$$
=
$$

.

TRANSACTIONS

AMERICAN PHILOSOPHICAL SOCIETY

For pronoting useful knoivledge
vol. xix -NEW series.

$$
\frac{399443}{15.1 .42}
$$

MacCalla \& Company inc., Printers.
1s:

```
Q
O
v./
```


CONTENTSOF VOL. NIX.

PAKTI.
 MR'TICLE I.

A New Methol of Determining the General Perturhations of the Minor Planets. Jiy Willian McKnisht Ritter, M.A. \%
ABTICLE II.
An Exsty on the Development of the Mouth larts of Certain Insects. By John B. smith. Sc. D. (With is plates) . 1 .PARTII.ARTICLE III.
Some Experiments with the Saliva of the (iila Monster (Helorlerma suspectum). By John Van Denburgh, Ph.I). 199ARTICLE IV.
Results of hecent hesarches on the Exolution of the stellar systems. By T. J. J. see, A.M., Ph.D. (Berlin). (With 2 plates $2 \cdot 1$
Mr'ICLE V.
On the Glossophanime. By Harison Allen, M. W. (With IO platex) $3:$
ARTICLE VI.
The skull and Teeth of Eetophylla alhat. By Hamison Nllen, M.N. (With 1 pate) $\because 6$
『ARTIII.Al'TICLE V'II.
The Osteology of Elotherium. By W. H. scott. (With 2 plates) $\because \because:$ARTICLEVIII.
Notes on the Camide of the White River Oligereme. By W. B. soott. (With? paten) :30;
AN'TICLE IX
plates).$11:$
-

TRANSAOTIONS

OF TIIF:

AMERICAN PHILOSOPIICAL SOCIETY.

ARTICLE I.
A NEW METHOD OF DETERMLNING THE GENERAL PERTURBATIONS OF THE MLINOR PLANETS.
by william monight mitter, ma.
Read before the American Philosophical Society, February 28, 1896.

PREFACE.

In determining the general perturbations of the minor planets the principal difliculty arises from the large eccentricities and inclinations of these bodies. Methods that are applicable to the major planets fail when applied to the minor planets on account of want of convergence of the series. For a long time astronomers had to be content with finding what are called the special perturbations of these bodies. And it was not until the brilliant researches of IIAnsex on this subject that serious hopes were entertained of being able to find also the general perturbations of the minor planets. Haxsen's mode of treatment differs entirely from those that had been preriously employed. Instead of determining the perturbations of the rectangular of polar courdinates, or determining the variations of the elements of the orbit, he regards these elements as constant and linds what may be termed the perturbation of the time. The publication of his work, in which this new mode of treatment is given, entitled Auseinandersetzung einer zurchmässigen Methode sur Bercehnmy der absoluten
A. P. S -VOL. NIX. A

Stimungen der Fleinen I'lmeten, undoulbtedly marlis a great advance in the determination of the general perturbations of the heavenly bodies.

The value of the work is greatly enhanced by an application of the method to a numerical example in which are given the perturbations of Egeria produced by the action of Jupiter, Mars, and Saturn. And yet, notwithstanding the many exceptional features of the work commending it to attention, astronomers seem to have been deterred by the refined analysis and laborious computations from anything like a general use of the method; and they still adhere to the method of special perturbations developed by Lagrange. Hansen himself seems to have felt the force of the objections: to his method, since in a posthumous memoir published in 1875 , entitled Ueber die Stiorungen der grossen I'laneten, insbesondere des Jupiters, his former positive views relative to the convergence of series, and the proper angles to be used in the arguments, are greatly modified.

Hill, in his work, A New Theory of Jupiter aud Saturn, forming Vol. IV of the Astronomical Papers of the American Ephemeris, has employed Hansen's method in a modified form. In this work the author has given formule and developments of great utility when applied to calculations relating to the minor planets, and free use has been made of them in the present treatise. With respect to modifications in Hansex's origimal method made by that author himself, by Hila and others, it is to be noted that they have been made mainly, if not entirely, with reference to their employment in finding the general perturbations of the major planets.

The first use made of the method here given was for the purpose of comparing the values of the reciprocal of the distance and its odd powers as determined by the process of this paper, with the same quantities as derived according to Hansen's method. Upon comparison of the results it was found that the agreement was practically complete. To illustrate the application of his formule, Hansen used Egeria whose eccentricity is comparatively small, being about $\frac{1}{12}$. The planet first chosen to test the method of this paper has an eccentricity of nearly $\frac{1}{7}$. And although the eccentricity in the latter planet was considerably larger, the convergence of the series in both methods was practically the same. It was then decided to test the adaptability of the method to the remaining steps of the problem, and the result of the work has been the preparation of the present paper.

Hansex first expresses the odd powers of the reciprocal of the distance between the planets in series in which the angles employed are both eccentric anomalies. He then transforms the series into others in which one of the angles is the mean anomaly of the disturbing body. He makes still another transformation of his series so as to be able to integrate them.

In the method of this paper we at first employ the mean anomaly of the disturbed and the eccentric anomaly of the disturbing body, and as soon as we have the expressions for the odd powers of the reciprocal of the distance between the bodies, we make one transformation so as to have the mean anomalies of both planets in the arguments. These angles are retained unchanged throughout the subsequent work, enabling us to perform integration at any stage of the work.

In the expressions for the odd powers of the reciprocal of the distance we have, in the present method, the La l'lace coefficients entering as factors in the coeflicient: of the various arguments. These coeflicients have been tabulated by Ruvike in a work published by the Smitisonian Institution entitled New Tables for Delermining the I'alues of the Coefficients in the Perturbative Function of Planetery Motion; and hence the work relating to the determination of the expre-sions for the odd powerof the reciprocal of the distance is rendered comparatively short and simple.

In the expression for $د^{*}$, the square of the distance, the true anomaly is involved In the analysis we use the equivalent functions of the eccentric anomaly for those of the true anomaly, and when making the numerical computations we cause the eccentric anomaly of the disturbed body to disappear. This is accomplished by dividing the circumference into a certain number of erpal parts relative to the mean anomaly and employing for the eccentric anomaly its numerical values corresponding to the rarious values of the mean anomaly.

Having the expressions for the odd powers of the reciprocal of the distance in series in which the angles are the mean anomaly of the disturbed body and the eccentric anomaly of the disturbing body, we derive, in Chapter II, expre-sions for the J or Besselian functions needed in transforming the series found into others in which both the angles will be mean anomalies.

In Chapter III expressions for the determination of the perturbing function and the perturbing forces are given. Instad of using the force involving the true anomaly we employ the one involving the mean anomaly. The disturbing forces employed are those in the direction of the disturbed radius-rector, in the direction perpendicular to this radius-vector, and in the direction perpendicular to the plane of the orbit.

Having the forces we then find the function II by integrating the expression

$$
\|_{\|} \cdot d=A \cdot a_{\| g}^{d!}+B \cdot a r \cdot d!
$$

in which A, and B are factors easily determined.

From the value of $1 I^{\circ}$ we derive that of II $^{\top}$ by simple mechanical processes, and then the perturbations of the mean anomaly and of the radius-vector are found from

$$
\begin{aligned}
n \cdot \delta & =n \cdot \int^{\prime} \| \cdot d t \\
v^{\prime} & =-w_{2} \| \int \frac{d \|^{+}}{d \gamma} \cdot d t,
\end{aligned}
$$

γ being a particular form for g.
The perturbation of the latitude is given by integrating the equation
r being a factor found in the same mamer that A and B were.
It will be noticed that in finding the value of $n . \delta z$ two integrations are needed; in finding the perturbation of the latitude only one is required.

The arbitrary constants introduced by these integrations are so determined that the perturbations become zero for the epoch of the elements.

In all the applications of the method of this paper to different planets the circumference has been divided into sixteen parts, and the convergence of the different series is all that can be desired. In computing the perturbations of those of the minor planets whose eccentricities and inclinations are quite large, it may be necessary to divide the circumference into a larger number of parts. In exceptional cases, such as for Pallas, it may be necessary to divide the circumference into thirty-two part s.

In the different chapters of this paper the writer has given all that he conceives necessary for a full moderstanding of all the processes as they are in turn applied And he thinks there is nothing in the method here presented to deter any one with lair mathematical equipment from obtaining a clear idea of the means by which astrononers have been enabled to attain to their present knowledge of the motions of the hearenly bodies. The object always kept in mind has been to have at hand, in convenient form for reference and for application, the whole subject as it has been treated by Maysex and others. Thus in commection with Haxsex's derivation of the function II, to obtain clearer conceptions of some matters presented, the method of Brünnow for obtaining the same function has also been given. In some stages of the work where the experience of the writer has shown the need of particular care the work is
given with some detail. And while the writer is fully aware that here he may have exposed himself to criticism, it will suffice to state that he has not had in mind those competent of doing better, but rather the large class"of persons that seems to have been deterred thus far, by imposing and formidable-looking formula, from becoming acquainted with the means and methods of theoretical astronomy. In the present state of the science there is greatly needed a large body of computers and investigators, so as to secure a fair degree of mastery over the constantly growing material.

The numerical example presented with the theory for the purpose of illustrating the new method will be found to cover a large part of the treatise. The example is designed to make evident the main steps and stages of the work, espectially where these are left in any obscurity by the formula themselves. As a rule, the formula are given immediately in connection with their application and not merely by reference. It has been the wish to make this part of the treatise helpful to all who desire to exercise themselves in this field, and especially to those who desire to equip themselves for performing similar work.

The time required to determine the perturbations of a planet according to the method here given is believed to be very much less than that required by the ummodified method of Hansen. Nearly all the time consumed in making the transformations by his mode of proceeding is here saved. The coeflicients $b^{(i)}$ are much more quickly and readily found by making use of the tables prepared by Ruxkte, giving the values of these quantities. Doubtless experience will suggest still shorter processes than some of those here given and thas bring the subject within narrower limits in respect to the time required. If we compare the time demanded for the computation of the perturbations of the first order, with respect to the mass, produced by Jupiter, with the time needed to correct the elements after a dozen or more oppositions of the planet, computing three theoretical positions for each opposition, it is believet there will not be much difference, if any, in favor of the latter.

Again, when we wish to find only the perturbations of the first order, experience will show where many abridgments may safely be made. And whenerer the positions of these bodies are made to depend upon those of comparison stars whose places are often not well determined, it will be found that the quality of the observed data does not justify refinements of calculation.

One of the things most needed in the theory of the motions of the minor planets is a general analytical expression for the perturbing function which may be applicable to all these small bodies. Thus if we had given the value of $a \Omega$ in terms of a periodic series, with literal coeflicients and with the mean anomalies of the planets as the argu-

$$
\text { A. P. S.-VOL. XIX. } \mathrm{B} \text {. }
$$

ment, we would at once have $u_{d!}^{d!g}$ by differentiation. And since

$$
r_{d r}^{d!}=a_{d u}^{d!}
$$

only two multiplications would be needed in finding the value of $\frac{d}{n} \cdot \frac{W}{d}$, whose expression has been given above.

In the present paper we have dealt only with the perturbations of the first order with respect to the mass. The method has been employed in determining those of the second order also for two of the minor planets; but as those of Althea, the planet employed in our example, have not yet been found, it was thought best not to give anything on the subject of the perturbations of the second order, until the perturbations of this order, in case of this body, are known.

The writer desires here to record his obligations to Prof. Edgar Frisby, of the U. S. Naval Observatory, Washington, D. C., and to Prof. George C. Comstock, Director of the Washburne Observatory, Madison, Wis., for kindly furnishing him with observations of planets that had not recently been observed; to Mr. Cleveland Keith, Λ ssistant in the office of the American Ephemeris, for most valuable assistance in securing copies of observed places. And to Prof. Monroe B. Snyder, Director of the Central High School Observatory, Philadelphia, he is under special obligations for the interest manifested in the publication of this work, and for continued aid and most valuable suggestions in getting the work through the press.

CIIAPTER I.

Development of the Reciprocal of the Distance Between the Plancts and its Odd Powers in Periodic Series.

The action of one body on another under the influence of the law of gravitation is measured by the mass divided by the square of the distance. If then Δ be the distance between any two bodies, this distance varying from one instant to another, it will be necessany to find a convenient expression for $\binom{1}{j}^{2}$ in terms of the time. If r and r^{\prime} be the radii-vectores of the two bodies, the accented letter always referring to the disturbing body, we have

$$
\Delta^{2}=r^{2}+r^{2}-2 r r^{2} I I .
$$

If we introduce the semi-major axes a, a, which are constants, and their relation $\alpha={ }_{a}^{a^{\prime}}$, we obtain

$$
\begin{equation*}
\binom{\perp}{a}^{2}=\binom{r}{a}^{2}+\binom{a^{\prime}}{u^{\prime}}^{2} u^{2}-2\binom{r}{a}\binom{n^{\prime}}{a^{\prime}} u I I, \tag{1}
\end{equation*}
$$

II being the cosine of the angle formed by the radii-vectores.
Let the origin of angles be taken at the ascending node of the plane of the disturbed, on the plane of the disturbing, body. Let II, II', be the longitudes of the perihelia measured from this point; also let f, f^{\prime}, be the true anomalies. The angle formed by the radii-vectores is $\left(f^{\prime \prime}+11^{\prime}\right)-(f+11)$; and the angles $f+11, f+11$, being in different planes, we have

$$
\begin{equation*}
I I=\cos (f+\Pi) \cos \left(f^{\prime \prime}+\Pi I^{\prime}\right)+\cos I \sin \left(f^{\prime}+\Pi\right) \sin \left(f^{\prime \prime}+\Pi I^{\prime}\right), \tag{2}
\end{equation*}
$$

I being the mutual inclination of the two planes.
To find the values of H, H, I, let $\$$ be the angular distance from the ascending node of the plane of the disturbed body on the fumdamental plane to its ascending
node on the plane of the disturbing body. Let $\&$ be the angular distance from ascending node of the plane of the distubing body on the fundamental plane to the same point.

