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PREFACE.

Having been, for a long series of years, in the constant

habit of preserving original Tracts and dissertations on sci-

entific subjects ;
and now enjoying, at a very advanced pe-

riod of life, some degree of leisure, in consequence of my
retirement from the laborious duties of the Royal Military

Academy; I have anxiously embraced the opportunit}^ of

selecting, and revising, such of those papers as were likely

to be most useful, and of presenting them to the public.

Some few parts of these Tracts have been already printed
in the Philosophical Transactions, and in other works; but

most of them are quite new; and such as are not so, having
been recast and greatly improved, may be also considered

in some measure as original compositions. These papers,

being necessarily of a miscellaneous nature, are here arranged

nearly according to the order of time in which they were

composed ;
and the description of them, is briefly as fol-

lows.

VOLUME I.

Tract I, is on the Principles of Bridges. The original of

this paper was a small pamphlet on the same subject, first pub-
blished by me on a particular occasion at Newcastle, in the

year 1772. It was also republished at London in 1801, nearly
in the same state. But it has been now recomposed, and

greatly enlarged with many additional propositions, as also

numerous observations, both practical and scientific.

An Appendix is also added, containing my report to the

Committee of Parliament on the project for a new iron
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IV PREFACE.

bridge, of only one arch, proposed to be thrown over the

river Thames at London
; with several other appropriate ar-

ticles, as below.

Tract ii, exhibits some curious queries concerning Lon-
don Bridge, proposed in the year 1746 by the magistrates of

the city; with the ingenious answers given to the same, by
Mr. George Dance, surveyor-general of the city works, being
the result of that gentleman's examination concerning the

state of the bridge at that time.

Tract hi contains texperiments and observations to be

made on the state of London bridge; being the report of a

committee of the members of the Royal Society, addressed to

the common council of the city of London.

Tract iv treats of the effects which might be produced
on the tides in the river Thames, in consequence of erecting
a bridge at Blackfriars. This was an ingenious report, drawn

up by the late Mr. John Robertson, at the request of the city

of London.

Tract v consists of answers, given by me, to questions

proposed by the Select Committee of Parliament, relative to

a proposal, made by Messrs. Telford and Douglas, for erect-

ing a new iron bridge, of a single arch only, over the river

Thames, instead of the present London bridge.

Tract vi exhibits a brief history of the original invention,

and subsequent improvements of iron bridges, as practised

of late years in this country.

Tract vii is a dissertation on the nature and value of iur

finite series; explaining the properties of several forms of

such series, as converging, diverging, and neutral.

Tract viii is a new method for the valuation of numeral

infinite series, that have their terms ahernately plus and

niirms
;
which is performed by taking continual arithmetical

means betwetjii the successive sums, and between the means
;

a method bv which tiie value or sum of any such series is very

easily and quickly obtained.
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Tract ix is a method of summing the series a-\-ba;-\-cJt:^

+ dx^-{-e.r'^-{-Sic, in the case when it converges very slowly^

namely, when a; is nearly equal to 1, and the coefficients a,

i, c, d, &c, decrease very slowly; the signs of all the lenns

being plusor positive : a method which has been considered

a great desideratum in intinite series.

Tract x contains the investigation of certain easy and

general rules, for extracting any root out of a given immber
;

exhibiting a general and very easy formula, to serve for all

roots whatever.

Tract xi is a new method of finding, in general and

finite terms, near values of the roots of equations of this form,

x^ px^~ -\-qx^~ &c =
; namely, having the terms

alternately plus and minus : being one method more to be

added to the many we are already possessed of, for deter-

mining the roots of the higher orders of equations.

Tract xii treats of the binomial theorem ; exhibiting a

demonstration of the truth of it in the general case of frac-

tional exponents. The demonstration is of this nature, that

it proves the law of the whole series in a formula of one

single term only : thus, p, a, r, denoting any three succes-

sive terms of the series, expanded from the given binomial

(1 + x)" , and if -f P = a, then is r Q = R, Avhich denotes^ ' ' h ' k+n '

the general law ofthe series, being a new mode of proving the

law of the coefficients of this celebrated theorem. But, be-

sides this law of the coefficients, the very form of the series

is, for the first time, here demonstrated, viz, that the form

of the series for the developement of the binomial (1 + x)" ,

with respect to the exponents, will be 1 -\- ax -\- bx^ -j- cx^

-{-dx'^ + &c, a form which has heretofore been assumed

without proof.

Tract xiii treats on the common sections of the sphere
and cone: with the demonstration of some other new pro-

perties of the sphere, which are similar to certain known

properties of the cijrcle. The few propositions which form
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part of this tract, is a small specimen of the analogy, and

even identity, of some of the more remarkable properties of

the circle, with those of the sphere. To which are added

some properties of the lines of section, and of contact, be-

tween the sphere and cone: both of which can be further

extended as occasions may offer.

Tract xiv, on the geometrical division of circles and el-

lipses into any number of parts having equal perimeters, and

areas either all equal or in any proposed ratios to each other:

constructions which were never before given by any author,

but which, on the contrary, had been accounted impos-
sible to be effected.

Tract xv contains an approximate geometrical division

of the circumference of the circle.

Tract xvi treats on plane trigonometry, without the use

of the common tables of sines, tangents, and secants : resolv-

ing all the cases in numbers, by means of certain algebraical

formulae only.

. Tract xvii is on Machin's quadrature of the circle; be-

ing an investigation of that learned gentleman's ver}'^ sim-

ple and easy series for that purpose, by help of the tangent
of the arc of 45 de":rees : which series the author had given

without any proof or investigation.

Tract xviii, a new and general method of finding sim-

ple and quickly-converging series
; by which the proportion

of the diameter of a circle to its circumference may easily be

computed to a great many places of figures. By this method

are found, not only Machin's series, noticed in the last Tract,

but also several others that are much more simple and easy
than his.

Tract xix, the history of trigonometrical tables, &c :

being a critical description of all the writings on trigono-

metry made before the invention of logarithms.

Tract xx, the history of logarithms; giving an account

of the inventions and descriptions by several authors on the

different kinds of logarithms.
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Tkact XXI, on the construction of logarithms ; exhibiting
the various and peculiar methods employed by ail the dif-

ferent authors, in their several computations of these very-
useful numbers.

Tract xxii, treats on the powers of numbers
; chiefly re-

lating to curious properties of the squares, and the cubes,
and other powers of numbers.

Tract xxiii, is a new and easy method of extracting
the square roots of numbers

; very useful in practice.

Tract xxiv, shows how to construct tables of the square-

roots, and cube-roots, and the reciprocals of the series of the

natural numbers
; being a general method, by means of the

law of the differences of such roots and reciprocals of num-
bers.

Tract xxv, is an extensive table of roots and recipro-

cals, constructed in the above manner, accompanied also with

the series of the squares and cubes of the same numbers.

VOLUME II.

Tract xxvi, an account of the calculations made from

the survey and measures taken at mount Shichallin, in order

to ascertain the mean density of the earth : being the result

of a laborious calculation, the first ever made to ascertain

that density ; by which it is shown to be nearly equal to 5

times the density of water, or almost double the density of

the rocks at the surface of the earth, and that consequently
the interior of the earth must consist of immense quantities

of metals or metallic ores.

Tract xxvii, consists of calculations to determine at

what point, on the side of a hill, its attraction will be the

greatest. This is inserted as an appendix to the preceding

tract, and intended to direct operations of any future at-

tempt to ascertain such density, or to corroborate the fore-

going statement; and, by this determination, it is shown

that the best situation is generally at about ^ of the altitude

of the hill.
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Tract xxviii, is an extensive treatise on cubic equations

and infinite series: showins^ tlieir nature, properties, and so-

lutions, both in finite formulas and by expressions in infinite

series.

Tract xxix contains a curious project for a new division

,of the qiiaclrantal arc of the circle, with a view to trigono-
metrical and other purposes : being intended for tlie novel

desiii;n of constructing tables of the sines, tangents, and se-

cants of arc^, to equal purts of the radius of the circle
;

or

exjircssiiig all these lines, as well as the arcs themselves, in

sucii parrs.

Tract xxx, on the sections of spheroids and conoids:

showing that all such plane sections are the same as conic

sections; and that all the parallel sections, in each of these

solids, are like and similar figures.

Tract xxxi, on the comparison of curves of the same

species ; showing their mutual relations.

Tract xxxii contains a theorem for the cube-root of an

algebraic binomial, one of the terms being a quadratic radi-

cal
;
useful in the solution of certain cubic equations by

Cardan's rule.

Tract xxxiii, is a complete history of algebra; tracing

its origin and practice among the ancient Greeks, the Indi-

ans, Persians, and Arabians; with particular details of the

various peculiarities and improvements, made among dif-

ferent people, and b)^ several eminent individuals, especially

among the European authors, namely, the Italians, Spaniards,

French, Germans, and the English ;
in which all the dis-

coveries and improvements are ascribed to the proj^er au-

thors.

Tract xxxiv, exhibits the results of new experiments in

ArtUery, for determining the force of fired gunpowder, the

initial velocity of cannon balls, the ranges of projectiles at

different elevations, the resistance of the air to their motions
;

the effect of different lengths of guns, and of different quan-
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titities of powder, &,c, &c : giving a complete detail of all

the circumstances attending these very numerous and ac-

curate experiments, with many useful philosophical and prac-
tical inferences deduced from them; the whole formino- as

it were a new era in the progress of this curious and important
branch of knowledge.

VOLUME III.

Tract xxxv, on a new Gunpowder Eprouvette ; show-

ing its construction and use, by means of which the strength
and quality of gunpowder may be proved and evinced,
in a way far more exact and easy than by any other

machine.

Tract xxxvi, on the Resistance of the Air to bodies in

motion, as determined by the Whirling Machine : showing
the exact quantity of the air's resistance to all forms of

bodies, moved through it with slow and moderate motions
;

the effects of which, combined with those of the very high
motions of cannon and musket shot, furnish us with a com-

plete and uniform series of resistances to all degrees of ve-

locit}' ,
from the very slowest perceptible motions, to those of

the highest and most violent.

Tract xxxvii, on the Theory and Practice of Gunnery,
as dependent on the Resistance of the Air. This tract is

employed in stating the deductions abstracted from all the

preceding- experiments, and applying them in many pro-

blems, to the important purposes of i\rtillery and projectiles.

Here are given complete tables of the quantity of resistance

to balls moving with every degree of velocity; with correct

rules for ascertaining those that are proper to all other

sizes of balls. Here are also given general rules and alge-

braic formnlse, for expressing the resistance to any size of

ball in terms of the velocity ; with a great variety of pro-
blems for determining the motions of balls in all directions,

upwards, downwards, or obliquely, touching their velocities

and times in motion, with the ranges of projectiles in the air,
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and practical applications to the cases of gunnery, in a great

variety of useful instances.

Tract xxxviii, being the last, contains a miscellaneous

collection of practical questions, illustrating several of the

principles in the preceding Tracts, with the solutions at

large.

Such are the outlines of a work, which is the result of

many years assiduous study and persevering research
;
and

which it is presumed will be found to contain several new

articles, on civil and military science, that may be deemed

of national importance.
It is, in all probability, the last original work that I may

ever be able to offer to the notice of the Public, and I am
therefore the more anxious that it should be found worthy of

their acceptance and regard. To their kind indulgence, in-

deed, is due whatever success I may have experienced, both

as an Author and Teacher for more than half a century : and

it is no small satisfaction to reflect, that my humble endea-

vours, during that period, have not been wholly unsuccessful

in the diffusion of useful knowledge.
To the same liberal encouragement of the Public must like-

wise be ascribed, in a great measure, the means of the com-

fortable retirement which I now enjoy, towards the close of

a long and laborious life : and for which I have every reason

to be truly thankful.

CHA. HUTTON.

London,

July, 1812.
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TRACT I.

THE

PRINCIPLES OF BRIDGES:

CONTAINING

THE MATHEMATICAL DEMONSTRATION OF THE PROPERTIES

OF THE ARCHES, THE THICKNESS OF THE PIERS, THE FORCE

OF THE WATER AGAINST THEM, &C. WITH PRACTICAL OB-

SERVATIONS AND DIRECTIONS DRAWN FROM THE WHOLE,

1 HIS Tract, on bridges, originated from the circumstance;

of the fall of Newcastle bridge, in the year 1771; which,
with other particulars relative to the Tract, are noticed in

the preface to that Edition of it; which was as follows :

THE ORIGINAL PREFACE.

A large and elegant bridge, forming a way over a broad

and rapid river, is justly esteemed one of the noblest pieces

of mechanism that man is capable of perforaiing. And the

usefulness of an art which, at the same time that it connects

distant shores by a way over the deep and rapid waters, also

allows those waters and their navigation to pass smooth and

uninterrupted, renders all probable attempts to advance the

theory or practice of it, highly deserving the encour; gement
of the public.

This little book is offered as an attempt towards the im-

provement of the theory oC this art, in which the more es-

sential properties, dimensions, proportions, and other rela-

VOL. I. B



2 THE ORIGINAL PRILFACE. TRACT 1,

tions of the various parts of a bridge, are strictly demon-

strated, and clearly illustrated by various examples. It is

divided into five sections: the 1st treats on the projects of

bridges, containing a regular detail of the various circum-

stances and considerations that are cognizable in such pro-

jects. The 2d treats on arches, demonstrating their various

properties, Avith the relations between t!ieir intrudes and ex-

trados, and clearly distinguishing the most preferable curves

to be used in a bridge; the first two or three propositions

being instituted after the manner of two or three done by
Mr. Emerson in his Fluxions and Mechanics. The 3d sec-

tion treats on the piers, demonstrating their thickness ne-

cessary for supporting any kind of an arch, springing at any

height, both vvhcn part of the pier is supposed to be im-

mersed in water, and when otherwise. The 4th demonstrates

the force of the water against the end or face of the pier,

considered as of ditlerent forms; with the best form for di-

viding the stream, &c. and to it is added a table, showing
the several heights of the fall of the water under the arches,

arising from its velocity and the obstruction of the piers; as

it was composed by Tho. Wright, Esq. of Auckland, in the

county of Durham, who informs me it is part of a work on

which he has spent much time, and with which he intends to

favour the public. And the 5th and last section contains a

Dictionary of the most material terms relating to the sub-

ject: in which many practical observations and directions

are given, which could not be so regularly nor properly in-

troduced into the former sections. The whole, it is pre-

sumed, containing full directions for constituting and aciapt-

inrr to one another, the several essential parts of a bridge, so

as to make it the strongest, and the most convenient, both

for the passage over and under it, which tlie situation and

other circumstances will admit: not indeed for the actual

methods of disposing the stones, making of mortar, or the

external ornaments, &c. those things are not here attempted,
but are left to the discretion of the practical architect, as

being no part of the plan of this undertaking ; and for the
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same reason also here are not given any views of bridges,
but only prints of such parts or figures as are necessary in

explaining the elementary parts of the subject.

As my profession is not that of an architect, very probably
I should never have turned my thoughts to this subject, so as

to address the public upon it, had it not been for the occasion

of an accident in that part of the country in which 1 reside,

viz. the fall of Newcastle and other bridges on the river

Tyne, on the 17th of November, 1771, occasioned by a high

flood, which rose about 9 feet higher at Newcastle than the

usual spring tides do. This occasion having furnished me
with many opportunities of hearing and seeing very absurd

notions advanced on the subject in general, I thought the

demonstrations of the relations of the essential parts of a

bridge, would not be unacceptable to those architects and

others, who may be capable of perceiving their force and

effects.

Newcastle, 1772.

The original edition, of 1772, being out of print, and th

book being much asked for, a new edition was printed in

ISOl, at a time when the project of a cast-iron bridge of one

arch, proposed to be built over the Thames at London, by-

Messrs. Telford and Douglass, was the subject of much con-

versation : on which occasion the following addition was made

to the Preface ; viz.

This little work, which was hastily composed on a parti-

cular occasion, having been long out of print, is now as sud-

denly reprinted'in the same form, on the present occasion, of

the report of a new bridge proposed to be thrown across the

Thames, at London: reserving the long intended edition, on

a much larger and more improved plan, till a more conve-

nient opportunity.
Royal Military Academy, Jan. 12, 1801.

It may here be added, that the whole tract has been now

[uite re-cast and composed, and greatly enlarged with more

B 2
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propositions, and numerous observations, both practical and

scientific. To the end is also added an Appendix, being the

author's report to the Committee of Parhament, on the pro-

ject for a new cast-iron bridge, of one arch, over the river at

London ;
and several other appropriate appendages.

SECTION I.

ON THE PROJECTS OF BRIDGES; WITH THE DESIGN,
THE ESTIMATE, &C.

When a bridge is deemed necessary to be built over a

river, the first consideration is the place of it; or what par-

ticular situation will contain a maximum of t'le advunta;:;cs

over the disadvantages. In agitating this important ques-

tion, every circumstance, certain and probable, attending or

iikely to attend the bridge, shoidd be separately, minutely,
and impartially stated and examined; and the advantage or

disadvantage of it rated at a value proportioned to it
;
then

the difference between the whole advantages and disadvan-

tage!^, will be the net value of that particular sitnation for

M'hich the calculation is made. And by doing the same for

other situations, all their net values will be found, and of

consequence the most preferable situation among them.

Or, in a competition between two places, if each one's ad-

vantage over the other be estimated or valued in evory cir-

cumstance attending them, the sums of their advantages will

show which of them is the better. And the same being dour

for this and a third, and so on, the best situation of all will

be obtained.

In tliis estimation, a great number of particulars must be

included; nothintr beinir omitted that can be found to make
a part of the consideration. Among these, the situation of

the town or place, for the convenience of which the bridge



SECT. I. THE PROJECTS OF BRIDGES, &C. S

is chiefly to be made, will naturally produce an article of

the first consequence ;
and a great many others, if necessary,

ought to be sacrificed to it. If possible, the bridge should

be placed where there can conveniently be opened and made

passages or streets from the end of it in every direction, and

especially one as nearly in the direction of the bridge itself

as possible, tending towards the body of the town, v/ithout

narrows or crooked windings, and easily communicating
with the chief streets, thoroughfares, &c. And here every

person, in judging of this, should divest himself of all partial

regards or attachments whatever ; think and determine for

the good of the whole only, and for posterity as well as for

the present.

The banks or declivities towards the river are also of par-
ticular concern, as they affect the conveniency of the passage
to and from the bridge, or determine the height of it, ou

which in a great measure depends the expense, as well as the

convenience of passage. The breadth of the river, the na-

vigation upon it, and the quantity of water to be passed, or

the velocity and depth of the stream, form also considera-

tions of great moment
;
as they determine the bridge to be

higher or lower, longer or shorter. However, in most cases,

a wide part of the river ought rather to be chosen than a nar-

row one, especially if it is subject to grc.it tides or floods: for,

the increased velocitv of tlie stream in the narrow part, being

again augmented by the further contraction of the breadth by
the piers of the bridge, will botli incommode the navigation

through the arches, and undermine the piers and endanger
the whole bridge. The nature of the bed of the river is also

of great concern, it having a great influ(;nce on the expense;
as upon it, and the derjth and velocity of the stream, depend
the manner of laying the foundations, and building the piers.

These are the chief and capital articles of consideration,

v.diich will branch themselves out into other dependent ones,

and so lead to the required estimate of tlie whole.

Having resolved on the place, the next considerations are,

the form, the estimate of the expense, and the manner of
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execution. With respect to the form; strength, utility, and

beauty ought to be regarded and united
;

the chief part of

which lies in the arches. The form of the arches will depend
on their height and span ;

and the height on that of the water,

the navigation, and the adjacent banks. They ought to be

made so high, as that they may easily transmit the water at

its greatest height, either from tides or floods; and their

height and figure ought also to be such as will easily allow of

a convenient passage of the craft through them. This, and

the disposition of the bridge above, so as to render the passage
over italso convenient, make up its utility. H.iving fixed ihe

heights of the arches, their spans are still necessary for deter-

mining their figure. Their spans will be known by dividing
the whole breadth of the river into a convenient number of

arches and piers, allowing at least the necessary thickness of

the piers out of the whole. In fixing on the number of

arches, let an odd number always be taken; and few and

large ones, rather than many and smaller, if convenient: For

thus we shall have not only fewer foundations and piers to

make, but fewer arclies and centres, which will produce

great savings in the expense; and besides, the arches them-

selves will also require much less materials and workmanship,
and allow of more and better passage for the water and craft

through them; and will appear at the same time more noble

and graceful, especially if constructed in elliptical, or in cy-
cloidal forms

;
for the truth of which, it may be sufficient to

refer to that noble and elegant bridge lately built at Black-

friars, London, by Mr. Mylne ;
which might perhaps be ac-

counted incomparable, at least in England, if the piers were

of equal excellence: but these are too thick, and clumsy, and

their appearance is made still less graceful by the double co-

lumns placed before them. So that Blackfriar's arches and

the Westminster's piers united, would be prercrable to cither

briiige separately.

If the top of the bridge be a straight horizontal line, the

arches may l)c made all of a size; if it be a little lower at

the ends than the middle, the arches must proportionally de-
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crease from the middle towards the ends
;
but if higlier at

the ends than the middle, which can seldom happen, they

may then increase towards the ends. A choice of tlie most

convenient arches is to be made from some of the foilowincp

propositions, where their several properties and effects are

demonstrated and pointed out: Among these, the elliptic,

cycloidal, and equihbrate arch, will generally claim the pre-

ference, as well on account of the strength, and beauty, as

cheapness or saving in materials and labour: Other particu-

lars also concerning them may be seen under the word Arch
in the Dictionary in the last section.

Next find what thickness at the keystone or top will be

necessary for the arches. For which see the word Keystone
in the Dictionary in the 5th section. Having thus obtained

all the parts of the arches, with the height of the piers, the

necessary thickness of the piers themselve:^ are next to be

computed. This done, the chief and material requisites are

found; the elevation and plans of the design can then be

drawn, and the calculations of the expense thence made, in-

cluding the foundations, with such ornamental or accidental

appendages as shall be thought fit
; which, being no part of

the plan of this undertaking, is left to the fancy of the

Architect and Builder, together with the practical methods of

carrying the design into execution, I shall however, in the

Dictionary, in the last section, not only describe the terms,

parts, machines, &c, but also speak of their dimensions, pro-

perties, and any thing else material belonging to them
; and

to which therefore I from hence refer for more explicit in-

formation in each particular article, as well as to these im-

mediately following propositions, in which the theory of the

arches, piers, &,Cj are fully and strictly demonstrated.
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SECTION II.

OF THK ARCHES.

rROPOSlTION I.

Let there be any number of lines ab, bc, cd, be, ATc. all

in the same vertical phme, connected together and moveable

about thejoints or angles A, b, c, d, e, f; the two extreme

points A and g beingfixed: It is required to determine the pro-

portion of the weights to he laid upon the angles b, c, d, isc.

so that the whole mat/ remain in equilibrio.

Solution. From the

several singles, having
dvawn the lines lib, cc,

Da', &.C. per{)cndicular

to the horizon
;
about

them, as diagonals, ''V

constitute parallcio- A
grams sacli, tliat those sides of every two tliat are at the op-

posite ^nds of the given lines, niay be equal to each other ;

viz, l;aving made one parallelogram 7nn, take cp b?2, and

form tlic parallelogram pq ; then take nr = cq, and make the

paralleicgram rs; and take zr = t>s, and form t!je parallelo-

gram tv; and so on : Then the ^..id vertical diagonals r/^, cc,

r>d, Ee, &.C, of those parallelograms, will be ])roporti()nal to

the weigiits, as required.

])i'tnonstratioyi. l^y the rcsf;'iL!t;on of forces, each of tli?

weights or i'orces Y.b, cc, nd, S^c, in the di.igonals oiiiie pa-

ra!lelog'-a;ii ,,
is equal to, and ;u,;v he I'e.^olvcd into, two

force.;, e\pressed by two adj.icent ^ide.^ of tlii'. p..i'aiulograMi ; -

viz. the lorce lib may be resoi-.i".! into the tuo iovccr, h;n, i>n.
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and in those directions; the force cc, into the two forces cp,

cq, and in those directions
;
the force nd, into the forces or,

DS, and in those directions; and so on. Then, since two
forces that are equal, and in opposite directions, do mutually
balance each other; therefore the several pairs of forces mi

and cp, cq and Br, gs and e/, &c, being equal and o])posite,

by the construction, mutually destroy or balance each other;

and the extreme forces Bm, ev, are balanced by the opposite

resistances of the fixed points A, G. There is no force there-

fore to change the position of any one of the lines, and con-

sequently they will all remain in cquilibrio.

CoroHarij. Hence, if one of the weights and the positions

of all tlic lines be given, all the other weights may thence

be found, as well as all the oblique forces in the direction of

the bars or lines. And the weight which is given, may either

be that at the lower extremity, as Bb, or it may be that at

the vertex Tid, or it may be any of the intermediate ones, as

cc; for, whichever of these is given, it will serve, as a diago-

nal, to form the parallelogram about it
;
then the sides of this

parallelogram will give the sides of the. two next parallelo-

grams, on each side of the former
;
and so on through the

whole collection of the bars. Thus, if the uppermost ver-

tical weight, or diagonal d^, be the given one : Then draw

dr parallel to de, and ds to dc, so forining the parallelogram

rosd : then make cq =. Dr, and E^ = us: and, having drawn

the several indefinite vertical lines b^, cf, Ee, at the angles,

form the parallelograms pq and iv, by drawing qc parallel to

EC, and cp to cd, and te to ef, and ev to de, Lastly, take

B = pc, and make the parallelogram nm, by drawing nb pa-

rallel to AB, and b}ii parallel to Bc. And so on through the

whole.
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PROP. H.

Jf any number of lines^ that are connected together and

vioveable about the points of cn)inectio?i, be kept in equilibrio by

weights laid on the u?igles, as in the last proposition: Then

will the weight 07i any angle c be universally proportional to

sine of the Z. bcd
,

. ,. ,
,

. .
,

1 ; that IS, directly as trie sine ot tnat
s. z. BC6- X s. z. ctn -' -^

angle, and reciprocally as the siyics of the t'xo parts or angles

into which that angle is divided by a line drawn through it

perpendicular to the horizon. Sec the forruer figure.

Demonstration. By the last proposition the weights are

as B^, cc, Dd, &c, where e ~
pc, cy ?"d, Di" = tE, &.c.

But, since the angle ab6 is the angle Bbn, and the angle

Bcc = the angle ccg, kc, these being always t!ie alternate

angles aiade by a line catting two other parallel lines
;
also

the sine of the Z. aec s. Z. Bnb, and s. A. bcd = s. Z. cqc,

these being supplements to each other
; by plane trigonoaieiry

we shall have,

B^ X s. Z. AB^ cf X s. Z. con
( B = )

=
( CD = ) ,^ '

S. Z. ABC ^ ^ '
^. jL BCD

CC X S. Z. BCC D(/ X S. Z. c/dE

[cq )
=r

(
Dr =

) ,^ ^ '

S. Z. BCD ^ ^
S. Z. CDE

Dr/ X S Z. Q.T)d . Ef X S. Z. (^KF

^ '

S. Z. CDE ^ ^
S. Z. DEF

iind so on. Ilenct>,

Y,b : cc

cc : D^

S. Z.
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s. z. Bcc, the s. Z. ccD = s. cdc/, &c, we shall have the fol-

lowing proportions ; viz,

S. A ABC S. Z. BCD
BU : cc : :

-, ;
:

=
,

S. Z. AB6> X S. Z. OBC S. Z. BCC X S. Z. CCD

, , S. Z. ABC S. Z. CDE
Bb -.Bel : : -. -. : r ; ,

S. Z. ABt X S. Z. OBC S. Z. cud X S. Z. (^DE

,
S. Z. ABC S. Z. DEF

Bb : Ee : : r -. : ,

S. Z. ABO X S. Z. ^BC S. Z. DEC X S. Z, ^-Ef

and SO on.

Since cp or bw : bw or nb : : s. z. b6,

or s. Z- ABO : s. Z. obc or s. Z. bcc : ; : r :

S. Z. BCf S. Z. ABO

and c/? or
^rc : eg or or : : s. Z. cct/ or s, Z. corf : s. Z. ccy or

1 1

s. z. Bcc : :

s. z. BCC
'

s. z. cdJ'

it is clear that cp is as ; that is, the forces 77iB, pc.^
S. Z. BCC

rOy &c. are always reciprocally as the sines of the angles
which they make with the vertical line.

.
,

. cp X S. Z. CpC cp X S. Z. BCD
And since cc = ^ r: :

fe. Z. CCp S. Z CCD

1 r r ,

S. Z BCD
tncreiorc any rorce or weip-lit cc is as

,' ^
s. z ccB X s. z cca

And this is the same as the property in corol. 4 to the 3d

proposition following.

Corol. If DC be produced to h; then, the sine of the angle
hcB being equal to the sine of its supplement BCD, the

same weight or force cc will be always proportional to

: which three angles toeether make up
S. Z BCC X S, Z DCC O J3 1

two right angles.

Properties similar to the foregoing are otherwise deter-

mined in the following propositions.
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PROP. III.

Let there be any number ofliih's, or bars, or beams, ab. bc,

CD, DE, h\c. all in the same vertical plane, connected together

andfreely moveable about the joints or a^igles a, k, c, d, e,

&'c, and kejyi in equilihrio by their oivn xceights, or by iceights

only laid on the angles : It is required to assign the proportion

of those weights: as also the force or push in the direction of

the said lines; and the horizontal thrust at every angle.

Solution.

Through an}- point,

as D, draw a verti-

cal line aDHg, &:c :

to \vi)ich, f'roiii any

point, as c, draw

lines in the direction -^

of, or parallel to, the given lines or beams, viz, ca parallel to

AB, and cb parallel to bc, and ce to de, and cf to ef, and eg
to FG, &c; also CH parallel to the horizon, or perpendicular
to til.: vertical line uDg, in wliicii also all these parallels ter-

minate.

1 hc'.i v> ;!! all thr.^e lines be exactly proportional to the

forces actii-g or cxL-rtcd in the directions to which they arc

parallel, and of all the llirt-e kind>, viz. vertical, horizontal,

and obiiqne. That is, tiie obh;v.ie lorces or thrusts in direc-

tion of the bars A7i, bc, co, de, ef, fg,

are proportional to th.eir parahel;, . . cr/, cb, CD, c, cf, eg;
and the vertical wciglits on t.he angles B, Cj d, E; f, &C,
are as the parts of the vertical .... ab, bv., dc, cf, fg,
and the weight of the uhole frame ai;ci3EFG, . . .

is proportional to t'jc snpi of ail the verticals, or to ag ;

also the horizontal thrust, ;it cverv angle, is every where the

same constant qtianti: v, and is eKj)rc>sed l)v the constant ho-
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Demonstration. All these proportions of the forces derive

and follow immediately from the general well known pro-

perty, in Statics, that when any forces balance and keep
each other in equilibrio, they are respectively in proportion
as the lines drawn parallel to their directions, and terminatino-

each other.

Thus, the point or angle b is kept in equilibrio by three

forces, viz, the weiglit laid and acting vertically downward
on that point, and by the two oblique forces or thrusts of the

two beams ab, cb, and in these directions. But ca is parallel

to ab, and cb to bc, and ab to the vertical weight ; those

three forces are therefore proportional to the three lines ab^

ca, cb.

In like manner, the angle o is kept in its position by the

weight laid and acting vertical!}^ on it, and by the two ob-

lique forces or thrubts in the direction of the bars bc, cd:

conseqiiently these three forces are proportional to the three

lines ^D, cbj cd, which are parallel to them.

Also, the tlircc forces keeping the point d in its position,
are proportional to their three parallel lines oe, cd, ce.

And the three forces balancing the angle e, are proportional
to their three parallel lines ef, ce, cf. And the three forces

balancing the angle f, are proportional to their three parallel

lines ^"", cf, eg. And so on continually, the oblique forces

or tLirnsts in the directions of the bars or beams, beino- al-

ways proportional to the parts of the lines parallel to them,

intercepted by the common vertical line
;
while the vertical

forces or weights, acting or laid on the angles, are propor-
tional to the parts of this vertical line intercepted by the two

lines parallel to the lines of the corresponding angles.

Agaiii, with regard to the horizontal force or thrust:

since the line DC represents, or is proportional to the force

in the direction dc, arising from the weight or pressure on

the angle d
;
and since the oblique force dc is equivalent to,

and resolves into, the two dh, hc, and in those directions, by
the resolution of forces, viz, the vertical force dh, and the

horizontal force HC
;

it follows, that the horizontal force or
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thrust at the angle d, is proportional to tlie line ch
;
and tlie

part of the vertical force or weight on the angle d, which

produces the oblique force DC, is proportional to the part of

the vertical line dh.

In like manner, the oblique force c^, acting at c, in the di-

rection CB, resolves into the two Ah, hc; therefore the hori-

zontal force or thrust at the angle c, is expressed by the line

CH, the very same as it was before for the angle d ;
and the

vertical pressure at c, arising from the weights on both d

and c, is denoted by t!ie vertical line bii.

Also, the oblique force ac, acting at the angle b, in the

direction ba, resolves into the two an, hc
;
therefore again

the horizontal thrust at the angle b, is represented by the line

CH, the very same as it was at the points c and d ; and the

vertical pressure at b, arising from the weights on b, c, and

D, is expressed by the part of the vertical line an.

Thus also, the oblique force ce, in direction de, resolves

into the two ch, ue, being the same horizontal force with

the vertical ue; and the oblique force c^ in direction ef, re-

solves into the two CH, a/; and the oblique force c^, in di-

rection FG, resolves into the two ch, h^,- and the oblique
force c^, in direction fg, resolves into the two ch, H.y ; and

so on continually, the horizontal force at every point being

expressed by the same constant line ch
;
and the vertical

pressures on the angles by the parts of the vertical, viz, an

the whole vertical pressure at b, from the weights on t!iti

angles b, c, d : and bn the whole pressure on c from the

weights on c and d; and dh the part of the weight on d

causing the oblique force dc
;
and He the other part of the

weight on d causing the oblique pressure de
;
and uf the

whole vertical pressure at e from the weights on d and e;

and Kg the whole vertical pressure on f arising from the

weights laid on d, e and f. And so on.

So that, on the whole,

AH denotes the whole weight on the points from d to a;

and h^ the whole weight on the jjoints from d to c
;

and a^ the whole weight on all the points on both sides;
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while ab, bv>, De, ef,fg express the several particular weights
laid on the angles b, c, d, e, f.

Also, the horizontal thrust is every where the same con-

stant quantity, and is denoted by the line CH.

Lastly, the several oblique forces or thrusts, in the direc-

tions AB, BC, CD, DE, EF, FG, are expressed by, or are propor-
tional to, their corresponding parallel lines, ca, c3, CD, ce,

cfyCg.

Corollary 1. It is obvious, and remarkable, that the

lengths of the bars ab, bc, &c, do not affect or alter the pro-

portions of any of these loads or thrusts; since all the lines

ca, c3, ab, &c, remain the same, whatever be the lengths of

AB, EC, &c. The positions of the bars, and the weights on

the angles depending mutually on each other, as well as the

horizontal and oblique thrusts. Thus, if there be given the

position of dc, and the weights or loads laid on the angles

D, c, B
;

set these on the vertical, dh, d3, ba, then cb, ca

give the directions or positions of CB, BA, as well as the

quantity or proportion ch of the constant horizontal thrust.

Coral. 2. If CH be made radius; then it is visible that na

is the tangent, and ca the secant of the elevation of ca or ab

above the horizon
;
also nb is the tangent and cb the secant

of the elevation of cb or CB
;
also hd and CD the tangent and

secant of the elevation of CD
;
also ue and ce the tangent and

secant of the elevation of ce or de
;
also h/ and cf the tan-

gent and secant of the elevation of EF
;
and so on

;
also the

parts of the vertical ab, bu, ef,/g, denoting the weights laid

on the several ano-les, are the differences of the said tangents

of elevations. Hence then in general,

1st. The oblique thrusts, in the directions of the bars,

are to one another, directly in proportion as the secants of

their angles of elevation above the horizontal directions; or,

which is the same thing, reciprocally proportional to the co-

sines of the same elevations, or reciprocally proportional to
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the sines of the vertical angles, cr, b, y>, e,fy g, &c, made by
the vertical line with tlic several directions of the bars

;
be-

cause the secants of any angles are always reciprocally in

proportion as their cosines.

2, The weight or load laid on each angle, is directly pro-

portional to the diirerence between the tangents of the ele-

vations above the horizon, of the two lines which form the

angle.

3. The horizontal tlirust at every angle, is the same con-'

stant quantity, and has the same proportion to the weight on

the top of the uppermost bar, as radius has to the tangent of

the elevation of that bar. Or, as the whole vertical ag, is to

the line CH, so is the weight of the whole assemblage of bars,

to the horizontal thrust. Other properties also, concerning
the weights and the thrusts, might be pointed out, but they
are less simple and elegant, than the above, and are therefore

omitted
;
the following only excepted, which are inserted

here on account of their usefulness.

Corollary 3. It may hence be deduced also, that the

Aveight or pressure laid on any angle, is directly proportional

to the continual product of the sine of that angle and of the

secants of the elevations of the bars or lines which form it.

Thus, in the triangle ^cd, in which the side bn is propor-

tional to the weight laid on the angle c, because the sides of

any triangle are to one another as the sines of their opposite

angles, therefore as sin. d ; c6 : : sin. ^cd : ^d
;
that is, bn is as

sin. bcT>
J

.
,

. r ^ 1 f 7

X CO ;
but the sme or angle D is the cosine oi the

sm. D ^

elevation DCH, and the cosine of any angle is reciprocaJIy

proportional to the secant, therefore ^d is as sin, bcu x sec.

DCH X c^ ;
and ch being as the secant of the ang'e /;cn of

the elevation of ^c or T5C al)ove the horizon, therefore ^d is

as sin. bci:) x sec. hen x sec. dch; and the sine of bcu

being the siune as the sine of its supplcncnt bcd ; therefore

the weight on the angle c, which is as bn, is as the sin. bcd
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X sec- DCH X sec. ben, that is, as the continual product of

the sine of that angle and the secants of the elevations of

its two sides above the horizon.

Corol. 4. Further, it easily appears also, that the same

weight on any angle c, is directly proportional to the sine of

that angle ecd, and inversely proportional to the sines of

the two parts bcp, dcp, into which the same angle is divided

by the vertical line cp. For the secants of angles are reci-

procally proportional to their cosines or sines of their com-

plements : but BCP = cbn, is the complement of the eleva-

tion ^CH, and DCP is the complement of the elevation dch ;

therefore the secant of ^ch x secant of dch is reciprocally
as the sin. bcp x sin. dcp

;
also the sine of ^cd is rz the

sine of its supplement bcd
; consequently the weight on the

angle c, which is proportional to sin. ^cd x sec. bcu x
, .

,
sin. BCD

sec. dch, is also proportional to -. , when*

sin. bcp x sin. dcp

the whole frame or series of angles is balanced, or kept in

equilibrio, by the weights on the angles j
the same as in the

preceding proposition.

Scholium. The foregoing proposition is very fruitful in

its practical consequences, and contains the whole theory of

arches, which may be deduced from the premises by sup-

posing the constituting bars to become very short, like arch

stones, so as to form the. curve of an arch. It appears too,

that the horizontal thrust, which is constant or uniformly the

same throughout, is a proper measuring unit, by means of

which to estimate the other thrusts and pressures by, as they
are all determinable from it and the given positions; and the

value of it, as appears above, may be easily computed from

the uppermost or vertical part alone, or from the whole as-

semblage together, or from any part of the whole, counted

from the top downwards.

The solution of the foregoing proposition depends on this

consideration, viz, tliat an assemblage of bars or beams,

VOL. I. c
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being connected torrether by joints at tlieir extremities, and

freely moveable about thein, maybe placed in such a vertical

position, as to be exactly balanced, or kept in equilibrio, by
their mutual thrusts and pressures at the joints ;

and that the

eflfect will be the same if the bars tiiemsclvesbe considered as

without wcioht, and the angles be pressed down by laying on

them weights which shall be equal to the vertical pressures
at the same angles, proiluccd by the bars in the case when

they are considered as endued with their own natural weights.

And as we have found that the bars may be of any length ,

without aftccting the general properties and proportions of

the thrusts and i)rcssnres, therefore by suppo^sing them to be-

come short, like arch stones, it is plain that we shall then

have the same principles and properties accommodated to a

real arch of equilibration, or one that supports itself in a p<;r-

fect balance. It may be further observed, that the conclu-

sions here derived, in this proposition and its corollaries,

exactly agree with those derived in a very different way, in

the former editions of the princi})lesof bridges, viz, in props.

1 'and 2, and their corollaries
;
and which have been here re-

peated, in the foregoing prop. 2.

PROP. IV.

If the u'holc figure in the tJiird proposition i>e inverted, or

turned round the Iborizonial line ag as an axis, till it be eo)n'

pletehj reversed, or in ike same vertical plane below the first

position, each angle D, d, bsc, being in the same plmnb line ;

and ifxi'eights i, k, /, m, n, which are respectively equal to the

weights laid on the angles b, c, d, b, f, of the first figure, be

now suspended by threadsfronp tlie corresponding angles b, c, d,

f'i./\ of the lowerfigure ; then will those weights keep thisfigure
in exact equilibrio, the same as the former, and all the tensions

or forces in the latter case, whether vertical or horizontal

or oblique, nvitl be exactly equal to the corresponding forces

of weight or pi cssure or thrust in the like directions of the

firstfigurc.
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This necessarily

happens, from the

equality of the

weights,and thesi-

milarity of the po-
sitions and actions

of the whole in

both cases. Thus,
from the equality
of the correspond-

ing weights, atthe

Jike angles, the

ratios of the

weights, ab, bd^ dh^ he, &c, in the lower figure, are the very
same as those, ab^ bo, dh, ue, &c, in the upper figure ; and

from the equality of the constant horizontal forces ch, cA,

and the similarity of the positions, the corresponding vertical

lines, denoting the weights, are equal, namely, ab =: ab, bn
= bd, dh = -DH, &c. The same may be said of the oblique
lines also, ca, cb, &c, which being parallel to the beams a^,

he, &c, will denote the tensions of these, in the direction of

their length, the same as the oblique thrusts or pushes in the

upper figures. Thus, all the corresponding weights and

actions, and positions, in the two situations, being exactly

equal and similar, changing only drawing and tension for

pushing and thrusting, the balance and equilibrium of the

upper figure is still preserved the same in the hanging fes-

toon or lower one.

Scholiimi. The same figure, it is evident, will also arise,

if the same weights, i, k, ly ?n, w, be suspended at like dis-

tances, A^, be, &c, on a thread, or cord, or chain, &c, having
in itself little or no weight. For the equality of the weights,

and their directions and distances, will put the whole fine,

when they come to equilibrium, into the same festoon shape

of figure. So that, whatever properties are inferred in the

c 2
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corollaries to the 3d prop, will equally apply to the festoon

or lower figure hanging in equilibrio.

This is a most useful principle in all cases of equilibriums,

especially to the mere practical mechanist, and enables him
in an experimental way to resolve problems, which the best

mathematicians have found it no easy matter to effect by mere

computation. For thus, in a simple and easy way he ob-

tains the shape of an equilibrated arch or bridge ;
and thus

also he readily obtains the positions of the rafters in the frame

of an equilibrated curb or mansard roof^ a single instance

of which may serve to show the extent and uses to which

it may be applied. Thus, if it should be required to make a

curb frame roof having a given width

AE, and consisting of four rafters ab,

BC, CD, DE, which shall either be

equal or in any given proportion to

each other. There can be no doubt

but that the best form of the roof will be that which puts

all its parts in equilibrio, so that there may be no un-

balanced parts, which may require the aid of ties or stays,

to keep the frame in its position. Here the mechanic has

nothing to do, but to take four like but small pieces, that

are either equal qr in the same given proportions as those

proposed, and connect them loosely together at the joints

A, B, c, D, E, by pins or strings, so as to be freely move-

able about them
J
then suspend this

from two pins, a, Cj fixed in

a horizontal line, and the chain

of the pieces will arrange itself in

such a festoon or form, ahcde, that

all its parts will come to rest in

equilibrio. Then, by inverting tlie

figure, it will exhibit the form and

frame of a curb roof flCy Je, which will also be in equilibrio,

the thrusts of the pieces now balancing each other, in the

same manner as was done bv the mutual pulls or tenbiou::<
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of the hanging festoon abcde. By varying the distance ae^
of the points of suspension, moving them nearer to, or farther

off, the chain will take different forms ; then the frame abode

may be made similar to that form which has the most pleas-

ing or convenient sliape, found above as a model.

Indeed this principle is very fruitful in its practical conse-

quences. It is easy to perceive that it contains the whole

theory of the construction of arches : for each stone of an

arch may be considered as one of the rafters or beams in the

foregoing frames, since the whole is sustained by the mere

principle of equilibration, and the method, in its application,

vi'iW afford some elegant and simple solutions of the most dif-

ficult cases of this important problem ;
some examples of

which will be shown hereafter.

PROP. V,

Toform mechatikalli) a balanced Festoon arch, on the prin-

ciples of (he last proposition ; having a gi-veii pitch or height

und span, and also a given height andform of wall or roadway
over it.

Let AM be the given

r proposed span ot the

arch, DQ its pitch or

greatest height, dk the

thickness at the crown,

and ALKXM the given an-

terior form of the wall :

in order to determine the

form of the curve Adm
which shall put that wall

in equilibrio.

Invert the whole figure alknm, as in the opposite posi-

tion Al/aiM, or construct this latter figure, on the lower side

of AM, exactly equal and similar to the proposed upper one;

the point d answering to the point D, and the point k to the
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point K, &c. Let a very fine and thin, but strong line, such

as a fine silkencord, or abricklayer's working hne, or perhaps
a very fine and slender chain of small links, be suspended
from the extreme points a and m, and of such a length, that

its middle point may hang at the point d, or a little below it.

Divide the given span or width am into a number of equal

parts, the more the better, as at the points 1, 2, 3, 4, 5, &c;
from which draw vertical lines, cutting the festoon chain

or cord in the corresponding points 1, 2, 3, 4, 5, &c. Then
take short pieces of another chain, and suspend them by
these points of the festoon I, 2, 3, &c, as represented by the

dotted verticals in the lower part of the figure. This will

somewhat alter the form of the curve. If now the neu' curve

should correspond with the point d, and all the bottoms of

the vertical pieces of appended chain also coincide with the

given line of roadway /An, the business is done. But if both

those coincidences do not take place, then alterations must

be made, by trials and by judgment, in lengthening or short-

ening either the festoon A(^m, or the appended vertical pieces

of chain, or in both, till such time as those coincidences are

accomplished, namely, the bottom of the arch with the point

d^ and the bottom of the appended pieces v/ith the boundary
I k n. Then re-invert the whole figure, or otherwise trace out

the upper curve adm exactly like or the same as the lower

one Af/M, and there will be obtained an arch sustixining the

wall above in perfect equilibrium.

Scholium. Thus then, as explained by professor Robison,
we have an easy and practical way, bv which any common in^

telligent workman may readily construct for himself the form

of a real balanced arch, to an}' proposed design for a bridge.

In this method, the thinner and lighter the festoon line is, so

us to bear but a small proportion to the weight of the ap-

jjcnded j)ieces of chain, so much the more exact will the

conclusion be obtained, when the superincumbent wall is of

uniform weight of njasonry. But as the festoon line rejjre-

sents ttjc hne of voussoirs or arch stones, in the conslructuU
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arcli, if these only are solid, and the rest of the wall or matter

above them be looser and lighter, then there ought to be an

equality of proportion between the weights ot the festoon

chain and the string or rib of arch stones, and between the

superior wall and the appended pieces of chain; a circum-

stance of equality to be obtained by mutual accommodations

and calculations adapted to the real circumstances of the

case.

The chief objection to the curv^e found in this way is a

Avant of elegance, and perhaps too of convenience and of

economy, because it does not spring or rise at right angles
to the horizontal line, but at a much smaller angle ; and
which indeed is the case with all curves of equilibration.

However, this is a circumstance which can be very safely
and prolitably remedied

;
for in the part of the flanks near

the piers, it may be cut away to hollow the arch out to any
form we please, so as, for instance, to resemble the elliptical

arch, which is one of the njost graceful of all; because the

masonry is so solid and strong in that part. And this will be

not only more agreeable to the eye, but will also leave more

room for water and boats to pass, and will be a saving in the

expcnce of masonry. To accomplish this end with more re-

sularitv and method, instead of dividing the horizontal line

into equal parts at the points 1, 2, 3, &,c, if the festoon chaia

itself be so divided, viz, into equal parts, and the pieces of

chain be appended at these, in the manner before mentioned,
then the greater number of these pieces being thus near the

extremities, they will draw the arch more down in that part,

and thus hollow it out there in a more regular and uniform

manner, making the shape more pleasing and commodious,
and yet leaving it sufficiently near a true balance.

The following proposition is here added, to determme the

figure of a balanced arch, on the supposition that the voussoirs

are at liljcrty to slide on each other. A principle indeed

having no real foundation in fact, though it has been much
insisted on by some persons.
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PROP. VI.

// is proposed to determine the nature and properties of a

balanced archy as derivedfrom the property/ of the wedge, or

hy considering the voussoirs or arch-stones as frustrums of

wedges.

Let ACEGi &c, be the

inner or lower curve of

an arch, formed of the

voussoirs, or wedge pieces,

the vertical sections of

which are the quadrila-

terals AD, OF, EH, GK, &C,
considered as so many ele-

mentary parts of the arch,

the upper sides of them forming the exterior or outer curve

BDFHK, and their butting sides making the joints ab, cd, ef,

GH, IK, &c, which joints produced, meet in the point o, of

the vertical hne oab. Through any point 6, in that line,

draw the horizontal line bdfhk, or perpendicular to the ver-

tical line oab, and cutting the directions of the joints in the

respective or corresponding points b, d,f, A, k, &c.

Now every wedge in the balanced arch, supposing its sides

polished, must be kept in equilibrio, in its place, by the mu-
tual action of three forces, viz, by its own weight acting in

a direction perpendicular to the horizon, and by the thrust

or pressure of the two adjacent wedges, one on each side, in

directions perpendicular to their sides, or to the joints: So,

for instance, the wedge ad is balanced, or kept in equilibrio,

by its own weight acting in the vertical direction bo, and by
two forces acting perpendicularly to ab and cd

;
and tlie

stone CF, by its weight in the vertical direction, and by two

forces perpendicular to cd and ef; also the stone eh, bj'its

weight acting vertically, and by two forces perpendicidar to

EF and GH ;
also the stone gk, by its weight verticuily, and
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by two forces perpendicular to gh and ik
;
and so on, the

weights ail acting in tlie vertical direction parallel to bao.

But, whenever three forces balance one another, they have
then to each other the same ratios as the sides of a triano-je

drawn perpendicular to the directions of the forces. There-
fore the three forces balancing the wedge ad, are propor-
tional to the three sides of the triangle obd, these sides being

respectively perpendicular to those forces, viz, the side bd

perpendicular to the vertical direction of gravity, also oh

perpendicular to the force against the joint ab, and oxl per-

pendicular to the force against the joint cd. For the same

reason the wedge cf is balanced by three forces proportional
to the three sides df, od, of, of the triangle odj"; and the

wedge EH by forces proportional to the three sides //ij of,

oh, of the triangle of/i ;
and the wedge gk by forces pro-

portional to the three sides hk, oh, ok, of tlie triangle ohk
;

and so on. So that, in all these cases, the weights of the

wedges, and their oblique push perpendicular to the joints,

will have these following ratios, viz,

the weights of the wedges - - - ad, cf, eh, gk. Sac,

as the parts of the horizontal - - bd, df, fh, hk, &c,
and the push at the joints as - - oh, od, of, oh, &,c,

also the sums of the wedges, or the parts, ad, af, ah, ak,

are proportional to the perpendiculars bd, bf, bh, bk,

which are the tangents of the angles bod,bof,boh, bok, &c,

of which the oblique thrusts od, of, oh, ok, are the secants,

to the radius ob, which denotes tlie constant push in the hori-

zontal direction at every wedge, or every point of the arch.

Which, on the whole, amounts to this, viz, that the weights
of any part of the balanced arch, or set of wedges, com-

mencing from the vertex, are directly proportional to the

tangents of the angles which the joints make with the vertical

line or direction, while the oblique thrusts, in the directions

of the arch at the extremity, or perpendicular to the joints,

are proportional to the secants of the same angles ; the con-

stant horizontal push, at every point, being proportional to

the radius.
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Awd this property comes to the very sairie tiling as the

properties in tlie
foreii;oiiif; propositions, b(;cause tiie angles

I'f elevation of the curve at every point, or of the direction

of the tangents there, or of the curve itself, are equal to tlie

an:;!es in this proposition, which the joints form with the ver-

tical direction. So that, all the three theories in these fonr

propositions are all one and the same in effect, amounting to

the very same thing, and yielding the same conclusions.

And therefore, whatever consequences may further be drawn

from any one of them, may be understood as deduced from

tiie whole.

Scholium. ^In the practice of bridge-building, the key

piece, or wedge at the crown, is a solid, having its magni-
tude and weight half on each side of the middle vertical line

;

whereas, in this proposition, it has been su[)poscd that this

wedge is divided and actually separated in two by that line

ab: this however will cause no difference in the theory, nor

yet in the practice; for, in any calculations that niay be re-

quired, it is only necessary to suppose the key [)iece divided

cxactlv in the middle, then taking half its weight for the

weight of the piece ad, and computing all the other weights
and angles from the nnddle line ab.

It has also been su])posed, in all the three theories that

have been contemplated, that the constituent parts are

formed of mateiials perlectlv smooth and polished, and [)ut

together without cement, and without all kinds of ties or

bars, so as to leave them quite at liberty to slide over each

other, the parts being kc[it in a perfect balance bv means of

their shape, weight, and dis[)osiiion only. This, it must Ix;

acknowledged, is not the case in real practice; as here ail

the materials are quite rough, which very much prevents
them from sliding bv each other, even when their abutting
surfaces are laid at a considerable slope or angle. But this

circumsrance however, so far from being a disadvantage, by
thus deviating from the theory, is on that very account of

great use and benefit. For, the equilibrium among the con-
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stituent paits of the arch, established by the fore'Toinn- the-

ories, is of that nice and critical nature, that the whole han<Ts

in a kind of tottering state of balance, from the perfect po-
lish of the parts, so that any the least accidental extraneous

force or pressure, on any particular part, would destroy the

equilibrium, and cause the whole to fall down, except for

the length of the joints and stones. The theory also sup-

poses the parts, constituting the fabric, to be exceedingly

small, and may be even round, small, polished globules.

But because of the shape and roughness and magnitude of

the parts, of which an arch is constituted, it comes to pass,

that a moderate degree of imperfection in the structure, or

any accidental shocks or pressure from external objects, has

no sensible effect in displacing or deranging the materials:

for the wedge-like form prevents any piece from easily

dropping out by itself; and the roughness of the sides pre-
vents the wedges from sliding; also the considerable mag-
nitude of the stones, or other matter, while it enables them

to bear the weight and pressure of the whole fabric, without

being crushed to pieces, admits of a small displacing of ma-

terials, or deviation from a perfect balance, as prescribed by

theory, without suffering any sensible inconvenience.

It has been supposed in this proposition, that the direc-

tions of the joints, cd, ef, gh, &c, when produced, all meet

in the same point o, of the vertical line oab. This however

is not necessary in the theory; as the directions of the

joints may meet the vertical in

so many different points o, 0,0,

&c, as in this
fig.

and yet all
j^

the parts and their affections

have still the same properties.

This will be made evident by

constituting the small trian-

gles, obd, obf, &c, apart, as in

this figure, by drawing, from one point 0, the lines oby od^

of^ &c, still parallel to the joints ab, cd, ef, &c, meeting
the horizontal line in the points by d,J\ kc: for, because
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these lines are perpendicular to the actions of the forces, of

pressure and push, of the arch pieces, the same proportions

among these, as before deduced, still take place, and hold

good; viz. that the weights are in proportion as the parts of

the line b dfhk, and the oblique push as the corresponding
lines ob, od, of, &c, of which ob is as the horizontal thrust.

It has also been supposed, that the joints are cut or drawn

pei-pendicular to the inner curve at every point, or that all

tlie angles at it, c, e, &c, are I'ight-angles. But neither is

this necessary in the theory; for the system of balancing
will be still the same, whatever those angles may be, whether

ail alike or all various, as these differences will only cause

an alteration in the weight or length of the arch^pieces,

which still will be represented in their proportions by the

part^ of the line bdflik. And indeed we often see this kind

of oblique joints employed in the small arches in the com-

mon practice of architecture and building, as over windows,

doors, gateways, &c. But yet such a practice is not to be

admitted into the larger kind of arches^ employed in bridges,

^c, as being both ungraceful and troublesome, as Avell as

weakening the fabrick.

It is manifest, from all the theories, that the balancing of

the arch is not restricted to any particular kind of curve or

shape, for either the under or upper curve; as the arch may
be balanced with any particular curves we please. It also

follows very evidently, that the same angles or directions of

the joints may be cinjiloyed to balance a great variety of

arches, and indeed any sort of an arch whatever; as in

this fig. ; where,

if the wedges
a, ^, c, dy &c,
form a balanced

arch, by being
taken in the re-

quired propor-
tion to each

othcr,viz,ast}ie

ditTerencesofthe
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tangents of the angles formed by their sides with the verti-

cal line; then, if the under curve pf any of the other lower

arches be assumed of any shape at pleasure, the upper curve

of them will be found, by taking their corresponding

wedges, al, bl, cl, &c, or a2, b2, c2, &c, or a3, bS, c'i, &c,
in the. same proportions to each other as the wedges a, b, c,

&c, are in the uppermost arch; and all the sets of wedges
will form balanced arches.

EXAMPLE.

The theory laid down in the preceding propositions,
which give, all of them, the same conclusions, will serve as

a foundation on which to establish a method for construct-

ing arches of equilibration, on any proposed curve whatever.

The method however will require some further preparation,
to render the application to practice easy and convenient.

We may here, however, in the mean time, just take one ex-

ample, in order to show the facility of the mode of calcula-

tion from the theory, so far as it has now been laid down-

In this example, we shall suppose that the intrados curve is

a circular arc, which is formed by the under sides of ther

wedge pieces, the joints between which are all perpendicu-
lar to that curve, as the only proper position, or all directed

exactly to the centre of the curve. We shall also suppose
the wedge pieces to form equal parts of that arc, of the

quantity of 5 each, that is, each wedge subtending at the

centre an angle of 5 degrees, the key, or middle wedge at

the crowi>, therefore, extending 2 degrees and a half on each

side of the vertical line passing through the centre; and

have n other wedges, of equal angle (5) on each side of the

key, making in all S5 wedges, which, at 5 degrees each, will

form an entire arch of 175 degrees. In this case, the angle

which the sides of the middle wedge forms with the middle

vertical line, will be that of half the breadth of the wedge,

or 2 ^ degrees ;
and the angles which the sides of the other

wedges, on each hand of the crown or key wedge, form with

the vertical direction, will be found by adding continually
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the breadth of each wedge (5 degrees), to the said 2^ de-

grees; b}' wliich it will he found that the angles at the cen-

tre, formed with the vertical, by the said lower edges of the

arch pieces, in order after the key, will be as follows, viz,

that of the 2d wedge 7f degrees; that of the 3d, 12^ de-

grees; that of the 4th, I ly degrees; and so on to the 17th

or last on each side the key, which will have its lower edge

making an angle of 81f degrees with the vertical direction:

all which angles, of inclination to the vertical, are ranged in

the 2d column of the following tablet, the first, or half the

middle wedge, making an angle of 2^ degrees. We shall

also suppose the weight of t!ie middle wedge at the crown

to be a certain given quantity, represented by unity or I ,

and express the several other weights and pressures, as in

the other columns of the said tablet, in terms of that unit:

so that all these proportional numbers for the other weights
and pressures, Avill require to be multiplied by any other

weight of middle wedge which may happen to occur in any
Qther case.

Now, in regard to the rule for computing all the other

"weights and pressures, according to the conclusions from

the preceding theory, it is very easy and simple indeed, viz,

that the weight of any part of the arch, counted from the

vertex or crown downward, is always proportional to the

tangent of the angle of inclination of the lower wedge to the

vertical, while the oblique push or pressure, in direction of

the curve, is proportional to the secant of the same angle,
and the constant horizontal thrust is proportional to the ra-

dius. For which reason it is, as former! v observed, that the

constant horizontal thrust is a proper radical measuring unit,

by means of which to compute the two other circumstances,

namely, the weight of the arch, and the oblique push or

pressure in the direction of the curve: for, the horizontal

thrust being taken for radius, then the weight of the semi-

arch will be the tanocut of the anirle witii the vertex, and

the oblique pressure the secant of the same angle, to that

mdius Coiisetpientlv, if the constant horizontal push be

called hy then the weight of t)ic semiarch will he h x tj or h
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multiplied by the tangent of the side's inclination to the ver-

tical, and the oblique pressure of the arch will be h x s, or

h multiplied by the secant of the same angle. So that, in

calculating the said several weights and oblique pushes of

the arches, we have nothing to do but to take out, from a

trigonometrical table, the tano-ents and secants of the seve-

ral angles of inclination to the vertical, as contained in the

2d column of the tablet, and multiply all the tangents and

secants by the number expressing the constant horizontal

thrust, for all the values of the several weights and pres-

sures, as arranged in the 3d and 4th columns of the tablet j

tlie products of the tangents being the several weights of the

half arches, in the 4th column, and the products of the se-

cants being the oblique pressures of tlie same in the arch's

direction, as in the 3d column. This calculation will be

rendered still easier by using the log. tangents and secants;

for there will then be nothing to do, but to take out all the

log. tangents and secants; then to each of them add the cou-

stant log. of the horizontal thrust
; lastly, take out the na-

tural numbers answering to these sums, and they will be tlte

required weights and pressures.

As to the uniform horizontal thrust, which is the constant

multiplier, its value is easily found thus: It has been shown
that this horizontal thrust is every where in the same pro-

portion to the weight of half the middle or key wedge, a*

radius is to the tangent of half the angle of that weds:e;

that is, as / : 1 : : 4-^' : 4^' -i- t = h the horizontal thrust, put-

ting zo for the weight of the key piece, and t for the tangent
of half its angle; or, if we put its weinht :c' 1, thou tliis

will beconie ^ ~ t = h the horizontal thrust. Now, in the

example, the angle subtended by the key is 5 degrees, the

half of which is 2|- degrees, and tlie tangent of this is

043660y; then i or -5 -0436609 = 11-4.5 1 SS3 = h the

constant horizontal thrust, that is, 1 1 times the weight of

the key piece and nearly one half more; or, the same mav
be easier found from the cotangent of the same angle 2 r

degrees, which is 22*903766, the cotangent of any angle

being equal to the reciprocal of its tangent, to the radius 1
;
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therefore, in general, -^ -4- tang. = ^ the cotang. is = h the

horizontal thrust, and in the present instance the half of the

cotangent 22*903766 is 11-451883 the same value of tl>e

horizontal thrust as before.

Hence then the constant number 1 1*45 1883 is to be mul-

tiplied by the tangents of all the vertical angles, to give the

weights of the semiarch, in the 4th column, and by the se-

cants of the same angles, to give their oblique pressures, as

in the 3d column; or else, to work by the logarithms, the

log. of the constant number 11*451883, which is r0588769,
is to be added to all the log. secants and tangents of the said

angles, then the corresponding natural numbers taken, and

ranged in the 3d and 4th columns of the table.

The differences of the numbers in the 4th column are

taken, and ranged in the 5th or last column, for the weights
of the single wedge pieces taken separately, making the

whole of the first or key wedge equal to 1. The table is

as follows.
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From this calculation, as well as from the theorems by
which it is made, it is manifest how greatly the weight and
the pressure of the semiarch increase towards the bottom or

the extremity, where the position of the joint approaches
towards the horizontal direction, or the angle it makes with

the vertical approaches towards a right-angle; and when

that angle actually becomes a right-angle, or the joint quite

horizontal, then the weight and pressure become equal and

infinite, which must naturally be expected^ both because the

tangent and secant of the angle (being a right one) are then

infinite, and also because it must require an infinite weight
or pressure to balance there the constant giv^en horizontal

thrust, which is perpendicular to the former.

We may here, by the way, stop to examine a little in

what manner the preceding calculation of the weights of the

voussoirs may be employed to give a familiar and easy me-

chanical construction, that may approach very near to a

true balanced arch. In order to this, we are to consider,

that since the bases, or extents of the under sides, of all the

voussoirs, are equal, it will thence happen that their weights
will have to each other nearl}' the same ratios as their lengths,

from the under to the upper side of them, or taken in the

direction of the radius, that is perpendicular to the under

curve or intrados, at least when tlie breadth or angle of these^

wedges is very small, which is the case iti real practice, the

approach to equality being the nearer indeed as their breadth

is the smaller. And though the angle of 5 degrees, em-

ployed in the preceding calculation, be not such a small

breadth as to render the equality and the construction per-

fect, it will yet strve to show the manner of proceeding in

such a way of forming the arch,ajid will besides approach

tolerably near to the truth.

As it is most proper that the joints between the wedge<?,

in the arch of a bridge, should be in directions perpendicu-

hr to the under curVe of the arch, v.e shall only exemplify

the method in ; ises of that sort. For this purpose then, let

us suppose the intrados or under curve to be divided into a

VOL. I. D
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number of equal parts, answering to a breadth of 5 degrees

each, or such that the angle formed by every two adjacent

joints, when produced, shall be an angle of 5 degrees. Let

us then draw a line through the middle point of every one

of these breadths, bisecting them, and in a direction perpen-

dicular to the curve at every point. Then, by setting off,

Upon these lines, from the curve upwards, by a proper scale,

lenii^ths wdiich shall have the same ratios to each oiiier as the

Avei"-hts of the corresponding wedges through which these

lines pass, or proportional to the numbers in the last column

of the foregoing table; then will the lengths of these lines

be the extent of the several voussoirs nearly, and therefore,

their upper extremities or points being connected, by draw-

ing short lines from one to another, they will limit or form

the extrados, or the upper curve or side of the arch, when

built of uniform materials, so as to be very nearly in equi-

librio.

As it is manifest that the theorems and the calculation

have no peculiar restricted reference to any particular curve

for the intrados, or under side of the arch, we are therefore

at liberty to assume that curve of any form at pleasure ;

thercfox*e the form of it being so assumed, by then ap})lying

the numbers of the foregoing table to it, in the manner

above mentioned, we shall have a balanced arch as required.

And thus by assuming any different shapes of curve for the

intrados, the same numbers in the table will give as many
balanced arches as we please. Assuming then, for the inner

curve, a semicircle, as in the next
fig. having its span or dia-

meter LM 84 feet, consequently its pitch or height oa 42 feet.

We shall also assume ab the thickness of the crown or key-

piece, equal to 6 feet, or the 14th part of the span, being

nearly the proportion employed by good engineers. Divid-

incr each half arc al, am, into 9 equal parts, oi 10 degrees

each, which will be sufficiently small to show the nature and

form of the extrados, containing each an extent of two

wedges or voussoirs; then from the centre o drawing radii

through all the points of division, these, when continued.
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Let A be the vertex of the

inner curve of the proposed

arch; ab the given thickness
j^

of the wall at the crown, or

lenjjthofthearchstonethere;

also BAO, Dco, &c, the joints

produced, making ao the ra-

dius of curvature at a, and co

at c, and eo at e, &c; the bases of the stones ac, ce, eg, gi,

&c, being so many elements or small parts of the arch; and

the vertical sections of the stones, or the areas of the qua-
drilaterals AD, CF, EH, gk, being proportional to the weights
of them.

Now every stone in the balanced arch will be kept in

equilibrio by three forces, viz, by its own weight acting

perpendicular to the horizon, and by the pressures of the

two adjacent stones, in directions perpendicular to their

sides, or to the two adjacent joints : So, for instance, the

stone ad is balanced, or kept in equilibrio, by its own weight,
and by two forces acting perpendicularly to ab and cd; and

the stone cf, by its weight, and by the two forces perpen-
dicular to CD and ef; also the stone eh, by its weight, and

b}- the two forces perpendicular to ef and gh
; also the stone

GK, by its weight, and by the two forces perpendicular to

gh and ik; and so on; all these v.'eightn acting in the ver-

tical direction bad.

But whenever three forces balance one another, they have

then the same ratios as the sides of a triangle drawn per-

pendicular to tlieir directions. Therefore, if there be con-

structed another figure obd/hk, having b/c horizontal, or j)er-

pendicular to a given vertical line ob; and having od parallel

to CD, and rf to or, and oh to oh, and ok to ok, &c: then

the three forces bakuuing tlie stone ad are proportional to

the three sides of tlie triangle obd, these sides being respect-

ively perpendicular to those forces; for the same reason,

'the stone cf is liulaiii-ec! by the three forces (If, od, of; also

the stone eh by the three ^/A, of, oh; and the stone gk by
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the three hk, oh, ok; and so on; in all these cases the

Aveights of the stones being proportional to the bases bd, df^

fh, hky of the triangles obd, odf, qfh, ohk. But as these tri-

angles have all the same common altitude oh, they have the

same ratios as their bases bd, df^ &c, which bases, it has

been shown, are proportional to the weights of the stones,

which have also been found proportional to the quadrilateral

areas ad, of, &c; therefore the quadrilaterals ad, cf, eh, gk,
are respectively proportional to the triangles obd,odf,ofh^ohk.

But, as these small triangles have their angles respectively

equal to the angles of the corresponding sectors, because

their sides are parallel by the construction; that is, the an-

gle bod = the angle bod, &c
;
their areas arc therefore pro-

portional to the squares of their corresponding sides;

viz. tiif sectors obd, oac, obd,

proportional to ob% oa^, ob^i

and the sectors odf, oce, odf,

proportional to od^, oc'', od^-, and so on.

Therefore, by taking the differences,

AD : obd : : ob^ oa^ : ob-,

and CF ; odf : : od* oc^ : o^%
and EH '. ofh '.'. of^ oe* : o/^,

and GK : ohk : : oh* oo* : oh-, &.c.

Hence, if oh^ be taken = OB" -- oa*,

then od* is = od" oc",

and of^ is = of' oe*,

and oh~ is = oh" og'-, &c.

Or, by transposing, ob* = oa'' + o3%

and od^ = cc? + o^%
and OF^ rr oe' -j- of-,

and OH^ =r OG^ + oh-, &c.

Which "-ives us the following geometrical constractiwn,

viz, Produce the joints till oa, oc, oe, og, &c, be equal to

the several radii of curvatuie at the corresponding points,

A, c, E, &.c; to which also ^ViLVt the par.iliels ob, od, of, &c.

Then take oh = ^^o^ ~ oa^, and draw ^c(/i^/c perpendicular
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too^. Lastly, make OD = ^/ oc' + 0^/% and of = -v/oe^ + <?/"

and OH = v'oG^ + oh'-, &c
;

then shall the line or curve

dravA-n through all the points b, d, f, h, k, &c, be the top
of the wall, so as the whole fabric may be balanced, or kept
in equilibrio, by the mutual Aveighfs and pressures of the

stones, having smooth or polished sides, and at liberty to

descend along them.

Note. When the given interior curve ace &c, is a circle,

all the radii of curvature will be equal to each other, and

^vilI all have the same centre o. But in other curves, having
various degrees of curvature, the radii and centres of curva-

ture will be all different.

EXAMPLE.

Suppose the interior

curve to be a .Semicircle.

And suppose the span
or diameter lm to be

S4 feet, the height or

pitch OA 42 feet, and the

thickness at the crown

AB 6 feet, which is the 14th part of the span. Then take

ob so, that ob^ be equal to ob^ oa^, or o^ = v/ob^ oa'

= 23*2379, and through b draw mbn parallel to the base

lm
;

from the centre o draw a number of radii oAgh &c,

cutting the circle in as many points g, and the line mn in

as many points h; on the perpendicular ln set off all the

distances l/? equal to the several distances oh, cut on the

radii by the directrix mu; then transfer the distances op to

the same radii produced to h, namely taking oh = op; then

shall the points ii be so many points of the exterior curve,

through all which points the bounding line being drawn with

a steady hand, it will be as is seen in the figure to this ex-

ample, which is accurately constructed and drawn by a

scale to the dimensions above given, and which will extend
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infinitely along the directrix mn, this line being indeed an

asymptote to the said curve.

The calculation in numbers is also equally easy and
obvious. Thus, taking any given angle aog, ob being r=

VoB" OA-, then Lp = oh = ob x sec. aog, and hence

OH = op = x/oL^ + L/>^
= -y/oA- -{ L/)*,

which gives a point

H in the curve. And the curve thus constructed gives the

very same as the fig. p. 35, formed on the principles of prop.

6, as might be expected.

Examples of other curves, besides the circle, might be

here taken, but the above case may suffice, as none of them

are of a nature to be suitable for, or to hold good, in the

construction of arches, at least for the ordinary purpose of

bridges. Because, that in such arches, the parts do not en-

deavour to sHde down in the oblique direction of the joints,

both on account of the roughness or friction there, and

because, when the parts are cemented together by the mor-

ter, or keyed together by pieces within side, the weights then

all act perpendicular to the horizon, being each fixed to the

other parts of t!ie arch, after tlie manner supposed in the

9th and 10th propositions; and according to the examples
to the latter of these, it will therefore be expedient to make

such calculations as may occur in cases of real practice.

PROP. VIII.

IFhen a curve is kept in equilibria^ in a vertical position^ by
loads or weights bearing on every point of it : then the load or

vertical pressure on every pointy is directly proportional to tlie

product of the curvature at that point, and the square of the

secant of the elevation above the horizon of the tangent to the

curve at the same point, the radius being I. That is, the load

or vertical pressure on any point c, is directly as the cur-

vature at c, and as the square of the secant of the angle bcit^

made by the tangent be and the horizontal line en.



40 qfHK PWNCIPtEIS OF BRIDGES. TRACT I-

Thisj property will be de-

duced as a corollary from the

properties in the 2d and 3d

propositions, according to the

idea mentioned in the conclu-

sion of the scholium there, by

conceiving the bars or lines kept in equilibrio to become iixlc-

finitely small; for, by this means, those bars will form a con-

tinued curve line, after the manner of the arch stones in a

bridge, constituting an arch of equilibration, by weights

pressing vertically on every small or elementary part of

the arch.

Now the consequence of the above idea, namely, of the

bars becoming very small, and forming a continued curve,

is, that the angle ^cd becomes the angle of contact of the

curve and tangent, and the angles ^ch, dch become equal to

each other
; consequently, the vertical load on the point c,

which, in the 3d corol. prop. 3, was proportional to the sin.

^CD X sec. ^CH X sec. dch, will be here proportional to the

sin. bcD X sec^. ^ch, or as the angle bcD x sec'. ^CH, since

a small angle [ben) has the same proportion as its sine. But

the angle of contact ^CD, in any curve, is the measure of the

curvature there ; therefore, lastly, the vertical load or pres-

sure, at any point c, in the curve of equihbration, is propor-
tional to the curvature multiplied by the sec*, of ^ch ; that

is, proportional to the curvature at that point, and also to the

square of the secant of the elevation of the curve or tangent

above the horizon.

Co7'0l. Because the curvature at any point in a curve, k

reciprocally proportional to the radius of curvature at that

point; it follows, therefore, that the vertical load or Aveiglit

sec'', bcfi
on any ]ioint c, is as

'

,
where r denotes the radius

of curvature at the point c ;
that is, directly proportional to

the square of the secant of elevation, and inversely proper*

lional to the radius of curvature to the same poipt.
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PROP. IX.

fVhen an upright wally bounded by a curve beneath, is kept
in equilibrio by the mutual ideight and pressure of its parts and

materials ; then the height of the wall above every point of the

curve, is directly proportional to the cube of the secant of eleva-

tion of the tangent to the curve there, and also directly propor^
iional to the curvature at the same point, or else, which is the

same things inversely proportional to the radius of cunaturc

there.

By the last proposition, the

load or pressure on every ele-

mentary or small portion,

cc, of the curve, is pro-

sec^, bcii

portional to
'

. Now

this load on every such small

equal part of the arch, as cc, is a mass of solid matter ciic,

incumbent on that part of the curve, and pressing it verti-

cally ;
and which may be considered as made up of a number

of equal heavy lines standing vertically on it
;
the number of

which lines may be expressed by the breadth ca of the said

pillar ci of heavy materials : but the breadth ca is =
C6' cc 1

,
,

,=
; , or as 7 , because the element cc is

sec. fca sec.ocH sec.d?CH

supposed given, or always of the same length, that is, ca is

reciprocally as the secant of the angle of elevation. Hence
CI sec . bcu

then the vertical load, or ci, or is as con-
sec. bciV r

sequently the altitude ci of the wall aklm, at the point c, is

SeC^. ^CH , , 1 rr^l
as , or as sec\ och x curvature there. That is,

r

the height of the Avail above every part of the arch of equili-

bration, is directly proportional to the cube of the secant of

the curve's elevation at that part, also directly proportional
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to the degree of curvature there, or else inversely as the ra-

dius of curvature at the same part.

Corollary 1 . Hence, if the form of the arch, or the nature

of the inner curve abcdm, be given; then the form or nature

of the outer line kil, bounding the top of the wall, or form-

ing vviiat is therefore called the extrados, may be found, so

as that the intrados abcdm shall be an arch of equilibration,

or be in equilibrio in all its parts, by the weight or pressure
of the .superincumbent wall. Fur, since the arch or nature

of the curve is given, by the supposition, the radius of cur-

vature and position of the tangent, at every point of it, will

be given, and thence also the proportions of the verticals ci,

&c. So that, by assuming one of them, as the miilJlc one

VD for instance, or making it equal to an assigned length, the

rest of the verticals will be found from it, and will be in pro-

portion as it is greater or less
;
and then the extrados line

KIVL may be drawn through all their extremities.

Or, on the other hand, if the extrados kivl. or line bound-

ing the top of the wall, be given ;
then tiic nature of the

correspondent curve of equilibration abcdm may be found

out. And the manner of the practical derivation ot both

these curves, mutually the one from the other, will be shown

in the following propositions.

Corollary 2. If the intrados curve abcd should be a circle;

then the radius of curvature will be a constant quantity, and

equal to the semidiameter of that circle; also the angle ben

will be always measured by the arc dc, from the vertex d of

the curve; and then the height ci of the wall, will be ever\

where proportional to the cube of the secant of the arch dc.

Corollary 3. Hence also it fol-

lows, that if between tlie intrados

and extrados curves, an interme-

diate curve kivl, be drawn through
the middle of tiie wall, bisecting all

the verticals dv, ci, &c, or indeed
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dividing them in any ratio whatever, so as that it may be

everywhere dv : Dt; ; : ci : ci; then if acdm bean arch of

equiHbration to the wall akvlm, it will be an arch of equili-
bration to the inner wall a/cvIm also.

PROP. X.

Having given the Intrados or Soffit, of a Balanced Arch; to

find the Extrados. That is, having given the nature orform
(fan arch ; from thence tofind the nature of the line forming
the top of the seperincumbent wallj hy the pressure of which the

arch is kept in equilibrio.

The solution of this problem is to be made out generally
from the last proposition and its corollaries, by adopting ge-
neral values of the lines there employed, which belong to all

curves whatever : or otherwise by making use of the peculiar

values proper to any individual curve, for the solution of

particular cases.

For the general solution, in fig. pa. 41, kvl represents the

extrados, the form of which is required, and abcdm the given
intrados or soffit of the arch, tlie vertex of which is d, and

DV the height or thickness of the wall there, which is com-

monly a dimension that is known from the particular circum-

stances of the case. Now if we make the arch dc = z, its

element cc = x, the absciss dh = x, its element ca = x, the

ordinate CH y^ its element ca = j, the height or thickness

of wall at the vertex dv = a, and the radius of curvature at

any point c ~ r, that at the vertex d being = r.

Then, because the height ci, at any point c, is as

sec^ ^CH or of cca , .
i ^

. . , , ,,

, by the last proposition, and because the

cc X
secant of fca is = =

,
the radius being 1, therefore

CI is as rr, or as r, , because x= cc= x/ca- + Crt' =
rj^ O
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z' a {x-+f)^ a
Or, the ceneral viilue of ci is -rr x = :t X -

> to
yi y yi y

where q denotes a certain given or constant quantity, the

value of which may be determined by making the general

expression equal to a or dv, the height at the crown of the

arch.

Corollary 1. Because, at the vertex of the curve d, the

angle of elevation is nothing- or its secant zz = 1 the

radius, and the radius of the curvature there being r; there-

fore the general expression for the height, becomes there

DV = a =
; consequently a = ctr, which is the general

value of a for all curves whatever, expressed in terms of the

height a at the crown, and n the radius of curvature at the

same point. Hence then, substituting this value of q in-

stead of it, the general expression or value of ci becomes

-7T X = r: X .

ji r y r

Carol. 2. Because, in all curves that are referred to an

axis, the general value of the radius of curvature r, is =

TT. rr. ; therefore, by substituting this value for r in the

last expression, the general value of the height ci then be-

comes r; X <;(R = ~ x Q, or = rr- X a w hen x is

yi yi yi

constant.

For, as either x or
3^ may be supposed to flow uniformlj-,

and wlien, consequently, either of their second fluxions may-

be taken equal to nothing, which will cause one of tlie terms

in the numerator of the above value of ci to vanish ; there-

fore, by striking out either of those terms, and then extermi-

nating either of the unknown quantities by means of the

equation to the curve, the particular value of the height i
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will be obtained: as is done in the following examples, ex-

cept in some certain cases, where more peculiar methods

may suit them better, as when the radius of curvature is a

known quantity, &c.

EXAMPLE 1.

To find the Extrados ofa Circular Arch,

That is, ACDM being a cir-

cular arc, of which aq or

QD is the semidiameter, a the

centre, and d the vertex of the

given circular arch
;

also k the

vertex of the extrados kig, and

the other lines as in the figure.

Making a = dk, r xq. -^

ao the radius of the circle, which is also equal to the radius

of curvature throughout, or r = r
;
also a: =. dp, and y zz

PC :=. Ri, and s = the arch dc. Then, because = =1,
r r ^

and T7 := the cube of the secant of elevation at c, which is

ca^ or Da^
;
therefore the general value of ci, incorol. 1,

r
pa^
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Carol. 2. It gives also a very simple construction by scale

and compasses, which is as follows : Join ac ;
draw pf per-

pendicular to QC, and fg perpendicular to qp
;
then shall

Q^ : QC : ; gp^ : qc^
; because, by similar triungles, ag :

qf : : o./ : qp and : : qp : qc, or q^, qf, qp, qc arc four

terms in continued proportion, in which case the first q^ is

to the fourth qc, as qp^ to qc% the cube of tlie third to the

cube of the fourth. Hence, if ci be taken a fourth projjor-

tional to Q^, QC, dk, it will be the length of the vertical line

sought. And this fourth proportional will be easily deter-

mined in the following manner: viz, Join eg, and in the

vertical line ic downward take ch = dk, and draw hi pa-
rallel to eg, so shall CI be equal to ci the fourth proportional

to Qg, QC, DK, or to QP% Qc% DK, as required.

Carol. 3. The extrados line in this figure is accurately

drawn according to the above construction and calculation,

when the thickness dk at the cro^vn is the exact 15th part of

the span am. It falls more and more below the horizontal

line, from the crown all the way till the arch be between 30

and 40 degrees, where it takes a contrary fiexm-e, tending

upwards, passing the point i very obliquely, and thence rising

very rapidly to an unhmited height, in an inhnite cuive, to

which the vertical line AG is an asymptote ;
a circumstance

wiiich must always be the case with every curve, which, like

AC, springs perpendicularly from the horizontal line aqm.

This curve cuts the horizontal line nearly over the point

of 50 degrees. If dk were taken greater than the 15th part

of AM, all the other vertical lines ci would be greater in the

same proportion, and the curve kig would cut the horizontal

line drawn through k in some point still nearer to k
;
but

the reverse, or farther off, if dk were taken less than the 15th

part. Hence it appears, that a circular arch cannot be put
in equilibrio by budding on it up to a horizontal line, what-

ever its span may be, or whatever be the thickness at tlie

crown. And consequently it may generally be inferred, that
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the circle is not a curve well suited to the purposes of a

bridge which requires an outline quite horizontal, but may
answer tolerably well when that line bends a little down-

wards, from the crown toward the extremities
;
and then a

great variety of proportions between the thickness at the

crown and the span of the arch might be assigned, which

would put the circular arch in equilibrio, nearly.

Now these cases will happen in general when kr vanishes,

or is of no length, and then ci must be equal to pk, or nearly

so
;
with which genei-al condition many particular cases may

be found to agree nearly. But it may be proper here first

to make out a general rule for such cases, which may be done

in the followinsr manner :

By the premises, the general
value of CI being dk x sec^.

DC, or as 1 : sec^ do : : dk :

CI
; then, by taking ci = pk,

in order to cause the outer

curve Ki to cross the horizon-

tal line KI at the point i, that

proportion becomes

1 : sec^ DC : ; DK : PK or dk -j- dp,

1

i

1
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DP CC
fore DK = r -OlSOSr = . That is, the thick-

sec^ 1 148

tiess at the crown would be the 148th part of the span, being
also much too small for common practice.

3d. If DC be taken = 60" : then its hciglit dp = ^r, the

DP
span CC = T^Z, the sec. do = 2

;
therefore dk = ~

CO CC CO
, ^,= iDP = -r^*' = = = r nearly. That^ ^

14v^3 24-2487 24^
^

is, the thickness at the crown would be rather less than the

24th part of the span: which is still too small in ordinary

bridges.

4. If DC be taken = 54 : then its height dp = 4122r, the

span cc = reiSr, and the sec. dc = 1'7013; therefore

DP CC
DK = ; = 10504r = '

. That is, the thickness
sec3.-l

*^
15*41

at the crown would be between the 15th and 16th part of the

span ; which is nearly the proportion allowed in common

bridges.

5. If DC be taken = 45 : then its height dp = r ^Vs/I^
the span cc = rv'2, the sec. do = v'2 ;

therefore dk =
DP 1 4-\/2 r cc cc

r
sec^-1 2x/2-l 2 + 3-^,72 G-{2^2 8-8284

ice nearly. That is, the thickness at the crown would be

more than the 9th part of the span : which in common cases

is too much.

6. If DC be taken = 30 : then its height dp = r \i'\/'l.

n
the span cc = r, the sec. do =

^7 ;
therefore dk =

DP r-^r^/S 6v/3 - 9 6^/3-9 cc
-r = cc -

s&c^. \ 8 16-6v/3 16-6v/;j 4-03

3^3
~ ^

|cc nearly. That is, the thickness at the crown would then

be almost the 4th part of the span.

1. If DC be taken = 13": then it? hcitrht DP :r- -OSiOTrj
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the span cc = -sner, and the sec. dc = 1*0353 ; therefore

DP _ DP
.3

DK
sec^:^

=
rpf

= 9DP = '^r =; fee nearly, or * of

the span.

From all which it appears, that a whole arch cdc of about

108 or 110 degrees, is the part of the circle which may be

used for most bridges with the least impropriety, the thick-

ness at the crown being nearly the 16th part of the span,

with a horizontal straight line at top.

EXAMPLE 2.

To determine the Extrados of an Elliptical Arch of Equi-
libraiion.

Suppose the curve in this

figure to be a semiellipse,

with either the longer or

shorter axe horizontal : put-

ting h to denote the horizon-

tal semiaxe aq, and r the

vertical one dq, also x = dp,

y =. vCf and a = dk, as usual.

Then, by the nature of the ellipse, r : h

h
, , .

hx
: y ;

therefore J/
= v2rx xx, and j = x
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DK X Da*
whicli is the

pa"*

of CI, this becomes ci = r- z=.

very same expression as the value of ci in the case of the

circle in the former example, and which belongs equally to

the ellipse in both positions, that is, both with the longer axe

vertical, and with the shorter one vertical, as it is in the

figure to this example.
Hence it appears, that the flat ellipse is more nearly ba-

lanced by a straight horizontal back or wall at top, than the

circle is; but the circle more nearly than the sharp ellipse:

the want of balance being least in the flat ellipse, but most in

the sharp one, and in the circle a medium between the two.

EXAMPLE 3.

To determine the Extrados of a Cycloidal Arch of Equili-

bration.

Let Dza be the circle

from which the cycloid

ACD ,
is generated ;

and

the other lines as before. I

Put a = DK, X = DP,

and J/
= cp = IR, as

usual; al^o put r = dq

the diameter of the circle, and z =. the circular arc dz.

Then, by the nature of the cycloid, cz is always equal to dz

=r z
; and, by the nature of the circle, pz is = ^^ rx xx

;

tlicrefore pc or
j/ (
= cz-f pz) is = 2; + ^/7-x-xx. Hence j-

ir-x . . .y'i

by the 11a-= z 4-
^/{rx-xx^

X X
;
but z is

A^/ (rx xx)
rx

ture of the circle; therefore j is = -- ~ - x x x
V (;'.r ^-.r)

r - X
, ..

- ri"^
.

^'
;
then J .-, making a- constant. Hence

X

CI is

^.fv'' (r.r xx)

xy<x \ ra

r -{r-xr
But at the vertex n, x =. 0, and
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CI = = a
;
therefore q = 2ar ; consequently the general

7' DQ
value of CI is ( Y x a = ( ^ X dk

;
a formula whichV .r pa

expresses the nature of the curve ki, for the extrados or back

of a cvcloidal curve of equilibration ;
a curve much resem-

bling that for the circle and elHpse, in the two foregoing ex-

amples, as evidently appears by comparing the figures toge-

ther, each of them being here accurately contracted. But

this last figure, for the cycloid, seems to be rather better

than either of those other two, as the extrados deviates rather

less from a ri^ht line, and extends farther alons; before it

bends upwards ;
and besides, the cycloidal arch is not defi-

cient in either use or gracefulness.

EXAMPLE 4.

To determine thefigure of the Extrados of a Parabolic Arch

of Equilibration.

Putting, as before, a = kd, r iz

Da, h = Aa, .r = dp, and y =r pc

= Ri. Then, by the nature of the

curve, hh : yy : : r : X =
hh

'

2ryy 2ri^
hence i =

i/ >
and x = ^UTy ^Y making j constant,

_,, M 2ra ,

Then ci = 77 X ais =
-7y-

= a constant quantity = a; that

is, CI is every where equal to kd.

Consequently kr is = dp
;
and since ri is = pc, it is

evident that ki is the same parabohc curve with dc, and may
be placed any height above it, always producing an arch of

equilibration.

B 3
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EXAMPLE 5,

Tofind thefigure of the Extrados for an Hj/perbolic Arch of

Equilibration.

Here putting, as before, a =:

KD, r = the semi-transverse, and

h = the horizontal or semi-con-

jugate axe, also jr =: dp, and j/

= PC = Ri. Then, by the na-

ture of the hyperbola, J/ = ~^'2rx + xx ; hence > = -^

r -\- X . . . . hrx^

\/{2rx-\- xx)

Therefore ci or - -

, and, by making x constant,jp
=

7''Q
X Q IS =-

y h"- X (r -\-xy
vertex d, where x = o, this expression becomes

r<k ahh
-rr = a

; hence o. =
, and consequently ci or

{2rx-{-xx)^

But in the

r*a ar^
IS = =

(: y X a, which is ex-
A*x(r + ^)3""' {r-\-xy ^r -^ x'

actly similar to the formula for the circle and elUpse, only

having r -{- x in the denominator, instead oi r x, which

causes the value of ci to become always less and less, as

the point c is taken farther from the vertex d.

In this hyperbolic arch then, it is evident that the extrados

KI continually approaches nearer and nearer to the intrados
;

whereas in the circular and elliptic arches, it goes off conti-

nually farther and farther from it
;
while in the parabola, the

two curves keep always at the same distance. Observing,

however, that, by the distance between the two curves,

in all these cases, is meant their distance in the vertical

direction.
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EXAMPLE 6.
,

Tofind the Extradosfor a Catenarian Arch of Equilibration.

Let a = KD, X = DP, and J/
= pc = ri, as before ;

also

let c denote the constant tension of the curve at the vertex.

Then, by the nature of the catenary, j/ is = c x hyp. log. of

c + x-^ ^2cx + xx . ., 1 n ,
'

1 ; hence, takmg the fluxions, we havej =

/(orr-i. r-rV ^^^^ = - cP X ^ -
, by making x

xy C -\- X
constant. Therefore ci, or -- x q, is rr x a. But

at the vertex ;r is = 0, and ci = an ; consequently Ql

is = ac. This being written for it, there results ci r=

X a = a -f- . And the same formula comes out
c c

for the logarithmic curve. Hence, for the nature of tlie

curve Ki, we have kr = (a + :r ci zz)x = 'X.x.

