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TIME SERIES FORECASTING MODELS
INVOLVING POWER TRANSFORMATIONS

Abstract

In this paper we discuss procedures for overcoming some of the

problems Involved in fitting autoregressive integrated moving average

forecasting models to time series data, when the possibility of incor-

porating an instantaneous power transformation of the data into the

analysis is contemplated. The procedures are illustrated using series

of quarterly observations on corporate earnings per share.





1. Power Transformations and ARIMA Models

Box and Jenkins (1970) described in detail a methodology for fitting

to an observed time series, X , or ARIMA (p,d,q) model

(l-*-B-...-4 b'XI-B)^ - (1-6. B-. ..-9 Bq)a, (1.1)
1 p t 1 q t

where B is a back-shift operator on the index of the time series, so that

BJ X_ = X^ . . In (1.1), a^ is taken to be a zero-mean, fixed variance,
t t-j ' t

'

non-autocorrelated process, known as "white noise". For seasonal time

series, with period s, a multiplicative seasonal ARIMA model of the form
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is frequently fitted. Box and Jenkins discussed, in detail, an iterative

model building strategy, involving model selection, estimation and checking,

for fitting to data models of the class (1.1) or (1.2). At the selection

stage, based on statistics calculated from the data, a specific model

from the general class is chosen for subsequent analysis. Next, using

efficient statistical methods, the unknown parameters of the initially

selected model are estimated. Finally, checks on the adequacy of represen-

tation of the chosen model to the data are carried out. Any inadequacies

revealed at this stage may suggest an alternative mo del s and the model

building cycle is iterated until a satisfactory form is achieved. Box

and Jenkins show how forecasts of future values of the time series can

be obtained from a fitted model.

Box and Jenkins discuss very briefly, as a possibility for obtaining

a model with homogeneous error variance, fitting ARIMA models, not necessarily
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to the original series, but to a series derived from a member of the

class of power transformations analysed by Box and Cox (1964). In this

more general model, X in (1.1) or (1.2) is replaced by xj , where

x£
X)

= (X*-l)/X (X#)) (1.3)

log X
t

(X=0)

and A is regarded as an extra parameter to be estimated. Interest in this

model was perhaps first stimulated by the discussion following Chatfield

and Prothero (1973) , particularly the comments of Box and Jenkins (1973)

.

Chatfield and Prothero analysed a series of monthly sales data. After

first taking logarithms of the observations, these authors built, following

the strategy of Box and Jenkins, a seasonal ARIMA model. However, the

forecasting performance of the achieved model was felt to be unsatisfactory.

Several discussants of this paper suggested that this was a result of

the inappropriateness of the logarithmic transformation, and that superior

forecasts could be obtained if the more general class of power transfor-

mations were to be incorporated in the model. Subsequently, in a book

of case studies, Jenkins (1979) has emphasised the potential utility of

the power transformation in building time series forecasting models.

In the remainder of this paper we will discuss procedures for

fitting ARIMA forecasting models, allowing for the possibility of Instan-

taneous power transformations. In particular we will discuss necessary

modifications to the usual selection, estimation, checking and forecasting

procedures. Our interest in this problem arose from a study of a large

collection of quarterly time series of corporate earnings per share, the

results of which are reported in Hopwood et al (1981) . A good deal of
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recent interest in the accounting literature has focussed on procedures

for forecasting such series. The Financial Accounting Standards Board

(1978), in their conceptual framework project, has emphasized the importance

of earnings forecasts. The construction of ARIMA. forecasting models for

earnings series has been discussed by, for example, Foster (1977) , Griffin

(1977) and Lorek (1979). Much of this research has concentrated on two

questions: do corporate earnings streams have a common structure? (that

is, can one find a single model from the general autoregressive integrated

moving average class which predicts well for a wide range of corporations?)

;

and, how do the forecasts from time series models compare with those of

financial analysts and management? Some discussion on the latter point

is contained in Abdel-khalik and Thompson (1977-78) , Brown and Rozeff

(1978) and Collins and Hopwood (1980)

.

Although the point had not previously been noted in the accounting

literature, it became clear, in the early stages of our study, that, for

a great many series in our sample, there was strong evidence of the desir-

ability of a data transformation to induce homogeneity of error variance.

It was in response to this phenomenon that we examined the problems to be

discussed in subsequent sections of this paper.

2. Model Selection

Following Box and Jenkins (1970) , specific models from the general

classes (1.1) or (1.2) have generally been chosen on the basis of sample

autocorrelations and partial autocorrelations of a series and its low

order differences. However, when we further consider the possibility

of an instataneous power transformation, the initial choice of a model

is complicated by the fact that the autocorrelation structure of the
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transformed series, X , and its differences, is not independent of the

choice of the transformation parameter X of (1.3). Thus, for example,

if the sample autocorrelations and partial autocorrelations of the

raw data and its differences are employed in the usual way to suggest

values for p, d and q in (1.1), the chosen model may not be adequate to

describe the linear properties of X^ for an "appropriate" X. This

point is established theoretically by Granger and Newbold (1976), while

a numerical example in Nelson and Granger (1979) shows that it can be

practically important.