If x, x, we the longitudes of the perihelia,
Q, δ_{0}^{\prime}, the longitudes of the ascending nodes on the fundamental plane adopted, which is gencrally that of the ectiptic, we have

$$
\begin{equation*}
\Pi=\pi-\delta b-\Phi, \quad \Pi^{\prime}=\theta^{\prime}-\delta^{\prime}-\psi . \tag{3}
\end{equation*}
$$

The angles $\Phi, \dot{4}, \delta-\delta^{\prime}$, are the sides of a spherical triangle, lying opposite the angles $i, 180-i, I$,
i, i, being the inclination of disturled and disturbing body on the fundamental plane.

The angles I, Φ, \downarrow, are found fiom the equations

$$
\left.\begin{array}{rl}
\sin \frac{1}{2} I \sin \frac{1}{2}(\psi+\Phi) & =\sin \frac{1}{2}\left(\Omega-\delta^{\prime}\right) \sin \frac{1}{2}(i+i) \\
\sin \frac{1}{2} I \cos \frac{1}{2}(\psi+\Phi) & =\cos \frac{1}{2}\left(\delta-\delta^{\prime}\right) \sin \frac{1}{2}\left(i-i^{\prime}\right) \\
\cos \frac{1}{2} I \sin \frac{1}{2}(\psi-\Phi) & =\sin \frac{1}{2}\left(\Omega-\delta^{\prime}\right) \cos \frac{1}{2}(i+i) \tag{4}\\
\cos \frac{1}{2} I \cos \frac{1}{2}(\psi-\Phi) & =\cos \frac{1}{2}\left(\delta-\delta^{\prime}\right) \cos \frac{1}{2}\left(i-i^{\prime}\right)
\end{array}\right\}
$$

In using these equations when Ω is less than δ^{\prime} we must take $\frac{1}{2}\left(360^{\circ}+\delta_{-}-\delta^{\prime}\right)$ instead of $\frac{1}{2}\left(\Omega-\delta^{\prime}\right)$.

We have a check on the values of I, Φ, ψ, by using the equations given in HanSEx's posthamous memoir, p. 276.

Thus we have

$$
\begin{align*}
\cos p \cdot \sin q & =\sin i \cdot \cos \left(\Omega-\Omega^{\prime}\right) \\
\cos p \cdot \cos q & =\cos i^{\prime} \\
\cos p \cdot \sin r & =\cos i^{\prime} \cdot \sin \left(\Omega-\Omega^{\prime}\right) \\
\cos p \cdot \cos r & =\cos \left(\Omega-\Omega^{\prime}\right) \\
\sin p & =\sin i^{\prime} \sin \left(\Omega-\Omega^{\prime}\right) \\
\sin I \sin \Phi & =\sin p \tag{5}\\
\sin I \cos \Phi & =\cos p \cdot \sin (i-q) \\
\sin I \sin (4-r) & =\sin p \cdot \cos (i-q) \\
\sin I \cos (4-r) & =\sin (i-q) \\
\cos I & =(0) p \cdot \cos (i-q)
\end{align*}
$$

To develop the expression for $\binom{d}{a}$, we put

$$
\begin{align*}
\cos I \cdot \sin \Pi^{\prime} & =k \sin K^{\prime}, \quad \sin I^{\prime} \tag{6}
\end{align*}=k_{1} \sin K_{1,}^{\prime},
$$

and hence

$$
\begin{aligned}
I I= & \cos f^{\prime} \cdot \cos f^{\prime \prime} \cdot k \cos \left(\Pi-K_{1}^{\prime}\right)+\cos f^{\prime} \cdot \sin f^{\prime \prime} \cdot k_{1} \sin \left(\Pi-K_{1}\right) \\
& -\sin f^{\prime} \cdot \cos f^{\prime} \cdot k \sin \left(\Pi-K^{\prime}\right)+\sin f^{\prime} \cdot \sin f^{\prime} \cdot k_{1}^{\prime} \cos \left(\Pi-K_{1}^{\prime}\right) .
\end{aligned}
$$

Introducing the eccentric amomaly ε, we have

$$
\cos f={ }_{r}^{a}\left(\cos \varepsilon-e^{\prime}, \quad \sin f={ }_{r}^{a} \cdot \cos \phi \cdot \sin \varepsilon,\right.
$$

e being the eccentricity, and ϕ the angle of eccentricity; and find

$$
\begin{aligned}
& r \\
&{ }_{a}^{r} \cdot{ }^{r^{\prime}} \cdot I I=\cos \varepsilon \cdot \cos \varepsilon^{\prime} \cdot k^{\prime} \cos \left(\Pi-K^{\prime}\right)-\cos \varepsilon^{\prime} \cdot c k \cos (H-K) \\
&-\cos \varepsilon \cdot e^{\prime} k \cos (\Pi-K)+\epsilon e^{\prime} k \cos \left(\Pi-K^{\prime}\right) \\
&+\cos \varepsilon \cdot \sin \varepsilon^{\prime} \cdot \cos \phi^{\prime} \cdot k_{1} \sin \left(\Pi-K_{1}^{\prime}\right)-\sin \varepsilon^{\prime} \cdot e \cdot \cos \phi^{\prime} \cdot k_{1}^{\prime} \sin \left(H-K_{1}^{\prime}\right) \\
&-\sin \varepsilon \cdot \cos \varepsilon^{\prime} \cdot \cos \phi \cdot k \sin \left(\Pi-K^{\prime}\right)+\sin \varepsilon \cdot e^{\prime} \cdot \cos \phi \cdot k \sin \left(I 1-K^{\prime}\right) \\
&+\sin \varepsilon \cdot \sin \varepsilon^{\prime} \cdot \cos \phi \cdot \cos \phi^{\prime} \cdot k_{1} \cos \left(I I-K_{1}^{\prime}\right) \cdot
\end{aligned}
$$

Substituting the value of $\begin{array}{cc}r & { }_{n}^{\prime} \\ r^{\prime} & a^{\prime}\end{array}$. I in the expression for $\binom{d}{11}^{2}$ we have

$$
\begin{aligned}
& \binom{\lrcorner}{ a}^{2}=1+a^{2}-2 e \cdot \cos \varepsilon+e^{2} \cos ^{2} \varepsilon-2 \alpha \epsilon e^{\prime} k \cos \left(I 1-K^{\prime}\right) \\
& +2 \alpha e^{\prime} k \cos \left(11-K^{\prime}\right) \cos \varepsilon-2 \alpha e^{\prime} \cos \phi \cdot k \sin \left(11-K^{*}\right) \sin z
\end{aligned}
$$

$$
\begin{aligned}
& -2 k \cos \phi \cdot k \cdot \sin (11-K) \sin r] \cdot \cos r^{\prime} \\
& -\left[-2 u e \cos \phi^{\prime} \cdot k_{1} \sin \left(11-\boldsymbol{K}_{1}\right)+2 u \cos \phi \cos \phi^{\prime} \cdot k_{1} \cos \left(11-\boldsymbol{\Lambda}_{1}\right) \sin \right. \\
& \left.+2 u \cos q^{\prime} \cdot k_{1} \sin \left(11-K_{1}\right) \cos \varepsilon\right] \cdot \sin \varepsilon^{\prime} \\
& +a^{2} \ell^{\prime 2} \cdot \cos ^{2} k^{\prime} \text {. }
\end{aligned}
$$

Putting $\gamma_{1}, \beta_{1}, \gamma_{2}$, for the cocthcients of $\cos \varepsilon^{\prime}$, sin \therefore, $\cos { }^{*} \varepsilon^{\prime}$, respectively, and γ_{1} for the term not affected by cos z^{\prime} or sin f^{\prime}, we have the abbeviated form

$$
\begin{equation*}
\left(\frac{1}{1}\right)^{2}=\gamma_{11}-j \cdot \cos z^{\prime}-\beta_{0} \cdot \sin +j \cdot \cos \frac{1}{\gamma} \cdot \tag{6}
\end{equation*}
$$

In this expression for $\binom{1}{11}^{2}, \gamma_{1}, \gamma_{1}$, and ζ_{0} are functions of the eccentric anomaly of the distmbed body; γ_{2} is a constant and of the order of the square of the eccentricity of the disturbing body.

In the method here followed the circumference in case of the disturbed body will be divided into a certain number of equal parts with respect to the mean anomaly, g. The various values of g will then be $0^{\circ}, \frac{360^{\circ}}{n}, 2 . \frac{360^{\circ}}{n}, 3 . \frac{360^{\circ}}{n}, \ldots . n-1 . \frac{360^{\circ}}{n}$.

For each numerical value of g, the corresponding value of ε is found from

$$
y=\varepsilon-e \sin \varepsilon .
$$

Before substituting the numerical values of $\cos \varepsilon, \sin z$, for the n divisions of the circumference, the expressions for $\left.\gamma_{1}, \gamma_{1},\right\}_{0}$, will be put in a form most convenient for computation.

Let

$$
\left.\begin{array}{l}
p \cdot \sin P^{P}=2 u_{e}^{2 e^{\prime}}-2 u k \cos \left(\Pi-\Pi^{\prime}\right) \tag{8}\\
p \cdot \cos P=2 u \cos \phi^{\prime} k_{1} \sin \left(\Pi-K_{1}^{\prime},\right.
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
\beta_{0}=f \cdot \sin F \tag{9}\\
\gamma_{1}=f \cdot \cos F^{\prime}
\end{array}\right\}
$$

we find
$\beta_{0}=f \sin H^{\prime}=2 \mu \cdot \cos \phi \cdot \cos \phi^{\prime} \cdot k_{1} \cos \left(\Pi-K_{1}\right) \cdot \sin \varepsilon+p \cos P \cdot \cos \varepsilon-e p \cdot \cos P$ $\gamma_{1}=f \cos F=\left(2 x^{2} e_{e}-p \sin P\right) \cdot \cos \varepsilon-2 \ell \cdot \cos \phi \cdot k \sin (\Pi-K) \cdot \sin \varepsilon+e p \cdot \sin P \cdot$

And from these equations we find, since

$$
\begin{aligned}
& f^{\prime} \cdot \sin (F-P)=f^{\prime} \cdot \sin F \cos P-f \cos F \cdot \sin P \\
& f \cdot \cos (F-P)=f^{\prime} \cos F \cdot \cos P+f \sin F \cdot \sin P
\end{aligned}
$$

$f^{\prime} \cdot \sin \left(F-l^{\prime}\right)=\left[2 \cdot \cdot \cos \phi \cdot \cos \phi^{\prime} \cdot k_{1} \cos \left(\Pi-k_{1}^{\prime}\right) \cdot \cos P\right.$
$+2 \alpha \cdot \cos \phi \cdot k \sin (\Pi-K) \cdot \sin P] \cdot \sin \varepsilon+\left[p-2 \alpha^{2} e_{e}^{\prime} \sin P\right] \cdot \cos \varepsilon-c P$
$f \cdot \cos \left(H-\mu^{\prime}\right)=\left[Z_{2} \cdot \cos \phi \cdot \cos \phi^{\prime} \cdot h_{i} \cos \left(\Pi-K_{1}\right) \cdot \sin P\right.$

- $\left.\underline{q}_{2} u \cdot \cos \phi \cdot k \cdot \sin \left(11-K^{\prime}\right) \cdot \cos P\right] \cdot \sin \varepsilon+2 \alpha^{2} \cdot e^{\prime} \cdot \cos P \cdot \cos \varepsilon$

If we now put

$$
\begin{align*}
v \sin V & =2 \alpha \cdot \cos \phi \cdot k \sin \left(11-K^{\prime}\right) \\
v \cos V & =2 \alpha \cdot \cos \phi \cdot \cos \phi^{\prime} \cdot k_{1} \cos \left(11-h_{1}^{\prime}\right) \\
w \sin W & =P-2 u^{2} \cdot{ }^{\prime \prime} \tag{10}\\
w \cos W & =v \cdot \cos \left(V-P^{\prime}\right) \\
w_{1} \sin W_{1} & =v \cdot \sin (V-P) \\
w_{1} \cos H_{1} & =2 \alpha^{2} \cdot e^{\prime} \cdot \cos P
\end{align*}
$$

we gret

$$
\begin{align*}
f \cdot \sin \left(F-I^{\prime}\right) & =w \cdot \sin (\varepsilon+W)-e p \\
f \cdot \cos \left(F-l^{\prime}\right) & =w_{1} \cdot \cos \left(\varepsilon+W_{1}\right) . \tag{11}
\end{align*}
$$

Further, if we put

$$
\begin{equation*}
I^{\prime}=1+u^{2}-2 u^{2} \cdot e^{\prime 2}, \tag{12}
\end{equation*}
$$

we have

$$
\gamma_{0}=l-\varrho^{2} e \cdot \cos \varepsilon+e^{2} \cdot \cos ^{2} \varepsilon+e^{\prime} \gamma_{1}
$$

or,

$$
\begin{equation*}
\gamma_{0}=R-2 e \cdot \cos \varepsilon+e^{2} \cdot \cos ^{2} \varepsilon+e^{\prime} \cdot f \cos I^{\prime} . \tag{1:3}
\end{equation*}
$$

We find the value of γ_{2} from

$$
\gamma=u^{2} \cdot e^{\prime}
$$

The constants, $k, K_{i}^{-}, k_{i}, k_{i}^{*}, p, P, w, H^{+}, w, W_{i}^{\top}, R$, are found, once for all, from the equations given above. For every value of ε we have the corresponding value of f and F from equations (11); hence, also the values of $f^{\prime} \sin f^{\prime}, f^{\prime} \cos F^{\prime}$, which are the values of β_{0} and γ_{1}. Equation (13) furnishes the value of γ_{0} by substituting in the various numerical values of ε, as was done for β_{0} and γ_{1}. The value of the coeflicient γ_{2} being constant, we thus have given the values of $\left(\begin{array}{l}d\end{array}\right)^{2}$ for as many points along the circumference as there are divisions.

