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INTRODUCTION TO THE SERIES.

DuEiNQ some intervals of foreign travel, and consequent

interruption of formal ministerial labor, I resolved to

begin tlie preparation of a Series of Elementary Tracts

upon the following subjects in the Modern Higher Mathe-

matics ; viz

Trilinear Coordinates.

Invariants.

Theory of Surfaces.

Elliptic Integrals.

Quaternions.

Upon further reflection, I have concluded to introduce

the Series by a treatise upon Determinants, brief and very

elementary, but sufficiently inclusive and rigorous to sup-

port and explain the references to this theory which are

involved in the ordinary exposition of the first three sub-

jects of the proposed list.

In undertaking this labor, I hope to turn the attention

of the students of my country, especially those who are

desirous of becoming Mathematicians, to these studies,

which at present lie considerably beyond the usual "
Sci-

entific Course,^' even in our best colleges, but which the

demands of Physics and higher Engineering must soon
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bring within it. I purpose, therefore, to give a strictly

elementary view of the principal developments of the Pure

Mathematics since the year 1841. I mark this year, not

only because it is the proper initial point at which to

begin the proposed survey, but because the year itself

was remarkably rich in mathematical productions.

Jacobi, in that year, exhibited the versatility of his

genius, whose power twelve years before had been proved

by his " Nova Fundamenta" in giving to the world his

celebrated Memoirs " De forrnatione et proprietatibus De-

terminantium'^ and De Deterniinanfibus Functionalibas/'

which have been the bases of all subsequent labors in the

Theory of Determinants.

In the same year, Dr. Geo. Boole laid down the prin-

ciples out of which has grown the Modern Higher Algebra.

In the year 1841, also, was published, in the seventh

volume of '^Memoires des Savans etrmigers^^' the full text of

the general theory of the Abelian Functions, although what

was known as Abel's Theorem had appeared much earlier.

Before the close of that year, last and perhaps least,

but confessedly of immense influence on the British Uni-

versities, was published Gregory^s "Processes and Ex-

amples of the Differential and Integral Calculus."

At this period Modern G eometry was unknown. Indeed,

till the appearance of Townsend's volumes, in 1863, it is

believed that the only work in the English language on

this subject was that of Dr. Mulcahy, and in any language

that of Chasles,
" T/aite de Geometrie Superieure/^ which

had then been published but little more than a decade.

Mathematicians have not only introduced a new lan-

guage, which, taken in connexion with the new processes.
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makes modern mathematics absolutely unintelligible to

one who has for a few years laid aside such studies, but

also new functions, whose theory is regarded as a high

subject of research. It would be simple pedantry to

attempt an illustration of this in terms of the language

itself; but we may select a function which is well known,

and, ascending briefly the steps by which it has reached

its present development, observe something of the spirit of

modern mathematical analysis.

Take the theory of Elliptic Functions. Before the

middle of the last century, mathematicians began to

investigate the solutions of problems depending on the

rectification of elliptic arcs.

Undoubtedly the first definite progress in the right

direction was the discovery of Euler, which is recorded

in sec 7. oi Novi Comm, Petrup. for 1758-59, and which

gives the integral of the differential equation

mdx ndtf

{a-^hx-i-cx'^+ dx^+ ex^y (a-\-by-\-ci/-j-dy^-{-ey^y

The next step was taken by Lagrange, who published,

in the fourth volume (p. 98) ofMelanges de PhilosopJiie et

de Mathematique de Turin/' sua. dpriori solution of the same

general equation which Euler had solved tentatively for

special cases.

In 1775, John Landen published in the ^^Philosophical

Transactions^' his theorem, showing that any arc of an

hyperbola is equal to the difference of two elliptic arcs.

The extension of this theorem relating to the general

theory of transformation is still the subject of research

among mathematicians, among whom especially may bo

mentioned Richelot (see '^Die Landensche Transformation/'

b2
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Konigsburg, 1868, also in several volumes of Grelle's

Journal.)

In 1786, Legendre's first paper upon Elliptic Integrals

was presented to tlie French Academy ; and from that time

onward, for a space of nearly fifty years, till his death, this

subject chiefly engaged his attention; and when, in 1825,

he presented to the Academic des Sciences the first

volume of his
" Traite des Fonctions ElUptiques/' it was

supposed that the resources of the Integral Calculus in

this direction were exhausted.

About this time, however, the young Norwegian Abel

appeared upon the field ; and, by bringing into his analysis

the general Theory of Equations, was enabled to show that

what had been done was but a small part of what might
be expected ; and immediately extended the boundaries

of knowledge by proving his theorem for the com-

parison of all Transcendental Functions whatever, whose

differentials are irrational from involving the second root

of a rational function of the variable x. This is not the

place to describe Abel's theorem ; but the great research

bestowed by modern mathematicians upon the Abelian

Functions serves to show the spirit and line of a particular

analysis, and the interest which attaches to a subject,

which, under continual expansion for more than a century

by minds of the highest mathematical power, still suggests

for itself a much greater amplitude.

In the complete works of Abel, by Holmboe, we see the

ease and power of that remarkable genius, for whom the

principal mathematicians of his age, Poisson, Cauchy, and

Legendre, foresaw the wreath of an enduring fame. 0^

the labors of Jacobi in this direction, whose work.
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*' Wova Fundamenta,'^ appeared in the same year of Abel's

death, 1829, it is not my intention to speak. Had Abel

reached the patriarchal age of Legendre, he would still be

living to write theorems ior future generations. Abel died

before he had completed his twenty-seventh year.

In caMer 23 of the " Journal de VEcole Polytechnique/'

and in the 9th volume of Liouville, and in the 18th and

19th of Gomptes Bendus, we find Abel's work proved and

elucidated by Hermite and Liouville. In these journals,

and in Gomptes Bendus since 1843, the contributions of

MM. Serret and Chasles would need especial study. So

also *^' Theorie der AhelscJien Functionen/' by Olebsch and

Gordon, Professors in the University of Giessen (1866), and
" Theorie des Fondions douhlement periodiques et des Fonc-

tions elliptiques/' by Briot and Bouquet (1859).

It is not necessary to mention the greater number of

distinguished Continental writers upon Abelian functions.

Neumann of Halle, and Eiemann of Tiibingen (1863-4),

Ivory, Bronwin, and Cayley, of Cambridge, are some of

the well known writers upon these functions.

The student, however, should not fail to study the papers

of Konigsberger (Grelle, Vol. 64) and Weirstrass on the

solution of HyperelHptic Functions {CrelUj Yol. 47) ; nor

should a paper by Rosenhain, in " Memoires de I'Institut

par divers Savans/' be omitted, as also a report by Russell

on Elliptic and HyperelHptic Integrals before the British

Association, from 1870 and now in progress.

But what is the use of such studies ? If the array of

illustrious names herein given do not suflSciently guaran-

tee their importance, let me say that it is by such abstract

and difficult labors men become mathematicians. What



VI INTRODUCTION.

then? Well, suppose that it is shown that the secular

inequalities resulting from the action of one planet on an-

other are the same as if the mass of the disturbing planet

were diffused along its orbit in the form of an elliptic ring

of variable but indefinitely small thickness, and that it is

inquired, what is the attraction exerted by such a ring

upon an external point ? The problem involves eventually

two elliptic integrals, as Gauss shows, of the first and

second kinds.

The final application, then, ofthe higher analysis must be

the sufficient answer to all cui bono inquirers. Take, for

instance, the original BesseFs functions in L^), YJ^), and

=^IJn (z) = --
I cos (z sin ia n(u) du),

hitherto mostly in the hands of German mathematicians,

and successfully applied to the solution of physical pro-

blems in heat, electricity, and the investigation of aerial

vibrations in cylindrical spaces. A good example and

illustration of this function may be seen in " 8tudien ilher

BesselVschen FunMlonen/' by Dr. Eugen Lommel, a paper

in Crelle, Yol. 56, and one of high value by Strutt of

Cambridge.
If the utility, then, of advanced modern mathematical

study is not to be doubted, what provision can be made

for its wider diffusion ?

Now, the work of reducing the higher mathematics to

the comprehension of ordinary readers, while confessedly

a difficult and generally a thankless undertaking, has in

some cases been attended with unlooked-for success.

Bowditch's notes upon
"
Mecanique Celeste/' side by side

with his translation ; Mrs. Somerville's paraphrase of the
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same original work, and the excessive elementary labors of

the Jesuit Fathers upon the Principia, were and are rewarded

with the strongest expressions of appreciation. And there

can be no doubt that similar labors will, in some circles,

always be regarded with favor. Students must early know

the goal, else their ambition may come too late. The equip-

ment of a mathematican is now a very different thing from

what it was thirty, or even ten, years ago. There should

be some way by which, in very early years, the broad field

of modern mathematics could be entered. Determinants

should be taught constantly with common Algebra ; Qua-

ternions with Geometry ; Trilinear Coordinates with the

Cartesian; and Invariants, Co-variants, and Contravariants

with the general Theory of Equations.

One grand principle should never be forgotten : the

educational value of a subject is greatly modified by the

the hands which administer it.

This is conspicuously true in mathematical teaching,

whether by books or lectures. Let this be suggested.

Every high subject has its easy elementary side, and there

it may be pierced. The works of Cremona, Helmholtz,

Tait, Sylvester, Clifford, and Cayley, may, in some of their

elementary forms, be commingled with ordinary mathe-

matical studies j and thus the ancient tasks of the student

will be expanded and enlivened by fresh contributions

from the great teachers of the world. Inspiration is

needed for study, and study must deepen the inspira-

tion.

The fundamental equations of Quaternions in i, j, Jc

are easily exhibited to a class in Geometry in such manner

as to become a source of real pleasure to them ; and thus
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they may be incited to learn the power of an instrument

which bids fair to stand unrivalled in the field of mathe-

matical physics.

The rich stores of research and discovery entombed in the

volumes of the learned societies of Europe, and in the ma-

thematical journals, are something enormous; and my
object is to bring, in a more elementary form, some of

the more important subjects into a wider notice.

In regard to this tract on Determinants, it is very ele-

mentary, and intended to be more suggestive than ex-

haustive.

The works consulted in its preparation embrace the

entire literature of the subject ; viz. The theory and

practiceofDeterminants,byBaltzer,Brioschi,Spofctiswoode,

Salmon, Trudi, Dodgson (the two latter hardly worth con-

sulting) j the numberless papers in Crelle and Liouville,

and in the Proceedings of the Eoyal Societies, from 1841 ;

also a short account of Functional Determinants in the

Analytical Mechanics of Prof. Peirce, of Harvard; and the

chapter devoted to the subject by Todhunter, in his

Theory of Equations, and those of Boole, Ferrers, and

Whitworth.

W. J. w.

15, Eegent Sqtjahe,

London, W.C.
; 1875.



ELEMENTARY DETERMINANTS.

CHAPTER I.

PRINCIPLES.

1. Definitions. The common and general expression for a

determinant of the nth order consists'of the arrangement of n^

quantities in n rows and n columns, as follows :

ail

^2 2

Cli n

^n n

or, more briefly, 2 ( an 2 2 ^n)>

which is to be understood as expressing the sum of the

1.2.3 ... n products obtained by fully permuting the n

suffixes, so that each product shall include all the suffixes, and

the several products differ from each other by at least one

variation of these suffixes.

Every variation in the suffixes introduces a change of sign.

The letters of the expression

S( an 022 an),

taken from the diagonal of the square, are called the leading

letters
;
and these, together with all the others of the deter-

minant, are called the constituents.

The products themselves, when formed, are called the ele-

ments*

* Called by Laplace resultants {Hist, de VAcad. 1772).
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Coiisfcifcuents are called conjugate to each other, when, con-

sidered in reference to their respective rows and columns,

they hold the same positions.

Reserving other definitions till we have made some develop-
ment of the subject, let us seek some simple illustrations in

the formation of determinants.

2. Let us assume a determinant of two places, or the second

order, as

^2 62

Writing together the leading letters ai 62, we have the first

element, or product, and permuting the suffixes we obtain the

second 0-3 bi, since, by definition, a variation of the suffixes

gives a change of sign.* These two products taken together
form the eccj)ansio7i of the determinant. Hence we write

3. Connecting now these constituents with variables, let us

find the conditions of co-existence of the homogeneous equa-
tions of the first degree

aiX-\-hiy =^ a2X-\-h>yj

and suppose c to be their common value, then

a.2 + &2 2/
= ^

Eliminating y and x, we have

(ai 52 ^2^1) ^ = ^2^^10 I

and {aih2a2hi)y = aiCa2C)

Observe (1) that the coefficient di^a ^2&i is common to both

*
Laplace has not only stated the rule for the change of signs hy

disarrangement, which he refers to M. Cramer, hut proves the more simple
rule of Bezout by permutation of the suffixes. (Mist, de I'Acad. 1-772,

p. 295.)
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variables ; (2) that this coefficient is identical with the value of

the determinant

as given above
;
it may therefore be written in that form. The

same remark will evidently apply to the second members

h^chiG and a^c ttgC, and we may write (1) as

! 5i
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6. Let US now examine a determinant of the third order.

Cii hi Ci
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seek, inversely, to construct a function, or its equivalent

functions, by an actual process of elimination, such that its

several products shall be identical with those of the given
determinant.*

Let us seek, for example, the condition of the co-existence

of the 'equations

aiX+ hiy + CiZ = a2^+ ^22/+ ^^2 2! = CLs^ + ^sy + c^z.

If the common value be zero, then

aiX-\-hiy-\-CiZ
= "\

a2X+ h2y-\-C2Z = > (3)

azX+ h3y + CiZ = 0)

As to the manner of solving these equations so as to exhibit

the required condition, two methods, at least, are open to us.f

(a.) We may multiply the second of the equations by I, the

third by m, and add
; then, whatever the value of the variables,

I and m may be so taken as to cause two of their coefficients

with which they are multiplied to disappear -that is, two of the

coefficients of the second and third equations ; and, since the

equations are simultaneous, that of the third must vanish

also. The equations will now contain only two unknowns, I

and w, whence these may be determined from the second

and third, and their values substituted will give the desired

condition. So far as this relates to elimination, it is similar to

the method employed by Laplace, referred to in a note below.

{b.) Otherwise, by eliminating alternately y and z from (3),

(a2h3 ash2)x+ (c2hs h2Cs)z 0,

{a2Ci a^G^x-\- (1)20^1zC'dy = 0,

* This was also exhibited by Laplace, and its application to the resolu-

tion of linear equations. It might be of interest to compare the method
of Lagrange, in his Memoir on the " Movement of the nodes and inclination

of the orbits of planets," with the theorem of Malmsten for finding particular

integrals by determinants.

t fcJee Ferrers, Salmon, and Tait, on Determinants.
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which, remembering to change signs in transposing, may
evidently be written

y ^
Z>2C3 C2&3 a^C2 a^Cs a2&3 ^362

Dividing now the terms of the first of (3) respectively by these

equals, we have

^1(^2^3 C2&3)+^l('^3C2 fl^2C3)+Ci(tl2&3 %W =0 (4).

Had we divided in the same manner the terms of the

second and third equations of (3), we should have found

identical relations
; and, since the equations are simultaneous,

we have therefore found the required condition. If now we

perform in (4) the multiplications indicated, we shall have six

products identical with those obtained above.

We see also that (4) may be written (Art. 5)

0,ay
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terms, after the first, are dissimilar. The reason of this remark

will be obvious, when it is considered that the products may
be derived otherwise than by permuting the suffixes.

10. We are in a position now to illustrate one or two im-

portant uses of determinants as a system of notation. The

equation, for instance, of the straight line passing through two

given points, may be written as a determinant

111 =0.
y 2/1 2/2

In this form it is easily remembered ; while, for practical use,

greater brevity and clearness will be ensured. Suppose one

of the points, as (x2y2), is changed to the origin; then, since its

coordinates must vanish, the determinant becomes

0.1
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foregoing, with an additional suffix, as,

1
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12. Minors. The determinant

a he
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or a



ELEMENTARY DETERMINANTS. 19

between the quantities a and x, b and y, &c., we should have

reached results already pointed out in Art. 11.

14. Since identical parallel lines in a determinant cause it

to vanish, we might infer the same result if two given lines

differ only by a constant factor
; as,

= 0.ace a

ax a

a a

a a

So also, having in mind the proof of the last Art., we might
show that, when the sum of several lines differs from the given
lines only by constant factors, the same result will follow

; as,

la \- max a ai

lb-]- mil b bi

Ic + WlCi c Ci

In the same manner, if to any line we add the sum of the

other lines separately, or increased by constant factors, the

determinant will vanish ;* thus,

= 1
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equations of tlie first degree when the second members vanish

(Art. 8). We may regard it as the sum of four determinants

of the third order, each of which gives three other partial

determinants, and each of these in turn gives two products.

The whole number of products of a determinant of this order

will therefore be

1.2.3.4,

a result identical with the number obtained by permuting the

suffixes, as a-Ji^cS^. This, as a determinant, may be expressed

as four partial determinants,

ai (&2 C3 d^, ^2 (^3 C4 (?i), 3 (&4 Ci ^2), (^i (^1 C2 d^.

This result may be obtained by the actual solution of four

equations with four variables, or the law of formation as seen

in the case of three unknowns would enable us to write

ai hi Ci di

(1% O2 C2 0^2

ttg &3 C3 d^

a^ &4 C4 d^

ai
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The fourth element with three permutations is found, in the

same manner, to be negative ;
and thus the whole number of

products of this, and any other determinant, of any order,

assuming the law of formation to be general, may be written

out at once.

16. Before proceeding further, it may be interesting to work

one or two examples for the sake of illustrating the reduction

of determinants of the third order as exhibited under Art. 14,

and show how the same principles may be applied to those of

four places.

Ex. 1. Let it be required to find the equation of a circle

through three points, say (2, 3), (4, 5), (6, 1).

We shall evidently obtain three equations by substituting

successively these coordinates of the three points in the

general equation x'^-^y^-{-2ax-\-2hy+ c = 0, viz.,

4a-f 6Z; + c =-13,

8a-f-]06 + c=-41,
12a+ 2&H-c=-37.

To obtain a, h, c we have
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A&

1 =

-13 1



ELEMENTARY DETERMINANTS. 23

= 12

= 12

3 3 1

7 5 6

2 7 6

= 12 1

-11 -13 6

-13 -8 5

-11 -13
-13 -8

= -972.

Ex. 3. To find an expression for three points in in-

volution.

Substitute, in the determinant

1 1 1 =0,
Xi t^2 '^3

2/1 2/2 Vs

Xi = ai-\-a2, X2 = hi + h2, X3 = Ci + C2

IJl
= ^1^2, 2/2

= &1&2, 2/3
= C1C2.

and we have

111
(i\ + a2 hx + h^ C1 + C2

cii^a &1&2 C1C2

=
(ci a^ (hi

-
C2) (tti J2)

+ (C2 ai)(&2 Ci)(a2-&i).

K^

Ex. 4. The following solution is given of the determinant

proposed by Dr. Salmon (p. 12, Deter.)

25

-15
23

-5

-

-5

= +6

-15
-10
19

5

30

-20

14 -

5

23

19

15

9

9

-5

04
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Ex. 5. Notation.

I
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Let US take two systems of linear equations,

ax +hj -{-cz = Vf

ayx+ hiy-hciz = v^,

aa a;+ 62 2/ + ^2 ^ = '^2?

and dv + evi -{-fv^
= 0,

(ZiV + eiVi+/iV2= 0,

d^v + e^ Vi +/2 V2 = 0.

Substitute the values of v^ v^ ,
&c, in the second, and, collecting

terms, we shall have

{ad + ea^ -j-fa2 ) x-\- &c. = 0,

{adi+ ei tti +/i a^) x+ &c. = 0,

(ac?2+ 62 ci\ 4-/2 ^2) ^+ &c. = 0.

The condition of coexistence of these equations (Art. 8) will

be the determinant

ad -{-aie ^a^f hd +&ie +^2/ cd -\-Cie \-C2f

ad^-\-aiei-\-a2fi bdi+ hie^+ h^fi cdi+ CiGi+ c^fi

ad2+ aie2+ a2f2 hd2+ hie2+h2f2 6(^2+ 0162+ ^2/2

= 0...(1).

But it is evident that these two systems of equations may
be treated as one, since the variables they contain are common
to both

;
and we may inquire the condition of coexistence of

these six equations

ax -{-by +CZ v = 0,

aiX+ hiy-\-CiZ Vi ^0,

ttg a?+ Z?2 2/ + C2 2! -yg
= 0,

dv +evi +fv2 =0,

diV + eiVi+fiV2 = 0,

c?2 1; + 62 ^1 +/2 ^?2
= ^

Here we may say, as before, the condition of co-existence of

SSK-
'
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these equations is expressed by the determinant

a h c -1 [
= 0.

aj hi Ci

(Xi2 O2 C2

This determinant may evidently be written

A B =AxD,
D

1
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and the determinant formed is evident
;
but if two of the planes

pass through the axis of z, we shall have

= 0,I
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CHAPTER 11.

FORMS OF INVERSE AND SKEW DETERMINANTS.

18. Minors as constituents and as differential coefficients.

We have already seen that a determinant may be written

briefly by the aid of its minors as

A = aA-\-hB-\-cC.

But since in any determinant we can interchange parallel lines

and obtain the same result with a change of sign, when the

number of such interchanges is odd, we can write a deter-

minant of the third order, as above,

A = aiAi+ hiBi+ CiCi,

as the result of interchanging the first and second rows, and

A = a^ A2+ h2 B2+ C2 G2

for the like process between the first and third, or evidently,

in general,
A = rti,^i,+ 0^2cAc CicA^c (1),

where c is 1 n.

If now we write ABC
A, B, Gi

A2 B2 G2

we have what is called the inverse or reciprocal of a deter-

minant of three places, that is, a determinant consisting of the

minors corresponding to the constitue^its of the given determinant.

19. If, now, we differentiate (I), ofthe last Art., in respect to

to c^ic, we must have

dA
J,

dA AS= ^ic,
-;i

= ^c, &C.
daic da%c
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That is, if we differentiate a determinant in respect to anj

constituent, the corresponding minor will be the differential

coefficient.*

Hence, for a determinant of the nth. order, we may write

d^
,

dA dA ...

While this is a more cumbrous notation than that which it

replaces, it has its advantages, which will become more ap-

parent ;
for example, it enables us to distinguish, at once,

between those determinants which do and do not, identically,

vanish.

Since a determinant is the same in the sum of the products

(Art. 14), whether we expand in the order of the rows or

columns, we may write

^A . dA dA^ = ^kl T^-+^ 2 1 Cikn 1
ddki dak2 da^n

It is equally evident, from what has preceded, that

dA dA dA _ ^
^Ik -j rC('2k-^ (^nk-j U,

daic da^c da,,c

since in these products we have in fact introduced into the

given determinant a line parallel and identical with some other

line, and therefore the determinant in such form vanishes

identically.

This may be explained briefly thus : from what has pre-

ceded, it is manifest that, when we take the sum of the pro-
ducts of any line that is, the sum of the products of all

the constituents of that line by their corresponding minors

the determinant subsists
;
but if the minors do not correspond

with their constituents, the determinant vanishes identically ;

hence, in general,

dA
^

dA dA
f.

is ^ + a2s 3 CLns = ^
dau da^c cine

* The notation followed here is the same as that of Jacobi, Baltzer,

Spottiswoode, and Brioschi.
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20. We shall fail, perhaps, of our object unless we descend

to special cases.

Let US take a determinant of four places

ail

^2 1 a12

an
(X24

The first minor is obtained by erasing one row and one column .

the second minor by erasing two rows and two columns.

Let Ai 1
= the first minor, and ^22 the second;

then

but

dai:

= Ai,

d'A

dan

da-ii da^;

0.

=A 22 )

So also, when we take the second differential in respect to

either the first row or column, the result must be the same,
since A^ 1 does not contain any one of these constituents.

Hence, in general, we may write

d'^A r. d'A

daii da^i
= or

dax 1 dai

= 0.

21. Since an interchange of two lines efiects a change of

sign, we must indicate a corresponding change in the ensuing
differential coefficient.

Thus, while
d^ A

At 2)

dai 1 da2 2

an exchange of a-^ 3 with a^ o,
ov a^i gives

d^A d'A d'A = A,
dai 1 <^^i 2 ^^1 2 ^(^1 1 da^ 1 da^

since in either exchange the second minor is not affected, or in

general
(V-A rPA

da^c dakk da,k duk,
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Evidently no a priori proof is needed here
;

a simple induction,

as above, is sufficient : or, in other words, the theorem demands

only a clear statement, when its truth is at once obvious.

22. In the case of a symmetrical determinant (Art. 1, def.),

when a-i i
=

cti 2> we shall find, on difi'erentiating the determi-

nant in reference to any conjugate constituent, that the difier-

ential coefficient will be doubled, since the constituent function

is supposed to enter twice
j as, if cti 2

= ^2 1 and cii 3
=

cig 1,

! 1 (Xi 2 Cf>ii

0/2 \ ^22 ^2 3

^3 1 ^3 2 <^3 3

^11 Cti2 (l\:

C(j\2 ^2 2 ^2 1

^13 ^2 3 ^^3 :

and we have
d^ = 2J-i 2, and, in general,

^^ = 1 and
daj,c

dA = 2^,.

23. In the case, then, of a skew,* as

the following, when the terms of the

leading diagonal are zero, and the

conjugates are of opposite signs, as

(Zj 2
= ^2 1 and ain = CLm;

in which case

consequently
dA

dai^

a^

^2 1

da2 1

-4i An\ 0,

i

when the determinant is of the third and every odd order.

When the determinant is skew and of an even order, we
shall have

^12 = -^2 1 and - = 2Aci,.\
da^

* Salmon, p. 30
; CreUe, Vol. 51, p. 264.

t Baltzer, p. 13.
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That is, wlien the skew symmetric determinant is of an odd

degree^ it vanishes ; hut if of an even degree, its differential

coefficient in respect to any constituent function is equal to twice

its corresponding minor.

24. Referring again to equation (1), Art. 19, we see that,

since -= = -4ic is a determinant of the n1 order, it may,
da^,

as such, have an expansion similar to that equation. If, for

example, the original determinant were of the fourth order,

- would express a determinant whose outer row and
daic

column had been erased, in other words, a determinant of the

third order.

Let us take, then,
- to represent generally a determinant
daj,i

of the n\ order, and suppose

. dA
,

dA dAA = aci 1- ac 2 -^ a,n - ,

da^ 1 da-c 2 da^

to represent a determinant of the n"" order
; then, if we differ-

entiate this equation in respect to % 1, the left member will be

identical with the proposed expression for the determinant of

the n 1 order
;
that is,

dA d^A
,

d'^A d^A

da^ 1

"

dac 1 da^ 1

"

da^ 2 <^% 1 dag da^ 1

The same equation, differentiated with respect to a,, 2 ^^^

aj, n ,
will yield similar expressions for determinants of the

n 1 order,

d'^AdA _ ^
d'^A

^
d^A

dak2~
' ^

dac 1 da^^
' '"^ ^

da^ 2 dak 2
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25. Remembering that the determinant subsists when the

constituent function, and the function of the differential

coefficient, as factors, are identical (Art. 18), we may write

but

^ =
CL\c-^ ho^2c -.

dai c aa2 c

^ dA
,

dA

dai c da^ ^

dA
^

dObn c

'

dA
^j 1 ~^

when c and 1 are different.

We shall continue to use the differential notation, and apply
it to the minors of the reciprocal of a determinant, as

dA dA dA

dai 1 dai % dai n

dA dA dA

aa<i I aci<i 2 aai ^

dA dA dA

dan 1 dan 2 dan

We might use a different notation, as

^11 -o-i 2 -^1 n

An 1 A,

but we prefer to familiarize the reader with the one we have

adopted.

