
Fear} , ite One 

Base 
* leteknks SS tel ae Ha sea ccd 

pastes: SUAS NERS 
it Ea ASSIS eats ESS 

Rowse ON = ane 
nthch ee 

. macy ten so wakes 
Atri ue rset By 

5 

oe Poe ae mee fester et 

$650 G Be ates te 

AEE 
Oey eer 

Se Liles 
ee 

eure te ie ; 
ua ARs at The te 
pee ag baer 

+ "ee 7 

iy pate ot aT ree, Faded pat tes 

a teats aoe oo PEG 

Cid 
ae peta gate 2" ee 

Pret eee 
Pia en 

ee ee 
eee ee! 

a ae 
as pe 







Digitized by the Internet Archive 

in 2009 with funding from 

University of Toronto 

http://www.archive.org/details/transactions22camb 







TRANSACTIONS 

OF THE 

CAMBRIDGE 

PHILOSOPHICAL SOCIETY 

VOLUME XXII. 

(1912—1923) 

er 
\ a 

CAMBRIDGE 
AT THE UNIVERSITY PRESS 

AND SOLD BY 

DEIGHTON, BELL AND CO. LTD. AND BOWES AND BOWES, CAMBRIDGE. 

CAMBRIDGE UNIVERSITY PRESS, LONDON. 

M.DCCCC.XXIIT 



ADVERTISEMENT 

Tue Socrery as a body is not to be considered responsible for any 

facts and opinions advanced in the several Papers, which must rest 

entirely on the credit of their respective Authors. 

THE Society takes this opportunity of expressing its grateful 

acknowledgments to the Synptcs of the University Press for their 

liberality in contributing towards the expense of printing this Volume 

of the Transactions. 

PRINTED IN GREAT BRITAIN 



XVI. 

XVII. 

XVII. 

CONTENTS OF VOLUME XXII. 

On Compound Denumeration. By Major P. A. MacManon;R.A., Se.D., LL.D.,F.R.S., 

Hon. Mem. Camb. Phil. Soc. : ; 

. A Class of Integral Functions defined by Taylor’ s Series. By G. N. Watson, MA. 

. The Hydrodynamical Theory of Lubrication with special reference to Air as a 
Lubricant. By W. J. Harrison, M.A., Fellow of Clare College, Cambridge 

. The Superior and ae Indices of Permutations. By ee P. A. MacManon, 
E.BS. 

. The Domains of sielaly Motion i a Liquid Ellipsoid, and the Oscillations of the 

Jacobian Figure. By R. HARGREAVES, M.A. 

. On the Fifth Book of Euclid’s Elements (Third Paper). By J M. J. M. Hitt, M.A., 

LL.D., Se.D., F.R.S., Astor Professor of Mathematics im the University of London 

The Invariants of the Halphenian Homographic Substitution—to which is appended 

some investigations concerning the Transformation of Differential Operators which 
_ present themselves in Invariant Theories. By Major P. A. MacMauon, F.R.S. 

Vector Integral Equations and Gibbs’ Dyadics. By C. E. WEATHERBURN, Ormond 

College, University of Melbourne a x6 

. On certain Arithmetical Functions. By 8. RAMANUJAN - 

. On the Fifth Book of Euchid’s Elements (Fourth es: By M. J. M. Hit, M.A., 

LL.D., Sce.D., F.RB.S. 

. The Character of the Kinetic Potential in ltromagati By R. HarGREAVES, 

M.A. 

. The Field and the Cordon of a Plane Set of Points. An Essay in Proving the 

Obvious. By Eric H. NEVILLE 

On certain Trigonometrical Sums and their applications in the Theory of Numbers. 
By S. RamanuJan, B.A., F.R.S., Trinity College, Cambridge 

. Asymptotic Expansions of Hypergeometric Functions. By G. N. Watson, Sc.D., 

Trinity College, Cambridge 

’. Asymptotic Satellites near the Equilateral-Triangle Rauilitréum Points in the 
Problem of Three Bodies. By DanteL Bucuanan, M.A., Ph.D., Queen’s 
Univ ersity, Kingston, Canada 

Terrestrial Magnetic Variations and their Connection with Solar Diplo a5 which 

are Absorbed in the Earth's Outer Atmosphere. = S. CHapman, M.A., Sc.D., 

E.R.S., Trinity College, Cambridge 3 a sie 

On the Representations of a Number as a Sum of an Odd Number of Sue es. By 
L. J. MorpELL, M.A. (Cantab.), Birkbeck College, London ‘ 

The Hydrodynamical Theory of the Lubrication of a Cylindrical Hone under 

Variable Load, and of a Pivot Bearing. By W. J. Harrison, M.A., Fellow of 
Clare College, Cambridge 

309 

341 

361 

313 



XXIL 

XXIV. 

XXYV. 

XXVI. 

XXVII. 

XXVIII. 

CONTENTS 

. On Integers which satisfy the Equation # + x* +} i +2°=0. = H. W. RicHMonD, 

M.A., King’s College, Cambridge 

. On Cyclical Octosection. By W. BuRNsIDE, M.A., F.R.S., Hon. Fellow of Pembroke 

College, Cambridge 

. Congruences with respect to Companies Moduli. By Major P. A. MacManon, 

R.A., F.R.S 

On the Stability of the Steady Motion of Viscous Liquid contained between two 
Rotating Coaxal Circular Cylinders. By K. TAMAKI, Assistant Professor of 
Mathematics, Kyoto Fae University, and W. J. Harrison, M.A., Fellow 

ot Clare College, Cambridge 

On a General Infinitesimal Geometry, in reference to the Thay ae Bata 
By WILHELM WIRTINGER (Vienna) . oe 

On the Fifth Book of Euclid’s Elements (Fifth Paper). By M. J. M. Hiut, Se.D., 
LL.D., F.R.S., Astor Professor of Mathematics in the University of London 

The Influence of Electrically Conducting Material within the Earth on Various 
Phenomena of Terrestrial Magnetism. By S, CHAPMAN, M.A., Trinity College, 

and T. T. WHITEHEAD x ae nee at x 

The Escape of Molecules from an Atmosphere, with special reference to the 
Boundary of a Gaseous Star. By E. A. MILNE, M.A., Trinity College, Cambridge 

Some Problems of Diophantine Approwimation: The Analytic Properties of 
Certain Dirichlet’s Series associated with the Distribution of Numbers to 

Modulus Unity. By G. H. Harpy, M.A., Savilian Professor, University of Oxford, 
and J. E. LirrLewoop, M.A., Trinity Colleve: Cambridge 

Free Paths in a non-uniform Rarefied Gas with an Application to the Eee of 
Molecules from Isothermal Atmospheres. By J. E. JoNEs, 1851 Exhibition 
Senior Research Student, Trinity College, Cambridge = : 

GENERAL INDEX 

PAGE 

389 

405 

4135 

425 

439 

449 

463 

483 

519 

535 

557 



I. On Compound Denumeration. 

By Mason P. A. MacManon, R.A., Se.D., LL.D., F.R.S. 

Honorary Member Cambridge Philosophical Society. 

[Received May 1, 1912. Read May 6, 1912,] 

Art. 1. I propose to examine the subject of compound denumeration, otherwise the 

partitions of multipartite numbers, by a direct application of the Theory of Distributions 

which was developed by me in the Proceedings of the London Mathematical Society *. 

It will be shewn that the actual denumeration may be made to depend upon the theory 

of the symmetric functions of a single system of quantities. Such a system is 

Ce Bee Che, Seep 

and I write in the usual notation 

(1 —a,2) (1 — ax) (1— 4,2) ... = 1 —a,¢+ ane? —a;a*+... 

= 1 — 

1+hya+ hoa? + hye? +...’ 

so that the quantities a are the elementary symmetric functions and the quantities h 

the homogeneous product sums of the quantities a of the system respectively. With these 

functions are associated the differential operators 

ds; =0a, + HO, 

(d,s) 
Sie 

+ as0a,,. + Sho 
Ast 

D,= 

where (d,°) denotes that the linear operator d, is raised to the sth power in symbolic 

manner so that it denotes not the performance of d,, s times in succession, but rather 

an operator of the order s. 

I first consider the partitions of a bipartite number (pg) and note, as observed 

long ago by me+, that the partitions are separable into groups which depend upon the 

partitions of the unipartite numbers (p), (q) respectively. Thus the partitions of the 

bipartite number (22) nine in number are separated into four groups: 

Gr (2, 2), Gr (2, 1), Gr (1, 2), Gr (22, 1), 

(22) (21 01) (12 10) (11 11) 
(20 02) (20 01 01) (10 10 02) (11 10 01) 

(10 10 01 01), 
* Proc. Lond. Math. Soc. vol. x1x. 1887, ‘‘ Symmetric Functions and the Theory of Distributions.” 

+ American Jour. of Math. vol. x1. 1888, p. 29, “‘Memoir on a New Theory of Symmetric Functions.” 

Won, .O40h oy ak 1 
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where it is to be observed that supposing the partible number to be (pq) (here p=q=2) 

the p number is in partition (2) in the two first groups and in partition (1°) in the last 

two; while the g number is in partition (2) in the first and third groups and in partition 

(12) in the second and fourth. In fact if the numbers p, q have P, Q partitions respec- 

tively the partitions of (pq) are separable into PQ groups for every partition of p may be 

associated with every partition of q. 

We will now study the enumeration of the partitions appertaining to a given group. 

Consider the group 
Gr {(p.™ p™...), (HG ...)}, 

where (p,"p.™...), (@¥qX?.--) are given partitions of p and q. 

The most extended partition of the group contains =7r+Zy parts, while that which 

is least extended contains a number of parts equal to the greatest of the integers =z, Ly. 

No generality is lost by the supposition =a > Xx. 

In a partition of the group the biparts may be ordered so that, as regards the 

partition of p, the first =a biparts are 

(p..) 7, times (p..) m. times, &e., 

and this will be the case for every partition of the group. 

The second element of any bipart may be either zero or one of the parts qj, qs, ... 

of the partition (qq...) of g. There may be also biparts of the form (0q,), (Oq), .... 

The biparts are therefore of one of the three forms (p,q), (ps0), (Oq:), and their number 

has lower and upper limits =a and =a+ Xx. 

We now suppose there to be 

m, parcels of one kind 

Ts Fs a second kind 

&e. 

y parcels of another kind differing from those above. 

Altogether =++Zy parcels of a specification which may be denoted by the partition 

(1,7... Xx) of the number = + Zy. 

We also suppose there to be 

xX. Objects of one kind 

X2 i a second kind 

&e. 

X7 objects of another kind differing from those above. 

Altogether 4+ Zy objects of a specification which may be denoted by the partition 

(x:X2--. 27) of the number 7 + Zy. 

The number of objects is equal to the number of parcels and we may consider the 

number of ways of distributing the objects in the parcels so that each parcel contains 

one object. When, as in the present case, the number of objects is equal to the number 

of parcels and one object goes into each parcel the notion of the parcel is not essential 

and we may consider two sets of objects of specifications 

(m7... =X), (Xi Xe++- Lar) respectively ; 
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and the problem is the enumeration of the sets of two-fold objects that can be formed 

by making =2+y pairs of objects, each pair consisting of an object from each set of 

objects. 

This problem is precisely the same as that of determining the number of partitions 

of the bipartite number (pq) which appertain to the group 

Gr {(p.™ p™..-), (Qik qk? ...)}- 

To explain this consider the partitions of the bipart (33) which appertain to the group 

Gr {(21), (1°)}. 
Here m=1, m=1, fr =2, Y.=3, 2y=3. 

We consider objects specified by (113) as being the first elements of biparts; these are 

aeeeelan Ot Ome O): 

or if we want to exhibit the fact that they are first elements we may write them 

2x, 1x, Ox, Ox, Ox. 

With these consider objects specified by (32) as being the second elements of biparts; 

these are 

or as they may be written 
*1l, *1, xl, x0, x0. 

Combining the two sets of objects in all possible ways so as to form a single set of two- 

fold objects we obtain the four sets 

2 LE OF. 200; 700; 

2 O ee OLS Ole OO: 

2, UT? OI 200s 100: 

AD, 10), Wik, il, Oi 

corresponding to the four partitions 

(21, 11, 01), 

@Qiy 10:7 (Oley 700); 

(20511; OL OU 

COS 10: 0b 01 08); 

of the bipartite number (33) appertaining to the group 

Gr (21), (1°). 
It is clear that there is in every case a one-to-one correspondence between the distri- 

butions as defined and the partitions under examination. 

The number of the distributions was shewn (loc. cit.) to have either of the two 

expressions 
DE DED S les Is, 
DS Dives: Deo Mae. Wee 
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The expressions are equivalent and may be evaluated by means of theorems given (oc. cit.). 

The whole number of partitions of the bipart (pq) is im consequence 

pip iy 1b eee Dee ol Peel (ee 
™ x 

the double summation being for every partition (p," p.™...) of (p) and for every partition 

(gx gX...) of (q). 

We apply the method to find the number of partitions of the bipartite (33). We have 

Group We 2 Na Ne Partitions in Group 

(3),Qy) LO 2 1 0 2, De <= 2 
(QD) 1 0 -2 Ae DDR 3 
aay ~ a 0% ss lone ip pin 2 
(21,3) 2 1 Sl a heme epran. —— 3 
(21), (21) P15, 2°.) ae Ree eee 7 
(21),(1)} 1 1 3 38 O 2 D,Dehhy= 4 
(ayy. S01 = ke Oe, Dae = 2 
(2p 3 0° 2 1 2 3° a pee 4 
(iy 3 0 3 8. Ouse eh ere 4 

Total 31 

No calculation is required if we are given Tables which express the h products in 

terms of monomial symmetric functions, 

Thus since a Table shews 

hgh?=... +7 (212) +... 
DID ilee =. 

The above resulting numbers are all shewn in the Tables which proceed as far as the 

weight 6. 

In the above case where p=gq, it is not necessary to consider all the groups because 

the two partitions that define the Group may be interchanged. Thus the two Groups 

{(3), (21)}, {(21), (3)} are identical and the whole numbers of partitions might have been 

written 

D2h? + 2D,D,h? + 2D; D,hsh, + D. D2 hgh? + 2D; D2hgh, + Deh. 

We now remark that, formally and algebraically but not operationally, this expression 

may be written in the factorized form 

(Dh, + Dy2h, + Dghs) (Diy + Dh? + Dshs); 

for the multiplication gives 

Deh? + D, Dh? + D,Dshihs+ DShgh, + De Dyhgh? + Dy Dghghs + Ds Dy hgh, + Ds Dahgh? + Deh, 

and, observing that, by the well-known theorem of reciprocity 

Di Die = Dis hele, 

D;,Dehshg = Ds Dahsh?, 

the truth of the statement is verified. 
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In fact, formally and algebraically but not operationally, the double sum 

> 2 Dp Dy, .-. Ds hig hy, «++ lees 
=X Xu Xa 

be written at may y 

{2.Dx Dz, -2- hse}. {2 Dah hy, ---}: 
™ x 

The factorized form may be regarded as a symbolical expression. 

By the above method the following numbers have been calculated 

faeces bdo 15). | a 

ig he oe ae 

es aaa =*= | seat Oe: 

On eetie |e LOm eo a 

4 | 12 | 29 | 57 | 109} — 

5 | 19 | 47 | 97 | 189/336 

i 
iL 

Thus, from the table, to find the number of partitions of the bipartite (43) we take the 

row commencing 4 and the column headed 3 and find at the intersection the number 57. 

The numbers agree with those obtained by expansion of the generating function 

1 

(1—2)QA—y)( —2*)(1—ay)1 —y*) (1-2) (1 — a*y) (1 — ay?) 1-¥)... 

Art. 2. The distribution of =x + y objects of type (m7... Sy) into =r+Zy parcels 

of type (x: x2--. 27) one object in each parcel has necessarily resulted in our obtaining 

the whole of the partitions of the group under view. Remembering that =3w>Zy we 

may if we please make a distribution of Xw+s objects of type (m7...s) into Sats 

parcels of type (yixX2--. 227 — =x +s) where s is any number included in the series 

On, din 2ihereey? 

We will thus obtain a number for the enumeration which is 

Dred D om WD ben coc lass eB 

and this number also gives the number of partitions of (pq) which contain =x++s or fewer 

parts and also appertain to the given group. 

Hence also the number of such partitions which contain exactly 7+ 9s parts is 

DIED ye ae glee Mpa en lesesy tg — Deve Deny) lly, Nye cae Nag sy ta 15 

or as it may be written 

De De ines) Dg lig Mit Msc a 4 pe Oaealbg Ni, os Ne Sa'pa—a} 

The whole number of partitions which contain =7-+s or fewer parts is 

5 > DDE see Delis eee hisn— sy 45) 

Ne 



6 MAJOR MACMAHON, ON COMPOUND DENUMERATION. 

the double summation being for all partitions 

(pi™ po™...), (GX'gX ...) of the numbers (p) and (q); 

and a similar summation gives the whole number of partitions which contain exactly 

=7+s parts. The expression for the number of partitions which contain Xa+s or fewer 

parts can be given the factorized symbolic form ; 

(C= DED eee hsn—sx+s) . (= Dsh,, hy, Bo) 

J x 

As an example let us consider the partitions of the bipartite (44) which appertain to 

the group {(211), (211)}. 

Here s may have the values 0, 1, 2, 3. 

m=1, m=2, ty¥=3, W=L m=2, 2r=3. 

For s=0, we have D,D,h.h,=2, and the two partitions into 3 parts are 

(22> LIES sli): 

(21, 12:- 11): 
For s=1, we have D,D2h,h?=7, shewing that there are 7 partitions into 4 or fewer 

parts; in addition to the 2 which have exactly 3 parts already written down we have 

5 which contain exactly 4 parts; these are 

(22, 11, 10, 01), 
(21, 20s 01)s 

(2A Ey 10) 102); 

(20, 12, 11, 01), 
(20)) Ae 02): 

For s=2, we have D.2D,h2h;=11, and we find that in addition to the 7 forms 

already written we have 4 which contain exactly 5 parts; these are 

(22 10 10 O01 O01), 

(QE 10> 10) 40201); 

(20) 2," 10) 018 100); 

(20 11 10 02 01). 
Finally for s=3 we have D,D,D,hsh,h, = 12, and we have 12—11=1 partition which 

contains exactly 6 parts; this is 
(20 10) 10°02) OL “01). 

*To explain the general method of calculation it is to be noted that 

Dlom, = lone 

and that when operating upon a product, D, acts through each of the partitions of s. Thus 

Dyhyhan = y-ghin + ghia + Qa hn-1 

Dghihinhn = hag hmhn + hilm—slin + lalimln-s 

+ hy gin alin + Rp_ehinlin—y * fia ltgn—aln— 

+ yy Am—alin + Apalan hn—a + ign in—a 

at [hess yg oy an 

* Vide Proc. Lond. Math, Soc. vol. x1x. 1887, pp. 127—128, ‘The Algebra of Multi-linear partial differential operators.” 
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The calculation of D,D,D,.h;hzh, therefore proceeds as follows :— 

D;DsD, . hghghy.= D;Dz (heh, + hgh? + hghz) 

= D,(2hgh, + he + 2hoh, +hs + hg + 2hohy + hohy + hz + heh) 

= D, (2h,3 + Shah, + 2hs) =2+8+2=12. 

Art. 3. In the next place we examine the effect of employing the elementary func- 

tions ;, My, a3, ... Instead of the homogeneous product sums fj, ho, hs, ..... The distributions 

enumerated by the number 

De De mice iD: Gy, Ay, «+» Wsn-Sy+8> 

are those of objects of type (7:72...s) into parcels of type (yi: x2... 2r7—Zy+s) one 

object being placed in each parcel subject to the restriction that no two similar objects 

are to be placed in similar parcels. 

The corresponding partitions of the bipartite number (pg) are those which appertain 

to the group {(p,"p.™...), (qq ...)}, which contain exactly =4r+s parts, the zero bipart 

00 not being excluded as a permissible bipart, and in which no particular part (including 

the bipart 00) occurs more than once. 

Of course the double sum 

= = DDE eee IDE +++ USn—Sy+s> 

Py 

enumerates such partitions for the totality of the groups. 

To see the meaning of this result consider again the partitions of the bipartite 

number (44) which appertain to the group {(211), (211)}. 

For s=0, we have D,D,a,q,=1; since =7=3, this means that of all the partitions 

of the group which contain exactly 3 parts, the zero part 00 being admissible, there is 

but one in which there are no similarities of parts. This partition is in fact 

(21 12 11). 

For s=1, we have D,Da,a,2=5; for a Table which expresses @ products in terms of 

monomial symmetric functions gives 

TER pepe) (PAE) eee 

giving De ea — 

Thence we conclude that there are just 5 partitions which contain 4 parts involving 

no similarities. These are 

(21 12 11 00), 

(22 11 10 01), 

(21 12 10 01), 

(21 11 10 02), 

(20) 2) On); 

the set including the one previously found with the part 00 added. 
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For s=2, we have D2D,a2a,= 5, since 

C207 = ae D221) sos 

and the 5 forms indicated are found to be 

(225 110018 100); 

(2 A2 SLO Ot 00); 

@i 11 120 02) 00); 

(20% AZ Ads 01900); 

(PAN ab Tk 2 Ko): 

the parts in each involving no similarities. 

Finally for s=3, we have D,D,D,a;a,a,=1, since 

A3Mo, = ... + (821) 4+... 

and the form indicated is 
(20 11 10 02 O1 00) 

containing no similarities of parts. 

We obtain information concerning the partitions of the group which contain different 

parts when 00 is excluded as a part; for denote by Q, the numbers of partitions of 

the group which contain exactly s different parts, the zero part being excluded, we have 

Q=1, 8+ Qa=5, W+Q=5, Q=1, 

whence Q,=4 and Q,+Q,+Q;=6. 

This number 6 which enumerates the partitions of the group which possess different 
parts is either 

D, DoD, aa. + D. D?Za.a,2, 

or D2 DyaZa, + Dz Dya.a,. 

In general we have the relations 

Qs, = Dz, Dz, ... Ay, Vy, »++ Azzy, 

Qse + Qsr41= Dz, Dz, ... Dyay, Oy, «+. Ue—sy 419 

Qsn+3y—2 + Qsn+3y—1 — De De wee Ds, 

Qse+3,—1 = D,,D,, ... Ds, aya yy, Ue +++ Use: 

xe W215 

Hence the number which enumerates those partitions of the group which have different 

parts, the zero part being excluded, has two expressions; for 

Se + Qsn41 Sg) ei i Qsn+2,-1 

= D,, Dy, ++: By, Oy, »++ Ute—ty + D,, Dy, '... Daly, thy, «1 Osea 

+ Dy, Dy, na Dy dyg, Ogg «in Wig Sy 4:4 =e 

= D,,D,, ... Didy, dy, ..+ Aae—3y41 + Dg, D,, ... Dy, a, --« Azn-Zy43 

HD, Diy os: Dye Qigg dvs Oger sy 5 F x05; 

where if Sy be uneven both series extend to $(Sy+1) terms, whilst if Sy be even 
the first and second series extend to 42y and 43y—1 terms respectively. 
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That these two series are equivalent may be shewn algebraically as follows. 

For brevity put =+— Ly =@ and note that 

Dy iy, Pyy »++ Dor = Ay, Ay, +++ Ug + Vly, 1 Ay, +++ Uo+1, 

Dy dy, Ay, +++ U94-2 = Vy, —1My, +++ Bon, + Vy, 1 by, 14x, +++ Caras 

= S Ss Dy Gy, Gy, «+» Ag4-3= Uy, —1 By, —1 Uy, «++ Vora + Willy, 18x, 18y,—1 By, +++ Boss, 

&e. 

Directly we operate upon the relations with D,D,,... the equivalence is obvious. 

Art. 4. There is no difficulty in extending this theory by fillmg up the gap between 

the elementary functions and the homogeneous product sums. For suppose hy, ky, ky, ... 

be functions derived from the homogeneous product sums by deleting therefrom all terms 

which involve quantities of the system (from which the symmetric functions are derived) 

to a higher power than &. Then the distributions enumerated by the number 

DE Dea DCE ele cs. 
X1°"X2 * 

are those of objects of type (m7,...s) into parcels of type (xi:x2-..=r7—Zy+s) one 

object being placed in each parcel subject to the restriction that more than & similar 

objects are not to be placed in similar parcels. The corresponding partitions of the 

bipartite number (pq) are those which appertain to the group {(p,"p.™...), (qq ..-)}, 

which contain exactly =w+s parts, the zero part 00 not being excluded from being an 

admissible part, and in which no particular part (including the part 00) occurs more than 

k times. 

Art. 5. I pass on to consider the similar theory of tripartite partitions and it will 

be found to shew what the theory is for multipartite partitions in general. Consider 

the tripartite number (pqr) and the partitions appertaining to the group 

{(p:™ po™ ...), (Qi gar? -..), (71772 ...)}, 

wherein we will suppose =7>Zy > Xp. 

The partitions involve at least =a and at most r+ y+ p parts. Reasoning as in 

the bipartite case we find that for partitions into =7+s parts, where 0<s< =yx+ =p, we 

have to do with three assemblages of objects of types 

(772... 8), (XiX2--- t), (pips -.. U) respectively, 

where Lr+s= Ly +t=Zptu. 

We have to consider the number of ways of forming =a7+s triads of objects by 
taking one object from each assemblage to form a triad. 

This number is also the number of partitions, appertaining to the group, which 

involve =7+s or fewer parts. 

This problem in ‘Distributions’ was solved by me in American Journal of Mathe- 
matics, vol. XIV. 1892, pp. 33 et seg., “Fourth Memoir on a New Theory of Symmetric 
Functions.” 

WO, LOGUE INC IE bo 
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Let there be two systems of quantities 

Gy, Az, Ag, ase 

A, Bs, Bs, aan 

and let their symmetric functions be denoted by partitions with suffixes 1 and 2 respec- 

tively. Then write 

A, — (1); 

A, = (2), +(1*); 

A, = (3); SUF (21); sE (1°); 

B, = (1). A, 

B, = (2).As+(12)2A2? 

B,=(3), As+ (21). A, A, + (15), A,’ 

where it will be noted that A,, A,, A;,... are the successive homogeneous product sums of 

the quantities a, a, 4, ...*. 

We now form the product 
VeP DBE ose Up 

and eliminate the quantities A,, A,, A,;,... so as to express it as a linear function of 

terms each of which is a product of two symmetric functions denoted by partitions with 

suffixes 1 and 2 respectively. 

One of these terms will be 

MM (xXrX2 --- t); (Pipa --- Uo, 

where M is an integer which is equal to the number of distributions in question. 

We have therefore to find the coefficient of 

(XX «++ tr (Pipa--. We; 

in the development of the product 

BeBe netbge 

Let D,”, D.”, D,® ...; D,®, Do”, D;®, ..., be obliterating operators associated with 

symmetric functions of the quantities a, a, 4, ...; 81, Bo, Bs,... respectively. Then the 

operators D”, D®, act upon functions which are denoted by partitions in brackets ( ),, ( )s, 

respectively. 

From the well-known properties of these operators we know that 

Dy DO saw De. DS DOr Dye By Bentsen 

The reader will have no difficulty in establishing that 

D,” An= Ams; 

D,® Br a A, Bn—s; 

* These quantities were denoted by hy, hg, ig, ... in Art. 2. 
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relations which much facilitate the calculation of the number M. To take a simple example, 

consider the partitions of the tripartite number (333) which appertain to the group 

(21), (21), (21)}- 
Here m=1, m=1, y%=1, %=1, p=1, p=1, 

t=w=s; 

and s may have the values 0, 1, 2, 3, 4, for 

50) (D,))? (D,?P 1B = 4 

s=1, (D,)? (D,)? B? = 36, 

§=2 (D,®? (D,)-(D,? (D,")) BB, = 74, 

53}, (D,”? (D;™) (D,? (Ds) B2B; = 86, 

s=4, (D,%)?(D,) (D9, (D,") BAB, = 87 ; 

shewing that the number of partitions of the group which contain 

exactly 2 parts is 4, 

5 RS} Os 

or pI bs 

and of course the total number of the partitions of the group is 87. 

To explain the above calculations the reader is reminded that D,” and D,° operate 

through the whole of the partitions of s upon a B product. Thus for example 

D;® BB, By, =(D;" B,) B; By, +B; (D;” B;) Bu + BB, (D3 Bu) 

+ (D,” B,) (D," B,) By + (D.” Bs) BD," Bu) + Bs (D," By) (D,” Bu) 
+ (D,” B;) (D," By) By + (D, B;) By (D2 Bu) + Bs (D,” By) (D.” Bu) 
+ (D,” B,) (D,” B,) (D,” Bu) 

= A,(B,_,B, Bu + B, Bi»By + B;B;Bu_s) 

+ A,A, (BeBe Ba + Be Bi Bunt aR BeBe 

+ B,, By. Bu + By B; Bu.+ B; Bris Bu. 

oF Ane Samet s seere a pa 

where the partitions of 3 being (3), (21), (1°) the first line, the next two lines, and the 

fourth line are given by the three partitions respectively. The result 

(D, eae (D,") . (D,"'? (D,”) . ByPB, =a 87, 

is obtained as follows :— 

(DY? (D,”) : BY B, = (D, ®)) (D,") (24, B, By she A, B?B;) 

= A, D,° (24, B,+ 24,B,B,+2A,B,B, + A,B?B,) 

= A?(2A,+ 44,4, + A,?AQ); 

therefore (D,”)? (D,”).(D,®)? (D,®) . B2 B, 

= (D,”) (D,) (44, 4,4 24°A,4+ 124,°2A,4+ 44°A,+4A4,°A,+ A,°) 

=(D,") (D,) (44,A,+ 144,24, + 84,24, + A,°) 

= (D,")) (44,+44,A,+284,A,+14 A2A,+ 244,°A,+8A,!4 54,4) 

= (D,") (44,+ 32A4,A,+ 384A, + 134,') 

= 4432438413 =87. 
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We have found that the number of partitions of the group which have =7+s or fewer 

parts is equal to the coefficient of 

(XiX2 e+ br (Pips ++ U)r, 

in the development of the product 

Be Been Dee 

By a well known theorem of symmetry we may in this theorem interchange in any 

manner the partitions 

(ats -.- 8), (XiX2---t), (Pips =. U). 

We may therefore carry out the calculation in 3! different ways; a circumstance 

that is convenient for the purpose of verification. 

The total number of partitions of the tripartite (pqr) is 

SD OD ODO) eee ono.) 2b. Se eee 
Xiplm 

the summation being for the whole of the partitions of p, g and r. 

Art. 6. We have also the theory of the partitions of the group which are composed 

of different parts; it is merely necessary in the above to substitute for the homogeneous 

product sums A,, A,, A;,... the elementary functions a, dy, ds, .... 

Thus in the above particular case 

CO) CD 2) abi 

= (D,)?. (2a,*) = D, .4a,=4, 

(0, .(D,?)?. Be 

= (D,)? . (6a,°) =(D,”)?. 184, = 36, 

(D,"")*(D.). (D,*)' (Ds). BEB 
=(D,"" (D.") . (5a, + 2a,2a.) = (D,")? (84a,2 + 2a.) = 70, 

(D,)? (Dy) .(D,) (D3). BY B 
= (D,")? (Ds) . (qe + 4a,2 a, + 2a2a3) = (D,)? (22a,2 + 6a) = 50, 

(D," (D,”).(D,”)? (D,”) . BEB, 
= (D,")? (D.™) . (ata, + 4a,3a3 + 2a,2a,) = (D,”P (4a,? + 5az) = 13. 

For a given number of parts we take all the corresponding partitions of the group 

zero parts 000 being admissible as parts; then the numbers found indicate the number 

of partitions which have no repeated parts. 

Thus of 2 parts there are 4 partitions in which no part is repeated 

3 36 ; : 

4+ " 70 . 3 
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Moreover if Q, denote the number of partitions of the groups which contain exactly s 

different parts, zero parts excluded, 

Q. = 4, 

Qs + Q; = 36, 

Qs Gtr Qs = 70, 

Qs + Q; = 50, 

Qs + Qs =13; 

whence Mtl Os 8b), (seis), OSI @heaile 

Comparing these numbers with those found in Art. 6 we see that there are in fact 

no partitions, of the group, which involve repeated parts. 

Art. 7. The theory in respect of multipartite numbers in general is now clear. We 

take the multipartite number (pgrs...) and the partitions appertaining to the group 

KGaeyas eens (CRECE Seco) (CARAS can) (GEEK Aan) cool 

We continue the series of relations 

A, >= (1); B, — (1),4, C; = (1); B, M, = Qs L, 

UG Catslels 

A,=(2)+(1), Be=(@42+(042 O=(2) B+ (Be My= (na Let (na Le? 
&e. &e. &e. 

where if the multipartite number be n-partite, Z, M are the n—2th and n—JIth letters 

of the alphabet. We have then to find the coefficient of 

(Gai saa Ea (QOH 00 th) (GaGa ooo tH) a0 

in the development of M,,M,,... M;,. We have the sought number equal to 

DY REMI DAs el DENY SY OSI OAS Ieee Oat 825170) CR Mi Me reorient 

and observe that D,;® . Cm = BsCm—sy 

D,® «Din = C;Dm—s, 

IDC) Mit =I sl oe. 

relations which enable the regular and progressive calculations of the sought number. 

In all cases the theory of the partitions into dissimilar parts is reached by substituting 

the elementary functions a,, a, d3,... for the homogeneous product sums A,, Ay, As, .... 

The totality of the partitions into =x +t, or fewer parts is given by the expression 

Se eee Dy Ol DH ey PDE)... D8) DEO DEO. De Ooo... MM, MMe coe, 
x po 

the summation being in regard to all the partitions 

(pi pst ...), (GaixiqxX*...), (Try? ...), (S17 55%...), «.. 

of the numbers p, q, 7, 8, ... respectively. 
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Il. A class of mtegral functions defined by Taylor's series. 

By G. N. Watson, M.A. 

[Received Sept. 20, 1912. Read Nov. 11, 1912.] 

1. Ir is sometimes possible to determine the complete asymptotic expansion of an 

integral function by making use of asymptotic expansions of more simple integral functions. 

An instance is afforded by the deduction* of the complete asymptotic expansion of the function 

2 a". (n+ 6) 
F,(2;@)=> OEY 
Sea n= W(n+ OP 

[where x (y) is analytic} in the vicinity of y= ] from the asymptotic expansions of functions 

of the type 
a a” 

G3@30)=> ———— Tp ( U 0) ee n(n aE @)8 

In this memoir, I propose to obtain the asymptotic expansion of a class of integral 

functions of a more general nature than the function Fg (x; @) defined above. I am inclined 

to think that the integral functions which will be considered are the most general integral 

functions which possess the two properties (i) that the coefficient of the nth term in the 

Taylor's series which defines the function is a simple function of 7, and (11) that the asymptotic 

expansions of the functions involve only powers and exponentials of the variable. 

2. Let f(#) be a function defined by Taylor’s series 

HMC) SO GTA | Gee aS capky) doapnecocsesenaadoseocoetonebosece (1), 

and let it be possible to define a function ¢$(s), which is analytic im certain regions (to be 

specified presently) of the plane of the complex variable s, such that when s is equal to 

any positive integer 7, 

eo” b(n) 
P(an +1) =Cn 

where $ (7). exp {9 log n} —>a finite limit as »—»%0; in order that f(#) may be an integral 

function we must take 

Ri(a)>0; 

* Barnes, Phil. Trans. Roy. Soc., vol. ccyi. A. (1906), x (y) possesses an aaynploke expansion of the form 

pp. 273—278. x (y)=bo + by 1+ boy +..., 

+ There is a large class of functions Fg (x; @) which are when y is large and real; to such functions Barnes’ results 

such that x (y) is not analytic for large values of y, although do not apply. 

Wei, O00 UNiGs 10 3 
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apart from this restriction, a, 6’, g are any constants, real or complex; it is convenient to 

determine a so that | arga|<437. 

The hypotheses* which we shall now make concerning the function ¢(s) are as follows: 

(i) That a number, /,, exists such that $(s) is analytic on the right of the line 

R (Gs) =h,. 

(ii) That numbers y’ and 2 exist such that 7 >0, 0<X<47 and such that when 

|s Dy, arg(s/a) <X+47, then ¢(s/a).exp(Q’ logs) possesses an asymptotic expansion+ in 

negative powers of s, the grade} and outer grade} of the expansion being equal to 1; that is 

to say, that when |s|>vy’, | arg (s/a)|<X+42, then ¢(s/a) can be expanded into a series 
: Zz ae a,” a " 

$ (s/a) = exp(— 8’ logs). E + et Se ae = +R,] : 

where |a,”’|<A,.p".n!, | R,s"*"| < A,.o,".n!, it being supposed that A,, A., p and oa, 

are independent of n. 

When ¢(s) is subject to these conditions, I have shewn§ that ¢ (s/a) can be expanded into 

either of the two following series of inverse factorials: 

Rane Sal () 66/)= —Sep|% ay ly 
+ Ws £1 * (Ms + 1) (Ms +2) 

Oe, en (2 
(Ms + 1)(Ms+2)(Ms+3) 0 PO" 2a), 

, a,’ l as 

* ((@= w) +1) * ((e—w) +1} (Ms — a) +} 
eset as, 

i ew Ae aa wzat | 8D 
In these expansions, © is any complex|| number such that —R(@)>~y’; the expansions 

are valid and the series on the right converge when R(s+0)>0; w=—R(@) and Bisa 

number® such that R(8)<0; and if B be the integer such that 0>R(8+B)>—1, then 

the coefficients in the expansions satisfy the inequalities 

, 
Se a 1 ( 

©) 9GI)= Grey E 

fide |< TT (GR flop (es) Beam. seve cannes ae seaguceamate (26), 

Hig | cake 1" (Ke D8 in ceing cccmsweccaacoerceeee tee (2d), 

when &>1 and H is some number independent of /; Mis any number less than M, where M, 

is a positive number depending on p and X. 

In this memoir, I propose to investigate the asymptotic expansion of f(a), defined by the 

series (1), for large values of « when the conditions stated above are satistied by ¢(s/a), so that 

* These conditions are satisfied if ¢ be a member of a 

very large class of functions which can easily be constructed. 

Some examples are given below in § 15. 

+ A comparison of equation (8) below with Part v. of 

Barnes’ memoir (loc. cit.) shews that, in the special case 

when the expansion for ¢ (s/a) is not asymptotic but con- 

vergent, the asymptotic expansion of the function / (:r) can 

easily be obtained by Barnes’ methods. 

t+ These terms are introduced in a memoir by the writer 

‘*A theory of asymptotic series,” Phil. Trans. Roy. Soc., 

vol. coxt. a. (1911), pp. 279—313. 

§ See Rendiconti del Circolo Matematico di Palermo, 

t. xxxiv. pp. 65—84, 

|| © must not be purely real. 

‘| If R(s’)<0 we take 8=8'; if R(8’) > 0 we choose 8 
so that 8’ —£ is a positive integer. 
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the expansions (2a) and (2b) are valid when R (s +@) > 0; these two expansions will be utilised 

in obtaining the asymptotic expansion in question. 

When |a—1/>1, it will be shewn that the asymptotic expansion of f(#)can be obtained 

for all values of arg @. 

When |a—1|<1, the asymptotic expansion of f(x) can be obtained for a certain range 

of values of arg; in the part of the plane not included in this range the asymptotic expansion 

of f() depends on the behaviour of f(s) on the left of the line R (as) =h,. 

The analysis to be employed is so much simpler when we may take M=1 than when it is 

necessary to take M <1, that we investigate the case MJ =1 separately in Parts I and II of the 

paper; the case when M<1 is investigated in Parts HII and IV. 

The symbols* A, O and o will be employed throughout to mean ‘a definite constant,’ ‘of the order of, 

and ‘of order less than, respectively ; thus f(«)=0 (g (x)) means that Lt sup {|f(#)|+g (x)} is finite; while 
L>o 

ft (@)=0(g(#)) means that Pos sup {|/(x)|+g (#)} =0. 

In Parts I and III te the paper, A will be supposed to be faaerendeats of the variables « and y and 
also of a variable integer &. 

Part I. Preliminary asymptotic formulae. 

3. Let us define the integral function t E(x) a the series, 

an 

Seoaesmatechacstesemtccoscer en adatesstsanscesetes ( E, (2)= om 2 T (w+k+1) (3), 

where & is a (large) integer ; we shall obtain asymptotic expressions for 4, (a) for all values of «. 

(i) Let |2|<1; then 

| ~ v a | 

eres Et + E+ 1 SD EBay | 

< an t= ee n(k+1) K+ 1 Sk) J 

2 
— : > <TH) when />1 

Thus, when |w|<1 and />1, 

|B @)l<se ey audonocaosHecobtooOgD ads ob ooEOCCAdesoMaNCCOLo-doe (3 a) 

(ii) Let |#|>1, |argxv|<3r—6 where §5>0; then by multiplication of series 

Pr ie aes a a (—)" kan a pl S 1 hk React. 

Ce) maa(GERI ce AEE) a! meaD So SES 
along a contour which may be taken parallel to the imaginary axist passing through the point s=—J; 

where 7 is some fixed integer, and /& is taken to be such that 4>/+1. 

On the contour | /(s+%)-!|<7+1 and {|P(-s)a*ds|<2m7K where K depends on 7 and 6 only when 
\e|>1. 

Thus, when |#|>1, |arga|<3nr—6, £>7+1 

K Gall : 
| By (2) |< (ae (3b). 

* The use of the symbols K and O is explained by + Some properties of this function have been given by 

Hardy, ‘‘Orders of Infinity” (Camb. Math. Tracts, No.12); | Hardy (Proc. Lond. Math. Soc. ser. 2, vol. 1. pp. 404—405). 

the symbol O was introduced by Landau (Primzahlen, + See Barnes’ memoir (loc. cit.), Part 1. 

Bd 1. p. 61). 

3—2 
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To discuss the function A,() for other values of 7, we need the following Lemma*: 

Lemma. Vf 1>u,>uw>...>0, and if s, denote the sum of n+1 terms of the series Tu, 6 + use" +... 

@ being a real angle, then 
| s, | <| cosec ($a) |. 

[For (ql —e) Sr= 1 + (uy a 1) e' +(u2— uy) enw ore +(Un — Uy - 1) is —Up efit. 

so that | (1—e') S,|<1+ (1-24) + (& — ty) +--+ (Up 1 — Un) + Un 

<2, 
ie. | S,|<|cosec ($o)|.] 

(iii) Let a=re” where r<k, 8<@<27—8 and 0<b<$z. 
a 1 , te r= ey 

Then B@=serp| teri? + (41) E42)" +... 

Applying the lemma, we get 
ay, cosec $6 

| (7) <7 E41) cdccsccesuswestuss seaaccesscacersiracesatacnstaeaes (3c) 

(iv) Let s=re™ where r>k, 8<o<27—8 and 0<d<$r. 

ye 1, te ES =) ae Then By (#)-5=-sRp| 1+ my oes atc io featal|a 

Applying the lemma, we get , 
| ,_ | __ cosec $6 
| Ee (x) - 3 |< 2P (k) eect c ence twee en eceeececsceecessenensecsseserssseses (3a). 

The results (3a)...(3d) are those which will be required concerning £;, (7). 

4. Let us now consider the behaviour of the integral function 

Sipe see as I 
Ga(a; 0,k) neol (n+k+1).(n+ 0’ 

where || is large, & is a (large) integer, 0< R(@)<1 and R(8)<0; for convenience we 

take | «| >2. 

As in the portion of Barnes’ memoir+ which deals with the function Gg (#,@) we may 

shew that 

Gp (x; @,k) = = | | - ee (1 _ ah (1 i Ve Ex (w—y). dy, Qin © 

the integral being taken along a contour starting from the point a, encircling the origin 

in a positive direction and returning to the point 2 This contour is marked with double 

arrows in Fig. 1. The many-valued functions are specified by taking 

arg (1—y/x)=0, arg {— log (1 — y/x)} =0, 

when y lies on #O before the cireuit of the origin has been made. 

Now let us deform the contour into that marked by single arrows in Fig. 1; the four 

parallel lines make a non-zero angle with the line Ox, and they make an angle less than 

4a with the real axis; the circle surrounding O is the circle y =1; the lines PQ are 

* Cp. Bromwich, Theory of Infinite Series, § 20. by term, of the series 
+ We have © 2B-1 p—(e+n)2 yn 

b> ~ — 

ul e-7iB T (1-8) : n=o ['(n+%+1) ’ as pes <B-) e-(0tn)2 dz = 
(n+0)8 Qi Pages a round this contour by Bromwich, Theory of Infinite Series, 

round # contour starting from +, encircling the origin § 176 a, and then put 1—y/x=e~*; the function Gg («, 0) 

and returning to +; we may justify the integration term is dealt with in Part 111. of the memoir already quoted. 
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parallel to the imaginary axis and at a distance from it equal to | «| {1 +kexp|2|}; 
so that the lengths ~P and OQ lie between k exp|#| and | «| {2+kexp|«|} sect; ie. if 
k>1, «P and OQ are less than 6k/2|exp|z). We note that on the loop from Q round the 
origin, when | y|>2)|x|, R(«—y)<0, since OQ is inclined at an angle less than 17 to the 
real axis. 

Fig. 1. 

We may now write the formula for G3 (x; @,k) in the form 

Gp (05 8,8) = C—O] | tog (1-4) | (1-2) Be e— yay Qrix 

= log z(t A) (1-2 Be —wvay 
a @ler|-e(-2) (-3- FEA ant Ren ae ae (4), 

where C denotes the contour starting from Q, encircling the origin, and returning to Q: 

in the second and third integrals the many-valued functions are specified by the values 

which they had at P in the original loop integral before the circuit of the origin was 

made; since we have written y=7+2, OP’ is a line equal and parallel to #P. 

We write this formula for Gg(z;0@,k) m the form 

GAGA ON) = 1s UREN ered ons cain se secceeceesaeeeeeense at (4a), 

and we proceed to find inequalities satisfied by | J}, |Z.|, |Z; |. 

Let us first consider J,; on PQ we have the following inequalities satisfied: 

log (1 - ") arg - log (a _ Yh arg @ = 2 | IK 
L 

also R(a—y)<0, so that by (8a), (3c) and (3d) we have | A, (~—y)|< K+ (k+1); and 

it is easy to see that the length PQ is less than 2) zx}. 

Ke \-4|>x, <SKG 
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1 aay, im 
Consequently is |< iaT (6) ie {(T(k+1)}-dly|. 

Kk : 
Hence WE)\< GEES) Gee a ae (5a). 

We next consider the integral /,; it is easy to shew, by (3c) and (3d), that on the 

path of integration 
K 

Ey (—) |< ——- KO ™ STO) E+ |} 
Putting »=—rze on the path of integration (7 being real and positive), we see that 

| K | «| 5 AOL rets)o | ee . ve log 7 — iw)8-!} . | (re®) P(e). (eer lelh r, 
1 rp 

<—s,, (= I<fereay, | 
where p is some number less than 6% exp | a). 

Since |(—logr—iw)|>4{|logr|+) |}, it is easy to see that 

K fe R(®)-1 dp 

= re! {| log r| + | |}2-2@(k +r] a |} Ts 

We now divide the path of integration into three parts, viz. 

(i) from r=0 to r=h,, where k, =k, 

Gi) from r=k, to r=k, 

(ii) from r=k to r=p. 

There are two cases to be considered, the first when 0<R(@)<1, the second when 

R(@)=1; in both cases we observe that: 

on (1), {\log | +|@|}#@-1< K, 

on (ii), {\logr | + | o |}2®)-1 < K flog k,}2(@)-1, 
on (iii), {log | + | |}®@-1 < K flog k}®@)-1, 

In the first case, we see that 

ete es. Be det lie RO) (Me epee pipiale) =a (i, meng 
isl wk+r|a| ieee i) Perens mrtAleg J Gi) R47 | | | 

< — | k-*yR)-1 dy + {Llog Kye) 1 k-1 rR) -1 dr + {log }R@)-1/ | a |-} RO) —2 ar| 
(*) LJ@ J (ii) ; zs 

< — en —14 J,R(6)-1 \log ke} (8)-1 +\e | -1 (R(0)-1 flog Rae] $ 

q K KR) 
So thi 8 a) ieee et etececeasacseuceaeaenss 5b). » that I,\< T(E +1) {log Rw (5b) 

[Nore. In the investigation of Z; we ought, strictly speaking, to have taken the contour in the 
immediate vicinity of ~ to be of the form shewn in Fig. 2, since the point w is an essential singularity 
of the integrand: but it is easy to see that, on the corrected path (i), the inequality {| log r|+|@ |}R)-le 
is still true, and thence that the contribution of the corrected path (i) to the integral J; is still 
O({r (b}-1 2) ; it being assumed that the arcs of the small circles near x are of radius less than, 
say, 4 so that they are not in the immediate vicinity of O or P.) 
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In the second case, when &(@)=1, we have to treat the integral along the path (iii) in a 
slightly different manner; we have 

| qe) =1 1 k+p\x 
log 

eae as, ~ la k(1 +) z|) ~ 

1 F 
a log (p/k) <$(2 + log 6), since |2|>2: 
x | 

and hence (56) is still true even when R(@)= 1. 

We next have to estimate the value of the integral 

We divide the path of integration into two portions, the first portion being such that 

on it |y|<2|z|, the second being such that on it | y|>2|«|; we call the integrals along 

these portions J,’ and I,” respectively. 

On the portion for which | y|<2| |, we notice that 

hog ( _ | SG larg” + arg {=Hos (1 - 2) eI 
\y x} | y Z 

| /y\B-1 / e-1 
so that in’|<K||(2) a-2) E,(a—y).dy ; 

\ 6-1 

while we remember that |y|>1, and {1— Y) < K, since R(@)< 1. y| ‘ a 
/ 

K 
It follows that ID’ < pen | | Ey (w@ — y).dy|. 

Now all the asymptotic expressions for Z;,(«—y) are comprised in the single formula : 

ey | a es 

YC (e+1)|  Pe&+1)’ 

and on the portion of the contour under consideration |a«—y| >K\« 

1 f yee a aol Hence INi<geapresy| K {ater | +1} .| dy| 

Also, on the contour, | e~’|< K, while the length of the contour is less than KX} 2}. 

ee) ok Ve 

Therefore, finally, é 
Tee Ae f K|\é@| Ke) 
EARS T'(k +1) | gite=2| als | 8 | i 

Lastly we have to estimate the value of 
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the integration being along those portions of C for which |y|>2||; on these portions of C, 

R(x—y)<0, so that by (8c) and (3d) 
K 

Bs (@—9)'< Dey fer ey} 
Putting 1—y/r=re (r real) we divide the path of integration into three portions*, 

viz. (i) from the pomt where y=2/2z/|to the point where |1 —y/e|=h; (ii) from this point 

to the point where | |1 —y/x| =k; (iii) from this last point to the pot where y= OQ; noticing 

that |\dy|< K \a |.dr, we may prove+, in precisely the same way as we proved (5)), that 

Kala: |B) 
<TE Sms (log RU re 

[From Fig. 1 we observe that each of the three portions above has to be taken twice, 

but that fact does not alter the form of this result.] 

Te 

1 

Collecting the results numbered (5) we see that, if / be a fixed integer, k>1+1, |x >2, 

and 0< R(@)<1, then 

’ (x: OI K |e” K \a)-8| K .-2® : 
| Ga (x; 0,k) < etl) Tee) +raapt FUER) (oe iz (6), 

where K is independent of / and z. 

We wish to extend this result, so as to cover a greater range of values of 6. 

First, let 02= N+ ¢, where WV is a - integer and 0< R(¢)<1. 

at gn-N 

qa —N).(n—N+6)8° 

We easily deduce from (6) that, when V< R(@)<N+1 and k>N+4+/+4+1, 

TGs |alee ed ct) oe K .& 8) 
WHIFB-1/ 7. 7. += lokReccte (6a). 

|aN+t+B T(k+l)~ P(k+1) ° C(k+1). {log k}-28 

Similarly, when — V< R(0)<—N+1, WN being a positive integer and k>—N+1+1, 

Ga (a;0,k)|< eS pe e’| ae Riper ee | K \ xX kR® 
Tp T(k+1) jalt@-N-1) P(N +k+1) T&+N41)+ T(E +1). (log &) =e) 

Then Ga (a; 0k) = 4 Ga (e: o,k— N)- 

Ga(w; 0,k)| < 

It is convenient to quote the complete asymptotic expansion of G@s(a; 6,k) when |! 
is large and & is fixed; we a 

ae n—k 
Ga(«; 0, k)= r = 
aati OE) = 2 Fo w ee me = rac (n—k+ 09? 

consequently}, if [log (1 — y) P71 — y)?* #7 = (- yf S dy (—y)", 
n=0 

= sn—k x N n Gp (0; 8,8) = . et [ (cd TB+2) | og: 
Cea h)= ‘i > OGLE aero tam | 2, E(Bya" 7 ane = 

- e N _\ntk rm a= k & 

+(-aytflog (a) | 3 Ne aye yp tollee(—o)] Co, 
where |arga| <7, arg(—a)|<m and WN is any assigned integer. 

* Some of these portions will be incomplete or missing + The work is not worth setting out in full. 
when k is not large. t+ Barnes’ memoir, loc. cit. Part m. 
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These form the set of asymptotic formulae which will be sufficient for our purposes 

at present. 

Parr Il. Yhe asymptotic expansion of f(w) when M=1. 

5. We are now in a position to attack the asymptotic expansion of f(w#) as defined 

in § 2, When a#1, it is necessary to employ a preliminary transformation which is sug- 

gested by the work in that part of Barnes’ memoir on integral functions which deals with the 

generalised function of Mittag-LefHer: 
7 pt = S <<, 

E(x; 8, B) va2o D1 + 4n).(n + 0)F 

Pilg 

The transformation is derived by considering the contour integral 

he os tay m™ sin |(q — &) ms} p(s). e% of 

277i J p sin (ams) .sin (ws) I’ (as + 1) 

the contour of integration is parallel to* the line R(as)=h,, and on the right of this line; let 

h and 7 be the integers such that the points s=j, s=h/a, s=—@/a lie on the left of D while 

the points s=j +1, s=(h+1)/a lie on the right of D; also let g be an odd positive integer 

(=2p +1); we defer, for the moment, the choice of the numbers g and p. 

The integral J, converges if 

| {Sin y log | z| — cos y arg z}|<47A+acosy—m|(qceosy—A)| ......... (7 a) 

where z=eIx, a= Ae’y, 

the numbers A and y being real and | y| < $7. 

[We notice that h+1>—R(@) so thath+1—p>0.] 

Now if (7 @) is satisfied we may shew that J, is O( « |") where Z is the value of R(as)/R (a) 

on the contour D. Further, we may shew, by Cauchy’s theorem, that J, is equal to minus the 

sum of the residues of the integrand at those poles which lie on the right of D. 

We thus get 

Tees | SOM I Seamer) (ie) 
7S ev D(ans 1) ~~ a-ay1 SiGrn/a) Ge 1) 

Remembering that g = 2p + 1, we get 

IMs (weI ma, 

2 p(n).e” 2 iD ad ig! (n/a) ; E 
ee > > expi(Qz7 oo (OI) eect ees : =. h@ean a=1,+ Se, exp (27rint/a) T'@a) (axel) (8) 

We are thus led to consider the behaviour of the integral function 

2 o (n/a) 
PERG Napa, Of reer, BSS econ cURL eBe ae Re RSET clo De > Tage) (9), 

where y = (ae9)"!* exp (27rit/a). 

But, for the values of n involved in this summation, we may expand $(n/a) into a conver- 

gent series of inverse factorials (by the result of § 2), so that 

1 ay As 

A Ds (n+ 0) | a1 4 (n+ 1) (n+ 2) 3 # |: 

* We take the contour to lie on the right of the line R(as)=y'; y' being defined as in § 2. 

Vor, XXII. No. OI, 4 



24 Mr WATSON, ON A CLASS OF INTEGRAL FUNCTIONS 

(On comparing both sides of this equation as n—» 2, we see that the first 8’ — 8 of the 

coefficients a, d, ... vanish.) 

From this expansion, we may shew that F'(y) can be expressed as the sum of a series of 

functions of the type Ge(y; 4, ee for we have 

F Ls Am af ae S by. n Of 

@)= ee nai(nt+ OP U(ntm+l) y=h41 (n+ OF C(m+1)’ 

= er Ue G+2 ss 
wens bin = (n+1)(n+2)...(n+h+ i (vn +1) (n+2)...(n+h+2) e 

Also, since » >h +1 

bene)! | ___“ IC Ey C+ | an 

“[(A+h+2)! 0 (h+tk43)! UP 

and, since | d;4,|< Kk! b+ \log (k + 2) , we easily find that, gua function of k and 

og (k+2))8 flog (k+3))4 ban < Ga ix | REE Pelee dieses | (k | I} aese 

flog (t+ 2)}? 

au ie fhe at| 

. B -0|*8 | 
khh—e 

— 0, as kom since h+1—p>0 

Further, if by, be the greatest value of | by, al for n>h+1, we have 

ke Ss >, ny” f S . |y ia =) 

n=ht+1|(n+ O08 |.n! 
oO \n 

Since R(n+©)>0 throughout: the summation Ly » —*AG is finite for any 
n=ati |(n+ OF |.n! J 

assigned value of y. And consequently 

k 
F(y)= = any’? Ga(y; O+h41, m+h+1)+J, 

m=0 

oo | gy (m 

where |J;|<by > y Ra ra) Tee ,— 0, as k—> x when y is assigned 

That is to say, for every finite value of y, 

F(y= S any" Ge(y; O+h+1,m+h+1). 
m=0 

6. We shall now shew that when arg y|< 4}, F(y) possesses the asymptotic expansion 

ev v Sue rd- B) 

2 = ay \—¥ F(y)= yp E = y" +o(ly| | Sector Oeaueae nee (10) 

where S, = = On + pie m ; th offi heal if ART ear ee e coefficients ,,c, are given by the expansion 

{log (1 — w) PP (1 — w)?-™ = (— a > mCn(— 2)", 
n=0 

and @=@+h+1 while v is any fixed integer 
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We shall also shew that when \arg(—y) <47, F(y) is O( y) where X is determinate 

We have 

F(y)= = any'"Ge(y; O+h+1,m+h+1)+ = any Ga(y; O+A4+1, mth+)). 
m=v+l 

D 
m=0 

On substituting the result (6c) into the first series in this equation, we get at once when 

largy|<m and |arg(—y)|\<7, 

z Sane a — 8) 

| 3 +otiyi) | +00 y+ OU: y® {log (—y)}*)) y" 

+ = dny'?Ge(y; O+h+1, m+h+1). 

ev 

FY)= 5 fp n=0 

m=v+1 

Making use of the formulae (6) and (6a) we find, on remembering that R(@+h+ 1)>0 

that 

y any’ Ge (y; O+h4+1, m+h+1) 
m=v71 

Kier] 3 fant h+I| agen) & |Mn(m+h+l) 
[yA 8 | marti | Um +h+ 2) mari] Pim +h +2) 

S Om (m +h +1)FOrh+) 

DP (m +h +2) {log (m+h+1)p-*8 
Ste | 2/72) |S) 

m=vt1 

where WV is the integer such that V<R(O+h+1)< NV +1, and J is any fixed positive integer 
1 and vy being so chosen that vy > V +1 

Remembering that, for the values of m under consideration, a,,, qua function of m, is such 

that a,,= O(T' (m) {log (m+ 1)}? m*), we see withcut difficulty that 

Cn (m +h + Ly 
/ {log m+} 

P(m+h+2) ae eee 

Om (m+h+1)FOthH
) aa 7 

: * and 1f (m+ h+ 2) {log (m+h+ 1)p- Rp) 

Now h+1—N—yp>0 since R(O+h+1)>WN, and R(8)+ B<0; and hence the series 

= S ee aly S a are absolutely convergent. 

Hence it is evident that 

a nf Ge(y; O+h41, m+h+1))| < ee rte +E | yh | 4 | yht 

Consequently, when | arg y|<7, 

Fy)=" ole, a — sally + Oly Mo) ] + OC y'), 

, 2—R(B)+h. where X is the ee of the numbers h+1, 1— R(@) 

This result may be written in the form 

vy [¥H=h-1 8, 
g ( =8) 5 o(\y ea *)]+00y a), mG) (Y= | — y" 

* u=-F Oh 
4—2 
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and v may be chosen in such a way that V +/—h—1 is any fixed positive integer; for v is any 

fixed integer and / is subject only to the condition that » > V +. 

Writing v in place of V+ /—h —1, we see that this result may be written in the form: 

ev |2 S,-P(1— 8) 
F(y)= = 

(y) af rn=0 y" 
+o yh)] Oy 

when |argy| <7. 

This is, effectively, the result stated at the beginning of this section. 

7. If we substitute the asymptotic formula of § 6 for F’(y) in the equation (8) we see that 

if one or more of the numbers 

larg 2"" 4 ang {exp(2mip/a)}|_ (w=—p, 1p, 2—p,-- +) 
is less than $7, and if none are greater than $37, the asymptotic expansion of f(z) is given by 

the formula 
Pp. ex gle eglat2ripja v Sn . ip if = B x 

f@) Tae f : x 1 (ate gaara 18 o(ja)h | sees (11), (alla egla+2minja yp 

where v is any fixed positive integer. 

8. In order to appreciate clearly the range of validity of the asymptotic expansion (11), 

we have to consider the inequality (7a), viz. 

| {sin y log | z| — cos y arg z}|< 42d +7 cos y—7|(qcosy—A)), 

in some detail. 

(A) In the first instance let us suppose that 

A <2 cosy; 

this inequality may also be written |a—1|<1. 

When 2 lies in the portion of the plane* defined by the inequalities 

—araAn<isin vy lopli \cosiyarme <a mAlcudeeesececs- tees (12), 

then it is easy to see that R(v'*e7*)>0 and the inequality (7a) is satisfied if q=1. 

In other words, if |a—1|<1 and |sin ylog|z|—cosyargz|< 4A, then f(x) possesses 

the asymptotic expansion 

exp (a*e9*) ( » S,.T(1—8) rae . Q= sia 13 a “+ o(|e a Jatefis’ oh deter eeae (13). 

(B) If, however, « does not lie in the region of the plane which we have been consider- 

ing in (A), we may choose arg (— z) so that 

—(m cos y — $7rA) < sin y log | z| — cos y arg (— z) << reosy—47rA ......... (14). 

And, when z is such that (14) is satisfied, we may shew that 

#(a)— ZL p(n) emma” 1 7. p(s) (—2)° 
—s Tr (an Tu 1) = onan 5 sin (7s) P (as ri 1) GUS” eww ns.choetus'auislecwas ciety 

If the subject of integration be a uniform function of s and if it tends to zero as s > x» 
when —h, < R (as) <h, for every fixed value of hs, a knowledge of the poles of @(s) on the left 

" That is to say, x is confined to a region of the plane between two equiangular spirals. 
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of the line R(as)=/, will yield the asymptotic expansion of f(#) in the usual manner; for 

we have 

3 (n) era” i: rie m .$(s)(—z) ds_ e hy 7. 6(s)(—2)* 
Tt (2) = Mel) | oa oan Gay (ae 1 + the sum of the residues of ai Gray (Gack 1) 

at those poles which lie between D and #; E being a contour parallel to D and on the left of it. 

If on EF, R(as)/R(a)=—h., the integral along # is O(|z\—). If, however, h, could not 

exceed some definite value, we should not get a complete asymptotic expansion, but we should 

obtain an asymptotic formula containing a definite number of terms, valid over the region 

specified by (14). 

In the immediate vicinity of the curves 

sin y log |z|—cosyargz=+47A, 

the only result concerning f(#) which we can obtain is an equation of the form 

f(z) =0(\«)), 
where A, is determinate; this follows without ditticulty from (10). 

(C) Let A=2cosy, ie. |a—1)/=1. (4 +0.) 

By taking g=1, we get the expansion (13) as before, valid over the region 

— 7 cosy < sin y log | z| — cos y arg z < 7 cos ¥. 

That is to say, we have obtained the asymptotic expansion of f(#) over the whole plane 

with the exception of the neighbourhood of the spiral 

arg z— tan y log|z|= + a. 

Near this spiral, we only know that f(#)=O(#); and we get no more information 

by taking g = 3, 5, .... 

(D) Lastly let A >2 cosy, ie. |a—1|>1. 

Let us choose g to be such an odd integer that 

AK —ICOS|¢y)-<19): COS |) PAW I COSIry sna norjas cia a\eciae cae sclussneeelalet (16). 

Whatever be the position of « in the plane, we can always choose argz so that the 

inequalities 
—47A <siny log |2z|—cosy arg 2 <4$77 ...... ec eeees (16a) 

are satisfied; so that with this determination of arg z and arg « we have 

R(ae9")>0, |arg (ate9!")| <4; 

and then (7q@) is satisfied since cos y — | (gq cos y — A)| >0. 

Further, we have to ensure that the arguments of all the expressions 2!/*e9/*¢e?""#/« lie 

between +37. But this is certainly the case, for 

| arg (al/« eagle e2riule) | < dor + arg (e?rP/s) 
<4ar+ pA cosy <4$7{1+(q—1)A~™ cosy} <7. 

Thus, when |a—1/|>1, the asymptotic expansion of f(z), valid over the whole plane, is 

given by 
exp (aVeegiet2miviay ( » S,.0(1— 8) aa ot] 

— a: - eee - 
ST (@) a jeep | 8/2 egBla+2mipB/a Wee (allo egla+2miuja)n 
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where arg x is determined by the inequality 

[sin y {log |#| + R(g)} — cos y {arg « + I'(g)}]| < 377A, 

q¢=2p+1, ¢ is defined by (16) and the coefficients S, are those defined in connection with 

equation (10). 

Since the first 8’ — @ of the coefficients a, a,, ... vanish, so also do the first 8’ — 8 of the 

coefficients S,, S,, ...; it will, therefore, be possible to modify the above expansion slightly 

when §’— 8 is a positive integer and not zero; we shall not carry out this modification, as a 

more convenient form of the expansion will be obtained in Part IV. 

Part II]. Asymptotic formulae required when M <1. 

9. The fundamental function to be investigated in place of &,(%), when J/<1, is the integral function 

«2 a 

yal {M (n+e)+1} {iM (n+e)+2}... {Ml (n-+e)+h} 

The asymptotic formulae are required for this function when ¢ is an assigned positive number, & is a 

(large) integer and z has any value. 

E,. (2; M, c)= 

a” T (Mn+ Me+1)T (hk) 
It is evident that Ey (x; M, e)=" ae neon! T(din+Me+k+]) * 

Now = eM (»+¢)(1—¢)§-1 is uniformly convergent and each term of the series is continuous (when 
n=0 . 

k>1) for the range 0<¢<1 for all values of ~; consequently* we may integrate term-by-term and we get 

1 
We (ee May FUE i (1—2)F-1 2 exp (2t®) dt. 

If R(x) >0, | exp (wt) | <|expx| on the path of integration. 

Hence, when & (x) >0, 
ju 

| By (x; VU, e) <iet | (1—2)k-1 eMede, 
0 r(&) 

i.e. | By. (a; WM, ec) | ty ena ktecdasaoaenncaee secon canetesmaenee (17 a) 

In like manner, when R (x) <0, | exp (at) |<1; so that, when R(x) <0, 

| Ee (@; 4, ¢)| Se) ot ate he NS (178). 

Further, we have |e~* E(x; M,c)\< - B | ‘(l —t)k¥-12Me exp {R (x) (AO —1)} dt. 
Jo 

Now, if &(x)>0, (1 ae (2). (!—1)}, qua function of ¢, has one (and only one) maximum when 

O0<t<1, viz. when 1-¢#¥= KG =z)? provided that R(x) >/. 

Consequently if R(x)2>/ and £>/+1 we have 
=a\q 

(1=eFexp (2 (x). (1-1) < (Fe ) when 0<t<1 
R (a) 

So that if 7 be fixed, 

e-* Ey (a; M, c) —¢)k-14Me(] — 4¢M)-1 \e-* E(w; M,) <a ier |, (1—t)F-1 ee (1 — 2) -t ade, 

But, when W<1, (1—¢)/(1-—t")< M~! when 0<t<1 

MK 

P (k) {Ra}! 
K r(k—) 7 (Me+1) s that 2B (a: Mic ee Se ee RA ae 

one aoe Se Th) {Rh (@}t T ile+h—l4]) © 
1 
| tMe(1—t)F-"-ldt< 

* See Bromwich, Theory of Infinite Series, p. 116. 



DEFINED BY TAYLOR'S SERIES. 29 

Pee ee eee Mee cre r—1, Senne that 
&=Il+r=1 r 

(Me+k=1+1) (Me+k-U+2) ...(Me+k) _(Me+2)(Mc+3) ...(Mc+7+1 
(E—0 (k—1+41)... (E—1) ie ey: 

Consequently, if 7 be an assigned integer £>/+1 and R(x) >/, then 

ee K T(k-l) 1 (Me+k+1) T(Me+1) 

eS cs <TR ey: T() ‘T(ilepk—14+1) °F (ile+k+1)'” 

K\e ze 
{R (xT (Me+k +1) tee ee wwe www mew eee ew ewe n nee eeeneeesensees @ @). 

And, by (17 a), this inequality is true when 0< R (xz) </. 

ie. | Ey (x; M, ¢) |< 

Lastly, we get on integrating by parts, when (x) <0, 

1 
7 healt Ly _ pe-1yMe-M+1 2m) | —_! = etm. @ 4 k-14¢Me- M+), Be; Hd==75| a5 0 t)F-1¢Me exp (at¥) Fe 4 M~' exp (xt )- (-4 t 1. dt, 

1 aU & 

ie. if k>1, E, (x; M, )=- 275 |. ee ) §— (k=1) (1-2-2 eMe- +14 (Me — M41) (1 —2)F-1 ea a, 

Since | exp (z#)| <1 when R (x) <0, we see that 

|B (@3 Ih 0)| < are vare!. {(k—1) (1 —t)F-2 eMe- +14 (Me — M41). (1— 0-1 2e-IN t 

or (di c— M+2) 

~M\a2\T (Me-M+k+1)° 

The reader will easily see, on making the necessary modifications in the work; that this is true when /=1 

Hence when (x) <0, we have, in addition to (17 se: 

2 (Me— M+2) ae 
| Ey (x; H, c)\< <7 zr (Me — TEE) BEEN ) Pon CC Ee (17 d). 

The results (17) are all true when M=1. 

10. We now have to discuss the asymptotic behaviour of the integral function 
a” « 

Ce = = Pai (n+ OF {M(n+c)+1} {M(n+c)+2}...{M(n+e)+k}’ 

when || is large, k is a (large) integer, 0< R(@)< 1, R(8)< 0, c=R(O) and Ml 

As in § 4, we may shew that 

—BT(]— 98 B-1 ay\ 9-1 
Ga(a; 6, k; M, jee |- log (1 = 2) | ( — 1)" By (ey; M, 0) dy, 

round the contour marked with double arrows in Fig. 1; and, as in § 4, we may deform the 

contour into that marked with single arrows in Fig. 1, so that, preserving the notation of § 4 
we have 

Ga(z; 0,k; M,c)= =) 
5 log (1 Be: ale (1 a vy P

P for 

1 i B-1 

~ «T(8)J pq - log (1-4) ( =) E,(x—y; M, c).dy 

= 1 n 8-1 n e-1 q 

z1'(8)! op |- log (-2)| (-2) E,(—7; M, ¢).dy ...... (18) 

Sif, tid heh 
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\ |B8-1 6-1 

On PQ, as in § 4, |- log (a - 2) | ( = 2) 

E,(a—y; M,c) <K‘{T(Mc+k+1)}"; while the length PQ is less than or equal to 2| 2}. 

< K, and since, on PQ, R(x—y) <0, 

H ae At K 

aa : =P (B)|Jpo let h +1) 
K 

1.€. Af <T@ic+k+1) wise vivlelals eleleniecssecensnseececcucicebtue (19a). 

We have now to estimate the value of |J,|; putting » =7rze where r is real and positive, 

we get 

J3|< mat (— log r —t@)P | . | (re)*> |. Ey. {—; M, c) |. x) dr, 

where p< 6kexp|xz|; whence we deduce that 

re dr 

o {| logr|+)a|p-# 
|\J,)< K . Ey (— 7; MM, c)|. 

We now divide the range of integration into three parts, viz. 

QG) from r=0 to r=k, where ky =e, 

(i) from r= to r=k™% 

(mm) from 7 —™ to 7 =p); 

we observe that: 

on (1), {\logr|+/o/}F® < K, 

on (il), . {| log 7| +|o|}#8)— < K {log k,}#6)—, 

on (111), {\log 7|+|o!}*@— < K flog k}®#)> ; 

also in (i) and (ii) we use the inequality |£,.(—)| < K {Ul (Me+k+1)}~ derived from (176); 

and in (iii) we use the inequality | ;.(—)|< K {\n\ (Me — MW +hk+1)}~ derived from (17d); 

and we deduce that 

a 

ay I ( Mc+k+ 1) 

/ 

J3|<K {TMELEED dr+K i dr {log k,}2@— 

re 

- f .) R(B)—1 es «|TV (Me Pe) {log i} 

+c [Me !] >, RB) Mf (c—1) »)| Rig)—1 

ok) EE flog eA, _ Wiel) 
PY (Mc+k+1) «@ V(Me—-M+k+1) 

since 0< ¢<1; on substituting for /, and making use of Stirling’s formula, we may write this 

result in the form 

1G ’ 
Obs 1 (k +1) {log k}-*®) a (196). 

Next we have to estimate the value of the integral 

ih / 68-1 e— 

| |- log ( 1- | (1 - ¥) Ey (a@—y; M, ec) dy. 
JC \ @ L 
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We divide the path of integration into two portions, the first portion being such that on 

it |y|<2 ||, the second being such that on it |y|>2|«|; we call the integrals, along these 

portions, J,’ and J,” respectively. 

As in investigating J,’ in § 4, we may shew that 

(deill<< a | { Ey, (cc NUM C)\LY |e oateecrscescaeere ee sesceee (19¢). 

We now have two cases to consider, according as R(x) <0 or R(x) >0. 

(A) If R(x) <0 then R(x —y) <1 throughout the contour and the length of the contour 

is less than &|x); so that by substituting for #,(#—y; M, c) from (17a) and (175), we get 

naa K\a| 

11S (38) TP (Me +k +1)’ 

A K 
ie: | J, |< jae | T(Me+k+1) Bolstelpfarreimuleinielets cieisetelteialotere iets (19d), 

when R(x) <0. 

(B) If R(x) >0, let arg x= where |Q|<47. If O is not actually equal to +47, we 

can divide the path of integration into two parts, on one of which R(#—y)>4R(z), and on the 

other R(a—y)<4R(«); and the length of each of these parts is less than K | «|. 

On the first part we have from (17c), if k>/+1, 

Bee Me) < — eo 
Le., since R(w#—y)>4R(2), 

| Bi, (a@—y; M,c)\< 

On the second part, by (17a), 

K (sec 0)! | e*|.| e| 

|ja!/V(Mce+k+1) ’ 
and |e¥|<e. 

[Pe 95 0) <5 Cio -Seeeal) 
K |e 

<T (ile +h+1)° 
Hence, by (19c), we see that, when argx=Q, R(x) >0 and k>1 +1, 

see K (sec 0)! | e* | K |é| Oh SE ee 
jaP =) PD (Me+k+1)  |a®@|D(Me+k+1) 

A modified form of this result is desirable when © is nearly equal to +47. To obtain it, 

we notice that, on the path of integration, R(y)>—1, and hence by (17a) and (176), when 

R(x) > 0, 

PEs. 
P(lc+h+1)° 

From this result we derive. by (19c), the following inequality when R(x) >0: 

K\é@| 
0 (eee (19/). 

Lastly, we have to estimate the value of the integral 
-r \ 76-1 OS n= |[-toe (1=Z)]" (1S) Bae 95 Moy, 

iWoOnsexexehI= No, UE: 

| Ei, (a@—y; M, c)| < 

| Jr |< 

or 
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taken along that portion of the contour C for which | y| >2 |; on this portion of the contour 

the formulae (176) and (17d) are applicable. 

By putting 1 — y/x = re™ (r real) and dividing the path of integration into three portions, 

viz. (i) from the point where |y|=2|a| to the point where 1 —y/x| =k; (ii) from this point 

to the point where 1—y/x|=k™; (iii) from this point to the point where y= OQ, and on 

making use of (176) in (i) and (ii) and of (17d) in (iii) we find, in just the same way as that in 

which we obtained (5d), that 

yey SE) Ds bw Oh (199) 
<TE+1) flog kP-*8) een e cece nen ecenecees 5 

Collecting the Yesults numbered (19) we find that the asymptotic inequality for 

Gs(z; 0,k; M,c) may be written in the following form: 

Let / be a fixed integer, & a (large) integer such that k >/+ 1, and let |w|> 2, argv =. 

Then 
7 | 1-8 

|Ge(a; 0,k; M,c)\< KU K\a K 

1 |T(Mc+k+1) o I (Mc+k+1) i TP (k +1) {log hk} -®®) --.(20), 

where U is defined by the following inequalities : 

(a)) “Gwhenel (ZO! Oia... Sapeereeete es cents Aenea ne meee een ce eee nee eee (20a), 

(i) when R(x) >0, both the inequalities, 

U< Saad oy betes phat at (oe (20b) 

OT | yen co atavt adel. camonsccind is cosh Svante eee (20c), 
are true. 

Part IV. The asymptotic expansion of f(x) when M <1. 

11. The analysis of § 5 down to equation (8) still holds when M <1, so that, as before, if 

ry =e%r, a=AeyY, gq=2y+1, 

and {sin y log | z| — cosy arg z}|<4a2A +7cosy—m/|(qceosy—A)|, 

bar Pp. h pee Me SF (we) exp (2rip/ then = TCO Sn me F ((we?)"* exp (2 7iw/a)), 

where I,=O(a") and L<j+1; 

also F (y) = Sy $ (n/a) 
n=h+1 n. 

Now we know that when |s | >y' and | arg (s/a)| <\ + 47, P (sia) is analytic and 

# (s/a) = exp (—8' logs). | a’ + + 4g a" + Ba . 
where Qn’ |< A,p".n!, | Ras" |< Aoo,”. n!. 

Let h be an integer greater than y’ and let @ be such that h<—R(@)<h+1; then, if 
h, denote any of the numbers 1, 2, ... 1, we have 

1 l lg he Re. hghtt hy 

s—h, $ E " 8 Bz se Tae s” ahr re i! rt =i} ~ 
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so that, if h<h,<—R(@), then, when |s|>h, 

te i eae ae 8 aa = 
i= = qj, ea, oS alee 
s—h [mr e+ + nt Rn 

where | @,|< Asp”. 7!, | Ry s"* |< Ayo,".n!, and A;, A, are independent of n. (This follows, 

without difficulty, from Stirling’s formula.) 

Now if we have a finite number of asymptotic expansions with the same ‘characteristics, 

their product may be represented by an asymptotic expansion with the same characteristics *, 

that is to say that, when |s|>h,, |args| <X + 42, 

(sje) | 
s(s—1)...(s—h) 

where | a," |< A, p”.!, | Rn s "7 |< A.Moy”.n!. 

(1) Ay 

+R, s u i 

Applying the expansion (26) to the function ¢(s/a). {s(s—1)...(s—)|}~ instead of to 

the function+ $(s/a), we get, when R(s+@)>0, 

 (s/a) i 21 b, b, 1 

eS 6=) 1G.oy) |" MG=.) Ll ME=p ew ela +a =| 2) 
where | },|< H’ T'(k) {log (k+ 1)}", (k>1, H” independent of /), 

and R(b)<0, while V is the integer such that 0>R(b+V)>—1, phw=—R(O). 

Using the notation of § 7, we put 

h+1+0=0, R(h+1+®0)=c, 
so that 0< c< 1. 

It may be noted that the first b-.8’—h-—1 of the coefficients b), b,, bn, ... vanish; this 

is evident when we consider the effect of making s— 2x in (21). 

From (9) and (21) it follows that 

— arti S y” a. ie Efi*, b, b, 

B= 2 nl (at OP Eeerc +o)+1 (M(ntc)+ 1} Mmteye a} 

h+1 : . : 2 R+1 < Bin y” 

OS aa 
where 

| | Dias Der 
|Baol=|1 09 =a 7 + Good | 

} {M(m+e)+1}...jM(n+e)+k+1}  {M(nt+ce)4+1}...{M(n+c)+k+2} 

| bea | PY (Me + 1) fa Desa | T (Me + 1) 

ST (Me+k+2) * F(Mc+k+3) 

Qua function of k and m, berm is O (log (k +m +1)}" (k+m+1)-“), so that 

2 flog (k + m+ 1)}” By is O( 3 ), tel By 
Eas mai (k+m+1)" Lee S10. ( 

{log (A: + 1)" 

(e+ 1) 7}? 

by Cauchy’s condensation formula, since 

Mc > 0 and {log (k + m+ 1)}" (k+m+1)-%> 

diminishes as m increases when k+m-+1> exp |V(Mc+1)"!. 

* See Phil. Trans. Roy. Soc., vol. ccxt. A. (1911), + This is legitimate since the former function satisfies 

pp. 279—313, § 4. the requisite conditions. 
59 

a 
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: ‘ log (kK +1)F 
Since Brn is O (ee) 

it follows that, for any fixed value of y (i.e. any value not depending on &), 
an < By, e y” 

ons eynt° Sg uhde 
that is to say, 

F(y)=y" S Om Gy (y; 8,m; M, c). 
m=0 

Taking v to be any fixed integer, we have the equation 

= bm Gs (y; 8, m; M,c). 
1 

F(y)=y"" 5S Din Ge (y; 0, m; M, c) + yO 
m=0 m=v 

Now, by the theory of partial fractions, we may write 

: = == < Ps, m 

{M (n+) + 1}{M (mw +c) + 2} Be {M(n+ce)+m} es M(n+c)+s’
 

and also — A ae! 1, 1 1 1—c—sM 

M(n+c)+s M\n+1 
ore —c—sM~)(2—¢c—sM) \ 

(n+1)(n+2) (n+1)(n + 2)(n +3) eh a 

this series converging absolutely when n +1 >1—c¢—sM~; this condition is certainly satisfied 

when n > 0. 

That is to say, when n>0, 0< mv (v fixed), we may expand 

1 

{M(n+c)+1}{M(n+c)+2}...{M(n +c) +m} 

into the absolutely convergent series 

d, »m (les 

n+1 (w+1)(n+2) °°” 
where dy,m, qua function of k, is O([' (k—e— M™)); we may now justify the rearrangement 
of the series 

S binG (y; ,m; M,c), 
m=0 

in the form by Gi (y, 0) + (Did, + ba di,y +... +bydh,») Go(y, 8, L) 
+ (Db, doy t+ bodoo+.. .+b, as +) G (y, @, 2) 
ae 

as in the somewhat similar work of § 5, so that we may write 

sees 

>> bin Gy (y; @, my, M,c) = > din Gy (y; 8, m)y+ dim Gy (Y; é, m), 
m=0 m=0 m=v+1 

where d’,, qua function of m, is O(T(m—e— M-)), 

Consequently 

F(y)=y'* y dn Gy(y; O,m)y+ yh {d’, Gy(y; 0, m) + bin Ge (y; 0, m; M,c)}. 
m=0 m=v+1 

of n, is 

[Since the coefficient of y"'*” in the general term of the second summation, gua function 

1 \ 

0 | et 
: (ce acer : 
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it is not difficult to see that the coefficients d,, are those which occur* in the formal 

expansion : 
g (“TE - Ge j d, ds ) 

a ni(n + 0)? n+1 FERC) Wea 

even though this expansion does not converge for any value of n.] 

From the equation 

F(y)= Pe S am Gs (y; 9, m) + 2 Sy yl {din Ge (y; 8,m) +b Gy (y; 8, m:; M, c)}...(22), 

we may deduce the mei expansion of F'(y); ; for we have, by (6c), 

S LnmT 1— 

elie OOM) = pia I 3, “7 ” +0( yy] +0¢ y |S + |g), 

where 
ees — m—n 

a= =o i n)’ 

and the coefficients ¢,,,, are defined by the expansion 

[log (1 os Dir el as gq) Pes = ( -—yy > Cn x | yy” 

Also from (6a) and (20) we have 

SE {d’nGs(y; 0, m) + dm Gy (y; 8, m; M, 0)}| 
m=v+l1 

os id j K |e ge Up K.m ) 

ee ee tle F Get nye T(m#1)* T(m +1) {log mp-* J 
an i i= =) r 

APRS roma zs KU es K\y neds = Ve 
ee ye | DP (Me+m+1)* P(Me+m re De T'(m + 1)(logmy*®| 

Since re ree it follows that 
7 

din | 
i a 

= => O(m*)<K since c> 0, 
m= 2 22) m=v+1 ( ) 

ie = | dm | me a 2 1 

m=v+1 D(m +1) {log mp-#O Ee 
Rear sii ro ea {log mp =F < K, since R(b) <0. 

Also since },, = O {['(m) (log m)"}, it follows that 

~o | b 2 ; 
[=m = > —i—Me { Re: Renal) co a O(m {log m}") < K, since Mc >0 

and S oe [Onl aS 
mav+1 [' (m +1) {log mp-# a 

3 yl (m— {log m}"*¥—) < K since V+ R(b) <0 

Consequently, if l<v 

ok {4m Gy (y; 0, m) + Din Ge (y; 6, m: Me) 

= +K\y|4+K+KU,\y 

where U,=1 if R(y)<0; if R(y)>0, U, <(secargy)|y|—| ev +| 2! and U,<|e 

< 

* The coefficients can be obtained successively by a limiting process 
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That is to say, if |argy|<$7—A, A>0, 

> {dm G;, (y; 0, m) + Din G, (y3 0, m; M, c)} | = 0( ee aa ) ceeseeeee (23 a), 
m=v+1 

while if t>argy>47—A, 

Stn Go(y; 8m) + bn Gr (ys 8, m; M,0)} |= O(\e y#|) + O(y2) «.-.-.(28D), 
| m=vt1 : 

where J is determinate. 

We deduce that, if | arg y¥|/<4a7—A, Fy) possesses the asymptotic expansion 

Set RE) 3) has ; PY) = a 3," +0(\y| *| Te eae fe a (24), 
while if w>argy >47—A, 

By) = Oe) Oeics 2s s.ntache nw eeeenatenseaee (24 a), 

where / is any fixed integer and J is determinate. 

12. From equation (8), quoted at the beginning of § 11, we can now see at once that if 

any one or more of the expressions («e?)"* exp (27it/a), where t=—p, 1—p,...p, has its 

argument <}7—A, the asymptotic expansion of f(z) is given by the formula: 

: 2 | exp (areesetite) »  T,T (1-6) 
i) ee Ne rere > Se [Sie Dh [apeccaococ : t (2) toep L(a* egiatanitiayb—h-a i (a eyatemitiayn +0(|2 ) (25), 

The choice of the numbers p and g with the corresponding determination of the value 

of arg # is now made in precisely the same manner as in § 8, subsections (A)...(D). 

Remembering that the first 1+h+’-b of the coefficients )), b,,.... vanish, we see 

that the first 1+h+'—b of the coefficients 7,, 7,,... vanish, and so it is convenient to 

take yp >1+h+ 8 —-b. 

13. It is easy to see that the nth of the coefficients 7), 7,,... (commencing with the 

first which does not vanish) is a linear combination of a)’, a,”,..., @’n-, Where 
” 

’ Pe 
¢$ (s/a) =exp (— 8’ logs) & + : + uh 

and the only other arbitrary elements in 7, are 8’ and 6; and it is evident that the 

expressions for 7’, will be unaltered in form it we supposed that the development 

were not asymptotic but convergent. 

That is to say, we may obtain the asymptotic expansion of f(x) when ¢ (8) satisfies 

the conditions specified in § 2, by treating the development for (s/a), viz. 

: (re Joa 
exp(— 8 log 8) jo $245 tea, 

as if it were not asymptotic but convergent; and, in particular, by taking a=1, if the function 

x (n+ 0) of § 1 be not analytic in the vicinity of n=, but possess an asymptotic development, 

with grades equal to unity, valid for the range jargn| <}mr+X,(A>0), Barnes’ develop- 

ment* is still valid. 

The asymptotic development which we have obtained seems to be an interesting example 

of the fact that in certain cireumstances it is permissible to treat a subsidiary asymptotic 

development as if it were a convergent series. 

* See § 1. 
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14. The theorem which we have proved may be enunciated formally as follows *: 

Let f(x) be an integral function defined by Taylor’s series, 

F(@) = +60 + ,27+ ..., 

and let it be possible to define a function ¢(s) such that when s is an integer 

_ b(n) 
Boe T(an+1)’ 

(\arga|<t7, R(a) #0) 

and $(s) is such that when |s| >y’, | args|<$a+X, (A>0), $ (s/a) is analytic+, and possesses 

the asymptotic expansion : 

 (s/a) = exp (— 8’ log s) eee + +S +R] > 

where ja,” |< A,p”.n!, | Ry s"**|<A,o,".n! and A,, Az, p, o, are independent of n. 

Let 6 be a number such that R(b)<0 and 8’—6 is zero or a positive integer; let © 

be such that —R(@)> +’ and let h be the integer such that h<—R(@)<h+1. 

s/a)(s +0)? 

Tet — eS 

be expanded formally into the series of inverse factorials 

ey & 

(s+1)(s+2)...(s+8’—b+h+4+1) es 1)(s + 2)...(s +B —b+h+2) ey 

(this development does not necessarily converge for any value of s). 

Then, for the range of values of « specified in § 8, f(x) can be expanded into an 

aggregate of series which are asymptotic in the sense of Poincaré, thus, 

BR lz (a¥o eglat2nttia) ~ | ¥en lb) = ) 
f r)= > ——————— ————____ 4 

“ (z) r F = (ae eglatent it/a.) B” tek (ave eviatanitia\n 0 ( | 2 | Df ) 

where y is any fixed integer and the coefficients U, are given by the series 

U, aes < Cn—m 
n n= 0 i: ( 1 = b —m) m,n—im> 

and the coefficients d»,, are given by the expansion 

[log qd De yl (1 = ca = (= De > en (- yy”, 
m=) 

so that the coefficients U, can be calculated with sutficient labour, should they be required. 

15. It is not difficult to shew that in the case of the generalised hypergeometric series 

pla (a1; G23 --- Gp} Piy P2s---- Pas Z) (¢+1> p), 

the coefficients satisfy the conditions laid down for the functions discussed in this memoir. We thus 

obtain an independent proof of the results contained in Barnes’ memoir on the generalised hypergeometric 
function f. 

Another class of functions which satisfy the conditions of this memoir is obtained by replacing 

the gamma functions involved in the generalised hypergeometric series by reciprocals of G-functions ; it 

will be remembered§ that the G-function is an integral function satisfying the difference-equation 
G (n+1)=L (nm) G(n); and it is not difficult to construct other functions whose asymptotic expansions are 
given by the result stated in § 14. 

* We have changed the notation slightly, in such a ~ Proc. Lond. Math. Soc., ser. 2, vol. v. (1906), pp. 

way that the first coefficient in the asymptotic expansion of 59—118. 

J (x) does not vanish. § See Barnes, Quart. Journ. Math. yol. xxxr. (1899), 
+ c, is supposed to be finite when x is such that ¢(s) is pp. 264—314. 

not analytic near s=n. 
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Ul. The Hydrodynamical Theory of Lubrication with Special Reference 

to Air as a Lubricant. 

By W. J. Harrison, M.A., Fellow of Clare College, Cambridge : 

Lecturer in Mathematics, Liverpool University. 

[Received 11 May 1913. Read 19 May 1913.] 

THE theory of the lubrication of surfaces moving relatively to one another and separated 

by a thin film of oil or other lubricant is one of considerable practical interest. The cognate 

problems are essentially hydrodynamical in their character, and have this interest, that they 

are among the few problems in the motion of viscous fluids which can be solved approximately 

for the case of large velocities. The theoretical work of Osborne Reynolds* and of Pétroff+ 

is of extreme complexity, partly because Reynolds considered the case of an incomplete 

cylindrical bearing, and Pétroff introduced further complications into its form. It must be 

admitted that the forms of the bearing considered by these investigators are those which 

occur most frequently in practice, but their analysis is so complex and methods of approxi- 

mation so laborious, that even the mathematician may fail to grasp the essential character 

of the results obtained, or to be expected. This fact alone is a valid reason for treating a 

simpler form of bearing. All results become simple, and the theory of lubrication can be 

elegantly illustrated by considering the case of a complete cylindrical bearing. 

It was not till after I had completed my investigations in this case that I came across 

the very elaborate treatment by A. Sommerfeldt of the same problem. Our resulting 

formulae are identical. But the present treatment of the problem being somewhat different 

from Sommerfeld’s, shorter and in one or two points more direct, will perhaps appeal more 

directly to experimenters. 

A question is raised in the course of this paper as to the validity of experiments which 

have hitherto been made to determine the moment exerted by the traction of the lubricant 

on the journal. This point is of importance, as by means of this moment the nominal 

coefficient of friction of the journal is obtained. 

In the latter part of this paper the method is extended to take account of lubrication 

by means of an elastic viscous fluid such as air. It was stated as long ago as 1885 by Hirn§, 

that under suitable circumstances air is the most perfect lubricant. In 1897 a series of 

very beautiful experiments was carried out by Prof. Kingsbury|| on the lubrication of a 

cylindrical journal by air. The results he obtained, which are apparently accurate to a fair 

* Phil. Trans., 1886. § Engineering, Jan. 30, 1885, p. 118. 

+ Mémoires de VAcad. de St Pétersbourg, vur Sér. || Jour. Amer. Soc. Naval Engineers, Vol. rx, 1897, 

Classe Phys.-Math., Vol. x, 1900. p. 267. 

+ Zeits. fiir Mathematik, Leipzig, 50, pp. 97—155, 1904. 

Vou. XXII. No. Il. 6 
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degree, exhibit in certain details wide variation from those to be looked for in the case 

of lubrication by an incompressible liquid. I have not succeeded in obtaining an explicit 

solution of the differential equation determining the pressure in the film of air, but I have 

integrated it numerically by Runge’s method, using the data of Kingsbury’s experiments. 

The degree of approximation of theory to experiment is quite satisfactory. I have integrated 

the differential equation in the case of plane surfaces, and give some results below which 

exhibit more clearly the very marked effects of the compressibility of the air on the magnitude 

and distribution of the pressure. 

But apart from the new results obtained, this paper will serve the useful purpose of 

recalling attention to Sommerfeld’s work. A subsequent paper by A. G. B. Michell* is also 

worth attention and will be referred to below. 

It might be in place to remark here that I have obtained some results and have work 

in hand treating of cases in which the influence of variable speed and variable load on the 

lubrication of a cylindrical bearing is taken into account. 

Case of Incompressible Liquid. 

In proceeding to determine the equations which give the motion and the pressure of a 

film of liquid separating two surfaces moving relatively to one another, it is to be observed 

that the inertia terms can be neglected as well as the effect of gravity, since forces depending 

on these terms are negligible compared with the internal stresses arising from the rapid 

shearing of the liquid. Again, on account of the thinness of the film its curvature can be 

neglected, and therefore the same equations hold whether the surfaces are plane or cylindrical. 

Sommerfeld has transformed the equation V‘y=0, which is satisfied by the stream function ¥, 

from Cartesian coordinates («, y) to polar coordinates (r, @). He proceeds to use essentially the 

same method of approximation as employed by Osborne Reynolds. The only result of this 

transformation is to introduce relatively unimportant terms, as will be seen below. 

The coordinate # will be measured along the moving surface in the direction of motion, 

the coordinate y normal to this surface. The motion is steady and will be assumed to be 

two-dimensional. 

If w, v be the component velocities at any point in the liquid, p the pressure, the equations 

of motion are . 
a) 
Ss SVB acs Si ced, Ra ee (1), 

Op X 
oa HON AU ss waicergeiein s 54 So acs vans > GRRE aE (©) 

where yw is the coefficient of viscosity, and the equation of continuity is 

Ou Ov __ 
ant a URE acer So istnccttie. opcccl celinaneenoenuae (3). 

* Zeitschrift fiir Mathematik, Leipzig, 52, 1905, pp. 1283—137. 
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The boundary conditions are 

u=U, v=0, when y=0 

u=0, v=0, when y=h 

where hf is the variable distance between the surfaces and is a function of 2. 

Since the surfaces are nearly parallel v will be small compared with wu, and the rate of 

variation of w in the direction of « will be very small compared with its rate of variation in 

the direction of y. 

Accordingly equations (1) and (2) become 

op Cu 
= ay? mterefalatavaroisisiate afeleisielerelers)e cioletail-ia]aictnieiaieteiee nierietets (5), 

Op gy TO cercctttrrntesreseeeeeeeeeeectenscccetesnnsensee (6) 

From (6) it is seen that p is independent of y, and (5) is then integrable, giving 

Lop , h— 
= 5 and Y—Wt U ie y 

in which the constants of integration have been adjusted to suit the boundary conditions (4). 

: hou r qh 
Now from (8) — dy =— I =(0) 

U 0 Ox 0 

8 (,.9P\ _ 6,4 oF | Hence 4 an (” 2) = 6uU ap? 

which gives he = = 6uU (h—h,), 

where h, is the value of h at a place of stationary pressure. 

Fig. i. 

In the case of a cylindrical journal, let O be its centre, a its radius; O’ the centre of 

the outer bearing, a+ 7 its radius. Let O00’=cn, 0<c<1. Then the radial distance between 

6—2 
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the two surfaces can be put into the form h =9(1+ccos@), where @ is the angle POO’. Hence, 

writing z=a0, hs = (1+. cos@,), we obtain 

dp _ 6uUac(cos 6 — cos 0,) 
dé 7il+ccosOF 

This equation can be integrated out in finite terms, but Osborne Reynolds, owing to 

the fact that he was solving the case of an incomplete cylindrical bearing, found it more 

convenient to expand in a series of ascending powers of c, and integrate term by term. 

It is easily found that 
6uUa csin§ - 0S => Bes Tee ee AS (1—¢)(1 +c0086)+4(1 +¢00s 6,)(1 —¢ +3[1 + ceos 6) 

+(1-2)"# 2 -2)—(1 + ccs &) +e) tax! ips 5t|- 

Now p must be a single-valued function of 6, hence 

3¢+-(2- 2) ens 6,0 22255 ..-... nce (7). 

This equation determines the positions of the max.-min. values of the pressure. The 

remaining constant can be determined if the pressure is known at any one point. It is to 

be noticed that equation (7) does not restrict the value of c except fo the range —1<c<1. 

Substituting the value of cos @, so obtained, we have 

6uUac sin 6 (2 + ¢ cos 6) 
n° (2+¢)(1+ccoséy ~ 

p=C+ 

The positions of maximum and minimum pressure are equidistant from the point of 

nearest approach, and the one value rises above the value of the pressure at that point by 

as much as the other value falls below it. 

It remains to calculate the resultant forces and couples acting on the surfaces of the 

journal and bearing due to the pressure and traction of the liquid. 

The component of force exerted on the journal due to the pressure p is R anes 

downwards through O (see figure 1). The component along OO" vanishes, and 

R=[" pin bade 
0 7(2+e)—e)> 

The component of force exerted on the journal by the traction 7 (measured in a direction 

opposite to that of the rotation) is S acting along 00’. 

5 ou 
N y =— " f=-0G),., 

—|#" 34,0? 
k tat | 9 

_4U + 6(1-¢) 

7 |1+ccos ~ (2+ )(1 + cos OF | 

Hence S=|"fsin 6adé = 4ruUa [2 fs = 
6 ne (2+e)a—e)% 
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The couple exerted on the journal is 

dru Ua? (1 + 2c*) Mu =| fade = 
ee 1 a+ey—eF 

being measured in a direction opposite to that of the rotation. 

Now if f’ be the tangential traction on the surface of the bearing, measured in the 

direction of rotation, 
=) al { el 

if P\ ay) oe 

U G) 

=« |Z: 
Hence on the outer surface the corresponding forces and couples are 

Ff’ (acting upwards through 0’) = R, 

ge feu E _2a- ag 
ne 2+¢ 

,_ 4orpUa? (1 — 02 
| i a ae a 

7 (2+) 

In the first place it is to be noticed that S and S’ are not equal and opposite, but these 

components are of a smaller order than R and FR’, and will therefore be neglected; a closer 

approximation would establish their equality—in fact, in Sommerfeld’s work they are shown 

to vanish. The expressions for R and M given above are the same as those obtained by 

Sommerfeld. 

But the inequality of M and M’ is essential. Taking into account the fact that R 

acts at the point O, and R’ at the point 0’, it is easily verified that the force system (R, M) 

is balanced by the system (R’, M’). 

The ratio of WM to WM’ for different values of ¢ is as follows: 

c= 0 oF 4 6 3 

M/M’= 1 1-03 151 2°69 138 

Now this difference between M and M’ is of very considerable importance, and so far 

as I am aware has not been previously noticed. 

The following conventional terms are usually adopted: 

__load per unit length of bearing 
< diameter ; 
_ couple due to traction 

Nominal friction = ; : ‘ 
radius x diameter 

Nominal load 

E Lake nominal friction 
Coefficient of friction = ———_____ 

nominal load 

Hence the coefficient of friction X for the journal is given by 

o°8 _ 1 
“ke” “aaee 

for the bearing N= a — — ) 

2/2n 

3a 

When X has its minimum value, X= 4X’. 

X has a minimum value when c=1//2; XN’ has no minimum value except zero. 
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It is immediately obvious that, if the coefficient of friction be determined by experiment, 

it is important to know what is the couple which is measured. It may be safely assumed 

that in experiments hitherto conducted the object has been to measure the couple exerted 

on the bearing, the direct measurement of the couple exerted on the journal being out of 

the question. But if this is so the actual coefficient of friction for a given journal is greater 

than that derived from experiments made upon it, unless the speed be sufficiently great 

to make ¢ comparatively small. 

It is important to observe that there are in reality three force systems under consideration 

which are equivalent but not identical. The force R and couple J exerted on the journal 

by the liquid, the force R’ and couple M’ exerted by the liquid on the bearing, the force 

R” and couple MW” applied to the bearing to keep it in position. Now R=R’=R’, in 

magnitude, but M and M’ are always unequal since the lines of action of R and R' are not 

the same, and the magnitude of WM’ depends on the line of action of R”. It is necessary that 

M” should be equal to M, if the correct coefficient of friction is to be obtained by experiment, 

and accordingly the line of action of R” must be adjusted so as to pass through the centre O 

of the journal, which is a variable point depending on the load and velocity. Since the relative 

magnitudes of Ra and M are so disproportionate, the slightest error in this adjustment, even 

if the line of action of R” be only zg45 of an inch out, causes a considerable percentage error 

in the measured moment. In the case of incomplete cylindrical bearings, for which the are 

of contact may be 120° or less, M and M’ will be more nearly equal. But there is the same 

possibility that M’’ will be equal to neither the one nor the other. 

Suppose now the line of action of R” to act at a constant distance « from O’ towards 

O, i.e. we suppose the line of action of the applied force to be independent of the velocity 

of the journal and of the load applied to it. 

Then M’ = M” — R's, 

hence ” =X + a/a, 

where 2” is the apparent observed coefficient of friction («/a may be very small and yet 

comparable with 2’, as seen previously for «= cn = 00’). 

Coefficient of friction. 

Velocity of bearing. 

Fig. 2. 
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The variations of X, X’, X” with the speed are exhibited in figure 2. The graphs are 
not drawn quite accurately to scale, but they represent closely the behaviour of the three 
coefficients. Curve 1 shows the variation of \ with its minimum value at ¢=1//2; curve 
2 exhibits X’, and this curve displaced a constant distance along the ordinates into the position 
of curve 3 exhibits X”. The displacement of curve 2 to produce curve 3 may be either upwards 
or downwards. 

Cc 

Fig. 3. 

In figure 3 a typical curve is drawn showing the variation of the coefficient of friction, as 

observed, with the speed. It would appear that the part of the curve AB represents the effect 

of imperfect lubrication owing to insufficient speed. The remainder of the curve BC might 
very well be a part of any one of the curves shown in figure 2, or roughly approximate 
to one of them. But there is a good reason why it cannot be associated in general with 

eurve 1, which exhibits the true coefficient of friction. For it is a fact worthy of attention 

that the observed minimum value of the coefticient of friction may be less than the minimum 

calculated value of X; this is so in the case of Kingsbury’s data. It is, moreover, clear that 

he measured the value of M’, and not that of M. He measured the couple exerted on the 

journal, while it was kept at rest and the outer bearing rotated, by the torsion of a wire 

fastened to a point on its axis. 

It may be considered as moderately certain that experiments hitherto conducted cannot 

be relied on to give more than a rough estimate of the true coefficient of friction at fairly low 

speeds. It is hoped that some attention may be given to the points here raised in future 

experiments. Sufficient is now known about the theory of lubrication for all practical 

purposes, so that such refinements as are here proposed have for their object merely the 

possibility of obtaining data on which to base a closer comparison between theory and 

experiment. 

If it is affirmed that the comparison which is presented in Osborne Reynolds’ paper is 

sufficiently close, two objections to that comparison may be raised. (a) Pétroff has pointed 

out what seems to be a serious mistake in sign, which is carried on in subsequent operations. 

(6) Osborne Reynolds was compelled first to estimate the distance between the bearing 

surfaces by means of his theory and then make a final comparison between theory and experiment. 
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Such a course as that indicated in (0) is practically mevitable except in the case of 

a closed cylindrical bearing; in other cases the difficulty of obtaining by observation the relative 

positions of journal and bearing is great. Now this relative position of the two surfaces has 

been determined by Kingsbury in the case of an air-lubricated journal. Thus his data allow of 

a complete comparison. To a consideration of these experiments we now proceed. 

It may be added that Sommerfeld gives a very complete treatment of the lubrication of 

a cylindrical journal by an incompressible liquid, which is further illuminated by a number 

of curves showing the relations between the various quantities W/, R, »,c, U which enter into 

the theory. One such curve is reproduced in curve 1 of figure 2. 

Case of Elastic Fluid. 

Some of the most accurate experiments which have been made on the lubrication of 

a complete cylindrical journal were those conducted by Prof. Kingsbury, using air as a 
lubricant. 

He investigated the distribution of pressure round the journal and along its length, the 

point of closest approach and the magnitude of the shortest distance, and also the moment 

of the friction exerted on the bearing. But, regarded generally, the results show a marked 

divergence from the state of affairs indicated by the theory for an incompressible lubricant. 

This divergence is of course due to the elasticity of the air, and presents a somewhat interesting 

problem for investigation. The main points of this difference will be found exhibited in the 

table below, in which the air is treated as inelastic, having the density of atmospheric air, and 

average pressure equal to atmospheric pressure I. All quantities are expressed in foot, Ib, 

second units, The diameter of the journal was } ft., and the difference of the radii 2? x 10~ ft. 

U is the velocity at the surface of the journal. The pressure p is of course given in poundals 
per square foot. The first row of the double sets of data comprises those obtained by obser- 
vation, the second row those calculated from the theory already developed in this paper. 

Revs. per min. 230 805 1730 
U 602 | 2107 45-29 
: 39 1625 091 

112 £3 £3 m o- 
(Pans. — Hl) 1 1-16 1-44 169 

‘ .35 | =~+«3 | 24s 
(Poin. — 11) 10 -1ié | —144 ~1469 

ee = 197 131 1-36 
(Poms. — Prmin.) VO 2-32 288 338 

= _23° _ 43" 43° (®.xx — 180°) _57° _ 76 _33 

51° 96" 129° 
(Grin, — 180") 37° 76" 82" 

a 73° 139° 172" 
ae 114° 152° 162° 
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It is clearly seen that the facts which need explanation are these: (1) the range of the 

pressure decreases and seems to approach more or less to a definite limit as the velocity 

increases; (2) the position of the maximum pressure is displaced nearer to the point of 

closest approach ; (3) the position of the minimum pressure is displaced further from that 

point. 

Steady Flow of Air under Pressure. 

In the same way that the steady flow of liquid under pressure between two parallel 

planes is introductory to the problems of lubrication, so the flow of air in the same case 

serves as an introduction to our extended theory*. 

Consider the flow of air in two dimensions between the parallel planes y=+d. It will 

be assumed as an approximation that the equations of motion and continuity are 

op ou sip aye corte eeene nee encanee (8), 

ap 
ay SH VV necccsc crc ven renee esses ssrssssesscssceseseseses (9), 

SUT I aa pak mh (10). 
0x 

The conditions are such that the relation between the pressure and the density is 

p=kp. 
Hence from (10) pw or pu is a function of y only. Also from (9) p is independent of y, and 

therefore from (8) 

taking into account the condition ~w=0 at y= +d. 

It follows that pe is a function of y only; accordingly put p*?=asa +b. 

Let p, be the pressure at «=O, p, the pressure at w=/. Then 

Pp? = po° — (Po — pr’) #/L. 
Thus the velocity at any point is given by 

(po? = pr) (B= y’) 

yl {ps'—(pat — pr?) /} 
For a circular tube of radius a and length /, it is easily shown that? 

uu = 

pe eB =p) (Oe) 

Spl pu’ — ( po’ — pr") 2/l5* 

r being the distance from the axis, z the distance along the tube. 

* In addition it has some bearing on the researches of Searle by a different method, Proc. Camb. Phil. Soc., 

Prof. A. H. Gibson on the flow of air through pipes. The Vol. xvn, Pt mu, 1913, 

formula obtained below has also been arrived at by G. F. C. + Cf. Lamb, Hydrodynamics, §§ 338, 339. 

Wor sexchi No: TT: ~I 
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The mass of air crossing any section of the tube per unit time is 
fe Pe 
| (a? — 7) 2ar dr / J aoe } 
0 | Po — pr 

ll 
ra 

pu 2arr dr 
“- 0 

_ mas (po = pi°) 

16pnkl 

_ TA (Po— Pi) Po + Pr 
ad Sul rade 

This is the formula assumed by Prof. Gibson *. 

It remains to investigate the order of the terms neglected in the equations (8), (9), (10). 

Using the data of Gibson’s experiments for velocities below the critical value, I find the 

following approximations, taking 2 as unity: 

Ou Ou ou 10 pe pe 10 Coma). Came Pua 
It would appear therefore from the order of the quantities neglected that in all ordinary 

cases of stream-line flow in pipes the approximation assumed is quite accurate. In fact, long 

before the velocities are such as to cause the approximation to break down turbulent motion 

supervenes. 

In the same way the use of these approximations in the theory of lubrication could be 

justified. But it must be pointed out that, as a matter of fact, the approximations necessarily 

break down immediately in the neighbourhood of stationary pressure. But the effect of this 

failure is probably negligible, since it is confined to a very small part of the lubricant. 

Motion of a Film of Air between Two Surfaces, one of which is in Motion. 

It is necessary to solve equations (8), (9), (10), subject to boundary conditions (4). 

Equation (11), above, becomes 

1 dp U 
= Wa de y(y—h)- h (y —h). 

yoh ra 

Hence | »| i Fe (pu) dy 
y ¢ JO 

0 h® dp z 

as |? (“age ae + 374 | 
But v=0 at y=0, y=h, and accordingly 

UN 0... es eee (12), 
pw dx p 

where / is a constant. It may be as well to remark that for a gas mw is independent of 

the pressure. 

* Proc. Roy. Soc., Vol. uxxx, p. 114, 1908, 
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Lubrication of a Cylindrical Journal by Air. 

Using the same notation as in the previous part of the paper, equation (12) becomes 

4p pee  |-meesayp| oe (18). 
dé 7?{1+e cos 6P n(1 +c cos 6) p 

This equation I have not been able to integrate in any form convenient for calculation. 

But equation (12) is easily integrable in the case of inclined plane surfaces. I have solved 

a number of cases of motion between such surfaces to illustrate the effect of elasticity. These 

results have an interest of their own, and I shall present them later. But since making these 

calculations, which were intended to explain roughly the discrepancies between theory and 

experiment in the case of Kingsbury’s data, I have integrated equation (13) numerically by 

Runge’s method of numerical integration, using the data of Kingsbury’s experiments. These 

numerical solutions will be found shown by curves 2 im figures 4, 5, 6. The ordinate 

represents pressure (6°83 x 104 is atmospheric pressure), the abscissa is 6, the angle POO’ in 

figure 1, Curves 3 give the distribution of pressure round the journal observed by Kings- 

bury; curves 1 give the pressure on the supposition that air is inelastic. It is seen that the 

extended theory goes far towards the explanation of the discrepancies referred to above. 

It will be noticed that in figures 4 and 6 the observed and calculated maxima and 

minima of the pressure are in good agreement. As regards the maximum pressure the 

agreement is not so good in figure 5. In connection with the differences which still remain 

it needs to be pointed out that the theory is based on the assumption of an infinitely long 

bearing. In particular the differences in position of max.-min, pressures in curves 2 and 3 are 

to be attributed partly to the finite length of the bearing. Michell, whose paper has been 

referred to above, has investigated the influence of finite length in the case of inclined plane 

surfaces. He states that he was unable to solve the same problem for a cylindrical journal. 

It might be as well to add a few words on the numerical solution of equation (13). It 

was found necessary to divide the range of 360° up into intervals of 10° or 20°, according to 

7°83 

230 REVS. PER MIN. 

5-83 
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7°83 

805 REVS. PER MIN. 

5°83 

1730 REVS. PER MIN. 

5+83 

Fig. 6. 

the position in the range. Not only did the number of intervals make the calculation very 

laborious (a single complete solution involved the writing down of 12,000 digits), but it 

was further necessary to provisionally assume the values of two constants before an evaluation 



WITH SPECIAL REFERENCE TO AIR AS A LUBRICANT. 51 

could be commenced. These two constants were practically the pressure and its gradient at 

the beginning of the first interval. The tests as to the correctness of these assumed values 

are (1) the pressure at @=0° must be equal to that at @=360°, (2) the total mass of air 

must be constant, or 

ie = 31) (cosa = 0: 
0 

The assumed values of the constants have to be varied until these conditions are satisfied. To 

give further details here would take up too much space, but it is believed that the curves 

obtained are quite accurate. 

Case of Inclined Planes. 

Consider two plane surfaces of which the upper is fixed and is of unit breadth, inclined 

so that their greatest distance apart is d,, and their least distance apart d,. In the first 

place let the motion of the lower plane be as indicated in figure 7. This case has been 

treated by Osborne Reynolds for incompressible liquid, and he virtually obtained the 

following results : 

Position of maximum pressure &, = dy/(d, + dy), 

Distance between planes at this point h, = 2d,d,/(d, + d,), 

he Bye U (d, —d,) 

2dod, (dy + d,)” 

In the extension to the case of elastic fluid we write )=d,—- bz, where b=d,—d,, in 

Maximum pressure given by Pax, — I 

equation (12), which can then be written 

Put ph=w, and we have 
b 
—wdw 

eee 
ig mes —w—6Uw +k 
bE 

The form of the integral depends on the sign of pkb—9U?y?= K*, and for our present 

purpose this will be found to be positive within the required range of U. 

Hence $ log (bw*/w — 6Uw + k) + ue tan gs a = lee BS O  ceodocdosdse (14). 

Now p=II for c<=0, h=d,; x=1, h=d,. 

Hence substituting and subtracting the two equations so obtained, we have an equation 

from which to determine k; C can then be determined. To find the value and position of 

oP 2; the maximum pressure, we notice that when oe 
aL 

CYT HID” scoucccacoonSndonsnbonosadsansbass00cq0dee (15). 

Hence the position x, of the maximum pressure is given by the equation 

d,—ba, _, 2(k/6U)? 
eee 02 Sapuisdain 60 Wea k 

k/ 6 ie if 1h —; [ 3 

+ eu tan a Ke us ae — tan? old, ga osdonas0c00" (16) 
K K K 
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Having found z, from this equation the value of the maximum pressure follows at once 

from equation (14), 

The following tables exhibit the results of calculations, for the purpose of which it was 

taken that I] =7 x 10+ (15 lbs. per sq. in. approximately), 4 = 10~. 

The second row of figures in each case comprises those obtained from Osborne Reynolds’ 

formulae. 

d, = 10-4, d,—4x 105 | 

U 5 | 10 20 

a 80 1-58 2 (Prax: 10> ‘80 1-61 5:22," | 

2 75 ral ‘81 
“max, | ‘71 ‘71 “71 

| 

U | a || 10 20 

| 29 | 4 “80 i =a | 24 | = © 
(Pmax. Il) 10 +29 | 47 | “29 

- 61 | Ga | 69 
ae ‘57 ‘57 ‘D7 

Thus the effect of the elasticity is to foree the position of maximum pressure nearer 

to the narrower end, and to decrease its value. 

id id, H : 

x-0 —U e=1 x=1 —u XL=0 

Fig. 7. Fig. 8. 

We proceed to consider now the case of motion indicated by figure 8. Similar equations 
to (14) and (16) are obtained, except that the tan~ is replaced by a logarithmic form. The 

following are the results obtained by calculation. 

d,=10-4,  d,=*4.x 10-4 

U 5 10 20 

“s viva ees 2-33 
(Pin. — TH) 10 — 80 | —1°61 — 3-22 

| | 

: 67 63 53 
“min 71 Py fl 71 
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10 20 | 
| 

< — 22 — 37 — 75 
| (Pmin. = Il) LOpe ay) | tr — +89 | 

58 52 49 | 
Xin. 57 Dif yi 

: F 

be | | we 
The effect of elasticity is to displace the position of minimum pressure in the direction of 

motion and to decrease the total range of pressure. It is interesting to notice that, in accord- 

ance with expectation, although for an incompressible liquid with the reversed velocity the fall 

of the minimum pressure below atmospheric pressure is the same as the rise of the maximum 

pressure above, yet the effect of elasticity is to make the rise of the maximum pressure above 

atmospheric pressure greater than the fall of the mimimum pressure below it when the velocity 

is reversed. i 

As these cases of the lubrication of inclined plane surfaces were solved with a view to 

illustrating the differences between Kingsbury’s data and calculations based on the theory for 

an incompressible liquid, it was necessary to obtain some solution in which both a maximum 

and a minimum pressure should appear. The case indicated in figure 9 suggested itself as 

instituting a fairly close comparison, the dimensions being chosen so as to agree as closely 

as possible with the dimensions of the cylindrical bearing. In fact the solutions of this case 

agree very well with the observed facts, and although this comparison is no longer necessary, the 

following solutions throw further light on the behaviour of an elastic lubricant. 

Consider now the case of two inclined plane surfaces placed as in figure 9, with respect to 

a third moving plane surface. For an incompressible liquid the pressures at A, B, C are all 
A Cc 

Fig. 9. 

equal and the max.-min. pressures and their positions are the same as in the two separate cases, 

which have been already discussed. But this is not so if the fluid be elastic. In this case, for 

instance, the pressure at B may exceed the maximum pressure in AB in the absence of BC; 

and, also, there may be no position of minimum pressure, if the velocity be sufficiently great. 

The same integral forms are obtained for p between A and B, B and C as in the separate 

cases; but whereas the constant & had different values in these cases, it is easily seen (by 

reason of the continuity of velocity at B) that / must have the same value for a given velocity 

in both sections. This value will be intermediate between the two already obtained. 

Let @ be the pressure at B, then for the motion between A and B we have the conditions 

p=U,2=0; p=oa,c=1. Substituting these in equation (14) and subtracting, we obtain 

ee bid? /u —6UId, +k 
° © ba*d?/u — 6Uad, +k 

Bu U E a bild, — 3uL fae bad, _ 3uU i 

K . ae 

— log (dy/dy) 

a Om SEGH): 
Kk : K 



54. Mr HARRISON, THE HYDRODYNAMICAL THEORY OF LUBRICATION, ere. 

Treating the equation for p between B and C in the same way, we have 

bIEd?2/p + 6U Td, — hk _ 
bad, [n+ 6U ed, —b — 8 elt) 

3BuU, (K’ + blld, + 320) (K’ — bard, — 3nU) 
3K? 18 (KT bIld, — 3uU) (K’ + bad, + Bn) 

3 log 

=e) a 

where K’= pkb + 9U*p*. 

The equations (17) and (18) determine the value of the constants kh, a. 

From the previous numerical calculation, if we take d,=10~, d;="4x 10, U=5, it is 

known that o=7 x 10!, k= 129-2 satisfy (17), and oa =7 x 104, k=111°3 satisfy (18). Now 

assume w = 7°5 x 10* (say), and find the values of & which satisfy (17) and (18), respectively. 

These two sets of values can be plotted, and the intersection of the lines joining them gives 

approximately the common solutions of (17) and (18), some slight adjustment being necessary. 

The following tables give the results of the calculations. The corresponding calculations 

in the case of incompressible liquid are not repeated, since they are the same as in the two 

separate cases, and have already been given. 

a,—10e- d,=-4 x 10-4 

| 0 Bia | 10 20 

| (Pmax. — 1) 10-* | ‘98 | 2-08 3-98 | 

(Pmin. — TH) 10~* | J aacog — 72 =67 | 
(~—T) 10-4 | 47 1-54 3-43 

max. 80 “85 90 

Emin. 60 “49 34 

d,= 8 x Ome d, = 6 x 10-4 

U 5 10 20 

(Pinas LL) LOSS -28 | 60 1:12 

(Pmin. — 11) 10-* =o) eee 20) --18 

(aw — II) 10-* ara] 41 ‘95 

Lenax ‘68 75 ‘84 

yin 47 37 24 

It will be seen from these tables that the effect of placing together the two portions 

AB, BC is to increase both the maximum and the minimum values of the pressure. It is 

clear from both tables that the minimum pressure decreases and increases again with increasing 
velocity, while its position approaches continuously to C'; ultimately the pressure reaches a 
maximum at B and then falls continuously to atmospheric pressure at C. The behaviour of 
the air, therefore, for large velocities is in marked contrast with that of an incompressible liquid. 
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REFERENCE is made to the paper on Indices of Permutations*. 

I here define indices of a new kind and subject them to investigation. 

Let any assemblage of letters be 

a,1a,'2 ... a,'s 

and consider any permutation of them. 

If any letter precedes p,’ letters which have a smaller subscript we obtain the component 

p; of the Superior Index. 

The Superior Index of the permutation is defined to be 

=p, = P 

the summation being in respect to every letter of the permutation. 

On the other hand if any letter precedes 7,’ letters which have a larger subscript we obtain 

the component 7,’ of the Inferior Index. 

The Inferior Index is defined to be 

ee 

the summation being in respect to every letter of the permutation. 

Ex. gr. Consider the assemblage a‘@*y°6 and the permutation 

BaadyaaBBy 

4 64 , 4+6+4+4=14 the Superior Index 

355 3311 , 34+54+54+34+3+4+14+1=21 the Inferior Index. 

If the permutation be reversed 

yBBaarydaa8 
74433 , 74+ 44+443+3=21 the Superior Index 

122331 11 , 14+24+24+343+1+4+1+1=14 the Inferior Index, 

and we see that the Superior and Inferior Indices of the permutation are respectively equal to 

* “The Indices of Permutations and the Derivation therefrom of Functions of a Single Variable associated with 

the Permutations of any Assemblage of Objects.” American Journal of Mathematics, Vol. xxxv. No. 3, 1913. 
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the Inferior and Superior Indices of the reversed permutation. This is obviously true in 

general so that we can assert in regard to the assemblage 

a, a,!2 300 ais 

that the collection of numbers which specifies the superior indices of the permutations is 

identical with the collection which specifies the inferior indices. 

Hence, in regard to the permutations of any assemblage, 

Lea 

It is also readily established that, for every permutation, 

p +r = i,; 

for consider that part of a permutation which involves two letters a, am. 

Suppose it to be 

Selig ok ge os. Cg cS OE ce 

The portion of the superior index due to these two letters is, if k > m, 

UK nl Ebi” Hi” + ed) EH Ha”) Cin!” + «) 

and the portion of the inferior index is 

(lim ttm ) (ye ie +...) + tm ((s--)- 

Adding these together we find that the two letters contribute to the sums of the two 

indices the number 
lan Uy 

Thence obviously Dp +r = Ste, 

leading to the relation 2a =o Se? 

The maximum value of p’ is clearly 21,7, and its average value 4 2%. 

The function =z” is of degree 7, in w and if it be divided by w*% it is unaltered by the 

See 1 
substitution of - for x because 

s rP - s2hy — Sa 2hie-p', 

A function of « which satisfies these conditions is 

sda) =) Sean ht 8) 
(1—a)(1—2)...(1—2"), (1—2) (1—a*)... (Ia)... (1—2)(1—a*)... (1 —a's) 

and it will be shewn that this is in fact equal to La?’ 

In the first place consider the assemblage a‘Q’, and write 2a” = F, (i, )). 

All permutations which terminate with 8, contribute 

Fr(t,j —1) 

to F, (i, j), and those which terminate with a, contribute 

wa F(t—1,)). 
Hence the difference equation 

F, (i,j) = @ F, (t—1,)) + Fr (i,j — 1), 
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the solution of which, satisfying the above conditions, is 

(1) (2)... (i+j) 

(1) (2)... (i). (1) (2)... D) 

where (m) has been written to denote (after Cayley) 1 — 2”. 

F, (2, p= 

Similarly for the assemblage a‘Q%y*, write Sa?’ = F, (i, j, k). The permutations terminating 

with y, 8, @ respectively contribute 

F,(t,j, k—1), 2 F,(4,j7-—1,k) and «+*F,(¢—1, 7, k—1) to F, (i, j, 4), 

leading us to the difference equation 

F,(¢, 7, k) = aF** F, ((—1, 7, k) + & F, (7-1, k) + Fr (4, j, k—1), 

the solution of which, satisfying the conditions, is 

(1)... 4@+j+k) 

I) cde o cca Nu @iynoncs) 

Similarly we reach the difference equation 

Fz (ti, ta, t3 «+. %) = gattiet +t Fr, (=I, ty, «.. 1%) 

iis Ca aa 

sfogetamae SW (gy Mealy Ao aay eee Ne (Ga tay neete = 1): 

the solution of which, satisfying the conditions, is 

"(1)... G, +i, + -.. + is) 

NsnckCR eC yese Cayeadace (U1) yoca (tH) 

This result is remarkable because it establishes that 

Sa? = TaeP, 

Lied Pr to, ec 

where p is the Greater Index of a permutation (vide American Journ. Math. Vol. xxxv. No. 3, 

1913). In fact the whole collection of Superior Indices coincides with the whole collection of 

Greater Indices, but it is not easy to establish this by a one-to-one correspondence. 

Observe the permutations of aaBy. 

Permutation Greater Index Superior Index 

aapy to) (0) 

aay8 3 1 

agay 2 1 

aya 2 2 

apya 3 2 

ay8a 5 3 

Baay 1 2 

yaaps 1 3 

Baya 4 3 

ya8a 4 4 

Byaa 2 4 

y8aa 3 5 

Sa ser - NAC)4 _3)4) 
(1)(2).(1)-(2) (AP 

io 2) | bo 
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The particular result 
Sui (1) (2)... (i+j) 

(yee)... G) 

establishes that the permutations of the assemblage a'8’ which have a superior (or greater) 

index equal to p’ are equinumerous with the partitions of the number p’ into parts, not 

exceeding 7 in magnitude and not exceeding 7 in number. 

The property of =z? that is before us leads to interesting relations between the functions 

F, (i, j)- 

Write the assemblage a8 in the form 

ai" B5-D  g@ QP 

wherein a, b are any two numbers, such that a $7, b $7. 

It is to be shewn that 

F, (i, j)= a" F, (i —a, j — b) F, (a, b) 

wherein the summation is in respect of every composition a, 6 of the constant number a+b. 

The number zero is not excluded so that if for instance a+6=4, the summation will be in 

respect of the compositions 40, 31, 22, 13, 04, it being understood, as above stated, that a+ 7, 

b >}. 

It will be admitted that when the permutations admit of representation in the form 

Some permutation of a'-*Q7~? followed by some permutation of a%Q?, 

the expression 2/~* F, (i —a, 7 —b) F(a, b) denotes 2?’ for the permutations in question. If 

we sum this expression for all values of a and b which give permutations involving i7+j7 —a—b 

letters followed by permutations involving a +6 letters we must arrive at the expression of a?’ 

for the whole of the permutations of a’ B). 

Hence F, (i,j) = =a ¢ F, (i—a, j —b) F, (a, b) 

where a+b = any constant number. 

This interesting relation between the functions « has a very interesting particular case. 

If a+b=co a constant, we have 

F, (i,j) =27 F, (¢, 0) F,(i—o, j) + 2° F) F,(¢ —1, 1) F,(i— oo +1,j7-1) +... 

+ F, (0, o) F, (i,j -¢). 

Putting o=7 we obtain 

F, (i, j)= a" F,(j, 0) F,(i-j, j)+ © F,(j -1, 1) F,i-j +1, j -1) +... + Fe (0, j) Fy (i, 0) 

and if we now put 1=7 

Fy (j,j) =2" {Fz (j, 0)P + 29 (F(7- 1, IP + 29 [Fy (9 — 2, 2)? +... + [Fe (0, )}% 
This result is a generalization of the theorem in regard to the sum of the squares of the 

binomial coefficients, for putting «= 1, it becomes 

8)-@l+@+Ge-+0): 
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In general the reader will see that we have the relation 

TIE (Gane Uh) 

as Salis — 4s) (@y +g + ... +51) + (ty—1 — Ag) (4, + QQ +... + Mg_2) +... + (ig — a9) ay 

is (Gy, ty — Aa, --- Up — Gy) le Lee (Aya «ne Ly); 

the summation being for every composition of a given number a, + a, + ... +, into s or fewer 

parts a, a,,... as; such that a, +7, for all values of s. 

The Superior Index as defined is obtained by adding several numbers together. This is 

the simplest way of obtaining the index, but the numbers so added are not the most interesting 

that come up for consideration. Ifv>vu the letter a, adds a number to the index if it precedes 

one or more letters %,. Denote by p’, the number added to the index due to the positions of 

the letters a,, a. Moreover a, may precede 1, 2, ... or 2, letters a. Denote by p'yu,¢ the 

number of letters a, which precede exactly o letters a,. Every time an a, precedes exactly 

letters a, the number o is added to the index. Hence 

Dee = onus or 27 vu, oat BP 'vu, get ty Pu, ae 

Also if p”, denotes, in regard to the whole of the permutations, the sum of the numbers added 

to the indices by reason of the relative positions of the letters a,, a and py, ~ the number of 

times in the whole of the permutations that a letter a, precedes exactly o letters a,, 
u 

P vu =D ose i) oF 2p" yu, a+ BP ou, gti + UD oni, hie 

Now we know the value of p”,, from the following consideration. In any permutation consider 

merely the letters a,, a. If 7’,, denotes the number added to the Inferior Index by the 

relative positions of these letters we see that 

Mana Foam Coy 

for any one letter a, contributes to the sum of the Superior and Inferior indices the number 7, 

and therefore the total of 7, letters a, contributes the number 7,,7,. Hence the average value 

of py, in a permutation is 47,7, and thence the number contributed to the Superior Indices of 

all of the permutations by the relative positions of a, and a, is 
Si)! >)! of ba 

Pim = Bute TT al al 
It will now be proved that (Deas 

has a value which is independent of the number co. 

Consider the permutations of the assemblage 

q ig eat oy tlt I te is 
GP Gadt tO Oe nC, 

which is derived from the original assemblage by adding an a, and subtracting an a,. 

In any permutation fix the attention upon the 7, +1 letters a,. Call the one on the 

extreme right the last au, the one nearest to it the last but one a,, the next one again the last 

but two a@,, andso on. Now delete the last a, but o from the permutation and substitute for it 

the letter a,. We have thus an a, followed by o letters a, and the assemblage is the original 

assemblage of letters. We thus construct a case of an a, followed by exactly o letters a, from 

every one of the sie 
atv): 

AES Ga 1) | (=e ees 
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permutations of the assemblage 
a, « . . 

= Oe. 
a, 

s Sy)! : u (21)! 
Thence ' = ~~~ : 

P osc Oe Ly ae ell 

a value which is independent of co. 
a” samy ” per a ” 

Therefore P vu,0 =P Wien 25° P UU, Ty? 

3 } tu + ba (32)! 
leading to DP oc=\~ or g Piu=( 09 )Pomwe= Bute ay 

: an 
a 21) ! 

and ie = SS 
Eee Ore res Us SA 

We deduce that the average value of p”,,, in a permutation is 

ty 

ty + 1° 
To illustrate these results take the assemblage aa@y wherein 7,=2, %=1, 7;=1. 

Ba ya 7B 
aay 0 0 0 
aay 0 0 1 
aBay 1 0 0 

aya8 0 1 1 

aBya 1 1 0 

ayB8a 1 1 1 

Baay 2 0 0 

yaas 0 2 1 

Baya 2 1 0 

yaBa 1 2 1 

Byaa 2 2 0 

yBaa 2 2 1 

I 4 ” pe ” = ” — ed e. 

Here Pao=Pai=P 12S orqrdin 

and we verify that in the first column the numbers 0, 1 and 2 each occur 4 times. 

Also p a= (3) pate 

and we verify that the sum of the numbers in the first column is 12. 

. ur ” ” 1 

Again Pa0o=P n,1 =P a,2=3-12=4, 

F 3 P’a=(5)-4=12, 
and we verify that in the second column the numbers 0, 1 and 2 each occur 4 times and 

that the sum of the numbers is 12. 

Again P 30=) a= A 12=6, 2° 

P's = (3) 6 = 6, 

and we verify that in the third column the numbers 0 and 1 each occur 6 times and that 

the sum of the numbers is 6, 



V. ‘The Domains of Steady Motion for a Liquid Ellipsoid, and the 

Oscillations of the Jacobian Figure. 

By R. Harereaves, M.A. 

[Recewved 8 February 1914.] 

ONE of the oscillations of ellipsoidal type for Maclaurin’s figure of equilibrium has, at the 

junction with Jacobi’s series, a period exactly one-half that of rotation; i.e. if a day means 

a period of rotation, the natural equatorial tide is here semi-daily. 

This isolated result was reached some twenty years ago, and seemed of sufficient interest 

to stimulate enquiry into the course of the periods of oscillation of the Jacobian figure. 

As the present work is of recent date the stimulus has been tardy in operation, 

The scope of the investigation has been extended to cover other matters which, like 

the question of periods of oscillation, require for their complete discussion much laborious 

calculation with transcendental equations. The results are made accessible by the use of 

diagrams to represent the domains of steady motion for a homogeneous liquid ellipsoid under 

its own gravitation, and an inspection of these is sufficient to shew what kinds of steady motion 

are possible for an ellipsoid of given shape. 

Special attention is given to the Jacobian form where a full series is treated with reference 

to shape, angular velocity and momentum, and kinetic energy; while the periods of the 

ellipsoidal oscillations are added for a smaller number of cases, sufficient to make the course 

clear through the entire range. In respect to the Jacobian an interesting feature is the 

connexion of the movement in values of angular velocity and momentum along the series, with 

the quantities on which secular stability depends, 

With respect to motion about two axes the most interesting point is that the conditions 

laid down by Riemann for his Case II are entirely superseded by the condition of positive 

pressure. 

It is proposed to describe the main results in general terms before proceeding to the 

analysis on which they are based. 

For the spheroids the oscillations may be called polar and equatorial; in the former the 

equator remains a circle but its radius and the polar axis are subject to periodic change, in the 

latter the polar axis is unaltered, the equator suffers a periodic elliptical deformation. 

The oscillations of the Jacobian near the opening of the series differ little from those of 

the spheroid; as the form moves away from the spheroidal the terms polar and equatorial fail 

to describe them, but in the ultimate position the oscillations become respectively equatorial and 

Vou. -X XII. No. V. ) 
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polar if the word polar is now applied to the long axis, equator to the nearly circular ellipse 

containing the short axis. 

At the initial point of Jacobi’s series as stated above the equatorial oscillation has exactly 

a semi-daily period, the polar oscillation has a slightly shorter period. The periods diverge as 

the ellipsoid is elongated, the former increasing the latter decreasing. In the limit of extreme 

elongation the former period is daily, the latter has a finite value while the period of rotation 

is indefinitely long. For a certain range from the initial Jacobian, and also for a range of 

Maclaurin’s spheroids on each side of the junction, the periods differ little from the half-day in 

excess or defect, both cases being represented. 

The position for spheroids is that the frequencies », and n, are finite for the spherical form 

where the rotation is indefinitely slow; the former, at first the greater, falls the more rapidly 

with increase of oblateness, and equality is attained for 

c/a = 5892 = cos 53° 54’, when n?/@* = 44. 

The Jacobian junction is reached when 

c/a = "5827 = cos 54° 21'27", and n.= 20, n,7/w? = 41182. 

The value n,=2o is reached for 
c/a = 5612 = cos 55° 52’. 

With these values may be compared the entries in the table for Jacobians for values of a up 

to 30°. 

Now any external body in the presence of which a liquid ellipsoid is rotating, will shew 

a period something more or less than the day according as the relative orbital motion is 

direct or retrograde, and its quasi-statical tidal influence will have a period near the half-day. 

Accordingly ellipsoids of a shape deviating to some moderate extent from that at the Maclaurin- 

Jacobi junction’ will be specially sensitive to the tides induced, in consequence of the closeness 

of periods of the natural and forced oscillations. 

The first calculations of periods were based on material provided in Sir George Darwin's 

paper on ‘Jacobi’s Figure of Equilibrium*, Some irregularity appeared in the succession of 

values for these periods, and a new series of points was determined, generally in close agreement 

with Darwin’s paper. In one point of some importance there is disagreement. Darwin found 

a maximum for the velocity of rotation at some little distance from the beginning of the 

Jacobian series, I find an uninterrupted fall. ‘This question and that of the rise in value of the 
momentum appear to be connected with quantities occurring in what is called the test of 
secular stability, as restricted to deformations consistent with ellipsoidal shape. I find this 
restricted test to be satisfied through the whole range of Jacobians, and in connexion with it a 
regular fall in velocity of rotation, a rise in angular momentum, and for kinetic energy a rise 

to a maximum situated, as Darwin found it, in the range where elongation is considerable. 

Ellipsoids of given shape may be represented on a diagram by coordinates 2, y the 
ratios of one axis to the two others. If we take a standard order a>b>c and write 
a=c/a, y=c/b, then with «<1, y<1, a<y the representative point lies in a triangle 

* Proceedings Royal Society, 1886, pp. 319—336. Until revision in preparation for the issue of his Collected Papers. 
after the communication of this paper the author was not ‘The corrections there made have removed the discrepancies 
aware that Darwin’s paper had undergone a thorough to which reference is made here and in § 12. 
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OSP. OS gives Maclaurin’s series, O the disk end, S the spherical end, SP represents 

prolate spheroids with P for the case of extreme elongation. For points near S, P, O 

the direction of deviation from these positions is important and we find boundaries different in 

character reaching these points as a terminus in different directions. Thus points uear 0 make 

c/a and c/b both small with ratio y:~=a:b finite so that elliptical disks are represented, with 

a circular disk for y=. The line OP and its neighbourhood represent the series of cases in 

which with c always small, the ratio b:a has degrees of smallness falling to the case b=c 

chreelen 

For one case, that of rotation about a single axis, I have found it more convenient to 

take the axis of rotation as numerator whether it is least or mean axis. In this way we 

separate the fields of rotation about mean and least axis, which are dynamically distinct, 

leaving them contiguous along the line SP at which one merges into the other. 

The standard system has been used in all other diagrams and has the advantage of 

shewing by the overlapping of areas what shapes are capable of more than one type of steady 

motion. 

The boundaries of the field of steady motion about one axis are determined by the 

vanishing of Riemann’s constants + and 7. The line RP (fig. 1) represents t=0, and 

1:4 

1:2 

O -2 “4 “6 -8 10 1-2 14 

Fig. 1. Field of steady motion about one axis. 

rotation about the least axis covers the field RSP. Along the line SP it merges in the 

ease of rotation about mean axis the field for which extends to the boundary 7’ =0 or 

SGP. The figure may be duplicated by interchanging « and y or taking the two axes 

about which there is no rotation in a different order. The whole field is then a flattened 

9—2 
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oval, with Maclaurin’s line for a line of symmetry, while the Jacobian is a curved diagonal 

from P where one axis is indefinitely increased to P’ where the other is increased, and cuts 

OS at right angles. This affords a more satisfactory representation of the relations of these 

lines to the field than we get by taking half the figure and regarding Maclaurin’s line as 

a third boundary. [At the same time t=O for Maclaurin’s case, vanishing through the 

factor (a—b)? while for the curve RP the vanishing factor is transcendental.] 

The point R where Riemann found instability for the spheroids is the point where OS 

ceases to be in contact with the general field. Here n,? vanishes and becomes negative; 

ny? is not affected because the polar oscillation does not postulate a difference between a and 

b, it remains positive and is ultimately = o* 

If we use the least axis as numerator of coordinates the field of motion about a mean 

axis is represented by a space below SP. The boundary SHP (fig. 2) proceeds from S along 

P AS 

O 
Fig. 2. Field of steady motion about two axes. Riemann’s Cases I and III. 

the line y+ 1 = 2z, crosses the Jacobian at H and reaches P touching OP. For Jacobians 

between H and P an alternative motion is possible having the mean axis as axis of rotation. 

At H the values of the elements in these alternative motions are different; the point H cannot 

be a point of bifurcation in the usual sense, and there is no ground for supposing it to be a 

starting point of possible instability in the Jacobian series. The algebraical inequalities 

which are known to exist in connexion with the transcendental curves 7, 7, J, are not in 

fact of much service in drawing the curves: they are generally wide except near a terminal 

point. But the condition 
w+ avy +y?<1 for z, 

when reversed gives some clue to the Jacobian line. The inequality #+y< 2a, is close for 
a considerable range, and in these coordinates the principal section of a Mat saucer is a good 

representation of the line. 

There are three cases of steady motion involving two axes, for which we shall use the 

standard order a>b>c and coordinates «=c/a, y=c/b. 
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Case I, in which the greatest and least axes are those of rotation, has for field a narrow 

lune (fig. 2) skirting the lme OS and bounded by the hyperbola y(1+«)= 2 representing 

the equality 2b=a+c. A vertex V of the hyperbola (e=V2—1, y=2-—‘2) lies symmetrically 

with regard to OS, the boundary has at Sa tangent + 1=2y in common with the boundary 

for rotation about a mean axis, but the fields lie on opposite sides. 

Case II, in which again the greatest and least axes are those of rotation, is defined in 

a preliminary way by OP, an are OQ (fig. 3) of the hyperbola y(1—#)=2 representing 

2b=a—c, and an arc QP of the quartic ¥?— 42° = y?(y?— 2"). The intersection 

x=2—N3, y=Nv3-1 

is the point where the loop of the quartic has 2 a maximum. 

P 

(G) 2 4 

Fig. 3. Field of steady motion about two axes. Riemann’s Case II. 

In this connexion an interesting feature emerges. For all other cases of steady motion 

the condition for a positive value of the pressure is satisfied as a necessary consequence of 

other conditions. In this one case it is not; it proves to be more stringent than either 

algebraical relation, and the line of zero pressure therefore supersedes them as the effective 

boundary. If we suppose motion possible between the pressure line and the algebraical 

boundaries, this is the one region in the whole range of steady motions where there is a 

manifest occasion for the separation into distinct masses. 

Case III, in which the greatest and mean axes are those of rotation, has a field O7'P 

(fig. 2). 

The part OT is the hyperbola y(1—2)=« representing 2c=a—b, the part TP is given 

by a transcendental equation. 

It will be noticed that the boundary of I is single and algebraical, that of II single 

and transcendental, that of III composite with sections of each type. 
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With the aid of the diagrams it is easy to examine all the cases where overlapping 

shews that more than one type of motion is possible for certain shapes of ellipsoid. We 

may note that there is a small region in the neighbourhood of «='22, y=°38, not a case 

of extreme dimensions, for which no state of steady motion exists. [PR of fig. 1 crosses 

OT and OV of fig. 2 above their point of intersection.] 

P = Ss 

8 

6 

2 “4 “6 8 10 

Fig. 4. Field of Roche’s steady motion. Contour shews extreme cases. 

Roche has made use of equilibrium forms* in which the attraction of a distant body 

is taken into account, with the limitation that the rotation and relative orbital revolution 

have the same period. The connexion with the above seems sufficient to justify the inclusion 

of this case in the diagrams. 

The case represented is that in which the liquid mass is extremely small in relation to 

the attracting body, and the interval between the smooth curve SP and the broken line SJP 

corresponding to the other extreme where the distant body is small, will be bridged by a 

M 

O 7) 4 6 8 K 
Fig. 5. Graph of w? for figures of Maclaurin, Jacobi and Roche. 

succession of intermediate forms. The graph for w*/4mp is also set in the diagram (fig. 5) 
for the same quantity in relation to Jacobi’s ellipsoids and Maclaurin’s spheroids. 

* I have only seen the reference in M. Poincaré’s Hypotheses Cosmogoniques, p. 54. 
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§1. Riemann’s* equations to determine the frequencies » and the ratios of amplitudes 

da:db:de may be written 

\a?Baq — n° (a? +¢*)} = + (aby — nc?) db = 

Ta a ene a (1), 

da | = db 
{bE — n? (b? + c*)} ac (abEw — n°c*) a= 0 

giving a quadratic in n® when the ratios are eliminated. The total energy is mH/5, and 

E,q denotes the second differential coefficient of EH with regard to a, when a and 6 are 

independent variables with which c is connected by the condition of constant volume. 

The steady motion for which the oscillation is considered is given by 

_Aa?—Ce 27? 27” 
a: ah Ga nthe daaaaees acer (2) 
ie Gs eo | 

Dt ae Gb Ge EOPe 
in which 7 and 7’ are Riemann’s constants of integration, and 

A = 2rpabe | dr|V (a? +r) (+X) (2 +A). 
na, 

Differentiating (2) we get #,, and substitute the values of 7%, 7? from (2), so that the final 

expressions are in terms of a, b, ¢ only. 

It is convenient to use integrals 

F,G,H= 2rpabe | Cees aia die Goiikbits seco (3). 
0 {(a2?+X)(B?+ A) (2+ A)}? 

When a, }, ¢ are treated as three independent variables, 

0A é 

and similar equations, while 4d +B+C= 4p gives 

po G (ne) 42 =O) 
0a 

and a£, is oo By this method we derive from (2), 

2 =o 222 22 972 — 72h2) — 9 Aig? 2 a Te | @E gq = 4Farbc? + G (2a2e? + bc? — a*b*) — 2Ha? + 6a on aoe ; 

abEqy = 2Fab'c: + G (ae? + be! — ab") — He? — bab } ane’ 
or on clearing 7° and 7° 

WE ag = 4F arb? + G (5a2c? + bc? — a®b?) + Ha? | (4) 

ab Eq = 2Fa2b?c? — 2G (a2c? +b? — ab?) — 4H?) £ 

The quantities A, B, C are connected with F, G, H by 

SAR =—IRG2C? = (Ge (BP. C2) ted ema teeeth Sees ce cela se raielees steels (5); 

* Riemann, Abh. K. Ges. Wiss. Géttingen, vol. 1x. 1860; Collected Works, p. 168 sqq. 
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and the relation 
Aor p = FF 2atG? = 2G 20? + 3H. ree. nes canens anode =-heeteeeenese (6) - 

represents A+B+C=47p. 

These results apply to the whole domain of rotation about a single axis. 

§ 2. For Jacobi’s ellipsoid 27/(a—b)’= 27'/(a +b)’=@, and in terms of @ equations (2) 

are 
wo? = (Ala? — Gc?) a2 = (Bb? = Ce?) [b* 2 <<a. sence .-- en eee enn (7), 

Le. w? is given in terms of the ratios of axes, and these ratios have a connexion in virtue 

of which the series is represented by a line in a plane diagram. 

The value of w? in terms of G, H is 

Oo? = GOLA AL © issssea senna sateen co ap OR ee (8), 

and the equation of condition is 

Gi(@e be = 7B) -E AC = 0) ons sen. enter costes eee eee (9), 

which somewhat simplifies (4), making 

Eq = 4Farbc? + 4Gaece + H (a? — c*) 

abE, = 2Febe —2He 

The treatment of oscillations turns on the calculation of F, G, H. Readers of Darwin’s 

paper will recall that */4mp is evaluated for a series of cases in which the geometrical 

condition is satisfied. Equations (6), (8) and (9) are then sufficient to determine F, G, H, 

V1Z. 

. 2a°b? +c) we? & 
= - 2 — 4 -o 772. o2\ (he p2\(? aS ( ; : ~ (@—&) (8 —&) oe 2 oo meaca (a? — c*) (6 — c) ae {2 @Hu=a) 

This is a convenient method of utilizing the material of Darwin’s paper for the further 

purpose of dealing with oscillations, and, so far as I can see, his equations are the most convenient 

way of expressing the geometrical condition and determining o*, except in the neighbourhood of 

each end of the series. As a test of accuracy the relation 

3Fab'ce + 2GSa°b? + H La? =4rpabeF (a, y)/Va?— Co... cececeec sees (12) 

has been used; each member is an expression for 

Ad + Bb? + Ce. 

Darwin expresses A, B, C in terms of angles a, 8, y, where 

b=acosf, c=acosy, and sin@=sina@sin'y ......0...-..ccceees (13); 

and these appear in elliptic integrals F(a, y) and F(a, y), ie. 

3 eo 
E (a, y) =| V1 — sin? asin? ydy. 

0 

With a multiplier M = cos* a sin® 8 sin y/cos 8 cos ¥, 

we have 

Al ; Bi in? asi s ’] i fF =.) costa, YS BR Poot ee esiuiy COSY, CM ae: _ 7+ cosBsiny 
4arp 4arp cos 8 4arp cos y 
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The equatjon of condition is 

E (1 +sin* a tan? 8 cos’ y) = (2F' — F) cos?a+sinatan 8 cos y(1+sin®§)......... (15), 

wo _ F-E E cos’ cos 8 cos y 

4apcosBcosy sin*?8siny costasin'y cos? asin? vy 
and 

§ 3. We proceed to examine the question of increase or decrease in angular velocity 

and momentum and in kinetic energy as we follow the Jacobian series from the junction. 

This is closely connected with the variation which has been used as a test of secular 

stability, viz. that of 

T+U= 
5h? = aerate | dx 

2m (a? +B) 5 0 V(a? +2) (b? +A) (C2 +2) 

subject to the condition of constant volume. Here use ay for a*b*c*, g for a?+b*, and 

write g(1+4’), y(1+~7’) for values after variation. The alteration in P or 

(a+2)(B +r) (y +r) 
is to the second order 

ALgg (y+) +’ ly (9 +2) — aB}] + Ay’ (gyg’ + @By’). 

Thus with R i = (a? + b*) a, 

10 - ; WMI oe, ' Aj (P+ U)=—wigg! + 2mpabe | ™* (ga! (y+) +4 ty (9+X)— 98} 
1 : , = en SNE A, = (7+ U) =0%%997+ 2mpate | nee (gig eBay (18). 

__ 38apabe (= r? aN ‘ ‘(9 +) ~ a8} 

Equating to zero the coefticients of g’ and y’ in A, we have the usual Jacobian relations 

w= 2mpube | oe. = iP Ainge LS 
: 0 

If the second variation is written 

Lg? + My? + 2Nq'y’, 

Le iE A(y+A) AA _ an (y +r} dd 
0 0 mpabe Pt 2 Pt 

M moe ie AUX _ BLP Miy(GtA)—4ByYPdN PP weaeeeeeeeeeees (19). 

mpabe Sige tel ks Pp: Bl PE 

N ay | NGS _ 3g / “(vy +r) [y(g+r)—aB} dr 

mpabe gY rn 2 2 J 9 Pp: 

Referring the integrals to a common denominator we find LZ, M and M— J to be positive, 

for the coefficient of each power of X in the numerator is positive when account is taken of 
ap > yg. 

Vou. XXII. No. V. 10 
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: : p> d (A2(A+7) : 
An equivalent* of the integral o= | Pere peor dx is 

= A(B.—4y) dr, [73M (A+y) [, MPSS + |, SE 201 + 97-28) —9 +0) =0; 
T 2 

in virtue of which N38 [eee +t 08 ae a pcan (20). 
ee 4 Pp: 

ON 

and then an at a bles 2 a dn 
= 

Thus WV also is positive and L>2N, ee N. Since Z, M and LM—WN? are positive 

the energy-expression (17) is a minimum for the Jacobian figure. 

§ 4. The relation between g’ and y' which corresponds to movement along the Jacobian 

line is got ae Pee the variation of the equation of condition and is 

= -[ a {yy eae +979'} 

== : = {y(g +) — 48} [gg (y+) +7’ fy (g +A) — 28h), 

ns Tha 
or O= =| a a (org +2087) 5 | ; } : 3 

as modified = the equation of condition, Le. the relation is My’ + Ng’ =0. 

The variation of w? is given by Aw?=—g'Q+2Ny'/g where 

Q=39{ AGB aL 

0 P: 

so that L/g=o?— Q/2. The variation along the Jacobian line is 

Ao* eis 
ean g (Q+ =e): 

or if we prefer, 
oe) = 7 (9+ tts) = =( 4-34) Seals akrcsls « cose ereaeeer (21). 

As M and Q are both positive, @* falls continuously as g increases, 1.e. in passing along 

the Jacobian line from the junction. From the second form of (21) we get 

hares a eon? (z- 4) i a (22). 

Also for this particular variation along the Jacobian line 

10 ie ae ae A. (T+U)=9 (£47), or A2(2'+ 0) =O 

using Ah==A (gw). It is clear then that increase of energy, and of angular momentum 

both follow from the condition LM>N* But 

yer Ree fy A N? eel 
AS aaron - (0+ 5 aa) 7 mar (4-57) - wg Betas. cbinnscvaraceten (23), 

the sign of which is not determined by the inequalities stated. The sign is at first positive 

* This step occurs in C, O. Meyer’s paper, Crelle, t. xx1v. (1842), where the continuous fall of w? is established. 
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but ultimately negative, the kinetic energy having a maximum for a somewhat elongated 

Jacobian (v. infra p. 76). 

§ 5. The transition to the spheroid is interesting. With a(1+qa), a(1+0’) for the 

varied axes, 
g =v +b'+4(a24+b"%), and y=—-14+1/(1l+ay1+0'P 

or yf =—2 (a +0')4+3 (a? 4+ b*) + 400! = — 29 + 3g? + (a —b’). 

In this case the independence of y’ and g’ is only realised in terms of the second order. The 

part of the variation (18) which remains of first order is 

2a°q’ |- w* + 21p (a — c*) c| x CEM) >] : 
0 Pz 

giving the value of »* appropriate to the spheroid. This value of »* appears in the second 

line of (18), and then the variation of second order in which now 

y =— 29 =—2(a +0’, 
takes the form 

(1+ 4M —4N) 9? 4+ 2mpa'e | Nd 
0 a 

{c? (2a? +r) — a4} {92 +(a —b'y} 

or on reduction 
Pn 5 rAdr 

2mrparc (a +b’)? : 
0 (+2) (+A)? 

+ 2mparc (a’ —b’)? | == {c? (2a? +r) — a4}, 
~ 0 2 

ES tet 4c? (a? = c’) 3c? (a? a 2
 

C+r (+r) 

a result verified by direct treatment of Maclaurin’s case. The first term is always positive, 

the second positive from the spherical end to the Jacobian junction and thenceforward 

negative. The term which changes sign is a term carried over from the original first 

variation to what in terms of a’ and b’ is second variation, and the necessity for change 

is due to the circumstance that a=b gives a relation between g’ and y’ to the first 

order as the expression of the condition of constant volume. 

, ert: m Te Tie 
§6. If we use for kinetic energy = ta =o (Geen 

write 7/(a—b)=7'/(a+b)?=@/2, the first variation agrees with (18), the second shews 

a positive increment, and the minimum property is more easily assured than with the 

! and after forming the variation 

above formula. The greater stringency of the dynamical minimum condition is in the case 

of the oblate spheroid represented by the withdrawal of the limit of validity from Riemann’s 

point to Jacobi’s junction. 

The minimum theorem may be stated as follows: a homogeneous body with kinetic 

energy due to rotation about a principal axis, and potential energy due to its own gravitation, 

will, when restricted to constant volume and ellipsoidal form, shew a minimum of total energy, 

if for values of the momentum below a certain limit the ellipsoid is an oblate spheroid, and 

for values above the limit it has the Jacobian form, and in each case the velocity is that given 

by hydrodynamical theory. 

The juxtaposition of kinetic and potential energy in the minimum problem postulates 

some mobility or capacity of accommodating shape to stress, but not the complete mobility 

of a liquid, for that demands Riemann’s variation method; or if such mobility exists, then 

10—2 
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a frictional action is postulated sufficient to suppress, as they arise, all motions involving 

departure from that of a rigid body. 

