it has presented a thrifty appearance, although the young plants do not make a very rapid growth for the lirst few years.

Concerning the occurrence of White Pine near the head of Lake Michigan, Prof. E. J. Hill, of Normal Park, Ill., writes:

It begins at Whitiug Station, on the Michigan Southern Railroal, and extends eastward to Michigan City. I came across a clump of White l'me once, ahout a mile nurth of Otis, where the Michigan Sunthern Railroan crosses the New Albany roal. - " "Yonwould be pretty sate in taking the Calumet River as the southern boundary. * * " I do not know of a single native tree in Cook Conntr, Ill.

Mr. M. S. Bebb, of Rockford, Ill., communicates the following concerning the occurrence of White Pine in the northern portion of that State:

In a ferr localitics on Kents Creek and Rass Creek, in Winnebago County, and giving the name to Pine Creek in Ogle, the connty immediately north of this, the White Pine is certainly indigenous, but occurring only as a sparse growth, cresting precipitous banks, where it seems to have found a favorahle eurironment.

To this Mr. S. B. Wadsworth, of Oregon, Ill., adds:
The White Pine in Ogle County grows in some cases to a height of 40 or 50 fret. * * "Nearly all the small streams in line Rock township have some pines near the mouths of the streams if there are any rocks along the banks. * * * The White Pine prefers the St. Peters sandstone, but in some cases grows on limestone rucks.

Mr. R. Williams, of Streator, Ill., says:
White line is without doubt a native of La Salle County. It occurs on the Vermilion and its little tributaries wherever there is an exposure of carboniferous sandstone, and more frequently is seen close to the edme of the highest bluffs, where the soil is largely composed of the disintegrated rock. To find one begoud the inflnence of the sand rock would be almost phenomenal. The number is very small and their sithation does not permit them to attain much size. I think that 40 feet is ahont the limit of height. Small thrifty plants from one to a feew feet in height occur here and there, and are sometimes transplanted to the prairie soil, where they make a rigorous growth, ontstripping Norway Spruce, Notch and Austrian l'ine, Hemlock, and Whito Cedar. P'ines planted lhere in 1854 or 1855 are now (1886) about 40 feet high.

The limiting line of the White Pine heyond the Mississippi northwest ward is traced sabstantially as indicated by Mr. Warren Upham in the Geological and Natural History Surver of Minnesota. Mr. Upham sends the following:

The White Pine, wherever I have scen it in New Hampshire and other parts of New England and in the Northwest, prefers somewhat clayey land. It does not thrive on wholly sandy plains ("modified drift" of glacialists),
"hich arn denominoted "pino barrens" tho congenial dwulling place in the East for the Piteh Pipe (P. rigida), and in tho Corthwest for the llanksian or dack lime (\boldsymbol{l}^{\prime}. divaricalaj: nor tues the White Jine in either region grow plentifuly amd of largesp size on very clayey lam, which is the fivoritu locition for Maples, Basswoot, b:lms, and wher blecidnons trees. Tho White line in this mater of its choice of snil follows tho injuction. Medio tuliasimus
 rens" than tho White l'ime, being intermenliate in this betweon the W'hito l'ine and the l'itch and dack pines.
l'rol. T. H. Maehriale, of tho State liniversity of Iowa, says:
I havo collecterl White I'ine in the following contics in this Stato: Mitchell, Mowarl, Winneshiek, Mlamakee, Clayton, Dubnyne, Delaware, Jackson, and Mnscatine. It is, by others. reported from Scott. It onght to ho fonnd also in Fayetto, hut I lave never run across it there.
['his wonlel conlon the White l'ine in Iowa to tho connties borderng the Mississippi River and the Minnesnta state lino as far west als the Celar River Valley.]

CONCLUSIONS REGARDING NATURAL DISTRIBUTION.

The leading conclusions to be drawn from what has been stated regarding the natural distribution of White Pine seem to be the following:
(1) Leaving ont of consideration all the outlying portions of the region under discussion, there is left in area of not less than 400,000 square miles in the United States and Dominion of Canada within which the White Pine is in its home and surrounded by the conditions of its own choice, throughout which its successful cultivation is fully assured.
(2) A much larger territory than this is included within the limits of extreme distribution as defined above, and there is abundant evidence to show that over nearly the whole of this wide area, and in some directions far beyond it, this species makes under cultivation a healthy and rapid growth. There is apparently no species of equal value indigenous to eastern North America that is at the same time adapted to so wide an area.
(3) The habits of this species near the western limit of its natural occurrence, as well as experimental planting, indicate plainly that its suecessful growth can not be depended upon much beyond this limit.

THE WHITE PINE LUMBER INDUSTRY.

No species of American timber has been so much used for lumber as the White Pine, and the development of the lumber industry in this country is coincident with the exploitation of the White Pine forests.

The commercial use of White Pine began with the first settlement of New England. The first sawmills were established in the seventeenth century, and numerons small sawmills, which were usually in attachment of the neighborhood gristmill, were in operation early in the eighteenth century. Timber was exchanged for merchandise, and the collections thas made were floated to ports of shipment, whence they were exported. 'This primitive industry, confined largely to White l'ine, was continued well into the third decade of the present century. In $1850, \mathrm{~J} . \mathrm{S}$. Springer, of Maine, wrote: "Thirty years ago it was unnecessary to search for a locality for a lumber camp on the Penobscot, for a matn could step, from his house to his day's work, the pine, that forest king, abonnding on every side. Fifty years hence the vast pine forests through which the Penobscot flows will be on the eve of destruction." This prophecy has long since been verified, for the Spruce has practically taken the place of the White l'ine in the lumber output of Mane.

This early trade in White Pine, thonglinvolving small capital and limited operations on the batt of each dealer, was by no means unimportant in the agyregate, lumber being a leading industry in New England from the first. Tho Bangor Weekly Register of Mareh 2, 1816, noted that between 300 atud 400 sleigh loads of lumber, ete, came into Belfast in one day. The Gazette of July 10.1 ².2, says that 136,086 feet of hmber and 35,000 shingles were hatud in on one Saturday by teams. In 182. twenty-five vessels were engaged in the lumber trade from Bangor to the West Indios. 'The mills of those days were all small affars, generally' single-sash saws, driven by water mower, with a capacity of 1,000 to 3,000 feet per day. About 1830 the construction of larger mills hegan. and in 1890 a capital of nearly $\$ 12,000,000$ was invested in the samilling imblustry in the strite of Mamealone
[n eneral, it may be said that the White loine of New lingland was cut by numerons small connerns. and that the bulk of the supples was ent before modern sawmilling began.

Althongh the great forests of White Pine in Maine have disappeared, a small amount of this material is still cut in the State every year, so that since 1881 , on the Penobscot, for instance, ont of a total cut of about 150 million feet per year between $2 t$ and 30 million feet have been pine, the pine thus generally forming 15 to 20 per cent of the entire output.

In Pennsylvania the exploitation of White Pine likewise began quite carly. Pittsburg furnished pine lumber to points along the Ohio and even to St. Louis, Mo. As late as 1850 Philadelphia received its 150 million feet of lumber, largely White Pine, from the State, importing but very little from New England aud the South. At Williamsport, the center of White Pine lumbering in Penusylvania, the first large mills were erected about 1838, and the bulk of the pine was cut prior to 1570 .

In the forties the White Pine product marketed at Williamsport excelled in quantity all other points of production. The highest production was reached in 1833 , with nearly 300 million feet B. M. in logs boomed, which in 1893 had sunk to a little over one-tenth of that amount. While in 1873 the amonnt of timber standing was estimated as 3,300 million feet B. M., in 1896 the State commissioner of forests places the remainder at 500 million feet B. M.

The only uncut White Pine forests of Peunsylvania now stauding are isolated bodies in the more inaccessible parts of Cleartield, Lycoming, and Tioga counties.

In the State of New York, too, which in the Adirondacks and in the western comnties contained considerable quantities of White Pine, the species is largely cut ont. Hardly more than 5 per ceut of the cut is now of White Pine, the output from the Adirondack mills being in the neighborhood of 25 million feet B. M.

The exploitation of White Pine in the Lake region began during the thirties, when small mills were erected at various points, both in Michigan aud Wisconsin. The first steam sawmill at Saginaw was built in 183t, and the first mill at Alpena was built two years later. Nerertheless the lumber industry of both Michigan and Wisconsin remained insignificant until toward the close of the fifties, when most of the present sites of manufacture had been established. Ten years later (18.0) the annual cut of White Pine in Michigan and Wisconsin amonnted to nearly 4 billion feet; Minnesota had scarcely liegun to contribute to the output; and in the marketing the railway was fast displacing the older method of rafting. The progress of lumbering is well illus. trated in the following figures from the Northwestern Lumberman, representing the aunmal cut of lumber alone from 1873 to 1897:

> Annual cut of lumber (exchusive of shingles and laths) of the three Lake States, Michigan, Misconsin, and Minnesota, 18:3-159\%.

	Feet B. y .		Feet 13. M.
1873	3, 993, 780,000	1886	7, $425,368,443$
1874	3, 751, 306, 000	1887	7,757,916,784
1875	3, 968, 553,000	1888	8,388, 716, 460
1876	3, 879, 046,000	1889	8,305, 833, 277
1877	$5,595,333,496$	1890	8,664, 504, 715
1878	3, 699, 472, 759	1891	7,943, 137,012
1879	4, 806, 943,000	1892	8,903, 748, 123
1880	5, 651, 295, 006	1893	7,599, 748,458
1881	6, 768, 856, 749	1894	6, 763, 110,649
1882	7, 552, 150, 744	1895	7,093, 398, 593
1883	7,624, 789, 886	18.6	万. $725,763,035$
1884	7,935, 033, 054	1897	6, 233, 454,000
1885	7, 053, 094, 555		

Or, dividing the time into periods of five years each, the figures are as follors:

From the figures, to which about 10 per cent must be added for shingles, laths, etc., it appears that the yearly output did not reach 4 billion feet until 18.9 , and that the greatest increase in the cut occurred between 18 and and 1882, when the 7 -billion mark was reached. This enormous cut continued until the general business depression of 1894 called a temporary halt. In Minnesota, pine lumbering began on the St. Croix and did not reach conspicuous dimensions until during the eighties, when the regions along the upper Mississippi, as well as the Buluth district, were opened. This progress westward is well illustrated by the following figures, which show the percentage of the total cut of lumber alone from period to period, by districts:

I'ercentage of total cut of lumber, 1873 to 1895, by districts.

In this connection the White Pine trade of St. Louis presents an interesting illustration. The first pine lumber was received from Pittsburg in 1819, and this point remained the priucipal source of supplies for sears. In 1843 a boom on the St. Croix liver broke and the liberated logs were gathered and rafted to St. Louis, where they were satw. In 1850 the first regular raft of Wisconsin logs was brought to the city. In 18.03 Schulenberg and Hoeckler built a large sawmill on the St. Croix, and from this time on rafts of sawed White Pine were sent to St. Louis from the northern rivers.

The receipts of White Pine at St. Louis were: In 1853 , about 60 million feet; in 1852 , about 162 million feet. Similarly the lumber trade of the city of Chicago, the greatest lumber market in the United States, if not in the world, illustrates well the development of the White Pine lumber industry. In 1847 only 32 million feet of White Pine lumber were received. The anmual receipts at intervals of ten years since 1855 to 1895 were as follows:

The receipts reached their maximum in 1892 with $2,203,574,000$ feet, and the heary diminution since that date is not greater than would be accounted for by the general business depression throughout the country.

In Canata, as in Nerf England, the exploitation of White P'ine began almost with the first settlement. Logs, hewn timbers, and especially ship spars, were exported in early days, and of late years an extensive trade in sawn lumber, as well as saw logs, has sprung up between that country and the United States. Since reliable statistics of the lumber output of this region are wanting, the following figures for the dues on crown timber in Ontario and Quebee must suffice to illustrate the development of the industry:

Average annual dues on croun timber for Ontario and Quebec.

The export into the United States for 1894, the heaviest year, was: Lumber, $1,15 \mathrm{5}$ million feet (Pine and Spruce); pine logs, $277,947,000$ feet, or less than $1 \frac{1}{2}$ billion feet B. M.

Though scattering White Pine occurs in all provinces of eastern Canada, large bodies of merchantable timber are only to be found on the upper waters of the Ottawa, and on the shores
of Lake Huron (Georgian Bay district) and Lako Superior, and the White Pine lumbering is practically confined to these districts. The output of White Pine in the Dominion is estimated at $1 \frac{1}{2}$ to 2 billion feet per year.

ORIGINAL STAND AND PRESENT SUPPLIES.

What the original stand of White Pine mas is diflicult even to estimate. The amount of White Pine cut in the New Englaud states, New York, Pennsylvania, and the eastern Provinces of Canada is not known, and the only reliable figures which give an indication of what has been harvested are the figures for the Lake States above mentioned. For the Lake region alone the estimated original stand for Wisconsin may serve as an illustration. For the pinestocked area of this State, a total stand of about 150 million feet per township ($2: 3,000$ acres) has been shomn to be a fair average. This would indicate a total of about 130 billion feet, of which about 66 billion feet were cut between 1873 and 1897 , and abont 20 billion feet are supposed to have beeu cut prior to 1873 , making a total of about 80 billion feet as actually harvested, while about 18 billion feet were believed to be still standing in 1897. These figures are based upon a thorough canvass made by Mr. Filibert Roth and published in detail in Bulletin No. 16 of the Division of Forestry. On the same basis, Michigan possessed fully 150 billion feet and Minnesota may be assumed to have had about 70 billion feet, which would make an aggregate of about 350 billion feet of pine for the Lake States. Of this about 170 billion feet were cut between 1873 and 1897 , and about 50 billion feet were probably cut prior to this time, accounting for about 220 billion feet out of 350 billion feet. While it must remain mere conjecture, it seems quite fair, nevertheless, to assume that the total supplies of White Pine aggregated probably not less than 700 billion feet of standing timber originally. Of this total, then, not less than 50 per cent was coutained in Canada aud the Eastern States, the United States portion representing about two-thirds of this heritage, the Canadian portion showing less than 20 per cent of total supplies.

Of this large amount of virgin supplies, a little over 15 per cent, or 100 billion feet, may be estimated as standing. These supplies may be approximately distributed as follows:

Canada is credited by the statistician of its department of agriculture with about 37 billion feet of standing pine, an estimate probably far below the real truth. For the Lake States the following estimates rere made in 1897 by the best-informed man of the Lake region: Minuesota, 36 billion feet; Wisconsin, 18 billion feet; Michigan, 10 billion feet. These estimates are considered quite high by many. The standing pine in Michigan is placed by a detail township canvass in 1890 at only about 6 billion feet; the standing White Pine of Minnesota is estimated by the State chief fire warden at only about 12,600 million feet, while an estimate for Wisconsin made in 1895 places the standing pine of that State at only S billion feet.

Retaining the larger figures as probably the nearest correct, there exist to-day: In the Lake States, about 64 billion feet; in Cauada, over 40 billion feet; in New York and Pennsylvania, not over 2 billion feet; in New England, not over 3 billion feet; in West Virginia and Tennessee, not over 1 billion feet; making a total of about 110 billion feet, or about 22 per cent of what may fairly be believed to have been stauding originally. Of this standing supply about 100 billion feet are so located that the present rate of exploitation (over 6 billion feet per year) can be, and probably will be, continued until over 75 per cent of the present supply is cut, when, of course, a lack of logs will lead to a reduction in output. This coudition may be looked for before the end of the next ten or twenty sears, and from that time, unless recuperative measures are adopted, White Pine will cease to be the great staple of our lumber markets.

In former years lumbering of all kinds was careless, and even in the White Pine forests the prevailing "inexhaustible supply" notion led to enormous waste. Stumps were left 3 to \pm feet high, all defective trees were left, and top logs burned up with the débris. Many of these old slashings have been logged for the second and even the third time, often yielding a greater profit than when first culled.

At present this is no longer the case. High stumpage prices and a perfect market have led to the closest economy in logging, milling, and shipping of White Pine. The trees are felled with the saw, the stumps are 18 inches and less, care is had in the marking and sawing of logs, and the top is utilized, irrespective of knots, just as far as it will make saw timber. Defective logs
are rately lett behmi, and "clean cutting" now means the removal of all logs, however lefective. In logrint, ice roads, improved by niphty sprinkling, entble the transport of cnormons loads (b,000 feet and more) by single or donble teams. The logming ratway is fast finding favor, and in many phaces the loggime is thereby made continuous, being carried on at all seasons. (See I'l. IV.)

The yields in White l'ine are, as might be expected, very variable.
A cut of -3 million feet B. M. on a "forty," or 50,000 feet per acre, was not a rare one in the pineries of sonthern Michigan, and ocrasionally such cuts are made in Wisconsin and Minnesota. To yielld such a result the entire "forty" must be well aud evenly stocked. The best acre, then, need not be far above the aserage, and, in fact, ravely exceeds 75,000 fect.

A stand of 1 million feet on a "forty," or 25,000 feet per acre, is a good one, but was of quite common oceurrence in all White line districts, and may still be found in many places, while whole townships or counties have averaged 10,000 feet per acre.

These yields depend, of course, on the character of the forest growth, the greater or smaller admixture of other species occasioning the differences. 'Thus, if any large territory of the pine distriets were taken into consideration, a yield of 150 million feet per township would be fonind a fair statement for most parts of the pineries of Wisconsin and Michigan.

The best yields do not usually come from those tracts which contain the bargest trees, but Where the pine is least mixed with other species and stands most dense.

Snch areas, pineries proper, where no merchantable hardwoods were mixed with the pine, are usually tracts of loamy sand, and occur in extensive bodies in all three of the Lake States. Generally, White Pine cuts more wasteful than Norway or lied Pine, has a thicker bark, more large dead limbs and knots, these latter often coming to within 20 fect of the ground, even on large trees, and is fuite given to forking. This latter peculiarity seems natural to the tree, and has been observed abroad as well as here. It seems independent of the character of the soil, as it occurs on clay and sand alike, but it is often localized, so that on a small tract of 10 or 20 acres nearly all trees are forked. Trees with three and four forks are not rare, and five forks occur. In addition. White Pine is extensively defective by decay, so much so that in some localities 15 to 20 per cent must be allowed for the loss from this source.

NATURAL HISTORY.

The oldest description of the White Pine appears to be that of Plakenet, published in 1700 . Its scientific name of Pimus strobus was given the species by Linneus in 1753 , and unlike most trees but one other scientific name has been applied to it, the synonym being I'mus temifolia Salisbury, 1796. Besides the generally accepted common name of White Pine, the species is locally known in the United States as Soft Pine, Northern Pine, and Spruce Pine, and to a limited extent by its usual European name of Weymonth Pine.

The species was first introduced in Europe at Badmintou, England, and was soon after extensively plated on the estate of Lond Weymouth, whence its common name abroad. It was also extensively planted in Germany at the end of the last century under the same name, Weymuthkiefer.

BOTANICAL DESCRIPTION.

White Pine (l'imus strobus $I_{\text {o }}$) in its natural habitat is a tree of large size, 100 feet or more in height (not unfrequently attaining a height of over 130 feet, even trees of s50 feet in height having been reported), with smooth, thin, glayish bark (fig. 1), becoming at the base thick and deeply furrowed with age. The leaves are slender, straight, triangular in section, tive in a sheath, $-\frac{1}{2}$ to $4 \frac{1}{2}$ inches long; resin ducts, chietly two near the dorsal face; stomatia in three to five rows on the vontral faces: fibro-vascular bundle, one. Cones, single or in groups of two to three, stalked and pendulous, t to 6 inches long: cylindrical, slighty tapering and curved, fruit-scales oblong wedgeshaped, the apophysis half pyramidal, with a triangular blunt point. Seeds, one-fifth to one-fourth inch long, grayish-brown, with a thin membranaceous wing. Cotyledons, seven to eleven.

A number of varieties, more or less distinctly marked, are recognized in cultivation. Among these are menf, a dwarf, bushy form, cultivated in gardens in the Old World; nived, viridis, and aura, named from the color of their leaves; brevifolic, and several others (umbraculifera, minima,

Plate IV.

Fig. 1. Transporting Logs over ice Road in Michigan.

Fig. 2.-Lumber Camp in Michigan.
fastigiata, gracilifolia, cariegata, zebrinn, and prostruta), some of which are propagated and sold as special attractions in nurseries.

> RELATIONSHIP.

The White Pine (Pinus strobus) is closely related to the Bhotan P'ine (l'inus excelsa) of India, the Swiss Stone Pine (I'inus cembra) of southern Europe, the White Pine (P'inus fleritis) of the liocky Mountains, the Sugar Pine (Pinus lambertiana) of the Pacific coast, and a number of others less generally known, of which Pinus monticola, P^{\prime}. albicaulis, P. strobiformis, P^{\prime}. quadrifolia, I^{\prime}. parryana, and P. cembroides are natives of the United States.

The species belonging to this section of the pine genus are distinguished by their slender, delicate leaves, five in a sheath; by the exceptionally soft and even texture of their wood, and by certain well-defined botanical characters, by which they are marked as a natural and easily recognized group.

The group of species just named shows a preference, geuerally characteristic of this section of pines, for elevated, mountain regions, and a light rather than a heavy soil, makiug, as a rule, a healthy growth on sandy aud rocky places, and manifestly preferring these to low and heavy soil. All are handsome trees, symmetrical in form, some of them, as the Sugar Pine (Pinus lambertiana), of rapid growth, and forming magnificent specimens from 150 to over 200 feet in height, while others are of slow growth, as the Stone Pine of the Alps, which produces, however, a beautiful, fine-grained wood, extensively used by the Swiss peasants for carving. The Bhotan Pine of the Himalayas is the representative of the White Pine in Asia, resembling it very closely in habit, size, structure of wood, and various technical characters.

Fig. 1.-Bark of old White Pine.

Admitting the common ancestry of these varions species, a more extended comparative study of their preferences and habits would be of much interest in relation to their cultiration beyond their natural range, considering the fact that, whatever their enviromment, such ancestral traits are certain to manifest themselves.

MORPHOLOGICAL CHARACTERS.

ROOT, STEM, $\triangle N D$ BRANCH SYSTEM.
In the natural forest, with a due amount of shade, the White Pine has at maturity a straight columnar trunk, destitute of branches for half to tro-thirds of the distance from the ground to the tip of the leader.

The branches are for many years disposed regularly in whorls, and during this early period the tree retains a symmetrical, conical form, and is one of the most graceful of the pines for ornamental cultivation, but, as is the case with other conifers, the lower branches are short lived, and ultimately, by their decay, the tree becomes unsightly. This fact, which renders this species, in common with all other conifers, undesirable daring part of their lifetime for ornamental purposes, gives it the greater value as a timber tree.

The crown, at first pyramidal, is finally less regular, although rarely flattening, and, owing to the rapid and persistent growth of the tree, conspicuously overtops the suroming forest of deciduons trees. The root system is small compared with the size of the tree and spreads near the surface of the gromd; its comparatively slight development is in hamony with the less pronounced dependence of this species on the soil and its greater dependeuce on the atmosphere.

Nursery sedlings produce mumens slemer, fibrous roots, the delicate tissues of which are as in most conifers easily dried at the time of transplanting, resulting in very serions injury or loss of plant material. White l'ines planted upon the dry sand along the Lake Michigan shore and trimmed of their lower branches have been observed restoring these lower limbs and forming a thick, green covering over the ronts betore making any height growth, suggesting in a striking mamer the necessity of protecting the root system against too rapid evaporation and a too highly heated suil. In the natural forest, and in artificial groves properly phanted, the fallen leaves fulfill this function by making a deep, thick coating over the roots.

LEAVEs.

The leaves arise from greatly reduced short brauchlets and are produced five together, surrounded at the base by a thin deciduons sheath, and are further distinguished by being more slender and delicate than those of our other native pines. ($\mathrm{Pl} . \mathrm{V}^{2}, 1,2,3,1$.) The relative position of the five leaves inclosed in their common sheath is shown in Pl. V, 5 , and in Pl. V, 6 , is represented a cross section of a single leaf, magnified sufficiently to show the characteristic arrangement of the tissues.

Without entering into a detailed account of its functions, which would here be irrelevant, it may nevertheless be remarked that the leaf of the White Pine constitutes a highly complicated and delicate piece of apparatus. Like all foliage leaves, the leaf of the White Pine fulfills the important functions of respiration and the mantacture of starchy food, during which processes large amounts of watery vapor are exhaled.

A healthy pine seedling, three years old, in the air of a dry room, lost by evaporation in twenty-four hours 81.1 per cent and in the following twenty-five hours 90.7 per cent of its entire dry weight. ${ }^{1}$ The evaporation, chiefly through the leaves, is more rapid in the daytime than in the night, in clear than in cloudy weather, and most rapid of all in a drying wind. It will readily be seen that if a tree is planted on a clear, dry, and windy day, the conditions are the most unfavorable that could possibly be chosen, the rapid eraporation carrying off the water of the plant beyond the capacity of the roots, not yet adapted to their new place, to meet the demand, which results in the drying up of the tissues and often in the death of the tree.

The various forms of molified leaves are characterized by extreme delicacy. Winter buds (Pll. V, \sim), with their thin and small scales, present a striking contrast to those of Longleaf Pine, for example, and other species that produce large buds with relatively thick and coarse scales. The very loose leaf sheaths and scale-like leaves of the young shoots are early deciduous, a fact that contributes to the growth of the smooth, clean bark characteristic of the branches of White Pine, in which it differs in so marked a way from the species of the lellow line group.

In P'I. V, 1, the modified, seale-like leaves that constitute the loose sheaths are conspicuously shown. Separate fascicles, with their sheaths, are represented in Pl. V at 2 and 3 , while at 4 is an older one as it appears at the end of the summer after the sheath has fallen.

EXIDANATION OF PLATE V.

1. Shoot showing foliago and scale leaves of different ages.
s. loung fascicle with sheath.
2. Yonng fascicle further developed.
f. Still older fascicle from which the leciduous sheath hav fallen.
3. section of fascicle inclosed in sheath.
4. Section of leat magnitied.
5. Winter lond.

FLORAL ORGANS.
Flowers and fruit are rarely produced to any cousiderable extent before the tree has attaned the age of fifteen or twenty years, though occasionally trees may bear fruit at ten to twelve years of age.

The staminate and pistillate tlowers are separate, but produced on the same tree. They appear in May, the pollen ripening and pollination taking place (in the latitude of Ann Arbor,

Mich.) between the middle and the end of the month. The staminate llowers are borne laterally on the shoots of the seasou (Pl. VI, 1). They are extremely simple in structure, consisting of numerous pollen sacs borne in pairs on the outer face of tho scale-like staminal leaves. The pollen is produced in great abundance and is carried by the wind to great distances. Fertilization, however, notwithstanding the profuse production of pollen, often fails to take place. In fact, failure appears to be rather the rule than the exception, if we consider the frequency of "off" years," in which little, if any, good seed is produced. But donbtless other causes often combine to prevent the production of a full crop of seeds.

The pistillate flowers occupy the apex of the young shoot (I'l. VI, 2), finally forming a bunch of cones pendent from the ends of the branches. At the time of pollination they are about onefourth of an inch in length and have the appearance of minute theshy cones, which by the end of the first summer's growth have attained the length of three-fourths of an inch to an inch, and have the appearance represented in Pl. VI, 3 . They are not ripe until the fall of the succeeding year, when the cones, having now attained their full size, as shown in PI. VI, 5 and 6, open and allow the winged seeds to escape. In order to prevent loss of seeds it is necessary to gather the cones a little before they ripen, which oceurs during early September in most localities of the natural tange. Afterwards, if kept in a dry place, they will open readily themselves and allow the seeds to fall out. The ripeuing is signalized by the chauge of color to a yellow brown and the forming of a resin coat.

SEEDS.

The seeds are one fourth of an inch in length by about half that measure in breadth, of an oval form, grayish-brown in color, sprinkled with darker spots, and provided with a thin, delicate wing, by means of which they are disseminated through the agency of the wind (Pl. VI, 8). The seed coats consist of a hard outer shell, or testa, inside of which is a thinuer membrane, the eudopleura. Inside of the seed coats is the whitish endosperm, constituting the food of the germinating plant, within which, occupying the center of the seed, is the small, straight embryo, the three parts of which, stem, radicle, and cotyledons, are plainly distinguishable.

To get 1 pound of seed from 2 to $2 \pm$ bushels of cones are necessary.
Concerning the production of seed, the experience in this country is but fragmentary. The individual tree begins to bear quite early. Isolated specimens, or trees in open groves, bear cones before they are twenty years old, and even trees in the dense forest seem to bear generally before they are forty years of age. The capacity to bear abundantly is retained to old age, the oldest trees seen still bearing heavily, and even mutilation by fire or otherwise does not prevent the trees from bearing.

> EXPLANATION OF PLATE VI.

1. Staminate llowers of Pimus strobus just before shedding of pollen.
2. Pistillate llowers, terminating foung shoot.
3. Young cones in autumn of first jear.
4. Young cones early in summer of second year.
5. Cones at close of second year's growth before opening of scales.
6. Mature cone, the scales separated to admit of dissemination of seeds.
\%. Single scale, showing onter surface.
S. Single scale, showing inner surface with seeds in place.

SEED SUPPLY。
A full crop of seeds is usually produced by the same tree only at intervals of seceral gears. Cones may be formed year after year, but upon examination it is often found that many of the seeds are abortive. Of a large number of cones gathered at Ann Arbor, Mich., in 1886, not a single one showed a perfect seed. Mr. John E. Hobbs states that the same year (1886) was a good seed year in Maine, and that trees had not produced so largely before since 1879 . According to Mr. J. Dawson, of the Arnold Arboretum, a crop of seed may be looked for about once in five years, though others make intervals between seed years shorter. The frequency of seed years has not been suficiently noted as yet to warrant any general statement, but it is known that during certain seasons the seed production is perfectly general over large areas, while in other years it is not. Thus, in 1897 the White Pine bore heavily in every pine county in northern Wisconsin.

The frequency of seed years varies of course not only on account of more or less farorable seasons, but according to locality and climatic conditions. In Europe the White Pine is regarded as a frequent and heavy seeder, one year out of three being generally productive. A grove of 8 aces near Frankfort on the Main produced during twenty years, on an average, 8100 worth of seed, with at maximum yield of 8500 , and with but three "off" or fail years in the twenty. Similarly an area of about 40 acres in the Palatinate funishes as high as 1,700 bushels of cones, or about 1,300 pounds of seed, supplying all the nurseries of the Palatinate State forests with seed.

THE WOOD.

The structure and development of the wood of the White Pine may be studied to the best adrantage by beginning with a young shoot cut from a vigorous tree in early summer. A cross section of such a shoot in the first season of its growth (II. VII, 1) shows three plainly marked zones-the pith (m) surrounded by the wood (x) and the inner bark ($p h$), which together form the conspicuous zone crossed by radiating bands, the so-called medullary rays, and outside of the parts just described, a broat zone of cellular tissue, constituting the middle barlk, which is bounded externally by the epidermis.

The pith, medullary rays, and middle bark consist of simple cells, originally of an irregularly rounded form. Together they constitute the so-called ground tissue of the stem, as distinguished from the fibro-vascular portion, which includes the wood and inner bark.

Within the cortical portion of the ground tissue numerons large openings (Pl. VII, $1, r d$) are seen, of different sizes and apparently without definite arrangement. These are the resin ducts. Each duct runs longitudinally through the stem, and consists of a central cavity filled with resin, around which is a single layer of secreting cells, easily distinguished by the nature of their contents from the surrounding cells of the cortex. At this stage of develomment the resin ducts are confined to the cortical parenchyma, none baving yet been formed in the woody portion of the stem; but later in the season, as may be seen in older sections, a number of ducts are formed, arranged in a circle near the periphery of the wood. These have essentially the same structure as those of the cortex, but are of smaller size and are surrounded by fewer secreting cells. In cross sections of older stems the resin ducts are seen, arranged in an irregular circle, in each annual ring. Their physiological significance is not fully understood, though there can be little doubt that De Vries is correct in assuming that the abundaut resin is of service to the growing tree, when wounded, in preventing decay of the wood, and that its preservative intucuce is continued after the tree has been cut into lumber.

In such a young shoot as has been described the cells are vitally active, and are filled with granular protoplasm, in addition to which several other substances are either produced or stored up in them, particularly in the cells belonging to the ground tissue. Chlorophyll occurs in the pith and medullary rays as well as in the cortical portion. It is most abundant in the cells of the cortical parenchyma, occurring in the form of minute grains, irregnlar in shape and size. Starels, in rounded gramules, occurs abundantly throughout the ground tissue, the cells of the cortex containing a larger proportion than those of the pith. Resin, as already stated, fills the resin ducts and the secreting cells around them, though starch is often found in the latter.

I'assing now to the woody portion immediately surrounding the pith, two characteristic fea. tures at once attract attention. The elements composing the wood, x (Pl. V11, 1 and 3), have a much narrower lumen than those of the pith, and are regularly disposed in radiating rows. 'These clements, the tracheids, are elongated thick-walled cells, four to six sided, according to the number of tracheids by which they are surmonded. Their walls are lignified and are marked by the peculiar structures called bordered pits. Their structure, when fully developed, is shown in Pl. VIII, 1,2 , and $\%$. In the economy of the tree the wood fultills the finction of mechanical support, and serves as the conducting tissue through which the water, evaporated from the leaves, is carried up) from the roots.

The medullary rays are composed of cells so flattened by the pressure of the tracheids that on longitulinal sections they appear as represented in Pl. VIII, 3. They contain a conspicuons nuclens, are closels packed with gramur food substances, and serve collectively as a storebouse
of reserve materials. Communication between these and the tracheids is effected by means of simple pits on their radial walls.

The inner bark, or phloem, p^{h} (Pl . VII, 1 and 3), closely resembles the young wood on cross section, its clements being arranged in radiating rows and traversed in like manner by the medullary rays. The cells composing it differ, however, in various important particulars from those of the wood. Their walls are of cellulose, and although important as conducting tissue, they contribute comparatively little to the rigidity of the stem.

Between the wood and inner bark is the cambium or formative tissue, represented in Pl . VII, 1, as a light band of extremely small and delicate cells, and in the same plate as a zone of cells with thin walls and large lumen, contrasting strongly with the wood elements and those of the iuner bark between which they lie. It is from the cells of the cambium that those of the rood are formed on the one hand and those of the bark on the other. The process is a gradual one, and no absolute line of demarcation can be drawn between the cambium and the tissues derivel from it. The cells of the cambinm multiply by tangential division. The essential features of this process, as regards the position of the cell malls, are represeuted in Pl. VIII, f, in which the lightest lines represent the youngest walls and the heavier ones those of greater age, successively. It is by the constant repetition of this process of tangential division and the subsequent thickening of the walls of the cells thus formed that the wood and inner bark make their yearly increase in thickness. In the spring the cells of the cambinm are large and vigorons, and a rapid forma. tion of wood elements with relatively thin walls and large cavities takes place, while later in the season much smaller tracheids with thicker walls are formed. This results in the strong contrast betreen the wood last produced in any given year and that formed at the beginning of the next season's growth, giving rise to the sharp distinction of annual rings so clearly brought out in Pl. Yili, 1.

The histological characters thus briety summarized hold true, in a general way, for other conifers as well as the White Pine. This species, however, presents a number of peculiarities that are of both physiological and economical interest.

The resin ducts of the White Pine are larger and more numerous in the cortex than in the wood, an arrangement well adapted to secure the protective action of the resin contained in them without introducing an element of weakness into the wood. Comparisons with other species bring ont this fact in a striking manner. Thus, upon comparing the distribution of the resin ducts in stems of the White and Scotch pines, as nearly alike as possible, it was found that in the cortex of White Pine stems of one year's growth the number of resin passages ranged from 20 to 47 , the average being about 33 . The number in the wood was more uniform and averaged about 13 . In the Scotch Pine the average for the wood was found to be 33 and for the cortex 10 . Taking the second year's growth in the same way, the average number for cortex of White Pine in the specimens examined was 28 and for wood 27 ; in Scotch Pine, for cortex 9 and for wood $37 .{ }^{1}$ The small size of the resin ducts in the wood contrasts strongly with the very large ones of Scotch Pine, which seriously interfere with the continuity of the wood and tend both to weaken it and to give it an uneven texture.

The extremely small number of thick-walled tracheids constituting the summer wood of the White Pine is in marked contrast with the broad band of summer wood formed in varions other species. Comparing the annual rings of White Pine with those of Longleaf line, for esample, it is seen that while the thick-walled tracheids of the former make hardly more than the mere outer edge of each ring, those of the latter constitnte one-third or more of its entire width. Moreover, the gradual, almost imperceptible, transition from spring to summer wood in the White Pine contrasts strongly with the abrupt line of demarcation seen in Longleaf Pine and all other Yellow lines. It is to this very gradual transition that the uniform texture of the wood of White Pine is chietly due. The medullary rays of the different groups of pines show certain structural peculiarities that appear to be constant for the group of species in which they occur. The writer is indebted to Mr. Filibert Roth for the following notes in regard to this feature:

[^21]and arn therefore termed the muter cells；the other kind makes up the intermediato rows and are known as the inture cells．

In the appearance of looth onter and inner cells there is in marked and constant difference in tifferent groups of pines．While tho interior of the wall of the outer cells（transverse tracheids）is smooth in some groups，it is beset with mumerons bohl projections in others．Similarly the inner cells（parenchyma）of the spring wood of each ray in some groups have but a single large pit communcating with the neighboring tracheid，while in other groups this is brought abont log three to six smaller pits．
based upon these clifrerences，the following classification of the wood of different species of pines is proposed liy Ir．J．Schroeder：
sectson I．Walls of the tracheids of the pith ray with dentato projections．
a．one to two furge，simple pits to each tracheit ou the radial walls of the cells of the pith ray．－－（iroup 1．Hepreseatelin this conntry only ly I＇．reainosa．
 most of our＂hard＂aml＂yellow＂pines．
SEction II．Walls of tracheids of pith ray smonth，without dentato proiections．
a．One or two laree pits to cach tracheid on the radial walls of each cell of the pith ray．－Group 3．I＇．serobus，lambertiana，and other trie White Jines．
b．Three to six small pite on the radial walls of ench coll of the pith ray．Wrouph．P．parryana，aud other nut pines，inclating also ${ }^{2}$ ．balfouriana．
Returning to the mednllary ray of tho White Pine，it is observed that the walls of the outer cells are thin （1．5 $\mu \mathrm{t} \circ \underline{2} \mu$ ）；the round pits quite variable in number and size，but always as small，and often smaller，than the pits of the tracheids in the summer wood；also that the walls of the inver cells are thin（ 1.5μ to 3μ ），for the most part very thin，beiug largely occupied lyy pits；that the pits are large ovals on the radial walls of the cells in the spring wood，small erect ovals in the summer wood，and small and irregular in outline above and below where the inner cells communcate with each other．The length of these cells varies，even in the same ray，between $50 / \pi$ and 300μ ；the width was found to he about 7μ for the outer and 12μ for the inuer cells；the height，more variahle in the outer than in the inner cells，and less variable than either wilth or length，may be set at about 23μ for outer and inner cells．The average number of cell rows in one metlullary ray，for the specimens studied，is 7.5 ，whereof 2.6 fall to the outer cells and 4.9 to the inner cells．The limits of the total number of cell rows were 2 and 16 ；the height of the ray，therefors， 46μ to 368μ ，dimensions scarcely appreciable to the nuaided eye．What is lost in size is gained in number；on an average 21.3 medullary rays were counted on 1 square millimeter，or 13,312 to 1 square inch of tangential section．

A study of the wood in its physical and mechanical properties，by Mr．Filibert Roth，will be found further on in this monograph．

FスILLNAIION゙ OF゙ HMATE VM．

1．＇Iransverso section of fresh shoot，cut in summer of first year $\times 25$ ．The zone of small cells surrounding the pith inclules the wood and inner bark，both of which aro traversed radially ly the mednllary rays．The thick cortical parenchyma ontside of these is marked by the presence of a number of largo resin ducts．
\therefore I＇ortion of epidermis，with appendages．Leneath the epidermis a fow cells of the cortical parenchyma containing starch．
\therefore Highly magnified riew of a part of tho transverse section，showing the structure of wood aud inner bark，with the thin－walled cells composing the cambium lying between them．
［Figs． 2 and 3 were drawn with great care with the camera，but unfortunately no statement of tho magnification was preserved with them．］

> FXPLANATIOX OF PLATE VHII.

2．Cross section of wool $\times 175$ ．The section includes parts of three medullary rays，the middle one of which is cut partly through the inner cells and partly through the cross tracheids．The gradual transition from spring to summer wood is clearly shown．P＇art of a resin duct is seen on the right．
\therefore Radial longitudinal section of wood $\times 200$ ，showing a few of tho thick－walled tracheids of the summer wood followed by the large thin－walled ones of tho succeeding spring，both crossed by a medullary rar．The borlered pits of the outer cells of the ray，shown both in section and surface view，are in strong contrast with the simple pits of the inner cells．
3．＇langential section of wood $\times 200$ ．
1．（＇ross section of part ol＇twiy collected May $20,1886, \times \mathbf{1 7 5}$ ，showing cambium aud development of wood and bark． The woody rime is about one－third its final thickness．

GROWTH AND DEVELOPMENT．

The seeds of the White Pine retain their vitality for a long period．Trustworthy observers state that a fair percentage will grow after being kept five years or more．The conditions of germination and successfnl growth are，in general，the same as for other pines，namely，a suitable

1）r．J．Nchroeder，Das Holz der Coniferen， 1872.

Sections of Young shoot of White Pine.

Sections of Wood of White Pine.

Seedlinas of White Pine.
soil, moderately warm and moist (not wet), in which the seeds are covered at a depth not exceeding twice their own diameter, and, further, protection of the young seedlings against the hot sun and drying winds. Special attention is required in the nursery to avoid undue moisture when the seedlings appear above the ground, as they are often attacked by a destructive disease very common in propagating beds, known as "damping off." If, however, no adverse inflnences have interfered with its normal development, the young plant presents itself after some months' growth as a slender shoot, crowned by the persistent seed leaves, in the midst of which is the terminal bud, the latter having already formed numerous short foliage leaves. No branches have appeared, and the foliage leaves arise singly instead of in groups of tive. The whole plant, as it appears at this time, with its slender stem and long taproot, is represented, natural size, in Pl. IX, drawn from a specimen obtained in the pine woods of Michigan, in September, 18s6. Earlier and later stages of development of the seedlings are shown in the same plate $(1,2,3,2,5,6)$ drawn from nursery specimens.

For the first two or three years the growth of the seedling is slow, and is so greatly intluenced by its surroundings as to make it impossible to give averages that will fairly represent the yearly increase in height and diameter.

Thus, a healthy seedling, three years old, from the nursery row, measured 4.6 inches, while a self-sown specimen from Maine, four years old, measured only 9.7 iuches in height. But, if the circumstances are favorable, after the third year a growth of one to several inches is made each year, and from this time on the yearly increase in height is clearly defined by alternating nodes and internodes, a whorl of branches being formed at each node.

The leading shoot is from the first the most couspicuous and the most important part of the plant, branches being manifestly subordinate, dying off in later years as in other conifers. The rate of gromth being of most important practical interest, much space has been devoted to this part of the developmental history.

The tree rarely reaches a height of more than 160 feet and diameters of more than 40 inches, more usually 30 inches. Occasioually these dimensions are exceeded; trees of 200 feet in height and of 60 inches in diameter have been reported. The largest actually measured by the Division of Forestry was 48 inches in diameter breast high and 170 feet in height, with an age of about four hundred and sixty years, containing 738 cubie feet of wood, standing in a group of similarly old and large pines in Michigan. Another tree of this group, with titinches diameter and $16 \geq$ feet in height, contained 855 cubic feet, being less tapered.

FNPLANITION OF PLATE $1 \mathbb{N}$.

1. Seedling as it first appears with seed coat attached to seed leaves.
2. Seerlling with seed coat detached.
3. Seedling with seed leaves and primary foliage leares disposed singly on stem; tivo mouths old.
4. Seedling in its second year, showing primary leares and secondary leaves (mature form), tho latter in clusters of five.
5 and 6 . Seedlings three to five years old.

RATE OF GROWTH.

The following statements regarding the progress and rate of growth of White Pine are hased mainly upon the very comprehensive data collected by the Division of Forestry in Maine, New Hampshire, Massachusetts, Pemsylvania, Michigan, and Wisconsin. These data, involving measurements and detailed analyses of over seven hundred trees grown under varying conditions, together with records of the conditions under which they grew, and the amounts of timber which were produced under such conditions per acre, are presented fully in the tables, with accompanying notes, in the Appendix to this monograph. It appeared, however, desirable to present in the text not only the generalizations and conclusions, but also some typical cases. Some other measurements, made before this comprehensive investigation and recorded by the writer in his original manuscript, are also produced.

HEIGHT GROWTH.
NEEILING STAIFE,
The growth of the seedling is variable, according to the conditions under which it grows. In the forest it is much slower than under cultivation, as would naturally be expected. The common
practice of nurserymen is to sow the seed broadeast in earefully prepared beds, where the seedlings stand from two to four yeurs before transplanting. Standing very close, the trees do not make as stocky growth as they otherwise would. Under these conditions the average growth of untransplanted seedlings, according to statements by the well-known murserymen, Thomas Mechan \& Sons, is as follows: One year seedlines, 2 ' to 3 inches high; two years, 4 to finches; three years, 12 to 15 inches; four years, 24 to 36 inches.

The late Mr. Robert Douslas, the veteran unseryman, of Waukegan, Ill., wrote:
White l'ine seedlings one year ohd are 1 to 2 inches bigh and altogether too small and teuder fur trangplanting. At two years old they are much stronger, from 3 to 5 inches high, with fine fibrons roots and in fine condition for transplanting. At three jears old they aye 6 to 9 inches high and shonld not be allowed to stand another year, as thes would add abont 10 inches to their height during the next year and would not be suitable for planting.

The lirst season after transplanting, the White Pige (like other trees) will not increase much in height, but will establishitself, extending its roots and forming a strong terminal but, so that when it is six pears old it will exceed in weight and bulk over one humbeal times its proportions when transplanted, and thereafter will increase in grow th from 18 to 30 inches in heimlet anmalls in good soil for mans years.

Gavdner \& Sons, mbose nursery is about 90 miles west of the Nississippi River, in Iorra, and therefore outside of the natmal range of the species, submit the following measurements, coinciding with the above, as representing average growths at their nurseries before and after trans. planting: One-year-old seedling, $1 \frac{1}{2}$ inches high; tro-year-old seelling, 4 inches high; three-yearold seedling, f inches high. The trees are transplanted at three years of age and thereafter the average height for the three following seasons are: Four years old, 1s inches high; five years old, 16 inches high; six years old, 33 inches high. Another establishment reports as the average height of twoyear-old trees in seed bed, $3 \frac{1}{2}$ inches; of three-year seedlings, 7 inches.

Casual oloservations and measurements of some forty-five seedlings in the forest permit the following as to the height growth of seedlings in the forest:

Height grouth of White line in the forest for the first six years.

Age of seenllinas.		Height of stem.			Current anmal accretion.
		From-	T0-	Averagy.	
		Suchire.	Inches.	Inches.	1 Inches.
1 year	.	1	2	$1 \frac{1}{2}$	
y years		2	4	3^{2}	2
3 years		3	71	5	2
4 Tears		li	10^{-}	8	3
5 years		10	12	11.	32
6 Years		30	34	31 \%	20°

These measurements show that the rapid height growth begins with the sixth year, when the total growth of the first five gears is almost doubled in one season. This, to be sure, holds ouly for seedlings favorably situated. In those less fivored the rapid stage of development comes more gradually. This slow progress in younger years is naturally retlected in a retardation of the vear of maximm height growth, which in dominant trees occurs about the twentieth year, while in oppressed trees it may not come befure the for tieth year.

HEVIBOPMENT IN UEEN MINXID.
Trees on lawns and in pastures, which grow up in full enjoyment of light, are somewhat dif. ferent from trees in the forest. The slow seedling stage is followed by a very rapid increase in the rate, which attains its maximum before the twenticth year and then declines gradually.

Table 1 , on the next page, presents a complete record from year to year of the growth of eight trees phanted on a lawn at Ann Arbor, Mich., which were measured in 1886 , the ammal increase being measured between the whorls of branches. These measurements also exhibit the great Variability of growth from season to season and from tree to tree, even under otherwise similar combitions. In some of the trees, evidently, injuries or accidents retarded development. Such apparent deficiencios have been left ont of consideration in averaging the data.

TABLE I.- Height growth of While l'ine planted in luwn at Inn Arbor, Mich., by years, in inches.

Note.-Trees Nos. 1 to fistood in shallow soil on gravel subsoil; Nos. 7 and 8 in deep loam.
From this table it appears that these eight trees grew on an average hardly more than 6 inches during the first six years, more than three times as fast during the next six years, aud reached a maximum rate of over 27 inches per year during the third period of six years, the decline beginning after the twentieth year and the rate decreasing until it has fallen to about 15 inches near the thirtieth year.

To show how, under less favorable conditions, the progress of self-sown trees is very nearly the same, the following measurements may serve, from which it appears that matural seedlings on pastures, standing more or less crowded, reach at ten years a height of 10 feet; at the age of twenty years about 25 feet, and trees thirty-five to forty years of age, with diameters of 6 to 9 inches, attained and even passed the height of 60 feet, showing an average growth for that period of 15 to 18 inches per year:

Table II.-Measurements of self-soun White line on pasture.
[Furnished by Mr. J. E. Hubbs, of North Derwick, Me.; altitule, „To feet.]

NOTES TO TABlE II.
No. 1. From old pasture after one Fear's tillage; 5 feet from No. f ; bore cones.
No. 2. With Nos. 1 and 3, and from similar trees.
No. 3. Old pasture, soil shallow, gravelly loam on compact subsoil of same ; pine mixell with Membek, Oak, amd Maple,
No. 4. Level ground, soil heary loam, somewhat shaded.
No. 5. From old pasture after one year's thllage; 5 feet from No. 6 ; bore coues.
No. 6. From old pasture after one year's thllage; 5 feet from No. 1 ; bore cones.
No. 7. From old pasture after one year's tillage; 5 feet from No. 6 ; bore cones; distant from neighbors \&, 34 , and 19 inches.
ㅊo. 8. From old pasture after one $\overline{5}$ ar's tillage; 5 feet from No. 6 ; bore cones; tonchen another 4 -inch dinneter.

So. 9. Level gronmi, soil heavy lom, somerthat shated.
No. 10. From ohll pasture aftur une ywar's tillage; 5 fent from No. 6 ; hore cones.
Si. 11. (H) jasture, soil shalluw, gravelly loan on comphet subsoil of sand; phe mixel with Hembock, Oak, and Maple.
No. 12. On slight incline to morth; soil nearly 3 inches from similar tree, with others quito near; crowded.
So. 13. Level ground, soil heavy loam, somewhat shaded.
Sios. 14-16. Ohl pasture, aoil shallow, gravelly loam on compact abbsoil of sami; pine mixed with Hembock, Uak, aud Japle.
No. 17. Isolated: lost lealer six fears previous, apparenty through leader worm.
So, 18. Hevel ground, soil heary loam, somew hat ghaded.
No. 19. Whith No. 12 ; lost leader tive years previous ly leader worm; neareat neighhora 2, 5, and 10 fect, reapectirels.
So. 20. Level ground, soil heary lonm, somewhat shated.
S゙ns. 21-26. Ohd pasture, subl shallow, gravelty loam on compact subsoil of and; pine mixed with Hembeck, (onk, and Marle; gronnd slopes to west ; all six trees. besides four others, within circle of 24 feet diameter; crown about 20 feet long.

Concerning trees $1,9,5,6,7,8$, and 10 (Table II), Mr. Hobbs sent the following interesting communication, under date of danuary 11, 1887:

All these trees were found in an old pasture adjoining my land on the north and having similar aspect and soil. A fringe of tall White Pine timber surrounds if on three sides, north, east, and sonth. The distance acruss this open land from north to sonth is about 60 rods. This land has heen in pasture from fifty to one hundred years. It was formerly thichly covered with moss, sweet fern, and other low-growing bushes, in the shade of which anmals fond some grass. Although thus surrounded by tall pines their seeds seldom sprung up.

Not many years before these trees started a portion of this land was plowed and planted with potatoes one year, and then turnel out to pasture again, whereupon goung pines immediately sprung up. These were cut down tirst, but they continued to come up so abundantly that they were allowed to grow, and now the patch that was planted with potatoes is quite thickly covered, in many places too thickly, with trees like those measured. This fact shows the importance of turning up the soil so that the seeds that fall upon it may have a chance to take root. Only here and there a seed will find lodgment on land that is covered with moss and low-growing bushes, no matter how abundantly seeds may be sown upon it.

How such trees continue to grow is shown in Table III. From the measurements it appears that a steady growth contimes, which, by the hundredth year has brought the tree to a height of near 100 feet.

Table III.-Measurements of White Pine, groun on abandoned fields.
[Furnished by Mr.J. C. Hobls, of North Berwick, Me.]

NOTEA TU TABLE. HH.
So. 1. Nortl) Berrick, Me.; near frot of hill aloping to north; growth, dense; spparently abandoned farm land; shallor, sands soil. No. 2. South berwick, Me.; thrifty second growth, in ralley of Great Works Lirer; exhausted faran land on granitic formation, sand over so feet deep, well stocked with Whito Pine.

Nin. 3. North Jherwirk, Me; near foot of hill aloping to north; growth, dense; apparently abandoned farm land; shallow, sandy soil.
So 4. North berwick, Me. ; near foot of hill aloping to nortb; growth, dense; apparently abandoned farm land; aballow, sandy soil.
So, j. sunth Lerwick, Me; thritt necond prowth, in valhy of Great Works Kiver; exhausted farm land on granitic formation; sand oter gufeet deep, Wull stoked with White I'ine.