26. We now propose the following theorem : Any deter-

minant other than skew, multiplied iy its second differential

coefficient, is equal to the difference of the products of the dfferential

coefficients an, ai2, ct.21? ^22? taJcen as conjugates.

Confining, for the present, the demonstration to a particular

case, let us write

dA^ dA . dA0= ^11- -\'Cl2\:^
ctoi2 da-ii

an
da^ 2*
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aai 2 wa2 2

= ai4-- l-<X2 4^

Multiply these equations by

d^^ d'A

^4 2

dA

da^2

dA

da^.

d^A

dai 1 da2 1 dui i da^ 2

'

dai 1 da^ ^

respectively ; and, adding the results,

/
^^

d'A
^ ^^^

d'A
^^^

d'A \ dA
\ daiidttii daiida2 2 danda^J da^

1^^
dA

^^
d'A

^
d^A \

\ doiiduzi dan dci^i dai^daij
d'A

dai 1
da^

dA

da^

(a
^'^

\a
^'^

a
^'A \ dA

^ \ dai 1 <^^2 1 dai 1 da^ 2 dai 1 ^^2 4 ' da^ j

The right mem|per may be reduced as follows : The first

parenthesis becomes, by making one, interchange of suffixes,

(a
^'^

+a
^'^

a -Jlj^]
\ daiida^i da^dai^^ dai^daiJ'

T> i. A dA . dA
But A = aii- + ^123

aai 1 aai 2

dA

dai^

, dA d^A
,

d'A
and - = an l-ai2i -.

aa2 1 clai i da^ 1 dai 2 da^ 1

therefore - is the value of the parenthesis.
da^i

14
d'^A

dai 4 da2 1

dA
In the same manner, the second is found equal to

;
and

daii

so also the third and fourth, without change vf sign. That is,

the values of the third and fourth parentheses appear to have
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the same sign. The essential sign must be determined from

the rule of signs.

In this case we remember that

The parentheses after the second therefore destroy each otl^er.

The multipliers used interpose to change this order in the

first and second, and hence we write as the result

d'^A

dai I da^ .

dA dA___dA_ dA

daii da^i da^i da^

This proof might, it is evident, have been made general. It

is now, however, in a form to be readily verified.

27. Theorem second. A determinant formed from the first

differential coefficients of the given determinant may he expressed

in terms of the given determinant^ and is equal to that determinant

involved to a degree one less than its numher ofplaces.

I

Let an ! 2

^21 ^22 ^2,

^1 ^n2 ^nn

be the given determinant.

Its first differential coefficients, taken in order and arranged
in square form, will then be

(iA

dan
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Let now A^ be multiplied by A, and we shall have

AAi =
d^

,
d^ c?A

,
c?A

^11^^ \--"0.in^ a2i- h... a2i
daii ct<^in dan da^

^ cZA
,

(?A ^A . dA
%i3 r... ttin^ 2ii r... ftin^

ao-ai aa2n aa2i o^ti^2

c?A ^ai- +... &c.
dan

&c. &c.

cZA
,

c?A

o^ii:} f-... ami &c. &c.
d^

,

da^i

Observing these products, it will be seen that all except
those of the leading diagonal vanish identically ;

and hence

we have

AAj A ... = A'

A ...

... A

or
. Ai = A"-^

which was to be proved.

28. We shall now begin to introduce, as we proceed with

the general theory, some of the geometrical uses of determi-

nants.

Mr. Spottiswoode, in Yol. 51, p. 262, and Prof. Cayley, in

32nd Vol. of Grelle, have discussed the subject of orthogonal
substitutions in connection with skew determinants.*

We have already given a definition of a skew determinant;
we will now show how to effect an orthogonal transformation

of the third order, and express the values of the nine direc-

tion-cosines in terms of three independent variables, or in

general how to connect n"^ quantities by ^n (n+ 1) relations,

* On the number of linear substitutions, see Journal de VEcole Folytech-

nique, Tom. 22, 38 cahier.
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iw (n 1) of them only being independent. Let ns, for ex-

ample, write the following linear equations :

x = aiiU+ ai2'v-{-ai2Wy

y = a2iU+ a22V+ a23W,

z = a3iU+ a32V-{-a3sf^f

and a derived system

X aiiU+ a2iV+ asiWf

Y= tti 2 w+ ^2 2 v+ ag 2 w;,

Z = aiaW+ ^asV+ aggW,

where we will suppose aik=: Uki and ,=!;

therefore, by addition, we have at once

x+X = 2u, y + Y=2v, z-hZ=z2w.

If, in the first system, we find the values of u, i', ty, which

we do by multiplying the equations respectively by

dA dA dA

dtti I dOi I da^ I

and adding, when

. dA
,
dA ,dAAw = - aj+ --

y+ ~
z,

dan da2\ dcizx

and, by a similar process, we obtain

. dA
^
dA

^
dA

Av = -
x-\-

-
2/ + -

0,

dai 2 da2 % da^ 2

Aw = -
Xf &c.

;

dai2

whence, by substituting for the values of u, VjWj u =
, &c.,

we obtain

AX= (2 4^- a]^ + 2 P-y + 2
\ dan I "<^'^2i



aai2 ^ CLCL22 I CLCL32

A^ = 2- a; + 2- 2/+ 2- A)z.
dais "23 ^ "^3 3 /

Treating the second system in the same manner, we find

Au = -= X + &c.
,

dan

da2i

Aw = - Z+ &c.
;

da^i

and also, by substitntion, taking value of x and instead of X,

we find

\
'

doii I dai2 dcfiz

A2/
= 2-^X + &o.,

da2i

Az = 24^X + &c.,
dag I

or, more symmetrically,

a; = C11X+C12 Y+Ci3-Z^'

y = CiiX+CiiY+CisZ
Z = C3]X-HC32 Y+C33Z .

(1).

and

where

X = Ciia5+ C2iy+ C3i2!

Y= Ci2X+ C22y+ C3

Z = Ci3X+C2zy+c,'83-)

2-^- A
cZdii

"
da22

Cii,

-A dA

(2),

C22, anjd
-^ = Cia, &c.
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Now, if (1) and (2) are connected by an orthogonal substi-

tution, we must have, by Solid Geom.,

0, &c. &c.

That is, the suras of the squares of the direction-cosines = 1,

and the sums of their products taken two and two = 0, when
the axes are rectangular. But these results immediately

follow, if we substitute (2) in (1).

Proceeding now to give to c values corresponding to any

given case, we see that the determinant must be analogous to

the following
*

A = 1 n m
-n 1 I

m --1 1

= l +ZHmH<

and, forming the minors,

Imn
lm-\-n nlm
l+ m^ mn -|- 1

mn l l-\-n^

and

dA .

o A

^A

l^l^+ rn'+ n'

2(hn+n)

C22 ^'ssj

dai2 __ ^ ._
A '''

l + l'-^m' + n''
&c. &c.*

^
where Cj 1, Ci 2, &c. represent the values of the nine direction-

cosines in the given transformation.

29. Ex. 1. We may find an illustration of what has gone
before in the following well-known geometrical relations.

* The values of I, m, n are a tan ^Q, h tan ^0, c tan \e, where the system is

revolved through an an^le 0, the direction-cosines of the old axes being

a, b, c. {Crellc, vol. 51, ^. 263.)
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Suppose Zmw, Zimi^i, Za^Tig^a the din^ction-coeines of three

right lines in reference to their three rectangular axes
; ai, ag, a^

the angles included between them :

P + m^ + ri^ = 1, III +mmi -j-nni = cos ai,

Z^ 4- mj + Wj =1, ZZg -\-m1n2 +nn2 = cos ctj,

Z^
+ m^ + ^2

= 1, Z,Z2-|-'W?i?%+ ^^i^2 = <^os as-

Now we are enabled to write

I 771 n

II Wi TZi

2 ^2 ^^2

1 cos ag COS ^2

COS 3 1 COS til

COS a.z COS
!

1

Z m n
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Determinant (1) expresses an equation of frequent occnrrence

in mathematical physics, as an instance of which the reader

may examine Laplace's equation in g on the secular inequali-

ties'of the planets (Mecanique Celeste, Bk. II. sec. 56.)

Are the roots of such an equation real ? Special cases had, of

course, been resolved by the older mathematicians, as Cauchy
and others

;
but the method by Sylvester (PMlosojoMcal Mag.

1852), depending upon the rule for the multiplication of deter-

minants, is more simple and elegant. The method is shown

above in (2), when/(Q /( is given, in which we find by

expansion

A = a''-{-d'+ e\ D = ef+d (a+ h),

B = +f+d\ E=fd+ e(a-^c),

C = c'+f +e\ F=ed-\-f (b + c).

With these values (2) becomes

I'-Ll'-^MP-N (3),

where, if L, M, and N are essentially positive, then, according

to Des Cartes' rule of signs, we must have an equation for P,

and therefore for f(l), whose roots cannot be of the form

of (lJpy = 2/^ ^^d therefore negative, but must be essen-

tially real. The only question to be considered is, what is

the essential sign of Jv, M, and JV? In the expansion of (2),

we shall find that the L of (3) is equal to

a''+ h^+ c''-\-2f+ 2e^ + 2d\

M= (ah-dy+ (ac-eyi-(hc-fy

+ 2 (af-^edy+ 2 (he-fy+(cd-fy,

and N= a d e

d b f
6 f C

where L, M, N are, it is evident, essentially positive.

Ex. 3. It might be well to mention one peculiar case in the

multiplication of determinants, as exhibiting or suggesting an

easy treatment of a large number of theorems. It may be
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found in Grelle, Vols. 39 and 51
;

it is also given by Salmon

and Brioschi.

Suppose i + t~i=o

the equation to a conic, a, h the semi-axes.

If, now, we take any three points on the curve and form a

triangle, its area could be expressed at once by the determi-

nant given in Art. 8, in terms of the co-ordinates of its vertices ;

and similarly, in this case, the determinant

1
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aj = &i = Ci= 0, and likewise 8 = \ab (^2/^^)*,

wMch is the value of the determinant

h
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principles employed are capable of wide application in all

Co-ordinate Geometry.
Two theorems will now be added, whicli tbe reader will be

able to prove in a manner more or less general.

1. The square of a determinant of an even order can he ex-

pressed hy a shew symmetric of an even order.

2. While a symmetric shew of an even order does 7iot vanish,

its inverse is a symmetric shew determinant.*

31. Let us now consider briefly determinants arising from the

roots of equations.

It is well known that, by Sturm's theorem, we find the number

and places of real roots that the imaginary roots enter by pairs,

and are equal in number to the variations of signs of the leading

powers of x in all the functions.

Let 1

C2

-1 ^n-1
^2

be the determinant formed from the roots of the equation

Substituting c for x, we wiite

c^+c^n-icr'+&c.

&c. &c.

2C-^..Oo=0,
= 0,

'+ ...=0.

* These theorems have, in fact, already been exhibited, but their appli-
cations to linear equations generally will be seen in Crelle, Vols. 51 and 52,

and, for earlier investigations of the theory of Substitutions, see Euler, Vols.

15 and 20 of Novi Commentarii Acad. Fetrop. Compare also the formulas

given by Rodigues in Liouville, tom. 5, with those of Euler here cited in

N. G. A. P. under Be motu corporum rigidoruni.
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Let these equations be multiplied by any indeterminants, as

fCi, K'a ... <c
,
and assume

Kicl + K^cl + K^cl + &c. =v (1),

also '^1+ ^2-1- 'fn
= 0,

K1C1+K2C2+ JCnCn = 0,

'^iC^^+ 'c.c-H K,,Cl''
=

0',

whence, by a short algebraic process, we shall find

0,= -l(^,c;+fC2C^ K^cl) (2).

By differentiating the given determinant and employing
the value of v, we have, from the determinant,

dA .
,
dA , ,

dA s .

s;f'
+

5^-''^+ d7<^^'
and, from (1),

_ dA V _ dA
v^

dA V

"^"^'A' "'"dd'A' "''"d^'A!

which values, substituted in (2), give

0.

which evidently represents the sums of the combinations of

the roots taken ns and n s.

Let us now seek for A in terms of the involved roots by
their differences.

Let s = n1,
and (x) = (xCi) (aj Cg) ... (ic c) ;

and since /Cj, x-g, &c. are any values

V .
V V

*! 7 \J '^2 7 \i ...... '^w T~7 \

^l(Ci) ^i(C2) (pi{Cn)

1 1 dA 1 1 dA
therefore

^i(cO A
dc^^-'' 9i(cn) A (ZC^'
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dc'l-'

,-. ,n-.

= Ai.

Let
(J)' (x) designate

therefore

(aj C2) (xcs) (aj-c),

1 _ 1 dA,

(pi (ca) Ai del

Similarly, if we put

d^i _ A dA2 _ .

n-2

dA

dc_i

n-2
A.i = 1,

and 02() = ( C3) ... (a; O, ^aW =
( ^4) ... ( c)j

there will result

1 1 ^A, 1 1

^^(Ca) Aa dcj
^'

0n-2(c.i) A_i'

whence, by multiplication, member by member,

A = 0'(<^i) ^1(^2) 02(^3) ... ?>n-2(c-l)

=
(Ci C2)(Ci-C3)...(Ci c)...(c2-c)...(c,^i -O (3),

which is the product of the differences of n roots expressed as

a determinant.'

All this is easily generalized as follows :

If, in A =
C2

cl o\

^1 ^2

w,

we consider that this determinant would vanish if Ci = C2, and

that therefore Ci Co, must be a factor, and what is true of these
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two roots is true of all the others considered two and two
;

hence we are enabled to write (3) at once.

Or we might prove trae generally the method which is here

exhibited as a special case,

= (Cl-C3)(C2-C3)

Ex. : Prove that

1
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as stated at the beginning of the preceding Art., this determines

the number of pairs of imaginary roots.

But if these determinants are all positive, there will be no

variations, and consequently all the roots of the equation will

be real.

To those acquainted with the general theory of equations

these hints will be sufficient to show the bearing of* determi-

nants upon this subject ;
the real object in this and the pre-

ceding Art. being to prepare the way for the solution of linear

differential equations by the use of the determinant notation.

33. When n~l particular integrals are given, to find the n*^. *

Let us take the general linear differential equation, coefficients

being constant

0+^^^+ 4^^^= -(i)-

If we separate the signs of operation from those of quantity,

the part involving only signs of operation and constants may
be considered as an operation performed on ?/, as

/()=
From which we get ?/ at once explicitly, if we are able to

perform the inverse operation

This we cannot easily do in its general form, but we can con-

ceive the operation f li-)
to be made up of certain binomial

operations, and then perform the inverse operation for each of

these. We will, however, in this case proceed in a different

manner.

Let us first assume the n particular integrals, that is, values

* See Malmsten, in Crelle, vol. 39.
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that will satisfy (1), as yi, 2/2 ...^/n; coefficients now being
variable.

Proceeding as in Art 3]
,
and placing

'^12/J +'^22/2 ICnVl
=^

f^i^i +'^22/2 K^yl =v

we obtain
^i2/r'+'^22/r' '^nv:

Ar=-^(K,y^^ + K,y;+...K,rJ C^h

Solving, as before, for the values of tbe indeterminates

:i, K2 ... K-,,, and substituting in (2), we find, since

A =
y\ y\

vT" yV

y\

yV

that

In differentiating this determinant, we get A', or

r/A ^AA' n ^i^
I n "^

dy:-'''

(4).therefore

Resuming now equation (1) :

Let us suppose the n1 particular integrals 2/1, 2/2 > Vn-i

are known,f

Let y = yiKi +2/2*^2 + 2/n-l'^n-l

=
2/1 '-''l + 2/2 4 + Vn-l f^'n-l

=
y\K[ +2/2 '^2 +>... 2/n-i<-l

o = 2/r.; + 2/2"'.;+ 2/::?Cj

(5).

*
r, n, 1 do not, of course, indicate powers,

t Crelle, vol. 39, p. 94.
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Solving, we find

2/2 2/3

yl y\

y. 2/

2/n-l

2/n-l

ylil

: d= 2/3 2/4

2/3 2/i

2/3 VT

2/1 2/2

2/; 2/^

yV yl'

yn.2

2/L2

i/n-2

:: AiiA^: A..1.

If now we differentiate successively equation (5), remem-

bering the assumed relations between the n1 functions, we

shall have

dx
2/1 '^'1+2/2 '^'2+ y'n-\*^n-\:

2/'l''^'l+2/2'^'2+ yn-\f^n-\

d''-'y

dx''-'

dry
dx"*

2/r
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whence

k'; = u'a,+ua[, k:=:U'a,+ ua:, i^:=u'a,+ua',.

But yr\ + yr\ + CiVi
famishes the determinant

and dA

dx

Vi 2/2

ur yV

2/1 y-i

y\ y\

j\ y%

yn-i

yl-i

yT-\

yn-i

y\-i

'n-l

= ^,

therefore ^/P'K + yVK + yl:^ K^, = 0,

and
2/r-^ A^

-
2/r'^ + Cl A^_^ = A';

' therefore JJ'A + UAA+ 2UA' = 0,

By integrating this equation, we have

u =
A'

or, substituting for JT the values of k, and A and integrating

again, ic,
=

L^^
e-/^''^ dx.

If we write

we have

A = -- =S
A yn-2yi-yi'

., = (_!)-! [dA_^,-fA..^^^
J dy'l~-

e2
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Returning now to equation (4), we see that it can be written

^'
where A = Ce-f""^'.Ar =

Ce-f^

A single instance is thus given in full, that the reader may-

judge for himself of the practical benefits of the determinant

notation in conducting intricate analytical operations.

34. In the solution of simultaneous difierential equations r-

that is, a system of equations with but one dependent variable,

in which some form of this variable, as a function of the in-

dependent variables, must be found to satisfy all the equa-

tions there is no reason why determinants may not be em-

ployed to effect the elimination (if this method be preferred to

those of D'Alembert or Lagrange) as in the case of ordinary

linear equations.

If, for example, we have three simultaneous differential

equations of the form,

d
Ex. 1

dt
X + hy + cz = 0,

ax + y-i-cz
dt

0,

ax-\-Vy-\--~ = 0.
ctt

The condition of co-existence is the determinant

L* \df I \ dtl

d
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Ex. 2. Let us take four simultaneous equations.

The equations of Airy, for determining the secular variations

of the eccentricity and longitude of the perihelion, will serve

as an illustration :

u+ aiVa^v = 0,

! v a^u = 0,
(Ml

dt
u -\-hiv' h^v = 0,

hiu v'h^u = 0.
dt

The determinant for eliminating the variables w, v, u\ v\ is

therefore d

dt
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where Z7 and V are functions of x and y ;
then the condition of

the dependence of these functions is expressed by the deter-

minant dV dV ^dV
dx
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CHAPTER III.

FUNCTIONAL DETERMINANTS.

36. As this subject is supposed to present some difficulties,

and is of the highest interest in connection with geometrical

researches, we shall seek in the first place to exhibit some

of its principles in a very elementary form, and then proceed
to show the field of application.

Suppose we have a series of functions v^, V2 ... v,, of as many
variables aji, x^ ... ot^^ and by virtue of the relationship of these

functions we are enabled to find

f(viV.i ... Vn) = 0,

in other words, that they are connected by an equation which

vanishes identically. This relationship is expressible as

a determinant* (Art. 35)

dvi dvi dvi _ r.

dxi
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dvi

dx
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In the same manner,

dXr dVi , dXr dVn _ ^

dVi
'

dXr dVn dXr

dxr dvi , dXr dVn Q
dvi dxg dVn dxg

57

(3),

(4).

By means of (1), (2), (3), (4), we are enabled to solve a

system of equations analogous to the following :

dv dv

Vdx'^'^'dx,

dvi , dvi

dx dxi

dVn I dVn

dx
^

dxi
y>

dv

dXn

dvi

dXn

dx^

(5).

If we multiply these equations by

dx da; dx o n

, , (KC. &c.,
dv dvi dVn

and add, we shall have, by virtue of (3) and (4),

dxdx
,

dx

dv dVi

dxi . dxi

dvi

CiX , UXn

dv dvi

dv^

dxi

dv^

,
dx^

dVn

(6).

It is evident that, if the given functions v ... v^ are in-

dependent, and y= .yi
=

y,,
= 0, then t^ = % = it = 0; or, in

other words, if the given functions are independent, then (5)

and (6) reduce in turn to 0.

38. The question now arises, how shall we express the

solution of such systems as the above in the ordinary language
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of determinants P If we examine the solution of system (5)
of the preceding Art., we shall see that what might be

denominated the modulus of transformation is the determinant
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where ^4= the corresponding minor, and therefore

A'

dvk

In the same manner, in general,

dA . dxv ,1 o dA! dA dv^ dxj= A \ therefore --
.
- - = ~*

. -,^
ndVi dVi jdXi jdVi dXi avid-^ * d ^ d-
dxj, dVk dxk

The same course of reasoning may be applied to the con-

necting equations. That is, if

/.
= o /,.= o

connect the variables Xi, x^... x,, with Vi, I'a . . . v,, ; then, inversely,

if we find from /^
= 0, &c., the values of Vi, % . . . v^^ and

substitute these in the same equations, these will vanish

identically; or, since we may eliminate n\ of the variables

from these equations, each may be treated as the function of

a single variable and the given functions
;
therefore

dfk dvi dfk dv2 dfk dv,^ df\

dvi
'

dXk dV'i

'

dXk dv^
'

dxj, dx^

If A; = 1, 2 ... w, we shall obtain n equations, from which,

eliminating the differentials, a linear partial differential

equation will arise, which shall be satisfied by the primitive

equation under consideration, as f^ = 0.

Proceeding in a manner similar to that for obtaining (1),

we write, finally,

\ dvi dv2 dVnl \ dxi dx^ dx,,/'

The general application of these principles to the trans-
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formation of multiple integrals, as

I
VdvidVi dv,

where tlie functions Vi ... Vn are connected with the same num-

ber of other variables Xi ... x^ by equations similar to those

assumed above, will not be considered.

It may, however, be remarked that, in transforming from

one set of variables to another, the formula of transforma-

tion

dx^Ydvi dvr,
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/ will then be written

/Ini. rill- rltt^

01

dui dui dui

dx dy dz

du^ du^ du^

dx dy dz

and let us assume, what is not difficult to prove, that

dui . dui , dui

ax dy dz

du2

dx

diu

+ 2/

du^

dy

, du2

dz

dx dy dz

Solving for x, we have. Art. 12,

(1) Aa; = Z7i awi + Z/a ai*2 + TJ^ au^,

where Z7i, ZJg, &c. = the minors. We see here that, if Wi, %> "^3

vanish, the determinant vanishes.

Differentiating (1) in respect to x and ?/,

(2)
., dA dUi , dU2 , dUs

ax dx dx dx

\dx ax dx J

(3)
dA dUi ^ dU2 1 dU^

dy dy dy dy

\dv dv dv Idy

But the first parenthesis = A, Art. 12, and the second paren-

thesis = 0.
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Again, introducing the supposition Ui = U2 = U3=z 0, we
dA dA

see that and must vanish, since (2) and (3) in this

case, in consequence of (1), reduce to 0.

The application of this principle is obvious
;

for if we have

three equations homogeneous in the second degree, their /
will be of the third, and each of its differentials of the second,'^

and these three new equations will be satisfied by the values-

common to the given equations. We have then

wj = 0, =0,

u.^
=. 0,

dA

A ^-^ A

z

to eliminate .t^, y"^, z^, xy, zy, xz
;
and therefore the ellminant^

that is, the eliminating determinant, can be formed.

When the given equations are of the third degree homo-

geneous, / is of the sixth, its differentials of the fifth
;
and by

using Sylvester's dialytic process, we can eliminate the twenty-
one quantities of an equation of the fifth degree.

40. The Hessian. We will now show how to form this im-^

portant determinant. Let V be any homogeneous function of

71 variables, analogous to (a, Z/, c, d'^x, yY, and, taking its

second differential coefficients in respect to each of the variables^

we write, for the special case.

H ax+ hy hx+ cy

hx+ cy cx-\' dy

This is called the Hessian, after the late Dr. Otto Hesse, of

Munich.

The degree of the determinant will be w(jd 2), where

2)
= the degree of the function, and n the number of variables^
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If we connect the variables x and y witli two others u and z

by the equations x = eu -{-fz,

y = e^u+fiz,

calling the transformed function F', and taking its second dif-

ferentials, and indicating the Hessian thus formed by H' we

may write H' = Hx A^,

where A = e f
^1 /i

In orthogonal substitutions, A^ = I, and 11= H\
Hesse has shown, in the use of this theorem, that if V=

be an equation to a plane curve of the nth. order, the vanish-

ing of the Hessian indicates the condition by which the curve

reduces to a pencil of n right lines
;
and in like manner, if

V= be an equation to a surface, this surface reduces to a

cone when H vanishes.*

*
Crelle, vol. 42, p. 123.



04

CHAPTER IV.

SOME APPLICATIONS.

41. In proceeding to the common applications of what has

been explained, it will be necessary to introduce some of the

terms of higher algebra ; thus,

(a, h, cjo;, yY

is called a binary quadratic, which, written fully, is simply

ax^+ 2hx7j+ cy'^,

and since it is a homogeneous function it is called also a

quantic. If any quantic is to be considered apart from nu-

merical coefficients, it is written

(a, h, c'^x, yy.

Let us now take the first "expression, and linearly trans-

form it, substituting x = Ix -j-my,

y = l'x+ m'y,

and we shall have Ax"^+ 2Bxy + Cy^

as the transformed function. If, now, we compare the Hessian

of the given and the transformed expression, we shall find the

relation given in the last Art. to be true, viz.,

or, in full, AC-B' = (ac-b') (Im- I'my.

Now H and H' are called respectively the discriminants of the

given and transformed quadratic.
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42. When a qnantic has been transformed as above, any
function of its coefficients is called an invariant. Hence acb^
is also, by definition, an invariant

; and, in general, a quantic

of the quadratic class, irrespective of its variables, has no

other invariant than its own discriminant, and in such cases

the two terms indicate identical functions. Now, when we
take the Hessian of any quantic, or what is sometimes called

the second emanant, we obtain the covariant of the quantic,

that is, a function of the coefficients involving the variables of

the given quantic.

43. Study first. Let us write the quadric surface

ax^+ hy^+ cz^+ 2exy + 2fxz -f 2hyz -\-2gx-{-2iy + 2hz-^d = ;

the discriminant will then be

a e f g =0 (1),

e b h i

f h c h

g i k d

which may be formed in the manner already described, or we

may transform to any parallel a^es drawn through xy'z' by

writing x+ x' for x, &c., and we shall find certain relations

connecting the coefficients a, b, &c. with a, b', &c.
;
in other

words, that there are functions of the given coefficients equal

to the same functions of the transformed coefficients.

By taking the difierentials in respect to each ofthe variables,

we shall find the new coefficient of x to be

2(ax-{-ey-^fz+g),

and the condition that this general equation shall represent a

cone will be the determinant of the following equations.

ax + ey' -\- fz + g =
ex -\- by -\- hz -\- i =0
fx -{ hy -{- cz -\- h =
gx + iy -\-hz \-d=. ^

(2).
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The determinant of whicli is the same as (1) ;
the coordinates

of the new vertex satisfying each of the above equations.

Forming now the first minors of this determinant, we have

h h i
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and

e

c kf
k d g

. d + * * = e g
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eE-fF-\-gG =
hE-cF +W =
iE -JcF+dG =

(5),

which gives the determinant for the elimination of G and F^

e -/ 9

h c k

i k d

F = F.E=0; i.e., F=0;

therefore F=0 and G = 0.