In pure hydrodynamics an existence theorem is established, the argument of secular 

stability extends the scope of its application. 

If an external body is taken into account the problem is more complex, but it seems 

a probable forecast that the tendency will be to transfer angular momentum and with it 

energy, from rotation to relative orbital revolution; the historical order suggested is a 

passage from the direction of P towards the Jacobian junction, and thence to the spheroidal 

form. 

§7. We proceed to methods of approximation which it is advisable to use near each 

end of the series. Near the Maclaurin junction Jacobi’s figure approximates to an oblate 

spheroid, at the other extreme to an elongated prolate spheroid. We can in these cases 

avoid the elliptic functions, and calculate F, G, H directly. 

Thus for an approximation to the oblate spheroid write 

a@=ai(l-+e), b=a(l —e); 

so that (a? +d) (+A) = (a2 +A)? — eas, 

where e? is small. Then 

es dx Beat 15eta® 
2, be | - i ~~ ——_—— 

al (a2 + A} (2+ A)? To (e+ ny 8(@+AS | ; 

or with 

@+r=(@—C)(v?+]1), C+A=(@—-—C)v?, B=(P—C)(v+1), c=(@—c*) vr, 

_ 4arpabe i dy’ | 3 (v2+1) 15e (v2 +1)! | 
F @_ot y? (v? Tay| )s 2 (v2 + 1) ar 8 (v2 +1)! SP osc 

4xpN1—é@ | ieee 3e(2 +1)?  15e*(v2 +1)! 
aL Aa (ta een (+1) 

(a? — c*)? y(t )|. py? (v2 + | oF 2 (v2 + 1: =e 8? + 1 a 

The integrations are effected by the use of 
- a d ‘ 

Qn =v (+ | FiGtaily a 1D?’ 

in which Q@=1—veot»y, and (2n+1) (2241) gn—2ngnyr Hl -reeeereeee ene (24) 

is a sequence equation. Thus 

_ 4apJ1-@ Se. 15 et 
cia eran 2 et | | 

,_ 4npV1—e 3é 5 
G= os |e a+ F(a a+] ge BREE (25). 

eal 3e2 
H =4rp V1 —e(v2+1) [a- 242+ 4s + za (9s — 241+ 4s) + | 

Since ac? + bc? — a*h? = (a? — c® P (v? + 1) fp? —1 +e? (v* + 1)}, 
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and c?=(a?—c*)v*, the Jacobian condition (9) written to the order e* is 

0=7 (4 — G)—(@—-G) +e E {v? (Qs — 9s) — (Gs — 9s)} + (* +1) (Qo — »)| 

+e | 2 (8-9) — (— a) +3 + DG—@) 26 rave qs Ge) (Ge Fr) gE GP=Of))|\ SE 260. Senc0d (26 a), 

- 3e ; 
and (4) + et Gt | LP (Gs— GW) + G9 — WF GE] + -- 

3 F ) 15 Se si} 
=a-a+e}, e— 9) - +I. 9) HEL Oo q) = 3 + 1)(qi— 9) + --. 

Siawidees (26 5), 
on using the equation of condition. 

The term in (26a) not containing e vanishes for y=y, the value at the initial point ; 

é and the fal! in w? are of the order »,—v. The condition of equal volumes makes 

apie; = a2b?c? = atc? (1 — e°), 

while o:c?=v?+1:v*, so that @ and c® differ from a,* and ¢,? also by quantities of order 

vy—v or e, but a and b} differ by a quantity of order e. 

For a single calculation a value of y in slight excess above 54°21'27'-45 may be 

taken, then 
ha=l—-wcot ~=1—vcot», 

while g,... are given by the sequence equation. A method applicable to all forms deviating 

only slightly from the initial is to find differential coefficients, and calculate their values 

for v=». Differentiation is made by 

dq < dg 
y 2 = (2n —1) (Gn — Gn), Die id @ 

and we may note that with the Jacobian condition 

d . ae hai! 4 4 
i {7 (qi — 92) — (G2 — 95) = HC —VY/(L +), Fe (a-)= CES {—1+q, (42+ D}. 

When evaluation is carried to the second order of Aw and fourth order of e, 

& = 3-445813Ay — 2°78454 (Ay)... 
ae ee) = Np, eR Ra 0 ra 1 3k ce 28). 

ea = 09355743 — -1294005Ay — ‘087816 (Aw)... - 

' Here Ay is in circular measure, and values up to 30” carry us approximately as far as 

the position a=15° in Darwin’s notation (v. infra p. 79). 

§ 8. It may be of service to add expressions in terms of qg, and »* for various quantities 

used in dealing with a spheroid a, a,c where a*:c?=y?+1:0% Thus 

=P {15 2 2 Saas ee) 
Y= J (@-eF@ +1) {15 (+ 1) n DV is 

G 5v?+ 3 —3 (2+ 1) (Se? +1) qi}, =o 
2(a@—e) 

He TO) a4 4 62? — Wg = bo 4 I], 
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which satisfy a relation 
DP arc —sGa(20? 107) - SM eeeeen oe eeeee neces meneame eee (29). 

Also A=B=2m7p {1—(v?+1)q}, C=4rp("4+1)4, 

wo? = 2p {1—(3v7+1)q}, and — EL = Aa? + Cc?=27pa? {1 + (38v?— 1) mh. 

The equatorial oscillation of the spheroid has 6a +6b=0, and 

n= Ea — En = 47 p (38 + 8 +1) —v —- 1}; 

the polar oscillation has da = 6b, and .-.(30). 

ny? (Bv? + 1)= (v? +1) (Lua + Ew) = 277p (v? + 1) {(27 4 + 18y?— 1)  — 9? + 1} 

The Jacobian condition in the form (7) or (9) leads to 

eB (Gitc bE SR Gh. cdédasaresnaceoccsc6csdacced 150006 (31), 

and it may be verified that this makes n,?=4*. Or to establish this in a way which 

shews more clearly the points on which the exact relation turns, we may take the value 

of Eyq— Eq in the general form (10), which for ¢=b is 

{2 Fate? + 4@a*c? + H (a? + c*)}/a* 

If we now combine the Jacobian condition at the junction 

Ga? (2c? — a*) + Hc? = 0, 

with the relation (29) true for all oblate spheroids, we have 

2Fatc? = H (3a? — c*). 

This makes Bua —Ewm=4(Ge+H) or n2= 40%. 

§9. The treatment at the other extremity depends on its approximation to the form 

of the prolate spheroid. For the latter with axes a,c,c and @:c=vp?:y—1, 

and pi =z loge ae 1, (Gn 1) = 1) pn 2npnya =U vie. eneeceaseeees (82) ; 

the formulae for F, G, H are 

4app;  4mp(P.— Ps) 4mp (pi— 2p. + Ps) @ 
c? (a? — c?)’ ve-—Ce e-¢C 

For the elongated Jacobian write 

B=y(l+e), C=yP(1l—-e), *®=(-Y)v, C=(@—y*) (v1), 

then proceeding as for the oblate spheroid 

_ 4ap Vv1—e 

(a? — y?)? (vp? — 1) 

We are concerned with the case in which py approaches the limit 1, say v*>=1+&, and 

note that while p, becomes infinite p,, p;... approach limits 4, }, 1... and approximately oT 
6 

tos 47rp e? ’ re dap _@ os : ve 8 . ae 

Pag ep (n+), 6-22, (m-m- 2), H=tnee (n—2n.+0-£(9-D 

15 Be es 
Pst > Pot —s- Prtet, G.... 
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2 
With L= loge g we have as sufficient approximations 

Hi; 1 1 5E* 
p=L-1+8(5+ i) ps= =5- = (=), P=] ( - =) Soc teA aoa (34). 

The Jacobian condition G (a*c? + bc? — a*b?) + He? =0 is then 

ai : 4 oy Mat GW ape 
(p.-p.- 7g.) (— 2e + & — 2e&*...) + \.- pa + Pa — 5 ( Pr —8)f &(1—e)=0, 

the solution of which gives 

e= F(QL—8) 4+. (814 20L4 5) tone csecceseessenceeee (35 a), 

and then ow = Ge? + A =2rp& {2L—3+4+ &(BL—1)+...} 20.0... eceee eee es (35 b). 

The first approximation uses only the main terms of G, H, the second involves an advance 

of one power of e, so that only the main terms of @ and H are here required. Values of 

Eq, ... Sufficient for our purpose are: 
/9 61 BG 3): @ Bog = 4p (@— 7) & gE —— 

b* Ey, = 4p (a? — 9°) & E — }. ; 

iby 
ab Eq, = 4p (a? — 9) & [p-f (ls Ik 

One root of the quadratic in n? to which (1) leads is then n,* = 4p &Z, the other is 

ng? = 2p (1 _ =F 

Thus n2:@? falls from the value 4 to 1 in passing through the whole Jacobian series, 

ie. this oscillation changes from a semi-daily to a daily oscillation. For n, the ultimate 

ratios of amplitudes are ous SaaS for np, — =0 to the first order, and fle. OF 
iE DO b a 

higher order = — &(2L aa approximately. These ratios answer to the description given 

above. 

The Jacobian algebraical condition a*l? > c?(a?+ 0?) is expressed by 2 +y7°<1. 

In the limit #2=£ and y=1l—e=1-—£(2L—3), from which 2+y°=1—&(4L —7), 

ie. the circle is approached: an approximate equation to the curve near c=0, y=1 is 

l-y= (2 log, - 3) . The positions for = 05, and €=-02 are entered in the table (p. 80). 

Darwin pointed out that there is a maximum value for kinetic energy which falls in 

this range. Assuming that it does lie here, the value of (a*+ b*) w is to be made a maximum 

as dependent on the single variable & With abe=1, @&+b=€- ale +75) and we have 

to make £ [2x - 38+& cee 6) | a maximum, the condition being 

L-3+e(-D\=0 
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As L =3 roughly €is not very small, on the margin of applicability of the formula. But 

the correction given by the second term is a small fraction of the prime value, and & = °13791 

giving e="051624 is probably near the mark: it corresponds well with the place indicated 

by Darwin’s table (D in fig. 1). 

§ 10. We proceed to examine the boundaries of the domain of steady motion about 

one axis. The condition 7=0 is expressed by 

(Aa? — Ce®)/a = (Bb? — Ce*)/b, or G (abe? + atc? + bc? — a*b*) + H (ab + c?) =0...(36). 

The algebraical limit required to make the coefficient of @ negative with c/a=a, c/b=y 

is @+ay+y?<1; the form (ab+c*)(H—abG)+c(a+by G@=0, shews that abG > H for 

this line. The ellipse 22+a#y+y?=1 is in fact much nearer to the Jacobian line. The 

inequality 2° + y+ y*>1 which appears to hold for the latter is evidently true if abG@ > H, but 

I have not found any proof of either inequality apart from the calculations on which the 

diagram is based. We accept Riemann’s calculation for the terminus of r=0 on OS, and 

treatment similar to that for the Jacobian gives 

=f CL —3) He 1) (2) =3) (37), 

for the terminus at P. The first approximation to its equation near P is 

2. 1—y=2(2log.--3). 

For intermediate positions the expression of (36) by elliptic integrals has been used, viz. 

(F — E) cot? acos 8 (1 + cos 8) — E {cos? B + cos*y(1 — cos B)} + cos 8 sin vy cos y (2 — cos 8) = 0 

At the boundary r’=0 the mean axis is axis of rotation, and if we retain the order of 

magnitude a>b>e, the condition is 

(Aa? — Bb*)/a = (Bb? — Cc*)/e or = G (ach? — a*b* — bc? + a’c*) + H (ac — b*) = 0 ...(39). 

The first form of the condition shews that b the axis of rotation is intermediate between 

a and c. If the axis of rotation is taken for numerator of the fractions used as coordinates 

in the diagram X =b/a, Y=b/c the field for this case is above the line SP where it adjoins 

the field for least axis as axis of rotation. In the form (ac—b*)(acG+H)—(a—cyPG=0 

it appears that ac>* or 1> XY, and the original form then involves b? (a? +c*)> ac (ac +6?) 

or X:—XY+Y?>1; the boundary therefore lies between XY=1 and X?— XY+ Y?=1. 

The graph shews the inequality Y + Y <2, or 6 less than the harmonic mean of @ and e. 

Near the terminus at P, working as for the Jacobian, we find 

=F (2L—3)\— FG —1) (QL — 8) ak. Aoacinccnen de cldaesiacecnaesee (40), 

and the equation to the curve near P is Y=1+X (210g. = -3). 

The expression of (39) by elliptic integrals 

(F' — E) cot? a !cos y + cos? 8 (1 + cos y)} 

— EF \cos* y + cos? 8 (1 + cos y)} + cos 8 sin x cos y (2 + cosy) = 0...(41), 

with a> 45°, has been used for intermediate positions. 
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Near the spherical terminus of the boundary r’=0 we may write a?=1+4a’,... and then 

P=(1+)A)+(1 +A)? Sa’ + (142) Sa’h’ + 0'6'y’. Proceeding to the second order of small 

quantities and using Ya’ + Sa’B’=0, P=(1+A)>—2(1 +2) Sa’B’ =p — p(w — 1) Ee’f' where 

~ Ir "> du { Ch Gi 1 1 =1+,. Thus A=20 | ee ee 1—= +5 +(5-- 55) 22 ‘of or 
f Pdi (@+rxyVP P| 1 ue | Be Qe 2p : 

Ihe GIP SG /8y : 
A 4rp=5—5 + Tt QR creeeeereteeteeeeeetreeeeeees (42). 

The condition (39) then gives eee ,/f== 73 the first approximation to the 

curve near S is X + Y=2, the second is 3(X?+ Y?)+ NY =7, and the initial value of « 

for use in the elliptic functions is 45°. 

§ 11. If we wish to shew what shapes of ellipsoid admit of rotation about either axis, 

we transfer to coordinates 2, y having «=c/a, y=c/b so that Yy=1, c=X/Y, X =2/y. 

The curve 7’=0, SH P in fig. 2, starts from S along the line # +1 =2y which corresponds 

to X+Y=2. Near P its equation is 1—y=«(2 log, 2/a—3) corresponding to 

Y=1+ X (2 log, 2/X —3); 

Le. the transformed curve approaches P touching the line t=0 but above it as shewn by 

terms of the next order. On this transformed boundary 7’ is not zero for the motion in 

which the least axis is that of rotation. The region SHP represents ellipsoids capable of 

either motion, but with different values of 7 and 7’ except along the line SP: in particular 

the Jacobian ellipsoids of the range HP are all capable of steady motion about the mean axis. 

At H we have Aa*— Bb?= (a —b*) (Bb? — Ce*)/b? as Jacobian condition, while for 7’=0 

in the alternative motion da? — Bb? =a (Bb? — Cc*)/c, and therefore 

c(@—b)=ba or P=arc/(at+c), 

Le. y2=a2(1+2) or cosytan?8=1. [Working through the G and H relation we get also a 

factor b?—c? pointing to intersection at P.] The position of H is near «= 4026, y=-7515, 

or a=67° 17, y=66° 15’ 24”, least axis 2 of the greatest. The 7 of the one motion and 

@ of the other are connected by t?=@?a?(a—c)*/2(a+c), the kinetic energies are in the 

ratlo a—c: a+ 2c, the squares of momenta as (a—c)?(a+c):2a*(a+ 2c). Numerically the 

kinetic energy of the motion about mean axis is 33°1°/, of that for the Jacobian, the angular 

momentum 212°/,; so that the disparity is considerable. 

In the region of rotation about mean axis lies the case of irrotational motion to which 

Sir Alfred Greenhill called attention. The condition is 

(Aa? — Bb*)/a? (a? + 3c) = (Bb? — Co?)/c? (Sa? +c?) 

or c? (a? — b?) (3a? + @) (Ge? + A) = a? (6° — c*) (@ + 3c?) (Ge + A). 

With respect to this I find that near S it agrees with r’=0 to the second order of 

small quantities. Near P I get 

2e[po— ps + & {5 (ps — ps) + pi — po} = & [3 (pi — po) — 3e(p — ps) + 4&* (p. — p2)], 

leading to e=38 (202 —- 3)-& (2424 —56L+ >) sies's 

iViOra XeXchi= No; 1, ll 
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This gives a contact with SP at P similar to that of the Jacobian, below SP in the 

standard system, above it in the other, and the sign of the second term suggests the point 

of inflexion necessary to secure this tangency. 

§ 12. The table of Jacobians is calculated for 5° intervals of the variable a, those for 

a=5°, and a=10° by a method which will shortly be given, the rest by elliptic integrals; 

beyond these are added values for the place of maximum kinetic energy, also for &=-05 and 

£=-02 in the extreme range. The object in choosing a for the regular intervals rather than 

y, as in Darwin’s table, is to secure a safe interpolation. Gauss’s form may with advantage 

be applied to tabulated integrals in which the integrand is calculable or tabulated more 

fully than the integral. Where Taylor’s theorem holds good within a short interval a to a + b, 

2 
par b (gym | Ly, 
| tale =b | a t5 Hel +5 te” +35 Me +~]| 

- 2 2 6 

b a \ 43 = OUigiis + 4. + Bears Way otarela\reisaerearaane ( ), 

or = 5 (Marae + Uara’o) + 4320 too. | 

where X+A’=1, A? 4A? =2, Le. A='211325..., A’ ="788675.... The form buq+» 1s sufficient 

b : i he ae 
for a short range, 3 (Maras + Wasp) covers a much wider range. Thus requiring an elliptic 

integral with 60° 28’ for y we should write 9 =60° 14’, use sin§’=sinasiny’, and then 

with Ay for the circular measure of 28’ the simpler corrections are Aycos®’ for EH and 

Ay/cos 8’ for F to be added to the tabulated values for y= 60°. 

In the columns giving (a?+6*)o?, (a?+0*)*, and E, use is made of abe=1; the 

transfer to any other scale of magnitude is well understood. 

On completing the work I was anxious to discover the source of the discrepancy between 

Darwin’s results and my own as to the maximum velocity, a discrepancy occurring where 

the use of elliptic integral tables is troublesome and uncertain, viz. for smaller values of a; 

and this paragraph is a sketch of work undertaken with that object. The forms in (15) 

and (16) are expanded in powers of sin*a, the method is therefore closely allied to, though 

not identical with, Darwin's treatment given in a long footnote. ‘lhe expansion of the left- 

hand member of (15) has the form C,sin‘a+ C,sin'a+..., where 

C,= sin‘ y tan y {q, (3y* + 140? + 3) — v? — 3}/8, 

with y=coty and g,=1—ycoty. The bracket vanishes at the junction by (31); near it 

Pry mea, : eae : e 
the value of C, is e Ay, and a first approximation gives oa Ay+C,;sin?a=0. We find 

1C : : 
= 2q, sin® y (cos* y — sin? y), 

and C,= sin" y tan y {q, (80° + v4 + 33v? + 3) — (v2 + 1) (v2 + 3)}/32, 
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which at the junction is reduced to 

Cs = — qSin* y cos y (cos? y — sin? y)/2. 

Thus the first approximation is Ay = g Sin’ asin ¥y cos y, which admits of immediate interpreta- 

: / iy. : 
tion. For x= cos (y+Ay)= cosy ( 1— goin a sin® 1) , and 

abe ot = cos y € + join’ a sin*y) ; 

and so «+ y=2cosy=2, ie. the first approximation to the line near the junction shews 
a direction perpendicular to OS. 

If the mght-hand member of (16) is expanded as D,+ D,sin?a+... then 

2D, cosy=1—q,(3»7+1), 16D, cos y= sin? y {5v? + 3 — 39, (v2 + 1) (5v? + 1)}, 

or when simplified by the condition at the junction 

4D, cos y = sin? acos* y {1 — g, (3v? + 1)}. 
Thus as far as sin? a 

A 
wo sin? a 
Pe Le ry (cos* y — sin? y) {1 — g, (By? + 1)}, 

and the first term is Ay iD, cosy) with the value of Ay just found. We have 

d 

dy 
which at the junction = 4y {q, (38v?+2)—1}; and therefore 

2 

D, cos y = z [q: (27! + 30v? + 3) — 9v? — 3], 

re = sin? a sin? y {g, (B8v4+ 14v? + 3) — v? — 3}/12, 

which vanishes at the junction. 

Thus the first term in Aw? depends on sin‘a. The details of this method are very 

tedious, and I have not applied it to obtain the coefficient of sin‘a, The position is that 

w* with respect to the variable a is a sustained maximum, with respect to y an ordinary 

maximum, the variation depending on sin‘a or on (Ay) [Aw is of order e? or sin*a or (Ay)*] 

Connecting this with the method of approximation in § 7, with y for the value at the 

junction ; ; 

: sin? @ sin* (1 + sin? a + : sint a) - Su aLaTyicos ia == sIn?4 sin? =sin?a+—s eee ae 2 UND 4 4x 3445813 
: : sin‘ @ sin ¥ cos : 

sin? @ sin y cos y + Zale et (3 cos? y + sin? y) 

sin’ @ sin y cos y 

sin‘ asin‘ y 

+ 4x 3445813 
= ‘1183906 sin? a + 0564942 sin‘ a+°03562sin'a+..., 

(15 cost y + 10 sin? y cos* y + 3 sin‘ y) 

{1 +S Seosty +8sint)| ca 

or in minutes of are = 407-00 sin? a + 19421 sint‘a+ 122°45 sin’ a+... | 

@- 

and = 0935574 — 0040948 (sint a+ sin’ a) — 0009615 sin’ a.. | 
TP 
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The last pair give a solution in terms of the angle a@ for all small values, more trust- 

worthy I think than results derived from the direct solution* of (15) by tables, up to 

a=15°. 

Schedule of solutions for the Jacobian form of equilibrium. 

] | | 

a 1 x y e/azp (a2 + 1*)Pu?/4zp|(a>+)er/4xp, —2E/4zp ne | n,?/o* 

0° 54° 21’ 27-45 | 582724 | -582724)| -0935574- T68872 | -268203 1681975 | 4 4-1182 
at 54° 24’ 33-6 58199  -58346 -0935572 768876 268205 

10° 54° 33’ 54-6 + | -57978 | 58567 -0935536 768933 | -268210 | 
ks 54° 49’ 40” | 5760 5894 -09354 “7692 | -2682 16818 3°9873 | 41316 
20° | 55° 11’ 40” -DTOT -59AT “09349 ‘7699 -2683 

25° | 55° 41’ 5638 | 6016 -09339 7714 2684 
30° | 56° 17’ 40” “BDAY -6102 09322 “T745 -2687 1-6800 | 38887 | 4-2447 
SSre ors 212" D441 6207 “09291 “T7197 -2692 

40° Hie o) “5309 6331 “09243 “T887 -2700 } 

45° | 58° 58’ “5156 “6481 “09162 “S017 -2710 | 16707 3°6876 | 4-5190 

5O~ 1 60° 11’ 30” 4971 “6654 “09043 "8225 2727 
Die Olma! oO. | -4752 -6856 “O8868 “8543 2753 

60° Gamo 1o- | 4493 7092 “08610 9031 “2789 | 1:5385 3°1626 | 5°3315 
65° | 65° 16’ 48” 4182 7367 “08238 ee -2841 | 

70° | 67° 38’ 30” “3804 7689 -O7694 | 11054 2916 

Lue 60529 41" | -3339 “8074 “06896 Jeikspayl -3023 1°2444 2-894 6-821 
80° | 74° 5’ | -2742 8540 05694 17685 = 
85° | 78° 59’ =6” | -1911 9127 “03773 3°0055 -3368 

| | 1330 -9496 -02360 4-9407 *3412 (max.) 
|-0497 | -9887 00220 16-36 -3000 
| 0200 ‘9975 “00124 | 42-23 -2291 

S00 90° 0 1 0 L 0 0 al | 1 

§ 13. We now propose to discuss the delimitation of boundaries for steady motion in 

which two axes are involved. Riemann curiously enough omitted to state the order of 

magnitude of the three axes for his several cases, and dealt only slightly with boundaries 

of transcendental type. In other respects his statement of the analytical conditions is so 

clear and precise that the most judicious course appears to be, to state his results in his 

own notation, then transfer, when the order is established, to a standard order a>b>ec and 

add what is necessary to complete the delimitation. Riemann uses 6 and c for axes of 

rotation in all cases. 

; : . : b 
Case I. Greatest and least axes those of rotation. Riemann gives boa>—. Here 

b b : : : a, 
~ +< <2, and qz lr therefore  < 1; thus the order is b>a>c with a possible equality in 

the limit. For standard order we interchange a and b when the condition is 2b>a+e, 
a and c being axes of rotation. The boundary 2b=a+c is represented by the hyperbola 

* The difficulty in working with the tables at this point 

is that a smal) alteration in a or > gives a much less altera- 

tion in the residue of (15) than in (16) or in the individual 

terms of either. Thus asmall error in the adjustment of a 

and ¥ involves a larger error in w*. 
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y (1+) =2z, the part relevant is the are from O to S, and the vertex V of the hyperbola 

a=V2—1, y=2-—V/2 lies symmetrically with regard to the chord OS. The region concerned 

is a band skirting Maclaurin’s line, and the state of motion is continuous with Maclaurin’s 

for a=). 

Case II. Axes of rotation, greatest and least. Riemann takes b>c and then 

b—c>2a, <a? (b?— 4a*)/(b — a’) 

are conditions. As b> 2a, b?—4a? and b?—a? are both positive and c<a, ie. the order is 

b>a>c. The transfer to standard order as in Case I gives a—c>2b and c*(a?—b*) <b*(a?— 4b?) 

as conditions, or y(1— ) > 2a, y?— 4a°>y°(y?—*). The part of the quartic which is relevant 

is half of a loop which sets out from O along the line y=2z, touches SP at P, and has at Q 

a maximum value for # of value 2—V3 where y=V3—1. The region is to the left of 

these lines, viz. within O@P; near O the hyperbola imposes the more stringent condition, 

and this is the boundary till the point of intersection is reached at Q where z is a 

maximum. Beyond this point the quartic imposes the more stringent condition and is the 

boundary to P. 

But this proves to be merely preliminary. The loop boundary is 

0= 40-8 (a? +0?)+ eC= D, 

and D is a factor of the determinant of Riemann’s equations for ¢, S, 7. These equations 

have right-hand members, and with a zero determinant are not unconditionally consistent. 

The condition is 2Gb?+ H = 0, which is an impossible relation. The loop section of boundary 

is certainly not valid as a boundary up to which steady motion is possible. The intervention 

of a pressure condition, which in fact supersedes both algebraical conditions as the effective 

boundary, will be discussed below. 

Case III. Axes of rotation, the greatest and the mean. Riemann takes b>, and then 

> 1) (Ag? 102 2 2 3a <P ah (4a aa a eat | <0, 
A Gy P2(b?+2) ll C+yz7 C+nr 

are the two inequalities to be satisfied. 

If c>2a the integral inequality holds, and will continue to hold for values of ¢ less 

than 2a but not so small as a unless b becomes infinite. There is certainly a range within 

which the order is b>c>a, which is converted to standard order by a cyclical change, 

which makes the conditions 

2c <(a—b), and [XP ea) Geb +e) (C2 =) 0 eee (45). 
0 Pz , 

The first boundary 2e- =a—b is y(1—2a)=«; the inequality y (1 —2zx)>~ is observed 

to the left of the hyperbola up to the point 7’ at which the integral equality is satisfied, 

for which we know that 1>y>3. If this equality holds for a line 7P proceeding to P, 

the order remaining a>b>c, this line will complete the boundary. The equality 

(a2b? + bc? — a®c? — 4c) G — (4c? — &*) H=0 

meets the curve 7’=0 or 

(acb? — a*b? — bc? + a*c?) G + H (ac — b*) =0, 

11—3 
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for values making the eliminant 

ac (6 — c) (a—b — 2c) (a +b — 2c) 

vanish, ie. for b?=c* giving the point P, and for a=b+ 2c which is precisely the point T 

where the two boundaries meet. Near P we get 

2e (ps — ps) + 5e& (p, — ps) = 3& (p: — po), 
5) 9) 

Near P the curve lies below the Jacobian, the type of first term is the same, the sign 

and approximately e=3F (2L —3)— 38 (sz — 240+ 

of the second approximation opposite. The Jacobian is met at the point P, and again for 

@ (3°?—Bb)=c(4e—6) or 2 (4y—1)=37-1 

giving an approximate position y=°622, x ="5417; and the curve P7 must have a point of 

inflexion in order to cross the Jacobian. Solutions were obtained of the equation reduced 

to elliptic integrals, viz. 

sin? a cos 8 sin y cos y (sin? a+ sin? 8 + 4 cos? y) + 2 sin* a cos* y (2 — sin? a) 

=(E— F cos? a)[cos* y (4— sin* a) + cos? 8 (sin? 8 + 4 cos’ y)]...(46). 

Along the whole length of PT the transcendental boundary this case is continuous with - 

the case of rotation about mean axis only. Here Riemann’s S=0 makes uw and w’ vanish, 

and gives also 47(4c?—b*)=G(b?—c*); the relation between G and H gives a ratio for 

vy: v* in the theory of mean axis which is clear of transcendentals, viz. 

=(a+2cP—b?: (a —2cyP —B*, 

and the values of v, v’ for the two cases agree. 

§ 14. The condition of positive pressure (or o positive) is one that is little in evidence, 

for the reason that in all cases of rotation about one axis as well as in Cases I and III the 

condition is satisfied as a simple consequence of other conditions. In Case II it restricts 

the field within narrower limits than the composite algebraical boundary, and the equation 

p or «=O supersedes other conditions as the effective boundary of the case. 

The pressure is positive so long as F+3(2G?+ H)/D>0, D meaning 

4b — b? (a? + c*) + ate? 

with standard order. The condition D=0 is represented by the quartic loop, D being 

negative between OP and the loop. The line p=0 may be expected generally to lie well 

within the loop, but may meet it at P or O where other quantities than D are small. Near 

P the equality is represented by 

Ps(2e — 3&* — GeE*) = 3&*[2 (p.—p;) (1 + €) +p: — 2p. + ps] 

which treated as before gives 

e = 6&(L— 1) +96 (6L - ) +e 

The curve near P lies below the Jacobian or the boundary PZ’ of Case III, and turns 

more sharply downwards. 
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We examine now the position near 0 where ¢ is small. The reciprocals of (5) give 

A B Cc 

@_A (eA) @_H_-A *'@_-AC-eS - i  ad 

while —G and H are got by writing Aa*, Aa‘ respectively for A,.... Thus if ¢ is small 
the condition is reduced to 

P= 

C 3{A (@ — 26) + BE} 
a (a> — 5?) (a* — 46) 

Comparing the right-hand members of (14) € has a term with cosy in the denominator 
and is relatively great when ¢ is small, so that the positive character is assured unless 

@—4* is small. But near the boundary a—c= 2b leads to a? —46*=2ac. and in fact makes 

the above negative, but we can adjust 7 in a—fe=2b so as to satisfy the condition which 

> 0. 

is then : 
, 3A (a*— 257) + BE} 

des 27 (a® — 6) cosy i 

; age 2A : : 
or as a= 2b approximately, the condition is (> oF aay” Now with y nearly 90° and 8=60° 

Seis) | 
sin? a cos @ 3 

or 
cos y Scosy 

and therefore a= 60°, C is proportional to , and 24 +B to 1(F,+22,) 

where E, and F, are complete elliptic mtegrals for a= 60°. Hence the condition is 

F>4(F, +22, > 152619, 

using F, = 2715652, E,=1-21106. The pressure line near 0 is therefore a —fe=2b or 

y — 22 = fry = 27z* = 3 05242" 

approximately, whereas the hyperbolic boundary is y= 2x2 +227 near 0; the curve then lies 

above the hyperbola but has the same tangent y=2r at QO, with a radius of curvature 

reduced as 2 : 3. 

For a general position we use 

FP \(@—F) (F —¢)—3%}| —3 (26 + H)>0, 
or the boundary is 

Fa* (sin? 8 sin? y cos a — 3 cus‘ 8) — 3 (2Ga* co 8+ H) =0. 

From (47) it follows that Fa‘, —Ga?, H are respectively proportional to 

Acota—B+Csin*a, Acos*a—Beos8+Csin*acosy, A cos*a—Bcos 2 + € sin* acos y. 

In this way three points were determined in a middle range by use of elliptic integrals. 

§ 15. Attention may be called briefly to some features of the steady motion about two 

axes, say 5 and c m Riemann’s notation. The angular velocities w,, a, and momenta hs, h, 

are constant, and moreover h.:h,;=@.:,: in fact we find 

mes 
o 10 

the positive value of the radical applicable to the case in which w, w’ have like signs. 

(+ —2a* + V(2a +b + c) (2a —b —c) (2a +5 — cc) (2a —b +), 

The frame of the ellipsoid moves im such a way that any line belonging to it describes 

a cone with uniform angular velocity about a Hne fixed in space. The axes in most parts 
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of the fields for I, II and III are very unequal; the irrotational element in the motion must 

therefore be very influential in order to equalize the effective moments of inertia. In general 

the kinetic energy is not expressible in terms of o’s only, for h; being 

us ee ‘(a—bPwt(atbyPw'} 
o 

and w, being w+w’, the kinetic energy 

m 

== ((a—bf w + (a + bw? + (a — cf + (a +ey v} 

— [a —bpwt+(atbypw'} (w+w')—2(€+0*) ww’...] 

2m ., ; 
=h,o, + hs; — = ‘(a2 +°) vv’ + (a? + B?) ww. 

But when w, w’ have like signs, v and v’ have unlike signs and the bracket may vanish, 

in which case the kinetic energy would be double that belonging to a rigid body with the 

momenta and velocities. In Riemann’s notation 

(a? +c?) vv’ + (a? +B?) ww’ = {(a? + &*) T + (a? +0?) S} 

x V(2a + 6 +c) (2a—b—c) (2a+b—c) (2a—b +0), 

the positive sign attaching to Cases II and III where S is negative, the negative sign to 

Case I where S is positive. The condition (a? + 6?) 7+(a°+c?) S=0 is represented by 

6a‘ (Ga? + H) + H (a? — b*) (a? — cc?) =0, 

which cannot be satisfied for III. But for II where in standard order the relation is 

6b (Gb? + H) =H (a? —b*) (b* —¢), 

it is satwfied for a line from O to P within the domain of II. The line leaves 0 within the 

region of positive pressure (angle a slightly less than 74°), quits this region in the upper 

part, but remains below the quartic in approaching P. To the left of the line the kinetic 

energy is less than the amount specified above, to the right it is greater. The existence of 

the line is a curious feature, which rather emphasizes the characteristics of this motion, 

but the line does not appear to have any true dynamical significance. 

A consequence of the influential part played by irrotational motion in Case II is that 

the status would be greatly altered by a very small amount of friction. The reduction of 

mechanical energy would involve a movement towards the pressure boundary where cohesion 

ceases and the conditions become disruptive. If this approach takes place in the upper 

part of the diagram where there is approximation to the spindle shape, separation into two 

or three less elongated bodies seems probable. If the approach takes place in the lower 

part of the diagram where the form is that of a thin elliptical disk, the formation of a globe 

and ring seems more probable. That is we postulate transverse lines of weakness for the 

first case, an annular line (or lines) for the second. Without professing any special con- 

fidence in the application of a homogeneous fluid theory to cosmogony, it seems permissible 

to set down the above suggestions as those which arise most naturally from this part of the 

subject. 
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§ 16. The figure of equilibrium discussed by E. Roche, where a distant attracting body 

M on the line of the greatest axis moves in a circle with an orbital period equal to that of 

rotation of the liquid ellipsoid, is represented by the equations 

a? (A — @ — 2v@*) = b? (B— w + vo’) = c (C + v0”), 

where y= M/(M+m) may range from 0 to 1. For v=0 the distant body has an inappreciable 

influence, and the course of solutions is represented by the curve SJP representing spheroids 

and Jacobians. The other extreme y=1 is the case which has been specially examined. 

The general course for intermediate values is easy to forecast, and some help is given by 

the treatment near the spherical terminus after the method of § 10. Thus 

(1—«#)/ — y) = 3 +1 =sec? a 

near S, ie. the tangent of the inclination of curves to SP near S varies from 1 to 4, and 

the initial value of the angle « used in the elliptic functions varies from 0° to 60°. The 

curves lie above these tangents and have one point of inflexion after reaching the position 

wo  .4(1—2) 
for which y is a minimum. The first approximation near S also makes =a ; 

4p 15(38v+ 1) 

For v=1, the equation of condition is 

sin? a cos B sin y cosy (6 + cos? y) — 2 sin? a cos* y — (H — F' cos? a) {cos? y + cos® B (3 + cos? y)} = ei 

@” cos’ asin? 8 sin x cos fF 
and '=(E — F cos?a)cos?8 + Hsin? a cos? y — 2 sin? acos BP sin y cos yi; o/ 9/ 

 4arp cos B 

Paes (48) 
The table gives values for four positions 

a Sy x y w?/4arp 

70° 43° 22'3 ‘72688 “95155 016205 

(i Bye 2 Y5y 59131 94298 021162 

80° 63° 174 *44945 94528 “022400 

85° omelon ‘28875 ‘96069 “017705 

The maximum value of @/47p inferred by interpolation is ‘02255, the mimimum value 

of y ‘9424, the place of the former nearer to P than the latter. 
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I, PRELIMINARY. 

1. THE Cambridge Philosophical Society published two papers by me “On the Fifth 

Book of Euclid’s Elements” in their Transactions, vol. Xvi. part Iv. (1897) and vol. XIx. 

part 1. (1902). These will be referred to in what follows as my first and second papers. 

I shall also have occasion to refer to my two editions of the Fifth and Sixth Books of Euclid 

published by the Cambridge University Press in 1900 and 1908, and my Theory of Proportion 

published by Constable and Co. (1914). 

Il. OBJECT OF THIS PAPER. 

2. The special object of this paper is to study the Fifth Book of Euclid from the point 

of view of its relation to the principle afterwards known as the Axiom of Archimedes. 

“I purpose to set out the results which can be obtained 

(a) by considering this principle in connection with the Fourth and Fifth Definitions 

of the Fifth Book; 

(b) by considering how far this principle is necessarily involved in the proofs of 

properties of Hqual Ratios given in the Fifth Book. 

Ill. THe Axrom oF ARCHIMEDES AND THE FourTH DEFINITION OF THE FirrH Book. 

3. Though the principle is now always known as the Axiom of Archimedes it is very 

clearly assumed in the Fourth Definition of the Fifth Book, which Sir T. L. Heath translates 

as follows: 

Magnitudes are said to have a ratio to one another which are capable when 

multiplied of exceeding one another. 

Thus it is assumed that if A has a ratio to B, or B to A, then it is always possible to find 

integers n and p, such that nA >B and pb> A. 

This plainly assumes the Axiom of Archimedes, and it reads like an anachronism to 

call the axiom by its usual name, but I shall conform to the usual practice throughout this 

paper. 

Won, JON aos Var 12 
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IV. THe Axtom oF ARCHIMEDES AND THE FIFTH DEFINITION OF THE FIFTH Book. 

4. Euclid did not consider the bearing of the Axiom of Archimedes on the conditions 

enumerated in the Fifth Definition of the Fifth Book, but important results can be obtained 

by doing this. 

Sir T. L. Heath translates the Fifth Definition as follows: 

Magnitudes are said to be in the same ratio, the first to the second and the third 

to the fourth, if any equimultiples whatever be taken of the first and third, and any 

equimultiples whatever of the second and fourth, the former equimultiples alike exceed, 

are alike equal to, or alike fall short of, the latter equimultiples respectively taken in 

corresponding order. 

Hence AS Beep, 

if when we take any equimultiples whatever rd, rC of A and C: and any equimultiples 

whatever sB, sD of B and D, then the only relations which are simultaneously possible are 

(Il) rA>sB, rC>sD; 

or (Dl rA=sB, rC=sD; 

or (II) rA<sB, rC<sD. 

To make the meaning quite clear it may be added that (I) means that if having chosen 

the integers r,s we find that rA >sB, it is necessary that rC>sD; and also that if we find 

rC> sD it is necessary that 7A >sB. 

So that to express the full meaning of (I) we may say that if r, s are any integers what- 

ever such that 

7A > 3B; then quust! eC > 2D. 22s,..3357.5- 2 ee eee (1). 

But if r, s are such that 

rC>2D, then aust 9A > sB ....5<5s.5-cn-tonsenepene eee (2). 

In like manner the full meaning of (II) is expressed by saying that if r, s are any integers 

whatever such that 

rA=sB, then must 70 =D) ...<..sccscescsceueenpon---noeeseeee (3), 

but if 70 =sD) then: must 7A = sB 2. ..-6.22/Gesesceee-- oe (4). 

Similarly the full meaning of (III) is expressed by saying that if 7, s are any integers 

whatever such that 

TA < sB, then anus) 70 < sD 2.2 .%tyc8. soe eee ee (5), 

but if rC < sD, then must ré'<sB ....5. 20.305 ess ee (6). 

A proof is given in Art. 36 of my Euclid V. and VT. (1st edition) of the simple theorem 

that if the conditions (1), (3) and (5) are satisfied then (2), (4) and (6) can be deduced from 

them by reasoning which is purely logical and does not involve any knowledge of the properties 
of the magnitudes dealt with, and in particular does not assume the truth of Archimedes’ Axiom. 

Euclid does not give a proof of this simple theorem, but assumes it throughout the whole 

of his Fifth Book. He does in fact reason as if he had defined the proportion 

A :Be:0:D 
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as existing, when the magnitudes concerned satisfy the conditions (1), (3) and (5). Simson 

gives the definition in that form, but it is unsymmetrically related to the first and third of 

the magnitudes concerned, and also to the second and fourth, whilst Euclid’s form is 

symmetrical. 

In like manner it can be shewn that if the conditions (2), (4) and (6) are satisfied then 

(1), (3) and (5) can be deduced from them by purely logical processes. 

It was further shewn in Art. 37 of the book just mentioned that if the conditions (1), 

(2), (5) and (6) are satisfied then (3) and (4) can be deduced from them by purely logical 

processes. 

Further, it can be shewn that if either the condition (3) or (4) hold for a single value 

of r and a single value of s, then all the remaining conditions hold good (see my Theory of 

Proportion, Art. 77). This particular case is mentioned for the sake of completeness, but it 

is of no importance in the argument. It can only occur when the magnitudes A and B 

are commensurable, and C and D are commensurable. 

No other and no further reduction of the six conditions (1)—(6) to a smaller number 

by purely logical processes is possible. 

5. But if the truth of Archimedes’ Axiom is assumed it is possible to reduce the six 

conditions to 

(1) and (5), 
or to (2) and (6), 

or to (1) and (2), 

or to (5) and (6). 

Stolz, in his Vorlesungen iiber allgemeine Arithmetik, part 1. p. 87 (1885), was, I believe, 

the first to shew that (3) is involved in (1) and (5), and then (2), (4) and (6) follow. 

This covers the case in which it is shewn that (4) is involved in (2) and (6), and then 

(1), (3) and (5) will follow. 

Lastly, it will be shewn that (1) is equivalent to (6), and (2) to (5). 

6. The reduction of the six conditions to (1) and (2) was I believe first given in my 

Second Paper, Art. 68, by a proof in which I shewed that they involved (5) and then the 

remainder followed by Stolz’s work. A similar proof is of course applicable to the reduction 

of the six conditions to (5) and (6). 

I will however now give a demonstration, independent of Stolz’s work, due to my friend 

Mr Rose-Innes, of the reduction of the six conditions to (5) and (6). 

Let A, B, C, D be four magnitudes such that whenever 

BAR<as Es: HON 7: Orcas Dstean acess eeaias =< cadqucaceous (5), 

and whenever ROS) LHe Alan pene enwe ces se Sen ss csncn soe se ates: 5! (6), 

it will be proved that the remaining four conditions also hold. 
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The relation between the magnitudes 7A, sB must be one of the following: 

TANI IS Ne os isis). ss ye tones eles case sel se ae See (a), 

TAN E= SB gcdeicca ca shaee Me ceaane scoters estore eee REE (8), 

PACSISB) 32.2 es den cSecwdease ssa sonar ee eee eee (y). 

The relation between the multiples rC, sD must be one of the following : 

POS) ooo occ nsss se obama de sbece seca one eeee (a), 

POS SID ec occcv ssn caemecen sai cosh See Rear Re eeee een (b), 

TOES SDD ovsinn sc vnc ose Seue close) conse see eee ene eee (c) 

Each of the cases of the first set must be considered in conjunction with each of the 

eases of the second set, so that there are nine combinations to be considered altogether. 

We have to reject all those which are inconsistent with (5) and (6), which we suppose to 

hold. 

The possibility of the combination of (a) with (b), and that of (a) with (c), are imcon- 

sistent with (5). 

The possibility of the combination of (a) with (8), and that of (a) with (y), are incon- 

sistent with (6). 

Let us consider next the combination of (8) with (c), i.e. suppose 

rA=sB, 

rC>sD. 

Then r@—sD is a magnitude of the same kind as D, and now introducing Archimedes’ 

Axiom we can assert the existence of an integer n, such that 

n(rC —sD)>D, 

. nr > (ns +1) D, 

but since rA =sB, 

*. nrA =nsB <(ns + 1) B, 

so that the integers (mr) and (ns+1) are such that 

(nr) A <(ns+1)B but (nr) C > (ns +1) D, 

which is inconsistent with condition (5). 

Considering next the combination (y) with (6), i.e. rA >sB, rC=sD, it can be shewn 

in the same way by interchanging A with C and B with D in the preceding proof that this 

is inconsistent with condition (6). 

It has therefore been proved that the combinations 

(a) with (6), 

(a) with (c), 

(a) with (8), 

(a) with (+), 

(8) with (c), 

and (y) with (db) 

are inconsistent with the conditions (5) and (6). 
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Hence, if the conditions (5) and (6) are satisfied, the only combinations which are 

possible are 

(a) with (a), (8) with (b) and (y) with (ce), 

which are exactly the combinations permitted by Euclid’s Fifth Definition. 

Hence, if Archimedes’ Axiom be assumed, the satisfaction of the conditions (5) and (6) 

is a sufficient test for the proportion 

Al g Uae SOIR ID), 

If we take the Fifth Definition as translated by Heath and strike out the words 

“alike exceed, are alike equal to, or”, 

the remaining words would embody conditions (5) and (6), though the meaning would not 

(I think) be very clear. 

A similar demonstration to the above will shew that conditions (1) and (2) are a 

sufficient test of the proportion 

Al GIB 28 (016 10) 

These, with a like reservation as to the obscurity of the meaning, would be represented 

by striking out from Heath’s translation of the definition the words 

“are alike equal to, or alike fall short of.” 

7. It will now be shewn that (1) is equivalent to (6). 

Tf (1) holds, then all values of 7, s which make rAd >sB also make rC'>sD. 

Now suppose that r,, s, are such that 7,0 <s,D, it will be proved that 7,4 <s,B. 

For, if not, either 7r,A=s,B or 71,A>s,B, 

le. we have either (a) mC<s,D and 7, A =s,B; 

or (6) 10 <s,D and 7,A>5,B. 

In case (a) s, D—7,C is a magnitude of the same kind as C, and therefore by Archimedes’ 

Axiom an integer n exists such that 

n(s,D—r,C)> C, 

~. (nr, +1) C0 < ns, D. 

But since 7, A =s,B, 

Seu WAG SWE 

. (nr, +1) A >ns,B. 

Hence the integers (n7,+1) and (ns,) are such that 

(vr, +1) A >(ns,) B, but (nr, + 1)C <(ns,) D, 

which contradicts the condition (1). 

In ease (b) TA >s,B, but 10<-s,D. 

This also contradicts (1), for if 7,4 >s,B, then (1) requires that 7,0 > s,D. 

Hence neither (a) nor (b) can hold, and therefore if 7r,C <s,D, then must 7,A <s,B, and 

therefore condition (6) holds. 

It remains to shew that if (6) holds, then (1) also holds. 
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If (6) holds, then all values of 7, s which make r(<sD also make rd <sB. 

Now suppose that 7,, s, are such that r,A >s,B, to prove that 7,C >s,D. 

For, if not, either rC=s,D or 7,0 <s,D, 

le. we have either (c) rASs, By 1716 =s,D; 

or (hy etl GAGS SD. 

In case (c) 7,A —s,B is a magnitude of the same kind as B, and therefore by Archimedes’ 

Axiom an integer n exists such that 

n(r,A —s,B)> B, 

*. mr A > (ns, +1) B. 

But since r,C=s,D, 

>, nr,C =ns,D, 

*. nr, C <(ns, +1) D. 

Hence the integers (nr,) and (ns,+1) are such that 

(nr,) C< (ns, +1)D, but (nr,) A > (ns, +1) B, 

which contradicts (6). 

In case (d) mC<s,D, r,A>s,B, 

which also contradicts (6). 

Hence neither (c) nor (d) can hold. 

Hence if 7,A >s,B, then must 7,C>s,D, and therefore condition (1) holds, 

Hence by the aid of Archimedes’ Axiom it has been shewn that if (1) holds, then (6) 

holds; and if (6) holds, then (1) holds, 

Hence (1) and (6) are equivalent. 

By interchanging in the above proof A with C and B with D, it follows that (2) and 

(5) are equivalent. 

8. To sum up, the six conditions (1)—(6) involved in Euclid’s Definition can be 

reduced by purely logical processes only to a smaller number in three ways, viz. to 

(1), (3) and (5); 
or to (2), (4) and (6); 

or to (1), (2), (5) and (6). 

If in addition to purely logical processes the truth of Archimedes’ Axiom is assumed, 

then the six conditions can be reduced to two in the following ways, viz. to 

(1) and (5); 

or to (2) and (6); 

or to (1) and (2); 
or to (5) and (6). 

Further, (1) is equivalent to (6), and (2) to (5). 

The reduction to the pair (5) and (6) possesses certain advantages in dealing with some 

propositions over the other forms (see Arts. 11 and 14 below), 
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V. THE PROPOSITIONS IN THE FirrH Book oF Euciip. THEIR DEPENDENCE ON 

THE AXIOM OF ARCHIMEDES. 

9. The next step is to classify the propositions of the Fifth Book. 

G) The first group consists of propositions dealing with magnitudes and their 

multiples. 

These are Nos, 1, 2, 3, 5 and 6. 

With these should be included the following proposition : 

“Tf A, B, C are magnitudes of the same kind, and if A be greater than B, then 

integers n and ¢ exist such that 

nA >tC >nB.” 

The proof of this forms the greater part of Prop. 8, and it depends on Euclid’s Fourth 

Definition, so that Archimedes’ Axiom is involved. 

This proposition belongs properly to this first group, because it does not deal with 

ratios. In order to distinguish it from Prop. 8 I will refer to it in what follows as the 

principal part of Prop. 8. 

The only place in the Fifth Book in which the Fourth Definition is used explicitly is 

in the proof of this principal part of Prop. 8. 

(1) The second group consists of propositions dealing with Unequal Ratios. 

These are Nos. 8, 10 and 13. 

The proofs of these depend on the Seventh Definition, the test for distinguishing 

between Unequal Ratios; whilst the proof of Prop. 8 (as has been already noted) requires 

also the Axiom of Archimedes. 

The propositions in this group are used sometimes singly and sometimes all together in 

the proots of Props. 9, 14, 16 and 18—25. 

(iii) The third group consists of propositions dealing with Hgqual Ratios, which 

depend on the Fifth Definition and do not necessarily require the Axiom of Archimedes. 

These are Nos. 4, 7, 11, 12, 15, 17 and 18. 

Euclid’s proofs of all of these except the last do not require the Axiom of Archimedes. 

His proof of Prop. 18 assumes not only Prop. 8, and therefore the Axiom of Archimedes, 

but also the existence of a fourth proportional to three magnitudes, of which the first and 

second are of the same kind. Simson gave a proof free from either assumption. It is 

essentially the same as that in Art. 154 of the 2nd Edition of my Euclid V. and VI. 

Another proof of Prop. 18 is given in Art. 14 below to illustrate the power of the 

proposition in Art. 6 above, but this assumes the Axiom of Archimedes, because that Axiom 

was employed in proving Art. 6. 

(iv) The fourth group consists of propositions dealing with Hgqual Ratios which 

require both the Fifth Definition and the Axiom of Archimedes. 

These are Nos. 9, 14, 16, 20—23. 
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Euclid’s proofs of these propositions are made unnecessarily indirect and therefore difficult 

by his use of Props. 8, 10 and 13 in their proofs; thus bringing in the idea of Unequal 

Ratios to prove Properties of Hqual Ratios. 

It is shewn in the works mentioned in Art. 1 that these propositions can be proved by » 

the aid of the Fifth Definition and the principal part only of Prop. 8; and it is shewn that 

then Props. 14, 20 and 21 can be treated as particular cases of Props. 16, 22 and 23, whilst 

the Euclidean method requires that Prop. 14 should be proved first as a stepping-stone for 

Prop. 16, and in like manner Prop. 20 for Prop. 22 and Prop. 21 for Prop. 28. 

(v) The fifth group consists of propositions dealing with Hgual Ratios which 

depend on propositions in the third and fourth groups. 

These are Nos. 19, 24 and 25. 

Euclid in his proofs employs only the propositions in the third and fourth groups. He 

does not make any direct use of the properties of unequal ratios with which the second 

group is concerned. 

Inasmuch as proofs of the propositions in the third and fourth groups can be given 

which do not necessarily depend on the properties of Unequal Ratios, it is possible to regard 

the propositions in this fifth group as not depending necessarily on the properties of Unequal 

Ratios. They do however depend on the Axiom of Archimedes. 

Enclid’s proofs are I believe the simplest which can be given. 

The proofs given in the works mentioned in Art. 1 of the propositions in the third 

and fourth groups are such that each proposition is deduced directly from the Fifth Definition, 

those in the fourth group requiring also the Axiom of Archimedes; but the proof of each 

proposition is independent of all the others. 

In my second paper I attempted to obtain similar proofs of Props. 19, 24 and 25, but 

these, as will be seen on reference to Arts. 70—73 of that paper, are very complicated and 

indirect. I asked my friend Mr Rose-Innes if he could find something simpler. He has 

sent me those which now follow, Arts. 10—12. It is possible that no further simplification 

can be attained, but they are not as direct and the steps do not follow so automatically as 

those which I have given of Props. 16, 22 and 23 in my Theory of Proportion. I give also 

(Art. 14) a proof of Prop. 18 which will illustrate the power of the proposition in Art. 6. 

Buc: v. 19. 

10. Let A, B, C, D be four magnitudes of the same kind such that 

Ai =O sarang eA 0.) “Bis: 

to prove A-—-C:B-D=A:B. 

Take any multiple of A, say rd; 

and any multiple of B, say sB. 

There are three possibilities, 

(i) rA<sB, (ii) rA=sB, (iii) rA >sB. 

Consider (i). Since rA < sB, 
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therefore sB—rA is a magnitude of the same kind as A, B, C, D, and since A>C, A —C 
is a magnitude of the same kind as A, B, C, D. 

Hence by Archimedes’ Axiom an integer p exists such that 

p(A—C)>sB-rA, 

-. pA >(sB—rA)+ pC. 

Hence* an integer q exists such that 

pA>q(sB—rA) > pl. 

Now since pA >q(sB—rA), 

-. (p+qr) A > (qs) B. 

But A:B=C:D, 

“. (p-+4r) C> (qs) D, 
OHTA (GT) Ce (QS) LD aceneer aeons ae scc ore shcckonsevanie cect (1), 

but Gj (GLE IED ey NON, Weteococonoodud ase ccencese ea nea aRRS A (II), 

ere gl Gls. —a7Al)) (Gir) C>(qs) Dee eseee sees: from (1) and (II), 

* sB—-rA+rC>sbD, 

~. r(A —C)<s(B—D). 

Hence if rA < sB, 

then r(A—C)<s(B—-D). 

Consider (11). Since rA =sB, 

and AR Bi—= 10)! 

*, rC=sD, 

* r(A-—C)=s(B-D). 

Hence if rA =sB, 

then r(A —C)=s(B-D). 

Consider (111). rA >sB. 

Then since TALS 

therefore integers p, q exist such that 

pA >q(rA —sB)> pe. 

Since pA >q(rA —sB), 

(qs) B >(qr— p) A, 
therefore we have provided that p< qr), 

(qs) D>(qr—p)C because A: B=C: D. 

5%, (OOS GRE Dea (010) Oe coceonacndodcatnoadcnteecsepneceeee (III). 

But q(rA —sb)> pC 

. g(rA —sB) +(gs) D> (qr) C............ from (III) and (IV), 

7A — sB-- sD >7-C: 

. r(A—C)>s(B-D). 

* If X>Y+Z, an integer g exists such that X>qY>Z. 

Wor 2050015 ISG WA 13 
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If however p<t<(@), 

then it is still true that (qs) D> (qr—p)G, 

for the left-hand side is positive and the right negative or zero, 

. pO + (qs) D > (qr) C. 

But q(rA —sB)> pC, 

w. g(rA —sB) +(qs) D > (qr) C, 

- rA —sB+sD>rC, 

*. r(A—C)>s(B—D) as before. 

Hence if rA > sB, 

then r(A—C)>s(B-D). 

It results from the three cases considered that 

A—C:B-—D=A:B. 

Eue. v. 24. 

[This demonstration illustrates the power of the theorem in Art. 6.] 

11. To shew that if A:C=X:4Z, 

and if Hija Ch We 

then A+B:C=X+Y:Z. 

(1) Let us suppose r(A+B)<sC. 

Then rA<r(A+ B)<sC. 

Since - rA<—st: 

sC—rA is a magnitude of the same kind as 4, B, C. 

Since r(A+B)<s@, 

- rB<sC —ra. 

Consequently, assuming Archimedes’ Axiom, integers n, ¢ exist such that 

n(rB)<t@<n(sC—rA). 

Since (nr) B<tC and B:C=Y:Z, 

een) ate 

Since tC <n(sC—rA), 

o. mrA+t0< ns, 

This involves tC < nsC, 

Cee ES: 

*, nrA < (ns—t) C, 

and since 4:C=X:Z, o. mrX <(ns—t)Z, 

but nrY < tZ, 

*, or (X + Y) <nsZ, 

°“r(X + V)<sZ. 

Hence if r(A+B)<sC, then r(X+YV)<sZ 
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(1) If we suppose r(X + Y)<sZ and re-write the above proof, interchanging A with 

X, B with Y and C with Z, we shall find that r(4 + B)< SC. 

From (i) and (11) together we have 

if r(A+B)<sC, then r(X4+ Y)<sZ, 

and if r(X+YV)<sZ, then r(4+8)<sC. 

Hence by the theorem of Art. 6 

A+B:C=X+Y:Z. 

Eve. v. 25. 

12. If A, B, C, D be four magnitudes of the same kind in proportion, to shew that 

the sum of the greatest and least is greater than the sum of the other two. 

Let D be the least of the quantities. 

Then C—VD is a magnitude of the same kind as B and’ D, and B>D because PD is 

the least of the quantities. 

Hence, assuming Archimedes’ Axiom, integers p, q exist such that 

pB >q(C—D)> pD, 

-, g(C—D) >pD, 
*. gO>(p+q)D. 

But PAu oi Ones 

. 595 OL Sak (0 BIC )W oy apanconnton se basooo pegpooRceracBeHasencsed (1), 

but DBS Gi (CD) ™ zeeeresasces sees s He Seeneee ence (11), 

therefore from (I) and (II) gA >q(C —D)+qB, 

-. A>C—D+B. 

Since D is the least, this inequality shews that 

A exceeds B by C—D, 

and A exceeds C by B—D. 

Therefore A is the greatest. 

Moreover the inequality shews 

A+D>B+C. 

13. There is a certain resemblance between Mr Rose-Innes’ proofs of Euc. v. 19 and 

Euc. v. 25. If we compare the inequalities marked (1) and (II) in v. 25 with those similarly 

marked in v. 19 or with those marked (III) and (IV) in v. 19 this resemblance will in part 

appear. It rests on the basis that either proposition, having first been proved independently, 

can be used to prove the other. 

Euclid’s proof of v. 25 depends on vy. 19 and other propositions. 

I will now shew how to use v. 25 and other propositions to prove v. 19. 

13—2 
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Starting from A:B=C:D, 

-, rA:sB=rC:sD (Vv. 4). 

Suppose, as in v. 19, that A>ZJ, B>D. 

These give rA>rC, sB>sD. 

Ga) If now rA >sB, 

then since rA :sB=rC:sD, 

~rG >1sD: 

Hence rA is the greatest and sD the least of the four magnitudes in the proportion 

rA :sB=rC:sD, 

.. TA+sD>sB+rC by V. 25, 

*. r(A —C)>s(B— D). 

If therefore rA>sB, then r(A—C)>s(B—D). 

qi) If rA=sB, 

then rC =sD, 

*, r(A—C)=s(B—D). 

If therefore rA=sB, then r(A—C)=s(B—D). 

(iii) If rA <sB, 

then since rA :sB=rC:sD, 

- rC<sD; 

we have also TA >rC, 

and sB>sD, 

therefore sB is the greatest and rC the least of the four magnitudes in the proportion 

rA:sB=7rC:sD, 

.sB+rC0>rA+sD by Eue. v. 25, 

*. r(4 —C)<s(B-D). 

If therefore rA<sk, then r(A—C)<s(B—-D). 

From (1), (11), (iii) it follows that 

A-—C:B-D=A:B. 

Kuce. v. 18. 

14. The following proof due to Mr Rose-Innes also illustrates the power of the proposition 
in Art. 6. 

If A:B=C:D, 

to prove that A+B:B=C+D:D. 

Consider (i) the case r(A + B) <sB. 
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In this case 7 must be less than s, 

5 Pl <(GSa yer 

qa Oa (S92) Sos AUB —= Gv) 

*, r(C+ D)<sD. 

Hence if r(A+B)<sB, then r(C+D)<sD. 

Consider (11) the case r(C+ D)<sD, 

then re-writing the above proof after interchanging A with C and B with D, it follows that 

r(A+ B)<sB. 

Hence from (i) and (ii) together, 

if r(4+B)<sB, then r(C+D)<sD, 

but if r(C+D)<sD, then r(A+B8)<sB. 

Hence by the theorem of Art. 6 

A+B:B=C+D:D. 

In the proof of this proposition Archimedes’ Axiom has been assumed, because it was 

used in the demonstration of Art. 6. 

This demonstration illustrates another point. Suppose that instead of using the conditions 

(5) and (6) of Art. 4 we had employed instead (1) and (2), so that we should have started 

with r(A + B)>sB. 

In discussing this inequality we should have been obliged to discuss the three cases 

FSG PBR Pee 

This justifies the remark at the end of Art. 8 that the use of conditions (5) and (6) 

may sometimes be more convenient than that of (1) and (2). 





VIL. The Invariants of the Halphenian Homographic Substitution—to which is 

appended some imvestigations concerning the Transformation of Differential 

Operators which present themselves in Invariant Theories. 

By Major P. A. MacManon, F.R.S., Hon. Mem. Camb. Phil. Soe. 

[Kecetved 16 June, 1914.] 

INTRODUCTION. 

THIS paper follows naturally the one published in these Transactions in 1908 under the 

title “The Operator Reciprocants of Sylvester's Theory of Reciprocants.” 

The particular object in view is the study of the invariant operators of the theories of 

invariants and reciprocants and the transformation of those operators. There is great 

advantage in adding operators to the invariant material dealt with. It was not at first 

recognized that the operators were effective because they themselves possessed invariant 

properties. The relations which establish those properties shew the exact conditions under 

which the operators are effective either as generators or annihilators. In certain cases 

homogeneity or isobarism or both may be necessary in the algebraic forms; in others the 

forms must possess properties in regard to other differential operators. The two simple 

substitutions of Sylvester and Halphen, both of period 2, suffice to disclose and elucidate 

the invariant properties and to discover the relations that exist between the two theories. 

What I have called the b transformation, that was brought to light in the first paper, is herein 

further examined in regard to the special logarithmic case and two new transformations, the h 

and the s, are discovered and examined. Transformations are shewn to exist which bring the 

seminvariants and pure reciprocant defining operators to the simplest possible forms, and shew 

instantaneously a complete system of ground forms in each case. The paper is divided into 

two sections—the first deals entirely with the Halphenian substitution, and the invariants, 

algebraic and operational, are exhibited in their categories. Attention may be directed to the 

symbolic method of Art. 8. 

Section II treats of the transformation of linear operators in general, with special reference 

to the subject-matter of Section I. 

Vout. XXII. No. VII. 14 
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SECTION I. 

ON THE INVARIANTS OF THE HALPHENIAN HoOMOGRAPHIC SUBSTITUTION 

il ve 
= ¥ ; y = xX Ss 

1. If we consider the binary quantic 

(do, h, oy ses) (46, v)", 

and y any function of #, we may suppose that 
: 1! ds**y 

= ——— ee 
* (s+ 2)! das 

If we now make the substitution 

1 ¥ 

“x Y=xX 
the invariants which are such that they are homogeneous and isobaric functions of 

L£ 

OG (8 aoe 

are, as is well known, seminvariants of the binary quantic, and conversely every seminvariant is 

an invariant of the Halphenian substitution. They satisfy the well-known partial differential 

equation 

Og = 0a, + 2,00, + 320g, + +..=0. 

In the paper communicated by me to the Cambridge Philosophical Society in 1908 

I considered Sylvester’s substitution 

RN, GX 

the invariants of which, when homogeneous and isobaric functions of a, d), d2,-.., have been 

called pure reciprocants. Such satisfy the differential equation 

Va = 4. 4$4;70q, + 5 (doa,) Oa, + 6 (Apa, +40,2) Og, +-.. = 0. 

Certain forms arise from both sets of substitutions and are thus both seminvariant and 

pure reciprocant functions of a, a, a:,..... Such are invariants for the general homographic 

substitution 

_uX+mV+y, pa eX + mY +r 

AX+pV+p ’ i AX+uVY+yr’ 

and have been named by Sylvester projective reciprocants and also principiants. 

In fact principiants may be defined by the simultaneous partial differential equations 

OF 0 ya 0! 

Since moreover O.=— Vz, 

1 
where O=7; 

0 

b 
2, =—-—, 

b," 

3 Byeezos 
3c, = — >-, 

Ost ion Oy 
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] 
by as 9 

% 
ip 

b.=-2-, 
Co 

b SG oCre 
2 Cot Cy 

ie Ac, i 30¢,c, 40c,* 

7 Cy Co Cole 

it follows that principiants are seminvariants which remain seminvariants after the substi- 

tution of 
— 2a, —38a,+ 8a, —4a;+ 30a,a,— 40a,%,... 

for hh, (Ps. Qs, ... respectively, 

and also after the substitution of 

—ta, —4a.+2a°, —1ta,+ }a,a,—$a,',... 

for the same quantities. 

Ex. gr. The principiant 

Ay? Ay — BA) 4,0, + 20,5 

is, to a power of a, prés, merely multiplied by —3 by the first substitution and by —+ by the 

second, as may be readily verified. 

2. In this Section of the paper I discuss the general invariant theory of the Halphenian 

substitution with particular reference to the invariant operators. 

I write in a usual notation , 

dijery Lidty. 
dumeeeslcaar ey. 

dV 1 aY 
Te d A,», where s<¢ 2. 

dX 

Then, as shewn by Halphen, 

s! dx? 

p(T), 
\ 

& = X*A,, 

f Ay\ 
a=—X°(A, + Y)? 

er Ae 

fS\ Age S\ Agee A,) — (_\s VY 28+3 s s-1 s—2 oO, 
ay = ( ) xX 14, + (4) XY +(5) x2 + yal 

14—2 
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The Halphenian substitution, like that of Sylvester, has a period 2; it follows 

(i) that the substitution may be given the symmetrical form 
rd 

ve: 

Ye a 

(ii) that, in any relation involving the letters 

Ai@, (hy Og Cratare eee. Al. An wane 

we may interchange the small and capital letters. 

We may further consider the operator symbols 

OG Gs Gia Graces Gry Gre Grey Wiig ccc 

and then if 

TIGA G2 AGS CAs can Gy Gn hep Gey Cinco ») 

acpi ere XG His Ans A,, cee Oy, Cx, Or, Ons Wie ae) 

the interchange of small and capital letters shews that 

FQ, et, Ue; Gy, --- Oy; Ox; 03, On Oars oe VE PCY; Fb, Oy5 Cy; ..nOys Ore Gwe aed 

is an absolute operational invariant of the substitution of even or uneven order according as 

the upper or lower sign is taken, 

In fact every symmetric function of 

UF 2s ee PY a ieee) 

is an invariant of even order and every two-valued function of the two functions is an invariant 

of uneven order. 

Thus the relations (Rel. z2dp _ Xi A,, 

yield the invariants (1 +2°) a, ZO of even order 

and (1 —2*)a, of uneven order. 

3. We assign to the letters y, «, t, a), @,...a certain degree 7 and weight w and deduce 

the characteristic 37 + 2w of the letter. We write » for the characteristic and then we have 

the following scheme: 

y 1 t iy ae (hy Oye Ox | Con On emcr One 

i 1 0 1 1 ] 1 -—1 0-1-1 -1 -1 

w —-2 -1 -1 0 1 s 2 hl 1 0-1 —s 

vy —-l -2 1 3 5 2s+3 1 2-1-3 —5 ... —(2s+8) 

Vem Lae eee Ave Oy Oxy Op O04, Q4,.-- 04, 

i 1 Opal 1 Ras TD: 1 —-1l 0-1-1 -1 ... —1 

w —i1 1-2 -—3 -4 ... —(s+3) 2 4... s+3 

v 1 2-1 —-3 -5 ...—(2s8+4+3) =—1—2) ly 63) Vee ees 

It will be remembered that for Sylvester's substitution the characteristic was 3i+ w; here 

it is 3i+ 2Qw. 



THE HALPHENIAN HOMOGRAPHIC SUBSTITUTION. 105 

The degree, weight and characteristic of a product of symbols are each of them formed by 

adding together the numbers which appertain to the symbols. 

The investigation is much simplified by an accented notation; we multiply each letter or 

symbol (except “) by # raised to the power of half of the characteristic of the letter or symbol; 

similarly for the capital letters. Thus we put 

a ty=y, NOSIS, 

pe ar. NG Sis 

x2 Uy =o XK A, =A,, 

eee Kid,=- 4), 
a 2s+3) q — (-)° ane X22s+3) 4. =(—) VARS ‘ 

The change of sign will be noted. Also that what we have written 

ye(2s+3) 4 
s 

is first of all 2~ 225+) A, in obedience to the law of formation. 

The relations of Halphen become 

ye, 
t=—-T-Y*, 

a =A,, 

(= A aa 
On = ANIA Any, 

wherein there is no occurrence of w or _X. 

For the accented letters we have the scheme: 

2 Os AR OR ino) ety Op Ga Os Ghe Grisso  @ps 

v 1 0 i 1 il 1 —1 Oo -1 -1 —-1 —1l 

eas 10 =} —F =F = § i 0S meee 38 3 
v 0 0) 0 0 0 0 0) 0 0 0 0 0) 

ji ay ee OE SR Des TOs! Woes On Ou ts HO 
a 1 0 1 1 ieee 1 -—1 0 —-1 —-1 -1 ...-1 

eee Os = pe es 2 
Onn ene 0 So we SO we 

3 

v @ @ @ One 20 0 

so that each of the modified letters has the degree 1, the weight —% and the characteristic 

zero; while each of the differential inverses has the degree —1, the weight +% and the 

characteristic zero, Moreover every combination of accented letters and symbols has the 

characteristic zero. 
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It is to be observed that in every relation in accented notation it is permissible to inter- 

change small and capital letters, both in symbols of quantity and in differential inverses. 

The relations a} =A, —A;, ag =A, —2A,;+A4;, &e. 

indicate that every function of Gas stare 

is a function of differences of the quantities 

JW, Ales Ais abeoe 

and thus satisfies the partial differential equation 

04, +04, +04; +--. =0. 

In fact we will presently establish the formula of transformation 

Oas = 04, +04; +04; +---, 

which is the analytical statement of the observed fact. 

The Linear Invariants. 

4. Making use of the principle of invariance above set forth, the relations yield the 

absolute invariants of even order 
: 

y ’ 

: 
My y 

ay — 2a, + 2az', 

ad — 3a, + 3d2, 

a, — 4a,‘ + 6a, — 4a; + 2a;, 

a, — 5a, +10a. — 10a; +5a,,, 

from which is derived the reduced set 

Accented Unaccented 
1 - = 

Y, omy, 

ee ©? Ao, 
. . 5 z 

a, — as, — £20, — 27s, 

a. — 2a. \ 5 Ont i 
ls — ZO, + Q,, ZB Ae + 2272 As + U* Ay, 

MAN an : 9 Apes 13 1s 
a; — 3a; + 3a; —a,, — £2, — 3x7 a, — 3x% d;— ©? Ug, 

Similarly we derive absolute invariants of uneven order which may be exhibited in the 

reduced forms 
Accented Unaccented 

y +20, a ty — Qe t, 

a OT — a2 &— Qn ane 

a, — 3a, + 2a,', —x a, — 3a dy — 2 ds, 

— a, + 4a; — 5a, + 2a;, ~ at (ly — 4c ay —5a? a, — Qu? ds, 
‘ ~ 4 ‘ an . ‘ 2 eee! 13 15 rire 

ds — 5a, + 9a; — Ta, + 2a, — v2 a,— 5a? a,— 9a as — Te? ay — 2e2 a, 

COCO K sera ence eee seen eseeeeseseseesss -§ é§§§ ee eseneereseeesceseneseseces 
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The general form here in its unaccented aspect may be taken as 

ge (28+3) i +(s+2) ( LAg4, + $ (8 + 3) a) Lbs 49 + 4(s + 4) G) Pdgrs +... + 2ath dasa} ; 

5. These invariants, linear in the quantities, may be exhibited in symbolic form by 

writing 

and then Psd 

and we derive the relations 

PCy ie (UP), 

G2 pa (yl — 22), 
shewing that ps1 — p)§ (1 — 2p) = (—)' P21 — Py (1 — 2P), 

which establishes that pd = py (1 — 2p) 

is an absolute invariant of even or uneven order according as ¢ is even or uneven. 

Moreover the identity (1 = 2p)? + 4p 1 — p)=1 

shews that we may exhibit the invariants of even order by forms 

pd — py’, 
and those of uneven order by forms 

p*(1 — p)* (1 — 2p). 

The sets of linear invariants above set forth are given in these symbolic forms by the 

successive integer values of s. 

We have thus obtained the whole of the invariants which are linear in a, a, ds, .... 

6. The theory of the invariants of higher orders in a, a, ds,... 18s very simple because we 

may take alternative symbols p, q, 7, ... on the one hand and P, Q, R, ... on the other, where 

p+P=q+Q=r+Rhe=...=1, 

and then 

(p- q)*2 (p- r)*3(q— De ong = (et as est --(P—Q)* (P— R)*8(Q— BR) ..., 

and we thus obtain the whole series of invariants which present themselves in the invariant 

theory of an ordinary binary quantic. In fact we obtain all forms which satisfy the equations 

1g = Ay Oa, + 20; Og, + Bay Og. +... = 0. 

Ex. gr. (p—qyv =pg — 2p'¢ + pg = 2 (ay as — a”) = 2x? (aya. — a,°), 

and &? (Q)Q_ — a;*) = X° (A, A,— A{’), 

exhibiting the absolute invariance of «° (a). — dy"). 

The fact that the operator 2, is itself an invariant under the substitution will shortly be 

established. 
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The Invariant Operations. 

7. Let the functional equation y— jie) 

become by Halphen’s substitution Y=¢(X). 

Let.z, y receive simultaneous increments 

Er, 1Y; 

and let the increments received by X, Y in consequence be 

ERG (ane 

y + ny=f (a + &x), 
Y+HY=¢(X +24), 

where by reason of the substitution involved 

(+&)+5)=1, 
1+” = 

1+ H=——=(1 5); 

so that 

and we deduce the relation 

_ 

wr! 3S 

By Taylor’s expansion we find 

ny = téa + E70? + a, E%a + ..., 

Ee A eX AG ee eee 

= Z H 
Now, since 7 = 

Moreover £ = ee ; 
a xX 

3 W _5¥) (HY 1Y 
so that aes cy ra (ey 3x): 

a 3 fis ny HY : 
Obtaining the expressions of Fe Sy from Taylor's expansion above, and substituting 

herein we find 

1 es ey a ee 
a (35 + Mo Ea + a FFa* + 2) =- xi (7-5 y tAEX +4,5x"+...) ; 

but we (+-52) ee rk (7-5 S) 

so that we are led to the relation 

o} (aye + ayE%0? + asfa* +...) =—X4 (AEX + A\EPN? + A,EPX" + ...); 
or proceeding to the accented notation 

ap & — a, £* + a &*—... =— (ASB — A, 2+ ASB. 

(1+&)(1+8)=1. 

+), 

where 
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From Halphen’s relations we deduce 

0, = X0y + 07, 

1 
= xy? 

(—)'0_, = X-#8 (04, — X04, + X794,,,—---)5 

and herein writing a Oy = Oy, xt Oy=0r, 

w4,=-%, X~tp=-dr, 
o 2(@8+3)9, = (-)°0,,., X-2O+e) 9 =A oe, 

we find Oy =0y —Or, 

Op =— Or, 

1 
Gy Oa = On, aF G F ) Clan, SF 5 *) Oa §+2 +. 

8. To obtain these relations in symbolic form write 

f=a,, OD) iCh rp 

IP = A ny | DE Ss 

and then put symbolically 

(ae, =H (84, = Ks 
when we find that the relation 

(0,-8.4 (77 *\ Oat 
: 

K s+1 

may be written fae =)" G a Zz) : 

Moreover, if s=—1, k°=K® yields 0g =—dr7; 

if s=—2, i= -z-¥ yields 0y =dy:—Or.. 

The important observation is now made that the symbols &, K are in fact related in 

the same manner as &, & for, from the relation 

(14+& (14+ 8)=1, 

— 8+1 

we at once deduce gen (jn (=) 5 

Hence we may regard € and & as symbols such that 

B=(-Yee» Ba 8e, 
This remarkable circumstance points to the important fact that in the relations 

ay & — a; £2 +a, — ...=— (A.B —A, B?+ A, BS — ...), 

(1+ &)(1+8)=1, 

Wor, XO:OUi, IN@; VWAUE 15 
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as well as in any rational integral relation connecting the quantities 
\ \ A A 

[BAIR cits Ui Cee 

with OY EAR AGS 

we are at liberty to write 

Ef = (ones Bt =(—)" 4, 

where s may have the values al fee 0 hed Wes ee 

and (Ma an ssih, bone UAL Ue 

From the relation (1 +£)(1+ 3) =1 are obtained the useful relations 

(1+ &)0:=-(+2)éz, 

which indicate that, gudé invariant functions of &, 

£70: and (1+ &)0 

are invariant operations of uneven order. 

. . : even : : 
When performed upon invariant functions of | oon order they produce invariant 

: uneven 
functions of order. even 

Invariant Operators of Zero-order in the Coefficients. 

9. These are all obtainable from the relation 

0+804+23)=1, 

for Se aS 

so that Est (— (4) 

is an invariant in symbolic form, of even or uneven order, according as the upper or lower 

sign is taken. 

We obtain the two series 

Even order Uneven order 

go, QE +E", 

ani : E’ fe = ; 

eaves Bae 

a - aac + 
Observe that by reason of the difference in sign, for a given value of s, in the 

relations 

&* =(—-) Oates Be =(- YH Oy : 



THE HALPHENIAN HOMOGRAPHIC SUBSTITUTION, 1a 

even order yields an unsymbolie form of “7©Y°? 
uneven z ven a symbolic form of order. We thus 

obtain the invariant operations 

Uneven order 

Or, 

Oay + Ons + 0ag + ..-, 

20ay + 20a + 30ag + 40ay + -.-, 

B0ag + 60g, + 100, + 150, + ..., 

20,2 + 405, + 100a¢ + 200c¢ + ..-, 

2s 2s+1\ . Dis, 
20 a95_, +( “ Oa'gg + ( ) ) Berm t ( 3 ) Oa'se 42 + 

/2s+1 2s+4+2)\ . 2s4+3 
( 1 ) Oarss ta a ( 2 ) Canta + ( 3 ) Oa'on4s +... 

From these we may derive a reduced set 

Or ‘) 

Cay t20a,’ + Cag 5 

Oas + 200g + 30a. +.-., 

and, for s>0, 

2s+3 2s + 4 » (28+ 5 
( 3 ; Caves Be 2 ( 4 ) CR oe 3 ( ~ ) Oo'se45 “Fisdiss 

The unaccented expression of the operations is 

= 
av 204; 

£2 (05, = a7 Ch WR hes = aon) 
=9 F 

& *(0,, — 24 Oo, + 34 Og, — -.-); 

In obtaining these it must be remembered that the characteristics of a, and Oa, are 

the same numerically but differ in sign. 

Even order 

204 — Or, 

209 + Gay + Cag +--+; 

20a + 30ag + 40ag +++; 

20ay + 30ag + 60a + 100g, + ..., 

2s Qs + 1 (% 4-2 

G ) ®t (9 ) Orsi t | 3 ) Oni, 
2s+1 25+ 2 

200, + ( 1 ) Owes 4s LE ( 2 ) Carat ses 

for s>1. 

15—2 
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The reduced set is 
20y — Or, 

2Oqg + 0a, + Ong + ---> 

20ay + 30ag + 40ag +--+, 

20ag + 50ae + V0ag + ---> 

of which the unsymbolic forms are 

Qa? Oy + a *a, 

a ® (20q,— 210q, + ©? Oa,— ++); 

a * (20q,— 327 Oq,+ 402 0a, — ---); 

xc Ay (20, — 5a as ae Dita Oas as, -), 

To verify the first of these we have 

Qabdy +x 20, = 2X —2 (XOy +07) + X? (- r") = ON ep aaetan. 

We may also note that = = 

so that any is an invariant operator in symbolic form which denotes in unsymbolic form 

an operator of uneven order; it is 

s s+] Qe st (7) Bent (OS) Brana te 
and in unaccented form 

at f S\N el\ Hoa -(*) arte (2) arta al 

Operators of the First Degree in the Coefficients. 

10. We have before us the two relations 

p+P=1, 

(1+8(+8)=1, 
and the established relation 

(ap €— a, &* +a, & —...)=—(A, 5 — A; B+ ASS —...). 

It yields the relation 

Ay Oa + 1, Oay + 1, Cay +... = Ag 04g + As 04; + As Oy + -- 

or, as we shall write it, Ty =Ly,. 

This gives us the invariant of even order 

Tq = Ay Oag + 4; Oay + Me Oag +...- 

In unaccented form this is 

Jip. = 0a + Gr0a, = a = A044, + A,04, +... =I4. 
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To obtain the operator in a form which is wholly symbolic we write 

Gs =p, AY = Re 

ae 
and we then have rT apes 14 Pe’ 

so that I a is the sought symbolic form. 

This can be obtained directly from the relations 

; pt+P=1, (1+8&0+8)=1, 

for these may be written 

and by addition we get 

1 

p+g=—-(P+a), 
ee tee 

oF ieepey LPs: 
’ :)- tie (=) ) 

Since (ee = (( (58 

we find by expansion and interpretation 

/ Ma s wes s+1 Ns 
ao 20,.+(5) ay Ba, + ( 9 \ ag GS. Sp oben 

= {4304.4 (f) tet ($7) araenu tf. 

This in unaccented notation is 

s+1 ot Lag + (2) ar20, + (251) ade, +} 
+ 

2 

establishing that 
s+1 

gst |e 4 @) AO a, Ve ( x ) 20 a5 44 FP at 

113 

is an absolute invariant of even or uneven order according as s is uneven or even. 

For s=2, we find 

Ay Oay + 20; Oa, + Bas ag + --- = — Ao 04+ 2A, O4y + 3A2 04+... 

or in Sylvester's notation Qe =-— 24, 

and 270, = — X704. 

Q, is the operator which causes all seminvariants of a binary quantic to vanish. We 

see that, in this theory, 2", is an absolute invariant of uneven order, The operation 

either causes the invariant operand to vanish or produces an invariant of contrary order. 
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The absolute invariance of J, defined above clearly shews that every invariant is homo- 

geneous in the letters a), th, Me, .--- 

The above series of invariant operators, linear in a,, @,, as, ..., can also be obtained 

by repeated operation of £70; upon £/1+p£. The former operation gives invariants because 

E70: = B70z. 

The relation us ae aes 

yields Ay Op — Ap Oy = A, de — Ap Or, 

equivalent to ©? (,0; — Aydy) = X* (A,07 — AyOy), 

establishing that a? (4,02 — Gy 0y) 

is an absolute invariant of even order. 

The operation of (1 + &)é@: upon ae: gives 

eee 
(1 + p&)’ 

and yields the invariant of uneven order 

ay Og + (2a; — Ay) Oa, + (Bas — 2a,*) Oa, + (Aas — Bas‘) Oa, +... 5 

equivalent to 

Ly 0 + (2a, + Ay) Og, + (Bad, + 2G,) Oa, + (Aad; + Bay) Oa, + ---- 

The operation may be repeated indefinitely. 

The operator Wa = 4; 0a; + 22 09; + 3d; 0a, + ++. - 

11. The symbolic form is ae equal to (1 — P 

shewing us that We=—-—Q4+ We; 

and establishing that 2We- Oe 

is an absolute invariant of even order. 

+ PEy’ 

It is equivalent to 2W,-—«#"0, because We = Wa. 

We see from this result that W, is not an invariant, so that every invariant is not 

an isobaric function of a), a), ds,...; but that this is the case, exceptionally, when the 

operand satisfies the equation O7— 0! 

12. Two operators now present themselves for examination, viz. 

Accented Notation Unaccented Notation 

we =—tde + Wa, w, = — td, + Wa, 

wy = — 27 dy + We, Wy = — 2ydy + Wr. 

Since d=-T’-—Y"*, de=-0r, 

we find Wr =-(1°+ Y)0p—OQ44+ We = Wr — YOr -—Q4; 

so that 2W»—y'd—Q is an invariant of even order. 

Ss 
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This is equivalent to 2W, + 210, — 27Q,4. 

Again, Wy=—2Y‘(0y-—dr)+ Wr —Ydr-O4= Wert Y'dr—-Qy, 

so that 2Wy ty or —Qa, 

equivalent to 2W, —2# 1 y6,—27Q,, 

is an invariant of even order. 

The operators 

Ie=toe +L, Ti —t0p-+- le. 

equivalent to 

Ty =y oy + Le, I, = yoy + I. 

13. We obtain easily 

Ty, =Ip. + Y0r, I, =Ip— XY 07, 
equivalent to 

I, =Ty-, Mi —eligs 

establishing the invariants of even order 

2 Sea 
& 

Io 

The fact that 7, is an invariant shews that every invariant is a homogeneous function of 

Y, %, Gy, A2,...; but since J; is not an invariant, every invariant is not a homogeneous function 

DEA g G5 Uns sa: 

Transformation of a General Multilinear Operator. 
14. Write 

1 ‘ F ; ; 

m (ao + a) U+ ds U+ 2.) HA ing HAUTE pe t+..., 

and consider the operator 

HQ mo Oa’, + (Me +) Oma O, + (p+ 2v) a p28 aa On On+2 

Herein p, vy may be any real numerical magnitudes, zero included; m also may be any real 

numerical magnitude, but will usually be a positive or negative integer and more usually still 

a positive integer. The zero value of m has been shewn by Hammond to be connected with the 

function 

log (a. +a, u+a, w+...), 

and will be considered later. 

n may be taken to be zero or any positive integer. 

The operator under consideration may be briefly written 

(fw, v3; Mm, n)y =(—)” areN Goes ei) (,v3 Mm, N)q, 

a relation indicating the accented and unaccented forms respectively. 

Write as =a E—a,E?+a,&—-..., 

Ae — Ay = — Ay s+ A, Se —..., 

so that, as has been shewn above, 
ag =— Az. 
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In the symbolism explained above, 

(—)"" (uw, vs mM, N)g: 

= = = v) esis ag” ae Te Tp Og ar, 

and to carry out the transformation we have the relations 
ag ee Ae 

E aaa ene ’ 

E*0¢ => = Oz 

We then find (—)"*) (pw, vs m, N)g 

= (-)"? & = v) Smt (i 2k a) at Aa 2: pen (1 + E)—ntm A=™ O= Az} r 

Write now (1+ 2)F= 30,23, 

so that C,, -(") if & be a positive integer >s. 

We then have (—)"7 (mu, v3 mM, N)q 

be pe ear Ton = > S =F) C;, Ss = m+s+1 Az m 

s \m 

ae >> vC,, ies Ein—m+s+2 Jilsy m1 0= As. 

s 

Comparing the general term herein with the symbolic form of 

(—)m7 (}4, 13 MM, 1) 4% 

viz. (2 == ») = n,—m4+1 Ag ™ VD; Sn—mt2 A = m,—i 0= As, 

we find by = ey C,, —nim + (u — mv) C,, —n+m—1> 

Le C;, —n+m> 

m =m, 

nm =n+s. 

Hence (m, V5 M, Nw 

= 3 (-)n** {we CE —n+m—1 + Mv (C,, —n+m — C,, nes VUs nim; MM, 1+ s} As 
s=0 

shewing that the transformation produces a sum of multilinear operators of the same general 

form and of the same degree in the coeftcients. 

15. Leaving out of consideration for the moment a zero value of m, we find that in some 

cases the transformation produces a single operator. There are two cases. 

Case I. If p=my, —n+m=0, 

(mn, 1; n, ng =(—)"*(n, 1; n, na, 

or at (n— 3) (n, 1; n, 2) =(-)" xXi(n-3) (n, 1; n, n)a, 
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establishing that oi” —3) (n, 1; n, 2)aq 

is an absolute invariant of even or uneven order according as n is even or uneven. 

For n=1 we have 

Og =—-O,4 equivalent to c70,=—XO0y, 

a relation already met with. 

For r= Ds (2; 1 3 2, 2) er = (2, 1 ; 2, 2)a; 

which we write Jy=J4, 

. —— — 

equivalent to fa Bd fl, SoS Bl je 

where J, is the important operator which generates pure reciprocants from pure reciprocants 

and seminvariants from seminvariants, and causes the vanishing of forms which are both pure 

reciprocants and seminvariants. The proof of this was given by me in the paper* and 

communicated by me to Sylvester. The latter incorporated the theorem into his Lectures 

on Reciprocants delivered before the University of Oxford. 

In the present theory of the Halphenian transformation we see that 

28 J, 
is an absolute invariant of even order. 

Case IJ. Let yv=0, —n+m—1=0. 

Then (1,0; n+1, n)g =(—)"(1, 0; n+ 1, n)4, 

equivalent to a2” (1,0; 41, n)q =(—)” xe (1, 0; n+1, n)y, 

a relation already met with in the form 

Qe = (-yn A 2 n+) 

There are no other cases. 

16. We can also specify the conditions under which the transformation produces a sum of 

any given number of operators. Whatever the given number there are invariably two cases. 

Thus (—)"(w, v3; n+1, nr)y 

=(w,v; n+1,n)¢g—v(nt+1,1; n+1,n41)y4, 

equivalent to ae” (u,v; n+1, n)q 

=(—)" (xen (u,v; n+1,n)4t+ X2@-2) (n +1,1; n+1,n+4+1)y4}, 

yielding the special cases 

ely tvuWe=plytvWy—-—vQ,, 

Ve =—Vatds; 

establishing the invariant Quly +v(2W,y — QO.) 

of even order, and the invariant 2Vy—Jy 

of uneven order. 

* Proc. Lond, Math. Soc. Vol. xvi. p. 75, 1886. 

Won, SOr0Ul, IGS” WAU 16 
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Also (—)" 1, 0; n+2, na: 

=(1,0; n+2,n)¢—(1,0; n+2,n+1)4. 

Again for three operators on the dexter 

(—)"(w, v3 N+2, Nae 

=(p,v; n+2, ne — {ut (n+2)y, 2; n+2,n+1hat+v(n+2,1; n+2,n+2)4; 

(—)" (1, 0; n +38, n)a 

=(1,0; n+ 3, n)¢—2(1, 0; n+3,n4+1)4+, 0; 2+3,n+2)y. 

Observe that if we multiply up by min the general formula and then put m=0, w= 1, v=0 

we obtain a formula already reached, viz. 

m+1 +2 
Sy Oa, = Oars AP C 1 \anas ie le 2 ) Ca ngs a 

The logarithmic case. 

17. The case corresponding to m=0 will be best understood from a consideration of the 

two operators 

2a) a, — a," 3a)°d, — 3a), a, + a3 Ses 1 | wa A) 

Scie ay 0 ay 2a, + ay eee 

a 2a a, — a BAy? Ay — 38) 0, d, + a8 R = wok 0, = o2 1 0 0 3 (Tt Boer 1 ete 

a dy Ca, + Ae? a a, Oa, ar 

We observe that 

a ly ; 
log (a Ry te ye os w+ oe 

Ay ly ay 

So : Ds Ga Ua : eit = Baath Me tithe ie ae 
dy 2 OS 3 (tg? 

so that putting a,+a,u+a,u°+...=U, we may briefly denote 

U 
S, by (0, 1; log—, -1) A 

Ay a 

2) Lame o§ 
and R, by (0, eo —.'0') , 

Ay a 

just as we might have written 

: ‘ 1 
(u,v; m, 2)q in the notation (u, vy; — U™ n) : 

m a 

Proceeding to accented forms we find 
1 

Sa =— 2" Si , 

3 
Re= te? R,. 

In symbolic forms 
\ ¢ ‘ ‘\ 9 o . ms 

hy Quy dy — a? 3dp 2d, — 3ay a, ay + a, 
Ss, = £ 2 
hs ty E tp? f ay* 

Ry = ES, . 

Now, putting as on a previous page, 

ag =a &—a,E*+a,&-..., 

aia 
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\ 

ay 
a 
Ay 

ate ones Sah)! \ 

Ao 
we have log ag = log (a, €) + log @ - 

and differentiating with regard to &, 

Di Gy Sth, Binoy = Baron GA seo va pny J_G , 2 dy =? Say *03 — 3a) y's +h® -, 0: log ag = & ay aa an? & a EP+ ob, 

or £0; log ag = & + Sq, 

£0; log as = &— Ry. 

Hence Sa = &0; log ag — E°= 7 rag — &, 
= 

Re =~ F0glog af + £=—* dag +6. 
€ 

Transforming from & to Z, 

g E+E Niede 
Re= a aa: 25 ; 

from which Sy —Re= a =F ; => 

= Bdz log Az — Ge : 

a result which shews that 

Ry — (0a; + 0a; +0, +...) is an invariant of even order, 

and 2Sq — Re — (0a, + Oa; +a, + --.) an invariant of uneven order. 

Moreover, since 20g + Oa, + 0a, +---, 

Cay + 0a; + +++, 

are invariants of even and uneven order respectively, we find invariants 

Ry + 0a; of even order, 

2Sy — Ry —0a, of uneven order. 

Equivalent to these we find invariants 

go? (R,+0,,) of even order, 

a 2(28S,+a7R, +2 0q,) of uneven order. 

The interest of these results lies in the circumstance that S, is what Sylvester has 

termed a Reversor in the theory of pure reciprocants. It was discovered by Hammond. The 

allied operator R, appears here for the first time. 

If we apply the operator «~ 2 Ra+0q,) of even order to the invariant pply P 0 
5 3 

2x7a,+ 2a, of uneven order, 

te—2 
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we obtain an invariant of uneven order. The verification is 

2 ogka + aig.) ate 2X4 +A 
z = (Rat ag) (2a? a, + 22 ay) = - Je = o- 

s) ny) 

The Invariant Reversors 

A; Cag + 42 Cay + As Cay + ++» = Pa = — ZPas 

As Cay + 2a; Oa + «+» = Qa = — FYa- 

18. We have pe=- P= CaF = le— pes 

establishing that 2pq — La 

= — 2rpa—Lna, 
is an invariant of uneven order. 

aol qe = Ce oecee 14 PE} 
= (A, — 2A, + A, ) B?— 2 (A, —2A, + A,) B8+3(As —2A; + A,) Bt—..., 

=—gst+2We—-Q4; 

shewing that ga — We =—7Qa— Wa 

is an invariant of uneven order. 

Pa and gq are therefore generating operators for the transformation, the former when 

the operand is homogeneous, the latter when it is isobaric. 

If j be the weight of the highest letter in the operand, the !atter is a full invariant if 

jla—2Wa 
causes the operand to vanish. 

Also jPa — Ya =—(jpa — Ya) + Gla —2We)+ Qa, 
shewing that 2 (jpa — qa) — (Gla — 2Wa) 

=— 22 (jpa — a) — (jLa —2Wa) 

is an invariant of uneven order. Hence when the operand is a full invariant 

+ @ (jpa — Ja) 
generates an invariant of uneven order. 

The Invariant Generators 

Py = (aay — a) Oay + (dp ds — Gy Ms’) Bag +--+, 

Qa: = (Ay dy’ — 2a,"*) Oa, + 2 (ao a; — 2ay‘dr') Oa + 3 (do Gs — 2a,‘a3') Ogg +++. 

19. These operators generate invariants in the theory of the binary quantic. 

Here Py =a) pa — Ly; 

whence Py =A} (Ia—pe) =A) Te = = Asn Aes 
shewing that P= —aP, 

is an invariant of uneven order for the Halphenian substitution. 
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Also Qn a Ao Ja’ = OLE Wa =— Ay qa + 2A . Wa + (A, = DAr) Og 

or Qa hae Qa oS (Ay aa 2A,’) Qe 3 

establishing, since a, dq; is an invariant of uneven order, that 

Qa + a; Og = — @? (7Qq — D4) 

is an invariant of uneven order. 

The Pure Reciprocant Generator 

Gg = 4 (Ay as — @;%) Aay +5 (Ap ds — Gy a)) Og, + 6 (aay — Ay d;') Oa +--+. 

20. We find that 

Go =Qr + 38Pe +a We =— Ga + Ao Ws —- AQ. 

Hence the invariant of uneven order 

24¢—a Weta Oe. 

To verify this result take as operand 

Qs — Ons 

We have 2G» (ay. de — ay?) = 10 (a, 2a; — Baya; a, + 2a,'%) + 4a, (aa, — a,*), 

Ay Wo (dg Gz — Ay”) = Zap’ (Ay Ay’ — My, ”), 

Og (aya — a, *) = 0. 

Hence the result of the operation is 

10 (a,?a; — 3a,a, a, + 2a,“*) — 2 (ay — 2a,') (a, ay — a,), 

which is an invariant of uneven order because 

p23 — 8) d, ds + 2a, and a, —2a,; are so, 

and a)a. —a,? is an invariant of even order, 

G, by itself is a generator also in the theory of seminvariants when the operand is 

a combination of seminvariants of weight zero; for then 

2Gq — a Wa +a, Oo 

is equivalent to 2G,. 

Thus the reader may verify that 

ys — BAA, A, + 2a,* 
Gq 

(dys — a,2)2 

is an invariant of even order; for the operand is a seminvariant of uneven order and of 

weight zero. 
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SECTION II. 

PARTICULAR CASE OF THE ) TRANSFORMATION. 

21. Write as usual 

1 
= (Gp + Gy + Ayu? +...) =Aino + Am U + Amo? + ..., 

and consider the operator 

HOmo0an + (w+ v) Aman. , + (e+ 2v) Am20 ans Spaccs 

which it has been convenient to denote by 

(H, vy; m, N)a- 

As was shewn in a previous paper* the substitution 

1 
Ay = ba? 

0 

b 
t= — Fa 

it. b,' om °° 

bs, ~ bibs i 
Os pea ape —557 

which is derived from the formule for the interchange of the dependent and independent 

variables in the differential coefficients 

Lh ue 
da 2Neas2 said 

converts (BH, v3 Mm, N)q 
; 1 
into a= {u (n—m+ 2), w—mv; n—m+2, n}p. 

An exception however occurs when m=n+2, for then n—m+2=0. I refer to Art. 18, 

p. 156 of the paper (Joc. cit.) where the transformation of 

(p, V; m, nde 

by the Sylvester substitution was considered. The symbolic form there given, viz. 

‘b es = v) Basa Ti + permite my 

becomes, when m=n+3, 

tc —_ 1 n+3 yy Nt2 an! 

(85 v) en +n, 

which may be written (, = _ v) 0, log (E). 9" tn! + vn **7/. 
v 

* “The Operator Reciprocants of Sylvester’s Theory of Reciprocants,” Trans. Camb. Phil. Soc. Vol. xxt. 
No. v1., 1908. 
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Now 0, log E=0, log (tm + Hy? + a7? +...) 

1 / A, a \ 
=—+40, log (1+—n+=77 +... _ tonlog (1+ 2atcatt..), 

1 ay 1 2ra,—a,? , 1 37°a, — 37a,0, + a,° 

sel = 895) 7 Tt 7 4.2), 

nee To — 0,7 37°a,— 38Ta% +4,? , 
seen 7 n+ 7 ie SP adorn 

so that the symbolic form becomes 

37a, — 3Ta)a, + a,* 
3 

; 5) 2 
be are ( “ ) chy i CAG eel. 

=== = + —yp = + — ~ + 

n+3" 4 n+3 7” 7 1 T 
n+5 iy a 

n pei Le 

and now writing —0@,,_, for 7" we find 

me ae A 270, — Ay” 37? a — 387A, a, + a,° ) 5%, (Sap v) ( cap ert oer g ee 
7 Ont T 2 T 

for the transform of (uw, v; n+3, n) by the Sylvester substitution. 

We now make a unit increase of suffix throughout, writing 

Gi, Chis Gh ond OD ama, CAR Boas 

then write 6 for a and n—1 for n when we find that 

(uw, v3; n+2, n)q 

is transformed by the 6 substitution into 

in b, 2b,b.—b,. _, Bbytby— Bbybrby +B," 
a n+2 bn c SoD) ay v) (5 oy Fis Conte ate “a? bnis uF mS) n+1 b2 

and we derive the particular cases 

(0, 1; n+2, n)a 

b, 2b,b. — b2 3b.2b, — 3b)b, b. + bf ; 
= iB Oba + be = Ong == bs Obnts oto hetste ts 

(+2; 1; n+2, n)z 

=_— Obns 

The h transformation. 

22a Lf ae —__ =]+hu+h,u?+hjui+..., 
l—aqut+auw—a,uw+... 

then Gh Sltag 

Ae = h,? — he, 

a; = h? = 2hyhs + hse 

and, putting a,=1, I examine the effect of making this substitution upon the operator 

(4 v3 m, N)a: 
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We have 
1 (—yrus 7 

Cag 1Saqutaw—... G—qu+avz—...P UW Oaghe + UH Og, Resi + --+5 

or (—SO (1+hwthwt...P= Oa, hts + U0q, herr + U0a, ere t - 

So that comparison of the coefficients of w on either side gives us the value of 0g, hs:p as 

a quadratic function of h. 

and we find 0,,=(—)** ae + oe + “(he + 2h. Bik + (2h,h. + 2hs) Gey ee ale 

If we write symbolically On, =k’, 

Oa, = (A (1 + yk + hk? +h +...¥, 

and AmoOa, + Ama, 1 + Ame%an,. + 

=(—)"k" qd ats hk a h.k? sk: hk ar 300) (Gino oo Cink + enna = Qing ke? + eae) 5 

1 
but no — Orn lb -F Omsk? — ... =o (+ lak + hk? + hgh? + Son) ee 

giving us AmoOay, + Gm O + Ame an+1 anyo tT 

= (yt (bik thal! +g + J 

= (yr A ie mo + Paces b+ Iams? + Imai +.) 
leading to the relation 

(1, 0; m, n)g=(— yn m ze, 0; 2—m, ny. 

Again (0,1; m, 2)q 

= Im Ogee + 2ame CPR + 3ains Be seer 

=(-P kM (lth kth bth, +...) (di — 2am k + 3am — ... ); 

but Qmp — Am, kk + Ame kh? — ... = = L+hk+hjk?+...)-™, 

so that by differentiation 

Can, — 2a + Bing A? — oo = — = Oy (1 + Fy e+ Bg P+ 

and = (l+hk+h,k? +...) (Gm — 22k + Bains A — ...) = 5 = mot (l+hk+h,k?+...)-™ 

= hom, =i Zho—m,2 k+ Bho, a 

and we now gather that 

(0,1; m, n)g = (—)"(0, 1; 2—m, na; 

and, since (mw, v3; m,N)g=pe(1, 0; m, n)at+v(0, 1; m, ra, 

(u,v; mM, N)g =(-)” \f (m— 2), v; 2—m, n| : 
m h 

it being understood that the value m=2 is excluded. 
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23. The particular case m=2 requires a separate examination. Reference to 

foregoing investigation shews that 

(Oy 2510) a 

is symbolically (—y dhe, 

so that (1, 0; 2, n), =(—)"* £4, 

whilst (0,1; 2, n),=(—)" hk" 0, log l+hk+hk+...) 

= (—)" k"+4 (hy + (Qhy — hy2) b+ (Bhg — Bhyha + hy’) 2+ ...} 
) =(-)" {h, Gee + (2h, — h,?) Oh set (3h, — 3h, hy + h,*) Ono +...}. 

Hence (i, HS PR YOYr 

1 = (=) ue = Ohy + Vv (—) {ha On.) + (2h2 — Iy®) On, 9 + (3h; — Bh, hy + hy’) On, ., + ++} 

Particular Cases of the h transformation. 

24. The seminvariant annihilator 

(Gtaleriten bys 

becomes (He Sg ya 

or On, — h, On, = 2h; On, = Bh, On, —Jelstate 

Hence any seminvariant gud the elements 

les Mss 3 Pies 
is a seminvariant qua the elements 

Cigemi Cit, hs; cet 

Ex. gr. h,h,—h? is a seminvariant. 

Moreover, writing ada sy) 45, 2) = Das 

if the general solution of 

On, = hs On. = 2h, On, = 3h, On, SS ppc) 

be written hy bs + Gi hs dat (3) Di? QAP coor 

we have she bs + 8(s— 1) hy? d+ $8 (8s —1)(s—2)h SF Got..., 

= hy Hp, + (7) bi Hoes + (5) lot Hb.a to 

where H = hy 0p, + hs On, + Bhs On; + «+5 

and now equating coefficients of like powers of /h,, 

Wiett, 2OKING ING, WHk 17 

125 

the 
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indicating that, regarding the general solution as a binary s‘° in /,, 1, all of its seminvariants 

are seminyariants in the elements 

hs, hs, hy, sinlay, 

and therefore also in the elements a, G4, Qo, .... 

25. As another interesting particular case we find that the pure reciprocant annihilator 

(4,1; 2, 1)a 

= 20p, — My On, — (2h2— hy) On, — (Bhs — Bhyhz + My°) On, — ---- 

Moreover it will be shewn that (4, 1; 2, 1), can be transformed into (1, 0; 2, 1),, and this 

becomes 40h,; 

of which the fundamental solutions (it beimg equated to zero) are 

loam Itksep [Why L053 S000 

The fact is that by means of the b transformation 

if b b, 2 
U4 aa Re: ie a 

0 0 

(4, 1; 2,1), is transformed to — (2,1; 1, 1), 

and if we write b,=(s+1)c,, it is further transformed to 

(i, 3 tL, De 

We now again employ the b transformation 

G2) ee thi. 9s 0 d, 2 1 dj ’ LSS d,' ° else, 

when it becomes ZO 2ee) 5. 

The h transformation 

do=@, h=G, d,=e2— G6, ds=e,> — 2e,e,e + &, --- 

finally converts it into €00¢,) 

and we have the complete set of solutions 

Qo, Co, Og, Ogy oes 

In detail, 
1 

calaaey; = = Gy 
0 0 

b 2c 
be ba = ¢ 5 = 2d, = 2¢,, 

0 0 

be b,° Cy c 
d= — 7 +27=-3824+8- 

by by Co 0 

PAE. Ar. 
= 3d, + 2 — =— (5e,?— 3e,6), 

dy @ 
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[Py — a lists 2 Cs athe ; CC, (oS 
.=— = = 3 = — 4() ds bs +5 by 5 By 4 a + 30 cit ot 

Chih ees 
= 4d, + 10 4— = — (Te, — 9e,€,e, + 2e,2e), 

dy eo 

b, bb b.? b2b b4 i 6 1“%3 2 2] 1 2 1 

e500 a a Sa 

= — 5% 4.499% 497% _ 959% 4 994% 
Co Co’ Cy Co° Cy 

2 2 4 = sadees dhds , 12 d, iy gt us m 9th 

d, d, ie fe 

1 Es ee 
== (A2e,4 — 84e,¢,°¢, + 17¢,7¢.2 + 28¢,2e,e; — 5e°es), 

0 

&e. 
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This then is the transformation from the elements a to the elements e which transforms 

the operator. As above shewn, 
€o, C2, @3, C4, +++ 

are pure reciprocants, and we find by calculation their expressions in terms of the elements «. 

Viz. 

y= Chp 

1 
e = ——— 

ST er 
(ba — 4a) a2), 

i €s = =— (a2 a3 — 3a) a, a, + 24,°), 
4a, 

1 
és=s5~—5 

720a, 3 

&e. 

The first three of these will be immediately recognized. 

(551a,; — 1184a,a,2a,. + 272a,a,? + 504a,a, a, — 144a,°a,), 

The last one, in the bracket, is expressed in terms of Sylvester's ground forms by the 

formula 

5B1 (5a,? — day)? — $2 (105a,a,2a, + 28a,24,? — 175a,?a,a; + 50a,°As). 

The forms obtained in the above manner form a complete set from which all pure recipro- 

cants can be obtained, but they do not constitute the simplest set of ground forms obtainable. 

The possibility of such a transformation depends upon two circumstances. 

place the operator 

(4, 1; 2, 1) 

is a particular case of the operator 

such that n—m+2=1; consequently the b transformation results in an operator, viz. 

(KH, vy, m, n) 

(2,1; 1,0), 

In the first 
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which is linear in the elements which are coefficients of the differential inverses. in the 

second place any such linear operator (u, v; 1, x) can be transformed by mere numerical 

multiplication of the elements into any other form (y’, v’; 1, x). It follows that (2, 1; 1, 1) is 

transformable into the seminvariant operator (1,1; 1,1). An immediate consequence of this, of 

course, is that all pure reciprocants are transformable into seminvariants. The 0 transformation 

now transforms (1, 1; 1, 1) into an operator, viz. (1,0; 2, 1), in which the element y is zero, and 

this being so the h transformation produces the final simple form of operator 

C006, - 

A transformation of the Seminvariant Operator. 

26. It will be observed that the seminvariant operator (1,1; 1,1) is by the successive 

b and h substitutions brought to the required simple form. This in fact takes place during the 

transformation of the pure reciprocant operator. 

The transformation which effects this is 

a) = — G, 

Gy = Cy" + Co, 

d; = — C — 30,C2 — C5, 

(ly = Cy + Gees + 2.7 + 40,6, + Cy, 

&e. 

4 n! 
In general a, =(-)"> CoC) C2 2... 

= Oy a Geek. 

The operator then becomes Gian 

and ¢y, Cs, C3, Cy, -.. are Seminvariants. 

In fact from the above relations 

Co = — A," + Ae, 

C3 = — 20,° + 3a, a, — As, 

C= — 5 (— aft a) + 3a" — 4a, a, + a4, 

: s 2-SA+1 n4-=r — 2)! 
and in generai — ( 

In the expressions of ¢,, ¢,, ¢,, Seminvariants are at once recognizable. 

The s transformation. 

27. If s,, s,, s,,... denote the sums of powers of the roots of the equation 

a” — aa" + av" — ...=0, where n= ’ 

it will be shewn that 

Vig = (Anal ec (0s, — Bay0., + 6a,0,, — 100505, — «..), 

Oy = (1, 15 Ly Ya = 2), = 26:80, — 8810», — 48,0, — ---. 
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To prove the first of these relations, it is easy to shew that 

ee oe) {pes, +(pt+ 1)h0s, 4 +(pt+ 2)hs,.» +...}, 

2V gq = Atty (05, + 2hyOs, + Bh.0,, + 4hs0s, +...) 

— 5dy (205, + 3,05, + 4heds, + «.-) 

+ 6d» (30,, + 4/4 0,, + Sheds, + ...) 

— Tats, (405, + 5,05, +...) 

aR po0e 

Herein the coefficient of Os, is 

P [Saghpa — dy hy» + 6doshy_,— ... +(—)”* (p + 3) Til 

1 : 
12 ue = = 1 a hu + hou + ees Now if 

which we may write in the form 

Ae eed a 

44.7 + U0, Ai? = 4d — 5d + Gdou? — ..., 

and Ayo H=1thu+ hou? + ...; 

therefore by multiplication 

Ady + (Adah, — 5a) U + (Adan hz — S5dyh, + Gan) — ... 

+ {4dghp — Sd hyo t ... +(—)?4 (p + 3)aa,} w+ ..., 

=4A,+2u0,Au, 

=4 (1 —ayu+ au? — au +...) + (— 2q,u 4+ 4a. — Ga,v + ...), 

=4— 6a,u + 8a.1?— 10a,u®+.... 

In this series the coefficient of w”~ is 

(4 (2p +2) apa, 
proving that the coefticient of Os, is 

(—)?* p (2p +2) ap. 

Therefore 2V,==(—)?" p (2p + 2) aya 0s, 

= 9S (jon (PED 
or Va= 22 (—)jP" ( 2 ) dys,» 

or Va=2 (G,, —3a,0,, + 6a,0,, — 10030, + ...). 

For the second relation 

Og =0,, + 2 (In — 2) 0,, + 3 (he — 2a, + 3az) 0s, + 4 (hs — 2h, + 3a.h, — 403) 05, +..., 

and by easy algebra this reduces to 

Oq = O¢, — 2810, — 38203, — 45505, — .-.. ‘i 

\ 
If, however, we write 8 ==]he 

ee sd) 35 Ops — AO, 
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indicating that every seminvariant in the elements 

he) 4 OS Boe 

is also a seminvariant in the elements 

— $1, —S2, — Sz, +0 

Thus for example from the seminvariant 

(yy — 44,03 + 3a 

we at once derive a new seminvariant 

—s,—4s,s,+ 3s, 

which is found to be equal to 

— 2 (a,* — 2a°a, — 54° + Saya; — 2a). 

It should be noted that the important operator 

DiS (2, 13 22) 

is equivalent to — 2 (0;,— 30,05, + 6a,05, — 10a;05, + ..-). 

The combined b and h transformations. 

28. Both the b and the A substitutions being of period 2, we can combine the substitutions 

alternately. Thus if we first employ the b substitution and then the A and b substitutions 

alternately, we obtain substitutions which we may denote by 

(hb)? and b (hb)?7.* 

Tt will be found that 

{ (hb)? (wu, v3; m,n) =(—)” ike ~ (pn— 1) pn, nt, 
m 

nm 
b (hb)? (u,v; m, n)=(-)r?™ {= = (pn — m+ 2), 

Also 

ley (ae my + Pe. (bh)? (uw, v3; m,n) = (—)”” la (pn +m), = 

5 Sf (a) {ue g h(bh)? (p, v3; m, n)=(—)?'?™ mn te + m — 2), = 

my — Pe 

my + PP. 95 

; pun—m-+ 2, nt : 

> m+ pn, at, 

—m— pn, nf. 

In the first, third and fourth of these formule p may be zero or any positive integer; in 

the second p may be any positive integer, zero excluded. Observing that the third and fourth 

operators become respectively equal to the first and second when — p is written for p, we gather 

that we only require the third and fourth operators in which p may be supposed to be zero or 

any positive or negative integer. 

As a particular case we find that the seminvariant operator 

(lols 7a; h) 

may be transformed into (—)?(p+1, p+1; p+l1, 1), 

and into (—)?# (p—1, p+1; 1—-p, 1); 

* The substitutions are from right to left successively. 



THE HALPHENIAN HOMOGRAPHIC SUBSTITUTION. 131 

and the pure reciprocant operator (4, 1 ; 2, 1) into 

(—)? 2p+ 4, 29+1; p+2, 1), 

a (—)?*1 (2p, 29 +1; —p, 1). 

Transformation by suffia diminution. 

29. The operator (u, v; m,n) admits of one very simple transformation which may be 

repeated indefinitely. If therein we put 

y= 05 GhSGh a 

for all values of s, or in other words if we diminish each suffix by unity, the operator becomes 

(w+ mv, v3; m, m+n—1), 

and the solutions of this operator are obtained from those of (u,v; m,n) by subjecting the 

solutions to a unit diminution of suffix. 

If we employ this transformation p times we reach the operator 

(w+pmy, v; m, pm+n—p). 

This operator is effectively the same as the untransformed operator when 

i=, DS: 
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INTRODUCTION. 

THE integral equations that have hitherto been considered by mathematicians are 

scalar equations in which the functions involved are not related to any particular direction 

in space. In the problems of mathematical physics we are frequently led by Cartesian 

analysis to a system of three integral equations with the same number of unknown 

functions, while if our methods are those of vector analysis we find instead a single 

integral equation in which the unknown function is a vector quantity, and the kernel 

of the equation no longer a scalar but either a vector used in cross multiplication or an 

operator involving vectors. The vector integral equations that most commonly appear are 

of the form 
HO) I SCS) GI @)C SEO) sdcoccocescotonconodaccncaconcone (1), 

where u(¢) is the unknown vector function of the position of the point f, X an arbitrary 

parameter, f(f) a known vector function, and K(ts) a dyadic*, ie. an operator which 

acting on the vector u gives a linear vector function of u. It will be shewn in the 

following that (1) is the most general type of linear vector integral equation of the 

* Cf. Gibbs-Wilson, Vector Analysis, New York, 1901, Chapter v. 

WMorsexoxT, No; WIE. 18 
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second kind, and it is to equations of this sort, analogous to Fredholm’s equation, that 

we shall confine our attention in the present paper. 

The scalar kernel of the ordinary integral equation is thus replaced by the dyadic 

operator K (ts) which involves vector functions of the positions of the two points ¢ ands. In 

developing the theory of the equation (1) along lines suggested by the theory of Fred- 

holm’s equation some new ideas will be necessary in view of certain important differences 

between the algebra of dyadics and that of ordinary scalar multipliers. For instance, 

the fact that the commutative law does not in general hold for the factors of a dyadic 

product makes it essential, if we wish to introduce determinants of dyadic elements, to 

formulate rules for the expansion of such determinants according to which the elements 

in each term will occur in some definite order. This the author believes is done with 

complete success by the introduction of two kinds of dyadic determinants, called respec- 

tively row and column determinants, by means of which two series are formed whose 

quotient is the resolvent dyadic for the integral equation (1). 

A special class of kernel will be considered (for which the author suggests the term 

conjugo-symmetric) which need not be either self-conjugate or symmetric but which 

suggests a blending of these two kinds. Such a kernel makes the vector integral 

equation identical with its associated equation. A set of theorems will be established for 

the conjugo-symmetric kernel analogous to those that hold for the symmetric kernel of © 

the scalar integral equation. 

I. THe Liyear Vector INTEGRAL EQUATION OF THE SECOND KIND. 

$1. We are familiar with a system of three linear scalar integral equations of the 

second kind in the following form to which the system may always be reduced 

u, (t) —d J [Ru (ts) wm (8) + Kye (ts) Us (8) + Ks (ts) us (s)] ds =f, () 

Us (t) — XJ [Km (ts) w (8) + Ke (ts) Us (8) + Koy (ts) us (8)] ds = fo (B) [ -.seeee eee ee ene (2), 

u; (t)— | [Ka (ts) wm (s) + Kee (ts) Ue (Ss) + Key (ts) us (s)] ds =f; (6) 

where all the functions are scalar functions of the positions of the points indicated, 

u;(t) (i=1, 2,3) are the unknowns, and the integration is to be extended over a de- 

finite fixed region S which may be a line, surface, or volume, ds being the element of 

that region surrounding the point s. We shall assume that the functions f(t), Knm (ts) 

are finite within the region considered. 

Let i, j, k be the unit vectors of a rectangular system. The scalar functions of (2) 

grouped in trios may be regarded as the tensors of the components in these directions 

of vectors defined by the relations 

u(t)=iw, (t)+jw(t)+kK u, (), 

FO=1f(OtiAO+kA, 

K,. (ts) =i K,, (ts) + j Kx (ts) +k K,, (ts), 

r=l1, 2, 3. 
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The integrands in (2) are then equal to the scalar products K, (ts)*u(s), K.(ts)*u(s) and 

K, (ts)*u(s) respectively. On multiplying the equations (2) by i, j, k respectively and 

adding we have the single integral equation 

u(t) —2 | [i K, (ts) +j Ky (ts) + K, (ts)] © u(s)ds=£()eeccccccececeeees a; 

which may be written 
Wu) = I) ES(UNOUN GCS 53) eh caccencecdoasdoeossouabooaebee (1) 

where the function appearing as the kernel of the vector integral equation is the dyadic 

K (ts) =i K, (ts) +j K, (ts) +k K, (ts). 

This is an operator each term of which is the indeterminate product of two vectors 

known respectively as the antecedent and the consequent of that dyad. The dyadic in 

(1) occurs as a prefactor to the vector u(s), and the result of its operation is the sum 

of the products of each antecedent by the scalar product of its consequent and the 

vector u(s). When expressed in nonion form* the kernel K(ts) becomes 

Ky, (ts)ii + Ky. (ts) ij + K,, (ts) ik 

+ Ky (ts) ji + Ky (ts) ij + Ky; (ts) jk 

+ Ky, (ts) ki + Ky (ts) kj + Koy (ts) kk, 

the “determinant” of which} is identical with the determinant of the coefficients under 

the integral sign in the system (2). 

§2. The system (2) of scalar integral equations is then equivalent to the single 

vector equation (1). Conversely (1) may be replaced by the system (2). We shall need 

frequently to refer to another integral equation intimately related to (1), viz. the vector 

equation 
TCE Nie (G)o IK (at) ds =f (O)ieicesc ees g-ohecaceccacecios ees (3) 

which will be called the associated equation. In this the dyadic kernel K(st) occurs as 

a postfactor to the vector v(s), so that the result of its direct operation is the sum of 

the products of each consequent by the scalar product of its antecedent and the vector 

v(s). When expanded the integrand in this equation becomes 

i[v, (s) Ky, (st) + v2 (8) Ka (st) + v5 (8) Ka (st)] 

+ j[v.(s) Ky. (st) + v, (8) Ko (st) + v5 (8) Kop (st)] 

+k [v, (s) Ky; (st) + v2 (8) Ko, (st) + v3 (8) Ko, (st)], 

so that the vector equation (3) is equivalent to the following system of three scalar 
equations 

v, (t) —A J [% (s) Ky (st) + v2 (8) Ka (st) + 05 (8) Ku (st)] ds = f, (0) 

U2 (t) — AJ [1 (8) Kos (st) + v2 (8) Koy (St) + 03 (8) Ky, (st)] ds = f(t) | 

0; (t) — rf [0 (8) Ky, (st) + v. (8) Ko, (st) + v5 (s) Ki; (st) | ds =f,(t)} 

This system, it should be observed, is not identical with (2), The rows of the 
coefficients in (4) agree with the columns of the coefficients in (2) with the variables 
s and ¢ interchanged; and vice versa. It is a common mistake in discussing the system 

* Gibbs-Wilson, loc. cit. p. 269. + Ibid, p. 317. 
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(2) of integral equations to assume that the associated system differs only in the inter- 

change of variables. This assumption is quite wrong except in the special case in which 

K,; (ts)= K;, (ts): that is when the dyadic K(ts) is self-conjugate. In this particular case 

it is immaterial whether the dyadic is placed as a prefactor or a postfactor. But in 

general the relative position of the kernel and the unknown vector cannot be varied at 

pleasure. 

§3. Either of the equations (1) and (3) is the most general form of linear vector 

integral equation of the second kind. For it is the fundamental property of a dyadic 

that when operating on a vector u it gives a linear vector function of u; while every 

linear vector function may be represented by a dyadic* to be used as a prefactor, or 

by the conjugate of that dyadic used as a postfactor. Hence the most general form of 

the integrand is the direct product of a dyadic and the unknown vector. A form that 

might suggest itself is axu, where a is a vector independent of u. This form is 

included in the above, for a vector a used in cross multiplication is equivalent? to the 

dyadic Ixa or axI used in direct (scalar) multiplication, I being the idemfactor, that is 

the dyadic whose operation leaves a vector unchanged. The case in which u is multiplied 

by a scalar function m is equivalent to that in which the dyadic is mI. 

If the unknown u outside the integral sign has a dyadic either as a prefactor or 

as a postfactor, the equation may be multiplied throughout by its reciprocal} dyadic and 

thus reduced to the form (1) or (3). 

Moreover the dyadic kernel 

K (ts) =iK, (ts) +j K. (ts) +k K, (ts) 

is the most general form of dyadic. For every dyadic may be reduced to the sum of 

three dyads, of which either the antecedents or the consequents may be arbitrarily chosen§ 

provided they are not coplanar. In the present form our arbitrarily chosen antecedents 

are the rectangular unit vectors i, j, kK We have shewn then that (1) is the most 

general form of linear vector integral equation of the second kind. 

§ 4. In his classical memoir Fredholm || has shewn how a system of integral equations 

such as (2), in the case where the region of integration is linear, may be reduced theoretically 

to a single scalar integral equation whose kernel and unknown each represent different 

functions in various sections of the domain of integration. The possibilities of this 

method, such as they are, may be extended to the general case in which the region of 

integration, S, is a surface or a volume. If this be replaced by another, S’, consisting 

of the original region S traversed three times the system (2) is equivalent to the single 

scalar integral equation 

u(@)= el EE (te) ule) de=/(0)....:..0 ee (5), 
JS’ 

where, if ¢ and s are points of the region being traversed for the nth and mth times 

respectively (n, m=1, 2, 3), 

K (ts) = Knm (ts), w(t)=un,(t), u(s)=%Un(s) and f(t)=fh (t). 

* Gibbs-Wilson, loc. cit. p. 267. + Ibid. p, 299. t Ibid. p. 290. § Ibid. p. 271. 
“Sur une classe d’équations fonctionnelles,”’ Acta Math. Bd. xxvii. (1903), pp. 378, 379. 
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From the solution w(¢) of this equation the unknown functions w(t), w(t) and u,(t) of 

(2) are found by the above relations. 

But though this procedure reduces the system (2) theoretically to the case of a 

single integral equation the method is rather cumbrous in practice as all the functions 

involved change abruptly and frequently within the region of integration. The enquiry 

therefore suggests itself whether we can work with the single vector integral equation (1) 

to which the system has been reduced, and develop if possible the theory of vector 

integral equations as an important and useful branch of vector analysis. The enquiry is 

all the more essential to one who works habitually with vector methods, for it is in 

the form (1) that the integral equation presents itself to him: and it would be a doubtful 

gain to give up a single vector equation for a system of scalars, even if that system be 

reducible to a single scalar such as (5). 

Il. Tue Ireratep Dyapic KERNELS, AND SOLUTION BY SUCCESSIVE SUBSTITUTIONS. 

§5. Before proceeding with the solution of our equation (1) we shall introduce the 

idea of an iterated dyadic. The algebra of dyadics makes us familiar with the direct 

product of two or more dyadics. The direct (scalar) product of the dyadics K(¢S%) and 

K(Ss) is written K(¢S)+K(3s), and is the formal expansion of the product, according 

to the distributive law, as a sum of products of dyads. The product is itself a dyadic 

and the sum of any number of dyadics is a dyadic. Hence multiplying the product by 

dS and summing for all the elements of the region S, we have in the limit that the 

integral 
/K(tS) °K (Ss) d3 

is a dyadic. Further we may have the product of three or more dyadics, and the factors 

of such a product are known to be associative though not in general commutative. The 

products 
K(t3)*(K(Sc)*K(cs)] and [K(tS)e«K(Soc)|°K(as) 

are identical. Multiplying by the scalar product dSdo and summing over the whole 

region of integration for each of the variables S and oc, we have in the limit 

{K(tS)-[[/K(Qc)eK(os)do]d3 =/[/K(tS)+K(Se0)d3]+K(oes)do ...... (6). 

The process may be continued for any number of factors so that the order of integration 

may be changed at pleasure and the associative property used for any grouping of con- 

secutive factors. The factors however are not commutative. 

The dyadics formed in this way by successive iterations of the dyadic kernel K (ts) 

will be called the iterated dyadic kernels, or briefly the iterated kernels. The dyadic 

K, (ts) = {| K(t3) eK (Ss) dS 

will be referred to as the first iterated kernel : 

K, (ts) = { K, (tS) + K (Ss) dS 
=| K(tS)-K, (Ss) d8 

as the second, and in general 
K, (ts)=/K,4 (tS) «K (Ss) dS 

= /K,_, (tS) «K, (9s) d3 
as the pth iterated kernel. 
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The operation of the dyadic K(ts) on a vector a yields another vector b. The ratio 

b|:|a| depends of course on the direction of the vector a; but if the dyadic K(¢s) is 

finite, that is, every element of its determinant finite, there will be a scalar function 

M(ts) such that this modular magnification <M/(¢s). Further for all points ¢ and s of 

the region S there will be a finite number M such that M(ts)<M. This number M 

we shall speak of as the greatest modular magnification by the dyadic K(ts). It follows 

that if B is the magnitude of the region of integration, and wu the maximum value of 

u(S)/ for all points 3 of this region 

/K@S)eu(S)d3| <BMw, 

and generally |) [Ess SS)rerta(Si)id S| S CBM) Page eesetee ele aetae eee r)) 

§ 6. We can now shew that the method of successive substitutions may, with certain 

restrictions on the parameter A, be used to obtain the solution of our standard equation 

MH (@) NJ (CS) or ((S) is ="f (0) Seas senna ane (ab. 

For on substituting for u(s) under the integral sign the value given by the equation 

itself, we deduce 
u(t)=f(t) +A /K(tS)+[£(9) + ASK (Gc) -u(c)do]d 

=f(t)+r/K (ES) f(S) +) K, (tc) + u(c) do. 

Substituting in this equation the value of u(c) given by (1) and continuing the process 

we find 
u (t)=f(t) +°’/K (tS) ef(9)d3 + 7/ K, (£9) -f(S)d3+... 

PAMPER, 5 GS) sf) GS ER, oso ope (8), 

where R, =" /K, (t9) «u(S) ds. 

If we write the equation (8) as 
T(E) aE) Fs Rig. sss coven Seeeale (8), 

it is easy to shew that, with a certain restriction on 2, the series represented by S, (¢) 

is absolutely and uniformly convergent when n increases indefinitely. For if $(¢) denote 

this infinite series we have in virtue of (7) 

1S (t)|</£(t)|+ S |x" [Ky (tS) £(9) d3| 
n=l 

< 5 (|x| BM)" fi, 
n=0 

: : = : Zee F 1 
where f, is the maximum value of |f(S$)|. Now this series is convergent if 1X) < pay 

If then this restriction is imposed on 2 the series S(t) is absolutely and uniformly con- 

vergent. 

That S(t) actually represents the solution of (1) under these conditions will be shewn 

from another point of view in the following section. Here we observe that we may write 

8 (A) =f@Q) ACES ef (S) OS 2b ei aeeant ae season eeees (9), 

where H(t) is the infinite series of dyadics 

B (9) =E (8) + NE, (C8) + AK (ES)te! vcctor (10). 

es ae ee eee 

——— 

ae 
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1 : pe ; ; 
When |< py this series is absolutely and uniformly convergent; that is to say, the 

result of its operation, term by term, on a finite vector gives an absolutely and uniformly 

convergent series of vector functions. This follows immediately from the above. 

Ill. THe Resotvent Dyapic. 

ee dyadic H (ts) defined by (10) is connected with the kernel K(ts) by alter- 

native relations of a specially simple nature. For it follows immediately from (10) and 

the properties of the iterated kernels that 

H (ts) —K (ts) = J [K(¢3)+AK, (€3)4+ ... to ©] e¢K(Ss) dS 

=a) [fg (CS) OL SRI) CASS epeeos sadcosseaabodebecocod teeeaceeronceececd (11), 
and similarly that 

H (ts) —K (ts) = j K(¢3) ¢[K(9s)+)K, (Ss)+... to «0 JdS 

NTS ORIOLE PSN BRR et eee (11). 

These equations shew that there is a reciprocal relation between the kernel K(¢ts) and 

the function H (ts) which we shall call the resolvent. But we shall avoid speaking of 

either as the reciprocal function of the other, because in the usual terminology two 

dyadics are said to be reciprocal when their product is equal to the idemfactor. The 

reciprocal dyadic of K(ts) would be denoted by K~‘(ts) and is quite different from H (ts). 

The relations (11) and (11’) have been proved only on the assumption that |A/|< = 

But these equations have an importance for a wider range of parameter values than this. 

We shall prove that if there exists a dyadic H(ts) connected with K(ts) by the relation 

(11) then the integral equation (1) admits a unique solution given by 

TE) EE AUREL (ES)0 LCS) GS ooo hoes cess ccsvacebedeacteowtens (12). 
For on multiplying 

WS) AS) EN KE (S8)) (5) ds .s.0.0. acs csedeecondeandeene (1”) 
by XH (¢S)+ and integrating over the domain we have 

ASH(ES)-u(8)dS=Aj H(¢S) efF(9)d3 +X /f/H (tS) «eK (Ss) e u(s) dsdS. 

The factors in the final integral are associative. The order of integration may be changed 

and the equation then becomes in virtue of (11) 

0=j/H(tS)-£(S)dS—Aj K (ts) - u(s) ds, 

which by (1) is equivalent to (12). In particular the series S(¢) of the previous section 

is the solution of (1) for the restricted values_of X there considered. For S(¢) is ex- 

pressible in the form (9) which is identical with (12), and in which H(ts) satisfies the 

resolvent relation (11). 

Having shewn that the value of u(t) given by (12) satisfies the original equation (1), 

we may prove that this is the only solution. Assume that there is another solution u,(¢) 

so that 
u, (t) —- A fK (ts) « u, (s) ds =f (£). 
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Substituting in (12) the value of f(¢) given by this equation we find 

u(t) =u, (t) —X/[K (ts) —H (ts) + Xf H (3) ¢ K (Ss) dS] + u,(s) ds. 

The integrand vanishes in virtue of (11), shewing that 

u (¢) =u, (¢). 

The solution given by (12) is therefore wnique. The same equation also puts in evidence 

the appropriateness of the term “resolvent” as applied to the dyadic Hi(¢s). As an 

alternative name we might suggest “solving dyadic.” 

§ 8. But further, if there exists such a dyadic H(és) satisfying (11) it must also 

satisfy (11’), and conversely. Consider (11’) as an equation whose unknown is H (és). 

This equation is precisely of the form (1). Hence by (12) its unique solution is given by 

H (ts) = K (ts) + fH (¢9) « K (9s) d3. 

This solution is therefore identical with the function H(ts) given by (11). The relations 

are therefore reciprocal. 

The solution of the associated equation 

V(t) = fiw. (s) eK (Gt) ids = £(@)) so soe sea one cece eee eee (3) 

is expressed in terms of the same resolvent H(st). For on changing ¢ to 3 in this 

equation, multiplying by «H(S¢)AdS and integrating, we find exactly as in the previous 

section that 
Vi (¢) =f (©) Ea [if (S)) end (St) See sceee eee seaee eee (13). 

That this solution is unique may be shewn as before. 

If we put f(t)=0 in the foregoing, the second members of (12) and (13) disappear. 

It follows then that when the kernel K(ts) admits a resolvent H (ts) (which will be 

proved to be the case except for certain isolated values of the parameter 2) the homo- 

geneous vector integral equation 

UNC) PAI PLS CSDM EW SD ICSI ce Saansro Sn ongocneqaticonabsie: (14) 

and the associated homogeneous equation 

Vi) NewS) fon: (S72) Si. cae eee ee eee enter eaeenee (15) 

have no finite and continuous solutions but u(t)=0 and v(t)=0 respectively. 

In order to remove the restrictions imposed in §6 on the values of the parameter A, 

and to extend the validity of the solutions (12) and (13) to the case in which the 

parameter value is quite general, we shall endeavour to find a resolvent dyadic Hi (ts) 

satisfying the relations (11) and (11’), and it will then follow that the unique solutions 

of the integral equations (1) and (3) will be as expressed in (12) and (13) respectively. 

If the resolvent as found becomes infinite for any value of 2, these solutions will in 

general break down for that value of the parameter. The determination of the resolvent 

and the examination of its properties will therefore be our main concern, 
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TV. Dyapic DETERMINANTS. 

$9. Before however undertaking the search for a resolvent we shall need to introduce 

and define a class of determinants in which each element is a dyadic. The properties of 

such will clearly differ in many important respects from those of ordinary determinants 

where each element is a scalar quantity. The particularly simple properties of scalar 

determinants are due to the fact that in the expansion the order of the factors is 

immaterial, a property which is not shared by the factors of a dyadic product. A dyadic 

determinant of n? elements may be expanded according to any one of its m rows or of 

its n columns, and in general each of these methods will yield a different result. And 

further, in each of these ways of expanding we must adhere to certain definite rules so 

that the order of the elements in any term will not be arbitrary. 

Consider first expansion according to rows. Determinants to be developed in this 

way we shall speak of as row-determinants. That obtained by expanding according to the 

first row will be the most important for our purpose, and for this first row-determinant 

we shall adopt the following scheme of expansion. Let as, (r,s=1, 2,...,) be a set 

of n? dyadic elements. The determinant = cS expanded according to the first row 
21 22 

is to be interpreted as (aa .—@,*@.), the element in the first row being placed first 

in each term. The determinant 

fe Ap. As 

is to mean 

an | Ay Ay; | — Aye | 

| @se As: 

a, ar, |= As ¢ | As; Ago | 

As; As; | ay Ayo } 

The leading element a, is multiplied by its minor in the ordinary sense. The ith 

element in the first row is multiplied by its minor, but in that minor the elements 

belonging to the 7th row of the main determinant must occur as the first row. All 

these products have a negative sign prefixed except that involving the leading element. 

This method gives a similar result to the expansion of the corresponding scalar deter- 

minant, but with our convention as to the order of the elements it will be seen that 

the second suffix of each element of a product is the same as the first of the next 

element, until the first suffix in that group of elements is repeated, whereupon the group 

becomes closed. After that other complete groups may occur. Representative terms from 

the above expansion are 

Ayo Avg © Ay, — Ayz * Az, © Ay2, — Ay; © Ay; ° Asp. 

In the first of these the closed group embraces all the factors, beginning and ending with 

the suffix 1. In the second example the first two factors form a group while the third 

factor forms a complete group by itself. The third example begins with the group a, 

which is then followed by another. 

Vou. XXII. No. VIII. 19 
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Quite generally the dyadic determinant 

| @y Gyo yg... Ain | 

Bui Kao asetoceseies Ao» 

Bo) Dina Mewecwsearee aan 

expanded according to the first row is to be interpreted 

@ve!|Pae, (Bonar. k Bon | 5 aA The minor of a,; with the elements 

ULI a aces anes belonging to the ith row of the 

Lae e ee tOne original determinant placed in the 

Ras pitta seeeeee ann | first row 

In expanding each of these minors the rules laid down for the original determinant are 

to be observed. The suffixes according to this rule of expansion fall into groups as ex- 

plained above, each term embracing one or more groups and all the groups being closed. 

It is easily verified that the interchange of the first two columns alters the sign of 

the first row-determinant but leaves it otherwise unchanged. This clearly holds when the 

determinant consists of 2? or 32 elements, and thence by induction it is shewn to hold 

generally. It follows then that if the first row-determinant is unaltered by the interchange 

of the first two columns it must be zero; and therefore, if the first two columns are 

identical it must be equal to zero, The interchange of rows has no corresponding simple 

result: for such a change commutes two factors in every term of the expansion, giving 

in general an entirely different dyadic. 

§ 10. Consider next the expansion of colwmn-determinants. Expansion according to 

the first column will be interpreted as follows. The determinant 

a, Ap 2 
will mean (a. ¢ @, — Ay © As), 

ay ae 

the element from the first column being placed /ast in each term of the expansion. The 

determinant 

is to be understood as 

| Ax A |* Ai—| Ay Ay |*Ay—| Ay Ay \ As 

| Ay. — Agy Ay  Ayy | @og Aen 

in which each of the determinants is to be expanded according to the first column. It 

will be noticed that the elements from the first column of the original determinant occur 

last in each product, the prefactor of a, being its minor in the main determinant with 

the elements of the 7th column of that determinant placed in the first column. Each 

minor is then to be expanded according to its first column. 
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The general rule is now clear. The determinant of n? elements considered above when 

expanded according to its first column 

__| ae agg... Jon |, = & The minor of a; with the elements] «aj. 
= n= : ; 

[HEBER GERCeE aay | i=2 | belonging to the 7th column of the 

| SAD OCBASEBEEECRG original determinant placed in the 

IG ooesacose Bets aan | first column 

Each of these minors is to be expanded according to the first column, the same rules 

being observed as for the main determinant. In this way the suffixes fall into groups 

as in the case of row-determinants, each term of the expansion embracing one or more 

closed groups. 

It is easy to shew that the interchange of the first two rows alters the sign of 

the first column-determinant, leaving it otherwise unchanged. Hence, if the first column- 

determimant is unaltered by the interchange of the first two rows it must be equal to 

zero; and thus if the first two rows are identical the first column-determinant vanishes. 

The interchange of columns gives quite a different dyadic. 

V. Tue Serres D(A). 

§11. Knowing beforehand that the solution of the single scalar integral equation (5) 

is a meromorphic function of the parameter A, and that the vector integral equation (1) 

is equivalent to the system (2) which in turn can be replaced by the single integral 

equation (5), we are prepared to find the solution u(t) of (1) also a meromorphic function 

of X. We expect then to determine the resolvent H(ts) of this integral equation as 

the quotient of two integral functions of A, the roots of the denominator being the 

singular parameter values for which the solution in general breaks down. 

In the search for these integral functions we might adopt the method of replacing the 

integral equation (1) by a set of m vector algebraical equations with n unknowns*, and 

proceed to the limit n=. But it is perhaps easier to pursue a different path. The 

series known as the “determinant” of the scalar equation (5) should be identical with that 

which is to furnish the characteristic numbers of the vector equation (1). We shall there- 

fore consider this infinite series, and if possible express it in terms of the dyadic K (fs). 

But in order not to assume that this series in the new form does furnish the singular 

values of the parameter 2, we shall merely take it as one suggested by previous know- 

ledge, and seek to determine a meromorphic function of % whose denominator is this 

suggested series, and which satisfies the resolvent relations (11) and (11). If such a 

function can be found it will follow that the roots of -its denominator are the singular 

parameter values for the solution u(¢). 

Now the infinite series whose roots are the characteristic numbers of the equation (5) 

is known to be 

1-2] K(%) d+ 5 om eRe) as ads — of (228) ddsds, + Pe setec(1G) 

* This set of x vector equations could then be replaced must not vanish. If nm becomes infinitely great and this 

by 3n scalar equations. In order that this system may determinant is expanded in powers of X, we recognise, though 

admit a solution the determinant of the (8x)? coefficients perhaps with some difficulty, the same series (18) below. 

19—2 
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where, according to the usual notation*, 

doers) atl l(a) TGA asa LEB ie) | 

tte---tr/ | K(st;) K (sots) ... K (Sotn) | 

LAGHA) TEC eas HOGA) | 

is an ordinary scalar determinant. The suffix S’ to the integral sign in (16) indicates that 

the region of integration is S’, defined in § 4, while A (st) is equal successively to the 

functions Ky, (st) (n, m=1, 2, 3) as explained in that section. Expanding the determinants, 

and replacing the multiple domain of integration by the original domain S, we find for 

the earlier terms of the series 

1-— Nf [Ku (8:81) + Ko (8,81) + Ke (s15;)} ds, 

== ae AL Ge (8,5:) + Ke (5,8,) + Kes (s,5:)} {Kn (8282) + Ko (S282) + Keg (s282)} | 

= {Kn (8,82) Ky (S28,) + Kyo (812) Km (S28;) + Kos (8182) Kn (828,) 

=-IK ig (S52) Aaa (SeSi) tee ees 

SEI IGA CHD GH (GHG) 3 EP codooneaccgesnocusede + Ky, (8,52) Ks, (828)}] ds ds. 

Now Kj, (ts) + Ku (ts)+ K;(ts) is the first scalar or briefly the scalar of the dyadic K (és) 

and is usually denoted by K;(¢s). It is an invariant+ of the dyadic equal to the sum of 

the coefficients in the main diagonal when the dyadic is expressed in nonion form. Thus 

the coefficient of X is equal to {Kg (s,s,)ds,. Similarly in the coefficient of 2 we have 

under the integral sign first the product of the scalars of K(s,s,) and K(s.s.), followed 

by an expression which is easily recognised as the scalar of the product? K (s,s.) « K(s.8,). 

The coefficient of X?/2! could therefore be written 

[ _| Ke(s,5,) EK (s,52) 

*- | K(s25,) Keg (S252) 

provided we interpret //K (s,s.) « K (s.s,) ds.ds, as meaning 

Ids, [ JK (s,s.) ¢ K (s.8,) dsy]p =f K,. (tt) dt, 

that is, the integral of the scalar of K,(¢t). Similarly on expanding the coefficient of 

2'/3! we should find an expression which is identical with the determinant 

(if K;(s5,) K(s,s:) K(s,8,) 

vu K(s.8,) Keg (soS.) EK (s28,) ds, ds,ds; 

K (S38;) K (S382) K, (8,55) 

ds,dsz, 

expanded according to either the first row or the first column, provided we interpret the 

integrals as follows: 

JK (s,s,) ds, =/ Kg (s,s,) ds, 

[PK (s,s) ¢ K (8.8) dsyds, = J Ky, (815,) ds,, 

S[PK (8,82) ¢ K (s28,) « K (s58;) ds, ds,ds, = [K., (s:8,) ds,, 

S[)K (8,82) « K (sy8;) © K (s8,) ds, dszds, = J Ky, (s,5,) Kg (8583) ds, ds, 

* Fredholm, loc. cit. p. 367. + Gibbs-Wilson, loc. cit. p. 319. + Ibid. p. 318. 
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and so on, where K;. (¢t) denotes the scalar of the iterated dyadic K,(¢tt). With this 

convention it is immaterial whether we retain the suffix S in the leading diagonal of 

the above determinants. According to the above scheme of interpretation, as soon as a 

group of factors in any term becomes closed, that is as soon as the initial variable of 

integration is repeated, the integral of the dyadic product in that closed group is to be 

replaced by the integral of the scalar of the corresponding iterated dyadic. If any term 

involves more than one group the integral of that term is to be understood as the integral 

of the product of the scalars of those closed groups; or in other words (since the 

variables in the separate scalars are different), as the product of the integrals of the 

scalars of the closed groups. The above determinants are therefore scalar quantities. 

Each term of the expansion is either the integral of the scalar of an iterated dyadic, 

or the product of two or more such integrals. 

§ 12. We might stop to prove that the coefficients of the successive powers of 2 fall 

into determinants of scalars as above, and that therefore the new scalar series is absolutely 

convergent because it is identical with the absolutely convergent series (16). But this 

course is unnecessary. We have simply used the known series (16) to suggest the cor- 

responding series for the equation (1). We shall take the series suggested and prove that 

it satisfies the requirements of the problem. 

Consider then the series suggested, viz. 

K3(ss;) K(s,s2) 
Hen 2 FF 

DA)=1-2Xr [Ks (s,s,) ds, +5, l| | K(ee) Klas) ds, ds. 
> ra S25) 1s (S282 

NEN (25 /RSy 6 Se n = Gea El, ee) OS{ OS RRinty WSstossesbeasnc tute (18), 

where in the general term we have adopted the notation (17). The integrals obtained 

by expanding these determinants are to be interpreted as explained in the previous section. 

Tt is clear upon examination that the determinants may be expanded as either first row 

or first column determinants, the same result being obtained by either method. For the 

factors in any term of the expansion fall into closed groups in just the same way, the 

only difference being that the order of the closed groups in any term will be different. 

But as the integral of the closed group represents a scalar quantity, the change of order 
is immaterial. 

The series D(A) is absolutely convergent. An upper limit may be assigned to the 

value of the integral which is the coefficient of (—)"/n!. In accordance with the meaning 

of the expression “greatest modular magnification,” M, of §5, it is clear that K(ts) < MI, 

meaning that the modulus of the vector after operation with K(ts) is < that after 

operation with MI. Each element of the determinant regarded as a dyadic cannot exceed 

MY. Further, the scalar of any dyadic which <pI cannot exceed pN, where N is a finite 

scalar quantity which may be taken greater than unity. In any term of the expansion 

of the determinant there are not more than n groups; hence the determinant is equi- 
valent to a scalar determinant the absolute value of each term of which does not exceed 
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MN. If B is the measure of the region of integration the general term of (18) therefore 

does not exceed 
6 = agp CEE 
ae Ws, n! 

in virtue of Hadamard’s theorem*. The ratio of consecutive terms of the series whose 

general term is C,, is 

OR UINBX (1 % = 

nm C,, Natl 

which tends to zero as n tends to infinity. The series =C;, is thus absolutely convergent. 
n 

Therefore the series D(\), whose general term is numerically <C,, must also be absolutely 

convergent. 

VI. DETERMINATION OF ADJOINT AND RESOLVENT. 

§13. Let us now try to find, if possible, a meromorphic function H(ts:X) of 2, 

satisfying (11), having this series D(A) as denominator and another integral function 

D(ts:X) as numerator, so that 
Sve dD (ts : 2X) 

H (ts: r)= NOW ee (19) 

On substitution of this value the equation (11) becomes 

D (ts: 2) — D(A) K (ts) =Af D (ES 2A) © K (98) dS ...cccceceeescsseeees (20). 

If the numerator in the second member of (19) is an integral function of A it may be 

written 

1D) (és): 0) =A (ts) — AAG (ts) 4-02 :AG (6s) Been cease emia netenctene (21), 

where the coefficients A, (ts) are a series of dyadic functions of the positions of the points 

t and s. We wish, if possible, to determine these coefficients so that the relation (20) 

may hold. Let a, denote the coefficient of (—2)" in (18). Then on substituting in (20) 

the values of the functions given by (18) and (21), and equating coefficients of the 

different powers of X, we have the following relations 

A, (ts) = K (ts) 

A, (ts) =a,K (ts) —[A, (tS) +K (Ss) d9 

Substituting the values of the coefficients a, we find 

Kits)  K(ts,) 

K(s,8) Kx (ss,) | 
2A, (ts) = 2a, K (ts) — J A, (ts,) « K (s,s) ds, — | A, (ts.) « K (s,s) ds, 

{| K(ts) K(ts,) K(ts,) 

oa | K(s,s) Kg(s,8,) K(s,s,.) | ds,ds,. 

| K(s,8) K(s8,) Kg (ses) 
* Bulletin des Sciences Math, (2), Vol. xvu. (1893), pp. 240-2. 

ds,, A, (ts) = { 
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In interpreting these determinants the same convention is to be observed as in § 11. 

Whenever in any dyadic product the group becomes closed by the recurrence of the 

initial variable in that group, the integral is to be replaced by the integral of the scalar 

of the appropriate iterated dyadic. But each of the above determinants is a dyadic. 

There are in every term two or more consecutive factors not forming a closed group, e.g. 

j K (¢s.) « K (s,s) dss, 

which is the iterated dyadic K,(fs). Hence every term of the expansion is a dyadic. 

The determinants may be expanded according to either the first row or the first column. 

The result is the same in each case, for the unclosed dyadic factor occurs in the one 

case before, and in the other after the scalar factors in that term. 

Proceeding in the same way we find that 

ts, a) ds,ds.ds;. 

leer 

A, (ts) =; ||| (ee 

The law of formation of these coefficients is quite general. Assume that it holds for 

A, (ts). Then since 
iC — | PAG aan (SiS) AS, 

we have by (22) 

nA, (ts) = K (ts) [ An: (8:8;) ds, —n J A, (€3) eK (Ss) dS. 

In the last term of this equation we may drop the factor » and take the sum of n 

separate integrals in which $% is replaced successively by 5, s:,-..5,. On substitution of 

the value of A, _,(ts) the equation then gives immediately 

A, (is) = = ieee | I< (GS) 1S CSD eke K (ts,) 

ee | L<(GS) TES(€4S)), sees K (s,5n) deve ico 

fp Be(an8)— K (Sa5;) <:ses0 K (spp) | 

We have thus found a solution of the equation (11) in the form of a meromorphic 

function H(ts:X) of X given by (19). The denominator D(A) is the infinite series (18), 

and the numerator the infinite series just found, viz. 

D(ts:’)=K/(ts)—2» |K ce) ds Gey fea(e (ae A =) Uh one Goce and 33) 
n! SS SalereriSes 

which may be called the adjoint of K(ts). 

This series is absolutely and uniformly convergent in the region considered. In the 

general term the coefficient of (—A)""/(n—1)! is a determinant which represents a dyadic. 

The elements of the first row and the first column are each, in the notation of the previous 

section, <I. In any term of the expanded determinant there are not more than (n—1) 

closed groups. The number of variables of integration is (n—1): so that, in virtue of 

Hadamard’s theorem already mentioned, the absolute value of the integrated determinant 

<Vn" Mn (BN yl. 

The general term of the series (23) therefore does not exceed in value the dyadic 
rN21 — 

Ss Vn® Mn (BN)? 1. 
oS (n—1) 



148 Mr WEATHERBURN, VECTOR INTEGRAL EQUATIONS 

ioe] 

The ratio of consecutive terms of the series = C, is 
n 

n+1 

Gus = = 

Cc, Vn n 

which tends to zero as 2 tends to infinity. The series £C, is thus absolutely convergent, 
n 

and therefore the series (23) absolutely and uniformly convergent. That the series is also 

continuous within S at every pomt at which K (fs) is continuous may be established by 

the same argument as for the scalar integral equation*. 

§14. The quotient of the two integral functions D(¢s: 2) and D(A) is the resolvent 

Hi (ts : 2) for which we have been enquiring; for in the preceding section the first of these 

functions was determined so that the quotient would satisfy (11) and therefore (11’). The 

solution of the integral equation (1) is then given by (12) for all values of X for which H (és: A) 

has a meaning. Now the only parameter values for which it can cease to have a meaning 

are the roots of the denominator D(A). These roots we shall term the “singular parameter 

values” or the “characteristic numbers.” That every characteristic number is actually a pole 

of the resolvent may be proved thus. Suppose A, is a root of D(X) of multiplicity p. Then 

di 3 
aS Os) 2 i=1 52 sen) = It) 

rhil qe D (Ay) = 0 while aa? 5 

But on comparison of the series for D B: and D(¢s: 2) it is clear that 

a Do= — =| D(é 22) 0s ae ee (24), 

where the integral in the second member is as usual to be interpreted as the integral of 

the scalar Ds (ss: 2). Now as the first member of (24) does not vanish when N=Aj, the 

second cannot. But when the scalar of a dyadic does not vanish the dyadic itself cannot 

vanish identically: so that 
dP p- 

Pad (ts: me) +0. 

It follows then that the multiplicity of \, regarded as a root of the adjoint is at least one 

less than p. The value 2, is therefore a pole of the resolvent. The solution (12) of our 

integral equation (1) thus breaks down at a singular parameter value, unless conditions are 

satisfied which neutralize the effect of the pole of the resolvent. 

VII. THe HomocEeNnrous INTEGRAL EQUATIONS, AND SINGULAR PARAMETER VALUES. 

$15. It was shewn in § 8 that when the resolvent exists neither the homogeneous 

equation 
a(t) RBs) 9 (8) ds ois cscssscccpeeee ee (14) 

nor its associated equation 

AV. (6) Av: (8) eERN(GE) |S 2 van eon edec eee nenntessen ssraee (15) 

* Of. e.g. Bocher, ‘‘ An Introduction to the study of Integral Equations,’ Cambridge Tract (1914), pp. 33-35. 
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admits any finite and continuous solution but zero. We shall now prove that when X is 

equal to a characteristic number X, each of these equations admits at least one non-zero 

solution. 