Nug. fi-10. Dinth Ierwick, Me; near foot of bill sloping to north; growth, dense; apparenty abanioned farm land; shallow, sandy soil.

IVFVELOFMENT IN THE FOREST.
In the dense forest the same general law of development, namely, of slow and rapid stages, prevails for dominant trees as is exemplified by the foregoing measurements of trees grown in the fiehl, although the quantitative progress varies somewhat. According to the relative amount
of light at the disposal of the crown the rate of growth differs, and there is found, therefore, in the forest trees, though very nearly the same age, trees of different heights, according to the success of the struggle for light which they have had with their neighbors. At every stage of the development of a forest growth, after its juvenile period, the trees can be classified into dominant, the tallest, which grow with their entire crown in full enjoyment of light and space, overtopping their neighbors; codominant, which, although of same height, have their crowns narrowed in, but still unimpeded at the top; while others (oppressed) are pressed in from sides and top, and finally are entirely suppressed and die. This relationship of individuals changes from time to time, some of the codominant gradually falling into the class of oppressed, aud of these a large number become suppressed. Occasionally a codominant becomes dominant, or an oppressed one, by liberation of its oppressors, through storms or accident, finds opportunity to push forward and make up for lost time. Thus, a natural growth may start with a hundred thonsand seedlings per acre; by the twentieth year these will have beeu reducel by death to 6,000 , and by the hundredth year hardly 300 may be left, the rest having succumbed under the shade of the survivors.

It is owing to these changes that in aualyzing tree growth we find great, often unaccountable, variation in the rate of growth of even the same individual, and hence, in order to recognize the arerage, a very large number must be measured to even out the deviations from the law.

For the same reason it is desirable to classify the trees as indicated above and ascertain the rate of growth of trees grown under differeut light conditions. To be sure trees behave also somewhat differently under varying conditions of soil, climate, and exposure; hence, a further classification is necessary if it is desired to establish more than the mere general law of progress and also to ascertain the influence of these variable comditions.

In a general way, we find, as in the trees grown in the open, the slow seeding stage followed by a very rapid increase in the annual rate of growth, begiuning with the sixth year and reaching a maximum of 16 inches with the tenth year in dominant trees. With trees which have not enjoyed access to light to the same extent the maximum occurs later; hence, in cordominant trees it is reached, with 13 inches, in the tweutieth year, while the oppressed trees reach their maximum current accretion still later, namely at forty years, with less than 12 inches for the year. As soon as this highest rate is reached decline takes place gradually in all classes, much faster in the dominant trees than in the less-favored ones, which decline in the rate of annual height growth much more slowly.

By the one hundreth year the annual height growth is reduced to from 6 to 7 inches, the dominant trees showing the lower rate, which continues to decline until about the one hundred and sixtieth to one hundred and seventieth year, when all tree classes have come to a rate of about 2 inches, at which they continue to grow, slowly but evenly, for another century.

This persistence of the height growth, which makes old trees tower 40 to 50 feet above their broad-leafed neighbors, influences also the shape of the crown, Which does not thatten, as is the case with most pines. Very old trees, four hundred years and over, rarely exceed a height of 160 feet, although exceptional individuals have been found of the unusual height of 200 feet.

It will thus appear that the principal height growth is made during the first century, the second century noting a persistent but only slow progress.

If we take the average of all the yearly accretions at any one year of the life of the tree (the average amual accretion at that year), the intuences which have been at work during the whole lifetime are of course reflected; therefore, since the juvenile period shows a slow growth, the average accretion attains its maximum much later. This culmination of the average ammal accretion takes place much earlier in the more favored tree classes, namely, at about the twentieth to fortieth year, after that declining, while in the oppressed it does not occur until the seventieth year, maintaining itself afterwards for a long period.

This difference would also appear if we compared better and poorer sites. In other words, when the annual rate of growth is slow it remains more persistent than when it is rapid. The persistence noted in oppressed trees indicates also the shade endurance of the species. From Table IV, which gives the accretions from decade to decade (periodic accretion), we see the capacity of the species to thrive in spite of the shade, even in later stages of its life. Even after ninety years of oppression, when the tree is given opportunity by increase of light, it is still able
to mako is good an annual height growth as its more favored neighbors, and can continue the same to the second century. From the table of heights at various ages it is learned that the sucerss in the juvenile stages after all tells on the total height growth.

I'ABLE IV.-I'riodic height growth, by decades, of dominant, codominant, and oppressed pine.

	Wermars.																							
Clasa,	1	$\underline{\square}$	3	4	is	6	7	\checkmark		10	11	12	18	14	17	16	1:	Is	19	20 -1	:2	23	21	0
Itumant	F	12.	F 13	${ }_{13} \mathrm{~F}$	${ }_{11} \mathrm{~F}$	1% 10	FH 8 8	$7 \% 1$ 7	re. 6	${ }_{1}$	Ft, 5	r. 5	$\stackrel{H}{+1}$	r.t. 3	F\% 3 3	Ft	$\underset{3}{ }$	$\underset{3}{\mathrm{Ft}}$	${ }^{\mathrm{F}} \mathrm{s}$	$\begin{array}{cc} \mathrm{F}_{3} & \mathrm{~F}_{3} \\ \vdots \end{array}$				Ft .
1-inlomunat	1	131	111	10	1:2	${ }^{1}$	8	8	7	${ }_{6}^{6}$	5	5	4	4	3	3	$2{ }^{2}$	-	2	$\cdots 2$	2	2	3	1
	1	8	7	8	9	9	8	*	6	6	8	5	5	4	4	4	3	3	3					

Effect of composition of forest upon height grorth.
The height development of White I'ine seems to progress more rapidly when it grows mixed with other species. A striking instance showing how the height growth of White Pine is benelited by the presence of other species is miven in the diagram (fig. 2), which represents the height growth of White Pine taken from two sites (1 and b) in Presque Isle County, Mich. The sites were about $\overline{5}$ or 6 miles distant from each other.

F゙uc: 2.-Diagran showing hedeht mrowth of White Pine in Presque Isle Connty, Mich.: Site a, in mixed growth; wite b, in pure growth. The soil and the moisture conditions on both sites were apparently identical (fresh sand), as were the total number of trees to the acre (the sample area on site a contained 181 trees and that on site $b 189$ trees) and the ade of the trees and their distribution over the ground (density of crown cover). The only difference found between the sample areas staked oft on both sites was the composition of the forest. Site a consisted of a mixed growth of Norway and White Pine, while site b represented practically a pure growth of White Pine save a few small Hemlock and an oceasioual Norway Pine. The diagram shows that the White Pine on site " was exceedingly stimulated in its height growth by the presence of the Norway Pine.

The associated species entering into the struggle for light with the White Pine naturally affect the progress of the height growth of the pine. The effects of the associated species upon the height growth of White Pine and the period of their inflnence depend upon the capacity of the associated species to grow in height as well as upon the time when the associated species are either introduced among the pine or received it under their shelter. In case, for instance, hardwoods accompany White Pine from the very start the intluence of the hardwood upon the height growth of the pine will last only for the first sixty or seventy years, that is, up to the age at which most of the hardwoods practically reach their maximum height. In case the Norway line or the Iemlock starts simultaneously with the White Pine, the height growth of the White Pine will be stimulated to a considerably later age, becanse the Hemlock or Norway Pine continues to grow in height at a similar rate for a longer time. When the White Pine happens to start on ground already covered with other species in such a mamer as not to be interfered with in its growth the associated species, if capable of growing in height to a later age, will stimulate the height growth of the White Pine for a considerably longer period. All this is clearly demonstrated in the accompanying diagram (fig. 3), represeuting the height growth of White Pine taken from thee sites (f, k, and i) of inlentically the sane conditions except as to composition of the forest and the difference in the ages between the pine and associated species. All three sites had a well-drained clayey loan moderlaid by a laminated shale of indefinte depth. The White Pine on site f (Clearfield County, Pa.) was mixed with Hemlock of a large size; the pine on this site had started
among the Hemlock, which stimulated the height growth of the pine during all its lifetime. The White Pine on site k (Jefferson Comby, I'in) was mixed with Hemlock of a small mmerchantable size. The pine here had started simultaneously with the IIemlock, which stimulated the height growth of the pine only for a certain period, after which the Hemlock, being overtopped by the pine, was out of the struggle and left in the capacity of an underwood. The White line on site i, which merged into site k, was mixed with hardwoods, which stimulated the height growth of the pine for the first sixty years, when the hardwoods reached their maximum height and then withdrew from the competition, leaving the pine to increase the height on its own account.

The influence of climate and soil on height growth will further appear from a study of the tables in the Appendix. This influence on height growth is not very great, if we confine our inquiry to regions of best development, the difference rarely exceeding from 5 to 10 per cent.

Fig. 3.-Diagram showing height growth of White Pine in forest of varying componition in Peunsylvania: Site f, Cleartield County; sites k and i, Jetterson Counts.

Etfect of locality upon height grocth.

Comparing the growth in different localities, it appears that the trees from Pennsylvania started at a lower rate than those in all other localities, but after the twentieth to the twenty-fifth year they surpass all others. If this can be accepted as correct, the deduction of the development in early youth from old trees being subject to errors, it may be explained by the fact that these trees grew in mixture with Hemlock and were kept back by the shade of their neighbors, but when they had outgrown these they felt the stimulus exerted by them.

The trees from Maine and Wisconsin, also starting more vigorously than those from Michigan, decline and sink below the Michigan trees between the eightieth and ninetieth year, which may for Wisconsin be possibly explained by the retardiug inthence of winds after the pines have outgrown the hardwoods, while in Maine the poorer soil may acconnt for it. Michigan, with its tempered lake climate, presents a most regular and persistent height curve, coming nearest to the average of all locations.

In codominant and oppressed trees these differences do not come to an expression, but since the classification is somewhat doubtful and variations within wide ranges are possible, these data are hardly to be used for comparison as to locality effects.

20233-No. 22-3

GROWTH IN THICKNESS.

The growth in thickness, or diameter aceretion, althongh remarkably regular in this species, is much more variable, but it is also more persistent, than the height growth, as will appear from the following comparisons: Thus, in five groups of trees from different sites, ninety-four to one hundred and nine years old, the heights differ only by a little over's per cent, varying from 91 to onst feet, while the diameters differed by almost .on per cent, varying from if to $\because 3.7$ inches. Again the persistence is illustrated by the comparison of the height growth of five groups from tro hundred and seveu to two hundred and thirtr-three years old, which showed an increase over the group just mentioned of somewhat over 20 per cent, while the diameters were by 30 per ceut greater; and if the poorest gronps of the two sets had been compared the difference would have heen still more striking, namely, 1.5 per cent for the height as against 37 per cent for the diameters.

This is in part explained by the fact that, where the seedling springs up in the virgin forest, it is very apt to be suppressed for a longer or shorter period by the large mother trees and the host of deciduous and other forms which make up the forest cover. While the height growth is by this shade also impeded, this is not so to the same degree as the diameter, which is a direct function of the amount of foliage that is at work.

The sapling may thus remain a slender pole for many years, and not until it is able to lift its head above its crowding neighbors, or until light has been admitted to its branches, dows it hegin to expand its crown and consequently thicken its stem.

In managed forests, or in tracts where from any cause crowding has been prevented, the growth in diameter progresses somewhat more in the manner of the height growth, namely, slowly at first, then rapidly until the maximum is attained, when a slowly decreasing rate sets in. In the seedling the diameter growth is exceedingly small, very rapid in the young trees, when the anuual ring is often one-sixth to one-half of an inch wide, but decreases with the slower rate of height growth. When the tree is sixty to eighty years old, the yearly ring is commonly not more than one-twelfth of an inch wide; it then gradually sinks to one fifteenth of an iuch, which is then maintained throughont life, rarely falling to one twenty-tifth of an inch.

The average annual accretion reaches its maximum about the fiftieth to the sistieth year with somewhat over one-fifth of an inch on the diameter of dominant trees, which rate is nearly maintained to the one hundred and fiftieth year.

Thrilty trees at forty years of age grown in the forest, measure from 6 to 9 inches in diameter breast high; at fifty years, from 10 to 12 inches; at eighty years, 15 to 17 inches; and they reach a diameter of 18 to 20 inches by the time they are a hundred years old.

To attain a diameter of 30 to 40 inches, which represents the best merchantable material of days now almost passed, more than two hundred years have been required, while trees four hundred to four hundred and fifty sears old attain diameters of 50 to 60 inches and over. Trees of 40 inches diameter at three hundred years were by no means rare.

To be sure, there are exceptional individuals which exceed these dimensions, and variation in the rate of growth, due to soil, climate, and surroming conditions, are naturally as frequent as in height growth.

The progress of diameter development of dominant, codominant, and oppressed tree classes, and in different localities, is exhibited in the tables and diagrams in the Appendix.

The usual method is to determine the diameters at $4 \frac{1}{2}$ feet from the ground (breast high), not only becanse when measuring standing trees the measurement is most conveniently made at this height, but because the lower diameters show much more irregularity. There is also more rood deposited near the base at and above the root collar, giving rise to the socalled root swelling (butt swelling, undoultedly a provision to strengthen the stability of the tree. Unfortunately for the investigations here recorded, it was not practicable to have the trees cut and measured at breast luifht, since the measurements were mate on trees felled in regular lumbering operations, exposing only the cross sections at the height of the stump, mostly $2 \frac{2}{2}$ feet above ground, and at log lengths. Even at that height (2d feet above ground), a difference in the progress of diameter growth from that on ligher cross sections is noticeable and becomes especially pronounced in later life, as is shown in the curves representing the progress of diameter growth on cross sections at various heights.

The diameters here given for the lowest section are, therefore, somewhat larger than those usually employed, namely, breast high, especially in later years.

The higher sections exhbit not only a regular course, but an entirely similar one, from cross section to cross section. There is no reason to assume that the course at breast height would not follow the same law; therefore there can be constructed a curve for this height similar to the curves of higher sections, using for guide points the data obtained from a series of measurements made to establish the yield of pine in which trees were measured at breast height (compiled in tables in the Appendix). This has been done on the diagram in the Appendix, which shows the diameter development of different cross sections for dominant trees. From this can be read the following average dimensions as approximatiug the diameters of each decade, leaving out the uncertain juvenile stage:

Diameter, breast high, of White Pine (averages approximated), in inches.

That these figures may be considerably exceeded (even by 50 to 60 per cent) under favorable conditions will appear from the various tables of measurements in the Appendix. Especially is this the case in the second-growth groves of pine.

As will be readily seen in the curves after the juvenile stage, during which the diameter groms very slowly, an acceleration in the rate takes place, which soon reaches a maximum, continuing at that for a short time, and theu slowly and persistently declining from about 3 inches per decade between forty and fifty years to $1 \frac{1}{4}$ inches at one hundred years, and half that amount at two hundred years.
detall meastorements of annual gain in chrctimference.
An interesting set of most accurate observations have been made and reported by Mr. Nathaniel Morton, of Plymouth, Mass., exhibiting 38 young trees of White Pine, which had sprung up among oak and other hardwoods, mixed with White Pine and a fer Pitch Pine in an old, rather-neglected piece of woods, and which were measured every year from 1891 up to 1898. The trees stand rather open. The age varied from twenty-eight to forty-two years, most trees being between thirty and thirty-six years old and their average age thirty-six years in 1891.

In 1891 the average cross section 3 feet from ground was 131 square inches; in 1898, 197 square inches; the growth 66 square inches, or abont 9 square inches per year, one tree making 15 square inches per year. This growth corresponds to a growth in circumference of about 1.3 inches per year, or a growth in diameter of four-tenths of an inch per year.

The detail measurements are giveu in the following table:
Table V.- Innual gain in circumference of White Pine trees in Massachusetts.

Number of tree.	Circumference in 1890.	Gain, in quarter inches.							Number of tree.		Circum. ference in 1800 .	Gain, in quarter inchen.						Total in six years.	
		1591	1592	18931	189 ± 1	15951	1596				1691	1592	1593	1594	1593	1896			
1	Tnches.	3	5	5	5	4	5	97	27			Inclies. 314	4	6	6	$\overline{7}$	7	8	38
2	26	3	6	5	6	4	5	29	25		47^{-}	5	7	7	6	7	6	38	
3	$\bigcirc 6$	4	5	6	6	5	6	32	29		42	4	\pm	6	5	5	5	29	
4	50	1	1	2	2	2	2	10	30		$40 \frac{1}{2}$	4	5	6	5	5	5	30	
5	28	1	3	4	3	1	3	15	31		57	0	2	5	5	4	4	20	
6	383	0	1	3	3	2	1	10	32		411	5	4	6	6	\pm	5	30	
7	44	1	3	4	4	4	2	18	33		$42 \frac{1}{2}$	1	5	5	\downarrow	5	5	25	
8	27	2	3	4	51	4	5	23	31		$44 \frac{1}{4}$	3	5	6	5	4	4	27	
9	35	3	3	3	6.	3	4	293	35		465	4	4	6	4	5	5	28	
10	404	2	4	6	6	3	4	25	36		4 ± 2	3	3	\pm	4	3	3	21	
11	$3+\frac{1}{2}$	1	2	4	3	3	4	17	37		47°	\pm	\downarrow	7	5	4	5	$\bigcirc 9$	
12	22	3	2	4	5	3	5	22	38		363	2	4	6	3	4	+	23	
13	443	1	4	4	3	2	2	16											
14	3313	4	4	7	5	5	4	29		Total.		103	139	190	181	137	163	938	
1.	$24 \frac{1}{2}$	4	4	5	7.	1	4	28											
16	$26 \frac{1}{5}$	5	5	6	6	5.	4	31		Total in inches.		25.	137	41.	4 j 3	303	4.3	$\because 346$	
17	$28 \frac{1}{3}$	1	3	3	4	3	3	17				$=\square$							
1.	39	1	\because	4	3	3	3	16		Percentage of									
19	48.2	1	1	4	$\stackrel{3}{3}$	3	3	13		grain as cous-									
20	$50 \frac{1}{2}$	2	4	5	5	4	6	26		pared rith									
21	493	5	6	7	6	7	\checkmark	39		grain of 1891...		100	135	184	176	15\%	163		
23	49	4	2	3	6	5	4	24											
23	$35 \frac{1}{3}$	3	4	5	6	6	5	23		Average grin									
24	33	4	3	5	5	5	6	23		per tree (in									
25	51	2 ,	3	6	5	5	?	28		juches)....		***	8 8ัठ	1 1解	+38	183	173	
26	371	3	3	6	i	,	5	$\stackrel{7}{-1}$											

ABEA ACCHEAJWN.
While the diameter ancretion necreases in rate continuonsly after the juvenile stage, the growth of the areas or layer of wood corresponding to the dianeter increments follows by no means the same connse.

After the invenile stare, which is determined by the formation of a definite crown, and when the diameter has attained at least 6 inches the cross section area begins to increase in arithmetical progression; a constantly increasing rate prevails until a maximum is attained, which comes between the sixtieth and one hundred and twentieth year, and then continues remarkably uniform for a long period. So decline is noticeable until after the second century has begnn. In codominant and oppressed trees the area as well as the diameter accretion move somewhat differently, the maximum rate coming later and lasting a shorter time, the decline foliowing soon after the แนเximum.

> FOMM DH:VKLOPMEXT, OR TAPER.

Since size of crown and light conditions regulate the amount of diameter growth, it is evident that trees with well-developed free crowns form more wool than those crowded, the dominant more than the oppressed, and those on lawns more than those in the dense forest. Moreover, in these latter the wood is differently disposed along the trunk than in the former. Fot only do trees grown in the open throw their energy into branch growth, but the accretion on the bole is laid on in layers, increasing in width from top to base. The result is a more rapid taper than in forestgrown trees, in which each annual layer is wider at the top than at tho base of the tree, producing thereby a more cylindrical form.

The following table exhibits in the measurements of six trees this variation in the width of the same annual rings at different heights, and also in general the mode of diameter growth in these trees. More elaborate tables, showing the diameter growth of White I'ine at rarious heights from the ground for dominant, codominant, and oppressed trees in various parts of its range, together with diagrams, will be found in the Appendix:
liameter grouth of forept-groun trees at rarious heights from ground.

From such tabulations the taper, factor of shape, or form factor, may be derived (see Tables II and 1 in Appendix, which denotes the deviation of the shape of the tree from a cylinder. This factor varies between 0.40 for the older trees and larger diameters to 0.50 for younger and
more slender trees, a factor of 0.45 being abont the average for centenarians-that means the volume of a hmolred-year-old tree is forty-five one-hundredths of a cylinder of the diameter, measured at breast height and the height of the tree.

This factor varies, of course, according to the ratio between diameter and height, and since in codominant and oppressel trees this ratio is a different one from that of dominant trees, as we have seen, their factor of shape is also different from that for dominant trees, that is, their taper differs, the former being more cylindrical than the latter. This will appear from a comparison of the taper of trees as recorded in Table II of the Appendix, in which small diameters with comparatively long shafts indicate the codominant and suppressed trees. Those with short lengths and large diameters are trees grown in open stand.

From Table II, Appendix, we also see that the taper varies within wide limits from less than 1 inch to 5 inches for every 16 feet, althongh in the majority of cases it lies betreen 2 and 3 inches. The tops taper, to be sure, much faster than the middle portion; and, again, in older trees especially, the butt logs much faster than the upper portions, which are outside of the influence of the root swelling.

In young trees which make three \log lengths of 16 feet, it will be safe to allow 1.2 inches for the first two logs and 2 inches for the last one as the average taper. In medium sized trees, making four to five \log lengths, an allowance of 2 inches on the whole will fairly represent the average taper, or one-eighth of an inch for every foot in length. In old trees which furnish five and six or more logs, an allowance of 4 to 5 and even 7 to 8 inches must be made for the first \log and 3 to 4 inches for the two top logs, while the middle jortions show a more regular and less variable taper of about 2 inches, or one-eighth of an inch per foot.

GROWTH IN VOLUME.

During the juvenile stages the volume growth of the White Pine, as of most trees, is insig. nificant, a dominant tree of twenty years measuring not more than 0.5 cubic foot, which means an average accretion of 0.025 cubic foot per sear. For the third decade the amount of wood formed is over three times what it was during the first two decades, and at fifty years the bole of a dominant tree may contain from 10 to $1 t$ cubic feet and over, the average amual accretion having come up to one-fourth of a cubic foot, or ten times what it was at twenty years.

Now, after the rapid height-growth period, with fully developed crowns, a rapid rate of volume growth sets in, increasing with each year, in arithmetical progression, until at sixty to seventy years the curreut accretion has become 1 cubic foot and over, and at one hundred years as much as $1 \frac{1}{2}$ cubic feet is attained. After the one hundred and trenty-fifth year the increase in the rate abates, yet before the second century it has become 2 cubic feet, and remains then practically stationary for another century at least.

Some of the oldest trees (four hundred and fifty years and over) measured contained 600 to 800 cubic feet of wood in the stem alone, the largest, with 855 cubic feet, indicating an average aunual accretion for this long life of over 1.8 cubic feet.

While the current annual accretion after the fifticth year is rapidly increasing, the average anuual accretion, affected by the earlier stages of slow growth, increases maturally more slowly. For the first one hundred years the average is about tro-thirds to three-fourths of a cubic foot for dominant pine, making the volume about 70 cubic feet. It increases to 1 cubic foot at one hundred and fifty years and 17 cubic feet at two hundred years, aud, as shown above, gaius gradually until old age.

The progress in volume growth naturally varies under dilferent soil conditions and with tree classes. In a general way, the oppressed trees and those on poorer sites do not begin the period of rapid volume growth as early as the dominant classes, but just as in the height growth, which is similarly delayed, the rate when once at its maximum persists with great uniformity until about the one hundred and forticth to one haudred and sixtioth year, when a decrease becomes noticeable.

The tables and diagrams in the Appendix show, by figures and graphically, the progress of diameter, height, and volume aceretion for dominant, codominant, and oppressed trees throughout the range of the species. Comparing the growth from the several localities represented, a striking
dilierence is not observed. It would appear that in similar soils the White line grows at about the same rate, with similar persistence, and to the same dimensions in all parts of its range.

Iu Europe, too, as appears from a table on page 69, its growth as well as its general behavior, at least in the forests of Germany, is fully as favorable as at home.

Besides differences as result of soils, an influence of the composition of the forest is noticeable. White l'ine mixed with Hemlock (Pennsylvania stations) shows a more rapid growth for the first one humbed aml thirty years, while among hardwoods (Wisconsin stations) the nest one hundred years seem to produce the thriftiest growth. This is perhaps explained by the fact that in the latter mixture the White Pine has after the dirst one hundred years its entire crown above the shorter hardwoods, and hence is in full enjoyment of light.

The so-called "second growth" pine develops somewhat difierently, because, as a rule, it does not start in a dense growth, eujoying the light conditions of the open stand, the single individuals make a more rapid volume growth, until they have closed up, and forest conditions prevail. This is fully exhibited in the measurements of young groves in Massachusetts and New Hampshire, tabulated in the Appendix.

In managed woods, where the number of trees allowed to grow per acre is under control, the folnme accretion may also be accelerated; the growth energy of the site being then exerted on ferrer individuals, each one deposits larger amomuts. What this increase can be may be inferred from the table on page 69 , which records the growth of White Pine in Germany.

> CCBIC CONTESTS OF TREES.

Having ascertained by a large number of measurements the diameters, heights, and factors of shape possessed by trees under all sorts of conditions, the cubic contents of such trees can be calculated and recorded in a table for further use, by reference, in measuring contents of trees. Such table for White Pine of difterent diameters and heights will be found in the Appendix, from which the contents in cubic feet of the bole of a tree whose diameter at breast height has been measured and whose height has been estimated or measured can at once be read ofi.

> LCMBER CONTENTS OF THELS.

The total cubic contents, being based on mathematical considerations alone, is the only rational measure of the volume. By stating contents in board measure we introduce at once a number of uncertain factors, which are variable in the practice, such as the lowest-size diameter to which logs are taken; the size of the lumber that is cut, from one-half-inch boards to square beams; the saw used, which determines the loss in kerf, and the skill of the sawyer, who can waste a large proportion in slabs and inconsiderate use of the logs. ${ }^{1}$

In these losses there is no allowance made for crooks or rot, which would reduce the results still further, so that hardly one-third of the total volume of the tree would seem to reappear in the shape of lamber, provided the log scales used are correct, which anticipate a loss of 44 per rent (Scribner) to 50 per cent (Doyle) in suwdust, slabs, and edgings for 14 -inch logs, the average size of logs in the northern pineries.

As a matter of fact, in good modern mill practice, not only does no such waste oceur as is indicated in these ${ }^{\text {log seales, }}$, even if all \log s were cut into inch boards, but in aldition small logs are worked into dimension material 22 by $\pm, 2$ by 6,4 by 4 , etc., in which the loss is reduced to a minimum; thus an 8 -inch log may be cut to 6 by 6 inches. It then would make, if 16 feet loug, not 16 to 25 feet 13. M., but 48 feet. Since the bulk of our pine material is now obtained from small logs (over one-half below $1 \pm$ inches diameter), these differeuces are of considerable practical importance.

[^22]Based upon a proper consideration of these practices, it will appear that an average allorance of 30 per cent in saw waste on the volume of \log of all sizes is more than ample, and that the lumber yield given in the following table and computed on this assumption of waste, although being for same sizes even 100 per cent above the \log scales in use, remains still below the practically obtainable results:

Lumber contents in 1ir-foot loys.

Diameter at small end.	Judson's favorite.	Doyle rule.	Scribuer rule.	Computed for 30 jer cent riaste.	Waste.	
					$\begin{gathered} \text { By serily. } \\ \text { ner. } \end{gathered}$	Is Dofle.
Inches.	Feet IS. M.	Feet IS M.	Feet B. M.	Feet IT. M.	ler eesut.	Indrcent.
8	22	16	25	$\frac{32 \text { to } 48}{46}$	61	76
10	87	36	49	$\frac{60 \text { to } 85}{72}$	50	65
12	64	64	79	$\frac{100 ~ t o ~}{105}$	47	5.
14	95	100	114	143	44	51
16	14.	144	159	187	41	46
18	197	109	213	$\cdots 37$	37	42
20	248	$\underline{30}$	280	293	33	34
22	324	304	334	336	34	36
24	393	401	404	+29)	33	33
26	476	484	500	492	30	32
28	36^{2}	576	$5{ }^{\circ}$	564	29	30

In estimating the cut of lumber that may be obtained from a given area, there must, to be sure, an allowance be made in addition for menserviceable, crooked, knotty, rotteu material, which may reach from 15 to 20 per cent, and, furthermore, an allowance for the loggers' risk in breakages and other losses, which may be figured at 10 to 12 per cent.

To give, however, an approximate idea of the lumber contents of trees of various diameters aud heights, these have been calculated for a number of trees and recorded in Table 1I, p. 87, in the Appendix.

From these measurements, which are based upon Doyle's \log scale, the following tabulation is made, showing approximately the increase of lumber contents with diameter growth and age. From this it would appear that the greatest per cent of increase occurs during the period from the fortieth to seventieth year, while in the forticth year the average annual growth in voinme has been about one-third of a cubic foot, in the seventieth year it is nearly 2 cubic feet, sr six times as great, and by the one hundredth year this rate is doubled, centenarians containing about 400 feet B. M. During the next century the trees make twice as much lumber wood, for now all wood deposited makes lumber:

Increase ill lumber contents with size.

Diameter breast high.	İeight.	Approximate age.	Lumber.	A rerage annual ac cretion.	Periodic ac. cretion.	Per cent of jucrease per year during preceding period.
Inches. 7 to 9	Feet. $50 \uparrow 070$	Fears. 40	Fect B. M. 14	Cubicfect. 0. 33	Feet B. M.	Percent.
10 to 12	50 to 80	55	50	. 9	36	17
13 to 15	55 to 115	70	130	1.8	80	17
16 to 18	75 to 125	85	260	3	130	-
19 to 21	80 to 135	110	440	4	180	
2 c to 24	8.5 to 140	140	650	4.6	210	1.7
25 to 27	85 to 150	185	940	5.1	3310	1
28 to 30	85 to 150	230	1,200	3	20	. 6

CONDITIONS OE IEEVELOPMENT.
idemands upon clinate and soil.
The wide field of its natural distribution and the thriftiness with which the White line develops in climates outside of its native home show that it is quite adaptive as far as climatic conditions are concerned. Yet, from the manner of its development within the climatic range of its
ocrurrence, its use for forestal purposes would seem to be circumseribed by eonditions of humid and conl atmospheres, sheh as ane found in northern latiturles and high altitudes. Its distribution is manifestly more debembent on hmmidy than on temperature, or rather, on a low transpiration factor, that is, such a relation of heat and moisture, both at the foot and at the top, that the thin foliage can realily perform its functions; hence, its failure in cultivation in the trans. Missouri States, the contraction of its southern field to the high altitudes, and its best development in quantity if not in quality withim the intluence of the Great Lakes and to the northward and eastward.

While adapting itself readily to almost any variety of soil, the White Pine manifestly prefers one with a fair admixture of sand, insuring a moderately rapid drainage. The pine tribe in general occupies the saudy soils, to which it is better adapted than most of the deciduous tree species; but the White l'ine is capable of disputing possession with its competitors even of the fresh medium-heavy loam and clay soils, makiug here the best individual growth.

Its shallow root system, in which it resembles, as in many other respects, the spruces, permits it to accompany the latter to the thinner soils of the rocky slopes in the Adirondacks and Ner England States, althongh here its development is naturally less thrifty. Its growth on the rocky hills of Massachusetts within the hardwoods of that region is, however, at least for the first sixty to eighty years not much less thrity than in the better soils in the valleys. It does not shun even the wetter and occasionally overlowed and swampy ground, and is here found, together with the Fir, Arborvitix, and even Tamarack; yet, on the dry, light sandy, coarse, and gravelly soil the Red Pine and Jack Pine seem to be able to outdo it.

ASSOCIATED SIPECIES.
The White Pine is less gregarious than any other pines of the Eastern United States. Although it occurs in pure growths as true pinery on the red clays and moister gravels, it more frequently is an admixture in the hardwoods, sharing with them the compacter, hearier soils from which the other pines are excluded.

Spruce, Hemlock, and Arborvitic (Cedar) are most frequent concomitants of the White Pine in Canada; various species of Birch and Maple with Beech and Spruce form the composition of the forest in the Adirondacks, overtorered by the pines, and there is hardly any species of the Northern Atlantic forest which in one or the other region of its distribution may not be found in association with the White Pine.

Owing to the fact that the hardwools as a rule occupy the better soils, the best individual development of the White Pine is also fomd in these mixtures. In the pinery of the northwest Led Pine and Jack l'ine are the associates, while the Pitch Pine (P. rigida), and, in the southern field, the Shortleaf Pine (l. echinata) are not unfrequently found in its company.

The samples of "acre yields" following will serve to illustrate more in detail the manner of distribution, the associations, and the capacity of White Pine in the native forests in different parts of its range. More extensive tabulation will be found in the Appendix.

Table VI.- Icre yied of White l'ine on sites in Wisconsin, Michigan, I'ensylhamia, and Maine.
WISCONSIN
SITE a: Washburn County

Average annual accretion: White Pine, 75 cubic feet. 452 feet B II.

MICHIGAN.
Site d: Montmorence Comety.

Sample area, 1 acre. Age of pine, 250 to 270 5ears. Number of trees, 113: White Piue, 54 per cent: Hed Pine, 35 per cent; Memlock, 11 per cent. Locality damaged by tire twelve years before; 15 per cent dead rees aud 20 per cent injured hy fre.
White Pine roised with lied Pine and inter: mixed with Hemlock. Soil, freslb. loose samil of agray color, turning brown and red underneath, with a surface corer of brakes, checker. berry. The subsoil is a brown sand, sometimes loamy and in spots clayey. Density of crown cover, 0.5 .

Total yich: 80.101 feet B. M. of which White line 68 per cent.
Folume of Led Pine: J3oles, 5,250 cubic fert: merchanable timber, 25,200 feet $1 k$, M
Average annual accrefion: Whiteline, 59 cubib feret.

MAINE.
SITE 1 : Vork County.

Description of site.

Samplu area, one-fourth nere. A de of pine, sut to Gut years. Number of trees: Slature

 27 jer cent: opuressed, 24 per cent; sup. fressed, 31 pererot.
Whote l'ine, with ocrasional Forway l'ise, on a slope to north 5^{2} to 102 . scanty nmererowth of Hemlock, Oak, and Fir. soil, a sandy loam, with little lebbles in it, of a brown colos, daces and fresh, with black soil and moll of 3 inches on top and leafs surtace covir; clas probably s to 12 fect down. Deusity ol črown cower, 0.8 .

The capacity of the White Pine to keepits place in mixture with the hardwoods is probably mainly due to its shade endurance. In this respect it excels all pines with which we are acquainted. Pines are, as a rule, rather light-needing species, and are usually at a disadvantage in the mixed forest, unless compensating inthences are in their favor. The White Pine is an exception. As a consequence, it is capable of forming dense thickets, supporting a larger number of trees per acre and prodncing a larger amount of material than the more light-needing species. Also, as a consequence of ats shade endurance, it does not clean itself of its branches as readily as other pines; not only do the lower branches remain green for a long period in spite of the shade of the superior tiers of foliage, but they persist after they are dead for many years.

As this shade endurance is, however, only relative, and as many of the associates possess it in greater degree, the additional advantage of rapid height growth alone saves the pine from being after all suppressed by its shadier companions. Iet, these succeed in lieeping the young progeny of the pine subdued, and hence the observation that in the dense virgin forest of hardwoods the reproduction of White Pine is scanty.

The difficulty of cleaning itself of dead branches seems to be overcome by association with shadier compauious, for, as a rule, the best quality, cleaner boles, aud absence of black knots, which denotes eariier cleaning, are found in such association. Yet, in these mixtures the trees are apt to be shorter bodied, since the hardwood companions are shorter bodied and the stimulus to height growth ceases sooner. In the pinery proper the stimulus to height growth exerted by the neighbors continues longer; hence, longer shafts are found here, other conditions being the same, although the boles are less clean and less free of knots.

Its shade endurance is decidedly less than that of the Spruce, which maintains itself, but not thriving under the dense shade of Maple, Birch, and Beech, where White Pine seedlings and saplings are not to be found, although they sustain perfectly the shade of oaks. To be sure, this shade eudurance is to some extent dependent on moisture conditions of soil, being less on the drier than on the fresher soils.

This relatively high shade endurauce permits ready natural reproduction of the pine, especially where the hardwoods have been thimed out to some extent, or where, after clearing, all species start their race for reoccupation of the soil with equal chance. The pine then appears in the young hardwood growth in single individuals at first, somewhat behind in height, but finally, when it euters upon the period of rapid height growth, it outgrows its competitors and is assured of its place.

More frequently does the reproduction take place in groups, smaller or larger, the many areas of "second growth" of several acres in extent, which are found thronghont the hardwood coppice of Massachusetts, showing that teudency toward gregariousuess so characteristic of the conifers. A further discussion of the conditions of reproduction and the yield occurs in the portion devoted to the discussion of forest management and of forest yield.

In these natural reproductions the trees grow close together, that is, close for unaided natural reproduction, as is apparent from the following table of acce yields of young growth taken at various places in New England:

Table VII.-dere yield of young pine grores.

T'ABEL: VII.-Acre yield of young pine grores-Continued.

It would be possible to increase the number of trees that could grow per acre and develop satisfactorily by attention of the forester, as will appear from the statements regarding the White Pine forest plantations in Germany, where pure White Pine growths showed at sisty eight years still over six hundred and seventy trees, and in another place at eighty-two Jears seven hundred and twenty-three trees, and at one hundred and four years over two hundred and fifty trees per acre. Even in such close stand the crown of living branches remains long, occupying one-third of the bole, and dry branches persist down to over half the length. The stems are straight and cylindrical, in this respect also reminding one of the Norway Spruce, although the tendency to fork seems more frequently developed.

YIELD OF WHITE PINE.
The rquestion as to the amount of material which the White Pine is capable of producing per acre is difficult to answer. It can not, of course, be dednced from a knowledge of the development of the individual tree, since there remains one factor unknown, namely, the number of trees of difierent classes that can occupy an acre. Nor can the capacity of production, as a rule, be ascertained from the actual production or acre yiek of natural virgin growths, for these usually not only do not occur in pure growths, but also are usually not developed under most advantageous conditions, and do not, therefore, represent the possible or normal yield which conld be secured. Only by selecting smaller, seemingly normally and favorably developed groups in the forest at different ages and in various localities and measuring the same may we arrive at an approximation of what the species is capable of producing by itself.

Snch measurements have not been attempten, but the yield of virgin acres under varying conditions has been ascertained to give at least a forecast of the possibilities, although not representing the normal or possible yield of fully stocked acres of White Pine. In addition we may utilize the results recorded from Germany (page 69) of a mmber of plantations, which have had the adrantage of at least the partial care of forest management.

From these indications, we are justified in the assertion that the White l'ine produces per acre as well as any species with which we are açuainted in onr northeastem woods, and at a rate which is not excelled by any of the lumber trees within its range.

In this respect, again, it approaches the German Spruce, thongh it probably excels this species in persistency, as it does in the dimensions which it can produce. We can, therefore, for the first
hundred years at least, approximate the capacity of our White l'ine by reference to experience tables of the German Spruce.

As with all conifers, the rate of production at first is very slow, not more than 40 to 70 cubic feet in the average per year for the first twenty years. With the better development of crowns and the assertion of individual superiority in the struggle of neighbors, which leads to the establishment of dominant classes, the production iucreases rapidly, and by the fiftieth year, in fully stocked areas, the average rate of 140 to 160 cubic feet per acre may bo attained, so that at that age we may, with five hundred to six hundred trees to the acre, find 7,000 to 8,000 cubic feet of mood stored up in the boles of the trees. The curreut annual accretion, then, may readily be at the rate of 160 to 180 cubic feet, keeping the average annnal accetion of fully stocked acres very nearly to those figures, so that at one hundred years we should find, under favorable conditions, as much as 15,000 cubic feet of wood, of which at least 80,000 to 90,000 feet B. 3 I . is saw material.

The persisteucy of growth seems to continue beyond that age, and the indications are that the decrease of the curreut as well as average accretion per acre during the next century takes place so gradually that at one hundred and fifty years it may still be over 100 cubic feet, and not much below at tro hundred years, when the burden of the acre may be near 20,000 cubic feet, with over 120,000 feet B. M., and double the amount in the oldest growths of two hundred and fifty or more years, which may possibly be the limit of production.

While these figures, which difier very materially from those proposed in the tables by Messes. Pinchot aud Graves, may stand for the better soils, as ideally possible, practically, perhaps, rarely attaiuable, especially in older stands, poorer soil sites will vary from them by from 20 to 40 per cent, so that a yield of 0,000 cubic feet at a hundred years, or 50,000 feet of lumber, would still be quite reasonable to expect on the poorest soils on which White Pine can be satisfactorily grown. On the sandy soils of Wisconsin whole forties are found to average $\mathbf{~} 0,000$ feet per acre of naturally grown unattended forests of one hundred and fifty years of age.

Table VIII summarizes the measurements of sample areas, which are given in detail in the Appendix. It will serve to show what our native woods, without attention, stocked with partly useless trees and in open stand, exhibiting much wastage in unoccupied ground, are capable of producing.

If we assume that the areas might have been stocked with pine alone, that they would have produced at only the same rate as they have under their present conditions, even though the acres had been fully stocked and not in the fractional manner which is indicated by the decimal giving density of cover (all assumptions), and if in connection with the density factor we consider the number of all trees per acre and the percentage which the pine represents, we may, as a mere matter of judgment not fit for tabulation, arrive at an indication as to what the acre might possibly have produced. Such indication of possibility has been attempted in the last column of the table, and has served in the above discussion in connection with all other data presented. This is all that can be done in the absence of the measurements above indicated. These figures are of no direct practical application except to give a general notion of the productivity of White Pine and the variability of yields.

An inspection of the table of yield in Germany, on page 69 , will show that these approximations are not unreasonable. The lumber contents in board feet may be approximated by multiplying these figures by 4 or 5 in the younger growths and by 6 or 7 in the older. Assmming a moderately careful practice of logger aud sawyer, by no means mathematically teuable, the above tentative propositions for normal yields might be even increased.

To assume, as is done by certain authorities, that tables of normal yield could be constructed by using the density indicated by a decimal as a mathematical factor, using that factor as a divisor of the actually measured yield in order to arrive at the normal, is to mistake the value of the density factor. Not only would trees and whole acres have developed very difterently when grown under different density conditions during their life, but the estimate of the density is such a vague and uncertain one, a mere opinion, that even if the greatest care were exercised, its use as a mathematical factor would not be admissible. It is a mere indication of the present condition of the growth, and its meaning at different periods of life is very different in its physiological effects as expressed in volume accretion.
Talble VIII- - icre yield of White l'ine in natural forcat.

禺

It mat be of interest to recorl more especially the data of a small clump of young White Pino sprunis up maturally on an abandoned field of less than threedourths of an acre in extent, sitnated near Famington, N. II., which its owner (Mr. J. D. Lyman, of Exeter) had from time to time thinned out for the last twenty-two years, with a view of accelerating the growth of the trees. Unfortunately, no record of previous couditions and frequency and extent of operations was attainale, but the preseut condition (three or four years ago) is exhibited in the following table:

Intur of a clump of natwrally grown young White l'ine.

This would indicate a yield per acre of about 6,000 cubic feet, from which, with the dimensions attained under careful mill practice, some 36,000 feet of lumber might be cut. To be sure, with such open staud much of this must be knotty, even though the trees were pruned as far as possible.
liy comparison with the meastrements of naturally grown unthimed acres, we find that tro to three times the number of trees of the age indicated in the above table might stand ou an acre and make as much total product (see Massachusetts, site c, which, with 324 trees, produced 6,188 cubic feet); and although a few trees in the thimed grove had reached larger dimensions, the total product of trees over 12 inches in diameter is almost the same, the difference in favor of the thinned part being only 100 cubic feet. From this comparison it would appear that the thinning was too severe to secure the most desirable results. PI. X shows the condition of the grove when the measurements were taken.
sllowance, however, should be made for the amount utilized in thinnings. Whether this inferior material would pay in most cases the cost of its removal is questionable. A very uncertain estimate by the man who performed the thinnings places the amount of wood removed equal to that now stanling, among which is 5,000 shingles.

The following table shows the measurements of one of the largest trees in the grove:

This tree, when felled and cut into waney-edred boards, made lumber to the amonnt of 364 feet.

Fig. 1. A thinned Pine Grove in New Hampshire (Trees 51 Years Old 186 to the Acre

DANGERS AND DISEASES.

The White Pine is subject to a considerable number of destructive influences even when growing spontaneously, but a large proportion of these might be avoided if properly understood and guarded against, since they are in great part due to human agency.

INJURIES BY HUMAN AGENCY.

The subject of forest fires has been so fully discussed that it is unnecessary here to treat it in detail, although the pine forests of the Northeru States have suffered more irreparable injury from this than from all other destructive agencies combined. From the mumerons suggestions that have been made respecting protection from fire and from unnecessary injuries in general, the most important appear to be:
(1) That a well-digested code of laws, capable of prompt enforcement, based upon the recommendation of a nompolitical forest commission, is of primary importance

FIG. *.-Girdled White Pine continuing to grow.
(2) That a correct public sentiment, encouraged by a wider dissemination of information concerning the value of forest products and the time required for their growth, will have more inthence than all other means together in preventing muecessary destruction.

Unlike the Loblolly Pine of the Southern States, or the Red Pine with which it is commonly associated, White Pine has a thin bark during the first thirty to fifty years, which affords but slight protection from fire. Consernently, the species suffers much in young growths from surface fires, which do little or no harm to the thick-barked pines and hardwoods. In the mature trees the growing layer is much better protected, as the bark with age becomes proportionately thicker than that of Red Pine.

Related to the foregoing, and properly placed under the head of injuries to be charged to human responsibility, are wounds occasioned by cattle. A pine forest is less liable to injury from the browsing of cattle than one composed of deciduous trees, and in the Eastern States old pastures commonly grow up to pine, the deciduous species being lept down by the cattle. But in

20233-No. $29-1$
any case, when the growth of timber is the primary object, domestic animals shonld be rigorously excluder, as they are certain to domore or less injury to the growing trees. A pine forest, or a forest of any kind, is no more properly a "rm" for cattle than a field of standing grain, and the damage is likely to be more extensive and less capable of repair in the former than in the latter case.

The White Pine shows considerable recuperative power, which is exhibited in the ready reestablishment of broken leader and the healing of wounds, in which the prolifie resin exudations assist by keeping out water and fungi.

The experiences of Mr. Nathaniel Morton, of Plymouth, Mass., in trimming pines, recorded in The Forester (June, 1898), show the absolute safety of pruning live limbs of 3 to 5 inches and more in diameter, which are covered in a few years by new growth (Pl. XI). An interesting case of pertinacity of life and recuperative power, which at the same time throws light on the muchdebated question of food and water movement in trees, is also reported from the same source, and represented in fig. t.

A young pine in the forest was, tro years ago, not only girdled, but the bark peeled otf for 11 inches all around the tree. The tree has a perfectly healthy appearance, and has contimed to grow in length, although apparently about half as fast as before. The measurements of internodes of this tree during the last six years follow. The diameter growth above the wound has continued, while below the wound it has remained stationary, as will appear from the measurements made two years after the removal of the bark.
Inclies.Circumference near the ground15
Circhunference just below the wound 11
Cirenmforence where hark is stripped 41
Circmmference just above first row of branches. 11
Circhmference abore secoud row of branches. 11

The wound is entirely covered by pitch. The growth just above the wound has a baggy appearance, showing an accumulation of wood deposit, which shows the arrest of the food materials due to the absence of the cambium layer and bark.

It would appear that the roots could either live without the food supply from above (at least for two years), or else that a sufficient amount can pass through the dead wood of the trunk, and at least the water necessary for the elaboration of food materials in the foliage can be supplied through the old wood. The writer inspected this tree, and can vouch for the truthfulness of the description. A similar case with a southern pine (species undetermined) came to his attention, where the tree was older and had grown over twenty years above the wound; but as only a cut was inspected the possibility of a cambial comection of the upper and lower parts was not absolutely excluded, as in the present case.

INJURIES BY STORMS.

Of injuries not within human control may be mentioned, first, those resulting from storms, snow, and ice. The soft texture of the wool and the short-lived branches of the White Pine would naturally suggest its being more liable to injury by storms than are deciduons trees. This, however, is not the case. The angle which the branches make with the trunk admits of their readily bending, and under such it weight it is found that Maples and other hardwood trees break down much more frequently. Mr. M.F. Hoyt, of Manchester, Iowa, states that "a whole summer's noservation among the White Pines of Temessee failed to reveal a single case in which a tree of that species was injured by the wind," attributing the fact to the mechanical disposition and structure of the trmik and branches. In this respect, then, the White Pine stands at a decided adrantage as compred with many deciduous trees with which it is maturally associated.

Like the shallow-rooted Spmee the White l'ine is liable to be uprooted and thrown by storms, althomghto at less degree.

While, however, the merhanical effects of the wind and of stoms of snow and ice are not sufficient to require sperial consideration, the ingions consequences of drying wimds are such as

to become an important factor in determining the limits of the artincial cultivation of this species. At the time of planting, deciduous trees are not in leaf, and accordingly there is but little evaporation of water, while the leaf surface of conifers is exposed then as much as ever to the drying effects of the atmosphere, often resulting in their death before they are fully established in the soil. It is for this reason and becanse of the general lack of a sufficient amount of atmospheric moisture that comparatively slight success has atteuded the cultivation of the White Pine on the plains west of the Mississippi. The raw winds from the Atlantic again have been fonnd to be much more injurious to this species than to the Pitch Pine (Pimus rigira), and the latter is therefore decidedly preferable for planting in the immediate vicinity of the coast.

DISEASES.

EFFECT OF HEAT AND DROUGHT.

In Germany, plantations of White Pine thirty-five to forty years old have suffered much injury from a disease which appears to be occasioned by unusual heat and drought, and which was particularly severe after the hot, dry summer of 1876. ${ }^{\text { }}$ The disease manifests itself externally by dried-up patches on the trunks, the spots being largest 3 to 6 feet from the ground, gradually runuing out above and below this, and often reaching a height of 15 to 18 feet. The spots may be only an inch or two wide, but frequently the bark is dead nearly around the entire trunk. As a rule, these dead spots are on the south and west sides of the tree. The wood is often penetrated by larva of insects, but these are not the cause of the disease, since in many cases they are not present.

Dr. R. Hartig, from a comparison of specimens and study of the disease in question, concludes that it is due to extreme dryness aud that the White Pine can not be trusted to endure such extremes. He further states that it suffers greatly from dry air even in the winter time.

PARASITIC DISEASES.

The White Pine is subject to a number of parasitic diseases, some of which attack it when growing spontaneously in the forest, while others are highly destructive to the tree in cultivation, especially in Europe under changed climatic conditions. A few only of the best known of these, including several due to fungi, will be considered in detail.
(1) Agaricus melleus Vahl.-This fungus, of common occurrence in the United States as well as Europe, is exceedingly destructive to coniferous trees, the White Pine in particular suffering greatly from its attacks. It also fasteus upon various deciduous species as a parasite, attacking living trees of all ages, but living as well upon dead roots and stumps and on wood that has been cut and worked up, occurring frequently on bridges, railroad ties, and the like, and causing prompt decay wherever it has effected an entrance. The most conspicuous part of the fungus is found frequently in the summer aud fall on the diseased parts of the tree or timber infested by it. It is one of the common toadstools, this particular species being recognized by its yellowish color, gills extending downward upon the stem, which is encircled a little lower down by a ring, and by its habit of growing in tufts or little clumps of several or many individuals together (PI. NII, 1 and 2). It is also particularly distinguished by the formation of slender, dark-colored strings (Pl. XII, 2 and 3), consisting of compact mycelinm, from which the fruiting parts just described arise. These hard root-like strings (called rhizomorphs) extend along just bencath the surface of the ground, often for a distance of several feet, and penetrate the roots of sound trees. By carefully removing the bark from a root thus invaded the fungus is seen in the form of a dense, nearly white, mass of mycelinm (I'l. XII, $3, c$), which, as the parts around decay, gradually produces again the rhizomorphs already described. These rhizomorphs are a characteristic part of the fungus. Occurring both in the decayed wood, from which they spread to the adjacent parts, and extending in the soil from root to root, they constitnte a most effective agency in the extension of the disease.

The symptoms of the disease are marked, and, taken together, sufliciently characteristic to admit of its ready recoguition. External symptoms, to be observed especially in young specimens

[^23]recently attacked, consist in a change of the leaves to a pale sickly color and often the production of short stunted shonts. I still more marked symptom is the formation of great quantities of resin, which How downward through the injured parts and ont into the grouml, resulting in the sticking together of the roots and masses of dirt that have been penetrated by the resin. Passing up a little wity into the trunk, the cause of this is seen in the active working of the fungns in the medullary bays and around the resin canals, where apparently both cell walls and cell contents unlergo degeneration and partial conversion into resin. This llows downward, as already stated, and also works laterally into the cambinm, producing great blisters in the younger parts where growth is groing on, and also resulting in the formation of abnormally large resin canals.