By equations similar to (5), as

aA-\-fF-gG = 0,

&c. &c.,

we may show that AB= 0, from which it follows that, if 5= 0,

H=I=0', or, when A = 0, F= G = 0.

It can be shown that equations (5) are true when A =
and ^ = in all cases.

Let us now, in view of these suppositions and results, con-

sider the nature of the surface given at the head of this Article.

Suppose
(fA

da dd
0,

dbdd
= 0, and

dcdd
= 0,

and consequently
d'A

dddh
;
and suppose also a to be nega-

tive
; then, multiplying the surface by a, subtract {ey -^fz + gY,

and finally let ax = ax-{- ey +fz+ g, and we shall have

dc di db dk
z-\-

d'A

db dc
= 0,

an equation to a parabolic cylinder.

The three latter suppositions applied to the surface reduce

it to

dc dd
a^^- + -^4^^f + 2[dddh dcdil dbdd

db dk db dc
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(Pa
This equation, multiplied by , adding and subtracting

CiC CtCu

{^Jh^-^idS^
and finally making

d'A ,^ d'A
^

d?A
^ ^

d?A

dc dd do dd dd dh dc di*

we obtain

If, now, we multiply this by ,
add and subtract *

(
tt

)

J , dA n dA
,
dA 1

and put -~ z tor --
25 + -

,
we nave

dd dd dh

2 d'^A dA
,2 ,

/ d'^A y dA ,2 , fdA^ ,2 ,
^'A . ^

dcdd dd

which is the equation to an ellipsoid when A is negative, and

dA d'A , ,, ...

7, -, r-, both positive.
da dc ad

When A is positive, and ^-,
- either one or both negative,^ dd dc dd

this equation represents a hyperholoid of one sheet. If A be

negative it represents a hyperholoid of tivo sheets^ if it vanishes

a cone. Also, if -7-,
= 0, it is the equation to an ellijptic

or
dd

d^A
hyperbolic paraboloid, according as

^^-^
is positive or negative.

In the same manner it represents an elliptic or hyperbolic cylinder

when 4^ = ^ = 0, and -f|. is positive or negative.
dd dk dc dd

To find the plane perpendicular to the chord to which it is

conjugate; i.e., the diametral plane.
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Let Ij m, n be the direction cosines of the chord, the plane

in question will be, from equations (1),

l{ax-\-ey -\-fz-{-g) -\-m{ex-\-'by -\-hz-\-i) +n{fx-{-hij -)rcz+ lc)
= 0,

provided Z, m, n are proportional to the coefficients of thfe

variables x, y^ z
;
and we shall have, in that case,

^
la + 7ne-[-nf =pl ^

U-\-7nb-jrnh= 2'>in> (6);

Ic -hmh -\-nc = pn )

therefore, to find p, we have the determinant

ap e f
e bp h

c h cp
The value ofp being found and substituted in equations (6),

we shall obtain the values of I, m, i, and thus be able to find

the three diametral planes of the surface.

We conclude this study with the simple remark that we are

not here concerned with teaching Modern Geometry, but with

an exercise for the practice of Determinants, and to indicate

their use in the investigation of loci.

44. The Jacobian, which has already been described, de-

serves, on account of its importance, a special consideration.

Study second. (a) Let V and Vi be two functions, homo-

geneous in the second degree, / is then

= 0,dV
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(5) Let 8i = 0, S'2
= 0, /S3= be three circles, and w= the

equation to the circle orthotomic. The polar of any point on

u (^?/;3), with regard to each of the given circles, will pass

through a single point. Let zt^, U2, %, &c. represent the dif-

ferentials -7-, &c., then
da:

lui -\-mu2 +WW3 = 0,

Ivi -\-mV2, -\-nVi = 0,

Iwi + mwa+ nw^ = 0.

The determinant of which is a Jacobian and = u, the equa-

tion of the circle orthotomic required.

(c) If we proceed to the conicoids, as F, Fi, F2, the equa-

tions of the three polars will be

v^x + v;'y + v;"z = 0;

therefore =
/,

dr dv" dv"
dx dy dz

dY[ dV^ dVT
dx dy dz

dv; dv; dv;'

dx f*'i dz

and is a curve of the third order, in other words, the locus of

a point whose polars, in regard to F, Fi, F2, meet in a point.

{db) It is easily shown that two conies always intersect in

four points.

Let Fand Ft intersect, and through these points draw F2.

Then the / of the three conies is the equation to the curve

which cuts F2 in six 'points.

(e) If we form the Hessian of lV-\-mVx-^nVi\ then, if we
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examine the coefficients of I, m, n, we shall find them invariants

of F, Fi, F2, one of which vanishes whenever ZF+mFiH-wF2

represents two planes ;
the other vanishes (as shown by Prof.

Cayley) when any two of the eight points of intersection co-

incide, and their / is a curve of the sixth order, when F, Fi, V2

represent quadrics, and this curve is the locus of a point whose

polar planes meet in a line.

London! Printed by C. F. Hodgson & Son, Gough tqiiare, Fleet Street, E.C.



i





^^4^/-^ ^^ct^ct:^^^

%:

MATHEMATICAL TRACTS.

isv.. n.

TRILINEAR COORDINATF^.



I



TEACTS

RELATING TO THE

MODERN HIGHER MATHEMATICS.

TRACT No. 2.

TRILINEAR COORDINATES.

BT

Eev. W. J. WEIGHT, Ph.D.,
MEMBER OF THK LONDON MATHEMATICAL SOCIETY.

'E06Aa> aoi flirelv Sxrirep ol yeufxerpai.'*
' Plato : Gorgias.

LONDON :

C. F. HODGSON & SON, GOUGH SQUARE,
FLEET STREET*

1877.



My acknowledgments are due to R. Tucker, Esq., M.A., Honorary

Secretary of the London Mathematical Society, for valuable assistance

rendered in passing these sheets through the press. W. J. W.



CONTENTS.

CHAPTER I. Page

Condition of Concurrence 9

Parallelism 10

collinearity 14

Perpendicularity 16

Straight Line THROUGH A Given Point 20

Distance between Two Points ... 22

Perpendicular Distance of A Point FROM A Line 24

CHAPTER n.

Tangential Equation to Intersection of Two Right Lines ... 29

Tangential Equation to Point at Infinity 30

Triangular Coordinates ... ... ... ... ... ... 31

Excursus on Imaginaries 37

CHAPTER III.

Transformations of Coordinates ... ... 42

Concurrence of Straight Line and Conic 44

Excursus 45

Self-Conjugate Triangle 48

Directed Line upon the Curve ... ... ... ... ... 49

Inscribed Triangle 54

CHAPTER IV.

Inscribed Conic 59^

Brianchon's Theorem 61

Polar of a Point in respect to a Conic 64

Coordinates of Pole ... ... ... ... ... ... 65

Conic breaks up into Eight Lines 67

Equation to the Asymptotes 68

Nene-Point Circle 71

Polar Reciprocals 74

Reciprocal of a Conic 76





PREFACE TO TRACT NO. II.

Ministerial and other duties have prevented the earlier

appearance of this Tract. The delay has afforded an

opportunity to those persons who have become acquainted

with the proposed plan of this Series of expressing their

opinion upon the merits of such an undertaking.

A considerable number of Professors and Amateurs

have been pleased to signify their approval of this effort,

and to give me more than deserved commendations. I

have no object in referring to this, except so far as to

certify that the purpose in view is a good one, and that

the means adopted, while novel, are likely to prove in a

fair measure successful. I take this opportunity of again

urging upon those to whom these Tracts may come the

great importance of the study of the Modern Mathe-

matics, not only in their various subjects as educative

instruments, but also as the best media of investigation.

The extent and value of the new methods, together with

the duties of those capable of teaching them, are happily

expressed in a letter to me from M. Hermite, dated Paris,

October 28, 1876, who will probably pardon the liberty I

take with his communication, on the ground that the fol-

lowing extract is of public importance :
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^^ Les vues exposees par vous, Monsieur, dans la pre-

face de cet ouvrage [Tract No. I.] sur les obligations

qu^imposent a I'enseignement les grands progres de la

science de notre temps, je les adopte pleinement, et,

autant qu'il m'a etc possible, j'ai essaye de m'y con-

former dans mon Cours d'Analyse de PEcole Polytech-

nique. Une grande transformation s'est deja faite et

continue encore de se faire dans le domaine de FAnalyse ;

des voies nouvelles plus fecondes et je crois aussi plus

faciles ont ete ouvertes, et c'est Toeuvre de ceux qui

veulent servir la science et leur pays de discerner ce

que les elements peuvent recevoir de Pimmense ela-

boration qui s'est accomplie depuis Gauss jusqu'a Kie-

mann.*'

I am also indebted to Prof. Benj. Peirce, of Harvard,

for a communication in reference to tlie form of Laplace's

equation for secular perturbations, referred to on p. 41 of

Tract No. I.

Without detracting from the value of the Ancient Geo-

metry, it is believed that a considerable portion might
be omitted, if necessary, to give place to the Modern,

and that our regular college curriculum would be greatly

enriched by such substitution.

In any event, I hold it to be the duty of every teacher

of Geometry, whether in the form of analysis or synthesis,

to incorporate in his instructions large masses of the New

Geometry, unless, indeed, there happens to be a Chair

devoted to this especial science.

In presenting Trilinear Coordinates, it is not proposed

to supersede the Cartesian, nor even to regard them as

inseparable from them ; but to show (as Dr. Salmon has



PREFACE. V

shown) the peculiar province and power of each. In this

Tract it has not been thought necessary to advance far

in this comparison. The student will quickly see where

he can most advantageously employ the one or the other,

'or, leaving both^ press into his service the Triangular or

Tangential Coordinates,

All that could be attempted in a work of this size is

to give a syllabus of the more common equational forms,

and to exhibit, in as simple a manner as possible, their

genesis.

There are other systems of Coordinates which space did

not allow me to exhibit ; the quadrilinearj which involves

four straight lines as lines of reference, is one of some

importance.

Another form of Coordinates I will just mention, the

'description of which has been communicated to me by
Rev. Thos. Hill, D.D., LL.D., late President of Harvard.

These Coordinates consist in defining a curve by express-

ing the length of a perpendicular let fall from the origin

upon a normal as the function of its direction. Thus, if

6 represent the angle contained by the perpendicular and

the axis of X, then p =f{d). These are known in this

/orm as Watson's Coordinates. Dr. Hill has modified

[this system, and succeeded in achieving some very in-

teresting results. (See Proceedings of the American

Association for the Advancement of Science, 1873 75.)

For my first interest in the subject of this Tract I am
indebted to a paper read before the Royal Society of

Edinburgh in 1865, and pubHshed in the Messenger of

Mathematics of the year following, the author of which.

Rev. Hugh Martin, D.D., has exhibited in that paper
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mucli of the power and originality whicli characterise his

well-known treatise upon
" The Atonement.^'

It may be said, however, that works upon Modern

Geometry do in general suggest the treatment of their

subjects by the method of Trilinear Coordinates. They

do, indeed, suggest far more than has been attempted

here. In the works of Mulcahy, Townsend, Salmon,

Ferrers, Whitworth, the recent volumes of Dr. Booth,

Carnot, Steiner, Serret, Eouche and Comberousse,

Bobillier, Cremona, Briot and Bouquet, Chasles,

together with the journals Annali di Matematica

jpura ed applicata (of which Cremona is co-editor),

Comptes Bendus des Seances, that of Crelle and Bor-

chardt, Nouvelles Annales de MatJiematiques, may be

found much that leads to, and much more that leads

beyond, that which now follows.

Books, at best, are but poor substitutes for the living

teacher. Under familiar, oral teaching the difficulties

which otherwise too frequently envelope the student

rapidly disappear. Hence I would again emphasize the

importance of admitting these subjects to our colleges as

parts of the regular course.

Since the publication of Tract No. I., the heads of two

of our leading Universities have made haste to inform me
that some parts of the Modern Mathematics I am endea-

vouring to enforce and popularise are taught in their col-

leges. I profoundly wish that these exceptions were made

the rule.

W. J. W.

Chambersbtjrg, Pa.; 1877.
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CHAPTER I.

FUNDAMENTAL EQUATIONS.

1. The fundamental equation of tlie straight line in Tri-

linear Coordinates is

la+ mfj+ ny = 0.
^

2. The apparatus for expressing this conception consists of

a triangle of reference, whose sides are called the three lines

of reference.

3. The angular points of this triangle are indicated by A at

the vertex, B at the left, and G at the right ;
the lengths of

the sides opposite these angles by a, h, c
;
and the perpen-

dicular distances of any point from BG, GA, AB by a, /3, y.

The distance a may be described as reckoned downward or

upward from the given point, /3 to the right, and y to the

left.

4. We may say, in general ,
that the position of a point in a

plane is known implicitly when its perpendicular distances

from any two sides of the proposed triangle are given. Its

perpendicular distance from the third side is then given by
these data, for manifestly

2A-(/36 + cy)_
u,

a

where A = area of given triangle.
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6. By attention to tlie figure, which scarcely need be drawn,

We are clearly presented with the equation

aa+ 6/3-l-cy = 2A (1),

which is found by taking the sum of the areas of the three

triangles APG, APB, BPG, % % '^ respectively.
Z ^ ii

Observing that - = r sin J., 77
= '* sin B, ^ = r sin (7,

z z z

(1) may be written

a sin J. + /3 sin 5 + y sin (7 = = V,
r

where r = radius of the circumscribing circle. These equa-

tions hold, whether the point is situated below BG, within the

triangle, or above the vertex.

In the first case, by convention, aa is regarded as negative ;

in the second, each term as positive ;
while in the last aa is

alone positive.

6. It will be observed also that the point is equally deter-

mined if the ratios of the three perpendiculars are given, for

we see at once that each ratio determines a locus, which is a

line drawn through the angle upon which the point is situated.

The point sought is at the intersection of these lines.

7. Before proceeding further, it may be well to exhibit in

full the process for deriving the equation of the straight line

(Art. 1).

Let Pi, P2 be the given points ; a^ljiyi^ ('2P272 their coordi-

nates
;
and Pi P2 the straight line whose equation is to be

determined. Take any point P on this line, and let its co-

ordinates be a, (^j y ; then, by similar triangles,

PPi : PP2 :: ai-a : a 02 : ft /3 : /3 ft : yi y : y-yz;

or, taking the last two ratios, we are immediately presented

with the two determinants (D. 2; i,e., Tract No. I., Art. 2)
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otherwise
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Remembering (Art. 5) that

aa + 5/3+ cy = 2A,

and consequently af \-l:)g + ch = 2A,

we have a{af)-\-h(^iog) +c{yK) = ....

Also, since la-\-m(i-\-ny = 0,

and If ]-mg + nh = 0,

we obtain I (af) +'m (P -g) +n (yh)

Equations (1) and (2) give the eliminant (D. 39)

(1).

(2).
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By (D. 7) the riglit-liand determinant vanishes, and hence

Zl lUi Til

I m n

a h c

= 0*

is the condition of parallelism ; or, by reverting this determi-

nant, it can be written (D. 12)

aA + hB+ cC = (3),

and in this form is easily remembered.

11. Excursus on the straight line. We have obtained (Art. 5)

the equation

a sin J.+ /3 sin B-\-y sin = = a constant
;

r

and therefore we may write

la-{-m(j-\-ny-\-k (a sin J.+/3 sini^+ ysin C) =

as the parallel of the line

la -j- wz/3 -|- ny.

This follows from the analogy of the Cartesian coordinates,

where, it will be remembered, two lines differing by only a

constant are parallel. Also, if two equations are so connected

that their difference is ever a constant, their sum represents

their parallel and is situated half-way between them.

In the last Art., equation (3) is the result, in fact, of elimi-

nation between three equations, one of which is the impossible

equation aa-\-hj3 + cy = ;

impossible at least in any finite conception, since we have

* That this determinant may rigorously be equated to is evident from

ths consideration of the ratios, when it will be seen we have been, in fact,

concerned with only one equation.
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proved it equal, in every position of the origin, to the area of

the triangle of reference. Here again, after the analogy of

the Cartesian, of which trilinear coordinates may be regarded

as a particular case,* we may interpret

aa + hP-\-cy =

as a line situated at an infinite distance from the origin, or we

may say that every straight line may be regarded as parallel

to the straight line at infinity.

Thus, analytically :

The ratios (Art. 8) a : j3 : y express the relations of the

coordinates of the point of intersection of two straight lines.

The actual values are evidently given by the three equations,

aa -\- bP + cy = 2A,

Zla + ^l/3+ ^ly = 0,

Zatt+WaiS+ Way = 0,

where
2A

mi
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The determinant, therefore, to represent parallel straight

lines, may be written

A = = 0,h c

h c

ma ^2

which identically vanishes, and where it will be seen the ratios

I : m : n are merged in, and have become identical with.

a b : c.

12. The condition of coUinearity . Let the three points

"lAyi) "2/32725 "aft 73 be determined in the same straight line.

We see it is only necessary to accent the a, /3, y of equation (1),

(Art. 7), change Qi to ag, ft to ft, &c., and we can write the

condition at once

Ol ^2 72
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1.9
A
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equations (1) and (2) of fhe last Article will represent the lines

to be considered, remembering only to accent two of tte co-

ordinates, when (1) becomes

gK h fig)

and (2) 1.

Substituting these in the determinant of parallelism (Art. 10),

we find the required expression

am hi = ahfihghifa



TRILINEAR COOEDINATES. 17

Those condition of perpendicularity is sought, we may write,

'regarding only tlie ratios of /3 and y,

(ma lb) /3 + {na Ic) y = 0,

(mialib) /3 -j- (n^a\G) y = 0,

which are of the form of (1) and (2).

Equation (1) may be treated as follows :

sin(y+0)
:

sin(l^-f^)
\: t: s.

This, by composition, division, alternation, and reducing, be-

comes tan Q : tan :: ts : ^+ .

Li

tan di : tan :: t^S]^ : ti-\-Si.Similarly,

But the condition of perpendicularity in general is

tan tan 01+ 1 = 0;

therefore, by reduction and supplying values, we get

mmia^-^-nnia^+ Ui^ (&^+ c^ 26c cos J.)

(nli-\-nil) (aoah cos^) (Imi-j-l^m) (ah ac cos J^)

(mni+min) {o? cos J.) = 0,

rhich, remembering that

Z>^-|-c^ 2&C cos J. = a^, ch cos A = a cos B,

hc cos A = a cos G,
)ecomes

III (jnui+ miTi) cos A + mwi {nli -\- n^) cos B

+ nni(lmi-\-lim) cos = 0,
Ihe condition necessary.

General Exercises.

1. To prove whether perpendiculars upon the opposite sides

leet.

We perceive that the perpendicular divides any angle of the
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triangle into parts wtich are the complements of the remain-

ing two angles.

Therefore the equation of AD is

cos B .p = cos C . y,

or, more fully,

/3 : y : : sin CAD : sin BAD :: cos (7 : cos B.

Similarly, cos J. . a := cos B . /3,

and cos . y = cos A . a.

If we write the equations of these perpendiculars in order,

we see that a does not appear in the first or AD, 13 in the

second or BE, and y is wanting in the last or CF-, and re-

membering that these are the coefficients of a linear equation,

as, Oa + cos B .jj cos (7 . y = 0,

&c. &c.,

and remembering also that, by Art. 8, the problem is simply
elimination between these three equations, the condition of

concurrence, as we have already seen, is presented by the

determinant
0.
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where 8 ^^i^^i, and s,-^^^^
sm J.1 sin A

Dividing these by the first to obtain the ratios, we have for

the coordinates

of^i,

of A,

ofOi,

where / represents

1, h 9,

h -1, /,

sin {A+ ^i)

sin Ay

sin (B + B{)

sin Bi
'

>J
^
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15. A straigTit line through a given point and parallel to a

given straight line.

Let (I, m, n) be the given straight line, (/, y, h) the given

point, (Zi, mi, %) the required straight line.

The condition of parallelism of

Zia + mi/3 + niy = (1),

and la-\-m jj-\-ny = (2),

by (Art. 10), is

that is,



Similarly, if

8 Q
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Q =

21

/3 y

A n

2A(/3-A), and a b

Q B
2A(r-yi).

^ V?. Deduced coordinates of the triangle of reference.

1st. Of the angular points.

2A

WMA,
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Ex. Prove that

a = r cos A, /3
= r cos B, y = r cos G,

r being radius of circumscribed circle.

18. Distance between two points.

Various expressions may be deduced. One only is here

given ;
others will be given hereafter.

Let BiCi, BiAi, drawn parallel to the sides of the triangle

of reference BG, BA respectively, be two sides of a quadrilateral

BiGiPAi inscribed in a circle whose diameter is BiP ;

(a, /3, y), (ai, P^, yi) the coordinates of Bi, P ;
r = the dis-

tance between them. Through Gi draw a diameter G^D.

Join AiGi, DAi.

A, Gl = PGl + PA\ - 2PGi . PA, cos G.PA,

= PGl + PAl + 2P(7i . PA, cos B (1).

The angle at D = the angle GiBiA, = B,

AiGi = GiD sin B = PB, sin B = r sin B,

PG, = a-a PA = y-ri.

Substituting these values in (1),

r" sin^ B = (a-ai)H (y-yi)' + 2 (a-n,) (y-yO cos B,

which is the required equation.

This, however, may be made symmetrical with the deter-

minants formed from the coordinates of the points B,, P.

These determinants are represented in (Art. 16) by Q, B^ 8;

also in the same Article it was shown that

h c

B 8

Hence

where

2A

4AV'sin2 5

X =

a a,, and

a h

Q B

h c

B 8

2A

X'+Y'+ 2XYcosB,

Y= a h \.

Q b\

y-yi.



TRILINEAR COORDINATES. 23

Developing the values of X and Y, we find

4AV sin^^ = h\Q'+ B'+ S'-2B8 coaA-2SQ coaB

-2QB cos G).

By (Art. 5), 2A sin B = Vh,

Therefore

T = y ^(Q'+B'-^ S'-2BS COS A-'28Q COS B-'2QB COS G).

19. The area of a triangle from the trilinear coordinates of the

angular points.

The area of a triangle expressed as a determinant in Car-

tesian coordinates, the axes being rectangular, is (Art. 10, D.)

Ill
Vi 2/2 2/3

M/i tVn tVo

rhich, referred to oblique axes, becomes

^ cosec (o 1
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we are enabled to write

Area
cosec G
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We have already seen (Art. 7) that the equatioD to a line

joining two points is

la+mp-^-ny = 0.

But the numerator of (1) is, in fact, the same expression

under another form. As general equations of a straight line

joining two points they must be identical.

Hence we may write

la + mft+ ny
* (l^+m^-\- n^ 2mn cos A 2nl cos B 2lm cos 0)*

C2
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CHAPTER 11.

THE EQUATION IN TERMS OF PERPENDICULAES TANGEN-
TIAL AND TRIANGULAR COORDINATES IMAGINARIES.

21. It is necessary, as we proceed, to introduce the equation
of the straight line under somewhat different forms. We have

considered a point as determined by its perpendicular distances

from the three sides of the triangle of reference. A line join-

ing two of these points has thus far occupied our attention.

Let now the perpendicular distances of the three angular

points A, B, C from a straight line be jp, q, r, and let it be

required to find the equation to this straight line in terms of

these quantities.

We will assume two points on this straight line, one upon
each side of the perpendicular ^ ;

d = the distance between

them.

^ = area of the triangle formed by these two points and

the point A.

For the coordinates of the point A we have (Art. 17)

(
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Mand

qd =

rd =

1

V
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which gives <i = <ml^99+^\

an equation for the perpendicular distance.

23. The equation

2A

evidently gives the altitude of a triangle whose vertex is /, g, h,

and the equation of the base

ap/+ hqg -f crh = 0.

The equations of the sides will differ only in the perpen-

dicular
;
hence these may be written

a:Pifi-hq^g+ crih = 0,

apj-^lg^g + cr^h^ 0.

With these two equations, and

a/+5^ + c/i = 2A,

the values of /, g, h may be determined
;
that is,

af : hg : ch : 2A : : qi n
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24. We will now show the method of expressing the posi-

tion of a right line by coordinates, and that of a point by an

equation.*

Let p, 2, ^ be the unknown, a, /3, y the known, coordinates
;

then, by the equation we have just considered, we are enabled to

determine a relation between p, q, r which will be true for any

right line drawn through the fixed point of which o, /3, y are

the coordinates ;
that is,

aa2)-\rh(jq-\-cyr
= 0,

which is called an equation, in tangential coordinates, of the

point whose trilinear coordinates are a, /3, y.

25. To find the tangential equation to the point of intersection

of two right lines.

Let (pi, ^1, r^), (2^25 5^2? ^2) ^^ ^^o tangential coordinates of

the two lines
; (a, /3, y) the trilinear coordinates of their point

of intersection. Evidently, then, (a, (3, y) is a point on each

of two lines whose perpendicular distances from A, B, C are

Pl ^V n ; T'2^ ^2, ^2-

We first determine the ratios of the trilinear coordinates of

the point.

We have (Art. 21)

ap^a + hq^P-^-cr^y = 0,

ap^a-\-hq2(j + cr^y = 0;and

hence aa : hjS cy ^1 r.
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V



TRILINEAR COORDINATES. 31

The last determinant identically vanishes, as will be seen,

|if a common factor can be taken so as to make the first row

mity ;
in other words, if jc>=zq=zr. That is, points at infinity

[e comprised upon the line

p = q= r;

?and equation (1) of last Article reduces to

aa + i^/S + cy = 0,

relation which has already been interpreted (Art. 11).

27. Since we define the equation to a point in these coordi-

nates as an equation satisfied by the coordinates of all right

lines drawn through the point, it follows that, if

i = 0,

F=0,

^be two equations representing two points in tangential coordi-

lates, then the equation

L+hV=:0

'being satisfied, as it evidently is, by the coordinates of L and

F, must express a point on the line joining the given points.

28. Reserving for the present the further development and

the application of tangential coordinates, we will just mention

a system of coordinates known by the term triangular.

Instead of the trilinear equation

aa -f- fc/3 + cy = 2A,

and, denoting the ratios of the left member by x, y, Zj we have

x-\-y+ z = 1.

The ratios -, -^,
-^

evidently represent the ratios of the

triangles BPGy AFC^ APB to the triangle of reference.



32 TRILINEAR COORDINATES

It is clear how the trilinear coordinates ", /3, y are related

to x,y,z'j for, if we divide a; by aa, we have ^. In the same

manner, y divided by &/3 = ;
so that

^ _ y _ ^ _1_

aa 1(3 cy 2A'

29. The coordinates of the middle point of BO are, in tri-

angular coordinates, 0, ^, y.

This appears, since 5/3 = A.

But b(3 = 2Ay ;

hence 2/
= i ;

similarly, ^ = i ;

while X = 0.

30. We have seen (Art. 17) that the coordinates of the foot

of the perpendicular from A upon BG are

^ 2A ^ 2A -r.

0, cos C, cos B.
a a

These expressions, transformed as above, become

^ h cos G G cos B
a a

Referring again to (Art. 17), we find the coordinates of the

centre of the inscribed circle, which, transferred into the

triangular system, become

X _ y z _ 1

a b c a-^b-\-c

Transforming the area of a triangle (Art, 19), we have

JL .M
2V

'

abc

x^ 2/i ^1
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= (Art. 5)

8A^ 1_
ahc 2(a8in J.-+-/3sin5+ y sinO)

The equation to a straight line joining two points is, in a

similar manner, found to be (Art. 7)

0.

x^ 2/i i
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plicable to trilinear or triangular coordinates, or any system
in which a point is determined by coordinates

;
that is, if

u = la-{- mf^ + ny =: Of

and V = Zia+ m^/3+Wiy = 0,

then will u-\-hv = (1)

represent a line passing through the intersection of u and v,

which line, it is evident, can be made to represent any parti-

cular line by giving particular values to the arbitrary con-

stant h.