Since 2, is a pole of the resolvent, this dyadic may in the neighbourhood of 2, be 

expressed in the form 

B,.(ts) B,. (ts) 
a=¥ Ory H (ts: A)= qPocd Teeth (ES 5.2), sbecdbopansooagader (25), 

r being the order of the pole, B, (ts), (¢=1, 2,...7), a set of dyadic functions of the positions 
of ¢ and s, and B, (ts: 2) a dyadic holomorphic in X. If we substitute this value of the 
resolvent in the equation (11) written in the form 

H (ts) — K (ts) =(X —A,) JH (3) « K (Ss) d3 +A, fH (tS) e K (Ss) dS 

and equate coefficients of (A, —X)~” and (A,—2)-’*' we find 

(a) B,(ts)=2,/B,(tS) «K (Ss) dS ] 

(6) B,(ts)=/B,4 (9) +K (9s) dS —/B,(tS) -K (9s) d8 | 

Sunilarly on substituting from (25) m the alternative relation (11’) and equating coefficients 
we have, among others, the equations 

(a) B,(ts)=r,f/EK (tS) ¢B, (3s) dS \ 

(b) B,_,(ts)=% JK (S) «B,, (Ss) dS — /K (8) - B, (Ss) d8 

The relations (26a) and (27a) shew that the dyadic B,(ts) regarded as a function of ¢ is 

Ria Oe ei (26). 

J 

a solution of the equation (14), and that B,(st) regarded as a function of ¢ is a solution 
of the associated equation (15). These dyadic solutions may be replaced by ordinary 
vector solutions: for if a is any vector quantity it follows from the preceding that B,(ts)ea 

is a solution in ¢ of (14): and that a+B,(st) is a solution in ¢ of the associated equation. 

§16. We shall now find expressions for the solutions of the homogeneous equations 

(14) and (15) at a singular value of X in terms of the row and column dyadic determinants 
previously introduced. A small prefix 7 will be used to denote that the determinants 
involved are to be expanded according to the first row: while the prefix ¢ will indicate 
column expansion. Thus the expressions 

81S... S, (Sy Se s 
(> : 2) and .K(* uae 

(ailmona tes see 

denote the dyadic determinant of the form (17) expanded according to the first row and 
the first column respectively. 

Introducing series analogous to Fredholm’s minors we shall speak of 

D, G doo Gp n) a ik G Seen = ay [x & Soc btn i) ae 

G te «0e tn t ty ... tn By) th ... tn T 

a | f KH ooo On ooo I ) 
noo coo Ipalis ihe HN Gher ane @ Sut Soobosabine 8 

patos m! ] d ls erbogra ene. Chace Otis Se 29) 

as the nth row-minor of the series D(X): and of 

By Se 0-0 Sy aay aie: : 
-D, G a ‘ ) =a similar expression in column determinants ............ (29) 

Zeee Un 

Vou. XXII. No. VIII. 20 
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as the nth column-minor of D(X). From these definitions it is clear that 

d” x ra caeuon <DW=(-) es (Ba) da... day 

=(- les | oa CR een tere oe, Lil: (30), 

the integrated determinants giving the same result whether expanded according to the 

first row or the first column. 

Developing the terms of (28) according to the first row we have 

Shee Snn Tae hen Sco SALE coo Ie Zaene dry =K (sh) +]... [aK (eae TT ides 8 da 

eee Si St - Sn oo m 

= 2K (st) pee ; ek. ey Te) dry 50 Ohne (REUSE Boo hikes Good tar 

> Gs Umno Ueseree sas ie! 
K Chet mcathem § eosoac 31). 

i= -2 | (sits) ° +f]. es 500 AR ce SEE tRN EL Bp tir 2 ee Ge 

The last summation may clearly be written 

i -S —1\ 
= m | K (s; T)e ie al »K Ge nT +++ Tm "| dr, oe dt ae. 

is Br Gr One Mpheay 

Multiplying then both sides of (31), thus ee by (—2)™/m! and summing for all values 

of m from 0 to # as required by (28) we derive 

Sy Soleeeion Sp reratet Si 

Dn eat a) ECs A at x) 

- 2K (s,t:) + Dy ee ee) 
QZ ee° Y—1%+1 os" Yn i=2 

= r| K(7) ..D ‘eet ree x) din? Tene ee (32). 

Similarly by expanding the column determinants in (29) we find 

D, ce sei ) sap, bs 30 x) °K (st) 

fies are 
a 81 So ... Sp} Sp) -.. § : = > D 1°2 —1°7+1 rn ) K st 

Sas leag hales bee) oe 

sey [., (a ast ‘ ) « K (nid) dee tee aoe ee (33). 

Now since D(X) is an integral function of X not vanishing identically it follows that 

D(a), - Doge DO) 
7 a 

are not all zero when X=2,; and therefore in virtue of (30) that the dyadics 

8, S18. $1805 D, (7 re) D, (7 Me) Bi rv), 5 ee (34) 

are not all identically zero with respect to the variables. Let qg be the index of the first 

of these which is not identically zero. This number qg will be the same whether the 
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determinants are row or column determinants. For these differ only by an interchange of 

variables, and the identical vanishing of ,D, (...) involves that of .D, (...) and vice versa. 

It follows then from (32) and (33), since all the minors of index <q vanish identically, 

that 

pt (88 ae he) = [x (s,t)*,D Bi S49 1y,) dr Papas irl d5 (35), ee ii 

ml D, Bea ro) =i [ D, eee e J SIREN oh dail acti (36). A aie A Tecnets 
Since we may choose the quantities s;, t;(¢=1,2,...q) so that the minors do not vanish 

identically, the relations just established shew that the row-minor 

2 Gkooe Di; ( is); 
teste 

regarded as a function of s, is a non-zero solution of the homogeneous integral equation 

(14) for the characteristic number \,; and that the column-minor 

Bho Gy 

u (; tase im); 

regarded as a function of t, is a non-zero solution of the associated homogeneous equation (15). 

These solutions are of course dyadies. A vector solution may be obtained in the first case 

by operating on any vector with the row-minor as a prefactor; and in the second case by 

operating with the column-minor as a postfactor. 

By adopting rules corresponding to those of §9 for expanding the above determinants 

according to the zth row or the 7th column, it may be shewn that there are q linearly 

independent solutions 

ten THD by S58 WD) coco crocs ccococsoratoasooorgeconbeL (37), 

to the homogeneous integral equation (14) for the singular parameter value ), and g also 

Wal@s VECO), coc; Win)! coconopcosnogenoc anbbenoceneebpenc (38), 

to the associated equation (15) for the same value of A. The proof however will not be 

given. Sufficient has been done to shew that with the aid of our dyadic determinants the 

theory of the vector equation (1) may be developed along the lines followed by Fredholm 

and Plemelj*. 

§ 17. We have seen that in general the solution (12) of the non-homogeneous equation 

(1) becomes infinite at a singular value A, of the parameter. In order that this should not 

be the case, i.e. in order that the equation (1) may admit a finite and continuous solution for 

this value of 2, certain conditions must be satisfied by the vector function f(¢). To each of 

the q linearly independent solutions (38) of the associated homogeneous equation will 

correspond one condition. Assume that (1) admits a solution u(f) for the parameter value 

Ay, so that 

; TEs RK (48) « (8) dS EE). cncees- cases cnennnsseceses ies (39), 
while simultaneously we have 

Wi Na Ve (Se KGa eS) Gee stes deca cesecsbidene eos (40). 

* «« Zur Theorie der Fredholmschen Funktionalgleichung,”’ Monatshefte fiir Math. und Physik, Bd. xv. (1904). Also 

Potentialtheoretische Untersuchungen, Teubner, Leipzig, 1911, S. 29-39. 
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Multiplying (39) by v; (¢)+* and integrating over the region S we have 

[£(t) v;(t) dt =[u(é) « v; (t) dt — A, ff v; (t) « K (ts) ¢ u(s) dsdt. 

Now the direct product of any number of dyadics with a vector factor at either end or 

at both ends obeys the associative laws*: hence the order of integration may be changed in 

the last term as explained in § 5. The second member is therefore equal to 

{[vi(s)—o fv: (@® « K (ts) dt] eu (s) ds 

which vanishes in virtue of (40). The first member is therefore equal to zero, that is 

[RIOR O)GH=O, (CNG PB Gaon C) ooooonc soap cnoenessoncoaseod (41). 

When two vector functions are such that the integral of their scalar product over a given 

region vanishes we shall say that the functions are orthogonal for that region. Hence we have 

proved that the necessary condition for the existence of a solution to the non-homogeneous 

equation (1) for a singular parameter value, is that the function £(¢) be orthogonal to each 

of the q linearly independent solutions of the associated homogeneous equation for that 

characteristic number. That this condition is also sufficient may be established by argument 

along the lines of the corresponding proof for the scalar integral equation f. 

The conditions just stated may be applied to the systems of equations (2) and (4), for the 

vector equation (1) is equivalent to the system (2), and the homogeneous equation (15) to the 

system (4) with second members zero. It therefore follows that the necessary and sufficient 

condition that the system (2) may admit a finite and continuous set of solutions for a singular 

value of X is that the relation 

AOuxO + fo %O + fs (0% (O)] dt =0 
should hold for every set of solutions 2, (¢), 2 (#), v;(¢) of the system (4) with second members 

zero. It is a common mistake to state this as though 2, (¢), v2 (¢), vs (f) were a set of solutions 

of the homogeneous system derived from (2) by interchanging the variables and putting 

the second members zero. This is quite wrong except in the particular case in which 

Kinn (t8) = Knm (ts) (m, n=1, 2,3); that is when the dyadic K(¢s) is self-conjugate. 

§ 18. Two solutions u (¢) and v(f) of the associated homogeneous integral equations 

11) — aes) rei (G)ids! co Seacseececweseeeeueeesenee eee (42) 

and 5Vil((t)) =P Neal AWS) eX ESS (S0)ICLS\ viclcleon cite cece ence eee eee tee (43), 

corresponding to different characteristic numbers A, and 2, are orthogonal to each other. 

For on multiplying the first by \. v(¢) « and integrating, the second by « u(¢)), and integrating, 

and then subtracting the results we have 

(Ay — 4) fu (t) © V(t) dt =A, Ay S| V(t) ¢ K (ts) eu (s) ds dt 

— Az [|v (s) « K (st) « u(t) ds dt. 

But since the factors of the products of the second member are associative and therefore, as 

explained in the previous section, the order of integration may be changed, it follows that 

the second member is zero. Hence, because A, and X, are different, the integral of the left- 

hand side must vanish, giving 
fu(t)ev(t)dt=0. 

The two solutions are therefore orthogonal. 

* Gibbs-Wilson, loc, cit. p. 279. 

+ Cf. Fredholm, loc. cit. pp. 376-8; Plemelj, Potent. Unter. S. 86-7. Another proof will be found in § 24 below. 
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VIII. THe ConyuGo-symMMetTrRic DyapDIc KERNEL. 

§19. The question naturally arises whether there is a dyadic kernel playing for the 

vector equation (1) the same part as the symmetric kernel in the theory of the single scalar 

integral equation. Of such a dyadic kernel all that is required is that it make the homo- 

geneous equation 

(SUIS) OU GONG) BAe ocoondscosecacsongsseupacbak (14) 

identical with its associated equation 

Vi (OVS INGO AEA GIGS 9 Naostorcorodpdbuecedeosebanascaece (15). 

The dyadic under consideration must therefore be such that K (ts) used as a prefactor is 

equivalent to K(st) used as a postfactor. A kernel presenting this property will be called 

conjugo-symmetric. 

A conjugo-symmetric kernel need not be both self-conjugate as a dyadic and symmetric 

in the variables. In order that the two equations (14) and (15) should be identical the 

systems (2) and (4) must be identical: and vice versa. All that is necessary for this is 

that 

PKEr aA (ES) al erienk (SE) matics seseetacttne somes ines cie soon ae (44) 

nm, m=1, 2, 3. 

This property, if it exists, ensures conjugo-symmetry. It does not necessitate the symmetry of 

Knm (ts) 1 t and s unless n and m are equal: but K,, (ts), K..(ts) and K,,(ts) must be 

symmetric. Hence the scalar of a conjugo-symmetric dyadic kernel is symmetric in the 

variables. In order, however, that a kernel should be both self-conjugate and symmetric 

the relations (44) must hold, and in addition all these functions must be symmetric. 

All the kernels formed by iteration from a conjugo-symmetric kernel are also conjugo- 

symmetric. For if a is any vector we have 

K, (ts)ea=/{K(tS)-K(Ss)eadS 

=/K(tS)-[aeK(sS)]dS 

=fa-K(s3)-K(St)d3 

=a K (s?), 

each step following from the conjugo-symmetry of K (ts). The statement therefore holds for 

the first iterated kernel and may in exactly the same manner be established by induction 

for the nth, the first factor of the integrand in the above being replaced by K,_, (¢S). 

§20. From the fundamental property that for a conjugo-symmetric kernel the 
equations (14) and (15) are identical may be deduced a set of important theorems corre- 

sponding to those that hold for the scalar integral equation with symmetric kernel. 

(1) Two solutions u,(t) and u(t) of a homogeneous conjugo-symmetric vector integral 

equation corresponding to different characteristic numbers are orthogonal. 

This follows immediately from § 18, since the homogeneous equation is identical with its 
associated equation. 

(2) A real conjugo-symmetric kernel cannot have imaginary characteristic numbers. 

For suppose that a+78 is an imaginary root of D(A). Then a—7@ is also a root. 

20—3 
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Corresponding to the former is at least one solution of (14), which must be imaginary and 

therefore expressible in the form 
u, (¢) = P(é) + 24 (¢). 

Hence, corresponding to the singular value a—7f, there is the solution 

u, (¢) = p(t) — 2q (£). 

But by the last theorem u,(t) and u,(f) are orthogonal, so that 

[[p@®+2a@]+[p@® — 2a] dt =0. 
The integrand is the scalar product of conjugate bivectors*, giving 

SP@®-P@+a@-a@] d=; 
that is, the sum of two positive quantities is zero, which is absurd. Hence the kernel does 

not admit an imaginary characteristic number. 

(3) Every conjugo-symmetric kernel possesses at least one characteristic number. 

The proof of this may be established along the lines of the proof for the scalar integral 

equation F. 

(4) For any characteristic number 2, the pole of the resolvent is simple. 

To prove this, take the relations (26a) and (276). In the former interchange the letters 

t and s. Multiply the equations by -B,_,(ts) and B,(st)+ respectively and integrate with 

respect to ¢. On subtraction we have 

0 =X, //B,(s3) « K (St) + B,_, (ts) dSdt 

—r, {/ B, (st) «K (tS) - B,_, (Ss) dSdt 

+ {/ B,(st)«K (tS) «B, (Ss) dSdt. 

Since the order of integration may be changed, as previously shewn, the first two integrals 

are equal in magnitude and opposite in sign. The last integral may be simplified in virtue 

of (26a) or (27b), giving 
|B, (st) + B, (ts) dt = 0. 

Hence if a is any finite vector, 

{{a+B,(st)]¢[B,(ts) +a] dt=0. 

Now the dyadic B,(ts) is conjugo-symmetric. For B,(ts)+a and aeB,(st) as functions of ¢ 

are simultaneous solutions of the associated equations (14) and (15) for the singular value A, : 

and as the equations are now identical these solutions are equal. The last relation may 

then be written 
/[a+B, (st)]+ [a+ B, (st)] dt = 0, 

that is, the integral of an essentially positive function vanishes, which necessitates the 

vanishing of the dyadic B,(st) identically. This function therefore vanishes for all values 

of r>1. Hence the pole of the resolvent is simple. 

§ 21. Principal system of fundamental functions. The q linearly independent solutions 

of the homogeneous equation (14) corresponding to a singular value 4, may be replaced by 

a system of g normalised orthogonal} functions, that is, functions satisfying the relations 

- Ltrs 
u,(t)eu dt= iA Ce ily Heathen stewie Gbiremitatn es adele einai cata J (t) « (t) t 0 if nes 

* Gibbs- Wilson, loc. cit. pp. 426-436. + Cf. Schmidt, Wath. Ann. Bd. txt. (1907), 8. 455-7. t Ibid. S. 442-4, 
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Then since the fundamental functions* corresponding to different characteristic numbers 

are in the case of the conjugo-symmetric kernel orthogonal to each other, we may, when the 

kernel is of this nature, replace all the linearly independent solutions of the homogeneous 

equation corresponding to all the characteristic numbers by a series of normalised orthogonal 

fundamental functions satisfying the above relations. Such a system, 

ULL CE) Ss ((Z:) saatetsarse Ll (Eng ain ctaerarss terete clo tists vtec die meres (46), 

may be called the principal system of fundamental functions. We may assume that these 
functions are placed in the order of the increasing magnitude of the characteristic numbers 

to which they belong. Any solution of the homogeneous equation (14) is linearly expressible 

in terms of a finite number of functidns of this series belonging to the same characteristic 

number. 

§ 22. It may be possible to express the dyadic kernel K(¢ts) as the sum of a series of 

dyads whose antecedents and consequents are the vectors u,(t), u;(s) of the system (46). 

Suppose it is possible to do this in such a way that the antecedents of the dyads are 

the successive functions (46), giving 

BE ((65) NU (ONC nes (EC) | Cy toi Ul (O) Grit iece | saeeces cece selese vcs se (47), 

where the consequents ¢, are to be determined. If this relation holds, so that the second 

member is absolutely and uniformly convergent? when the number of terms is infinite, we 

may act on any vector a with each side as a prefactor, obtaining 

K (ts)ea=u,(t)C,ea+u,(t)C,eat..., 

where all the terms are vectors. Multiplying each side by u,(t)+* and integrating, we have, 

in virtue of the orthogonal relations (45), 

[ fu, (t)+K(ts)dt]}ea=c, ea. 

This holds for any vector a. It follows then that 

w, (5) 
nr 

c, = fu, (t)*K (ts) dt = 

When, therefore; the representation (47) is possible, it becomes 

u, (t)u,(s) , u.(f) u,(s) 
7 + X. +... K (ts) = 

the functions u,(¢) forming the antecedents, and the functions u,(s) the consequents of the 

dyads in the second member. This series corresponds to the bilinear series for the symmetric 

kernel of the scalar integral equation. 

Conversely it may be shewn that if the series (48) is absolutely and uniformly convergent 

its sum is equal to the kernel K (ts). 

§ 23. The following theorems for the conjugo-symmetric kernel may also be established 

without difficulty : 

* The solutions of the homogeneous equation (14). 

+ That is to say, the series obtained by operating term by term on a finite vector is absolutely and uniformly convergent. 



(1) The necessary and sufficient condition that a continuous vector function h(t) may 

satisfy the identity 
(feels) ons Oe Perera (49) 

is that for all values of n 
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Ju, (s)*h(s) ds = 0. 

(2) Any vector function g(t) expressible in the form 

g (t) = | K (ts) +1(s) ds, 

where 1(s) is a continuous vector function of the position of s, can be expanded in terms of 

the fundamental functions (46) according to the Fourier rule, 

B()= = uy (t) J 8 (t) © Un (¢) dt 

= ~ a, (t) [1 (£) «Up (t) dt 
n n 

We shall say that a conjugo-symmetric kernel is closed when there does not exist any 

continuous function h(t) satisfying the relation (49). It may be proved that 

(3) Every closed conjugo-symmetric kernel has an infinite number of singular parameter 

values. 

In conclusion, Schmidt’s formula* for the solution of the non-homogeneous symmetric 

integral equation may be extended to the vector integral equation (1) where the kernel is 

conjugo-symmetric. Thus 

(4) If X is not equal to a characteristic number the equation (1) with conjugo-symmetric 

kernel has a unique continuous solution given by 

u(t)=f(t) —AZ Un (2) Bat (OLY (OC Lille cenrmannenesneseonescnocc: (50). 
n x— An 

If however X is equal to a characteristic number A,, to which correspond g fundamental 

functions of the principal system, for the above solution to remain finite it is necessary 

and sufficient that f(t) be orthogonal to each of these qg functions. If this condition is 

satisfied the solution of the integral equation becomes 

n(f)=8@) oa OS. Le Gem eee ee (51), 
1 n Xn — Xn 

where the quantities a; are arbitrary constants, the first summation including the funda- 

mental functions belonging to 2X», and the second the remaining ones of the principal 

system (46). That u(t) given by (51) is a solution of (1) for the singular parameter 

value A,, is easily verified by direct substitution. 

§24. From the results established above for the conjugo-symmetric kernel a proof 

may be deduced+ of the sufficiency of the conditions found in $17 for the existence of 

a solution to the non-homogeneous equation 

(é)— Ay f esh om (ade =F (6). sc ccvesnpeneewtvonversexeya (39), 

* Cf. Schmidt, loc. cit. 8. 454. + Ibid. § 13. 
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where A, is a characteristic number of the kernel, not supposed symmetric or conjugo- 

symmetric. From this equation and its associated equation 

Vi) Na few (8) 0 EK (G6). ls" ei(E) ULI. seated tu ato deans: (52), 
we readily deduce 

g& (t)— Ay | K (ts) + 8 (s)ds=V(t)—A.[Q(ts)eV(s)\ds  ...ceecececeeecees (53), 
and Se@®-s(t)dt=(v(+[v(t)—A,{ Q(ts)ev(s)ds]dt ..... ee. (54), 

where Q (st) = K (st) + K, (ts) —\, | K (sc) « K, (tc) do; 

K,(ts) denoting the conjugate dyadic of K(ts), that is the dyadic which acting as a 

prefactor is equivalent to K(ts) used as a postfactor, and conversely. The kernel Q(st) 

is conjugo-symmetric. For if r is any finite vector 

Q (st)+r=K(st)er+ K.(ts)+r—2, | K (sc) K, (tc) erde 

=reK,(st)+reK/(ts)—X,{/reK(tc)+K, (sc) do. 

The transformation of the integral is a consequence of the theorem that the conjugate of 

the product of two dyadics is equal to the product of their conjugates taken in the reverse 

order*. The last equation may be written 

Q(st)er=re Q(t), 

proving that Q(st) is conjugo-symmetric. 

Now if v(¢) is a solution of the associated homogeneous equation 

TD) = Ral PA QYOLS (CSS saoudsasoctoccsepepesppecbeodseuc (40) 

obtained from (52) by putting g(¢) zero, it follows from (53) that it is also a fundamental 

function of Q(st) for the characteristic number X,. Conversely, if v(t) is a fundamental 

function of Q(st) for this parameter value, it follows from (54) and (52) that it is also a 

solution of (40). The linearly independent solutions of (40) are therefore identical with the 

fundamental functions of Q/(st). 

If now we transform (39) by the substitution 

(Sar (al Ve CRES(GONGES® Stace soocucus cocudecseeuoonece (55) 

it becomes w(t)—2r,/ Q(ts) + w(s)ds=f(t). 

But by the preceding section the necessary and sufficient condition that this equation may 

admit a finite solution is the orthogonality of f(f) to all the fundamental functions of Q (st) 

corresponding to A,, that is to all the linearly independent solutions of (40). Therefore in 

virtne of the relation (55) this is the necessary and sufficient condition that (39) may admit 

a solution for the singular parameter value X,. 

§ 25. Singular Kernel. We have up to the present assumed that the dyadic K (ts) 

remains finite, ie. that all the coefticients K;,(ts) [?, r=1, 2,3] in its nonion form are 

finite for every poimt t, s of the region S. In many physical problems when the points 

t and s coalesce the kernel K(ts) becomes infinite like 1/r*, r being the distance between 

the two points. But as shewn in $6 the integral equation (1) may be replaced by (8) 

in which the kernel is the nth iterated kernel of K(ts). When a is not too large, this 

iterated kernel will be everywhere finite if m is sufficiently great, and the methods of the 

* Gibbs- Wilson, loc. cit. p. 294. 
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preceding pages will be applicable. It may be shewn, as in the theory of the scalar 

integral equation*, that if the region S of integration is ‘a given surface this method holds 

for a< 2, and if a given volume for 2<3. 

The theorems of {19-23 on the conjugo-symmetric kernel are true when K(ts) is 

singular, provided its discontinuities are regularly distributed and the integrals 

{[r-K(st)P ds, and /[K(ts)erPdst 

are finite and continuous functions of the position of ¢, r being any finite and continuous 

vector. 

In the foregoing pages the author has dealt only with the theory of the vector integral 

equation. Applications of this theory to various problems of mathematical physics will be 

discussed elsewhere. 

* Cf. Fredholm, loc. cit. pp. 384-390; Heywood and + The square of a vector denotes as usual the scalar 

Fréchet, L’équation de Fredholm dc., Paris (1912), pp. 141- _ product of the vector by itself. This is equal to the square 

145. of its tensor. 



IX. On certain Arithmetical Functions. 

By S. RaMANUJAN. 

[Communicated by G. H. Hardy*.} 

[Received and Read 25 October 1915.] 

1. Let o,(n) denote the sum of the sth powers of the divisors of n (including 1 and »), 

and let 
o;(0)=$E(—5), 

where €(s) is the Riemann Zeta-function. Further let 

Dre (2) = o, (0) os (m) + a (1) os (n—1) +... +0, (M) G5 (0) ......eeeee eens (1). 

In this paper I prove that 

T@+H)PC4) C74) 6+) 
Sr, (”) = Tr+sii (M) 

D(r+s+2) E(r+s+2) 

+ aatnae tO > ao od =a) NOr+s(n) + O {nt @+8+1) BS fo (2), “+8 

whenever 7 and s are positive odd integers. I also prove that there is no error term on 

the right-hand side of (2) in the following nine cases: r=1,s=1; r=1,s=3; r=1,s=5; 

E—we—1; P=1,s=115 r=3,5=3; r=3,s=5; r=3,s=9; r=5,s=7. That is to say 

>,,s(”) has a finite expression in terms of o+5,,(”) and o,1;,(n) in these nine cases; but 

for other values of 7 and s it involves other arithmetical functions as well. 

It appears probable, from the empirical results I obtain in §§ 18—23, that the error 

term on the right-hand side of (2) is of the form 

Ore asad HONEY Ce eet te netaaes meee oen Mee caes eae (3), 

where € is any positive number, and not of the form 

ON as | eas cer REPRE cocce oor or Cee PERE (4). 

But all I can prove rigorously is (i) that the error is of the form 

O {nt +541) 

in all cases, (ii) that it is of the form 

OG AV Ga aa Ul aren Beret 2” 9. GAC een aciae eee (5) 

if r+s is of the form 6m, (iii) that it is of the form 

ONS At ts) A Bee re ernsee cer oc os aoe cs ae eee (6) 

if r+s is of the form 6m+4, and (iv) that it is not of the form 

ORO UAE SNE, se Meee Mere ns ss cag eeoass (7). 
* IT am indebted to Mr Hardy for his kind assistance and advice. 

WO SOSH SOR D- 21 
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It follows from (2) that, if * and s are positive odd integers, then 

T(r+1)P(s4+1) (r+ 1) &(s +1) 
=,s(n) ~ EG ees) AGI aa) pT (Dea eae oc been (8). 

It seems very likely that (8) is true for all positive values of r and s, but this I am at 

present unable to prove. 

2. If S,..(m)/o,1¢:,(n) tends to a limit, then the limit must be 

Re ORGY Set) Cer) 

T(r+s+42) E(r+ts+2) — 
For then s. 

>, m1) : Dr,2(1) +2 Sa (Oyabes Ge C2) 
Lim = Lim me) 
ae wo Ortst1 (n) n> Or+s11 (1) + Gress (2) + --- + risus (n) 

ae ee re (0) + 5,4 (1) + Sy (2)a8-+ 

21 Or+sq1 (0) + Orisyr (1) @ + Foe oe 

SS: 
= Lim g 

ew >1 Pris 
? 

Iz A BS hiktnd 
(9). where Sra OHO) eee pa at ye pace shad statins ase steeeeeees 

Now it is known that, if »>0, then 

» Pet) e(r+)) Se 2 ee (10), 

as «2—1*. Hence we obtain the result stated. 

3. It is easy to see that 

o,(1) + o,(2)+¢,(3) +... + o,(n) 

= Uy + Us + Ug + Uy + ee F Un, 

where warerg srg + |), 

From this it is easy to deduce that 

ox(l) 032) sb or(n) bob yee ae ee (11)+ 
and 

T(r+ DT (s+1) 
CoE Telseone E(r+1)n o,(1)(n—1)§ + (2) (n — 2) +... +6,(n-1) 1 ~ 

provided r>0, s>0. Now 
a, (n) > n', 

and o,(n) < n§ (1% +2 +37? +...) =n8F(s). 

From these inequalities and (1) it follows that 

Pe 1) ee Ok Cate a ON ihe a) 
Lim rie > P@+s+2) 4 Cae oil O eRe nritatgoents spesucnacondc (12), 

if r>0O and s>0; and 
= y 2 

Ta ee) ee i Cts (13), 1 nrteti S (r+ s+ 2) 

* Knopp, Dissertation (Berlin, 1907), p. 34. 

+ (10) follows from this as an immediate corollary. 
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if r>0 and s>1. Thus n~’*~Y,.,(n) oscillates between limits included in the interval 

T(r+1)T(s4+1) 

T(r+s+2) 
T(r +1)P(s+1) 

g(r+1), LD (r+s+2) 
E(r+1) f(s). 

On the other hand n~*“a,,,,,(”) oscillates between 1 and {(r+s+1), assuming values 

as near as we please to either of these limits. The formula (8) shows that the actual limits 

of indetermination of n~7~**,.,(n) are 

P@r+)0(s+1) €@ +) E(s4+1) P(r+ 1) (s+]) (r+ 1) &(s +1) E(r+s+1) 

T(r+s+ 2) C(r+s+2) ” T(r+s+2) E(r+s+2) 

Naturally 
(r+1)&(s+1) _ E(r +1) €(s +1) €(r+84+1) a FEES ED) < (r+ 1) £(s)*. 

What is remarkable about the formula (8) is that it shows the asymptotic equality 

of two functions neither of which itself increases in a regular manner. 

4. It is easy to see that, if m is a positive integer, then 

cot 14 sinn@ = 1+2cos@ + 2 cos 20+... +2cos(n — 1) 0+ cosné. 

Suppose now that 

zsin@ «sin 26 asin 30 | ) 

l-z 1-2“ 1-# 

= (4 cot 40)? + C, + C, cos 0 + C, cos 20 + C; cos 30+ ..., 

1 1 
(cot 56+ 

where C;, is independent of @. Then we have 

C= 5( z oe F i fs ) 

SF Ni Se> Tae eS 

ee eu, 
2 |\l—2, 1-2 1-2) °°" 

a 2 i a om ae a 

72 (G—a* d—e#y* day 
eal z a 22:7 328 ) 1 
alee a = oo Ba50 Coad aGapos saanoRmeace coceuce (15) 

Again 
1 zr gra gn? nts 

Vo aes ae ee eres 

£L grr ge grt? xe gress 

7 Pe la To Toa? Toe Toor 
il L gr ra ar gr £ 1 

2 i eee TE ete Ser Pal 

_ * For example when r=1 and s=9 this inequality becomes 

164493... <1-64616.,.<1:64697.., <1°64823.... 
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Hence 
(O- 4 1 x“ gn a gine 

a —£")= 2 AF c= ox) hy (- coat ae 

1 z Gp Tee ie 

-5{(1 + | +(1 = 

eee 
a ( 1-2" 1-2 

#3 iL n 

a 

a” nx” 
i 7 — eRe Arise caciaraneenanenooaeon Ids 16). That is to say Cn day 20a) (16) 

It follows that 

wsin@ #sin2@ «sin30 i 
y pies + af (Zoot 5 ren ee ee 

= zoc0t56) + weosd | scos 20 , a cosd0 
-(5 2 (1-2) (-2#) (1—-#) wee 

3 s(t os 8) + ae: Ta ey ee (1 — cos 34) + } (17) 
2 lz © =a 1-2 SOT) TH wee Pereececes le 

Similarly, using the equation 

cot? $6 (1 — cos n@) = (2n — 1) + 4(n —1) cos 6 + 4(n — 2) cos 20+... 

+ 4 cos(n — 1) 6 + cosné, 
we can show that 

eae il 1 x 2a° 2 3x? = 
{oot 3 asia eee C — cos 6) + I al — cos 20) + iat — 00830) +.) 

PH 

1-# 

1 l il 2 1 La 

=f — aS as = 5 
2 9 

(Scot? 58 +75) +43 7 + 008 8) + (5 + cos 26) 

3. 

7 = (5 + cos 38) + a eee. (18). 

For example, putting @=2m and @=47 in (17), we obtain 

1 az Te Yi xz = 
(5+ = a +...) i=. 1-2¢ Io eee 

it al @ 2a? 4art 5ad 
=a Se See eee cate 19), 
sets(i-eti-e tiie ) (19) 

where 1, 2, 4, 5,... are the natural numbers without the multiples of 3; and 

G amps 
ax a Fi 2 

4°1l-@ eee
 

| 

2a" 3a8 5x? il iL aL r =igta(restiostretist) see (20), 

where 1, 2, 3, 5,... are the natural numbers without the multiples of 4 
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5. It follows from (18) that 

(alg 2 

+558 — Fst Ss ) 

lies ig? 
= apt 3 %s— ig (a 

where S, is the same as in (9). Equating the coefficients of 6” in both sides in (21), 

we obtain 

(ats 

64 : 68 ‘ 

TiS + FS —--) acisieleresterecere (21), 

—2 5 , ant 

Wn 35 Ne 55 Sn4s =" Cy 3Sn—1 a HSH Sines IF ORS OS ase SF oop ar Ores Sr 1 S;. ..(22 ), 

n! 
nQ — 

pnere "rin =r)!’ 

if n is an even integer greater than 2. 

Let us now suppose that 
mMm=CO N= 

®, ;(“) = & 2 DUES Ee WR ee sectatstas oecceeene eens (23), 

so that OF (a)i= ©,,, (a); 

1l’a QDs y? 38a? ’ \ 

2 wa M4 2 Bo ARE SR a (24). 

w()= aap t Gat ah 
Further let 

x 22? 32° i 

So) ee (5+ a 1l-# os =) 

= Seen Be ) i ee (25) 
= ae ad hee oes laa yo a 

ba 25 4? 3573 ) 

a doo =—5 Ss= —5 R=—5048,=1 504 (+ =i 

-Then putting n=4, 6,8,... in (22) we obtain the results contained in the following 

table. 

TABLE I. 

1 — 240, , (a) =P. 
1 +2408, , (x) = Q. 
1-504, ,(x)=R 
1+ 4804, , (x) = @. 
1 = 2644, , (x) = QR. 2 oF ee 

* If x=q?, then in the notation of elliptic functions 

2 2K\2 7 pr = (=) (G+e-3), 
1 T K 

q= Sa (=) (1- #2434), 
at 

7S 
Feeeeaaee = = (2) +99) a -24%) 1-98. 
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TABLE I (continued). 

691 + Hak (a) = 441Q3 + 250 R2. 
1 — 244, ,, (2 = (Gre 

6 
it 
8. 36174 ea (x) = 1617 Q@ + 2000QR. 
9 43867 — 287284, ,; (x) = 38367 GR + 5500 Re. 

10. 174611 + 132004, ,, (x) = 53361 @° + 121250 (7A. 

11. 77683 — 552, » (x) = 57183 QR + 20500 QR*. 

12. 236364091 + 1310404, ., () = 49679091 Q* + 176400000 @*A* + 10285000 F*. 

13. 657931 — 249, .. (x) = 392931 Q@°R + 265000 Q°R*. 

14. 3392780147 + 69604, ,, (x) = 489693897 Q? + 2507636250 YR? + 395450000QR+. 

15. 1723168255201 — 1718646, .. (x) = 815806500201 @°R + 881340705000 Q°RS + 26021050000 R°. 

16. 7709321041217+ 326404, ., (x) = 7644121732175 + 5323905468000 Q@°R* + 1621003400000 @?R* 

In general L(G) E> <Q" R*...0 eee (26), 
where Kj, is a constant and m and n are positive integers (including zero) satisfying the 

equation 
4m+6n=s+1. 

This is easily proved by induction, using (22). 

6. Again from (17) we have 

I lo a es 2 
Gras 38 a= =) 

1 os 
= age t Se E ®,.(a)+ 0 {P@)- = ®, ,(z)+.. 

1/0 a 8s 
+5 (5)5:— giSe+ Gy] — = re eee (27). 

Equating the coefficients of 6” in both sides in (27) we obtain 

n+3 4 

2(n+1) 
POn+1 — D, 5 (z) "Op Se MOSS 4 + POSS cP ae OO See Sine, ee 

if n is a positive even integer. From this we deduce the results contained in Table II. 

In general 

oF wo 

TABLE II. 

288 o, o (x) = Q- p>: 

720®, ,(x) = PQ—K. 

10084, ,() = Q@— PR. 

7200, 5 (x) = Q (PQ- R). 
15844, ,,(«) =3Q + 2R?— 5 PQR. 

655204, ,.(«) = P (441 Q* + 250 R*) — 691 QR. 
144, ,,(x) = Q (3Q° + 48? -—7 PQR). 

&, (a= Se POR i sees tere (29), 

where 1<2 and 21+4m+6n=s+2. This is easily proved by induction, using (28). 
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7. We have ea 
dP te 
La 24@, . (x)= 12 

AiO) ome we tee 30 
Ae te 240@, , (x) Sf arterteteetessrertaneceees (30). 

dk PR-=@ 
@, = — 504D,, 5 (2) = 5) 

Suppose now that r<s and that r+s is even. Then 

d \" P ®,, ,(2) = (« <=) COM AEICAY Me toad | 00) 6: ee (31), 

and ®,,_,() is a polynomial in Q and R. Also 

dP dQ dR 

dae dee de 

are polynomials in P, @ and R. Hence ®,,(”) is a polynomial in P, Q and R. Thus 

we deduce the results contained in Table III. 

az 

TaBLeE III. 

1728, ; (x) = 3PQ—2R — P*. 

2. 17286, ,(x) = P°Q—-2PR+ Q. 

3. 17286, ,(«) = 2PQ?— P?R- QR. 

4. 8640, ,(x) = 997°? — 18PQOR + 5Q? + 4R. 

5. 1728, » (x)= 6 PQ — 5 P?2QR + 4PR?-5Q°R. 

6. 69126, , (x) =6P°Q — 8PR + 3Q?- P+. 

7. 3456, ,() = PQ — 3P*R + 3PQ)— QR. 

8. 51846, , (x) = 6P°Q@?-2P°R—6PQR + G+ FR. 

9. 207364, ,(x) = 15PQ?—20P°R + 10P°Q —4QR— P®. 

414720, , (x) =7(P1Q —4P°R + 6P2Q?— 4PQR) + 3Q> + 4h. S 

In general CoD (C2) ad Gi iene GUO ET TEEN Goo Gedoce Gon oncioonOesaeeGOneeOee (32), 

where J—1 does not exceed the smaller of 7 and s and 

21+4m+6n=r+s4+1. 

The results contained in these three tables are of course really results in the theory 

of elliptic functions. For example Q and R are substantially the invariants 92 and gs, 

and the formulae of Table I are equivalent to the formulae which express the coefticients 

in the series 
gst gus 2 ga © Sosgsus 

PC) ah 90 + 98 * 72007 6160 

in terms of g, and g;. The elementary proof of these formulae given in the preceding 

sections seems to be of some interest in itself, 
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8. In what follows we shall require to know the form of ®,,(#) more precisely 

than is shown by the formula (29). 

We have LE Ge) Our) She aQth” it cee ee (33), 

where s is an odd integer greater than 1 and 4m+6n=s+1. Also 

d m 7) — ‘m ne m n m m— n+l m m+2 7 2 5 (QR) = (F+5) POWR -(F@ RM 4 Que ’) ena (34). 

Differentiating (33) and using (34) we obtain 

®, 5.1 (2) = ye (8 +1) P{EE(—8) + Dos (2)} + TK n QR” ....-. cere (35), 

where s is an odd integer greater than 1 and 4m+6n=s+3. But when s=1 we have 

ae ioe ®, » (a) CVI RIS TeT Waa wy een cage Ye ewer (36). 

9. Suppose now that 

F(a) = {4€ (—r) + ®,,-(a)} (FE 8) + ®,,<(x)} 

ACS ase f(1—8) 4 (2) VEC ICGE Dee DieED 
r+s arts (7) T'(r+s+2) €(r+s+2) 

x fh f(—r—s—1) + Do risis(Z)} ..-- (37). 

Then it follows from (33), (35) and (36) that, if r and s are positive odd integers, 

Tia C9) LCR a a Meer ee ces ese Sereno nS (38), 

where 4m + 6n =r+s4+2. 

But it is easy to see, from the functional equation satisfied by €(s), viz. 

(27) TG) GG ies dors = 3,6 (ls) seeeees ener tee ccmceneearena (39), 

that T+ (0) ) al Re RRB ence ses conock coder coos osocuaaenn (40). 

Hence Q*— R? is a factor of the right-hand side in (38), that is to say 

Peg (C—O) OE wen Oren anita cane penton eee (41), 

where 4m + 6n =r+s—10. 

10. It is easy to deduce from (30) that 

L = log Ge) = Pw. aceon ncesanas unseen cee (42). 

But it is obvious that 
d 

PSe7- log: fin {ek — te") (1 a?) PA ie enctenen ccteneensene (43) ; 

and the coefficient of z in Q@— R® is 1728. Hence 

O— R= 1728 {1 — a) (1 — 2") 0 — a?) ne ena sccas ens tareene (44). 

But it is known that 

{(1—@) (1— 2) (1— a) (1— a)... }8=1— 3a + 5a%— Ta®+ 9a —... oo. eee (45). 

Hence QO =F =17280'— see bat — Tahitian) Giwenths edenaeesneoceve. (46). 
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The coefficient of 2 in 1—32+5a°—... is numerically iess than (8v), and the 

coefficient of 2” in @*— R? is therefore numerically less than that of 2 in 

17282 {/(8v) 1+ +2 + 2°+...)}§. 

, 18a 252° Bia > 
But al+e+ebat+...8= + +o 4... Sydataretatenstelersie sce (47), 

and the coefficient of ~” in the right-hand side is positive and less than 

W(ptptat): 

Hence the coefficient of 2 in Q°— R? is of the form 

v0 (7) = O(0’). 

That is to say P= IPSS OOO aaasuss enue goon wood Been eeeanens: (48). 

Differentiating (48) and using (42) we obtain 

Sed (CBE ele) — 8 Os (W2) ai sisi eassc sect sce oseuecesees (49). 

Differentiating this again with respect to « we have 

A (P?— Q)(Q°— R’) + BQ (Q@— RB’) = = 0(v")2", 
where A and B are constants. But 

P?—Q=— 288 ®,, (a =—288 |=" Baa, a ene eo? ay Geer ii a: 

and the coefficient of z” in the right-hand side is a constant multiple of vo,(v). Hence 

(P?— Q) (@ — BR) = 2 Ove, (v) 2 = O(v") ‘ 

= = O(v°) fo, (1) +o, (2) +... +o (v)} = TOO") @, 

and so ESSE ee eee (50). 

Differentiating this again with respect to x and using arguments similar to those used 

above, we deduce 
13: (GT PeSO C) (cmee ee ten eee (51). 

Suppose now that m and n are any two positive integers including zero, and that 

m+n is not zero. Then 

QR (Q = R?) = Q (Q ae R?) (Qa Re 

=> OW) a {> O@*) #}"7 {> Oe") a”}" 

= S(O) (vy) a>O (yim) 2>d0 (vy) ay 

= > O (GTR tas) 2’, 

if m is not zero. Similarly we can show that 

Qn Rr (Q° —s R?) = R (Q§ = R?) (Quy RL 

—i>y O (GAS) x”, 

if m is not zero. Therefore in any case 

(GPa RP) OEE (OGURA) ire © cans okdpccocadacisacoCeoonARGOAE Rea eCaBeeeG (52). 

Norse xox: No. DX. 22, 



168 Mr RAMANUJAN, ON CERTAIN ARITHMETICAL FUNCTIONS. 

11. Now let r and s be any two positive integers including zero. Then, when 

r+s is equal to 2, 4, 6, 8 or 12, there are no values of m and n satisfying the relation 

4m+6n=r+s—10 

in (41); consequently in these cases 

When r+s=10, m and n must both be zero, and this result does not apply; but 

it follows from (41) and (48) that 

: y PR CeO i) Ie eRe eee cee eco se acecee: (54). 

And when r+s>14 it follows from (52) that 

IHS =>) OC eg eeaepensoocosonoccscscaactocednsbed: (55). 

Equating the coefficients of 2” in both sides m (53), (54) and (55) we obtain 

EP (rt DP (s4)) E(r+) E(4) 
SS = ; 
>,,s(”) T(ir+ s ae 2) C(r +s ma 2) Or+s+i (n) 

7S i Re 
+ sitet) HOt =s) NOrre (1) Hyg (1) . one: (56), 

r+s 

where Hen (0) =O Gees — 2s 46,08, Li 

E,..(n)=O@), r+-s=10; 

E,,,(n) = O(w**), r+s>14. 

Since o,+54:(n) is of order n’+** it follows that in all cases 

Rir+ D641) Sr+VE(+)) 2,3 (n)~ Tir+s+2) Erts+2) Cparrnn (0) oacongaas saeacecet (57). 

The following table gives the values of =,,(n) when r+s=2, 4, 6, 8, 12. 

TaBLE LV. 

1 Syalo = B00) = m0) 

2. 3,,(n)= 105 (n) lee (a), 

Baal) = 39 
4, 3y5(r)= aeorie See (

n) 

ee sae 

6. S77) = ee 
(n)_ 

7. Berl) = Fogg 

8 alm) = Sh 
691043 (n) — 2730n0,, (nr) 

9 Su(n)= 6559 



Mr RAMANUJAN, ON CERTAIN ARITHMETICAL FUNCTIONS. 169 

12. In this connection it may be interesting to note that 

a, (1) a(n) + 4, (3) os (m — 1) + 0, (5) oy (m — 2) +... +o, (2n + 1) o (0) = 345 o; (20 + 1) 

soe, (58). 
This formula may be deduced from the identity 

Lx 3x? 5°a8 x 3a? 5a \ 
— KQ) Taner ee QS tpoetist:) Seana! (59), 

which can be proved by means of the theory of elliptic functions or by elementary 

methods. 

13. More precise results concerning the order of H,,(n) can be deduced from the 

theory of elliptic functions. Let 

Then we have = 

Q = $°(q) (1 — (hk'y} | 
R= Gag) (ee bak eR OE Wl neled..cohsiel (60), 

= $2 (q) {1+ 3 (kk) Vfl cu’) 
where $(q) = 1+ 2¢ + 2¢' + 2q°+.... 

But if FM=F1-Q-gyd=@)- 
then we know that 

at f(g) =mEKt *o) 
2b f(— q) = (RKY $6 (Q) 
ah (q?) = (kh’)* $(q) 
BiG) =KEF $(q) 

It follows from (41), (60) and (61) that, if r+s is of the form 4m+2, but not 

equal to 2 or to 6, then 
fi (r+s—4) (— q) MG) K Cp) 

(62) Tine (q°) = ro =) @) = n pon Ee @) ryalotaxel siefernvevele/alatarclete)steislovern 

and if r+s is of the form 4m, but not equal to 4, 8 or 12, then 

5 tps (r+s—6) (- q) “" : ) Oa jee (Ci ) 

F,.3(q ) =" rin (pr) Ca { f8(q) — 16f° (q°)| - (ee pag (63), 

where , depends on r and s only. Hence it is easy to see that in all cases F,,(q°) 

can be expressed as 

Shea AGA Oya sn ae) G7 YS 
&Ka,b,0,d,e,h, LEG q)} ae | Foe (aoe } a aac 7G DSI") 

where a, b, c, d, e, h, k are zero or positive integers such that 

a+b+c+2(d+e)=[3 (r+s+2)], 

h+k=2(r+s+2)—33(r+s4+2)], 
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and [a] denotes as usual the greatest integer in 2 But 

ee OY, Un wee 
24 OA A, 

BAC USCS = VE aa ieee 
12 32 52 P 

P@M=c = 3q° + 5q° _ 79° ates he 

. 12 be 7 LIP 22S aensce wieoscee cance (65), 
5G) ae 24 24 24 
—“=g—5q +7q —llq +... 

thee) : s 4 

AGP) 5 3 3 3 TONG) osteo Bes 
PED q —2q° +4q° —5q° +... 

where 1, 2, 4, 5,... are the natural numbers without the multiples of 3, and 1, 5, 7, 11,... 

are the natural odd numbers without the multiples of 3. 

Hence it is easy to see that 
n-3 (a+b+e)-d-e Bee (n) 

is not of higher order than the coefficient of g” in 
1 s al 2 at 

$" (q*) b? (q2*) ° (q3) {6 (G24) & (G)}? {b (G2) $ (G2D}* 6 (G24) $F (GQ), 
or the coefficient of g*” in 

gute (q°) pai (q) p° (q°) $° (q"°) ° (q?) go (q°). 

But the coefficient of g” in ¢*(q?) cannot exceed that of q” in ¢?(q), since 

Gi (Qe) = 20g"); Sek dan, ceaee seen eer (66); 

and it is evident that the coefficient of g” im @(g*) cannot exceed that of g” in $(q*). 

Hence it follows that 
nN -4 (r+s+2)] Ides (n) 

is not of higher order than the coefficient of g*” in 

p* (q) $° (g*) $° (@), 
where A, B, C are zero or positive integers such that 

A+ B+ C=2(r+s+2)—2[3(7 +54 2)], , 

and C is O or 1. 

Now, if r+s>14, we have A+B+C212, 

and so A+B211. 

Therefore one at least of A and B is greater than 5. But 

PQ OO) 0° cern aie ae (67). 
Hence it is easily deduced that 

b4 (q) b2 (PYG (GDH TO fd 4 HF EO) — Ty oe ee gwdome nace adebebe (68). 
It follows that 

Re (= Onm ae Rs 2) on eae einer cee (69), 

if r+s>14. We have already shown in § 11 that, if 7+s=10, then 

PRS ON a soicsavisinsesucacigeoecnanmesse empeaaee et (70). 

* See §§ 24—25. 
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This agrees with (69). Thus we see that in all cases 

E,..(n) =O {nt r+s+1) NGO RGRORO CECE MACE CES enna ERTS (A) 

and that, if 7+s is of the form 6m, then 

1B COC AUG) SERRE ee oe (72), 
and if of the form 6m+4, then 

Fh, {CERO NG SL as 9) RO RE 0S a (a3): 

14. I shall now prove that the order of £,,(n) is not less than that of n?(+), In 

order to prove this result I shall follow the method used by Messrs Hardy and Littlewood 

in their paper ‘Some problems of Diophantine approximation’ (IT)*. 

Let q= er, q = eT 

h _etdr where = a+ br ’ 

and ad — be = 1. 

Also let Vie 
at+br 

Then we have BOG PUG AAS ACS, 7) Soden aceon oneennonendocesecrer (74), 

where » is an eighth root of unity and 

%, (v, 7) =2sin wv. g? I (1 — g™) (1 — 2g cos 2arv + 9!) ccccceececesevee (75). 
From (75) we have i 

log 3; (v, T) = log (2 sin mv) + 4 log g — » So ag (76). n(1—@*) 
It follows from (74) and (76) that 

2n 2 } 
log sin wv + 4 log v + $ log g + log w — Sa ae a : x 

37" = +2 cos 2n7rV) ais 
n=) ( 

Equating the coefficients of v**! on the two sides of (77), we obtain 

= log sin rV + 4 log V+ } log gq’ — ribvV — 

1s¢ 28 ¢4 38 qh 
J sti JL Bes (a +br) ad eae ee 

18 f° 28¢q/4 BFq’° 
= Ee e £E( s)+7 =e ae 

provided that s is an odd integer greater than 1. If, in particular, we put s=3 and s=5 
in (78) we obtain 

‘ 1l¢ 28 ¢4 33° 

(a + br) {I+ 240 € =F eer I au ae 

ck 7 = 
and ge a 

(a+bry {1 — 504 7 + a a oe, + . | 

Le gia Zid 3q* 

1— 504 (5 eke | ee 80 
7 =G I= 1-¢ 0) 

* Acta Mathematica, Vol. xxxvu. pp. 193—238. 
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It follows from (38), (79) and (80) that 

(Gb ber en) lige (9): aan meee eee (81). 

It can easily be seen from (56) and (37) that 

Te SEA AGING 0s cag5coeceanee ee ee (82). 
1 

Hence (a+bry 3? s E,..(n) @" = > VIEAGONGE®  ceseescsosocosconnsacoéc (83). 
1 1 

It is important to observe that 

E Mae = r)t+€(—s) €A-r)+EQ-s) P(r+1) (s+) E(r+1) €(s+1) 

ie 2 r+s T(r+s+2) E(r+s+2) 

FEO) sis capelcs sat ven SMC b aes Me ae Pee eRee eine foie tv ole sete enee staeelacMeeaeia oreemeanes (84), 

if r+s is not equal to 2, 4, 6,8 or 12. This is easily proved by the help of the equation (39). 

15. Now let 
r=uty, t=e™% (u>0, y>0, 0<t<1), 

so that 
q= erit—ry — teri; 

and let us suppose that pn/qn is a convergent to 

joel 
G, + G+ dz 

ery 

so that Mn = Pn-aIn— Prngna = +1. 

Further, let us suppose that 

a=Pns SSIre 

C=%MPray 4=— Mn Gra, 

so that ad —be=n,°=1. 

Furthermore, let y = 1/(qng'nir)s 

where n=O niInt+ In» 

and a’,., is the complete quotient corresponding to dy. 

Then we have 

|a+br|= | pn—GQrnlu—tqny Soe at Rass Baek on ceekaoeee (85), 
dn dan 

and q\|=e™, 

Bye een aa 1 
where var(ry=t (45) =1 Pt 

J eo atk.) ee a (86) ina + my? Gn 
and 1(7) is the imaginary part of 7. It follows from (83), (85) and (86) that 

S E. on = {nur yeas S EB fan | Ss ra (2) J i mE ee re (N)q 

/¢ ae \Tte+2 4 i s : : 

> (AF) {| B,,,(1) | e="*—| By, .(2) | e™ — | B,,4(8) | e-** — ...}...(87). 
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We can choose a number )y, depending only on 7 and s, such that 

| EZ, 2(1)| e?™ > 2 {| £,,.(2)| e2™ +| #,,5(3) | eo™+...} 

for N>A,. Let us suppose X%»>10. Let us also suppose that the continued fraction for w 

satisfies the condition 
LUNA ilin Sa (fst B> PINON aopopaootaRccco bob eee nents (88) 

for an infinity of values of n. Then 

/ if r+8+2 

> 4] E,,.(1)| (Ge) eH > K (dings ec eeeeveees (89), S E,, s(n) g®™ 
il 

Where K depends on r and s only. Also 

Qn Uni = 1/y, 

3 ea (ke } is K 

dma Vy NM (log (1/8) ~ v= 8)" 
Tt follows that, if wis an irrational number such that the condition (88) is satisfied for 

an infinity of values of n, then 

bs BEN Ge ALG BEN EEE ANNE EE edcctessbsee ene (90) 
1 

for an infinity of values of ¢ tending to unity. 

But if we had E,,,(n) =0 {nt +9), 

then we should have SE. (n) | =0 {((1—#)~ 3 Weasaec) I. 

which contradicts (90). It follows that the error term in &,.,(n) is not of the form 

DR TRE)) So Ange erates cet ae yee ontaer a aatecsicwonde (91). 

The arithmetical function tr (n). 

16. We have seen that E,, ,(n) = 0, 

if r+s is equal to 2, 4, 6,8 or 12. In these cases =,,(n) has a finite expression in terms 

of Grist (m) and oyss4(n). In other cases ¥,,(n) involves other arithmetical functions as 

well. The simplest of these is the function t(m) defined by 

Sie (yee es a) = a8) ed cet cee sensi: (92). 

These cases arise aren r+s has one of the values 10, 14, 16, 18, 20 or 24 

Suppose that +s has one of these values. Then 

1728 S E,, s(n) a” 

(P= RB) ED) 
is, by (41) and (82), equal to the corresponding one of the functions 

POM ery (3) (OR Ozh 
In other words 

> E,,5(n) a" = E,,.(1) 27 (n) a” {1 i 
1 1 

ao a 

0 i poneonuee (93). 
1 Ga €(l—r-—-s) 1- 
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We thus deduce the formulae 
D(C = OF aN) hax Go) Wapaenpicaace ccc ceuscaaddecshacoocdseed (94), 

if 7+s=10; and 

Orts—1 (0) Ey, (n) 

= /95- (1) {Gaon (0) 7 (n) + Or+s—1 (1) T(n —1)+...4+ 6745-1 (n re 1) 1 (1)} cca oa (95), 

if r+s is equal to 14, 16,18, 20 or 24 It follows from (94) and (95) that, if r+s=7/ +5’, 
then 

JI CQ) 3-2 (y= 13 1 WIE AGO) Saecanccanacan-cocaccopapdnase (96), 

and in general Dis MOD) 82 Kl ACO ERGO) caoassenotearcoasaoccsenese (97), 

when r+s has one of the values in question. The different cases in which r+s has the 

same value are therefore not fundamentally distinct. 

17. The values of t(n) may be calculated as follows: differentiating (92) logarithmically 

with respect to 2, we obtain 

[Deel (0) BOI 3 TM) a. Fs snenseies ues aesenesectaeetttce (98). 

Equating the coefficients of x” in both sides in (98), we have 

T(n)= as jo, (1) tT(n—1) +0, (2) T(m— 2) +...4+0,(n—1) T(1)} ...., (99). 

If, instead of starting with (92), we start with 

S T(n) a” = a2 (1—3e@ + 5a°— Tae +...)8, 

we can show that 

(n—1)7(n)—3(n—10) tT (mn — 1) +5 (m — 28) t (n— 3) —7 (n — 55) tr (nm —6) 

ereontOn Pe uictra(Sr— 0) }] terms'=(0; Sees. e.-eaeeeeeisee reset (100), 

where the rth term of the sequence 0, 1, 3, 6, ... is }r(r—1), and the rth term of the 

sequence 1, 10, 28, 55, ... is 14+$r(r—1). We thus obtain the values of +(m) in the 

following table. 

TABLE V. 

| 
n | T (n) n T (n) 

Hi 
l +1 16 + 987136 
a — 24 || 17 — 6905934 

3 | + 252 | 18 + 2727432 | 
4 | — 1472 19 + 10661420 

5 + 4830 | 20 — 7109760 
6 — 6048 21 — 4219488 

7 — 16744 22, | —12830688 
8 + 84480 23 + 18643272 | 

9 — 113643 24 + 21288960 

10 — 115920 25 — 25499225 

ll + 534612 26 + 13865712 
12 — 370944 27 — 73279080 

13 — 577738 28 + 24647168 

14 + 401856 29 + 128406630 

15 + 1217160 30 — 29211840 
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18. Let us consider more particularly the case in which r+s=10. The order of 

E,,,(n) is then the same as that of t(n). The determination of this order is a problem 

interesting in itself. We have proved that E£,,,(n), and therefore +(n), is of the form O (n’) 

and not of the form o(n°). There is reason for supposing that 7(n) is of the form O(n? **) 

and not of the form o (n®). For it appears that 

5 = = Grete Ge eee (101). 

This assertion is equivalent to the assertion that, if 

=", 1 Dx 2s 8... Dp > 

where p;, Pp, --. py are the prime divisors of n, then 

1 <a Sty Sy gam 
where cos 6, = hp? T (p). 

It would follow that, if n and n’ are prime to each other, we must have 

Tea CUTE =k (20) LTH UI) Base see seieaceen oe cicec aa Siaee eves (103). 

Let us suppose that (102) is true, and also that (as appears to be highly probable) 

Whe (a) ee a asbennancereM esa ae Sal data aN (104), 

so that @, is real. Then it follows from (102) that 

33 | n-\r(n)|<(1+a,)(1+a)...(1 +a), 
that is to say |r(n)| <n? d(n) BOO QU OSTCE Rap Sonne nao soa eae (105), 

where d(n) denotes the number of divisors of n. 

Now let us suppose that n=p%, so that 

_sin(1+ a) 4, 

ee sin Ose oe 
nn = T(n) 

Then we can choose a as large as we please and such that 

sin (1 + a) 0, 
: Sule 

sin 6, 

Hence Rr (Gra))'| S752 Wa a nae sc ndceedrcasc ame ines ae make bance (106) 

for an infinity of values of n. 

19. It should be observed that precisely similar questions arise with regard to the 

arithmetical function y(n) defined by 

x (10) a = f% (hs) f(a) 5. fr (Wer) eeeeeeececseeceseeeeeee (107), 

where f(e) = 27 (1—«)(1—-#) (1=2’)..., 

Viou, XOX, No. TX. 23 
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the a’s and c’s are integers, the latter being positive, 

dy (€16, + Mel, +... + A,Cy) 

Z hy a 
is equal to 0 or 1, and (244.4%), 

EG Cr/ 

where J is the least common multiple of ¢,, ,...¢,, is equal to 0 or to a divisor of 24. 

The arithmetical functions y(n), P(n), x,(~), Q(m) and O(n), studied by Dr Glaisher 

in the Quarterly Journal, Vols. XXXVI.—XXXVIIIL., are of this type. Thus 

Sx (n) a" =f), 

SP (nya = f(a) fo), 

E s(n) = fa) P&P) 

SO (nam = f*(0*), 

50 (n)a” =P (a) (0°) 

20. The results (101) and (104) may be written as 

UT ta (1) 1 
See ee as E,. qa (lap ps (108), 

where co, < prt, 

and 2¢pHy,s (1) = E,,5(p). 

It seems probable that the result (108) is true not only for r+s=10 but also when 

r+s is equal to 14, 16, 18, 20 or 24, and that 

iy | 

ae a Pane ot) @ (a) 7 ee eee (109) 
|“‘r,8 | 

for all values of n, and ge lan i se RR SS a teeta ceom ase <. (110) 

for an infinity of values of n. If this be so then 

E, ¢(n) = 0 {rt eet ey ae, (n) 40 ft SP es conus (111). 

And it seems very likely that these equations hold generally, whenever r and s are positive 

odd integers. 

21, It is of some interest to see what confirmation of these conjectures can be found 

from a study of the coefficients in the expansion of 

a {(1 — al?) a) — ap /9) le) tee ha (n) 2”, 



Mr RAMANUJAN, ON CERTAIN ARITHMETICAL FUNCTIONS. 177 

where a is a divisor of 24. When a=1 and a=3 we know the actual value of y(n). 

For we have 

ip eee aa ae Sey es Dh, (n) a =a) —a —2 statist ielicacecis sconces (112), 
1 

where 1, 5, 7, 11,... are the natural odd numbers without the multiples of 3; and 

Sy (n) a" =a — Da Dae Saat aan Hesetere eal eros ts (113). 
1 

The corresponding Dirichlet’s series are 

= vn (2) 1 SS eT yd siesyee (114), 

where 5, 7, 11, 13,... are the primes greater than 3, those of the form 12n+5 having 

the plus sign and those of the form 12n+1 the minus sign; and 

és (n) 1 3 Bey ee: 15 
[ont (+3™) 0 —5'™) (147) (1 +11)... ee) 

where 3, 5, 7, 11,... are the odd primes, those of the form 4m—1 having the plus sign 

and those of the form 4n+1 the minus sign. 

It is easy to see that 
Ugamn72)) )l calibre a | Abe (72) il <2 escraetete ing “Menta stcssiera- no's Saiclenies (116) 

for all values of n, and 
|G) a GO| | 0/0) consneceponor so scecespcoocssonee (117) 

for an infinity of values of n. 

The next simplest case is that in which a=2. In this case it appears that 

where th= G45) -7) 0 — 11) 0 17)...’ 

5, 7, 11, ... being the primes of the forms 12n—1 and 12n +5, those of the form 12n+5 

having the plus sign and the rest the minus sign; and 

1 
2~ (+ 137" 0 =37-7 (1 — 619 + 73)...” 

13, 37, 61,... being the primes of the form 12n +1, those of the form m?+(6n—3) having 

the plus sign and those of the form m*+(6n)? the minus sign. 

This is equivalent to the assertion that if 

Ti (One iigt eat enlige tea.) LOS St ey Ol gsels es oe oy 

where a, is zero or a positive integer, then 

ar (m) = (— 1)28 8 tart a290F O41 F (1 + ay,)\(1 + Gy) (1 + Gg)... seeeeeees (119), 
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where 5, 13, 17, 29,... are the primes of the form 4n+1, excluding those of the form 

m2+(6n)?; and that otherwise 
APS (It) =O) Sasjcneciewlons a secasacsdeetere cance ecest ees (120). 

It follows that hates GO) SCA CON Bensemasenaseanan so ocharbodaoossocanntd (121) 

for all values of n, and Telex (Coy) SS 1S Seep ancesehanesear ssoncoacsoosnseccbosc0ac (122) 

for an infinity of values of nm. These results are easily proved to be actually true. 

22. I have investigated also the cases in which a has one of the values 4, 6,8 or 12. 

Thus for example, when a=6, I find 

yee Th = G3) 0-7) (1-1)... 

3, 7, 11,... being the primes of the form 4n—1; and 

= 1 
2 (1 = 26, 55) 2e,0 18+ 13). * 

5, 18, 17, ... being the primes of the form 4n+1, and c,=u?—(2v)’, where w and v are the 

unique pair of positive integers for which p=w?+(2v), This is equivalent to the assertion 

that if 
i (acto ae) EI ith oo) sy TS ela ble Se 

then “Poln) <_ sins ets) ene ati) Oe Stn Ta (124), 
n sin 6; sin 04, sin 64, 

o 
where tan $0, = 5, (0< 6,< 7), 

and that otherwise y,(n)=0. From these results it would follow that 

[Are (M) | SE (M) ....sccsssasesnseneene ces enennse=snnyen (125) 

for all values of n, and ks(() | S200. Qoasnoendeeaone cee tcoonooctmcoctecnood=c: (126) 

for an infinity of values of x. What can actually be proved to be true is that 

| Wa (n) | < 2nd (n) 

for all values of n, and | We(n)| >n 

for an infinity of values of x. . 

23. In the case in which a=4 I find that, if 

ma (5M, 10 TT Te akin es LO Oa 

* y,(n) is Dr Glaisher’s  (n). 
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where 5, 11, 17,... are the primes of the form 6m —1 and 7, 13, 19,... are those of the 

form 6m-+1, then 

Wu) _ (yy stantar+.. ee Care aC eC eee (127), 
Jn sin 6, sin 6, 

u/s 
where tan 0, = 1 +30 (0< 0,<~7), 

and w and v are the unique pair of positive integers for which p=3u*°+(1 + 3v)?; and that 

vv,(n)=0 for other values. 

In the case in which a=8 I find that, if 

n= (2775170 2. 7%, 1373, 19%. , 

where 2, 5, 11,... are the primes of the form 3m—1 and 7, 13, 19, ... are those of the 

form 6m-+1, then 

Yul) __yyetaten tin BCL +a)@ sin 30 +a,) (128) 
n/n sin 36, : sin 30,, tee _isielsjelele sia ° 

where @, is the same as in (127); and that W;(n)=0 for other values. 

The case in which a=12 will be considered in § 28. 

In short, such evidence as I have been able to find, while not conclusive, points to the 

truth of the results conjectured in § 18. 

24. Analysis similar to that of the preceding sections may be applied to some interesting 

arithmetical functions of a different kind. Let 

¢'(q)=1+2 2s FiO) tes oh taciescbtsiesenetoe astectere ise law aeerasle taro (129), 

where $ (q) =1 +4 2q 4+ 2q* + 2¢°H+ ..., 

so that r;(n) is the number of representations of n as the sum of s squares. Further let 

Re (ea oe tea Ga NG ea q aor g S8.(n)4q (= nee oem eon een) 

s5d0Re (130); 
na [es qd 9s-1 g¢ 381 g \ 

2-1) B38, (n)q"=s (Tt + Et) ee 31), ( ) : os (n) gq" = s ee eGaeeTs ] (131) 

when s is a multiple of 4; 

x fs q Qs @ Qs41 ~ 
9s _ , nr — ) (2 1) By 281s (n) q es adhucieencnnees (182), 

when s+2 is a multiple of 4; 

1 it qd 98-1 g 3e41 ¢ 1s q 3s Of: js q° 

Nn — 98 == = — B,38(n)4q We a ee ee = ser =) 
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when s—1 is a multiple of 4; 

ao 1s qd 9s-1 ge 331 ¢ ) 1s" qd 3s g 581 g 

; 2 Sag (2) Q™ = 28 -+...})—2 = one 
Hi, =535(n)q Gee l+q 14+¢ 2(7=4 l-g ' 1-¢ 

when s+1 is a multiple of 4 In these formulae 

B=, B= Sees, Ba ee 

are Bernoullis numbers, and 

E.=1, £,=1, #;=5, H,=61, H,=1385, ... 

are Euler's numbers. Then &,(n) is in all cases an arithmetical function depending on the 

real divisors of n; thus, for example, when s+2 is a multiple of 4, we have 

(2! = 1) B,Ss @) Se logan) — Qos, Giff éesnnr beets (135), ; 

where o;(a) should be considered as equal to zero if # is not an integer. 

Now let TEGO SO (GO) CaCO) mmpnercedoedeoceedccus5 1c s58dean606 (136). 

Then I can prove (see § 26) that 
CaCO} cesnwes 2d Sag hs akb -eae< GOO ae eee (137) 

if s=1, 2,3,4; and that etn O near TITS) 1.5. 2k ane eee oe doers (138) 

for all positive integral values of s. But it is easy to see that, if s>3, then 

ET <—Oag (10) Kos. 225. oddsene score so nacaeeron tenn (139), 

where H and K are positive constants. It follows that 

755 (0) CO) ee Borean ne Sonos aneeenobocooneppbacsees (140) 

for all positive integral values of s. 

It appears probable, from the empirical results I obtain at the end of this paper, 

that 
CENT 5) | 2 Ae eae ay irda at oak (141) 

for all positive integral values of s; and that 

ec(MebomeOS)) 2 /e:oaie ek oe eee (142) 

if s>5. But all that I can actually prove is that 

bey a Or SUE) oS pea ce agen Sipatenscc ree (143) 

if s>9; and that es; (n) + 0 (n?8- DY dadveevd oe eee a eae (144) 

if s>5. 

25. Let LAD= Seu (1) qr = = Aitega' (22) — "Gag (IU) fi a netaeeien ncaa cant iesiet ae (145). 

Then it can be shown by the theory of elliptic functions that 

fos (Q) = O* (Q) > OOD he eres cE BOA th StU (146), 

1<n<7(s-1) 



Mr RAMANUJAN, ON CERTAIN ARITHMETICAL FUNCTIONS. 181 

that is to say that 

Fos (Q) S55 noo PSO Tee vagal 
JD ipeeee eM) 

l<n <,6-) 

where $(q) and f(q) are the same as in §13. We thus obtain the results contained in 

the following table. 

TABLE VI. 

lL A(M=9 A(g)=9% f(9)=9 Se(q) =0. 

I*(f) : Sree 2. df (q)=16 =, Ae (q) = 8f* (9). Sf, (9) fA q) A (9) 8 (q ) 

e: 61fs (9) = 728f4(-—9) f° (7), 17 fis (7) = 25678 (- 9) f8 (9°). 

3 . laa a & PAG) 4. 1385f, = 244167" (— 83(g?)| 256) —— : fis (9) if (— 9) f* (9°) 0 F2(-q) 

> : Noo oor (I) Dierolli sa = 616/18 (— g) f4 (92) —128 = 1 0 (9) Ban G7, (92) Fue) a. 

6. 50521 fy (g) = 1103272 (— ¢) f? (¢?) — 821888 we. 

7. 691f,, (q) = 16576f% (— q) — 32768/* (q?). 

It follows from the last formula of Table VI that 

Sot eM) —=\(— 1) A259 T(r) — SAT GEN) oreeke reese sersee ns (148), 

where t(n) is the same as in § 16, and r(w) should be considered as equal to zero if « is 

not an integer. 

Results equivalent to 1, 2, 3, 4 of Table VI were given by Dr Glaisher in the Quarterly 

Journal, Vol. xxxvut. The arithmetical functions called by him 

x1(n), Qn), Wn), O(n), U(n) 

are the coefficients of g” in 

fe (¢) 
(KO 

He gave reduction formulae for these functions and observed how the functions which I call 

TAG) SOC) Cae ONC) SAC) KC) 

(7), @2(n) and e@,(n) can be defined by means of the complex divisors of n. It is very 

likely that 7(n) is also capable of such a definition. 

26. Now let us consider the order of e;(n). It is easy to see from (147) that f2;(q) 

can be expressed in the form 

> Karen if? (= O}" eae ; Aes SQ iF (GA) deremeas crest (149), 

where a, b, c, h, k are zero or positive integers, such that 

atb+c=[3s] h+hk=2s—3 [2s]. 
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Proceeding as in $13 we can easily show that 

n~ 2185] ¢,, (n) 

cannot be of higher order than the coefficient of g” in 

AG) DENG DOG) <= se « sos sche enaea eee erecta (150), 

where C is 0 or 1 and A+B+C=2s— 2[3s]. 

Now, if s>5, 4+ B+C>4; and so A+B>3. Hence one at least of A and B is greater 

than 1. But we know that 

g(M=LOW)¢" 
It follows that the coefficient of qg*” in (150) is of order not exceeding 

ne (A+ B+C)-lte 

Thus Ba (= Oe me a Bel he) ya ee eee eee (151) 

for all positive integral values of s. 

27. When s>9 we can obtain a slightly more precise result. 

If s>16 we have d+ B+C212; and so 4d+B>11. Hence one at least of A and 

B is greater than 5. But 
g° (q) = S30) (v*) q’. 

It follows that the coefficient of g*” im (150) is of order not exceeding 

nb (At+B+C)-1 
’ 

or that 3 (n) = O Cab SUAS). Sates an eee ee (152), 

if s>16. We can easily show that (152) is true when 9 <s<16 considering all the cases 

separately, using the identities 

P2(—QOfi(M={PEOK IF @®) 
f® (q’) a | tie (7) )s 

P-o \FCaS’ 

"16 (— q) f4(q?) = v= 9) FP) BS 

Pcor@=lR@ Pep PO 

FED EE POLO) ig Go! 

and proceeding as in the previous two sections. 

P(-q 

The argument of §§ 14—15 may also be applied to the function és (n). W e find that 

Gin) 2 ot 79) pas chee’ each ephom mtr ees (153) 

I leave the proof to the reader, 

- 

Oe 
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28. There is reason to suppose that 

og (0) = O {nk (#-1+9)} 
eh ie Sor te ie hee ee eee (154), 
Cos (n) + 0 {n¥ @- 

if s>5. I find, for example, that 

= AD dS a eee (155), 

where ut ma) (ST) a)” 

3, 7, 11, ... being the primes of the form 4n—1, and 

1 
i, = = = 5) * (1=2e,. 5 + 5) (1 — 2¢,,. 138-* + 13*) ... 

5, 13, 17, ... being the primes of the form 4n+1, and 

Cp = U? — (40), 

where w and v are the unique pair of positive integers satisfying the equation u?+ (4v)?=p’. 

The equation (155) is equivalent to the assertion that, if 

(Suse item liale 52)? 3, 55). Use ite. 

where a, is zero or a positive integer, then 

Co (nr) a, Sin 4(1 + a5) 6, sin4(1 + as) A; as 
aaa 1) sin 4 6, = sin 4 0, Sey we eevvcecescnce (156), 

where tan @,= ~ (0<6,< 47), 

u and v being integers satisfying the equation u?+»?=p; and e,.(n)=0 otherwise. If this 

is true then we should have 
| an (n) lea << te KC) Nest qoapanbocosseeodoadeg coop Ineas TIeECee (157) 

for all values of n and 
Ey) (n) a 
=| |SSS0/ PRS RES AO EC Oncor osdoa node boo sneunereanBene 158 
€ (1) 8) 

for an infinity of values of n. In this case we can prove that, if n is the square of a prime 

of the form 4m—1, then 

Eo (N) — 
=n. 

Gin CL) 

Similarly I find that 
S A. (n) % ( 1 ) 
aie ey (1) i rea ee 

p being an odd prime and ¢,?<p*. From this it would follow that 

| = % [icrntel! (nai eac atte neseea netian. att canzcca<! (160) 

for all values of » and 

for an infinity of values of n. 
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Finally I find that 

= s(n) _ 60 (1) 1 ( : Niece (162), 
Tie eS Nees tp ae 

p being an odd prime and ¢,?<p’. From this it would follow that 

| @15 (2) 

@5 (1) 

é 

ZT GG) eascseacccorcouacpséonansoosesssbogsond 

for all values of n and 

| @5 (”) 

€5 (1) 

| 7 

| CENTER varelatalnineolo(e ole aiale orelelels/alefeielei=t=ials(nieleleisivletsretstetatstlote 
! 

for an infinity of values of n. 

In the case in which 2s = 24 we have 

691 @,.(n) =(— 1)" 259 r(n) — 512 7 (Fn). 64 

I have already stated the reasons for supposing that 

| t(n) | <n d(n) 

for all values of n and | t(n)|>n™ 

for an infinity of values of n. 
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1. THE object of this brief paper is to continue the discussion of the famous fifth 

definition in Arts, 4—8 of my third paper *. 

In Art. 5 of that paper I stated that I believed that Stolz in his Vorleswngen wéber 

allgemeine Arithmetik, part I. p. 87, published in 1885, was the first to reduce to two 

the number of independent sets of conditions comprised in the fifth definition. 

2. My attention has been recently called by my friend Mr Rose-Innes to a passage 

in De Morgan’s article on Proportion in vol. xtx. of the Penny Cyclopaedia, published in 

1841, from which it appears that the possibility of this reduction was known to him. 

It will be seen from the foot-note he appends to his demonstration that he was aware 

that his demonstration was not exact in form. The words “of given nearness” which he 

uses are difficult to interpret. I have however endeavoured to complete the proof on 

what I suppose were his lines of reasoning, or in the event of my having misinterpreted 

his words, then on the lines which his argument has suggested to me. 

He says (lc. p. 52, column 2): 

“Tt is however perfectly allowable to leave out of sight the possible case in 

which a multiple of A is exactly equal to a multiple of B; since if the test be 

true in all other cases, it is therefore true in this. For, if possible, let 44 = 7B, 

and 4C be (say) greater than 7D. Then m(4C’) exceeds m(7D) by m times this 

difference, which may be made as great as we please, or 4mC and multiples succeeding 

it, may be made to fall in an interval as many intervals removed from that of 7mD 

and (7m+1)D as we please. But 4mA is equal to 7mB, whence (4m+1)4A, We. 

must fall among the multiples of B in intervals of given nearness+ to the interval 

ot 7mB and (7m+1)B. Consequently the multiples of A followmg 4mdA_ cannot 

always fall among the multiples of B in the same intervals as the same multiples 

of C among those of D; and the rest of the test cannot be trne unless 4C=7D; 

that is, if the rest of the test be true, then 4¢0=7D.” 

* The first paper will be found in vol. xvi, part rv, the + (De Morgan’s foot-note.) We leave the reader to put 

second in yol. x1x, part u, and the third in vol. xxu. this demonstration into a more exact form. 

Vion xexcl,, Noo: IX: 24 
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3. To prove that 4C cannot exceed 7D, it is sufticient to show that if 40 do 

exceed 7D, then a single pair of integers p,q must exist such that whilst pA <qB, pC>qD. 

But De Morgan’s idea seems* to be to find a number » such that if ¢ be any positive 

integer whatever or zero then another positive integer w exists such that whilst 

(n+t)A < wB, 

(n+t)C >wD, 

4. I proceed to complete the demonstration on these lines, 

It is supposed that, if 7, s be any two relatively prime integers except the pair 

7, S, It is given that 

if rA>sB, then rC>sD; 

but if rA<sB, then r0< sD, 

Further it is given that 7,4 =s,B, and it is required to show that 1C=s,D. 

(i) Suppose if possible that 

7, A =s, B: but 7,0>s,D. 

Then I imagine De Morgan’s first step was to take an integer m such that 

m(7,C —s, D) > pD, 

where p is any selected integer however large. 

In order to reach the result set out in Art. 3 it is enough to take p=1. 

Let us take for m the smallest integer which makes 

m (7,0 —s,D) > D. 

Next since 7,A =s,8, . 

(mr, +t) A= (ms, + =) B. ay, 

: St 
Let w be the integer next greater than ms, + = 

1 

St 2 Syt 
o. MS, 5 we=ms,+ ms +1, 

1 1 

and (mr, +t) A<wbh, 

* T have drawn this conclusion with some hesitation difference in the distribution of the multiples of 4 amongst 
from De Morgan’s use of the words ‘‘4mC and multiples those of B as compared with the distribution of the 

succeeding it” in the 5th and 6th lines of the extract multiples of C amongst those of D in some cases only, and 

quoted above, but it is not in accord with the words that he was not aiming at establishing the existence of such 

“cannot always” in the 9th and 10th lines, which suggest _a difference in the case of all multiples of 4 following a 
that he was desirous of establishing the existence of a certain multiple of 4. 
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Further r,C=s,D+(7,C—s,D), 

. 8,0) f t ry . (mrn+t)C= (ms + = D+ (7 + =) (7,0 —s,D) 

/ st : 
> qs + 2") D+m(7,0—s,D) 

1 

> (ims; + =) D+D,; 
1 

. (mr, +t) C> wD, 

but (mr, +t) A < wB. 

This is true when ¢ is any positive integer whatever or zero. 

Hence the multiples of A, from and after mr,A, are not distributed amongst the 

multiples of B in the same way as the multiples of C, from and after mr,C, are dis- 

tributed amongst the multiples of D. 

- 4 St / St eal = aU 1) [Since (ms, ate = ) <we (ms: ae - taal 

4th w Sy 1 
Se = : 

rm mitt rT, mitt 

tends to bx | Hence as ¢ tends to 2», 
mr, +t Ty 

(ii) Suppose next that r,A =s,B, but 7,0 <s,D. 

Let m be the smallest integer which makes 

m(s,D—7,C)>D; 

Oo esl Sey 

“. (mry+t)A= (ms; + =) B. 
1 

‘ Sit 
Let w be the integer next below ms, + ee 

1 

st Sit 
“. ms, +2 —-1lsw<msy,+—, 

Via r} 

and (mr, +t) A > wB. 

Now r,C + (s,D —7,C)=5,D, 

st 
(mr t+t)CO+ (m af *) (3, D—7,C) = (ms, + =) D; 

sit 

ve (mr, +t) C+ m(s,D—™C)< (ms; a =) D; 

? t 
“. (mryt+t)C+D< (ms, + ~) D; 

1 

. (mr, +t) C < wD, 

but (mr, +t) A > wB. 

This is.true when ¢ is any positive integer whatever or zero. 
24—2 
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Hence the multiples of A, from and after mr,A, are not distributed amongst the 

multiples of B in the same way as the multiples of C, from and after mr,C, are dis- 

tributed amongst the multiples of D. 

1 1 

’ Sit Sit 
| Since NUS, + = 1lsaw<ms, + == 5 - r 

483 1 TEES 

“7 mrt mrtt 71 
A 

Hence as ¢ tends to 2, vo endagte | 
7 nr, +t 7 

5. I proceed next to give Stolz’s proof. 

He states the theorem thus: 

Suppose that for every pair r, s of relatively prime numbers, excepting a single 

pair 7;, 8, there correspond to the relations rd 2 sB the relations rC 2 sD, whilst 

r,A =s,B, then must 7,C =s,D. : 

Let m be any positive whole number, not divisible by 7,, such that mA >B, then 

mA cannot be a multiple of B. Consequently an integer n exists such that 

nB<mA <(n+1)B; 

an B<mrA<(n+1)7B; 

*, nr, B < ms,B <(n+1)r,B; 

ny < ms, <(n+1)7%. 

But since nB<mA <(n+1)B, 

therefore by hypothesis, nD < m0 <(n+1)D. 

If possible, let 7, C+ s,D. 

(i) Suppose first that C> = D. i 

Then since $e and C= wpa dD, 
mr mM m 

By ee a 
y m m 

A OE IN By 
T, m 

; iD) 
*But this cannot be, because m can be taken so large that ee less than any 

: 8 
quantity of the same kind as D, and therefore less than C-—D; 

1 

8 0 + =D: 
vr 

* This is the starting point of the proof given in the next article, where however m has a different meaning. 
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(ii) Next, if C<7D 
1 

2 eae | 
then since aie a and (>— D, 

YY; m -m™ 

Ss, n+1 n eG ae 
i m m 

s 
ape 
as m 

which is impossible, as_ before. 

ESA r; 

Consequently, Cp: r 

, AO=SBID 

6. The following proof, which I gave in my Second Paper, Art. 67, was sent me 

by both Prof. A. C. Dixon and Mr E. Budden. It is, in fact, Stolz’s proof reversed, but 

it seems simpler and more direct. 

The enunciation is of course the same as Stolz’s. 

(i) Suppose 7,4 =s,B, but 7,C >s,D. 

Let m be the smallest integer which makes 

m(7,C —s,D) > D. 

* mrC > (ms, +1) D, 

but mr, A =ms,B; 

*, mr, A < (ms, +1) B, 

whilst mr, C > (ms, + 1) D, 

which is inconsistent with the condition that all values of 7, s which make rA < sB 

must also make rU<sD. Therefore 7,C + s,D. 

(ii) Suppose next 7,4 =s,B, but 7,C < s,D. 

Now let m be the smallest teger which makes 

m(s,D—7,C)>C, 

J. (mr, +1) C < ms, D, 

but mr, A =ms,B, 

. (m7, +1) A > ms,B, 

but (mr, +1)C <ms,D. 

This is inconsistent with the condition that all values of 7, s which make rd >sB 

must also make rC>sD. Therefore 7,C <5, D. 

Consequently, 70 =s,D. 

7. It appears that the possibility of the reduction to two of the number of sets of 

conditions in the fifth definition was first enunciated by De Morgan, that the first clear and 

unambiguous proof is due to Stolz, but the simplest and most direct proof is that due 

to Prof. Dixon and Mr Budden. 





XI. The Character of the Kinetic Potential in Electromagnetics. 

By R. Harcreaves, M.A. 

[Received 14 November 1916. Read 5 February 1917.] 

THERE are three important volume integrals over an infinite electromagnetic field 

derivable from Maxwell’s equations as modified by FitzGerald and Lorentz. One deals with 

flux of energy, another with flux of momentum, while the third gives an expression for 

the difference between electrical and magnetic energies. This last quantity has been called 

the kinetic potential, and the term carries with it the suggestion of an advance from 

the electromagnetic stage in which an infinite field is considered, to a dynamical problem 

in which the activities of the field are summed up in a single expression dependent on 

the coordinates of charges, and on their derivatives with respect to time. A normal kinetic 

potential constitutes in fact the complete statement of a dynamical problem. 

There is one primd facie reason for doubting the normal character of this function in 

Electromagnetics, viz. the necessity of accounting for dissipation of energy and momentum. 

It is the first object of this paper to establish a departure from normal character, and 

to fix its precise nature. As dissipation is due to flux at infinity, which is a feature 

of the other integrals cited above, it is plain that if the kinetic potential fails in any 

of its normal functions we should look to these integrals to fill the lacuna. It is our 

second object to shew that they are adequate for the purpose, and to deal with the method 

of applying them. 

§ 1. Of the two main purposes which the K.P. serves, the derivation of expressions 

for energy and force, the former is that in which help is specially needed. Sommerfeld 

in his memoir on potentials calls attention to the difticulty (no doubt experienced by 

others) of dealing with the energy, on the ground that a quadratic function of electric 

and magnetic vectors is to be integrated. But the K.P., which is also such a function, is 

integrable so far as its effective part is concerned, when the potentials are known. If 

the method of k.p. had complete validity it would be possible to turn the difficulty 

as regards energy by deriving it from the K.p. The form obtained for the K.P. is 

>: ay (Fe + Gv+ Hw — VV) re a 

in which (uwvw) is the velocity of an element e of charge, V that of propagation, w, F, G, H 

are potentials, and y is an integral not evaluated. For use as a K.P. a function which 

is a complete time-rate is entirely nugatory. The sum 

> 5 (fu + Gv + Hw-—wV) 

Vor. XXII. No. XI. bo OU 
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in the case of a finite number of point-charges is a completely integrated form when 

the values of the potentials are known, and the way is therefore clear for the application 

of the method to point-charges. This then is a case in which we can make the enquiry 

as to the character of the K.P., and the proper use of the other integrals. Point-action has 

always been the basis of mathematical treatment for continuous distributions, and evidently 

has a more immediate application in an atomic electrical theory. 

With respect to the other function of a K.P., the derivation of force, there is no 

such disability in the direct application of electromagnetic methods. The connexion between 

the methods may be briefly stated. If Ww, ... are values due to the action of ¢,, estimated 

at a place (x:y22.), where at time ¢ there is a charge e, moving with velocity (u.v,W»), the 

force on e due to e, has the « component 

2 {X, + (VC, — web;)/V} 

=—6& ( por, - ane 4 fala & ge) _ &Ws = 
V ot Oar, / V \dr ye V \0z, 0a 

» (OF F P 
=— = + Uy = + U2 = a i) a 3 = (Pyity + Gyr + yw, — yp i); 

; : OUr ‘ = ibe 
i i ewe . eT , 2 2 since for a point-charge AE do not exist. Now ay includes the whole dependence of F; 

on time through the motion of e,, and therefore 

OF, es oF, ae OF, . & oF, 

of Gm By, Oe, 
q : dF, ; f 
is a complete time-rate aE Thus if we write 

L= > (Fit + Gv. + Hyws— WV); ane ae 

and the above expression has the form 

ab_d a 
Ca, dt OUy 

We observe at once that this is a derivation, not from the kinetic potential 

sph Us + Gv. + Hyw.— Ww V)+ a (Fru, + Gov, + How, — 2 V), 

but from the first section doubled. This is a first hint of departure from normal conditions. 

In the statical problem there is equality of the two sections; in the general problem 

dynamical equivalence is consistent with inequality if the difference is a complete differential 
df 

coefficient with respect to the time, or more briefly if the difference takes the form ad °° 

that there is no immediate certainty of breach of normal conditions. 

§ 2. To make a further step the formula for the potential of a point-charge is expanded in 

a series proceeding by inverse powers of V, the velocity of propagation. ‘This value is required 

only at the point where the second charge is placed, and is used to give a corresponding 

expansion for the K.P. The groups containing odd and even powers of V are considered 
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separately. It then appears that the terms of even order in the two parts named above 
é : : d q 

do in fact differ by a quantity of the form 2. The even sections of the two parts are 

therefore equivalent, and their sum may be accounted a true kinetic potential, which if it 

stood alone would represent a system conservative in respect to energy and momentum 

linear or angular. 

The terms of odd order possess a property the antithesis of that of the conservative 

: : d ; : 
group, viz. the sum of these terms in the two parts has the form af Thus, if we write 

dt 

Ly and L’,, for even and odd sections of one part, we find that Z,,—Z., has the form = Z 

while Z’,.+ L’ has that form. The force of even order on e, given by 2L,. is also given 

by 2£., or by Ly+L,; but the force of odd order given by 22’, is also given by — 2L’x, 

while Z’,.+ LZ’, which we expect to be the K.P. in fact yields no force. There is then a 

distinct breach of normal conditions in the group of terms of odd order specially associated 

with radiation, which we may call the dissipative group. 

§ 3. The volume integral involving rate of change of energy has the form 

j= = > (e+ ny + €2) + tlux of energy (or total radiation), 

if H is the total electromagnetic energy, & the # component of electromagnetic force on 

a point-charge with « for component of velocity. But if we use # and & for the sections 

of even order, #’ and & for those of odd order, we have 

dE 3 0 = +5 (Ee + ny + &) 

in virtue of derivation from a regular K.p.; and 

WEG rs gr 
0= aes + 2(&e+ 77+ 62) + flux of energy ; 

or in effect the flux of energy is a quantity of odd order in V. This flux is found 

by use of simplified values in an integral over an infinite sphere. When this is evaluated 

it should appear that the sum of radiation and a rate of working is a complete time-rate, 

and then an expression for #’ can be found. The equation for loss of energy is got by 

writing 

= (E+ E)E+( bn) p+ (E+) 4) = -3 Get tut Po 

where 7’ is the material kinetic energy, and f, a component of mechanical force if any 

such exists. That equation is 

a 
dt 

We have first the use of a formal relation between different electromagnetic quantities 

(1 +E+#’)+ Radiation (or flux of energy) => (af, + f, + Z.). 

to give an expression for H’, and later, when we associate electromagnetic with extraneous 

mechanical forces, or definitely postulate their absence, we have an equation for rate of loss | 

of total energy. 
25—2 
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The flux of momentum is also of odd order, and the second volume integral gives a 

formal relation of the type 

O=&+ = +fux of momentum, 

which is connected with mechanical forces by writing & + & = Xm#—/,. 

Here again two quantities, now a flux and a force, are to give on summation a com- 

plete time-rate, and we infer the expression of a momentum p’ belonging to the dissipative 

group of terms. In the case of each integral a condition is to be satisfied which will give 

us the assurance that the flux at infinity is correctly treated. Also it will be found to 

involve the localizing of the parts of these mtegrals, a problem solved for the conservative 

section by the use of K.P. 

§ 4. It is understood in Dynamics that all coordinates are stated with reference to 

one time. In Electromagnetics the. primary position is that coordinates of a source are 

referred to the time of departure of a wave, and those of a point affected to a time of 

arrival. As a preliminary to dynamical treatment we require that coordinates and velocities 

of the source should be referred to the time of arrival. If (x.y,2,t) denote place and time 

of arrival of a disturbance originating from e, a point-charge at place and time (a'y/2,'t’), 

a... being functions of ¢’, this reference is made by the use of 

ro —= (Ge — ar) (Yael ee), aNd oi t—a7e Ve eee eee (1). 

The values of potentials at (ay.2.t) are 

= 6) (ray ie Vy 3 = eh Vee re eee (2); 

and these values are to be expressed through (1) in terms of 2,—a,, uw, %..., where 

msi ()), eel =a OReose 

We use r for N (a — 2)? + (Yo — i)? + (@— A)’, 

and (#yz) or (lr, mr, nr) for (@—21, Yor-Yi, 2—-%). 

The values of potentials and of the resulting K.p., which would follow from a treatment 

of (2) by successive approximations, may be obtained more rapidly as follows. The 

expansion of yf, is 
fal De r Ds r2 Ds rs 

thea int rapt Phan + ene (3), 

where D, or = denotes differentiation through «,y,2, and their derivatives mw, .... 

If we operate with V? on y,, where 24.2, are the space coordinates in V*, and use 

the equation V?r"=n(n+1)r", then noting that V? and D, are commutative, we get 

- : a 1 De r Dr? Div 

VF es i+ (7) eel oe) a a = 

the fundamental equation for y,. For the expansion of F, we have 

= 0 D Der Ds a2 Pa fp tes iat + } 
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It follows that the expansion of LZ,., the part of the K.P. due to the potentials of 
€, at (#24222) the place of e,, is given by 

V2— Su, us, c= D, (V2 =U) fe D2r( V2 — Suu) Ds (V2 — Lu, tr) ” ) 
2 V V1 ae ie pees 21,.= = a | 

Consider separately the terms of even order in V with a view to obtaining an equivalent 

: Brae df : ee 
form, i.e. one differmg by a term = of symmetrical character. Now in (5) where a K.P. 

wae - : : F d, Br 
is in question «, as well as a, is a function of t, and we may use D, or FF for dif- 

aL: ; ae d 
ferentiation through w, and its derivatives, so that —=D,+D,. A term Def may be 

dt — 

replaced by — D,D.f, a term D,f by DD 2f, and so on. Hence an equivalent of the even 

group in 2Z,, is Z where 

|= = 2auo° DDyr (V2? = me) _ D?2D?2Z7?(V?— uu) | _ = a¢ == THAI i aia0 
€1 2 

a r V2) V2 

a form symmetrical with respect to the two points, and therefore replacing even terms of 
22. for e, and of 22., for e,. 

For the group of odd terms, D, may be put outside the bracket, and even powers of D, 
within it replaced by —D,D,, D?D,,..., giving for the equivalent K.P. 

6:6, | V2?— Suu, D,D,72(V2— Sau)  D2D27*( V2 = duu) S —— = Be ae 7). 21’, = D, ie 7 V23! VAN 

An equivalent of the odd terms in 2Z,, has the same form with D, outside the bracket, and 

the sum has therefore the form = The points stated in § 2 are therefore established. 

§ 5. As a formal example of these results we may apply them to the case of 
charges e, and e, distributed uniformly over the surfaces of concentric spheres of expanding 
radi 7, and 7. If we write e,d@,/4a for e, and e,dw./4m for e the integrand for joint 

terms (containing e, and e,) contains direction cosines only in the combination %J,/,, and 
an element of integration dw,dw,/(47)? may be replaced by dn/2, where n= I,/, and has 
limits —1 and +1. 

Whether in (6) or in the bracket of (7), terms of like order in V give an operator 
(which is a power of D,D,) acting on 

D,D, (re + 72 —2nryre) 2 + (im +1) (m+ 2) nts (2+ 72 —2nryr2) 2. 

m-1 
This quantity is equal to —7,7,(m+1 a L—n?) (r2 +1? — 2nryre) 2 , y 4 ( dn ( 

and the integral between limits —1 and +1 for n vanishes. Another form of the relation is 

r+ 
| {(m + 1) ryr.(1 — 7?) R™ + 2nk”™™} dn =0 

- -1 

with R?=r?2+r2—2nryr,. Thus in (6) and in (7) the total is reduced to the term of 
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lowest order in V~, which in (7) is a constant; Le. there are no odd terms, and radiation 

2 : : *ldn 2. 
is absent. The conservative K.P. is reduced to =a R oF to as if r,>7,. From 

= 2 22 z 
this we infer at once the terms —S a and — due to the actions of elements of one 

a7) 21» 

sphere on other elements of the same sem and the K.P. is that due to a statical 

system. 

This simplicity however cannot attach to the potentials, for the vector potentials do 

not vanish and so the scalar potential cannot be independent of the motion. We may examine 

these potentials for a single sphere, radius 7,, charge e,. Symmetry justifies us in writing 

F, G,H=(%, y, <) x8, 

0G OF : : : 
which through Eee makes the magnetic vector vanish and so involves absence of 

radiation. The equation 
a Ghee =" 
dx Oy V ot 

is then represented by 
aS 28. Loy 
or -- —— = ann => 0 wc le’a.onlelelslatelegnteialtiatelalelsielniaielelelatetatulstalaberetetats (8 a) 

eee lees Oy _ 10S dw 

Be es iat oe ae 

electrical force is reduced to the statical value if 

10S Oy _ 
V of tor RS We SPR o5 Soocbbananscosraccusoste xc (8b), 

according as r2 7. 

Now take (0, 0, 7) for the point at which we are seeking potentials, so that F=0, G=0, 

and H=S. By (8) and (4), with R?=7*+7%—2nr,r, we have 

& fa (al Dee Re DORs 

ge fe lat V2) V33i Wear | ie 
esi +L) Dede DSi). D2 (Ren) a oe (9). 
Q OV a Ra Te W229! = V3! ome ndn 

The properties (8a) and (8b) then hold, if 

Qo ft +1 

n= | r? R™ndn+ D,| rR"™dn=0 
or =| =| 

a +1 Re*dn eae ee 
and Ae dD, ih (m+ 3) (m + 3) + is ie R™ndn =0. 

The latter is obviously the result given above, and the former is the second form 

given to the same result above. 

These properties enable us to write 
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according as r27,: the quantity ¢@ is equal to : 

Die Dee DE wom 
=. voi vesit pear | 

Ops: ery , and V?¢— a He 0 or +2 according as r=7;. 

We have thus a satisfactory account of the properties of y and S, in virtue of 

which complicated values of potentials due to the expanding motion are consistent with 

the system as a whole having the potential energy of a statical system. 

§ 6. With a view to shewing that the method of partition into conservative and 

dissipative groups leads to reasonable results, we examine briefly the opening terms before 

proceeding to a general method of realizing the differentiations involved in the series. 

For the conservative group the efficient terms to the second order are 

Ces Duy Us + Dlu, Sluz : L=% (- Dp Et) ceeetterseeteeesesseeeen (10a), 

and the corresponding terms in the energy are 

p= (1 peat Sas, Foe, ACen Beco (10). 

The relation of (10a) to the formula of Clausius may be noted. His first simplification 

of an original more general formula gave a value 

18 > s SIo,. SIn/_)) U= =F {Rk 24 Us + hy (Luu. — Tu, Tlue)}. 

With respect to 4, he suggested that simplification in the force may be obtained either by 

writing k,=0 or k,=—k. The first value is that which he preferred, and with that value 

the formula is known as Clausius’s potential. The present form is obtained by taking k,=—k/2 

and k=1/V*. It is the form properly belonging to Maxwell’s theory, and here it is 

understood that in the application to moving charges it gives first and second order terms 

im a series of terms of even order, constituting the K.P. of the conservative section of the 

forces. 

A component of force is given by 

_ OL d oL = if TH = inte 
—— (36,7 — Su? + 2, Ue + re ——— 

aN 1 1 wt + V2 2V2 

in which o,= >lu, ae o,=lu,. The conditions for the existence of integrals of 

linear and angular momentum are satisfied, viz., 

OL ol 
——— + a 0, 

0%, OX 

ae Bi 1), a ee 
~ Oy Y oa BOUTS Gly em vOUs Naktats ; 

the terms contributed to angular momentum being 

ne and oe aL 
13y, 99 “EG ; Th 
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. ae 3 7 a 2a .. 
For the group of odd order the initial term in 204 18 ays wales yielding a force 

component 

, 2e, ey =. 
a= Qa tlh ceeees trees tee eetee tee tersceteeneenens (1la) 

The sum £ 
26, es 2@, 3 te, 

= (Eu, + &'uz) = a Y(hut w rt.) = 5 32 Dh, vs + Tw 2.) — 3\ OS ie 

and a comparison with 

a ¥ (&/u,+ &/u,) + Radiation = 0 

suggests the inference of a term in the expression of the energy H’, equal to 

2e, es = (one! Dini)” ..... Sees cue eee (11b) 

d : diati apa Aes. . VW 
and a term 10 radiation equal to Bys faietetaletsfeistoleiel®.«.e)ais erelelelotetetetetetstecstatateeloislslelateteietetestar (11c). 

Integration over an infinite sphere (v. inf) confirms the inference which is sufficiently 

obvious in this simple term. The self-terms which may be inferred from these terms in 

the mutual action are: 

erie Se aa : 2e? 
in force 3ps> 2 radiation 3 and in energy — Ps ee (12) 

Taking these in conjunction with the ae terms, we have to this order: 

the « component of force on @, is = (GPS SSC) Rene eee coecandopcecdscosaocssenact (13 a), 

the term in radiation of pair is sya (eat + ev caled Some tees RT eee (13 b), 

and the term in expression for ag is | 

SGN F- C5tte)' (Ext + Osa) saradaneweasinwe tine eee (13). 
== 

Thus we find that the main term in the odd group gives Larmor’s expression for radiation. 

The sum of the « components of force on the pair is 2 (e,+ @.) (Qi, + estiz)/3V*, which 

vanishes for a neutral pair, so that only the relative motion is affected. Again, if we 

treat as approximately true the equations m,%,+m.t%.=0, which are exact when only 

the dominant term of zero order is taken, the supposition- e, : e¢ = m,:m, will make the 

expressions in (13a, ),c) vanish, ie. the main terms in radiation and the force associated 

with it vanish to this order. In effect then we have two types of pair physically 

differentiated from others, (i) the neutral pair, (ii) the like pair for which e,/m, = e/m. 

§7. ‘To carry out the ditferentiations in (5), (6) and (7) it is useful to write a, ds, dy, ... 

for (D,, DY, Ds...) 77/2, with b,, b., bs, ... for the operator D,. The opening terms are 

Q=—X(%—2,)%, d= Zuz—Z(a,—%)%, G=32my%— = (e—-M,) ii, 

a, = 382u? + 42 i, —S(a,—m) ti, as = 1lODUti, + SE yii; — TZ (qy— ay), wb cere (14a) 

b, = (@— 2%) Ue, b,= Due + E (a, —a) ty, ... 

i 
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and we note 

Dia, = — Vy, Dydg=— Dh, Dib,=—Sujw, D,b,=— Suto, =| 

da, da, | eter (145). . : 
=+6,, ===O.— Dj, S- = A3— Dit, ... 

dt dt dt 

The numerical coefficients in (14a) are those of the binomial theorem, with the first 

coefficient halved for letters of even index ay, d,.... 

making r 

In this notation the opening terms of (5) are 

ON bes 1 1 1 ae 
; = ae {as — a?/r? — Zuo} + 31 (as — BX tute) 
12 . 

1 2 So . = As! 2/2 5 9 /y.2\2) Mee (7? (dy — 427i, Wy) + 40, (As — 2Ett, Uo) — 42, Ue (Gg — a 2/2*) + 3 (Ag — a2/7°)?} 
Cc 

1 (o.2 KN Qy5 sy © 5 ) ~ 
+ 307" {72 (a5 — SE, Uo) + 10, (4 — BVI, Uy) + 10a, (2a, — YW) — BasE%w, uy} +... ... (15). 

The opening terms of the symmetrical form (6) are 

L Sr. — ay),/7" 
ona SS ee 
exes Fa 2Ver 

1 , : : 
+ eWay. {2 [( Sa)? — 04°b,2/7*] — (ae — a2/7°) (b, — b2/7?) — 2 (ay Day te, +B, St, wz) — B72 Sty, ih ate 

eee liG)s 
1 5 5 oe 2s oO, 05 

r QV 

1 a] 9 2 2 Sv 2 9 . SS 2 ° . SS . . a . oll 
sa 12 Ue P= oon?) — (Lu? — oP — 71764) (LuUF = CL +TS2) + WW ( Gy LU ty — Gy DyUy) — B72 Vy, Nig} +2775, 2[ (Saw) ew ré,)(Su 41r6y)+ 2r(a, Su, % Dus) —3r2S 

in the other notation used above. 

The opening terms of (7) are 

21 =— Eth, us + gy 
@e@ i 3V2  15V% 

(Asbo + 24g Ey ty + 21? Vii, thy + Tay Diy ty + 3, Sti, Uy — OZ, Uy Tru). ..(17). 

§8. In (15) we have terms of types ay, a,a;, @,°, a1 associated with a denominator V+ 

Thus the expansion (15) will represent a succession of terms of diminishing importance if, 

u,/V being of the first order, 7,/V? is of the second order, r?ii,/V® of the third order, and so 

op, On what does the fulfilment of these conditions turn? If we admit the dominance 

of the first term —ee,/7 in the K.P. the equations of motion are in the first approxi- 

Mation mst, = e,@l/7? = — m,%,.... If there is only electromagnetic mass, and u,/V is not 

hear unity, that mass is a finite multiple of e°/V°c,, where c, is the radius of the electron, and 

then rw,/V? will be small if ¢,/r is small. If the whole mass is greater than this, the smallness 

of ri,/V® can be secured with a less magnitude of orbit. Differentiating the last equation 

written ¢,¢,(@— 3121e)/7 =— m,ii,, and r°%i,/V* is of order > x —- 

of a pair is considered the successive orders of acceleration will conform to the statement 

above, if the ratio of the relative velocity to V is small, and the orbit sufficiently great. In 

Vou. XXII. No. XI. 26 

Thus when the motion 
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a conical orbit it is generally true that v° and fr (v and ff relative velocity and accele- 

ration) are of the same order, ie. if v/V is of the first order, fr/V* is of the second order. 

But there is a case of exception for a hyperbolic orbit near an apse where 2: fr=e+1 for 

an attractive, e—1 for a repulsive orbit; and if e is very great the smallness of fr/V? 

would not secure v?/V? being small. It will appear later that the case of large «absolute 

velocities can be dealt with if accelerations are small. 

§9. We consider now the method of dealing with a kinetic potential in which 

accelerations of any order appear, and in particular with the two-point case of the con- 
(n) 

servative system. Let Z be a function of ##4#...2, and write 
(n) 

B= X,24+X,¢+...4X,2¢-L, 

where X,... X, are to be defined. 

Then GE (ot CI eee te.) ee 
dt Ox 0a: meee) \ (n) 

0 & On 

Pe ey Hues 2 
dt dt Sea 

= e (n) (n+1) 

+ X, €+...4 Xn, 2+Xyq &. 

: : dE 
We now define X,,, X,_,--. in succession so as to reduce the value of — to the first 

; dt 
column. Thus . 

ee oL vee OL dX, ob d ob 
Geom yp Ui “(=| a Cen (n) ? 

02 x dt 0 « dt 02 

and if we also introduce possenseaeeente (18), 

Xx _oL dX, ob d OL d? OL _ 

On «Co dt Ssiéaet:C‘éi 

we have = +X,¢=0. If there are several variables we write 

({n) 

E= (NX, Gt pXok +... ++Xn 2) — L, 

then = =U). Ge MEA Vp eapepene concnccobosaanboncgctodce ic (19). 

Admitting that the quantity X,, occurring in the variation of Z, represents force in the 

extended scheme, then Z, in virtue of satisfying identically the equation (19), is the energy 

function attached to Z. If there is force 7, external to the scheme of k.P., then we have 

X,+f2=9, and oo 
ne dE : : i 2 

> af,, or more generally aE 2 fy fe,; with no such force # is constant. 
r 

$10. In the two-point system (#42) (@Yyo2,) the total linear momentum P in 

direction « and the total angular momentum WV about the axis of 2 are given by 

P=,X,+2%,, 

and N= &,¥,— UX. + Vo — yy Mot BV 5 — NXg t coe Pocseeeee esses (20). 

+ 22 V\— Yo oXy + Ho 2Va — Yo Not ss. 

i 
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: ; a, SDDS df ae 3 
We have made use of equivalent K. P.’s differmg by zs ; are the quantities P and V given 

. . . . (n-1) 

uniquely? Let f be a function of the type of Z above, but proceeding only to x, ,...; then 

a K.P. 

Be eet Of. oF 5 Gf of 5 Of 
Tt aa -o + ay n= + Y, ae rs +), reg at 

| 

will shew for each w or y 

Oba of ae oF df | BL ah | 
_(@) ~ =i)’ ey Py A@=2) alae Ae 1)?" Oa dt Ow 

: ae Si) Ra NG Nee Re eS oan (21) 
af 3 of of and therefore Xn= aay? Ca cee ~—-- | 

Che iB @)  & 

result from the comparison of columns above. From the last follows X,=0, ie. there 

; ‘ x df 
is no force, and from = (#,,X,+ 4,,Xo+.. j=9 or L it appears that there is no contribution to 

* 

energy. The contribution to linear momentum is 

Ope OF 
Ay ted, = ees ort On 

which vanishes if 2, and «, appear in the combination (z,—,) as they do in our case. 

The value of NV obtained by substituting in (20) the values of X,... given by (21), will 

also vanish if 

() SOR a OE Gi = 4 GF of of 
0=a, iv + ty 5 + #, = tenn (me! +H, Pet 1+) bape to =(tege +...) (22), 

1 1 1 pal 1 2 Lo 

a less simple condition than that for linear momentum, but one satisfied by all the 

elements used in constructing the formulae for ZL such as a,, tju.,.... As an example of 

the type of proof applicable, suppose the property to hold for a;, and operate with D, 

on (22) written with a, in place of f Now D, as applied to az, is 

(me + ip ea oe 
* Buy Sits Ga 

The difference 

Gai. <2) “mee nate) 0 Baty _ = Wi 
Dy (« ay, + Uy, av, +...4+ u, am) As (« ay, ap ese ste Uy =) D,a;= =U, —— ae i, uy oii, 5 

_ may 0 oe 
or D,( a ou + =) A3\= (« yt we tH sq) 

an operator of the same type extended to cover the new form i in a. The same is true 

3 : : a 
for the section y, ods ..., While for the other two sections 7, ..., Yo 2 ... the operators ¥ y: i 0a OY> Ox, 
are reversible. 

In order to make it clear that the value given to WV is correct we form 

EN. d Ried yo ie +i (M+, Y.) + & (i+ GpsF) to fod tf = (eh 

ile etl 
=— %1Y, + lar Fie ty 5 ae Rogier 3) Ieee ocr 

=—(#,.%-y1 X) — (#204 7 — Y22X 9), 
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in virtue of J satisfying (22). Hence, with ,X,+/,,=0, we have 

dN : : q : 
de Dd — YiJx, + By, — Yoda, 

Thus the condition (22) plays an important part; as applied to / it ensures K.P.’s 

: : d 
which differ by J 

dt 

to LI it gives the proper dependence of rate of change of angular momentum on external 

force, i.e. it makes the K.P. system alone conservative in respect to angular momentum. 

angular momentum, while as applied 

As an example of derivation, by using (15) or (16) the fourth order term in the 

value of # is found to be 

ee [2 {(22y ws)? — a2b2/74} — (ag — 2/7?) (by — b2/7*) + (Sy Ue — Bad, /7?)( da — a2/r? + b, — 62/7?) 

+ (ash, + t)b5) + (5a, — 2b.) Sty a + (5B, — 2a) Vey tty + 37? E (ti, Us + Wy tin — Hy it.)]...(22 a), 

while the z-component of force on e, of the same order is 

€,€. : Sn Ae as ba 7 . 5 a 
3 Vie E {3 (dy — a°/r°) (dg — 5ay?/7*) — 420 Us (dg — Ba,2/7*) + 2a, (dg — ZZ, Us) — 7° (ay — 4EHi, Ws)} 

+ 4u, {7 (ad, — 38a2/r°) — Sinus} — 2rit, {3 (dz —a2/7°) — 2m vs — 4a, b,/ 77} — 4rii, (2a, + b,) — 37H, 

§ 11. I now propose to state what I have found possible in the way of emancipation 

from conditions as to smallness of velocity in the case of the conservative group of terms, 

acceleration being still accounted small. In (6) write #,—#,= and perform the operation 

V? with wzyz as space variables. We get 

v D,D, , _ i eg 
VL = a ee or — Wi dt dee’ Pee cecceteen eens cveneecescce (23) 

as a differential equation satisfied by the symmetrical form of K.p. If here we write 

1, SRNL 2 an 2 d: ee PoE Lies 
di ot du i ‘dys “ae di ot | "Oe oy “0B” 

where a operates on w,%,...,and then suppress cae we obtain 
at a ae PP ot’ ot 

y= Ge 0 ) a ) é 
VeL= { ( 2 No Ws ) eee ececcesceces oF, ip (% aa + 2, e + W; =a) (w an + Us By + Wa L (24) 

for the quasi-stationary term. A solution is the reciprocal of the square root of a quadric 

whose coefficients are the minors of the discriminant of V*2a* — Xww=u«; this quadric is 

r? {(2V? — Sry ue)? — Su? Tus} + 2(2V2 — Vayu) Sau, Seu, + Vu? (Lau)? + Tu? (Zew)...(25), 

and the term* in the kinetic potential is 

DL = = 2¢,¢,( V2 — Sy u)/7 V(2V2—Suy wy + 0,02)? — (Su? — o7)(SuzZ—o.2) ...... (26). 

The positive character of the quadric is assured if 1>«*cos?a where V4«!= du2Due 

and 2a is the angle between the directions of the velocities. This is readily seen by 

* If in (6) the differentiations are made, and a,..., Dit, uw... omitted, the result agrees with (26) when dg, b, are 

written for Du,*, Du,". 
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referrmg the primary quadric to axes two of which are the internal and external bisectors 

of the directions*. 

If the formula (26) is applied to the example of two spheres we get 

z 6 [2 (V2 = nite) dn _ 102 lay +1 

Simo, mA Ve (re + 72 —2n7r,1s) —TyPotis (1 — 72) 2Vryr2 | 

=> sr [Vv V2 (r2— 1) —VV? (rz ny ]= -2%, Ve 1s 

agreeing with the previous result. 

If we seek in (26) a suggestion for the form of the self-term, one course is to-make 

€:=@, Ue=%, halve the value and take the mean for all angular positions. This gives 

iT eee = oa 5 doe (V?— gig 

ag 2Vr VV2— Sue + (Slay? 47 4Vq1 YS Gh 27) 

Heal Oe | Vin 

oy 8 Va, V-q 

with ¢,?= Zu? and m, V? = a m, being chosen so that the term involving 21? is o zu, The 

Ly Ides 
inertia in the direction of motion is lq?’ , the transverse is — 

1 qh aq” 
If we write WU =(m, + m) U= mm + ms, Uy—% =u and suppose uw small in com- 

parison with U, then with 

3MV2? V?— Q, V+Q 
— 

Py Ae tT 3 vq 8 7—Q: Q@?= > U2, 

: na mm, jl dl, s , 1 dL,\ (& uy? 

a Int a= ln Sars gag = * (e990) 
as representing terms in (wvw) as far as the second order. Under the same circumstances 

the main term in (26) is 

— ¢,e,(V2— XU?) 
V V(V2 — 0?) r+ (S2U? 

: 

§12. We now consider the information given in respect of the non-conservative 

group by the integrals over an infinite sphere, and at first deal with a single source. The 

section of a space derivative of potentials which yields finite values is oY == ae where 

(c—,)/r,=h. Consequently at a great distance 

7 Scans lb 6G oH 
X=75(a¢-m)> aay \ Mh ap a =) 

OF 6G oH Low _ 5 
and as A ae ay + = 2. Ties 0 eae estes ae (28), 

: OY _, OF 0G oH | 
yields p= l, a +m, BE +n at 

* Or by use of velocities 0, 0, w, and us, 0, w,, when the condition is 4V+—4V*w,w.—u,?w,°>0 or in general 

terms (2V?—Zuju.)? — Du? Du," >0. 
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we have X=nb-me, a=mZ-nY, WX=0, Zha=0 

as for a plane wave. We have also Sa?= =X? =@ say, and 

Yo—Zb=16, %h(Ye—Zb)=4 4X, +mXy+ mX,=hé= Vo—B ...(29); 
viz. since Xe =4(¥2?4+ 77—X2)+4(F +e — a’) or 6—X?—-@", 

and X,=—-XY-ab, X,=—-XZ-«a, 

we have LX,+mXy+uX%,=h6-XE1,X —alha=he. 

Thus at the surface of the great sphere a component of Maxwell's stress is also V x com- 

ponent of momentum-content, or it is V~ x Poynting’s vector. 

The sphere is taken with (a,7,2:) as centre. If it is supposed fixed, a factor 1 —o,/V is 

needed for the Doppler effect and the radiation integral is 

1 (V—-a, 

ml 7 Cre: 

if it is treated as moving there is no Doppler effect, and the integral is 

1 = | (VEL, (Ye — Zb) — v,6} r2do, 

which on identifying v, with o, again gives 

ij Ep2 
Az | ( _ o,) Ered. 

There is the same feature in connexion with the momentum integral which is 

1 sV-—a 

z!— ie neta 

for a moving sphere the form is 

= \z1X. anaes ~2b); rida, 

reduced to the above by (29). 

Now y being e,/{7,-=(x—2,)u,/V} or Ve,/r,(V—o,), and F being u,e,/r(V—o,), we 

have at a great distance 

Oy Va, oF 4 f ty, fe MG, 

et = 74(V—a,)’ Of (V-o (Vv (Gq) 

while e = mel — 

: j Su,? 26, Suu V? — Su?) 67 t re ca e Uy on hu ( i) 

aa oe ri(V —o,) { V—oa,? 24 (Vi=o;); (V—a,) 

and the radiation isan is 

— 
4.26 >>) Yi V2 — du Ve" 

dw 

a >) 2G, 2th _ ( Uy "| —— 

= ah {3 1° V—o, (V—c," -) Wen 

= 2e/ “ie f = (u ui | 
tt mec ceceeeeeseee (

30). 

=> 
S532 bam rth 

3(V2—Zu7) | [= ts — Du?) | 
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The corresponding integral in the equation of momentum has the extra factor J,/V in the 
integrand, and its value is u,R/V2. 

§ 13. When two sources are in question the joint terms in energy-content are 

> (X,X. + ads), 

and as the difference between (#—4«)/r; and (x—~«,)/r, would involve 7, we may take 

l,=1,, and the last relation of (28) makes 

Lads — A Xe — Sl, X, 3X, = DX, Xs, 

so that the terms in energy-content are 2}.X,X,. The value of LY.X, is 

€ > 

re (V = 0,7 (V— 0.) 

The Doppler effect, or effect of moving surface of integration, will be dealt with as 

SS * oe SS Vz 
Gy QUyUyg To QUy Ur = Lys) 6,6: 

{Stns + — ( nts) O16 
V—a, a Vi2ca a (V—«a)(V—a,) 

follows. For the flux of momentum localized at ¢,, and for a corresponding flux of energy, 
integration is taken over a sphere with centre at ¢, with the Doppler factor for that 
centre and the integrand {X,X,. As X, depends on w a function of 4, the phase-difference 

between #, and ¢, will be calculated for points on the sphere, and thereby the expression 
will be brought to one time. Corresponding parts due to a sphere with e, as centre will 
give the flux of momentum localized at’ e,, and a corresponding flux of energy. These 
fluxes each using half the energy-content will constitute the total. It is proposed to give 

evidence that this method ensures the adaptation to the forces stated to be essential. 

The times are connected by 

V (to —t) = 1 — My = & (a, — 2) (a4 — 2)/7, = Sh (a, — Xi); 

im which #, 1S #(é). -If now we use #2, %.,-.. for a(t), #2.(&),.--, 

Ds (to) = y+ (to —b) Ue oe Uy +. 

and VAC a) = th fr. + Us (te—t,) + = (4-4)? + aa : 

or, with z now for relative coordinate #,—a,, and o,=Sl,z, 

(—t) _ Co 22 — t,) -= (t2— e = 4) | 

, ..(32). 
ie a fa com adi oy on org \Os Fx awe | 

a 2 2 Vo, 2(V—a,) oma 13 apy = -o»){ 

With this difference we have 

U2To Usoy” Usoy Wn Oy Fp 

Vise on aos aay 2(V —o.) 

and similar forms, and in particular 

Uy (to) = Uo + 

gives — 
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§14. Thus denoting by R(e,) this first section of the joint term in radiation, we 

have on introducing the Doppler factor 

= dw ss tty | FeBtyty (V2 — Trt) G1de 

ae) = vlor-en—en | {B sits as V—o, (V—a,)(V—c,) 

o> 6, DU ti te i God tly — TU Ue, G,—(V? — Duy Us) G52) 

aye a tai Wen (Kano. | 

+ ce . {Sty tin + ..-} 

20,65 6, DU, te) Boog, (FZ (V2—-Tuw) Gey : 

ay Binet 5 s a Ca) im=a: aes 2 | ee 

in which the lines after the first are due to phase-differences. The z-component of flux 

of momentum is the same integral with the extra factor /,/V. For the moment we require 

these evaluated to the order V-> for use in conjunction with force on e, and work done on @. 

The evaluation is 

IML(E)\= 151 Vs [4adw, ti, + (8x, + Tus) Sty tty — ty [bs — BU te} + WL Vw (us —U,) — ti, Zar ]...(34a), 

R(e)= a ye Sit Uo + = AP [(22u? + 9S we + 9b.) Tri, tty + 27? Lr Wy + (11b, — 3a,) Vr itin 

+ (dy — Day") (bs — BE uy tig) + Vt Us (b; + YE %e) — Zr ty (b; — Zw ty)]...(B48). 

Now, working from the formula 2Z,, in (17), 

a ee i +inyl- a (b; — 5Sryiin) + 10%, Ery tip + 10d, 

+ 10%, (2b, — Su, U2) + 5g (3d, + ay) + 27°] ...(35.a), 

and Sé&'4,= a = Dt tin + ah [a, (bs — 5E ws) + 10b; Er, ti, + 206, Er, ti, 

+5 (3b, + ) Sutig + 27 Zu, We] ...(85b), 
Thus the sum 

| | 2e,e, K 
F,,(@,) + & = = Ea tly + te }— a (by — 4204 tin) — UW, (b; — BE Ute) + Ue (b, + TEU Me) 

+ thy (9b. + 22a, Uy — Tuy?) + tip (118, + G) + 277%, 3 ...(36) 

and the sum 

F d | 2e,e, ers: 2 
R(e,) + LE/u, = ai see. Sth ts +7 = {27° Du, tio + (11d, + a) Dati + a, (0, — 42H tin) 

+ bw (te — Uy) + Tuy ty (QE? + OE, to + 00.) soled) 

dE’ (e,) 
rk 

Next we observe that with these values of #’ and p,’ we have the relation H’ (e,)==p,'u. 

We now form the quantity Sw F,(e,) and subtract it from R(e,), ie. we take from the 

total rate of loss of energy that which is of mechanical order, due to flux of momentum, 

and denote by S(e,) the pure radiation which is left. We find 

@) 2 
Lu, Fz (¢;) ~Tisl ai [— 4a, See tin + (BBUF + TE ly) Dry ti, — Sey ry (b; — Tq %) 

+ QP ty Dt Wy — Tayi, Tai], 
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and thence 

S(e, a= 5 Vs LB ty, + = a [= La, (by — 420 ti) + 27? Diy, + (110, + ay) Tri. 

+ Lith tly (Db, + uy Ue — Vu") — Tuy ty (b; — BZ ay Weg) + Vt Uy (bs + TE ry te)]-..(38). 

S is linear in respect to (v,%,w,) and we find that S(e,)=—p,/%. 

We have then a scheme of relations 

& +f, Ore =0,. 28% Rie) ee eG | dt 

EF’ (e,) = Spy, S(e)=— =p th, R(ej=8@) Eu Fe)| 

Thus the conditions laid down that the sum of force and flux of momentum, and the sum 

eters (39). 

of rate of working of force and rate of radiation, should give time-rates of momentum and 

energy, are satisfied to the fifth order by our method of treating the integrals over infinite 

spheres. The position is confirmed by the simple relations which are then found to obtain 

between energy and momenta, and also between pure radiation and momenta. I have also 

evaluated the flux of momentum to the seventh order, where the flux contains upwards of 

50 terms (in the compressed notation with a, b), and this condition is again satisfied. 

The radiation condition of this order was not examined, but I feel little doubt that the 

whole scheme of (39) is exact. 

But if this scheme is of general validity, it is evidently possible to proceed in a 

different order, viz. to find integrals R and F, infer S and thence p and so & and £, 

that is to construct the whole scheme of forces of non-conservative order with expressions 

for momentum and energy, from the integrals at infinity. The advantage of this is that 

-these integrals can be evaluated without reference to the magnitude of w,/V, w./V; and 

there remains only the condition that the phase-differences should be small enough to 

admit of treatment by expansion. 

The application of this method to the self-terms gives the result 

g= 2e,° (ws ae i, )* t 

3V (V2—Su ay ew rol 

2e, 3 p=- ee& 2 dai, + Uy Uy ty ) 

3V (V2— Su?) (ea V2— Su)’ 

ite 
3 (V2= Su?) 

; 26° Uy DA, + Bt, Day . 3, (Lryw)!? 
— Ta = 1 5. TEP O a a 9 Sy, 2\2 

3V (V2— Su?) V?— su? (V?— Su??? 

with R and F as given above in (30). This agrees with the value of & given by Abraham. 

§15. The integration for the joit terms can be carried out by exact methods, and 

We propose to give this integration for the main terms, i.e. omitting those dependent on 

phase-differences. The integrals in 

we dw 

4a | (V—o,)(V —oF 

Vor. XXII. No. XI. 

Say Cc ou => - a 6 DUy Us Dit Us _ ( Uy Uy) Oy Fo 
R(e)= [Ete + ee ee aa Pad 

bo ~T 
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are derivable by differentiation with respect to w, or wu from a fundamental integral* 

over a sphere, viz. 

= (V2 — mw) do Fe = pe aml 1 fen ea 

in (V—«,)\V—o:) 2VG@2—AB °C-V@?—AB 2 °1- | a (41) 

with the notation | 

A=V?—Su2, B=V?—-SuZ, C=V2-—Smw, 22=(C2?—AB)/C | 

In differentiating it is also convenient to use y?=Ab/C*=1-—a*, and then from 

loy  % , Ue Loy  _& uy 

you, a Be? Y OUy BG 

we form = sae (-“ mi +2), where fi=y zr 

: ae, df, 
Extending the notation, Le. putting fe=Y Gy? .-, we have 

14+fA=H¥(F+A) L=PA+3A+H) H=~PAF+8At 5fathh 

leading to = 2+2A—f=—y"*(Atf) and 2%— f= QA+BAth, 
which with y°= AB/C? can be used to modify forms of the resultt. 

The integration yields: 

ae Lihte (foa—fi _ fath\ — Vth Vtetle (fot fs , 2a—Js 

( Be (Aaa) R(e)= CO \ Be ABET G 

i Lt Uy Vthtly (cae WE = ie Let, Tuythe (4 +s rae — fs) 

BC A C AC C B 

4 atl Sith é eastcfs 2fs~ Js) (42a) =. s Fn) | eager estan es 2a), 

* Using velocities (0, 0, w,), (v2, 0, wo) and putting V=1, we require 

=f. Be phi dnd Be 1 i } _dn 

4m 1l-w 1n) (1—w, n— Uy V1 — 22 cos p) 2} -1(1—wyn) Jiu — Bn, +n? (us? 24 w,2)’ 

for which we quote 

| dn a jog bn+-y (en—b) + N(a—2by + ey") (a—2bn+en*) | 

(y-n) Na- 2dn + en? "Va — 2by+cy? wan : 

and the integral is then ca ’ 
1 log + t1) { (aw, ~ b) + (c = bw,) + (1 —w)} von = 2bw, +e 

2 Vaw,2—2bw,+e — (1—2w,) { (aw, — b) — (c - bw,) +(1+w,)} Naw? — 2bw, +e 

3 me, 1 = wy Wy + Naw? - bw, +¢ 

2 J/aw,? — 2bw, +¢ 1 = ww, We - Va Ww)? — 2bw, +e f 

To get the last form cross-multiply the fractions and use 

aw, — b+ w, (¢ — bw,) = (w, — we) (1 — wy wg). 

Then note that aw,? — 2Inw, + ¢=(1 — wy wy)? — (1 — wy) (1 — u.? - w,*), 

write V where 1 appears, and the general character of the result is evident. 

+ Opening terms of expansions: 

fx are fant oe pee Skt iat pate 82? 8x4 

Peek Heskjar i alsin lS raaamiapencss 
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Palen) = Sop | 4 FF ta ep, — fy) — Seat 4 fy 
Sut, Sant Dtyus Vustis 

+ tae BES (ft fi) + a f+ 2. 
Lue Duh eae LUs the 

BC? (Js ; — fi) -—-—> 

(S37 . 

+ Ber (f —fi)+ (2f.—f:) 

Lint, Vuyis 

ABC 

ty (Tuy te zak the Siu, Duit,\ - ee 
+a B G2) ith) + B(= C = 7 ) A] alee giesie eee (42 b): 

Li, Un Sis Us ean 
Gia= ts) + BC Mei) 

thence 

S(e)= 
€:€> Suzi, Ducts Sis Duty My Uo 5 
oe (=3 (23 fh) ape (Atf) + = HE Va) 

Lath Teyily 

C? 
Diy zs ths aay — Sapaue (42 c), 

and 

Dus ta 2Us the Uo Tuyo > lo 

E’ (@)= 

If here we write F,(e,) =a, +. Bus + ai, + Byis, then 

R(e)— 8 (e) = Sm F(a) = V2(a + 8B) — (Aa t+ CB — a Sui — B, Emin), 

if for Su,2 and Sw, we introduce V?— A, V?—C to compare with the forms in (42). It will 

be found that R(e,)= V*(a+ 8). Thus we can go a step further, and say that the evaluation 

of F is the only integration needed. This does not appear to be affected when the phase 

‘terms are introduced, though the form of F is thereby extended to 

F’,(€)) = yu + (au, + O%,) + (Bro + Bytig + Boiiz + ...). 

An example of this is seen if we look back to the fifth order value of F,(e,), when we 

find that V?(a+ 8) gives correctly the third order term in R. Also in obtaining the value 

of F,(e,) to the seventh order I found that these terms give correctly the value of the 

fifth order term in R, a further addition to the evidence. 

§ 16. A case in which the formulae are much simplified is got by writing 

U = (mh, + Motz)/(mM, + Me),  UW= Ue — 

and then assuming that wu is negligible in comparison with U, while U is negligible in 

comparison with zw. Thus in effect we put U for wu, or uw, and U=0 makes w, =— mu/M, 

%, = mu/M, where M=m,+m,. As a first poeees we then get 

stay a nt 
Re)=- ie 2 ss eo (8) 
Uke) “oo = ae ons 7 

27—2 
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with the same values for S(e), R(e) and F,(e). Hence with the self-terms the totals 

of radiation, and the sum F,, concerned in total linear momentum, are 

2 (€ ms — &m)? V { Sw ee (2Uu)? | g k= >U?) ae UR 

3uP (V2— SUP” (V2 = SU2yJ ’ "i V2 2 ee ~ 

These quantities vanish for a like pair with the property e,:@ =m: m.; while for a neutral 

R= (44). 

pair (€,m.— e,m,)?/M* =e, or e,* 

The sum of the self and joint terms in the momentum of e, is 

7.) 20: (Me —esm,) ( . U>Uu zs 
Pp (@) = 3 MW Vivi=s SU?) V2— Sl? ele wins aie vinci s)u elejelsle vive cia’ (45 a), 

and therefore the total linear momentum is 

2 (G+ @) (Gm. — em) (. — UsUu 3 
3MV (V2— S02) V2 SOR ces (45 D), 

which vanishes in both special cases. 

§ 17. It is proposed to examine in detail how the primary motion is modified by the 

main dissipative terms, those of the third order, which we shall treat as small quantities while 

gnoring the conservative terms of the second order. The equations of motion are 

Cie ees eel ea, 
a + 3 ya (erth + @ils), Mwy =— a 3V8 (Githy -F @ntin)!  J.ceeeees (46), Mz Uy = 

and the integral of linear momentum is 

(Aaa VAR AO V2) oneacosnsooussonoccese (47 a). 
2 

TU, + Ms Us — 373 

For a neutral pair this reduces to the primary form, and the relative motion only is affected. 

For a like pair with the ees @, 2G = ™M,:Ms, (47 2) viele 

(e+ e,)? t/3MV* 
MyUy + MzUy — P = {(m Wh + Meoto)¢-o — P} e i neg ed) . 

which requires my, + mst. =P a and therefore always, unless we are to suppose that 

linear momentum can increase indefinitely. In this case the problem is reduced to that 

given by the primary terms. 

But if we take the problem of (46) with general values of e, and e,, and introduce in 

the small terms of (47a) values resulting from the primary solution, we get 
? 5 

Nae 
My, # My — = eet ee 2) ( (= = “ ) = IPR tere hos bien 8 MEER (47 6), 

1 

and for relative acceleration 

C621 / 1 1 ) 2, Msii / € e; ) 
i= . 

3MVs (= m, (pe Ga Mo 

2 9. Ne 
With the notation j= -syr ae = 

(1 . 1\. Qi 
we have li + mi + nw = ail oa ) + ai Rao SUCRE RCODO SOT COO (48), 

v2 \m, Me r 

and : a —yl=— g (wv — yu), ... | 

shewing central acceleration and areal change in convenient forms, 
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With multipliers w, 1... m (46) the equation of energy is 

d [im Ms C4 92 , , 2 ; ae 5, 2 g Stat = o Suse + = ane & (G1 + Cote) (yt, + Cotto) | = ap S (ety + Grte)?...(49 a2). 

: ? : <P Cel . 
Write et) + sto = ( - “) += in the small terms of #, and introduce the momenta 

Ms ‘ti, 

trom (47) and we get a simplified expression for # in the form 

=P? mm Ge. | mym pr E _ 1 fila yy Ye ete 1 1 2} 
=~ + - >) SS ORONO KH HER SOTORCRCOE UAE 49 au + 2M ~ Mr? (29.2): 

: eee 2 ; ae Peres eee 
The rate of radiation 5 73 = (Cats + Cetin)” has the value — oF in fact 

dz ees “3 
a =P = sade sce eee ease ince eee eee ae niso ans canal (50). 

The loss of energy by radiation in one revolution is 

dt pae fr dO _ au - _ 4&PT (5 
= peves|, ay iE = ie "(=e cos 6): dé sarge + e)...(51 a), 

and the mean rate of loss, on division by the period, is 

_ peres (2 +e’) 
2a‘ (1 — e)2 

where in the small terms we have assumed the results of an elliptic orbit, & being the 

constant of areal description, and e, a, and 7 having the usual meanings in Conics. 

S552 ae Sele sonst (515), 

§18. So far it has been possible to dispense with an account of the actual deformation 

of orbit: this we proceed to consider in the simpler case where the motion is plane, and the 

position in polar coordinates is defined by 
- dh__?p 2 le ee a 3p d 1 

dé Po. Pp CPE h? Mm) hr dr 

€,€/ 1 1 = a ) 
k? \m, Mm 

Pear oscars (52). 
™m, 

, DEM cos 0) The solution based on the fundamental solution h =k, = 

when radiation is neglected, is 

h=k(1+«)—7 (0 +esin 8) 

Gale So 

7° Te : =f: F (20 —esin 6 — 3e’sin @ cos @) \..-.(53 @). 

z 
7 
-=1+ecos@—2«+acos@+ PB sin @ +F (20 2a cos @ + ée* sin d cos 8) 

dr @r 

’ dd’ d& 

have h=k at 0=0, by taking a=x=0, B= =% (2 2 is + e). It appeared however in 

The orbit can be made to agree with /=7r(1+e cos @) in respect of r , and to 

dealing with the period and some mean values, that oe formulae are obtained by making 

this agreement correspond to 6=7 in the middle of the circuit. We make use of this deter- 

mination, which gives 

Ur — We SP (5 ee 2 2 a2 Ohi” B=7) (2 até SOc ORC CORO ROBO E DEE (53 b) 
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In (53a) we distinguish between a cyclic and non-cyclic perturbation, Le. we write 

= 1+ecos@+ U, in the first revolution, and 

T= 1+ecos 0+ Uy + Ue or L+ecosd+U, +47 7 (4 +e cos 8) 

in the second revolution. 

Thus we suppose that the @ which occurs in U, is always between 0 and 27. 

, 
If then the constants of the modified ellipse in the second revolution are I’, k’, e 

ray (it er), e (1 +47), é =e 4 
Ea kl a a 

es a : areal Ree NO (54). 
Toe j —_ 2p (2 aes L, Perit — Bee oS , kl —é) oi ) 

The period in the orbit is 

Ao ae males 3p (a — 0) dé 

2 le 7 ee 1+ ee + | (1 + ecos 0)?’ 

where terms containing sin@ are not written. This gives a normal value to the period, viz. 

Qari? /k (1 —¢) ~ Qara?|V — e,e.M/mymy. 

The term to be added for the next revolution is 

P fie (— 6p7r) dé ee: _ Sprtl(2+e) 
Jo kl +ecos 6) (1 —e&)? 

k 

ie. the next period is 

ri ss faie (> 2) Sa 
= i ora"? |v Selene 
k(1 ey | kl(1—e*) | 1 [ 

which conforms to the modification of the fundamental ellipse. 

In the same way the mean potential energy taken for a revolution is 

» [dt ee [rdée mi fen) 3p (a — @) a dé 

NT Lh I |p Qkl = «Bkl(1+ecos@) ~~} 1+ecosé 

Q7re, e2l _ 122 : a ES ee wi (55). 
yi 

= i : a rolath - — mm ade is 
The mean kinetic energy of relative motion or OMT Dwdt 1s 

gl eee 2 ae oa} +..| Ber 
IMT Jo ~ 1+4ecos6 kl ~ T+ecos6 * 1 +ecos6) 1+ecos@ 

mya ke my mz ke _ _ es b 
= iia wal ie ee ee (56). 

These values are normal, and it is readily shewn that in the next revolution the 

means retain the same form with the altered values of a. These values give as the loss 
9+ 9 

) oe Pee Te) in agreement with (51 a). cis 
of energy in a period, == 

2 a a 
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§ 19. The loss of energy is associated with a contraction of the major axis, and a 
diminution of eccentricity. The mean kinetic energy of relative motion is inercased by 
an amount equal to the loss of energy by radiation, and the mean potential energy bears 

the double loss. This is an immediate consequence of the maintenance of the relations 

eR) and, 1: Uh pee ene cee sews: (57), 

where JZ’, and U, are mean values of relative kinetic energy and of potential energy. 

A brief statement may be made in respect to hyperbolic orbits, where the total radiation 

may be calculated, a quantity which in the theory of point-charges represents the radiation 

due to a collision. For the attractive case make the comparison with the fundamental 

orbit J=7r(ecos@?+1) at O=0, ie. take a=0=« and 8 =f (2 + Sa e). The radiation in 

the complete orbit is 

2pe,é, [7% és 1 Go : 
= i ih (1 + ecos 6) dé = — = (2 + e*) (7 — &) + 3e sin O,} ......(58 a), 

7 
where @,< 5 and ecos@,=1. 

For the repulsive case we get 
Pers . eee ETE (2+ 2) Oy — Be sin Oa} eee cevc scons eeconneeee (58 b). 

: Dee 
The value of the constant p when e, = —e,=e is P= 30% mime? and if we suppose 

: : : . : 22 /e€\? 
that e, is a negative electron, so that the ratio m, : m, is small, then P=aplan) . The 

2 Ms 
A ae 5 266 - = = a = s 

coefficient of the bracket in (58) is then ome — yar if J is eliminated, it is 

2 e2\5 

3m,' V3 7) - 

For the elliptic orbit formula, (51 5) is 

2+ ¢ ; (2) e\' 

3V2 (1 —&): \M 

_2/ 2 \ 
and the number £ occurring in the orbital changes is 3 (ackV) ; 

It may be noticed that if @ is taken inversely proportional to temperature 6, then the 

kinetic energy of relative motion is proportional to @, and the rate of radiation to 

This is no doubt a significant point; but application to the thermodynamics of radiation 

probably demands a statistical treatment of a large number of elements and the groups 

which they can form. 

§ 20. I have also solved the problem of the primary motion as modified by the 

terms of second order, which when e is finite gives more trouble in the integrations. The 

results are of the type found in discussing the question of a modification of gravity as 

applied to explain secular changes in the orbit. For the present purpose their importance 

seems hardly commensurate with the space needed to prove them. 
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In conclusion a brief review of some points in the paper is added. 

The fact that a form 2Z,, is used to give force on e while 2Z., gives force on &, 

raises a presumption that the kinetic potential has not a normal character. The departure 

from normal type is not easy to locate exactly, without the use of an expansion proceeding 

by powers of V—, an expansion certainly valid for a wide range of motions. It is then 
definitely located in the section of terms of odd order, and these terms only are concerned 

in radiation. 

The even groups in Ly. and £., are shewn to have dynamical equivalence (§ 4), 

and to form an entirely conservative system if treated alone (§10). This conservative 

section, when acceleration is negligible, admits of a quasi-stationary kinetic potential without 

assumption as to smallness of velocities. 

Electromagnetic force is known in respect to odd or even sections: in the conservative 

section an expression for energy follows at once, in the dissipative section not until radiation 

is evaluated. Closely connected with this is the question of localizing momentum and 

energy, i.e. distinguishing the parts attached to the two charges, a problem solved for the 

conservative section by the use of the kinetic potential. For the dissipative section it is 

necessary to call in the aid of fluxes at infinity. In view of the fact that two centres are 

concerned it is not immediately evident how this flux is to be treated. But the fact 

that we are using information furnished by two methods implies that a correspondence 

is to be found which will be a criterion of correct treatment of the flux. The agree- 

je—-ment of two methods of reduction to a one-time system is involved. 

This adjustment is in fact attained as far as the approximation extends, and it is 

presumed that the scheme of relations (39) so deduced has general validity. This carries 

with it the possibility of presenting the radiation from two sources in a form free from 

limitation as to the magnitude of velocities; and also of deducing expressions for the terms 

of odd order in energy, momentum, and force directly from the fluxes at infinity. The 

integrals concerned are all derivable from one fundamental integral (41) involving the sources 

in a symmetrical way. 

It will be noted that the argument in general deals with joint or product terms 

in the action of two point-charges. The transition to self-terms for the dissipative section 

presents no difficulties; in the conservative section infinite values would appear. It is only 

in this connexion that the necessity of giving finite though small dimensions to the electron 

arises. The method used in the text does not postulate definite structure, but I think 

the decision in the matter must be left to experimental evidence as to the ratio of two 

inertias in the case of rapid motion. 

a 
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An Essay in Proving the Obvious. 
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1. Introduction and summary. 

The objects of this paper do not include the introduction to its readers of the sets of 

points with which principally the paper is concerned, for with these sets every mathematician 

is well acquainted; the set which is here called the field of a set I is the least convex set 

containing I’, and I have given the name of cordon to the boundary of this set. 

Vor. XXII. No. XII. 28 
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In a number of simple cases the field of a set I’ may be defined in terms of centres 

of mass: thus if T is a curve of finite length, and line density is given to I, the position 

of the centre of mass of IT’ depends on the distribution of density, but there is a certain 

region F‘T such that however the density may be arranged, continuously or discontinuously, 

provided only that the density is nowhere negative, the centre of mass lies in FT, and 

such moreover that whatever point « of F‘I’ is chosen some arrangement of density can 

be contrived which brings the centre of mass to #; it is this region F‘T which is in this 

case the field of T. Again, if TI consists of a finite number of points in a plane, there is 

only one polygon, in the Euclidean sense of the word, which has all its vertices at points 

of T, has no reentrant angles, and has all the points of [ in its interior or upon its 

sides; in this case the sides of this polygon compose the cordon, and the field consists of 

the cordon together with its interior. From these two examples the importance both of the 

field and of the cordon will be recognised; the field is involved in almost all mean-value 

theorems in multiple integration, and the cordon, apart from its relation to the field, is to 

be found in use in the Newton parallelogram for dealing with branches of a curve and in 

the Puiseux diagram in connection with linear differential equations. 

The bulk of this paper is concerned solely with plane sets of points, and what is offered 

is a definition of the field of a set [ in a form at once applicable to plane sets of all kinds, 

limited and unlimited, open and closed, and convenient for the development of the properties 

of a field. The essence of the definition consists in the use of a geometrical element of 

which, as far as I know, the introduction is a novelty ; this element, which I call a leaf, 

consists of a point together with all the points of some line through it which lie on one side 

of it and all the points of the plane which lie on one side of this lime; no set of a quite 

simple character can reasonably be called a half-plane, and there is no set simpler than a leaf 

which more closely resembles its complement. A point « is said to be outside the field of T 

if there is a leaf which includes « and includes no point belonging to I’, the field is the 

complement of the set composed of points outside the field, and the cordon is the common 

boundary of the field and its complement. The cordon in general les partly inside and 

partly outside the field, and an account is given of properties distinguishing the two portions 

of the cordon. 

After such explanation as seems necessary of the notation adopted, the paper proceeds 

to exact definitions of the sets of special kinds which are used, it being stated in each case 

what part, if any, of the boundary is included; the theorems of which use is to be made 

are enunciated, proofs being omitted, but in two cases where existence theorems (11°37, 11-42) 

are required constructions are given. With the definitions of the primary (12:11) and 

secondary (13:12) chords and of the cross points (1411) of a set we come nearer to our 

main topic, and the digression to the definition of a convex set (15°11) is not irrelevant. 

Two ideas of which much use is subsequently made are next explained; roughly, the ex- 

eluding angle (1612) of a set for a point is the angle of the biggest sectors which have 

the point for vertex and have no points of the set within them, and a sector = is called a 

limiting excluding sector (16°13) for a set [if = itself contains no points of I’ but every 

sector with the same vertex as } of which = is a proper part does contain at least one 



OF A PLANE SET OF POINTS. 217 

point of [: in this connection it must be noticed that in anticipation of this stage our 

formal definitions (9:11, 9°12) of a sector are such that no existent sector contains any part 

of its boundary. Each point of a plane falls with respect to a set I into one of three 

classes, denoted by U‘T, V‘T, and W‘T, according as the excluding angle of I’ for it is 

greater than, equal to, or less than, 7, and the only propositions in the paper of which the 

proofs are tiresome are those (1835, 19°45) which describe characteristics of the sets V‘T 

and W‘I. These propositions established we define the field (20°21, 21:11) and the cordon 

(2114) of a set, and we have no difficulty in demonstrating so many properties of these 

sets as to render it evident both that our definitions are well adapted for the development 

of formal proofs, and that the subject is one in which what is obvious is true. Something 

is said of the nature of the field of a set with respect to any relation in space of any kind, 

and of the properties of the field in Euclidean space of any finite number of dimensions, 

and the paper concludes with suggesting a line of research. 

The principal theorems regarding plane sets of which the paper contains proofs may 

be summarised as follows: 

I. The field of a plane set I’ is composed of the points of [ and the points lying on 

primary and secondary chords of [; if the set I’ is connected or is the sum of two connected 

parts every point of the field belongs to I’ or to a primary chord of [: (26°15, 26°31, 12°14). 

II. The field of a plane set T is itself a convex set containing I, and is the set 

formed of all the points common to all convex sets containing [: (22°34, 21°22, 26°59). 

Ill. If a set is enlarged by the addition of any part of its boundary, the cordon is 

unaltered : (24°23). 

IV. The points inside the cordon of I are the cross points of T° and the points 

lying on secondary chords of IT, and they are the points for which the excluding angle is 

less than 7: (23°36, 19°45). 

V. A point. lies outside the cordon of T' if there is a straight line parting it from I’: 

(23°59). 

VI. If the cordon consists of the whole of one straight line or of two parallel straight 

lines, the excluding angle for every point outside the cordon is equal to z, but in all other 

cases in which the cordon exists the excluding angle for every point outside the cordon is 

greater than 7: (23°65). 

VII. A point of the cordon of I’ which belongs to the field of [ belongs either to T 

or to a primary chord of [: (2414, 24°16). 

VII. A point of the cordon of [ for which I’ has an excluding angle greater than 7 

either belongs to [ or is a limiting point of [: (2414, 2415). 

IX. Unless I’ consists of only one point, every point of the cordon of T is a limiting 

point of points on primary chords of [: (24°13). 

2. Haplanation of logical symbols used in this paper and not described in Chapter I of 

the Introduction to “Principia Mathematica.” 

Except in the use of the letters B, C, D, F and in the absence of any sign of assertion, 

the logical notation of this paper is that of Principia Mathematica. There are only a few 

28—2 
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symbols used here which are not among those explained in Chapter I of the Introduction 

to that work, and by describing the use of these I hope to render the paper intelligible to 

anyone familiar with that Chapter. 

If a symbol is introduced to give brevity to a few proofs without any implication that 

the idea associated with it has permanent value, the definition introducing the symbol is 

called a temporary definition, and the letters Df which distinguish a permanent definition are 

replaced by Dft followed by an indication in square brackets of the extent to which the 

new symbol is to be used. 

If « is a class whose members are classes, that class whose members are all the terms 

which belong to every member of « is called the product of « and denoted by p‘«, and 

that class is called the sum of « and denoted by s‘« which is such that a term belongs to 

s‘x if and only if there is at least one member of « to which it belongs: 

2:21 pie=FZ{(a).aexDxea} Df, 

22 se =@{(qa):aex.xcea} Df 

The number of members which a class a contains is denoted by Ne‘a; thus if Tis a 

set of points, Ne‘I’ denotes the number of points in the set, while if « is a class of sets 

Ne‘« is the number of sets belonging to x, but the number of points concerned in the con- 

stitution of « is Ne‘s‘k. 

The authors of Principia Mathematica have occasion to use two different pieces of 

symbolism for the one idea of the class formed of those terms which have a given relation R to 

a single term; in our applications, the terms in question are in fact always sets of points. 

If R is a relation which is not in all cases one-many which holds between one set of points 

and another, the class of sets whose members are all the sets which have the relation R 

to T can be denoted by either RT or (sg‘R)‘T. The relations which we denote by single 

letters are all as a matter of fact one-many relations: if R denotes one of these relations, 

there is only one set which has the relation R to T, this set can be denoted by R‘T, and 

the class of which this set is the only member is u‘R‘T. Thus almost all of the cases in 

which we require a symbol for a class of referents are cases in which the use of an arrow 

is inconvenient or its appearance unsightly: for example, to print an arrow above the group of 

letters exlf, which occurs in one of our most important definitions, would not only be inelegant 

in formulae but also affect the spacing of lines if the resulting combination occurred in the 

body of the text. To limit the groups of letters used in expressing relations to groups with 

which we do not object to printing an arrow would in many cases prevent such a choice 

of letters as assists the memory, and uniformly we adopt the alternative notation; for 

example, the group of symbols that occurs in 20:22 is (sg‘exlf)‘I’, and in 43 we use (gs‘e)‘x 
+ 

rather than ef” for the class formed of the sets to which « belongs. 

There is one feature of the notation of Principia Mathematica to which attention is 

not called in the first Chapter, although it is recognised later as a natural outcome of the 

theory of classes there explained. Possession of any property which objects of any kind, 

individuals, classes, relations, may have, can be treated symbolically as membership of the 
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class of objects possessing that property. For example, we have presently to define what 
is meant by the assertion that a set of points is united, and the symbol which is intro- 
duced to correspond to the idea of a united set is a symbol not for an adjective but for 
the whole class of united sets: we write ['e Ud just as we write wea, but while in the 
one case we read “# is an «”, in the other we may read simply “I is united”; the dis- 
tinction between possession of a property and membership of a class is one of language 
alone, and needs no embodiment in logical symbols. An immediate consequence of this 
result is that, if we wish to denote that a set has one or other of a number of properties 

or has several properties simultaneously, we can use the ordinary notation for the logical 
sum or for the logical product of classes: for example, the numbers 0 and 1 are themselves 
regarded as classes, and the condition 'e0u 1 is equivalent to the condition Te0.v.Te1; 
similarly important properties of sets are expressed by the terms complete set and congre- 
gate, Cp is used for the class of complete sets and Cg for the class of congregates, and to 
write ['eCp a Cg is to assert that TF is a complete congregate. 

It is chiefly as a form of shorthand that the notation of Principia Mathematica is 
required in this paper. Nevertheless to frame definitions in the form which this notation 
is best adapted to express is the surest guarantee that the ideas involved are logically precise, 

and in this connection I owe thanks to Prof. Whitehead himself for criticism of my manu- 

seript which has led to considerable modification in the formal definitions contained in the 

earlier sections. 

3. Definitions adopted from the general theory of sets of points. 

The explanations yet given are virtually extracts from Principia Mathematica, accounts 

of general logical symbolism. Next must be described the notation used to express certain 

ideas peculiar to the theory of sets of points but common to all parts of this theory, and 

this is done quite briefly, the reader being referred for a fuller discussion of the ideas in- 

volved to a paper shortly to appear in the Acta Mathematica. Throughout I use ¢, u, », w, 2, YZ 

for individual points, zy for the distance between x and y, I, A, ©, ®, WV for sets of any kind, 

V for the universe of points, that is, except in sections 27—29, for the set composed of 

all the points of the plane in which our sets are supposed to lie. A denotes the null set 

of points: that is to say, to write I'=A is to assert that there are no points satisfying the 

conditions that define membership of I’, so that for example the formula T'AA=A expresses 

that [ and A have no common point; q!I denotes that I is not null, and is the contra- 

-dictory of [= A. 

If I is any set, I denote by C‘T the complement of T, the set formed of all points 

which do not belong to I’, by D‘T the derivative of I’, the set formed of all the limiting 

points of I’, and by G‘T the set obtained by completing I’, that is, the set Mu D‘T obtained 

by adding to VT all those of its limiting points which do not belong to it; also I denote 

by Y‘T the edge of I, that is, the set M'a D‘C‘T formed of the members of [ which are 

limiting points of the complement C‘T’, and by B‘Y the set known as the boundary of TP, 

that is, the sum of the edges of I’ and its complement, and I describe the set [T— YT, 
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which is the same as [— D‘C‘T, as the set obtained by clipping I’, and denote this set 

by HT: 

321 CA Vi fe 

22 DV=Z{p >05,(qy)-yel.0<ay<p} Df, 

23 Gli oe IE. 

24 WEr=CfaDCcr Df, 

"25 BR VED VECI DE 

26 APG aby St 

A set is said to be dense if every one of its points is a limiting point, complete if it 

contains all its limiting points, a domain if it has no edge, and limited* if it does not 

extend to infinity; the contractions used are shewn in the following formal definitions: 
A 

31 Ds— Ine Die Dr 

32 Cp=F{DTCTr} Df 

33 Dom=f{YT=A} Df, 

B4 Lm =P {(qp). PEO 2 a —apte Wits 

From ‘38 and ‘24 

“315 TeDom.=. DOr CCT, 

and so from °32 

36 TeDom.=.CT «Cp, 

a property that might be used to define one of the two classes Dom, Cp in terms of the 

other : 

37 Dom = C“Cp. 

The definitions 

"38 Cl=CpoLm Df, 

39 Pf=DsnCp Df, 

shew the useful combinations of properties associated with the words closed and perfect. 