Of course, the analyst is not irretrievably committed to the initially

chosen model. It is possible that any seriously inadequate specification

will be detected at the model checking stage, and subsequently rectified.

However, it is certainly sensible strategy to seek as reliable an initial

specification as possible. Accordingly, we have found it valuable to

work with an elaboration of the usual model selection procedure, based

on a preliminary estimate of the transformation parameter X. Our approach

is based on the approximation of the underlying true model, by an auto-

regressive model of moderate order, since pure autoregressive models are

inexpensively estimated.

The preliminary estimate, X*, of X is obtained by estimating by

least squares, for a grid of values of X, the kth order autoregessions

X.
(X) = I B.X^ + e (2.1)

where, in (2.1), e is an error term. Provided k is chosen sufficiently

*2
large, the usual residual variance, o ., derived from fitting (2.1),

e, a
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provides a reasonable estimate of the variance of the white noise error,

a , of (1.1) or (1.2). In practice, for the earnings series we examined,

it was found that fixing k at 8 was adequate for our purposes. A further

elaboration that might prove useful would base the choice of autoregressive

order on some automatic criterion, such as AIC (Akaike 1974) or CAT (Parzen

1974). The initial estimate of X is then that value X* which, over the

grid of chosen values, maximizes

g(X) = - f log of + (X-l) Z log X, (2.2)
» A t*l

where n is the length of the series, and the second term on the right

hand side of (2.2) is the logarithm of the Jacobian of the transformation

(1-3).

Sample autocorrelations and partial autocorrelations are then

(X*)
calculated for X^ and its appropriate differences, and these are

employed in the usual way to select an appropriate model. This modification

is very easily incorporated into existing model selection routines and, since

(2.1) is estimated by ordinary least squares, the additional computational

cost is very small.

To illustrate our approach, we analyse series of 96 quarterly earnings

figures for two corporations, Weyerhaeuser Inc. and Freeport Minerals.

Fitting autoregressions (2.1) with k fixed at 8, using the criterion

(2.2), and searching over a grid of width 0.05, yielded respective initial

transformation parameter esitmates X* of -0.19 and -0.54 for the two

series. For the Weyerhaeuser data, the sample autocorrelations of the

transformed series indicated that a single non-seasonal differencing seemed

to be sufficient to induce stationarity. The first twelve sample auto-

correlations and partial autocorrelations of the differenced series are
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shown in the upper third of exhibit 1. For comparison, the middle third

of this table shows the same quantities for the first differences of the

untransformed series. It is noticeable that the magnitudes and patterns

of the two sets of sample autocorrelations are quite different, particularly

for low lags,, Thus, it is doubtful that the same model would be identified

had the initial estimate of the transformation parameter not been obtained.

Using the figures in the upper third of exhibit 1, we tentatively entertain

the model

(1-OB
4
) (l-B)x£

X)
= (l-eB)a

t
(2.3)

In fact, when this model was estimated, we obtained, as the maximum like-

lihood estimate of the transformation parameter, X -0.28. The lower

third of exhibit 1 shows the sample autocorrelations and partial auto-

correlations of the first differences of X^ . These are very close to

those in the upper third of the table, suggesting that the initial estimate

of the transformation parameter provides an adequate basis for model

selection.

Insert Exhibit 1 about here

For the Freeport Minerals series, the sample autocorrelations of

the initially transformed data indicated the desirability of both a non-

seasonal and seasonal differencing factor to induce stationarity. The

upper third of exhibit 2 shows the first twelve sample autocorrelations

and partial autocorrelations for the appropriately differenced series.

The middle third of this table shows the corresponding quantities for

the untransformed series. The most important difference between these
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two sets of statistics is at lag 1, where, for the untransformed series,

the sample autocorrelation is very small. From the upper third of the

table, we tentatively identified the model

(l-B)(l-B
4
)x£

X)
= (l-eB)(l-9B

4
)a

t
(2.4)

When the model (2.4) was estimated by maximum likelihood, the estimate of

the transformation parameter was X = -0.39. The lower third of exhibit 2

shows the sample autocorrelations and partial autocorrelations for

(1-B)(1-B )x£ . Once again these are very close to the figures in the

upper third of the table, suggesting that our procedure provides a sound

basis for model selection.

Insert Exhibit 2 about here

Taken together with our experience in analysing other data sets,

these examples suggest that our proposed model selection strategy can

be very useful when transformations are employed.