Let us try a simple application.

Suppose the triangle of reference circumscribed by lines

whose equations are

u=Of v = 0, w = 0;

that is, representing A^Bi^ By^G^, C-^A^. Let A^B^ be produced
to some point JBg, and from B^ let B^ G^ be drawn, and let B^ G^

be the line whose equation is to be determined. Join B^ G^.

But Gi is the point of intersection of v=0 and w=0. Hence,
from what has just preceded, B2 G^ will be represented by

Also, since B^G^ and A-^B^ (produced) meet in B^^ the line

B^ O2, which is drawn through their intersection, will, by the

same considerations, be represented by

7c-^u-\-v-\-Jcw = 0,

which, written symmetrically and in the usual form, becomes

\u -\- fxv -\- yw = 0.

It is manifest that this proof is not restricted to lines form-

ing a triangle. It is equally plain that they should not be

parallel.

32. In order that a point may be determined upon the line

la -\- m/3 -j- ny = 0,

its coordinates must simultaneously satisfy the relation
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I

If such values prove to be irrational, they are, by conven-

tion, said to be the coordinates of an imaginary point. Since

quadratics involve two roots sometimes imaginary there

will be the same number of intersections, if the question is one

of intersection, real or imaginary, or, more exactly, real, co-

incident, or imaginary. But as this truth is so well known
and so fully exhibited in Cartesian Geometry, we shall here

consider only what is peculiar to our subject.

33. It is evident that the imaginary roots of a trilinear

equation of the second degree must be of the form

a + a,y~l, /3+/3,x/^, y+y^Hl (a).

Suppose these roots to be the coordinates of an imaginary

point. Then, by the last Article, these must satisfy the relation

ao+ &/3-fcy = 2A.

Making the substitution, we have

(aa + hfi+ cy) + (aa^-{-h(i^+ cyO^^ = 2A (1);

wherefore aa^+ &/3i+ cyi = (2),

and aa+hP + cy=z2\ (3).

From which we see that (1) is made up of both real and

imaginary parts ;
the imaginary parts satisfying (2) the

equation to the line at infinity (Art. 11) ; while (3) is

of course satisfied by its own coordinates. The reader

will learn to distinguish between the coordinates of an

imaginary point and those of an imaginary point at infinity ;

that is, if the coordinates (a) had been regarded as the co-

ordinates of an imaginary point (or proportional to them) at

infinity, both (2) and (3) must have been written = 0.

34. The equation to an imaginary right line may be written
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35. Writers upon equations of the second degree represent-

ing right lines in Cartesian coordinates are accustomed to

dispose of the contingency of two imaginary roots by referring

both to two imaginary lines drawn through the origin, thus

determining a real point. So now we say that every imagi-

nary right line passes through one real point, and but one.

If we consider the equation of (Art. 34), we see that the

real and imaginary parts are not coincident, and consequently

j^the
factor v 1 does not divide out

;
hence the equation may

be expressed w+ vx/ 1=0 (1),

in which u and v are functions of the coordinates of the given

straight line. This equation is manifestly entirely similar to

equation (1), (Art. 31).

It is also to be observed that u and v are of the first degree,

and hence u =
and v =
are satisfied by real values, which values satisfy (1), which

passes through the point of intersection of w and v, and there-

fore each straight line passes through a real 'point.

36. Suppose the equation to a straight line

lf-\-mg+ nh =

to pass through an imaginary point whose coordinates are

given in [Art. 33 (a)] ;
then

la -\- mft+ ny -f- (la^ -f- mft^ -\- yiy^ \/ 1 =
;

and consequently Za -|- mp -\-ny =0,

Zai+ m/3i + ^yi = 0,

which equations determine the ratios of
Z, m, n ; or we may

determine them fully by the determinant

= 0,/
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rhich is the equation to the straight line drawn through the

^imaginary point whose coordinates are

a^a,^/^ /3+A x/^, y+yi^^l
id consequently

a_a^yZa, p-p^^/^ y-y^^^.

Therefore, since imaginary roots enter by pairs into an

equation, the imaginary points of intersection of two lines

(curves) will bo found upon real straight lilies hij
twos.

37. If we have an equation of the form

Z/3'-m/3y+ %y' = (1),

we can evidently subject it to the same reasoning which is

^
applied to the quadratic

x^ px]) + qif = 0. *

Each equation is reducible to the form

(/3-5y)(/3-.,y) = 0;

that is, the two straight lines

^-sr = (2),

/3-s,y = 0.. (3),

are real or imaginary according as we find, by the resolution

of (1) for the ratio /3 : y, that 4k is less or greater than m^.f

Examining (2) and (3) in the light of (Art. 31), we see that

these lines intersect in the point A of the triangle of refernece.

38. Excursus on imaginary right lines and points.

It is evident, from what has immediately preceded, that this

portion of the subject is capable of considerable expansion,

and that this system of coordinates is eminently fitted to deal

with the Infinite and Imaginary. From what has already

been said in reference to the adaptation of the reasoning

* Salmon's Conies, p. 69.

t Algebra, Bourdon, p. 159.
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employed in Cartesian methods to trilinear coordinates, the

views of high authorities upon these results are interesting.

Poncelet* has discovered and illustrated geometrically the

rationale of the principles which, upon purely analytical

grounds, we are enabled to re-discover, apply, and extend
;
he

has pointed out the correspondence of points, some real and

some imaginary, and taught that theorems concerning imagi-

nary points and lines may be extended to real points and lines,

and hence shown how to indicate the properties of a figure

when some of the lines and points are real and some imagi-

nary. By the method of trilinear coordinates we are enabled

quickly to generalize all those theorems which are concerned

with the line at infinity. For example, if four points on a

conic, or four tangents to a conic, are given, and it is required

to find the locus of the centre of the conic, we proceed to find

the locus of the pole of the line

a sin J. -j- /3 sin 5 + 7 sin = 0,

which also gives us, the conditions being the same, the locus

of the pole of any line

\a-f/i|(3-|-vy
= 0.

In applying the method of projections, the analytic shows

its superiority over the synthetic method, by proving the

general theorem at once, rather than by inferring it by the

projection from a more elementary state of the figure.

As to the results reached in our discussion of parallelism,

and what we have said upon the theory and use of the line

a sin J. + /5 sin 5 + y sin = 0,

nothing is affirmed beyond what has been received, almost

without dissent, from the first, both upon geometrical and

analytical considerations. See Chasles (Geom. Sup.), Town-

send (Vol. I., p. 16, Art. 136), Salmon (Conies, pp. 64, 318),

Poncelet (Proj. Persp., p. 53), Hamilton (Quaternions, p. 90).

* Traite des Proprietes Projectives des Figures.
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38. Tangent of angle betvwen two lines.

Let la+ ml3+ ny = 0,

lia-\-m^P~\-njy = 0,

be the given lines.

P''

! If 0, 01 be their respective inclinations to one of the lines of

reference, then, by the reasoning in Art. 14, we must have as

the tangent of the difference of the two angles, that is, the

tangent of the required angle,

tan (d-d,) =
tan 0-tan d,

^ '^
1 + tana tan(^i'

* which becomes, by a laborious reduction,

I
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3. What relation of two lines is expressed by the determinant

= 0;ah c

1 cos 5
1 cos J.

and what are the lines ?

4. What condition is expressed by

a b c

I m n

0-11

= 0?

5. Find the angle between the lines

^. a = 7 cos J?,

and j3
= y cos A.

6. If -zA+vv/ 1 = 0, it'-f ^^''Z 1 = are imaginary

straight lines having a real point of intersection, then the four

real straight lines u=-Of -17=0, -^.'=0, v=^0 are concurrent.

7. What is the determinant expressing the equation of the

right line drawn through the intersections of the pairs of lines

2au-\-'bv-\-cw :=0, &v+ ci<; = 0;

26w-|-av+ cw = 0, av cm; = 0?
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CHAPTER III.

THE TRILINEAE METHOD APPLIED TO CONICS.

39. We will now call attention to the fact, wliich may not

have escaped the notice of the reader, that trilinear equations

are always homogeneous. If not so in form, they can be made

so by a very simple process. Since

aa+ 6/3+ cy = 2A,

aa-^hP + cywe may write 1;

and therefore any term of an equation may be multiplied by
this fraction without affecting the pre-existing relation of

equality. Thus, if we have

a2-2a/3+ r=2,

we may proceed to raise each non-homogeneous term to the

i
second order, as

40. Another consideration, which has been referred to, may
'be here emphasized ; viz., that we are not concerned with the

absolute values of the coordinates, but with their ratios
;
and

this advantage we derive from the principle of homogeneity
'^which belongs to every trilinear equation ; thus,

a2-2a/3+ 7' =

is, in fact, (~)~^(~") ^ + 1=0,

d2
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in whicli only the ratios and appear. Beyond these ratios

it is not necessary for us to inquire.

41. It may be desirable to find tbe equation to the same

locus, but referred to another triangle of reference.

First Transformation^

when the equations of the sides of the new triangle are given.

These sides being represented by equations in terms of the

perpendiculars from the angular points of the original triangle,

we have (Art. 21)

coordinates of J., (^, jp-^, p^) ;

B, (q, q q,y ;

0, (r, r^, r^) ;

that is, apf -{-hq g + cr h = (1),

apJ+hq,g + cr^Ji
= (2),

apj+bq.2g+ cr^h = (3),

where (/, g, li) are the old coordinates of any point P.

To find the locus of the homogeneoas equation

When referred to (1), (2), (3), we observe that / represents

the perpendicular from (/j, g^, h^) these being the new co-

ordinates of P on the line joining P and G. Therefore

(/i, 9i^ K), (9^ 9i^ 22), (^, n, ^2)

indicate the angular points of a triangle whose area is found

by Art. 19,

double area
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from which the values of
/", y, Ti are readily determined.

Hence, representing these determinants by Q, 22, 8 respec-

tively, we may write

F f^, I-, -^) =
\ a c /

as the equation with new lines of reference, the degree not

being changed by transformation.

42. Second Transformation,

coordinates of the new points of reference being given.

A triangle drawn within or without the original triangle

will sufficiently represent the construction.

Let the perpendiculars from A-^, B^, O^,, the new points of

reference, upon BC be denoted by p, pi, p^ ;
on AG by q, q^, q^ ;

on AB by r, r^, r^ ; a^, &i, Cj the sides of the new triangle ;

/i, ^1, hi the new coordinates, and /, g, h the old coordinates,

of any point P. Then, by Art. 21, we find

a^pfi + hp^g^ + Cip.2\ = 0,

i ^/i + K'^i9i + <^inh = 0.

Representing these equations by Q, B, S respectively, we

have, by Art. 22, the distance of P from each of the sides of

the original triangle expressed in a simple form
;
that is,

/. Q B 7 t)

the old coordinates expressed in terms of the new.

43. We shall now pass on to the consideration of curves of

the second degree. An important property of these curves

was conceived by the early geometers ; viz., that every curve

of this degree might be regarded as a conic section. What
then can be easily shown may be stated here, that the section

of a right circular cone by any plane can be expressed by a
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homogeneous equation of the second degree in trilinear co-

ordinates. This can be readily proved by selecting particular

lines of reference
;
and since, by the preceding Articles, we

may transform to any other lines without affecting the degree
of the equation, we may regard this as a general truth irre-

spective of the lines of reference.

Let us write

ua^+ i;/32+ wy^ + 2u, fty -f 2v^ ya + 2w^ a/3 =
as the general equation of the second degree in trilinear co-

ordinates.

This equation, it will be seen, contains six terms
;
but as

the nature of the curve does not depend upon the independent

magnitude of these coefficients, we may simply regard their

mutual ratios, or, in other words, assign a particular value to

one of the coefficients, varying the Values of the others.

Here, then, as in the Cartesian coordinates, we can find the

equation to the conic described through five points. There

are, in other words, five constants to be determined whose

values substituted in the general equation will give the equa-
tion of the conic through five points ; that is,

a' {3' y' ^y ya a/3

i R y\ ftiYx yi"! "A

ftl y\ Ays y58 "5/35

= 0.

44. Concurrence of the straight line and conic.

The well-known property that every right line meets a

curve of the second degree in two real, coincident, or imagi-

nary points* is readily exhibited.

Writing the general equations of the conic and straight line,

la + m./3 -{ ny = 0,

W+ ^;i8H^^yH2?^l/3y^-2v^ya + 2w;^a/3 = 0,

* Salmon's Conies, p. 132.
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and the simultaneous relation

aa + &/3-fcy = 2A,

we see from these three equations that we are enabled first to

express /3 and y as functions of a of the first degree, which

substituted gives us a quadratic, and this in turn furnishes

two roots, determining two points of intersection.

45. Excursus upon the fundamental form of the equation to a

conic section in trilinear coordinates.

Conceive the vertex of a right circular cone placed at the

origin of x, y, z coordinates
;
XYZ the plane of section, and

also the triangle of reference in trilinear coordinates
; Oj, 02, 9^

the angles which the perpendicular upon this plane makes

with OX, OY, OZ ;
OX and OY supposed to be at right angles

to the axis of the cone OZ and to one another
;
P a point on

the curve and the origin of a, /3, y.

Let a, h, c be the perpendicular distances of P from the

coordinate planes, and d the diagonal from in the lower

face of the parallelepipedon.

Then the perpendiculars from P on XY= a, on XZ = /3,

on r^=y.
By the geometry of the figure, a (the perpendicular distance

of P from the plane OYZ) = a sin 6^, & = /3 sin 0^, and c (the

distance of P from the plane OXY) = y sin 6^,

d' = a'-{-b\

c = d tan 0,

where 6 =. semi-vertical angle of the cone.

Hence c^ = ((^H &') tan^ a
;

that is, y^ sin^ d^ = (a^ sin^ d^ + fi^ sin^ d,) tan^ 6,

or a^ sin^ 6^ tan^ + /3^ sin^ 02 tan^ -
y^ ^^^2 q^

_
q^

which also may be written

W+ mlj^+ ny^ = 0,

where it is understood that the signs are not all the same.
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We have, therefore, derived an equation to a conic section

homogeneous and of the second degree in trilinear coordinates
;

and in turn it may easily be shown that the general equation

ua^ H- 1'/32+ wy^+ 2u^Py+ 2v^ya + 2w^al3 =

may be made to take the form

and hence every equation of the second degree may be said to

express some section of a right circular cone.

In tbe genesis of this equation it is evident how we might

proceed to make some applications in tri-dimensional Geo-

metry. For instance, let us take some function of x^ y, z as

an equation to a surface in three rectangular coordinates, as,

and let x cos d^-j-y cos 6^-\- z cos ^3=1?

be the equation to any plane ;
also let the traces of the coordi-

nate planes upon the plane of section be the lines of reference
;

then, if x, y, z be the coordinates of any point P upon the

given surface, and if Q^, 6^, 6^ be the angles which the proposed

plane makes with the original plane, we must have

X = a sinO^, y = p sin 6^^ z = y sin 6^ ;

and consequently, by substituting in the given surface, we

obtain the trilinear equation to the section, that is,

/(a sin d^, J3 sin Og, y sin 63)
= 0.

In the same manner, the equation to the section of the

Q? y^ ^
ellipsoid ~2 + tT + "2

= -^

by the same plane would evidently become

g^ sin^ e, , (5' sin^2 . rl^n^ ^3 _ 1 r^^
a'

"^
h'

^
c^

~
^ ^'

which is easily rendered homogeneous by first finding the
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identical relation among a, /3, y in the given plane ;
that is,

by substituting the values of x^ y, z as above when

a sin 2^1 + /3 sin 20^+ 7 sin 208 _ -,-' -

2p
-''

and consequently (1) becomes

g^ sin^ e, fy" sin^ 0^ y^ sin^ ^3

a^
"^

&^
"''

c'

r sin 201 + /3 sin 2(92 + y sin 2a8T_ ^

46. By the last Article we are enabled at once to interpret

such an equation as

a/3-^ya; = (1),

where, by ordinary abridged notation, a = 0, /3
= 0, y = 0,

ic = are the equations to four straight lines, and k is any
constant.

In considering the given equation, we see that it is of the

second degree, and satisfied when a = and y = are at the

same time satisfied
;
and hence we infer that the conic repre-

sented by the equation passes through the intersection of these

lines. In the same manner, another point is determined by
the intersection of /3

= and ic = 0, and so on for the four

sets of lines determining four points through which the conic

must pass ;
that is, (1) represents a conic circumscribing a

quadrilateral whose sides are a, /3, y, and x.

From this we readily pass to the interpretation of the similar

equation a/3 Z;y^ = (2),

which indicates that two of the opposite sides, y and x, are

coincident. And as each of the lines a = and (3 = can

meet the conic in but two points, they must be conceived as

drawn from a point without, and hence as tangents to the

conic at the points respectively where the coinciding lines

meet the conic*
* Salmon's Conies, p. 223.
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47. The triangle of reference self-conjugate with regard to the

conic.

B/eturning to tlie equation

la'+ mfi'i-ny^ = 0,

we see tliat it expresses no possible locus while Z, m, n are

regarded as all positive or all negative ; but, as we saw in

Art. 45, these are not all of the same sign.

Let I, m be positive, n negative, and for tbem write n'^, v^, w^

respectively ;
then

u'a^^v'p.^-m'y^ = (1),

or y?a^-\-{v^ + wy) (yij y) = 0.

After the analogy of equation (2) of Art. 46, the lines

vj3 +wy = 0,

v(i ioy 0,

must be tangents, and a their chord of contact ;
in other

words, the line a = 0, which is the equation of BG, a side

of the triangle of reference, is the chord of contact of a pair

of tangents from the vertex A.

It is equally admissible to write (1)

whence we see, as before, /3
=

0, which is the equation of AG,
a side of the triangle of reference, is the chord of contact of the

lines ua + wy = 0,

and ua wy = 0,

which are tangents from the vertex B
; or, still further, (1)

may take the form

or (ua-\-vl3\/'^) (ua v(3\/ l)wy = 0;

whence 2fca + ?;/3 \/ 1 =0,

uavjj \/ 1 = 0,

are the imaginary tangents from the vertex (7, and y= their

chord of contact, which is also the equation of AB.
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Therefore, as we see, eacli side of the triangle of reference

becomes in turn the chord of contact of tangents from the

opposite angle, that is, the jpolar of that point with respect to

the conic
; and, conversely, each vertex is seen to be the pole

of the opposite side, or the triangle may be described as self-

conjugate with respect to the conic
;
which was to be shown.*

48. Intercepts of a directed line upon the curve

Za2+m/3Hn7^ = (1).

Let (!, j.\, Yi) be the point from which the directed line h

is drawn to meet the conic
; s^, s,^, s^ sines of the given direc-

tion all measured in the same direction, the first from h to the

parallel of BG, the second measured from the same point to

the parallel of AG, and the third in the same direction round

to the parallel of AB, of the sides, respectively, of the triangle

of reference.

Then, evidently, a = a^-\-sJi,

^
^ = Pi + s^h,

*

These values substituted in (1) give a quadratic in h
;
that is,

h^ (Isi + ms2 + nss ) + 2^ (Is-^a^ + rns^p^ + ns^y^)

+ (lal + mPl -\- nyl) = 0,

The two values of h obtained from this equation will be the

lengths of the intercepts from the given point.

Suppose this point to be on the curve, we shall then have

lal + mj^l + nyl = 0,

and consequently but one value to h (one intercept becoming

zero), which is manifestly the length of a chord in the given
direction.

49. Locus of middle points ofparallel chords.

Let the curve be the same as in the last Article ; (aj, /3i, y^)

* Salmon's Conies, p. 227.
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a point on tbe locus, and the cTiord from this point repre-

sented by h, whose direction is given by its sines, Sj, Sg? ^3-

Then, as before.

Hence the intercepts of the curve are given by

which, by the supposition, are equal ;
that is, the two values of h

will appear with opposite signs ;
and since they must be equal,

their sum, or the coefficient of Ji, will be equal to 0, and conse-

quently* ZsiaiH-mSgA+ w^gyi = 0,

a straight line giving the relation, in fact, of any point on the

locus, and hence the equation required.

60. Tangent to a pomt on the conic.

Let now the point (a^, ft, yj be on the conic. We have

seen, by Art. 48, that when this point lies on the conic,

lal + m0l i- nyl = 0;

and therefore the quadratic in h of that Article reduces to

(Isi + ms2 -\- ns^) h + 2 (ls-^a^ + ms2fy^-\-ns^y^) = 0,

which gives the length of the chord.

When, now, the direction becomes that of the tangent, the

length of this chord, that is h, becomes zero, and we have

l\a^-^ms2fyi+ 7is^y^
= (1).

But if (a, jS, 7) be any point on this tangent, we must have

h
' '

h
' '

h
'

which values substituted in (1) give

la^a-{-mj3^l3-\-ny^y = Za^ + m/3j + nyl = 0.

* Bourdon's Algebra, p. 160.
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Hence Z.aj
a -|- m/3i (3+ ny^ y =

expresses the required relation, and is therefore the equation

sought.

51. Coordinates of centre.

The reasoning is similar to that of Art. 49. The direction

of a diameter being s-^, s^, s^, the lengths of intercepts by the

curve in this direction, measured from the centre (a^, /S^, yj),

will be given by the same equation as in that Article
;
and

since the quadratic must, by the premises, give equal roots

with opposite signs, the coefficient of h will =
;
that is,

^^i^i+ ^^a/^i+ ^^syi == ^ (!)

For the actual determination of a^, /3i, y^ we have

aa,+ hl3, + cy, = 2A (2);

^ut since aa + hjj + cy = 2A,

id a = a^+ s^7i, P = p^+ s^h, y = yi+ s^hf

fe have as^-\-hs^-j-cs^ = (3).

Comparing (1) and (3), we get

la^ m/3i nyj
a h c

'

These ratios will enable us to find the values of a^, jSj, y^ ;

ins, by dividing (2) by
- or its equals, we have

CO

^ + ^' +
^' = = ?^ =

I m n Zttj wz/3i ny^
'

and therefore the coordinates of the centre are determined.

It will be observed that these coordinates enable us to de-

termine the condition that the conic may be a parabola ;
the

centre of a parabola being infinitely distant, its coordinates

mast satisfy the relation

aai+ 6/3i+ cyi = 0.
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Making the substitution, we have the required condition,

n^ h^ e^

that is, ^-i-JL +;^ = 0.

62. Equation of circle with respect to which the triangle of

reference is self-conjugate.

It may be inferred from Art. 47 that when an equation of

the second degree does not involve /Sy, ya, ajo, the conic, in

such case, is so related to the triangle of reference that each

side is the polar, with respect to this conic, of the opposite

vertex.

Let one side, as CJ., cut this conic in two points (/"i, 0, /i^),

(/a, 0, 7^2), and let this chord be bisected. Then the equation

of the straight line from the vertex to the point of bisection

is,evidently,
/^^^

=^ W.

which line passes through the centre of the conic.

We have seen (Art. 47) that the conic may be written

where, in this case, nothing is assumed as to which of the co-

efficients I, m, n should be attributed the negative sign.

Now /i and f^ are identical with the values of a given byl

this equation.

We can eliminate /3 and y by the relation

aa + 6/3 + cy = 2A,

remembering that /3
=

;
and we have the quadratic

2 _ 4:^10^a
_|_ _^^L__ _ .

u^c^ 4- w^a^ uh^+ w^a^
~

'

and therefore /i+/2 = -^2^T^^~^>
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since this coefficient is the sum of the roots of a
; by the same

reasoning we have

id consequently (1) becomes

line on which the centre lies, which may be written

u^a w^y

limilarly,
^ ^v^^
a h

Now it is a property of the circle that a line joining any
^point to the centre is perpendicular to the polar ;

therefore the

line !!l?_!^ = 0,
a c

which is drawn from the centre to the vertex i?, is perpen-
dicular to /3

= 0.

But, by the figure, we have

a
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53. The inscribed triangle.

Returning now to the general equation of the second degree,

^a2-|-v/3'+ w;y'+ 2wi/3y+ 22;i7a+ 2wia/3 = 0,

we see that if /3 = 0,

r = o,

the equation reduces to u = 0.

But this is the condition that the curve should pass through
the vertex A. In the same manner, it may be shown that when
i; = and w = it will pass through B and G.

Under these conditions the equation reduces to

u^(^y-\-v^ya-\-u\afi (1),

which also may now be written without the subscripts. We
may therefore write it

ul^y -h a (yy+ wJd) = ;

and since every straight line cuts the curve in two points,

the line vy-\-ivl3 =
must pass through the point where a= and /3

= 0, since

these values alone will satisfy the equation ;
but these points

are coincident, and determine the vertex A. This line could

not therefore be drawn within the curve, for it would then

meet it in three points ;
it must be drawn without, and there-

fore is the tangent at A.

Equation (1) is an equation of the second degree, and re-

presents evidently, from what has been said, a curve circum-

scribing the triangle of reference, satisfied when any two co-

ordinates = 0, in which case each vertex lies upon the locus.

54 The conic ul3y-\-vya-\-wal3 =
will give values for the intercepts by the curve upon a straight

line from a given point ;
the equation to the tangent at any

point ;
the locus of middle points of parallel chords, in pre-

cisely the same manner as has already been shown in preced-

ing Articles.
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Let US here seek the condition that any straight line should

be a tangent to the conic. '

Since ufoy-^-vya +wap =

represents a conic described about the triangle of reference, it

passes through the point, as we have seen, where /3
= and

y= 0.

Let /a-f^/5+ /iy =

be the straight line. If by means of this equation we eliminate

a from the equation to the given conic, we must have, evi-

dently, coincident values for /3 : y.

Now the quadratic which results,

y^ y \ gw I gw

will give equal values for when the value of the radical is

zero
;
that is, when

4ihgviv {gv -f JiwfuY = 0,

or u^f+vY+ w%'-2vwgh-2uwhf2uvgf = 0,

This may also be written in the form

\/uf dz "^vg vwh = 0,

which can be verified by clearing of radicals
;
and this is the

condition that the straight line

fa+g/5 + hy =
may touch the curve

u(3y-\-vya-\-wa(^ = 0.

Dr. Salmon has called this the tangential equation of the

curve.

E
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55. Pascal's hexagon : the opposite sides of a hexagon
inscribed in a conic meet, if produced, in collinear points.

Let the triangle of reference be inscribed in the curve,

and let Ax^, Bx^, Gx^ be three of the sides of the inscribed

hexagon .

Since, if (/, g^, h^), (f^, g^, hc^), (/g, g^, \) be the coordi-

nates of x^, x^, a?3 respectively, we shall have, by the figure,

/3 : y :: ^1 :
Zz, ;

Ax^ will therefore be represented by

and x,G by g -f^, 0.

Hence (Art. 12) the point of intersection of these, sides is

9iA, 91921 K92-

The side Bx.2 will be subject to the coordinates f^ and h^ ;

the side x^A to li^ and g^ ;
hence these sides will intersect in

the point

f^K h93i hK

The sides Cx^ and x^B will, in like manner, intersect in the

point /3/1, /i^3, hj^.

Hence we have, by the determinant of collinearity, the

condition

^1/2 9x92 K92

fih h9& hh
/3/1 /i 9s Kfz

(1).

which, as is evident, is also the condition that the three

points cTj, a^a, x^ lie on one conic with the vertices of reference.
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For let (/i, g^y h^), (/g, g^, h), (/a, .^3 h) be the three given

points on the conic, and let the conic be represented by

ugh-\-vhf-\-wfg = 0.

