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ABSTRACT

Using the CAC energy-employment policy model, a methodology

is developed to compute the total energy requirements for complete

energy supply systems, The capital and operating requirements of l6

separate energy supply facilities are used to evaluate the total energy

required by nine alternative means of producing and delivering electricity.

The evaluated electricity-generating systems rely on either coal, oil,

natural gas, or nuclear energy as their fuel source. Each system is a

net energy sink for some time after operation commences. However, in

less than two-thirds of a year each system produces more electricity

than would have been produced if the energy requirements (other than

fuel) had been diverted to existing electricity-generating systems.

Lack of data precluded the inclusion of all transportation-related

requirements. Energy payback periods could be more than doubled if these

requirements were included.
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1 . INTRODUCTION

Energy is required to produce the goods and services that society

consumes. This somewhat trite statement has been the subject of

several detailed analyses that quantified these requirements for a

variety of products. Energy conversion systems also require energy

to build, operate, and be disposed of at the end of their useful

lifetime. This fact has led to questioning whether a particular

energy conversion system is energy profitable.

Using a truncated process analysis, Chapman and Mortimer investi-

gated a variety of nuclear-electricity systems for their total energy

costs. They found these systems to be energy profitable for present

uranium ore concentrations. However, these systems are quite capital-

intensive and high growth rates in constructing them can delay

their energy payback for many years. Furthermore, the energy require-

ments for mining low-grade uranium ores could result in nuclear

power becoming an energy sink in the future.

This report develops a methodology for calculating the total energy

requirements of complete energy supply systems. Using a number of

data sources for individual energy facilities, this procedure is

applied to examine the total energy required to construct and operate

nine electricity-generating systems. Each system converts one of

four energy resources (coal, crude oil, natural gas or nuclear) into

electricity. Table 1 lists the systems investigated.

Each system consists of a set of individual facilities which mine,

process and convert a basic energy resource into electricity. A total

of 16 facilities are required for the nine systems examined. These
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facilities include both existing technologies (such as a coal-fired

power plant) and new technologies (such as the coal combined-cycle

consisting of a low Btu gasification plant and a gas turbine topping

cycle power plant )

.

The total energy necessary to construct and operate these systems

can be divided into direct and indirect requirements. Direct energy

requirements include the coal to fuel a coal-fired power plant or

the diesel fuel needed for a power plant's auxiliary power system.

Indirect energy use results from the energy embodied (due to manu-

facturing requirements, transportation, etc.) in the material re-

quirements of the system. Quantification of the indirect energy

c
needs is effected by the CAC energy-employment model. This model

is an extension of economic input-output analysis.

The analysis in this report includes only the first two relevant

time periods for energy supply systems: construction and operation.

Each system is an energy sink during construction, characterized

by large indirect energy requirements to manufacture its capital equip-

ment and a smaller amount of direct energy requirements for the system's

construction. Once operational, a system becomes an electricity source

while consuming large amounts of its resource base in a direct manner.

In general, the indirect requirements during operation are less than

during the construction phase. Data limitations and conceptual questions

concerning appropriate discount rates have precluded consideration of the

energy costs of system decommissioning or the safeguarding of nuclear wastes.

The next section of this report outlines the methodology used

in the energy analysis of the sixteen separate facilities. Also included

-3-



is a description of how these facility requirements are combined to

give the energy requirements to build and operate an entire electricity-

generating system.

To address questions concerning the "net energy" of each system,

7
the results are expressed in several ways. As suggested by Bullard,

lifetime energy requirements per unit output are given for several

energy forms. This can allow one to rank-order systems depending on

the relative value of competing energy resources.

Because of differences in societal values of various energy forms,

the concept of "potential electricity generation" is introduced. This

transforms a set of energy requirements into the equivalent electrical

energy that could have been generated with today's technology. Using

this concept, the costs of electricity-generating systems can be weighed

against their benefits in terms of a common energy form.

The energy-sink effect of rapid growth rates in building new

electricity systems can be evaluated from knowledge of the system's

construction time and energy payback period once the system is opera-

tional. The time required for each system to become energy profitable

is calculated.

The time dependence of a system's energy costs and benefits can

also be graphically displayed. Several examples are included.

An Appendix is included to describe the analysis in greater depth.

Detailed tables of capital and operating requirements for each facility

are included. With some minor aggregations and disaggregations, these

are given by 2-digit or 4-digit Bureau of Economic Analysis (BEA) categories

-1*-



2. METHODOLOGY

This section outlines the computational procedures for obtaining

the direct and indirect energy requirements for constructing and operating

a single energy supply facility. Facility requirements are then

appropriately combined to give total system requirements.

2.1 FACILITY ENERGY COSTS

During the construction period of a facility, large amounts of energy

are indirectly consumed in the form of capital goods. Also, some direct

energy is used to operate the construction equipment. However, this

requirement is usually much less than the indirect energy use. Figure

1A gives an energy flow diagram for this period of time. Given the material

requirements for constructing a facility, the energy embodied in these

requirements is calculated according to Ref. 6. Table 2 gives the primary

data sources for the construction requirements of each facility. In

general, the requirements are distributed over a several year period.

Once a facility is operational, it produces an energy output. To

produce this output a facility requires material and service inputs

including its direct energy requirements. These facts are schematically

represented in Fig. IB. As for capital requirements, the total energy

use during operation is obtained from input-output analysis. Table 2 also

lists the data sources for the annual operating requirements of each

facility.

For purposes of analysis the annual output of each facility is

measured in Btu's. Capital and operating requirements per unit

annual output for each facility are given in the Appendix.

-5-



Figure 1. Energy Inputs and Outputs for an Energy Facility

Indirect energy
embodied in capital
equipment

Direct energy used
in construction

Facility

Figure 1A. Construction Period

Energy embodied in
operating material
and service
requirements

Facility
-) Energy production

t
Direct energy input for operation

Figure IB. Operation Period
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Table 2

Data Sources for Facility Requirements

Facility Construction Operation

Coal Mine
(Underground eastern mine)

Natural Gas Production
(Offshore)

Crude Oil Production
(Onshore)

Oil Shale Mine/Retort

LWR Fuel Mine/Processing

HTGR Fuel Mine/Processing

Solvent Coal Refinery

Coal Gasification
(High Btu)

Oil Refinery
(Low-gasoline)

Natural Gas Utility

Coal Combined Cycle Power Plant

Coal-Fired Power Plant

Oil Fired Power Plant

Gas-Fired Power Plant

LWR Power Plant

HTGR Power Plant

B

B

M

CM

CM

M

M

B

BCL

M
a

B

B

B

M

M

CAC

CAC

CAC

M

CM

CM

M

M

90

90

90

CAC

CAC

M

CAC

CAC

CAC

M
l

90

90

101

101

101

B - Bechtel (Ref. 8, adapted to 90-order requirements vector )

M - MITRE (Ref. 9, adapted to 357-order requirements vector.)
CM - Nuclear fuel processing direct and indirect energy requirements are

calculated according to Ref. 5. For more details see the Appendix.
BCL - Battelle (Ref. 10, adapted to 90-order requirements vector.
CAC , CAC n

- Center for Advanced Computation 90-order and 101-order

input-output model data (Refs. 11 and 12).
a - a combination of a low Btu coal gasification plant and a C0GAS gas turbine-

topping cycle power plant. To demonstrate data differences the results
also include using Bechtel data for the gasification facility capital
requirements

.

b - Operating requirements for these power plants are increased to account
for electricity transmission, distribution, and administration
requirements^. Other power plant requirements already include these
costs

.
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2.2 SYSTEM ENERGY COSTS

An electricity-generating system consists of several facilities to

extract the energy resource from the earth, process it, and ultimately

produce and distribute electricity. Table 1 listed the facilities

considered in defining our nine electricity-generating systems.

Figure 2 is a schematic representation of a series of facilities

defining a complete system. The initial facility in a system is typically

a mine or well that extracts the direct-energy resource consumed by the

system. The n ' ' facility is the electricity-generating facility such as

a nuclear power plant. Intermediate facilities represent fuel processing,

distribution, or conversion facilities.

The energy requirements to construct a system is essentially the

sum of the requirements for the separate facilities. Facility sizes from

Refs. 8-10 are in the range of economic capacities and typical of existing

or future facilities. Facility capacities, load factors, and efficiencies are

combined to determine the number (or fraction) of individual facilities

required to complete the system. System requirements are then the sum of

the appropriate amount of the capital requirements of the individual

facilities.

The operating requirements for a system are not merely the sum of

the facility operating requirements. Except for the initial facility in

a system, the direct fuel requirements of a facility do not cross the system

boundary. This is illustrated in Fig. 2. As shown in the Appendix, the

system energy requirements per Btu of generated electricity is:

-8-
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from the earth

n. = fuel conversion efficiency of the i facility (Btu

output from facility i per Btu input to facility i).

£ = matrix of direct and indirect energy intensities (appro-

priate order-90,101, or 357).

0P.= vector of operating requirements per unit (Btu) output

from the i facility. (Direct fuel requirement of each

facility is zeroed.)

e = vector of energy requirements from the earth (OP^ only

includes economic transactions from one sector of the

economy to another)

.

As shown in Fig. 2 the system "boundary encompasses the transmission

and distribution of electricity to the final user. Transmission line

losses and other electricity requirements of the final facility in each

system are assumed to he supplied hy the system itself. Therefore,

the delivered electricity will be somewhat less than that generated.

This methodological approach implicitly assumes that the technological

system is separated from the economic system. Therefore, this analysis

is only appropriate for a marginal technology (which is usually the case for

the nine systems). For example, if an economic system were dominated hy

shale oil inputs for crude oil, the total energy requirements for a shale-

electric system would be greater than that from the present U. S. economy

whose crude requirements come primarily from oil wells

.
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3 . RESULTS

The results presented here depend both on the accuracy of input-
,

output techniques and the accuracy of data for the individual facility

requirements. References 3 and 6 give excellent discussions on

potential difficulties in applying input-output analysis to obtain

indirect energy requirements. The reader is referred to the Appendix

for a detailed description of the data used in the present analysis.

As noted there, the data sources for facility requirements are not

necessarily consistent. Because of vast differences (nearly a factor of

six in capital intensiveness) in two data sources for the capital re-

quirements of a low Btu coal gasification facility, results for the coal

combined cycle are given for each data source.

The total energy required to build and operate the nine electricity-

generating systems is presented in Table 3. Energy costs are separated

into coal, crude (oil and gas), and total primary energy. In keeping with

U. S. Bureau of Mines convention, primary energy includes the sum of the

first two energy forms as well as the fossil fuel equivalent of non-fossil

generated electricity. Energy costs in Table 3 are given for construction

and for the total system lifetime (25 years of operation). Nuclear fuel is

considered a primary energy source, equivalent to the primary fossil fuel

that would have been required by fossil-electric systems to produce the

nuclear generated electricity (for more details, see the Appendix).