As the disease advances the fingus contimues to attack the tracheids of the somb wood and soon induces marlied changes. Under its inthence the walls lose their lignified character, become softer, and give the cellulose reaction, while the mycelium of the fungus penetrates and fills the enlarised cavities of the tracheids. (I'I. NII, \&, $5,0_{0}$)

The whole inside of the trunk may finally become hollow for some distance above the stump, its interior being filled with a loose rotting mass, penetrated by rhizomorph strings, and only becoming worse the longer it stands. The disease having once reached this stage, there is of course nothing to be done for the tree but to fell it as soon as possible and save whatever wood remains matrected.
(2) Polyporus amosus Fries (Trametes radiciperda R. Hartig).-This is one of the most dangerous parasites of coniferous trees, causing "red rot" and the dying out of plantations both of young and old pines. In Germany it infests various species of pines, includingr l'inus strolus and l'inus syluestris; also l'iceu excelsa, .Juniperus communis, and others. It is more destructive to the White Pine than to the Seotch Pine.

The disease appears in plantations of various ages, from five to one hundred years old, showing itself by single plants here and there becoming pale, then yellow, and suddenly dying. These extermal symptoms are altogether similar to those observed in trees infected by Agaricus melleus. Other trees are attacked in the neighborhood of the infected ones, and so the disease spreads centrifugally.

The fruiting portion of the fungus (Pl. XIII, 1 to 6) grows on the roots near the surface of the ground, forming yellowish-white cushions (white on the spore-bearing surface) that may finally, though rarely, become a foot or more in diameter. Between the wood and bark of the affected tree are extremely thin layers of mycelium, distinguished from those of Ayavicus mellous by their softness and delicacy. The tissue of the roots and the inside of the stem is decayed to a considerable height.

The disease is spread by the spores, which are carried away by mice and other burrowing animals and deposited on the roots of adjacent trees, where they germinate and penetrate the living tissues of the bark, passing thence into the rood elements and growing in them toward the stem. It is also communicated by the roots of infected trees crossing those of sound ones in the ground (Pl. XIII, \quad) , the fingus growing directly from one to the other.

A violet discoloration of the wood is the external symptom of beginning decomposition, in which the contents of the parenchyma cells die and turn brown through the action of the mycelium. This color disapuears with the loss of the cell contents, and a clear brownish-yellow takes its place, with seattering black spots here and there. These are surrounded at a later period with a white zone ($\left.l^{\prime} \| . X I S, 8\right)$, and at the same time the wood becomes continually lighter and more spongy. At last mumerons openings arise, the wood is separated into its constituent fibers, and becomes watery and of a clear brownish-yellow color. The cell wall undergoes decomposition, giving the cellulose reaction instead of remaining lignitied, and finally even the entire middle lamella disappears. The process may go on motil the wood elements are isolated, so that they are easily picked apart like threads of asbestos.

The parasite advinces rapilly in the wood elements, decomposition sometimes going on in this way to the height of a.g feet. In the bark it proceeds more slowly, but is finally none the less dangerons, since it canses the death of the cortical part of the root in which it originates, and when after reaching the trunk it passes into the other roots, their death finally resulting in the death of the whole tree.

In the Scotch Pine a great amount of resin is produced, and this, accumulating in the lower part of the stem, probably acts as a barrier to the growth of the mycelimm upward. In the White Pine the fungus extends much farther in the trunk.

Pl. XII, τ, represents a stump of White Pine that has been attacked by Polyporus amosus. The heart is surrounded by decayed wood and spots filled with masses of resin. Pl. XII, 9, represents parts of adjacent wood elements of Norway Spruce after they have been acted upon by the fungus; the mycelium hyphe and spores, highly magnified, are represented in 10 of the same plate.
(3) Colcosporium senccionis Pers.-This fungus, under the name of "pine blister," infests various species of pines, growing in the recidinm stage on both leaves aud bark, and sometimes proving very destructive. When growing on the leaves it affects bat little the vitality of the tree, but is highly injurious when the bark is the place of attack. It penetrates the bark, apparently through wounds occasioned by insects, woodpeckers, or other agencies, and its mycelinm spreads through the cortical parenchyma and bast, and into the wood to the depth of several inches, passing through the medullary rays.

Under its influence the starch and other cell contents disappear aud a resinous substance collects in their stead, a mass of dead tissue soon taking the place of the living cells. This change of the cell contents results in a great accumulation of resin, which often exudes in large quantities from the diseased parts of the tree.

The mycelium is perennial, exteuding itself through the stem from year to year, particularly in a longitudinal direction. Where it is present the growth of the stem is prevented and the formative materials are diverted to the opposite side of the stem, causing there a greatly stimulated and abnormal growth. The death of the leader often results, especially in dry summers, for the reason that the wood, thus choked with resin, is unable to supply it with sufficient water.

The researches of Wolf lead to the conclusion that this parasite of the pine lives in the form known as Coleosporium senecionis on various species of Senecio, and that it is communicated to pine shoots from them. He proposes the extermination of these hosts as a preventive measure. Later investigations of Kleebahu go to show that a blister rust which he observed badly affecting the bark of Pinus strobus, in the neighborhood of Bremen, is caused by a closely related parasite form which he names Peridermium strobi, and considers to be the recidium stage of Cronartirm ribicola.

All these fungi have probably caused far more destruction of timber than casual observation would indicate, but the limited extent to which artificial cultivation of forests has thus far beeu carried on in this country gives comparatively few exact data regarding them. The facts, as above stated, have therefore been dramn largely from the works of Hartig and other European authorities. With increasing cultivation of timber and probable increase of such diseases, their investigatiou and the employment of protective measures must necessarily receive far more attention.

Sereral diseases attributable to the action of fungi, but as yet imperfectly investigated, are of frequent occurrence in this country. One of these, known as "damping oft", characterized by the sudden decay of seedlings at the surface of the ground, is common in murseries, and attacks young plants of different kinds, the White Pine among them.

The disease is most prevalent in plants growing iu a damp soil in a $\pi a r m$, moist atmosphere. As observed in the Ann Arbor (Michigan) greeuhonses for several years in various plants propa. gated from slips, the disease appears a fer days after the slips are set, giving the lower part of the stem a wet, unhealthy appearance, which extends to the lower leaves, particulanly where these touch the sand in which they are growing. Upon taking up the specimens, the parts affected are found to be in the early stages of decay, and penetrated throughont, even in the interior of the epidermal appendages, by the branching filaments of a fungus. The fungus appears to live in the sand in which the plants are propagated, and to run in it from one to another, resultimg often in the rapid destruction of the plants in the bed.
"Damping oft" is due to the action of several different parasitic organisms, of which the potting-bed fungus, Pythimm de brryamum Hesse, is one of the most common, though a number of other species have been shown to be capable of produciug the disease. The relief measures recommended by those who have studied the disease are the use of fresh soil free from decaying
matter, as much sunlight as the plants will endure without wiltiny, a fairly fov temperature, and an abmantat supply of fresh air. Mr. J. Dawson, of the Amold Arboretum, suggests watering the young pants from below, so as to avoid wilting the leaves, as a means of prevention. Other suggestions will be fomm in recent literature of the subject, practically in the reports of varions agricultural experiment stations.'

A disease which attacks the trunk of the tree, at varions ages, is very prevalent in pine forests, and occasions the comlition known among lumbermen as "pmey pine." A diseased tree call frequently be recognized by its having one or more knots with a rongh, irregular contour, at a considerable height above the gromd, commonly conspicnous by a considerable outtlow of resiu. These seem to result from the breaking off of branches, followed by gradual decay at the place where they have separated from the tree, in such a way as to admit water into the trunk, the opening being aftermards partially covered by subseruent growth of the tree while decay is going on inside.

Upon examining the wood of such a tree, it is seen to be discolored and in various stages of decay, the diseased condition extending inward from the knot hole, and both upward and downward from it in the trunk. By inspecting logs cut from such trees, it will be noticed that the decayed portion may have dilled up the center, making a rotten heart; or it may follow the rings of growth for some distance, midway from the center to the periphery; or it may be still nearer to the surface, its position and extent being very variable and following no recognizable rule. The parts diseased are utterly worthless, though boards containing a greater or less amount of wood thas affected are common in the market. Microscopic examination shows that the wood is penetrated by the filaments of a fingus, and that the clements of which the wood is made up have been greatly altered, and to a considerable extent decomposed by its action.

Continued observation in the pine woods of Michigan, in different years, does not so far justify the reference of this disease to any single species of the various fungi found growing upon the trunks and logs of decaying pine trees. But whatever the species, one or several, concerned in producing or hastening the condition described, the general facts, as stated above, appear to be that the disease fimds its way where the separation and decay of a branch presents a favorable place for the entrance of water and the spores of fungi, and that it spreads so extensively in the trunk as to entirely ruin large and valuable trees.

In our natural forests there is, of course, neither remedy nor prevention, but in artiticial cultivation careful and seasonable pruning would doubtless be the most effectual preventive, since, if properly performed, the woumts left by the removal of branches would soon be grown over and there would be no further danger from this source.

> BXPLANATION OF HLATI: XII.

[^24]FNIMANATIOX OF HLATE XII.
 stum! wholly decayurl.
\therefore Ibnots of a alisuased spruso tree, with mumerous small sporophores of folyporns anuorus attached.

- Matur" spurnjhare afi l'olyparws ammosus in suction.
 lats purnetraterl the latter and sprent in hoth directions for some blistance.

Disease of White Pine: Agaricus melleus.

Disease of White Pine: Polyporus annosus.

INSECT ENEMIES OF THE WHITE PINF

By F. H. Chitteninen, Invigion of Entomology.

INTRODUCTION.

Of all coniferous plants, perhaps none are more subject to insect attack than the White Pine. Upward of a hundred species are reported to affect this tree, and a careful compilation of all known species would probably add many more to this list. The more important are found in the order Coleoptera, and of these the cylindrical bark-beetles of the family scolytida hold the highest rank. Most of the Scolytide live within the cambium of dead or dying trees, but a fer penetrate the solid wood, and several forms, when excessively abundant, do not hesitate to attack healthy growth. Numerous other Coleoptera belonging to the families Cerambycida aud Buprestidr similarly infest the White Pine, but are for the most part secondary in the nature of their attack, and will therefore require only passing mention. One species, however, the white-pine weevil (Pissodes strobi Peck), is a pest of the most pernicious type. In addition to the bark-boring and wood-boring insects, several species infest the roots, some only the branches or twigs, some tue cones, and others injure growing trees by defoliation. The leaf-feeding species comprise the larvae of several sawflies, the caterpillars of numerous moths, and a number of beetles. Yarious species of plant-lice and scale insects also occur upon the leaves, and often the limbs aud trunks of trees are injured by them.

Most of our injurious forest insects are mative to this country, in which respect they differ markedly from those which affect field aud garden crops. Only such species as experience has shown to be more or less injurious either to living trees or to cut timber will be considered in this paper. Some few forms that have not been recorded on White Pine are mentioned, as it is more than probable that they are capable of injury to this tree. The majority, however, have been observed on White Pine.

In the preparation of the present paper the writer has drawn freely from the published works of Packard, Fitch, and Hopkins, as well as from personal experience in pine forests, particularly of New York.

THE DESTRUCTIVE PINE BARK-BEETLE.

The last decade witnessed very extensive destruction of pine and spruce forests in portions of the United States east of the Rocky Monntains. The principal injury, which dates from about the year 1888 , has been attributed to the so-called destructive pine bark-beetle (Dendroctonus frontalis Zimm.), one of a geuns of six described species, all of wide distribution and all destructive to the Conifers. It is quite possible that some predisposing agency had first caused a weakeued condition of the trees in the infested districts, but it is fairly certain that this species of beetle was responsible for much injury. The infested area observed comprised the pine and spruce forests from Maryland in the North to aud including Sorth Carolina in the South, an area estimated at upward of 10,000 square miles in extent. In some sections entire forests were killed.

The accompanying illustration of this species (tig. \bar{y}) will enable its recognition. It ranges from reddish to dark brown in color, and measures about oneeighth of an inch in length, being the smallest species of its genus. Its credited distribution includes Lake Superior to Georgia, and it is recorded also from Arizona and Califoruia. The adult beetle appears some time in May, the date depending upon season and locality, bores into living trees and its larvie develop under the green sappy bark. Copions ruantities of turpentine exude from the holes mate by the beetles and dry in masses upon the bark. The manner of work of the larve in great numbers beneath the bark produces about the same effect as that of girdling, thus cutting off the flow of sap, the natural supply of plant food and moisture, greatly meakeaing and eventually killing the trees. The first outward manifestation of injury is the accumulated masses of pitch, followed by the leaves tuming yellow and then red, as though scorched by fire.

A singular feature in connection with the irruption of this species is that it was practically minnown sare in the collections of specialists until its sudden appearance in 1858 , but still more remarkable is its nnaccountable, but almost entire, disappearance in 1893, not, however, before it had done a great amome of damage, which has been estimated at uptard of a million dollars. The apparent extermination of this bark-beetle in the district where it was most destructive is believed to have been due to a fungoid disease.

REMEDIES.

After boring insects of this class once gain access to a tree it is practically impossible to eject them, and to save the tree recourse must be had to preventive measures. For this purpose rarions protective washes are in use. One of these consists of lime, to which has been added a sufticient quantity of Paris green to give it a slight green color and enough ghe to cause it to be adhesive. Another wash consists of soft soap reduced to the cousistency of a thick paint by the addition of washing soda in water. A thick wash of soap, plaster of Paris, and Paris green is also of value. A carbolated wast, which is in successful use against the peach tree borer, is prepared by mixing a pint of erude carbolic acid with a gallon of soft soap in eight gallons of soft water. Fish or train oil is valuable as a deterrent, but should

Fig. C.-Tomicus cacoyraphus: beetle, showing dorsal view at left, in profile at right-enlarged about $t \cdot n$ thmes; antenua above, higbly mag. nifled (origimal). not be used except with the greatest caution upon young trees. Whatever wash is employed should be applied to the trees on the first appearance of the beetles in May, and should be renewed if found necessary.

Better than any other measure, however, is the observauce of clean cultural methods. Owners of pine forests or groves will do well to cut down all dead and trim all injured trees. For the protection of pines, dead spruces and other coniferous trees, and such as are infested and too much weakened to recuperate, should be cut down and destroyed by burning. A great deal of good can be accomplished merely by removing the bark of dead timber. The progeny of the insects that have deposited their eggs in one season so loosen the bark that it is an easy matter to remove and burn it before the following spring. By pursuing this method millions of the insects will be destroyed before they have an opportunity to issue and lay their eggs for the destruction of other valuable trees. A practice known as "rossing" is in use on borer-infested lumber in Canada. It consists in cutting a strip of bark along the full length of the upper side of a log, which canses the bark to dry up and eventually drop array.

OTHER INJURIOUS BARK-BEETLES.

Or the other species of Dendroctonns, one has recently been reported as ravaging the spruce forests of New Hampshire. 1t is the species at present known as D. rufipemis Kiby., and althongh not known to affect White Pine, it is not impossible that it might attack this tree in case it extends its present depredations. The species of Dendroctonus are peculiarly periodical in their attacks. There is, however, one exception, D. terchrons Ol., which is usually common at all times over a very wide area of the United States and Canada, infesting all the pines. According to information received in May, 1898, this or a related species is now ravaging the pine forests of a portion of sonthern సew Jersey.

The genus Tomicus contains perhaps quite as dangerous forms as those which have just been mentioned. The appearance of the beetles is somewhat similar, as is also their method of life. A species that has been associated with the mortality of pines in the region about and south of the District of Columbia is T. cucruftrphus Lee, or southern pine bark-beetle, which is illustrated much enlarged at tig. 4 . It is reddish in color and may be readily separated from any of the preceding
species by the structure of its antenur and by the toothed aper of the elytra or wingecovers. Its mine is shown as it appears on the under side of the bark of a tree at fig. T.

Tomicus pini Say, the northern pine bark-beetle, is destructive to pine forests in the North in a very similar manuer to the preceding species, which it much resembles in structure as in habit, but is less injurious farther South. T. calligraphus Germ., a similar species to the tro preceding and about equally destruc tive, abounds in the pine woods of both the North and South, and T.celatus Zimm, and T.arulsus Eich. also infest White Pine.

Among other well-kuown white-pine bark-beetles may be mentioned Crypturgus pusillus Gyil, Hylurgops glabratus Zett., and several species of Hylastes and Dryocotes.

The remedies to be employed against these insects are practically the same as for the destructive pine bark-beetle.

TIMBER-BEETLES AND OTHER SCOLYTIDF.

While the majority of the pine-infesting Scolytidæ breed between the bark and the wood, a considerable number, called timber-beetles, live entirely within the sapwood; others, the twig-beetles in the small twigs and branches, and a third group, represented by Pityophthorus coniperda Sz., inhabits the cones.

The chief danger from the bark-beetles, as has been shown, is from their attacks on living trees. They do comparatively little damage to timber, except as they loosen the bark and thus afford ready access to water and mold and to other destructive insects. The timber-beetles, or ambrosia beetles, as they are sometimes called, live almost exclusively in greenwood, preferring that which is slightly injured, of impaired vitality, or such as has been nemly felled, but they often attack and kill healthy growth, and in the process of their work in timber cause a staining or "bluing" which entails a still greater loss than results from their direct attack to living trees. The presence of these beetles in a tree is manifested by the little piles of white sawdust which they eject from the "pin-hole" entrance to their

Fig. 7.-Galleries of Tomicus cacographue on trool under bark of pine (original). galleries. The pine timber-beetles are formd in the genera Gnathotrichus, Dyloterus, Dyleborus, and Platypus. Gnathotrichus materiarius Fitch is the commonest of three species of the

Fig. 8.-Gnathotrichus ma. teriarius: beetle, enlarged; antenna, still more eularged at left (Marx del.). genus, all of which attack pine. This species is shown greatly enlarged at fig. s, and its characteristic galleries in the wood of pine are well illus. trated at fig. 9 .

The same remedies advised against bark-beetles will prove valuable against the timber-beetles. Kerosene emulsiou or a carbolated mash would accomplish the destruction of the timber-beetles even after they have attained entrance to a tree, provided the application be made in time.

The twig.beetles are represented by the genera Pityophthorns and Hypothenemus. Of the former genus, l^{\prime}. sparsus Lec., cariniceps Lec., pullus Lec., lautus Eich., plagiatus Lee., are all mell-known pine species. The genus Hypothenemus inhabits alike deciduous and coniferons trees.

Remedies are the same as for bark-beetles. Pruning and burning infested twigs and branches and the clearing away and burning of brush heaps during winter are indicated. For choice ornamental trees in private grounds and in parks plagging the "pin holes" with wire and stimulating the trees with mannes and fertilizers to assist them to recuperate from attack are advisable.

PINE SAWYERS AND OTHER BORERS.

Of all the insects that occur in pine timber the Cerambycid, or long-horned beetles, of the genus Monohammus, are the best known, and are credited with being the most destructive. If

We except the losses occasioned by the more or less sporadie attacks of certain species of the Scolytidir already mentioned, probably this opinion is about correct. Five of these species have been described, all pine feeders and beetles of tho largest size, with elongate cylindrical bodies and extremely long anteunt, those of tho male being two or three times as long as the remainder of the insect. The pine sawyers are most troublesome in the mill yard, and their large white larva often do much damage to logs by eating great holes through their solid interior. While burrowing in the wood the larrie make a peculiar grating sound that may be heard on quiet nights at a consid. erable distance. 'This is a familiar somud in the lumber camps of the North, and has probably

Fig. n.-(inallery of (inathotriches materiarius in pine (atapted from a drawing ly A. D. Hopkins).
given rise to the name of pine sawyers, by which these insects are known. Monohammus confusor Kby. is a large gray species destructive in the lumbering districts of the Northern United States and C'anada; M. titillator Fab., a mottled brown beetle, replaces the above species in the South, and . . moculosus Hald. oceurs in the West; M. scutellatus Say. is widely distributed aud abmelant from the Atlantic to the licitic, and A. mumorator Kby. is a rather rare northern form.

Among other borers belonging to the same family as the sawyers, the majority of which infest White l'ine, may be mentioned Criocephalus agrestis Kby., C. obsoletus Liaud., Asemum mestum Hald., Orthosomu brumerm Vorst., Prionus pocularis Dalm., Hylotrupes bujulus Linn., Callidium
 antennatum Newm., Ihhagizm lineatum Ol., (iraphisurus pusillus Kby., Acanthocinus obsoletus Ol., d. notlosus Fab., and Yeoclytus muricutulus Kby.

In the Coleopterous family Buprestide are many borers which infest pine. These include five species of Chalcophora, one of which, C. virginiensis Dru., is figured (tis. 10); Diccrea punctulata Sch., D. tenebrosa Kby., Buprestis striata Fab., Melemophila finleoguttute Marr., M. lompipes Say., Chrysobothris dentipes Germ., C. floricola Gory, and C. scabripomis Lap. and Gory. These beetles are
Fig. 10-Chaterphora rirginicusis-naturn size (3fars det). graceful in form, havd of texture, and many are brilliantly metallic. Their larvae are slender, white grubs with very laree, round dlat heads. Some of this family attack livins trees and do injury to the sapwood and to felled timber in the same manner as the sawyers, but the majority of them prefer devitalized material, and their attacks are usually secondary to some more injurious species.

THE WHITE-PINE WEEVIL.

In the White Pine forests of the Northern States, particularly in those of a second growth, oneis attention is often drawn to the great mumber of deformed trees. They sometimes occur simgly, but more often in gromps. The insect that is responsible for this damage is the white-pine weevil (I'issoles strohi L'eck). This beetle is a member of the family Curculionidae, amd is about a fourth of an inch in length, of oval form, red and brown in color, with its elytra marked with white
spots, as shown in the accompanying illnstration (lig. 11). It is provided with a rather long rostrum or snout to which are attached its elbowed antenne. The larva, which is white and footless, is illustrated at a, and the pma, also white, is figured at b.

This weevil is one of the first spring visitants in the North, occurring as early as March about Washington City aud in April or May farther north. Its eggs are deposited on the terminal shoots of pine, particularly of young trees, but sometimes also in the bark of old trees. The larva, when hatched, bores into the pith or mines the sapwood. 'Yoward the eud of summer it attains full growth, when it goes into hibernation until the next spring, transforming to pupa and soon afterward to the mature or beetle form. The presence of this insect in a tree is first manifested by the wilting of the leading shoots, which becomes most evident toward the close of summer. The identity of the species at work may be established at once from its peculiar cells beneath the bark. (See fig. 12.) These cells, which are destined for its winter nest and for further transformation, are sunk into the pith and covered over with long fibers of chipped

Fia. 11.-Pissodes strobi: beetle at left; a. larva; b, pupa-enlarged about three times (from l'ackard). wool. When a terminal shoot of a small tree becomes filled in the summer with these larva, to the number sometimes of a score or more, the shoot, with its lateral branches, as well as the stock below, wilt and gradually die, the bark becomes loosened, pitch oozes out, and by autumn the shoot turns black, and the bark is covered with masses of pitch. A tree thus damaged will fail sometimes for several successive seasons to send out a new terminal shoot, with the result that the lateral shoots continue to grow, and the tree becomes more or less

Fig. 12.-Pissodes stroli ; a, larval mines under bark; b, Inuma cells-natural size (from Filey). distorted.

Orners and overseers of pine groves will do well to make a practice of examining the young trees each year, say in August, and when one with a wilting terminal shoot is found to cut or break it off and commit it to the flames. With every blighted trig thus treated from a dozen to fifty or more weevils will be destroyed, and thus the numbers of the insects for the coming year will be greatly lessened. All dead growth or such trees as have from any cause been injured beyond recovery and which might serve as centers of infestation by harboring this weevil or other injurions species should be similarly treated. What is most needed is a preventive, and for this purpose a good thick fish-oil soap mixed with Paris green and carbolic acid, in the proportion of abont a pound of the former and a quart of the latter to 100 gallons of the wash, is recommended. It should be sprayed in April and May ou the terminal shoots of the trees and repeated at the end of a month if necessary.

MOTH CATERPILLARS AND PLANT-LICE ON TRUNKS AND LIMBS.

The trunks and limbs of pine are also subject to the attack of sereral insects besides those in the order Coleoptera that have been mentioned. Of these are three tortricid moths of the genus Retinia, which affect the pitch and other pines. Two other moths of similar habits to the above occur on White Pine, wounding the trunk below the insertion of the branches and causing the resinons sap to exude. These are the pitch-drop worm (Pinipestis zimmermenn Grote) and ILurmonil pini Kell.

The same remedies advised for other boring species, and particularly those specified to be used against the white-pine weevil, are indicated for the present class of insects.

Several species of plant-lice affect the White Pine. The white-pine aphis (Lachus strobi Fitch) is very abundant in the Northern States, living in colonies on the branches of trees and puncturing and extracting their juices. The so-called "pine blight," Chermes pinicorticis Fitch, is sometimes very destructive, its presence being manifested by large patches of a white, floceulent
secretion, beneath which covering are concealed myriads of minute lice. Schizoneura pinicola Thos., feerls on the tender shoots of young White l'ine.

Ferosene emulsion applied as a spray is the appropriate remedy for these phant-lice.

LEAF-FEEDING INSECTS.

The most destrnetive insects of the foliage of pine are several species of sawfies of the genera Lophyrus and Lyda, one of which is represented in its several stages at fig. 13. It is called

Fic. 13.-Lophyrus abbotii: 1 female, enlargelt; 2, 3, pupa, enlarged; 4, 4, larva, natural size; 5, cocoon, natural size; 6 , male nntonna, 7 , female antenna, enlarged (from Riley).

Fig. 14.-Tubes of pine leares made br pine tubebuilder-natural nize (from l'ackard).

Abbot's white-pine sawfly (Lophyrus abbotii Leach.), and is perhaps the most injurious foliage feeder which infests the pine woods of the North.

The caterpillar of a single species of butterfy , Thecle niphon Hbn., is known to feed upon the foliage of White Pine, but among the larve of moths of different families are innumerable pine-

feeding species. Prominent among them is the magnificent sulphur-yellow imperial moth (Eacles imperimlis Dru.), whose Jarva attacks the leaves of varions forest trees. Of other moths whose caterpillars devour the foliage of White line may be mentioned: Harris's pine hawk moth (Ellemen havisii Clem.), E. coniferertm S. and A., E. pineum Lint., Tolype laricis Fitch, the white-pine tufted caterpillar (Platycermen furcille Pack.), the redhead inchworm (Semiothisa bisignata Walk.),
the sulphur leaf-roller moth (Dichelia sulphureana Clem.), Teres fervugane S. V., and Amortia humerosanc Clem. An interesting species is the pine tube-builder (Lophoderus politanu Haw.), which, in its larval stage, lives within a tube formed by webbing together a number of pine needles as shown in fig. 14.

A number of species of adult Coleoptera, whose larval habits are imperfectly understood, subsist upon the leaves of White Pine. Of these are the Scarabaid, Dichelomychathicollis Burmo, and the Chrysomelid, Glyptoscelis pubescens Fab.

The best remedy for the sawtly larve, caterpillars, and beetles is a spray of P'aris green, applied upon the first appearance of these insects on the trees.

The consideration of the insect enemies of the White Pine may conclude with the mention of the pine-leaf scale insect (Chionaspis pinifolice Fitch), which forms its scales upon the leaves, exhansting them of their juices and causing them to turn yellow. This species is illustrated at fig. 15.

A strong spray of kerosene emulsion will be fonnd an efficient remedy against these scale insects.

FOREST MANAGEMENT.

As regards forest management, we have, unfortunately, in this country no experiences which would permit us to form very positive opiuions based on actual observation regarding this species or any other. The study of the natural history of the species in its native occurrence permits us, nevertheless, to draw conclusions which may at least serve as a basis for its future sylvicultural treatment.

In the first place, it may be declared that the White Pine is the most important and promising species unon which to expend attention in our coming forestry operations within the limits of its natural occurrence. Its adaptation to a variety of soils and situations within these limits, its rapid growth, its excellent form, its remarkable mass development per acre, its shade endurance, its all-round usefnl wood product, and its propagation, both by natural and artificial reproduction, give it a position among our timber trees hardly approached by any other.

There are certain general principles which are the result of experience in forest management in Europe and elsemhere, applying to this as to most species. The first is, that mixed growth is in every respect superior to pure growth; it will therefore be proper policy to grow White Pine preferably, if not altogether, in misture with other species. This advice is given in spite of the fact that the White Pine grows rather well in pure stand, and that, owing to its shady crown during a long period of its life and the density of stand in which it can develop, and the large quantity of foliage which it sheds, the soil conditions are not in danger of deteriorating, as would be the case with more light-needing species. But, as has been observed in its natural occurrence, its development is more favorable in companionship, and especially is this the case with regard to the cleaning of the bole of its branches, which are peculiarly persistent. Whether it would pay to substitute an artificial cleaning by pruning the joung growths is still doubtfu; meanwhile the self-pruning performed by misture with shady companions will have to be encouraged, especially as thereby other valuable advantages are secured which attach to the mixed forest in geueral.

Unfortunately, our irrational exploitation has reduced the White Pine in the natural forest areas often to such an extent that its reestablishment is possible ouly by artiticial means. Wherever the culling has not been too severe, and either young growth las developed or seedling trees have been left, the natural reproduction should be encouraged by favoring the young growth and by removing or thiming out other species which interfere with the starting of a young growth. Fortumately, the White Pine, owing to its shade endurance, is specially fitted for natural reproduction from the seed of mother trees, more so than most other pines, and the rapidity of its growth, in which it excels most other shade enduring species, is also favorable in this respect.

We are not yet prepared to determine the most profitable rotation in which the species is to be managed under varyiug conditions. The fact that it is not only a very rapid but one of the most persistent growers, trees making wood at the rate of $1 \frac{1}{2}$ to 2 cubic feet per year up to the one hundred and fortieth year, permits a wide range of choice for rotations, and since its mood, being rapidly changed into heartwood, becomes serviceable very early, the rotations way be either low or high, varying from fifty to one hundred and fifty years, according to local economic and soil conditions.

NATURAL REPRODUCTION.

The White Pine reproduces itself readily in the virgin forest on all sandy and loamy sand soils where the hardwoods do not interfere. On these areas thickets of young growth, sapling timber, and dense groves of mature trees are scattered without regularity, and there is no indication that this pine forest has undergone material change for centuries. In the hardwood districts of the heavier soils of the Lake region, where the pine is met with chiefly as old, overripe timber, the reproiluction of the pine seems, temporarily at least, to be interfered with by the associated growth. Large, old trees occur, thinly scattered or in clusters, but sapling timber and young growth is often entirely wanting over considerable areas. Similar conditions prevail, or have prevailed, in the mountains of Pennsylvania, and also in New England and in the Adirondacks. Where the pine is cut and some seed trees are left the ground soon covers itself with young growth. This, contrary to the common notion, is true eveu where fire has run over the slashings and the ground for a time is stocked with Poplar and other brush. Such groves or thickets of yonng pine occur in all parts of the pinery of the Lake region, and in the aggregate cover several hundred thousand acres. Generally, however, the fire returns from time to time, the young seedlings, as well as the mother trees, are finally all lestroyed, and thas the reproduction is completely prevented. On such lands, impoverished by fire and exposure to sun and wind, not even the Poplar returns. In the hardrood, Spruce, and Hemlock regions the cutting of the pine in the usual manner simply assists its competitors, and its reproduction is seriously hampered and frequently prevented altogether. Where these clay and loam lands are completely cleared and then abandoned, as has been the case with thousands of acres of New England forests, the White line is one of the first to return if any seed trees exist in the vicinity. Hundreds of groves have sprung up in New Eugland in this way.

NOTES ON NATURAL REPRODUCTION.

A case of the kind above referred to was observed in 1886 in York County, Me., and the folloming notes on the subject will, no doubt, prove of interest:

In company with Mr. John E. Hobbs, who is thoroughly familiar with the history of the rarious pieces of forestaexamined, a visit was made to a number of places on which White Piue was growing, others ou which youner pine seedlings were coming in, and still others in the immediate vicinity where none were fo be seen, although the general conditions of soil and situation were practically iclentical. The soil, much of it, was light and sandy, with a growth of Comptonia, Pteris, Guutheria, and other plants common on pine land,

A large number of trees had a crop of cones, the last year before this visit in which there was a good crop having been 1879 , according to Mr. Hoblos. Going first to an open lield that mas formerly covered with pine trees, it was found to bo very thickly covered with young seedlings, from a few inches to 2 feet or move in height, that had sprung up in such abundance that a bare spot was hardly to he seen over the whole tract. This piece was cut over in the winter of $1879-80$, the ground was not burned orer, and there being a good crop of seeds, these had grows promptls and a young forest was rapidly coming on to take the place of the one remored.

Un eroing to other pieces in the vicinity, from which the pine hal been cut at different times since 1879 , a most striking contrast was observerl. On these pieces that seemed otherwise just iike the first, and with the conditions just as favorable for a second growth, oulr a rery fer pino seedlings were to be seen. Theso fer mas have come from seels carried by wind from the neighboring forests, but evidently the ground had not been seeded as the first piece had, and it was impossible not to draw the conclusion that the difference was due simply to the fact that the first piece was fully seeded, while the others were not. Repeated observations of similar pieces of land led further to the conchsion that no dependence can be placed upon the spriuging up of seeds that have lain dormant in the ground for a term of years; or, in other words, although the seenls of the White Pine retain their vitality for aloug time if k"pt in a dry place, there is a lack of evidence to show that this is the case in the natural forest, where ther are alternately alry and wet.

Uther interesting conditions of growth were noticed in the same region. In the vicinity of stauding gine forests, particularly on their leetard side, seedlings of dificrent ages were coming up, often vory thickly, but upon eutering the forest, after the dirst 2 or 3 rods, ho more of these were to he seen, their growth having evidently been prevanted lys the dense shade of the standing trees. In hardwoods, on the other haud, where the surroundings were a little more favorable, some soung pines were irowing here and there.

All observations renforced tho truth that there is no mysterious succession of forest inforth, involring necessary alternations, and that the White l'ine does actually grow and fourish for an indefinite number of generations on the same land, if only the necessary seeding has been insured.

In such regions as have just been elescribed reforesting with the White Pine is a comparatirely simple mater. Where nothing more is done than to take advantage of natural contitions by felling the trees in seet years, or ly leaving seed trees lere and there, an ahumant crop of young pines mas often be gecured. As a matter of fact, large
tracts in Maine and Massachusetts are coming up in this way to second-growth pine, and as the profit arising foom the protection of these yomp forests is better maderstood, there is no reasou to donbt that the whole matter will iu a great measure regulate itself.

In the Adirondack region and in the pine belt of Michigan, Wisconsin, and Minnesota the case is far differeut. Uuder the present system forest tires are an almost necessary result of all lumbering operations. To start with, all trees that are large enough are cut, and if by chance here and there one has escaped that might produce a crop of seeds, it perishes in the tires that soon sweep over the ground, leaving hardly a living thing behind them, and burning the seeds that under other conditions might hase sprung up to form a second growth of pine. On all such burned tracts pine seedlings are rarely found in nuy number, and yet here and there they are seen growing Where the fire had left a seed tree by the side of a stream or a piece of unburned ground, thus giving the seed a chance to grow.

After making a careful study of the pine lands of Michigan for sereral sears the conclusion seems plain that here, exactly as in New England, evergthing practically depends upon reseeding. Here in the Northrest the seed trees have been destroyed, the seels in the ground have been burned, and, as an inevitable consequence, the land remains a wilderness and must remain so until some means are found of restoring the forests br artificial sowing or planting. There is nothing in the soil itself that prevents reforesting the pine lands of Michigan at once. It is becanse seeds are, to a great extent, wanting, and the seedlings that do start are not protected, that these pine lands are left in their desolate and unproductive condition. ${ }^{1}$

The experience with White Pine in Europe fully confirms the correctness of the observations above recited. White Pine abroad reproduces rell, seeds abundantly, and is so particularly mell suited to natural reproduction that the most experienced and competent recent writers claim that this tree fairly" "demands" this form of regeneration.

ARTIFICIAL REPRODUCTION.

Concerning the artificial reproduction by seeding or planting, the experience, both in this country and Europe, is quite extensive. Not only has this species been planted frequently aud for a long time in New England and in other parts of its natural range, even for forest purposes, but thrifty groves have been established also in the Western prairies beyond the limits of natural distribution. In Germany larger or smaller plantations were made in many localities near the beginning of the century.

The planting in this country has, however, not usually proceeded with a knowledge of proper forestry practice. As a rule, plants have been set out too old, and hence the planting has proved expensive; usually, also, it has been too wide spaced to secure the most desirable result in form development. Another point also nsually neglected is the admixture of other species to stimulate the growth of the pines and possibly to reduce the expense of covering the ground.

In Europe the majority of pine plantations made with Scotch Pine (Pinus silvestris) is mate with one-year-old seedlings, which is done very cheaply and expeditiously, often on unprepared ground, when one man may set 1,000 to 1,500 plants in a day.

For White P'ine, especially under our conditions, where the young plants have much to contend with in the way of climatic ills, weed gromth, etc., this method is probably not applicable.

Two-year and even three-year old plauts, gromi in seed beds and ouce transplanted in mursery rows, to produce a stocky root system and growth, will probably be more successful, being better prepared to overcome adversities.

The seedlings, grown from seed sown either broadcast or in drills in the seed beds, must be shaded during the first two years, as is usual with conifers in this country. After the second year they will endure the hottest sun. The shade must be graduated according to the weather, as the seedlings are liable to damp ofi the first season if too much shaded and to burn off if not shaded enough.

As there are about 1,800 seeds to the ounce, it will take about 5 to 6 ounces to the 100 feet of drill, unless the seed be specially poor, when greater allowance will have to be made in proportion

[^25]to the percentage of germination. In ordinary collecting the percentage of germinating seeds may not exceed faper cent, and, as is indicated in the discussion on seed supply (page 23), it may fall far below this tisure in some years. Even if 20,000 to $2 ., 000$ seeds shonld germinate per pouml, it would not be sate to connt on more than $\overline{5}, 000$ to 8,000 seedlings that will grow to ase, and in the transplanting to nursery rows an allowance of at least 5 to 10 per cent shonld be made for losses, so that to secure 10,000 tramsplants at least $1 \frac{1}{2}$ pounds of seed is needed, to secure which it may take from 3 to t bushels of cones.

Close plating is indicated on account of the diniculty with which this pine cleans itself of its branches. It should be phanted not more than 4 feet apart or, preferably, set out in mixture with a shady, slowe growing companion, the black Spruce (licen nigru) being an ideal choice within its habitat, and of broad-leafed trees the Sugar Maple (Acer saccherinum), which, for the sake of cconomy, may be sown between the wider spaced (S feet or more) plants of White Pine. The mixture should not stop here, but other kinds chosen with circumspection from the many that are fonm associated with the White Pine in its matural habitat should be added, as Chestnut, Iellow, and led Birch, Basswood, Hickories, and Oaks, aud of conifers, the Red Pine, Hemlock, and oceasionally in some localities Arborvitie.

Dr. Fernow has for some time (since 1887) advocated a method of forest planting in which the main or "final harvest crop" is distinguished from the mere "murse crop" or "filler," when ouly 500 or 600 trees per acre, or even less, of the better kinds are set out with care as the main crop, receiving due attention in their further development, and the nurse crop is introduced of the cheapest kinds and in the cheapest manner to act as soil cover to check weed growth and stimulate height growth, straight form, and cleaning of the main crop. The White Pine would, of course, be a most excellent main crop.

By the fiftieth year or so the pines, if set ont at the rate of 500 , will have overtopped the murse crop, except where trees of the latter have taken the place of a failing pine, and their cromns will have closed up, their boles straight and clean, furnishing clear lumber, if the nurse crop was properly chosen and has done its duty. The further management theu would concern itself mostly with gradual thinning out of the main crop to secure the diameter accretion due to increased crown development and light. By the one hundredth year it will be reasonable to expect at least half the trees set out to have reached their highest value in maturity and size, with 15,000 to 20,000 cubic feet to the acre, for the White Pine is not only a rapid grower, but a large producer, its shade endurance permitting as large a number of trees to develop satisfactorily per acre as the spruce, which it outgrows in height and diameter.

While planting nursery-grown seedlings as a rule furnishes better results, sowing the seeds into permanent sites may, under certain rouditions, especially on soils not too prone to weed growth and in the more humid climate of the Northeastern States, prove satisfactory and cheaper.

Various methods can be employed according to circumstances. On light soils sowing broadcast on snow may furnish satisfactory results; on heavier soils preparation of the ground to receive the seed will prove indispensable. This may be done by plowing furrows or by hoeing plats of \because o1' 3 feet square (the larger size where overgrowing by brushwood is to be feared) and sowing into these in drills or broadcast. Dr. Fernow devised such a method for reclothing cut-over lands on slopes in Pemusylvania grown up with brush, where it would be too expensive to prepare the entire gromud. Here the plats were made larger, 4 or even 6 feet square, and into these not only pines were either planted or sown but also a nurse crop surrounding the pines, expectation being that this nuse crop will protect the pines against the encroachment of the surrounding brush growth until the pines are tall enongh to fight their own battle and finally kill out the brush. A fuller description of these plantings is to be found in Bulletin 17 , "Check list of the forest trees of the United states," etc., of the Division of Forestry.

PLANTING NOTES.

The following notes on planted groves, their condition, growth, and results are given a place here as recorling individual experiences in varions parts of the country, without intending to recommend the practices of the planters, which, from the forester's point of view, are faulty in some directions, especially in the open stand, which is advocated:

In Fastern Massachusetts, particularly in Ilymouth and Ibristol connties, there are numerous small boties of White Pine that were set ont from forty to fity years ago, and whose rapid growth and healthy conditions show that
there the work of planting at least has been successful. The trees composing them areraged at thirty to thirtr-five years from the time of planting, not far from 45 feet in heiglat, and measured approximately 2 feet 0 inches in circumference, breast high. These measurements vary for different bodies of pine, but are believed to represent rery closely the average size at the age indicated, and in many cases the trees, aro considerally larger (see measurements of growth on page 88). This growth of pine is of such value that according to competcnt fulges of property in that region, much of the land that without the pine would be worth only" $\$ 3$ to $\$ 10$ per acre, is worth with the standing pine $*=0$ to $\$ 75$ or more per acre according to location.

Upon visiting these different groves and conversing with men who had planted some of them, it was fonnd that opinions and practice were quite rariable, both as to time and manuer of planting. Mr. S. E. Mall, of Raynham, who has had long experience, states that he has set the White line successfully overy month in the year. Tho young trees, 4 to 6 inches, or even a foot high, are taken up with a piece of sorl on their roots and set out in a wet time. These two conditions wero particularly emphasized by Mr. Hall, who says that if they are olseerred the trees "will grow anywhere." He plants 10 feet apart each way and recomments this as the lest distance, which is, however, not good forestry practice. In a grove set by him forty rears ago the trees were set in rows at the above distance and had made a rigorous and bealthy growth. In another grove, planted about the same time, the trees stood 8 feet apart each way and were apparently doing rutite as well as in the first one. On the other hand, Mr. Spencer Leonarl, of Bridgewater, after many years of practical trial and observation, states that having formerly set ont pine trees 10 feet apart, he is now setting them at a distance of 15 feet, witl a vien to reduce the expense of planting and becanse they soon became crowded if plauted closer. He, too, sets out the trees with a soil, simply plowing a furrow and setting the seedlings at tho right distance. Mr. Hall digs a hole for each tree, but says that the work can be done very rapidly, and that he has himself set an acre a dar.

One of the many plantations in southeasteru Massachusetts knowu as "Leb. Pratt's grove," is mithin less than a mile of the rillage of North Middleboro. It was set ont forty-two gears ago. The trees were set in rows 10 feet apart each war. The grove tirelve years ago even was practically impenetrable by reason of the dead interlocking branches that had never been removed.

Four trees of average size were measurel in 1886 and showed diameters of 7 to 9 inches. Some were of larger and others of smaller size, thongh the growth was fairly even. The arerage leight was estimated at 40 feet; the branches were dead three-fuarters of the way to the top, the remaining one-fourth, say 10 feet, coustituting the crown, was green and healthy. The soil was poor, that passed over from the road in reaching the grove being light sand with some gravel.

Another grove, some 3 miles northward of North Middleboro, was risited in 1886, and a greater number of measurements made. According to Mr. S. Hayward, near whose farm it stants, this grove was set out rather more than thirty, not more than thirty-fire, years ago, but had not made fuite as good a growth as some others have. The trees are in rows, $7 \frac{1}{2}$ to 8 feet apart each may, and are r $_{1}$ uite uniform in size. Beginning with the third from the north side, a fair average row, the following measurements were made of the trees taken in order as they stood. The circumference, breast high, was:

Ft. Ins.

a Two main stems aud had lost a third.
The largest tree measured in the grove was 3 feet 1 inch in circumference or 1 foot in diameter, breast high. A very few have been choked out and have died after living fifteen or trenty gears. An average tree on the south side measured $4 \overline{5}$ feet in height. All the trees of the grove that were still living seemed healthy and vigorous. The lower branches had died at an earlier age than in the preceding grove and the trunks were free from them for some 8 feet or more. Above this line the dead branches still remained on the trees, only those of the crowns being green and living.

Near Brilgerrater, Mass., a piece of land had been sown with pine seeds some thirty-fire years before, the seeds being sown broalcast and dragged in. The trees were slender and too much crowded, the smallest ones dring ont. They seemed much in need of proper thinning. Some of the best specimens measured 2 feet 7 inches in circumfereuce, breast high, but they were very uneven in size, and did not impress one nearly as farorably as those in the groves that liad been regularly planted at a distance of s or 10 feet apart.

This second growth pine finds a ready market at the box factories of lridgewater, Halifas, Taunton, and various other towns in this part of the state. Six lollars per cord is the jrice paid at present ($18 \times 6 ;$ now $* 8$ to $\$ 9$) for logs delivered at the factory. Logs are accepted down to 8 inches in diameter, and in establishments where staves are made a smaller size is taken. There is no tronble in obtaining all that is wanted, there being an abundant supply of pine for lox boards, staves, and the like in the immerliate ricinity of the towns where they are manufactured.

A fer notes on plantations made on the Western border and outside of the natural range of the White Pine will show the adaptability of the species in those regions:

There is an instructive plat of White Pines in the forest plantation of the State Cniversity of Illinois. This institution is located at Champaign, about 200 miles south of Chicago and much begond the natural range of the $20233-$ No. $22-5$
pinc. Tho history of the plat, ay givenin Bulletin No. of of the liversity Agricultural Experiment Station, is as follows:

White Pine secdlings were collected in the spring of 1809 , put in close nursery rows and shaded with lath frames. About 8 per cent died the first rear. Of a fow humired trees, purposely left without shading, 32 per cent died. Ifterhaving grown in the unsery three years, they were deemed ingood condition for transplanting. They were at this time 12 to 15 inches high, well-formed, healthy trees.

The land, 1 acre, where the White Pines are planted, is fuite that, what slope there is being to the south; and at least one-half of it is too wet in spring, and often in the carly part of summer, for the best results in tillage. The soil is blark, part of it mucky, 1 to 2 l fot in depth, and underhid, for the most part, with a rather stiff, blue clay. Tho trees were planted May 4, 187̈, t feet apart cach way. The White Pino is a comparatively bard tree to transplant snccessfinlly (?). The ronts are soft, long and naked, with very few small or fibrons roots near the tree. Knowing the necessity of carefnl handling, no effort was spared, froudiging in the uursery to setting in permaneut place, to secure successtul results.

Throughout the season the ground was kept in a good state of tillage lefrequent cultisation, but it was excedingly dry; and of nearly thre thousaud trees planted, two-thirds died during the summer. Of Norway Spruce, planted the samo day, in the samemanner, and on very similar soil, not more than 2 per cent diod. It is diticult to explain this greater per cent of loss in the pines, cxeept as we take into account the comparative method of development of the roots of the two species [and its high transpiration factor. - B . E. . F.].

In the spring of 1873 the vacant spaces were dilled from the nursery, and again in 187.4 trees were set where neeled. The result of the three plantings was an almost perfect staud of trees. The cultipation with borse aud hoe was kept up thoronghly for three sear. During the fourth, tifth, and sisth years the weeds were mowed. Hut little cultivating was done, because the ground was too wet in the early part of the season.

For a number of vears after the White lines were fairly started they made admirable growth, and promised to furnish very valuable timber for the prairie soil here, as well as for their nativeregions. In a report made in 18×6 the following statement is made: "From the first the living trees have tone exceedingly well. Very few trees have died from any canse since they began their growth in their present position. They are now remarkably healthy and vigorons, and the plantation vies with that of the Enropean Larch in beanty and prospective value" At present they are not maintaining the early promise.

No thinuing or pruning of ans kind was clone, except what uature does, until the winter of, 1889-90. During that winter and the next the dead branches, to an average height of about 10 feet, were trimmed off, and the dead trees (some more than three humdrel and fifty) were cut ont. Juring the winter of $1801-\mathrm{g} \boldsymbol{\mathrm { g }}$ sixty-eight more dead trees were cut ont, and there are at present fifty-two still standing that have died since the last were cut. The trees cut out the first time had not all died recenty. Some of themgave evidence of having been dead for a number of years, while others had died so lately that thev still carried deat leaves. Most of the trees that liave died were the smaller ones, such as were overgrown or badly crowded. A few only of the larger trees have died. Of tho trees still alive, very few have any live branches lower than 30 fect. Manj of them have an unthrifty look, oither in the top or on the trunk, and the prospect is that there will be a very considerable number of trees to cut ont year by year for some time.

The principal reason for so mant trees dying is probably overcrowding [more likely owing to the still subsoil.13. E.F.]. As the trees not stand they occupy a space of less than feet sghare each. Whe trees have been damaged in other wars than crowding, but not, so far as can be jutged, until aiter ther had alreads begun to die. There is continually a thick mat of leaves on the gromd, and these bave been partially burnel oft twice, both times injuring the trees more or less from the grommen "O or 3 feet, but apparently not any higher. Joys seem to delight to cut their names or designs in the smooth bark of the trees. Occasionally a tree is entirelygirdled. The girdling soon kills the trees, but most of the smaller damage to bark soon grows over. A woolly plant louse (Churnus pimicorticis Fitch) has been very abundant on many of the trees, attacking the trunks and lariper branches fur several gears. They are sometimes so abundant that the whole trunk has from a little distance a white or grayish-white appearauce.

The White liges do not cast so dense a shade now as they did ten years ago. At that time there was no undergrowth among them. At present there ate small wooded plants, such as Giape, Raspberry, Cherry, Box Eliter, etc., besides weeds, coming in, and there wonld likely be more of these were it not for the heary mulch of leaves that covers the ground.

In 18×6 the average size of the better trees was: Height, $\because 4$ feet 9 inches, and a little less than 6 inches in diameter. At present, 1895 , the hetter trees are 38 to 40 feethigh, aml 8 to 9 inches in diameter. During the winter of $188:-83$ the leaders of a considerable moportion of the trees were broken down by the weight of sleet. This was the cause of many trees beiug crooked at that point, and of others haviner more than one leader. Fxcept for the trees deformed in this way nearly all have almost perfecty straight trunks. The trees are much more nearly uniform in height than in diameter. The sizes of the trees in the plat are as follows: Fifty-eight are 3 inches in diameter; owe hundred and ninety-fonr, 4 inches; two hundred and fifty-six, 5 inches; two hundred and thirty-8ix, 6 inches; one hundred and forty-fonr, 7 inches; seventy, 8 inches; eleven, 9 inches; five, 10 inches.

In the autuma of 1895 the thirty-nine trees constitnting the central row of the plantation were measured, and the average diameter, breast high, wits 5.9 inches, tho range being from 4.1 inches to 8.6 inches.

At the old Elgin mureries, plantel in open prairio about $1 \frac{1}{2}$ miles west of the Fox Rirer, Hack loam soil, from t to 5 feet to gravel, White Pines, forty to forty-five years old, with Norway Spruce and Scotch Pine as neighbors, measure 2.2 inhes in diameter, breast high, and are 52 feet high. In a neighboring grove, twenty-five years from seen, planted exchsively to White line, the trees average 11 inches in diameter and 45 feet high. When phanted ilternately with European Larch 5 to 6 feet apart, the White lines, thirty-five to thirty-six years old, are perfectly straight and average 13 inches in diameter and 75 feet in height. The Emropean Larch proves to be the best tree to phant with White Pino as a nurse. When planted with Hox Ehler and Ash the growth of the pines is not so satisfactory. Whore Scotch Piuc has been planted alternately with White Pine the latter has outgrown the Scotch, nearly all of which are killedont. In the groves where Larch is phated with White Pine the gronnd is completely mulched from the foliage of the Larch: dronght has never affected the trees, aud no grass or weeds can grow among thesm.

Mr. 'Ihomas Hunt, of Litlott, Hl., set ont White l'ine iu a platation of 10 acres twenty-two years ago. The trees were 10 io 18 inches high when set, making their age at time of measurement about twentr-seven years.

Tho grove is planted on a ridge with thin clay loam mulerlait with broken laminated limestone. Mr. Hunt found tho land nnprofitalle umher tillage after several years' trial. The trees of each variety are plantel in solid rows, hardwoms aul confers alternatiug. In a plat of White and Scotch Piue, Norway Spruce, Arborsita, Fiuropean Larcin, White Elm, liox Eller, (ireen Ash, and Willow, the coniters have almost shated out the hardwoods. The

Larch are the tallest and the Arhorvitie the lowest, the remaining conifers being of about rqual height, areraging 35 feet. Seventy White Pines were measured, taking all the trees as they camo in the rows, and including the center of the plantation. The average diameter, breast high, was 6.2 inches. The branches trere dead, but stild persistent to a heirht of 18 to 20 feet.