Carol. And hence the abscissa dp, of the inner or soflit

curve, is to the abscissa kr, of the exterior one, always in

the constant proportion of c to c a. So that, when a is less

than c, R and the curve ki lie below the horizontal line; but
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when a is greater than c, they lie above it
;
and \vhen a is

equal to c, kr is always equal to nothing, and ki, or the ex-

trados, coincides with the horizontal line. As a diminishes,

the line ki approaches always nearer to do in all its parts,

till, when a entirely vanishes, or is so small in respect of c as

Xo be omitted in the expression ^ .r= kr, the two curves

quite coincide throughout.

Scholium. As it has been found above, that the extrados

will be a straight horizontal line when a is equal to r, a cal-

culation may here be instituted to determine, in that case, the

value of c, and consequently of a with respect to .r and 2/, or

a given span and height of an arch of equilibration in that

case. Now the equation to the curve expressed in terms of

.
,

, ( -\- X -\r x^ '2ar -\- X.V
I, .r, and j/, is 3/

=r c x nyp. log. or
;

and when .r and 1/
are given, the value of 6' may be found

from this equation, by the method of trial and error. But

.IS the process would be at best but a tedious one, and per-

haps the method not easy in this case to be practised by every

person, we may here investigate a series for finding the value

of c from those of x and y in a direct manner. Since then

y :=z c X hyp. log. or
-; , by takmg the

riuxivon of this equ;ition, vre Inive

Cx ^
clx

y =
;

=z --
-, by writing d for 2c; and

^' ['2c.v -j-.rx) ^ {(ix-\-xx)
' ^

by expanding this exprcL^sion into a scries, it becomes

. cl
,

X l.Zx'- ].'.].5x'
^ ^ , ,

-^ ^ ^
.r V 2(/

^ 2Ad- 2A.bd'
' '

X
T.iiwP.g thr. Huents, Ave Ivive j/

=
-^/dx x (1 ,,,., +

\:^r' \ i>>.r,r'^ 1.3.5.7^^ o ^ , 1-

4. &C) : hence, uivulii!;r )y

y d X \.",x^ 1.0.,i.r'

r, we ijuve = ^/
- X (

I -7.-7 + - /,
-

TTa'T^^Ii '^~
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1.3.5.7^*
\ , ,- V d

2.4.6.8.9/^
^^ ' ^' ^' writing v for

J,
and w for V-, it

1
,

1.3 1.3.5
,

1.3.5.7

'2:iw
^ 2A.5w^ 2A.6.1w= 2.4.6.8. 9:^;'

^'

Then, by reverting this series, we have w znv + ^^ ^ '
6y 360x;*

547 337
^ 5040^" 5'60(hr7

^''- K^"^^' ^y squaring, &c, and re-

storing the original letters, it is {\d =. ^xw"- z=.) c = \x x

,y\ 1 8^* 69 Lr* 2385 iT^
o \

^^ + J
-
45^

+
3780^- T^^Em/^

^')' ''^''''' " ^^^" ^

the first terms are sufficient to determine the value of c

pretty nearly.

Now, for an example in numbers, suppose the height of

the arch to be 40 feet, and its span 100, which are nearly the

-dimensions of the middle arch of Blackfriars Brid<re at Lon-D
don. Then x = 40, andj/ = 50

;
which being substituted

for them in this series, it gives c = 36'S8 feet nearly.

So that, to have made that arch a catenarian one, with a

straight line above, the top of the arch must have been al-

most of the immense thickness of 37 feet, to have kept it in

equiiibrio. But if the height and span be 10 and 100 feet, as

above, and the thickness of the arch at top be assumed equal
to 6 feet, then the extrados will not be a right line, but as it

is drawn in the figure to this example, which figure is accu-

rately constructed according to these dimensions.

It maybe further remarked, that the curves in these last

three examples, viz, the parabola, hyperbola, and catenary,

are all very improper for the arches of a bridge consisting

of several arches; because it is evident from tlieir figures,

which are all constructed from a scale, that all the building

or filling up of the flanks of the arches v.ill tend to destroy

the equilibrium of them. But in a bridge of one single arch,

whose extrados or back rises pretty much from the spriiig

to the top, one of these figures will answer better than any
of the former ones. Other examples of known curves might
be "iven ; but those that have been hc'-o noticed, seem to
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be the fittest for real practice ;
and there is a sufficient variety

among them, to suit the various circumstances of conveni-

ence, strength, and beauty, that may be desired.

We may now proceed to another general problem, which

is the reverse of the last, and is, to determine the figure of

the intrados for any given figure of the extrados, so that the

arch may be in equilibrio in all its parts. This is a more

difficult problem than the former, and the more useful one

also. Here commonly, that the roadway may be of easy and

regular ascent, we are confined to an outline nearly hori-

zontal, to which the curve of the soffit or inner arch must

be adapted.

PROP. XI.

Having the Extrados given ,- io^nd the Intrados. That w,

having given the nature or form ofa line, bounding the top of
a wall above an arch; to determine thefigure of the arch^ so

thaty by the pressure of the superincumbent wall, the whole may
remain in equilibrio.

Putting a = DK the thick-

ness of the arch at top, x-=

DP the absciss of the required

intr.idos arch DC, M = KR the

corresponding absciss of the

given extrados Ki, and y = pc

= Ri their equal ordinates.

yx ~" xy
Tiien, by the last prop, ci is = x a

;
but ci is also

evidently equal to a { x u; therefore a -{ x m is
~

vx "" iy Q ^
' X Q =:

-.- X the tluxion of : where q is a con-
y' y y

stant quantity, as used in the last proposition, and is always
to be determined from the nature or conditions of each par-

ticular case, commonly indeed by taking the real value of

i-r, viz, DK or a at the vertex of the curve.



SECT. 2. OF THE ARCHES. il

Hence then, by substituting, in this equation, the given
value of u instead of it, as expressed in terms of

j/, the re-

sulting equation will then involve only ^ and y, together
with their first and second fluxions, besides constant quanti-
ties. And from it the relation between x and

j/ themselves

may be found, by the application of such methods as may
seem to be best adapted to the particular form of the given

equation to the extrados. In general, a proper series for the

value of X in terms ofj/ is to be assumed with indeterminate

coefficients
;
which series being put into fluxions, striking out

of every term the fluxion of j/ ;
and the result put into

fluxions again, striking out from every term of this also the

fluxion of J/ ;
the last expression di'awn into a being equated

to a -\~ X u, there will be produced an equation, from

which may be found the values of the coefficients of the

terms in the assumed value of x.

Fortunately however, the process is more simple and easy

in the most common and useful cases, than might at first be

expected from this general method, viz, when the extrados

is a straight line, even when it is oblique, and still more when

it is horizontal
;
two cases to which we shall now proceed to

apply the general method, in the following examples.

EXAMPLE 1.

To fmd an Arch of Equilibration when the Extrados is a.

straight line, oblique or inclined.

In this case, the extrados will

have a resemblance to the sloping

roof of a house, as in the annexed

fio-ure, and is often used in the

case of gunpowder magazines.

Here employing the notation as

in the proposition, the general equation there is ci, or w,

jx-xy X
a -f J5 wrrQX

r^ ,
or = q x -77, supposmg jr
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a constant quantity. But kr or m is = (y, if t bo put to

denote the tangent of the givcMi angle of elevut'on kir, to

radius 1
;
and then the equLitiCii is w a

-[-
,r

/j/
= ~rr.

But the fluxion of the equation w a -\- x ty^ is ib =
* ty^ and the second fluxi'.n is d- n: Jir ; therefore thegene-

ral equation becomes w =. -T7 ;
and lienceaJw

.^ , the

fluent of which gives w- = r^ : but at d the value of w is

= a, and I'v = o, because tlie curve at d is parallel to ki
;

therefore the correct fluent is w' a'' = -TT--. llenee then
y

y = -
, or y = : the correct liucnt 01 which

zv -{- V w' a''

gives J/
= ^Q X hyp. log. of .

Now, when the vertical line ci is at the ymsition AL, then

w CI becomes al =z the given quantity c suj)pose, and
j/

= AQ r= /i, in which ease the last equation becomes h =

^/q X hyp. log. 01
;
hence it is tound, that

7.

the value of the constant quantity/ y/ q is

h. l.or
a

whic'ii being substituted for it in the above general value of

w + a/ w"^ a'-

\or. 01^ a
i/,

that value becomes ?/ zr // x i_l,
;
from

1 r^" + ^^^" ~ ^'^

lop-. 01^ a

whieli equation the value of the ordinate cp may always be

foinul, to every given value of the vertical ci.

But if, on the other hand, pc be given, to find ci, v.hicli

will be the more convenient way, it may be found in the fol-

lowiatr manner: Pal a the lo;{. of tf, unci c = t X loo. of
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C 4- Vc^ ^
, , ,

.

;
then the above equation gives cj/+ a = co

log. of (a; -f- ^a;^ a^) ; again, put n = the number whose

log. is
cj/ + A

; then w = w + -y/w* a* ;
and hence w =

a* + w^

This example is more peculiarly adapted to the use of

magazines for gunpowder, which are usually made in the

manner represented in the figure above, that is in regard to

their roof, for the inner curve itself has commonly been made
a semicircle. But it is a constant observation, that after the

centering of semicircular arches is struck, they settle at the

crown, and rise up at the flanks, even with a straight hori-

zontal extrados, and still much more so in powder maga-
zines, where the outside at top is formed, like the roof of a

house, by two inclined planes joining in an angle, or ridge,

over the top of the arch, to give a proper descent to the rain ;

which effects are exactly what might be expected from a

contemplation of the true theory of arches. Now this shrink-

ing of the arches must be attended with very bad conse-

quences, by breaking the texture of the cement, after it has

in some degree been dried, and also by opening the joints of

the vousoirs at one end
; consequently the application of the

formula above investigated must be accompanied with bene-

ficial effects. It may be useful therefore to give here an ex-

ample in numbers in a real case of that nature. If the fore-

going figure then represent a transverse vertical section of a

balanced arch in all its parts, in which the span am is 20

feet, the pitch or height dq 10 feet, the thickness dk at the

crown 7 feet, and the angle of the ridge lkn 112 37', or the

half of it LKD = 56 18'i, the complement of which, or the

elevation kir, is 33 41 '4-, the tangent of which is =
|.,

which

will therefore be the value of t in the investigation above.

The values of the other letters will be as follows, viz, dk = a

= 7
; AQ = A = 10 ; DU = r = 10 J AL = c = V = iOf ;
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1 c 4- Vc^ a'^

A = log. of 7 = -8450980
;
c = -r- x log. of- = ^^

^ 31 + v/520
log. of = -rV log. of 2-56207 = '0408591 ; Cj/ +
A = -040859 ly + -8450980 = the log. of 7i. From the gene-

a" + 7z^

ral equation then, viz, ci w =

successively equal to 1,2, 3, 4, &c,

and thence finding the correspond-

ing values of Cj/ + A or "0408591

+ -8450980, and to these, as com-

mon logs,taking out the correspond-

ing natural numbers, or values of n;

then the above theorem Avill give

the several values of w or ci, as

they are here arranged in the an-

nexed table, from which the figure

of the curve is to be constructed,

by finding so many points in it.

2n , by assuming y

Vai. of
3/
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For an example therefore in numbers, let us suppose the

span of the arch to be 100 feet, the pitch or height 40 feet

and thickness at the crown 6 feet, which are nearly the

dimensions of the centre arch in Blackfriars bridge; then

the values of the several letters will be as follows, viz, aq =
h = 50; Da =r=: 40; dk = ct =

; al = c = 46. Hence

the hyp. log. or = hyp. log. oi

= hyp. log. of 15-2784 = 2-7257487 ; by which dividing h or

50, the quotient is 1 8'343584. So that the ordinate y will be

constantly, in that case, equal to 18'343584 x hyp. log. of

^
. Also = '0545 1 497 is = c, and A =

a 18-343584

hyp. log.of 6 = 1*7917594; therefore n is= the number whose

hyp. log. is
cj/ + A or 054514973/4- 1*7917594. Hence, by

assuming several values of the letter j/, which is = cp or ik,

the corresponding values of n will be found as above, and

then those of w or ci from the final general equation w =
a^ + 7z' S6 + 7Z'

, , . A J .1-= = 3 4--^ n\ And in tins manner were
2a 12

^
calculated the numbers in the following table; from which

the curve being constructed, it will be as appears in the

figure to the example.
And thus we have an arch in equilibrium in all its parts,

and its top a straight line, as is generally required in mast

bridges; or at least they are so near a horizontal line, that

their difference from it will cause little or no sensible ill

consequence. It is also both of a graceful figure, and of a

convenient form for the passage through it. So that no

reasonable objection can be offered against its adoption in

works of consequence, on account of its mechanical excel-

lency.
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The Tablefor Constructing the Cime in this Example^

Value
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That is, VI being the form of the

exterior surface of a balanced shell,

the interior surface of which is

formed by the rotation of the curve

DCA about its axis dh
;

the eleva-

tion of any part c being the angle

^H, and CH tlie ordinate or semi-

diameter of the dome at the point c, also r the radius of

curvature to the same point: then the height or vertical

thickness of the shell over the point c, or ci, is proportional
sec^ ^CH

to
r X CH

Let ACDCB be a small part of the inner surfaccj like a

curved sector or gore, dca and DeB being two near positions

of the generating curve. Now the vertical load on any

part c of a balanced arch, in a shell or dome, in the present

case, is a solid pillar, ci, whose height is ci, its breadth ca,

and thickness ce, and consequentiy is = ci x ca x oe. But

CH 1
ca is as

j
or as

;
and ce is alv.ays iji the same

CO sec. ben

proportion as ch
;

therefore the pillar c/, or ci x c x c^

CI X CH
is as

;
M'hich load, by the 8th prop, is also propor-

sec. bcu.

tional to
bcii

therefore
CI X CH

sec. ben

sec^ ben

is as-
sec', ben

-;coniie-

That is, the verticalquently the heig-ht ci is as
^ -^ ^ r X cH

height of the vv^all over every part of a balanced shell, or

dome, or vault, is directly as the cube of the secant of the

curve's elevation at that part, and inversely as the radius of

curvature, and also inversely as the width of the dome at

the same place.

And here may be also understood several corollaries and

observations exactly similar to those to the Sd, and the 9th

propositions, and which therefore need not be repeated in

this place.
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PROP. XIII. '

Having given the form of the Inner Surface of a balanced

Shell or Dome; to determine that of the Exterior or Outer

Surface. That is, having given the nature or form of an

inner shell; thence to find the nature of the outer or bounding

turface of the superincumbent wall, by the pressure of which,

the shell is kept in equilibria .

By reasoning here exactly

as in the lOtli proposition,

it will be found that the ge-

neral value of the height

CI of the wall, will be pro-

portional to the following

forms or quantities, viz,

sec\ bcH
CI is either as or as

as
yx xjf

ryr
-, or as

r X CH ryf
or as

ryy^
or

yy^
when X is considered as invariable,

or as

yy
when> is invariable: in which the letters have

the usual values, namely, x = dh the absciss, j/
rz ch the

ordinate, and 2 = DC the curve, also r the radius of curva-

ture at the point c. Or the general value of ci will be equal
to any of these forms midtiplied by a certain constant quan-

tity <a, the particular value of which is always to be deter-

mined by putting the general value of ci equal to the given
thickness of the shell, either at the crown, or at some other

particular place, where that value may happen to be known
or given.

Carol. From this, and the foregoing prop, we may infer

this general observation, namely, that no curve can produce
the figure of a true or exact balanced dome or cupola, unless

that curve be of such .1 nature as to have its radius of curva-
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ture at the vertex of an infinite length, or the curvature at

the vertex nothing; which is the case with some curves- or
unless the thickness at the crown be infinite. For, at the

vertex, the angle of elevation ^ch is nothing, and the secant

= 1
;
the ordinate ch is there nothing also j therefore the

, . sec^ bcK , ,

general expression, ci =
, becomes, at the vertex,

r X CH

Dv = = - = infinite, that is Dv must be infinite, if r
r X o o

be a finite quantity.

Or, if DV be finite, as suppose = A; then a =
r X o

or r = = . = infinite, when a is finite. That is,
a X o o

the radius of curvature at the vertex must be infinite when
the height there is finite or given; or, on the other hand,
the height or pressure at the vertex must be infinite, when
the radius of curvature there is a finite or given quantity, to

have the shell truly balanced. Of this nature there are se-

veral curves, of the parabolic kind in particular, of a form

both convenient and graceful, such as the cubical parabola
in the following example.

EXAMPLE,

Taking, for an example, the

curve DC of the cubical parabola,

so called because its abscisses

are proportional to the cubes of

their ordinates. Thus, putting

X = DH the absciss, i/ = ch the

ordinate, and a the parameter,
-^ *^

or a given quantity; then the equation to the curve is

ax = y^. Hence, taking the fluxions, we obtain x _ wy

and = -^
, when j is considered as invariable This

VOL. I.
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value of it being substituted for it in tbe general value of the

height CI, viz, -^. this becomes ci = -^-^ =
;
that is,

1/}^ ay y^ a

any given or constant quantity. Consequently the outer

curve is the same as the inner, but placed in a higher posi-

tion, as they appear in the figure to this example, where

the curves arc accurately constructed to a particular scale,

when the greatest width am is 80 feet, and the height dq is

64 feet.

The foregoing principle for balancing dome vaults, it

must be understood, is quite independent of the aid it re-

ceives from the circular or other form of its contour, in which

indeed consists its great strength and stability. For, from

this shape it happens, that the inside or outer one, in the

vertical section, may take any form whatever, either convex

outwards, as is usual in rotund domes, or a straight side, as

in the cone of tile kilns or tlte pyramidal spire, or even con-

cave outwards and convex inwards. For, by making all the

coursing joints of masonry, quite around, not flat or hori-

zontal, but everywhere perpendicular to the face, and all

the vertical joints tending or pointing to the axis, all the

stones or bricks, &c, will act as wedges in a round curb, and

cannot possibly come down, or fall inwards, unless the com-

ponent parts could be crushed to powder, or the bottom

circular course burst outwards. To prevent this from hap-

pening, a strong hoop of iron may be passed round the bot-

tom, and in other parts also, in works of consequence, which

effectually secures the fabric from bursting open, or flying

outwards, while the round form, like a curb, as securely

prevents it from fulling inwards. Hence too it happens,
that considerable openings may be cut in the sides, or it may
be left open, as if incomplete, at top, and over the opening

may be erected any other figure, whether lantern or spire,

&c, either for use or ornament.
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GENERAL SCHOLIUM.

In the foregoing propositions hare been deUverey' the

chief variety of ways for constructing the arches of briuges,
so as they may be in equihbrio or balanced in themselves.

There are three of these different methods; first, that which

ii^ derived from the consideration of the equilibrium produced

by the mutual thrusts, weights and pressures of the arch

stones, supposing them prevented from sliding on each other

at the oblique joints, either by their roughness and friction,

or by the cement, or stone locks, or iron bars let into every

adjacent pair of stones
j
which give the arch the effect of

one compacted frame, pressed on vertically by the weight
of the superincumbent load of wall above it : which seems

to be the true and genuine way of considering the action of

that load on the arch.

The second method, is that in which the balanced arch is

computed on the supposition that the arch stones have their

butting sides perfectly smooth, and at free liberty to slide on

each other. A method which is but little insisted on, as it

is founded on a supposition which is neither in nature nor

art, and which can never take place in any real construction

of an arch.

The third method, is that which has fcr its principle the

catenarian or festoon arch, formed by the suspension of a

slack chain or cord, by its two ends, and afterwards invert-

ed. This idea it seems was first proposed by Dr. Hooke,
near the latter part of the nth century, when the Newtonian

mathematics prepared the way to true mechanical science.

This is a strictly just and useful principle, and may be most

easily extended to every case that can happen in practice.

At first indeed the idea had nothing more in view than the

balancing of the single or thin arch, formed by the voussoirs

only, as the catenarian curve, formed by a simple chain or

cord, can aim at nothing further than tbe. balancing of that

simple string of arch stones, without any uther wall to fill

F 3
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up the flanks, &c. This principle was also neatly treated of

by Delahire, in prop. 123, 124, 125 of liis Traite dc Meca-

uique, published in 1695. But the same j)rinciple has been

lately acted on,*and extended much further, by professor

Jlobison of Edinburgh, namely, by making thus a festoon

arch balancing, not only the simple string of voussoirs, but

also the whole load of the superincumbent wall, of any ])ro-

posed form whatever. Tiiis method, so easy in its practical

operation, depends on, and is easily deduced from the first,

cr that which balances the arch by the mutual thrusts and

pressures of the parts; by showing that these forces, of mu-
tual pressure of the parts, are exactly equal and opposite to

those by which they pull or draw each other in the case of

suspension.

It is true that the equilibrium which any theory establishes,

is of so delicate a nature, by suj)posing the parts to touch

only in single points, that it may be called a tottering equi-

librium, since any other weiglit or force added at any part

would press the arch out of its true balanced form, and, by

shifting the points of contact of the parts, bring the whole

down to the ground, if it were not that the arch stones have

5ome considerable length, by which a stabihty is ensured,

as the altered figure will find new points of contact, where

x\iG action of the parts will principally bear, and through all

which points a new curve line may be conceived to pass, as

the catenary or festoon balanced arch. And hence it follows,

that the longer the butting joints or arch stones are, the

more stable and secure th(! whole fabric will be; since this

circumstance will allow of the n^ore change either in the

figure of the arch, or the true catenarian points of bearing
or thrust, and yet have a competent substance of solid stone

to sustain the great force of such actions. It is therefore of

the greatest importance to have the arch stones made as

long as may be, consistent with economy, and tiie other

circumstances of the fabric. An;i tliis was the great use of

the ril)s that were employed in the old English architecture,

the great projections of which anguicnted considerably the
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Stiffness of the whole, and enabled the architects to make
use of comparatively very small stones in the other parts of

the work. This contrivance we find has been used in con-

structing roofs, as well as in bridges ;
the few old remaining

ones of these we see have been constructed and strengthenad

by these ribs of long and large stones. It would therefor

be perhaps the safest and firmest way, to give the whole

masonry of the wall, over the arch stones, the same position

of joints as these stones themselves haVe, namely, not in

horizontal courses, but everywhere the joints in the direc-

tion perpendicular to the curve of the arch, quite up to the

top or road way ; as we sec indeed has been practised in

the face of the masonry at Westminster bridge. For, by
this means, the whole has the effect of arch stones, consi-

dered as extended the whole length, from the soffit of the

arch, all the distance up to the road way: thus ensuring a

strength and safety so complete, as to render even consitler-

able deviations from the theory of a balanced arch cf nn

material bad effect whatet^er.

SECTION Ilf.

OF THE PI1IR3.

When an arch is supposed to stand alone, and well ba-

lanced, it is necessary that its piers or abutments should be

at least sufficiently firm and massive to resist completely the

shoot, drift, or horizontal push of the arch. For should the

pier yield in the least to this drift, and be pushed aside, the

arch must infallibly fall down. It is therefore essential that

every arch should have its abutments properly adapted to

resist effectually its shoot. And the same precaution ought
also to be employed in a string or series of arches, such us
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an arcade, or a long bridge composed of several openings: fof

though, in these cases, the arches may be supposed to sus-

tain juutually each other's thrust, while they are all standing,

and to require only a slender pier between every adjacent

pair of arches, to serve as a thin plane between their mutual

pushes, like the ridge board between the butting ends of the

rafters in the roof of a house
; yet provision should be made

Against any possible accident that may happen to any one of

the urches in the string, so as that any of them may be sup-

posed cut open, or to fall down, and yet not affect the ad-

jacent ones, but leave them standing firm and independent,
sustained by their own piers alone. For otherwise, should

the arches be made in a string as it were, all dependent on

each other for support, then on an accident befalling any
one arch, the entire series of arches must follow it, and the

yvhole fabric come down.

Prudent architects therefore take care to employ various

means of constructing their piers to be, as they expect,

Bufticiently stable and firm, to sustain the shoot of the arches;

without however being always certain of the just and ade-

quate etTect. For this reason it sometimes happens, that

their piers are made too slender for perfect safety, and

sometimes indeed, erring on the other hand, they are made

unnecessarily thick and massive; a mistake which, to say

nothing of the ungraceful appearance, both enhances the

expence, and also impedes the free and easy passage of the

water and navigation, by occupying too much of the breadth

of the river, by such loads of solid masonry. It is therefore

intended, in this section, to give rules and examples for

computing nearly the proper thickness and weight of a pier,

so as to be an exact balance to the shoot of the arch
; that

by then giving it a very little more thickness in practice, a

security is provided against any accidental and extraneous

<nbrt.

But this equilibrium is not easily or certainly to be effected :

it is by all authors attempted, though not always justly, by

determining tb.e thickness of the piers such, that the resist-
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ance of its weight to being overset, may be at least equal to

the force of the shoot or drift of the arch against it. This prin-

ciple is obvious enough ;
but then all authors have not agreed

in the method of estimating the value of this last force in

particular. Some have determined this point on supposition
that the wedges or arch stones are perfectly smooth and un-

connected with each other; while others have supposed
them so firmly connected, as to form the arch into a solid

mass, acting like one rigid body only. It is true, and it has

been proved in the beginning of this work, that in an arch

of equilibration, formed of parts properly disposed, whether

of wedges, or of vertical pieces, the horizontal push or

<!hoot is constantly the same quantity in every part of the

^irch; being to the weight of the arch above that part, as

radius to the tangent of the elevation of that part of the arch

above the horizontal line: from which circumstance some

persons have imagined that, by computing the shoot or drift

for any small given part, as at the key stone for instance,

which can easily be done, that will be a sufficient measure

or value of the whole; then by applying it at some particu-

lar part of the pier, as a force or action tending to overturn

it, an equilibrium ii established between them. But this

method will not do
;
because it is founded on the supposition

that the constituent parts of the arch are perfectly polished,

and at liberty to slide freely on each other. Whereas, on

the contrarv, the parts that compose the arch are completely
hindered from sliding on each other, partly by iheir rough-
ness and friction, and partly by the cement employed be-

tween them, and still more by the ties and fastenings placed

within, to bind them together. By these means it happens,

that all the parts are firmly compacted and united, so as to

form the whole arch in some measure, into one rigid and

solid mass ;
and besides that many of the vou.ssoirs, in the

lower parts of the arch, are built and bonded into the very

body of the pier itself, and forming a part of its very mass.

The same principle also, of the constant and determinate

magnitude of the horizontal push, is fonnded on the suppgi-
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eition, that the arch is a true and real arch of equilibration ;

which perhaps can never be justly said to be the case. Be-

sides, if it were such an arch, and the quantity of the con-

stant horizontal push duly found, it would still be doubtful

at what point of the pier to apply it, in making the calcula-

tion of its effect, on account of the circumstance that the

arch has a bearing and oblique thrust, not ai^ainst one point

only, but in a different degree at all the points in that part

of the pier extending from the impost, or foot of the arch,

upward to the very top or roadway over the bridge.
On all these accoimts then, and perhaps others, not here

adverted to, it would seem that there is not, and perhaps
cannot be, any true and perfect mathematical calculation

made, of the exact balance between the push of an arch and

the stability of the piers. Hence it has happened that various

methods have been employed for this purpose, by different

authors, with more or less show of reason or grounds of

propriety: and hence also many practical engineers, neg-

lecting all such calculations as unsatisfactory, have depended
on practice and experience only, taking care, as they think,

to err on the safe side, by making the piers much too mas-

sive, rather than risk the hazard of a failure by the chance

of the contrary case. In this uncertainty, after several trials

and examinations, two of the most promising, among the va-

rious ways of solving this problem, have been selected and

delivered in the following prop, as affording probably a near

approach to a true conclusion.

PROP. XIV.

To find the thickness of the piers of an arch, necessary to

keep the arch in equilibrio, or to resist its drift or shoot, inde-

pendent of any other arches.

First Solution. Let bdec be the half arch, and efgh
the pier necessary to balance and support it, considered

as moveable about the extreme point g of the base.
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-Eisn
Through the centre of gra-

vity I, of the arch bdec,
let IK be drawn perp. to

the span aokc. Now the

semiarch BDEC is supported

against the part of the pier

EC, but chiefly on the im-

post or lowest point c,

which sustains its weight,
and by the horizontal

thrust of the other semi-

arch ALDB, acting against it in the line of meeting bd.

If both of these pressures be taken at their lowest points b, c,

the arch may be considered as supported at these two points
after the manner of a solid beam. But when such a body is

supported in this way, it is well known, from the principles
of mechanics, that the weight of the body downward, is in

proportion to the horizontal push at its foot, as the %'ertical

line IK is to the horizontal line kc; therefore the weight of

the semiarch bdec, is to its shoot against the pier at c, as

IK is to Kc: this force or push therefore will be expressed by
KG

X a, where a denotes the arch bdec, or its weiolit or
KI

' b

its area: and if this force be drawn into the length of the

KC.CF
lever cf, the product IK

X a will express the efficacious

force tending to overturn the pier, by causing it to turn

back about the point g, supposing the pier to be fjrmly

compacted into one mass.

Now, to oppose and balance this force to overset the

pier, ai'ising from the push of the arch, we have the resist-

ance depending on the weight of the pier itself. This weight

may be supposed to be collected into its middle vertical

line MN, or it may be represented by an equal v;eight p sus-

pended from its middle point m; p, acting by the lever

MG, and denoting the weight of the pier, or its arna ef.fq.
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Therefore the resistance of the pier will be expressed by
EF . KG . 4-FO or |EF . FG*.

Then, by making this opposing force of the pier equal to

the efficacious force of the arch, both as expressed above,

that there may be a just balance between them, they will

form an equation, from which will easi'y he determined the

unknown quantity, or thickness of the pier, so as to produce
the desired equilibrium. And, by Ridding a little more to it,

for better security, the stability is considered as sufficiently

obtained. Thus then, having made the equation |ef . fg*=
KC.CF

,
. KC. CF ...

.a. Its resolution cives us fg = */ .2a,whicn
IK ^^ ^ IK .EF

is the first theorem or rule for the thickness of the pier ;
but

which will probably be too small, by having taken the whole

push of the arch as acting at the lowest point c.

Second SolIII 1071. In tlie second mode of solving this pro-

blem, though the arch stones are supposed to be laid in mor-

tar, and so cemented or locked together as to prevent them

from easily sliding on one another, yet the whole not consi-

dered so firm or hard as to form as it were one solid

stone ; but the mortar or connection being only so firm, that

if the piers wt;re not sufficiently strong, the arch would break

in the weakest part, and overturn the piers. In this method

too let all the matter in the arch bdec be supposed collecte:*

into its centre of gra-

vity i
,
t '; i ro agh wh ich __ __^ D T RE_H

draw 01 from the

centre o,:uulthrough

the joint i:R of the

arch in which the

centre of gravity is

situated ; perpendi-
cular to the joint sR

drav.' IGP, the dlrec-

tio!i in which the
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joint SR resists and supports the action of the arch at i : draw
IK perpendicular to ac, or in the direction of gravity, also

GP and KQ perpendicular to ip or parallel to oir. Then if

IK represent the weiffht of the arch bdec in the direction of

gravit}', this will resolve into la the force acting against the

pier perpendicular to the joint sr, and qk the part of the

force parallel to the same : the line la is the only force acting

perpendicular on the arm gp, of the crooked lever fgp, to

turn the pier about the point g
; consequently iq x gp will

express the efficacious force of *he arch to overturn the pier,

and which must be equal to the force of the pier itself, de-

noted by the area egx iro as before: that is . a . gp = ef ,
^ * *

IK

FG . 4fg = fEF . FG*, a denoting the area of the section bdec
of the arch, as ef . fg denotes the section efgh of the pier.

And this equation, after substituting for gp its value, will be

a 2d theorem for the thickness of the pier, and which may
probably be rather above the just quantity.

Schol. As the centre of gravity is employed in both the

preceding methods, it will be necessary to employ a few lines

on the manner of finding the place i of that centre, together
with the various other lines in the figure dependent on and

connected with it. Now the centre of gravity i may be

known either by mathematical calculation, or by mechanical

and geometrical measurement. The best way of performing
the first method seems to be on this principle, viz. * That

the content of the solid described by any plane surface, either

m moving parallel to itself, or in revolving about a line as

an axis, is always equal to the product of the generating

plane, and the line described by its centre of gravity.*

Hence, if the whole figure odec be first revolved about the

axis oc, the rectangle odec will describe a cylinder, and tlie

ipace OBSC, of a given figure, will describe asoiid of a known

jiiagnitude; the difference of these two solids will give the

content of the solui described by the mixed space bdecsb ;
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this solid content divided by the area of its said generating

figure, gives the circumference of the circle described by the

centre of gravity i, which circumference divided by the num-
ber 6*2832, or by y,will be the length of the radius ik. Next,

by conceiving the same figure to revolve about the axis od,
and proceeding in the same way, there will be found the line

OK, or the distance of the centre of gravity i from the axis

OD. The point i being thus determined, there will hence

be known all the lines kc, oi, rs, iq, it, te, &c. Then, by

denoting the unknown breadth of the pier, eh or fg, by any

Jetter, as z, in terms of it will be expressed the perpendicular
gp: thus, by similar triangles, as ik : ok : : th : hv ;

hence

GH HV gives GV, and oi : ik : : ov : gp expresses t!ic

nnknown line gp. Lastly, the value of gp substituted in the

- . . , , ici- GP ..,,,.,
foregomg equation ^EF . FG- = .a, it will be m the

form of a quadratic, tlie solution of which will give the

value of FG, 'the thickness of tlie pier sought, very near the

truth.

The mechanical way of finding the centre of gravity i, and

the geometrical measurement, is thus pcrforn?.ed : On card-

paper or pasteboard, or any other thin plate, construct the

given figure bdecb very correctly, of a prett}' large size, from

a scale : then cut it out very neatly by the extreme edges,
and lay it so as just to balance itself over the straight edge
of a table, the line ce parallel to the edge, and close by the

edge of the table draw a line on the paper, v.hich will be the

iino, IK
;
next balance the same figure in like manner with the

line DE parallel to the edge of the table, close by which draw

another line, crossing the former line in the point i, which

will be the centre of gravity of the figure, determined suffici-

ently near the truth. This done, lay this point i down on

another general construction of the figure, having the repre-

f.entation of ttie pier annexed, on which also drav.- all the other

iines before mentioned, measuring ihcir lengths hy the scale

ef construct Ion, and notincr them down. Theii v.iUi these.
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together with the thickness of the pier eh or fg, denoted bjr

the unknown letter s, compute the value of gp, which, with

z the value of fg, substitute in the equation ^^kf , fg* =
IQ^. GP

. a, which reduce and solve as above mentioned, to
IK ' *

determine the value of z or fg the thickness of the pier j

which ma}' thus be easily determined in all cases, and with a

sufficient degree of accuracy. The same methods of deter-

mining the centre of gravity, and the lines ik, kc, in the
fig,

to the 2d example following may be employed, to substitute

KC CF
in the expression fg = a/

'

. 2fl, for determining the^ ^
IK . EF ^

thickness of the pier by the first rule.

In the foregoing solutions, it appears that, besides having

given all the meiisures or dimensions of the arch and height
of the pier, it is necessary to know the areas of their vertical

transverse sections, or at least that of the superstructure
BDEC : and this is easily to be found, when the figure of the

arch Bc and the exterior ue are known, viz, by deducting the

area of the space or vacuity obsc from that of the whole

figure ODEC. The foregoing sohitions may also be consi-

dered as taking place cither when the pier is all dry, or when
it stands partly in wiiter, which can penetrate its foundation

or tlie joints of the masonry : and whether this last circum-

stance takes place or not, can probably be well judged of and

ascertained by the experienced builder : if it do take place,

which is perhaps commonly the case, then in the calcuJatioa

the weight of the part in water must be reduced in the pro-

portion of 5 to 3, as stone loses 2 parts in 5 of its weight when

immersed in water. In the foregoing solution it has also been

supposed that tlie pier is made every where straight alike, or

equaliv thick down to the very bottom, as represented in the

two preceding- figures. But, instead of that, it is very com-

mon to enlarge the pier towards the bottom, both to give it

a broader base to stand on, without increasing- the weiglifc or

dimensions above, and to make the lever wk longer at the
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base, to oppose a

greater resistance to

its oversetting or turn-

ing about the point

G, and without any
sensible increase to

the weight of the

pier. On the con-

trary, as the thick-

ness, and consequently the weight of the pier, ma\'^bc dimi-

nished above, in proportion as it is enlarged at the founda-

tion, without diminishing its force of resistance and stability,

the experienced architect will avail himself of the circum-

stance, to reduce in a considerable degree the size of the pier,

and the expense of the work.

In the investigation of this proposition, the sections of the

arch and pier are used for their solidities, as being evidently
in the same proportion, or in that of their weights, since they
are of the same length, viz, the breadth of the bridge. By
the above rules then, the necessary thickness of a pier may
be found, so that it shall Just balance the spread or shoot of

the arch, independent of any other arch on the side of the

pier. But the weight of the pier ought a little to prepon
derate against, or exceed in effect, the shoot of the arch: and

therefore the thickness ought to be taken a little more than

what will be found by these rules
;
unless it be supposed that

the pointed projections ot" the piers against the stream, beyond
the common breadth of the brid<j[e, will be a sufficient addi-

tion to tlie pier, to give it the necessary preponderuncy. VVe

may now take some examples of the calculation in numbers,

to sliow the maimer of operation, -.ukI in them also to point

out the easiest methods of calcuiatioii.

EXAMPLE I.

Supposing the arcli in the figure to he a semicircle, Avhoso

height cr pitch is 4-5 feet, and consequently its span 90 fcctj
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also supposing the thickness db at top to be 1 feet, and the

height CF to the springing 20
;

let it be required to find

the thickness fg of the pier, necessary to resist the sljoot of
the arch

;
the roadway being a horizontal right line.

Now in this example we have ob or oc =: 45, bd = 7, (firr.

p. 74) OD or CE = 52, cf =: 20, and ef = 72. Hence, the

rectangle odec = OD x oc = 52 X 45 = 2340, and the circu.

lar quadrant OBC = 45' x -fr = 1590 nearly, the difference

of these gives 750 = a, the area of the arch bdec. Again,
the content of the cylinder generated by the rotation of the

rectangle odec, about the axis od, is 4oc* X tt ^ ^''^J ^^^

the content of the semisphere, generated by the rotation of

the quadrant obc, about the axis ob, is 4oc* x -^ x foB;
therefore the difference of these gives 4oc* x, ^ x (od

-fOB) zz 8100 X 44 X (52-30) = 8100 x ^ X 22 = 8100

X y X II = 140000, for the content of the solid generated

by the area bdec (750) about the axis bd. Hence 140000 -f*

750 = ] 86|^ the circumference or path described by the centre

of gravity i about od
; consequently I86f x ^:^

= 29*7 sr

OK, the radius of that circle. Hence oc ok 45 29*7

= 15-3 = KC.

Again, the content of the cylinder generated by the rota-

tion of the rectangle obec, about t!ie axis oc, is 4-od' x f|.

X oc
;
and the content of the semisphere, as above, is 4oB*

X 1^ X |oc ; therefore the difference of these two (od^

|0B-) X 4^ X oc, gives (52'
-

|.45') X V ^ 45 = 135*

X V X 90 = 191494, for the content of the solid generated

by the area bdec (750) about the axis oc. Hence 19I4S4
-~ 750 3= 255'325 the circumference or path described by
the centre of gravity i about oc ; conscq. 255*325 x

^^^j-
=

40*6 = IK, the radius of that circle. Lastly, the 1st theorem

KC.CF.2a . 15-3 X 2 X 1500 _ 510000
^ IK.EF ^''''^' ^'^

40-6 X 72
- ^^ 3248

""

12^ feet n FG, for the required thickness of the p\cr ; but

which is probably below the truth, and perhaps below what

a practical engineer would fully trust to.

It nmy be ailded, that the method of determining the plact?
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pf the centre of gravity i, bybalancing the figure bdec, gave,
within a small fraction, the same values of the two hues ik,

KC, viz, 40 -}-> and 15 + which were above calculated to

be 40-6 and 15-3.

Secondly, to apply
our example to the

5ld theorem, ^ef. fg*

IQ_, GP

REH

IK
the

same methods of de-

termining the posi-

tion of the centre of

gravity i may be em-

ployed. If the me-
chanical method of balancing and measurement on a scale be

used, we may then measure, not only the lines ik, ok,kc, but

all the other Unes also depending on it, as oi, or, ti, tr, te,

KQ, la, &c, excepting only such lines as depend on the un-

known breadth fg of the pier. But, instead of that, we shall

calculate the accurate value of all the lines wanted by strict

mathematical principles, as follows. In the example are given
OB = OC = DE = 45, OD = CE =r. 52, CF = 20, EF = 72 ;

and just above we have found by calculation ok = 29*7, kc
= 15*3, IK = 40*6, and the area bdec or a = 750 ;

and we
bave to compute iq and gp. Now oi = v'(ok^ + ik') =
^(29-7^ 4- 40-6') = 50-3;. then by similar triangles oi : OK

: ; IK : IQ = 23-97.

Again, to get an expression for gp, put the required
thickness of the pier kh or fg = ~

; then, because by
similar triangles, ik : ok : : od : dr = 3804,

and IK : lo : : on : or 2= 64-42, hence or 01 = 14*12 = ir,

and OK : 01 : : IR : TR = 23-91
,
also de OR = C-96 = re,

hence TR 4- RE =r 30'S7 = TE, and th = te + eh =TE-f ;r,

then IK : OK : : th : hv ~
1^2-58 -)- 0-7:; 15z,

and GH iiv = Gv = 49-42 -73152,

lastly 01 : IK : : GV : GP = 39-89 - -5904^.

These valuer licinsi now substituted in the 2d theorem Irr .
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TG^
la. GP

IK
. a, give 36z* = 17664-9 -26 1-50, or 2* +7*263

= 490*69
;
the root of which quadratic equation gives =

18'82 = EH or PG, the thickness of the pier sought.
It may be presumed that this theorem brings out the thick-

ness of the piers very near the truth, and very near what

would be allowed in practice by the best practical engineers,
as may be gathered from a comparison of the two cases of

AVestminster and Blackfriars bi-idges, in the former of which

the centre arch is a semicircle of 76 feet span, and 17 feet

thickness of piers, and in the latter it is a semiellipse, of 100

feet span, 40 feet in height, and 19 feet thickness of piers.

EXAMPLE 2.

Suppose the span to be 100 feet, the height 40 feet, the

thickness at top 6 feet, and the height of the pier to the

springer 20 feet, as before.

Here the figure either is, or may be considered as, a scheme

arch, or the segment ofa circle, in which the versed sine ob is

= 40, and the right sine oa or oc = 50
;
also db = 6, cf z:

20, and ef = 66. Now, by the nature of the circle, whose

centre is w, the ra-

dius WB or wc =
OB^+ oc^ 40^ + 50*

20B 80

= 51^; hence ow
= 51^-40 = 11^;

and the area of the

semiseo^ment OBC is

found to be 1491
;

which being taken from the rectangle odec = od x oc =
SO X 46 = 2300, there remains 809 = a, the area of the

space BDECB. Hence, by the method of balancing this space,

and measuring the lines, there will be found, kc = 18, ikl

= 34-6, IX 42, KX = 24, OX = 8, IQ = 19-4, TE = 35*6,

and TH = 35*6 + Z^ putting z = eh, the breadth of the pier,

VOL. I. G
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as before. Then iit : kx : : th : hv = 24*7 + 0*7z;

hence gh hv = 41-3 0-T~ r: GV, and ix : IK : : GV :

GP = 34'02 O'oSs. Tliese values beiiii'- now substituted

, , , iQ . GP. a .

in the theorem ^ef . fg =
, uue 33;''- = 15431 '47

IK
} b'

- 263*092, or z" + Sz = 467*62, the root of which quadra-
tic equation gives 2 r: 18 eh or FG the breadth of the

pier, and which it may be presumed is sufficiently near the

truth.

These two cases it may be expected are sufficient to ex-

emplify this ntethod of determining the proper dimension of

the piers ;
a method, the propriety of which is thus confirmed

by conclusions that arc so confonnable to the practice of the

best engineers. In all cases it apjjears to be the easiest

course, and sufficiently correct, to construct accurately the

semiarch and superstructure above it
;
then find its centre of

gravity by the method of balancing it in two positions per-

pendicular to each other, viz. in lines parallel and perpendi-
cuhir to the base ac

;
next through that centre i draw a line

iw perpendicular to the curve of the arch, or in the direction

of the arch joints there, and meeting the base line in the point

x; next, through i draw Tvp perpendicular to ix, and ik

perpendicular to ac, and kq })erpendicu]ar to tp. Then
measure by the scale as many of these lines as are necessary
in the inlended calculation, and as are used in workins: the

2d example above, viz, the lines ik, kx, te, iq, and compute
the area bdec a, v.hich may be sufficiently done in a me-

chanical manner, and to an apj)roximate degree, whatever

niay be the figure (j1 the curve, and shape of that area. After

this, continue to complete the rest of the calculation as in tli?

example above.
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SECTION IV.

THE FORCE AND FALL OF THE WATER, &C.

PROP. XV.

To determine the Form of the Ends of a Pier, so as to make

the Least Resistance^ or be the Least subject, to the Force of

the Streani of Water.

Let the following figure represent a horizonta.1 section of

the pier, ab its breadth, cd the given length or projection
of the end, and adb the line required, wiiether right or

curved; also let ef represent the force of a particle of water

acting on ad at the point f, in the direction parallel to the

axis CD : produce ef to meet ab in G, and draw the tangent
FH

; also draw eh perpendicular to fh, hi perpendicular to

EF, and FK perpendicular to DC.

Now the absolute force ef of the particle of water may be

resolved into the two forces eh, hf, and in those directions;

of these, the latter one, acting parallel to the face at f, is of

no effect; and the former eh is resolved into the two ei, ih;

so that EI is the only efficacious force of the particle to move
the pier in the direction of its axis or length : That is, the

absolute force is to the efficacious force, as ef is to ei. Then,
since ef is the diameter of a semicircle passing through h,

by the nature of the circle it will be, as ef : ei : : ef" : eh"' : :

(by similar triangles) hf' : nf and : ; the square of the fluxion

G 2
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of the curve or line : tlie square of the fluxion of the ordinate

FK, because hf, hi are parallel to the line and ordinate.

Therefore, putting the abscissa dk = x, the ordinate kf
=

J/, and the line df = z, it uill be, as i* :_y' : : 1 (the force

ef) : 77 = the force of the particle at p to move the pier

in the direction efg. But the nunnber of particles striking

against the indefuiitely small part of the line, is as j ; this

drawn into tlie above lound force of each, we have = t; r,' ^
** + J?*

for the fluxion of the force, or the force acting against the

small part z of the line.

But, by the proposition, the uhole force on dfa must be

a minimum, or the fluent of-, r, must be a minimum, when

tliat of X becomes equal to the constant quantity dc; in which

case it is known that ~~ rrr; must be always equal to some

constant quantity q ; and hence xj^ = q x {x'' +i^)*-

Now, in this equation, it is evident that * is to j in a con-

stant ratio
;

but when two fluxions are always in a constant

ratio, their fluents .r, j/,
it is known, are also in a constant

ratio, which is the property of a right line. Therefore df^
is a right line, and the end adb of the pier must be a right-

lined triangle, that the force of the water upon it may be the

least po'=;siblc.

PROP. XVI.

To determine the 2uantitij of the liesistanee of the End of a.

Pier against the Stream of Water.

Using here the same figure and notation as in the last

proposition, by the same it is found, that tha fluxion of th

force of the stream against the face dt, s .. -; and since

the fluxion of the force against the base is>, it follows, that
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the force of the stream against the base ab, is to the force

against the face adb, as ( y) the fluent of7, is to the fluent of

-; . .; . That is, the absolute force of the stream, is to the

efficacious force against the face of tlie pier, as its breadth is

to double the fluent of rr, when y is equal to half the

breadth.

Corollary 1 . If the face adb be rectilineal.

Putting DC = a, AC = b, and ad = ^/{aa + bb) = c
;

then, as tf : ^ : : ^ : 3/ by similar triangles ; hence x ~
ay oy .

j-y
and ;e = -7- ;

this being written for it in the general

,
.

, bh'y bby ^ , o
expression above, it becomes 7-^r = , for the fluxion^ '

aa-\- bb cc

of the force on ad ; the fluent of which, or ^, is the force
ce

itself. Consequently the force on the flat base ab, is to that

on the triangular end adb, as j/to ^, or as cc to bb, that is,

as ad' to Ac'.

And if AC be equal to cd, or adb a right angle, which is

generally the case, then ad* = 2ac% and the force on the

base will be to that on the face, as 2 to 1. Moreover, as the

force on adb, when adb is a right angle, is only half of the

absolute force, so it is evident that the force will be more

than one-half when adb is greater than a right angle, and

less when it is less ;
and also, that the longer ad is, the less

the force is, it being always inversely as the square of ad.

Corollary 2. If adb be a semicircle.

The radius ac = cd = a
;
then 2ax xx = yy^ or x =

yy y^
f. -- v/ (aa -~

yi/)} acd #= 7-" -^ ; hence irr-7-r, becomes
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..dz. X j, the fluent of which is ^^ x y ;
and there-

a ' '

aa

fore the force on the base is to the force on the circular end,

aaUjy
as

J/
IS to -' X 1/, or as aa to aa

}j/j/,
or as :iaa to

3aa yy. And when ?/
= a = ac, the piojiortion becomes

that of 3 to 2. So that, only one-third of the absolute force

is taken off by making the end a seniicirclc.

Corollary 3. When the face adb is a parabola.

Then, the notation being as before, viz, DC = a, and ac

... ,, , V// , . 'laijy= 0. It IS a '. X : : bb : iixi
;
hence x ,-> and x = ,, -

' "' '

bb
^

bb ^

which being written in the general expresMOii, the iiuent of

it becomes the circular arc whose radius is and tanorcnt ?/,

bb .

, , ,
-^'''/

or = - - X arc whose raduis is 1 and taniient
-

, , ; sotnat
'2a

'^ bo

the absolute force is to the force on tlie paraboUc end, as
jj

is to the arc whose tangent is
j/
and radius ; that is, as the

tangent of an arc is to the arc itself, the r^.dius being to the

2ay ay , , , , ,

tangent, as 1 to
-7'^,

or as 2 to . And whenj/ /;, the ra-

tio of the tan<>eut to radius, is that of 2 to
;
or that of 2

a

to 1 when dc ca. In which ca'-e, the whole force is to

the force on the parabolic en(i, a- the tangent, which is

double the radius, is to the corresi oneiing arc ;
tnat is, as the

tangent of 6S 2b' 4" to the arc of the sunie, or as 2 to r 107 14 ;

whicii is a less force than on the circle, but grcwirr ihan ;.n

the triangle. And so on for otii; r cur\-e.>; lu w iiich it will

be found, that the near.-r they appf <tcii ro right hn.'.>, tiie

less t -e f .rce wili be, and th.. it > .'.'a^t ot'.ii.i ni tiie tn.mg e,

in which it is oue-half oi tile wLo'c aosoiute iorci* when r,g;it-

anirlud.
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It must be noted, however, that in determining the best

form of the end of the pier to be a right-lined triangle, the

water is supposed to str'ke every part of it witii thv- s. me
velocity: had the variably increased velocity been used, the.

form of the ends would come out a little curved ;
but as the

increase of the velocity in the best bridges is very smai), the

difference in them is quite imperceptible.

PROP. XVII.

To determine the Fall of the Water in the Arches,

Having, in the foregoing propositions, treated of the re-

sistance made by the piers to the current of water, it will now
be proper to contemplate the effects of that resistance, ar.d of

the contraction of the passage they produce in the water-

^vay. These effects are, a fall, or sudden steep descent, and

an increase of velocitv in the stream of water, just under th.e

arches, more or less in proportion to the quantitv of tiie ob-

struction
; being somewhat observable at the p]ace of all

bridges, even where the arches are very large and the piers

small, but in a high and extraordinary degree at London

bridge, and some others, Avhere the piers, and the st^i'lings,

are so very large, in proportion to the arches. Now, in an

open canal or river, an equal quantity of water passing in

every part, in the same time, if in any part the passage be

narrower, there, the bottom continuing the same, the velo-

city of the stream must be so much the greater, and a corre-

spondent rise in the surface must also take place, to produce
that increased celerity. Similar effects also occur in a river

when any obstacles, as the piers of a bridge, are placed in

the way of a stream. This is resisted and obstructed by the

piers ;
of courtxi the water rises against them, and conse-

quently the stream from thence descends the more rapidly.

And this is the case, not only in such canals or rivers Avhere

the stream runs always the same way, but in tide rivers also,

both upward and downward. During the time of dood, when
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the tide is flowing upward, the rise of the water is against
the under side of the piers ;

but the difference between the

two sides gradually diminishes as the tide tiows less rapidly

towards the conclusion of the flood. When this has attained

its full height, and there is no longer any current, but a still-

ness prevails in the water for a short time, the surface assumes

an equal level, both above and below bridge. But, as soon

as the tide begins to ebb again, the resistance of the piers

against the stream, and the contraction of the water-way,
cause a rise of the surface above and under the arches, with

a fall and a more rapid descent in the contracted stream just

below. The quantity of this rise, and of the consequent ve-

locity below, keep both gradually increasing, as the tide con-

tinues ebbing, till at quite low water, when the stream or

natural current being the quickest, the fall below the arches

is the greatest. And it is the quantity of this fall whicli it is

the object of this problem to determine.

Now, the motion of free running water is the consequence

of, and produced by tiie force of gravity, as well as that of

any other falling body. Mence the height due to the velo-

city, that is, the height to be freely tallen by any body to

acquire the observed velocity of the natural stream, in the

river a little above the bridge, becomes known. From the

same velocity also will be found that of the increased stream

in the narrowed way of the arches, by taking it in the reci-

procal proportion of the breadth of the river above, to the

contracted way in the arches; viz. bysa3-ing, as the latter is

to the former, so is the first velocity, or slower motion, to the

quicker. Next, from this last velocity, will be found the

height due to it as before, that is, tiie height to be freely

fallen tlnough by gravity, to produce it. Then the differ-

ence of tiiese two heights, thus freely fallen by gravit}', to

produce tlie two velocities, is the recjuired quantity ol the

water-fall in the arches; allowing however, in the calcula-

tion, lor the contraction of the stream, in the narrowed pas-

sage, at the rate as observed bv Sir I. Newton. Such then

are tue elcoiCDts and principles on which the solution of the
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problem is to be made out ;
and which it is now easy for any

one to perform.

But, as it may be desirable to exhibit tlic manner of the

solution of this curious problem, by some former noted au-

thors, in this instance I shall give the solution from some ma-

nuscripts that have now been many years in my possession:

viz, one solution by the celebrated Wm. Jpnes, Esq. the

friend of Sir I. Newton, and father of the late SirWm. Jones ;

which is in Mr. Jones's own hand writing, and which I had

from the late Mr. John Robertson, many years clerk and li-

brarian to the Royal Society, who had the paper from Mr.

Jones himself. Another solution is by the same Mr. Robert-

son himself, from a paper found among a great number of

other manuscripts which I purchased at the sale of his books,

after his death in the year 1776
;
and among which papers there

are also other solutions that have never been published. The
solutions here inserted, are given in the same words and pe-
culiar manner as in those authors, in order to show their dif-

ferent forms and modes of stating and working. And first

the solution by Mr. Jones, done in his usual manner, which

was always remarkably concise, neat, and accurate.

The Solution of Wm. Jones, Esg.

" Lemma. In a chanel, whose stream runs with such an
uniform velocity, in any given time, as is acquired by falling

from a certain bight {h) ;
if an obstacle should contract the

passage of the water, in any place, the water above the ob-

stacle will rise to such a hight (h) as to acquire a velocity
that will discharge the stream as it comes

;
but will occasion

a fall at the obstacle: and the difference (h //} between

these bights, is the measure of that fall.

" In a chanel of running water, whose breadth [b feet),

and the velocity of its stream
(,:

feet in l), being given: To
determine the quantity of the fall, occasioned by an obstacle

that takes up p feet of the breadth of the chanel.
'^ Let the hight fallen (near the surface of the earth) in l"
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of time, be {a i'cet) ;
and the contractioa of streams, in the

water-way, be as r to 1. Put c = 7 : d D'cc: Then
^

o~-p

the quantity of the fall is ci 1 x vv x -- feet.

h p
**

For, the watcr-"svay takes up w (7) part of the breadth

of the chanel. But streams are found to be contracted in

tlie water-way, in the proportion of r to 1. Therefore the

water-way contracted will be (
- = )

(= vi). But the

current above the obstacle moves v feet in \" of time; and

the velocities of water through difierent passages, of the same

Light, arc as the reciprocals of the breadth of those passages.

Therefore the current, in the true water-way, must move
V 1

( = t,' =r
) nv feet in l" of time.

^ m Vi

" Now, since {a) feet is the bight fallen in 1" of time to

acquire a velocity to move uniformlv the length 2a in that

time : Let x and z feet be the bights fallen to ac([uire a ve-

jocity to move uniformly the lengrhs v and ?iv fe(,'t in l" of

time: and because bights fallen are ns the squares of their

velocities: therefore =
, and -^^ = -

-. cousctiuently
'iv X nin-j 'z

^ -^

t'v - nniv rv . ,X , anct z =3; . That is, leet is tne linnt of
'hi 'la

'

'ki
^

water necessary to produce, in the elianel, a current that

n)Qves r feet in l" of time. And '- feet, is the bight of

water necessary to produce, in th.e wuter-wav, a current that

mr.vcs ?2:.' in tliat time, '^i'hen the diiference z^//
--

1 x -
'id

of tiicse bights, is the fall in feet. But ;? (
r^

) rr,

tliereforc nn ~ rrcc d per supposition. Thert;fore dl
.-' - X y ; feet, is tlie quantity of tlie fall. a. i". d.
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^'
Hence, putting a =: l.

,
b = lt, c = l.c, d =: 2 x

E -t- c = L.(^: Then ud I -\- 2l . v + a = Log. of the

quantity of the fall, in feet*.
** Now, if the length of a pendum vibrating seconds, is

39*126 inches, then will a = 160899 feet; and, according to

Ne'.vton, r = I4-" consequently A = 2.1913861 ; and b =
0.0757207."

Such is the solution of this problem as given by Mr. Jones.

And as there is contained in the same paper with this, a short

solution of another kindred problem, it is here inserted, as

follows.

" The length, p inches, of a pendulum that performs one

vibration in l" of time, at a given place, being known
;
the

altitude (a) fallen from, in 1" of time, will be ^/'Tftf inches,

or -^^p^Ti feet, at that place.

T- ^'"^^ ^^f ^" r c TiTi . ." For (-: : =
)

= - =
; therefore

Hime in \p
'

t d 1
'

rr a cc liTi

^tt
"

'

ij)

"^
^ dd

-~
'\'

"
Consequently a = -pTt-r: inches =

-j-'^pTTTr
feet.

*' And putting n = (l.^Vtttt =: 2L.7r - l.21 =T.6 140885 ;

then L.a = l./; + n."

Proceed we now to Mr. Robertson's solution of the pro-

blem, which is on the principles, but more in detail, than

Mr. Jones's. This solution was published by Mr. R. in the

Philos. Trans, vol. 50, or in my new Abridgement, vol. 13,

from which it is chiefly here extracted.

Mr. John EobertsorCs Solution of the Problem.

*' Sometime before the year 1740, the problem about the

fall of water, occasioned by bridges built across a river, was

* This is the theorem, adapted to working by logarithms, given

by Mr, Jones to Mr. Gardiner, and printed in p. 12 of his Logarithms

in 4toj the latter L denoting logarithm, in the theorem.



92 THE PRINCIPLES OF BRIDGES. TRACT X.

much spoken of at London, on account of tlie full that was

supposed would be at the new bridge to be built at West-

minster. In Mr. Hawksmoor's and Mr. Label3-e's pamphlets,
the former published in 1736, and the latter in 1739, the

result of Mr. Labelye's computations was given: but neither

the investigation of the problem, nor any rules, were at that

lime published.
*' In the year 1742 was published, Gardiner's edition of

Vlacq's Tables; in which, among the examples there prefixed,

to show some of the uses of those tables, drawn up by the late

Wm. Jones, esq, there are two examples, one showing how
to compute the ftill of water at London-bridge, and the other

applied to Westminster-bridge : but that excellent mathe-

matician's investigation, by which those examples were

wrought, was not printed, though he comnujnicatcd copies
of it to several of his friends. Since tliat time, it seems as if

the problem had in general been forgotten, as it has not made
its appearance, to my knowledge, in any of tlie subsequent

publications. As it is a problem somewhat curious, though
not difficult, and its solution not generally known, (having
seen four different solutions, one of them very imperfect,

extracted from the private books of an office in one of the

departments of engineering in a neighbouring nation), I

thought it might give some entertainment to tlie curious in

tiicsc matters, if the whole process were published.

' PKINXIPLES.

*'
1. A heavy bodv, that in the first second of time has

fallen the height of a feet, has acquired such a velocity, that,

moving uniforndy with it, will in the next second of time

move the Icnfrth of 2fl feet,

"
2. The spaces run through by falling bodies are propor-

tional to one another as the squares of their last or acquired
velocities. Tiiese two principles are demonstrated by the

writers on mechanics.
'*

?. W'xUw forced out of a larger chanci, through one or
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more smaller passages, will have the streams through those

passages contracted in the ratio of 25 to 21. This is shown

in the 36th proh. of the 2d book of Newton's Principia.
" 4. In any stream of water, the Telocity is such, as would

be acquired by the fall of a body from a height above the

surface of that stream. This is evident from the nature of

motion.
"

5. The velocities of water through different passages

of the same height, are reciprocally proportional to their

breadths. For, at some time, the water must be delivered

as fast as it comes ;
otherwise the bounds would be over-

flowed. At that time, the same quantity, which in any timo

flows through a section in the open chanel, is delivered in

equal time through the narrower passages; or the momentum
in the narrow passages must be equal to the momentum iu

the open chanel; or the rectangle under the section of the

narrow passages, by their mean velocity, must be equal to

the rectangle under the section of the open chanel by its mean

velocity. Therefore the velocity in the open chanel is to the

velocity in the narrower passages, as the section of those pas-

saores is to the section of the open chanel. But, the heiohts

in both sections being equal, the sections are directly as the

breadths. Consequently the velocities are reciprocally as the

breadths.

''6. In a running stream, the water above any obstacles;

put therein, will rise to such a height, that by its fall the

stream may be discharged as fast as it comes. For the same

body of water, which tiowed in the open chanel, must pass

through the passages made by the obstacles ; and the nar-

rower the passages, tb.e swifter will be the velocity of the

water : but the swifter tlie velocity of the water, the greater

is the height, from which it has descended: consequently the

obstacles, which contract the clianel, cause the water to rise

against them. But the rise will cease, when the Avater can

run off as fast as it comes : and this must happen when, by
the fall between the obstacles, the water will acquire a velo-

city in a reciprccal proportion to tlr.it in the open chanel, as
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the breadth of tl^e open chanel is to the breadth of the nar-

row passages.
"

7, The quantity of the fall, caused by an obstacle in a

running stream, is measured by the dilference bct.vcen the

heights fallen from, to acquire tiie velocities in the narrow

passages and open chanel. For, just above the fall the velo-

city of the stream is sucl), as would be acquired by a body

falling from a height higher than the surface of the water:

and at the fall, tim velocity of tijc strt:ani is such, as would

be acquired by the fall of a heavy body from a lieight more

elevated than the top of the falling stream
;
and conse(]uently

the real fall is less than this height. Now as the stream comes

to the fall with a velocity belonging to a full above its sur-

face ; consequently the height belonging to the velocity at

the fall, must be diminished by the height belonging to the

velocity with which the stream arrives at the fall.

*' PROBLEM.

*' In a chanel of running water, whose breadth is con-

tracted by one or more obstacles; the breadth of the chanel,

the mean velocity of the whole stream, and the breadth of

the water-way between the obstacles, being given ;
to find

the quantity of the tall occasioned by those obstacles.

" Let b breadth of the chanel in feet
;

V = mean velocity of the water in feet per second
;

c- = breadth of the water-way between the obstacles.

Now 25 : 21 :: c : |^c, tlie water-way contracted, by prin. 3.

25b
And -IjC : b : : v : ~."^'> the veloc. in the contr. way, prin. 5.

w
Also {2ay -.WW a:

, height fallen to gain the vcl.
t', 1 and 2,

2.lb ,
25b vv

And {Oaf : (--.v/ : : a : (- )^ x
, ditto for the vclo-

citv -I', by priuc. 1 and 2.
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_, 25b w TV . . .,

Then - x '
7- is the measure 01 the tali required, prin. T.

21c 4a 4a i ' i

Or f ( Y~ 1] X is a rule for computinq; the fall.
* ^21f -'4a f o

Here a = 16,0899 feetj and 4a = 64,3596.

** EXAMPLE 1. For London-Bridge.

**
By the observations made by Mr. Labelye in 1 746,

Tiie breadth of the Thames at London-bridge is 926 feet;

Sum of water-ways at the time of low water is 236 feet;

Mean veloc. of stream just above bridge is d~ f. per sec.

Under almost all the arches there are great numbers of drip-

shot piles, or piles driven into the bed of the water-way, to

prevent it from being washed away by the fall. These dri]>-

shot piles considerably contract the water-ways, at least
|-
of

their measured breadth, or about 39y feet in the whole. So

that the water-way will be reduced to 196
j-

feet.

" Now b = 926; c = l9Gf; v = 3^; 4a = 64,3396.

2ob 23150
Then ; r: = 5,60532; its square = 31,4196:

2 If 4130 ' ' '

251^

And 31,4196 - 1 = 30,4196 = (-
'2\C'

19, 361
,

, rv 361

Then 30,4196 x 0,15581 = 4,739 f. = 4 f. 8,868 inc. the

fall required.
"
By the mo^t exact observations made about the year

1736, the measure of the full was 4 feet 9 inches."

" EXAMPLE 2. For JVestminsier-Bridge.

*'
Though the breadth of trie river at Westminster-bridge

is 1220 feet; yet, at the time of the greatest fall, therein

water through only the 13 large arche?, which amount to

820 feet : to Avhich adding the breadth of the 12 intermediate

piers, equal to 17 'r feet, give? 9i-i- for the breadth of the river



96 THE PRINCIPLES OF BRIDGES. TRACT I.

at that time
;
and the velocity of the water just above the

bridge, from many experiments, is not greater than 2^ feet

per second.
" Here b = 99^ ;

c = 820
;
v = 2\ ;

4a = 64,359G.

25b 24850
Now --

;
= "p;^ lj4;43; and Its square = 2,082;

25b
Hence 2,082

- 1 =z 1,082 = { )' 1.

Also z. = (f)=
= ^i ; .nd ": =.

^^--IL-^
= 0,0786.

Then 1,082 x 0,0786 = 0,084 f. =: 1 inch, the fall required;

and is about half an incli more than the greatest fall observed

by Mr. Labelye."

Among the old papers of Mr. Robertson 1 find several other

solutions of the same problem, by different persons, and on

somewhat different principles. Several of the papers also,

which are of a miscellaneous nature, relate to other branches

of the subject of bridges ;
some of which, being curious, I

shall avail mvself of, by insertion in the appendix to tiiii

Tract. Thefollowmg table shows, at one view, the quantity

of fall in the water under the arclies, in conseqiience of its

obstruction and contraction by the piers, according to seve-

ral rates of velocity and quantity of obstacles ; as computed
on the foregoing principles.
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SECTION V.

OF THE TERMS OR NAMES OF THE VARIOUS PARTS PECU-

LIAR TO A BRIDGE, AND THE MACHINES, &C, USED

ABOUT IT; DISPOSED IN ALPHABETICAL ORDER.

Abutment, or Butment, which see in its place below.

Arch, an opening of a bridge, through or under which

the water and vessels pass, and which is usually supported

by piers or by hutments. Arches are denominated circular,

elliptical, cycloidal, catenarian, &c, according to the figure

of the curve of them. There are also other denominations

of circular arches, according to the different parts of a cir-

cle: So, a semicircular arch, is half the circle ;
a scheme or

skeen arch, is a segment less than the semicircle ; and arclies

of the third and fourth point, or gothic arches, consi of

two circular arcs, excentric and meeting in an angle at top,

each being l-3d or l-4th, &c, of the whole circle.

The chief properties of the most considerable arches, with

regard to the extrados they require, &c, may be learned

from the second section. It there appears, that none, but

the arch of equilibration in the 2d example to prop. 5, can

admit of a horizontal line at top: that this arch is not only
of a graceful, but of a convenient form, as it may be made

higher or lower at pleasure with the same opening: that,

with a horizontal top, it can be equally strong in all its parts,

and therefore ought to be used in all works of much conse-

quence. All the other arches require tops that are curved,

either upward or downward, some more and some less. Of

these, the elliptical, or the cycloidal arch, seems to be the

fittest to be substituted instead of the balanced one, with the

least degree of impropriety : it is in general also the best

form for most bridges, as it can be made of any neight to

the same span, or of any span to the same height, while at

the same time its flanks are sufficiently elevated above the
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water, even wlien it is pretty flat at top; a property of

which the other curves are not possessed in an equal degree :

and this property is the more valuable, because it is remarked

that, after any arch is built, and the centering struck, it set-

tles more about the hanches than the other parts, by which

other curves are reduced near to a straight line at the flanks.

Elliptical arches also look bolder, are really stronger, and

require less materials and labour than the others. Of the

other curves, the cycloidal arch is next in quality to the

elliptical one, for all the above properties. And, lastly, the

circle. As to the others, the parabola, hyperbola, and ca-

tenary, they ma}'^ not at all be admitted in bridges of several

arches
; but may in some cases be used for a bridge of one

single arch, which is to rise very high, because then rtot

much loaded at the flanks. We ma}' hence also perceive
the fallacy of those arguments which assert, that because the

catenarian curve supports itself equally in all its parts, it

will therefore best support an)^ additional weight laid upon
it: for the additional building made to raise the bridge to

a horizontal hne, or nearly such, b}' pressing more in one

part than another, must force those parts down, and the

whole must fall. Whereas, other curves will not support
themselves at all, without some additional parts built above

them, to balance them, or to reduce their parts to an equi-

librium.

Archivolt, the curve or line formed by the upper sides

of the voussoirs or arch stones. It is parallel to the intrados

or underside of the arch when the voussoirs are all of the

same length; otherwise not. By the archivolt is also some-

times understood the whole set of voussoirs.

Banquet, the raised foot path at the sides of the bridge

next the parapet. This ought to be allowed in all bridges

of any considerable size: it should be raised about a foot

above the middle or horse passage, being made 3, 4, 5, 6, 7,

&c, feet broad, according to the size of the bridge, and

paved with large stones, of a length equal to the breadth of

the walk.



100 THE PFxIXCIPLES OF BRIDGF.S. TRAfcT I.

BATTARDrAU, or Coffer-dam, a case of piling, &.c, Avith-

oiit a bottom, fixed in tlie bed of the river, water-tight or

nearly so, by which to lay the bottom dry for a space large

enough to build the pier on. Wlien it is fixed, its sides

reaching above the level of the water, the wat('r is pumped
out of it, or drawn ofi"by engines, till the included space be

laid drv; and it is kept so, by the same means, if there are

leaks whicii cannot be stopped, till the pier is built up in^t;

and then the materials of it arc drawn up again.

Battardeaux are made in various manners,, either by a sin-

gle inclosure, or by a double one, with clay or chalk rammed
in between the two, to prevent the water from coming

tlirough the sides. And these inelosures are also made,
either with piies only, (hiven close by one another, and

sometimes notclied or dove-tailed into each other; or with

piles, grooved in the sides, and driven in at a distance from

one another, with boards let down between tliem in the

grooves.
The method of building in buttardeaux cannot well be

\ised where the river is either deep or rapid. It also re-

quires a very good natural bottom of solid earth or clav:

for, though the sides be made water-tight, if the bottom or

bed of the river be of a loose consistence, the water will

ooze up through it, in too great abundance to be evacuated

by tlie engines. It is almost needless to remark, that the

sides must i)e made verv strong, and well propt or braced

on the inside, to prevent the ambient water from pressing
the sides in, and forcing its way into the battanleaux.

Bridgi-:, a woik of carpentry, masonry, or iron, built over

a river, canal, S:c, for the conveniency of crossing the same.

A bridge is an editiee forming a way over a river, &.c, sup-

ported by one arch, or by several arches, and these again

suj)ported by ])roper piers or hutments. A stately hriJoCj,

over a large river, is one of the most noble and striking pieces
of human ait. To behold huge and bold arches, (-(niiposed

of an immense (|uiintity of small materials, as stones, bricks,,

\c, so disposed and united together, that they seem to foriu
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but one solid compact body, affording a safe passage for

men and carriages over large waters, Avhich witli their navi-

gation pass free and eii^y under them at the same time, is a

sight tmly surprizing and affecting.

To the absolutely necessarv parts of a bridge, already

mentioned, viz, the archc'. piers, and abutments, may be

added the paving at toji, the })arapet wall, either with or

without a balustrade, &c; also the banquet, or raised foot

way, on each side, leaving a sufficient breadth in the middle

for horses and carriages. The breadth of a bridge for a

great -city should be such as to allow an easy passage for

three carriages and two horsemen a-breast in the middle

way, and for three foot passengers in the same manner on

each banquet. And for other less bridges, a less breadth.

As a bridge is made far a wav or jiassage over a river, &.c,

so it ought to be made of such a height, as will be quite
convenient for that passage ;

but vet so as to be consistent

with the interest and concerns of the river itself, easily ad-

mitting through its arches the craft that navigate on it, and

all the water, even at liigh tides and floods. The neglect of

this prece]it has been the ruin of many bridges, and parti-

cularly that at Newcastle, over the river Tyne, on the l7th

of November 1771. So that, in determining its height, the

conveniences both of the passage over it, and under it,

should be considered, and the height made to answer the

best for them both, observing to make the convenient give

place to the necessiny, when their interests are opposite.

Bridges are generallv placed in a direction perpendicular
to the stream in a direct Ime, to give free passage to the

water, &,c. But some think they should be made, not in a

straight line, but convex towards the stream, the better to

resist floods, &.c. And some such bridges have been really

made. A"-ain, a bridije should not be made in too narrow a

part of a navigable river, or one subject to tides or floods:

because the breadth being still uiore contracted by the piers,

will increase the depth, velocity, and fall of the water under

the ai"ches, and endanger the whole bridge and navigation.
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Bridges are usually made with a odd number of arches,

as one, or three, or five, or seven, &c; either that the mid-

dle of the stream or chief current may flow freely without

the interruption of a pier; or that the two halves of the

bridge, by gradually rising from the ends to the middle, may
were meet in the highest and largest iircii

;
or else, for the

sake of grace, that by being open in the middle, the eye, in

viewing it, may look directly through there, as one always

expects to do in looking at it, and without which opening
we generally feel a disappointment in viewing it.

If the bridge be equall}' high throughout, the arches, being
all of a height, are made all of a size; which causes a great

saving of centring. If the bridge be higher in the middle

than at the ends, the arches are made to decrease from the

middle towards each end, but so, as that each half may have

the arches exactly alike, and tliat they decrease in span, pro-

portionally to their height, so as to be always the same kind

of figure, and similar parts of that figure; thus, if one be a

semieircle, the rest should be semicircles also, but propor-

tionally less; if one be a segment of a circle, the rest should

be similar segments of other circles
;
and so for other figures.

The arches being equal at equal distances, on both sides of

the middle, is not only for the strength and beauty of the

bridge, but that the centring of the one half may serve for

the other also. But if the bridge be higher at the ends than

the middle, which is a very uncommon case, the arches

ought to increase in span and pitch from the middle towards

the ends. When the middle and ends are of different heights,

their difference however ought not to be great in proportion

to the length, that the ascent may be easy; ami then also it

is more beautiful to make the top one continued curve, like

Blackfriars, than two inclined straight lines, from the ends

towards the middle, like that of Westminster bridge.

Bridges should rather be of few and large arciies, than of

many and small ones, if the height and situation will allow of

it; for this will leave more free passage for the water and

navigation, and be a great .saving in materials and labour, as
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there will be fewer piers and centres, and the arches them-

i^lves will require less materials. And, one large single arch

only is best, when it can be executed. For the fabric of a

bridge, and the proper estimate of the expence, &c, there

are generally necessary three plans, three sections, and an

elevation. The three plans, are so many horizontal sec-

tions, viz, the first a plan of the foundation under the piers,

with the particular circumstances attending it, whether of

gratings, planks, piles, &c : the second, is the plan of the

piers and arches, &c : the third, is the plan of the super-

structure, with the paved road and banquet. The three

sections, are vertical ones: the first of them a longitudinal

section, from end to end, and through the middle of the

breadth; the second, a transverse one, or across it, and

through the summit of an arch : and the third also across,

but taken on a pier. The elevation, is an orthographic pro-

jection of one side or face of the bridge, or its appearance
as viewed at a great distance, showing the exterior aspect
of the materials, and the manner in which they are worked
and decorated. Other observations are to be seen in the

first section.

BuTMENTs, or Abutments, are the extremities of a

bridge, by which it joins to, or abuts on, the land or sides

of the river, &c. These must be made very secure, quite

immovable, and more than barely sufficient to resist the

drift of its adjacent arch. So that, if there are not rocks or

very solid banks to raise them against, they must be well

reinforced with proper walls or returns, &c. The thickness

of them, which will be barely sufficient to resist the shoot of

the arch, may be calculated as that of a pier by prop. xi.

When the foundation of a butment is raised against a

sloping bank of rock, gravel, or good soHd earth, it will

produce a saving of materials and labour, to carry the Mork

on by returns at different heights against it, like steps of

stairs. And if the foundation, and all the courses, parallel

to it, be laid, not horizontal, but rising backwards, so as to

be perpendicular to the springing and pressure of the arch,

H 2
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it will be less liable to slide or be forced back by the push
of the arch. j^

Caisson, a kind of Chest, or flat-bottomed boat, in which

a pier is built, then sunk to the bed of the river, and the

sjdps loosened and taken off from the bottom, by a contri-

vance for that purpose; the bottom of it being left under

the pier as a foundation. It is evident therefore, that the

bottoms of caissons must be made very strong, and fit for

foundations of the piers. The caisson is kept afloat till the

pier be built to about the height of low-water mark; and,

for that purpose, its sides must cither be made of niore than

that height at fjrst, or else gradually raised to it as it sinks

by the weight of the work, so as alwaj-s to keep its top
above water. And therefore the sides must be made very

strong, and be kept asunder by cross timbers within, le.>t the

great pressure of the ambient water should crush the sides

in, and so not only endanger the work, but also drown the

men who work within it. The caisson is made of the shape
of the pier, but some feet wider on every side, to make room

for the men to work: the whole of the sides arc of two

pieces, both joined to the bottom quite around, and to each

other at the salient angles, so as to be disengaged from the

bottom, and from each other, when the pier is raised to the

desired height, and sunk. It ia also convenient to have a

small sluice made in the bottom, occasionally to open and

shut, to sink the caisson and pier sometimes by, before it be

finished, to try if it bottom level and rightly; for, by open-

ing the sluice, the water v.ill rush in and fill it to the height
of the exterior water, and the weight of the work already

built will sink it; then, by shutting the sluice, and pumping
out the water, it will be made to float again, and tije rest of

the work mav be completed : but it must not be sunk e.xcej)t

wliL'ii t!)e sides are high enougli to reach al)ove the surface

ot tiie water, otherwise it cannot be raised and laid drv

again. ^h. I.abelye savs, that the caissons in which he

!)uilt ^o;ln.; of the. piers of \\'estuunster bridge, contained

.iliu\e I.IO load of lir timber, ol' 40 eubie feel each.
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and was of more tonnage, or capacity, than a 40 gun ship

of war.

Centres, and Centri?-.'G, or Centering, are the timber

frames erected in the spaces of the arches, to turn them on,

by building on them the voussoirs of the arclies. As the

centre serves as a foundation for the arch to b^ bi; a on,

wb.en the arch is completed, that foundation is : uck ironi

under it, to make v.-ay for the water and navigatioii, und

then the arch will stand of itself from its cur^^id {ig;-^-e. A
centre must therefore be constructed of the ex.xt ngt?rc of

the intended arch, convex as the arch is concave, to receive

it on as a mould. If the form be circular, the curve is stru -k

from a central point by a radius: if it be elliptical, it ought
to be struck with a doubled cord, passing over two pins or

nails fixed in the foci, as the mathematicians and gardenevs
describe their elliT)ses. Very often, in practice, an oval is

employed, as made of three circular arcs. Tliis verv nearly

resembles the true geometrical ellipsis, being formed of two

equal arcs of small circles at the extremities, having betv.een

them a longer arch of a much larger circle, the ends of these

arches being made to butt and join to each other, that they
seem like the same curve only continued. As this mecha-

nical oval will have nearly the same properties and etTect as

the true ellipsis, and can be more conveniently worked by

the builders, as it requires the voussoirs to be cut only to

two moulds, or for two centres, Avhile those for the true

elli[)sis have them all different, we shall add in this j)lace

some of the most approved methods of describing these ovals.

These methods indeed are, and must be, various, according
as the length or span is required to be more or less, in pro-

portion to the breadth or height. But in all of them, the

centres of the large and small arcs must be so taken, that the

right line passing through them, may also, when continued,

pass through exactly the point where the ends of those

arches butt and join together; for by this means they will

)uve the same common tangent at that point, and conse-
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quently they will unite together, or run into each other,
like parts of the same curve produced.

fiRST METHOD. When the Length and Breadth differ not

very much.

Divide the given length or span
AB into three equal parts, at the

points c and d. With one of those

parts, CD, as a radius, and from

the two centres c, d, describe two

circles, intersecting each other in IC^^'^^^ -e
.:":.:-^^^!

the two points e and f. Through these two points e, f,

and the two centres c, d, draw four lines zcG, edh, fdi,

FCK, cutting the two circles in the four points g, h, i, k.

Lastly, with one of these lines, as a radius, and from the two

centres e, f, describe the two arches gh, KI, and they will

complete the oval, forming a figure so much resembling a

true ellipse, that the eye. cannot perceive the difference be-

tween them. In this oval it is evident that the radius of

the larger circular arch is just double of that of the smaller

arches.

SECOND METHOD. /or a Nuvrower Otal.

Divide the length or span AB

into four equal parts; then, with

one of those parts as a radius, and

from the three points of division,

c, D, E, as centres, describe three

circles. Find the uppermost and

lowest points, f, g, of the middle circle; or through the

middle point d draw a perpendicular to ab, which will give
the points f, g, or construct the square cgef, which will

give the centres of the larger arch. Through these two

points f, g, and the two c, E, draw four lines fh, fi, gk,

CL; with any one of which as a radius, and the two cen-
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tres F, G, describe the other two arcs hi, kl, to complete

the oval j which does not rise so high as the former.

THIRD METHOD.

Cr

O

Other ovals may be made to

the same length, or any other

length, but rising still less in the

crown, in any degree whatever,

if, after having described the two

smaller or end circles from the

centres c and e, as in the second

method, instead of forming the

right angled triangles cge, cfe,

these be described with acute an-

gles at F and g, by making the

equal lines cf, cg, ef, eg, longer
than before in any ratio at plea-

sure; these being then produced
to the little circles at the four F

points H, I, K, L, from the centres f, g, describe the other

two arches hi and kl, to complete the ovals, narrower and

narrower at pleasure.

The little circles also at the ends, may have their radius

taken smaller to any degree, or a less portion of the whole

span ;
and indeed it is evident that its radius ought always

to be less than the pitch or height of the arch.

There are other methods of making such ovals, but those

above given are some of the best. The last method is gene-
ral too, and will serve to accommodate an oval to any length

and breadth whatever, at pleasure. Having thus described

the half of such an oval to any span and pitch proposed, for

any arch of a bridge, &c, the whole of the voussoirs may be

cut by two mold boards only, viz, one for the voussoirs for

the arch ah and ib, and the other for those in the arch hi.

But if the arch be of any other form, the several abscisses

and ordinates ought to be calculated ;
then their correspond-
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ing- lengths, tninsferrod to the centring, vill give so many
points of the curve, and exactly by these points bending
a bow of pliable matter, the curve may be drawn close

by it.

The centres arc constructed of beams, &c, of timber,

firmly pinned and bound together, into one entire compact

frame, covered smooth at top Avith planks or boards to place
the voussoirs on, the Avholc supported by offsets in the sides

of the piers, and by piles driven into the bed of the river,

and capable of being raised and depressed by wedges, con-

trived i'or that pm'pose, and for taking them down when the

arch is completed. They ought also to be constructed of

a stren2;th more than sufficient to bear the weight of the

arch.

In taking down the centring; it is first let down a little,

all in a piece, by easing some of the wetlges ;
it js there let

to rest a few hours, or days, to try if the arch make any v.i'-

forts to fall, or any joints open, or stones crush or crack,

&c, tliat the damage may be repaired before the centring is

entirely removed, which is not to be done till the arch ceases

to make any visible eflbrts.

In some bridges the centring makes a considerable part of

theexpence, and therefore all means of saving in this article

ought to be closely attended to; such as making lew arches,

and as nearly alike or similar as possible, that the centring of

one arch may serve for others, and at least that the same

centre may be used for each pair of equal arches, on both

sides of the middle.

Chks'J", the same as Caisson.

CoFiKKDAM, the same as Battkrdf.au.

Drift, Shoot, or Thrust, of an arc^h, is the push or

force which it exerts in the direction of tlie length of the

bridge. This force arises from the perpendicular gravita-

tion or weight of the stones of tlie arch, which, being kept
from di'scending in' the form of the arch and the resistance

of the
])i('rs, exert their force in a latenil direction. This

force ii cinupuied in j)r(>p. xj, where tiro tisickiu'-^s of the
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pier is determinecl which is necessar}'^ to resist it
; and is the

greater as the pitch is lower, cateris paribus.

Elevation, the orthographic projection of the front of a

bridge, on the vertical plane, parallel to its length. This i*

necessary to show the form and dimensions of the arches, and

other parts, as to height and breadth, and therefore it has a

plain scale annexed to it^ to measure the parts by. It also

shows the manner of working up and decorating the fronts of

the bridoc.

ExTRADOs, the exterior curvature or line of an arch. Ir>

the propositions of the second section, it is the outer or upper
line of the wall above the arch

;
but it often means only the

upper or exterior curve of the voussoirs.

Foundations, the bottoms of the piers, &c, or the bases.

on which they are built. These bottoms are always to be

made with projections, greater or less according to the spaces
on which they are built. And according to the nature of the

ground, the depth and A'elocity of water, &c, the foundation

are laid, and the piers built, after ditferent manners, either iti

caissons, in battcrdeaux, or on stilts with sterlings, &c
;
for

the particular methods of doing which, see each under its re-

spective term.

The most obvious and simple method of laying the founda-

tions, and raising the piers up to water*mark, is to turn the

river out of its course above the place of the bridge, into a

new channel, cut for it near the place where it makes an el-

bow or turn
;
then the piers are built on dry ground, and the

water turned into its old course again, the new one l)eing se-

curely banked up. This is certainly the best method, when

the new channel can be easily and conveniently made.; but

which however is very seldom the case.

Another method is, to lay only the space of each pier dry,
till it be built, by surrounding it with piles and planks driven

down into the bed of the river, so close together as to exclude

the water from coming in
;
then the water is pumped out of

the inclosed space, the pier buih in it, and lastly the piles and

planks drawn up. This is cofferdam work; but it evidently
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cannot be practised when the bottom is of a loose consist-

ence, admitting the water to ooze and spring up through it.

When neither the whole nor part of the river can be easily
laid dry, as above, other methods are to be used

; such as, to

build either in caissons or on stilts, both which methods are

described under their proper words
; or yet by another me-

thod, which hath, though seldom, been sometimes used, with-

out laying the bottom dry, and which is thus : the pier is

built upon strong rafts or gratings of timber, well bound to-

gether, and buoyed up on the surface of the water by strong

caWes, fixed to other floats or machines, till the pier is built;

the whole is then gently let down to the bottom, which must

be made level for the purpose. But of these methods, that

of building in caissons is the best.

But before the pier can be built in any manner, the ground
at 'the bottom must be well secured, and made quite good and

safe, if it be not so naturally. The space must be bored into,

to try the consistence of the ground ;
and if a good bottom

of stone, or firm gravel, clay, &c, be met with, within a mo-
derate depth below the bed of the river, the loose sand, &c,
must be removed and digged out to it, and the foundation

laid on the firm bottom, on a strong grating, or base of tim-

ber, made much broader every way than the pier, that there

may be the greater base to press on, to prevent its being sunk.

But if a solid bottom cannot be found at a convenient depth
to dig to, the space must then be driven full of strong piles,

the tops of which must be sawed off level, some feet below

the bed of the water, the sand having been previously digged
out for that purpose ;

and then the foundation, on a grating
of timber, laid on their tops as before. Or, Avhen the bottom

is not good, if it be made level, and a strong grating of tim-

ber, two, three, or four times as large as tlie base of the pier,

be made, it will form a good base to build on, its great size

in a great measure, preventing it from sinking. In driving
the piles, the method is, to begin at the middle, and proceed

outwards, all the way to the borders or margin : the reason

of which is, that if the outer piles were driven first, the earth
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of the inner space would be thereby so jammed together, as

not to allow the inner piles to be driven at all. And besides

the piles immediately under the piers, it is also very prudent
to drive in a single, double, or triple row of them, around
and close to the frame of the foundation, cuttmg them off a

j^ttle above it, to secure it from slipping aside out of its place,

and to bind the ground under the pier the firmer. For, as

the safety of the whole bridge depends much on the founda-

tions, too much care cannot be used to have the bottom made

quite secure.

Jettee, the border made around the stilts under a pier;

being the same with Sterling.

Impost, is the pra-t of the pier on which the feet of the

arches stand, or from which they spring.

Keystone, the middle voussoir, or the arch stone in the

crown, or immediately over the centre of the arch. The

length of the keystone, or thickness of the archivolt at top,

is allowed to be about l-15th or l-16th of the span, by the

best architects.

Orthography, the elevation of a bridge, or front view,

as seen at a great distance.

Parapet, the breast wall made on the top of a bridge, to

prevent passengers from falling over. In good bridges, to

build the parapet only a little part of its height close or solid,

and on that a balustrade to above a man's height, has an ele-

gant and useful effect.

Piers, are the walls built for the support of the arches,

and from which they spring as their bases. These ought to

be built of large blocks of stone, solid throughout, and

cra:mped together with iron, or otherwise, which will uiake

the whole like one solid stone. Their faces or ends, from

the base up to high-water mark, ought to project sharp out

with a salient angle, to divide the stream. Or perhaps the

bottom of the pier should be built flat or square up to about

half t'le height of low-water mark, to allow a lodgment against
it for the sand or mud, to cover the foundation; lest, by being
left bare, the water should in time undermine, and so ruin or
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injure it. The best form of the ])rotection for ilividing tlie

stream, is the triangle ;
and the longer it is, or the more acute

the salient angle, the better it will divide it, and the less will

the force of the wiiter be against the [)ier ;
but it may be suf-

ficient to make that angle a right one, as it will make the

Avork stronger, and in that case the perpendicular projection
will be equal to half the breadth or thickness of the pier. In

rivers on which large heavy craft navigate, and pass the

arches, it may ])erhaps be better to make the ends semicircu-

lar; for though It docs not divide the water so well as the

triangle, it will both better turn oBand bear the shock of the

craft.

The thickness of the piers ought to be sucli, as will make
them of weight or strength sufficient to support their interja-

cent arch, independent of anv otlier urchc-s. The thickness,

in most cases of practice, may be made about l- of the span of

the arch. And then, if the middle of the pier be run up to its

full height, the centring may be struck, in order to be used in

another arch, before the haiiches are filled up. The whole

theory of the piers may be seen in the third section. They
ought to be made with a broad bottom on the foundation, and

gradually diminished in thickness bv offsets, up to low-water

mark. The methods of laying their foundations, and build-

ing them up to the surface of the water, are given under the

"word Foundation.

PiLKS, are timbers driven into tlie bed of the river for va-

rious purposes, and are either round, square, or flat like

planks. They may be of any wood which will not rot under

"\vater, but elm, oak, and fir are mostly used, especially the

latter, on account of its length, straightness, and ciicapness.

They are shod with a pointed iron at the bottom, the better

to penetrate into the ground ;
and are bound with a strong

iron band or ring at to]), to prevent them from being split

by the violent strokes of the ram by which they are driven

down. It is said, that the stilts, or piles, under London-

bridge, are of ehu, which lasts a long time in the w ater.

Piles are either used to build the foundations on, or are
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driven about the pier as a border of defence, or to support
the centres on

;
and in this case, when the centrmg is re-

moved, they must either be drawn up, or sawed off very low-

under water
;
but it is perhaps better to saw them off, and

leave them sticking in the bottom, lest the drawing of them

out should loosen the ground about the foundation of the

pier. Those to build on, are either such as are cut off by the

bottom of the water, or rather a few feet within the bed of

the river
; or else such as are cut off at low-water mark, and

then they are called stilts. Those to form borders of defence,

are rows driven in close by the frame of a foundation, to keep
it firm

;
or else they are to form a case or jettee about the

stilts, to keep within it the stones that are thrown in to fill it

up ; in this case, the.piles are grooved, driven at a small dis-

tance from each other, and plank piles let into the grooveii
between them, and driven down also, till the whole space is

surrounded. Besides using this for stilts, it is also sometimes

necessary to surround a stone pier with a sterling or jettee,
and fill it up with stones to secure an injured pier from being
still more damaged, and the whole bridge ruined. The piles

to support the centres may also serve as a border of piling to

secure the foundation, cutting them off low enough after the

centre is removed.