Formally the null set belongs to all of the classes defined in the last paragraph; some- 

times it is convenient to express briefly that a set is an ewistent set with the property 

characteristic of a class of sets in which the null set is included, and to this end we add 

ex to the symbol of the class+ to denote that the null set has been removed: thus we write 

“41 Domex = Dom —t‘A Df, 

and so on, and we have 

“42 Te Domex=.q!T. Ie Dom. 

I propose to say that a set [' is a congregate§ if in every expression of T’ as the sum 

of two sets of which neither is null, the sets obtained by completing these sets have at 

* It is only in certain kinds of space that this property § The reader will observe that a set that is connex 

defines a limited set, but Euclidean space is of one such in Cantor’s sense is not necessarily a congregate; a pair 

kind, whatever the number of dimensions. of conjugate hyperbolas is a connex set formed of four 

+ Compare Principia Mathematica, »60-02. distinct congregates. 
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least one point in common, and to describe a set I’ as united if every pair of points con- 

tained in [ belongs to some closed congregate contained in I’, writing 
A 

51 Ce=T{T=OvO.qg!90O.q! PD: 3, 0q!GOn GD} Df, 

52 Ud=P {y, ze Dy,2: (qA)-AcClaCg.y,zeA.ACT} Df. 

Any existent set I’ can be expressed as the sum of a class of mutually exclusive united 

sets, and these sets I call the cells of T. To keep the definitions as simple as possible, it 

is best to write 

53 Ky‘x=9 {((qA).-AeClaCg.z,yeA.ACT} Df, 

without the hypothesis that z belongs to [: this definition gives 

“54 weCT D Ky‘cx=A, 

but to define the class of cells of [ in such a way as not to include the null set we have 

only to take the definition 

“55 «eT =K ST Def, 

which is an abbreviated form of 

56 «T=K (qa). cel. K=Ky ‘ah. 

The number of cells of I, that is, the number Ne‘«‘T’, is precisely the number which 

common sense assigns to the distinct parts of which [ is composed; the null set has no 

cells. The notation of °53 is essential to the elegance of the definition *55, but is imadequate 

when the set whose cells are under consideration is given not directly but by a construction 

of any sort, and we therefore write also 

aye K*(z, T)=K;j‘x Def. 

There is one idea which in its general form most naturally depends on united sets or 

on cells, which we use in a particular case. A set © is said to part two sets T, A if T 

and A are both contained in the complement of ©, but no cell of this complement includes 

members of both I’ and A; an equivalent definition is that © parts T and A if T and A 

are both contained in the complement of © and if every closed congregate which includes 

members of both [T and A includes a member of ©. In the second form the definition is 

formally independent of the definition of a united set. Taking the first definition, 

‘61 C@® part (T, A)=:. PuAC@:yel.zeA.d,, Keyn Kz=A Df, 

the equivalence is expressed in the theorem 

62. @ part (T, A)=:.On(TuA)=A:VeClnCg.q!iVal.qiVnA.dqiVad®. 

We have in this paper to consider the relation of a point « to a set I. when there is 

a straight line 4 which does not pass through z and is such that no point of I lies on h 

or on the same side of h as #, and we adapt the general notation to this case, expressing 

the relation by h part (t‘z, I); but we can easily give a definition applicable only to special 

cases, putting 

63 heStlD:h part (fs, T)=.yeT D,qthaz—y Df, 

where Stl stands for straight lme and z—y for the set of points lying between # and y on 

the straight line joining them: it will be noticed that of the definitions given in this 
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section, the last is the only one which is not valid in space of any number of dimensions. 

If « is a point not on a straight line h, there are lines parallel to h between x and h, 

and therefore 

3°64 (qh) ~heStl.h part (uf, T):3:(qh).heStl. h part (ufx, GT), 

and since the converse implication also is true we have 

65 (qh). he Stl.h part (x, T):=: (qh). heStl.h part (tv, GT). 

Following American writers, we describe a set as connected if in every genuine 

division into two parts one of the components contains a limiting point of the other: 

TW Cd=PT=Ov8.g!0.q!0.3o.qG!OnPvOnDOuDOn® Dt. 

Substituting Tn A, Pa C‘A for ©, ® in this definition we find 

aie TeCdd:qilaA.q! PaCA.d,q!Pn BA: 

a connected set cannot vault a boundary. On the other hand 

73 OnGO=A.GOnD=A.A=2 {(qy)-yeO.zePD, yz > 22y} . 

D:O0CA. BECCA. (Ov) n BA=A, 

shewing that if a set is not connected there is a boundary which it does vault. Thus 

we have 

74 Cd=PiqiPadA.qilaCA.d.q!0n BA, 

the fundamental theorem that expresses the precise degree of continuity belonging to 

a connected set. From ‘74 it follows that every united set is connected, a result of which 

the symbolical expression is 

Td Ud C Cd; 

the converse of °75 is proved false by the actual construction of connected sets that are 

not united. 

4. Straight lines and rays. 

In the following discussion of certain parts of the theory of sets of points in a plane 

considerable use is made of sets of several particular kinds, which we commence by describing, 

and we reserve particular symbols for sets of these kinds. 

To denote that a set T° consists of all the points composing a straight line we write 

TeStl, and we use g, h, and & only for straight lines: 

411 Stl=straight line Df. 

If / is any line through a point a, the set h—t‘x consists of two similar cells, one on 

each side of «; each of these cells is called in this paper* a ray, and of these rays @ is 

called the source and / the line. For formal definition we take 

"12 Ray = e (qa, h) heStl.weh.Tex(h—w)} Df, 

* The most useful sense of the word ray in pure Hlements of Quaternions, § 132, ex. 4 (p. 119 of the first 

mathematics is to denote a directed straight line, but (1866) edition; pp. 121, 122 of the first volume of Joly’s 

directed lines are not required in the study of fields and (1899) edition), uses ray in precisely the sense adopted 

cordons, and the word ray is convenient; Hamilton, here. 
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and for rays we use a and ¢; to denote that # is the source of the ray a we write aefa« 

or zfea, and to denote that h is the line containing the ray a we write hlea or aclh, 

the use of any of these expressions being taken to imply that a is a ray and also that « 

or h as the case may be is a poimt or line; a ray a has only one source and only one 

line, and these may properly be denoted by fe‘a and lc‘a, but the rays issuing from a 

common source « form a class (sg‘ef)‘# and the rays situated in a line A form a class (sg‘cl)*h 

and both these classes have infinitely many members : 

13 lo=h@ {ae Ray. heStl.aCh} Df, 

14 el=Cnv‘le Df, 

a5 le e l> Cls, 

16 ef =@2 {ae Ray.aex‘(lefa—u'x)} Df, 

“aly fe=Cnv‘ef Df, 

18 feel Cls. 

If a is a ray, le‘a —e‘fe‘a consists of two cells, each of which is a ray; one of these 

rays is the ray a itself, the other is called the reflex of a and we denote it by rfl‘a: 

Al rfl = @ {a e Ray .c=Ie‘a — tfe‘a—a} Df, 

‘22 ae Ray D: E!rflfa. rflfae Ray. 

If x, y are any two distinct points there is one and only one ray issuing from « which 

contains y, and we denote this ray by «— y; the reflex ray, which issues from the same 

source in the direction away from y, we denote by a<y. The rays issuing from x form 

the class (sg‘ef)‘, and the sets containing y form the class (gs‘e)‘y, but we must define 

zy as s‘\(sg‘ef)‘r a (gs‘e)‘y}, or from a simpler formula by 

31 r—>y=st\jaefx.yea} Df, 

not as (@ jaefa.yea}, for although 

By ertyDE!%G lacie. yea, 

and for any class of sets y 

33 Blifyd.iy=s‘y, 

the class @{aefx.xea} is the null class of sets, and (@{aefx.xea} does not denote A 

but is meaningless; on the other hand s‘@{aefw.zea} denotes by definition the set 

2 {(qa)aefx.x,zea}, and since the condition (qa).aefa.«,zea can in no way be satisfied, 

this set is the null set A. Thus ‘31 yields as we desire 

B4 vty d:c2—yeRay.coyefc.yexr—y, 

35 t—>uv=. 

Considerations somewhat similar prevent us from defining #«y formally as rflfe—>y: 

the null set is not a ray and this definition would leave #<~z meaningless; it is 

sufficient to put 

36 ve—-y=sl\aefic.yerfiifa} Df, 

Vou. XXII. No. XII. 29 
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and then we have 

437 ety Ji:7e—ye=riey, 

38 ce—ar=N. 

The set e<—~y must not be confused with the set y—»#; both are null if y coincides with 

a, but in general the former is a proper part of the latter : 

“39 etydi:2eyCyre.qlyor-“2ey. 

5. Chords. 

If y is distinct from 2, the common part of the sets sy, y—>w is the set formed of 

all points between « and y on the line through them; in any case this set is called the 

chord xy and denoted by #—y: 

511 L-y=xraynyoun Def; 

the set obtained by adding to this chord the poimt # is denoted by w+ y or ya, and 

the set obtained by adding both the end points 2, y by Hy: 

“12 gey=2—-—yvia Df, 

als eay=a2—yvity Df, 

‘14 cHy=r-—yviicury Dé. 

Two useful elementary propositions are 

21 ZELY =-LZ=H->Y, 

‘22 Z€Le—Y=LEY —Z, 

of which the second is equivalent to 

"23 2e—y=2 {vey—z}; 
and we use also 

“24 y+u.=xeD(x—y), 

25, y+a.=reD(aHy). 

If y coincides with «, the chord —y is null, but the completed chord «+ y has the 

one member #; the case of coincidence is the only case in which the derivative of the 

chord is contained in the chord, and also the only case in which the finished chord is not 

contained in its derivative : 

26 Y=e.=.2—y=A, 

Hf Y=HR.=.L£Hy=o. 

6. Triangular domains. 

If three points , y, z are not collinear and w is any point in the interior of the triangle of 

which they are the vertices, there is a length p, namely the length of the shortest, or of one of the 

shortest, of the perpendiculars from wu on the sides of the triangle, such that every point v 

whose distance from wu is less than p also lies in the interior of the triangle; in other 

words, the interior of the triangle is a domain. This domain is called the triangular domain 
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ayz, and we denote it by tridom“(z, y, z); it can be defined formally in terms of chords, a 

simple though unsymmetrical definition being 

611 tridom‘(z, y, z)=% {(qv).vey—z.uex—v}—(a@—y)—(x—2z) Df, 

where the chords «—y,«—z, which in general have no points in common with the set 

a {(qv).vey—z.uex—v}, are subtracted in order that we may have 

12 (qh) -heStl.a, y, eh. tridom“(z, y, z)=A, 

an implication which can be replaced by the equivalence 

“1183 (qh).heStl.z, y, zeh.=. tridom“(z, y, z)=A. 

Since the framing of a definition more symmetrical in appearance than ‘11 finds a natural 

place later in our work, we content ourselves for the present with 11. Following a course 

which we take in a number of similar cases, we write 

‘14 , Tridom =P {(q2, y, z)- TC =tridom“(z, y, z)} Df, 

and we must note the property implied in the name, expressed in the theorem 

‘15 Tridom C Dom, 

which is true even if the domain is in fact null. 

- 
7. Parallel lines, and rays contained in parallel lines. 

To denote that two lines h, & are parallel we write fh prlk, it being understood that 

the possibility of coincidence is not exciuded. Since our space is the Euclidean plane we 

can write 

711 prl=hk{h,keStlih=k.v.hak=A} Df, 

but an interesting alternative rests on the fact that if / and & are not parallel they divide 

the plane into four pieces: 

12 h, ke Stl. 3: Ne&e{C(huk)}=2.=.h=k, 

13 h, ke Stl. D2. NeKe{C(huk)} =3.=:hprlk.htk. 

14 h,keStl.d: Ne{C(hvuk)}=4.=~h pri k. 

Rays in parallel lines may have either opposite directions or a common direction. 

Utilising a simple criterion for two rays to have opposite directions we can take as 

definitions 

21 opd = @¢ ‘a, ce Ray -(qh, kT, A).h, ke Stl. T, AekC(aucu fea fete). 

hCT.kKCA.T+A} Df, 
"22 cod =opd? Df. 

8. Leaves and clipped leaves. 

If h is a line through a point z and a,c are the two rays forming h — ‘x, the sets a, ¢ 

are ordinally similar and so are the sets G‘a, G‘c, but since ave is not the whole of h 

and one point of / is contained both in G‘a and in Gc, neither @ nor Ga can properly 

be described as a half-line. Similarly if A is any line, Cth is formed of two similar 

29—2 
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cells, but neither of these can be called a half-plane, and we call them clipped leaves, 

writing 

$11 Clilf=P {(qh).he Stl. DexCOh} Df 

and using YT and © for sets of this kind. If YT is a clipped leaf, the complement of its 

boundary is composed of two cells each of which is a clipped leaf; one of these is T 

itself, the other we shall call the reflex of T and denote by rflx‘T, but as we wish to 

postpone the formal definition we denote it for the present by O*G‘T, noting that 

12 Te ChifD C6G‘T ¢ Chilf. 

If « is any point of the boundary of a clipped leaf T, and if @ is one of the rays 

with source 2 contained in BfT, the sets Tua, CfG*T urfl‘a are similar mutually exclusive 

sets whose sum omits from the whole plane only the one point a, and the sets Tv G‘a, 

GT v Gerfifa obtained by adding to each of them the poimt # are similar, their sum is 

the whole plane, and their only common point is 7; neither Tua nor TuG*a can be 

called a half-plane, but Tv G‘a is a typical set of a kind of which we have to make much 

use, and we call such a set, that is, the set formed of a completed ray and all the points 

on one side of the line containing the ray, a leaf, and the source of the ray we call the 

pivot of the leaf. The definition of a leaf that follows explicitly the description just given is 

“21 Leaf = {(qa, A). Aex*Clefa. T=cfeauvavA} Df, 

but an adequate definition which formally is simpler could be derived from the theorem 

"22 Leaf =f {(qa).ae Ray. YSC'T =a. YT =Ie'a — a}. 

For leaves we use M and N, and in virtue of ‘22 we may take for the definition of the 

pivot of a leaf M 

23 pvt = 4M {Meleaf.a=fe‘Y‘CM} Dé 
Certain elementary properties of leaves have to be noted for use: 

Bil Me Leaf.ceM.3:(qN).NeLeaf.2pvtN.NCM, 

By Me Leaf. y,zeOS‘M.rvey—z.dxe0™M, 

which implies 

33 MeLeaf.cey—zaM.d:yeM.v.zeM, 

a result that proves valuable, and 

34 MeLeat.ceM.D3ac DSH, 

which is used in conjunction with “44 below. 

Clipped leaves are to our main purpose of less importance than proper leaves, but they 

are simpler in nature, possessing the properties expressed by 

41 Chilf C Domex 

and by 

“42 TeChif.veT.D:(qh).-heStl.h part (tS, CT). 

But the results 

“43 TeChif.veT.3:(qM).MeLeaf.ceM.MCT, 
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which can be strengthened into 

“44 TeClilf.ceT.D:(qM).MeLeaf.cze M.MCT, 

and 
“45 Me Leaf > HM e Clilf, 

which is to some extent a converse of “44, enable us often to secure the advantages of 

ing with clipped leaves. operating wit pp 8. 

9. WSectors. 

If a,c are two rays which have the same source x but do not coincide, C(t‘r vavuc) 

is the sum of two domains each of which has t“cuave for its boundary and is called a 

sector of a and c; if A is one of these sectors, G‘A is obtained by adding the rays and the 

source to A, and therefore the other sector is C‘G‘A. When c coincides with a, the set 

C“(u'vavuc) is a single domain, but it is convenient then to regard the null set as 

a sector of a and c; in this case if A is the existent sector C“(u‘x ua), the completed set 

G*A is the whole plane, and C*G‘A being null again represents the sector, although C‘G‘A 

is not A but G‘A. For definition of sectors we can take 

gala! Sectex =P {(qa@, a,c).a,cefa.TexnC(cuavue)} Df, 

defining existent sectors, followed by 

12 Sect = Sectex vifA Dt; 

we reserve for sectors the letters =, T. The properties of sectors first to be noted are 

a3 Sectex C Domex, 

implying 

“14 Sect C Dom, 

and 

15 > e Sectex D C“G‘S € Sect. 

It is possible to replace ‘12 or ‘15 by 

16 Sect = Sectex v O**G‘Sectex, 

and indeed to deal directly with sectors by starting from 

Ie Sect = f° {(qa, a,c, A):a,cefe.AcekC(isvavuc):TH=A.v.T= CGA}, 

which is effectively a combination of ‘11 and ‘16. 

It is convenient to have symbolism expressing that > is a sector, existent or null, 

of a and c¢, but a direct construction is impeded by two considerations: unless a@ and c 

' have a common source, the definition must not lead to the null set but is to fail altogether ; 

nevertheless, the definition must depend primarily on the pair of rays, not on the sector, 

to meet the cases of the null sector and of the clipped leaf. To this end we write 

A 

All sectex = dy {(qu, a, c):a,cefa.y=Uavuiic.LexC(uevauc)}| Df, 

v9) sect = 34 {(qw, a,c, A):a,cefx.y=tavic. Xen (Ue vauc):S=A.v.5=CG‘A} Df, 
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obtaining implicitly definitions of ¥ sectex(i‘a vt‘c) and Esect(t‘au ec); to avoid the use 

of the argument Ufa vl‘c we substitute (a,c), and we have 

9:23 Y sectex (a, c) = :(qx).a, cefa.LexC(lwvave), 

‘24 sect (a, c)=:(qa, A):a,cefe.AenC(rvavuc):2=A.v.2=CGA 

Corresponding to ‘12 is 

25 Ssect (a, c) >: E sectex (a, c).v. 2=A, 

but to obtain useful propositions we must exhibit the conditions under which the null set enters: 

26 fefa = fefe. ate: D.Esect (a, c)= & sectex (a, c), 

PH a=c.2D:E!sectex“(a, c) . (se‘sect) (a, c) = sectex“(a, c) v UA. 

It is hardly necessary to add the propositions . 

28 Sectex = : {(qa, c) = sectex (a, c)}, 

“29 Sect = Sq a, c) > sect (a, c)}. 

The relation to a sector = of rays a, c by means of which it is defined is expressed by 

calling these rays bounding rays of the sector, and we write 

31 br=@>{ {(qc). sect (a, c)} Df, 

“32 rb=Cnv‘br_ Df. 

If S is a sector of a and c, the common source of a and ¢ is called a vertex of =, and 

we put 

33 vx=2S {(qa, c).a,c efa. > sect (a, c)} Df, 

“3B4 xv=Cnv‘vx Df. 

If x is a vertex of > and a circle is described with centre «, the ratio of the length of 

the part of the circumference within = to that of the whole circumference is called the 

angle of > and donee by ang‘; this angle is a definite one of the two angles between 

the bounding rays of = which issue from #. If the angle of an existent sector is not equal 

to 7, the vertex is unique and the bounding rays are definite, but if the angle is equal to 7, 

the sector is a clipped leaf, every point of the boundary is a vertex, and every ray contained 

in the boundary is a bounding ray, peculiarities for which allowance has been made; to 

justify the use of the symbol ang‘ we have to remark that if the vertex is not unique 

the angle is the same at every vertex. 

From the definition, 

“41 = sectex (a, c)D C6G*S sect (a, c), 

“42 fe‘a = fe'c . D. Ne*(sg*sect)(a, c)=2; 

the sum of the angles of the two different sectors derived from one pair of conterminous 

rays is 27, and this is true if the two rays coincide, the null sector hi aving angle 0 and a 

sector of the form O*(‘a, where a is a ray, having angle 277: 

"43 (qa, c).%, sect (a, c).2+T: 3 ang‘> + ang*T = 27, 
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The complement of a sector = is not a sector, but is a completed sector or a completed ray 

according as C‘G‘2 exists or is null, and in particular the universal set V is not a sector, 

the most comprehensive sector being the complement of a completed ray. It is hardly 

necessary to remark that in connection with some problems the valuable sets might be the 

complements of what we are callmg sectors; in that case V would be of the standard form 

while the null set would not. The propositions 

“44 > e Sectex D ang‘S v ang‘C*G*S = 2r, 

45 > e Sectex . vx >. Davx CGS, 

“46 > «Sectex.abr>. abr O*G*> 

are true even if the angle of = is equal to 7, for = and C*G‘> acquire simultaneously the 

peculiarities consequent upon the possession of that special angle. 

Of value to us in relation to any sector > is the sector which we call the reflex of >, 

which may be described as the reflection of = in a vertex of ©; even if the angle of & is 

equal to 7, the reflex of = is unique, for then the reflection of = in each of its vertices is 

the same. We write 

ol rfx =PS [= e Sect .T=s@ {(qzr).cvx=.aefz.rfifaCS}] Df, 

to which an equivalent form is 

52 rfix =f £[¥ Sect. P=3 (qa, y)-uvxd.yed.cvey—2z}], 

and we have 

53 > € Sect D rflx‘> ¢ Sect, 

“54 ang} >a7=q! =a rflx‘s, 

55 0< ang <7=q! CGS a rflxSCSGSS, 

“56 ang} > 7 = OG‘S C rflx‘S, 

Dil ang’) < wm =rflx‘S € (GS. 

From the last two formulae, 

“61 ang*> =7. =. rilx*> = CGS, 

and other distinctive properties of sectors of angle 7 already mentioned are 

62 ang‘} = 7 .= Se Ciilf, 
and 

‘63 = eSectex D : ang} = 77. =. Ne“(sg‘vx)*> +1, 

‘64 ang‘> =r. Sect (x y, sz). Duc y—z, 

which we require in the sequel; a slight but useful modification of °56 is 

65 ang’> Sa .=. > v reflx'S = 0(sg‘vx)‘S, 

which involves : 

66 angs$= >a =. Ne‘C(S urfix‘S) =1, 

67 ang’> = 7 .= C(S uv rflx‘S) € Stl. 
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10. Circular domains. 

The last particular set which we have to mention is the circular domain, consisting in 

normal cases of all points inside a circle. Many of the properties of normal circular domains 

are shared by both the null set and the whole plane, and therefore we include these sets in 

the general definitions, which are 

10711 Circedom =f {(qa, p).T=9(ay< p)} Df 

‘12 circdom(«, p)=9 fay <p} Df, 

the second, in which p is assumed to be a signless number but not necessarily to be finite, 

defining the circular domain with centre # and radius p; for circular domains we use &, H, Z. 

With these definitions 

13 Ciredom C Dom, 

14 E « Ciredomex =: (qa, p)-p > 0.2 =4 (xy <p), 

existence being expressed in the usual manner; the only unlimited domain satisfying the 

condition* of -11 is the plane itself, and therefore we can exclude this domain by considering 

the class Ciredom a Lm. 

To indicate the relations between the circular domain circdom“(z, p) and the point « 

and length p, we introduce the definitions 

“21 cent= 22 {(qp)-= =arcdom“(z, p)} Df, 

22 rad = p= {(qav).= =circdom“(a, p)} Df, 

implying 

22) « cent = .=:(qp)- — = ciredom“(z, p), 

24 pcent=.=:(q2).& =circdom“(z, p). 

A circular domain = has a unique radius, which can be denoted by rad‘; the centre is 

unique provided that the domain is neither the whole plane nor the null set: 

25 rad e 1 — Cls, 

26+ cent f Ciredomex a Lm ¢ 1 > Cls. 

The use to us of circular domains is in connection with limiting points of sets, for 3:22 

is equivalent to each of the theorems 

31 ceDT.=.p>05,q!T a {ciredom (a, p)— ea}, 

32 ceOD'T .=:(qe).ccente .a2CCT ut. 
. 

* A different order of ideas includes the clipped leaf no use can be made in the study of limiting points. 

as a form of unlimited circular domain, since the straight } If R is any relation, & 8 denotes the same relation 
line is in one sense a form of circle; in that work however _ restricted im application to members of the class £, that is, 

the distinction between the inside and the outside of a denotes *7(« Ry.yef); similarlya4 R, a4 R [8 denote 

circle tends to lose importance, and the valuable construct 29 (« Ry.xea), £9 («Ry.cea.yeB). See Principia 
is the cell of the complement of the circle, a set of which Mathematica, * 35. oe 
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11. Theorems relating to chords, leaves, sectors, and circular domains. 

Many of the properties of the special sets we have described are useful to us chiefly 

in the form of existence theorems. Thus we require 

lll wey—z.ycentH.zcentZ.0<rad‘H, rad‘Z<p. 

D:.(q5):acenth.0<rad’B <p:veH.weZ.vtw. dn, nq! (v—w)an(B—ee), 

12 wey—z.zcentZ.0<rad‘Z <p. 

D:.(q@B):ecentE .0< rad <p.weZ—ty dq! (y—w)ne, 

13 wey—z.ycentH.zcentZ.q!H,Z. 

D:.(q8):xccente.q!S:ueS dD, (qv, w).veH.weZ.wev—w; 
the result 

14 g2VXy.cvxT.LvsG{laefa2.abr>}CT.q! >.> Ne%e(T—3)=2 

gives significance to 

15 LVX>.eVXT. > vsGlaeix.abr=}CT.q!>.y,zeT—L.angTH7. 

Di ye K_sz.vV.qly—zae. 
Of a different kind are 

Ail CVE et << ane eo (qu) sang D— 7.2 vx De hes gts — 1; 2 

22 x vx > .angs> >7.2:(qM).MeLeaf.ceM.MC 3 vt‘a, 

23 ang’> =7.abr>. (2 vave‘fea) e Leat, 

“24, ang) 7 .£ovmy. (qr). Te Chilf.ceBT.TECS, 

“25 Me Leaf.ceM.3:(q7T).TeChif.cze BT.TCM, 

the last of which we use in the form 

26 Me Leaf.ceM.3:(q>). angst =7.a2vx>.2CM. 

By actual construction 

31 T,O¢Chif. ht a BOe1l.ceTaQ.4a,cefx.acod BT —GS0.ccod BO-GT. 

_ D:(q=). = sect (a,c).ang*= >7->CTvO, 

32 T,OcChif. BT a BOe1.ceT—-Q.aefz2.acod BT—-GO .c=rx (BST an BO). 

>:(q>).>= sect (a,c) angs> >a7r.>eTv0; 
‘31 implies 

33 T, Oe Clif. Ta BOel.ceTaAO.3:(q>d).angs> >7.avxdy.2CTuvO, 

‘32 implies 

“34 T OcChif. Ta BWel .zeT—O.5:(q>) -ang’> > 7 .2vx >.> CT vO, 

and by an interchange of T and © implies also 

35 T, Ne Clif. BT a BQe1l.ceQ—T.3:(qz).ang*> >7.2vx>.>CTv0; 

and since 

36 TyQX=(TaQD)v(T-D)v(Q-T) 

we have from °33, 34, 35 

37 T, De ClilfD:: BST pri BO. vs. ce TUOD: (qd). ang >7.evx>.2>CTv A. 

The last result implies 

38 YeChilf.anes> >7-2eT.D:(qT)-angT >7.a2vxT.TCT v2, 

Vor. XXII No. XII. 30 
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for among the clipped leaves contained in a sector whose angle is greater than 7, some 

have boundaries not parallel to a particular line B‘T. 

Somewhat opposite in character is another result proved by construction. We have 

1141 aneS >7.a2vx>.ccente.gqif.heStl. Bin BeCh.ceCh.T=K*(a, Oh): 

Dis Wel@hife arent 0 Gero = 

if ang‘= < 27 and = is limited, h is determined by the condition of passing through both 

the points common to the circumference B‘= and the pair of completed rays B‘S, # is 

necessarily outside h because ang‘=+7, and the cell of C‘h which contains «x is contained 

in S>vE because ang‘= >7; if ang‘>=27, BY n BE is a single point and h may be any 

line through this point except the line through « itself; we make no use of the latitude 

allowed, for we require ‘41 only for the sake of the existence theorem implied, namely 

42 anos> >7.E! cent‘ . cent‘Evx>.5:(q7Y).TeChilf.cent*‘@eT.TEC Suz. 

12. Primary chords of a set. 

A point is said to be on a primary chord, or simply on a chord, of a set [ if it lies 

between two points of [ on the line joining them, and we denote the set formed of 

points on the chords of [ by S‘T: 

px ST = {(qy,2).y, ze .vey—z} Df. 

If three points of [ are collinear, the middle one is a member of both I and S‘T, while 

if T consists of only two points neither of these belongs to S‘l: there is no general 

relation of inclusion between I‘ and S‘T. Of more value for technical purposes than S‘T 

is the set defined by 

a, LV =2{(qy,z).y,zeT.cveyHa} Df, 

which we call the set derived from I. by simple linkage, the principal advantage of this 

set being that from the definition 

13 Gee Ty 

The fundamental relation between the sets S‘T’ and L‘T is 

‘14 JER! = IO ISIE 

which may be expressed in terms of operators only, in the form 

"15 L=TIvS, 

I being the operator of identity; but the elementary relation 

16 See ee 

is often useful. Since I’ and S‘T are not mutually exclusive we cannot express S‘I’ simply 

in terms of [ and Z‘I’, but we have 

sly ST =2 {xe LT —‘a)}. 

From ‘13, 

"21 qiloOqi LT, 
so that indeed 

"22 qireaq! LT, 
which is equivalent to 

‘23 | De) WP 7 De Wa 
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this is a convenient point at which to note 

24 Wek E‘Rie il. 

"25 Net SAP he 

As to the existence of S‘T we have 

26 qi ST=:(qy,2)-y,ze0 .y+z, 

that is 
“27 NeT >1l=q! ST, 

so that 
28 TeQul=.ST=A. 

From ‘11 and 5:24 

31 qi sdL> DG Dest: 

if T is null it is contained in every set, and therefore 

32 IM GW) s (7c INGAP Ss 1) IDC IIESEI 

while 

33 Teldq!C—- DST 

and so 
“B+ Tel=q!l—-DS‘T, 

35 NeT+1=FC DST. 

From 35 we have 

36 INC APS AES DIS 7 DGS Dye 

and since if Tis a unit set D‘T is contained in every set we can assert without hypothesis 

Bi Dal EDESET 

so that from 14 

38 DSETI— DEST 

Of another kind are 

“41 INCOMES UE Re 1 A Me 

“42 SeiuGDSSs 

that is 

43 NeP+1.= LT e Ds, 

“44 ST ¢ Ds: 

both S‘T and Z‘T are dense sets except when I has but a single member, in which case /‘T 

also has one and only one member and is not dense, but S‘T is null and formally is dense. 

By combining ‘37 and °38 with -43 we have 

‘51 NePF1IIT uD uv ST C DST, 
a result used later. 

As we shall see from examples, neither S‘[ nor L‘T need be complete, but from the 

elementary propositions 

‘61 (y—z)¥(u—w) vv (z—w)eCg, 

62 (yHz) ¥ (vow) v (zHw)eCl a Cg 

we have 

63 S‘T'e Cg, 

We LT Ud. 
30—2 
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From the preliminary propositions 11-11 and 11°13 we have immediately 

12°65 SDT C DST, 

66 S(l — DCT) CST — DICS'T, 

and ‘14, °37, 65, and -38 imply 

67 EDI GepsE an 

without hypothesis as to Ne‘l’. We have sometimes to use 

68 INTE (aN 5 Dig SORCERY 

“69 ID EAN 3) 5 LEAS EN 

but we use them as a rule without explicit reference. 

For a few purposes it is convenient to write 

“(fl S(T, A) =2 {(qy,z).yeT.zeA.xey—z} Df, 

‘72 LT, A)=2 {(qy,z)-yeT.zeA.reyrz} Df. 

with which notation 

“Te SUD, IDSA 

‘74 i= (eel) 2s 0 

We have no need to enunciate results corresponding to all those given for S‘T and L‘T, 

but we note that while the use of 1111 gives information concerning the sets S*(D‘T', D‘A) 

and L‘(D‘T, D‘A), by using 11°12 we can draw the conclusions 

‘75 S(T, D*‘A) € D‘S(T, A), 

‘76 LT, D&A) C D‘L“(T, A), 
with the particular cases 

ail SHE LD) (SOLIS ie 

‘78 IG (US, JOA) \S JOTI EEN 

An important relation between the set L“I, A) and sets of the form ZT is most 

simply written in the form 

$1 L(PvA)=LT uv ‘Av LAL, A); 

this is certainly redundant, for [vA is contained both in Z‘Tu L‘A and in LL, A), 

but it is the most useful form, and since even if we write 

82 I(T vu A)=LT uv LA S(T, A) 

we are not secure against repetition, ‘81 if replaced should yield only to 

53 [(luA)=TvAvSTv SAu S(T, A). 

The set Su A) cannot be expressed by any formula similar to ‘81, but 

“84 S(T vu A)—-(Tv A)=ST vu SAvu S(T, A) —(T vu A). 

From ‘81, ‘41, ‘67, and ‘78 we have 

‘85 Delay eG Gori T 

and ‘16, °85, ‘38, and ‘28 imply s 

‘86 SGT C DST, 

although this cannot be deduced from ‘84 without the help of 35 and °37. 



S| OF A PLANE SET OF POINTS. 23! 

13. Secondary chords of a set. 

If uw, v, w are three points of a set I’ no one of which lies on the primary chord 

joining the other two, the chord joining any one of the three to any point on the primary 

chord joining the other two is called a secondary chord of I’, and we denote the set composed 

of points on secondary chords of T by 7*T. This description is designed to bring 7*T into 

relation with S‘T, but in fact a point is on a secondary chord of I if it lies in a triangular 

domain whose vertices belong to [T. By means of the operator LZ we can give a sym- 

metrical appearance to the definition of the triangular domain «yz, for 

1311 tridom“(a, y, 2) = L?*(t'a uv fy v 62) — Lute v ify u Lz), 

and 7*T is defined formally by 

12 TT =2 {(qu, v, w).u,v, wel. cetridom(u, v, w)} Df. 

Since 

oie x,y, ze D tridom“(s, y, z) C TT, 

we have the important theorem 

22 TT « Dom, 

implying 

‘23 q!2‘T > 7‘T « Domex. 

It can easily be shewn that 

31 Sze Sw Lely 

but S‘T and 7‘ are not in general mutually exclusive, and indeed 

32 Newari Lek Oy S bia Lely 

while on the other hand neither the set S‘(—7*T nor the set 7*'—S‘I’ plays any part 

in the developments we make. Corresponding to 12°68 and 12°69 we have 

33 IGN LG TEA: 

The set L*T, the set derived from I by double linkage, is one of the most interesting 

of the sets connected with I’, and the value of 7‘T is owing partly to the fact that a 

graphic analysis of Z*T, though not an analysis into mutually exclusive ‘sets, is given by 

“41 PV=TuST v TT. 

Proposition ‘41 written in the form 

“ol PV Eo Te 

has a curious result when taken in conjunction with the hypothesis that [ is connected or 

is the sum of two connected parts, which can be used in the form given by 

52 T=0v®.0,ReCd. 

=2u,v, wel Dur w(qy, 2, A).y, zeluvlvviw.y+z.-AceCd.y,zeA. ACI: 

of any three points of I’, two lie in a connected set contained in T. We have 

5S} vetridom(t, y,z)). Ky, O(tcurezvxet) + Kz, Oe veezuret)} 
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which implies immediately 

13°54 xe tridom((t, y,2).AeCd.y,zeAd qian (Uavaezuxet); 

also 

“541 qiAnt‘c=a2eA, 

542 zeA.q!Anrez.dreSA, 

and in the notation of 127 

543 qiAncet=reS{A, Ut) 

and therefore 

544 AvitCr.qiAnzet.dIceST; 

from °54, 541, 542, 544 

5) xe tridom(t, y,z).AeCd.y,zeA.AuitCr. Deel u ST, 

and °55 with 12 and ‘52 gives 

56 T=0vu®.0, SPeCd.ceTT. dee LT, 

that is 

‘Did T=6v%.0,eCd.O7TCLT. 

From °57 and ‘51 comes 

58 T=0v®.0,8eCd .IT=LT, 

a result which we shall appreciate more fully when we are better acquainted with the 

set LT; 58 of course implies 

59 P=0v%.0, BeCd.d:n219.10°T=LT. 

14. Cross points of a set. 

We call a point « a cross point of I if there are two chords of I’ having « for their 

only common point, and we denote the set of cross points of [T by X‘T: 

1411 XT =2 \(qt,u,v,w).4ur7,wel.te=(t—u)a(v—w)} Dt. 

As with S‘'T and 7‘T, so with X‘T, 

‘21 MGA ACD CX <A: 

and we need hardly remark that 

“22, = GISELE: 

The fact that renders necessary the introduction of X‘T is that if [° is contaimed wholly 

in two intersecting lines the point of intersection does not belong to 7‘T although it may 

belong to X‘I'; if however this point « belongs to X‘T and y is any point not on the 

lines containing I, then « belongs not only to X(T vt‘y) but also to T(T v tty), and we 

have therefore 

23 qixXTI:XTCTT.v. (qh, k).h,keStl. CChvk, 

"24 XT-TTeOvl. 

Of the sets connected with X‘T and 7'‘T it is actually 7‘( vu X‘T, which is of course 

identical with 7‘ v(X‘T— 71), that plays the most prominent part in our work, 
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If xz is a cross point of I, and t—u, v—w are chords of T which have « for their 

only common point, then if p is less than the length of each of the perpendiculars from a 

on the chords t—v, t—w, u—v, w—w, every point y distinct from 2 whose distance from 

x is less than p belongs to one of the four triangular domains whose vertices are three of 

the points ¢, wu, v, w; hence 

Bil PEACE (Hp). <a <p Dy yie Ln, 

that is 

32 ZeX MD Ma(qip) p> 0) cy << piDyyieL No xc 

and so from 13:22 

33 qi@TOTT v X‘Tc Domex, 

or since the null set is a domain 

‘BA TT u XT e«Dom. 

15. Convex sets. 

A set of points I‘ is said to be convex when if two points y, z belong to I" every 

point of y—z necessarily belongs to ['; we write ['eCyx to denote that T’ is convex, the 

formal definition being 

1511 Ovx=f{sTCcr} Df 

Convex sets of points have many important properties, some of which we shall develop as 

we proceed. From 12:14 we have 

12 eCysa— ee — 

a relation often more useful than the fundamental one on which the definition is founded. 

Since ‘11 with 12°68 implies 

1183 IN @ Crp DISA (eS Ie 

we have from 13°31 

14 a Gyx 2 ih G Ie 

and so also, using 13°22, 

5 Me Cvxe eel urxe ly Gul 

From 12°64 and ‘12 

16 Cvx C Ud, 

a result which has its use in connection with the nature of the boundary of a convex set. 

Possibilities in the relations to a set I’ of the sets S‘T, Z‘T can be illustrated by 

means of lines, rays, and leaves. If [ is a line or a ray, S'T and L‘T both coincide with 

I, and T is convex, although if T is a ray it is not a complete set. If I is a leaf, SST 

consists of all the points of [ except the pivot, and L‘U coincides with T'; a leaf I is convex, 

although there is a whole ray V‘C‘T which consists of limiting points of [ not belonging 

to I. We have already in 832 asserted implicitly that the complement of a leaf is 

a convex set. 
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16. Excluding sectors and the excluding angle of a point. 

We say that a sector = excludes a set TI if no points of I lie within the sector, 

writing 

1611 exsect = SP {Se Sect. 2a IPSN Drs 

we have to remember that the boundary of a sector is not contained im the sector, so 

that Sexsect I is not inconsistent with (qz).evx>.aeT or with q!Ia Bs, and also 

that the null sector has every vertex and excludes every set. From the last convention 

it follows that the class of numbers 

anes {vx > . > exsect I} 

contains the number 0, and from 11°21 it follows that this class is a stretch; because the 

bounding rays of a sector are contained in the complement of the sector, this stretch 

cannot have an upper limit which does not belong to it, that is to say, the stretch has 

a maximum, and we call this maximum the excluding angle of the point « and the set T, 

writing 

12 ea‘(x, T) = max‘ang‘“|(se*xv) ‘x nm (sgfexsect)‘T} Df. 

A sector of which a is a vertex, which excludes IT, and has ea‘(x, I) for its angle, we 

call a limiting excluding sector of « and I’, and we write 

13 = les (a, 1) =: ane‘ =ea(2,T).cvx>.Tat=A ODF; 

the class (sg‘les)“(«, [) certainly exists, although if ea‘(z,T) is zero the members of the 

class are null sectors: 

14, al (sg‘les)(a, DP). 

From the nature of a maximum and from ‘13, 

210 gil —e&.Sles(2,l).aefz.abr>.3: TeSect.aCT. pq! Pan(T—3%) 

so that also 

22 «gqil—«a.Sles(¢,T).aefa.abr>. 

D:..q!Paa.vi0< p27 D,(qT).ang‘T=p.abrT.qila(t—3S); 

93 qiT—es.dles(a, f).avxT.2vus(sg*br)> CT. q!>.Kex(T— 2). I qiPak 

has value because its bypothesis includes that of 1114, implying that T— has 

two cells; 

24 qil—«a. >, Tles(¢,r).>+T.>.3aT=A, 

25 ang‘> =ea(¢,T). 2xve.I:qilnd.v. dles(a, I). 

The case in which I’ has only the one point # is peculiar; in this case every sector 

of which # is a vertex excludes T, and 27, the greatest angle a sector can have, is the 

excluding angle: 

31 ea‘(ax, us) = 2rr. 

3ut V—c is not a sector, and the limiting excluding sectors are the complements 

of completed rays issuing from «# If y is any point other than «, the excluding angle 
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of y for t‘e is 27 but there is only one limiting excluding sector, the complement of 

“yvyre: 

32 ea(y, Ua) = 27, 

33 y+a.>les(y, x). r= Ch{e'y v ya}. 

It is convenient to note 

‘BA ea‘(a, T) < 279 DA IT — esa. 

The case in which the excluding angle of « and T is zero also is peculiar; the ex- 

cluding sectors are the null sectors of which the various rays issumg from « are the 

bounding rays, and every existent sector with vertex « contains points of [T: 

35 ea‘(a, D)=O8Ssavx>.q@!>.33q!Pa >. 

There may or may not be rays from # which do not contain points of TI’, the existence 

of such rays being from our point of view irrelevant. 

We have of course 

“41 TCA. Sexsect A. >> exsect I, 

which implies 

‘42 [CAD ea‘(a, T) > ea‘(a, A). 

A particular case of ‘41 is 

43 S exsect GIT D & exsect I; 

on the other hand, because } is a domain, D‘C*S is contained in COC‘, and therefore G‘C*> 

is identical with OS; hence 

“44 IME CSS SCANS CDs 

that is to say 

“45 > exsect [D> exsect GT, 

which taken with ‘43 gives 

“46 > exsect [= ¥ exsect GT, 

and implies for all positions of « 

“AT ea(a, G‘T) = ea‘(az, I). 

17. The classification by means of excluding angles. 

Just as sectors fall into three classes, composed respectively of those whose angles are 

greater than 7, those whose angles are equal to 7, and those whose angles are less than 7, 

and the properties of a member of one of these classes for the most part differ widely from 

those of a member of another, so each point of a plane falls with respect to any set [ 

into one of three classes according to the value of the excluding angle of IT for it. 

We write 

1711 UT =@fea‘(a,T) >a} Df, 

12 VT =@ {eaf(a,T) =} Df, 

13 WT =2 {ea(x,T)< 7} Df; 

of the three sets so defined it is the last which has the simplest and most important pro- 

perties, but the three sets are studied together. 

Wo, SOME AN Gy-4 OF 31 
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From 16°47 follow 

7-21 NEARNG GA SULA Ue 

22 DGATAGGhe SA A— Ver; 

23 ReEATAGGshy > eA — Wel: 

propositions which would justify us in studying the sets U‘T, V‘I’, W‘T’ first on the hypo- 

thesis that [is complete, a course which we do not actually take. 

Since 
“31 vey —zdea(a, Uy v U'z)=T, 

"32 xe tridom“(u, v, w) Dd eaf(a, bu v tv Uw) < 7, 

we have from 16°42 

33 ae ST D ea‘(z, T) a 7, 

B34 ve TT D ea'(z, 1) < o, 

that is, 

"35 SAG Vee We 

36 Pew: 
also 

“37 we ACD Deas(a, 1) <7, 

that is, 

38 ZONES IS 

and therefore 

“39 Teo eke Gye. 

From 16:24 we have 

“41 qi D—cw.ea(2,T)>0.5 Ne“(sg‘les)(a, [') & 2a + ea“(x, T) 

which has the corollaries 

“42 qi 0—ta. ea{(a, 0) >7. 2 Ne“(sg‘les)(a, T) = 1, 

“43 ea‘(x, )=7 3: Ne“(sg‘les)(a, Fr) =1.v. Ne“(sg‘les)(w, F)=2. 

A special case of the first of the corollaries just enunciated gives 

“bl ea“(z, [)=27 3: (qa).aefae.T Cue va, 

against which we put the converse 

52 aefa.0TCtrua. dea (a, T) =27, 

of which 16°31, 16°32 are particular cases; ‘42 itself may be written in the form 

53 weUeloriNer(seeles) «(a i))— iV. Dy—lec 

Corollary *43 can be simplified, for 

54 ang’> =7 .ang‘T=q7.¢vx >.a@vxT.3:q!SaT.v.T=rixS, 
and therefore 

1393) ceVT.Ne“(se‘les)(7, T) =2.5:(qh). he Stl. Ch, 

and so from °52, 9°64 

56 ve VT. Ne(se‘les)(a, T)=2.3¢eST; 

thus 

“7 ceVT.9:. Ne(sg‘les)(v,T)=1. 

vive ST (qh). he Stl. CCA. (sg‘les)(a, ) = «Oh. 
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It is worth while to notice that, if ea‘(#, [) is equal to 7, there is only one line which can 

be the boundary of a limiting excluding sector whether the number of such sectors is one 

or two: 

58 ze VSD). Ne“B‘(sp‘les) (a, T) =1. 

One consequence of 16°25 is 

‘61 Sles(w, T)D:q!T a rfix'> .v. rflx‘S les (2, 1); 

writing this in the form 

62 Slesi@; Dy Saqw E artix’> .v.. 1 C CS uriixs) 

we can apply 9°66 if ang‘= is greater than 7 and ‘56 if ang‘> is equal to 7, and we have 

63 zeUT.Sles(a,T).d:q! CarixT.v.T = cc, 

‘64 eeVl > lesen eb a rhx<). vice Sl. be Bes: 

the most interesting application of ‘61 occurs when ea‘(x, TI’) is less than 7, but before pro- 

ceeding to this application we complete the deductions which have to be made at the 

present stage from the hypothesis that ea‘(z, I) is greater than or equal to 7. 

With regard to the set U‘T, we have only to point out that 11-42 implies 

“(Al ceUM Drea iwavia(g © ate Chlf. ren. han=A. 

18. Points for which the excluding angle is equal to 7. 

If = is a sector of angle 7 and « is a vertex of &, and if w is any point not in = 

or on its boundary, then in order that the ray issuing from «# in the direction of the ray 

through w from a point wu distinct from « and not contained in > should neither contain w 

nor lie in = or B‘S, the point w must lie either on the boundary B‘S or in the strip 

bounded by B‘> and the line through w parallel to BY} and must not lie in z+ w; the 

region to which wu is thus restricted we denote temporarily by P,‘w, the nature of = and 

the conditions as to the positions of « and w being implied: 

1811 = P,fw=%t fangsl=7.2vxd.we OG we CS: 4 ycod uw D, ye GS —w} 

Dft [18], 

‘12 P,Sw=sth {hprl BS. qtihacew}—c#ew. 

If w belongs to P,‘w, there are four sectors which have for one bounding ray the ray from 

£ in the direction of ~—»w and for the other bounding ray a bounding ray of ¥, and of these 

four there is one and only one which contains = and does not include w; this sector we 

denote for a time by R,‘w: 

13 R,u=F (ue P,Aw . (qa, c).a,cefz.acodu>w.cbry.a,cbrT.=CT. we CT} 

Dft [18]. 

The properties of sectors of the form R,‘w relevant to our purpose are only two, namely 

14 q!h,ud.(qa).aefe.abr>.aC R,u, 

15 ve R,u-LIqlu-—vaweew. 

31—2 
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The first of these, with 16°21, gives 

18°21 ceVT.Sles(z, T). uve Pw. dq! Ta R,u—t, 

and so from the second we have 

22 veVST.Sles(¢, VT). qi! Pa P,w.dqiSTazrcew. 

We have no reason to suppose that for every position of w in C*G@‘S points of I’ are 

to be found in P,‘w, and the alternatives we consider are 

hyp 18a (qz):ze CGS .wex—z),q!Tn Pu, 

hyp 18) (TY, 2%, w) ry, 2€CGSS wy tr z.vex—y.wexr—zZ. 

G&P, fv = GP, fw. Ta Pv=A.TaPw=A; 

the form adopted for the second of these is designed to shew that one of the hypotheses is 

necessarily fulfilled, but this second assumption is equivalent simply to 

hyp 186 (qv, w):v, we OG .2@ 0+ aw. GP, = Pw. Ta (P04 P,w)=A; 

in both forms, the condition G‘P,‘v=G‘P,‘w is a method that happens to be simple 

notationally of expressing that the line through v and w is parallel to B‘S, a condition 

required in °32 to ensure that «—v is contained in P,‘w and «—w in P,‘v. From ‘22 

and 12°42 we have 

31 zeVT'.S les (x, T). hyp 18a.32¢ DST; 

on the other hand 

32 veVT.>les(2,T).v, weCG .2r a+ 27. GP, v = G'P,w. 

>. Sve&v Pv P,w e Ciilf, 

82 TDast=A.la(’,0u Pw)=A.d:ece0.v.Ta(vuieu Pv Pw)=n, 

and therefore 

34 zeVT. > les(a,T). hyp18b.3:a2e0.v. (qT). Te Clilf.ceT.[aT=A; 

‘31 and °34 imply 

‘Bd e2eVTD:¢2e DST .v.(qT).TeClilf.ceT. PaT=A, 

since T’ is contained in D‘S‘T if T has more than one point and V‘T is null in the case 

excepted. 

19. Points for which the excluding angle is less than 7. 

Turning to the set W‘T, we have first to conduct an investigation in some respects 

analogous to that leading to 18°35, but with a result ultimately of more value. 

An immediate deduction from 16°22 is 

1911 O<ea(a,T) <7. Sles(a, PT). rfix‘S les (#,P).d:aeXT.v.q! Ta CG v rfix’S), 

and since we do not need to examine in the present connection the case of a cross point, 

the two sets of hypotheses which we consider in detail are 

hyp 194 ang’= <7. > les(#,T).qtI'a rflx‘S, 

hyp 196 ang’= < a. > les(#,T).rfix‘S les (a, P) . = sect (a, c) . 
qila CG(e v rflx‘= vave), 
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which we distinguish as hyp 19a and hyp 196, writing (q=) hyp 19a if there is a limiting 

excluding sector such that the first hypothesis is satisfied, (q>=) hyp 196 if there is one 

satisfying the second. From 1762 and ‘11 

12 ea(a, T) << r=:(q>) hyp19a.v.(q>)hyp19b.v.ce XT, 

and though the possibilities are not mutually exclusive we can extract the information we 

require by treating them separately. We notice that 

13 q !rfix*> D0 < ang‘, 

so that in hyp 19a@ we have actually 0<ang‘= <7, and that in both cases, from 16°34, 

qq! —ce. 

The form of the last constituent of hyp 19b is designed to admit the possibility of 

null sectors; if ¥ is not null, the whole effect of adding to = and rflx‘> their bounding 

rays and their vertices is to complete = urflx‘=, but if = is a null sector no bounding ray 

consists of limiting points of ©, and indeed G‘(= vu rflx‘=) as well as = itself is null. 

If > is a sector with angle between 0 and 7 and vertex 2, then in order that the 

reflex of a ray «—»y may be neither a part of = or rflx‘= nor a bounding ray of &, the 

point y must lie outside both = and rflx‘= and must not belong to the boundary of rfix‘=; 

y must belong to C“(> v Gérfix‘S). The constructions we have to make in relation to a 

point y which when ang‘> is between 0 and 7 require y to belong to CZ vu G‘rfix‘=), we 

can make if = is a null sector provided then that y does not lie in the line containing the 

bounding ray of ©. The regions concerned in the two cases are covered by the one 

definition 

21 P, > =§9 {a, cefx. Ssect(a,c).re—y C C(Z v rfix*> vavec)} Dft [19]; 

if ang‘> is not less than 7, then C( urfix‘2 vavuc) consists of the one point « and can- 

not contain any rays: hence ye P,‘> is false unless ang‘> is less than 7, and it is super- 

fluous to introduce the condition ang‘= << 7 explicitly into the definition. If y belongs to 

P,‘X, then the ray «<y is not a bounding ray of ¥, and of the sectors which have «—y 

for one bounding ray and a bounding ray of = for the other bounding ray, there is one 

and only one which contains = and does not contain y; this sector we denote temporarily 

by #,(y, =), implying by the use of R,“(y, S) that y lies in P,‘2: 

“22 Ry, =) = ut {(qa,c).a,cefx. > sect (a,c). ye P= . T sect (a,ve—y). 

SCT. yeOT} Dft [19]. 
The use here of sectors of the form R,‘(y, &) depends on the propositions 

23 ea“(z,T) << 7. les(@,F).dq!0n P,S, 

"24 ea(a,T) <7. les(¢,T).3:(y).q!I'n {R,(y, 5) — 5}, 

consequences of 16°21 and 16°35; these imply 

25 hyp19a 3: (qu,v,w).uv,wel.werfix'S.we R,(v, >)—3, 

26 hyp19b 3:(qu,v,w)-u,v,wel .ve R,(u, >)—>.we R,(u, rfixs>) — rflx‘S, 

and shew the kinds of properties of the sectors of the form R,“(y, =) that concern us. 
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From the definition 

19°31 R(y, =)— aC Ps 

for all positions of y in P§>, and therefore 

32 ze Ry, 2)—=Iq! R.(z, =); 

moreover 

33 ze R,(y, )—TD ye R,(z, =) —X, 

so that 

34 ze Rz‘(y, &) -—L=ye R,(z, >) — = 

and the relation ze R,“(y, =)— %, which -25 and -26 shew to be connected with the use of 

excluding angles, is symmetrical between y and z. 

We are now in immediate touch with the proposition we wish to establish, for 

“41 werflx'> .we R,“(v, >) — >. De tridom“(u, »v, w), 

in which ang‘= cannot be 0, and 

“42 ve Ru, 2) —E.we R,(u, rfix‘>)— rflx*= . D ve tridom“(u, v, w). 

and from these with ‘12, ‘25 and ‘26, we have 

“43, eaf(z, T)< wo reTT vu XT, 

that is 

“44, EECA (SED 

which taken with 17°39 gives 

45 HOM wi NOI VOL 

and implies, from 14°33, 

“46 WT ¢ Dom. 

The last property of W‘" which we wish to mention is deducible immediately from 

16°23, 11:14 and 11:15: 

‘51 ze WT. dles(2,T).q!t>.dIqiST ak; 

this result emphasises the possible discontinuity of the excluding angle regarded as a function 

of the position of «, for it gives immediately 

‘52 De Cvx.2e WT. Sles(a, Tl). DS=A, 

that is 

53 T ¢ Cvx D: eaf(z, 1) << 7. =. ea‘(a, [)=0. 

20. Excluding leaves and the points outside the field of a set. 

We say that a leaf M excludes a set IT if no points of T° belong to the leaf, and we 

write 

20°11 exlf=Mf{MeLeaf. [a M=A} Df, 
from which we have at once 

“12 TCA.MexlfA.3MexlfYl, 

‘13 MeLeaf. MCN .Nexlff.3 Mexlfl; 
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the leaves excluding a set form a class (sg‘exlf)‘T which may be null but otherwise contains 

an infinity of numbers; from 12 

14 TCA JD (sg‘exlf)‘A C (sgfexlf)‘T. 

We say that a point is outside the field of a set if there is a leaf which contains the 

point and excludes the set; the points outside the field of a set I’ compose a set which 

we denote by HT: 

21 EV={(qM).Mexlfl.2eM} Df, 

which is equivalent to 
22 EBT =s(sg‘exlf)T. 

From ‘21, 8°31 and ‘13 comes 

23 ce HTD:(qN).Nexlfl.zcpvtN; 

on the other hand 

24 zpvtNozeN, 

and therefore 

"25 Nexlff.apvtN.ove HT, 

so that 

26 EV=2{(qM).Mexlfl.2pvtT}, 

or more compactly 
PH ET = pvt*(sg‘exlf)‘T, 

an elegant but not as far as we have found a useful result. 

21. The field and the cordon of a set. 

It is the set complementary to H‘T which is of value in analysis: indeed, it is the 

known importance of this set, which we call the field of I, that justifies our whole study; 

we write 

21-11 MV SCVIA De 

but sometimes we make use of the equivalent 

12 ICTs. 

A direct definition of FI’ is of course 

‘13 FT=2{MeLeaf.ceM.IyqilaM}, 

but it is usually easier to deal with ‘I’ defined by 20°21 than with #*IT’ defined by ‘13. 

The boundary of the field of I’ we call the cordon of I and denote by Q‘T; thus 

14 QT=BFT Df, 
15 QT = BET, 
16 QU =FLTa DET VET a DFT, 

the last embodying the definition of the boundary. Every set possesses both a field and a 

cordon, but it is not every set that can serve in either of these capacities, for the fact of 

being a field or a cordon itself implies properties; it is convenient to write 

‘17 Fild=f {(qA).0=F*‘A} Dft [21-26], 
A 

18 Cdn=P {((qA).P=Q‘A} Df 
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but the first of these is a temporary definition, for we shall presently identify the class of 

fields with the class of convex sets. 

From 20°21 and 20:11 we have 

21°21 ET CCT 

which from ‘11 is equivalent to 

22 ern: 

hence if T itself is not null neither is F*T’: 

23 ee rede 

The existence of E‘T cannot be asserted; for example, if I’ consists of a pair of inter- 

secting straight lines every leaf in the plane contains points of I; but we can write con- 

ditions for the existence of #‘T’ in the forms 

“24. q!#T=:(q7T).TeChif. cr, 

15 q!ET=:(qh, K).heStl.Kex‘Ch. CK, 

the second of which merely embodies the definition of a clipped leaf, but permits of a 

simple translation into words: the field of a set IP does not occupy the whole plane if there 

is a straight line which has all the points of I’ on one side of it; what is in fact an equi- 

valent statement is that the field of T does not occupy the whole plane if there is a straight 

line which has no points of I on one side of it, which is a translation of 

26 q!£C=:(q7T).TeChif. PaT=A, 

the distinction between this condition and the former being that here we allow points of 

the set to lie in the bounding line. As with any other boundary 

27 qiQV=a:q! FT .qi £T, 

that is, in virtue of °23, 

28 q!:QT=a:q!il.q!£T. 

22. Elementary properties of the field and the cordon. 

For the construction of proofs it is useful to note that from 20°14 and 21-11 the sets 

E‘., F‘Y have the properties 

7B Aa | TEADEACET, 

ae, Gr Ay) hale Gur A. 

From 21:22 and ‘11 

‘21 SHIA RMT Tf Ba 

on the other hand, from 20°21 and 21°12 

22 Mexlfl.@a@eM.5,r%¢CF'T, 

that is 

23 Mexlf fs. Fla M =A, 

so that 

24 M exlf PD M exif FT, 
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which is equivalent to 

“25 (sgfexlf)‘T C (sg*exlf) SFT, 

and implies, from 20:22, 

26 HO GEE. 

from ‘21, -26 

“27 BET = ET, 

which gives immediately the important result 

28 ee 

shewing that the operator F possesses the property expressed by 

29 jell Boo 

From the preliminary result 8°33 combined with the definition 20°21 we have 

31 vey—zn BT) .yeHVvze ET, 

and therefore 

BY vey—Z.y, 2eFT. Dre FT, 

that is 

33 SoHE Geer : 

or in other terms 

34 FET ¢ Cvx, 

that is 

35 Fld C Cvx; 

for immediate use we have to note that 21:22, 12°68 and ‘33 imply 

“36 EAM GEST 

and we can sum up propositions 34 and 36 in words by saying that whatever the nature 

of I, the field of T is a convex set containing all the points and all the primary 

chords of T. 

The two propositions ‘34 and 15°16 imply 

“41 Heel Ds: 

that is 

“42 IP STLCAT 6 ACID SIDS 3 

unless [ has only one member, F*T has no isolated points. Again 

“43, Mexlff.2eM.dJz2e DM, 

and therefore 

“44 ceHT Dac DET, 

that is 

“45 ET eDs: 

E‘T has no isolated points. The results -42, -45 fall far short of expressing what we really 

Wiis OE 1S \aseo.4 IF 32 
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know of the nature of F‘T and E‘T, but they are sufficient grounds for asserting the pro- 

positions 

22°51 (Pei 7 5G H/05 DID a 

52 GET = DET, 

53 Ret vagus = 6=— DFT an Deas 

“54 Tel.v.- QT «Ds, 

55 Peds ve Qoie et 

“56 elev ones — RS Oo 

‘BT DET = ET ve OT, 

of which the last two may be put into the forms 

“58 Tel.v. DFT =C(ET—-QT), 

59 DET= (FT — QT): 

23. The domains inside and outside a cordon. 

With reference to a set I’ the points of the plane may be divided into four mutually 

exclusive sets, namely, F*"+Q‘T, the region of the plane inside the cordon, "Ta Q‘T, 

the part of the cordon which belongs to the field, E‘I'a Q‘T, the part of the cordon which 

does not belong to the field, and H‘T—Q‘T, the region of the plane outside the cordon; 

there is a close relation between this division of the plane and the division by means of 

excluding angles into the sets U‘T, VT, W‘T. The two sets FY —QT and £T-QT 

are necessarily domains, and in connection with each of them we use the principle ex- 

pressed by 

23:11 AeDom.ACT.SACT—-BT, 

which gives 

12 AcDom. AC FT.IAC FT-QT, 

13 AeDom .ACET.JACET—-QT. 

From 11:22 follows 

‘21 URE Du Lr. 

Since 

22, we VT. Z les (a, I). 

D:.(qy, z)-y, ze. = sect (ty, ez): V:(qa).aefe.abr=.Tana=A, 

we have from 9°64 

‘23 ce VT 

D:.ceTuST:v:(qa, ).aefe.abry.angsS=7.-Ta(2vavis)=A, 

so that from 11:23 

24 Ve FE aT; 
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moreover, 21°22 and 22°36 shew that in -21 and -24 the partition is into mutually exclusive 

sets. Again, from 11:26 

5) ve HT Dea‘(x, [)>7, 

that is 

26 JERIDXS (OA AI Bs 

and this is equivalent to 

27 Wale rein 

We can now make our applications of 12 and +13. From 8:43 we have 

311 TeChlf.zeT.TanT=A.D2c ET, 

and so from 841 and 13 

312 TeChlf. PaT=A .dTCET —QT, 

which implies 

313 TeChif.ceBT.TaT=A.d26 DET, 

whence, using 11:24 on the one side and 22°57 on the other, 

32 eaf(2z,T) Srdre HT QT, 

that is 

33 CA OMVING een oOo 

which is equivalent to 

“34. FT —QUC WT. 

On the other hand, from -12 with -27 and 19:46, 

35 WTECFT-—QT, 

and this taken with °34 gives the important result 

36 Hi Ose — Wile 

of which an equivalent form is 

37 JIA) OES OID LLC 

We have to notice that ‘36 implies 

“41 HMOs — Wel Gory 

and that 22°36 and 22°56 give 

“4.2 IM DISSED 791 DIA he 

that is 

“43 Du DST CWT yu OF. 

From 17:71, 18°35, and 12°37, we have 

shill caus Oo Vly. Diavie la DEST .vs(qt).tveChifscet inl aT =A. 

since W‘T is the complement of Ut UV‘T, °51 and ‘43 give 

52 ceUTuVT—Q09:(qT).TeClilf.ceT.TaT=A, 

which from ‘37 is equivalent to 

‘53 ET — QT C sf (T eClilf. Ta T=A}; 
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on the other hand, °312 is equivalent to 

23°54 oT (Te Chif. Pa T=A}C ET — QT, 
and this combines with the preceding result to give 

5B ET —QT=s‘T (Te Clilf. 'a T =A}. 
From 842 we have 

“56 Te Chilf.ceT.PTaT=A.)5:(qh)-heStl-h part (la, I); 

since also 
‘57 heStl.h part (Sx, T).3: Ka, Ch) e Clilf. Ta K (a, Ch)=A 

we have 

58 (qV).TeChilf.ceT.TaT=A:=: (qh). he Stl. h part (a, VP), 

and °55 is equivalent to 

59 ET — QT =2 {(qh) -he Stl. h part (cx, T)}. 

It was in anticipation of °53 that the preliminary propositions 11°37, 11°38 were proved, 

for we have from these three results 

‘61 qi! O0T=.£ET-QT=UT- GT, 

62 UT=A.q!FT.=:T, OcChlf. TaT=A.TaQ=A.)9 BT pri BO. 

It is easy to prove that the conclusion of ‘62 implies that the cordon Q‘T is either 

one straight line or two straight lines: in the first case either I is contained in this line 

but not in a ray contained in the line, F‘I coincides with Q‘T, and #T—Q‘T is the 

complement of Q‘T, or FT—QT and HT—Q‘T are the parts of the plane lying one on 

each side of the line; in the second case F*‘[—Q‘T is the strip between the lines and 

ET—Q‘T is the part of the plane complementary to the sum of the lnes and this strip. 

It is convenient to speak of all these cases and of the case in which H‘T does not exist 

as abnormal, writing 

63 Abnicdn =f {(qA). T=Q'A.T=AveTCStl} Df, 
“64 Nledn =Cdn—Abniedn Df, 

definitions not justified until it is shewn that the cordon cannot consist of a number of 

intersecting lines; then we can write 

65 QTeNiedn=:q!i#T. ET—-QT=UT —GT. 

24. Analysis of the cordon of a set. 

There remains the consideration of the points of the cordon itself. One simple ex- 

pression for the cordon comes directly; from 23°37, 23°51, and 23°55 

2411 OF GUE VED)in(u DSS); 

and 23°43 gives the converse inclusion; hence 

“12 QT =(C8LRVVD) a (Tv D'S‘), 

and we may appeal to 12°51 to substitute for this 

13 Pel.v.QT=(UT vu VL) a DIST. 
ee 
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More detailed results, which follow from 17°71, 18°35, 23°55, and 22°36, are 

14 ARID ay (OID Gy JAS DS UI ay Dy, 

15 VT AUT on ET =UT a (D'T—TL), 

16 OsinVelingeEa— VA a Een, 

ltl VT aVE a BL=VT an (DST — LT); 

it must not be forgotten that points of all the classes T, DOT —T, L'T, DIST — L‘T may 

lie inside the cordon although none of these classes have points outside. 

From 23°36, 17:23 

“211 IBS YAN 5 ANS GOI Ss SIGNS (ONS S(O DE 

and from 23°59, 3°65 

“22 PeAPNGGA DEA — OSA = FE — Os 

whence 

23 NE IDES) (QU AN) (9G Die 

the cordon of a set is unchanged if the set is enlarged by the addition of any part of its 

boundary. The cordon of the completed set G‘I° belongs wholly to the field of G‘T, and 

in terms of this field Q‘T is given by 

"24 Oot (USE OVEN) nH Gale 

while corresponding to 14, 16 we have 

25 OT AUT=UT a GT, 

26 Ooo Velen sG a 

25. The nature of a cordon and of a convex are. 

Enough has been done to prove that the definitions adopted enable us formally to 

establish the properties which a cordon obviously possesses. A normal cordon is a complete 

curve, that is, a united set identical with its own derivative and contained in the derivative 

of its complement, it has at each point a pair of tangential rays, bounding rays of the 

limiting excluding sector of the set for that point, which may or may not determine a tangent 

at the point, and it is a Jordan curve and has a definite finite length between any two of 

its points. No line that has points of the cordon on both sides cuts the cordon in more 

than two points; if a line contains a tangential ray of the cordon, the points of the cordon 

on the line form a stretch, and the remaining points of the cordon are all on the same 

side of the line. 

To constitute a single curve, a set of points must be united. It can however be 

proved that a set contained in a Jordan curve must be united if it is connected, and 

therefore a convex are in a plane may be defined as a connected set contained in its own 

cordon; such a set need not be complete, for if from a complete convex arc which does 

not extend to infinity we take an end-point if the are is not closed or any point whatever 

if the are is closed we obtain a convex are which does not contain one of its limiting points; 

but a convex arc has at each point which is not an end-point a pair of tangential rays and has 

between any two of its points a definite finite length. 
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26. The fundamental properties of the field of a set. 

Returning to the subject of the field, we have from 23°36 

26-11 FT n(UTvVVT)= FT aQT a (UT v VT), 

and so from 2414, 2416, and 17°35 

12, es (OSGI EI) — Eleni ( Un aiValays 

and since also, from 23°36, 

13 FT aWr=WiT, 

we have 

“14 FTH=aLTUWT, 

which may be expressed, in virtue of 19°45 and 1422, in the rhetorical form 

ales (RSP SAR) A ie 

the points composing the field of a set are the points of the set, the points of its primary 

chords, and the points of its secondary chords. If we take 15 with 13°41 we have 

16 MAN FEI 

or in terms of operators alone 

‘17 v= IT 

The fact that #‘T is convex can be written in the form 

‘21 LEFV=FT, 

and so by ‘17 gives 

"22 T=, 

and implies that Z has the curious property, possessed also by B, the operator giving the 

boundary of any set, that its complete effect is produced in two operations, though not as 

a rule in one operation : 

23 ne2=2391=L’, 

a proposition of which 22°29 is a part; we see now that when we defined primary and 

secondary chords but not chords of a higher order the limits were not imposed arbitrarily. 

In consequence of *16, we can write 15°58 in the form 

31 T=6v®.06,®c«Cd.3FT=LT: 

the field of a set which is connected or is the sum of two connected parts consists of the 

points belonging to the set and those belonging to its primary chords; the result may be 

analysed by means of 12°14 and 12°83 into 

32 Peds FT =Tu ST, 

‘33 r,AceCdd. F(T vu A)=LTvAvuSTv SA v S(T, A), 

and we may use the first of these results in the second and write 

“34 Tr, AceCdd. F(T vA)= FT u FAvu S(T, A). EE 
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It follows from +15 and 13°31 that 

“41 FYT=TuSTu ST: 

also for all values of n 

“42 SEAMS IHC 

and therefore the set S"‘!’ is contained in FT for all values of n, and if S,‘I denotes the 

class of sets whose members are [ and all sets of the form S”‘I’, the sum s‘S,‘T is con- 

tained in F*T’; *41 asserts the converse inclusion, and we have 

“43 TAG Sor 

a result whose significance will presently be briefly considered. 

The value of F‘T’ in analysis comes largely from a theorem now to be proved, that the 

field of any set [‘ is composed of all the points that belong to every convex set containing I’; 

in logical terms, F‘T is the product of the class of convex sets containing TP. From 15:12 

“bib er CyvaeD 2 oy— sn 

that is, in virtue of ‘16, 

“52 IN a Oxee 2724) ae 

since, by 22°34, F‘T’ is convex 

53 IN = J341P SIMO 

and combining this result with the preceding 

“54 IMeChx oS o/h 1s 

a convex set is a set which coincides with its field. Again, from ‘52 and 22:12, 

G55 NaCvxe iG Ay Sse GA 

which is equivalent to 

56 FT Cp‘A {Ac Cvx.T CA}; 

also 22°34 and 21:22 together are equivalent to 

‘3T FTA {A Cvx .T CA}, 
which implies 

58 pA (Ac Cvx .TCA}CFT, 

and ‘56 and -58 give the desired result, 

“59 FT =p‘A (Ac Cvx . °C A}, 

a formula by which #‘T’ has sometimes been defined. 

In order not to interrupt the argument, we did not point out an immediate consequence 

of 52 which we announced in 21; from °52 

‘61 PeCvx >. A=PF) FA=T, 

and in 

62 TeCyvx 3: (qA). T= F*A, 
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a weak deduction from “61, we have authority for the assertion 

26°63 Cvx C Fld 

which combines with 22°35 to give 

“64 Fld = Cvx, 

whence also 

65 Cdn = B“‘Cvx; 

after -64, use of the contraction Fld is entirely superfluous, but in spite of -65, Cdn remains 

of service. 

27. Fields, cordons, and convexity with respect to relations in general. 

It is not only for plane sets of points and for the relation denoted in this paper by S 

that a field is of service, and the merit of 26°43 and 26°59 as definitions of FT is that they 

suggest extensions of the theory of convexity to classes and relations between classes of a 

very general type. If R is any one-many relation which determines from a class a of any 

kind another class R‘a of the same type as a, we can call « convex with respect to the relation 

R if Ra is contained in a, writing 

27-11 evx=GR{Re13Cls. RiaCa} Df. 

If we denote by hyp 27a the hypothesis that R is such that 

hyp 27a aCy) Rac Ry 

it can be seen at once that 

12 hyp 27a 3. RiaC py {ycvx R.aCy}. 
e 

Moreover, with the notation already explained in connection with 26°43, Ry‘a is a class of 

classes, and therefore s‘Ry‘a is a definite class derived from a, and s‘Ry is like R itself a 

relation between classes. Again, 

13 hyp 27a 3. ycvx s‘Ry = y cvx R, 

and therefore 

14 hyp 27a D.s‘Ry‘a C pF fy evx Rua Cy}. 

Whatever the nature of R, the class a is a member of the class of classes Ry‘a and is contained 

in s‘Ry‘a, but the assumption hyp 27 is not sufficient to secure (s‘Rya) cvx R, that is 

hyp 27b Rés‘ Ry fa C sf Ry 6a, 

We may secure the last condition by a hypothesis ad hoc, and enunciate the theorem 

15 (a,7)-aCyD Ria Roy: (a) Ris‘ Ry6a C ‘Ry fa:. D. 3 Ry a= py {ycvx R.aCy}, 

but if we secure the condition hyp 27b by the assumption 

hyp 27¢ Ravy)C Rav Ry, 

and observe that this and the original assumption hyp 27a together are equivalent to 

hyp 27d Rav y)= Rav Ry, 
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we have the less general but more useful theorem 

16 (a, y) R(avuy)= Rav Ry... s‘Rya= py {fy cvx R.a Cy}, 

sufticing to shew that with respect to any relation with the property expressed by hyp 27d the 

field* of a class a may usefully be defined either as a sum or as a product of a class of classes, 

and the idea of the field may be connected with the idea of convexity with respect to the same 

relation. 

Further, if the classes between which the relation ‘R holds are sets of points in any space 

in which boundaries exist, we may define the cordon of a with respect to R as Bés‘Ry‘a. For 

example, if [ is a set of points in any reduced+ space in which distance is numerical, the field 

of I’ with respect to the operator D that connects I" with its derivative is the completed set 

Tv D‘T, and this is the product of the class of complete sets containing [’; the cordon BYG‘T 

of T with respect to D) is not necessarily the same as the boundary B‘T of I’, but is in fact 

composed of those points of BT’, the boundary of the boundary of I’, which are not isolated 

points of the complement C‘T. The utility of a field is certainly not confined to cases in 

which the relation concerned satisfies hyp 27 d, for the relation S defined in 12°11 does not fulfil 

this condition, and whether the two classes s‘Ry‘a and p‘y {fyevx R.aCy} are equally 

important in cases in which they differ, experience alone can decide. 

28. Fields in Euclidean space of more than two dimensions. 

Returning more nearly to the main subject of this-paper, we observe that in Euclidean 

space of any finite number of dimensions properties of the field and of the cordon—with respect 

to the relation of lying in a chord—may be investigated precisely as we have investigated them 

for a plane, the initial definition of the field being not of either of the general forms 26°43, 26°59 

but of a form similar to 21:11, adapted to the geometry of the space and shewn ultimately to be 

equivalent to a definition in a general form. In three dimensions, the excluding angle is the 

measure of a dihedral angle, and the points outside the field are defined by means of a standard 

geometrical figure composed of a leaf together with all the points of space on one side of the plane 

containing the leaf. It is sufficient to say that in the whole of this theory everything that is 

obvious is true, but we add that the appearance of the number 2 in 26:16 and 26:25 is 

associated with the fact that in those propositions plane sets only are in question. In Euclidean 

space of m dimensions 

28-11 FT =L1"T; 

whereas the operator B determining the boundary of a set has the same property§ 

12 Ba Bian s=\2 ) BY = B 

* In work of this general character, the field of a a neighbourhood that does not contain the other; in 

relation has a definite meaning, and although a relation a reduced space with numerical distances the distance 

is not a class and there can be no real confusion between between distinct points cannot be zero. 

the field of a relation and anything which we choose to § Note in formulae 12, -13 that to write R+S of 

describe as the field of a class, the use of the word field is two one-many relations R, S between classes means 

open to criticism. ~ (ql).-RD+ST, and does not mean (I) RT+ST; the 

+ A space is reduced if of every two points each has relations are not asserted to be mutually exclusive. 

Vou. XXII. No. XII. 33 
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in space of all dimensions, the use of Euclidean space of m dimensions makes us acquainted 

with a simple operator LZ requiring precisely m applications to secure its ultimate effect, that 

is, having the property 

28:13 no=mo2 "=I". n<mdI™+I™. 

29. Geodesic fields on a sphere. 

A reference to the geometry of a sphere shews that the use of some set analogous to a 

leaf of a plane is not confined to dealings with the Euclidean plane or with complete Euclidean 

space of any number of dimensions. If y, z are two points of a sphere, let us denote by 

sa‘(y, 2) the points lying between y and z on a great-circle are subtending an angle not greater 

than 7 at the centre of the sphere; then writing 

RT=2{y,zel.aesa‘(y, z)} 

we may study the geodesic field of a set I’, that is, the field of P with respect to R, and a set TP 

may be called geodesically convex if R‘T is contained in [. It is easy to see that a theory 

analogous to the theory of plane sets developed in this paper may be developed for spherical 

sets, the place of a leaf being taken by a set which may properly be called a hemisphere, 

namely, a set composed of all the points on one side of some great circle, together with all the 

points in a semicircle contained in this great circle, and including one but not both of the end- 

points of this semicircle. 

30. Zeroes of functions of a complex variable: a suggested line of research. 

We conclude with indicating a direction in which research, rendered possible by ac- 

quaintance with the concept of the field of a set which is neither finite nor limited, might 

prove profitable. 

It is well known that if f(z) is a polynomial in the complex variable z, the points repre- 

senting the zeroes of the derivative f’(z) belong to the field of the set composed of the zeroes of 

f(z), and therefore to the field of the zero-set of f(z)—c for any value of c. Reference to the 

functions sin z, cosz shews that the same result holds for some transcendental functions, and 

we have only to consider the function (2—a)/(z—b)* to see that there are functions for 

which the result does not hold. Denoting the zero-set of the function f(z), that is, the set 

composed of points in the plane of the complex variable which corresponds to zeroes of the 

function, by Z‘{ f(z)}, the four questions which first suggest themselves are : 

(1) Does the class of functions f(z) such that Z‘{/’(z)} is contained in the field of 

Z| f(z); possess any other distinguishing mark ? 

(2) If Z{/'(z)} is contained in F*Z*{ f(z)}, in what circumstances is .it contained in 

FZ f(z)—c} for all values of c? 
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(3) If Z{f' (2)} is contained in the field of Z*{ f(z) —c} for all values of c, can there 

be points outside the field of Z‘{f’(z)} which also belong to the field of Z‘{ f(z) —c} for all 

values of c? 

(4) If 4{f’(z)} is contained in the field of Z*{ f(z) —c} for some values but not for 

all values of c, does the class of numbers for which the inclusion holds present itself else- 

where in the theory of the function f(z) ? 

There is no difficulty in shewing that for a very large class of integral functions Z‘{ f’ (z)| 

is contained in the field of Z‘{f(z)—c} for all values of c, and that the property is neither 

common to all integral functions nor peculiar to integral functions, but whether any attempts 

have been made to answer the third or fourth of the above questions even in the most 

elementary cases I do not know. 
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XIII. On certain Trigonometrical Sums and their Applications 

im the Theory of Numbers. 

By S. Ramanvgsan, B.A., F.R.S., Trinity College. 

[ Received and read 4 February 1918.] 

1. The trigonometrical sums with which this paper is concerned are of the type 

c.(n) = cos Suan : 
A s 

where 2 is prime to s and not greater than s._ It is plain that 

é.(n) => a", 

where @ is a primitive root of the equation 

2@—1=0. 

These sums are obviously of very great interest, and a few of their properties have been 

discussed already*. But, so far as I know, they have never been considered from the point of 

view which I adopt in this paper; and I believe that all the results which it contains are new. 

My principal object is to obtain expressions for a variety of well-known arithmetical 

functions of n in the form of a series 
= asc; (n). 
s 

A typical formula is 
=n i) CG 3 (n 

a(ny=" \" ) a5 ae + me ) +... , 

where o(n) is the sum of the divisors of n. I give two distinct methods for the proof of this and 

a large variety of similar formulae. The majority of my formulae are ‘elementary’ in the 

technical sense of the word—they can (that is to say) be proved by a combination of processes 

involving only finite algebra and simple general theorems concerning infinite series. There are 

however some which are of a ‘deeper’ character, and can only be proved by means of theorems 

which seem to depend essentially on the theory of analytic functions. A typical formula of 

this class is 
¢,(n)+4e.(n)+4e;,(n) +... =0, 

a formula which depends upon, and is indeed substantially equivalent to, the ‘Prime Number 

Theorem’ of Hadamard and de la Vallée-Poussin. 

Many of my formulae are intimately connected with those of my previous paper ‘ On certain 

arithmetical functions’, published in 1916 in these Yvansactions. They are also connected 

(in a manner pointed out in § 15) with a joint paper by Mr Hardy and myself, ‘ Asymptotic 

Formulae in Combinatory Analysis’, in course of publication in the Proceedings of the London 

Mathematical Society. 

* See, e.g., Dirichlet-Dedekind, Vorlesungen iiber Zahlentheorie, ed. 4, Supplement vir, pp. 360—370. 

Vou. XXII. No. XIII. 34 
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2. Let F(u, v) be any function of u and », and let 

(2'1) D(n)= = F' (6, 8), 

where 6 is a divisor of n and 66’=n. For instance 

Diy Tr); D(2)=F (1, 2)+ F (2, 1); 

D(3)=F(1,3)+ F(3,1); D()=F (1, 4)+F (2, 2)+ F(4, D; 

D(5)=F (1, 5)+ F(5, 1); D(6)= FA, 6) + F (2,3) + F (3, 2)+F (6,1); ....... 

It is clear that D(n) may also be expressed in the form 

(2°2) D(n)= = F(8, 8). 

Suppose now that 

(23) 3 (n)= Si a ‘ 

so that »,(n)=s if s is a divisor of x and 7, o- =) otherwise. Then 

* 

(2:4) D(n)=5- SF nen) F (0? “), 

where ¢ is any number not less than 7. Now let 

: 277 
(25) s(n) = & cos =n 

where 2 is prime to s and does not exceed s; eg. 

¢,(n)=13 c.(n)=cos nr; ¢s(n)=2 cos Zn ; 

— - —e 2 S 4 . c,(n)=2cosin7; ¢;(n)=2 cos nz + 2 cos £n7 ; 

c,(n) = 2 cosini; ¢,(n)=2 cos zn + 2 cos na + 2.cos $n ; 

c,(n) =2 cos tur +2cos2nm; ¢(n)=2 cos tnm + 2 cos {nm + 2 cos Frm ; 

Co(n) = 2 cosinm+2cosinr; ....... 

It follows from (2°3) and (2°5) that 

(2°6) Ns (n) == c3(n), 

where 6 is a divisor of s; and hence+ that 

(27) c.(n)= 2 #(8') ns (x), 

where 6 is a divisor of s, 66’ =, and 

1 28 Ys, oe EC) 
¢(s) being the Riemann Zeta-tunction. In particular 

© (n) =m (n); G(r) =m (n)— m(M); Cs (2) = 5 () — (ays 

c,(n) = y(n) — no (N)5 Cs (MR) = 95 (2) — Mm (NM); vreeeee 

t (e} 

* > is to be understood as meaning S, where [t] de- + See Landau, Handbuch der Lehre von der Verteilung 
1 1 

notes as usual the greatest integer in ¢. Gar rena ilen eS 
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But from (2°3) we know that ms (n)=0 if 6 is not a divisor of n; and so we can suppose 

that, in (2°7), 6 is a common divisor of n ands. It follows that 

Cs (n)| < 28 

where 6 isa divisor of n; so that 

(2°9) c, (n) = O(1) 

if nis fixed and vax. Since 

Ns (Nn) = Ns (N+ S$); Cs (NM) =e; (n +8), 

the values of cs (m) for n = 1, 2,3... can be shown conveniently by writing 

¢(n)=1; ¢.(n)=— 1,1; 6(n\==Dh=1 2: 

¢,(n)=0,=2)0)2; ¢(v)==1, 1, == 1,4; 

Cad) = Lei (77) | et enn 6: 

¢s(n) =0, 0, 0, — 4, 0, 0,0, 4; ce (n) =0, 0, —3, 0, 0, —3, 0, 0,6; 

(Snes IS = 7h, = 1 Se ounce 

the meaning of the third formula, for example, being that c, (1) = — 1, ¢, (2) = — 1, ¢, (3) = 2, and 

that these values are then repeated periodically. 

It is plain that we have also 

(2:91) c, (n) = O(1), 

when v is fixed and nn. 

3. Substituting (2°6) in (2°4), and collecting the coefticients of ¢, (mn), ¢.(n), ¢;(n), ..., we 

find that i 

tell oi ie seal & n 
(3:1) D(n)=¢,(n)3= Fv, =) +ea,(n)>— F Qv, eens 3 F (3, 3) + 

1vV Vv 1 2Qv 2 1 3p 3v 

where ¢ is any number not less than n. If we use (2°2) instead of (2:1) we obtain another 

expression, Viz. 

“al xt] n val 
a) => pies > a 5 ys 3 yee : eae, (82) D(n)=e,(n) SFE, v) + a(n) = a5 F (3, ; 2) +c (n) = : 35 F(  3v) + 

where ¢ is any number not less than n. 

Suppose now that 

F, (u, v) = F (wu, v) log u, F, (u, v) = F (u, v) log v. 

Then we have 

D (n) logn= e F(6, 6) logn= > F (6, 6’) log (88’) 

> 2F, (6, 6’) JEG, OY) 

where 6 is a divisor of n and 66’ =n. 

34—2 
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Now for = F,(8, &) we shall write the expression corresponding to (3°1) and for = F, (6, 8’) 
5 3 

the expression sce gecd to (3°2). Then we have 

2 “log 3 
(3°3) D(n)logn=o.(n)3 a v, *) 4 a5(n) 5 log 2 Loe 5) + +e,(n) 3 6 F (30,5) + 

log v n log 2: 2Qv ‘log 3y 
sans ERE» ») + ex(n)® it et 2p ren F(> By) tes, 

2p 3y 

where r and ¢ are any two numbers not less than x. If, in particular, F(u, v)= F(a, u), then 

(3°3) reduces to 

sige it log 2 tlog 3 
(3-4) 1 D(n) log n= c, (x) = 8” F(v,") + o,(n) 395 F (20 50) + ) teak nye “= 5 (80, 5.) t--3 

where ¢ is any number not less than n. 

4. We may also write D(n) in the form 

(41) D(n)= = F(8, 8) + = F(8, 8), 
$=1 s=1 

where 6 is a divisor of n, 68’ =n, and u, v are any two positive numbers such that w=, it being 

understood that, if w and v are both integral, a term F(u, v) is to be subtracted from the nght- 

hand side. Hence (with the same conventions) 

D(n)=> S = ne (n) F(, a2 ars Se n(n) F (5, v). 
Weeita v v 

© 
Applying to this formula transformations similar to those of § 3, we obtain 

(42) Deseo: ”) + ean) 5 F (2, 5-)+-. 
aie v 

ll n GTN Se S ‘ +e(n)B 5 F(T, v) + e,(n) 5 3p ee 

where wu and v are positive numbers such that uww=n. If wu and a are integers then a term 

F (u,v) should be subtracted from the right-hand side. 

If we suppose that 0<w<1 then (42) reduces to (3'2), and if 0<u<1 it reduces to (3'1). 

Another particular case of interest is that in which u=v. Then 

ne | n } avn n \ ny \ 
(43) Di(n)=c¢,(n)>= - iF (», ") +F(*, »)} +¢,(n) & S 5 1 (2, 5. } +F( , 2v |b +... 

ivi v v 2pv | 2y/ 20g 

If n is a perfect square then F'(V/n, 7) should be subtracted from the right-hand side. 

5. We shall now consider some special forms of these general equations. Suppose that 

F (u,v)=%, so that D(n) is the sum o,(n) of the sth powers of the divisors of n. Then from 

(3:1) and (3:2) we have 

(5'1) oy = n)s +¢,(n)& + * _ = C. a pHs i] ar a 

ni’ Cy (n oat Co ( 1 (Qn) Cs ( 7 (By) 

Me 
(5'2) o,(n)=c, (n)3 vv + ¢, (n) Sry! (n) = (Buy + set 

SS . . ——— 
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where ¢ 1s any number not less than n: from (3°3) 

(5°3) os(n) logn =e (nm) & Sv logy + ¢4(n) & (20)! og 20 +. 1 

‘ j & logy | x < log 2y 
Bel is (n) = Soa Cy (n) 7 (2) s+ atte + zl 

where r and ¢ are any two numbers not less than n: and from (4'2) 

2U hu 

(5'4) a, (n)=¢, (n) 3 vs + Cy (n) > (2v)s + ¢3 (n) > : (3v)s4 + 

1 1 el 
+ ns {0 (n) 00) 5 a ya tol) = ya te f 

where w=n. If w and v are integers then uw’ should be subtracted from the right-hand side. 

Let d(n)=o,(n) denote the number of divisors of n and ¢ (rn) =o, (n) the sum of the divisors 

of n. Then from (5:1)—(5‘4) we obtain 

Zl sa 1 1 
(5°5) d(n) = cx + Cs (n)> gt Egt. 

(56) a(n) =, (n) [t] + c2 (n) te +¢;(n)[4t]+..., 

~ logy ¥ log 2p “log 3y A SS , Ss 7) Paes (57) td(n)logn= aN) : a= oy ai Gai) = 3) tee eats 

v (2 Su 4u w 1 (au ] go] 
(5°8) d(n)=e,(n)|30 +3 +23 + C2 (2) \ooF + Saftam{s5,+egt+ ee 

where #>n and ww=n. If wand v are mtegers then 1 should be subtracted from the right-hand 

side of (58). Puttmg w=v =n in (5'8) we obtain 

aus 

1 at 

unless n is a perfect square, when 4 should be subtracted from the right-hand side. It may be 

interesting to note that, if we replace the left-hand side in (5:9) by 

[4+ 4d (n)], 
then the formula is true without exception. 

(59) bd (n)=e,(n) Bo tea(n) 2 = +¢,(n) > 
1 

6. So far our work has been based on elementary formal transformations, and no questions 

of convergence have arisen. We shall now consider the equation (5:1) more carefully. Let us 

suppose that s>0. Then 

geo! na 1 S Be see ts ca 
a (kv)s*) jl (kv)? ate 0 (al=- js o(s ar 1) oF 0 (a) 

The number of terms in the night-hand side of (5'1) is [t]. Also we know that ¢, (n) = 0 (1) as 

y—o. Hence 



264 Mr RAMANUJAN, ON CERTAIN TRIGONOMETRICAL SUMS 

Making to we obtain 

(61) as(ny=m E0041) {A 4g 4b 
ifs>0. Similarly, if we make t > im (5°3), we obtain 

r dr 

a; (n) log n =e, (n) > vs log v + c,(n) = (2v) log 2v +... 
1 

log v 2 log 2v 
+ nt fe, Ob s pt G(n nS Goon 

But 

= lo kv logk 1g, 

pyres ee SCD ~ peal! 6D 
It follows from this and (6:1) that 

(6:2)  «a,(n) {re log n| =e, ()> S ve log v + Cs (n)5 S (Qn) log 2v+. 

+n® f(s +1) {" gs ze ee 2 ees oo = a : 

where s>Oandt>n. Putting s=1 in (6:1) and (6:2) we obtain 

o(n)= =n fa Ces ae, + (63) 12 22 opr 

(6:4) a(n) {ES + log nh =7n (elo el+— 2 tog +. 4) 

+ ¢, (n) [t] log 1 + ¢, (n) [At] log 2+... 

+ ¢, (n) log [t]!+ ce. (n) log [$4] !+..., 

where t>n. 

7. Since 

(7-1) a; (n) = n'o_, (n), 

we may write (6'1) in the form 

. as(m) _,(n) , e2(n) . ¢,(n) 
(7 2) f(s+1) 1s Qs41 in eH a5 wey 

where s>0. This result has been proved by purely elementary methods. But in order to 

know whether the right-hand side of (7-2) is convergent or not for values of s less than or equal 

to zero we require the help of theorems which have only been established by transcendental 

methods. 

Now the right-hand side of (7:2) is an ordinary Dirichlet’s series for 

1 
C_s (n) x f(s+1)° 

The first factor is a finite Dirichlet’s series and so an absolutely convergent Dirichlet’s series. 
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Tt follows that the right-hand side of (7:2) is convergent whenever the Dirichlet’s series for 

1/€(s+ 1), viz. 

: sy H (n) 
(7 3) =) FRE 2 

is convergent. But it is known* that the series (73) is convergent when s=0 and that its 

sum is 0. 

Tt follows from this that 

(7-4) ¢, (n) + $c, (n) + de, (n) + ... = 0. 

Nothing is known about the convergence of (7°3) when —4< s<0. But with the assumption 

of the truth of the hitherto unproved Riemann hypothesis it has been proved+ that (7:3) is 

convergent when s>—4. With this assumption we see that (7'2) is true when s>—4. In 

other words, if —4<s< 4 then 

(7'5) o,(n)=€(1—s) ea + =! +a + wf 

=n'E(1 +8) |e +o + = + ae 

8. It is known? that all the series obtained from (7:3) by term-by-term differentiation 

with respect to s are convergent when s=0; and it is obvious that the derivatives of o_, (n) 

with respect to s are all finite Dirichlet’s series and so absolutely convergent. It follows that 

all the derivatives of the right-hand side of (7:2) are convergent when s=0; and so we can 

equate the coefficients of like powers of s from the two sides of (7-2). Now 

(8:1) S—YySt..., _ ee 
€(s+1) 

where y is Euler's constant. And 

o_, (1) — oe — > 1 —s> lop d+ ...; 

where 6 is a divisor of n. But : p : 

= log 6 = log & = & log (60’) = ne hone 
3 3 8 

where 66’=n. Hence 

(8:2) o_;(n)=d(n)—4sd(n) logn+. 

Now equating the coefficients of s and s* from the two sides of (72), and using (8'1) and 

(8:2), we obtain 

(3°3) ¢ (n) log 1 + $c, (n) log 2 + te, (n) log 3+... =—d (n), 

(84) ¢, (n) (log 1)? + $e, (n) (log 2? + 4¢, (n) (log 3)? + ... =—d (n) (2y + log n). 

9. I shall now find an expression of the same kind for ¢ (x), the number of numbers prime 

to and not exceeding n. Let p,, p,, ps, ... be the we divisors of 2 and let 

(9:1) ds (n) =n (1 = _ ahi 2) (se) kee 

so that ¢,(n)= (xn). Suppose that 

F (u, v) = p (u) v*. 

* Landau, Handbuch, p. 591. + Littlewood, Comptes Rendus, 29 Jan. 1912. + Landau, Handbuch, p. 594. 
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Then it is easy to see that 

D (n) = o; (n). 

Hence, from (371), we have 

<p (2) 
1 (2v) yet Tidis 

(9-2) — ne ny SED +0 jae 

where ¢ is any number not less than n. Ifs>0 we can make t— #, as in§ 6. Then we have: 

(1) f (v) = ) PO) = 0, (n) 3 oe + Cs (7) 5 Ee (9°3) 

But it can easily be shown that 

(nv) b(n) 
9-4 Se 
oe 1 ov f(s) —-p)d—p.*) (1 —p)... 

where p;, Ps, Ps, --. are the prime divisors of 7. In other words 

9:5 SO ae 
oe ede ds (7) €(s) 

It follows from (9°3) and (9°5) that 

bs(n)F(st1)_ wal) , w(2)e(n) , w (3B) 6 (n) 
Ge) ifr Tiger an RESIDE DULITAGNA (2): = GORENG) 
In particular 

‘ 7 Cy (”) a Cs (2) E C; (n) 
(97) +6 $@=4()-—5 4-4 BHT 

C, (n) C; (n) re Cio (1) 

sagas?) 721° (#—YGt=1),~ 

10. I shall now consider an application of the main formulae to the problem of the number: 

of representations of a number as the sum of 2, 4, 6, 8, ... squares. We shall require the 

following preliminary results. 

(1) Let 
ee ly Js ae 331 a 

D SS n — Sees eee Ne (10:1) D(n) a =X, tineti;et 

We shall choose 

F (u,v) =v, u=1(mod 2), 

F (u,v) =— v4, u=2 (mod 4), 

F(u,v)=(2'-1) vs, w=0(mod 4). 

Then from (3°1) we can show, by arguments similar to those used in § 6, that 

(1011) D(n)=n* (1 +37 + 5-*+ ...) {1% ¢, (nm) + 2c, (n) + 3c; (mn) + 4 c, (n) 

+ 5-8, (2) + 6-8 eyo (nm) + 7-8 c; (nr) + 8 Cig (MW) +... } 

We fjsa lr 

(2) Let 

. 9 ee ee ae |, BPN 
(10:2) 2 D(n) a= X,= Sena ico Ue 
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We shall choose 

Gay) w= 1 (mod 2), 

Hi (Ge) — ea, u = 2(mod 4), 

F(u, v)=(1 — 28) 7, w= 0 (mod 4). 

Then we obtain as before 

(10:21) D(n)=n*"(1-*+3%+5*+...) {lq (n)— 2 ¢,(n) +3 ¢; (n) — 4c, (n) 

+578 ¢,; (nr) — 6-8 ey (n) + Tc, (n) — 8 ey (NM) +... 

(3) Let 
j= L 23-1 ip 3341 xe 

: a \7n — .= 
cece (10°3) 2 D@)e@=X=7 e+ get iget 

We shall choose 

F(u, v)=0, u=0(mod 2), 

F(u,v)=v, w=1(mod 4), 

F(u, v)=—v-!, w=3 (mod 4). 

Then we obtain as before 

(10°31) D(n) =n? (1-§ — 3-3 + 5-8 —...) {1-8 e (n) — 3c, (n) + 5-8 6, (n) — ... |. 

(4) We shall also require a similar formula for the function D (n) defined by 

LG ie 2 amo 

lie lS ae 
(10-4) > Din) 2 — xe — 

The formula required is not a direct consequence of the preceding analysis, but if, instead of 

starting with the function 
2anXr 

c, (n) = & cos , 
r r 

we start with the function 

1 i 2 

s,(n) == (—1)°°-) sin man ; 
A 

where 2 is prime to r and does not exceed r, and proceed as in §§ 2-3, we can show that 

(10-41) D(n)=4$ne (1-*— 378 4 578...) {1 8, (n) + 278 85 (n) + 37 Sy (N) +... }- 

It should be observed that there is a correspondence between ¢,(n) and the ordinary 

¢-function on the one hand and s,(n) and the function 

n (s)=1*—3+5*-... 

on the other. It is possible to define an infinity of systems of trigonometrical sums such as 

c,(n), s,(n), each corresponding to one of the general class of ‘ Z-functions*’ of which {(s) and 

m (8s) are the simplest members. 

We have shown that (10°31) and (10°41) are true when s>1. But if we assume that the 

Dirichlet’s series for 1/n(s) is convergent when s=1, a result which is precisely of the same 

depth as the prime number theorem and has only been established by transcendental methods, 

then we can show by arguments similar to those of § 7 that (10°31) and (10°41) are true 

when s=1. 

* See Landau, Handbuch, pp. 414 et seq. 

Vou. XXII. No. XIII. 35 
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11. I have shown elsewhere* that if s is a positive integer and 

14+ 7, (n) a” = (1 + 2a + 2a + 20° +...) 
then 

Tyg (11) = Oog (NM) + Cos (”), 

where @,, (n) = 0 when s = 1, 2, 3 or 4 and is of lower order+ than 6,; (7) in all cases; that if s is 

a multiple of 4 then 

(11:1) (943545 +.) EB (nen = Kis 

if s is of the form 44 +2 then 

(11:2) (#438454...) E84 (n) a" = at ee 

if s is of the form 44 +41 then 

(113) (1-8 3-84.58...) 3 8 (n) a" = a (X,4+2->X)), 

except when s=1; and if ¢ is of the form 44 + 3 then 

(11-4) (1-*—3- 4.5 —...) 3 8,,(n) a2" = a= (X,-2-X)), 

X,, X., X,, X, being the same as in § 10. 

In the case in which s=1 it is well known that 

= x“ Prd Hid 
(115) 3 8,(n) a= 4( + 7) 

=% Zz e 7 

(eee 

It follows from §10 that, if s is a multiple of 4 then 

(aie) OA) ea c, (n) + 2-* 4 (n) + 3-* cy (n) + 47 C5 (2) + 5 €; (Nn) + BO Cp (nr) 

+ 7-*c,(n) + 87? ce(n) + -..}5 

if s is of the form 44 + 2 then 

stl 

D! {1-8 @, (nm) — 278 ce (n) + 37 cs (n) — 4-8 cg (n) + 5-8 C5 (2) — 678 Cy (n) (ULB) Oe, (=e 

+ 7-8, (n) — 8 C5 (nr) +... }5 

if s is of the form 44+ 1 then 

z {1-* c, (n) +27" s, (7) = 3 ¢, (nm) + 4-* 5, (2) + 578 Cs (12) + 6 Syo (M) } _ mnt 
(11°81) 84 (®) = G4)! 

—7-*¢,(n) + 878 sy6(n) + ..-}, 

except when s = 1; and ifs is of the form 4k +3 then 

mn ; : p . 
(11:41) 6, (n)=— D! {1-* ¢, (n) — 278 s, (n) — 3-8 cy (n) — 4-* 8 (n) + 5-* Cy (2) — O~* Sp (2) 

—7-*¢,(n) — 878 8y5(m) + «e}. 

* Transactions of the Cambridge Philosophical Society, + For a more precise result concerning the order of 

vol. 22, 1916, pp. 159—184. @o, (n) see § 1d. 
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From (11°5) and the remarks at the end of the previous section, it follows that 

(1151) ry (n) = 8 (n) = 7 {e, (n) — 40; (nm) + $e; (n) — ...} 

= m7 {k5,(n) + £8 (n) + ds (n)+...}, 

but this is of course not such an elementary result as the preceding ones. 

We can combine all the formulae (11-11)—(11°41) in one by writing 
rns) 

(116) 6.,(n)= coun {178 e (m) + 278 y(n) + 3-8 ©, (n) + 47-8 Cg (n) + 5-* ©; (n) 

+ 67% Cyo (2) + 7~* Cy (Nn) + 878 Cy (1) + ...}, 
where s is an integer greater than 1 and 

Cy (n) = ¢,(n) cos $7rs (r — 1) —s,.(n) sin $78 (r — 1). 

12. We can obtain analogous results concerning the number of representations of a number 

as the sum of 2, 4, 6, 8,... triangular numbers. Equation (147) of my former paper* is 

equivalent to 

Ge or. Ont 2 IE) (ay et gl 
1 Wi | (Ga) een Ge) VEX) 

where K, is a constant and 

f(#)=(1—2) (1 — «#) 1 —@’).... 
Suppose now that 

G=e€5™, a =e 2nla 
Then we know that 

(12:2) Va(1 — 2a + 2a — 20° +...) = 2a’8 val +a ta%4+ a+ ...), 

(123) Vda) a2 f(a) = a2 f(a), awl? f (a2) = a"? f (a). 

Finally 1+ > 825 (2) (— «)" can be expressed in powers of a’ by using the formulae :— 

1 5 4 Sa 5 13 928-1 3231 

(124) a EG -2)+ oa +ea-eait 

f 133-1 925-1 33-1 

= (— 8) }4 6(1 — 28) + a Se aRT ae tut, 

where a8 = 7 and s is an integer greater than 1; and 

15 228 328 \ 

(125) — (2a)°* + if 
ansa 5 = 

lex + es erraee e82 + ¢g-% a 
1° 325 52s 

=(- BY V28)) 8 1(- 2) + a4 9 a ee 
B— | eB —] 

where a8 = 7°, s is any positive integer, and 7(s) is the function represented by the series 

—— 3-4 5-*—... and its analytical continuations. 

Tt follows from all these formulae that, if s is a positive integer and 

(12°6) (+ a@ a3 + 8 +...) = Dog (N) B= D8'n, (0) 2” + Deo, (Nn) 2, 

then 

fies (2) > KG. (— ame ve (2) 

Sy \ pn —v¥ 2 €og(N) 2” = — 2 a =< 9 
J” (&) 1 <n<4(s=1) J NG) 

where £,, and f(a) are the same as in (12'1); 

BaleCh Lone 
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alte jor) -gs/It@ 2 Betas 
(1261) (44 BF 5-4.) ESa (m= ia Ge ot) 

if s is a multiple of 4; 
Jae ae & 

lays _ 18-1 g2 33 a sl ps 

(12°62) (184+ 3%4+5%+...) 28, (n)a"= ae oe = = ) 

if s is of the form 4442; 

att -i5/ [stat 3a! ae 
« it 

—1)! l+a2 l+a are 
(1268) (1-* 3-84 5-*—...) 58, (n) a = 

1s) Re 38-1 Hes 58-1 ot ‘ae ee 
l-a l-s# 1-2 

if s is of the form 44+1 (except when s=1); and 

2 3 1s gt s—1 sl pt 
wee af e aS = 

) lta? l4at 1428 

gt geigh 5198 = = " ES i 3 5 
l=2? 1l—a 1=2 

(1264) (1-*§ 8754 57...) 38x (n) a= 

ifs is of the form 44+3. In the case in which s=1 we have 

i 2 5 

a x at 
; + st = — 

lta l+ee 14+2 
5 cay 

Ei + 
ar = aihes oa — 

(12:65) 8! (n) a= Al 

gt 5 
i — x 2 Sila 

It is easy to see that the principal results proved about e.;(”) in my former paper are also true 

of é’,,(n), and in particular that 

€o,(n) =0 

when s=1, 2, 3 or 4, and 

Tog (N) © 825 (2) 

for all values of s. 

13. It follows from (12°62) that if s is of the form 44+ 2 then (1-*+3-*+5-+...) 8. (") 

is the coefficient of #” in 

Seem er: Se, (—1)! (a =e 

Similarly from (12°63) and (12°64) it follows that if s is an odd integer greater than 1 then 

(1-* — 3-*+5-*—...) 8, (n) is the coefficient of #” in 

4(lrY -a,/lat 24% 3228 
ee t ( aa see ae Sane at 
(s—I)! l+a2 l+a2 1+a3 

Now by applying our main formulae to (12°61), (13:1) and (13-2) we obtain :— 

(har 1 

(s— 

(13:1) 

(13:2) 

1 

(13°3) Bas (0) = y(n bs) {1 —¢, (n +48) +37*c,(n+ 48) 4+5-*e,(n+4s)+ ...} 

if s is a multiple of 4; 

| 
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(13°4) Bn (n= LEE (nt J fF (2n + $8) + 37% c, (2n + 48) + 5-*c,(2Qn+45)+ .. 

if s is twice an odd number; and 

é $7)8 
=1)! 

if s is an odd number ee than 1. 

(135) On (7) i= (w+ 48) {1 c, (4n + 5) —3-* c, (4n + 8) + 5-8 ¢,(4n+s)—...} 

Since the coefficient of # in (1+a+2*+...)°is that of #”+1 in (}+a+ a+...) it follows 

from (11°51) that 

(136) 1, (n) = os (n) =F {es ¢ (4n +1) —4e,(4n+1)+1406,(4n+1)-...}. 

This result however depends on the fact that the Dirichlet’s series for 1/n(s) is convergent 

when s=1. 

14. The preceding formulae for o, (7), 625 (7), 6's,(”) may be arrived at by another method. 

We understand by 
sin war 

(141) k sin (n7/h) 

the limit of 
sin war 

ksin(a7r/k) 

when a>n. It is easy to see that, if n and & are positive integers, and hk odd, then (141) is 

equal to 1 if k is a divisor of x and to 0 otherwise. 

When k is even we have (with similar conventions) 

sin nr 
i) ee Sl PO 

(142) k tan (n7r/k) ; 

according as / is a divisor of x or not. It follows that 

‘sin nar sin 17 _{ sin nr sin n7 \ 
Aye) Or) (22) = Ne SF ( : ) + 2-*/ 3°§ (= ) 4-8 ( - bisdie 
i a) sin 27 tan ae) =e sin 4 nr i tan aa) 

Similarly from the definitions of 6,;(n) and &,,(n) we find that 

= Time | eee SUL a) 

ee 8 oP eB aia erent) =e cooryy tN rags 
a 2-3 sin 177 ) ba a*( sin 27 ) wes sin 177 )+ l 

~ \sin ($nm +4s7)/ °~  \sin (hn + 877) lea (tna + 3sr)/" “"'S 
if s is an integer greater than 1 ; 

(145) AOE O Se (3 me a = Th ) a (= nT ) ce a 

sin 27 sin dn sin Ln 

sin 177 sin 277 sin nr | 
= 4 — i ( —_— 4 {| — =|) = anoles 
u ee =) . ee te + (= 4 a) We 

5 , sin (n+ 4s) 7 14 1=8 4-8 4 8 _ Ga a 4 be ‘S (n+4 ) 
Bea 8+ ON) (s — - yn + 4s) : sin (n + 4s) 7 

par (aDot ide), 5(smot Lo) 
sn 4 (n+4s)7 sini (n+ 4s) 7 

if s is a multiple of 4; 
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(47) (e849 +.) Ba = ET sn s—1 (4-8 

Sy ey (Gr (Qn + 48) 
_,/ sm(2n + $s) 7 Las ( sin (27 + $s) 7 

5: (= 1(2n ee Be \sin 1(2n +48) 7 =) a 

if s is twice an odd number; 

(148) (8-3-4 5-* =...) 8x (nr) = 2B (ns poy a ea) 
= ai ( sin (4n +s) 7 

22 

\sin 4 (4n +s) 7 sini(4n+s)7/) ~~ 
—3° 

if s is an odd number greater than 1; and 

; Aen ere (Se Coen ie sin (4n+1)7 )\ sin (4n+1)7 

aes =e O- ae. oar (@n 45D eae (ey acy oi ote 

In all these equations the series on the right hand are finite Dirichlet’s series and therefore 

absolutely convergent. 

But the series (14°3) is (as is easily shown by actual multiplication) the product of the two 

series r . 

IS*en(@v)-- 2=%'G, (nm) + .<- 

and ne (18 4-2-*-- 35° + ...): 

We thus obtain an alternative proof of the formulae (75). Similarly taking the previous 

expression of 6,,(7), viz. the right-hand side of (11-6), and multiplying it by the series 

USS (8) 7 ol Ca 

we can show that the product is actually the mght-hand side of (144). The formulae for &.,(n) 

can be disposed of similarly. 

15. The formulae which I have found are closely connected with a method used for another 

purpose by Mr Hardy and-myself*. The function 

(151) (1 + Qa + Qa* + 2a°+ ...)* = > re; (nm) 2” 

has every point of the unit circle as a singular point. If @ approaches a ‘rational point’ 

exp (— 2p7i/q) on the circle, the function behaves roughly like 

1 (Wp,9)° 
52 PY ; 

ad {= (2p7i/q) — log a} 

where «,,,= 1, 0, or — 1 according as q is of the form 44+ 1, 44+ 2 or 4k +3, while if q is of the 

form 4k then ,,,=— 2i or 27 according as p is of the form 44+ 1 or 4k +3. 

Following the argument of our paper referred to, we can construct simple functions of « 

which are regular except at one point of the circle of convergence, and there behave in a manner 

very similar to that of the function (15'1); for example at the pomt exp (—2pri/q) such 

a function is 

7* (Wp, 9) 

(s—1)! 

x 
"S ‘Audi e2Rprilg yn 
Tez: (15°3) 

* “Asymptotic formulae in Combinatory Analysis’, Proc. London Math. Soc., ser. 2, vol. 17, 1918, pp. 75—115. 
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The method which we used, with particular reference to the function 
af 

15-4 - == p(n)2", 
GP) (1—a#)(1 —2*)(1—2%)... NG) 

was to approximate to the coefficients by means of a sum of a large number of the coefficients of 

these auxiliary functions. This method leads, in the present problem, to formulae of the type 

Tog (2) = 8.5 (n) + O(n2*), 

the first term on the right-hand side presenting itself precisely in the form of the series 

(11:11) ete. 

It is a very interesting problem to determine in such cases whether the approximate 

formula gives an exact representation of such an arithmetical function. The results proved here 

show that, in the case of r,,(n) thisis in general not so. The formula represents not 7.,(n) but 

(except when s=1) its dominant term 6.,(n), which is equal to 7,,(n) only when s=1, 2, 3, or 4. 

When s=1 the formula gives 26, (n)*. 

16. We shall now consider the sum 

(161) o, (1) + 6, (2) +... +o, (n). 

Suppose that 

(162) 7,(n)=45 — at Uva 
mx 

sin {(2 + 1) 7A/r} 
=1), a) = 

sin (7X/7r) sin (7A/7r) 

where X is prime to r and does not exceed 7, so that 

T,.(n)=c,(1) +e, (2) +... +¢,(n) 

and U,(n)=T,.(n)+46(7r), 

where $(n) is the same as in §9. Since ¢,(n)= 0 (1) as r > x, it follows that 

(16:21) Tn) 0); 4) Ui (2) = O1(r); 

asr—>o. It follows from (7°5) that if s>0 then 

(163) o_.(1)+o_.(2) +... +0_s(n) = E(s +1) sn+ { Qst1 3341 4sh 

T,(n) _, Ps(n) a hae 

Since 

if s > 1, (16°3) can be written as 

(16°31) o_,(1)+o_,(2)+...+0_,() 

U.(n) U,(n) U,(n) 
=€(s+1) n+ + Osh ac 36H = Agti + of =B E06), 

ifs>1. Similarly from (8°3), (84) and (11°51) we obtain 

(164) d(1)+d(2)+...+d(n)=—347,(n) log 2-47, (n) log 3 —1T7,(n) log 4-..., 

(165) d(1)log1+d(2)log2+...4+d(n) logn 

= 47, (n) {2v log 2 — (log 2)?} + 47, (n) {2v log 3 — (log 3} + ..., 

(16°6) r.(1)+72(2) +... +72. (n) = 7 {n — 47, (nm) +1T, (n) —4T, (n) +...}. 

* The method is also applicable to the problem of the and in particular of five or seven’, Proc. London Math. Soc. 

representation of a number by the sum of an odd number (Records of proceedings at meetings, March 1918). A fuller 

of squares, and gives an exact result when the number of account of this paper will appear shortly in the Proceedings 

squares is 3, 5, or 7. See G. H. Hardy, ‘On the represen- of the National Academy of Sciences (Washington, D.C.). 

tation of a number as the sum of any number of squares, 
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Suppose now that 
2rr 4 2 

T,,.(n)=% (Ico = 250 
cre eines aa, 

A 

where X is prime to rT and does not exceed r, so that 

T,,,(n)= 1% c, (1) + 2%, (2) + ... + n*¢,(n). 

Then it follows from (7°5) that 

(16°7) o,(1)+o5(2) +... +o9(n) 
Ls ME Go 

=f(+1) {r+ +254+...+n8)+ - ae. 
is T,, 5 (%) 

Ash 

a 
ifs>0. Putting s=1 in (16°3) and (1677), we find that 

(168) (n—1)e_,(1)+(n—2)o_,(2)4+... +(m—n) a(n) 

Sr fee = Dee eOree ae) 
Cie. 2 a ge 

a r/r) 

che - yer a eee where V,(n) nen r) —n, 

d being prime to 7 and not exceeding r. 

It has been proved by Wigert*, by less elementary methods, that the left-hand side of (16°8) 

is equal to 
Wns nm 2 

or 
(169) 5 n? —4n(y—1+4+log Qn) — 3 

where J, is the ordinary Bessel’s function. 

—) J, {dar af(vny, 

17. We shall now find a relation between the functions (16:1) and (16°3) which enables 

us to determine the behaviour of the former for large values of n. It is easily shown that this 

function is equal to 

(17-1) = ( (184 2843°4.. +" oy )+S [2] tua Sw. 

Now 
“ k+4 , 

194+ 2°+...+h=C(— s) + F a + 0 (ke) 

for all values of s, it being understood that 

(k+4) 
SS se aeare 

denotes y + log(k+4) when s=—1. Let 

nh i 

|; |--tte, [Vn] =t=Vn—4t+e. 

vas 

Then we have 

8+ 8 s-1 

1424... e Se (2) wv (n 
al \= pio ad s+] iat 1 Olay 

n 
and vs H =n — fy? + er’. 

“ Acta Mathematica, vol. 37, pp. 113—140 (p. 140). 

AF Got 
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It follows from these equations and (17:1) that 

2 e t s) t { : 1 n\ sti ae 

(72) @,(1) +4,(2)+... +a,(n)=  }6(—9) + 5 (“) + 

} 
n\* ; ne 

Fe(=) ter —(ynte)i" +0 (a) : 
y p*—1)}) 

t 7981 s+1 

(17°21) 8 {o_,(1) + o_, (2) +... +o_s()} = = jm (s) + + (7) +e,v° 
v=1 =. 

Changing s to —s in (17:2) we have 

pet, | 

By 
It follows that 

t 

(173) n® {o_.(1) + o_,(2) +... +a -2(n)} — {o,(1) + 0, (2) +... +o, (n)} = S es) -S-8) 

v=1 

+e, (5) -wa+9(™ ) +0/ 

Sen 0 \ae 8 UN? mom BEN) — / iS sf 

ae ale cane. + (n+ €) vf — (4/n +6) 5) + OS ee 

Suppose now that s>0. Then, since v varies from 1 to ¢, it is obvious that . 

pst ns} 

n po 

fpr ~ {ns\ 
and so 0 ( n ) =0 \ pel ) ° 

t 

Also = {n*F(s)—(—s)} =(V/n—$ +6) {n? f(s) —F(—5)} ; 

= (F) is Seen 6 +s)- Wnt ey ‘+ 0 (n**); 
Vv 

Ss n - ls 

i =e(1- s)+ pay Wvn teh + O(n); 

(/n+e€)prs 

l+s ies), 
S (tu ene CEC a) 

t ) alg 

>; (in aenle ae (ln Pelee) (/n +e) + O(n**); 
vol l-s 

t né 1 

and D>, ‘Soltt NE Eo 
v=1 

where 

(17°4) m =n (s<2), m=nlogn(s=2), m=n*"(s> 2). 

It follows that the right-hand side of (17°3) is equal to 

2+3 __ » stl —3. 

Ty il ts) +, £1 5) — dnt oe) ¢ EE Wnts) 
+S 

s 8 se , rWnte) n§ (4/n +6) NOG: 

l—s 

/ 2+5 __ »sti —s 5 , f But (Wn + €)Pt8 = °F (s/n + €) = ent +9) 4 Q (nd): 
l+s 

n(f/n+ ee ile eae Jen 1+) 4 O (nd), 
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Tt follows that 

(17°5) 0, (1) +o, (2) +... tog (n) =n! {o_, (1) +o_5(2) +... +o_2(n)} — 

+ins 6(s)- €(1—s)+0(m) 

if s>0, m being the same as in (17'4). If s=1, (17°5) reduces to 

(176) (n—1)¢_,(1)+(m—2)o4(2)+...+(n—n) o4(n) 

= >—In(y—1+ log 2n7) + O(W/n)*. 

From (16:2) and (17-5) it follows that 

(177) as) +o5(2) +... +9 (= G1 +s)+3n' E(t 60 —s) 
(T.(n) _ T; (ay “?, (nr) 
| Qst1 31 4sHi 

for all positive values of s. If s>1, the nght-hand side can be written as 

. U, : (7s) ¢(-s)+wS(.+s) {e+ 4+ = + eae + a = + 0(m). 

+n°E(1+4+s) = +..b+ O(m), 

Putting s =1 in (177) we obtain 

(17-9) o,(1)+.4,(2)+... +6; (n)= put hn (y—1+ log 2nzr) 

(Ts E T, +o ws — o) +f + O(n) 

Additional note to §7 (May 1, 1918). 

From oy it follows that 

{1-*o,_, (1) + 203 (2) +)... = 172 1 Cy, (1) 22 > Mae Gn (2) eee 
1 a cr)" 

E(s) On +8 eg se Cm (n) 
or = Pa 

' f(r) 11 mn 
from which we deduce 

(8) 3 w(8) a" = ~ sal?) = eee Peay 

8 being a divisor of m and & its conjugate. The series on the right-hand side is convergent for 

s >0 (except when m= 1, when it reduces to the ordinary series for §(s)). 

When s=1, m>1, we have to replace the left-hand side by its limit as s— 1. We tind 

that 
Cm (1) + 4¢m(2) + $¢m (3) + ... =— A(m), 

A(m) being the well-known arithmetical function which is equal to log p if m is a power of 

a prime p and to zero otherwise. 

* This result has been proved by Landau. See his a more transcendental method, replaced O (,/n) by O(n) 

report on Wigert’s memoir in the Gdéttingische gelehrte  (l.c, p. 414). 

Anzeigen, 1915, pp. 377-414 (p. 402). Landau has also, by 



XIV. Asymptotic expansions of hypergeometric functions. 

By G. N. Watson, Se.D., Trinity College, Cambridge. 

[Received June 11, 1917. Read Feb. 4, 1918.] 

1. The hypergeometric function F(a, 8; y; “) presents two distinct problems to mathe- 

maticians interested in the theories of analytic continuations and asymptotic expansions. The 

first, and simpler, problem is that of finding the analytic continuation of the function beyond 

the circle |~|=1, which is the circle of convergence of the series by which the function is 

usually defined. More generally, the problem is that of finding the analytic continuation of 

qu, beyond the circle |z|=1, and of finding the asymptotic expansion of »F, for large values 

of |z| when p<q+l1; as usual, ,/, denotes a generalised hypergeometric function defined 

by a series in which each coefficient is a fraction whose numerator and denominator consist 

of p and of q + 1 sets of factors respectively; the function is an integral function when p< q+ 1. 

This problem has now been completely solved; the earlier investigations by double-circuit 

integrals (in connexion with which reference may be made to the researches of Hankel* on 

Bessel functions, of Hobson+ on Legendre functions, and the extensions due to Orry, by means 

of elaborate inductions, to generalised hypergeometric functions) have been followed by the 

memoirs published by Barnes§, whose powerful method of employing integrals involving gamma 

functions renders it unlikely that the subject retains any general results to be discovered by 

future investigators. 

The second problem presented by the hypergeometric function is that of the discovery of 

approximate formulae (and complete asymptotic expansions) for the function when one, or more, 

of the constants a, 8, y is large and the remaining constants and « have any assigned values. 

The earliest investigation of a problem of this type seems to be due to Laplace||, who gave two 

proofs that, when n is a large integer and 0< @<7, then 

P,, (cos @)~ (_ oe {(n+4)0—A7}. 
4 Mase sin 0/ ; 3 ae 

A more satisfactory demonstration of Laplace’s result is given by Darboux{ in his epoch- 

making memoirs Sur l'approximation des fonctions de tres grands nombres. These memoirs also 

contain an investigation of the hypergeometric function F (a+n,—n; ¥; 2), where 2 is a large 

positive integer; this function is sometimes known as Jacobi’s** (or Tchebychef’s++) polynomial. 

* Math. Ann. t. (1869), pp. 467-501. pp. 97-204. 

+ Phil. Trans. 187 A (1896), pp. 443-531. | Mécanique Céleste v. (1823), livre 11, supplément 1. 

~ Cambridge Phil. Trans. xvm. (1898), pp. 171-199, § Liouville (3) rv. (1878), pp. 5-56, 377-416. 

283-290. ** Crelle tvt. (1859), pp. 149-175. 

§ Proc. London Math. Soc. (2) v. (1907), pp. 59-118; ++ (uvres u. (1907), pp. 189-215; these researches 

vr. (1908), pp. 141-177: Quarterly Journal xxxtx. (1908), were first published in 1872-1874. 
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More modern investigations in the particular case of Legendre functions are due to Barnes*, 

but his methods convey the impression that they are primarily adapted for attacking the first 

preblem rather than the second; on the other hand, it must be stated that they are quite 

effective in obtaining complete asymptotic expansions of P,™(z) and Q,™(z) when either 

nor |m| is large, and n, m are not restricted to be integers. 

The most natural way of attacking the second problem seems to me to be by the method 

of steepest descents. The application of this method to the problem is of special historical 

interest, because it was in connexion with hypergeometric functions that Riemann wrote the 

paper+ which contains the first indications of the potentialities of the method. More recently, 

in the hands of Debye, Brillouin and myself, the method has proved to be effective in dealing 

with Bessel functions, Weber-Hermite functions (i.e. those associated in harmonic analysis with 

the parabolic cylinder) and numerous other functions (defined by definite integrals of various 

types) which occur in many branches of Mathematical Physics}. 

As the investigations of this paper have the asymptotic expansions of Legendre functions 

as one of their ultimate objects, a notation will be employed which will make it as easy as 

possible to write down the special results for these functions. It may be mentioned here that 

the contours which are yielded by the method of steepest descents in the case of hyper- 

geometric functions are all algebraic curves, many of them being nodal circular cubics; this is m 

marked contradistinction to the fact that the contours employed in previous applications of the 

method (with the exception of some of Brillouin’s researches on the functions of Physical Optics) 

have been somewhat complicated transcendental curves. 

It should also be remarked that very slight modifications of the contour integrals are 

adequate to supply the asymptotic expansions in various exceptional cases in which the appli- 

cation of the Mellin-Barnes method requires detailed separate investigations. 

* Quarterly Journal, loc. cit. This paper contains 4x<8<$r, whichis asymptotic over the wider range 0<é@<7, 

(p. 143) an extended account of researches on Legendre 

functions. For more general hypergeometric functions, see 

also Encyclopédie des Sciences Math. t. 11. vol. 5. 

Legendre functions have been discussed from the aspect 

of the theory of differential equations by Nicholson, Quarterly 

Journal xx. (1910), pp. 241-264, xn. (1911), pp. 53-62. 

It may also be noted here that a generalisation of 

Laplace’s formula 

2 T(n+m+1) Se 

Jz T(n+4) (2 sin @)2 
1°— 4m? cos | (n+ 3) 6 - $x+4mz} 

ay) =e = rs = 
2 (2n+3) (2 sin 6)? 

(Hobson, p. 486) affords a convergent expansion when 

P,.™ (cos #) = 

when n is large. It will appear in Part IV of this memoir 

that a similar property characterises hypergeometric fune- 

tions which are there described as belonging to type B. 

+ This paper, which was published posthumously, is 

given in Riemann’s Werke (1892), pp. 424-430. See also 

the French edition (1898), pp. 369-377. 

+ Debye, Math. Ann. txvu. (1909), pp. 535-568; Miinch- 

ener Sitzungsberichte (1910), [5]. Brillouin, dnn. de VEcole 

Normale Supérieure (3) xxxu1. (1916), pp. 17-69. Watson, 

Proc. London Math. Soc. (2) xv1. (1917), pp. 150-174, xvi. 

(1918), pp. 116-148; Quarterly Journal xxvu1. (1917), pp. 

1-18. 



OF HYPERGEOMETRIC FUNCTIONS. 279 

Part L THE GENERALISED JACOBI-TCHEBYCHEF FUNCTIONS. 

2. Statement of the problem. 

In this section. we shall obtam the complete asymptotic expansion of 

F(a+a, B—A; x: x), 

where a, 8, y, x have any assigned values, real or complex (the value of |2| being not restricted 

to be less than 1), and 2 | is large while* |argX <z. More precisely it is supposed that 

jargX|<2—6, where 6 is an arbitrary positive number, independent of |}. 

We shall invariably write $— $2 im place of x (with a view to applications to Legendre 

functions+) and £ will then be defined by the equation 

2=Ccosh €; 

and, if €=£+%, where & y are real, it will be supposed that E>0,—az<n<z. These con- 

ventions determime € uniquely when z is given, except when = is real and less than 1. It will 

be supposed that the arguments of z,z—1,2+1 are given their principal values (numerically 

not exceeding =), and, in the special case in which 2 — 1 is real and negative, it is to be supposed 

that 2 attams its value by a limiting process which will determme whether arg (z — 1) is to be 

taken equal to +7 orto—7z. The values of arg z and arg (= +1) are to be determined in this 

exceptional case in the same manner. 

- In the =-plane the curves on which € is constant are confocal ellipses, and the curves 
on which 7 is constant are arcs of confocal hyperbolas, the foci being at -=+1. 

3. The contour integrals associated with the hypergeometric function. 

With the notation introduced im § 2, the function under consideration is 

F(at+nr, 8—NX; y; —smb?hf)= F(at+av, S—A; y; $-4F2). 

Tn our preliminary discussion we suppose that arg\|<4~7—6, and not 7—6 as stated 

m § 2; the more extended range is considered in § 7. 

To deal with this hypergeometric function we write down one of the integrals satisfying 

the associated hypergeometric equation, namely= 

pi 

i,=| Ce ts ree eae 

in which the path of integration is either (i) the segment of the real axis, or (ii) a path 

which is reconcilable with this segment without crossing over the singularity ¢=2; and 

* Some of the expansions which will be obtaimed are + Of course x has no connexion with the real part of =. 

valid only when —ir —w,<arg\<i7+e,. where w,,e,are The reader is doubtless familiar with formulae of the type 

certain positive acute angles. The asymptotic expansions ; 1 2+1\* 
when } is not in this sector of the plane are obtained by Pe" ()=TG =m (3) at, ei tm ey 
working with \, (= —\) and making an obvious interchange + This is easily derived from the integral given by 
of 2, 8. Forsyth, Differential Equations, § 143. 

36—2 
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arg(z—t) is defined by giving it the value arg(z+1) at t=—1. The integral obviously 

converges at both limits when |X| is sufficiently large. 

To evaluate the integral, suppose that |z—1|>2; and then, taking the path of inte- 

gration to be the real axis, we have 1—¢t<|z—1)|. Hence, on expansion, we get 

= P(a+A+n) /1—t ri 
=(z-— —a—A ‘7 — F\ata— \y—8+A-1 > 

ee) ja ey: n=o 2! D(a+A”) G —2Z 

n 

) dt. 

Integrating term by term, we have at once 

_ 2D (atr—y+ DI (y—-B+%) (2 = RG =A PAD) \ 
Shy, 2 25 ; ) Platdatd—7+lia—B+ 2441372): 

Since J, is analytic and one-valued throughout the plane (when cut from +1 to— co), this 

equation, proved when | z— 1| >2, persists throughout the cut plane. ‘ 

Next take the integral J,, defined by the equation 

“1 
L= | (1-8) (1 4. £)7-8+> (2 — t)-=A dt, 

= 

in which the path of integration passes above the point t=z when J(z)>0, and below it 

when I(z)<0. Then J, is analytic in each part of the plane when the plane is cut along the 

whole length of the real axis. 

Deforming the contour in the manner indicated in Figure 1, we see that 

(2) 
ome i (1 —t)***-7 (1 4 £789 (2 — tA dt, 

1 

where the path of integration starts from ¢=1 and returns to it after encircling the point 

t =z negatively or positively according as J (z) is positive or negative. 

-1 1 
Fic. 1. 

To evaluate this loop integral, take |z—1|<2 and write 1—t=(t—1) e**, so that 

arg (t—1)| <7; 

and then put u=(t—1)/(z-1), 

so that t—-l=u(e—-1), z-t=(l—u)(z-1), t+1=2+u(e-1), 

where arg (1 — 1) is zero on the first part of the loop and } 27 on the second part. 
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Then 

Gre & 2 D(B-rA—y+14+n) uw (1—z)" 
<= a(S Grae R SY Da OS Se ee See 
ne I, ee om! T(B—-A—y+1). 2 

x {(1 — u)(z — 1)}-2 4 (2-1) du 

a T(a+rA—y + 1)PA—a-d) /z-—1\!7 
ie + CEOS —B p¥rt(atA—y) ee 5 Ns oe ON [ee 

ety. ; r2-y) \ 2 ) 
x Fa+r¥-yH+1, B—-A-yH+1; 2-7; 4-42) 

_ Qrriet™72* FT (a+ X—y+1) /2—1\7 
= = —-r- ; 2—y; 4-432). Ga) ee, PPE BRS y els 29 892) 

Since it follows from the formulae of analytic continuation* that 

ey ot A) = uae Pee 2235) 

oe Nd —p +X) 

ae P@tA yt DEG) (Za) a, | = Sis ee oe eee EGS) i ) "F@+trx-7+1, B-r-y+ 1: 2-75 4-49), 

it is easily shewn that 

F(a+ar, B—-A; ¥3 $-—42)= BCSEEALEC) 

PIP (y— B+) 
strictly speaking, this result has not been proved when y is a positive integer, in view of 

the factor ['(1—-) which occurs in the course of the reduction; but, since both sides of 

the final equation are analytic functions of y (except when y is zero or a negative integer), 

the equation holds also for the exceptional values of 1, 2, ... of y, provided only that 2) is 

so large that the integrals J, and J, are convergent. 

{+ ety I, F e*7I,}; 

4. The contours provided by the method of steepest descents. 

We now apply the principles of the method of steepest descents to the integral 

fa —t)2-7(1 + t)Y-#> (2 —t)-* exp (- nV log = = =) dt, 

with a view to determining asymptotic expansions of J,, 7, when |X) is large. 

The stationary points of log {(z—#)/(1—#)}, qua function of ¢, are given by the equation 

t? — 22#+1=0, 

and so they are t=¢é, t=e°%. 

The contours which are provided by the method of steepest descents are consequently 

ares of the curves + 

Tog 2! = Tlog $=", lee 2 — = Tog 
— 1- es 1- 1 

Writing? t= X +7Y, and supposing that ¢,, ds, d; are the ae which the vectors ¢—1,¢+1, 

t —z make with the Y-axis, we see that each of the curves is such that ¢,+¢.—@; is constant 

on it. These curves are portions of circular cubics. 

* Barnes, Proc. London Math. Soc. (2) v1. (1908), cedure involves very great labour in obtaining terms of the 

p. 147. asymptotic expansion following the dominant terms (cf. 

+ Riemann takes the real part of the logarithm constant Cambridge Philosophical Proceedings xrx. (1917), p. 45). 
and then applies the method of stationary phase; this pro- + Of course X and Y are supposed to be real. 



282 Dr WATSON, ASYMPTOTIC EXPANSIONS | 

ete rite i a Js V(X*+ Y24+1)—sinh €sin» Ss - = —1)+ 2X ¥ cosh Ecos Li | 

a ie eee! X (X?+ Y?—1)-—cosh Ecos » (X?— Y?—1) —2X Ysinh & sin» 

the equations of the two cubics are . 

Y (X2+ Y2?+1)+sinh £ sin n (X? — Y°—1) —2XY cosh £ cos n 

= + tan 7 LX (X2+ Y2—1)—cosh & cos » (X?— Y?—1)—2XYsinh Esiny], 

and the cubics have nodes at (ef cos 7, e sin) and (e-‘ cos n, — e~ sin n) respectively. . 

We shall consider fully (§§ 5-7) the properties of the cubic (S,) obtained by taking the 

upper sign in this equation, and deduce (§ 8) comparatively briefly the properties of the other 

cubic (S,); the simplest mode of passing from one cubic to the other is by changing the signs 

of £ and » throughout the work. 

5. Properties of the cubic S.. 

To express the coordinates of any point on S, as rational functions of a parameter p, 

we write the equation of the curve in the form 

(Y cos n —X sin n) {|X (X — e cos n) + Y(¥ — ef sin n)} — e*(X — e cos n)(¥ — e sin 9) =0; 

and if we now put Y —e§sinn =p (X —e§ cos 9), 

we find after some straightforward algebra that 

HEE body ate RISES 20 8) 
(sin y — 4 cos») (1 + 4’) 

uw {u2e® cos n sin n + w (ef cos 2n — e~*) — e cos 7 Sin 9} 

(sin 7 — / cos 7) (1 + p*) 
The only real asymptote is Y cos y — X sin n= e~£ cos 7 sin 9. 

Y=efsinn+ 

The curve degenerates (into a straight line and a circle) only when 9 is: 0) = fee 

and, in each of these cases, the curves C, and C, coincide. It will, however, appear later 

that the degeneration when » = + 47 does not affect the analysis; but in the cases »=0, +77, 

the difficulty has to be surmounted by taking as contour not a portion of the degenerate 

cubic, but a slightly different curve (§ 7). 

To return to the non-degenerate cubic, we notice that the effect of changing the sign 

of 7 is to reflect the curve in the axis of X; while the effect of writing +7—y for 7 is to 

reflect the curve in the axis of Y. We can consequently derive the shape of the curve 

for any admissible value of » by considering the shape of a curve of the family for which 

is a positive acute angle. 

We now construct the following table of values of t(=]X +7Y) and p: 

90 0) 

1 2 3 - 4 5 6 | 
| 

‘= HL z 1 e§ cosy | iefsiny | —1 | 

esinyn | | efsiny | 
p= tany coth €tany e§ cos n — | ef cosy +1 

The parameters and complex coordinates of these six special points will be denoted by 

attaching the suffixes 1, 2,... 6 to w and ¢. 
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It is easy to see from the table that (when » is a positive acute angle) as jw increases 

from tan» to + 2, and then from — 2% to tan 7 again, it passes in succession through the values* 

Hy, Pos (Ms OF Ms), Bs) Mes ba 

To determine the positions of the node relative to these six points, we observe that the 

parameters of the node are the roots of the quadratic g («) =0, where 

9g (hw) = we cos sin n + pw (e§ cos 2y — e~*) — e§ sin 9 cos 7; 

now g (ps) > 9 > g (ps), 

and 9 (4s) = 2e- sin n (cosh & — cos y)/(e§ cos 7 — 1)? > 0, 

9 (w,) =— e-* tan n < 0, 

9 (us) = e-* sin 7 cos n (coth? € tan? y + 1) > 0. 

Hence one of the parameters of the node les in the intervals (us, u;) and (44, “;), while the 

other lies in the interval (4, /42). 

Hence, if a point starts from infinity and traverses the entire length of the cubic, it 

passes through the points of interest in the following order: 

co, e(node), z, 1 or e§cosy, es(node), ie?sinn, —1, © 

(the points being specified by their complex coordinates); if 7 is a negative acute angle, the 

points are traversed in the same order; while if 7 is obtuse (either positive or negative), the 

order is: 
#2, es(node), z, —1 or ecosn, es(node), itefsinn, 1, x. 

The curve is shewn in Figures 2 and 3 in two cases, 7 being a positive acute angle, and 

e' cos 7 > 1 in 2 and e' cos < 1 in 3, while in Figure 4 »=37. The portions of the curve from 

eo 

es 

a \ 1 

S 
Se Asta HI 

Dian 

Fie, 2, Fic. 3. Fic. 4. 

which the contour has to be selected are shewn in continuous lines; and it is obvious (even in 

the critical cases when 7 = + $77) that the cubic has an are which passes from —1 to 1 through 

the node without passing through+ the critical points z and #; and further, this are cannot 

* The sign of e&cos—1 determines whether fz comes is true if cosech cos »<coth é, which is obviously the case. 

before or after uy. When ef cos 7>1, we prove that My pre- + This is not true in the other critical cases 7=0, £77; 

cedes x, by proving that coth ¢(e6cosy—1)<ef cosy; this see the end of §7. 
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be reconciled with the segment (—1, 1) of the real axis without passing over the point 2, and 

the arc is of the type specified for the second contour of § 3. 

Further, as ¢ passes along the are from —1 to 1, 

= log {(¢—2)/(E— 1)} + log (268) 
passes by a steady decrease from +2 to 0 (at t=e) and then increases steadily to + 90 again. 

Hence IL= ( ty + [-) Ga) ea) iste (z— t) pt ahem 5 T dr. 
ae ry 

6. Transformations of the integrand of Is. 

It is now possible to obtain the asymptotic expansion of J,, by a consideration of the 

expansions of 
(1 —#)7-¥(1+4+ t)y-8-"(z — t)-* (dt/dr), 

in powers of 7 on the two parts of the path near t= e. 

From the equation defining 7, it is readily seen that 

t—e& = +(1—e%*)8(1-e7)' — &(1 —e7) 
a2 -) 

=+ 5 atts S B74, 
s=0 s=0 

when |7 is sufficiently small; if the upper sign refers to the are joiming t=es to t=1, then 

a =+(1— es) 

where the upper sign is given on the understanding that a, varies continuously with € so 

long as Z(eS) does not change sign, and a, is positive when »=+37, so that the saddle- 

point (7.e. the node of the cubic) is on the imaginary axis in the ¢-plane. 

This result gives rise to an expansion of the form 

(l1—t 701 4+1t)r 871 ¢- py oe =+C S et? t+ S dz’, 
dr s=0 s=0 

where c,=1 and C=h01- alten (1 te )% PSAs Seta 

and the many-valued functions are specified by the conventions 

jarg(1—e%)|<a, |arg(1+e‘)| <7, 

since we took arg(1—t) and arg(1+¢) to vanish when —1<t<1. 

To determine arg (z—e$) = arg (—sinh £), we notice that it is to vary continuously with € 

so long as J (z) does not change sign; and that, in the special cases when » = + $7, 2— e is A pure 

imaginary whose sign is opposite to that of 7; and that, as ¢ passes along the contour from —1 

to 1, arg (2 — t) varies from arg (¢ +1) to arg (¢ — 1) + 27; and hence that, in the special cases, 

Hence it follows that the equation 

z— e&=te-s(1 — eS) (1+ eS) 

is always true in the sense that the argument of the expression on the left is the sum of the 

arguments of the factors on the right, and does not differ from the sum by a multiple of 27. 
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Therefore OS DESH es (l= es)2- Aca Cel ae 

We shall next obtain a compact expression for the general coefficient ¢,; 1t is evident that 

1 @+,0+) ( dt) dt 
C= | 4(1 —t)*-7 Yate (2—t)n*=—+— og 

Es 4c? | Ss Je ast) ( y) azv\ 2 

1 lexps+) wos A dt 
= ——— — a—y 1 t)y-8-1 Sn) eae) Ee ¢\2s+1) _ = —) = CO (0 Cr ak aa CaO Ria carer 

the path of integration being a double circuit round the origin in the t-plane corresponding to 

a single circuit in the ¢t-plane round t = é°. 

Hence Cc, is half the coefticient of (¢ — e$)** in the expansion of 

(1 —t)2-7 (1 +: 8)Y-941(2 — 8) 7-8 8 t — fh 

in ascending powers of t — eé°. 

If we write t = e§ + T, it is easy to shew that c, is equal to (1 —e*)* multiphed by the coef- 

ficient of 7° in the expansion of 

fe) ft ie Te esc mie { ie | SO 
Me Tar; +s el {1+ T cosech ¢} iB log 51 + 7 SL eT LT 

in ascending powers of 7. 

The value of ¢, is unity, as has been already stated; and 

c¢, =4(L+ Mes + Ne**)/(1 — e5), 

where L=(a+ B—2y+1)-a+ 6-H, 

M=-—2(a+8-1)(a+P—-2y+1), 

N=(a+8-—1)?+a—-6+4. 

Next we consider the range of validity of the expansions + CSc,75~* + Sd,r*; the values +1, 

z of t correspond to infinite values of |r|, and so the only finite singularities of the function 

of + defined by the expansion are the points for which dt/dz is zero or infinite (2.e. the points 

for which ¢ fails to be a monogenic function of 7). These points are given by f# — 2tz2+1=0, ze. 

by ¢=e*$; and the corresponding values of 7 are 

2es (e*$ — 2) 
0g axa 

These are the points t= 2hmi, 2€+2kmi, where k is any integer. Hence, by Taylor’s theorem, 

the radius of convergence of the expansion is 27 or 2) ¢|, whichever* is the smaller. 

Further, it is easy to see that, throughout the t-plane (except in the immediate neigh- 

bourhood of the points 2k77, 2¢+ 2k7z), we have 

r 7 — 

(1 —#)*-7 (1 + £)1-*' (2 — t)-* (dt/dr) — (+ Oe 2 > d.7*) = 0 (7"+4)+0(e%!7h, 
s=0 s=0 

when 7 is large, K being a positive constant (7.e. independent of +) which depends on a, 8, 

y, 2, and r being any fixed positive integer. 

* Since —7<7€z, no one of the points 2¢+2k7i is nearer to the origin than 2¢. 

Wornexexstinn Now XLV. 37 
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- 
7. The asymptotic expansion of I,. 

Tt follows, by applying a general theorem* to the result of § 6, that we have the com- 

plete asymptotic expansion 

Pea a 

(1 —#)*-7(1 + t)-8"! (zg —t)-* e-™ (dt/dr) dt ~ + C S (o- | rte dr + S d, | Te dr, 
/ 0 s=0 J0 é s=0 “0 

and so I~ 2 Cer 3 6, P'\(s4+ 4) a7? 03, 
s=0 

the expansion being asymptotic in the sense of Poincaré when |X| is sufficiently large and 

jargX <}a—46; provided that » is not equal to 0 or +7, as the integrand would then have 

a singularity for a positive value of 7. 

We shall now examine to what extent these restrictions can be removed. 

It can be shewn that the expansion is valid when n =0 or + 2; for suppose that 7 is slightly 

greater than 0 (or — 7); then instead of taking the contour to be the real axis in the t-plane, 
we take it to be+ the ray argt=—48; the modified integral is an analytic function of X when 
— 37+ 8<arg<4$r7, and it is also an analytic function of ¢ when I(£)>0 (or —7). Hence, 
making € assume the real value & (or the value €—-i), we see that, when »=+0 or —7+0, 
I, is equal to the modified integral, and also the asymptotic expansion is unaffected. To discuss 
the cases 7 =—0, 7—0 we proceed similarly, but we swing the contour round in the opposite 
direction; and we note that the expansion is the same whether 7 =+0 or —0. 

Secondly, to extend the range of values of arg X, we observe that the process of swinging 
round the contour can be carried further, as shewn in Fig. 5. Take the two of the points 2+ 2kzi 

e 

e 

e 

e 

e 

Fira. 5. 

* Proc, London Math. Soc. (2) xviut. (1918), p. 183. deformed contour, is one which passes from —1 to 1 and 
+ The contour in the ¢-plane, corresponding to this it is of a spiral form near each of these points. 
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which are nearest to the real axis (one on each side of it), and let the rays joining the origin 

to them be arg 7 =— @,, arg T= @», So that @,, w, are positive (or zero) acute angles. 

When arg >0, we take the contour to be the ray argr=—@,+46, and the modified 

integral (which has the asymptotic expansion already given) provides the analytic continuation 

of J, over the range for which arg < 47+, —6, provided that |X| is sufficiently large to make 

K\r\|—R (ar) < 0. 

Similarly, if arg’ <0, we swing the contour round to be the ray arg t=, — 36, and we get 

the asymptotic expansion of the analytic continuation of /, over the range arg \ >— 47 —@,4+ 6. 

Hence, when |X| is sufficiently large, and — 47 -—o.+6<argr< 47+, — 6, we have the 

asymptotic expansion of I, and its analytic continuation, given by the formula 

tee —-s-} 
I,~21Ces = ce. (s+4)r “ 

s=0 

And the values of @,, w, are given by the formulae 

@,= tan (/&), —@,=tan™ {(m —7)/€}, 

when 7 >0: and by the formulae , 

w, = tan {(n + 7)/E}, —o,= tan (n/é), 

when 7 <0, the symbol tan~™ in each case denoting an acute angle, positive or negative. 

[The method obtaining the asymptotic expansion of J, when 2X does not lie in the specified 

sector of the plane is indicated in the first footnote to § 2.] 

8. The asymptotic expansion of I,. 

We next consider the second contour (S,) of § 4, namely 

— 
Tlog 5 aioe f= See—1: 

The analysis is derived from the oa. analysis by writing (— &, —») for (&, »). 

If Y+e*sinyn=y(X —e-f cosy), we can construct (as in § 5) a table of corresponding 

values of ¢(= Y +7Y) and wu. 

he '| 8 ie | 10 | 1 ae 
| 

|. t= ao | | —ie-— sin n 1 | z e-£ cos n 

e-— sin -F si n | _e Fsiny ee 
| L= | —tan 7 SICSGEE cei | 0 (= 32F oS = | coth € tan 7 00 

We denote the parameters and complex coordinates of these six special points by attaching 

the suffices 7, 8,... 12 to w and ¢. 

It is obvious from the table that, when » is a positive acute angle, w;, fls,.+» pa are m 

ascending order of magnitude. 

Bi 
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The parameters of the node are the roots of h(w)=0, where 

h (mw) = we cos n sin n — p (e~* cos 2n — e) — ef cos n Sin 7; 

now h(ps) <0, A (40) = 2e-€ sin 7 (cosh & — cos n)/(1 — e-§ cos n? > 0, 

A(uy2)>0, h(u;) =— e tan n < G, 

and so a point which traverses the entire length of the cubic passes through the points of 

interest in the following order: 

0, —1, —vzefsinn, e%(mode), 1, 2, e cosy, e-S(mode), a. 

Hence the are of the cubic (Fig. 6) which passes from —1 to 1 through the node is an 

admissible contour which lies entirely on one side of the real axis while the point z lies on 

the other side, as shewn in Fig. 6. 

Fic. 6. 

By suitable reflexions, we see that the cubic possesses these properties for all values of 

n from — 7 to 7. 

Hence, writing : 
log a4 + log 2eS= 7, 

ro 

we get - i (| + [) (1 —#)2-7(1 +t) (2 — t)-*# De" en = dr,. 
ca “0 7 

Also, when ¢ is e~$, we have 

l1-—t=l—-e, 1+t=l+e% z-t=te(1—eS)(1 +e), 

where . jarg(l—e)|<7, jarg(1+e-)| <7. 

We now proceed as in § 7, and we find that the asymptotic expansion of J,, for large values 

of |X|, is given by the formula 

Tw 2YCe-* E 6 T (s+ Darcie ; 
s=0 

eye CO! = 28-1 ¢-25 (1 — e-S)8- 11 + e-$)¥— 4 -B-4, 

and the value of «;' is 1, while the general coefficient ¢,’ is derived from ¢, by changing the sign 

of € In particular 
¢ = 3 (L + Mes + Ne-*)/(1 = e~*s), 

where L, M, N have the values given in § 6. 
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There is, however, an important difference in the range of values of argr, for which the 

asymptotic expansion of I, is valid. For the singularities of the integrand are the points 

7 = 2hrri, 2k — 2E, and: the points 2h7i — 2¢, being on the left of the imaginary axis, do not 

hamper the process of swinging round the path of integration; we may therefore swing it round 

so as to be either of the lines arg7,= + (47-46), according as [() 20; and therefore the 

asymptotic expansion of I, is valid over the sector 

jargrX | <7—6, 

provided that || is sufficiently large. For brevity we shall describe the sector for which 

jargr|<a—64, 

as a complete range of values of arg, while the sector for which arg lies between — $7—@,+6 

and $7 + , — 46 will be described as an incomplete range of values of arg X. 

9. Asymptotic expansions of hypergeometric functions. 

It is now possible to write down the asymptotic expansions of two independent solutions of 

the hypergeometric equation of the type under consideration; the formulae are as follows : 

foc Ie 2 — ) F(a+n, PEE erp mie (2/2 JOR MaaNe i) 

22+8T(a—B+2rX+1) Vane ree —¢yy-a-B-4 S$ Wp =3—4 * Wene(1 —e9h-1(1 4 e-yr-8-8- 8 So Tet DAF, 
Ta@tr—-y+lry—-At+a). ( ey Une) ae (¢ 3) 

valid when || is large and |argX | <7 — 6: and 

GEENS B=A; 7; 4—h2)~ eee Qet+8-1(] — e-$)2 wiles e-$)¥-4@-B-4 

x [eva > clGeepae at ben Ne MrGs Det Dart, 
) s=0 s=( 

valid when | 2) is large and —}7-—0@,+6<argry<}r+o,—6. 

In the second formula, the upper or lower sign is taken according as I (z)2 0, and, in 

deriving it, use has been made of the equation 1 —e$= es (1 — e-S)er™, 

The discontinuity in the second formula is only apparent; for if 2 crosses the real axis 

between +1, account has to be taken of the discontinuity in the value of 7; while if z crosses 

the real axis on the right of z=1, we must have arg|X|<4a—6 for the crossing to be 

possible*, and then the second expansion is of exponentially lower order than the first. 

* When »= +0 we must have and, when 7= —0, we must have 

—4r-—tan-! (r/t) +d<arg\<47-6, —4n+6<arg\<4r+tan!(7/E) —6. 
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Part Il. ASYMPTOTIC EXPANSIONS OF LEGENDRE FUNCTIONS. 

10. The asymptotic expansion of Q(z) when \n| ts large. 

As special cases of the formulae obtained in §§ 7-9 we can write down complete 

asymptotic expansions of the generalised Legendre functions Q,(2), Pn(z) when z is assigned 

and either /n| or |m| is large, n and m not being necessarily integers; the formulae agree with 

results previously obtained by Hobson and Barnes, but some of them are valid over a more 

extended range than has been hitherto assigned. 

Let us first consider Q,"(2) when |n| is large and |jargn| <7—6. We have* 

2Q,.™(z)sinnm — /2+1\?" T(nt+ 10 (n+m4l1) 
sin(” +m) 7 es (4) ~ T(2n+2) 

{$(2-1)}-™ F(m+n+1, n+1;2n+2: 7) ; 

when |arg (z+ 1)| <7, so that 
z+1_ (\ + aay 
z—-1l \l-e?/’ 

the arguments of both sides of this equation being equal and not differing by a multiple of 277. 

But, with these conventions, if a=1, B=0, y=1—m, X=n, we have 

2°T(n+m+1)C(n—m +1) 

T (2n+ 2) 

Therefore, by § 8, the asymptotic expansion of @," (2) 1s given by the formula 

= = 3 — (n+) ¢ 2 4 Qu (2) ~ T(n+1) sin (n+ m) 7 (w/n)? € e {1 43% a 

T(n—m+1) sinnr V(1-—e*) PE BEDI 

valid when |arg (2 +1)|<m and jargn|<a—6; and ¢,’ is given by the formula 

i _ 8m?—3+ 6% 

> ee) 

In the special case when z= cos 9, Qn" (2) is defined + as 

3 {Qn™ (cosh (0 + im)) + Qn™ cosh (0 — in)}, 

where we may take 0 << 7. 

f 
D) 

is 
B(e- Dj (m+ ntl, n+]; 2n42; —). 

=m —4}+(m*—}4)cothé 

If we write in turn €=0+ a and €=0—1, we get 

ef = etn /(1 —e-%) =e 7 7+ 47! V2 sin 7), 

since /(1 —e-*) is positive when ¢ is a pure imaginary. 

We thus obtain the complete asymptotic expansion 

T(n+1) sin(n+m)r ~ » (, _m?—4 
m eth! ss = ; 3 a 20S ae ae 
a ad T(n—m+1)_— sinnr al (x5 sin y . | cos{(n+3)9 +47} ie Ga 

*—})cotn . _ (mn Ss sin |(n+4)n+47} + a ‘ 

valid when 0< 9 <7, jargn|<7—6. 

* This is in accordance with the definition given by (p. 114). It differs from Hobson's definition, Phil. Trans. 

Barnes, Quarterly Journal (loc. cit.), pp. 100, 107. (loc. cit.), p. 471. 

+ This is also in accordance with Barnes’ definition 
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11. The asymptotic expansion of P,(z) when \n| is large. 

From the well-known tormula* 
1 1 tm : 

P,” (2) = rasa (Z 1) F(n+1, —n; 1—m; 4— $2), 

we at once derive the asymptotic expansion 

T(n+1) e 3 

pa Oe D(n—m+1) (nw)? (1 — en3)8 

x [otra 2 GED , greiteng iene § &EG+D] 
aon, L (3) n° s=0 iD () nr 

valid throughout the incomplete range of values of arg” given by 

—tr-—o,+d<argn<trt+ao,4 6. 