Results for the coal combined cycle system are given for both the

MITRE and Bechtel low Btu coal gasification facility capital requirements.

Differences in capital intensiveness (see Appendix) for this facility

result in the Bechtel system requiring more than twice the construction

-11-
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energy requirements of the MITRE system. However, the total lifetime

energy costs are similar for the two cases.

Lifetime non-fuel costs for the oil-electric system (onshore

oil well, refinery, and oil-fired power plant) are higher than any other

system. This result illustrates a basic fact that underlies the need

for net energy analysis: As nonrenewable resources become scarcer, it

requires more and more energy to get them out of the ground. For

example, Bechtel oil production capital costs assume 3 dry-holes for every

k onshore wells drilled in the contiguous states.

Figure 3 graphically compares the energy costs and benefits over

time for oil-electric and shale-oil-electric systems that deliver 20

trillion Btu's of electricity per year. Delivered electricity is plotted

above the axis while total primary energy costs are plotted below. The

very high capital costs for onshore oil is obvious when one realizes

that wells are being drilled during only the last two of the five year

construction period. Because of energy conversion inefficiencies

total operating costs will always be greater than electricity benefits on

a Btu basis. The substantially greater total operating requirements for

shale oil are due to the energy intensive shale oil mining and retorting

facility.

A similar graphical comparison of the light water reactor (LWR)

and high temperature gas-cooled reactor (HTGR) systems is given in

Figure k. Here the fuel and non-fuel primary energy requirements are

separated. Nuclear fuel is costed as a primary energy source equivalent

to the primary fossil energy needed to generate a similar amount of

electricity (see Appendix for details). Higher initial fuel enrichment

-13-
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requirements result in HTGR's being more capital energy intensive.

However, non-fuel lifetime costs of LWR's are somewhat higher (see Table 3).

Even when fuel requirements are neglected, an energy supply system

is a net energy sink until the capital and some operational energy costs

are repaid by the system. Table k gives the energy payback times for

the non-fuel capital and operating energy costs incurred up to the time

of repayment. Payback times are given for two cases: l) The time

required to repay the total primary requirements (other than fuel) with

electricity on a Btu basis and 2) the time required to repay the elec-

tricity that could have been generated and delivered by diverting the

non-fuel energy requirements through existing electricity generation

systems. This "potential electricity generation" is calculated from the

following relationship, which is derived in the Appendix:

Potential Electricity (Btu) = .2687 * E
cQal

+ .2UT3 * E
crude

+

.1888 * E , . . xelectricity

E n
= Coal requirement (Btu)

coal

E .,
= Crude requirement (Btu)

crude

E ., . ._,_ = Electricity requirement (Btu) .

electricity

Because a Btu of electricity is valued more by society than a Btu of

primary energy, the second comparison in Table k is probably more valid.

k. SUMMARY AND CONCLUSIONS

A methodology for evaluating total energy costs for energy supply

systems has been developed employing input-output techniques. Using a

number of data sources for various energy supply facilities, the direct

and indirect energy costs for construction and operation of nine electricity-

generating systems were evaluated. Future analyses of this nature should
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Table **• Energy Payback Times (Years)

q
Electricity for Electricity for

yS m Primary Potential Electricity

CM-CFPP

CM-CG-NGU-GFPP

CM-CCC

CM-SRC-CFPP

GP-NGU-GFPP

CO-LGR-OFPP

SO-LGR-OFPP

LWR

HTGR

• 5k .13

1.32 .26

.37 ( • 87)
a

.09 (.22)
a

1.35 .21

I.8l .31

5.71 .62

2.31 .25

.90 .20

1.37 .32

a
Results using Bechtel data for low Btu coal gasification facility
in parenthesis. J
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pay particular attention to obtaining consistent facility requirements

data to reduce possible error. This can probably best be accomplished

by using a single data source. Inclusion of all transportation-related

capital and operating requirements should be considered before policy

decisions based on net energy analyses are made (see Appendix).

Except for extremely rapid energy supply expansion rates (system

doubling times on the order of 2 or 3 years), the electricity systems

investigated would repay their non-fuel energy costs in a short period

of time after commencement of normal operation. In less than two-thirds

of a year of operation all systems are able to generate more electricity

than could have been generated if the non-fuel energy requirements to

build and operate them had been used to produce electricity from existing

systems (see Table k) . However, inclusion of all transportation require-

ments could significantly delay this repayment period.

As resource supplies (energy and non-energy) dwindle, energy payback

times for these systems will inevitably increase. More energy will be

required in the extraction of nonrenewable energy resources as well as

other physical resources. The decreasing success rate of new oil wells

in the contiguous states is the principal reason why the oil-electric

system has the greatest repayment period. Chapman and Mortimer found

analogous results when they considered nuclear-electric plants that were

fueled with low-grade uranium ores

.

*
For example, electric transmission operating requirements are included, but
the capital requirements do not include the construction of energy-intensive
aluminum transmission lines.
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APPENDIX

A. Input-Output Analysis

Input-Output analysis provides the tool with which indirect energy

requirements can be calculated. References 3 and 6 provide detailed

descriptions of the method employed in this analysis. A brief descrip-

tion of the technique is included here.

The Bureau of Economic Analysis (BEA) provides detailed information

on the dollar value of interindustry transactions (flows) of goods and

services. The latest year for which these data are available is 19&T

•

Energy transaction data were obtained from Ref . IT.

Using BEA data, a matrix of technological coefficients, A ,
is

defined as the amount of industrial sector i's output sold to sector

j per unit of j's output. The total output of industry i (X^ consists

of that sold to other industries and that sold to final demand (Y^).

Mathematically, this can be represented as

X. Z A., X + Y.

Or, in matrix notation,

X = A X + Y

For a given final demand vector, the total requirements can be obtained

through matrix inversion,

X = (J- A)'
1
Y

where I, Is the identity matrix.

Analogously, total energy requirements for a bill of goods is obtained

from the energy sector requirements when the A matrix includes physical
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data on energy flows , Thsi matrix has been generated at the Center

for Advanced Computation, University of Illinois, for several levels of

BEA classifications. The data used in this report required the CAC 90-,

101- , and 357- order A matrices to calculate the indirect energy require-

ments.

B. Data Sources

This report is methodological in nature hut relies on a number of

data sources in applying the developed techniques. Inconsistencies

and other differences in the basic data will result in some uncertainty

in the final results. Most of the caveats underlying the results are

presented in this section.

o
MITRE capital and operating data are used for six of the facilities

(see Table 2). These data are reported at the 367-order level of BEA

disaggregation in 19&7 producers costs. The requirements are aggregated

to 357-order for indirect energy calculations . Construction costs include

purchases from non-residential construction (BEA 11.02) and therefore

comprise some of the on-site labor costs. Leased construction equipment

is given as purchases from the business services sector. Because this

equipment is only a small portion of that sector's output, the resulting

energy content is incorrect (probably underestimated). Operating re-

quirements of MITRE electric plants do not include transmission, distribu-

tion, and administrative costs. To maintain consistency with other power

plants, these requirements are increased to account for these costs using

data from Ref . 13. For nuclear systems, MITRE capital costs do not

include initial core fuel costs. Also, operating fuel requirements are

purchased from the industrial chemicals sector. Because of the capital

-22-



omission and the atypical characteristics of nuclear fuel as a chemical,

this report relied on fuel processing energy costs reported in Ref . 5

for "both capital and operation (see next section),

o

Bechtel provides the capital requirements for seven of the facilities.

These are given for 20 categories in 197*+ dollar costs to a contractor.

Reference l6 describes the methodology employed to obtain these require-

ments in 1967 producer's costs for use with the 90-order input-output model.

Bechtel allocated the appropriate fraction of the capital cost of leased

equipment to the sector producing the equipment. Therefore, the difficulties

encountered by MITRE for leased machinery is surmounted. Bechtel costs were

generated in-house and all design and on-site labor costs appear in value

added. Bechtel capital costs are given for each construction year. Their

capital expenditure distributions over time are assumed for MITRE cases

for similar facilities.

MITRE and Bechtel provide the bulk of the capital cost information.

A comparison of the capital intensiveness (on a per Btu output basis)

of similar facilities is given in Table A-l. This provides a first-order

check on data differences. (A better comparison would include differences

in sector distributions of the capital costs.) The greatest disparity

occurs for the low Btu coal gasification facility (part of the coal combined

cycle) where the Bechtel dollar costs (per Btu output) are nearly 6 times that

of MITRE. There are several reasons which might explain these differences.

First, MITRE considered a Texaco gasification facility which differs

from the Lurgi process considered by Bechtel. Lurgi systems have been

in use for a number of years. Their costs are well known and somewhat

expensive. On the other hand, the Texaco system is not in full-scale

-23-



Table A-l. Data Comparison of Facility Capital Intensiveness

Data
Source Facility

Output
Capacity

Capital Intensiveness
( Dollars /Btu Annual Output!

Bechtel LWR
MITRE LWR

Bechtel HTGR
MITRE HTGR

Bechtel Oil shale mine/retort
MITRE Oil shale mine/retort

Bechtel High Btu coal gasification
MITRE High Btu coal gasification

Bechtel Low Btu coal gasification
MITRE Low Btu coal gasification

Bechtel Solvent refined coal
MITRE Solvent refined coal

1100 MWe
1000 MWe

1500 MWe

770 MWe

88,000 BBL/D
50,000 BBL/D

2.U x lojj Btu/D
5.0 x 10 Btu/D

2.8 x lojj Btu/D
l.U x 10 Btu/D

1.8 x 10^ Btu/D
1.8 x 10 Btu/D

U. 8 x 10
5.U x 10

5.9 x 10

7.2 x 10

l.k x 10

1.5 x 10

-6

-6

-6

-6

-6
-6

3.3 X 10

1.2 X 10

2.7 X 10

U.7 X 10

1.7 X 10

8.7 X 10

-6

-6

-7

-6

"Does not include value added. For comparable facilities MITRE costs should
be somewhat greater due to the fact that their expenditures include some
construction labor costs. These costs are part of value added in Bechtel
data.

Capital costs of nuclear plants do not include fuel costs for initial core

'Combination of two Bechtel facilities.

-2k-



operation and its cost estimates are probably optimistic. Therefore,

results are presented for the coal combined cycle using both data sources

for the low Btu coal gasification facility.

Operating requirements for eight of the facilities are provided by

the CAC data base. These data are principally obtained from actual

transactions for sectors that parallel the facilities. These data tend

to be all-inclusive and therefore greater than engineering cost projections

of operating costs such as MITRE 's.