At the Bryant nurseries, Princeton, Ill., somewhat south of the natural limit of the White Pine, trees that were grown as ornamental mursery stock have been permitted to stand, giving some notion of the growth of the species in the rich prairic loam of that region. The oldest specimens were set in 1858 aud were importcd seedlings. Ther are now about forty-two sears of age, and average about 6\% fect in height. Measured trees range from 9 inches to 26 inches in diameter. Norway spruce of the same planting equal the pines in height, but the average diameter is less. These trees staud about 30 feet apart. On the margin of a watural haverood grove an acre of the richest prairie land was plantel to White and scotch Pine seedlings about twenty-two years ago. The trees were set 3 by 4 feet, aud hare never been thiuned. Each species was plauted pure, and one of the tallest White I'ines measured 33 feet high, the arerage height being estimated at 26 feet. Fifty White Pines, taken as they came in the rows, were measured, breast high, the average diameter being $4 \frac{1}{\delta}$ inches. Scotch Pine showed about equal growth.

At the Iowa Agricuitural College, Ames, Iowa, in the center countr of the State, a piece of waste land of about 3 acres was planted to White Pine, European Larch, Box Elder, Green Ash, and Cottonwood in 1875. The plat occupies a gravells knoll sloping to the north. The soil is a yellow clay, with mnch gravel, aud of unknown depth. The ton of the knoll forming the south side of the plantation is set with pure Larch. The Pine, box Elder, and Ash are mixed, evidently without order. The original planting was $3 \frac{1}{2}$ by $3 \frac{1}{2}$ feet apart, and the trees now arerage about 10 feet apart each way. The White Pines are estimated to average 30 feet high, and twenty six measured trees, taken as they came, ranged from 5 to 14 inches in diameter, the average being 8.7 inches. The pines are now the dominant trees of the mixture and are fully 10 feet higher than the Box Elder, which exceed the Ash 5 feet. The following diameter measurements will serve as an additional basis of comparison:

Inches.

Creen Ash, as ahove (21 trees) 3. 6
European Larch (planterl pure on crest, 26 trees) - .. 6
Cottonwood (same plat, base of knoll, 14 trees)-.. 10.5
It should be added that the Cotonwoods stand wider apart than the mixture of line, Box Elier, and Ash, while the Larch stand closer together. All were set origimalls $3 \frac{1}{2}$ by $3 \frac{1}{2}$ feet, and the alternate rows have been removed throughout the plantation.

At Windom, Minn., in the southwest part of the State, Mr. L. Seratsou has included two rows of White Pine in a plantation corering 10 acres. These trees were set about thirteen rears ago, when 8 to 12 inches high, aud are presumably not over eighteen years old. The two rows of pine are between rows of Arhorrita and Balsam Fir. They are about 25 feet in height, anil the average diameter, breast high, of serenteen trees, taken as they came in the rows, was 5 inches. The soil is a stift clay loam, and the plantation is about 100 feet above the surface of a lake which joins the farm. The entire country is treeless, except for groups of trees on the lake shore and groves along the Des Moines River, 3 miles distant. The White Pine in this location is less vigorous than scotch Pine, European Larch, or Norway Spruce.

Fine trees of White Piue, set in single specimeus about thirty years ago, are growing at Arbor Lodie, Jebraska Cits, Nebr., the home of Hon. J. Sterling Morton, ex-Secretary of Agriculture. These stand in bluft soil (a fine loam) abont 2 miles west of the Missouri River. A few fine specimens may also be seen in the lawn at the homestead of Hon. A. H. Whiting, at Whiting, Monona Countr, Iowa, in the deep black loam of the Missouri bottoms. At Brookings, S. Dak., within 17 miles of the Minnesota line, repeated plantings of the White Pine have resulted in failure. At Franklin, Nebr., abont halfay across the State, near the Fansas line, this species has failed after extended trial. Very few trees can be seen in Lincoln, Nebr., though it has been repeatedly tested there as an ornamental tree. The diminished amount of atmospheric moisture will necessarily prevent general satisfactory cultivation beyond the western boundary of Missouri, Iowa, and Minnesota.

A number of dine specimens of White Pine stand is the lawn of the Rollins homestead at Columbia, Mo., about 10 miles north of the Missouri River and halfway hetween the east add west boundaries of the stato. The soil is a clay loam, underlaid with limestone, which ontcrops at many places in the vicinity. These trees were plauted in 185゙5, when tro or three jears old, by Col. J. H. Kollins. The largest is now (1897) 29 inches in diameter, breast high, and 64 feet 9 inches in beight. One of the smallest is about 56 feet high and 16 inches in diameter.

Additional notes of plantatious in the West might be given, but the above is sufticient to show the White Pine can be successfully grown somemhat begond its natural range, but does not mell eudure the dry conditions of soil and atmosplere which it most meet in the region west of the Missonri liver.

THE WHITE PINE AS A FOREST TREE IN GERMANY.

As has been stated, the White Pine was introduced quite early into England, and from there it found its way into various parts of the Continent. In Eugland it remained largely a park tree. In Germany it has been a forest tree proper for over a century, being used quite frequently, on account of its hardiness and shade endurance, as "gap cover" to fill fail phaces. It has also been planted in many places on small areas as pure gromth or mixture with the common European or Scotch Pine (Pimus silvestris) and Spruce. For a long time this "newcomer" was regarded with a
feeling of doubt and even suspicion, and long before anything definite conld possibly be said about the matter the merits and faults of the White Pine were extensively discussed. The "practical" man, and with him some scientific men, were satisfied that such a light colored softwood could not ponsibly be durable or otherwise desirable, and the small quantities oftered from time to time did not always tind ready market. Of late years this condition has changed. In a series of excellent articles, Dr. L. Wappes, a Bavarian forester, records the experience had in one of the oldest bodies of White line in Germany, in which he shows that the tree in pure growth, and also as mixture with pine, spruce, or hardwoods, has proven a most excellent factor of the German forest; that it seeds carly and heavily, and as plant material is easily and cheaply secured; that it is readily and even preferably reproduced by natural seeding, a rapid grower, capable to withstand crowding and shading, and that it is a tree especially capable of producing a large amount of timber evell on pror soils, all of which coincides with the observations on its native habitat laid down in this monograph. He shows that besides the Fir (Balsam), the White Pine is the only tree which, in the l'alatinate and on poor soils will, at the age of one hundred and ten years, make timber of Class I (according to German notation, diameter at half length, 吕 inches and better); that while the common pine at that age furnishes only 13 per cent of Class 111 and better (diameter 12 inches and over), the White l'ine furnishes ${ }^{2}$ per cent, or more than double this amount of these and more valuable diameter classes. Dr. Wappes emplatically states that White Pine, wherever known, is eagerly bought, and that the opinion of the consumers has radically changed. He proves by the figures of large sales from the state forests, that since 1882 the value of White Pine has nearly doubled, while that of Spruce and common Scotch Pine has increased by ouly 20 per cent, and that of Fir and Larch has actually declined during this period. The following figures give an idea of the growth of White Pine abroad. The groves of the Palatinate are stocked on very inferior soil, nearly all other groves cited being on loamy sand. The figures for total volume are somewhat misleading, since they do not include the timber which has been removed from the older groves in thinnings, which would add probably from 10 to 15 per cent to make up whole production.

It will be of interest to give more in detail the conditions of the last-mentioned plantation, reported this year in Dr. Lorey's Allgemeine Forst und Jagdzeitung:

The plantation of abont 9 acres, ou fresh loamy sand, situated at an eleration of 2,200 feet above sea level in Wurtemberg, consists of White Pine mixed with Scotch Pine, Spruce, and Fir in single individuals or groups. The White Pine represents, numerically, two thirds of the total number, scotch Pine is foumd among the dominant growth in part, but the Spruce and the small number of Firs show only codominant and oppressed trees.

The density of the growth was reported as satisfactory until in 1875 , when a snowstorm broke down much material, so that at present the density does not average over 0.7.

The stand, originating from seed, was several times thinned, and the last time, occasioned by the snowstorm, 400 White Pines were removed, with over 10,000 cubic feet of wood. The number of trees averaged 183 per acre, of which 142 White lines, with diameters varying from 7 to 24 inches, and 16 inches in the average, yielded altogether 9,510 cubic feet, while the other species added only 1,290 cubic feet. Comparison with the other acre yields recorded shows that under these conditions the product was less than in more favored situations, either the site or light couditions reducing the growth.

The diameters represented on a sample area were distributed as follows:

IVianeters inches..	8 to 10	10 to 12	12 to 14	14 to 16	16 to 18	18 to 20	20 to 22	22 to 24
Sumber of trees	7	$\because 0$	24	30	33	23	4	1

Of the Scotch Pines only four had reached diameters over 16 inches, and of the Spruces none nver 14 inches. The superiority of the White Pine also appears from the comparison of height trowth, which was established for every tive years by the measurement of average sample trees, ils follows:

Height grovth of White P'ine, Scotch Pine, and spmuce, hy gears.

- ample trees.	Age (years) amd height growth (in feet).																	
	;	10	15	20	8.	30	33	10	45	50	\%	60	6.5	\%0	\%)	so	85	00
Whate Phe height aro		9	18	29	38			59	©5	71						95		110
Souchione herght gro	\pm	1	-	-3				5		${ }^{6}$				- ${ }^{0}$	${ }^{82}$	84		${ }^{88}$
spruce heght grove	2	8		2				3						\% 7	\&0	$8: 2$	84	86

The preceding table shows how the slow growth of the first five years which the White l'ine has in common with the Norway Spruce is overcome before the fifteenth year, and by the twentieth year the White Pine has distanced the Scotch P'ine, gaining on it constantly until, by the ninetieth year, it has ontgrown it $12{ }^{2}$ per cent.

Himensions and gichels of ग'hite line in Cierman forests.

From these figures the capacity of the White Pine to produce large amounts of valuable stemmood is apparent. Thus, on soil on which the 100 -year-old trees developed only a beight of 92 feet, over 13,000 cubic feet of stemwood, corresponding to about 60,000 to 70,000 feet B. M., American scale, were cut per acre over and above about 1,200 cubic feet of material remored in previous thinnings. In every case the White Pine excels the common pine, and even the Spruce in this respect. It should be added that most of these plantations, made in the early part of this century, were not executed according to present superior methods, the species being an exotic and expensive was set out more in orchard fashion, as most planters in our country have been apt to do, at distances of 8,12 , and more feet apart. Owing to this fact the development was probably not as satisfactory in the earlier years as it might have been had the method of close planting, either pure or in misture, prevailet.

The superiority of growth over the German Spruce and Pine is more fully illustrated in the following table, which shows the distribution and proportion of trees of White Pine and Spruce and of White Pine and Scotch Pine that are found in given diameter classes in two mised planted growths of these species:

Distribution and proportion of White line and Spruce and Trhite Pine and Scotch Pine.

It appears that nearly 32 per cent of the White Pine is over $1:{ }^{2}$ inches fn diameter, as against less than 7 per cent of the Spruce, while 35 per cent of White Pine, as against 6.5 per cent of Scotch Pine, developed over 12 inches in the misture of these two, and over 11 per cent of the former belongs to sizes above 14 inches, which is hardly reached at that age by its competitor. These figures prove clearly that the White Pine excels the Scotch l'ine even during the age of
most rapid growth, so that the difference, in view of the steady growth of White Pine and the matled decrease in rate of growth in the Scotch Pine, would be markedly greater if older timber had been compared.

Just as in its native range, the White Pine is decidedly a heart pine, the sapwood changing early into the durable and more vialuable heartwood. In timber one hundred years old grown in the Palatinate the sap in many cases is less than 1 inch thick, so that 75 per cent and more of the entire stem is composed of heartrood.

In view of these facts it is quite safe to say that the White Pine in the future will be one of the prominent forest trees of Cermany. and perhips of Europe, as it will always be the king of roorls in our Northern and Eastern States.

THE WOOD OF THE WHITE PINE.

THE WOOD OF THE WHITE PINE.

By Filibert Roth, Division of Forestry.

White Pinc is a favorite material with the wood consumer in the Northeastern States on account of the combination of qualities it possesses. It is a light, soft, uniform, straight-grained timber, to be had in all markets in any quantity and in all dimensions, from the ship's mast to the clapboard. It seasons well, shrinks and warps but little, is quite durable, insect-proof, and takes oil and paint and has a good color, is light to handle, easy to saw and plane, takes nails without splitting, and is, in short, the ideal material for the carpenter and joiner, who handles the bulk of the 30 to 40 billion feet of samed timber and lumber anmally used in this country, of which White Pine furnishes over 30 per cent.

CHARACTER AND PHYSICAL PROPERTIES OF THE WOOD.

The structure of White Pine, like that of other pines, is simple. Ninety per cent and more of the weight of the dry wood is formed by the common wood fibers, or tracheids, 0.12 to 0.20 inches long, well suited for pulp material. The spring wood of each anuual ring passes gradually into the summer wood and thus the sharply defined bands of hard, dark and soft, light-colored material so conspicuons in the rings of all hard pine, especially Longleaf and Cuban Pine, are absent in White Pine, making the cutting of the wood by either plane or saw much easier than is the case with hard pincs. Sapwood and heartwood are quite distinct-the former white, the latter with a slightly brownish cast. The change from sapwool to heartwood takes place earlier in the young tree and the younger portions of old trees than in older timber. Thus, in a thrifty sapling thirty years old the saprood shows about eighteen rings on the stump, but only ten rings 35 feet from the ground. In trees over one hundred years old the number of rings in the saprood is generally over thirty at the stump, decreasing often to fifteen or trenty near the top. The number of rings in the sap, as in other pines, is smaller in thrifty and greater in slow-growing trees, while the width of the sapwood is generally least in slow-growing timber. Compared to other pines, White Pine has a narrow sap at all periods of its growth. While in the hard piues, like the Longleaf Pine, and still more in Loblolly and Shortleaf Pines, the sap forms generally from 50 to 75 per cent of the log, it is generally less than 35 per cent of mill-sized timber in White Pine. This highly valuable property of the White Pine is found in all localities, even in Europe, where the tree has been widely planted.

SPECIFIC WEIGHT.

To determine specific the meight of the rood and other physical properties a collection of serenty-three trees mas made, including material from the Ner Eugland States, Michigan aud Wisconsin, and also from the mountains of North Carolina.

The specific weight of the greenwood varies chiefly with the amount of sapwood and consequent abundance of moisture, since the heartrood contains but little water outside of its cell walls (except in some cases where the heartwood near the stump also contains liquid water). Geuerally the weight of the greenwood varies from about 40 to 50 pounds per cubic foot, and is greater in young poles than in old timber, which latter on this account floats readily, rarely sinking, even after years of immersion.

The specific weight of the kiln dry rood varies, generally from 0.33 to 0.40 (20 to 25 ponuds per cubic foot), is greater in the old tree than in the young sapling, is greater at the stump than
farther up in the same stem, is independent of orientation (as great on the north side as on the smoth sifle), is no greater on chat land than on the sandy soils, and seems in these particulars putite independent of locality. The wood from the swamp trees is no heavier nor limher than the wood from the mpland trees, the trees from New lingland differing apparently in way from those of either the Lalie region or Vorth Carolina.

Leaving ont of consideration the specitic weight of the limbs and knots (these being always heary, as in all pines), the arerage specitic weight of the dry wood of the stem was found to be for-

	$\begin{aligned} & \text { suernic } \\ & \text { sravaty. } \end{aligned}$
Five trees 200 to 250 sears old.	0.386
Five thees 12.5 to lto years ohd.	.3x8
Five trees 100 to 125 sears ohd.	. 383
Ten trees is to !9y years old.	. 378
	. 346
Xincteen trees 40 to 19 5rar old	. 3.3
Nineteen trees 30 to 39 years old	. 351

From the above, and still more from the table following, in which the trees are grouped according to age, it will be seen that White Pine displays a unformity of specific weight, and other properties dependent on weight, such as is entirely unknown in any other pine of the Eastern United States.

Acerage weight (hiln dry and green), moisture content, and shrinkage per cent of Thite Pine.
I.-TLEES 200 TO 254 YEAHS OLI).

Locality.	Oriminal number of trees.	Approsimate are of trees.	$\left\{\begin{array}{c}\text { Diamoter } \\ \text { wreast ligh } \\ \text { without } \\ \text { bark. }\end{array}\right.$	Width of riogs.	Suecitic grarity ${ }^{\text {a }} 100$.		'Moisturea-	
					Kiln dry.	Green.	of the weight of dry wooti.	in rolumie.
Lincoln Countr, Wis.	7	Fears. 60	Inches. 4.5	127110. 1.3	34.3	80	I'er cent	Per cent. 8.5
Do...............	8	50	2.0	. 7	819.3	9		8.5
Do--................	11	52	5.5	1.7	33.8	46		ع. 6
Chippewa County, Wis	8	65	8.0	2.9	$3 \times .7$	78	122	9.0
110	4	73	7.0	1.5	39.0	64	84	10.1
1)	10	67	4.2	1.2	35.7	22	121	8.0
Plymouth County, Mass	1	50	13.0	4.0	35.3	(i8	112	$\times .6$
	4	52	11.0	2.8	38.5	73	106	8.6
Worcester County Mans Do................	16	54 65 65	14.0 10.0	3. 6	39.0	69	${ }_{103}^{93}$	8.4
Do....	17 18	65 60 60	10.0 10.0	$\begin{array}{r}9.4 \\ \stackrel{3}{4} \\ \hline\end{array}$	36.5 35.5	67	105	7.3 7.5
Arerage.					36.8	7	115	8.0

VI.-THEES 40 TO 49 TEARS OLD.

Lincoln Countr, Wis ..	9	48	2.3	0.6	43.3	81	102	8.5
Do..............	10	47	6.0	2.0	31.3	86	16*	8.9
Marathon County. Wis	17	40	6.0	2.2	33.5	85	173	9.0
Do	18	40	6.0	2. 3	34.5	81	149	8. 6
110.	19	40	2.0	1.1	33.7	71	124	8.3
Do.	30	12	2.8	1.0	35, 0	67	105	8. 4
Do	21	44	4.0	1.4	33.8	82	158	7.4
Plymoutli Countr, Mass.	2	46	8.5	2. 6	36.2	58	76	8.4
Do...-.-.............	3	45	9.2	3.0	36.2	65	95	8.5
Do	5	49	13.7	3.9	35.0	61	93	8.4
Do	6	- 47	9.5	2.8	38.1	04	81	8.1
Do.	10	48	12.5	3.6	34.5	65	108	0.3
1)	11	49	10. 3	3. 1	39.0	67	84	9.3
Do	12	45	10.2	2.9	37.2	70	104	7.0
Worcester County, Mass	25	46	10.0	2.7	35.0	66	103	8. 1
Do	26	45	12.8	3.8	35.5	67	116	8. 6
Do...............	27	45	9.1	2.6	37. 7	75	118	9.4
Merrimack Counts, N , F	32	41	10.3	3.4	33.0	61	98	7.9
Do	33	40	8.6	3.1	31.7	64	1:2	8.4
Arerage					35.3	70	113	8.4

VII-TIEEES 30 TO 39 TEARS OLD.

Marathon County, Wis .	22	38	10	1.5	31.3	77	162	8.2
Plymouth County, Mass	7	36	8.3	3.5	36.5	64	93	8.3
	8	34	9.1	3.4	35.2	${ }_{60} 6$	105	9.2
Do.	9	35	12.0	4.7	35.7	66	100	7.7
Middlesex Nountr. Mass	13	38	11.0	3.4	35.2	74	131	0.1
Do..	14	38	10.8	3.6	33.7	7	147	8.2
Do.............	15	37	10.8	3.7	36.0	83	146	7.5
Worcester County, Mass	19	35	9.2	3.6	36. 1	61	85	*. 1
Do....................	20	33	11.2	4.8	$33 . \mathrm{ti}$	65	108	\%. 0
Do.	21	31	6.5	2.9	35. 2	63	99	9.5
		33	10.5	4.4	33.0	72	143	9.3
Do.	23	36	9.2	3.6	35. 2	68	111	8.7
Do......	㫛	35	7.0	3.9	34.5	66	109	8.2
Merrimack Countr, N. H		38		2.4		66		
Ioo...................	29	37	\%. 1	2.8	36.7	67	108	10.2
Do.	30	37	8. 2	3.11	36.7	71	111	8.5
Do.	31	39	9. 5	3.2	37.7	65	99	9.1
Do.	34	34	7.5	3.3	32.7	71	119	7.5
Do.	35	35	9.3	3. 7	34.5	7	123.	4.2
	36	35	10.3	3.9	30.0	64	145	8.11
Arerage					35.1	68	104 ,	8.5

VIII.-TREES 20 TO 30 YEARS OLI).

Linvilue, N.C	$\begin{aligned} & 459 \\ & 460 \end{aligned}$	22 20	$\begin{array}{r} 4.0 \\ \frac{8}{4} 0 \end{array}$	2.7 2.8	34.7 36.9	83 $\times 5$	104 150	9.4
Arerage					35.5	ot	165	9.8

From the table it appears that the specitic weight of the timber is quite independent of the rate of growth，and that the individual variation generally moves within very narom limits．The diagrams（figs． 16 and 15）show the relation of weight for the different sections from the stump

Fig．16．－Diagram showng specitic weight of wood at different cross sections of the stem：also a decreaso of weight from the mitury upwanh，and the similarity of the mool of diferent trees．（Fire trees，over sth years old．Dotted line indicates the average．）
uprard；the slightly greater weight of the older timber，as compared to sapling material，the uniform decrease in weight from stump upward，and also the uniformity of the several individuals of any group of trees is clearly apparent from the lines．The same decrease in weight from below

 years ohl；b ，five trecs， 125 to 160 years cold；c ，seven trees， 100 to 125 years old；d ，ten irces， 75 to 100 years old；e ，ten trees，su to it years old；f ，eighteen trees， 40 to 59 years old：$\%$ ，nibeteen trees． 30 to 39 years old．
uprard is observed in the wool of any given period of growth；thus，the wood of the last forty rings（next to the bark）was found to be as follows：

Hecrease in ucight of the wool of the last（outer）furty rings in the secernl diske from stump whario．

		Specitic erasity．			
	liok numiner．	Tree No.	Tree Sin． 1.	No．	\％Sors
1.		0.37	0． 82	0.44	0． 45
11		． 31	． 39	． 40	． 403
11.		． 30	． 31	． 36	． 39
15		－20．5	． 3.7	． 36	． 36
V ．		． 31	－$\quad 3$		． 37

As in other pines, there is usually an increase of weight in the crown, apparently due to an inthence of the limbs, but as this inthence is local, so the apparent result is local, and the weight is very irregular for the crown part of the stem; the pronounced increase is apparent only in the immediate vicinity of the limbs. The absence of a prononnced or sharply detined summer wood makes it diffenlt and impracticable to apply the microscopic methods to determine the variation of weight from pith to bark on any cross section. From the actual determinations of weight, it appears that for the lower portions of any normally grown tree there is usually at first an increase of treight from the pith outway, reaching a maximum somewhere between the fiftieth aud eighticth ring, maintained for a long period and usually followed by a very slow decrease in weight from there on outward. This variation is generally small, and never reaches the proportions met in sections of hard pine, such as Longleaf Pine, where it commonly amounts to 75 to 100 per cent of the weight of the lightest portion.

Csually about half the weight of a green log is water. The amount of moisture generally varies in the sapwood from about 120 to 160 per cent and from 40 to 60 per cent in the heartwoorl, the amount for the entire log, therefore, varying with the proportion of sap and heart is greatest in saplings and least in large mature trees, in the latter from about 90 to 120 per cent of the meight of the timber after it is kiln-dried. The mood parts with its moisture as easily as any mood in the market, dries rapidy, with little injury, and may safely be kiln-dried fresh from the sam, thongh in actual practice this method is almost unknown in the White Pine regions, the usual way of drying by carefully piling in immense piles, being the universal may of seasoning. Well air dried White Pime, as in an ordinary room, still retains S to 9 per cent moisture, and if unprotected by oil, paint, etc., is quite susceptible to changes of humidity, absorbing and giving off moisture at every change of temperature and humidity of the air.

SHRINKAGE.

In keeping with its smaller specitic weight, the shrinkage of White Pine is less than that of other pines. It is greater for sap than heart, aud therefore greater for sapling timber than for older trees. From the table on page $7 t$ it appears that the shrinkage in volume raries for the several groups of trees from S to 9 per cent, and, like the weight, is quite uniform for the different individuals of each group.

The ease and rapidity with which White Pine seasons, and the manner of distribution of White Pine lumber, encouraging proper seasoning before use, have done much to earn for White Pine the fame of being one of the woods which do "not shrink" nor "work," a virtue which is not only in part due to the small weight and consequent small shrinkage, but is largely the result of proper handling.

STRENGTH.

Being the lightest, White Pine is also the weakest among the pines of the Easteru Cuited States, as appears from the following general average:

Strength of Thite line at 1sper cent moisture.
Pounds per

,	Pounds pere square inch.
Compression endmise and in lending to trne elastic limit.	5,200
Bending to rupture.	7.900
Modulus of elasticity	1, 410,4100
Compression across tho grain (3 per cent deformation)	720
Shearing parallel to tiber	380

Out of about seven hundred tests made by the Division of Forestry, about 505 per cent fall within 10 per cent of this general average, and 90 per cent within " 25 per cent of the same. Though the test series for White Pine was by no means as full as is desirable, the above average results will probably be found fairly accurate and suthcient for general purposes. The table on the next page presents the average results for the several trees.

Acerage ntrenglh nf the wood at thite lime of different trees at 12 per cent moisture.

a losutticient data for a far average.
In the above table the data for trees 101 to 116 are insufficient. Both material and tests for trees 601 to 609 were satisfactory in every respect, and the results, therefore, of far water value than those for trees 101 to 116 .

In keeping with its greater weight, the wood of the butt logs is slightly stronger than that of the top, logs, and there is generally a regular difference between different parts of the same cross section. the center, as appears usual in pine, being the weakest, the heavier intermediate portion the strongest, and the peripheral part lying between the two.

For a more careful study of this relation, tests were made of a set of "2 by 2 inch sticks cut out of one \log from each of three trees, in such a manner that the centers of the logs formed one set, the part midway from center to bark another set, and the outer portion of the logs a third or outer set, the latter two being all quarter-sawed pieces. The tests furnished the following average re*ults:

$$
\text { Shength of } \partial^{2} \text { by } \ddot{z}^{2} \text { pieces nt } 1 \sim_{n}^{2} \text { per cent moisture. }
$$

It is apparent from the above that the perfect quarter-sawed material confirmed the other test results in showing the great similarity of the wood of these three trees. It also shows, however, that the effect of defects in an unselected lot reduces the strength values markedly in this species.

Arranging the results according to the position of the test pieces in the log, it is found that in rompression endwise the strength was: Center pieces, $5,5 \because 0$ pounds, or 78 per cent; intermediate, $\overline{6}, 000$ pounds, or 100 per cent; ontside pieces, $6, f 80$ pounds, or 95 per cent; showing that the heart pieces, as has been fonnd in other conifers, are always the weakest, thus verifying the results of the groneral series. The slight decrease from the intermediate to the ontside pieces is in keeping with the smaller weight of the latter and need not be ascribed to the fact that these pieces contained small proportions of sapwood. As might be expected, the uniformity of results in this properly selected and prepared material was greater than in the ordinary series. Of 58 tests, all tell within $\because=\bar{y}$ per cent of the average strength and 76 per cent within 10 per cent of the average.

In comection with a general study into the maximum unformity of wood, three scantlings of White Pine, with an average specific gravity of about 0.0 and an average compressive strength at is per cent moisture of 4,900 pounds, were examined, two being tested air-dry (8 per cent) and
the other after being soaked for three months in cold water. The results of these tests on White Pine are embodied in the following table:

Strength of contiguous bloctis of the same scantling of thite I'ine, sclect material, in compression enduise.
[Dimensions generally, 2.76 ly 2.76 hy 2.56 inches.]

Ninmber uf howk.		Dry scautling.		sombed scautling.	Stumbur of block.	Mry srantliug.		$\begin{aligned} & \text { soahed } \\ & \text { scantling. } \end{aligned}$
		1	2	8		1	\geq	;
1	Pounds per T'ounds per l'ounds per					Founds per Pounds ger I'oumls juel		
1.		$\begin{aligned} & s \%, i n \\ & 4,854 \end{aligned}$	$\begin{array}{r} \Delta q_{1} i n_{n} \\ 5,0,0 \end{array}$	\% in	26.	$\begin{gathered} 8 J, ~ i n \\ 5,070 \end{gathered}$	sy. in. $\text { 4. } \cdot \sin$	st. in.
\cdots		4,860	5, 150	2, 394	27.	4.940	4.940	
3.		4.690	5, U20	$\bigcirc 304$	24.	50	5. 010	- -
4.		4,840	4. 770	$\therefore 264$	24.	5.110	4, (5i4	.
5.		4. 760	4,770	6 \therefore, 700	30.	5.110		.
6.		4, ${ }^{2} 20$	4,320	2,3410	31.	4.950	-..-...-...	.
8.		4, 730	4, 050	$\because, 3017$	$3 \cdot$			
8.		4. 160	4,840	2,310	33.	4,951)	4,6! 11	.
9.		4,750	4.860	2.290	34.	4,900	4,7511	
10.		4,770	a (3, 460	2,310	35.	5, 040	4.670	.
11.		4.730	4.860	2, 340	36.	5,160	4,636	.
12.		4.760	5, 010	2,210	37.	5, 120	4, 81,	.
13.		4,770	2,370	38	5,100	4, 3311	
14.		4.670		2,340	39.	5, 230	4, fibil	
15.		4,600	t, (tu)	2,340	40.	5,280	a 6, 000	.
16.		4,660		2, 340	41.	5, 260	4, 8. 41	.
18.		4. 590 4.000	- - .	¢ $\begin{array}{r}\text {-. } \\ \text { - } 310\end{array}$	43.	5, 310	4. 4 ¢, 811	-
19.		4.619	4.910	2. 3111	44.	S,310	4. $\mathrm{T}, 0$	-
20.		4.880	a 6.600	2. 260	4.3.	5. 304	5 U4"	
21.		4.120	4,600	2. 1311	46.	5, 354	5. 1.0	
$\because 2$		4,870	4, 655	2,130	15.	5406	5.36.1	
$\square 3$		4.9711	4.720	48.	6, 3601	5, 314	
1 24.		4.941	4.800		49.	5. 364	万,	
$25 .$					80.	5. 5111		

It appears that in the tests on dry material the greatest diference betreen any tro contiguons blocks of select quarter-sawed White I'ine was 190 pounds per square inch, or 3.8 per cent of the total strength; that generally it was less than 2 per cent, and several times only about 0.2 per cent, but that in tests of this kind less theu 200 ponnds in the results can not be regarded as any differeuce at all, this amount being due to indeterminable differences found even in the best material, and partly due also to imperfections in the means and methods of testing. It is also clear that in the same scantling, though select and of small dimension (only 6 feet loug) a difference of nearly 900 pounds per square ivch, or 18 per cent of the strength, in compression endwise may be found, so that any inferences from scantling to scantling must be taken with great caution, and any accurate relations, such as the influence of seasoning, etc., can be made only in a manner similar to that employed in these uniformity tests.

From the general series of tests, also from the tests on the select 2 by 2 inch pieces, and in way of indication also from some of the tests in maximum uniformity, it appears that seasoning affects the wood of White Pine to about the same degree as that of other pines. The streugth of greenwood, or wood soaked to a point where additional immersion no longer changes the volume, is independent of differences in moisture. This is quite clear from the test in uniformity of the scantling immersed for three months. Though the blocks differed (especially near the ends) within wide limits as to the amount of moisture they contained, yet the streugth was found to be as uniform as in evenly dried timber. By drying green or fully saturated wood to about 2 per cent moisture (kiln-drying at 80° C.), the strength is more than donbled; and even if pieces well airdried are kiln-dried the strength is still increased by over 10 per cent. For timber to be used under cover and kept properly ventilated, it is safe to mesume that the strength, once seasomed, will be 50 per cent greater than when green, and if used in heated rooms, an increase of 100 per cent on the strength of the green timber may reasonably be expected. The diagram (tig. 18) well illustrates this feature.

Fig. 18.- Diagram showing effect of moisture on crushing strength.

DURABILITY.

With regard to its durability, White Pine is generally underrated. The soft, light-colored wood suggests general frailty aud a lack of resistance, in which resistance to decay is included. In the region where it grows the unasual great durability of the heartwood of White Pine is well known; "the stumps of White P'ine last a lifetime;" old logs, covered with moss and often with young Pophars and Birch growing from their surface are uncovered and utilized as shingle bolts. White Pine shingles wear out, but rarely decay, and a good sidewalk of White line is considered the best to be lad. As in other pines, the sapwood decays readily, but this being narrow in good logs, more than half of all White Pine sawed is good durable heart, a wool which is neither subject to decay nor to the boriug insects any more than the heavy resinons heart of the lied Pine or of the Southern pines.

COMPARISON WITH OTHER WOODS.

fiencrally White l'ine is logned and milled on a large scale, cut mostly into boards and plank, and there is today no common wood which is more economically handed and more carefully selected.

Compared to other pines, the White Pine is offered more extensively and has a greater influence on lumber markets than any other wood used. It is more miform, lighter, softer, and
shrinks less thau any other pine; it is durable, insect prooi, and suited to a much greater number of uses than the wood of other pines.

The following table exhibits the position of White Pine as to weight and strength:
Weight and strength of White Pine compared with other pines.

Name of pines.	specinc grarity		Leurlinew.				Compression endwise.	
	Speci	rity	Iupture.		To relative clastic limit.			
	Actual.	Iielative.	Pounds per suluare incb.	Itelative.	Pounds persquare jncts.	Felative.	Pounds persquare inch.	Lelative.
Longleaf.	61	110	12,800	100	10,300	100	8. 30 C	100
Loblolly	53	87	11,800	92	9,500	92	7.800	94
Shortleaf .-....	51	84	10, 400	81	7,800	76	6,500	-8
Red or Norway	48	78	- 2100	71	7.700	75	6, 700	81
White	3.5	62	7,900	62	6.400	62	5, 200	62

Of the several columns, that on specific meight being at once the simplest and most truly representative of the eutire stem of mature timber, illastrates probably the relative position of these five pines most perfectly. The Southern pines, if only the saw timber is cousidered, will prove even heavier and strouger by several per cent than appears from this table.

USES OF WHITE PINE.

There is no wood in the United States, perhaps in the world, of which there is a greater quantity used, nor one which is put to a greater variety of uses than that of the White Pine. At present the great mass of White Pine, probably not less than 95 per cent of the entire output, is cut into even lengths, usually 1 ? to 18 feet long, preferably 16 feet (full 75 per cent being 16 feet), and is converted principally into boardis, plank, and "dimension stuff;" 1 to 4 inches thick and 4 inches aud upward in midth, the widths varying always by an even number of inches.

In all the better mills the slabs are cut into laths, pickets, etc., while the thickest slabs aud the sound portions of very defective logs are cut into shingles. These "shingle cants" are of variable sizes, usually coutaining knots and decayed portions; these defects in the shingle are cut out subsequently by the knot sawyers. Shingles of regular widths are ravely made. In the sawing of the great mass of lumber the main saw merely cuts slices of various thicknesses from the logs, and their conversion into certain widths, as well as the removal of noven edges, is left to the edger, on whose knomledge and skill much of the success of the mill depends. Usually the clear stuft, whenever possible, is left in broad and thick planks; the rest is cut into different widths so as to insure the greatest value, in most cases boards of extra width and select boards, for siding, etc., receiving preference and determining the conversion. The clear stuff, or "uppers," rarely forming over 15 per cent of the cut in our times, are used by manufacturers of sash, doors, and blinds, and by furniture men, and the most select portions by model makers and other special maufacturers where the price of the material is of secondary consideration. For material of this kind the consumer generally pays over $\$ 50$ per 1,000 feet B. MI., and in some cases it is retailed at over $\$ 100$. Of the remainder, the great mass is used in the construction of frame houses, where commonly everything of wood, from cellar to roof, is made of this material. Of the inferior grades, enormous quautities are used for boxes, and much also is used as fencing and barn lumber.

For box shooks, straight-stave cooperage, pails, tubs, etc, a great deal of small sapling pine is employed. Smaller quautities of better-grade White Pine are used in mill constructions (for chutes, elevators, etc.); also in the manufacture of farm implements, for large surfaces, panelwork, etc., and in boat and ship building for decking, in titting up cabins, for all kinds of spars, where its lightness, stiffness, and durability, together with its tine form and dimensions, render it a special favorite.

Considerable quantities of hewn and round timbers are still brought to market for export, but on the whole this trade is insignificant when compared to the entire ontput.

White Pine is universally seasoned in the yard; most of the lumber does not reach the consumer until a year after maunfacture. The ease of working induces the consumers to do a great deal of 20233-No. 22 - 6
resawing. The flooring, and even siding for the smaller markets, and for cheap construction are commonly the selected parts of sheathing and other inferior grades, as classed at the mill, and it is rave to find, in recent years, the best grades of White Pine in the smaller retailers' yards.

In the classification of White Pine a great degree of linesse has been introduced, and the closest attention is paid here, as well as in edging and trimming, to the probable future use of a given piece of material.

From the enormous consumption of White Pine alone, and also from the great variety of uses to which it is put, it is clear that any material diminution of supplies must aftect extensively and intimately the wood market and wood industries of this country. The common claim of substitution of some other pine or conifer, and still more the belief in the use of hardwoods in the place of White Pine, have but little in their favor. A shipping case of White Pine reguires about half the effiort to make and only 50 to 6.5 per cent of the effort to haul or hamdle as one made of Southern line. its most natural substitute. Similarly, a White liue lath nails with hall the effort, strinks less, and thus is far more satisfactory than one made of hard pine. For a good door or for satis. factory sash and blinds only the Cypress and White Cedar can enter as a substitute, and both are too restricted in their occurreuce, and the Cypress has too little chance of future regeneration to deserve consideration as a general substitute. The transportation of Pacific coast timbers, a small portion of which have the properties of White Pine, to the densely populated Eastern T-nited States is not likely to occur on a large scale, for the cost of hauling alone equals the value of good grades of Eastern lumber.

APPENDIX.

TABLES OF MEASUREMENTS.

APPENDIX.

TABLES OF MEASUREMENTS.

The following tables record the detail investigations, measurements, and tabulations which have served as a basis for the discussion of the gromth of the White l'ine. The measurements in the field were made by Mr. Austin Cary, of Baugor, Me., and by Mr. A. K. Modziansky, of the Division of Forestry. Mr. Mlodziansky has also executed the laborions calculations, aud is responsible for their accuracy.

The methods employed in this investigation have been described in general in Bulletin No. 20, "Measuring the forest crop," of the Division of Forestry. They are in the main similar to those practiced by European foresters, with some minor and one important modification, which latter Mr. Mlodziansky has developed during the course of his work in collating the data. This moditication, which refers to the analyzing of trees for ascertaining the rate of gromth, consists in grouping by age classes, and instead of analyzing each single-measured tree, as is usually done in European practice, averages the data of measurement from a number of trees grouped and then analyzes the growth of the average tree thus constructed of each age class or group. In this way the work of collating is very considerably reduced and the measurements of a rery much larger number of trees can be expeditiously utilized for average statement. It is needful, however, in order to be quite satisfactory, that the classification or grouping of trees be made in the woods while measuring, a task which requires considerable judgment. When the classification is so done in the woods, the mechanical work is further simplified by entering the measurements for each group in sets, the measurements of cross sections taken at the same height being entered on the same sheet for all trees of the group, When the averaging of the measurements can at once be performed on the same sheets.

The forms used in the investigation are also appended, and will serve to further elucidate the methods pursued.

Since it was not expedient to fell trees specially for these measurements, it was not almays possible to secure all measurements in the most desirable form; for instance, the desirable measurement and correlation to age of diameters at breast height, and at short intervals of the height, could not be obtained, because the work was performed on trees cut in regular lumbering opera. tions; hence, the data had to be manipulated and interpolations used so as to secure satisfactory approximations for the periodic growth. The number of trees analyzed (some 700) is so large that any deficiency of method may be considered as neutralized.

TABLES OF CUBIC AND BOARD CONTENTS OF WHITE PINE.
The tables of cubic and board conteuts of White Pine are based upon the measurements of piue taken for aunlysis from the rarious sites described in the tabulations of acre yields.

The stem of each iudividual tree was calipered at intervals of 4 or 8 feet, and the volumes of the portions between two successive diameter measurements mere calculated separately, considering them as frustrums of cones. From the volumes of stems of similar height aud diameter, breast high, the average volume was noted. The volumes of stems of missiug dimensions mas calculated by employing the corresponding factors of shape. The factor of shape is determined by dividing the volume of a tree by that of a cylinder of the same height and diameter, breast high; it shoms the tajer of the stem and is usually expressed in decimals, thus representing arithmetically the form of the stem. For determining the volume of a tree by means of the factor of shape, it is necessary only to measure the diameter aud height of the tree, find the volume of a cylinder of the correspondiug beight and diameter, and multiply that volume by the factor of shape.

The lumber of stems in board feet was determined by employing Scribuer's rule.
Tamer I. - Volnmes of boles of White line.

Table II- Actual tapering and board contents of stems of White line jrom is to $51 \pm$ inches in diameter, breast high.

: Diameter (in iuches) with bark at a height from round of

Number of 16 finet
logrs of 5 inethes amal
more at small end. Lumber.

Table: III. - Masurements of White line grom under similar conditions, grouped in age classes for aceraging.
[The grougs of trees measured are sample arees recorded in Table VI.]

						Ratio of		- lect	tion.
Groap, location, and description of eith.	$\begin{aligned} & \text { Tree } \\ & \text { num. } \\ & \text { herer. } \end{aligned}$	Age.	Diameler with bark (breast higy).	$\begin{aligned} & \text { Total } \\ & \text { height. } \end{aligned}$	Factor of shape.	the length of crown to the to tal height of the tree.	Solame of boles.	Current anמual.	Average aunual.
groce a.									
Massachusetts and Nirm Mamehire.	21	Frs.	Iuches.	Feet. 51.3	0.37	0.37	Cubicft.	Cubic 9 ¢	Cubicyt.
White Pine mixed with hariwoots on a hill. Soil, brown or gellowish savdy loam, medum-sizen grain, light, loose, fresh, and well drained, with a leaty surface cover. Trees, $400-500$ to the acre.	33	42	8.6	03.3	. 31	. 34	13.1		
	2	48	8.5	69.0	5\%	. 21	13.8		
	19	39	9.2	55.2	. 58.	- 51	14.3		
	3	45	${ }_{9}^{9.2}$	6.5	. 51	. 3.5	15. 61		
	31	41	9.5	63.0	. 57	- ${ }^{16}$	14.11		
	27	47	9. 1	64.0	. 56	-411	1.1. 9		
	25	47	10.0	62.7 53.0	- 52	-3. 5	17.0		
		36 4 4	${ }^{11.2} 10.3$	53.0 80.0	-52	. 54	18.4 21.3		
	1	55	13.0	61.5	. 511	- 4	32. 7		
	26	47	12.8	69.5	. 52	. 37	33.1		
Arerage.		4	9.8	62.3	. 53	. 38	18.1	0. \%0	0.41
Massachusetts and New Hamphire.									
Thite Pine on a lerel plain site. Soil a brown or tel low- brown loamy samd, underlaill by sand or sand with gravel in medium or sometimes coarse grain. plallow, porous, light, moderately loose, fresh, and well drained. with an abundant leaty surface cover. Trees, 350-400 to the acre.	28	41	6. 8	43.8	$0.4 i$	0.42	5.6		
	29	41	8.1	51.8	. 51	. 51			
	$3{ }^{7}$	39 40	8.3 8.2	5	-. 51	. 40	8.8		
	8	40	9.1	5 F .2	. 51	. 36	13.0		
	${ }^{6}$	49	9.5	63.7	. 51	. 43	16.3		
	12	49	10.2	68.0	- ${ }^{5}$. 47	16.6		
	11	50 54	10.3 11.2	63.0 59.0	. 50	. 46	19.0		
	9	39	12.0	53.1	48	. 51	22.		
	10	51	12.5	60.9	. 52	. 41	31.3		
	5	$3{ }^{3}$	13.7	\%1.5	. 51	. 42	31.3		
Arerage		45	9.9	60.0	.50	. 44	17.0	0.50	0.38
Pemsylvania.									
White I'ine intermixed with bardmools aud occasional Hemlock. Soil, clayes loam, with vellow-brown shales isit, deep, fresh, and well drained.	3	46	12.0	60.0	0.43	0. 62	20.2		
	12	44	11.5	38.5	. 41	. 55	20.0		
	$\frac{2}{2}$	$4{ }_{4}^{4}$	12.5 11.0	53.0 59.0	. 41	67 .64 .48	19.4		
	16	4	11.5	56.0	.45	. 50	18.3		
	3	45	11.0	58.5	- 49	. 52	17.9		
	5	17	10.5	bib, 0	-48	. 43	17.3		
	6	47	10.0	59.0	. 51	. 46	16.4		
	21	48	10.5	$5 \mathrm{S.0}$	- 46	. 48	16.3		
	19	47	11.0	53. 0	-42	. 49	15.4		
Aver		46	11.0	58.0	. 45	. 52	18.0	0.70	0.39
grote c.									
Maine.									
White Pine with geattering Hemlock, necasional Spruce and Fir, on a level plain site; scanty undergrowth of Hazel and young Hemlock. sonil, gray sand, some. times browin or loamy, with 3 inches regetable mold. cleep, fresh, leaty surface corer; clayey subswit probably 4 or 5 feet below surface. Density of crowa cover, U. \boldsymbol{z}. Trees. 370 to the acre.	9	50	14.5	${ }_{6}^{64}$	0.45	0. 5.5	33.1		
	8	59 59	13.3 $1 \because 8$ 12	${ }_{61}^{60}$	$\times 4$	-588			
	3	511	11.8	58	. 52	- 41	2.1		
	10	59	10.2	65	. 59	-3.7	29.1		
	12	50	11.0	62	. 50	.35	21.1		
Average		54	12.3	62	. 49	. 44	24.8	0,94	0.46
I'musylcania.									
From a roung Thite line grove mixed mith mature Spruce, Hemlock, and scattering hardrools. Sonl, fresh saud well drained.			14. 5	54	0.46	0.66	23. 7	
	$\frac{3}{3}$	31 511	14.5 $\times .5$	58 50	. 41	. 66	31.5 9.5		
	4	15	8.1	40	4,	. 61	7.3		
		52	11.0	50	+ 43	. 60	14.2		
		49	11.5	46	. 4	. 61	15.7		
		32	0.5	5 !	.46	. 66	12.1		
		54	8.11	54	. 53	. 66	10.1		
	4	3.	10.0	50	48	-6	14.7		
Arerame		53	11.5	32	47	64	16.0	10.68	0.30
	Weachasio.								
An onen grore of hardwowls, in sthich Thite Pine is	22	\&2	14.0	8.	(1. 4 !	0.39	43.0		
	-	\cdots	14.7	81	. 511	. 12	46.11	
arateret in rarsing prowrtiont, on leroken band, with	31		1\%	:2	4*	. 41	48.1		
Foung hardwoms, Fur, few Hembok, and Hornhean.	27	9	19"	8	. 18	, 31	5 51. 8		
	31		119.	8	.480	.	78.		
lonse tecp. fresh, and well draiucd, with an abumaut	33	89	18.7	(4)	. 47	. 51	83.7		
Areras		$8{ }^{\prime 24}$	16.0	83	. 43	.40	58.9	2.16	0.71

Table III.-Measurements of White Pine grown under similar conditions, grouped in age classes for areraging-Continued.

grocep a.

richigan.

Open grore on n lerel plain, along the banks of a river, of nised White and Nurway Pine, with scattering White Birch, and oceasionally Wak, Hackmatack, anil Banksian Pine; undergrowth scanty, of roung Fir, Cedar (Thuje occidentalis), and few small Oaks. Noil gray or light brown, sand,, medium fine-grained, porous, light, loose, dry (in places fresh), with a leafy surface cover.

Arerage \qquad

1		
1		
24	700	
24	96	
18	89	
	9	99

13.5
14.4
16.5
210.0

\mid
94
90
94
100

0.44	0.57	41.41
.47	19	48
47	.53	6.7
41	.46	9.9

\qquad
$\overline{94}-\overline{16.0}-\overline{94}-\frac{13}{.51}-\frac{1.5}{2.13}-\overline{0.65}$

GROL-P H.
Michigan.
Open grove on a lerel plain, along the banks of a rirer, of miser White and Norway Pine, with scattering White Birch, and occasionally Oak, Hackmatack, and Banksian Pine: undergrowth scantr, of roung Fir, Cedar (Thuja eceidentalis), and a few small (aks. grained, porous, light, loose, dry (in places fresh). grained, porous, light, loo

Average \qquad

- iROCNEI.

Michinan.
Normar Pine (67 per cent), mised mith White Line (32 per cent), aud occasional Lbock Maple, on a level plain. Soil, yellow or gras sand, fresh, moderatels loose. with a surface corer of brakes; subsoil, sandy. Density of crown corer, 0.7 . Trees, 182 to the acre.

> Arerage
\qquad

sisocte k.

Tisconsin.

An open grove of hardmools, in which White Pine is scattered in rarying proportions, on liroken land, with frequent swamps in the hollows: undergrowth, of yonng hardwoods. Fir, few Hemlock, and Hornheam Soil, light-brown sandy loam, medism tine grain, loose, deep, fresb, and well drained, with an abundant leafy surface cover.

TAulfe III.- Metumrementa of While l'ine grown under similar conditions, grouped in age claszes for areraging-Continued.

dirmug loration, and uldacription of site.	Tree num. ber.	Age.	Diameter with bark (breast high).	$\begin{aligned} & \text { Totni } \\ & \text { heightst. } \end{aligned}$	Factor of shape.	Ratio of thelength of crown to the to. tal height of the trer.	Volune of bulce.	\qquad Current annual.	tion. Averare apuual.
CRUCP L .									
Michigan.		Irs.	Inches.	Feet,			Cutric fl.	Cuticft.	Cubicft.
White Pine ($\% 0$ per cent) infermixed with Norway Jine (14 fer cent) and ilemlock (15 per cent), with scattering Cedar (Thuja occidentatis) and liock Maple, and occasional Beech and Whito Birch, on a lerel plain. nndergrowth, dense, of voung Fir. Soil, gray saud, ireshand deep, light and loose, with a surface cover of scanty leaves; subsoil, sauds loam, underlaid by clay, Density of crown, 0.8. Drees, 156 to the acre.	34 9	140 136	19.5 10.7	194 114	0.43	0.34	109.8 115.1	Onbio jt	
	33	135	20.0	115	. 18	-32	121.5		
	37	134	22.0	113	. 31	. 27	123.5		
	36	136	22, 5	123	. 30	. 30	130. 1		
	35	135	21.8	122	- 44	. 32	136. 4		
	2	138	22.8	119	- 40	. 30	138.5		
	\because	133	23.2	116	- 42	. 38	141.1		
	4	130	24.0	1 16:	. 43	- 40	143.5		
	3	135	21.0	108	-42	. 35	144.7		
	1	136	23.5	113	- 43	. 26	146. 5		
	16	139	25.0	132	. 44	. 50	187.3		
Average		136	22.3	116	.42	. 34	136.0	1.60	1.00
(incicy ${ }^{\text {a }}$.	1								
Michigan.									
A two-roof grove, upper roof formed of White Pine, under roof of Beech, Maple, F゙ir, and occasionally White Hirchami Heralock; uadergrowth, moderatcly lense, of joung bardwoods and Fir. Soil, browa loamy band. fresh, moderatels lonse, with a surface corer of brakes and grass; subsoil, sand with stones.	32	1331	15.8	98	11.43 .15	0. 43	48.6		
	12	132	16.3	$8{ }^{2}$. 47	. 66	61.7		
	40	145	18.6	1161	. 38	. 14	71.1		
	25	1:8	20.5	918	12	.47	44.6		
	27	153	19,0	114	. 41	. $\because 8$	8.0		
		131	22.5	112	. 41	. 46	129.4		
	26	148	23.0	$1: 6$. 41	. 46	137.9		
	311	15.3	23, 17	110	. 17	. 30	13\%. 6		
	11	136	-4.t	115	. 41	. 40	154.1		
Are		140	10.8	112	13	. 44	93.3	1.48	v. 70
Normay Ping (67 per cent) mixal with White Pine (32 per cent), and occasional Liock Maple, on a level flain. Soil, yellow or gray sand, fresh, moderately loose, with a surface cover of brakes: subsoil, sandy. Density of crown corer, 0.7. Trees, 182 to the acre.	5		20.2				88.9		
	6.5	${ }_{1}^{135}$	$\stackrel{1}{01.1}$	114	. 39	. 51	107.5 139.6		
	3.5	135	29.0	121	- ${ }^{0}$. 43	139.6		
Arerage.		$1+0$	21.0	113	. 39	. 50	112.1	2.18	0.80
Michigan.									
White Pine (to per cent)intermikerl with Norway l'ine (14 jer ceat) and Hemlock (15 percent), with scattering Cedar (Thuja occidentalis) and 1Bock Maple, aud occasional Ikech and White Jiirch, on a level plain: undergrowth denge, of young Fir. Soil, gray 8adal, frceb aml deep, light and loose, with a surface cover of scanty leares: subsoil, sandy loam, underlairl by clay. Density of crown cover, 0.8 . 'Irces, 156 to the acre.				117 110	0. 11	0.30 .39	138.9 140.6		
	11	142	$\bigcirc 3.0$	110	.41 .43	.39 .36	140.6 148.0		
	20	$1+2$	-2.0	119	-19	. 26	157.3		
	30	143	24.2	116	. 45	. 38	164.3		
	24	149	25.0	113	. 46	-34	168.8		
	5	148	26.3	115	.16	. 38	205.4		
Average.		142 ${ }^{\prime}$	24.0	110	. 44	. 34	180.5	2. 20	1.10
White Ping mixel more or less with Fellow Birch, Fouck Maple, Normay l'ine, aud nccasional Basa, Pop. lar, and Elm, on wneven lan!! fink of drift rideges and lublows, frergantly full of water, soil, a mixture of banm, saul. and stomes, with 2 to 3 jaches black wohl on top, aud fairly covered with leates.	3	160	23.5	104	0. 40	0.44	127		
	4	170	24.0	119	.46	. 11	1712		
	5	178	ㄴ․․․	$1: 4$. 18	. 38	176		
	6	170	25.7	111	+5	. 41	181		
	7	175	27.3	122	43	. 46	217		
	8	168	30.5	114	- 4	. 42	258		
	15	185	23.2	110	. 42	. 34	138		
	9	173	26.0	112	. 6	. 28	149		
Averance.....................		172	25.5	113	. 44	. 39	182	1.44	1. 10
Sormar linn intermixel with White Pine in varying propurtions, on rolline laml, with open places of Red (rak, Maple, aull bisech; no wnlergrowth. Soil, light-hrosen and (alightly hoamy) very icep, medinm time. light, buse, dry, and well drained, with a monlerately leady surface iontr. 									
	1.3	1×8	26. 7	118	. 4.5	. 39	902.1		
	3	180	31.0	119	. 45	. 40	285.6	
		183	27.6	118	. 44	. 51	220.5	2.22	3.19

TABLE III.-Measurcments of White Pine grown under similar conditions, gronped in aye clasmes jor areraging-Continued.