In the special case in which »=0 and |argn|<4m—-—6, the second expansion may be 

omitted and we have the simpler formula 

W@eebep es 2 cil (oed) 
— 

T (n—m+1) VQnz sinh €) =) TP G)n 

To diseuss the case in which — 1 < z< 1, we write z=cos n where 0 < n <7. Then, remember- 

P,'” (cosh &) ~’ 

ing that, with the usual definition, 

P,” (cos 7) = erin P,” 
{cosh (0 + my) 

Tin+1) u | g(bmr—4ar+nn+3n)t 

T(n—m+1) /(2n7 sin n) 
we get P,’" (cosy) ~ 

+e —(4ma—fr+nn+4n)t 

this expansion is valid when | argn| <7 —6. 

The dominant terms are 

T(n+1) ( 2 

T(n—m-+1) \nrsinn 

1 : Ais | 
- 1 1 Teese ee cos (n+ 3)n+3mm—tT}+ —> Py” (cosn) ~ cos {(n-+})n+}mm—}rr} 

VW 
9 el 

erg + cot sin (ut) n+ dur te) +...], 

It is worthy of note that the asymptotic expansion of P,’"(cos 7) is valid over a more 

extended range of values of argn than is given by Barnes’ method (p. 155). The results of 

this section are otherwise equivalent to those given by him on pp. 152-161. 

12. Asymptotic expansions of Legendre functions whose order m is large. 

These expansions need a rather more lengthy investigation than the expansions given in 

§§ 10, 11, since the cases R(z)>0, R(z)<0 have to be considered separately. 

The formulae+ which will be employed to obtain the expansions are 

gm (22-1) 3™ 
P,” (z) = esa) F(4n+4— 3m, —tn—tm; 1—m; 1-2), 

Q(z) =(2—1)-3 FD 2-71 gn+3m+s)CGnt+3m+l1) 

NT a T (n+) 
Ee 1 

x SOTOT (nt im+h, L—1im+4; n+3; =.) 
sin nr fe = See Fe = 1-2 

which are valid when R (z) > 0. 

* Hobson, p. 451; Barnes, p. 102. + Barnes, pp. 120, 123. 
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If in the first of these formulae we write —m for m, and then in the formulae of § 3 | 

we write a= 8B =4n+}, y=n+3, X=4m, we see that 

’ Q-EMTBNT3 2) 2hae 

Pm (2)= ed) T(gm—$n)T(Gm+}n4+1)” | 

where, in 7, we have to write (1—2)~ in place of }(1—2z) wherever z occurs; so that € is 

now defined in terms of z by the equation 

4 (1 —cosh €) =(1— 2)", 

2 - 
and therefore cosh f= SST? sinh [= = 

and, since R(z)>0, the upper sign must be taken in order that we may have |e7$| <1. 

The asymptotic expansion of P,,~""(2) is therefore 

Peas) lew a = Dae ei 1+ S 26cy I’ (s+ 4) , 
: T(ém—3n)T4m4+hn41) \e41 m | sar TG)m 

where ¢,’ (1 + 2)*(42)~* is the coefficient of 7* in the expansion of 

f1—$(0. +2) T}-4"-19 44240 42) TH" (1-429 (2 -) T-4*3 
o\2 ( oP 72 -s-4 

x | Core log j1 + ses 1] ; 
42T* 42 —2(2—1)7-—(1+2yP 7? 

and the asymptotic expansion is valid, when R(z)>0, over a complete range (§ 8) of values. 

of arg m. 

By using the second asymptotic expansion given in § 9, we find 

Qn (2) m Qm-1 sin (n +m) 7 T (4m+4n+4)P(4m—}n+4$) (: + a FA < 2%e, D(s +4) 
‘ . sin nar V(2mz7) B= = Tam 

rnxi [2 ilt zm 2 28 st if " 

—e "i ) i+ 2 (+a), 
ee eat Ch) me) 

this is valid, when R(z)>0, over an incomplete range of values of argm; the upper or lower 

2+ 

z—-1 
sign is taken according as J ( ) £0, we. as I(z)2 0, and ¢, is derived from c¢,’ by changing 

the sign of z. 

From the formula (Hobson, p. 462; Barnes, p. 109) 

= Aall P,-™ (2) P," (2) 
2 ni (z wen 25 s ee 0S eee : Qn” (2) TP (—m — n) r* sin mr sin nT P(l—m+n) [TQ+m+n) 

5 mir\ ot amt anth) Cl Gm—3n+h)[ e+ 1\3™ S 2c, T (8 +4) 
wefind P,™(z)~ — Salim) sin mr ( = 1! \1 + 2 Te Gn 

te Te GY Lat 2 2%¢, T(s+4) 
iis FMT > Tas Bid e In nT (Si i) 1 + 2 Tam 

This result is simplified by the disappearance of the first series in the special case when 

m 1s a positive integer. 

The general formula is valid, when R(z)>0, over an incomplete range of values of arg m3 

the special formula is true over a complete range. 
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Since Qn” (2) D(— m= n) = Qn-™ (2) TV (m — n) 

(Barnes, p. 105), the asymptotic expansions when # (z)>0 are completed. 

We next consider the expansions when F(z) <0. 

From the formula (Hobson, p. 463; Barnes, p. 106) 

P,™ (— 2) = Pi™ (2) e™™™ — 2Q,™ (2) 7 sin nt, 

we see that, when R(z)> 0, 

27 T (4m+4n+4)0(dm—h4n+})[ . g— aya 2 Mat) 
a V(2mm) OWe snc at 1 eee mmCL nt Jee (—2) f 

4m wo Os 1 eed a=) | 2 eat 
e sin nr ee i 1+ 2 Seay : 

Changing the sign of z, and noting that, when this is done, c, interchanges with ¢,) and e”™™ 

with e~”™, we see that the expansion of P,’(z) has the same form for all values of z in an 

incomplete range of values of arg m. 

Next, taking the formula (Hobson, p. 463; Barnes, p. 106) 

Onn ( Ee 2) ——— etnn age (2), 

we obtain the asymptotic expansion of Q,""(— z) when R(z)>0; writing — z for z, we see that, 

as in the case of P,(z), the asymptotic expansion of Q,""(z) has the same form whether R (z) 

be positive or negative; and from formulae already given connecting P,*™, Q,*™, it is evident 

that the same is true of P,~”(z) and Q,~”(z). The expansion of P,~”(z) 1s valid for a complete 

range of values of argm when R(z)>0 only; the other expansions are valid for an incomplete 

range, as is that of P,~™(z) when R (z) <0. 

The permanence of the form of the expansions when f(z) passes through zero might have 

been anticipated* from the fact that, when m is positive, (z+1)™ and (z—1)™ have the same 

modulus when R(z)=0, and that (as was pointed out by Stokes) discontinuities in asymptotic 

formulae usually occur in terms which are negligible in comparison with the dominant part of 

the expansion. 

Part III. MiIscELLANEOUS PROPERTIES OF LEGENDRE FUNCTIONS. 

13. Definite integrals representing Legendre functions. 

We shall now obtain important and interesting definite integrals for P, (cosh £) and 

Qn (cosh €); they are derived from the formulae of §§ 3, 6,8 by putting a=1, 8=0, y=1,A=n; 

this substitution gives 

I, = ( fs 35 if ) (cosh €— t)~ 2”e"Se—* (dt/dr) dr, 
J @D JQ / 

t— cosh € 
where 7 =log ae log 2eS, 

r 2 — cosh so that dz __(#—1)(¢—cosh $) 
dt  —2tcosh €+1 

* The permanence of the expansions may also be seen F(n+1, —n; m+1; 4-42), 

from the fact that P,—”(z) is expressible in terms of which is of the form described in Part IV below as type B. 

Wor exXexenn, “No! XT Ve 38 
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Let t,t; be the values of ¢ corresponding to any assigned positive value of +, of which ¢, is 

on that part of the contour S, in the ¢-plane which joins the node to the point ¢=+1. 

Then, since 4, t, are the roots of the quadratic 

tf —1= 2e— (¢ — cosh €), 

we have cosh €=(1+4#,)/( +4), 

and so (cosh €— t,)~ (dt,/dr) — (cosh £— t.)+ (dt./dr) 

ib ta a fg St 
- t2—2ét,cosh€+1 t2—2t,cosh +1 

EGG Ais 
h-t h-hh 

= des~/(t — t). 

Wor ty p= $(1—e7) (1— eS), 
where the upper sign refers to ¢, if arg (l—e%) > 0 astT> om. 

a —(n+1) Tr 

Hence we have Te 2 gts | a : 
-0 (l-e7?(1—e%)P 

provided* that 7 is not zero or + 7. 

In like manner E=2 Hees i = 5 
0 (1—e7)? (1—e-)2 

provided* that 7 is not +7. 

It is desirable to modify these results slightly, by observing that 

1— e% = e& { —(1 +77) sinh €+ (1 —e™) cosh ¢} 

=e? ef {(1 + e-7) sinh £— (1 — e~*) cosh €}, 

according as J (£) 2 0, where arg (sinh ) lies between + 7. 

Similarly 
1 —e-*%-* =e-$ {(1 +e") sinh £+ (1 — e~") cosh €}; 

and so we have the formulae 

re g—(n+1)r 

T= 2nrie M4HE | Aaa (1 +e-7) sinh £4 (1 —e~*) cosh €} “dr, 
0 —e'p 

- 2 et (nt)r = 
T,=arrrettris ines [© 7 4 o*)sinh & — (1—e-*) cosh g} bar, 

0 (1—e7")3 

The first of these gives the definite integral for Q, (z), namely 

=e (+4) (2) =e ——— Qn (2) ke aan 
valid except when z+1 is real and negative; when —1<2<1, the mode of approach to the 

real axis has to be specified. 

= e7in+i)r 

{(1 +e7*) sinh € + (1 —e7*) cosh §} “4 ar, 

* Allowance can be made for the exceptional cases by a suitable indentation of the contour at the points where 

eT = eS, 
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When z is on the real axis, however, we define Q,, (cos 7) as the mean of the values on either 

side of the cut; so that 

Q,, (cos 7) = $Qn {cosh (0 + %7)} + $Qn {cosh (0 —%)} ; 

since sinh (0 + 77) =e*2™ sin» when 0<7 <7, we see that, for values of » between 0 and 7, we 

have 
sf — (n+1) 7 : E a 

Qn (cosm) = gel" Din+dr | ~__{(] + e-*) sin 7 — i (1 —€“") cos n} ~ 4 dr 
Jo (1—e*)? 

Ants 5 [pat — (n-+1)F : ; 

+t¢e- (+ t)in-at | ne Se \(1 + e-7) sin n +7 (1 — e™*) cos nf 3 dr. 
; Jo (l—e)3 

Similarly, from the formula 
P, (2) = + U2.—L)/(2"" 771), 

we have 
oa — (n-+1) Tr 

Pe) = arate +4) 5 | eee {(1 —e-") sinh £—(1 —e~*) cosh §} ~t dr 
0 (1—e-*) 

e aire — (n+1)T 

+ mate (@F4ys fie ose \(1 +e-7) sinh €+ (1 —e~*) cosh ¢} —4 dr, 
0 (1—e-*y3 

provided 7 is not zero or 7. 

Making & — 0, we see that, if 0< <7, we have 

mi, (n td) eyiaa | eRe 563 eae 2 P,, (cos n) = 771 Pommeenn |! chen) Sin 7 (len) cos | 2dr. 
o (l-—e’p 

: - (2 e-(ntr 5 

foarte (Bintan | 2 (1 +e-*) sin 7 +4 (1 —e-*) cos n} > Pdr. 
Jo (l1—e)3 

These integrals are fundamental in the subsequent analysis. 

14. Some properties of the zeros of Legendre functions. 

We shall now shew how to obtain roughly the positions of the zeros of P, (cos @) and 

Q, (cos 6). 

When 0 <@ <7, we see that, as r increases from 0 to «, 

arg {((1 + e-")sin @—7(1 —e7*) cos 0} 

varies monotonically from 0 to @— 32; and so 

arg {(1 +e77) sin @—7(1 —e7*) cos 6-3 

varies monotonically trom 0 to 4a — 28. 

Hence, since e~"1)"/(1 — ee is positive, we see, by considering the definition of an integral 

as the limit of a sum, that the value of 

7 ee {_ + e-7) sin 
6é—-i(1 —e-*)

 cos 0} 3dr 

0 (l—e*)2 
arg 

pe g_ (n+1)r 

2 | 

lies between 0 and 4a — 30. 
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We may consequently write 

[ eon ; (1 + e*)sin @ F t(1 — €™) cos OF tdr= ln Wer, 
/0 (l—e")? 

where W is positive and @ is an angle (depending on n and @) between 0 and i7— 40. 

We thus obtain the formulae 

Pe (cos 0) = Weos {(n+ 4) 0—47+0}, Qn (cos 0)=47 W cos {(n+4)0+47+ a}. 

Next it will be shewn that (n+4)@+@ is an increasing function of 6 when n is fixed. 

We hi 
piaks Foe tan {(n+4)0+47 + a}, 

and so ? 
= [(n+ 4) 0+ 44 + 0} =2r 1Q,(c0s 8) ee SP(can 6) ra / G {Py (cos 6)}2 

+ 4 {Qn (cos a) | ; 

But, by applying a well-known theorem, due to Abel*, to Legendre’s equation, we deduce 

that sin? @{Q,P,'—P,Q,’} is constant; and, on writing @=}7 and making use of the values of 

P,, (0), Pn‘ (0), Qn (0), Qn’ (0) given by Hobson, p. 469, and Barnes, pp. 121, 124, we get 

sina On Ore} — le 

Therefore J {n+ })0 +40 + 0} =2/(msin OW? >0, 
which gives the result stated. 

We can now obtain limits for the zeros of P,,(cos@); when 0<6@<4m, we observe that 

(n+4)0—47 + certainly lies between (k — 3) and (k + 4) 7, k being an integer, if 

(k—3) 7 <(n+3)0—4Fm, (n+ 3)0—t7+(t7—30) <(k+4)7, 
(4h -—1) 7 2k+1)a4 

oo, 
In this range of values of @, cos {(n + $)@—427+.} has the sign of (—1)*; therefore, as 0 

increases from (24 +1)7/(2n) to (4443) 7/(4n+2), (n+4)@—427+o steadily increases from 

a value between (k + $)7 to a value between (k+1+44)7; hence its cosine changes sign once 

and only once. Thus the only zeros of P, (cos @) in the range 0 <@<47 are in the intervals 

[(2k + 1) w/(2n), (44 + 3) 7/(4n 4 2)]; 

and there is one zero and only one in each of these intervals*. 

1.e. if 

When 37 <@<7, o is negative, so that the inequalities are replaced by 

(k—4)m <(n+4) 0-40, (n+4)0-4da<(k+4)7; 

and we get one zero and only one in each of the intervals 

[(44 + 3) 2 /(4n + 2), (2h + 1) /(2n)] 

and none outside these intervals. 

The function Q, (cos @) can be dealt with in a similar manner; we shall not give the details 

as the reader will have no difficulty in constructing the analysis. 

* Crelle u. p. 22. See also Forsyth, Differential Equa- internal point unless n is an odd integer, in which case the 

tions, $65. The dashes denote differentiations with regard _ corresponding interval is evanescent, and we have the known 

to cos @. result that P,, (0)=0. 
+ None of these intervals can have the point 47 as an 
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Part IV. ASYMPTOTIC EXPANSIONS OF A SYSTEM OF HYPERGEOMETRIC FUNCTIONS. 

15. The system of hypergeometric functions with large constant elements. 

We shall now determine the asymptotic expansion of any hypergeometric function in which — 

one or more of the constant elements is large, provided that, when more than one of the constants 

is large, the ratio of the large constants is approximately +1. The Jacobi-Tchebychef functions 

discussed in Part I are the most obviously important functions of this nature, but others seem to 

be of sufficient interest to justify the very brief account which we shall give. 

The functions which will be considered are of the form 

F(a+er, B+ear; y+e,A; 2), 

where a, 8, y, w are assigned, || is large and e,, &, €; have the values 0, + 1. 

There are obviously 27 sets of values of (€,, €, €;), but of course the set (0, 0, 0) has to be 

omitted; and nine other sets may also be omitted on account of the symmetry of the hyper- 

geometric function in its first two elements; thus (1, — 1, 1) is effectively equivalent to (— 1, 1, 1). 

We shall take the hypergeometric equations associated with the surviving seventeen functions 

and obtain asymptotic expansions of a fundamental pair of solutions of each equation. It will 

appear that the equations fall into four distinct types, according to the values of (€,, €2, €,) shewn 

in the following table : 

Case & €5 €3 | ypemn| 
| | | 

it 1 -l 0 ‘) 
2 1 1 0) We uN 
3 -1 Jt 0 

f 
4 0) 0 d 
5 0) 0 al 

6 0 a 0) 

7 0 —] 0 

8 | 0) il 1 B 

9 0) =I =| 

10 il 1 1 

1] -1 fen— 1 —1 

lee? 0 1 —1 
13 (0) —] 1 

14 1 =a ] | c 

1403} 1 —] -—1 | 

16 1 | 1 = Il ‘| 

17 -1 - 1 J = 
| 
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16. Hypergeometric functions of type A. 

The reader will have observed that the functions of type A are those already investigated in 

Part I of this paper, in yiew of the fact that the function of case 1 is F(a+A,8—2; y; 2). We 

shall merely give a table, indicating the nature of the order of magnitude of the constant elements 

in the twenty-four hypergeometric functions connected with the equation which is satisfied by 

F(a+x, 8-2; y; 2). By expressing any one of these functions in terms of the two funda- 

‘ mental integrals J, and J, introduced in Part I, the asymptotic expansions of the twenty-four 

solutions are at once obtained for a range of values of arg \ greater than the half-plane |argA| <7; 

for values of X outside this range, we put X=—A,, and then we obtain the asymptotic expansion 

of the function under consideration in terms of ),. 

The complete set of functions of type A is given in the following table, the numbering of 

the solutions being that adopted by Forsyth, Differential Equations, §§ 120-121; the first three 

columns in the table give the coefficients of X in the corresponding elements of the hypergeometric 

functions connected with the solutions shewn in the fourth column. 

Coefficients of X Functions | Case 

| 
1 -1 0 | —(VIIT) 1 

1 1 0 | (XVII), (XTX), (XXT), (XXIV) | 2 

| —1 -1l 0 (XVIII), (XX), ( (XXII), (XXIII) 3 

1 1 2 (IX), (XID), (XII), (XV) — 

=i = 2. | (X), (XD, (XIV), (XVI) | — 

The simplest method of procedure is to express the function to be investigated in terms of 

the two fundamental solutions (I) and (IX) by means of the formulae given by Barnes, Proc. 

London Math. Soc. (2) v1. pp. 141-177, and then to use the equations connecting these solutions 

with the integrals /, and J,. 

17. Hypergeometric functions of type B. 

This type consists of the twenty-four functions associated with the equation for which 

solution (I) is the function F(a, 8: y+; x); the coefficients of X in the constant elements of 

the twenty-four functions are as follows: 

Coefficients of \ Functions Case 

5 
0 0) | 1 | SD ar | 4 
0 0 1 (QUAYS 5 
0 l 0 (XI), tern), (XIII), (XIV) 6 

0 —] 0 vee (X), (XV), (XVI) 7 
0 ] l (2 X VIN, (XVIII), (XXIII), (XXIV) 8 
0 —1 —] (XTX), (XX), (X XI), (XXII) 9 

] l l (11), (VII) 10 | 

1 = oF (III), (VT) 1 4) 
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The two solutions which will be regarded as fundamental are the solution (1), namely 

F(a, 8; y+; 2), and (VIII), namely 21-7 (1— a)Y*4-2 8 F(1—a, 1-8; y+X—a—B+1:1—-2); 

it is evidently sufficient (since both are included in case 4) to obtain the asymptotic expansion of 

one of these functions. 

The reader will easily verify that these solutions form a fundamental system when || is 

large. 

We now investigate the asymptotic expansion of F’(a, 8; y+X; x); it will be found that, 

in the case of this function, the saddle-point, which is usually characteristic of the method of 

steepest descents, does not appear in the analysis. 

1 
We take the integral* J,=] ¢?7(1—t)1+*-#> (1 — at)--dt, 

0 

and we observe that (when 2 is positive), (1 —t)* decreases steadily from 1 to zero as ¢ describes 

the path of tegration. 

Accordingly, writing 1 —t=e-", we have 

Ths =| (a emnrates a?) (I a+ ae*)-*) es der. 
é 

Now, when 7 is sufficiently small, we have 

(1 —e=*)P e+?) (1 — a + we-*)-* = 78 & 78, 
s=0 

where k= 1. Hence, when R(@)>0, we have 

Iw SV (8 +8) kg[rPt3: 
0 S= 

the singularities of the integrand are at the points t = 2n7, 2n7i + log (1 — 2), and so, as in § 8, 

the expansion is valid over a complete range of values of argX when |1—«2—|<1, and overa 
certain incomplete range (greater than a half-plane) when | 1 —a#7?|>1. 

Diy+aA) 24,0 (B+) 

L(y+rA—B)AP eo T(R)AS 

When &(8) <0 this result may be obtained by taking a Hankel-Pochhammer contour (x; 0+) 
in the t-plane in place of the real axis. 

Hence F(a, 8; y+; 2)~ 

The expansion on the right may be obtained formally by taking each term of the series for 

F(a, 8; y+X; «), expanding in descending powers of A, arranging the sum in powers of \, and 

multiplying by the expansion of I (y+A—)/E' (y+) in descending powers of A. 

18. Hypergeometric functions of type C. 

This type consists of the twenty-four functions associated with the equation for which 
solution (I) is the function F(a, 8+; y—2; x); the coefficients of X in the constant elements 
of the twenty-four functions are as follows: 

* If «>1, an indentation has to be made at ¢=1/x in the path of integration. 
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} Coefficients of X Functions Case 

= = al 

(I), (IX) 12 
(IV), (XD) 13 
(XIV), (XIX) 14 
(XV), (XVIIT) 15 

(11), (XII) = 
(,() | | 
V), (&XT) — 

(VIIT), (X-XITT) — 

(XVI), (XX) = 
(XII), (XVII) a 
(VI), (XXT1) = 
[Avi (XXIV) — | 

lel 

| | 

| 

ol OO PSs POD DOOR OS) oe i mae COC OR Re RK OCS | 
The two solutions which will be regarded as fundamental are the solution (V), namely 

F(a,B +r; a+8—y+2rX4+1; 1—2), for all values of 2, and* (IV), namely 

wi-y*A (1 — v)y-*-8-* F(1—a, 1-8-2; 2-yH+A; 2), 

inside the circle | #|< 1. 

We take the integral 

f(— 08> (L—#)r #29 (1 — at) det. 
Writing the integral in the form 

Si 
| (— t)8 (1 — t)y-8> (1 — at)~* exp > log ast dt, 

we find that the contour to be taken is given by the equation 

I(r) = I log {— 4t/(1 — #)} = 0. 

This curve consists of the negative part of the real axis, together with the circle |¢ =1. 

The saddle-point is t= — 1, and 7 vanishes there. 

We therefore consider the integral+ 

0 t 

a Nae ae (1 — at\—* ex I, tex #81 (1 — YF (1 — at) exp {Alog gy aa ae 

It is easy to shew that 

P(B+A)T (a—y+rA+1) 
T(a+B— y+2rX+4+1) 

when the «-plane is cut along the negative real axis. If g, is the coefficient of Z** in the 

expansion of 
2 -s—4 

2% (1 — 7')8- 11 -47)r- B— ‘(1- =) {plo (1+5-7p)} F 

i F(a, 8B+XrX; a+B—y+2X4+1; 1-2), 

l+a Fe 4—47 j 

we find in the usual manner that 

gs U(s +4) I,w2-P-A(142)-*(n/ryi S B_T2 ( Sle Bienes ar e's 5) 
* In part of the plane (viz. | z|>1) we take (XI), namely + The integrand does not converge at t=1 when 

al -¥*A(] — x)¥—9-B-2A Bd gy —a—ds1-a+8+A31/2x), | 8"8\|<4n, and hence we do not take the circle as contour. 

instead of (IV). 
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It is found that the only finite singularities of ¢ gua function of 7 are at the points in the t-plane 

for which ¢=—1; these are the points T=2s77. The finite singularities of the other function 
si Pg : : — 4a 

are at the points in the r-plane at which ¢=1/z; these are the pomts t= 2s7i — log (., 1 2s7r1. 

One of these points is on the real axis if |z|=1 or if w is negative; and one iG the points 

approaches the origin if, and only if, 7>—1; hence the expansion holds for an incomplete range 

of values of arg except at ec=—1; and it holds for a complete range of values of arg’ when 

4g |>|a—1 |. 

The domain of the complex variable # for which this inequality holds is shaded* in Figure 7. 

7] 
W/ 

Eic. 7. 

When «=~—1 the expansion assumes a different form, since (1 —«t)~*, when expanded in 

ascending powers of 7, has its leading term 7 #* instead of (1+.2)-*; it is easy to make the 

necessary modifications in the analysis. 

Next take the integral 

T= @-1*4 (1 — x) 8 j (= £)-8-A (1 = 8-17 (1 — at) dt. 
The method of steepest descents gives the same potential contours as in the case of J;, but 

now, in order to secure convergence, we take the circle ¢ =1 (taken counter-clockwise starting 

from t=1) as contour; if | “|< 1, by expanding in ascending powers of «, we get 

T(1+8—y+2a) 
T(2—y+a)T(8+2) 

i Bint * (1 — 7) ¥aeabaes F(—a, 1-8-2; 2-—y+A; 2). 

If | z|>1, however, by expanding in descending powers of a, we get 

7 f*. a—l 

T= at-¥* (1 — a yr-e-8- | f)e-#1-a (1 tft (a - “) dt 

T(1+8—y+2a) 

TN(l+a—y+A)Pd—a+f8+r) 

x Fl —a,y—a—aA; l—a+f4+%; 1/2). 

SS atin (1 ae) es 

* This is not a scale drawing but it affords a rough the points where the curve meets the real axis are —1, 

indication of the region in which the inequality holds. 0-172, 5-828. 

The small loop should be drawn very much smaller, as 

Vou. XXII. No. XIV. 39 
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To obtain the asymptotic expansion of J,, we write 

(l—t)/(— 4) =e, 
and then, if g,’ is the coefficient of 7* in the expansion of 

k ey » al fi coat (-)F 2 a7" a3 (1- SE slog (1+ gay saat) ; 
we get 

r 
—y+1+9. al pl—y+ ee 3 ge VED) ) Tyme 19F-1 (Lf aa Layee tmp BS 

The domains of values of # in which this expansion holds for a complete range of values of argX 

are the unshaded portions of the plane in Fig. 7. 

19. Hypergeometric functions of type D. 

This type consists of the twenty-four functions associated with the equation for which 

solution (I) is F(a+2, 8+; y+3X; z); the coefficients of A in the constant elements of the 

twenty-four functions are as follows: 

| Coefficients of X | Functions | Case 

| 

; | 

(IX), (X) 
1 
0 
OF 8) CX), Catt) 
OF FST), EV) 
0 | (XV), (XVI) 
3 
3 
1 
1 

3 © 
Pees (Tr) it oe 

= = yy (LET) (ie al 
| el ae =3 | (IV) = 

| Eg HCV) 16 
a) ts) Baan rs 

[ote (vn) aot a 
| (VIII) won 

(XVI), (XVILD) 
eXEX), (EX) 
| (XXI), (XXII) 
| (XXII), (XXIV) TS OS CS CS CS CS CS CO a COT ll cell Ot Oe 

| 

ee OO Ol a Od Od 

The solutions which will be taken as fundamental are (1), viz. F(a+A, 8+2A; y+3r; 2), 

and either (X), viz. a F(B +X, 8S—y—2A4+1; B—at+1; 1/2), 

or (XXIV), viz. 

wb-y- (] — x)y-2-8 +4 FLT — B—-2A, y—-84+2d; y-—a—B+A41; (e—-1)/a}. 

The analysis is somewhat similar to that employed in Part I; we take the integrals* 
5 = 

I;, I,= | PASE (Li — UN) alae (1 — at)787A dt. 

* It is supposed that, near t=0, | argt|< and arg(1-t) and arg(1-2t) are small. 
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The path for J, is reconcilable with the real axis without crossing over the singularity t,= 1/2; 

the path for 7; passes above or below this point according as the point is above or below the 

real axis. 

It is readily verified that 

_TW@-B+2a)P(B +) 
f T (7 +3) 3S F(a+nr, B+r; y+ 3A; 2), 

P(8+r) 

T(a+rA) Td —a+ fp) 

xF(B+2, B—y—2041; B—atl: 1/x) +e? T., 

where the upper or lower sign is taken according as J (x) 20, and it is supposed that | arg.) <7. 

Tie =+ Qariermlata) m-B-A 

In order to employ the method of steepest descents we have to determine the stationary 

points of (1 — at) t~'(1 —t)~* qua function of ¢; they are given by the roots of the quadratic 

2at? — 3t+1=0. 

Put 9— 8x =z, it being understood that |argz <7 [the cut from «=1 to r=+ x in the 

«-plane insures this inequality being satisfied if we define arg (9 — 8x) to be zero when x = 0], 

and the stationary points are 

t, = 2/(8 + 4/2), ty = 2/(3 — /2). 

The values of (1 — zt)“ (1 — t)~? at 4, t are respectively 

e(V2+3R(V2+1), (2-3) (V2 —1). 

We shall now discuss, by electrical methods*, the topography of the contours in the ¢-plane 

(for all assigned values of z) which are supplied by the application of the method of steepest 

descents. 

1—at 

#1 —?) 

where V and W are real, it is evident that V is the potential at the point t due to a two- 

dimensional electrical distribution consisting of line charges through the points 0, 1, 1/x in the 

t-plane, the charges per unit length of the lines being in the ratios 1:2:—1. 

If we write =el iW, 

The points ¢,, ¢, are the only points of equilibrium; and the curves on which V and W 

respectively are constant are the equipotentials and the lines of force. 

By straightforward algebra it is seen that the equipotentials are bicircular sextics and the 

lines of force are portions of circular quartics ; the quartics pass through the points ¢=0, 1, 1/2, 

and have a node at f=1 and two real perpendicular asymptotes; the curves on which W 

is constant consist of portions of the quartics with end points at the points 0, 1, 1/#, »; and it 

is these portions of quartics (ending at the points 0, 1 only, when R(A)>0, to secure the con- 

vergence of 7; and J;) which are required by the method of steepest descents. We can now 

consider the topography of the different equipotentials obtained by varying V from + 2 to —cx. 

* I should have preferred to have employed the algebraic (in general) only two nodes, they are not unicursal curves, 

methods of Part I in discussing the forms of the contours and so the algebra appeared intractible. The investigation 

instead of this combination of geometrical and electrical actually given is, I think, quite rigorous. 

theories; but as the contours are portions of quartics with 
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When V is large and positive, the equipotential consists of two small ovals* surrounding 

the positive charges at 0,1 respectively. As V decreases, the ovals increase in size, until we 

reach an equipotential through that one of the equilibrium points at which the potential is 

higher; this equipotential has a node which may arise in one or other of two ways, (I) by the 

two ovals uniting to form a figure-of-eight or (II) by previously distinct parts of the same 

oval bending round towards one another and uniting. Case (I) is shewn in Fig. 8 and case+ 

(II) in Fig. 9. 

Fic. 9. 

First take case (1). As V decreases further the equipotential becomes a single oval sur- 

rounding the figure-of-eight and this form persists until we reach the equipotential through the 

equilibrium point with lower potential; the node at the equilibrium point can only be formed 

by distinct parts of the oval uniting to surround a portion of the plane not previously 

enclosed ; this area haying a portion of an equipotential as its complete boundary must contain 

a charge; this can only be the charge at t,=1/#. Subsequent equipotentials consist of two 

ovals, a large one surrounding all three charges and a small one inside the former surrounding 

the charge at ¢, only. 

* The word oval is used, in the absence of a more suit- could join up with itself; but, as will be seen later, this 

able term, to mean a closed branch of a curve without nodes phenomenon does not oceur when the charges have the 

or cusps; it is not supposed that the branch has no inflee- _ proportions of those under discussion. Figs. 8 and 9 are 
tions. not drawn to scale, but merely indicate the general topo- 

+ It might have been anticipated that the left-hand oval graphy of the plane; the dotted curves are lines of force. 
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Next we take case (II). As V decreases further, the equipotentials become tripartite, 

consisting of an oval round the charge at 0, another round the charges at 1 and ¢,, and a third, 

inside the second, round the charge at t, only. This form persists until the first two unite at 

the remaining equilibrium-point to form a figure-of-eight ; and subsequent equipotentials are 

bipartite, consisting of a large oval round all three charges and a smaller one round the charge 

at t, only. 

If now we regard # (and therefore z) as a variable, the transition from case (1) to case (11) 

can only occur when z passes through a value which makes the nodal equipotentials coincident ; 

ze. when z satisfies the equation 
| (v2 + 3)?) _ (V2 = 3)*| 

eee \fz— 2 |" 

The curve in the «-plane on which this equation is satisfied is shewn* in Fig. 10; the 

simplest form of the equation of the curve is obtained by writing z= re (r>0, —7<0<7), 

when the equation of the curve reduces to 

r= 6/3 cos }@—9, 

together with the coimcident rays cos $6 = 0 (.e. 0= + 7). 

sh et 

Fie. 10. 

It is easy to see that when « is outside the curve of Fig. 10 and fairly near the origin (so 

that /z is comparatively nearly equal to 3), the potential at ¢, is higher than that at ¢,. And, 

when || is very small the charge at t,(=1/z) has little influence on the form of the equi- 

potentials moderately near 0 and 1; and so the equipotentials moderately near 0 and 1 have 

nearly the form which they would have if the only existing charges were at 0 and 1. Hence, 

when « 1s outside the curve of Fig. 10, the equipotentials have the configuration of case (1); and the 

node of the figure-of-eight is at ,, while the node of the other nodal equipotential (which may be 

described as a closed crescent) is at tp. 

When |#—1| is small, so are |t,- 1 and |z—1); and, if we consider the special case in 

which ¢,—1 is positive+, the equilibrium point ¢, is on the right of ¢, and the potential there, 

viz. log {4 (3 — /z)3/(4/z — 1)}, is much higher than the potential at ¢, and ¢, is near the point 4; 

hence we have the configuration of case (II) as shewn in Fig. 9; and so we have the configuration 

* Fig. 10 is drawn to scale; the dotted curve is + So that x is just less than 1, and z is just greater 

r=9-—6,/3|sin 36 , which will be required subsequently. than 1. 
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of Ftg. 9 whenever « is inside* the curve of Fig. 10. It is to be noted that ¢, is always the node 

of the figure-of-eight. 

[As a confirmation of these results, take | | large, when the equilibrium points are both near the 

origin ; when we take = positive, ¢, is nearer the origin than /,, and the potential of ¢, is higher than 

that of ¢,; thus we obtain the configuration of case (1). If now we vary arg z from 0 to +7, keeping 

_2| fixed, ¢, describes an are round the origin, driving the node of the figure-of-eight round the origin 

in front of it with approximately half its own angular velocity. When argz becomes +7, the two parts 

of the figure-ofeight unite behind ¢,, and we get a degenerate equipotential with two nodes, near the 

imaginary axis, which are symmetrically placed with respect to the real axis. ] 

We shall now shew that part of the line of force through t, always passes from 0 to 1 and is 

reconcilable with the real axis without crossing over ts. 

First take the configuration of case (I). The line of force through ¢, has a node there, and 

one of its branches (in the neighbourhood of ¢,) lies inside the loops of the eight. This branch 

of the line of force cannot emerge from the loops of the eight before passing through an 

equilibrium point, and no such point exists. The line of force therefore terminates at 0 and 1. 

Further, when |) is small+ the line of force nearly coincides with the real axis and ¢, is at a 

great distance from the origin, while ¢; and ¢; are on the opposite sides of the real axis. 

Therefore the line of force is reconcilable with the real axis. Now vary 2, and we see that the 

line of force remains reconcilable with the real axis so long as ¢, does not cross the line of force 

or the real axis. But as « varies, t; cannot cross the line of force without entering the figure of 

eight, i.e. without « crossing the curve of Fig. 10; and since the variation in # may be supposed 

to take place without « crossing the real axis (since the initial value of «, with | «| small, may 

have a positive or negative imaginary part, as we please), we see that whatever be the position 

of « (outside the curve of Fig. 10), a line of force passes from 0 to 1 through ¢,, and this line of 

force, so far as the point ¢, is concerned, is reconcilable with the real axis. 

Next take the configuration of case (II). In the special case when 1 —« is positive, t; is 

on the right of 1, and one branch of the line of force through ¢, passes straight from 0 to 1. 

As we vary « continuously the form of the line of force through ¢ varies continuously 

except when « passes through such a value that the line of force has another node; but the 

quartic of which a line of force forms part can only have two nodes (other than the point t = 1) 

if ae (Vz+ 3) _ ang (vz — 3) 

Vz+1 Vz—1 

is zero or an even multiple of 7. 

Now this difference is a multiple of 7 only when 

r=9+6/3sin }6, 

or when sin }@=0, where, as previously, z= re (r >0,-—2<@<7); the difference is an odd 

multiple of on the branch r=9 +6 /3|sin $6| near z =9, and so the difference is an even 

multiple of + only when sin $¢=0 or r=9—6/3 sin $@; this curve is shewn by a dotted 

line in Fig. 10, and it lies wholly outside the curve r= 6/3 cos $@0—9. It follows that, as 

varies inside the continuous curve of Fig. 10, the general configuration of the branch of the line 

of force from 0 to 1 through ¢, does not change, but always les inside the figure-of-eight and 

* And so no ease arises in which the closed-crescent justifies the statement made in footnote +, p. 304. 

equipotential contains the charges at 0, 1/a only; this + Whether I (x) be positive or negative. 

—— 
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does not go near* t;. Also, as we may suppose that ¢, and ¢, do not cross the real axis, and as 

the branch of the line of force is reconcilable with the real axis, so far as t, is concerned, when 

I (1 —2) is very small and R (1 —~) is small and positive, it follows that, for all positions of « 

inside the continuous curve of Fig. 10, the branch of the line of force under consideration is 

reconcilable with the real axis. 

It is now a simple matter to apply the method of steepest descents to obtain the asymptotic 

expansion of J,. 

Writing (1 — at) (7 (1 — t)* =2 {24+ 3) (V¥z4 1} e, 

where T-1s positive, we get 

a {8 v2 +1))* _,, dt 
fs (J: +{") Eo ceage y 8CL = 2), ( (vz +38)3J Ce dr 

and dt/dr is expansible (near t=0) in a series of ascending powers of 7* commencing with a 

dr, 

term in t~# whose coefficient is 

£4274 (2+ 1)/(v2 +3); 
and hence, after the manner of Part I, we obtain an asymptotic expansion for J;, in descending 

powers of X, of which the dominant term is given by the formula 

PA se. am oy, (8 (2+ 1))4 (or\3 
Tw 2228-1 2 * (/e+1)-2 8 (V/2z4+3) en (= 

This formula is valid for a complete range of values of argd provided that R(7) is negative 

when t=; te. provided that the potential of ¢, is higher than the potential of t,. Consequently 

the formula is valid for a complete or for an incomplete range of values of arg according as 

x 1s outside or inside the continuous curve of Fig. 10. 

We shall finally shew that a branch of the line of force through t, either starts from 1, encircles 

t,, and returns to 1; or else it starts from 1 and ends at 0. The former is the case when « is 

inside the dotted curve of Fig. 10, and the latter when ~ is outside it. 

First suppose that « is inside the continuous curve of Fig. 10; then the equipotentials have 

the configuration of case (II). Consider the branch of the line of force which enters the horns 

of the closed crescent at f,; it cannot cross the boundaries of the crescent without passing 

through an equilibrium point, and no such point exists; hence both ends of the branch must 

terminate at the point 1. Now the configuration of the lines of force only alters when « crosses 

the dotted curve of Fig. 10. Hence, whenever « is inside the dotted curve of Fig. 10, there is a 

branch of a line of force which starts from 1, goes to t,, and returns to 1, obviously encircling ¢,, 

which is in the region surrounded by the crescent. 

When « is outside the continuous curve of Fig. 10, the closed crescent contains the point 0 

as well as 1; and the only possible change of configuration of the line of force is th» ne of its 

ends+ should be at 0 instead of both being at 1. _ and of Clasi. > 

* It can only go near t, by assuming a form in which it sideration is zero, and since the cha 

passes through tj, and we have justseenthatitcannotassume curve, it would have also to contain 

this form when 2 is inside the continuous curve of Fig. 10. at 0 (these charges being numeric 

+ Both ends cannot be at 0; for suppose the line charges in sign). Therefore the quartic (991-949, 

replaced by surface distributions on circular eylinders of forms part would have a cusp at ( 

very small radius; since, by Gauss’ theorem, the total charge _it from 0, it would bifurcate befor 

inside the (closed) branch of the line of force under con- neither of these events actually 
40 
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To see that the branch of the line of force has one end at 0 and the other at 1, when z is 

outside the dotted curve of Fig. 10, take |x| large (greater than 9/8 is sufficient) and consider 

the limiting case when « is positive, so that argzis #7. In this case the nodal equipotentials 

coincide and form a curve consisting of two ovals crossing one another at 4, & (which are con- 

jugate complexes); the left-hand oval contains the charges at 0 and 1/#, and the right-hand 

oval contains the charges at 1/z and 1. And obviously the branch of the line of force through t 

has its ends at 0 and 1; hence, whenever R (# — 9/8) is positive and J (2) is very small, the line 

of force must pass very near 0; and so it must actually have its end at 0, in view of the manner 

in which lines of force radiate from the charge at 0. | 

Hence, whenever « is outside the dotted curve of Fig. 10, a branch of a line of force passes 

from 0 to 1 by way of ¢,; moreover ¢; lies in the region between this curve and the real axis ; . 

for t, is in the region surrounded by the closed crescent, and is consequently inside the region 

bounded by the line of force and any curve joining 0 and 1 and lying wholly inside the crescent ; | 

and, since ¢, and ¢, are on the same side of the real axis, the curve just mentioned is reconcilable | 

with the real axis so far as f, is concerned. Hence, when ~« is outside the dotted curve of Fig. 10, 

we get Ae 
E BN Zy) 

T, wv 2*8 (— /2) ed — vz)yreF (3 — zy Gees ae G a 

and it is easy to shew that —/z, 1-1/2, 3—¥/z have to be taken to have their arguments 

numerically less than 7. 

If, however, « is inside the dotted curve of Fig. 10, the function which possesses the asymp- 

totic expansion of which the dominant term has just been written down is 

(1/z=) 

fs #8#A-2 (1 — tyr 842-1] — at)-= dt, 
BL 

where the contour is described counter-clockwise or clockwise according as J (x)20. 

By writing t= 1 —u(#—1)/a, this is easily found to be 

T(y- B+ Qn) et? — a-B+A— = 

WC oem ECE She 
+ Qari — fp YR pre ae 

x F(y—8 +24,1-8-2; y-a-B+r41; *—), 
x 

and so we get 

wT (y — B + 2) —a—B+A »8—y—2A 

Ce soy a CE ae orp 

ba it 

ee = 2 eae y 8 We=1 ™ Na 

where z=9—8a. By considering the potentials of ¢, ane t., we see that, when the first type of 

asymptotic expansion (viz. that involved in J,) is valid for a complete range of values of arg A, 

the second type is valid for an incomplete range, and vice versa. 



XV. Asymptotic Satellites near the Equilateral-Triangle Equilibrium Points 

in the Problem of Three Bodies. 

By Professor Danie, BucHANAN, Queen’s University, Kingston, Canada. 

[Received 30 March, 1918. Presented by Professor Baker.] 

1. INTRODUCTION. 

If two finite bodies are subject to the Newtonian law of attraction and move in circles about 

their common centre of gravity, then there are five points, as Lagrange has shown*, at which an 

infinitesimal body would remain fixed with respect to the moving system if it were given an 

initial projection so as to be instantaneously fixed with respect to the finite bodies. Three of these 

points are situated on the line joining the finite bodies and these are called the straight line 

equilibrium points of the problem of three bodies. The remaining two points are situated at 

the vertices of the equilateral triangles having the line joining the finite masses as base. These 

points are called the equilateral-triangle equilibrium points of the problem of three bodies. 

If the infinitesimal body is given a slight displacement from one of these points of equili- 

brium, and initial conditions are so determined that it will move in an orbit which is closed 

relatively to the moving system, it is called an oscillating satellite. If the infinitesimal body 

is disturbed slightly from an equilibrium point or from the periodic orbit about the equilibrium 

point, and initial conditions are so chosen that it will approach the equilibrium point or the 

periodic orbit, respectively, as the time approaches infinity, it will be called an asymptotic 

satellite. 

The orbits which are asymptotic to the straight ine equilibrium points were determined by 

Warren} in 1913. Those which are asymptotic to the periodic oscillations about these equili- 

brium points have been determined by the author of the present paper and appear in another 

memoir. [Proc. Lon. Math. Soc., vol. xvu. (1918), p. 54.] 

The periodic orbits to which they are asymptotic are the orbits of Class A and of Class B as 

determined by Moulton in chapter Vv. of his Periodic Orbits. 

* Lagrange, Collected Works, vol. vi. pp. 229-324. Problem of Three Bodies,’ dmerican Journal of Mathe- 

Tisserand, Mécanique Céleste, vol. 1. chap. v1. “Moulton, matics, vol. xxxvm1, No. 3, pp. 221-249. 

Introduction to Celestial Mechanics (New Edition, chap. yut.). } Publication No. 161 of the Carnegie Institution of 

+ Warren, “A Class of Asymptotic Orbits in the Washington. 

Wor exc. No. XV. 40 
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The object of the present paper is to make the discussion for the equilateral-triangle points 

of equilibrium which corresponds to the two papers mentioned above. The periodic orbits of the 

oscillating satellite which are approached by the asymptotic satellite are those determined by 

Buck *. 

Two classes of periodic orbits are determined in Buck’s memoir. One class of orbits is of 

two dimensions and lies wholly in the plane of motion of the finite bodies. This class exists only 

when one of the finite bodies is relatively small in comparison with the other body. The other 

class of orbits is of three dimensions, but there is no restriction as to the relative masses of the 

finite bodies. 

The treatment of the problem under consideration is divided into two parts, Part I being 

devoted to asymptotic orbits of two dimensions, and Part II to asymptotic orbits of three 

dimensions. 

The orbits considered in Part I are asymptotic to the equilibrium points themselves and not 

to the two-dimensional periodic orbits about these points. These asymptotic orbits exist only 

when the masses are more nearly equal than in the case of the two-dimensional periodic orbits. 

It is therefore doubtful if orbits exist which are asymptotic to the two-dimensional periodic 

orbits. 

The three-dimensional orbits considered in Part II are asymptotic to the three-dimensional 

periodic orbits. The same restriction as to the relative masses of the finite bodies must be 

applied here as in Part I. 

Only the formal constructions of the asymptotic solutions are made in this memoir. It has 

been shown, however, by Poincaré+, that if certain divisors which appear in the construction of 

such solutions do not vanish, then the solutions will converge for all values of the time ¢ Now 

t can occur explicitly in the solutions only when such divisors vanish and, further, if ¢ does not 

occur explicitly then these divisors are different from zero. Hence, if the solutions can be 

constructed so that t does not occur explicitly their convergence is assured, by Poincaré’s 

theorem. 

1 Bay Rad beet 

Two-DIMENSIONAL ASYMPTOTIC ORBITS. 

2. THE DIFFERENTIAL EQUATIONS. 

Let the motion of the infinitesimal body be referred to a set of rotating rectangular axes 

£, , €, of which the origin is at the centre of mass of the finite bodies, and the &y-plane is the 

plane of their motion. The £ and 7 axes rotate in the same direction as the finite bodies and 

with the same angular velocity. The masses of the finite bodies will be denoted by « and 1—y, 

* Buck, ‘Oscillating Satellites near the Lagrangian chap.1x. This paper will be cited as ‘“‘ Oscillating Satellite.” 

Equilateral-Triangle Points,” Moulton’s Periodic Orbits, + Mécanique Céleste, vol. 1. p. 341. 
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and the notation chosen so that «<4. The distance between the finite bodies will be chosen as 

the unit of length, and the unit of time will be so chosen that the gravitational constant is unity. 

If the coordinates of the imfinitesimal body are denoted by &, », and & and if derivatives 

with respect to ¢ are denoted by primes, then the differential equations of motion for the infi- 

nitesimal body are* 

oU oU 0U TIAL > thy Se a ” 2 fy Se Uf ep aed 

E =?) dE? + 2& on ? g ale * 

7 Doi, eee ee Oe cose (1) 
Tn (SA) eee sy (+7) PAS Fy 

p, and p, being the distances from the infinitesimal body to the bodies 1 — 4 and yp respectively. 

The points of equilibrium are the solutions of the equations+ 

Uae 30 0 
OF On OC 

There are two sets of points which satisfy these equations, but those with which we are concerned 

in this paper are 

I &=$-p, m=+4Vv3, &=0, 
IL &=4-p, m=-4V3, 6 =0. 

These two points lie in the rotating plane and at the vertices of the equilateral triangles having 

the line joining 1 —y and w as base. Obviously, the coordinates of the points differ only in the 

sign of V3. The asymptotic orbits will be discussed only for the point I, for on changing the sign 

of V3 we may obtain the corresponding results for the point IT. 

Let the origin be transferred to the point I by the transformation 

Serre ENO EY, C= 2 me mace eeeeeensecsnconass so8 (2) 

Then the right members of the differential equations (1) can be expanded as power series in the 

new variables #, 7, and z. These expansions converge only up to the singularities of the functions 

1/p, and 1/p,, that is, in the region which is common to the two spheres having their centres at 

the finite bodies and radii V2, but which excludes their centres. 

Let a parameter e be introduced into the differential equations by the substitutions 

THC THQVp BHC) coooccwoor coesscescoae ocsegedsoaccuobad (3) 

where x, y, and z are the new dependent variables. Then as a consequence of (2) and (3) the 

differential equations (1) become 

x’ —Qy! =X, + X.e4+X;,E+..., | 

yf + 2a’ = Y,+ Yoe+ Vee Se toe 

a =4,+Zoe+ Z.e+ Oy 

* Moulton, Celestial Mechanics, p. 280. 

+ Ibid. p. 290. Charlier, Die Mechanik des Himmels, vol. xt, pp. 102-111. 
{ “Oscillating Satellite,” equations (4). 

40—2 
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where 

X,=$[e+V3(1—2u)y], Yi=3[V3(1—2u) 2+ Sy], 
X,=4+-8,[7 (1 — 2p) 2+ 2V3ay —11 (1 — Qu) y+ 4(1 — 2p) 2"), 

Y, =— 3, [V322 + 22 (1 — 2p) cy + 3V38y? — 432°], 

Z4,=-2, Z,=3[(—2p)az+ V3yz], (5) 

X,= 35 [— 370° +. 75V3 (1 — 2p) ay + 1232y? +. 45 V3 (1 — 2) y3 — 1222? + 6V3 (1 — Qy) yz"), 

Y, =a, [— 25V3 (1—2y) 28+ 1230%y +135 V3 (1—2y) wy? + 3y° — 60V3 (1—2y) wz? +132y2"], 

Z, =— 3 [ate + ly%z — 42° + 10V3 (1 — 2p) yz]. 

The remaining X,, Y,, and Z, are polynomials of degree n in a, y, and z. 

— 

3. THe CHARACTERISTIC EXPONENTS. 

For e=0 equations (4) become 

a” — 2 —32—3V3(1—2u)y=0, 

y + 2a’ —8V3(1— 2p) x—2y=0, done seecceevcntiocesccescessres (6) 

The first two equations of (6) are independent of the last equation and can be integrated by 

putting 

mehe,. y= Le. 

where KX and LZ are arbitrary constants. The characteristic equation for the determination of 2d is 

M+? + 224 (1—pw)=0, 
and the resulting values of \? are 

2 
—14+¥V1—274(1—p) 

Ss) 
‘ ; y ~~ “I — 

b 

For small values of » the expression under the radical is positive and numerically less than unity, 

and therefore the four values of X are purely imaginary. The limiting value of w for which 2 is 

purely imaginary is that solution of 

1—27n(1—p)=0 

which does not exceed 4. This value is found to be 

= y= 0385... 

For « > the four values of X are complex. 

In order to construct asymptotic solutions of (4) it is necessary that at least one characteristic 

exponent shall be real or complex. Now in problems of dynamics in which the differential 

equations of motion do not involve ¢ explicitly, the characteristic exponents occur in pairs which 

differ only in sign*. Hence, if one value of 2 is real or complex, there must be another real or 

complex characteristic exponent which differs from the former only in sign. Further, if one pair 

of exponents is real or complex then y« 2 wo, and it follows from (7) that the other pair of char- 

acteristic exponents is also real or complex, respectively. In view of the fact that the two- 

* Poincaré, Mécanique Céleste, vol. 1. chap. tv. p. 69. 
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dimensional periodic orbits exist only when «<j, it is impossible, according to the methods 

developed in this paper, to construct orbits which are asymptotic to the two-dimensional periodic 

orbits. We consider in Part I, therefore, the orbits which are asymptotic to the equilibrium 

points I and II and not to the two-dimensional periodic orbits. 

For « > the characteristic exponents are o, — a, , and —o, where 

o=a+18, c=a—i8, ) 

a=$[V27(1— »)—1}, 
B=4[V27e0—4) + ry 

The quantities o and a, like most of the constants in the sequel, are conjugate complex. The 

notation adopted is such that a symbol having a stroke over it is the conjugate of the same 

symbol without the stroke. 

4. CONSTRUCTION OF ASYMPTOTIC SOLUTIONS. 

We shall construct in (A) the solutions of (4) which approach zero as t approaches + 0. In 

(B) we shall show that the corresponding solutions which approach zero as t approaches — 0 may 

be obtained directly from those obtained in (A). 

According to Poincaré’s* definition of an asymptotic solution, each term must have the form 

EXP (i), 

where 2X is a constant and P is a periodic function of ¢. The solutions approach zero as ¢ ap- 

proaches — 0% or + © according as the real part of is positive or negative, respectively. 

(A) Solutions in e~*'. 

In making the construction of asymptotic solutions it is convenient, although not necessary, 

to transform into the normal form the terms of the first two equations of (4) which are independent 

of e. In order to obtain the transformation for the introduction of normal variables, it is necessary 

to know the solutions of the first two equations of (6). They are 

a= a,e" + ae + ase” + aye, } (9) 
pa OOleeti eo? bat + ae aT Tai ile 

where a,, ..., @, are the constants of integration, and b,, ..., b, are constants so determined that 

(9) shall satisfy the first two equations of (6). It is found that 

8a —3V3 (1 — 2p) | 
6, = ; | 

haa We Nel is te tual a Pe ECE ee (10) 
5, = 82 + 3V3 (1 = 2p) 
AP 4a? —9 , 

Normal variables «,, 22, 2;, and 2, are introduced by the substitutionst+ 

B= I+ Lo+ y+ Ls, ) 

Yy = da, + bya, + b, 2; + b.x,, (11) 

uv =o (x, —%)+6(x3— 24), 

y =o (b,x, — b,2,) +E (b,3 — b.2,). 

* Poincaré, Mécanique Céleste, vol. 1. p. 340. + Ibid. vol. 1. p. 336. 
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The differential equations (4) then become 

a —ox,= A,(X.e+ X,2+...)+B,(Yoe+ Yee ...), 

a,’ + oa, =A,(Xret+ XsE+...)+B(Yret+ Vse+-.)f (12) 

&y — Gr, = A, (X.e+ X,2¢+4+...)+ B,(Yoe+ Y3e+...), 

ay + on, = A,(X,e+ X,64+...)+ B,(Yoe+ Y3e+ a 

where 

A= ae, (b= 1,2, 34 eee ae (13) 

A being the determinant of the transformation (11), and A; the minors of the elements of this 

determinant, 7 referring to the row and k to the column. The computation shows that 

A a ee, B= 2, B= Be 
The equations (12) will now be integrated as power series in € by the method of undeter- 

mined coefficients. Accordingly let 

2 = 2, + M+ ...+ ay @) aa faiats (k == Dee i (14) 
ede eas tee 

Then from (11) it follows that 2 and y are likewise power series in ¢ of the form 

BONE 9) =, yD — 2s Rs eee cseae sees ee (15) 
5=0 j=0 

where 

LI = 2,9 + 2) + 2) + 29, 1 (16) 
y) =b,a,9 +d, a) + bar) + boa.) 

When equations (14) are substituted in (12) and the coefficients of the same powers of ¢ are 

equated in the resulting equations, we obtain sets of differential equations which define the 

various coefficients of « in (14). In order that the solutions of these equations shall be asymp- 

totic we impose the condition (C,) that each term shall contain the factor e~*” or e~**, where k 

is a positive integer. This condition disposes of the two constants of integration which are 

associated with the exponentials e” and e. There still remain the two constants associated with 

the other exponentials e~** and e~*, and in order that these shall be uniquely determined we 

impose the conditions (C,) that 

“z=a, y=0, 

at t=0, that is, we suppose that the infinitesimal body is initially displaced from the point I 

at the distance a on the z-axis. When these conditions are imposed on (15) we obtain 

2%(0)=a, #4(0)=0, (j=1,... 0), 
y2(0)=0, (GO .000 ). 

The terms which are independent of « when equations (14) are substituted in (12) are 

a —o2,9 =0, x," + o2, =0, 
r4 ae ou,” =— 0, ao + ox, = 0, See eesancccsesccecccccsccecns (17) 

2 + 2 =(), 

The solutions of these equations are 

a0 = d, ©) get, 1 = d, eg, = dy e**, 7,0 = ad,” rat (18) 
Mae aii4 dmc: la Aa ee 
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where d,”, ..., ds are the constants of integration. From condition (C,) it follows that all these 

constants are zero except d, and d,®. When the resulting values of (18) are substituted in 

(16) we obtain 
A = d, est er d, et 

y= bd, e-% + bd, | 

From conditions (C,) it follows that 

d,. +d,% =a, bod, + b.d, =0, 

then d.% =ad®, d, =d,. =ad™, 

where d” = i, = Ri 

With this determination of the arbitrary constants d, and d,”, the solutions (19) take the form 

2O=@ [do ent + qd el, 

y =a[b.d e-* + b,d o 

The differential equations obtained by equating the coefficients of e in (12), after equations 

(14) are substituted, are 
a”) o) ox, = X,", Xo) ae ox," = Xo, 

fe EMOTO ee OA ce OV 2 NON caters ae rwerasare ens eas (21) 

2/70) 4 20) —0, 

where 

X,) = a? [My et + MyM e- tt + Mya” e-™], 

Xi = a? [Nye + Ny, ett 4 Noo e-**], 

Xo =%.0, Xo =X, 
My” = A,M,+B,N,, No = A.M, + BoM; 

M.” = 4,M,+B,N,, No” = AM, + BoM), 

MM, = A,M,+B,N,, Ny = A.M, + BM,, 

M,=+ 3,2 (d (7 (1 — 2p) + 2V3b, — 11 (1 — 2p) 6], 

N, =— #02 (d [V3 + 22 (1 — Qu) b. + 3V3b."], 

M, = + Sad d® [7 (1 — 2) + V3 (by + b.) — 11 (1 — 2) baba], 

N, =—8a?d d® [V3 + 11 (1 — 2p) (b, + bs) + 8V3b,b,]. 

The constants 4,, A., B,, and B, have the values defined in equations (13). 

The general solutions of (21) are 

x, = dy er + a? [mo e- 2" + my" E— FF) + MQ C—™*], 

Iq = dg” e—% + A? [Mog C= 278 + ry MEX FE Mg BE, 

40) = dy” 6 + a? [gg - 288 + My VE FFE F Ahgg C—F], bose eevenrenes (22) 

x," = d,™ eat +a? [Mig e—20t ora Ny) e~ e+2) ty Noy") e—™*], 

20 =d," sint +d," cost, 



316 Pror. BUCHANAN, ASYMPTOTIC SATELLITES NEAR THE EQUILATERAL- 

where d,"), ..., d;) are the constants of integration and 
a) a) () 

"leh _ Ms my") ie M,, : Mo” 2a Me 

- 30” Qo = Q+6 (23) 

a) a) @ 
ase a) UE o—— Nee 

Noo » My = 02 = 
co c 2a-—a 

From condition (C,) it follows that d, =d,® =d,” =d,” =0. Then, on substituting (22) 

in (16), we obtain 

2) = d.™e—°t +d,%e—* +a? [An emt Aes once + Ag” e*], 

y = b.d,™ e—st = bd," e—* +a Be este + B® e—(oraty Bo™ Gmc. eae (24) 

Zz = 0, 

where Ay” = May + Noy™ + Moo™ + Tog"), 

A,” = My," + Ny, ae mM," + N,, 

By = by im” + dat)” + by Migs” ats baFioo™, 

By® = bom” + bry + bm," + bin”, 

Awe = Ay”, By” = Bay", A," = Ay”, By” = B,”. 

It is observed that the constants A,,") and B," are real. The only undetermined constants 

in (24) are d,” and d,). When conditions (C,) are imposed, it is found that these constants 

can be uniquely determined and that they are conjugates. Since they carry the factor a? let 

d.) =A”, dd =a@Aq”, bd," =a?B,", bod,” = 0B": 

then the solutions (24) may be eas in the form 

aM =a 5 AVe Getla)t Q<j+ks2, 
ie 0 k=0 Jk 

Tee 

2 =0, 

The coefficients have the property that 

S A” Q) _ pi) A; , B= B;. 
A; 

If j#k these coefficients are con} tea ees. but if 7 = they are real, 

yo) = as SB e- (joke) t. | eceralclefe atefateieieiaie dine eae (25) 

The remaining steps of the integration can be carried on in an entirely similar way. In 

order to find the general term we proceed by induction. 

Let us suppose that «”, y”, and 2” have been determined for h =0,1,...,»—1; and that 
A+1 AS (h) 

a =qghth> SA uC e— Go+ks)t O<j+ks eras 

j= 0k= 0 

A+1 h+1 a 

yl =qrniys > Be —ictekoyt: «sa ER pRB ese Sel ae (26) 

jan ke 0 

PA) = 0 

h (I 
where A yr and Bie are constants such that 

Ul h) I Ae Bo Be 

If 7 #* these constants are pate” bata but if j= they are real. We proceed to show 

that the solutions have the same properties when h =v. 
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The differential equations which define a,”, 2,”, 2”, and #,” are the same as (21) except 

the right members, while the equation in 2” is the same as in (21). Let the right members 

be denoted by X,”, X,”, X,”, and X,” respectively. These right members are functions of 

ax, ...,@*~, which are assumed to be known. They have the form 

x 

y+1 v+1 ‘ 
X=a | S > M™ e- iets) ( . 

g=0 x=0 ik 

vt+1 v+1 ={¥) y 

NG atta ee Ne Ge TENE Pee, coeee tach sur coeesen (27) 
j=0 k=0 7 

x, = X,), x,” = X,”), 

2sj4+khsv+l1, 

where the coefficients of the exponentials are known constants. Since j7+k22, the right 

members will contain no terms in e~* or e~*, and therefore the particular integrals will have 

the same form as the right members. The complementary functions are the same as at the 

previous steps, and therefore the complete solutions have the form 

v+l v+1 (v) ape \ 
x”) = d,”) ert 3: arti >» = Min e- Gat )t | 

j=0 k=0 | 

v+1 v+] () , 
XZ) = d.“e—% ate avr} >: s Nip e— Got kat | 

j=0 k=0 | 

vt v+1 : \ (28 
2,” = d,”) et + qt Shs: m\”) e- (jo + ka) t | ) 

j=0 k=0 ' 

v+l v+1 (») | 
— \p—T sy 0) A — 0 = z,”) = d,” ett 4 qt > Sy Ty; e— Ja+ke) a | 

j=0 k=0 | 

z” =d,;”! sin t + d,” cost, ) 

where d,”’, ..., d;” are the constants of integration, and the remaining coefficients are known 

constants. From condition (C,) it follows that 

d,” =d,” =d,” =d,” =0. 

On substituting the resulting values of (28) in (16) and imposing conditions (C,) that 

a (0)=y” (0) =0, 
it is found that d.” and d,” are uniquely determined. As they contain the factor a”*' and are 

conjugate complex, we may put 

d) =a" Ay”, d=at1A,”, bd =a" Bo”, bd. =a"By™, 

in which case the solutions for 7” and y”) are of the same form as (26) if h=v+1 in (26). 

This completes the induction. 

Thus the integration of the differential equations (12) can be carried on to any degree of 

accuracy desired. It remains to be shown that the solutions which have been determined are 

real for real values of a. This will now be discussed. 

Consider a typical term 

AD es is Fee (0) <style He Mg tee eee es bond Behe (29) 

of the solution for x” in (26). If j,=j.=j, then Ay is real, and, since ¢ = a+ 7, the term (29) 

Von. XXIT. No. XV. 41 
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becomes AY e—% which is real. If j,#j., then there is associated with (29) the term 

AO Gate enmes On tg. hs Rev ceeee tees tere ap eoeh (30) 
Jz aie 

in which AM and AS are conjugate. If we put 

Aw =a%+2b, AM) =a — ibm, 

then the sum of the terms (29) and (30) becomes 

2e— tH) atTa™ cos (7, — Jo) Bt + b” sin (7, — je) Be], 

which is real. As (29) and (30) are typical of the terms in the solutions for both «” and y”, 

these solutions are real. They may be expressed in the form 

c® = qh BS 3 Ge [ay cos kBt + oe” sin kBt], 
j=1 k=0 

2 (n) (h) y®) = abt > S en iat [c;,' cos kBt + d;," sin kBt], 
a= e—O 

where the coefficients are real constants. 

On substituting the above solutions in (15), and the results in (3), it is found that the 

solutions for %, y, and Z carry factors in a and e, but only as products and to the same degrees. 

We may therefore put a = 1, and when the resulting values for Z, y, and Z are substituted in (2) 

we obtain 
& ah j 

EF=}-p+ zd = & eniat [as cos ket + Ne sin kBt] e, 
h= ee : k=0 

Oe. Ns enema 31, 1 
n=+4V3 +3 S Seni [eve cos kBt + dy sin kt] e*, Cie 

w=17 

f=0, 
which represents the orbit that approaches the point I as t approaches +. By changing the 

sign of V3 in (31, 1) we obtain the orbit which approaches the point II as ¢ approaches + &. 

This latter orbit will be referred to as (31, II). Obviously, both orbits (31, I) and (31, II) are of 

two dimensions and lie in the plane of motion of the finite bodies. 

(B) Solutions in e*. 

Let us next consider the orbits which approach the points I and I as the time approaches 

—«. These solutions could be constructed in a manner entirely similar to the preceding con- 

struction, but they may be obtained more directly, as we shall show, from the former solutions. 

Consider the differential equations (4). Obviously, the orbits under consideration are of 

two dimensions as in the former case, ie the variable € may be suppressed. Since U in 

: oU .. E . ‘ 
equation (1) is even in 7, it follows nee a even in 7 and on is odd in 7. When the substitu- 

a 

tions (2) and (8) are made in (1) the ae of », or its equivalent substitutions, is unaltered in 

the right members of the differential equations. Hence the right member of the first equation 

of (4) is even in and V3, considered togéther, while the right member of the second equation 

of (4) is odd in » and V3, considered together. Let the solutions of (4) be denoted by 

B= fA END) sy Ye felt, + V8). LaGinier tle dee ectgateen (32) 
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Further, let t=—1T, y=-p 

be substituted in (4) and the sign of V3 changed. We obtain differential equations (4’) which 

are identically the same in a, p and 7 as (4) are in w, y and t. For the corresponding changes in 

the initial conditions, which, in fact, are unaltered by the change in sign of ¢, y and V3, we 

obtain as the solutions of (4’) 

2= f(t = V3), pH=hr(t,- V3), 

where f, and 7, are the same functions as in (32), but of different arguments, as indicated. On 

restoring the former variables, we find that 

x=f,(—t,— 3), y=—fo(—t, — V3) 

are solutions of (4), and that the equations 

F=}-mtf(-t,—v3), | 
n=+4V3-—f,(-t, — V3) J 

represent the orbit which approaches the equilibrium point I as ¢ approaches —». But (38, I) 

is obtained from (31, Il) by changing the signs of ¢ and 7 in (31, II). Thus the solution which 

approaches the point I as t approaches — 2 can be obtained from the solution which approaches 

the point II as ¢ approaches + 0 by changing the signs of ¢ and 7 in the latter. Further, the 

equations 

Re eerie ene. (33, 1) 

g=}- w+fi(—t +3), 

eS 75 (— 1, + V3) ) 

a Ciceda eps ane to (33, ID) 

represent the orbit which approaches the point II as ¢ approaches — « , and they may be obtained 

by changing the signs of ¢ and 7 in the solutions which approach the point I as ¢ approaches 

+2. Thus the orbit which approaches one equilibrium point as ¢ approaches +o or — 

may be obtained from the orbit which approaches the other equilibrium point as ¢ approaches 

— 2x or +, respectively, by changing the signs of ¢ and 7 in the solutions for the other orbit. 

5. GEOMETRICAL CONSIDERATIONS. 

The parameter e remains arbitrary in the asymptotic solutions. From the way in which 

the initial conditions (C,) were chosen, it follows that ¢ denotes the initial displacement of the 

infinitesimal body from the equilibrium point and parallel to the &-axis. As the solutions 

contain e both to even and odd degrees, the shape of the orbit will vary not oaly with the 

numerical value of e but also with the sign of e. 

The direction in which an orbit approaches an equilibrium point is indeterminate and 

therefore independent of «. In order to prove this we need to show that 

ay 
limit 
t=io dz 

is indeterminate. We shall consider only the orbit which approaches the point I as ¢ approaches 

+, since the discussion for the other orbits is essentially the same. 

41—2 
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When ¢ becomes very large, the most important terms of 7 and 7 are those in e~* to the 

first degree. These are 

Sil = > e-* [a,, cos Bt + 6, sin BE] &, 
h 
i 2] 

y = > e—*[c,.™ cos Bt + dy sin Be] e, 
=1 

where the coefficients are real constants. Now 

dj Be. ea ® — ac.) cos Bt — (ad, + Bey”) sin Bt] &* 

limit oY = limit 7 ey) apa limit — 

a tata d et S [((Bba® — Ey cos Bt — (ab, + Ba) sin Bt] a 
h=1 5 

and this limit is indeterminate. 

For a given value of e there are two orbits approaching each equilibrium point, according as 

t approaches +2 or—a. Since the equations (31, I) and (33, IL) differ only in the signs of ¢ 

and y, and similarly with (31, II) and (33, I), it follows that the orbit which approaches one 

equilibrium point as ¢ approaches —% has the same shape as the orbit which approaches the 

other equilibrium point as t approaches + «2. The two orbits which approach one equilibrium 

point for a given value of e are the reflection in the &-axis of the two orbits which approach the 

other equilibrium point for the same value of «. This would be expected from the symmetrical 

nature of the problem. 

5a. NUMERICAL EXAMPLE. 

To illustrate the nature of these asymptotic orbits we have assigned to w the particular 

value 0°1 and have constructed the solutions which approach the equilibrium point I as ¢ 

approaches +2. The results are 

2 =e“ (cos Bt + 0°724 sin Bt) e + [e~* (0:045 cos Bt + 1:002 sin Bt) 

+ e—** (0:267 — 0°312 cos 28t — 0°392 sin 28t)] e+... 

y =e—*(—0'105 sin Bt) e +[e-* (0°669 cos Bt — 0°532 sin Bt) 

+ e—** (— 0°679 + 0'010 cos 28¢ + 0120 sin 28¢)] 2+ 

where a= 0°374 and 8 = 0°800. : 

’\ (84) 

If the infinitesimal body is projected from the positive x-axis at the initial distance 0-1 from 
the point I, then e=0'1, and the solutions (34) together with their derivatives become 

a =e—* (01004 cos Bt + 0°0824 sin Bt) 

+ e~*** (0:0027 — 0:0031 cos 28t — 0:0089 sin 28t) + ..., 

i mee Sy 0067 cos Bt — 01105 sin Bt) 

+e—***(— 0:0068 + 0:0001 cos 28¢ + 0°0012 sin 28t) +..., 

x’ = e~* (00284 cos Bt — 0°1111 sin Bt) ++e(99) 

+ e—** (— 0:0020 — 0:0039 cos 28¢ + 0:0078 sin 28t) + ..., 

y = e~**(0:0909 cos Bt + 0:0359 sin Bt) 

+ e—** (00051 + 0:0018 cos 28¢ — 0:0011 sin 28#)+.... 
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As t increases, the most important terms of these solutions are those which carry e~* as a 

factor. On considering only these terms and examining the value of 

dy _ ya —a'y 
Be Ns (al Y 

we find that = cannot change sign by passing through zero for any real value of f. Hence the 

curve represented by the first two equations of (35) is always concave to the origin, we. to the 

point I. 

Numerical values have been computed for equations (35) and they are to be found in Table I. 

TABLE I, 

w=O01 e=01 

t : : a! * wav 

o | +-1000 | 0 +0295 | —-0840 | — 37 
1") #1007maees-0082) | -8-0144. | =-0782, | = 5-4 
2 1091 | —-0157 | +-0068 | —-0723 | —10-6 
3 | +1032 | —-0925 | —-0004 | —-0663 | +16-6 
4 | +-1028 | —-0288 —-0071 | —-0603 + 85 

5 | +-1018 | —0346 | —-0135 | —-0542 ) + 40 
w| +0883) (0542, |). 0384, | =-0939/ |. + 0:6 
15 | +0655 | — 0594  - 0513 | +0013 | — 003 
2 | +0389 | —0539 | - 0526] +0190 | — 0-4 
25 | +0142 | --0418 | —-0451 | +0284 | - 6:3 
3 | —-0054 | —-0267-| —-0323 | +-0303 | — 9-4 | 
35 | —-0179 | —-0122 | --0179 | +0269 | —- 1-5 
4 ~-0236 | —-0004 | —-0049 | +0202 | — 40 
45 | —-0234 | +-0077 | 4-0044 | +-0124 | + 28 
5 0193 | +-0121  +-0102 | +-0049 | + 0-5 
6 —-0077 | +-0107 | +-0121 | —-0046 | — 0-4 
7 +0020 | +0054 | +0067 | —-0068 | aie) 
8 + 0055 | - 0003 | +-0008 | --0043 | - 54 
9 +0044 | —-0028 | --0024 | --0009 | + 0-4 

10 + 0015 | ~ 0026 | --0027 | +0012 | ~ 0-4 
| 

The graph of this curve is given in Fig. 1 (p. 323). The curve is drawn to scale but the 

distance to each finite mass is merely indicated, being unity or ten times the distance of 

the initial displacement of the infinitesimal body from the point I. The motion in this orbit is 

clockwise as indicated by the arrow. 
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If the infinitesimal body is projected from the negative z-axis at the initial distance 01, we. 

if e=— 0:1, then the equations which define its path are 

xz =e (— 0:0996 cos Bt — 00624 sin Bt) ) 

+ e**(0'0027 — 0/0031 cos 28¢ — 0-0039 sin 28t)+..., | 
y =e-* (0:0067 + 0°1000 sin 82) | 

+ et (— 0:0068 + 0:0001 cos 28¢ + 0:0012 sin 26#) +..., 
a’ =e (— 00126 cos Bt + 0°1030 sin Bt) i 

+e ** (— 00020 — 0:0039 cos 28¢ + 00078 sin 28t)+..., | 

y' =e-* (— 00775 cos Bt — 0'0428 sin Bt) 

+e-** (00051 + 0:0018 cos 28t — 0:0011 sin 28t)+.... 

dy 
By examining the value of 54 we find that the curve represented by (36) is concave to the 

da? 

point I, as in the previous case. Table II contains a list of the coordinates and their derivatives 

for the same values of ¢ as in Table I. 

TABLE II. 

p=01 e=-O01 

t x y x | y wy _¥ | 

| 

oP 1 | 0 —-0185 | +-0844 | —47 

‘1 | —-1015 | +-0080 | —-0086 | +-0777 9-0 
2 | —-101% +0154 + 0008 | +< O71 Gm ae S39 

3 | —-1012 | +-0222 | +-0095 | +-0632 +67 
| -4 | --0998 | +-0282 | +0172 | +-0571 | +3: 

5 | =-0980 | + 0334 + 0243 +0491 | +20 

1 | —-0791 | +-0500 +0476 | +-0180 | +04 

| 15 | ~-0531 | +-0527 | +-0543 | - 0058 ~01 
| 2 ~-0269 | +-0457 | +-0490 | --0205 =04 | 
| 25 | —-0049 | +-0333 | +-0379 | --0307 -0-8 | 
| 3 +0108 | +-0196 | +-0246 | --0274 | -141 

35 | +-0199 | +-0068 | +-0118 | —-02298 | -1-9 
4 +0230 | —-0030 | +-0014 | —-0165 12 
45 | +-0218 | —-0096 | —-0064 | —-0092 | 41-4 
5 +0172 | —-0124 | —-0108 | ~-0097 +0°3 
6 +0057 | —-0104 | —-0107 | + -0052 ~ 05 
7 ~-0027 | —-0043 | —-0054 | +-0064 — 1-2 
8 --0053 | —-0003 | --00003| +-0036 |  -1-20 
9 —-0038 | +0028 | +0025 | +0004 | +16 

10 ~-0018 | +-0024 | +-0022 | —-0013 | -0-%6 
| 

The graph of this curve is given in Fig. 2. It is also to scale with the distances to the 
finite masses indicated as in Fig. 1. The curve is not only differently orientated from that in 

Fig. 1, but is of slightly different shape. The direction of motion is clockwise as in the preceding 

curve, 
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Fic. 1. The Orbit Asymptotic to the Point I for n.=0:1, e=0-1. 
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Fic. 2. The Orbit Asymptotic to the Point I for ~=01, e=—0:1. 

323 



324 Pror. BUCHANAN, ASYMPTOTIC SATELLITES NEAR THE EQUILATERAL- 

PART II. 

THREE-DIMENSIONAL ASYMPTOTIC ORBITS. 

6. THE DIFFERENTIAL EQUATIONS. 

In the discussion of the three-dimensional asymptotic orbits, the same notation and units 

are chosen as in §2, and the differential equations which define the motion of the infinitesimal 

body are the same as (1). Besides transferring the origin to the point I by equations (2) and 

introducing the parameter e by (3), the independent variable is transformed by the substitution 

bm bg \(UE.D) Tye can sessamedgtee teross seers eet oaeeeeee (37) 

where 6 is a function of € so determined that the solutions of (1) shall be periodic with the 

period 27 in 7. When the transformations (2), (3), and (87) have been made in (1), the differ- 

ential equations of motion become 

ee + 6)y=(1 + 6) [X, + X.e+ X,e7+ ...], 

4 4-2) (1-0) — (UO) Ya ne + Veet tee] ocecceetmeeece sense (38) 

Z2+(14+ 6%2=(14+ 8)" [Ze+ Ze+...], 

where the dots denote differentiation with respect to t; and X,, Y,, and Z, are the same poly- 

nomials as in (5). The periodic solutions of these equations, in terms of the variables a, y, and z 

of equations (2), are* 
a aS \ 
B= ex= > > [al cos kr + V3 bo” sin 2kr] ™, 

n=1 k=0 | 

ao 

y= eye > S[V3 co” cos Bkr +d” sin Ber] 2%, 
n=1 0 ri falvielatets (39) 

a 2 = 

Z=€2)= = = [v3 gt) cos (2k +1) 7+ h2"*” sin (2k +1) 7] 2e4, | 
n= =0 H 

6=84+ def + J) 

where the various coefficients of the cosines and sines, and also 6, 6,,..., are rational functions 

of w. It is not necessary in these periodic solutions to restrict 4 to be less than «= *0385..., as 

in Part I. The radical V3 occurs in the solutions (39) only where indicated. The initial con- 

ditions are chosen so that 
en (OV= 0; 2 (0) Hi. |<. cccceeeee pee ceee i onatee see aeeeen (40) 

The numerical values of the coefficients in (39), in so far as they are given in “ Oscillating 

Satellite ”, are 

a. = b,% = d," = 9,9 = 9,9 = 9,9 = 0, | 

aa. 90-2) / ee aa | 
5 73—-—9(1—2z)’ : 73 —9 (1 — 2p)?’ 

fo. 6 eee a 2 Oe . (41) 
eS eas Tease | 
49 ao Pe SD j,@ = 3 ( — #) xe 124 (1 — 4) 

: 73-9(1—2py’ ~* ~~ 783 —9(1—2y)?’ 73 — 73-9 —2y)'| 

* “Oscillating Satellite,” § 164. 
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7. THe EQUATIONS OF VARIATION. 

325 

We propose to construct solutions of the differential equations (88) which are asymptotic to 

Let 

Oe Yo 
be substituted in (38), p, g, and r denoting new dependent variables. 

p—2(4+6)¢+(. 4+ 62 [Pip + Pog + Pyr] = (14+ 6) P, 

the periodic solutions x, y,, and 2 in (39). 

L=X+ Pp, Z= 27 

As a result we have 

G+2(14+8)p+(1 +6) [Qip + Qeq + Qer] = (145)? Q, > -.crccneceeeees (43) 

F+(14+6)P (Rpt Rg + Rr] =(14+6) R, 

where 

P,=-—3-3[(7 1 - 2p)at+v3yJe+..., : 

P,=—4V3 (1 — 24) —$[V3e, — 11 (1 — 2p) ple+..., | 
P,=—3(1-2u)2€+..., | 

Q, =— 33 (1 — 2u) —$[V32,— 11 (1 — 2n) mJ] e+..., | 

Q.=— 3-3 [11 (1 — 2pu) a + 3V3y]e+..., | 

3v3 
Qs =F Ete | 

R,=—3(1-2p)2€+..., ion, Sa 

2 ee, | 

R,=1—3[(1—2u)a+V3y]e+..., 

P =+-3,[7(1 — 2u) p? + 2V3pq — 11 (1 — 2) q? +. 4(1 — Qu) Je+.. | 

Q =—3,[V3p? + 22 (1 — 2p) pq + 3V3q?—4V3rJe+..., 

R=+8[(1—2u)pr+v3qrjet+.... 5 

If the right members of (43) are neglected, we obtain 

p—2(+8)¢+04+8) [Pip + P.¢+ Psr] = 0, 
G+ZL+8) pPH(1 + 8" [Qip + Qog + Qer]HO.p cee (45) 

r+(14+ 6) [Rip + Roq ot R,r] =0, 

which are the equations of variation. 

$8. THE SOLUTIONS OF THE EQUATIONS OF VARIATION. 

The equations of variation are linear differential equations having periodic coefficients, the 

period being 27 in +. Such equations were first discussed by Hill* in 1877 in his celebrated 

memoir on the lunar theory. Since that time, these equations have been discussed extensively 

by Poincaré and many other prominent mathematicians+. The method which we shall adopt in 

constructing the solutions of (45) is the one developed by Moulton and Macmillan. This 

method of construction is essentially one of undetermined coefticients. 

* The Collected Works of G. W. Hill, vol. 1. p. 243: 
Acta Mathematica, vol. vit. pp. 1-36. 

+ A very complete list of references to the literature of 

these differential equations is given by Baker on p. 134 of 

» his memoir ‘On Certain Linear Differential Equations of 

Wory XOXLL, No. XV. 

Astronomical Interest,” Philosophical Transactions of the 

Royal Society of London, Series A, vol. 216, pp. 129-186. 

t ‘On the Solutions of Certain Types of Linear Dif- 

ferential Equations with Periodic Coefficients,” American 

Journal of Mathematics, vol. xxxu1. No. 1 (1911). 

42 
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The differential equations (45) are simultaneous and must be considered together. The 

general form of the solutions, first given by Floquet*, is 

je E, GySSCNTL RS GAO coc scnonnoperace vocnt caneog aces: (46) 

where an existence proof, following the method of Moulton and Macmillan, would show that 

X, wu, and v are power series in e* and that w is a power series in odd powers of «. Let 

2 SES? a, Soon eS sere ecccnccacocnasareocnoc: (47) 

There are six values of A, altogether, but two of them are known to be zerot, since the generating 

solutions contain two arbitrary constants f, and «. Considering first the exponents which are 

not identically zero, we observe from (7), Part I, that the values of A,° are 

a7 =)" 
2 

Since at least one value of A, must be real or complex in order to construct asymptotic solutions, 

must be restricted to be greater than ,=‘0385...; as in Part I, in which case the four 

values of X, are all complex and differ in pairs only in sign. Let these values of X, be denoted by 

Oo; — Go, Gp, and — G. 

These are the same values as o and ¢ in Part I. 

Now let 

Aer 

U=U tuMe+...+ueMErM+..., 

V=V) HVPE... HyMEME , reeeeeeeeeeeeeeeseeeeees (48) 

w=wle+whest ... -wererns 

where the various coefficients can be determined by a proper choice of X so that they shall be 

periodic with the period 27 in 7. Since these solutions are later multiplied by arbitrary con- 

stants, we may assume, without loss of generality, that w(0)=1, from which it follows that 

LO (O) == Ph (O) =O)" Cg = 15. : Cony). ene n sce toe te teneccn ese ae (49) 

The initial values of v and w will then be determined from the differential equations. 

On substituting (48) and (46) in (45), putting 

Ne Sgt Og St hss gf cokodepbhacceeeenss dete sec ten a aeeee (50) 

and equating to zero the coefficients of the various powers of e, we obtain sets of differential 

equations which define the various u®), v®, and w+, The constants of integration that arise 

from the solutions of these sets of differential equations are uniquely determined from the con- 

ditions (49). The solutions themselves can be made periodic by a proper choice of the various 

a, in (50). One set of solutions is thus found to be 

POT (OHO; TOT Wy, vance teaeae® anna clieee gal (51) 
where 

; \ o ‘ : o i, F 7). '. 
St) ev — Se [FE cos Qkr + Ge sin 2k] &, 

j=0 j=0 k=0 

2 en, ete 25 : 
%,=50,%%=S ¥ (LAY? cos kr + K& sin Qkr] &?, 

jst sate | ...(62) 
cole Mea See, ; 2541) _- 

w= Swe = = > LLY cos (2k+1) 7 + MYI*” sin (2k + 1) 7] | 
j=0 j=0 k=0 a 

7 | 
a=at+iP => [a5 + tBy] e. | 

=0 y 
* Annales de U' Ecole Normale Supérieure, 1883-1884. + Poincaré, Mécanique Céleste, vol. 1. chap. tv. 

a 
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The coefficients of the cosines and sines in (52) are complex numbers and contain some terms 

having V3 as a factor. The a,; and ,; are real constants. The values of oy, 1", v,%, and w,” are 

Oy = 0% + 18 = 3 [{V27u (1 — w) —1]2 +1 (V27~ A — pw) + 14), 

w= Oe ale _}v3 Oe) ee 
1 ? 1 Qo, + 2V3 (1 — 2) a; —2 ? 

3V3 § (1 — 24) +75 mo : 
QO = —$—$—$—<—$—$ — sin T — — cos r| 

ao; +4 on 

By putting A, equal to — a, 6, and —@,, the corresponding solutions of (45) could be con- 

structed in the same way as the solutions (51) were obtained. It is not necessary to repeat this 

construction, however, as we propose to show that these solutions can be obtained from (51) by 

changing the signs of V3, 7, p, g, and ¢ in (51). 

We shall first show that the differential equations (43) are unchanged if the signs of V3, 7, 

q, and r are changed, and, obviously, (45) will remain the same under these changes. The dis- 

cussion is made for the equations (43), instead of for (45), as this property of (43) is used later in 

§ 9 (B). 

The function U of the original differential equations (1) is even in » and €. ieee => Is 
iE 

ovals ; oy OU : : 
hkewise even in 7 and ¢, while — 1s odd in » but even in £, Pale ie even in 7 but odd in €. 

on cya 
aU 3 aU : ; 

Further, el carries the factor , and iia carries the factor €. When equations (1) are trans- 

formed by (2), (3), (37), and (42), that is, when the substitutions 

E=h—pte(mtp), n=+4hV8+e(H+q) C=e(m+r), t—-th=(1+8)7 ...(53) 

are made, we obtain equations (43). The above transformation of the independent variable, 

viz. t—t,=(1+6)7, does not affect the parity of the equivalent expressions for &, 7, and ¢ in 

(43). Since the substitutions for the dependent variables are linear in (53), the equivalent 

expressions for £, 7, and ¢ enter (43) with the same parity as &, 7, and € enter (1). 

Now the terms of (43) which carry the factor (1 + 6)? arise from the right members of (1). 

Consider the expression 

(IL SE ORR sb Jaa Gp teW ey pew 2 6 eqonecnos sodesun sneodancone (43, 1) 

saree oe in (1) is even in » and ©, (48, 1) is even in (V3, Yo. q), considered together, and 

even also in (z, 7), taken together. Hence if we change the signs of y, 2, g, and r in (43, 1), 

and also of V3 in so far as it enters explicitly, the expression (43, 1) will remain unchanged. 

The expression 

Cero Opa Olg + Os Qy Acree sates isos cape (43, 2) 

from the second equation of (43), carries a factor which is odd in (V3, y,, q), considered together, 

eo : F : ‘ 5 WEL ; 
since — carries the factor 7 and is odd in yn. Further, this expression is even in (Z, 7), taken 

On 
together. Therefore if the signs of yo, 2), q, and 7, and also of V3 in so far as it enters explicitly, 

are changed in (43, 2) the expression changes sign. 

422 
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The corresponding expression from the last equation of (43) is 

(1 £0) Rip + Tg -e Ror — RSs ae. ees eceeecast cee cone (43, 3) 

Since 4 carries the factor ¢ and is odd in ¢, (43, 3) will carry a factor in (2, 7) to odd 

degrees, taken together. As gli even in 7, (43,3) is even in (V3, y, g), considered together. 
at 

Therefore a change in the signs of y, 2, q, and r, and also of V3 in so far as it occurs explicitly, 

will change the sign of (43, 3). 

Considering the solutions (39), we observe that 

(+ V3, +7) =2,(—V3, —T), Yo (+ V3,4+7)=—y(- V3,—1), 2 (+3, +7) =—2,(—V3, —7). 

Hence changing the signs of y and z, is equivalent to changing the sign of 7, and also of V3 

where it occurs implicitly. Therefore changing the signs of 7, g, 7, and of V3 where it occurs ex-, 

plicitly and also implicitly, is equivalent to changing the signs of y, 2, g, 7, and of V3 where it 

occurs explicitly. Consequently, if we change the signs of r, g, 7, and of V3 both implicitly and 

explicitly, the expression (43, 1) remains unchanged, while (43, 2) and (43, 3) both change signs. 

On making the same changes in the remaining terms of (43), we observe that the differential 

equations remain unchanged. Obviously, the same property holds for (43) if we neglect the 

right members, that is, for equations (45). 

Let us proceed now to the determination of the remaining solutions of (45). Since these 

differential equations are unchanged by changing the signs of 7, g, 7, and V3, we shall obtain 

another set of solutions if we make the corresponding changes in the solutions (51). Let this 

set be denoted by 
[SO hy Cp ACR RS OCS ly) aponcdnboacb susseasa0e$ (54) 

where u, v2, and w, differ respectively from uw, v,, and w, only in the signs of V3 and 7. Thus 

Se a eae eae BD os aoe: 
w= Du%M%= SD J (Hy cos 2kr — Go; sin 2k] &, 2 2k Dh 

j=0 j=0 k=0 

a a eh 12 Ono) A(2i) . | = 
mM=lv*%#e%=L Y [Ho cos 2kr — Hes sin 2kr] e%, .(55) 

j=0 j=0 k=0 

co @ } Alag A (94 
; ais << (29+1) ¢ (2j7+1) . F 

w= > wIVAH=T SY [Lops cos (Qk +1) 7 — Mayas sin (2k + 1) 7] 4, 
j=0 j=0 k=0 

where the circumflex (*) denotes that two constants #’ and F differ only in the sign of V3. 

Since the differential equations (45) are independent of 7, a change in the sign of 7 will 

leave the differential equations unaltered; and if we change the sign of 7 in (51) and (54) we 

obtain the additional solutions 

p=e"h, gq=e"nr, EA shih Talos SARS An caG aM Gen aROab os DaaG (56) 

and De Org; T= = Cx Wy eweseaaeeperecs ses neneaed (57) 

respectively. 

The solutions (51), (54), (56), and (57) are those with characteristic exponents different 

from zero. We shall now derive the solutions of (45) which have zero characteristic exponents. 

It has been shown by Poincaré* that if the generating solutions (39) contain an arbitrary 

constant which does not occur explicitly in the original differential equations (1), then a solution 

* Poincaré, Mécanique Céleste, vol. 1. chap. tv. 
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of the equations of variation can be obtained by differentiating the generating solutions with 

respect to this constant. The generating solutions (39) contain two such arbitrary constants, f, 

and e, and therefore the two remaining solutions of (45) can be obtained by differentiating (39) 

with respect to these constants. 

Consider first the constant ¢,. It enters (39) implicitly through r. Thus one set of solu- 

tions is 
0 (€a) sae if) 0 (ey) _ 1 . 

1. Sepa ene 8 ie 
— (Yo) _ t o(ey) .. 0! 

1” 0h WESiaat) oy Lee 
_ 0 (ez) _ 1 0 (ez) _ 1 a 

[Senko )|=6hlL +5 

Since these solutions are later multiplied by arbitrary constants, the constant multiplier — ix 5 

may be absorbed, and we may take 

Ps; G— Us, T= Ws conccnenesecsaresnersorosssseareres (58) 

as the solutions. The differentiations give 

_ 0 (exp) 16 = ; 2 ae —— B91 a app [V3 cos 27 — (1 — 2y) sin 27] + 

0 (ey _ 

a = = ~ Qpy [16 (1 — 2u) cos 7 + {19 — 3 (1 — 2v)} V3 sin 27] P+ 

Com 9u(1 
uw, = = [eos Te + agg a [—cos t+ cos 3T] &+.. 

On differentiating (39) with respect to e we obtain the solutions 

_ 0 (€2) (ey) 0 (€%) 
denna paidet © acon 

Since ¢ enters (39) explicitly and also implicitly through 7, we have 

_ 0 (€a%) (0 (€a)\ , A (Ex) OT 08 

Je ( de )+ Sausae = Me 
_O(ey%) (0 ale: 0 (€%)0T 0d _ Pe 
= ( 5. a DBA =v, + K7,, [oo ststeeteeetsneecenes (59) 

_ 8 (ez) _ (8 (e%)\ , 8 (ex) Or 98 s | 
= de as ( de )+ ae a8 ge ee 

where the parentheses ( ) about the partial derivatives denote that the differentiation is performed 

only in so far as € occurs explicitly. The differentiations give 

a C a) ee 7 sae 2 Sn oleae 
ee ae (cu) E se 2 EAs ao ae On 22 are Ses sin zr] e+... 

W,= (2) =sin tT — 73 5 Ooo [3 sin t— sin 37] e+ ..., 

Kapa = — he + He +] 
This completes the integration of the equations of variation. 
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Tt remains now to show that the six solutions (51), (54), (56), (57), (58), and (59) constitute 

a fundamental set. The criterion for a fundamental set is that the determinant of these 

solutions and their first derivatives with respect to 7 shall be different from zero. This 

determinant is 

| eT 2, Ca eT U,, Cs, Us, Us + Kru; 

e* (ou, +), —e- (ot — te), CF (GU, +%,), —e-* (Gp—Uy), tle, wt, + K (uy + Ty) 

ne e770, —€ 77, e770, — €-7" Up, Us, U, + Krv, 

~ |e (av, +%,), e-* (aV, — ty), FT (G%, +), "(Gy — 0), Hs, Hy + K (v, + Ths) 
ems, —e-7"Wp, CW, ; — e"W,, W;, W,+ Krw, 

eT (cw, +%,), eT (cw,—wW,), CT(GW,+W,), C7 (FW,—W,), Ws, + K (wit ws) 
It is a constant * for all values of 7, and therefore the computation will be simplified by putting 

7=0. Thus we find that 

— Whe Bo? (a + 780) | 8 (1 — 2p) (3a?— 82-38) - i iy (0? + ae} [3a (1-24) -4($+a°+ B?)] 

ie (ag + Bit} — § (ad — Bo) + 38 
+ terms of higher degree in e. 

Since a= 3 [/27u (1 — n)-1}, Ao= 3 [V27u(1 —p) +1}, 

and since p is restricted to the interval , < w <4, the product 6,2 (a +78) in (60) is different 

from zero for all values of » in the above interval. The determinant A can vanish then only 

with either factor { } or[ ]. On equating each of these factors to zero, rationalizing and simplifying, 

we obtain, respectively, the equations 

pS — 4? + 48885 — 0°663n5 — 5°878u4 + 3°809u8 — 0388 yu? — 0°953u + 0°0153 = 0, 

pe! — 3p + 0837p! + 3°325y? — 1019p? — 1-144 +0057 = 0. 
By applying Sturm’s+ theorem we find that neither of the above equations has a root for « lying 

between p, and 4. Hence, for e different from zero but sufticiently small numerically, and for 

all values of « between p, and 4, the determinant A is different from zero. Thus the six solu- 

tions which have been determined constitute a fundamental set of solutions of the equations of 

variation, and the most general solutions of these equations are 

p= Nye u, + Nye? Us + Nye ui, + Nye- uy + Neus + V5 (us + Kr ta) 

q = Nyev"v, — Noe", + Nge?"0, — Nye-*"0, + Nyvs + No (vy + Krvs), > ooo (61) 

r= Nye w, — Nie~ w. + Nie", — Nie~" Ww, + Nw, + No (w+ Kew), 

where JN,,..., V, are arbitrary constants. This completes the construction of the solutions of 

the equations of variation. 

9. CONSTRUCTION OF ASYMPTOTIC SOLUTIONS. 

(A) Solutions in e-*". 

In making the construction of the asymptotic solutions of (43), it is convenient to introduce 

another parameter y by the substitutions 

=O (QO Ys:! 1 =p. have onchenenaeateh Geir arens nts cc dnetant (62) 

" Moulton, Periodic Orbits, chap. 1.4 18. + Burnside and Panton, Theory of Equations, vol. 1. p. 198. 
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where p, q, and 7 are the new dependent variables. Let 

Pot Pry + poy? + .--; 

= GUY Gay tveey Peete nce e en eres (63) 

=Hnmntnytray +... 

When (62) and (63) are substituted in (43), the factor y will divide out of the resulting equations 

and we obtain differential equations which are to be satisfied identically in y. By equating the 

coefficients of the same powers of y in these equations, which will be cited as (43’), we obtain 

y Qn Sil 

Il 

= | = 

sets of differential equations which determine the various p;, qj, and 7; in (63). In order to 

obtain asymptotic solutions it is necessary to impose suitable conditions on the solutions of these 

equations. 

According to Poincaré’s definition, each term of an asymptotic solution must contain a factor 

of the form e*", where X is real or complex. Obviously, the only exponents which enter into the 

integrations of (43) are those which arise from the solutions of the equations of variation. These 

exponents are +o and +o. Considering first the solutions of (43) which approach zero as t+ 

approaches + , we must impose the condition (C,), that each term of the solutions must contain 

the factor e~’" or e~", as these are the only exponentials which have their real parts negative. 

It is evident that at each step of the integration of (43’) two arbitrary constants will arise 

which are not determined by condition (C,). These are the constants associated with e~7* and 

e-**. In order that they may be uniquely determined we impose the conditions (C,), that 
p(0)=a, q(0)=0. Asa consequence of these conditions we have from (63) 

Po (0) =a, p; (0) = 90, (aly Pyisae 2) ) 5) ‘ 
et TIRE Ste AS 6S Bade senpocach Toco aCOCDRET (64) 

qi (0) =O (j= 051, ... co): | 

Now consider the various coefficients of y in the equations (43’). The differential equations 

obtained from the terms which are independent of y are the same as the equations of variation 

except for the subscript 0. The solutions which satisfy (C,) are therefore 

Po= Neu, + Neu, | 

Q=— Nev. — N,e-*"v,, | Hci adossne mosis aeaantconnen 

N= N, CF Wo ae No e710, 

where WV, and WV,” are constants of integration. On imposing conditions (C,), we have from (64) 

NO +N, =a, NA v,(0) + N.%22(0) = 9, 

from which it follows that 
av, (0) 

v,(0) — v, (0)’ 

Hence the solutions (65) may be written 

Y,0 = N,o =¥,.. 

Dy = A[C- 7 Uy)™ + CF Uy], 

Qo = A[C- 7 49 + C7 Vy, ], | Sodsbddaodh bodcEdeAaRsacepLoneecor (66) 

T= Ale Wy) + CW |, 

where 2%), v9, and w, 9° are similar in form to wm, v,. and w, respectively ; and 

Uo = yy, Vn) = V9, Wa" = Wyo. 
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The differential equations obtained by equating the coefficients of 7 in (43’) have the same 

left members as the equations of variation except for the subscript 1 on p,q, andr. The nght 

members, which we denote by P”, Q®, and R® respectively, have the forms 

P® = ea? lea U2. + e-(@ta)r Uy, Q) 4 g—20r Uy], 

Qo = eq? [e" Vin + e-(etar Vy” aE 6 ayes 

R® = ea? (Ga Way + e- etary) 4+ e-r Wo], 

where Us", Va", and W.,” are similar to w,, v4, and w, respectively ; and 

Un” = Un”, Vio” = Vi. WW." = W..”. 

The functions U,,", V,,", and W,,” are also similar to w,, v,, and w, respectively, except that the 

coefficients of the cosines and sines are real and not complex. 

The complementary functions of the differential equations defined in the preceding para- 

graph are the same as (61), but we shall denote the constants of tegration by 7”, ..., mg” 

instead of N,, ..., Vz, respectively. The particular integrals of these equations can be obtained 

by the method of the variation of parameters. According to this method we have 

MET Uy + NyVE~T Uy + gE U, + 4M EF hy + 5M Us + 1g (Uy + KU) = 0, 

7" (ow + th) — tio E77? (Ty — the) + Ng €% (Gil, + Uy) — 14 C~* (FUy — 7) 

+ 15 ty + 15 [ty + K (uy + Tus)] =P”, | 

My VETO, — Ny ME~PT Ug + Ng MEV, — gE Ve + Ne) Us + th (v, + Krv,) = 0, | 

ny Mer* (Gv, + 0,) + rE (aU, — be) + nyVE* (G0, + 0,) + 24-7 (G2 — v2) > eG) 

+ ns Mig + [d, + K (4, +78)]=Q, | 
Ry eT Wy — Hin" E~7* Wy + Thy" C7 W, — yO Wy + 15" We + ig (w+ Krw;) = 0, | 

Me™ (GW, + W;) + Ny" E—™ (TWy — Wy) + ity E* (GW, + Wy) + 1, (Gy — Wr) | 

+s) tis + de” [Wy+K (w, + Ts) | =R",} 

The determinant of the coefficients of 7", ...,7,\ in the above equations is A, the same as in 

(60), and is different from zero for € not zero but sufficiently small numerically, and for all « such 

that yo =~=4. Hence equations (67) can be solved for #,",..., 2,0, the solutions being 

(1) 

Ae 71.2... 6), nee ee (68) 

where 4; is the determinant formed by replacing the elements of the jth column of A by 0, 

P™,0,Q”, 0, and Rk", respectively. Since P”, Q, and R” do not contain terms in e*” or e*%, 

the integrations of (68) for 2,”,..., 72," will yield no terms in 7 explicitly. Terms in 7 will 

occur, however, in the integrations for 7," and n,”, but when the values for 7," and ng" are 

substituted in the complementary functions the terms in + which arise from the particular 

integrals cancel off. By substituting the values of n,"’, ..., 7," in the complementary function, 

we obtain the complete solutions. They are thus found to be 

pr = Neu, + NMe-7Fy + Nye, + Neti + Vu i 

+4 NOY (uy 4b Kris) + eu fe? 71124) +e (o+8) ry 0) 4 Omar | 

n= Nerv, — Nem? 0, + Ne", — Ne-270, + N,v, | 

fe NO (v, fe. Krv5) + ea? [es "0, ae eo (e+ ary) 4 ery], 

r= Netw, — NMe-ew, + New, — Ne, + Now, | 

+ NO (wy + Kw) + ea? [6-277 Wg + etry, 4 e—*Fw_!""], | 

mee) 
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where N,",..., V,® are the constants of integration: and u", vo, and w® with the various sub- 

scripts are power series of the same form, respectively, as U"), V™, and W" with the same sub- 

seripts. When condition (C,) is imposed on (69), then 

Ny = NS = N& = NY = (0, 

The remaining constants WV," and NW,” can be uniquely determined by the conditions (C,). 

As at the previous step, this determination of V,” and NV," will yield values which are conjugate 

complex. The desired solutions which satisfy both conditions (C,) and (C,) are therefore 

Pi =e lignan Ung) ate e-oT Up, + e-2er Ug) +e (o+a) Tr Uy, + er Uno” |, 

— ; — — Ld 

Gr = €02[€-FF 450 + E-* Vp) + EF Yq) 4 E— FAT yA) 4 G—M y AM) | oe. (70) 

i ea? [e-7* Wy.) + CF Wy, + OFF Woy) SL (a+a) Tw, =f CW", 

where %9”), %”, and w,.” are of the same form as u,, v,, and w, respectively ; and 

Ug") = Uo, Vy = Vy", Wo = Wy". 

The remaining steps of the integration can be carried on in precisely the same way. B y 
an induction to the general term we shall show that the integration can be carried on as far as 

is desired. 

Let us suppose that p,, g,, and 7,, (v=1,...,m—1), have all been determined, and that 

v+l k 
Ppr=ewt > > elk jetiele u? 

4 ;? 

k=1j=0 oud 
v+l k& : = () 

C= ews > > elkjeotslr Veg gs b ceeeceeccceceesecsccceecees (71) 
k=1 j=0 a 
v+1 La tk } (v) 

.~ — ovat S —[(k—j) o+je]r 5,” ieee > ae J Wr 7,55 
k=1 j=0 

() Ce ” . . , ; where Uy 55> Ue 5,5 and W;,_;,j ae power series of the same form respectively as w, 2, and w, 

if 7+4k. If k is even and) = 3h, then the functions in (71) are of the same form as w%, v,, and wy, 

respectively, except that the coefficients of the sines and cosines are all real instead of complex. 

Further. 
: (v) _ —(v) (v) =(¥) 

= )) — 

Tesla egtey? Phy hey Phghy? wo =o , ke +k=k. u Keykey eg key? 

We propose to show that p,, g,, and 7, have the same form as (71) when y= m. Consider 

the set of differential equations obtained by equating the coefficients of y™ in (43’), that is in 

(43) after (62) and (63) have been substituted and y has been divided out. Except for the 

subscript m, these differential equations have the same left members as the equations of varia- 

tion. Let the right members be denoted by P™, Q™, and R™ respectively. Then 

m+1 k 
Pm = mgm SY Y elk-jotyalr u™ 

es k-j,j’ 
k=2 j=0 

m+1 k 
Qe = eMqgmti Ss > e—lk—j) o+jalr [ise e 

k=2 J=0 74 
mt+1l k 

Rm = Mgrs > ea Lk—j) o+jelr wm 
== k-j,j’ 

k=2 j=0 

m) (m) ; (m) aes (v) (v) . (v) 2 . where Ue: mes and W,_;, ; are similar to Uz, 7,5» Ye_z,j7 2nd w,_,; ; respectively. 
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The complementary functions of the differential equations in pm, Ym, and r,, are the same 

as (61). If we denote the arbitrary constants by 7,"),...,7, and employ the method of the 

variation of parameters as in the preceding steps, we obtain equations the same as (67) except 

for the superscript m. Since the right members P™, Q™, and R™ do not contain terms in 

e* or e**", the integrations of the equations analogous to (68) for m", ..., m4" will not contain 

terms in tT explicitly. Proceeding as in the determination of p,, g,, and 7,, we find 

m= Ny™ eu, + N™ C77 Uy + N; (m) eu, Bie N, (m) Cais 2b Ns™ Us 

m+1l k 

+N (uy + Krus) + emamt SS S elk) Sra ae 
k=2 j=0 

Gm = N,'™ ev, — Ny eo v, + N™ 670, — Ny e770, +N 5™ vg 
m+1 k 

+N, (v, + Krv,) + eam? SS e Wedatiziry™. 
-=2 7=0 K-97? 

Tn = Ny! ew, — No ee we + Ng™ e710, — VN, e-* W, + N,™ wy 

m+l k 

+N, (ws te Krws) + eMgm™ S SY e-lk-jetselry om» 5: 

! oe) k=2 F=0 

where V,™,..., V, are the constants of integration, and the functions lise 3 Oey. a and we. ; 

are similar to the corresponding functions in (71) with the superscripts v. When conditions 

(C,) and (C,) are imposed on the above solutions, it is found that 

N,™ <= N,'™ = N,™ = N,™ = 0, 

and that V,™ and N,’™ are conjugate complex numbers which carry the factor ea". With 

this determination of the constants of integration, the solutions for pp», gm, and 7, have the 

same form as (71) if y= m. This completes the induction to the general term. 

Returning to the variables p, g, and 7 by means of (63) and (62), we find that the asymptotic 

solutions of (43) which approach zero as tT approaches + 2 are 

P=Pyt Pry +--+ Pay" + ‘wall 
P= Goo dy 90 On ft + 5s aghesectgarenseess acces nena (72) 

r=anytnyt ... byt + oss = 

where the various p,, g,, and r, (v=0, 1, ... ©) are defined in (71). If we change the super- 

scripts in (71), so as to correspond with the powers of y in (72), these solutions may be written 

wo vt+l 

p= SS S e- Le Aedes yt) e” (ay), 

¥ e Lk o+ie (v+1) \ D Qe) 2 Sh Sete ae): y? Pd (h) ale Me CEEEEEEEEEESOEEEEE (73) 

r= S en lkjo+ja) + wy See Pag (ay). 

v=0 k=1j=0 4 

Since a and y occur only in products, as indicated in (73), and both are arbitrary, we may put 

either equal to 1 without loss of generality. We shall therefore consider a to be 1 in (73). 
(v+1) — (v+1) 
k-j5? kj? * 

complex except when / is even and j= 4k. Since we desire a real asymptotic orbit, it is necessary 

to show that the solutions (73) are real. 

(td ) 
The coefficients of the sines and cosines in the various functions u and wy, j,j ore 
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With each term 

Cm en et, Been ee ohn deacce. doncheocac acs pencecnrcree (74) 

of (73), there may be associated the term 

e-(kotk ar was 6 ED PURE Beno so et ctale eiarsiniate oe calaisiatasacse (75) 

unless k,=k,. Suppose first k,+k,. Then the coefficients of the sines and cosines of the various 

powers of ¢€ in ip are the conjugates of the corresponding coefficients in Nee When the two 

expressions (74) and (75) are added, we obtain terms of the type 

e~%2+k:2" TA cos jr + Bsin jr] + e—%7+%9" [A cosjr+ Bsinjr]. ......0.0--- (76) 

Since c=a+ 78, 

e- sotk. ar — eh ther [eos (k, — k,) Br —7 sin (k, — ky) Br], 

eather — e—lk thar [eos (k, — k,) Br +7 sin (k, — ky) Br]. 

Now’ let A =a,+7b,, B=a,+%b,. Then by virtue of the relations (77), the expression (76) 

becomes 

e~ tk)er Ta, — b,) cos {(ky — ke) B +j} T + (ay + bp) cos {(k, — ky) B +9} 7 

+ (a, +b,) sin {(k, — ky) B +} T + (b, — ae) sin {(h, — hy) B+} 7], 

which is real since all the constants are real. 

If k,=k,=k, then the coefficients in ae are all real. In this case (74) consists of terms 

of the type 
e*ker (a, cos jt + b, sin jt], 

which are real. Therefore the solutions (73) are real. 

In order to express the solutions (73) in a form in which the imaginaries will not appear, 

we may put for p,, g,, and 7, of (71) 

vt1 (v1) | 

GSE DAE Det TSE De conn 002990672 sossda sasuke sone" (78) 
ea | 
v+1 é \ 

a CM Ou > ever pet, | 
jZa BL } 

where if J is even, / = 2k say, we have, for j,= 1, 2, 3, 

= = & [Oe Tu? cos 2 (j +B) 7 + C2")? cos 2(j — a8) 
J 3 

+See sin 2(j + kB) T+ Ser*h? sin 2 (j—k,8) 7] 

Tf 1 is odd, 1=2k+1, the values of 1, Cpt, 3), are ete from the preceding by 

replacing 2k, with 2k,+1. The coefficients of the cosines and sines in the above equations are 

all real, 

Returning to the original coordinates £, », € through the substitutions (42), (3), and (2), 

we obtain a, 

£=|4—pten(+v3, 7) +ep(tv3, 2 
n=+ +4V3 + ey, (+3, T) + eq (+ V3, 7), 

c= eZ (+ V3, +) +er(+ V3, 7) 
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as the parametric representation of the orbit which approaches the periodic orbit about the 

point I as t approaches + 2. The corresponding orbit near the equilibrium point IT is obtained 

by changing the sign of V3 wherever it occurs in (79, I). This orbit is 

&= 4-pt+en,(— V3, 7) + ep(— V3, 7), 

9 =—4V3 4 ey (— V8, 7) + eq (— VB, 7), [ csseceeeeeeseece sees (79, II) 

c— ez (— V3, tT) ter (— V3, 7). 

(B) Solutions in ew. 

Let us next consider the orbits which approach the equilibrium points as 7 approaches — 2 . 

The construction of such orbits would be similar to the preceding construction. The condition 

(C,) would be altered so that each term of the solutions of (43) would contain the factor e”* or e”, 

as these exponentials have their real parts positive. The asymptotic solutions corresponding 

to (78) would then contain powers of e*7 instead of e~°". 

It is not necessary to consider the construction of these orbits in detail, however, as they 

may be obtained from the preceding by changing the signs of V3, 7, g, and r in (73). As was 

shown in §8, the differential equations (43) remain unchanged by changing the signs of V Soa 

q, and r, and consequently the same changes in the solutions will still leave them solutions. 

If we denote (73) by p(+ V3, 7), q(+ V3, 7), and r(+ V3, 7), then p(— V3, —T), — q(- V3, — T), 

and —r(—¥3, —7) will also be solutions of (43). The asymptotic orbit which approaches the 

point I as + approaches — is therefore 

E= $-p+ex,(+V3,7)+ep(- V3, | 

n=+4V3 + ey (+ V3, 7) — eq (— V3, —7), SpodnohtosotbancoaS L 

— BCS = or (2a 

The corresponding orbit for the point II is obtained from the above by changing the sign of V3. 

This orbit is = if : 
F= b-—ptexn(—Vv3, 7) + ep(+ V3, —7), 

=—3V83 + ey (— V3, T)— eg (+V8,—T)y fp cererececsesecceenens (80, IT) 

c= ez, (— V3, tT) — er (+ V3, a 

10, THe UNDETERMINED CONSTANTS. 

The asymptotic solutions (79,1), (79,11), (80,1), and (80,II) contain three arbitrary 

parameters, viz. t), ¢, and vy. The constant ¢, represents the initial time and may be put equal 

to zero without loss of generality. The parameter e enters in the construction of the periodic 

orbits and is the scale factor for these orbits. From the way in which the initial values for 

the periodic solutions were chosen, the parameter € is found to be proportional to the initial 

projection of the infinitesimal body from the plane of motion of the finite bodies, the initial 

projection being e/(1+6). The parameter y is the scale factor for the asymptotic orbits. From 

the choice of the initial conditions (C,) it follows that y represents the initial displacement of the 

infinitesimal body from the periodic orbit on a line parallel to the &-axis and in the &-plane. 

Since this constant enters the asymptotic solutions both to even and odd degrees, then the orbit 

obtained by taking a positive value of y is not only differently orientated but is geometrically 

distinct from the orbit obtained by taking the same numerical value of y but the opposite sign. 
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eee bed Al bcd 
From an examination of the derivative ti 

da 

which the asymptotic orbits approach the periodic orbits are indeterminate, 

it is found, as in Part I, that the directions in 

10a. NumericaL EXAMPLE. 

To illustrate the nature of the periodic orbits and the corresponding asymptotic orbits, we 

have assigned to w the value 0°l, as in Part I, and to e the value 0°5. With these values of pw 

and ¢ the periodic solutions (39), up to and including the terms in eé’, are 

& = ex, = 0:0238 cos 27 + 0:°0514 sin 27, 

= ey, = — 0:0723 + 0:0550 cos 27 — 0:0238 sin 27, } ..........02eceeeeees (81) 

Z = ez, = 0°4985 sin r + 0:0005 sin 3r. 

Numerical values of these coordinates for various values of 7 are to be found in Table ITI. 

Sell 

TaBeE III. 

w=01 e=0°5 

T a) Yo bed 

0) + 0238 — 0173 0 

1 + 0335 — 0231 | + -0499 

2 + 0419 — 0310 + 0993 

3 + 0486 — 0403 + 1472 

4 + 0535 — ‘0511 +1941 

5 + 0561 — 0626 + °2390 

1 + 0368 — 1168 + 4197 

15 — 0164 — ‘1301 + 4980 

2 — 0545 — 0903 + 4536 

2°5 — 0425 — 0339 + °2984 

+ ‘0085 — 0129 + 0704 

3°5 + 0517 — ‘0464 — 1751 

+ 0473 — ‘1038 — 3177 

4:5 — 0005 — 1322 — ‘4875 

— 0480 — 1055 — 4785 

55 + 0235 — ‘0172 — 3523 

6 — 0075 — ‘0131 — 1392 

6°5 + 0432 — ‘0234 + 1073 

7 + 0542 — ‘0884 + 3278 

75 + 0153 — 1296 + 4681 

8 — 0376 — ‘1181 eect 4935 

5 — 0559 — 0645 + 3987 

| — 0229 — ‘0181 + °2056 

| 9-5 +0312 — 0215 — 0374 | 

10 | +-0566 | —-o716 | --271 
! 
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The projections on the coordinate planes of the periodic orbit (81) near the equilibrium 

point I are given in the heavy lines of Figs. 3, 4, and 5*. The orbit consists of two loops, one 

above and the other below the zy-plane, with the double point in the fourth quadrant of the 

Fia. 4. Fia. 5. 

Projections on the coordinate planes of the Periodic and Asymptotic Orbits near the Equilibrium Point I. 

xy-plane. The projection on this plane is approximately a circle with centre at (0, — 0:0723) and 

radius 0°06 (see Fig. 3). 

To obtain an orbit that is asymptotic to the above periodic orbit, we consider particular * 

values of p, g, and r which are added to a, y, and 2, respectively, in (42). After « and e are 

* See also Figs. 5, 6 and 7 of ‘‘ Oscillating Satellite.” 
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fixed, the only undetermined constant in p, g, and r is the scale factor y which was introduced in 

equations (62). If y is put equal to 0:1, and only the first terms of (72) are taken, then the 

solutions for ep, eg, and er in (79, I) are 

ep =e" (0°05 cos Br + 0:0036 sin 87), 

eq =e~* (— 00525 sin Br), 

er = e~*7 {sin 7 (00385 cos 8t — 0:0080 sin Br) + cos 7 (0°0205 cos Bt — 0°0865 sin Br)}. 

These solutions represent the x-, y- and z-components, respectively, of the amount which the 

asymptotic orbit deviates from the periodic orbit. Numerical values of these displacements are 

given in Table IV. 

TABLE IV. 

w=01 e=05 y=01 

eer | ep eq er 

0 + ‘0500 0 + 0205 

Sill + ‘0507 — 0040 +:°0166 

2 + 0512 — ‘0075 + 0126 

3 + 0511 — ‘0110 + ‘0088 

“4 + 0502 — 0140 + 0053 

5 + 0499 — 0170 + 0022 

1 + 0419 — -0255 — 0063 

1:5 + 0296 — 0280 + 0008 

2 4+- 0165 — ‘0250 + 0140 

2°5 + 0048 — 0185 + 0204 

3 — ‘0041 — 0115 + 0222 

3°5 — 0095 — ‘0050 + 0159 

4 —-O117 + 0005 + *0087 

4:5 — 0115 + 0045 + 0049 

5 — 0090 + 0060 + 0053 

5:5 — 0065 + 0065 + 0073 

6 — ‘0030 + ‘0055 + ‘0087 

6-5 — 0005 + 0035 + 0079 

7 + 0010 + 0025 + 0055 

75 + 0025 + ‘0010 + 0032 

8 + 0025 — ‘0005 + 0018 

8°5 + 0025 — 0010 + 0016 

| 9 +0021 | —-0015 + 0020 

eens )9) + 0015 =—OOS. ea LOO22, 

10 +0006 | —-0001 | +-0019 
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The dotted lines in Figs. 3, 4, and 5 represent the projections on the coordinate planes of 

the asymptotic orbit. In Figs. 3 and 4 the asymptotic orbits are drawn as 7 varies from 0 to 2zr, 

approximately, that is for one period of the closed orbits. In Fig. 5 the deviation of the 

asymptotic orbit from the closed orbit is very small as 7 varies from 7 to 27, and is not re- 

presented in the drawing. At each succeeding period the asymptotic orbit lies between the 

corresponding branches of the periodic and asymptotic orbits for the same phase of the preceding 

period. 

In conclusion the author desires to express his thanks to his colleague K. P. Johnston, 

B.A., B.Sc., for making the drawings which appear in this paper. 



XVI. Terrestrial Magnetic Variations and their connection with Solar Emissions 

which are Absorbed in the Earth's Outer Atmosphere. 

By S. Cuapman, M.A., D.Sc., F.R.S., Trinity College. 

[Read 17 February 1919.] 

INTRODUCTION. 

§1. The aim of this paper is to abstract and interpret various features of the non-secular 

changes of the earth’s magnetism which seem to be of special significance in connection with 

atmospheric and solar physics. 

The non-secular magnetic variations are everywhere small compared with the total intensity 

of the earth’s field. Magnetographs installed at a number of widely distributed observatories 

provide a continuous record of the magnetic changes, resolved in three directions. At any one 

station the traces show that there exists a well-marked diurnal variation of the force vector, but 

that the course of this variation is ordinarily complicated by superposed irregular perturbations. 

At times the latter are unusually intense or frequent, at others they are almost absent. It is 

customary to classify each day according to the amount of this disturbance (as it is called) either 

by the terms quiet, ordinary, and disturbed, or by corresponding ‘character’ figures 0, 1, 2. No 

precise canons of classification have so far been arrived at, and a merely three-fold subdivision 

must obviously be very rough. Also, since the ordinary or average amount of disturbance varies 

with locality and season, a character figure 0 (say) will correspond to different absolute amounts 

of perturbation at different stations. But it is found that on the whole a quiet day* at one 

station is quiet also at most others, 7.e. that magnetic conditions all over the earth are generally 

similar as regards the degree of disturbance existent, relative to the normal amount characteristic 

of each region. By international agreement a mean character figure is derived for every 

Greenwich day, from the figures independently assigned at each of a large number of cooperating 

observatories. The five days in each month which have the smallest mean character figures are 

termed the ‘international quiet days,’ and it is customary for observatories to publish monthly 

mean hourly inequalities of the three elements of magnetic force from all (or all but highly 

disturbed) days of each month, and in addition from the five quiet days only*. 

These hourly inequalities indicate the amplitude and type of the diurnal magnetic variations. 

The influence of disturbance on the latter can be to some extent inferred by a comparison of the 

inequalities derived from all and from quiet days. The quiet days themselves, however, cannot 

be regarded as wholly free from the effects of some small present disturbance, or from the after- 

effects of past disturbance. But when the nature of disturbance effects has become clear, 

allowance can be made for the residual amount on the five ‘quiet’ days, and a conception formed 

* Reckoned from one Greenwich midnight to the next. the Greenwich magnetic records, and the monthly mean 

+ Before the international arrangement cameintobeing, diurnal variations from these days have been published at 

the Astronomer Royal chose five quiet days monthly from Greenwich since 1889, 
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of the phenomena which would characterize ideally quiet conditions. These phenomena will be 

termed the regular diurnal variations, and the magnetic variations deduced by abstracting these 

regular variations from the changes actually observed will be termed the disturbance variations. 

The latter are not wholly irregular, and in particular they include certain additional diurnal 

variations, superposed during disturbed periods upon those characteristic of the ideally quiet 

state, which will be called disturbance diurnal variations. These are true diurnal variations, and 

are to be distinguished from such quite different things as, e.g. the diurnal variation of frequency 

of disturbance. 

For a first approximation, the regular diurnal variations can generally be identified with 

those derived from the five quietest days per month. As regards disturbance, its effects are most 

clearly marked during the violent outbreaks to which Humboldt gave the name magnetic storm. 

The discussion first deals with disturbance in this form, proceeding thence to consider more 

ordinary disturbance, and afterwards describing the phenomena of quiet days; the relation of 

these three classes of variation to locality upon the earth and to the geocentric coordinates of the 

sun is described in §§2-8, and afterwards, in §§ 9-13, their relation to the physical condition of 

the sun. A partial interpretation of the phenomena is attempted in §§ 14-23. 

MAGNETIC DISTURBANCE. 

§2. In a recent paper* I have discussed the changes which occur during magnetic storms. 

Besides irregular fluctuations, most numerous and intense in high latitudes, there are more or 

less regular variations, which appear clearly on averaging the changes observed during a number 

of storms. These regular effects depend on terrestrial latitude and on local time, ve. upon 

longitude reckoned from the meridian containing the sun. They can be analyzed into changes 

depending on latitude only (ze. the mean change along any circle of latitude) and the residual 

changes which also depend on local time. The latter appear as additions to the regular diurnal 

variations; they are, in the present terminology, the disturbance diurnal variations. The other 

regular changes, common to all longitudes, are of a simple definite type, corresponding mainly to a 

slight demagnetization of the horizontal magnetic field, during the first few hours of the storm, 

with subsequent slow recovery; they therefore depend on ‘storm time,’ reckoned from the 

commencement of the storm, which is nearly simultaneous all over the earth. The disturbance 

diurnal variations wax and wane in amplitude in unison with the storm-time variations; they 

merely represent, indeed, an inequality in the intensity of the latter in different regions, the P.M. 

hemisphere being more affected than the A.M. hemisphere+. This inequality is of simple type, 

there being one maximum and one minimum in the regular storm effects along any circle of 

latitude; these occur approximately at 18> and 6" local time, respectively. The disturbance 

diurnal variations are consequently almost purely diurnal sine waves, and their phases in the 

three magnetic elements are definitely and simply related to one another. The electric current 

system responsible for these variations (cf. § 16) is illustrated in Fig. 7 of the paper cited; the 

* Proc, Roy. Soc., A, 95, p. 61, 1918. similarly referred to as the a.m. hemisphere, while the 

+ Viewed from the sun, over the right-hand hemisphere sunlit and dark halves of the globe are called the day and 

of the earth the local time is afternoon, or p.m., and this night hemispheres. 

is therefore termed the p.m. hemisphere; the left-hand is 
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general electric current system introduced by the storm, and responsible for the regular storm 

variations as a whole, is shown in Fig. 1. The currents are more intense and crowded together 

over the P.M. than over the A.M. hemisphere. 

The irregular perturbations which are the most striking features of storms usually cease 

before the horizontal magnetic field has recovered its normal value, and before the disturbance 

North [Pole 

A.M. P.M. 

Earth’s Rotating 
orbital <——— << solar 
motion radius 

Earth's | Rotation 

Fig. 1. The general distribution of additional electric currents in the earth’s atmosphere during a magnetic storm, 

as viewed from the sun. 

diurnal variations have quite died away. Hence some tendency to an increase in the horizontal 

magnetic force, and some small residual disturbance diurnal variation, will appear on quiet days 

shortly succeeding a storm, although no disturbing causes may be acting at the time. 

§3. Great magnetic disturbance, such as was dealt with in my paper on magnetic storms, 

does not occur by any means so often as, on the average, once a month. But disturbance 

effects of the kind there described characterize also the less disturbed states common on 

ordinary days, and in the polar regions are practically always existent. This implies that the 

principal storm effects may be traced in the difference between magnetic phenomena on ordinary 

and on the international quiet days. The mean horizontal force on the former is slightly less 

than on the latter, and the differences between the diurnal magnetic variations on ordinary (or 

all) days and on quiet days are similar in type to the disturbance diurnal variations during storms, 

though, of course, much less in amplitude*. 

It has been mentioned that irregular perturbations during storms are most intense in polar 

regions, and that disturbance is scarcely ever absent in these localities. The disturbance diurnal 

variations are also specially marked there, as is shown by Fig. 2. This is derived from Dr Chree’s 

discussion of the Antarctic magnetic results obtained by the British Expedition of 1911-12+, and 

* I hope to trace this similarity in some detail in a _ interest. 

future paper, at the same time considering the seasonal + C. Chree, ‘‘Seventh Kelvin Lecture,” Journ. Inst. 

changes in the disturbance diurnal variations. In latitudes Elec. Eng., 54, pp. 405-425, 1915. 

50° to 70° these seasonal changes are of considerable 

44—2 
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illustrates the difference between the all-day and quiet-day diurnal variations at Kew and in the 

Antarctic. The vector diagrams represent the changes of force in the horizontal plane, corrected 

for the non-periodic change*. The annual mean curves for all and quiet days are given separately. 

The Kew quiet-day curve is derived from the five international quiet days per month. The larger 

All (or 21 

ordinary) days —— 
Quiet days o---0 

Fig. 2. Vector diagrams for the Kew and Antarctic annual mean diurnal variations of horizontal magnetic force for 

all (or ordinary) days and quiet days (at Kew 5, in the Antarctic 10, and 5 per month). 

of the Antarctic quiet-day curves is obtained from ten days per month chosen by Dr Chree; later, 

for the winter season, he considered the five international days, and it appeared that the 

corresponding diurnal variation was practically a half-scale replica of the all-day variationt; L 

* The horizontal magnetic force, being a vector, may ‘This is described by P at a varying rate, roughly shown by 

be represented by a line OP drawn with definite length and marking the points arrived at at different hours. The 

direction from afixed point O. As the horizontal intensity variations are small compared with the whole magnetic 

and declination vary, the changes are indicated by the force, so that the origin O cannot be shown on the 

motion of P. When the changes which are not periodic in diagrams. 

the course of a day are abstracted, the diurnal variation is + C. Chree, lc., Figs. 5, 6, 7. 

represented by a closed curve, known as the vector diagram. 
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have therefore drawn such a half-scale curve to represent the annual mean Antarctic curve which 
is to be compared with the quiet-day Kew curve. 

The effect of disturbance on the diurnal variation is clearly far greater in the Antaretic than 

at Kew. Moreover, the similarity of type between the all and quiet-day curves in the former 

case indicates that what produces the difference between them, ze. the disturbance diurnal variation, 

is probably the cause of the major part of the diurnal variation even on the five quietest days of a 

month. We may infer that the regular diurnal variation, free from the effect of disturbance, is very 

small in the Antarctic, and, in particular, a good deal less than that in the latitude of Kew or 

Greenwich. 

§4. The chief general features of magnetic disturbance at any station depend upon the 

position of the station with respect to the earth’s axes and to the sun. Both geographical and 

magnetic axes seem to have a share in determining the course of the phenomena, but in tropical 

and temperate latitudes the distinction between them is unimportant. Disturbance effects 

depend, both as regards incidence or frequency, and as regards intensity, on latitude, season, and 

local time. Widespread disturbance affects regions in high latitudes and over the P.M. hemisphere 

most strongly and with most irregular variability. As regards smaller and more local disturbance, 

similar preferences are found to exist, though varying somewhat with the special type of the 

disturbance. One type is the ‘bay, in which a simple perturbation takes place from and back to 

the normal intensity and direction of the field. These occur at all hours of the day and night, 

but more particularly between noon and midnight, ie. over the P.M. hemisphere. Fig. 3 shows 

Fig. 3. Diurnal variation of frequency of occurrence of magnetic bays at Zikawei, relative to the mean number 

per hour (represented by the broken line). 

the mean diurnal variation of frequency of such bays at Zikawei (1877-1908). Father de Moidrey 

has considered also other special types, such as pulsations and sudden twitches, from the same 

standpoint. These likewise occur more often after than before noon, but the epoch of maximum 
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frequency occurs nearer midnight than at 18", the night hemisphere being more favoured than 

either the day or the p.m. hemisphere*. Similar results are found at other stations in tropical 

and mean latitudes. 

Disturbances of all kinds, both small and great, vary in frequency according to the time of 

year. W. Ellis found from the Greenwich records that they occur more often about the time of 

equinox than at the solstices, and the records of other observatories confirm this. Father Cortiet+ 

has suggested that this is due not to the position of the sun with respect to the earth’s equator, 

but to the variation in the heliographic latitude of the earth; the earth is in the semi-equatorial 

plane at times near the equinoxes. This hypothesis seems not improbable in the light of the 

general conclusions of this discussion. 

THE REGULAR DAILY MAGNETIC VARIATIONS. 

§5. The regular diurnal variations corresponding to ideally quiet magnetic conditions show 

a dependence on local time, latitude and season which is strikingly different from that displayed 

by magnetic disturbance. The characteristic relations with these three factors in the case of the 

intensity of the quiet-day changes may be summed up in one simple generalization ; their intensity 

at any station at any time depends mainly on the zenith distance of the sun. It is greatest at stations 

then situated immediately ‘beneath’ the sun, it diminishes towards the twilight circle, and is 

small over the night hemisphere. 

The type of the variations depends less simply on latitude and local time. There are, indeed, 

two sets of regular diurnal variations, which in many respects are very similar; one, the solar 

diurnal variation, is related to the sun’s hour angle, and the other, the lunar diurnal variation, 

is related to the hour angle of the moon (in each case reckoned in 24 hours from one lower 

transit to the next). The two variations can easily be separated from one another. The mean 

(solar) hourly inequality is first derived, using all days in a lunation. Each lunar hour will have 

occurred with practically equal frequency at every solar hour, and the solar diurnal variation is 

thus free from lunar effects. When this is subtracted from the hourly values of the magnetic 

element, the residuals display the lunar influence by itself, or mixed up with disturbance variations 

haying no connection with the moon. By rearranging the hourly values according to lunar time, 

the lunar diurnal magnetic variation is obtained. 

§6. In the mean of a lunation the latter variation is found to be purely semidiurnal in each 

element, but this is by no means the case at any particular phase of the lunation, as is clearly shown 

by the corresponding vector diagram. The semidiurnal character of the monthly mean lunar diurnal 

variations causes the vector diagram to be an ellipse, described twice daily by the moving point P. 

But at each phase of the lunation the motion of P is accelerated from about the time of sunrise : it 

remains greater than in the monthly mean curve, throughout the hours of sunlight, and diminishes 

at about sunset to less than the average motion, its course during the hours of darkness being 

quite short. The lunar hour at which sunrise occurs varies throughout the lunation, retrograding 

through 24 hours from 6" at one new moon, through 0” at first quarter, 18" at full moon, and 

* J. de Moidrey, Terrestrial Magnetism, 22, p. 39, y A. L. Cortie, Monthly Notices R. A. S., 73, p. 58, 

1917; also the volume of Zikawei magnetic observations 1912; 76, p. 13, 1916. 

for 1911. ae © 
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12" at third quarter, to 6" at the succeeding new moon. Hence the magnification of the lunar 
changes at sunrise commences at all stages of the lunar day, and though the sun thus has an 
important influence on the intensity of the changes, their direction is chiefly governed by the 

Scale 

ie) 1 Q7 

15 

Seventh 
Eighth 

15 

Quarter {, Monthly 

Last 189 
Quarter 

SUMMER 

WINTER 

6 2 6,18 991 6 Ovne : 
New Moon SV Monthly a, Mean FirstEighth 

, 315 012 3 12 

Fig. 4. Vector diagrams for the lunar diurnal variation of horizontal magnetic force at Pavlovsk, in summer (above) 

and winter (below): for the mean of a number of whole lunations (in the centre), and also at various 

particular epochs in the lunation. 

moon. This is evident on comparing the direction of description of the vector diagrams in Fig. 4 

at sunrise (say) at any lunar phase with the direction in the monthly mean diagram at the same 
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lunar hour. Fig. 4 relates to the lunar diurnal variations of horizontal magnetic force at Pavlovsk 

(60° N.) for the two seasons of summer (May to August) and winter (November to February). 

The monthly mean diagram is in the centre, in each case; for summer eight diagrams are given 

for the separate phases of the moon*. These evidently comprise only two distinct curves, so that 

two only are drawn for the season of winter. The diagrams for the separate phases indicate, by 

the thickness of the lines, the parts corresponding to the two lunar half-days centred at solar 

midday and midnight. These roughly correspond with the periods of sunlight and darkness, 

which are, however, rather longer or shorter according to the season. At Pavlovsk the midday 

altitude of the sun is 56° at midsummer, and 7° in midwinter. There is but little difference 

between the ‘day’ and ‘night’ halves of the vector diagram at Pavlovsk in winter, either half 

being comparable with the night half in summer. The day portion in summer is, on the contrary, 

much enlarged. Fig. 4 consequently illustrates the influence of the sun’s zenith distance as 

depending both on local (solar) time and on season. 

§7. In the case of the solar diurnal variations the sun’s zenith distance displays a similar 

relation to the intensity of the variations, though the demonstration is slightly complicated by the 

fact that here the sun also plays the part, taken in the former instance by the moon, of governing 

the type or direction of variation. In Fig. 5 are shown the vector diagrams for the quiet-day 

Fig. 5. Quiet-day vector diagrams of the daily variation of magnetic force in the horizontal plane at 
Greenwich, 1889-1914. 

I. June, sunspot maximum years. Ill. December, sunspot maximum years. 

II. June, sunspot minimum years. IV. December, sunspot minimum years. 

* They are calculated from the Fourier coefficients the observations. The lunar variation is so minute that 

given in Table VIa of my paper in the Philosophical _ this is desirable for illustrative purposes. 

Transactions, A, 214, p. 316, 1914; the phase angles are The above variations relate to ‘quiet’ solar years, 

varied with the lunar phase as described on p. 301 of that 1897-1903, during which the horizontal force and declin- 

paper. The use of the Fourier coefficients in this way is ation at Pavlovsk were approximately 

equivalent to smoothing the curves actually computed from 165507 (ly =107%e.g.s.) and 0%6 E. 
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solar diurnal variations at Greenwich (51° N.) during the months of June (I, IT) and December 
(III, IV), the two sets of curves, I, III and II, IV, being derived from different groups of years. 
As before, the day and night portions are drawn with different thicknesses, and the influence of 

the sun’s zenith distance, as affected by local time and season, is seen to be similar to that 

indicated by Fig. 4. The seasons at Greenwich are, of course, rather less extreme than those at 
Pavlovsk. 

§8. The sun’s zenith distance also depends on the latitude of a station, and curves might be 

given to illustrate the dependence of the regular diurnal variations on this factor. This is well 

shown by the horizontal intensity variations, but the variations of declination vanish and change 

sign at the equator, so that the vector diagrams do not show an areal enlargement in tropical 

latitudes. But away from the equator, where this vanishing of the declination variation ceases to 

influence the curves, the vector diagrams would serve to illustrate the point. It will suffice, how- 

ever, to refer to the remarks on Fig. 2 at the end of §3, to render it clear that the solar diurnal 

variations diminish greatly from temperate to high latitudes; the same is doubtless true also of 

the lunar variations, though there are no available polar data in their case. 

SOLAR FREQUENCIES AND TERRESTRIAL MAGNETIC CHANGES. 

§9. So far the discussion has dealt with the manner in which magnetic disturbance pheno- 

mena or quiet-day variations are distributed over the earth, in relation to the earth’s axes and the 

sun’s geocentric coordinates. Another kind of dependence demands consideration, however, in 

which attention is directed to the earth’s magnetic condition as a whole in connection with the 

succession in time of certain variable characteristics of the sun. These characteristics relate to 

the physical condition of the sun, which changes intrinsically, and also in its presentation to the 

earth, on account of the solar rotation. The existence of the solar influences already described 

would of itself suggest that any periodicities observable in the sun might appear also in the 

phenomena of the earth’s magnetism, as indeed is found to be the case. 

The two principal periods connected with the sun are that of the great solar cycle of activity 

indicated by sunspots, prominences, faculae, and so on, and the period of solar rotation. The former, 

which is an intrinsic period, is of somewhat variable duration, the average length being about 

11 years. The latter period, relative to the earth, is approximately 27°3 days; the true rotation 

period is 25:2 days, for the sunspot zones, the difference of 21 days being due to the earth’s 

orbital motion, which is in the same direction as that of radii vectores from the sun. 

The solar cycle of activity affects the sun’s surface as a whole, spots, faculae and prominences 

being indications of local disturbances which are symptomatic of the general condition of the sun. 

These local phenomena appear sporadically and irregularly, and last for a limited period of vari- 

able duration. But their average frequency and distribution in latitude vary in unison throughout 

the solar cycle. While this indicates that the visible agitation on the sun’s disc is a consequence 

of changes of the surface in general, it is true that particular regions often remain abnormally 

subject to local outbreaks, not necessarily continuous, throughout several rotation periods*. 

The rotation period is of importance to the earth’s magnetic condition only in so far as there 

* EK. W. Maunder, Monthly Notices R. A. S., 65, p. 555, 1905. 

VoL. XXII. No. XVI. 45 
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are inequalities in the physical state of the solar surface. Magnetic phenomena which depend on 

the sun’s visible surface as a whole should show no relation to this period. Again, magnetic varia- 

tions which are irregular in occurrence and intensity would naturally be associated with similar 

solar characteristics, so far as the former are found to be influenced by the sun. 

The general march of the sun’s activity as a whole throughout the solar cycle is well repre- 

sented by the annual mean values of the spotted area (A) of the sun’s visible hemisphere, as 

determined at Greenwich, or by Wolf’s annual sunspot numbers (8) which measure the annual mean 

frequency of sunspots. The areas or numbers for individual days or months show considerable 

variation about the mean values A or S. 

§10. The relation between the general solar activity and the regular diurnal magnetic varia- 

tions (§1) may be examined by comparing the range R of the annual mean inequality for any 

magnetic element and station with the sunspot number S. The correspondence between them 

is remarkably close, and can be represented with considerable accuracy by a linear relation 

R=a+bS (Wolf’s formula), where a and 6 are constants for a particular station and element. 

The variation in range is unaccompanied by any marked change of type, as is illustrated by 

Fig. 5; the curves I, III relate to ten years of considerable, and II, IV to ten years of small, 

solar activity *. The two June and the two December curves are mutually similar, though their 

sizes are considerably different. These curves, being derived from quiet days (§7), represent very 

approximately the regular diurnal variations. Except in polar regions, moreover, the difference in 

range between the quiet and all day diurnal magnetic variations is not large (Fig. 2), so that the 

latter also agree with Wolf’s formula, at tropical and temperate stations. The existing data for the 

lunar diurnal variations do not suffice to show whether these can likewise be represented by the 

formula R=a+bS. 

§11. As regards the irregular magnetic changes, i.e. disturbances, Sabine found that the 

average frequency of magnetic storms shows a marked correspondence with Wolf’s sunspot 

numbers S. But the relationship is less exact than in the case of Wolf’s formula for the regular 

diurnal magnetic variations (§ 10). Years of few sunspots are (on the whole) conspicuously quiet 

magnetically, but years of like sunspot development have shown notably different degrees of 

magnetic disturbance. Dr Chree has instanced 1893 as a year which signally failed to show an 

amount of disturbance corresponding to the spottedness of the sun at the time. 

§12. The question now arises, How far do the above sunspot relationships indicate a connec- 

tion with the general, and how far with the local, conditions of the sun’s surface ? The answer 

must depend on the extent to which the local sporadic solar disturbances appear to affect the 

various terrestrial magnetic phenomena. 

The foregoing review suggests that magnetically ‘quiet’ or ‘undisturbed’ conditions correspond 

to the absence, or smallness, of some positive factor associated with ‘disturbance.’ At times of 

magnetic disturbance there are additions to the regular diurnal variations, these additions being 

of simple definite type and of amplitude depending on the degree of disturbance or—since they 

* The ten year groups were 1891-5, 1905-9 and 1889,  sun’s visible hemisphere. The curves in Fig. 5 are derived 

1890, 1899-1902, 1911-14, the corresponding mean Green- from the quiet-day inequalities published in the Greenwich 

wich values of spotted area (corrected for foreshortening) volumes, allowance being made for the non-periodic change. 

being 994 and 71, expressed in millionths of the area of the + C. Chree, “Kelvin Lecture,” p. 415. 
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die away only gradually after disturbance has ceased *—on the time elapsed since this cessation. 

The regular diurnal variations, which are of quite another type in relation to local time and ter- 

restrial distribution, persist throughout with scarcely any change. In tropical and temperate 

latitudes the additional disturbance diurnal variations are small in comparison with the regular 

variations, except during magnetic storms. They are much less, indeed, in those latitudes, than 

the changes in the regular variations themselves from maximum to minimum epochs of solar 

activity (cf. the curves for Kew and Greenwich in Figs. 2, 5). It would seem that the regular 

diurnal variations vary gradually throughout the solar cycle, in unison with the general activity 

of the sun. The quiet-day variations at sunspot maximum or minimum retain amplitudes appro- 

priate to these epochs, independently of the contemporary presence or absence of visible solar 

disturbance. 

The secular march of magnetic disturbance shows no such regular pace. Magnetic storms—the 

most violent form of disturbance—sometimes break out’ at the very ‘trough’ of the solar cycle, 

though at such times, so far as I am aware, only when the sun also shows some sign of special 

local activity. This corresponds with the irregular occurrence of solar outbreaks, which sometimes 

appear for a brief period with local intensity at minimum epoch. The properties of extreme vari- 

ability and intermittency are common to solar and to terrestrial magnetic ‘disturbances,’ and 

this correspondence, together with the 27-3-day periodicity described in § 13, suggests that mag- 

netic disturbance is connected with local rather than with the general surface activity on the sun. 

Not every local solar disturbance, however, finds its counterpart in the magnetic variations 

on the earth, nor is it yet possible to refer given magnetic disturbances to particular solar out- 

breaks shown as spots. The features of solar activity which are associated with spots or other 

visible phenomena may not be those which are most closely connected with the production of 

magnetic disturbance. 

§13. There are few facts of greater significance, with respect to the relation between mag- 

netic changes and the sun, than the tendency shown by the earth’s magnetic activity to return 

to its condition at any particular time, after the lapse of one or more periods of synodic rotation 

of the sun, we. after intervals which are integral multiples of about 27°3 days. Great magnetic 

storms illustrate this tendency very clearly, for the number of pairs or series among them, in 

which the members are separated by such time intervals, is out of all proportion to that which 

would be expected on account merely of chance+. The time intervening between two storms 

can often not be determined to within a few hours, but the observed intervals often conform 

closely to the sun’s synodic rotation period. This period varies for different belts of latitude on 

the sun; the rotation period of 27°3 days, which roughly agrees with the recurrence period in 

magnetic disturbance, is that of the belt m which sunspots are of most frequent occurrence. 

Since sunspots have proper motions of their own upon the sun, the rotation period has to be de- 

termined as an average from many spots ; the range of variation shown by values from individual 

spots is of the same order as the range in the intervals between magnetic storms which are 

separated approximately by 27 days, or a multiple of it. The latter qualification is necessary be- 

cause, Just as there may be more than one disturbed region on the sun throughout a given period | 

* Like the subsiding ‘swell’ after a storm on theocean. 4538, 666, 1904; 76, p. 63; F. W. Dyson, Observatory, 28, 

7 E. W. Maunder, Monthly Notices R. A. S., 65, pp. 2, — p. 176. 

45—2 
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so there may be more than one series of storm recurrences simultaneously proceeding upon the 

earth. Also, just as intermittent outbreaks may occur in a particular solar area through several 

rotation periods, so magnetic storms sometimes show recurrences throughout a similar period, 

with gaps at one or more intervening ‘recurrence’ epochs. The recurrence phenomenon is correctly 

described as a tendency, affording some expectation of a recurrence of a storm or lesser disturbance, 

about 27°3 days after a given disturbance ; a storm at one epoch will, however, no more be inevit- 

ably followed by another after this interval than will a sunspot be inevitably observable on a 

second presentation of its region to the earth after a rotation period. 

The recurrence tendency is shown not only by great disturbances; Dr Chree, using daily 

character figures such as were mentioned in §1, has demonstrated very clearly that disturbed 

and quiet days in general (with character figures 2 and 0) manifest the same tendency. The 

mean character figures for days round about the 27th, 54th, and 82nd day after a day of character 

(disturbed or quiet) much diverging from the average show a marked but diminishing tendency 

towards a repetition of this character*. 

$14. The most convincing interpretation of the recurrence tendency shown by magnetic 

storms was given by Mr Maunder (/.c.), who independently discovered the phenomenon, which had 

been previously noted by Broun and others. He concluded that magnetic storms must be conse- 

quences of the presence in the earth’s neighbourhood of some agency arising from a restricted area 

of the sun’s surface, and travelling outwards in a limited stream in some particular direction. 

Such streams as are suitably directed will traverse the space in the earth’s neighbourhood, over- 

taking the earth in its orbit on the P.M. side, as indicated in Fig. 1. Should the emitting area 

remain active over a sufficient period, projecting the stream nearly in the same direction through- 

out (relative to the solar surface), it may again traverse the space round the earth, after an 

interval of one or more rotations. In this way there may arise a recurrence tendency with the 

observed period. 

Dr Chree’s results may be explained along similar lines, if magnetic disturbance in general 

is referred to the agency of more or less well-defined streams emitted from particular disturbed 

localities on the solar surface. The manifestation of the recurrence tendency by quiet days is not 

to be regarded as due to the calming influence of limited solar areas, but simply to the absence 

of disturbing causes. When, as the sun rotates, the streams which it emits are projected so as to 

impinge upon and traverse the earth, magnetic disturbance of greater or less intensity results: 

when such streams happen to be absent from the space round the earth, magnetically quiet con- 

ditions prevail. 

The recurrence tendency indicates that the solar regions which emit the streams often remain 

active and approximately stationary on the sun for one or more rotation periods. The constituents 

of the streams are projected with a speed sufficiently great to prevent any serious dissipation or 

sideways diffusion within a distance equal to the radius of the earth’s orbit. Owing to the con- 

tinual renewal of the streams from the emitting areas, the whole set of streams (if there are 

several existent at the same time) will appear to rotate with the sun, like the curved spokes of 

a wheel. There will be a certain lag of the streams, the curvature at any distance depending on 

the longitudinal and transverse speeds of the constituents; this angular lag, being probably 

* C. Chree, Phil. Trans., A, 212, p. 75, 1912; 213, p. 245, 1913; also the ‘‘ Kelvin Lecture,” l.c. 
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nearly the same for all streams in the plane of the ecliptic, will not affect the recurrence tendency. 

The sun’s angular velocity is such that the transverse velocity of a stream, relative to the earth, 

is approximately 4.10’ em. per sec., or about one-thousandth of the velocity of light. If the con- 

stituents of the stream take 24 hours to travel from sun to earth, the mean longitudinal velocity 

would be about four times that transverse velocity ; if only one hour, about 100 times 

The earth’s angular diameter as viewed from the sun is very small (17’"6), so that any given 

stream-line would cross its ‘solid’ diameter in 35 seconds; it is therefore not difficult to under- 

stand why suddenly-commencing magnetic storms seem to start almost simultaneously over the 

whole earth. Some idea of the breadth of the intense streams concerned may be gained from the 

duration of storms. A duration of one day (which is not uncommon) would correspond to a breadth, 

in the ecliptic plane, of about 35 million kilometres, or an angular breadth, viewed from the sun, 

of about 13°. The sudden commencement which characterizes all very intense storms suggests 

that intense solar streams are somewhat sharply defined, at least on the forward side. 

The general distribution of streams in the space round the sun is radial, though with a slight 

lag or curvature; the differences of intensity of the streams in different directions may be 

considerable. The radial distribution does not depend upon the streams being projected normally 

to the sun’s surface: at several diameters’ distance, the parallax due to oblique projection will 

be small. Owing to the varying situation of disturbed regions on the sun’s surface, and to the 

varying directions of projection, many streams must miss the earth and so fail to produce any 

changes in the earth’s magnetic field. The non-recurrence of particular stream-transits and storms 

may be due either to change in the direction of projection, to intermission of activity at the source, 

or perhaps to changes in the earth’s heliographic latitude. Ignorance of the direction of projection 

from particular solar areas at any time precludes the possibility, at present, of identifying the 

precise solar region which is the source of given magnetic disturbances. It seems not unlikely: 

however, that on the whole sunspots or disturbed areas would be most etfective when they are 

situated in or near the heliographic latitude of the earth. Father Cortie has urged that to this 

cause is due the observed seasonal inequality of disturbance frequency (§ 4). 

§15. The main points which have so far emerged from this review of magnetic phenomena 

may be recapitulated as follows: 

(a) Quiet magnetic conditions correspond to the absence from the earth’s neighbourhood of 

certain solar emissions which, arising from locally disturbed solar areas, and being projected into 

space along confined streams, produce magnetic disturbance when they come into proximity with 

the earth. Disturbance phenomena are due to additional magnetic fields intermittently super- 

posed upon the earth’s permanent field and upon the field responsible for the regular diurnal 

variations. 

(b) Disturbance effects are experienced with special intensity or frequency over particular 

regions of the earth, relative to the earth’s axes and the geocentric coordinates of the sun. Polar 

regions, and the p:M. hemisphere, are those most affected. : 

(c) The regular diurnal magnetic variations are of definite type, quite different from that 

of the disturbance diurnal variations; they depend as to type on locality and season. The inten- 

sity of the changes proceeding at any station at any hour, so far as concerns these regular diurnal 

variations, is controlled by a solar agency other than that referred to in (a). This agency varies 
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gradually in intensity throughout the solar cycle, and is connected with the general state of the 

sun rather than with localized outbreaks of activity. Its terrestrial magnetic effect is almost 

wholly confined to the day hemisphere of the earth, being greatest at any time over the regions 

immediately ‘beneath’ the sun. Its influence diminishes rapidly with increasing zenith distance, 

towards the twilight circle. 

§16. Using the method of harmonic analysis by which Gauss proved that the source of the 

earth’s main magnetic field is internal, Schuster has demonstrated the external origin of the regu- 

lar solar diurnal magnetic variations*. The same conclusion has been shown to apply to the lunar 

diurnal variationst. It is true also of magnetic disturbance phenomena: the regular storm effects 

are proved to be of external origin by the sign of the vertical force variations, which would be 

reversed if the contrary hypothesis were true. 

Attempts have been made in the past to explain the daily magnetic variations by changes 

in the magnetic permeability of the atmosphere, but without success. Electromagnetic action, 

arising from external electric currents, seems the only alternative. These currents might be 

supposed to flow either in the atmosphere or in the ‘empty’ space beyond. In the latter case 

the currents would presumably be supposed to consist of streams of electric particles from the 

sun, influencing the earth’s magnetism by their own magnetic field. The Junar diurnal magnetic 

variations could hardly be accounted for in this way, and for this and other reasons the 

regular (solar and lunar) diurnal changes may best be attributed to currents flowing within 

the atmosphere. The same holds good for the magnetic disturbance currents, as is suggested by 

their close connection with aurorae, which are undeniably atmospheric electrical phenomena. 

The earth’s aerial envelope is so relatively shallow that the electrical currents concerned in the 

production of the magnetic variations may be regarded as forming approximately spherical 

current sheets: that is, they flow in nearly horizontal atmospheric layers. 

The current density over these sheets can be calculated, with little uncertainty and without 

any extraneous hypothesis, from the observed magnetic changes. But the thickness of the layer, 

and its situation, are not known, so that the current density per unit area of cross-section cannot 

be determined. 

The currents flow in layers of definite electrical conductivity under the impulsion of 

certain electromotive forces. If the latter can be independently determined, with the aid of the 

known current density it becomes possible to calculate the electrical conductivity of the layer as 

a whole; that of unit thickness of the layer can be deduced only when the total depth has been 

ascertained, 

§ 17. The electromotive forces responsible for the regular diurnal magnetic variations can 

be independently calculated by the use of a hypothesis which seems firmly grounded. The 

solar and lunar diurnal variations of the barometer indicate the existence of two world-wide 

atmospheric circulations with periods of a solar and a lunar day. The motion is almost entirely 

horizontal, and nearly symmetrical with respect to the equator. Such a horizontal movement of 

* A. Schuster, Phil. Trans., A, 180, p. 467, 1889, and + van Bemmelen, Met. Zeitschrift, p. 218, 1912; p. 589, 

208, p. 163, 1907. The primary external field induces also 1913; also S, Chapman, Phil. Trans., A, 218, p. 1, 1919. 

a secondary internal field of varying magnetic force. 
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air will induce horizontal electromotive forces (which alone will be of importance for the flow of 

the electric currents described) in conjunction with the vertical component of the earth’s main 

magnetic field. As I have remarked elsewhere*, the magnetic variations indicate that the actual 

electric current systems have precisely those properties of symmetry or reversed symmetry, with 

respect to the equator, which would be possessed by the systems of electromotive forces pro- 

duced in the manner supposed. This confirmation of the hypothesis is strengthened by the 

agreement in period between the lunar diurnal atmospheric circulation and the monthly mean 

lunar diurnal variations, both of which are purely semidiurnal. The solar diurnal atmospheric 

circulation seems likewise to be mainly semidiurnal; the corresponding magnetic variations 

also have important components of other periods, but this is readily to be accounted for by the 

independent solar agency, which controls the intensity of the magnetic variations (§ 15 (c)). The 

same feature is shown by the lunar magnetic changes at any particular phase of the lunation 

(§ 6, Fig. 4), although there the lunar directing influence is clearly semidiurnal. By mathematical 

analysis it is possible to infer the functional dependence of this local control factor upon the 

sun’s zenith distance, using the lunar diurnal magnetic variations only; this relation being 

known, it is found that the observed type of solar diurnal magnetic variations can be explained, 

in a general way, as a consequence of the atmospheric circulation indicated by the barometric 

variations. 