3. Parameter Estimation

Autoregressive—moving average models are most commonly estimated

through one or other of the two least squares procedures described by

Box and Jenkins (1970). Ansley et al (1977) show how to extend these

procedures to deal with models involving power transformations. More

recently, however, interest has centered on exact maximum likelihood

estimation. A closed form expression for the likelihood function was

given by Newbold (1974) , while Ansley (1979) presents a computationally

efficient algorithm. For the models (1.1) and (1.2) simulation evidence
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in Ansley and Newbold (1980) suggests that maximum likelihood estimation
,

may be preferable to least squares, particularly in seasonal models.

Accordingly, we employ exact maximum likelihood to estimate our

models. A convenient algorithm can be derived by incorporating the

approach of Ansley et al (1977) into the framework of Ansley (1979)

.

The details are very straightforward, but algebraically tedious, and so

will not be set out here. The likelihood function can be maximized

numerically. Estimated standard errors for the parameter estimates are

obtained, in the usual way, from the estimated information matrix.

For the model (2.3) , fitted to the Weyerhaeuser data, the parameter

estimates (with estimated standard errors in brackets) were

« = 0.38 (0.10); - 0.29 (0.11); X - -0.28 (0.18)

For the model (2.4) for earnings of Freeport Minerals, our estimates were

8 - 0.23 (0.11); - 0.88 (0.09); X - -0.39 (0.21)

4. Model Checking

Checks on the adequacy of representation of fitted models of the

form (1.1) or (1.2) have generally, following Box and Jenkins (1970),

proceeded along one of two lines. More elaborate models can be considered

by testing against an alternative involving additional parameters. Also,

the assumption that the error terms, a , are white noise can be checked

through examination of the residual autocorrelations from the fitted model.

In fact, as noted for example by Newbold (1980), these two approaches to

model checking are not necessarily distinct. The same tests may result

whichever perspective is adopted. Recent developments in time series

model checking are surveyed in Newbold (1982).
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When power transformations are incorporated in the model, no new

principles are involved in developing appropriate checks on model

adequacy. Once again, we can fit a more elaborate model or examine the

residual autocorrelations from the estimated models. Exhibits 3 and 4

show the residual autocorrelations from the ARIMA models estimated for

earnings per share of Weyerhaeuser Inc. and Freeport Minerals. Given

that the data series each contained 96 observations, these autocorrelations

do not seem unduly large, and provide little evidence on which to question

the adequacy of the originally chosen models.

Insert Exhibits 3 and 4 about here

The modified portmanteau statistics (Ljung and Box 1978)

12

Q - n(n+2) E (n-k)"
1

r?

k=l
K

are, respectively, 12.73 and 9.91. Neither is significant at the 10

percent level. Given this, and the individually low residual auto-

correlation values, we conclude that our estimated models should provide

an adequate base for forecasting future earnings of these corporations.

5. Forecasting

Having fitted an ARIMA model to the time series" x£ , one can, standing

at time n, compute h-steps ahead forecasts of x'v/ in the usual way.

Forecasts of the untransformed quantity X ^, could then be obtained by

applying the inverse transformation. However, as pointed out by Granger

and Newbold (1976) , these will not in general be minimum mean squared error

predictions. Nelson and Granger (1979) show how minimum mean squared error
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forecasts can be achieved, on the assumption that the power transformation

yields a model with normally distributed white noise errors.

6. Empirical Studies

We know of just two studies in which the value of including a power

transformation in time series models has been checked, in terms of the

resulting forecast performance, over a number of real data sets..

Nelson and Granger (1979) considered 21 published economic time

series. Forecasting models were built, with and without the use of

power transformations, and predictions were evaluated over a hold-out

period. The results obtained were rather mixed and the authors concluded

that "the evidence when using actual data is that the extra inconvenience,

effort and cost is such as to make the use of these transformations not

worthwhile."

Hopwood et al (1981) examined 50 quarterly time series of corporate

earnings per share. Thus, while these authors considered more series

than Nelson and Granger, the scope of coverage was far narrower. In this

particular study, however, judged by the criterion of forecasting accuracy,

it was found that incorporating power transformations into the model

proved, on the average, to be worthwhile. A noticeable improvement in

forecast quality tended to follow when a transformation parameter was

included in the ARIMA. model. Hopwood et al also concluded that the

indiscriminate use of the logarithmic transformation in their seasonal

models was a poor strategy. This finding tends to reinforce the point

made in the discussion of Chatfield and Prothero (1973).
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EXHIBIT 3. RESIDUAL AUTOCORRELATIONS (r ) FROM MODEL FITTED TO
WEYERHAEUSER DATA

k 1 2 3 4 5 6

r
k .03 .07 -.02 -.02 .03 -.10

k 7 8 9 10 11 12
A

r
k

-.20 .01 -.21 -.05 -.12 .04



EXHIBIT 4. RESIDUAL AUTOCORRELATIONS FROM MODEL FITTED TO
FREEPORT MINERALS DATA

k 1 2 3 4 5 6

r
k

-.04 .17 .04 .06 .02 .16

k 7 8 9 10 11 12

r
k

.12 -.07 -.06 -.06 -.10 -.04
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