Then will the three vertices of reference lie on this conic
;

and if the curve pass through the given points we must have

ug^h^+ vhj, j-wf^g^ = 0^

ug^\+ 'vlij^i+ wf^ g^ = 0,

y'giK+'vhJ^+ wf^g^ = ;

and the determinant by which u, v, and w are eliminated is

9x\ KA fi9i = 0,

g^K Kt\ hQ't

g^h hA A9z

which is identical in result with the condition given in (1).

Exercises.

1. A triangle being inscribed in a conic, are the points

coUinear in which each side intersects the tangents at the

opposite vertex ?

2. Prove the theorem of Hermes, that if (a^, p^, y^), (og, jSj, y^)

be two points on the conic

uPy-\-vya-^tvap = Of

then the equation to the straight line joining them is

"iQa PA 7x72

e2
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3. When does ul3y-\-v'ya-\-wa(3 =

represent an hyperbola ?

4. What is the chord of contact of the tangents

^ (/3+y) + (^/v ywy a = ?

5. What is'the condition of concurrence of the normals at

the vertices of the triangle of reference to the above conic ?
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CHAPTER IV.

POLE AND POLAR RECIPEOCATION.

56. Inscribed Conic.

Any conic inscribed in the triangle of reference may be

represented by _
via -|- \/m/3+ V7iy = 0,

which, cleared of radicals, is

l'a'-^m'l3'-h7iy-2mn(ir-2nlya-2lmaP = 0,

as we have seen (Art. 54), where it expressed a particular

condition.

If we examine this equation, we shall find that it may be

written in each of the three following forms :

4w%/3y (m/3+ ny-Za)2 = (1),

47ilay-(ny+ la^mfDy = (2),

4mZa/3-(Za + wi/3-n7)2 = (3),

from which, as they differ only by a constant from the equa-
tion interpreted in Art. 54, we conclude from parallel reason-

ing that each represents a conic section in which the factors of

the first terms equated separately to zero are tangents to the

curve in whose equation they respectively appear, and the second

terms are the squares of their respective chords of contact.

Hence the lines of reference are tangents, and the conic is

an inscribed conic.

57. Conversely, every conic ivhose lines of reference are the sides

of a circumscribed triangle will have an equation of the form,
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since every conic may be represented by

If the triangle of reference be circamscribed, the side BC
will be a tangent and be represented by a = 0. This value

substituted in the general equation gives

which, from the nature of the case, must have equal roots,

that is, the left-hand member of the equation must be a perfect

square ; hence u^ =vw;

that is, ^1 = db \^vw
;

and similarly v^
= ^ s/wu,

w^ = vuv,

are the necessary and sufficient conditions that the conic should

touch the lines /3
= and y = 0.

Substituting these values in the general equation, and re-

membering to write ?^, m^, 71^ for u, v, w, we have

db v"^ N/m/3 y71^ = (1),

which was to be proved.

68. Four conies may be inscribed in the triangle of reference

so related that the points of contact shall lie on the lines re-

presented by iJa m/3 wy = 0.

Eor it is evident that (1) of the last Article may be written

ZV+ m2|32+ 7i2y2 2mw/3y 2nlya 2Zwa|S = 0,

which, writing all the doubtful signs negative, or one negative

only at a time, breaks up into the equations to four conies, and

we are presented with four interpretations similar to (1), (2),

(8) of Art. 56. If the double signs be taken otherwise, the

locus will become simply two coincident straight lines.

These equations therefore, as representing conies, have
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twelve points of contact lying three and three on the above

four straight lines. It may be observed that the actual sign

of the quantities under the radicals in equation (1) of the last

Article depends upon which sign is taken with the coeflB.cients

of /3y, ya, a/3.

The process for finding tangent, intercepts, centre of conic,

&c. is similar to that already exhibited in the last Chapter,

and need not be repeated.

59. Brianclion's Hexagon : the three opposite diagonals of

\every hexagon described about a conic concur.

The method of proof is quite similar to that already ex-

hibited. Let three sides be produced for the triangle of

^reference ;
ABCDEF the hexagon ; AB, CD, EF the sides

produced.
If \a-^m^Py+n^y:=0

be the equation io AF,

Zga+ ma/B-frigy =
[to that of BC, and

^3a^-m3/3 + ^^37 =

to that of DE; then the diagonals AD and FC will be repre-

Jsented as follows :

The point A,

A
(AD),

(FG),

{BE\

y= 0, and Zja-f-mi/S = ;

a = 0, and W3/3-r??3y = ;

\m^a + m-^^m^(^-\-m-^n^y = ;

l^n^a + n^m,^(^ -f- thn^y =.
;

Hence, (Art. 8),

liTYi^ 'tn^^m^ m-^n^

n, m. n-, n.

= 0.
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The condition that the three lines AF, BC, and DE shall

touch the conic

via -f Vmjj -\- Vny =

is found by first finding the condition of tangencj of each of

these lines, which is, for AF,

^
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in the above equation ;
that is, by

f(a^+ sji, fi^+ s^h, Yi+ sji)
= 0,

which, when expanded as we have already seen in the Article

referred to, will consist of some function of (a^, /Sj, yj, a co-

efficient of hy and a coefficient of Jv^ which is some function of

the direction-sines, or

If now (aj, /Gj, y^) lie on the curve, we must have

Ik- /(!, A, 70 = 0;

also one of the intercepts becomes zero, and since the line is a

tangent the length of the chord is zero, that is, the coefficient

of h vanishes, and we have

By substituting for s^, s^, s^ their values, we shall obtain

twice the function in (oj, p^, y^) which = 0, that is,

as may be shown by taking the differential coefficients of

ual + v(dI + wyl + 2ujD^y^-{-2v-^y^a^+ 2w^a^f^^ = 0,

in respect to a^, /3j, y^ respectively, multiplying the differential

coefficients by each of these coordinates and adding, when we

shall find that 2/ (a,, f3 y,) = 0,

since (a^, /3j, y^) is supposed to be on the curve. There will

remain, therefore,

da^ d(iy tf,yi
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the equation to the tangent at (a^, (3^, yj, since it expresses a

relation among the coordinates of any point in the line.

61. Polar of a point in respect to the conic.

Let the fixed point be (a^, ft, y^) ; (og, ft, y^, (a^, ft, y^) the

coordinates of points of contact of tangents from the given

point. Then we can show, by an extension of the reasoning
of the last Article, that

#+Af +7.f =
da^ cla^ aaj

is the tangent from (a^, j3^, y^) to the point of contact (og, /Sg, y^) ;

and likewise 3 -/- +A -7^7-+ 73 7
= ^

da^ dp^ dy^

is the equation to the tangent at (og, /Gg, y^. Therefore these

equations express the fact that the line joining these points of
\

contact is a locus whose equation is

da^ fltpi dy^

that is, the polar with respect to the conic

/(a,fty)=0;

or we may proceed otherwise. Defining the polar of a given

point as the locus of the intersection of tangents drawn to the

points of section by a straight line through the given point,

we should have for the equation through the three points in

the same straight line

(Ay2-ftyi) + /5(yi"2-y2i) + y (ift-"2ft) = ...(i),

where (a, /3, y) is the given point, (og, /S^, y^), (a^, ft, yj the

points of section in which any straight line cuts the conic.
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The intersection of tangents,

d
3f_ ^

will be .-^V = -^ = -P^ (2).
PiTa P2T1 ri2 y2i iP2 2Pi

Equation (1) with (2) gives

i?/" 4. /3^ J- ^f _
c?a <ij(3 c?y

This equation being independent of a^, /3j, yj ; Oj, ft, yg is

the relation at the intersection of the tangents ;
it is therefore

the locus required, and, bj definition, the polar of (a, /3, y).

62. Coordinates of the pole of a straight line in respect to a

conic.

Let /a+^/3+ 7iy =

be the equation to the straight line, and

(a, A y) =

to that of the conic. If (a, (i, y) be the coordinates of the

required point, then its polar, by the last Article, is

da djj dy

and since this is the same as the given line, we have

d(p d0 d(f)

da
___ d(3 _ dy ^

7" 9

^
~f^''

that is,

ua-\-w^l3-\-v^y _ vl3-\-u^y+ W-ia _ wy-[-v^a-\-u^l3

f
~

g

~
h
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Patting eacli member = s, we have

ua'\-Wi(i-j-v^y-\-sf= 0,

and consequently

p

f
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64, The conic will hreah wp into two right lines wlien we
have the condition

u W^ Vj

v. u, w

0.

Eor suppose the two lines into which

(, ^, y) =

breaks np to be represented by

/a + ^/3 + ^y =0,

Then will

(,ft y) = {fa + gP+ hy) (Aa+g,P+ \y),

and g =f(Aa+g,fi + Ky) + f^(fa + g[i + hy),

with corresponding values for -^
and

-^. Hence, reverting

to a principle already explained (Art. 31),

da
^

d(3
^

dy

are straight lines which pass through the intersection of the

given lines ; that is, the lines

u a -{ w^fi + v-^y =: 0,

w^a -\- V (3 -\- u^y = 0,

v^a + u^P -\- wy == 0,

concur, and give the above determinant.

65. When some of the four points of intersection of two

conies become coincidejit, some of the common chords will
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coincide
;
others will toach. at a common point, that is, be-

come tangents. There will, in general, be three pairs of

common chords
;

if two points coincide, the conies touch
;

if

the two remaining points also coincide, the conies have double

contact and a chord of contact.

66. Equation to the asymjptoies.

From Art. 64 we can easily form the equation to any pair

of common chords. Thus, if

(,ft y) = Qa2+ E/3H^y' + 2Qi/3y + 2E,ya-f 2;Sia/3 =
and

0i(a,/3,y)
= ua^ ^viD'^wy^-\-2u^(Dy+ 2v^ya-\-2w^ai^ =

represent the two conies, the locus in question will have the

equation (Art. 31),

^(,Ay) + %(a,/3,y) =0 (1),

which must be so conditioned in h as to represent two straight

lines, hence (Art. 64)
*

Rx+ kv^ Qi + hu^ 8 + hw

= 0.

If now (a, /3, y) = breaks up into two coincident

straight lines, as,

(fa + gft+ hyy = 0,

we shall find

k =

u w^

f

^1
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which, substituted in (1), gives

^(a,/3,y)Tr+ Cr<^i(a,/3,y)=0,

or (fa + gP +hyyW+ Ucl>,(a, fi,y)==0 (2).

This equation now represents, under the above condition,

not a pair of common chords, but a pair of common tangents

whose chord of contact is

fa + gl3+ hy=zO.

We have now only to introduce the condition that the chord

of contact is at infinity ;
that is, that

aa+fe/3 + cy = 0;

; wherefore (2) becomes

Jaai-hP + cyy + fi (a, /3, y)
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the required condition becomes

u-\-v-\-w2ui cos A 2vi cos B^w^ cos (7 = 0.

Def. TF is called tlie discriminant of the function

^j (a, /3, y), and U the bordered discriminant of the same

function (D. 43), where f, g, h, as the coefficients of a, /3, y,

are = tt--,
-

-, r -
respectively. For the conic,2A 2A 2A ^ -^

W = ?m?^,

Z7 = (a^mw+ &^wZ+ c^ Zm) -

^ .

4A^

Numerous other functions may be determined.

67. Space does not permit extended illustration of the use

of the abridged notation thus far exhibited. The reader can

easily apply it. For instance, if the function be
(p^ (a, |(3, y),

and we wish to express the equation of the straight line at

infinity in terms of the derived functions, the required equa-
tion might be written

and since aa + h^+ cy = (1)

represents the straight line at infinity, we have

iif+ w^g-^- vji _ Wif-\- vg + '^Ji '^i/'+% 9+ ^^^

a
,

b c
*

These equivalents represented hj Tc give us

uf-^- w^g + v-^Ji -\- ah = (2),j

w^f { V g \- u^h + hh = (3),

^iZ+^i^ + wh-\-ch = (4)^
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Eliminating now between (1), (2), (3), (4), we obtain

the condition that the minors of the bordered discriminant in

respect to its f^ g, Ji are proportional to jT, ^, Ti of the given

equation, which minors being represented by A^ JB, 0, the

equation becomes

da djo dy

as the straight line at infinity.

68. The equation of the nine-point circle.

We first find the condition that the conic

ly represent a circle. If the conic be a circle, / (^j, ^g, 53)

constant, that is, all diameters will be equal ;
and since, in

le equation for finding the lengths of the intercepts,

/(, A r) + ^
(if + .J + h

J)
+ V/(i, h, s,)

= 0,

le coefficient of h vanishes, we have

rhich gives the radius in the given direction. To reduce this,

re may express the condition that diameters in three direc-

ions (that is, directions of the lines of reference) are equal.

We have, therefore, to express this,

^, ^ /(.fty) _ /(,fty) _/(,/3,y)
/(<) f(y) fi")

'

'herefore /(*) =/(y) =/() ;

)r, for direction of BO,

,
= 0, 82

= 81110, 85
= sin B.

Lence /W =/(0, c, -i).
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Similarly, for OA and AB^

f(y)=f(.-c, 0, a),

from the proportionality of sin A, sin B, sin G.

Hence we have the two conditions,

v('^-\-wh'^2u^bc = wa?+ uc^2vj^ca = uh'^+va^^2w^ah.

In the second place, we see that, if the curve pass through
the middle points of the sides of reference, a, ^, y must in

succession be taken =
;
whence

VG'^+wh^+ 2u^hcz= ^

wa?-\-uc^+ 2v^ca = \ (1),

uh^-]-va^-\-2w^ah = J

which follows from the condition involved, that

ip = cy = aa.

Comparing the two sets of equations, we find

w\ab =:ViGa = u-J}c.

Hence, if equations (1) are true, they will hold whatever the

value of -Wj. Let u-^=l a.

The resolution of these equations gives

w = 2a cos A,

V = 2b cos J5,

w = 2c cos C.

Hence the circle which passes through the middle points of

the sides of reference (tJie nine-point circle) becomes

a^ sin A cos A + /3^ sin B cosB -{- y sin C cos G

(jy sin ^ ya sin 5 a/3 sin (7 = 0,

or a^ sin 2A + (S^ sin 2B + y^ sin 2(7

-
2i3y sin J. ~ 2ya sin ^ - 2a/3 sin (7 = 0.
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COE. 1. If now a = 0,

(P sin 2B + y' sin 2(7 - 2/3y sin ^ = 0.

But since 2 sin J. = 2 sin (1?-|- (7),

/32 sin 25 + y2 sin 2(7 - 2/3y (sin 5 cos (7 + sin cos 5) = 0.

This breaks up into tlie factors

(/3 sin 5 y sin (7) (/3 cos 5 y cos (7) = 0.

The circle therefore meets BG in two points.

The one when, by the hypothesis,

a = 0, biJ = cy, i. e., /3 sin 5 = y sin G,

which determines the middle of BG.

The other is evidently when

a = 0, /3 cos B = y cos (7,

the foot of the perpendicular from A. Similarly for the other

sides.

Cor. 2. The last equation of this Article shows that the

nine-point circle passes through the points of intersection of

the circumscribed circle and the circle in respect to which the

triangle of reference is self-conjugate.

Cor. 3. The difference between the equations of the cir-

cumscribed circle and the circle through the middle points of

the sides of the triangle is

a cos A -\- 3 cos J5 + y cos (7 = multiplied by a constant,

since a^ sin 2A + /3^ sin 2B + y" sin 2(7

= (a COS A-\- p> cos -B -f y COS (7) (a sin J. + /3 sin 5 + y sin (7).

But a sin A \- pt sin -B + y sin (7 is a constant, and there-

fore a cos J + /3 cos B \- y cos (7 = is their radical axis,

or the homological axis of the triangle of reference and that

formed by joining the feet of the perpendiculars.

Cor. 4. By similar reasoning we find that the same

circle passes through the middle points of the sides of the
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triangles of which the point of intersection of perpendictdars

is the vertex. Nine points are therefore determined.

POLAR RECIPROCALS.

69. Reciprocation the principle of duality, or that analysis

(or synthesis) which, while determining the distribution of

points, coordinately fixes the position of lines though of great

interest, is altogether too large a subject for this Tract. Some

theorems may be introduced. In general, we may say that

to reciprocate involves interchanging "angular points" for

"sides," "inscribing" for "circumscribing," "join" for "in-

tersect," &G. &G.

For instance, if the well-known theorem, that " If two

triangles be inscribed in a conic, their sides will be tangent to

a conic," be reciprocated, we may write,
" If two triangles cir-

cumscribe one conic, their vertices will lie on a conic."

This proof and its reciprocal may be exhibited by a common

process in triangular and tangential coordinates (Arts. 24, 27).

Let vertices of one triangle (sides of the same) be represented

Ijy (Pi^ ?i n), (P25 ^2, ^2): (P&, ^35 ^'3) ;
let the other be the

triangle of reference, and suppose

/(_p, q,r)=0
the tangential equation of the conic passing through the points

of reference; or the equation may be represented in both

systems by Iqr -\- mpr -\- npq = 0.

Then the equations to the one triangle will be

Ip mq .
nr __ ^

r^Ps g'2 23 ''2 ^^3

Ip ^ mq
^

nr ^ ^^
g'3?i

mqly>
^

mq
^

nr _
^^
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By comparing (Arts. 56, 57), we see that by this form of

representation the inscribed conic (circumscribing) may be

expressed by

\/^+ v/%+ ^Nr =
;

that is, this conic will be inscribed in (circumscribe) both

triangles provided the conditions of tangency be satisfied,

Lp^^ + -^^2^3
_|_
NTYh

I m n

^VxVi ^ -^^19^2
^_

-^^n^2 _ Q
I m n

(!)

But since the given points (pi, q-^^ r^, &c.), (vertices),

lie by hypothesis on the conic, the condition must be ex-

pressed by
1 1 1

=0,

I

Pi



76 TRILINEAR COORDINATES.

70. If m, w, p, q are the poles of the sides of a polygon

abed, then the points a, 6, c, d are the poles of the sides of

the polygon mnpq.
The conic with respect to which the poles and polars are

taken is the auxiliary conic.

TJie 7'eciprocal of a conic is a conic.

By Art. 60, the polar is given by

da d(i ay

If therefore (/, g, h) be any point on the reciprocal curve,

its polar with respect to the auxiliary conic,

Ua'+Vfi'+Wy' = (1),

will be given by the equation

Ufa + VgP-^Why = (2).

Let the conic to be reciprocated be

la^+ ml^'+ ny^ = (3).

To find the condition that (2) may touch (3), we eliminate

a between the equation of the conic and the line
;
and if the

line be a tangent, the values of /3 : y must be equal (Art. 57),

and we obtain

I m n
'

This being of the second degree, giving two points of intersec-

tion of the straight line, is a conic, and is the reciprocal of (3)

with respect to (1).

71. Two straight lines are conjugate when each passes

through the pole of the other. Required to express this con-

dition. Let fi^+g3 + Ky = ^,

f^a-^g^fj + h^y = 0,
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the two lines. Then (Art. 62) we may express the condi-

)n by the equation

da^
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PREFACE TO TEACT NO. III.

This Tract takes up the general Theory of Invariants.

It is published in pursuance of a purpose, announced in

the first number of this series, to give an account of the

principal new methods, processes, and extensions which,

since 1841, have been introduced into the study of Ma-

thematics. The chief requisite to this undertaking, which

undoubtedly is one of considerable magnitude, is evidently

a sufficiently comprehensive reading upon these various

subjects.

The English, German, French, and Italian Mathema-

ticians have contributed to their journals and learned

societies innumerable memoirs and treatises, whose value

and bearing upon the matter in hand the reader cannot

determine without some degree of careful examination.

It also frequently happens that the time consumed in

tracing a fugitive paper is in inverse ratio to its impor-

tance.

The reader who wishes to read fully upon this Theory

may adopt one of two methods. He may begin at the be-

ginning, reading in order of time the papers of its chief

authors and expounders, commencing with the essay of

the late Dr. Boole in the Cambridge Mathematical Jour-
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nal for 18il, and follow this with the numerous papers of

living authors Sylvester, Cayley, Hermite^ and Salmon

papers extending through the subsequent volumes of the

Cambridge and the Cambridge and Dublin Mathematical

Journals, and the Philosophical Magazine, together with

the various contributions of Clebsch and Aronhold, and

others, in Crelle, from Vol. 39 to Vol. 69. Or he may take

a reverse course^ beginning with the Lessons of Salmon^

and those of Serret, on Modern Higher Algebra, which,

as compends of this and connecting Theories, are in the

main works of great excellence, though oftentimes not as

clear and satisfactory as could be desired, or as full and

explicit as may be found elsewhere ; and then he may
extend his reading to the Journals above mentioned,

together with the proceedings of the contemporaneous

societies as the Philosophical Transactions, Comptes

Rendus, &c. But, whatever course he may take, he will

doubtless never be able clearly to determine to what

authorship he is to ascribe some parts and illustrations of

the Theory.

The best reading-room for this work, so far as I can

judge, after an experience of nearly two years in European

libraries, is that of the British Museum.

In view of the extensive literature upon this subject,

it may be asked, what can be accomplished by a work of

the size of this Tract ? Its actual value, evidently, remains

to be seen; but I believe that within these pages the

reader wiU find such an account of the Theory as will

enable him to gain a knowledge of its principal proposi-

tions, and also to judge, from the explained applications.
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of its real valae in Greometry. The compntalions of In-

variants, Chapter IV., will afford snch a gnide in the

arioos applications that he will probably be at litlle loss

in extending them at his pleasure. I have been desiroos

of making these calculations so foUy^ that no one wiUi a

fair geometrical knowledge need fail of understanding
how each result was obtained. Nowhere else can sndi

work be found in so elementary a form, and for this

reason I hope it may proYe acceptable to those persons
whose time and opporkmities <^ stud^ are somewh^

limited, and to those also who are unwilling to obtain and

"0 read the larger works.

In reviewing the notes whidi I had taken of the prin-

cipal contributions to this Theoiy, I found that I had fre-

quently omitted the proper credits, either through sheer

n^l;t^ or want of sufficient knowledge; and hence, with-

out attempting to supply these omissions^ as could not

weQ be done in the absence of the books and journals, it

was concluded to omit them nearly altogether.

The number of persons who have obtained the preced-

ing Tracts of this series, and who have expressed them-

s^es in terms highty &yorable to thdr publication, is

deemed sufficient evidence that they are meeting a public

want. One thing which was e^qiected has certainly fol-

lowed, a goodly number of my countiymen have been

awakfflied to look, for the first time, upon a Tsst on-

traveraed domain of mathematical knowledge. To tiiese

persons, at leasts tiieare can be no doubt as to tlie direction

of thegoaL It is now deartyand definitely fixed that

maUiematical researdies wiD^ fiur akg time to come;, be
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mainly conducted through the media of methods and

processes, to whose exposition these Tracts are devoted.

The time is not far distant, if it has nob already arrived,

when a knowledge of these subjects will be considered as

necessary to the equipment of a mathematician as the

Calculus. It is not meant by this, that it is the duty of

every mathematician to make a specialty of algebraic

forms, either with or without their geometrical interpre-

tation. But it is meant that the modern treatment of the

Higher Geometry should be studied as a part of the general

preparation necessary to a student of Physical Science.

Cape May Point, N.J.:

April, 1879.

W. J. w.
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CHAPTER I.

PROLEGOMENA.

1. The Theory of Invariants, as will appear, is based upon a

knowledge of the General Theory of Equations and several of

its later important extensions. Some of these extensions must

be stated, because, although perhaps familiar to the reader as

commonly or formerly expressed, they may not be easily

recognised in their modern dress or terminology; others,

because they have no existence outside of their present form.

2. Symmetric Functions, If the general equation be

the Newtonian formulas give us

Si = cLi, S2=al 2ai,

8^ = % + Ba^a^ Sag, &c.,

or, as they are written by Hirsch, Cayley, and others,

Sa =-!,
2a2 = a? -2%; 2a/3 = a^,

Sa' =
! +3aia2 Saj,

Sa^/3 =^1^2+ 3%,

Sa/3y= ag, &c. ;

in which we have expressed the sum of the roots and the sum
of their products by twos, by threes, &c.

3. If we consider any one of these products, as a-^a^, we say
that its weight is 1 + 2, or, in general, that the weight of any
term is the sum of the suffixes. Looking at these functions,

B
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however far we may extend them, we see that they are sym-
metrical as to weight. The order is estimated by the number
of factors in each term. Hence a^a^a^ is of the third order,
and its weight is 1 + 2+ 3. This being stated, it is easy to

see, by inspection of the several functions written above, that

the weight of Sa^/3" is t+ u, and the order the greater of t, u.

The order of Sa/3y (being the sum of the products in threes)
can evidently be, so far as the coefficients of the given equa-
tion are concerned, only unity. If, therefore, we regard a as

the leading root, appearing in every function, we might predi-
cate the degree of the function upon the degree of a. In this

case any symmetric function of the p**^ order must contain

more or less terms involving a^. There will then be p factors

each including a. Hence 2a^, Sa^/^y are each of the third

order in the coefficients of the given equation; that is, the

highest order in any term is three. In general, then, the

order of any symmetric function is determined by the highest

degree in any one root, while the weight is estimated by the

total degree of the roots as factors. The literal part, then, of

any symmetric function can thus be at once written out. For

the sake of clearness, it is necessary to notice that the functions

of roots in this manner may be expressed in terms of the

coefficients of the given equation, as will be seen by solving

the linear equations just written for /S^, 8^, &c.
; and, con-

sequently, any function of the differences of roots can be>

expressed in the same terms.

3. 8ym7netric functions of the differences of roots. These we
shall see are invariants. For the present let us consider what

relation such functions ought to satisfy. We begin by observ-

ing the effect upon the coefficients of the given equation of

increasing or diminishing all the roots by the same quantity.

There will plainly be no change in the resulting functions of

the differences of roots. Let then x+ l he substituted for a?,

and we^have

'> + (i+ wO ^'*'^

tla,+ (n-l)la, + ^n(n-l)l']x''-'+ &c. = 0.
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Next, observe the form of any function/ of the coefficients

i, ^2, ^3, &c., when a^, cig, &c. are changed into a^+ da^j

This form will be

But, by the substitution of a; + Z for x, a^ becomes a^+ nl^ and

^2 becomes a^^+inV) la^-\-\n (w 1) 1?.

Clearly, then, if this substitution were made in any function

of the coefficients %, a^, &c., and the result arranged with

reference to Z, we must have, by (1),

/+Z L J-4- (^_1) a,
J/L +(^_2) a2#1 +&C. = 0.

L da^ da^ da^J

This is true whatever I may be.

Let 1= 0, and we have, as the condition which any function

of the differences will satisfy,

da^ da^ da^

This relation is both necessary and sufficient in order that the

given function of the coefficients should remain unchanged by
the substitution of aj + Z for x in the given equation.

We can now write, not only the literal part, but the coeffi-

cients of any symmetric function. For instance, if we are to

form 2 (i3 y)^ we see that its order is 2 and its weight 2.

There can be no more than two factors in any term, while the

weight for each term must be 2. It must be of the form

Aa<^-{-Ba\ . By the above differential equation,

lA{n-l)-\-2nB']a^ = 0.

n \
This ffives B = -r , when J. = 1

;
or the function can

differ by only a factor from {n 1) a^ 2na^.

B 2
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We may see fhat this factor is unity by supposing y = 1

and the other roots
;
then flg

=
;
and a^ = 1, since

a + /3-f &c. = %, and a {p-\-y-]-&c.)+l3y+ &c.= a^,

4. The homogeneous equation

(%, (^i a,,) (a;, 2/)"

or aoaj**+ ?iaiaj'*~^2/+ Jw(7i 1) a2aj""y+ + 2/''
=

reduces to the general equation of Art. 2 by dividing by a^y"*.