The solar and lunar diurnal barometric variations depend mainly on the movements of the 

lower atmospheric strata, since these contain most of the total mass of air. But since the lunar 

diurnal circulation can hardly be other than the effect of tidal forces, which everywhere act pro- 

portionally to the mass attracted, the tidal motion may be expected to extend throughout the whole 

atmosphere, or, at any rate, to a great height; ultimately the increasing kinematic viscosity of the 

air will reduce its amplitude. The solar semidiurnal atmospheric circulation hkewise appears 

to be a very fundamental oscillation probably affecting all strata up to a high level, though 

perhaps with modifications of phase. If, therefore, the horizontal motion is nearly the same at all 

levels, the electromotive forces induced will be likewise similar, and are calculable from the known 

magnitudes of the barometric variations and the earth’s vertical magnetic force. By identifying 

these electromotive forces with those responsible for the electric currents deduced from the diurnal 

magnetic variations (the identification being justified on the ground of similarity of type) it is 

possible to determine the electrical conductivity of the current sheet (§ 16). 

§18. The magnitude of the conductivity, as first deduced in this manner by Schusterf, 

was remarkably high, and later estimates have increased it rather than otherwise}. By assuming 

an outside limit of 300 kilometres for the thickness of the layer, Schuster calculated a lower 

limit for the mean specific conductivity. This was much greater than the specific conductivity 

in the lower atmosphere ; the electromotive forces induced here cannot contribute appreciably to 

the diurnal magnetic variations. The current sheet must consequently be situated higher up, 

probably at a high level in the stratosphere, where the air is greatly rarefied. 

The distribution of conductivity being found clearly dependent on the sun’s zenith distance, 

the conclusion at once suggests itself that the sun exercises its control over the intensity of 

* Observatory, p. 52, Jan., 1918. + S. Chapman, Phil. Trans., A, 218, p. 1, 1919. 

+ A. Schuster, Phil. Trans., A, 208, p. 181, § 13, 1907. 
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the regular diurnal magnetic variations by determining the conductivity of the air in the higher 

layers. In other words, the ‘general’ controlling agency propagated from the sun, which affects 

mainly the day hemisphere of the earth (§ 15 (c)), acts by ionizing the air, probably in some fairly 

definite layer. 

§ 19. The nature of the solar ionizing agent was discussed by Schuster in the paper pre- 

viously referred to. He concluded that the only possible alternatives were ultra-violet light, and 

ions projected from the sun with sufficient speed to generate new ions in the atmosphere by 

impact. At the time there was no clear evidence as to whether ultra-violet waves were capable 

of ionizing dust-free air; it was remarked also that “it seems difficult to believe that, even if 

emitted by the hottest portions of the sun’s envelope, they are not absorbed again by the 

surrounding cooler layers.” Nevertheless the view was retained, as a possibility, “that the 

powerful ionization of the air, which we must consider to be an established fact, is a direct effect 

of solar radiation.” 
More recently Swann* has discussed the possibility of accounting for an atmospheric con- 

ductivity corresponding to Schuster’s estimate, by ultra-violet radiation of the amount which 

would fall upon the earth’s atmosphere if the sun radiates approximately like a ‘black body.’ 

He concluded that the amount was quite inadequate for the purpose. 

§ 20. The review of the two types of magnetic variations considered in §§ 1-15 led to the 

conclusion that the solar agent which is concerned in the production of magnetic disturbance is 

distinct from that which controls the intensity of the regular diurnal variations. The latter acts 

by ionizing the atmosphere: the question arises, What is the nature and action of the former 

solar agent? 

As regards its nature, it is immediately possible to assert, negatively, that it cannot be 

ultra-violet light, since this would affect the day hemisphere almost exclusively, whereas the 

disturbance agent favours the P.M. or night hemisphere. Neither can it consist of merely 

material particles without electric charge, for there is no reason why these should crowd towards 

the polar regions; in other ways, also, these are incompatible with, and unable to account for, 

several features of magnetic disturbance. Electric particles of some kind offer the only alter- 

native, and such may well be supposed to issue from the locally disturbed regions of the sun 

with which the disturbance agent has been associated in the course of the previous discussion. 

Strong electric fields, which might supply the necessary energy of projection, would appear to 

exist on the sun’s surface, for though no Stark etfect has been observed, Prof. Strutt has shown 

that solar prominence movements can hardly be accounted for except by strong electrostatic 

forces+. Moreover, electric corpuscles projected into the neighbourhood of the earth will suffer 

deflection in the earth’s magnetic field; a right and left-hand asymmetry of distribution is by 

no means unlikely, and the experiments of Birkeland and the calculations of Stérmer upon the 

paths of corpuscles projected towards a uniformly magnetized sphere show that the particles 

would tend to be deflected towards the magnetic poles}. The investigation of the paths is a 

* W. F. G. Swann, Terrestrial Magnetism, 21, p. 1, + An excellent bibliography of the researches of Birke- 

1916. land and Stérmer is given by Vegard in “ Nordlichtunter- 

+ Cf. Deslandres, Comptes Rendus, 155, p. 1579, 1912; — suchungen,” Kristiania, Vid. Sk. 1, Mat, Natur. Kl., 1916. 

also Strutt, Monthly Notices R. A. S., 77, p. 65, 1916. 
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matter of great analytical difficulty, but there seems to be good prospect of accounting for the 

favoured regions of magnetic disturbance along these lines. It certainly seems to be demon- 

strable that the particles might be so deflected as to bend round the earth and fall upon the 

hemisphere which is invisible from the sun, The undoubted connection between aurora and 

magnetic disturbance also affords strong support to the view that magnetic disturbance is 

originated by electric corpuscles from the sun. 

If the particles are projected by strong electrostatic fields in the emitting areas, the 

members of any one stream will be of like charge, as regards sign. Possibly the particles of 

different streams may be of opposite kinds, but at present I know of no magnetic evidence 

which suggests this. In the case of any one stream, however, the injection of numbers of like 

charges into the atmosphere may be expected to have two effects. One effect would be an increased 

ionization and electrical conductivity of the air, perhaps with considerable local inequalities. 

These inequalities would persist for some time, but the injected charge would tend to distribute 

itself uniformly over the atmosphere, under the influence of the electric forces arising from the 

inequalities of surface density of charge. This tendency would rapidly take effect, owing to the 

conductivity produced in the layer. At the same time the electrified air would tend to expand, 

owing to the mutual repulsion of the imprisoned charge; escape being possible only by upward 

motion, the layer would expand upwards, until the charge was gradually dissipated—part of 

the air being carried away with it. This vertical motion would induce horizontal electromotive 

forces in the charged, ionized layer, in conjunction with the horizontal component of the earth’s 

magnetic field. In a recent paper on magnetic storms I have shown that these electrical forces 

are such as would account for the magnetic variations associated with storms. The case in 

which the injection of corpuscles is local, rather than world-wide, has not been considered in 

detail as yet, but probably ‘bays’ (§ 4) are produced in this way. It seems likely that in all 

types of magnetic disturbance the solar electric corpuscles are the cause both of the electro- 

motive forces and the ionization involved in the production and maintenance of the atmospheric 

electric currents. 

§ 21. These conclusions regarding the ‘disturbance’ solar agent have a direct bearing on 

the ‘general’ solar agent which affects the regular diurnal magnetic variations over the sunlit 

hemisphere. If the former consists of electrical corpuscles, the latter cannot do so—no mere 

difference of mass or sign of charge would account for the complete difference of distribution of 

the two agents on reaching the earth. On the other hand, the apparently sole alternative among 

possible ionizing agents, viz. ultra-violet light, seems to accord with all the properties which the 

‘general’ solar agent has been shown to possess: for the latter affects the sunlit hemisphere 

almost exclusively, it arises from the sun’s surface as a whole, and its intensity varies only 

gradually, from time to time, in correspondence with the general activity of the sun. The identi- 

fication seems incontrovertible, despite the difficulty of understanding how such radiation escapes 

from the solar atmosphere; this difficulty, and the apparently great intensity which it must have 

to account for the high degree of atmospheric ionization produced by it, only add to the interest 

of the conclusion, for solar physics. The regular and large variation of intensity throughout the 

solar cycle is also of much interest. The range of variation in the conductivity of the current- 

sheet, deduced from the magnetic variations, is from 30 to 50 per cent., according to the 

particular solar cycle. According to Swann (J.c.), the ionizing radiation should vary in intensity 
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as the square of the conductivity, so that its range must be of the order of 100 per cent. 

This short wave radiation wholly fails to penetrate to the earth’s surface; the ordinary solar 

spectrum stops short at about 42900, and beyond this wave-length the total intensity of 

radiation undergoes no variation comparable with 100 per cent. The observations of Abbot, 

Fowle, and Aldrich* suggest that the ‘solar constant’ varies from time to time by small amounts, 

rarely rising to 10 per cent., but these variations occur irregularly, and so far as I am aware there 

appears to be no definite evidence for a systematic change following the course of the solar cycle. 

It is difficult to believe that if the ultra-violet part of the sun’s spectrum is merely radiation 

of incandescence, it is so unconnected with the remaining portion as to suffer large changes 

without some parallel variation in the longer-wave spectrum. There is little likelihood that the 

spectrum of the solar radiation before entry into the earth’s atmosphere is of black-body type, 

but it may be of interest to remark on the relative changes of intensity in the different parts of 

the spectrum on the supposition that these correspond merely to changes of a black-body spectrum 

of varying temperature. The bases of the calculation will be the same as those chosen by Swann 

in his discussion of atynospheric ionization (§ 19), viz.,a mean solar temperature of 6000° absolute, 

and the hypothesis that only the radiation of wave-length less than 41350 is concerned in 

ionization. A variation of 100 per cent. in this extreme section of the spectrum would correspond 

to a variation of 230° in the temperature. This would involve a shifting of the wave-length of 

maximum intensity from about 14700 to 14520, and a change in the total intensity of radiation 

for the whole spectrum amounting to 13 per cent. The change in the visible spectrum would be 

rather smaller than this. 

§ 22. The facts hitherto reviewed may next be considered in their bearing upon atmo- 

spheric questions. One such question is, Are the layers affected by the two kinds of solar 

emissions the same or different, and, if different, what is their relative situation ? 

Even a priori it would be expected that two such different emissions as corpuscles and aether- 

waves will have different powers of penetration into the atmosphere, though it would not be 

possible, on such grounds alone, to decide whether the ‘absorbing’ layers were wholly distinct 

or not. The magnetic phenomena, however, give a fairly clear indication that they are practi- 

cally distinct without overlapping. If both ionizing influences were experienced in the same 

layer, the conductivity of the latter should be much increased at times of great disturbance; 

the result should resemble that produced by the augmented ultra-violet radiation at sunspot 

maximum, 7.e. there should be a general magnification of the regular diurnal magnetic variations, 

This should apply to all the harmonic components, though not necessarily equally, since the 

disturbance ionization is not distributed in the same way as the regular ionization. The observed 

results do not agree with this; some changes occur in the first harmonic component, and the pro- 

duction of these has been independently accounted for+; but the other components remain the 

same or, possibly, are slightly diminished. 

On the alternative hypothesis that there are two distinct layers of ionization, some increase 

in the ordinary diurnal magnetic variations at times of disturbance would still be expected, 

unless it is supposed that the atmospheric circulation (§ 17) present in the greater part of the 

atmosphere, including the layer ionized by ultra-violet light, does not exist in the other ionized 

layer. From this conclusion, which seems unavoidable, follows the further inference that the 

* C. G. Abbot, Proc. Nat. Acad. Sci., 1, p. 881, 1915. + Proc, Roy. Soc., A, 98, p. 61, 1918. 



AND THEIR CONNECTION WITH SOLAR EMISSIONS, ETC. 359 

magnetic-disturbance layer is situated at a higher level than the diurnal-variations layer. It 

seems justifiable to identify the former with the stratum in which aurorae are observed (though 

the disturbance currents are not to be supposed confined to the latitudes in which these 

luminous phenomena are visible). The lower limit of the auroral layer is fairly definite, being 

at a height of about 90 kilometres*. Aurorae sometimes extend to a height of 300 kilometres, 

but the great majority seem to occur between 90 and 120 kilometres. 

The diurnal-variations layer is presumably situated somewhere between the top of the 

troposphere (10 km.) and the base of the auroral layer (90 km.). Its extreme thickness can 

therefore not exceed 80 kilometres, and on this account the lower limit of the specific electrical 

conductivity of this layer, deduced by Schuster on the basis of a limit of thickness of 300 kilo- 

metres, must be increased fourfold. On this and other grounds described elsewhere+ the original 

estimate of 10-* c.g.s. should be increased to about 3.10~™ for points immediately beneath the 

sun, at sunspot maximum. This, moreover, is still only a lower limiting value. 

§ 23. Profs. Fowler and Strutt} have recently confirmed the truth of a suggestion made 

many years ago by Hartley, to the effect that the limitation of the solar spectrum at the violet 

end is due to absorption by ozone in the earth’s atmosphere. Prof. Strutt§ has also demonstrated 

that this ozone does not exist in sufficient amount in the lower atmosphere; it must be in the 

stratosphere, where alone permanent differences of composition in different layers are possible. 

It may be assumed that the ozone is produced in the layer which is ionized by ultra-violet light, 

and possibly the presence of ozone in that layer may aftord escape from the difficulties which 

appeared in Swann’s calculations. 

It is a matter for observational enquiry to determine whether ozone is produced also in the 

auroral layer, ionized by electric corpuscles. If so, at times of magnetic disturbance such ozone 

would probably intercept part of the ultra-violet radiation before it reached the layers where, 

by its own ionizing action, and by the presence of atmospheric diurnal circulations, the diurnal 

magnetic variations are produced. Perhaps to this cause may be ascribed the slight diminution 

which seems to occur in the regular magnetic variations at such times. 

Nove (added July, 1919). In a paper read (on May 22, 1919) before the Institution of 

Electrical Engineers, and shortly to be published, I have suggested that the ultra-violet radiation 

discussion in § 21 may be some type of y-radiation, and that the corpuscles are (as Vegard has 

urged) a-particles. If both these originate from radio-active processes on the sun, the y-rays 

would be expected to penetrate more deeply into our atmosphere than the a-particles—which 

agrees with the relative situation of the two absorbing layers, according to the inference drawn 

in § 20. 

Since this paper was written, I have discovered that the lunar-diurnal magnetic variation, 

unlike the corresponding solar-diurnal changes, varies considerably in amplitude according to the 

degree of magnetic disturbance existing at the time. This suggests that the lunar-diurnal 

component of the atmospheric circulation extends upwards beyond the range of the solar-diurnal 

component into the auroral layer. These new data will be described and discussed in a later paper. 

* The auroral researches of Birkeland, Stérmer, Vegard, + Cf. the third footnote on p. 355. 

Krogness and others are summarized and the references t A. Fowler and R. J. Strutt, Proc. Roy. Soc., A, 93, 

catalogued by Vegard in the memoir referred to on p. 356, _—p. 577, 1917. 

footnote. § R. J. Strutt, ibid., A, 94, p. 260, 1917. 





XVII. On the Representations of a Number as a Sum of an 

Odd Number of Squares. 

By L. J. Morpett, B.A. (Cantab.), Birkbeck College, London. 

[Communicated by Mr G. H. Hardy. Read 3 February 1919. | 

The first results concerning the number of representations of a given number as a sum of 

an odd number of squares were given by Gauss* for the case of three squares, and were found 

from the arithmetical theory of the ternary quadratic. Eisenstein} followed with some results 

in the cases of five and seven squares, publishing them without proof. H.J.S. Smith} completed 

these results and published them also without proof. About ten years after the publication 

of Smith’s paper, the proof of Kisenstein’s results was set as a prize problem by the French 

Academy of Sciences. Papers were submitted by Smith § and Minkowski||, who were awarded 

Their proofs ‘i depended upon the arithmetical theory of the general quadratic 

form, and are examples of some of the most delicate and intricate demonstrations to be found in 

equal prizes. 

the whole range of mathematical analysis. 

The results for the representations of a number as a sum of an even number of squares may 

also be proved by means of non-arithmetical principles depending on the expansions of Elliptic 

functions. The results for three squares had also been proved by means of class relation 

formulae, a method** involving the expansion of products and quotients of theta functions, and 

also some delicate points concerning the expression of the non-equivalent binary quadratics of 

a given determinant. In the case of the other odd numbers of squares, the problem, until just 

recently, proved intractable to analytic methods. 

A general method, however, for dealing with such questions was recently developed by the 

authort+. The whole question of finding the number of representations of any number n as a 

sum of r squares is equivalent to finding the expansion of 6,,’, where as usual, if ¢ = e7®, 

Ooo = 1 + 2g + 2g¢ + 29°H+ .... 

From the theory of the modular functions, it follows that @,.” can be expressed as the sum of a 

finite number of functions called modular invariants. These can be expressed in a variety of 

ways, é.g. as products of various theta functions, or as power series in gq wherein the coefficients 

depend on the representations of n as a number of squares less than 7. When r is even, there is 

* Disquisitiones Arithmeticae, article 291. 

+ “Note sur la représentation d’un nombre par la 

somme de cing carrés,” Crelle’s Journal, vol. xxxv. p. 368. 

+ “On the orders and genera of quadratic forms con- 

taining more than three indeterminates,” Collected Math. 

Papers, vol. 1. p. 521. 

§ “Mémoire sur la représentation des nombres par des 

sommes de cing carrés,”’ Collected Math. Papers, vol. u. 

p. 623. 

|| ‘‘Mémoire sur la théorie des formes quadratiques 4 

Vou. XXII. No. XVII. 

coeflicients entiéres,’’ Gesammelte Abhandlungen, vol. r. p. 3. 

| See also Bachmann, Zahlentheorie, vol. Iv. 

** This method was discovered independently by Kro- 

necker and Hermite. See also my papers ‘‘On class relation 

formulae,” Messenger of Mathematics, vol. xiv. p. 113; 

“Note on class relation formulae,’ Messenger of Mathe- 

matics, vol. xLy. p. 76. 

+t “On the representations of numbers as a sum of 

2r squares,” Quarterly Journal of Pure and Applied Mathe- 

matics, vol. XLVI. p. 93. 
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no difficulty in finding for one of the invariants a function which possesses a simple expansion in 

powers of g, and which gives the well-known results when r= 2, 4, 6 or 8, as only one invariant 

is required in these cases. For this invariant, say yx, a doubly infinite series of the type 

Y= (a+bw)* at once suggests itself, and from its form is seen to be an invariant of the type 
ab 

required for the expansion of @%. The series is then converted into a singly infinite series in 

powers of q =e. 

While the same method applies whether 7 is odd or even, in the first case I was unable to 

find a doubly infinite series for y, and so could not complete the solution. Mr Hardy, however, 

in the course of his investigations on asymptotic formulae for the number of representations, was 

led to a series which, by means of the principles given in my paper, he showed was the required in- 

variant x. As soonas I saw Mr Hardy’s work* for the case of five squares, which he communicated 

to me in various letters, the true origin of the expression for the y invariant occurred to me. From 

the work which follows it will be seen that we can now solve the question of finding the number 

of representations of a number by any definite quadratic form. 

A few preliminary considerations may make this paper more intelligible to the reader. 

In addition, the general method given in my previous paper will be presented in a more 

simple form. 

It is well known that, putting 

, c+deo 
OO) = FAL , 

where a, 6, c and d are integers satisfying the equation 

ad — be = 1, 

and also the congruence 

a, b| _ 1,0 ! 0, — 15 
oa = ia ol eG) (mod 2), 

then A (0, ) = EV/(a + be) Oy (0, @), 

where & depends on a, 6, c, d only and not on @, and a convention is made whereby a definite 

one of the values of the radical is taken. The substitutions by which » is changed to w’ form 

a group denoted by T;, which is generated by the substitutions o’ =@ +2 (denoted by S*) and 

w' =—1/o (denoted by 7). Writing o=2+7y, the fundamental polygon of this group is the 

part of the upper » plane bounded by the lines «= +1 and the circle a*+ y*=1, but only the 

right-hand half of the boundary is reckoned as belonging to the fundamental polygon. 

Suppose now that we have linearly independent functions of @, say Wn, Wo, YW, ..., which are 

such that, first, Y,/@0" is an automorphic function for the substitutions of the group T,; this 

will be the case if it is unchanged by the substitutions S* and 7. Secondly, suppose that 

W/O" has no singularities within the fundamental polygon except when the denominator is 

zero+. This occurs at w=1, and putting a =1—1/0, @=e7®, so that @=1 corresponds to 

* See also his paper ‘‘On the representation of a | To study the behaviour of @,)(w) at the rational point 

number as the sum of any number of squares, and in par- = w=c/a, write 

ticular of five or seven,” Proceedings of the National _cQ+d 

Academy of Sciences (Washington, U,S.A.), vol. Iv. p. 189. O= a+b? 
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Q=ix, the expansion of 6,” starts with Q/4, if we neglect unimportant factors. Finally, 

suppose that no additional singularity at o = 1 arises from the numerator vr,, which we assume 

can be expressed as an ordinary power series in q, say 

Wra=At+MgGtrAgGt.... 

We now introduce the modular function A (w) defined by 

A (@) = We II (Gl $48 IPO 

1 

and consider a function 7() defined by 

A’ (@) f (@) = (O07 — Ayr, — dows — ... — Aatra)*, 

wherein 4,, A.,... d, are constants. Since 

Peg (@ + 2) =O (@), Ay (— 1/@) = V(— tw) Ooo, 

AlG+ 2) SAWN AIK 1/o) =o" A (@), 

Jf (@) is an automorphic function for the group T;. Now A(@) has three zeros within the funda- 

mental polygon, namely two at infinity (ze. at @ =i ) and one at w =1, so that the order of the 

poles of f(w) is 3r. The constants A,, As, ... A, can be taken so that the expansion of the 

numerator of f() starts with q*", that is, the order of the zeros of f(w) is at least 24x. Hence 

if 24r > 3r, or say 
r=14+T] (gr), 

where J (47) denotes the integral part of a7; J(@) has more zeros than poles inside the funda- 

mental polygon and hence vanishes identically. Therefore 

Ooo” = AW + Aoyrs + tee + Aarvhy. 

But X— 1 of these invariants W are given by the functions 

(0..2@,,2\2 
os fa} r or 10 es 

Xt 00 ( Boo8 ) 

where (Pas 22, axe JAC 

For it is clear that, first, y;/@” is unaltered by the substitutions S? and 7’; secondly, the 

functions x; are linearly independent; and finally, no extra singularities are introduced in the 

function ;/0’, since *—8t>0. Hence we require only one additional invariant, say x, to 

complete the solution. 

Mr Hardy’s work suggested to me the following form* for y, 

feeeCon(@) at => 
x c+da\ eS) 

He a+bo 

so that Q=iw corresponds to w=c/a. We then have with r variables, would be ¢ (w)/ (w’), where 

Boo (w) =E s/ (aD + b) Ay, (2), $ (w) = SDD, wz, --), 

where ~ is a constant and g, h depend on a, b, c andd. The substitutions 

The expansion of @,, (2) in powers of Q=e7" then gives ps t+ dw 

the required result. The factor ,/(a2+b) has no influence a+bw 

on the result, as it will be cancelled by a corresponding are such that 
factor in the numerator.  (w)|/@ (w’) = (a + bw) ** 

* The corresponding invariant for the representations of 
: i 3 with ¢ independent of w, and are well known. 

a number by any definite quadratic form, say f(x, y, z, ...) 

47—2 
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where the suinmation refers to all the substitutions of the group I, except that, for a given 

pair of values for a and 6, we take only one set of values of ¢ and d, as the general term of the 

series is independent of the values of c and d. Further, we need not consider negative values 

of b: and if b= 0, we take only a=d=1,so that each term of the series occurs once only. From 

the congruence satisfied by a, b, ¢ and d, it is clear that the function y/@” is unaltered by the 

substitutions S? and 7, which merely alter the order of the terms in y, an absolutely convergent 

series when 7 > 4, as is evident from the next few lines. ; 

From the well-known formula for the linear transformation of the theta functions, it 

follows* that 

y=1+ es ie 
a,b LV[—1 (a + bo) ] 

where the square root is taken with a positive real part. The summation refers to all coprime 

values of a and b of opposite parity, except that b is always positive and b= 0 is excluded from 

he summation. 

Also Ha»= S ema (s— 40)2/b 

=i” Jb (*) (if a is odd) 

eee Cie (b-1)-—4
a Jb (=) 

(if b is ada),
 

3 
where (:) and @ are the Legendre-Jacobi symbols of quadratic reciprocity. 

By considering separately the cases when « is odd or even, we find that 

H r 

— Ss +e 

Xa ae Ee ib (a on 4 

eT 
where Hea en es 

s=0 

Eee 5 (") (if a is odd) 

= j30-) Ip (7) (if b is odd). 

We must now convert y into a singly infinite series. If r is even, y reduces to the doubly 

infinite series used in my previous paper+. Suppose} then that r is odd and that 

r=«x (mod 8). 

Then, since H/,/b is an eighth root of unity, we have when a is odd 

Hy (73¢-Yy jo delk-Yo-1 

( ) = 7 J e- rias*/b, 
vb vb Vb s=0 

* See for example H. J. S. Smith, “Memoir on the } Quarterly Journal, vol. xtvut. p. 93. 

theta and omega functions,’’ Collected Math. Papers, vol. 1. } This is based on Hardy’s work for the case r=5, 

p. 474. The result is of course due to Hermite. communicated to me by letter. 
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but when a is even 

= — > e-Tias*|b, 

vb vb s=0 

b-1 
ar 

Hence * Vie y s=0 
| ae 5 

i Vb[—i(a + bw)]"" 

ee 2) or gh (0—1)(«— 1). 

ey G2C-Ye-Dy  fa()—V(k-1) o=-1 

— rias*/b 

where 

according as a@ is odd or even. In this expression for xy, a and b are prime to each other. We 

can remove this restriction as follows. Writing 

ser al i 1 eee 
S, (-) = 3¢-0 + 3he=1) + sient ... (if r= 1 (mod 4)) 

onal 1 1 
= =H eE= + Sea (if 7 =3 (mod 4)), 

‘and multiplying throughout by the series for x, we find 

b-1 te 
5 ze —ias”/b 

Sye-yX a Seen he | eo 
Vb[—i (a+ bo)]” 

where now « and 6 need no longer to be prime to each other, but are still of opposite parity. 

This is easily proved, for take r=3(mod 4) say. If a and b have now a common factor k 

(odd of course), put 
a eA b = kB, 

nae Se —ias?/b _ 4 aka («—1) ST - rids*/B a ies vp! (k- 1) py-24 (et) ee riAs/B 

a0 s=0 Aen 

a Vb[-i(a + bo)? = ACY VB —i(A + Bo)", 
so that the term in ©,,, becomes the product of (— 1)2(-) & 3(°—)) by the corresponding term 

in 24. A similar argument holds when a is even because 

jh (EB -1) (x1) _(_ yh (F-Dgd(B-De-V. 

where « = 3 (mod 4), 

Writing now —a for a in the last formula for x, we have 

Wea oy 
cS eras lb 

Sy or X =o + BY] _ = 2) 6 [i(a — bw) ]2” 

where 7 =iete-D) op Ga(0-1) (k—-1) 

s=0 
= ? 

according as a is odd or even, and the summation refers to all integer values of opposite parity 

for a and b, except that b >0. 

* It should be noted that [-i(a+ bw) ]” stands for {,/[-i(a+bw)]}", where the radical as usual is taken with 

& positive real part. 
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The summation with respect to a can be carried out as follows. Take first the part of the 

series arising from odd values of a. Consider the contour integral 

eri (0/b +(x /A)E 

~ | Vb [i (E — bo)” (e** + 1) 
say, where the contour consists of an infinite circle, centre at the origin, with a cross cut from 

the point 2% of the circle encircling the point = be, in a clockwise direction and so that all 

the points €=+1, +3,... are within the contour. The radical is defined by 

dg =3| Fae, 

— 4m < arg [i(t — bw)? < dn. 

The integral taken around the infinite circle is zero if 

0<0/b+(k-1)/4<1, 

or say —4b(e-1)<0< —1b(«—5). 

Hence the integral taken around the cross cut is equal to 27i times the sum of the residues of 

the integrand at the points =a. This gives 

et ida/b + mi(x—1) al4 

> 

(bu) 
eS 

f= 2 reo 
the notation for the contour integral being that employed, for example, in Whittaker and Watson’s 

Modern Analysis, If now in the last series for y we put s*? = @+ bm, where @ satisfies the above 

inequality (and we can always find an integer m so that this is the case for a given value of s), then 

5 mida/b ast wis*a/b -- rima = m 2 mis?a/b \ =) 

Hence when we sum for odd values of a, the general term of the series for S(,_ 1)X can be 

replaced by the integral 

bo—) e7 (8/b + (x - IWANE qe ( 
= 1 —jymr = 2 =" 

$( ) ke Vb[i(E — be) }3"(e7™ ari) 

and as a is odd, 6 must be even. 

Similarly by summing for even values of a, we obtain the integral 

3 
-4(b-1)(x-1) so-) eT Ob de 
v “5 —_—— 

ve NVb[i(E— bw)” (e™ — 1) 

e™dalb mis?a/b — ima _ jwis®alb = 5 since now =e 

where* as before s?= @+bm, but now 0<8@ <b. 

Hence we have 

8, is v—8 jhe s ‘ts aad Nae e THEI dg 

4(r—1) 4(r-1) boda / ow Vb[i(E —bw)] >" (e™* — 1) 

(bw -) mi (O/b + (x — 1)/A)E 
- 24008 eee 2 OE ng 

beven Jeu  Vb[i(E — bw] (e™* +1) 
* No confusion will arise from the fact that the 6’s satisfy different inequalities. 
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Putting £=bwo +f and g=e™”, this becomes 

4 (b-1) («k-1) s-) 8 rids]b 7 

5 D Ci See = 44 ‘i = ae : 
4(r-1) (1 Load ae Vb (i aPiate rig ZEN 

(0 g0+ PEMA g HD+ (eV ae, 

S 

is > in Le es 1 m 

beven 2 ( ) ow Vb (it) 3” (q’ beomit au 1) 

Expanding the integrands as power series in q, the right-hand side of this equation becomes 

=), 5 Cai aad gs US * odd o=0 Vb ae (igys” 

Bene = ( = 1G nen aie a dem Soe DIAN 

2 beven a=0 Vb say (it) * hr 

These are Hankel’s well-known integrals* which occur in the theory of the T’ function, and 

so this expression becomes 

at 2g 4(b-U(k-1)g O+be pg Coal 

Gan ons Vb ; (| +7) 
e o bo +b (x —1)/4 i 

+7 — a eed! (Sto + Z(e-1) ; 

which reduces to 

ait 2 (hO-Me-D g A400 gy 4 5g Art 

Rape, ae eas) 

pL ence iy? te Das be ede = 1/4) ta 
P'Gr)eornea pa) 

These two series can be expressed in a more simple form as follows. 

Putting in the first series 6+ bo = M, so that 

M=s—bm+bc=s* (mod b), 

it becomes 

8 
S Sgt Mee pee — Saat gt} Me 

b odd o=0 ia 

say, where 
1)(e-1 ~7py 4 (b-1)(r-1 ruta Foyid! (b—1)(« as G f(byi?© ie ) 

MS yeaa pie) b odd Bates 

and f(b) denotes the number of solutions of the congruence 

s'=M (modb). 

Similarly the second series, when we put @+bo + b(« —1)/4= M, so that 

M=s?—bn+bo +b(« —1)/4=s°+ b(«—1)/4 (mod 6) 

* See for example Whittaker and Watson, Modern form 

Analysis, p. 239. Putting w=in (n real) for example, 1 

and £=it, the integrals reduce practically to the standard D(z) 

(0+ 
[‘ (=F e-tat, 
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and also (Si ea rhe Ae. 

becomes > S qa 1) eee | kia = Bu B, MA 

deven c=0 
oF 

where Bess $(b)(— phone oie ae = $(b)(- Wp eb s 8s Uae 1)/4)/b 

x 8 even pee) nteve pre- 1) 

and $(b) denotes the number of solutions of the congruence 

s=M—b(r—1)/4 (mod bd). 

We now have 

kr 
“sh 

— 

aw > (A B; = i "|: 

8, X OSE eae > ( 
ut u)M? 

and this gives the expansion of xy as a power series in q, and we note that the constant term is 

unity. 

It only remains now to consider the effect of the function y upon the singularities* of the 

function y/6,”, in the fundamental polygon. From the pseudo-automorphic character of the 

series for x, it is clear that singularities can be introduced only at the point o=72, but the 

power series for y shows that this is not the case. 

The function x is also linearly independent of the functions 0,’ An Ao’, whose expansion 

starts with g*, and hence satisfies all the necessary conditions. Since the expansion of y starts 

with 1 + ag + ..., we have at once 

Doo” = XA EC Oe? Oar ro", 

where t= 1,2, ... J (47), and the constants C, can be found by equating the coefficients of powers 

of q on both sides. 

When r= 5 or 7, this equation reduces tot 

ihy= x: 

A similar identity holds when 7 = 3, but the doubly infinite series for y is then semiconvergent, 

and the various transformations require justification. 

When? 7v=5 the result can be written as 

oo = +3} % (Ant By) M qu 

—1)("-)/b 
where AG =e £O) f= Ss (s)he BAe 

6 odd b? beven Pes 

and f(b) is the number of solutions of the congruence 

s'=M (mod d). 

* There is no need to consider the point w=1, forif we in powers of Q=e"™ cannot contain any negative powers 
put w=1~-1/2 then of Q. 

% F(Q) + x is of course different for different values of " but 

Boo A," (Q)’ no confusion can arise thereby. 

Med 56 t The solutions for five and seyen squares are in the 

say, where F (Q) vanishes when Q=io, and its expansion forms given by Mr Hardy. 
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When r= 7, we have 

Ooo? = 1 + 288 > (Aa+ By) Me q’ 
M=1 

4(b-1 2_ M—2b)/b Ae 3s CUO pits = DE EME O), where > 
dodd b beven bs 

and $(b) is the number of solutions of the congruence 

s=M+4b (mod d). 

; A 
The series of the types Aj and By can be reduced to the form > (= ") = as given by 

n v 

Eisenstein in the case of five and seven squares. The work however is rather detailed* because 

of the number of cases that arise according to the form of M. By starting from the known 

results, we can also deduce the doubly infinite series for y. Similar methods may be applied to the 
D 

series } F'(n)g”, where F'(n) is the number of uneven classes of binary quadratics of determinant —n, 
n=1 

the classes derived from the form (1,0, 1) being reckoned as . The starting-point of the investi- 

gation is the well-known formula for the number of properly primitive classes of determinant — n. 

This formula is one of the type by which we express the number of representations of a 

number as a sum of three squares. The generating function of the series }F'(n)g” is an 

expression similar to that denoted by x, but I shall return to the subject in another paper. 

When 7 = 9, 11, 13, or 15, we have an equation of the form 

(chs =xX+ C007? hehe 

Equating the coefficients of g on both sides, we have 

a*"(A, + B,) 

T($r) Si@-—1)" 

eee DFO) 

16 C, = 2r — 

N Anes ; 
ae : bodd bt (r—1) 

where (6) is the number of solutions of the congruence 

s?=1 (mod 0). 

But if p and q are prime to each other 

F (PD =F (PF: 

and the same functional relation holds if f(p) is replaced by ¢2(—))("-Y/p3("-). Hence A, can 

be expressed as the infinite product 

14 S 
73 (p"-1) (r-}) f (p”) 

p n=1 ps | ; 
(r-1) 

where p refers to the odd primes 3, 5, 7,.... But f(p")=2 and 

4(p"—1)(r-1) = 4n(p—1)(r—1) (mod 2), 

so that the infinite product becomes 

(Cee ae es 
1—(-1)t@-DO-D) p-8O-D | > LT te 0 p80) II 

Pp 

* See for example De Seguier, Formes quadratiques et multiplication compleze, p. 60. 

Vout. XXII. No. XVII. 48 
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Multiplying numerator and denominator by the denominator, this product becomes 

| > G1) a yt = de 

moe 
modd 

where now m takes all odd positive integer values. Hence 

tr y (_ 1)4(~-D(r-)),, -2-Y 

a*" A, _ ‘a m aA !) ee 

T(r) Sy @—1) T(r) > m7 (t—}) 
modd 

and can be expressed in finite terms by Euler's or Bernoulli's numbers. 

The working for B, is slightly different. For 
1) —1+4b(r-1))/6 ¢ (b) (-— 

Bim pe(r-Y) beven 

where ¢ (6) is the number of solutions of the congruence 

s=1—1b(r—1) (mod d). 
* 

We first discuss the case when 7 = 1 (mod 4), so that 

_7)\(2- Db + 
2 aeanneies: \— 1) f(b) 

ce Gk) Sal mr Ces aed 
where f(b) is, as before, the number of solutions of the congruence 

s=1 (mod db). 

In the series for B,, we can ignore values of b divisible by 8. For, if b = 88, the solutions of 

s=1 (mod 88) 

can be grouped in pairs such as s and 48 — s, for which 

s—-1_(s—48)-1 
8B 88 

If b is twice or four times an odd number, we note that s is odd, so that 

s?=1 (mod 8) 

+1 (mod 2). 

and Ere - He =1. 

Hence we have 

B,=(-tr-/( : i O) 
gb r=1) + g¥r—D) cay phr-D 

From the formulae for A,, it easily follows that the part of the coefticient of g in x arising from 

B, can be written as 

> m7t-) 

eG. Ae Er 
PG) Se: PGn) 28-0 48H) gs oh -D 

modd 

Discussing now the case when r = 3 (mod 4), we have 

B,= > (-1) 1+40)/ 4 (h) 

ben 
bi(r-D 

; 
beven 
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where ¢ (6) is the number of solutions of the congruence 

s?=1—b (modb). 

In the summation we ignore values of 6 divisible by 16, for if b= 168 the solutions of the 

congruence 

s?=1—8£8 (mod 16) 

can be arranged in pairs such as s and 88 —s, for which 

2 —14+88 ‘(s—8e8)—-1+88 
soars = ria Ser Baar? 2 168 168 +1 (mod 2). 

We also ignore values of b which are four or eight times an odd number, as then the congruence 
has no solutions, for, s being odd, 

*=1 (mod 8). 

Finally, when 6 is twice an odd number, say 28, s must be even and then 

s—1+%4b B-1 

GS ea 2 

Since a unique correspondence exists between the solutions of the congruences 

s=1—£ (mod 2~), s=1 (mod £). 

Boe! (=1)2@- DFO) 
*BOE GH) par-) ; 

(mod 2). 

we have B 
bodd 

Hence, from the formulae for A,, it follows that the part of the coefficient of g in x arising trom 

B, can be written as 

ar SY (—1)2(™-1) m-30-Y 1, 7 m 
; m2” By = m aa : 

T(r) Sy 1) ANG mae lit 
modd 

Hence when 7 = 1 (mod 4) the coefticient of g in x is 

m-#(r-N) 
a (-1)#0-) Vicars) ea 3 

T (ar) 23(r-1) 42 (r-}) S -@-)) ”’ 
modd 

but when r=3 (mod 4) it is given by 
: > (Side ti m-2(-1) 

ail 1 moda 

YT (gr) [1+ ara ; > me) 
modd 

Inserting the values of these series in the various cases*, we have 

oo" = 365r C, Doo" 8 Bos Ayo! 

where Cy — ir Cy, = 22. Che = gil, Cs = eae 

Let us examine this solution of the problem of finding the number of representations of a 

In the case of eleven squares, say, we have 

Coot =X ats 22 (he dora Orns 

but the expansion of functions such as O° 4,4 Ao is in general a problem in itself. They however 

can be replaced by other functions, the coefficients of whose expansions as a power series in q 

The general method is given in a paper published 

number as a sum of 7 squares, 

possess an arithmetical significance. 

* See for example Chrystal, Algebra, vol. 1. pp. 231, 342, 366. 
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several years ago*. For our present needs, we can start from the identity 

(cit ANN [ste ye = a SS Sey roee Om (=, — 5) be (Ts 5) Om (So ce) = Y= ieny oP +87 GC, 0) By Bt, 0) Bro, 00). 

If a, 8 and ¥ are constants satisfying the equation 
ta + BP+ y = 0, 

there is no difficulty in showing that an invariant for completing the solution in the case of 

eleven squares is given by the coefficient of 2 on the right-hand side, omitting the factor (V —tw). 

This invariant, omitting an unimportant numerical factor, can be written as 

SD Tat By tyeigr ivr”. 
so, x, bx 

By taking different values of a, 8 and , and combining these invariants linearly, we can deduce 

the more general invariant 

S > > f(a, Y, eg ese. 

soo, +a, sto 

where f (a, y, 2) is a polynomial solution, of degree four in «, y and 2, of 

Senay CT 6 

Take then F(@% Y, 2) = 0 — Gay? + yf. 

It is easy to see that 

SS S(t y'— Cary?) gy +4 * =CO og? On! Oo! 
to, +0, +0 

where C is a constant, obviously . We have now 

ot = y+ HF = = > (a + 4 — 6a) 7 TY . 
oo, to, to 

It is worthy of note that, as no numbers of the forms 8m +7 or 4(8m +7) can be represented as 

a sum of three squares, the number of representations of such numbers as a sum of eleven squares 

can be expressed in a very simple form. In the first case for example, when M=8m +7 and 

has no squared factors, the number of representations is equal to ‘ 

495 x 192 5° yt (—1)hm-D (=) 1 
31 nodd n/ n° 

Similarly, in the cases of thirteen and fifteen squares, we have 

5 Pe We yeh, free ref) Boo° Our! P=H=42 TTT e'+y'- 6a2y?) q° +y* +27 + +u ‘ 

+o 

while @q,7 A, A! is equal to the corresponding series with seven squares in the exponent of gq. 

In the case of nine squares, we can express Oy 0, Ao by means of the representations of a 

number as a sum of seven squares, if we note that 

Oss’ = 789 Pon Or 

A simpler result might perhaps have been expected in this case, 

* “Theta functions in the theory of the modular functions,” Quarterly Journal of Pure and Applied Mathematics, 

vol. xvi. p. 97. 



XVIII. The Hydrodynamical Theory of the Lubrication of « Cylindrical Bearing 

under Variable Load, and of a Pivot Bearing. 

By W. J. Harrison, M.A., Fellow of Clare College, Cambridge. 

[ Received 24 April 1919. Read 27 October 1919.] 

Some of the results given in this paper were obtained in 1913, as stated in the author's 

previous paper on this subject*, but absence from Cambridge has delayed the completion of the 

work. It is thought that the results now presented add considerable interest to the theory of 

lubrication, as by their aid it is possible to picture what happens when either the speed or load 

is changed, or the bearing is subjected to small vibrations or impulses. 

The good agreement shown in the previous paper to exist between theory and experiment 

in the case of an air-lubricated bearing may be accepted as establishing the trustworthiness of 

the general theory, so that the results now obtained may be regarded as reliable within limits, 

even if they can never be practically verified. 

The second part of this paper has arisen from a paper on “Experiments on the Friction of 

a Pivot Bearing +.” 

Cylindrical Bearing under Variable Load. 

Under variable load the relative position of the shaft and bearing must change. Let the 

shaft rotate with angular velocity U/a, where a is its radius, and let it have a linear velocity V 

relative to the bearing in a direction making an angle a with the line of centres OO’ of the two 

surfaces as shown in Fig. 1. 

Pp 

: : 

ex .\ 

Fig. 1. 

* Transactions Cambridge Philosophical Society, Vol. xx11., 1913, pp. 39—54. 

+ Proc. Inst. Mech. Eng., March, 1891, The Fourth Report of the Research Committee on Friction. 

Won, xoxkt. No. X: VIII. 49 
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If reference be made to the previous paper it will be found that equations (1), (2), (3), (5) 

(6) remain unchanged. The boundary conditions (4) become 

u=U, v=V cos(6—a), when y=0, 

u=0, v=0, when y =h. 

We have 

u= 2 Ey - os 

h h 

and [ee dy=- le], V cos (@— a). 

Therefore 

0) /-< OPN 70h oy a 
ae @ oP) = 6, | t aad cos(@—a)], 

hence we P = 6uUh — 12¢Va sin (6 — a) +h, 

1dp _ 6yUn(1 +¢ cos @) — 124Va sin (0 — a) + ke 

ade n* (1 +c cos @)8 or 

where / is a constant of integration. 

Now p is a single-valued function of @, and, therefore, on integration it will be found that 

k= —12u(1—c?) {Un + 2V (a/c) sin a}/(2 +0) + 124V (a/c) sin a. 

Accordingly 

2+ccos@ 
p=———,, {Un + 2V(a/c) sin a| c sin 6 te — V (a/c) cos C; 

7 (1 + cos 6) | Rape VeOR ett 

where ( is a constant of integration. 

Due to the normal pressure the forces acting on the shaft per unit length are R in a 

downward direction perpendicular to OO’, and S along O’O, where 

12a? ¢ f 2Vasin palate _ (7, 2¥asine), 
n° (2 + c*) (1 —c*)® \ cn 

S=127pa*V cos a/{n* (A — c2)3}. 

The tangential traction f, acting on the shaft in a sense opposite to that of the rotation, is 

given by 

pe p(t . a ie 0. 

oy Ox 

U _ ih op, Vsin(@—a) 
i h* Opa 06 + a ; 

The term V sin (@—a)/a, is clearly negligible in comparison with the other two. 

This traction will give a resultant force acting on the shaft, depending on U/n and V/7?, 

and this foree can be neglected in comparison with R and S above, which depend on U/y* and 

V/n*. In fact the part depending on U/y actually vanishes, as stated on p. 48 of the previous paper. 

The traction also gives a couple of moment J per unit length of the shaft, where 

M = 4er pea? [(1 + 2c?) Un + 8V ace sin a]/{n? (2 +c?) (1 — c)8}, 

Pre 
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The equations determining the relative motion of the shaft and bearing may now be written 

down on the justifiable assumption that, if the shaft be in any position relative to the bearing 

and load, the velocity V is instantaneously adjusted so as to enable the shaft to carry the load. 

Let W be a constant vertical load, and w a variable load making an angle ¢ with the 

horizontal at time ¢. Also at time ¢ let OO’ make an angle y with the horizontal, as in Fig. 2. 

Fig. 2. 

Then R= W cosW+ wsin (6 — w) ] (A) 
ea 08 (os 2 yh hak Meru wart eS? : 

an Sh de 
Now Veosa=—7 dt’ 

: ly 
and Vsin a=— ne = ; 

Let ¢, be the value of ¢ giving the position of the shaft in the case of steady motion with 

velocity U and load W, so that 
127pa?c,U 

(2 + ¢2) 1—¢2)? 
and y=0. 

Also write 7 = (W7?/127pa*) t. 

The equations (A) become, after substituting for R and S the expressions found above, 

=W, 

2 = = {eos + (w/W) sin ( — y)} (1+ 40) (1 —e)F/e — 1 + gaz) (1—0")4/e, 

= ee = (ul = ey? {sin w+ (w/ W) cos ($ ne w)} 
> (B). 

) 

ProsiEM 1. The load is assumed to be constant, but owing to some cause, for example, a 

previous change of load, the position of the shaft is not the one proper for the load. It is required 

to trace the motion of the shaft relative to the bearing, if its angular velocity 1s maintained constant. 

The equations (B) determining the motion become 
) 

— (Y= (+42) 1-2)! eos yifo— (1 + 30) (1 e244 | 
de ager 

igs oe snap | 
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re dy _ Write ae =f(c)cosw+k, 

de) : 

Then F(c) sin py dy—f(c) cos de= kde. 

Let 2X be an integrating factor of the left-hand side of this equation. We have 

d[—2 F(c) cos Wy] = hade, 

where oe = Af(c), 

: dr _f(c)—F(c) 
- ee (Cc). ae 

_  esede : 

” Vea 

Hence a value of X is e(1 —@)~*. 

Therefore —AF(c) cos p=kfe (1 —c*)~ tde+ B, 

or —c(1—c)~f cosp=2hk(1—- ce) t+B, 

9]. = 2\3 

or cos Y= — at BU OY AS ee (D), 
5e (1 — c)? c 

where B is a constant of integration, and 
- 1, 

k=—(1+4ce,) 1 —¢?)2/c. 

Equation (D) determines the path of the centre O of the shaft relative to the centre O' of the 

bearing. In Figs. 3-6 graphs are given showing the relation between ¢ and wy for various values 

180 

oe 

120 

60. 

‘| aa 3 4 ) 6 7 a) xe) ime) 
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of kand B. The value of c, assumed is shown by X in the graph, and gives the position of the 

shaft proper for steady motion. The oval curves correspond to those cases in which O describes 

a small closed curve not enclosing 0’, and the other curves correspond to those cases in which the 

path of O encloses 0’. 

180 a ae eae sy 

120 oe 4 

60 = 

Yo 

-66 

180" 

20 
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According to this analysis, if the shaft is displaced from its proper position it does not return 

to that position in the absence of further disturbances. This is no doubt incorrect, and is the 

result of a first approximation in which various factors have been neglected which would probably 

have the effect of restoring the steady motion after a time. 

180 

120 

60 

v 

-60 

-120 

~180 C= se 

' CG 
Fig. 6. 

Oo 

ie) 

The graphs in Figs. 3-6 have been obtained by treating ¢ and y as rectangular coordinates. 

If c and be treated as polar coordinates the actual path of O is obtained, as in Fig. 7, which 

corresponds to Fig. 5. 

The data given in the followmg table may be used in connection with Figs. 3-6. . 

Load per unit length carried by a shaft rotating steadily. 

| ¢ 1 3 | 5 | 7 9 | 
| se 

: : are | | 
We? | + | On7 +6 . 5 : 050 149 | 257 394 735 

12zpa2U | 

Suppose, for example, that a shaft is carrying a luad and rotating steadily in a position 

given by c=*4, = 0, and the load is suddenly trebled, the proper value for c is now ‘8 approxi- 

mately. Hence the motion of the shaft is approximately given by the intermediate oval curve 

in Fig. 3. It is assumed that the angular velocity is maintained constant. 

The effect of varying the angular velocity of the shaft may be seen from the data already 
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given, as such a change is equivalent to a variation in load as regards the relative position of the 

shaft and bearing. The effect of a gradual change of load or speed can be constructed roughly 

from the results given. 

PROBLEM 2. (riven the shaft in any position, it is required to find the couple exerted on it 

by the traction due to the lubricant, the load being constant. 

The expression for the frictional couple M has already been given. 

M = 4arpa? {(1 + 2c?) Un + 8acV sin a} /{n?(2 +.02)(1 — c°)2} 

dt 
= dora? (1 + $e) + 6 (2+ (1 — 2)? 9° W cos /8mrpa*}/{n (2 + c2)(1 — c°)}} 

= 4rpa* ia + 2c?) U — 3ac? HH / {n(2+0)(1— oe)" 

= 2rpa? U[ (1 — ce) 2 + 3c, cos w/{d- c2)2(2 +¢2)}] 7h 

Fig. 7. 

If M, is the value of the frictional couple when the shaft is rotating in its proper position 

for the given load and speed, then 

ros i 
) M, = 4rrpa? (1 + 2¢,7)U/{n (2 + ¢,7)(1 — ¢,°)?}. 

Ma a e2)8(2 +¢,7) + 3cc,(1 — o)2 cos 
Hence 1 

M, 2(1 +4 2¢2)(1—c2)? 
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The variation of M/M, with the position of the shaft can be seen from the following table : 

M/M.. 

¥ 

cy | c 0 60° 90° 120° 180° 

ip wa 2 1 0-97 0-94 0-91 0-88 
| 5 1:20 bis 1-07 1-00 0-93 

8 1:76 165 1-54 1-43 1:32 
“95 3-23 3-10 2-97 2-83 2-70 

1 Z 

Poh vl ee 0-77 0-72 0-67 0-62 0-57 
es 1 0-88 0-75 0-63 0-50 
Mepes 1-49 1-29 1-09 0-88 0-68 
| 95 255 | 2:32 2-08 184 HAG L 

“Gi thee 046 | 0-41 0:36 | 0:30 0-25 
<5 0-66 0-53 0:-40°7 | 0:27 | 701 

8 1 079 | 058 O37 | O06 
| 95 1-62 1:37 | 1-12) Wi aos8e 0-61 

| 

The use of this table in conjunction with Figures 3-6 will indicate the extent to which the 

frictional couple may be varied by causes which result in a displacement of the shaft. For 

example, if a heavy load be greatly lightened, the resulting mean frictional couple will be 

considerably greater than the frictional couple in the state of steady motion proper to the load 

as lightened. 

ProsieM 3. The load is constant, but the shaft is displaced slightly from its proper position 

for steady motion ; to find the motion. 

These cases of motion would give rise to small oval curves in Figures 3-6, but they can be 

treated separately by a method of approximation. 

In equations (D), write c = ¢, +c’, and treat c’ and y as small. We find 

dy _1—teitat , = — C=C, 
dr Cc? (1 = o2)3 ; 

dc’ ad 
Ae ee) P= ae 

dc 4 
Hence ai 

Therefore c =acos \(x, ea) T+ e}, 

p= — a (4/4e)8 sin {(1e, 43)? 7 +e}, 

saa 
KK, = (1 — $e? + ¢,4)(1 —¢,)/e,’, 

[ka = (1 — $e, + &*)/{o,(1 — o)%}. 
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The motion of O is periodic, and the period can be found by transforming back from 7 to f. 

Periodic time = {277/(«, k2)>} 127rpa*/( W 7?) 
: 1 

= {20/(«,42)?} a (2 + e2)(1 — ce)? [(c, U) 

_. 60(2+ 47) 
~ n(1 —4e2+ 4)’ 

where n is number of revolutions per minute of the shaft. 

(4 sil j 3 or a 

60 (2 + ¢2) 
| 1—}e7+ ¢,3 

ProsieM 4. Yo find the effect of a small additional oscillating load. 
, 

In equations (B) write c=, + ¢’, where ¢, gives the steady position under the constant load 

only, and assume ¢’ and wv to be small. 

We have : 

ae = «,¢’—«;,(w/W)sind | 
o seer Pe spoderoca ndccencecree (E), 

ie cs > | 

where nk, =(1— $¢7+ ¢,')/{e? (1 — c2)3}, 

ks = (1 + $¢°)(1— ¢,2)2/c,, 
ko = «= (1-0), 

If we assume w/W x cos pr, and that ¢ is constant, equations (E) fall under a well-known 

type, and the solution is of the form 

’ = a cos {(4ey2)2 7 +e} + S8cos(pr + &), ete. 

Thus the effect can be found of small periodic variations in speed or load, or of small periodic 

impulses. 

Theory of Lubrication of a Pivot Bearing. 

A Pivot Bearing consists of a vertical cylindrical shaft, capable of rotation about its axis, 

having a plane end which bears on a horizontal plane surface. When the bearing is lubricated 

the two surfaces will be separated by a film of oil, and maintained at a uniform distance apart. 

The case shown in Fig. 8 will be considered first. 

The bearing has a central channel of radius r, for the purpose of supplying oil, The radius 

of the shaft is 7, It will be shown that efficient lubrication is not possible under these simple 

conditions, but a consideration of this case affords an introduction to the more extended theory 

given later. 

Let (x, y) be coordinates in the plane of the moving surface, z the coordinate at right 

angles to the plane drawn towards the fixed surface. Let (u, v, w) be component velocities at 

any point in the liquid film. 

Vou. XXII. No. XVIII. 50 
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If A is the distance between the two surfaces, the boundary conditions are of the form 

1 — Ue eu — Oe whenie— OE 

u=0, v=0, w=0, when z=h. 

With the usual approximations 4 
ap au 
ax 22” : 
op. ev 

ay Oe 
op 

== ee e 

Hence “348 a 

Op . a —Z : 
v= ay” Fed 

g Ou, dv ow 
Now Be hay ae 0, 

h h 

and therefore i lee + | dz=— Bk =(, 
o (dx 0 

op 0 ee) ohU  chV 
Hence an © (We? P\+ ay i 6u(° as ae a ; 

and in the present problem U =— wy. V= az, hence 

2 Es 
dat oy? 

Taking the origin at the centre of the plane end of the shaft, and using cylindrical 
coordinates (7, 6, z), we have 

ep lop 1p 
Oe tar? rae 
1 dp 

maT a. 7 (2 —h) 

fi eM rat ore ar , 

where @ is the angular velocity of the shaft. 
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In the case at present under consideration wu, v, p are functions of r only, so that 

p=A+t+Blogr, 

u= Bz (z—h)/(2Qur), 

v= or (h— z)/h. 

The pressure satisfies the conditions 

Pp=p at r=7, 

p=Pp. at r=Py. 

Hence A =(p, log r.— p, log r,)/{log (r2/7,)}, 

B= (p.— p,)/{log (r2/7,)}. 

Thus the pressure p, and consequently the weight supported, are independent of the distance 

between the two surfaces. The flow of oil, if it takes place at all, is dependent on the mainte- 

nance of a difference of pressure between the boundaries r=7r, and 7=r,. Under these cir- 

cumstances effective lubrication is not possible. This difficulty can be surmounted by the 

introduction of radial grooves cut in the bearing surface to serve as oil channels. Such a 

modification introduces considerable complexity, and it will be an advantage to consider the 

case of two parallel plane surfaces of which one has a motion of translation, but no rotation, 

relative to the other. 

In order to ensure effective lubrication it is necessary to have oil channels cut in the 

bearing at right angles to the direction of motion, these channels having one or both edges 

chamfered off. In the case of reciprocating motion it is desirable to have both edges chamfered, 

but for the present purpose it is sufficient to consider the case in which only one edge is so 

treated, as in Fig. 9. The object of considering this problem first is to obtain suitable pressure 

conditions at the edges of a groove. There is a further interest in a consideration of this case in 

that, hitherto, the theory of the lubrication of plane surfaces has only been presented on the 

supposition that they are inclined to each other. 

<— UU 

Fig. 9. 

Let OA =a, AB=b, and fh the distance between the surfaces. 

For O0< “<a, h=h,—(hi—h) 2/a, 

a<x<atb, h=h,. 

pO=— 
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Let p be the pressure and w the velocity at any point in the liquid film, II the pressure in an 

oil channel. The motion is given by 

je P = Gy +C « sales a eeu REE Eee eae ay 

mR releny a. rh-y - 
DS Soa UU aa ay = ween ccecccee bees ceccswecceetos (2), 

where Cis a constant. 

_[6nU0  C a : Rn 
From (1) p= ' ia an ele Bo QOS 1a ieen. acca eens oseoce (3), 

p= [+ as (20) A, WE O SON sears hae cea (4), 

where A and B are constants of integration. 

The conditions are: 

(a) p is continuous, “=a, giving 
AVGaysle ean Re! 

Al aa + oi | ea. By 2 sqoevsceseeearceneseesees (5), 

(b) p=II, c=a+4, giving 
640 C 

n=("5 alae «och a SR Sa oRRE ete Sees ee (6), 

(c) p=II, «=0, giving 
_[6e0  C a 
=| tons | goat 2 <q 5.0 slots memmwestosicacec tan (7). 

Now, although h,—/, is small, h, will in general be small compared with h, or h,—/,, and a 

small compared with 6. The following approximate values of the constants A, B,C have been 

calculated on this supposition, and will be satisfactory in general, although in exceptional 

circumstances, such as a case of a very light load, it might be necessary to include other terms. 

We have 

A=114+ 3uU a(h,—h,)/ (heh), 

B= —6pU a (hy + hh)/h’, 

C= — 6nUh, (bho + sahhy — $ah,?y/(bh,?). 

Hence, with sufficient approximation 

Z 6uUa Lo (Al aye 1 1 h,\ 

SIS aa (a alee 2 -7,(2 +n) 
op * T 1 hy 

a: ee te a 7) : 

0 h—-y 
a an YW +U : ; J 

a<a<at+b, p=I1+ 38nUa (hy — h,) LL —(@ — a/b) (hha), 

op eo BuU a (hy —h,)/(bhAeh,), 

1 dp h—-y 
U= =; y—h 74. mo ee hy 

The weight supported per unit breadth by the portion of the surface between two grooves is 

6uU ab h, «ah, ahh Se ile a h, 

Ah, hy f Dh 8 bh, (1 uk 7) logey. ~ Qbhy (3 Bi 27) ‘ 
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The traction on the moving surface between two grooves per unit breadth is 

pUb 4ah, ( i) hy  3ah, ( i 7 
a E ame Te) eh, 26K, (oy he) | 

lege : rane 
If - is very small, as will usually be the case, we have as a first approximation 

to 

Weight supported  =3uU ab/(2h,h), 

Traction =pU b/h,, 

Coefficient of friction = 2h,/3a. 

Hence the coefficient of friction depends only on the ratio h,/a or (hy —h,)/a, provided h,/a is 

small, and that h,/h) is small. 

Returning to the case of a pivot bearing with radial grooves having chamfered edges, it may 

be assumed that U =or, and that @ and (h)—,) vary as r. In the problem just considered the 

pressure at BB’ due to the chamfered edge is 3uUa(h)—h,)/(heh,), so that p= I+ a is a 

reasonable assumption for the pressure at the edge of a groove, where h is the distance between 

the two surfaces and / is a constant, but, by suitably choosing a and (h,—h,) as functions of 7, 

p may be made to take any required form. 

Let there be four radial grooves along two diameters at right angles. In each sector 

measure @ from a bounding groove in the direction of rotation of the shaft. 

Op lop ,1ep 
ae or? 5 ror 7°20? 

= 0, 

hence we may assume 

p=AtBlogr+CO4+ (A, 77 +B, 7) cosn6 += (Cir? + Dar) sin nO, 

with the boundary conditions 

p=U+pkor/h, @=0, O<r<a, 

pe G—77/2,, <<a, 

pe PSG. 0<6<7/2. 

The appropriate solution is 

2pkoay 4m 1 oe Th eee <5 p=l+ 7, 7 00s é Sa ear pee 2n8, 

where x is integral. 

The distribution of pressure over the sector is shown in the following table, and curves of 

equal pressure are shown in Fig. 10, drawn for the cases (p — IL) h/(ukwa) = °6, *4, *2, -05. 

(p—IDh 

pkoa ~ 

6 

Tr == <. a —— 

10° 20° 30° 40° 50° 60° 70° 80° e}" et Saul Baye |} hae 13 08 05 04 02 01 
6a | 45 31 kyr sibel SeLS 1 07 04 02 | 
da | 34 28 29 ak ‘13 09 06 03 
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The weight supported 
hn ‘a 

2n 
=a] [Ss ko *| ros — ae ae fi ; sin 2ne | rdrdé 

4n? — 

_ thopa* iL Zh l 

— > —————
 

h Ee aw (4n?—1) (n+ a where n is odd 

= 440 (kopa*/h). 

90° 

bo. 

340 

2a BO ba Ba. mye 

Fig. 10. 

The frictional couple on the shaft per unit length 

ae (ie ov Mat 

=4) [i-» eal, ‘ on 

La A OY Me ns! fo(Ge +81) mea 
= drpoas/h — 4° 4 pkor*dr 

0 

= drpowa'/h — 3 wkoa’*, 

The term %ukqa* is of a smaller order than the other, and in fact terms of this order would 

occur if account were taken of that part of the frictional couple due to the chamfered edge. 

Frictional couple 
Weight supported 

=47a/(440hk) 

= 3°57 (a/k). 

Hence to a first order of approximation the ratio of the frictional couple to the weight carried is 

constant for all loads. The value of & may be taken as 3/e, where ¢ is the small angle measured 

in radians which the plane of chamfering of the edge of the groove makes with the plane of the 

bearing. 
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If the boundary 7 =a is closed so that no flow of liquid takes place over it, the boundary 

conditions are 
p=Us+pkor/h, 6=0, O<r<a, 

p=, @=47, O0<r<a, 

gel) r=a, 0<0<}7z. 
cr ? 

- The appropriate solution is 

Sie LS p=u+ ; 7 08 = Ge—ha 2n8, 

where n is a positive integer. 

Go 

30 

24 42 62 3a TO@ 

Fig. 11. 

The distribution or pressure over the sector is shown in the following table, and curves ot 

equal pressure are shown in Fig. 11, drawn for the cases 

(p—Whf(ukwoo) ="6, 4, -2, 05. 

(p—I)h 

pkoa — 

6 

20° BF 40° 5 | 60° 70° 30° 

53 42 | -34 26 19 | 13 ‘06 
“45 38 | -30 24 18 12 06 
33 93 | -24 19 14 09 05 
I 18 “16 “14 12 09 06 03 
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The weight supported 

Re 4ukoa [1 K 2 s 1 ‘ ‘ = E == <GaDGCD| (where n is odd) 

= 902 (ukewa*/h). 

The frictional couple is the same as in the previous case. Hence 

Frictional couple _ 
Weight supported — 

=1-74 (a/k). 
A number of other cases can be solved. With regard to the experimental data given in the 

paper quoted from the Proc. Inst. Mech. Eng., it would not appear possible to explain the fact 

that the flow of oil was stationary or even increased when the load was increased, the speed 

remaining unchanged. 

1 a/(-902k) 

Lord Rayleigh* has suggested a form for a footstep or pivot bearing, but without any 

theoretical investigation. 

* Phil. Mag. (6), xxxv. p. 1, 1918. 



XIX. On integers which satisfy the equation PHY+Y+F= 
aay; ae 

By H. W. Ricumonp, M.A., King’s College. 

[ Received and read 9 February 1920.] 

Historical Sketch. S§ 1—4. 

1. The classical solution of this Diophantine problem *, i.e. of the equation 

eee emee Ike? = Oss) hoac de osaduccedes tee tees ekg de (1) 

in integers positive or negative, is that given by Euler in 1754, viz. 

nt = (3dpr + 3qr — ps + 3qs) (s? + 37°) — (p? + 3q°/, 

nx = (dpr — 3gqr + ps + 3qgs) (s° + 37°) + (p? + 3¢°/, 

ny = — (Spr + 3gr — ps + 3qgs) (p? + 3q°) + (8? + 37°, 

nz = — (3pr — 3qr + ps + 3qs) (p? + 397) — (s° + 37°). 

Here the multiplier x is merely equivalent to a symbol of proportionality. The unknowns ¢, z, y, 2 

are shewn to be proportional to homogeneous polynomials of the fourth degree in four para- 

meters p, q, 7, s. We need only consider solutions of the given equation consisting of sets of 

integers ¢, w, y, z which have no factor common to all. Any such set can be obtained by giving 

to p, g, 7, 8 integer values positive or negative (having no common factor), calculating the 

numerical values of the functions on the mght of the above equations and putting 7 equal to 

their greatest common measure. An account of this and other methods of solution, due to Euler 

and earlier writers, is given in Sir T. L. Heath’s Diophantus of Alexandria, 2nd edition (1910), 

pp. 101—102 and 329—334. Of other references it is here sufficient to mention (i) Fermat, 

Oeuvres, Vol. 111, pp. 420 and 535, where 18 particular solutions, discovered by Frénicle, in which 

two of the numbers are positive and two negative, are quoted. (ii) Euler, Commentationes 

Arithmeticae (Petrograd, 1849), Vol. 1, pp. 198—209, where further particular solutions will be 

found. Euler’s statement of the problem is “To find sets of three cubes whose sum is a cube”; 

but he includes cases in which one of the three is negative when his formulae lead to such a 

result. This I have regarded as an admission that the two problems need not be separated, a 

view which seems in accordance with modern notions. I have therefore written the equation in 

the symmetrical form 

be aD tA? cto mal 2 shscleaseniaroseenecs tcnte neck coasee es (1) 

so that all the solutions contain some positive and some negative numbers. In consequence, some 

changes of sign have been made in Euler’s results. 

* There is little or no doubt, in spite of a hiatus in the method of proof is lost. The numbers would as a rule be 
text, that Diophantus stated the theorem:—The difference _ rational, not integral. 

of any two cubes is also the sum of two cubes; but his 
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2. Euler's solution was modified in 1841 by Binet, Comptes Rendus (1841), Vol. xu, p. 248, 

who recognized that it was unnecessary to make use of as many as four parameters. By putting 

7 = 0 and s=1 in Euler’s equations, he obtained a simpler but quite general solution, 

nt = (3q — p) — (3g + py’ | 
ne = (3q + p) + 3g" + pry, 
ny = — (3q — p) (39° + p*) + # 
nz = —(3q + p) (38¢ + p*) — 1, 

Ciena Sa: (B) 

the parameters p and q being now allowed to assume any rational values positive or negative. 

This solution, known as the Euler-Binet solution, has come to be regarded as the standard solu- 

tion of the Diophantine equation. It is obtained by another method in R. D. Carmichael’s book 

on Diophantine Analysis (1915), pp. 62—66. Two other non-homogeneous solutions in terms of 

two parameters have recently been suggested by Schwering and Kiihne respectively in the 

Arch. Math. Phys., Series 3, Vols. 1 (1902) and 111 (1904); but they are shewn by Fujiwara in 

Vol. xrx of the same periodical (1912), and again in Vol. 1 of the Tokohu Mathematical Journal, 

to be at bottom equivalent to the Euler-Binet solution, and in some respects inferior to it. 

3. Euler's solution can be obtained directly from the equations 

ot+o°r w(p+gq)t+e(p—q) 

azt+oy w(s—r)+e7(st+r)’ 

wtt+oxr_ wo (p+q)+o(p—q) 
wctoy wow (s—r)t+a(st+r)'( 

where @ is one of the complex cube roots of unity. These equations imply that ¢, a, y, 2 satisfy 

the given equation (1), as is seen at once by multiplication so as to eliminate p, q, r, s. On 

clearing them of fractions we have three linear equations in ¢, x, y, z, which can be solved, and 

will be found to lead to Euler’s values of the ratios of ¢, x, y, z to one another. To any chosen 

set of values of p, g, 7, s therefore corresponds a solution of the Diophantine equation. Also, 

when a set of values , x, y, z has been found which satisfy equation (1), the first two of equations 

(C) shew that an infinite number of corresponding sets of values of p, q, 7, s can be found which 

lead to that solution. If however we reduce the equations to the Euler-Binet form by putting 

r=0 and s=1, we have, after a little simplification, 

Berea ct He BY! — YS | a deethesaeeabaek toaaMe (D) 
p—q=(aytiz—iy—yet)J 

a result which proves that in the Euler-Binet formulae a unique pair of values can be found for 

p and q which will lead to any chosen values of t, «, y, 2 that satisfy the given equation (1). 

Further, it will be seen that rational values of p and q correspond to the integer values of ¢, a, y, 2 

that we are seeking ; and conversely. 

4. Hermite in 1875 contributed a short note to the Nouvelles Annales de Mathématiques, 

Series 2, Vol. x1, p. 5, in which he pointed out the meaning of the Euler-Binet solution in con- 

nection with the surface of the third order represented in homogeneous coordinates by equation 

(1). I shall consider the geometric interpretation of equations (B) in section 5. In this note 
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Hermite takes a first step upon the path along which Poincaré twenty-five years later made so 

great an advance, when he published his memoir, “Sur les propriétés arithmétiques des courbes 

algébriques” (Liouville, Journal de Math., Series 5, Vol. vii (1901), p. 161). Poincaré considers 

Diophantine properties in connection with algebraic curves, while the geometrical meaning of 

equation (1) isa surface; thus Poincaré’s work is not directly applicable here. But since the 

publication of his memoir it is impossible to overlook the importance of the geometrical meaning 

of results, and almost all that I have to say later depends upon geometrical ideas such as Poincaré 

here seized upon and grouped together systematically. 

I cannot attempt to collect all the references to this problem since Euler's time, but I hope 

I have mentioned the most important. A paper upon Diophantine equations of degrees three 

and four in any number of variables which ought not to be passed over was published by 

Mr Robert Norrie in the Memorial Volume commemorating the five hundredth anniversary of 

St Andrew’s University. The paper is of much interest, its scope is wide, and a large number of 

special problems are incidentally discussed. The solution of our problem which Mr Norrie gives 

is unfortunately not general; for it will be seen that his parameters \ and mw cannot be rational 

unless one of the fractions such as — (¢+ z)/(y+ 2) is the square of a rational quantity. 

Some further results have been published even more recently by Prof. J. E. A. Steggall in 

the Proc. Edinburgh Math. Soc., Vol. Xxxtv (1916), p. 11. The paper contains interesting 

formule, notably a symmetrical solution of the equation , 

B—-—W=Y—-V=F—w. 

I wish also to express my thanks to Prof. Steggall for his kindness in allowing me to 

supplement my list of solutions from a table which he had calculated. 

Geometrical meaning of the Euler-Binet solution. & 5—6. 

5, The surface &+2°+y°+2=0 is a special type of cubic surface, but it is not necessary 

to discuss its peculiarities at length. Of the 27 lines which lie on it three are real, viz. 

t+a=y+z2=0; t+y=24+2=0; t+z2=2+y=0; .....-.---------ee (2) 

and lie in the plane 
fsb @shihss SU) peggadrocicosbadasdosctesapcone csc caesar (3) 

The other 24 lines are imaginary and have equations such as 

t+ar=0, 2+PRy=0, 

where @&=1 and #°=1. 

Consider two of these lines for which (i) a=8=a, (ii) a=8 =a’, where @ is one of the 

maginary cube roots of unity. The equations 

t+or=h(e+oy), t+ @r=k (2+ WY), ...cc0.cceecereseceeeetees (4) 

represent separately two planes passing each through one of the two lines; in combination they 

represent for different values of h and & any straight line which meets the two imaginary lines 

of the cubic surface. Such a line intersects the surface in a third point, whose coordinates must 

be expressible rationally in terms of h and k. Conversely, through every point of the surface one 

such line can be drawn; thus the coordinates of every point of the surface can be thus expressed 

51—2 
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for proper values of h and k. [An exception must be made for points which lie on either of the 

two chosen imaginary lines of the surface, or on any of the five imaginary lines of the surface 

which meet them both.] In fact by combining (4) with the equation of the surface we find 

t+or=h(z+ oy), 

t+o°r=k (z+ oy), . 

hk (t+) +(y+z2)=0, 

three linear equations which express ¢, #, y, 2 aS proportional to algebraic functions of h and k. 

The functions contain the complex quantity , so that real values of ¢, z, y, z do not correspond 

to real values of the parameters h and k. If we replace h and k& by new parameters f and g, 

h and k being equal to f + ig, real values of the parameters and of the variables will correspond. 

For application to the Diophantine equation a further condition is necessary, or at least extremely 

desirable, viz., that rational values of the variables and the parameters should correspond. This 

is effected by the introduction of parameters p and q in place of h and k, such that 

h=ptiqv3, k=pF¥iqv3; 

and thus we are led to the Euler-Binet solution. 

6. It is now clear that the problem of solving equation (1) in integers is almost identical 

with that of expressing the coordinates of points of the cubic surface (1) in terms of parameters, 

or in geometrical phraseology of establishing a one to one correspondence between the points of 

the surface and those of a plane. The Diophantine problem further demands that points of the 

surface and the plane whose coordinates are rational numbers should if possible correspond. 

This geometrical problem had been successfully attacked by Clebsch and by Cremona so far back 

as the year 1870; and in Geometry it has long been a familiar fact that the coordinates of the 

points of the general cubic surface are proportional to homogeneous polynomials of the third 

degree in three parameters. This result can be adapted to give a solution of the Diophantine 

equation of lower order in the parameters than that of Kuler. 

There are certain objections to the Euler-Binet formulae which are obvious, and others which 

are recognized as soon as the attempt is made to use the formulae for systematic calculation. It 

is not claimed that the new formulae are entirely free from the same faults, but they are affected 

to a much smaller extent. Thus it is undoubtedly more troublesome to work with two para- 

meters which may assume any rational values than with three parameters which may be restricted 

to integer values (provided that the three parameters occur in anatural unforced manner). Again 

it is a fault in the Euler-Binet method that although the given equation is symmetrical in the 

four quantities ¢, 7, y, 2, the solution is completely unsymmetrical. This is really serious in 

practical calculation, for it means that any set of four numbers which satisfy the equation will 

reappear over and over again, each time in a different order, for other values of the parameters. 

The waste of time and labour so caused is very great; by the new formulae it can be avoided 

almost entirely. The Euler and the Euler-Binet formulae will furnish any number of illustra- 

tions of four numbers whose cubes have zero sum; but so far as I can discover they have never 

been used to calculate such sets of numbers systematically. In fact I cannot find that any table 

of solutions has been published. 
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Parameter equations of the type due to Clebsch and Cremona. §§7—11. 

7. The coordinates of points of a cubic surface can be readily expressed in terms of three 

parameters if we can write the equation of the surface as a determinant of three rows, in which 

each element is a linear function of the coordinates. To do this with the given equation it is con- 

venient to replace ¢, x, y, z by new variables 7, X, Y, Z. Let 

2T=t+a+y+2z, %2W=t-x+y-z, 

2N=t+a2-y -zZ, 24=t-—x-yr+z, 

so that M%=T+X+V4+Z, &W=T-X+V-Z, 

97 — eK OX eZ 

and t—-T=X —#=YV-y=Z-z=s, 

where 2s=t—x—-y—z=—-T4+X+V+Z. 

The last result gives the values of t, 2, y, z rapidly when 7, X, Y, Z, are known and vice versa. 

In terms of 7, X, Y, Z, equation (1) becomes 

PHEES BNI M( ONS WATS ZBN YO) ARO Sena aedris Sse ICOSOGBOSE EOE (2) 

and this may be written in the form 

NER |= Operas ee (3) 
eee ee Sx | 
[aah ge a ge | 

Now, if 7, X, Y, Z satisfy (3) it is both necessary and sufficient that quantities a, b, ec should 

exist such that 
Ta +3Zb — 3Yc=0, 

—Za+- Tb+3Xc=0, 

Ya-— Xb+ Tc=0. 

Solving these linear equations we can express both 7, X, Y, Z in terms of a, b, c, and a, b, ¢ 

in terms of 7, X, Y, Z. Thus 

nT = —6abe, 

Sats Bis 8C)s-| | Lyos Nyy, Aaah oF Ae (E) 
nY= b(a? +3074 9c), 

nZ = c¢ (3a? + 3b? + 9c*), 

and O20: 6 2 12 3X2 PZ 7x — TY? 

1: 3(XV—TZ) : T243Y2:3YZ+TZ, — \ecceeseseseeeecscseeeenenes (F) 

: 3(3ZX + TY):3(YZ—TX): 72+32:.) 
[We could pass from these rational but unsymmetrical formulae to others which are per- 

fectly symmetrical in X, Y, Z, but contain surds, by replacing a, b, ¢, by g’a, gb, c, where g* = 3.] 

Thus to every set of values of 7, X, Y, Z satisfying (2) corresponds a set of values of a: b: ¢, 

and vice versa*. To rational values correspond rational values. We confine our attention as 

has been stated above, to sets of integer values of f, x, y, z, which have no factor common to all. 

* There are certain exceptions to this statement, as is known in geometry; but they do not concern us, the values 

being imaginary. Cf. § 5. 
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It follows that we may obtain every such solution of the Diophantine equation by giving integer 

values (having no common factor) to a, b, ¢ in equations (E), calculating ¢, «, y, z, and removing 

common factors. 

8. We will now suppose that a set of values of t, 7, y, z, which satisfy (1) has been found. 

Other sets may be derived by permuting these values in any way, and by changing the signs of 

all. As was remarked in § 6, it is wasted labour if we obtain these independently from another 

set of values of the parameters a, b, c. We must consider how to avoid this as far as possible. 

Since it is permissible to change the signs of ¢, x, y, 2 let it be agreed that the numerically 

greatest member of any set of values shall have a positive sign; the other members will then be 

either all negative or two negative and one (the smallest in absolute value) positive. Further 

let this numerically greatest member of any set be denoted by ¢. It is easy to see that X, Y, Z 

are all positive, and therefore by (2) 7’ is negative. The values of a, b, ¢ must clearly all be 

positive. Hence 

I. It is unnecessary to consider any but positive values of the parameters a, b, c. Negative 

values of a or b or c only lead to the same values of t, #, y, z mm a different order. 

In the known set of values, the symbol ¢ has been assigned to a special member, but the 

symbols 2, y, z may be allotted to the remaining members in six ways. Any interchange of 

x, y, 2 causes the same interchange of X, Y, Z. Now if the given values ¢, w, y, z are obtained 

by equations (E) from the positive values a, b, c of the parameters, and if ¢, y, 2, z are derived 

from values a’ b’, c’, and ¢, z, 2, y from a”, b”, ce”, equations (F) shew that 

a:b :¢::774+3Y?:3Y74+ 7X : XY-TZ 

SOC ee Gad se): 

and a’ 3b" 3c" :: 7274+327:3ZX + TY : YZ—-TX 

PAC EO Ol: yee: a): Os 

It is unnecessary to consider more than one of the three sets of parameters a, b, c; a’, b’, c; 

“" 

! 
a,b”, c’: and if we stipulate that 

Il. The first parameter a must not be a multiple of 3, we rule out two of the three, retaining the 

simplest. For clearly if a be divisible by three we may reject the system of parameters a, b,c in 

favour of the simpler system 0, ¢, $a, which will lead to the same values of ¢, 7, y, z in a different order. 

9, Finally (still supposing that the values ¢, 2, y, z are obtained from the parameters a, b, c), 

we have to consider the values of the parameters which give the solutions (¢, «, 2, y) (¢, 2, y, @) 

(t, y, x, z). In these three the last three letters are interchanged cyclically as in those discussed 

in section 8. Hence one of the three is derived from positive values (a, b,, ¢,) of the parameters, 

in which a, is not a multiple of 3. 

But the relations between the parameters (a, 6, c) and (a,, b,, ¢) are by no means simple. 

When either set is given the other is determinate and is given by equations which can be 

written down explicitly. For by interchange of X and Y in the first of equations (F) we find 

20,50, 3 22 +OY* BAY IZ: YZ 

 b[(a? + 3b? + 90°)? + 12a%e"] : a [(a? + 3b? + 3c?) + 126%") : c [8 (a +B? + 8c*)? + 4020") 

after a little simplification. These relations are too complicated to be helpful. The simplest 

procedure seems to be to ignore them and state the theorem we have established in the form 
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Every set of four integers (having no factor common to all) which satisfy the Diophantine equation 

es Fete Pie F328 = Ons 55.34. ocie teenies co crace ateacts here oh oa ede ee (1) 

may be obtained from equations (E) in two ways from sets of positive values of the parameters 

a, b, ¢, the parameter a not being a multiple of 3. 

10. The values of the parameters which correspond to a given solution are obtained from 

equations (F), or from those equations with two of the letters Y, Y, Z interchanged. Should the 

value of a turn out to be a multiple of 3, we replace the parameters a, b, ¢ by b, c, 4a as 

explained above: this, however, will never be necessary if a little care is taken. For equations 

(E) shew that 7 and Z are always and that X is never divisible by 3, while Y is or is not divisible 

by 3 according as 6 is or is not divisible by 3. Thus when 7, X, Y, Z are known, if only one of 

X, Y, Zis a multiple of 3, we call that one Z; if only one is not a multiple of 3, we call that one 

X. In each case the other symbols may be assigned in two ways which lead directly to two sets 

of values of the parameters, in which a is not a multiple of 3. 

[It will be observed that, if b is a multiple of 3, none of the numbers ¢, a, y, z is a multiple 

of 3; but when 0 is not a multiple of 3, two of them (either ¢ and z or 2 and y) are multiples of 3. 

Similarly, if none or two of the parameters are even, all the numbers ¢, a, y, z are odd.] 

To take an example, let us assume that 

ec — ale 

Then T=— 36, X=68, Y=120, 7=48; s=136; 

and, solving for ¢, x, y, z, we have, after rejecting the common factor 4, 

t= 25, e=—17, y=—4, z=— 22, 

shewing that 25% = 22° + 17% + 4%. 

Again, let us find the two sets of values of the parameters which lead to the solution 

41s = 40° + 178 + 2°. 

Here t= 41, «w, y, z,=—-40, -17,— 2, 

T= —OWXENE Zi — 10; 33; 48: 

We must take either 

Gye =e 10 = 33; FZ=48) 

or ai) T=-9, X=10, Y=48, Z=33. 

Taking the first of equations (F), but making an obvious simplification by dividing by 3, we have 

a:b:e:: X*+47?: XV+47Z : 12K —-247Y, 

(LS 68259) 

Gi) S254 Bie 2: 

Thus we have two sets of values of a, b, c; either 

(1, 8, 2); or (427, 186, 259). 

11. Ifthe formulae (E) are to be used to calculate systematically the solutions of our equation, 

it is not a little disconcerting to find that a simple solution should be derived from such large 

values of the parameters. Yet the form of the equations of §9 connecting a, b,, ¢, and a, b, c shews 

that it must constantly happen that the first set of parameters may be small and the second set 
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quite large numbers. Large parameters can never lead to simple values of T, X, Y, Zand t, «. y, 2 

except when the expressions in equations (E) contain large common factors which can be cancelled 

out. It will be seen that such common factors must be factors either of a and b?+ 3c%, or of b 

and a? + 3c? or of ¢ and a?+ 3b. When for example a = 127, b = 186, c = 259, it will be found 

that 127 is a factor of b? + 3c2, 259 is a factor of a?+ 3b?, and 62 is a common factor of 6 and 

a?+ 3c: hence there is a vast reduction in the values of 7, X, Y, Z and ¢, 2, y, z given by 

equations (E). [It is an essential feature of the parametric equations of Clebsch and Cremona 

that the cubic functions of a, b, ¢ should all vanish for six sets of values of a, b,c. In our equations 

these values are given by a=0, B'+3c?=0; b=0, a?+3c?=0; c=0, a? +3b?=0; hence the 

above rule regarding common factors. A table of all numbers less than 1000 which are of the 

form a? + 36? is included in the paper of Euler referred to in §1.] 

Although every solution of the equation can be obtained from equations (E), and although 

the repetitions and other difficulties of the older method are to a great extent avoided, yet it is 

never possible without a careful scrutiny to feel confident that all solutions of a certain type 

(e.g. all solutions in which no number exceeds a certain limit, 50 or 100, or all solutions in which 

the two largest numbers differ by unity) have been found. For this reason it is convenient to 

have in addition certain simple methods (again suggested by the geometry of the cubic surface) 

by which new solutions may be deduced from those that have been obtained. 

Methods of deriving new solutions from a known solution. S§12—13. 

12. Every solution corresponds to a point on the cubic surface whose coordinates are integers, 

and by permuting the coordinates we have a family of 24 points. Now, if two points are taken 

on a surface of order three, the line joining them cuts the surface in a third point, whose co- 

ordinates are determinate, and are rational when those of the two known points are rational. For 

example the points (6, — 5, — 4, — 3) and (6, — 4, — 3, — 5) lie on the surface, and the coordinates 

of any point of the line joing them may be written 

6X + Gu, —5A — 4, — 4X — 3y, — 3X — 5p. 

If this point lie on the surface, the sum of the cubes of these four expressions will vanish, and 

therefore 
hu (23A + 25) = 0. 

Giving X and yw the values 25 and — 23 respectively, we find a new solution (12, —33, —31, 40). 

Similarly from the two solutions (9, —8, — 6, —1) (12, —9, — 10, 1) we derive a new solution 

(— 21, — 43, 88, —84). From the two (9, —8, —6,—1) (12, —10, — 9, 1) we derive only the trivial 

solution (8, — 2, — 3, 2). 

Other methods of deducing solutions will be found in the books or papers to which reference 

was made in §§1—4. Thus Vieta (see Heath’s Diophantus, p. 102 footnote), starting from a known 

solution a + y° + a° + 6° =0, regards a and b as constants, « and y as variables: from this point of 

view the equation represents a plane cubic curve on which one point (#, y) is known. Vieta draws 

the tangent line at that point and so finds another point (where the tangent cuts the curve) whose 

coordinates give a new solution, rational but usually not integral, of the equation, i.e. a solution 

in which two of the unknowns a, b have the same values as in the known solution, Again Norrie 

has a general method, applicable to cubic equations in any number of variables, which for our 
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equation amounts to this. Knowing a solution of equation (1) he knows a point on the cubic 

surface. He constructs the tangent plane at that point, and joins the known point to an arbitrary 

point in the tangent plane. The joining line cuts the surface in another determinate point. Thus 

from one known solution (tf), %, %o, 20) he deduces an infinity of solutions (¢, z, y 2) all satisfying 

both the given equation (1) and 

tett an + y7y + 272 =0. 

The application of this method turns out to be somewhat troublesome. 

13. From any known solution it is possible to derive all solutions in which any one of the fractions 

(¢+2)/\(y+2), (§+y)/(e4+2), (+ 2)/(e+4+ 9), 

has the same value as in the known solution. This appears to be the simplest method both in 

theory and practice of deriving new solutions. If we know a point (¢, 2, y, z) on the surface and 

join it to an arbitrary point (—h, h, —k, k) on the line 

t+x=0, y+z=0, 

the point at which the joining line cuts the surface has coordinates 

t—Oh, «+ 0h, y—Ok, z+ ok, | 

or, ga @—#) os eg F nails cities aaiateeedige eS acelaseisen cia (G) 

(t+2)V+(y+2)P | 

By taking any rational value of h/k, i.e. by giving to h and k any integer values (positive or 

negative) prime to one another, we derive a new solution. Should @ be an integer, the values of 

t+ and y+ in the new solution are either equal to or less than their values in the known 

solution. By interchange of x, y and z a triple infinity of solutions is derived from any known 

solution. 

Formulae such as this which give an infinity of solutions of the equation define curves on 

the cubic surface, and when the coordinates are expressed as rational algebraic functions of a 

parameter (h/k in equations G) the curves must be unicursal. The points of a plane section of 

the surface, a cubic curve without a node, cannot in general be so expressed; but if the plane 

touch the surface they can be so represented, as Norrie shews. The simplest curves on the surface 

are conics cut out by planes which pass through one of the lines of the surface, and these are what 

equations (G) define. Since they are conics, the coordinates are proportional to quadratic functions 

of h, k; all other curves require functions of a higher order than the second. 

[Anether family of curves giving systems of solutions may be briefly noticed. If in equations 

(E) we put b=c, or a=b+¢, or if we impose any linear relation a = Bb + Ce upon the parameters, 

we obtain a curve on the surface and a system of solutions. The curves will be found to be 

twisted curves of order three. | 

Equations (E) and (G) considered as standard solutions. § 14. 

14. The view which the writer of this paper wishes to put forward is that equations (E), 

combined with the supplementary system (G), should be regarded as the standard solution of the 

Diophantine equation. The former are based upon the accepted parametric equations of a cubic 

surface; they include all solutions: and (under the two simple rules of § 8) avoid useless repetitions 

almost entirely. They are however open to the objection (though in a less degree than the old 

WiGreexexrl: No. XaixX: 52 
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solutions) that if they are used in calculating solutions there is always a possibility that some 

simple solution may be overlooked, because both the sets of parameters that lead to that solu- 

tion may be large. [It is not suggested that to tabulate solutions is the final object of the 

investigation.] For this reason it is advisable to retain equations (G) as a supplementary set of 

formulae. They represent the simplest curves (conics) which le on the cubic surface and wholly 

cover it, and are the only such curves expressible by homogeneous quadratic functions of two 

parameters. The formulae are very easily applied as soon as a solution of the Diophantine 

equation has been obtained from equations (E) or by any other method. Moreover it will be 

found that when the fractions (t+ )/(y+ 2), ete. are reduced to their lowest terms, both 

numerator and denominator are numbers of the particular form m?+ 3n? (which Euler has tabu- 

lated, up to 1000, in the paper referred to in §1). The effect of this is that the number of 

cases of equations (G) that arise is far less than would at first sight be expected. Table I of §19 

shews this very plainly, by the frequent reappearances of the fractions in Column III. 

Further consideration of equations (G). §§ 15—16. 

15. If we again adopt the convention of § 8 that ¢ shall be the numerically greatest of the 
four numbers ¢, x, y, z and shall be positive, the three fractions 

(¢+a)(y+z2), (¢+y/(et+2), (¢+2)((x+y) 
have positive numerators and negative denominators; also each is numerically less than unity. 

For, expressed in terms of a, b, c (which are positive), 

tte _T+X_ a +3(b-07 
y+2 T-X  a@+3(b+eP 

ia a Mele I a2) ile 

z+a T—Y  (a+3c)?+ 3b?’ 

t+z2 T+Z (a—byP+3e 
ety T-Z (a+bP+3e° 

> 

Further, the numerators and denominators of the fractions on the right are all of them 

numbers of the special form m*+3n®, and, by the well known theorem concerning the factors of 

such numbers, the numerators and denominators are still of this form when the fractions are 
reduced to their lowest terms. This result is used by Euler, and may be proved also from the 
fact that, if ; 

Pe at ett s* = 0, © avec bbccacw teed colage eee ee (1) 

ah coed Pee mie kg ge 
y+2 €—te+e2 (t+2)4+3(t—2y 

In Euler’s solution (A), quoted in § 1, we see that 

the 8 6§+3r 

y+2  p+aq? 

In order to obtain simple solutions, Euler selects from his table two values for s* + 37? and p* + 8q? 
which have a fairly large common factor, and which are obtained from several sets of values of 
8,7, p, q; he then follows out the various cases and so obtains several solutions for all of which 
(t+)/(y+2) has the same value. In his first example he selects values 19 and 76 and so gets 
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seven solutions for which (t+)/(y+2) is — 1/4; in his second example he selects values 28 and 

84, and so gets eight solutions in which (¢+)/(y+z) is —1/3. The solutions he obtains are not 

the simplest for which (¢ + x)/(y+ 2) has these values. 

16. To illustrate the use of equations (G) we will take the simplest solution of the Diophan- 

tine equation and derive the three systems of solutions. 

t=6, «=—5, y=—-—4, z=—-3. 

Applying the method of § 18, we have the following results. The general solution for which 

(i) (t+ a)/(y+2)=-1/7 is 

t=6-0h, x=—-54+0h, y=-—4-—0k, 2z=-—3+4 Oh, 

where 6 = (11h + 7k)/(h? — 7k); 

(i) (¢+ y)/(¢+ a) =—1/4 is 

t=6—6h, y=—44+060h, z=—3+4+ 0k, x=—5- Oh, 

where @ = (10h + 8k)/(h? — 44°); 

Gu) (¢+2)/(e¢+ y)=— 1/3 1s 

t=6-60h, z=—-34 60h, w=—5-—Ok, y=-—44 Ok, 

where 6 = (9h + 3k)/(h? — 3k*). 

It will be observed that until / and & receive definite values, it is not possible to say which 

of the four numbers is numerically greatest. The rule of § 8 with regard to ¢ must be aban- 

doned for the moment. 

From (i) we learn that there is an infinite sequence of solutions in which ¢+a#=1, 

y+z=—7, derived from integer values of @, For an infinity of values of h and k (positive and 

negative) make h?—7k*=1, and each of these gives such a solution. [Other values of h and k& 

make h?—7k?=2, or — 3, and these also give infinite sequences of solutions in which t+a=1, 

y+z=—7.] So from (11) we can derive an infinite sequence of solutions in which ¢+a= 3, 

ytz=—9. 

But in (11) the case is different, since the coefficient of k* is a perfect square. Here 

0 =7/(h — 2k) + 3/(h + 2h), 

and there are only a finite number of integer values of h and & that make @ integral. The 

number of solutions for which (t+ y)/(z+a)=-— 1/4 is of course infinite, and all can be derived 

from (ii), by giving h and k integer values (positive or negative) prime to one another. 

In the application of equations (G) the same difficulty arises which was discussed in § 8, that 
Ciel tes | when a solution (¢/x’y'z’) has been derived from the solution (¢, 7, y, z) from certain values of h, k, _ 

certain other values must lead to the solutions (t/2'z’y’) (a’t'y'z’) (2tz'y’), which clearly have the 

same value of (¢+)/(y+z). As in § 8 there is a simple rule by which the number of repetitions 

can be reduced from 3 to 1, so that the waste of labour that might be due to this cause is to a 

large extent avoided, viz., that if 

(¢+ x2) hl’ +(y +2) kk’ =0 

the parameters (h’, k’) lead to the same set of values as (/, /:) in a different order. 

or bo | to 
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Examples of the formulae and methods. S§17—19. 

17. In conclusion I will give a few applications of these formulae and methods. It is always 

to be understood that in any known numerical solution (¢, 7, y, 2), # 1s positive and is numerically 

greater than « or y or z. In an algebraic formula it may not be possible to say which number is 

greatest. No assumption is made as to the relative magnitudes of x, y, z. When the parameters 

a, b,c are employed, it is to be understood that they are positive and that a is not a multiple of 3. 

Example I. To find the general solution of the equation for which (t+ x)/(y +2)=— 1/4. 

In order to use the formulae (G) we must know a special solution of the kind. This has 

already been found, viz. (6, —4, —5, —3), and the formulae were given in § 16 (ii). It was stated 

there that since —(t+.)/(y+2) has a rational square root the characteristics of the system of 

solutions differ in some respects from what is usual. The formulae of § 16 for the four numbers 

ACEO Fa NALA 
6-— 0h, —4+60h, —5—0k, —3+90k, 

8 =(10h + 8h)/(h? — 44°), 

can be simplified by the substitution 
h+2k :h—2k::f: g. 

They become 

4fg+2(7f?+ 39°), — 16/9 + (7f?— 39°). 

We note that when f and g are both odd a factor 4 cancels out, and that when / is a multiple of 

3, a factor 3 cancels out. Also since parameters (7’, g’) lead to the same numbers as (f, g) when 

(i) f'/¢ =—Sig, Gi) TF’ + 399’ =9, 
it follows that we can avoid repetitions entirely if we take only positive values of f and g, the 

latter not being divisible by 7. It is now not difficult to obtain the following twelve solutions, 

which I believe to be the complete system when no number exceeds 100. 

Table of solutions when (t+ #)/(y +2)=— 1/4. 

ij g tand x y and z 

Es _| 

1 1 Bilka4). | he eee 
i 2 16, —30 —37, —27 
1 3 es ey ele) 
1 y 5 ae 36 |) SSeS 

BF al I 70, -—54 57, 7 
3 1 ior 10 Ve | 
3 2 58, — 42 ~49, —15 
3 4 90:) =[68)) ‘loi tegen 

3 5 ee 18 Boi.) eee! 
3 11 82, —60 —69, —19 
5 94, —84 = 6904 pane 

| 9 1 Geee—92 ||, © 2aBOh ean 
! 
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18. Caleulation of solutions by equations (E). It is easy to discover any number of solutions 

of the Diophantine equation by means of equations (E), but it becomes clear at the outset that the 
lowest values of the parameters do not lead to the simplest solutions. Thus the values a=b=c=1 

give the solution (29, — 27, —15, — 11), while the simplest solutions of all (6, —5, —4, —3) and 

(9, — 8, —6, —1) are derived from the values (2, 1, 1) and (1, 2, 1) of (a, b, c). The explanation 

is easily seen, and when the parameters are known it is possible to foretell, without actually going 

through the calculations, whether the solution will be a simple one or not. The values of 

(T, X, Y, Z) of the formulae in (E) are simplified when they contain a common factor, which 

can be cancelled. The factor cannot be 3, since a and therefore X is not a multiple of 3. For 

all odd factors, the rule given in §11 is valid, viz. factors which can be cancelled out must be 

common to one of the three following pairs of numbers 

(1) a and b+ 3c, (i) b and @?+3c?, (an) ¢ and a? +3082 

Such factors must be of the form m?+ 3n?. 

It remains to consider when it is possible to reject a factor 2 or a power of 2. This case 

cannot be included in the general statement on account of the irregular réle which 2 plays in 

connection with the factors of numbers m+ 3n*; and it is confused by the multiplier 2 which 

occurs in the equations connecting (7, X, Y, Z) and (¢, z, y, z). When two parameters are odd 

and one is even, a factor 4 can be rejected from (7, X, Y, Z) leaving quotients of which two are 

even and two odd. The values of f, 2, y,z are then found by the equations; two of them are even 

and two odd. When two parameters are even and one odd, or when all three are odd, 7 is even, 

X, Y, Zare odd. The values of ¢, w, y, z as given by the equations are not integers, and it is 

necessary to introduce a factor 2. When this has been done, integer values, all of them odd, are 

found for ¢, z, y, 2. 

Thus a set of parameters a, b, c, whose sum is even, gives values of f, 2, y, z which are, roughly 

speaking, only one-eighth of those derived from parameters of nearly the same values whose sum 

is odd. It will be found that quite low sets of parameters, e.g. (2, 1, 2), (2, 2, 1), (1, 3, 1), (1, 1, 3), 

(1, 3, 3) lead to solutions containing numbers which exceed 100. On the other hand the set 

(7, 2, 1), where a and ¢ are odd, 6 is even, and in addition a =b* + 3c, leads to the very simple 

solution (12, —10, —9, 1); a factor 28 is common to 7, X, Y, Z. The same factor 28 could be 

rejected for the sets (2, 7, 1), (2, 1, 7), (7, 1, 4), (7, 3, 2). 

It is thus possible to foretell what factors will cancel out, as soon as a set of parameters has 

been chosen. The odd factors are all those contained in the three greatest common measures of 

a and b? + 3c, of b and a? +3c*, and of ¢ and a? + 3b?; the power of 2 is given by the rule above, 

and depends only on whether the sum of the parameters is odd or even. 

19. Tables of integers which satisfy the equation 

P+otyto=0. 
Below are given 19 sets of integers ¢, x, y, 2, none greater than 50, which satisfy the equation, 

which I believe to be the total number of such solutions. In a second column are shewn the 

values of the three fractions such as — (¢ + «)/(y + z) corresponding to each solution, and in a third 

column the values of the parameters a, b,c which lead to the solution. In Table I some further 

solutions in numbers less than 100 are shewn; the list is possibly complete: there may be omissions, 

but not many. In II a statement made in § 15 is illustrated, and a note on a method of numerical 

calculation is added in IV. 
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I. Table of sets of numbers less than 50 which satisfy 

P+A+y+2=0. 

Et WN Eh Ill. —(t+.)/(y +z) ete. ING oF Jac 

6 ye ee SI 1/7, 1/4, 1/3 SESE 

9 — 8 = 6 = 1 1/7, 1/3, 4/7 ts eh 

12 —10, — 9; +.1 1/4, 1/3, 138/19 (au 2s el 

16 —15, — 9, + 2 1/7, 7/13, 3/4 ing am a) 

19 —18, -—10, -— 3 WARK OMG 4/7 cost emel lea | 

20 -l7, -14, - 7 1/7, 1/4, 13/31 iar a 2 

25 —22, -17, -— 4 Wit 4/13, 7/13 Dey ds 

27 —24, —19, +10 1/3, 4/7, 37/43 20 wT sceel 

28 —21, -—19, —18 7/37, 3/18, 1/4 Loe Ose 

29 =27, =15,, =11 WA SpE. sy/iri nis a tl 

34 Sty Salley, abe Y 1/13, 19/31, 3/4 ioe t Als e 

54 — 33, —16, + 9 1/7, 3/4, 43/49 3H 1-1. 0 

39 — 36, —26, +17 1/3, 13/19, 28/31 PA ifs i 

40 —33, —31l, +12 MOS aye eyals Leake: aI 

41 — 33, -—32, — 6 ANOS © 13 / Von et lo OD, 2a 

+1 —40, -17, -— 2 WAI Seite sy AWS, le 3,2 

44 —41, —23, -16 Wile GE cial AS Cus SS | 

46 —37, -—30, —27 oylg, «1/45 9 G7 UG) Wear 

46 | —37, -—36, -— 3 3/13, 1/4, 43/73 LOS oad 

II. Other solutions in integers which do not exceed 100. 

Bl) 43, 38 12- gaeete6s, 43,  — 380 Wohnen ee 
53, =44, —34, —29 it 0th ae 89. .SRE.e = 415 ee 
Boy = 50) — 290s ieee 38, — 31 90, —69, —59, —58 
fay nae 21 eee (ole) Se 90, =8%, —385 son 
55, —54, -24, +17 i avi Se a 93, 99, “S00 ail 
58, —49, —42, —15 Bi == 48, —25 63.. = 85,. 04s am 
58, —67, —22, +9 e275 64, + 51 64 ga eee oe 
60; —69, —23, 4+ 3 goweag = 60, »— 19 96. =90. —68,-—19 
Gi, 254 pol, "SD Bf 68, —28 96, —93, —59, +50 
67), 268) 51) 14°90 anal 64:. =), —50 97, —79, —69, —45 
69, 261, 1236) 98 Seesrean- bo, —26 97, 01-96 (83, .( seo 
69° 561) 06) 42 OT NEWS As, — 39 97,90, —66, 447 
GO, eB, kc ABE UT 87, —79, —54, -20 96) 2108, 0G. (Coa 
Tei eas ald Oe hdteas) Of 98,, 189). = 6Sien= oe 
72, =—66, —989, —p4 Seeae cise, = 25 
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II. The infinite sequences of solutions referred to in § 16, in which 

t+e=1, y+z2=-7, 

tandw= 6—Ah, —5+2Xh,) 

y and z=—4—2rk, —3+ 2k, } 

X= (11h + 7k)/(h? — Tk), 

are as follows. 

AS k= I. 

h= 127, 2024, 

c= a 48, + 165, 

Bee i 

h= : 45, Uilee 

k= ctaglneet dey tots DT 

C. —- Te =—3. 

lo By; 82, NEO, cas 

k= 2 31, 494, ... 

and = 2 Sie 590f ee 

oe le 14. — 229) v5 

In each sequence the values of h and & form a recurring series, the successive terms obeying 

the law 
Un = 16, — Un—r- 

IV. Another version of equations (G), adopted from Euler’s memoir, is specially suitable 

for the numerical calculation of solutions. I have used it to check and complete Tables I and IL. 

If (t+ 2)/(y+z)=a/(—b), a and 6 being prime to one another and a < b, and we write 

t=ka+u, v=ka-—u, y=—kb+v, z=—kb—v, 

then Bau? — 3bv? = (b — a?) ke’. 

It is not necessary here to enter into the theory of this quadratic equation. If we find positive 

integer values of wu, v, k having no common factor, the values of ¢, x, y, z, have no common factor, 

except a 2 when a, b, k, u, v are all odd. When values of a, b and & have been chosen, it is easy, 

with the help of a table of squares and a caleulating machine, to find the values of u and v that 

give all the solutions in ¢, x, y, z up to any imposed limit. I have done this for all values of a 

and b up to and including b = 16. 

CAMBRIDGE: PRINTED BY J, B. PEACE, M.A., AT THE UNIVERSITY PRESS 
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XX. On Cyclical Octosection. 

By W. Burnstpe, M.A., F.R.S., Hon. Fellow of Pembroke College. 

[Received 10 April, Read 3 May, 1920.} 

THE complete solution of the problem of cyclical quartisection was first given by V. A. 

Le Besgue in the Comptes Rendus [Vol. 11, p. 10 (1860)]. The result is given in the form that, 

if X is the sum of } (p— 1) distinct primitive pth roots of unity which sum takes just four distinct 

values, then 1 + 4 is a root of the equation 

p-l 

[yt (Sel al pl — 4p [y — LP —0; 
where p=[?+4M*, L=1 (mod. 4). 

No proof is given. The only proof that I know of is one by P. Bachmann in the sixteenth 

chapter of his work on Krezstheilung. This proof appears to me to be quite unnecessarily com- 

plicated; and I have therefore established the formulae, so far as they are necessary for the 

problem of octosection, independently. 

1. It may be convenient to recall those properties of an algebraic number-field of which use 

will be made. By a rational number is meant a fraction . of which the numerator p and deno- 
q 

minator g are ordinary integers (in the sense of elementary arithmetic) affected either with the 

positive or the negative sign. In the particular case in which gq is unity, the rational number is 

said to be a rational integer. 

If « satisfies an equation of the nth degree, the coefficients of which are rational numbers, 

and if it is impossible to express the left-hand side of the equation as the product of two factors 

in which the coefficients are rational numbers, the equation is said to be irreducible. The totality 

of the rational functions of x, which satisfies such an irreducible equation with rational coefficients, 

is called an algebraic number-field of order n. 

If y satisfies an equation of finite degree with rational integral coefficients and if the 

leading coefficient is +1, y is called an algebraic integer. 

The principal property of an algebraic number-field that will here be made use of is the 

following : 

In an algebraic number-field of order n, a set of n algebraic integers a; (7=1, 2, ..., n) can 

be chosen (in an infinite number of ways), such that every algebraic integer belonging to the 

field can be expressed in the form 

A 2, + An Zo+ ... + AnXn, 

where @, ds, ..., Un are rational integers. The set of algebraic integers ; (i = 1, 2,...,7) is called 

an integral basis of the field. 

Vou. XXII. No. XX. 53 
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Notation. The prime p is congruent to unity (mod. 8); g is a primitive root of the con- 

gruence g?= 1 (mod. p); 

@ is a primitive pth root of unity; 

n=1(p-1)-1 : 

w= = og G—1,9 8); 
n=0 

Bi t+ Mits= G5 

Va, where a is a real positive quantity, is the positive square-root of 2. 

2. The algebraic number-field defined by », is of order 8. An integral basis for the field* 

is given by sy, fs, --., as. The field defined by 2, is of order 4, An integral basis for it is 

Ay, Ae, As, Ay. Both these fields are cyclical; that is to say, the cyclical permutations 

(Ha Hops «++ Ms) OF (AyA2AsA4), 

applied to any number of the field expressed in terms of the basis, gives the conjugate numbers. 

Now (A, —A,)? is unaltered by the permutation (A,,)(A2A,). Moreover it is evidently an 

algebraic integer. Hence 

(Ar = Aa)? = Ay (Ay + As) + Ao (Ae + Aa), 

where A,, A, are rational integers, so that 

(Ao — Ay)? = Ag (Ar + As) + Ay (As + Ag), 
(Ay — Ag)? + (Ae — Ay)? = — (A, + Ao). 

Now X, contains, with @, its inverse a. Hence A,°—4}(p—1) is the sum of +, (p—1)(p—5) 

primitive pth roots; while ,A, is the sum of ;,(p— 1) primitive pth roots. Hence 

, —A,—dA,=p. 

If is suitably chosen it is known that 

An + Ag — Ae — = Vp, 

and therefore (Ay —As)?= 3p +3 (A, — As) Vp. 

The algebraic integer (A; —3)(A.—A,) takes just two distinct values which are equal and 

opposite ; 1.e. 

G= VOLS we BOS) ea 

Comparing the values of (X, — A)? (As — Ay)? derived from the last two equations 

p?—(A,— Ao)? p = 4 Bp, 

or p=(A,— A,)?+ (2B) 

Now since p is congruent to unity (mod. 4), it is uniquely expressible in the form a? + 6* 

where a is an odd and 6 is an even integer. Also A,— A, and B are rational integers, so that 

A,-—A,=a, 

where the sign of a has still to be determined. 

* Hilbert, Jahresbericht der Deutschen Mathematikes-Vereinigung (Vol. 1v, p. 352), (1897). 
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Now from the equations 

Qu —As)?= Sp + $a Vp, 
(A, + A32=2(p+1)—4 Vp, 

there results —20,X,=4(p—1) +4 (a41) Vp. 

Since 2A,A, is an algebraic integer and 4 (p—1) is an integer, }(a@+ 1) Vp must be an algebraic 

integer, and therefore 
a=-—1 (mod. 4). 

This immediately gives the formulae 

w= Vp +iVJ2(p+avp), 

a 20TH 
N= $+ dV p—4V2 (p +4 Vp), 
m= —4—gVp—4V2 (p—avp), 

which indicate how the signs of the square roots change for the cyclical permutation (A,A.A5A4). 

3. The remaining step is to determine the value of (4, —u;)°. This is an algebraic integer 

which is unaltered by the permutation (44/45) (Hops) (MsH;) (ses), SO that 

(Ha — Hs)? = Aypa + Ape + Asps + Agus t+ Aims + Aops + Aspe + Asus 

= A,r, + Ade + Azgd3 + Asry, 

where A,, A,, A;, A, are rational integers. Using the above values of the 2’s 

(4 — ws =at+BVpt+yV2(p+a Vp)+8V2(p—a Vp), 

where a=—1(4,+A,+A,+A,) B=1(4,—A.+ A; — Ay), 

y=4(4,— A), $=4(4,— Ad), 
so that 4a, 48, 4y, 46 are rational integers. 

The number (4, — p;) (us — ws) is also unaltered by (py fH5) (Mos) (Matz) (sus), While the sum 

of its four conjugate values is zero. 

Hence (4; — Ms) (2 — ps) = hy Vp + fy V2 (p + a Vp) + ky V2 (p — a Vp) 
where 4k,, 4k,, 4k; are rational integers. This gives 

(us — Hr) (Ms — Hs) = by Vp — ke /2 (p +0 Vp) — ky V2 (p— ap), 
so that 

(ia = bs) (He — bs) (Hs — Hz) (fs = Hs) = P [hk —2 (ko? + k.?)] i [a (ke? — ke) + 2bk ks] Vp. 

Now the two conjugate values of the number on the left are equal and opposite, so that 

[RPS DOGS a) el SEmMRR RB ckcciccodcoadoct eee meneame eee ae (2) 

Further (14 — ps) (ua — ao)? = [4+ B Vp +2 (p+ ap) +8V2(p—aVp)] 
x[a— 8 Vp—8/2(p+avp)+yV2(p—avp)} 

while [(Ha— Ms) (Ho — Me) P= [hy Vp +k, 2 (p+a Vp) +k; /2(p a Vp)F. 

Da 



408 Mr BURNSIDE, ON CYCLICAL OCTOSECTION 

On comparing these two equal expressions, it is found they involve the following relations 

between the rational numbers a, 8, y, 6; 41, ke, ks: 

Gaal oe ed (gee ep le ccaconbecsasongcneonaeencmctc. ge (ii) 

b (yy? — &) — Lard = a (he? — ke?) + Whighs, .. 0.0 0.cecceeeeees eter (iii) 

(a+ bB) (y — 8) —aB (y +8) = 2h, (ak, + Dis), oe c cece ee eeee eee eeeees (iv) 

— aB (y — 8) +(a—bB) (y +8) = 2h, (Dka— ks), ss. ecceeeeeeneeneenee eee (v) 

where b is the positive square root of the 6° that occurs in p=a?+b* The equations (iv) 

and (v) give 

2pky le, = aa (ry — 8) + (ab — Bp) (y + 8), 

2pkyks = (ab + Bp) (y— 8) — aa (y + 8). 

Entering these values of &, and ky in (iii), it becomes an identity in virtue of (i) and (11). 

Entering them in (i) and (ii), it is found that a, 8, y, 6, 4; must satisfy 

a? — pB? = 2pk? = = [(a2+ pS?) (y2+ &) — 248 {a (y?— &) + Qhyd}]. ....... (vi) 

When 4a, or 3 (ui — i+), is calculated in the same way that (A; — Az)? + (Ay — A)? was eal- 

culated above, it is found to be p or — p, according as p=1 or 9 (mod. 16). In either case 

a= i6P> 
so that the first of equations (vi) gives 

p= (48) +2 (4k,)* 
Now 48 and 4h, are rational integers; and since p is congruent to unity (mod. 8), it can be 

uniquely expressed in the form 

p=a?+ 2b2, 

where a’ and b’ are rational integers. 

Hence B=ta', k=’, 

where the signs of a’ and b’ have yet to be determined. 

When these values are entered in the second of equations (vi) it becomes 

b's = [4b — 46 (a + a’) + [48b + Sy (@ F a’) 9, cece cece cee e eee es (vii) 

where the upper or lower signs are taken according as p= 1 or 9 (mod. 16). 

Now if ¢ is a given rational number and «, y unknown rational numbers, the equation 

e+yp=C 

may be written 

where ¢ is any rational number; so that its general rational solution is 

1-# 2t 
ecg? Ho ga 
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The general rational solution of (vii) is therefore 

. eh? 
4yb —48 (a ta’)=b 1+’ 

Aeaat ay =b2 
SCAR ad a ere 

: : 1l-# Qt 
hic 7 =i — ‘) —— which give Ay bo pget@eeey aa). 

yk e 2 
= 4[—(aFa) opto |. 

2 
- 2t 
eer aoa OTe other 

than 0 and +1 (.e. if they have an effective denominator d), thend must be a factor of 6” from the 

first form of the equations and of a’ from the second form. Hence, since a’ and b’ are relatively prime 

Now 4y and 46 are rational integers. Hence if the fractions : an 

? 

: 1-# 2 : : ‘ 
the only values of ar and tap Qand +1. It follows that there are only four possible pairs ot 

values for y and 6, viz. 

y=4(ata), y=—-F(ata’), y=4), Veet tl 
6 = 1b, 6=— 1), 6=-l(ata), d=t(aF a). 

These possible values of y and 6, and the sign of a may be dealt with as follows. The 

equations 7 

(Ha — Hs) + (Ha— pe)? = t hp t+ da’ Vp, 

(41 + Hs)? + (us + oP = 4 (Vp — 1)? +3 (ptavp) 

give —2 (pips + Pser) = as (p—1)4+4[a’ —4(a-1)] Vp, p=1 (mod. 16), 

=—;(7p+1)+4 [a -—4(a—-1)] Vp, p=9 (mod. 16), 

so that in either case a =4(a—1), (mod. 4). 

The equations 

(141 — ps)? — (pt — pz) = 2y J 2 (p + a Vp) + 282 (p—avp), 

(n+ Hs) — (s+ Ha)? = (Vp — 1) V2 (p+ ap) 
=1(a-1)V2(pt+avp)+}bV2(p—avp) 

give paply— paps = Hs (S8y— 4 +1) V2(p ta Vp) + a; (88 — b)V2(p —a Vp) 
= 4 (8y—a+1) (Ai +Az) + $ (86 — B) (Aa t+ Aa). cree ecepeeerenrececerere (vill) 

Since ps4; — jus is an algebraic integer, }(8y—a+ 1) and $(88—b) must be rational 

integers, For the last two possible pairs of values of y and 6, $(Sy—a+1) is }(1—a@+)). Since 

a=—1, b=0 (mod, 4), this number cannot be an integer. Hence only the first two pairs of values 

of y and 6 can occur. 

If p=1 (mod. 16), a? is of the form (8m +1); and since a=—1 (mod. 4), in this case 

a=—1(mod. 8). Hence a’ =4(a—1) (mod. 4), =—1 (mod. 4), =—1 or 3 (mod. 8). 

If a’ =—1 (mod. 8), 8y=a+a’, 8d=b) ) 
, : ke the coefficients in (viii) integral. 

a’ = 3 (mod. 8), $y =—aeeeeso =o < (vi) g 
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When p= 9 (mod. 16), a? is of the form (8m +3)?; and since a=— 1 (mod. 4), in this case 

a =3 (mod. 8). Hence a =} (a—1) (mod. 4), = 1 (mod. 4), = 1 or — 3 (mod. 8). 

Ifa@=1(mod.8), 8y=a-a, 86=6, 

a =—3 (mod. 8), 8y=—a+a’, 85=—b 
| make the coefficients in (viii) integral. 

To sum up, the results may be expressed as follows, 

If pHe’+P=a2+ 2b", 

where p is a prime congruent to unity (mod. 8), while a, b and a’ are completely defined by 

a=—1 (mod. 4), b>0, a =4(a—1) (mod. 4), 

then when p=1 (mod. 16), a’=— 1 (mod. 8), 

4 (u,— ps)? =pta Vp+h(at a’) V2. (p +aNvp) +4b/2(p—avp), 

when p=1 (mod. 16), a =3 (mod. 8), 

4 (u,—p,)?=p +a Vp—}(ata’)V2(p+avp)—$bV2(p—avp), 
when p =9 (mod. 16), a’= 1 (mod. 8), 

4 (1, — os)? =—p +a Vp +} (a—a’)V2 (p+avp)+ 3bV2(p—avp), | 
when p=9(mod. 16), a’ =—3 (mod. 8), 

4 (u,— ps? =—p +a Vp—4(a-a’)J2(p+avp)—bV2(p—avp), 
these possibilities covering all cases, while in each case 

4 (14 + pig) = —1+Vp+V2(pt+avp). 

4. When the values of a, 8,7, 6 that have now been determined are entered in the equations 

2pk yk, = aa (y — 8) + (ab — Bp) (y+ 8), 

2pk,ks = (ab + Bp) (y — 8) — aa (y + 8), 

they give p=1 (mod. 16), a’ =—1 (mod. 8), 324,k,= 67, 32k,k, = —b?, 

p=1(mod. 16), a= 3(mod. 8), 32k,k,.=—b%, 32k,k, =b?, 

p=9 (mod. 16), a = 1(mod. 8), 32k,k,=—b", 32k,k, = 0°, 

p=9 (mod. 16), a =—3 (mod. 8), 32k4,k,= 6%, 32k,k,=—b% 

When p=1 (mod. 16), (4, — 5)? is a real positive number so that, with the specification that 

has been given of the symbol V(u,— 5), it follows that (4, — ps) (io — Ms) + (os — Mr) (Ms — Me), 

or 2k, Vp, is a real positive number. Hence, if b’ > 0, 

p=1(mod. 16), a’ =—1 (mod. 8), hk, =}0'", h=—hks= 30, 

p=1(mod. 16), a= 3 (mod. 8), k, =H’, kh =—k, =— 40" 

When p=9 (mod. 16), (4; —u,)? is a real negative number, and it is necessary to give a 

specification of the symbol V(u,—,)% If it is specified as that square root in which the 

coefficient of 7 is positive, it follows that (4 — fs) (Ha— Me) + (us — Mr) (Ms — Ms), OF 2K, Vp, is a real 

negative number. a 
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Hence, if b’ > 0, 

p=9 (mod. 16), a’= 1 (mod. 8), k,=—-1)' k,=-k,= Yb, 

p=9 (mod. 16), a’ =—3 (mod, 8), k;=—4)’, ky, =—h, =— 1. 

Denoting the four cases, as regards the values of p and a’, in the above order, by (i), (ii), (iii), (iv), 
these results are equivalent to the formulae 

(1) (Hi — Hs) (Me — Ms) = $b’ (Ay — Az), 

(11) (#1 — Hs) (He — He) = $b (As — Ay), 

(111) (44a — Hs) (oe — Me) = — $0’ (As — Ay), 
(iv) (fa — Ms) (M2 — fs) = — $b’ (Ay — Az). 

5. To complete the formule for the multiplication of the differences u;—;.,, it is 

necessary to calculate directly that for (4, —s5)(u;—;), as it cannot be obtained by cyclical 

interchange from those just given. 

Tn cases (1) and (11) 

. (141— Hs) (n— on) =n (4B Vp — [ry V2 (p + a Vp) +8 J 2(p—avpyy 
=1 Vp (a? +b? — aa’) + (pa — aa’? — ab®) Vp 

= 4 /[bV2(p + avp)-(a—a'W 2 (p—av yp. 
Now in these cases (4 — “;) (3 — fz) 1S positive. Hence 

(us — ps) (its — br) = 4b 2 (p + Vp) — (a a’ WV 2(p—avp) 
= 40(A, —r;) —4F (a— a) (An — Ag) 

Similarly in cases (iii) and (iv), when (4, — u;) (us — “;) is negative, 

(= bs) (ts — x) = ip (a? +b? + aa’) —(pa’ +. aa’? + bb?) Vp 

=4+ Gt [ev mare a vp) - (a as a’) ui 2(p—a vb)P 

=—4b J2(p+avp) +t(a+qa) J2 (p- ap) 

= 4d(, — Vs) + ¢ (a +a’) (Az — 4). 
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XXI. Congruences with respect to Composite Moduli. 

By Masor P. A. MacManony, R.A., F.RS. 

[ Received 16 April, Read 3 May, 1920.] 

THE object of the present communication is to put together certain results in the Theory of 

the Residues of Powers with respect to composite moduli which seem to be worthy of preservation. 
The generalised Fermat Theorem states that if M be any integer, the congruence 

a?) =] mod M 

has ¢ (M) incongruent roots which are the ¢ (J) numbers less than and prime to M. If M have 
either of the forms (i) a power of an uneven prime, (11) twice the power of an uneven prime, 

(11) the number 4, the congruence has roots which appertain to the exponent ¢ (JM) and then are 

known as primitive roots of the congruence of the number MV. In no other case does the con- 

gruence possess roots which appertain to the exponent (1). Further if 6 be a division of 

¢ (M) the congruence 

#=1 mod M 

has 6 roots, (6) of which appertain to the exponent 8 whenever M has one of the three forms 

specified. 

1. In order to regard the matter from a general point of view it is convenient to separate 

the assemblage of all integers into an infinite number of categories. 

Denoting uneven primes by 

Pv Pa» Rs, ++ 

I define the sth category as including numbers of the four forms 

JOC OP 5c Va 

Tr 270,71 Po"? ... Ds"®, 

2p Dee jee FHS eet, 

22 gene ee—3 where a> 2, 

where observe that putting s=1, the first category involves (exceptionally) numbers of the 

three forms 

| pT, 2p, 2, 

the fourth form not existing and that it comprises precisely and exclusively those numbers which 

possess primitive roots. 

For the first category Tables exist which shew up to a certain value of M the roots which 

appertain to every divisor of ¢(M)*. 

* Die unbestimmte Analytik by Hermann Scheffler gives such a Table for all prime moduli which are <100 and 
other more extensive results have been given in Crelle and elsewhere. 

Vou. XXII. No. XXI. 54 
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In respect of moduli which are included in categories other than the first it is well known* 

that the highest exponent to which roots appertain is if 

Mi Dp 8 cos Ds * 

the least common multiple of 

co) (2%), fu) (p.™), Co) (p2™), go d (ps"8), 

if a < 2, and the least common multiple of 

f° (2%), &(p.™),  (po™), -- &(Ps™)s 

if a> 2. 

I denote this number by 

A(M), 
where observe that 

@(M)=$(M) or < 4g (I) 
according as M is or is not in the first category. 

For numbers in all categories we may state: 

“The congruence 

z®AO)=1 mod M 

possesses ¢ (17) incongruent roots which are the ¢ (/) numbers less than and prime to M.” 

It is clear that @(J/) is a divisor of ¢ (). 

2. It has been established by previous writers that, if M, be a number included in the sth 

category, the congruence 

w=1 mod M, 

possesses 2* roots exactly and that of these, 2*— 1 appertain to the exponent 2. 

We may in fact so define the sth category, simply saying that it includes all numbers M, 

which have the property that the congruence 

z=1 mod M, 

possesses exactly 2* roots. 

The congruence 

2?) =1 mod M 

has roots which appertain to the exponent @(M/). They are primitive roots of the congruence. 

Further if & be a divisor of 6(M) the roots which appertain to the exponent 6 may be 

termed primitive roots of the congruence 

x =1 mod M. 

When J belongs to the first category this congruence possesses ¢ (8) primitive roots but in the 

cases of other categories this is not so. It is in fact easy to verify for the special case 6= 2, that 

if o, be one primitive root, the remaining 2* — 2 primitive roots are not all congruent to powers of a. 

* Serret, Cours d’Algebre Supérieure, 5th Ed. 2nd Vol. pp. 50 et seq. 

i 
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So also in the case of the exponent 6, any one primitive root g will certainly give rise, 
through the series of powers 

I, 7, F, --- 7, Where g=1, 

to (6) primitive roots, because the residue of g* is a primitive root if k be less than and prime 
to 6; but in general there are other primitive roots. All that we can assert at present is that if 
NV; denote the number of primitive roots of the congruence 

a®=1 mod MW, 
6 being a divisor of @ (I), 

N;=0 mod 4 (6). 
We write therefore 

N; = S; Co) (8), 

so that the NV; roots occur in S; periods or sets of power-residues. 

S; is an arithmetic quantity—an integer—whose value has not yet been determined. 

Of course for the first category S; is invariably unity. 

If 6,, 6, be relatively prime divisors of @() it is known that 

N;, N3,= N5,3,; 

and since $ (6,) & (6:) = $ (6,6) 

we find that Ss, Ss, = Ss,5,- 

Denote by P; 

the number of roots of the congruence 
a®=1 mod UM, 

so that, in particular, 
Pow) = o(M). 

Also if & be a divisor of 6 
= Ny = Ps. 

In the first place we evaluate IPs. 

3. Let Mia 2a y ly m2... 576, 

and denote the highest common divisor of the integers a, b by 

{a, b}. 

It follows from well-known principles* that the congruence 

a = 1 mod 2 

possesses b {8. ¢2(2*)} roots, 

where 6 is 1 or 2 according as 6 is uneven or even. 

Also the congruence 
x =1 mod p,” 

possesses {8, @(p.™)} roots. 

Hence, if 6 be a divisor of @ (17), the number of roots of the congruence 

a®=1 mod M 
is given by 

P;=b {8, ¢7(2*)}, {8 6 (p:7)}, (8, 6 (p.™)},--- 18, 6 ps™)}, 
wherein, if M be uneven, the factor 

b {8, $*(2*)} 

* Serret, Vol. nm, p. 89. 
must be deleted. 

or [ bo 
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Observe that since 
¢ (p*) is even 

e128 

for moduli of each of the forms of the sth category, in agreement with the known result. 

If § be a power of an uneven prime p, each factor in { } is either unity or a power of p. 

This shews that 

Pos is equal to a power of p. 

It is well known that, if 8,, 6, be relatively prime, 

P;, Ps, = P53. 

4. We can now evaluate 

N,,PrsPer,Ps, Ja 

where 77,7... is a divisor of @(M) and of ¢ (J). 

wih Ve 7: For Pie = Ni +N, 4+ Nit... + Nin 

so that Nyx = Pye — Parts 

leading to the formula 

NV ,,Pip Pers... = (P,,» = P,,e.-1) (P,P = P,ps-1) Cis eg a=) inne 

where 

Pp = b {re, G?(2%)}, {7*, h(pi™)}, {7*, H (pa™)}, --- [7*, & (p.™)}. 
Thence 

2 (P,P: = P,,pi-1) (P,.P2 — P,,p2-1) (P,.,p az IRE) oo 
S , = rPtrsPtrs?s... d (ry TP TPs. ) ’ 

the general expression for the number of periods in which the 

N,,P17.P273°,,. numbers 

occur. 

Observe that we may write 

5 
Sp,PtyoPergPs,.. = U : 

The annexed Table embraces all moduli of the second and third categories up to the points 

where moduli of the fourth category begin to appear. The smallest number belonging to the 

fourth category is 120 = 2°.3.5. 

The two categories are given separately and in a form to facilitate the verification of the 

theorems given in the paper. 



TABLES OF PRIMITIVE ROOTS OF CONGRUENCES 

THE SECOND CATEGORY 

s ~ Bas 
=] fou] cin os 

= 5 ss Bo 
Modulus Bitte gs #2 

Be 3 a Ad 
= a 

M 6(M) 6 P; ¢ (8) S3 N; Primitive Roots of Congruence «§=1 

28 2 1 1 1 1 1 1 

2 a 1 3 3 eh ayy 

2°.3 2 il 1 if i 1 1 
2 4 1 3 3 BEG Il 

3.5 4 1 1 1 1 1 
2 4 1 3 on 4, Ds 14 
4 8 2 2 4h Ayo toby al} 

24 4 1 1 1 1 1 1 
2 £ 1 3 3 Tete ls 

4 8 2 2 Feo. tt, 13 

27.5 4 1 1 1 1 eh 
2 4 1 3 3 Rani a) 
4 8 2 2 AB 8B UG eh Us 

3.7 6 1 1 1 1 1 1 
2 4 1 3 3 ©68, 13, 20 
3 3 2 1 2 4,16 
6 12 2 3 6 2,5, 10, 11, 17, 19 

PEAS 6 1 1 1 1 1 1 
2 + 1 3 Si USF sy Py 
3 3 2 1 Py felis) 

6 12 2 3 Gedo. LL, Lie toes 

2.3.5 4 1 1 1 1 1 1 
2 4 1 3 ome LTS 19; 29 
4 8 2 2 ch fp alla ss) W eB) 

2 8 1 1 1 1 1 yl 
2 4 1 3 3 15, 17, 31 
{ 8 2 2 4 1, 9, 23, 25 

8 16 4 2 &) apap ahiniles alk) Bil Gy Bh) 

3.11 10 1 1 1 1 Hee iM: 
2 4 1 3 3 _ 10, 23, 32 
5 5 4 ] 4 4, 16, 25, 31 

10 20 t 3 12 2; 5, 7, 8, 13, 14, 1% 19, 20, 26, 28, 29 

5.7 12 1 1 1 1 1 1 
2 4 1 3 3 6, 29, 34 
3 3 2 1 2 SG 

f 8 2 2 #8 85 13; 22) 27 
6 12 2 3 6 4,9, 19, 24, 26, 31 

12 24 4 2 8 2, 3, 12, 17, 18, 23, 32, 33 

23.3? 6 1 1 1 1 eo 
2 4 1 3 3 ie URE es) 

3 3 2 1 2 13, 25 
6 12 2 3 Grab, (ll 2329 ea 
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as Seip ce 
o 4 ao Pha 

° 2o vo 

Modulus 3 a gs gs 

Ss ¢£ zoe 
| Z a 
M 6(M) 6 P; (6) Ss N; Primitive Roots of Congruence +6=1 

ole 12 i 1 1 1 1 1 

2 4 1 3 3 14, 25, 38 

3 3 2 1 2 16, 22 

4 8 2 2 4 5, 8, 31, 34 

6 12 2 3} 6 4, 10, 17, 23, 29, 35 

12 24 4 2 8 at, WI, 19, 20, 28, 32, 37 q 

3.7 6 1 1 1 1 i> a 
2 4 1 3 3 1229.41 

33 3 2 1 2 20, a7 i 

6 12 2 3 6 Da Ll, 23,029 eo 

Zest 10 i 1 a 1 il 1 

2 + 1 3 3 21, 23, 43 

5 ‘5 4 1 4 By VL Ie Y/ 

10 20 4 3 12 Bis Weyelan ile IRE BiG 2ey Bil cli, Beh hl 

5A) 12 1 1 1 ] 1 1 

2 4 1 3 3 19, 26, 44 

3 3 2 1 2 Gs 

4 8 2 2 4 8, 17, 28/37 

6 LZ 2 3 6 4, 11, 14, 29, 34, 41 

12 24 4 2 8 2, 7, 13, 22, 28, 32, 38; 43 

Sai 16 1 1 1 1 1 af 
2 4 1 3 3° 16, 35, 50 

4 8 2 2 4 4, 13, 38, 47 

8 16 4 2 8 ae 25, 26, 32, 43, 49 

16 32 8 2 16 Deals LO, lil alas 20, 22, 23, 28, 29, 31, 37, 40, 41, 
44, 46 

5.11 20 1 ] 1 1 1 1 

2 4 1 3 3 21, 34, 54 

4 8 2 2 4 12, 23, 32, 43 

5 5 4 1 4 16, 26, 31, 36 

10 20 4 3 12 4,6, 9, 14, 19, 24, 29, 39,41, 46, 49, 51 

20 40 8 2 16 2, 3, 7, 8, 13, 17, 18, 27, 28, 37, 38, 42, 47, 48, 52, 53 

213 12 1 1 1 1 1 1 
2 4 il 3 3 2b 21, 51 

3 3 2 1 2 9, 29 

4 8 2 2 4 5, 21, 31, 47 

6 12 2 3 6 3, 17, 23, 35, 43, 49 

12 24 4 2 8 7, ils 15, 19, 33, 37, 41, 45 

3.19 18 1 1 1 1 1 il 
2 4 ] 3 3) 20, 37, 56 
3 3 2 1 2 7, 49 

6 12 2 o 6 8, 1], 26, 31, 46, 50 

9 9 6 1 6 4, 16, 25, 28, 43, 55 

18 36 6 3 18 2, 5, 10, 13, 14, 17, 22; 23, 29, $2, 34, 35, 40; 41 
44, 47, 52, 53 
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ae i Fe 
Modulus e 5 a8 as 

A Ay 

M 6(M) 5 P; (8) Ss Ns Primitive Roots of Congruence #5=1 

32.7 6 1 1 1 1 1 1 
2 4 1 3 3 88,95562 
3 9 2 4 8 4, 16, 22, 25, 37, 43, 46, 58 
6 36 2 12 24 «62, 5, 10, vie 13, 17, 19, 20, 23, 26, 29, 31, 32, 34, 

38, 40, Al, 44, 47, 50, 52, 53, 59, 61 

2° 16 1 1 1 1 1 1 
2 4 1 3 3 ce 33, 63 
4 8 2 2 4 lian, 49 
8 16 4 2 8 7 OS Renn 25 

16 32 8 2 IG) Shay UMIB ARR PAl Bi, OS Biss Bie Zieh Zlby yl Ry 
59, 61 

5.13 12 1 1 1 1 1 1 
2 4 1 3 3 614, 51, 64 
3 3 2 1 7) ING opi 
4 16 2 6 2 8, 12) 18; 21, 27; 334; 38, 44, 47,53, 57 
6 12 2 3 6 4 9, 29, 36, 49, 56 

12 48 4 6 Dib By (Os Ye elk 17 19, 22, 23, 24, 28, 32, 33, 37, 41, 
42, 43, 46, 48, 54, 58, 59, 62, 63 

2.3.11 10 1 1 1 1 1 1 
2 4 1 3 3 23, 45, 65 
5 5 4 1 4 25, 31, 37, 49 

10 20 4 3 U2 (01, 13, 17, 19, 20Nsoa lS 47,753; 59, 6 

PMY 16 1 1 1 1 1 1 
2 4 1 3 3 33, 35, 67 
4 8 2 2 4 13, 21, 47, 55 
8 16 4 2 8 9, 15, 19, 25, 43, 49, 53, 59 

16 32 8 2 IG oh Op iy tb eae m5 28 Sil ei eth chly Zor bine Olin 
63, 65 

3.23 22 1 1 1 1 1 1 
2 4 1 3 3 22, 47, 68 

11 ll 10 1 10 «4, 13, 16, 25, 31, 49, 52, 55, 58, 64 
22 44 10 3 30 836.2, 5, 7, 8, 10, 11, 14, 17, 19, 20, 26, 28, 29, 32, 34, 

35, 37, 38, 40, 41, 43, 44, 50, 53, 56, 59, 61, 62, 
65, 67 

2.5.7 12 1 1 1 1 1 1 
2 4 1 3 3 29, 41, 69 
3 3 2 1 mi UTS 51 
4 8 2 2 4 13, 27, 43, 57 
6 12 2 3 Guo; 19, Blo BEE (al 

12 24 4 2 Sl Oh 17, 23, 33, 37, 47, 53, 67 

3.5? 20 1 1 1 1 I a 
2 4 1 3 3 26, oa) 7 
4 8 2 2 As oD; 13, “68 
5 5 4 1 4 16, 31, 46, 61 

10 20 4 3 12 4, 11, 14, 19, 29, 34, 41, 44, 56, 59, 64, 71 
20 40 8 2 IG 2p ts dee 1G 22, 23, 28, 37, 38, 47, 52, 53, 58, 62, 

67, 73 
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<= FS ae, 88 
z 3 SS Bo 

Modulus os 5 as Fes 

A Of z 28 
5 AD 
AZ _ 

ne 6(IM) 6 Ps (4) Ss N; Primitive Roots of Congruence c6=1 

Papal MY) 18 1 1 1 u 1 1| 
2 + 1 3 3) aia yw) 
3 3 2 1 2- 45, 49 
6 12 2 3 6G Web; 27; 31, Gan 69 
9 9 6 1 65 2595 17, 25; Glas 

18 36 6 3 18 3,13, 15, 21. 23, 29, 33, 35, 41, 43, 47, 51, 53, 55, 
59; 63, 67; 71 

Teli: 30 1 1 1 1 1 1 
2 4 il 3 3 34, 43, 76 
3 3 2 1 2 23, 67 
5 5 4 1 4 15, 36, 64, 71 
6 12 2 3 6 10, 12, 32, 45, 54, 65 

10 20 4 3 12 6 8, 13, 20, 27, 29, 41, 48, 50, 57, 62, 69 
15 15 8 1 8 9, 16, 25, 37, 53, 58, 60 
30 60 8 3 24 2, 3. 5, 17, 18, 19, 24, 26, 30, 31, 38, 39, 40, 46, 

47, 51, 52, 59, 61, 68, 72, 73, 74, 75 

2.3.13 12 1 1 1 1 1 1 
2 4 1 3 oe 2D, Dayal t 
3 3 2 1 2, -55, 61 
4 8 2 2 4 5,31, 47, 73 
6 12 2 3 6 17, 23, 29: 35, 43-49 

12 24 + 2 8 7 11, 19, 375 4b SS Grea 

5.17 16 1 1 1 1 1 1 
2 + 1 3 3 16, 69, 84 
4 16 2 6 Le “4, ey. 18, 21, 33, 38, 47, 52, 64, 67, 72, 81 
8 32 4 4 16 250, 919; 26, 32, 36, 42, 43, 49, 53, 59, 66, 76,77, 83 

16 64 8 £ S32) ca aie eal ule 12, 14, 22, 23, 24, 27, 28, 29; 31; 3i, 
39, 41, 44, 46, 48, 54, 56, 57, 58, 61, 62, 63, (ills 
73, 74, 78, 79, 82 

3.29 28 1 1 1 1 1 1 
2 + 1 3 3 28, 59, 86 
+ 8 2 2 4 17, 41, 46, 70 
7 i 6 1 6 7, 16, 25, 49, 52, 82 

14 28 6 3 18 455, 13, 20, 22, 23, 34, 35, 38, 53, 62, 64, 65, 67; 
71, 74, 80, 83 

28 56 12 2 24 2,8, 10, 11, 14, 19, 26, 31, 32, 37, 40, 43, 44, 47, 
50, 55, 56, 61, 68, 73, 76, 77, 79, 85 

2.37.5 12 1 1 1 1 1 1 
2 4 1 3 3 OT TL 89. 
3 3 2 1 2 31,61 
4 8 2 2 4 17, 37, 53, 73 
6 12 2 3 6 11, 29, 41, 49,59), :79 

12 24 4 2 8 7, 18, 23, 43, 47, 67, 77, 83 

7.13 12 1 1 il 1 1 1 
2 4 1 3 3 27, 64, 90 
3 9 2 + 8 9, 16, 22, 29, 53, 74, 79, 81 
+ 8 2 2 4 8, 34, 57, 83 
6 36 2 12 24 3,4, 10, 12, 17, 23, 25, 30, 36, 38, 40, 43, 48, 51, 

55, 61, 62, 66, 68, 69, 75, 82, 87, 88 

12 72 4 8 32 2, 5, 6, 11, 15, 18, 19, 20, 24, 31, 32, 33, 37, 41; 
44, 45, 46, 47, 50, 54, 58, 59, 60, 67, 71, 72, 73, 
76, 80, 85, 86, 89 
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Modulus 

Exponent 

we hwore & Loe 

3.31 30 

5.19 36 

He MwWOD He be 

oo for) 

3211 30 

> Ord bo 

Loe oourNe 

2.3.17 16 

Vor. XXII. No. 

= y H ov Number of Roots 
44 

whe BAP OWwW OWE 

~T bo 

POH bo He bo rt 

Die Dw hwo toe Re 

Doro RW He 

Or RDP 

Dm bo rte 

Number of 
Periods 

Coe Oo OD ee Oo we oor 

OE 

bo 

Co me 09 C2 Rt CD 

bo owe bo tor 

bo bo po We 

Number of 
Primitive Roots 

— 

H= OO NS OH bo OO bo 

i MADD bo Coe 

bo re 

mon Om bh wr bo 

Primitive Roots of Congruence #§=1 

1 
45, 47, 91 
9, 13, 25, 29, oe 49, 73, 77, 81, 85 
3, 5, G5 whl al D, 7, 19, 21, 27, 

43, 51, 53, oe 37, 59 
83, 87, 89 

1 
32, 61, 92 
25, 67 
4, 16, 64, 70 
5, 26, 37, 56, 68, 88 
2, & 23, 29, 35, 46, 47, 
ONS 28; 40, 49, 

56, 94 
26 

18, 37, 58, 77 
31, 46, 49, 64, 69, 84 
6, 16, 36, 61, 66, 81 

58, 
76, 82 

11, 13, 14, 17, 20, 22, 34, 38, 41, 43, 44, 50, 52, 5: 
55, 59, 65, 71, 73, 74, 

31, 33, 35, 37, 39, 
, 61, 63, 65, 67, 71, 75, 79, 

77, 85, 89, 91 

79, 80, 83, 86 

7. 8, 12, 27, 68, 83,/87,.88 
4, 9, 14, 21, 24, 29, 34, 41, 44, 51, 54, 59, 71,7 

79, 86, 89, 91 
2, 3, 13, 17, 22, 23, 

53, 62, 63, 67, 72, 

37, 64, 82, 91 
2332: 4:3) 562.69, 16 
Salis 
4 16, 

22, 23, 28, 32 
WOT 

533 
8, 82, 92, 93 

is 26, 28, 35, 46, 53, 62, 71, 73, 80 
25, 31, 49, 58, 70, 97 

Danie 13, 14, 20, 29538, 40; 415 47, 50! 52. 5 
TG 68, 74, 79, 83, 85, 86, 92, 94, 95 

1 
49, 51, 99 
7, 43, 57, 93 
a, 41, 61, 81 
9, 11, 19, 29, 31, 39, 59, 69, 71, 79, 89, 91 

42, 43, 47, 48, or ks 

3, 13, 17, 23, 27, 33, 37, 47, 53, 63, 67, 73, 77, 83, 
87, 97 

1 
35, 67, 101 
13, 47, 55, 89 
19, 25, 43, 49, 53, 59, 77, 83 

, 29, 31, 37, 41, 61, 65, 71, 73, 79, 91, 5, 7, 11, 23 
95, 97 

or or 
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Modulus 

2.5.11 

3.37 

2.3.19 

5.23 

9(a) 
18 

36 

44 

28 

Tixponent 

DOAWNH — 

er Doe WMw OD He Who CoO OF De 

we for) 

=" MODWwWhwre 

Dee be ore 

Sc fj oo Ho Number of Roots eo 

oCOoUm re H bo 

_ 

He Ob DORR 

oo bo vo lor) 

~J bo 

© = o = 

ae OMNI Le alll Sell el DAw wore 

i bo 

aOonwhhor 

i fa a 

oan 

2 um Number of 

Go ako Onimee wor toe So wre wmorowre el a! OF Ft 09 rt 09 Ft op Periods 

Cre pwr 

bo 

Number of 
Primitive Roots 

Lolo’ ~ be Dro mee OR oor ori oC 

MOA DH oOowr i 

Primitive Roots of Congruence r8=1 

53, 55, 107 
37.73 
17, 19, 35, 71, 89, 91 
13, 25, 49, 61, 85, 97 
5, 7, 11, 23, 29, 31, 41, 43, 47, 59, 65, 67, 77, 79, 

83, 95, 101, 107 
1 
21, 89, 109 
23, 43, 67, 87 
31, 71,81, 91 
9, 19, 29, 39, 41, 49, 51, 59, 61, 69, 79, 101 
3, 7, 13, 17, 27, 37, 47, 53, 57, 63, 73, 83, 93, 97, 

103, 107 
1 
38, 73, 110 
10, 100 
31, 43, 68, 80 
11, 26, 47, 64, 85, 101 
7, 16, 34, 46, 49, 70 
8, 14, 23, 29, 82, 88, 97, 103 
4, 25, 28, 40, 41, 44, 53, 58, 62, 65, 67, 71, 77, 83, 

86, 95, 104, 107 
2, 5, 13, 17, 19, 20, 22, 32, 35, 50, 52, 55, 56, 59, 

61, 76, 79, 89, 91, 92, 94, 98, 106, 109 

7, 49 
11, 31, 65, 83, 103, 107 
25, 43, 55, 61, 73, 85 
5, 13, 17, 23, 29, 35, 41, 47, 53, 59, 67, 71, 79, 89, 

91, 97, 101, 109 
1 
24, 91, 114 
22, 47, 68, 93 
6, 16, 26, 31, 36, 41, 71, 81, 96, 101 
4,9, 11, 14, 19, 21, 29, 34, 39, 44, 49, 51, 54, 56, 

59, 61, 64, 66, 74, 76, 79, 84, 86, 89, 94, 99, 104, 
106, 109, 111 

2, 3, 7, 8, 12, 13, 17, 18, 27, 28, 32, 33, 37, 38, 42, 43, 
48, 52, 53, 57, 58, 62, 63, 67, 72, 73, 77, 78, 82, 
83, 87, 88, 97, 98, 102, 103, 107, 108, 112, 113 

17, 41, 75, 99 
25, 45, 49, 53, 65, 81 
5, 7, 9, 13, 23, 33, 35, 51, 63, 67, 71, 83, 91, 93, 

103, 107, 109, 111 
3, 11, 15, 19, 21, 27, 31, 37, 39, 43, 47, 55, 61, 69, 

73, 77, 79, 85, 89, 95, 97, 101, 105, 113 



Mason MACMAHON, CONGRUENCES WITH RESPECT TO COMPOSITE MODULI 423 

Modulus 

7.17 

27.3.5 

48 

bo 

Exponent 

ee —" OWnanoarwhre bo OrWHH & 

bo pss 

ce oa) 

DPDwwore Hm bo re 

Hm bor 

Swope ot Number of Roots 

=~] Lo 

Po > 

12 
16 
24 
32 

48 

96 

i ROHS ie 

2 

Or PDD NWrr 

o2) 

16 

opr bore Nee ee 

Noe 

Number of 
Periods 

= 

io4) LMP Wr o 

bob pw be we 

bo 

bo 

Number of 
Primitive Roots 

om 

H= H= Co Co Fr Lo 

Primitive Roots of Congruence #§=1 

1 
53, 64, 116 
16, 22, 40, 55, 61, 79, 94, 100 
8, 44, 73, 109 
4, 10, 14, 17, 23, 25, 29, 35, 38, 43, 49, 56, 62, 68, 

74, 77, 82, 88, 92, 95, 101, 103, 107, 113 
2, 5, 7, 11, 19, 20, 28, 31, 32, 34, 37, 41, 46, 47, 

50, 58, 59, 67, 70, 71, 76, 80, 83, 85, 86, 89, 97, 
98, 106, 110, 112, 115 

1 
50, 69, 118 
18, 86 
13, 55, 64, 106 
16, 33, 52, 67, 101, 103 
8, 15, 36, 43, 76, 83, 104, 111 
4, 30, 38, 47, 72, 81, 89, 115 
6, 20, 22, 27, 29, 41, 48, 57, 62, 71, 78, 90, 92, 97, 

99, 113 
2, 9, 19, 25, 26, 32, 53, 59, 60, 66, 87, 93, 94, 100 

110, 117 
3, 5, 10, 11, 12, 23, 24, 31, 37, 39, 40, 44, 45, 46 

54, 58, 61, 65, 73, 74, 75, 79, 80, 82, 88, 95, 96, 
107, 108, 109, 114, 116 

THE THIRD CATEGORY 

es ey SS re 

me aTH 

Co =y ae 

(ool: Ma! 

5, 7, 11, 13, 17, 19, 23 

1 
9, 11, 19, 21, 29, 31, 39 
3. 7-13, 17, 28, [7p Son ST 

i 
7, 17, 23, 25, 31, 41, 47 
5, 11, 13, 19, 29, 35, 37, 43 

— 

13, 15, 27, 29, 41, 43, 55 
9, 25 
3, 5, 11, 17, 19, 23, 31, 33, 37, 39, 45, 47, 51, 53 

1 
11, 19, 29, 31, 41, 49, 59 
7, 13, 17, 23, 37, 43, 47, 53 
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a S_ of 
=: aS ae, as 

Modulus a B a5 ERS 
ge 3 za 5E 
os 2 a aS 

z ¥ 

M 6(M) 6 P; (6) Ss N; Primitive Roots of Congruence x8=1 

23.3? 6 1 1 1 1 1 
2 8 1 7 7 1%, 19, 35, 37, 53, 55, 71 
5 3 2 1 2 25, es 
6 24 2 7 14 5, 7, 11, 18, 23, 29, 31, 41, 43, 47, 59, 61, 65, 67 

24.5 4 1 1 1 1 1 1 

2 8 1 7 7 9) 31; 39, 41,495,710), 79 
4 32 2 12 24 3. weld, 13; 17, ings 21, 23, 27, 29, 33, 37, 43, 47, 
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Introductory Statement. 

(a) THE first part of this paper is occupied with a discussion of the stability of the motion 

cited in the title. Mallock’s experiments* in this connection are well known, and Lord Rayleigh+ 

has given an interesting account of Lord Kelvin’s observations on them. In Mallock’s viscometer 

the outer cylinder was made to rotate, as it was found that the motion of the liquid was always 

turbulent when the inner cylinder was rotated. 

A theoretical investigation of the stability on the lines of the investigations carried out by 

Reynolds and Orr shows that there is no difference in the relative stabilities of the two cases, 

provided that in one case the inner cylinder has an angular velocity equal to that of the outer 

m the other case. The observed difference in stability must therefore be accounted for by making 

the hypothesis that the same type of disturbance 1s not likely to be set up in both cases, but that 

the disturbances which arise in the one case are mores likely to cause instability than the dis- 

turbances which arise in the other. Some investigations on this point are given in Part IT. It 

is clear that this discriminative action is a matter for hypothesis, or for experimental verification ; 

it cannot be inferred from the hydrodynamical equations. 

Criteria are obtained analogous to those given by Reynolds and Orr for other types of motion. 

(6) In the second part of this paper, in addition to the investigations mentioned above, 

a note is given on a criterion suggested by Lamb. 

An investigation is also made into the effect of proceeding to a higher approximation on the 

usual criterion for stability. It is thought that an explanation may thus be found of the dis- 

crepancy between the conclusion arrived at by Reynolds that a certain degree of viscosity is 

necessary dor stability, and the conclusion of Lord Rayleigh that certain steady motions of a non- 

viscous liquid are stable. 

* Proc. Roy. Soc., vol. xuv. p. 126, 1888. + Phil. Mag. (6), vol. xxvim. p. 610, 1914. 
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PART I. 

By K. Tamak1. 

Since Osborne Reynolds found that the steady motion of viscous fluid passing through a 

circular pipe becomes unstable at a certain critical mean velocity of flow, the question of stability 

of the steady motion of fluid has been attacked theoretically by several eminent authors. Pro- 

fessor Orr discussed this problem thoroughly in his paper, “The Stability or Instability of the 

Steady Motion of a Perfect Liquid and of a Viscous Liquid*.” He obtained the minimum critical 

velocities in the cases of flow between two parallel planes and flow through a circular pipe by 

substituting some differential equations for Reynolds’ discriminating equation in integral form 

determining the critical velocity. So far as the writer is aware the case in which one of two con- 

centric cylinders is rotating steadily while the other is fixed has not yet been investigated. The 

aim of this paper is to investigate this case, applying Professor Orr's method. 

If we confine ourselves to a consideration of the two-dimensional motions of a viscous fluid 

we have the following equations of motion, namely 

ou za ult » you ee (B= = | 

ot dy p\ dx oy (1) 
eee Ge, Oye Dn | Beans saan Pon aetont: ae , 

aoe Soy -& eo 

where p is the density of the fluid, u,v the components of velocity and prr, Pry, Py, the com- 

ponents of stress. 