Pile Driver, is an engine for driving down the piles. It

consists of a large ram or square block of iron, shding per-

pendicularly down between two guide posts ; which beino-

drawn up to the top of them, and there let fall from a great

height, it comes down on the top of the pile with a violent

blow. It is worked either by men or horses, and either with

or without wheel work. That which was used at the build-

ing of Westminster-bridge, is perhaps one of the best kind.

Pitch, of an arch, is the perpendicular height from the

spring, or impost, to the keystone.

Plan, of any part, as of the foundations, or piers, or su*

perstructure, is the orthographic projection of it on a plane

parallel to the horizon.

Push, of an arch, the same as drift, shoot,, or thrust,

VOL. I. I
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Salient Angle, of a ])ier, is the projection of the end

against the stream, to divide it. The right-hncd angle best

divides the stream, and the more acute the better for that

purpose ; but tlie right angle is generally used, as making
the best masonry. A semicircular end, though it does not

divide the stream so well, is sometimes better in large navi-

gable rivers, as it carries the craft the better off, or bears their

shocks the better.

Shoot, of an arch, is the same as drift, thrust, &c.

Span, of an arch, is the extent or width at the bottom, or

on the level at its springing.

Spandrels, or Spandrils, are the spaces about the flanks

or haunches of the arch, above the curve or intrados.

Springers, are the first or lowest stones of an arch, being
those at its feet, bearing immediately on the impost.

Sterlings, or Jettees, akind of case, made of stilts, &c,

about a pier, to secure it. It is particularly described under

the next word Stilts.

Stilts, a set of piles driven into the space intended for

the pier, whose tops being sawed level off about low-water

mark, the pier is then raised on them. This method was

formerly used, when the bottom of the river could not be

laid dry ;
and these stilts were surrounded, at afew^ feet dis-

tance, by a row of piles and planks, &c, close to them like a

coffer-dam, and called a sterling or jettee ;
after which, loose

stones, &c, are thrown or poured down into the space, till it

be filled up to the top, by that means forming a kind of pier

of rubble or loose work, w^hich is kept together by the sides

of the sterlings : this is then paved level at the top, and the

arches turned upon it, This method was formerly much used,

most of the large old bridges in England being constructed

in that way ;
such as London-bridge, Newcastle-bridge, Ro-

chester-bridge, &c. But the inconvenicncies attending it arc

so great, that it is now quite exploded and disused : for, be-

cause of the loose composition of the piers, they must be made

very large or broad, otherwise the arch would push them over,

and rush down as soon as the centre should be drawn: which
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great breadth of piers and sterlings so much contracts the

passage of the water, as not only very much incommodes the

navigation through the arch, from the fall and quick motion
of the water, but from the same cause also the bridge itself

is in much danger, especially in time of floods, when the

quantity of water is too much for the passage. Add to this,

that besides the danger there is of the pier bursting out the

sterlings, they are also subject to much decay and damage
by the rapidity of the water, and the craft passing through
the arches.

Thrust, the same as drift, shoot, &c.

VoussoiRS, the stones which immediately form the arch,

their under sides constituting the intrados or soffit. The
middle one, or keystone, ought to be, in length, about

-^-j
or

1^ of the span, as has been observed
;
and the rest should iiv

crease in size all the way down to the impost ; the more they
increase the better, as they will the better bear the great

weight which rests upon them, Avithout being crushed, and
also will bind the firmer together. Their joints should also

be cut perpendicular to the curve of the intrados.

TRACT II.

QUERIES CONCERNING LONDON BRIDGE: WITH THE ANSWERS,

BY GEORGE DANCE, ESQ.

AS an Appendix to the foregoing Tract, on the Principles

of Bridges, a few smaller papers, on kindred subjects, are

inserted in this and some of the Tracts immediately follow-

ing. The present paper is one, among several of a curious

nature, which I purchased at the sale of Mr. Robertson's books,

in the year 1776, and appears to contain circumstances of too

much importance to be kept private. It seems to have ori-

I 2
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ginated from enquiries formerly made, for improving the

bridge and the port of London, in the year 1746. It consists

ofqueries proposed by the magistrates of the city ;
and answers

to those queries, by Mr. George Dance, the Surveyor Gene-

ral of all the works of the city of London, who was the father

of that excellent architect the present City Surveyor. It

seems also that the queries had been proposed to the public

in general, to solicit answers from any ingenious engineers
or architects

;
for the paper remarks that,

" The persons who are to answer these queries, may add

to their answers what further remarks and observations they
shall think proper, to the same purpose as these queries. In

the middle of every arch there are driven down piles, called

dripshot piles, in order to prevent the waters from gullying

away the ground. I am of opinion, from the nature of the

work, that the bridge was not so wide originally as it now is;

and that the points of the piers have been much extended,
in order to erect houses thereon. I observe likewise, that in

some of the piers, there are fresh casings of stone, before the

original ashler.

"
July the 9th, 1746. George Dance."

** Query 1. What are the shapes and dimensions of the

stone piers, the sterlings, and the openings at high and low

water ? N. B. This will be best answered by figured

sketches, or plans, correctly laid down from an exact men-
suration by a scale, provided that scale be not smaller than

8 or 10 feet to an inch."
" Answer. I have described the shapes and dimensions of

the stone piers, sterlings, and openings at high and low water,

in a figured plan, which I delivered to Mr. Comptroller."
" Query 2. What are the depths of water, just above,

under, and just below the arches, or Jocks, at a common low

water? N. B. These depths may be marked on the plans or

sketches."
" Answer. The depth of water, beginning at the south

ud of the bridge, is as follows ; viz.
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crosslaid; or timber: what wood are they made of, and what

are their dimensions or scantlings?"
** Answer. In cceneral I find nothinfj between the stones

ind piles, but sometimes pieces of plank, mostly of oak, and

ft little of elm, some of which is 6 inches and 4 inc. in thick-

ness ;
which I apprehend Avere not oricjinally placed there,

but only when reparations have been made, on which account

they were fixed, in order to wedge up tiglit
to the stone-

work
;

it being impossible to make sound work in that case

by any other method."
*' Query 5. Arc the piles wliich surrounded the founda-

tions of the piers, before the sterlings were added, square or

round, rough or hewn, driven as close as possible, or at a

distance? If they touch one another, are they fastened to-

gether with a dovetail, or by any other contrivance of the

same nature; and if they do not touch, at what distance arc

they at a mean?"
"

y'insxi)cr. These piles are round, rough, and unhewn :

they are driven close, and toucli one another: tliey do not

seem to be fastened together by any contrivance, except that

some have planks upon them, and some have none. But

these observations I have made where breaches have hap-

pened, so that one might get 1, 2, or 3 feet witliin the sur-

face of the piers: but how they are in the middle of tlie piers,

is impossible to determine."
" Query 6. Are the heads of those surrounding piles fas-

tened together by any kirb or capcile ? If there be any, let

it be described, and its dimensions, by a figured sketch."
*' ylnswe)'. They arc fastened by no kirb or capcile.

There are only planks upon some of them, as I mentioned iu

the former answer."
" Query 7. Are the inside piles, on which the founda-

tions of the piers are laid, round or square, hewn or rough,

very close, or at what distance at a mean
;
of what timber,

and size
; are they shod or not?"

*' Answer. This query is very difficult to answer. I can

only siiy, that I have had an opportunity to examine one



TRACT 2. 'LONDON BRIDGE. H^

pier, about 7 feet within. It is the south pier of the datn

lock
;
a great part of which Mas undermined, by some of the

sflWings being carried away, and leaving it defenceless there.

I observe that the piles are round, rough, unhewn, and driven

close together ; and they arc chiefly elm, of about one foot

diameter. Some of these piles, being taken up, were shod

with iron
;
and I think it is reasonable to suppose they are

all so."

*'
Query 8. Whether the foundations of the piers, before

the sterlings were added, extended beyond the naked line of

the stone-work: and if so, as it is most likely, describe how

much, at a mean, and the manner, by a figured sketch ?"

"
Aiiszcer. There is, to every pier, a setoif, or foundation,

which extends about 7 inches beyond the naked line of the

pier ;
and that setoff or foundation is of stone. But I am of

opinion that sterUngs were fixed at the first erecting of the

bridge ;
because I think it impossible for the piers to stand

long without some such defence. But whether they were so

much extended, or in the same shape they are now, is not

easy to determine."
" Query 9. Are the piles, that are under the foundations

of the piers, much decayed and galled by the action of the

currents of waters, before the sterlings were added ?"

" Answer. All those piles under the foundations of the

piers, which I ever saw, are very sound at heart. But about

one inch of their surface hath been decayed : but these were

piles which had been for some time exposed to the violence

of the flood, by the breaches made in the
sterlings. But I

apprehend that cannot be the case with the piles which go
farther under, or in the middle of the piers; because water

cannot act upon them."
" Query 10. What is the inside of the stone piers made

of ? whether of the same sort of stone as the outside
;
cut

and laid regular, or only common rubble stones, laid in very
bad mortar, as it is in Rochester-bridge r"

" Answer. I have seen, in several breaches, the texture
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of the piers : and by them it appears to me, that the insides

of the said piers are filled with rubble
;
and the external faces

are formed with ashler laid in courses : but the rubble ap-

pears to be laid with good mortar.
"
George Dance.'*

TRACT III.

EXPERIMENTS AND OBSERVATIONS TO BE MADE ABOUT

LONDON BRIDGE.

THIS is another of the papers, relating to the state of

London bridge, bought at the sale of the late Mr. John

Robertson's books. It appears to be an answer given to

certain queries, addressed to the Royal Society from the

Committee of Common Council of the City of London. This

answer is signed by the President, the Vice-Presidents, and

several other respectable members of the Royal Society ; viz.

by Martin Folkes, esq. the president, and by Wm. Jones

(father of the late Sir Wm. Jones), James Jurin, M. D., Geo.

Lewis Scott, esq., Benj. Robins, esq., and John Ellicott, esq.,

all names highly respectable for their eminent scientific la-

bours. Their report is in the following words:
*' In order to answer the queries proposed by the Com-

mittee, with regard to the alterations of London bridge, we

apprehend it will be necessary,
"

1st. To have an exact level taken, between some fixed

point on the west side of London bridge, and another point

on the east side of Westminster bridge ;
as also, to take the

like level between some fixed point on the east side of London

brido^e, and another point at some convenient place about 2

^lilcs below the bridge.
"

2. To take the perpendicular height of each of those 4
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points jibove the surface of the river at low-water, and like-

wise at every quarter of an hour before and after low-watfer
;

and to observe the time when the low-water happens at those

places; and the same for high-water.
"

3. To take the height of the fixed point on the west side

of London bridge, above the surface of the river, at the low

still water, and high still water under the drawbridge, with

the time of each.
\

"
4. To take the height of the same point, above the sur-

face of the river, just above the sterling, at the time of low-

water below bridge.
"

5. To take the depth of the water in all the gullets, or

t least in that under the drawbridge, at the time of low still

water.

"6. To ascertain in how many of the arches the dripshot

piles are driven ; how close together ;
and how far the tops

of them are below low still water mark.

"7, To know particularly at what time the sterlings are

first intirely covered, and when first intirely uncovered.
** 8. To know exactly the time of low and high water

mark, and the height the water rises to, at the Nore, Graves-

end, and Woolwich.
"

9. That all the foregoing observations of the tides, be

made at some one spring tide, and likewise at some one neap
lime. Was signed,

M. Folkes; Wm. Jones
;
Jas. Jurinj Geo. L.Scott j Benj.

Robins ; John ElUcott."
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TRACT I^.

ON THE CONSEaUENCES TO THE TIDES IN THE RIVER

THAMES, BY ERECTING A NEW BRIDGE AT LONDON.

BY MR. JOHN ROBERTSON.

WHILE it was in cniitemplation to erect the new bridge
over the river at Blackfriurs, there was much pubhc conversa-

tion and speculation on the probable effects of such erection,

relative to the tides in the river, and other matters connected

with it. On this occasion, the magistrates of the city of

London consulted many scientific men and practical engi-

neers, touching those points. Among others, they requested
the advice and opinion of Mr. John Robertson, then master

of the Ro3'al Mathematical School in Clirist's Hospital, by a

special letter from the Town Clerk, as follows.

" To Mr. Rcbcrison at Chrisfs Hosjntal.

*'
Sir, The Committee of Common Council appointed to

consider, whether the Navigation of the river Thames will

in an}' and w})at n)anner be affected by a new Bridge, intend

to meet at Guildhall, on Thursday the 12th instant, at 10

o'clock in the forenoon, and desire you will be so kind as to

favour them with jour conipany at that time, in order to give
them your opinion and assistance therein. I am. Sir,

*' Your most obedient, humble Servant,
" James Dobson."

Town Clerk's Office, Guildhall, 5 Dec. 1754.

//;. lioberlson^s Ansicer.

" Before I deliver my opinion concerning the question

proposed, 1 think it necessary to preuiise some few principles
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relating to the Tides, and particularly those which affect the

river Thames ; because a just solution to this question depends

chiefly on the phenomena of the tides.

*'
1 . It is now well known that the tides are regulated by the

motion of the moon
;
and that this planet takes something less

than 25 hours,between the times of its departing from any me-

ridian, to its return to the same; in which time she causes two

floods and two ebbs
;
so that in most parts of the earth there is

a new time in every revolution of about 12 hours and a half.

" 2. There is a flood tide which flows round the northern

parts of Europe, and thence proceeds southward through the

western ocean : a branch of this tide runs southward along

the German sea, and makes high water to all the eastern

coasts of Great Britain, in a successive order, in regard'to the

time the moon has passed the meridians of those places: this

branch of the tide runs but a little to the southward of the

mouth of the river Thames.
"

3. While the said branch is running down the German

sea, the grand body of the tide is marching southward along

the western coasts of Ii-eland,and thence flowing partly south-

ward, partly south-eastward ;
one branch runs up St. George's

Channel, and another branch flows eastward, up the English

Channel, and makes, in a successive order of time, the high
waters upon all the southern coasts of England : this branch

extends something to the northward of the mouth of the

river Thames.
"

4. Tile said tides, meeting near the mouth of the river

Thames, contribute to send a powerful tide up that river;

and so long as the said southern and northern branches con-

tinue to flow, so long will the Avaters continue to accumulate

at the mouth of this river, and make their way up it, in order

10 restore the waters to a level.

"
5. The flowing of the tide up the river Thames is greater

or less, in proportion only to the accumuhition of the waters

at its mouth
;
and therefore, in the common course of things,

there is, relative to the moon's age, a fixed quantity of tide

which the river Thames is to receive
;
and therein to be
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disposed of in the best manner that its situation will

admit.
** 6. On account of the water being confined between the

banks of the river, the tide must flow up higher, in propor-
tion as the river becomes narrower, till the fixed quantity is

received. But then it must be observed, that when the tide

acts against the stream of a river, the tide up that river be-

comes progressively stronger and stronger, for a time, ac-

cording as the velocity of the natural stream is checked
;
and

in this manner the river waters themselves by degrees obtain

a contrary direction, and run up with the tide, and so may
be considered as waters coming in with the tide of flood,

and part of the fixed quantity which that river is to receive.
**

1. The return of the tide, or the time of ebbing, is not

every where performed in the same time as it took to flow

in. For, in the ebb tide there is to be discharged, not only

the waters which were brought in by the tide, but also all the

river water which has been retarded by it.

** 8. Whatever obstacles are laid in the way of the tide,

across any channel, the utmost rise, or the high-water mark,
at different times, will be respectively the same : because tiie

water will continue to rise till the fixed quantity of tide is

disposed of, and no longer. And, in like manner, the low-

water mark will not be affected by such obstacles. Indeed,

between the limits of high and low-water marks, the water

will be raised higher against those obstacles, both in the flood

and ebb tides, than they would be in those places, were the

obstacles removed. For, as the velocity of the current must,

on both sides of the obstacle, be equal, in order for one part

of the water to run away, as fast as the successive ones fol-

low
;
therefore the waters must rise on that side of the ob-

stacle which they run against, till they be so high, that by
their fall they acquire a velocity sufficient to carry them off,

as fast as they arise at the obstacle.

** These principles being premised, the solution to the

question proposed naturall3^ follows. And in order to this,

let us for the present suppose, that betvreen London and
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Westminster bridges, another bridge were built
; and to show

what might be the consequences in the worst case, let us sup-

pose it occasioned as great a fall as at London bridge.

"
Consequences during the time of the Flood Tide.

** The flood tide, meeting with the obstruction of the new

bridge, would accumulate on the eastern side thereof, much
in the same manner as it does now at London bridge : this

would cause the flood tide at first to run through London

bridge with less velocity than it does at present. For, the

new bridge, by penning up the water, would throw some of

it back again, towards London bridge; and consequently the

Waters on the eastern side of London bridge, would rise higher
than they now do, that they might run off with the same ve-

locity, with which they came to the bridge.
" The tide would not run up the river so far as it now

does
;
and consequently the tide of flood would be sooner

spent, than at present : nevertheless the rise of the waters

would not, at any place, be lessened beneath the present
standard. For, the more obstacles any moving body has to

encounter with, the sooner will its motion be destroyed. But

the fixed quantity of the tide being in no wise diminished,
the waters must necessarily rise as many feet high, either

above or below the bridges, as they would, were there no

bridges over the river.

"
Consequences duri?ig the Tide of Ebb.

'^ The ebb tide would be obstructed, on the western side

of the new bridge, in the same manner as it is now at London

bridge; but the rise of the water at the new bridge would be

highest*. For, as London bridge, by penning up the water,

* It is manifest that all this reasoning, by Mr. Robertson, we
must remember, has been on die supposition, that the new bridge
would be built with piers and sterlings, like London bridge, and so

eause a similar obstruction to the currents.
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would cause it, at tlic beginning of the ebb, to revert or fall

back again towards the new bridge : consequently the waters

on the western side of the new bridge must rise higher, on

account of the |)en below, that they might run away as fast

as they were succeeded by the following wuter.
*' The length of the tide of ebb would be greater than it

as at present, by as much time as the tide of flood would be

shortened. For though the same quantity of flood tide, being-

poured through London bridge, would spend its force sooner

|JaaQ,t present, yet the time of the return of the aggregate
of the flood tide, and the retarded land waters, Avould be

greater ; in proportion as the obstacles, they would have to

pass by, were increased.

** From what has been said, I apprehend it is evident, that

a new bridge, built between London and Westminster bridges,

cannot alter the present high and low-water marks ; even

though this new bridge should be so constructed, as to oc-

casion a fall of the waters, equal to what they have at London

bridge.
*' But experience has shown, how a bridge may be built,

so as to cause no sensible fall : and were such a bridge sub-

stituted in the place of that we have before supposed, the

consequences already remarked would become so inconsider-

able, in respect to the tides, that I believe, and it is my opi-

nion, that there would ensue no apparent alteration in the

present state r.f the navigation of the river Thames, either

above or below London bridge."

John Robertson.
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TRACT V.

ANSWERS TO QUESTIONS, PROPOSED BY THE SELECT COM-

MITTEE OF PARLIAMENT, RELATIVE TO A PROPOSAL FOR

ERECTING A NEW IRON' BRIDGE, OF A SINGLE ARCH

ONLY, OVER THE RIVER THAMES, AT LONDON, INSTEAD

OF THE OLD LONDON BRIDGE.

AMONG the various means of improving the port of Lon-

don, which have lately been devised, was one by removing the

old inconvenient London bridge, and erecting another in its

stead, which might be more commodious, and better accord-

ing with the improved state of the port. Several projects

were given in to the Committee of Parliament, appointed to

consider those improvements, among which was one pro-

posed by Messrs. Telford and Douglass, to be of a single

aixh, made of cast iron, which the Committee so far noticed,

as to order engravings to be made of the design, and, for

more safety, to issue a set of questions, concerning this ex-

traordinary project, to be sent to several ingenious profes-

sional and literary men, requesting their answers to all or any
of them, within a limited time.

The present tract contains my answers, which were de-

livered in, to those questions, and for which I was honoured

with the thanks of the Committee
;
wliich answers are here

given as a proper appendix, among other articles, to the essay
on bridges in the first Tract.

The situation proposed for this new bridge, is about 200

yards above the old bridge, v.hich brings it to run nearly in

a line with the Royal Exchange, and with the wide part of

the main street of the Borougli of Southwark. This is the

narrowest part of the river, being here but 900 feet over.

It was also proposed to narrow the river stili more in this
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part, by building strong abutments of masonry, running 150

feet into the river on each side, against which to abut the

proposed arch of cast iron, vhich consequently was to be of

600 feet span, extending across the river at one stretch. The

height of the arch at the crown or key piece, was to be 65

feet above high-water, to allow ships of considerable burden,

with their top masts only struck, to sail through beneath it,

up to Blackfriars bridge; to load or unload by the side of

new wharfs, to be built into the river, on both sides of it,

all the way up io Blackfriars. The width of the bridge, to

be 45 feet in the middle, and from thence widening all the

way, in a curved form, till it should become enlarged to 90

feet at the extremities.

The letter of the Committee is here given first, with the

set of questions, followed by the answers as delivered in con-

sequence of that requisition.

THE ORDER OF THE COMMITTEE.

" Luna? 23 die Martii 1801,
** At the Committee for the further improvement of the Port

of London
;

" Charles Abbot, Esq. in the Chair :

*'
Ordered, That the Print, Drawings, and Estimates of

an Iron Bridge, of a single arch, 600 feet in the Span,

together with the annexed Queries, be sent to Dr. Hutton,

requesting that he will, on or before the 25 th of April next,

transmit to Mr. Samuel Gunnell, the Clerk to this Committee,
his opinion upon all of these queries, or such of them as he

may be disposed to consider.
" Charles Abbot, Chairman.

" To Dr. Hutton,
**

Military Academy, Woolwich'^
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" Estimate.

. .

20,000
*' Gettirm out and securing: the foundation of

the two abutments - - - -

432,000 cubic feet of granite or other hard stone 86,400

20,029 cubic yards of brickwork, at 20s. - - 20,029

19,200 cubic feet of timber in tyes, at 3s. 6d. 3,360

6,500 tons of cast iron, including scaffolding? -.^r. r.r.n.

and putting up, at 20l. - - 3

Making roadways and footpaths - _ - - 2,500

^26-2,289"

*'
2uestio7is respecting the Construction of the annexed Plate

and Drawings of a Cast Iron Bridge of a Single Arch, 600

feet in the Span, and 65feet Rise.

"
1. What parts of the bridge should be considered as

wedges, which act on each other by gravity and pressure,

and what parts as weight, acting by gravity only, similar to

the walls and other loading, usually erected upon the arches

of stone bridges. Or, does the whole act as one frame of

iron, which can only be destroyed by crushing its parts ?

"
2. Whether the strength of the arch is affected, and in

what manner, by the proposed increase of its width towards

the two extremities, or abutments
;
Avhen considered verti-

cally and horizontall3^ And if so, what form should the

bridge gradually acquire?
"

3. In what proportions should the width be distributed

from the centre to the abutments, to make the arch uniformly

strong ?

"4. What pressure will each part of the bridge receive,

supposing it divided into any given number of equal sections,

the weight of the middle section being given. And on what

parts, and with what force will the whole act upon the abut-

ments ?

VOL. I. K
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"
5. What additional weight will the bridge sustain

;
and

Avhat will be the effect of a given weight placed upon any of

the before mentioned sections ?

"
6. Supposing tlie bridge executed in the best manner,

Avhat horizontal force will it require, when applied to any

particular part, to overturn it, or press it out of the vertical

plane ?

"
7. Supposing the span of the arch to remain the same,

and to spring ten feet lower, what additional strength would

it give to the bridge. Or, making the strength the same,

what saving may be made in the materials. Or, if instead of

a circular arch, as in the plate and drawings, the bridge should

be made in the form of an elliptical arch, what would be the

difference in effect, as to strength, duration, convenience, and

expences ?

*'
8. Is it necessary or adviseable, to have a model made

of the proposed bridge, or any part of it, in cast iron. If

so, Avhat are the objects to which the experiments should be

directed
;

to the equilibration only, or to the cohesion of the

several parts, or to both united, as they will occur in the in-

tended bridge?
'
9. Of what size ought the model to be made, and what

relative proportions will experiments, made on the model,
bear to the bridge, when executed?

" 10. By what means may ships be best directed in the

middle stream, or prevented from driving to the side, and

striking the arch, and what would be the consequence of

such a stroke ?

" 11. The weight and lateral pressure of the bridge being

given, can abutments be made in the proposed situation for

London bridge, to resist that pressure?
*'

12. The weight and lateral pressure of the bridge being

given, can a centre or scaffolding be erected over the riv(?r,

sufficient to carry the arch, without obstructing the vessels

wiiich at present navigate that part?
"

13. WJiether it would be most adviseable to make the

bridge of cast and wrought iron combined, or of cast iron
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only. And if of the latter, whether of the hard white metal,
or of the soft grey metal, or of gun metal?
" 14. Of what dimensions oug-ht the several members of

the iron work to be, to cfive the bridge sufficient strensth?
"

1 5. Can frames of cast iron be made sufficiently correct,

to compose an arch of the form and dimensions as shown in

the drawings No. 1 and 2, so as to take an equal bearing as

one frame
;
the several parts being connected by diagonal

braces, and joined by an iron cement, or other substance ?

N. B. The plate is considered as No. 1.

"
16. Instead of castino- the ribs in frames, of considerable

length and breadth, as shown in the drawing, No. 1 and 2,

would it be more adviseable to cast each member of the ribs

in separate pieces of considerable lengths, connecting theui

together by diagonal braces, both horizontally and vertically,

as in No, 3 ?

"
17. Can an iron cement be made, which shall become

hard and durable. Or can liquid iron be poured into the

joints?
" 18. Would lead be better to use in the whole or any

part of the joints?
" 19. Can any improvement be made in the plan, so as to

render it more substantial and durable, and less expensive.

And, if so, what are those improvements?
" 20. Upon considering the whole circumstances of the

case, and agreeable to the resolutions of the Committee, as

stated at the conclusion of their third report : Is it your

opinion, that an arch of 600 feet in the span, as expressed
in the drawings produced by Messrs. Telford and Douglass,

or the same plan, with any improvements you may be so good
as to point out, is practicable and adviseable, and capable of

being made a durable edifice ?

" 21. Does the estimate communicated herewith, accord-

ing to your judgment, greatly exceed or fall short of the

probable expence of executing the plan proposed, specify-

ing the general grounds of your opinion ?

" The Resolutions referred in No. 20, are as follow,

k2
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"
Ist. That it is the opinion of this Committee, that it i:*

essential to the improvement and accommoJation of the port

of Loudon, that London Bridge should be rebuilt, upon such

H construction, as to ]iermit a free passage at all times of the

tide, for shij)s of such a tonnage, at least, as the depth of the

river would admit of, at present, between London Bridge and

Blackfriars Bridge.
"2d. That it is the opinion of this Couiniittec, that an

Iron Bridge, having its centre arch not less than 65 feet high
in the clear, above high-water mark, will answer the intended

purpose, and at the least expence.
" 3d. That it is the opinion of this Committee, that the

most convenient situation for the new bridge, will be imme-

diately above St. Saviour's Church, and upon a hue from

thence to the Royal Exchange.
" Charles Abbot.

" To Dr. llution, IVoolnnchy

The Answers to the foregoing Queries, were as follow;

where each question is repeated immediately before its an-

swer, to preserve the connection more close and imme-

diate.

jinswers to the Questions coucery^ing the proposed New Iron

Bridge y of one arch, 600feet in the span, and 65 feet high.

Quest. 1. What parts of the bridge should be considered

as wedges, which act on each other by gravity and pressure,

and w hat parts as weight, acting by gravity only, similar to

the walls and other loading usually erected upon the arches

of stone bridges. Or, does the whole act as one frame of

iriiii, which can only be destroyed by crushing its parts ?

jiiisii-er. It "is my opinio!!, that all tlie small frames or

parts (Hight to l)e so connected together, at least verticallv,

as that the whole may act as one iVame 'of iro!i, which can

o'l-: I);- (Us;ro\c(i by crushing its parts, For, by t'jis niean.',

the pressure and strain will be taken otH'from every particular
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arch or course of voussoirs, and from every single voussoir

or frame, and distributed uniformly throughout the whole

mass. Hence it will happen, that any particular part which

may by chance be damaged, or be weaker than the rest, will

be relieved, and prevented from a fracture, or, if broken,

prevented from dropping out and drawing other parts after

it, which may be next to it, either above or on the sides of

it. By this means also, the effect of any partial or local

pressure, or stroke, or shock, whether vertical or horizontal,

will be distributed over or among a great number of the ad-

jacent parts, and so the effect be broken and diverted from

the immediate y^lace of action. By this means also Avill be

obviated, any dangerous effects arising from the continual

expansion or contraction of the metal, by the varying tem-

perature of the atmosphere, in consequence of which the

bridge will, all together, in one mass, in a small and insensible

degree, keep perpetually and silently rising or sinking, as the

archlengthensbythe expansion, or shortens by the contraction

of the metal. This unity of mass will be accomplished, by

connecting the several courses of arch pieces together verti-

cally, or the lower courses to the next above them, and also

by placing the pieces together in such a way as to break

ioint, after the manner of common or wall masonry, and that

perhaps in the longitudinal and transverse joints, as well as

the vertical ones.

Quest. 2. Whether the strength of the arch is affected,

and in what maimer, by the proposed increase of its width

towards the two extremities, or abutments; when considered

vertically, and horizontally ;
and if so, what form should the

bridge gradually acquire ?

Answer. There can be no doubt but the bridge will be

greatly strengthened by an increase of its width towards the

two extremities, or abutments, especially if the courses or

parts be connected together in the manner above mentioned,

in the answer to the first question. For thus, the extent of

the base of the arch at the impost being enlarged, the strength

or resistance of the abutment will be increased in a much

higher degree than the weight and thrust of the arch, and
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consequently will resist and support it more firmly. The

arch iiaelf will thus also acquire a great increase of strength

and stability, both from the qnaniity and disposition of the

materials, as well vertically as horizontally, by which, in the

latter direction in particular, the arch will be better enabled

to preserve its true vertical position, and to resist tne force

or shock of any thing striking against it in the horizontal di-

rection. And, for the better security in these particulars,

considering the immense stretch of the arch, it will perhaps
be adviseable to enlarcre the width in the middle to 50 feet^

instead of 45, and at the extremities to 100 feet, instead of

90, as proposed in the design. As to the form of this width

or enlargement, the side of the arch might be bounded either

by a circular arch, or by any curve that will look most grace-

ful : perhaps a verj' exccntrie ellipse will answer as well as

any other curve, or better.

Quest. 3. In what proportions should the weight be dis-

tributed from the centre to the abutments, to make the arch

uniforaily strong ?

Anszi'er. To make the arch uniformly strong throughout,
it ought to be made an arch of equilibration, or so as to be

equally balanced in every part of its extent. When the ma-

terials of the arch are uniform and solid, then, to find the

M'eight over every part of the curve, so as to put the arch in

equilibrio, is the same thing as to find the vertical thickness of

the arch in every part, or the height of the extrados, or back

of the arch, over every point of the intrados or soffit of the

under curve of the arch : the rule for determining and pro-

portioning of which, is described at large in my Treatise on

Bridges, particularly in prop. 4"*^, and the examples there given
to the same. But in the case of the present proposed design
for a bridge, a strict mathematical precision is not to be ex-

pected or attained by . "r? calculation, on account of tlie

open frame Wi\k of iron, in parts of various shapes and sizes.

We must therefore be c":-,tent with a near approach to that

point of perfection ;
which can be acconqdished in a deurc?

* The same as prop, lo, tract l, of this volume.
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sufficient to answer all the purposes of safety and conveniencCi

Now this can be conveniently done, by a comparison of the

present design of a bridge, with the example of a similar in-

trados curve in the book above mentioned, and which is the

case of the first example to the said 4th prop., being that

with a circular soffit. By that example it appears, that the

weight above every jpoint in the soffit curve> should increas.

exactly in proportion as the cube of the secant of the number

of degrees in the arch, from the centre or middle, to the se-

veral points in going toward the abutments* This propor-*

tion, though it require an infinite weight or thickness at the

extremities of a whole semicircle, where the arch rises per-

pendicular to the horizon
; yet for a small part of the circle

near the vertex, the necessary increase of weight or thick-

ness, toward the extremities, is in a degree very consistent

with the apnvenient use and structure of such a bridge ;
us

will be evident by a glance of the figure and cr.rve to that

example. For, as the whole extent of the soffit arch, in the

present design for an iron bridge, is but a'jout 43" 54', or

24 27' on each side, from the middle point to the abutments,
that is, little more than the fourth part of the arch in that

example; tiierefore, by cuctuig out the fourth part of that

arch, it wiil giVe us a tolerable idea of the requisite shape of

the whole structure, and increase in the thickness where the

materials are solid, or at least the increase in weight over

every yjoint in the soffit
;

that is, the figure exhibits

a curve for the scale of

such increase. Or, if we

compute the numeral va-

lues of the weights or

thickness, by the rule in

that example, in the pro-

poriio.) of t!ie cube of

the secants, they will be

as in the annexed tablet;

which is compuicd for

every degree in the arch,

Dtf
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from the middle, supj)osinn; the middle thickness or weight
to be 10. And the true representation of the figure, as con-

structed from these nuntbers, or the extrados curve deter-

mining the true scale of weight or thickness, over everv such

point in the soffit curve, is as is here exhibited below. Where
the thickness or hciglit in the middle being supposed 10, the

vertical thickness or h.eight of the outer curve, above the

inner, at the extremities, is 13-272, or nearly 13^, and the

other intermediate thicknesses, at every degree from the ver-

tex, are as denoted by the numbers in the latter column of the

table. If the thickness at top be supposed 7, or 8, or 12, or

any other number, instead of 10, all the other numbers must

be changed in the same proportion. Now the upper curve

in tliis figure is constructed from these computed tabular

numbers, and exhibits an exact scale of the increase of weight
or thickness, so as to make the whole an arch of equilibration,

or of uniform strengtli throughout, when the materials are of

uniforni shape and weight. And in this case the upper curve

does not sensibly differ from a circular arc in any part of it.

But, ar, the convenient passage over the bridge requires that

the height or thickness at the extremities, or imposts, should

he a gr{ at deal more than in proportion to these numbers

denoting the equilibrium of weight, it therefore follows, that

the frame work of the pieces above the arch, in the filling

up of the flanks, ouglit to be lighter and lighter, or cast of

a form more and more light and open, as in the engraved

design, so as to bring the loading in those parts as near to

the equilibrium weight, as the strength and stability of the

iron frames will permit.

Quest, l. \Vli;it pressure will eacli ])art
of the bridge re-

ceive, supposing it (iividcd into any given number of equal

sections, the wcigh.t of the midLlle section Oeing given ;
and
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on what part, and with what force, will the whole act upon
the abutments ?

Ans'dver. By the equal sections, mentioned in this question,

may be understood, cither vertical sections of equal weight,
or those perpendicular to the curve of equal weight, or of

equal length ;
and whichever of these is intended, their thrust

or pressure in direction of the curve may be easily computed,
if wanted for the purpose of making experiments on the

strength of the frames, to know whether they will bear those

pressures, or what degree of pressure they will bear, without

being crushed in pieces. But as it is evident that the frames

next the abutments will suffer the greatest pressure of any,
I shall here give a computation of the actual pressure there,

which may be sufficient, since if the frames at the abutments

are capable of sustaining that greatest pressure, we may safely

conclude, that all the others, from thence to the vertex, w'll

be more than capable of sustaining the lesser loads or pres-
sures to which they are subject ;

and this computation will

answer the latter and most essential part of the question, viz.

" on what part, and with what force, will the whole act on

tlie abutments." Now, from the nature of an arch, it appears
that the whole pressure on the abutments, will be chiefly on

the lower part of the impost, where the lower frame rests on

it, and where we shall therefore, in our computation, suppose

it to act. And in the calculation, the whole weight of the

half arch ao must be supposed united in its centre of gravity

N. Then, if a vertical line mn be drawn tiirough the centre

of gravity n, by computation it is found that dm is nearly

equal to 160 feet, and consequently me equal to 140 feet:

also, if NO be perpendicular to the impost, or in the direction

of the arch at oe
;

v.e shall have this proportion, viz, as mn

(60), is to the weight of the half arch (3250 tons), so is NO

(152), to the pressure on the impost in the direction of the

arch at o, and so is me (140), to the horizontal thrust or

pressure in, the direction me
;

this gives 8233 tons for the

pressure on the impost at o '\^ direction of the arch, and

7583 tons for the horizontal thrust in direction me
j benig
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the pressures at each end of the bridge. M'c may therefore

estimate the greatest pressure on the last or abutment frame,

at about 8 or 9 thousand tons.

Quest. 5. What additional weight will the bridge sustain,

and what will be the effect of a given weight placed upon

any of the before mentioned sections ?

Answer. It is perhaps not possible to pronounce exactly

what additional weight the bridire will sustain, withovit break-

ing, as it depends on so many circumstances, some of which

are not known. But, considering the great dimensions and

strength of the arch frames, and of the whole fabric, we arc

authorized to conclude, that there is no possible weight which

can pass over any part of the bridge, even heavy loaded wag-

gons, whose pressure can be great enough to cause any dan-

ger to such strong and massy materials, and especially when

it is considered that, by connecting all the frames together,

by proper bond and otherwise, as mentioned in the answer

to the first question, the local additional pressure will soon

be distributed through the whole series of the iron framing.

Quest. 6. Supposing the bridge executed in the best

manner, what horizontal force will it require, when applied
to any particular part, to overturn it, or press it out of tlie

vertical plane ?

Answer. This question will be much better answered by
means of experiments, made on a proper model, than b}'

theoretical calculations a priori. But when the bridge is

executed in the best manner, with the frames properly bonded

and connected together, it seems more likely that any violent

horizontal shock, such as a ship driving against it, would

break any particular frame, rather than overturn such a mass

of bonded materials, or even move it sensibly out of the ver-

tical position.

QuKST. 7. Supposing the span of the arch to remain the

same, and to spring ten feet lower, what additional strenL',t]i

would it give to the bridge. Or, making the strength the

same, what saving may be made in the materials. Or, if

instead of a circular arch, as in the plate and drawing^;, the
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bridge should be made in tbe form of an elliptical arch, what
would be the difference in effect, as to strength, duration,

convenience and expence?
jiiiswer. Should the arch spring ten feet lower than in

the design, the bridge would be more stable, because the

thrust or pressure on the abutments would be directed lower

down, and more into the solid earth: and in general, the

lower the springing of the arch, the more firm the abutments

and stable the bridge, if the height of the crown above the

springing of the bridge be the same. But the greatest ad-

vantage would be, by making the bridge in the form of an

elliptical arch, instead of the circular one, in all the articles

of strength, duration, convenience, and expence. For, as

the elliptical flanks require less filling up than the circular,

this will produce a great saving in the iron frame work : and

this suuie reduction of materials in the flanks, toward the

abutments, is the very cause of greater strength, by reducing
the weight there nearer to the case of equilibration ;

since

that very extraordinary mass employed in the flanks of the

circular arch destroys the equilibrium of the whole, by an

overload in that part. The elliptical arch will be also much
more convenient, as it will allow^ of a greater height of navi-

gation Avay betv.cjn the water and the soflEit of the arch. The

elliptical arch is also a much more graceful and beautiful

form than the circular arch.

Quest. 8. Is it necessary or adviseable, to have a model

made of the proposed bridge, or any part of it, in cast iron.

If so, what are the objects to which the experiments should be

directed ;
to the equiHbration only, or to the cohesion of the

several parts, or to both united, as they will occur in the in-

tended bridge ?

Ansuier. It appears to be very adviseable, to have a model

made of the whole of the proposed bridge, in cast iron, as

well for the greater safety and satisfaction, as for the benefits

and improvements to be derived from the experiments to be

made with it, and from the experience and knowledge de-
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rived from the casting and making it. Tiie objects to which

the experiments should be directed, might be, the equilibrium
of the whole, the cohesion and fitting of the several parts, the

effects of a vertical load on every part separately, aiid the

effects of a horizontal blow or shock against every part in

the side of the arch. Also wliat weight would be requisite to

break or to crush the model frames.

Quest. 9. Of what size ought the model to be made, and

what relative proportions will experiments, made upon the

model, bear to the bridge, when executed ?

Ansxver. The greater the size of the model, the more sa-

tisfactory the experiments and conclusions will be. For this

purpose, it seems adviseable, that the model be not less than

the 20th part or dimensions of the bridge, that is, of 30 feet

in length. Now, as the solid contents of similar bodies arc

in the same proportion as the cubes of tlieir linear dimen-

sions, such a model would require only the 8 thousandth part

of the weight or metal in the bridge, because the cube of 20

is 8000. So that, as it is estimated the bridge -will require
6500 tons of metal, it follows, that about 3 quarters of a ton

weight of metal will suffice for the model of 30 feet in length.

As to the relative proportions of experiments made with the

model: those relating to the equilibrium, will be in the same

direct proportion with the masses of the model and bridge ,

as well as those relating to loads or shocks. But the strength

of any particular bar or frame will be only as the square of

the scantling, while the stress upon it will be barely in the

same proportion as the length.

Quest. 10. By what moans may ships be best directed in

the middle stream, or prevented fronj driving to the side, and

striking the arch; and what would be the consequence of such

a stroke?

Ansu'er. Some kind of fences migiit be placed in tiie river,

to direct the navigati(Mi to the projier opening in the uiiddle.

The ciR-ct of the stroke or shock of a vessel, strikin-;- the side

of the bridge, if very heavy, might endanger the breaking
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of the particular frame or bar so struck. But, the whole

being well bonded and connected together, none of the others

would probably be displaced.

Quest. 11. The weight and lateral pressure of the bridge

being given, can abutments be made in the proposed situa-

tion for London bridge, to resist that pressure ?

Answer. No doubt of it
;

and especially if the courses

of masonry have the joints directed towards the centre of the

arch.

Quest. 12. Tiie weight and lateral pressure of the bridge

beinof oiven, can a centre or scafFoldins be erected over the

river, sufficient to carry the arch, without obstructing the

vessels which at present navigate that part ?

Ansxi^er. I doubt not that the requisite centring or scaffold-

ing can be erected, without obstructing the present naviga-
tion.

Quest. 13. Whether it would be most adviseable to make
the bridge of cast iron and wrought iron combined, or of cast

iron only ; and if of the latter, whether of the hard white

metal, or of the soft grey metal, or of gun metal?

Answer. It appears most adviseable to make the bridge
of cast iron onlv, and that of the soft gre}' metal, the bars

and frames of which will be less liable to fracture by a blow

or shock, than the hard metal.

The mixture of wrought iron with the cast metal, would

be very improper, as the sorts are of unequal expansion and

contraction hv heat and cold, and as the several arch frames

should not be tied or bolted together, but suffered to have a

little play lengthways, in their butting grooves, so as that no

one part be more confined than another.

Quest. 14. Of what dimensions ought the several mem-
bers of the iron work to bo, lo give the bridge sufficient

strength ?

Answer. This question will be best answered hy experi-

ments made on the metal.

Quest. ! 5. Can frames of cast iron be made sufficiently

correct, to ccmpose an arch of the form and dimensions a*
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shown in the drawings No. 1 and 2, so as to take an equal

bearing as one frame, the several parts being connected by

diagonal braces, and joined by an iron cement, or other sub-

stance ?

N. B. The plate is considered as No. 1.

Answer. There can be no doubt that cast iron frames may
be made sufficiently correct to compose an arch of any form

whatever, and give them an equal bearing ;
because the

wooden moulds, from which the metal is cast, can be made
or cut to any shape desired.

Quest. 16. Instead of casting the ribs in frames, of con-

siderable length and breadth, as shown in the drawing No. 1

and 2, would it be more adviseable to cast each member of

the ribs in separate pieces of considerable lengths, connect-

ing them together by diagonal braces, both horizontally and

vertically, as in No. 3 ?

Answer. It is, in my opinion, better to cast the ribs in

frames, of considerable length and breadtli.

Quest. 17. Can an iron cement be made, which will

become hard and durable, or can liquid iron be poured into

the joints ?

Quest. 18. Would lead be better to use in the whole, or

any part of the joints ?

Answers to Questions 11 and 18. The joints might either

be filled with an iron cement
;
or liquid iron might be poured

into the joints, having a furnace near at hand for that pur-

pose ; or, melted lead may be run in, which will be best of

all
; because, being a soft metal, it will yield to, and accom-

modate itself to the inequalities of jjressure or of shape,

forming a sound and soft bond or bearing between frame and

frame
;
and preventing their fracturing each other by a too

hard and unequal bearing ;
in some respect perforniiiig the

same office as the cartilages between the joints of the bones

n\ tlic animal frame.

(^UEST. 19. Can any improvement be made in the plan,

so as to render it more substantial and durable, and less ex-

pensive. And if so, what are those improvements ?
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Answer. Although the plan appears to possess a very ex-

traordinary degree of excellence, I am of opinion, that it is

not incapable of some further improvements, so as to render

it more substantial and durable, as Avell as less expensive.

The circumstances which, it appears to me, would be im-

provements, are as follow :

1st. To make the vertical arch or curve of the bridge

elliptical, instead of circular
;
which will be an improvement

in stability, in convenience, in beauty, and in saving ex-

pence.
2d. To make the width of the bridge 50 feet in the middle,

and 100 feet at the extremities; which will add greatly to its

stabihty and security.

3d. To make the thickness of the arch at the crown, or the

height of the middle or key frame there, to be not less than

10 or 12 feet, inste;id of 6 or 7 as proposed ; because, in so

extended and massy a fabric, that seems to be the least thick-

ness that can afford a rational ground for security and sta-

bility.

4th. I would tie or connect every course of frames to those

next above them, so as that the whole bridge may rise or

settle together as one mass, by expansion or contraction. Yet

I would not tie or bolt the frames together lengthways, but

W'Ould simply make the edge, or the tenons, of the side of

each frame, fit into the groove or the mortice holes of the

next, going into each other two or three inches
; by which

means the arch frames will always sit or fit close together,

in every degree of temperature, without straining or tearing

asunder at the ties.

5thly. I would place the frames of the whole fabric so to-

gether, as to make a proper bond, in the manner of good

masonry, by making them all to break joint both longitu-

dinally and transversly : by which means, everv shock or

pressure on any part, would be broken and divided, or

shared, among a great many, and any openings be prevented,
which might arise from the manner of placing the frames

tvjth straight joints
continued quite through.
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Quest. 20. Upon considering- the whole circumstances

of the case, and agreeable to the resolutions of the Select

Committee, as stated at the conclusion of their Tliird Re-

port, Is it your opinion that an Arch of 600 feet in the span,

as expressed in the drawings produced by Messrs. Telford

and Douglass, or the same j)]an, with any improvements you

may be so good as to point out, is practicable and adviseable,

and capable of being rendered a durable edifice ?

Annucer. On considcrins the Avhole circumstances of the

case, It is my opinion, that an Arch of 600 feet in the span,

as expressed in the drawings produced by Messrs. Telford

and Douglass, especially when combined with the improve-
ments above mentioned, is practicable and adviseable, and

capable of being rendered a durable edifice.

Charles Hutton.

Woolwich, April 21, 1801.

TRACT VI.

HISTORY OF IRON BRIDGES.

A General History of all Arches and Bridges, both an-

cient and modern, and constituted of either wood, or stone,

or iron, would be a very curious and important Avork. It

should contain a particular account of every circumstance re-

lating to them : such as their history, date, place, artificer,

form, dimensions, nature, properties, &c. Such a work, in a

chronological order, would make a considerable volume, and

much too large to form a part of the present work. I con-

fine my views, therefore, in the present Tract, to a short

account of the novel invention of Iro;; Bridges, in several

instances that have recently been xecuted or proposed ;

some iew of which have been lately noticed in the new

edition of Dr. Recs's Encyclopedia.
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Bridges of cast iron appear to be the exclusive invention

of British artists. The first that was executed on a large

scale, is that on the river Severn, at Colebrook Dale, which

was erected in the year 1779, by Mr. Abr. Darby, iron-

master at that place. This bridge is composed of five ribs;

and each rib of three concentric rings or circles, which are

connected together by radiated pieces. The inner I'ing, of

each rib, forms a complete semicircle : the others only seg-

ments, being terminated and cut off at the road-way. These

rings pass through an upright frame of iron, which stands on

the same plate as the ribs spring from
;
which not only acts

as a guide to the ribs, but also supports a part of the road-

Avay. Between the inner upright of this frame and the outer

ring of the ribs, in the haunches, is a circular ring of iron,

of about 7 feet diameter
;
and between the outer upright of

the frame, and the ribs, are two horizontal pieces, which act

as abutments between the stonework and the ribs. There
are also two diagonal stays, to keep the ribs upright. The

roadway is covered with cast iron plates ; and it has an iron

railing on each side. The inner or under ring, of each rib,

is cast in two pieces, each of which is about 78 feet in length,
VOL. I. L
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the arch being 100 feet 6 inches span : and the whole of the

ivon in it weighs 178 ^ tons.

Whoever judiciously examines the construction of this

bridge, will see, that its fame has arisen chiefly from the cir-

cumstance of its having been the first of the kind : for the

construction is very bad. The cast iron indeed is in the

best state of preservation; but the stone-work has cracked in

several places. It is probable, therefore, that its duration

will not be long ; though not from any deficiency in the

iron-work.

The second iron bridge which has come to my knowledge^
is that which was designed by the noted Mr. Thomas Payne.
This arch was set up in a bowling-green, at the public-

house called the Yorkshire Stingo, at Lisson-Green, in the

year 1790. This bridge was intended to be sent to America ;

but, owing to Mr. Payne's being unable to defray the ex-

pense, the arch was taken down by Messrs. Walker of Ro-

therham, the persons who made it, and some of the materials

were afterwards employed in the bridge at Wearmouth and

Sunderland, next following.

The third iron bridge that has come to our knowledge,
was that executed on the river Wear, at Sunderland, by
Rowland Burdon, Esq. M. P. for the county of Durham, by
the assistance of Messrs. Walker tlie founders, Mr. Wilson,
and several other persons : and for erecting bridges on simi-

lar principles, the first gentleman took out a patent in the

year 1794. This bridge was begun in the year 1793, and

completed in August 1796. The stone abutments are 70 feet

high, above the ordinary surface of the low-water in Sunder-

land harbour, to the spring of the arch. The iron arch is

2?jG feet span; and the springing stones project about 2 feet

beyond the face of the masonry: so that the whole span,

from abutment to abutment, is 240 feet. The versed sine of

the arch is 30 feet : its soffit is therefore 100 feet above the

surface of low-water in Sunderland harbour.

The arch is composed of 6 ribs
;
and each rib of 3 con-

centric tings, or seguicnts of circles. Each ring is 5^ inches
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deep, by 4f inches thick ; and these rings are connected by
radii, 4f inches by 2i

;
the rings being at such a distance

from each other, as to make the whole depth of a rib 5 feet.

The ribs are composed of pieces of about 2^ feet long \ and

worked iron bars are let into grooves in the sides of the rings,

and fastened by rivets. These ribs are connected transversely

by hollow iron tubes, or pipes, with flanches on their ends,

and fastened to the ribs by screw-bolts : there are also diagonal
iron bars, to prevent the ribs from twisting. The haunches

are filled with circular rings ;
and the top is covered with a

frame of wood, and planked, to sustain the roadway. It has

also an iron railincr on each side.

The construction of this bridge is thought to be superior
to that at Colebrook Dale

;
and its weight is much less, in

proportion to the length, the whole being only 250 tons, of

which 210 tons are cast iron, and 40 tons of worked iron.

Yet it is considered in no small danger of falling, the arch

having settled several inches, as well as twisted from a straight

direction, and the whole vibrating and shaking in a remark-

able manner in passing over it.

The fourth iron bridge that has been executed, is that over

the river Severn at Buildwas, about 2 miles above Colebrook

L2
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Dale. It was begun in the year 1795, and finished in 1796,

the iron work by the Colebrook Dale Company, under the

direction of Mr. Thomas Telford. The arch is 130 feet

span, with a versed sine or height of only 17 feet ;
and it is

but 18 feet wide to the outside. This bridge seems to have

been contructed on the principle of the famous Avooden bridge
at Schaufhausen. The ribs under the roadway are segments
of a large circle, each cast in two pieces : but, on each side

of the railing, there is a rib, cast in 3 pieces, which springs

from a base, 10 feet lower, then crosses the others, and rises

as high as the top of the railing : and from the upper part of

these outer side ribs, the other ribs, which bear the covering

plates, are suspended by king-posts : the covering plates,

which are 46 in number, each extending quite across the

bridge, have flanges 4 inches deep, and act as an arch. The
outside ribs are 18 inches deep, and 2| inches thick ; the

middle ribs 15 inches deep, and 2^ thick; and the whole

weight of iron is about 174 tons.

Perhaps this may not be the most favourable construction

that might be contrived : the tendency of the rib aa, when it

expands, being to raise the ribs BB a little higher than they
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would by their own expansion, and to depress them lower

when it contracts: which is not the case in a wooden bridge,
this material not being so affected by heat and cold.

About the same time as the bridge at Buildwas was erected,

an iron bridge was thrown over the river Tame in Hereford-

shire
; but its parts were so slender, and so ill disposed, that

no sooner was the wooden centring taken from under it, than

the whole gave way, and tumbled into the river.

In the same year also as the Buildwas bridge was begun,
another was erected by the Colebrook Dale Company, over

the river Parret, at Bridgewater. The arch of this bridge is

an ellipsis of 75 feet span, with 23 feet rise. The haunches

are filled with circular rings of iron, and other fanciful

figures : it is composed of ribs connected together by cross

ties of iron
;
and the roadway is supported by plates. This

bridge is very neat, and thought to be exceedingly firm and

durable.

From the completion of the above bridge, few of any note

were executed in this country, till about the year 1800, when
the stone bridge erected over the Thames, at Staines, gave

way. On this occasion the magistrates of the counties of

Middlesex and Surrey came to a resolution to erect an iron

bridge there, on the abutments of the stone bridge, the piers

of which had failed
;
and Mr. Wilson, the agent of I\Ir. Bur-

don, was employed for this purpose. He accordingly under-

took the construction of an iron arch of 181 feet span, with

16f feet rise or versed sine
;
the arch being the segment of a

circle. In this bridge the ribs were similar to those ofWear-
mouth : but instead of having the blocks, of which the ribs

are composed, kept together by worked iron bars, let into

grooves in their sides, the rings of the ribs were cast hollow,

and a dowel was let into the hollow ring at each joint; so that

the two adjacent blocks were fixed together by this dowel,

and by keys passing through the rings. The ribs were also

connected transversely by frames, instead of pipes as in the

Sunderland bridge. The haunches were filled with iron

rings, and the whole was covered with iron plates.
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It is to be noted, that an iron arch, in small blocks, is not

set up after the manner of a stone one, by beginning at the

abutments, and building upwards; but is begun at the top,
and continued downwards; it being easier to join the stone

totthe iron, than to cut the iron at the top, if it should not

fit. It is somewhat remarkable, therefore, that when these

ribs were put together, and before they joined the masonry,
it was so nicely balanced, and its parts were so firmly locked

together, that after all the supports were taken out, except
those next the abutment, the whole was moved by a man,
with a crowbar under the top, and it seemed to have little

tendency to push the abutments asunder. This, however,
turned out unfortunately not to be the case. The centring
was taken away, and the bridge was opened for the use of the

public, about the end of the year 1801, or beginning of 1802.

At first it seemed to stand firm, and tiie public were much

pleased with its light and elegant appearance. But in a short

time it was found that tlie arch was sinkino: : and soon after

it had gone so much, that it was obliged to be shut up, and

the old bridge opened again. The sinking of the arch broke

several of the transverse frames, and many of the radii at

the haunches ;
which left no doubt that the abutments had

given way. But on examination there appeared no visible

sign of such failure : there was not a crack in the masonry,
nor had they gone out of the upright, After much investi-

gation however, it appeared that the whole masonry of the

abutments, to the very foundation, had slidden horizontally

backwards, still preserving the perpendicular, or upright

position.
The failure took place in the south abutment,

^vhich was supposed to be owing to a cellar, that had been

made in it. The inhabitants of Staines therefore, by the ad-

vice of an engineer whom they consulted, had this abutment

strenfithened : but no sooner was this done, than the north

one failed : and they had intended to strengthen this also
;

but their funds being nearly exhausted, they came to the re-

solution to take the whole doAvn, and erect a wooden bridge

jn its stead.
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Before the completion of the iron bridge at Staines, another

was begun of the same dimensions, and on the same principle,

over the river Tees at Yarm. This bridge was completed
also : but, instead of gradually yielding, as that at Staines

had done, the whole suddenly tumbled into the river at

once.

From the accidents above described, and from several others

of less note, iron bridges have lost a good deal of their cele-

brity, but probably on no just grounds. Those failures that

have happened, have not been through any intrinsic defi-

ciency in the iron material, but from the injudicious manner

in which they have been constructed. An opinion has gone

forth, not only among the practical builders of iron bridges,

but among some men of science, that the lateral pressure of

iron bridges, in consequence of their parts being so firmly

bound together, is comparatively small, to that of stone

arches. But, on a due consideration of their principle, I

believe it will be found quite different, and that an iron arch,

of the same weight as one of stone, requires much stronger

abutments, to resist its lateral pressiire or push, than the stone

arch does. And this we shall here endeavour to account

for.

Stone may, in a great measure, be considered as an un-

elastic substance, being very little subject to expansion or

contraction. When, therefore, an arch is composed of this

material, and the abutments are sufficiently strong, to support

it, when left to itself, there is little probability of its failure.

No ordinary load upon it will excite a tremulous motion ;

nor will it change b}^ heat or cold. The lateral pressure on

the piers or abutments is therefore uniform.

But iron is an elastic substance, and is greatly affected by
heat or cold, expanding with the one, and contracting by
the other. When, therefore, a heavy load acts upon an iron

bridge, such as a loaded waggon, the whole is put in motion,

and the arch vibrates like the string of a violin, contracting

and expanding while its parts are in the act of vibration.

Thus at one part of the vibration it pulls the abutments to-
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gether, and at the other it pushes thern asunder, with a force

compounded of>the quantity of niattcr in motion, and the Te-

locity with which it moves. When it exj)ands, the uliole

Aveightof the arch is raised, abd the pressure on the abut-

ments is compounded of the matter and velocity of the weight
raised. No such pressure, or rather impulsive momentum,
takes place in a stone bridge : therefore the strength of the

abutments of an iron bridge should be such, as not only to

sustain the weight of the arch, but also the additional push

arising from the causes above stated. The abutments of

Staines bridge were only 1-1 icet thick
;
whereas they ought

to have been at least 25 feet. Tfierc were also other causes

which contributed to the failure of this bridge, such as the

improper manner in which the foundations were made.

The abutments of Yarm bridge were made still weaker than

those of Staines : no wonder, therefore, that its failure was

more sudden.

I am therefore most decidedly of opinion, from what has

happened in the bridges above described, and in several

others, that no part of the failure is attributable to the iron

material, at least respecting its strength. I do not however

mean to say, that iron is generally to be preferred to stone:

on the contrary, I tiiink a stone bridge is preferable to an iron

one, when it can be executed with propriety and conveniency.

But there are many cases where stone would not answer the

purpose; in which cases therefore iron is most valuable.

The cases here chiefly alluded to, are when the foundations

cannot be made within the width that a 5-tone arch can with

convenience be erected
;
or when the requisite rise would be

very inconvenient for a stone bridge, or in places where stone

cannot easily be procured. The bridge atWearmouth is an

example of the former, as stone juers would have very much

obstructed the navigation of the river
;
and of the latter, as

the arch is a segment of a circle of about 500 feet diameter.

The bridge at Boston, in Lincolnshire, is another exam})ie,

though of less extent: the banks of the Witham are very low,

and the houses are built close to the river ; the rise of tide is
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great, and barges navigate under it : therefore, to render the

access easy over the bridge, it became necessary to make it

flat ;
and to admit of headroom under the arch, flatness again

was necessary. This bridge was therefore made of cast iron.

Its span is 86 feet, and its versed sine only 5^ feet. The

abutments have been well secured
;
and though many of the

radii of the ribs broke, when the pavement was put on it, yet

the rings are quite entire, and the bridge is as firm as can be

wished.

In the course of the late improvements in Bristol harbour,

two handsome cast iron bridges were erected over the New
River there, in the years 1805 and 1806, under the direction

of Messrs. Jessop. These two bridges are equal and alike in

all respects. The arcli in each is a circular segment, of 100

feet span, with a versed sine or rise of only 15 feet: the width

of the bridge about 31 feet : the whole is of cast iron, of the

strongest grey metal
; amounting to 150 tons, viz. 100 tons

in the ribs, pillars, bearers, balustrade, &c, and 50 tons in the

plates for the roadway. The arch consists of two concentric

circular rings or segments, firmly connected and bound toge-
tlier. Each of these is formed of 6 ribs, at 6 feet distance

from each other, tied together by cross bars, at intervals of

about 9x feet
;
as appears in the plan of the fabric here an-

nexed on the following page. On the upper ring, of each

rib, stand a number of pillars, in an upright position, or per-

pendicular to the horizon, their tops formed hke a T, as

bearers to support the plates for the roadway. All which,
with the railing, or balustrade, as well as the disposition and

coursing of the abutments, with piling underneath, appear in

the represented elevation following; the courses of masonry

very judiciously being laid inclining, as we have elsewhere

recommended; and the whole seems otherwise very properly
contrived. It would lead us too far here to enumerate all the

ingenious particulars in the construction of this arch, with the

dimensions of all the parts, and the practical methods of put-

ting them together, and securing the whole in the firmest

manner, as prescribed to the iron masters for their direction.
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Suffice it therefore to observe, that, from the mode of putting
the bridge together, it is so contrived, that if any part be in-

jured, it can be taken out, and replaced, without disturbing
the main body of the bridge.

The cost of one bridge, independent of the digging and

earth work, and making the roads to it, was nearly as below.

.

Piles - - 250

Masonry, 3200 yards, at 18s. including stone - - 1600

Iron work, 100 tons, at 9l. 18s. and 50 tons, at 9l. - 1440

Covering with gravel, and paving, &c. - - - 292

Expences of erection and painting
- - - - 418

.4000

Thus has been given a short history of such iron bridges

as have come to my knowledge : aware however that many
others have been built, both for roads and for aqueducts in ca-

nals, &c : but none of these, that I have heard of, are remark-

able either for their span or construction : so that it appears

unnecessary to enter into any particular description of them.

The projects also that have been made foi* bridges of this

kind, but not executed, are numerous, and a short account

may here be added of some of the more remarkable designs
that have come to our notice

; though our researches have

not enabled us to trace any of them to a period prior to the

execution of the bridge at Colebrook Dale.

A design was made in the year 1783, by whom, does not

appear, for an arch, chiefly of iron, of 400 French feet in

span, and 45 feet in the versed sine
; answering to a circle of

about 934 feet diameter. This design, with a memorial on the

advantages of using iron, in the construction of bridges, was

presented by the author to the unfortunate Louis of France, on

the 5th of May 1783. It had two large ribs, partly of iron and

partly of wood. These ribs were 30 feet deep at the springs,

and 15 feet at the midde of the arch. Each rib was composed
pf 4 ringS;, drawn from different centres, the inner ring
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"being the sti'ongest ; and they were connected together by

pieces of iron in various fanciful forms, httle adapted to give

strength to the arch. Between the ribs were cills, or logs of

timber, laid transversel}-, resting on the interior ring; and a

floor of wood was proposed to cover them. So that the road

was suspended by the ribs; and the upper part of the ribs

was to answer the purpose of a parapet, similar to the wooden

bridges in Switzerland. It appears that this project possessed

Jittle merit beyond the boldness of its design ;
and we have

never heard that any bridge has been constructed on this

principle.

In the year 1*791 a project was made by Mr. John Rennie,
Civil Engineer, for. an iron bridge, intended for the isle of

Nevis. The span of the arch was to be 110 feet, and its

versed sine IS-} ; answering to a circle of 234 feet diameter.

It was proposed that this arch was to have 6 ribs
;
each rib

to consist of 3 rings, which were to be connected together

by radii. The depth of the rib at tlie middle was 3^ feet,

and at the springs 6 feet. 1 he ribs were to be connected

together by transverse frames of iron, placed in the joints of

the blocks of wliich the ribs were compose:'; ; the haunches

to be filled with circular rings of iron
;
and the whole was to

have been covered with plates of iron, to support the road.

In April 1794, he made another design for the same island

of Nevis, in which the span was 80 feet, and the rise or versed

sine 94 feet. This design was formed on the same principles
as the former, except that the rib was 1 1^ deep at the springs,

though still only 3^ in the middle. The radii were continued

to the roadway ; and tlic whole was to be covered with iron

plates, as the former. Neither of these designs however was

executed, as the French got possession of the island.

From the above period, no projects for iron bridges, except
those above described, have come to my knowledge, till a|)-

plications were made to parliament, for the purpose of im-

proving the port of London, by means of wet docks. The
House of Commons, after having heard a great deal of evi-

dence, on the inadequacy of the Thames to accommodate the
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shipping, appointed a select committee, to take the whole

into their consideration, and to report to the house the best

means for giving relief to the extensive commerce of the me-

tropolis. This committee, after having recommended the

construction of the West India and London Docks, took up
the consideration of the state of the Thames, and of London

Bridge, which forms the great obstruction to the influx of

tide, and greatly injures the navigation of this very important
commercial river

;
and in the year 1799 they directed plans

of London bridge to be made out, with correct descriptions

of its construction and state of repair ;
from which it appeared

to them, that a new bridge, of more Avaterway, was impe-

riously required : and in consequence encouragement w^s held

out to artists, to bring forward designs, for the construction

of a new bridge, instead of the old one. On this occasion

many designs were made out, and presented to the committee.

Some were for stone bridges, and some for iron. But as the

object of this account relates to projects for iron bridges only,
we shall here confine our attention to these last alone.

The encouragement held out, by the Select Committee,

brought forward four designs of this kind : namely, one by
Mr. Wilson, formerly mentioned, of 3 arches

;
the middle

one of which was 240 feet span, having a versed sine of 37

feet
;
the two side arches of 220 feet span each, and their

versed sine 30 feet. The height of the soffit of the middle

arch 80 feet above the high-water of an ordinary neap tide.

The principles of this design were so nearly the same as those

of Sunderland bridge, that it is unnecessary to enter into any
minute description of it.

Two other designs were brought forward by Messrs. Tel-

ford and Douglass : one to consist of 5 arches across the

river, and the other of 3. The middle arch of the former

was 180 feet span, with a versed sine of 38 feet; also two

arches, each of 140 feet span, and two of 120 feet span each.

The other had a middle arch of 240 feet span, with a versed

sine of 48 feet
;
and two side arches, of 220 feet span each :

the height of the soffit of the middle arcl^ being SO feet above
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the high water of fteap tides, the same as that of Mr. Wilson's

design.
The arches of both the designs of Messrs. Telford and

Douglass were constructed in the same manner ;
therefore a

description of one will serve for both. They were composed
of ribs

;
each rib having an outer and inner ring : the inner

ring much stronger than the outer, and they were connected

together by radiated bars, which extended quite to the pieces

that supported the roadway. In the large arches there were

two portions of rings, to stay the radiated bars in the haunches;

but in the small arches only one. Of how many pieces the

ribs were composed, or in what manner to be joined, was not

shown in the designs, nor mentioned in the descriptions. The

great height given to these bridges, to admit of vessels pass-

ing under them, renders it necessary, particularly on the

south side of the river, where the land is under the level of

spring tides, that long approaches, or inclined planes, as the

designers called them, should be made
;
and these they pro-

posed to support on iron arches, constructed in a manner

similar to those of the bridge. By the section it appears that

there will be a rise of about 1 foot in 19, on the main approach
from the Borough ;

so that, taking the height of the road-

way on the bridge at 60 feet above the wharf of the Thames,
this approach will extend 1140 feet into the Borough, High-
street. Now a rise of 1 in 19 is almost double the rise in

Ludgate-hill : so that, if it were to be made the same rise as

Ludgate-hill, it would extend to a distance not much short

of half a mile. The side approach upward, it appears albo,

would come within about 260 yards of Blackfriars bridge, and

that downwards would extend to nearly opposite the Tower.

So that a considerable part of the Borough would probably

be subjected to great inconveniences and expences by these

far extended approaches, which appear unavoidable. The

additional labour too that would by this means be occasioned,

would probably cost more, to the inhabitants of London and

the Borough of Southwark, than all the advantage that might
arise by bringing vessels up to Blackfriars bridge. These ob-
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jections are not applicable to these designs alone, but in an

equal degree to Mr. Wilson's also.

There can be no doubt but that both designs could be exe-

cuted ; whatever may have been the opinion of artists on the

skill exercised in their mechanical construction. We have

before shown, that the true principle on which an arch ought
to be constructed, is to increase the depth of the voussoir, as

it is called in masonry, towards the spring of the arch, so that

the arch, with its load upon it, shall be in equilibrio in all its

parts. This being accomplished, it does not appear that any

good can result from extending the radii further ; for as the

roadway presses perpendicularly on the arch, it appears not

the strongest mode to support this perpendicular load by in-

clined pieces ;
but rather the contrary. It seems proper,

therefore, that the roadway should be sustained by upright

pillars of iron, instead of inclined radii, though less elegant
in appearance to the eye : nay we might even prefer the

circular rings or eyes of Mr. Wilson, to this mode : though
we are aware that a circle, pressed on four points, is by no

means calculated to bear a very great pressure.

The Select Committee of the House of Commons, not be-

ing satisfied with any of the three designs, that have been

described, directed Messrs. Dance and Jessop to report,

whether any, and what advantages, would accrue to the na-

vigation of the Thames, if it were to be considerably con-

tracted. Accordingly these gentlemen reported, that if, in-

stead of the channel of the Thames at London bridge being
740 feet wide, as it was proposed to be when the above de-

signs were made, it were reduced to 600 feet, that great ad-

vantages would result to the navigation ; since, by diminish-

ing the width, the depth would be much increased. It might
be foreign to the purpose of the present work, to enter into

any discussion on the propriety of this measure
;
for which

reason we may leave that discussion to a future opportunity.
In consequence of this opinion, Messrs. Telford and Douglass

presented to the Committee a very elegant and magnificent

design, for an arch of 600 feet span, having its versed sine
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about 65 feet; so that the circle of which this arch is a seg-

ment, must be about 1450 feet diameter.

The arch was composed of seven ribs ; and each rib may-
be said to have 6 rings, the 3 lower concentric, and about 8

feet deep. The dimensions of the iron cannot be correctly
taken by measurement from the plan, this being on a small

scale. These rings were connected by radii about 18 inches

asunder ; the outer and inner are the strongest, and that in

the mjddle appears light, and seems intended, it is presumed,

chiefly to stift'en the radii, though doubtless it will also add

to the strength of the bridge. The ribs are composed of

frames of iron, each about 10 feet long, which extend quite

to the entablature of the cornice. The other 3 rings are not

concentric with those 3 lower, but each drawn from a larger

radius than the other. The lowest of these three terminates

in the upper ring of the three lower, at about 120 feet from

the key, or the middle of the arch. The two above this

unite at about the same distance from the middle of the arch,

and are thence continued in one ring, till they reach within

about 35 feet of the middle or key of the arch, where they

join the said upper rib of the lower three. These three upper
ribs are united to the third or upper ring, of those first de-

scribed, by means of radii; but the spaces between these radii

include the space of two of the lower radii ; and, instead of

being stiffened by a light ring, as the lower radii are, that

object is effected by Gothic tracery. These seven ribs, above

described, are set parallel to each other
; and, to brace them

horizontally, there are six others, or diagonal ribs, four of

which cross the former diagonally, two terminating in the

middle rib, and two in the adjoining ribs
;
and there are two

outside ribs, that terminate each on the face of the exterior

ones. So that, in fact, two of the seven have no diagonal

rib terminating at their top. The whole of these last described

ribs are therefore side or diagonal braces, to keep the seven

principal ribs in their vertical position, and prevent the arch

from racking sideways, as happened at Sunderland or Wear-

mouth bridge, before mentioned. All these vertical and
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diagonal ribs are connected together by transverse frames,
at tihe joints of each of the radiated frames or voussoirs. The

top or platform, under the roadway, is covered, in the usual

manner, with iron plates ;
and there is a light iron

railing on

each side, with-Gothic ornaments. The breadth of the road-

way at the top, or middle of the arch, is 45 feet, and at the

haunch or extremit}^ of the arch 82 feet wide. The arch

springs from large frames of iron, set in abutments of ma-

sonry ; and its approaches are similar to those before de-

scribed for the designs of Messrs. Telford and Douglass.
The principles on which this arch is designed, maybe found

in a work published at Leyden, in the year 1721, entitled

** Recueil de plusieurs machines de nouvelle invention, ouv-

rage posthume de M. Claude Perrault, &c. &,c." and is de-

scribed in pages 712, 13, 14 of that work, and represented in

plates 10 and 11. It is described,
*' Pont de bois d'une seule

arche de trente toises de diametre, pour traverser la Saine

visavis le village de Sevre, ou I'on proposoit de la contruire.'*

It may also be seen in the 1st vol. of the Machines approved

by the Academ}^ of Sciences, pa. 59, pi. 14, It may appear

perhaps doubtful to some persons, whether this design is so

proportioned as to be in perfect equilibrio, being remarkably

heavy at the haunches ;
and that, were such an arch as there

described to be erected over the Thames, whether it would

permanently support itself. The extension of the radii to

the roadway has been before noticed as not well adapted to

sustain the perpendicular pressure, with which it would be

charged, and that unless its parts were in perfect equiUbrio,

the joints of the frames might open in such a manner, as to

deranse the whole fabric, and accelerate its destruction,'!

That an iron arch of 600 feet span might be constructed in

such a manner, as to become a firm and stable fabric, it is not

meant to be denied ; but, according to the principles we have

laid down, it should be rather differently constructed from

that we have described. Indeed, if the weight of iron, men-
tioned in the estimate, be correct, the parts must be very
slender indeed

;
and were the whole to be in equilibrio, this

TOL. I. M
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Aveight of the structure it>elf luiglit beud the parts in such a

nianuer, as in sou)e moas\ir(.' to cuduncer its downtalL

We imagine that three distinct objects were proposed to

be obtained by the improvements which the public have in

view. These are, 1st. The maintaining of deeper water,

from the lower part of the Thames to Blackfriars bridge,

and upward. 2d. More clear bpace for the navigation of

vessels under the bridge. 3d. Effecting this object with the

least rise of road over it.

In respect to the first question, I have already declined en-

tering into it
; being of opinion it is a discussion rather fo-

reign to the purpose of a book on bridges. The second ap-

pears to come fully under the scope of the prmciples we have

treated on. The arch here proposed, as we have before seen,

is of 600 feet span, with a versed sme or rise of 65 feet. Now,
at the distance of 100 feet from the middle, the height is 58

feet
;
at 150 feet from the middle the heigiit is 49 feet

;
and

at 200 feet it is 37 feet in height. So that, only about 200

feet, or 4- of the width of the river, can be accounted fit for

the navigation of coasters : about another third may befit for

the ordinary barges; and the remaining third Avill be for little

other purpose than the lug boats and w^herries that ply on the

river.

Vessels, therefore, in departing from the wharfs, must be

drawn out nearly to the middle of the river, before they can

take the advantage of the tide downwards: and those coming
to a wharf, must letch up in the river till they are hauled into

it. This might do for vessdb that frequent wharfs situated

a considerable distance above the bridge : but those for wharfs

that might be near it, must experience much trouble and in-

convenience ;
and it is to be feared that they w^ould fre-

quently sustain damage in their masts and rigging, by strik-

ing against it, and might probably injure the bridge itself,

Mr. llennie has very properly noticed this, in his answer to

one of the queries proposed by the Select Committc'e of the

House of Commons : but he follows up his observations by

saying, that, as the strength of the current will be chiefly in



TRACT 6. IRON BRIDGES. 163

the middle of the river, the vessels will generally pass in that

track, Now we may admit that, for a vessel sailino- up or

down the river, and going to some wharf near Bii.cktriars

bridge, or departing from thence downward, that this will

be the case : but when going to, or sailing from wharfs near

the new bridge, it will be very much otherwise
;
as may be

observed by any one who will attend to the vessels sailing to

or from the wharfs below London bridge : and \vc should

fear that, in order to prevent the accidents above noticed,

dolphins, or some such contrivance, will be found absolutely

necessary, to keep the vessels in the proper track, in passing-

through this arch. Now, if we be right in our cpnjecture,
it would probably be better to have two piers, and a bridge
of three arches, than a bridge of one only ; by which the

height or space under the bridge, for vessels to pass, might
be very much increased

;
and those wharfs which lie near the

bridge not be subject to the inconveniences, nor the vessels

to the risk before mentioned.

Thirdly, A bridge of three arches will not require the ribs

to be so deep at the top, as a bridge of one arch, by at least

5 feet
;
and therefore so much will be gained in tlic height of

the roadway over it. On the whole thei*efore it seems, that

the design in question is not completely calculated to attain

the objects the Select Committee of the House of Commons
had in view : but, on the contrary, that it will appear to most

thinking men, rather an injudicious idea, to effect by a great

work, that which can at least as well, if not better, be ac-

complished by a work of less expence, and of more probable

stability.

Our observations have been hitherto confined to the possi-

bility and propriety of executing an iron arch, of 600 feet

span, according to the design given with the report of the

House of Commons. We may now add some observations on

the practicability of building abutments, in this situation, suf-

ficiently strong to resist the lateral pressure of this arch
;

which, according to our calculation, made on the supposi-

tion that the arch would be similar to one of stone, acting

m2
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v,it!! ;i regular and unii"onr> jjicssiirc upon it, \vould be of

alxnit yOOU tons. J>iit whrii the effects of tlic vibration, which

must necessarily take place in an arch of this magnitude, arcs

taken into consideration, the lateral pressure, or rather

vibrating push, will far exceed that quantity ; and for this

effort, as has been before noticed, provision must be made in

the strength of the abutments : and though the thickness of

these in the design, name!}' 85 feet, seems to be great, yet I

am inchned to think it would be found too small, especially

at the south end of the brido-e, where I am informed the

ground is very bad, being moorlog and soft mud to a con-

siderable depth. Indeed I should fear that something of the

kind of what happened at Staines would be likely to take place

here, namely, the whole mass of masonry be forced back ho-

rizontally, by the great lateral push of the arch, in spite of

every precaution that could be taken to prevent it. But we
must observe, as we have before done in answer to theQueries

in the Report of the Committee of the House of Commons,
that thefoundations of the abutments should be laid inclining

towards the centre of the circle to which the arch is drawn,
as a more likely mode of preventing them from sliding out-

wards, than if laid horizontally : but even with this precau-

tion, if the substratum be moorlog or soft mud, it Avill be likely

to give way ;
and if this ever take place, the abutment and

arch must follow it.

The following is a rough sketch, on a very small scale, on

the design, at least very elegant, which was given along with

the above project.
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As in some degree and nature related to the foregoing
account of iron arches, properly so called, we may here add

a few words, just to notice two ingenious works lately exe-

cuted, b^ng a kind of straight or flat arch, for an iron aque-

duct, supported on pillars, carried over rivers. These were,

both of them, designed by Mr. Thomas Telord, engineer,
and executed under his direction.

The former Avas a small aqueduct of cast iron, the first for

a navigable canal, which was constructed in the year 1795,

on the Slirewsbury canal, near Wellington in Shropshire.
It is 1 80 feet in length ;

and the surface of the water in the

aqueduct is about 20 feet above that of low water in the

river. The supporting pillars, in this case, are also of cast

iron. There are no ribs under the bottom plates, these

being connected with the side plates, shaped like the stones

in a Hat arcii, Avhich is also the case in the second instance,

at Pontcysylte. The iron work of this aqueduct was cast at

Ketlcy foundery, by Messrs. Keynolds.
The second instance was erected in the year 1805, at the

Pontcysylte aqueduct. It having been found necessary to

carry the Ellesmere canal across the river Dee, at the eastern

termination of the vale of Llangollen, at the height of 126

feet 8 inches above the surface of low water in the river,

Mr. Telford conceived the bold design of effecting this by
means of an aqueduct constructed of cast iron, supported

by stone pillars. These are 20 in number, including the

abutments : the length of the aqueduct is 1020 feet, and

the breadth across it 12 feet. It has been in constant use

for the purposes of navigation ever since it was first opened,
on the 26th of November 1805, and it answers every pur-

pose perfectly well. The iron work was cast, and set up,

by Mr. William Hazledine, of Si)rewsbury. A small view of

the elevation of this elegant structure is as here below.

i^fcw^fet^
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TRACT VII.

A DISSERTATION ON THE NATURE AND VALUE OF INFINITE

SERIES.

1. About the year 1780 I discovered a very general and

easy method of valuing series, wiiose terms are alternately

positive and negative, which equally applies to such series,

whether they be converging, or diverging, or their terms all

equal ; together with several other properties relating to

certain scries : and as there may be occasion to deliver some

of those matters in the course of these tracts, this opportu-

nity is taken of premising a few ideas and remarks, on the

nature and valuation of some of the classes of series, which

form the object of those communications. This is done with

a view to obviate any misconceptions that might perhaps be

made, concerning the idea annexed to the tcnu value of such

series in those tracts, and the sense in w?)ich it is there always
to be understood ;

which is the more necessary, as many con-

troversies have been warmly agitated concerning these mat-

ters, not only of late, by some of our own countrymen, but

also by others among the ablest matiiematicians in Europe,
at different periods in the course of the last century ;

and all

this, it seems, through the want of specifying in what sense

the term value or sum was to be understood in their disser-

tations. And in this discourse, I shall follow, in a great

measure, the sentiments and manner of the late celebrated

L. Euler, contained in a similar memoir of his in the fifth

volume of the New Petersburgh Commentaries, adding and

intermixing here and there other remarks and observations

of my own.

2. By a converging series, is meant such a one whose

terms continually decrease ;
and by a diverging series, that
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whose terms continually increase. So that a series whose

terms neither increase nor decrease, but are all equal, as they
neither converge nor diverge, may be called a neutral series,

as a a -\- a a -^ &c. Now converging series, being sup-

posed infinitely continued, may have their terms decreasing
to as a limit, as the scries 1 4 + ^ ^+ &c, or only

decreasing to some finite magnitude as a limit, as the serie*

r + r i + &c, which tends continually to 1 as a

limit. So, in like manner, diverging series may have their

terms tending to a limit, that is either finite or infinitely

great : thus the terms 1 2 + 3 4 + &c, diverge to in-

finity ;
but the diverging terms f |. + .|. |-f- &c, only

to the finite magnitude 1. Hence then, as the ultimate terms

of series which do not converge to 0, by supposing them

continued in infinitum, may be cither finite or infinite, there

will be two kinds of such series, each of which will be further

divided into two species, according as tlie terms shall either

be all affected with the same sign, or have alternately the

signs + and . We shall, therefore, have altogether four

species of series which do not converge to 0, an example of

each of which may be as here follows :

1. -

3.

4. -

Cl -f 1 + 1 + I

U+1 + l- 4- i

C 1 + 2 4- 3 + 4 + 5 + 6 -j- &c.

d 1 + 2 4- 4 + 8 + 16 + 32 + .Scc.

ri_24.3_4-{- 5 6 + &C.

CI 5 + 4 - 8 + 16 - 32 + &c.

\- 1 + 1 + &c.

4- 1+ -^ + &c.

1 + 1 - 1 + 1 - 1 + &c.

+ I
-

I + I
-

T + -^C.

3. Now concerning the sums of these species of series,

ihere have been great dissensions among juathematicians ;

sou^e affirming that they can be expressed by a certain sum,
while others deny it. In the first place, however, it is evi-

dent that the sums of such series as come under the ('rst < f

these species, will be really infinitely great, since l)y --.-ually
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collecting the terms, we can arrive at a sum greater than any

proposed mimber whatever: and hence there can be no doubt

but that the sums of this species of series may be exhibited

by expressions of this kind . It is concerning the other

species, therefore, that mathematicians have chiefly differed
;

and the arguments which both sides allege in defence of their

opinions, have been endued with such force, that neither

party could be hitherto brought to yield to the other,

4. As to the second species, the celebrated Leibnitz was

one of the first who tre-ated of this series 1 l-j-i i-f.

1 1 + &c, and he concluded the sum of it to be = f ,

relying on the following cogent reasons. And first, that this

series arises by resolvingr the fraction- into the series
^ =*

1 + a

1 a + a* a^ + *
tf^ + &c, by continual division in-

the usual way, and taking the value of a equal to unity.

Secondly, for more confirmation, and for persuading such as

are not accustomed to calculations, he reasons in the follow-

ing manner : If the series terminate any where, and if the

number of the terms be even, then its value will he = ;

but if the number of terms be odd, the value of the series

will be = 1 : but because the series proceeds in infinitunit

and that the number of the terms cannot be reckoned either

odd or even, we may conclude that the sum is neither = 0,

nor 1, but that it must obtain a certain middle value,

equidiHerent from both, and Avhicli is therefore = f. And

thua, he adds, nature adheres to the universal law of justice,

giving no partial preference to either side.

5.. Against these arguments the adverse party make use of

such objections as the following. First, that the fraction.

; ;
is not equal to the infinite series 1 a + a* a^ 4-

1 -}-

&c, unless a be a fraction less than unity. For if the division

be any where broken off, and the quotient of the remainder

be added, the cause of the paralogism wiJl be manifest;
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1
for we shall then have =1 a + a* a'-f-

i fl" T -
; and that, although the number n should

be made infinite, yet the supplemental fraction ^
1 + a

ought not to be omitted, unless it should become evanescent,

which happens only in those cases in which a is less than 1,

and the terms of the series converge to 0. But that in other

cases there ought always to be included this kind of supple-
a" + '

ment ^ -
; ;

and thoucrh it be affected with the dubious
1 +

sign ^ , namely or -f according as 7i shall be an even or

an odd number, yet if n be infinite, it may not therefore be

omitted, under the pretence that an infinite number is neither

odd nor even, and that there is no reason why the one sign
should be used rather than the other

;
for it is absurd to sup-

pose that there can be any integer number, even though it

be infinite, which is neither odd nor even.

6. But this objection is rejected by those who attribute de-

terminate sums to diverging series, because it considers an

infinite number as a determinate number, and therefore either

odd or even, when it is really indeterminate. For that it is

contrary to the very idea of a series, said to proceed in
infi-

nitum, to conceive any term of it as the last, though infinite :

and that therefore the objection ab vo-meniioned, of the

supplement to be added or subtracted, naturally falls of itself.

Therefore, since an infinite series never terminates, we never

can arrive at the place where that supplement must be joined;

and therefore that the supplement not only may, but indeed

ought to be neglected, because there is no place found

for it.

And these arguments, adduced either for or against the

sums of such series as above, hold also in the fourth species,

which is not otherwise embarrassed with any further doubts

peculiar to itself.

7. But those who dispute against the sums of such scries.
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think they have the firmest hold in the third species. For

though the terms of these series continually increase, and

that, by actually collecting the terms, we can arrive at a

sum greater than any assignable number, which is the very
definition of infinity ; yet the patrons of the sums are forced

to admit, in this species, series whose sums are not only

finite, but even negative, or less than nothing. For since

the fraction
, by evolving it by division, becomes

1 + a + a* + a' + * + &c, we should have

= 1 = 1+2 + 4+ 8 + 16 + &C,
1 2

1 = i-=l+S + 9+ 27 + 81 + &c,
1 - 3

which their adversaries, not undeservedly, hold to be absurd,

since by the addition of affirmative numbers, we can never

obtain a negative sum
;
and hence they urge that there is the

greater necessity for including the before-mentioned supple-
ment additive, since by taking it in, it is evident that

2"+ ^

1 is =1+2+4+8 2" + y ^,

though 71 should be an infinite number.

8. The defenders therefore of the sums of such series, in

order to reconcile this striking paradox, more subtle perhaps
than true, make a distinction between negative quantities ;

for

they argue, that while some are less than nothing, there are

others greater than infinite, or above infinity. Namely, that

the one value of 1 ought to be understood, when it is

conceived to arise from the subtraction of a greater number
a + 1 from a less a

;
but the other value, Avhen it is found

equal to the series 1 +2 + 4 + 8+ &c, and arising from

the division of the number 1 by 1
;
for that in the former

case it is less than nothing, but in the latter greater than infi-

nite. For the more confirmation, they bring this example
of fractions

2_J_J_JI_ 1 1 1 1

4' 3> T' "o"' -1' -S' -3' '
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which, evidently increasing in the leading terms, it is inferred

will continually increase
;
and hence they conclude that --

is greater tban^, and -
greater than -, and so on: and

therefore as is expressed by 1
,
and ^ by -

,
or infinity,

1 -will be greater than <->
,
and much more will = _i be

greater than -> . And thus they ingeniously enough repel-

led that apparent absurdity by itself.

9. But though this distinction seemed to be ingeniously

devised, it gave but little satisfaction to the adversaries; and

besides, it seemed to affect the truth of the rules of algebra.

For if the two values of 1, namely 12 and -, be really

different from each other, as we may not confound then), the

certainty and the use of the rules, which we follow in making

calculations, would be quite done away ;
which would be a

greater absurdity than that for whose sake the distinction

was devised : but if 1 2 = -, as the rules of algebra

require, for by multiplication 1 x (12)= 1 + 2=1,
the matter in debate is not settled; since the quantity

--
I ,

to which the series 1+2 + 4 + 8 + &c, is made
t(|'iu.]j

is

less than nothing, and therefore the same difficnltv still re-

mains. In the mean time however, it seems but agieeiibie

to truth, to say, that the same quantities which are below

nothing, may be taken as above infinite. For we know, not

only from algebra, but from geometry also, that ther^ are

two ways, by which quantities pass from positive to negative,

the one through the cypher or nothing, and the other throutvi

infinity: and besides, that quantities, either by increa.>iiii or

decreasing from the cypher, return again, and revert to t,.c

same term 0; so that quantities more than infinite arc r. c

same with quantities less than nothing, like as quantities less

than infinite agree with quantities greater than nothing.

10. But, further, those who deny the truth of the sums
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that have been assigned to diverging series, not only omit to

assign other values for the sums, but even set themselves ut-

terly to oppose all sums whatever belonging to such series,

as things merely imaginary. For a converging series, as

suppose this 1 +f + :^+4 + &c, will admit of a sum
= 2, because the more terms of this series Ave actually add,

the nearer we come to the number 2: but in diverging series

the case is quite different; for the more terms we add, the

more do the sums which are produced differ from one an-

other, neither do they ever tend to any certain determinate

value. Hence they conclude, that no idea of a sum can be

applied to diverging series, and that the labour of those per-

sons who employ themselves in investigating the sums of such

series, is manifestly useless, and indeed contrary to the very

principles of analysis.

1 1 . But notwithstanding this seemingly real difference, yet
neither party could ever convict the other of any error, when-

ever the use of series of this kind has occurred in analysis ;

and for this good reason, that neither party is in an error,

the whole difference consisting in words only. For if in any
calculation we arrive at this series 1 l-fl l-f iScc,

and that we substitute f instead of it, we shall surely not

thereby commit any error
;
which however we should cer-

tainly incur if w-e substitute any other number instead of that

series; and hence there remains no doubt but that the series

1 1 + 1 ~ i + ^c, and the fraction 4-, are equivalent

quantities,
and that the one may always be substituted instead

of the other without error. So that the whole matter in dis-

pute seems to be reduced to this only, namely, whether the

fraction f can be properly called the^MWi of the series 11
+ 1 1 -f &c. Now if any persons should obstinately

deny this, since they Avill not however venture to deny the

fraction to be equivalent to the series, it is greatly to be feared

they will fall into mere quarrelling about words.

12. But perhaps the whole dispute will easily be compro-

mised, by carefully attending to what follows. Whenever,
in analysis, we arrive at a complex function or expression,
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either fractional or transcendental
;

it is usual to convert it

into a convenient series, to which the remaining calculus may
be more easily applied. 7\nd hence the occasion and rise of

infinite series. So far only then do infinite series take place
in analytics, as they arise from the evolution of some finite

expression ;
and therefore, instead of an infinite series, in any

calculus, we may sn'uUitute that formula, from whose evo-

lution it arose. And i:i:nce, for performing calculations with

more ease or more benefit, like as rules are usually given for

converting into infinite series such finite expressions as are

endued with less proper fonij:- , so, on the other hand, those

rules are to be esteemed not less useful, by the help of which

we may investigate the finite expression from which a pro-

posed infinite series would result, if that finite expression

should be evolved by the proper rules: and since this ex-

pression may always, without error, be substituted instead

of the infinite series, they must necessarily be of the same-

value : and hence no infinite series can be proposed, but a

finite expression may, at the same time, be conceived as

equivalent to it.