Except for the coal combined cycle, a natural gas utility is included

as a facility requirement of systems that ultimately burn gas. A natural

gas utility is a distribution network of pipelines providing one step in

the overall delivery of energy. The coal combined cycle is envisioned as a

mine-mouth operation and would therefore have zero transportation require-

ments. Natural gas utility capital requirements are obtained from Ref. 10

and the operating requirements are part of the CAC data base.

Because of a lack of data at the time of this analysis, energy trans-

portation requirements are not properly treated. Only natural gas distribu-

tion and the operating requirements for electricity transmission are included

in the analysis. Recent preliminary data imply that the inclusion of all

transportation facilities might result in increasing the construction

energy costs by a factor of two or more. Bechtel has evaluated the total

capital costs of energy supply and transportation facilities for a

particular Project Independence scenario, The 10-year cumulative

results for the entire U. S. energy system imply that kh% of the total

capital costs will be incurred by transportation facilities. Also,

% of the transportation capital costs are for electricity transmission

-25-



and distribution. However, this inclusion would probably have little

effect on the relative energy costs of various systems considered in

this report, but would affect the payback periods. On the other hand,,

systems that rely heavily on other transportation facilities (e.g., most

coal based systems) might not seem as favorable if capital costs of all

all transportation facilities were included.

C. Nuclear Fuel Energy Costs

Besides the nuclear-electric plant, a complete nuclear-electricity

system consists of an uranium mine, mill, conversion facility, enrichment

plant, fuel rod fabrication facility and fuel reprocessing plant.

Capital and operating data for this host of facilities were unavailable.

However, Chapman and Mortimer used a truncated process analysis method

to estimate the total energy requirements for the nuclear fuel cycle

with no fuel reprocessing capabilities. Given the amount of fuel re-

quired and its isotopic concentration of uranium-235, an estimate of the

total (capital and operating) energy requirements to produce the fuel

can be made

.

Tables A-2 through A- 5 give the step-by-step results for the nuclear

fuel-cycle calculations. The core and annual fuel requirements for a

boiling water reactor (BWR) and a pressurized water reactor (PWR) were

obtained from the major manufacturers of these plants (Table A-2). An

LWR is assumed 60% PWR's and U0% BWR's, based on projections of the mix

of plants. The fuel requirements for a high temperature gas-cooled

reactor (HTGR) were obtained from its manufacturer (Table A-2) . The

energy required to mine, mill and fabricate the thorium fuel requirements

of the HTGR are assumed the same (per ton) as uranium. Reference 5
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Table A-

2

FUEL REQUIREMENTS FOR 1000 MWe NUCLEAR PLANTS

Metric Tons of Fuel

Reactor Type Initial Core Annual Refueling

LWR
a

9*+.3(2.3)
b 27.7(2.9)

HTGR 1.6(93.0) .36(93.0)
32.3 Thorium 7.26 Thorium

60% of system assumed to be PWR and h0% assumed to be BWR. All values
assume 80% load factor.

Percent fuel enrichment.

Table A-

3

NATURAL URANIUM AND
SEPARATIVE WORK UNIT (SWU) REQUIREMENTS

Fuel Enrichment

2.3

2.9

93.0

Tonnes natui

per tonne
-al U
fuel

Tonnes SWU per
tonne fuel

k.k6 2.1+2

5.16 3.6

201.63 220.
a

a
Source: Private communication with E. Von Holle, Oak Ridge Gaseous

Diffusion Plant. Other values from Reference 5 for a .25%
tails assay.
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Table A-U.

ENERGY COSTS OF FUEL PROCESSES

Process

Mining and Milling

Conversion

Enrichment

Fuel rod fabrication

, o .

Energy Requirements (10 BtuJ

.0776 (t) (per tonne U)

.00U6(e) + .0158(t) (per tonne U)

•709(e) + .028l(t) (per tonne SWU)

.OlUl(e) + .0093(t) (per tonne fuel)

Source: Ref. 5. The (t ) or (e) signifies whether the energy requirement
is thermal or electric

.

Table A-5.

ENERGY INTENSITIES FOR NUCLEAR FUEL
8,

CAPITAL (Btu/Btu)
b

OPERATING (Btu/Btu.)

b

Reactor
Type Elec.

Refined
Petroleum

Natural
Gas Elec.

Refined
Petroleum

Natural
Gas

LWR

HTGR

.0831

.1225

.018U

.0167

.00U6

.00U2

.035^

.0276

.0070

.0038

.0017

.0009

a
Energy intensities based on annual output of electricity at a 80$ load factor.

The termal energy requirements calculated from Table A-1+ are assumed
refined petroleum and 20% natural gas

.
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separates the total fuel cycle energy requirements into electrical and

thermal. Thermal requirements are assumed 80% refined petroleum and

20% natural gas. In calculating total system requirements, the energy

requirements for producing the fuel input were added to the nuclear power

plant's refined petroleum, electricity, and natural gas requirements.

These increases result in an increase in the coal and crude requirements

as shown below.

Additional coal requirements =e „ *E + e *E , + e , *E
coal-rp rp coal-el el coal-ng ng

e = Btu's of coal required directly and indirectly

to produce a Btu of refined petroleum.

e .
1

= Btu's of coal required directly and indirectly to

produce a Btu of electricity,

e , = Btu's of coal required directly and indirectly to produce

a Btu of natural gas

.

E , E _ and E = Nuclear fuel cycle refined petroleum, electricity
rp' el ng *

and natural gas requirements.

An analogous relation is used for the additional crude requirements.

Extraction from the ground of nuclear fuel is costed as a primary

energy requirement based on the fossil-fuel equivalent for producing

electricity. On the average, it required (in 196?) 3,265 Btu's of

primary fossil energy to generate a single Btu of electricity. Therefore,

the annual primary energy requirement to produce nuclear electricity is

increased by 3.265 times the annual generation to account for the earth-

supplied nuclear fuel. Unlike fossil plants, nuclear power plants
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have a large capital fuel requirement . The initial fuel core is equivalent

to several years of operational fuel requirements. The following

assumption

tons of initial fuel*iriitial enrichment
Time equivalent of initial core =

annual tons of fuel*annual enrichment

results in LWR initial cores having the equivalent of about 2.7 years of

fuel and an HTGR having about k.k years. These capital energy cost

considerations are reflected in Table 3 and Fig. h.

D. System Requirements

System energy requirements are obtained as a 6x(NC+l) matrix represent-

ing the annual energy requirements (coal, crude, refined petroleum, electri-

city, natural gas, and total primary) during each of the NC construction

years and one year of operation. This section describes how this matrix

is calculated from the facility data.

Figure A-l is a schematic representation of the requirements for a

generalized system. In that figure C. represents a vector of capital

requirements per unit output of facility i, OP. represents a vector

operating requirements per unit output of i , n. is the energy conversion

efficiency of the i facility, and e is a vector of input fuel energy

from the earth to the initial facility. For fossil-fueled facilities

e_ is a (6 x l) vector whose primary energy and coal or crude elements are

unity and zero elsewhere. For nuclear fuel only the primary term

is non-zero (see last section)

.

As described in the beginning of the Appendix, the energy needed

to produce a bill of goods is obtained from input-output analysis. The
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energy submatrix of (l-A)~ is e (6xN), where N is the appropriate

number of sector (90, 101 or 357) for which the requirements are given.

Therefore, e_*C_. gives the capital requirements per unit output for the

i facility and g*0P. gives the energy needed to produce the operating

requirements crossing the system "boundary per unit output of facility i.

The total construction time of a system is assumed the maximum

construction time of the component facilities. The capital require-

o

ments for each facility are distributed over time and are expressed

as a matrix £ (N x number of years to construct). Construction of each

facility is phased so that each come on line simultaneously. This

results in £ becoming an (Nx NC) matrix with zero requirements in those

years that the particular facility is not under construction. The capital

energy requirements per unit of system output for any year t are

n 1 \
n n. ]

*£*c.(N,t) + £»c (N,t).
i=i lj=i+i

)

Thus, the fact that one Btu output from a system requires more than one

Btu output from all facilities except the final one is included.

Multiplication for each construction year gives the first NC columns

of the 6 x (NC + l) requirements matrix.

The operating requirements are assumed the same for each year of

operation. Note that jl multiplication only accounts for the energy

transmitted through transactions from sectors of the economic system.

Therefore, energy transmitted to the system directly from the earth has

to he accounted for separately. Annual operating requirements per unit

output for the system become
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n /1\ n-1 / n
n n. /e + I I n n7|e-*0P. + e *0P

Note that OP . is the operating requirements vector for a facility with

the direct energy input zeroed. This is due to the fact that an

operating requirement supplied directly to a facility from another

facility in the system does not cross the system's boundary. Figure

A-2 illustrates this fact for a coal-electric system consisting of a coal

mine and a coal-electric plant. The coal plant requires 0Po plus its

coal input for operation. However, the coal input to the plant does not

cross the system boundary and would be double-counted if included in

the system's requirements.
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Figure A-2. System and Facility Boundaries
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Ej Potential Electricity

The concept of potential electricity is introduced to. compare system

energy costs on a common ground. Given a set of energy requirements

E . , E ^ and E n . ., , potential electricity is calculated from
coal 1 crude electricity

the following:

Potential electricity = (Electricity from non-fossil sources) +

(Electricity from the coal requirement) + (Electricity from

the crude requirements)

= (Fraction of non-fossil electricity) *E .... +
616Ctrie iT>y

E * (Fraction of coal produced electricity )

coal (coal required for coal electricity)

p * (Fraction of crude produced electricity)
crude (Crude required for crude electricity)

= (Fraction of non-fossil electricity)*E n . .. +J electricity

_ ^ (Fraction of coal produced electricity)

coal-electricity

pi ^ (Fraction of crude produced electricity)
crude £

crude-electricity .

This formulation assumes that all coal required for electricity generation

goes to coal-electric systems and that all crude required for electricity

generation goes to crude-electric systems. This is not absolutely correct:

For example, diesel-fueled trains and trucks are used to transport coal to

coal-fired power plants. Therefore, the relationship is only an approxi-

mation. For 1967 technologies and mix of electricity sources , the above

becomes

Potential electricity = .26&7*E , + .2l+73*E a + .l888*E
coal crude electricity

where all units are in Btu's.
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F. Energy Payback Time

The payback time for capital and operating energy costs is obtained

from the following equality

Total Non-Fuel Capital Energy Cost +

Annual Non-Fuel Operating Energy Cost*Payback Time =

Annual Output*Payback Time

or,

Non-Fuel Capital Energy Cost
Payback Time =

Annual Output - Annual Non-Fuel Operating Energy Oost

The payback time for different basis (total primary or potential electricity)

can be calculated using the appropriate cost information.