Let U, V be the components of velocity and P,,, Px,, Py, the components of stress of the 

fluid when its motion is steady, then by (1) we have 

yeu , you _ 1 2 (G2 i 

0x oy 0x oy a 

joes yoy _ a ‘(4 ue a) pe OE es bg, i 

Oy p\ eu oy 

Now let wu, v be the components of velocity of the turbulent motion and pzr, Pry, Pyy the 

components of stress due to it so that U+u, V+, and Py + per, Pry + Pry, Pyy + Py are the 

components of velocity and of stress respectively when the motion of the liquid is disturbed from 

its steady state. Then substituting these ee in (1), we get 

+ (O+ue (U +u)+( (Vays (U +x) =- + | Pat Pe) 5 (Pa + pm) 

av ; 2 Oop 
2 (ewe (V+) +(V +e (I +0) =| 2 (Pay + De) + 5B Pa} 

Subtracting equations (2) from the corresponding equations above written and neglecting 

the squares and{products of u, v we get 

ou 2 U ou du you Apex , ODay 
at Le +v wy US + ie A -( am ay ) eisieiniene wralwatelnleleletOMee (3), 

hes ~ aV ov dv OPyx Pur) P =F u +Y y Jb UT a3 ay = + a oe (4). 

* Proc. Royal Irish Acad., vol. xxvu. Sect. A, p. 9, 1907. 
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Multiplying (3) and (4) by pu, pv respectively, adding and integrating throughout the volume 

of any portion of the fluid we get 

Une OU; i Ve AV’ 
Ba | 0 Cu" +0)dr=—[pu(uS et 8 =) dr —| po(w an + YU 5) a 

-fo (vise ‘s) dr— | po (UR 4 Vo) dr 

OPyx OPyy 
» 0x a oy | ate 

where dr denotes an elementary volume. 

Integrating by parts the integrals on the right-hand side of the above equation we get 

ele (+0) dr = — 5 fo (ue + ot) (U4 Vin) dS 

+ | (Peel + Pay) +0 (Pye + Py m)] aS 
0 0 0 SW = fo [u(u Wats) U+o(wa, +05) Var 

+5 foc a ee +) dr 

-{ Ow oe? Gy Ou qe d 
Poa a7, + Pry ay + Pyy (a+ al T; 

where /, m are the direction cosines of the normal drawn outwards to the surface element dS. 

The first integral on the right-hand side of this equation represents the rate at which the kinetic 

energy of the turbulent motion is convected into the volume considered and the second integral 

expresses the time rate at which the stress due to the turbulent motion does work on the fluid 

in this volume. In some cases we can choose the boundary surfaces so as to make the joint effect 

of these terms cancel. For example, let us suppose that the fluid is flowing between two parallel 

planes y= +06 and the turbulent motion has a wave-length a with respect to «. Then by taking 

y=+b, c=, v=x+a as the boundary surfaces we can satisfy the condition of the cancelling of 

these terms. Therefore let us suppose that we have chosen a closed surface so as to cancel this 

joint effect. Then we have 

gape felaledeeg) 7 ++(ek eg)” 
+5 [owes + v°) Cae ay) 

-| Ou (+2) d ss 
Pasay” Ty yt Be aa" Gy i? “as ccopseemenoodeeeond (5). 

Since we have 

IEE 9 ou 
Pu — P 3 asia. 

De dv 7 
Pyy = — P— 3 div Bars Sado coos cco s¢nousecogs ocd ab baduennod (6), 

my (ew * du 
Pa=H (5 +5.) 
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where y is the coefficient of viscosity and q the velocity vector of the turbulent motion, (5) may 

be written 

£5 or dr=—|p ee). (en 

+5 [os'aiv Qdr | 

-rf[2@) +2) +e) 
+ [p' div gar i ee Sere ete ae (7), 

where Q denotes the velocity of the steady motion and 

p=p+iaivg NP eric Psi at ae cce csormncseacsocacrac (8) 

The expression (7) gives the time rate of change of energy of the turbulent motion and we 

see that whether the disturbance from the steady motion increases or decreases depends wholly 

on the sign of the whole expression. Hence if for a given steady motion we could find the lowest 

limit of ~ for which it is possible to choose q so as to make the expression (7) zero we could find 

the critical velocity for a given value of p. 

Now putting the right-hand side of equation (7) equal to zero and integrating by parts the 

integrals except the second, we get 

1 dT aU; oU yo /,; Viele HULU aC mer 
+[5pe+e) div Qdr 

+ I[« (vu + Z div 4) +4 (vee + S div “)| dt 

where Ve = — 

Hence we must have 
, 

_ : p [(« as y 22) + (u a. or) —u div Q| +p (vu a div 4) = oe : 
oy oy 

1 ae oe UL COL HONE é op’ 
—5e[ (ge tog) + (u Fe +P gn) —vdiv Q|+u (T+ > div q)= mae 

If the fluid is incompressible these equations simplify into 

oU ") (08 | 9 P| 
) 24, — et ie a 2uV u p| (w ame a Se Oa: +v ay an 

> aV f av aot 

2uvv—p| (uh + ot C at 
|= 2% 

These are Prof. Orr’s equations extended for the case in which the steady motion of the 

fluid has y-component as well as #-component of velocity. 
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It is well known that when one of the concentric cylinders is rotating with a constant 

velocity the stream-lines are concentric circles and the velocity is given by 

A 
at Br Pe icisisveis\a he a EO eR erie nievcislersce st (10), 

where A and B are constants determined by boundary conditions. Hence transforming from the 

rectangular coordinates x, y to the polar coordinates 7, @ and expressing the radial and tangential 

components of the turbulent motion by w and v eee equations (9) may be written 

2 Op no 38) <p -F) BV? - Ke i po ( > 25 

i Lac licea tee (11). 
Ev 9 Ou = (Z-= _o lop 

NS ae 29) ion ) 00 

Eliminating p between these equations we get 

ov , v\ lou or wow licur 
za V2 = Ve) | cae a (= — — == = y aT (= x athe aa) p[« a thee S al ORemecreemescne (12), 

where we put 

poe 13 oc cocanaenery carci oer (13) 

Making use of the equation of continuity 

ou ane lov _ 0 
Fon rt” ed (14) 

and substituting the value of V given by (10), this equation becomes 

,/ov uv lodu\ 2pA ov 2 (ape oe) 2 = 5 m (= a a =a) a @ + 0) 7 Doooedanccnesesoconacreactne (15). 

From (14) we see that we may use the stream function w defined by 

__ lop ay 
IS ee v= Ars elele plorelcfoleleRetelelstelrisictorpieleiclaleve/elerelels)siclerele (16). 

From the nature of the problem it is natural to assume that y varies as e”?, where X denotes an 

unknown integer. Then (15) may be written 

iF a Vint = £(--£) y=0 1 ee 3 ao (17), 

where k=2 mee SD ctyenetys eRe eT eeleiia ace ee ee (18) 

Expanding V+, (17) becomes 

dip  2d'y _1 42a dey b+2nedyp , k—4n2 + 
ape > dr aan ps ee 7a an + para = © Pate ae aE (19). 

This is an homogeneous linear differential equation of the fourth order. Therefore assuming 

<a Ocak ccc a kee (20), 
we get the biquadratic equation 

m! —2 (1 +A2) m2? — hm + (LHP HO oo eee eee eee ee (21), 

to determine the values of m. 

Since the coefficient of m’® is zero we can assume as the roots of this equation 

M=P+S8, Me=—P—S, Ms=— PAG, My =P = Toc eeeerecere reverses (22), 
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Then the equation (21) gives the following relations 

2p? + s+ 0? =2(1 + A?) 

QD(Siaona—ie + yt enpedatetnpeet eeeteassnseecase (23). 

(pt—s*)(p?— 0) = (1 — 0” | 
Since the disturbed motion must have the same velocity on the surfaces of the cylinders 

r=a and r=6 as that of the steady motion, assuming that the angular velocities of the cylinders 

are maintained constant, the velocity of the turbulent motion must vanish on these surfaces. 

Hence the boundary conditions are = 0, = =0 when r=aandr=6. Putting 

af at Ree geen oy yr st | gy ee eee (24), 

where @,, @2, ds, a, are constants as yet undetermined, the boundary conditions become 

aa" +a,a™+a,a"™+a,a™ =0, 

a,b™ + a,b"? + a,b6™ + a,b6™=0, 

Mz a, 7m, a™ + ay m, a” + a,zm,a™ + a,m,a™ = 0, 

a, m, b™ + ay mb" + asm; bs + a,m,b™s = 0. 

Eliminating a,, do, 3, a, and substituting the values of m,, m2, ms, m, we get 

[4p? — (@ — s)][azt8b-7+9 + a +9) 745] 

= [4p?— (o + s)*] [a7*b-&) + a— (9) be-8] 

—4oS( G2 bee Hae >) — (0)... -.asece eee eecae es ANG oa sizes Se (25). 

This equation is satisfied by putting* : 

In order that this relation (26) may be consistent with the first two equations of (23) without 

destroying the relation 

Mm, + Nis + ms + m, = 0, 

we must assume 

Gta eS — 18+ ty... Reamer esonscue eee eer ovaealQas 

Substituting these values of o and s into the first equation of (23) we have 

2 (pt— a!) + B+ yf + Qia(B— 7) =2(1 +») 
Since the right-hand side of this equation is real we must have 

B=y¥ 

as far as we consider p, a, 8, y as real quantities. Then (26) and (27) together with this relation 

give us 

B=y7=P, 

and consequently we have 

T=Ptia, SH P— UW wrvceeee enagsbeccoy: Brseroodorn080° (28). 

* Equation (25) can be satisfied by assuming 2p=¢+s, 2p=o-s, 2p= —-(c +8), 2p=—(c-—s). But we can easily see 

that we arrive at the same result by making any one of these alternative assumptions. 
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Substituting these values of c and s into (23) we get 

SRO LADY VO asi cuss cesales Soh Ameo eee cise coe io ee ee (29), 

Tg Cnet A a a: sreaia's s0:0/s30 oe OCR ey screens sic (30), 

C2 (CE Ee 0s) ol @ Oe \) PiREBBRRRRer pad cond coccadbachonsanaeeeed (31). 
Solving for and p? we obtain 

a = 5(-(1 +) + VI Fa soe nHohs crt aaocoosANESoOBObEe (32), 

p=sUl sae WL — SAS] 20. cB ese toc x (33). 

If we put X=1 in (32) we have 
] 2 ee) 2 Cae (= 2 + 2), 

therefore we see that we must take the upper sign in (32) and (33). 

Substituting the values of /:, a and p im (29) we obtain 

3V3 ApA 34 
n a : a cece eee (34), 

[1 +024+ Vi —A24A4][—(1 +22) + 2V1—A2 + AA]? 
[par 

the positive or negative sign must be taken according as A is positive or negative, As increases 

from zero to +1, u increases from zero to infinity and then it gradually decreases to zero as X 

increases. For a disturbance which is independent of @ the motion is accordingly always stable. 

For one particular disturbance depending on cos (@+ €) only, as regards @, the motion is unstable 

for all values of w*. Taking \ = 2, we get 

This corresponds to a much lower critical value of the velocity than the critical values obtained 

by other authors in the cases of flow between parallel planes and through a circular pipe. As X 

is increased the critical value of 2“ is increased. Thus there is an inherent instability for any 

value of w if a particular type of disturbance is set up by itself. The difficulty which arises lies 

in the fact that this instability is only in evidence when the inner cylinder is rotated. 

When one of the cylinders is rotating with a constant angular velocity @ while the other is 

fixed we have 
Cha 

A=+ 
~~ Pa 

where the upper sign is taken when the rotating cylinder is the outer one and the lower sign when 

the rotating cylinder is the inner one. Hence for both cases we have the critical angular velocity 

@ given by 

fate: Gee ee ee (36), 

when A = 2. 

Thus we see that the stability of the steady motion is the same whether the outer cylinder 

is rotating or the inner cylinder is rotating if the angular velocities are equal in the two cases. 

* It is observed that a disturbance of this type is likely to be set up if the axes of the two cylinders are parallel but 

not quite coincident. 
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PART It. 

By W. J. “Harrison. 

(I) Using two-dimensional polar coordinates (7, @), let V be the velocity in the steady motion 

of the liquid at any point between the cylinders r= a, and r= 6, then V = B/r + Cr, where B and C 

are constants. 

Let the velocity of the liquid in a disturbed motion be (u, V+v). We obtain the dis- 

criminating equation by writing the mght-hand side of equation (7) equal to zero. Thus 

MRO RG poker 
Qn fb (al ={ [euo( 2S) rarae 

= 2Bp ie {2 w drdé. 

If w be greater than the value determined by this equation, the assumed type of disturbed 

motion must depend on the time in such a way that its kinetic energy will decrease. 

(1) If V=0,r=a; V=ba, r=; then B=— a*b*@,/(b? — a’). 

(2) If V=ao,,r=a; V=0,r=6; then B= a*b*o,/(b?—@). 

= =0 at r=a,r=6. 

Tt is clear that the critical value of w is the same both for (1) and (2), if @) = @,, for a given 

disturbance. Hence the greatest value of for which instability is possible is the same in both 

cases, if @=@;. This is the conclusion arrived at in Part I, where the maxima values are 

obtained, following the method of Orr. 

In both cases, u, v being derivable from a stream function y, y%=0 and 

To pursue the question further it is necessary to follow the method of Reynolds and assume 

a particular type of disturbance. 

Let 
“= 

where y =f (7) cosnO + F (7) sin nO, and n is integral. 

It is necessary that 
f (a)=f (b+) =F (a)= F (b) =9, 

+ de (a) =f’ (b) 2 F’ (a) iS F’ (b) a 0. 

The discriminating equation becomes 

b 

wf dae rp FO Het nF) BODE EL O18 0) HEF OP 
+ (rF" (r)— rF' (vr) + F (r)}?) a 

=28pn | ROS O-PS} S 
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It is assumed in the first place that f(7) is of the form r? (r — a)? (r — b)’, and that F(r) is of 

the form r4(r—a)?(r— by. For purposes of numerical calculation a and 6 are taken to be equal 

to 1 and 2, respectively. The results of calculation are shown in the following table: 

Critical Value of 2Bp/p. 

p=(r—2)? (r—1)? {fh (7) cos nO + fo (7) sin nd! 

a A(y=r | r r 1 1 rl 

fo(r)=1 Ta ips at ia 2 

1 6200 3800 3400 5200 3200 5000 
| | 

2 3300 2000 1800 | 2800 1700 2700 
| 

3 2400 1500 1300 | 2100 1250 2000 
| 

4 2100 1300 1150 1800 1100 1800 

A See D E F 

Columns n=1 2 3 4 

AB 5000 2650 1950 1700 

ABCD | 4650 2500 1800 | 1600 

| CDEF | 4200 2250 1650 | 1450 

EF | 4100 2200 1650 | 1450 

! —— | 

It is probable that any disturbance set up would have a greater magnitude in the neighbour- 

hood of the rotating cylinder than in the neighbourhood of the other. The calculations given 

above therefore tend to show that the motion when the outer cylinder is rotating is more stable 

than when the inner cylinder is in motion. This conclusion is confirmed by the following series 

of calculations. 

It is assumed that nee 
wv =f (r) cos né + F'(r) sin nd, 

where fMm=A =a ; NWkrp<e O, 

fiy=A(5), c<r<2, 

F(r)= (74) l<r<d, 

IU@) = (FS): ad<r<2, 

and in each particular case A isso chosen as to make the corresponding value of 2Bp/u a minimum. 
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Minimum Critical Values of 2Bp/p. 

Ths 

d c=1°9 | Lf | 15 13 AE 

19 = 12600 | 7000 9255 50200 
| | 

7 13600) = P| S80 1415 6675 
| 

15 7000 | 1380 ae 740 3000 

1:3 | 9255 1415 740 — 2870 | 

11 | 50200 6675 3000 2870 Ke 

Average | 19800 | 5500 3000 3600 | 15700 | 

n—2. 

d c=i59 1:7 15 1:3 11 

It is thus a fair presumption that the motion when the inner cylinder is rotating is less 

stable than when the outer cylinder is rotating, ) being equal to @,. 

As an example of a different type of disturbance, consider 

f(r) =r? sin? (ee = 2) 
a 

3) ease meno" F(r)=r*sin ( a gee | 

where p.and q are integers. 

The minimum value of 2Bp/p, for integral values of p and q, is approximately 

344 (b' — a’) 

5(b—a)*(b? + a)” 

If b= 2, a=1, this critical value is approximately 85°687'4. 
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Even with these simple types of disturbance the labour of caleulation is considerable. It 

will be observed that the theoretical minima critical velocities obtained in Part I are not 

approached. The very low limits obtained there for the critical angular velocity is evidence of a 

certain inherent instability. It is, accordingly, inferred from the experimental evidence, that the 

special types of disturbance corresponding to these limits are likely to be approximately set up 

when the inner cylinder is rotating, but not when the outer cylinder is rotating. 

(Il) It is stated by Lamb* that the motion in which the inner cylinder rotates and the 

outer is at rest is necessarily unstable, since other distributions of velocity than that in the 

accepted state of steady motion are possible which have less kinetic energy for the same angular 

momentum. The author can find no trace of any formal treatment of this point, so that some 

consideration of it may not be out of place. He has also been in communication with Prof. Lamb 

on the subject of this remark. 

It is a simple matter to show that it is indifferent which cylinder is made to rotate; other 

distributions of velocity can be found which give less kinetic energy for the same angular 

momentum. ; 

Let the velocity of the liquid be v=/(r), where 7 is the distance from the common axis of 

the cylinders. 
b 

The angular momentum = 4 = | Qarpr* f(r) dr. 

b 
The kinetic energy =f!'= | mprf?(r) dr. 

Writing = 2, rf (7)= F(x), we have 
ae 

A/mp= [F (x) dz, 

Ud UL 

2T/rp = [ae (2) = : 

We wish to find the form of F'(«) so as to make 7'a minimum for a given value of A, subject to 

Cee @) 05> 7— a, 

E(a)=bV, r=b, 

or (2) F(a)=aV, r=a, 

FHn (to) —10) 7 =O: 

(a — a)V 

a? (b> — ax) V 

(P—@)x* 
Using the method of the Calculus of Variations, we must have 

Tn the actual motion (1) F(«)= 

(2) F(z)= 

2 : 
de (x) = = (0, 

5 be = 

where is any function of « satisfying | nda = 0. 
as 

* Hydrodynamics, 4th Ed., p. 695. 
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The solution is '(#) =X, where X is a constant which can be chosen so as to satisfy 

R 
Almp=|_ F(a) de. 

e 

The boundary conditions cannot be satisfied using this form for F(x), but by taking 

F (x) =z we obtain the lower limit towards which the kinetic energy may be made to approach 

when the conditions are satisfied by taking a distribution of velocity which differs from that 

given by F(x) = Ax, only in the neighbourhood of r= a and r=). 

In the actual motion (1) 

A _ 2 (b—a)(b + 2a) V 

™p 3(a+b) ; 

dk: b? (a? + b?) 4a°bt } oe 
k= ~ (B— ay log (6, a)| Vac a 

Taking F (x) =a, we find that 

Ue -p, _ _40°(b+ 2a)V 
[ reae = A/rp, if X= 3(@ +b) (a+ by BP) (at bY 

With this value of X 

2 z 9 (a? +b?) (a +b) 

=T'/27p, 

where 7” is the kinetic energy in the hypothetical motion. 

Ua 4 97 \2 ey 2 ffrsede SH + 20r—¥ 

The relative values of 7 and 7” are indicated by the data given in the following table 

b = | 3a 2a 1:34 l-la 

100 (— 1 3 | 7 17 

In the actual motion (2) 

A _2a#(2b+a)(b—a)V 

™p 3 (a+b) , 

Uh at(a*+b*) = 4asb? 73 
| Pe (b — a?) log (| BR 

a _ _40?(2b4+ a)V 
In this case — 3 (a+b (a +83)’ 

LT” _8a‘(2b+a)*(b—a)V? 

2rp = 9 (a? + b*) (a + bY 

The relation between 7’ and 7” is given below: 

2ap 
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If the difference between T and T’ be accepted as a criterion of instability, the motion 

when the inner cylinder is rotated is much more unstable than when the outer cylinder is 

rotated, and the tendency to instability increases as the distance between the cylinders is 

increased. On the other hand when the outer cylinder is rotated the tendency to instability 

should increase as this distance is diminished, which is contrary to usual experience. 

This criterion is independent of the degree of viscosity of the liquid, and of the angular 

velocity of the cylinder, and therefore falls into an altogether different category from the accepted 

eriteria for other modes of motion. 

(III) Reynolds, in the course of his investigations, obtains the equations which determine 

the effect of the turbulent motion on the mean-mean motion which, in consequence of the existence 

of the disturbance, differs from the steady motion. But, if reference be made to equation (64) 

on page 572 of Reynolds’ Scientific Papers, vol. 11, it will be seen that he finally neglects terms of 

the fourth degree in the velocities of the relative-mean motion, thereby reducing his work in the 

end to a consideration of small disturbances only, and consequently his results differ in no respect 

from those of other investigators who make this simplifying assumption from the start. His 

criterion, therefore, refers to incipient turbulent motion only. 

If the neglected terms of the fourth degree be retained in the discriminating equation, the 

condition that the kinetic energy of a given type of initial disturbance is stationary becomes of 

the form AU,= Bu + C/p, instead of AU,=By, where, in the case of flow between parallel 

planes, U, is the mean undisturbed velocity, A, B depend on the square of the velocity of the 

relative mean motion, and C depends on the fourth power. 

The effect of the additional term C/w is easily seen. For given values of w and U,, an 

upper limit is set to the amplitude of a given type of initial disturbance in order that the 

kinetic energy of the disturbance may increase. If the amplitude is greater than this limit the 

kinetic energy must decrease. Further this limit may be made as small as is desired by 

sufficiently decreasing p. 

It would therefore appear that the results of Reynolds’ investigations are brought into 

agreement with Rayleigh’s conclusions for a non-viscous liquid, namely that. the steady motion 

of an inviscid liquid between two parallel planes is stable subject to the condition that = is 

one-signed, where U=/(z) gives the distribution of velocity in the steady motion and the 

boundaries are parallel planes perpendicular to the axis of z. 

This question has been discussed by G. I. Taylor* with the result that Rayleigh’s conclusions 

are verified by means of entirely different considerations. At the same time Taylor maintains 

that there may be a finite difference in behaviour between a perfectly inviscid liquid and one which 

has an infinitesimal viscosity. It would appear from the considerations given above that this 

need not be inferred from the discrepancy discussed in this section, since this discrepancy is 

apparent only, and arises from a premature approximation. 

* Phil. Trans. Roy. Soc., vol. 215 4, pp. 23—26, 1915. 
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The purpose of this paper is to study some ideas suggested by the infinitesimal geometry of 

Weyl*, especially his Parallelverschiebung, in the most general form, as I believe, in accordance 

with present-day needs. The form adopted may be too general for immediate application to 

Physics; it is general enough to provide for a great variety of possibilities of experience in Physics 

and Astronomy. 

1. We take n variables, 7, (a=1, 2, ..., x), to which we apply all point-transformations 

La = ha(Zp ), Whose Jacobian does not vanish. We take a second system of variables, &*(a=1,2,...,), 

transformed like the differentials dx,. A third system of variables, denoted by wq, is also used, 

transformed like the differential coefficients 0¢/07,, where @ is any function of the z.. Thus, 

denoting the transformed variables by an accent, we have 

ce ‘Wi = Aa Up ceseckiree teneeaG terereeceeaate esate (1), 

wherein, after Einstein, the sign of summation is omitted; this is in regard to repeated indices. 

nL Odia 

¥ Chan 

We consider one or more systems of variables like the &, say *, €¢, and one or more systems 

like the wa, say, ¥z, Wa. The group of point-transformations of the z,, mentioned above, and its 

extension to the &*, ua given by (1), we call P. 

The «, being varied infinitesimally (or differentiated with regard to a parameter), the 

variations are like the &, and may be so denoted. We consider corresponding differentials of the 

& and u,, say, rather, of the * and v,, denoted by d¢n*, d:0,, whose transformed values, in 

accordance with (1), are given by 
5 Oe rie 
eu ~ Oatp ut Oupoay 

0a, () 8:04 = —* ie Fan) ane b:Up oF iz 

Of, Op .s 
Oent = iar ae, Bont: dala Ate JMtecossoso s MRCe ea oeeaene tes (3), 

254) Fay ay 
a Oaiq Oarg’ Oxy. By: 

Thus the 5:7% are symmetrically bilinear in the &, , and we may put 

8,n° = a5 1° sevesawensee alae alert ahs neal osdbaldscmaldeene ness (4). 

From the identity 
/ 

0 (= ae De O'a, CGN, ON) § Oka Ona 

Gas \Oxg Ory) Org Ox’ 0x3 OXy  OXp OXLyOAXs 

* H. Weyl, Mathematische Zeitschrift, 1. (1918), pp. 394 ff. 

Vout. XXII. No. XXIII. 58 
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we then have b.0.=— a, Ope -.--reeeccneecennrncseccecsceeeceerensee (4a), 

: = OL, O'xs - a =-=. with By Ons Oxgdxy 

or cai a. Oa (5) aaa : 

for determination of the new variables z,’; and the conditions of integrability 

Ota 50m. 
pari Ry) AR a BS fol rel a aE a +O, 05, — M50, Qn eee cam ntinceciamstes seme seice (6). 

If the a, satisfy these conditions, the «,’, defined by (5), transform the 8:7, 6:v. to zero; all 

systems «,’ of this kind are transformed together by an ordinary linear substitution with constant 

coefficients, and are therefore afin together. It is remarkable that (6) is only a consequence of 

the behaviour of the 6:», d¢v under the transformation P, without any other assumption for these 
variables. 

We may also introduce the 6:7, d:v by extension (Hrweiterung) of P, in the notation of 

S. Lie; for this we should consider the z, as functions of two parameters, say ¢,7, and then 

consider the transformations of the @°,/été7, like the d¢n*, and of 6 (@@/0x,)/é7, like the 8:v,. 

3. A more intuitive, or geometric, interpretation is obtained by regarding the w, as Gauss 

parameters on a manifoldness J/,,, of n dimensions, in a linear space of m(>n) dimensions. There 

is at any point, O, of J/, a linear tangential manifoldness, Z,, in which is a bundle of rays 

touching J, at this point; in Z, is also a bundle of Z,_, passing through this point. The 7* may 

be taken for homogeneous coordinates of the rays, and the v, for the dualistic coordinates of the 

£,,. An infinitesimal dislocation of the point of WM, varies the m* and v,; the infinitesimally 

neighbouring elements have the coordinates * + 57°, va + :Ua- 

Now let us imagine an observer at the point O of M,, who has a memory. Along the different 

7%, V, come into his mind the “events,” or some indications of the events, in the world of the ay. 

In the space of the 7%, v,, that is in the bundle of which O is the vertex, he can and will establish 

a projective geometry, and order his impressions in accord with this; this geometry will apparently 
be independent of the special system of #,. If his position on the J, is (infinitesimally) changed, 

his system of 7%, v is varied; if the 8», dv are in agreement with the conditions (5), (6), he is 

able to describe that variation, which is all he can observe, by a particular system of 2, in which 

the 8y*, dv, all vanish. If he describes a curve in the world of the 2, his impressions may be 

described by representing the single 7%, v. as functions of a single parameter; if a group of events 

shews the properties of a transformation-group of one parameter, he will put this group into the 

normal form, where the parameter is additive. If we take n=4, we have a three-dimensional 

intuitive space with projective geometry, and an additive parameter like our old-fashioned notion 

of time. The parameter t, mentioned before, may be derived from the apparent motion of the 

fixed stars in the sky. It is remarkable that there is no need for the assumption of a metric 

geometry. We may call the theory of the events in the (7%, v,)-space, subjective physics, thus 

distinguishing from objective physics in the world of the 2. In mathematical terms, perhaps 

the weightiest reason for a real objective world is the possibility of describing in terms of some 

vq the phenomena subjectively observed in the *, v,, which are the only phenomena we are able 

to receive, 
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4. If we accept this point of view, there is an interest in developing a hypothesis for the 

:n*, dev. ample enough for a reasonable theory, but capable of analytical treatment. We may 

consider in the (7%, va)-bundle, with O as centre, the H,_,-elements consisting of a ray, of coordinates 

n°, with an incident #,_, of coordinates v,, so that n*v,.=0. These elements form a M,,_;. If O 

is moved, the #,_,-elements may remain elements of the same kind, undergoing a contact- 

transformation, in the sense of S. Lie. 

Denote the differentials of *, v,, in the O- handle: by dnt, dv.; and the variation caused by 

the variation of a, by 6n%, dua. The signs d and 6 are commutable, and the conditions for a 

contact-transformation are 

Sz (ntdva) = den dda + 7 OedVa = pn dda + TAN Va ve eseseeeerseeesceees (7); 

but, from Ree TEC el OP tedansonebncoseononnodésoocnoagodedrense (7a), 

we have 82Va.dn® + Vaded® = — pa — TAN Vs ve eeeveeevcecererneeres (7b), 

and we have Oe.G Oa ei VOB, Ea Deas BE atUncrae of5 000 obudoosboduaaaoagaee (7c). 

The 6:72, d:v, are linear homogeneous functions of the &, as are the p and a. The d¢n* are 

homogeneous of order one, not necessarily linear, in the *; and are of order zero in the v,. Vice 

versa the 6:v, are homogeneous of order one in the v, and of order zero in the 7%. But p, o are 

homogeneous of order zero in both kinds of variables 7, v. All this is in accord with the trans- 

formation formulae (2). 

Following Lie we put i ACR COED neaos babe duoncecdanbuonsddcaoneoracaee (8), 

so that W is homogeneous and linear in the &, and of order one in 7%, v.. By differentiation 

we then have 
OW (a, n, v, E) _ 7 008Va 
Wace. ) Up +7 On* 

OW (a, 7, v, E)_—, 00eUa ¢ 
Tat Gua —— Sy} dvs BODO CORO DOUUOUOCUCUOUOOUOOOONOOOCUDOOOG (9) ; 

using the equations ded an cten! dn we dug, 

Bydog = SEE da + dep, 
UB 

substituting in (7), and comparing coefficients of dy*, dv,, we find 

ow ’ 7 ¥; Se EE 

‘ps aC ES 3 IR RT eee ee eas (9a); 
On* 

if these be used in (7), (7 a), Euler’s theorem of homogeneous functions shews that there is no 

other condition for the functions W, p, « 

Without essential modification, we may put W+n*v,. in place of W, and so make p=c. 

Then W is unique. And finally we have 

ow ; 

oe a ie : =) soe, m, v, &) 0°, 

82a SOM m8) = (Ch 0) 13))\ Poon ses qcpequadbancesroosased (10). 
On* 
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The formulae (10) satisfy the most general assumption for a 6-transformation effecting a 

relation between the infinitesimally near bundles (0) and (0’), subject to the contact condition. 

In particular, partial differential equations, and their solutions, remain such. 

By a transformation of the group P we have 

W’ (x, 1’, v, E)=W G@, 9, v, &)— aga ven ®EY, 

4 
Y 

li Cai Yo, Ola, ©) SO Cy TRGB) coca ccoccoccqonseconsanascccoces (11); 

thus W can only be transformed to zero if it is linear in 7, v, € and symmetrical in regard to 

n and &; the equations (6) then give the conditions for the vanishing of d¢n*, sv, in a particular 

system of coordinates. 

5. We consider now homogeneous, but not necessarily rational functions, of one or more 

series of variables 7, v; € w, also depending upon the #,; denoting such a function by 

T (a, , v, & w,...). On account of nv. = 0, fw. = 0, ete., the operator 

is an invariant, and its repetition leads to forms invariant for the P transformation. A canonical 

form can be reached by applying the well-known Clebsch-Gordan expansion. The contraction 

(Verjiingung), of the usual tensor-analysis, is a special case of this process. The process can only 

be repeated a finite number of times when 7’ is an integral rational function. This was remarked 

by F. Klein. 

We ae a behaviour of 7 caused by a displacement of O, after (10), given by 

ar = 22 3 OWE ao % 6) 5 me Da (a, 2, v, &)(m—p) P.....(13), 
m denoting the degree in y, and wu in v. 

The vanishing of 87’, for every &, is the condition for the invariance of 7’ by every displace- 

ment. With a given function W, which only affects the proportions of the 7%, vu, we can, by 

choosing p conveniently, make any function 7 invariant ; that means an adaptation of the direct 

measures of the 7%, v, to the transformation W. The geometry of Wey] is obtained if for 7 we 

take the usual ds’, with p independent of 7, v. This measurement cannot be applied to the 

elements of Z’= 0, in perfect accord with the behaviour of the usual measurement for ds? = 0. 

6. We now combine a ape ee ms another one, a op find 

6:7 — abr'= 2 = 7 (8cE*— sets) + 2 5 (Se? 8:87?) ee = = (BBs — 8:8;0g)......(14), 

which is evidently an invariant in regard to a After some easy fei ee we find, for the 

behaviour of the single terms on the right side, under P, the Cy ee 

(6¢dz° — 62 5¢0% Ny =z~— “= (8,By9? — 528¢7*) t5 “(6 = 6:7), 

(6,620. = b26-Va)’ = a we (5.5208 — 8: 8¢0p)+ med aa Vy (8,8 — ys f°), a Oira’ Oa,’ 0 

(S¢£* — Bete) =" o (, = a) EN Feo RRM ose (15); 

with these we can establish the invariance of (14) by direct computation. 
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7. The expression in (14) is in a very close relation to the behaviour of 7’, when O describes 

a small closed path back to its original position. To develop this relation we write more explicitly 

O22 —Aaacapy OEP, Of0n —= WV ap (Gras VU) Ehtoteadece veces se seen (16), 

and put Lq = Hq) + Ta (8), 

where the wy, (s) are periodic functions of s, with the period 1, and w,(0)=0, and r is a real 

variable confined to a sufficiently small interval containing zero. When s varies from 0 to 1, and 

r is small enough, the x, describe a small closed path from and back to #,’. For the 7* and v, we 

have the ordinary system of differential equations 

dn* , dt._v , v ——=7Z_" (a; 7, 2) We (8), == Vas (a, 7, V) We (S) ..2-0e2-eeeeenee (En): 
ds ds 

the Z, V, y being supposed regular in a small, but finite, neighbourhood of 7, Vs, 9 and 0, we 

can develop the 7, v in series of powers of the parameter r. If 

n* = nt + TH + Tn + rns* + Aon 

Va =Va +E TUa + 12a + 1° Vsq + oees 

we find, comparing the two sides of the differential equations, the recurrence-formulae 

dny* _ (d? Zp" (a, 0, ») A Apa _ (A? Vag (a, 9, 0) 

ds =( dr?> bepNe (3), ds ( dr? abe 

which shew that we can compute the 7,*, U2, step by step, by simple quadratures. 

On account of the initial conditions 74 (0) = v2, (0) =0, for every /; thus 

ae (8) = Ze= (a yineea inven (8) © Via (S) = Vag (a, 2°) 05a (G))senececee sen ise (19); 

from these, by substitution and integration, we find 

Za* OZ p* 0Z 3% S } 
2 (s)= (G+ B B Zs + = Vs) [ ove ds, 

Ox ont Ov, 

Voa (8) = (5 Vas + ae Gevsee g se = Va ie Ves rass eter secs ose s ae (20). 

Thus, if we put o® =r if : Ws esi) 

we have w? = —w**, and the first terms in our series give the well-known expressions whose 

vanishing are the conditions of complete integrability, which is instructive, (16) being general 
differential equations. 

We may, further, suppose the z, to be functions of the parameters, 7,, T., such that they 

describe an element of surface bounded by the path of integration, and then consider the limit 

of the quotients of the first terms by the integral | dr,dt,, extended over this element. Writing 

La, *, etc., for x,°, 77, etc., these limits are 

0Z5* 5 rad OZ 5% ws) 0 (x3, Xp) 1 /0Z; belt OZ 5" apy 
So am On’ le an’ Y ears Vie Oy OGa, ta) 

e 1(Vea Yay av. B Vas OVag ec _ OV as 0 (&s, Xp) 

Ox; Org on fe y oe + Ovy 4 Ory rae ee ae) 

which are evidently transformed by the group Ss respectively like 7* and 2,. 
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As the @a,/é7,,02,/8T2 are transformed like the n*, we may write for them &*, €*; then, intro- 

ducing two new variables ¢*, 7,, the former like 7°, the second like v,. we infer that 

1 (aZet OL , Le" », 22s" ales ahs ew. 
3 (ax Bag * Sar 8 ~ age Ey Vet, Von) SCEPC 

= Ms, ee. M (2.9, 8e BA ss coerce (21a), 

‘ 1 OV ag OV as OV ag r = OV up Pe OVas a SB _ £B ¥d al ae ee ee 
BS are ane = N (ease ae (216), 

are both invariant under the transformations P. These expressions M and NV are the immediate 

generalisations of the well-known Riemann-Christoffel curvature tensor. 

8. We may also remark that, when the x, describe such a small closed path, any form 7 

undergoes the variation 

“i Me AERP ye Nags (E2GP ERE ee ees. cco (22), 

which js also invariant ae IP 

Referring to formulae (15), the MW, V are 

M = (88.0% — 88:7") fa — Zp% fa (Sg E® — 82 6), 
N = (88.00 — 8,820.) 6% — Vag H* (ScEF — Sz OP) 20. eeeeeeeenee cece neces (23), 

and we may also remark the rage of the usual covariant differentiation 

or 
aoe oe : t bn? + 8 ap seis soiices erences skew eh seeeene (24), 

and an analogous formula for ay pairs of ae like n%, va. If the M, N are identically 

zero, the system of total differential equations 

dn* => Z 5° dg, dv, = Vap dag eee cece ences ecee ec eeecsseesceese (25), 

is completely integrable, and the n*, v, may be represented in the forms 

n= G9 Ge yet), Va = fa (we, May Oh). Seeckeonc-vecen=aceseane (26), 

so that the rays, and the £,_, of an O*-bundle, at z,.*, change into the rays and the £,_, of an 

O-bundle at z,, independently of the path described, in the manner of the parallel-displacement 

of ordinary Euclidian geometry. 

If we now suppose that only the ratios of the n*, v. are independent of the path, the meaning 

of the M, NV shews directly, and computation confirms, that 

Mie = ndsa (@, 0, V), Nasg = Vabse (2, 0, V), 

wherein the a, 6 are homogeneous functions of n*, v. of zero degree. 

With the operator arising from (24) 
é fy a 

=—— B eb. 2 
( Jax 024 a5 Za mG ar Vag vg ee meme ween eee wenn eee (27), 

a ‘ a, _ Zee Ze Zs" we have (M5,). + (M3) + (1%,)s = oat M’,+ +o ~My, + ae M?, 

a Ze OZ." 
at les a5 avy — N yop + aa = N ype Whit date Suemisaiseie'ahwcete (28), 

om 

with an analogous formula obtained by changing uM. Z into N, V, respectively. 
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9. The formulae of §§ 7, 8 donot assume that the 87%, :v, belong to a contact-transformation, 

and are quite general. If we assume this, and put 

W.(@,-7;:2; &)= Wa (ayy; v) Et, -p (a, 9, vy E) =p. (a, 1, 0) E* «2... 00ccereeee (29), 

3 _ OW, oW, 
we obtain Ze* = 0, 2 ott pen, Vag = Fe Pas néqbasqoodohoonesoecerodaoe (30), 

p eQ: 00 
and M+ = w? (= as + pop a 7 Wes a2 ee 2B — psa v2) Eaiereiasie cisiciveis ¢ s4)e (31), 

_O0We OWs _0(Wa, Ws) 
where O38= Cas ees ah “Bi(v,, nt)” 

Ops _ Ops * O(pp, Ws) (ps, Wa) 
0x3 Oxp 0 (ys ny) 0 (Vy; 77) 

PSB em eeteeren tae a NE ae TA Are nine nie einlele einiaisjeleleie\« sie \sleiaieleiela (32). 

If O describes an infinitesimal closed path, there arises an infinitesimal contact-transformation of 

the (7, v)-space, defined by the characteristic functions 

OQ= oF Os,, R= Psp OP 265 iis 5 RECO C Soe eine ( 33), 

and we can also write 

40= £° OPO 5 = ow (2, 1, Y; 0) pane em, v, &) @s 
Oars 0x5 

OW, 7, v, ©) OW (2, n, », &) _ OW (a, nV, E)OW (a, n, v, Sy 

Ov; dn? Os On? 

Op (x, n, ¥, ©) Op (x, n, v, &) dp (x, n, v, ©) AW (a, 9, v, &) 
TA DO a tN of) et ON) OY A = 

ate 0x5 E 0x5 2 ‘ ov, Us an? 

_ Op (a, 0, v, O) OW (a, », », ) _ Op (a, 0; 2% ©) dW (a, n, v, &) 

Us on? on? Us 

4 p(# 0 ® ©) oW (a, », 2, &) B in? oh ae Batereioleeincencietels (34), 

the © and R being invariant under P. 

Direct computation gives 

(OQesp)at+(OQga)s+(OQas)p= 0, 

0 (pp, Qas)  O(pa, Qeg) 0 (ps; Opa) 
(pap) + (Ppa)s + (Pas) = Gna) Gra) wae Se bIsaeee ste es (35). 

For instance, in Weyl’s geometry, where p is independent of , v, the second formula above 

has zero on the right side. If only © vanishes identically, then, when O describes an infinitesimal 

closed path, there is no change in the aspect of the subjective world, because the ratios of the 

single (, v) remain unchanged; if R vanishes, and not 2, there is only displacement of the 

figures, but the infinitesimal shape in the 2,-space remains unchanged. In the first case, for 

QO = 0, the expression 
ii plBs EOLA a gonoctoroobb nods cocbroas soz 09scopoRSbenIab I (36) 

also remains unchanged, and for every pair of #,_,-elements of the O-bundle, there is one member 

unchanged by 0. 

10. It is easy to insert the parallel-displacement of Levi-Civita, and the more general point 
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of view of Weyl in the above theory. But I prefer to specify them as an example of another 

case. Take an alternating bilinear form as invariant, assume p= 0, and n even; put 

Aagn* ai ae (, f), Dap = — Upa os eccnssccncccccccsccacccccccces (37), 

the determinant | @ag| not being zero. We have for W 

7 fogt CP ae ee go ee ee (38); 
Wa — OWa 

differentiating in ca to w, we obtain 

&W (a, © w, RED} 

fies  Owgdw, : 

so that, the 7° being arbitrary, and | a,g| not zero, W is linear in the wg. If we differentiate with 

respect to {*, £°, we have, from (38), by the same argument, 

&W (2, & w, A 

06°0E dw, . 

shewing that W is also linear in € We therefore put 

W (a, 0, v, E) = wr EF ry + Wh * EP Vy oe. eeeeeeceeeceeeeeeeeeees (39), 

; ERR and Wig = Whar Ung = — Ups 

then, comparing coefficients in (38), we get 

OGap 3 5 
a spW, — Usp, — Cas we ay tas u? = = Oneieccsvieswias iascccteee (40), 

Odap Oa da ul 
and, consequently, pee fe “Y= (aspw> yt das ws Oe (41). 

Or, Ot, Om, 

Denoting the subdeterminant of as, 1m | @s,|, divided by the determinant itself, by A”, we 

have, multiplying by A‘ and summing, 

€ Oap , OAyp , Oa ; : vig EA (Fe Gee Bet) — (can el, A) asc nen (42), 

Substitution in (40) shews that there is no other condition. 

The analogy with the well-known Christoffel symbols is obvious. The symmetrical part of 

W can be taken arbitrarily, and the alternating part is then defined. 

For a symmetrical bilinear form as invariant the results so far mentioned are reciprocal; the 

symmetrical part of W is determined by the arbitrary alternating part. But U is always an 

extended point-transformation. 

We may also remark that the alternating part of W is invariant under P, which modifies 

only the symmetrical part. 

11. Nothing so far given furnishes a measurement in the z,-space. We can obtain such a 

measurement by considering the one-dimensional strips in which the consecutive (7, v)-elements 

arise by a displacement along the & themselves. The differential equations are 

dn* ms. aWs (2, 7, v) - Ba Fae ay, + Pa v) Pn 

dv. _oWw, (4, ”, v) ”B — pp (a, n, v) nPv,, Cae * eee eneccereeeeseeeece (43). 
aes an? dt 
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These equations are invariant under P, and the parameter ¢ can only be changed into at + b, where 

a and 6 are constants. If we write down the homogeneous linear partial differential equation 

corresponding to (43), omitting ¢, 

ad ie a® |-2™ (x, n, 
OX ue Ont OVa 

Vv 

) 7? + pp (2, 7; v) Prt 

o® [0 Wa (a, n, v) 
—— St NES Be 5 BP , B, — au, | ant a? — pp (&, 0; ¥) 0 | Viapneee (44), 

we see that every integral is an invariant under W. For the shapes of the curved lines, which 

we shall call strips, described by the #,, simultaneously with the (7, va), only those integrals are 

important which depend on the ratios of the y%, and the ratios of the v.; thus we must have 

with (44) these two equations form a complete system with 3n — 3 integrals, and, therefore, 3n —3 

arbitrary constants. This number is reduced to 3x —4 by the condition 7%v, = 0, which is also an 

integral of (43). The equations (44), (45) shew that the shape of the strips is independent of 

the pg. The definition of the strip from a point O to a point O’ requires 2n conditions for the 

3n — 4 parameters of a strip and the two values of ¢ and ¢ at O and O’; there remain then n — 2 

arbitrary parameters, and we can reach O’ from O by moving in a (n—2)-fold manifoldness of 

strips. 

If we take an invariant under W, say T(z, », v), which is an integral of (44) on account of 
1 

(13) above, we can fix ¢t. And, if m is not zero, we can suppose m=1, by taking 7 ® instead of 

fT. Then, putting 

(a %,u)=1 a) “dt. ? 

the parameter ¢ is fixed, and for any strip from 0 to O’ we may put 
me 

t—t= | T(x, dita, Va), 
0 

the x, and v, being functions of a parameter belonging to the strip. 

When z,, va pass from O to O’ along such a particular strip, defined by (43), we have 

2” such strips; we can then choose an extreme one, at least a stationary one, such that the 

differential d (t’ — t), regarded as a function of the n—2 parameters, is zero. And this t’—¢ may 

be used as a measure of distance between O and 0’. 

Whether such a measurement is additive along the same particular strip, I have not yet 

ascertained; this would be a very interesting peculiarity. But it is not essential to our purpose; 

we can, for every strip, determine the particular measurement between two elements which are 

near enough, and obtain an additive measurement by integration. 

12. So many problems arise out of the ideas here explained, that an exhaustive treatment 

is impossible. We consider now only the application to the Riemann geometry built upon the 

assumption of a ds*, and the parallel-displacement of Levi-Civita. For this case the contact- 

transformation is only an extended point-transformation in the homogeneous space of the (7%, va); 

the particular lines defined by (43) are the ordinary geodesic lines, that joining two points, O and 
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0’, which are sufficiently near, being unique. The (x —2)-fold manifoldness at O, belonging to 0’, 

consists only of the (x — 2)-fold manifoldness of #,_, containing the initial direction of the 

geodesic line; every #,_, is carried by parallel-displacement along the geodesic line to 0’, 

generating a strip, and reaching 0’ in the direction of the geodesic line at O’. The result is 

similar for every contact-transformation which is only an extended point-transformation. But if, 

for W, we take a general contact-transformation, we obtain, in the subjective space of an observer 

at O, an (n—2)-fold manifoldness, a surface when n = 4, containing the particular strips coming 

from 0’. In the subjective (x —1)-dimensional space we have, therefore, an n-fold manifoldness 

of (n — 2)-dimensional hypersurfaces, forming a representation of the n-fold objective manifoldness 

of points 0’. If we now imagine some signals, e.g. rays of polarised light, coming from the points 

O’, along the particular strips, to the observer at O, and we know W, we are able to form an 

image, in part, of the objective world, by observing the n-fold manifoldness of (m — 2)-dimensional 

hypersurfaces spoken of. For the Riemann geometry, however, and in general for any case of 

merely extended point-transformation, the observer can only obtain knowledge of events along 

the geodesic line, and is unable to fix the single point on the line. 

13. Can a useful theory of physics be built on these general ideas? It is impossible to affirm 

or deny. But I cannot finish this paper, already long, without remarking my belief that it should 

be possible to reconcile the oft-quoted Kantian view of the intuitive character of space and time, 

with the modern point of view. The observer at O has really a projective three-dimensional space, 

of the (7°, v2), and a parameter for his path, in his mind (and that we may call @ priori); otherwise 

he may learn something of the objective world by observing the surfaces we have spoken of. 

But it seems desirable to consider a mathematical scheme as general as possible, both for Geometry 

and Physics, in order to leave full freedom in the interpretation of observed facts. 



XXIV. On the Fifth Book of Euclid’s Elements. (Fifth Paper*.) 

By Proressor M. J. M. Hitt. 
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1. The object of this paper is to endeavour to recover the train of thought which led the 

writer (supposed to be Eudoxus, but whom I will refer to as Euclid), of the above-mentioned 

work, to the formulation of his Fifth Definition (the test for the sameness of two ratios), and 

his Seventh Definition (the test for distinguishing the greater from the smaller of two unequal 

ratios). 

2. Two attempts to effect the same object are due to De Morgan. The first of these will be 

found on pp. 25—29 of his treatise on The Connexion of Number and Magnitude, to which there 

is a sub-title An attempt to explain the Fifth Book of Euclid (1836). De Morgan considers the 

distribution of the multiples of a magnitude A amongst the multiples of a magnitude B of the 

same kind as A, thus forming what he calls the relative multiple scale of A and B. This he 

compares with the relative multiple scale of two other magnitudes C and D. The argument is 

intricate requiring the discussion of 81 alternatives. 

There is also an attempt, depending on the use of relative multiple scales, to reconstruct 

the argument by the writer of this paper in the first part of this series. 

These arguments are both of a logical nature. On account of the greater simplicity of the 

procedure which I shall explain below, it seems to me unlikely that Euclid followed either of 

these methods. 

De Morgan’s second attempt will be found in the Penny Cyclopaedia, Vol. x1x. (1841). 

A full account is given in Sir T. L. Heath’s edition of Euclid’s Elements, Vol. u. pp. 122—123. 

The following is sufficient for comparison with what I now propose. 

De Morgan proceeds from the idea of similarity and gives the following as an illustration. 

Suppose there is a straight colonnade composed of equidistant columns (which may be 

understood to mean the vertical lines forming the axes of the columns) the first of which is at a 

distance from a bounding-wall (perpendicular to the straight colonnade) equal to the distance 

between consecutive columns. In front of the colonnade and parallel to it let there be a straight 

row of equidistant railings (regarded as meaning their axes), the first being at a distance from 

the bounding wall equal to the distance between consecutive railings. Let the columns be 

numbered from the wall and also the railings. The column distance, say C, and the railing 

distance, say R, may have any ratio to one another (except that of equality). 

Now let a model of the preceding construction be made in which the column distance is C’ 

and the railing distance is R’. It needs no definition of proportion, nor anything more than the 

conception we have of that term prior to any definition (and with which we must show the 

agreement of any definition that we adopt) to assure ourselves that if the model is truly formed, 

* The preceding papers will be found in the 16th, 19th, and 22nd volumes of the Cambridge Philosophical Transactions. 
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then ( must have the same ratio to R as C’ has to R’. Nor is it drawing too largely on that con- 

ception of proportion to assert that the distribution of the railings amongst the columns in the 

model must everywhere be the same as in the original, ie. if the mth column be opposite to the 

space between the nth and (n + 1)th railings in the original, the same must be the case in the 

model, i.e. if nR < mC < (n+1) R, then must nR’< mC’ <(n+1) PR’. 

If, however, the sth column be exactly opposite the ¢th railing in the original, then the 

same must be the case in the model, we. if tR =sC, then must tR’=sC’. 

This is equivalent to, though not exactly in the same form as, Euclid’s Fifth Definition for 

the validity of the proportion 
(OPE TR OH 6 te 

This way of reaching the conditions of the Fifth Definition is simple and direct. It is 

based on the idea of similarity. That idea is of so fundamental a character that several mathe- 

maticians from the time of Wallis have proposed that Euclid’s Postulate of Parallels should be 

replaced by the assumption that it is possible to construct a triangle of any size similar to a 

given triangle. So that it may very well be that Euclid did actually follow this path. 

As, however, this method of treating the subject does not afford a simple explanation of the 

treatment of unequal ratios I venture to make the suggestion that he worked from the idea of 

relative magnitude as his starting-point. 

3. In the Third Definition of the Fifth Book ratio is defined as follows (I quote from Sir T. L. 

Heath’s translation): 

“A ratio is a sort of relation in respect of size between two magnitudes of the same kind.” 

There has been a great deal of controversy as to what Euclid meant to imply by this defi- 

nition, but it does not greatly matter because he makes no use of it in his subsequent argument. 

The words “of the same kind” are however important. They are used in a technical sense. 

They mean that two such magnitudes can be added together and the result is a magnitude “of 

the same kind”: that if two such magnitudes are unequal the smaller can be subtracted from 

the larger and the result is a magnitude “of the same kind”; that if unequal the smaller, if 

added to itself a sufficient number of times, will give a magnitude “of the same kind” greater 

than the larger (this is the so-called Axiom of Archimedes); and that any magnitude can be 

divided into any number of equal magnitudes “of the same kind.” 

De Morgan, in his Article on Ratio in the Penny Cyclopaedia, l.c. p. 308, Ist column, 

2nd paragraph, says that ratio is “relative magnitude.” It is this idea of relative magnitude which 

has to be explained, and its implications explored. 

Euclid nowhere commits himself to the statement that a ratio is itself a magnitude. In his 

seventh definition he uses the word “greater” in two different senses. The first time it is used 

it means that one ratio is said to be greater than another provided that a certain condition is 

satisfied. The second time it is used it is applied to magnitudes in the ordinary sense. Con- 

sequently it is held that the first use of the word “greater,” when it is applied to ratios, must not 

be understood in the same way as when it is applied to magnitudes; e.g. De Morgan says in his 

note on this definition that “proof should be given that the same pair of magnitudes can never 

otfer both tests [Ze. the test in the definition for a greater ratio and the corresponding test for 

aE 

ee eS eee 
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a less ratio with ‘less’ substituted for ‘greater’ in the definition] to another pair; ze. the test of 

greater ratio from one set of multiples and that of less ratio from another.” This is very easily 

proved, see Heath, /.c. p. 130. 

4. I suggest that in fact the original exploration of the idea of relative magnitude took place 

on the following lines: 

(1) Suppose the magnitudes A and 6 have a common measure G, and that d=aG, B=bG, 

where a, b are some two whole numbers. If 4 and B be compared with one another from the 

point of view of their magnitudes, the first idea that would arise would be that their relation 

to one another would be the same as that of the whole numbers a and b; and that neither the 

nature nor the magnitude of their common measure G was material. If G be not the greatest 

common measure of A and B then it is always possible to substitute for @ that greatest common 

measure. So in what follows it will be supposed that @ is the greatest common measure of 

A and B, Then the magnitudes A and & determine uniquely the whole numbers a and,b. 

It would then be laid down As A DEFINITION that the relative magnitude of A to B was the 

same as that of the whole number a to the whole number b. This is therefore a definition, not 

« proposition as Euclid makes it in x. 5, which reads as follows: 

“Commensurable magnitudes have to one another the ratio of a (whole) number to a 

(whole) number.” 

Euclid’s proof of this proposition depends on the 20th Definition of the Seventh Book and the 

22nd Proposition of the Fifth Book. 

The result may be expressed thus: 

if A=aG, B=0G, 

then the ratio of 4 to B is the same as that of @ to b; or in symbols 

(A : B)=(aG : bG) =(a: b), 

wherein I have used the symbol for equality in place of Euclid’s “is the same as.” 

Euclid did not take what would now be regarded as the next step, viz.: 

The measure of the ratio of a to 6 is the rational number «a/b. 

(i) The next step in the train of reasoning was probably the following: 

If A=aG and B=)G, 

then bA =b(aG) = a(bG)=aB, 

ie. if A =aG and B=)G, then bA =aB. 

(ii) Then would come the attempt to prove the converse proposition. 

If bA =aB, then A and B must have a common measure. 

T think the most likely method adopted for this purpose would be the following: 

Assume that B is divided into 6 equal parts, each equal to G. 

Bi oGs 

-. bA =aB=a(bG) =b (aG), 

* A=aG. 

Hence 4 and B have a common measure (, and therefore (4 : B)=(aG : bG) =(a: b). 

(For a method of treating this case which does not involve the division of B into equal 

parts, see Art. 7 (1) below.) 

59—2 
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(iv) Then would come the attempt to prove the converse of Euc. x. 5 which is given in 

Euc. x. 6 “If two magnitudes have to one another the ratio which a (whole) number has to a 

(whole) number, the magnitudes will be commensurable.” 

This I think would have been proved as follows: 

Given (A: B)=(a:b). 

Divide B into b equal parts, each equal to G. 

=. B=0bG. 

It would then be argued that the idea of relative magnitude required that 

(A:B)=(A:bG@). [See Section (vi) below.] 

But (a:b)=(aG@:bG@) by definition, 

“. (A:bG@) =(aG@: dG). 

It would then be argued that the idea of relative magnitude required that A =aG. 

Since B=)G it follows that A and B would have a common measure G; and also that bA=aB. 

We may put this and the preceding conclusion thus: 

If bA =aB, then (A: B)=(a:b). 

Conversely, if (A: B)=(a:b), then bA =aB. 

(v) Having thus reduced the study of the ratios of commensurable magnitudes to the 

study of the ratios of whole numbers, a closer investigation of these last would be undertaken, 

and the next set of conclusions that would be reached would be 

(a) If a=b, then (a:c)=(b:c) and (c:a)=(e:)), 

(8) If a>b, then (a:c)>(b:c) and (c:a)<(c:b), 

which last includes what is set down for symmetry only, 

(y) If a<b, then (a:c)<(b:c) and (¢:a)>(c:b). 

(vi) If now three magnitudes A, B and C be taken such that 

A=aG, B=bG, C=cG, 

then using the definition in (i) above, it would follow from Section (v) that 

if Al Begihenw (Ab:\C)) =\(B OC) in cece ceeenoe- ces see eseeeeerine (D, 

if Ar= Besthenn (Gi+A)) = (CB) nccscscoesnsceeavec oso neeeee (1), 

if A > By then. (A\:'C):>(BiiG) Sasi a ce eacte cose sseeaaeene (II), 

if Aj>sB; then (Gi-A.)<(C.::B) teenccttncnens- saseetn se eee Gil): 

if ANB athena ©)< (BiG) cee sess cetnet.saeccetieneeeeeeee (ITT), 

if Ar Be then(Ci20A)\> (Cis:B) sccccnceccnaet te ahonieneeeneeneann (Ir). 

In the statement of these six results the fact that A, B and C have a common measure, 

though it is implied, does not obtrude itself. 

(vii) It would next be noticed that if (1), (II) and (ITI) are true, and if we may look wpon 

ratio as a magnitude, then a purely logical deduction leads to the converse propositions, 

if (Ae Gy (BC); ‘then A = Bike essences enencee eae (IV), 

if (AinG) (BiG), then A) SEB) sah auete atic ce een sab ten (Y), 

if (A> C)<i(BiC), then A: < Bis. ccsssoamtcor secon eubentbcen (VI). 
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(vii) The next step would be to endeavour to express the ratio of two magnitudes when 
their common measure was unknown even when it existed. The thinker would be encouraged 
to make this attempt by the fact noticed under (vi) that the possession of a common measure 
by A, B and C does not obtrude itself in the statement of the conclusions (1), (II), (IIL), (I’) 
(11), (111). 

Suppose that the magnitude B is divided into 6 equal parts, each equal to G, and that it is 

found that A is intermediate in magnitude between aG and (a+ 1) G. 

Then A >aG, 

~. (A: B)>(aG@:B) by (ID), 

(aG:B)=(aG:bG) by (1), 

(aG:bG)=(a:b) by definition, 

se CASB) > (ab). 

Also A<(a+1)G, 

“. (A: B)< [(a+1)G@:B]_ by (IID), 

[((a+1)G@:B)=[(a@+1)G:bG] by (7), 

[((a+1)@:bG]=[(a+1):b] by definition, 

“. (A: B)< [(a+1):b], 

“. (a:b) <(A:B)<[(a4+1):8]. 

Thus the idea would arise that when it was not known whether a common measure of 

A and B existed, it was nevertheless possible to compare the ratio of A to B with the ratio of 

one whole number to another. 

(ix) The next idea would be that, even when two magnitudes “of the same kind” have no 

common measure, the idea of relative magnitude involved the truth of the assumptions I, I, II 

and I’, II’, III’, which had in the first instance been arrived at as a result of the consideration of 

magnitudes having a common measure. 

(x) It would then be surmised that it was possible to determine whether the ratio of one 

magnitude to another “of the same kind” was greater than, equal to, or less than that of one 

whole number to another whole number, even when the magnitudes had no common measure. 

(xi) It would then be natural to take as the test for the sameness of the two ratios the 

condition that it was impossible to find the ratio of any whole number to any other whole 

number which was intermediate in magnitude between the ratios. This would lead in the manner 

set out in the next article to Euclid’s Fifth Definition. 

(xii) It would also be natural to take as the test for the inequality of two ratios the con- 
dition that it was possible to find the ratio of some whole number to some other whole number 

which was intermediate in magnitude between the two ratios, or which was equal to one of the 

ratios but not equal to the other ratio. 

5. The whole argument might then be set up as follows: 

(i) The ratio of the magnitude A =aG to the magnitude B=bG would be defined to be the 

same as that of a to b, and would be written 

(A: B)=(aG@:bG) =(a:b). 
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(11) It would be assumed as fundamental that the idea of relative magnitude required that, 

if A, B, C are magnitudes “of the same kind,” whether they have a common measure or not, 

then 

If A= Be thenm (sO) = (BAC) acsecseseeete cen. ee este eacee (1), 

if Foleslay ila (CZ DN CORIED” anor aocac-sccsnoosseeasenescDesce (T’), 

if Aes euhenn GAs: ()) > (BC). cadenseeeneseesacacsneeeaseee ae (11), 

if Al B: athenw(C2A))<(C NB) yecccccmeteteeesaesececess cece (Tiny 

if A= JB atibenw(Al:iC)) <(BAG)\a ccccseneceocseecess eee -soneee (III), 

if eA enbnene (sss A)! >> (OB) ect naenceeeecrneceeere setae (lls): 

Of these (IIT) is included in (II) and (IIT’) in (IT’). 

(ii) Then it would be deduced as a logical conclusion from I, II and III on the hypothesis 

that ratios are magnitudes, 

if (CAR C) = (BRC). thent A = 8) eee ceeteceaceeee eee ne eee (IV), 

if CASO) SS CBE) thened Suse cu. cecsoeeaceeeen eee (V), 

if (GEOR (BSG) then 2A Ba ens rceeocenses sl eee eee (va: 

(iv) The next step would be to compare the ratio of A to B with that of any two whole 

numbers, say 7 to s. 

This might be effected as follows: 

Consider the magnitudes sd and rB. 

It is supposed to be possible to determine whether sd is equal to, or greater than, or less 

than rB. 

Suppose that B is divided into s equal parts, each equal to G. Then B=sG. 

Hence rB=r(sG)=s (7G). 

If then sd =rB, 

sd =s(rG), 

A=7G, 

.. (A: B)=(rG:sG) =(r:s). 

If however sA >rB, 

sd >s(rG@), 

A>rG, 

Sa (CARES CERT sy y7 (GLY) 

(rG: B)=(rG@:sG) by (1), 

(r@:sG@)=(r:s) by definition, 

poem CARES) >=(7"2'6) 

Similarly if sA <rb, 

then (A: B) <(r:s). 

Hence if A= Sy hen (A) <13) = (07 6)i ncvcacccercnive seeeaeeetecces (VIL), 

if SAIS 7B then, (GA's B)> (7728)e.. ccccccssctoceccseemeunece (VIII), 

if §A << rB) ohen (ASB) <r 8) sncoc ehtavices wcanuenaeataeeee (IX). 
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(v) The propositions converse to VII, VIIL and 1X might be obtained thus: 

Suppose 

Take as before 

If however 

Hence if 

if 

Similarly if 

(A: B)=(:s). 

B=sG, 

“. (A: B)=(A:sG@) by (1), 

(r:s)=(7G@:sG) by definition, 

-. (A:sG@)=(G: 8G), 

-- A=r@_ by (IV), 
2. 4 = (GEN 

*, sA=r(sG@), 

5 al slay 

(A: B)>(@:s), 

(A: B)=(4:sG) by (1), 

(r7:s)=(7@:sG@)_ by definition, 

= (AcisG)> (7G.2sG), 

speeder Gas by: (\V); 

gars le=181(7.G,)s 

Sy Al SED) 

o5 val Soest 

(al'9/3)\ =a (PSG). Tavern V2 Eee oe Genoncohoooonoscoaboncoteasadecde (X), 

(GZls Jd) S (Rey, tdnGra, GAUSS Ae} Bosceococgoocbbonbcoosuboedobonr (XI). 

(CATE) (G's) ath eng GAl< 713) | (sweschetececder act sadeceeneee (XII). 

(v1) The next step would be to take as the definition of equal ratios the property that it 

was impossible to find any two whole numbers such that the ratio of one of them to the other 

was intermediate in magnitude between the two ratios. Calling the integers r and s and the 

ratios (A: B) and (C: D), 

if (A: B)=(r:s), then must (C:D) be equal to (7:8); 

if (A :B)>(r:s), then must (C:D) be greater than (7:5); 

if (A:B)<(r:s), then must (C:D) be less than (7:3). 

Suppose now sA =rB, 

then CAE B)=(res)) by (VID): 

Hence we must have (CD) — Ges); 

-. sC=rD_ by (X). 

If however sA >rB, 

then 

Hence we must have 

Similarly if 

then 

So that if 

if 

if 

(A:B)>(r:s) by (VIII). 

(C:D)>(r:s), 

sh > 1D) by (Xt): 

sA <rB, 

sC<rD. 

sA=rB, then must sC=rD. 

sA>rB, then must sC>r, 

sA <rB, then must sC<7rD. 
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Now if these conditions be satisfied whatever whole numbers be taken for 7 and s, it will 

be impossible to find any two whole numbers such that the ratio of one of them to the other 

is intermediate in magnitude between (4: B) and (C: D), and then these ratios will be said to 

be equal. 

Thus Euclid’s Fifth Definition is obtained. 

(vii) The next step would be to show how to distinguish between unequal ratios. 

Suppose (A: B)>(C: D). 

This could be tested by seeing whether it is possible to find any ratio (7:s) such that 

@) G28) Gers) = (CzD); 

or (2) (4: B)>(r:s)=(C: D), 

or (8) (A:B)=(:s)>(C2D). 

These are equivalent respectively to the following: 

Integers 7, s exist such that 

(1) sA>rB, but sC<rD,; 

or (2) sal 7b) but sCi— 7D} 

or (3) sA=rB, but sC<rD. 

Euclid’s Seventh Definition is equal to the following 

(A: B) >(C:D) 
if some integers 7, s exist such that 

sd>rB, but sC}rD. 

This is equivalent to (1’) and (2’) but Euclid takes no account of (3’). 

6. I suggest that in the way described above, or in some equivalent way, Euclid reasoned 

up from the idea of relative magnitude to the Fifth and Seventh Definitions; that having obtained 

them he found that they provided a completely adequate basis for the examination of ratios, and 

that he then suppressed the argument by which he reached them, possibly in order to avoid the 

difficulty of treating ratio as a magnitude. He was not in a position to show how to measure 

ratio because in his time the idea of the irrational number had not been sufticiently developed. 

It is a matter of controversy as to how far he was in possession of that idea. Whether he actually 

possessed it or not it is certain that there is the closest connection between his definition of 

ratios which are the same (or equal) and Dedekind’s Theory of Irrational Numbers. In the 

preface to his tract, entitled “Was sind und was sollen die Zahlen?” Dedekind says that Euclid’s 

Fifth Definition was the source which inspired his theory. 

In support of my view that Euclid suppressed the steps by which he reached his 5th and 

7th Definitions I would desire to draw attention to the 7th, 8th, 9th and 10th Propositions of the ~ 

Fifth Book and also the 5th Proposition of the Tenth Book, in which the assumptions numbered 

I—VI and I’, Il’ and IV’ and the definition of the ratio of two commensurable magnitudes are 

proved as propositions based on the 5th and 7th definitions of the Fifth Book and the 20th 

definition of the Seventh Book. If however any one of the assumptions or the definition of the 

ratio of two commensurable magnitudes be considered by itself, it seems evident that it is by 

itself derivable from our idea of relative magnitude, and is of a far more elementary character 

than the definitions on which its proof in the Fifth or Tenth Book is based. 
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I would particularly draw attention to the proof in the text of Euclid v. 10, which has been 

quite rightly criticised by Simson, because Euclid argues in it about greater or less ratios in the 
same way as if they were magnitudes, though he has not shown that ratios are magnitudes. This 

seems to me to point to the conclusion that the theory was originally set up in some such way as 

that described in this paper, but that when the author came to rearrange the argument so as to 

depend on the 5th and 7th definitions he omitted to cut away as much of the sub-structure as he 

should have done. Simson attributed the defect in the argument in the 10th (and also that in 

the 18th proposition) to some later commentator, and explained how these defects could be 

remedied on Euclid’s lines (see Heath, l.c. pp. 156—7). 

— 
7. It is not without interest to show that the conclusions (VIT)—(1X), which have been 

obtained on the assumption that a magnitude can be divided into any number of equal parts and 

on the assumptions (I), (II) and (III), ean be obtained without assuming the possibility of division 

into equal parts if we also assume (IIT’). 

This can be effected as follows: | 

It is convenient to make a slight alteration in the notation. 

Let A and B be two magnitudes “of the same kind,” and let @ and 6 be any two whole 

numbers. 

Consider the magnitudes bA and aB. There are three possibilities. 

Gi) bA=aB or (ii) bA >aB or (iii) bA < aB. 

(i) Consider the case* bA =aB. 

If a=b, then A = B and either magnitude is a measure of the other. 

If a#b, suppose a > b, then must A > B. 

Let A=q,B+ R,, where q is a positive integer and Rk, < B. 

Since. bA =aB, 

“. b(q B+ R,) =ab, 

*, bR,=(a —bq,) B. 

Put a — bm =, an OR =n. 

INow BR; < B).°. 7, < b. 

Let B=q,R, + R,, where q, is a positive whole number and R. < Ay. 

weetel (Qavtta-telts) — (Ole; 

7 R. = (b — qr) By. 

Put b—q@r=7. 305 Gali SGal ine 

INGwelte <i. ott, ty <The 

Hence A=qB+R, a=qb+n, 

B=igohi-+ he, = Qs; +2, 
and so on. 

It is obvious that this process amounts to finding simultaneously the greatest common 

measure of A and B and that of a and b. 

* The examination of this case was given me several years ago by Mr Rose-Innes. 

Vor. XXII. No. XXIV. 60 
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But a and 6 being positive whole numbers the process must necessarily come to an end. 

Suppose that it is found that Pray = Opasllaae 

Then we have at the same time Irn = Oppegl ttre 

If now a and } have a common factor it may be supposed to be divided out from both sides 

of the equation 6A =aB, so that a and b may be regarded as prime to one another, and then 

their greatest common measure, 7,, will be unity. 

Moreover A will be the same multiple of R, as a is of ry, i.e. unity. 

ee PAl—i0: len: 

Similarly B will be the same multiple of R, as b is of 7,, Le. unity. 

35 Js} Sti 

a (ile 13) (Hee cle NXE) 

Hence if bA =aB, then (A: B)=(a:b). 

(ii) Consider next the case bA > aB. 

Let bA—aB=C. 

It will first be proved that a magnitude D exists such that abD <C. 

Suppose that # is any magnitude of the same kind as A and B. 

Then, as in Euce. x. 1, suppose that the remainder left after taking away from F its half or 

more than its half is /). 

Let the remainder left after taking away from Z, its half or more than its half be #,. Let 

this process be repeated n times and let the remainder be E,. 

Now consider the magnitudes 

abl, abH#,, ab, ..., aE. 

Then each magnitude is the remainder left after taking away from the preceding its half or 

more than its half. 

It follows from Euc. x. 1 that, if this process be carried on far enough, there will at length 

be left a remainder less than any assigned magnitude. 

Suppose then that ab, <C. Then the magnitude 2, can be taken to be D, and so the 

existence of D is proved. 

Now bA=aB+C, 

C>abD, 

~. bA >aB+abD. 

Put for brevity bA = X, aB=Y, abD=Z, 

el Si Z; 

.. A>Zand X-Z>Y¥, 

Now form the successive multiples of Z, viz.: 

QOL ABD A 3h 

Suppose t7 the greatest multiple of Z which is less than X. 

Then either (t+1)Z=X >#Z or (t+1)Z>X >tZ, 

1Z=X—Z>Y or t42>X—-Z>sY. 
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In both cases therefore Xt Zi > Vi 

Replacing X, Y and Z by their values it follows that 

bA >tabD >abB. 

Put now taD =A’ and thD=B’, 

.. bA>bA’ and’ aB >aB, 

eae and! 8; >)B: 

Since 4 > A’ ened) CA’ :.B) by: (IL). 

Since B< B pda (A’ -'B') by (LIT), 

Beek (21s) > Cn 23) >> (Are B): 

But A’=a(tD) and B’=b(tD), 

ee (a ee) (BID) 

oth CAS =213)))=>1(a10): 

(Gu) Similarly it can be shown that 

if bA <aB then (A: B)<(a:b). 

Hence if bA =aB then (A: B)=(a:b) which is (VII), 

if bA >aB then (A: B)> (a:b) which is (VIII), 

and if bA <aB then (A: B)< (a:b) which is (IX). 

8. In Article 5 it was pointed out that the condition that one ratio may be greater than 

another may take one of three different forms. The second and third forms can occur only when 

one at least of the ratios is that of commensurable magnitudes. It can be shown that in either 

of these two cases other integers 7’ and s’ can be found so that the condition can be replaced by 

one of the first form. 

Take the second form. 

Suppose that sd >rB, sC=rD. 

Since sA >7B it follows from Archimedes’ Axiom that an integer 7 exists such that 

n(sA —rB) > B, 

 nsA >(nr+1)B, 

but sC =rD, 

* nsC=nrD < (nr +1) D. 

Put ns=s', or+1=r7', 

SA Sr Bb, sC <7 D: 
This is of the first form. 

The third form can be treated in like manner. 

60—2 
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Note on the preceding papers. 

This series of papers originated in the discovery that all the propositions of the Fitth Book 

concerning properties of Equal Ratios could be deduced from the Fifth Definition (the test for 

the equality of ratios) without using (as Euclid does in some of these propositions) propositions 

which depend on the Seventh Definition (the test for distinguishing between unequal ratios). 

Proofs of the propositions on these lines were given in the first paper of this series and also 

in the First Edition of my Contents of the Fifth and Sixth Books of Euclid (Cambridge University 

Press, 1900). Most of these proofs are deduced directly from the Fifth Definition without using 

any other proposition. 

In the proofs of Euc. v. 9 (Part 1), 16, 22 and 23 the Axiom of Archimedes is employed. 

The proofs given of Eue. v. 9 (Part 11), 19, 24 and 25 do however depend on other propositions. 

The second part of Euc. v. 9 can however be proved in much the same way as the first part 

is proved in the first paper of this series, and it is not necessary to make use of the Corollary to 

Euce. v. 4. Hence Euce. v. 9 can be classed with those propositions which can be deduced directly 

from the Fifth Definition without using any other proposition. 

Somewhat complicated proofs of Euc. v. 19, 24 and 25 depending on the Fifth Definition 

but not depending on other propositions (with the exception in one case of a lemma) were given 

in the second paper of this series; and less intricate proofs of the same propositions, due to 

Mr Rose-Innes, were given in the third paper of this series. 

Eue. v. 19 is a transformation of Euc. v. 17 by means of Euc. v. 16, and Eue. v. 25 is a 

simple application of Eue. v. 19. I believe that no simpler proofs than those in the Fifth Book 

can be constructed. It seems necessary in these two cases to use other properties of equal ratios 

if complexity is to be avoided. 

There remains Ene. v. 24. The proof given below is much longer than Euclid’s proof. On 

the other hand it proceeds on the same direct lines as the proofs given in my preceding work for 

Ene. v. 16, 22 and 23. It does not depend on other propositions. The steps follow one another 

in a natural order; they do not require the amount of search for the next step at each stage in 

the argument that Euclid must have employed. 

I will set the proof out, not in the manner I employed in my first paper, but in that used 

in the Second Edition of my Contents of the Fifth and Sixth Books of Euclid (1908) and in my 

Theory of Proportion (Constable & Co., 1914), and accordingly I will employ the fractional notation 

for the measure of the ratio of two whole numbers. 

The proposition is to show that 

if (A: C)=(X:Z), 

and he ((/e7 SENIOR AY 

then [(A +B): C]=[((X + Y): Z]. 

Compare [(A + B): C] with any rational fraction whatever, say s/r. Then it is known from 

previous work [Art. 5 of my Third Paper and Art. 48 of the Second Edition of my Contents of 

the Fifth and Sixth Books of Euclid] that it is sufficient to consider only the two alternatives : 
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G) [((4+ 8B): C]>s/r, or (1) [(4 + B): C] < s/r, 

-. r(A+B)ssC. -. r(A+ B)<sC. 

Choose 7 so large that Choose 7 so large that 

n[r(A + B)—sC] > 2C*. n[sC—r(A + B)] > 2C*. 

Let uC and vC be the greatest multiples of Let uC and vC be the least multiples of C 

C which are less than nvA, nrB respectively; which are greater than nrA, nrB respectively. 

and suppose 7 so large that nrA and nrB are 

each greater than C. 

RA — wo = GO: .. ul’—nrA = C. 

nrB—vl = C, vi —nrB=C, 

 mr(A + B)—(u+ v) C= 2€, . (wu+v)C—nr(A + B)= 26, 

but nr (A + B)—nsC > 20, but nsC —nr(A + B)>2C, 

J“. (u+v)C>nsC, J. nsC>(utv)C, 

*. Utu>ns. . N>U+YV. 

Now nrA >ul, Now ura <ul, 

and (ch SCN S(ON SHAN and (Cl SONIC). 

~ mr X >uZ. -. mr X <uZ. 

Also mr B >vC, Also nrB< v0, 

and (B:C)=(Y: Z), and (BC) =e): 

- mrY>vZ, o. nrY < vZ, 

~ ar(X + V)>(utv)Z, 2. m{X+ V)<(ut+r)Z, 

but u+tv>ns, but U+V<nNS, 

- nr(X + Y)>nsZ, -. m(X + Y)<nsZ, 

*. r(X + Y)>sZ, -. r(X + Y)<sZ, 

-. ((X+ Y): Z] >s/r. -. (X + Y):Z]<s/r. 

Hence if Hence if 

(A+B): C]>s/r, ((A + B): C]<s/r, 

then [((X + Y): Z] >s/r. then [(X + VY): Z]<s/r. 

Hence s/r does not lie between the ratios 

[((A +B): C] and [(X + V): 4]. 

But s/r represents any rational fraction whatever. 

Therefore no rational fraction whatever lies between these ratios. 

/. (A+B): C]=[(X+ Y): Z]. 

Thus this proposition may be included amongst those properties of equal ratios which are 

directly deducible from the Fifth Definition without using any other property of equal ratios. 

makes it more difficult. It is certainly not obvious at first * The fact that on the right-hand side of these two in- y 

sight. The reason for its necessity comes out in the proof. equalities there appears 2C and not C makes a difference 

between this proof and those of Euc. v. 16, 22 and 23 and 
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The essential difference between the proofs given in my papers and those given by Euclid 

of Props. 16, 22 and 23 consists in this: 

Instead of using Euclid’s Seventh Definition and his Propositions regarding Unequal Ratios, 

viz.: 8, 10 and 13, I use a proposition regarding multiples of magnitudes, which is included in 

the earlier part of Eue. v. 8, viz.: 

If A, B, C be three magnitudes “of the same kind” and if A be greater than B, then integers 

n and ¢ exist such that 
nA >tCU>nB. 

To prove this Euclid uses the Axiom of Archimedes for the first and only time in his Fifth 

Book. 

Since A > B, 

~. A— Bisa magnitude of the same kind as C, 

.. by Archimedes Axiom an integer 7 exists such that 

n(A—B)>C, 

- nA>nB+C. 

Now put nA=X, nB=Y, C=Z, 

eke > Vi-- Z: 

Then as in Art. 7 (11) of this paper an integer ¢ exists such that 

MCSA VE 

*, nA >tC > nB. 

In order to prove Euc. v. 16, 22 and 23 it is far simpler to use this proposition than Eue. v. 

8, 10 and 13 which depend on it. Props. 14, 20 and 21, which are particular cases of Props. 16, 

22 and 23, need not then be proved before Props. 16, 22 and 23 can be obtained. 
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INTRODUCTION. 

§ 1. In his memoir of 1889 on the diurnal magnetic variations Sir A. Schuster* found that 

these mainly originate above the earth’s surface (in the atmosphere, in fact), but that there is 

also a part proceeding from within the earth. The latter part he regarded as induced by a 

primary external varying magnetic field, acting upon conducting material within the earth. In 

this section of the discussion he was assisted by Prof. H. Lamb+, who contributed to the memoir 

a mathematical appendix on electromagnetic induction in spheres. The assumption which was 

naturally first considered was that for this purpose the earth might be regarded as a uniformly 

conducting sphere, but the hypothesis proved irreconcilable with the facts; the amplitude-ratio 

and phase-difference between the external and internal portions of the observed field did not 

agree with any possible pair of values deducible from this hypothesis. It was pointed out, how- 

ever, that agreement could be obtained by supposing that only a concentric core of the earth 

was conducting, the outer portion taking no share in the phenomenon. The data were inadequate 

to test the extended hypothesis in detail, and this was first done by one of the present writers, 

using more observational material?. Numerical estimates were made of the size and conductivity 

of the core, assuming that its magnetic permeability is unity. The thickness of the non-conducting 

shell surrounding the core was estimated at about 250 kilometres, while the value obtained for 

the conductivity of the core was 3°6.10—* c.G.s. units. This is of the same order as that of moist 

earth, and distinctly less than that of sea-water (4.107). 

* A. Schuster, Phil. Trans. A 180, p. 467, 1889. + H. Lamb, Appendix to the above. 

+ S. Chapman, Phil. Trans. A 218, p. 1, 1919. 
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This model of the earth can only be regarded as a convenient first approximation, particularly 

since the oceans and the water-bearing land strata near the earth’s surface are ignored. It seemed 

desirable to examine to what extent these surface conducting layers would influence the induced 

magnetic field. This necessitated an extension of Prof. Lamb’s analysis, in order to determine 

the relation between the magnetic field on the two sides of a spherical shell, when on both sides 

the field arises partly beneath (within) and partly above (outside) the region considered. This 

extension, which is quite straightforward, is made in Part I, the results being discussed in 

Part II. No attempt is made to deal with the actual distribution of land and ocean, the surface 

conducting shell being supposed uniform and complete, separated from a uniform core by a non- 

conducting shell. It is found that the influence of any probable depth of moist earth is almost 

negligible, but that a comparatively shallow oceanic shell produces induction effects comparable 

with those of the supposed core. It is suggested that on this account there should be observable 

differences between the diurnal magnetic variation at continental and oceanic stations, though 

in view of the irregular distribution of land and water the calculation of the differences would be 

arduous. A rough attempt is made, however, to estimate the change in the conductivity and 

radius of the core when use is made only of continental magnetic data (§ 11). 

Some related problems are also considered, in particular, the magnitude and type of the earth 

currents flowing near the earth’s surface, both those which accompany the ordinary diurnal 

magnetic variations, and the larger currents observed when the earth’s field is varying rapidly 

and irregularly. Again, the main symmetrical part of the field of a magnetic storm is examined, 

and it is shown that the relation between the horizontal and vertical components is compatible 

with the existence of a core, the conductivity of which is of the order inferred from the study of 

the diurnal variation. Finally, the opportunity is taken of seeing how far the original estimate 

of the conductivity («) and the size of the core would be modified if the unlikely assumption were 

made that the permeability («) differs appreciably from unity. It appears that, consistently 

with the observed data, a wide range of values is permissible for « provided that w varies almost 

proportionately (and this without much change in the thickness of the outer non-conducting 

shell). It is only natural that « should have to be larger if w is larger, for the inducing field 

penetrates less far into the core, and the induced currents have to flow in a layer of diminished 

depth. 

PART I 

Mathematical theory of induction in a spherically symmetrical earth. 

§ 2. It is convenient to tabulate the following symbols for convenience of reference. 

VECTORS 

A= magnetic vector potential 

B= magnetic induction 

H = magnetic force 

E = electric force. 

Spherical polar components of these vectors, reckoned positive in the direction of increasing 

values of r, 6, b, will be denoted by the corresponding letter as suffix. The positive directions 

for @ and ¢ are from the north pole, and eastwards, respectively, 
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SCALARS 
= permeability 

« = conductivity 

e=electromagnetic constant 3.10” 

#, T=complex constants representing in amplitude and phase the intensity of the parts of a 

magnetic field originating respectively outside and beneath the region occupied by the 

point to which the intensities # and J refer. Suffixes s, 0, and 7 are added to these letters, 

to indicate which is the region concerned: s refers to a point in the substance of a 

conducting sphere or shell, o to a region outside (above) such a conducting body, and 7 to 

the space within (below) the inner surface of a conducting shell. 

Except where the contrary is stated, the units used are electrostatic. 

§ 3. The vector potential A is defined by the equations 

B=curl A, VAS = Ose RS erect rie rene Shi 

If W is the number of tubes of induction through any circuit s enclosing an area /, 

v={ Ba df= | Ayds= | Ads 
oh s s 

by Stokes’ theorem. 

r 1dN iL Gh Wf 
But | Bas=- 5 =o a | AM 

if electrostatic effects are neglected, so that 

ida 
OG 

Also curl B=cnrl curl A=— V?A + grad div A 

—— VA 

since div A is zero. Again, since 

curl B= pcurl H = sults E=- led ‘ an 
(he 

: A 
it follows that VA= ee Oe Asardvaieiseetune cee Retin oeesice meee aeee 3:2 

ce dt 

In non-conducting material this becomes 

NEY. WEES Seopa seed ccpancan tadcsaeecteceeaccntaasepeter 3S 

§ 4. An appropriate solution of equation 3:2 is sought. A field of external origin with a 

given magnetic potential near the earth’s surface will be considered, this potential being supposed 

analysed into spherical harmonic components about the geographical axis of the earth. The 

typical term of this potential will be of the form 

rr 

0). BP ya nai IBENMCOSIO \OPOCLaD | Weredectocionstacdcccetecneeees 41 

where E is the complex constant already mentioned, 

ais the earth’s radius, 
Py . % . 

P,? is the usual associated Legendre function, and 

t is the time of some standard meridian. 

6]—2 
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As regards a, three principal special cases will be considered, viz., those of (i) the diurnal 

magnetic variations, supposed dependent solely on local time, so that a= «up, enabling* ¢+ ¢ to 

be replaced by the local time ¢’; (ii) fairly rapid and local periodic variations, in which a is a 

pure imaginary um distinct from cp (the local nature of the variations is indicated by giving m 

and p-fairly large values, say 8 to 10 or more—cf. § 13); and (iii) non-periodie variations, such 

as those of the main worldwide component of a magnetic storm, which can be represented by a 

combination of terms in which p=0, and a is real (§ 12). 

If this field of external origin induces a current system within the earth, the typical term 

of the potential of the secondary field will be 
qnt2 

(ay be pti (PP (COS\G) GPRM EERIE arses eon 42 

§ 5. It may be readily verified that in non-conducting space the terms in the vector-potential 

corresponding to 2, and Q_,_,, are as follows: 

A-=0 a0 
Ee a= + 

Le esi Gr on am SON 

com _ ioe = = bats creseseceecnnnennsaes 5:10, 511 

where ON = 'SUM Oyo soee oe ca ouscedea ee 8s vlae acess dams tuae se cine ane aoe ene Die 

These values of A satisfy 3°3 (since V°?Q, and V?Q_,_, are both zero) and the components of 

curl A equal the corresponding components of B. 

In a region oceupied by conducting matter, the appropriate solution for A is found to be 

A,=0 AL =O 
OUn = OU 

Aaa AE 
OUn OU ns “3 S 

A 20 A,= ag wiolawie elsisiaisvmiaielelatuls, 6 nis;sleiele nyate 5°30, Sok 

for the terms of external and internal origin respectively, provided that in either case w satisfies 

the equation+ 

Gee at eee 54 
eG. . at 

The terms in w corresponding to the typical terms 4°1, 4:2 in the magnetic potential are both of 

the form 
A= JiR) eg? CPP O%, -, Uactoniessdonenstetees tone nceceeteen Caen 55 

where f(r), a function of r only, is a solution of the equation 

a a) 
ap {r 2 Fm rab 1). hea} 7 (17) =O en canse cys aces weneacuees 56 

the new constant &, introduced for brevity, being defined by 

4 Mme SUED... nssshesecnnenddnbeehctnsoyuentencenesntas 57 

* Provided the unit in which ¢ is measured is 86400/2r + The solution 5:3 agrees with the solution 5-1 when 

or 89500/2m seconds for the solar and lunar diurnalvariations «=O, the actual values of u being 2,,/(n+1)and-Q_,,_,/n. 

respectively; p is then the number of periods per day. 
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The components of B or curl A corresponding to 5°5 are 

Bann (nt iul, Beas ig ges Bea gpg gel cee 58 
whether the origin be external or internal. 

§ 6. The equation 5’6 is analytic at all finite points except r=0, which is a regular point. 

The indicial equation has the solutions n, —n—1, so that f(r) must be of the form 

JACEO TR EY ra (iter Bene an An as A Soe Pinot ean 61 

where A, B are arbitrary constants, and R,, R_,_, are integral functions satisfying the equations 

Onktan OR m=n or t 27m £2 (m+ 1) r=" — ker Rm =. aun 5-2 
"or eres)? or oN : =—n— ‘| c 

Clearly R, and R_,_, are functions of kr only; in the following sections this value of the argument 

is intended to be understood when no other is specially indicated. 

If the field is of purely external origin, B=0,; while if it is of purely internal origin, A =0. 

By actual substitution it is found that 

ker? ktrs 
tn" aes) 14 ut 3) Gnt 6)” sfaletele[ulelelaiaicialelers/etalaluiate 63 

whence the following useful recurrence formulae can be readily obtained : 

oR, Fr : 
7 ar = an+3 Pes oe nr 6 4 

Fags a yr teeibarnee 65 
Wr 

When n=0 the series 6°3 reduces to a specially simple form, giving 

sinh kr : 
R= iy rae 66 

so that, by 6:4, 
3 sinh kr é 

Jing sa (cosh kr — = ) oy GO See onmeisescsmoeeeae neeaaraes 67 

while by further applications of 6°4 the expression for R,, whatever the value of n, can be 

obtained as the sum of a finite number of hyperbolic functions, equivalent to the series 6:3. 

The function R_,_, can be expressed most simply in the form e~*"a(r), where o is the 

integral solution of the equation 

eo 
=, —2r(n+kr) =  Dnlera = ON | aicsslelsiasielesieateiacsesacsee sesso 68 (ahaa 
or? 

It is found on substitution that the series for o(7) terminates with the power r”, the actual 

result being 
ere 2(n—1)k?2r? 2? (n—2)(n—1) Br’ 

=e SSS = SSS stele} fanticlelatotoleiorelsrevalelalare i ce {+4 +~9@n—1) * 81@n—2)(Qn—1) \, G2 
unless 7 =0, when IR GHA pe epoeentecBtbarca ce sheenncoasndocoas6.ac0gda 6:10 

Clearly Jt =O (LAE/ A: gragceapooniconoac o6dugoubaponocbadsacr 611 
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From 6°9 the following formulae, corresponding to 6°4 and 65, can be deduced : 

pon _ Ker? ag Beam or ete thence 6-12 

Beg iit ten 613 I (ee —n Qn ae 1) (2n = 3) Nt tte teen ee eee eee e ee eee ennes 

When the real part of kr is sufficiently large, sinh kr and cosh kr can be replaced by $e; 

repeated use of 6:4 then gives the approximate formula 

3 ! n( By 2 29 eas (2n+1)! _n(nt1) @ za At) eee) eee 

2" ni (kr) Qkr 22.2! (kr? 28.3! (kr J 

The corresponding formula for R_,_, follows from 6°9 merely by algebraic transformation, viz., 

2” (n—1)! (kr) 14.2 (n+1) oe (n—1)n(n+1)(n+2) 

@n—I1)! + Sher 22 (kre 
It may be noted that the last two formulae are really asymptotic expansions of Bessel’s functions*, 

multiplied by a factor. 

6:14 

J jas = te” + 2 Sn codcot 615 

It will be necessary later (§ 7) to caleulate numerical values of R,_,/R,, m cases where kr 

is large; it may be deduced from 6714 that 

Rna_ kr {1 n n(n+1)  n(n+1) i 
R, 2n+1 PY BS Ay BUBB) ~~ 

$7. Induction in a uniform conducting permeable sphere. 

The above analysis will first be applied to the case of a uniform spherical core of magnetic 

permeability #; and conductivity «, in which an external periodic magnetic field depending only 

on local time (so that a= cp; ef. § 4) induces a secondary internal field. The radius of the core 

will be taken as ga(q <1), and the ratio of the corresponding terms in the potentials of the two 

fields will be determined, for a point at the earth’s surface (r=qa) in non-conducting material 

surrounding the core. The required ratio is Q_,_,/Q, for r=a, and by 4:1, 42 this equals J,/H,. 

Outside the core 
= \— Big Gj] a) eae ak 1) Dy (afr) ee eee nc cnnies nieeeee neers (Fl 

Hy =— wp cosec 0 {E, (r/a)" + Ty (a/r)"*?} PpPePe oo. cee eeseeceeenes 72 

and similarly tor H,; ¢’(=t+ ) denotes the local time in angular measure. 

The corresponding values of the magnetic induction within the core are 

By = = (teil) Ey 7] @) rely PORE, a iacteccetenetea@asee haces ese eeeees U3 

Bs=— up E,(r/a)"™ cosec 0 i¢r +1)R,+r mI P2er. . ccna 74 

(and similarly for By), since there is no primary field within the core. 

At the surface of the core (r=qa) the normal induction and tangential foree are con- 

tinuous, so that 
ng 7B, — (w+ 1) g 72, = (2 +1) Gh BE Ray sovcssenstsscccssssevees 75 

bs (Qh Eo +q-"1,)=q 1#; \(n +1) R,+ qa ae sighas Baphenasenetes 76 

* Cf. G. N. Watson, Proc. Roy. Soc. A 95, p. 83, 1918. 
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Hence, using 6:4, and eliminating £,, it appears that 

I, ee oer kegra® Bsa +(2n+ 3) (n+ Ha = Hs) Rn 77 Te eel ERIREe (Ons 2) (ua eo: 7 

In the last three equations, and in 7:8, 7:9, the value of r to be substituted in R, or Ry, is qa. 

Equation 7°7 reduces to the result previously obtained by Prof. Lamb on putting g=y,=1. 

By means of 6°5 equation 7‘7 can be written in the form 

di n Wien 0 (fg) it =o 2n-+1 = NSE he pes OA b. E, ere [1 b| R, a ae } 5 SngbdaabHeadondkodsocadar 738 

which reduces to 
Ih n ae Re, : 
E, n+l q (1 = =) a) ke iaveleletaleleleielsletals(olsisialelelate’sinie'e\si</aia/eis-oletete 79 

nepal 

In the present case /*7* is a purely imaginary quantity (cf. 5°7, in which wp has now to be 

substituted for a); it is convenient to write 

WA QRUA DU B2. ona fatietnaieskatlsecle stot aciserisrivseitsicess 710 

that ese yan TU so r=B{1+12), a Din dls ab statctalate Siale Pie oles Sicleyenoed wietets 

On substitution of these values the equation 6:16 becomes 

Rai. 8 n n(n+1). n(n+1) : n(n+1) er 
R, = iltitet 4B + iB +f sift 4p <F oval ||s conor 712 

where n and 8 are real and positive. The other formulae of § 6 can likewise be readily obtained 

in terms of 8, though actual values of R, and R_,_, are not required in this paper. 

The values of R,_,/R, which will be required in Part II are given in Table I, as calculated 

from 7:12: 

TABLE I. 

R, R, | | R, R, 

E R, | R, (vane R, | R, 
[ : E = 

7 424 11%e | | 100 20°4+ 2072 | 14:-7+ 14:37 
8 202+ 1560) | 150 | 30°4+ 302 21:94 21-57 
9 223+ 1-762 | II 200 | 404+ 407 | 29°14 28-77 

10 2-434 1:987 | 160+ 1:3872 || 250° | 5044+ 502 3634+ 35°97 | 

11 2634+ 2:177 | 201+ 1:507 | 300 | 604+ 607 43°5+ 43:17 

12 2:82 2-377 238+ 1-717 || 350 | 704+ 707 50°77 + 50°37 
15 Olle 2-98 cm 261+ 1:97¢ | 400 | 804+ 80% 58:0+ 57-57% 
20 4414+ 3°967 | 331+ 2:847 | 450 | 90-44 907 65:3 + 64:97 | 

30 6:41 5-962 | 4734+ 4:277 | 500 | 100 +1002 725+ 71:82 | 
40 841+ 7:962 | 616+ 5-717 || 550: | 110 +1107 796+ 79:07 | 
50 10-4 + 9:°967 | 760+ 7:167 || 600 | 120 +1207 86°7+ 86:07 | 

60 DAE HBA =) 9:02 + 8-582 | 700 | 140 +1407 101 +1007 | 

70 14-4 +147 | 10-4 +1002 | 800 | 160 +1602 115 +1142 | 
80 16-4 +167 | 119 +11-47 | 900 180 +1802 | 129 +12852 | 
90 18:4 +187 | 1393 +12:82 1000 200 +2007 143 +1437 
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§ 8. Induction in a conducting shell enclosing a conducting core separated from tt by a non- 

conducting shell. 

The shell now to be considered will be supposed to have a magnetic permeability u;, con- 

ductivity «, and external and internal radii a, ga respectively. The non-conducting material on 

the outside and inside will be assumed to have magnetic permeabilities 4, 4; respectively. The 

vector potential inside the conducting shell will have terms of both external and internal origin, 

the former corresponding to the primary external field, the latter to the induced currents in the 

central core. 

The forces in the non-conducting material inside and outside the shell can be deduced from 

the magnetic potentials, and may be written 

Boia Gat — (paca Gp er} Te CR on sc soeacqncusnccioobe 81 

Ey, ="— up eosec a We (as) a) met tL (72) 2 | la Ce Oo acetate dome sete 82 

E, I and w having different values, of course, on the two sides of the conducting shell. 

In the substance of the shell B must be derived from the vector potential (cf. 5°8) and the 

r and @ components are 

B,=—n(n+ 1) {H, (r/a ae Ri+T1s (a/r)*? Rena} PED GR eat tia ence 8:3 

0 fa 21 ad 8 l()R.d Prone 
Be rsin 6 B or | a Ratt 1s ar te Bont P,Perre 

0 \n—1 nt2 peepee ("La a 
(by 6:4, 6°12), where 

pair) =(0-- LE) Ry (2 + 8 )7 er Rg pry tewc na dene aie aw sta gunbeceeae 85 

pn (kr) =nR_,»4 + (2n—1)7 Pr? B_y. 

Equating the normal induction and tangential force at the two sides of the inner and outer 

boundaries (r = a, ga) and eliminating I,, #,, the following expressions in terms of J, and E, are 

obtained for 7; and £;: 

T;=[q"" F, (ka) G; (kqa) — G, (ka) F; (kqa)} E, 

+ {q"* f, (ka) G; (kqa) + go (ka) F; (kqa)} Io) + H (ka), ...8°7 

EB; =[{F, (ka) gi (kqa) + q-2"7 G, (ka) fi (kqa)} Eo 

+ { fo (ka) gi (kqa) — q-" go (ka) fi (kqa)} Lo] + H (ka), ...8°8 

where F@ =n MLL) pe Rra— (N+ 1) ppn’ (GB), oer rcresccvssssecoseveceene 89 

g(@)=n M+) Ry + (2+ 1) ppp (),.-..secieneseists ches dveeual 8:10 

TC) (Dare 1 \ a ems ay Pal () )y Gdesee doce aasepueadce concdas cc S11 

G(a)=—N(N+1) pe Ry + Nupn(#), cceveeee portrteeeereeenees 8:12 

the suffix 7 or o referring to the second w in these expressions, while 

H (ax) = pipyn (n+ 1)(2n +1) {Rapn’ (2) + Bona pn (@)}.  csvecseereenees 813 

If = p;=1, and g=1—8 where 6 is a small fraction, of which squares and higher powers are 

negligible, the above expressions for J; and 4; lead to the results 

(1,—1,)/8 = (J, {(2n +1) 4 + ka (f@’ + gF’)} + £,{(2n +1) FG + ka( FG’ — GF’)}] + H,...8'14 

(EB, — E;)/6 =[T, \(2n +1) fg + ka ( fo! — gf')} + Bo |—(2n +1) f@ + ha (Fo + Gf} + H, ...8'15 
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where the argument throughout on the left-hand side is ka, and the accent (’) denotes differ- 

entiation with respect to this argument. 

If further 4,=1, these equations, with the aid of 6:4, 6-12, 7:10 and some rather tedious 

algebra, reduce to 
2176 ih La re (loo a een ee $16 

21.676 (n+1 rn B= Ee +5 alate E,). BR Lt de he aoe elie 8:17 

§9. Earth currents, or earth potential gradients. 

The surface values of the potential gradients which impel the induced currents within the 

conducting earth or conducting shell can be determined as follows. The vector potential is 

continuous across the boundary of the conductor, so that just beneath the surface 

7alE= (1); codonts doh hs RA SRR B SEC SA eRe ACERS aoEEC ROB GacHnSns Ba ACB ABRRERESReEe 91 

Agee = a PP ev gat 9-2 e a P) Alay] A n D) Naooundshcoocboporoccodosqangcen 4 

—= E, I,) Db pat ci 
A,=a reer (4 Py?) e CaatralN sin clclalal=)otinlaistelelaisfarsielaiererereievertators 9:3 

The corresponding values of the components of the electric force just beneath the surface, in 

electromagnetic units, are (ct. § 3) 

ER NO IN 23 Fs sc Sai Secias sats oe Godden Mowe B ep ease saaeeniones 9-4 

_paal E, In) beat i asi ie ofoeatststiits eaGeneaa aeosoon ances 9°5 

E, If, 
=— Oyo upp at “| Es 0a) ot (go Put) er Gee onGep ceeds teaeNaaemor tscbonr 96 

Further, since lala = lind, = (GSI) IQUE. oe ceconedannebosboouscencooe 9-7 

and a@=2.10°/7 at the earth’s surface, it follows that 

Eg =— 2epa. 10° A,/{n (mi +1) sin O}. .... 2... ceeceecceec eee evees 9:8 

Expressed as a potential gradient in volts per kilometre per ly(10~*c.G.s.) of H,, (the coefficient 

in the expression for the vertical magnetic force), this is 

~n(n+1)r sin @ ee ed 9:9 

The corresponding coefficient in the latitudinal component Z, of the potential gradient is 

20a é ) : = | aA A ea ie kek Pesce ne 9-10 

WOT XeXoiI No: XEX: Vi. 62 
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PART II 

Applications to problems of terrestrial magnetism. 

§ 10. Lhe influence of the permeability of the core. 

Though it is unlikely that the permeability y, differs much from unity in the imner part of 

the earth, it is not without interest to consider how the estimates of the conductivity « and the 

radius ga of the supposed conducting core of the earth would be affected if a larger value of w 

were assumed, The estimates will be supposed based on the amplitude-ratio and phase-difference 

between the surface values of the potentials of the external and internal portions of the field of 

the diurnal magnetic variations, and the values of these data determined by S. Chapman will be 

adopted, viz.* 
Amplitude-ratio (external :; internal) = 2°55: 1, 

Phase-ditference (external — internal) = — 19°. 

In the notation of Part I this signifies that 

I,|E, = 0371 + 0°128i. 
The value found in §7 for this ratio Z,/H, is given by 7°8, where, for any given harmonic con- 

stituent in the potential, the unknown quantities on the right are ps, g, and « (involved in kga, 

the argument of the functions R,, Ry). In the memoir cited it was assumed that ~,=1; the 

results obtained by assuming other values instead of this are given in the following table, for the 

two principal harmonies P,' and P,? in the magnetic potential. The results are expressed in terms 

of « (in electromagnetic units) and d, the depth, in miles, of the supposed non-conducting outer 

shell of the earth (d = (1 — q)a expressed in miles). The different values of d and « obtained 

TABLE II. 

ae eas P? | 
Me | peat ——— | 

DI 4 d = So ee | Re : ma 

1 | 168 | 345.10 176 | 331.10— 
10 | 180 | 3-63.10" | 188 } 3:39.10-% 

100 | 180 | 354.10 | 188 | 3:33.10— 

from the two harmonics merely indicate that the shghtly different observed values of J,/#, tor 

the two harmonies should be taken into account; this was not done because the difference between 

them is within the margin of error of the determinations. 

It appears from the above table that it is mathematically possible for « to have a wide range 

of values, consistently with the observed values of Z,/#,, and without much affecting the estimate 

of d; the estimate of « varies almost proportionately with the value assumed for yw. 

§ 11. The influence of the surface layers of ocean or moist earth. 

In the calculations of § 10 the existence of the conducting layers of ocean and moist earth 

near the earth’s surface has been ignored. But the conductivity of sea-water (here taken as 4, 10™) 

much exceeds that of the core as hitherto estimated, so that it is desirable to examine how far 

the shallow oceanic layers can affect the ratio of the external and internal fields, and the estimates 

* Phil. Trans. A 218, p. 1, 1919. 
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of the core. In so doing, the surface conducting layer will for simplicity be supposed uniform 

_and to envelope the earth completely. The depths considered will not exceed 5 miles, so that the 

quantity 8 of § 8 is less than 1/800, and the approximations made in obtaining 8°16, 8°17 are 

legitimate. 

Table III shows the values of J;/#; calculated for the undersurface of various depths of 

shallow ocean corresponding to the value 0°371 + 0'1287 for J,/H, as already used in § 10. The 

corresponding estimates of «, the conductivity, and d, the depth of the surface of the core, are also 

given in most of the cases. 
TABLE III. 

Depth of | Ee ren | be 

SE IE, an r | Lk; aac ae K 
| — ——— aan — ! 

125 feet | 0:371+0126¢ | 168 | 3:55.10-* | 0-367+0123% | 191 | 57.10-8 
250 feet | 0368401231 | 178 | 35 .10-% | 0-36340-116i | 210 | 6-9.10- 
fmile | 0:349+0:109% | 198 | 47 .10-* | 0-340+0-058% | 336 | 13-9. 10" 
fmilo | 0343400712 | 340 | -10-4°.10-" | 0328400087 | — | — 

It thus appears that even a comparatively shallow sea (4 or 4 mile in depth) affects the 

estimates of the core very considerably, and that the influence is much the greater on the 

component of higher degree (P;’). A shell of sea-water of depth much exceeding half a mile 

would cause the imaginary part of J;/H; to become negative*, which is incompatible with any 

possible size and conductivity of the core. This suggests that the ratio adopted for J,/#, cannot 

be valid for stations in or near deep seas. The question may be otherwise illustrated by calculating 

the ratio of I,/#, corresponding to a core of size and conductivity as estimated in S, Chapman’s 

memoir, together with an oceanic layer (assuming various alternative depths for this latter), the 

primary magnetic field being of purely external origin. The values of H,/I, and of the phase- 

difference are given in Table IV, with similar comparative data also for the external parts of the 

field just inside and just above the oceanic layer. 

TABLE IV. 

Sphere with core as estimated, surrounded by ocean. 

Component P,! | Component P,” 
Depth of | - | ——— 
ocean in E,/L, E/E, | E,/I, | E/E, 
miles — — —-——---| = 

Amp. | Phase Amp. Phase Amp. | Phase | Amp Phase 
| ee eS = 

| | 

) 2°49) \ieeaoe 1 0° eee wale AI ANS SH Oo 
t 2518 | 20 ‘917 9 2:00) "} 217 i 885) If) 4 
1 1:96 22 835 | 15 Nimelct2) ee One aes O3 | 25 
2 1-75 18 678 eM eisai = Iie | 568 38 
3 166 | 15 | 556 | 35 || 1-43 13, | -441 | 46 
4 ahs) |) = ih) Amel eO || | 11-40 10 | :351 | Bill 

In columns 8 and 7 of the above table the phase of J, is in advance, and in columns 5 and 9 the 

leading phase is that of £,. 

* Implying that the phase of H; is in advance of the phase of I;. 
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In the case of both components the amplitude-ratio Z,/I, diminishes steadily, though not 

proportionately, as the ocean depth increases, while the phase-difference first increases and then 

diminishes. Clearly the mean potential deduced from a number of land and sea stations is not 

likely to represent the potential in a model earth consisting of a uniform core surrounded by a 

uniform ocean. Some difference should be observable between the potential as derived separately 

from land and sea stations, though in the case of the actual earth the exact difference cannot 

easily be calculated on account of the irregular distribution of land and sea. 

The data given by 8S. Chapman have been examined from this standpoint, and though 

inadequate for a proper discussion of so complicated a matter, seem to lend support to the above 

conclusions. Table V shows the means of the amplitude-ratios and phase-differences separately 

calculated (by the method described on p. 20 of his memoir) from the data for the six continental 

stations there dealt with: the components considered are P,? and Ps, P} being left out of account 

because of an irregularity noted in the paper cited, Particulars of the six stations are given in 

the first part of Table V. 

TABLE V. 

A. Particulars of continental stations. 
le é eel 

| Observatory Lat. t) | Long. (East +"*) 
== I = =a 

| 

1 Ekaterinburg ... 56° 50’ 33° 10’ 60° 38’ 
20s eotsdammeeneese 52° 23’ 31h Bl Way ZY 
3 Irkutskaeesesees D2n 1G) 37° 44’ 104° 19’ 
4 SPiflis: | ea eee 41° 43' 48° 17' 44° 48’ 
5 Baldwinteeeere 38° 47’ Obes — 95° 10’ 
6 Pilarv ic. eeees BVO Os eben ee file — 63° 51’ 

Mean amplitude-ratio ..................02.e0ees feel We 2B 
Mean phase-difference ..................2.000200 D4 ee 302 

C. Amplitude-ratio and phase-difference calculated for a 
sphere of radius 4000 miles, consisting of a non-conducting 
shell 50 miles thick, enclosing a core of conductivity 1°8 . 10—* 
c.G.S. units, 

P;? ie 

Amplitud e-ratlomecesccisat tates <> steels eneies es | 2°26 
Phase-difference=-: .cpecsu deste ceneiines saciccaas | 

The values of the amplitude-ratios and phase-ditferences deduced from the observations are 

compared in Table V, B and C with those calculated on the hypothesis of a core of conductivity 

18.107" with its surface at a depth of 50 miles, these being the constants giving the best fit with 



CONDUCTING MATERIAL ON PHENOMENA OF TERRESTRIAL MAGNETISM. 475 

the observed values in Table V B (when no surface conducting layer is taken into account). The 

value of the conductivity of the core is somewhat less than that obtained from land and sea 

stations taken together, when the effect of the ocean is ignored. With such a core the currents 

resulting from the 24-hour term in the potential would have one-sixth of their surface value at 

a depth of 1500 miles, and for quicker periods at smaller depths. 

An attempt was made to discover whether the effect of the ocean resembled that calculated in 

Table IV, by considering the data from stations surrounded by large and deep expanses of sea, viz. 

Honolulu, Batavia, and Christchurch (N.Z.). The averages of the amplitude-ratios for P,2 and P 

were 1°8 and 1°6 respectively, i.e., considerably less (as was to be anticipated) than those for land 

stations. The phase-differences, however, were very diverse (e.g. for P,? Honolulu gave 27°, and 

Christchurch 2°. Batavia being very different from either: while the irregularity was even more 

marked for P;); this is perhaps not to be surprised at when it is considered how complicated the 

currents must be in an ocean of highly irregular contour and variable depth. 

As regards the surface layer of moist earth, the conductivity of which is of the order 10-%, 

its influence—assuming any reasonable depth of the layer—is negligible compared with that of 

even a shallow sea, on account of the far greater conductivity of the water. Such a layer, even of 

so great a depth as ten miles, would only possess the same (total) conductivity as a layer of sea- 

water 125 feet deep. It is therefore reasonable to ignore the surface layer when considering data 

from continental stations far removed from great sheets of water. 

§ 12. The conductivity of the earth as deduced from magnetic storm data. 

The analysis of Part I will next be applied to the non-periodic magnetic variations observed 

during magnetic storms: in particular, to the “storm-time” portion*, representing the deviation 

of the field from the normal, averaged round the parallels of latitude. This part of the field being 

independent of the co-ordinate ¢, the p of § 4 is zero. In middle latitudes the appropriate poten- 

tial function is, to a first approximation, 

{r fi (t) + (a@/7") fo (t)} cos 0. 

The easterly component is zero, while the northerly and vertical components are { 7, (¢) + f2(t)} sin ? 

and { f(t) — 2f2(6)} cos @ respectively. 

Curves showing the mode of variation of the horizontal and vertical components of the field 

are given in the paper just cited, and the typical curves for equatorial regions are reproduced 

here. The force in each case varies from zero to a maximum on one side and then reverses and 

attains a maximum on the opposite side, afterwards slowly recovering its original value. The 
simplest and most convenient mathematical expression capable of representing a function which 

increases from zero to a maximum and then decreases to zero asymptotically is (e-“ —e~”*), where 

V’>1>0. The more complex expression = Ae~’, where {A = 0, suffices to represent the case where 

there are maxima on both sides of the normal. Thus if 7,(f)= He and f,(t)=TJe—, where 

SE =ZI=0, the observed curves for the horizontal and vertical force can be represented. The 

values of E and J are not independent, however, but are connected by the relation 7-9 if the core 

(only) of the earth is taken into account: thus (n being now unity) 

I 3 Rk, i z= 3q (i - =| (kr = kqa). 

* S$. Chapman, “Outline of a Theory of Magnetic Storms,” Proc. Roy. Soc. A 95, p. 61, 1918. 
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Batavia, Porto Rico, Honolulu 

Datum Line Beginning of Storm 

Monthly Mean 

lead sae arn 
Monthly Mean 

Datum Line 

Storm Time 

Fie. 1. 

In the present case the a of Part I is negative, and equal to —/, so that (ef. 5°7) A*r? is a real 

negative quantity, which will be written —#. The possible forms of R, are sin w/x and cos a/z, 

but the latter is inappropriate here because it tends to infinity as x (or 7) tends to zero, The 

value of , corresponding to the former value of R, is 

3 sine 
_- cos 7 -—-—— ) i 

ind oe / 

” 3 

B ~ Be ( Be 2) : 

so that 
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The values of R,/R, corresponding to x= m7 + @ are given in the following table. 

TABLE VI. 

6 m=0 | m=1 | m=2 | m=3 
2 | | 

O WeSteOONeetc~ |. Sco ==) 
w/10 | 1:01 | —243 | —1:33 — -920 

27/10 TOs eee ST9 | = 1553 = OG 
3x/10 1-08 — 353 | — -295 = 1g2. + 
4/10 1:13 — -066 077 - 065 | 
5x/10 | 1-25 + 136 | + 050 | + -025 | 
67/10 | 1:37 315 | 165 ‘110 
77/10 1:62 514 | 299 210 
82/10 2-13 “826 506 368 
97/10 366 | 1°64 1:05 776 

107/10 | wa) ra D 

The ratio R,/R, becomes infinite when «=mz7, so that with a core of dimensions so related to 

the rate of decay as to make x= mr, the boundary conditions can be satisfied only if the field is 

entirely of internal origin. The external field could not itself decay at this rate in the presence 

of such a core. 

Another interesting fact indicated by the above table is that 1 =2 varies In sign as @& 
0 

changes, so that the internal component of the field may reinforce either the horizontal or the 

vertical component of the external field: in the case of the diurnal magnetic variations it is the 

horizontal component which is reinforced, and the vertical component which is diminished. 

In applying these considerations to the present case, the observed variations of the horizontal 

and vertical magnetic force were taken from the curves for the first (equatorial) group of stations, 

reproduced in Fig. 1 above from the paper cited. The simplest empirical formulae containing 

four negative exponentials—the same for the two curves—were then chosen to represent 

separately the initial and the main extremes on the two curves: the formulae were 

HF. = 40 Cae = Ge) pee 125 (GA es ei) 

V.F.=— 4 (Gree = Cues) + 20 (GS = Ge) 

t being measured in days and the forces in y. The first two terms in each case were chosen so as 

to fit the initial movement of the curves, and the second two terms to fit the main movement. 

The following table (VII) shows how nearly they represent the observed data: it may be added 

that the horizontal force deviation is reduced, according to this formula, to ly after 6 days. 

While the agreement is good, the formulae are not theoretically correct, because the relations 

between the coefficients # and J in the expressions for 7, (¢) and f, (¢) do not permit the coefficients 

to be equal and opposite in pairs (as above) both in H.F. and v.F. This unduly simple relation- 

ship must result in different values of the conductivity of the core being calculated from the 

comparison of corresponding coefficients in the formulae for the H.F. and v.r. It seems hardly 

worth while, however, to treat the present data more elaborately. 

Owing to the rapidity of the first phase of the storm, the corresponding part of the variable 

field would probably not penetrate to the core of the earth for stations (like those here dealt 

with) near the ocean. Hence, and because of the comparatively small amplitude of the first phase 
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TABLE VII. 

40 (e-87! — eB lol : | | 7 : 
—125 (ee 7) 0 = —6 | —9 |—-13 |—17 |—20 |-23 |—29 |-34 —22 

uF. (formula) ...| 0 | 14 | 10-| 4 | —4 |—10 |~16 |-26 |-33 -22 
H.F. (observed) .... 0 14 | 10 BN gh | ail }—16 |—36 |—32 — 25 

— — =F — ——| = st 

=a (ee _e-e=y | | —9 |—19)-17/=13| <1 | —-7|—-3 | 4 0 
20 (Exo ee EO) Oo aa aleealsc? | ac | 4-60 seo 3°6 

eae el [| 
v.F. (formula) ...| 0 |—1:0| —-5 | -4 | 1:4 | 2:2 | 3:0 | 4:3 | 5:3 ; ; ; 3-6 
v-F. (observed) ...| 0/ 0 | -1 },0 1 2 | 3 4 | 5 5 | 

of the storm, the calculation of the conductivity will refer only to the second phase represented 

by the second half of the above two formulae. The mean co-latitude @ of the group of stations is 

68°, so that 
E+ I=— 125 cosec 68° = — 135, 

E—2J =— 20 sec 68° = — 53*, 
so that 

1/E=026= val -?). 
0. 

If the whole earth is assumed uniformly conducting, g=1; if the first 160 miles of the 

earth’s crust is non-conducting (ef. § 10), g°= 0°88, so that R,/R, is 0-48 or 0°41 in the two cases 

Now, the unit of time being one day, 
4orklr? Ba i) el 

= — hr = 564008" 
«1692 1 

or a 10" 3 Ee 

Substituting the two values of J, 0805 and 1°831, the following are the (necessarily different) 

values found for «/c*, the value of the conductivity in electromagnetic units. The figures given 

are the minimum values, higher values being possible as indicated by Table VI. 

TABLE VIII. 

Conductivity of the earth as deduced from storm data. 

|  1=0°805 1=1'831 | Mean 

| No non-conducting crust ... 5:9.10-8 | 2-6.10-% i eae 

Crust 160 miles deep ......... | 56.1073 2°5.107% ral Cee AO 
| 

The agreement of these estimates with that (3°65.10-") obtained, using much more material, 

from the diurnal magnetic variations, would seem to be not unsatisfactory+. Doubtless with 

* In the paper cited the v.r. is measured positive down- + It may be seen from Table VI that any positive frac- 

wards, hence the sign in this equation. tional value for Z/Z leads toa minimum value for x of order 

10-18, 
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some trouble four constants A and four constants B might be found, such that (2A and SB being 

zero) SAe~" and SBe~* would represent the observed data of Table VII, and at the same time 

the corresponding A’s and B’s would be consistent with a single value of the conductivity of the 
core; this will not be attempted, however, since the diurnal variations are better adapted for 

giving an accurate and unambiguous estimate of the conductivity. The above discussion at least 

suggests that the estimate of « already obtained is not inconsistent with the magnetic storm 

variations, 

§ 13. Harth currents, or earth potential gradients. 

The earth currents to be considered here are of two kinds, viz., (i) those associated with the 

diurnal magnetic variations, small in magnitude but world-wide in distribution, and (ii) those 

associated with magnetic disturbance, particularly those which are local and of short duration. 

TABLE IX. 

Observed and calculated values of southerly diurnal earth currents. 

Actual 5. M. F. Reduced 5.m.F. 

Hour Observed Calculated Observed Calculated 
IN B (1902 and 1905 mean) B 

Noon 227 648 241 96 100 
1 262 395 188 59 7 

2 232 46 63 6 26 

3 187 — 237 — 61 — 35 — 25 

4 187 — 368 — 125 -— 55 — 52 

5 198 — 363 — 120 — 54 = 1540) 

6 151 — 287 -— 82 -— 42 — 34 

ui 60 — 216 -— 50 — 32 — 21 

8 - 19 -173 - 42 = ye — 17 

9 — 119 — 153 — 37 — 22 - 15 

10 — 155 —125 — 21 - 19 - 9 

ital — 152 = 7) 5 — 12 2 

12 — 166 = UB) 23 — 7 9 

13 — 102 — 20 23 - 3 9 

14 - 72 a) 12 - | 5 

15 — 44 = il 6 0) 2 

16 - 14 - 17 5 —- 2 2 

17 = 28 — 74 - 6 — ll — io 

18 -— 71 — 136 — 42 — 20 — 17 

: 19 — 142 —144 — 93 — 2] — 39 

20 — 207 — 28 — 102 |} — 4 — 42 

21 —195 212 - 47 32 — 20 

22 -— 67 494 70 74 29 

23 77 678 191 100 79 

As regards (i), the formulae 9:9, 9°10 give the voltage impelling the currents, provided a is 

equated to wp, p being the frequency of the component considered. If the value of the radial 

magnetic force His obtained for each harmonic constituent of the field, the diurnal variation in 

the voltage impelling the southerly earth currents can be at once determined. 

Probably the most complete records of the diurnal variation of earth currents are those dis- 

cussed by Weinstein, which depend on several years’ records on lines from Berlin to Dresden and 
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to Thorn*. Table IX, column B, gives the north-to-south component of the E.m.F. found from 

these earth current records, while column A contains the corresponding results derived from 

Airy’s observations at Greenwich, made much earlier, The fourth column gives the diurnal 

variation of southerly E.M.F. calculated as above from the Fourier coefficients of the radial diurnal 

magnetic force variations for latitude 52°N. given at the end of S. Chapman’s memoir on the 

diurnal magnetic variations, the mean value for 1902 and 1905 being adopted. The units in the 

first two columns of the table are arbitrary, and no relation between them is available. For the 

calculated value the unit is 10~° volt per kilometre distance between the earth plates. The 

columns headed ‘ Reduced E.m.F.’ have been added to show the agreement of type between column 

B and the calculated value, by reducing the maximum to 100 and keeping the same zero in each 

case. 

These reduced values are also illustrated by the following graph : 

DIURNAL EARTH CURRENTS. 

Observed 
-.---- Caleulated 

\ Reduced Values. 

Fia. 2. 

* Cf. C. Chree, article ‘* Karth Currents” in the Encyc. Brit. 
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The calculated values agree better with Weinstein’s values than with Airy’s, which may be 

due either to better or more modern methods of observation or to the proximity of Greenwich to 

the sea. The agreement with Weinstein’s data seems fairly satisfactory. 

As regards the easterly EMF, of the diurnal earth currents, the agreement is less good, 

This is not unnatural, on account of the failure of the magnetic potential function to represent 

properly the northerly component of the magnetic force*, on which the easterly earth currents 

largely depend. The amplitude and character of the observed and calculated variation show very 

fair agreement, but there is a phase-difference of about 24 hours. 

The local and irregular earth currents will next be considered. These are often large, e.g, a 

potential difference of between seven and eight hundred volts was found between earth plates 

500 kilometres apart in 1859, and potential gradients of half a volt per mile have often been re- 

corded since. The areas specially affected may vary within wide limits. The more local the area 

affected by a disturbance and its associated earth currents, the higher will be the degree and 

order of the leading terms when the field is analysed into its component spherical harmonics. 

The disturbance will be supposed oscillatory, so that in the time factor e% of Part I the appro- 

priate value of a will be up, where the frequency p is supposed to be quite independent of the 

degree n and order m of the tesseral harmonics; m and x will be supposed fairly large, say from 

5 to 10, in order to represent a disturbance completing its range over a relatively small fraction 

of the earth’s surface. The period 27/p may be anything from a few hours down to a few 

seconds. 

The question will be illustrated chiefly in connection with the variations in the vertical 

magnetic force. Table X shows for latitude 60°N., and for a field varying in one harmonic com- 

ponent only, the amplitude of variation in the vertical force H,, corresponding to an earth voltage 

of ‘5 volt per mile; the variations are of course proportional to one another. The values of n and 

_m refer to the degree and order of the few typical harmonic components considered, while the 

periods dealt with vary from 2 to 30 minutes. 

TABLE X. 

Amplitude of H,, when voltage reaches § volt per mile. 

Amplitude of H,, in y, with period in minutes 
nm m ———_—— 

2 min. | 4min. | 10 min. | 30 min. 

Fees T5 | 151 | 378 | 113 
7 6 8-4 | 168 | 42 126 
SPeeeteiieerocaeel 18:5: | 468-110) 189 
9 8 105 | 21:1 | 52:8 | 162 
Welt Te | 220 | BS 175 

The corresponding variation of the horizontal force is less readily calculated, since it depends 

on the conductivity of the crust and core of the earth. With the data derived in § 11 from land 

* Cf. Phil. Trans. A 218, p. 23, 1919. 
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stations only (immediately after Table V) the amplitudes of the resultant horizontal force 

variation corresponding to the first line of the last table above would be 

4 min. 10 min. 30 min. 

290 446 892 

Period e., sace-ex 2 min. 

Amplitudeiny | 203 

| 
| 

Oscillations with so large an amplitude as $92 in the horizontal force are rarely if ever 

observed, indicating that the surface potential gradient in the earth approaches half a volt per 

mile only when the period is shorter than 30 minutes. 



XXVI. The Escape of Molecules from an Atmosphere, with special 
reference to the Boundary of «a Gaseous Star. 

By E. A. Minne. 

[Communicated by Prof. H. F. Newall, F.R.S., Director of the Solar Physics Observatory, 
Cambridge. Received 15 January, 1923.] 

$1. Scope of the paper. It has recently been suggested* that since for a giant star of the 
observed size of a Orionis the value of gravity at the surface can be at most a fraction of that at 

the surface of the moon and since the moon is unable to retain an atmosphere, therefore the 
atmospheres of such stars would be rapidly dissipated, and consequently the stars themselves if 
assumed to be gaseous would be dissipated also. The fallacy in this argument arises from the 
fact that the rate of dissipation of an atmosphere depends not on the gravitational acceleration 

but on the gravitational potential, since it is the latter which determines the critical velocity of 

escape of the molecules. The gravitational potential falls off only as the inverse first power of the 

distance, and it is easily caleulated that for a Orionis, in spite of its large radius and consequently 
low surface value of gravity, the potential at the surface is relatively large, large enough more- 
over for the loss by diffusion to be inappreciable. The point nevertheless suggests that it would 

be of interest to apply the detailed theory of the escape of molecules from an atmosphere to stars 
of various masses and temperatures. 

In the case of the atmospheres of the earth, moon and planets the question has received 

considerable attention. Johnstone Stoney in 1868 pointed out that on the kinetic theory of gases 

a proportion of the molecules would from time to time attain speeds greater than the critical 
speed of escape from the gravitational pull of the planet, and that such molecules if moving 

outwards in the regions of low density where collisions are rare would be permanently lost to the 
atmosphere ; and he afterwards elaborated this in a series of paperst. The subject has also been 
considered by Sir George Darwin{, Cook§, Bryan|| (chiefly from the point of view of the effects of 

rotation), Emden and others, and a very clear summary of the method and the results of its 

application has been given by Jeans**. But none of these writers evaluates with any precision 
the height at which loss becomes appreciable, nor do they determine the critical density corre- 

sponding to this height, ze. the density of the layer from which escape is mainly proceeding ; 
again, one finds no definite estimate of the size of mean free path necessary in order that the 
chance of a collision may be sufficiently small. The reason appears to be that in certain cases 
precise knowledge of these quantities is immaterial. Jeans discusses in a general way the height 

of the critical level, but obtains his final result in a form independent of an evaluation of this 
height. For the rate of loss from an isothermal atmosphere he derives a formula expressed by 
the product of the critical density into a function of the critical height (quoted as formula (30) 

* W. H. Pickering, Pop. Astron., 28, no. 2, 1920; 29, § Astrophys. Journ., 11, 36, 1900. 

no. 5, 1921. Brit. Assoc. Reports, p. 682, 1893, p. 100, 1894, and 

+ Trans. Roy. Soc. Dublin, 6, 305, 1898; Astrophys. p. 634, 1899; Phil. Trans., 196 4, 1, 1900. 

Journ., 1898—1904 (6 papers); Proc. Roy. Soc., 67, 286, | Gaskugein, p. 270 (1907). 

1900. ** Dynamical Theory of Gases, 2nd edition, chap. 15, 

+ Phil. Trans., 180, 1,1889. (‘*On the mechanical con- pp. 357, 1916. 

dition of a swarm of meteorites.’’) 

Vou. XXII. No. XXVI. 63 
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below), but when the critical density is eliminated by the introduction of the density* at a 
fixed reference point in the lower atmosphere (say at the base of the stratosphere in the case of 
the earth), the critical height is also almost eliminated. Thus the considerations employed by 

Jeans do not of themselves provide detailed information concerning the height and density of 
the escape layer. But it will be found that Jeans’ formula applies only to the case of an iso- 
thermal atmosphere. If the atmosphere is not isothermal, the critical height does not eliminate 
itself, and Jeans’ procedure alone does not lead to a determinate result. 

Now it has been shown by the author+ that (on certain assumptions) if the temperature 

distribution in the atmosphere is supposed described by a formula of the type 

Ih [op 

where 7 is the distance from the centre of the star, & is a constant and n is a variable function of 

r, then n must lie between 0 and 2; the limiting case n=0 corresponds to absorption only in 

the extreme ultra-violet, the limiting case n=2 to absorption only in the extreme infra-red, 

whilst n =} gives the case when the gas absorbs uniformly throughout the spectrum. It appears 
desirable, therefore, to formulate the theory in a form applicable to such temperature distribu- 
tions. This we shall attempt to do in Section II below. The kernel of the method is the use of 
the “available solid angle,” which, at any level, is the empty solid angle into which molecules 
possessing sufficient velocities at that level are free to escape. It will appear that by this means 

a direct rough evaluation of the density and height of the escape layer is possible, and that the 
formula for the rate of escape becomes determinate. It will appear also that in some respects 

the isothermal case (n=) is quite special; for example it is only in this case that the rate of 
escape is independent of the size of the molecules. 

As a preliminary, the hydrostatics of an atmosphere in which the temperature distribution 
follows the law 7'= kr—, where n is a constant, is investigated in Section I. It is found necessary 

to examine the behaviour of the pressure and density at great distances in some detail, in order 
to be able to overcome certain difficulties concerning the convergence of integrals which arise in 
Section II. The physical ideas underlying the main investigation in Section II are simple, and 
it is unfortunate that the mathematical analysis becomes somewhat complicated; I have been 
unable to see how to avoid these complications save at an undesirable sacrifice of rigour. 

Section III, which deals with applications of the results, draws attention to a certain minimal 

property possessed by the values of the gravitational potential at the surfaces of the existing 

stars. 

I. The hydrostatics of a gaseous gravitating atmosphere in which the temperature falls off as the 
inverse nth power of the distance from the centre of the attracting nucleus. 

§ 2. In this section it is proposed to consider the distribution of pressure and density in an 
atmosphere of the type stated, on the assumption that the gas is a continuous medium capable 

of indefinite tenuity, 7.e. ignoring the molecular structure of the gas. Besides its application to 
the main problem of this paper the question possesses considerable mathematical interest of its 
own. The analogous problem for atmospheres in “ polytropic” equilibrium has been investigated 
by Emden}. 

* The partial density of the constituent in question is (n=O) has been treated by Tait, Kelvin (Phil. Mag. v, 23, 

implied, here and elsewhere. 287, 1887), Darwin (loc. cit.), G. W. Hill (Annals of Mathe- 

+ Monthly Notices, R. A. S., 82, 368, 1922. matics, 4, 19, 1888), Ritter (Wild, Ann. 16, 166, 1882) and 

+ Emden, Gaskugeln, chaps. 4, 5, 6, 9, 10 (Leipzig, very fully by Emden (Gaskugeln, chap. 9). See also Jeans, 

1907). The particular case of the isothermal gas-sphere Cosmogony and Stellar Dynamics (1919), p. 146. 
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The temperature distribution is given by the formula 
uf r\” . 

7 Seal eibcecaatdactccoorcOcocosteboceSsenSEAEHecerone (1), 

where 7 is the temperature at distance r and the suffix 0 refers to some convenient reference 
level near the limb. It will be found that in all cases the atmosphere extends to infinity, but the 

behaviour for large values of 7 depends closely on the value of n. When n>1, the total mass is 
finite; when x <1, it is infinite, though the pressure and density still tend to zero at infinity ; 
for the critical case, n =1, the mass is found to be finite. This varying behaviour is reflected in 

the usual exponential formula used to represent the pressure and density throughout a limited 
range of r. The formula is obtained by neglecting the effect of the mass of the atmosphere itself 

on the value of gravity, and for x <1 it gives a density which does not tend to zero as r tends to 

infinity. But for xn <1 the effective increase of the mass of the attracting nucleus with increase 
of r, due to the included mass of the atmosphere, cannot be neglected if the pressure and density 
are required for large values of r. Within the range in which the density is appreciable, the 
mass is completely negligible in comparison with that of the nucleus; but the method we shall 

subsequently adopt to calculate the loss by diffusion requires the use of infinite integrals, and 

these integrals are not in a convergent form for <1 unless the mass of the atmosphere is. taken 
into account. 

§ 3. Let p be the pressure, p the density, gy the acceleration due to gravity, V the gravita- 
tional potential (taken positively) at a distance r from the centre; and let the suffix 0 denote the 
values of these quantities at a given distance 7). Let M(r) be the total mass inside the sphere 

of radius 7 (including atmosphere and nucleus). Further let G be the constant of gravitation, R 
the gas-constant, m the mass of a molecule of the gas. (Only one kind of molecule is assumed to 
be present.) 

mV GmM(r) GmM(r) (r\r 
q= RT = Ripe Rr, 15) Melee cieishe lose oeisioneenin cares ( 

so that g is the ratio of the gravitational potential energy of a molecule at any level to 3 of its 
mean kinetic energy at that level. It is known that the value of g controls the order of magni- 

tude of the escape of molecules by diffusion, since the smaller g, the larger the mean velocity 

compared with that of escape. The behaviour of q for large values of 7 depends on the value of n. 
The equation of hydrostatic equilibrium is 

Put 2), 

l ET aE eae eee (3), 

where 7= LG pe RT ° 

Le: p m 

‘ ldp  GmM(r)_ — GmM(r)(r\"*__ 
Using (1) we find Pp ar SS RIr ae RTr2 S) = Pa REE PICARD 6 7 Grae (4). 

If we assume that as r tends to infinity the mass of the included atmosphere tends to a finite 
limit small compared with the mass of the nucleus, we may ignore the change in g due to the 
mass of the atmosphere itself and take M as being constant. We have then 

1 dp /p\n= 

game 
ts : : p feed (Fa 4 ) 

giving on integration a TONNE eal mie pear die race rans iiomeies seine Cainsiscaeeines es (5). 
0 
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If »>1, this formula makes p—0 as rx, and moreover it makes the integral [ prdr 

converge, so that M(r) has a finite limit as r > 0, in accordance with the above assumption. 

If n=1, (5) must clearly be replaced by its limiting form 

DY Gp (tral) 2 Secetn saflameln titaa tee Reee asain eles cigar (6). 

This makes p—0 as 7 > 2x, but it makes | prdr converge only if gq, >4. If q<4, (6) makes 

M(r) ~ ~, which contradicts the assumption, and hence if n= 1, and q, < 4, (6) is not valid. 

If n <1, (5) when put in the form 

- (1-82) 
p/po=e 1-n rise 

is seen to make p tend to a finite non-zero limit as ©, and thus makes M(r)—>0. Hence 

(7) is not valid for large values of r when n <1. 

If in (5) we put n =0, we obtain 

(Af = [OH OOOH) Beco cobocoanansrospsodeccscbeoacoasdrec (8) 

the usual formula* for an isothermal atmosphere. As we have seen, this is invalid for large 

values of r, making p/p, and p/p, tend to e~®. The lack of approximation is merely formal, but 

it makes (7) and (8) very inconvenient to work with in certain circumstances. 

§ 4. We now investigate equation (4) more fully. On substituting for M (r) from the relation 

Mp) Gr) 4 | | pred 

and differentiating, we find 

, d? (log p) d (log p) re 
re 3h +(2—n)r Se = ip etna sachs eee ener (9), 

4arG / m \* 
where = = (zr) : 

es 
Put IML = 

7 ,(logp) _. d (log p) a 
Then 3? AEP +(2—n)s ee SSH “no sudannsadaobodscnaont: (10). 

This equation admits of the singular solution 

(1—n)(2n+2) (1—n)(2n+2) 
: a er - Wr (11), 

which gives p positive only when n <1. We shall see that when n<1, (11) is the asymptotic 
solution of (9) for large values of r whatever the initial conditions p, and M(r,). It depends only 

on the scale of the distribution of temperature, namely on the value of the quantity 

jd Bhd ke 

which is constant throughout the atmosphere. 
It is convenient to adopt procedure similar to that used by Emden for polytropic equilibrium. 

Perform the series of substitutions 

p=e, s=e%, z=v—(2n+2) 8, 

* E.qg. Jeans, Gases, p. 354. 
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so that pst? = e-2, 

and then put dz/d@ = y. 

- = = 
We find =a (Mikel) tlm. -t-1(70 — 1) Da Deeceecensjecterccteccsaccees (12), 

an equation of the first order. Real solutions of this equation correspond to real, positive values 

of p. The general form of the integrals of (12) may be most easily seen by first drawing the 

curves 
dy/dz = const., 

Oo 

aa 

Y= SS n+2 

Fic. 1. Integrals of equation (12) forn>1. (The curves are drawn for n=2.) 

and marking each curve with a series of short transverse lines drawn in the direction given by 

the constant value of dy/dz. The actual integrals may then be rapidly sketched in by joining up 

the transversals belonging to neighbouring curves. All the curves pass through the point 

y=0, z=—log(1—n)(2n+2), 

which corresponds to the singular solution. 

When n=1, (12) is integrable, and hence (10) must be integrable. We will consider this 

case first. 



488 Mr MILNE, THE ESCAPE OF MOLECULES FROM AN ATMOSPHERE, 

Fic. 2. Integrals of equation (12) for n <1. (The curves are drawn for n=0.) 

§5. Case J. n=1. It is found without trouble that for n=1 the solution of (10) is 

1D aa 
P™ 3 (Bet +p’ 

where A, B’ are arbitrary constants. In terms of r this may be written 

A (ZARB (e/r.)4 
jee fee ter ep oe 

where B is a different arbitrary constant. The values of A and B are found to be, in terms of 

the initial conditions, 
A= (Go — AA SDoAT oO. a accssutarsioneeciiaeeanens sche sememe (14), 

_A+(qo=4) e 
(ys A gaa Man Ta ae (15). 

It can be verified that formula (13) reduces to the same value whether the positive or the 

negative value of A be taken from (14), Accordingly we shall take the positive value. Equation 
(13) now shows that for large values of 7, 

p= O(r-(4*4)), 

px p/T=O(¢-(44+)), 
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ao 

and hence | pr°dr converges, since A >0. We have thus proved that for n =1 the mass is finite 

in all cases. 

Equation (14) may be written 

AZ (Gr) 2+ ago Amp oTor Pola) sreteeuseceesnssesecse venieiae (16). 

Now 47p,7,° is the total pressure of outlying material outside the sphere of radius 7, and 

Acrpy7o?/go 1S 1ts mass, approximately. Thus 47rp,r,°/q,M, is the ratio of the mass outside r, to the 

mass inside 7). This is in general a very small fraction. Hence provided q, is not nearly equal 
to 4, we have approximately 

gna Ricca onc ee eee a aR ae Om (17). 

In practice (see Section IIT) q, is always large compared with 4, and so (q,—4) is positive; we 
find then approximately 

BH=2 (q —4)/prre, 

which is large compared with unity. Substituting this value of Bin (18) and putting A=q,—4 

we find approximately 
? 

P/Po= (7/7), 

in confirmation of (6). If, however, g, were less than 4, we should find for large values of r 

pe r—4— (440) | 

and (6) is no longer valid. In this case 4p,r,2/g, no longer measures the mass of the outlying 

atmosphere, the mass being in fact comparable with that of the nucleus. It is easy to show by 
direct integration that in all cases the mass of the atmosphere is given by 

2AM ( ro) M(@)— Mr) =F By 

and when q is less than 4 the value of B is given approximately by 

B= tprri/(4—q), 

which is small compared with unity ; hence from (18) M (2 )— M(7,) is in this case comparable 
with M (7), as just stated. 

Neglecting the variation of M (ve. when q is large compared with 4) q remains approxi- 
mately constant, since 

g_Mer)ntr_, 
Gare = 

Case II, n>1. The case n=1 appears to be the only one which is integrable in finite terms. 

The family of integrals of (12) is quite different according as n 2 1. (See Figs. 1,2.) Whenn>1 
the integrals have a common asymptote y=—(2n +2), which they approach as z>+o. In 

the neighbourhood of the asymptote they correspond to the region near the centre of the gas- 

sphere, which we are not here considering. Each integral also extends to infinity in the manner 

indicated by 
yw(n—1)2z, @>+0), 

and in this direction the curves correspond to the outside of the gas-sphere. When 2 is large an 

approximate form of equation (12) is 

y (Ge-@ -1))=(r —1)(2n+ 2), 
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and by integrating this it can be shown that the corresponding asymptotic solution of the original 

equation (9) is 

where C, D are arbitrary constants. By comparing this with (9) it is found that D=4q,/(n—1), 
provided the reference height 7, is sufficiently large for (19) to be a valid approximation there. 
Thus (19) reduces to (5). It can also be shown that p has no zero, so that there is no boundary 

for finite r. Neglecting the variation of M, the variation of g is given by 

q_ M(r)r.T, _ (=)"" 

GutiGorl  \rW 

Case III. n<1. In this case it can be shown that the integrals of (12) are spiral curves 
whose convolutions approach the winding-point z=—Jlog(1—n)(2n+2), y=0, in a clockwise 

direction. In general each integral extends to infinity in the direction given by 

y~w—(l—n)z, (¢>+0) 

which corresponds to the region near the centre of the gas-sphere. One particular integral, how- 
ever, tends to infinity along the line y=—(2n+2), and the convolutions of this integral about 
the winding-point separate the first convolutions of the other integrals from their second 

convolutions, their second convolutions from their third, and so on. The convolutions correspond 
to the outer parts of the gas-sphere. It can be shown, in fact, that as z>— log (1 —n)(2n+ 2) 

and y +0,s—>oo. Further since ps*"** = e~, it follows that as so, 

ps? > (1 —n) (2n + 2), 

and hence the asymptotic solution of the original equation is 

(1—n) (2n + 2) 
pe Arents 

2 See ee (20), 

identical with the singular solution (11). Moreover as each spiral cutsthe line z=—log (1 —n)(2n+2) 

an infinite number of times, therefore there is an infinite number of places where p is exactly 

equal to the expression on the right-hand side of (20). It can be shown that the true value of p 
oscillates about that given by (20), the amplitude of the oscillations tending to 0 as r tends to 

infinity. Further approximations can be obtained without trouble. It is worthy of note that 

the value of p is ultimately independent of p, and M (7). 
From (20) it is easily deduced that for r large, 

(1 —n)(2n+ 2) RT, r” 
p™~ 2 pats Aerial ee essaroersns eae (21), 

: is , (2n +2) RD ro (7\* 
M (7) ~ | 4arpr°dr ~ =e aah ey sec e ccc cc eee cceneeceses (22), 

GM (r G M(r)/r\" BS ! qa an i ae fi Ae (“) sai Dy ES ok, les (23) 

The differing behaviour of q for n $ 1 is especially noteworthy. 

In spite of the fundamental differences between the cases n >1 and n<1 when r is large, it 

is clear that the exponential formula (5) which is always a good approximation to p when n >1 

is also a good approximation to p when n< 1 within any limited range of r. Can we obtain for 

n<1a single approximate formula for p which will agree with (5) when r/r, does not depart far 

from unity and which will at the same time give the correct behaviour for large values of r? 
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Obviously to obtain such an approximation we must take account to some extent of the 
increase of mass. To do this let us solve equation (4) assuming that as far as the increase in mass 

is concerned p may be represented by its asymptotic formula (20). In that case we have to 
insert in (4) 

9 9 TD nn »\1-—n2 ; 
M(r)=M(r) + (Qn + 2) RTr, é ) USE SBR MCh aac aC ROLE TEER (24), 

mG 

and on integrating we obtain 

where Go = Go — (2n + 2). 

This combines the features of (5) and (20) in the required way. Moreover it agrees very closely 

with (5) for values of r/r, which depart little from unity. In fact the ratio of the value given by 

(25) to the more correct one given by (5) is 
Nant. 2u+2 To” 

(“) Se) rs 

and if we put 7r,/7 = 1— 6, to the second order this is equal to 

1-(1 -n’) &. 

Naturally (25) gives too small a value of p, since M (7) does not increase so rapidly as is given 
by (24). But for our purpose (25) will prove most useful. 

If in (25) we want to change the reference height from 7, to 7,, it will be found that g,’ must 

be replaced by a number 4’, given by 

Q/Go = (7/71). 

Hence we have the approximate formula for gq, 

G=Cr2) (toe ae. 
acm ne (26); 

this makes g >(2n +2) as r >, as we have already seen to be the case by a more rigorous 
method. 

It may be asked which convolution of a spiral corresponds to the part of the atmosphere 
where the density is appreciable, near the limb. Now 

Pee d(logpr"**)__rdp 
dis d (log) pdr 

from (4), so that y 1s initially positive and fairly large. Further 

z=— log Apr*"** = — log 4p ie ie (ar) ; 

For a typical giant star for which 7, = 5100 x me 4300°, r,>=8 x 10", taking p, = 10~ atmos., 

we find the initial value of z for atomic hydrogen is about + 6. Hence the point representing the 
pressure at the limb of a star is near the highest point of the first (outer) convolution of the 
corresponding spiral (Fig. 2). The decrease in pressure within a distance equal to the star’s own 
radius corresponds to the upper part of the second half-sweep of the spiral about the winding- 

point. 

= n+ 2)=¢— (On 2). ction (27), 

Vou. XXII. No. XXVI. 64 
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Il. The rate of escape of molecules from an atmosphere in which T varies as 1~. 

§ 6. Introductory formulae. The escape of molecules from an atmosphere will only begin to 
be appreciable (if at all) at a height such that above this height the density is so small that an 

outward-moving molecule has a reasonable chance of suffering no collision. Outward-moving 
molecules crossing this level with a velocity greater than the critical velocity C given by 

$mC? = mV 

will possess enough energy for them to escape completely from the gravitational field of the 
nucleus, and will in fact so escape, describing hyperbolic orbits, provided they encounter no other 

molecules. 

Let r be a height so large that the chance of subsequent collision for a molecule crossing this 
level in an outward direction is negligible. Followmg Jeans we will calculate the total number 
of molecules crossing unit area per second with velocities exceeding C. 

Let dS be a small horizontal element of area surrounding the point P, which is situated at 

the height r. We will first calculate the number of molecules crossing dS in time dé with 
velocities lying between ¢ and c+dc. All such molecules must at the beginning of the interval 

dt be lying inside the hemisphere below dS of radius edt and centre P. Take a cone of small solid 
angle dw, with vertex at P and axis making an angle @ with the vertical, and consider the element 
of volume @ intercepted by it between hemispheres of radius a and a + da, where a < edt. 

€é---------- COG nn 

Peete fs ae : 

Provided dt is small compared with the duration of a mean free path, all the molecules inside 

Q whose velocities lie between c and ¢+de and the directions of whose velocities lie inside the 
solid angle subtended by dS at Q will cross dS during the interval de. 

If v is the number of molecules per unit volume in the neighbourhood of P, the number per 
unit volume with velocities between ¢ and c+de and directions of velocities inside any given 
solid angle dQ is, from the theory of gases, 

m 2 R7 .° 
v ia 7) etmek ded. \27rR 

Hence the number of molecules inside Q of the kind specified is, since here dQ = dW cos 6/a?, 
3S 

m \* dS cos 6 
“ —kme/RT 2d) adadoa. v (snr) e ede = w 
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Integrating with respect to a from 0 to edt, and integrating over the hemisphere, the total number 
crossing dS with velocities between ¢ and c+ dc is 

i, om 

, \o,RT 

Hence the total number crossing dS wea velocities exceeding C is 

) dSdt (| cos Ade) ag Nise ENG Gs Lot, so tl a a (28). 

mo (5 RT, ) asa, e—tnc/RT (3 dc 

=(==) " dSdt he- 1(1 +4), 
TN 

where, as in Section I, we have put 
mV _3mC 

BeRL eS RT 
Hence the total mass of molecules crossing the sphere of radius r per second with velocities 
exceeding the critical velocity is* 

SPE RM cots) lhe eit 71 (29). 

Qpr eo) oa £9) eh eat a Fo BN ate hace (30). 

Having taken r sufficiently large for outside collisions to be negligible, Jeans adopts this as giving 
the actual rate of loss. 

Within a limited range of r, whatever the value of x, we have approximately 
4 m—1 pad — Basi pe n font 

TE en ( ) = =) CUS 0 iat cease a acoso cross seen (51), 

since (within such a limited range) 

GB GIED Oe sonaseepeccnue: colee od Res aaderoa cece (32), 

the suffix 0 denoting as usual some convenient reference height in the lower atmosphere. Hence 
according to (30) the loss due to molecules crossing the sphere of radius 7 is 

RT. 3 $n+2 Go- 7g 

= ‘) (£) Cen gye Laat ee ee (33), 2pure( 

This is a function of r. But, on general grounds, although r refers to a high level in the atmosphere 
the ratio r/r, will not be far from unity. The order of magnitude of (33) accordingly depends 
almost entirely upon the exponential factor. 

Now when the atmosphere is isothermal, n=0 and the order of magnitude of (33) is in- 

dependent of r. The rate of loss can therefore be evaluated without investigating the value of r, 
the height of the level from which escape may be said to be occurring, i.e. without investigating 

how rare collisions must be in order to be negligible. Further, as Jeans shows, the total mass of 
atmosphere lying above the level being approximately 477,2p,/g,, v.e. 477°p,RT,/mg,, the time to 
lose this amount of gas is, from (33) with n= 0, equal to 

1 /27rRT, by T)\° e7% 5 Al * ) (") Lg certs eeeeennceee (34), 

which, since in this we may put 7r/r,=1, is independent of p,. Thus the time needed for the 
streaming away of an amount of gas equal to the whole atmosphere above 7, is independent of 
the total amount of gas above 7. 

* Jeans, Gases, chap. 15, p. 358. The notation has been changed slightly. 

64—2 
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When n+ 0, neither of these results is true. The rate of loss depends closely on q, and there- 
fore on r. Hence it is necessary to investigate the level at which escape occurs, and further, since 
this height will depend on p,, the time required for the escape of the outer atmosphere will 

depend on pp. 
We shall therefore analyse the mechanism of escape in more detail. Our analysis will furnish 

the so-far unknown orders of magnitude of the height 7 and the density and mean free path at 

this height. 

§ 7. Outline of the method. We shall begin by calculating the solid angle subtended at any 
point in the outer layers of the atmosphere by the molecules lying above that point. If we imagine 

an observer to ascend through the atmosphere from a level where the density is appreciable, and 
if we suppose further that all the molecules are visible to him as opaque bodies, then they will 
at first appear to fill his whole “sky.” As he ascends he will in time reach a level such that the 
molecules in the zenith are just filling his sky without overlapping. As he ascends further, the 
sky in the region of the zenith will become partially clear; outside a certain zenith distance his 
sky will still be completely blocked, but within this zenith distance only a portion of his sky will 
be so covered at any one moment—there will be spaces visible between the molecules. The small 
circle separating the two regions may be called his molecular horizon. If he ascends further still, 

his molecular horizon will sink towards the horizontal, eventually sinking beneath it, and there 

will then be some clear sky in every outward direction. 
Let & be the height at which the zenith is just partially clearing. At this height some of the 

molecules moving radially outwards will be able to escape altogether, but molecules moving 
outwards in all other directions will sufter collisions. Hence the critical sphere must be taken 
outside R. Take now for r the height at which the zenith distance of the molecular horizon is @,. 
Take an elementary solid angle dw, the direction of whose axis has a zenith distance 6, and let 

F (7, cos @) be the fraction of this solid angle which is actually occupied by molecules. The function 

F (7, cos @) is equal to unity for all zenith distances @ for which @>0,. The solid angle available 
for molecules escaping through da is 

[1—f (7, cos @)] do. 

Now formulae (28) and (30) were found on the assumption that the whole sky of solid angle 27 
was free. It follows that, assuming approximately rectilinear* paths for the escaping molecules, 
the true rate of escape of molecules across the level 7 will be obtained by replacing in (28) the 

integral 
PCOS Ore soe ai sae sweetie ness st once cena eee (35) 

by the integral ([icos\@: [=i G@-Aeos.@) ido. eenaeacee oe cc seee a eee (36), 

in each case extended over the hemisphere. The integrand in (35) is however zero for @> @,, and 
thus the value of (36) is 

a: ‘ 

2n | [1 —/(7, cos @)] cos @ sin 6dé. 
0 

The value of (35) is 7. Hence the correeted rate of escape will be obtained by multiplying (30) 
by the ratio of (36) to (35), ie. by multiplying (30) by the function ¢ (7) given by+ 

“6, 
b(r)=2 | [77 (a7 1OS'G)|cosiG SIMO AG wasencenca canes eee (37). 

“0 

* Actually each molecule is moving along a hyperbola, important. 

but little error will be committed if we replace the portion + If the height is so large that the molecular horizon is 

of the hyperbola by the corresponding asymptote. In any below the horizontal, @; must be replaced by 4m in these 

case the curvature is small in the stretch of path that is integrals. 
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Qa RT? 
For brevity put (7) = 2pr? Ge) @Re(LAIG)) apesasce ge nceaen sede siaiesee sane (38). 

UC 

Then the rate of loss across the level 7 in grams per second is L (7), say, where 

IE PY St YONGE) coonnbacen obo casuearoooncenoneevedenene (39). 

Now suppose 7'x< r—. When 7> 1, formulae (31) and (32) are valid generally, and we have 

RT 4 rye qo-—"q 

¥(r)=2pore (=) (Z) 
Since qx 7?—, this expression tends steadily and rapidly to zero as 7 >, in virtue of the 
exponential factor. 

When n= 1, q is practically constant and equal to g, whilst p is given by (§ 5) 

falling = (Gey fp) Sa consrannnetoessmapcoccosccepasasacneboce (41). 

m To) 

Hence when n=1, 
2 RT,\? r W-3 iy 

(7) =2por3 (=) () (Sigs) cme ees (42), 

which tends steadily and rapidly to zero as r > #, since q is large. 

When n <1, formulae (31) and (32) are not valid for large values of 7 and we have to use 

the approximate formulae (§ 5) 
.\nt2 — %-4 w\nt2 qo = 4 

P=(") e ton =() sy St eae teak: ae (43), 

where Of SG = (ZRsED)), CCH NGHID Ee ccccnedo sos cooscusseocobende (44). 

Hence for n <1 we have 

Qa RT,\3/7.\2" tee ie 
1 (0) = pure? (7 — *) (2) CEE ge. D Pi sono eact cease aceon ce (45). 