We can put

$$
\binom{J}{11}^{2}=\gamma_{11}-\gamma_{1} \cos \varepsilon^{\prime}-\beta_{0} \cdot \sin \varepsilon^{\prime}+\gamma_{2} \cdot \cos \cdot{ }^{2} \varepsilon^{\prime}
$$

in the form

$$
\begin{equation*}
\binom{\lrcorner}{ n}^{2}=\left[C-q \cdot \cos \left(\varepsilon^{\prime}-Q_{0}\right)\right]\left[1-q_{1} \cdot \cos \left(\varepsilon^{\prime}-Q_{1}\right)\right], \tag{14}
\end{equation*}
$$

in which the fictor $1-q_{1} \cdot \cos \left(\varepsilon^{\prime}-\ell_{1}\right)$ differs little from unity. For this purpose, if we perform the operations indicated in the second expression, and then compare the coellicients of like terms, we find

$$
\begin{aligned}
\gamma_{0} & =C+q \cdot q_{1} \sin Q \cdot \sin Q_{1} \\
\gamma_{1} & =q \cdot \cos Q+q_{1} \cdot\left(\cos Q_{1}\right. \\
\gamma_{2} & =q \cdot \dot{q}_{1} \cdot \cos \left(Q+Q_{1}\right) \\
\beta_{0} & =q \cdot \sin Q+q_{1} \cdot C^{\prime} \sin Q_{1} \\
0 & =\sin \left(Q+Q_{1}\right) .
\end{aligned}
$$

The last of these equations is satisfied by putting

$$
Q_{1}=-Q
$$

The remaining equations then take the form

$$
\left.\begin{array}{l}
\gamma_{0}=\left(-q \cdot q_{1} \cdot \sin \because Q\right. \\
\gamma_{1}=\left(q+q_{1} \cdot C\right) \cdot \cos Q \tag{15}\\
\gamma_{2}=q \cdot q_{1} \\
\beta_{0}=\left(q-q_{1} \cdot C\right) \cdot \sin Q
\end{array}\right\}
$$

The expressions

$$
\left.\begin{array}{l}
q \cdot \sin \left(l=r_{1}+5\right. \tag{16}\\
q \cdot \cos Q=r_{1}-n \\
q_{1} \cdot C \cdot \sin (l=E \\
q_{1} \cdot C \cdot \cos \left(l=r_{1}\right.
\end{array}\right\}
$$

satisfy the relations expressed by the second and fourth of equations (15), where $C^{\prime}=\gamma_{n}+\zeta$.

We have now to find expressions for the small quantities ξ, r, ζ found in these equations.

Equations (16) give

$$
q \cdot q_{1} \cdot C \sin ^{2} Q=\left(\beta_{0}+\check{5}\right) . \check{\check{n}}
$$

The equation

$$
\gamma_{0}=r-q \cdot q_{1} \sin ^{2} Q
$$

then becomes

$$
\left(\gamma_{1}+\zeta\right) \zeta=\left(\zeta_{0}+5\right) \underline{z}
$$

From (16) we have, also,

$$
q \cdot q_{1} \cdot r^{\prime}=\left(\beta_{0}+\tilde{x}_{1}\right)+\left(\gamma_{1}-\gamma_{1}\right) \gamma_{0}
$$

from which, since $\gamma_{2}=q \cdot q_{1}$, and $C=\gamma_{0}+\zeta$, we obtain

$$
\begin{equation*}
\left(\gamma_{\theta}+\zeta\right) \cdot \gamma_{2}=\left(\beta_{0}+\Sigma\right){ }_{n}+\left(\gamma_{1}-\gamma\right) \gamma_{0} \tag{b}
\end{equation*}
$$

Equations (16) gire again

$$
\begin{equation*}
\left(r_{1}-r_{1}\right) \underline{E}=\left(\beta_{1}+5\right) r \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
\left(\gamma_{0}+\zeta\right)\left(\gamma_{2}-\zeta\right)=\left(\gamma_{1}-\gamma_{1}\right) \cdot n_{0} \tag{d}
\end{equation*}
$$

gives r when $弓$ is known.
The equations (a) and (c) give

$$
\begin{aligned}
& \beta_{0}^{2}+4\left(\gamma_{0}+\zeta\right) 弓=\left(\beta_{1}+25\right)^{2} \\
& \beta_{0}+2 E=\gamma_{1} \cdot{ }_{\gamma} ;
\end{aligned}
$$

and hence

$$
3_{n}^{2}+4(i, j) \zeta=\gamma_{1}^{2}
$$

A. P. S. - vol. xix. e.

Deduce the values of $\dot{b}_{0}+5, \gamma_{1}-\gamma_{1}$ from（ (1) and (d) ，substitute them in（c），we find

$$
y_{z}^{y_{n}^{2}}=i_{n}^{i}
$$

The last equation then takes the form

$$
\begin{equation*}
0=\gamma_{1}^{2} \cdot 弓-\zeta_{11}{ }^{2}\left(\gamma_{2}-\zeta\right)-4\left(\gamma_{0}+\zeta\right)\left(\gamma_{2}-\zeta\right) \cdot \zeta \tag{e}
\end{equation*}
$$

This equation furnishes the value of $弓$ ：and with ζ known，we find \tilde{y}^{2}, r_{1} ，from equations already given．＇The three equations giving the values of the quantities sought are

$$
\left.\begin{array}{rl}
\zeta^{2}+\left(\gamma_{0}-\gamma_{2}\right) \zeta^{2}+\frac{1}{1} \cdot\left(\gamma_{1}^{2}+\beta_{0}{ }^{2}-4 \gamma_{0} \cdot \gamma_{2}\right) \zeta-\frac{1}{1} \cdot 弓_{0}^{2} \cdot \gamma_{2} & =0 \\
z^{2}+\beta_{0} \cdot \underline{b}-\left(\gamma_{1}+\zeta\right) \zeta & =0 \\
\gamma_{1}^{2}-\gamma_{1} \cdot \gamma_{1}+\left(\gamma_{1}+\zeta\right)\left(\gamma_{2}-\zeta\right) & =0
\end{array}\right\}
$$

Finding the values of $\check{5}$ ．r_{2} ，from these equations，and arranging with respect to γ_{2} ， preserving only the first power，we have

$$
\left.\begin{array}{l}
\zeta=\gamma_{1}^{2} \bar{\beta}_{1} \cdot \gamma_{2} \\
\check{y}=\gamma_{1} \cdot \bar{\beta}_{0} \tag{g}\\
\gamma_{2}^{2} \cdot \gamma_{0} \cdot \gamma_{2} \\
r_{1}=\gamma_{12}^{2} \cdot \gamma_{1} \bar{x}_{2} \cdot \gamma_{2}
\end{array}\right\}
$$

Substituting these values in equations（16），they become
noting that $C=\gamma_{n}+弓$.
If more accurate values of ζ ．点，r．are needed than those given by equations (g) ， we proceed as follows：
substitute the value of ζ given by (g) in the second term of the first of equa－ tions（ f ），we find，up to terms including γ^{2} ，

The last two of (f) give also

Introducing the values of $f,{ }^{\prime}$, given by (11), putting.

$$
\begin{align*}
& x=\gamma+4 \cdot \gamma, 2 \cdot \cos H \\
& x^{\prime}=\gamma-4 \cdot \gamma, \sin ^{2} y \tag{19}
\end{align*}
$$

we have

$$
\zeta=\chi \cdot \sin \cdot r^{\prime}
$$

so that

$$
\begin{equation*}
\prime^{\prime}=\gamma_{1}+\chi \cdot \sin ^{2} l^{\prime}{ }^{\prime} \tag{2}
\end{equation*}
$$

Moreover, since

$$
\gamma_{2}-\zeta=\chi^{\prime} \cdot \cos ^{*} r^{\prime}
$$

we find from the expressions for ${ }^{5}, r_{\text {. }}$, given above,

$$
\begin{aligned}
& 夕_{n}=f \cdot g^{\prime} \cdot \sin f \\
& r-r=f \cdot r^{\prime} \cdot \cos f
\end{aligned}
$$

if

$$
\begin{align*}
& =1+{ }^{0} \%-\left(\begin{array}{c}
1 \% \\
1 \\
\cdots
\end{array}\right)^{2} \\
& r^{\prime}=1-{ }^{\prime} \prime^{\prime}-\left(\prime^{\prime} y^{\prime}\right)
\end{align*}
$$

Substituting these in the expressions for if sin (). I con (). they beerome

$$
\begin{aligned}
& y \sin !=f=\pi \cdot \sin l \\
& y \cos r=f \cdot r_{0} \cdot \cos r
\end{aligned}
$$

The value of q_{1} is found from

$$
\begin{equation*}
q_{1}=\gamma_{q}^{\gamma_{2}} \tag{23}
\end{equation*}
$$

The quantities q, \not, , (can be expressed in another manner. The equations (22) give

$$
\begin{aligned}
& \text { ty } Q=\frac{\gamma^{\prime}}{\prime \prime} \cdot \operatorname{tg} F \\
& q^{\prime}=f^{\prime 2} \cdot z^{\prime 2} \cdot \sin ^{2} F+f^{\prime 2} \cdot r_{1}^{\prime 2} \cdot \cos ^{2} F^{\prime} ;
\end{aligned}
$$

from which we derive

$$
\begin{aligned}
& q=F^{\prime}+\frac{Y^{\prime}}{\xi^{\prime}}-r^{\prime} \cdot \sin 2 F+\frac{1}{2}\left(y^{\prime}-r_{1}^{\prime}\right)^{2} \cdot \sin 4 F+\text { etc. } \\
& \log \cdot q=\log \cdot r^{\prime}+\frac{1}{2} \log \cdot\left(\tilde{h}^{\prime \prime} \cdot \sin ^{2} F^{\prime}+r_{1}^{\prime 2} \cos { }^{2} F^{\prime}\right) .
\end{aligned}
$$

Since $\chi^{\prime 2}$ and $\chi^{\prime 2}$ agree up to terms of the third order, the equations for ξ^{\prime} and r^{\prime} give

$$
\frac{z^{\prime}-r_{1}^{\prime}}{\xi^{\prime}+r_{1}^{\prime}}=\frac{\theta^{\prime}\left(y+x^{\prime}\right)}{\left.2 f^{2}\right)}
$$

or,

$$
\frac{\xi^{\prime}}{\xi^{\prime}+\gamma_{1}^{\prime}}=\frac{r_{0} \gamma_{2}}{f^{2}}+\frac{r_{2}^{2}}{2 f^{2}}+\left(2 \frac{\gamma_{0}^{2} \gamma_{2}^{2}}{f^{3}}-\frac{\gamma_{2}^{2}}{2 f^{2}}\right) \cos 2 F
$$

Further

$$
\operatorname{s}^{2} \sin ^{2} F+r_{1}^{\prime 2} \cos ^{2} F=1+2 \frac{C}{f^{2}}\left(\chi \cdot \sin ^{2} F-\chi^{\prime} \cos ^{2} F\right)-\left(\begin{array}{c}
C \frac{\alpha}{f^{2}}
\end{array}\right)^{2}
$$

and

$$
\begin{aligned}
\frac{1}{2} \log \cdot\left(5^{\prime 2} \sin ^{2} F+r_{1}^{\prime 2} \cos ^{2} F\right) & ={ }_{f^{2}}^{C}\left(\chi \sin ^{2} F-\chi^{\prime} \cos ^{2} F\right) \\
& -\frac{C^{2}}{f^{4}}\left(\chi \sin ^{2} F-\chi^{\prime} \cos ^{2} F\right)^{2}-\frac{1}{2}\left(\frac{C^{\prime}}{f^{2}}\right)^{2}
\end{aligned}
$$

Substituting the values of χ, χ^{\prime}, C, given before, we find

$$
\begin{aligned}
& \frac{C}{f^{2}}\left(\chi \sin { }^{2} H^{\prime}-\chi^{\prime} \cos ^{2} F\right)=\frac{\gamma_{1}^{2} \gamma_{2}^{2}}{f^{2}}+\frac{\gamma_{2}^{2}}{4 f^{2}}-\left(\frac{\gamma_{0} \gamma_{2}}{f^{2}}+\frac{\gamma_{2}^{2}}{2 f^{2}}\right) \cos 2 F \\
&-\left(\frac{\gamma_{0}^{2} \gamma_{2}^{2}}{f^{4}}-\frac{\gamma_{2}^{2}}{4 f^{2}}\right) \cos 4 F \\
&\binom{C_{\gamma}^{\prime}}{f^{2}}^{2}= \\
& \gamma_{1}^{2}
\end{aligned}
$$

The equation $\gamma_{2}=q \cdot q_{1}$ gives

$$
\log \cdot \gamma_{2}=\log \cdot q+\log \cdot q_{1}
$$

Putting

$$
\log \cdot q=\log \cdot f+y
$$

we have for q_{1}

$$
\log \cdot q_{1}=\log \cdot r_{f}^{r}-y .
$$

Writing s for the number of seconds in the radius, and \% for the modulus of the common system of logarithms, we find

$$
\left.\begin{array}{rl}
\eta & =r+c \tag{24}\\
\log \cdot \eta & =\log \cdot f+y \\
\log \cdot y_{1} & =\log \cdot \frac{f}{f}-y
\end{array}\right\}
$$

in which

And for C we have from the first of (15)

$$
\begin{equation*}
r=\gamma_{11}+\gamma_{2} \cdot \sin \theta_{2} \tag{26}
\end{equation*}
$$

By means of the last three equations we are enabled to find the values of (), q, q_{1} (,', with the greatest accuracy. The equations (17), where not sufficiently approximate, will, neverthelese, furnish a good check on the values of these quantities. All the quantities in the expression for $\binom{d}{a}^{2}$ are thus known; and substituting their values corresponding to the varions values of g, we have the values of $\binom{d}{d}^{2}$ for the different points of the circumference.