Group, location, and description of site.	$\left\lvert\, \begin{gathered} \text { Tree } \\ \text { num. } \\ \text { ber. } \end{gathered}\right.$	Ago.	Diameter with bark (breast bigh).	$\begin{aligned} & \text { Total } \\ & \text { height. } \end{aligned}$	Factor of shape.	liatio of the length of crown to the total height of the tree.	Volume of boles.	Current annual.	tion. Arerage annnal.
(iroup \mathbf{r}. Tisconsin. White Pine intermixed with Yellow Birch, Fock Maple, Bass, and Norway P'ine, on ridge land, with hollows sometimes finll of water, more often open grassy 8 ramps, with Alder and Hackmatack, fringed by pine. Soil, red clayey loam, mixed with sanil and stones of all sizes, moist; subsoil, sumetimes of clay, sometimes of sand.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 8 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { Tr8. } \\ & 204 \\ & 2040 \\ & 210 \\ & 207 \\ & 200 \\ & 206 \\ & 200 \\ & 210 \\ & 214 \\ & 210 \end{aligned}$	Inches. 27.3 25.2 31.0 29.5 29.2 30.0 34.0 36.0 39.0	$\begin{array}{r} \text { Fe't. } \\ 123 \\ 137 \\ 127 \\ 116 \\ 130 \\ 133 \\ 118 \\ 113 \\ 130 \end{array}$	$\begin{array}{r} 0.44 \\ .48 \\ .34 \\ .43 \\ .46 \\ .43 \\ .39 \\ .39 \\ .38 \end{array}$	$\begin{array}{r} 0.59 \\ .41 \\ .35 \\ .51 \\ .09 \\ .32 \\ .37 \\ .38 \\ .99 \end{array}$	Cubic rit. 219 927 246 239 282 284 992 312 415	Cubic ft.	Cubic ft.
Arerage \qquad GROUP s. Misconsin.		217	31.2	12.)	. 42	43	279	1.67	1.34
White Pine intermixed with Fellow Birch. Fock Maple, Bass, and Norway Pine, on ridge land, with hollows sometimes full of water, more often open grassy 8wamps, with Dlder and Hackmatack, fringed by pine. soil, red clayey loam, mixed with saud and stones of all sizes, moist; subsoil, sometimes of clay, sometimes of sand.	$\begin{aligned} & 10 \\ & 11 \\ & 14 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	211 228 228 220 207 204 204 205 212 204	20.2 23.6 23.8 27.8 27.2 27.0 27.0 27.0 27.8 27.3	$\begin{aligned} & 116 \\ & 113 \\ & 121 \\ & 107 \\ & 121 \\ & 122 \\ & 114 \\ & 112 \end{aligned}$	$\begin{array}{r} 0.51 \\ .43 \\ .45 \\ .66 \\ .42 \\ .43 \\ .41 \\ .41 \end{array}$	$\begin{gathered} 0.64 \\ .42 \\ .43 \\ .28 \\ .43 \\ .35 \\ .31 \\ .41 \end{gathered}$	132 148 153 200 204 204 210 180 186	
Average \qquad GROCP T. Hisconsin.		211	25.4	114	. 44	. 42	176.5	0.83	11. 83
White Pine mixed with hardwools, on drift and someWhat uneven land; undergrow th, of young hardwoods and Fir. Soil, clafer, underlaid ly a hardpan of clay and stones, fresh with s.inch mold on top.	1 2 3 4 5 6 7 8 9	$\begin{aligned} & 204 \\ & 202 \\ & 213 \\ & 213 \\ & .211 \\ & .216 \\ & 202 \\ & 204 \\ & 212 \\ & 212 \end{aligned}$	$\begin{aligned} & 24.7 \\ & 27.0 \\ & 27.0 \\ & 26.0 \\ & 26.8 \\ & 24.0 \\ & 29.0 \\ & 290 \\ & 30.0 \end{aligned}$	$\begin{aligned} & 1112 \\ & 113 \\ & 121 \\ & 120 \\ & 126 \\ & 134 \\ & 132 \\ & 133 \\ & 133 \end{aligned}$	$\begin{array}{r} 0.49 \\ .41 \\ .64 \\ .43 \\ 4.4 \\ .44 \\ .49 \\ .41 \\ 44 \end{array}$	$\begin{array}{r} 0.45 \\ .33 \\ .37 \\ .41 \\ .40 \\ .12 \\ .37 \\ .39 \\ .42 \end{array}$	166 183 191 201 210 187 238 238 250 291		.
Average \qquad group u. Tisconsin.	1	211	27.0	114	. 42	. 4	213	1. 49	
White Pine mixed more or less with Fellow Birch, Rock Maple, Norway Pine, and occasional Bass, Poplar, and Elm, on uneven land, full of drift ridges and hollows, frequently fall of water. Soil, a mixture of loam, sand, and stones, with 2 to 3 inches black mold on top, and fairly covered with leares.	10 11 13 13 16 17	216 222 2228 298 220 220 218 218	31.8 3.8 3.0 24.8 24.0 24.5 29.0	$\begin{aligned} & 121 \\ & 123 \\ & 116 \\ & 100 \\ & 106 \\ & 118 \end{aligned}$	$\begin{array}{r}0.43 \\ .43 \\ .41 \\ .49 \\ .45 \\ .44 \\ \hline\end{array}$	$\begin{array}{r}0.411 \\ .46 \\ .40 \\ .27 \\ .35 \\ .49 \\ \hline\end{array}$			
Average \qquad GROTP ท゙。 Michigan.		221	28.2	114	. 44	. 39	29+	1.37	
A trooroof grove, upper roof formed of White Pine, under roof of Theech, Maple, Fir, and occasionally White Birch and Hemlock; undergrowth, moderately rense, of young hardwoods and Fir. Soil, brown loamy sand, fresh, moderately hoose, with a surface coser of brakes and grass; subsoil, sand witb stones.	$\begin{array}{r} 41 \\ 8 \\ 30 \\ 1 \\ 1 \\ 28 \\ 34 \\ 10 \\ 33 \\ 39 \\ 49 \\ 3 \end{array}$		$\begin{aligned} & 20.0 \\ & 34.5 \\ & 27.5 \\ & 27.5 \\ & 38.3 \\ & 30.2 \\ & 33.0 \\ & 33.0 \\ & 33.0 \\ & 37.0 \\ & 40.0 \end{aligned}$	$\begin{aligned} & 110 \\ & 137 \\ & 138 \\ & 129 \\ & 143 \\ & 141 \\ & 121 \\ & 140 \\ & 144 \\ & 141 \\ & 125 \end{aligned}$	$\begin{array}{r} 0.43 \\ .42 \\ .38 \\ .41 \\ .42 \\ .42 \\ .44 \\ .38 \\ .45 \\ .41 \\ .43 \end{array}$	$\begin{array}{r}0.46 \\ \text { (3) } \\ 41 \\ .38 \\ .60 \\ .31 \\ .43 \\ .49 \\ .77 \\ .55 \\ .40 \\ \hline\end{array}$			
Average \qquad GROCP w. Michigan.		233	30.3	135	. 41	. 48	2:56.	1.05	1.27
A tro-roof grove, upper roof formed by White line cio per cent) and Norway Pine (20 per cent), under ronf of fine, tall Hemlock: nintergrowth, of young Hewlock, Seech, and Dwarf Maple. Soil, brown loamy sand deep, fine (for sand), porous, lonse, and well trained (water stands in low ground), with a moderately leaty surface cover; subsoil, same as soil.	2 11 1 6 0 10 10 10 10 10 13 9 4 8 19 19		$\begin{aligned} & 23.2 \\ & 23.8 \\ & 24.8 \\ & 23.5 \\ & 24.5 \\ & 27.0 \\ & 24.0 \\ & 35.5 \\ & 25.5 \\ & 26.0 \\ & 31.0 \\ & 36.2 \\ & 27.11 \\ & 29.10 \\ & 34.11 \\ & 33.0 \end{aligned}$			$\begin{array}{r} 0.59 \\ .43 \\ .43 \\ .31 \\ .40 \\ .36 \\ .44 \\ .42 \\ .42 \\ .43 \\ .35 \\ .42 \\ .41 \\ .41 \\ .62 \\ .39 \end{array}$			
			26.5	1 ± 0	. 4	1.11	236.1	1. 64	

(1) OLD-GROW'TH PINE:
(1) nominast trees.

Arerare throughout the range.]
(224 trees.)

Fig. 19.-Dingram showing rate of height growth of duminant trees.

（．\＆）（ILD．GROWTH PISEーCHntinued．
（2）Codominast trees．
［Average throughout the range．］
（106 trees．）

Age．	Diameter at height of $2 \frac{2}{8}$ feet （without hark）．	$\begin{aligned} & \text { Toral } \\ & \text { height } \\ & \text { of free. } \end{aligned}$	Volume of stem （without larks）	Relative per cent of total volunie．			I＇eriorlic accretion．			Average annual acerction	Current annual acerction．
				Heart． woon．	Sapwoot．	Jiark．	Decade．	Height．	Tolume．		
${ }^{1}$ Feurs．＇	Inclies．	Fiet．	Cubic ft．	Per cent	Percent．	Tercent．			Culic fo．	Crubicjt．	Cubic fl．
1 $\begin{array}{r}10 \\ 20\end{array}$	0.8 2.3	6.0 16.0	(i)				1	$\begin{array}{r} 6.0 \\ 10.0 \end{array}$	（i）	11） 0.02	
3010	4.3	28.5	1.6				3	12．0	1.2	－0．03	（1） 12
41	5.8	38.0	4.4				4	9.5	2.4	． 11	． 29
In	7． 5	47.5	7.7				5	9.5	3.3	． 15	． 33
til）	1.0	56.5	11.3				6	9.0	3.6	． 19	． 36
－11	10.5	64.1	17.4				7	7.5	6.1	．23	． 61
－11	11.9	71.5	24.9				8	7.3	7.5	． 31	.75
90	13.3	T9．0	34.4				9	7.5	9.5	． 35	． 95
10	14.7	84.5	44.5				10	5.5	10.2	． 45	1.02
110	16．0	89.5	55.5				11	5.0	11.0	． 50	1.10
1：110	17.3	94.5	$6 \overline{1.5}$	．．．．．			12	5.0	12．0	． 56	1.80
13	18.6	19.0	78.6				13	4.5	11． 2	． 61	1．14
1411	19.8	103．0	91.5				14	4.0	12.9	－6tu	1． 29
1：，	20.8	107.0	114.0				15	4.0	12.5	． 69	1.25
18.1	23． 0	111.0	115.9				16	4．0	12．0	． 72	1．${ }^{18}$
1：11	23.0	114.0	127.7				17	3.0	11.8	． 75	1． 18
1a11	23.8	117.5	129．2				15	3.5	13.9	． 72	1.39
$1!11$	21.7	121．0	112.9				19	2.5	13．7	． 75	1.37
－ 91	25.6	122.5	152． 7				20	2.5	9.8	． 76	． 98
－11	26.3	125.0	160.5				21	2.5	13．8	－ 79	1． 25
－－－	27.0	127.5	170.3				22	2.5	13.8	.81	1． 38
2＂，	－7． 7	130.0	195.0				20	2.5	15.7	． 81	1.57

F゙ル，2＂，－Dinuram sliowing rate of beight growth of compminant trew

TABLE: IV.-limensions, rolume, and rate of growth, by decades, etc.-Continued.
(1) OLD.fidowTH PINE-Continued.
(3) OPPRESSED TREES.
[Average thronghont the mande.]
(104 trees.)

Age.	Diameter atheight of $2 \frac{1}{2}$ feet (without bark).	Total height of tree.	Volume of stem (Withoutbark).	Relative jur cent of total volume.			Ieriolic aceretion.			$\begin{gathered} \text { Arerage } \\ \text { annual } \\ \text { accretion. } \end{gathered}$	Current anuual accretion.
				Heart. Trood.	Sapwoorl.	Bark.	Decade.	Meight.	Folume.		
Vears.	Inches.	Fect.	Cubic jt.	Per cent.	rer cent.	l'er cent.		Fert.	Cubicft.	Cubic ft.	Cubicfo.
10	0.9	4.0					1				
20	20	11.0	0.4 0.7				$\stackrel{2}{2}$	I. 0		0.03	(3)
30 40	3.7 5.2	18.0	0.7 1.7				3	7.19	0.4	. 02	0. 14
40	5.2	26.0	1. 7				4	8.0	1.0	. 04	. 111
50	6.7	34.5	3.6				5	8.5	1.9	. 07	. 19
60	8.0	43.5	(i. 5				${ }_{6}^{6}$	9.0	2.3	. 11	. 29
70	9.2	51.5	10.3				7	8.0	3.8	. 15	. 38
80	10.6	59.5	15. 1				8	8.0	4.8	. 19	.48
90	11.9	66.5	26.5				9	7.0	6.5	. 24	. 6.5
100	1:3. 3	73.0	29.0				10	6.5	7.5	- 29	. 75
110	14.7	79.0	37.5	51	36	13	11	6. 0	8.5	. 35	. 85
120	15.9	84.5	48.8				19	5.5	9.3	. 39	. 93
130	17.1	89.0	57.0				13	4.5	10.3	. 44	1.113
140	18.2	93.5	68.5				14	4.5	11.5	. 49	1. 15
150	19.3	97.0	70.5				15	3.5	11.0	. 54	1. 10
160	20.3	100.5	90.8				15	3.5	11.3	. 57	1.13
170	$\because 1.2$	103.5	102. 3				17	3.0	11.5	. 60	1.15
180	22. 2	106.5	114.0				18	3.0	11.8	-64	1. 18
190	23.2	109.0	125.0				19	2.5	11.0	. 66	1. 10
200	23.9	111.5	136.0	60	28	12	20	2.5	11.0	. 68	1. 10

Fti, 2t, - Lingran showing rate of height grow th of oppressed trees.

－02：33－Nの．コロー－

TABLF IV.-Dimennions, volume, and rate of grouth, by decades. efc.-Continned.
(A) OLD-GHOWTH PINE-Continucd.
(t) Dominant thery.
[Average in Winconsin.]
(68 trees.)

Age.	Diameter at hejght	Total height of treb.	Volume of stem (without bark)	Helative per cent of total volume.			I'rriolic accretion.			Averago ammual accretion.	Cursent annual aceretion.
	(withont bark).			Heart wood.	Sapwood.	Bark.	Decade.	Height.	Volume.		
Fears. 10	Tuches. 1.0	Fect. 9	Cubic fl. (1)	Percent.	l'er cent.	Per cent.	1	Heet. 9	Cubicft. (1)	Cubic ft. (1)	Cubic ft. (i)
20	2.2	29	0.5				2	13	(1)	0.02	(i)
30	3.8	34	1.9				3	12	1.4	. 06	0.16
40	3.3	46	3.5				4	12	1.6	. 02	. 16
50	6.6	8.	7.6	-0.......-			j	11	4.1	. 15	.41
60	8.0	66	13.2				6	9	5.6	. 22	. in
70	9,3	74	31.0				7	8	7.8	. 30	. 78
80	11.0	80	30, 0				8	6	9.0	. 3 m	. 910
90	13.0	80	41.5				9	6	11.5	. 46	1.15
100	15. 2	91	38.0				10	5	16.5	. 5818	1. 95
110	17.4	a.	78.0				11	4	: ${ }^{\text {() }}$, 0	. 71	$\stackrel{5}{6} 00$
120	19.6	100	100.5				12	5	22.5	. 86	2. 25
130	21.8	104	124.0				13	4	23.5	. 95	2.35
140	24.0	108	147.5				14	4	23.5	1,05	2.35
150	\%-7	111	169.0				15	3	$\underline{11.5}$	1.13	9.15
160	97.4	114	190.5				16	3	21.5	1.19	2.15
170	29.0	117	212.5				17	3	22.0	1.25	2.21
180	: 0 0, 5	120	234.5				18	3	2?.0	1.30	2. 29
190	32.0	122	256.0				19	2	21.5	1.35	2.15
200	33. 3	124	277.0	6.5	23	12	90	2	21.0	1.38	2. 10

(5) OPPRESSED TREEN.
[Average in Wisconsin.]
(55 trees.)

(6) bOM, (MANT TREES.
[Arerage in Michigan.]
(i5 trees.)

TABLE IV.-Dimensions, colume, and rate of groreth, by decades, effo-Continned.
(.1) OLD.GLOWTH PINE-Continuea.
(7) CODOMLNANT TREEs.
[Average in Michicam.]
(28 trues.)

Age.	Diameter at leight of $2 \frac{1}{2}$ feet (without bark).	Total height of tree.	Folume of stem (without bark).	Lelative per cent of total volume.			J'eriolic aucretion.			$\begin{aligned} & \text { Arcrage } \\ & \text { annual } \\ & \text { accretion. } \end{aligned}$	Cursent andual accretion.
				Heart. mood.	Saywoorl.	Bark.	Mecatle.	Mejght.	Volume.		
Years.	Inches.	Feet.	Cubic ft.	Per cent	Percent.	Per cent.		Feet.	Cubic ft.		
(10	0.7	${ }_{16}$	(1) 0.4	Percant			$\stackrel{1}{9}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$		(!) 0.02	(1)
20	2.2	$\begin{array}{r}16 \\ \hline 9\end{array}$	0.4 1				3	1.3	${ }_{0.3}$	0.02	(2) 0.09
30 40	4. ${ }^{4} \mathbf{7}$	39	1.3 4.0				4	${ }_{8} 8$	3.7	. 10	. 21
50	\%. 3	47	7.6				5	10	3.6	. 15	. 36
60	8.8	51	11.5				6	10	3.9	- 19	. 39
${ }^{2} 0$	10.1	65	18.0				7	8	6.5	. 26	-65
80	11.7	74	215.1				8	9	8.4 ${ }^{8} 1.6$. 313	.88 1.16
90	13.2	83	38.10				${ }_{10}^{9}$	9	11.6	- 50	1. 16
100	14.6	89	50.0						12.0 13.0		1. 20
110 120	15.9 17.2	91 99	63.0 77.0				11	5	13.0 14.0	. 57	1. 30
120 130	17.2 18.5	99 $10 \pm$	77.0 92.0				13	5	15.0	. 71	1.50
140	19.8	108	106.0				14	4	14.0	. 76	1. 40
150	20.9	112	119.0				15	4	13.0	. 79	1. 30
160	22.1	116	130.0				16	4	11.0	. 81	1. 10
170	23.2	119	140.0				17	4	10.0	. 82	1.90
180	$2+1$	123	(?)				19	4			
190 200	25.1 26.0	${ }_{129}^{126}$	(?)				${ }_{20}^{19}$	3			
$\stackrel{200}{210}$	26.0 26.7	129 132	(1)				21	3			
220	27.4	135	(i)	63	24	13	22	3			
230	28.0	138	(1)				23	3			

(8) OPPRESSED TREES.
[Average in Michigan.]
(36 trees.)

10	0.7	4	(?)				1	4	(3)	(1)	(')
211	1.8	12	0.3				2	8	(1)	0.015	(?)
30	3.3	20	. 7				3	8	0.4	.02	0.04
40	5.0	28	1.8				4	8	1.1	. 04	. 11
50	6.6	37	4.0				5	9	2.2	. 08	. 22
60	8.0	47	7.0		\cdots		6	10	3.0	-19	. 311
70	9.2	56	11.0				7	9	4.0 5.6	. 16	. 46
80	10.5	64	86.6				9	7	5. 6	$\bigcirc 25$	
90	11.8	71	230				9 10	${ }_{6}^{7}$	6.4 7.10	. 30	- 70
100	13.2	77	30.0 370				10	6	7.0	. 34	\because
$\xrightarrow[110]{120}$	14.6 15.8	88	37.0 45.0	51	36	13	12	5	8.0	.37	. 80
130	17.0	92	54.0				13	4	9.0	. 41	. 90
140	18.0	97	61.0				14	5	10.0	- 46	1. 00
150	19.0	100	74.0				15	3	10.0	. 50	1. 00
160	20.0	103	84.0				10	3	10.0	- 59	1. 00
170	20.8	106	95.0				17	3	11.0	- 56	1.10
180	21.6	109	106.0				18	3	11.0	-610	1. 10
190	29.4	111	116.0				19	$\stackrel{\square}{7}$	10.0 10.0	. 61	1. 109
200	23.2	113	126.0				20	2	10.0	. 63	1.00
211	23.8	115	137.0					${ }_{2}^{2}$			1.00
220 230	24.4 24.9	117 119	147.0 157.0	63		13	$\stackrel{32}{23}$	$\stackrel{2}{2}$	10.0	. .68	1.06

(9) dominant trees.
[Average in Pennsylvania.]
(81 trees.)

(10) CUDOMLNANT THELS.
(Average in l'eunsy Ivania.)
178 (rea's.)

- Ige	1)inmeter st lueight	$\begin{aligned} & \text { Total } \\ & \text { liciglis } \\ & \text { uf tree. } \end{aligned}$	Poblume of sterli (without barh).	lielative percunt of total volume.			Ieriodic accretton.			Iverage anmual acctetion	Cinrrent адמu.1] accretion.
	(without bark).			Heart. woul.	Sajumuthl.	Bark.	Decaute.	Meliglnt.	Vulume.		
Sears.	Inchee.	Fret.	Cubic jt.	Iercent.	I'er cont.	Percene.		Fect.	Cubicft.	Cubic jt.	Cubic ft.
10	0.9		(i)				1	j	(!)	(!)	(!)
$\because 11$	2 '3	15	1. 1				$?$	11	(1)	0.12	f11
.,1)	4. 11	$\therefore 2$	1. ${ }^{\text {a }}$:	1:-	1.4	.148	19.14
40	5.9	39	4.8				4	11	3.0	12	. 30
50	7.6	48	7.8				5	9	3.0	. 15	. 30
tiv	9.3	56	11.1			.-.	6	¢	3.3	. 18	. 33
\% 7	11.8	63	16.7				7	7	5. 6	. 21	. 26
a 1	120	62	23, 3			8	6	6, 6	. 29	. 16
(1)	13.1	75	30.7				9	6	7.4	. 34	. 74
100	14.7	80	39.0				10	3	8.3	. 39	. 83
130	16.0	85	47.9				11	5	8.9	.43	. 89
120	17.3	(9)	57.9				13	5	10.0	4.8	1.00
13.11	12.6	14	65,				13	4	7.3	. 511	. 8.1
140	19.	95	-6.9				14	4	11.7	. 35	1.1%
151)	20.1	102	88. 3				1.3	4	12.0	. 53	1.2"
160	31.8	106	101.8				16	4	12. 4	. 13	1.21:1
170	22.7	109	115.3				17	3	13.5	.fis	1.3.
180	23.5	112	139.2				18	3	13.4	. \because	1. 36
190	$\cdots 4.3$	114	142.9				19	2	13.7	- 7	1.37
210	25.1	116	15ะ. 7				20	$\underline{1}$	9. \times	. 76	. 1 n
210	-7.	118	165.5				$\cdots 1$	2	12.	.79	1. 28
220	$\because 6.1$	1:3)	179.3				-	2	13.6	- +1	1.3n
$\because: 11$	$\because-3$	12.	195.0	[53	\because	13	33	2	15.7	.81	1.5

Fin. 2t-Dinaratu showiug beight growth of elomivant trees, by states

FGg. 25.-Diagram slowiug height growth of codominant trees, by States.

Fino : 2t., Dianran showing height growth of oppressed trees, hy states.

Fit: 28.-Diagram showine velnme growth of combuinant trues, liy states.

TAble IV.-Dimensions, rolume, and rate of !rowth, by decades, etc.-Continued.

(11) Site a: Yobk Coventy, Me.

IOOMLWANT TREES, (11 trees.)

Age.	Diameter at height of $2 \frac{1}{2}$ feet (without bark).	Total height of tree.	Tolnme of stem (without bark).	Relative per cent of total volnue.			Periodic accretion.			itcrage annual accretion.	Cinrrent aumual accretion.
				Heartwool.	Sapwood.	lark.	Decalde.	lieight.	Folume.		
Гears.	Incles.	Feet.	Cubic ft.	Per cont.	Jerecnt.	Per cent.		Gect.	Cubicft.	Cubic ft.	Cubic ft.
10	2.1	$7 \frac{1}{2}$	0.5				1	7.	0.9	(1.05)	0.0.\%
20	5.7	21	2.1				2	$13 \frac{1}{2}$	1. 6	. 10	.16
30	10.2	37	6.5				3	16^{2}	4.4	. 21	. 44
40	14.9	$49 \frac{1}{2}$	17.0				4	12.	10.5	. 42	1.60
50	18.6	$60 \frac{2}{2}$	34.0				5	11	17.0	. 68	1. 70
60	22.1	69	60.3				6	8 t	26.3	1.00	2. 63
70	24.6	71	$8{ }^{2}$	54	29	10		8	21.9	1.17	2.15
80	26.2	85	100.0	10	to	to	8	8	17.8	1.85	1. 88
90		90	($)$	60	32	11	9	5			

COMMMINANT TREES.
(33 trees.)

10	1.8	7	0.2				1	7	0.2	0.02	0.02
20	4.1	173	. 7				\because	104	. 5	. 03	. 05
30	6. 2	30	9.4				3	12:	1.7	.08	. 17
40	8.6	43	6i. 4				4	13	- 4.0	. 16	(1)
50	11.7	56	14.6				3	13	8.2	. 29	82
60	14.8	$66 \frac{1}{2}$	26.2				6	10t	11.6	. 44	1. 16
70	17.3	75°	39.6	47	$3 \pm$	11	7	8 d	13.4	. 56	1. 34
80	19.1	812	51.0	to	to	10 \{	8	6.15	14.4	. 07	1.44
90	21.0	87^{-}	70, 0	55	41	10	9	52	16.0	. 88	1.60

OPPRESEED TREEG.
(12 trees.)

(12) Site c: York County, Me.

DOMINANT TREES
(10 trees.)

InOMINANT TREES.
(8 trees.)

(13) Massachusetts and New Mampshire,

DOMポANTTHEES.
(12 trees.)

10	2.2	9	0.1				1	0	0.1	0, 01	(1.01
20	4.8	25	1.4				2	16	1.3	. 07	. 13
30	T. 5	39	4.3				3	$1 \pm$	2.9	. 14	. 29
40	9.6	53	9.3	40	51	9	+	14	5.0	. 23	. 50

(Average in Massachusetts and New Hampshire of lot trees.

10	2.5	10	0.5				1	10	0.5	0.05	0.05
20	5.4	33	2.0				"	23	1.5	. 10	. 15
30	3.8	48	6.5				3	15	4.5	. 22	. 45
40	9.4	S8	13.5	48	41	fi	4	10	6.0	. 31	, 1-1)

Table IV.-Dimensions, colume, and rate of growth, by decades, cte.-Continued. (B) SECOND.GROWTTI PINE-Continued.
(1i) Site g: Clearfield Cocsity, Pa. Dominant trees.

14 trees.)

Age.	Diameter at height of $\frac{2}{-}$ feet (without bark).	Total leight of tree.	Tolame of wiem (without bark).	Relative per cent of total volume.			Periodic accretion.			Average annual aceretion.	Current annual accretion.
				IIeartwool.	Sapwood.	Dark.	Decade.	Meight.	Polume.		
Tears. 10	Inches. 2. 6	Feet.	Cubic ft. 0.1	Per cent.	Per cent.	Per cent.		Feet.	Cubic ft.	Culic ft.	Cubic ft.
20	7.3	27	3.0				2	18	$\because 9$.13	. 29
30	13.2	414	13.5	37	55	8	3	141	10.5	.45	1.05

CODOMNANT thees.
(5) trees.)

oppressed trees.
(3 trees.)

scppressed trees.
(3 trees.)

(15) Site i: Forest Cocnty, Pa.
domisant trees.
(2 trees.)

DOMINANT THEES.
(10 trees.)

codominast trees.
(10 trees.)

10	1.9	9	(1)				1	9	(${ }^{\text {(}}$	(1)	(?)
29	4.8	27	1.3				2	18	(1)	0.06	(1)
3.0	6.8	40	4.7				3	13	3.4	. 16	0.34
40	8.5	52	9.8	36	33	11 !	4	12	5.1	24	. 51

oppressed trees.
(5 trees.)

(16) Site c: Llzerne Cocstr. Pa.
dominant trees. (9 trees.)

10	1.0	6	(?)				1	6	(1)	(1)	(i)
20	3.2	10	0.4				2	13	(1)	0.02	(1)
30	5.9	$3: 3$	3.5				3	14	2.1	. 08	0.21
40	4.1	44	7. 2				4	111	4.7	. 18	.47
50	11.5	51	14.4	40	47	13	5	6	6.8	. 28	. 68

TABLE V.-Growth of diameter and cros,-section area at varions heights from the gromnd.
(1) AV゙ERAGE THHOUGHOUT THE RAN゙GE.

Fig. 30.-Diagram showing average progress of diameter growth (lirenst high) of dominant trees.

Fig. 32.-Diagram showing diameter growth of collominant trees at rarious heights from ground (arerage thronghout range).

Fia. 33.-Diagram showing diameter growth of operensed trees at varions heights from ground (average throughont sange

TABLE V.-Growth of diameter and cross-section area at various heights from the ground-Continued.
(2) AVELAGE FOI? WISCONSIN:

Fig. 34.-Diagram showing diameter growth of dominant trees at rarious heights from gronnd in Wisconsin.

Fig. 35.-Diagran showing diameter growth of oppressed trees at various beighes frotn ground in Wriscongin.

（3）AVERA（iE FOl：PES゙ぷsil，

Charac－ lirut growth．	Heiglite of alection trons gromad．	hiameter uf eectiov，in inches，at age（years）of－																						
		10	20	30	40	50	60	\％0	so	00	100	110	1：0	130	140	150	160	170	140	190	200	210	280	\＄30
		2.0	4.4	‥ 1	9． 5	11.5	13.4	15．0	16． 5	18.0	19.5	21.0	22.4	23.6	24.4	26.1	27.1	28.2	29.3	30.4	31.5	$32 .:$	33.9	34.2
	18.	3.4	6.4	8.5	10.3	11.8	13.0	14.1	15.2	16.2	17.2	18.2	19.1	20.0	20.8	21.5	22.2	23.0	$\because 3.8$	21.6	25.4	25.9	26.4	
E	34	3.2	6.1	8.3	8．9	11.3	12.5	13.6	14． 3	15．${ }^{15}$	16． 8	17.6	18.4	19.3	20.1	20.9	21.6	29.3	$\because 3.1$	24.1	24.7	25.3		
E	50	2．	3.6	7．8	9． 1	10． 7	11.9	13．${ }^{\text {i }}$	14.2	15.2	16．0	16.7	17.4	18.2	18．9	19.7	20.5	21.2	21.9	22.6	23.3			
＝	66	？． 5	3.0	T． 0	8． 1	10.3	11.6	12． 8	13．9	14.9	15.8	16.7	17.5	18.3	19． 1	19.9	20.6	21.3	21.8					
\pm \＃	102）	1．8	3． 4	C．${ }^{6}$		8.1	10.5	11.6 10.4	12． 11	13.6 12.6	13.5	15.6	16.1 15.5	16.9 16.4	17.6	18． 4	19.1							
	115	1.4	29	4． 4	5． 6	6.9	8.1	9.3	10.4	11.3	12． 1													
		1.6	3.5	5.4	7.2	8.7	10.2	11.6	12.9	14.2	15.5	16.8	18.2	19.3	30.3	21.3	22.3	33.2	24.0	24.8	25.5		27.0	
	18	2.4	4.8	0.5	8.0	9.1	10.1	11． 2	12．3	13．2	14.1	14.9	15.8	16.5	17.2	17.8	18．4	19． 1	19.7	20.3	21.0	21.6	23.2	
E	34	2.4	4.6	6.1	－ 8	9.0	10.1	11.1	12.0	12．${ }^{\text {c }}$	13.6	14.4	15.1	15.8	16． 5	17.1	17.8	18.4	19.1	19.7	20.1	21.0		
E	59	\％． 3	4.4	6． 2	7.9	9.3	10.5	11.5	12.5	13.4	14.2	14.9	15.6	16.3	16.9	17.6	18．	18.9	19.5	20.1				
兂	66	1． 1.1	4．1	5.8 4.5	5． 7	8.5 6.8	7． 7.8	${ }^{10.6}$	11.5 9.6	12.4	13.1 11.1	11.8	12.6	15.3 13.0	13． 7	16.6	17.2	17.8						
－	98	1.4	2.5	3.8	5.0	6.1	\％． 1	8.0																
	114	1.0	2.0	3.1	4.2	5．2																		

Cbarac	Heiglet of section from ground．	ORREEPONDNG AlEA ACCRETION																						
growih．		1	－	3	\pm	\％	6	\％	8	9	10	11	12	13	14	15	16	17	18	19	± 0	21	29	93
	34.00668.8000	0.02	0.00		0，22	0． 23	0.25	0.85		0.29		0． 33	0.34	0.30	0.34	0.31		0.34	0.34	0.36				
		，mi	． 16	． 17	． 19	． 16	，it	． 16	． 18	．${ }^{-1}$	． 16	． 30	． 18	． 19	． 18	． 16	． 10	． 19	． 21	． 21	． 22	． 14	． 14	
		． 05	． 15	． 17	． 16	． 11	． 15	． 16	． 17	． 16	． 18	． 17	． 16	． 18	． 17	． 18	． 16	． 17	． 20	． 23	.19	． 16		
		． 04	． 13	． 16	． 15	． 14	． 15	． 16	． 17	． 16	． 14	． 18	－13．1	． 16	－14	． 17	． 18	． 16	． 16	． 17	． 16			
		． 03	． 11	． 13	． 11	．17	． 15	． 16	． 16	． 16	． 15	16，	． 15	． 16	． 16	．15	－ 18	． 13	－12					
		． 03	． 0	． 11	． 12	． 13	－14	． 18	． 15	． 14	－ 13	． 13	． 13	． 15	． 15	． 14								
		． 02	． 05	． 118	． 10	． 11	． 11	－1！	． 14	． 13	． 15	． 15	． 15	． 16	． 14									
		． 01	． 03	．00，	． $0{ }^{-}$	．09，	． 10	． 11	． 12	． 11	－ 10													
		01			12	13	16	． 16	． 18	19	． 21	． 23	23，	． 22	． 2	． 2		． 29	． 21	． 21		． 19	24	． 28
	18.	． 03	． 69	． 11	． 12	． 10 ＇	． 11	.12	． 14	． 13	． 13	． 13	.15	． 12	． 13	．12	． 12	． 14	． 13	． 13	． 15	． 14	.15	
	3	． 03	． 08	． 11	． 11	． 11	． 12	． 11	11	． 11	． 12	．12	． 11	． 12	．12	． $11:$	． 14	． 12	． 14	． 13	． 15	.13		
	50	． 113	． 07	． 11	． 13	． 13	． 13	． 12	$1: 3$	． 13	．112	．11	－ 12	． 12	． 11	． 13	． 12	． 14	． 12	． 13				
	f，is	－	． 0	． 19	． 111	． 11	． 11 ：	． 11	11	． 10	． 11	． 12	． 11	． 12	． 111		． 11	．12						
	＊	． 01	． 01	． 16	．0i	． 0^{-}	－ 118	－118	03	． 09	－118	． 01	． 18	． 118	． 10									
	！ 1	（1）	．12	－14\％	． 111	－16）	． 110	． 0																
	it	， 1	． 11	．1\％	11	－																		

Fig. 36.-Diagram showing diameter growth of dominant trees at various heights from ground in Pennsylvania.

(b) AVERAGE FOR MCLHGAN.

Fig. 38.-Diagram showiner diameter growth of dominant trees at various heights from ground in Michigan.

Fic. 39.-Diamram showing diatnetur trowth of colominant trees at rarious lueighto trom mromb in Michigan.

Fig. 40.- Diagram showing diameter growth of oppressed trees at various heights from ground in Michigan.
PsDLE: VI--dcre yields of Thite I'ine and measurements of sample trees.

A.-MICHIGNN:

(1) Site a:

Presque Isle Counts
00 to 800 feet abore seal lertl.]
wil: Tellow or grar sand, moderately loose, deep; sabsoil with small stomes, surface corer of brakes huckileberry, etc.
Forcal condilions: Fied Pine (61 nor cent), mised mith ivhite Pine (30 per cent), and occasional Maple, Poplar, Cedar 13 per cent), on level.
Classification
Dominant
Oppresatd.
Suppressed

White Pide. Iexd line.
per cent.. 40
Ited Pine.
46
26
28
sample area: 1 acre.

Age of pine: 100 to 150 jears. Density of crown cover: 0.6 .

Number of trees: 1c1.

ACRE TIELI.

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^26]TABLE VI.-Acre yields of THhite Pine and masurements of sample tres-C'ontiuned.
A.-MICIIIGAN-Continued.

MEASUREMENTS OF SAMPLE THEES.
Age class: 80 to 100 rears.
以OMINAST GROWTH.

OPPRESSED GROWTH.

SLPPRESSED GROWTH.

	92 84	10.5 10.0	72.0 73.0	8.2 7.6	20.6 20.9	0.47	0.26 .48	1.2	0.25	0. 22
A verage..	88	10.2	72.5	7.9	20.7	. 50	. 37	2.4	. 51	. 23

Age class: 100 to 150 years.
DOMINAST GROWTH.

OPPRESSED GROWTH.

9.	102	16.0	85.0	6.6	48.8	0.41	0.46	2.5	1.22	0.4%
31.	102	15.1	86.0	6.7	49.4	. 46	. 40	1.4	. 69	. 48
45	102	17.0	84.0	6.0	58.5	. 44	61	1.7	. 99	. 57
43	105	16.8	87.0	6.1	67.3	. 49	42	. 7	.47	64
Arerage.	103	16.2	85.5	6.3	56.0	.45	.47	1.6	. 84	. 54
4.	127	17.0	88.0	6.7	56.9	41	. 54	5. 2	2.96	. 44
40................	134	15.0	94.0	8.6	57.6	. 50	. 30	2.2	1.26	. 43
3.	147	18.0	91.0	T. $\%$	66.0	. 41	. 4	4.9	3.23	. 44
Arerage...	136	16.7	91.0	7.7	60.2	. 44	. 43	4.1	2.48	4

SUPPRESSED GROWTH.

$39 \ldots \ldots \ldots \ldots .$.	127	11.0	69	1.2	24.6	0.54	0.22	3.2	0.79

Age clase: 250 to 300 years
dominant growth.

Tabsi: VI.-Acre yiclde of White Iise and measurements of sample trecs-Contianed.
I.-MICHIGiAN-Contimed.
(2) SITE b:
l'sesugo Isle Cunty.
[iou to su0 feet nbore sea lerel.]
sinal: Deep, loose, aray sand, covered with leaves; asid to be underlad by clay.
Forest conditions: White Pine (i8 per cent), intermixed with lied Pine (1t jer cent), Hembert (18 per ceat), with acattering Cedar. Clensification:
losification:
Dominant.
Oppressert
Oppressat
Suppressed \qquad
\qquad
\qquad White fine

ACEE YIELD.

129 trees:
Total cubic feet
Tual tett IB. II \qquad
\qquad

8,202 39,:"00

26 trer-s:
reces:
Total culic feet. 2. 440

Total yiehl: All species, 11,162 cubic feet, of which White Pine 73 per cent. Average annwal accrction: White I'ine, $\begin{array}{r}63 \text { cubic feet. } \\ 302 \text { feet } \mathbf{I 3 .} . \mathbf{M .} .\end{array}$

MEASUREMENTS OF SAMPLE TREES.
A ge class: 130 to 150 years.
LOMISANT GROWTH.

Treenumber.	Age.	Diameter (breast bigh).	Height.	```Kings per inch 011 stump.```	Volume of tree.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { shape. } \end{aligned}$	Itatio of length of crown to tota] height of tree.	Current annual accretion.	A verage anมual accre. tion.
	Iears.	Incher.	Feet.	No.	Cu.fи.			l'ercent. C16.ft.	$\text { C'u. } f t$
\$4.	140 $1: 4$ 10	19.5 19.7	124 114	$\begin{aligned} & 6.5 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 109.8 \\ & 115.9 \end{aligned}$	0.42 .49	0.34 .31	$\begin{array}{l:l} 1.0 & 1.30 \\ 1.2 & 1.39 \end{array}$	$\begin{aligned} & 0.78 \\ & .85 \end{aligned}$
33.	135	20.0	115	6.2	121.5.	. 48	-320	$1.6 \quad 1.94$. 90
37.	134	22.0	113	6.0	123.5	. 31	. 27	. 7 \% 1.86	. 92
(it)	136	23.5	123	6.5	130.1	. 39	. 30	1.41 .82	. 96
35.	135	21.7	122	5. 9	126. 4	14	. 32	. 7 . 85	1.01
2.	138	20. 8	119	6.1	138.5	. 40	. 30	$1.0 \quad 1.38$	1.00
2:	133	23.2	110	5.5	141.1	. 42	. 38	1.2 1.69	1. 06
4.	130	24.0	106	5.3	143.5	. 43	. 40	$1.8,2.58$	1.10
3	135	24.15	108	5. ${ }^{\text {a }}$	114.7	. 42	. 35	. 91.30	1.07
1	138	23.5	113	5.7	146.5	. 43	. 26	1.0×1.46	1. 146
111	$1: 3$	$\because 5.0$	122	5.2	187.3	. 44	. 50	1.5 2.81	1.2\%
A 31.r.ine	1:5.7	23	114	5.9	130.6	.42	. 31	1.2 1.61	1.00
27	112	23.0	117	5. $\%$	138. 9	. 41	. 30	1.2 1.67	
-11	14:	-4. 1	110	5. 8	1411.6	. $\$ 1$. 39	1.6 2.11	.99
11	112	$\because: 5$	114	5.7	148.0	. 43	, 36	1.8 2.66	1. 14
\therefore	142	$\because 20$	119	4i. 11	157. ${ }^{\text {a }}$. 41	. 26	$1.5 \quad 2.36$	1.11
[1.1.	14'3	$\because 2.4$	116	5. 8	164.3	. 4.5	. 38	1.7 -2.74	1.14
$\therefore 4$.		250	113	5.7	168.8	. 46	. 34	. 11.35	1. 16
i,	14\%	\% 4	115	5.5	- 015.4	.46	. 39	1.22 .46	1.39
Aterage	144	24.0	115	5.8	160.5	. 46	. 34	$1.4: 3.20$	1.10

TABLES OF MEASUREMENTS.

Table VI.-Acre yields of White line and measurements of sample trees-Contintied.
A.-MICIIIGAN-Contimmed.

MEASULEMENTS OF SAMPLE TREES-COntinmed.

acppreseed growth.

8.	131	15.0	115	8.5	66. 2	0.47	0.35	1.0	0. 66	0. 50
32.	133	17.5	(?)	7.2	73.9	(1)	(?)	3.4	1. 77	. 55
31.	238	17.4	104	7.3	78.6	. 45	. 29	1.7	1.34	. 57
13.	131	16.4	114	7.7	79.7	. 47	. 28	1.3	1.04	. 61
17.................	138	19.0	103	7.0	80.6	. 39	. 28	1.6	1. 29	. 58
Arerage...	134.6	17.0	109	7.5	75.8	. 44	. 30	1.6	1.22	. 56
	$\begin{aligned} & 142 \\ & 154 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 19.0 \end{aligned}$	109 97	7.2	121.7 78.6	- 46	+44	1.5 1.4	1. 1.10	$\begin{array}{r}85 \\ \hline .50\end{array}$
A rerage...	148	20.0	103	7.5	100.0	.43	. 42	1.4	1. 46	. 67

(3) Site d :

Montmorency County.
Soil: Fresh, loose gray sand, turning brown and red below, with surface corer of brakes and checkerberry; subsoil, brown sand, sometimes loamy, and in spots clay.
Forest conditions: White Pine (54 per cent) mixed with Red Pine (35 per cent) and Hemlock (11
 cent damaged by fire.

ACRE IIELD.

White Pine.					Fed Pine.			Hemlock.		
Number of trees.	$\begin{gathered} \text { Diameter } \\ \text { (breast } \\ \text { high). } \end{gathered}$	Height.	Folume.		Number of trees.	Diameter (breast high).	Height.	Number of trees.	Dianueter (breast high).	Height.
			Bole,	Mer. chantable timber.						
2 1 3 1 3 3 1 1 3 2 6 5 5 9 1 1 3 2 7 2 2 1 1	Inches. 10 12 13 14 15 16 17 19 21 2.3 24 25 27 38 $\boxed{9} 9$ 39 31 33	Feet. $\begin{aligned} & 120 \\ & \text { to } \\ & 140 \end{aligned}$	$\|$Cubicfpet. 36 38 159 60 207 231 86 96 315 280 904 855 1,611 800 216 646 493 1,862 560 302 340	Feet S. M ${ }^{\text {a }}$	2 1 3 1 3 3 6 5 4 8 1 1 1	Inches. 13 14 15 16 17 18 19 20 21 23 23 23 30	Feet. $\begin{aligned} & 120 \\ & 10 \\ & 140 \end{aligned}$	2 1 1 9 6 1	$\begin{gathered} \text { Inches. } \\ 3 \text { to } 6 \\ 9 \\ 11 \\ 12 \\ 15 \\ 90 \end{gathered}$	Feet. 40 50 to 80
61 trees: 					```39 trees: Total cubic feet. 5, 256 Total feet B. M. . 95,200```			13 trees.		

Tutal yield: Yine, 86,100 feet B. M., of which White Piue 66 per cent.
Average annual accretion: Pine, 59 cubic feet.
331 feet \mathbf{B}. M.

Tane：Vl．－fore yields of White lime and measurements of sample trecs－Continucd．

A．－MICHIGANーCOnthnted．

（ + ）Site e：
Montmorency Countr．
Sumple area：one－balfacre．
swib： 13 romn or red wady loant，light，loose，dry，with nones，aud sarface corer of brakes ably ＂Rhur werds．

Age of pine： 100 to 120 sears
Wensits of crown cover： 0.5

HALF．ACHEどIELJ．
Number of trees： 110

Total yield：I＇ine， 23,830 feet I3．M．，of which White Pine 38 percent．
Averane annual accretion：I＇ine． 51 cubic feet．

MEASULEMENTS OF SAMPLE THEES．

以๗MINANT（BROWTH．

Tree number．	Age．	$\begin{aligned} & \text { Diameter } \\ & \text { (brtast } \\ & \text { high). } \end{aligned}$	Height．	```Ring.g jer inch OD stump.```	Volume of tree．	Factor of shape．	Ratio of length of cromb to total height of tree．	Current accr	aonual ior．	Average annual accre． tion．
3.	$\begin{gathered} \text { lears } \\ 1: 0 \end{gathered}$	Inches． 18	Fect． 96	No． 6.5	Cu．feet． 71.6	0.42	0.41	$\begin{gathered} \text { Yer cent. } \\ 1.1 \end{gathered}$	Ou．feet． 0.79	Cu．feet． 0.60

4	118	14	95	7.4	53.0	0.53	0.31	1.1	0.60	0.46

Table VI.-dere yields of White I'ine and measurements of sample trees-Continued.

A.-MICHIGAN-Continued.

(5) Site $f:$

Montmorencs Coupts.
, Brown, dry sand, with stones, and surface cover of brakes and grass.
Fest conditions: Led Piue (94 per cent) with scatering White Pine (6 per cent) on a level plain: no underyrowth save very amall shrubs of suatered (oak (characteristic of this localits). About 15 per cent of trees injured by tire in 1891.

```
Clargifcation: lied pine. Dominant Dominant. Oppressed
Suppressed
```

T9
13 13
15

Sample arra: 1 acte
Age of pine: 160 to 180 5ears Dengit of crown corve: 0.6.

Number of trees: 115.

\qquad 1,690

Ped Pine.

Number of trees.	Diameter (breast high).	Meight.
1	Inches. 10	Feet.
1	11	
5 (2 dead)	12	
5)	13	
8 (3 dead)	14	
13 (1 dead)	15	90
18 (4 (ead)	16	to
20 (3 dead)	17	100
24 (4 dead)		
5	19	
5	20	
0	21	
1	22	

108 trees:
Total cubic feet ... 6,863 Total feet B. M.... 28,800

Total yield: Pine, 30,490 feet B. M., of which White Pine 5 per cent Average annual accretion: Pine, 42 cubic feet.
(6) Site g:

Crawford County.
[A bout 1,200 feet abore sea lerel.]
Soil: Brown, loamy sand, deep, fresh, moderately loose, with surface cover of fern and grans sand with stones underlies the soil.
Forest conditions: Two-story stand, upper story of White Pine (l Hed line of 26 inches in diam. eter), with 0.3 density of crown coter, lower story of Fir (22 from 4 to 10 inches in diameter), Beech (4 from 4 to 10 inches in diameter), and Hemlock (19 from 4 to 10 inches in diameter); undergrowth moderately deuse, of Maple, Fir, Hemlock, and Beech. Percentages: White Pine, 50 ; Hemlook, 20; Fir, 25; hardwoots, 5 .
Classification: White Pine. Duminant
Oppressed. suppressed 10

Sample area: 1 acre

Age of pine: 250 to 2605 ears Density of crown cover: 0.7.

Number of trees: (?).

ACRE YIELD.

White Pine.				
	Ihameter (breast bigh).	Height.	Volume.	
$\begin{aligned} & \text { Number } \\ & \text { of trees. } \end{aligned}$			Bole.	Mer- chantable timber.
3	Inches. 16	Feet.	Oubicfect. 213	Feet R. M.
1	18		99	
2	21	100	228	
1	23	120	134	
1	24	120	146	
3	25		471	
$\stackrel{1}{2}$	26		432	
t	27		464	
7	28		1,743	
2	29		$53{ }^{3}$	
5	30	130	1,400	
2	31		604	
5	32	150	1,6011	
3	33		1,020	
1	35		381	
1	36		401	
1	42		537	

41 trees
Total cubic teet.. 10,385
Total feet I. . M
62, 300

Lable: VI.-Icre gielis of White line and mensurments of sample trees-Continued.
A.-MICHIGAN-Comtimed

MFASUKREMENTS OH NAMMLE THEEN
. Igre class: 130 to 150 years.
Immisast abowth

Tree number.	AL.	1) fameter lhreant ligh).	Height.	$\begin{aligned} & \text { lings } \\ & \text { per incy } \\ & \text { on } \\ & \text { stump. } \end{aligned}$	Volume of tree.	Factor shape.	Ratio of length of crown to total beight of tree.	Current acere	ตmกual ion.	Average ภnn+1al tion.
32.	Jour. 133	Inches. 15. 2	${ }^{\text {Ficet. }}$	Fo. 8.3	$\begin{gathered} \text { Cut. } 1 R_{0} . \\ +8.59 \end{gathered}$	0.43	0.43	Per cent.	Creft.	$\begin{array}{r} C u, f t . \\ 0.30 \end{array}$
35	111	15.3	92	\%. 2	55. 32	. 16	,	2.3	1.27	. 38
12	132	16.3	88	7.5	61.70	. 17	60	. 8	. 49	. 46
± 1.	14.5	18.6	101	\%.0	71.11	. 58	44	2.0	1.42	. 43
25.	128	20.5	08	7.0	94.50	12	. 47	1.5	1.42	. 73
27	152	19.0	104	7.3	84.97	. 41	. 38	1.4	1.19	. 55
9.	131	22.5	112	5.4	129. 42	. 41	. 46	. 7	. 91	. 0 \%
26	148	23.0	116	6.8	137.91	. 11	- 46	1.9	2. 62	. 93
31.	153	23.0	100	5.9	137. 63	47	. 30	1.7	2.40	. 50
11.	136	24.6	115	5.2	154.12	. 41	. 40	1.4	2.16	1.13
Average	140	19.8	102	6.9	97.5	. 43	. 43	1.6	1.49	69

APPREBGEI GROWTH.