Here q steadily decreases as roo, tending to the value 2n4+2. Hence in virtue ot the 
exponential factor y(7r) steadily and rapidly decreases as r ~ 2 provided n+ 0, but it only tends 

to zero in virtue of the factor (r9/r)2”. If n=0, the exponential factor reduces to a constant, and 

ay (r) is nearly constant for a considerable range. Since, however, q steadily decreases to the value 

2, W(r) steadily but slowly decreases to a small non-zero limit. 
We now discuss the function ¢(r). When r=, the function f(r, cos @) is equal to unity for 

all values of 6, and ¢ (r) is zero. When r is very large, f (7, cos @) is nearly zero for all values of 

6, 6, must be taken to be $7, and ¢$ (7) is practically unity. Moreover for any given @ it is 

clear that f(r, cos @) steadily decreases as r increases, and hence ¢(7) steadily increases as r 

increases. 

Thus in general the rate of escape given by (39) is the product of two factors: the first factor 

a (r) steadily decreases as r > ©, and tends to zero (or to a small positive value); the second 

factor #(r) is zero when r = R, and steadily increases to the value unity asr>a. It follows 

that L(r) has a maximum for some value of r greater than R. This maximum may be taken to 

give an upper limit to the rate of loss. 

It should be noted that in all cases the behaviour of the function (7) during a considerable 

range of r is practically that of the function p", which unless n=0 is a decreasing function 

decreasing to zero. The function $(r) is practically the available solid angle, an increasing 

function increasing from zero. These two statements taken together indicate the existence of a 

maximum. The anomalous case n= 0 arises because the function y(7r) is practically the product 
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of the density p into some function of the temperature and gravitational potential, and when 
n=O the latter function varies as p~' until r becomes very large. 

Even cruder arguments will show that y(r) will in general ultimately tend to zero, and hence 

that Z(r) has a maximum. For if all the molecules at a given level had velocities which 

enabled them to escape, y (7) would be proportional to the density times the area of the sphere, 
ze. to pr. Actually, y (7) must be a function which is always less than some multiple of p7*. 
But, except when n=0, pr? steadily decreases to zero as r> «© (Section I), Hence y(r) tends 

to zero. When n=0, pr? tends to a non-zero limit, and the argument breaks down. 
Jeans has pointed out that his formula—which is simply W (7)—for the rate of escape from 

an isothermal atmosphere (our formula (33) with n =0) gives an always increasing rate of escape 

as r increases*, and he has accounted for this as being due to its counting in, with increasing r, 

“satellite” molecules in free flight, which cannot really be supposed to be part of the genuine 
loss. Such molecules are of course counted in, from the nature of the method; but our more 

detailed analysis shows that the explanation is rather that the formula Jeans has used for the 
density p (which does not take into account the effect of the mass of the atmosphere) gives the 
wrong behaviour for large values of r. 

We are now in a position to regard the loss of molecules from the outer parts of an atmo- 
sphere from a more physical point of view. The analogy with evaporation is more close than is 
perhaps supposed, the main difference between an atmosphere and a liquid being that the former 

has no well-defined surface. But it is quite easy to define what may be called the “surface 
region” of an atmosphere. Any point taken below the height R mentioned above may be 
regarded as being in the interior of the atmosphere, for there are no paths from it which avoid 
collisions. But above this height there will be a layer in which the sky near the zenith is 

clearing rapidly, and owing to the rapid fall-off of density it is obvious that the small circle 
6=6, separating the partially cleared sky from the lower uncleared sky will sink rapidly towards 
the horizon, This comparatively narrow layer in which @, changes quickly from 0 toa value near $2 
may be regarded as the true surface of the atmosphere, and it is from this layer that evaporation 
(or loss of molecules) occurs. If the calculated maximum occurs in the region of rapid change of 
@, (where molecules are still comparatively abundant) we may adopt it with some confidence as 
giving the actual loss by diffusion. 

Naturally the solution we thus obtain is only a crude approximation. The concept of the 
available solid angle is a loose one, and does not truly represent the state of affairs. For we 
postulate the complete equilibrium distribution of the gas to infinity, ignoring its molecular 
structure, and then use this steady state to determine a diffusion process, the occurrence of which 

is in contradiction with the existence of the steady state. However the complete steady state to 
infinity is only formally necessary, and if we confine the actual application of the formulae to what 
has been called above the “surface region” they be expected to give approximately correct 
results. 

A further approximation could perhaps be obtained by taking into account the first collision 
(if any) of each of those molecules leaving a given level with a velocity exceeding the critical 

velocity, and calculating the proportion which still have escape-velocities after the collision. But 
it is questionable whether such a calculation would be worth the trouble. If further approxima- 
tions were required the problem would have to be treated dynamically, as a genuine diffusion 
problem. Some suitable boundary condition would have to be formulated to represent the real 

* In the text Jeans says that his formula (913) increases stands it decreases, but it increases when multiplied by 
with R. This seems to be an oversight. Actually as it 4R*, for the area of the sphere. 

ie i 

/ 

ni tea 

OE 
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state of affairs as well as possible—e.g. it might be supposed that the atmosphere was bounded 
by a given sphere r= 7, and that molecules incident on the boundary with a velocity exceeding 

the critical velocity were supposed to be absorbed by the boundary. 

§ 8: Calculation of the solid angle subtended by the molecules above a given level. It is 

necessary here to introduce a further approximation. In calculating the solid angle subtended 
by the molecules lying within any given solid angle we shall assume that each molecule subtends 
its own solid angle as though the other molecules were not present, so that overlapping is 
ignored. Overlapping wiil be negligibly small except when they appear to fill very nearly 

completely the solid angle considered. The circumstance that the molecules are in motion is 
obviously immaterial and is ignored in the calculation. 

Let o be the diameter of a molecule (assumed spherical) and let »(r) be the number of 

molecules per unit volume at the level 7. Take the point O at level 7, and let (x; @, 6) be spherical 

polar co-ordinates with O as origin and the normal through 0 as axis. If 7’ is the distance of any 
point P(z, 0, d) from the centre of the star, then 

r? =a? +7? + 2zer cos 0. 

The effective solid angle subtended by a molecule, from the point of view of collisions with 
another equal molecule, is equal to that subtended by a sphere of radius o. The solid angle 
subtended at O by the molecules lying inside the element of volume «sin @déd¢dzx at P 
is therefore : 

nena a sin 0dédd dz, 

and hence the solid angle subtended at O by the molecules lying inside the solid angle 

dw (=sin 6déd¢) 

(assuming no overlapping) is A 

deorra* | pv (7) da. 
) 

Ls} 

Hence F (7, cos @) = 0° | D0) hie tervs doo'eiactecabetnes sunsesecismee ae (46). 
0 

When r does not exceed a certain value, f(7, cos @) will exceed unity even for @=0; in this case 

overlapping occurs and the formula has no meaning. When 7 is large, f(7, cos @) will be less 

than unity for a certain range of values of @; in this case the sky as viewed from O will be 
partially clear down to a zenith distance 0, given by 

Hi TECOSIO;) oll Ea toasenaeccercseuiens ae esaeseseeeeee nat (47), 

provided this equation has a root*; and the sky will be completely covered in the range 

0,<@<4nx. The total solid angle subtended by the molecules lying within the range O<@< 0, 

is 2mg(r), say, where : 

g(r) =| fr, cos @) sin 6d8, 
0 

and the free solid angle is 2a [1 — cos 0,—g(r)]. 

However we are directly interested only in the derived function 
a, 

g(r) =2 | [1 —/ (7, cos @)] cos @ sin 6dé 
/0 

sx [P 1G O82 (0) — a2) (7) cancesastgot taste setecu act eesti eanneoneaee (48), 

* If f(r, cos @) <1 for all values of @ lying between 0 and 47, @, is defined as being equal to 47. 
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a, 

say, where g(r) = | F (GCOS @).cos OSM OdO core diencenne wesw nonceneatenmansl (49). 
0 

We shall now obtain asymptotic approximations for this for the different cases that arise. 

Case I. n>1. We have v=p/m, and p is given by (31) in terms of p, and q, at any arbitrary 

reference height 7). Take this reference height to be that of the point O we are considering, 
substitute for p in (46) and then omit the suffix 0 wherever it occurs. We find 

fie oa peas (= r2+2zr cos @ ses 3 

T(r, cos @) => | (a? + 72 + Qer cos Oye "1 re da ...(50), 
0 

where 7, p and g are the values at O. Now substitute «=r€, and put cos@=p. Then 
q 2 — + aarti: = one MD) —1j 

Fr, w= | + 2pe+ eye I (etek (51). 

In this put 14+ 2vé+ &=(1+y/ay>, 

where a=q/(n—1). 
2ny [7 I e)3/(@—) pu 

We find then f(r, w) = TE | (EA gle) ee = eee (52). 
4 mq J0 [a au yal) —w +p}? 

It will be seen in Section III that in practice q is large compared with unity in the boundary 
region, and therefore, since in practice n <2 (§ 1), a is also large compared with unity. If the 
integrand in (52) is expanded in powers of a and integrated term by term, the result will be 
an asymptotic expansion valid when gq is large. The first term of this expansion is sufficient for 
our purpose. Provided ~+0, we find in fact for g large 

1o°pr 3u2-—1 | 
,p)~ eee Sa [ecoacoodgsacosnoscesocacoccc 53), F(T, ) me [ a (53) 

and hence so long as y’g is not too small we may take 8 q y 

_to'pr 1 ff, /= i eae ee (54) 

Notice that the approximate form (54) and even the second term in (53) are independent of 

n; the complete expression of f(r, ~) however would obviously involve n. 

Using expression (54) in (47) we have for the position of the molecular horizon 

cos 0, = py = a kc ES (55). 

The expression on the right-hand side of (55) must not exceed unity for @, to be real. Thus the 

foregoing calculations are valid provided r is so large (p so small) that 

7™oO°pr mag Sb vissssseeeeeetsnsseeennsannanecensennen (56), 

and provided also that r is still sufficiently small for 

: 1 /(7o*pr\? a 
fay"q or 3 ("=") Uoale nkids‘ese bas sBiacaseaproesaeeeweneenee (57) 

to be large compared with unity. It is convenient to express f(r, «) in the approximate form 

Fig /p) = pea teh Sere Serene eee sees oh oleteceecpee deer (58). 

Since p varies rapidly with the height (more rapidly than q), therefore there ts a certain range 
of height in which y, varies comparatively rapidly from unity to a value near zero, as already 
anticipated in § 7. 
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If r is so large that it is necessary to consider small values of 4, condition (57) may be 

violated and we cannot proceed to approximation (53). When p’q is not large compared with 

unity the leading terms in (52) give 
> 1 

yee, (28. aa) ew 5 Wi (ae) na | 2 +4°) CTA a wencsceaaeeteacseaceceees (59), 

which if 7g is small compared with unity may be approximated to in the form 
1 4 

ye ee (EN Nig 9 (EN 5 fr, a [2 2( i ) | Et etn a. 50 (60). 

It follows from this that f(r, 0) <1 when r is so large that 
pe Re 

mer < (=) MMM Se limi | Mr (61), 
mq Tq 

which is therefore the condition that the molecular horizon shall be below the horizontal. 

To find ¢, (7) we have, using (52), 

a7 mo*pr [1 pS (1 + y/a)s/@) ev 
o(r)=| T(r, #) pd = EES wd | eee lit i 

My mq J ay 0 Ke! ae yay) = i125 ae 

Inverting the order of integration and integrating with respect to « we find 

Top 
br (r= 7ZPP Lt ya — {1 + ylapel™— 1 + poh] (1 + yal ervdy (63). mq 

The asymptotic expansion of this valid for large values of y,°g is found to be 

EE: ee a ; d, (7) a (1 — 4) ji + AG + im Redneecm aera por ercURSe (64). 

Hence we have approximately 

Pye ae pi (7) = mq (1 — #1) 

=e (TS A) Se ee eee Man ean eee (65) 
The same expression would have been obtained if we had used the approximate formula for 

JF (7, ») in calculating ¢, (7), thus 
1 1 

b=] FO, wndu= [Buda =y.(—m) 
If y,°q is not large compared with unity, the leading term in the expansion of (63) gives 

e Tor i = : 22)" Ee 2 

$; (7) ee E pe + 5 CBU OYE saci net) ceeemestie ee (66), 

which again if ,°¢ is small compared with unity gives 
1 

5 ce ea dw 2 (eal | eT eee (67). 

We shall find that the most important case is when ,, is not nearly zero. Summarising for 
this case, we have the approximate formulae 

oc rT 

cos 0, =f = ae 

(ry) = wor _ HA f(r, 2) = Tigh pe  Pneerternersenecescrntee. (68). 

pi (7) =/y (1 — /h); 

$ (7) =1— py? — 246, (7) = (1 — pa)? 

Vou. XXII. No. XX VI. 65 
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Case II. n=1. Either by substituting the appropriate formula for p from § 5, or by passing 

to the limit (x — 1) in (50) or (51) we find for n=1 

f(r, p= =e i. (be Oak 4 f3) 8 gree es (69), 

which converges since q is large. Substituting 

2 (q— 3) log (1 + 2uE + &)=y, 
: ae = 

this becomes fi, w= OE edy 
m (q = 3) J0 (eu! (a9) Ser wee 

The leading terms in the asymptotic expansion of this, for 4*g large or small, are the same as for 
the case » >1 just discussed. The same applies to the expression which can be obtained for 
¢,(r). Hence formulae (68) are valid when n=1. 

Case III. n<1. In this case the integrand in (50) does not tend to zero, and the integrals 

already obtained for f(r, ~) and ¢,(r) diverge. This would appear to indicate that all elementary 
solid angles are completely filled with molecules. But this conclusion would be erroneous ; it 
arises from the fact that the expression for the density valid when n >1 is not valid for x<1 for large 
values of r. We must accordingly use in (46) the approximation for p which gives the correct 
behaviour for 7 large, as obtained in Section I. The approximation in question has already been 

quoted in Section I, in equations (43) and (44). Employing these in (46), then omitting the 

suffix 0 and substituting 
z=ré, a =q'/(1—n), 

J Zor [7% —4£(n+2) —a’f1—(14 Qut+2 wefind f(r, m)="=P" | + Que + By REY ee Erte -}(1-n) 
) Lae Ee (51’). 

This integral converges. The exponential factor tends to a non-zero limit as £~#, but con- 
vergence occurs owing to the first factor in the integrand, since n>0. Put 

14+ 2pé4+ F=(1-y/a)re™. 

mo*pr i ean hn yla’)en/0—m) e"dy 

mi 410 (A 0 =) yaa 
This should be contrasted with (52). When pq’ is large, f (7, ~) has the asymptotic expansion 

morpr [pe  ee | - 

png | Hq 
Inserting g’ = q—(2n +2) and expanding in powers of g™, (53’) becomes 

Fp Ter E + a + “| 

of which the first two terms are identical with those of the corresponding expansion for n > 1, 

Then Fr, w)= 

I(r ~~ 

namely (53). 

When p’q' is not large compared with unity the leading term in the expansion of (51') gives 

‘ , 3 —i} 
oe mopr pot. (=p gos Say 
T(yw~ ang. i | + = | e UGS. nese chau eco sne (59 ), 

and when y*q’ is small compared with unity this has the approximate expansion (60), the same 

as when n> 1. 
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To find ¢, (7), using the expression of f(r, ~) given by (51’), inverting the order of integration 

and integrating with respect to « we find 

pete Pela Pad i TO" jul gal —(1-(—-p»,)( — yla’ypo—m ab 

di @=} f (7, w) wd mg Jo fal — yay? — — eVdy 

2H 5 al 1 — 272,/ (1—n) 

= ns (1 — 4°) | at Wee = ETYUY  veesssserers (63’). 

1 Jo 14 [1 = =p) (1 = y/o’ yo 
This converges. It should be contrasted with (63). The asymptotic expansion of this valid tor 

large values of y,°q' is found to be 

GUIs > _@n-VWmtl ' 
di (7) ~ mq’ al f) E dn ae ca dd sno7ocoeonnobaAednced (64 ). 

Inserting g’ =g —(2n+ 2) and ex pandIng in powers of g~, (64) becomes a a | ae i q 
3/4 — | OO) cP =) [1 + = to |, 

of which the first two terms are identical with those of the corresponding expansion for n> 1, 

namely (64). 
When p,°¢' is not large compared with unity the leading term in the expansion of (63’) gives 

1 pat Ve 
EG) ie E — (me + ra ) leva ee uke (66’), 

may 

which again if 4°q' is small compared with unity gives 
1 

To"pr 7 \? = b(n) TF 1-(%) | lel RINT Ais ie an Ua (67'). 

If in this we put q’ = q —(2n + 2), the resulting expansion is identical with (67) as far as the 

power of g™ concerned. 
We thus see that the approximate formulae (68) hold for 0<n<1 as well as for n>1. The 

fact that (68) do not involve n explicitly might have suggested that this would be the case, 

but the method of derivation of (68) for n >1 does not hold for n < 1, and a separate investigation 

was necessary. 

§ 9. The maximum of the formal expression for the rate of escape. We can now investigate 
in detail the formal expression for the rate of escape as given by (39). Let 7, as usual be some 

convenient reference level. Assume in the first instance that the level 7 is such that conditions (56) 

and (57) are satisfied. 

Case I. n>1. Using (40) and (68) we pave 
2 RT, 7 4n+2 at ; 3 

L(r)=2pyre(™ Eby, (“) (Sa) Chaya oceocoscsenaner (Ady 
ne 

2 7-4 
en-1l Now a Bice pee Ra 

mq ms Mo = \To/ 

on substituting for p and q from (31). Eliminating the factor e~*/""™ between (71) and (72) we 

have 

QrRT,\? / mq. \" (To\?" ae aye : 2 L(r)= 2pont (* a a oe ) (=) (145g) es py® (Lp concee. (73). 

In this expression the factor (7/7 ge = al + q) varies practically as (ro[r)” 7 - and so varies slowly 

compared with y,. Hence the variation of (73) is dominated by the factor 

(5 (jie )) = tne (Il 3 FE)? cu sea sno. vobtoedoods0nse66 suodnouoag (74). 
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This is sensitive to the value of 7, since 4, over any limited range is approximately proportional to 

p. It vanishes for y,=1 and »,=0. Differentiating for the maximum lying in the range 

0< 4p, <1, we find 

(141)max = = RS oD ars OR a EE A (75). 

A few numerical values (not restricted to n >1 in view of later work) are given in the following 

table. 
TABLE I. 

| 
n (4) )max (9,)max | (max 

fe | 
0 0 90° | H 

| tr bode | 82717 | 0-668 
ie ¥ 83°37 | 0-457 
| 4 3 78° 25’ 0-286 

z i 75°31’ | 0-293 
1 3 70°32’ | 0-148 
a 3 64° 37’ 0-0917 

2 i 60° 0-0625 

In the range 1<n<2 (j4)max lies between 4 and 4, and therefore y,°q is sufficiently large 

for the approximations we have used to be valid. 
Thus for x > 1 the maximum of the formal expression for the rate of escape occurs for a value 

of 6, in the neighbourhood of 60°—70°. Such values of @, correspond to the layer in which the 

sky of an ascending observer is clearing rapidly—the surface region of the atmosphere. Thus the 

formal maximum occurs in the region from which evaporation (if any) must be chiefly proceeding. 
The maximum may therefore be taken as giving the true magnitude of the rate of escape. 

The density at the height of the formal maximum may be found by substituting the value 
of (4;)max in (72). Omitting the suffix maw for brevity we have 

In this 7, and q, may be substituted for r and q with an inappreciable error, and we have finally 

_ Yo pa 

TOT, 

a formula which evaluates p at the escape level in terms of known quantities. 

According to the theory of gases, the mean free path / at a given density p is given by the 

formula 
= Dymghp ccc ceeereeerstsnneeeeeessnnnseees (78). 

Dividing (77) by (78) we find 2) on gy. evr srrsceseeencstennscnsenanne (79). 

The simplicity of this formula is worthy of note. The “mean free path” thus found is not, of 

course, the actual mean free path at the height concerned. It is the mean free path which would 

occur in a large amount of gas of uniform density equal to the density given by (77). When the 
density changes appreciably in a distance comparable with the value of J given by (78), the latter 
formula no longer applies, the mean free path being in fact different in different directions. 
However (79) gives the equivalent mean free path at the height at which the molecular horizon 
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is given by 4,, and the use of the equivalent mean free path is perhaps the simplest way of 
visualising the order of magnitude of the density there. 

To find the height at which the formal maximum occurs we must use (72). Taking logarithms, 

Fae | rr te) TO" poly 

Putting r/r,= 1+ 2, where z is small, we find 

TO" poTo 
—2)z=log 

( ) SUNge 

or, since q 1s large compared with 2, 

r—?T 1 TO" Po?"y : 
-=z=—lo Roles x Gate ee eer a (80). 

To Yo Mo br 

From numerical values given in Section III it will appear that, owing to the largeness of qq, z is 

in fact small compared with unity, as assumed. 
In expression (73) for the magnitude of the rate of loss we can now put r=7y, 7 = qo, approxi- 

mately. We have then 
» $ _ 

L (hiss = 
2por 2 a) 

= i Queena Wee coset ees (81), TO Poo 

4n” 
(n + 2) 

This gives the rate of loss in terms of quantities depending only on the reference height. 

where Ga 

Case II. n<1. We shall not pause to discuss case n=1 separately. When n< 1, using (45) 

and (68), we have 
27k Na ~\2% _ go- nq Ene 

L (r) = 2pure (™ =) ) eerie (U0 Peg) (IRS yd, eee (71’), 
m % 

where (substituting for p and q from (43) in (68)) 
3 2 +1 = 

ear eae (72), 
mg mg, \T 

Eliminating the factor e”"-” between (71’) and (72’) we have 

2 4, n, .n*--4n n 

L (r) = 2por?? ee5 ( ae ) (=) (2) (1 +.) e-%y," (1 — py)? «....-(73). 
m TO polo ry qo 

Provided r/r, is not large, (q/q.)" is approximately (q'/q.)" which is equal to (7/7)"~. Thus the 

variation of (73') is dominated by the same factor as when n>1, namely the factor €(4,)=4."(1—)*, 

whose maximum for various values of n has been given above. But when vn is nearly zero, the 

value of (1)max aS given by (75) is very small, hence ,,°q in the region of the maximum is not 

necessarily large, and so the approximation used for $(r) is no longer valid. A fresh investigation 

is therefore required when n is zero or nearly zero. When n<1 there are thus two sub-cases to 

consider. 

Case II a. n not nearly zero. Although (71) is not quite identical with (71), the ratio is 

practically only a power of r/r,. The height at which the maximum occurs is such that r/r) differs 

but little from unity, and the discussion of the density and equivalent mean free path at the 

maximum, of the height of the maximum and of the actual value of the loss is the same as for 

n>1. Formulae (76)...(81) apply as they stand. 
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Case IIb. n zero or nearly zero. Suppose that r is so large that y,°q is small or zero, Then 

we must use the approximation (67’), giving since , is small or zero 

27ro* pr 
== =e) — @ (r) =1— 2p, (0) = 1, 

and the formal expression for the rate of escape is 

1\3 gn qo— Nd 

jy=2 eee) (2 )" ea = ~ =22"p") 5 
LL (r) = 2por ag = n (1 +@(1 mq). oe (82). 

Making the proper substitutions for p and q, putting r/r, = 1 + 2 and differentiating logarithmi- 
cally, we find the maximum must occur when 

gn go (1—n)(1 +2)" fe 2morpr Go (1 +2)" ? + 2n(1+2)7 

l+z 2n+3+q mg 1 — 2Qrro*pr/mg’ 
—ngy (1+ 2)”?— =0. 

Neglecting z wherever it occurs explicitly in this equation, and neglecting also n/q,’ compared 

with unity, we find that the maximum must occur for 
Saas al 

Eig of (» yi hala "| / (1 tnt ‘th oh ee ee (83). 
mq Yo Jo 

Since (7) is only given by (82) provided zo*pr/mq’ is small compared with unity, this formula 
1 

for the maximum is only valid if 4 y(n + —) i is small compared with unity; as we have assumed 
0 

n to be zero or nearly zero, this condition is satisfied. We may therefore write (83) in the form 

To pr 1 aa (n f =) PRN Ree ccs. (84), 

approximately. It should be observed that when n though small compared with unity is large 

compared with 1/q, formula (84) agrees with (75), both reducing to wo*pr/mg = }n. 

From (84) the equivalent mean free path at the maximum is found to be given by 

l 42 y 
ra gg ed oe ae (85) 

To find the height of the maximum we have 
pr _ po 2n Ms qo — q' 

— — |" ) en Lams 
q % \r 

whence inserting in (84) we find approximately 

PH iy il MO-pot  L 240 
age og B log ie ik log ieee ee (86). 

(The numerical results of Section III will Justify our assumption that even in this case 2 is small.) 

The magnitude of Z (r) at the formal maximum is found to be approximately 

2 q 3 / n n 
L(r)= pore (Pez) ( mds ) Qe” E (n + : )| AGMA SIOC BNSC (87). 

m TO Py?" 

Comparison of (86) with (80) will show that when x is very small or zero the height at which 

the formal maximum occurs is much greater than when vn has larger values. Likewise comparison 

of (84) with (77) and of (85) with (79) will show that the density and equivalent mean free path 

at the maximum are respectively much smaller and much longer. 
However, when n is very small or zero the maximum is not a sharp one; there is a consider- 

able range of r in which the formal expression for the rate of loss is nearly constant. It is 

questionable, therefore, whether any advantage is gained by regarding the height at which the 

formal maximum occurs as the height from which evaporation is mainly proceeding. Almost the 
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same value for the rate of loss will be obtained whether we evaluate Z(r) at its maximum or 

whether we evaluate it in the region in which yu, changes rapidly from unity to zero. Physically 
it is the latter region to which the term “surface region” is best applicable, and evaporation from 
this region is practically the whole of the evaporation. If we put, say, w, = 5, (0, = 84°) corre- 

sponding strictly to n=%, the formulae of Case I for p and / will represent n=0 sufficiently 
accurately. The factor fy,x In (81) has the same limit (unity) as n ~0 as the corresponding 

factor in (87). 

§ 10. Discussion of the formula for the rate of loss. Formulae (81) and (87) show an explicit 

dependence of the rate of loss on the size of the molecules except when n= 0, smaller molecules 
in general escaping more rapidly. This would perhaps be expected, but it is difficult to see why 

the loss should be independent of o when the atmosphere is isothermal. 
The factor (mq,/7ro*p,7))* is equal to (p/~,p))", and unless n = 0 is very small, since p/p, will be 

small, p being the density at the escape level. Thus if 7 is but a little different from zero, the 
rate of loss is much smaller than in the isothermal case. 

The rate of loss is proportional to p,'”. Thus if n=0, the rate is directly proportional to p,, 
in agreement with Jeans. If n=1, the rate is independent of p,. The time for an amount of gas 
to be lost equal to the whole amount of atmosphere above 7, is proportional to p,”. However, 
strictly speaking the removal of each molecule causes a slight re-adjustment of the whole 
atmosphere, with consequent diminution of p,*, and thus in calculating the time for a whole outer 
atmosphere to stream away p, would have to be taken as a function of the time. This function 
could probably be determined without trouble. When n=1 this question does not arise, the rate 
of loss being independent of pp. 

$11. Summary of the mathematical results of Section II. As seen from a point at a height r 
in the atmosphere, where the density is p, the zenith distance 6, of the molecular horizon is given 

approximately by 

mg 

provided that p is so small that 4,<1 but not so small that 4, is nearly 0. Inside the zenith 
distance 6, the sky is everywhere partially free of molecules. In this formula o and m are the 
diameter and mass of a molecule, and q is given by 

qg=mV/RT, 

where V is the gravitational potential and 7 is the temperature, which varies as 7—”. 

To take account of the free solid angle available for escaping molecules, the rate of escape 

calculated as though the whole outer hemisphere were free must be multiplied by the factor 

(1 —4,). The formal expression thus obtained for the rate of escape has a maximum at a density 
p, height r, zenith distance of molecular horizon @, and equivalent mean free path / given by 

n 
cos 0, — peat => n+2 aqui utsinhajmis/0 S 6/ele 0 ple\es\alw cluiee vjele/e'eaelae @ as/a cidcic'w ec s'slee ce apc pe (89), 

= gia Bennett ceo e ae not ed ba osictieetoeete cates sau seceuatehiogs (90), 
7™O Ty 

ig ae Rs 91 = ee Ta z g Bee ee eae eee (SD): 

l 1 
Se a aa ot Sale 0 Seales ere aiaciee Sie sae eae ieee Se eee ce eee 92), 
To V2qopa ( 

* I owe this remark to Dr J. E. Jones, of Trinity College, Cambridge. 
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and the magnitude of the rate of escape at the maximum, in grams per second from the whole 
surface of the atmosphere, is given by 

foe (ze (Rien 
m TO” Po%o/ (3-2) = 

The suffix 0 refers to the height selected as reference height. 
The formulae of the last paragraph are not valid if n is very small or zero. In this case the 

maximum occurs at a height at which the molecular horizon is near or below the horizontal. 

The value of y, at the maximum is no longer given by (89), but the correct formulae for p, 7 and 
1 at the maximum are obtained by replacing p, in (90), (91) and (92) by the quantity 

1 1 4 +). i(n qo 

The value of L (7) at the maximum is obtained by replacing the last factor in (93) by the factor 

1 n 

+—}|. 
E ( 7 | 

III. Applications. 

§ 12. The gravitational potential at the surface of a star. The value of qo, on which the order 

of magnitude of the loss depends, is given by 

Oy CHO LR TON GIT, oncagooabeoaaedseonmaseoessene* (94). 

To search for stars from the surfaces of which the loss by diffusion might be appreciable is to 
search for stars having low values of q. It is plain that if we compare a giant and a dwarf of 
the same mass and temperature, the value of g, will be much smaller for the giant than for the 
dwarf (e.g. some eight times smaller in the case of the sun and its corresponding giant). We can 

therefore confine our immediate attention to the giants. If 7’ is the effective temperature, & the 

mean coefficient of absorption in the interior, we have on Eddington's theory of the radiative 

equilibrium of a giant star 
4GM 1 — Fi SOE Sy en eek 

ma Wale 

where 1 —A is the ratio of the radiation pressure to the combined hydrostatic and radiation 
pressure. It is connected with the mass by the relation 

= 8'= 0/0026 CM ©) Bee ces mereiseels--eece ss seceee eee (96), 

where m’ denotes the mean molecular weight of the gas in the interior of the star and © denotes 

the mass of the sun; @ is such that a7 is the energy-density of black radiation at temperature 

T. From (94) and (95) we have 

GM akGMy? 
| fly Fh] (pected V.=—— =HT, A 5 Oe, ee (97), 

1 

p= itp T, (F Ezy ewce rope Wa basie ve OW RRS (98). 

For grey material 7, = Q-t7,. and whatever the optical properties it has been shown 

(under certain conditions which are probably satisfied) that * 

TiS fy > Fy. 

* Milne, Monthly Notices, 82, 368, 1922. 

ee 
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For simplicity we shall take 7, = g-4 T,=0°847,. We have then 

=e raleGLM\> 
i a (7) ees SI ete tea eee (99). 

Hence for giant stars of given mass, g, ¢ 7,; and therefore to obtain small values of go we must 

look amongst the stars of lowest temperature. 

It is next necessary to examine the variation of gq, or (V,) with WM, for stars of given tempera- 

ture. When J is large, (1—) tends to unity, and V,« M?. When M is small, (1—) « M?, 

and V,c M -2 Thus V,, decreases with increasing 17 when M is small, but increases when M is 

large. Consequently V, must have a minimum for some value of M. 
| 

To find the minimum, put M/©=z, s =p 

so that 1— B=z/y. 
y\ + 

Equation (96) then gives “= 0:0026x?m (1 =) ' 

Differentiating with regard to # and putting dy/dx=0, we find that the minimum of y (ae. of 
V, and q,) occurs for 

vjy=1-B=3, 
1 

Mine al 8 Ne, Vist 
whence See (couse) ce (100). 

This gives the mass for which, amongst giants of given temperature, the surface value of the 

gravitational potential is a minimum. 
For Eddington’s two values for the mean molecular weight throughout the star, m’ =2°8 and 

m =4, we find W=17©, M=0°860. These are not only of the order of magnitude of stellar 
masses, they are close to the actual masses of the majority of the stars. We thus have the 

following interesting result. The surface value of the gravitational potential GM/r, considered as 

a function of the mass M for a hypothetical series of stars of constant temperature tends to + 2 

for very small and very large masses, and has a single minimum ; the existing stars are clustered 
about this minimum. This result is perhaps little other than an alternative form of Eddington’s 

result that in the neighbourhood of the masses of the existing stars 1 — 8 changes rapidly trom 
a value near zero (for smaller masses) to a value near unity (for larger masses). Whatever the 

mean molecular weight the minimum occurs when radiation pressure is | of the total pressure. 
The mass for which the minimum occurs varies inversely as the square of the molecular weight, 

and the gravitational potential at the minimum as the inverse first power. 
The tables given later show that the minimum is not a very sharp one. 

The fact that most stars have the mass most favourable for loss by diffusion, combined with 
their permanency, suggests of itself that the loss by diffusion is always very small, as we shall 
soon see to be the case. It is perhaps tempting to suppose that the reason for the existence of 

the stars near this minimum is that they have been built up by a process of aggregation by 
capture—whilst the mass is still small every addition decreases the surface potential and so 
diminishes the power of making further captures. But the speculation seems neither profitable 
nor plausible. 

$13. Numerical application to stars. Tables II—VI are based on Eddington’s theory of the 

internal constitution of the stars. Table II gives the effective temperatures (7;) and radii (7) of 

stars of given mass (MV, here expressed in terms of the sun’s mass) and mean density (pm); it is 

Vor. XXII. No. XX VI. ; 66 
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an amplification of one given by Eddington*, and assumes a mean molecular weight m’ = 4, with 

k = 42°5 as the corresponding value of the absorption coefficient in the interior; the radii are 
given in ems. Table III gives the surface values of g for the same stars, and also the values of q 

calculated for atomic hydrogen with T,=2-*7,. Fora gas other than hydrogen the tabulated 

values must be multiplied by the molecular weight. Table IV gives the values of p and / at the 

escape-level for atomic hydrogen for the same stars. For this purpose the diameter of the 
hydrogen atom is taken to be that of the 2, Bohr orbit (the second circular orbit), namely 

4-22 x 10-* ems., since the intensity of the Balmer spectrum at the temperatures concerned shows 
that an appreciable fraction of the atoms is in this state. However the orders of magnitude 
alone are material or indeed have any significance. The values of p and / are calculated from 
formulae (90) and (92) in which for definiteness », has been taken to be 4, (0,= 753°), corre- 

sponding strictly to n= 3 
The theoretical minimum for q, is not well indicated by these tables. Accordingly Tables V 

and VI have been calculated, for giant stars only. Table V shows the values of 7, 9, qo, p, J for 

giant stars of various masses at a constant effective temperature of 3000", for a mean molecular 
weight m’ =4, (k=42°5). Table VI is a similar table for m’ = 2°8, (k= 23). The minimum of q, 

is apparent in each table. Values of the various quantities for other effective temperatures are 
deducible by using the relations 

meade apes ii, Gped 1h, jee des (ee Ila} 

(These relations hold only for giant stars of constant mass.) 

The minimum value of q occurrmg in Table V is 277, (M=0°855©). Stars of all other 
masses and of all higher effective temperatures (of mean molecular weight 4) yield theoretically 
higher values of g, than this; moreover since this value refers to atomic hydrogen, all other gases 

will again yield higher values. Thus out of all stars of effective temperature 3000° and higher, 
giant stars of mass 0°855© and effective temperature 3000° will lose atomic hydrogen more 

TABLE II. Effective temperatures and radii (cms.). 

M=075 M=1-0 M=15 | M=4°5 

Pm 

| | ee "%) T, | % a | ro Ve 2 % 

— r | | I | 

1:94 2680 0-49x10"|} 4060 0:62 10" 5100 | 0-71x10"| 9590 1:02 x 10" 
1:378(©) 4 5860 | 0:696 | 

{> ileal. 4630 0°59 6930 0:745 8670 | 0-85 15050 1:23 
| 0-64 5970 0-71 8770 0:90 10780 1:03 16780 1-48 

0°356 | 6710 0:87 9710 1:09 11590 | 1:25 16680 1:80 
0-198 7070 1:05 9930 1-33 11610 | 1:52 15880 2-19 
07106 7070 1°30 9680 1-64 11140 | 1:87 14760 2-70 
0-055 6790 | 1:62 9120 2:03 10380 | 2°33 13480 3°36 
00066 | 5410 | 3:28 6980 413 7800 4-72 | 9820 681 
0-001 3950 6-14 5100 C73 5700 | 8:85 | 7160 | 12:8 
0:0002 3020 | 10:5 3900 | 13:2 4360 | 151 5480 | 21°8 
0:0001 2690 | 13:2 x 104 3480 | 16-7 3880 | 19-1 4870 | 275 
0-00005 3100 | 21-0 3470 | 24:1 4370 | 34:7 
000002 |. 2660 | 28-5x 10" 2970 | 326 3730 | 47-0 
000001 — | 2640 | 41-2x10" 3320 | 59-4x 10" 

* “Das Strahlungsgleichgewicht der Sterne,” Zeit. fiir Phys., Bd. 7, 8. 381 (1921). 
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“TABLE ITI. Values of g, and q,. (Atomic hydrogen.) 

W=0°5 M=1-0 Wes M=45 
| Pm 

Io % Io % Io | Ui | Io To 

= | 

1:94 266 x 10? | 7050 | 3°35 x 10* | 7400 | 3°84 x 10 7710 | 5:57 x 10* | 8540 

1:378(@) 267 , | 4560 | | 
1-12 | 1:94 ,, | 3400] 233 ,, | 3600| 2-65 ,, | 3780 | 3:85 ,, | 4530 
0-64 | 1-27 ,, | 2190] 1-60 ,, | 2370| 1-84 ,, | 2520] 2-65 ,, | 3380 | 
0-356 8:60 x 10° | 1610 | 1-09 ,, 1760 | 1:24 ,, 19305) 1:80" = 2790 
0-198 5-8 5, | L250) 972 x 102 || 1410) | 8:39 x 10® | 1580) |) 1:21 2400 

0-106 | 3°83 a 1020 | 4:83 ,, NZ000 5:5 1340 | 8-00 x 108 2110 
0-055 | 2aiS = 850 | 3:12 ,, OOM |S 56s Seon oes 1850 

0-0066 | 6:00 x 102 | 526 | 7:60 x 10? GAGs eosdO O25 ToGneEZour, 1250 
0-001 Wey Ah een ||P prateke S|) UR Ale Ai bos Si x LO 915 

0-0002 5°85 x 10 294 | 7:40x 10 362 | 8-47 x 10 re | | Ue 701 
0-0001 PSE es 261 | 4:65 ,, Sailieoro0n 377 | 7-70 x 10 625 
0-00005 2-92 |, 285 | 3-15 ,, 335 | 4-84 ,, 553 
0-00002 | 159 ,, 246 | 1:82 ,, 988 | 2-64 ,, | 478 
0-00001 1 i: ae 2061) 1:65) 355 1) 425 

TABLE IV. Values of p and I (cms.). (Atomic hydrogen.) 

M=0°5 M=1:°0 M15 M=4°5 

Pin 
p | l p | U p l p l 

| 

1-94 1:1 x 10-7} 20x 10° | 8-7 x 10-8} 2-4 x10’ |8-0 x 108) 2 6 x 10% | 6-1 x 10-8} 3-4 x 10’ 

1:378(©) ASE |4sdae,, 

1 Hoa). T= 4) cis) ee Bye ag! Bart) eee Ses oy | eB So Dee in TU ee 

0-64 Deon 922 i ars yaks sates |altsy |) Heil se Kiley, 1:2 x 108 | 

0-356 |1-4 4, | 15x 108 | 1-2 lsc ce, (SITE er CII eas Ula ae il ices 
0-198 |S7x10—| 24 , 178x109) 26 , |7-6x10-| 27 ,, |80x10-9| 26 ,, 
0-106 ay7/ os 3°6 ” a4 spo || 33, | 5-2 ” | ea 5 a7 ” 36 ” 

0-055 Towers Het penaGe me |RDih bnt7| 3G) 1,5 ihe a eullal 50 ,, 

0-0066 leer Usss2 G2 (Me og, |) Uta Ie TsSisqolO 2s eco me 1-6 x 10° 

0-001 4-6 x 10-*| 4:5 4°5 x 10-* | A Gime | |4-G)s<al| O72) 64D e cos Omer 

00002 |21 ,, |10x10%/20 ,, |10x10%/20 ,, | 10xlowjo4 ,, | 88 ,, 
00001 |15 ,, TT cg PUREE Seep tse || oA epee ile Wek oe lethal ae 
0-00005 ISO Foe oes Reef esti | ees I ers 
000002 63, |33 . |65x10-"|32 , |7-3x10-|28 ,, | 
0-00001 | 4-6 ” | 4:5 ” 5-2 ” 4-0 ” 

66—2 
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TABLE V. 7,=3000°, m’=4, k=42:5. (Giant stars.) 

MW To | Io qo P l 
} 

| 03 0-56 x 102| 124 332 | 4:3x10-" | 48x10? | 
| 0-5 1:06 ,, 57:3 291 2-0 1:0 x 10” 

0-855 | 191 ,, 30-4 277 ye 2-0 ,, 
1-0 222 ,, 26-2 278 | 9-2x10-2] 23 ,, 
15 319 ,, 19-0 291 eee Se: 

| 3-0 548, 129 | 339 | 45 ,, 4G aie I 
| 45 783° VE TO Se )8 SSL 38° 5 ae oe ee 

6-5 9:23. ,, 99 | 436 35 6-0, 
9-0 11:30 ,, 9-1 | 492 3D) 65 ,, 
a0 <0 61 | ean || OS a LEV Jen 

TABLE VI. 7,=3000°, m’=2°8, k=23. (Giant stars.) 

M un) M9 qo P u 
| 

0-5 084x102} 91°6 369 | 3-2x10-”| 63x10" | 
1-0 9403 seal B04) || ek 5, 1-9 x 108 | 
15 S10) ae 19-0 291 | G7x10-2| 31. ,, 
eile Panes 16-5 S00, 58, oe | bee 
3-0 Git. ioe | 403° | so | ene 
45 Sapte 8-1 398 | 28 | 73. 
6h || die 68 S61 vi|.O4ate 87: 
90h 12-06... 59) || 396) oladeie te 1-0 x 108 
cian ee 38} | a Le Dim Mes 1-3 == 

| 

rapidly than any other star will lose hydrogen or any other gas. The greatest rate of loss occurs 
for n=0. Inserting in formula (93) the rate of loss in grams per second is found to be ; 

2x LO pq; 

ze. in grams per 10° years 6 x 10“ p,. 

Whatever permissible value is adopted for the limb-density p, (see § 14), the rate of loss is com- 

_ pletely negligible; more than this, scarcely any molecule ever escapes. The result is unaltered if 
we adopt the highest possible surface temperature, 7,=7,; the index in the last expression 
merely becomes 56. 

For giant stars at 3000° the value of p for atomic hy drogen i is of the order of magnitude of 
10- gram. cm.~, corresponding to about 10‘ atoms per cm.‘ and a mean free path of the order 
of 10° kms. These are the critical density and mean free path at which the atmosphere ceases to 

behave as a gas in the ordinary sense and becomes a collection of molecules projected under 
gravity and continually falling back (since escape is negligible) into the denser atmosphere. For 
dwarf stars at the temperature of the sun, p is of the order of 10~* gram. em., corresponding to 
about 10° atoms per cm.’ and to a mean free path of about 400 kms. 

$14. The height of the escape-level, and the density at the limb of a star. The height above 
the limb at which escape (if any) may be said to be occurring is given by (91). It depends 
on po, the partial density at the limb of the constituent considered. Owing to the wide variations 
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in estimates of the pressure in the atmosphere of a star and the difficulty of assigning precise 
levels to particular pressures, it is impossible to estimate p, with any accuracy; but the resulting 
uncertainty in 7/7, is much smaller, since py occurs as a logarithm. 

Whatever estimate is made of pp, it is clearly desirable to make consistent estimates for stars 

of different masses and temperatures. We will therefore attempt to discuss the variation of py. 
If O denotes an observer, C the centre of the star and OCP a right angle, then P will appear to 

be at the limb of the star provided the total optical thickness measured from P along PO just 

reaches, without exceeding, a certain value. Assume that the mean coefficient of absorption 1s 

roughly the same in all stellar atmospheres. Then if ¢ denotes the distance of any point on OP 
from P, the position of P when at the limb is determined by an equation of the form 

oe) 

[ (a (UA) CHSCOn (hy ceaneneemandhostaccnddcnsuvancesoacaed (101), 
0 

where Bip terel 

The value of p as a function of ¢ can be inserted in (101), and an asymptotic approximation to 

the integral obtained by the methods of Section II. Relation (101) is then found to reduce to 

|, Nt are eh Seated: As (102), 
whatever the value of n. Assuming that the mean molecular weight m’ is constant, this may also 

be written in either of the forms 

ok 

Po oJ. 7 = const. 

PRCT Ts TEs ee, ems ee Mees (103), 

Po % Pms Lis 
Pm being the mean density of the star*. 

Equations (102) or (104) give the variation of the density at the lmb for stars of different 

masses, radii and temperatures. For example, for a giant and dwarf of the same mass and 
temperature, we find 

po(giant) — /pm (giant) 2 

po (dwarf) — (e el ; 

Again, (104) shows that during the evolution of a giant p, © p»,”", on Eddington’s theory. 

For definiteness we will take the partial pressure of atomic hydrogen at the limb of the sun 

to be 10~ atmos. ; taking the temperature there to be 5860° x 2 a 4930°, we find p),=2°5 x 107°. 

The corresponding values of p, for other stars are shown in the second column of Table VII; they 

have been deduced by using formula (102). (Formula (102) strictly apphes only to the total 

density at the limb, but in the absence of more definite knowledge we assume it to apply to 
partial densities.) For brevity Table VII has been calculated only for stars of the mass of the 
sun, but the results for other masses are of the same order of magnitude. The third column gives 

the fraction of the radius beyond the limb to which the atmosphere extends, calculated from (91); 

and the fourth column gives the actual heights in ems. If the limb-density on the sun had been 

* Equation (102) should be compared with the corre- 

sponding equation usually given for the density p, at the 

photosphere at the centre of the disc. Assuming this is 

determined by a relation of the form “optical thickness = 

const.,”’ we find kp,/g=const.,-whence if k is constant 

Po To Fp t=const. 

This may also be written in the form 

Po © Pmto Lo *- 

It may be mentioned here that calculations of this kind 

appear to show that the ‘mean density of the atmosphere 

above the visible surface” is not a function of the mean 

density of the star only (for stars of given temperature), 

but is also a function of the radius; it is more accurately 

regarded as a function of g, The contrary is however as- 

sumed by Russell in the explanation offered by him of the 

apparently small dispersion of mass amongst dwarf stars 

as deduced from spectroscopic parallaxes (Astrophys. Journ. 

55, 239, 1922). 
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TABLE VII. Limb-densities and surface heights (cms.). (M=1,; atomic hydrogen.) 

r—To | 4 
| Pm Po T) r—-T 

1-94 | 835x107 | 0-00033 | 2-0 x 108 
1378(@) | 25 98, ~ | oddNse |)“ S:8O er: 
112 20 ,, | 0:00069 | 5-1 ,, 
0-64 Ls3ig Ss ssp HO OOLOEY A OF ees 
0-356 | 97x10 | 00014 | 1-6x 10° 
O198 “Sg, Ooo 
0-106 | 54 ,, 00021 35, 
0055 | 40 ,, 00025 | bl ., 
00066 | 15 ,, | 00040 | 16x10" 
0-001 jate< 10" | C0055. | eee 
0;0002 alieos inns; @:0072)— 59-5 ul 

 0-0001 27 ,, |-0-0081 | 1-4 10" | 
| 0:00005 | 20 ,, 00092 | «19 =, 
| 000002 | 14 ,, 0:0106 30 ,, 
| 0-00001 | 1-0 00120 | 4:3 

taken to correspond to a partial pressure of 10™ atmos., the numbers in the third and fourth 

columns would require to be multiplied by a factor of about §. 

It appears that on the sun the escape-level for atomic hydrogen should be reached at 

3000—4000 kms. above the limb; for a giant M star of the same mass, at about 10° kms. For 

heavier elements these numbers would have to be reduced considerably, according to the value 

of q. It is not suggested that the heights thus found should correspond in any way with obser- 

vation; they are merely of interest as being the heights implied by a purely gravitational theory 

of equilibrium. The inadequacy of such a theory to account for the existence of the sun’s chromo- 

sphere is well known. 

§ 15. The escape of electrons. It has been seen (at least on simple gravitational equilibrium) 

that the loss due to the escape of hydrogen atoms is negligible, and a fortiori that due to all 

heavier atoms. But in the atmosphere of a star, owing to ionization, there will be an abundance 

of free electrons. The mass of an electron being 1/1835 of that of a hydrogen atom, the value of 

qo for electrons is 1/1835 that for atomic hydrogen. Reference to Table HII shows that for 

electrons gq) will vary from about 0-1 for giants to about 4 for dwarfs. For values of gy so small 

as this the rate of escape will be very appreciable. 

But the escape of electrons, however large initially, cannot continue indefinitely, for it will be 

checked by the attraction exerted on the electrons by the steadily increasing positive charge 

acquired by the star. Escape will thus continually slacken, until a state is reached in which 

further loss is inappreciable. The star will then have a permanent positive charge. 

To estimate the order of magnitude of this charge, suppose that at any particular stage in the 

evaporation V electrons have escaped, of total charge Ve= H#. The star will then have a positive 

charge of the same amount, and this charge will make itself apparent as an excess of positively 

charged ions. Owing to the high degree of ionization, the star will behave as a conductor, and 

the charge will distribute itself over the surface. Thus the excess of ionized atoms will be found 

chiefly in what we have called the surface region of the atmosphere. The equilibrium of the 
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lower parts of the atmosphere will therefore not be attected, but the presence of the charge will 

make the outer parts expand slightly. We shall not here discuss the nature of the new state of 
equilibrium, but it is clear that immediately outside the surface region the external force acting 
on an electron of mass m, will be 

Gm,.M eE 
r r ) 

and that on a singly ionized atom of mass m; 

Gm;M eE 
2 2° r r 

Hence the value of q for an electron is 
Gm.M eH 

TRT RT’ 

d for an ion Gm:M_ ek 
a aaa rRT rRT° 

Thus in each case e#/rRT gives the correction to q due to the charge on the star. When the 

star has become charged, the gravitational part Gm,M/rRT for an electron is negligible com- 
pared with the electrostatic part. 

Since the state of equilibrium below the surface region is different from that in the surface 

region, owing to the electrostatic forces, our detailed formulae for the rate of loss will not apply 

directly to the electronic loss ; also two kinds of atoms are present—ions and electrons. However 

we can apply formula (30). From this the charge gained per second due to the escape of 
electrons is practically 

2 z 
a = 2ner? (ee) e-4(1+4q), 

where g has the above value and n, is the number of electrons per unit volume on the outer 

fringe of the surface region. This may be written approximately 

ldH 2n,e7r, (QRT,\* —eE |r) RT, BE oF = RT, ( } é 4/To Oo, 

It is not easy to estimate n,. But we saw in § 13 that the number of hydrogen atoms per unit 

volume in the surface region of a giant star is about 104, and taking into account the degree of 

ionization the number of free electrons from all sources must be at least 10* per unit volume. 

Applying the formula now to a giant M star of the mass of the sun, for which 7’=3000°, 

T= 2520°, = 2°2 x 10”, we find 

Me 

1dH 
E dt 

Considered as a differential equation, this formula implies that # increases indefinitely with ¢. 

But just as the escape of gas molecules is completely negligible, so the further escape of electrons 

will be completely negligible, even in periods of time astronomically large, once / has attained a 

certain value. When the charge acquired is H, the further charge 6# acquired in the next 10° 

— eel RT, x 10". 

years is given roughly by 

ok = 102 x e~eLl/ro RT, —10”~x 1Q— 04342 Biro RT, 

E 

In order that this may be negligible, 0:434e4/r,R7, must be at least about 30. As regards order 
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of magnitude, then, we see that the escape of electrons will endow the star with a positive charge 
E which will be at least as large as is given by ’ 

0:434eH/r, RT, = 30, 

but which cannot seriously exceed this value. From this equation we find 

eE/r, RT,=70, E/r=5 x107ES.U.=15 volts, H=11 x10 ESv. 

It is clear that these estimates are very little affected by the uncertainty in the value of 7. 
Thus for a giant star of type M the value of q, for ionized hydrogen must be taken to be 

smaller by about 70 than the value calculated on the simple gravitational theory. The latter has 

been seen to be about 278. Hence the effect of the charge acquired by the escape of electrons is 
a force of repulsion, on ionized hydrogen atoms, equal to about } of the force of attraction due to 

gravity. Theoretically this facilitates the escape of positively charged hydrogen atoms. If this 
reduction in the effective value of gravity were to permit an appreciable rate of escape of ionized 

hydrogen, the state would not be permanent, as the positive charge would tend to be dissipated. 

But it is easily seen from the calculations of § 13 that the rate of escape of hydrogen is still com- 
pletely negligible; and on heavier atoms the effect will be still less, for the electrostatic force will 

be the same whilst the force due to gravity varies as the mass. 

If we make similar calculations for a dwarf star such as the sun, the value of e#/r, RT, comes 

out about the same. Putting 7, =5860° x 2 a 4930°, 7, =7 x 10", we find 

E/r, = 30 volts, H=0-7 x 10” Es.U. 

Owing to the smaller radius the charge is about 7; that for the giant. 

But if the sun has evolved from a giant star of type J, it should in that state have possessed a 
charge of 1-1 x 10" Es.U. It could only in its present state have a smaller charge (which has been 

calculated as though the sun had always been in its present state) if it has lost positive charge 
during its evolution from the M stage onwards. But we have seen that the escape of positively 
charged hydrogen ions is negligible, and so far as the range of phenomena here considered is con- 

cerned this is the only way in which a positive charge can be lost—unless indeed a star can in a 
later stage of evolution pick up again out of space the electrons it lost in an earlier stage. 

Assuming the latter is impossible it follows that the sun must still have the charge of 
11 x 10" Es.U. which it had as a giant M star. This makes its present potential equal to 
470 volts, and its present value of e#/r, RT, equal to 1100. The latter number, therefore, is the 

amount by which the calculated value of ¢ must be diminished, in the case of charged atoms, to 

allow for electrostatic repulsion. For hydrogen ions we had q = 4560, so that as for a giant about 
+ of the weight of hydrogen ions is supported by electrostatic repulsion. It is clear, in fact, that 
charge and mass both remaining constant during evolution, the ratio of the electrical and 
gravitational forces will remain constant. The potential, however, will steadily increase during 

evolution, since the electrostatic capacity decreases. 

Various phenomena of solar and geo-physics have suggested theories which demand the 

emission from time to time of charged particles from the sun—some theories demanding positive 
charges only, some negative. It is possible too that electrons or ions or both are discharged from 
the sun at the vertices of prominences, either eruptively or owing to the discharging action of a 

point. If such discharges occur, the above speculation concerning the result of supposing the 
charge acquired as an M star to be conserved becomes of no importance. But we can assign 
limits between which the potential of the sun must lie whenever it is in a quiescent non-emitting 
state. If by the emission of positively charged particles the sun acquires a negative potential, or 
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a positive potential appreciably less than the value 30 volts calculated above, then due merely to 

thermal agitation electrons will escape from the surface until a positive potential of about 30 volts 
is restored. If by the emission of electrons due to some cause other than thermal agitation the 

sun acquires a positive potential in excess of that capable of just retaining hydrogen ions, then 

hydrogen ions will escape until the positive potential is reduced to the latter value. 
To calculate this maximum positive potential in the steady state, if H# is the positive charge 

at any moment the rate of loss is 

ue =2n er (eS) Ca ie is rR, ( Cone — oT) 5 
aE, GR RAE 

We know from Table III that Gm;M/r,RT, = 4560. Determining e#/r, RT, so as to make the 

rate of loss inappreciable (it is almost immaterial whether we consider the loss in one year or in 

10° years) we find 

0-434 (4560 — eB/r, RT,) = 25, 

eE/r, RT, = 4500, 

E/r, = 63 E.S.U. = 1900 volts. 

(This estimate agrees with that of Lindemann*, who calculated it directly from the crude 

equilibrium relation e# = Gm;M.) Thus when in a quiescent state the potential of the sun must 

he between about 30 and 1900 volts. Notice that the “evolutionary” potential 470 volts lies 
between these limits, as it must. 

The maximum positive potential that a giant star of type M of the mass of the sun can possess 
without losing hydrogen ions may be calculated in the same way to be 44 volts; the minimum is 
the value 15 volts already calculated. 

§ 16. Application to the earth's atmosphere. It has been shown by many writers that the 

earth’s atmosphere at its present temperature retains hydrogen if hydrogen is an existing con- 
stituent, and a fortiori helium. But it is of interest to apply our more detailed formulae to the 

case of the earth. 
We adopt 7, = 219°, the mean temperature of the stratosphere (or at least the base of the 

stratosphere) over S.E. England; the value of 7, varies considerably with latitude, but there are 
theoretical grounds based on radiation theory+ for supposing that the mean temperature of the 

stratosphere over the whole earth is close to the value adopted. The suffix 0 is to refer to the 
base of the stratosphere. Taking r,= 6°38 x 10° cms., the value of q, for molecular hydrogen is 

69-2 and for helium is 137, The density of helium at the base of the stratosphere (12 kms. height, 
say) is calculated} to be 1°71 x 10™°. If the determinations of hydrogen content in the lower 

atmosphere may be taken as reliably indicating an upper hydrogen atmosphere, then the density 
of this at the base of the stratosphere may be estimated at about 2:1 x 10 (corresponding to 
about 1 part in 10° by volume). We then find the following (Table VIII), the calculation being 

made as before for p,=4, 0, = 753°, (n=2). 

The helium results must be taken as giving the boundary of the atmosphere if hydrogen is 
absent. Assuming a helium atmosphere, we see that the surface region occurs at 630 kms.; 
above this height therefore, the molecules are chiefly in free flight without collisions. The small- 

ness of this height and the smallness of the “free path” there (130 kms.) are perhaps surprising, 

considering the much larger estimates which have sometimes been made. It would be interesting 

* Phil. Mag., 38, 674, 1919. J Ibid., 44, 892, 1922. 

+ Taken from Chapman and Milne, Quart. Journ. Roy. Met. Soc., 46, 370, 1920. 

Vout. XXII. No. XX VI. 67 
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TABLE VIII. 

Hydrogen Helium 

} 
| Q 69-2 137 
| Po 21x 10-“gramem. | 1-71 x10-!gram em.-* 

| p | 49x10" , , | 23x10", 
| Ur, 0-041 0-021 

1 260 kms. 130 kms. 
| r/1o 1:22 } 1-099 
r—T, 1400 kms. 630 kms. 

to study this height in connection with the observed maximum heights of aurorae. It must be 
remembered that if the theory presented in this paper is correct, 1t should apply rigorously to 
the earth’s atmosphere, for here there is no complication due to radiation pressure as in stellar 

atmospheres. 
Summary. 

§ 17. The paper first discusses the hydrostatics of a gaseous gravitating atmosphere in which 

the temperature falls off as the inverse nth power of the distance from the centre of the nucleus. 
Asymptotic formulae are found for the pressure and density at large distances from the nucleus, 
for the different cases that arise according to the value of n. (Section I.) 

Section II discusses the phenomenon of the escape of molecules from the fringe of an atmo- 

sphere of the above type. The analysis is carried out with the help of the concept of the “free 
solid angle” at any given level. As viewed from a point at a sufficiently high level in the 
atmosphere, the sky must appear to be partially clear of molecules down to a certain zenith 

distance, and inside this region it is the solid angle actually unoccupied which is available for 

escaping molecules, A formal expression is obtained for the rate of escape across any level, in the 
form of the product of the free solid angle and a function of the density at the level. For one 
particular level this has a maximum, which in general may be taken to give the actual rate of 
escape, and this level may be taken in general as the layer from which escape is occurring. At the 
escape-level the sky is partially clear of molecules down to a zenith distance of about 75°, though 
the actual value depends somewhat on the value of x. Simple formulae are cbtained for the 
density and equivalent mean free path at the escape-level, and for the height of the level. The 

latter depends on the density at the reference level in the lower atmosphere, but the former 
depend only on the temperature, the value of gravity at the surface and the diameter of the 

molecules. The actual rate of escape is proportional to p,’~", where p, is the density at the 
reference level, and to o~", where o is the diameter of a molecule. The asymptotic formulae of 

Section I are required to secure the convergence of integrals which arise in the analysis of 
Section II. A summary of the mathematical results of Section IT is given in § 11. 

In Section III the results are applied to stellar atmospheres (assuming that the equilibrium of 
such atmospheres is determined solely by gravitation). It is shown that on Eddington’s theory 
of the internal equilibrium of a star, out of all possible masses the masses of the existing stars 

are grouped about that which has the least gravitational potential at the surface in the giant 
stage, i.e. about the mass most favourable for loss by diffusion to be appreciable. In spite of this 

the loss is found to be completely negligible for all stars. Tables are given for the density, mean 

free path, ete., at the escape-level, for stars of various masses and temperatures. The density at 

the limb of a star, and its variation with stage of evolution, etc., are discussed. 
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The escape of electrons from the surface of a star is considered. It is shown in agreement 

with other writers that the potential of the sun must be positive when in a steady state; and that 
it cannot permanently exceed 1900 volts or be less than 30 volts, as escape of either hydrogen 

nuclei or electrons would soon reduce it to the first or second of these values respectively. If 

electrons could be lost only by diffusion, the potential would have the lower value, as calculated 
from the sun’s present state; but if the sun has evolved from a giant M star, and has retained 
the charge it should then have acquired through the then freer escape of electrons, its present 
potential should be about 470 volts. The potential of a giant M star should be between 15 and 
44. volts. 

Some application is made to the earth’s atmosphere. The escape-level for helium is about 

630 kms., that for hydrogen 1400 kms., though the actual escape is negligible, as is well known. 

The corresponding mean free paths are about 130 kms., and 260 kms. 

I wish to express my thanks to Mr W. H. Manning, of the Solar Physics Observatory, for 
assistance in the preparation of the diagrams. 
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1-1. The series in question are 

F@)=2, Fy(s)=ZF IB, P= Ea cores (1:11) 

where Se Gsbin CASey(O)S oS 1) ||, Gecasocaodeaconone (1111) 

@ is irrational, [a] is the integral part of #, and the summation (as always unless the contrary is 

stated) extends over positive integral values of n. The general formula for the kth function is 

F, (0) = Fi (s,6)=5 HO), 

where ¢;() is defined by 

dem (2) = TEs (a) ap (= I et ras 

¢(#+1)=¢(2) 

and the P’s are Bernoulli’s polynomials*. 

nv 

domia(®) = Ponsa (2), (0<@<1)...(1°131) 

The properties of these functions, which are very remarkable, are intimately bound up with 
the problem of the distribution of the numbers n@ to modulus 1+. 

1:2. The properties of the function F(s) have already been investigated by Hecke? when @ 

is a quadratic surd. Hecke supposes in particular that @=D, where D is free from squared 
factors and congruent to 2 or 3 to modulus 4. He shows that in this case f(s) 1s meromorphic, 

and that its only possible singularities are simple poles at the points 

where q=0, 1, 2; ...5 7= 

5 pee ee te i AAs So (1-21) 

epee Oni Dag (em ete ten arte eee (1-211) 

and 7 is a particular unity of the corpus K (VD). His method rests upon the theory of the new 

‘Zeta-functions’ which he has recently introduced into analysis, and there can be no doubt that 
it is the best for the particular problem with which he is concerned. 

It is none the less of interest to discuss the function for general values of @, and by methods 

as elementary as possible. When we do this, we find ourselves compelled to treat F,(s) as the 

* We follow the notation of Lindel6of (Le calcul des résidus 

et ses applications @ la théorie des fonctions, 32 et seq.). 

The definition of the functions for integral values of x is 

immaterial. 

+ In regard to this problem see the following memoirs; 

G. H. Hardy and J. E. Littlewood, ‘Some problems of 

Diophantine approximation’: (1) Proceedings of the Fifth 

International Congress of Mathematicians, Cambridge, 1912, 

1, 2283229; (2) ‘The fractional part of n*@’, Acta Math., 37 

(1914), 155—190; (3) ‘The lattice points of a right-angled 

triangle’, Proc. London Math. Soc. (2), 20 (1921), 15—36; 

(4) ‘The lattice points of a right-angled triangle (second 

VoL, XXII. No. XXVII. 

memoir)’, Hamburg Math. Abh., 1 (1922), 212—249. 

H. Weyl, ‘Uber die Gleichverteilung von Zahlen mod. 

Eins’, Math. Ann., 77 (1916), 313—352. 

E. Hecke, ‘Uber analytische Funktionen und die Ver- 

teilung von Zahlen mod. Eins’, Hamburg Math. Abh., 1 

(1921), 54—76. 

A. Ostrowski; (1) ‘Bemerkungen zur Theorie der Dio- 

phantischen Approximationen’, ibid.,77—98; (2) ‘Zu meiner 

Note: Bemerkungen u.s.w.’, ibid., 250—251. 

H. Behnke, ‘Uber die Verteilung von Irrationalitiiten 

mod, 1’, ibid., 252—267. 

} Le. supra. 
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first of the sequence of functions #,.(s). We also find ourselves led to the following classification 

of irrationals @. 

We suppose, as we may without loss of generality, that 0 < @<1, and we write 

1 cect 
+0, + a, +0," 

where @,, dz, ... are the partial quotients in the expression of @ as a simple continued fraction. 

We say that @ is of class X if X is the least number such that 

(essa yon) pau (Ae | epee Rapreceasreepnadccurconooocce (1:23 

for every positive ¢, or, what is the same thing, such that 

nite! sin nba | x 

for every positive e. If no such number exists, we say that 6 is of infinite class. A quadratic surd 
is of class 0, and every algebraic number is of finite class. 

Our principal results may be summarised as follows. In the first place, F,(s) 2s regular for 

kay 
ane 

in particular, F’, (s) is regular for « >d/(1+ 2). This we prove for k>1 in §2, and for k= 1 in §3. 

There are alternative proofs of this theorem. When /=1, it may be derived from Theorem 2 
of our memoir (4), or from the sharper Theorem 5, due originally to Ostrowski; but the analysis 
of § 3 is necessary in any case for our further investigations. When k> 1, it has been proved by 
Behnke*, by means of the formulae of linear transformation of the Theta-functions. The proof 

given here is a good deal simpler. 

If A >0, the result just stated is final; for then c=; 2s a singular line for the function. We 

prove this in § 3. We have no doubt that the line is still singular when X=0, except when @ is 
quadratic, so that the case considered by Hecke is completely exceptional; but this we are unable 

to prove. 

In § 4 we consider the question of the convergence or summability of the series (1-11), and 
show that the regions of convergence or summability are always as extensive as Is consistent with 
the analytic properties of the functions and the order of magnitude of the coefficients. Some 

theorems concerning convergence have been found already by Behnke+. These are included in 
ours, which assert the most that can be true. 

21. THeorEM 1. [fk >1, and @ is of class X, then F,,(s) is regular for 

Longue! acer ee iets (1:24) o>o,=1- 

k 
o>o,= 1- (EEN . 

a m+1 9 ( ! 9 . 

Weihavat beste? ene oO APTS Gn ET) teen (2111) 

—1)y"*12(2m+1)! , sin 2vre x 5 Boe A= aaa Ms (MED) crrerree (25112) 

It is therefore sufficient to show that the functions 

n(s) == = Ores as SA Caen (212) 

where hx @) = 2 lb Das ocean (2121) 

are regular for ¢ >a,. We shall discuss only g,(s), observing that our argument remains valid 

with a formal change throughout of n@ into — né. 

* Behnke, l.c., 265—266. + Behnke, l.c., 266.  t¢ Lindeldf, lc. 34. § We write e(z) for e?""”, following Weyl. 

——eeeEEeeEeEeEeEeEEOEeEeEeEeEeEeE—eE——eE——e—eEE~s 
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Suppose first that ¢>1. Then 
Sele Seen) ees (w) aS SS Awe SoM 2°15 9:(S) Sina ae 2S aac a cela na ae ...(2°13) 

where *  x@”~=x, 4, y= 5) Bestia) 6 VG ea (2/131) 

This function is an integral function of s, and its continuation all over the plane is given by 

x (v) = ra 
— 5) | ez +2veni 

Qari 
” 1 — etn (= 2) dz, A 50 s0000ducNROABScO- (2:14) 

where C is a loop enclosing the positive real axis in the clockwise direction, and passing inside 
all the poles 

L = Lm = 2771 (m + vO) (H=Fe ae ONE.) 

of the integrand. We write 

nee _ Xs, 8, v) _ 9x (8) ‘ X (v) Se aay Ge (8)= nae): PRIS A esse es ts (2°15) 

2:2. There is one and only one of the numbers w,, whose modulus is less than 7. We define 

a number 6=6(v) as follows. Ifx,, is the 2,, of least modulus, and |x,,| 2 $7, we take 6 = 7. 

If |x,,|< $7, we take 6=}7. We denote by C, the contour formed by the semicircle | «| = 6, 

jarg(—w) <47 and the two lines R(x) 20, |I(x)|=6. The distance of any point of C, from 
the nearest pole is greater than }7. Hence, if we write 

x x P il [ eat tavOni ns 2:91) 

va ov) =2 all 7) a ieee | eal = gztivins — *) 1 RASA COODO SO nDOnaC (2 J 

we have X,(v)= o({ |e-*||(— 2) de) == OO) Meuctareren pecneccoasce (2°22) 
= Cony 

uniformly throughout any bounded domain 7 in the plane of s. 

Now NES SGD) (Celt ap he Becroscacescecueconcee (2:231) 

and S(O) Se) 4o(Cs yp eas eA Gooonceodeeened (2°232) 

The series S ale 

is, by (2°22), uniformly convergent throughout 7’, and its sum is an analytic function regular 

throughout 7. It follows, from (2°13), (2°15), (2°251), and (2°232), that G(s) is regular in any 

bounded domain throughout which the series 

Xm)* | sic 
aol ke 

S = (eles oo aeepieeen eee ee (2:24) 

is uniformly convergent. This is certainly so if the series 

1 

vv) yO)” 
- where v@ is the difference between v@ and the integer nearest to v@, is uniformly convergent ; 

and this series is, by Lemma 3 of our paper (4), uniformly convergent in any haif-plane 

k k 
Ge Loe Teresa a Ge aa Gag Ve 

In other words, G(s) is regular for the values of s specified in the theorem. 

It follows from (2°15) that g;,(s) is also regular, except perhaps at the poles s=1, 2, 3, ... of 
(1s). Of these, s=2, 3, ... are plainly not poles of g,(s). When s=1, X (v), and therefore 

G(s), vanishes. Thus g;(s) is regular also for s=1, which completes the proof of the theorem. 

68—2 
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3:1, The method of § 2 fails when k= 1, and more intricate analysis is necessary. 

Lemma A. If 0 is irrational and positive, « 20, y= 6x, and f(0) = 9 (0) =0, then 

S_fulmayigom)—gm—I)+ ¥ a (||) FOF =F 9: 
msr eas. e (311) 

This is Lemma 7 of our paper (4). 

Lemma B. If c > 0, & is real, and 

=C/0, F=c—OE, Bn={m[O}, -.2---.ccceeeeseeeeeeeenees (3:12) 

—4é a —4é a 

then ues Sen (ese ee g us Se M1 (eho 1) = W, PERC on toe (3:13) 

PSen1 emia 

e7§- ii e738 e-¢ e731 e741 

her W=W(e, 8, SE pps 3-1 
where ( f= Te 2-8) —e-8i) eee ea ee a: «(a 1a) 

In (3°11) take f(w=l—-e-“, gu)=1-e™ 

where c = 6£+£,>0, and make «—«. We obtain 

Sere, _[mo}e—mé, 4 _@t_ $y Dr/Alfr me ef -& 
ten 1 em 1 (di =e-*) (1 ers), 

Substituting for [m6] and [n/@] in terms of a, and 8,, and making some simple reductions, we 

obtain (3°13). 
Taking the limit of (3°13) as § +0, we obtain 

Lemma C. If c>0 and o,=¢/9, then 

Rime Se (PE 18 te ee (3:14) 

; de ° ey rs — te Si 
where w=wi(c, Oi egeeiy 9 em =e ee sare seseee (iL aey) 

Lemma D. We have 

Sane"? + 3 Bre ™ +te (Br? — py) ee "4 =0+O0(ce-°) «0... eee (3°15) 

for all positive values of c, where 

§ faye eee (3151) 
(Ee Cama) oi a-° |e lates 

The left-hand side of (3°15) is O (e~°) = O(ce~*) if ¢ 2 1. We may therefore suppose ¢ < 1. 

In (3:14) we may write 
- tc e 2 ec ‘ 
Taps GBH TO ce terees tt tteeeetteeececetneees (3-16) 

ePaf — 1 = Apc +$hBnie’ t+ O(C).  ccesscnccesscnceesncseennes (3:17) 
Since ¢, > c and | 8, |< 1, we have 

CPS By e~™1= O(cP-1e-*) 

for all positive integral values of p and g. Hence the left-hand side of (3°14) takes the form 

Zaye" + SBne- 9 + eS Bnte- "1+ O(Ce-*). .esscereenrseeeees (3:18) 
1 1 
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Also, by (3°16), 

C24 

RE So MO (eas Shin ex caenle: (3:19) 

Hence (3°14) takes the form (3-15). 

3:2. Lemma E. If o is sufficiently large, 

lee fie , 8 €(s—1) 
pees s— == eT fees BS) EONS REE, 3°2 sae ty (ce, 0) de = OF (s —1) —3£(s) Fos Ee (3°21) 

This function is an integral function of s. 

The equation (3-21) follows at once from (3°151) by direct integration. It may be verified 

at once that the right-hand side is regular at its only possible singularities, viz. s=1 and s=2. 

3°3. In what follows we denote by D (qa) a finite domain in the plane of s, all of whose points 
satisfy ¢ 2a+6>a; and by R(s, a) a function regular and bounded in D(a). It is to be under- 
stood that the upper bound of such a function depends upon the form of D, and in particular 

upon 6, but not upon 6, and that the O’s which we use are also uniform with respect to @. 

Lemma F. If (ce, 0) =0 (cle), where ue 2 0, then 

x (s, 8) = TG, O)\ctsdG = R (S5 —@)) rte nan eee -se eee e (3°31) 
Po s) lo | 

For the integral is uniformly convergent in D(—4q). 

Lemma G. The function 

TEN (SOAR O2 Es (S10) $502 ly (GE 1eiG,)) sdessccss see see sesocess (3°32) 

is regular foro >—1. 

Supposing first o sufficiently large, multiply (3°15) by c*7/I'(s), and integrate from c = 0 to 

c=. The result then follows immediately from Lemmas E and F. We obtain in fact 

aes F, (s, 0) + @°F,(s, 6.) + $8087 F, (s +1, 0,) = 08 (s —1) — 38 (s)— oU= PRG, — 1), 

...(3°33) 

om Zz, Oe TGeey Ola 1) 46 G)— Sas cd pak ea i (334) 
is an integral function. 

As a corollary, we have 

THEOREM 2. The function F,(s, 0) + @F,(s, ,) is regular for o > 0. 

For F,(s +1, 6,) is plainly a function R (s, 0). 

3-4. We have, from (3°33), 

H(5;'0) = O28, (3, 6:) = Z, (5, @) +e (6, 0). croc wccecnseceoencaes (3°41) 

Similarly (GRO cele (6404) — ZS) 0,) 1 Eel (Sn 0) gas oeeereeteckecatee (3-411) 

and so on generally. From the first n such equations we deduce 

F,(8, 0) + (— 1)" (08; «0< Ona)? F, (8 On) =Ba + Vn, ceseeiererecees (3:42) 
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n-1 

where OS 53) (Ca Ah ene CRA @y Gy cscnbceootosidadsceace5¢ (3°421) 
v=0 

n-l 

(GEA ce CE) FIR (GOs cocoocscascepnsnacdnenns (3°422) 
v=0 

We suppose for the moment that o > 2. 

Then i F, (8s, On) |< A 

where A is independent of n and s, and the second term on the left-hand side of (3°42) tends to 

zero. Similarly the functions ®, and YV,, tend to 

@ (8) St De (GB Oe a tO eck ccc eee (3°431) 
v=0 

POSS Ty 601202 RO ee oe (3:432) 
v=0 

respectively ; and TBE SOO B)IBNE (@)} sec oasocccoecessas abc coag ce openesee (3°44) 

for ¢ >2. This relation between analytic functions holds throughout any region in which each 

of them is regular. The function V(s) is plainly regular for «> 0, since 0,@,4,< 3. We thus 

obtain 

THEOREM 3. The function Bis, 0) — BiB), adesessecccdcecmascs sh ccnp rete (3°45) 

is regular for o >0. 

The study of the singularities of F, (s, @), for > 0, is thus reduced to that of the singularities 

_ of ®(s) in the same region. 

3:5, THEOREM 4. Jf @ is of class X, then each of the functions 

F,(s, @), (8) 

is regular for G>o,=1 ae x See ibaragirs a pee cae 
: 142 142 

If >0, then the line o =a, ts u singular line for each function. 

We observe first that AMNION Gee ae (OG) — céconéronsosopadnegaccscoesscno: (3°51) 

uniformly in 6, on any closed curve C which does not pass through either of the points s = 1 or 
s=2, The series for ®(s) is thus the sum of two series, of the types 

> 060, 5: Oy; SOR, a Gy Oe 

respectively. The first series is uniformly convergent on C if C lies in any half-plane o 26> 0. 

The second is convergent if 
ot+(o—1)A>0, 

ie. if ¢ >o,, and is uniformly convergent on C if C lies in any half-plane o 20,+6>0,. It 

follows that ® (s), and therefore F, (s, @), is regular inside any curve C' subject to these conditions, 

and therefore for o > o,. 

It remains to show that, when \ >0, ¢ =o, is a singular line, and it is plainly enough, after 
what precedes, to show that the line is singular for 

& @= SS S (1) (08, ... 0-1) 67! = a XK Gc (352) 

or for X (s), We choose &> 0, and divide the v’s into two classes v’, v’, writing v=’ if | 

Oe (| OR By a eee See (3:58) | 

* R (s, 0) is of course a different function in different terms of this series. 
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and y=v” in the contrary case. In virtue of the definition of \, there are, for every 6, an infinity 

of v’’s. 

We write (6) =>) — > FE=X (SVEN (S). reeveeeeereseeevereeeeeeee (3°54) 

The series for X’’ is absolutely convergent if o + (o —1)(A—58) >0 or 

Peete 
1+A-—6’ 

and the number on the right-hand side is less than o,. Hence X” is regular across the line 
o =o}. It is therefore sufficient to prove the line singular for X’, 

Suppose that the values of vy’ are 1, v2, ..., vg, ..., and write 

BAG Oe 633d aie sneer eeeerioe (3°55) 
Then the series for X’ (s), viz. 

(+ 1 Ye > —1 Pe — zs z i (00, .. 8,,'= 3G" om 
c VE 

is a Dirichlet’s series of the type  a,e~ “5, and 

1 i 1 
Nip — A, = log -> log =— >(A— 5) log ; _— >» © 

6,419), 42 ++ Oy oe AU cea ee Dee 

when k—> x. It follows, by a theorem of Wennberg*, that the line «=o, is singular for X’, 

which completes the proof of the theorem. 

We have supposed 0<A<«%. When X¥=~ the result is still valid, >=1 being a singular 

line; and only trivial modifications are needed in the proof. The case X=0 is much more 

difficult. It appears to be true that o=0 is then a singular line, except in the special case in 

which @ is a quadratic surd; but we are unable to prove this rigorously. The exceptional case is 

that studied by Hecke. 

3°6. Suppose in particular that @ is a quadratic surd. The continued fraction for @ is then 

periodic, and we have 
(apo). - (PZ ya, IRE, YF, cbs)) 

if p is the number of non-repeated 6’s and m the length of the period. 

In this case F, (s, 0) is, by Theorem 1, regular for ¢ >— 1. It follows from Lemma G that 

each of the functions 
F,(s, 0) +(— 1)?! (00, ... O.-1)° Fi (8, 95), 

F, (8, 9,) +(—1)™* (0p 9 p41 «+» Porm)? Fi (8; Fo4m) 

is regular for ¢ >—1. But the last function is 

(1 + (— 1)" ©*) F,(s, 4). 
It follows that F,(s, @,), and therefore F, (s, @), is regular for o > — 1, except possibly where 

1+(-1)"7 6 =0, 

at which points it may have simple poles. These points are the points 

v= i 
log © 

where k is an arbitrary odd or arbitrary even integer, according as m is odd or even. 

* Wennberg, ‘Zur Theorie der Dirichlet’schen Reihen’, Anti—An>4, A,/n—we. 

Inaugural dissertation, Upsala, 1920, 3—7. It has been 

shown by Carlson and Landau that the result is true under 

the more general conditions 

See F. Carlson and E. Landau, ‘Neuer Beweis und Verall- 

gemeinerungen des Fabryschen Liickensatzes’, Géttinger 

Nachrichten, 1921, 184—188. 
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3°7. There appears to be no doubt of the truth of the following propositions : 

(ak) F,,(s) ts regular for o> ox; 

(bk) o=c; is a singular line for F,,(s) whenever X > 0; 

(ck) o=o;, ts singular even when X»=0, except when @ is quadratic ; 

(dk) F;(s) is meromorphic when @ is quadratic; its poles are all simple; and they are situated 
at some or all of a doubly infinite system of points distributed at equal distances along the lines 

o=1—k-—2p (p=0,1,...); 

(ek) Fy(s, 0)+(— 1° 6** F,(s, 0,) is regular for ¢>o%4,—-1; and c=ox,-lisa 

singular line for the function when X > 0: 

and a complete theory of the functions would contain proofs of these propositions in full generality. 
Of these propositions we have proved (ak), in § 2 when & >1 and in § 35 when k= 1. 
We are unable to prove (ck) in any case. The case in which @ is quadratic is doubtless best 

treated by the deeper methods of Hecke. We have however shown, in § 3°6, that our method 
will accomplish something in the direction indicated by (dh). 

There remain the propositions (b&) and (ek), of which, at present, we have proved (6 1) only. 
We proceed now to the general proof. The particular case contains most of the leading ideas, 
and we have condensed the general argument wherever the ground is familiar. In what follows 
the A’s, O’s, and R(s,a)’s depend on k in addition to the regions D; they are either independent 
of 0, as in § 33, or at any rate, when we have to consider a sequence of irrationals @, 6,, @2,... , of 

the n in @,. 

Lemma H. If k>1 we have, throughout D (cx), 

F,,(s, 0)|< ASv*| 8 7-8 4+ ASATHA SAS * | | + A, 

This is a straightforward deduction from the results of §§ 2°1, 2°2. By (2°231) and (2°232), 

G, (s) |= =| X (v) |v * = = (|X) ] + A | Em [72) 

Also | X,(v)|< A, by (2:22); and, since A | v8|<|x,|< A, we have 

[xn|72<A+A v0 jo, 

Hence | Gz (8)|< AS p> | 08 | SA AD Ae oe eee (3:71) 

Let D’ be the domain obtained by removing from D circles C,, C., ... of radius $8 surrounding 
such poles 1, 2, ... of P(1—s) as fall in D. Then 

gx (s)i=|F(—s)| | Ge(s)|< A Sv | vO|A +A <ATHA oo (3°72) 

in D’.. On Ci, 1-36 So £1 + 46, and it is easily deduced that 

(8) | <A SiG |—E + A AP Ae ee (3°73) 

on C;. The middle term here is independent of ¢, and g,(s) is regular for s=1, so that the 

inequalities (3°73) are valid also inside C;. Similarly it may be shown that |g,(s)|< AT +44 

throughout C., C;, ..., and so, by (8°72), throughout D, A similar argument may be applied to 

h,(s), and the lemma follows, since Fy (s) is a linear combination of the two functions. 

Lemma K. Throughout D(o%:) 

Fy, (8 +7, O,)|< A+ A(00,...0,,)° 2)". (lershk)* 

* The important case is c<0. When ¢24 the second term may be absorbed in the first; the proof will be clearer if 
c <0 is thought of as the standard case. 
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The left-hand side is less than 

A Sy | v8, |B 4 A < AL | 06, |o- 38 + A, 

by Lemma H. Let «= }8/(h+1)<6, andh=X+1+e. Then 

1 A At, 
- - —- Lo es | Ben nenooganouneonied 3 
Orat = (60, see Oe N= : (a tee rin) y ( ie) 

where (pS cos pS (Cotati. condosheaboaonboqpoodoadne (3:75) 

If now Pp/Qm is the mth convergent of the continued fraction for @,, (3°74) implies that 

Qn < Atr 7 QnA, by Lemma 2 of our paper (4), and therefore that 

= vO, | > Atyv~* 
ence 

\Feas(o-+r, On) <E0* [A +( Ato) ¥} <A Aye Sy EON A Ato Sy dene, 
¥ v v 

The index of v is 

Sean (4x46) (1-Fe) +48) =- 1ae~ (48 -S ED) gon dex 1-6 

so that the series last written is ee, Hence 

| Frys (s Sr 6) | <A+A (@.. ee On =i) (2=32) Ate) < A + A (Gre : Pras ) (o—28) Sn) 

the result of the lemma. 

3:8. We return now to the identity (38:13), and we equate the coefficients of &/k! in the 

Laurent expansions of the two sides. co we define 6, (x) to be unity, then 

RiGee fat S pr (x) (2) . a, 
=z = ae nor a 

Hence the coefficient in the first term on the left is 

> ‘dy (Qn + 4) — di: (4)} ems Yodx (m@) em — dk () DR eee (3°81) 

The coefficient of £*/k! in the second term is 

Te SSO VS reas Fataemectnsidaleamsssey este sat ore (3°82) 

d\"/ & se Be d\F — et ee 

where Un = Un (c) = (a) a a Cates 1))= (5) (= eae ) 5 BaoHoaded (3°821) 

= = Byte = (Oj) soscnonecesnscerenitnscirs acletecis soa (3822) 

i (r} (k+2) 

Now Ta(O\ ee nos “ z re ce (0<3<1) 

k+1 [7 gq \ktr— ewe _ ghe cv pd \H re — ef) ckt2 
2S FS ins EGE 

“=0 a ( e—1 )I, r! “ (ae) Ce e& — Se 2)! 

k+1 
== EG ary = {Orsr (w) — Pkt @)} S i+ D(S c)—=— ie ri - 9). *inwis/ale/nfrialsia/nininta\=\sis\niae (3°83) 

say ; and it is easily penned that 
TED ZL (GEO) csooscosessbagaciosonsonosc0s0% (3°84) 

Summing up from (3°81), (3°82), (3°83), and (3°84), we find that the coefficient of £/k! in the 

left-hand side of (3°13) is 
k+1 ~ r 

5 ge (mb) e-™ + (— BFE de (nb) em + (— OS i OS dsr (ns) e-™ 
_ 

a beh) 2eo™— (— 0)? S rie Dr+r GQ) e GLU AD) (GP) C= y, coocnooneeoeene (3°85) 

Vou. XXII. No. X XVII. 69 
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We consider next the coefficient of &~/k! in W, the right-hand side of (3:13). Now W is 

regular at = 0, and, expanding formally, we have 

v={2° 0} (SSP G) Gea j r=0 uel ao Jy 

~ mkail r d\* -4 56 (gees ag | Ceres 
l-e r=0 1 Se V(r=0 7: de! a ¢/}) 

Collecting the coefficient of &*/k!, and equating it to (3°85), we obtain’ 
k+1 ~ 

E dx (mA) em" + (— OF Thy (nF) e~™ + TE (— Y- es “ > derr ie Yexne 
r=) 

=0 (ck*) — + ¥z(c), aefeciets (3861) 

where 

ree Sacer (BG) Hee ES) Seg 
e&—1 1] Sp ee ee 

ee ee ee (3862) 

, perform some trivial rearrangements 
: ie 1 er 

In (3°862) we associate a term — — with and 
Cc e&—1 e&—1 

and reductions*, and obtain the alternative expressions 

ni $Qaocer (3 (-0-86) fer SO | 
PG al ale (¢ Wee =) _ & ber) = ee (3863) 

ei 1 de/ | Sey Raa 

or Vi= Vir + ise +0 Gr) = J ~ Coghorosnascotocoocnc soon. (3864) _ 
e —_— 

where V;,, and Vj. are the first and second terms on the right-hand side of (3°863)+-. 

We now multiply (3°861) by c*/T' (s), integrate from ¢=0 to ¢= 00, and obtain 

k T(st+r) k+1 
— |] \k-1 @k-1+8 > —})\/ S gk-o+8+r Oe NS 

F,,(s, 8)+(—1) 6 F, (8, 6,) + (—1F* = zo ae Ear Tis) T(r +1) Fy (S+7, @,) 

= R(s,-—k-1)+—5— Vii (c) + Vie (c)} ede OO. fF 
== Pi (S— MeL) =} (85) G) accicect eee sees then pe eee eet enetee renee (3871) 

say. By (3864) and (3°862), 

Vit Vir= Vit O(c8t*2e~) = O (ce) ~(e>1). 

Further, the formulae which define V;,, and Vz. show that these functions tend to limits as 

c— 0. It follows that 

| (Vir + Viz) 8 de 
~0 

exists, and defines a function of s regular for ¢ >0. 
Next, we observe that 

re [, () i - ir *) cde = , (8), 

ae ke "(1 k $-(0) 
and —| V,.(c)e de = — —_~ | jay — > 6} ott "de, = Oz ((s 

role ta I'(s) Jo le*—1  +=0 : : (s) 

* Observing in particular that the term for which r=k +1 + The expression in curly brackets in the third term is 

vanishes, since o,41 (4) =0- O (ck). 
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exist and define functions regular for 0< «<1. Hence 
k 

Toe = Pe AES (OE SGA) Gacdudonagboboodsbodeandao: (3°88) 
r=0 

this equation giving, moreover, the analytic continuation of Z, wherever 7, and z are regular. 
Now 7, and z do not contain @; they belong to a well-known class of integrals; and it may be 

shown that they are regular everywhere, except possibly for simple poles at certain positive 
integral values of s*. This being so, and if we suppose positive integral values of s to be excluded 
from D (— k—1) by circles of radius 6, we have 

k 

= A, Om, (8) = R(s, —k-1); 
r=0 

for only positive powers of @ occur on the left-hand side. Hence, from (3871), 

F,,(s, 0) + (— 1)F 71 6*4*5 Fy. (s, 0,) = R (s, —k —1) + Oz (s) + Q (8, A), oe (3°89) 

ea wl T'(s+r) k SS @k-1+8+7 — = VARS (> SA) Sepgcapooee 3 where Q(s, )=(—1) =e 48+ Far P@lGe hit Otn (3891) 

39. We are now in a position to prove that o =o; is a barrier for F,(s, @) when X>0. The 

case X = 26 1s comparatively trivial, and we suppose that 0<’<2«. Then 

or >1l—k o¢> ons. 

We write 6,_, for @ in (3°89), multiply by (— 1) (06, ... @,-2)***, and sum as in §3:4. We then 

apply our former argument, which shows on the one hand that 

>(—1)" (0... On») 1** R(s, —k—1) 

is regular for ¢ > 1—k (except possibly for certain positive integral values of s), and therefore 

regular across ¢ = o,; and on the other that 

= (—1)™ (8... On—2)P 34° 0271 z (8) 

has o =o; for a barrier. To complete the proof of (bx) it is sufficient to show that 

(S22 (Osco a) a 5) 

is regular across o = o;; and this is true provided that, for some o’ < ox, the series 

contains @ to the power k —1+a at least; hence, by Lemma K, 
| Q (s, 6,,)| < Ale ane {1 iL (0. is 6-1) 7) CS) 

n-1 

and the general term in (3°91) is less than 

ANG eager at AO cee ya) gar pei Fo) 

The first index is positive if o,—o' is small enough, since o, >1—4; and the second is 

k—1+opt+on(X+6)—(op— 0) (1 +24 8) —$6 (A486) =A 4 bo, — (0, — oo’) (14+A+4+ 6)—46 (A+ 8), 

and is positive if 6 and o,—o’ are small enough. This establishes the uniform convergence of 
the series (3°91), and so finally the general result (bk), 

There remains (ek); and for the proof of this the material we have already is sufficient. 
We observe that 

Orn —1LZ—k-1, ony, 3 ory, (r= 1): 

* See for example A. Hurwitz, ‘Ueber die Anwendung eines functionentheoretischen Principes auf gewisse bestimmte 
Integrale’, Math. Annalen, 53 (1900), 220—224. 

69—2 
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From these facts, and from (3°871) and (3°88), it follows that the only possible singularities of 

G(s) = Fi. (s, @) +(—1 yk Os+* F.(s, 0,), 

in ¢>oxi,—1, are the singularities of Z, in this region. These can occur only for positive 

integral values of s. On the other hand (3-871) shows that (when \< x )* Z;, is regular ino 2", 

where o' < 1+. Hence Z, and G; are regular in o > o%4,— 1. 

On the other hand, if \ > 0, 
Oni — 1>- k, 

and o;,4, is a strictly decreasing function of r, It follows from (3°871) that G, and 

k+1 

are equi-singular in the region o >Max(— k—1, opi2—1). Since Fy.,(s+1, @,) has a barrier 

o = o;,,—1 in this region, this line is also a barrier for G;. 

We have therefore proved 

(- ie Qstk s Fy,.,(s +1, 4) 

THEOREM 5. If X> 0, the line o =o, is a singular line of Fy.(s, @). 

THEOREM 6. If X>0 and @=1/(a,+4,), then the function 

F,,(s, 0) + (— 1)*70**"+ Fy(s, 8;) 

is regular for o >o%1,;—1; and the line g=oy4,—1isa singular line of the function. 

4-1. We conelude with a brief discussion of the problem of the convergence or summability 

of the series ¥¢;(n@)n-* in the region of existence of the corresponding function F;(s, @). It 
will be seen that our conclusions may be roughly expressed by saying that whatever could be 

true zs true. A Dirichlet’s series cannot be summable outside its half-plane of regularity, and it 
cannot be summable (C, 7) unless its nth term is of the form o(n”): we shall show that our series 
is summable (with least possible order) except when these restrictions apply. 

THEOREM 7. The series Xd, (nO) n~ is convergent if ¢ >o,.,¢ >0; and summable (C,—a +8), 

for every positive 6, if o > ax, o <0. 

The case X = © is trivial, since o,=1, and we suppose that X\<2. We may confine our- 

selves also to the case k >1,; for the result for k=1 is an immediate deduction from the 

formula 
1 

1-.—_~ +e 
Sa,=O(w 14% ) =O(art9ys. Sera tn ae (4:11) 

noir 

We shall in fact prove rather more than we have stated, when k > 1, viz. that the series is sum- 

mable (C, — a’ +8), where o’ = Min (a, 1). 

When k>1, dx (n@) is of the form A (Wy, (nO) + W;.(- nA)), where Y;,(”@) is the function 

(2'121). It is therefore sufficient for our purpose to show that the series 

Ty (nO) n-, Uap, (— nO) n-~, 

are summable (C, —o’ +8) foro >o,. Further, it is enough to prove this for real values of s, 

and hence also, since y,.(n@) and W,(—7@) are then conjugate imaginaries, enough to prove it 

for the first series. This we do by a series of lemmas. 

* The case \=© is a trivial deduction from (3°89). gularity at most a simple pole at s=1, the residue being a 

+ Thus 7, is an integral function of s when \<a. This rational function r(@) of @. Since r(#) vanishes for every @ 

conclusion may be extended also to the case A=. Forour for which 0<\<~, it must be identically zero. 

argument shows that, in any case, Z, can have as a sin- t+ See our paper (4), Theorem 2, 

ee ee ee ee 
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4-2, Let w be a (large) positive integer, and let 0<¢<1,-l<a<B<a+1; 

/ 

S(u, p) = J ntemrip (1 - L
N 

n<u b/s 

S(o)= lim Enter y, 
r>1-0 

Mtr 

pop 

Let A, be the contour Z, + LZ,’ of the figure (in which the sense of description is indicated by 

an arrow), A, be Z,+ L£., and A be A,+ A,. Finally, let C be the indented rectangle 

[,+ [,+M,+N.+N,+M,. 

In what follows A’s denote positive constants depending only on fk, a, and 8, and the O’s have 

a corresponding meaning. 

Lemma L: |S(¢)\< Ag 2. 

This is a particular case of a known result. In fact the function f(z) defined, for z <1, by 

the series =n*z", has z=1 for its sole singularity, and 

|f(@|<A
 1l—zi-¢)

, 

so that | S(p)| =| f (et) |< A} 1 —e* |-@4) < A p-@), 

e2enib 

Lemma M: sig)=| dz. 
eae e22rt =i! 

This is a particular case of a very general formula in the theory of residues*. 

* See Lindelof, l.c., ch. v, § 53. 
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43. Lemma N. If 0<| |<}, then | S(u, 6) —S(g)| < A| gp |- 8 pr 

We may suppose that 0 < ¢<}, and we begin by showing that 

nie & 2 B g2zmid 4 a= ees (- - Se EF OD) coresseseeeeeeeeeeee (4°31) 

s@=[{ «2 ws0g 432 @=] 7 Seg Oe eee (432) 

where 7’= @-§* u*-8, In the first place, by the theorem of residues, we have 
8 e2=rib 

Su, $=] 2 ss) pe Seer re (433) 

er=7id g (Aer a9 =(9'> a 

e=t_] | |Ae=A-eu (y<—A), 

e=rid | 

and so (ami | ae (\y| >A). 

Hence the contributions of M, and WV, to the right-hand side of (4°33) are of the form 

O (ut e~488) = 0 (L) (up Pt e-6 = O(D), 
since 8+ 1>0, so that (ud*! e~ 44? < A. Similarly the straight portions of V,, V, contribute p y ght p 

[" yle(2\ e-4ue ae 1 a—B g- (6+) O([imtiy (2) Cao dy) = 0 (u" ») | yPe-ar dy = 0 (u ¢ )=0(f). 

Lastly, the curved portions of V, and NV, contribute O (u*—8)=O0(T). Thus the contour C, 
less L, + £,, contributes O (7), and (431) is proved. 

For S(¢) we have 

Now 

2 adaen Calais id s -| 2 = gi 2 o(fs -4¥6 dy) (d) Bras Bei Ih rie aa = {= yre y 

= (I) ar yt e Aue d ) = (0) (o4 g) =i) (a (up) r) S01"). 
“0 

This is (4°32). 

From (431) and (432) we deduce 

Sqm $)-8(6)=[ #{(1-2)- 1p de +O). ) e2ert 

8 hes 
Now (1 — =) -li<A |— 

mn rs 
on L,+L,. Hence the straight portions of Z, + Z, contribute 

O ( "ys : J .e Au dy) = (0, ( “ys. (“yr .e7 Aue dy) = (yi) E. yf e—4ut dy= O(T), 

Jy" op Ja” \pe J0 
since 8 -a=1 and y/w=1. Finally the curved portions contribute 

0 (3) ) =O (u**) = 0(2). 
mv 

This completes the proof of Lemma N. 

4:4. We can now deduce that ¥ yy, (n@)n-* is summable (C, — o’ +6) for ¢ >o,. We may 

suppose that o<1, since a convergent series, whose general term is 0(1/n), is summable 

(C, —1+6)*. Also o, <1, sinceeX< «, Hence we may suppose that o,<a¢=0'<1. This being 

* G. H. Hardy and J. E. Littlewood, ‘ Contributions to the arithmetic theory of series’, Proc. London Math, Soc. (2), 

11 (1912), 411—478 (462, Theorem 37), 
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so, we take a=—o’ =—o >—1, B=—o' +8=a+86>a. We shall further suppose 

that 6<o—o, and 6<1, so that B—a<1. 

Now 
-1 

B 
ei 

; 

: ee (1 =") = Sy E e(vnb)n (1 -"\ 
n=1 

be : 
i 

oo 
SS = 

v=1 t= 

a 

=>5 = 2 

y= 
v-ES ((v0)) + 5 v* {S (uw, (v@)) —S((vA))}, 

1 v=1 v 

provided that one of the series on the right converges. But 

| S(w, (vO)) — S (vO) | = |S (w, v8) — S (vO) |< A | v8 |-E*Y pr’, 
by Lemma N. Also, since —- 8 =a —6 > ox, the series 

x v-*| v6 |-8-} 

533 

>, aS We may, 

is convergent. Hence > v*| S(u, v0)—S (v8) 
v=1 

is convergent, and its sum tends to zero (like w*-*) as w > 2%. It now follows from (4°41) that 

DNS: (UO) incuceaisanels aa voter wswachoscnessane 

converges, and that the series > vx (nO) n-7 

is summable (C, 8), ze. (C, —o’ +8), the sum being given by (4°42). This completes the proof of 

Theorem 7. 
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XXVIII. Free Paths in a Non-uniform Rarefied Gas with an Application 
to the Escape of Molecules from Isothermal Atmospheres. 

By J. E. Jongs. 

1851 Exhibition Senior Research Student, Trinity College, Cambridge. 

[Communicated by Mr R. H. Fowler.] 

[Read 5 February 1923.] 

§ 1. Introduction. Various writers have pointed out that on the basis of the kinetic theory, 

certain molecules moving in the outer reaches of an atmosphere may, as a result of a series of 

favourable collisions, receive sufficiently high velocities to take them out of the planet's 
gravitational field. On this view, the atmosphere of a planet is subject to a continual dissipation. 
The question of primary interest is the rate at which dissipation occurs, for this decides whether 

or not a planet may be regarded as retaining its atmosphere. 
A simple treatment of the problem has been given by Jeans*, who obtains a formula for the 

rate of escape of molecules past any atmospheric level. According to this formula, the number 
of escaping molecules increases when the height of the level increases, as of course it should. 
But the result depends on the particular atmospheric distribution of molecular density there 
considered. If, instead, a corrected formula, recently given by Milne+, had been used, Jeans’ 
formula would have indicated the anomalous result that the higher the level considered the less 
the number of molecules which escape past it, and if the level considered be taken at an infinite 
distance, as it logically should, the formula would lead to a zero result. This difficulty is avoided 

by choosing an arbitrary height which is virtually regarded as the ceiling of the atmosphere, so 
that any molecule passing it with a velocity sufficient to escape from the gravitational field may 
be regarded as definitely lost. This method involves the neglect of all collisions beyond the 
arbitrary height and the disregard of all losses from the atmosphere above it. It can hardly be 
regarded as satisfactory for these considerations require the arbitrary level to be as high as 
possible, while, as Jeans} himself points out, other considerations require it to, be as low as 

possible. 
Moreover, the method by which the molecules escaping beyond this arbitrary ceiling are 

enumerated involves the use of a formula, which is shown in the present paper to be valid only in 
a gas of uniform density. The value of the molecular density used in the formula is that 
appropriate to the position of the ceiling, but since, by hypothesis, the ceiling is so high that the 
atmosphere above it can be neglected, the free paths of the molecules in this region must be so 
enormous (hundreds, possibly, thousands of kilometres) that there is a sensible change of density 

along a free path, and a mathematical treatment can only be regarded as satisfactory which 

takes this into account. This is especially necessary in the case of escaping molecules, since they 
move from parts of the atmosphere where the density is finite to parts where it is zero. 

In order to remove some of the arbitrariness which attaches to the method given by Jeans, 
Milne§ has recently considered the mechanism of escape in more detail. He has investigated 

* Jeans, Dynamical Theory of Gases, 3rd edition, 1921, atmosphere itself. 

p. 342. t Jeans, loc. cit., p. 344. 

+ Milne, Trans. Camb. Phil. Soc., Vol. xxm1, p. 483, 1923. § Milne, loc. cit. 

Account is taken of the gravitational attraction of the 

Vou. XXII. No. XXVIII. 70 
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the chance of escape of a molecule from the atmosphere without a further collision by intro- 
ducing the assumption that all the other molecules of the atmosphere are at rest. This leads 
to the conception of a ‘surface level’ from below which escape is impossible and to the 
idea of ‘cones of escape’ which open continuously from zero angle at the surface level to 90° at 
infinity. 

Although Milne has thus considered the conditions for escape in more detail than hitherto, 

he has yet adopted the same method of enumerating the numbers which cross a given surface. 
He is thus led to the result that the number of escaping molecules rises from zero at the surface 
layer to a maximum and then falls to zero again at infinity. But since the escape of a molecule 
implies its removal to an infinite distance, the function which expresses the loss from below a 
given level must increase continuously with increasing height and will strictly give the correct 
result only in the limit when the level considered approaches infinity. 

In the present paper, the problem has been considered from a somewhat different point of 

view. It has thus been found possible to consider the mechanism of escape without the restriction, 
introduced by Milne, that all the molecules of the atmosphere are at rest; in fact, no assumption 

about the molecular velocities has been made beyond their distribution according to the 

Maxwellian law. The method has involved a discussion of free paths in a non-uniform rarefied 
gas, where the free path of a molecule is a function not only of its velocity but also of its 
origin and its direction of motion. General formulae for the free paths have been obtained 
and, for purposes of illustration, applied to the earth’s outer atmosphere. It is shown that, 

under certain conditions, investigated in detail, a molecule may have an infinite free path, 

that is, may escape from the atmosphere. For this to occur, the molecule must have its last 

collision above a certain critical height and must subsequently move within a certain ‘cone of 

escape’ appropriate to the point of collision. 

The same methods have been used to show that the usual formula for the number of molecules 
of specified velocities crossing a plane is not applicable when the gas is rarefied and non-uniform, 

and so cannot legitimately be used to calculate the loss of an atmosphere. The dissipation has 
been calculated in this paper not by using the formula just referred to, but by considering the 
collisions in each element of volume of the upper atmosphere and by enumerating those which 
result in one of the molecules having a velocity of such magnitude and direction as to satisfy all 
the conditions for escape. The molecules thus lost from this evaporation region we may suppose 
replaced by diffusion across the critical level from the lower parts of the atmosphere. 

According to the methods of this paper, the rate of loss is proportional to the first or the 
second power of the basic molecular concentration according as the critical level is free or fixed. 
In general this level sinks as the dissipation proceeds and only becomes fixed when it has 

descended to the surface of the planet. For this reason the character of the escape of a gas 
from a planet depends on whether or not it exists alone. Both cases have been considered. 

In all cases a gas once having been present never escapes completely. The time taken for the 
gas to reach such a state of attenuation as to preclude the possibility of detection is in all cases 
longer than the time given by Jeans for complete escape, Thus the time necessary to reduce the 
molecular density by 10° is about 10 times as long as that given by him for total escape. All those 
atmospheric constituents which Jeans considers as being retained by the various planets will 
therefore be retained according to the present method and so his main conclusions regarding 
the constituents of the atmospheres of the planets of the solar system are unaffected. There are 
cases, however, where the retention of a gas is open to doubt according to previous work and the 

present method of calculation is then necessary. This applies, for instance, to the case of helium 
on Mars which at certain temperatures would definitely be lost by the more approximate method, 

—————————— 
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but may be regarded as present according to this investigation, ‘This case is considered in some 

detail and numerical values are given. 
The general agreement between these two methods in the case of isothermal atmospheres 

further justifies us in assuming that the results of Milne obtained for stellar atmospheres of non- 

uniform temperatures would also be confirmed by the present more detailed analysis. 

§ 2. The Free Paths of Molecules in a Non-uniform Gas. The only information usually 
necessary about the free paths of molecules in a gas is the length of the ‘mean free path.’ While 

this statistical mean has a definite significance in the case of a uniform gas, where the most 

probable distance travelled by a molecule between collisions is independent of the direction of its 
motion, its meaning becomes obscure in the case of a gas such as exists in the upper parts of an 

atmosphere where there is large variation of molecular density. The path will depend on the 

direction of motion and may, in fact, be infinite in some directions, while finite in all others. We 

are therefore led to consider the general problem of the free paths of individual molecules in a 
gas of non-uniform density. To this end, we confine our attention to a particular molecule moving 

with known velocity and enquire into its chance of a collision with any other molecule at every 

point of its path. This has already been done by Tait* in the case of a uniform gas, but the 

same method can easily be-applied to the more general case. | 
For simplicity, we suppose the molecules of the gas to be rigid elastic spheres. Their diameter 

we denote by o and their mass by m; the number per unit volume we denote by ». 
Consider a molecule of velocity c. The chance of a collision with a second molecule of velocity 

c’ in an element of time &¢ is equal to the number of molecules of this kind contained in a cylinder 

of base area 7a? and of Jength V6t, where V is the relative velocity. If the direction of ¢’ with 

respect to that of ¢ be described by the usual Eulerian angular coordinates @ and ¢, then the 

number of molecules in this cylinder, having velocities between c’ and c’+dc’ and moving 

in directions lying between @ and 6 + d@, ¢ and ¢ + dq, is given by 

RINNoR eS) Sa ee ; » (=) e-hme" o/ade! sin @ dO dq X ma2V8l, ..sse..scecsereneeeesee: (2:01) 

where h is inversely proportional to the absolute temperature, being given by 2h = 1/KT. 
The velocity V is given, of course, by 

WEE Bde GBR SOARG COS Amp obenaneponeracosnaaocoDcoDobosgo” (2:02) 

If we denote by @(c) dt the chance of a collision with any other molecule in the same interval of 

time, we have | 

O(c)= ue Wie [[[eme CAWOke cin CIICKO, ooonsosodcc0n0cos0006 (2:03) 
aed 

the limits of integration being 0 to « in the case of c’, 0 to 7 in the case of @ and 0 to 27 in the 

case of ¢. Tait+ found that this expression reduced to 
i 

SE eee en hin 2-0 O(c)= a TA @RMINTO))) cpbcapnepbooconcbaeEsoqnOs60Sc00. (2:04) 

where w (x) = we-® ar (22? + yf ev dy. 0.0 vcelaeepiccrevicviecesuecvenc (2:05) 

0 

In passing, we may note that the value of ©@(c) in the case of a stationary molecule is 
l : 

In? vo?/(hm)?, so that if a molecule of hydrogen at normal temperature and pressure were once 

* Tait, Edin. Trans., 1886. 

+ Tait, loc. cit.; Jeans, Dynamical Theory of Gases, 3rd edition, p. 255. 
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at rest it would remain so on the average only for 10" seconds. The chance of collision increases 

continuously with increasing velocity, becoming infinite for an infinite velocity, as is otherwise 

obvious. 

The chance of a collision of a molecule of velocity ¢ with any other molecule in describing any 

element of its path és is clearly o® and hence the length of its path is given by 

[meee (oVhm) yds _ sb se aoe Se (2:06) 
Ie ehm 

where in a non-uniform gas y is a function of s. When s, is known, this is an equation to determine 

s and therefore the length of the path 2. 

In the absence of an external field of force, the path of the molecule will be rectilinear and 

its velocity will remain unchanged throughout its path. In this case we have 

5 chm (ods SS eee (2:07) = / “8 To W(evhm) 

which determines a length 2, for each value of the velocity c. In the particular case of uniform 
density the formula simplifies to 

ehm c 

S = eae Vim) ~ OC)’ 
Fe othe eee (2:08) c 

Another case of some interest is when ¢ Vim is large. This is the same as c large compared with 
the mean velocity of thermal agitation C, for hmC?=3/2. In this case 

v(evhm) Vim) = af e-” dy 2 chm ‘ 

and formula (2°07) becomes 

This equation merely gives the length of that cylinder of base area mo* which contains on the 
average one molecule. It gives the upper limit to the length of the free path and is evidently 

the same as that which would be obtained if one molecule was supposed to be moving among a 

number of other molecules at rest. In the case of uniform density this again reduces to 

which is a well-known result. 

§ 3. Probability of a Free Path of given Length. The usual formula for the probability that 
a molecule will describe a path of given length also needs generalisation in the case of a non- 
uniform and rarefied gas such as we consider in the present paper. We have found in the preceding 
section that there is a certain length A, associated with a molecule moving with a velocity ¢ 

in a known direction. It does not follow that every such molecule will actually move through this 
distance. This length must rather be regarded as the average path traversed by a large number 
of molecules leaving the same point in the same direction with the same velocity. In general, the 

lengths of the paths will be distributed about 2, according to some definite law. It is now our 

purpose to investigate the nature of this law. 
Let us denote by f the probability that a molecule moving with velocity c in a direction of 

angular coordinates @ and @ shall describe a free path at least equal to /. The chance of a collision 

; 
4 
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in describing a further distance di beyond the length / is dl. © (c)/e and hence the probability 
that the molecule will describe a path of length / + d/ is 

ve (:- 72). 

But by definition this must be the same as f(/ + dl). We deduce that 

of O(c) Ain ray SodNNNEe SUSE HOPoNBandsdsooDBnbASOvEDINOOnL (3:01) 

Now ©(c) involves v and therefore the right-hand side of the above equation is a function of 

1, of the angular coordinates 6, ¢ of the molecule’s motion, as well as of the coordinates of the 
starting point of the free path. Writing 

Vv = 9 (%, Yo> Zo lL, 6, p), 

where a, %, 2 are the coordinates of the starting point, and putting 

® (c) 7 o2w(c Vhm) 
ee eee (3011) 

we have 

PE Gee Pee Secale eee sh 41 (3:02) 
on using the condition that f(0)=/. It follows that the probability of a path of length between 
land J + dl is 

—O(c)gdle- GENSAT NE lh crack ne ee Oo (3°03) 

When » is constant, equation (3°02) reduces to 
; 8 (e)l 

CMe eer er me SOs ON a scansencnrosese tones (3:04) 
while formula (3:03) becomes 

CEE ADS ey Wal EG ae RR Ae es Sil (3:05) 

These are the formulae given by Jeans*. That 2, is the average path is easily verified, for 

| te-" dc=X, 
4/0 

§ 4. Free Paths in an Upper Atmosphere. When account is taken of the variation of a planet's 
gravitational attraction with increasing height, it is found that the molecular density of any con- 
stituent of its atmosphere at a distance r from its centre is given by+ 

a\(r-a@ 
—2hmg ( ) REC Lt ewes Oy aR ete xs ORE (4-01) 

where 1 is its value at the base of the isothermal part of the atmospheref, h is inversely pro- 

portional to the temperature (2h = 1/7’), g is the value of gravity at the surface and a the radius 
of the planet. This formula, however, gives a finite density at an infinite distance and under such 

conditions no molecule ever could be said to have escaped from the atmosphere. If account be 
taken of the gravitational attraction of the atmosphere itself on its outer fringes, it is found that 
at very large distances the molecular density falls off according to an inverse square law. Milne§ 
suggests as an appropriate formula applicable at all distances, the law 

y r 
fT \= = qa (| 1—— wea (™) ou -3 | Reet ct: a eee (4:02) 

* Jeans, loc. cit., p. 347. See Chapman and Milne, Quart. Journal Roy. Met. Soc., 

+ Jeans, loc. cit., p. 343. Vol. 46, 1920. 
+ This is not quite the same asthe base of the stratosphere. § Milne, loc. cit., p. 491, equation 25. 
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where 7, refers to any convenient level in the atmosphere and 

Of CIO i} = PPA fp = 5c coo ncacacocoodnesneEndacacoacacs (4:03) 

This formula we propose to adopt in the present investigation. We shall take r, to be the radial 

distance of the base of the isothermal part of the atmosphere. 
Suppose now that a molecule, having collided at a poit distant r from the centre, moves with 

a velocity c in a rectilinear path making an angle @ with the radial direction at that point. 
Strictly its subsequent path will be hyperbolic if, as in the cases we consider, the magnitude of 

c is such that the kinetic energy is greater than the gravitational potential. Since such velocities 
are large, the curvature of the path will at any rate be small and we may regard the path as 

rectilinear. 
If s denote the path described from the origin of its new velocity and R denote the radial 

distance corresponding to s, we have 

R= (7 + 2rs cos 0+ 8°), 

and the length of the free path is given by 

[raas= 2 _ 
0 m= a? (cVhm) : 

This equation is true only when ¢ remains constant along the whole path, but we may apply 

it without sensible error to the case of molecules moving in an upper atmosphere. When the path 

is sufficiently long to make an appreciable change in ¢, the molecule has by that time reached parts 

of the atmosphere where the molecular density is negligible. 

A further simplification can be introduced by writing 

Te PIG OOS (Cy coo gonsnboccoonshooaconoacossasorodcbac (405) 

This is equivalent to neglecting the curvature of the layers of equal density through which a 

molecule may be supposed to pass. The equation (4°04) to determine the free path then becomes 

Chm PRN gn os. (404) 

To 

Ir elo r+scos 0 efo chm 

o (7 + § cos 6) nc 7? yo ro Wc Vhm)_ 

which reduces to 

ois ‘S oR a qo e! cos 0 chm 

m= wary (c Vhm) 

When r,c and @ are given, this equation determines R and therefore s, the free path, from 

the relation = 

Toke eae ts Lech (4:06) 

s=(R—7r) cos 0. 

Or again, if r and @ are given, it can be regarded as an equation to give the velocity necessary 

to describe a path of given length. In particular, the relation which must exist between the 

three quantities r, c and @ in order that a molecule may escape from the atmosphere is 

Pu) 1 90° 2 ~ oe cos Och genta ate se en (4:07) 
Tr? Ho? ry (eVhm) 

Moreover, if in this equation we put @=0 and c=, we have an equation to determine the 

lowest level from which escape is possible. Thus, using 7, to denote the height of that critical 

layer, we have 

eee Te Tee Cee eee eee eee 

an 2 qo’ et” gg a Yes ee eee: PRA. wile) 
TV, OT, 
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We note that the molecular concentration at the critical level is given by 

+ \2 , ro 7\2 A YU nem () ee) =(2) fine + ED, 
and so, when q,’ is large, by q,'/ao?r) approximately. The order of this expression is deter- 
mined almost entirely by that of o? and 7, and as these are of the same order for all molecules, 
we find the interesting result that on any planet the molecular density at the critical layer is 

always of the same order, whatever its value at the base or whatever the constitution of the 
atmosphere. The order is 10° in the case of the earth. 

Corresponding to any value of r greater than 7,, there is a range of values of @ for which 

escape is possible. The limiting value will clearly be a function of 7, and so we denote it by @,. 

It is given by 
. 2a 1% 

cos 6, = Flee (ee r— 1) PRY etc caccereee amcot (4:09) 

: To 

or, using equation (4°08), by cos 6, = Z Z = BMS code eocoen cc oocseacookecnaaen 410) § &q A 7 ( 
Io — 

e t—I1 

For escape from this height a molecule must move within a cone of semi-angle @,. This cone 

we shall refer to as the cone of escape. 
For purposes of illustfation, we now apply these formulae to the case of the earth’s outer 

atmosphere; here 7,= 6°39 x 10 ems., the temperature is usually considered* to be —54°C,, and 

: : : pee z : 
assuming the outer constituent to be hydrogen? for which? == 4127 x 10’, we have 

it 

go =2hmgr, —2= mgT» 235) 

= 67:37. 
We may, therefore, neglect the unit terms in equations (4°08) and (410), and write 

cove BOOT Oe aie g Whe noe et (411) 

stratosphere. The ‘cone of escape’ opens very rapidly above this height, as the values in the 

accompanying table testify. 

TABLE LI. 

: Variation of Cone of Escape with Height (Earth's Hydrogen). 

hore Ze | 
9, r/o (in kilometres) | 

| | 
{0 1-238 1521 

25° 1:240 1533 
45° 1-246 1571 
65° 1-254 1623 
85° 1-296 1891 

1 

* Jeans, loc. cit., p. 345. + Jeans, loc. cit., p. 119. 

+ There is however some doubt as to whether this is so; § Jeans, loc. cit., chap. Xty. 

see Chapman and Milne, Quart. Journ. Roy. Met. .Soc., | Chapman and Milne, loc. cit. (base of stratosphere 

Vol. 46, 1920. 20 kms. high). 
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The cone of escape thus opens from 0° to 45° in a distance of 50 kilometres and from 0° to 85° 

in a distance of 370 kilometres. 

It is not to be implied that all molecules moving in directions within the ‘cone of escape’ can 

eventually escape from the atmosphere without collision. We have already seen that the velocity 

must be sufficiently large to take it out of the earth’s gravitational field. But this velocity may 

not be sufficiently high to ensure that its subsequent motion will be free from collision. For this 

condition to be satisfied, a certain velocity @,,¢ (a function of r and @) must be exceeded. This 

value of @,, is easily obtained from equation (4°07) and is given by 

(0? _3) a> G2, phm e°r—1/) THe2r, 

w (G9 Vhm) que” cos @ 

The value of W(«) can only be obtained for particular values of « by quadrature, but a sufficient 

number of values have been given by Tait* and reproduced by Jeans} to deduce the value of 

@,,¢hm for particular values of the right-hand side. A few values of yf (x) and 2*/ (x) are given 

in the accompanying table. 

TABLE IIT. 

eae 2 (a) x*/y (x) 

| “O1 20066 0498 
Da | 25 1:08132 2312 

Olan 1:0 2-60835 3835 
1-5 DAT | 486713 | -4624 
2-0 | 4-00 7-97536 5016 
es) 6°25 11-96402 5221 

3-0 9-00 1683830 | 5344 
5-0 25-00 45-186 | ois! 

10-0 100-00 178-086 | 5620 
L D 20 5642 

| (ex#) 

Thus at the level for which @, =45°, the minimum value of E,,gNhm (being that appropriate 

to @=0) is 1-09, which at a temperature of — 54°C. corresponds to 

@,.g=1°457 x 10° ems./sec., (Vim = 7463 x 10-*). 

For larger velocities than this, there is a corresponding range of directions for which escape is 

possible, the upper limit to the range being as we have indicated 45°, and this only in the case of 

infinite velocities. A curve showing the relation between any velocity and the extreme value 

of @ for which escape is possible is shown in Fig. 1. 

The conditions for escape which we have so far examined can be expressed simply by saying 

that the end point of a vector (OP) drawn from O to represent the velocity must he within a 

certain surface of revolution. This surface is obtained by revolving the curve A V of Fig. 1 about 

the vertical. 

We must be quite clear, however, that we have so far only been concerned with the possibility 

of escape without a collision. In general, there is another factor affecting escape and that is the 

* Tait, loc. cit. , + Jeans, loc. cit., Appendix B. 
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gravitational potential of the planet. A certain minimum velocity c, must be exceeded to ensure 
that the molecule will escape from the gravitational field. It may be that this velocity is less 
than the minimum vali of @,,9 or it may be that it is more. In the latter case, the region in 
which the end point P of the vector must lie is no longer VAV’ but only that portion of it above 
the spherical cap of radius ¢,. 

eS ee 

10°0x 10° 

8-0X10° 

6:0X10° 

4,0X10° 

Fig. 1. Velocities necessary for escape in different directions (#,,=45°). 

In the actual case considered above, the gravitational attraction is very large and the corre- 
sponding value of c, is 1:001 x 10° cms./sec. This velocity is larger than @,,, through a range of 
@ of 445° and is therefore the dominating factor. We shall return to a discussion of the relative 
magnitudes of c, and @,,, in the general case later in the paper. 

Tf after a collision in the upper atmosphere a molecule moves in a direction outside the ‘cone 

of escape, its free path will be of finite length, however great its velocity. The length of this 
path will of course vary according to the direction, being a minimum for a molecule moving 

vertically downwards. For purposes of illustration, the free paths of molecules leaving a given 

point in the upper atmosphere with various velocities in different directions have been worked 

out and are represented in the accompanying figure. The particular point of departure considered 
is that for which the ‘cone of escape’ has an angle of 45° (r= 1°2467,). The formula used is 

To , 
a q — 1 - 

eo re R =gtcthm cosd 

oe ~ ap (eV hm) 608 8, 

Vou. XXII. No. XXVIII. 71 
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derived from equations (4:06) and (409); except for values of r which are large compared with 

ro, this equation can be simplified to 
a gees 303 

w (R- *) = log, (1 a ae RO a. (414) 
Tr = wb (cVhm) cos 6, 

300 400 500 600 
kms. 

Fig. 2. Free paths of molecules leaving a given point in the upper atmosphere 

with various velocities in different directions. 

(C=mean velocity of thermal agitation =1-640 x 10° ems./sec. at — 54° C.) 

§5. The Number of Molecules of specified Velocities which cross a given Plane. The main object 
of the present paper is to evaluate the rate of loss of molecules from the earth’s atmosphere, and 

as the calculations of previous writers have all depended on the use of a formula for the number 
of molecules of given velocities which cross a given plane, it seems worth while to enquire 
whether this formula, like the formula for the length of the free path, requires correction in a 
gas which is both non-uniform and rarefied. The formula in question is* 

y i go ba lutsho tM) ¢ com duidudtedS: sc..5-.--css000 sam (5-01) 
Tv 

This purports to give the number of those molecules whose component velocities he between 
(u, v, w) and (u+ du, v+dv, w+dw) which cross an element of area dS per unit time. It is 

obtained by counting the number of such molecules which at any time lie in a cylinder of base 
dS and length ¢ dt drawn in the direction of the resultant velocity c, @ being the angle between 
the axis of the cylinder and the normal to dS. 

It is to be observed that the value of y in (5:01) is that appropriate to the position of dS. 
In a rarefied gas, however, molecules will have travelled large distances before reaching the plane, 
and if the gas is of variable density, it follows that such molecules have arrived from parts of the 
gas where the molecular density v is appreciably different from that at the position of the plane. 

In order to investigate whether this will introduce any modification in the expression (5°01), we 

propose to develop a more fundamental method of calculation than that previously used. 

* Jeans, loc. cit., p. 343; Milne, loc. cit., equation (28). 
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We consider only the case of a gas which has reached a steady state, that is one in which the 
molecular density and the distribution of velocities about their mean do not vary with the time. 
We make no assumption about the nature of the velocity distribution function. It need not be 
Maxwellian, although in the applications which we are likely to make of the results this will - 
usually be the case. 

All the molecules which cross an element of area dS with velocities lying between (u, v, w) 

and (w+du, v+ dv, w+dw) must have had their origin, that is have had their last collision, in a 

cylinder of infinite length drawn in the direction of the velocity c on the base dS. We consider 
those which collided last in a thin slab of this cylinder of thickness dx. What we require first is 
the number of collisions in this element of volume such that one of the molecules after collision 

has a velocity lying in the specified range. Since the gas is in a steady state, this number is 
equal to the number of collisions in which one of the molecules had the specified velocity before 

collision. If f(w, v, w) be the fraction of the molecules in any element of volume possessing com- 

ponent velocities between (uw, v, w) and (w+ du, v + dv, w + dw), the number of collisions of the 

type considered per unit time is 
; A Cin Oy D) GUE O GM @)GEBUIS, Sonooscecaceseecoseeccncson.S- (5:02) 

since @(c) is the chance of collision per unit time of any molecule moving with velocity c. In 
the notation of § 3 we may rewrite this expression in the form 

Def (Wh hy) © EKO) GRC GHG EE GISS Sacsaacasconnecasceceacns050e (5:03) 

The fraction of these which reach the area dS will depend on the distance of the slab from 
the area. Let us suppose that the distance measured along the axis is equal to /. If @ is the 
angle between the axis and the normal to dS, we have then dr=dl cos @. In the section just 

referred to, § 3 above, we found that the probability that a molecule moving with velocity ¢ should 

travel along a path at least equal to / was given by e J" Hence the number of molecules 
which leave the slab dx dS per unit time with the prescribed velocity and reach the area dS is 

vf (u, v%, w)e cos 8 A(c)e~ BCA UT dn dtd OS > 2. sce necosa te: (5:04) 

and hence the total number arriving at the area dS from all parts of the cylinder is obtained by 
integrating the expression with respect to / from 0 to 2. We have 

dN = f (u, v, w) cos 6 O(c) dudvdwdS [ te ACN 7]. Raney. (5°05) 
~0 

In any given problem, v will be a known function of J. 

In the case of uniform density, the formula reduces to 

dN =vf (u, v, w) ce cos 6 dududwdS, ...........cscecseceeseenes (506) 

the usual formula; but it is only in this special case that the two are identical. It may, however, 

be used with sufficient accuracy in any gas of normal density whether uniform or not. For in 

this case we have 

ins ~—6(c) fvdl Iiez mers 
| voce) al =| DCU eo ertctneanalse ence aeseneene (5:07) 

( 0 ) 

rl 

where y=9(c) | vdl. 

Now if, as we have supposed, v is large, y becomes very large even for values of / which are very 
minute on ordinary standards of measurement, so that any variation in y in finite distances is 

fo 

rendered negligible by the factor e~’. It follows that in such cases the integral | ve-Y dy may 
0 

71—2 
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be evaluated as though v were constant, leading of course to the value v. In the case of a gas 
like the upper atmosphere, the formula (5:06) is not correct and must be replaced by (5°05). 

A simplification can be introduced into formula (5°05) by supposing that all molecules which 

leave any point with a given velocity ¢ travel the same distance 2,, given by equation (2:07). 

All the molecules which cross dS with the prescribed velocity will then have had their last 

collision in a cylinder of base dS and length 2, drawn in the direction of c. We infer that the 

number required will then be obtained by antegrekiny the expression (5:03) throughout the volume 

of the cylinder. We find 

dN =f(u, v, w)ccos 6 A(c)dududw as “sdk: "Sc Ree (5:08) 
Oo 

This formula, like (5-05), reduces to the usual expression (5°06) whenever the molecular density 

is uniform or does not change appreciably along a free path. 

To illustrate the difference between the usual formula (5:06) and the formula (5°05) we con- 

sider a particular case. Let us conceive of a hypothetical atmosphere in which the density falls 

off linearly from a finite known value at its base to zero at its ceiling, so that 

Vy (a — 2) acu 

with an obvious notation, and let us calculate the number of molecules of specified velocities 

which arrive at the ceiling. According to formula (5:06) the number is zero for the molecular 

density at the ceiling is zero and it is that value which is to be substituted in the formula. On 

the other hand, formula (5°05) gives, on putting cos 6 d/ = dz, 
i - A (c)v (a—a)? 

dN =f(u, v, w) cO(c)dudvdwdS | ve — 2acosd da 
0 

pe [a _ 9 (¢) oy? 
=f (u, v, w) cO(c) dudvdw dS = ii yre 2acosé dy, 

0 

and so if a is large, as we may suppose it to be, we have 

ee mV, cos O 
aN =f (u, v, w) ee 2 -dudvdw dS, 

; ad (c) 
where c is the magnitude of the velocity and @ is the angle between its direction and that of the 

axis of 2, The total number of molecules which cross unit area per second is therefore given by 

N= [Fe v, w) emt yee v9 hm ¢? cos? a2 ce sin 0 dé d¢de, 
ao? (cVhm) 

and assuming a Maxwellian distribution function, this becomes 
5 at 3 

Aq / vp, \2 /hm\2 / ~ hme m C 
N= 0 —hme® d 

; 5 C =i) ( =) [ve e / vr (¢ Vhm) : 

( Vy if 1 
~ 2 t 7 

ao’ (hm) 

If this law of density represented the case of the earth’s density, where for hydrogen v is of the 

order of 10", o? is of order 10-", and hm is of order 10-", we should get NV to be of order 10%a~*, If 

w be of the order of the earth’s radius 10° ems., we then find that 10" molecules cross unit area 

of the ceiling per second. This is in contrast to the zero result obtained by the ordinary method. 

§ 6. Conditions for the Escape of a Molecule. Before proceeding to the calculation of the 

rate of escape of molecules from an atmosphere, it will be conv enient to summarise the conditions 

necessary for escape. 

—=—— se =! =~ 
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(i) The point of the last collision of the molecule must be higher than a certain critical height, 
the precise value of which depends on the nature of the gas (> r,). 

(a) The direction of motion after collision must fall within a certain ‘cone of escape, the size 
of which depends on the position of the point of collision (0 < @,). 

(ui) The velocity must be sufficiently large to take the molecule out of the earth’s gravitational 
2ga° 

) field (c> c,, Where ¢,? > : 

(iv) The velocity must be sufficiently high to avoid further collisions (c > @,,4, where @,, 4 
depends on the point of collision and on the direction of motion). 

In general then there will be a stratum in which %,,, is greater than c, and in which the sole 
criterion for escape is the possibility of an infinite path without a collision. The upper boundary 
of the stratum will be determined by @,,, =c, and above it the dominating condition for escape 
is that the velocity of a molecule shall exceed ¢,. 

§7. The Loss of Molecules from a Simple Isothermal Atmosphere. The methods of § 4 can 
now be applied to find how many collisions take place per unit time in an elementary slab of the 
atmosphere such that after collision one of the molecules satisfies all the conditions mentioned 
‘in the preceding section. For the present we shall confine our attention to an atmosphere which 
consists of one constituent only. Such an atmosphere we shall refer to as a simple atmosphere. 
The work can easily be extended to a mixed atmosphere, ‘as we afterwards show, but to do so at 

the present stage would introduce unnecessary complications. From equation (5:03) we infer that 
the number of molecules which in unit time undergo collisions in a spherical shell of thickness dr 

and thereby receive a velocity, whose magnitude lies between ¢ and c +de and whose direction 
makes an angle of 6 to @+d6 with the vertical, is 

ypu, v, W) 2me O(c) sm OdOde4rrr dr: ........2.s00ceos-0se0es (7-01) 

If the magnitude of ¢ exceeds the values V 2ga?/r, (c,) and @,,9, and @ lies within the cone of 

escape appropriate to the value of r, then all the molecules given by (6°01) will escape from the 
atmosphere. The total number of escaping molecules is therefore given by 

“2 8, 

dL = 8777? dr | | Siete) CO, (C) SUNG COG ymecee een sce eee rece (7-02) 
Weewo 

where we have written C,. for the greater of the two quantities c, and @,. In an isothermal 

atmosphere the distribution may be regarded as Maxwellian, and we put 

._ (hm? - fz (=) eke? 

Introducing this value for f in equation (6°02) and substituting for @(c) its value from equation 
(3011), : = 

mr? of (c Vim) 

ON chm ’ 
-2 79, <a 

we find aL — Sira2(hm)? vrdr | ; | ehne ey (cNhm) sin 0d@de 
7s 0 

= 81a? (hm)? yrdr | emhme? erp (chm) (1 — 608 0) de, .sssesececeneee (7:03) 
Cr 

where, as before, ¥ (2) = 26 + Qa +1) | eMdy. 
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There is, as explained in § 4, a limiting value of @ for each value of c, so that cos @ is a function 

of c. The required relation is contained in equation (4°07), viz. 

qoe® cos Ohm 
= =e y+). dlsabien NGe eee ewes 2 (704 
7 yyo2ryw (e Vhm) Cs 

but this can be expressed more neatly by using the fact that the lowest value of ¢ for escape from 

a given level is given by 

Hs me weeeraeee a7 ( Gieaet (7-05) 
G2 in 1 T% 

TT WoT (e” r—1) 

so that for any direction other than the vertical 

Gage See ele via), Belay SSNs S987 hs (7-06) 
v (G, Vhm) c 

We accordingly have 

des he o G2hm Wa) dL =8ro(hmyt 2dr I ry(o)(1 pega & ) det, ese (7-07) 
Cyliim 

Owing to the nature of y(«), this integral is too complicated to be evaluated in the general case 
except by quadrature, but in certain cases the work can be very much simplified. In the first 

ae 

place we observe that, even for comparatively small values of z, the term / 
0 

wv (x) differs very little from its limiting value V7/2. Thus, when «= 2, we find that its value is 

e-'dy occurring in 

(99532) Vv. 1/2. Furthermore, for such values of «, the term we is quite small. For the value 

» = 2, we find a value of ‘03664. In all cases therefore in which « is larger than 2, very little 

error will be introduced by supposing that 

y (2) =" 
(20° + 1) Vr 

Fount ay her see tne oe cece nec c cence eeeceees 

We find further support for this approximation in that 

whereas 

 o) Vor 

I a 0 (Qu +1)-F de= 

[eet (ey = | ew atde t | em (20 +2) de fe dy 

DV a7, 

so. that even when integrated through the infinite range, the difference between them is small*, 

* It will be as well at this stage to enquire what values 

of the lower limit C,, we are likely to meet in the application 

of this work to actual planetary atmospheres. At the critical 

level, of course, its value is infinite by definition. At 

higher heights, its value decreases until C, is equal to the 

‘gravitational’ velocity c,. We then have 

C, Jhm= /2hmagrejr= Jd ro/r. 

Its value therefore depends on the temperature of the atmo- 

sphere, on the mass of the molecules, on the gravitational 

potential of the planet at its surface, and on the level 

considered (r). If we take an extreme case, viz. that of the 

moon, where the gravitational potential is least, and consider 

hydrogen molecules for which m is least, we find at a tem- 
perature of —100°C., 

C, /hm=3°93 a/ro/r. 

Hence even up to a height of 47g (7) being the radius of the 
moon), were it possible to conceive of an atmosphere of such 

extent, our work would still apply. We may, therefore, 

safely regard the analysis a8 applicable to the escape of mole- 

cules (as distinct from electrons) from any known planet. 
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Making this substitution for (x) in equation (7:07) we then find 
3 229.2 Jor ape Ano ey dh 

(Am)? 

oy as 2 O 2 2 D —y 
x | sme \6 ee —— +hn€2vr € - | +— g hes vn | < ay |. 2 wW(G.Vhm) W(@,Vhm)/)  W(@Nhm) * Simoes Y 

Now for large values of we can write * 

meme, 9! (2 ee 
= oO TBE a J 

so that taking the first term only where 2 =hmC,2, we have 

dL = der? o®v2rtdr enhm CC 

(h m)* 

3  2vrG2Zhm . Ja €2hm Ce2hm Var) 
5 = ee) HP hin CG? or (1 2 SS a) = = == = Pie 

2 W(@,Vhm) W(G,Vhm)/  W(G,Nhm) 4hm Cr} 

senetersiaiad (7:09) 

We note in passing that if in this result dr be replaced by — , we get a formula for LZ 
V2 roy 

which is almost identical with that used by Jeans+. What differences there are, are due principally 

to the introduction here of the idea of ‘angles of escape.’ Now this operation is obviously equivalent 
: ; 1 : : : 

to integrating (7:09) through a length 5 as though the function were constant, and since 
2 qro*v 

this length is equal to the mean free path in a gas of uniform density v, we are led to an inter- 
pretation of Jeans’ formula. Instead of giving the escape of molecules past a given level from all 
parts of the atmosphere below it, this gives only the escape from a certain slab of the atmosphere 
of a certain definite thickness; this thickness is equal to the mean free path appropriate to the 
gas at the upper boundary of the slab, and throughout the slab the density is regarded as constant. 

When the upper boundary is raised, the slab thickens somewhat, but even so the lower boundary 

is also raised with the result that however high the level considered, the formula never gives the 
complete loss from all parts of the atmosphere. 

To obtain the total loss of molecules from an atmosphere by the present method, we have 

now to integrate the expression (7°09) over all values of r from r, (the critical level) to infinity, 

but in doing so we must remember that C, may be one of two different functions of r, As pointed 
out in the preceding section, there is a stratum in which @, >c,, while above it c,>@,. So 

that in one case C,, is to be associated with @, and in the other with c,. At the boundary of the 

two regions @, is equal to ¢,. This height we shall denote by rg. Its value is determined by 

the equations 
- 

bent (as 
ZUR HL ra Oa ee (7-10) 
W(GrVhm) 4," 

e ™—1 

a " 
and CG Sess 29 SE POC COCROODOOCODDCODOCOINGETOOREER COSC USE (7 S11) 

* Bromwich, Theory of Infinite Series, p. 326. 

+ Jeans, loc. cit., p. 343. 
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The equation for the height of r, has already been given in equation (4:08), but for convenience 

it can be repeated here*. 

que eer, = te gp ee eee ae) 
Ty OT” 

In the region 7, to rg, we are to substitute for C,, in (7:09), before integrating, its value 

given by 
Yo 

isa 2 Io— Fn 

Maine eNe ocd 7 ee bad elon <i: eccree( TAD 
W(C.Vvhm) 4," 

e ta—l 

while above ra, we get the simple relation 

CES OPS OTR IPs sconce te Se cnaee Renee ooacient setfiees (714) 

In formulae (7:11) and (7°14), a is the radius of the planet, but this may be equated to the value 

of *, appropriate to the base of the isothermal part of the atmosphere. (In the case of the earth, 

a = 6370 kilometres, while 7, = 6390 kilometres.) 
It is convenient first to calculate the loss from above rg. Making the necessary substitutions 

for v, c, and @,, this is given by 

3 oo . - - 
dar? o2 v.27, 3e724 eet io = Re "o ro 

| cd BA | $g_ ond y (er — 1) 4 Brg (er =1) + eer ayhar ra 5 ; 5 (hm)? rae 09 

Sy OnE aC o - A r 
_4n*o Ug Moe % [era {y +24 2 (14 g9)f ners (3-+ M24) —y—n (2-0 |. 

( hm) oo Ya Ya eh Pra Ta 

None of the integrals calls for comment except 
~ ; 

ao 2-9 = 
e Lh er = 

ae dr. 
Ya r 

When an obvious change of variable is made, this is seen to consist of the difference of two 
logarithmic integrals, each of which diverges but whose difference remains finite. For large 

values of rq (and it is always large), we find that the integral is equal approximately to qv : 
a 

For brevity, we have put 

SRB Ce Se a Sen SR ee (716) 
ane %— 

@ 'e— 1 

It is large only when 7, is large compared with q.r,, that is when there is appreciable density at 

heights above the surface of the planet equal 

* In the earlier part of the work we used an approximate 

formula for the distribution of atmospheric density, given 

by Milne. This is a sufficiently close representation of the 

actual distribution both in the very high and in the very 

low parts of the atmosphere when qo is large. In the general 

problem, now being investigated, which we hope to be ap- 

plicable to all planets, qj may be small (see footnote, 

page 548). In such cases, Milne’s formula, while sufficiently 

accurate for most purposes, does not give the critical level 

with sufficient closeness. And so, in the present application, 

to several times its radius. Clearly there is no 

we introduce a new approximation which removes the ob- 
jection just mentioned and at the same time gives a close 

representation of the actual distribution in the parts of the 

atmosphere with which we are mainly concerned. The 

formula in question is 
r, myecu-f) v=" (2) e ae Vel, 

the (qy - 2) of Milne’s formula being replaced by qo. 
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need to discuss such cases. In the planetary atmospheres as we know them, r, is of the same 
order as 7, and so 2X will be a very small quantity. (In the case of the earth r, is largest for 
hydrogen, and even in that case we have seen above that it is equal only to 1:2387,; the 

corresponding value of X is 10~*.) We have retained all the terms containing X so that the 

formula for Zz might be applied to cases, if there be any, where 2 is no longer small. For our 
present purpose, we may now write 

Aart oy rte 2% | g To Go" 2q " O97. 
0’O on <{o—_ ie 

i le "Ta (3+ - *) — re ao (2+%2)). Secor eenon (7717) 
(hm)? qo% d 2rq 

As we have seen, this expression does not give the complete loss. We have still to caleulate 
the escape from the region 7, to rg, viz. 

2 
> 

- 
3 205 a 

dort otyerte- |e 407 _nm@,2 

T (hm)? (ee gue 

(/, . 262hm Vor se ( C2hm ) Var 
x i ae es ‘a G2 1— S ete —= d fe 

iC vv (GE, Jin) eo ( W(ENhm)/ 4b (@,Nhm) q 

where @, is a function of + determined by equation (7°13). This relation is so complicated as 

to preclude any hope of effecting the integration by analysis. Its value can only be obtained 

accurately in particular cases by quadrature. It is very easy, however, to get an idea of its order 
of magnitude. For since in this region %,>c,, the value of the above integral is less than it 

would be if @, were replaced by c,. It follows that the actual loss is less than 1.—the expression 

obtained by changing r, to rg wherever it occurs in (7:17)—while it is greater than Zz. Now 

very nearly. But by definition, equation (7°16), 
To 

rere = 142 
=1 

very approximately, so that 

ro To : 
which clearly depends primarily on the ratio of e"’ra to er... This we can easily find, for we have 
seen above, equations (7°10) and (7:11), that 

mqrolra _e’ta—1 
Er) v (Vqoro/ra) or, — 1 

i ee 

otros, =) hs eee OR Oe (7-18) 
approximately. The value of the left-hand side of this equation is easily obtained in particular 
cases from Table II, on page 542. It is small only when q)7/7ra is small. A rough calculation 
shows that if hydrogen existed on the moon with a molecular density at the surface of 10° per 
unit volume, g)7/7a is slightly less than 3°93 and the expressions (7°18) are equal approxi- 

mately to °5. 

Vor. XXII. No. XX VIII. ~J Lo 
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In such a case the region 7, to rg supplies at most a number of molecules equal to those which 

escape from above 7,;. We shall accordingly regard L, as giving with sufficient accuracy the loss 
in all other cases. So finally, we have, changing rg to r, in equation (7:17) and substituting for ’, 

es dor® ore 240 er, QoTo 4 
te "3 ari 

(hin) Gor ae 

ro 

_ 2th otutnyt o7 “ ave) See ea (719) 
(hm)? r, 

We may suppose that the statical molecular distribution, which is disturbed by the escape 
of these molecnles, is restored by processes of diffusion so that the loss occasioned by the evapor- 
ation of molecules from the region above 7, is made good by the diffusion of an equal number of 
molecules across the critical layer. 

If for any reason the level 7, could be regarded as fixed, equation (7°19) shows that the rate 

of loss would be proportional to the square of the molecular concentration at the base. In 
general, however, the height of this critical level is itself a function of ») and will gradually 

diminish as a result of the escape of molecules. The relation between it and » has been given 
above, equation (7°12), and when substituted in the expression for Z we find a remarkable 

simplification. Thus 
2hingry x 

0 Tie Qo? Gore Vy _ 4 (hm)? grte 

(h my? its Te 

which not only is independent of the size of the molecules but depends only on the first power 
of ». In calculating the time for an atmosphere to stream away, to which we proceed in the 

next section, we shall require both formulae, (7°19) and (7°20), for L. 

§ 8. The Time to lose a Simple Atmosphere. In an ideal atmosphere, such as we are now con- 

sidering, which consists of one gas only, the critical level r, will continue to descend until it 

reaches the surface of the planet. As we have seen the rate of loss of the atmosphere during this 
stage is given by equation (7°20) and is proportional to the first power of the molecular density 
at the base, but the critical height having become fixed, the formula (7:19) must be used and this 

involves the square of the density. 
In the first stage we have, if V be the total number of molecules present, 

dN __4(ahm)! grite 29" —= SO) a ualy Meee aA (S01 
dt T : ) 

oo ~ q 0 

Now W is given by N=| 4rrvdr= rnderrgren | e°rdr, 
On On) 

This is a divergent integral, but the difficulty is only formal and can be avoided by considering 
the atmosphere to have a ceiling of large radius R. We then get (using the first term of an 

asymptotic expression) 
un ye lk 

10 p N =47ry,72e-% |- eR ~] 
Dolo jr 

o 

Following Jeans*, we can get NV by a very simple method, thus: suppose the atmosphere to 

* Jeans, loc. cit., p. 345. 
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be equivalent to a layer of thickness H of uniform molecular density »,. Then at the base, the 

pressure of the gas is ymgH. But it is also »,/2h. Hence H= sa = 7 and so N =4crr?H as 

above. 
The equation (801) can accordingly be written 

dy, Saha, qe” 

dt 2(ah mye r 

which gives the law of diminution of », in the first stage of escape. Although /, contains 7,, it 

may with sufficient accuracy be regarded as constant. It is only when 7, occurs in an exponential 

term that it is important. 
Suppose that at time t=0, the value of », is (v)) and the corresponding value of the critical 

level is r,. The corresponding value of vy, when the critical level reaches the surface of the planet 

is easily seen from equation (7°12) to be 

(V)o _ | n (1-2) 

SE as ee nN et one (8:03) 

—— =¢ Tep ah se sotivne aeecacaseeescoecneasnense (8:04) 
Vy, ut 

be ema 

approximately. The value of », at any time is clearly 

Tl 1) 3a tec ee aanaeeeencetion bean cen cereeccoaccenecas: (8°05) 

and so the time for the change from (vy), to (v)’ 1s 

= Jog, (Yodo _ 90 (y _ % 
at 7 ky loge (»%) x k, 2 ) 

a. (arhin)® T-e% (1 _ 

qo Ye 

3975 

V2rr.eC C r See a eng comer 8-06 
V39r5 ( Ve ‘ ) 

if C is the average velocity of thermal agitation of the gas. 
In the second stage of the escape we have 

dN Qn? a2 r,s e-# =— : He amboneiaussererecAcuaar ean eson! (8:07 
dt (hm)? . 

1 
2 g2 edo 

which gives Bites “TSO rie 
dt 2 (hm)? 

a2 = [Spe cont nacsoscgccsntocobe saboon daseancuasens-ostese (8°08) 

say. 
The escape now proceeds much more slowly, for we have 

1 1 
Vo ae, emcee ence cence es eee reese seesesssases (8 09) 

and so the time to change from (1) to (1%) is 

iba at 1 
T.=— pF eae Teal ouinisiaielss ajs[elniuioisininipieio ele’ sle\nlelealeie a sivleree 8:10 

"ky {69 ort ‘ 

If (v,)” is one nth part of (1%), we can write 

ea ae RRA ee i) SR (8-11) 
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if n is large. The time now depends directly on the ratio n of the densities, whereas in the first 

stage it depended only on the logarithm of n. 
For example, suppose that the atmosphere of Mars consisted only of helium and that at a 

certain time in its history the molecular concentration at the surface of the planet was 10". Then 

supposing the temperature to be — 100°C., the time required for the critical layer to reach the 

surface of the planet is 6°98 x 10° years, the corresponding time for a temperature of 0° C. being 

3°88 x 10+ years. At the end of this period the basic molecular concentrations are 6°6 x 10° and 

4°17 x 10’ respectively. Afterwards the dissipation takes place much more slowly. It is easily seen 

that at the lower temperature it takes a further 1-4 x 10" years to reduce the density at the 

base to one nth of 66 x 10%. Various numerical values are given in the table at the end of the 

next section, where the effect of other atmospheric constituents is considered. 

§ 9. The Loss of a Mixed Atmosphere. Actually an atmosphere consists of one or more con- 

stituent gases and, according to the law formulated by Dalton, each is distributed as though it 

alone were present. We have already given a mathematical expression for the law of distribution. 

It is clear that the density falls off least rapidly in the case of the lightest gas, and so at very 

great heights the atmosphere consists of this constituent alone. Its loss by escape proceeds as in 

the case of a simple atmosphere just discussed if its critical level is at such a height that the 

density of the other gases present is there negligible. In the course of time, however, this critical 

level, in its gradual descent, will enter the region of the next heaviest and will then sink more 

slowly. At the same time, the character of the escape will change for the light gas will escape 

not only owing to collisions among its own molecules but also owing to collisions with the 

molecules of the second gas. The net effect of these two considerations requires investigation. 

The work of § 2 on the chance of a collision of one molecule of a gas with any other can easily 

be extended to a mixture of gases. Denoting as before the chance in time é by © (c)ét, we find 

in the case of two gases 
@ (c) =O nC) + Olin (©) aesen nian acess sw oss seneenereesemeeee (9:01) 

Ses Vine v(c Vim.) on 
where @,, (¢)= shin {isis Ada ecidian dees deen tase oete (9°02) 

The symbol o,, denotes the sum of the radii of the two different kinds of molecules. Arguing 

as before, the length of a free path is seen to be given by 

Gay Von (c Vhm) fn ve a zeal bose V hm) Iv. es 

Using the law of distribution 

= Gale () en (i-) 2 rae eee ee (9:04) 

with a corresponding expression for y,, we find for a molecule moving from a point 7 in a direction 

making an angle @ with the vertical, 

Se: et) ler ae reali gs ieee > 0 ey a 2) (vs ieee’. Dae Voy? Vv (evhm) (noe 7 ne eR | 4 VTS vic \ hig) (%)ye 7% fie tr | eee 

chm, ha Chime Qs 

The critical level for the first gas is obtained by putting c=2, R=, and @=0. The equation 

becomes 

; an Nn» a ~ 4 qe. ~ 

Ty" (V4 )o wef ™~— 1] + TO \" *(vs)p - = al ac re ae 1} =1. aisideieitiaiacy (9°05) 

ve 42 
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The unit terms in the brackets are in nearly all cases small in comparison with the other terms 

and can be neglected. The relation can then also be written in the form 

Our (Vi)e . Or (%), hor? 
a) ae ‘= — a Bi Seat CORR AeRCATe eee (9:06) 

where (7), and (v), are the respective molecular densities at the critical level. 

The escape of molecules from a spherical shell of radius r is then given by 

dL = 4arr*v, f, (u, ¥, w) 2c? sin Od@dedr {@,, (c) + Ox (c)}, 

and, using the methods of § 7, we then find 

dL = dy +dLQy., 

where dZ,, is the same as dL omen in equation (7°03) and 

fie 8104." | (hm) Vy V2" 2dr ie ewhme? evn (6 Vim) (1 SCO ANGE 
hins 

It can be shown that when this expression is integrated from the critical Saad r, to infinity, 

2 2 4 = aaa "0 ee 042° (hm,)? (14) (ve)o Te ie 2 [et @ = a 1) eee m, + Ms (er eS 1)| 

hms qoVo my 

un 
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approximately. Hence 
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We have already found a relation (equation (9°06)) for the function in the brackets and so we 

find a remarkable simplification, 

4 (ach)? 744 (v4) GE sai : 

This is precisely the same expression obtained for the escape of a simple atmosphere when 
the critical level is sinking. In this case the critical level will never become fixed until the 
heavier gases of the atmosphere have themselves streamed away to such an extent that the total 
density is so small that the critical level for all constituents is at the surface of the planet. The 
escape of the lightest element may be regarded as given by equation (9:09) throughout its entire 
escape, and is proportional at all times to the first power of the basic molecular concentration. 

As in the preceding section, we thus find 

dv, _ 
dt © 

as the law of escape, with the same meaning of k, as before. The time to reduce the density to 
one nth of its initial value is therefore given by 

pa Ben 
ey 

The loss of helium from Mars, assuming the presence of heavier constituents such as water 

vapour, has been calculated according to this law and the results are compared in the following 
table with the loss supposing it existed there alone. 

L= Sysreisiclart Seree Gena niciontdnecoregaateks (9:09) 

—k,v% 
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TABLE III. 

The Loss of Helium from Mars. (Time in years.) 

— 100°C. 0° Cc. 

as Simple Mixed Simple Mixed 
Atmosphere Atmosphere Atmosphere Atmosphere 

108 0 | 0 0 0 
10” ZO x OU eso texO2 1-58 x 10? 1:58 x 103 

10° 5Od xO? Se os9 2 x0? 3:16 x 10? 3°16 x 104 

66 x 10° 6°98 x10® | 6:98 x 10° 
4:17 x 107 | 3°88 x 10+ 3°88 x 10 

10° OF Tite Oe 8:91 x 10° 2-08 x 10° 4:74 x 103 

10° oii x Oe | 1:19 x 10” 2-08 x 10? 6°32 x 10 
104 SO tiealO | 1-49 x 10” 2:08 x 108 7-90 x 103 
10° O77 x 10" 1-79 x 10° 2:08 x 10° 9-48 x 10 

In the same way, the loss of the earth’s atmosphere can be considered. If we suppose hydrogen 
to exist with a basic concentration * of 1°89 x 10", then at a temperature of — 54° C., the number 

which escape per second is 1°5 x 10%. Its basic concentration will be reduced to 1°89 x 108 at the 
end of 2 x 10% years. The corresponding values for the temperature of 27° C., recently given by 
Lindemann and Dobson+, are 1°67 x 10% molecules per second and 2°68 x 10" years. 

It is evident that according to the present method the time of escape of an atmosphere is 
longer in all cases than that given by Jeans. For example, the times given by him for the complete 
loss of helium from Mars at the temperatures — 100° C. and 0° C. are respectively 10° and 10° years. 
All atmospheres retained according to Jeans’ calculations will a fortiori be retained according to the 
present method and so his main conclusions concerning the constitution of the atmospheres of the 

planets of the solar system are unaffected. We may likewise suppose that the results obtained 
by Milne? in the case of non-isothermal atmospheres by the more approximate method would be 

borne out by the methods of this paper. 
In conclusion, the author wishes to acknowledge his indebtedness to Mr R. H. Fowler, with 

whom he has had the privilege of discussing this paper in its various stages and from whom he 

has received many helpful suggestions. 

* Chapman and Milne, loc. cit., see also p. 541 above. + Lindemann and Dobson, Proc. Roy. Soc., Jan. 1923. 

t Milne, loc. cit. 
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