I'sing the values of ($, \nmid, y_{1}$, ,, , just found, Hill, in his New Theory of Jupiter and , seturn, has given another expression for $\binom{d}{1}$ which we shall employ.

To transform

$$
\binom{\mathrm{J}}{\text { l1 }}^{2}=\left(C-q \cdot \cos \left(z^{\prime}-Q\right)\right)\left(1-q_{1} \cdot \cos \left(\xi^{\prime}+(Q)\right)\right.
$$

into the required form we put
'Ihen

Substituting the values of a, b, N, we get

$$
\begin{equation*}
\binom{a}{\jmath}^{n}=N^{n}\left[1+a^{\prime}-2 a \cos \left(\varepsilon^{\prime}-(\Omega)\right]^{-n}\left[1+b^{2}-\underline{2} \cos \left(\varepsilon^{\prime}+Q\right)\right]^{-n}\right. \tag{28}
\end{equation*}
$$

We compute the values of a, b, N, corresponding to the different values of g, and check by finding the sums of the odd and the even orders, which should be nearly the same. If we put

$$
\begin{aligned}
& {\left[1+a^{2}-2 a \cos \left(\varepsilon^{\prime}-()\right]^{-s}=\left[\frac{1}{2} b^{(1)}+b^{(1)} \cdot \cos \theta+b^{(2)} \cdot \cos 29+b^{(2)} \cdot \cos 39+\text { ctc. }\right]\right.} \\
& {\left[1+b^{2}-2 b \cos \left(\varepsilon^{\prime}+Q\right)\right]^{-s}=\left[\frac{1}{2} B^{(0)}+B^{(1)} \cdot \cos \left(\varepsilon^{\prime}+Q\right)+B^{2)} \cdot \cos 2\left(\varepsilon^{\prime}+Q\right)+\text { etc. }\right]}
\end{aligned}
$$

$$
\text { where } s=\frac{n}{2}, \theta=\varepsilon^{\prime}-\ell, \text { we are enabled to make use of coefficients already known. }
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
J_{11}
\end{array}\right)^{2}=\left(\left[1-\sin \chi \cdot \cos \left(\varepsilon^{\prime}-Q\right)\right]\left[1-\sin \chi_{1} \cdot \cos \left(\varepsilon^{\prime}+Q\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{C\left[1+\operatorname{tg}^{2}-\frac{1}{2} \chi-2 \operatorname{tg} \frac{1}{2} \chi \cos \left(\varepsilon^{\prime}-(\rho)\right]\right.}{\sec ^{2} \frac{1}{2} \chi}
\end{aligned}
$$

$$
\begin{align*}
& \left.{ }_{0}^{\prime}=\sin \chi_{,} \quad{ }_{q}^{\gamma_{2}}=\sin \chi_{1}\right) \\
& a=\operatorname{tg} \frac{1}{2} \chi_{2}, \quad b=\operatorname{tg} \frac{1}{2} \chi_{1} \tag{27}\\
& N=\frac{\sec \frac{1}{2} \chi \cdot \sec \frac{1}{2} \chi_{1}}{V}
\end{align*}
$$

For $2 \cdot \cos \theta$, write $x+{ }_{c}, \quad$ and then we have

$$
\begin{aligned}
{\left[1+a^{2}-2 a \cos \theta\right]^{-s} } & =\left[1+a^{2}-\|\left(x+{ }_{. r}^{\prime}\right)\right]^{-s} \\
& =\left[1-a_{0}\right]^{-s}\left[1-{ }_{. r}^{\prime \prime}\right]^{--}
\end{aligned}
$$

Expanding we have

$$
\begin{aligned}
& +_{1}^{s} \cdot \underbrace{}_{2} \underbrace{2} \cdot \underbrace{3} \cdot a^{5} x^{5}+\text { etc. }
\end{aligned}
$$

And hence, for their product, we have

$$
\begin{aligned}
& + \text { etc. }
\end{aligned}
$$

But $x+{ }_{x}^{1}=2 \cos 0, \quad a^{2}+{ }_{1}^{1}=2 \cdot \cos 29, \quad x^{2}+{ }_{1}^{1}=2 \cdot \cos 31, \quad$ ete.,
and hence

$$
\begin{aligned}
& \because b^{n \prime 2}=1+\binom{\varepsilon}{1}^{2} \cdot a^{2}+\left(\begin{array}{ccc}
s & s & 1 \\
1 & & 2
\end{array}\right)^{2} \cdot a^{1}+\left(\begin{array}{ccccc}
s & s & 1 & s & 2 \\
1 & & 2 & 0 & 3
\end{array}\right)^{2} \cdot a^{i}+\text { etc. }
\end{aligned}
$$

$$
\begin{align*}
& \left.+{ }_{1}^{*} *_{2}^{1}\left(3_{3}^{2}\right)^{2} \cdot 4_{4}^{3} n^{4} \cdot a^{6}+\text { etc. }\right] \tag{29}
\end{align*}
$$

and generally
$Z^{(i)}=2 \cdot{ }_{1}^{s} \cdot{ }_{2}^{s}{ }_{2}^{1} \ldots\left(s_{i}^{(s-1)} \cdot a^{i}\left[1+{ }_{1}^{s} \sum_{i-1} \cdot a^{2}+{ }_{1}^{s} \cdot \frac{s}{2} \cdot \frac{s+i s+i+1}{i+1} \cdot a^{4}+\right.\right.$ etc. $]$
Since $s=\begin{gathered}n \\ 2\end{gathered}$, we find from these expressions the values of the $b^{\prime \prime}$ coeflicients for different ralues of n.

Runkle has tabulated the values of $\partial^{\prime i}$ in a paper published by the Smithsonian Insmitution. Thus the value of

$$
\left[1+u^{2}-2 a \cos \left(\varepsilon^{\prime}-Q\right)\right]^{-i "}
$$

is obtained with great facility.
The value of $\left[1+b^{2}-2 b \cos (z+())\right]^{-2}$ is found in the same way.
We now let

$$
\left.\begin{array}{l}
c^{\prime \prime}=\frac{1}{2} \cdot N \cdot B^{i \prime} \cdot \cos 2 i Q \tag{30}\\
x^{\prime \prime}=\frac{1}{2} \cdot N^{\top} \cdot B^{\prime \prime} \cdot \sin 2 \cdot i Q
\end{array}\right\}
$$

And hence have

$$
\begin{aligned}
& c^{(1)}=\frac{1}{2} \cdot \lambda^{2} \cdot B^{\prime \prime \prime} \\
& c^{(1)}=\frac{1}{2} \cdot N \cdot B^{(1)} \cdot \cos 2 q \\
& s^{(1)}=\frac{1}{2} \cdot N \cdot B^{11} \cdot \sin 2 Q \\
& \left.c^{(2)}=\frac{1}{2} \cdot \lambda^{\prime} \cdot B^{2} \cdot \cos 4 \text { (}\right) \\
& \left.s^{(2)}=\frac{1}{2} \cdot N^{\top} \cdot H^{\prime} \cdot \sin 4^{\prime}\right\} \\
& \mathrm{etc}=\mathrm{etc} \text { 。 }
\end{aligned}
$$

Multiplying the series $\left[\frac{1}{2} b^{(0)}+b^{\prime \prime \prime} \cdot \cos \theta+b^{(2)} \cdot \cos 2 \theta+b^{3} \cdot \cos 3 \theta+\right.$ ctc. $]$

$$
\text { by }\left[\frac{1}{3} B^{0)}+B^{(1)} \cos \left(\varepsilon^{\prime}+(\imath)+B^{2}\right) \cdot \cos 2\left(\varepsilon^{\prime}+(\imath)+\text { etc. }\right]\right. \text {, }
$$

noting that $\theta=Q-\varepsilon^{\prime}$, and arranging the terms with respect to cos $i^{\prime \prime}$, sin $i^{\prime \prime}$, we find

$$
\begin{align*}
\binom{a}{J} & =\frac{1}{2} b^{(0)} \cdot c^{(0)}+b^{(1)} \cdot c^{(1)}+b^{(2)} \cdot c^{(2)} \\
& +\left[b^{(1)} \cdot c^{(0)}+\left(b^{(0)}+b^{(2)}\right) c^{(1)}+\left(b^{(1)}+b^{(3)}\right) c^{(22}\right] \cos \theta \\
& +\left[\quad+\left(b^{(0)}-b^{(2)}\right) s^{(1)}+\left(b^{(1)}-b^{(3)}\right) s^{(22}\right] \sin \theta \\
& +\left[b^{(2)} \cdot c^{(0)}+\left(b^{(1)}+b^{(3)}\right) c^{(1)}+\left(b^{(2)}+b^{(1)}\right) c^{(2)}\right] \cos 2(1) \tag{31}\\
& +\left[\quad+\left(b^{(1)}-b^{(3)}\right) s^{(1)}+\left(b^{(0)}-b^{(1)}\right) s^{(2)}\right] \sin 2(1) \\
& +\left[b^{(3)} \cdot c^{(0)}+\left(b^{(2)}+b^{(4)}\right) c^{(1)}+\left(b^{(1)}+b^{(2)}\right) c^{(21}\right] \cos 3(1) \\
& +\left[\quad+\left(b^{(2)}-b^{(1)}\right) s^{(1)}+\left(b^{(1)}-b^{(3)}\right) s^{(21}\right] \sin 3(1) \\
& +\quad \text { etc. }
\end{align*}
$$

Now let

$$
\begin{array}{ll}
k_{i} \cos K_{i}=b^{(i)} \cdot c^{(0)} & \left.+\left(b^{(i-1)}+b^{(i+1)}\right) c^{(1)}+\left(b^{i-2}+b^{i-2}\right) c^{(2,}\right) \tag{32}\\
k_{i} \sin K_{i} & \left.+\left(b^{(i-1)}-b^{(i+1)}\right) s^{(1)}+\left(b^{(i-2)}-b^{(2-2}\right) s^{(2)}\right)
\end{array}
$$

and we find

$$
\begin{align*}
\binom{a}{\jmath} & =k_{i}\left[\cos \boldsymbol{K}_{i} \cdot \cos i \theta+\sin \boldsymbol{K}_{i}^{-} \cdot \sin \cdot i \theta\right] \\
& \left.=k_{i} \cos \left(i \theta-\boldsymbol{K}_{t}\right)=k_{i} \cdot \cos (i \ell)-i_{\varepsilon^{\prime}}-K_{i}\right) \tag{33}
\end{align*}
$$

Subtracting and adding the angle ig, this becomes

$$
\begin{align*}
\binom{a}{\jmath} & =k_{i} \cos \left[i(Q-g)-\boldsymbol{K}_{i}+\left(i g-i \varepsilon^{\prime}\right)\right] \\
& =k_{i} \cos \left[i(Q-g)-\boldsymbol{K}_{i}\right] \cos \cdot i\left(g-\varepsilon^{\prime}\right)-k_{i} \cdot \sin \left[i(()-g)-K_{i}^{-}\right] \sin \cdot i\left(g-\varepsilon^{\prime}\right) \tag{34}
\end{align*}
$$

If we put

$$
\left.\begin{array}{l}
\boldsymbol{A}_{i, k}^{(c)}={ }_{n}^{2} k_{i, k} \cos \left[i\left(Q_{k}-g_{\kappa}\right)-K_{i, k}^{-}\right] \\
\boldsymbol{A}_{i, k}^{(e)}={ }_{n}^{2} k_{i, k} \sin \left[i\left(Q_{k}-g_{\kappa}\right)-K_{(, k}^{-}\right] \tag{35}
\end{array}\right\}
$$

A. P. S.-VOL. XIX. D.
n being the number of divisions, we find

$$
\begin{equation*}
\binom{(1}{J}=A_{i, k}^{(c)} \cdot \cos i\left(g_{\kappa}-\varepsilon_{k}^{\prime}\right)-\Lambda_{i, k}^{(s)} \cdot \sin i\left(g_{\kappa}-\varepsilon_{\kappa}^{\prime}\right) \tag{36}
\end{equation*}
$$