1 3. If, therefore, we only so far change the received notion

of a sum as to say, that the sum of any series, is the finite

expression by the evolution of which that series maybe pro-

duced, all the difficulties, which have been agitated on both

sides, vanish of themselves. For, first, that expression by
Avhose evolution a converging series is produced, exhibits at

the same time its sum, in the common acceptation of the

term : neither, if the series should be divergent, could tlie

investigation be deemed at all more absurd, or less proper,

namely, the searching out a finite expression which, being

evolved .according to the rules of algebra, shall ]iroduce that

scries. And since that expression may be substituted in the

calculation instead of this series, there can be no doubt but

that it is equal to it. WMiich being the case, we need not

necessarily deviate from the usual mode of sjjcaking, hut

might be permitted to call that expression al^o t!ic sinn,

which is equal to any series whatever, provided however,
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that, in series whose terms do not converge to 0, we do not

connect that notion with this idea of a sum, namely, that the

moi'e terms of the series are actually collected, the nearer we
must approach to the value of the sum.

14. But if any person shall still think it improper to apply
the term sum, to the finite expressions by whose evolution

all series in general are produced ;
it will make no difference

in the nature of the thing ;
and mstead of the word sum, for

such finite expression, he may use the term value, or func-

tion, or perhaps the term radix would be as proper as any
other that could be employed for this purpose, as the series

may justly be considered as issuing or growing out of it, like

as a plant springs from its root, or from its seed. The choice

of terms bemg in a great measure arbitrary, every person is

at liberty to employ them in whatever sense he may think

fit, or proper for the purpose in hand ; provided always that

he fix and determine the sense in which he understands or

employs them. And as I consider any series, and the finite

expression by whose evolution that series may be pi'oduced,
as no more than two different ways of expressing one and the

same thing, whether that finite expression be called the sum,
or value, or function, or radix of the series ;

so in the follow-

ing paper, and in some others which may perhaps hereafter

be produced, it is in this sense I desire to be understood,

when searching out the value of series, namely, that the ob-

ject of the enquiry, is the radix by whose evolution the series

may be produced, or else an approximation to the value of

it in decimal numbers, &.c.
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TRACT Vlir.

A NEW METHOD FOR THE TALUATION OF NUMERAL INFI-

NITE SERIES, WHOSE TERMS ARE ALTERNATELY (+)
PLUS AND

( ) minus; BY TAKING CONTINUAL ARITH-

METICAL MEANS BETWEEN THE SUCCESSIVE SUMS, AND

THEIR MEANS.

ARTICLE 1.

The remarkable difference between the facility -which

mathematicians have found, in their endeavours to determine

the values of infinite series, whose terms are alternately affirm-

ative and negative, and the difficulty of doing the same thing
with respect to those series whose terms are all affirmative,

is one of those striking circumstances in science which we
can hardly persuade ourselves is true, even after we have seen

many proofs of it
;
and Avhich serve to put us ever after

on our guard not to trust to our fust notions, or con-

jectures, on these subjects, till we have brought them to tlie

I

test of demonstration. For, at first sight it is very natural

to imagine, that those infinite series whose terms are all affirm-

ative, or added to the first term, must be much simpler in

their nature, and much easier to be summed, than those whose

terms are alternately affirmative and negative ; which, how-

ever, we find, on examination, to be directly the reverse;

the methods of finding the sums of the latter series being nu-

merous and easy, and also very general, whereas those that

have been hitherto discovered for the summation of the former

sc-ries, are few and difficult, and confined to series whose

terms are generated from each other according to some par-

ticular laws, instead of extending, as the other methods do,
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to all sorts of series, whose terms are connected together by
addition, by whatever law their terms are formed. Of this

remarkable difference between these two sorts of series, the

new method of finding the sums of those whose terms are al-

ternately positive and negative, which is the subject of the

present tract, will afford us a striking instance, as it possesses

the happy qualities of simplicity, ease, perspicuity, and uni-

versality ; and yet, as the essence of it consists in the alter-

nation of the signs + and
, by which the terms are con-

nected with the first term, it is of no use in the summation of

those other series whose terms are all connected with each

other by the sign +.
2. This method, so easy and general, is, in short, simply

this : beginning at the first term a of the series a b -\- c -

d -\- e / + &c, which is to be summed, compute several

successive values of it, by taking in successively more and

more terms, one term being taken in at a time
;
so that the

first value of the series shall be its first term a, or even or

nothing may begin the series of sums
;
the next value shall

be its first two terms a b, reduced to one number
;
its next

value shall be the first three terms a 6 + c, reduced to one

number
;

its next value shall be the first four terms a b

-}- c d, reduced also to one number; and so on. This, it

is evident, may be done by means of the easy arithrnetical

operations of addition and subtraction. And then, having
found a sufficient number of successive values of the series,

more or less as the case may require, interpose between these

values a set of arithmetical mean quantities or proportionals;
and between these arithmetical means interpose a second sec

of arithmetical mean quantities ;
and between these arith-

metical means of the second set, interpose a third set of

arithmetical mean quantities ; and so on as far as you please.

By this process we soon find either the true vaUie of the

series proposed, when it has a determinate rational value, or

otherwise we obtain several sets of vahies approximating^
nearer and nearer to tl)e sum of the scries, both in the co-

lumns and in the lines, either horizontal or obliquely dc-

VOL, I. N
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scending or ascending ; namely, both of the several sets of

means themselves, and the sets or scries formed of any of

their corresponding terms, as of all their first terms, of their

second terms, of their third terms, &c, or of their last terms,

of their penultimate terms, of their antepenultimate terms,

&c : and if between any of these latter sets, consisting of the

like or corresponding terms of the former sets of arithmetical

means, we again interpose new sets of arithmetical means, as

"we did at first with the successive sums, we shall obtain other

sets of approximating terms, having the same properties as

the former. And thus we may repeat the process as often

as we please, which will be found very useful in the more

difficult diverging series, as we shall see hereafter. For this

method, being derived only from the circumstance of the al-

ternation of the signs of the terms, -\- and ,
it is therefore

not confined to converging series alone, but is equally appli-

cable both to diverging series, and to neutral series, by which

last name I shall take the liberty to distinguish those series,

whose terms are all of the same constant magnitude ; namely,
the application is equally the same for all the three following
sorts of series, viz.

Converging, i_i-j-| ^ + |_|^ + &c.

Diverging, 1 2+3 4 + 5 6 + &c.

Neutral, 1 1 + 1 1 + 1 1 + &c.

As is demonstrated in what follows, and exemplified in a

variet}' of instances.

It must be noted, however, that by the value of the series,

I always mean such radio:, or finite expression, as, by evolu-

tion, would produce the series in question ; according to the

sense we have stated in the former ])aper, on this subject; or

;in approximate value of such radix
;
and which radix, as it

may be substituted instead of the series in any operation, I

call the value of the series,

3. It is an obvious and well-known property of infinite

series, with alternate signs, that when we seek their value

bv collecting their terms one after another, wo obtain a series

of successive suras, which approach continually nearer and
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nearer to the true value of the proposed series, when it is a

converging one, or one whose terms always decrease by some

regular law
; but in a diverging series, or one whose terms

as continually increase, those successive sums diverge always
more and more from the true value of the series. And from

the circumstance of the alternate change of. the signs, it is

also a property of those successive sums, that when the last

term which is included in the collection, is a positive one,

then the sum obtained is too great, or exceeds the truth ; but

when the last collected term is negative, then the sum is too

little, or below the truth. So that, in both the converging
and diverging series, the first term alone, being positive, ex-

ceeds the truth
;
the second sum, or the sum of the first two

terms, is below the truth
;
the third sum, or the sum of the

three terms, is above the truth
;
the fourth sum, or the sum

of four terms, is below the truth
;
and so on

;
the sum ofany

even number of terms being below the true value of the series,

and the sum of any odd number, above it. All which is ge-

nerally known, and evident from the nature and form of the

series. So, of the series a b + c d + e f -\- &c,
the first sum a is too great ;

the second sum a b too little
;

the third sum a b -\- c too great ;
and so on as in the fol-

lowing table, where s is the true value of the series, and is

placed before the collected sums, to complete the series,

being the value when no terms are included :

Successive suras.

5 is greater than

^- is less than a

s is greater than a b

s is less than a b -{ c

s is greater than a b -f c d

s is less than a b -f c d \- e

&c. &c.

4. Hence the value of every alternate series s, is positive,

and less than the first term a, the series being always sup-

posed to begin with a positive term a
;
and consequently, if

the signs of all the terms be changed, or if the series begin
N 2
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with a negiitive term, the value s will still be the same, but

negative, or the sign of the sum will be changed, and the

value become -~ s zz: a -\- b c -\- d &c. Also, be-

cause the successive sums, in a converging series, always ap-

proach nearer and nearer to the true value, while they recede

always farther and farther from it in a diverging one ;
it

follows that, in a neutral series, a a -\- a a -\- &c, which

holds a middle place between the two former, the successive

sums 0, a, 0, a, 0, a, &c, will neither converge nor diverge,
but will be always at the same distance from the value of the

proposed series a a -\- a a -\- &c, and consequently that

value will always be = fa, which holds every where the mid-

dle place between and a.

I am not unaware that, though a a \- a aH &c,

may be produced by evolving by actual division, it

will also arise by evolving several other functions in like

manner
;

as

fl^ fl' o

* + a' + a^ + &c
: , or

; ; ; , &C, Or
;

r )

a-fia + fl a-\-a-^a-\-a a -i- a \- a -\- a -\- olc

or any other similar function, in which the numerator has

fewer terms than the denominator. Yet the preference

among them all seems justly due to the fust

= -=:=: 4^, lor tins reason, besides what
a -\- a 2a 2

is said above, viz, put s for the value of the series a a +
a a + &c : since

then s = a a -{ a a -\ &c,
and a = a, take tiie upper equ. from the under,

therj a s a a -\- a ' a -\- &c = s by sup.

thercf, a s :zz
s, and 2^ = a, or s = la, as above.

5. Now, with respect to a converging series, a d-i-c d+
&c

;
because is below, and rt above ^, the value of the series,

but a nearer than to the vahie s, it follows that 6- lies be-

tween a and ^a, and that -^a is less than s, and so nearer to s

than is. In like manner, because a is above, and a b

below the value s, but a b nearer to that value than a is.
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it follows that s lies between a and a b, aiul that the arith-

metical mean a f6 is something above the value of s, but

nearer to that value than a is. And thus, the same reason-

ing holding in every following pair of successive sums, the

arithmetical means between them will form another series of

terms, which are, like those sums, alternately less and greater
than the value of the proposed series, but approximating
nearer to that value than the several successive sums do, as

every term of those means is nearer to the value 5, than the

corresponding preceding term in the sums is. And, like as

the successive sums form a progression approaching always
nearer and nearer to the value of the series

; so, in like man-

ner, their arithmetical means form another ])rogression, com-

ing nearer and nearer to the same value, and each term of the

progression of means nearer than each term of the successive

sums. Hence then we have the two following scries, namely,
of successive sums and their arithmetical means, in which each

step approaches nearer to the vahie of s than the former, tlie

latter progression being however nearer than the former, and

the terms or steps of each alternately below and above tho

value s of the series a b -\- c d -\- &c.

Successive sums.
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6, And since these two progressions possess the same pro-

perties, but only the terms of the latter nearer to the truth

than the former
;
for the very same reasons as before, the

means between the terms of these first arithmetical means,
will form a third progression, whose terms will approach still

nearer to the value of 5 than the second progression, or the

first means
; and the means of these second means will ap-

proach nearer than the said second means do
;
and so on con-

tinually, every succeeding order of arithmetical means, ap-

proaching nearer to the value of s than the former. So that

the following columns of sums and means will be each nearer

to the value of s than the former, viz.

Sue, sums.

a

a b

a b-\-c

a b-\-c d

1st means.

6

-2

a-6+ 2

a 6-f C--

a b-\-kc.

2d means.

3a 6

4

5b-c

,
3c d

a b-\-c-

a-b+ kc.

)de

3d means.

a
Tb-\c + i

lc ^d+ e

a b +

a b-i-ckc.

a b-{-kc.

Where every column consists of a set of quantities, ap-

proaching still nearer and nearer to the value of 5, the terms

of each column being alternately below and above tliat value,

and each succeeding column approaching nearerthan the pre-

cedin<r one. Alsoeverv line, formed of all the first terms, all

the second terms, all the third terms, ixc, of the columns,forms

nlso a progression Avhose terms continually approximate to

the value of 5, and each line nearer or quicker than the former ;

but differing from the columns, or vertical progressions, in

this, namely, that whereas the terms in the columns arc: al-

ternately below and above the value of J, those in each lijic

are all on one side of the valuer, namely, cither all below or

all above it; and the lines alternately too little and too great,

namely, all the expressions in the first line too little, all those
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in the second line too great, those in the third line too little,

and so on, every odd line being too little, and every even line

too great.

^ ,^ ,
. a 3a. b 7a~4b-\-c

7. Hence the expressions , , ,^ 2 4 8
'

l5a ]lb-{-5caSla 26b4-]6c 6d-\-e
, &;c, are con-

16 32
'

tinual approximations to the value'
,?,

of tlie converging series

a b + c - d+ e &c, and are all below the truth. But

we can easily express all these several theorems by one gene-
ral formula. For, since it is evident by the construction, that

while the denominator in any one of them is some power
(2") of 2 or 1 +1, the numeral co-efficients of rt, b, c\ &,c,

the terms in the numerator, are found by subtracting all the

terms except the last term, one after another, from the said

power 2" or (1 + 1)", which is =
n 1 n In -2 ,-

1 + n 4- n . [-71. [- &c, name! v the
2 2 3

coefficient of a equal to all the terms 2", minus the first term

1
;
that of b equal to all except the first two terms 1 -f- ?i ;

that of c equal to all except the first three; and so on, till

the coefficient of the last terra be = 1 , the last term of the

power ;
it follows that the general expression for the several

theorems, or the general approximate value of the converg-

ing series b a -\- c d -\- &c, will be
71 1

2 , 1 72 71 .

gn 12" 1 n
-a b -\ c -f

&c, continued till the terms vanish and the series break off,

n being equal to or any integer number. Or this general

formula may be expressed by this series,

1 ,
Jil 7iln2s,

x[{2"-\]a-{x~n)b + {^-n.-^)c-{c-n,~ )d

&c] ;
where a, b, c, &c, denote the coefficients of the seve-

ral preceding terms. And this expression, which is always
too little, is the nearer to the true value of the series

a 3-f- c ^/-f &,c, as the number 7i is taken greater ; always
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excepting however those cases in which the theorent) is accu-

rately true, when n is some certain finite number. Also, with

any value of w, the formula is nearer to the truth, as the terms

a, b, c, &c, of the proposed series, arc nearer to equality ;
so

that the slower any proposed series converges, the more ac-

curate is the formula, and the sooner does it afford a near

value of that series : which is a very favourable circumstance,

as it is in cases of very slow convergency that approximating
formula are chiefly wanted. And, like as the formula ap-

proaches nearer to the truth as the terms of the series ap-

proach to an equality, so when the terms become quite equal,

as in a neutral series, the formula becomes quite accurate,

and always gives the same value \-a for s or tlie series, what-

ever integer number be taken for n. And further, when the

proposed series, from being converging, passes through neu-

trality, when its terms are equal, and becomes diverging, the

formula will still hold good, only it will then be alternately

too great, and too little as long as the series diverges, as we
shall presently see more fully. So that, in general, the value

.-f of the series a b + c d -]- &e, whether it be con-

verging, diverging, or neutral, is less than the first term a
;

when the series converges, the value is above ^ ;
when it

diverges, it is below ^a ; and when neutral, it is equal to ^a.

8. Take now the series of the first terms of the several

orders of arithmetical means, whiph form the progression of

continual approximating formulae, being each nearer to the

value of tlie series a b -^ c d -{ occ, than the former,

and place them in a column one under another; then take the

differences between every two adjacent formula?, and place

them in another column by the side of thiii former, as here

follows :
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Approx. Formulae.

a

2"

1a~-4b-\-c

ISa llb+5cd
16

Differences,

ab
4

8

a Sb +Scd
16

a 4-b + 6c 4d+e_

&c.

3la 26b+ 16c6d-\-e
32

'

&c.

From which it appears, that this series of differences consists

of the very same quantities, which form the first terms of all

the orders of differences of the terms of the proposed series

a b -\- c d -\- &c, when taken as usual in the differential

method. And because the first of the above differences added

to the first formula, gives the second formula
;
and the se-

cond difference added to the second formula, gives tiie third

formula
;
and so on; therefore the first formula with all the

differences added, will give the last formula
; consequently

our general formula, before mentioned,

X [(2 l)a (A-^n)^. + (B

71 1

)c &c],

which approaches to the value of the series a ^-fc' c?+&c,
is also equivalent to, or reduces to this form,

a a b a-2b-\-c a Sb-^3cd
_4_ . _ _L _1_+ + + -f &c,4 '

8
'

16

which, it is evident, agrees with the famous differential series.

And this coincidence might be sufficient to establish the truth

of our method, though we had not given other more direct

proof of it. Hence it appears then, tiiat our theorem is of

the same degree of accuracy, or convergency, as the differ-

ential theorem ;
but admits of more direct and easy a})plica-

tion, as the terms themselves are used, without the previous
trouble of taking the several orders of differences. And our

method will be rendered general for literal, as well as for

numeral series, by supposing a, b, c, &c, to represent not
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barely the coefficients of the terms, but the whole terms, both

the numeral at\d the literal part of them. However, as the

chief use of this method is to obtain the numeral value of

series, when a literal series is to be so summed, it is to be

made numeral by substituting the numeral values of the letters

instead of them. It is further evident, that \vc might easily

derive our method of arithmetical means from the above dif-

ferential series, by beginning with it, and receding back to

our theorems, by a process counter to that above given.

9^ Having, in Art. 5, 6, 7, 8, completed the investigations

for the first or converging form of series, the first four articles

being introductory to both forms in common
;
we may now

proceed to the diverging form of series, for which we shall

find the same method of arithmetical means, and the same

general formula, as for the converging series
;
as well as the

mode of investigation used in Art. 5 et seq. only changing
sometimes greater for less, or less for greater. Thus then,

reasoning from the table of successive sums in Art. 3, in which

s is alternately above and below the expressions 0, a, a Z,

a b -\- f, &c, because is below, and a above tiie value s

of the series a b -\- c d -{- Sic, but nearer than a to that

value, it follows that s lies between and fa, and that {a is

greater than 5, but nearer to s than a is. In like manner, be-

cause a is above, and a b below the value s, but a nearer

that value than a b is, it follows, that s lies between a and

a b, and that the arithmetical mean a i-b is below
.?, but

that it is nearer to 5 than a ^ is. And thus, the same

reasoning holding in every pair of successive sums, the arith-

metical means between them will form another series of terms,

which are alternately greater and less than s, the value of the

proposed series
;
but here greater and less in the contrary

way to Vvliat they were for the converging series, namely,
those steps greater here which were less there, and less here

which before were greater. And this first set of arithmetical

iiieans, will either converge to the value of ^, or will at least

diverge iess from it than tiie progression of successive sums.

Again, the same reasoning still hokling good, by taking the

arithmetical means of those first means, another set is found,



TRACT 8: INFINITE SERIES. 187

which will either converge, or else diverge less than the

former. And so on as far as we please, every new operation

gradually checking the first or greatest divergency, till a

number of the first terms of a set converge sufliiciently fast,

to afford a near value of >? the proposed series.

10. Or, by taking the first terms of all the orders of means,
we find the same set of theorems, namely
a Za-b la-U+ c 15a- lib + 5c- d

"'

~T"' 8
'

1 6
' '

*' ^" general,

^x [(2"-l)a-{A-^n)b+ {ji ji.'-^)
c -

&c],

which will be alternately above and below s, the value of the

series, till the divergency is overcome. Then this series,

which consists of the first terms of the several orders ofmeans,

maybe treated as the succcessive sqms, taking several orders of

means of these again. After which, the first terms of these last

orders may be treated again in the same manner
;
and so on as

far as we please. Or the series of second terms, or third terms,

&c, or sometimes, the terms ascending obliquely, may be

treated in tiie same manner to advantage. And with a little

practice and inspection of the several series, whether vertical,

or horizontal, or oblique, for they all tend to the detection

of the same value s, we shall soon learn to distinguish where-

abouts the required quantity ><? is, and which of the series

will soonest approximate to it.

11. To exemplify now this method, we shall take a few

seriescf both sorts, and find their value, sometimes by actually

going through the operations of taking the several orders of

arithmetical means, and at other times by using some one of

the theorems

a 2a b laAb-tc 15a lib + 5c d
_, ____, . _

, , &c, at once.

And to render the use of these theorems still easier, we shall

here subjoin the following table, where the first line, consist-

ing of the powers of 2, contains the denominators of the

theorems in their order, and the figures in their perpendicu-
lar columns belou^ them, are the coefficients of the several

terms in the numerators of the theorems, namc'y, the upper
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figure, next below the power of 2, the coefficient of a ; tha

next below, that of b
j
the third that of c, &c.
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The construction and continuation of this table, is a busi-

ness of little labour. For the numbers in the first horizontal

line next below the line of the powers of 2, are those powers
diminished each by unity. The numbers in the next hori-

zontal line, are made from the numbers in the first, by sub-

tracting from each the index of that power of 2 which stands

above it. And for the rest of the table, the formation of it

is obvious from this principle, which reigns through the whole,
that every number in it is the sum of two others, namely, of

the next to it on the left in the same horizontal line, and the

next above that in the same vertical column. So that the

whole table is formed from a few of its initial numbers, by
easy operations of addition.

In converging series, it will be further useful, first to collect

a few of the initial terms into one sum, and then apply our

method to the following terms, which will be sooner valued,

because they will converge slower.

12. For the first example, let us take the very slowly con-

verging series 1 | + 4- i
-{- 1 1.-{- &c, which is known

to express the hyp. log. of 2, which is = 69314718.

Here a = i, ^ = t, c = i, f^ =
l-, &-c, and the value, as

found by theorem the 1st, 2d, :id, ith, 10th, and 20th, will

be thus:

1st,
- =i='o.

ria-Ah + c 7-2+4- 5i
,

3d, =
'^

= =|= -666666.

, \5a-\\b->r5c-d 15-5-^-+ U--^-
4th, = Yr-^-= *68229,

Id lo

, 1023a- 1013^ + &C 709-698413
10th,

^73
= = -693065.

1048575a- 10485536 + &c_7268l7-4')23S043__

69314714.

20th,
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Where it is evident that every theorem gives always a nearer

ralue than .the former: the 10th theorem gives the value

true to the 3d figure, and the 20th theorem to the 7th figure.

The operation foY the 10th and 20th theorems, will be easily

performed by dividing, mentally, the numbers in their re-

spective columns in the table of coefficients in Art. 11, by
the ordinate numbers I, 2, 3, 4, 5, 6, &c, placing the quo-
tients of the alternate terms below each other, then adding
each up, and dividing the difference of the sums continually

five or ten times successively by the number 4 : after the

manner as here placed below, where the operation is set down

for both of them.

, For the 10th Theorem

4-
1023 506-5

322-666667 212
127-6 64-333

Sj-U'JgJT 7

1-222222 0-1

1499-631746
789-9^3333

709-693413

177-424603

44-356151

11-089038
2-772259
6930G5

789-93::

2. For the 20th Theorem.
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use in such calculations as these. Then tlie operation will

stand thus :

The terms.
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14th term '0714285= *, the next, -06666 &c =c, and so on:

then the 2d theorem gives '039835, which added to
4

653211 the sum of the first 12 terms, gives '693046, the va-

lue of the scries true in three places of figures ;
and the 3d

theorem gives '0:^9927 for the following terms,
o

and which added to '653211 the sum of the first 12 terms,

gives '693138, the value of the series true in five places. And
so on.

13. For a second example, let us take the slowly converg-

ing series 4.-|. + ^-.5.-f4 |. -j- &.c, which is = 4- -h hyp.

log. of 2= r 193 147 18. Then the process will be thus.

erms.



TRACT 8.
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The last mean '822467 is true in the last figure, the more

accurate value of the series 1
|- + |- tV + ^*^5 being

8224670 &c.

, 17. Let the diverging series ^ t + i y + ^*^' ^

proposed ;
where the terms are the reciprocals of those iu

Art. 13.

Arithmetical means.
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take their continual arithmetical means, like as was done with

the first succesive sums, to such extent as the case may re-

quire. And if neither these new columns, nor the oblique
lines approach near enough to each other, a new set may-
be formed from one of their oblique lines which has its terms

alternately too great and too little. And thus we may pro-
ceed as far as we please. These repetitions will be more

necessary in treating series which diverge more
;
and having

here once for all described the properties attending the series,

with the method of repetition, we shall only have to refer to

them as occasion shall offer. In the present instance, the last

two or three means vary or differ so little, that the limit may
be concluded to lie nearly in the middle between them, and

therefore the mean between the two last 144 and 150, namely
147, may be concluded to be very near the truth, in the last

three figures ; for as to the first three figures 193, repetition
of them is omitted after the first three columns of means, both

to save space, and the trouble of writing them so often over

again. So that the value of the series in question may be

concluded to be '193147 very nearly, which is = 4- +
the hyp. log. of 2

;
or 1 less than its reciprocal series in

Art. 13.

5 5.7 5.7.9 S.7.9. 11
18. Take the diverging series 7-;^+ ;4 4.6

'

4.6.8 4.6.8.10 '

&.C. Here, first using some of the formulae, we have by the

a
1st,
- = -625.

^
3a-b

2d, ;:
= -57292.

4

, la Ab+ c

3d, = '56966.
o

4th,
-^ = -56917.
16

. ?,\a-26h-\-\6c-6d+e
5th, = 'o690i. &c.

'

32

Or, thus, taking the several orders of means, &c.

o 2
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Terms.
+ 1-25
- 1-438333

+ 1-640625
- 1-804688

+ 1-955079
- 2-094'727

+ 2-225647
- 2-S4y294

Sue. sums.

+ 1-25
- 0-208333

+ 1-432292
- 0-372396
+ 1-582683
- 0-512044
+ 1-713603
- 0-635691

Arithmetical means.

520833
611980
529948
605144
535320
600780
538956

566406
570964
567546
570232
568050
5G9868

8685
9255
8889
9141

8959

8970
9072
9015
9050

021

043
033

032
033

033

Here the successive sums are alternately + ^n^ ^^^ the

arithmetical means are all -{-. After the second column of

means, the first two figures 56 are omitted, being common ;

and in the last three columns the first three figures 569, which

are common, are omitted. Towards the end, all the num-

bers, both oblique and vertical, approach so near together,

that we may conclude that the last three figures 035 are all

true; and these being joined to the first three 369, we have

369033 for the value of the series, which is otherwise found=

- = -56903359 kc.

19. Let us take the diverging series

V i'-hf V + &c, or 4 I + V
or 4 4^

Terms.
+ 4
- 4-5

5-333333
6'25

7-2

8' 166666

9142857
10- 125

11-111111

12 1

13090909
14-085333

Arithmetical means.

+ 5^ 6^ + 7j 8i + c^c.

Sums.

+ 4-

- 0-5

+ 4'833333
- 1-416666

+ 5-783333
2383333

+ 6-759524
- 3365476
+ 7-745635

4-354365
+ 8-736544

5-34678S.'

21S8096
1-697024

2-190080

1-695635
2-191089

1-694877

1-942560

1-943557
1 -942^57
1 -943302
1 -942983

059
207
no
173

128

158

1 42

+ c^C,

143

150
1.47

After the second column of means, the first four fi<rures

1'943 are omitted, being common to all the following co-

lumns
;
to tlitse annexing the last three figures 147 of the

last mean, we have 1 "943 147 for the sum of the series, which

wc otherwise know is equal to A
_|_ hyp. log. of 2. See

Simp. Dissert. Ex. 2. p. 73 and 76.

And the same value might be obtained by means of the

formulcc, using them as before.
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20. Taking the diverging series l-* 2 + 3 4 + 5 &c,

viding 1 by 1 + 2 + 1 J the method of means gives us tho

following.

formed from the radix ( Y =

rerms.
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The same thing takes place oa using the formulae, for

a _
T "

'""

Sa-^b 3 4_ I

. _ ___
4

""
4-

1a-4b + c 716+9 _ _

15a I lb -{-5c- d 15-44 + 45-16 _^

16
~

~16 "16"
%Yhere the third and all after it give the same value 0.

22. Taking the geometrical series of terms 1 2+4 8+

&c, derived from the radix

1 by 1 + 2.

1+i
-

-, by actually dividing

Terms.
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'crms.
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Terms.
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obtain sets of terms approaching still nearer to the viilue,

thus :

25
343^5
25

361328
U)4336
492066

296875
296875
30j6:>4

277832
3-i5201

296875
301271
291"4S
310516

299073
296509
301132

297791
293821

29830S

Here the approach to an equality, among all the lines and

columns, is still more visible, and the deviations restricted

within narrower limits, the terms in the oblique ascending
lines still on one side of the value, and gradually increasing,
while the columns and the oblique descending hnes, for the

most part, have their terms alternately too great and too

little, as is evident from their alternately becoming greater
and less than each other : and from an inspection of the

whole, it is easy to pronounce that the first three figures of

the number sought, will be 298. Taking therefore the last

four terms of tiie first descending line, and proceeding as

before, we have

296875
299073
297791
293306

297974
298432
298048

298203
298240

298222

And, finally, taking the lowest ascending line, because it has

most the appearance of being alternately too great and too

little, proceed with it as before, thus :

298306
298048
29S24u
298222

29S177
293144
298231

298187
'

where the numbers in the lines and columns gradually ap-

proach nearer together, till the last mean is true to the nearest

unit in the last figure, giving us -298174 for the value of the

proposed hypergeonietrical series 1 3 + 12 60 -{- 360

2520 + 20160 - ccc.

And in like manner are we to proceed with any other series

whose terms have alternate signs.
Roval Military Academy,

Woolwich, May, 1780.
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POSTSCRIPT.

Since the forciroin^ method was discovered, and made
known to several friends, two passa<]^es liave been olTercd to

my considiM-ation, Avhich I shall here mention, in justice to

their authors, Sir I. Newton, and the late learned Mr. Euler.

The first of these is in Sir Isaac's letter to Mr. Oldcnbm-g,
dated October 24-, 1 616, and may be seen in Collins's Com-

merciiwi Epistoliciuny p. 177, the last paragraph near the

bottom of the piip;e, namely. Per sericm I.eihnitii etiam, si

ultimo loco dimidium termini adjiciatur, et alia qucedam simi-

ha artificia adhibeanfur, potest computum produci ad multas

figuras. The series here alluded to, is 1 f+ ' ""
7 "i'i~7T+

&c, denoting the area of the circle whose diameter is I
;
and

Sir Isaac here directs to add in half the last term, aft .r hav-

ing collected all the foregoing, as the means of obtaining the

sum a little exactcr. And this, indeed, is equivalent to taking
one arithmetical mean between two successive sums, but it

does not reach tlie idea contained in my method. It appears

also, both by the other words, et alia qucedam similia artificia

adhibeantur, contained in the above extract, and by these, f;/zV/i-

artes adhibuissem, a little higher up in the same
];a. 177, t'lat

Sir Isaac Newton had several other contrivances lor obtaining
the sums of slowly converging series; but what tliey were,
it may perhaps be now impossible to detenuine.

The other is a passage in the A'ov/ Co;j:vn'nt. Pctropol.

tom. V. p. 226, where Ah\ Euler gives an in t:iiice of taking

one set of arithmetical means h::t\vce;i a slt'.cs of (juanlities

which are gradually too little ami too great, to obtain a nearer

value of the sum or a series in (|ues'[;on. Init neither doe-,

this reicli the idea containc;! in onr uu.-thod. However, 1

have tliouuht it biit ;u^i:ice to ti:;: ciiaracters of these f.vo

eminent meii, to n^a'.^ this mention (.!' tiieir ideiis, v.liich li;;vc

some rehition to my own, t'neiigb i::i!^i!owr: to w.c ;.' tb.e time

A my discovery.
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TRACT IX.

A METHOD OF SUMMING THE SERIES a -^ bx + CJf^ { dx^ -p

ex"^ + S(c, WHEN IT CONVERGES VERY SLOWLY, NAMELY,

WHEN X IS NEARLY EQUAL TO 1, AND THE COEFFICIENTST

a, b, C, d, S(c, DECREASE VERY SLOWLY : THE SIGNS OF

ALL THE TERMS BEING POSITIVE.

ARTICLE 1.

When there is occasion to find the sum of such series as

that above-mentioned, having the coefficients a, b, c, d, &c,
of the terms, decreasing very slowly, and the converging

quantit)^ x pretty large ; the sum cannot be found by col-

lecting the terms together, on account of the immense num-

ber of them which it would be necessary to collect
;
neither

can it be summed by means of the differential series, because

the powers of the quantity will then diverge faster than

the differential coefficients converge. In such case then we
must have recourse to some other method of transforming it

into another series which shall converge faster. The follow-

ing is a method by which the proposed scries is changed into

another, which converges so much the quicker as the original

series is slower.

2. The method is thus. Assume = the cfiven series
D ^

a -\- bx -{- ex- -{- dx' + Sec. Then shall

Dbe = --, ; TT-^y whicn, by actual division, is=:a /r
a-\-ox-{-cx--{-&iC

- '

b^^ , ,
'Ibc b\ , , obd+c' Sbr b'

Sec. Consequently a- divided by this series will be eqn.al to

the series proposed , and this new scries will be very easily
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sunrno:], in comparison with tlie original one, because all the

coc'ilicients after the Sv'coiicl term are evidently very small ;

and indeed thev are so uiiich the smaller, and fitter for sum-

jnation, by how mucli the coefficients of the original series

are nearer to ecjiuility ;
so that, when these a, b, c, d, 8cc, are

quite e(|ua!, then the third, fourth, &e, coefficients of the new

ggries become equal to nothing, and the sum accurately equal

to 7 = = ; which IS also known to be true*
a-s~. bx a ax \~ x

from other principles.

3, Though the first two terms, a bx, of tlie new series,

be very great in comparison with each of the following terms,

yet these latter may not always be small enough to be entirely

rejected when much accuracy is recpiircd in the su.nmation.

And in such case it will be necessary to collect a great num-

ber of them, to obtain their sum jjretty near the truth
; be-

cause their rate of converging is but small, it being indeed

pretty nmch like to the rale of the original series, but only

the terms, each to each, are much sm.dier, and that commonlv
in a degree to the hundredlh or thousandth part.

4, The resemblance of this new series however, bcginnin

with the third term, to the original one, in tlie law of pro-

gression,
intimates to us that it will be best to sum it in th(^

very satne manner as tlie former. Hence then
putting

b-"

a c ,

a
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very same theorem as before, the sum s of the original setieiS

will then be expressed thus, s ==

^

'^-^^-
^1 --^> p

a' - b'x-'((f r)^^
-

id' + -ir^r^-Scc;
a a a*

where the series in the last denominator, having attain the

same properties with the former one, will have its first two

terms very large in respect of the following terms. But these

tirst two terms, a'b'x, are themselves very small in compa*
rison with the first two, a bx, of the former series

;
and

therefore much more are the third, fourth, &c, terms of this

last denominator, very small in comparison with the same
a bx: for which reason tliey may now perhaps be small

enough to be Tieglected.

5. But if these last terms be still thought too large to be

omitted, then find the suui of them by the very same theorem :

and thus proceed, by re})eating the operation in the same

manner, till the required degree of accuracy is obtained.

Which it is evident, will happen after a small number of re-

petitions, because that, in each new denominator, the third,

fourth, &c, terms, iire couimonly depressed, in the scale of

numbers, two or three places lower than the first and second

terms are. And the general theorem, denoting the sum s

when the process is continually repeated, \vill be this,

aa

a'a'xx
a bx -77-,-/

b':.

a X-

a'"~b"'x
a" a}''XX

b""x &c.

a
6. But the general denominator d in the fraction

,
which

is assumed for the value of s or a -f- bx -f <'.i'^ + &c, mav
be otherwise found as below

;
from which the general law of
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the values of the coefficients will be rendered visible. Assume
s or a -{- bx -\- ex"- -\- &c,

a"- a*
or -p-; _; _

;
then shall

D a bx ~ a X- b x^ ~ c x^ tec

a'm= a -\- bx + cx^ + &c x a bx ax'' ^'.r' &c
= a*-\-abx + acx^ + adx^ + aex* + qfx^ + &c

ab bb be bd be

a a db uc a'd

b'a b'b b^c

ca c'b

d'a.

Hence, by equating the coefficients of the like terms to no-

thing, we obtain the following general values :

bb
a = c ,

a

bd-{-cb

a '

bb'-\-ca'4-db
c = e

d'=/-

a

be' -{-eb'-\-da -\-eb

a
'

bd'-\-ec'+db'-\-ea'-\-/b

a

ice.

Wlierc the values of the coefficients arc the same in effect

as before found, but here the law of their continuation is

manifest.

7. To exemplify now the use of this method, let it be

proposed to sum the very slow scries x -|- -^.r^ + f-^^ + ^'^

Avhen ^ = T^ = '^) denoting the hyp. log. of ,or,in

this case, of 10.

Now it will be ])roper, in the first place, to collect a few

of the fir^t terms together, and then apply the theorem to

the remaining term?, which, bv being nearer to an equality

than the terms are near the beginning of the scries, will be
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fitter to receive the application of the theorem. Thus to

collect the first 12 terms :

No.
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Or, when the terms in the numerators are squared, it is

00591715976

'012637363 -
000000093710985

000088678 -
000000000013526212

000001333
0000000000000064 1 6

0000000344.

Or, by omitting a j^roper number of ciphers, it is

0591715976

12637363-
0093710985

88678--
013526212

1333
0064 1 6

344- z

An unknown quantity :: is here placed after the last denomi-

nator, to represent the small quantity to be subtracted from

the said denominator 344. Now, rejecting the small quan-

tity z, and beginning at the last fraction to calculate, their

values will be as here ranq;ed in the first annexed column.

Fractions.

518200000
1218931

11799
187

l.Ra.



TRACT 9. ALL THEIR TERMS POSITIVE. 209

z is less than 5 and greater than 3, it is probable that the

mean value 4 is near the truth : and accordingly taking 4 for

2, or rather 4*3, as z appears to be nearer 5 than 3, and

taking the continual ratios, as placed along the last line of the

table, their values are found to accord very well with the

next preceding numbers, both in the columns and oblique
rows.

Hence, using -043 for in the denominator 344 of the

last fraction of the general expression, and computing from

the bottom, upwards through the whole, the quotients, or

values of the fractions, in the inverted order, will be

213

12079

1223397

518414000

of which the last must be nearly the value of the series

-h + -r?*^ + -rr-^^ + &c, when x = -9.

Then this value 518414 of the series, being multiplied by
x'^ or -2541865828329, gives 1317738 for the sum of all the

terms of the original series after the first 12 terms; to which

therefore the sum of the first 12 terms, or 2'17081162, being

added, we have 2*30258542 for the sum of the original series

X + ix* + i.r^ + ^x^ + &c. Which value is true within

about 3 in the 8th place of figures, the more accurate value

being 2'30258509 &c, or the hyp. log. of 10.

N. B. By prop. 8 Stirling's Summat. ; and by cor. 4, p. 65

Simpson's Dissert, the series a -^^ bx -^ cx^ -{- dx^ + &c,
transforms to

-^X[a-D(-^)+D'(-^r-D"(-^)'+ D"'(-^r-].lx ^ix' ^lx' M T ^lx'
And thus the series x + ^.r^ + \x^ + &c, becomes

-^ X [1
- i(-^ ) + ^{-^y-^{-^Y + &c], which\x ^ ^ix ^^lx ^^\x

may be summed by our method.

VOL. I.
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TRACT X.

THE INVESTIGATION OF CEUTAIN EASY AND GENERAL

RULES, FOR EXTRACTING ANY ROOT OF A GIVEN

NUMBER.

1. The roots of given numbers are commonly to be found,
with much ease and expedition, by means of logarithms, when
the indices of such roots arc simple numbers, and the roots

are not required to a great number of figures. And the square
or cubic roots of numbers, to a good practical degree of ac-

curacy, may be obtained, by inspection, by means of my
tables of squares and cubes, published by order of the Com-
missioners of Longitude, in the year 1781. But when the in-

dices of such roots are complex or irrational numbers
;
or

when the roofs are required to be found to a great many
places of figures; it is necessary to make use of certain ap-

proximating rules, by means of the ordinary arithmetical

computations. Such rules as are here alluded to, have only
been discovered since the great improvements in the modern

algebra: and the persons who have best succeeded in their

enquiries after such rules, have been successively Sir Isaac

Newton, Mr. Raphson, M. de Lagney, and Dr. Halley; who
have shown, that the investigation of such theorems is also

useful in discovering rules for approximating to the roots of

all sorts of compound algebraical equations, to which the

former rules, for the roots of all simple equations, bear a con-

siderable affinity. It is presumed that the following short

tract contains some advantay;es over any other method that

has hitherto been given, both as to the ease and universality

of the conclusions, and the general way in which the investi-

gations are made: for here, a theorem is discovered, Vihicli,

though It be general for all roots whatever, is at the same time
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very accurate, and so simple and easy to use and to keep in

mind, that nothing more so can be desired or hoped for; and

further, that instead of searching out rules severally for each

root, one after another, our investigation is at once for any
indefinite possible root, by whatever quantity the index is

expressed, whether fractional, or irrational, or simple, or

compound.

2. In every theorem, or rule, here investigated,

N denotes the given number, whose root is sought,
n the index of that root,

a its nearest rational root, or a" the nearest rational power
to N, whether greater or less,

X the remaining part of the root sought, which may be

either positive or negative, namely, positive when n is

greater than a", otherwise negative. Hence then, the

given number

, N is = (a + x)", and the required root n" = a + .r.

3. Now, for the first rule, expand the quantity {a-\-x)''hy

the binomial theorem, so shall we have

721
N == (a 4- t)" = a" + na^-^x + n . cC'^x' + &c.

Subtract a" from both sides, so shall

n \

N - a" = n a^-Kv + n . a'-^r" + &c.

Divide by ncC~^, so shall

N " N a" n~\ x- 71 I 71 2 x^
T~? or r- X a 2= .r -1

- 4- . - . - + &c.
n a"-' 71 a" 2 a^ 2 3 a"-

Here, on account of the smallness of the quantity x in respect

of a, all the terms of this series, after the first term, will be

very small, and may therefore be neglected without much

error, which gives ~a for a near value of x, being only a

small matter too great. And consequently

N-f(?J-lV -
, f , 1*1

a + X z=. ^ a IS nearly = n the root sought. And
na" ^ *

this may be accounted the first theorem.

p2



312 A OtNERAL RULE TRACT 10.

4. Again, let the equation n = a" + 7i a""' jr f &c, be

multiplied by n -
1, and a" added to each side, so shall we

have

(Ml) N + rt" = no" 4- (
-

1) .na'-'r + &c, for a divisor:

Also multiply the sides of the same equation by a and subtract

tf*+
' from each, so shall we have

n\
(n o") a = 71 a" X -f n . a"~^x"' |- &c, for a dividend :

Divide now this dividend by the divisor, so shall

T^ a" n\ x'^' ?il7i 2x^
-a = X 4-

- + occ.

(w-ON-f-rt" 2 a 2 3 a

Which will be nearly equal to x, for the same reason as be-

fore
;
and this expression is about as much too little as the

former expression was too great. Consecjuently, by adding

a, we have a 4- .r or n ncarlv =
;; :, lor a second

{n Ijs + a

theorem, and which is nearly as much in defect as the former

was in excess.

5. Now because t'ncr two foregoing theorems differ from

the truth by nearly equal small quantities, if we add toge-

ther the two numerators and the two denominators of the

foregoing two fractional esprc^ssions, namel}-

N+(W-I)a'= 72N -mi
r a and -r cf,tlicsums will be the numera-

n a
[>i Ij.N f fl

tor and denominator of a new fractioUy whicli Avill be much
nearer than either of the former. The fraction so found is

?rf l.y \-n-l .a'
-

i -ii i i , f
a ; Avhicii will be verv nearly equal to N y

?i 1 . N V f 1 ^'
' ^

or a ^ X, the root souglit ; for, by division, it is found to be

?i-l 7i\-\ x^
. , ...

equal to ^7 + .z' *- --r + <S:c, Vvhere the term is
2 G a'

wanting v>hich contiiins the square of .r, and the following
terms are very small. And tins is tiic third theorem.

G. A fourtli tlieorcm might be found by taking the arith-

metical un.-an bclwc^-n tlie first and second, which Avould hc'
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, s +n-l .a" WN . rt ,. , , 1 ^ ,

\ -f r) X ; which will be nearly of the
na" w l.N+ a" 2 -^

same value, though not so shnple, as the third theorem ; for

this arithmetical mean is found equal to

711 n 2 x^
^ 1- >r* + ^.^ + &c.

7. But the third theorem may be investigated in a ftiore

general way, thus: Assume a quantity of this form i^t" I J
g-N + pa

with coefficients p and q to be determined from the process ;

the other letters n, a, n, representing the same things as be-

fore
; then divide the numerator by the denominator, and

make the quotient equal to a + x, so shall the comparison of

the coefficients determine the relation between p and g re-

quired. Thus,
71 1

pt; + ga''= {p + q)a:'+ pna^'^v^-pn .
^

a''-'.r^+ &c.

71 1

^N -f pa'= {]) + g)a''-\-g7ia''-^x + qn .;^a'~'- x'' + &c.

then dividing the former of these by the latter, we have

pN + qa pq p q 711 qil .x'^
-

. -,
or a-\-x a \ --nx\n (

- - -; + &.c.

yN-f/> V^H PVl 2 p-\-q a

Then, bv ecjuating the corresponding terms, we obtain these

three equations
a = Oy

p-q = 1,
p\-q
71 1 qn
~2~

~
JVq

0.

From which we find - and p : q :: n ^ 1 \ yi 1.

p-Vq n

So that, by substituting n \- 1 and 7i 1, or any quanti-
tities proportional to them, for p and q, we shall have

71-1-1 .N+ 72-1 .a"
r. , , c .1. J

\ ; ;;
zo for the value or the assumed quantity
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pN-\-ga* , , , .

^i"} which is supposed nearly equal to a; + .r, the re-

quired root of the quantity n.

, , . , ,
w 4- 1 . N 4- w 1 . fl" f

S. Now this third theorem : a = n ,711 . N + 71-1- 1 . ^"

which is general for roots, whatever be the value of n, and

whether a" be greater or less than n, includes all the rational

formulas of De Lagney and Halley, which were separately

investigated by them
;
and yet this general formula is per-

fectly simple and easy to apply, and easier kept in mind than

any one of the said particular formulas. For, in words at

length, it is simply this: to n+ 1 times n add w 1 times o",

and to M 1 times n add ?i 4- 1 times a", then the former sum

multiplied by a and divided by the latter sum, will give the

root n" nearly ; or, as the latter sum is to the former sum,

so is Oy the assumed root, to the required root, nearly.

Where it is to be observed that a" may be taken either

greater or less than n, but that the nearer it is to it, the

better.

9. By substituting for n, in the general theorem, severally

the numbers 2, 3, 4, 5, &c, we shall obtain the following

particular theorems, as adapted to the 2d, 3d, 4tli, 5th, &c,

roots, namely, for the

3n 4- c' J

2d or square root, ; ttto - - - - = ^
'

^ N 4- 3a-

4n '\- 2a' 2n f a' ^
3d or cube root, a, or tTTI.^

= ^'
2N 4- 4a^ N -f '2a^

6n ^- 3fl* i

4th root - - -
^
a - - - - = n

jN 4- 5a^

6n 4- 4^'^ 3n 4- 2fl*

5th root - - - -
7-.^, or -

-ri,a = n

'iN 4- Sa" -h

6th root - - - -
. ,a

- - - - N
5n 4- la''

8n 1- 6a7 4n- f 3fl'

7th root - - - -a, or -
r-;^ = n'

Gn 4- 8' ' 3n 4- 4^7

^c.
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10. To exemplify now our formula, let it be first required
to extract the square root of 365. Here N = 365, n = 2,

the nearest square is 361, whose root is 19.

Hence 3n + a^ = 3 X 365 + 361 = 1456,

and N f 3fl^ = 365 + 3 x 361 = 1448;

19X 182

TsF

Again, to approach still nearer, substitute this last found

19 X 182
root

:;

for tf, the values of the other letters, remain-
18 1

, , 19* X 182^ 3458*
,

mg as before, we have a^ = =
, ,, ;

then

3458* 47831059
3N + = 3 X 363 + _=^^ ,

3x3458* 47831057 ,

N + 3.* = 365 + --:=-^, hence

19x182 3458 3458x47831059
47831057:47831059:: -or:-^^^^
zz the root of 365 very exact, which being brought into de-

cimals, would be true to about 20 places of figures,

11. For a second example, let it be'proposed to double

the cube, or to find the cube root of the number 2.

Here n = 2, n = 3, the nearest root a:=.l, also a^ = 1.

Hence 2n + ^^ = 4 + 1 = 5,

and N + 2a^ = 2 + 2 = 4
;

5 , ^ . .

then as4:5::l: = 1*25=: the first approximation.

5
, , ,

125

Again, take =
t"j ^"" consequently a^ =z

;

125 381
Hence 2n + ^ = 4 + = --

,64 64

250 378
andN+2.3 = 2 + =

;

^ 5 5 127 635
then 3-78:381, or as 126: 127 ::

4
=

4X Y^= 5^=l'25992l,

for the cube root of 2, which is true in the last figure,
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635
And by taking for the value of a, and repeating the

process, a great many more figures may be found.

12. For a third e^cample let it be required to find the 5th

root of 2.

Here n = 2, w = 5, the nearest root a ^ I.

Hence 3n + 2^^ = 6 f 2 = 8,

and 2n + Sa^ = 4 + 3 = 7
;

g
then as 7 : 8 : : 1 : = 1

j^
for the first approximation.

Again, taking a =
,
^ve have

65536 166378

98304 165532

then 165532 : 166378 :4 i/ii!2=^ l.'^=?i21L7 -7^82766 7 41383 289681
= 1-148698 &o, for the 5th root of 2, true in the last figure.

13. To find the 7th root of 126^.
Here n = 1 26|, n = 7, the nearest root a = 2, also a' = 1 28.

Hence 4n + Sa^ = 5044 -f 384 = 888i = ,
5

4453
and 3n -f- 4a' = 378|. + 512 = 8904 = ;

8888
then 4453 : 4444 : : 2 :

-^ = 1-995957, root very exact by
4453 " "^

one operation, being true to the nearest unit in tlie last

figure.

14. To find the 365th root of i-05, or the amount of 1

pound for 1 day, at 5 per cent, per annun), comjiound in-

terest.

Here n = 1-05, n = 365, a zz 1 the nearest root.

Hence' 366N -{- ^ify\u = 748 3,

and 364N + 366a = 748-2;
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^483
then as 748*2 : 748-3 : : 1 : = 1^^ =

1*00013366,

the root sought, very exact at one operation.

15. Required to find the value of the quantity (5^)"^ or (^^* )7.

Now this may be done two ways ;
either by finding the

|.

power or | root of y at once
;
or else by finding the 3d or

cubic root of ^ ,
and then squaring the result.

By the first way : Here it is easy to sec that a is nearly

= 3, because 3^ =v/ 27 = 5 + some small fraction. Hence,
to find nearly the square root of 27, or V27, the nearest

power to which is 25 = a^ in this case :

Hence 3n + a^ = 3 x 27 + 25 = 106,

and N -}- 3a' = 27 4- 3 X 25 = 102
;

5 X 53 265
then 102 : 106, or 51 : 53 : : 5 : =-^=v/27 nearly.

21 3 f 265
Then having n n: ^, n ~

,
a= 3, and a' =-rr nearly;

. ...
, ^ -I 5 21 1 265 6415

It will be|N + ia = X -\ 'X

and iN 4- 4 a^ = - X -r + -^ x

51 408'

265 -6371

2 4^2 51 408'

19245 ^ ,

hence 6371 : 6415 : : 3 :
--- =

8-5^7^
= 3-020719, for the

value of the quantity sougtit nearly, by this wa}'.

Again, by the other method, in finding first the value of

I

(-_?)7^ or the cube root of y . It is evident that 2 is the

nearest integer root, being the cube root of 8 = a^.

Hence 2n 4- a^ = 2_i
_j_ g

7^4^

and N 4- 2a^ = V 4- 16 = V J

1^-8 7 , ^, ,
. 7

then 85 : /4 : : 2:--, or = -nearly. Then taknig for a,

21 343 1015
we have 2n 4- a' = + TTp^ ~;n~*2 o4- 64

21 2.343 1022
and N 1 2a^ = 4- -rr =

"TT" '

4 64 64
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7 7 145 '

hence 1022 : 1015, or 146 : 145 ::- : -x =(V)^ nearly.4 4 146
2

Consequently the square of this, or (V)^ ^^'i'l ^^ =
7' 145^ 1030225

4^
^
Tii^= 341056

= ^7l^^ = 3-020690, the quantity

sought more nearly, being true in the last figure.

TRACT XI.

A NEW METHOD OF FINDING, IN FINITE AND GENERAL

TERMS, NEAR VALUES OF THE ROOTS OF EQUATIONS OF

THIS FORM, JV" p.v"~^ + qx"~'^ &C =
; NAMELY,

HAVING THE TERMS ALTERNATELY PLUS AND MINUS.

1. The following is one method more, to be added to tlu-

many we are already possessed of, for determining the roots

of the higher equations. ]3y means of it we readily find a

root, which is sometimes accurate
;
and when not so, it is ;ir

least near the truth, and that by an easy finite forn:iula, which

is general for all equations of the above form, and of the same

dimension, provided that root be a real one. This is of use

for depressing the equatiofi down to lov/cr dimensions, and

thence for finding all the roots, one after anotiier, when the

formula gives the root sufficiently exact
;
and when not, it

serves as a ready means of obtaining a near value of a root,

by which to commence an approximation still nearer, b}' the

previously known methods of Newton, or Halley, or others.

This method is further useful in elucidating the nature of

equations, and certain properties of numbers ;
as will appear

in sonwi of the following articles. Vic have already easy me
tliods for finding the roots of simple and quadratic equations
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I hall therefore begin with the cubic equation, and treat of

each order of equations separately, in ascending gradually
to the higher dimensions.

2. Let then the cubic equation x^ px^ + ^:r r = be

proposed. Assume the root t =: a, either accurately or ap-

proximately, as it may happen, so that x a =.0, accu-

rately or nearly. Raise this ;r a = to the third power,
the same dimension with the proposed equation,

so shall x^ 3ax' + 3a^x a^ = 0;

but the proposed equation is x' /;.r* + 9^ ^' =^ 0;

therefore the one of these is equal to the other. But the

first term
(.r^)

of each is the same ;
and hence, if we assume

the second terms equal between themselves, it will follow

that the sum of the two remaining terms will also be equal,

and give a simple equation by which the value of x is deter-

mined. Thus, 3ax'^ being =. px^^ or a = ^p, and

^a-x a^ = qx r, we hence have

a' r ('n)3_r p'o'jr \
,

. .

X z=. -
;

= - ~ = '

X by substitutmrj
^ar-q 3x{-^py--q p^-3q 9 ^ "

-\-py the value of a, instead of it.

3. Now this value of x here found, will be the middle root

of the proposed cubic equation. For because a is assumed

nearly or accurately equal to x, and also equal to ^p, there-

fore X i^ = j-p nearly or accurately, that is, j-
of the sum of

the three roots, to which tiie coefficient p, of the second term

ot the equation, is always equal ; and thus, being a medium

among the three roots, it will be either nearly or accurately

equal to the middle root of the proposed equation, Avhenthat

root is a real one.

4. Now this value of x will always be the middle root ac-

curately, whenever the three roots are .in arithmetical pro-

gression; otherwise, only approximately/. For when the three

roots are in arithmetical progression, 4-p or x of their sum,
it is well known, is equal to the middle term or root. In the

other cases, therefore, the above-found value of x is only
near the middle root,
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5. Wl>en the roots are in arithmetical progression, because

the middle termor root is then =4p, and also =-x- -
j^'^ 9 p^ 3q

1 /)' 27?-
therefore |/j

= - x n^ r~ "'" -P^~ ^P1~ 27r= 9 x (pg 3r) ,

ah equation expressing the genera! relation of p, g, and r
;

where p is tljc sum of any three terms in arithmetical pro-

gression, g the sum of their three rectangles, and r the pro*,

duct of all the three. For, in any equation, the coefficient

p of the second term, is the sum of the roots
;

tiie coefficient

^ of the third term, is the sum of the recta\)g!es of the roi)ts ;

and the coefficient r of the fourth term, is the sum of the

solids of the roots, which ii' the case of the cubic equation is

only one: Thus, if the roots, or arithmetical terms, be 1,2,3.

Here/> =:l+2 + 3 = 6,g = l x2 + lx3-r2x3
= 2 + 3+6=11, r=l X 2x 3=6; then '2p^ 2

X 6' rz 432, and 9 x {pg
~

3r) = 9 x 48 = 432 also.

1 p^2lr
6. To illustrate now the rule x = x -, bv some

9 p"- 'ig
"

examples ;
let us in the first place take the equation x^ 6.r^

+ llx 6=0. Here /)=C, </
= 11, and r=6

; consecjuently
I /r-27r_ 1 6^-21 X G _ H 6 _ 2 _^

~1)~^ p^~^ ~~9^ 6'- 3x11
""

1 2 - n ~
r
~ ^'

This being substituted for .r in the given cfjuation, makes all

the terms to vanish, and tlverefore it is an exact root, and the

roots will be in ariihrni^ical progression. Dividing there-

fore the given equation by .r 2 = 0, the quotient is

X- 4x +3 0, the roots of which quadratic equation
are 3 and 1, which arc the other two roots of the proposed

equation x^ 6.i" + l\x 6 = 0.

7. If the equation be x^' Z9x~ + 479.1' I S3 1 =0;

we .-.liali have;? = ZD, g
= 479, and r=ISSl; then r=

^

x

;;?-27r \ 39' 27xl'881 IS^ISSI __316 7Jt_

T:it-i>j subDtituliug 11;- for x in the proposed eqiiatiou, the
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negative terms are found to exceed the positive terms by 5,

thus showing that llf is very near, but something above, the

middle root, and that therefore the roots are not in arith-

metical progression. It is therefore probable that 1 1 may be
tlie true value of the root, and on trial it is found to succeed.

Then dividing x^ - 39^' + 479.r - 1881 by .r - 11, the

quotient is x- 2Sx + 171 =0, the roots of which quadra-
tic equation are 9 and 19, the two other roots of the pro-

posed equation.

8. If the equation be x^ 6x^ + 9r 2 =
;

we shall have p =i 6, q =: 9y and r rr 2
; then x =

1 p^ 2lr_ 1 6^-27x2_ 2'-2_ 6 _T ^
p^-~Sq~Y ^

6'- 3x9
"^

12 -9
~ T ~ ^*

This value of x being substituted for it in the proposed equa-

tion, causes all the terms to vanish, as it ought, thus showing
that 2 is the middle root, and that the roots are in arithmeti-

cal progression. Accordingly, dividing the given quantity
x^ 6\r' -f 9.r 2 by ^ 2, the quotient is x- 4^+1 =0,
a quadratic equation, whose roots are 2 + ^/2 and 2 V2,
the two otiier roots of the equation proposed.

9. If the equation be x^ 5x^ + 5x 1 z=
;

we shall have p = 5, q = 5, and r I
;
then .r r:

1 5^-i?''Xl_ 1 125-27 _ I 98 _ 49 _
'9^5-- Vy'x5~~j'^ 25\5~~9^To~T3~ ^^'

From which one might guess the root ought to be l,and
which being tried, is found to succeed. But without such

trial, we inigiit
maue use of this value 1^^-, or l^-x nearly,

and approximate with it in the common way.
Havin"- found the middle root to be 1, divide the given

quantity x^ 5.r^ + 5.r 1 by .r 1, and the quotient is

X- 4x + 1=0, the roots of which are 2 + y/2, and

2 V 2y the two other roots, as in the last article.

10. If the equation be .r^ 7.r- + IS^ 18 = 0;

we shall have /;
=: 7, q

= IS, and r = IS
;
then x

1 7^--27xJ8 1 343-486 143
X = X ^-1 ', -" = 3A or 3 nearly.9^7- 3xia 9^ 49-54 4o *' ^
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Then trjdng 3 for x, it is found to succeed. And dividing

x^lx^-\-l^x-\S by .r-3, the quotient is ^^ 4^ + 6 =0,
a quadratic equation whose roots are 2 f ^ 2 and 2 V 2,

the two other roots of the proposed equation, which are both

impossible or imaginary.
11. If the equation be .r^ 6^* + 14:r 12 = ;

we shall havep = 6, </
== 14, and 7- zr 12

;
then x =

1 6^ 27x12 1 216 324- 108 ,..,., ,

X = X = =2. vV hich bcinsr
9 6'- 3x 14 y 36-42 54 ^

substituted for t, it is found to answer, tlie sum of the terms

coming out = 0. Therefore the roots are in arithmetical

progression. And, accordingly, by dividing .r^ 6x- + 14vr

12 by X 2, the quotient is x'^ 4.r -1-6 = 0, the roots

of which quadratic equation are 2 f \/ 2 and 2 y^ 2,

the two other roots of the proposed equation, and the com-

mon difference of the three roots is v' 2.

12. But if the equation be x^ S.r' 4- 22^^ 24 =
i

ive shall have p = S, q = 22, and r = 24
;
then x =

1 8^-27 X 24 _ 1 512- 648_ 136 _GS _ ^

F ^
S'- 3x22

~
~9^ 6466

"~
Ts"

~
"y~
~ '

'^"

Which being substituted for x in the proposed equation, the

sum of the terms ditfers very widely from the truth, thereby

showing that the middle root of the equation is an imaginary

one, as it is indeed, the three roots being 4, and 2{- ^/ 2,

and 2 -v/ e.

13. In Art. 2 the value of x was determined by assuming
the second terms of the two equations, equal to each other.

But a like near value might be determined by assuming cither

the two third terms, or the two fourth terms equal.

( X' iax'^ \- oa-x a^ . 0,
Thus the equations being

^ ^,3 _
^^

^, ^ ^ ^._ ,. ^ ^^

if we assume the third terms Strx and ox ecjual, or a=\/-'j(/t

the sums of the second and fourth terms will be equal, namely,

3rt.r^ -f
^ = px- \~ r; and hence we find

.a'-r As/ ]</)'}'

by substituting ^'\(] the value of a instead of it.
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And if we assume the fourth terms equal, namely a^ = r,

or <z = ^r, then the sums of the second and third terms will

be equal, namely, Sax 3a* =z px q ;
and hence x =.

z

2 =:
, by substituting r'^ instead of a. And

P -^^

p - 3r^

either of these two formulas will give nearly the same value

of the root as the first formula, at least when the roots do not

differ very greatly from one another.

But if they differ very much among themselves, the first

formula will not be so accurate as these two others, because

that in them the roots Avere more complexly mixed together;
for the second formula is drawn from the coefficient of the

third term, which is the sum of all the rectangles of the roots ;

and the third formula is drawn from the coefficient of the last

term, which is equal to the continual product of all the roots;

while the first formula is drawn from the coefficient of the

second term, which is simply the sum of the roots. And in-

deed the last theorem is commonly the nearest of all. So

that when we suspect the roots to be very wide of each

other, it may be best to employ either the second or third

formula.

Thus, in the equation x^ 23.r- + 62.r 40 = 0, whose

three roots are 1, 2, and 20. Here p = 23, q = 62, r = 40;
and by tiie

1 23^-27x40 1 12167-1080
istth.^r = -X ^^73-^ =-x-j;^^j-^

= Si nearly,

= v''i*34=2| nearly,

- 26 10'-
23 3 X 40^

^
+

12= = If nearly.

Where the two latter are much nearer the middle root (2)

than the first. And the mean between these two is 2-^,
which is very near to that root. And this is commonly the

case; the one being nearly as much too great as the other is

too little.



224 NEW METHOD FOR TRACt 11.

14. To proceed now, in like manner, to the biquadratic

equation, which is of this general form

or* px^ -f qx^ rx -\- s = 0.

Assume the root x :=. a, or x a = 0, and raise this equa-
tion X azz.0 X.O the fourth power, or the same height with

the proposed equation, which will give

or* 4<z.r^ h 6a^x^ A^a^x + a* = 0; but the proposed equa-
tion is x^ px^ -f qr-

' rx -\- s =
\
therefore these two

are equal to each other. Now if we assume the second terms

equal, namely 4a = p, or a =. ip, then the sums of the three

remaining terms will also be equal, namely,
6a*x* 4fl^:r -f- <^* = q^^' ^t' + '^

;
and hence

(6a* q) x^ {ia' r) x z=: s W^, or

irf' q) -^'' - GV/^ ^) -^ = Tf?/'^ by substitut-

ing J-p instead of a : then, resolving this quadratic equation,

we find its roots to be thus

P^^l6r ^/ [[f 1 CyrY (Ip^ 4q) X (/>* 2.5fo)]
^ =

8 X {lr4q) '

or if we put a = |/;- 4^,

B = p^ 16r,

c = /?*
~

256^,

, .,, ,
B \/(b- AC)

the two roots will be x =- .

8A

15. It is evident that the same property is to be understood

here, as for the cubic c(juation in Art. 0, namel}', that the

two roots above found, arc the middle roots of the four which

belong to the biquadratic equation, when those roots are real

ones
;
for otherwise the formulae are of no use. Uut how-

ever those roots will not be accurate, when the sum of the

two middle roots, of the proposed equation, is equal to the

sum of the greatest and least roots, or when the four roots

arc in arithmetical progression ;
because that, in this case,

^py the assumed value of a, is neither of the middle roots

exactly, but only a mean between them.

.r rr re .X- p 1
B^(B^ + Ac)

16. 1 o exempluy this formula x=-
:; ,

let the
^ -^ 8a

proposed equation be x'* I2x'+ i-Ox'-lS.r 1 10=0. Then
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A.=|./?* 4^=l2*x|-~ 4x49= 216 196= 20,
B= p3 l6r=I2' 16X78= 1728 1248= 480,
C= />* 256^=12* 256x40=20736 10240=10406.

_ Bi V(B'-Ac)_48O^/(480^-20xlO496) __

8a 8 X 20
15+ V/40 , 1,1= 3 + li nearly, or 4^ and

1|. nearly, or nearly 4

and 2, whose sum is 6. And trying 4 and 2, they are both

found to answer, and therefore they are the two middle

roots.

Then {x 4) x {.r 2) x"- 6r + 8, by which divid-

ing- tlie given equation x* 12;r^ 4- 49.r^ I8x + 40 = 0,

the quotient is x' 6x -\- 5 := 0, the roots of which quadra-
tic equation are 5 and 1, and which therefore are the greatest
and least roots of the equation proposed.

17. If the equation be x*12x^ + 'i7x'-~72x-\-36 0; then

A-ip^ 4y=]2^X|--- 4x47=x 216 188= 28,

B= p3 I6r= 125 16x72= 1728 1152= 576,

C= p* 2565=12'* 256x36=20~36 9216 = 11520.

Bv/(b'-Ac) 576-tx/(576' 28 X 11520)
Hence x =. - =: =:

8a 8x28 .

18 4-3
z=. 3 and 2-f,

or 3 and 2 nearly ;
both of which an-

swer on trial ;
and therefore 3 and 2 are the two middle roots.

Then (r-3)x (.r-2) rr x^'-jx + 6 = 0, by which divid-

ing the given quantity :r* I'Jx^ -\- 47^^ 72r + 36 = 0, the

quotient is x^ 7^' -{- 6 = 0, the roots of which quadratic

equation are 6 and 1, which therefore are the greatest and

least roots of the equation proposed.

18. If the equation be ^'^ 7.r3 + 15^^ 1 lx + 3=
;
then

A = -i.// 4^ = 7^x1 4x15= 73I- 60= 13^,

B= ]P I6r = 7^ 16x11= 34'i 176 rz 167,

Q p* 2565=7^ 256 X 3 = 2401 768=1633.

B v/(B'
- AC) _ 167 4-^(167-15-:^ 1633) _

8a
~"

~8^']Jl
"

= 2i and -^-^ nearly, or nearly 2 and 1 j both which

Q

Hence x =
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are found, on trial, to answer
; and therefore 2 and 1 are the

two middle roots sought.

Then {x-2) x {x l) = x^ Sx + 2, by which divid-

ing the giveit equation x* Ix^ 4- I5jr* ^ 1 lor + 3 = 0, the

Quotient \s x^ - 4je + 1 =0, the roots of which quadratic

equation are 2+^/2 and 2 y/2, and which therefore ar6

the greatest and least roots of thd proposed equation.

19. But if the eqaa.be ^*9jr^+ 30jr^ 46^+ 24=0; then

k = ip'- 4q=9^xi-^ 4x30= 121i 120= H,
B= p^ 16- = 9^ 16x46= 729 736= -7,
e= p* 256s = 9* 256x24 = 6561 6144=417.

^- B^/(B*-AC) -7 ^/(49-625i)
Hence .r = ^ =

8a 8xli

-
-y an imaginary quantity, showing that the

two middle roots are imaginary, and therefore the formula is

of no use in this case^ the four roots being 1,2 + y' 2,

2- V 2, and 4.

20. And thus in other examples the two middle roots will

be found when they are rational, or a near value when irra-

tional, which in this case will serve for the foundation of a

nearer approximation, to be made in the usual way.
We miglit also find another formula for the biquadratic

equation, by assuming the last terms as equal to each other;

for then the sum of the 2(1, 3d, and 4th terms of each would

be equal, and would form another quadratic equation, whose

roots would be nearly the two middle roots of the biquadratic

proposed.

21. Or a root of the biquadratic equation may easily be

found, by assuming it cqu<i] to the product of two squares,

as {x
-

a)' x(x- by = .r^ 2 {a \- b).v^ + [2ab + (fl + l>y]x^
-

2ah [a + b) x + ^"^' = 0. For, comparing the terms of this

with the terms of tlie eqi'.ation proposed, in this manner^

Jiatnely, making the second terms equal, then the third terms

equal, and lastly the sums of the fourth and fifth terms equal,
these enrations will determine a near value of jr by a simpl

aquation. For those equations are
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p=2(a + b), or ipz=a+ b,

q = 2ab -{-{a -{ b)- = Q,ab + J-p*, or 2ab = q ^p*,

rx$ = 2ab{a + b) x O-b'- - ^y {q-~^p^)r~-}{q ^p')\-

Then the values of ab and fl + ^, found from the first and

second of these equations, and substituted in the third,

give X = . rr '- -r ^-rr, a general formula

for one of the roots of the biquadratic equation x'^ px^ +
ox^ rx -{ s = 0.

22. To exempUfy now this formula, let us take the same

equation as in Art. 17, namely, x^ 12.r^ + 41x' 72.r +
36 = 0, the roots of which were there found to be 1, 2, :i,

and 6. Then, by the last formula we shall have x =
e4s-{4q-py' 64 X 36 -(4x47-12")- _64x 36 -44x44

64r -8/>(4^-p")~64X 72-96(4 X 47- lF)"~64x 72 -96 x 44
=

!, or nearly 1
,
which is the least root.

23. Again, in the equation r^ 7^1^+1 5.r 11x^+3 = 0,

whose roots are 1 , 2, 2 4- -y/S, and 2 V2, Ave have x =
64 x3- (60-49)- 64x3 llx 11 ^ 92

--J12J_ _ ^ ^ _
64x 11 56(6d-49)~64x ll-56x 11~704-616 ~^^~^

nearly, which is nearly a mean between the two least roots 1

and 2 ^2 or | nearly.

24. But if the equation be x* g.r^ + SO^'* 46.r+ 24=0,
which has impossible roots, the four roots being 1, 2 + y^ 2,

2 x/ 2, and 4
;
we shall have x =

64x24 (120-81)* _64x24-39x39 _ 1536-15 21 ^
64x46-72(120 81) "64x46-72x39

"~
2944- 2808

~

^5^ = -^ nearly, which is of no use in this case of imaginary
roots.

25. This formula will also sometimes fail when the roots are

all real. As if the equation be ^'^ 12.r'+ 49jr- 78:r+ 40=0,
the roots of which are 1, 2, 4, and 5. For here x =.

64x40 (196 144)' 64x40-52x52 16x10-13x13

64x78 -'96(1 96 -144)
~
64x78-96 x 52

~
16X19^-24x13

160-169 -9
, .

, p 1 ^= = , which IS or no use, bemgmnnite.
312-312 ' > o

a2
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26. For equations of higlier dimensions, as the 5th, the 6tb,

the 7th, &c, we might, in imitation of this last method, com-
bine other forms of quantities together. Thus, for the 5th

power, we might compare it either with (r g)* x {r b),

or with (jT ay x (.r bf, or with [x a)' x (x b) x

{x c), or with
(,r a^ x (.r b)- X {x c). And so for

the other powers.

TKACT XII.

OF THE BINOMIAL THEOREM. WITH A DEMONSTRATION

OF THE TRUTH OF IT IN THE GENERAL CASE OF FRAC-

TIONAL EXPONENTS.

1. It is well known that this celebrated theorem is called

binomial, because it contains a proposition of a quantity con-

sisting of two terms, as a radix, to be expanded in a series of

equal value. It is also called emphatically the Newtonian

theorem, or Newton's binomial theorem, because he has com-

monly been reputed the author of it, as he was indeed for the

case of fractional exponents, which is the most general of

all, and includes alt the other particular cases, of powers, or

divisions, &c.

2. The binomial, as proposed in its general form, was, by
m

Newton, thus expressed p -f pq ;
where p is the first term

of the binomial, q the quotient of the second term divided

bv the first, and consequently pq is the second term itself;

or pa may represent all the terms of a multinomial, after the

fust term, and consequently q the quotient of all those terms,

except the iirst term, divided by that first term, and may be

either positive or n(>gative ;
also represents the exj)onent

of the binomial, and may denote anv (juantitv, intcral or
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fractional, positive or negative, rational or surd. When the

exponent is integral, the denominator n is equal to 1, and

the quantity then in this form (p -\- pq)'", denotes a binomial

to be raised to some power ;
the series for which Mas fully

determined before Newton's time, as will be shown in the

course of the 19th Tract of this volume. When the ex-

ponent is fractional, m and n may be any quantities what-

ever, m denoting the index of some power to which the

binomial is to be raised, and w the index of the root to be

extracted of that power: and to this case it \vas first extended

and applied by Newton. When the exponent is negative,
the reciprocal of the same quantity is meant

;
as

_^ 1

(p-fpa) " is equal to /

(p -1- pq)~

3. Now when the radical binomial is expanded in an equi-
valent series, it is asserted that it will be in this general

form, namely (p -|- pa)" or p* x (1 + a) " =
^ mm m n m m n m 2

p" X 1 + -Q 4-
-

. -^Q^' +
-

^7" -57-^' + &c),

^ m m n m In m 3

or p X 1 + AG + ~^Ba -I- "sT'ca + -j;^ dq + &c.

where the law of the progression is visible, and the quanti-

ties p, ??i, n, Q, include their signs -f or
,
the terms of the

series being all positive when a is positive, and alternately

positive and negative when a is negative, independent how-

ever of the effect of the coefficients made up of m and n :

also A, B, c, D, &c, in the latter form, denote each preceding
term. This latter form is the easier in practice, when we
want to collect the sum of the terms of a scries; but the

former is the fitter for showing the law of the progression

of the terms.

4. The truth of this series was not demonstrated by New-

ton, but only inferred by w^ay of induction. Since his time

however, several attempts have been made to demonstrate it,

with various success, and in various ways; of which however
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those are justly preferred, wbich proceed by pure algebra,

and without the help of fluxions. And such has been es-

teemed the difficulty of proving the general case, independ-
ent of the doctrine of fluxions, that many eminent mathe-

maticians to this day account the demonstration not fully

accomplished, and still a thing greatly to be desired. Such

a demonsti-ation I think is here effected. But before deliver-

ing it, it may not be improper to premise somewhat of the

history of this theorem, its rise, progress, extension, and de-

monstrations.

5. Till very lately the prev^ailing opinion has been, that

the theorem was not only invented by Newton, but first of

all by him
;
that is, in that state of perfection in which the

terms of the series, for any assigned j)Ower whatever, can be

found independently of the terms of the preceding |)owers ;

namely, the second term from the first, the third term from

the second, the fourth term from the third, and so on, by a

general rule. Upon this point I have already given an opi-

nion in the history to my logarithms, above cited, and I shall

here enlarge somewhat further on the same head.

That Newton invented it himself, I make no doubt. But

tliat he was not the first inventor, is at least as certain. It

was described by Briggs, in his Trigonometria Britannica,

long before Newton was born; not indeed for fractional ex-

ponents, for that was the application of Newton, but for any

integral power whatever, and that by the general law of the

terms as laid down by Newton, independent of the terms of

the powers preceding that which is required. For as to the

generation of the coefficients of the terms of one power from

those of the preceding powers, successively one after another,

it was remarked by Vieta, Oughtred, and many others, and

v.as not unknown to much more earlv writers on arithmetic

ami algebra, as will be manifest by a slight inspection of their

v.'orks, as well as the gradual advance the property made,
both in extent and perspicuity, under the hands of the suc-

cessive masters in arithmetic, every one adding somcwhai
more towards the perfection of it.
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.6. Now the knowledge of this property of the coefficients

of the terms in the powers of a bingmial, is at least as old as

the practice of the extraction of roots; for this property was

both the foundation and the principle, as well as the means

of those extractions. And as the writers on arithmetic be-

came acquainted with the nature of the coefficients in powers
still higher, just so much higher did they extend the extrac-

tion of roots, still making use of this property. At first it

seems they were only acquainted with the nature of the square,

which consists of these three terms, 1, 2, 1 ; and accord-

ingly they extracted the square roots of numbers by means
of them

; but went no further. The nature of the cube next

presented itself, which consists of thetje four terms, 1, 3, 3, 1
;

and by means of these they extiMcted the cubic roots of num-

bers, in the same manner as we do at present. And this was

the extent of their extractions in the time of Lucas de Burgo,
an Italian, who, from 1470 to 1500, wrote several tracts on

arithmetic, containing the sum of what was then known of

this science, which chiefly consisted in the doctrine of the

proportions of numbers, the nature of figurate numbers,
and the extraction of roots, as far as the pubip root inclvjr

s;vely.

7. It was not long however before the nature of the co-f

/efficients of all the higher powers became known, and tables

formed for constructing them indefinitely. For in the year
1544- came out, at Norimberg, an excellent treatise of arith-

metic and algebra, by Michael Stifelius, a German divine,

and an hojiest, but a weak, disciple of Luther. In this work,

Arlthmetka Integra, of Stifelius, are contained several curious

things, some of which have been ascribed to a much later

date. He here treats, pretty fully and ablv, of progressional

and figurate numbers, and in particular of the following table

for constructing both them and tiie coefficients of the terms

of all powers of a binomial, which has been so often used

since his time for these and other purposes, and which more

than a century after was, by Pascal, otherwise called the.
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arithmetical triangle, but who only mentioned some addi-

tional properties of the table.

1

2



TRACT 12. OP THE BINOMIAL THEOREM. 23S

of a like table to find the number of variations of thinsrs, or

conjugations as he calls them.

8. The contemplation of this table has probably been at-

tended with the invention and extension of some of our most

curious discoveries in mathematics, both in regard to the

powers of a binomial, with the consequent extraction of

roots, the doctrine of angular sections by Vieta, and the dif-

ferential method by Brisrgs and others. For, one or two of

the powers or sections being once known, the table would be

of excellent use in discovering and constructing the rest.

And accordingly we find this table used on many occasions

by Stifelius, Cardan, Stevin, Vieta, Briggs, Oughtred, Mer-

cator, Pascal, &c, &.c.

9. On this occasion I cannot help mentioning the ample
manner in which I see Stifelius, at fol. 35, et seq. of the same

book, treats of the nature and use of logarithms, though not

under the same name, but under the idea of a series of arith-

meticals, adapted to a series of geometrical s. He there ex-

plains all their uses
;
such as, that the addition of them, an-

swers to the multiplication of their geometiicals; snl)traction

to division
; multiplication of exponents, to involution; and

dividing of exponents, to evolution. And he exemplifies the

use of them in cases of the RuIe-of-Three, a!id in finding
mean proportionals between given terms, and such like, ex-

actly as is done in logarithms. So that he seems to have

been in the full possession of the idea of logarithms, and

wanted only the necessity of troublesome calculations to in-

duce him to make a table of such numbers.

10. But thougii the nature and con^truction of this table,

namely of figurate numbers, was thus early known, and em-

ployed in the raising of powers, and extracting of roots; yet

it was only by raising the numbers one from another by con-

tinual additions, and then taking them from the table for use

when wanted; till Briggs first pointed out the way of raising

any horizontal line in the foregoing table by itself, without

any of the preceding hnes
;
and thus teaching to raise the

terms of any power of a binomial, independent of any other
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powers ;
and so gave the substance of the binomial series in

words, wanting only the notation in symbols ;
as it is shown

at large in the 19th Tract, in this Toiume.

11. Whatever was known however of this matter, related

only to pure or integral powers, no one before Newton hav-

ing thought of extracting- roots by infinite series. He hap-

pily discovered, that, by considering powers and roots in a

continued series, roots being as powers having fi'actional ex-

ponents, the same binomial series v.'ould equally serve for

them all, whether the index should be fractional or integral,

or the series be finite or infinite.

12. The truth of this method however Mas long known

only by trial in particular cases, and by induction from ana-

logy. Nor does it appear that even Newton himself ever

attempted any direct proof of it. But various demonstrations

of this theorem have been since given by the more modern

mathematicians, of which some are by means of the doctrine

effluxions, and others, more legally, from the pure principles

of algebra only. Some of which I shall here give a short ac

count of.

13. One of the first demonstraters of this theorem, was

Mr. James Bernoulli. His demonstration is, among several

other curious things, contained in this little work called Ars

Co)7Jectandi, which has been improperly omitted in the col-

lection of his works published by his nephew Nicholas Ber-

noulli. This is a strict demonstration of tlic binomial theorem

in the case of integral and affirmative powers, and is to this

effect. Supposing the theorem to be true in any one power,
as for instance, in the cube, it must be ti lie in the next higher

power ;
which he demonstrates. 13ut it is true in the cube,

in the fourth, fifth, sixth, and seventh powers, as will easily

ii[)pcar by trial, that is by actually raising those jiowers by
continual multiplications. Therefore it is true in all highcu'

powers. All this he shows in a regular and logitin)ate n)an-

)ii;r, from the principles of multiplicatiun, and wilhcut; the
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help^of fluxions. But he could not extend his proof to the

other cases of the binomial theorem, in which the powers ar^

fractional. And this demonstration has been copied by Mr.

John Stewart, in his commentary on Newton's quadrature of

curves. To which he has added, from the principles of

fluxions, a demonstration of the other case, for roots or frac-

tional exponents.

14. In No. 230 of the Philosophical Transactions for the

year 1697, is given a theorem, by Mr. De Moivre, in imita-

tion of the binomial theorem, which is extended to any num-

ber of terms, and thence called the multinomial theorem ;

which is a general expression in a series, for raising any
multinomial quantity to any power. His demonstration of

the truth of this theorem, is independent of the truth of the

binomial theorem, and contains in it a demonstration of the

binomial theorem as a subordinate proposition, or particular
case of the other more general theorem. And this demon-
stration may be considered as a legitimate one, for pure

powers, founded on the principles of nmitiplication, that is,

on the doctrine of combinations and permutation^. And it

proves that the law of the continuation of the terms, must be

the same in the terms not computed, or not set down, as in

those that are written down.

15. The ingenious Mr. Landen has given an investigation

of the binomial theorem, in his Discourse concerning the Re-

sidual Analysis^ printed in 1758, and in t\\it Residual Analysis

itself, printed in 1764-. The investigation is deduced from

this lemma, namely, if ? and n be any integers, and ^ 21

then is
f

m m

x'^ V" --I \ -\- a {- q"- -\- q^
- - (w)

x" X
X V '" ^"' '-J'"

^+q" +q"-\-q'^ - - ()
which theorem is made the principal hasis of his Residual

Analvsis.
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The investigation is thus : the binomial proposed li^eing
m

(1 + x)n, assume it equal to the following series I -^ ax -\-

bx^ -\- cx^ &c, Avith indeterminate coefficients. Then for the

same reason

as (1 + x)~ is =r 1 + ax + bx^ -\- cx^ &c,
m

will
(

1 + y)~ be = 1 + cry + 3j/^ + cy^ &c.

Then, by subtraction,
m m

(1 +.r)"^- (1 +.y)~= a {x-T/)-\- b (x^ y) 4- 0(^3 -y) &c.

And, dividing both sides by xy, and by the lemma, we

I

have
'+->7_<;

+ '^'"
=(l+..r X

14"-^ 1 + '^ 1 -j- a

"1 2m 3m

=a-\-b{x +j/) + c iv' -\- xy +y) ^d{x^-\- x'-y+ xy"- -\-y'^)
&c.

Then, as this equation nuist hold true whatever be the value

of y, take y rr x, and it will become
m

-i^ X (I + x)~~^ a ^ 2bx ^ 'icx- + \cx'^ &c.
n

Consequently, multiplying by 1 + x
,
v.e have

-- X (1 + x)" ,
or its equal by the assumption,

VIZ. 4- ax A bx^ + ~cx^ is^c.
n ^ n n n

, 2b) ,
3c i ^ , 4d) , .

Then, b}' comparing the homologous terms, the value of the

coefficients a, b, c, &:c, are deduced for as many terms as are

compared.

A large account is also given of this investigation by tlic

learned Dr. Hales, in his Analysis Equationum, lately ))ub-

lished at Dublin.

Mr. Landen then contrasts this investigation with that bv
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the method of fluxions, which is as follows. Assume as

before ;

m

(1 + xf -
\ -{- ax { bx^ + cx^ + dx* &c.

Take the fluxion of each side, and we have

X {I + x) X X = ai -{- 2bxi + 'icx^i &c.

Divide b)' x, or take it =z 1
,
so shall

m~ X {\ -\- xf
' = a 4- 2bx + 3c^- + Ad.v^ &c.

Then multiply by 1 + x, and so on as above in the other

way.

16. Besides the above, and an investigation by the cele-

brated M. Euler, which are the principal demonstrations and

investigations that have been givenofthis important theorem,!
have been shown an ingenious attempt of Mr. Baron Maseres,
to demonstrate this theorem in the case of roots or fractional

exponents, by the help of De Moivre's multinomial theorem.

But, not being quite satisfied with his own demonstration, as

not expressing the law of continuation of the terms which

are not actually set down, he was pleased to urge me to at-

tempt a more complete and satisfactory demonstration of the

general case of roots, or fractional exponents. And he fur-

ther proposed it in this form, namely, that if q be the coeffi-

cient of one of the terms of the series which is equal to

(1 -f- jr)", and p the coefficient of the next preceding term,

and R the coefficient of the next following term
; then, if a

be =: 7- X P, it is required to prove that r will be = t
-

X Q. This he observed would be quite perfect and satis-

factorv, as it would include all the terms ot* the series, as well

those that are omitted, as those that are actually set down.

And I was, in mv demonstration, to suppose, if I pleased,

the truth of the binomial and multinomial theorems for in-

tegral powers, as truths that had been previously and per-

fectly proved.
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In consequence I sent him soon after the substance of the

following demonstration ;
with which he was quite satisfiedj

and which I now proceed to explain at large.

17. Now the binomial integral is (I -}- x)" =
a b c d

, ,n nni nnln2 nnln2n3 ,

*+i' + r ^'+r '^'+r
^^'''

w nl
,

w 2, , w 3
Qrl+-^-l ~-fl.r-4- ~-bx^ + 7-cx^ + &c,

1 J 6 4

where a, ^, c, &c, denote the whole coefficients of the 2d,

3d, 4th, &c, terms, over which they are placed; and in

which the law^ is this, namely, if p, a, r, be the coefficients

of any three terms in succession, and if

Xp be = Q, then is ^^I-a = r ; as is evident : and which,

it is granted, has been proved.

18. And the binomial fractional is (1 + x)" =
a b c d

n 2n n 2fi

1 1-w
,

l-2;z
, , l-3n

&c, or 1 + -x-] - ax"- -\ bx'-] ex* + &c
;n 2n '6n 4n

in which the law is this, namely, if p, a, r be the coefficients

of three terms in succession
;
and if

^p be zz Q, then is ^-(i. = R. Which is the property to be

proved.
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Put now each of the coefficients, after the second term, = 0,

and we shall have these equations
2wB + {In 1) Aa =
3nc + (2n l) Ba =
4wD+ {3n i) ca

5nE 4- (4w . 1
)
Da =

&c.

The resolution of which equations gives the following values

of the assumed indeterminate coefficients, namely,
1 n 1 2 1 3 1 4n <,

E = -Aa, c = -
Bfl, D = ca, E = - Da, &c :

2 3 4ra 5
'

which coefficients are according to the law proposed, namely,

when 4 P is = Q, then is f-r-Q = R. a. e. d.

21. Also, by equating the second coefficients, namely,

1 a = MA, we find An. This beinor written for a in

the above values of b, c, d, &c, will give the proper series

for the binomial in question, namely, (1 + ^)"
= 1 + A^ + BJr* 4- cx^ + &c,

t 1 re - , 1 2n , .= 1 + -X + ax^ + -:r-bx^ + &c,

' n n 2n
' n 2n 3n

Of the Form of the Assumed Series.

22. In the demonstrations or investigations of the truth of

the binomial theorem, the butt or object has always been the

law of the coefficients of the terms : the form of the series, as

to the powers of x, having never been disputed, but taken for

granted, either as incapable of receiving a demonstration, or

as too evident to need one. But since the demonstration of

the law of the coefficients has been accomplished, in which

the main, if not the only, difficulty was supposed to consist,

we have extended our researches still further, and have even

doubted or queried the very form of the terms themselves,

VOL. I. H
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namely, l 4. ^jr 4. Br* -f cx^ -\- nr* -J- &c, increasing by
the regular integral series of the powers of .r, as assumed to

denote the quantity (1 + ;)", or the n root of 1 + r. And
in consequence of these scruples, I have been required, by a

learned friend, to vindicate the propriety of that assumption.
Which I think is effectually done as follows.

23. To prove then, that any root of the binomial I + jt

can be represented by a series of this form 1 -i- x -j' .r^ { x^

+ or* &c, where the coefficients are omitted, our attention

being now employed only on the powers of x
;

let the series

representing the value of (1 + ^r)" be 1 + a + B + C I- d +
&c

; where a, b, c, &c, now represent the whole of the 2d,

3d, ^th, &c, terms, both their coefficients and the powers of

Xf whatever they may be, only increasing from the less to the

greater, because they increase in the terms 1 -|- .r of the given
binomial itself ; and in which the first term must evidently
be 1, the same as in the given binomial.

Raise now (1 + -^^Y, anJ its equivalent series 1 + A + B

+ c + &c, both to the 71 power, by the multinomial theorem,
and we shall have, as before,

71 71 71 i 7inl71 2
1 + r = 1 + -A +y.-j-A' +

_ .-_. ^3 + &c,

71 71 77}

71

'J'hen equate the corresponding terms, and we have the first

term 1 = 1.

Again, the second ttrm of the series -
a, must be equal

to the second term x of the binomial. For none of the other

terms of the scries are equipollent, or contain the same power

of X, witli the term a. Not an}' of the terms a*, a', a%

&c
; for they are double, triple, quadruple, &c, in power to

A^ Nor yet any of the terms containing b, c, d, &c
;
be-
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cause, hy the supposition, they contain all different and in-

creasing powers. It follows therefore, that a makes up
the whole value of the second term x of the given binomial.

Consequently the second term A of the assumed series, con-

tains only the first power of x
;
and tlie whole value of that

term a is = x.
n

But all the other equipollent terms of the expanded series

must be equal to nothing, which is the general value of the

terms, after the second, of the given quantity 1 -f jr or

1 +x + + 0-f"0 + &c. Our business is therefore to

find the several orders of equipollent terras of the expanded
series. And these it is asserted will be as they are arranged

above, in which b is equipollent with a^, c with a% d with a"*,

and so on.

Now that B is equipollent with a*, is thus proved. The

value of the third term is 0, But .

^
a* is a part of the

third term. And it is only a part of that term : otherwise

would be = 0, which it is evident cannot happen in

every value of 7Z, as it ought ;
for indeed it happens only

when w is = 1 . Some other quantity then must be equipol-

lent with A", and must be joined with it, to make up

the whole third term equal to 0. Now that supplemental

quantity can be no other than b : for all the other follow-

ing terms are evidently plupollent than e. It follows there-

fore, that B is equipollent with a^, and contains the second
n 721 n

power of ;r
;
or that r~A*-f- b=0, and consequently

n~\ \n \n 1 \ii
A^+B 0, orB= A*= - A^ =

^7
-r'.