G. Facility Capital and Operating Requirements

The following pages contain tables giving the capital and operating

requirements for lU facilities (same order as Table 2 with nuclear fuel

processing facilities deleted). These requirements are grouped by

BEA sectors except for energy product requirements (e.g., space-heat)

that appear as separate sectors for facilities using CAC 101-order operating

requirements . Direct fuel requirements are not zeroed as they must be

for system analysis. The coal combined cycle and nuclear systems do not

13
include Istvan overhead requirements. Nuclear facilities do not

include energy costs for their fuel processing. However, all these factors

were accounted for in the calculations performed.
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TABLE A-

6

NON-ZERO CAPITAL ANO OPERATING COEFFICIENTS FOR A

U.EAST.COAL MINE

DATA SOURCE: S & CAC VECTOR ORDER! (CAPI 90 & IOPI

ENERGY SECTORS IN BTUS/BTUI CTMERS IN »/BTU
90

SECTOR I/O CODE CAPITAL COEFF OPERATING CQEFF

700 0.0 0.7868036-03
3101 0.0 0.1174126-02
6801 0.548601E-05 0.1335006-03
6802 0.737818E-05 0.1130186-03
200 0.495474E-10 0.0
400 0.392696E-10 0.0
300 0.0 0.2027846-10
900 0.122651E-09 0.216303E-09
1200 0.143180E-10 0. 157496E-08
1600 0.132282E-10 0.871973E-09
1700 0.5126916-10 0. 148709E-09
1800 0.142009E-11 0.0
1900 0. 7651636-12 0.202784E-09
2000 0.632562E-09 0.1480336-08
2200 0.4672446-11 0.0
2300 0.260830E-09 0.0
2400 0.183695E-09 0.1351906-10
2500 0.0 0.135190E-10
2600 0.184563E-11 0.675948E-11
2700 0.2 73660E-09 0.340002E-08
3000 0.6647786-09 0.0
3102 0.912190E-10 0.0
3103 0. 1U62156-09 0.0
3200 0.124598E-08 0.1825066-08
3500 0.2U210E-09 0.0
3600 0.27896 OE-08 0.7705816-09
3700 0.839093E-03 0.2852506-08
3800 0.49M83E-08 0.540758E-09
4000 0.308064E-07 0.6759486-10
4100 0.3129716-10 0.284574E-08
4200 0.1716126-08 0.87I973E-09
4300 0.0 0.932808E-C9
4500 0.889540E-07 0.6854UE-08
4600 0.2o6562E-07 0.0
4700 0.1425156-09 0.675948E-10
4900 0.373814E-08 0.304176E-09
5000 0.2512766-10 0.554277E-09
5200 0.495ol6E-09 0.0
5300 0.157874E-07 0.0
5400 0.9672176-10 0.0
5500 0.8953646-09 0.56103 76-09
5600 0.4101346-10 0.0
5800 0.296620E-10 0.473164E-10
5900 0.1714326-12 0.0
6100 0.0 0.202784E-10
6400 0.846730E-10 0.202784E-10
6501 0.104734E-07 0.106800E-08
6503 0.455584E-08 0.574556E-09
6504 0.922826E-10 0.175747E-09
6505 0.130142E-09 0.135190E-10
6506 0.0 0.202764E-10
6600 0.214098E-09 0.344733E-09
6803 0.9255516-11 0.155468E-09
6900 0.2666166-07 0.458292E-08
7000 0.310280E-09 0.216979E-08
7100 0.361454E-09 0.1079496-07
7300 0.2826286-08 0.5481936-08
7500 0.2121686-09 0. 41908 8E-09
7700 0.485000E-10 0.141949E-09
7800 0.1838666-10 0.141949E-09
7900 0.1523316-10 0.0
8100 0.33794 OE-09 0.567796E-09
8200 0.1823756-10 0.878733E-10
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TABLE A-

7

NON-ZERO CAPITAL ANO OPERATING COEFFICIENTS FOR A

OFFSHORE CAS PRO

OATA SOURCE: 8 t CAC VECTOR OROERf (CAP) 90 & (OP)
ENERGY SECTORS IN BIUS/BTUJ OTHERS IN i/BTU

90

SECTOR I/O COOE

700
SOO

3101
6801
4802
200
400
900
1200
1600
1700
1800
1900
2000
2200
2300
2400
2 SOO
2600
2700
3000
3102
3103
3200
3S0O
3600
3700
3800
4000
4100
4200
4300
4500
4700
4900
5000
5200
5300
5400
5500
5600
5700
5800
5900
6200
6400
6501
6503
6504
650S
6506
6600
6803
6900
7000
7100
7300
7500
7700
7800
7900
8100
8200

CAPITAL COEFf

0.0
0.0
0.186451E-01
0.1722046-03
0.231598E-03
0.15552 7E-08
0. 1232666-08
0.384995E-08
0.449*366-09
0.415229E-09
0.160932E-08
0.445760E-10
0.240182E-10
0.407536E-09
0.146666E-09
0.81U734E-0*
0.5766UE-08
0.0
0.579335E-10
0.447824E-08
0.108786E-0T
0.286332E-0U
0.5845226-08
0.203896E-07
0.662982E-08
0.359447E-07
0.206796E-06
0.224824E-08
Q.149189E-06
0.982402E-09
0.7739406-08
0.448162E-07
0.588070E-06
0.0
0.1430706-07
0.788744E-09
0.4789606-09
0.161240E-07
0.303606E-08
0.2310516-07
0.128602E-08
0.0
0.9310786-09
0. 5381186-11
0.461200E-08
0.2657846-08
0.738700E-07
0.3918526-07
0.1669/16-08
0.398072E-09
0.310751E-11
0. 6720446-08
0.2905266-09
0. 190040E-06
0.9739556-08
0.113459E-07
0.8B7160E-07
0*6659846-08
0. 152240E-08
O.S77147E-09
0.478162E-09
0.106O78E-07
0.572465E-09

OPERATING COEFF

0.405741E-04
0. 23708 OE-01
0.592305E-03
0. 7992246-03
0.189223E-01
0.0
0.0
0.0
0.118860E-07
0.0
0.119809E-09
0.0
0.0
0.0
0.0
0.0
0.224642E-10
0.499204E-11
0.149761E-10
0.408848E-08
0.222146E-09
0.0
0.0
0.851 143E-09
0.0
0.2071706-08
0.29852 4E-08
0.0
0.120807E-08
0.0
0.1560016-08
0.121307E-08
0.143022E-08
0. 1 198096-09
0.213909C-0B
0.199682E-08
0.0
0.403357E-06
0.0
0.624005E-10
0.1246016-09
0.399363E-10
0.2496026-11
0.0
0. 2321306-09

0.748806E-11
0.579076E-09
0.451 78CE-09
0.9984086-10
0.4243236-10
0.7737666-10
0.309506E-09
0.312002E-09
0.327977E-C8
0. 2076696-08
0.606308E-07
0. 603537E-08
0.4268196-09
0.142273E-09
0,1572496-09
0.0
0.2161556-08
0.1S47S3E-09
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TABLE A-

8

N0M-2ER0 CAPITAL AND OPERATING COEFFICIENTS FOR A

ONSHORE OIL PROD

DATA SOURCE: B t CAC VECTOR OROERt (CAPI 90 & (OP)
ENERGY SECTORS IN BTUS/BTU; OTHERS IN i/BTJ

90

SECTOR I/O CODE CAPITAL COfcFF OPERATING COEPP

TOO 0.0 0.405741E-04
800 0.0 0.9S8000E-03

9101 0.105529E 00 O.592305E-03
6801 0.279846E-03 0.799224E-03
6002 0.376370E-03 0.189223E-01
200 0.252747E-0B 0.0
400 0.200320E-08 0.0
900 0.62S6S6E-08 0.0
1200 0.7303BOE-09 0.118860E-07
1600 0.6747B9E-09 0.0
1700 0.261530E-OB 0.119809E-09
1800 0.724406E-10 0.0
1900 0.390320E-10 0.0
2000 0.144987E-07 0.0
2200 0.238347E-09 0.0
2300 0.l330i2fc-07 0.0
2600 0.9370S2E-Q8 0.224642E-10
2500 0.0 0.499204E-U
2600 0.941479E-10 0.149761E-10
2 700 0.232O61E-07 0.408848E-08
3000 0.563773E-07 0.222146E-09
3102 0.465320E-08 0.0
3103 0.949906E-08 0.0
3200 0.105667E-06 0.85U43E-09
3500 0.107741E-07 0.0
3600 0.123142E-06 0.20717CE-08
3 700 0.7L1724E-06 0.298524E-0B
3B00 0.999809E-08 0.0
6000 0.U2424E-0t» 0.120807E-08
4100 0.1&96&0E-08 0.0
4200 0.125870E-06 0. 1560016-08
4300 0.0 0. 121307E-08
4500 0.1209Q6E-0S 0.143022E-08
4700 0.914631E-08 O.H9809E-09
4900 Q.U3110E-06 0.213909E-C8
SOOO 0.l28179E-0d 0.1996826-08
5300 0.3201686-07 0.403357E-08
5400 0.493390E-0S 0.0
5500 0.456737E-07 0.624005E-10
560Q 0.20931 7E-08 0. 1248016-09
5700 0.0 0.399363E-10
5800 0.1S1310E-0S 0.249602E-11
5900 0.874497E-11 0.0
6200 0.252430E-07 0.232130E-09
6400 0.4319276-08 0.748806E-U
6501 O.160200E-06 0. 579076E-09
6503 0.9368636-07 0.451780E-09
6504 0.550665E-08 0.998408E-10
6505 0.459707E-09 0.424323E-10
6506 0.1758836-10 0.773766E-10
6600 0.1092I4E-07 0.309506E-09
6803 0.472136E-09 0.312002E-09
6900 0.475162E-06 0.327977E-08
7000 0.1S8277E-07 0.207669E-08
7100 0.184383E-07 0.606308E-07
7300 0.144173E-06 0.603537E-08
7500 0. 108229E-07 0.426819E-09
7700 0.247405E-08 0.142273E-09
7800 0.937924E-09 0. 157249E-09
7900 0.777061E-09 0.0
8100 0.172387E-07 0. 2161556-08
8200 0.930316E-09 0.154753E-09
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TABLE A-