And it is plain that the differential equation of the last Article

will undergo a corresponding change. Hence, for the substi-

tution of x+ l for X, we must write

fto #- + 2^1 -^ +3a2 -^ +&C. = 0,
da^ da^ da^

while for the substitution y-\-l for y it must be written in a

reverse order, that is,

na^-^-^{n-l) a,-^ + (n-2) a,-^ +&c. = 0.

da^ rfaj da^

5. The symmetricfunction of the homogeneous equation in .

Suppose a one of the roots, then = a. That is, any system

of values, as ^ =
a, in other words, any ratio which is = a,

will satisfy the homogeneous equation. Or, we may state it

thus : any symmetric function expressed in terms of its roots,

as a?i, x^, cBg, &c., may be reduced to the corresponding func-

tion of a homogeneous equation of the same degree, by dividing

each a?!, X2, &c. by y^, y^, &c., and then multiplying this

result by any power of y-^y^^ &c. that will clear it of fractions.

Hence we may write any function of the differences as the

sum of products of determinants

i 2/1
X ^i Vi &c. X (yiyi&c.y,

2 2/2 ^3 2/3
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where n = the variable power necessary to clear of fractions.

Thus, to form for (a, b, c, d) (x, yf the sum of the products
of the squares of the differences of the roots, we have the

ratios, or roots,

^1 ^2 ^3

2/l' 2/2' 2/3'

that is, aji
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6. The eliminant* or resultant of a system of equations is

that function of the coefficients whose vanishing expresses

that the equations are simultaneous. If we have as many

independent equations as we have variables, we can ordin-

arily, by direct elimination, arrive at such a function freed

from any of the assumed variables. This function is generally

indicated by A.

7. Eliminant by symmetric functions. The product of the

several roots of an equation is a symmetric function, as Sa/3y

or Sa^/3. If we have a, /3, y as the roots of the equation

f(x) =0, and a, (j^, y^ as the roots of /^ (a;)
= 0, then, since

they have a common root a, the eliminant condition is involved.

If the first set of roots be substituted in the second equation,

fi{x), the result for the value a will vanish; therefore the

continued product
/.(a)X/.(X/.(r)

will vanish ;
and consequently will conform to the definition of

an eliminant, since it is plain, being a symmetric function of

the roots of f(x), it can be expressed in terms of the given

coefficients of f(x) = and /^ (x) = 0, however they may be

written.

From this it is seen that the eliminant is a function of the

difierences of the roots of the two or more equations.

If the equations are homogeneous, f(x, y)
= 0, f^ (x, y) = 0,

they may be treated as non-homogeneous by dividing each

equation by the coefficient of the highest power of x and the

highest power of y. To illustrate this form of operation, let

us find the eliminant of

aa3'+ ^hxy-Y cy""
=

(1),

a,x^+ 2b,xy-{-cy = (2),

* Thus U *
I

= 0, \a c \^-\b c\x\a
*|

=

are determinant expressions for the eliminants of

ax +b = . ax^+bx +c =0
j.psT)Potivplv

a,x + b,
= ^"""^

a,x + b,x + ci
= respectively.
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or, written in the non-homogeneous form,

0^+ 72^+% =0, z^-\-mz-{-mi = 0.

The symmetric function is then

(u^+ma + mj) (fP+ ml3+ m{) = 0,

or

aV^+ mal3 (a + /3) + m^ (a^+ i3') + m^afi+ mm^ (.ci-\-(i)'i- m\ = 0,

But a^^-\Z^ = n^-2n^ (Art. 2), a;3 = w^, a+/3=: w.

Hence (% mi)^+ (??2 w-)(nim ^imj) = 0.

Giving m, n^ m^, w^ their values, we have

or (^ca-^c^ay+ 4i(h-^a ha-^(h^c hc-^)
= ^j

the eliminant. This method is useful in this place simply as

an exercise in symmetric functions. In practice, it would be

far easier to eliminate directly.

8. The order. By inspecting this example and others, we

are enabled to determine inductively the order of the eliminant

in the coefficients. The symmetric function consists of as many
factors as there are units in the degree of the first equation,

but each of these factors involves the coefficients of the second

in the first degree. On the other hand, the entire product
consists of the several symmetric functions of the roots of the

first equation, and the highest degree of these is the same as

that of the second equation ;
hence it is evident that the orders

of the coefficients in the eliminant are the same as those of the

^ven equations, but taken in an inverse order
;
that is, the co-

efficients of the first equation have the order of the second, and

le contrary.

If, for instance, there were three homogeneous equations in

bhree variables of the 2nd, ord, and 4th orders, then the eliminant

^ould be a homogeneous function of the 12th order in the co-
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efficients of the first equation, of the 8tli in those of the second,

and of the 6th in those of the third.

9. The weight. It is not so easy to determine the weight. But

we may begin by considering that the elirainant is a symmetric
function of the differences between the roots of the first and

second equations expressed in terms of their cofficients, and

then the number of these diSerences is equal to the product of

the orders of the equations. If we multiply each root by any
factor as Tc, we do, in efiect, multiply each difierence by h

;
and

consequently, the eliminant, which is the product of these

differences, is multiplied by A; to a power equal to the product
of the degrees of the equations. Now, each root in the

equations

a^x''+ na^x''-^y+ \n{nl) a^x''-^y^+ &c. = (1),

h^x"^ -\-mh^x'"-'^ y -^^m (7n-l) h^x'^-^if+ ^c. = 0... (2),

will, it is evident, be multiplied by Ic when we multiply a-^, \ ;

ftg. ^2 5 ^y ^) ^^ <^c.
;
and therefore each term of the eliminant

would involve k to the mn^^ degree. In this manner we can

readily determine the weight of each term, which we shall find

to be constant, that is, m7i for each term.

10. It is easy to see, from the definition of an eliminant and

from the results of (Art. 3), that the eliminant must satisfy

the difi'erential equations there given ; or, if referred to equa-
tions (1) and (2) of the last Article, must be of the form

o -^
"
2^1-5 1- 3^2 h&c. + &o-T7 +<^c. = 0,

aaj da^ da^ db^

where A represents the eliminant of equations (1) and (2).

11. The eliminant of three equations in three variables. The
eliminant vanishing, the equations are simultaneous. This can

be brought under the system of two equations. For, solving
between any two equations, and substituting these values in

the third, the product of these substitutions must vanish, since,

by hypothesis, there is a community of values between the
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different sets, the number of which must equal the weight of

the eliminant of those two equations, that is, the product of

their degrees. These substituted successively in the remaining

equation, and multiplied together, will furnish the requisite

symmetric functions by which the coefficients of the solved

equations may be expressed, which gives the eliminant whose

weight is equal to the product of the degrees of the three

equations. For four equations we proceed in the same manner,

solving for three and substituting these values in the fourth.

12. In reviewing this method of elimination, it will be seen

to be of the widest generality, and all its results susceptible of

very satisfactory proof. It is not introduced for any use in

actual elimination, but that the reader may here avail himself of

important assistance in the study of the Theory of Invariants.

IB. The reader interested in determinants will naturally

seek some form for elimination by this method. That of Euler

leading in this direction is of high theoretical value. Two

equations, homogeneous or otherwise, are supposed to be satis-

fied by a common root of the first degree ;
then the first, multi-

plied by all the remaining factors of the second, is evidently

equal to the second multiplied by all the remaining factors of

the first
; as, if we have

x^(a+ h) x-\-ah 0,

x^(a-\-c) x-\-aG = 0,

then (x c){x^(a-\-lj)x-\-ab}=. {x^b) {x^{a-\-c) x+ ac]',

or, in general, if we multiply the homogeneous equation

f{x^ 2/)
= by any arbitrary function of a degree one less

than /i (aj, y) = 0, and the latter by any arbitrary function

with a degree one less than the former equation, and then

equate term to term, we shall have a number of equations

equal to the sum of the degrees of the two given equations,

and the eliminant will of course appear in the form of a deter-

minant.
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To eliminate between

ax^-\-2bxy + cif,

(hx^+ Uxy + hf) (ax^ + 2hxy + cy^)

= (Jc,x-\-l,y)(a,x^-\-Sh,x^y + Sc^xy^+ d2/) ;

equating like terms,

ha\a^ = 0,

2nc+Ua-2>W\a^ = 0,

Tcc+ la+ ^Uh-Zh^c^ ZW = 0,

2lb + Jdc-]c^dSl^r.^ = 0,

lc-\d = 0.

Eliminating fc and Z, we have

aOO
CTi 0=0

26 a -36i -!
c a 26 -3ci -36i

2& c - c? -3ci

c d

as the eliminant.

14. The various other methods, such as Bezout's method,*

Sylvester's dialytic process, the uses of the Jacobian in elim-

ination, explained in (D. 39), f since they do not illustrate the

Theory of Invariants, may be omitted.

We will now pass at once to a subject which is intimately

connected with that theory.

15. Discriminants. If an equation, or quantic, as it is

called when it is not equated to 0, be differentiated with

* I must qualify this statement, so far as it relates to Bezout's method.

It is well known by those acquainted with Dr. Sylvester's researches, that

what he calls a Bezoutiant is the discriminant of a quadratic function in

any number of variables, and is expressible as a symmetrical determinant

which is written, as in (D. 22), with a double suffix. The eliminant of two

equations of the w*^ degree may be similarly expressed. The use of the

Bezoutiant in the theory of equations is exhibited in a Memoir by Syl-

vester, Phil. Trans., 1853, p. 513.

t Tract No. 1, Determinants.
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respect to its variables, the eliminant of these several

differentials is the discriminant. As the quantic is under-

stood to be homogeneous, it is evident that the discriminant

must be homogeneous also. The order of the discriminant

is clearly the product of the degrees of the differentials of

which it is the eliminant.

Observing the same order of the suffixes a^^ %, &c., the

weight of the discriminant will depend upon the number of

differentials and the order of the quantic. Thus, for a binary

quadratic the weight must be 2
;
for a ternary cubic, that is, a

quantic containing three variables, 3 (3 1)^. This arises from

a slight modification of the reasoning in Art. 9. The weight
would be evidently (w 1), taken as many times as a factor as

there are variables, were it not for the consideration that all

but one of these differentials begin with a coefficient whose

relation to the leading variable is the same as in the original

quantic ;
in other words, with a suffix one greater than the first

differential which begins with % ;
hence the number of suffixes

must be increased in this proportion. If j)
= the number of

differentials, (t^ l)^ must be increased by (% 1)^~\ that is,

{n\y + {n-iy-^ = n {n-\y-\

which is the sum of the suffixes for each term of the dis-

criminant.

16. If we divide the homogeneous equation by y'',
the result

is reducible to a product of factors, as

X y X X y X X y X &c. = 0.

^i yi ^2 2/2 ^s 2/3

Comparing this product with

we see that 2/i!/2 2/3
^^' ^oj

since the product of

(xy^x^y) (xy^
-
x^y) (xy^-x^y)&c.= Q (1)

^ives 2/i 2/2
&c. for the coefficient of x^.
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17. The discriminant is equal to the Jcontinned product of

the squares of the differences of the roots of the given quantic

taken two and two.

Suppose a3i?/i, x^y<^^ x^7j^, &c. are the^rootsjof (1) above,

then -j^ = 2/i {xy^yx^){x])^-yx^ &c. + ?/2 (xy^-x^y) &c.
ax

fid

Observing the effect of substituting a^ij/i in -
,
which is

ctx

2/i (^i2/2"~yi^2) <^C'
j substituting in the same manner x^y^^

ajg^/j,
&c. in the same equation, and taking the continued pro-

duct, we must have

2/i2/2 &c. fe2/2 -2/1^2)' fe2/3-2/i^3)^&c. = (1),

which, as we have seen, is the eliminant (Art. 7) of Q and - ^.

ax

The same product, divided by y-^ y^ &c. = a^, will give the dis-

criminant.

This will more fully appear when we consider that

then, when we have substituted successively all the roots of

= in Q, we shall have for the continued productax

2/12/22/8 ^^- niultiplied by a similar result of substituting the

same roots in P^- But this latter result is evidently the

discriminant. Hence, if (1) be divided by a^,,
that is, if the

eliminant of the quantic and its first differential with reference

to X be divided by the product of the ?/'s, we shall obtain the

same result as if we had found the eliminant of the first differ-

entials with reference to x and y.

18. Enough preliminary matter has now been introduced to

enable the reader to follow with profit all that will follow.
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To those who wish to pursue the theory of discriminants

further, and desire to study an interesting geometrical applica-

tion, the theorem of Joachimsthal, taken as the basis of an

investigation on the nature of cones circumscribing surfaces

having multiple lines, by Dr. Salmon (" Cambridge and Dublin

Math. Journal," 1847 and 1849) would probably prove as

fruitful in this direction as any that could be mentioned.*

* The theorem above alluded to is included in the following statement.

If we have the quantic {aQ, a-^ ... _i, an'^x, y)", and a^ contain a factor ty

and if ^o contain t" as a factor, the discriminant will be divisible by t^
; also,

if a^ contain ^ as a factor, and if a^ and aQ contain t^ and t^ respectively,
then the discriminant will be divisible by t^, and so on. The application

by Dr. Salmon was that, if Uq + a^x + a^'^ + &;c. be the equation to a sur-

face, and if xy be a double line, a^ will contain y in the second, and a^ in

the first degree. The discriminant in respect to x is divisible by y\ and
the locus is a tangent cone.
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CHAPTER II.

FORMATION OF INVARIANT FUNCTIONS.

19. The definition of an invariant and covariant of a

single quantic has already been given (D. 42). In pur-

suance of this, we might proceed at once to show how in

general such functions can be formed, and then give some

explanation of the geometrical importance of the theory;

but, for the sake of clearness, we will commence with one of

the simplest examples of an invariant function.

20. The determinant of a system of linear equations is an

invariant of that system, because, as it will be remembered,
when the variables are all transformed by the same linear

substitution, the determinant of the transformed equations

is equal to the determinant of the given equations mul-

tiplied by the modulus of transformation (D. 42). In

other words, the determinant (function of the coefficients) of

the given equations, which remains unaltered by the trans-

formation, is called an invariant. The equations of (D. 17)
will exactly illustrate this.

When the linear equations

dv + ev^ +/v2 = ^

^l^ + ^l^l+/l^2=0i (1)

are transformed by the substitutions

ax -\-by +CZ = v ^

a^x+ h^y+ c^z
=

v^ I (2),

then the determinant of the transformed system will be equal
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to (dcif^) X {ab^c^, which may be written

/(transformed) = A'* /(given),

where A = the modulus = the determinant formed from the

sinister members of (2).

The /, which is also a determinant expressing the coexistence

of equations (1), is in this case called an invariant.

21. It is not difficult to see from the above that a somewhat

complicated problem is now presented to us. We are to trace

the effect of linear transformation upon the same functions of

the coefficients of an equation, to determine the number of

the functions which remain unaltered by such transformation,

and to deduce convenient rules for their formation. It was

seen, for instance (D. 41), that when the binary quadratic

(ahc^Xj yY was linearly transformed by the substitution of

X = lx-\-my^

y = \x-\-m{y,

we wrote Ax'^+ 2Bxy + Gy^ as the transformed quadratic,

in which

A= a?-Y2Ul^-Vcl\,

C = am? -\-2hmm-^-\- cnii ,

JB = aim+ h (Im^ + Z^m) + cl{in-^,

and from which we obtained

AC-B'' = {ac-h^){lm^-\my.

The invariant in this case, ac h^, is no other than the dis-

criminant of the given quadratic ax^+ 2hxy-^cy^.

22. Proceeding now to the binary cubic (a, h, c, d'^x, y)*,

we obtain its discriminant ;
that is, we find its two differentials,

and by direct elimination their eliminant, which is the dis-

criminant, viz.,

4>(bd-c')(h'-ac)-\-(ad-hcy,

which, in form, is the same as that obtained in Art. 7. And

here, again, we say that the invariant in this case is no

other than the discriminant.
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23. Since ach^ is an invariant of the quadratic

we can, by the introduction of a constant, derive not only two

invariants after the analogy of ac W, but one other whose

constituents are derived from the coefficients of the trans-

formed system.

Thus, if we have the two quadratics,

s^x^-\-2t^xy+uy,

we may multiply the second by k, an arbitrary constant, and

obtain by addition

(s+ Jvs^) x^-\-2(t+ U^) xy + (u+ Jcu^) y\

which, by a transformation identical with that in Art. 21,

becomes

(8+hS,) X'+ 2 (T+JcT,) XY+(U+hU,) Y^

and the invariant, consequently, by symmetry, is

i8+JcS,)(U+hU0-{T+hT,y
= A^\_(s+ hs,)(u-\-7cu^)-(ti-M,y].

Since this equation is satisfied by any value of Tc, and therefore

identical, the coefficients of the like powers of h must be equal,

and therefore

8U-T' = A''(su-f),

8,U-Tl = A'(s,u,-f,),

8U,'j-8,U-2TT^ = A\su,+s,u-2tt,).

The last of these is therefore an invariant of a system of two

quantics.

And here it would be well to observe that, if we had operated

upon the given invariant suf with ^i "T" + ^i -jT + ^i -t->

the result would have been the same as that actually obtained

by the substitution of s-\-ks^ for 5, &c.
;
and thus, in general, if

we have an invariant of any known quantic, we may find the
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invariant of a system of two or more simultaneous quantics of

the same degree, either by substitution or by the use of the

operator, as above.

24. As we have stated, the binary quadratic and cubic have

no other invariant than their respective determinants ; but, as

we shall see, binaries of a higher degi'ee may have two or more

functions unaltered by transformation. For instance, if we
take the binary quartic

ax'^+ 4ibx^y+ Qcx^y^+ 4dxi/^+ ey*,

and operate upon it with the symbols*
- and -, that is,

ay dx

substitute _
- for x and - for y ;

we shall find that the
dy dx '^

result ae4<hd-\-2c^

will conform to the definition of an invariant. The same v^ill

be true if we expand the determinant formed from the fourth

differentials of the quartic, viz..

a h c

bed
c d e

ace-{-2hcd-ad'-eh'-G' (1).

That these two invariants may be derived from the binary

quartic, may be shown by actually transforming the given

* The theory of these symbols must be reserved for another part of the

subject ;
see Arts. 28, 33. The actual process is to introduce the symbols

into the quantic, thus obtaining a differential symbol. Thus, by substi-

tuting for v, and for a; in the given quantic, we have
dx dy

a 4o + 6c - Ad + e -.

di/ dfdx dy^dx^ dydx^ dx"^

Operating upon the quartic with this symbol, we get

A8ae~192bd+lUa^

Hence the relation is . ae ibd + Sc^.

If the quantic had been of odd degree, the result would have vanished.
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quartic, equating the values of -4, B, C, &c., and we should find

and also another, (1), which entering into the discriminant

forms still a third. These latter, however, do not at present

concern us beyond the assurance that they exist, the theory of

their formation being reserved for future consideration.

25. The Theory of Covariants will be found to be immedi-

ately connected with the Theory of Invariants. This follows

from the fact that the covariant is a function not only of the

coelEcients, but also of the variables of the given quantic ;

that is,

/(iS, Z7, &c. X, Y, &c.) = A'"/ (5, u, &c. x, y, &c.)

To illustrate this, let us take the Hessian (D. 40) of the

quartic

ax*+Ux^y + 6cxY+ Mxif-\-ei/ (1),
and we have

ax^-{-2hxy + c7/, hx^+ 2cxy-{-dy^

tx^+ 2cxy+ dy"^^ cic^ -|- 2dxy + ey^

which, expanded, gives the invariant form mnl^, and differs

in form only from the invariant of the quadratic (Art. 23)

ac lr' by the variables of the given quantic.

Looking at this example a little further, we see that (1) and

(2) contain the same powers of the variables, and equally the

same coefficients. Hence the invariant of the covariant in

this case can be no other than the invariant of (1), and this

conclusion may easily be seen to be general.

26. Covariants may be formed by substituting in the given

quanbic x-\-hx^ and y + hy^ for x and y. The coefficients of

the several powers of h form covariants, and, taken in order,

are called emanants of the quantic. Thus, if we take the

binary cubic

ax^-\-2>l)xhj + Zcxy''+ dy\

* To transform this quartic, ax'^ &c., the reader has only to repeat the

process of Art. 21 on a larger scale.

(2),
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and substitute as proposed, we shall find the several emanants

^1 + 2/1 ,
j

,
in which form the coefficients of the

ascending powers of h appear.
-

The emanants of any quantic can in general be expressed in

the form

(^v^+2/.^)
(1)

as first, second, and n^^ emanants.

If we take the second power, to get the second emanant,
we may write

Xi rr^ + Ix^y^mn + \j^
n? (2)

as the result, where w and n represent the differentials
,

-
,^ ax dy

and
a?i, ij^

are regarded as cogredient to,* or vary as, the given
variables. Now it is easy to see that, if we regard (1) or (2)

as a function of x^, y^, and the original variables as constants,

and proceed to form the invariants, these invariants will iu

turn represent covariants of the given quantic, if we then con-

ceive 03, y as variables.

This will appear at once by reference to Art. 23, where

we were enabled, after transforming the quadratic, to write

Transform now (2), and write its invariant, and we shall have

dX'
'

dY' KdXdYJ Idx'
'

dif \dxdyl A
'"^ ^'

where V = the transformed, and v = the original quantic.

* To exhibit this, let (abc^x, t/Y be the given quantic.

Making the substitutions, we have

k^ (axi^ + 2bxit/i + cy^) and 2k { axx-^ + b [xy^ + x^tf)
+

cyy-^ }

as first and second emanants ; but, by hypothesis, X\, y-^
are cogredient to

xy ;
hence each of the coefficients above resume the quadratic form, in

other words, they become identical. Hence there are not, as we shall see,

two covariants to the quadratic (^abc^x, y)^, but one (as there is no func-

tion of the differences of the roots), and that one must be the quantic itself.
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This invariant is now the covariant of the given quantic, as is

evident algebraically if we compare (2) with the form for the

second emanant,
/ dv

, dv\^

in which x, y are first treated as constants, by which supposi-

tion we form the invariant, and then as variables, so that the

result conforms to the definition of an invariant. It is plain

also that (3) is the expanded determinant formed from the

quadratic emanant, and in this sense may be regarded as a

discHminant of the quadratic function, and is therefore an

invariant with the limitation that its variables are regarded as

constants. The first emanants of a system of linear equations

yield a determinant. Hence in general we may say that the

Jacobian (D. 39) of the first emanants of a system of linear

equations that is, the first difi'erentials of these equations

regarded as functions of a^i, yi, ^j^
will form a determinant

which is a covariant of the system.

27. Inverse Suhstitution. Tn Trilinear Coordinates a, (3, y

are used ordinarily to express the coordinates of the point.

Let now a3a + ?//3+ ^y =
be the equation of a straight line in which a, /3, y are the

tangential coordinates of the line, that is, its perpendicular

distances from the three points of reference
;
and ^, y, z the

perpendicular distances of any point in the line from the three

lines of reference, that is, its trilinear coordinates (T. 2, 25).*

By transforming this equation to new axes by linear substi-

tution, it will be seen that, while the trilinear coordinates are

transformed by direct substitution, the tangential coordinates

are transformed at the same time by the inverse substitution.

Let X = l-^X+m^Y+n-^Z^

y = Zg^+^c.,

z = Z3X+&C.

* Tract No. IL, Art. 25.
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Then the new equation of the line may be written

AX+Br-fr^= (1),

where A = l^a -\- 1^(d + l^y,

B = m^a + rn^lj+ m^y,

r = n^a -^-n^i^+n^y.

The two sets of coordinates in this case are said to be

contragredient to each other
;
and in general it may be stated

that the tangential coordinates, whether of a line or a plane,

will be transformed by a different that is, inverse substitu-

tion, from the coordinates representing different points. The

latter are said to be cogredient, as x, x-^, y, ^/i, &c., because

transformed by the same substitution
;
while the former are

said to be contragredient, because tranformed by an inverse

substitution.

28. This may be stated in another form
; for, since the equa-

tion which was a function of x, y, z has been transformed to a

function of X, Y, Z, the total differential coefficients with

respect to the latter are functions of those with respect to the

former.

We have, from (1) of the last Article,

a {l^X-^-m^Y+n^Z) + /3 {l^X+m^Y+n^Z)

-\-y{l,X+m^Y^n,Z)^0',
and therefore

d _
1
^

y

1 ^ \

1 d^

dX ^
dx

^

dy
^
dz^

dx ,

smce -. =
fci,

<x;c.

clX

Comparing oc, y, z with
., , -, we see that the substi-

ct^ cty ctz

tution which linearly transforms the one will linearly trans-

form tlie other, but by a reciprocal relation as expressed by
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the determinants of the coefficients

h h 's

m-i Wg Wj

If now , , ~z~, vanish, as will happen only when the dis-
bar di/ dz

J
criminant of the quantic or system vanishes, then - will

necessarily vanish also.

29. The consideration of inverse substitution leads directly

to a function well known in geometry as the contravariant. For

it will be seen at once that, if a quantic which is a function of

two sets of variables x, y, z; a, /3, y, be linearly transformed,

the function involving the coefficients and the variables, re-

garded as transformed by the inverse substitution, must be

similar to the covariant, but which is called the contravariant
;

that is,

/(A, A,, &c. A, B, r) = A-/(ao, !, &c.
, /3, y).

It is evident also, from what has preceded, that the contra-

variant may be deduced in a manner similar to that exhibited

in Art. 28. If we take the binary quadratic,

ax^-^2hxij+ cy^ (1),

and combine it with Jc(xa-\-yl3y (2),

we shall have

{a-\-1ca')x' -\-2(h + lcaf5)xy + (c+ hP')y' (3).

If now (1) becomes, by linear transformation,

and (2) becomes h {XA + ^B)^

then (3) becomes
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and the invariant form gives

(A + JcA') (C+ JcB')
-

(5 -f JcABy

And since we may equate the coefficients of the like powers
of k, we have

AB2-2i?AB-f-CA2 = A\al3^^2hal3 + ca^) (1),

that is, a/3^ 2&op + co^, differing only by a power of the

modulus from the corresponding function of the transformed

coefficients and variables o, (j, is a contravariant.

In reviewing now three functions thus considered, it will

be seen that they all equally possess the property of in-

variance.

30. In general, when a, fy,y are regarded as contragredient

to X, 2/, ^, the contravariant may be expressed, by application

of the preceding Article,

^0^" + &c. + A: (XA + YB + zry

and the invariant would be

/(^ + M", A,-^hA^'-'B, &c.) = A"7K+ ^-"", a,+ Jca-^l3, &c.)

We have thus to develop the sum of two functions, which,

by Taylor's Theorem, gives us for the coefficients of the con-

stant
/j,

\ claQ da^ db^ I

If r=l, this formula gives us what has been called the first

evectant.

* P = the invariant of the quantic.
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To apply this, we know that ac \p- is the invariant of the

quadratic. We have then

which is identical with (1) of the last Article.

If the quantic be a ternary quadratic, as

we shall have for an invariant

a^ ^6 ^'4 = %a^a^-\~^a^a^^^ a^a.^ a^(Xi^ a^<i^
= F,

ag ! ttg

^4 3 2

which is the discriminant of the quantic ;
whence

\ aa-0 aaj, aaj actg aa^ daj

+ 2 (rt^ag ao%) /^y + 2 {a^a^
-

a^a^) ay + 2 (dga^
-

aa^Tg) a/3

is a contravariant, and in geometry expresses the condition

that a given line represented by a trilinear equation shall

touch the given conic, or, in other words, is the tangential

equation of the conic*

It is to be observed that the discriminant of the first evec-

tant of the second degree can be written as a determinant :

dE
da
=

Salmon's '*

Conies," p. 249.
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and may be regai'ded as the invariant of a system, or of the

given contravariant.