Again, the fourth term must be r: 0. But the quantities

A^ + AB are equipollent, and make12 3 12 ^ '

up part of that fourth term. They are equipollent, or a^

equipollent with ab, because A* and B are equipollent. And
R 2
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they do not constitute the whole of that term
;
for if they

fl ji 1 71 2 71 11 1

did, then would a' ^ ab be =0 in all' 12 3^12
values of

, or -^ a^ + b = : but it has been iust shown

above, that p-A- + b =
;

it would therefore follow that

would be =
,
a circumstance which can only hap-^

pen when n = l, instead of taking place for every value

of n. Some other quantity must therefore be joined with

these to make up the whole of the fourth term. And this

supplemental quantity can be no other than c, because

all the other following quantities are evidently plupollent

than a^ or ab. It follows therefore, that c is equipollent

with A^, and therefore contains the 3d power of .r. And the

whole value of c is

lnn 2 1 I 2n l-2 1 1-7? 1 2^3

And the process is the same for all the other following

terms. Thus then we have proved the law of the whole

series, both Avith respect to the coefficients of its terms, and

to the powers of the letter x.

Since the above account Mas first written, almost 30 years

ago, other demonstrations have been given by several inge-

nious and learned writers
;
which may be seen in some of the

later volumes of the Philos. Trans, and elsewhere.



( 245 )

TRACT XIII.

ON THE COMMON SECTIONS OF THE SPHERE AND CONK.

WITH THE DEMONSTRATION OP SOME OTHER NEW PRO-

PERTIES OF THE SPHERE, WHICH ARE SIMILAR TO CERTAIN

KNOWN PROPERTIES OF THE CIRCLE.

The study of the mathematical sciences is useful and pro-

fitable, not only on account ofthe benefit derivable from them

to the affairs of mankind in general ;
but are most eminently

SO, for the pleasure and delight which the human mind feels

in the discovery and contemplation of the endless number of

truths, that are continually presenting themselves to our view.

These meditations are of a sublimity far above all others,

whether they be purely intellectual, or whether they respect

the nature and properties of material objects; they methodize,

strengthen, and extend the reasoning faculties in the most

eminent degree, and so fit the mind the better for under-

standing and improving every other science
; but, above all,

they furnish us with the purest and most permanent delight,

from the contemplation of truths peculiarly certain and im-

mutable, and from the beautiful analogy Avhich reigns through
all the objects of similar inquiry. In the mathematical sciences,

the discovery, often accidental, of a plain and simple pro-

perty, is but the harbinger of a thousand others of the most

sublime and beautiful nature, to which we are gradually led,

delighted, from the more simple, to the more compound and

general, till the mind becomes quite enraptured at the full

blaze of light bursting upon it from all directions.

Of these very pleasing subjects, the striking analogy that

prevails among the properties of geometrical figures, or

figured extension, is not one of the least. Here we often

f)iid that a plain and obvious property of one oi: the simplest
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figures, leads us to, and forms only a particular case of, a

property in some other figure, less simple ;
afterwards this

again turns out to be no more than a particular case of an-

other still more general ; and so on, till at last we often trace

the tendency to end in a general property of all figures

whatever.

The few properties which make a part of this paper, con-

stitute a small specimen of the analogy, and even identity,

of some oi the more remarkable properties of the circle, with

those of the sphere. To which are added some properties
of the lines of section, and of contact, between the sphere
and cone. Both which may be further extended as occasions

may offer ; like as all of these properties have occurred from

the circumstance, mentioned near the end of the paper, of

considering the iimcr surface of a hollow spherical vessel,

as viewed by an eye, or as illuminated by rays, from a given

point.

PROPOSITION 1.

All the tangents are equal, which are drawn, from a given

point without a sphere, to the surface of the sphere, quite

around.

Demons, For, let ft be anv tangent

from the given point p ; and (h'aw PC to

the centre c, and join tc. AUo let cta

be a great circle of the sphere in the

plane of the triangle tpc. Tlieii, cp

and CT, as well as the angle r, wh'.i-h is

right (Eucl. iii. 18), being constant, in

every position of the tangent, or of the

point of contact T
;
the square of pt will be everywhere

equal to the diilcrence of the squares of the constan: lines

CP, CT, and tiiercfore constant, and consequently the .iMcor

tangent pt iticlf of a constant length, in every j)Obition, quite

round the surface of the sphere.
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PROP. 2,

If a tangent be drawn to a sphere, and a radius be drawn

from the centre to the point of contact, it will be perpendi-
cular to the tangent ; and a perpendicular to the tangent will

pass through the centre.

Demons. 'Yox, let ft be the tangent, tc the radius, and

CTA a great circle of the sphere, in the plane of the triangle

TPc, as in the foregoing proposition. Then, pt touching
the circle in the point T, the radius to is perpendicular to

the tangent pt, by Eucl. iii. 18, 19.

PROP. 3.

If any line or chord be drawn in a sphere, its extremes

terminating in the circumference; then a perpendicular drawn

to it, from the centre, will bisect it: and if the line drawn

from the centre, bisect it, it is perpendicular to it.

Demons, Yov, a plane may pass through the given line

and the centre of the sphere ;
and the section of that plane

with the sphere, will be a great circle (Theodos. i. 1), of

which the given line will be a chord. Therefore (Eucl. iii. 3)

the perpendicular bisects the chord, and tlje bisecting line is

perpendicular.
Corol. A line drawn from the centre of the sphere, to the

centre of any lesser circle, or circular section, is perpendi-
cular to the plane of that circle. For, by the proposition, it

is perpendicular to all the diameters of that circle.

PROP. 4.

If from a given point, a right line be drawn in any position

through a sphere, cutting its surface always in two points ;

the rectangle contained under the whole line and the external

part, that is the rectangle contained by the two distances be-

tween the given point, and the two points where the line

meets the surface of the sphere, will always be of the same

constant magnitude, namely, equal to the square of the tan-

gent drawn from the same given point.
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Demons.- L.et r be the given point, and

AB the two points in which the line pab

meets the surface of the sphere ; through
PAB and the centre let a plane cut the

sphere in the great circle tab, to which

draw the tangent ft. Then the rectangle

PA . PB is equal to the square of pt (Eucl.

iii. 36) ;
but pt, and consequently its

square, is constant by Prop. 1
;
therefore the rectangle pa

PB, which is always equal to this square, is every where of

the same constant magnitude.

PROP. 5.

If anytwo lines intersect each other within asphere, and be

terminated at the surface on both sides; the rectangle of the

parts of the one line, will be equal to the rectangle of the

parts of the other. And, universally, the rectangles of the

two parts of all lines passing through the point of intersec-

tion, are all of the same magnitude.
Demons. Through any one of the

lines, as ab, conceive a plane to be

drawn through the centre c of the

sj)here, cutting the sphere in the great
circle abd ;

and draw its diameter

DCPF through the points of intersection

p of all the lines. Then the rectangle ap . pb is equal to tht^

rectangle dp . pl (Eucl. iii. 35).

Again, through any other of tlie intersecting lines gii, and

the centre, conceive anotlier plane to pass, cutting the sphere
in anotber great circle dgfh. Then, because the points c

and p are in this latter plane, the line cp, and consequently
the whole diameter dcpf, is in thesanv r ^')e; and therefore

it is a diameter of the circle dgfh, of w nich gph is a chord.

Therefore, again, the rectangle gp . ph is equal to the rect-

angle DP . pf (Eucl. iii. 35).

Consequently all the rectangles ap . pb, gp . ph, &c, are

equal, being each equal to the constant rectangle dp . pf.
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Corol. The great circles passing through all the lines or

chords which intersect in the point p, will all intersect in the

common diameter dpf.

PROP. 6.

If a sphere be placed within a cone, so as to touch it in two

points; then shall the outside of the sphere, and the inside

of the cone, mutually touch quite around, and the line of

contact will be a circle.

Demons. Let v be the vertex of the

cone, c the centre of the spliere, t one of

the two points of contact, and TV a side

of the cone. Draw ct, cV. Then tvc
is a triangle right-angled at t (Prop. 2).

In like manner, t being another point of

contact, and ct being drawn, the triangle
two will be right-angled at ^. These two

triangles then, tvc, i\c, having the two sides ct, tv, equal
to the two ct, tY (Prop. 1), and the included angle t equal
to the included angle t, will be equal in all respects (Kucl.

i. 4), and consequently have the angle tvc equal to the angle
^VC.

Again, let fall the perpendiculars tp, tp. Then the two

triangles tvp, tvv, haviiig the two angles tvp and tpv equal
to the two /vp and ^pv, and the side tv equal to the side tv

(Prop. 1), will be equal in all respects (Eucl. i. 26) ;
conse-

quently tp is equal to tv, and vp equal to vp. Henc(; pt, p^

are radii of a little circle of the sphere, whose plane is per-

pendicular to the line cv, and its circumference every where

equidistant from the point c or v. This circle is therefore a

circular section both of the sphere and of the cone, and is

therefore the line of their mutual contact. Also cv is the axis

of the cone.

Corol. 1. The axis of a cone, when produced, passes

through the centre of the inscribed sphere.

Corol. 2. Hence also, every cone circumscribing a sphere,
so that their surfaces touch quite around, is a right cone;
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nor can any scalene or oblique cone touch a sphere in that

manner.

PROP. 7.

The two common sections of the surfaces of a sphere and

a right cone, are the circumferences of circles, if the axis of

the cone pa;)S througli the centre of the sphere.

Demons. Let v be the vertex of the

cone, c the centre of the sphere, and s

one point of t!ie less or nearer section ;

draw the lines cs, cv. Then, in the tri-

angle CSV, the two sides cs, cv, and the

included angles cv, are constant, for all

positions of the side vs ;
and therefore

the side vs is of a constant length for all

positions, and is consequently the side of a right cone hav-

ing a circular base
; therefore the locus of all the points s,

is the circumference of a circle perpendicular to the axiscv,
that is, the common section of the surfaces of the sphere and

cone, is that circumference.

In the same manner it is proved tb.at, if A be any point in

the farther or greater section, and ca be drawn
;
then va is

constant for all positions, and therefore, as before, is the side

of a cone cut off by a circular section whose plane is perpen-
dicular to the axis.

And these circles, being both perpendicular to the axis,

are parallel to each other. Or, thev are parallel because

they are both circular sections of the cone.

Carol. 1. Hence sa = sa, because va = va, and vs zzys.

Carol. 1. All the intercepted equal parts sa, sa, &c, are

equally distant from the centre. For, all the sides of the tri-

angle sca are constant, and therefore the perpendiculiir cp is

constant also. And thus all the eijual right jinf.s or chords

in a
sph.'.'rc, are equally distant from the centre.

Covol. ?i. The s(xtions are not circles, and thcrerore not

in plunes, if the axis pass not through the cenre. Fur then
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some of the points of section are farther from the vertex than

others.

PRQP. 8.

Of the two conmmon sections of a sphere and an oblique

cone, if the one be a circle, the other will be a circle also.

Demons. Let s\as and Asva be sec-

tions of the sphere and cone, made by a

common plane passing through the axes

of the cone and the sphere ;
also s^, /^a

the diameters of the two sections. Now,
by the supposition, one of these, as Afl,

is the diameter of a circle. But the angle
vs-s = tiie angle wax (Eucl. i. 13, and iii.

22), therefore S5 cuts the cone in sub-contrary position to

AC
;
and consequently, if a plane pass through S5, and per-

pendicular to the plane AVrt, its section with the oblique cone

will be a circle, whose diameter is the line S5 (Apol. i. 5).

But the section of the same plane and the sphere, is also a

circle whose diameter is the same line S5 (Theod, i. l). Con-

sequently the circumference of the same circle, whose diame-

ter is S5, is in the surface both of the cone and sphere ;
and

therefore that circle is the common section of the cone and

sphere.
In like manner, if the one section be a circle v/hose dia-

meter is sa, the other section will be a circle whose diameter

is ^A.

Carol. 1. Hence, if the one section be not a circle, neither

of them is a circle; and consequently they are not in planes;

for the section of a sphere b}- a plane, is a circle.

Corol. 2. When the sections of a sphere and oblique cone

are circles, the axis of the cone does not pass through the

centre of the sphere, (except when one of the sections is a

great circle, or passes through the centre). For, the asispasi^cs

through the centre of the base, but not perpendicularly ^

whereas a line drawn from the centre of the sphere to the
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centre of the base, is perpendicular to the base, by cor. to

prop. 3.

Carol. 3. Hence, if the inside of a bowl, Avhich is a hemi-

sphere, or any segment of the sphere, be viewed by an eye
not situated in the axis produced, which is perpendicular to

the section or brim
;
the lower, or extreme part of the inter-

nal surface which is visible, will be bounded by a circle of

the sphere ;
and the part of the surface seen by the eye, will

be included between the said circle, and border or brim,

which it intersects in two points. For the eye is in the place

of the vertex of the cone
;
and the rays from the eye to the

brim of the bowl, and thence continued from the nearer part
of the brim, to the opposite internal surface, form the sides

of the cone
; which, by the proposition, will form a circular

arc on the said internal surface; because the brim, Avhicli is

the one section, is a circle.

And hence, the place of the eye being given, the quantity
of internal surface that can be seen, may be easily determined.

For the distance and height of the eye, with respect to the

brim, will give the greatest distance of the section below the

brim, together with its magnitude and inclination to the plane
of the brim

;
which being known, common mensuration fur-

jiishes us with the measure of the surface included bet\\ ecn

them. Thus, if ab be the dia-

meter in t'ic vertical plane pass-

ing tiiVouj;!! the eye ot e, also

AFB the cT'ciion of th^ howl by
the same ',:'; ncj and a:t? the

supplement of that arc. Drav;

r.w, EiB, cuttine: this vertical

circle in F and i
;
and join if. Then shall if be the diame-

ter of the section or extremity of ttii; visible surface, and Mv

its greatest distance below the hriirij an arc wiiich measures

an a-jgk: double the angle at a.

Coi'ol. 4 Hence aiso, and fiom Proposition 4, it lollows,

thiit if througl) every [ioiiit in t!ie circumference <<f a cirt^h',

linc^ be drawn to a given point e out of tiie j)!;iiie
of tht^
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circle, so that the rectangle contained under the parts be-

tween the point e and the circle, and between the same point
E and some other point f, may always be of a certain given

magnitude ; then the locus of all the points f will also be a

circle, cutting the former circle in the two points where the

lines drawn from the given point e, to the several points in

the circumference of the first circle, change from the convex

to the concave side of the circumference. And the constant

quantity, to which the rectangle of the parts is always equal,

is equal to the square of the line drawn from the given point

E to either of the said two points of intersection. And thus

the loci of the extremes of all such lines, are circles.

PROP. 9.

Prob. To place a given sphere, and a given oblique cone,

in such positions, that their mutual sections shall be circles.

Let V be the vei'tex, vb the least side,

and VD the greatest side of the cone. In

the plane of the triangle vbd it is evident

will be found the centre of the sphere.

Parallel to bd draw Aa the diameter of a

circular section of the cone, so that it be

not greater than the diameter of the

sphere. Bisect au with the perpendicu-
lar EC

;
with the centre a and radius of

the sphere, cut eg in c, which will be the centre of the

sphere ;
from which therefore describe a great circle of it,

cutting the sides of the cone in the points s, s, a, a : so shall

S5 and Aa be the diameters of circular sections which are com-

mon to both the sphere and cone.

July 29, 1785.
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TRACT XIV.

ON THE GEOMETRICAL DIVISION OF CIRCLES AND ELLIPSES

INTO ANY NUMBER OF PARTS, AND IN ANY PROPOSED

RATIOS.

ARTICLE 1.

In the year 1774 was publislicd a painplilet in 8vo, with

this title, A Dissertation on the Geometrical Analysis of the

Antients,. With a Collection ofTheorems and Problems, with-

out Solutions^ for the Exercise of Young Students. This

pamphlet was anonymous ;
it was however well knowji to

myself, and to several other persons, that the author of it

Avas the late Mr. John Lawson, B. D. rector of Swanscombe
in Kent, an ingenious and learned geometrician, and, what

is still more estimable, a most wortli\" and good man; one in

whose heart was found no guile, and whose pure integrity,

joined to the most amiable simplicity of manners, and sweet-

ness of temper, gained him the affection and respect of all

who had the happiness to Ijc acquainted witli him. His

collection of problems in that pamphlet concluded with this

singular one,
" To divide a circle into any numbiu' of parts,

which shall be as well equal in area as in circumference.

N. B. This maij seem a paradox^ however it nuiij be effected in

a manner strictly geometrical.'" The solution of this seem-

ing paradox he reserved to himself, as far as I know
;
but I

fell upon the discovery of it so(ju after; and ni}'
solution was

published in an account which I gave of the ])am])hlet in the

Critical Review for 1775, vol. xl, and which the author after-

Avards informed me was on the same princij)le as his own.

This account is in page 21 of that volume, and m the follow-

in<r wordb :
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2. *' We have no doubt but that our matnematical readers

will agree with us in allowing the truth of the author's re-

mark concerning the seeming paradox of this problem ; be-

cause there is no geometrical method of dividing the circum-

ference of a circle into any proposed number of parts taken

at pleasure, and it does not readily appear that there can be

any other way of resolving the problem, than by drawing
radii to the points of equal division in the circumference.

However another method there is, and that strictly geome-

trical, which is a follows.

" Divide the diameter ab of the

given circle into as many equal parts

as the circle itself is to be divided

into, at the points c, d, e, &c. Then
on the lines ac, ad, ae, &c, as dia-

meters, as also on be, bd, bc, &.c,

describe semicircles, as in the annexed

figure : and they will divide the whole circle in the manner

as required.
"

For, the several diameters being in arithmetical progres-

sion, of which the common difference is equal to the least of

them, and the diameters of circles being as their circum-

ferences, these will also be in arithmetical progression. But,

in such a progression, tlie sum of the extremes is equal to the

sum of each pair of ternis equally distant from tliem
;
there-

fore the sum of the circumferences on Ac and CB, is equal to

the sum of tliose on ad and db, and of tiiose on ae and eb,

ike, and each sum equal to the semi-circumference of the

given circle on the diameter ab. Therefore all the parts

iiave equal perimeters; and each is equal to the whole cir-

cumference of the proposed circle. Which satisfies one af

the conditions in the problem.
"

Again, the same diameters being as the numbei's 1, 2, 3,

4, &c, and the areas of circles being as the squares of their

diameters, the semicircles will be as the square numbers

1,4, 9, 16, &c, and cons(;quently the differences between all

the adjacent semicircles are as the terms of the arithmetical
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progression 1, S, 5, 7, &c ;
and here again the sums of the ex-

tremes, and of every two equidistant means, make up the seve-

ral equal parts of the circle. Which is the other condition.'*

3. But this subject admits of a more geometrical form, and

is capable of being rendered very general and extensive, and

is moreover very fruitful in curious consequences. For first,

in whatever ratio the whole diameter is divided, whether into

equal or unequal parts, and whatever be the ntimber of parts,

the perimeters of the spaces will al-

ways be equal. For since the circum-

ferences of circles are in the same

ratio as their diameters, and because

AB and AD + DB and Ac + CB are all

equal, therefore the semi-circumfer-

ences c and b + d and a -\- e are all

equal, and constant, by the same,

"wiiatever be the ratio of the parts ad, dc, cb, of the diame-

ter. We shall presently find too that the spaces tv, rs, and

PQ, will be universally as the same parts ad, dc, cb, of the

diaincter.

4. The semicircles having been described as before men-

tioned, erect ce perpendicular to ab, and join be. Then
Avill the circle on the diameter be, be equal to the space pa.

For, join ae.

Now the space p = semicircle on ab semicircle on ac;
but the semicir. on ab = seniicir. on ae + semicir. on be,

and the semicir. on ac = semicir. on ae sca)icir. on ce,

theref. semic. ab scmic. Ac= scnr!c. be 1- semicir, ce,

that is, tiie space ? is =semic. bp: \- semicir. ce
;

to each of these add the space q, or the semicircle on bc,

then p 4- Q = semic. be + semic. ce + semic. bc,

that isp 4- Q = double the semic. be, or ::=: the whole circle

on be.

5. In like manner, the two spaces pq and rs together, or

the whole space paRS, is equal to the circle on the diameter

BF. And therefore the space rs alone, is equal to thcdilfer-

ence, or the circle on bf minus the circle on be.
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6. But, circles being as the squares of their diameters^ be%
BF% and these again being as the parts or lines bc, bd,

therefore the spaces pq, pqrs, rs, tv,
are respectively as the lines bc, bd, cd, ad.

And if BC be equal to cd, then will pa be equal to rs, as in

the first or simplest case.

7. Hence, to find a circle equal to the space rs, where the

points D and c are taken at random : From either end of the

diameter, as a, take ag equal to do, erect gh perpendicular
to AB, and join ah

; then the circle on ah will be equal to

the space rs. For, the space pa : the space rs : : bc : cd or

AG, that is as be^' : ah^ the squares of the diameters, or as the

circle on be to the circle on ah
;
but the circle on be is equal

to the space pa, and therefore the circle on ah is equal to the

space RS.

8. Hence, to divide a circle in this manner, into any pro-

posed number of parts, that shall be in any ratios to one an-

other: Divide the diameter into as many parts, at the points

D, c, &c, and in the same ratios as those proposed ;
then ou

the several distances of these points, from the two ends a and

b, as diameters, describe the alternate semicircles on the dif-

ferent sides of the whole diameter ab : and they will divide

the whole circle in tlie manner proposed. That is, the spaces

TV, RS, pa, will be as the lines ad, dc, cb.

9. But these properties are not confined to the circle alone.

They are found also in the ellipse, as the genus of which the

circle is only a species. For if the annexed figure be an

ellipse described on the axis ab,

the area of which is, in like

manner, divided by similar semi-

ellipses, described on ad, ac,

BC, BD, as axes, all the semi-

perimeters y, ae, bd, c, will be

equal to one another, for the

sartie reason as before in Art. 3,

namely, because the peripheries
of ellipses are as their diameters. And the same property

VOL. I. .s
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would still hold good, if ab were any other diameter of the

ellijjse, instead of the axis ; descrihing on the parts of it semi-

ellipses which shall be similar to those into which the diame-

ter AB divides the given ellipse.

10. And further, if a circle be described about the ellipse,

on the diameter ab, and lines be drawn similar to those in the

second figure; then, by a process the very same as in Art. 4,

et seq. substituting only semiellipse for semicircle, it is found

that the space
PQ is equal to the similar ellipse on the diameter bb,

paRS is ecjual to the similar ellipse on the diameter bf,

RS is equal to the similar ellipse on the diameter ah,
or to the difference of the ellipses on bf and be ;

also the elliptic spaces - - - pq, pqrs, rs, tv,
are respectively as the lines - bc, bd, dc, ad,

the same ratio as the circular spaces. And hence an ellipse

is divided into any number of parts, in any assigned ratios,

in the same manner as the circle is divided, namely, dividing

the axis, or any diameter in the same manner, and on the parts

of it describing similar semiellipses.

TRACT XV.

AN APPROXIMATE GEOMETRICAL DIVISION OF THE CIRCLE.

The solution, here improved, of the following problem, I

first gave in my ?.Ii^,cc!!aiiea IMathematica, published in the

year 1775, pa. 311. The prublc.n is as follows.

To find whether there is any such fixed

point E, in the radius bd produced, bi-

secting the semicircle abc, so tb.wt ::nv

line I'.FG being dra,\vn from it, this line

shall always cut the perpendicwlar nidius

AD at\d ilie quadrantul iirc An, propor-
tionallv in the two points f and g; viz. so

that DF Khali be to bg in a constant ratio.
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Solution, Put the radius ad or db = r, de = ar, the arc

BG = 2, GH =3/, and df = v. Now, if z to t; be a constant

ratio, then ktov will also be constant ;
and the contrary.

But, by similar triangles, eh = ar + v^(^'^"~3/^)
: gh =3/ : :

ED = ar : dp = = v ; the fluxion of which is
ar + V{.r--y-)

""^^ ^
'J{ar + tj^

"^ ^ * P""^"g a'= >/(r*
- f) = dh ;

also

r r .
' 1'

x =z y X , y X . Hence then x -. v : : : arx
V{r^y') w 'u)

r^+ arw r+aw .... ., , .
,

,

, r: : : 1 : ar X -, r;; which is evidently a variable
a'(a/--f ti;)- {ar-{wf
ratio. Therefore there is no such fixed point e, as that men-

tioned in the problem.

Corollary 1. Hence then it appears, that the common
method of finding the side of a polygon inscribed in a circle,

by drawing a line from a certain fixed point e, through f and

G, making a f to a c as 2 is to the number of sides of the poly-

gon, is not generally true.

Corol. 2. But such a point e maybe found, as shall render

that construction at least nearly true, in the following man-

ner. Suppose the line efg to revolve about e, from b to a:

at B, the arc bg and the line df arise in the ratio of be to

DE; and at A they are in the ratio of BA to ad or db ;
there-

fore make these two ratios equal to each other, and it will

determine the point e, so as that the ratios in all the inter-

mediate points, or situations, will be nearly equal: thus then,

BE : de : : BA : AD : :
J5 : 2, making p = 3-1416

;
or bd : DS

: : o 2 : 2 : hence DE :r x ED = 1-152 bd r= ^-bd^ ' p2 -^

very nearly. If, therefore, de be taken to da as 7 to 4
;
then

any line drawn from e, to cut the diameter ac, and the semi-

circumference ABC, it will very nearly cut them proportion-

ally. Therefore, if a polygon is to be inscribed, or if the

whole circumference is to be divided into any number of

equal parts ; first divide the diameter into the same number
s 2
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of parts, and through the 2d point of division draw kfg, so

will AG be one of the equal parts very nearly.

Corol. 3. The number 1*752 being equal to v^S nearly,

for V3 = 1*732; therefore, if de be taken to da as ^3 to

1, the point e will be found answering the same purpose as

before, but not quite so near as the former. And here, be-^

cause DA : DE : : 1 : ^^3, therefore de is the perpendicular
of an equilateral triangle described on ac. Hence then, if

with the centres a, c, and radius ac, two arcs be described,

they will intersect iu the point E, nearly the same as before.

And this is the method in common practice ;
but it is not so

rear the truth as the construction in the 2d Corollary.
Corol. i. Hence also a right line is found equal to the arc

of a circle nearly : for bg is = y dp nearly. And this is the

same as the ratio of 1 1 to 7, which Archimedes gave for the

ratio of the semicircumference to the diameter, or 22 to 7 the

ratio of the whole circumference to the diameter. But the

proportion is here rendered general for any arc of the circle,

as well as for the whole circumference.

TRACT XVI.

ON PLANE TRIGONOMETRY WITHOUT TABLES.

The cases of trigonometry are usually calculated by means

of tables of sines, tangents or secants, either of their natural

numbers, or their logarithms. But the calculations may also

be made without any such tables, to a tolerable degree of ac-

curacy, by means of the theorems and rules contained in the

following propositions and corollaries.

tROPOSlTION.

If 2a denote a side ofany triangle, A the number of degrees
contained in its opposite angle, and r the radius of the circla
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circumscribing the triangle : Then the value of a is equal to

47-2957795 x :-+ + + + &c.
r 2.3H 2.4.5r5^2.4.6.1r7^2.4.6.8,9r'

For, since 2a is the chord of the arc on which the angle,
whose measure is a, insists

;
a will be the sine of half that arc,

or the sine of the angle to the radius r, since an angle in the

circumference of a circle is measured by half the arc on which

it stands; now it is well known that the said half arc 2 is

equal to

a' 3a* 3.5a'
. , . ,a+ r-?H -A r-^ &c ; and, 3'14159r denoting^

2.3r* 2.4.5r* 2.4.6.7r^
' ^

half the circumference of the same circle, or the arc of 180

degrees, it will be
1802 57-2957795Z

as 3-14159r i 180' : : z : r=
3-14159r r

^ ,
a a^ Sa^ 3.5a' .

,= 57-2957795 X + ,+ ~
^4- 7r=-, &c,) the

^ r
^

2.3r^ 2.4.5?-^ 2.4.6.7/-'
'

degrees in the angle or half arc.

Corollary 1. By reverting the above series, we obtain

a _ a a^ a' a'

T~'n~' 2.3w^ 2.3.4.5s
"

2,3.4.5. 6.7n'
^'

180
putting^ ^^ = 57*2957795 =

--,
.

^ "" 3-14159 &c.

Corollary 2. If 2a be the hypothenuse of a right-angled

triangle, a will be = r, and then the general series will be,.

come n X (a +13 3.5
^

90 90x3 14159 &.C
+ -T^ + ;:; &c) = 90, or = -^ r-=

2.3 2.4.5 2.4.6.7
' ' n 1^0

3.14159 &c
. .

1
.

3
.

3.5 2,5.7

[8.9
^

2.3
^

2.4.5
^

li.4.6.7
^

2.4.6.^
'^

Coral. 3. Since the chord of 60 degrees is = the radius, or

the sine of 30 degrees = half the radius, putting a for \r in the

,..,,. 11 3 3.5
general series, will give n x (--}- -x- x.^ ' ^

^2^2.3.-^^*^2.4.5.25^2.4.6.7.2^

^c =; 30 ; and hence the sum of the infinite series
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2_
1

_3
3.5

2
^

2.3.2^
^ 2aJ^' ^ 2.4.6.7.2'

^^'

' _ 30__ 30x 3-14159 &c_ 3-14159 &c _"~
w
~

Tso
~

6
~

^th of the circumference of the ciixle whose diameter is 1.

Corol. 4. It might easily be shown, from the principles of

common geometry, that the sine of 60 degrees is to tle radius,

as ^v/3 is to 1
; substituting then j^7W2 for a in the general

1 3 3.3* 3.5.3-'

series, we shall have ?2a/3x ( 4-- rr^ 1
'-

;4-
'-

=-;r;' ^ ^ 2
^

2.3.2^ 2.4.5.25^ 2.4.6.7.2^

&c) = 60; and hence the sum of the infinite series

1 3 3 3* 3 5 3'

'T + 2:5:^3
+ ix^, + iX6?r^' ^"' '''^^ ^"

CO 60 X 3-14159 &c 3-14159 &c
,

.
, ^

=.I7"3= r8o73
=

37?-'
""^ '' '^"''"^'"" *^

the infinite series in the 3d corollary, as 2 is to ^/3.

Corol. 5. If by c be the halves of the other two sides of

the triangle, and b, c the degrees contained in their opposite

angles j
smce b = n x

( +
-^j^^

+ ^jj^ &c), and c =

c c^
71 X

( H
^j &c, and the 3 angles of any triangle are equal

to 180 degrees; we shall have iS0rrA-f-B+ c -=. n x

.avb\-c a'Arb^-\-c^ ^ ^ ^ c x n
\ -\ &c), or the sum or the innnite series

r 2.3r'
'

a^b c J fl'+Z>5+c3 3 a^^-b^^-c^ 3.5 fl'4-^^+f'

r ""^2.3' r^ '^2.4.5" r^
"*"

2.4.6.7 r?

180 180x3-14159 &c
kc, ^x\\\ be = = = 3.14159 &c = the

n 180

circumference of a circle whose diameter is 1
; a, by c, being

the halves of the three sides of any triangle, and 7- the radius

of its circumscribing circle.

aa cc
Corol. 6. Since, by theor. 3, b : a -\- c :: a-c : -. =

half the difference of the segments of the base {b) made by a
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perpendicular demitted from its opposite angle, and b -{-

aa cc aa-\-bb cc . ....
, .,

7 = r = the segment adjoining to theside 2a, we
'

{aa-\-bb-cc)\ ^(4.a'b^-{aa + bb-ccy)
shall have v'^ (4a -rr )

= t --

for the value of the said perpendicular to the base
;
and hence

x/ {^a^b''
-

{
aa+ bb- ccf)

_

2abc

I
: 2fl : : c :

^^ {^a'b^ {aa-{-bb
-

ccY)~''

the radius of the circumscribing circle.

Having now found the value of r, we can calculate all the

cases of trigonometry without any tables, and without re-

ducing oblique triangles to right-angled ones; for, having

any three parts (except the three angles) given, we can find

the rest from these five equations following :

2abc
^ * ^~

y/ (4a'6^
-

{aa ^bb ccf)'

_ a a^ 3flS 3.5a^ 3.5.7fl^

2. A-wx(-+^^3+,7y;^^+ 2^g^^,7 + ^^^y^-^&c.)

_ b M 3/)5 3.5^7 3.5.7/^'
3. B = wx( +

^-^3
+

^^-T^
+2^ ^

+ ^-^-^ &c.)

c c^ 3c' 3.5f7 3 5 7c'

5. A -}- B + c r= 180.

And, for the more convenience, we may add the three fol-

lowing, which are derived from the 2d, 3d, and 4th, by rever-

sion of series.

6.,= ,X(^-^3 + ^-^^-^-^;;^,&C.)
1

B B^ B^ B^
,

7 b =1 r Y /^ A &c \' "^
Wi 2 in^

^
2.3.4.5W' 2..-;.4.o.b.7^

' '

c c^ c' c'
8. c =r X

(

-
-g-3

+
2_3.4,_5^js

-
2.3.4.5.6.7/Z7

^"^"^

Where ?2. = 57-2957795 &c.

EXAMPLE.

Suppose we take here the following example, in which are

given the two sides 2b 345, 2c zz 232, and the angle op-
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posite to '2c = 37 20' rr 37^ degrees = c. Then since

C 374-X 3-14159 &c
,

232
zr ^

;
= -631589587, we have c =:

71 180
' 2

= 116 = r X (-651589587 -04610744 -f -00097879

000009894 + -000000058 &c) r X (-652568435

046117334) ;=-6064511r. Hence r= --^.^ ^ . ,
= 191-27677;

' -6064311

J h 345 X -6064511
and . -9018346.

r
~

2x116

Again, b = 57 2957795 x 1-12402 (the sum of the series

in the 3d equation)
= 64-4016 degrees = 64 24'.

And A = 180 - 37j-- 64-4016 = 180 - 10r735 78-265

= 78 16' nearly.

A . . 78-265
Lasth^, being = -r-r-TzzT^ = 1-365982, and r zz

-" n ^ 57-2957795.

191-27677, from the 5th equation we have a = 191-27677 x

(1-365982
- -4247992 + -0396379 - -0017607 + '0000288

- -0000005) = 191-27677 x -9790883 = 187-27684.

And hence 2a = 374-55368 =the third side of the triangle.

Corol. 7. As the series by which an angle is found, often

converges very slowly, I have inserted the following approxi-

mation of it ; viz,

A = w X (^^^(2
-

2s/{\
-

^ ) 77) nearly ; where the

letters denote the same quantities as in the above series. For

aa a a^ la^
5,nceP = v'{2-2v/(l--)).s = - + 3+ &c,

,
A . a a? 3a^ n

and IS = -i 1 1 &c,
n r 2.3r3 2.4.5^

we shall have, by taking the former of these from the latter,

A a^ 13a5
p = : + --

r &c. But, from the first series,
n 24;-^ 640r^

a a? 1a^
, , , 11

ip - = r + : xc : hence, bv subtracting the lat-
^ 3r 24;-3

^
384r5

> > . o

ter from the former, it gives
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A ^
a a a a} ^

p 4-P f ;:-= -tP H = r &c ; and

A = X (ip- ~=nx{Wi2-2^{l-^) )
-
^) nearly.

4 1

Corol. 7. And again, since x (p
-

? i?^
=
^y'

&c
; where o is = : by subtractins; this from 7:

=

"T^fi &c, and reducing, there will be obtained a = 777- x

(l44p-39^-i^3)=-^x(l44v/2-2>/(l-y^))-395'-i-^S
which will commonly give the angle exact to within a minute

of the truth. Where note, that the constant quantity is

= '54567409. And from the whole may be drawn the fol-

lowing general problem.

PROBLEM.

To perform all the Cases of Trigonometry/ without any Tables.

Having any three parts of a triangle given, except the three

angles, the other three parts ma}' be found, by some of the

following six general theorems.

1. A = i X (*v/(^
-

2v'( -tJ ) r) nearly. Or

A= x(144v/(2- 2^(l--,))-39 - ) more nearly.

_ a a^ 3a^ 3.5a'' 3 5.7a'
^2.A = nx

(7-+ ^7^3
+
^X575 "^2.4.6.7r7'^2.4.6.S.9r'

'

3. - ^ X
(^^

-
2.1^3+ 2.3.4. 5n5 2.3.4.0.6.7 /i^

'^

a
4- r = ri

n '2.3.n}'^ 2.3A.5n^ 2, 3. 4.5. 6. 7^^
^'^*



266 PLANE TRIGONOMETRY. TRACT 16.

2abc
r =

2abc

^ \{a-^b-\-c)x{a\b^c) x {a-b+ c) x {-a-{-b+ c)Y

"- Wz 2.3;i^ 2.3. 4. an^
'

Where a, b, c, are the halves of the three sides of the tri-

angle, and A tlie number of degrees in the angle opposite the

side 2a, and c the degrees in the angle opposite the side 2c;

also r is the radius of the circumscribed circle ;

and n = r-~- = 57-2957795, or = -54567409.
3-14159 '

105

EXAMPLE.

Thus, if the three sides be given, as for example a = 13,

6=14, c = 15. Then is r = 16^, and the angles by these

theorems come out as follow
; viz.

Angles by the Theor. The true Angles.
53 7' - -

angle a - - 53 7'^

59 28 - -
angle b - - 59 29|

67 19 - - angle c - - 67 224

179 54 sum of all 180 00

TRACT XVII.

ON MACHIn's QUADRATURE OF THE CIRCLE.

Since the chief advantage of this method consists in taking-

small arcs, whose tangents shall be numbers easy to manag*.',

Mr. Machin very properly considered, that as the tangent of

45 is 1
;
and that the tangent of any arc being given, the

tangent of double that arc can easily be found
;

if there be

assumed some small simple number for the tangent of an arc,
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and then the tangent of the double arc be continually taken,

till a tangent be found nearly equal to 1, the tangent of iS"*,

by taking the tangent answering to the small difference be-

tween 45 and this multiple, there would be obtained two very
small tangents, viz. the tangent first assumed, and th.e tangent
of the difference between 45 and the multiple arc;, and that

therefore the lengths of the arcs corresponding to these two

tangents being calculated, and the arc belonging to the tan-

gent first assumed being as often doubled as the multiple de-

notes, the result increased or diminished by the other arc,

would be the arc of 45, according as the multiple arc should

be below or above it.

Having thus thought of his method , by a few trials he was

lucky enough to find a number, and perhaps the only one,

proper for this purpose, viz, knowing that the tangent of ^
of 45 is nearly = 4, he assumed ^ as the tangent of an arc :

then since, if i be the tangent of an arc, the tangent of the

double arc will be the radius being 1
;
the tangent of

an arc double to that of which ^ is the tangent, will be

-
1-
= ^, and the tangent of the double of this last

1 ~ ^T

t4 120
is

-; ^TT" 7^ y "^^'^ich, being very near equal to 1, shows

that the arc wliich is equal to 4 times the first, is very near

45. Then, since the tangent of the difference between 45
. T 1

and an arc whose tangent is t, is
,
we shall have the tan-

T+ 1

gent of the difference between 45 and the arc whose tangent
120

, 44^-1 120-119 1

is equal to - = = .

119 ^
4ff+-l 120+119 239

Now by calculating, from the general series, the arcs wliose

tangents are | and ^^, which may be quickly done, by rea-

son of the smallness and the simplicity of the numbers, and

taking the latter arc from 4 times the former, the remainder

will be the arc of 45. And this is Mr. Macliin's ingenious

quadrature of the ciixle.

But it was by means of Dr. Hailey's method that Mr.
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Machin found the circumference of a circle, whose diameter

is I ,
to be

3- 141.59265335,8;)7.Q323846,2643383279,.502884197 1,693919375 10,

582Q974944,3923078 1 64,0628620899,8628034825,3421 170679 +.

true to above 100 places of figures.

Or, by substituting the above numbers in Machin's series,

16 4
,

1 ,16 4 ^ 1 ,16 4 .

.ve get the scnes(-- )--(-- 3)+-(--&c,
equal to the semicircumfcrcnce whose radius is 1, or the

whole circumference whose diameter is 1. Being the series

published by Mr. Jones, and which he acknowledges he re-

ceived from Mr. Machin.

But because the arc whose tangent is
-^,

is r= 2 times the

ftrc whose tangent is Tf%> iriinus the arc to tangent -^-].-^ ; (for

^-^ = = taniient of twice the arc to tangent t^. and

^O '

- ^ = T-i-r =E tanfr. of diff. between the arcs whose tan-
1 -4-,^ * ^

gents are || and f ) ;
therefore 8 times arc to tangent ^ig. 4

times arc to tang. -^-^ arc to tang, ^j-^ rr arc of 45, or

whose tang, is 1. Which is much easier than Machin's way.

And various other methods may easily be discovered from the

^ame nrincii)los.

TRACT XVIII.

A KEW AND GKNERAL METHOD OF FINDING SIMPLE AND

QUICKLY-CONVKRGING SERIES; BY WHICH THE PROPOR-

TION OF THE DIAMETER OF A CIRCLE TO ITS CIRCUMFER-

f.rxXE MAY EASILY EE COMPUTED TO A GREAT MANY PLACES

OF FIGURES.

Ik examining the methods of Mr. Machin and others, for

cuinputliig tiic proportion of the diameter of a circle to its

circuuuerciice, 1 discovered the method explained in this

impi r. '1 lub method is very general, and discovers many
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series that are fit for the abov^ementioned purpose. The ad

vantage of this method is chiefly owing to the simphcity of

the series by which an arc is found from its tangent. For, if

t denote the tangent of an arc a, the radius being 1, then it

is well known, that the arc a is denoted by the infinite series,

i ii^ + 1^* f^^ + -1^' &c ; where the form is as simple
as can be desired. And it is evident that nothing further is

required, than to contrive matters so, as that the value of the

quantity t^ in this series, may be both a small and a very-

simple number. Small, that the series may be made to con-

verge sufficiently fast
;
and simple, that the several powers

of t may be raised by eas)?^ multiplications, or easy divisions.

Since the first discovery of the above series, many authors

have used it, and that after different methods, for determin-

ing the length of the circumference to a great number of

figures. Among these were, Dr. Halley, Mr. Abra. Sharp,
Mr. Machin, and others, of our own country ; and M. de

Lagney, M. Euler, &c, abroad. Dr. Halley used the arc of

30, or^\th of the circumference^ the tangent of which being
=

y/-3-, by substituting ^^ for t in the above series, and mul-

tiplying by 6, the semicrcumference is =

\/t X (1 -r-r+ z IT- ;r:r,-\ r^ &.0 ;
which series i^,^ ^ ^

3.3 5.3^ 7.3^ 9.3-*
' ' '

to be sure, very simple ;
but its rate of converging is not

very great, on which account a great many terms must be

used to compute the circumference to many places of figures.

By this very series however, the industrious Mr. Sharp com-

Jjuted the circumference to 72 places of figures; Mr. Machin

extended it to 100; and M. de Lagney, still by the same series,

continued it to 128 places of figures. But though this series,

from the 12th part of the circumference, does not converge

very quickly, it is perhaps the best aliquot part of the cir-

cumference which can be employed for this purpose ; for

when smaller arcs, which are exact aliquot parts, are used,
their tangents, though smaller, are so much more complex,
as to render them, on the whole, more operose in the anpli.

Ration; this will easily appear, by inspecting some instances
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that have been given in the introductions to logarithmic'

tables. One of these methods is from the arc of 1 S*', the

tangent of which is V{l'2V\); another is from the arc of

22i, the tangent of which is v'2 1
;
and a third is from the

arc of 15, the tangent of which is 2 VS. All of which are

evidently too complex to alford an easy apphcation to the

general series.

In order to a still further improvement of the method by
the above general series, Mr. Machin, by a very singular and

excellent contrivance, has greatly reduced the labour natur-

ally attending it. I have given an analysis of his method, ot

a conjecture concerning the manner in which it is probable
Mr. Machin discovered it, in my Treatise on Mensuration ;

which, I believe, is the only book in which that method has

been investigated, as it is repeated in the foregoing Tract;

For though the series discovered by that method were pub-
lished by Mr. Jones, in his "

Synopsis Palmariorum Ma-

theseos," which was printed in the year 1706, he has given
them merely by themselves, without the least hint of the

manner in which they were obtained. The result shows, that

the proportion of the diameter to the circumference, is equal,

to that of 1 to quadruple the sum of the two series,

T^('-r?+^^-7:i^ + ^^^)""^
1 1 1

i_
I

239
^ V^

~
3^39"'

^
T23f^

~
-^239*'

^
9.2S9*

^''

The slower of which series converges almost thrice as fast as

Dr. Halley's, raised from the tangent of 30. The latter of

these two series converges still a great deal quicker; but

then the large prime number 239, by the reciprocals of the

powers of which the series converges, occasions such long

and tedious divisions, as to counter-balance its quickness of

converTency ;
so that the former series is summed with ra-

ther more ease than the latter, to the same number of places

of figures. Mr. Jones, in his ''
Synopsis," mentions other

series besides this, which he had received from Mr. Machin

fur the same purpose, and drawn from the same principle-
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But we may conclude this to be the best of them all, as he

did not publish any other besides it.

M. Euler too, in his " Introductio in Analysinlnfinitorum,'*

by a contrivance something like Mr. Machin's, discovers, that

^ and i are the tangents of two arcs, the sum of which is just

45; and that therefore the diameter is to the circumference,
as 1 to quadruple the sum of the two following series,

^(^-^ + ^-7:^ + ^^^'^^""^

3
^ ^^

'

3.9
"^ 5^

~"
7.9^

+ 9.9*
''

Both Mhich series convercre much faster than Dr. Hallev's,

and are yet at the same time made to converge by the powers
of numbers producing only short divisions; that is, divisions

performed in one line, or without writing down any thing
besides the quotients.

I come now to explain my own method, which indeed bears

some little resemblance to the methods of Machin and Euler;

but then it is more general, and discovers, as particular cases

of it, both the series of those gentlemen, and many others,

some of which are fitter for this purpose than theirs are.

This method then consists in finding out such small arcs,

as have for tangents some small and simple vulgar fractions,

the radius being denoted by 1, and such also that some mul-

tiple of those arcs shall differ from an arc of 45, the tangent
of which is equal to the radius, by other small arcs, which also

shall have tangents denoted by other such small and simple

vulgar fractions. P'or it is evident, that if such a small arc

can be found, some multiple of which has such a proposed

difference, from an arc of 45% then tlic lengths of these two

small arcs v, ill be easily computed from the general series,

because of the smallness and simplicity of their tajigents;

after which, if the proper multiple of the first arc be in-

creased or diminished by the other arc, the result will be the

length of an arc of 45, or ith of the circumference. And the

manner in which I discover such arcs is thus :

Let T, t, denote any two tangents, of which x is the
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greater, and i the less : tlien it is known, that the tangent of

T f
tlie difference of the corresponding arcs is equal to

^

Hence, if t, the tangent of tlie smaller arc, be successively

denoted by each of the simple fractions i, 4* vj tj ^^j ^^^

general expression for the tangent of the difference betweeft

the arcs will become respectively
2T-1 3T-1 4T-1 5T-1 , .1, . -f u

, , . , &c : so that it t be ex-
2 t-T

'

3-f-T
'

4+ T '

5-{-t'
'

pounded by any given number, then these expressions will

give the tangent of the difference of the arcs in known num-

bers, according to the values of/, severally assumed respect-

ively. And if, in the first place, t be equal to 1, the tangent
of 45, the foregoing expressions will give the tangent of an

arc, Avhich is equal to the difference between that of 45 and

the first arc
;
or that of which the tangent is one of the num-

bers i, -f, .J-, I, &c. Then, if the tangent of this difference,

just now found, be taken for x, the same expressions will give
tiie tangent of an arc, which is equal to the difference between

the arc of 45 and the double of the first arc. Again, if for

T we take the tangent of this last found difference, then the

foregoing expressions will give the tangent of an arc, equal
to the difference between that of 45 and the triple of the first

arc. Ami again taking this last found tangent for t, the same

theorem will produce the tangent of an arc equal to the dif-

ference l)etween that of 45*^ and the quadruple of the first

arc
;
and so on, always taking for t the tangent last found,

the same expressions will give the tangent of the difference

between the arc of 45 and the next greater multiple of the

first arc
;
or tliat of which the tangent was at first assumed

equal to one of the small numbers --, -f, i, -, &c. This ope-

ration, being continued till some of the expressions give such

a
fit, small, and simple fraction as is required, is then at an

end, for we have then found two such small tangents as

were required, viz, the tangent last found, and the tangent
lirst assumed.

Here follow the several operations adapted to the several



TRACT 18. FOR THP CIRCJ-P. 27S

values of t. The letters a, 6, c, </, Sec, denote the several

successive tangents.

1. Take ^ = ^, then tlie theorem ^^
gives a=j., h^.

Therefore the arc of 45, or \\\\ of the circumference, is either

equal to the sum of the two arcs of which \ and
j-
are the

tangents, or to the difference between the arc of which the

tangent is
-f,

and the double of the ^arc of which the tangent
is \ ; that is, putting a = the arc of 45, then

1 1 1 1 1
o .

1 1 1 1 1

^

3.4 "^'5.4^ 7.4^ "^9.4*"^
^"'^^i 1 . _ JL _i \ L_&,>

7
^ ^^

-..49^5.49^ 7.49^ "^9.49*
-^'

The former of these vahies of a is the same with that before

mentioned, as given by M. Euler; but the latter 'is much

better, as the power.s of
-^-^j- converge much faster than those

ofx.

Corol. From double the former of these values of A, sub-

tracting tlie latter, the remainder is,

l^^^-TJ + -^^-7ir + ^^->

^-^
I 1 1 1

,

which is a much better theorem than either of the fonner.

St 1

2. If t be taken = ^, then the expression
^

^ / -

gives

a = ij 3 = i. Here the value of a \ gives the same ex-

pression for the value of a as the first in the foregoing case,

and the value of ^ =
j^ gives the value of a the very same as,

in the corollary to the case above.

4t 1

8. Taking ? = i, the expression
-

gives a =
-f ,

6 =
4+ T

5V> <^ = ^Vt* Where it is

VOL. I

5?y, c =
-5^, (^ = Jj^.. Where it is evident that the value
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offrr^5^ is tlje fittest number afforded by this case; and

hence it appears, that the arc of 45 is equal to the sum of the

arc of which the tangent is -^^j and the triple of the arc of

which the tangent is ~.

3
.

1 1 Ion
Or that A = <

^ ^z ^4 ;^6

''

99
''^ ^^ ^ 3^"^ 5^99^" 7799^"*"

^^^'

Which is the best theorem that we have 3'et found, because

the number 98 resolves into the two easy factors 9 and 11.

4. Let now t be taken = \; then the expression
-

-gives
2 7 1

a =. -Tj-j ^ = T=5 c = , d ^7:77:. ^V''llere it is evident

that the last number, or the value oi d, is the fittest of those

produced in this case; and from which it appears, that the

arc of 45 is equal to the difference between the arc of which

the tangent is
-jj-^-,

and quadruple the arc of which the tan-

gent is ^. Or that

^=^^j_ i_ __i i__

Which is the very theorem that was invented by Mr. rvlachin,

as we have before mentioned.

5. Take now / rr i
;

then the expression -,~- gives

a - ,b==YvC--^,d = -^,e= pp^. Of which

numbers it is evident that none are fit for our purpose.

6. Again, take ^ = |, and the expression
- will give

^ ~ "T ^ ~
31'

^ ~" ^' '^ ~"
205'

^ ~
"742' -^

~
5265-

Neither are any of these numbers fit for our purpose.

7. In like manner take t =. x.. so shall give
ii ' 8 + T "

a 9,6 , c g^^,
d -^^^

e
4^^2y' J ~

58SU79*
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S. And if/ be taken =
-^j

the expression -^^ will give

a
^ ,

6
^g,

C
2^.,

a
2239J

^
io475>

^^*

9. Also, if we take t = -^^ the expression
- ' will give

_ ^ A _ Z. _ ^''^ J 5441 _ 410-19
'^

iT'
" ~ Uy' ^ ==

1269'
~

13361>
^ "^

1390al
'^*

1 0. Further, if we take t = -^, the expression gives

_ ^ , _ 49 _ 234 _ 2159 _ _9475
rZ _

^ ,
6 _

,
C _

,
d = ^^, e ^^, otc.

1 1. Lastly, if we take / =z
-jL-, the expression ~f^ gives

^ ~
Fs >

^ ~
iT?'

^ ~
73"'

^
9T7'

'^ ~
ri423

^^'
-

Here it is evident, that none of these latter cases afford

any numbers that are fit for this purpose. And to try any
other fractions less than -jV for the value of t, does not seeni

likely to answer any good purpose, especially as the divisors

after 12 become too large to be managed in the easy way of

short division in one line.

By the foregoing means it appears then, that we have dis-

covered five different forms of the value of a, or ^th of the

semicircumfercnce, all of which are very proper for readily

computing its length; viz, three forms in the first case and

its corollary, one in the 3d case, and one in the 4th case.

Of these, the first and last are the same as those invented by
Euler and Machin respectively, and the other three are quite

new, as far as I know.

But another remarkable excellence attending the first three

of the before mentioned series, is, that they are capable of

being changed into others which not only converge still

faster, but in which the converging quantity shall be
-j'^, or

some multiple or sub-multiple of it, and so the powers of it

raised with the utmost ease. The series, or theorems, here

meant are these three ;

T 2
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1st, A =

2dly, A =

3dly, A =

1 1 1 1
. O X

I 1 1

1 -
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ing the required proportion ; because, of tlie two series of

which it consists, the several terms of the one are found from
the Jike terms of the otlier, by dividing these latter by 10,

and its several successive powers, lOO, 1000, &c ;
that is, the

terms of the one consist of the same figures as the terms of

the other, only remoted a certain number of places farther

towards the right hand, in the decuple scale of numbers;
6nd the number of places by which they must be removed,
is the same as the distance of each term from the first term

of the series, viz, in the 2d term the figures must be moved
one place lower, in the 3d term two, in the 4th term three,

&c; so that the latter series will consist of but about half the

number of the terms of the former. Thus then this method

may be said to effect the business by one series only, in

which there is little more to do, than to divide by the :<everal

numbers 1, 3, 5, 7, &.c
;

for as to the multiplications by the

numbers in the numerators of the terms, after they become

large, they are easily performed by barely multiplying by
the number 2, and subtracting one number from another: for

since every numerator is less by 2 than the double of its de-

nominator, if d der.ote any denominator, exclusive always
of the powers of 10, then the coefficient of that term is

Y~ or 2 ~, by which the preceding term is to be mul-

tiplied ;
to do which therefore, multiply it by 2, that is

double it, and divide that double by the divisor d, and sub-

tract the quotient from the said double.
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TRACT XIX.

HISTORY OP TRIGONOMETRICAL TABLES, (ScC.

Necessity, the fruitful mother of most useful inventions ;

gave birth to the various numeral tables employed in trigo-

nometry, astronomy, navigation, &c. Astronomy has been

cultivated from the earliest ages. The progress of that

science, requiring numerous arithmetical computations of the

sides and angles of triangles, botii plain and spherical, gave
rise to trigonometr}- ;

for those frequent calculations sug-

gested the necessity of performing them by the property of

similar triangles ;
and for the ready application of this pro-

perty, it was necessary that certain lines described in and

about circles, to a determinate i-adius, should be computed,
and disposed in tables. Navigation, and the continually im-

proving accuracy of astronomy, have also occasioned ^s con-

tinual an increase in the accuracy and extent of those tables.

And this, it is evident, must ever be the case, the improve-
ment of trigonometry uniformly following the improvement
of those other useful sciences, for the sake of which it is more

especially cultivated.

The ancients performed their trigonoinctry by means of the

chords of arcs, Avhich, Avith the chords of their supplemental

arcs, and the constant diameter, formed all species of right-

angled triangles. Beginning with the radius, and the arc

whose chord is equal to the radius, they divided them both

into 60 equal parts, and estimated all other arcs and chords

by those parts, namely all arcs by eoihs of that arc, and all

chords by 60ths of its chord or of the radius. At least this

method is as old as the writings of Ptolemy, who used the

sexagenary arithmetic for this division of chords and arcs,

and for astronomical purposes. And this, by-t!ie-bye, may
{)e the reason whv the whole circumference is divided
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into 360, or 6 times 60, equal parts or degrees, the whole

circumference being equal to 6 times the first arc, Avhose

chord IS equal to the radius : unless perhaps we are rather to

seek for the division of the circle in the number of days iu

the year; for thus, the ancient year consisting of 360 days,

the sun or earth in each day described the 360th part of the

orbit
;
and thence might arise the method of dividing ever}'^

circle into 360 parts; and, radius being equal to the chord

of 60 of those parts, the sexagesimal division, both of the ra-

dius and of the parts, might thence follow. Trigonometry
however must have been cultivated lon<; before the time of

Ptolemy; and indeed Theon, in his commentary on Ptolemy's

Almagest, 1. i. ch 9, mentions a work of the philosopher Hip-

parchus, wTitten about a century and a half before Christ,

consisting of 12 books on tiie chords of circular arcs; which

Biust have been a treatise on trigonometry. And Menelaus

also, in the first century of Christ, wrote 6 books concerning
subtenses or chords of arcs. He used the word nadir, of an

arc, which he defined to be the right line subtending the

double of the arc; so that his nadir of an arc was the double

of our sine of tlie same arc, or the chord of the double arc ;

and therefore whatever he proves of the former, may be

applied to the latter, substituting the double sine for the

nadir.

The radius has since been decimally divided
;
but the sexa-

o-esimal divisions of the arc have continued in use to this day.

Indeed our countrymen Briggs and Geliibrand, having a

o-eneral dislike to all sexagesimal divisions, made an.attempt

at some reformation of this custom, by dividing the degrees

of the arcs, in their tables, into centcsmsor hundredth parts,

instead of minutes or GOth parts. The same was also re-

conunended by Vieta and others; and a decimal division of

the whole quadrant might perhaps soon have followed, had

it not been for the tables of Viaec}, which came out a little

after, to every 10 seconds, or 6th parts of minutes. But the

complete reformation would be, to express all arcs by their

real lengths, namely in equal parts of the radius decimally
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divided according to which method I have nearly completed
a table of sines and tangents.

It is not to be doubted that many of the ancients wrote on

the subject of trigonometry, being a necessary part of astro-

nomy ; though few of their labours on that branch have come

to our knowledge, and still fewer of the writings themselves

have been handed down to us.

We are in possession of the three books of Menelaus, on

spherical trigonometry ;
but the six books are lost which he

wrote upon chords, being probably a treatise on the construc-

tion of trigonometrical tables.

The trigonometry of Menelaus was much improved by

Ptolemy (Claudius Ptolemseus) the celebrated philosopher
and mathematician. He was born at Pelusium; taught as-

tronomy at Alexandria in Egypt; and died in the year of

Christ 147, being the TSth year of his age. In the first book

of his Almagest, Ptolemy delivers a table of arcs and chords,

with the method of construction. This table contains 3 co-

lumns; in the 1st are the arcs to every half degree or 30

minutes; in the 2d arc their chords, expressed in degrees,

minutes and seconds; of which degrees tlie radius contains

dO; and in the 3d colimm are the differences of the chords

answering to 1 minute of the arcs, or the 30th part of the

differences between the chords in tlic 2d colunni. In the

construction of this table, among otlicr theorems, Ptolemy

shows, for the first time that we know of, this property of

any quadrilateral inscribed in a circle, namely, that the rect-

angle under the two diagonals, is equal to the sum of the two

rectangles under the opposite sides.

This method of computation, by the chords, continued in

Bse till about the middle centuries after Christ
;
when it was

chanjred for that of the sines, which were about that time in-

troduced into trigonometry by the Arabians, who in other

respects much improved this science, which they had receivc^d

from the Greeks, introducing, among other things, the tiu'co

or four theorems, or axioms, which we make use of at pre-

sent, as the foundation of our modern trigonometry.
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The other great improvements, that have been made in this

branch, are due to the Europeans. These improvements they
have gradually introduced since riiey received this science

froni the Arabians. And though these latter people had long
used the Indian or decimal scale of arithmetic, it does not

appear that they varied from the Greek or sexagesimal divi-

sion of the radius, by which the chords and sines hud been

expressed.
This alteration, it is said, was first made by George Pur-

bach, who was so called from his being a native of a place of

that name, between Austria and Bavaria. He was born iu

1423, and studied mathematics and astronomy at the univer-

sity of Vienna, where he was afterwards professor of those

sciences, though but for a short time, the learned world

quickly suffering a great loss by his immature death, which

happened in 1462, at the age of 39 years onl}". Purbach,
besides enriching trigonometry and astronomy with several

new tables, theorems, and observations, conceived the radius

to be divided into 600,000 equal parts, and computed the

sines of the arcs, for every 10 minutes, in such equal parts of

the radius, by the decimal notation.

This project of Purbach was completed by his disciple,

companion, and successor, John Muller, or Ilcgiomontanus,

being so called from the place of his nativitv, the little town

of Mons Regius, or Koningsberg, in Franconia, where he was

born in the year 1436. Ilegioniontanus not only extended

the sines to every minute, the radius being 600,000, as de-

signed by Purbach, but afterwards disliking that scheme as

evidently imperfect, he computed them also to the radius

1 ,000,000, for every minute of the quadrant. He also intro-

duced the tangents into trigonometry, tlie canon of which he

C'dWcd/(vcundus, because of the many and great advantages

arising from them. Besides these, he eru'iched trigonometry
with many theorems and precepts. Through the benefit of

all these improvements, except for the use of logarithms, the

trigonometry of Regiomontanus is but little inferior to that of

our own time. His treatise, on both plane and s|)l]erical tri-
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gonometrj', is in 5 books; itv.',is written about the year 1464,

and M'as printed in folio at Nuremberg, in 1533. And in the

5tli book are also various problems concerning rectilinear

triangles, some of wliioi are resolved by means of algebra
a proof that this science was not wholly unknown in Europe
before the treatise of Lucas dc Burgo. Regiomontanus died

in 1476, at the age of 40 years only; being then at Rome,
whither he had been invited by the Pope, to assist in the re-

formation of the calendar, and where it was suspected he

was poisoned by the sons of George Trebizonde, in revenge
for the death, of their father, which was said to have been

caused by the grief he felt on account of the criticisms made

by Regiomontiinus on his transiation of Ptolemy's Almagest.
Soon after this, several other n)athematicians contributed to

the improvement of trigonometrv, by extending and enlarg-

ing the tables, though lew of tlicir works have been printed ;

and particularly John Werner of Nurejnherg, who was born

in 1468, and died in 1528, and who it seems wrote five books

on triangles.

About the year 1500, Nicholas Copernicus, the celebrated

modern restorer of the true solar system, wrote a brief treatise

on trigonometry, both plane and spherical, with the descrip-

tii)n and construction of tlje canon of chords, or th.eir halves,

nearly in the manner of Ptolemy; to which is subjoined a

canon of sines, with their differences, for every 10 minutes of

the quadrant, to the radius 100,000. This tract is inserted

in the first book of his
" Revolntiones Orbium Coelestium,"

fir>t printed in folio at Nuremberg, 1543. It is remarkable

that be docs not call these lines nines, but semisses siibtcnsarinny

namely of the double arcs. Copernicus was born at Thorn

in 1 ITS, and died in 1543.

Ill 1553 was published the " Canon Fcrcundus," or table of

tanoents, of Erasmus Reinhold, professor of mathematics in

ihfr aeadi^niv of Wurtemburg, He was born at Salheldt in

I p!)cr Saxony, in the year 1511, and died in 1552,

Tfi Francis Maurolyc, abbot of Alessina in Sicily, we owe

the introduction of the " Tabula Benehca," or canon of se-
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cants, which came out about the same time, or a little before.

But Lansberg erroneous!}" ascribes this to Rlicticus. And
the tangents and secants are both ascribed to Rcinhoid, by

Briggs, in his " Mathematica ab antiquis minus cognita,"

(p. 30, Appendix to Ward's Lives of the Professors of Gre-

sham College.)
Francis Vieta was born in 1 j40 at Fontenai, or Fontenai-

]e-Comte, in Lower Poitou, a province of France. He was

master of requests at Paris, where he died in 1603, being the

63d 3-ear of his age. Among other branches of learning in

which he excelled, he was one of the nvost respectable ma-

thematicians of tiie IGth century, or indeed of any aoe. His

writings abound with marks of great originality, and the finest

genius, as well as intense applic.ition. Among them are se-

w.rn\ pieces relating to trigonometry, whicli may be found

in the collection of his works published at Leyden in 1646,

by Francis Schooten, besides another large and separate vo-

lume in folio, published in the author's lifetime at Paris in

1579, containing trigonometrical tables, with their construc-

tion and use; very clegantl}- printed, by the king's mathe-

matical printer, with beautiful types and rules; the differences

of the sines, tangents and secants, and some other parts,

being printed with red ink, for the better distinction ;
but it

is inaccurately executed, as he himself testifies in page 323

of his other works above mentioned. The first part of this

curious volume is entitled " Canon Mathematicus, sen ad

Triangula, cum Appendicibus," and it contains a great va-

riety of tables useful in trigonometry. The first of tiiese is

what he more peculiarly calls " Canon iNIatliematicus, sen ad

Triangula," which contains all the sines, tangents, and secants

for every minute of the quadrant, to the radius 100,000, with

all their differences; and towards the end of the quadtant the

tangents and secants are extended to 8 or 9 places of figures.

They arc arranged like our tables at present, increasing on

tl>e left-hand side to 45 degrees, and then returning upwards

by the right hand side to 90 degrees ;
so that each niiuiber
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and its complement stand on ti)e same line. But here the

canon of what we now call tangents isdenominate(iy(a?tt;?rfM5,

and that of the secants fa'cundissimus. For the general idea

prevailing in tiie form of these tables, is, not that the lilies

represented by the luiiiibers are those which are drawn in and

about a circle, as sines, tangents, and secants, but the tliree

sides of right-angled triangles ;
this being the way in which

those lines had alwavs been considered, and which still con-

tinued for some time longer. Hence it is that he considers

the canon as a series of plane right-angled triangles, one side

being con>tantly 100,OCO ;
or rather as three series of such

triaufi^les, for he makes a distinct series for each of the three

varieties, namely, according as the hypotenuse, or the base,

or the ])erpendicular, is represented by the constant number

100,000, which is sinnlar to the radius. Makiiig each side

constantly 100,000, the other two sides are computed to every

magnitude of the acute angle at the base, from 1 minute up
to 90 degrc(^s, or the whole quadrant. Each of the three

scries therefore consists of two parts, representing the two

variable sides of the triangle. When the hypotenuse is made

the constant numbt^r 100,000, tlie two variable sides of the

triangle are the pirpcnJicuLir unci base, or our sine and co-

sine; when the base is 100,000, the perpendicular and hypo-
tenuse are the variable jjarts, forming the canon facciindus et

fcvcundissimus, or our tangent and secam
;
nnd when the

perpendicular is made the constant 100,000, the series con-

tains the variable base ajid hypotenuse, or also cavonfaecundus

effcecundtssimus, or oiir cotangent and cosecant. Of course,

therefore, the table e(msi-,ts of 6 columns, 2 for each of the

three series, bc-ides the two columns on the riaht and left

for minutes, from to GO in each d.-gree.

The second of tiiesc tables is similar to the first, but all in

rational numbers, consisting, like //, of three series of two

colunms each
;

t!ie radius, or constant side of the triangle,

m e.ich series, being 100,000, as before; and the otiicr two

sides accuratchj expressed in integers and rational viilgur
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fractions. So that we have here the canon of accurate sines,

tangents, and secants, or a series of about 4300 rational right-

angled triangles. But then the several corresponding arcs of

the quadrant, or angles of those triangles, are not expressed.

Instead of them, are inserted, in the first column next the

margin, a series of numbers decreasing from the beginning
to the end of the quadrant, which are called numeri primi
basecs. It is from these numbers that Vieta constructs the

sides of the three series of right-angled triangles, one side in

each series being the constant number 100,000, as before.

The tiieorems by which these series of rational triangles are

computed from the Jiiimeri primi baseoSy or marginal num-

bers, are inserted all in one page at the end of this second

table, and in the modern notation they may be briefly ex-

pressed thus : Let p denote tlie primary or inarginal number

pn any line, and r the constant radius or number 100,000 :

then if r denote the hypotenuse of the right-angled triangle,

the perpendicular and base, or the sine and cosine will be

respectively,

j-rrr and r ri :, (which last we may reduce to 1\ ,r).

When r denotes the base of the right-angled triangle, the

perpendicular and hypotenuse, or the taugeiit and secant,

are expressed b}-

Tii'~: and r \- r~i Tj (wiucli last we mav reduce to ? :r)

and when r denotes the perpendicular of the right-angled

triangle, the base and hj'potenuse, or the cotangent and co-

secant, are then expressed by

ipr
- J (or r), and ^pr -|-

-j-
(or ~f-r).

So that Vieta's general values will be as we have here co--

lected them together in the foHowing expressions, imme-

diately under the words sine, cosine, iic ;
and just below

Vieta's forms I have here phiced the others, to which thev

reduce and are equivaiciit, which are more contractecl,

though not so well adapted to t])o expciditious computatinu
as Vieta's form<;.
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Sine

__P__r

Cosine Tangent Secant

<2r

'+1:

ic'-^'

Cotangent Cosecant

r

All these expressions, it is evident, are rational ;
and by as-

Ruminir p i,f different values, from the first theorems Vieta

com[)nted the corresponding sides of the triangles, and so

expressed them all in integers and rational fractions.

To the foregoing principal tables arc sul)joined several

other smaller tables, or short specimens of large ones: as, a

table of the sines, tangents and secants, for every single de-

gree of the quadrant, with the corresponding lengths of the

arcs, t!ie radius b<nng 100,000,000; another table of the sines,

tangents, and secants, for each degree also, exj)ressed in soxa-

gcsinial parts of the radius, as far as the third order of yjart ;

aiso two otiicr tables for the multiplication and reduction of

sexagesimal quantities.

The second part of this volume is entitled " Universalium

{nsnectionum ad Canonem INIathematicum Liber singularis."

It coi)tains the construction of the tables, a comjjcndious
t;cut!sc on plane and spherical trigonometry, -with the appli-

Ctitien of Liicai to a great variety of curious subjects in geo-

metry and mensuration, treated in a very learned manner;
as also many curious observations concerning the quadrature
of tlie circle, the dnphcation of the cube, &.c. Computations
are here given of the ratio of the diameter of a circle to the

circumference, and of the length of the sine of 1 minute, both

to many places of figures ;
bv v.hich he found that the sine

of 1 mitmte is between 2,908,881,959 and 2,908,882,056;

:ils(), the diameter of a circle being lOOO 5:c, tliat the {)eri-

nu^terofthe inscribed and circumscribed poljgou of 393,216

>!'ieSj will be as follows:

perimeter of the inscrib, polygon 314,159,265,35,

periinet(:r of the circum. ]Jol\gon 314,159,265,37,
and th.it therefore the circumference of the circle lies be-

I ween those tv o numbers.
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Though no author's name appears to the volume we have

been describing, there can be no doubt of its being the per-
formance of Vieta

; for, besides bearing evident marks of his

masterly hand, it is mentioned by himself in several parts of

his other works collected by Schooten, and in the preface to

those works by Elzevir, the printer of them
;
as also in Mon-

tucla's " Histoire des Mathematiques ;" which are the only
notices I have ever seen or heard of concerning this book, the

copies of which are so rare, that I never saw one besides that

whicli is in my own possession.
In the other works of Vieta, published at Leyden in 1646,

b}^ Schooten, as mentioned alx)ve, there are several other

pieces of trigonometry; some of which, on account of their

originality and importance, are very deserving of particular

notice in this place. And first, the very excellent theorems,
liere first of all given by our author, relating to angular sec-

tions, the geometrical demonstrations of which are supplied

by that ingenious geometrician, Alexander Anderson, then

professor of mathematics at Paris, but a native of Aberdeen,
and cousin-german to Mr. David Anderson, of Finzaugh,
whose daughter was the mother of the celebrated Mr. James

Gregory, inventor of the Gregorian telescope. We find here,

theorems for the chords, and consequently sines, of the sums

and diiterences of arcs
;
and for the chords of arcs that are in

arithmetical progression, namely, that the 1st or least chord

is to the 2d, as any one after the 1st is to the sum of the two

next less and greater : for example, as the 2d to the isum of

the 1st and 3d, and as the 3d to the sum of the 2d and 4th,

and as the 4th to the sum of the 3d and 5th, &c
;
so that the

1st and 2d being given, all the rest are found from them by
one subtraction, and one proportion for each, in which tlic

1st and 2d teruis are constantly the same. Next are given
theorems for the chords of any multiples of a given arc or

angle, as also the chords of their supijlements to a semicircle,

which are similar to the sines and cosines of the multiples of

given angles ;
and the conclusions from them are expressed
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Arcs
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then the series of the chords and supplemental chords of the

multiple arcs will be thus
;
where the values are alternately

Arcs
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are given of three different sections, namely, for 3, 5, and

7 equal parts, the forms of which are respectively these,

3c c^ . . , . = g
5c 5c^ + & . . rr ^
7c llc^ + c' c^ rr if

where g is the cliord of the given arc or angle, and c the re-

quired chord of the 3d, 5tii, or 7th part of it. And it is

shown, geometrically, that tiie first of these equations has 2

real positive roots, the second 3, and the last 4; also, from

the same principles, the rekitions of these roots are pointed
out.

The method br.cn anUvrixcd for constructing the canon of

sines, from the foregoing theorems is t;,us : By dividing the

radius in extremc-and-niean ratio, is obtained the sine of 1&

degrees; this quinquisected, gives the sine of 3 36'. Again,

by trisecting the arc of 60', there is obtained the sine of 20;
this again trisecLcd gives that cjf 6"^ 40'; and this bisected gives

that of 3 20' : Then, l)y the theorem for the difference of two

arcs, there will be fou.nd the sine of 16', the dilTerence be-

tv/cen 3 3G' and 3 20': Lastly, !)y four successive bisections^

will at length be found th.e sines of 8', 4', '/, and l'. This

last being found, the sines of its uudtiples, and again of the

multiples of thffse multiples, &c, tliroughout the quadrant,
are to be taken by tlie proper theorems before laid down. ^

And the same subject is still favtlicr piysned and explained,
in the tract contaiiiiiig the iinswer given by Vieta, to the

problem pro})nsed to the Avhole world by Adrianus Romanus.

In the samec(jil''ctioii of Vieta's works, iVom page 400 to 432,

Is given a complete treatise on practical trigonometry, con-

taining rules for rc^olvin:;:, all the cases of jjiane and spherical

triangles, by tlie Canon MalJicmaticus, or table of sines, tan-

gents and secants.

The next authors whose labours in this way have been

printed, are Rheticus, Otlio, and Vitiscus : to all of whom we,

owe very great improvements in trigonometry. George
Joachim RI:cticus, professor of mathematics in tlie univer-

iity of Witiemberg. and sometime jiupil to Copernicus, died
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in 1576, in .the 60th year of his age. He conceived, and

executed, the great design of computing the triangular

canon for every 10 seconds of the quadrant, to the radius

1000000000000000, consisting of 1, followed by 15 ciphers.

The series of sines which Rheticus computed to this radius,

for every 10 seconds, and for every single second in the first

and last degree ofthe quad rant, was published in folio at Franc-

fort, 1613, by Pitiscus, who himself added a few of the first

sines computed to the radius 10000000000000000000000,

But the large work, or whole trigonometrical canon com-

puted by Rheticus, was pubhshed in 1596 by Valentine Otho,
mathematician to the Electoral Prince Palatine. This vast

work contains all the three series for the whole canon of

right-angled triangles (being similar to the sines, tangents
and secants, by which names I shall call them), Avith all the

differences of the numbers, to the radius 10000000000.

Prefixed to these tables, are several books on their con-

struction and use, in plane and spherical trigonometry, &c.

Of these, the first three are by Rheticus himself; namely,
book the 1st, containing the demonstrations of 9 lemmas,

concerning the properties of certain lines drawn in and about

circles : the 2d book contains 10 propositions, relating to the

sines and cosines of arcs, together with those of their sums

and differences, their halves and doubles, kc. The 3d book

teaches, in 13 propositions, the construction ofthe canon to

the radius 1000000000000000. By some ofthe common pro-

perties of geometry, having determined the sines of a few

principal arcs, as 30, 36, &c, in the first proposition, by
continual bisections, he finds the sines of various other arcs,

down to 45 minutes. Then, in the 2d proposition, by the

theorems for the sums and differences of arcs, he finds all the

sines and cosines, up to 90 degrees, in a series of arcs differ-

ing by 1 30'. And, in the 3d proposition, by the continual

addition of 45', he obtains all the sines and cosines in the series

whose common difference is 45'. In the 4th proposition, be-

ginning wath 45', and continually bisecting, he finds the sines

and cosines of the series of half arcs, tijl he arrives at the arc

U 2
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of 14^'" 19", the sine of which is found to be 1, and its

cosine 999999999999999. In the 5th proposition are com-

puted the sine and cosine of 30", or half a minute. In the

6th and 7th propositions are computed the sines and cosines

for every minute, from l' to 45', as well as of many larger

arcs. The 8th proposition extends the conijiutation for single

minutes much farther. In propositions 9 aiid 10 are com-

j^tcd the tangents and secants for ^11 arcs in tlie scries whose

common difference is 45'
;
and these are deduced from the

sines of the same arcs by one proportion for each. In the

remaining three propositions, 11, 12, 13, are computed the

tangents and secants for several small angles. And from all

these primary sines, tangents, and secants, the wiiole canon

is deduced and completed.
The remaining books in thii work art; by the editor Otho j

namely, a treatise, in one book, on right-angled plane tri-

angles, tlie cases of which are resolved by the tables: then

right-angled spherical trigonometry, in four books; next ob-

lique spherical trigonometr}', in five books; and lastly several

other books, containing various spherical })roblems.

Next after the above are placed the tables themselves, con-

taining the sines, tar.gcnts, and secants, for every 10 seconds

in the quadrant, with all the differences annexed to each, in

a smaller charactei'. The numbers however are not called

sines, tangents, and secants, but, like Vieta's, before de-

scribed, they are considered as representing the sides of

right-angled triangle.-, and are titled accordingly. They are

also, in like manner, divided into three series, namely, ac-

cording as the radius, or constant side of the triangle, is made

the hypotenuse, or the greater leg, or the less leg of the tri-

angle. When the hypotenuse is made the constant radius

10000000000, the two columns of this case, or series, are

called the perpendicular and base, which are our sine and

cosine; when the greater le^ is the constant radius, the two

columns on this series are titled hypotenuse and periiciidicu-

lar, which are our secant and tangent; and when the less leg

\ constant, the two columns in this case are called hypotcnu'iC
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and base; which are our cosecant and cotangent. After this

Jarge canon, is printed another smaller table, Avhicli is said to

be the two columns of the third series, or cosecants and co-

tangents, with their differences, but to 3 places of figures

less, or to the radius 10000000. But I cannot discover the

reason for adding this less table, even if it were correct, which

is very far from being the case, the numbers being uniformly

erroneous, and different from the former through the greatest

part of the table.

Towards the close of the 16th century, many persons
wrote on the subject of trigonometry, and the construction

of the triangular canon. But, their writings being seldom

printed till many years afterwards, it is not easy to assign
their order in respect of time. I shall therefore mention but

a few of the principal authors, and that without pretending
to any great precision on the score of chronological prece-
dence.

In 1591 Philip Lansberg first published his " Geometria

Triangulorum," in four books, Avith the canon of sines, tan-

gents, and secants; a brief, but very elegant work; the whole

being clearly explained : and it is perhaps the first set of

tables titled with those words. The sines, tangents, and

secants of the arcs to 43 degrees, with tiiosc of their comple-

ments, are each placed in adjacent columns, in a very com-

modious manner, continued forwards and downwards to 45

degrees, and then returning backwards and upwards to 90

degrees: the radius is 10000000, and a specimen of the first

page of the table is as follows :

1

2

3

4

5
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Of this work, the first book treats of the magnitude and

relations of such Hnes as are considered in and about the

circle, as the chords, sines, tangents, and secants. In the

second book is delivered the construction of the trigonome-
trical canon, by means of tlie properties laid down in the

first book : After which follows the canon itself. And in the

third and fourth books is shown the application of the table,

in the resohuion of plane and spherical triangles. Lansberg,
who was born in Zealand 1561, was many years a minister of

the gospel, and died at Middleburg in 1632.

The trigonometry of Bartholomew Pitiscus was first pub-
lished at Francfort in the year 1599. This is a very com-

plete work; containing, besides the triangular canon, Avith

its construction and use in resolving triangles, the applica-

tion of trigonometry to problems of surveying, altimetry,

architecture, geography, dialling, and astronomy. The
construction of the canon is very clearly described : And, in

the third edition of the book, in the year 1612, he boasts to

have added, in this part, arithmetical rules for finding the

chords of the 3d, 5th, and other uneven parts of an arc, from

the chord of that arc being given ; saying, that it had been

heretofore thought impossible to give such rules : But, after

all, those boasted methods are only the application of the

double rule of False-Position to the then known rules for

finding the chords of muitiple arcs; namely, making the

supposition of some number for the required chord of a sub-

multiple of any given arc, then from this assumed number

computing what will be the chord of its multiple arc, which

is to be compared with that of the given arc; then the same

operation is performed with another supposition; and so on,

as in the double rule of position. The canon contains the

sine, tangent, and secant, for every minute of the quadrant,

in some parts to 7 places of figures, in otliers to 8; as also the

diffc'.rences for every 10 seconds. The sines, tangents, and

secants, are also given for every 10 seconds in the first and

last degree of the quadrant, for every 2 seconds in the hrst

and last 10 minutes, and for every single second in the first

and last minute. In this table, the sines, tangents, and se-
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cants, are continued downwards on the left-band pages, as

far as to 45 degrees, and then returned upwards on the right-

hand pages, so that the complements are always on the same

line in the opposite or facing pages.
The mathematical works of Christopher Clavius (a Ger-

man Jesuit, who was born at Bamberg in 1537) in five large

folio volumes, were printed at Moguntia, or Mentz, in 1612,

the year in which the author died, at the age of 75. In the

first volume we find a very ample and circumstantial treatise

on trigonometr}', with Regiomontanus's canon of sines, for

every minute, as also canons of tangents and secants, each in

a separate table, to the radius 10000000, and in a form con-

tinued forwards all the way up to 90 degrees. Tlie expla-

nation of the construction of the tables is very complete, and

is chiefly extracted from Ptolemy, Purbach, and Regiomon-
tanus. The sines have the differences set down for each

second, that is, the quotients arising from the differences of

the sines divided by 60.

About the year 1600, Ludolph van Collen, or a Ceulen, a

respectable Dutch mathematician, wrote his book '* de cir-

culo et adscriptis," in which he treats fully and ably of the

properties of lines drawn in and about the circle, and especi-

ally of chords or subtenses, with the construction of the canon

of sines. Tlie geometrical properties from which these lines

are computed, are the same as those used by former writers;

but his mode of computing and expressing them is different

from theirs; for they actually extracted all the roots, &.c, at

every step, or single operation, in decimal numbers
;
but he

retained the radical expressions to the last, making them how-

ever always as simple as possible : thus, for instance, he de-

termines the sides of the po-

lygons of 4, 8, 16, 32, &c,

sides, inscribed in the circle

whose radius is 1, to be as

in the table here annexed :

where the point before any

figure, as V .2 signifies
the

Nu. of

Sides.
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root of all that follows it
; so the last line is in our notation

the same as^ 2- ^^'l + \/ 2-V2. And as the perfect

management of such surds was then not generally known,
he added a very neat tract on that subject, to facilitate the

computations. These, together with other dissertations on

similar geometrical matters, were translated from the Dutch

language, into Latin, by Willebrord Snell, and published at

(Lugd. Batav.) Leyden in 1G19. It was in this work that

Ludolph determined the ratio of the diameter to the circum-

ference of the circle, to 36 figures, showing that, if the

diameter be 1, the circumference will be

greater than 3-14159 2G535 89793 23846 26433 83279 50288,
but less than 3-14159 26535 89793 23846 26433 83279 50289,
which ratio was, by his order, in imitation of Archimedes,

engraven on his tomb-stone, as is witnessed by the said Snell,

pa. 54, 55,
''

Cyclometricus," published at Leyden two years

after, in which he treats the same subject in a similar manner,

recomputing and verifying Ludolph's numbers. And, in the

same book, he also gives a variety of geometrical approxi-

mations, or mechanical solutions, to determine very nearly

the lengths of arcs, and the areas of sectors and segments of

circles.

Besides the **
Cyclometricus," and another geometrical

work (Apollonius Battavus) published in 1608, the same

Snell wrote also four others " docrriii triangulorum ca-

nonicae," in which is contained the canon of secants, and in

which the construction of sines, tangents, and secants, toge-
ther with the dimension or calculation of triangles, both plane
and spherical, are briefly and clearly treated. After the au-

thor's death, this work was published in 8vo, at Leyden,

3627, by Martinus Hortensius, who added to it a tract on

surveying and spherical problems. Willebrord Snell was

born in 1591 at Royen, and died in 1626, being only 35 years

of age. He was professor of mathematics in the university

of Leyden, as was also his father Rodolj)h Snell.

Also in 1627, Francis van Schooten published, at Amster-
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dam, in a small neat form, tables of sines, tangents,, and se-

cants, for every minute of the quadrant, to 7 places of figures,

the radius being 10000000; together with their use in plane

trigonometry. These tables have a great character for their

accuracy, being declared by the author to be without one

single error. This hov/ever must not be understood of the

last figure of the numbers, which I find are very often errone-

ous, sometimes in excess and sometimes in defect, by not

being alwavs set down to the nearest unit. Schooten died

in 1659. while the second volume of his second edition of

Descartes* geometry was in the press. He was also author

of several other valuable works in geometry, and other

branches of the mathematics.

The foregoing are the principal writers on the tables of

sines, tangents, and secants, before the invention of loga-

rithms, which happened about this time, namel}', soon after

the year 1600. Tables of the natural numbers Avere now all

completed, and the methods of computing them nearl}' per-

fected : And therefore, before entering on the discovery and

construction of logarithms, I shall stop here awhile to give a

summar}^ of the manner in which the said natural sines, tan-

gents, and secants, were actually computed, after having been

gradualhamprovedfrom Hipparchus, IMenelaus, and Ptolemy,
who used only the chords, down to the beginning of the 11th

century, when sines, tangents, secants, and versed sines were

in use, and when the method hitherto employed had received

its utmost improvement. In this explanation, we may here

first enumerate the theorems by which the calculations were

made, and then describe the application of them to the com-

putation itself.

Theorem 1. The square of the diameter of a circle, is

equal to the sum of the squares of the chord of an arc, and

of the chord of its supplement to a semicircle. 2. The rect-

angle under the two diagonals of any quadrilateral inscribed

in a circle, is equal to the sum of the two rectangles under

the opposite sides. 3. The sum of the squares of the sine

and cosine, hitherto called the sine of the complement, is equal
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to the square of the radius. 4. The difference between the

sines of two arcs that are equally distant froTii 60 degrees, or

I-
of the whole circumference, the one as much greater as the

other is less, is equal to the sine of half the difference of those

arcs, or of tlie difference between either arc and the said arc

of 60 degrees. ,5. The sum of the cosine and versed sine, is

equal to the radius. 6. The sum of the squares of the sine

and versed sine, is equal to the square of the chord, or to the

square of double the sine of half the arc. 7. The sine is a

mean proportional between half the radius and the versed

sine of double the arc. 8. A mean pro})ortional between the

versed sine and half the radius, is equal to the sine of half

the arc, 9. As radius is to the sine, so is twice the cosine to

the sine of twice the arc. 10. As the chord of an arc, is to

the sum of the chords of the sinf^le and double arc, so is the

difference of those chords, to the chord of thrice the arc.

11. As the chord of an arc, is to the sum of the chords of

twice and thrice the ai'c, so is the difference of those chords,
to the chord of five times the arc. 12. And in general, as the

chord of an arc, is to the sum of the chords of n times and

71 -\- I times the arc, so is the difference of those chords, to

t!ic chord of 2?z + 1 times the arc. 13. The sine of the sum
of two arcs, is equal to the sum of the products of tiie sine of

each multiplied by the cosine of the other, and divided by
the radius. 14. The sine of the difference of two arcs, is

equal to the diiFercnce of the said two products divided by
radius. 15. The cosine of the sum of two arcs, is equal to

the difference between the products of tlieir sines and of their

cosines, divided by radius. 16. The cosine of the difference

of two arcs, is equal to the sum of the said })roducts divided

bv radius. 17. A small arc is equal to its chord or sine,

nearly. IS. As cosine is to sine, so is radius to tangent.

['.). Jladius is a mean proportional between the tangent and

cotangent. 20. Radius is a mean projiortional
between the

secant and cosine. 21. Jiaduis is a mean proj)nrtionul be-

tween the sine and cosecant. 22. Half the diluTcnce be-

tiveen the tangenl and cotangent of an arc, ii cquul to tljc
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tangent of the difference between the arc and its complement.

Or, the sum arising from the addition of double the tangent
of an arc with the tangent of half its complement, is equal to

the tangent of the sum of that arc and the said half comple-
ment. 23. The square of the secant of an arc, is equal to

the sum of the squares of the radius and tangent. 24. The
secant of an arc, is equal to the sum of its tangent and the

tangent of half its complement. Or, the secant of the differ-

ence between an arc and its complement, is equal to the tan-

gent of the said difference added to the tangent of the less

arc. 25. The secant of an arc, is equal to the difference be-

tween the tangent of that arc and the tangent of the arc

added to half its complement. Or, the secant of the diH'er-

ence between an arc and its complement, is equal to the dif-

ference between the tangent of the said difference and the

tangent of the greater arc.

From some of these 25 theorems, extracted from the writers

before mentioned, and a few propositions of Euclid's ele-

ments, they compiled the whole table of sines, tangents, and

secants, nearly in the following manner. By the eiement;>

were computed the sides of a few of the regular figures in-

scribed in a circle, which were the chords of such parts of tliC

whole circumference as are expressed by the number of sides,

and therefore the halves of those chords the sines of the halves

of the arcs. So, if the radius be lOCOOOOO, the sides of the

follov,-ing figures will give the annexed chords and sines.

The figure.
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complements by the 3d ; then the sines of the halves of these,

and of their complements, by the same theorems
;
and so on,

alternately, of the halves and complements, till they arrived

at an arc which is nearly equal to its sine. Thus, beginning
with the above arc of 1 2 degrees, and its sine, the halves were

obtained as follows :

The halves.
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gives 2909 for the sine of l' ;
which may be doabled, tripled,

&e, for the sines of 2', 3', &c, up to 45'.

Then, from all the foregoing primary sines, by the theorems

for halving, doubhng, or tripling, and by those for the sums

and differences, the rest of the sines are deduced, to complete
the quadrant.
But having thus determined the sines and cosines of tlte

first 30" of the quadrant, that is, the sines of the first and last

30, those of the intermediate 30 are, by theor. 4, found by
one single subtraction for each sine.

The sines of the whole quadrant being thus completed, the

tangents are found by theor. IS, 19, 22, namely, for one half

of the quadrant by the 18th and 19th, and the other half, by
one single addition or subtraction for each, by the 22d theorem.

And lastly, by theor. 24 and 25, the secants are deduced from

the tangents, by addition and subtraction only.

Among the various means used for constructing the canon

of sines, tangents, and secants, the writers above enumerated

seem not to have been possessed of the method of difi'erences,

so profitably used since, and first of all I believe b}- 13riggs,

in computing his trigonometrical canon and his logarithms,
as we shall see hereafter, when we come to describe those

works. They took however the successive differences of the

numbers, after they were computed, to verily or prove the

truth of them; and if found erroneous, by any irregularity

in the last differences, from thence they had a metiiod of cor-

recting the original numbers themselves. At least, this me-

thod is used by Pitiscus, Trig. lib. 2, where the differences

are extended to the third order. In page 44 of the same

book also is described, for the first time that I know of, tiie

common notation of decimal fractions, as now used. And this

same notation was afterwards described and used by baron

Napier, in positio 4 and 5 of his posthumous works, on the

construction of logarithms, published by his son in the year
1619. But the decimal fractions themselves may be consi-

dered as having been introduced by Regiomontanus, by his

degimal division of the radius, 6cc, of the circle; and from
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that time gradually brought into use; but continued long to

be denoted after the manner of vulgar fractions, by a line

drawn between the numerator and denominator, which last

however was soon omitted, and only the numerator set down,
with the line below it: thus, it was first 3l^VV, then 3li4. ;

afterwards, omitting the line, it became 31", and lastly 3I3 5,

or 3J.35, or 3r35: as may be traced in the works of Vieta,

and others since his timcj gradually into the present century.