If now, for the purpose of multiplying the series together, we put

$$
\left.\begin{array}{l}
A_{i, k}^{(c)}=\Sigma\left(i_{i, v}^{(c)} \cdot \cos \eta g+\Sigma \cdot C_{i, v}^{(s)} \sin v g\right. \tag{37}\\
A_{i, \kappa}^{(s)}=\Sigma S_{i, v}^{(c)} \cdot \cos \eta g+\Sigma S_{i, v}^{(s)} \cdot \sin \eta g
\end{array}\right\}
$$

we have

$$
\begin{equation*}
\binom{a}{\jmath}=\left[\Sigma C_{i, \nu}^{(c)} \cos v^{\prime} g+\Sigma C_{i, \nu}^{(s)} \sin v^{\prime} g\right] \cos i\left(g-\varepsilon^{\prime}\right)-\left[\Sigma S_{i, \nu}^{(c)} \cos \nu^{\prime} g+\Sigma S_{i, \nu}^{(s)} \sin v^{\prime} g\right] \sin i\left(g-\varepsilon^{\prime}\right) \tag{38}
\end{equation*}
$$

Performing the operations indicated we get

$$
\begin{aligned}
& \Sigma \Sigma \cos \left(i g-i_{\varepsilon^{\prime}}\right) \cdot C_{i, v}^{(e)} \cos \nu g=\leq \Sigma \frac{1}{2} C_{i, v}^{(e)} \cos \left[\left(i+\nu^{\prime}\right) g-i \varepsilon^{\prime}\right]+\Sigma \Sigma \frac{1}{2} C_{i, \nu}^{(e)} \cos \left[\left(i-v^{\prime}\right) g-i \varepsilon^{\prime}\right] \\
& \Sigma \Sigma \cos \left(i g-i \varepsilon^{\prime}\right) \cdot C_{i, v}^{(s)} \sin v g=\quad \sum \Sigma \frac{1}{2} C_{i, \nu}^{(s)} \sin \left[\left(i+\nu^{\prime}\right) g-i \varepsilon^{\prime}\right]-\Sigma \Sigma \frac{1}{2} C_{i, \nu}^{(s)} \sin \left[\left(i-\nu^{\prime}\right) g-i \varepsilon^{\prime}\right] \\
& -\Sigma \Sigma \sin \left(i g-i \varepsilon^{\prime}\right) S_{i, \nu}^{(c)} \cos \nu g=-\Sigma \Sigma \frac{1}{2} S_{i, v}^{(r)} \sin \left[\left(i+\nu^{\prime}\right) g-i \varepsilon^{\prime}\right]-\Sigma \Sigma \frac{1}{2} S_{i, \nu}^{(c)} \sin \left[\left(i-\nu^{\prime}\right) g-i \varepsilon^{\prime}\right] \\
& -\Sigma \Sigma \sin \left(i g-i \varepsilon^{\prime}\right) S_{i, v}^{(s)} \sin \eta g=\Sigma \Sigma \frac{1}{2} S_{i, v}^{(s)} \cos \left[(i+\nu) g-i \varepsilon^{\prime}\right]-\Sigma \Sigma \frac{1}{2} S_{i, v}^{(s)} \cos \left[\left(i-i^{\prime}\right) g-i \varepsilon^{\prime}\right]
\end{aligned}
$$

Summing the terms we find

$$
\begin{equation*}
\binom{a}{j}^{n}=\Sigma \Sigma \frac{1}{2}\left(C_{i, v}^{(c)} \mp S_{i, \nu}^{(s)}\right) \cos \left[\left(i \mp \mu^{\prime}\right) g-i_{\varepsilon^{\prime}}^{\prime}\right] \mp \frac{1}{2} \Sigma \Sigma\left(C_{i, v}^{(s)} \pm S_{i, v}^{(c)}\right) \sin \left[\left(i \mp i^{\prime}\right) g-i \varepsilon^{\prime}\right] \tag{39}
\end{equation*}
$$

From the formula of mechanical quadrature just given, we have $C_{i, 0}^{(c)}, S_{i, 0,}^{(c)}$ when $v^{\prime}=0$; but we know that they are $\frac{1}{2} \cdot C_{i, 1,}^{(c)}, \frac{1}{2} S_{i, 0}^{(c)}$, as shown by their derivation.

Thus

$$
\begin{aligned}
& \left.\begin{array}{rl}
\Lambda_{i}^{(c)}=\frac{1}{2} C_{i, 0}^{(c)} & +C_{i, 1}^{(c)} \cos g+C_{i, 2}^{(c)} \cdot \cos 2 g+\text { ctc. } \\
& +C_{i, 1}^{(c)} \sin g+C_{i, 2}^{(e)} \cdot \sin 2 g+\text { etc. }
\end{array}\right\}=\Sigma C_{i, \nu}^{(c)} \cos r g+\Sigma C_{i, \nu}^{(s)} \sin r g \\
& \left.\begin{array}{rl}
\mathcal{A}_{i}^{(s)}=\frac{1}{2} S_{i, 0}^{(c)} & +S_{i, 1}^{(c)} \cos g+S_{i, 2}^{(c)} \cos 2 g+\text { etc. } \\
& +S_{i, 1}^{(s)} \sin g+S_{i, 2}^{(s)} \sin 2 g+\text { etc. }
\end{array}\right\}=\Sigma S_{i, v}^{(c)} \cos \imath g+\Sigma S_{i, v}^{(s)} \sin v g .
\end{aligned}
$$

Hence where $y=0$, each series is reduced to its first term.

In the application of the very general formule care must be taken to note the signification of the various terms employed.

In case of

$$
\begin{aligned}
& A_{l, \kappa}^{(\kappa)}={ }_{n}^{2} h_{i, \kappa} \cdot \cos \left[i\left(Q_{\alpha}-g_{\kappa}\right)-I_{i, k}^{-}\right] \\
& A_{i, k}^{\prime \prime}={ }_{n}^{n} k_{i, x} \cdot \sin \left[i\left(Q_{\alpha}-y_{k}\right)-\kappa_{i, k}^{-}\right],
\end{aligned}
$$

In shows the number of divisions of the circumference; and we divide by ${ }_{2}^{n}$ in forming $k_{l, \text {, }}$ to save division when forming the coefficients c_{1}, s_{1}.

The index and multiple i shows the term in the series

$$
\frac{1}{2} b^{\prime 0}+b^{(1)} \cos \left(\varepsilon^{\prime}-Q\right)+b^{\prime 2} \cdot \cos 2\left(\varepsilon^{\prime}-Q\right)+b^{\prime \prime} \cdot \cos 3\left(\varepsilon^{\prime}-\Omega\right)+\text { ctc }
$$

The double index i, x shows the term of the series of La Place's coefficients and the particular point in the circumference.

The index 3 shows the general term of the series expressing the values of $\mathcal{A}_{i, k}^{(c)}, A_{i, k}^{(s)}$, when we give to z values from $z=0$, to the highest value of u needed in the approximation.

In ${ }_{n}^{2} \cdot k_{i, \kappa}, i\left(Q_{\kappa}-y_{\kappa}\right)-K_{i, k}$, for each value of i, there are " values of each quantity.

The next step is to express the n values of $A_{n}^{(n)}, A_{1}^{(c)}, A_{1}^{(s)}, A_{2}^{(s)}, A_{2}^{(s)}$, ete., respectively in terms of a periodic series. And since these quantities are functions of the mean anomaly $!$, if we designate them generally by J, of which the special values are

$$
Y_{n}, I_{1}, \quad Y_{2}, \ldots V_{n}
$$

we have

$$
\begin{align*}
\Gamma=\frac{1}{2} c_{11} & +c_{1} \cos \left(y+c_{2} \cos 2 g+\text { ctc } \cdot ?\right. \tag{40}\\
& +s_{1} \sin !+s_{2} \sin 2_{y}+\text { etc. }
\end{align*}
$$

The ralues of c_{1}, s_{1}, in this series are found from the "special values of I.

From

$$
\begin{aligned}
A_{1}, \text { or } A_{1}=\frac{1}{2} c_{0} & +c_{1} \cos g+c_{2} \cos 2 g+\text { etc. } \\
& +s_{1} \sin g+s_{2} \sin 2 g+\text { etc. }
\end{aligned}
$$

and similarly, for every other value of x in $A_{i, \kappa,}^{(c)}, \mathcal{A}_{i, \kappa}^{(s)}$, we have a check on the values of c_{v}, s_{v}, in each series. Thus if in case of sixteen divisions of the circumference we take $g=22.5$ and find the value of the series, the sum of the terms must equal the value of $A_{i, k}^{(c)}, \quad A_{i, k}^{(s)}$, corresponding to $g=22 \circ^{\circ} 5$. And this check should be employed on each series, using that value of g that gives the most values of c_{v} and s_{v}. If i extends to $i=9$, we have ten separate checks for the values of $A_{i, k}^{(c)}, A_{i, \kappa}^{(s)}$, respectively.

In the equation

$$
\begin{aligned}
Y=\frac{1}{2} c_{0} & +c_{1} \cdot \cos g+c_{2} \cdot \cos 2 g+c_{3} \cdot \cos 3 g+\text { etc } \\
& +s_{1} \cdot \sin g+s_{2} \cdot \sin 2 g+s_{3} \cdot \sin 3 g+\text { etc },
\end{aligned}
$$

if the circumference is divided into twelve parts, each division is 30°. Then for the special values of Y we have

$$
\begin{aligned}
Y_{0}= & \frac{1}{2} c_{1}
\end{aligned}+c_{1}+c_{2}+c_{3}+\text { etc. } \quad \begin{aligned}
I_{1}= & \frac{1}{2} c_{0}
\end{aligned}+c_{1} \cdot \cos 30^{\circ}+c_{2} \cdot \cos 60^{\circ}+c_{3} \cos 90^{\circ}+\text { etc. } .
$$

In the same way we proceed for any other number of divisions of the circumference.

Now let

$$
\begin{array}{cl}
(0.6)=Y_{0}+Y_{6} & \binom{0}{6}=Y_{0}-Y_{6} \\
(1.7)=Y_{1}+Y_{i} & \left(\frac{1}{2}\right)=Y_{1}-Y_{0} \\
(2.8)=Y_{2}+Y_{0} & \left(\begin{array}{l}
\left(\frac{2}{8}\right)=Y_{0}-Y_{0} \\
\vdots
\end{array}\right. \\
(5.11)=Y_{0}+Y_{11} & \binom{\overline{1})}{10}=Y_{0}-Y_{11}
\end{array}
$$

Then

$$
\begin{aligned}
& 3\left(c_{1}+2 e_{6}\right)=(0.6)+(2.8)+(4.10) \\
& 3\left(\rho_{0}-2 e_{6}\right)=(1.7)+(3.9)+(5.11) \\
& 3\left(c_{2}+c_{4}\right)=(0.6)-[(2.8)+(4.10)] \sin 30^{\circ} \\
& \mathbf{3}\left(c_{2}-c_{1}\right)=[(1.7)+(5.11)] \sin 30^{\circ}-(3.9) \\
& 3\left(s_{2}+s_{1}\right)=[(1.7)-(5.11)] \cos 30^{\circ} \\
& 3\left(s_{2}-s_{1}\right)=[(2.8)-(4.10)] \cos 30^{\circ} \\
& 3\left(c_{1}+c_{5}\right)=\binom{8}{6}+\left[\left(\frac{2}{5}\right)-\left(\frac{4}{10}\right)\right] \sin 30^{\circ} \\
& 3\left(c_{1}-c_{5}\right)=\left[\left(\frac{1}{i}\right)-\left(\frac{5}{11}\right)\right] \cos 30^{\circ} \\
& 6 \cdot c_{3}=\binom{0}{6}-\left(\frac{2}{8}\right)+\left(\frac{4}{10}\right) \\
& 3\left(s_{1}+s_{5}\right)=\left[\left(\frac{1}{5}\right)+\left(\frac{5}{11}\right)\right] \sin 30^{\circ}+\binom{8}{4} \\
& 3\left(s_{1}-s_{j}\right)=\left[\left(\frac{2}{5}\right)+\left(\frac{4}{10}\right)\right] \cos 30^{\circ} \\
& 6 . s_{j}=\binom{1}{7}-\left(\begin{array}{l}
\text { 品 }
\end{array}\right)+\left(\frac{5}{11}\right) .
\end{aligned}
$$

The values of these coeflicients can be easily verified by finding the values of each one from the sum for all the diflerent values of I as given in the series for $Y_{0}, I_{1}, Y_{2}, \ldots I_{11}$ 。