9

NON-ZERO CAPITAL AND OPERATING COEFFICIENTS FOR A
SHALEOU

OATA SOURCE: MITRE VECTOR OROERt (CAP) 3ST C (OP) 357
ENERGY SECTORS IN BTUS/6TU} OTHERS IN 8/6TU

SECTOR I/O COOE CAPITAL COEFF OPERATING COEFF

3101 0.0 0.725000E-02
6802 0.0 0.6*05006-02
900 0.1653206-08 0.0
1102 0.389247E-06 0.0
1103 0.771374E-O7 0.0
110S 0. 1916336-07 0.0
1202 0.0 0.120583E-07
1701 0.9227326-11 o.o
2009 0.5101356-12 0.0
2201 0.280500E-11 0.0
2202 0.367617E-11 0.0
2203 0. 1558838-11 0.0
2204 0.263**56-11 0.0
2301 0.1831I0E-10 0.0
2302 0.60579*6-10 0.0
2303 0.202289E-10 0.0
2304 0.49013*6-10 0.0
230$ 0.S95527E-10 0.0
2306 0.292767E-11 0.0
2307 0.276805E-10 0.0
2605 0.0 0.229863E-09
2701 0.5OO875E-O7 0.2597*26-07
2706 0.0 0.193851E-07
3201 0.0 0.307738E-08
3202 0.43682*6-09 0.0
3203 0.167*956-08 0.0
3603 Q.l5*836E-ll 0.0
3612 0.198907E-07 0.0
3617 0.127583E-07 0.0
6006 0.2369l6E-0o 0. 130457E-08
6007 0.l4206*E-08 0.0
4009 0. 713487E-10 0.0
6101 0.0 0. 1652106-08
6202 0.136312E-09 0.0
6206 0.6783216-09 0.0
6208 0.1*02996-06 0.882168E-09
6301 0.509218E-07 0.133150E-C8
6302 0.881B*6E-09 0.0
6501 0.5*3*816-08 0.0
6502 0.5196636-07 0.115*666-08
6503 0.0 0.930783E-C8
6602 0.408225E-07 0.127706E-08
6603 0.715022E-09 0.0
6606 0.294841E-08 0.0
6701 0.1503366-09 0.0
6702 0.6O6991E-10 0.0
6703 0.6120586-10 0.0
670* 0.703284E-10 0.0
4801 0. 79V*U5C-10 0.0
6802 0.657671E-10 0.0
6803 0.2775536-10 0.0
4 804 0.607*216-10 0.0
6805 0.66259*6-10 0.0
4806 0.145671E-09 0.0
4901 0.6529636-07 0. 108909E-C8
6903 0.221986E-07 0.93350*6-09
6906 0.125591E-07 0.777927E-09
6907 0.263*296-08 0.9335l*E-09

SECTOR 1/0 COOE

5101
5102
5103
5104
5201
5202
5203
5204
5205
5301
5302
5303
5304
5305
5306
5308
5502
5503
5603
5801
5803
5901
5902
5903
6001
6002
6101
6102
6103
6106
6105
6106
6107
6201
6202
6206
6205
6206
6207
6301
6303
6402
6604
6611
6612
6501
6502
6503
6504
6505
6506
6507
6600
6803
6901
6902
7006
7102
7202
7301
7303
7500
7701
8100
6200

CAPITAL COEFF

0.224046E-08
0.16561 96-09
0.698183E-10
0.179096E-09
0.469151E-09
0.319551E-09
0.206366E-08
0.28*5906-09
0.8155*26-09
0. 81585*i E-08
0.208107E-07
0.257469E-07
O.328061E-08
0.607968E-08
0.233027E-09
0.856588E-08
0.176241E-09
0.166953E-07
0. 1678336-08
0.156607E-09
0.273153E-09
0.453*7*6-09
0.632728E-09
0.989216E-08
0.866710E-08
0.208038E-09
0.259616E-10
0.317301E-11
0.1*24196-10
0.8371916-10
0.1681506-11
0.57**6*6-10
0.859651E-11
0.171177E-08
0.160529E-07
0.725**76-09
0.957977E-10
0.167**16-09
0.139726E-11
0.218999E-10
0.670327E-10
0.10*3906-08
0.623671E-09
0.181750E-08
0.521961E-09
0.726873E-08
0.0
0.1010506-07
0.3670*5E-09
0.8961266-09
0.0
0.9*81666-11
0.0
0.0
0.3846*4E-07
0.302606E-07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

OPERATING COEFF

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.141*9SE-08
0.0
0.8843*0E-C9
0.1061216-08
0.0
0.0
0.0
0.0
0.0
0.122763E-08
0.0
0.0
0.0
0.0
0.924921E-09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.926167E-M
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 6629386-09
0.378821E-09
0.6629366-09
0.0
0.1893*9E-lO
0.170*716-09
0.0
0. 177888E-08
0.2e0915E-08
0.*81'>37E-08
0.8*95966-09
O.388526E-0T
0.3365*56-07
0.223**16-09
O.693095E-08
0.4682626-08
0.39*7956-08
O.17O32*E-08
0.2 5626 06-08
0.2582896-09
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TABLE A-10

NON-2ERO CAPITAL AND OPERATING COEFFICIENTS FOR A
SA COAL

OATA SOURCE: MITRE VECTOR OROfcRl ICAP) 337 C tOPl 317
ENERGY SECTORS IN BTUS/STU; CTHERS IN S/BTU

SECTOR I/O COOE CAPITAL COEFF OPERATING COEFF

6102 0.0 0.100813E 00
1102 0.284622E-06 0.0
1202 0.0 0.4824166-08
2701 0.120390E-07 0.502973E-09
3612 O.S87783E-08 0.245570E-C9
3617 0.995787E-08 0.4I6029E-09
4006 0. 1078796-06 0.450707E-O8
4208 0.664280E-07 0.2775296-08
4301 0.2B1698E-07 0.1 i 76896-08
4S02 0.732345E-08 0.305959E-09
4602 0.172J83E-07 0.720193E-09
4901 0.289*856-07 0.120942E-08
4903 0.7350866-08 0.307101E-09
4906 0.609174E-07 0.254507E-03
4907 0.313926E-07 0. 1311556-08
5305 0.9377*16-08 0.391 776E-09
5503 0.364726E-07 0. 23593 7E-C8
6202 0.338397E-07 0.141378E-08
6501 0.3718056-08 0.145765E-09
6503 0.538140E-08 0.833040E-10
6504 0. 1956766-09 0. 1457656-09
6505 0.489214E-09 0.416200E-U
6306 0.0 0.374900E-10
6803 0.0 0.219329E-08
6901 0. 240350 E-07 0.156529E-08
6902 0. 188846E-07 0.2762386-09
7004 0.801290E-08 0.0
7202 0.0 0.134987E-09
7302 0.0 0.360599E-08
7303 0.442090E-07 0.0
8200 0.0 0.4012S9E-09
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TABLE A -11

NON-ZERO CAPITAL ANO OPERATING COEFFICIENTS FOR A

HI GAS

OATA SOURCE: MITRE VECTOR OROERJ (CAP) 3S7 I COP) 357
ENERGY SECTORS IN BTUS/BTU) OTHERS IN »/BTU

SECTOH I/O COOE CAPITAL COEfF OPERATING COEFF SECTOR I/O COOE CAPITAL COEFF OPERATING COE

3101 0.0 0. 106500E-03
900 0.0 0.174901E-07
1102 0. 139260E-06 0.0
1202 0.0 0.909656E-08
1601 0.0 0. 103062E-09
1602 0.0 0.928400E-U
1706 0.0 0.6S3900E-11
1708 0.0 0. 326300E-11
1804 0.0 0.17625CE-10
1903 0.0 0.190680E-10
2002 0.0 0.140210E-10
2003 0.0 0. 169900E-U
2008 0.0 0.267700E-10
2401 0.0 0.4273006-09
2403 0.0 0.696130E-10
2404 0.0 0.216010E-10
240S 0.0 0.960700E-11
2407 0.0 0.432103E-09
2S00 0.0 0.177717E-09
260S 0.0 0.5*0*57E-09
2701 0.1 50761 £-07 0.5*6899E-08
2702 0.0 0.158000E-12
2703 0.0 o.useooE-to
2704

.
0.0 0.594800E-U

2901 0.0 0.273300E-11
2902 0.0 0. 52344 5E-09
3000 0.0 O.U7600E-09
3103 0.0 0.**5700E-U
3201 0.0 0. 15031CE-10
3203 0.0 0.501I00E-11
3204 0.0 0.1302956-09
3501 0.0 0.19391CE-10
3601 0.0 O.135100E-U
3608 0.0 0.670000E-12
3612 0.557857E-09 0.0
3613 0.0 0.426000E-10
3617 0. 1546546-08 0.0
3619 0.0 O.328*O0E-10
3701 0.0 0.129857E-09
3704 0.0 0.28609CE-10
3801 0.0 0.2C3900E-10
3802 0.0 0.258137E-09
3803 0.0 0.522250E-10
3805 0.0 O.358110E-10
3 806 0.0 0.795700E-U

3807 0.0 0.250000E-12
3808 0.0 O.U9390E-10
3809 0.0 0.609250E-1Q
3901 0.0 0. 108968E-09
3902 0.0 0.129266E-09
4004 0.286199E-07 0.0
4006 0.418744E-06 0.0
4202 0.0 0.17*70CE-U
4205 0.0 0.26<i600E-ia

,4208 0.121554E-06 0.768220E-1Q
4301 0.526828E-07 0.0
4502 0.267382E-07 0.432755E-09
4602 0.100392E-07 O.163770E-10
4603 0.510*506-08 0.368300E-11
4604 0.0 O.22667CE-10
4 703 0.0 0. 8967*06-10
4 704 0.890764E-09 0.0
4806 0.934447E-09 O.257017E-09
4901 0.117436E-06 0.161916E-09
4903 0.11881 JE-07 0.0
4906 0.223719E-06 0.227700E-U
4907 0.185630E-07 0.0
5205 0.221166E-07 0.0
5301 0.539811E-09 0.0
5302 0.179879E-08 0.6U300E-11
5303 0.329905E-08 O.28800CE-11
5304 0.279621E-07 0. 110000E-12
5305 0.169348E-07 0.0
5306 0. 13709*E-08 O.25600CE-12
5307 0.473592E-08 O.162680E-10
5308 0.225805E-08 0.5*30006-12
5501 0.0 0.118*IOE-10
5502 0.449345E-09 0.0
5503 0.288288E-08 O.213210E-10
5903 0.0 0. 1572606-10
6201 0.0 0.13*6006-11
6202 0.138S40E-07 0.471200E-U
6205 0.0 O.12353CE-10
6301 0.0 0.3616006-11
6302 0.0 O.2250O0E-12
6303 0.0 0. 4298006-11
6401 0.0 0.4645006-11
6407 0.0 0.232000E-11
6412 0.0 0. 1625006-10
6501 0.739263E-08 0.174335E-08
6503 0.106999E-07 0.996201E-0*
6504 O.389O8*E-09 0. 1743366-08
6505 0.97271 8E-09 O.498O80E-10
6S06 0.0 0.4482986-09
6600 0.0 0.9183876-C9
6803 0.0 0. 132*1*6-07
6901 0.367629E-07 0.7188256-09
6902 0.289008E-07 0.126855E-Q9
7004 0.0 0.2313*IE-C7
7102 0.280615E-09 0.3865966-08
7202 0.0 0.1734676-09
7301 0.0 0.3980606-08
7302 0.0 0.7710816-09
7303 0.202097E-08 0. 8200616-09
7500 0.0 0.181412E-09
7705 0.0 0.107489E-C9
8100 0.0 0. 1*73616-08
•200 0.0 0.18*9626-09