Having often heard it remarked, that the word sine, or in

Latin and French sinaSy is of doubtful origin; and as the va-

rious accounts which I have seen of its derivation are very
different from one another, it may not be amiss here to em-

ploy a few lines on this matter. Some authors say, this is an

Arabic word, others tliat it is the single Latin word sinus ;

and in Montucla's *' Ilistoirc des Mathcmatiqucs" it is con-

jectured to be an abbreviation of two Latin words. The

conjecture is thus expressed by the ingenious and learned

author of that excellent histor}', at p. xxxiii, among the addi-

tions and corrections of the first volume: " A I'occasion des

sinus dont on parle dans cette page, comme d'une invention

des Arabes, voici une etymologie de ce nom, tout-a-fait heu-

reuse et vraisemblahlc. Je ladois a M. Godin, de I'Academic

Royale des Sciences, Directeur de I'Ecolc de Marine de Cadix.

Lcs sinus sont, comme I'oii scait, des moities de cords; et les

cordes en Latin se nomment ijiscripttv. Les sinus sont done

semisscs inscriptarum, ce que })robabIement on ecrivit ainsi

pour abreger, S. Ins. Dela en.suitc s'cst fait par abus le mot

de sinus." Now, ingenious as this conjecture is, there ap-

pears to be little or no probabiUty for the truth of it. For,

in t!ie tirst place, it is not in tlic least supported by quotations
from any of the more early books, to show that it ever was the

practice to write or ]irint the Avords tlius, .5'. Iiis. upon which

t!ie conjecture is founded. Again, it is said tlie chords are call-

ed in Latin itiscriptce ; and it is true that they soinetiu)es are so:

but I think they are more frequently called .subtnurc, and the

sines scviisscs sub'cnsariwi of tlie double arcs, vliicii will not

abbreviate itito the word si7xus. This conjecture the learned
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author has relinquished in the new edition of his history. But

it may be said, what reason have we to suppose that this word

is either a Latin word, or the abbreviation of any Latin words

whatever? and that it seems but proper to seek for the ety-

mology of wort/^ in the language of the inventors of the things.

For which reason it is, that we find the two other words,

iangens and secans, are Latin, as they were invented and used

by authors who wrote in that language. But the sines are

acknowledged to have been invented and introduced by the

Arabians, and thence by analogy it would seem probable that

this is a word of their language, and from them adopted, to-

gether with the use of it, by the Europeans. And indeed

Lansberg, in the second page of his trigonometry above-

mentioned, expressly sa}^, that it is Arabic : His words are.

Vox sinus Arabica est, et proinde barbara; sed cum longo usu

approbata sit, et commodior non suppciat, nequaquam repudi-

anda est : faciles enim in verbis nos esse oportet, ciim de rebus

coiwenit. And Vieta sa3^s something to the same purport, in

page 9 of his *' Universalium Inspectionum ad Canonem
Mathematicum Liber:" His words are. Breve sinus vocabulum,

dim sit artis, Saracenis prcvsertim quam fayniliare, non est ab

artifcibus explodaidum, ad laterum semissium inscriptorum

deyiotationem, &fr.

Guarinus also is of the same opinion : in his *' Euclidcs

Adauctus," &c. tract xx. pa. 307, he says, Sinus vero est

7iomen Arabicum usurpatuni in hanc signijicationcm a mathe-

viaticis; though he was av.-are that a Latin origin was as-

cribed to it by Vitalis, for he immediately adds, Licet Vitalir,

iyi suo Lexico Mathematieo ex eo velit sinum appeUatum, quod
chiudat curvitatan arcus.

Loner before I either saw or heard of anv conjecture, or

observation, coticerniog the etymology of the word sinus, I

remember that I imagined it to be taken from the same Latin

ward, signifying breast or bosom, and that our sine was so

called allegoricallv. I had observed, that several of the terms

in trigonometry were derived from a bow to shoot with, and

its appendages; as arcus the bov,\ chorda the strinc^, and
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sagitta the arrow, by which name the versed snie, which re-

presents it, was sometimes called; also, that the tan,fens was

so called from its office, being a line touching the circle, and

secans from its cutting the same : I therefore imagined that the

sinus was so called, either from its resemblance to the breast

or bosom, or from its being a line drav/n Avithin the bosom

(sinus) of the arc, or from its being that part of the string

(chorda) of a bow (arcus) which is drawn near the breast

(sinus) in the act of shooting. And perhaps Vitalis's defini-

tion, above-quoted, has some allusion to the siimc similitude.

Also Vieta seems to allude to the same thing, in calling

sinus an allegorical word, in page 4 17 of his works, as pub-
lished by Schooten, where, Avith his usual judgment and

precision, he treats of the propriety of the terms used in

trigonometry for certain lines drawn in and about the circle
;

of which, as it very well deserves, I shall here extract the

principal part, to show the opinion and arguments of so great
a man on those names. " Arabcs autem semisscs inscriptas

duplo, numeris praesertim a>stimatas, vocaverunt allegorice

Sinus, atque ideo ipsam semi-diametrum, qua) maxima est

scmissium inscriptarum, Sinum Totum. Et dc iis sua me-

thodo canones exivenint qui circumferuntur, supputante

praesertim Regiomontano bene juste et accurate, in iis ctiam

particulis qualium semidiameter adsumitur 10,000,000.
*' Ex canonibus deinde sinuum derivaverunt recentiorci

canonem semissium circumscriptarum, quem dixere Foecun-

dum; et canonem edactarum e centro, quem dixere Foccun-

dissimum et Benejicum, hypotenusis addictum. Atque adecN

?cmisses circumscriptas, numeris prassertiin a;stimatas, voca-

verunt Faecundo.^, Sinus nunierdsve videlicet; quanquam nihil

vctat Fd'cundi nomen substantive accipi. Ilypotenusas autem

flenehcas, vel etiam simpliciter Hypotenusas: quoniam hy-

[)0tenusa in ])rima sevie sinus totius nomen retinet. Itaquc

iic novitate verborum res adumbretur, et alioqui sua artihci-

bus, eo nomine dibita, praeripiatur gloria, jirffposita in

Canone Malhematico canonicis numeris inscriplio, candide

admonet primam sericm esse Canonem Sinunni. hi secund.i
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vero, partem canonis foecundi, partem canotiis foecundissimi,

cotineri. In tertia, reliquam.
*' Sane prseter inscriptas et circumscriptas, circulum etiam

adficiunt aliae lineae rectae, velut Incidentes, Tangentes, et

Secantes. Verum illae voces substantivae sunt, non periphe-
riarum relativae. Ac secare quidem circulum linea recta

tunc intelligitur, cum in duobus punctis secat. Itaque non

loquuntur bene geometrice, qui eductas e centro ad metas cir-

cumscriptarum vocant secantes improprie, cum secantes et

tangentes ad certos angulos vel peripherias referunt. Imm6
vero artem confundunt, cum his vocibus necesse habeat uti

geometra abs relatione.
" Quare si quibus arrideat Arabum metaphora; quae quidem

aut omnino retinenda videtur, aut omnino explodenda ; ut

semisses inscriptas, Arabes vocant sinus
;
sic semisses circum-

scriptae, vocentur Prosinus Amsinusvej et eductge e centro

Transinuosae. Sin allegoria displiceat, geometrica sane in-

scriptarum et circumscriptarum nomina retineantur. Et cum
eductae e centro ad metas circumscriptarum, non habeant

hactenus nomen certum neque elegans, voceantur sane pro-

semidiametri, quasi protensae semidiametri, se habentes ad

suas circumscriptas, sicut semidiametri ad inscriptas."

Against the Arabic origin however of tliis word CsinusJ

may be urged its being varied according to the fourth de-

clension of Latin nouns, like Dianus; and that if it were an

Arabic word latinized, it would have been ranked under

either the first, second, or third declension, as is usual in such

adopted words.

So that, upon the whole, it will perhaps rather seem pro-

bable, that the term sinus is the Latin Avord answering to the

name by which the Saracens called that line, and not their

word itself. And this conjecture seems to be rendered still

more probable by some expressions in pa. 4 and 5 of Otho'i
" Preface to Rheticus's Canon," where it is not only said,

that the Saracens called the half-chord of double t\\Qdirc sinus
y

but also that they called the part of the radius lying between

the sine and the arc sinus lersus, vel sagitta, which are evi-

VOL. I. X



506 HISTORF OF TRACT 20.

dntly Latin words, and seem to be intended for the Latin

translations of the names by which the Arabians called these

lines, or the numbers expressing the lengths of them.

And this conjecture has been confirmed and realised, by a

reference to Golius's Lexicon of the Arabic and Latin lan-

guages. In consequence I find that the Arabic and Latin

writers on trigonometry do both of them use those words in

the same allegorical sense, the latter being the Latin trans-

lations of the former, and not the Arabic words corrupted.

Thus, the true Arabic word to denote the trigonometrical

sitie is L-^a:^, pronounced Jeib, (reading the vowels in the

French manner), meaning sinus indusii, vcstisque, the bosom

part of the garment; the versed sine is *^j, Sehmi, which

hsagiita, the arrow; the arc is rvwr^, which is arcus, the arcj

and the chord is
>J^, Vit)\ that is chorda, the chord.

TRACT XX.

HISTORY OF LOGARITHMS.

The trigonometrical canon, of natural sines, tangents, and

secants, being now brought to a considerable degree of per-

fection; the great length and accuracy of the numbers, toge-
ther with the increasing delicacy and number of astronomical

problems, and splicrical triangles, to the solution of which

the canon was applied, urged many persons, conversant in

those matters, to endeavour to discover some means of dimi-

nishing the great labour and time, requisite for so many mul-

tiplications and divisions, in such huge numbers as the tables

then consisted of. And their chief aim was, to reduce the

multi{)lications and divisions to additions and subtractions, as

nmcli as possible.

For this purpose, Nichohis Ravnicr Urstis Dithmarsus in-

vented an ingenious method, which serves for one case in the
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sines, namely, when radius is the first term in the proportion,
and the sines of two arcs are the second and third terms

; for

he showed, that the fourth term, or sine, would be found by
only taking half the sum or difference of the sines of two other

arcs, which should be the sura and difference of the less of the

two former given arcs, and the complement of the greater.

This is no more, in effect, than the following well-known

theorem in trigonometry : as half radius is to the sine of one

arc, so is the sine of another arc, to the cosine of the differ-

ence minus the cosine of the sum of the said arcs. The au-

thor published this ingenious device, in 1588, in his " Fun-

damentum Astronomise." And three or four years afterwards"

it was greatly improved by Clavius, who adapted it to all

proportions in the solution of spherical triangles, for sines,

tangents, secants, versed sines, &c; and that whether radius

be in the proportion or not. All which he explains veiy fully

in iem. 53, lib. 1, of his treatise on the Astrolabe. See more

on this subject in Longomont. Astron. Danica. pa. 7, et seq.

This method, though ingenious enough, depends not on any
abstract property of numbers, but only on the relations of

certain lines, drawn in and about the circle
; for which rea-

son it was rather limited, and sometimes attended with trouble

in the application.

After perhaps various other contrivances, incessant endea-

vours at length produced the happy invention of logarithms,
which are of direct and universal application to all numbers

abstractedly considered, being derived from a property inhe-

rent in numbers themselves. This property maybe considered,

either as the relation between a geometrical series of terms

and a corresponding arithmetical one, or as the relation be-

tween ratios and the measures of ratios, which comes to much
the same thing, having been conceived in one of these ways

by some of the writers on this subject, and in the other by
the rest of them, as well as in both ways at different times by
the same writer. A succinct idea of this property, and of the

probable reflections made on it by the first writers on loga-

rithms, may be to the following effect:

X 2
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The learned calculators, about the close of the IGth, and

beginning of the 17th century, finding the operations of mul-

tiplication and division by very long numbers, of 7 or 8 places

of figures, wliieh they had frequently occasion to perform, in

resolving problems relating to geograpliy and astronomy, to

be exceedingly troublesome, set themselves to consider,

whether it was not possible to find some method of lessening

this labour, by substituting other easier operations in their

stead. In pursuit of this object, they reflected, that since,

in every multiplication by a whole number, the ratio, or pro-

portion, of the product to the multiplicand, is the same as the

ratio of the multiplier to unity, it will follow that the ratio

of the product to unity (which, according to Euclid's defini-

tion of compound ratios, is compounded of the ratios of the

said product to the multiplicand and of the multiplicand to

unity), must be equal to the sum of the two ratios of the mul-

tiplier to imity and of the multiplicand to unity. Conse-

quently, if they could find a set of artiticial numbers that

should be the representatives of, or should he proportional to,

the ratios of all sorts of ruimbers to unity, the addition of the

two artificial numbers that should represent the ratios of any

multiplier and nuiltiplic:and to unity, would answer to the

multiplication of the said nuiltiplicand by tljc said multiplier,

or the sum arising from the addition of the said representative

numbers, would be the representative munber of the ratio of

the product to unity; and consecpientlv, the natural number

to which it should be found, in the table i)f the said artificial

i)r re[)r>u-.sentative nnmbi;rs, that the said sum belonged, would

he tlie produft of the ^aid mnlliplicaiid and multiplier.

Having settled this piinci[)le, us the foundation of their

vvished-for method of abridging the labour of calculations,

tliey resolved to couiijOsc a table of such aitificial numbers,

ur numbers t!iat should be representatives of, or ])roportional

tu, the ratios of all the common or natural numbers to unity.

The fir^t observation that naturally occurred to them in the

pursuit of this scheme was, that whatever artihcial numbers

should be chosiMi to represent the ratios of other whole nuin-
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bers to unity, the ratio of equality, or of unity to unity, must

be represented by ; because that ratio has properly no mag-
nitude, since, when it is added to, or subtracted from, any
other ratio, it neither increases nor diminishes it.

The second obser\'ation that occurred to them was, that

any number whatever might be chosen at pleasure for the

representative of the ratio of any given natural number to

unity ; but that, when once such choice was made, all the

other representative numbers would be thereby determined,
because they must be greater or less than that first represen-

tative number, in the same proportions in which the ratios

represented by them, or the ratios of the corresponding na-

tural numbers to unity, were greater or less than the ratio of

the said given natural number to unity. Thus, either 1
, or

2, or 3, &c, might be chosen for the representative of the

ratio of 10 to 1. But, if 1 be chosen for it, the representa-
tives of the ratios of 100 to 1 and 1000 to 1, which are double

and triple of the ratio of 10 to 1, must be 2 and 3, and can-

not be any other numbers; and, if 2 be chosen for it, the re-

presentatives of the ratios of 100 to 1 and 1000 to 1, will be

4 and 6, and cannot he any other numbers; and, if 3 be cho-

sen for it, the representatives of the ratios of 100 to 1 and

1000 to 1, will be 6 and 9, and cannot be any other numbers;
and so on.

The third observation that occurred to tliem Avas, that, as

these artificial numbers were representatives of, or propor-
tional to, ratios of the natural numbers to unity, they must

be expressions of the numbers of some smaller equal ratios

that are contained in the said ratios. Thus, if 1 be taken for

the representative of the ratio of 10 to 1, then 3, which is the

representative of the ratio of 1000 to 1, v.ill express the num-

ber of ratios of 10 to 1 that are contained in the ratio of 1000

to 1. And if, instead of 1, we make 10,000,000, or ten mil-

lions, the representative of the ratio of 10 to 1, (in which case

I will be the representativ'e of a very small ratio, ovratiuncula,

which is only the ten-millionth part of the ratio of 10 to 1,

or will be the representative of the 10,000,000th root of 10,
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or of the first or smallest of 9,999,999 mean proportionals

interposed between 1 and 10), the representative of the ratio

of 1000 to 1, which will in this case be 30,000,000, will ex-

press the number of those ratiuncul^e, or small ratios of the

10,000,000th root of 10 to I, which are contained in the said

ratio of 1000 to 1. And the like may be shown of the repre-

sentative of the ratio of any other number to unity. And

therefore they thought these artificial imnibers, which thus

represent, or are proportional to, the magnitudes of the ratios

of the natural numbers to unity, might not improperly be

called the Logarithms of those ratios, since they express the

numbers of smaller ratios of which they are composed. And

then, for the sake of bre\nty, they called them the Logarithms

of the said natural numbers themselves, M-hich are the antece-

dents of the said ratios to unity, of which they are in truth

the representatives.

The foregoing method of considering this property leads

to much the same conclusions as the other way, in which the

relations between a geometrical series of terms, and their ex-

ponents, or the terms of an arithmetical scries, are contem-

plated. In this latter way, it readily occurred that the addi-

tion of the terms of the arithmetical series corresponded to

the multiplication of tlie terms of the geometrical series; and

that the arithmetical would therefore form a set of artificial

numbers, %vl]ich, when arranged in tables, with their geome-

tricals, would answer the purposes desired, as has been ex-

plained above.

From this property, by assuming four quantities, two of

them as two terms in a geometrical series, and the others as

the two corresponding terms of the arithmcticals, or artificials,

or logarithms, it is evident that all the other terms of both

the two series may thence be generated. And therefore there

may be as many sets or scales of logarithms as we please,

since they depend entirely on the arbitrary assumption of the

first two arithmcticals. And all possible natural numbers

may bo supposed to coincide with some of tlie terms of any

geometrical progrc-sion whatever, the logiuithms or arith-
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meticals determining which of the terms in that progression

they are.

It was proper however that the arithmetical series should

be so assumed, as that the term in it might answer to the

term I in the geometricals ;
otherwise the sum of the loga-

rithms of any two numbers would be always to be diminished

by the logarithm of 1, to give the logarithm of the product
of those numbers : for which reason, making the logarithm
of 1

,
and assuming any quantity whatever for the value of the

logarithm of any one number, the logarithms of all other num-

bers were thence to be derived. And hence, like as the mul-

tiplication of two numbers is effected by barely adding their

logarithms, so division is performed by subtracting the loga-
rithm of the one from that of the other, raising ol" powers b^

multiplying the logarithm of the given number by the index

of the power, and extraction of roots by dividing the loga-
rithm by the index of the root. It is also evident that, in all

scales or systems of logarithms, the logarithm of will be in-

finite
; namely, infinitely negative if the logarithms increase

with the natural numbers, but infinitely positive if the

contrary ;
because that, while the geometrical series must

decrease through infinite divisions by the ratio of the progres-

sion, before the quotient come to or nothing; the logarithms,

or arithmeticals, will in like manner undergo the correspond-

ing infinite subtractions or additions of the conmion equal

difference; which equal increase or decrease, thus indefinitely

continued, must needs tend to an infinite result.

This however was no newly-discovered property of num-

bers, but what was always well known to all mathematicians,

beino; treated of in the writinos of Euclid, as also by Archi-

medes, who made great use of it in his Arenarius, or treatise

on the number of the sands, namely, in assigning the rank or

place of those terms, of a geometrical series, produced from

the multiplication together of any of the foregoing terms, by
the addition of the corresponding terms of the arithmetical

series, which served as the indices or exponents of the former.

Stifelius also treats very fully of this property at folio 35 et
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seq. and there explains all its principal uses as relating to

the logarithms of numbers, only without the name
;
such as,

that addition answers to multiplication, subtraction to division,

multiplication of exponents to involution, and dividing of

exponents to evolution; all which he exemplifies in the rule-

of-three, and in finding several mean proportionals, ike,

exactly as is done in logarithms. So that he seems to have

been in the full possession of the idea of logarithms, but

without the necessity of making a table of such numbers.

For the reason why tables of these numbers were not sooner

composed, was, that the accuracy and trouble of trigonome-
trical computations had not sooner rendered them necessary.

It is therefore not to be doubted that, about the close of the

sixteenth and beginning of the seventeenth century, many
persons had thoughts of such a table of numbers, besides the

few who are said to have attempted it.

It has been said by some, that Longomontanus invented

logarithms: but this cannot well be supposed to have been

any more than in idea, since he never published any thing of

the kind, nor ever laid claim to the invention, though he lived

thirty-three years after they were first published by baron

Napier, as he died only in 1647, when they had been long
known and received all over Europe. Nay more, Longo-
montanus himself ascribes the invention to Napier: vid.

Astron. Danica, p. 7, &c. Some circumstances of this matter

are indeed related b}^ Wood in his " Athenae Oxonienses,"

under the article Briggs, on the authority of Oughtrcd and

Wingate, viz.
" That one Dr. Craig, a Scotchman, coming

out of Denmark into his ow n country, called upon .Joh. Neper
baron of Marcheston near Edenburgh, and told him among
other discourses, of a new invention in Denmark (by Longo-
montanus as 'tis said) to save the tedious multiplication and

division in astronomical calculations. Neper being solicitous

to know farther of him concerning this matter, he could give

no other account of it, than that it was by proportionable

numbers. Which hint Neper taking, he desired him at his

return to call upon him again. Craig, after some weeks had
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passed, did so, and Neper then showed him a rude draught
of that he called Canon mirabilis Logarithmorum. Which

draught, with some alterations, he printing in 1614, it came
forthwith into the hands of our author Briggs, and into those

of Will. Oughtred, from whom the relation of this matter

came."

Kepler also says, that one Juste Byrge, assistant astronomer

to the landgrave of Hesse, invented or projected logarithms

long before Neper did
;
but that they had never come abroad,

on account of the great reservedness of their author \\ith re-

gard to his own compositions. It is also said, that Byrge
computed a table of natural sines for every two seconds of

the quadrant.
But whatever may have been said, or conjectured, concern-

ing any thing that may have been done by others, it is certain

that the world is indebted, for the first publication of loga-

rithms, to John Napier, or Nepair*, or in Latin, Neper, baron

of Merchiston, or Markinston, in Scotland, who djed the 3d

of April 1618, at 67 years of age. Baron Napier added con-

siderable improvements to trigonometry, and the frequent
numeral computations he performed in this branch, gave
occasion to his invention of logarithms, in order to save part
of the troul)ie attending those calculations; and for this rea-

son he adapted his tables peculiarly to trigonometrical uses.

The origin of which name, Crav.furd informs us, was from a (less) \>ec\less

action of one of his ancestors, viz. Donald, second son of the eail of Lenox, in

the time of David the Second. " Some English writers, mistaking the import of

the term baron, having called this celebrated person lord Napier, a Scotch noble-

man. He was not indeed a peer of Scotland : but the peerage of Scotland in-

forms us, that he was of a very ancient, honourable, and illustrious family ; that

his ancestors, for many generations, had been possessed of sundry baronies, and,

amongst others, of the barony of Merchistoun, which descended to him by the

death of his father in 1608. Mr. Briggs, therefore, very properly styles him

Baro Merchesionii. Now, according to Skene, de verborum sigmjicalione,
' In this

realm (of Scotland) he is called a Baronne, quha haldis his landes immediatelie

in chiefe of the king, and hes power of Pit and GaUow.'*; Fos^a et Furca; quhilk

was first institute and granted be king Malcomc, quha gave power to the Barroncs

to have ane Pit, quhalrin wemcn condemned for thi( ft suld be drowned, and ane

(iallows, whereupon men thicres and trf spas.-owres suid be ha-nged, confoime to
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This discovery he published in 1614, in his book iiititled

" Mirifici Logarithmorum Canonis Descriptio," reserving the

construction of the numbers till the sense of the learned con-

cerning his invention should be known. And, excepting the

construction, this is a perfect work on this kind of logarithms,

containing in effect the logarithms of all numbers, and the

logarithmic sines, tangents, and secants, for every minute of

the quadrant, together with the description and uses of the

tables, as also his definition and idea of logarithms.

Napier explains his notion of logarithms by lines described

or generated by the motion of points, in this manner : He first

conceives a line to be generated by the equable motion of a

point, which passes over equal portions of it in equal small

moments or portions of time: he then considers another line

as generated by the unequal motion of a point, in such man-

ner, that, in the aforesaid equal moments or portions of time,

there may be described or cut off, from a given line, parts

jvhich shall be continually in the same proportion with the

respective remainders, of that line, which had before been

left : then are the several lengths of the first line, the loga-

rithms of the corresponding parts of tlie latter. Which

description of tiiem is similar to this, tliat the logarithms are

a series of quantities or numbers in arithmetical progression,

adapted to another series in geometrical progression. The

the floome given in tVie Earon C )nrt thercanent.' So that a Scotch baron,

though no peor, was nevertheless a very roiisiderable persoiiag'C, both in dignity

auil power." lieid's /'sioy on Lot^a'ill.ms. The name of the ilhistiioiis inventor of

logaiithms, has been variously wiit'.en at (Hfftrent times, and on different occa-

sions. In his own Latin works, and in (perhaps) all other books in Latin, it is

Ne/tr, or Neptrus Baro Merc/nsUnii: By Brings, in a letter to Archbistiop Usher,

he is called N^iper, lord of Mnrkinslmi : In Wright's translation of the logarithms,

which was revised by the autiior riimself, and piibIislie/1 in 1616, he is called

Nepair, baroi of Meidihiun ;
and the same by Crawfurd and some others : But

M'Kcnzic and others write it Napier, baron of Mrrcfiiston ; which, being also the

orthography now used by the family, I shall adopt in this work. I obstrve

also, that the Scotch Compendium of Honour says he was only S<r John N'ripier,

and that his son and heir Archibald, was the first lord, being raised to that dig-

nity in 16'2r.. Be this however as it may, I shall conform to the common niodci

of expression, and c;ill him iudiftl;rently, Baron Napier^ or Ijyrd Kapier.
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first or whole length of the line, which is diminished in geo-
metrical progression, he makes the radius of a circle, and its

logarithm or nothing, representing the beginning of the

first or arithmetical line; and the several proportional re-

mainders of the geometrical Une, are the natural sines of all

the other parts of the quadrant, decreasing down to nothing,

while the successive increasing values of the arithmetical line,

are the corresponding logarithms of those decreasing sines :

so that, while the natural lines decrease from radius to nothing,

their logarithms increase from nothing to infinite. Napier
made the logarithm of radius to be 0, that he might save the

trouble of adding or subtracting it, in trigonometrical pro-

portions, in which it so frequently occurred
;
and he made the

logarithms of the sines, from the entire quadrant down to 0,

to increase, that they might be positive, and so in his opinion
the easier to manage, the sines being of more frequent use

tlian the tangents and secants, of which the whole of the latter

and half the former would, in his wav, beof a different aflec-

tion from the sines; for it is evident that the logarithms of

all the secants in the quadrant, and of ail the tangents above

45, or the half quadrant, would be negative, being the loga-

rithms of numbers greater than the radius, Avhose logarithm
is made equal to or nothing.

As to the contents of Napier's table; it consists of the na-

tural sines and their logarithms, for every minute of the

quadrant. Like most other tables, the arcs are continued to

45 degrees from top to bottom on the left-hand side of the

pages, and then returned backwards from bottom to top on

the right-hand side of the pages : so that the arcs and their

complements, with the sines, natural and logarithmic, stand

on the same line of the page, in six columns; and in another

column, in the middle of the page, are placed the differences

between the logarithmic sines and cosines, on the same lines,

and in the adjacent columns on the right and left
; thus making

in all seven columns in each page. Of these columns, the first

and seventh contain the arc and its complement, in degrees
and minutes ;

the second and sixth, the natural sine and co-
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sine of each arc
; the third and fifth, the logarithmic sine and

cosine; and the fourth, or middle column, the difference be-

tween the logarithmic sine and cosine which are in the third

and fifth columns. To elucidate the description, the first

page of the table is here inserted, as follows.

Gr.

mill
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Besides the columns which are actually contained in this

table, as above exhibited and described, naniely, the natural

and logarithmic sines, and their differences, the same table is

made to serve also for the logarithmic tangents and secants

of the whole quadrant, and for the logarithms of common
numbers. For, the fourth or middle column contains the

logarithmic tangents, being equal to the differences between

the logarithmic sines and cosines, when the logarithm of ra-

dius is 0, because cosine : sine : : radius : tangent, that is, in

logarithms, tangent = sine cosine. Also the logarithmic

sines, made negative, become the logarithmic cosecants, and

the logarithmic cosines made negative, are the logarithmic
secants

; because sine : radius ; : radius : cosecant, and cosine :

radius : : radius : secant
; that is, in logarithms, cosecant =

sine = sine, and secant = cosine = cosine. And
to make it answer the purpose of a table of logarithms of

common numbers, the author directs to proceed thus : A
number being given, fmd that number in any table of natural

sines, or tangents, or secants, and note the degrees and mi-

nutes in its arc
; then in his table find the corresponding

logarithmic sine, or tangent, or secant, to the same number
of degrees and minutes ;

and it v^ill be the required logarithm
of the given number.

After his definitions and descriptions of logarithms, Napier

explains his table, and illustrates the precepts with examples,

showing how to take out the logarithms of sines, tangents,

secants, and of common numbers
;

as also how to add and

subtract logarithms. He then proceeds to teach the uses of

those numbers ; and first, in finding any of the terms of three

or four proportionals, showing how to multiply and divide,

and to find powers and roots, by logarithms : Sdly, in trigo-

nometry, both plane and spherical, but especially the latter,

in which he is very explicit^ turning all the theorems for

every case into logarithms, computing examples to each in

numbers, and then enumerating a set of astronomical pro-
blems of the sphere v/hich properly belong to each case.

Napier liere teaches also some new theorems in spherical
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trigonometry, particularly, that the tangent of half the base :

tang. 4: sum legs :: tang. 4- dif. legs : tang.
^ the alternate

base ; and the general theorem for what are called his five

circular, parts, by uhich he condenses into one rule, in two

parts, the theorems or all the cases of right-angled spherical

triangles, which had been separatel}' demonstrated by Pitiscus,

Lansbergius, Copernicus, Regiomontanus, and others.

The description and use of Napier's canon being in the

Latin language, they were translated into English by Mr.

Edward Wright, an ingenious mathematician, and inventor

of the principles of what has commonly, though erroneously,

been called Mercator's Sailing. He sent the translation to

the author, at Edinburgh, to be revised by him before publi-

cation; who having carefully perused it, returned it with his

aj)probation, and a few lines introduced besides into the trans^

lation. But, Mr. Wriglit dying soon after he received it

back, it was after his death published, together with the

tables, but each number to one figure less, in the year 1616,

by his son Samuel Wright, dccompanied with a dedication to

the East-India Company, as also a preface by Henry Briggs,
of whom we shall presently have occasion to speak more at

large, on account of the great share he bore in perfecting
the logarithms. In this translation, Mr. Briggs gave also the

description and draught of a scale that had been invented by
Mr. Wrio-ht, and several other methods of his own, for findino-

the proportional parts to intermediate numbers, the logarithms

having been only printed for such niuuhers as were the natural

sines of each minute. And the note which Baron Napier
inserted in this English edition, and which was not in the

original, was as follows: '' But because the addition and sub-

traction of these former numbers may seem somewhat pain-

ful, I intend (if it shall please God) in a second edition, to

set out such Icgaritlims as shall make tho.se numbers above

written to fall upon decimal numbers, such as 100,000,000,

200,000,000, 300,000,000, &c, which are easie to be added or

abated to or from anyotiier number." This note had reference

to the alteration of the scale of logarithms, in such manner, that
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1 should become the logarithm of the ratio of 10 to 1, in^ead

of the number 2.3025851, which Napier had made that loga

rithm in his table, and which alteration had before been re-

commended to him by Briggs, as we shall see presently.

Napier also inserted a similar remark in his "
Rabdologia,'*

which he printed at Edinburgh in 1617.

The following is the preface to *
Wright's book, which, as

far as where it mentions the change from the Latin into En-

glish, is a literal translation of the preface to Napier's original;

but what follows that, is added by Napier himself. And I

willingly insert it here, as it contains a declaration of the

motives which led to this discovery, and as the book itself is

very scarce. *'
Seeing there is nothing (right well beloved

students in the mathematics) that is so troublesome to Ma-

thematicall practise, nor that doth more molest and hinder

Calculators, than the MultipHcations, Divisions, square and

Of this ingenious man I shall here insert in a note the following' memoirs, as

they have been translated from a Latin piece taken out of the annals of Gonvile

and Caius College at Cambridge, viz. " This year (1615) died at London, Edward

Wright of Garveston in Norfolk, formerly a fellow of this college; a man re-

spected by all for the integrity and simplicity of his manners, and also famous

for his skill in the mathematical sciences: insomuch that he' was deservedly

styled a most excellent mathematician by Richard flackluyt, the author of an

original treatise of our English navigations. What knowledge he had acquired
in the science of mechanics, and how usefully he eraployetl that knowledge to

the public as well as private advantage, abuiidaiitly appear both from the writings

he published, and from the many mechaiiical operations stili extant, which are

standing monuments of his great industry and ingenuity. J^e was the first un-

dertaker of that difficult but useful work, by which a little river is brought from

the town of Ware in a new canal, to supply the city of Londvin with water; but

by the tricks of others he was hindered from comp'eting the work he had begun.

He was excellent both in contrivance and execution; nor was he inferior to the

most ingenious mechanic in the making of instruments, either of brass, or any
other matter. To his invention is owing whatever advantage Hondius's geogra-

phical charts have above others; for it was our Wright that taught Jodocus

Hondius the method of constructing them, wliich was till then unknown : but the

ungrateful Hondius concealed the name of the true author, and arrogated the

glory of the invention to himself. Of this fraudulent practice the good man
could not help complaining, and justly enough, in the preface to his Treatise of

the Correction of Errors in the Art of Navigation ; which he composed with ex-

cellent judgment, and after lon^ experience, to the great advancement of naval
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cubical Extractions of great numbers, which, besides, the

tedious expence of time, are for the most part subject to

many sHppery errors : I began therefore to consider in my
minde, by what certaine and ready Art I might remove those

hindrances. And liaving thought upon many things to this

purpose, I found at length some excellent briefe rules to be

treated of (perhaps) hereafter. But amongst all, none more

profitable then this, which together Avith the hard and tedious

Multiplications, Divisions, and Extractions of rootes, doth also

cast away from the worke it selfe, even the very numbers

themselves that are to be multiplied, divided, and resolved

into rootes, and putteth other numbers in their place, which

performe as much as they can do, onely by Addition and

Subtraction, Division by two, or Division by three
;
which

secret invention, being (as all other good things are) so much
the better as it shall be the more common; I thought good

affairs. For the improvement of this art he was appointed mathematical iccturei

by the East India Company, and read lectures in the house of that worthy knigV;t

Sir Thomas Smith, for which he had a yearly salary of 50 pounds. This ofiicp.

he discharged with great rcputatioi;, and much to the satisfaction of his hearers.

Me pu'olished in English, a book on tlie doctrine of the spiierc, and another con-

cerning the construction of sun-dials. He also prefixed an ingeiiious prefjce to

the learned Gilbert's book on the loadstone, liy these and other hi's wrilin,<rs, hi:

has transmitted his fame to latest posterity. While ho was yet a ftllow of this

college, he could not be concealed in his private study, but was called forth to

the public business of ilie kingdom, by the queen's majtstj-, about the j'ear 159.5.

He was ordered to attend the earl of Cumberland in some maritime expeditions.

One of these he has given a faithful account of, in the way of a journal or ephe-

meris, to whicli he has prefixed an elegant hydrographical chart of his own

contrivance. A little before his death, he employed himself about an Knglish

translation of the book of logarithms, then lately found out by tlie honourable

(Jaron Napier, a Scotchmau, who had a great afVet;tion for him. This posthumous

work of his was published soon after, by his only son Samuel Wright, who was

also a scholar of this college. He had formed many other useful designs, but wa^

hindered by death from bringing them to perfection. Of him it may be truly

said, that he studied more to serve the public than hiniselfj and thoujili he

was rich in fame, and in the promises of the great, yet he died poor, to the

siandal of an ungrateful age."

Oiher anecdotes of him, as well as many other mathematical authors, may \)C.

found in the curious history of navigation by Dr. James Wilson, prefixed to Mr.

Robertson's excellent treatise on that subject.
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heretofore to set forth in Latine for thd publique use of

Mathematicians. But now some of our Countrymen in this

Island well affected to these studies, and the more publique

good, procured a most learned Mathematician to translate

the same into Our vulgar English tongue, who after he had

finished it, seat the Coppy of it to me, to be scene and con*

sidered on by myself. I having most willingly and gladly
done the same, finde it to bee most exact and precisely con-

formable to my minde and the originall. Therefore it may
please you who are inclined to these studies, to receive it from

me and the Translator, with as much good will as we recom*

mend it unto you. Fare yee well."

There are also extant copies of Wright*s translation with

the date 1618 in the title : but this is not properly a new

edition, being only the old work with a new title-page adapted
to it (the old one being cancelled), together with the addition

of sixteen pages of new matter, called " An Appendix to the

Logarithms, shewing the practice of the calculation of tri-

angles, and also a new and ready way for the exact finding
out of such lines and logarithmes as are not precisely to be

found in the canons." But we are not told by what author:

probably it was by Briggs.

Besides the trouble attending Napier's canon, in finding the

proportional parts, when used as a table of the logarithms of

common numbers, and which was in part remedied by the

fore-mentioned contrivances of Wright and Briggs, it was also

accompanied with another inconvenience, which arose from

the logarithms being sometimes 4- or additive, and sometimes

or negative, and which required therefore the knowledge
of algebraic addition and subtraction. And this inconvenience

was occasioned, partlybymaking the logarithm of radius to be

0, and the sines to decreasCj and partly by the compendious

manner in which the author had formed the table; making
the three columns of sines, cosines and tangents, to serve also

for the other three of cosecants, secants, and cotangents.

But this latter inconvenience was well remedied by John

Speidell, in his New Logarithms, first published in 161^,

VOL I. Y
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which contained all the six columns, and in this order; sines,

cosines, tangents, cotangents, secants, cosecants: and they
vere besides made all positive, by being taken the arithmetical

complements of Napier's, that is, they were the remainders

left by subtracting each of these latter from 10000000. And
the former inconvenience was more effectually removed by the

said Speidell, in an additional table, given in the sixth impres-

sion of the former work, in the year 1624. This was a table

of Napier's logarithms for the round or integer numbers 1, 2,

3, 4, 5, &:c, to 1000, together with their differences and arith-

metical complements; as also the halves of the said logarithms,

with their differences and arithmetical complements; which

halves consequently were the logarithms of the sfjiiare roots

of the said numbers. Those logarithms are however a little

varied in their form from Napier's, namely, so as to increase

from 1, whose logarithm isO, instead of decreasing to l, or ra-

dius, whose logarithm was made likewise
;
that is, Speidcli's

logarithm of any number n, is equal to Napier's logarithm of

its reci[)rocal ^: so that in this last table of Speideil's, tix^,

logarithm of 1 being 0, the logarithm of 10 is 230UjS4, the

logarithm of 100 is twice as much, or 'SrQObiCiS, and that of

1000 thrice as much, or 6907753.

This table is now commonly called Jnjperholic logarithms,
because the numbers express the areas between the asymptote
and curve of the hyperbola, those areas being limited bj
ordinates parallel to the other asymptote, and the ordinateg

decreasing in geometrical progression. But this is not a very

proper method of denominating them, as such areas mav be

made to denote anv system of logarithms whatever, as will be

shown more at large in the proper place.

In the year 1619, Robert Napier, son of the inventor of

logarithms, published a new edition of his late father's

"
Logarithmorum Canonis Descriptio," together with tlie

promised
"

Logarithmorum Canonis Constructio," and other

miscellaneous pieces, written by Ids father and Mr. iiriggs.

Also one Bartholomew Vincent, a bookseller at Lugilunnm,
r Lyons, in France, printed there an exact copy of the siinie
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two works in one X'olume, in the year 1620; which was four

years before the logarithms were carried to France by Win-

gate, who was therefore erroneously said to have first intro-

duced them into that country. But we shall treat more

particularly of the contents of this work, after having enu-

merated the other writers on this sort of logarithms.
In 1618 or 1619, Benjamin Ursinus, mathematician to the

Elector of Brandenburg, pubhshed, at Cologn, his " Cursus

Mathematicus," in which is contained a copy of Napier's

logarithms, with the addition of some tables of proportioniil

parts. And in 1624, he printed at the same place, his

*'
Trigonometria," with a table of natural sines and their

logarithms, of the Napierian kind and form, to every ten

seconds in the quadrant; which he had been at much pains
in computing.

In the same year 1624, logarithms, of nearly the same kind,

were also published, at Marpurg, bv the celebrated John

Kepler, mathematician to the Emperor Ferdinand the Second,
under the title of " Chilias Logarithmorum ad Totidem Nu-
meros Rotundos, prjemissa Demonstratione legitima Ortus

Logarithaioram eorumque Usus," &.c
;
and the vear follow-

ing, a suppicment to the same
; being applied to round or

integer numbers, and to such' natural smes as ncarlv c(nncide

with them. These are exactly the same kind of logaritiims

as Napier's, b-^ing the same logarirhnis of the natural sines of

arcs, beginning from the quadrant, whose sine ov radius is

10,000.000, the logaritiuTi of which is made 0, and from thence

the sines decreasing by v.qudl differences, down to 0, or the

beginning of ti^.e quadrant, wliiie their logarithms increase to

infinity. So that tiic diiference between this table and Na-

pier's, consists only in tins, namely, that in Napier's table the

a7X of the quadrant is divided into equal parts, differing by
one minute each, and consequently their sines, to which the

logarithms are adapted, are irrational or interminate numbers,
and only expressed by approximate decimals; whereas in

Kepler's table, the radius is divided into equal parts, v^-hich

are considered as perfect and terminate sines, having equal
Y 2
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differences, and to which terminate sines the logaritlims are

here adapted. By this means indeed the proportions for in-

termediate numbers and logarithms are easier made ; but then

the corresponding arcs are not terminate, being irrational,

and only set down to an approximate degree. So that

Kepler's table is more convenient as a table oF the logarithms
of common numbers, and Napier's as the logarithmic sines

of the arcs of the quadrant. In both tables, the logarithm of

the ratio of 10 to 1, is the same quantity, namely 23025852 ;

and as the radius, or greatest sine, is 10,000,000, whose loga-

rithm is madeO, the logarithms of the decuple parts of it will

be found by adding 23025852 continuall}^, or multiplying this

logarithm by 2, 3, 4, &c; and hence the logarithm of 1, the

first number, or smallest sine, in the table, is 161 180959, or

7 times 2302 &.c.

Besides the tw-o columns, of the natural sines and their

logarithms, with the ditferences of the logarithms, this table

of Kepler's consists also of three other colurrms
;
the first of

which contains the nearest arcs, belonging to those sines, ex-

pressed in degrees, minutes and seconds; and the other two

express what parts of the radius each sine is equal to, namely,
the one of them in 24th parts of the radius, and minutes and

seconds of them
;
and the other in 60th parts of the radius,

and minutes of them. The following specimen is extracted

from the last page of the table, printed exactly as in the work,

itself.
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Arcus
Circuli cum
differentiis.
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measures of ratios, as shall be shown more particularly here-

after in the next tract, Avhere the construction of logarithms
is fully treated on.

Kepler also introduced the logarithmic calculus into his

Rudolphine tables, published in 1627; and inserted in that

"vvork several logarithmic tables; as, first a tubie similar to

that above described, except that the second, or column

of sines, or of absolute numbers, is omitted, and, instead of

it, another column is added, showing what part of the qua-
drant each arc is equal to, namely the quotient, expressed in

integers and sexagesimal parts, arising from dividing the

whole quadrant by each given arc; 2dly, Napier's table of

logarithmic sines, to every minute of the quadrant; also two

other smaller tables, adapted to the purposes of eclipses and

the latitudes of the planets. In this work also, Kepler gives

a succinct account of logarithms, with the description and use

of those that are contained in these tables. And here it is

that he mentions Justus Byrgius, as having had logarithms

before Napier published them.

Besides the above, some few others published logarithms of

the same kind, about this time. But let us now return to

treat of the history of the common or Hriggs's logarithms, so

called because he first computed them, and first mentioned

them, and recommended them to Napier, instead of the first

kind by him invented.

Mr. Henry I>riggs, not less esteemed for his great probity,

and other eminent virtues, than for his excellent skill in ma-

thematics, was, at the time of the publication of Napier's

logarithms, in 1614, professor of geometry in Gresham col-

lege in London, having been appointed the first professor

after its institution : which appointment he held till January

1(J20, when he was chosen, also the first, Saviiian professor

of gcouietry at Oxford, where he died January the 26th,

1G37-, ;;ged about 74 years.

On tiie publication of Napier*s logarithms, Briggs imme-

diately applied himself to the study and improvement of them.

In a letter to Mr. (afterwards Archbishop) Usher, dated the
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loth of March 1615, he writes,
" that he was wholly taken

up and employed about the noble invention of logarithm^,

lately discovered." And again,
"
Napier lord of Markinston

hath set my head and hands at work with his new and admir-

able logarithms: I hope to see him this summer, if it please

God ; for I never saw a book which pleased me better, and

made me more wonder." Thus we find that Briggs began

very early to compute logarithms: but these were not of the

same kind with Napier's, in which the logarithm of the ratio

of 10 to 1 was 2.3025851 &c
; for, in Briggs's first attempt he

made 1 the logarithm of that ratio; and, from the evidence

we have, it appears that he was the first person who formed

the idea of this change in the scale, which he presently and

liberally communicated, both to the public in his lectures, and

to lord Napier himself, who afterwards said that he also had

thought of the same thing ;
as appears by the following ex-

tract, translated from the preface to Briggs's
" Arithmetica

Logarithmica :"
" Wonder not (says he) that these logarithms

are different from those which the excellent baron of Marchi-

ston published in his Admirable Canon. For when I explained
the doctrine of them to my auditors at Gresham college in

London, I remarked that it would be much more convenient,

the logarithm of the sine total or radius being O (as in the

Canon Mirificus), if the logarithm of the 10th part of the said

radius, namely, of 5^44*21", were 100000 &c; and con-

cerning this I presently wrote to the author; also, as soon as

the season of the year and my public teaching would permit,

I went to Edinburgh, Avhere being kindly received by him, I

staid a whole niontli. But when we began to converse about

the alteration of them, he said that he had formerly thought
of it, and wished it

;
but that he chose to publish those that

were already done, till such time as his leisure and health

would permit him to make others more convenient. And as

to the manner of the change, he thought it more expedient
tliat should be made the logarithm of l,and 100000 he the

logarithm of radius; which I could not but acknowledge was

jr.uch better. Therefore, rejecting those which I bad before
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prepared, I proceeded, at his exhortation, to calculate these:

and the next summer I went again to Edinburgh, to shew him

the principle of them; and should have been glad to do the

same the third summer, if it had pleased God to spare him

80 long."
So that it is plain that Briggs was the inventor of the pre-

sent scale of logarithms, in which 1 is the logarithm of the

ratio of 10 to l ,
and 2 that of TOO to I

, &c ;
and that the share

which Napier had in them, was only advising Briggs to begin
at the lowest number 1, and make the logarithms, or artificial

numbers, as Napier had also called them, to increase with the

natural numbers, instead oi decreasing ;
which made no alter-

ation in the figures that expressed Briggs's logarithms, but

only in their affection or signs, changing them from negative

to positive; so that Briggs's first loga-

rithms to the numbers in the second

column of the annexed tablet, would

have been as in the first column ;
but after

they were changed, as they are here in

the third column; which is a change of

no essential difference, as the logarithm

of the ratio of 10 to 1, the radix of the

natural system of numbers, continues

the same
;
and a change in the logarithm

of that ratio being the only circumstance

that can essentially alter the sy; tern of

logarithms, the logarithm of 1 being 0. And the reason why
Briggs, after that interview, rejected what he had before

done, and began anew, was probably because he had adapted
his new logarithms to the approximate sines of arcs, instead

of to the round or integer numbers; and not from their being

logarithms of another system, as were those of Napier.
On Briggs's return from Edinburgh to London the second

time, namely, in 1617, he printed the first thousand loga-

rithms, to eight places of figures, besides the index, under

the title of " Lo^aritlnnorum Chilias Prima." Thouoh tliese

seem not to have been published till after death of Napier,

B
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which happened on the 3d of April 1618, as before said ; for,

in the preface to them, Briggs says,
*' Why these logarithms

differ from those set forth by their most illustrious inven-

tor, of ever respectful memory, in his
' Canon Mirificus,' it

IS TO BE HOPED his posthumous work will shortly make ap-

pear." And as Napier, after communication had with Briggs
on the subject of altering- the scale of logarithms, had given

notice, both in Wright's translation, and in his own " Rabdo-

logia," printed in 1617, of his intention to alter the scale,

(though it appears very plainly that he never intended to

compute any more), without making an}- mention of the share

which Briggs had in the alteration, this gentleman modestly

gave the above hint. But not finding any regard paid to it

in the said posthumous work, published by lord Napier's son

in 1619, where the alteration is again adverted to, but still

without any mention of Briggs; this gentleman thought he

could not do less than state the grounds of that alteration

himself, as they are above extracted from his work published
in 1624.

Thus, upon the whole matter, it seems evident that Briggs,
whether he had thought of this improvement in the construc-

tion of logarithms, of making 1 the logarithm of the ratio of

10 to 1, before lord Napier, or not (which is a secret that

could be known only to Napier himself), was the first person
who communicated the idea of such an improvenicnt to the

world; and that he did this in his lectures to his auditors at

Gresham college in the year 1615, very soon alter his peru-
sal of Napier's

" Canon Mirificus Logarithmorum," published

in the year 1614. He also mentioned it to Napier, both by
letter in the same year, and on his first visit to him in Scotland

in the summer of the year 1616, when Napier approved the

idea, and said it had ah-eady occurred to himself, and that he

had determined to adopt it. It appears therefore, that it

would have been more candid in lord Napier to have told the

world, in the second edition of this book, that Mr. Briggs had

mentioned this improvement to him, and that he had thereby
been confirmed in the resolution he had already taken, before
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Mr. Briggs*s communication with him (if indeed that wa^ the

fact), to adopt it in that his second edition, as being better

fitted to the decimal notation of aritlimetic which was in ge-
neral use. Such a declaration would have been but an act

of justice to Mr. Briggs; and the not having made it, cannot

but incline us to suspect that lord Napier was desirous that

the world should ascribe to him alone the merit of this very
useful improvement of the logarithms, as well as that of hav-

ing originally invented them ; though, if the having first com-

municated an invention to the world be sufficient to entitle a

man to the honour of liavinp; first invented it, Mr. Briggs had

the better title to be called the first inventor of this happy

improvement of logarithms.
In 1620, two years after the <^ Chi Has Prima" of Briggs

came out, Mr. Edmund Gunter publisiicd liis
" Canon of Tri-

angles," which contains the artificial or logarithmic sines and

tangents, for every minute, to seven places of figures, besides

the index, the logarithm of radius being lO'O kc. These

logarithms arc of the kind last agreed upon by Napier and

Briggs, and they were the first tables of logarithmic sines and

tangents that were publisiicd of this sort. Gunter also, in

1623, reprinted the same in his book " l)e St^ctoreet Kadia,"

together with the " Chilias Prima" of his old colleague Mr.

Briggs, he being professor of astronomy at Gresham college
-when Briggs was prof^-ssor of geometry there, Gunter having
been elected to that office the 6th of March 1(1 19, and enjoyed
it till his death, whicii ha])pencd on t!ic 10th of December

I62G, about the forty-fifth year of his age. In 1623, also,

Gunter applied these logarithms of numbers, sines, and tan-

gents, to straight lines drawn on a ruler; with which, pro^

portions in common nuuibers and trigonometry were resolved

by the mere application of a pair of compasses ;
a method

founded on this property, that the logarithms of the terms of

efjual ratios are equidifierent. This instrument, in the form

of a two- foot scale, is now in common use for navigation and

other purposes, and is commonly called the Gunter. He also

greatly improved the sector for the same uses. Gunter \\'as
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the first who used the word cosine for the sine of the comple-
ment of an arc. He also introduced the use of arithmetical

complements into the logarithmical arithmetic, as is witnessed

by Briggs. chap. 15, Arith. Log. And it has been said, that

he started the idea of the logarithmic curve, which was so

called because the segments of its axis are the logarithms of

the corresponding ordinates.

The logarithmic lines were afterwards drawn in various

other ways. In 1627, they were drawn by Wingate on two

separate rulers sHding against each other, to save the use of

compasses in resolving proportions. They were also, in 1627,

applied to concentric circles, by Oughtred. Then in a spiral

form, by a Mr. Milburne of Yorkshire, about the year 1650.

And, lastly, in 1657, on the present sliding rule, by Setli

Partridfre.

The discoveries relatins: to logarithms were carried to

France by Mr. Edmund Wmgate, but not first of all, as he

erroneously says in the preface to his book. He published
at Paris, in 1624, two small tracts in the French language;
and afterwards at London, in 1626, an English edition of the

same, with improvements. In the first of these, he teaches

the use of Gunter's rules; and in the other, that of Briggs's

logarithms, and the artificial sines and tangents. Here are

contained, also, tables of those logarithms, sines, and tan-

gents, copied from Gunter. The edition of these logarithms

printed at London in 1635, and the former editions also I

suppose, has tlie units figures {lis])osed along the tops of the

columns, and the tens down the margins, like our tables at

present; with the whole logarithm, which was only to fix

places of figures, in the angle of meeting: which is the first

instance that I have seen of this mode of arrangement.
But proceed we now to the larger structure of logarithms.

Briscsis had continued from the beginning to labour with fjreat

industrv at the computation of those logarithms of which he

before published a short specimen in small numbers. And, in

1624, he produced his " Arithmetica Logarithmica" a stu-

pendous work for so short a time ! containing the logarithms
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of 30000 natural numbers, to fourteen places of figures be-

sides the index, nauielv, from 1 to 20000, and from 90000 to

100000; together witli the differences of the logarithms. Some
writers say that there was an()therfAi7zW,namely, from 100000

to lOIOOO; but none of the copies that I have seen have more

than the 30000 above mentioned, and they were all regularly

terminated in the usual way with the word finis. The preface

to these logaritlinis contains, among other things, an account

of the alteration made in the scale by Napier and himself,

from which we have given an extract; and an earnest soli-

citation to others to undertake the coniputation for the inter-

mediate numbers, offering to give instructions, and paper

ready ruled for that purpose, to any persons so inclined to

contribute to the com])letion of so valuable a Mork. In the

introduction, he gives also an ample treatise on the construc-

tion and uses of these logarithms, which will be particularly

described hereafter. By this invitation, and other ineans, he

bad hopes of collecting materials for the logarithms of the

intermediate 70000 numbers, while he should employ his own
labour more immediately on the canon of logarithmic sines

and tangents, and so carry on both v.orks at once; as indeed

thev were both equally necessary, and lie himself was now

pretty far advanced in years.

Soon after this however, Adrian Vlacq, or Flack, of Gouda
in Holland, completed the ir.terinediate seventy chiliads, and

republished the " Arithmetica Logarithmica" at that place,
in 1G27 and lG2Sj witli those intermediate numbers, making
in the whole the logarithms of all numbers to 100000, but

only to ten places of figures. To these was added a table of

artificial sines, tangents, ai:d secants, to every niinule of the

quiidrant.

3>riggs himself lived also to complete a table of logarithmic
siiu's ;itul tangents for the hundredth part of every degree, to

louvtec:; i)Lices of tigures besides the index; together with a

tabl'j oi' iiatLu-al sines for tlie same parts to fifteen places, and
the taii'jcnts and secarns i'or the same to ten places; with the

eo:iSt.rutL-.un uf the wijole. These tables were printed at
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Gouda, unJer the care of Adrian Vlacq, and mostly finished

oft" before 1631
, though not pubhshed till 1633. But his death,

which then happened, prevented him from completing the

application and uses of them. However, the performing of

this office, when dying, he recommended to his friend Henry
Gellibrand, who was then professor of astronomy in Gresham

college, having succeeded Mr. Gunter in that appointment.
GeUibrand accordingly added a preface, and the application
of the logarithms to plain and spherical trigonometry, &c ;

and the whole was printed at Gouda by the same printer, and

brought out in the same year, 1633, as the '*

Trigonometria
Artificialis" of Vlacq, who had the care of the press as above

said. This work was called "
Trigonometria Britannica ;'*

and besides the arcs in decrees and centesms of de":rees, it

has another column, containing the minutes and seconds an-

swering to the several centesms in the first column.

In 1633, as mentioned above, Vlacq printed at Gouda, in

Holland, his " Trigonometria Artificialis
; sive Magnus Canon

Triangulorum Logaritinnicus ad Decadas Secundorum Scru-

pulorum constructus." This work contains the logarithmic
sines and tangents to ten places of figures, with their differ-

ences, for cverv ten seconds in t!ie (juadrant. To them is also

added Briggs's table of the first 20000 logarithms, but carried

only to ten places of figures besides the index, with their dif-

ferences. The whole is preceded by a description of the

tables, and the application of them to plane and spherical

trigonometry, chiefly extracted from Briggs's
"

Trigono-
metria Britannica," mentioned above.

Gellibrand published also, in 1635,
'' An Institution Trigo-

nomctricall," containing the logarithms of the first 10000

numbers, with the natural sines, tangents, and secants, and

the logarithmic sines and tangents, for degrees and minutes,

all to seven places of figures, besides the index
;
as also other

tables proper for navigation ;
v> ith the uses of the whole.

Gellibrand died the 9th of February 1636, in the 40th year
of his age, to the great loss of the mathematical world.

Besides the persons hitherto mentioned, who were mostly
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computers of logarithms, many others have also pubiished

tables of those artificial numbers, more or less complete, and

sometimes improved and varied in the manner and form of

them. We may here juit advert to a few of the principal of

these.

In 1626, D. Henrion published, at Paris, a treatise concern-

ing Brigg's logarithms of common numbers, from 1 to 20000,

to eleven places of figures; with the sines and tangents to

eight places only.

In 1631, was printed, at London, by one George Miller, a

book containing Briggs's logarithms, Mitli their difFcreiices,

to ten places of figures besides the index, for all numbers to

lOOOOO
;
as also the logarithmic sines, tungcrUs, an;' secants,

for every minute of the quadrant; with the explanation and

uses in English.

The s.ime vcar, 1631, Richard Norwood published his

*'
Trigonometria ;" in which we find Briggs's logarithms for

all numbers to IOOOO,and for the sines, tangents, and secants,

to every minute, both to seven places besides the index. la

t!ic conclusion of the trigonoujetry, he coniioiains of the un-

fair practices of printing Vlacij's book in 1627 or 1628, and

the book mentioned in the last article. His words are,
"
Now,

whereas I have here, and in sundry places in this book, cited

i\Ir. Briggs his
' Arithmetica Logaritlnuica,' (lest I may seem

to abuse the reader) you are to understand not the book put
forth about a month since in English, as a translation o! his,

and witli the same title
; being nothing like his, nor worthy

his name; but the book which hin}self put forth witli this title

in Latin, b(^ing printed at London ainio 162 k And here I

have just occasion to blame the ill dealing of these men, both

in the mutter before; mentioned, and in printing a second edi-

tion of his ' Arithmetica Logarithmica' in Latin, whilst he

livetl, against his mind and liking; and brought them over to

yell, when the first v/ere unsold; so frustrating those additions

which Mr. Briggs intended in his second edition, and more-

over leaving out some things that wore in the (irst edition, of

special moment : a practice of very ill consequence, and



TRACT 20. LOGARITHMS. 335

tending to the great disparagement of such as take pains in

this kind."

Francis Bonaventure Cavalerius published at Bologna, in

1632, his " Directorium Generale Uranometricum," in which

are tables of Briggs's logarithms of sines, tangents, secants,

and versed sines, each to eight places, for every second of the

first five minntes, for every five seconds from five to ten mi-

nutes, for every ten seconds from ten to twenty minutes, for

every twenty seconds from twenty to thirty minutes, for every

thirty seconds from 30' to 1 30', and for every minute in the

rest of the quadrant j which is the first table of logarithmic
versed sines tluit I know of. In this book are contained also

the logarithms of the first ten chiliads of natural numbers,

namely, from 1 to 1 0000, disposed in this manner: all the

twenties at top, and from 1 to 19 on the side, the logarithm
of the sum being in the square of meeting. In this work also,

I think Cavalerius frave the method of finding- the area or

spherical surface contained by various arcs described on the

surface of a sphere; which had before been given by Albert

Girard, in his Algebra, printed in the yeav 1629.

Also, in the "
Trigonometvia" of the same author, Cava-

lerius, printed in 1643, besides the logarithms of numbers

from 1 to 1000, to eight places, wit'u their differences, we find

both natural and logarithmic sines, tangents, and secants, the

former to seven, and the latter to eig])t places; namely, to

every 10" of the first 30 minutes, to every 30" from 30' to 1;
and the same for their complements, or backwards through
the last degree of the quadrant; the intermediate SS" being
to every minute only.

Mr. Nathaniel Roe,
" Pastor of Benacre in SufTolke," also

reduced the logarithmic tables to a contracted form, in his

*' Tabula- Logarithmica>," jjrinted at London in 1633. Here

we have Briggs's logarithms of numbers fiom 1 to 100000, to

eight places; the fifties placed at top, and from 1 to 50 on

the side; also the first four figures of the logarithms at top,

and the other four down the columns. They contain also the
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logarithmic sines and tangents to every 100th partof degrees^
to ten places,

Ludovicus Fiobcnius published at Hamburgh, in 1634, his

*' Clavis Universa Trigonometriae," containing tables of

Briggs's logarithms of numbers, from 1 to 2000; and of sines,

tangents, and secants, for every minute; both to seven places.

But the table of logarithms of common numbers was re-

duced to its most convenient form by John Newton, in his

*'

Trigonometria Brit.innica," printed at London in 1658,

having availed himself of both the improvements of Wingate
and Roe, namely, uniting Wingate's disposition of the natural

numbers with Rou's contracted arrangement of the logarithms,
the numbers being all disposed as in our best tables at pre-

sent, namely, the units along the top of the page, and the tens

down the left-hand side, also the fii'st three figures of each

logarithm in the first column, and the remaining five figures

in the otlier columns, the logarithms being to eight places.

Tills work contains also the logarithmic sines and tangents,
to eight figures besides the index, for every 100th part of a

decree, with their diflerences, and for lOOOth parts in the first

three degrees. In the preface to this w-ork, Newton takes

occasion, as Wingate and Norwood liad done before, as weH
as Briggs himself, to censure the unfair practices of some other

publishers of logarithms. He says,
" In the second part of

this institution, thou art presented with Mr. Gellibrand's Tri-

gonometric, faithfully translated from the Latin copy, that

which the author himself published under the title of '

Trigo-
nometria Britannica,' and not that which Vlacq the Dtttchman

styles
'

Trigonometria Artificialis,' from whose corrupt and

imperfect copy that seems to be translated which is amongst
us generally known by the name of ' Gellibrand's Trigono-

metry ;' but those who either knew him, or have perused his

writings, can testify that he was no admirer of the old sexa-

genary way of working; nay, that he did preferre the decimal

way before it, as he hath abundantly testified in all the ex-

amples of this his TKigonometrv, which differs from that othec
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which VJacq hath pubHshed, and that which hath hitherto

borne his name in EngUsh, as in the foroi, so hkewise in the

matter of it; for in the two last-mentioned editions, there is

something left out in the second chapter of plain triangles,

the third chapter wholly omitted, and a part of the third in

the spherical; but in this edition nothing: something we have

added to both, by way of explanation and demonstration."

In 1670, John Caramuel published his
" Mathesis Nova,"

in which are contained 1000 logarithms both of Napier's and

Briggs's form, as also 1000 of what he calls the Perfect Loga-

rithms, namely, the same as those which Briggs first thought

of, which differ from the last only in this, that the one in-

creases while the other decreases, the radix or logarithm of

the ratio of 10 to 1 being the same in both.

The books of logarithms have since become very numer-

ous, but the logarithms are mostly of that sort invented by

Briggs, and which are now in common use. Of these, the

most noted for their accuracy or usefulness, besides the works

above mentioned, are Vlacq's small volume of tables, parti-

cularly that edition printed at Lyons, in 1670; also tables

printed at the same place in 1760 ;
but most especially the

tables of Sherwin and Gardiner, particularly my own im-

proved editions of them. Of these, Sherwin's " Mathematical

Tables," in 8vo, formed, till lately, the most complete col-

lection of an}', containing, besides the logarithms of all num-
bers to 101000, the sines, tangents, secants, and versed sines,

both natural and logarithmic, to every minute of the quadrant,

though not conveniently arranged. The first edition was in

1706; but the third edition, in 1742, which was revised by
(^ardiner, is et^teemed the most correct of any, though con-

taining many ttiousands of errors in the final figures, as well

as all the former editions: as to the last or fifth edition, in

1771, it is so erroneously printed that no dependance can be

placed in it, being the most inaccurate book of tables I ever

knew
;

1 have a list of several thou-and errors which I have

corrected in it, as well iis in Garuinei's octavo edition, and in

Sherwin's edition.

VOL, I. z
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Gardiner also printed at London, in 1742, a quarto volume

of " Tables of Logarithms, for all numbers from 1 to 102100,

and for the sines and tangents to every ten seconds of each

degree in the quadrant; as also, for the sines of the first 72

minutes to every single second: with other useful and neces-

sary tables ;" namely a table of Logistical Logarithms, and

three smaller tables to be used for finding the logarithms of

numbers to twenty places of figures. Of these tables of

Gardiner, only a small number was printed, and that by sub-

scription; and they have always been held in great estimatioi*

for their accuracy and usefulness.

An edition of Gardiner's collection was also elegantly

printed at Avignon in France, in 1770, with some additions,

namely, the sines and tangents for every single second in the

first four degrees, and a small table of iiyperbolic logarithms,

copied from a treatise on Fluxions by the late ingenious Mr.

Thomas Simpson : but this is not quite so correct as Gardi-

ner's own edition. The tables in all these books are to seven

places of figures.

Lastly, my own Mathematical Tables, being the most ac-

curate and best arranged set of logarithmic tables ever before

given; preceded also by a large and critical history of Tri-

gonometry and LogaritluTis, and terminating with a copious

list of the errors discovered in the princi-jial other tables of

this kind.

There have also lately appcired the following accurate and

elegant books of logarithms; viz. 1." Logarithmic l^ibles,"

by the late Mr. ?\Iicli;iel Taylor, a pupil of mine, and author

of " The Sexagesimal Table." His work consists of three

tables; 1st, The Logarithms of Common Numbers from 1 to

1260, each to 8 places of figures; 2dlv, The Logarithms of

all Numbers from 1 to 101000, each to 7 places; 3dlv, The

Logarithmic Sines and Tangents to every Second of the Qua-

drant, also to 7 places of figures: a work that must ])rove

higlily useful to such persons as may be employed in very nice

and accurate calculations, such as astroncunical t;Jjlcs, dkc.

The author dying when the tables were nearly all j)rintc(l oil'.
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the Rev. Dr. Maskelyne, astronomer royal, supplied a pre-

face, containing an account of the work, with excellent pre-

cepts for the explaimtion and use of the tables: the whole

very accurately and elegantly printed on large 4to, 1792.

2. " Tables Portatives de Logarithmes, publiees a Londres

par Gardiner," &c. This work is most beautifully printed in

a neat portable 8vo volume, and contains all the tables in

Gardiner's 4to volume, with some additions and improve-

ments, and with a considerable degree of accuracy. Printed

at Paris, by Didot, 1793. On this, as well as several oti)er

occasions, it is but justice to remark the extraordinary spirit

and elegance with which the learned men, and the artisans of

the French nation, undertake and execute works of merit.

3. A second edition of the " Tables Portatives de Loga-

rithmes," &c. printed at Paris with the stereotypes, of solid

pages, in 8vo. 1795, by Didot. This edition is greatly en-

larged, by an fextension of the old tables, and many new ones
;

among which are the logarithm sines and tangents to every
ten thousandth part of the quadrant, viz. in which the qua-
drant is first divided into 100 equal parts, and each of these

into 100 parts again.

4. Other more extensive tables, by Borda and Delambre,
were published at Paris in 1801. Besides the usual table of

the logavithms of common numbers, and a large introduction,

on the nature and construction of them, this work contains

very extensive tables of decimal trigonometry, arranged in a

new and carious way, and containing the log. sines, tangents,
and secants, of the quadrant, divided first into 100 degrees,
each degree into 100 minutes, and each minute into 100

seconds.

The logarithmic canon serves to find readily the logarithm

of any assigned number; and we are told by Dr. Wallis, in

the second volume of his Mathematical Works, that an anti-

logarithmic canon, or one to find as readily the number cor-

responding to every logarithm, was begun, he thinks, by
Harriot the algebraist, who died in 1621, and completed by
Walter Warner, the editor of Harriot's works, before 1640;

z 2
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which ingenious performance, it seems, ^vas lost, for want of

encouragement to publish it.

A small specimen of such numbers was published in the

Philosophical Transactions for the year 1714, by Mr. Long
of Oxford

; but it was not till 1742 that a complete antiloga-
rithmic canon was published by Mr. James Dodson, wherein
he has computed the numbers corresponding to every loga-
rithm from 1 to 100000, for 11 places of figures.

TRACT XXI.

THE COXSTRUCTION OF LOGARITHMS, &C,

Haying, in the last Tract, described tlie several kinds of

logarithms, their rise and invention, their nature and proper-

ties, and given ome account of tlic principal early cultivators

of them, with the chief collections that have been published

of such tables; proceed we now to deliver a more particular

account of the ideas and methods employed by each author,

and the peculiar modes of construction made use of by them.

And first, of the great inventor himself, Lord Na))icr.

Napier s Construclion of Logarithms.

Tiie inventor of logarithms did not adapt them to the series

of natund numbers 1, 2, 3, 4, 5, &c,as it was not his principal

idea to extend them to all arithmetical operations in general ;

but he confined his labours to that circumstance which first

sufvrrested the necessity of the invtuition, and adajjtcd his lo-

iraritimis to the approximate inmibers which express the na-

tural sines of every minute in t!ie quadrant, as they had been

set down by former writers on trigonometry.

. The same restricted itiea was pursued through his method

of constructing the logarithms. As the lines of the .sines of

all arcs are parts of the radius, or sine ci the quadrant, which
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Sin3S. Log.

AjO

I

2

vriLs therefore called the simis tottts^ or whole sine, he conceived

the line of the radius to be described, or run over, by a point

movingalong it in such a manner, that in equal portions oftime

it generated, or cut off, parts in a decreasing geometrical pro-

gression, leaving the several remainders, or sines, in geome-
trical progression also

;
while another point, in an indefinite

line, described equal parts of it in the same equal portions of

time; so that the respective suras of these, or the whole line

generated, were always the arithmeticals or logarithms of

these sines. Thus, flz is the given radius oh which

all the sines are to betaken, and a&c the indefinite

line containing the logarithms; these lines being
each generated by the motion of points, beginning
at A, a. Now, at the end of the 1st, 2d, 3d, &.c,

moments, ar equal small portions of time, the mov-

ing points being found at the places marked 1, 2,

3, &c; then za, zl, z2, zS, &c, will be the series of

natural sines, and aO, or 0, a1, a2, a3, &c, will be

their logarithms ; supposing the point which gene-
rates as to move every where with a velocity de-

creasing in proportion to its distance from z, namely >

its velocity in the points 0, 1, 2, 3, Sec, to be re-

spectively as the distances 2O, zl
, z2, z'i, &c, Avhile

the velocity of the point generating the logarithmic line a&c
remains constantly the same as at first in the point a or 0.

Hitherto the author had not fully limited his system or scale

of logarithms, having only supposed one condition or limita-

tion, namely, that the logarithm of the radius az should beO:

whereas two independent conditions, no matter Avhat, are

necessary to limit the scale or system of logarithms. It did

not occur to him that it was proper to form the other limit,

by affixing some particular value to an assigned number, or

part of the radius : but, as anotlicr condition was necessary,
he assumed this for it, namely, that the two generating points

should begin to move at a and a with equal velocities; or that

the increments fil and a1, described in the first moments,
should be equal ;

as he liiought this circumstance would be

7

&c.

&c.
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attended with some little ease in the computation. And this

is the reason that, in his table, the natural sines and their 1q-

garithms, at the complete quadrant, have equal differences ;

and this is also the reason why his scale of logarithms happens

accidentally to agree with whathaye since been called the hy-

perbolic logarithms, which have numeral differences equal to

those of their natural numbers, at the beginning; except only
that these latter increase with the natural numbers, and his

on the contrary decrease; the logarithm of the ratio of 10 to

1 being the same in both, namely, 2-30258509.

And here, by the way, it may be observed, that Napier's
manner of conceiving the generation of the lines of the natural

numbers, and their logarithms, by the motion of points, is very
similar to the manner in which Newton afterwards considered

the generation of magnitudes in his doctrine of fluxions; and

it is also remarkable, that, in art. 2, of the " Habitudines

Logarithmorum et suorum naturalium numerorum inviccm,"

in the appendix to the " Constructio Logarithmorum," Napier

speaks of the velocities of the increments or decrements of

the logarithms, in the same way as Newton does of his fluxions,

namely, where he shows that those velocities, or fluxions, arc

inversely as the sines or natural numbers of the logarithms ;

"which is a necessary consequence of the nature of the gene-
ration of those lines as described above

;
with this alteration,

however, that now the radius az must be considered as gene-
rated by an equable motion of the point, and the indefinite

line A&c by a motion increasing in the same ratio as the other

before decreased
;
which is a supposition that Napier must

have had in view when he stated that relation of the fluxions.

Having thus limited his system, Napier proceeds, in the

posthumous work of 1619, to explain his construction of the

lofjarithmic canon; and this he eflects in various wavs, but

chiefly by generating, in a very easy manner, a series oi pro-

portional numbers, and their arithmeticals or logarithms; and

then finding, i)y proportion, the logarithms to the natural

sines, from those of the nearest numbers among the original

proportionals.
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After describing the necessary cautions he n^ade use of, to

preserve a sufficient degree of accuracy, in so long and com-

plex a process of calculation
; such as annexing several

ciphers, as decimals separated by a point, to his primitive

numbers, and rejecting the decimals thence resulting after

the operations M'ere completed ; setting the numbers down to

the nearest unit in the last figrure ; and teaching the arithme-

tical processes of adding, subtracting, multiplying, and divid-

ing theliqiits, between which certain unknown numbers must

lie, so as to obtain the limits between which the results must
also fall; I say, after describing such particulars, in order to

clear and smooth the way, he enters on the great field of

calculation itself. Beginning at radius 10000000, he first

constructs several descending geometrical series, but of such

a nature, that they are all quickly formed by an easy conti-

nual subtraction, and a division by 2, or by 10, or 100, &c,
"which is done by onl}' removing the decimal point so many
places towards the left-hand, as thei-e are ciphers in the divi-

sor. He constructs three tables of such series : The first of

these consists of 100 numbers, in the pro])ortion of radius to

radius minus 1, or of 10000000 to 9999999 ;
all which are

found by only subtracting from each its 10000000th part,

which part is also found by only removing each figure seven

places lower: the last of these 100 proportionals is found to

be 9999900-0004950.

The 2d table contains

50 numbers, which are

in the continual propor-

tion of the first to the last

in the first table, namely,

of 10000000-0000000 to

9999900 0004950, or

nearly the proportion of 100000 to 99999; tliese tlierefore

are found bv only removing tlie figures of each number 5

places lower, and subtracting them from the same number :

the last of these he finds to be 999500r222927. And a spe-

cimen of these two tables is here annexed.

No.
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The 3d table consists of 69 columns, and each column of

21 numbers or terms, which terms, in every column, are in

the continual proportion of 10000 to 9995, that is, nearly as

the first is to the last in the 2d table
;
and as 10000 exceeds

9995 by the 2000th part, the terms in every column will be

constructed by dividing each upper number by 2, removing
the figures of the quotient 3 places lower, and then subtract-

ing them
;
and in this way it is proper to construct only

the first column of 21 numbers, the last of which will be

9900473-5780 : but the 1st, 2d, 3d, &c, numbers, in all the

columns, are in the continual proportion of 100 to 99, or

nearly the proportion of the first to the last in the first co-

lumn; and therefore these will be found by removing the

figures of each preceding number two places lower, and sub-

tracting them, for the like number in the next column. A

specimen of this 3d table is as here below.

The Third Table.
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more than easy subtractions
;
which proportionals nearly coin-

cide with all the natural sines from 90 down to 30''. >

To obtain the logarithms of all those proportionals, he de-

monstrates several properties and relations of the numbers

and logarithms, and illustrates the manner of applying them.

The principal of these properties areas follow : 1st, that the

logarithm of any sine is greater than the difference between

that sine and the radius, but less than the said difference when

increased in the proportion of the sine to radius*
;
and 2dly,

that the difference between the logarithms of two sines, is less

than the difference of the sines increased in the proportion of

the less sine to radius, but greater than the said difference of

the sines increased in the proportion of the greater sine to

radius f.

Hence, by the 1st theorem, the logarithm of lOOOOOOO, the

radius or first term in the first table, being 0, the logarithm
of 9999999, the 2d term, will be between 1 and 1-0000001,
and will therefore be equal to 1*00000005 ver}' nearly : and

this will be also the common difference of all the terms or

proportionals in the first table; therefore, by the continual

addition of this logarithm, there will be obtained the loga-
rithms of all these 100 proportionals; consequently 100 times

the said first logarithm, or the last of the above sums, will

* By this first tlieoiem, t being radius, tlie logarithm of the sine s is between

r~s and r; and therefore, when s differs but little from r, the logarithm of j
s

(r + j) X (r
will be near! V equal to

,
the arithmetical mean between the limits

2^

r J and r; but still nearer to [r j)V or v'''''5^'''^Seometricalmeaa
S .1 s

between the said limits.

-j-
B\' this second theorem, the difterence between the logarithms of the two

S J S s

sines S and j, lyim? between the limits r and -r, will, when those sines
s S

differ but httle, be neariv equal to --:'- or :

r, their arithmeti-

S J . S J
cal mean : or nearly r, tlie seometrical mean ; or nearly = 2r, bv sub-

y^/is

' '
S + S

'

stituting in tht- last dtiioininator, ^ (? + /) for ^Si, to wliich it is near!v equal.
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give 100-000005, for the logarithm o^ 9D99900-0(}Oi950, die

Jast of the said 100 proportions.

Then, by the 2d theorem, it easily appears, that '0004950

is the difference between the logarithms of 9999900-0004950

and 9999900, the last term of the first tabic, and the 2d term

of the second table; this then being added to the last loga-

rithm, gives 1 00-0005000 for the logarithm of the said 2d

term, as also the conmion difference of the logarithms of all

the propoitions in the second tabic; and therefore, by conti-

nually adding it, there ^vill be generated the logarithms of all

these proportionals in the second table
;
the last of which is

5000-025, answering to 9995001-222927, the last term of that

table.

Again, by the 2d theorem, the difference between the loga-
rithms of this last proportional of the second table, and the

2d term in the first column of the third table, is found to be

1-2235387; which being added to the last logarithm, gives

5001-2485387 for the logarithm of 9995000, the said 2d term

of the third table, as also the common difference of the loga-

rithms of all the proportionals in the first column of that

table; and that this, therefore, being continually added, gives

all the logarithms of that first column, the last of which is

100024-97077, the logarithm of 9900473-5780, the last term

of the said column.

Finally, by the 2d theorem again, tlie difference between

the logarithms of this last number and 9900000, the 1st term

in the second column, is 478'3502; which being added to the

last logarithm, gives 100503-3210 for the logarithm of the

said 1st term in the second column, as well as the common
difference of the logarithms of all the numbers on the same

line in every line of the table, namely, of all the 1st terms,

of all tliC 2d, of all the 3d, of all the 4th, sxe, teruis, infill the

columns; and which, therefore, being continually added Lu

the logarithms in the first column, will give the corre-^jjoiiclii;;:,

logarithms in all the oilier columns.

And thus is completed wliat the author calls I'ne liuiieal

Kvble, in which lie retains only one decimal place in the Joga-
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rithms (or artificials, as be always calls them in Iiis tract on

the construction), and four in the naturals. A specimen of

the table is as here follows:

Radical Table.
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by some of these numbers, till he finds the product ucarly

(]ual to one of the tabular numbers
;
then by means of this

and the second theorem, the logarithm of this product is

found ; to which adding the logaritlim tliat answers to tiie

multiple above mentioned, the sum is the logarithm sought.

But the other method is still much easier, and is derived from

this property, which he demonstrates, namely, as half radius

is to the sine of half an arc, so is the cosine of the said half

arc, to the sine of the whole arc ; or as y- radius : sine of an

arc : : cosine of the arc : sine of double arc
;
hence the loga-

rithmic sine of an arc is found, by adding together the loga-

rithms of half radius and of the sine of the double arc, and

then subtracting the loscarithmic cosine from the sum.

And thus the remainder of the sines, from 30" down to 0,

are easily obtained. But in this latter way, the logarithmic

sines for full one half of the quadrant, or from to 45 degrees,

he observes, may be derived ; the other half having already

been made by the general method of the radical table, by one

easy division and addition or subtraction for each.

We have dwelt the lono;er on this work of the inventor of

logarithms, because I have not seen, in any author, an account

of his method of constructing his table, though it is perfectly

different from every other method used by the later compu-

ters, and indeed almost peculiar to his species of logarithms.

The whole of this work manifests great ingenuity in tlie de-

signer, as well as much accuracy. But notwithstanding tlic

caution he took to obtain his logarithms true to the nearest

unit in the last figure set down in the tables, by extending
the numbers in the computations to several decimals, and

other means; he had been disa|)})ointed of that end, cither

by the inaccuracy of his assistant computers or transcribers,

or through some other cause ; as the logarithms in the t;i!)lf

are commonly very inaccurate. It is remarkable too, that in

this tract on the construction of the logarithms, Lord Napu i

never calls them logaritlnns, but every where ariiiichi/--, ;;.s

opposed in idea to the nati'.ral numbers: and this notinn, (if

Tiatural an.d nnificial numbers, I take to ha\e Ikh-u hi^ Hv-t
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idea of this matter, and that he altered the word
artificials to

Joganthms in his first book, on the description of them, when
he j)rinted it, in the year 1614, and that he would also have

altered the word every where in this posthumous work, if he

had lived to print it: for in the two or three pages of appen-

dix, annexed to the work by his son, from Napier's papers,
he again always calls them logarithms. This appendix relates

to the change of the logarithms to that scale in which 1 is the

logarithm of the ratio of 10 to 1, the logarithm of I, with or

without ciphers, being 0; and it appears to have been written

after Briggs communicated to him his idea of that change.

Napier here in this appendix also briefly describes some

methods, by which this new species of logarithms may be

constructed. Having supposed to be the logarithm of 1,

and 1, with any number of ciphers, as 10000000000, the

logarithm of 10; he directs to divide this logarithm of 10

and the successive quotients, ten times by 5 ; by which divi-

sions there will be obtained these other ten logarithms, viz.

2000000000, 400000000, 80000000, 16000000, 3200000,

640000, 128000, 23600, 5120, 1024: then this last logarithm,
and Its quotients, being divided ten times by 2, will give the.s<*.

otjjer ten logarithns, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1.

And the numbers answering to these twenty logarithms, v.e

are directed to find in this manner
; namely, extract the 5th

root of 10, with ciphers, then the 5th root of that root, and

so on, for ten continual extractions of the 5th root; so shali

these ten roots be the natural numbers belonginsi: to the fir.->t

ten logarithms, above found in continually dividing by 5

next, out of the last 5th root we are to extract the square

root, then the square root of this last root, and so on, for ten

successive extractions of tlie square root
;
so shall these iasr

ten roots be the natural numbers corresponding to the loga-

rithms or quotients an^irig from the last ten divisions by the

number 2. And from tb.ese twenty logarithms, 1
, 2, 4, 8, I -a,

&c, and their natural numbers, the author observes that other

logarithms and their numbers may be formed, namely, ov

adding the logarithms, and niultiplying their correspond!;)-'
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numbers. It is evident that this process would generate ra-

ther an antilogarithniic canon, such as Dodson's, tlian the

table of Briggs; and that the method would also be very

laborious, since, besides the very troublesome original ex-

tractions of the .^th roots, all the numbers would be very

large, by the multiplication of which the successive secondary
natural numbers are to be found.

Our author next mentions another method of deriving a

few of the primitive numbers and their logarithms, namely,

by taking continually geometrical means, first between 10

and I, then between 10 and this mean, and again between 10

and the last mean, and so on
;
and taking the arithmetical

means between their corresponding logarithms. He then

lays down various relations between numbers and their loga-

rithms; such as, that the products and quotients of numbers

answer to the sums and differences of their logarithms, and

that the powers and roots of numbers answer to the products
and quotients of the logarithms by the index of the power or

root, &c ;
as also that, of any two numbers whose logarithms

are given, if each number be raised to the power denoted by
t.'ic logarithm of the other, the two results will be equal. He
then delivers another method of making the logarithms to a

few of the prime integer numbers, which is well adapted for

constructing the common table of logarithms. This method

easily follows from what has been said above; and it depends
on this property, that the logarithm of any number in this

scale, is 1 h;ss than the number of places or figures contained

in that power of the given number whose exponent is

1 0000000000, or the loirarithm of 10, at least as to inteoer

numbers, for they reall}' differ by a fraction, as is shown by
Mr. Briggs in his illustrations of these properties, printed at

tlie end of this appendix to the construction of logarithms.

We shall here just notice one more of these relations, as the

maimer in which it is expressed is exactly similar to that of

tUixicuis and fluents, and it is this: Of any two numbers, as

the greater is to the less, so is the velocity of the increment

or decrement of the logarithms at the less, to the velocity of
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the increment or decrement of the logarithms at the greater :

that is, in our modern notation, as X : V :: ji to x, where *

and J! are the fluxions of the logarithms of X and Y.

Kepler's Constnidion of Logarithms.

The logarithms of Briggs and Kepler were both printed

the same year, 1624; but as the latter are of the same sort

as Napier's, we may first consider this author's construction

of them, before proceeding to that of Briggs's.

We have already, in the last Tract, described the natura

and form of Kepler's logarithms ; showing that they are of

the same kind as Napier's, but only a little varied in the form

of the table. It may also be added, that, in general, the ideas

which these two masters had on this subject, were of the same

nature
; only they were more fully and methodically laid

down by Kepler, who expanded, and delivered in a regular

science, the hints that were given by the illustrious inventor.

The foundation and nature of their methods of construction

are also the same, but only a little varied in their modes of

applying them. Kepler here, first of any, treats of loga-

rithms in the true and genuine way of the measures of ratios,

or proportions*, as he calls them, and that in a very full and

scientific manner : and this method of his was afterwards fol-

lowed and abridged by Mercator, Halley, Cotes, and others,

as we shall see in the proper places. Kepler first erects a

regular and purely mathematical system of proportions, and

the measures of proportions, treated at considerable lengtli

in a number of propositions, which are fully and chastely

demonstrated by genuine mathematical reasoning, and illu-

strated by examples in numbers. This part contains and

demonstrates both the nature and the principles of the struc-

*
Kepler almost always uses tlie term proportion ijjstead of ratio, which ws

shall also do in the account of his worR, as well as conform in expressions and

notations to his other peculiarities. It may also be here remarked, that I observe

the same practice in describing the works of other authors, the better to convey
the idea of their several methods and style. And this may serve to account for

6ooae seeming inequalitiei in the language of this history.
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ture of logarithms. And in the second part the author applies
those principles in the actual construction of his table, which

contains only 1000 numbers, and their logarithms, in the form

as we before described : and in this part he indicates the va-

rioug contrivances made use of in deducing the logarithms of

proportions one from another, after a few of the leading ones

had been first formed, by the general and more remote prin-

ciples. He uses the name logarithms, given them by the in-

ventor, being the most proper, as expressing the very nature

and essence of those artificial numbers, and containing as it

were a definition in the very name of tliem
;
but without

taking any notice of the inventor, or of the origin of those

useful numbers.

As this tract is very curious and important in itself, and is

besides very rare and little known, instead of a particular de-

scription only, we shall here giv^e a brief translation of both

the parts, omitting only the demonstrations of the proposi-

tions, and some rather long illustrations of them. The book

is dedicated to Philip, landgrave of Hesse, but is without

cither preface or introduction, and commences immediately
with the subject of the first part, which is intitled

" The De-

monstration of tlie Structure of Logarithms ;" and the con-

tents of it are as follow.

Postulate 1. That all proportions that are equal among
themselves, by whatever variety of coiij)lets of tern.s thev

may be denoted, are measured or expressed by the same

quantity.

Axio)n 1 . If there be any number of quantities of the same

kind, the proportion of tlie extremes is understood to be com-

posed of all the proportions of every adjacent couplet of

terms, from the first to the last,

1 Proposition. The mean proportional between two term-:,

divides the proportion of those terms into two equal \)vn-

porlions.

ylxiovi 2. Of any number of (juantities regularly increas-

ing, thi> means divide the ])roponion of tiie extremes into one

proportion mure than the number of the means.
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Postulate 2. That the proportion between any two terms

is divisible into any number of parts, until those parts become
less than any proposed quantity.

An example of this section is thenjnserted in a small table, in dividing the

proportion which is between 10 and 7 into 1073741 8:24 equal parts, by as many-
mean proportionals wanting one, namely, by taking the mean proportional be-

tween 10 and 7, then the mean between 10 and this mean, and the mean between

10 and the last, and so on for 30 means, or 30 extractions of the square root,

the last or 30th of which roots is 99999999966782056900 ;
and the 30 power of

2, which is 1073741824, shows into how many parts the proportion between 10

and 7, or between 1000 &c, and 700 &c, is divided by 1073741824 means, each

of which parts is equal to the proportion between 1000 &c, and the 30th mean

999&C, that is, the proportion between lOOO&c, and 999&C, is the 1073741824th

part of the proportion between 10 and 7. Then by assuming the small differ-

ence 00000000033217943100, for the measure of the very small element of the

proportion of 10 to 7, or for the measure of the proportion of lOOO&c, to 999&C,
or for the logarithm of this last term, and multiplying it by 1073741824, the

number of parts, the product gives 35667.49481,37222.14400, for the logarithrti

of the less term 7 or 700 &c.

Postulate 3. That the extremely small quantity or element

of a proportion, may be measured or denoted by any quan-

tity whatever ;
as for instance, by the difference of the terms

of that element.

2 Proposition. Of three continued proportionals, the dif-

ference of the two first has to the difference of the two latter,

the same proportion Avhich the first term has to the 2d, or the

2d to the 3d.

3 Prop. Of any continued proportionals, the greatest terms

have the greatest difference, and the least terms the least.

4 Prop. In any continued proportionals, if the difference

of the greatest terms be made the measure of the proportion
between them, the difference of any other couplet will be less

than the true measure of their proportion.

5 Prop. In continued proportionals, if the difference of the

greatest terms be made the measure of their proportion, then

the measure of the proportion of the greatest to any other

term will be greater than their difference.

6 Prop. In continued proportionals, if the difference of the

greatest term and any one of the less, taken not immediately
VOL. I. A A
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next to it, be made the measure of their propoftion, then the

proportion whicli is between the greatest and any other term

greater than the one before taken, will be less than the differ-

ence of those terms
;
but the proportion which is between

the greatest term, and any one less than tliat first taken, will

be greater than their difference.

7 Prop. Of any quantities placed according to the order of

their magnitudes, if any two successive proportions be equal,

the three successive terms which constitute them, will be con-

tinued proportionals.

8 Prop. Of any quantities placed in the order of their mag-

nitudes, if the intermediates lying between any two terms be

not among the mean proportionals Avhich can be interposed

between the said two terms, then such intermediates do not

divide the proportion of those two terms into commensurable

proportions.

Besides the flemonstrations, as usual, several definitions are here given ; as of

commensurable proportiuns, &,c.

9 Prop, AVhen two expressible lengths are not to one an-

other as two figurate numbers of the same species, such as

two squares, or two cubes, there cannot fall between them

other expressible lengths, which shall be mean proportionals,

and as many in number as that species requires, namely, one

in the squares, two in the cubes, tiiree in the biquadrats, &.c.

10 Prop. Of any expressible quantities, following in the

order of their magnitudes, if the two extremes be not in the

proportion of two square numbers, or two cubes, or two other

powers of the same kind, none of the intermediates divide the

proportion into commensurables.

1 1 Prop. All the proportions, taken in order, which are

between expressible terms that are in arithmetical propor-

tion, are incommensurable to one another. As between 8.

13, 18.

12 Prop. Of any quantities placed in the order of their

magnitude, if the diilercuce of the greatest terms be made

the measure of t!ieir proportion, tlicn the difference between

any two others will be less than the measure of thtir propor-
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tion
;
and if the difference of the two least terms be made tHe^

measure of their proportion, then the differences of the rdst'

will be greater than the measure of the proportion btt\een-

Mr terms. ::9^i.J ^u oicai
,

" ^
i; i-i

Corol. If the measure of the proportion betsfle^W the greatest'

exceed their difference, then the propoftiofr'&ij this ttieasure

to the said difference, will be less thanT th^t dfa following
measure to the difference of its terms. Because proportiorials-

have the same ratio.
'

"- ": .
'^ *

1 3 Prop. If three quantities follow oaie another in thf* drdfer

of magnitude, the proportion of the two Idast will be con-

tained in the proportion of the extremes, aJ Jess- number 6f

times than the difference of the two least is contained in- tliej

difference of the extremes: And, on the cdnt4*ary, the pro-

portion of the two greatest will be contained in the proportioii

of the extremes, oftener than the difference of the former iV

contained in that of the latter. '.-... ,:.:>

Corol. Hence, if the difference of the two greater be equal
to the difference of the two less terms, the proportion between'

the two greater will be less than the proportion between th'

two less.
'

"

14 Prop. Of three equidifferent quantities, taken in order,

the proportion between the extremes is more than double the

proportion between the two greater terms.