When we divide the circumference into sixteen parts，each division is $22 .{ }^{\circ} 5$ ．We find the values of $Y_{0}^{r}, J_{1}, Y_{n}^{r}, \ldots I_{15}^{-}$，as in the case of twelve divisions．To find the values of c_{y} and s_{1} ，in the case of sixteen divisions，we put

$$
\begin{aligned}
& (1.9)=Y_{1}+Y_{9} \quad\left(\begin{array}{l}
\left(\frac{1}{9}\right)
\end{array}=Y_{1}-Y_{0}\right. \\
& (2.10)=Y_{2}+Y_{10} \quad\left(\frac{2}{10}\right)=Y_{2}-Y_{10} \\
& (7.15)=I_{i}^{r}+Y_{15} \quad\left(\frac{7}{15}\right)=Y_{i}^{r}-J_{15}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& (0.4)=(0.8)+(4.12) \quad(0.2)=(0.4)+(2.6) \\
& (1.5)=(1.9)+(5.13) \quad(1.3)=(1.5)+(3.7) \\
& (2.6)=(2.10)+(6.14) \\
& (3.7)=(3.11)+(7.15) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& 4\left(r_{0}+2 . c_{\square}\right)=(0.2) \\
& 4\left(c_{0}-2 . c_{2}\right)=(1.3) \\
& 4\left(e_{2}+c_{6}\right)=(0.8)-(4.12) \\
& 4\left(e_{2}-c_{i}\right)=\{[(1.9)-(5.13)]-[(3.11)-(7.15)]\} \cos 45^{\circ} \\
& 4\left(s_{2}+s_{6}\right)=\{[(1.9)-(5.13)]+[(3.11)-(7.15)]\} \cos 45^{\circ} \\
& 4\left(s_{2}-s_{6}\right)=(2.10)-(6.14) \\
& \text { 8. } c_{1}=(0.4)-(2.6) \\
& \text { S. } s_{1}=(1.5)-(3.7) \\
& 4\left(c_{1}+c_{i}\right)=\binom{0}{5}+\left[\left(\begin{array}{l}
\left.\left.\frac{2}{10}\right)-\binom{6}{1+}\right] \cos 45^{\circ}
\end{array}\right.\right. \\
& 4\left(c_{1}-c_{i}\right)=\left[\left(\frac{1}{9}\right)-\left(\frac{\pi}{15}\right)\right] \cos 22 . \circ 5+\left[\left(\frac{3}{11}\right)-\left(\frac{5}{13}\right)\right] \cos 67 .{ }^{\circ} 5 \\
& 4\left(c_{3}+c_{5}\right)=\left(\frac{0}{5}\right)-\left[\left(\frac{2}{10}\right)-\left(\frac{6_{5}^{4}}{14}\right)\right] \cos 45^{\circ} \\
& 4\left(c_{3}-c_{5}\right)=\left[\left(\frac{1}{9}\right)-\left(\frac{7}{15}\right)\right] \sin 22 .{ }^{\circ} 5-\left[\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)-\left(\frac{5}{13}\right)\right] \sin 67 .{ }^{\circ} 5 \\
& 4\left(s_{1}+s_{i}\right)=\left[\binom{1}{9}+\binom{7}{15}\right] \sin 22 . \circ 5+\left[\left(\frac{3}{11}\right)+\left(\frac{\sigma_{1}^{3}}{13}\right)\right] \sin 67 . \circ 5 \\
& 4\left(s_{1}-s_{i}\right)=\left[\left(\frac{2}{10}\right)+\left(\begin{array}{c}
6 \\
14 \\
1
\end{array}\right)\right] \cos 45^{\circ}+\left(\frac{4}{12}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 4\left(s_{3}-s_{2}\right)=\left[\left(\begin{array}{c}
2 \\
1_{0} \\
)
\end{array}\right)+\left(\frac{6_{6}}{14}\right)\right] \cos 45^{\circ}-\left(\frac{4}{12}\right) .
\end{aligned}
$$

When the circumference is divided into twenty-four parts, each part is 15°.
Let

$$
\begin{array}{cccc}
(0.12)=I_{11}+I_{12} & (0.6)=(0.12)+(6.18) & \left(\frac{0}{6}\right)=(0.12)-(6.18) \\
(1.13)=\Gamma_{1}+Y_{13} & (1.7)=(1.13)+(7.19) & \left(\frac{1}{1}\right)=(1.13)-(7.19) \\
(2.14)=Y_{12}+I_{11} & (2.8)=(2.14)+(8.20) & \left(\frac{2}{8}\right)=(2.14)-(8.20) \\
\vdots & \vdots & \vdots & \vdots \\
(11.23)=Y_{11}+Y_{13} & (5.11)=(5.17)+(11.23) & \left(\frac{5}{11}\right)=(5.17)-(11.23)
\end{array}
$$

Then

$$
\begin{aligned}
& 6\left(c_{11}+2 . c_{12}\right)=(0.6)+(2.8)+(4.10) \\
& 6\left(c_{11}-2 . c_{12}\right)=(1.7)+(3.9)+(5.11) \\
& 6\left(c_{2}+c_{10}\right)=\binom{0}{6}+\left[\left(\frac{2}{5}\right)-\left(\begin{array}{c}
\left.\frac{4}{10}\right)
\end{array}\right) \sin 30^{\circ}\right. \\
& 6\left(c_{2}-c_{14}\right)=\left[\left(\frac{1}{1}\right)-\left({ }_{1}^{\pi}\right)\right] \cos 30^{\circ} \\
& 6\left(c_{1}+c_{s}\right)=(0.6)-[(2.8)+(4.10)] \sin 30^{\circ} \\
& 6\left(c_{1}-c_{\aleph}\right)=[(1.7)+(5.11)] \sin 30^{\circ}-(3.9) \\
& \text { 6) } \left.s_{2}+s_{10}\right)=\left[\binom{1}{2}+\binom{1}{1}\right] \sin 30^{\circ}+\binom{8}{3} \\
& 6\left(s_{2}-s_{11}\right)=\left[\left(\frac{2}{5}\right)+\left(\frac{1}{16}\right)\right] \cos 30^{\circ} \\
& 6\left(s_{1}+s_{3}\right)=\left[\left(\frac{1}{7}\right)-\binom{5}{1}\right] \cos 30 \\
& 6\left(s_{1}-s_{5}\right)=\left[\left(\frac{3}{3}\right)-\binom{4}{14}\right] \cos 30 \\
& 12 . c_{1}=\binom{0}{16}-\binom{2}{8}+\binom{4}{1} \\
& 12 . s_{6}=\left(\frac{1}{1}\right)-\left(\frac{3}{4}\right)+\left(\frac{5}{11}\right)
\end{aligned}
$$

Further, let

$$
\begin{gathered}
\binom{n}{12}=Y_{11}-Y_{12} \\
\binom{1}{10}=Y_{1}-Y_{13} \\
\left(\frac{1}{1}\right)=Y_{2}-Y_{11} \\
\vdots \\
\binom{11}{12}=Y_{11}-Y_{1}
\end{gathered}
$$

Then
$6\left(c_{1}+c_{11}\right)=\left(\frac{n}{12}\right)+\left[\left(\frac{2}{1+}\right)-\binom{10}{2}\right] \cos 30^{\circ}+\left[\binom{4}{116}-\binom{s}{2110}\right] \cos 60^{\circ}$
$6\left(c_{1}-c_{11}\right)=\left[\binom{1}{15}-\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)\right] \cos 15^{\circ}+\left[\binom{3}{15}-\binom{9}{2}\right] \cos 45^{\circ}+\left[\binom{5}{15}-\binom{7}{19}\right] \cos 75^{\circ}$
$6\left(c_{3}+c_{9}\right)=\left(\frac{n}{12}\right)-\left(\frac{4}{16}\right)+\left({ }_{20}^{5}\right)$

$6\left(s_{1}+s_{11}\right)=\left[\left(\frac{1}{15}\right)+\left(\begin{array}{l}11 \\ 2\end{array} \frac{1}{3}\right)\right] \sin 15^{\circ}+\left[\left(\frac{3}{15}\right)+\left(\frac{9}{21}\right)\right] \sin 45^{\circ}+\left[\binom{5}{17}+\binom{5}{15}\right] \sin 75^{\circ}$
$6\left(s_{1}-s_{11}\right)=\left[\left(\frac{2}{14}\right)+\binom{10}{2}\right] \sin 30^{\circ}+\left[\left(\frac{1}{16}\right)+\binom{\circ}{20}\right] \sin 60^{\circ}+\binom{6}{15}$

$6\left(s_{3}-s_{9}\right)=\left(\frac{2}{1-1}\right)-\binom{1_{5}}{5}+\binom{10}{20}$
$6\left(s_{3}+s_{7}\right)=\left[\left(\frac{1}{13}\right)+\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)\right] \cos 15-\left[\left(\frac{3}{15}\right)+\binom{1}{2}\right] \cos 45+\left[\binom{5}{1}+\binom{7}{1}\right] \cos 75$
$6\left(s_{5}-s_{7}\right)=\left[\left(\frac{2}{1 \frac{2}{4}}\right)+\binom{10}{20}\right] \sin 30-\left[\left(\frac{4}{16}\right)+\left(\frac{8}{20}\right)\right] \sin 60^{\circ}+\left(\frac{6}{185}\right)$.

When the cireumference is divided into thirty-two parts, each part is $11^{\circ} .25$
Let

$$
\begin{aligned}
& (0.16)=Y_{0}^{r}+Y_{16} \\
& (0.8)=(0.16)+(8.24) \\
& (0: 4)=(0.8)+(4.12) \\
& (1.17)=Y_{1}+Y_{17} \\
& (1.9)=(1.17)+(9.25) \\
& (1.5)=(1.9)+(5.13) \\
& (2.18)=Y_{2}+Y_{1 s} \\
& (2.10)=(2.18)+(10.26) \\
& (2.6)=(2.10)+(6.14) \\
& (3.7)=(3.11)+(7.15) \\
& (15.31)=Y_{15}+Y_{31} \quad(7.15)=(7.23)+(15.31) \\
& (0.2)=(0.4)+(2.6) \\
& (1.3)=(1.5)+(3.7) \\
& \binom{n}{8}=(0.16)-(8.24) \\
& \left(\frac{9}{4}\right)=(0.8)-(4.12) \\
& \left(\frac{1}{9}\right)=(1.17)-(9.25) \\
& \left(\frac{1}{5}\right)=(1.9)-(5.13) \\
& \text { ! } \\
& \left(\frac{2}{6}\right)=(2.10)-(6.14) \\
& \left(\frac{7}{15}\right)=(7.23)-(15.31) \\
& \left(\frac{3}{7}\right)=(3.11)-(7.15)
\end{aligned}
$$

Then

$$
\begin{aligned}
& 8\left(c_{0}+2 . c_{16}\right)=(0.2)+(1.3) \\
& 8\left(c_{0}-2 . c_{16}\right)=(0.2)-(1.3) \\
& 8\left(c_{2}+c_{14}\right)=\left(\frac{0}{8}\right)+\left[\left(\frac{2}{10}\right)-\left({ }_{14}^{6}\right)\right] \cos 45^{\circ} \\
& 8\left(c_{2}-c_{14}\right)=\left[\left(\frac{1}{9}\right)-\left(\frac{7}{15}\right)\right] \cos 22 . .^{\circ} 5+\left[\left(\frac{3}{11}\right)-\left(\frac{5}{13}\right)\right] \cos 67 .^{\circ} 5 \\
& 8\left(c_{4}+c_{12}\right)=\left(\frac{0}{4}\right) \\
& 8\left(c_{1}-c_{12}\right)=\left[\left(\frac{1}{5}\right)-\left(\frac{8}{7}\right)\right] \cos 45^{\circ} \\
& 8\left(c_{6}+c_{10}\right)=\left(\frac{0}{8}\right)-\left[\left(\frac{2}{10}\right)-\left(\left(_{14}^{6}\right)\right] \cos 45^{\circ}\right. \\
& 8\left(c_{6}-c_{10}\right)=\left[\left(\frac{1}{9}\right)-\left(\frac{7}{15}\right)\right] \sin 22 .^{\circ} 5-\left[\left(\frac{3}{11}\right)-\left(\frac{5}{13}\right)\right] \sin 67 .^{\circ} 5 \\
& 16 . c_{8} \\
& 8\left(s_{2}+s_{14}\right)=\left[\left(\frac{1}{9}\right)+\left(\frac{7}{15}\right)\right] \sin 22 .^{\circ} 5+\left[\left(\frac{3}{11}\right)+\left(\frac{5}{13}\right)\right] \sin 67 .^{\circ} 5 \\
& 8\left(s_{2}-s_{14}\right)=\left[\left(\frac{2}{10}\right)-\left(\frac{6}{14}\right)\right] \cos 45^{\circ}+\left(\frac{4}{12}\right) \\
& 8\left(s_{4}+s_{12}\right)=\left[\left(\frac{1}{5}\right)+\left(\frac{3}{7}\right)\right] \cos 45^{\circ} \\
& 8\left(s_{4}-s_{12}\right)=\left(\frac{2}{6}\right) \\
& 8\left(s_{6}+s_{10}\right)=\left[\left(\frac{1}{9}\right)+\left(\frac{7}{15}\right)\right] \cos 22 .^{\circ} 5-\left[\left(\frac{3}{11}\right)+\left(\frac{5}{13}\right)\right] \cos 67 .^{\circ} 5 \\
& 8\left(s_{6}-s_{10}\right)=\left[\left(\frac{2}{10}\right)-\left(\frac{6}{14}\right)\right] \cos 45^{\circ}-\left(\frac{4}{12}\right) .
\end{aligned}
$$

Further，let

$$
\begin{aligned}
& \left(\frac{0}{16}\right)=Y_{11}-Y_{16} \\
& \left({ }_{17}^{17}\right)=Y_{1}-Y_{17} \\
& \left(\frac{2}{15}\right)=Y_{2}-J_{15} \\
& \binom{1}{\vdots i}=Y_{1 .}-Y_{01}
\end{aligned}
$$