-U2-



TABLE A-12

NON-ZERO CAPITAL ANO OPERATING COEFFICIENTS FOR A
LOU CAS REFINERY

DATA SOURCEI 6 £ CAC VECTOR ORDERJ ICAP) 90 ( (0P1
ENERGY SECTORS IN 8TUS/8TU; OTHERS IN l/BTU

90

SECTOR I/O CODE

700
800

3101
6801
6802
200
400
900
1200
1600
1700
1830
1900
2000
2200
2300
2400
2500
2600
2700
3C00
3102
3103
3200
3 500
3600
3700
3800
4000
4100
4200
4300
4500
4600
4700
4900
5000
5200
5300
5400
SSOO
5600
$700
5800
5900
6200
6400
6501
6503
6504
6505
6506
6600
6803
6900
7000
7100
7300
7500
7700
7800
7900
• 100
•200

CAPITAL COEFF

0.0
0.0
0.542165E-03
0.100002E-04
0. 13*4936-0*
0.903175E-10
0.715830E-10
0.223574E-09
0.260997E-10
0.2411J1E-10
0.9345606-10
0.258862E-U
0.139478E-11
0.143773E-08
0.851717E-U
0.4754556-09
0.3348496-09
0.0
0.3364306-11
0.829325E-10
0.201 460E-09
0.1662796-09
0.339442E-09
0.3775956-09
0.3850056-09
0.8766976-08
0.2431856-07
0.396575E-08
0.101937E-06
0. 5705006-10
0.176624E-07
0.5351276-07
0.9550906-08
0.753590E-09
0.345513E-09
0. 4336956-07
0.4580376-10
0.1351776-08
0.1904936-07
0.1763106-09
0.1632126-08
0.747980E-10
0.0
0.5406956-10
0.3124956-12
0.1835656-07
0.1543466-09
0.3835696-08
0.4382046-08
0.2261556-09
0.263330E-09
0.903607E-13
0.39026SE-09
0.166714E-10
0. 3149006-07
0.5655956-09
0.658877E-09
0.S1S190E-08
0.386750E-09
0.884085E-10
0.335160E-10
0.277677E-10
0.616014E-09
0.332442E-10

OPERATINC COEFF

0.405741E-04
0.998000E-09
O.592305E-03
0.799224E-03
0.189223E-01
0.0
0.0
0.0
0.118860E-07
0.0
0.119809E-09
0.0
0.0
0.0
0.0
0.0
0.224642E-10
0.499204E-11
0. 149761E-10
0.4088486-08
0.222146E-09
0.0
0.0
0.851143E-09
0.0
0.207170E-08
0.298524E-08
0.0
0.120807E-08
0.0
0.156001E-0S
0. 121307E-08
0.1430226-08
0.0
0.119809E-09
0.2139096-08
0. 1996826-08
0.0
O.403357E-08
0.0
0.624005E-10
0. 1246016-09
0.399363E-10
0.249602E-U
0.0

0.23213CE-09
0.748806E-U
0.579076E-09
0.45178CE-09
0.998408E-10
0.424323E-10
0.773766E-10
0.309506E-09
0.312002E-09
0.327977E-08
0.207669E-08
0.606308E-07
0.603537E-08
0.426819E-09
0.142273E-09
0.157249E-09
0.0
O.216155E-0*
0.154753E-09

-1,3-



TABLE A-13

NONZERO CAPITAL AND OPERATING COEFFICIENTS FOR A

NATURAL CAS UT1L

DATA SOURCE: BATTELLE VECTOR ORDER* (CAP) 90 C IOPI
DATA SOURCE^

SECT0HS i* BTUS/8FU; OTHERS IN »/6TU
90

SECTOR I/O COOE CAPITAL COEFF CPERATING CQEFF

700 0.0 0.831736E-03
3101 0.0 0.771506E-03
6601 0.0 0.3I5200E-03
6802 0.0 0.334373E-01
1100 0.141600E-05 0.0
1200 0.0 0.1449666-07
1700 0.504100E-10 0.1231376-09
1800 0.0 0.895544E-10
2000 0.19J500E-10 0.0
2200 O.837000E-IO 0.0
2300 0.176100E-08 0.0
2400 0.0 0.35821 7E-09
2600 0.0 0.783601E-10
2 700 0.336800E-11 0.0
3200 0.340700E-08 0.391800E-10
3400 0.156900E-10 0.0
3600 0.899700E-11 0.0
3700 0.0 0.U1943E-10
3900 0.591800E-12 0.0
4000 O.*58000t-07 0.0
4200 0.157000E-07 0.0
4300 O.1051OOE-O7 0.0
4300 0.3632006-07 0.0
4600 0.271700E-07 0.0
4700 0.581200E-08 0.0
4800 0.636600E-08 0.0
4900 0.333400E-07 0.0
5100 0.108700E-07 0.0
5200 0.664400E-08 0.0
5300 0.119200E-06 0.0
5400 0.198630E-11 0.0
5500 0.245500E-08 0.447772E-10
5600 0,5388006-09 0.0
5700 0.593400E-13 0.0
5800 0.4B1700E-08 0.0
5900 O.38570OE-08 0.0
6000 0.783400E-10 0.0
6100 0.119100E-08 0.0
6200 0.246100E-07 0.0
6300 0.183500E-08 0.0
6400 0.164300E-07 0.0
6501 0.316900E-08 0.95151SE-10
6503 0. 60<»3G06-Q8 0. 6156866-10
6504 0.828100E-10 0.223886E-10
6505 0.669200E-10 0.0
6506 0.0 0.111943E-10
6507 0.224300E-09 0.0
6600 0.0 0. 186385E-08
6803 0.0 0.347023E-09
6900 0.472900E-07 0.156720E-08
7000 0.0 0.339747E-08
7100 0.0 0.389561E-08
7200 0.0 0. 100749E-08
7300 0.0 0.586581E-08
7500 0.0 0. 1511236-09
7700 0.0 0.263066E-09
7800 0.0 . 0.212132E-08
7900 0.0 0.182971E-07
8100 0.0 0. 2832166-08
8200 0.0 0.414189E-09

-HU-



TABLE A-lU

NON-ZERO CAPITAL ANO OPERATING COEFFICIENTS FOR A

COAL POWER PLANT

OATA SOURCE: B C CAC VECTOR OROERl <CAP> 90 t (DPI 101

ENERGY SECTORS IN BTUS/BTU; OTHERS IN S/BTU

ECTOR I/O COOE CAPITAL COEFF OPERATING COEFF SECTOR I/O COOE CAPITAL COEFF OPERATING COEFF

3101 0. 337044E-01
6801 0.420403E-04
6802 0.S65404E-04

FOS ELEC 0.871577E-01
OTH FEEO 0.498236E-04
MOTIVE 0.980569E-03
WATER HT 0.581098E-03
SPACE HT 0. 1305726-01
A/C 0.896705E-03
ELEC POM 0.426376E-02

200 0.379691E-09 0.0
400 0.300931E-09 0.0
SOO 0.0 0.723983E-10
600 0.0 0.16893CE-09
900 0.939895E-09 0.24132 7E-10
1000 0.0 0.24132 7E-10
1200 0.109722E-09 0.193335E-06
1300 0.0 0.482654E-10
1400 0.0 0.361991E-09
1500 0.0 0.723983E-10
1600 0.101370E-09 0.434389E-09
1700 0.392886E-09 0.530906E-09
1800 0.108824E-10 0. 142694E-08
1900 0.5863606-11 0.0
2000 0.447716E-07 0.217190E-09
2200 0.35805 7E-10 0. 24132 7E-10
2300 0- 1998 796-Gd 0.0
2400 0.140769E-08 0.571931E-08
2500 0.0 0.627451E-09
2600 0.141434E-10 0. 134691E-08
2700 0.201439E-08 0.1367496-C8
2800 0.0 0.506788E-09
2900 0.0 0.242798E-10
3000 0.489337E-08 0.241322E-10
3102 0.699029E-09 0.0
3103 0.142700E-OS 0.0
3200 0.9171596-08 0.47S402E-08
3300 0.0 0. 24132 7E-10
3500 0.161855E-08 0.0
3600 0.783920E-07 0.168930E-09
3700 0.321024E-07 0.5188548-08
3800 0.76B758E-07 0.263041E-08
4000 0.1650886-05 0.0
4100 0.2398366-09 0.0
4200 0.109803E-06 0.408756E-08

4300 0. 8767566-06 0.410256E-09
4400 0.0 0.217195E-09
4500 0.177615E-06 0.0
4600 0.714574E-07 0.0
4900 0.172893E-06 0.6630*5E-C8
5000 0.192558E-09 0.24132 7E-10
5200 0.375343E-07 0.0
5300 0.2129 76E-0* 0.877158E-08
5400 0.74U99E-09 0.0
5500 0.686135E-08 0.678112E-08
5600 0.314447E-09 0.26546CE-09
5700 0.0 0.566335E-09
5800 0.227306E-09 0.193C57E-09
5900 0.131372E-11 0.651567E-09
6200 0. 7288266-07 0.0
6300 0.0 0.241327E-10
6400 0.648864E-09 0.241322E-10
6501 0.515560E-07 0. 1184116-06
6503 0.41l54bE-07 0.302595E-C7
6504 0.8804 956-09 0.155*806-07
6505 0.394486E-08 0.8413*06-10
6506 0.561740E-U 0.2674956-C9
6600 0.16*0676-08 0.136754F-C7
6803 O.7092o86-10 0.380fc926-C8
6900 0.3553606-06 0.3846956-07
7000 0.237774E-08 0.2996056-07
7100 0.2769906-08 0. 1113426-07
7200 0.0 0.4846576-08
7300 0.216584E-07 0.3841396-07
7500 0.1625886-08 0.796180E-08
7700 0.3716666-09 0.169878E-C8
7800 0.140900E-09 0. 125479E-C7
7900 0. 11673*6-09 0.555038E-08
8100 0-2569706-08 0.1601386-07
8200 0.139757E-09 0.466677E-08

-U5-



SECTOR I/O CODE

TABLE A -15

NON-ZERO CAPITAL ANO OPERATING COEFFICIENTS FOR A
OIL POWER PLANT

OATA SOURCE: 6 I CAC VECTOR OROERt ICAPJ 90 t IOPI 101
ENERGY SECTORS JN 8TUS/BTU; OTHERS IN i/ITU

CAPITAL COEFF OPERATING COEFF

3101 0.517669E-01
i

6801 0.263920E-04 •

6802 0.354949E-04
FOS EL EC 0.8715776-01
OTH FEEO 0.49823fcE-04
MOTIVE 0.980569E-03
WATER HT O.58l09eE-03
SPACE HT 0.130572E-01
A/C 0.896705E-03
ELEC POM 0.426376E-02