Corol. Hence it follows, that half the proportion of the

extremes is greater than the proportion of the two greatest

terms, but less than the proportion of the two least.

15 Prop. If two quantities constitute a proportion, and

each quantity be lessened by half the greater, the remainders

will constitute a proportion greater than double the former.

16 Prop. The aliquot parts of incommensurable proportions
are incommensurable to each other.

n Prop. If one thousand numbers follow one another in

the natural order, beginning at 1000, and dilTermg all by

unity, viz. 1000, 999, 998, 997, kc ;
and the proportion be-

tween the two greatest 1000, 999, by continual bisection, be

cut into parrs thai are smaller than the excess of the propor-
A A 2
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tiou betweea the next two 999, 998, over the said proportion
between the two greatest 1000, 999 ; and then for the mean

sure of that small element of the proportion between 1000

and 99.9, there be taken the difi'erence of 1000 and that

mean proportional which is the other term of the element.

Again, if the proportion between 1000 and 998 be likewise

cut into double the number of parts which the former pro-

portion, between 1000 and 999, was cut into; and then for

the measure of the small element in this division, be taken the

difference of its terms, of which the greater is 1000. And, in

the same manner, if the proportion of 1000 to the following

numbers, as 997, &c, by continual bisection, be cut into

particles of such magnitude, as may be between 4 and i of

the element arising from the section of the first proportion
between 1000 and 999, the measure of each element will be

given from the difference of its terms. Then, this being

done, the measure of any one of the 1000 proportions will

be composed of as many measures of its element, as there are

of those elements in the said divided proportion. And all

these measures, for all the proportions, will be sufficiently

exact for the nicest calculations.

All these sections and measures of proportions are performed in the manner

of that described at postulate 2, and the operation is abundantly explained by
numerical calculations.

18 Prop. The proportion of any number, to the first term

1000, being known; there will also be known the proportion
of the rest of the numbers in the same continued proportion,
to the said first term.

So, from the known proportion between 1000 and 900,

there is also known the prop, of 1000 to 810, and to 729;

And from 1000 to 800, also 1000 to 640, and to 512 ;

And from 1000 to 700, also 1000 to 490, and to 343 ;

And from 1000 to 600, also 1000 to 360, and to 216 ;

And from 1000 to 500, also 1000 to 250, and to 125.

Corol. Hence arises the precept for squaring, cubing, &c
;

as also for extracting the square root, cube root, &,c. For it

will be, as the greatest number of the chiliad, as a dcnomi-
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nator, is to the number proposed as a numerator, so is this

fraction to the square of it, and so is this square to the cube
of it.

1 9 Prop. The proportion of a number to the first, or 1000,

being known
;
if there be two other numbers in the samepro-

portion to each other, then the proportion of one of these lo

1000 being known, there will also be known the proportion
of the other to the same 1000.

Corol. 1. Hence, from the 15 proportions mentioned in

prop. 18, will be known 120 others below J 000, to the same

1000.

For so many are the proportions, equal to some one or other of the said 15,

that are among the other integer numbers which are less than 1000.

Corol. 2. Hence arises the method of treating the Rule-of*

Three, when 1000 is one of the given terms.

For this is effected by adding to, or subtracting from, each other, the measures

of the two proportions of 1000 to each of the other two given numbers, accord-

ing as 1000 is, or is not, the first term in the Rule-of-Threc.

20 Prop. When four numbers ai-e proportional, the first to

the second as the third to the fourth, and the proportions of

1000 to each of the three former are known, there will also

be known the proportion of 1000 to the fourth number.

Corol. 1. By this means other chiliads are added to the

former.

Cerol. 2. Hence arises the method of performing the Rule-

of-Threc, when 1000 is not one of the terms. Namely from

the sum of the measures of the proportions of 1000 to the

second and third, take that of 1000 to the first, and the re-

mainder is the measure of the proportion of 1000 to the fourth

term.

Defimti'on. The measure of the proportion between 1000

and any less number, as before described, and expressed by
a number, is set opposite to that less number in the chiliad,

and is called its logarithm, that is, the number (apt$iMf)

indicating the proportion (Aoyov) which 1000 bears to that

number, to which the logarithm is annexed.

21 Prop. If the first or greatest number be made the radius
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of a circle, or smis totiis; every less number, considered as

the coaine of some arc, has a logarithm greater than the versed

sine of that arc, but less than the difference between the ra-

dius and secant of the arc; except only in the term next after

thef^dius, or greatest term, the logarithm of which, by the

|iypothesis, is made equal to the versed sine.

(iTbat is, if CD be made the logarithm of AC, or the mea- *

sure of the proportion of AC to AD
;
then the measure of

the proportion of AB to AD, that is the logarithm of AB,

will be greater than BD, but less than EF. And this is the

same as Napier's first rule in page 345. A BCD

22 Prop. The same things being supposed ;
the sum of the

versed sine and excess of the secant over the radius, is greater

than double the logarithm of the cosine of an arc.

Corol. The losr. cosine is less than the arithmetical mean

between the versed sine and the excess of the secant.

Precept 1. Any sine being found in the canon of sines, and

its defect below radius to the excess of the secant above ra-

dius, then shall the logarithm of the sine be less than half that

sum, but greater than the said defect or coversed sine.

Let there be the sine 99970.1490 of an arc :

Its defect below radius is 29.8510 the covers- and less than the loc:. slue :

Add the excess of the secant 29-8599

Sum 59.7109

its half or 29.8555 greater than the lo^'arithni.

Therefore the log. is between 29.8510

and 29.8555

Precept 2. The logarithm of th(^ sine being ftnnid, there

will also be found nearly the logarithm of the round or inte-

ger number, which is next less than the sine with a fraction,

by adding that fractional excess to the logarithm of the said

sine.

Thus, the logarithm of the sine 99970.149 is found to be about 29.854; ifnou

tlie logarithm of the round number 99970.000 be required, add I i9, the fractional

part of the sine, to its logarithm, observing tlie point, thus,

29.854

149

the sum 30.003 is the log. of llic round number 99970.000 nearly.
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23 Prop. Of three equidifferent quantities, the measure of
the proportion between the two greater terms, with the mea-
sure of the proportion between the two less terms, will con-
stitute a proportion, which Avill be greater than the proportion
of the two greater terms, but less than the proportion of the
two least.

Thus if AB, AC, AD be three quantities having the

equal differences BC, CD ;
and if the measure of the ^ g ^ ^

proportion of AD, AC, he, cd, and that of AC, AB be Ic;

then the proportion of cd to cb will be greater than the i i i

proportion of AC to AD, but less than the proportion bed
ofAB to AC.

24 Prop. The said proportion between the two measures

is less than half the proportion between the extreme terms.

That is, the proportion between be, cd, is less than half the

proportion between ab, ad.

Corol. Since therefore the arithmetical mean divides the

proportion into unequal parts, of which the one is greater,
and the other less, than half the whole; if it be inquired what

proportion is between these proportions, the answer is, that

it is a little less than the said half.

An Example of finding nearlii the limits, greater and less, to

the measure of any proposed proportion.

It being known that the measure of the proportion between 1000 and 900 is

10536.05, required the measure of the proportion 900 to 800, where the terms

1000, 9G0, 800, have equal dilFerences. Therefore as 9 to 10, so 10536.05 to

11706.72, which is less than 11773.30 tb.e measure of the proportion 9 to 8.

Again, as the mean proportional between 8 and 10 (which is 8.9442719) is to

U), so 10536.05 toll779-63, which is greater than the measureofthe proportion

between 9 and 8.

Axiom. Every number denotes an expressible quantity.

25 Prop. If the 1000 numbers, differing by 1, follow one

another in the natural order; and there be taken any two ad-

jacent numbers, as the terms of some proportion; the measure

of this proportion will be to the measure of the proportion
between the two greatest terms of the chiliad, in a proportion

greater than that which the greatest term 1000 bears to the
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greater of the two terms first taken, but less than the pro-

portion of 1000 to the less of the said two selected terms.

So, of the 1000 numbers, taking any two successive terms, as 501 and 500, the

logarithm of the former being 69114.92, and of the latter 69314.72, the differ-

ence of which is 199.80, Therefore, by the definition, the measure of the pro-

portion between 501 and 500 is 199.80. In like manner, because the logarithm

of the greatest term 1000 is 0, and of the next 999 is 100.05, the difference of

these logarithms, and the measure of the proportion between 1000 and 999, is

100.05. Couple now the greatest term 1000 with each of the selected terms

501 and 500 ; couple also the measure 199.80 with the measure 100.05; so shall

the proportion between 199.SO and 100.05, be greater than the proportion be-

tween 1000 and 501, but less than the proportion between 1000 and 500.

Corol. 1. Any number below the first 1000 being proposed,
as also its logarithm, the differences of any logarithms ante-

cedent to that proposed, towards the beginning of the chiliad,

are to the first logarithm (viz. that which is assigned to 999)

in a greater proportion than 1000 to the number proposed;
but of those which follow towards the last logarithm, they
are to the same in a less proportion.

Corol. 2. By this means, the places of the chihad may easily

be filled up, which have not yet had logarithms adapted to

them by the former propositions.

26 Prop, The difference of two logarithms, adapted to two

adjacent numbers, is to the difference of these numbers, in

a proportion greater than 1000 bears to the greater of those

numbers, but less than that of 1000 to the less of the two

numbers.

This 26th prop, is the same as Napier's second rule, at page Z^5.

27 Prop. Having given two adjacent numbers, of the 1000

natural numbers, with their logarithmic indices, or the mea-

sures of the proportions which those absolute or round num-
bers constitute with 1000, the greatest; the increments, or

differences, of these logarithms, will be to the logarithm of

tlie small element of the proportions, as the secants of the

arcs whose cosines are the two absolute numbers, is to the

greatest number, or the radius of the circle ;
so that, however,

of the said two secants, the less will have to the radius a less

proportion than the proposed difference has tp the first of all.
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but the greater will have a greater proportion, and so also will

the mean proportional between the said secants have a greater

proportion.

Thus if BC, CD be equal, also Id the logarithm of AB,
and cd the logarithm of AC ;

then the proportion of be lo

cd will be greater than the proportion of AG to AD, but

less than that of AF to AD, and also less than that of the

mean proportional between AF and AG to AD. A! WCD
i c d

Corol. 1. The same obtains also when the two terms differ,

not only by the unit of the small element, but by another

unit, which may be ten fold, a hundred fold, or a thousand

fold of that.

Corol. 2. Hence the differences will be obtained sufficiently

exact, especially when the absolute numbers are pretty large,

by taking the arithmetical mean between two small secants,

or (if you will be at the labour) by taking the geometrical
mean between two larger secants, and then by continually

adding the differences, the logarithms will be produced.

CoroL 3. Precept. Divide the radius by each term of the

assigned proportion, and the arithmetical mean (or still nearer

the geometrical mean) between the quotients, will be the re-

quired increment; which being added to the logarithm of the

greater term, Avill give the logarithm of the less term.

Example.

Let there be giten the logarithm of 700, viz. 35667.4948, to find the log to 699,

Here radius divided by 700 gives 1428571 &c.

and divided by 699 gives 1430672 &c.

the arithmetical mean is 142.962

which added to 35667.4948

gives the logarithm to 699 35810.4568

Corol. 4. Precept for the logarithms of sines.

The increment between the logarithms of two sines, is thus

found : find the geometrical mean between the cosecants, and

divide it by the difference of the sines, the quotient will be

the difference of the logarithms.
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Example.
r sine 2909 cosec. 543774682

O 'Z bine 5S18 coscc. 171887319

dif. 2909, geom. mean SiQS nearly.

The qooticnt 80000 exceeds the required increment of the logarithms, because

the secants are here so large.

Appendix. Nearly in the same manner it may be sliown,

that the second ditt'erences are in tlie duplicate proportion of

the first, and the third in the duplicate ot" the second. Thus,

for instance, in the beginning of the logarithms, the first dif-

ference is IQO.OOOOO, viz. equal to the difference of the num-

bers 1 00000.00000 and 99900.00000; the second, or difference

of the differences, 10000; the third 20. Again, after arriving

at the number of 50000.00000, the logarithms have for a dif-

ference 200.00000, which is to the first difference, as the

number 100000.00000 to 50000.00000; but the second dif-

ference is 40000, in which 10000 is contained 4 times; and

tfic thirti 328, in which 20 is contained 16 times. But since

it) treating of new matters we labour under the want of proper

v>-ords, therefore lest we should become too obscure, the de-

monstmtion is omitted untried.

28 Prop. No number expresses exactly the measure of tlie

proportion, between two of the 1000 numbers, constituted by
the foregoing method.

29 Prop. If the measures of all proportions be expressed
l)v numbers or logarithms ;

all proportions will not have as-

signed to them their due portion of measure^ to tlie utmost

accuracy,

30 Prop. If to tlie number 1000, the greatest of tlie chiliatl,

bci referred others that are greater than it, and tlie logarithm

of iOOO be made 0, the logarithms belonging to iho>e grcat'.T

numbers will be negative.

This concludes tlie first or scientific part of the work, the

principles of v/hich Kepler applies, in the second ))an, if) ilic

actual eou.struction ol' the first 1000 logarithms, winch ccr.i-

straction is pretty minnU'lv described. This pait is inUlied
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*' A very compendious method of constructing the Chiliad of

Logarithms;" and it is not improperly so called, the method

being very concise and easy. The fundamental principles
are briefly these : That at the beginning of the logarithms,
their increments or differences are equal to those of the na-

tural numbers: that the natural numbers may be considered

as the decreasing cosines of increasing arcs: and that the se-

cants of those arcs at the beginning have the same differences

as the cosines, and therefore the same differences as the loga-

rithms. Then, since the secants are the reciprocals of the

cosines, by these principles and the third corollary to the 27th

proposition, he establishes the following method of constitut-

ing the 100 first or smallest logarithms to the 100 largest

numbers, 1000, 999, 998, 997, &c, to 900. viz. Divide the

radius 1000, increased with seven ciphers, by each of these

numbers separately, disposing the quotients in a table, and

they will be tlie secants of tliose arcs which have the divisors

for their cosines; continuing the division to the 8th figure,

as it is in that place only that the arithmetical and geometri-
cal means differ. Then by adding successively the arithme-

tical means between every two successive secants, the sums

will be the series of logarithms. Or, bj^ adding continually

every two secants, the successive sums will be the series of

the double logarithms.

Besides the 100 logarithms, thus constructed, the author

constitutes two others by continual bisection, or extractions

of the square root, after the manner described in the second

postulate. And first he finds the logarithm wliich measures

the proportion betv.-een 100000.CO and 97656.25, which latter

terra is the third proportional to 1024 and 1000, each with two

ciphers ;
and this is effected by means of twenty-four continual

extractions of the square root, determining the greatest term

of each of twenty-four classes of mean proportionals; then

the difference between the greatest of tijese means and the

first or whole number 1000, with ciphers, being as often

doubled, there arises 2371.6,">26 for the logaritlun sought,
which made negative is the logarithm of 1021. Secondly,
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the like process is repeated for the proportion hetween the

Tiumbers 1000 and 500, from which arises 69314.7193 for the

Jogarithm of 500
;
which he also calls the logarithm of dupli-

cation, being the measure of the proportion of 2 to 1.

Then from the foregoing he derives all the other logarithms
in the chiliad, beginning with those of the prime numbers 1,

2, 3, 5, 7, &c, in the first 100. And first, since 1024', 512,

256, 128, 64, 32, 16, 8, 4, 2, 1, are all in the continued pro-

portion of 1000 to 500, therefore the proportion of 1024 to

1 is decuple of the proportion of lOOO to 500, and conse-

quently the logarithm of 1 would be decuple of the logarithm
of 500, if were taken as the logarithm of 1024

;
but since the

logarithm of 1024 is applied negatively, the logarithm of 1

must be diminished by as much: diminishing therefore 10

times the log. of 500, which is 693147.1928, by 2371.6526,

the remainder 690775.5422 is the logarithm of J ,
or of 100.00,

which is set down in the table.

And because 1, 10, 100, 1000, are

contitujcd proportionals, therefore

the proportion of 1000 to 1 is triple

of the proportion of 1000 to 100, and

consequently ^ of the logarithm of 1

is to be set for the logarithm of 100,

viz. 230258.5141, and this is also the

logarithm of decuplication, or of the '0001

proportion of 10 to 1. And hence,

multiplying this logarithm of 100 successively by 2, 3, 4, 5, 6,

and 7, there arise the logarithms to the numbers in the de-

cuple proportion, as in the margin
Also if the logarithm of dupli-

cation, or of the proportion of 2

to 1
,
be taken from the logarithm

of 1, there will remain the loga-
rithm of 2

;
and from the logarithm

of 2 taking the logarithm of 10,

there remains the logarithm of

the proportion of 5 to 1 ; which

Nos.
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taken from the logarithm of 1, there remains the logarithm
of 5. See the margin.

For the logarithms of other prime numbers he has recourse

to those of some of the first or greatest century of numbers,
before found, viz. of 999, 998, 997, &c. And first, taking

960, whose logarithm is 4082.2001 ; then by adding to this

logarithm the logarithm of duplication, there will arise the

several logai'ithms of all these numbers, which are in dupli-

cate proportion continued from 960, namely 480, 240, 120,

60, 30, 15. Hence the logarithm of 30 taken from the loga-

rithm of 10, leaves the logarithm of the proportion of 3 to 1 ;

which taken from the logarithm of 1 ,
leaves the logarithm of

3, viz. 580914.3106. And the double of this diminished by
the logarithm of 1, gives 47 1053.0790 for the logarithm of 9.

Next, from the logarithm of 990, or 9 x 10 x 11, which is

1005.03S1, he finds the logarithm of 11, namely, subtracting

the sum of the logarithms of 9 and 10 from the sum of the

logarithm of 990 and double the logarithm of 1, there remains

450986.0106 the logarithm of 11.

Again, from the logarithm of 980, or 2 x 10 x 7 x 7,

which is 2020.2711, he finds 496184.5228 for the logarithm

of 7.

And from 5129.3303 the logarithm of 950, or 5 x 10 x 19,

he finds 396331.6392 for the logarithm of 19.

In like manner the logarithm
to 998 or 4 X 13 X 19, gives the logarithm of 13 ;

19, gives the logarithm of 17 ;

29, gives the logarithm of 29 ;

23, gives the logarithm of 23
;

3 1
, gives the logarithm of S 1 .

And so on for all the primes below 100, and for many of

the primes in the other centuries up to 900. After Avhich, he

directs to find the logarithms of all numbers composed of

these, by the proper addition and subtraction of their loga-

rithms, namely, in finding the logari nm of the product of two

numbers, from the sum of the logarithms of the two factors

take the logarithm of 1, the remainder is the logarithm of tiie

to 969 or 3 X
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product. In this way lie shows that the logarithms of all

numbers under 500 may be derived, except those of the fol-

lowing 36 numbers, namely, 127, 149, 167, 173, 179, 211,

223, 251, 257, 263, 269, 271, 277, 281, 283, 293, 337, 347,

349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,

421, 431, 433, 439, 443, 449. Also, besides the composite
numbers between 500 and 900, made up of the products of

some numbers whose logarithms have been before determined,
there will be 59 primes not composed of them; which, with

the 36 above mentioned, make 95 numbers in all not composed
of the products of any before them, and the logaritlims of

which he directs to be derived in this manner
; namely, b}'^

considering the difl'erences of the logarithms of the numbers

interspersed among them
;
then by that method by which were

constituted the differences of the logarithms of the smallest

100 numbers in a continued series, we are to proceed here in

the discontinued scries, that is, by prop. 27, corol. 3, and

especially by the appendix to it, if it be rightly used, whence

those differences will be very easily supplied.

This closes the second part, or the actual construction of

the logarithms; after which follows the table itself, which has

been before described, pa. 323. Before dismissing Kepler's
work however, it may not be improper in this place to take

notice of an erroneous property laid down by him in the ap-

p'^ndix to the 27th prop, just now referred to
;
both because

it is an error in principle, tending to vitiate the practice, and

because it serves to show that Kcplcu* was not acquainted with

the true nature of the orders of dilFerenccs of the logarithms,

notwithstanding wliat he says above with respect to the con-

struction of them by means of their several orders of difTer-

ences, and that consequently he has no legal claim to any
share in tiie discoverv of the differential method, known at

that time to Briggs, and it would seem to him alone, it being

published in his logarithms in the same year, 1624, as Kepler's

book, togetlier with the true nature of the logarithmic orders

of differences, as we shall presently see in the following ac-

count of his works. Now this error of Kej^Ier's, here alluded
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to, is in that expression \vhere he says ti!t; ihlnl chiTerences

are in the duplicate ratio of the second diiTcrcnces, like as the

second differences are in the duplicate ratio of the first
; or,

in other words, that the third differences are as the squares

of the second differences, as uel! as the second differences as

the squares of the first
;
or tliat the third differences are as

the fourth po-cners of tiie first differences : Whereas in truth

the third differences are only as the cubes of the first differ-

ences. Kepler seems to have been led into this error by a

mistake in his numbers, viz. when he says in that ap}:>endix,

that " the third difference is 328, in which 20 is contained 16

times ;" for when the numbers are accurately computed, the

third difference comes out only 161, in which therefore 20 is

contained only 8 times, which is the cube of 2, the number

of times the one first difference contains the other. It would

hence seem that Kepler had hastily drawn the above errone-

ous principle from this one numerical example, or little more,
false as it is: for had he made the trial in many instances,

though erroneously computed, they could not easily have been

so uniformly so, as to afford the same false conclusion in all

cases. And therefore from hence, and what he says at the

conclusion of that appendix, it may be inferred, that he either

never attempted the demonstration of the property in ques-

tion, or else that finding hiniseif embarrassed with it, and

unable to accomplish it, he t'lcrefore dispatched it in tlie am-

biguous manner in which itappciirs.

But it may easily be shown, noi or.!y that tlic tliird differ-

ences of the logantlnns at diii'^rent places, are as the cubes

of the first differences; but, in genera!, tlsat the numbers in

any one and the same order of differences, at different places,

are as that power of the nuinoers in the i:;st differences, whose

index is the same as tliat of the order; or that the second,

third, fourth, &c differences, are as the second, tliird, fourtli,

&.C powers of the first differences. For t;ie several orders of

differences, when the absolute nnrnbers differ by indefinitclv

small parts, are as the several orders of fiaxions of the lo^a-

rithpis ; but if x be any number, then is the fluxion of
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the logai'ithra of x, to the modulus w, and the second fluxion,

or the fluxion of this fluxion, is , since Jc is constant j

and the third, fourtli, &c fluxions, are
"
-

, ,
'-

;; , &c;

that is, the first, second, third, fourth, fifth, sixth, &c orders

of fluxions, are equal to the modulus vi multiplied into each

of these terms,
X \x- 1.2i^ 1.2.3** 1.2.3.4xS 1.2.3.4.5x^_ -

, _ , &c;X ' x^ ' ^3 > x^ x^ ' x^

where it is evident, that the fluxion of any order is as that

power of the first fluxion, whose index is the same as the

number of the order. And these quantities would actually

be the several terms of the differences themselves, if the dif-

ferences of the numbers were indefinitely small. But they

vary the more from them, as the differences of the absolute

numbers differ from x, or as the said constant numerical dif-

ference 1 approaches towards the value of x the number

itself. However, on the whole, the several orders vary

pvoportionably, so as still sensibly to preserve the same ana-

logy, namely, that two nth differences are in proportion as

the nth powers of their respective first differences.

0/ Briggs's Construction of his Logarithms.

Nearly according to the methods described in p. 349, 3.^0,

Mr. Briggs constructed the logarithmsof the prime numbers,

asappears from his relation of this business in the "Arithmetica

Logarithmica," printed in 1624, where hu details, in an ample

manner, the whole construction and use of his logarithms.
The work is divided into 32 chapters or sections. In the first

of tlic'se, logarithms in a general sense are defined, and some

pvnpertics of them illustrated. In the second chapter he re-

marks, that it is most convenient to make O the logarithm of

1
;
and on that supposition he exemplifies these following

jnopertics, namely, that the logarithms of all numbers are

either the indices of powers, or proportional to them; that

tiie sum of the logarithms of two or more factors, is the loga-

rithm of their product ;
and tliat the diffcrenec of the loga-
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rithms of two numbers, is the logarithm of their quotient. la

the third section he states the other assumption, Avhich is ne-

cessary to limit his system of logarithms, namely, making i

the logarithm of 10, as that which produces the most conve-

nient form of logarithms : He hence also takes occasion to

show that the powers of 10, namely 100, 1000, &c, are the

only numbers which can have rational logarithms. The fourth

section ti*eats of the characteristic
; by which name he distin-

guishes the integral, or first part, of a logarithm towards the

left hand, which expresses one less than the number of inte-

ger places or figures, in the number belonging to that loga-

rithm, or how far the first figure of this number is removed

from the place of units
; namely, that is the characteristic

of the logarithms of all numbers from 1 to 10; and 1 the

characteristic of all those from 10 to 100; and 2 that of those

from 100 to 1000; and so on.

He begins the fifth chapter with remarking, that his loga-
rithms may chiefly be constructed by the two methods which

were mentioned by Napier, as above related, and for the sake

of which, he here premises several lemmata, concerning the

powers of numbers and their indices, and how many places of

figures are in the products of numbers, observing that the

product of two numbers will consist of as many figures as

there are in both factors, unless perhaps the product of the

first figures in each factor be expressed by one figure only,
r. hich often happens, and then commonly there will be one

figure in the product less than in the two factors; as also that,

of any two of the terms, in a series of geometricals, the re-

sults will he equal by raising each term to the power denoted

bv the index of the other; or any number raised to the power
denoted by the logarithm of the other, will be equal to this

latter number raised to the pov/er denoted by the logarithm
of the former; and consequently if the one number be 10,

whose logarithm is I Avith any number of ciphers, then any
number raised to the power whose index is 1000 &c, or the

logarithm of 10, will be equal to 10 raised to the power whose

index is the logarithm of that number ; that is, the logarithm
VOL. I. B
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of any number in this scale, where I is the logarithm of 10,

is the index of that power of 10 which is equal to the given
number. But the index of any integral power of 10, is one

less than the number of places in that power ; consequently
the logarithm of any other number, which is no integral power
of 10, is not quite one less than the number of places in that

power of the given number whose index is 1000 &.c, or the

logarithm of 10.

Find therefore the 10th, or 100th, or 1 000th &c, power of

any number, as suppose 2, with the number of figures in such

power; then shall that number of figures always exceed the

logarithm of 2, though the excess will be constantly less.

than 1.
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An example of this

process is here given
in the margin ; where

the 1st column con-

tains the several

powers of 2, the 2d

their corresponding

indices, and the 3d

contains the number
of places in the

powers in the first

column
;
and of these

numbers in tlie third

column, such as are

on the lines of those

indices that consist

of 1 with ciphers,

are continual ap-

proximations to the

logarithm of 2, be-

ing always too great

by less than 1 in the

last figure, t!i;it lo-

garithm being
30102999566f!9S &c.

And here, since the

exact powers of 2

are not required, but

onlv the number of

figures they consist

of, as shown by the

third colunni, onlv a

few of the first fi-

gures of the powers
in the first column

are r{?tained, those

being sufficient to

determine the uum-

Powers
of 2

2

4.

16

256

1024

10486
10995
12089

12676

16069
25823
66680

10715
11481

13182

Indices.

10

20
40
80

100
200
400
800

1000

2000
4000

17377 8000

19950
39803
15843
25099

99900
99801
9960 1

99204

99006
98023
96085
92323

90498
81899
67075
44990

36S46
13577
18433

33977

10000
20000
40000
80000

100000
200000
400000
800000

1000000
2000000
4000000
8000000

No. of Places or

logs.

4 log. of 2

7 log. of 4

13 log. of 16

25 loor. of 256

31 log. of 2

61 log. of 4

121 log. 16

241 loff. 256

302 log. 2
603 log. 4

1205 log. 16

2409 log. 256

3011 Jog. 2

6021 log. 4

120i2 log. 16

24083 locr. 256

30103 log. 2

60206 log. 4

120412 ^^
240824 P

301030
602060
1204120
2408240

10000000
20000000
40000000
80000000

100000000
200000000
400000000
80U00O0OO

46 129 ! lOOOOCOOOO

3010300
6020600
12041200
24082400

30103000
60206000
120411999
240823997

301029996
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ber of places in them ;
and the multiplications in raising these

powers are performed in a contracted way. so as to have the

fifth or last figure in them true to the nearest unit. Indeed

these multiplications might be performed in the same man-

ner, retaining only the first three figures, and those to the

nearest unit in the third place; which would make this a

very easy way indeed of finding the logarithms of a few prime

numbers.

It may also he remarked, that those several powers, whose

indices are 1 with ciphers, are raised by thrice squaring from

the former powers, and multiplying the first by the third of

these squares; making also the corresponding doublings and

additions of their indices : thus, the square of 2 is 4, and the

square of 4 is 16, the square of 16 is 256, and 256 multiplied

by 4 is 1024
;

in like manner, the double of 1 is 2, the double

of 2 is 4, the double of 4 is 8, and 8 added to 2 makes 10.

And the same for all the following powers and indices. The
numbers in the third column, which show how many places

are in the corresponding powers in the first column, arepro-
tluced in the very same way as those in the second column,

namely, by three duplications and one addition; only ob-

serving to subtract 1 when the product of the first figures

are expressed by one figure ; or when the first figures

exceed tliose of tlie number or power next above them. It

mnv further be observed, that, like as the first number in

each quatcrnioi!, or space of four lines or numbers, in the

third column, approximates to the logarithm of 2, the first

number in the first quaternion of the first column
;
so the

second, third, and fourth terms of each quaternion in the

third column, approximate to the logarithm of 4, 16, and

256, the second, third, and fourth numbers in the first qua-
ternion in the first column. And further, by cutting off one,

two, three, &.c, figures, as the index or integral part, from

the said logarithms of 2, 4, 16, and 256, the first, second,

third, and fourth numbers in the first quaternion of the first

column, the remaining figures will be the decimal part of the

logarithms of the corresponding first, second, third, and

fourth numbers in -the following second, third, fourth ^ &.c.
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quaternions : the reason of which is, that any number of any
quaternion in the first column, is the tenth power of the cor-

responding term in the next preceding quaternion. So that

the third column contains the logarithms of ail the numbers in

the first column : a property which, if Dr. Newton had been

aware of, he could not easily have committed such gross mis-

takes as are found in a table of his, similar to that above given,
in Avhich most of the numbers in the latter quaternions are

totally erroneous; and his confused and imperfect account of

this method would induce one to believe that he did not well

understand it.

In the sixth chapter our illustrious author l>egins to treat of

the other general method of finding the logarithms of prim

numbers, which he thinks is an easier way than the former,

at least when the logarithm is required to a gi*eat many places
of figures. This method consists in taking a great number
of continued geometrical means between 1 and the given
number whose logarithm is required ;

that is, first extracting
the square root of the given number, then the root of the

first root, the root of the second root, the root of the third

root, and so on till the last root shall exceed 1 by a vevy small

decimal, Q-reater or less accordine to the intended number <rf

places to be in the logarithm sought: then finding the loga-
rithm of this small number, by methods described below, he

doubles it as often as he made extractions of the square root,

or, which is the same thing, he multiplies it by such power
of 2 as is denoted by the said number of extractions, and the

result is the renuii'ed logarithm of tlie given number
;
as is

evident from the nature of logarithms. The rule to know
how far to continue this extraction of roots is, that the num-
ber of decimal places in the last root, be double the number

of true places required to be found in the logarithm, and that

the first half of them be ciphers; the integer being 1: the

reason of which is, that then the significant figures in the de-

cimal, after the ciphers, are directly proportional to those in

the corresponding logarithms; such figures in the natural

number being the half of those in the nexf preceding num-
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and therefore this last number being multiplied by any such

small decimal, found as above by continual extraction, the

product will be the corresponding logarithm of such last

root.

But as the extraction of so many roots is a very trouble-

some operation, our author devises some ingenious contri-

vances to abridge that labour. And first, in the 7th chapter,

b}' the following device, to have fewer and easier extractions

to perform : namel v, raising the powers from any given prima

number, whose logarithm is sought, till a power of it be found

such that its first figure on the left hand is 1, and the next to

it either one or more ciphers; then, having divided this power

by 1 with as many ciphers as it has figure., after the first, or

supposing- all after the first to be decimals, the continual roots

from this power are extracted till the decimal become suffi-

ciently small, as when the first fifteen places are ciphers; and

then by multiplying the decimal by 434-29 &c, he has the lo-

garithm of this last root
;
which logarithm multiplied by the

like power of the numbers, gives the logarithm of the first

number, from which the extraction was begun : to this loga-
rithm prefixing a 1, or 2, or 3, &c, according as this number

was found by dividing the power of the given prime number

by 10, or 100, or 1000, &c; and lastly, dividing the result by
the index of that power, the quotient will be the required

logarithm of tiie given prime nun)ber. Thus, to find the

logarithm ot 2: it is first raised to the 10th power,
as m the margm, before the first figures come to

be 10; then, dividing by 1000, or cutting off for

decimals all the figures after the fir^t or 1, the

root is continually extracted out oi the quotient

1,024, till the 47th extraction, wliich gives

1.00000,00000,00000,16851,60570,53949,77; the

decimal part of winch multi. by 43429 i'vc, gives

.00000,00000,00000,07318,55936,90623,9368
for its logarithm: and this being continually

doubled for 47 times, gives the logarithms of all

the roots up to the first number: or being at once

2



ST6 CONSTRUCTION OF TRACT 21.



TRACT 21. LOGARITHMS. S77

of 1 .0077696 ; to which adding 7, the logarithm of the divisor

10000000, and dividing by 9, the index of the power of 6,

there results 0.77815,12503,83643,63 for the logarithm of 6;

from which subtracting the logarithm of 2, there remains

0.47712,12547,19662,44 for the logarithm of 3,

In the eighth chapter our ingenious author decribes an ori-

ginal and easy method of constructing, by means of differ-

ences, the continual mean proportionals which were before

found by the extraction of roots. And this, Avith the other

methods of generating logarithms by differences, in this book

as well as in his "
Trigonometria Britannica," are I believe

the first instances that are to be found of making such use of

differences, and show that he was the inventor of what may
be called the '* Differential Method." He seems to have dis-

covered this method in the following manner: having observed ^

that these continual means between I and any number pro-

posed, found by the continual extraction of roots, approach

always nearer and nearer to the halves of each preceding

root, as is visible when they are placed together under each

other
;
and indeed it is found that as many of the significant

figures of each decimal part, as there are ciphers between

them and the integer 1, agree with the half of those above

them; I say, having observed this evident approximation, he

subtracted each of these decimal parts, which he called a, or

the first differences, from half the next preceding one, and by

comparing together the remainders or second differences,

called B, he found that the succeeding were always nearly

equal to i of the next preceding ones
;
then taking the differ-

ence between each second difference and ~ of the preceding

one, he found that these third differences, called c, were

nearly in the continual ratio of 8 to 1
; again taking the

difference between each c and
|-
of the next preceding, he

found that these fourth differences, called d, were nearly in

the continual ratio of 16 to 1
;
and so on, the 5th e, 6th f,

&c, differences, being nearly in the continual ratio of 32 to 1,

of 64 to 1, &c.
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These plain obser-

vations being made,

they very naturally

and cleariy su
2, jested

to him the notii^u and

method of cov.struct-

ing all the remaining

numbers, from the dif-

ferences of a few of

the first, found by ex-

tracting the roots in

the usual way. This

will evidently appear
from the annexed spe-

cimen of a few of tlie

first numbers in the

last example, for find-

jno: the losrarithm of

6; where, after the

*>th number, the rest

are supposed to be

constructed from the

preceding differences

of each, as here shown

in the lOth and 11th,

And it is evident that,

in proceeding, the

trouble will become

always less and less,

the ditrereuces gr;i{lu-

ai'iV vauisiiing, till at

last only the fir.^t dif-

Icrenccs remain; and

that generally each

h'ss dillcrciice is

shorter t'lati the next

^Teuler, by as many
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places as there are ciphers at the beginning of the decimal in

the number to be generated from the differences.

He then concludes this chapter with an ingenious, but not

obvious, method of finding the differences B, c, d, e, &c,

belonging to any number, as suppose the 9th, from that

number itself, independent of any of the preceding 8th, 7th,

6th, 5th, &.C; and it is this : raise the dBcimai a to the 2d,

3d, 4th, 5th, &c powers; then will the 2d (b), 3d (c), 4th

(d), &c differences, be as here below, viz.

B=iA%
C= iA^f 4^%
D= |A^f|A5+-rVA^+ -^A'+ s-';fA%

E= . 2|A'+ 7a*+ 10|-|a7 4- 12A'-tA'+- 1^ i^A'&c.
F= . . iS^^A^t- 81|a7+ 296-,si5.A'+ 834t-V7a9&c.

G= . . . 122^A^+1510-rV-5-A^ f 11475tV-jA96cc.

H= . . . . 1937^V7A^+ 4'7l5lA?A''&c.
1 = . . . . . 54902 jS_?^A''&.c

Thus in the 9th number of the foregoing example, omitting
the ciphers at the l)eginning of the decimals, we have

A = 1.51164,65999,05672,95048,8

A^= - 2,28507,54430,06381,6726
A^= - - 3,45422,65239,48546,2
A^= - - - 5,22156,97802,288

A-'= - - - - 7,89316,8205
A^= 11,93168,1

Consequentl}',

^a-= 1. 14253,77215,03190,8363 = B

-^a^ 1,72711,32619,74273

-I-A-*
- 65269,62225

lA' + iA-^^ 1,72"
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which.agree M-ith the hke differences in the foregoing spe-
cimen.

In the 9th chapter, after observing that from the logarithms
of 1, 2,3, 5, and 10, before found, are to be determined, by-

addition and subtraction, the logarithms of all other numbers

which can be produced from these by multiplication and

division ; for finding the logarithms of other prime numbers,

instead of that in the 7th chapter, our author then shows an-

other ingenious method of obtaining numbers beginning with

1 and ciphers, and such as to bear a certain relation to some

prime number bv means of which its logarithm may be found.

The method is tliis : Find three products having the common
difference 1, and such that two of them are produced from

fjtctors having given logarithms, and the third produced from

the prime number, whose logarithm is required, cither mul-

tipHed by itself, or by some other number whose logarithm is

given: then the greatest and ka;t of these thrce products

being multiplied together, and the mean by itself, there arise

two other products also diflfering by 1, of which the greater,

divided by the less, gives for a quotient I with a small deci-

mal, having several ciphers at the beginning. Then the lo-

garithm of this quotient being found as before, from it v. ill

be deduced the required logarithm of the given prime num-

ber. Thus, if it be proposed to find the logarithm of the

prime number 7
;
here 6x 8= 48, 7x 7 = 4i), and 5x 10= 50,

will be the thrce products, of which the logarithms of 48 and

50, the 1st and 3d, will be given from those of tlieir factors

C), 8, 5, 10 : also 48 x 50 = 2400, and 49 x 49 = 2401 are

tliC tv.-o new products, and 2401 -^2400= 1.0004i| their

(juoticnt: then the least of 44 means between 1 and this quo-
tient is l.O0OO0,O00OO,OO0O0,O23G7,98249,04^533, G40.5, which

Tnu!ti}>r!('d by 43429 &c, produces

0.00000,00000,00000,01028,40172,88387,2971/:; for its loga-

ririim; which being 44 times doubled, or nmltiplied i)y

175!>218G044416, produces O.C0018,09]83,45421, 30 for tlie

logarithm of the quotient 1.000414; which being added to

the logarithm ol the divisor 2400, ^nves the logarithm of the
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dividend 2401 ;
then the half of this logarithm is the loga-

rithm of 49 the root of 2401, and the half of this again gives

0.84509,80400,14256,82 for the logarithm of 7, which is the

root of 49. The author adds another example to illustrate

this method
;
and then sets down the requisite factors, pro-

ducts, and quotients for finding the logarithms of all other

prime numbers up to 100.

The iOth chapter is emploj^ed in teaching how to find the

logarithms of fractions, namely by subtracting the logarithm
of the denominator from that of tlie numerator, then the lo-

garithm of the fraction is the remainder; which therefore is

either abundant or defective, that is positive or negative, as

the fraction is greater or less than 1.

In the 1 1th chapter is shown an ingenious contrivance for

very accurately finding intermediate numbers to given loga-

rithms, by the proportional parts. On this occasion, it is re-

jnarked, that while the absolute numbers increase uniformly,
the logarithms increase unequally, with a decreasing incre-

ment; for which reason it happens, that either logarithms or

numbers corrected by means of the proportional parts, will

not be quite accurate, the logarithms so found being always
too small, and the absolute numbers so found too great; but

yet so however as that they approach much nesircr to accu-

racy tov.'ards the end of the table, where ti;c ii.creinents or

differences become much nearer to equality, than in the formci;

parts of the table. And from this property our author, ever

fruitful in happy expedients to obviate natural difficulties,

contrives a device to throw the proportional part, to be found

from the numbers and logarithms, always near the eiKi oftlu!

table, in whatever part they may happen naturally to fali.

And it is this; Rejecting the cliaracteristic of any given loi>a-

rithm, whose number is proposed to be found, take the arith-

metical complement of the decimal part, by subtracting st

from l.OOOi^c, the logarithm of 10
; then find in the table the

logarithm next less than this arithmetical complement, toge-

ther with its absolute number
;
to this tabular logaritlim add

the looarithra that was ^iven, and the sura will be a loiraririjia
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necessarily falling among those near the end of the table ;

find then its absolute number, corrected by means of the

proportional part, which will not be very inaccurate, as fall-

ing near the end of the table; this being <iivided by the ab-

solute numbtT, before found for the logarithm next less than

the arithnieticiil complement, the quotient will be the required

number answering to the given logarithm; which will be

much more coi-rect than if it had been found from the pro-

portional part of tiie difference where it naturally happened
to fall : and the reason of this operation is evident from the

nature of logarithms. But as this divisor, when taken as the

number answering to the logarithm next less than tfie arith-

metical complement, may happen to be a large prime num-

ber; it is furtlier remarked, that instead of this number and

its logarithm, we may use the next less composite number,
which has small factors, and zV.? logarithms ;

because the divi-

sion by those sn)all factors, instead of by the number itself,

will be performed by the short and easy way of division in

one line. And for the more easy finding proper composite
numbers and their factors, our author here subjoins an abacus,
or list of all such numbers, with their logarithms and com-

ponent factors, from 1000 to 10000; from which the proper

logarithms and factors are immediately obtained bv inspec-
tion. Thus, for example, to find the root of 10800, or the

mean proportional between I and lOSOO: The logarithm of

10800 is 4.03342,37554-,8695, the half of which is

2.01671,18777,4347 the logarithm of the number sought, the

arithmetical complement of which log. is0.983:8,8 1222,5653 ;

now the nearest log. to this in the aljacusis 0.98227, 1 2330,3957,

and its annexed number is 9600, the factors of which are 2,

6, 8
;
to this last

leg-, adding the log. of the number sought,

the sum is 0.99898,31 107,8304, wliose absolute number, cor-

rected by the proportioned part, is 997G6, 12651,6521 ,
which

being divided contir.iialiv bv 2, 6, 8, the factors of 96, the

last tjuotient is 103 9 2304S45471 ;
v,!iich is pretrv correct,

the true number being 103.923048454133= y" lOSOO.

We now arrive at the i2t!i and 1 3th chapters, in wliicli our
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ingenious author first of all teaches the rules of the Differ-

ential Method, in constructing logarithms by interpolation

from differences. This is the same method which has since

been more largely ti'cated of by later authors, and particu-

larly by the learned Mr. Cotes, in his *' Canonotechnia."

How Mr. Briggs came by it does not well appear, as he only
delivers the rules, without laying down the principles or in-

vestigation of them. He divides the method into two cases,

namely, Avhen the second differences are equal or nearly equal,

and when tl:ke differences run out to any length whatever.

The former of these is treated in the 12th chapter; and he

particularly adapts it to the interpolating 9 equidistant means

between two given terms, evidently for this reason, that then

the powers of 10 become the principal multipliers or divisors,

and so the operations pe: formed mentally. Tlie substance of

his process is this: Having given two absolute numbers with

their logarithms, to find the loo;arithms of 9 arithmetical

means between the given numbers; Between the given loga-
rithms take the 1st difference, as well as between each of

them and their next or equidistant

greater and less logarithms; and like-

wise the second differences, or the two

differences of these three first differen-

ces; then if these second differences be

equal, multiply one of them sevcrall}' by
the numbers 45, 35, &c, in the annexed

tablet, dividing each product by 1000,

that is cutting oft' three figures from

each ; lastly, to -^^ of the 1st dift'erence

of the given logarithms, add severally
the first five quotients, and subtract the other five, so shall

the ten results be the respective first differences, to be conti-

nually added, to compose the required series of logarithms.
Now this amounts to the same thing as wliat is at this day

taught in the like case: we know that if ^^ be any term of

an equidistant series of terms, and a, b, c, &:c, the first of

the 1st, 2d, 3d, &c, order of dift'erences; then the term Zs

1



384 CONSTRUCTION CF TRACT 2i,

whose distance from A is expressed by x, will be thus,

7.=A-^xa-\-x . ~b f .r .^ . ^\- + &c. And if now,
^vith our author, v.c make the 2d ditferences equal, t>ien c, </,

fj &c, will all vanish, or be equal to 0, and z will become
X 1

barely ^ A -\- xa -\- x . x-b.

Series of Terms.

A
A + rVa + T^h
A + -r\a + -44^b

^ + T^a + tV^^
^ + A + -^V^

^ + i^o + -i^'^h

^ + t'o'^ + ^%^b
A -\- a

The Differences.

A + ^-^b = Aa + i4^^

-^a + ^^_^ = ^a + T^^^d

T^ ~r T-QO^^
^= tV'^ "T" To^o^^

TO a
-

rl-^^ = -ro
-

T-oi^^

To^
~

TETo^ ^^ To<^
~

To 0-0 "

l'5-^
-

^J-o6 = t'o
-

T^-oo^

To" Tec'' To" Tqc^O^

Therefore if we take x successively equally to -jo, i-V) tV>-A

&c, we shall have the annexed series of terms with their dif-

ferences. Where it is to be observed, that our author had

reduced the dilTerences from the 1st to the 2d form, as he

thought it easier to multiply by 5 than to divide by 2. Also

all the last terms [x . ~^b) are set down positive, because in

the logarithms b is negative. If the two 2d differences be only

nearly equal, take a;i arithmetical mean between them, and

procceil with it the same as above with one of the equal 2d

<!ifferences. He also shows how to find any one single term,

independent of the rest
;
and concludes the chaj^er with point-

ing o'.it a method of finding the proportional part more ae-

on ratoly than before.

In the 13th chapter our author remarks, that the best way
oi'i'iliiivi^ up the intermediate chiliadsof his table, namely from

'JOOOO to 90G00, is bv quinquisection, or interposing four

('(juidistant means betv.een two given terms; the method of

performing this he thus particularly describes. Of tlie given
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terms, or logarithms, and two or three others on each side of

them, take the 1st, 2d, 3d, &c, differences, till the last differ-

ences come out equal, which suppose to be the 5th differences:

divide the first differences by 5, the 2d by 25, the 3d by 125j
the 4th by 625, and the 5th by 3125, and call the respective

quotients the 1st, 2d, 3J, 4th, 5th mean differences; or, in-

stead of dividing by these powers of 5, multiply by their re-

ciprocals -^, ^4^, T^^s^, ^^5?^, -roU-^; that is, multiply by
2, 4, 8, 16, 32, cutting off respectively one, two, three, four,

five figures, from the end of the products, for the several

mean differences: then the 4th and 5th of these mean differ-

ences are sufficiently accurate; but the 1st, 2d, and 3d are

to be corrected in this manner
;
from the mean third differ-

ences subtract 3 times the 5th difference, and the remainders

are the correct 3d differences; from the mean 2d differences

subtract double the 4th differences, and the remainders are

the correct 2d differences; lastly, from the mean 1st differ-

ences take the correct 3d differences, and 4- of the 5th differ-

ence, and the remainders will be the correct first differences.

Such are the corrections when the differences extend as far

as the 5th. However, in completing those chiliads in this

way, there will be only 3 orders of differences, as neither the

4th nor 5th will enter the calculation, but will vanish through
their smallness : therefore the mean 2d and 3d differences will

need no correction, and the mean first differences will be cor-

rected by barely subtracting the 3d from them. These pre-

paratory numbers being thus found, all the 2d differences of

the logarithms required, will be generated by adding conti-

nually, from the less to the greater, the constant 3d difference;

and the series of 1st differences will be found by adding the

several 2d differences; and lastly, by adding continually these

1st differences to the 1st given logarithm &c, the required

logarithmic terms will be generated.
These easy rules being laid dov/n, Mr. Briggs next teaches

how, by them, the remaining chiliads may best be completed :

namely, having here the logarithm for all numbers up to

20000, find the logarithm to every 5 beyond this, or of 20005,

VOL. I. c c
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20010, 20015, &C, in this manner; to the logarithms of the

5th part of each of these, namely 4001 , 4002, 4003, &c, add

the constant logarithm of 5, and the sums will be the logar

rithms of all the terms of the series 20005, 20010, 20015, &c :

end these logarithms will have the very same differences as

those of the series 4001, 4002, 4003, &c; by means of which

therefore interpose 4 equidistant terms by the rules above
j

and thus the whole canon will be easily completed.

Briggs here extends the rules for correcting the mean dif-

ferences in quinquisection, as far as the 20th difference; he

also lays down similar rules for trisection, and speaks of ge-

neral rules for any other section, but omitted as being less

easy. So that he appears to have been possessed of all that

Cotes afterwards delivered in his " Canonotechnia sive Con-

structioTabularum per Dliierentias," drawn from the Differ-

ential Method, as their general rules exactly agree, Briggs's

mean and correct differences being by Cotes called round and

quadrat differences, because he expresses them by the num-
bers 1, 2, 3, &c, written respectively within a small circle and

square.

Briggs also observes, that the same rules equally apply to

the construction of equidistant terms of any other kind, such

as sines, tangents, secants, the powers of numbers, &c : and

further remarks, that, of the sines of three equidifferent arcs,

all the remote differences mav be found by the rule of pro-

portion, because the sines and their 2d, 4th, 6th, 8th, &.c

differences, are continued proportionals, as are also the 1st,

3d, 5th, 7th, &c differences, among themselves ; and, like as

the 2d, 4th, 6th, &c differences are proportional to the sines

of the mean arcs, so also are the 1st, 3d, 5th, &c differences

proportional to the cosines of the same arcs. Moreover, with

/regard to the powers of numbers, he remarks the following
curious properties; 1st, that they will each have as many
orders of differences as are denoted by the index of the

power, the squares having two orders of differences, the cubes

three, the 4th powers four, &c; 2d, that the last differences

'will be ail equal, and each equal to the common difference
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of the sides or roots raised to the given power, and multiplied

by 1x2x3x4- &c, continued to as many terms as there are

units in the index: so, if the roots differ by 1, the second

difference of the squares will be each 1 x 2 or 2, the 3d dif-

ferences of the cubes each 1x2x3 or 6, the 4th differences

of the 4th powers each 1x2x3x4 or 24, and so on ; and if

the common difference of the roots be any other number 7z,

then the last differences of the squares, cubes, 4th powers, 5th

powers, &c, will be respectively 27z*, 6n% 24w'^, I20n\ &c.

Besides what was shown in the 11th chapter, concerning
the taking out the logarithms of large numbers by means of

proportional parts, Briggs emplo3's the next or 14th chapter
in teaching how, from tiie first ten chiliads only, and a small

table of one page, here given, to find the number answering
to any logarithm, and the logarithm to any number, consist-

ing of fourteen places of figures*.

JHavingthus fully shown the construction and chief proper-
ties of his logarithms, our ingenious author, in the remaining

eighteen chapters, exemplifies their uses in many curious and

important subjects; such as The Rule-of-Three, or Rule of

Proportion; finding the roots of given numbers; finding any
number of mean proportionals between two given terms; with

other arithmetical rules : also various geometrical subjects,

as 1st, Having given t!ie sides of any plane triangle, to find

the area, the perpendicular, the angles, and the diameters of

the inscribed and circumscribed circles; 2d, In a right-angled

triangle, having given any two of these, to find the rest, viz.

one leg and the hypotenuse, one leg and the sum or differ-

ence of the hypotenuse and the other leg, the two legs, one

leg and the area, the area and the sum or difference of the

legs, the hvpotenuse and sum or difference of the legs, the

hypotenuse and area, and the perimeter and area
; 3d, Upon

a given base, to describe a triangle, equal and isoperimetrical

Tt is no more than a large exemplification of this method of Briggs'sJhat

h.'s been printed so late as IT?!, in a 4to tract, by Mr. Robert Flower, under

the title of " The Radii, A New Wiy of making Logarithms." Though

]!riggi'.T work mi_ght not be known to this writer.

C C 2
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to another triangle given; 4th, To describe the circumference

of a circle so, that the three distances from any point in it,

to the three angles of a given plane triangle, shall be to one

another in a given ratio
; 5th, Having given the base, the

area, and the ratio of the two sides, of a plane triangle, to

find the sides; 6th, Given the base, difference of the sides,

and area of a triangle, to find the sides; 7th, To find a tri-

angle whose area and perimeter shall be expressed by the

same number ; 8th, Of four given lines, of which the sum of

any three is greater than the fourlh, to form a quadrilateral

figure about which a circle may be described ; 9th, Of the

diameter, circumference, and area of a circle, and the surface

and solidity of the sphere generated by it, having any one

given, to find any one of the rest
; 10th, Concerning the el-

lipse, spheroid, and gauging ;
1 1th, To cut a line or a num-

ber in extreme and mean ratio; 12th, Given the diameter of a

circle, to find the sides and areas of the inscribed and circum-

scribed regular figures of 3, 4, 5, 6, 8, 10, 12, and 16 sides
;

13th, Concerning the regular figures of 7, 9, 15, 24, and 30

sides; 14th, Of isoperimetrical regular figures; 15th, Of

equal regular figures; and 16th, Of the sphere and the 5

regular bodies; which closes this introduction. Such of these

problems as can admit of it, are determined by elegant geo-
metrical constructions, and they are all illustrated by accurate

arithmetical calculations, performed by logarithms ; for the

exemplification of which they are purposely given.
At the end he remarks, that the chief and most necessary

use of logarithms, is in the doctrine of spherical trigonome-

try, which he here promises to give in a future work, and

which was accomplished in his Trigonometria Britannica, to

the description of which we now proceed.

Of Briggs's Trigonometria Britannica.

At tlie close of the account of writings on the natural sines,

tangents, and secants, we omitted the description of this work
of our learned author, though it is periiaps the greatest of

this kind, all things considered, tliat ever was executed by one
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person ; purposely reserving the account of it to this place,
not only as it is connected with the invention and construction

of logarithms, but thinking it deserved more peculiar and dis-

tinguished notice, on account of the importance and origin-

ality of its contents. In the first place, we observe that the

division of the quadrant, and the mode of construction, are

both new
; also the numbers are far more accurate, and are

extended to more places, than they had ever been before.

The circular arcs had always been divided in a sexagesimal

proportion ;
but here the quadrant is divided into degrees and

decimals, as this is a much easier mode of computation than

by 60ths
;

the division being completed only to lOOths of

degrees, though his design was to have extended it to lOOOths

of degrees. And, besides his own private opinion, he was

induced to adopt this mode of decimal divisions, partly at

the request of other persons, and partly perhaps from the

authority of Vieta, pa. 29 " Calendarii Gregoriani." And it

is probable that computations by this decimal division would

have come into general use, had it not been for the publica-
tion of Vlacq's tables, which came out in the interval, and

were extended to every 10 seconds, or 6th parts of minutes.

But besides this method, by a decimal division of the degrees,

of which the whole circle contains 360, or the quadrant 90,

in the 1 Uh chapter he remarks that some other persons were

inclined rather to adopt a complete decimal division of the

whole circle, first into 100 parts, and each of these into 1000

parts ;
and for their sakes he subjoins a small table of the

sines of every 40th part of the quadrant, and remarks, that

from these few the wliole may be made out, by continual

quinquisections ; namely, 5 times these 40 make 200, tlien 5

times these give 1000, thirdly 5 times these give 5000, and

lastly, 5 times these give 2.5000 for the whole quadrant, or

1 00000 for the whole circumference.

But to return. Our author's large table consists of natural

sines to 15 places, natural tangents and secants each to 10

places, logarithmic sines to 14 places, and logarithmic tan-

gents to 10 places each, beside the characteristic. A mo.st
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stupefidous performance ! The table is preceded by an intro-

duction, divided into two books, the one containing an ac-

count of the truly ingenious construction of the table, by the

author himself; and the Other, its uses in trigonometry, &c,

by Henry Gellibrand, professor of astronomy in Gresham

College, who remarks in the preface, that the work was com-

posed by the author about the year 1600
; though it was only

published by the direction of Gellibrand in 1633, it having
been printed at Gouda under the care of Vlacq, and by the

printer of his Trigonometria Artificialis, which came out the

same year.

After briefly mentioning the common methods of dividing
the quadrant, and constructing the tables of sines, &c, from

the ancients down to his own time, he hastens to the descrip-

tion of his own peculiar and truly ingenious method, which

is briefly this: having first divided the quadrant into a small

number of parts, as 72, he finds the sine of one of those parts ;

then from it, the sines of the double, triple, quadruple, &c,

up to the quadrant or 72 parts. He next quinquisects each

of these parts, by interposing four equidistant means, by dif-

ferences; he then quinquisects each of these; and finally each

of these again ;
which completes the division as far as degrees

and centesms. The rules for performing all these things he

investigates, and illustrates, in a very ample manner. In

treating of multiple and submultiple arcs, he gives general

algebraical expressions for the sine or ciiord of any multiple
whatever of a given arc, which he deduced from a geouictri-

cal figure, by finding the law for the series of successive mul-

tiple chords or sines, after the manner of Vieta; who was the

first person that I know of, who laid down general rules for

the chords of multiples and submultiples ofarcs or angles: and

the j-ame was afterwards improved by Sir I. Newton, to such

form, that radius, and double the cosine of the first given

angle, are the first and second terms of all the proportions

for finding the sines and cosines of the multiple angles. For

assigning the coefHcients of the terms in the multiple ex-

pressions, our author here delivers the construction of figu-
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rate or polygonal numbers, inserts a large table of then>, and
teaches their several uses; one of which is, that every other

number, taken in the
diirigonal lines, furnishes the coefficients

of the terms of the general equation, by which the sines and
chords of multiple arcs are expressed, which be amply illu-

strates; and another, that the same diagonal numbers consti-

tute the coefficients of the terms of any power of a binomial;
which property was also mentioned by Vieta in his Angu-
Jares Sectiones, theor. 6, 7; and, before him, pretty fully

treated of by Stifelius, in his Arithmetica Integra, fol. 44
et seq. ; where he inserts and makes the like use of such a

table of figurate numbers, in extracting the roots of all powers
whatever. But it was perhaps known much earlier, as ap-

pears by the treatise on figurate numbers by Nicomachus,

(see Malcolm's History, p. xviii). Though indeed Cardan

seems to ascribe this discovery to Stifelius. See his Opus
Novum de Proportionibus Numerorum, where he quotes it,

and extracts the table and its use from Stifel's book. Cardan,
in p. 135 &.C, of the same work, makes use of a like table to

find the number of variations, or conjugations, as he calls

them. Stevinus too makes use of the same coefficients and

method of roots as Stifelius. See his Arith. page 25. And
even Lucas de Burgo extracts the cube root by the same co-

efficients, about the year 1470: but he does not go to any

higher roots. And this is the first mention I have seen made

of this law of the coefficients of the powers of a binomial,

commonly called Sir I. Newton"'s binomial theorem, though
it is very evident that Sir Isaac was not the first inventor of

it : the part of it properly belonging to him seems to be, only

the extending it to fractional indices, which was indeed an

immediate effect of the general method of denoting all roots

like powers, with fractional exponents, the theorem being

not at all altered. However, it appears that our author

Briggs was the first who taught the rule for generating the

coefficients of the terms, successively one from another, of

any power of a binomial, independent of those of any other

power. For having shown, in his *' Abacus Uxyx^rof^ (which
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he so calls on account of its frequent and excellent use, and

of which a small specimen is here annejjed), that the nucjibers
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those coefficients are found by the continual multiplication of

these tractions , ,
-

, -, , which is

the very theorem as it stands at this day, and as applied by
Newton to roots or fractional exponents, as it had before

been used for integral powers. This theorem then being thus

plainly taught by Briggs about the year 1600, it is surprizing
how a man of such general reading as Dr. Wallis was, could

be quite ignorant of it, as he plainly appears to be by the 85tli

chapter of his algebra, where he fully ascribes the invention

to Newton, and adds, that he himself had formerly sought for

such a rule, but without success: Or how Mr. John Bernoulli,

in the I.Sth century, could himself first dispute the inven-

tion of this theorem with Newton, and tiien give the discovery
of it to Pascal, who was not born till long after it had been

tang'it by Briggs. See Bernoulli's Works, vol. 4, page 173.

But it is not to be wondered that Briggs's remark was un-

known to Newton, who owed almost every thing to genius,
and deep iiicditation, but very little to reading: and there

can be no doubt that he made the discovery himself, without

any light from Briggs ;
and that he thought it was new for

all powers in general, as it was indeed for roots and quanti-

ties with fractional and irrational exponents.
When the above table of the sums of figurate numbers is

used by our author, in determining the coefficients of the

terms of the equation, whose root is the chord of any sub-

multiple of an arc, as when the section is expressed by any

uneven number, he remarks, that the powers of that chord or

root will be the 1st, 3d, 5th, 7th, &c, in the alternate uneven

columns, a, c, e, g, &r, with their signs + or as marked

to the powers, continued till the highest power be equal to

the index of the section; and that the coefficients of those

powers are the sums of two continuous numbers in the same

column with the powers, beginning with 1 at the highest

power, and gradually descending one line obliquely to the

right at each lower power : so, for a trisection, the numbers

are 1 in c, and 1 -{- 2 = 3 in a ;
and tlierefore the terms are

1(3) + 3(1): for a quinquisection, the numbers are 1 in e,
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1 + 4 = 5 in c, 2 -{- 3 = 5 in A ;
so that the terms are

1(5) 5(3) 4" 5(1) : for a septisection, the numbers are 1 in o,

1 4- 6 = 7 in E, 4 4- 10 = 14 in c, and 3 + 4 = 7 in A
;
and

hence the terms are 1 (7) + ^ (5) 14 (3) + 7 (1) : and so

on; the sum of all these terms being always equal to the chord

of the whole or multiple arc. But when the section is deno-

minated by an even number, the squares of the chords enter

the equation, instead of the first powers as before, and the

dimensions of all the powers are doubled, the coefficients

being found as before, and therefore the powers and numbers

will be those in tlie 2d, 4th, 6th, &.c, columns : and the uneven

sections may also be expressed the same way ; hence, for a

bisection the terms will be 1 (4) + 4 (2) ;
for a trisection

J (6) 6 (4) 4- 9 (2) ; for the quadrisection
- 1 (8) 4 8 (6>

-
20(4) 4 16 (2) ;

for thequinquisection 1 (10) 10(8)+
35 (6)

- 50 (4) + 25 (2) ;
and so on.

Our author subjoins another table, a small specimen of

which is here annexed, in which tlie first column consists of

the uneven numbers 1, 3, 5, &.c, the rest being found by ad-

dition as before, and the alternate diagonal numbers them-

selves are the coefficients.

F
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These angular sections were afterwards further discussed

by Ought red and Wallis. And the same theorems of Vieta

and Briggs have been since given in a different form, by
Herman and the Bernoullis, in the Leipsic Acts, and the

Me:7ioir3 of the Royal Academy of Sciences. These theo-

rems they expressed by the alternate terms of the power of a

binomial, whose exponent is that of the multiple angle or

section. And De Lagny, in the same Memoirs, first showed,
that the tangents and secants of multiple angles are also ex-

pressed by the terms of a binomial, in the form of a fraction,

of which some of those terms form the numerator, and others

the denominator. Thus, if r express the radius, s the sine, c

the cosine, t the tangent, and s the secant, of the angle a ;

then the sine, cosine, tangent, and secant of n times the

angle, are expressed thus, viz.

r

_, , 1 _ n .n I __ n.fi-1.7i-2.n-^

n-l ^ 1.2 1.2.3.4 ^
r

lang.?iA=rx -
77H/j-l

,, A.n-l.-2.-3_ ,.

] . '2
^ 1.2.3-4

e s^ or j2 + t^
Sec.nA = rX P ^ ^

:

r'--"-^f-^t'+"-ll-'.:^^r^-^t^ &c.
1.2 1.2.3.4

where it is evident, that the series in the sine of n A, con.sists

of the even terms of the power of the binomial (c -f- s)", and

the series in the cosine of the uneven terms of the same power;
also the series in the numerator of the tangent, consists of the

even terms of the power (r + t)", and the denominator, both

of the tangent and secant, consists of the uneven terms of the

satne power (r 4- t)". And if the diameter, chord, and chord

of the supplement, be substituted for the radius, sine and co-

sine, in the expressions for the multiple sine and cosine, tha

result will give the chord, and chord of the supplement, of

times the arc or angle a. Thee, and various other expres-
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sions, for multiple and submultiple arcs, witVi other improve-
ments in trigonometry, have also been given by Euler, and

other eminent writers on the same subject.

'The before mentioned De Lagny offered a project for sub-

stituting, instead of the common logarithms, a binary arith-

metic, which he called the natural logarithms^ and which he

and Leibnitz seem to have both invented about the same time,

independently of each other: but the project came to nothing.
De Lagny ako published, in several Memoirs of the Royal

Academy ,
a new method of determining the angles of figures,

which he called Goniometry, It consists in measuring, with

a pair of compasses, the arc which subtends the angle in ques-
tion : however, this arc is not measured in the usual way, by

applying its extent to any preconstructed scale
;
but by ex-

amining what part it is of half the circumference of the same

circle, in this manner: from the proposed angular point as

a centre, with a sufficiently large radius, a semicircle being

described, a part of which is the arc intercepted by the sides

of the proposed angle, the extent of this arc is taken with a

pair of fine compasses, and applied continually upon the arc

of the semicircle, by which he finds how often it is contained

in the semicircle, with usually a small arc remaining; in the

same manner he measures how often this remaining arc is

contained in the first arc
;
and what remains again is applied

continually to the first remainder
; and so the 3 1 remainder to

the 2d, the 4th to the 3.d, and so on till there be no remainder,

cr else till it become insensibly small. By this process he ob-

tains a series of quotients, or fractional parts, one of another,

"which being properl}- reduced into one fraction, give the ra-

tio of the first arc to the semicircumference, or of the pro-

posed angle, to two right angles or 180 degrees, and conse-

quently that angle in degrees, minutes, &c, if required, and

that commonly, he says, to a degree of accuracy far exceed-

ing the calculation of the same by means of any tables of

sires, tangents or secants, nocwithstanding the apparent })aT

ladox in this expression at first sight. Thus, if the 1st arc

be 4 times contained in the semicircle, the reuuiiiKler once
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contained in the first arc, the next 5 times in the second, and

finally the fourth 2 times in the third : Here the quotients are

4, 1, 5, 2
; consequently the fourth or last arc was i the 3d;

therefore the 3d was - or t^t of the 2d, and the 2d was -r~

or -fi of the 1st, and the first, or arc sought, was or^ of

the semicircle
;
and consequently it contains Slj- degrees, or

37 8' 34"y. Hence it is evident, that this method is in fact

nothing more than an example of continued fractions, the first

instance of which was given by lord Brouncker.

But to return from this long digression ;
Mr. Briggs next

treats of interpolation by difi^erences, and chiefly of quinqui-

ection, after the manner used in the 13th chapter of his con-

struction of logarithms, before described. He here proves
that curious property of the sines and their several orders of

differences, before mentioned, namely, that, of equidifferent

arcs, the sines, with the 2d, 4th, 6th, &c difl'erences, are con-

tinued proportionals ;
as also the cosines of the means between

those arcs, and the 1st, 3d, 5th, &c differences. And to this

treatise on interpolation by differences, he adds a marginal

note, complaining that this 13th chapter of his " Arithmetica

Logarithmica" had been omitted b}' Viacq in his edition of

it; as if he were afraid of an intention to deprive him of the

honour of the invention of interpolation by successive differ-

ences. The note is this :
" Modus correctionis a me traditus

est Arithmeticae Logarithmicse capite 13, in editione Londi-

nensis ; Istud autem caput una cum sequenti in editione Ba-

tava me inconsulto et inscio omissum fuit: nee in omnibus,
fcditionis illius author, vir alioqui industrius et non indoctus,

meam mentem videtur assequutus; Ideoque, ne qaicquam
desit cuiquam, qui integrum canonem conficere cupiat,qu8e-
dam maxime necessaria illinc hue transferenda censui."

A large specimen of quinquisection by differences is then

given, and he shows how it is to be applied to the construc-

tion of the whole canon of sines, both for 100th and 1 000th

parts of degrees ; namely, for centesms, divide the quadrant
first into 72 equal parts, and find their sines by the primary
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methods; then these quinquisected give 360 parts, a second

quinquisection gives 1800 parts, and a third gives 9000 parts,

or centesms of degrees: but for miJlesms, divide the quadrant
into 144 equal parts; then one quinquisection gives 720, 9

second gives 3600, a tliird 18000, and a fourth gives 90000

parts, or millesras.

He next proceeds to the natural tangents and secants, which

he directs to be raised in the same manner, by interpolations

from a few [)riiiiary ones, constructed from the kno-^n pr<v

portions between sines, tangents, and secants; excepting that

half the tangents and secants are to be formed by addition

and subtraction only, by means of some such theorems a3

these, namely, 1st, the secant of an arc is equal to the suip

of the tangent of the same arc, and the tangent of half its

complement, which will find every other secant; 2d, double

the tangent of an arc added to the tangent of half its comple-

ment, is equal to the tangent of the sum of that arc and the

said half complement, by which rule half the tangents will

be found; &c.

In the two remaining chapters of this book are treated the

construction of the logarithmic sines, tangents, and secants.

This is preceded by some remarks on the origin and inven-

tion of them. Our author here observes, that logarithms may
he of various kinds

;
that others had followed the plan of

Baron Napier the first inventor, among whom Benjamin
Ursinus is especially commended, who applied Napier's loga-

rithms to every ten seconds of the quadrant ;
but that he

himself, encouraged by the noble inventor, devised other lo-

garithms that were much easier and more excellent*. He

saj's he put 10, with ciphers, for the logarithm of radius; 9

for the logarithm sine of 5 44', whose natural sine is one

10th of the radius; 8 for that of 34', whose natural sine is one

100th of the radius, and so on; thereby making 1 the loga-

* His worils aif! "
Ego vero ipsius inventoris primi cohovtatione adjutus,

alios losfarithmos :ipplican(Jos cen?iii, qui multo faciliorcrn usum liabent, prao-

atantiorem. Lo^arithmus radii circularis vel sinus totius, a nie ponitur 10 &c.**
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rithm of the ratio of 10 to 1, which is the characteristic of his

species of logarithms.

To construct the logarithmic sines, he directs first to divide

the quadrant? into 72 equal parts as before, and to find the lo-

garithms of their natural sines as in the 14th chapter of his

Arithmetica Logarithmica ;
after which, this number will be

increased by quinquisection, first to 360, then to 1800, and

lastly to 9000, or centesms of degrees. But if millesms of

degrees be required, divide the quadrant first into 144 equal

parts, and then by four quinquisections these will be extended

to the following parts, 720, 3600, 18000, and 9000O, or mil-

lesms of degrees. He remarks however, that the logarithmic

sines of only half the quadrant need be found in this manner,
as the other half may be found by mere addition, or subtrac-

tion, by means of this theorem, as the sine of half an arc is to

half radius, so is the sine of the whole arc to the cosine of the

said half arc. This theorem he illustrates with examples, and

then adds a table of the logarithmic sines of the primary 72

parts of the quadrant, from which the rest arc to be made out

by quinquisection-
In the next chapter our author shows the construction of

the natural tangents and secants more fullv than he had done

before, demonstrating and illustrating several curious theo-

rems for the easy finding of them. He then concludes this

chapter, and the book, with pointing out the very easy con-

struction of the logarithmic tangents and secants by means of

these three theorems :

1st, As cosine : sine : : radius : tangent,

2d, As tangent : radius : : radius : cotangent,

3d, As cosine : radius : : radius : secant.

So that in logarithms, the tangents are found by subtracting

the cosines from the sines, adding always 10 or the radius ;

the cotangents are found by subtracting always the tangents

from 20 or double the radius; and the secants are found by

subtracting the cosines from 20 the double radius. The 2<i

book, by Geliibrand, contains the use of the canon in plane

and vspherical trigonometry.
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Besides Briggs's methods of constructing logarithms, above

described, no others were given about that time. For as to

the calculations made by Vlacq, his numbers being carried to

comparatively but few places of figures, they were performed

by the easiest of Brigg>^'s methods, and in the manner which

this ingenious man had pointed out in his two volumes. Thus,
the 70 chiliads of logarithms, from 20000 to 90000, computed

by Vlacq, and published in 1628, being extended onlv to 10

places, yield no more than two orders of mean differences,

"which are also the correct differences, in quinquisection, and

therefore will be made out thus, namely, one-fifth of them by
the mere addition of the constant logarithm of 5 ; and the other

four-fifths of them by two easy additions of very small num-

bers, namely, of the 1st and 2d differences, according to the

directions given in Briggs's Arith. Log.c. 13, p. 31. And as

to Vlacq's logarithmic sines and tangents to every 10 seconds,

they were easily computed thus*, the sines for half the qua-
drant were found by taking the logarithms to the natural

sines in Rheticus's canon ; and then from these the logarith-

mic sines to the other half quadrant were found by mere

addition and subtraction; and from these all the tangents by
one single subtraction. So that all these operations migli-t

easily be performed by one person, as quickly as a printer

could set up the types; and thus the computation and printing

might both be carried on together. And hence it appears
that there is no reason for admiration at the expedition with

which these tables were said to have been brought out.

Of certain curves related to Logarithms.

About this time the mathematicians of Europe began to

consider some curves which have properties analogous to

logarithms. Edmund Gunter, it has been said, first gave the

idea of r curve, whose abscisses are in arithmetical progres-

sion, while the corresponding ordinates arc in geometrical

progression, or whose abscisses are the logarithms of their

ordinates; but I cannot find it noticed in any ])art of his

writings. The same curve was afterwards considered by
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Others, and named the Logarithmic or Logistic curve by.

Huygens, in his " Dissertatio de Causa Gravitatis," where he

enumerates all the principal properties of this curve, showing
its analogy to logarithms. Many other learned men have also

treated of its properties ; particularly Le Seur and Jacquier,
in their commentary on Newton's Principia ; by Dr. John

Keill, in the elegant little tract on logarithms, subjoined to

his edition of Euclid's Elements ; and by Francis INIaseres,

Esq. cursitor baron of the exchequer, in his ingenious trea-

tise on Trigonometry; in which books the doctrine of loga-

rithms is copiously and learnedly treated, and their analogy
to the logarithmic curve &c fully displayed. It is indeed

rather extraordinary that this curve was not sooner announc-

ed to the public ; since it results immediately from baron

Napier's manner of conceiving the generation of logarithms,

by only supposing the lines which represent the natural num-
bers to be placed at right angles to that upon which the

logarithms are taken. This curve greatly facilitates the con-

ception of logarithms to the imagination, and affords an

almost intuitive proof of the very important property of their

fluxions, or very small increments, to wit, that the fluxion of

the number is to the fluxion of the logarithm, as the number

is to the snbtangent ;
as also of this property, that, if three

numbers be taken very nearly equal, so that their ratios to

each other mav differ but a little from a ratio of equality, as

for exam, the three numbers 10000000, 10000001, 10000002,
their diflerenccs will be very nearly proportional to the loga-

rithms of the ratios of those numbers to each other; all which

follows from tho logarithmic arcs being very little different fi'om

tiieir chords, \vhcn they are taken very small. And the con-

stant snbtangent of this curve is what was afterwards by Cotes

called the Modulus of the system of loganthujs : and since, by
the former of the two properties above-mentioned, this sub-

tangent is a 4t!i proportional to the fluxion of the number,
the fluxion of the logarithm, and the number itself; this pro-

perty afforded occasion to Mr. Baron Maseres to give the fol-

lowing definition of the modulus, wjiich is the same jn effect

VOL. I. D D
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as Cotes's, but more cleiirly expressed, namely, that it is the

limit of the magnitude of a -l-th proportional to these three

quantities, to wit, tlie difference of any two natural numbers

that are nearly equal to each other, either of the said num-

bers, and the logarithm or measure of the ratio they have to

each other. Or we may define the modulus to be the natural

number at that part of the system of logarithms, where the

fluxion of the number is equal to the fluxion of the logarithm,

or where the numbers and logarithms have equal differences.

And hence it follows, that the logarithms of equal numbers,

or of ecjual ratios, in different systems, are to one another as

the moduli of those systems. Further, the ratio whose mea-

sure or logarithm is equal to the modulus, and thence by
Cotes called the j^atio viodularis^ is by calculation found tobfi

theratio of 2-718281828459 ;kc to 1
,
or of I to 36787y41-l 171

&c } the calculation of which number may be seen at full

length in Mr. Baron Maseres's treatise on tlie Principles of

Life Antmities, pa. 274 and 275.

The hyperbolic curve also afforded another source for de-

veloping and illustrating the properties and construction of

logarithms. For the hyperbolic areas lying between tlie curve

and one asymptote, when they are bounded b}' ordinates pa-
rallel to the other asymptote, are analogous to the logarithms
of their abscisses, or parts of the asymptote. And so also

are the hyperbolic sectors; any sector bounded bv an arc of

the hyperbola antl two radii, being cfjual to the cpuidrilateral

space bounded by the same i.rc, the two ordinates to either

asymptote from the extreuiities of the arc, and the piirt of

the asymptote intercepted between them. And though Na-

pier's logarithms are commouly said to be the same as hyper-
bolic logarithms, it is not to be understood that hyperbolas
exhibit Napier's logarithms only, but indeed all other possible

systems of logarithms whatever. For, like as the right-angled

hyperbola, the side of whose scjuare inscribed iit the vertex

is 1, gives Napier's logarithms ;
so any other system of loga-

rithms IS e x])ressed by the hyperbola whose asymptotes form

a certain oblique angle, the side of the rhombus inscribed at
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the vertex of the hyperbola in this case also being still l,the

same as the side of the square in the right-angled hyperbola.
But the areas of the square and rhombus, and consequently
the logarithms of any one and the same number or ratio, dif-

fering according to the sine of the angle of the asymptotes.
And the area of the square or rhombus, or any inscribed pa-

rallelogram, is also the same thing as what was by Cotes

called the modulus of the s^'stem of logarithms ;
which mo-

dulus will therefore be expressed by the numerical measure

of the sine of the angle formed b}' the asymptotes, to the

radius 1
;

as that is the same with the number expressing the

area of the said square or rhombus, the side being 1 : which

is another definition of the modulus to be added to those we
remarked above, in treating of the logaritlimic curve. And
the evident reason of this is, that in the beginning of the

generation of these areas, from the vertex of the hyperbola,
the nascent increment of the abscisse drawn into the altitude

1, is to the increment of the area, as radius is to the sine of

the angle of the ordinate and abscisse, or of the asymptotes ;

and at the beginning of the logarithms, the nascent increment

of the natural numbers is to the increment of the logarithms,

as 1 is to the modulus of the system. Hence we easily dis-

cover that the angle formed by the asympttttes of the hyper-
bola exhibiting Briggs's system of logarithms, will be 25 deg.
44 miiuites, 25 { seconds, this being the angle whose sine is

0-4S42944819 itc, the modulus of this system.

Or indeed any one hyperbola will expfess all possible sys-

tems of logarithms whatever, namely, if the square or rhom-

bus inscribed at the vertex, or, which is the same thing, any

parallelogram inscribed between the asymptotes and the curve

at any other point, be expounded by the modulus of the

system ; or, which is the same, by expounding the area, in-

tercepted between two ordi nates which are to each other iti

the ratio of 10 to 1, by the logarithm of that ratio in the

proposed system.
As to the first remarks on the analogv between logarithms

and the hyperboUc spaces; it having been shown by Gregory
D D 2
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St. Vincent, in his Quadratura Circuli et Sectionuni Coni,

published at Antwi-r]) in 1647, that if one asymptote be

divided into parts, in geometrical progression, and from the

points of division ordinates be drawn parallel to the other

asymptote, they will divide the space between the asymptote

and curve into eijual |>ortions ;
from hence it was shown by

Mersenne, that, by taking the continual sums of those parts,

there would be obtained areas in arithmetical progression,

adapted to abscisses in geometrical progression, and which

therefore were analogous to a system of logarithms. And the

same analogy was remarked and illustrated soon after, by

Huygens and many others, who showed how to square the

hyperbolic spaces by means of the logarithms.

There are also innumerable other geometrical figures hav-

ing properties analogous to logarithms ;
such as the equian-

gular spiral, the 6guresof the tangents and secants, &c ;
uhich

k is not to our purpose to distinguish more particularly.

Of Gregory's Computation of Logarithms.

On the other hand, Mr. James Gregory, in his Vera

Circuli et Hyperbolae Quadratura, first printed at Patavi, or

Padua, in the year 1667, having approximated to the hyper-
bolic asymplotic spaces by means of a series of inscribed and

circumscribed polygons, thence shows how to compute the

logarithms, Avhich are analogous to those areas: and thus

the quadrature of the hy^jcibolic spaces became the same

thing as the computation of the logarithnis. He here also

lays down various methods to abridge the computation, with

the assistance of some properties of numbers themselves, by
which we are enabled to compose the logarithms of all prime
numbers under 1000, each by one multiplication, two divi-

sions, and the extraction of the square root. And the same

subject is further pursued in his Excrcitationes Geonietritic,

to be dc^^cribed hereafter.

Mr. Gregory was born at Aberdeen in Scotland 1638, where

he was educated. He was professor of mathematics in the

college of St. Andrews, and afterwards in that of Edniburgh.
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He died of a fever in December 1615, being only 36 years

of age.

Of Mercatofs Logarithmotechnia.

Nicholas Mercator, a learned mathematician, and an ino;e-

wious member of the Royal Society, was a rBtive of Holstein

in Germany, but spent most of his time in England, where-

he died in the year 1690, at about 50 years of age. He was

the author of many works in geometry, geography, astro-

nomy, astrology, &c.

In 1668, Mercator published his Logarithmotechnia, sive-

methodus construendi Logarithmos nova, accurata,et faciiis;

in which he deHvers a new and ingenious method of comput-

ing the logarithms, on principles purely arithmetical
; which,

'

being curious and very accurately performed, I shall here give,

a rather full and particular account of that little tract, as well-

as of the small specimen of the quadrature of curves by infir

nite series, subjoined to it
;
and the more especially as this

work gave occasion to the public communication of some o

Sir Isaac Newton's earliest pieces, to evnnce that he had ncrfr

borrowed them from this publication. So. that it appears:

these two ingenious men had, independent of each other, in-

some instances fallen upon the same things.
'

Mercator begins this work bv reuiarknig that the word

logarithm is composed of the words ratio and number, being

as nuich as to sav thennmber of ratios; which he observes is-

quite agreeable to the nature of them, for that a log.irithm is'

nothing else but tiie nnniber of ratiiniculce contained in the

ratio which anv number bears to unitv. lie then makes a

learned and critical dissertation on the nature ot ratios, their*

magnitude and muisure, conveying a clearer idea of the na-.

ture of logarithnis than had been given by either Napier or

Brlorgs, or anv other writfr except Kepler, in his work before

described ; tliough those otiier writers seem indeed to have

had in their oun minds the same ideas on the subject as

Kepler and Mercutor, butwitiiout having expre.ssed them so

clearly. Our author indeed [)retty closely follows Kepicr in
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his modes of thinking and expression, and after him in plain

and express terms calls logarithms the measures of ratios ;

and, in order to the right understanding that definition of

them, he explains what he means by the magnitude of a ratio.

This he does pretty fully, but not too fully, considering the

nicety and subtlety of the subject of ratios, and their magni-

tude, with their addition to, and subtraction from, each other,

which have been misconceived by very learned mathemati-

cians, who have thence been led into considerable mistakes.

Witness theoversight of Gregory St. Vincent, which Huygcns
animadverted on in the E^eraa-is Cyclometria Gregorii a

Sancto Vincentio, and which arose from not understanding,
or not adverting to, the nature of ratios, and their proportions
to one another. And many other similar mistakes might here

be adduced of other eminent writers. From all which wc

must commend tlie propriety of our author's attention, in so

judiciously discriminating betw-een the magnitude of a ratio,

as of a to b, and the fraction -f-, or quotient arising from the

division of one term of the ratio by the other
;
which latter

method of consideration is always attended with danger of

eiTors and confusion on the subject ; though in the 5th defi-

nition of the 6th book of Euclid this quotient is accounted

the quantity of the ratio; but this definition is ])robably not

genuine, and tlierefore verv properly omitted by professor

Simson in his edition of the Elements. And in those ideas on

the subject of logaritlims, Kepler and Mercator have been

followed by Hal ley, Cotes, and most of the other eminent

writers since that time.

Purely from the above idea of logaritlims, namely, as being
the measures of ratios, and as expressing the number of raii-

unculic contained in any ratio, or into which it may be divided,

the number of the like ecjual ratiuncuUv contained in some one

ratio, as of 10 to 1, bemg supposed given, our author shows

liow the logarithm or measure of any other ratio may be found.

But this however only by-the-bve, as not being the principal

method he intends to teach, as his last and best, and which

we arrive not at till near x\\q. end of the book, as we shall see
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below. Having shown then, that these logarithms, or num-

bers of small ratios, or measures of ratios, may be all properly

represented by numbers, and that of 1
,
or the ratio of equa-

lity, the logarithm or measure being always 0, the logarithm
of 10, or the measure of the ratio 10 to 1, inmost conveniently

represented by 1 with any number of ciphers; he then pro-

ceeds to show how tlie measures of all other ratios may be

found from this last supposition. And he explains the prin-

ciples by the two following examples.

First, to find the logarithm of 100-5*, or to find how many
ratiunculte are contained in the ratio of 100*5 to 1

,
the number

oi ratiuncuUe in the decuple ratio, or ratio of 10 to 1, being
1 .0000000.

The given ratio lOO'o to 1
,
he first divides into its parts,

namely, 100*5 to 100, 100 to 10, and 10 to 1
;
the last two of

which being decuples, it follows that the characteristic will be

"2, and it only remains to find how many parts of the next

decuple belong to the first ratio of 100*5 to 100. Now if each

term of this ratio be multiplied by itself, the products will be

in the duplicate ratio of the first terms, or this last ratio will

contain a double number of parts; and if these be multiplied

by the first terms again, the ratio of the last products will

contain three times the number of parts; and soon, the num-

ber of times of the first parts contained in the ratio of any like

powers of the first terms, being always denoted by the expo-
nent of the power. If therefore the first terms, lOO'o and 100,

be continually multiplied till the same powers of them have to

each other a ratio whose measure is known, as suppose the de-

cuple ratio lOtol, whose meabure is 1.0000000; then the ex-

ponent of that power shows what mul.this measure 1.0000000,
ofthe decuple ratio, is of the required measure of the first ratio

100-5 to 100; and consequently dividing 1.0000000 by that

exponent, the quotient is the measure of the ratio 100*5 to 100

sought. The operation for finding this, he sets down as here

follows; where the several multiplications are all performed in

Merfator distinguislics his decimals from integers thus 10Q[5, or ]0(>'5.
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the contracted way, by inverting the figures of the multiple

and retaining only the first number of decimals in each pro-

duct.

100-5000 .
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therefore the proportional part which the exact power, or

10000000, exceeds the next less 9965174, will be easily and

accurately found by the Golden Rule, thus :

The just power . . 10000000

and the next less . . 9965774

the difference . 34226; then ^

As 49829 the dif. between the next less and greater^
: To 34226 the dif. between the next less and just,

: : So is JOOOO : to 6868, the decimal parts ;
and therefore

the ratio of 100*5 to 100, is 461*6868 times contained in the

decuple or ratio of 10 to 1. Dividing now 1. 0000000, the

measure of the decuple ratio, by 461*6868, the quotient

00216597 is the measure of the ratio of 1005 to 100; which

being added to 2 the measure of 100 to 1
,
the sum 2.00216597

is the measure of the ratio of 1005 to 1, that is, the log. of

100*5 is 2.00216597. In the same manner he next investi-

gates the log. of 99*5, and finds it to be 1.99782307.

A few observaiions are then added, calculated to generalize
the consideration of ratios, their magnitude and affections. It

is here remarked, that be considers the magnitude of the ratio

between two quantities as the same, whether the antecedent

be the greater or the less of the two terms: so, the magnitude
of the ratio of 8 to 5, is the same as of 5 to 8; that is, by the

magnitude of the ratio of either to the other, is meant the

number of I'atiunatia between them, which will evidently be

the same, whether tiie greater or less term be the antecedent.

And he further remarks that, of different ratios, when we di-

vide the greater term of each ratio by the less, that ratio is

of the greater mass or magnitude, which produces the greater

quotient, et vice versa; tiiough those quotients are not pro-

portional to the masses or magnitudes of the ratios. But

when he considers the ratio of a greater term to a less, or of

a less to a greater, that is to say, the ratio of greater or less

inequality, as abstracted fron the ma^; iiitude of the ratio, he

distinguishes it by the word ajfcction, as much as to say,

greater or less affection, something in the manner of positive

and negative quantities, or such as are affected with the signs
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-f- and . The remainder of this work he delivers in several

propositions, as follows.

Prop. 1. In subtracting from each other, two quantities
of the same alFection, to wit, both positive, or both negative ;

if the remainder be of the same aflFection with the two given,

then is the quantity subtracted the less of the two, or expressed

by the less number; but if the contrary, it is the greater.
_ ^ - ... a a+b a + 26 -

Prop. 2. In any continued ratios, as r, , . &c,

(by which is meant the ratios of a to a + b, a + b to a -\ 2b,

a 4- 2^ to a 4- 3i, h<:,) of equidifferent terms, the antecedent

of each ratio being equal to the consequent of the next pre-

ceding one, and proceeding from less terms to greater ; the

measure of each ratio will be expressed by a greater quantity
than that of the next following ;

and the same through all

their orders of differences, namely, the 1st, 2d, 3d, &c, dif-

ierences; but the contrary, when the terms of the ratios

decrease from greater to less.

Prop. 3. In any continued ratios of equidifferent terms, if

the 1st or least be c, the difference between the 1st and 2d /,

and c, d, e, &c, the respec-

tive first term of their 2d, 1st term a

3d, 4th, &c, differences: 2d term a -\- b
.

then shall the several quan- 3d term a \- 2b -\- c

tities themselves be as in 4th term a + 3^ -f 3f -f- d

theannexedscheme; where 5th term a + 4/* -f 6c' \- Ad -\- c

each term is composed
of the first term, together

with as many of the dif-

ifiencHs as it is distant

iVom tlu; first term, and to

those diflerences joiriing.

lor coefficients, , the num-
bers in the sloping or ob- 1

hquc linosconlaincd in the

annexed table of figurate 1

a umbers, in - the same

&c. &c.
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manner, he observes, 1st term a

as the same figurate 2d term a h

numbers complete the 3J term a 26 + c

powers raised from a bi- 4th term a 3A + 3f d

nomial root, as had lonf 5th term a 46 + 6c 4c? f e

before been taught by &c. &c.

others. He also re-

marks, that this rule not only gives any one term, but also

the sum of any number of successive terms from the begin-

ning, making the 2d coefficient the first, the 3d the 2d,

and so on; thus, the sum of the first 5 terms is Sa -f 106 4-

10c ^r od \- e.

In the 4th /7/v>p. it is shown, that if the terms decrease,

proceeding from the greater to the less, the same theorems

hold good, bv only changing the sign of every other term,

as in the margin.

Prop. 5 shows how to find any multiple nearly of a given
ratio. To do this, take the difference of the terms of the

ratio, which multiply by the index of the multiple, from the

product subtract the same difference
;
add half the remain-

der to the greater term of the ratio, and subtract the same

lialf from the less term, which give two terms expressing the

required multiple a little less than the truth Thus, to qua-

druj)le the ratio |^ : the difference of the terms 3 multi[)lied

by 4 makes 12, from which 3 deducted leaves 9, its half 4 i-

added to the greater term 28 makes 324^, and taken from the

less term 25, leave 20^ ; then 20|; and :i2l are the terms

nearly of the quadruple sought, or reduced to whole num-

bers gives -|i, a little less than the truth.