Aye clase: 220 to 240 years.
DOMNANT GROWTH

41................	2.5	20.0	120	11.0	112.56	0.43	0. 66	0.9	1.11	0.46
ช.	$2+2$	24.5	137	9.9	191.07	. 42	. $\$ 1$. 5	. 95	. 99
30	226	27.5	138	7.6	215. 28	. 38		.	.8	. 95
1.	296	27.5	129	7.6	222. 29	. 41	. 38	4	-9	9x
28.	220	-8. 3	143	7.1	264.49	12	, 60	. 8	2.11	1.20
34.	$\because 54$	30.2	141	8.7	291.03	-4\%	. 31	4	1. 16	1. 16
10.	219	33.0	121	6.3	317.85	. 44	. 43	. 7	3.129	1.45
33.		33.0	140	$\overline{7} .1$	321.86	. 38	- 49	. 8	2. 57	1.42
39.	$\bigcirc 37$	33.0	144	7.2	349.57	. 45	. 19	-6	2. 34	1. 64
29	233	37.0	117	f. 1	455.05	. 11	. 50	. 6	2. $7: 1$	1.95
3.	245	40.0	125	5.4	479.51	. 43	. 40	.5	2. 40	1.96
Averag". .	233	30.4	133	7.6	296.41	0.41	. 48	. 6	1.75	1.27
14...............	258	26.0	119	10.0	162. 54	0.37	0.40	0.4	0. 65	0. 63
7.................	252	25.2	139	9.5	193.21	. 41	. 413	. 4	. 77	. 86
38.	252	25.5	11.5	9.5	205.21	.35	. 58	.9	1.85	. 81
23	26.3	27.0	126	10.4	207. 67	. 41	. 44	.5	1.05	. 78
13.	$\because 53$	30.0	135	8.8	259. 13	. 39	. 45	- 4	1.03	1.02
36.	250	32.0	142	8.1	267.87	. 34	. 59	- 4	1.07	1.04
4.	260	31.5	132	8.3	275.89	. 38	. 48	.7	1.93	1.06
42.	210	29.5	155	8.9	311.80	- 42	. 48	.3	. 03	1.20
16.	-31	33.0	144	7.1	313.07	. 33	41	. 9	-. 82	1.24
2.	254)	31.0	145	7.6	314.06	. 11	. 39	.3	1.57	1. 23
35	265	31.5	144	8.2	314. ${ }^{\text {a }} 8$. 40	.33	. 4	1.25	1. 18
6.	208	33.0	139	8.0	316.81	. 38	. 51	\pm	1. 27	1.39
$1:$	250	32.0	154	7.4	360.75	. 41	. 33	.7	2. 53	1.41
;	258	34.0	138	7.6	370.50	. 42	. 59	. 8	2.96	1.43
17	260	30.0	149	7.5	404.18	. 37	45	. 2	. 81	1.55
Arerage	258	30.5	138	8.5	285.15	. 39	. 45	. 5	1.50	1.10

Table VI.- dere gields of White line and measurments of sample trees-Continued.

A.-MICIIG:NF-Continuel

(7) SITE h :

Crawtord County.
Soit: Brown, loamy saml, modium fine, light, loose, very deep, fresh, well draised, with surfacu cover of abudant leares.
Forest conditions: Moderately ilense stand of White Pine intermixed with Hembock aml Jeech, with scattesing lcllow and White Bircl and occasional lial l'ine, on a lovel plan; under growth of young Hemlock and hardwoots.

MEASUREMENTS OF NAMILE THEES.
1ge cla88: 490 to 450 years.
LOMINANT GROWTH.

Tree number.	Age.	$\begin{gathered} \text { Dinneter } \\ \text { (breast } \\ \text { high). } \end{gathered}$	Height.	```Kings per juch 0u stump.```	Volume of tree.	Factor of sliape.	Ratio of length of crown to total height of tree.	Current accre	avบual ion.	Average annual accre. tion.
	Frame.	Inches.	Fect.	Fo.	Cu. ft.			Percent.		
5.	417	37.0	155	14.0	433.2	0.37	0.45	Per cent.	1.73	1.03
1.	445	35.5	141	10.0	510.5	. 52	. 39	. 6	3.06	1.15
4.	455	\$1.0	132	11.0	58.3 .7	. 41	. 53	. 2	1. 17	1.28
9.	426	43.0	160	10.5	677.3	.42	. 56	. 4	2.71	1.59
8.	460	46.0	150	(!)	694. 1	. 40	. 48	. 3	2.08	1.51
7.	457	47.0	160	(1)	721.9	.37	. 45	. 4	2. 89	1.59
3.	461	46.0	170	10.0	737.9	. 38	. 56	. 3	2.21	1. 60
6.	435	46.0	168	(?)	819.6	. 12	. 51	. 4	3. 28	1. 88
10.	408	47.0	162	10.5	855. 3	.42	. 57	. 5	4.28	1.86
Average	446	43.0	157	11.0	670.4	. 41	. 50	. 4	2.60	1.50

Age class: 270 to 290 Jears.

(8) Site i:

Crawford County.
Soil: Frown, loamy sand of medum grain, light, loose, deep, fresh, well drained, with 9 to 3 inches mold on top and surface cover of leares.
Forest conditions: White Pine (47 per cent) mixed with hardwoots (30 per cent) and Hemlock (23 per cent), on a gentle slope; undererowth scanty, of young Hemlock and Maple
Classification:
8sencation:
Opminant
Suppressed \qquad

Sample area: 1 acre.
Age of pine: 95 to 105 years. Density of crown cover: 0.6

Number of trees: 364.

ACRE YIELD.

Total yichl: White Pine and Hemlock, 33,430 feet B. M. of which White l'ine 8 gher cent.
Averalle annual accretion: White Pine, 71 cubic feet.
286 feet 13. M

Table VI.-Icre viclds of White I'ine and mensurements of sample trees-Continued.
A.-MICIIIGAN-UCOntinumd.

MEASLREMENTS OF AAMPLE TREES.
DOMNANT CROW1h.

Tree number.	Ste.	Damueter lhrenst high).	Height.	$\begin{aligned} & \text { Rings } \\ & \text { ger inch } \\ & \text { on } \\ & \text { stamp. } \end{aligned}$	Volume of iree.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { Nhape } \end{aligned}$	Katio of length of crown to total height of tree.	$\begin{gathered} \text { Current } \\ \text { accre } \end{gathered}$	nnual on.	A veraye accre. tion.
	Yeirs.	Inches.	Feet.	Vo.	Cu.ft.			Per cent.	Cu.ft.	Cu.ft.
3	1140	16.5	18	(1)	64.5	0. 44	0.45	1.7	1.10	0, 64
-	48	16. 5	100	(1)	$6 \times .4$	43	. 40	2.2	1.50	. 70
6.	10:	17.0	104	5.3	71.7	43	45	1.5	1.07	. 70
4	100	19.5	lue	4.9	94.6	. 45	(1)	1.7	1.61	. 93
8	10:3	18.5	109	4.8	95.9	. 47	.37	2.1	2.01	. 63
Avarage	101	17.6	1113	5.0	79.0	. 44	. 42	1.8	1.46	. 78

(G)DOMINANT GROWTH.

(9) SITE $)$: Crawtord County.
Soil: Gray or light sand, medium line grain, poroas, light, loose, dry (in places fresh), with a moderately leafy surface cover.
Forest conditions: Open mond ot mixed White Pine and Norway Pine with acattering white Birch and occasional Oak, Jackmakack, and Banksian I'ine on a lerel plain along the banks of a river; undergrowth scants, of young Eir. Cedar (Thuja occidentalis), and a few small Oaks.

MEASUKEMENTS OF SAMPLE THEES.
Age class: 9010110 years.
DOMINAST GROWTH.

Tree number.	Age.	Diameter (breast high).	Height.	```Rings per inch on stump.```	Folume of iree.	Factor of shape.	Ratio of lengels of crown to total beight of tree.	Current accre	annual ion.	Average annual accretion.
5.	Tears. 119	Inches. 13.0	Fect. 94.0	No. 7.6	Cu.ft. 45.7	0.52	0.51	Bercent.	Cu.ft 1.46	Cu.ft.
23.	112	14.0	96, 0	7.3	50.2	. 47	. 47	3.5	1.75	. 44
22	109	14.8	98.0	6.7	51.4	. 45	. 47	2.2	1. 14	.47
1.)	106	15.3	85.0	6.5	53.3	.47	.37	2.5	1.33	. 50
	110	16.5	104.0	6.5	64.3	. 41	. 30	2.2	1.41	. 58
6	319	17.0	101.0	6.3	67, 6	. 42	. 59	1.8	1. 22	. 62
$\bigcirc 0$	112	17.0	100.0	6.1	\%2.	. 45	(i)	3.4	2.46	. 65
4.	113	18.3	103.0	5.8	83.3	. 44	. 56	2.5	2.13	. 76
$1!9$.	1118	20.5	105.0	4.8	99.1	. 41	. 49	1.9	1.88	. 91
21.	109	30.8	105.0	5.0	99.8	. 39	. 42	1.6	1. 60	.91
Average	1193.6	16.7	98.6	6.3	68.9	.44	.46	2.5	1.64	. 63

COHOMNAST GROWTH.

1.	1(1)	13.5	94.0	7.0	41.0	C. 44	0.57	2.0	0.82	0.41
-	(1)	14.4	90.0	6.6	48.7	. 47	(1)	4.3	2. 08	. 50
1 m .	8:	16.5	94.0	4.8	65. 7	. 47	. 33	4.0	2. 6.3	. 80
9.	49	20. 0	100.0	4.4	90.3	. 41	. 46	3.3	3. 00	. 91
Aseragy	94	16.1	94.5	5.7	61.6	. 45	. 52	3.4	2.13	. 65

Ane class: 150 to 160 years.
LOMINANT GROWTH

T.uble VI.-Acre yielde of White Pine and mearurements of sample trecs-Contioned.

A.-NICHIG:N-Continued.

(10) SITE k :

Liscommon County.
sample areat 1 acte
[A bourt 1, mio teet above sea level.]

$$
\text { Half acre No. } 1 .
$$

Noil: Brown, loams sand, deep, the (for sand), forons, loose, tresh, and well drained (water stamha ja low groumil, with a modrrately leaty surtace cover; subsoil. samo as soil.
Forest conditions: Two-story stamd on a gentle slope, upler story of W'hate I'ine (no pur cent) ant Feal lino (20 per cent), lownr story of time tall Hemblock; wherigrowth scauts, of young Hemlork, Heedh, abd dwart Maple. Classification,

Dominant... White Pjne.
${ }^{(1) p p r e s s e d .}$
Supyressed
HALF-』CRE YIELI).

White Pine.						Leal Pine.		Hemlock.		
Number of trees.	Diameter (breast higl).	Height.	Volume.		Number of trees.	Diameter (ureast high).	Height.	Number of irtes.	$\begin{gathered} \text { Diameter } \\ \text { (breast } \\ \text { high). } \end{gathered}$	Height.
			Bole.	Mer- chantable timber.						
6	Inches. 11	Fect.	Curfect. 192	Feet B.3I.	2	Inches. 14	Feet.	32	Inclies. 6 to 10	$\begin{array}{r} \text { Feet. } \\ \hline \end{array}$
- 2	15	80	116		2	16		4	10	
2	16	to	123		4	18		6	11	to
4 2	17	125	288		14	19	80	2	12	10
$\frac{3}{6}$	18		160		6	21	150	6	14	
6	19		523		2	23		8	15	
2	20		250		2	21		2	17	
4	21		$5 \cup 0$		2			2	18	
5	22		1,216					4	19	100
12	29	130	2,076					$\underline{\square}$	20	to
8	25	to	1,544					2	21	120
6 8	27	150	1,344					2	29	
8	28		1,9:0					2	23	
4	30		540					2	24	
4	33		1,312							
76 trees:					34 trees:			76 treea:		
Total cubic feetCotal feet 3 . II				12, 174	Tota	cubic fer	. 4,270	Tota	cubic feet	3. 616
				. 53,400	Tota	1 feret J3. II	- 20, 000	Tota	feet B. II	. 13.000

Total yiell: All species $\quad 0,060$ cubic feet, of which White Pine was 61 per cent.
iverage amual accretion: White Pine, s\% cubic feet.
MEASUREMENTS OF SAMPLE THEES.
Aye class: 230 to 250 years.
DOMINANT GROWTH.

TsuLE: VI.-Acre yields of IVhite Pine and measurcments of sample trees-Continued.
A.-MICHIGAN-Continued

Hal/ acre Aio.?

Soil: Soist, low ground, near swamp.
Furest conditions : White Pine (51 per cent) and Bemlock (40 per cent)
Clasgification:
Dominant.
Oppreased.

Age of pine: :30 to 240 years.
White Pine. Number of trees: 118.
-
HALF-ACHE IIELI).

Total yield: White Pine aud Hemlork 21,076 cubic feet, of which White Pine il per cent.
Averate anmulaccretion: White Pine 70 cubic feet. 423 feet 13. M.
(11) Site l:
svil: Light-brown, dry sand, loose, light, very deep, well drainel ($?$), with 1 juch mold on top and surface coser of leares. sional Beech on a gentle slope (angle 5°); no undergrowth.
Classification:
Dominant
Oppressed
Suppressed \qquad

Iroscommon County.
force condilions: Red line (84 percent) intermixed with White Pine (16 per cent), with ocea-
Sample area: 1 acre.
Age of pine: (?) lensity of crown cover: (?)

Number of trees: 136.

ACLE YIELI)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{White line.} \& \multicolumn{3}{|c|}{Hed Pine.} \& \multicolumn{3}{|c|}{Beech.} \\
\hline \multirow[b]{2}{*}{Number of trees.} \& \multirow[b]{2}{*}{Diameter (ioreast ligeb).} \& \multirow[b]{2}{*}{Meight.} \& \multicolumn{2}{|r|}{Tolume.} \& \multirow[b]{2}{*}{Number of trees.} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Diameter } \\
\& \text { (1)rathe } \\
\& \text { higb). }
\end{aligned}
\]} \& \multirow[b]{2}{*}{Height.} \& \multirow[b]{2}{*}{Numier of trees.} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Diameter } \\
\text { (lureast } \\
\text { lifgh). }
\end{gathered}
\]} \& \multirow[b]{2}{*}{Height.} \\
\hline \& \& \& liole. \& Mer. chantable timber. \& \& \& \& \& \& \\
\hline 2
1
1
2
1
2
2
2
3
1
2
2
1
1 \& \begin{tabular}{c}
Inches. \\
10 \\
11 \\
12 \\
13 \\
14 \\
15 \\
16 \\
18 \\
19 \\
21 \\
\(2 \%\) \\
23 \\
\hline 9
\end{tabular} \& Ficel.
\[
\begin{aligned}
\& 100 \\
\& 10 \\
\& 120
\end{aligned}
\] \& Cubicfect.
36
32
38
96
53
126
142
340
146
293
246
134
199 \& Feet R. 3f. \& 1
2
3
7
13
26
16
18
16
5
5 \& \begin{tabular}{|r|}
Inelocs. \\
\hline 61010 \\
10 \\
11 \\
12 \\
13 \\
14 \\
15 \\
10 \\
10 \\
18 \\
19 \\
20
\end{tabular} \& Fcel.

30
10
100 \& 1 \& Inches.
3 to
6 to 10 \& $\} \begin{gathered}\text { Feet. } \\ 40\end{gathered}$

\hline \multicolumn{5}{|l|}{21 trees:} \& \multicolumn{3}{|l|}{| 113 irces: |
| :--- |
| Total culbic feret. 66, 207 |
| Total feet 13. St 26. wion |} \& 2 trees. \& \&

\hline
\end{tabular}

Table VI.-dere yields of White line and mannements of anmple treen-Contiuned.

A.-MICIII(iAN-Continned

(12) SITE m :
losconmenon County.
sampte ares: facres.
[300 to 1,000 teet above neal level.]
Ifere No. 1.
 'orest ondition led rine (Forest conditions: Led Line (53 per cent) with White line (32 per cent) amb hardwools (8 yer Jonaity of crown cover: (i),

ACIE IIELI.

		hite Pin				lied Pine.			Oati.				
			Tol	nume									
Number of trees.	Diameter (breast high).	Height.	Bole.	Mer. chantable timberl.	Number of trees.	Diameter (breast high).	Meight.	Sumber of trees.	Diameter (breast high).	Height.			
1	Inches. 14	Feet.	Cubicfect	Fect 1. 14.	1	Inches. 13	Feet.	1	Inches. Under 3	Fect.			
1	17 18		79 88		1	14 15		3	3 to 6				
3	19		288		2	16		$=-$					
2	20		210		6	17			Mavole.				
$\frac{9}{5}$	21 2.2	100	228 615		5	18	100		mase.				
2	23		268		8	20	120			,			
3	24	tol	438		3	21		2	3 to 6	40			
2	$\because 5$	1.0	314		7	90		2	61010				
5	36		815		2	33				!			
4	27		\% 85		2	21							
$\stackrel{2}{2}$	28		392		1								
1	33		267										
1	34 39		283 451										
1	39		451										
30 trees:Total cubic fuet......................... ${ }^{\text {a }}$, 50.3					47 trees:			8 trees.					
					Tota	cubic fuet	5,360						
l'otal feet B. M 26. 600								Total leet 13. M - 28,000					

Total yieta: Pine, 10,913 cubic feet
52,600 feet B. M. of which White Pine 50 per cent.
Average anmual accretion: line, 61 cubic feet.
Acre No. $\stackrel{2}{\sim}$.
Noil: Dry, limht-brown sand, medinm fine, deup, well drained, with moderately leafy surdace corer. Age of pibe: 160 tonou years Forest conditions: Red line (55 pel cent) with White Pine (25 per cent) intermixed; level. Density of cromn cover: (?).

- CHFIIELI).

Number of trees.	$\begin{gathered} \text { Diameter } \\ \text { (breast } \\ \text { hirgh. } \end{gathered}$	Height.	Tolume.		$\begin{aligned} & \text { Numbrr } \\ & \text { of trees. } \end{aligned}$	Diameter (hreast high).	Ieight.		
			Bole.	Mer. chautable timber.					
2	Inches. (6) to 10	Feet.	Cubicyeat	Fect IL. M		Inches. 61010	Fect		
1	11				3	111			
1	12				$!$	12			
\pm	14				12	13	1011		
7	16				32	15	10		
4	17	10			17	16	120		
3	18	120			18	51			
3	19				${ }^{8}$	10			
1	$\because 0$				\pm	16			
6	$\because 1$				2	;			
-	-2,								
1	8								
						1			
-30 trees:					113 trees:				
Total teet 15. $\mathrm{St}^{\text {d }}$				- 3, 33:	Total fevt 13. 31 . 3.3, 2あ				
	-- - - -	- 1.9,90,1					

Total yiche : I'me, 11,546 cnbic tet.

Averago annual accretion: Dine, 45 cubice tevet.

Csble：V＇I．－Icre yiclds of thite I＇ine rund metsurements of sample trees－Continued．

Soil：Light brown，iry sand，medium tide，deep，well drajued，with a moverately leafy serface cover．
Forest condifions：Ied line（ 90 per cent）intermixed with White Pine（ 10 ger cent）；level．
Clasaification：
Dominant
Hominant
Oppremsed．
supprcesed.
\triangle CRE：V゙じに

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{White Pine．} \& ， \& \multicolumn{2}{|l|}{Hetl Pive．}

\hline \multirow[b]{2}{*}{N゙uruber of trees．} \& \multirow[b]{2}{*}{Diameter （hreast higu）．} \& \multirow[b]{2}{*}{Meight．} \& \multicolumn{2}{|l|}{Volume．} \& \multirow[b]{2}{*}{Number of trees．} \& \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Diameter } \\
\text { (irreast } \\
\text { high). }
\end{gathered}
$$} \& \multirow[b]{2}{*}{Height．}

\hline \& \& \& Brate． \& Mer． chantable timber． \& \& \&

\hline 1
1
2
1
1
3
2
1 \& Inches． 6 tu 10 13
14
19
20
20
25
26 \& Feel．

100
to

120 \& | Cubie feet |
| :---: |
| 10 |
| 48 |
| 110 |
| 969 |
| 105 |
| 369 |
| 314 |
| 169 | \& Feet B．M． \& 5

1
1
0
3
12
10
10
25
13
12
4
6
3
2

1 \& | Inches． |
| :---: |
| 6 to |
| 10 |
| 10 |
| 11 |
| 12 |
| 13 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 19 |
| 20 |
| 21 |
| 19 |
| 23 | \& Fect．

100
to
120

\hline \multicolumn{5}{|l|}{12 trees：} \& \multicolumn{3}{|l|}{105 trees：}

\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{$\begin{array}{lr}\text { Total cubic fect．．} & 8,170 \\ \text { Total feet B．M．．} & 34,300\end{array}$}}

\hline \& \& \& \& \& \& \&

\hline
\end{tabular}

Totalyield．D＇iue， 9.391 cubic feet．
39,40 seet B ．M．of which White Pine 15 per cent
A verage annual accretion：Pine， 52 culnic feet

$$
219 \text { feet J3. II. }
$$

Acre No．A．
Soil：Light－brown，fresh，loose sand，medium fine，deep，well drained，with a moderately leafy surface cover．
Forest condition：Red I＇ine（ 61 ver cent）intermixed with White Pine（33 rer cent）and Lard－ wools（ G pr cent）；scattered young Oak and Beech on uneven groundite Pine．IRed line．

Age of pine： 160 to 200 sears． Density of crown corer：（1）．

Number of trees：（i）．

ACHE IIELD．

Total vield ：I＇ime， 11,135 culife feet．
（15．T6u feet 1h．Mo，al which White I＇ino 32 ver cent．
dveraye anmmal accretion：Hine，fitl culbe feet

Table VI.—Scre yiehds of Thite l'ine and measurements of sample trees-Continued.
A.-MICIIGGN二Continued.

MEASTVEMENTS OR゙ NAMPLE THELS.
dye clabse 160 to 180 years.
bomandit growth.

Tree number.	Age.	Diameter (breast high).	Meigint.	```Hing4 ler juch (1) stum%.```	Folame ol tree.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { shape. } \end{aligned}$	Ration of lenerth of crow to total height of trex.	Curren accr	annual foll.	Average anthat acere. t1on.
	Years.	Inchen.	Fect.	Vo.	Cu.je.			Percent.	Cu, it.	2. 11
9.	178	34.8	118	7.5	170.1	0.46	0.54	1.2	2.04	0.45
29.	173	27.2	121	6. 2	218.8	. 45	. 28	. 7	1. 53	1.26
24.	163	26.5	120	6.2	211.0	. 46	. 31	.7	1.47	1. 59
Iverage.	$1: 1$	-6. 0	120	6, 6	200.0	.46	. 3.3	.9	1.68	1.17
34.	18:	25. 2	118	7.4	173.0	.43	. 53	1.3	2.95	. 95
18	168	26.7	11.	6.9	202.1	. 45	. 54	1.2	2.42	1.07
	1:0	31.0	119	5.3	286.6	. 45	.40	. 7	2.0	1.54
Arerage.	185	97.6	118	6, 6	20.5	. 44	. 31	1.1	2.22	1.19

Age class: Over 200 years.
HOMINANT (iHOWTH.

19.-.................	211	28.5	119	7.3	218.9	0.41	0.63	1.3	2.84	1.03

OPPRESSED GROWTH.

20233-No. $22-9$

Tabis: VI.- fore yichs of White l'ine and measurements of sample trees-Continued.

A.-MICHIGAN-Continume
(13) SITE゚ n :

IGoscommon County.
[900 to 1,000 feet above sea lerel.]
Noil: Ligh, brown, loamy sand, fresh, lifht, loose, tne, well drained, with 2 to 3 inches mold on tolv, and a surface cover of abumant leaves.
Forest conditions: Hardwowds (69 yer cent) mixed with White Lide (31 per cent) nituated on a slope (angle 10°); undergrowth scants, of young Oak and lsewch. [Thesingle deed I'ine stand. ingrather exceptional. About 20 to "ts percent of Red Pino would have becn more typleal.] Clasrification:

ACRE ILELD.

White l'ine.					Beech.			Rock Maple.					
Sumber of trees.	```Diameter (breast high).```	Meight.	Bole.	Mer chantable timber.	Number of trees.	Diameter (breast high).	Height.	$\begin{aligned} & \text { Number } \\ & \text { of trees. } \end{aligned}$	Diameter (breast high).	Hejught.			
1	Inches. 11	Eeet.	Cubie ft.	Heet B. 4.	26	Tuches. 3 to 6	Feet.	6	Inches. 6 to 10	Feet.			
3	13		159		34	6 to 10		1	10				
1	14		60		4	11		1	12				
1	15		72		6	12		1	13				
1	17		90 240		1	13		1	14				
2 3	20		240 387		1	14 15			17				
3	23		478		1	36			-				
1	24	100	166.		1	18			Tied Oak.				
3 3	25	to	55.5						lued Oak.				
4	27		864										
4	28		924					1	6 to 10				
1	89		217					1	12				
2	31		560					1	13				
2	32 33		594						20				
$\stackrel{\square}{2}$	3		668										
1	36		373										
40 trees:					\| 75 trees.			15 trees.					
								$1 /$					

Average annual accretion: White Pine, 42 cubic feet. 205 feet B. M.

TABLEF VI.-acre yields of W"hile l'ine and measnmments of sample trecs-Continued.

H.WVINCONSIN:

(${ }^{() \text {Site } a \text { : }}$
Winahurn County.
Sauple area: 2 acres.
[1,2ul feat above sealerel.]

$$
\text { Icre So. } 3
$$

Soil: Fresh clay, underlaid by hardman of clay and stones; 4 inchen of mold, burface cover leafy. Age of pine: 200 to 2ad fears. Forest conditions: Twostory stand, White "Pine orcupying upper story, harelwoods (Maple. Fellow Birch, Elm or Basswonds, or Hornbeam) the lower story; undergrowth dense, of roung hardwoonls, 1 to 3 inches in dianster, 20 to 30 leet high. White fine, 56 per cent; roung hardwools, 1 to
Classification:

ACHE TIELD.

Average annual accretion: White Pine, 38 cubic feet.

Tablis: VI.-Iere yields of While Pine and measurements of sample trces-Continnod.
B. -IVISCONSIS-Continued.

Acre No. 2.

```
Soil: Fresh clay, underiatl by hardpan of clay and stones; f fnches of mold, surinco corer Ago of pine: 200 to 220 zears. leafy.
Forent conditions: Two-story atand, White Pine occupsing the uppet stnry and hariwoork
```



``` of rounc hardwools and Fir. White pine, 32 per cent; bardsoods, 48 pur cent
```



``` clasigicarion:
Dominant.
Oppressed
Suppressed
```

bensity of crown cover: (i)

Number of trees: 132

Acerage annual accretion: White Pine, 75 cubic feet.

MEASUREMENTS OF SIMPLE TREES.

Tree number.	Age.	Diameter (breast ligh).	Height.	Folume of tree.	Factor of shape.	Ratio of length of crown to total height of tree.	Arerage anนual accretfors.
1.	Fears. 204	Inches. 24.7	Feet. 102.0	C'u. ft. 166	0.49	0.45	$\begin{gathered} \text { Civ. flt. } \\ 0.81 \end{gathered}$
2	221	27.0	113.0	183	.42	. 37	. 82
3.	213	27.0	121.5	191	.40	. 53	. 50
4.	214	26.0	126.0	201	.43	. 52	. 94
5	216	26.8	126.0	210	. 42	. 46	. 97
6.	202	24.0	134.0	187	. 44	. 40	. 83
7.	204	29.0	152.0	238	. 39	- 39	1.17
8.	212	29.0	133.0	250	. 41	. 42	1.18
9.	213	30.0	133.5	291	. 44	. 47	1.37
Iterage	211	27.0	124.0	213	. 42	. 44	1.01

TAble VI.-Acre yields of White I'ine and meagurements of sample trees-Continued.
B.-WISCON:IN-Continued.
(2) Site c:
W゙ashburn County.
Sample areas: 3 acreg.
[1,400 ficet above sealevel.]

$$
\text { Acre No. } 1
$$

 whth's inches mohl on top and surfa't cover ot leares.
Forest condutions Iwontory stamb of typical open pine growtb, upher story of white line Demsity of urowncuver: (i) (2oy per cent), lower story of hardwoods (ft fur cent), mainly liock inaple, scattering
Fellow Birch, and occastomal Elm, IIormbean, and I'ir (4 ler cent); udergTowth, noder. ately dense, of young hardwoods.

Number of trees: 88
ACRE YIELID.

Acre Fo. \sim.

Soil: Light-colored clay, underlaid by sand at a depth of about 2 feet; fresh, moist in bollow. Age of pine: 200 to 220 (few 160) with 3 laches mold on top and surface corer of leares.
years.

Forest conditions: Two-story stand of White Pine (4t per cent) mixed with hardwoods (ã3 per Density of crown corer: (?) cent), upper story of pine, the lower story ot hardwoods (Fock Maple intermixed with
cent), upper story of pine, the lower story ot hardwoods (linck Maple intermixed wind growth.

Number of trees: 136

ACRE ILELD.

76 trees:

TAns．f：VI．－Icre yidds of W＇hite line and measurements of sample tres－Continued．
13．－W゙IのCON゙IX゙－Comtinuent．
icre No．3．
vith 3 incheremen toln surficu cuver of leaves．
feet ：fresh，muist in hollow，ago of pine： 200 to 2.20 （fer

 Hornbeam and fin
Clausification：
Dominant
supgreszed．
White rine．

ACRE I゙1ELD

Average annual accretion：White Pine， 58 cubic feet．
MEASUREMENTS OF SAMPLE TREES
＂Age class： 100 to 150 years．

Tree number．	Age．	Diameter （breast high）．	Height．	Folume of tree．	Factor of shape．	Fatio of length of crown to total height of iree．	Average annual accre－ tion．
	Sears．	Inches．	Feet．	Cu．ft．			Cu．ft．
46.					0.39	0.44	0.59
47.	114	18.0	80.0	70	－ 49	． 63	． 73
48.	102	18.7	86.5	74	． 45	－61	－73
49.	120	19.3	90.0	81	－ 46	.55	． 68
50.	101	14.0	75.0	41	． 52	． 40	． 1
A verage	107	17.7	83.5	66	． 46	． 52	.61
05.	102	12.8	77.5	34	． 49	． 30	． 34
26.	102	13.2	73.5	30	． 51	． 48	． 35
27.	100	14.0	75.0	46	． 57	． 37	－ 46
28．0	102	15.7	79.5	56	． 52	． 58	． 55
29.	1113	22.2	83.0	97	． 43	－ 49	． 98
31.	112	18.8	86.0	81	． 49	－ 30	－ 70
31.	116	17.0 5.6	86.5	69	50 .56	． 51	－． 38
32.	105	5.6	41.5				
A wrage	115.5	15.0	75.0	53	． 51	． 46	． 54
1 ．．．．．．．．	104	15.3	91.0	52	． 45		． 50
\because	104	15.5	96． 0	63	． 50	． 51	． 61
3	101	16.5	98.0	65	\cdots	． 41	－64
4	105	19.5	163.0 94.0	93 50	－ 80		－90
5	1100	14.4 17.0	98.0 104.0	50	． 40	－． 38	． 69
$\%$	10	16．5	11080	$6{ }^{6}$	＋ 4	． 41	． 67
8.	1105	18.5	1119.0	96	． 47	． 38	． 91
I verag．	103：	16.6	100.0	70	． 46	． 42	． 68
1.	1：7	24.0	103.0	118	.36	． 31	． 86
\because	14：	27.8	108.0	201	． 44	.43	1.42
Aい「ごg	1259.5	26.0	106.5	159	．$\$ 0$.37	1.14

Table VI. - Iere vields of White line and measurements of sample trees-Continned
I3.-WTACONXIN-Continued.
MEASUHEMENTS OH SAMEJ, THEES-Contmued.
. Age class: 150 to 200 years.

Tree number.	Ag'。	Diameter (brenat high).	Meight.	Volume of tree.	Fatctor of shatue.	Ratio of length of crown to total height of tree.	Arerage aunual aecretion.
13	Iears.	Inches.	Feet.	Cu.ft.	0.50	0.45	Cu. ${ }_{0}$ fl
14.	200	20.3	101.0	100	. 14	. 55	. 50
15	208	22. 6	96.0	121	. 45	. 40	. 58
16.	195	24.2	97.0	133	43	. 32	. 68
15	197	24.2	112.5	146	. 41	. 54	. 74
18	196	23.0	116.0	154	.46	. 46	. 79
19.	205	23.5	113.5	161	. 47	. 42	. 78
	198	25,8	1116.5	166	. 43	. 42	. 84
21.	217	29.5	114.5	192	. 35	. 58	. $\times 8$
22	197	29.0	115.0	23.36	- 45	. 63	1. 20
23.	210	31.0	115.0	25.3	. 42	. 59	1.20
24.	$\because 02$	31.5	127.5	22_{2}	. 4	. 47	1.40
25.	205	33.3	120.0	304	. 42	. 43	1.48
	205	25.6	100.5	161	44	. 39	. 78
27.	204	25.3	116.5	175	.43	.51	. 86
28.	295	28.2	110.0	175	. 37	. 50	. 78
29.	206	28.5	103.0	183	. 40	. 43	. 89
30.	207	28.5	119.0	213	. 10	. 34	1.03
31.	204	32.0	111.5	274	. 44	- 54	1.34
32	205	32.0	115.0	281	. 44	-69	1.37
33	200	34.0	117.0	285	. 39	.43	1.43
34.	201	28.3	119.0	208	. 10	. 61	1.03
Average.	204	27.0	111.0	195	.47	- 49	1.75
40.	193	16.0	108.0	75	.47	. 44	. 38
35.	201	22.2	95.0	115	0.45	0.63	0.57
$3{ }^{6}$	191	29.0	116.0	216	. 41	. 55	1.13
37.	$\because 16$	28.5	120.0	262	. 49	. 52	1.21
38.	220	34.5	128.0	308	. 37	. 56	1.40
39.	207	35.0	126.0	342	. 41	. 39	1. 65
A verage	207	29.8	117.0	249	. 43	. 53	1. 19
1.	204	34.0	118.0	$\stackrel{9}{ } 9$. 37	. 51	1. 34
2.	209	35.5	121.0	30.3	. 37	.is	1. 46
3.	200	35.0	116.0	306	. 40	. 41	1. 53
4.	312	34.0	120.0	313	- 42	. 4 ?	1. 48
5	210	33.5	141.0	323	. ${ }^{37}$. 511	1.54
6.	$\because 12$	37.0	128.0	353	. 31	. 64	1. 68
7.	214	38.0	114.0	357	. 40	. 47	1. 67
8.	206	38.0	127.0	371	. 37	. 46	1.83
9.	20	37.0	127.0	399	4*	. 61	1. 81
10.	210	42.0	140.0	500	. 38	-64	2.41
11.	$\because 10$	43.0	144.0	577	. 40	. 56	2.35
12	210	50.0	138.0	726	. 39	. 51	3.46
Arerage	210	38.0	128.0	401	. 39	. 52	1.91
41.	166	25.0	105. 0	158	. 44	. 3 \%	. 95
42	151	20.5	103.0	175	. 36	. 5	1. 16
43.	167	28.7	96.0	176	. 41	. 55	1. 05
44	155	29.0	101.5	201	. 43	.52	1. 30
45.	155	28.0	113.5	217	. 45	. 41	1.40
Average	159	28.0	104.0	185	. 42	.47	1.17

Tabs: V'L.Acre jielis of While line and measurements of sample trees-Contiuned.
13.-WINCON:INーContimued.
(3) Sitf. e:

Larron Counts.
Sample area: 3 acres.
lere No. 1.

Soil: Claver loam mixel with sand and sones, lenf cover underlaid by 2 to is inches mold; subsoil clay in places amel an otluers aind
 per centl, Juanly liock Maple, few Yellow Birch, Iornheam, Jsasswond, abl vecamonal Elm with scattering Fir (2 jer cent) and lied Pine (1 pre cent); hollows anmetames full of water, hut more often open, grasay swamps, with Alder amd Hackmatack, fringed by pine.
Classificalion
lassification:
lhminant.
1)pmresaedl
Hppresacil.
Suppressed \qquad $5 i$
30

Age of pine: 160 to 200 (fes
yol to lu0) yeara.
Density of crown corer: (1).

CRE

Average annual accretion: White $\mathrm{Pine}_{1} 65$ cubic feet 310 feet B. M.

Tanle VI.-icre yiclds of While l'ine and measurements of sample trees-Continucd.
B.-WISCONAIX-Continuet.
tere To. 2.
Soil: Clayes loammixent with samil and stomes, leaf coror anderlaidly 2 tas 3 inchesmold; subsoil, Age of pine: 160 to 200 (few clay in places and in others samat.
(90) to 100) vears

(51 per cen\&), matinty likek Maple, few Yellow Birch, Hornbean, Busswond, and orcasional
F:lm, with scattering Fir and lial Pine, hollows sometimes fill of water, but more often open,
grassy swamps, with Alher ant Hackmatack, fringed by pibe. Whice l'ine
infication:

Oppressel
Number of trecs: 110.

Suppressed
78
28
4
4

ACRE YIELD

White line.				
Numberof trees.	Diameter (hreast bigh .	Height.	Volume.	
			Bole.	$\begin{gathered} \text { Mer. } \\ \text { chantable } \\ \text { timber. } \end{gathered}$
$\begin{array}{r} \frac{2}{2} \\ 2 \\ 2 \\ 2 \\ 4 \\ 4 \\ 2 \\ 10 \\ 2 \\ 10 \\ 2 \\ 2 \\ 2 \\ 6 \\ 2 \\ 2 \\ 2 \end{array}$	Inches. 6 to 10 $\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 29 \\ & 23 \\ & 24 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 32 \\ & 35 \\ & 42 \end{aligned}$	Feet. 20 ${ }_{10}^{20}$ 100 110 to 130	$\left\{\begin{array}{r}\text { Cubicfeet. } \\ 90 \\ 158 \\ 172 \\ 496 \\ 536 \\ 9.42 \\ 1,330 \\ 370 \\ 1.990 \\ 426 \\ 456 \\ 480 \\ 548 \\ 653 \\ 1,074\end{array}\right.$	FeetB.1\%.

54 irees:
Total cubjc feet.................................. 9,200 Total feet B. M................................... 41, 160

Maple.		
Number of irees.	$\begin{aligned} & \text { Diameter } \\ & \text { (loreast } \\ & \text { high). } \end{aligned}$	Height.
26 16 2	Inche9, 3100 61010 101014	Feet. 40 60 80
Tellow birch.		
2	23	80

Hormieam.

10	3 to 6

56 trees.

Average annual accretion: White Pine, 48 cubic feet. 216 feet B. M

TABLE: V1.-Acre yields of While l'ine and measurements of sample trecs-Continued.

13.-W゙I*(ON-IN-Consinuedl.

Aere No. in

Soit: Clayey loan mix with sand and stones, leaf cover unterlait by 2 to 3 jnchew mold; Bubsoil, clay in ulaces and in others satud
 wer cent), mainly Tuck Maple, fow Vellow Birch, Hornbeani. Basswum, and creasional Elm
with acattering Fir (3 per cent) and lied line; bollows sonuetimes tull of wattry but more
often opers. grasey awamps, with Alder aut Hackwatack, fringed by pise.

Clasification:
Domification:
Dominaal
Oppressed
Oppressed.
White dine.
per cent.. 61

Ige of pine: lou 10 220 (few 90 us Ju0) vedars.
Denslty of crown (over: (1).

Nimber of treen: 1tt.

ACHE YHELD.

Average annual accretion: Whit line, 62 cubic feet.

Table: V1.-Acre yields of White l'ine and measurements of sample trees-Continued.
13.-WISCONSIN-Continuen.

MFASUREMENTS (OF SAMPLE TREFS,
Ate clats: $=00$ tu 290 years.

Ageclase: 16010180 years.

18.		168	30.0	121.5	200	0.35	0.49	1. 22
19.		165	28.4	120.0	224	. 41	. 50	1.36
20.		173	28.4	127.0	257	. 46	. 35	1.49
21.		163	17.8	91.5	T2	. 46	. 34	. 44
22.		162	23.0	101.0	1:30	- 46	, 54	. 80
23.		174	28.0	108.5	167	.36	. 54	. 96
24.		166	35.4	164.0	166	. 45	. 52	1. 00
	Arerage...	167	26. 0	110.0	17¢	.42	.47	1. 04

'I'sule VI.-Icre yields of White line and measurements of sample trecs-Continued.

(d) Sitef:

Washburn County.
Soil: Light brown sandy loam, medium fine grain, loose, deep, fresh, well drained, with abundant leaty surlace cover.
Forest conditionf: An open atand of hardwoonts (Hock Manle, Yellow IBarch, and acattering Bass. wowl, with Jiemlock, and necasional Jied Dak, White Birch, and Joplar), in which White Piue is acatlered in varving propurtions, on broken land, with freguent awampa in the hollows: undergrowth of young hardwoods, Fir and Hornbeam, and few Hemlock.

MEASUREMENTS OF SAMPLE THEES.
Ige claps: 80 to 100 years.

dominait ghowth.

OPPRESSED GROWTH.

scppeessed GROWTH.

18................ 127	14	73	6.5	39.7	0.50	0.31	4.3	1.71	0.31

Ageclass: 120 to 130 years.
bominast growtir.

14................ 121	20.2	91	5.4	90.9	0.45	0.50	3.4	3.09	0.75
28................ 125	24.5	89	4.0	131.8	45	. 58	2.9	3.82	1.05
15................ 1:5	26.5	96	4.0	141.5	. 39	. 46	1.5	2. 12	1.13
16................ 1:5	26.3	10.	4.1	176.8	47	. 53	1.6	2. 83	1.41
17.............. . 119	29.0	97	3.8	184.5	. 42	. 57	1.5	2.77	1.55
Irerag*... 12:	25.3	95	4.3	145.1	. 44	. 53	2.2	2.92	1.18

Age clase: 220 to 230 years.
DOMINAST GROWTH.

33.	223	30.5	116	7.0	237.4	0. 40	0.38	0.8	1.90	1.06
11.	2?	31.0	112	7.0	246.6	. 12	. 56	. 6	1. 48	1. 10
1:	-	35.3	124	6.0	322.2	- 40	.48	.5	1. 61	1.41
	213	35.0	118	6.0	359.9	.45	. 41	. 7	2.52	1.64
Avera=*	23	33.0	117	6.5	291.5	. 42	.46	. 6	1.88	1.30

Tabee VI.-Acre yields of While line and measurementa of sample trees-Continued.
13.-WISCON:IN-Continued.

(5) Nite g:

Wanhburn Conuts.
Soil: Lonm, generally fresh, sand nme stonemixel, 2 to 3 inches mohl on top, and a surfaco cover of leares
Forest condutions: Twostors stamd upper story of Thhite Pine (5t per cent) and Ked Pinc (43 per
cent) second story of Fir (13 per cent nad hardwoods (2d ner cent)-Maple, with scattering

cants of sounc hardwouls umeven land full of drift ridges aud bollowg often with steep inclines, the hollows frequently full of water.
Classifcation
White Pine.
Dominant
Oppressed.
Suppressed

\qquad
\qquad
\qquad
\qquad . . $10 . .$. 10
15
15

Sample arca. lacre
Ago of pino: 160 to 230 years.
Dengity of crown cover: (l)

Number of trecs: 143.

- CIEV VIELD

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& Hite Pin \& \& \& \& Red Pine. \& \& \& Maple. \&

\hline \multirow[b]{2}{*}{Number of trees.} \& \multirow[b]{2}{*}{Diameter (breast high).} \& \multirow[b]{2}{*}{Meight.} \& \multicolumn{2}{|l|}{Folume.} \& \multirow[b]{2}{*}{Number of trees.} \& \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Diameter } \\
\text { (breast } \\
\text { ligha). }
\end{gathered}
$$} \& \multirow[b]{2}{*}{Height.} \& \multirow[b]{2}{*}{Number of trees.} \& \multirow[b]{2}{*}{Diameter (breast bigh).} \& \multirow[b]{2}{*}{Height.}

\hline \& \& \& Bole. \& Mer. chantable timber. \& \& \& \& \& \&

\hline |r $\begin{aligned} & 3 \\ & 3 \\ & 1 \\ & 3\end{aligned}$ \& Inches.
6 to 10
11
12
13 \& Fcet.
80 \& Cubicfeet. \& Fet B. M., \& 1
2
1
2 \& Iuches
15
16
17
18 \& Fept.

80 \& 9
16
3 \& Inches.
3 to 6
6 to 10
10 to 14 \& Feet.
40
615
80

\hline \pm \& 14 \& 100 \& 180 \& \& 1 \& 19 \& to \& \& \&

\hline 5 \& 15 \& \& 260 \& \& 3 \& 90 \& 120 \& \& Birch. \&

\hline $\frac{2}{5}$ \& 16 \& \& ${ }^{116} 3$ \& \& 1 \& $2 \pm$ \& \& \& \&

\hline 5
2 \& 18 \& \& 176 \& \& 1 \& 26 \& \& \& \&

\hline $\overline{3}$ \& 19 \& \& 4×0 \& \& \& \& \& 2 \& 3 to 6 \& 40

\hline 5 \& 20 \& \& 525 \& \& \& \& \& 3 \& 6 to 10 \& 60

\hline 8
4 \& $\stackrel{1}{1}$ \& \& 912
492 \& \& \& \& \& 1 \& 11
16 \& 80

\hline 4
3 \& 22 \& \& 492
402 \& \& \& \& \& \& \&

\hline 3
5 \& 94 \& 100 \& 438 \& \& \& \& \& \& \&

\hline 5
6 \& 25 \& to \& 785 \& \& \& \& \& \& Fir. \&

\hline 3 \& 89 \& \& 627 \& \& \& \& \& \& \&

\hline 1 \& 31 \& \& 237 \& \& \& \& \& 16 \& 310
6
6 \& 60

\hline 1 \& 32 \& \& 251 \& \& \& \& \& \& \&

\hline 1 \& 33 \& \& ${ }_{2}^{2} 67$ \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \&

\hline \multicolumn{5}{|l|}{77 trees:} \& \multicolumn{3}{|l|}{\multirow[t]{3}{*}{| 13 trees: |
| :--- |
| Total cubic feet.- 1, 169 |
| Total feet IB. M . . 6, 160 |}} \& 53 trees. \& \&

\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Total l'eet B. M 41, . 900}} \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Average annual accretion: Pine, 51 cubic feet.
MEASUREMENTS OF SAMPLE TREES.
Age class: 220 to 230 इears.

Tree number.	Age.	Diameter (breast bigh).	Height.	Folume of tree.	Factor of shape.	Ratio of length of crown to total beight of tree.	Average annual accretivn.
10.	Fears. 216	Inches. 31.8	$\begin{aligned} & \text { Feet. } \\ & 121.5 \end{aligned}$	Cubicfoet. 287	0.43	0.40	Cubiefect 1.33
11.	222	35.0	123.5	344	. 48	. 46	1. 55
1:.	2゙-	$\because 4.8$	116.5	161	. 41	- 40	. 70
13.	220	24.0	100.0	150	. 49	- 27	. 78
14.	008	15.0	96, 0	58	. 50	- 47	- 28
16.	200	34.5	107.5	1.57	. 45	.35	.71
17.	218	29.0	118.0	230	- 34	. 49	1.10
Irerage	219	26.3	112.0	200	. 45	. 40	.92

Tannk V"- lere yields of Hhite Pine and measurements of sample tres-Coutinued.
16.-W゙Iー(ON:IN-Continumd.
(0) SITETV:

Lincoin County.
Noil: Jed, compact chat (iblack on top), well drained, with leafy antace corer.

(20 [ur cent), rolliug country.
MEASUREMENTS OF SAMPI, TMFL*

- Ite clase: 100 to 150 years.

Tree number.	Diameter (breast higli).	Melght.	Solume ot tree.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { shape. } \end{aligned}$	Tree namber.	Diameter (breast high).	Height.	Folume of tree.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { slape. } \end{aligned}$
$\begin{gathered} 611 . \\ 3 \\ 86 . \end{gathered}$	Inches. 31.0 30.5	Feet. 97 97 104	$\begin{aligned} & C u . f t . \\ & 108.1 \\ & 105.8 \\ & 270.2 \end{aligned}$	$\begin{array}{r} 0.48 \\ .48 \\ .37 \end{array}$	25. Average	Thehes. 36.5	Feet. 114	$\begin{gathered} C u_{0} r t . \\ 308.5 \end{gathered}$. 38
						28.6	103	199.0	. 43

A lue class: liv to :00 years.

37.	24.0	117	12\%. ${ }^{\text {a }}$	0.33	40..	31.0	132	273.2	41)
79.	24.0	18	137.7	. 44	88.	35.0	118	287.7	.36
95.	27.0	101	140.5	. 35	38.	34.0	13.3	31:3.8	.37
45.	24.0	104	136.7	. 42	44.	35.0	138	311.4	. 34
4.5	25.0	87	140.1	. 47	39.	32.0	140	318.6	. 41
76.	ㄹ.2. 0	121	178.6	.47	84	36.0	127	2x.3. 2	. 35
19.	24.0	121	180.7	.47		36.0	157	365.8	. 33
Ts.	33.0	107	236.8	.37					
14.	34.0	105	249.0	. 38		30.0	1:0	231.2	. 38
47.	33.0	136	257.1	. 32					

Age class: 200 to 250 years.

Age class: 300 to 350 sears.

! 1 ,	31.0	115	215.9	0.36	15	33.0	136	332.0	0.41
42.	311.0	132	219.8	, 34	64.	36.0	124	237.0	.27
53	30.0	120	231.9	. 39	36	34.0	1415	380.4	. 41
16	30,0	121	240.3	. 27					
13.	33.0	129	296.2	- 39		34.3	129	273.6	. 33
11.	46. 0	110	309. 4	.19					

Tambe VI.-Acre yields of White line and measurements of sample trees-Continued.

C.-PENNGYLVANIA

(1) Site d:

Clinton Connty
Sample area: "acres
[2.000 fret above sea level.]
Soil: Tocky, underlaid by sand, stono, or alates in maces, sand or clay or a mixture of both in Age of pine: 2 at to 260 years. varvine proportions: no soil to depth of 4 to 5 tect, rocks covererl with 3 inches mold, amd Rock Fern Lurel Green brier and in openines some Blackberries are setn.
Forest conditions: IIemlock (60 per cent) intermixed with Whitul line (24 per cent), scattering
Black lifech and Yellow Birch and occasional Oak, Chestnut, and Maple, on steep slopes Cumper fret pur acre: 96. borderiner Hyner Run; undergrowib, molerately dense, of young Hemlock near the run and Birch and hard woods above nimed near top of slope.

TIELD FOR THE TWO ACHES.

Average annual accretion: All species, 49 cubic feet.

MEASUREMENTS OF'SAMPLE TREES.
Age cluss: 180 to 200 years.

Tree number.	Age.		Height.			Tol	me.			Lumber
		Diameter (breast high).		Height to base of crown.	$\begin{aligned} & \text { Rinigs } \\ & \text { per inch } \\ & \text { on } \\ & \text { stump. } \end{aligned}$	Tree.	Mer. chantable timber.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { shape. } \end{aligned}$	Ratio of length of crown to total lueight of tree.	under present practice (percent used of total volume of atem).
10.	Tears.	Inches. 28.0	Feet.	Feet. 56	$\begin{array}{r} 10 . \\ 6.6 \end{array}$	$\begin{aligned} & \text { Cu. ft } \\ & 170.8 \end{aligned}$	$\text { Feet } \frac{1 B . M}{308}$	0.40	0.31	44
11.	199	30.0	114	56	5.6	214.4	1,273	. 38	. 51	49
12.	197	26.5	10.5	56	7.0	183.3	997	.45	. 16	45
13.	196	23.0	95	40	7.4	111.1	490	- 40	. 58	37
14.	199	29.0	103	52	6. 3	220.6	1,290	. 46	. 49	48
15..	189	23.0	104	60	8. 0	106.4	534	. 35	-42	11
16.	186	22.0	104	54	7.8	128.0	643	- 46	- 48	12
17.	189	25.5	105	45	6.9	176. 1	888	47	. 57	42
18.	197	26.0	101	50	7. 3	155.7	791	. 42	- 50	41
19.	183	26.5	88	40	7.2	151.8	560	. 45	. 54	41
A verage	193	26.0	103	51	7.0	162.0	858	. 42	. 51	43

Age class: 230 to 250 years.
IOMINANT GROWTH.

Tabls: Vi.- fere yields of W"hite I'ine and meaburements of sample trces-Contimued.

Age clare: 230 10 200 virnts.
COMOMIXANT GHOWTH.

Treonumber.	Age.	```Diameter (breant Ilelght. ligh!.```		Height to hase of crown.	Folume.			Factor ot shaje.	Ratio of lensth of crown to totnl beight of tree.	Limbler product under prenent practice (fer cent used of total volume of eterm).	
				```Ring% per inch 0H stump.```	Tree.	Mer. chantable timber.					
1. 30 20	$\begin{gathered} \text { Iears } \\ 245 \\ 3: 32 \\ \mathbf{2 5 6} \end{gathered}$	Inches:   ${ }^{28}$. 5   :33. 0   23.5	Fect. 132 132 141		Feel. 78 915	No. $\begin{array}{r} 7.0 \\ 9.3 \\ 10.1 \end{array}$	$\begin{aligned} & \text { Cu.ft. } \\ & 256.6 \\ & 160.6 \\ & 19 \pm .7 \end{aligned}$	$\begin{gathered} \text { Feet J. M. } \\ 1,58.3 \\ 1,766 \\ 1,143 \end{gathered}$	0.44 .48 .45	0.29 .41 .38	51 39 46
Al erars.	24	25.0	135	89	8.8	203.0	1.138	. 44	.34	45	
3.	$\because-19$	25, 0	120	60	7.1	197.6	1.100	. 48	. 50	46	
6.	234	$\because 3.0$	116	60	9.3	160.4	883	. 48	.48	46	
7.	(?)	28.0	124	72	(b)	224.2	1,348	. 42	.42	50	
8.	$\cdots 1$	27.0	110	60	7.8	190.2	1,070	43	. 45	47	
4.	229	30.0	120	52	7.7	268.0	1,5:3	. 45	. 56	48	
Averay	231	26.5	118	61	8.0	208.0	1,188	. 45	. 48	47	

(2) SITE f:

Clearfield Connty.
[1,200 to 1,500 feet above sea level.]