And besides，let

$$
\begin{aligned}
& A=\left[\left(\frac{1}{17}\right)-\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right)\right] \cos 11^{\circ} .25+\left[\binom{7}{25}-\binom{9}{25}\right] \cos 78^{\circ} .75
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}^{\prime}=\left[\left(\frac{2}{18}\right)-\left(\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right)\right] \cos 22^{\circ} .5+\left[\binom{6}{20}-\left(\begin{array}{ll}
1 & 0 \\
20
\end{array}\right)\right] \cos 66^{\circ} .5
\end{aligned}
$$

$$
\begin{aligned}
& A^{\prime \prime}=\left[\left(\frac{3}{19}\right)-\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)\right] \cos 33^{\circ} .75+\left[\binom{2}{2}-\left(\frac{1}{2} \frac{1}{2}\right)\right] \cos 56^{\circ} .25 \\
& B^{\prime \prime}=\left[\left(\frac{3}{19}\right)-\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)\right] \sin 33^{\circ} .75-\left[\left(\begin{array}{l}
\text { 畐 }
\end{array}\right)-\binom{1}{2}\right] \sin 56^{\circ} .25 \\
& A^{\prime \prime \prime}=\left(\frac{0}{16}\right)+\left[\binom{\text { 古 }}{20}-\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right)\right] \cos 45^{\circ} \\
& B^{\prime \prime \prime}=\left(\frac{n}{16}\right)-\left[\binom{4}{2010}-\binom{18}{2}\right] \cos 45^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& D=\left[\left(\frac{1}{17}\right)+\binom{15}{3} \cos 11^{\circ} .25-[(27)+(95)] \cos 78^{\circ} .75\right.
\end{aligned}
$$

$$
\begin{aligned}
& D^{\prime}=\left[\left(\frac{2}{15}\right)+\left(\begin{array}{c}
1 \\
1 \\
3
\end{array}\right) \cos 22^{\circ} .5-\left[\binom{6}{0}+\left(\begin{array}{l}
1 \\
20 \\
26
\end{array}\right)\right] \cos 67^{\circ} .5\right. \\
& U^{\prime \prime \prime}=\left[\left(\frac{3}{19}\right)+\binom{1}{2}\right] \sin 33^{\circ} .75+\left[(25)+\left(\begin{array}{l}
1 \\
2
\end{array} 1\right)\right] \sin 56.25 \\
& D^{\prime \prime}=\left[\left(\frac{8}{19}\right)+\binom{1}{2}\right) \cos 33^{\circ} .75-\left[\left(20^{2}\right)+\binom{1}{2}\right] \cos 56^{\circ} .25 \\
& C^{\prime \prime \prime}=\left[\left(\frac{4}{24}\right)+\binom{12}{2}\right] \cos 45^{\circ}+\left(\frac{s_{2}}{2}\right) \\
& D^{\prime \prime \prime}=\left[\left(\frac{4}{20}\right)+\left(\frac{12}{2}\right) \cos 45^{\circ}-\left(\frac{5}{24}\right)\right. \text {. }
\end{aligned}
$$

A．1．S．－VOL．XIX．E．

Then

$$
\begin{aligned}
& 8\left(c_{1}+c_{15}\right)=A^{\prime \prime \prime}+A^{\prime} \\
& 8\left(c_{1}-c_{11}\right)=A+A^{\prime \prime} \\
& 8\left(c_{3}+c_{13}\right)=B^{\prime \prime \prime}+B^{\prime} \\
& 8\left(c_{3}-c_{13}\right)=\left[A-A^{\prime \prime}+B+B^{\prime \prime}\right] \cos 45^{\circ} \\
& 8\left(c_{1}+c_{11}\right)=B^{\prime \prime \prime}-B^{\prime} \\
& 8\left(c_{5}-c_{11}\right)=\left[A-A^{\prime \prime}-\left(B+B^{\prime \prime}\right)\right] \cos 45^{\circ} \\
& 8\left(c_{7}+c_{9}\right)=A^{\prime \prime \prime}-A^{\prime} \\
& 8\left(c_{7}-c_{9}\right)=B-B^{\prime \prime} \\
& 8\left(s_{1}+s_{15}\right)=C+C^{\prime \prime} \\
& 8\left(s_{1}-s_{15}\right)=C^{\prime \prime \prime \prime}+C^{\prime \prime} \\
& 8\left(s_{3}+s_{13}\right)=\left[D+D^{\prime \prime}-\left(C^{\prime}-C^{\prime \prime \prime}\right)\right] \cos 45^{\circ} \\
& 8\left(s_{3}-s_{13}\right)=D^{\prime}+D^{\prime \prime \prime} \\
& 8\left(s_{5}+s_{11}\right)=\left[D+D^{\prime \prime}+C-C^{\prime \prime \prime}\right] \cos 45^{\circ} \\
& 8\left(s_{5}-s_{11}\right)=D^{\prime}-D^{\prime \prime \prime} \\
& 8\left(s_{7}+s_{9}\right)=D-D^{\prime \prime} \\
& 8\left(s_{7}-s_{9}\right)=-C^{\prime \prime \prime \prime}+C^{\prime \prime} .
\end{aligned}
$$

The expressions for the determination of the values of c_{v} and s_{v}, just given, are found in Hansen's Auseinandersetzung, Band I, Seite 159-164.

CIIAPTER II.

Derivation of the Eapresions for Bessel's Functions for the Trunsformution of L'rigonometric Series.

The value of $\binom{a}{j}^{n}$ given thu* far is found expressed in a series of terms the arguments of which have the eccentric anomaly of the disturbing body as one constituent. But as the mean anomaly of both bodies is to be employed, it will be necessary to make one transformation; and the next step will be to develop the necessary formule for this purpose. Hansen, in his work entitled Entwickelung des I'roducts einer Potenz des Radius Jectors t cet., has treated the subject of transforming from one anomaly into another very fully; what is here given is based mainly on this work.

Calling c the Naperian base, and putting

$$
y=c^{\varepsilon_{1}-1}, \quad y^{\prime}=c^{c^{\prime-1}-1}
$$

we have

$$
y y^{\prime}=(\cos \varepsilon+\sqrt{-1} \sin \varepsilon)\left(\cos \varepsilon^{\prime}+\sqrt{-1} \sin \varepsilon^{\prime}\right)
$$

al:o

$$
\begin{aligned}
y^{i} y^{\prime i^{\prime}} & =\left(\cos i \varepsilon+\sqrt{ }=1 \sin i \varepsilon^{\prime}\right)\left(\cos i^{\prime} \varepsilon^{\prime}+\^{\prime}-1 \sin i^{\prime} \varepsilon^{\prime}\right) \\
& =\cos \left(i \varepsilon-i^{\prime} \varepsilon^{\prime}\right)+\sqrt{\prime}-1 \sin \left(i \varepsilon^{\prime}-i^{\prime} \varepsilon^{\prime}\right) .
\end{aligned}
$$

Denoting the cosine and sine coefficients of the angles ($i_{F}-i^{\prime} k^{\prime}$) by ($\left.i, i^{\prime}, r\right)$ and (i, i^{\prime}, s) respectively, the series

$$
\begin{equation*}
F=\Sigma \Sigma\left(i, i^{\prime}, c\right) \cos \left(i \varepsilon-i^{\prime} \varepsilon^{\prime}\right)-\Sigma \Sigma \sqrt{ }-1\left(i, i^{\prime}, s\right) \sin \left(i_{8}-i^{\prime} \varepsilon^{\prime}\right) \tag{1}
\end{equation*}
$$

can be put in the form

$$
\begin{equation*}
r^{\prime}=\frac{1}{2} \leq \leq\{(i, i, c)-\sqrt{\prime}-1(i, i, s)\} y^{\prime} y^{i^{\prime \prime}} \tag{2}
\end{equation*}
$$

In a similar manner we get

$$
\begin{equation*}
F^{\prime}=\frac{1}{2} \cdot \Sigma \Sigma\left\{\left(\left(i, h^{\prime}, c\right)\right)-\sqrt{ }-1\left(\left(i, h^{\prime}, s\right)\right) y^{i} \cdot z^{\prime-h^{\prime}}\right. \tag{3}
\end{equation*}
$$

where

$$
z^{\prime}=c^{-q^{\prime} i^{\prime}-1} .
$$

We have now to find the relation between !/ and z.
Let

$$
\begin{aligned}
& g=\text { the mean anomaly } \\
& \text { and } \\
& \varepsilon=\text { the eccentric anomaly. }
\end{aligned}
$$

Then from

$$
y=\varepsilon-e \sin \varepsilon
$$

introducing $\sqrt{-1}$. we get

$$
y \sqrt{\prime}-1=\varepsilon \sqrt{\prime}-1-e \sin \varepsilon \sqrt{ }-1
$$

Since

$$
2 \sqrt{ }-1 \cdot \sin \varepsilon=y-y^{-1},
$$

we find

$$
g \sqrt{ }-1=\varepsilon \sqrt{ }-1-—_{2}^{e}\left(y-y^{-1}\right)
$$

Now from

$$
\begin{aligned}
& z=e^{n,-1} \\
& y=c^{(1-1},
\end{aligned}
$$

we oltain

$$
\begin{aligned}
& y \vee^{\prime}-1=\log \cdot z \\
& \varepsilon \vee-1=\log \cdot y
\end{aligned}
$$

and

$$
\begin{equation*}
{ }_{2}^{e}\left(y-y^{-1}\right)=\log \cdot\left(c^{\frac{e}{2}\left(y-y^{-3}\right)}\right) \tag{4}
\end{equation*}
$$

Thus

$$
y \sqrt{ }-1=\log \cdot z=\log \cdot\left(y \cdot c^{-\frac{\epsilon}{2}\left(y-y^{-1}\right.}\right)
$$

and hence

$$
\begin{equation*}
z=y \cdot c^{-}\left(y-y^{-1}\right) \tag{京}
\end{equation*}
$$

From

$$
\therefore=y \cdot c \quad \check{z}\left(y y^{1}\right)
$$

we have

$$
\begin{equation*}
z^{\prime \prime}=y^{\prime \prime} \cdot e^{-\frac{l n}{2}\left(y y^{-1}\right)} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{i}=z^{i} \cdot c^{i e}\left(y-y^{-1}\right) \tag{7}
\end{equation*}
$$

Let ${ }_{2}^{e}$ be denoted by λ; then

$$
\begin{equation*}
c^{-4 e}\left(y y^{1}\right)=c^{-h \lambda \cdot y} \cdot e^{h \lambda \cdot y^{1}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
c^{i e}\left(y-y^{-1}\right)=c^{i \lambda \cdot y} \cdot c^{-i \lambda \cdot y^{-1}} \tag{9}
\end{equation*}
$$

But

$$
\begin{aligned}
& \left(1+\pi \lambda \cdot y^{-1}+\frac{1202}{1.2} \cdot y^{-2}+\frac{h^{3,3}}{1.2 .3} \cdot y^{-3}+{ }_{1.2}^{1,2.4} \cdot y^{-1}+\text { etc. }\right)
\end{aligned}
$$

and

$$
\begin{aligned}
c^{i \lambda, y} \cdot c^{-i \lambda y^{-1}=} & \left(1+i \lambda \cdot y+\frac{i^{2} \cdot \lambda^{2}}{1.2} \cdot y^{2}+\frac{i^{3} \lambda^{3}}{1.2 .3} \cdot y^{3}+\frac{i^{4} \cdot \lambda^{4}}{1.2 \cdot 3.4} \cdot y^{4}+\text { etc. }\right) \\
& \left(1-i \lambda \cdot y^{-1}+\frac{i^{2} \lambda^{2}}{1.2} \cdot y^{-2}-\frac{i^{3} \cdot \lambda^{3}}{1.2 .3} \cdot y^{-3}+\frac{i^{4} \lambda^{3}}{1.2 \cdot 3 \cdot 4} \cdot y^{-4}+\text { etc. }\right)
\end{aligned}
$$

Performing the operations indicated, we have

$$
\begin{aligned}
& \left(h \lambda-\frac{h^{2} \cdot \lambda^{3}}{1^{2}: 2}+\frac{h^{6} \cdot 2^{2}}{I^{2}: 2^{2} \cdot 3}-\frac{h^{2} \cdot \lambda^{2}}{1^{2}: 2^{2} \cdot 3^{3} \cdot 5} \pm \text { etc. }\right)\left(y^{-1}-y\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(+\frac{h^{1} \cdot{ }^{4}}{1.2 .3 .4} \mp \text { etc. }\right)\left(y^{-4}+y^{4}\right) ; \\
& + \text {. } \\
& +\frac{h^{m} \lambda^{m}}{1.2 . m}\left(1-\frac{h^{2} \lambda^{2}}{1 . m+1}+\frac{h^{2} x^{2}}{1.2 . m+1 . m-2} \mp \text { etc. }\right) y^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \left(+\frac{i^{2,2}}{1.2 .3}-\frac{i^{2 \pi .3}}{1^{2} \cdot 2.2 .4} \pm \text { etc. }\right)\left(y^{3}-y^{-3}\right) \\
& \left(+\frac{i^{i} \lambda^{2}}{1,2,3,4} \mp \text { etc. }\right)\left(y^{4}+y^{-1}\right)
\end{aligned}
$$

As we may write h in place of i, we have, thus, also given the value of $e^{h i} i^{2}\left(y-y^{-1}\right)$.
Now put

$$
\left.\begin{array}{l}
c^{h_{2}^{c}\left(y-y^{-1}\right)}=\Sigma_{-\infty}^{\infty} J_{-h \lambda}^{(-m)} \cdot y^{-m}, \\
\left.c^{h_{2}^{c}(y} y^{-1}\right)=\Sigma_{-\infty}^{\infty} J_{-l \lambda}^{(m)} \cdot y^{\prime \prime \prime} \tag{10}
\end{array}\right\}
$$

Then, from the preceding developments, we see that

$$
\left.\begin{array}{l}
J_{l \lambda}^{(-m)}=(-1)^{m} \cdot J_{l, \lambda}^{(m)}, \tag{11}\\
J_{-l \lambda}^{(m)}=(-1)^{m} \cdot J_{l, \lambda}^{(m)}, \\
\cdot J_{-h \lambda}^{(-m)}=
\end{array}\right\}
$$

Again

$$
\left.\begin{array}{rl}
\Sigma_{-\infty}^{\infty} J_{-l \lambda}^{(-m)} \cdot y^{-m}=J_{-l, \lambda}^{(1))} & +J_{-l \lambda}^{(-1)} \cdot y^{-1}+J_{-l \lambda}^{(-2)} \cdot y^{-2}+J_{-l \lambda}^{(-3)} \cdot y^{-3}+\text { etc. } \\
& +J_{-1 \lambda}^{(1)} \cdot y+J_{-l \lambda}^{(2)} \cdot y^{2}+J_{-l \lambda}^{(i)} \cdot y^{3}+\text { ctc } \cdot
\end{array}\right\}
$$

Comparing the values of $\Sigma_{-\infty}^{\infty} J_{-n, x}^{(-m)} \cdot y^{-m}$ and $c^{-h} \frac{c}{2}\left(y-y^{-1}\right)$
we have

$$
\begin{aligned}
& \text { etc. }=\text { etc. }=\quad \text { etc. }
\end{aligned}
$$

Comparing the values of $\Sigma_{-\infty}^{1 \infty} J_{h \lambda}^{(m)} \cdot y^{n}$ and $c^{h_{2}^{e}\left(y-y^{-1}\right)}$, we get the same expressions for y^{m} and y^{-m}.