200 0.23B362E-09 0.0
400 0. 16891 8E-09 0.0
500 0.0 0.723983E-10
600 0.0 0. 1689306-09
900 0.59004SE-09 0.24132 7E-10

1000 0.0 0.241327E-10
1200 0.688809E-10 0.193335E-06
1300 0.0 0.482654E-10
1400 0.0 0.36199 1E-09
1500 0.0 0.723983E-10
1600 0.636381E-10 0. 434389E-09
1700 0.246644E-09 0.530906E-09
1800 0.683175E-U 0.1426946-08
1900 0.368103E-11 0.0
2000 0.U5507E-07 0.217190E-09
2200 0.224781E-10 0.241327E-10
2300 0.125479E-08 0.0
2400 0.883715E-09 0. 5719316-08
2500 0.0 0.627451E-09
2600 0.887891E-11 0. 13469 IE-08
2700 0.348645E-09 0. 136749E-08
2800 0.0 0.506788E-09
2900 0.0 0.242798E-10
3000 0.846930E-09 0.241322E-10
3102 0.438834E-09 0.0
3103 0.895840E-09 0.0
3200 0. 158739E-08 0.475402E-0«
3300 0.0 0.24132 7E-10
3500 0.101609E-08 0.0
3600 0. 5616156-07 0.168930E-09
3700 0.503760E-07 0.S188S4E-0a
3800 0.392097E-07 0.263041E-08
4000 0.1121 71E-0& 0.0
6100 0. 150564 E-09 0.0
4200 0.872110E-07 0.408754E-08

SECTOR I/O COOE CAPITAL COEFF OPERATING COEI

4300 0.8695606-06 0.4102 566-01 •

4400 0.0 0.2I7195E-09 i

4500 0.189883E-06 0.0
4600 0.228804E-07 0.0
4900 0.96496SE-07 0.663045E-OI

I

5000 0. 120833E-09 0.24132 7E-10 3

5200 0.841S90E-08 0.0
5300 0.131411E-06 O.877158E-0I

>

5400 0.465307E-09 0.0
5500 0.430740E-08 0.678112E-0I

*

5600 0.1974036-09 0.265460E-09
5700 0.0 0.566335E-09
5800 0.142698E-09 0.193057E-09
5900 0. 8247246-12 0.651567E-09
6200 0.471594E-07 0.0
6300 0.0 0. 2413276-10
6400 0.407343E-09 0. 2413226-10
6501 0.421843E-07 0.1184116-0* i

6503 0.302447E-07 0.302595E-0T
6504 0. 78B006E-09 O.15S480E-0T
6505 O.26O70OE-08 O.84134OE-10
6506 0.862784E-U O.267495E-09
6600 0.102998fc-0U 0. 136754E-07
6803 0.445263E-10 0.380692E-OI
6900 0.244887E-06 0.3846956-07
7000 0.149269E-08 0.299605E-OT
7100 0.173888E-08 0. 1113426-07
7200 0.0 0.484657E-OI
7300 0.135966E-07 0.384139E-07
7500 0.102069E-08 0.7961806-0$
7700 0.233323E-09 O.169878E-0I
7800 0.884540E-10 O.125479E-07
7900 0.732833E-1O 0.555038E-OI
8100 0.162576E-08 0.160138E-OT
8200 0. 877364E-10 0.466677E-OI

-k6-



TABLE A -16

NON-ZERO CAPITAL ANO OPERATING COEFFICIENTS FOR A

HI GAS POKER PIT

DATA SOURCE: B & CAC VECTOR ORDER* (CAP) 90 C IOPI 101

ENERGY SECTORS IN BTUS/BTUJ OTHERS IN t/BTU

SECTOR I/O CODE CAPITAL COEFF CPERATING COEFF SECTOR I/O CODE CAPITAL COEFF OPERATING COEFF

3101 0.42*2876-02 *

6801 0.1541466-04
6802 Q.207315E-04

FOS EL EC 0.871577E-01
OTH FEED 0.49B236E-04
MOTIVE 0.980569E-03
MATER HT 0.581098E-03
SPACE HT 0.130572E-CI
A/C 0.896705E-03
ELEC POM 0.626376E-02

200 0.1392206-09 0.0
600 0.110362E-09 0.0
500 0.0 0.723983E-10
600 0.0 0.168930E-09
900 0.344628E-09 0.26132 7E-10
1000 0.0 0.24132 7E-10
1200 0.602313E-10 0.193335E-06
1300 0.0 0.482654E-10
MOO 0.0 0.361991E-09
1500 0.0 0.723983E-10
1600 0.371692E-10 0.434389E-09
1T00 0.1440586-09 0. 530906E-09
leoo 0.399023E-11 0.1426946-08
1900 0.21499UL-U 0.0
2000 0.962 588E-08 0.217190E-09
2200 0.131288E-10 0.26132 7E-10
2300 0.732890E-09 0.0
2600 0.5161536-09 0.571931E-08
2500 0.0 0.627451E-09
2600 0.518592E-U 0.134691E-08
2700 0. 7747676-10 0. 1367496-08
2800 0.0 0.506788E-09
2900 0.0 0.242798E-10
3000 0.188207E-09 0.261322E-10
3102 0.256310E-09 0.0
3103 0.523234E-09 0.0
3200 0.352753E-09 0.475402E-08
3300 0.0 0.26132 76-10
3500 0.5934676-09 0.0
3600 0.1462S4E-07 0.168930E-09
3700 0.1135936-07 0.518854E-08
3800 0.138932E-07 0.263041E-08
6000 0.634886E-06 0.0
6100 0. 8793976-10 0.0
6200 0.2477866-07 0.608756E-08

6300 0.8S2895E-06 0. 4102566-09
6600 0.0 0.217195E-09
6500 0.733324E-07 0.0
6600 0.864815E-08 0.0
4900 0.272438E-07 0.663045E-08
5000 0.70O044E-10 0.24132 76-10
5200 0.105236E-08 0.0
5300 0.564365E-07 0.8771586-08
5400 0.271772E-09 0.0
5500 0.2615836-08 0.678112E-08
5600 0.1152976-09 0.2654606-09
5700 0.0 0.5663356-09
5800 0.833454E-10 0.19305 76-09
5900 0.481697E-12 0.6515676-09
62 00 0.1870796-07 0.0
6300 0.0 0.24132 76-10
6400 0*2379l7E-09 0.2413226-10
6501 0.190442E-07 0.118411E-06
6503 0.139140E-07 0.302595E-07
6504 0.2834256-09 0. 1554806-07
6505 0.140321E-08 0.8413406-10
6506 0.713813E-12 0.267495E-09
6600 0.601 580E-09 0.1367546-07
6803 0.260065E-10 0.380692E-08
6900 0.U6761E-06 0.384695E-07
7 000 0.871835E-09 0.2996C5E-07
7100 0.101563E-08 0.111342E-07
7200 0.0 0.484657E-08
7300 0.7941416-08 0.384139E-07
7500 0.596155E-09 0.796180E-08
7700 0.136277E-09 0.169878E-08
7800 0.5166336-10 0.1254796-07
7900 0.428027E-10 O.55503 8E-08
8100 0.949556E-09 0.1601386-07
8200 0.S12443E-10 0.466677E-08

-UT-



TABLE A -17

NON-ZERO CAPITAL ANO OPERATING COEFFICIENTS FOR A

CCC

SECTOR I/O CODE

DATA SOURCE: MITRE VECTOR OROER: (CAPI 357 C IOPI 357
ENERGY-SECTORS IN BTuS/BTu: OTHERS IN S/BTU

CAPITAL COEFF OPERATING COEFF SECTOR I/O CODE CAPITAL COEFF CPERATING COEF

3101 0.0 0.625000E-03
6S01 0.0 0.148375E 00
1102 0.859199E--06 0.0
1105 0.151398E--06 0.0
1202 0.0 0.651746E-07
1601 0.0 0.160556E-09
1602 0.0 0. 14908CE-10
1706 0.0 0.96880CE-11
1708 0.0 0.537600E-11
1804 0.0 0.28813CE-10
1903 0.0 0.304880E-10
2002 0.0 0.2460406-10
2003 0.0 0.2840006-11
'2008 0.0 0.4743006-U
2301 0.683960E--10 0.0
2302 0.683960E--10 0.0
2305 0.6839606--10 0.0
2307 0.4S5971E-09 0.0
2401 0.0 0.683113E-09
2403 0.0 0.1114006-09
2*04 0.0 0. 3490106-10
2405 0.0 0.154720E-10
2407 0.0 0.690317E-09
2 500 0.0 0.291387E-C9
2605 0.0 0.368442E-09
2701 0.0 0.75686CE-10
2704 0.0 0.963900E-H
2901 0.0 0.416000E-11
2902 0.0 0.520294E-08
3 000 0.0 0.192262E-09
3103 0.0 0. 760900E-U
3201 0.0 0.238420E-10
3203 0.0 0.771000E-11
3204 0.0 0.2I0321E-09
3501 0.0 0.327710E-10
3601 0.0 0.182000E-11
3608 0.0 0.912000E-12
3613 0.0 0.72035CE-10
3617 0.487160E-•07 0.0
3619 0.0 0.53519CE-10
3621 0.939803E--08 0.0
3701 0.0 0.221279E-09
3704 0.0 0.48446CE-10
3801 0.0 0.2S982CE-10
'3802 0.0 0.3673UE-09
3803 0.0 0.77817CE-10
3804 0.0 0.17806CE-10
3805 0.0 0.534180E-10
3806 0.0 0.12226CE-10
3807 0.0 0.3540Q0E-12
3809 0.0 0.9C9030E-10
3810 0.1391966--07 0.0
3901 0.0 0.18683 56-09
3902 0.0 0. 2222946-09

4006 0.486520E-06 0.0
4202 0.18d3l5E-08 0.273900E-U
4205 0.1990796-08 0.1 465776-01 1

4208 0.1781286-06 0. 1273806-09
4301 0.3833336-06 0.0
4302 0.332594E-06 0.0
4502 0.672390E-08 0.0
4602 0.183883E-07 0.267850E-10
4603 0.8157296-09 0.593600E-U i

4604 0.0 0.37741CE-10
4702 0.142082E-08 0.0
4703 0.0 0.14S185E-09
4806 0.0 0.425563E-09 1

4901 0.138704E-06 0.2714506-09
4903 0.692393E-08 0.0
4905 0.522789E-08 0.0
4906 0.906568E-08 0.380600E-U
4907 0.479080E-08 0.0
5101 0.9o80306-08 0.0
S102 0.9019496-10 0.0
5104 0.601750E-10 0.0
5301 0.U9123E-07 0.0
5302 0.5108096-07 0.297240E-09 *