Soit: Yellow clayer loam of medium grain (fine shales in it), deep, freah, well drained, with 2 Age of pine: 240 to 260 gears. to 3 juches mold on top, nul surface cover of scanty leares, Fern, Tealerries, and scattering Density of crown cover: 0.7. Dogwood (Laurel northeast corner and north side) ; subsoil, laminated shate of indefinite depth.
Forest conditions: Hewlock (62 pre rent) mixel with White Pime (2g In cent), with occasional Number of trem: 132. hardwoods ( 10 per cent), Maple, Buech, and Birch, on hill sloping toward southwest, bordererl by lefthand branch of Narrow Creek; undergrowh, moderately dense, of very young leech, Hemlock, and occasional Birch nat Cucumber.

ACRE FIELD.


Iveraye annual acerction: 111 speciow, 03 cnhic fect.
360 teet 13. M.

TABLFA OF MEASUREMENTッ.


MEASULEMENTS OF SAMILE NJELES



CODOMNANT GROWTH.

28. 5 .	262	28.5	138	75	9.8	264.3	1,551	0.43	0.45	49
$\because 5$.	244	28.5	138	107	7.7	298.1	1,93!	. 49	. $2:$	54
24.	245	25.0	130	84	0.3	192. 1	1,102	.43	. 35	48
23.	246	31.0	130	82	7.3	310.3	1,731	. 45	. 37	$+6$
5.	364	29.0	140	16)	8.4	300.4	1.905	. 47	28	52
6.	264	93.0	110	110	8.5	291.4	1.631	.45	$\because 1$	47
7.	262	29.0	152	113	9.5	302. 8	1,854	. 46	26	51
8.	235	29.0	142	86		848.6	J,318	. 38	. 31	41
9.	$\because 36$	32.0	142	84	-	287.7	1,648	. 30	. 11	48
11.	34	30,0	141	81	7.5	305.3	1,947	. 44	. 42	33
13.	258	23.0	147	93	9.6	200. 0	1,0+8	. 48	.37	42
14.	$2+2$	25.0	139	98		217.1	1,233	.46	. 30	47
15.	269	$\because 6.0$	136	98		257. 2	1,389	. 51	. 22	45
16.	235	24. 5	124	93		163.8	815	. 40	. 25	41
17.	26	25.0	128	108		214.4	1.183	. 49	. 16	45
26	$\because 45$	26.0	130	98	9.3	199.9	1,021	. 40	.28	47
30.	259	26.5	134	(10)	9.2	228. 6	1,3:6	. 44	. 32	48
	564	28.0	141	84	9.3	276.5	1,575	.46	.40	47
31.	$\because 62$	-5. 5	132	88	10.0	191.8	863	.41	. 33	$3 \%$
32	261	26.0	142	93	9.1	239.9	1,3:2	. 46	. 311	46
Average...	253	27	138	93	9.0	$\because 50.0$	1, 421	. 44	. 32	47

OPPRESAED (ifowwill.

$20233-$ No. $22-10$

Tante VI.-scre yiclds of IHite I'ine and measurement of sample trces-Continued.
C.-PENXSVIVINIA-Continned.
(3) Site h:

Clarrield County.
Sample area: 1 acre.
[ 1,200 to 1,500 feet above sea level.] 3 inches mold on top, and surlace cover of scanty leaves, Feri, Dogwood, and Blackberrie: suloson, faminated shate of indefimite slentli,
Fores condifions: Hemlock ( 47 per cent) and White Pino (30 per cent) with seatterige Beechand ucaminal Black Birch (hardwoods 23 per cent) : undergrowth scanty, of young Beech with a few Black Birch aad Basswood.

## ACRE TIELD.

White Pine.						Iremlock.		Heech.										
${ }^{1}$ Sumber of treen.	Diameter (breast hght.	Height.	Folume.		Number of trees.	Diameter (breast high).	Height.	Number of trees.	Diameter   (breast high).	Meight.								
			Bole.	Mer. chantable timber.														
	Tuches.	Feet. 130	Cubicfret 137	Fcel P. MS		Inches.	Feet.	16	Inches.   6 to 10	Fecl.   30 to 40								
1	90	130	137	642	2													
1	21	130	137	642	2	8												
1	22	130	137	642	$\frac{1}{2}$	9			lack Birch.									
1	24	130 130	380	2,000	${ }_{1}^{2}$	116												
2	26	135	514	2, 280	4	17												
$\frac{2}{3}$	28	133	$5 \%$	3.300	1	18	80	1	${ }_{10}$ to 10	40								
$\stackrel{1}{2}$	34	145	1,500 800	18.800 4.800	3	21	100											
1	33	145	- 960	6. 400	2	33		,										
1	36		) 900	6. 400	3	24												
1	40		\} 1,022	6,600	1	$\stackrel{25}{25}$												
					$\frac{1}{3}$	27												
					1	${ }^{28}$												
23 trees: 55 trees:																		
					Total cubic feet -.................................... 11.20 .24													

Average annual accretion: All species, 45 cubic feet.
(4) Site i:

Jefferson County
Sample area: 1 acre.
[1,500 to 1,800 feet abore sea level.]
Soil: Feddish-lrown clayey loam, deep, fresh, well drained, with 2 to 3 inches mold on top and Age of pine: 230 to 240 jears. a surface cover of abundant lenves and ground Hemlock; subsoil, laminated shate of iudetinite depth.
Forest conditions: Hardwoods (il per cent)-mainly Beech, White Oak, and Maple-mised with Hemlock ( 22 per cent) and acattering White line ( 7 per cent) on ridge; undergiowth, moder. ately deuse, of very young Beech and some Maple.

Density of crown cover: 0.7 in places 0.8 .

Number of trees: 155.

ACRE YIELD.

Num-   ber of trees.	Diameter (breast hig(1).	White Pine.		
		Height.	Volume.	
			Bole.	Mer.   clantable timber.
	Snches.	Feet.	Cu. Sect.	Feet B. 38
1	12	90	30.0	120
1	17	90	70.2	236
1	19	102	90.3	336
1	? 3	122	158.3	650
1	343	126	174.9	820
1	303	136	310.0	1,682
1	31.	140	286	1.425
1	35	140	\$01. 2	2, 605
2	37	117	949.4	5.755
1	4)	138	487.1	3.056

## 11 trees

Cotal cubic feet... .......... 2, 033
Total feet JB. M ............... 16, itl

Beech.			Maple.			Hemlock,		
Num.   ber of   trees.	Diameter (breast bigh).	Height.	Num. ber of trees.	Diameter (breast high).	Height.	Num.   ber of   trees.	Diameter (breast high).	Height.
	${ }^{\text {Inches. }}$	Feet.		${ }_{\text {Oncher }}$	Feet.		Inches.	Fect.
14	61010	40	9	10 to 1t	50	15	6 to 10	00
17	10 to 14	${ }_{60}$	2	14 to 18	60	4	101014	10
	1810			18 to 24		7	141018 18 10	
White Oak.			Chestnut.			3	overso	100
4 4 6	$\begin{aligned} & 14 \text { to } 18 \\ & 18 \text { to } 24 \\ & 24 \text { to } 30 \end{aligned}$	80	2	3 to 6	30			

144 trees:
Total cubic feet
5.526

[^27]Table VI．－Icre yields of White line and measurements of sample trecs－Continued．
C．－DENNSYLNANIA－Continam．
MEASUKHMENTSOF゙SUMPLF THEEN．
DOMbNANT GROWTIL．

Tree number：	｜Agt．	Diameter   （breast light）．	Meigbt．	Height 10 buse of crown．	$\begin{aligned} & \text { Rings } \\ & \text { per inch } \\ & \text { onn } \\ & \text { stung. } \end{aligned}$	Tol	me．   Mer－   clantable timber．		Jationf length of crown fo tutal height of tree．	Iumber prosluet Hasler リアererit practice （ $\mathrm{m}+\mathrm{C}_{\mathrm{C}}^{\mathrm{c}} \mathrm{C}+\mathrm{nt}$ untal $01^{\circ}$ ental valume oll stewn）．
1.	Ieare. $\because 28$	Inches． 30.5	Feet． 136	Feet． 80	No． $5.6$	Cubic fect 3001,0	$\begin{gathered} \text { Feet F. M. } \\ 1,682 \end{gathered}$	0.43	0.41	4
2	239	40.0	138	80	5.6	487.1	3，050	.40	． 42	$5:$
3.	234	37.0	$1+6$	72	5.4	48.3 .8	2,626	． 44	． 31	45
4.	240	31.5	140	86	9.6	ごィ．：	1，4：5	． 37	． 39	42
5.	239	37.0	148	915	6.1	466.6	3，129	42	． 35	its
6.	239	35.5	140	80	6.1	401.2	2，615	． 42	． 43	$5 \cdot$
Average．	236	$35.0$	141	8.	6.4	403.0	$2,420$	．${ }^{\text {d }}$	$.42$	$49$

OPPRESSED GROWTH．


STIPPRESSED GROWTH．

	$\begin{aligned} & 19 \\ & 17 \end{aligned}$	$\begin{array}{r} 102 \\ 99 \end{array}$	$\begin{aligned} & 50 \\ & 80 \end{aligned}$	$(?)$	$\begin{aligned} & 90.3 \\ & 70,2 \end{aligned}$	$\begin{aligned} & 386 \\ & 936 \end{aligned}$	$\begin{array}{r} 0.44 \\ .44 \end{array}$	$\begin{array}{r} 0.51 \\ .19 \end{array}$	$\begin{aligned} & 35 \\ & 28 \end{aligned}$
A verage．．．	18	100	65		80.0	311	． 44	． 35	31

（5）Site $k$ ：

## Jetterson County．

［ 1,500 to 1,600 feet abore sea lerel．］
Soil：Reddish－brown clagey loam，deep，fresh，and drained by Windfall Run．
Forest conditions：White line，with Menlock anl occasional hardwoods：Henninck comparatively small，acting as an underwood，giving ample stade to the stems of the lVhite Pine．

ME．$\triangle$ ULEMENTS OF ${ }^{2}$ SAMPLF TIRES．

Tree number．	Are．	Diameter （breast high）．	Height．	Meiglst to base of crown．	$\begin{aligned} & \text { Rings } \\ & \text { per juch } \\ & \text { on } \\ & \text { stumq. } \end{aligned}$	Volume．		$\begin{aligned} & \text { Finctor } \\ & \text { of } \\ & \text { shatre. } \end{aligned}$	Matio of bength of crown to total beight of tree．	Lumber product under present practjce （per rent used ot total volume of stemit．
						Tree．	Mer．   chantable   timbar．			
11.	$\begin{gathered} \text { lofrss } \\ \because \neq 7 \end{gathered}$	Jnches． 33． 2	$\begin{gathered} \text { Fect. } \\ 1 \notin 6 \end{gathered}$	Feet． 96	No． 0． 3	Cubicfice 398.0	$\begin{gathered} \text { Fet } F . M_{0} \\ \because=1201 \end{gathered}$	0.17	0.34	46
12	－ 11	35.0	176	211	7．3	439	3． 16.3	．42	． 49	5u
13.	2，\％	32.5	142	96	6.2	3.29 .7	2.1503	－ 41	．32	$4{ }^{\circ}$
14.	－3is	32.5	158	（t）	8.2	6atc． 3	2.244	． 42	． 40	4＊
15.	$\because$ こ	31.11	148	$95^{\circ}$	6．${ }^{3}$	38.8	2，230	－ 41	.35	19
16.		30.11	143	（16）	8.0	\％2．3	1，8\％	． 46	． 33	47
17.	$2 \times 38$	31.0	145	510	6.5	：43． 6	2.464	． 42	． 38	（i3）
18.	$\cdots$	99.5	142	88	6.6	255．s	1，391	． 38	． 33	45
19.	36	33.0	15.3	101	7． 2	335.5	1，085	． 39	． 34	16
20.	？ 3	35， 11	1.58	112	6.2	\＄85． 3	2． 795	－ 40	． 20	4
21.	211	34． 5	152	90	6．	3915	2，31\％	－ 45	． 41	49
22.	23ti	32.5	158	92	5.8	387， 9	2.243	－42	．+1	45
Arerage	238	32.5	152	95	6.7	378.0	2.231	． 43	.37	49

## YIELD OF SECOND-GROWTH WHITE PINE, WITH MEASUREMENTS OF YOUNG PINE TAKEN FOR ANALYSIS.

The yield of scond-growth White Pine on selected sample areas in the States mamed is shown in the following notes and tabulations, which also give, for illustration, the number of trees, volume, and average anmual accretion of pine, the soil, forest conditions, acre yields, and measurements of sample young pines taken for analysis:

TAlbe: VII.- Acre yields of second-growth Ifhite Pine, with measurements of young pine taken for analysis.

## 

(1) Sitec:

Luzerne County:
[ 1,400 to 1,500 feet above sea level.]
Half acre No. 1.
Soil: Dark-brown loamy sand, metium grain, with pebbles and grarel, light, loose, deop, fresh Araimed by Bear Creek and a number of other small streams, 2 inches mold on top, and a surface cuver of abmand leaves and scanty fern.
Foreatentitions White Hine wixed with Maple. Beech. Memock, and acatterine Yellow and White Birch, White and Led Oak, and oecasional Black Cherry, in a valley sloping towaril gonthwest and boriered on all sidfs by hills over 300 feet above statiou; undergrowth moderately dease, of joung Hemlock, Beech, Japle, Birch.

Sample area: 1 acre.

Age of pine: 60 to 80 years.
Density of crown cover: 0.5 .

Number of trees: 216.

HALF.ACHE TIELI)

White Pine.						
Ninmber of trees.	Diameter (breast ligh).	Height.	Poluma.			
			Bole.	Mer   chantable timber.		
2	Inches.	Fect.	Cubicfect 11	Feet 13.1 .		
$\overline{2}$	7	50	12			
2	8	50	19			
10	9	50	115			
4	10	50	60			
6	11	$60)$	128			
6	12	60	150			
8	13	60	218			
8	14	(6)	240			
4	15	80	176			
4	16	80	184			
8	17	80	450			
2	18	80	135			
4	19	80	276			
6	20	80				
2	22	80	1) 750			
2	23	80				
80 trees:						
Total cubic feet $=. . . .-$..................... 2,018   Total fect 13. M.............................. 11,006						

A verace annual accretion: White Pine, 41 cubic feet.
TIntermixcel species: Maple, 68; Feech, 2ू; IIemlock, 18; Jellow and White Birch, 14; Whito and Red Oak, 12 ; Cherry 2.
Undergrowth: Young Hemlock, 2s0; Beech, 140; Mople, yt; Birch, 12.

Table VII．－Acre yielan of serond－ifonth White l＇ine，with metrmements of yount pine takn for amalysis－Continned．

Hatf acre to. 2'.
 2 to 3 inches mold on top，amb surface cover of ahmant haves；Laurel and few Fern．

Density of crown somer： 0.5 to
 sional spruce，on uneveng ground of a valley shopheg toward notheant amd hordened onall sides by hills oper 300 feet abowe statim；undergrow th，moderately dease，of goung Hem－ lock，Beech，Maple，and a few young Sjiruce．

HALFACHE 「IEIJ．

White l＇ine．				
				nıme．
ぶumber of trees．	Diamater   （Hwast high）．	Height．	13nle．	$\begin{aligned} & \text { Mer- } \\ & \text { chantable } \\ & \text { timber. } \end{aligned}$
14	Inches．   3 to 6	Feet． 40	Cubiefre	Fcet B．II
2	${ }^{5}$	50	11	
4	7	50	24	
12	8	50	114	
111	9	50	115	
14	110	50	210	
11	11	（i）	211	
8	12	60	201	
12	1.3	60	312	
16	14	6i）	481	
4	15	80	$17 i$	
4	16	80	184	
14	17	81	7918	
8	$1!1$	81	5－3	
6	30	8il		
6	$\cdots 1$	80		
4	$\pm 2$	80	1， 6.30	
4	$2{ }^{2}$	81		
2	25	80		
154 trees：				
Tutal cubic feet．．．．．．．．．．．．．．．．．． 0 ． 036				
Total feet 13．M ．．．．．．．．．．．．．．．．．．．．．．．．．．． 24,173				

Average ammulacretion：White Pine， 52 culin feet．
MEASUREMENTה OF゙ ふAMPLE エOLNG PINE TLEES．
Forest conditions：Ridge land densely covered with young harlwoonls－mainly White Oak aurl lied Oak，amone wich White l＇jue is scatter＂d．

a（）ppressed for the last forty ypars．
${ }^{1}$ Intermixed species：Majlle， 36 ；Hemlock，16；Heech，18：Spruces， 8.

TAssf: VIl.- Icre yiells of secomdogrowh Ifhite l'ine, with measurements of young pine taken for analysis-Continued.

Soit: limidhsh-brown sandy lona, nedimm loose, fresh, deep, and well drained, with burface cover of abtudant leaver.
Forrot conditions: Hardwoods-mainly Ibeech, Oak, Maple, Chestnut, and Birch-mised wjth White L'me, L'itch L'ine, Memlock, ant orcasional spruce.

MEASUREMENTS OF SAMPLA YOUNG PINE TREES.
bomisant ghowth.


Soil: Fresh sand, well drained.
Forest conditions: A young White Pine grove mixed with mature Spruce, Hemlock, and scattering hard woods.

Tree number.	Age.		Meight.	Height to base of crown.	$\begin{aligned} & \text { Lings } \\ & \text { per inch } \\ & \text { on } \\ & \text { stump. } \end{aligned}$	Volume.		$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { sloape. } \end{aligned}$	Ratio of length of crown to total beight of tres.	Lumber   product   under   present   practice   (per cent   used of   total   rolume   of stem).
						Tree.	Mer. chantable timber.			
	Teurs.	Inches.	Feet.	Feet.	So.	Cubie feet.	Fect B. 11.			
2.	57	14.5	58	20	2.7	31.4	144	. 47	. 66	38
,	50	8.5	50	20	4.8	9.5	43	. 48	. 60	36
4.	47	8.0	46	18	5.0	7.3	32	.45	. 61	37
5.	52	11.0	50	20	3.7	$1+2$	54	.43	. 60	31
	49	11.5	46	18	3.6	15.7	59	.47	. 61	31
7.	39	9.5	53	18	4.0	12.3	48	. 46	. 66	33
8.	34	8.0	54	18	5.7	10.1	34	. 53	. 66	27
9.	54	10.0	36	18	4.3	14.7	59	. 48	. 68	33
Average	53	10.5	52	19	4.2	16.0	65	.47	. 64	33

(2) Site e:

Clinton County.
[ 1,500 to 1,600 feet abore sea level.]
Soil: Loamy sand with rocks on face of slope, the brown-yellowish coarse grain full of shales, surface cover of 2 to 3 tnches mold and abundnnt leares.
Forest conditions: Mrush of very young White. Red, and Chestnut Oak, with scattering White Pine (14) aud occasional Chestnut Oak (6). Jack Pine (3), and Norway Pine (2), on a sieep hill zuo feet aboro station, facing south; undergrowth, dense, of young lardwoods of same species 38 above.

ACRE TIELD.
Sample area: 1 acre.

Ago of pine: 120 to 130 jears Density of crown cover: 0.2 (scattered).

Number of irees: 25.

Number of trees.	Diameter (breast high).	White I'ine.				
		Height.	Polume.			
			Bole.	Mer. chantable timber.		
	Inches.	Feet.	Cubicfect.	Feet B. $1 / 2$		
1	19	84	66	${ }^{161}$		
3	91	85	270	1,245		
1	22	87	99	432		
3	24	85	345	1,449		
3	25	85	372	2, 004		
1	29	85	151	${ }_{7} 60$		
1t trees:						
Coutal feet 13. M. ...................... 6 ¢ 21						

TABLE VII.- Icre yields of secoml-grouth White l'ine, wilh meusuremonfs of young pine taken for analysin-Contimed
A.-LENENSLXANA-Continoed.


[ 1,200 to 1,500 feet abore sea level.]
Soil: Fellow clavey lonm, medinm grain, deep, fresh, well drained (three small atreams cross the hollow in different directions), with 2 to a inches mold ou top, surface cover of leares, Fern, Ground Pine, Wintergreen, Elderberry, Blackherry, and Dogwood; subsoil laminated shale of indefinite depth.

Age of pine: 25 to 35 years.
est conditions: Young White Pine intermised with voung hardwoods in hollow extemling north and south, and boumed on the west by hill over 2 feet abore station: undergrowth deuse, of very small and variots hardwoods, manly Black Dirch, Maple, and Beech, and few White Birct and Hemlock. ${ }^{1}$

Density of crown corer: 0.5 to 0.6.

Niunder of trees: (?)

ACIEE YIELI.


A verage annual accretion: White Pine, 33 c"ubic feet.

[^28]TABLz: VIL.- Acre yielils of secont-grocth While l'ine, wilh measurements of young pine taken for analysis-Continued.


MEASUIRFMFNTS OF SAMPLE FOU゙タG PINE THEES.
DOMINANT GROWIH.


CODOMINAST GROWTH.


OPPREISED GROWTH.


SCPPRESSED GROWTH.

(4) Site j:

Forest Countr.
[1,100 to 1,200 feet abore sea lerel.]
Soil: Iellowish-brown clayer loam, with shalea, deep, fresh, drained on south by Bearer Creek and on the rest by Hickory Creek, 3 to 4 inches mold on top, and surface cover of leaves and Fern; subsoil, laminated shale of indefinite depth.
Forest conditions: Toung White Pine intermixed with hardwoods and occasional Memlock on slope faciug southwest; undergrowth dense, of very young Hemlock, Birch, Beech, some slope faciug soutbwest; undergrowth dense, of
Maple and Ironwood, and a few other hardwoods.

Age of pine: 40 to 50 rears. Deasity of cromn corer: 0.8 (in placesthick and crowded and in other places open. ings).
Number of trees: (i)

ACRE YIELD.


[^29]Table VII.- fere yields of scond-!froth White line, with measurements of young pine taken for analysis-Continumd,


mmanixit fitownty

Tree number.	Age.	Diameter   (breast higli).	Ieleght.	Meight to luse of crown.	$\begin{aligned} & \text { lings } \\ & \text { per inch } \\ & \text { on } \\ & \text { stump. } \end{aligned}$	Volume of trees.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { slape. } \end{aligned}$	Ratio of length of crown to tutal heinht ot iree.
3.	learb. $46$	Inches.	Feet.	Feet. 23	No. 3.5	Cubic ft.	0.43	
12.	4	11.5	58, 5	(t)	3. ${ }^{3}$	20.2	0.43 .47	0.62 .55
$\stackrel{\text { 2 }}{ }$	4	32.5	55, 11	J\%	3.4	19.4	. 41	. 61
8.	47	11.0	59.0	30	3.3	18.7	. 48	.49
16.	47	11.5	6tb, 0	288	3.3	18.3's	. $4 \overline{5}$	. 50
9.	45	11.0	¢is. 5	28	2.7	17.9	. 49	. 5 -
5.	47	10.5	60. 4	34	3.7	17.3	. 4.4	. 43
6.	47	10. 0	59.11	:32	3.3	16.4	. 51	. 40
$\because 1$.	48	10.5	58.0	30	3.6	16.3	. 46	. 4.4
19.	47	11.0	55.0	28	3.1	15. 4	. 42	.49
A rerage .	46	11.11	58.0	38	3.3	12.0	.45	. 5
7.	47	14.0	64.0	34	2.9	29.6	. 43	. 17
15....	46	14.0	58.0	920	3.11	$\underline{6.9}$	.43	. 62
Average.	46	14.0	61.0	$\bigcirc 8$	3.0	23.2	.43	. 51

COHOMINANT GROWTH.


OPPRESED GHOWTH.


Tablu: VIf.-acre yields of seconl-growlh I'hite l'ine, with measurcments of young pine faken for analysis-Continued,
13.-MNNF:
(1) Sute $a$ :

Fork County.
Soil: Gray or brown fine, loamy sand, deep, fresh, 2 to 3 laches mold on top and leafy murface cuver, and clay probably some feet below aurface.
Forest condifions: Whito line. with scattering lied Oak and White Oak and uccasional dorway
l'ine on $\Omega$ level ; undergrowth, moderately dense, of small Hemlock and beech and unaerous small Maple aud Oak.

Classification:	Whtte lime.
Domuinatit.	percent. 36
Cortominan	.lu.... 40
Oppressed.	18

Coulominant
Suppressed

HALE ACRE YIELD.

White I'ine.				
Number of trees.	Diameter (breast high).	Ieight.	Volume.	
			Bole.	Mer. chantable timber.
	Inches.	Feet.	Cubicfeel	Feet 73. M.
$\stackrel{2}{8}$	10	75	42	
8	11	75	192	
8	12	75	233	
4	- 12	85	120	
6	13	85	223	
4	14	75	154	
8	14	85	332	
8	15	83	384	
8	16	85	408	
8	17	85	528	
10	18	85	690	
18	19	83	1,323	
$\underline{2}$	20	8.5	152	
4	21	85	320	
6	22	85	534	
${ }_{6}^{6}$	23	85	680	
$\stackrel{2}{2}$	24	95	250	
	-	9	300	
118 trees:   Total cubic feet				

Average annual accretion: White Pine, 77 cubic feet.
Current annual accretion: White Pine, 160 cubic feet.

MEASUTEMENTS OF SAMPLE TOUNG IINE IREES.
Age class: 90 to 100 Jears.
HOMINANT GHOWTH.

Tree number.	Age.	Diameter (breast ligh).	Heirht.	Rings perinch on sturop.	Volume of tree.	Factor of shape.	Ratio of length of crown to total height of iree.	Current accre	annual   ion.	Arerage annual accretion.
7.	$\begin{gathered} \text { Teare } \\ y 8 \end{gathered}$	Inehes. 28.0	Feet. 101	Yo.	Cubic ft. $175.3$	0.41	0.60	Per cent.	Cu. st .	Cu.ft.
	12	28.0	103	2.7	161.0	. 36	. 61			
3.	98	25.0	92	3.2	110.3	- 48	- 48	........		
17.	92	25.5	91	3.0	136.3	. 42	. 50			
18.	92	25.19	88	3.2	131.7	- 46	- 46			
23.	97	22.0	98	3.8	119.4	. 46	. 49	....		
21	97	20.6	102	4.1	118.1	.35	. 45			
16.	10	22.5	${ }^{91}$	3.4	115.1	. 16	- 52			
20.	102 100	30.10 20.3	1010 103	4.18	104.0 98.8	. 41	. 43			
Avrawe	96	23.7	97	3.5	130.0	- 12	. 0			-

CObOMISANT GROWTH.


Table VII.-Acre yichds of second-growth While J'ine, wilh measurements of young pine taken for analysix-Continued. 13.-MANE-Continued.



Age class: 50 to 60 years.
imminant growth

(2) Site $c$ :

Tork Connty:

$$
\text { One.jourth acre No. } 1 .
$$

Soil: Gray sand, sometimes brown or loamy, deep, fresh, with 3 inches regetable mold, and a leafy surface cover: subsoil clayes, probably tor 5 feet below surface.

Afe of pine: 51 to 60 Jears.
Density of crowa cover: 0.7 Forest condtions: White line, with scatiering Hemlock and occasional sirince and Fir, on a level ¿umber of trees: 32b nlain; undergrowth, scanty, of Hazcl anil joung Hemlock. 1
Classification:
Dominant
Codominant
Oppressed
Suppressed 45
25
23
93

ONEFOURTII ACHE YIELD.


Average annual accretion: White Pine, it cubic feet.
Current annual accretion: White Pine, 133 cubic teet.


Table VIL.-Acre yields of secombogrouth White Pine, wilt measurements of young pine taken for analysis-Continued. 13.-MAINE-Conthnued.

MEASUKEMENTS OF SAMPLE YOUNG PINE TREES.
DOMINANT GROWTH.

Tree mumber.	Age.	Diameter (breast high ).	Height.	Rings per inch on stump.	Volume of tree.	Factor of shape.	latio of length of crown to fotal helght of tree.
	Tears.	Inches.	Ferl.	No.	Cubies		
9.	50	14.5	64	2.8	33.1	0.45	0.55
4.	59	13.3	6)	3.8	26.4	. 44	. 58
8.	55	12.8	61	3.3	25.6	45	. 38
3.	50	11.8	58	3.5	20.1	. 52	. 41
10	59	10.2	$6{ }^{6}$	4.4	29.0	. 59	. 35
12.	50	11.0	62	3.7	21.1	. 50	. 35
A verage.	54	12.3	62	3.6	24.7	-49	. 44

CODOMHSANT GROWTH.

11...	52	10.0	59	4.3	16.1	0.50	0. 40
5..................	50	9.0	58	4. 3	13.4	. 52	. 41
20.	51	8.8	58	4.6	13.3	. 54	. 38
7.	50	9.4	54	4.3	12.3	. 46	(1)
27.	51	8.1	56	5.1	10.7	. 55	. 35
6.	50	8.1	55	4.5	10.6	. 50	. 40
3.	49	8.1	56	5.0	10.2	. 52	. 34
29.	52	8.0	57	5.5	10.1	. 50	. 37
Average...	51	8.7	57	4.7	12.1	. 51	.39

OPPRESSED GROWTH.


SUPPRESSED GROW'TH.


TABLE VII.-Icre yields of second-grouth White Fine, with mensurements of young pine taken for dnalysis-Continued. B.-M. MINE-Continamel.

One fourth acre No. 2.
Suil: brown sandr loam with littlo pebbles in it. decp, fresh, 3 inches black soil abumoh on top, Age of pine: 50 to go yeard. aul leafy surface corer: clay probably 8 to te inches beluw surface.

Dellsity ot crown cover: 0.8 aut leaty surace corer, chay probly undergrowth scanty, of Hempock, Oak, and Fir.

ONEFOURTH ACRE RIELD.


Lverage annual accretion: White Pine, 131 cubic feet.

$$
\text { One-half acre so. } 3
$$

Soit. Bromin sand, deep, frest, and leafs surface corer; clay probably 4 to 6 feet below surface, Age of pine: 50 to 60 years. Forest conditions: White Pine intermised with Normay Pine and occasional spruce and Fir, on pensity of crown core a slope to north; undergrowth scanty, of small and few Hewlock, Fir, and spruce.

Number of trees: 314.
Classification: White Pine.

Codominant

Oppressed
HALF-ACRE IIELD


314 trees:
Total cubic feet

TABLb: VII.- Icre yichs of second-growth White I'ine, with measurements of young pine taken for analysis-Continued. 13.-MAINF-Continned.

MEASUREMENTS OF SAMPLE YOUNG DINE TREES.
DOMINAST GKOWTH.

Tree number.	Age.	Diameter   (breast high)	Height.	$\begin{aligned} & \text { lifugs } \\ & \text { perinuch } \\ & \text { on } \\ & \text { stump. } \end{aligned}$	Folume of tree.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { shape. } \end{aligned}$	Jatio of leagth of cromn to total heiglat of tree.
7	Fears. 89	Inches. 21.8	Fect. 86	No. 3.7	$C u . f t$. 84.3	0.40	0.42
8.	85	19.6	85	4.0	76.5	. 43	. 50
5.	92	17.3	87	4.4	69.5	. 48	. 52
13.	92	19.3	79	4.2	69.3	. 42	. 47
2.	82	18.8	80	3.8	68.6	- 43	.39
10.	82	17.7	85	4.4	67.4	. 46	. 41
14.	96	18.5	75	4.4	68.8	. 42	. 46
11.	91	17. 2	85	4.5	66.4	. 49	. 48
15.	91	17.2	82	4.4	63.7	. 49	. 45
Average.	89	18.6	83	4.2	70.8	. 45	. 46
9.	89	24.0	85	3.3	123.5	.45	. 54

SCPPRESSED GROWTH.

1.	$\begin{aligned} & 100 \\ & 190 \end{aligned}$	12.6 10.0	57 69	$\begin{array}{r} 8.0 \\ 8.7 \end{array}$	24.9 20.1	0.50 .53	0.54 .39
Arerage..	9.3	11.3	63	8.3	22.5	. 51	.46

PENOBSCOT COUNTY.

Tree number.	Age.	Diameter (breast high).	Height.	Folume of tree.	Factor of shape.	Ratio of leugth of crown to total beight of tree.	Current accre	nnual on.	Arerage annual tion.
0.	Tears.	Incher.	Feet. ${ }_{76}$	$C_{\text {cu.ft }} \mathbf{3 1 . 8 3}$	0.49	0.40	Per cent. 2.8	Cu.jt.	Cu.ft.
1.	${ }_{17}$	16.0	62	34.55	-. 39	. .69	3.3	1.14	. 4.4
7.	73	12.7	80	35.51	. 52	. 45	3.7	1.31	. 48
10	74	13.0	80	36.00	. 48	. 40	3.1	1.12	. 48
6.	70	13.0	77	35.15	. 30	. 52	3.0	1.03	. 50
8	69	13.2	82	38.49	. 51	. 35	3.6	1.38	.55
3.	73	13.5	83	40.43	. 49	. 32	2.1	. 85	. 5.5
5.	75	14.7	83	43.20	.45	. 35	2.5	1.08	. 57
1.	70	15.7	81	42.34	. 40	. 43	3.6	1. 51	. 60
4.	73	14.5	82	45.10	. 47	. 39	3.2	1.44	. 61
2	79	17,0	74	51.14	. 43	. 43	2.0	1.02	. 65
3.	77	16.5	78	51.28	. 44	- 65	3.8	1.95	. 66
2.	72	15.2	85	51.91	. 48	. 30	2.0	1.04	. 72
Average	73	14.4	79	41.30	. 40	44	3.0	1.21	. 50

TABLE VII.-Acre yields of sccond-grouth Ifhite I'ine, with measurements of youmg pine taken for analysis-Continutd.

## C.-MASSACIIUSETTS:

(1) SITE $a$ :

Holbrouk, Norfolk Counts.
Noil: Iellowish-brown sandy loam, shallow, loose, trys with 1 or 2 inclues molel on fopy athed anoderately leaty surface cover; subsuil, sind with stores and gravel.
Fores conditions: White Pime on atope (anmle abont $10^{\circ}$ ) ; umlergrowth seanty, of lied Cedar with scatteriug Hemlock amd White amd licol (1ak.'

Sample area: 1 acre.
Age of pine: 35 to 38 yeara. Density nit crown corer: 0.6 .

Number of tren: 286.

- CRE IIFLD.

White I'ine.				
$\begin{aligned} & \text { Number } \\ & \text { of trees. } \end{aligned}$			Vol	nime.
	Diameter (hreast light.	Meight.	Jole.	Mer.   chautable timber.
	Tuches.	Fect.	Cubicfoet	Feet D. ${ }^{\text {H. }}$
169		60	1,690	
5	10	60	80	
18	10.	70	342	
24	11	70	508	
23	12	71)	$5!8$	
28	13	T0	898	
11	14	T1)	:im	
7	15	70	2811	
1	17	70	51	
286 trees:				
Total culic feet.......................... 4.82 "				

Averaye anntal accretion: White Pine, 131 cubje feet.
(2) SITE $b$ :

Pembroke, Plymouth County
Sample area: 1 acre.
Age of pine: 50 to 55 years. Density of crowncover: Thich and quite eren. Number of trees: 330

Soil: Fellowish-brown sandy loam, medium grain, light, loose, fresh, with 2 to 3 inches muld on
Forest conditions: White I'ine with scatering Oak, Maple, Gray Dirch, and vecasional Sassafras and liornbeam; underorowth moderately dense af" alove species of hardwoods. ${ }^{2}$

ACRE YIELD.

		dite Pin		
			Vol	ume.
Number of trees.	Diameter   (i)reast highy.	Height.	Bole.	Mer-   chantable timber.
226	Inches. $8$	Feet. 60	Cubic feet 2, 260	$\text { Fect IS. } 1$
19	10	60	304	
18	10	70	342	
38	11	70	836	
22	12	70	$57 \%$	
10	13	70	310	
$\bigcirc$	14	70	70	
3	15	70	120	
1	16	70	45	
339 1rves:				

Average anmual accretion: White Pine, 98 cubic feet.
${ }^{1}$ Intermixed species: Red Cedar, 2 from 6 to 10 inches diameter and umler foleethigh; 8 from 3 to 6 inches diameter and under 40 feet high. Red Oak, 1 over 6 inches dianeter aud under 60 tef high: 1 over 3 inches diameter and muder 40 feet high. Hemlock, from 3106 Enches diameter and wnder 40 tect high. White Oak, 3 from ${ }^{3}$ to 6 inches diameter and under 40 feet high. Foung White Pinw, 85.

Cndergrouth: Red Cedar, ${ }^{29}$; White Oak, 1; and Hemlock, 3.
 6 to 10 inches diameter and maler bo fet high; 2 from 3 to 6 inches diameter and over 40 feet high. Maple, 4 from 3 to 6 inches diameter and



Cndergrowth; Gray Birch, 21; Maple, 38 ; Horubeam, 1, aud sassafras, 3.


(3) SITE c :

Mansou. Plsmouth Counts.
ait: lellowfsh loany sand, medium grain, porous, light. hose, becp, dry, and well drained, with about 2 beches mold on top and surface cover of abundant leaves: subsoil, sami arm gravel.
Foureat condifions: D'ure White l'ine on level plain, uriginaly maxed wihhardwowd, but ten years mo hathoulw and dying pino cut out, leavigg young oake 1 to do feet high throughout site; umbergrowth of hardweods.

Sample area: 1 acre.
Age of pine: 50 to 55 yeara 1)ensity of crown cover: (i)

ACIE IHELJ.

White Pine.				
			Fol	ume.
Number of trees.	Diameter   (breast higl).	Height.	liole.	$\begin{aligned} & \text { Mer. } \\ & \text { chantable } \\ & \text { timbur. } \end{aligned}$
127	Tucher.	$\underset{5.5}{\mathrm{Fect}}$	Cubicfect $1,143$	Feet Th. M.
19	10	55	2s.	
$\because 1$	10	70	399	
39	11	i0	85.	
31	12	71	¢0\%	
$\because 3$	13	70	313	
$1 \quad \frac{22}{16}$	14	70	770 8.40	
$\stackrel{8}{8}$	16	80	360	
$\because$	17	30	102	
- 18 \|			112	
310 trees:Totai chitric feet........................ B, 188				

Aremage anmual accretion: Whito bine, 12:3 cubic feet.
Sample area: 1 acre.

Age of pine: 50 years.
Density of crowi cuver: ( $\%$
Ninnler of trees: 295.

Soil: Brown or rellow sandy loam, medium grain, shallow, light, loose, dry, ami well drained, orest conditions: White Line with acattering led Oak and occasional Maple and Mornberm on somewhat hilly site; undergrowth dense, of White Oak, Ked Onk, Gray Birch, and Black Birch. ${ }^{2}$

- CLE Y YFLD.

White l'ine.				
Number of trees.	Diameter (breast แว๋gh).	Heicht.	Polume.	
			Bole.	Merchantable timber.
174	Inches.	Feet. 60	Cubierect 1,74)	Ferth.31.
: 6	10	65	1612	
20	11	70	572	
21	12	70	546	
16	13	70	491	
10	14	70	350	
1	15	70	16.10	
,	16	79	135	
1	17	70	51	
3	19	70	183	
1	21	70	i8	
295 treer				

## Irerane annual accrefion: White L'ine go cubic fect.


2 hutrmixed specios: Whitnoak, 5 from 3 to 6 inches diameter and over 40 feet high: 16 from 3 to 6 inches diameter and nader tu feet high.
 If ibches diameter and usiler \&o feet high; 20 from 6 to 10 inches diameter and umper fo feet high; 12 from 3 to 6 inches diameter and over 10 feet high: 23 from 3 to 0 inchea diameter and under so feet high. Chersy, 1 over 3 inches dianeter and under 40 feet high. Black Birch, 2 from 3 po 8 inchey diancter ant unler to feet high. Ret Ceflar, 1 over 3 inches diameter and under to teet high. Maple, 1 over 3 duches thanefer amb over 40 feeq high. Koung White Díne, 47.
 Hombeck, 1; Gray Birch, 2 ; Jornbeam, 1.
 C.-MASSACIIUNEINF-Contimed.
(5) Site $e$ :

Iridgewater, Plymouth County.
[ 100 f fet above sea level.]
Soil: Iark-brown loamy sand, medimm grain, light, lonsm, shallow, fresh, with about 2 inclses guold on top, nol surface cover of abundant leaves; subsoil, vellow fine sand.
Forent condutions: Cultivated White l'ine, withoccasional Gray Birch, on level plain; undergrowth of scattering Oak and Maple, 1

Sample area: 1 acre.

Age of pine: 45 Jears.
Denaity of crows cover: (1)
Number of treen: 374.

			Volume.	
Number of trees.	liameter   (breast   high).	Hejght.	Hole.	Mer.   chantable timber.
240	Inches. 8	Feet. 55	$\begin{gathered} \text { Cubic jeet. } \\ 2,160 \end{gathered}$	Feet R.J.
1	10	55	15	
42	10	60	$167 \%$	
29	11	60	1418	
27	12	60	621	
15	13	60	390	
13	14	(0.5)	429	
6	15	65	429	
$\underline{2}$	16	65	84	
4	17	70	204	
2	18	70	1 1 112	

374 treas:
Total cubic fert................................... 5, 324

Average annwal accretion: White I'ine, 118 cubic feet.
(6) Site $f$ :

Bridgewater, I'lymouth County
Sample area: 1 acre. [100 feet above sea level.]
Soil: Light-brown sandy loam, medium grain, shallow, light, loose, dry, well drained, with about 2 inches mold on top, and surface cover of abundant leares; stusoil, hrarel of ail sizes.
Forest conditions: Cultivated White Pine, intermixed with sonng hardwoods and Pitch Pine. (Pine seedlings from wools, 1 to 2 feet high, setin furrows at $G$ or 8 feet each was. $)^{2}$

Age of bine: 25 years. Density of crown cover: (?).

Number of trees: 560 .

ICHE TIELD.


560 trees:
Total tubic fert -.............................. 1,536

Averate ammal aceretion: Vhite I'ine, 01 cubis feet.

[^30]$$
20: 33-\text { No. } 2:-11
$$

TABLF: VII.-Acre yields of second groucth White Pine, trith measurements of young pine taken for analysis-Continued.
C.-MANS.ICIIUSEITS-Continued.
(i) Siteg:

Grafton, Middlesex County".
Sample area: 1 acre.
[500 fcet above sea level.]
Soil: Brown, nearly black, sandy loam, medium mrain, shallow, fresh, well drained, with 1 or 2 Age of pine: 40 years. ibches mold on top, and moderately leary surface cover; subsoil. ruck on ridge sellowish Devsity of crowa cover: 0.8 saud on low mroand
Forest conditions: White Pive on hill; undergrowth, dense, of Maplo nod Oak and some Chestnut, Xumber of trees: 323. Cherry, Gray 1birch, and other hardwoods."

ACRE IIELD.

White Pinc.				
Number of trees.	Diameter (breast high).	Height.	Volume.	
			Bole.	Mer. chaniable timber.
176	Incher.	Feet. 60	Cubricfeet. $1,760$	Feet B.3.
2	10	60	-3:	
43	10	70	817	
44	11	30	${ }^{968}$	
23	12	70	598	
21	13	70	651	
8	14	70	280	
4	15	70	160	
2	18	70	112	
323 tree	al cubic fee	....	.....	. 5,378

Aterane annual aceretion: White Pinc, 134 cubic feet
(8) SITE $h$ :

Worcester, Worcester County:
Sample area: 1 acre.
[About 000 feet above sea level.]
Soil: Brown sandy loam, medium grain, deep, fresh, well drained, with about 1 hach mold on top and a moderately leafy surface cover: subsoit, drift gravel and stones.
Forest conditions: White Pine, with scattering Gray Birch and nccasional Poplar and Pitch Pine on a hill; undergrowth, scanty, of Hemlock. ${ }^{\text {? }}$

Age of pine: 30 to 3 s years. Density of crown cover: 0.6 to Density uf crown cover: 0.6
0.8 in places 0.2 and 0.4 ). Number of trees: 301.

ACRE FIELD.

White Pine.				
Number of trees.	Diameter (breast high).	Height.	Folume.	
			Bole.	Mer. clantable timber
193	Inches.	Feet.	Cubicfect 1,930	Fect 13. 32.
39	10	70	741	
34	11	70	748	
13	12	70	338	
12	13	70	372	
5	14	70	175	
3	15		120	
1	16 16	70 70	45	

301 trees:
Total cubic feet
Aterage anmual aceretion: Whito Pine, 141 cubic feet.

[^31]Table YII.-Acre yields of scond-growth Hhite line, with measurements of young pine faken for anctysin-Coutinurd.

## C.-nassaciliormpo-contiment.

(9) Site $i$

Northbridre, Worcester Countr.
Sample areat: 1acre.
[500 lect above sea level.]
Suil: Fellow sandy loam, tino grain, decp, fresh, well draired, with about a inches mold on top, and a molerately leafy surfice cover; subsoil, probably ledge rock.

A go of pinc: 3: seare.
Forest conditions: White line, with occashonal Lirch aml Japle, on a hill; undergrowth, moder. bensity of crown cover: 0.8 ately dense, of Oak, Maple and Chestaut

ACRE IIELI).


Averaye annual accretion: White Pine, 158 cubic fent.
10) Site $j$ :

Brookfield, Wurcester Countr.
Sample area: 1 acre.
[8u0 to 900 feet abore sea level.]
Soil: Dark bromn or black loam, fine grain, light, deep, fresh, well drained, with about 2 inches mold on top and a moderately leafy surface cover; subsoil, ruck not Forest conditions: White Pine, with occasional Pitch Pine and hardwoods on north slope of uneven Siumber of trces : 303 . land; undergrowth dense, of various hardwouds, with Oak and Chestnut predominating. ${ }^{2}$

## ACliE TIELD.

			Folume*	
Number of trees.	Ibiameter   (breast high).	Height.	Tole.	Mer-   chantahle timber.
165	Inchex. 8	Feet. 55	$\begin{aligned} & \text { Cubicfect } \\ & 1,485 \end{aligned}$	FeceIt. JI.
43	9	55	.116	
1	10	55	15	
33	10	60	$3: 8$	
25	11	60	4.5	
14	12	(ii)	30	
14	13	60	364	
7	14	65	$\because 31$	
1	15	63	37	
	cubic fert		-.........	. 3,973

[^32][^33]TABLE VII.-Acro yields of second-grouth H"hile I'ine, with measurements of young pine taten for analysis-Continued. C.-M.AESACHUSFITO-Continued.
(11) SITE $k$ :

Charlton, Worceater County.
Sample area: 1 acre.
[About 800 feet above sea level.]
Soil: Dark-brown sandy loam, mediun grain, loose, deep, fresh, well drained, with about 2 fnches mold on top and a morlerately leafy surface cover; ubsoil, rock and and
Forest conditions: White Dine, nearly yure, with 18 young trees on a hill; undergrowib acants, of
Chestnut, Maple, Oak, and Cherry.

> ACRE YIELD.

Number of trees.	White line.			
	Diamoter (breast bigh).	Height.	Tolume.	
			Bole.	Merclantable limber.
277	Incher. 8	Fect. 60	Cubicfect. 2,770	Fect 1 . $\mathrm{II}_{\text {. }}$
02	10	70	1,178	
50	11	70	1,104	
29	12	70	754	
13	13	70	403	
9	14	70	315	
3	15	70	120	
3	16	70	135	
446 trees:   Total cubic feet.				

Average annual accretion: White Pine, 141 cubic feet.
MEASUREMENTS OF SAMPLE TOUNG PINE TREES.
SITE $b$.

Tree number.	Age.	Diameter   (breast high).	Height.	Folnme of tree.	Factor of shape.	Ratio of length of crown to total height of tree.	Average annual accretion.
1.	Years. 5.0 50.0 48.0	Inches. 13.0 9.0 9.2	Feet. 71.5 60.0 62.5	$C u . f t .8$ 31.7 13.8 15.6	0.47 .52 .54	0.47 .22 .36	Cu.ft. 0.61 .28 .32
Average...	50.0	10.4	65.0	20.4	. 31	. 35	. 30
SITE $c$.							
4.................	54.0	11.3	59.3	19.7	0.48	0.37	0.36
	52.0	13.8	71.5	36.3	. 49	. 42	. 70
6..................	50.0	9.5	64.0	16.3	. 52	. 28	.33
Average...	52.0	11.5	65.0	27.4	. 50	. 36	. 40
SITE. e.							
7.	39.0	8.3	53.0	8.8	0.45	0.40	0.22
	39.0	9.2	58.0	13.0	. 49	. 36	. 33
	\$9.0	12.0	59.0	23.4	. 48	. 50	. 57
Averam"...	39.0	9.8	36.0	14.7	. 47	. 42	. 37
STE $i$.							
19.................	40.0 36.0	9.5	55.0	14.3		11. 42	
21.	36.0 33.0	11.2	53.0 51.0	18.4		. 33	. 510
Average...	36.3	9.0	53.0	13.1	. 54	. 45	. 36
SITE $j$.							
$2 \therefore$	37.0	10.5			0.51	0.15	
-3	39.11	9.3	55.11	13.8	. 54	. 14	. 35
24................	39.11	7.0	-2. 11	7.9	. 36	. 37	. 20
Averas\%.	: $: 3.3$	R. 0	33. 0	12.7	. 54	. 4	. 33
-11f. A.							
85.	1-. 0	10.11	13.11	17.0	0.150	(1). 26	(1.35
21.	4.2.1)	12.8	8is. 5	3\%. 18	. 5	. $3 \times$	- 10
27.	4.2.1)	0.1	69.1	16.1)	, is	. 40	. 33
Astras	48.0	110.6	6.5 .5	29. 0	. 5	. 35	. 46

Table VII.-Acre yields of scond-growth Whife line, with measurements of young pine taken for analysis-Continucel.

## 10.-NEW HAMPSHIRE:

(1) SITE :
loscawen, Mcrimack County.
Samplo area: 1 acre.
[ 300 seet above sea level.]
Soil: Dark-brown loamy sand, coarse grain, porous, loose, shallow, dry, well drained, with 1 iuch mold on top and moderately leafy surface cover; subsoil, yellow samd.
Eorest conditione: White l'ine, with arattering Hed I'nown somewhat uneven laul, whicha glojea east to the Jerrimack liver and fills oft west to bordering rum; undergrowth of few Hem. lock and suall White Pine."

Ago of pine: 40 years. beusity of crown corer: (i)

Number of trees: $1,077$.
ACIE IIELD.

1 Number of trees.	Diameter (breast high).	hite Pine.		
		Height.	Tolume.	
			Bole.	Mer.   chantable timber.
150	Inchen. Cuder 3	Feet. 20	Cubicfeet	Feet Di. M.
619	3 to 6	40		
195	6108	50	1.365	
65	8 to 10	50	715	
30	10	50	390	
7	11	- 50	112	
4	12	50	76	
5	13	50	110	
1	14	50	25	
1	16	50	39	

1,077 trees:
Total cubic feet 2,832

Average annwal accretion: White I'ine, 71 cubic feet.
(2) SITE on:

Franklin, Merrimack County.
Sample area: 1 acre.
[ 900 to 1,000 feet above sea level.]
Soil: Brown sandy loam, medium grain, compact, moist, well drained, with 1 to 3 jnches mold on top and moderately leafy surface rorer; subsoil, ruck.
Forest conditions: White Pine intermixed with Maple and Birch, on a hill; undergrowtl, moderately dense, of young Maple, Birch, and other scattering hardwoods.?

Age of pine: 40 to 45 rears. Density of crown corer: 0.9 .

Number of trees: 410 .

ACRE FIELD.


[^34]${ }^{1}$ Intermixed species: Red Pine, 1 orer 10 inches diameter and under 40 foct hirh; 2 from 8 to 10 inches diameter and under 40 fect high; 4 from 6 to 8 inches diameter and over 40 feet high: 4 from 6 to 8 inches diameter and umder 40 feet hivh: 5 from 3 to 6 jaches diameter and over 40 feet high: 13 from 3 to 6 inches diameter and under 40 feet high. lied line, lorer e inches diameter and ower to feet bigh; 1 over 3 inchc diameter and over 40 feet high; 1 orer 3 inches diameter amd under 40 feet high.

Undergrowth: Hemlock, 26; (rras Hirch, 1.
2 Intermixed species: Ihed Dajle, 11 from f to 10 inches diameter and over 60 feet high; from $G$ to lu jnches diameter and under gofeet high; 30 from 3 to 6 juches diameter and orer to feet high; 3 fiom 3 to 6 inches diameter and under 40 feet high. White birch, 7 from 10 io 14 inches diameter amp under 80 feet high: 26 from 6 to 10 inchus diameter amb over 60 feet high; 29 from 3 to 6 inches diameter amd over to feet high. Lied Oak, 2 from 3 to 6 juches dianter and over 40 fet high. Prunus serorina, 1 over 6 inches diameter and under Go feet high. Poplar 2 from 6 to 10 imehes diantere and over 60 fert high. Ifembork, 2 from 3 to 6 inches diameter amd under 40 feet high. Clestaut, 1 orer 6 inches diameter and orer Gu fert ligh. Jonng W"hite l'ine, 119.

Endergrowth: Ied Iaple, 33; Cherry, 3; Hamamelis, 1t; W゙hite Birch, 2; IIemlock, 4; Ash, 1 ; Ioplar, 1.