It is also to be observed that there are instances of functions

involving both x, y, z and o, /3, y, and which do not change

by transformation of the quantic, that is,

/(Jo, A - X, Y... J,5...) = A-/K% ^-.y ,/5...),

which have received the general name of mixed concomitants.

That such functions may easily be formed may be seen by

examining the covariant (1) of Art. 26.

If we subject it to the operation of finding the coefficients

by Taylor's Theorem, we shall have
(

^y +"/^ 77 "^^^^T ) ^>

where C = the covariant in question.

31. We may here perhaps interest the reader by introducing

an. illustration of the geometrical application of invariants. It

is well known that when we transform from one rectangular

system to another, that a+h and ah Ji^ remain unaltered by
the transformation. Suppose it were inquired as to the form

these quantities take when the transformation is made from

rectangular (or oblique) to oblique axes, where a, h, h are con-

stants in the quadratic

ax^+ 2hxij + bi/ (1).

Let the transformation be from axes inclined at the angle to

to axes of any other inclination, as O. Then, by making the

proper substitutions, (1) becomes

AX'+ 'IHXY+BT' (Art. 21).

By symmetry, cc^ -\- 2oi^i/
cos w+y would become

X^ -1-2X^008 12+1^,

as either expresses the square of any point from the origin.

Adopting now a method with which we are familiar, we say

ax"^ -f 2](Xi/+ hf -h k {x^ + 2x'ij cos w -fy')

= JXH2IfXr-i-5r^+ X;(XH2Xrcosl2+ Y^).
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If we determine k so that the first side of the equation may
become a perfect square, the second will become a perfect

square also, that is, h must be one of the roots of

^2sin'^w + (a+ &-2/tcos w) Z;+ a& - /.'^ = 0.

This value of h will make the left member a perfect square.
A similar quadratic will be found in the right-hand member,
which will make it also a perfect square. Both members
become perfect squares for the same value of h^ and are there-

fore equal.

Equating coefficients of corresponding terms, we have, what
we already knew (Art. 5) in form,

a-^-h 211 cos M _ A-\-B 2Il co^ 1

sin^ u) sin^ il
'

sin^ (1) sin^ li

(This elegant demonstration is due to the late Dr. Geo. Boole.

See Camhridge Math. Jour., N. S., VI. 87.)

32. From Art. 28, we learn that x, y, n; a, (3, y sustain a

reciprocal relation to each other. The same is to be observed

of Xy y, z and , ,

-
. The transformation of the former

ax dy dz

transforms the latter, but by an inverse method. In this way
the contravariant is obtained, Vihich, as has been remarked,

possesses the property of invariance. Know in the contra-

variant we substitute --, &c., we shall obtain a function which,
dx

containing signs of operation, and being itself unchanged by
transformation, may be called an operating symbol a type form

which, if applied to the quantic or to its covariants, must give

either an invariant or a covariant according as the variables

disappear or remain after differentiation.

ca^ 26a/3-f-a/3* being a contravariant of ax^-^ll/xy-^-ci/y
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we obtain, by applying to the quadratic the operating symbol
(f cP d?

c - ^ 2h " + a - the invariant ac h^.

dx* ax ay ay"

38. Proceeding upon the principle now before ns, we are

enabled to generate, as will be seen, the three functions con-

sidered, by means of simple substitution. Since /(/?, a)

becomes, by a linear transformation,
'

>
that is, a

contravariant, we have then, in a binary quadratic, only to

substitute /3 and a for x and
ij

to obtain the contravariant.

If, therefore, we write a with the negative sign, there is no

reason why we should not say that a, /3 are transformed by

the same rules as 03, y. The symbols , &c., which we re-

garded as contragredient to ce, ij^ may be with equal reason

called cogredient to a?, Xj ; and, conversely, , y- may

be taken as cogredient to a?, y. Hence, if we substitute these

symbols in either the quantic or its covariants, we obtain a

new set of functions of the same form. The exception is seen

in the binary quartics, where, for instance in the quadratic,

the substitution gives 4 {aoh^), an invariant.

34. A fuller investigation of the quadratic, in the general

theory, will lead to what is perhaps already sufficiently evident,

that the quadratic (a, &, c'^x, yY has no covariant but the

quantic itself.* We have seen that its discriminant is the in-

variant acP, and its contravariant ca^ 2&o/3-|-/3^ ;
and

since ac h^ is an invariant, we learn, from Art. 26, that the

second emanant is a quadratic in x-^, ?/i, and its discriminant

is a covariant, for a quantic higher than the second degree.

We know (Art. 22) that the invariant of

(a, h, c,d^x,yf (1)

is a'd'-\-4^ac'-6ahcd-\-Mb'-Sb'c' (2).

* An invariant being a function of the differences of roots, there can be
no such function formed other than the given quantic. See Note, p. 24.
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Hence for every quantic higher than the third we have the

covariant

L \ dx^ dy I dx^ \ dec du I dx^

d^ d'

dyl dx^ Xdx dy J dx^ dx^ dij dx ny^ dy^

dy^ dx^ dy \dx^ dy dx dy'^l \

The covariant of (1) may be found by forming the evectant

(Art. 30)

where P = (2).

Then, by substituting a;, y for a, /3, we have

03^ (acZ2-3&c(^+ 2c) + Zxhj {-acd-^'lhH-hc^)

+ 'Sxy' {-aU^'lao''-V"c) + y^ (a^d-3abc-h2h^).

And thus generally for binaries, when any invariant is known.

35. If we take any quantic, and observe the effect of any
linear substitution, it is easy to see that its invariant will

remain unchanged if for x we substitute y or Ix, and y for x.

It will be seen that the order or degree of the invariant is

still constant, and also that the weight, which is estimated by

taking the sum of the suffixes of the factors of the several

terms, is constant for each invariant.

If s, Si, s.^,
&c. represent the suffixes before transformation,

n s, ns-^, ns^ &c. will represent the suffixes of the same

coefficients after transformation, and we shall have

s + Sj 4- cs*2
&c. = n s-\-n 8^ -\- ns^ &c,,

or 2m; = nt^

where w = the weight of the suffixes for each terra of the

coefficients, and t =. the degree or order of the invariant. In

other words, the weight is = \ut.
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In this way the invariant of any quantic may be written at

once, the required degree being known.

If, for instance, an invariant of a binary quartic of the

second degree in the coefficients is required, we have

w = \nt = 4.

There will be as many terms of the proposed invariant as the

sum of two numbers ... 4 inclusive can be written
;
hence

is the required invariant. The values of ^q, &c. will depend

upon other considerations. The first is, that an invariant must

be a function of the differences of the roots
;

for it is to be

unchanged when we effect the transformation by substituting

x+ l for X
;

it must therefore satisfy a differential equation for

the function of the differences of the roots, as

o^- + 2,^ + 3^,^+43^ + &c.= (2).
da^ da^ da^ da^

The second consideration is, that the coefficients thus ob-

tained are clearly proportional.

Applying then (2) to (1), we have

(.42+ 4^o) a^a^ + (4^^+ 8^2) ia^2
= 0.

Taking ^^= 1, we find the invariant to be

a^a^ 4aiCt3+ 3(X2 ;

or, using the coefficients of the quartic,

Thus the differential equation furnishes the conditions to

determine the values of A^, &c.

If the number of conditions is greater than these coeffi-

cients, there is no additional invariant ;
if the same, one more,

or one alone
;

if less, more than one. If we wished to obtain

the discriminant of the quartic, which is also an invariant, by
this method, or rather if we wished to obtain an invariant of
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the sixth order in the coefficients, we should find the number
of ways in which 12 can be written as the sum of 6 numbers
from ... 4, and we should have as many conditions as

\ntl or 11 can be written as the sum of 6 numbers from
... 4.

36. We may arrive at the covarianfc in the same manner.

If n represent the degree of the quantic, n^ the degree of

the covariant, in x and y, and m the degree of x in any term,
we have

m-\-s-\-s^-{-s^ &c. = n^ni + n s -{-n s^ -j- ns.^ &c.

Calling m+ s+Sj &c. the weight, the equation gives

w = \ (nt+ n^.

If we wished to form, for instance, the quartic covariant to

the quartic of the second degree in the coefficients, we could,

instead of taking the Hessian of the quantic, which would give
the required covariant, estimate the terms multiplying each

variable, since ^ = 2, ^ = 4, m = 4, and, if we are concerned

with the coefficient of
ic'*, n^ = 4.

The weight would then be 6, and hence

4+ s+ 5i
= 6,

5+ 51
= 2.

There are therefore two terms multiplying x^ each of the

second degree, that is, a^^a^ and a-^a-^, or ac and IP'.

In the same manner we find, for the terms which multiply aj',

3+ 5+ Si
= 6.

Hence the terms are a^^a^ and a^cig, or ad and hc^ &c. &c.

Now it will be perceived we do not know how by this pro-

cess to connect ac and V', ad and he.

To ascertain this relation, let us suppose that

^;fc"^+Mi^"^~V+'^^-%^^2-^"'"'y + &c (1)

represents the covariant.
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Suppose also

f^Q-j \-a^-Y- &G. and na,-rr--\-(nV) a.~ &g.

to be represented by a and /3. If now, in (1), we suppose the

same substitution as was made in the original quantic, and
that

da
-^'

da
-""'' J^-^^^' ^-^'^^'

then f=a,f+2a,f+Sa,^ + &c.;da
da-^ da^ da^

and we can write, on the supposition that these changes are

identical,

-- ^ = 0, &c. as above,
da

and, for the same reason.

Thus, when A^ is a function of the differences, we can find

all the other terms of the covariant
;
that is, we can, by suc-

cessive differentiation, pass from one term to the other, and

thus, by the use of these two operators, determine the exact

form of the coefficients of the covariant. Thus, in the case of

the quadratic covariant to the quartic, we found A^ to be of the

dA
form Aaffi^-\-Ba^a^^ which, operated upon by -r-^, becomes

da

(J.H-25)oi = 0. If ^.=1, then ^= 1, and Af^-=. a^a^ a^a^.

dA
Operate upon this latter with

r^^
which in this case is

da^ da^ da^ da^

and we get 2 (5o^3'~"^2^i)
=

-^i*

dA
Again, operating with -j^ upon a^^a^a^a^, and we have

4ifl'3+a^0 2^3l S^oflTg
= ^2 = flr4'o+2ifl'3 32^2-
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dA
Operating then upon this latter with -, we obtain

2(a^a^-a^a^) = A^

And finally we have

dA,

di3

= a^^a^a^a, = A^.

The covariant then, written fnlly, is

(ac- W) x' + 2 {ad- he) x^i/ + (ae+ 2hd-Sc'') xY
+ 2 (he-cd) xy^ + (ce-d') y\

We see, therefore, that A^ is the source of the covariant, and

we can readily write

as the law of derivation.

That Jo is appropriately called the source is evident from

its repeated use, being, in fact, operated upon by each succes-

sive differential symbol, as is seen on p. 36.
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CHAPTER III.

THEOEY OF LEAST OR CANONICAL FORMS.

37. When a quantic has been reduced to the least form in

which it can be written, and yet retain its generality, it is said

to be reduced to its canonical form. The theory has been

presented by Dr. Sylvester (see Philosophical Magazine, Nov.

1851). The name canonical seems to have been first applied

by Hermite. The number of constants remains in most cases

implicitly the same.

Since lx-\-my may be represented by X, and I'x+ m'y by Y,

a cubic in two variables may be represented by X^-\-Y^. This

is evident, as the entire number of constants is implied in

this form.

The quadratic (a, h, c'^x, yf can be reduced with four con-

stants* to the form x^+ y^, or to a similar form Az^-\-Bi^ con-

taining the original number. But the binary quadratic in

geometrical investigations is so completely manageable in its

* To reduce 2x"+ lix + 29 to the sum of two squares.

We have {Ix + myf + {}'x+ m'yf

as the transformed quadratic, or

{x + ty- + (a; + t'Y = 2a;2 + 14a; + 29,

where t =
, and if= %,

I i

whence f^ + f^ = 29,

and t + t'=^7 or t = 2, t'=5,

while the coefficient of x is plainly 1, therefore {x + 2f + (a? + o)- is the

expression.

D
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original form that its reduction to a sum of squares is not a

matter of mucli interest.

But the reduction of the cubic is of more practical impor-

tance, since, independent of geometrical considerations, the

reduction to the sum of two cubes furnishes a method of

solution of numerical equations. The cubic

becomes, we will suppose, by transformation

and, remembering that the Hessian

^ ^_ I
^^^^

^
^

dx^ dy^ \dxdyl

gives a covariant which may be transformed in the same

manner and into a function of the same constants as before,

that is,

Idx'
'

df [dxdyj J dX^
'

dY' [dXdY/ ^ ^'

we see that the transformed becomes ADXY when B and G
vanish.

Or, since we are simply seeking the factors into which the

Hessian may break up when B and G vanish, we may omit the

factor A^ (being composed of the constants of transformation),

and examine the left-hand member of (1) for the required

factors X, Y.

With these conditions, the Hessian cannot differ by more

than a factor from XY.

As an illustration, let us take

4a3H30a32+ 78 + 70 = = w.

The Hessian is

2x-\-5 5x-\-lZ
I

= x^+bx-\-6.

5aj+ 13 13a3+ 35
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Taking the factors of this, x+ 2 and a?+ 3, we have

A(x+ 2y-{-D(x+ Sf

for the determination of A and D by comparison with the

given quantic

^+ D=4,
SA+ 27D = 70,

or A=2, D = 2.

Hence 2
(a!+ 2) + 2 (x+ Sy = u,

that is, (a;+ 2)^+ (a;4-3)^ diifers by only a factor from it,

and therefore

(aj + 2) + (a3+ 3) =

gives a; = f as a root of the given cubic. The other roots

of this cubic being imaginary, it is evident that not every
cubic can be reduced to this form, since it must differ from

one which contains three real factors, or one containing a

square factor.

In the latter case, we could evidently express the canonical

form of the given cubic by (Ix -\-myf (I'x+ m'y) or (x+ tf (x + f)

or x^y.

To reduce x^+7x^-{-16x+ 12 to the form x'^y.

We have x'+(t'-\- 2t) x^+ {2tt' +f)x-\- tH\

whence i'+ 2^ = 7,

m+ f = 16,

tH'= 12,

^ = 2, r=3.

38. The canonizant. This is a name given by Dr. Sylvester
to a determinant which is used in the extension of the method

of the last Article. The theory assumes that a quantic of the

D 2
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fifth degree can be reduced to a sum of three terms of the

fifth degree, one of the seventh degree to the sum of four

terms of the seventh degree, and thus for every odd degree ;

and then proceeds to make the assumption good in the

following manner. The transformation is supposed to be

efiecfced, as before, by letting

s = Ix+my, t = l'x-\-my, v = V'x+ m'y.

The theorem then requires that

(a, &, c, d, e,f^x, yf = s^+ f^-v\

Since the right-hand member of this equation contains implicitly

as many constants as the given quantic, it must be capable of

expressing that quantic when s, tj v have been properly
determined.

Jjetu = theleft-hand member, and CTthe right-hand member

of the above equation ; then, by successive differentiation, we

shall have

U d^ d'

dx* dx^dy

d* d'

dx^dy dx^dy'

d' d'

dx^dy^ dxdy^

d'

dx^dy^

d"-

dxdy^

d^

dy'

= TJ d^
dx''

dx^dy^

d^

dy'

or the symmetrical determinants,

ax+ hy hx+ cy cx+ dy

hx+ cy cx-\-dy dx+ ey

cx+ dy dx+ ey ex^-fy

ih rt rv
Ims I'mt rm'v

I'
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That is, if the expansion of

ex+ dy

43

ex+fy

yields the factors s, t^ v, then these factors will differ from the

factors {x+ ty), (x+ t'y) , {x+ fy) by only nnmerical coefficients
;

and, consequently,

(a, &, c, d, e, fix, yy = Tix+ tyy+Tix+ fyY+r (x+ fyf.

39. In the same manner, to find the condition that a quantic

of even degree can be reduced to the sum of n^ powers,
where n is even.

The nature of this condition is seen from the last

Article. The determinant formed from the n differentials

will, on the supposition that the quantic can be reduced to the

sum of n^^ powers, vanish by the same process whicli

proved that a quantic of odd degree, as for instance the fifth,

could be reduced to a sum of three powers of the same degree.

The determinant formed from the n differentials in the latter

case being a covariant, gave the necessary factors s, t, v, while,

in the case now under consideration, the proposed determinant,

it will be seen, gives an invariant whose vanishing proves that

the quantic can be reduced to a sum of powers each of the

n^ degree.

To see if 2a;*+ 12ajH30H36a;-}-17 = 8 can be reduced to

a sum of two fourth powers, we take the fourth differentials

as in the last Article and we obtain the determinant

2 3 5

3 6 9

5 9 17

= 0.

The vanishing of this determinant shows that in this case
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the reduction is possible. To obtain the binomials, we equate
like powers of S and s, v^in 8 = s*+v^, and we find

s = :r+ !I, V = a;-\-2.

40. It is hardly necessary to carry this proof into the higher

powers. But it may be said, in general, that if the quantic
does not break up into sums of powers of binomials, it will be

sufficient to add to these powers some multiple of their product
or product of their powers, as

(a, h, c, d, ej^, yy= s'+ t'+ 6DsH\

and (a, h, c, d, e,f, gjx, yf = s^^-f+u^-\-Estu.

That these are the least or canonical forms may be seen

by extending the proof ah'eady given. The subject in such

form as developed by Sylvester and others would not be

necessary here.

41. Comhinants. We have seen (Art. 20) that the eliminant

of a system of linear equations is an invariant. An invariant

or eliminant of a system of equations or quantics of a uniform

degree higher than the first is called a comhinant. One

peculiarity of the combinant is that it satisfies the equation

da db

where is the combinant of

ax''-\-nhx''-''-j-&c. = (1),

a,x''-\-nh,x''-'-\-&c. = (2).

&c. &c.

42. Another peculiarity to be observed is, that if a pair of

quantics have a common factor, their Jacobian will contain

this factor in the second degree.

Take the equations as above, and form their Jacobian, and
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the truth of this will be evident
; or, let a be a common factor in

u=. ax^+ Zay'^,

then du
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equation obtained by eliminating h, and therefore the Jacobian

of (1) and (2). We thus have an easy method of determining
the number of double points resulting from the involution of

these quantics. In this form we see that h can be so determined

that u-\-hv shall contain the square factor (aj a)^ ; and, by

adding another condition, we may determine the valae of con-

stants so that the quantic shall contain {x af. The coefficient

in (1) and (2) will then be of the degree 3 (?? 2). Conversely,

if (x aY exists as a factor in u-\-liv-Ymt, this factor in the

first degree will exist in the three second differential coeffi-

cients, and consequently in their eliminant with respect to li

0,

and m
;
that is
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45. The tact-invariant is of the order Sn (n1) in the

coefficients. Hence, if we have three surfaces L, P, Q (of Z, m,
n degrees), the condition that two of the Imn points of inter-

section will coincide is called, in this case, the tact-invariant,

and the coefficients of 1/ are in the degree mn (2l+n-\-m4<)f
and so of P and Q.

The tact-invariant of two surfaces aL and P have the co-

efficients of X in the degree m(V+ 2lm+ Sm^ 4Z 8m+ 6).*

These results are obtained from quantics of four variables.

The geometrical importance of these results will be further

seen.

46. As to the numher of invariants of a binary quantic, we
have already seen that a quadratic has one, that a cubic has

one, each of these being the discriminant of the given quantic.

If we take the next in order, the quantic

(a, b, c, d, e^x, yY,

we can easily determine the number of ordinary invariants,

omitting from our enumeration those which are expressible as

rational and integral functions of the same or lower degrees.

Remembering that the invariant must satisfy the differential

equation

ao-^+2ai-- +3a2-_ +&c. = 0,
rtaj da^ da^

and that the last invariant must be of the order 2 in the

coefficients, it must therefore be of the weight 4 in the

coefficients, that is,

Aa^a^^+ Ba^a-^+ Ga^a,^.

Operating upon this with the differential equation, we have

AiAa^a^+ SBa^a^+ Ba^a^+ 4^Ga^a^,

*
Terquem's Annales, Vol. XIX., and Quarterly Journal, Vol. I.
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which, taking A as 1, gives for B, 4, and for C, 3
;
and we

have by substitution

or ae4>hd-\-dc^,

as the invariant fun'ction, which is the same as would have

resulted by actual transformation. Had we followed the

latter method, we should have found that the function of the

new would be equal to the old when multiplied by the fourth

power of the modulus, (ImTmY or A^, or, written fully,

AE-4.BD+ W^ = ^' {ae-4;bd+ 'dc^) (1).

Proceeding now to the invariant of the third order in the

coefficients, we see that the weight would be 6, and must be

of the general form

which embraces all possible forms.

By applying the differential equations as before, we have

ace + 2hcd-~ad^eh'^ c^j

or AGE+2BCD-AD'-EB'-G'
= A^ (ace+ 2hcd-ad''~Gh'-c^) (2).

If the A^ does not follow clearly by symmetry, the actual

transformation will make it evident. If we proceed to the

fourth order in the coefficients of another invariant, we shall

find only a function of those already found, which therefore is

not to be counted in the enumeration.

47. Absolute Invariants. If we eliminate A between (1) and

(2) in the above, we shall obtain what has been called an

absolute invariant, that is,

{ACI]-\-2BGB--ATy-BB''-Gy {ae-4;bd-^Zcy
= (^AE-WB-^^Cy {ace+ 2bcd-ad'-eh'-cy.
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And if J and T represent the invariants (1) and (2), their

ratio P : T^, as is seen, is unchanged by transformation.

48. As to the discriminant of the quartic which is the elimi-

nant of its two first differentials, we shall see that we can

arrive at a method of derivation by means of (1) and (2). We
have only to remember that the eliminant vanishes if the

differentials have a common factor, and that this factor will

exist if the binary quantic contains a square factor. We have

only, to arrive at this condition, to suppose the first two coeflB.-

cients to vanish
;
the quantic then has a square factor, since it

is divisible by y^. It is clear, also, that the invariant of such

a quantic must vanish. The one contains the other as a

factor when the two first coefficients a and h vanish. Or we

may state it thus : The invariant is a symmetric function of

the differences of the roots, and the discriminant is the product
of the squares of the differences between any two roots (Art.

17) ;
that is, the invariant, on the above supposition that the

roots are equal, as expressed in the terms of the roots, must

contain the difference between the roots taken two and two.

Now, since the ratio ot P : T^ is unchanged by transformation,

a new invariant may be constructed from them, and we see

that P 27T^ will vanish when a and h are each 0; that is,

I becomes 3c^, and T, c^ on that supposition. And since we
know (Art. 15) that this form gives us the required order in

the coefficients, we conclude it to be the discriminant, that is,

(aeUd+ dc'y-27(ace-\-2hcd-ad''-eh'-c')\

which, being of the form of PzkJcT^, is not commonly reckoned

as distinct from I and T
;
and thus generally when, as in this

case, I and T are expressible as an invariant, a function both

rational and integral of I and T, such function is not counted

as a new invariant. We would infer also, in the same manner,

that, if I and T are invariants of the same degree, then IdikT
need not be counted.
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To sum up our number of invariants thus far, we have

acV' the invariant of the quadratic (a, &, cja;, y)^,

which is the discriminant.

Next, o?d?- 6a bed+Wd+ 4ac - Sh'c'

is the discriminant of the cubic (a, h, c, d'^x, yY (Art. 5); that

is, it is the eliminant of its two first differentials.

This is its only invariant (Art. 22).

And, lastly, the I and T of the quarfcic (a, h, c, d, e^x^ y)^

just considered, which are two ordinary invariants.

49. The Series of Covariants. It follows from the definitions

of invariants and covariants, and may easily be verified, that

every invariant of a covariant is an invariant of the original

quantic, and the contrary ; consequently the quadratic can have

no other covariant than the quadratic itself; or we say that this

fact follows immediately from the consideration that there are

no difiierences of roots there being in this case but one differ-

ence and that there can be no function of the difierences of

the roots. But in the cubic, since a symmetric function of

differences of roots, and differences between x and one or more

of the roots, is a covariant, we can form a covariant distinct

from the cubic. The form of this covariant,

(aH-Sahc+ 2h\ ahd-2ac'+ h\
-acd+ 2h'd-hc\ Zlcd-ad^-2c'-\x, y)\

has been investigated in Art. 34, and the process need not

be repeated here. We have also the Hessian which Dr.

Salmon writes

B = a b c

bed
y^ ^xy x^

= {ac-b')x^+ {ad-bc)xy + (J}d-c^)y'

These two covariants examined in connection with the quantic

itself, which is also a covariant, show at once that the list for
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the cubic is complete. For we see tliat the coefficient of o?

in each case is a, aclcP'^ o?d ^abc-\-W^ which are called the

leaders. Kecurring now to the discussion (Art. 35), we find

that whatever analytical relation exists between the leaders of

covariants, that same or similar relation will hold with the

covariants as a whole. This being the case, we need only

operate upon these leaders in order to discover the successive

covariants.

Thus B. above is the Jacobian of the first covariant

(a, 5, c, c^Jaj, ?/)', or F, and the original quantic (a, &, c^a?, ijfi

say ;
so also the third covariant in the above series, whose

leader is o?d 3a6c4-26', is the Jacobian of the above Hessian,
and the original quantic, which in this case, the cubic, is F,

and thus each succeeding covariant, is found by taking the

Jacobian of the last covariant of the series and the original

quantic, whatever that may be. For the cubic this last

covariant is indicated by /.

50. The question whether any other covariants may be

properly added to this list, as regards the cubic, may be

examined as follows. We see that a-, ac, o^d^ &c. are divisible

by a. We find then what new functions, rational and integral,

of these leaders may be formed whicb contain a. In this case,

the leaders of H, /, ac V"^ aH ^dahc+ 21^^ become, on the

supposition that a= 0, 4B'*+ J'^ = 0. It therefore contains

some power of a. Performing the operation indicated by
4iH^-\-J^ = and dividing by a^, we obtain the discriminant

of the cubic aH^-6ahcd-Sh'c'-\-4<ac^+Mh\

Now it must be remembered that a covariant, as also an

invariant, is by definition a function of diJfferences of the roots,

and that a covariant is known when its source or leading co-

efficient is known (Art. 36) ;
hence these leaders, as well as

resulting invariants, will satisfy concurrently the difierential

equation F
( o -r + 2i -; h Sa. h &c. )

= 0,
\ da^ da^ da^ I

where F is any leader or invariant.
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From this fact, and in conformity with tbe definition, we

might, for the purposes of this classification, include the

invariants with the covariant of a quantic. The above dis-

criminant, then, may be classed with the coefficients of the

COvariants.

Regarded in this light, we shall find that a quantic of the

^th degree will have n covariants, including the quantic itself,

so that each other covariant, multiplied by some power of the

quantic, will be equal to a rational and integral function of the

n covariants. Thus, at once, if we represent the discriminant

(invariant) by A, we shall have

A7^ = /2+4B^*

or, using the canonical forms,

a^dP {ax^+dyy = a'd' (ax'
-dfy -\- 4^ {adxyf.

51. If in A we let = 0, we have left a quantity containing
coefficients which cannot be eliminated by combining with

h^ or 25^. In other words, no new functions of ac W,

a^dSahc+ 2h' can be formed divisible hj a. Hence we may
say for the cubic the list is complete.

52. The covariants of the quartic are first the Hessian,t and

then the Jacobian of this Hessian and the quartic itself must

be taken. We find H to be

{ac-h\ 2(ad-hc), ae+ 2bd-3c\ 2(Jbe-cd), ce-d^Jx,yY.