5303 0.7342246-07 O.2931OOE-10
5304 0.3204996-06 0.0
5305 0.157223E-07 0.0
5306 0.0 0.406000E-12
5307 0.0 0.1716506-09
S308 0.415172E-08 0.117230E-09
5501 0.0 O.19683O6-10
5503 0.136034E-06 O.3551OOE-10
5*04 0.150131E-08 0.0
5903 0.0 0. 2638OOE-10
6201 0.252839E-09 0.293080E-09
6202 0. 3378356-07 0.152070E-Q9
6203 0.406359E-09 0.1 4654OE-Of

6205 0.0 O.2O341OE-10
6301 0.0 0.54280CE-11
6302 0.0 0.35600CE-12
6303 0.0 0.634100E-U
6401 0.0 0.7710006-11
6407 0.0 0. 38550 OE-U
6412 0.527808E-09 0.269380E-10
6501 0.140158E-07 0.1671916-OS
6503 0.2O2861E-07 O.5433O0E-10
6504 0.737705E-09 0.95117CE-10
6505 0.1844216-08 0.2739006-U
6506 0.0 O.244S1OE-10
6600 0.0 0.288909E-OI
6803 0.0 0. 125913E-07
6901 0.751748E-07 0.159894E-OT
6902 0.5906586-07 0.10U45E-OI
7004 0.8680776-07 0. 12O572E-07
7102 0.0 0.256526E-OI
7202 0.0 O.128242E-09

,

7301 0.0 0.265921E-OI
7302 0.0 O.518042E-09
7303 0. 403490E-0* O.5S8272E-09
7500 0.0 0. 1280906-09

7705 0.0 O.8O963GE-10
aioo 0.0 0.4062826- 01

8200 0.0 0.959350E-OI
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TABLE A -18

NON-ZERO CAPITAL ANO OPERATING COEFFICIENTS FOR A

LWR

OATA SOURCE* NITRE VECTOR ORDER* ICAPI 357 C tOPI 357

ENERGY SECTORS IN 8TUS/BTU; OTHERS IN t/BTU

CAPITAL COEFF OPERATING COEFF SECTOR I/O CODE CAPITAL COEFF OPERATING COEFF

3101 0.158600E-02 0. 106400E-02
6601 0.U7800E-04 0.900000E-O4
207 0.526120E-10 0.0
400 0.5712906-10 0.0
900 0.3223206-09 0.0

1102 0.1739366-05 0.0
1202 0.0 0. 169650E-08
1804 0.0 0.9283S9E-09
2001 0.289410E-10 0.0
2002 0.423194E-09 0.0
2006 0.259420E-09 0.0
200S 0.109146E-08 0.0
2009 0.554970E-10 0.0
2302 0.139145E-08 0.0
2304 0.22261 76-09 0.0
2305 0.6056416-08 0.0
2307 0.347869E-08 0.0
2406 0.49O420E-10 0.0
2609 0.0 0.510014E-09
2701 0.0 0.1 1971 IE-07
2704 0.606000E-10 0.0
3000 0.129H196-0& 0.0
3102 0.320564E-09 0.0
3203 0.213037E-09 0.0
3204 0.448664E-09 0.0
3501 0.406510E-10 0.0
3601 0.190916E-09 0.0
3605 0.391 117E-09 0.0
3608 0.34)39666-09 0.0
3610 0.665800E-10 0.0
3611 0.121609E-08 0.0
3612 0.123834E-08 0.0
3617 0.141560E-07 0.0
3619 0.377650E-10 0.0
3620 0.5553906-10 0.0
3621 0.3939616-09 0.0
3702 0.1331696-08 0.0
3eo? 0.1117906-09 0.0
3810 O.480553E-07 0.0
4004 0.37982 86-07 0.0
4005 0.364309E-09 0.0
4006 0.49042 1E-06 0.391326E-08
4007 0.65631 66-09 0.0
4008 0.222617E-09 0.0
4009 0.774748E-09 0.0

4101 0.766169E-10 0.0
4202 0.16717SE-08 0.0
4203 0.511731E-09 0.0
4205 0.501485E-09 0.0
4208 0.435363E-06 0.423386E-OB
4211 0.2U091E-08 0.0
4301 O.S09464E-06 0.0
4501 0.370960E-10 0.0
4601 0.442890E-10 0.0
460) 0.246677E-07 0.0
4806 0.127613E-06 0.907695E-08
4901 0.219779E-06 0.0
4906 0.864476E-07 0.0
4907 0.494901E-07 O.373359E-0S
5000 0.130390C-10 0.0
5101 0.578229E-07 0.0
5203 0.843540E-10 0.0
5301 O.1O0072E-O7 0.0
5302 O.t>UUV4/t.-07 0.0
5303 0.7113316-07 0.0
5304 0.783273E-07 0.0
5305 0.948049E-07 0.509317E-08
5502 0.56124UE-09 0.0
5503 0.823617E-07 0.0
5601 0.182510E-09 0.0
5604 0. 142O25E-08 0.0
5702 0.136899E-08 0.260202E-08
5805 0.4044206-10 0.0
6202 0. 1166006-06 0.444494E-08
6411 0.3810006-10 0.0
6412 0.318933E-09 0.0
4501 0.247608E-07 0.7135086-08
6503 0.429350E-07 0. 2038566- C8
6504 0.136602E-08 0. 8153996-09
6505 0.3185236-08 0. 1019616-09
6506 0.0 0.101961E-09
6600 0.280624E-09 0.9143916-09
6803 0.0 0.7683286-08
6901 0.1371716-06 0.105459E-C7
6902 0.107480E-06 0. 1861O3E-08
7001 0.1293136-09 0.0
7004 0.277069E-09 0.1181906-07
7102 0.485132E-09 0.12613CE-06
7202 0.0 0.164924E-08
7301 0. 1098416-08 0.304688E-08
7302 0.991180E-10 0.0
7303 0.0 0.65216CE-08
7500 0.304922E-09 0.644470E-10
7703 0.0 0. 1563806-08
7705 0.654089E-10 0.0
7801 0.2300206-10 0.1716366-09
7903 0.240060E-10 0.0
8100 0.475053E-09 0.1192636-08
8200 0.242692E-09 0.266321E-08

-1+9-



TABLE A-19

NON-ZERO CAPITAL AND OPERATING COEFFICIENTS FOR A
HTGR

DATA SOURCE: MITRE VECTOR ORDER: (CAP) 357 S fOP> 3S7
ENEROV SECTORS IN BTUWSTU; OTHERS IN 4/BTU

SECTOR I/O CODE

3101
6801
207
400
900
1102
1202
1601
1709
1804
2001
2002
2006
2008
2009
2302
2305
2406
2407
2605
2701
2801
3000
3102
3203
3204
3501
3601
3605
3608
3610
3611
3612
3617
3618
3619
3620
3621
3701
3702
3807
3810
4001
4003
4004

CAPITAL COEFF

0.276000E-02
0.212300E-04
0. 6421906-10
0.1015226-09
0.6614676-09
0.2683886-05
0.0
0.3652206-10
0.220650E-10
0.0
0. 3103306-10
0.6531S2E-09
0.130484E-08
0.168462£-08
0. 85652 0E-10
0.19J2'J9E-08
0.371413E-09
0.961960E-10
0.106250E-09
0.0
0.0
0.4664136-09
0.221000E-08
0. 52282 6E-09
0.232174E-09
0.9208156-09
0.827169E-10
0.3798J7E-09
0.7781526-09
0.763967E-09
0.1325006-09
0.24l951E-0d
0.241846E-07
0. 8745116-09
0.2932526-07
0.1945066-06
0.110704E-06
0.7838046-09
0.2607596-06
0.2900226-0S
0.221848E-09
0.151202E-06
0.834331E-08
0.392W5E-07
0.553245E-07

OPERATING COEFF

0.945000E-03
0.900000E-01
0.0
0.0
0.0
0.0
O.354587E-08
0.0
0.0
0. 1019356-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.8284786-09
0. 142483E-07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

SECTOR I/O COOE CAPITAL COEFF OPERATING COEFf'

4005 0.730924E-09 0.0
4006 0.312777E-06 0.488190E-08
4007 0.131990E-08 0.0
4008 0.446630E-09 0.0
4009 0.1SS333E-08 0.0
4101 0.1478266-09 0.0
4202 0.7335926-08 0.0
4203 0.122120E-09 0.0
4205 0.377126E-07 0.0
4208 0.479242E-06 0.5318586-08
4211 0. 2644576-09 0.0
4301 0.548920E-06 0.0
4301 0.732610E-10 0.0
4601 0.8913006-10 0.0
4602 0.2441576-08 0.0
4603 0.U3390E-06 0.0
4604 0.159297E-07 0.0
4806 0.14V175E-06 0.1179566-07
4901 0.248733E-06 0.0
4903 0.159141E-08 0.0
4906 0.1029766-07 0.0
4907 0.402478E-06 0.4463696-08
3000 0.656519E-10 0.0
3101 0.9336386-07 0.0
3203 0.222567E-07 • 0.0
3203 0.4124296-08 0.0
3301 0.4633106-08 0.0
3302 0. 8582206-07 0.0
3303 0.731044E-07 0.0
3304 0.333162E-06 0.0
3305 0.6230376-07 0.62657CE-08
3308 0. 156642E-07 0.0
5404 0,3788006-10 0.0
5502 0.1114466-08 0.0
5503 0.3642566-07 0.0
5601 0.5689676-09 0.0
5604 0.117261E-08 0.0
5702 O.S19402E-08 0.409706E-08
3805 0.8391306-10 0.0
6202 0.1481046-06 0. 54682 CE-08
6203 0.717929E-10 0.0
6411 0.7690206-10 0.0
6412 0.468641E-09 0.0
6501 0.3662756-07 0.844999E-08
6503 0.6321336-07 0.2414296-08
6504 0.1995926-08 0.9657076-09
4505 0.4730326-08 0.1207076-09
6306 0.0 0. 1207076-09
6600 0.543696E-09 0. 1188266-08
6803 0.0 0.868217E-08
6901 0.183907E-06 0.1272296-07
6902 0.1441696-06 0.2245226-08
7001 0.2341856-09 0.0
7004 0.5385876-09 0.150414E-07
7102 0.9499466-09 0. 1434186-08
7202 0.0 0.2143216-08
7301 0.224456E-08 0.3739516-08
7302 O.2O2500E-09 0.0
7303 0.0 0.9671416-08
7500 0.6114136-09 0.1205986-09
7703 0.0 0.1865496-08
7705 0.123098E-09 0.0
7801 0.4679306-10 0.2230436-09
7903 0.444570E-10 0.0
8100 0.894674E-09 0.1461256-08
•200 0.457070E-10 0.422994E-08
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