TABLE: VII--Icre yields of second-growth White l'ine, with measurements of young pine taken for analypis-Continued.


## (3) Site $n$ : <br> Mopkinton, Merrimack Counts, <br> [800 to 900 feet above sea level.]

Sial: lbrowa. gray, or nearly black sandy loam, tine grain, moist, well drained, with mold on top anil morlerately leafy surface cover; subsois, rock.
Forest conditions: White P'ine, withocensional Led P'ine, on a hill; undergrowth, moderately dense, of Hembock and scattering tariwoods; on occrsions dead and little suppressed trets cut out and trimming love. ${ }^{1}$

Sanple area: 1 acre.

Age of pize: 60 to 65 years.
Density of crown corer: 0.8 to 0.9.

Number of trees: 291.

ACHE YHELI.

		hite l'ine		
Fumber of trees.	Diameter (breast high).	Height.	Volume.	
			hole.	Mer. chantable timber.
is	Incher.	Fcet. 6i)	Cubicjeet 540	Feet B. M.
43	10	70	817	
48	11	70	1.056	
36	12	70	1136	
37	13	70	1.147	
27	14	70	94.5	
14	15	70	560	
14	16	70	630	
8	17	80	464	
	18	80	192	
3	19	80	210	
1	20	80	77	
2	32	80	192	
1	23	c0	104	
291 trees				

A veraye annual aceretion: White Pine, 127 cubic feet.
(4) SITE O:

Hopkinton, Merrimack County.
Sample area: 1 acre.
[ 800 to 900 feet abore sea level.]
Soil: Brown loam, fino grain, moderately loose, fresh, well drained, with 3 to 4 incbes mold on ton and leafs surface corer. sulusoil rocks not very far down.
oreft conditions: White Pine with occasional ked Pine on a north slope of hill; undergrowth, moderately dense, of Elm, Maple. Hemlock, and occasional hardwoods. ${ }^{2}$

Age of pine: 35 to 40 sears. Density of clown cover: 0.8 .

Namber of trecs: 435.

ACRE YIELD.

White Pine.				
Number of trees.	Diameter (breast high).	Height.	Volume.	
			Bole.	Mer.   chantable timber.
63	Inches.	Feet. 40	Cubicfeet.	Feet B.M.
183	6 20 10	50	1,701	
56	10	60	876	
52	11	60	988	
26	12	60	598	
27	13	60	702	
8	14	60	243	
11	15	65	418	,
3	16	65	126	
$\begin{aligned} & 435 \text { tree } \\ & \text { Tot? } \end{aligned}$	cubic feet		.	. 5,649

I cerage annulaceretion: White Pine, 148 cubic feet.
Iftermixed species: Ited I'jee, 6 from 10 io 14 inches diameter and under 50 fect high; Siple, 1 orer 10 inches diameter and under nof feet high.

Cnilergrowth: Hembock, 98 , Beech, 4 .
2 Intermizel sjecies: Hed l'ino. 3 frou 10 to 14 inches iliameter and umber 80 feethigh. Jiaple, 2 from 3 to 6 jnches dinmeter and orer
 Hetalork, 3 from 3 to 6 inches diameter and aznler 40 feet high.
rindergrourh: Elm, 6i; Cornus alernifulid, 1; Jeech, 1; Hemlock, 36; Cherry, 2; Ash, 1; Jamamelis, 1; Maple, 62 ; mumerous small Saples; small Gaks.

TAmLE VII-Acre yichds of second-grouth Jhhite line, with mersurements of young pine taken for analysis-Continued.
D.--NEW HIAMPNHIRE-Continued.
(5) Site $p$ :

- Litclatield. Hillsboro County.
[Alout 250 feet alnove sea level.]
Soil: Dark-brown sandy loam, fine grain, porous, liglit, "louse, shallow, dry, well trained, with about 2 inches moli on top and humberatel

Maple, Hirch, and few other hardw oods.

Sample area: 1 acre.

Age of pine: $3 \overline{3}$ to 10 years. Density of crown coref: 0.7 to 0.8 .

Niumber of trew : 517
ACKE YIELI


Average annual accretion: White I'ine, 15 cubic feet.

Ilill-boro Counts:
Sample area: 1 acre.

Soil: Brown loam, fine graio, deep, moist, Well drained, rith 2 to 4 inches roold on top, and abund. ant leaty surface cover; subsoil, compact, clayey sand
ant fions. Thite Pine with scatterinar laple and Hemlock on hill; underarowth dense, of Maple, Oak, Chestnut mainly, and few other scatteriug hardwouds.?
age of pine: 40 to 45 years. Density of crown cover: In clusters.
Niumber of trees: 371.

ACRE TIELD.


Arerage annual accretion: White l'ise, $10 \overline{0}$ cubic fent

[^35]Tanm: VII.-Acre vields of secoml-growth White l'ine, with measurements of young pine taken for unalysis-Continued.

## 

(\%) Site r:

Milford. Hillsboro County.
sample area: 2 acres.
[300 to 410 fcet abore rean level.]

$$
\text { Iere No. } 1
$$

Noit: Iark-brown samly lonm, fine grain, shallow, dry, well dralned, will 2 to 2 fuchoa mold ou iop dud mirfacesover of abumdant leaves; subsoil, light colored and powdery, 6 to lu inches deep, probably samis lower down.
Forest conditions: White line onslope; malergrowth, dense, of (Bak mix mi with Maple, Cbestunt, ant other ecnttering hardwomis.

ACHE SIELJ.

White Pioe.				
			Fol	mme.
$\begin{aligned} & \text { Number } \\ & \text { of trees. } \end{aligned}$	(breast high).	Height.	Fole.	Mer. chantable thmber.
	7nches.	Feet.	Cubic feet	Fece J\%. Mr.
339 323	3106			
323	6 to 8	50	2. 261	
108	8 to 10	50	1.1名	
11	10	50	143	
9	11	50	144	
2	12	50	38	
2	13	50	44	
794 trees:				
Total cubic feet....................... 3, 818				

Average annual accretion: White Pine, 109 cubic feet.

## Acre 10.

Age ol pine: 35 to 40 years.
Soil: Brown saurly loam, medium grain, loose, fresh, 1 foot deep, with 2 juches mold on tope and a moderately leafy surface cover
Forest conditions: White E'ine with scattering Maple on north slope of hill; umergrowth, iu parts monerately dense, of Ash, Maple, and few other hardwoods, and in denser parts very little undergrowth. ${ }^{2}$

Density of crown cover: 0.0
to 0.7 .

Vumber of trees: 503 .

ACLE IIELD.


## Averaue annual accretion: White I'jne, 123 cubie fert.

Intermized species: Oak, lover 10 inches diameter and over 50 feet high; 1 over 8 inches diameter and under 50 feet high; 3 from 3 to 0 jachan diametor aml aver 40 fient high
 ${ }^{2}$ Intermixed apecits: Minhe, 1 oser 10 jnches diameter and under 80 feet bigh; 5 from 6 to 10 inches itiameter and under 60 fect high:
 and huder 60 feet high; efrom 386 inches diameter and moder 40 feet high. Apple, 1 over 6 inches diameter and under 60 feet high: 1 over 3 inches damefre and wuder to feet hiyh. Fitch l'ine, 2 irom 61010 inches diameter ami under fofeet high. Whito lirch, 1 orer 6 diches liameter and over 60 fret high.

Cudergroveth: Ish, is; Japhe, 8; Clacry, 3; Onk, 5; Mamamelis, 10; Chestnut, 1: Jim, 2.

Tabie VII- Acre gichls of secomb-gronth White line, with measurements of young pine taken for analysis-Continued. D.-NEW IIAM1PSIIIRE-Continnet.

MEASUREMENTA OF SAMPLE YOUNG PINE TRELS.
A ge cluse: L'uder 50 years.
sITE $l$.

'l'ree number.	Agm.	Diameter (breast hight.	Height.	$\begin{aligned} & \text { Rings } \\ & \text { yerinis } \\ & \text { on } \\ & \text { stump. } \end{aligned}$	Volume of troo.	Factor of slatye.	Rationf lengtit of crown to total height of tre.	Current annual accretion.	Average anmual accre. tion.
$\begin{aligned} & 28 . \\ & 29 . \\ & 30 . \end{aligned}$	$\begin{gathered} \text { Tears. } \\ 41 \\ 41 \\ 41 \end{gathered}$	Inches.   ti, 8   7.1   8. 2	Feel. 44 52 50	No.	$\begin{array}{r} \text { Cubic ft. } \\ 5.6 \\ 8.0 \\ 10.0 \end{array}$	$\begin{array}{r} 0.51 \\ .56 \\ .51 \end{array}$	$\begin{array}{r} 0.43 \\ .51 \\ .51 \end{array}$	Percont. Cubicjt.	C"ubic ft.   U. 30   .20   . 24
Average.	41	7.4	50	$\cdots$	7.9	. 53	. 48	$1$	2.5

SITE $m$.


STE 0.

siter.

1.......................	81 77	17	73 74	4	$\begin{aligned} & 48.2 \\ & 52.4 \end{aligned}$	0.42 .44	0.53 .55	4.6 3.0	$\begin{aligned} & 2.22 \\ & 1.57 \end{aligned}$	0.59 .68
Arerage.	79	17	73.5	4	50.3	. 43	. 54	3.8	1.89	. 63

SCHEDULES AND SAMPLE RECORDS.

## SCHEDULES AND SAMPLE RECORDS.

## FORMS USED IN THE INVESTIGATION.

FORM NO. 1.

## United States Department of Agriculture. DIVISION OF FORESTRY.

## RECORDS OF TREE MEASUREMENTS.

Name of collector: N.
Species: White Pine.
Year: 1897

## GENERAR IOESCRIPTION OF STATION.

[Denated by capital letter.]
State: Pennsylvania. County: Cleartield. Town: Dubois.
Longitude: $78^{\circ} 45^{\prime}$. Latitude: $41^{\circ} 3^{\prime}$. Altitude: 1,200 to 1,500 feet.
General configuration: Plains hills plateau mountainous.
Cencral trend of valleys or hills: (Not noted.)
Climatic features: (Meteorological tables furnished.)
General forest conditions of the region: This reqion in 1876 exteaded over 20,000 acres. The lumber operation carried on for twenty gears by Mr. Du Bois left for the present only from 1,500 to 2,000 acres standing timber in at primeval condition.
 woods and young Hemlock, which form the underyrowth.
(2) Hemluck mixed with White l'inw, with scattering harowoods; the undergrow th usually moderately dense, nsists mainly of goung Hemfock with the admixture of young hardwoods.
(3) Harlwoods intermixed with White Pino and scattering Hemlock. The mutergrowth heve consists mandy of young hardwoots.

Among the hardwoots, the Oak, Birch, amd Maple form the staple of tho hardurood forest, while the Beech, Chestunt, Hichory, Cucumber, Ash, Chorry, and basswond are comparatively few in mamber. The region has a muitom soil and subsoil as it may be judged $b y$ the sample areas $N N_{0} .5$, 6 , and 7 , and is well provided with moisture by the many streams crussing it all over in dilferent directions.

## FORM NO． 2.

## IESCIRIPTION いド SITE．

Sample area，No． $5:$（One acre．）
［Denoted by amall letter．］
Conformation of surface：Hill sloping toward sonthwest，where it is lordered by the left－hand branch of Irish Narrow Creek．

Soil and drainage conditions：lellow clay loam of a medium grain（fine shale in it），deep，fresh，well drained， with 2 to 3 imches mold on top．

Subsoil：Laminated shale of an indefinite depth．
Soil cover：Scanty leaves，fern，and teabervies．
Origin of stand：Natural regeneration．
Form：Uniform；storied．White line forms first and Hemlock the second．
Composition：Astand of 1 emlock mixel with White Pine，intermised with scatteriug Maple，lleech，and Birch．
Undergrowth：Absent；dense；monlerately dense；scanty；consists of very young Beech，Hemlock，aud occa－ sional Birch，Cuchmber，and Dogwood（Laurel in northeast corner）．

Deusity of stand： 0.7 （in places 0.8 ）．
Rwasks．－Crowns of White l＇ine generally well developed；clear and straight stems．Ago of White line 230 to 260 years．Age of Hemlock almost the same as that of White Pine．

ACIRE－YIELD MEASUREMENTS．


## いEIUCI：I RESULTK，

Tontal nmmber of trees on tho acre：13：，of which there were－
F＇irst species：Whito l＇ine， 37 ；dominant， 41 per cent；colominant， 48 por cent；oppressed， 11 per cent．
Second：Hemlock， 81 ；dominant， 32 per cent；codominant，＂G per cent；oppressed， 42 per cent．
Third：Maple， 5.
Fometh：Ifechb， 3.
F゙ilth：Birch．：
Total yielul of the acre：Volume of stems， $15,68 t$ cubic feet；merchantable timber， 90,103 feet B．M．
of which there were－
F＇irst species：White line，$\overline{6} 8$ per cent of total sield．
second species：Hemlock，ti2 per cent of total yield．
Thirul，fourtl，and tifth speries：Hemlock not taken into consideration．
Arerage anmal accretiou：Iu cubic feet， $6 \overline{0}$ ；merchantable timber，in feet $1 \mathrm{~B} . \mathrm{M} . .375$.
FORM NO. 3

MEASDREMENTA OF BAMETEK HEVELOPMENT.
NGCIION: ぶtump.




20233-No. 22

FORM NO. 5.

Site: f. Age class: 240 to 260 jears.
Species: White Pine.



## INDEX.

Page.
Abbot's white-pine sawfly, note.............................................. 6
Accretion, area, in Triate Pine average annual, for old trees diameter, of pinc, discussion yearly, of Whito Pine, notes

W'hite Pine in natural forest.
joung pine groves
condition as to reprodaction of White Pine.
growtly of White Pine.

Agaricus melleus, injury to White Pine

Alleghenies, occurrence of White Pine
Alpena, Mich., first sarmill
Ann Arbor, Mich., growth of pine rings, comparisou for varietios of
Aphis, White l'ine, note
Arborritx, concomitant of White Pine
mixture with White Pine.
Area accretion of $W$ hite Pine.
Artificial reproduction ot pane, discussion
Ash, result of planting whth White Pine.
Atlantic, injury by raw wads to White Pine........
Balsam Fij, alnixture with White Pine.
Bark-beetle, destructife to pine, dascussion. pine, description and injury
Bark-beetles other than pinc bark-beetle, injurions to pinetrees. 50,57
Bark of pine, manner of srowth and function
TFHite l'ine, sliglıt protection arainst fire...............
Barn lumber, use of pine.
Bebb, M. S., note on White Pino in Illinois
Beech, Birct mak [aple, ettoct of shate on TV hite एine with pine in Adirombacks.
Beetles, bark, destructive to pine. buprestidaw, injurions to pine, descriplion. ..............
Belfast, Me., trade in Whito Pino.
Bhotan Pine, relationship to White Pine.
jeh MaHo atmizureh, eftret of shano whth pine iu Alirundarke.
Black Spruce, usefulness for planting with pine
Board and cubie contents of Whate Pine, tables...................
Boards, plank, and "dmension stuff" of white Pine, sizes....
Boat huiding, use of Whito I'me.
riatiun with character of
Borers and pine sawyers, discussion.
Botanical description ot White Sine.
$\qquad$
$\qquad$ rance of White I'me
Box Elder, resilt of planting with Whito Pino $\qquad$
Boxes, use of WHile Fiace
Boynton, F. E., note on ocenrrence of White I'ine in tho Caro. lın:ะ
Brauch, root. and siemsystem of Whites I'ine
Britton, N. L. nuto on accurrence ot White 1 pin in Jew Jersey.
Brookings, S. Dak fanlure of plantarg of White Pane

Juprestidx surcins Paga,
, 58
Cambium of pine, claracteristics........................................................ 25
Canada, field of commercial piue ................................................. 15
necurrente of White Pine ..... 14
original and present supplies of White Pine. ..... 19
"rossing" as frotection from pine bark bores56
trade in White Pine. ..... 18
Canadian pinery, note ..... I4
Canbs, ..... 17
Carbolated wash, remedy for hotles on pino ..... $\therefore$
Carbolic acid, use arainst pine weevil. ..... 2
Cars, Austin, measurements of Whito Pinc.
Caterpillar injurious to pine, notes ..... 25
80
Cattlo, injurions to pine forests. ..... 19
Cetar, Whiten and Cypross as substututes for Whito I'ine ..... $\because 2$
25.24Cerambycid beetles, injury to pineChalcophora, species inimrious to pineChais
Chermes pinicortiris, " niwe blirht," nutofis
Chicago, growth of W"hito I'ine trade ..... :1
 ..... 6!
Cumfendes, $\mathrm{F}^{\text {. }}$ Il. discussion of "Insect encmies of White "ine"
Chloroplesi, occiurtence in yomar pine$\therefore$
Circumference of pide trees, measurements of anmmal gain.... ..... $: \because$Classitication of W'lite P'ine
Clay and loam lads, reprontaction of W"hite l'ine ..... 1,2
land, relation of spreitic weinht of pine wood ..... 个 4
Climate abl soil, demands for devobument of White I'ine.... ..... $\ldots$induche on height growth.
Coleoptera, adult, injury to pine ..... iil
rnemies of Wैhiles I'ın".$\cdots$
Coleosporiun senceionis, canse of disente in but ..... : ;
 ..... -
Cones, are of trees at lirst prombution.?:
Conifers and liardwools, plantine in alternato rows ..... (ii)
danger of deymy atmosphere in phatimg. ..... $\therefore 1$
necessity of shatiu: ..... i.
nseful for plantine with pine.. ..... i.
Cork Pine of Micheran, locality of erowth$\because$
('ortex of pisse, charasters. ..... $\because$
Cronartium ribicula. Felation to sans oll discase in pineCrop of W'bite l'me, dine for maturityCrown of Whate Fime deseription.Cultivation of pho nursery at ["biversity of Lllinoi-Whate I'me , wea ot probable sureerssCurenlionjalis, bertle, dimate to W'lite l'insCypress and Whise Codur as sulstifutes fur Whate I'mo
relicf me:nsures

Dangurs amd discases of White line, disemssion


Inerelantuent of githe isi furest. .
वиen stamel

Whifer rime. contitions.
Inagrams and tables of measurements.
Diancter aceretion of jime, disenssion.


1) iseases and dangers of White B'ine, discussion...................
of pure discussion.
1)ivtribution, geographical, of white lino natural, of Whatu l'ine, conclasions. of Whate l'jne, by reqions
Itmonetic animals, notes mo danger to forent .
Ironglas, liolnert, remarks on tranwplanting jine
bronght ant heat effect mat pise
1)rýngr and seanning. eftert on atrength of White Ibine winds, injurions consequences to phene.
Durability of Whito l'int, discussion
Elgim marseries, Whito l'ines of forty-tive years' growth
Enemises, insert, of White line.
Englamb, intreduction of Whito Pine notorm intruluction of White line
Eumope, comprisen of pine growth with America experience regariling reforesthaz notes on Stone line. fhanting of Scoth Pime prometion of sectl by White l'ino
Enropean Larch, nse as morse trey for Whise Pine
Espurimedt stations, note on rejurts as to "clamping off "
Export of White line, note
Fartor of ahape for White l'ing
in finding cubic and hoard contents of tree, use.
Farm implements, uso of white Pine.

Fencing use of white line
Fernow, Dr., method of forest planting.
Fields abandoned, measurements of pine
Fire, damago by burning young needling pine growth. problem of protection of pine forest
Eir, nuto on grow th in the I'alatinate, (iermany
Fish-oil soap, ust amainst pine weeril
Floral orgats of Whate l'jne, discussion
Forest, etfict of composition on height growth.
fires, angrestions for laws.
grow th, claswification of trees
of pine, classification
insects, iulurions, mativity
manasement, discussion
phanting, meflom nulvoratell hy De. Fernow
table showing first six years growth of White line tree in Germany, White I'ine, diseussion
Forester, The, facte on trimming pines .
Foresterown trees, diameter \&rowth at varions beights
Forrete of White Pine note on probable exhanstion
Form al velopurent of pinte
Forma neml in tho investigation

Irankfurt out sho Main, prometct of seded of Whate line
Freshair, nse ag timet "almoning of

Fongus, 1 aforicus mellews, injury to Whate l'ino
Colcospurinn arncimuix, canne of hisotase in pines.
Potymons anmone, injury to coniferolat trees




phatatinsa of pan




dinathotrichns but riarius, fiem; jutotertion fur pume
diraven athl l'm hot, Meware digntex dor sieht uf pine per acre
dironsth atal developonent of white I'ins.
beight of Whise Pism in forment tiontary years.

Growth in thickntsw of pine......................................................
colutue of White l'ino ........................
of dianeter amb croes nection, tables nat diagrams .. 107-116 pithe, rate.

27

Hard pine, variation in weoplet. 73
Alardwoul furcet, notes on "rowth of therto lifer. . 43 internixthre with White lithe.............................. 12 spercies uselul for phanting with phe ........................ 6t
Jiardwonds and conifers, planting in alternate rows............ 66 misture with White l'ine ............................... It


Heartwool of Whito l'jne, instances of remarkable durability. 80 v:ariation in mbisturo ....................................... 77
Heat and drought, ellect on pine ............................................... $\$ 1$
Heipht grow th of pine, seedling stago .................................... 27
trees after first century of lifo................ 31
Whito rine, tables .......................................... 29
Hembock, concombtant of White I'ine.................................... si)
growth of White line in mixture....................... 38
mixture in growth with Whiteldno...................... 38 occurrence with White l'ine in lemnsy lvania........ 12
Mill, W. J., note on Whito I'ine at head of Lako Michigan....... 15
Histological characters of pine............................................ 25
Hobbs, Juhn Eo, statements as to secd production of W'hite
table on deight growth of pine.................. 29
Hoyt, W. Fo, statement as to eftect of wind on White lines..... 50
Humbity, relation to derelopment of White lino................. 40
Hunt, Thomas, plantation of W"hite I'ine at Lidott, Ill.......... 66
Hypothencmus, twim beetles injurious to pine ..................... 57
Ice roats, noto on use in logiging ......................................... 20
Hllinois, growth of spruce aud pine in forty-five yenrs .......... $6 i$
weurrence of White line.......................................... 15
Universitr, note on forest plantation ............................ ©.
lndia, note on Dhotan I'ine.
Injuries to pine by humanagency.
Insect oncmies of Whato I'ine, discussion................................ 55
Iowa Amricultural College, notes onphanting of pine, larch, and broad leafed trees of 1875.
growth of White P'ino at Whiting ................................... 67
ocenrrenco of Whate l'ine.............................................. 16
Sack l'ine, admixture with White l'ine ................................... 12, 14 assocjate of White l'ino...................................... 10
Jerome, Governor, estimate of Michigan products................. 11
Jurenile stare, determination of limit for pine........................ 36
Kíerosenc emulsion, remely for bectles on pine....................... 57
use against plant lice.......................... 60
Fileebahn, investigation of blister rust................................... 53
Lachnus stroki, लnemy of pine....................................................... 59
Lako Michigan, note on growth of White I'ino on shore....... 22
region, comlition as to reproluction of White l'jno...... G2
oriminal staud and present supplies of White Pino 19 trate in White lithe, and present supply .......... 17, 18

Lath of Whate P'ine, adrantages............................................... 82
Laths and juckets, use of W'hite P'ine.................................. 81
Laws against injuries to forests, suggestion......................... 49
Lazenby, W. H., note on White lime in Ohto ......................... 15
Jofarferdint inserts infurious to pine discussion................. 60
deaves of Whito l'ine, dexcription.................................................
Leonarel, spencer, practice in sutting ont pine............................. 65

Light rempirements of White Ime.......................................... 43
Lime and l'atis green, used agninst pine bark-bectle............. 56
Lincoln, N゙elor comparativo falure ingrowine White l'ine.... 87

eftect on growth of harilwomds...................................... It
prairis. growth of pine in Ihtnots............................................ 67
Efill clay, growth of fine nt Wintom. Nunn.................. 67

Janality, eflect on hejizht gtowfh of trees................................. 33

Loggiug railway, note un elfect on lumberjug........................ 19

Logs，stwall，reduction of loss
I＇aze．
Long horned hectles，unemies of pine．
Longleaf Pine，comparison of annual rimgs with White Pine． specific weight for crown part of stem．．．
Lumber contents in 16 －foot $\log \mathrm{s}$ of trees
cut in Lako region，by ulistricts， 1873 to 1890
industry，White Pine，disenssion
markets，influences of White Pine of stern of tree，reckonim，
pine，importance of production．
ratio to total volumo of pino tree
Lumbering elistricts for White Pine in Canalı
of W＇hite Pine，rhange of methouls．
in Michiman，note
waste．．
Lumbermen，name for discase of pine tree
Lyman，J．D．，recoril of growth of White I＇ine
Macbride，T．IT．，note un White Pine in Iowa．
Maine，acre yiell of White I＇ine．
character of White Pine growth
seconl－growth pine，note
trade in White Pine，and supply．
Wisconsin and Michigan，comparison of growth of pine．
Maple，Birch，and Becels，effect of shade ou White I＇ine
with Deech and pine in Adirondacks
Market for sccoul－growth pine in Massachusetts
White Pine，change in Germany
Markets for lumber，influence of white Pine．
Maryland，occurrence of Thito Piue．
Massachusetts，market for second－growth pine－
note on groves of pine set fifty years ago．．．．．．
second－growth pine，note
soil of pine groves and value of young pine growth
table of annual gain in circumference．
Measurements，detail，of anuual gain in circumference of pine． diameter，of trees．
of sample trees noll arre sields of Thhite Pine 31
Whitu Pine，tables ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 85170
Medullary rays in pine，notes
Meehan，Thomas，si sons，statements as to growth of seedlins pine．．
note on occurrence of White Pine in I＇em sylramia．

## Mice，spread of fungus discase

4
Michigan，acre yield of White Pine，table．
rields of White l＇ino and measurements of sam： pletrees
（i－1：1
destruction of joung pine growth by fire
Maine，aul Wisconsin，comparison of growth of pine peed of seet for reforesting bare pine lands oceurrence of White I＇inc original stand and present supply of White Pino ralue of pine aud other prorlucts in 187） Wisconsin，aud Minnesota，annual cut of White Pine，1873－1897． yield of White I＇ine，per acre．
Mill construction use of Whito I＇ine
Minnesota，beginuing of yino lumbering nestruction of yommer pine grow th be fire Michigan，and Wisco－sin，annual ent of white Pine，1873－1897 occurrebce of White l＇ime original stand and present supplies． Windom，growth of White lime．．
Missouri（river）bottoms，growth ot Whate l＇ine
growing specimens of White l＇jue at Cuhumbia
Mixed growth，adrantages for pino
Modziansky，A．K．，measurements and calculations of White Pine
Model makers uso of White I＇ine
Modulus of clasticity of White I＇ine
Moisture content of Whito Pine．table
Monohammus，beetles most destructive to pim confiusor and atluer suecies injur to
Morpbological charaters of Whito Pine

## 

9Paris green amp limifuse against pine weevil．
samily，larwa，caterpillars，and leetles． ..... 61
Pennsyl－ania，acre yinle of secoml－growth Whito I＇ine，with

measurements of roung pine．．148－169

measurements of roung pine．．148－169

measurements of roung pine．．148－169

and Sew Lork，present supply of White I＇jne．

and Sew Lork，present supply of White I＇jne．

and Sew Lork，present supply of White I＇jne． .....  ..... $4:$ .....  ..... $4:$ .....  ..... $4:$ comalitions as to reproduction of Whito Pino． comalitions as to reproduction of Whito Pino． comalitions as to reproduction of Whito Pino． ..... 19 ..... 19 ..... 19 schrrence of in hite Pane． schrrence of in hite Pane． schrrence of in hite Pane． ..... 13.15 ..... 13.15 ..... 13.15 — measurema — measurema — measurema — measurema
trade in White Pine：present supply ..... 17
Penobscot，White Pine traio and supply ..... 17
Perilermbum strobi，canse of disease in W＂Lise Pine ..... 33
I＇hloem of pine，charterteristics．
Ihssical jroperties aud eloracter of white Pine woml． ..... 73Pickets and laths，use of White Pine．Pinchot amb Graves，Messrs．．tigures for yield of pine ger acre．
l＇ine lark beetle，destructive，discnssinn of injuries．．
hliyht，noteblister diseaso cansin by Culcosporium senecionis．
leat scale insect．manner of injury to pine ．．．．．．．．．．．．．．．．．．．

percentage of hartwond in several kimbs．value per acre of tifty years ${ }^{\circ}$ growth，note．
Pines，comparison weight amel stremeth，table．
note as to shrinkage－．．．．．．．
I＇inipestis zimmermanni，cnemy of pine，note．
アinus utha，variety of White I＇inevescription． ..... 7 ..... 80 ..... 20nivea，riridiss，aurea，breviolia，ete．，varicties ot Whiteline．
l＇issoles strobi，enemy of IVHito l＇ine，discussiou；description．l＇istillato tlowers of W゙hito I＇ine，deseription．
Pitch l＇me，associate of White Pine
value for planting on Allantw enrst． ..... S 181
Mortun，J．Sterling，note on White I＇me trecs at homeNathanjel，expericnce in trimming pines．6
Moth caterpillars and plant．lice on trunks and limbs ..... $\therefore 9$
Mothe，speries injurione to pine．．． ..... （i）
ite Pjo ..... 20）
Satural history of White Phe．． ..... －1reprotuction of W＂lito I＇inc．Iliscussiou．．．．．．
i：Ňw linglade comationas to reprolaction of White lam
early commercial use of W＇hite I＇ine． ..... 16
phanting of pine ..... 13
Newfonmalland，oc$1!1$
New Hampahire，distribution of White Dine ..... 13
， 1.New York and Pennuylvania，present supply of Whilo Pines．
distribution of White Pine ..... 12． 13
1：trade in White I＇ine；prean int supply
Somenclature，synonyms of Whito P＇ne． ..... $!$Miduleboro，Mass．，notes on pine groves of forty yearsgrowth ．6．）
Norimestern Lumberman，digures for annuad cut of lumber in Lake States．1803－1897． ..... 17
Norway Pive，growth in mixtare with White I＇inm． ..... 17
Nurse crop of trees，cheap nethod ot use ..... $6!$
25Nurserymen，practice in sowing pine seeds
Ohio，occurrence of Whito I＇ine ..... 15Ontario and Quebec，arerage annual dues on crown timber．．．．．I
Orientation，relation to specific weimht of pine wood1iEastern marliets
I＇alatinate，report on growth of pine and fir．$\because 2$
supply of cones fur seed ..... ，
l＇arasitic diseases of Whito Pine．$\because$
4.55595.3
0163
-3$\therefore$is$-1$$\cdots 3$
I＇its iu pine wood，focation，number，and size ．．
littsharg，trade in White loine． ..... 24.26
Irtyophthoras，species imiurious to jume． ..... 35

Ilains, reabon for slighe succeas fu cultiration of pino........... 58
llank, boards, nul 'dimẹsion stuf"' of W"hite l'me, sizes... Illatiag noter for White Pine.
of pine, comparison of nursery-grown scedlings with sowneng seed...
distance between trees.
notes.
Whito l'ine, note on experiment at Illinois U'hi. versity.
lime for Whito l'ine, noto
Plant-fice, and moth caterpillars, on trunta and limbs. keronche emulsion as remedy
louse, attacks on pine, note
Iollen, ripening, and pollmation.
1'ollination of whito line, motes.
Polyporus amosus injury to coniferons trees.
I'oplar, growth on pine slashings.
Iresque Iste County, Mich., heimht growth of trees.
I'rinceton, Ill., pine of forts-live years" growth.
l'rotective washes aganst pine bark leetle.
l'ublic sentiment, value in preservation of forests
"I'unky bine" disease of truak of pine tree
Iythiun de baryantem, causo of "lamping off" in young pines
Quelrec and Ontario, averamo annual dues on crown timber...
liate of erow th and solume of White l'ine, tablea.............. of White line

lecords of tree measurements, furms .............................. 173-179
liel l'ine, almixture with Whito line
associate of White L'ine. mixture with White l'ine
Reforesting with White Pine, ease.
liemedies fur pine bark-beetle.
lieproduction, artiticial, of pine, discussion
of White I'ine, natural, discussion
Lesseding, importanco in refuresting with pine
Lesin ducts, discussion. incortex of pine
diseases

## of pine, ellect of fungus diseases

Mhizomorples, action in fungus disease of White Pino
linge, aumual, comparison for varicties of pino.
Locky Mountains, noto on Whito Pine.
Root, stem, am brauch of Whito Pine.
syetem of Whito l'ine, relation to ylace of growth
Lhoots, seat of fungus disease of pines
"Hossing" protction akainst pine bark borer.
Rotation of trees in forest management.
$\qquad$
Loth, Ficibent, article on "Wooll of the white Pino" conclusions at to alloware for wato in.... ing...
Saginaw, Jich., first sawsuill.
st. Lawrence lider, ochrrence of White Pino.
St. Louis, growth of White l'ine trate
Sand, loamy, growth of th hite line.
preference of White Pine.....
spreal of fingus in cansing "damping off" of pines.
Samy and loany soils, reproluction of White l'ines
suils, relation tos ajectite weight of pino wood
Sapwond of tree, variation of moisture.
White l'ine, muto on chango to heart wool.
Sawnies, enemies of pine, uotes.
Sawing of lumber from White l'ine, notes.
Satryer, powsilule watto al pine.
sawgers, pine, atal uther borers, discussion.
Scale inscets, herowne emulaion as remedy

Nchizoneura pinicola, enemy uf White l'ine, noto ...............................
inhromere, J.e propuacel cla-sification of west of pine.
Scolytida, cmanjes of Whate Pho
other, timber lieetles..
Scotci biue, cumpariwn of resin ducts with white pine growth in lorty-tive years at 1rine ton, Ill. Germany
result of jhanting wath White line...
Seasoung amidryinge effert on strength of White lino. of White I'ine, comparison with other pines. . note.
secomol-growth pine, development

93-100

51
81
04
64
04
63
Cl
65
53
60
60
22
23
52
62
32
67
56
49
51
53
18
93-106
27
173-179
12
40
14
62
56
63
62
63
24
25
. 52,53
51
25
21
21
40
52
56
61
73
38
17
15
18
C8
40
53
62
74
8
73
c0
81
38
37
61
173-179
G0
23
5.\%
47
25
67
63
$66^{6}$
73
31
81
38

secoul Prowe.
Sconagrowth pine, market amd use in Massachusetta.......... 65 tables of measurement aud diagram...... 100-100
Whito Pine, acre yield, with measurements of young pina.

14R-169
Seeding of White Pine in Germany, note.................................. 68
Seedling stage of pine, height growth........................................ 27
Seedlings of pine, growith ; destruction by fire ........................... 62 jrotection.
Seed, number to tho ouncu for pise; to 100 fect of drill of pine, method of sowing.

White Pinc, effect of exposure urou vitality ............ 62
production, thiscussion
Seeds of pine, conditions for germination
64
retention of vitality........................................... 26
Whito Pine, description.
ripening.
Shade endurance of White Pine, note.......................................... 43
for seed heds of pine
Shape, factor, in white Piue
chbic and hoard coutents of tree
Shingles, lathe, etc, note on output in litke States
of White Pine, durability
use of White Pine.......
Shipbuilding, use of llhite l'ine
Shortleaf Jine associate of White Pine .............................. 40
Shrinkago of White l'ine, discussion .................................... 77
table
Size of White line
Soap, fish-oil, use against pine weeril

Soda, washing, use arainst pine bark bectle........................... 56
Soil and climate demands for development of White P'ine..... 39
intuence on height growth of trees........... 33
back loana, grow th of pine
66
character for use against "damping off".............................. 53
for White I'ine, notes.
15
of Palatinate, character for growth of pune...................... 68
Soils and soil conditions for White Pine 2, 13, 14
light, adrisability of sowing seed of pine broadcast ....... 64
South Carolina, occurrence of White Dine 15

Dakola, failure of plantings of White Pine at brookings. $6 \overline{7}$
Specific weight of pine, notes
73, 74
Spores of ''olyporus amosus, spread of disease in pines....... 52
Sjpringer, J. S., note on White l'ine. 16
Spruce, concomitant of White Pino 40
forest of Canada, noto............................................. 15
liability to being uprooted
mixture with White l'ine
Nurway record ot mrowth Gorn
Spruces, admixture with white Piue
Staminato flowers of White line, description
Stem, root, and branch system of White l'ine
Storms, injuries to furest.
strength aud weight of pines, comparison
50

White line discussion ............................................7-79
Structure of White Pine, notes. 73
Sulusoil, still, effect on younm pine ................................................. 66
Sugar Maple, usefulness for planting with pine
l'ine, relationship fo White l'ine
Suntight, value aqainst "damping off" in pines.
suppics of Th hite line oriminal and pregent diseuse........... 54
Swamp trces, note on specific weight................................
19
Swiss Stone line, relationship to White l'ing......................... 21
Synonyms of White l'ine

Taper of pine tree, relation to conditions of growth ............ 36
IVhate line wariations.
Temperature, relation to development of White Pino
to prevent "dampiag ofl"
Tennesseo adel West Virginia, present suprly of White lime.
Thecla niphone, injury to pino.
Thinning of pine, note
White Pine, conclusion from record at Farming ton, N. II

Timber beetles and other Scolytilix, discussion .................... Pag
commercially raluale, distribution of Wbite l'ino....
of White L'ibe, diacrams on weight
variation in strength with location jn tree
products of Michigan, comparisom for 1899 with other products
Tomicus cacographus, injury to pines, description pimi aml other species, injury to pine.
Tortricil moths, entmies of pine, remedies.
Trachelis in pine, notes.
Trameter radiciperda, injury to coniferous trees
Transplanting pine seedlings, notes.
Tree, largest pine actually measured
measurements and calculation for determination of volume
Trees, cubic and lumber contents, note
deformed, damagel by Whito l'ine weevil. . . .
forest-grown, diameter growth at rarious leights........
living, langer of attacks from bark beetles.
of different ages, table showing arerage weight, moist
ure content, and slirinkage.
. y arerage weight, moist
young, average taper
Trunks and limbs of pine, noth caterpillars and plat.lice (See also Stems anl Coles.)
Tube-builder, pine, manner of injury
-...-..................
Turpentine How fron loles mato ly, bark beetle
Twig beetles, gencra iujurious to pine
te Pine.
Uplainl trees, note on specific weight
Uprootiag, danger of White Pino.
Uses of White Pine, lliscussion.
Varjeties of White Pino
Vircinia, occurrence of White Pine

growth of pine, rariation with soil
of tree, measurements and calculation
Wradswortb, S. P., note on White I'ine in Illinois
Wappes, L., Bawariau forester, report on White Pine
Ward, Lester $\mathrm{I}^{\text {F }}$, noteon occurrence of White Pine in Maryland and Firginia
Wask, composition for use against bark beetles for protection agrainst Whito Pino weevil
Washes, protective, against piue bark-bectle
Washes, protective, against piue bark-bectlo..................
Washington Citr, first spring visitation of White Pine weoril.
Watering, method for prevention of "damping off"
Weather, relation to shading of pine seediugs.
Weell growth, drawhack to reproluction of pine
Weevil, White Pine, discussion $\qquad$
$\qquad$ measures for protection of pise $\qquad$
time of appearance

Weight, slecific, and atrength of pines, comparison.............. 8 Page, 8
of White J'me timber, diarrans...................... 76
Wonl of W" hite l'ine, disenssion ............... 33

W"estern prairies, ustahbinhment of pinn groves..................... 63

se+d.........................
harmar of witting termioal as protection against weevil

5!

weevil, discusion........................................................ 58
Whiting, d. H., mrowth of White l'ine at home ....................... 67
Willians, R., note on White Pinoin Illinois................................. 15
Williamsport, Pa., tralo in Whito I'inc*......................................... 1 -
Wind, immunity of White l'ine from injury............................ 50
Windom, Mino., growth ot White line in thirteen years ...... 6 .
Winds, drying, infurious consequences to pine........................ 50
Wisconsin, acre vield of W'hite l'ine, table.............................. \&!
yields of White Piue amd measurements of

lestruction of youns pine growth by fire............. 63
first logs taken to sit. Louis ........................................... 18
heary prombction of pino secd ............................... 23
Maine and Michigati, comparison of growth of pine 3.3

occurrence of White Pige..-.................................. 14
original stand and present supply of White Pine.. 19
yield of White Pine. per acre................................. 20
Wood, ansount formed in pine in cliterent decales of growth =. $\quad 37$
fanction in economy of tree..................................................... 24
gruen, rariation in weight ............................................... $\quad$.3
kilu-dry variation in specific weight............................
mote on chango in White Pino.......-. ................................ Tu
of White Pine, character and physical properties........ 73
discussion........................................ $73-\mathrm{N}_{2}^{2}$
temarks...... . . . . . . . . . . . . . . . . . . . . . . . . - - - - . 6
Wools, other, comparison with White Pine...... ............... (i)
Wratembureg, growth ot Wlite Pino............................................... lis
Tiekt, acre, of White I'ine in natural forest ...... ................. 46
Young yime groves.-....................................................... 43

per acre......................................................... 20
secoul-growth White Fine will measurements of
youns pine taken for analysis................................ 148-169
Yields, acre, of White Jine and measurements of samplo
trees .-...................................................................... $116 \cdot 14 \hat{i}$
Fork County, Me, statement as to reproditetion of pine........ G2
.

$$
:
$$

THE

#  

By CHARLES MOHR, Ph. D.


Tomerritele wron
A DISCUSSI(ON OF THE STRLCTLRE OF THEIR WOOI).

By FILIBERT ROTH.


WASHINGTON:

1S!
?
:



# U. S. DEPARTMENT OF AGRICULTURE. DIVISION OF FORESTRY. 

# THE. WHITE PINE. (PINUS STROBUS Linnæus.) 

BY
V. M. SPALDING,


- RIVISEl AND FiNTaRGED BY
B. E. FERNOW,

Cluief of the Division of loorestry.

## WITH CONTRIBUTIONS:

WSECT ENEMIES OF THE: WHTE PLSE . By F. H. CHITTEXDEN, Division of Pintomology. THE: WOOD OF THE WHITE PINE . . . . . By FILHBERT ROTH, Division of Foresiry.


WASHINGTON:

```
GOVFRNMNNTMPRINTIN゙G OFHICF%
 < 899.
```


-


[^0]:    ${ }^{1}$ The entiro region within which these pines occur in merchantable condition comprises about 230,000 square miles or, in rouml numbers, $147,000,000$ acres; for land in farms, etc., $10,000,000$ acres must be deducted, and allowincr as much as two-thirds of the remainder as representing pine lands (the other to hardwoods), we would have about $90,000,000$ acres on which pine may occur. An average growth of 3,000 feet per acre, an extravagant figuro when referred to such an area, would make the possible stand, $270,000,000,000$ feet, provided it was in virgin condition and not mostly culled or cut.

[^1]:    ${ }^{1}$ Bartram's Travels through North and South Carolina. Philadelphia, 1790.
    ${ }^{2}$ Humphrey Marshall: Arbustum Americanum, or tho American Grove, Philadelphia, 1785.

[^2]:    ${ }^{1}$ 'Travels West of the Allerhanics, by F', A. Michatux. Paris, ls03.
     111, 1, lut et serl.

[^3]:    Kirk Hammond, Census deport, Vol. VI, Cotton production of South Carolina.
    = Hammond, 1 c .
    ' Report of Tenth Census, Vol. IX.
    ${ }^{4}$ Lamher Trado Directory, Northwestern Lamberman, Chicago, July, 1890.
    'From the su-called wire-mrass Aristida stricta, the most characteristic plant of the dry, sandy, pine harrens from western Alabama to the Atlantic coast.

[^4]:    ${ }^{\text {A }}$ Ammal statement of commerce of Mohile. Mohile Register, September 1, 1832. Compiled from returns mate to the Mobile Boarl of Trate.
    ${ }^{2}$ Production of mills south of Montgomery, ete.
    ${ }^{3}$ Production of mills on Lonisvillo aml Nashville Lailroal, nortls of Montgomery to Calera, by Colonel Walswesth.

    Production of mills on Southern liailway, north of selma to Stanton, by M. Mausou.

[^5]:    ${ }^{1}$ A catalogue of North American Forest Trees, cxclnsive of Mexico, by C. S. Sargent.

[^6]:    ${ }^{1}$ George Engelmann: Revision of the Gemus linus. Transtetions of the st. Louis Academy of Science, 1882.
    ${ }^{2}$ Eugelmanu: Revision of (ienns Pinus. Trans. St. Louis Academy of Science, 185², p. 5.
    17433—No. 13——4

[^7]:    On the rolling pine uplands near spring Hill, Motile Connty.

[^8]:    ${ }^{\text {' Elliott, sketch } 2 ?, ~ p a q e ~ 263 . ~}$
    2Engelmann: Revision of the genus Pimus and description of Pinus elliollii. 'Iranstetious st, Lonis Acat. Sci., vol. 4, 1880.

[^9]:    ${ }^{1}$ Forest of North America, Volume IX of Tenth Census. (C. S. Sargent, 1880.)
    ${ }^{2}$ C. Mohr: "Forest 'lrees of the Gulf Region" (Im. Jour. F'orestry, Vol. I, 1883).
    ${ }^{3}$ "Forest Trees of Arkausas." (Harvoy: Am.Jour. of For., Vol. I.)
    ${ }^{4}$ Hilgarl: 'Tenth Census Report, Vols. V and VI.

[^10]:    ${ }^{1}$ Miller's Dictionary, 8th ed., 1768: London.
    2 Marshall's Arboretum Americanum: Philadelphia, 1785.
    ${ }^{3}$ Du Roi Hb.
    *A. Michaus's Flora Amer. Loreal., P'aris, 1803.
    ${ }^{5}$ Description of the Genus Pinus: A. B. Lambert, 1803 and 18.4.

[^11]:    S. S. Packard: Insects injurions to forest and shade trees.

[^12]:    ${ }^{1}$ Charles Mohr: Broceedings of tho Fourth Amunal Meeting of tho American l'orestry Congress, Boston, september, 1885.

[^13]:    ${ }^{1}$ Michaux, F. A. The North American Silva. Philadelphia, 1856.
    ${ }^{2}$ Curtis, M. A. The Timber Trees of North Carolina. Geol, and Natural History Survey of North Carolina. Part III, Botany. Raleigh, 1860.
    ${ }^{3}$ Volume 9 of the Tenth Ceusus. Charless. Sargent.

[^14]:    ${ }^{1}$ The Forests, Forest Lands, and Forest Products of Eastern North Carolina. W. W. Ashe, p. $\ddagger 1$, Bull. 5, N. C. Geol. Survey.
    ${ }^{2}$ W. W. Ashe, Ibulletin No. 5, North Carolina (Geol. survey, Raleigh, 1894, p. 41.

[^15]:    ${ }^{1}$ Charles S. Sargent, report of 'Tenth Census, Vol. 1N, p. 511, 1854.

[^16]:    1 M. A. Curtis: 'Trees and Shrubs of North ('arolina, Raleigh, 1860, p. 23.

[^17]:    :The Forests, Forest Lands, and Forest Products of Eastern North Carolina, by W. W. Ashe. Bulletin 5 of the Geological Survey of North Carolina, 1895.
    ${ }^{2}$ Engelmann's revision of the genus Piaus. Transactions of the St. Louis Academy of sciences, "rol. iv, p. 17 T.
    ${ }^{3}$ Pluckenet: Amalges tum botanicum. London, 1696.
    ${ }^{4}$ Linnaeus: Species plantarum, $1000,1753$.

[^18]:    ${ }^{1}$ L. Ward: Botanical Gazette, February, 1886.

[^19]:    ${ }^{1}$ A. Cieslar, " liotholz d. Fichte," Centralblatt f. il. s. Forstwesen 1896, p. 14!, ith liobert Ilartig "Das Rothholy der Fichte" in Forstlich-naturwissenschaftlicho \%eitschrift, 1806, p. 16\%.
    ${ }^{2}$ Cieslar produced thom at will iy bending young spruce saplings.

[^20]:    ${ }^{1}$ Dr. Julius Schroeder, Das Holz der Coniferen, Dresden, 1872.

[^21]:    In all pines the medullary ray is mate up of two kinds of cells which difier in their general form, and still more in the configuration of the cell wall and pits. The oue lind occupies the upper and lower rows of each ray,

[^22]:    A carefil examination and measurement of one hundred trees of White Pine was made by Mr. Filibert Roth to ascertain what rational allowance should he made on the cubic contents of trees when converted intolumber. Tho average dianeter of the trees measured was 28 inches, breast high with bark, and the height 100 feet, tho factor of shape 0.43 , that is to say, they were old trees with a moderate taper. They averaged $4.2 \log 8$ of 16 feet per tree, which representerl 76 per cent of the total volume of the bole with bark, $2 f$ per cent being lost in the top and stump and in the bark. The lumber contents of these logs, calculated by Scribner's log rule, represented ouly 39.5 per cent of the total volume of the tree, that is to say, over 60 per cent of the whole tree is supposed not to reappear in the lnmbur, the waw waste represuting 48 per cent of the loy volume and 36 per cent of the total volume of the tres.

[^23]:    ${ }^{1}$ Hartig. Vnterswchungen ans lem Forstbotanischen Institut zu Minchen. 18゙ふ.

[^24]:    1. fgaricus melleus, cluster of young sporophores.
    $\therefore$ Agaricus melieus, larger sporophore with root-like organ of attachment.
    $\therefore$ Koot of spituce tree invalerl hy mycelinm of fyaricus melleus; rlizonorph of samo fungns onthe risht.
    $\ell-\beta$. F゙rimuents of pine wood showing the destructivo action of゙ - Lfaricus mellens.
    $\therefore$ stump of llhito Pinc nttached by l'olyporns anmosms; tho heart is still sonmul, lut is surronuled by decayed wool and spots filled with masses of resin.
     lave becone delirnitied, and the woon elements composing them are soft anmeasily separable.
    
    2. Fruiting lisplan and spores of Polyporus unnosus.
[^25]:    ${ }^{1}$ We are likely to repeat in the Northrest, on an extensive scale, the history of sereral of the Eastern states. Under inducements held out to encourage immigration, many settlers have been lefl to take upland all through the worst part of Michigan and Wisconsin, including the "barrens." They clear the land, seed it, if they can, with clover, and put in other crops, work in the adjacent pine woods for a living, and "develop the country," thas doing for the state exactly what needs to be done and what the State has neglected to do for itself; but it is a disastrous experiment for the settlers. The many farms kept up in this way for a while may limally be abondoned, int the whole region will then be in a great measure secured against extensive fires, and the lands that have been plowed and worked over will be in a better condition for reforesting.

[^26]:    
    Wherme ammupl acciction: Whitu I'me Sicubir teqt.

[^27]:    Aterage annual accretion: White Pine. 12 mibic feet

[^28]:     Ash, $3+21$ suall; Cuctmber, $6+90$ small: Blach Cherr $, 2,77$ small; Blick Hirch, $17+415$ small; Hamamelis, $\psi$ smali; Basswood, 6 small; Tulip, 13 small; Ironwood, 2 small; Chestmut, 2 small; Willow, 10 small; Hemlock, 50 small.

[^29]:    IIntermixed species: WVhto l'ise, $239+144$ mmall; Hembock, $78+248$ small; Beech, $50+160$ amall; Maple, $46+108$ small; Oak (Whito and
     $15+8$ mall: Hichory, 2 ; Cucumber, 2 ; Jumeberry, 50 ; few small lipen, Buttermut, and Waterbeech.

[^30]:    Intermixed species: Gray birch, 4 from 6 to 10 inches diameter and noder 6 deet high; 7 from 3 to 6 inches diatueter and over 40 feet higle Cudergrouth: White Oak, 23; Maple, 3.
    
     inches dinmeter and under 30 feet hight.

    U'ndergruath: Oak, 97; Gray Birh, 54; 1'itch I'ine, 10; Monlu, 8; Cherry, B; Mickury, 1.

[^31]:    1 Intcrmized species: Ditch Pine, 1 over 3 inches diameter ami over 40 feet high; 1 oree 6 inches dinmeter add under 60 feet high; 1 over 10 inches lianetsr and wuler 80 feet high. White Birch, 2 from 3 to 6 inches diameter and over 40 feet high. Gray $13 i r c h, 10$ from 3 to 6 juches diameter and under to feet high. Foung White pine, $3 \overline{3}$.
    Znlerprorth (under 3 inches diameter and under 40 feet high) : Maple, 204 (mostly Striped Maple); Oak, 133; Chestnut, 19; Cherry, 11; Grav Dirch. 6: Thorn, ti Mamamelis, 3; Hickory, 1: Hemlock, 1; Elm, 2.
    Internized 'ppecies: l'itch Piue, 3 from $f$ to 10 inches diameter and under 60 feet high. Iopulus grandidentata, 1 over $G$ inches diameter and under 60 feet high. Gray hirch, 6 from 6 to 10 ioches rliameter and under 60 feet high; 31 from 3 to 6 ivches diameter and over 40 fect high. loplar, 2 fron 6 to 10 inches diameter and under 60 feet high. Iemlock, 1 over 3 inches diameteraudunder to feet high. Toung Wbite lpine, su.
    lndergrowth: Oak, 53; Gray Birch, 1, and a few small Cherry, not counted.

[^32]:    Sverage ammal accretion: White Wine, lut cubic feet

[^33]:    
    
    
    
    
    
    
    
    
    
     numerous small trees), 1. Jumerous small I'oplare not eonnterl.

[^34]:    Arerage ammal accretion: White line, 120 cubic feet.

[^35]:    
    
    
    
    
    
    
    
    

    Cindergrowth: Chestant, 202; Cherry,