The Jacobian has its first term, or leader, a^d^dahc+ 2b' &c.,

which, by Prof. Cayley's symbolical representation (where the

Hessian of every binary quantic is written 12^,
and the

Jacobian ofH and the quantic 12^, 13), is easily distinguished,

and indicates a basis of calculation.

* Prof. Cayley, "Phil. Trans.," 1854.

t Known in geometry as the Harmonic Conic.
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53. We might state here more fully the principle of this

symbolic representation.

In Arts. 30 and 34, it was shown that , , &c., regarded
ax ay

as operating symbols contragredient to
a?, y, &c., while trans-

formed by a direct substitution x, y, &c., will be transformed

by an inverse substitution, and the contrary ;
and that, repre-

senting , , &c., by a, /3, &c., operating symbols could be
ax ay

formed which, substituted in the quartic, a covariant or invari-

ant could be formed according as the variables were or were

not removed by differentiation. We can thus form an opera-

tive symbol for a system of quartics by a system of determi-

nants formed of a, (3, &c. Thus a-^f^^a^^^-^, represented by 12, is

an invariant symbol of operation. If we operate on two quan-
tics 8 and V, the result of the operation upon their product

^Fby 12 is the Jacobian.

If these are quadratics,

then the result of the operative symbol 12^, or

a\ /32 2ai ft agft + 2 /3? ,

on iSFwill be an invariant, i.e., ac^-\-ca^2hi^.

In the same manner, 12^ 13 expresses the operative symbol

(or its effect upon a binary quantic)

(aift-2A)' (i/53-/5si).

54. We have then, as the effect of 12 on SV, the Jacobian

d8 dV _ dS dV
dx dy dy dx^

and the application to any two quantics may be expressed by

Id8 dV dS dVy
\ dx dy dy dx I

^

or 12".
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In the former case, the exponent of the power does not apply
to 8 and V, but only to the symbols of differentiation. The

result is, of course, the same in both cases an invariant if

n = the degree of the quantic, since all the variables are removed

by differentiation, or a covariant if n is less than the degree of

the quantic. From this it will immediately appear that, if by
this process, we wish to form the covariant of a single quantic,

we have only to make S = V. Thus, if we desired to form the

covariant of a single quantic with the symbol 12^, or

f ds dv _ ds dv y
\ da: dy dy dx /

we have only to make iS= F, and the latter symbol becomes

g
r d-'s d's

(
d's \n

Ida;' dy' \da;dy)y

which, applied to two quadratics 8 and F, would in this case

give 2 (ac h'). Hence, in general, the quantic to be operated

upon may be conceived to be the product of two or more quantics

8, F, T, &c., whose variables are distinguished by subscripts,

as ^1, yi, 0^2, y2> <^^'j ^^^ when the differentiation is complete

the variables are written solely ^r, y. Since 32 and 23 are

clearly the same with opposite signs, as also 12 and 21, it

will appear that either of these symbols with odd powers will,

when applied to any single function as 8Vf cause it to vanish.

Following this analogy, we can easily write the symbol for a

system of ternary quadratics. If, for ^i, y^^ &c., we write

J J
&c. (in which the cogredient variables can be written

dx^ dy^

as a determinant

VX 2/2 2/3

= VL6\
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we shall have, when the symbol 123^ is applied to the ternary
quadratics

a^+ ly^ + cz^+ 2/?/;3+ 2gzx+ tlixy

= 6 (abc-\'2fgh-af''hg^-ch^),a
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CHAPTER lY.

COMPUTATION AND GEOMETRICAL APPLICATION OF

INVARIANTS.

55. The attentive reader of tlie preceding pages will have

now no great difl&cnlty in making a variety of important ap-

plications of the Invariant Theory.
It is shown in works on the Conic Sections, that if Fand Fj

represent two conies, there are three values of h for which

IcVzkV-^ represents a pair of right lines.

We take
ax^+ ly'^+ cz^+ 2/2/ + 2^aj+ 2'hxy =

as the general homogeneous equation of the second degree in

three variables ; and this is intimately connected with

ax^-\-'by^-\-2hxy+ 2gx+ 2fy-^c = (1) ;

the latter being derived from the former by making z-=\.

This latter may represent two right lines, and does in ge-

neral, when its coefficients fulfil the relation

a



INVARIANTS. 57

It is not difficult to see that the three values of h^ for which

fcFzb Fi represents a pair of right lines, is obtained by substi-

tuting ka+ a-^i hh-\-h^, &c., for a, &, c, &c., in A. Writing
this result in full, we shall find that h^ will have A for its co-

efficient; W and h will have functions for their coefficients,

which may be represented by d and d^ ;
and lastly, that A^

appears as the absolute term
;
that is,

A^H0/^'+ 0iA;+ Ai = O.

The value of

= {hc-f) a, + (ca -/) h, + (ah
-

h') c^

+ 2 (y/.~a/)/,+ 2 Qif-lg)g,+ 2 (fy-ch) h, ... (2),

and 01
=

(&iCi fi) a + &c.,

the same as 0, the accents being interchanged.

Now between A]c^+dh^+ djc+\z= (3),

and ^7+ Fi = 0,

we may eliminate ^, which gives

AF'--0F'F+0iFiF='-F'Ai = O,

denoting the three pairs of lines which join the four points of

intersection of F and Fj.

56. Since any two conies have a common self-conjugate

triangle, and since they may be written

V =ax^+ hif + cz" = 0,

(see T., Arts. 45, 47, 56,) or

Fi = i6^ + 2/' + ' = 0,

where x is written for ic-v/^i, &c., we obtain, by Invariants,

the three values for which hV-^+ V represents right lines.

2
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Then A reduces to ahc,

6= ah-\-'bc+ aCj 6^^
= a+ h+ c, Aj = 1

;

or, were we to substitute Jca+a-^, &c., in ahc, we must have,

for the required condition,

h^+ Jc^(a+ h+c)-\-k{a'b-\-ac-\-hc)-\-ahc = 0,

which is satisfied by a, &, c.

For another example, let us take the ellipse*

and the circle (xx^y+ (yyiY'^'^ = = Fj.

In forming A from F, we must remember to affect the result

by the negative sign, since c or the coefficient of z^, as well as

z^ itself, is reduced to unity with the minus sign. Hence

'^^"^'
To obtain 6 we must recur to the general equation ofthe circle

x'+ y'+ 2gx+ 2fy+ c = 0.

From which we find, by comparing the values of the coeffi-

cients with those in the preceding Article, that
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^. + yl-^-'^'-n

In the same manner, by interchanging the accents, we find

+ (l-0)(-l)

0^ = (^\+y\-''-yl)~, + (.^\+y\-^-''])i

~
J '^

h'
^

''Aa' "^feO'

and Aj = ajj
+

2/J
r^

2/J 5
= '

;

from which the equation in Jc is formed.

If, instead of the ellipse, we had taken the circle

^
-h 2/'

- r' = 0,

Fj remaining as before, accenting the r, we should have had

A = - r^

since a = 1, 6 = 1, c = r^\

e:=(-r'-0)l + (-7^-0)l + (l-0)(xl+y\-r\)

=
xl + yl- 2r' ^r], by (2) of Art. 55

;

2

A, = r^

as in the previous case.

57. Since A, A^, 6, 6^ are invariants of the system of conies

under consideration, their computation should be carefully

studied, because in solid, as we shall see, as well as in plan

geometry, these functions are fundamental.

Take the parabola y^
= 2px, and Fj as before, the circle
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Here 5 = 1, while p corresponds to y in the more general

equation, as is evident from (1), Art. 65, the other coeJSicients

reducing to zero.

We have then A =
5^^
=

p',

d = (0-/) l + (0+ 2p) (-C.0 = -p (2x,-\-pl

A =
r^ ,

as before.

If x^+ y""
= r" and {^^-x;f-\-{y-y^^ = rj

represent two circles, and d the distance between their centres,

we have, as before,

A = -r^ =
cZ^-2r2-rf, Q^ = d^-r'-^r^, Ai = -rJ.

58. If we turn to equation (3), Art, 55, and observe its degree,
and remember that two conies always intersect in four points,

and that four points may be connected by six lines, viz., 12, 13,

14, 23, 24, 34, we may conclude that this equation is that of

the three pairs of chords of intersection of the two conies.

An easy application of this equation is found in the problem,
to find the locus of the intersection of normals to a conic from

the ends of a chord which passes through a given point.

The equation of the normal to an ellipse is

d^xy^ h^x^y = c^x^y^.

If we interchange the accents, the right line becomes a curve, \

in fact, an hyperbola a^x-^yV^xy-^ = c^xy,

expressing that the point on the normal is known, and that

the point on the curve is sought ; consequently, we see that

the intersections of the given ellipse and the equation last

written are points whose normals will pass through the given

point ;
that is, x^ y^
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Let 4+?^-l=0 = 7,a '

2,3

2 {a^xy^-V^x^yc\y^) = Vy

This latter equation, it is evident, should be, as has been

done, multiplied by 2 in order to sustain the fixed numerical

relation expressed in the corresponding coefficients of the

general equation. The equation of the six chords joining the

feet of normals through xy, the locus required when satisfying

the given point, is readily formed by substituting the requisite

invariants in equation (3), referred to above.

We have then

since \ = c^,

9i = ^Yf and ai = h^ = e^=z 0,

and therefore 6^ = -(aV-c*+&Vi^)>

Ai= ^2a'b'c\yy

Hence, if a/3 represent the given point, we have

~
(a'ISx-h'ay-c'al3y+ &c. = 0,

an equation of the third degree, reducing to a conic when
the axis is a part of the locus.

59. In the cubic for k, its values, for which hVzk Fj repre-
sents right lines, remain the same without reference to the

coordinates in which V and Fj are taken. In other words, the

relation between the coefficients A, 0, &c., remains unaltered

by a change of coordinates, and these coefficients for the new

system are equal to those of the old, multiplied by the square
of the modulus of transformation, or in general by some power
of that modulus. (Art. 20.)
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60. If 1 and 2 of the foar points of intersection of two
conies coincide, then 13 and 23 will coincide with 14 and 24.

In this case the cubic in h will have two equal roots. Let us

take the differential coefficient of this equation, and proceed as

if to find their greatest common divisor. This condition may-
be expressed as

(00i-9AAiy-4(0'-3A0O(9i2-3Ai0) = 0.*

In this case the conies are said to touch each other, though it

miist not be supposed that there are not also two other real

or imaginary points in which the conies meet. A great vai-iety

of examples will at once occur to the reader which will illus-

trate the foregoing. We might exhibit an application of the

last example. Art. 58. Expressing that the two curves touch,

we must have, since = 0,

27AAiH40i' = 0.

Now that this equation will apply to the finding of the evolute

of the given curve that is, the ellipse wehave only to remem-

ber that the coordinates of the centre of the osculatory circle

and those of the evolute coincide, that two of the normals

coincide which can be drawn through each point of the evo-

lute
J
and we have

as the required equation.

61. Before passing to other applications, we may discuss

the conditions under which Aj, 0, and 0^ vanish.

If Ai= 0, how shall we interpret Q and B^ ? Since Fj breaks

np into two right lines when \ = 0, we may represent these

lines by a and /3, and then instead of V-\-hV^ we may write

7^+2A;a/3, whose discriminant maybe found by substituting

A+ fc for A in A, from which we obtain

A + 2h(fg-ch')-cJc^ (1).

* This condition may be found by equating the discriminant of the

given cubic in k (Article 55) to zero.
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But when the coefficient of h vanishes, that is, when fg = ch,

we have the condition that the pole of the axis of x in the

general equation should lie on the axis of ?/ ;
in other words, in

this case, that the lines a and /3 are conjugate with respect to V.

Now the vanishing of the discriminant indicates, as we know,
a double point in the curve, and hence the vanishing of (1)

shows us that the point aj^ lies on the curve V\ that is, the

coefficient of A;^ vanishes when, in this case, c =
;
and conse-

quently that, when ^1=0, the intersection of the two lines is

on r.

More generally, the geometrical interpretation of 0=0 may
be shown if we take the trilinear equation (T. 47) of the

general form ax^ -f iy"^+ cz^ = 0,

in which the triangle of reference is self-conjugate in respect

to F^. We have then

Again, from (T. 53), we see that

fiy^-\-gi^^'+K^y = ^ (2)

represents a curve circumscribing the triangle of reference.

Hence we say that, if V-^ has the form of (2), d will vanish,

since, in that case, a^=L'b-^-=c^=-0', that is, d will vanish when
the triangle of reference inscribed in F^ is self-conjugate in

respect to V. If we reverse this relation, taking the triangle

of reference as self-conjugate in respect to F^,

d=^(bc-f)a,+ {ca-g'')\^{ah-h')c^ (3),

since in this case yj = ^^
=

/^^
= 0.

We see that (3) will vanish if we impose the condition of

equal roots in the general equation ;
that is, if he =/^, &c.,

which is the condition of coincident tangents, or that as a

line should touch F; that is, that the triangle should circum-

scribe V while self-conjugate in respect to F in which case

= 0.
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62. Since V= ha^ represents a conic having double contact

with F, a being the chord of contact, if now V represent
the general equation in

a;, y, z, and lx-\-my-\-nz the equation
of a line in trilinear coordinates, the equation of any conic

having double contact with V on the points of intersection

with the given conic, can be written

W+{lx-\-my+ nzf = (1) ;

and suppose it were required to so determine h that this equa-
tion may represent two right lines. In this case A remains

unaffected, but 6 evidently becomes

(hec-f) 1^+ (ca-g') m^+ {ah-h^) n"^^ (gh-af) mn

+ 2 Qif-hg) nl+ 2(fg-ch) Im = 0.

But since, by hypothesis, Fj breaks up into two right lines,

Aj = 0, and also vanishes, since there is double contact, or

the intersection of the two lines is on F ;
hence the cubic in k

reduces to Ah^+dk^ = 0.

In other words, there are two roots = 0, and we have

kA-\-e = (2)

to determine the other. When there are two equal roots, the

conies touch each other (Art. 59). Hence, finding the value

of A; in (2), and substituting it in (1), we have

eV= A(lx+my + nzy,

which is the equation of the pair of tangents at the points

where the conic is cut by the given line. Where = 0, re-

presenting its new value as above, we have the condition that

the line touches the conic, and the tangents coincide with the

line.

63. It may be well here to remind the beginner, that

by a tangent is understood, analytically, in general, a line

meeting the curve in two coincident points, and that when
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the curve breaks up, as we have supposed, into two right lines,

the only tangent which can meet such a locus must be on the

intersection of these right lines
;
and since a curve of the

second degree may always have two tangents, both tangents
must coincide with the line at the point of intersection.

We know that, when Fand Fj represent conies, V+hVi =
represents a conic passing through their points of intersection.

If now the condition were sought that the line lx+ my-{-7iz =
should pass through one of these points, we may equate z in

F to and in the equation of line = 1
;
and then, substituting

the value of y found from the equation of the line in F= 0,

we have a quadratic in x whose condition of equal roots we
wrote in the last Article, viz.,

e = {hc-f) V-\- (ca-g') m^-^ {ah-h') n'+ 2 (gh-af) mn

-f 2 Qif~ ly) nl+2{fg- cJi) Im.

Let this right member now be represented by S, the condition

that the given line touches F. If in this expression we write

a-\-Jca-^ for a, Z) + A:&i for h and c, we shall manifestly have the

same condition for V-\-JcVi, or any conic of the system, which

we had for F. Hence, multiplying out, we have, for the co-

efficient of &,

ihc,-\-h^c-2ff^) l''+ (ca^+ c,a'-2gg;) m'^-\-(a\+ a^h-2]i\)n'^

+ 2 {Q\^-gi^af^aJ) mn+ 2 Qif^-^liJ-hg^^g) nl

+ 2 (fgi +fig-c\- c^h) Im.

Representing this by O,* and the coefficient of k^ by S^ we have

The condition that this equation should have equal roots is

$^ = 4SSi; or is the condition that the given line should pass

through one of the four points ;
and as the

"

envelope of this

* Wlien * = we have tlie condition that the given line shall be cut

harmonically by V and Fj. It is also to be observed that this condition
is a contravariant of the system of conies V and Fj.
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system is clearly only these four points, tlie equation last

written may be regarded as the envelope of the system. It is

to be remembered that we are here really discussing functions

which remain unaltered by change of axis, because, if V and V^

by transformation to a new set of co-ordinates become V and

Fj, then V+JcV-^ becomes V+kVi, Jc still remaining constant.

Now = is the determinant whose vanishinga h
ff

h b f

9 f c

is the condition that the general equation may represent right

lines. DiflPerentiating this function with reference to each of

its letters, we have the coefficients of S above. Also both ^
and Dj are functions of A, in such manner as to possess the

character of invariance.

64. If we seek the condition that

shall touch the conic represented by the general trilinear

equation (T. 43)

aa2-|-&/32+ C7H2//37+ 2^ya + 2/ia/3 =0 (1),

we shall have the condition represented by S, as above. For

the coefficients there given, hcp, &c., we may write A, B,

&c., or

Al?-\-Bm'+W+ 2Fmn-\-2Qnl+2mm = (2),

which is sometimes called the tangential equation of the conic.

If between this equation and the equation of the line we elimi-

. . f
nate n, we shall have a quadratic in r, and the condition ofm
two equal roots, or that it breaks up into straight lines

; or,

which in this case is the same thing, the envelope of the line is

{BG-F^)a?+ {GA-G^)^^+&.Q.=:0 (3),

an equation symmetrical with S, the latter in Z, w, n and
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its coefficients in small letters, the former in a, jS, y and its

coefficients in large letters. We may see, then, that the enve-

lope of a line whose coefficients fulfil the condition S is the

conic (1), for we have only to substitute for A, JB, &c., their

values bcf^, &c., and (2) becomes AF= when 7"= (1).

Consequently, if we write the trilinear equation corresponding to

we have AV+JcD+k^A^Vi = (4),

in which D is symmetrical with $
;
that is,

an equation in x, y, z when Fand Fj have the meaning we have

heretofore assigned them.

The envelope of the system (3) is

but the envelope in this case is the four common tangents.

Hence this is the equation of the four common tangents to the

two conies.

To illustrate this, take the two conies

2aj*+4/+62^= 0.

A =15, Aj = 48, ^ = 15, J5 = 5, (7 = 3,

A^ = 24, B^ = 12, (7i
= 8

;

I>=2(18+ 20)a;'^+ 12(10+6)^H30(4+6)g'.
Hence

(7603^+192^'^+ 3002^^)2
= 2880 (a?H32/'+ 62')(2aj2+4/+6a)

is the equation of the four common tangents to the two conies.

If 3^'-2a;''-4a;y = 0= F,

and J+^_1=0=F
what is D ?
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65. As has been before intimated, an invariant is a function

whose vanishing indicates some property of the curve inde-

pendent of the axis to which it is referred. In the same

manner, as we know, covarianta are particular loci whose

relation to the equations whence they were derived is inde-

pendent of the axes of these given equations. In other words,

the two functions agree so far as axes are concerned.

Turning our attention now to covariants, which, as we have

seen, contain the given variables, we may find our illustration

in the system of conies we have been considering, V and Fj,

which we will again refer (Article 56) to their self-conjugate

triangle, that is.

If we proceed now as in the last Article, we find

A = bCf B = ca, C = ab^

A, = B, = C, = 1;

consequently

D=:(ah + hc)x^+ (bc-\-ba)f+(ac-{-cb)z^ (1) ;

equation (2) of the preceding Article becomes

Al'-^Bm'+ 071^=0,

or the condition that a line should touch V. Hence the locus

of the poles with regard to Tj of the tangents to V is

Ax'+ By^+Cz^ = (2).

Adding (1) and (2), we have

(A+B+ G)(x'+f+z') = D.

Or, since (Art. 56) e = A+B + G,

we have GFj = D as the equation of the polar conic of V with

respect to Vi in terms of the conies of the system and the

conic D. The locns OFi = D is therefore a covariant of Fand

Fi, and this relation will not be altered when V and Fj are
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transformed to othes axes. Similarly, 6j^V=D is a locns, a

covariant, the polar conic of F^ in regard to F".

Returning to ^ = (see note, Art. 63), we see that it

becomes, retaining the same expressions for V and Fj,

(6 + c)P+(c+ a)m2 + (a+ 5)^' = 0,

which may be called the tangential equation of the conic

enveloped by a line cut harmonically by V and Vy Now the

trilinear equation, as found from this, is of the form of

equation (3) of the last Article, that is,

or

(c-{-a)(a+ h)x'+(a+hXb+ c)y'+ (c+ a)(b + c)z^ = 0...(1),

since in this case A = (&4-c), &c.

Adding the value ofD to (1), and reducing, we have

as the equation, a locus, covariant with F^and F^, expressing
in terms of these conies a conic enveloped by a line cut har-

monically by the conies in question. If D breaks up into two

right lines, we have simply A = in equation (1),

or {a'b + ac)(hc+ha)(ac+ ah) = 0.

66. It would be a profitable exercise for the reader, at this

stage, to reduce a few conies to the forms

a^-\-y'+ z' = 0,

This can be done with the help of

Aic''+ejc^+ejc-\-\ = (1).

That is, the roots of this equation will give us the new a, 6, c
;

then we shall have

x'+y'+ z' = F, ax'+ by'+ cz' = V
when V and F^ are the given conios.



70 INVARIANTS.

We shall still need one more equation, and for this we can

conveniently nse equation (1) of the preceding Article,

(ab + ac) x^+(hc+ ah) 7/+ (ac+ ch) z^ = D,

with this caution, that, as the discriminant of F^is 1, D must be

divided by A to put the three equations upon the same relation.

Thus, if Fand F^ are

x^-2xy-\-2i/-4x+ 6y = 0,

Sx^-6xy-\-5y''-2x-l = 0,

we see these are of the general form

ax^+2hxy+ hy^+2gx+ 2fy+ c = 0.

The A of the first is -5 (Art. 55),

= -14, 01= -9, Ai=-ll;
and since (Art. 56) the roots of (1), when the conies are re-

ferred to their self-conjugate triangle, are a, 6, c, the

actual form of (1) for numerical use must be

or in this case

-bJc^+Uh'-9h-\-ll = (1).

In order to calculate the covariant D, we must first know

A,B,C, A, B,, Oi, &c.

These may be computed by equation (2), Art. 64.

gives us
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In the same manner ^dj = h^c^ff^ &c.

The value ofD must be computed from the general equation,
which we now write in full,

+ (AB^+ A^B^2HE,)z'-{-2 (GH,+ G,H-^AF^'-A^F)yz

+ 2 (HF^+E,F-BG,- B,G) xz

+2 (FG,+F,G-GH,-G,E) = D.

Now suppose the roots of (1) to be represented by a, h, c

(the new a, h, c), and we shall have

From which we can obtain the values of X, Y, Z, which

were required. The reader can complete this example. These

computations are important on account of their frequent
occurrence in geometrical investigations, as will be seen in a

succeeding Tract.

67. Another of a large class of examples will show how in-

variants determine the situation of a conic, as for example a

fixed locus.

Let us take F, a curve circumscribing the triangle of

reference (T., Art. 53),

that is, 2 (u(3y-{-vya+ waP) = 0.

Let Vi be touched by two sides of the triangle. This can be

represented by the tangential equation, in this case (T., Art.

54), by aH/32+ y^-2/3y-27a-2a/3 (l+wh\

since a=0, /3=0, in each case, satisfies the equation, giving

perfect squares. Then will hV+ Fi, a conic passing through
their intersections, be touched by the third side of the triangle.

Computing the invariants as before, we have
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A = 2uVWj

:= (u-\-v-{-wy2uvwhf

0j = 2 (u-\-v-\-w) (2-\-w]c), Aj = (2+ hJc)\

From which we obtain

0i=4AAiJfc+40A,

and, eliminating the parameter k between tbis last equation
and 7cV+Vt we have the envelope of the third side of the

triangle ofreference; or which, in this ease, is the sametbing

by substituting the value of
Jc^ derived from that equation, in

the latter, we obtain, plainly, a fixed conic touched by the

third side, that is.

When 0j' = 40A, h = 0^ and is simply the condition that the

three sides of th^ triangle are touched by V^.

68. If I and m are any lines at right angles to each other

through a focus, we can construct an equation, a particular

form of u^a^+ v'(3' = wY, (T., Art. 47)

that is, P+ m' = eY,

where y, the polar of the focus, is the directrix. If e = 0, as

in the circle, we have the equation which determines the

direction of the points at infinity on any circle
; or, in other

words, P-^m^=:0

is the tangential equation of these points, or the condition that

the line lx-\-my+ n =

should pass through one of them.

Now the necessary relation between these constants, in order
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that this line may touch the curve represented by the general

equation, sometimes called the tangential equation of the

curve, is given Art. 63, equation (2). Distinguishing this by

Si let us proceed to examine the discriminant formed from

which is A^+TcA (a+ h) + J(^ {db-h%

Form also the discriminant of

8+ h8^i

which is A^+ hAJd^+ Ic'A^d+ h^A\ ,

and we see that a + & corresponds to 6^ and abh^ to d. Hence

we say that, the invariants of any conic and a pair of points

at infinity being formed, we can express the condition, by
placing ^1 = 0, that the curve is an equilateral hyperbola, and

by = 0, that it is a parabola. This result follows from the

theory of invariants, viz., that whatever homogeneous relation

is seen to exist in the one case will also exist in the other, ir-

respective of the coordinates in which the curves are expressed
or the axes to which they are referred.

We now seek for the corresponding expression in Trilinear

Coordinates. The length of the perpendicular on one of these

four imaginary common tangents from any point must be in-

finite. Hence the denominator ofp (T., 20) must be put = 0,

that is,

l^-\-m^+n^2mn cosA 2nl cos B2lm cos =
must be the general tangential equation of the points in ques-
tion in trilinear coordinates. Combining this with Sj as before,
we find that i corresponds to

a+ h+c2f cos A 2g cos B^2h cos (7,

which, equated to 0, is the condition that the conic S-\-7c8i

shall represent an equilateral hyperbola.
In this computation the coefficient of 7c only, it is evident,

need be formed, which divided by A must give the condition
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sought. To find tlie condition that the curve shall represent
a parabola, it will be necessary to form the coefficient of Tt^

and then divide this result by A^.

68. By the theory of foci, the four tangents drawn through
the two imaginary points at infinity on any circle form a quad-

rilateral, in which two of these vertices are real and the foci

of the conic. Now, since ^-f^^i touches the four tangents
common to 8 and 8^^ it will represent these two vertices or

foci in question, when Tc has been so determined that the

conic (8+lc8i) reduces to a pair of points, with the condition

that 8i represents the two points at infinity.

To find these foci, we proceed to find the value of k in

which, substituted in S+ k (l^-\-m^), gives two factors, viz.,

(l^ + m^-^+ n) (l^+m^+n),

in which ^,
^ and

,

^ are the coordinates of the foci, one
Zi Zi z^ z^

value of k giving the real and the other the imaginary foci.

As a simple illustration, letus seek the coordinates ofthe focus

of a;2+ 2a;^+ i/2-2a;--2y+ 2 = 0.

Here ah I? = 0, and consequently

reduces to 2k^-\-^'' = 0.

But A = 2 + 2 1-1-2 =0.

Hence 8y or

AV+ Bm^+W+ 2Fmn+ 20^1^ 2Slm+ k{f+ m),

reduces to l^+ 'ni? 2lm or Q m^il m).
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Therefore the cordinates of the focus are 1, 1, if we regard

Zi as the linear unit in the equation of the line

Ixi-^myi + nz^.

But if these variables are conceived of as functions of one

another, or the line as a function of the variables, then, as z^=0

and the coordinates are represented by -^, ^, these become

infinite, which result is still consistent with the geometrical

conception of the foci of the parabola, where one focus is re-

garded as at infinity.
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