Prop. 6 and 7 treat of the approximate multiplication and

division of ratios, or, which is the same thing, the finding

nearly anv powers or any roots of a given fraction, in an easy

manner. The theorem for raisuig any power, v/hen reduced

to a simpler form, is this, the m power ot , or
(-^)'", i^=;q_ ^

nearly, v.here .? is = a -f b, and dzz a ^j b, the sum and dif-
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ference of the two numbers, and the upper or under signs

take place according as is a yjroper or an improper frac-

tion, that is, according as a is less or-greater than b. And the

tn.torextractiiigthe?;?th root oF , is ^ r or ()"'= -i_-,

nearly ; which latter rule is also the same as the former, as

will be evident by substituting: - instead of m in the first

theorem. So that universally (-^)r, is='^^^^^ nearly. These

theorems however are nearly true only in some certain cases,

namelv when 4- and - do not diOlr greatly from unity. And

in the 7th prop, the author shows how to find nearly the error

of the tiieorems.

In the 8th prop, it is shown, (hat the measures of ratios of

equidifferent terms, are ncarlv reciprocally as the arithmeti-

cal means between tlie terms of each ratio. 8o, of the ratios

^|j 3.3^ jo^ the mean between the terms of the first ratio is

l7, of the 2d 34, of the 3(1 51, and the measure of the ratios

are nearly as ^'., y^, -J-^.

From this property he proceeds, in the 9 ih prop, to find the

measure of any ratio less than t^I'.\, which has an equal dif-

ference, 1, of terms. In the two examples, mentioned near

the beginning, our author found t!ie logarithm, or measure

of the ratio, of ^l'-^ ,
to l)e 21169 ^'c, and that of

-j-'-%^ to be

21659/ff ;
therefore the sum 434'29 is the logarithm of -p-gv^A,

or ^1-0- X Toot; or the logarithm oH ^,X^ is nearer 43430,

us found by other more accurate computations. Now to find

the logarithm of |ot> liaving tite same difFerence of terms, 1,

with the former; it will he, hv proj). 8, as lOO'o (the mean

between 101 and 100): 100 (the nie^m between 99'5 and 100-.->)

: : 43430 : 43213 the logarithm of |^, or the dilference be-

tween tile logarithms ot 100 and ioi. But the log. of 100 is

2
; therefore t!)e iogaritrmi of 101 is 2.0043213. Again, to

find the logarithm of 102, \\c mu.si first find the logarithm of

4-o4 > the mean between it^ terms being 101'3, therefore as

}01'5 : 100 : : 43430 : 42788 the logarithm of -j" ^ ,
or the dif-
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ference of the logarithms of 101 and 102. But the logarithru

of 101 was found above to be 2.004'3213 ;
therefore the log,

of 102 is 2.0086001. So that, dividing continually 86859

(the double of 434298 the logarithm of tI-o-:|
or 4-14) by each

number of the series 201, 203, 205, 207, &c, then add 2 to

the 1st quotient, to the sum add the 2d quotient, and so on,

adding always the next quotient to the last sum, the several

sums will be the respective logarithms of the numbers in this

series 101, 102, 103, 104, &c.

The next, or prop. 10, shows that, of two pair of conti-

nued ratios, whose terms have equal differences, the difference

of the measures of the first two ratios, is to the difference of

the measures of the other two, as tiie square of the common
term in the two latter, is to that in the former, nearly. Thus,

.-i c ,
^ a +ha + 3ba + ^b , ^

in tlie four ratios -. -, ,
-: as the measure or

- ~ (the difference of the first two, or the quotient of the

c \ 1 ~aa.+ ?inl'-\-\5hb , , ...
two tractions 1 : is to the measure or

;
-

: : so (a+ 4^)

: is to {a-\-hy-^ nearly.

In prop. 11 the author shows that similar properties take

place among two sets of ratios consisting each of 3 or 4 &c
continued numbers.

Prop. 12 shows that, of the powers of numbers in arith-

metical progression, the orders of diflerences which become

equal, are t';e 2d differences in ti)e squares, the 3d differences

in tiie cubes, tiie 4th utfterences in the 4th powers, &.c. And
hence it is shown, how to construct all those powers bv the

contniMal addition of their differences; as had been long before

move luliy explained by Briggs.

In the iii'xt, or lyth prop, our author explains his compen-
dious metl)(xi of raismg the tables of logarithms; showing how

to construcL tiie logaritbnis by addition only, from the pro-

perties contained ni tlie 8th, 9th, and 12th props. For this

purpose, he makes use of the quantity
-

,
which by division

he resolves into this innnite series -f
-

4-
--

-f-
- ^c (in

V Lu i.'3 t^

infin.). Putting then = iOO, the arithmetical mean between
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the terms of the ratio t-^-otj ^ = 1 00000, and c successively

equal to 0*5, i'5, 2'5. &c, that so b c may be respectively

equal to 99999*5, 99998-5, 99997*5, &c, the corresponding
means between the terms of the ratios r^lUh lllfl, Irl^,

&c, it is evident that r will be the quotient of the 2d term

divided by the 1st, in the proportions mentioned in the 8th

and 9th propositions ;
and when all of these quotients are

found, it remains then only to multiply them by the constant

3d term 4S429, or rather 43429'8, of the proportion, to pro-

duce the logarithms of the ratios ^lUU-, ^||f, |^\^ &c,

till ||%T- ; then adding these continually to 4, the logarithm
of 10000, the least number, or subtracting them from 5, the

logarithm of the highest term 100000, there will result the

logarithms of all the absolute numbers from 10000 to 100000.

Now when c = 5, then

r=-001,- =:-00000On05,- =-0()0000000000025, ='000()00000000000000125
l> tb L3 b*

ft O. (IC oc^

Sec; therefore - = + + &c, is =-0O10O0005000O250001'25,
b c b bb fc3

In like manner, if c = 1-5, then r ^^'H be =-001000015000225005375,bc
and if c=2-5, then ^ will be =-OOlO0nO25O00625015625;

b c

&.C. But instead of constructing all the values of - in the~ bc
usual way of raising the powers, he directs them to be tound

by addition only, as in the last proposition. Having thus

found all the values of --^, the author then shows, that

thev may be drawn into the constant loga-

rithm 43429 by addition only, by the help of

the annexed table of its first 9 products.

The author thejn distinguishes which of the

logarithms it may be proper to find in this

way, and which from their component parts.

Of these, the logarithms of all even numbers

need not be thus computed, being composed
from the number 2

;
which cuts off one-half of

the numbers: neither are those numbers to be

coni])utcd which end in 5, because 5 is one of thtir factors-.

1
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these last are ,% of the numbers
; and the two together -^ +

tV make 4 of the whole : and of the other |, the ^ of them,
or

-j?7
of the whole, are composed of 3

;
and hence

-| -\- ^, or

4-1 of the numbers, are made up of such as are composed of

2, 3, and 3. As to the other numbers which may be com-

posed of 7, of 1 1
, &c; he recommends to find thei)' logarithms

in the general way, the same as if they were incomposites,
as it is not worth while to separate them in so easy a mode of

calculation. So that of the 90 chiliads of numbers, from

10000 to 100000, only 24 chiliads are to be computed.
Neither indeed are all of these to be calculated from the fore-

going series for t
,
but only a few of them in that way, and

the rest by the proportion in the 3th proposition. Thus,

having computed the logarithms of 1000,'] and 10013, omit-

ting 10023, as being divisible by 3, estimate the logarithms
of 10033 and 10043, which are the 30th numbers from 10003

and 10013; and again omitting 10053, a nmltiple of 3, tlnd

the logarithms of 10063 and 10073. Then by prop. 8,

As 10048, the arithmetical mean between 10033 and 100G3,

to 10018, the aritlimetical mean between 10003 and 10033,

so 13006, the dif. between the logs, of J 0003 iind 10033,
to 12967, the dif. between the logs, of 10033 and 10063.

C129C7
That is, 1st, As

-|
10078V : 10018 : : 13006 : < &c.

C 12953

Attain, As ^ 10088 r : 10028 : : 12992 : < kc.

101183 t

C
10068^ ri2940

And 3dly, As } 10098 > : 10033 : : 12979 : ^ &:c.

And with this our author concludes his compendium for con-

structing the tables of logarithms.

He afterwards shows some applications and relations of the

doctrine of logarithms to geometrical figures: in order to

which, in prop. 14, he proves algebraically that, in the right-

angled hyperbola, if from the vertex, and from any other
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point, there be drawn bi, fh perpendicular \

to the asymptote ah, or jiarallel to the other i!^^ ,

asymptote: then will ah : Ai : : bi : fh. And, \^}\''

hxprop. 15, it ai = bi= 1, and ui=a; then ___f\/\
will FH = - = i-a + a^-a^ + a*-a^ kc, ^1 /"
in mfimfutn, by a continned algebraic divi-

sion, the process of which he describes, step bv step, as a

thing that was new or uncommon. But that method of divi-

sion had been taught before, by Dr. Walhs in his Opus
Arithmeticum.

Prop. 16 is this: Anv given number being supposed to be

divided into innumerable small equal parts, it is required to

assign the sum of any powers of the continual sums of those

innumerable [)arts. For which purpose he lays down this

rule
;

if the next higher power of the given number, above

that power whose sum is sought, be divided by its exponent,
the quotient will be the sum of the powers sought. That is,

if N be the given number, and a one of its innumerable equal

parts, then will

a" + {2ay + (S^)" + (4r/)'' &c . . . . n" be = p^: which

theorem he demonstrates by a method of induction. And

this, it is evident, is the finding the sum of any powers of an

infinite number of arithmeticals, of which the greatest term

is a giv -n (juantity, and the least indefinitely small. It is

also remarkable, th.it the above expression is similar to the

rule for tinding the fluent to the given fluxion of a power, as

afterwards taught by Sir I. Newton.

Mercator then applies this rule, \n prop. 17, to the qua-
drature of the iiyperbola. Thus, putting ai = i, conceive

tliC asymptote to be divided from i into innumerable equaj

parts, nau)ely ip = pq =z qr = a
; then, by the I4thand 15th

7;.s
= 1

- + a^ a^ ^c \

qt = l- 2a f. 4^^ - 8^ &c f
^^^^ ^^^ ^'"^^ ^"'" ^^ = '^^^

tni^ 1 - Za \- 9a^ - 2la^ &c)'"'" ps + qt\-ru, which is =:

3 firt 4- 14a^ 3(ifl' &c, that is, equal to the number
of terms contained in the line i?*, miuHs the sum of those
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terms, plus the sum of the squares of the same, minus the sum
of their cubes, plus the sum of the 4th powers, &c. Putting
now lA = 1, as before, and ip = O'l the number of terms, to

find the area Bips; by prop. 16 the sum of the terms will be

= -005, the sum of their squares = -OOOSSSSSS, the sum

of their cubes -000025, the sum of the 4th powers 000002,
the sum of the 5th powers -000000166, the sum of the 6th

powers '000000014, &c. Therefore the area Bips is = '1

005 + -000333333 - -000025 + -000002 - -000000166 +
-000000014 &c = -100335347 -005025 166= -0953 101 8 1 &c.

Again, putting iq
= "21 the number of terms, he finds in

like manner the area Biqt = -21 - -02205 + -003087 -

000486202 + '000081682 - -000014294 + -000002572 -
-000000472 + -OOOOOOOSS&c = -213171345- '022550984=
190620361 &c.

He then adds, hence it ajjpears that, as the ratio of ai to

Ap, or 1 to 1-1, is half or subduplicate of the ratio of ai to

Aq, or I to 1-21, so the area Bips is here found to be half of

the area Biqt. These areas lie computes to 44 places of

figures, and finds them still in the raiio of 2 to 1.

The foregoing doctrine amounts to this, that if the rect-

angle Bi X ir, which in this case is expressed by ir onl y, be

put =: A, ai being = 1, as before; t!ien the area Bin^, or the

hyperbolic logarithm of 1 -f a, or of the ratio of 1 to 1 + A,

M'ill be equal to the infinite series a -^.a^ + I a^ i a* + iA^

kc\ and which therefore may be considered as Mercator's

quadrature of the hyperbola, or his general expression of an

hyj)C!bo!ic logarithm in an infinite series. And this method

was further improved by Dr. Waliis in the Piiilos. Trans, for

the year 1C68.

In prop. 18 Mercator compares the hyperbolic areolce with

the ratiuncuLc of equidifferent nmnbers, and observes that,

the areola Bips is the measure of the ratiuncula of ai to a/>,

the areola spqt is the measure of the ratiuncula of Ap to Aq,

the areola tqru is the measure of the ratiun. of Aq to a?", &c.

Finally, in the 19th prop, he shows how the sums of loga-

rithms may be taken, after the manner of the sums of the

VOL. I. E E

Mdiidnta^^
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areola. And hence infers, us a coroMarv, how the continual

proiliict of anv driven numbers in arithnietical progression
may he obtained : for the sum of the logarithms is the lo<ia-

rithm of the continual product. He then remarks, that from

the premises It apj;ears, in what maimer Mersennus's problem

may be resolved, if not geometrically, at least in figures to

any number of places. i\n(l thus closes this iiigenious tract.

In the I'hiio>. Trans, for 1( 68 are also given some further

illustrations of this work, by the author himself. And in va-

rious places also in a similar manner are logarithms and hv|)er-

bolic areas treated of by Lord Brouncker, Dr. Wallis, Sir I,

Newton, and many other learned j)ersons.

Of Gregorys Exercitationes Geomelrkre.

In the same year 1668 came out Mr. James Gregory's
Exercitationes Geometrical, in which are contained the fol-

lowing pieces:

1, Appendicula ad veram circuli et hyperbola? quadra-
turam :

2, N. Mercatoris quadratura hyperboltc geometrice de-

monstrata :

3, Analf^gia inter lineam meridianam planisphoerii nautici

et tangentes artificiales geometrice demonstrata
;
sen quod

sccantium naturaliuin additio efficiat tangentes artificiales :

4, Item, quot tangeutium naturaliuni additio efficiat secan-

tes artifici-ues :

5, Quadratura conchoidis :

6, Quadratura cissoidis : et

7, Methodns facilis et accurata componendi secantes ct

tangepi
' n arti*''cia]es.

The lir^t of tlie.se pieces, or the Appendicula, contains some

f'.irrlier t'.\t(nision and illustration of his Vera circuli et hy-

perixii.:- quadratura, occasioned by the animadversions made
on tiiai work by the celebrated mathematician and piiiieso-

^)\uv llnygens.
In the 'jd is demonstrated geometrically, tlie quadrature of
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the hyperbola ; by which he finds a series similar to |^erca-
tor's for the logarithm, or the hyperboUc space beyond th

first ordinate (bi, fig. pa. 416). In like manner he finds an-

other series for the space at an equal distance within that or-

dinate. These two series having all their terms alike, but

all the signs of the one plus, and those of the other alternately

plus and minus, by adding the two together, every other term

is cancelled, and the double of the rest denotes the sum ol

both spaces. Gregory then applies these properties to the

logarithms ;
the conclusion from all which may be thus briefly

expressed :

since a iA* -|- ^a^ -^a.* &g, = the log. of -i^,

and A + 4a^ -{- -l-A^ -{- iA* &c = the log. of
^-1-,

theref. 2a + Ia^ -f- ^a^ -f- fA^ &c rz the log.
of

Ji^,

or of the ratio of 1 A to 1 + A. Which may be accounted

Gregory's method of making logarithms.

The remainder of this little volume is chiefly employed
about the nautical meridian, and the logarithmic tangents and

secants. It does not appear by whom, nor by what accident,

was discovered the analogy between a scale of logarithmic

tangents and Wright's protraction of the nautical meridian

line, which consisted of the sums of the secants. It appears
however to have been first published, and introduced into the

practice of navigation, by Henry Bond, who mentions this

property in an edition of Norwood's Epitome of Navigation,

printed about 1645 ; and he again treats of it more fully in

an edition of Gunter's works, printed in 1653, where he

teaches, from this property, to resolve all the cases of Mer-

cator's sailing by the logarithmic tangents, independent of

the table of meridional parts. This analogy had only been

found to be nearly true by trials, but not demonstrated to be

a mathematical property. Such demonstration seems to have

been first discovered by Nicholas Mercator, who, desirous of

making the most advantage of this and another concealed in-

vention of his in navigation, by a paper in the Philos. Trans.

E E 2
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for Jime4, 1666, invites the public to enter into a wager with

him, on his ability to prove the truth or falsehood of the sup-

posed analogy. This mercenary proposal however seems not

to have been taken up by any one, and Mercator reserved his

demonstration. The proposal however excited the attention

of mathematicians to the subject itself, and a demonstration

was not long wanting. The first was published about two

years after by Gregory, in the tract now under consideration,

and from thence and otlier similar properties, here demon-

strated, he shows, in the last article, how the tables of loga-

rithmic tangents and secants may easily be computed, from

the natural tangents and secants. The substance of which is

as follows :

Let Ai be the arc of a quadrant,
extended in a right line, and let

the figure ahi be composed of the

natural tangents of every arc from

the point A, erected perpendicular
to AI at their respective points:
let AP, po, ON, NM, &c, be the

very small equal parts into which the quadrant is divided,

namely, each -^, or -j^^ of ^ degree ;
draw pb, oc, nd, me,

&c, perpendicular to ai. Then it is manifest, from what had

been demonstrated, that the figures abp, acq, &c, are the

artificial secants of tlie arcs ap, ao, &.c, putting o for the

artificial radius. It is also manifest, that the rectangles bo,

CN, DM, &,c, will be found from the multiplication of the small

part AP of the quadrant by each natural tangent. But, he

[)roceeds, there is a little more difficulty in measuring the

figures abp, bcx, cdv, ^c; for if the first difTcrences of the

tancrents be equal, ab, bc, cd, &c, will not difl'er irom rigiit

lines, and then the figures abp, bcx, cdv, &c, Avill b(; right-

angled triangles, and therefore any one, as hqg, will b(' :=.

i^n X QG : but if the second dilTcrences be equal, the said

figures will be portions of trilineal (juadratices; for exan)ple,
HOG will be a [portion of a trilincal quadratix, whose axis is

parallel to qh
;
ard each of the last dilTercnces being z, it will

K L M JS
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he QHG =4H X QG ^-L X QG ;
and if the 3d differences be

equal, the said figures will be portions of trilineal cubices,
and then shall aHG be equal -I-qh x aG^iy-^au x zx qg^-

ttVf^^ ^ ^ct^) when the 4th differences are equal, the said

figures are portions of trilineal quadrato-quadratices, and the

4th differences are equal to 24 times the 4th po\\^r of ae,
divided by the cube of the latus rectum

;
also when the 5th

differences are equal, the said figures are portions of trihneal

sursolids, and the 5th differences are equal to 120 times the

sursolid of qg, divided by the 4th power of the latus rectum ;

and so on m infinitU7n. What has been here said of the com-

position of artificial secants from the natural tangents, it is

remarked, may in like manner be imderstood of the compo-
sition of artificial tangents, from the natural secants, accord-

ing to what was before demonstrated. It is also observed,

that the artificial tangents and secants are computed, as above,
on the supposition that is the log. of 1, and lOOOOOOOOOOOO

the radius, and 2302585092994045624017870 the log. of 10;

but that they may be more easily computed, namely by ad-

dition onlv^, by putting -^V of a degree =qg=AP=1, and the

logarithm of 10 = 7915704467897819; for by this means

4qh X qg is = iQH = ghg, and |^qh x qg -j-Vz x qg= ^qh

-lijZ = QHG, also |QH X QG - v^ (tV<1H X Z X QG'- TraT^* X QG^
= -JQH- v^(yV<iHX z-t7'ztZ'') = QHG : And finally, by one

division only are found the artificial tangents and recants to

1000000000000000, the logarithm of 10, putting stiJ! 1 for

radius, which are the differences of the artificial tangents and

secants, in the table, from that artificial radius
;
and to make

the operations easier in multiplying bv the irimber

7915704467897819, or logarithm of 10, a table \> set down of

its products b}^ the first 9 figures. But if ap or qg be ^^
of a degree, the artificial tangents and secants will ans ver to

13192840779829703 as the logarithm of 10, the first 9 mul-

tiples of which are also placed in the table. But to represent

the numbers by the artificial radius, rather than by the loga-

rithm of 10, the author directs to add ciphers, &c. And so

iuch for Gregory's Exercitationes Geometricae.
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The same analogy between the logarithmic tangents and

the meridian line, as also other similar properties, were after-

wards more elegantly demonstrated by Dr. Halley in the

Philos. Trans, for Feb. 1696, and various methods given for

computing the same, by examining the nature of the spirals

ito which the rhumbs are transformed in the stereographical

projection of the sphere, on the plane of the equator : the

doctrine of which was rendered still more easy and elegant

by the ingenious Mr. Cotes, in his Logometria, first printed

in the Philos. Trans, for 1714, and afterwards in the collec-

tion of his works published in 1732, by his cousin Dr. Robert

Smith, who succeeded him in the Plumian professorship of

philosophy in the University of Cambridge.
The learned Dr. Isaac Barrow also, in his Lectiones Geo-

metrical, lect. xi. Append, first j)ublished in 1G72, delivers a

similar property, namely, that the sum of all the secants of

any arc is analogous to the logarithm of the ratio of r + -s to

r 5, or radius plus sine to radius minus sine; or, which is

the same thing, that the meridional parts answering to any

degree of latitude, are as the logarithms of the ratios of the

versed sines of the distances from the two poles.

Mr. Gregory's method for making logarithms was further

exemplified in numbers, in a small tract on this subject,

printed in 1688, by one Euclid Speidell, a simple and illiterate

person, and son of John Speidell, before mentioned among
the first writers on logaritlims.

Gregory also invented many other infinite series, and among
them these here following, viz. a being an arc, t its tangent,
iind s the secant, to the radius r

;
then is

I zz a -\ \- 4- -A &LC
3/-

'

iDj't
^

313r '

2835r*

.
a'-'

,
5a''

,
61a 277fl8

' =
'^~^-Tr + 24r3

+ ^i^ +' sl].^
^^-

And if r and o- denote the artificial or logarithmic tangent ajid

secant ot the same arc a, the whole quadrant being y, and
<r = 2a 9; then is
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\

^
6r
~

24r4
~

50407-'^
^

'72576r8
*

~"^ ,

a-* a*^
,

HaS 62a>

~~2r "*"
T273

"^
4J75 ' 2520^ "^ 28330?

And if s denote the artificial secant of 45, and s + /the arti-

ficial secant of any arc a, the artificial radius being 0; then is

, ,
, /^

,
4/3 7Z4

,

14P 452^0 3a = -iq 4- I ~ 4 &c.^^ ^
r

^
3r 3r3

^
3/4

'

43/='

The investigation of all which series may be seen at pa. 298
et seq. vol. 1, Dr. Horsley's commentary on Sir I. Newton's

works, as they were given in the Commercium Epistolicum,
no. XX, without demonstriition, and where the number 2 is

also wanting in the denominator of the first term of the series

expressing the vahie o\' a-.

Such then were the ways in which Mercator and Gregory
applied these their very simple series a ^A-" -{- yA^ |a-* &c,
and A-l-^A"+ iA''4-! A^&c,for tlie purpose ot computing loga-
rithms. But they might, as I apprehend, have applied them

to this purpose in a shorter and more direct maimer, by com-

puting, by their means, only a few logarithms of small ratios,

\u which the terms of the series would have decreased bv the-

powers of 10, or some greater number, the imm-:irators of all

the terms being unity, and tiieir denominators the powers of

10 or some greater number, and t!icn employing these few

logarithms, so computed, to the finding the loorarithms of

other and greater ratios, by the easy operations of mere ad-

dition and subtraction. This might have been done for the

logarithms of the ratios of the first ten numbers, 2, 3, 4, 5,

6,7, 8, 9, 10, and 1 I, to I, in the following manner, com-

municated bv iIr. Baron Maseres.

In the first place, t'le logarithm of the ratio of 10 to 9, or

of 1 to J'^, or of I to 1 xV J
i'' cq^iil to the series

_! I _J . __!
I

i
I

1 s-c'^ "^ 2x100 ^3x1000 ' 4x10000 ' 3x100000
'

In like manner are easily found the logarithms of the ratios

of 11 to 10; and then, by the same series, those of 121 to

120, and of 81 to 80, and of 2401 to 2400; in all which cases
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the series would convero:e still faster than in the two fii^st

cases. We may then proceed by mere addition and subtrac-

tion of logarithms, as follows
;

Log.y
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computing logarithms is very nearly the same with that of

Sir I. Newton, in his second letter to Mr. Oldenburg, dated

October 1676, as will be seen in the following article.

0/ Sir Isaac Newton's Methods.

The excellent Sir I. Newton greatly improved the quadra-
ture of the hyperbolical-asymptotic spaces by infinite series,

derived from the general quadrature of curves by his method

effluxions; or rather indeed he invented that method him-

self, and the construction of logarithms derived from it, in the

year 1665 or 1666, before the publication of either Mcrcator's

or Gregory's books, as appears by his letter to Mr. Olden-

burg dated October 24, 1676, printed in p. 634 etseq. vol. 3,

of Wallis's works, and elsewhere. The

quadrature of the hyperbola, thence trans-

lated, is to this effect. Let dvD be an hy-

perbola, ^vhose centre is c, vertex f, and

interposed square cafe= 1. In CA take ab

and Ab on each side =. tV or 0*1 : And,
^ 1} A.

erecting the perpendiculars bd, bd; half the sum of the spaces
r , .,,, ^ ,

OdOl 00001
,

0-0000001
AD and Ad will be = 0-1 -\

~
\- (- &c.

1 L . ir irr 0-01 0-0001 0-000001 O'OOOOOOOl
and the half diff. 1- 7 -1 ^ -l z &c.

2 4 o 8

Which reduced will stand thus,

l-()0O00000000OO,00O500000O000O The sum of these 0-1033605156577 is Af/,

3333333333 250000000 and the differ. 0-0953101798043 is AD.

20000000 16666H6 In like manner, putting AB and A.b

142857 12500 each = 0-2, there is obtained

nil 100 Arf = 0-2231435513142, and

9 1 AD = 0-1823215567939.

0- 1 0033534773 1 0,0 005025 1 679267

Having thus the hyperbolic logarithms of the four decimal

numbers 0-8, 0-9, 11, and 1-2; and since
-^ X 2, and

0'8 and 0*9 are less than unity ; adding their logarithms to

double the logarithm of V2, we have 0-6931471805597, the

hyperbolic logarithm of 2. To the triple of this adding the

log. of 0-8, because ^4rr-= ^0, we have 2-3025850929933,
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tlie logarithm of 10. Hence by one addition are found the

logarithms of 9 and 1 1 : And thus the logarithms of all these

prime numbers, 2, 3, 5, 11 are prepared. Further, by only

depressing the numbers, above computed, lower in the deci-

mal places, and adding, are obtained the logarithms of the

decimals 0-98, 0-99, I'Ol, r02; as also of these 0-998, 0'999,

rOOl, 1002. And hence, by addition and subtraction, will

arise the logarithms of the primes 7, 13, 17, 37, &c. All which

logarithms being divided by the above logarithm of 10, give
the common logal-itinns to be inserted in tlie table.

And again, a few pages further on, in the same letter, he

resumes the construction of logaritlims, thus: Having found,

as above, the hyperbolic logarithms of 10, 0'98, 0*99, TOl,

1"02, whicli may be etfected ui an hour or two, dividing the

last four logaritlmis by the logarithm of 10, and addmg the

index 2, wc have the tabular logarithms of 98, 99, 100, 101,

102. Then, by interpolating nine means between each of

these, will be obtained the logarithms of all numbers between

980 and 1 020
;
and ajjain interpolating 9 means between every

two numbers from 980 to 1000, the table, will be so far con-

structed. Then iVom these will be collected the logarithms
of all the primes under 100, together with those of their mul-

tiples: ail wliich will require only addition and subtraction; for

988 9936 986 992 999 ^84

47IB-^^' T7x-27=23; ^,=29;
- = 31; ^^37; -- =41

^^3 4o ^'^^ A^ -'^11 ro 9971 _ 9882 ,,, 9849
-=43; ~ = 4,'; ^^_=,53;^^.= .9;^^- =61 :j^-^=

67

994 ^ 9928 ^ 9954 ^^ 996 9968 ^^ 989 f

Tr= '^'s-7r7=^3; .^^^=.9;
-

:=.S;3; ^^^
= 39: -, = 97.

This quadrature of the h3q)erbola, and its application to

the construction of logarithms, arc still further explained by
our celeurated author, in his treatise on Fluxions, published

by Mr.Colson in 1736, where he gives all the three scries for

the areas ad, At/, B(/, in general terms, tlie former the same
as that

pi,l)ii-,|,cd by Mercator, and the latter by Gregory;
and he exj)lains the nu-auier of deriving the latter series from

the former, namely by uniting together the two series lor the
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spaces on each side of an ordinate, bounded by other ordi-

nat;es at equal distances, every 2d term of each series is can-

celled, and the result is a series converging much quicker than

either of the former. And, in this treatise on fluxions, as well

as in the letter before quoted, he recommends this as the most

convenient way of raising a canon of logs, computing by the

series the hyperbolic spaces answering to the prime numbers

2, 3, 5, 7, 1 1
, &c, and dividing them by 2-3025850929940457,

which is the area corresponding to the number 10, or else

multiplying them by its reciprocal 0-4342944319032518, for

the comaion logarithms.
" Then the logarithms of all the

numbers in the canon which are made by the multiplication
of these, are to be found by the addition of their logarithms,
as is usual. And the void places are to be iiiterpolated after-

wards by the help of this theorem : Let ji be a number to which

a logarithm is to be adapted, x the difference between that

and tlie two nearest numbers equally distant on each side,

whose logarithms are already found, and \etd be half the dif-

ference of the logarithms; then the required logarithm of the

number n will be obtained bv adding </-}---{- - - &c to

the logaritiim of the less number." This theorem he demon-

strates by the hy[>erbolic areas, and then proceeds thus
;

" The two first terms d -\- o^ this series 1 think to be ac-

curate enough for the construction of a canon of logarithms,
even though they were to be produced to 14 or 15 figures;

provided the number whose logarithm is to be found be not

less than 1000. And this can oive little trouble in the calcu-

lation, because x is generally an unit, or the number 2. Yet

it is not necessary to interpolate all the places by the help of

this rule. For the logarithms of numbers which are produced

by the multiplication or division of the number last found,

maybe obtained by tiie numbers wliose logarithms were had

before, by the addition or subtraction of their logarithms.

Moreover, by the differences of the logarithms, and by their

2d and 3d differences, if there be occasion, the void places

maybe more expeditiously supplied; the foregoing rule being
to be applied only when the continuation of some full places
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is wanted, in order to obtain those differences, &c." So that

Sir I. Newton of himself discovered all the series for the above

quadrature, which were found out, and afterwards published,

partly by Mercator and partly by Gregoiy ;
and these we may

here exhibit in one view all together, and that in a general

manner for any hyperbola, namely putting CA c, ap = 6,

and AB = Ai^ = .r : then will bd = -^, and bd = : whence

the aieas are as below, viz.

, bx-i bti bx*
,

bi^

2a
'

3u* 4ft3 5(1*

J L ,
**'

.
bx'i

,
bx*

,

bx^
5

2rt 3a 4a3 5a*

Bd 2bjt; 4 -i &c.

In the same letter also, above quoted, to Mr. Oldenburg,
our illustrious author teaches a method of constructing the

trigonometrical canon of sines, by an easier method of mul-

tiple angles than that before delivered by Briggs, forthesame

purpose, because that in Sir Isaac's way radius or 1 is tlie first

term, and double the sine or cosine of the first given angle is

the 2d term, of all the proportions, by which the several suc-

cessive multiple sines or cosines are found. The substance

of the method is thus : The best foundation for the construc-

tion of the table of sines, is the continual addition of a given

angle to itself, or to another given angle. As, if the angle a

be to be added
;

M_^^--f

L V NY r

inscribe hi, ik, kl, lm, mn, no, op, &c, each equal to the

radius ab; and to the opposite sides draw the perpendiculars

BE, HQ, IR, KS, LT, Mv, NX, OY, &c
;
SO shall the angle a be

the common difference of the angles Hici, IKH, KLi, lmk, &c;
their sines Ha, ir, ks, &c

;
and their cosines la, kr, ls, &c.

Now let an}' one of them lmk, be given, then the icst will be

thus found: Draw xa and jub perpendicular to sv and mt;
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now because of the equiangular triangles abe, tla, km&,

ALT, AMV, &c, it will be AB : AE : : KT : sa (=iLV + 4-Ls) : :

LT : Ta 4=iMV + 4;KS,) and ab : be : : lt : Lfl (=4^LS- iLv)

: : KT {=4km) : ^m^ (=^mv ^ks.) Hence are given the

sines and cosines ks, mv, ls, lv. And the method of conti-

nuing the progressions is evident. Namely,
< LV : MT + lyix : : MX : NY + NY &c,

as AB : 2AE : :

-| ^^^
. ^^ ^ ^^ . . ^^ : OY + MV &c,

(
LV : NX LT : : MX : OY MV &c,

or AB : 2BE : t

| ^V : MT - MX : : NX : NV - NY &c.

And, on the other hand, ab : 2ae : : ls : kt + KR &c.

Therefore put ab = 1, and make be x LT= La, aex KT= s<r,

sa La rr lv, 2ae x lv tm =: mx, &c.

The sense of these general theorems is this, that if p be any
one among a series of angles in arithmetical progression, the

angle d being their common difference, then as radius or

,
7 ( COS. p : cos. p -[- d -\- cos. p d,

1 : 2 cos, d : ; \ .

^
i

f sm. p : sin. p + a -f- sin. p d,

, ^ 1 ( COS. p : sin. p -\- d sin. p d,
1 : 2 sin. d ::

'

.

^
, ,

( sm. p : COS. p -\- d cos. p d;

where the 4th terms of these proportions are the sums or dif-.

ferences of the sines or cosines of the two angles next less and

greater than any angle p in the series
;
and therefore, sub-

tracting the less extreme from the sum, or adding it to the

difference, the result will be the greater extreme, or the next

sine or cosine beyond that of the term p. And in the same

manner are all the rest to be found. This method, it is evi-

dent, is equally applicable, whether the common difference

d, or angle a, be equal to one term of the series or not: when
it is one of the terms, then the whole series of sines and co-

sines becomes thus, viz, as 1 : 2 cos. d : :

sin. d : sin. 2rf :: sin. 2d: sin. (f+sin. 3d: ; sin. '3d : sin. 2/+ sin. 4rf &c.

cos- (/ : 1 + COS. 2(i : : cos. 2d : cos. d+cos- 3d : : cos. 3d : cos. 2d+ cos. 4rf &c.

which is the very method contained in the directions given by
Abraham Sharp, for constructing the canon of sines.

Sir I. Newton remarks, that it only remains to find the sine

and cosine of a first angle a, by some other method
;
and for
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this purpose, he directs to make use of some of his own infi-

nite series: thus, by them will be found r57079&c for the

quadrantal arc, the square of which is 2*4694-&c
;
divide this

square by the square of the number expressing the ratio of

90 degrees to the angle a, calling the quotient z
;
then 3 or

4 terms of this series 1 -^ +
24
"

-|o + TS ^^' '"'^^^ S'^e

the cosine of that angle a. Thus we may first find an angle

of 5 degrees, and thence the table be computed to the series

of everv 5 degrees ;
then tliese interpolated to degrees or

half degrees by the same method, and these interpohited

again; and so on us far as necessary. But two-thirds of the

table being computed in tills manner, the remaining third will

be found by addition or sul)traction onlv, as is well known.

Various other improvcu)ents in logarithms and trigonome-

try are owing to the same excellent personage ;
such as, the

series for expressing the relation between circular arcs and

their sines, cosines, versed-sines, tangents, &c
; namely, the

arc being a, the sine s, the vcrbed-sine v, cosine c, tangent ^,

radius 1, then is

a = s +
-is^^

+
-^^s^^

+
T-f,5^

+ ^f4^5^
-L &c.

a = i -
-'jP + it'

-
\V + i^P

~ &c.

5 = fl -
\(i^ + rioa'

-
-joVo"' + 3^i'-rro''

- &c.

t
~ a ^ ^a^ -\- ^~^a' + ^-/^a^ + ^-^aP -f &c.

Of Dr. Ualkifs Method.

jVIanv other improvements in the construction of loga-

rithms are also derived from the same doctrine of fluxions, as

we shall show licrcalter. In the meaTi time proceed we to

the ingenious nutiiod of the learned Dr. Edmund Halley,

spcn^tary to the Royal Society, and tlie second astronouier

royal, having succeeded Mr. Flamsteed in that honouiable

oihc(> in the year 17 19, at the Royal Observatory at Green-

Avicii, where he died the 14th January 1742, in the 8Cth year
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of his age. His method was first printed in the Philosophical
Transactions for the j^ear 1695, and it is entitled " A most

compendious and facile method for constructing the loo-a-

rithms, exemplified and demonstrated from the nature of

jiumbers, without any regard to the hyperbola, with a speedy
method for finding the number from the given logarithm."

Instead of the more ordinary definition of logarithms, as

iiumeroruvi proportionalium (equidifferentes comites, in this

tract our learned author adopts this other, numeri ralionem

exponentes, as being better adapted to the principle on which

logarithms are here constructed, where those quantities are

not considered as the logarithms of the numbers, for example,
of 2, or of 3, or of 10, but as the logarithms of the ratios of

1 to 2, or 1 to 3, or 1 to 10. In this consideration he first

pursues the idea of Kepler and Mercator, remarking that any
such ratio is proportional to, and is measured by, the number

of equal ratiunculae contained in ( dcli
; which ratiunculse are

to be understood as in a continued scale of proportionals, in-

finite in number, between the two terms of the ratio
; which

infinite number of mean proportionals, is to that infinite

number of the like and equal ratiunculge between any other

two terms, as the logarithm of the one ratio, is to the loga-

rithm of the other : thus, if there be supposed between 1 and

10 an infinite scale of mean proportionals, whose number is

100000 &c in infinitum
;
then between 1 and 2 there will be

30102 (*^c of such proportionals; and between 1 and 3 there

will be 47712 &c of them; which numbers therefore are t!ic

logarithms of the ratios of 1 to 10, 1 to 2, and 1 to 3. But

for the sake ofAw mode of constructing logarithms, he changes
this idea of equal ratiuncula;, for that of other ratiuncula?, so

constituted, as that the same infinite number of them shall be

contained in the ratio of 1 to every other number whatever
;

and that therefore these latter ratiunculs will be o^ unequal
or different magnitudes in all the difi'erent ratios, and in such

sort, that in any one ratio, the magnitude of e.xh of the ra-

tiunculoe in this latter case, will be as the number of them in

the former. And therefore, if between 1 and any number
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proposed, there be taken any infinity of mean proportionals,

the infinitely small augment or decrement of the first of those

means from the first term 1, will be a ratiuncula of the ratio

of 1 to the said number ; and as the number of all the ratiun-

culse in these continued proportionals is the same, their sum,

or the whole ratio, will be directly proportional to the mag-
nitude of one of the said ratiunculse in each ratio. But it is

also evident that the first of any number of means, between

1 and any number, is always equal to such root of that num-

ber, whose index is expressed by the number of those pro-

portionals from 1 : so, ifw denote the number of proportionals

from 1, then the first term after 1 will be the jth root of that

number. Hence, the indefinite root of any number being ex-

tracted, the differentiola of the said root from unity, shall be

as the logarithm of that number. So if tlicrc be required the

log. of the ratio of 1 to 1 -f y the first term after 1 will be

(1 + y)""? '^nd thcref. the retjuired log. will be as
(1 +q)'" 1.

But, (1 f (/)'"
IS rr 1 -^

n \ .-'7 F -
. -r -'i; s^

&c
;
or by omitting the 1 in the com[joui)d nunjerators, as

infinitely small in respect of the infinite number 7n, the same

scries will become 1 -\ a + -
. q^ 4- -. . a^

m'- m 2m ' vi 2m 3m '

&c, or by abbreviation it is 1 -] </ g- 4- ~~q^ - 7*&c:

and hence, finding the differentiola by subtracting 1, the lo-

garithm of the ratio of 1 to 1 -}- <^
is as X (q ig^ + j-^^

-^g* + -'^^ Iq^ &c.) Now the index m mav be taken equal
to any infinite number, and thus ;< II the varieties of scales of

logarithms may he jjrociuced: so, if ;;i be taken lOOOOOO&c,
the thecre;n will give Xapier's logarithms; but \f mhc taken

equal to 2302j8&c, there will arise Briggs's logarithms.

This theorem being for the increasing ratio of 1 to 1 h g
'

if that for the decreasing ratio of 1 to \ g be also sought, it

will be obtained by a proper cliange of the signs, by which

the decrement of the first of the infinite numljer of propor-

tionals, will be found to be - - into q -f- ig- + -}(/' -f -l-q'' &c,

which therefore is as the loj^arilhm of the ratio of { to iq.
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b-a
Hence the terms of any ratio being a and b, q becomes

, or the difference divided by the less term, when it is an

increasing ratio
;
or q =-^ when the ratio is decreasing, or

as b to a. Therefore the logarithm of the same ratio may be

doubly expressed ; for, putting x for the difference b aai
the terms, it will be

either ^ into -1 _ ^'
+ i^ - il + &c.

or into -r + 7^ -\- 7^ -{ TH. + &c.

Eat if the ratio of a to /> be supposed divided into two parts,

namely, into the ratio of ato \a-{- ^b or \z, and the ratio of

iz to b, then will the sum of the logarithms of those two ratios

be the logarithm of the ratio of a to b. Now by substituting
in the foregoing series, the logarithms of those two ratios will

be into 1 1 &c.

and - into ~ -
\- + &c: and hence the sum,

1 .

^ 2x
,

2-i3 2r5 2t7 2j.'
,

^
-^

^"^ T + 5? + ^3 + ^7 + "5?
+ &^>

will be the logarithm of the ratio of a to b.

Further, if from the logarithm of the ratio of a to ^z, be

taken that of iz to b, we shall have the logarithm of the ratio

of ab to iz-
;
and the half of this gives that of <^ab to ^z, of

of the geometrical mean to the arithmetical mean. And con-

sequently the logarithm of this ratio will be equal to half the

difference of that of the above two ratios, and will therefore

be
-^

into _ + _ + _ + - + &c.

The above series are similar to some that were before given

by Newton and Gregory, for the same purpose, deduced from

the consideration of the hyperbola. But the rule Avhich is

properly our author's own, is that which follows, and is de-

rived from the series above given for the logarithm of the

sum of two ratios. For the ratio oiab to iz^ or ia^+ia^-f-x^^

having the difference of its terms -^^-^ab -f- ^b'^
or {ib j^zf

or ^x^, which in the case of finding the logs, of prime num-
bers is always 1, if we call the sum of the terms iz*+ a^=j/%

VOL. I. F F
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the loj^. of tliera. of ^/ab to \a-\-i^b or iz will be found to be

- into h T7 + ~.o + r^. + rrrs + &c.

And these r:ilcs oir learned author excniplifies by sonne

cases in numbers, to show the easiest mode of application in

practice.

Again, by means of the same binomial theorem he resolves,

with equal facility, tlie reverse of the problem, namely, from

the log. given, to (ind its number or ratio: For, as the log,

of the ratio of 1 to 1 -f ^ was proved to be (1 + j)"* 1, and
X

that of the ratio of 1 to 1 -
^ to be 1 -

(
I y)"" ; hence,

calling the given logarithm l, in the former

case it will be
(1 -{^ q)'"

z^ 1 + l,

and in the latter (1 q)'"
r= 1 l

;

and therefore 1 + y = (1 + l)"7 that is,, by the binomial

and 1 ^ r= (1 l)"' 5 theorem,
1 4- 7 =: 1 4- ? L 4 Inf l" + Im' l^ + -^Vk'^ l'^+ tto"^^ l^ &c,

and 1
-7
r= 1 ?;; L 4 Inr ir i??i ' l^ -f ^.V^^ ^"^~ t' o'"^ ^' &c,

wi being any inhnite index whatever, differing according to

the scale of logarithms, being JOOO^c in Napier's or the hy-

perbolic logarithms, and 230258J&C in Briggs's.

If one term of the ratio, of wiiich l is the logarithm, be

given, the other term will be easily obtained by the same

rule : For if l be Napier's logarithm, of the ratio of a the

less term, to b the greater, then, according as a or b is given,
we shall have,

b = a into ] + l + -^l^ 4- -II^ 4- ..'-l'* -J- &c,
a= b into 1

- l 4- -M/ ^L^ 4" zV^^
-

<^^'-"-

Hence, by help of the logarithms contained in the tables, may
easilybe found the number to anviiiven I02:. to a ureat extent.

For if the small diflc.rence between the given log, l and thu

nearest tabvdar logiiiithm, cither greater or less, be called /,

and tlie number ansut-riiig to the tabular logarithm <r, when
it is less than the givtii logarithm, but b when greater ; it

will follow, that the number answering to the log. l, will be

either a into 1 4" / "i" 1-1' 4- ^ + -^l* + ^l,P 4" &c,
or b into 1-/4- [['

- -II' 4- ^y*
- ^IJ^ + ^c,
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^vhich series converge so quickly, / being always very small,
that the first two terms 1 ^ are generally sufficient to find

the number to 10 places of figures.

Dr. Halley subjoins also an easy approximation for these

series; by which it appears, that the number answering to

thelog.isnearly Y~-xa or -^^ X b in Napier's logs. ;
and

^~ X a or
|y X ^ in Briggs's logarithms j where n is =

43429448 1 903&c= .

Of Mr. Sharp's Methods.

The labours of Mr. Abraham Sharp, of Little-Horton, near

Bradford in Yorkshire, in this branch of mathematics, were

very great and meritorious. His merit however consisted

rather in the improvement and illustration of the methods of

former writers, than in the invention of any new ones of his

own. In this way he greatly extended and improved Dr.

Halley 's method, above described, as also those of Mercator

and Wallisj illustrating these improvements by extensive

calculations, and by them computing table 5 of my collection

of Mathematical Tables, consisting of the logarithms of all

numbers to 100, and of all prime numbers to 1100, each to

6 1 places. He also composed a neat compendium of the best

methods for computing the natural sines, tangents, and se-

cants, chiefly from the rules before given by Newton ; and

by Newton's or Gregory's series u = t \fi -\- \ti
-^

j-f &c,

for the arc in terms of the tangent, he computed the circum-

ference of the circle to 72 places, namely from the arc of 30

degrees, whose tangent t is =v'-|-to the radius 1. Other

surprizing instances of his industry and labour appear in his

Geometry Improv'd, printed in I7l7, and signed A. S. Philo-

math, from which the 5th table of logarithms above-mentioned

was extracted. This ingenious man was sometime assistant

at the Royal Observatory to Mr. Flamsteed the first astrono-

mer royal; and, being one of the most accurate and inde-

fatigable computers that ever existed, he was for many year^

FF 2
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the common resonrce for INTr. FJamstecd, Sir Jonas Moore,

Dr. Hallcy, &c, in all intricate and troublesome calculations.

He afterwards retired to las native place at Little-Horton^

where, after a life spent in intense study and calculations, he

died the 18th July 1742, in the 9lst0ear of his age.

0/ the Conslruction of Logarithms hij Flvxions.

It appears by the very definition and description given by

Napier of his logarithms, as stated in page 341 of this vol.

that the fluxion of iiis, or the hyperbolic logarithm, of any

number, is a fom-tl\ proportional to that number, its loga-

rithm, and unity ; or, which is the same thing, that it is equal
to tire fluxion of the number divided by the number : For the

description shows, that z\ : za or 1 :: zl the fluxion ol za-.za^

T\hich therefore is
~

;
but za is also equal to the fluxion

of the logarithm A&e, by the description ; therefore the flux-

ion of the logarithm is equal to
^_-, the fluxion of the

quantity-

divided by the quantity itself. The same thing appears ao-ain

at art. 2 of that httle piece, in the appendix to his Construetio

Logarithniorum, entitled Habitudines Looarithmorum ct

suorum naturalium numyrorum invicem, Mhere he observes

that, as any greater quantity is to a less, so is the velocity of

the increnient or decrement of the logarithms at the place of

the less quantity, to that at the greater. Now this velocity
of the increment or decrement of the logarithms being the

same thing as their fluxions, that proportion is this, x : a : :

flux. log. a : flux. log. X
;
hence if a be = ], as at the bccrin-

ning of the table of numbers, where the fluxion of the logs.
is the index or characteristic c, which is also 1 in Napier's or

the hyperbolic logarithms, and 43429&C in J3riofrs's the sanwi

proportion becomes x : I : : c : flux. log. x
; but the con-

stant fluxion of the numbers is also J, and therefore that pro-

portion is also this, x : x :-. c :

" = the fluxion of the log. of

X
;
and in the hyperbolic logs, where c is = 1, it becomes

^
= the fluxion of Napier's or the hyperbolic logarithm of
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X. This same property has also been noticed by many other

authors since Napier's time. And the same, or a similar pro-

perty, is evidently true in all systems of logarithms whatever,

namely, that the modidus of the S3'steni is to any number, as

the fluxion of its logarithm is to the fluxion of tiie number.

Now from this property, b}' means of the doctrine of flux-

ions, are derived other ways for making logarithms, Avhicli

have been illustrated b}^ many writers on this branch, as Craig,
John Bernoulli, and almost all the writers on fluxions. And
this metl)od chiefly consists in expanding the reciprocal of

the given quantity in an infinite series, tijen multipljing each

term by the fluxion of the said quantity, and lastly taking the

fluents of the terms; by which there arises an infuiite series

of terms fo-r the logarithm sought. So, to find the logarithm
of any number n ; put any compound quantity for k, as

n-k-x

suppose -,

then the flux, of the log. or - being ^ =- "-- '^-^&c,

tlie fluents give log. ot n or log. ot =- -+--- t--&c.

And
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Cambridge, January 1706, which appointment lie filled with

the greatest credit, till he died the 5th of Jmie 1716, in the

prime of life, having not quite completed the 34th year of

his age. His early death was a great loss to the mathemati-

cal world, us his genius and abilities were of the brightest

order, as is manifest by the specimens of his performance

given to the public. Among these is, his Logometria, first

printed in number 338 of the Philosophical Transactions, ancl

afterwards in his Harmonia !\Iensurarum, published in 1722,

with his other works, by his relation and successor, in the

Plumian professorship, Dr. Robert Smith. In this piece he

fir^t treats, in a general way, of measures of ratios, which

measures, he observes, are quantities of any kind, whose mag-
nitudes arc analogous lo the magnitudes of the ratios, these

magnitudes mutually increasing and decreasing together in

the same proportion. He remarks, that the ratio of equality
has no magnitude, because it produces no change by adding
and subtracting ;

that the ratios of greater and less inequality,

are of difti^rent affections; and therefore if the measure of the

one of these be considered as positive, that of the other will be

negative ;
and the measure of the ratio of equality nothing :

That there are endless systems of these, which have all their

measures of the same ratios proportional to certain given

quantities, called moduli, which lie defines afterwards, and the

ratio of which they are the measures, each in its peculiar sys-

tem, is called the modular ratio, ratio modularis, which ratio

is the same in all systems. He then adverts to logarithms,

wliich lie considers as the numerical measures of ratios, and

he describes the method of arranging tiiem in tables, with

their uses in multiplication and division, raising of powers and

extracting of roots, by means of the corresponding operations
of additioii and subtraction, multiplication and division.

After this introduction, wiiich is only a slight abridgment
of the doctrine Jong before very amply treated of by others,
and

particularly by Kepler and Mercator, Ave arrive at the
first

proi.'Osition, which has justly been censured as obscure
and impeifect, seemingly throu^'an affectation of brevityj



TRACT 21. LOGARITHMS. -liSd

intricacy, and originality, without sufficient room for a dis-

play of tJiis quality. The reasoning in this proposition, such

as it is, seems to be something between that of Kepler and the

principles of fluxions, to which the quantities and expressions
are nearly allied. However, as it is my duty rather to nar-

rate than explain. I shall here exhibit it exactly as it stands.

This proposition is, to determine the measure of any ratio, as

for instance that of ac to ab, and Avhich is eft'ected in this

manner: Conceive the differ-

ence BC to be divided into . : rA li P fei. C
innumerable very small par-

ticles, as PQ, and the ratio between ac and ab into as many
such very small ratios, as between Aa and ap: then if the

magnitude of the ratio between aq and ap be given, by divid-

ing, there will also be given that of va to ap ;
and therefore,

this being given, the magnitude of the ratio between aq and

ap may be expounded by the given quantity ; for, ap re-

maining constant, conceive the particle pq to be augmented
or diminished in any proportion, and in the same proportion
will the magnitude of the ratio between aq and ap be aug-
mented or diminished : Also, taking any determinate quan-

tity M, the same may be expounded bj- m x ;
and therefore

the quantity M X will be the measure of the ratio between

Aci and AP. And this measure will have divers magnitudes,
and be accommodated to divers systems, according to the

divers magnitudes of the assumed quantity m, which therefore

is called the modulus of the system. Now, like as the sum of

all the ratios aq to ap is equal to the proposed ratio AC to ab,

so the sum of all the measures m x , found by the known

methods, will be equal to the required measure of the said

proposed ratio.

The general solution being thus dispatched, from the ge-
neral expression, Cotes next deduces other forms of the

measure, in several corollaries and scholia; as 1st, the terms

AP, aq, approach the nearer to equality as the small differ-
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ence pq is less ; so tliat either m x or m x - will be the
AP AQ

measure of the ratio between Aa and ap, to the modulus m.

2d, That henee the modulus m, is to the measure of the

ratio between aq and ap, as either ap or aq is to their dif-

ference PQ. 3d, The ratio between ac and ab being given, the

sum of all the will be civcn ; and the sum of all the m X
XP O AP

is as M : therefore the measure of any given ratio, is as the

modulus of the sj'stem from which it is taken. 4th, There-

fore, in every system of measures, the modulus will always
be equal to the measure of a certain determinate and immut-

able ratio; which therefore he calls the modular ratio. 5th,

To illustrate the solution by an example : let z be any deter-

minate and permanent (juantity, .r a variable or indeterminate

quantity, and x its fluxion; then, to find the measure of

the ratio between z-\- x and z .v, put this ratio equal to the

ratio between ?/ and 1, expounding the number j/ b}' ap, its

fluxion j by pq, and 1 by ab : then the fluxion of the re-

quired measure of tha ratio between y and 1 is m x .

y

Now, for
7/, restore its val.

^ ^, and for j the flux, of that val.

-, ^,1 SO shall the flux, of the measure become 2m x "-^^-^
('-^>

_ _ _
z-aa'

or 2m into --+ '-
-f^+ &c ;

and therefore that measure will

be 2m into ^- -f ^-j-&.c. In like manner the measure of

the ratio between 1 -{ v and 1, wall be found to be - - - _

M into x; \v- -f .]t;3 ^t;'^ -}- &c. And hence, to And the

number from the logarithm given, he reverts the series in this

manner : If the last measure be called ?/;, we

shall have -'" or q = x) -\v + \v' ^v" + ix;^ &c,

therefore q'= - v^ tj^ \-Wv'' ^v^ hc^
and <i^= - .. - v^

-|-x;* \ .^v^ &c,
and Q.^ - - - - - V* - 2v^ &c,
and q'= ______ 1)5 ^(; .

then, by adding continually, we shall have,
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a + ia' =v- iv' + ^^v^
-

{-Iv^ &c,

a + iQ- + \Q? + ^'^q' V- -i-ot'-^ &c,

ft + i-'i^ + Iq^ + TTft"" + T^ft*=^ &C5

that is t;= Q + -^q^ + 1q} ^;- ^q* + t4'o<^^ ^c- And there-

fore the required ratio of 1 + u to 1, is equal to the ^*atio of

1 + Q + \Qr &c to 1. Now put VI = M, or Q = 1, and the

above will become the ratio of 1 +4+ i + i f -z? + tIo ^^
to 1

,
for the constant niodular ratio. In like manner, if the

ratio between 1 and 1 v be proposed, the measure of tliis

ratio will come out m into v -\- -VS' + 4t;' + -^-t

* &c ; v>hicli

being called 711, and = q, that ratio will be the ratio of

1 to I Q + 4G' ^a' + -^QC Sec. And hence, takinj;

?7Z= M, or Q 1, the said modular ratio will also be tiie ratio

ofltol 4- + T i + ^ TTo &c. And the former of

these expressions, for the modular ratio, comes out the ratio

of 2.718281828459 8cc to 1, and the latter the ratio of 1 to

0.367879441171 &c, which number is the reciprocal of the

former.

In the 2d prop, the learned author gives directions for con-

structing Briggs's canon of logarithms, namely, first bv the

general series 2m into -t
^

-{- \-i -{ &.c, finding the loga-

rithms of a few such ratios as that of 12G to 125, 225 to 224,

2401 to 2400, 4375 to 4374, Sec, from which the logarithm of

10 will be found to be 2.30-2585092994 Sec, when m is 1
;
but

since Briggs's log. of 10 is 1, therefore as 2.302585 &c is to

the mod. l,soisl (Briggs's log. of 10) to0.4342S4i8l903&c,
Avhich therefore is the modulus of Briggs's logarithms. Hence

he deduces the logarithms of 7, 5, 3, and 2. Iti like manner

are the logarithms of other prime numbers to be found, and

from them the logarithms of composite numbers by audition

and subtraction only.

Cotes then remarks, that the first term of the general series

2m into^ + ^ + "^ + ^^i ^""'^^^ '^^ sufficient for the loga-

rithms of intermediate numbers between those in the table,

or even for numbers beyond the limits of the table. Thus, to
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find the logarithm answerinj^ to any intermediate number ;

jet a and e be two numbers, tlie one the given number, and

the other the nearest tal)ular number, a being the greater,

^nd c the less of them ; put z =. a \- e their sum, x = a e

their dilJerencc, A rz the logarithm of the ratio of a to e,

that is the excess of the logarithm of a above that of e: so

shall the said dificrence of their logarithms be A zr 2m x

very nearly. And, if there be required the number answer-

ing to any given intermediate logarithm, because A is =
9m 2mi 2Mr ^ x^ y.e ,= or , there!, x = or very nearly.
z 'Zax 2c .fx M + ^x M 5X

-^ "

In the 3d prop, the ingenious author teaches how to convert

the canon of logarithms into logarithms of any other system,

by means of their moduli. And, in several more propositions,

he exemplifies the canon of logarithms in the solution of va-

rious important problems in geometry and physics ;
such as

the quadrature of tlie hyperbola, the description of the logi-

stica, the equiangular spiral, the nautical meridian, &c, the

descent of bodies in resisting mediums, the density of the

atmosphere at any altitude, &c, <k.c.

Of Dr. Taylor''s Coniruction of Logarithms.

Dr. Brook Taylor, avery learned mathematician, and secre-

tary to the Royal Society, who died at Somerset-house, Nov.

1731 , gave the following method of constructing logarithms, in

number 352 of the Philosophical Transactions. His method is

founded on these three considerations : 1st, that the sum of

the logarithms of any two numbers, is the logarithm of the pro-

duct of th.ose numbers; 2d, that the logarithm of 1 is nothing,
and consequently that the nearer any number is to 1, the

nearer will its logarithm be toO
; 3d, that the product of two

numbers or factors, of which the one is o;reatcrand the other

less than 1, is nearer to 1 than that factor is which is on the

^ame side of 1 with itself; so of the two numbers
-J
and |, the

product I is less than 1
,
but yet tiearer to it than

|. is, which

is also less than 1. On these principles he founds the present

approximation, which he explains Ijy the following example.
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To find the relation between the logs, of 2 and 10 : In order to

, . , r 128
,

8 Q7 , 23

this, he assumes two iractions, as
-jTj^and ,

or
,
and

whose numerators are powers of 2, and their denominators

powers of 10, the one fraction being greater, and the other

less than unity or 1. Having set these two down, in the form

of decimal fractions, below each other in the first column of

the following table, and in the second column a and b for

their logarithms, expressing by an equation how they are

1,2800000()0{)00
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power sought. T'hiis, tlie second and third numbers in the

table being 0,8 and 1,024, their differences from nnity are

0,200 and 0,024 ;
hence 0,200 -^ 0,024 gives 9 for the index ;

and therefore niultiplying tlie 9th po;ver of 1,054 by 0,8,

produces the next number 0,l'9035203l429j whose logarithm
is D = B -}- 9c.

When the calculation is continued in this manner till the

numbers become small enough, or near enough to J, the last

logaritiim is supposed equal to nothing, which gives an equa-
tion expressing the relation of the logarithms, and thence the

required logarithm is dcterniined. Thus, supposing g = 0,

we liave 2136/2 643/10 = 0, and lience, because the loga-

rithm of 10 is 1, ve obtain l2 = --=0,30102996, too small

in the last figure only; which so happens, because the num-
ber corresponding to g is greater than 1. And in this manner

are all the numbers in the third or last column obtained, which

arc continual approximations to the logarithm of 2.

There is another expedient, which renders this calculation

still sliorter, and it is founded on this consideration: that

when jr is small, (l+.r)' is nearly = 1 +??.r. Hence if l+,r

and 1 z be the two last numbers already found in the first

column of the table, the product ot their powers (1 -f- .vY'x

(1 z)" will be nearly 1
j and hence the relation of in and

V may be thus I'ound, (1 -\- x)" x (1 z)" is nearly =
(1 -\-vix)x (1 c) =z 1 -J- ^'"^' "2 7}i77.rz r: 1 -f- mx nz

nearly, which being also = 1 nearly, therefore m : n : : z :

V : : l.{l-z) :/.(l+.r); whence xl.{l-z) -\-zl .{I +x)= 0.

For example, let 1,024 and 0,9903.52 be the last numbers in

the table, their In^s. being c and D : here we have 1,024 = 1 +.r,

and 0,990352 = l-z; conseq. .v = 0,024, and ^r =:O,009648,
201

and hence the ratio in small numbers is -. So that, for
X 500 '

".nuding the logaiithms proposed, we may take 5OOd + 20Jc=
4S510/2- 1 1603/10= 0; which gives /2=0,3010307. And in

this lu.uuier arc found the numbers in the last line of the

table.
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Of Mr. Long's Method.

In number 339 of the Philosophical Transactions, arc given
a brief table and method for finding the logarithm to any num-

ber, and the number to any logarithm, by Mr. John Long,
B. D. Fellow of C. C. C. Oxon. This table and method are

similar to those described in chap. 14, of Briggs's Arith. Log.

differing only in this, that in this table, by Mr, Long, the

logarithms, in each class, are in arithmetical progression, the

common difference being 1
;
but in Briggs's little table, the

column of natural numbers has the like common difference.

1'he table consists of eifjht classes of logarithms, and their

corresponding numbers, as follow :

L.
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any class, is tlie 1 0th power of the corresponduig number in

tiie next following class.

To find the logaritiim of any number, as suppose of 2000,

by this table, Look in the first class for the number next less

than the first iigure 2, and it is 1,995262315, against which

is 3 for the first figure of tiic logarithm sought. Again, di-

viding 2, the number proposed, by 1,995262315, the number

found in the table, the quotient is 1 ,002374-4'67 ;
which being

looked for in the second class of the table, and finding neither

its equal nor a loss, is therefore to be taken for the second

figure of the logarithm ;
and the same quotient l,0O2374'i67

being looked for in tlie third cLiss, the next less is there found

to be 1,002305238, against which is 1 for the third figure of

the logarithm; and dividing the quotient 1,002374467 by
the said next less number 1,002305238, the new quotient is

1,000069070 ;
which being sought in the fourth class, gives

0, but sought in the fifth class gives 2, which are the fourth

and fifth figur.;s of the logarithm sought : again, dividing the

last quotient by 1,000046053, the next less number in the

table, the (juotient is 1,000023015, which gives 9 in the 6th

class for t'.ie Gth fioure of the 'o^arithm souo'ht: and ao;ain

dividing the last quotient by 1,000020724, the next less

number, the quotient is 1 ,000002291, the next less than which,

in the 7th class, gives 9 for the 7th figure of the logarithm :

and dividing tlie last quotient by 1,000002072, the quotient
is 1,000000219, which gives 9 in the 8th class for the 8th

figure of the log.: and again the last quotient 1,000000219

being divided by 1,000000207, the next less, the quotient

1,000000012 gives 5 in tlK; same Sth class, when one figure is

cut oiF, for the 9th figure of the logarithm sought. All which

figures collected together give 3,301029995 for Briggs's log.

of 2000, the index 3 being supplied ;
which logarithm is true

in the last figure.

To find the number answering to any given logarithm, as

suppose to 3,3010300 : omitting the characteristic, against
the other figures 3, 0, 1, 0, 3, 0, 0, as in the first column in

the margin, arc the several numbers as in the 2d column.
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found from their respective 1st, 2d, 3d, 3

&c classes; the effective numbers of

which multipHed continually together, 1

thelastproductis 2,000000019966,which,
because the characteristic is 3, gives 3

2000,000019966, or 2000 only, for the

required number, answering to the given G

loirarithm^

1,995262315

1,002305238

1,000069080

Of Mr. Jones's Method.

In the 61st volume of the Philosophical Transactions, is a

small paper on logarithms, which had been drawn up, and left

unpublished, by the learned and ingenious William Jones, Esq,
The method contained in this memoir, depends on an appli-

cation of the doctrine of fluxions, to some properties drawn

from the nature of the exponents of powers. Here all num-
bers are considered as some certain powers of a constant de-

terminate root: so, any number x may be considered as the

2 power of any root r, or that x = r" is a general expression
for all numbers, in terms of the constant root r, and a vari-

able exponent z. Now the' index z being the logarithm of

the number x, therefore, to find this logarithm, is the same

thing, as to find what power of the radical r is equal to the

number x.

From this principle, the relation between the fluxions of

any number x^ and its logarithm s, is thus determined : Put

r=:l +7Z ;
then is .r = 7-^ = (1 + iif, and ^ + ^ =

(1 -f ??)-+^=:

{\-\-7iYx{i-\-nY=:xx (1-f 7z)% which by expanding (i-j-)z^

omitting the 2d, 3d, &c powers of i, and writing q for -^,

becomes x + xk x
(i' + 4?* + l?^ + i^* + <^c) ; therefore

Je = axz, putting a for the series q -{- iq^+ iQ^ &c, orfx=xxy

putting/ = K
Now when 7- = 1 +72 = 10, as in the common logarithms of

Briggs's form; then 7?= 9, q
=

,9, and the series g + ig^+jq^
&c, gives a=2,302585Scc, andthevv-f. itsrecip./=:,434294&c.
But ifa=l=/, the form will be that of Napier's logarithms.
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From the above form xz=fx, or z = --^j are then deduced

many curious and <;eneral properties of logaritlims, Avith the

several series hoetofore given by Gregor}-, Mercator, Wallis,

Newton, and Ilallev. But of ail these series, that one which

our autlior selects for conitructing the logarithms, is this,

puttinfr N = ' ^ the losrarithm of is = 2/ x : n -1- '-n^ +

-}^N^ + ^k' \ 6\.c, in the case in Avhich 7' p is = I, and con-

senuentlv in that case n = or : which series will

tlicn converge very fast.

Hence, having- given any numl)crs, p, q, r, &c, and as

many ratios a, b^ c, &c, composed of them, the difference

between the two terms of each ratio b^infj 1 : as also the

logarithms a, b, c, &.c, of those ratios given : to find the

logarithms p, o., R, &c, of those numbers; sup[)Osingy= 1.

For instance, if p = 2, q = o, r :=z 5
;
and a = '- z=

^

b zz =: --, c :=. ~- =r . Now the loparithms A, B, c, of
).-) i>\) 2-i 3-23 => 7 7 7

these ratios a, h, c, being fouiul by the above series, from the

nature of j)owers we have tliesc three ef(nations,

A = 20. 3p \

j> = 4p _ q _ R>- which equations reduced give
c == 2u Q 3p3

p = 3a 1- 4b !- 2c = log. of 2.

Q = 5a + 6b -\- 3c = log. of 3.

n 7a 1- i)B -f 5c = log. of 5.

And hence p 1- r = 10a 4- 13b \- Ic is = the logarithm of

2 X 5 or 10.

An elegur.t tract on logarithms, as a comment on Dr. Ilal-

ley's method, was also given by Mr. Jones, in his Synopsis

:\i!m.;vi()nnn Matheseos, published in the year 1706. And,

:n t')e Fhilo iophical Transactions, he ctnnmunicated various

mi.rovenients in gonionictrical properties, and the series re-

iating to the circle and to trigonometrv.
Tiic nietnoir above described was delivered to the Royal

.Society by their then librarian, Mr. John Robertson, a wor-

thv,ingen'!(;us, and industrious man, who also communicated
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to the Society several little tracts of his own relating to loga-
rithmical subjects ;

he was also the author of an excellent

treatise on the Elements of Navigation in two volumes
; and

he was successively mathematical master to Christ's hospital
in London

; head master to the royal naval academy at Ports-

mouth ; and librarian, clerk, and housekeeper, to the Royal
Society; at whose house, in Crane Court, Fleet-street, he died

in 1776, aged 64 years.
And among the papers of Mr. Robertson, I have, since his

death, found one containing the following particulars relat-

ing to Mr. Jones, which I here insert, as I know of no other

account of his life, &c, and as any true anecdotes of such ex-

traordinary men must alw^ays be acceptable to the learned.

This paper is not in Mr. Robertson's hand writing, but in a

kind of running law-hand, and is signed R. M. 12 Sept. 1771.
*' William Jones, Esquire, F. R. S. was born at the foot of

Bodavon mountain [Mynydd Bodafon], in the parish of Llan-

lihangel tre'r Bardd, in the isle of Anglesey, North Wales,
in the year 1675. His father John George* was a farmer, of

a good family, being descended from Hwfa ap Cynddelw, one

of the 15 tribes of North Wales. He gave his two sons the

common school education of the country, reading, writing,
and accounts, in English, and the latin grammar. Harry his

second soon took to the farming business
;
but William the

eldest, having an extraordinary turn for mathematical studies,

determined to try his fortune abroad from a place where the

same was but of little service to him
;
he accordip.gly came to

London, accompanied by a young man, Rowland Williams,
afterwards an eminent perfumer in Wych-street. The report
in the country is, that Mr. Jones soon got into a merchant's

counting-house, and so gained the esteem of his master, that

he gave him the command of a ship for a West-India voyage ;

and that upon his return he set up a mathematical school,

"
It is tlie custom in several parts of Wales for the name of the father to

become, the surname of his children. John George the father was commonl}'
called Sion Siors of Llambado, to which parish he moved, and where his children

were brought up."

VOL. I. G G
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and published his book of uavii^jittttn* ;
and that upon the

death of the merchant he mahied his widow : that I ord Mac^

clesfield's sOti being his pupil, he was made secretary to the

chancellor, and one of the D. tellers of the exchequer and

thev have a stor}' of an Italian wedding which caused great

disturbance in Lord Macclesfield's family, but comjoromised

by Mr. Jones
;
which gave rise to a saying, that Macclesfield

Avas the making of Jone<, and Jones the making of Maccles-

field." Mr. Jones died July 3, 1749, being vice-president of

the Roval Society; and left one daughter, and a young son,.

Avho was the late Sir William Jones, oneof the judges in India,

and highly esteemed for his great abilities^ extensive learning,

and eminent patriotism.

OfMr. Andrew Rtid and Others.

Andrew Reid, Esq. published in 1767 a quarto tract, under

tiie title of An Essay on Logarithms, in which he also shows

the computation of logarithms, from principles depending on

the binomial theorem and the nature of the exponents of

powers, the logarithms of numbers being here considered as

the exponents of tiie powers of 10. He hence brings out the

"Usual scries for logarithms, and largely exemplifies Dr. Llal-

lev's most simple construction.

l^esides the authors whose methods liave been here parti-

cularly described, many others have treated on the subject of

logarithms, and of the sines, tangents, secants, &cj among
the ])rincipal of whom arc Leibnitz, Euler, Maclaurin, Wol-

fius, atid prof(''ssor Simson, in an elegant geometrical tract on

logarithms, contained in his posthumous works, printed in ito

at Glasgow, in the year 1T7G, at tlie expense of the very
learned Earl Stanhope, and by his Lordship disposed of in

* This tract on navigation, intitlcd,
" A New Conipcndium of the wfiolc- Ait

of Pracfina! Navigation," was ijuhlished in 1702, and dedicated " to the rtveiend

and learned Mr. Jolm Harris, M. A. and F.K.S." the author, I apprehend, of

the "
Universal Dctioniu y of .Art.sand Sciences," under whose roof Mr. Jones

says he composed the said treatise oa Navigation.
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presents among gentleilien most eminent for mathematical

learning.

Of Mr. Dodsovi's Anti-logarithmic Canon.

The only remaining considerable work of this kind pub-

lished, that I know of, is the Anti-logarithmic Canon of Mr.

James Dodson, an ingenious mathematician, which work he

published in folio in the year 1742
;
a very great performance^

containing all the logs, under 100000, and their correspond-

ing natural numbers to 11 places of figureSj with all their

differences and the proportional parts ;
the whole arranged

in the order contrary to that used in the common tables of

numbers and logarithms, the exact logarithms being here

placed first, and increasing continually by 1
,
from 1 to 100000,

with their corresponding nearest numbers in the columns op-

posite to them ; and, by means of the differences and pro-

portional parts, the logarithm to any number, or the number

to any logarithm, each to 1 1 places of figures, is readily found.

This work contains alsoj besides the construction of the na-

tural numbers to the given logarithms,
**

precepts and ex-

amples, sho\Ving some of the uses of logarithms, in
facilitating

the most difficult operations in common aritlimetic, cases of

interest, annuities, mensuration, &c; to which is prefixed an

introduction, containing a short account of logarithms, and

of the most considerable improvements made, since their in-

vention, in the manner of constructing them."

The manner in which these numbers were constructed,

consists chiefly in imitations of som.e of the methods before

described by Briggs, and is nothing more than generating a

scale of 100000 geometrical proportionals, from 1 the least

term, to 10 the greatest, each continued to 1 1 places of

figures; and the means of effecting this, are such as easily

flow from the nature of a series of proportionals, and are

briefly as folloAv. First, between 1 and 10 are interposed 9

mean proportionals ;
then between each of these 11 terms

there are interposed 9 other means, making in all 101 terms;

then between each of these a 3d set of 9 means, making in

G G 2



452 CONSTRUCTION OF TRACT 21.

all 1001 terms; again between each of these a 4th set of 9

means, making in all 10001 terms
;
and lastly, between each

two of these terms, a 5th set of 9 means, making iti all lOOOOl

terms, including both tlie 1 and the 10. The first four of

these 5 sets of means, are found each by one extraction ot the

10th root of the greater of the two given terms, which root

is the least mean, and then multi[)lying it continually by it-

self, according to the number of terms in the section or set;

and the 5th or last section is mailc by interposing each of the

9 means by help of the method of diflerenccs before taught.

Namely, putting 10, the greatest term,

= A, a"^'^= b, b"^' = c, c"^"^ =: D, D^ = K, and r7 = f ;
now

extracting the lOth root of a or 10, it gives 1,25892.54118
=

B=a"^, for the least of the 1st set of nieans
;
and then multi-

plying it continually by itself, we have K, B", B% B*, &c, to b'"

r=A,for all the 10 terms: 2dly,thc 10th root of 1,2589254118

sives 1,0232921)92.3 = c = B^" = a"^", for the least of the

2d class of means; whicli being continually multiplied gives

C, C-, c\ &c, to c^ = b' = A, for all the 2d class of 100

terms : 3dly, the 10th root of 1,02:52929923 gives 1,00230.5238 1

= D =: c'"= b"^^''' = a"'"^'", for the least of the 3d class of

means
;
which being contiinially multiplied, gives D, D^, D',

C=cc, to d'"""" c''^" b' = A, for the 3d class of 1000 terms :

4thly, the 10th root of 1,0023052381 gives 1,0002302850=
B := d'^'^' c^-" b'^"''"" = a'^'^'''''\ for the least of the 4th

class of means, which being continually nnaltiplicd, gives e,

E-, vJ, &.C, to k'^= = 1)'"= z= c'=B' =: A, for the 4th class

of 1 0000 terms. Now these 4 classes of terms, thus })rodu-

ced, recjuire no less than 11110 multiplications of the least

uicans by themselves; which however are nmch facilitated by

making a small table of tlui first 10, or even 100 products, of

ilu' cionstaiit multiplier, and from it only taking out the pro-

per lines, and adding tht-m together: and these 4 classes of

numbers iilwuys prove thiMiiselves at every 10th term, which
jnu>t ulw.iv;-, agrcH' v.ith t!i<; corre^.ponding sucoi'^sive terms
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of the preceding class. The remaining 5th class is constructed

by means of differences, being much easier than the method
of continual multiplication, the 1st ami 2d differences only

being used, as the 3d difference is too small to enter the com-

putation of the sets of 9 means, between each two terms of

the 4th class. And the several 2d differences, for each of

tliese sets of means, are found from the properties of a set

of proportionals, 1, ?', r^, r^, ike, as disposed in the 1st column

of the annexed table, and their several orders of differences

as in the other columns of the table
;
where it is evident that

Terms.
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again for the true 2d clirTerence, at the beginning of that

class. Thus, the 10th root of 1,0002302850, or e, gives

1,0000230261 16 for f, or the 1st mean of the lotvcsl class,

therefore f - 1 = r -
1 = ,0000230261 16, is its 1st differ-

ence, and the square of it is (r- 1)'= ,
0000000005 302 its 2d

diff. ; then is ,000023026 11 ep'^" or ,0000230261 16e', the 1st

difference, and ,0000000005302?^" or ,0000000005 302 e" is

the 2d difference, at the beginning of the ;zth class of decades.

And this 2d difference is used as the constant 2d difference

through all the 10 terms, except to^vardsthe end of the table,

"where the differences increase fat enough to require a small

correctioh of the 2d difference, which Mr. Dodson effects by

taking a mean 2d difference among all the 2J differences, in

this manner; having found the series of 1st differences

(f-1).e% (f- !)."+', {f-1).e"*', &c, he takes the differ-

ences of these, and ji of them gives the mean 2d differences

to be used, namely,
-~

(e""'-e"), ^ (e
+ 2 _

e"*'), &c,

are the mean 2d differences. And this is not only the more

exact, but also the easier way. The common 2d difference,

and the successive 1st differences, are then continually added,

through the whole decade, to give the successive terms of the

required progression.

,
TRACT XXII.

SOME PROPERTIES OF THE POWERS OF NUMBERS.

1. Of any two square numbers, at any distance from each

other in the natural series of the squares 1%'2-, 3% 4^, &c,
the mean proportional between the two squares, is equal to

the less s(]uare plus its root multiplied by the difference of

the roots, that is, by the distance in the series between the

two square numbers, or by 1 more than the number of squares
between them. The same mean proportional, is .also equal
to the greater of the two squares, minus its root the same
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number of times taken. That is, mi = mm + dm = im dn^
where d \s =. n in, the distance between the two squares
7/2% n*. For, since n=m-\-d; multiph' by m, then mn= mvi-i-

vid, which is the first part of the proposition. Again, 7w= ?i f/j

multiply this by n, then mn = nn flf>
which is the latter

part.

2. An arithmetical oican between the two squares mm and

nn, exceeds their geometrical mean, by half the square of the

difference of their roots, or of their distance in the series. For,

by the first section, wm :=. mm^ dm, and also inn=:nn d?i;

add these two together, and the sums are 2m7i =: mvi -\-nn

^ d (n m) =: mm + mi My divide by 2, then nn ~ ^mn
+ ^nn Uld.

3. Of three adjacent squares in the series, the geometrical
mean between the extremes, is less by 1 than the middle

square. For, let the three squares be m-, (m+ 1)^, (74-2)';
then the mean between the extremes, m{m-\-2) =:Jimi + 2m
is = {m + ])-

- ].

In like niauDer, the mean between the extremes, of any three

squares, whose common distance or difTerence of their roots

is d, is less than the middle square by the square of the

distance dd.

4. The difference between the two adjacent squai'es wzm,

nn, or nn mm, is (m + 0* ^'^^ 2wi -\- I. In like man-

ner, the difference between 7r and the next following square

p^, or p^ 11-, is 2n -{- 1; and so on. Hence, the difference

of these differences, or the 2d difference of the squares, is

2(n w) = 2, which is constant, because n 7n zz 1. And

thus, the 2d diff^^rences being constantly the number 2, all

the first differences will be found by the continual addition

of this number 2
;
and then the whole series of squares them-

selves will be found by the continual addition of the first

differences. Thus, the

2d difs. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, &c.

1st difs. 1, 3, 5, 1, 9, 11, 13, 15, 17, 19, &c.

squares, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, &c.
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5. Again, if w% n^, p', be three adjacent cubes
;
then

n-m3 = 3m* + 3m + M ^^d the differences of these first

differences is 3(' - V2^) f 3(n- wz) = 6(m + 1), the 2d differ-

ence. In like manner, the next 2d difference will be 6(n+ l).

Then the dif. oi these 2d dilferenccs is 6(w m) = 6 the 3d

difference, which therefore is constant. Now, supposing the

series of cubes to begin from 0, the first of each of the several

orders of differi;nccs will be foimd bv making m =0, in the

general ex[)ression for each order: tliuf:, 6(ni-\- \) becomes 6

for the first of the 2d differences; and 3m^+3m+ 1 becomes

1 for the first of the 1st differences. A:id hence is found all

the others, as in this tabic.

3d difs. 6, 6, 6, 6, 6, 6, 6, 6, G, &c,

2d difs, 6, 12, l'^, 24, SO, 36, 42, 48, 54, &c.

1st difs. 1, 7,19,37,61, 91, 127, 169, 217, See.

cubes 0, I, 8, 27, 64, 1^5, 216, 343, 512, 8cc.

And thus may all the powers of the S(j:r:es of natural num-

bers 1,2, 3, 4, 5, 8cc, be found, by addition only, adding

continually the numbers throughout thest'\:;rai orders of dif-

ferences. Ai:d here it is remarkable, that tiie number of the

orders of differences, will be the same as the index of the

powers to be formed
;
that is, in the series of scjuarc'^, there

are two orders of differences; in the cubes, three; in the 4th

powers, f(Mir, &c: or, which is the same thing, of the squares,

the 2d differences are equal to each other; of the cubes, the

3d differences are eq\ial ;
of the 4th power, the 4th diffs. are

equal ; Sec Further, the 2d diffs. in the squares are 1.2 = 2
;

the 3d diffs. in the cubes 1.2.8 = 6; the 4th diffs. in the 4tli

powers 1.2.3.4=24; and so on. And from these properties
were found, by continual additions only, all the series of

squares and cubes in the table at the end of this volume, and

in my large Table of the Products and I'owers of iSumbers,

published in 1781, by the Board of Longitude.
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TRACT XXIII.

A NEW AND EASY METHOD FOR THE SGUARE ROOTS OF

NUMBERS. FROM MY MATHEMATICAL MISCEL. P. 323.

Problem. Having given any nonquadrate number n; it is

required to find a simple vulgar fraction
, the value of

which shall be within any degree of nearness to ^^n, the

surd root of n.

Investigation. Since y'N is nearl}^, or ?*n= n* nearly ;

let ^'n be zr n^n. Then, since 72, d, and n, are all inte-

gers by the supposition, d must also be an integer ;
and the

smaller that integer is, the nearer will the value of - be to

-v/n, as is evident: therefore let d zz 1 the smallest integer;
then IS cf"N :zi w- 1

,
or = f/'N + 1 suppose this to be =

(dx I )- = c/^r^ 2dx -\- 1
,
where x is evidently some near

value of Vn
;
from this equation we have t/=:-^-, and con-

sequently nz=.^id^^
-

1) = T~~. '
lience theref. y/^n = is =:

2x nearly.

Thus then the function
'

is an approximate value of

y/N, where .r is to be assumed of any value whatever; but

the nearer it is taken to \^n, tlie nearer will the value of the

fraction be tOy/N required. And since is always nearer

to // N than what .r is, therefore assume any integer, or ra-

tional fraction, for .r, but tiie nearer to ^/N the more conve-

nient, and write that assumed value of it in this expression,

instead of it, so shall we have a nearer approximate rational

value of ^/n; then use this last found value of ^/^ instead

of .r, in the same expression, and there will result a still nearer

rational value of ^/n ; and thus, by always substituting the
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];irst found value for x, in the fraction , or i.r -\-
-
,

the

result will be a still nearer value. And thus we may proceed
to any degree of proximity required.

But a theorem somewhat easier for this continual substitu-

tion, maybe tluis raised: being any one approximate va-

lue of V Nj ^^'vite it instead of r, in the general function

, tnen v.c hav" - tor t!ie general ypproxunation.

That is, having assumed or found any one approximation

,
the numerator of the next nearer approximation v ill be

equal to the sum of the square of the numerator n an! n

times the square of the denominator of this one, ai d the de-

nominator of tlie new one will b:; double the product of the

numerator and denominator ot this.

Ur. a still easier continual approxunai ion is -,

^vhich is equal to the former, because n^ is = fl!^N + 1.

Example I. To find near rational values of the square

root of the number 2. Here n =: 2. T;dce l\ or | for the

first value of x, as being nearly equal to <s/'2. Then n 3,

and d -=.2 ; therefore -^^-^
= ,^ = -'- = r416&c, for the

'dan .12 12

1 C ,r. K 1
I*^

I
22 1

next nearer value or */2. Again, take -=:; then _,* <^ ' 12 a Ian

= !:^^ = '^-^ 1-414215, true for ^J2 to the last

f. 1 ,
5'^7 I, n I .

665857

iigure. And writing again 177;
ror

,
we obtain

r-(,Q3^
=

1-414213562376 for the value of ^/2, true to the last figure,

whicii should be a 3, instead of a 6.

1 his small number is but an unfavourable example of the

method, notwithstanding the case and ex[)edition with which

the rout iias b(>,cn ; o quickly obtained. For, the larger the

given number n is, the quicker \\\\\ the theorem approxi-
mate. Thus, taking for

Example 2. To find the root of the number 920. Here

:< = f,'20, and .r zz. 30 nearly. Now we must first use the rule

^ , becaiiiC x is taken = 30, below the true value. Hence
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then
900+920

60

1S20

60
91

i^920. Next make- =4
3 d

304- the second value of

1 16561o3_l _ 2x91^ _
^

~Jdn~
~~

^T7^nr3
~

"546

30-33150183, differing from the truth hut by 6 in the tenth

place of figures, the true number being 30*33150177.

And in this way may the square roots, in the tabic at the

end of this volume, be easily found.

TRACT XXIV.

TO CONSTRUCT THE SQUARE AND CUBE ROOTS AND THE

RECIPROCALS OF THE SERIES OF THE NATURAL NUMBERS.

1. F'or the Square Iioots.

Since the square root of a' + n is a -\-
- r-r+r^ 2cc;

therefore the series of the square roots of a^, a"' + 1
>

* + 2,

*+3, &c, and their 1st, 2d, 3d, 4th, &.c diiVerenoes, will be

as below :

Nos.
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tains one term fewer than the one immediately preceding it.

These differences are to be employed in constructing tables

of square roots
;
and the extent to which the orders of differ-

ences are to be continued, must be regulated by the number
of decimal figures to which the roots in the table are to be

carried. In the above specimen the differences are continued

as far as the 3d order, where the common first term is -, which

may be sufficiently small for constructing all the preceding
orders of differences, and then the series of roots themselves,
as f.ir as to 7 places of decimals in each, when we conmience

with the nutnber 1024, for the first square a% the root of which

is 32. After this, the squares 1025, 1026, 1027, &c, conti-

ntuiiiv increasing, their roots 32+ , &-c, proceed increasing-

also; but the series of numbers, in every order of differences,

arc ail in a decreasing progression ;
so that the followiu'/

orders arc; ail found by taking each latter difference from the

one ininicdiatclv above it. Then, to construct the table of

roots, having found the first term of each order of diiferences,

as far as necessary, su])pose to the 3d order
; subtract that

continually from the iu'st of the 2d differences, which will

complete the series of this order of differences. Then these

bei'.ig taken each from the first difference, the successive re-

mainders will form the whole series of first differences.

Lastlv, these first differences added continually with the first

squan? root, will form the whole series of roots, from the

first rational root, suppose 32, the root of the square num-
ber 1024, to he continued to tiie next r;itional root :'i3, or

root of t'lc next s(]u;ire number 10S9. T len begin again,
from this last square number, in l;ke manner, with a new

series o( roots and differences, whic h are to be continued

to the tliifd s()u:'re number 1156, the root of which is tlie

next r;ition;;l root ?jV. 'T'lien tiie llki; process is to be re-

])e;ited again, ami continued from the 3d to the 4th scjuire

nuiulicr. ;\;id so on, eo'.itiini!i)g from e.ich Mircessiv(> ,qn;re

iiiiu. !)<".-. \n tlie nevt f')!!owin;_!; one, ;i'> lar as n<'ec:ss.irv ; the

l.i^t '^i (-..ch s ";. of iv>"'^ and djirereuces ahvays verii}'in</

till' \". lioiu series from s juure to s.juare.
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The computation may begin at 1024, for the series of

squares 1024, 1089, 1156, &c, their differences being 65, 67,

69, &C, and their roots 32, 33, 34, &C, Roots. Squares.] Diffb

as in the margin ;
in order to find the

intermediate or irrational roots, to any

proposed extent in decimals. The roots

will be obtained true to different num-
bers of figures, according to the number
of the orders of differences employed.
The first differences only will give the roots true to 5 places

of figures, in commencing with the square 1024; tiie 2d

differences will give the roots true to 9 places; the Sd dif-

ferences to 12 places ; and so on, as here below.

First, To find the Diffs.

rots.
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the serins of roots and differences, with the calculation from

tl)em.

Now tlie general form of the series for ^(a' + 7i), or the
lOa*

cube root oia^-\-n, isa -f
- + -^ - ^^^Sccithere-

fore, exponn(lin; ?? by I, 2, 3, Scc, the series of the cube

roots of cJ, a^-r \, a' + 2, a' + 3, &c, witli their 1st, 2d, 3d, &,c

differences, wiil be as below:

Xos.
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3 /or the Reciprocals of Numbers.

The reciprocals of the natural numbers a, a -{- I, a -\- 2,

a -{ 3, &c, are denoted by the fractions , -. -. ,

&c, where a is any intecjer number to commence with: which

reciprocals, with their several orders of differences here follow.

Recips.

1

a+l
1

a + i

1

1st Diffs.

a.a+ I

1

a + 1 . + 2

1

a+2 . a+3



Reciprocals.
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numbers ate generally evident: but it may be remarked, that

the column of reciprocals (which are no other than the deci-

mal values of the quotients, resulting from the division of

unity, or 1, by each of the several numbers, from 1 to 1000),
is not only useful in showing, by inspection, the quotient^
when the dividend is unit}' or 1, but is also applied with much

advantage in changing many divisions into multiphcations,
whatever the dividend or numerators may be, which are much
easier performed, being done by only multiplying the reci-

procal of the divisor, as found in the table, by the dividend,

for the quotient. It will also apply to good purpose in sum-

ming the terms of many converging series, as in the 8th of

these Tracts, in which a few of the first terms, to be found

by division, are taken out of this table, and then added

together.

VOL. I. H H



466 SaUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25,

Numb.



TR. 25. SQUARES, CUBES, RECIPROCALS, AND ROOTS. 467

Numb.



468 SQUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25.

Numb.



TR. 25. SauARES, CUBES, RECIPROCALS, AND ROOTS. 469

Numb.



4-10 SaUARES, CUBES, KECIPROCALS, AND ROOTS. TR. 25.

Numb.



TR. 25. SaUARES, CUBES, RECIPROCALS, AND ROOTS. 471

Numb.



47^ SaUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 2.

Numb.



TR. 25. SQUARES, CUBES, RECIPROCALS, AND ROOTS. 413

Numb.



474" SQUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25.

Numb.
~
-lof



TR. 25. SaUARES, CUBES, RECIPROCALS, AND ROOTS. 475

Numb.



176 SaUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25.

Numb.

501



TR. 25. SQUARES, CUBES, RECIPROCALS, AND ROOTS. 47T

Numb.



478 SQUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25.

Numb.



TR. 25. SaUARES, CUBES, RECIPROCALS, AND ROOTS. 479

Numb.

051



480 SQUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25.

Numb.

701



TR. 25. SQUARES, CUBES, RECIPROCALS, AND ROOTS. 481

Numb.



4S2 SQUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25.

Numb.



TR. 25. SQUARES, CUBES, RECIPROCALS, AND ROOTS. 483

Numb.

851



484 SaUARES, CUBES, RECIPROCALS, AND ROOTS. TR. 25

Numb.



TR. 25. SQUARES, CUBES, RECIPROCALS, AND ROOTS. 485

Numb.

951



H
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ERRATA.

Page 264, line 5 from the bottom, for 5^, read 5r'

Page 266, line 1, for a'^b'', read 4'i2.

Page 430, line 22, for |<% read
\t''.

T. DAVISON, LoDihard-Mreet,
WtiiUfiJaii, lM\i^,ou.
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