We see from the values of $J_{l \lambda}^{(1)}, \mathscr{J}_{h \lambda}^{(2)}$, etc., found above, that the general term is

$$
\begin{align*}
J_{h \lambda}^{\prime(m)} & =\frac{h^{m 2^{m}}}{1.2 \ldots m}-\frac{h^{m+12 \cdot h^{m-2}}}{1^{2} \cdot 2 \ldots m \cdot m+1}+\frac{h^{m+1} 2^{m+1}}{1^{2} \cdot 2^{2} \ldots m \cdot m+1 \cdot m+2} \mp \text { etc. } \\
& =\frac{h^{m} \lambda^{m}}{1.2 \ldots m}\left(1-\frac{h^{2} \lambda^{2}}{1 \cdot m+1}+\frac{h^{1} \lambda^{s}}{1.2 \cdot m+1 . m+2} \mp \text { etc. }\right) \tag{14}
\end{align*}
$$

Further, we have

$$
z^{h}=c^{-h} \frac{e}{2}\left(y-y^{-1}\right) \cdot y^{\prime \prime} \quad=J_{h \lambda}^{(m)} \cdot y^{-m} \cdot y^{\prime \prime}
$$

and, by putting $m=h-i$,
this becomes

$$
\begin{equation*}
z^{h}=J_{h \lambda}^{(h-i)} \cdot y^{i} \tag{15}
\end{equation*}
$$

Let

$$
\left.\begin{array}{l}
z^{h}=\leq_{-\infty}^{\infty}\left(y_{i}^{(i)} \cdot y^{i}\right. \\
y^{i}=\leq_{-\infty}^{\infty} I_{h}^{(i)} \cdot z^{\prime \prime} \tag{16}
\end{array}\right\}
$$

Multiplying the second of these equations by $z^{-h} \cdot d y$, we obtain

$$
y^{i} \cdot z^{-n} \cdot d y=\Sigma_{-\infty}^{+\infty} I_{n}^{(2)} \cdot d y
$$

Integrating between the limits $+\pi$ and $-\pi$, we have

$$
\begin{equation*}
P_{h}^{(i)}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} y^{i} \cdot z^{-h} \cdot d y \tag{17}
\end{equation*}
$$

From

$$
z=c^{y-1}=\cos y+\sqrt{\prime}-1 \sin g
$$

we have

$$
d z=(-\sin y+\sqrt{ }-1 \cdot \cos y) d y
$$

also

$$
\because v^{\prime}-1=v^{\prime}-1 \cos g-\sin g
$$

Therefore

$$
d z=z \sqrt{ }-1 \cdot d y
$$

and (17) becomes

$$
I_{n}^{y_{1}^{(i)}}=\frac{1}{2-1}_{1}^{i} \int_{1-\pi,-1}^{e^{!\pi i-1}} \cdot y^{i} \cdot z^{-n-1} \cdot d z_{0}
$$

In like manner we find

$$
y_{i}^{\prime}=\int_{2 \pi 1}^{1} \int_{1-\pi,-1}^{+i \pi-1} z^{\prime \prime} \cdot y^{--1} \cdot d y
$$

Integrating by parts we have

$$
\begin{equation*}
\zeta_{i}^{\prime / n}=\prod_{2-1}^{1}, \cdot \prod_{i}^{h} \int_{1-\pi,-1}^{c^{+\pi-1}} y^{-i} \cdot z^{k^{n-1}} \cdot d z . \tag{18}
\end{equation*}
$$

Comparing this value of $\left(y_{i}\right.$ with that of P_{h}, we obtain

$$
i \cdot r_{i}^{\prime \prime}=h \cdot r_{-n}^{1-i}=h \cdot r_{n}^{\prime \prime},
$$

or

$$
\begin{equation*}
I_{h}^{(i)}={ }_{h}^{i} \cdot l_{i}^{(k)}={ }_{h_{1}}^{i} \cdot J_{l x}^{\prime \prime} \tag{19}
\end{equation*}
$$

Thus we have, between the mean and the eccentric anomaly, the relations

$$
\left.\begin{array}{l}
z^{h}=J_{h \lambda}^{(h-i)} \cdot y^{i} \tag{20}\\
y^{i}=\frac{i}{h} \cdot J_{h \lambda}^{(h-i)} \cdot z^{h}
\end{array}\right\}
$$

In the application of these relations, since

$$
y^{\prime-i}=\Sigma l^{\prime}-k^{\prime} \cdot z^{\prime-h^{\prime}}
$$

the expression for F is changed from

$$
F^{\prime}=\frac{1}{2} \Sigma \Sigma\left\{\left(i, i^{\prime}, c\right)-\sqrt{ }-1\left(i, i^{\prime}, s\right)\right\} y y^{i} \cdot y^{\prime-i^{\prime}}
$$

into

$$
F^{\prime}=\frac{1}{\Sigma} \Sigma \Sigma\left\{\left(i, i^{i}, c\right)-\sqrt{\prime}-1\left(i, i^{\prime}, s\right)\right\} y^{i} . \Sigma P_{-h^{\prime}}^{-i^{\prime}} \cdot z^{\prime-k^{\prime}}
$$

The other value of F^{\prime} is

$$
F=\frac{1}{2} \Sigma \Sigma\left\{\left(\left(i, h^{\prime}, c\right)\right)-\sqrt{-1}\left(\left(i, h^{\prime}, s\right)\right) y^{i} \cdot z^{\prime-h^{\prime}}\right.
$$

A comparison of these two values gives

$$
\begin{equation*}
\left(\left(i, h^{\prime}, c\right)\right)=\Sigma l_{-l^{\prime}}^{\left(-i^{\prime}\right)}\left(i, i^{\prime}, c\right)=\Sigma \cdot h^{i^{\prime}} \cdot J_{h^{\prime} x^{\prime}}^{\left(k^{\prime}-i^{\prime}\right)}\left(i, i^{\prime}, c\right) \tag{21}
\end{equation*}
$$

In transforming from the series indicated by $\left(i, i^{\prime}, c\right)$ into that of $\left(\left(i, h^{\prime}, c\right)\right)$, it is evident that k^{\prime} is constant in each individual case, and i^{\prime} is the variable.

Thus we find, begimning with $i^{\prime}=h^{\prime}$,

$$
\begin{aligned}
\left(\left(i, h^{\prime}, c\right)\right)=h_{h^{\prime}}^{h^{\prime}} \cdot J_{l^{\prime} \lambda^{\prime}}^{\left.\prime h^{\prime}-h^{\prime}\right)}\left(i, h^{\prime}, c\right) & +\frac{h^{\prime}-1}{h^{\prime}} \cdot J_{h^{\prime} \lambda^{\prime}}^{\left(h^{\prime}-\left(h^{\prime}-1\right)\right)}\left(i, h^{\prime}-1, c\right)+\text { etc. } \\
& +\frac{h^{\prime}+1}{h^{\prime}} \cdot \int_{h^{\prime} \lambda^{\prime}}^{\left(h^{\prime}-\left(h^{\prime}+1\right)\right)}\left(i, h^{\prime}+1, c\right)+\text { etc. }
\end{aligned}
$$

To transform from $\left(\left(i, h^{\prime}, c\right)\right)$ into $\left(i, i^{\prime}, c\right)$
we have

$$
\left(i, i^{\prime}, c\right)=\Sigma \mathfrak{i}_{-i}^{\left(-h^{\prime}\right)}\left(\left(i, h^{\prime}, c\right)\right)= \pm \boldsymbol{J}_{h^{\prime} N^{\prime}}^{\prime^{\prime}}\left(\left(i, h^{\prime}, c\right)\right) .
$$

Here, i^{\prime} is the constant, and h^{\prime} the variable; and for the different values of h^{\prime}, beginning with $\boldsymbol{h}^{\prime}=\dot{i}^{\prime}$,
we find

$$
\begin{aligned}
\left(i, i^{\prime}, c\right)= & J_{i^{\prime} \lambda^{\prime}}^{\left.()^{\prime}\right)}\left(\left(i, i^{\prime} c\right)\right)
\end{aligned}+J_{\left(i^{\prime}-1\right) \lambda^{\prime}}^{\left.\left.\left(i^{\prime}-1\right)-i^{\prime}\right)\right)}\left(\left(i, i^{\prime}-1, c\right)\right)+\text { etc. }
$$

The expression
enables us to find the value of $J_{h, x}^{(1 m)}$ for all values of m.
A simpler method can be obtained in the following manner:
Putting $e^{\left.h \frac{e}{2}(y-y)^{-1}\right)}$ in the form

$$
c^{h_{2}^{\epsilon}\left(y-y^{-1}\right)}=J_{h \frac{e}{2}}^{(1))}+J_{h_{2}}^{(1)} \cdot y-J_{h \frac{c}{2}}^{(-1)} \cdot y^{-1}+J_{h_{2}^{c}}^{(2)} \cdot y^{2}+\mathcal{J}_{h_{2}^{\prime}}^{(-2)} \cdot y^{-2}+\mathrm{ctc} .
$$

we have, for the differential coefficient relative to y,

$$
h_{2}^{e}\left(1+y^{-2}\right) \cdot c^{h_{2}^{e}\left(y-y^{-1}\right)}=J_{h_{2}^{\prime}}^{(11}+2 \cdot \int_{h_{2}^{e}}^{(2)} \cdot y \pm \mathrm{ctc} \cdot+J_{h_{2}^{c}}^{1-1)} \cdot y^{-2}-2 J_{h_{2}^{e}}^{(2)} y^{-3} \pm \mathrm{ctc} .
$$

If we multiply the second member of the first equation by $h_{2}^{\prime \prime}\left(1+y^{-2}\right)$, we have an expression equal to the second member of the second expression, and by comparing the two we find

$$
\begin{equation*}
h_{2}^{e}\left\{e_{h_{2}^{c}}^{i m}+\cdot f_{h \frac{e}{2}}^{(m-1)}\right\}=m . \dot{e}_{h_{2}^{\prime}}^{j^{\prime \prime \prime}} \tag{22}
\end{equation*}
$$

Let

$$
\begin{align*}
& J_{h_{\frac{1}{2}}^{(n n)}}^{\left(n_{2}\right.}=p_{m} ; \tag{23}\\
& J_{h_{2}^{\prime}}^{(m i-1)}
\end{align*}
$$

then

$$
J_{h_{!}^{\prime}}^{m^{\prime}}=J_{l_{1}^{\prime}}^{\prime_{2}^{\prime-1}} \cdot p_{m}
$$

From this general expression we find

$$
\begin{align*}
& J_{h_{2}^{\prime}}^{1 \prime}=J_{h_{2}}^{\prime \prime} \cdot p_{1} \\
& J_{h_{2}^{\prime}}^{(2,}=J_{h_{2}^{\prime}}^{\prime \prime} \cdot p_{2}=J_{h_{2}}^{(\prime \prime \prime)} \cdot p_{1}, p_{2} \tag{24}\\
& \text { etc. }=\text { etc. }=\text { etc. }
\end{align*}
$$

From the values here given, since $\begin{gathered}J_{h_{m}^{c}}^{(m)} \\ J_{h_{2}}^{(m / n)}\end{gathered}$ is put equal to p_{m}, we have, by increasing m by unity,

$$
\frac{J_{h_{2}^{e}}^{(m)^{1}}}{J_{h \frac{e}{2}}^{m-1)}}=p_{m} \cdot p_{m=1}
$$

Putting $\frac{m}{h_{\frac{e}{2}}}=r_{m}$, equation (22)
takes the form

$$
p_{m} \cdot p_{m-1}+1=r_{m} \cdot p_{m}
$$

From this we find

$$
\begin{aligned}
p_{m} & =\frac{1}{r_{m}-p_{m} 1} \\
& ={ }_{r_{m}}^{1}-\frac{1}{r_{m 1}}-\frac{1}{r_{n}}=\text { etc. }
\end{aligned}
$$

We also have

$$
\begin{equation*}
{ }_{p_{n}}^{1}=r_{n}-p_{m+1} \tag{25}
\end{equation*}
$$

a form more convenient in the applications.
The general expression for $J_{h: 3}^{(m)}$ is

$$
\begin{equation*}
J_{h_{2}^{\prime}}^{(m)}=J_{h_{2}^{\prime}}^{\prime \prime \prime} \cdot p_{1} \cdot p_{2} \cdot p_{j} \cdots p_{m}, \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{l_{\frac{c}{2}}^{(0)}}^{(0)}=1-1_{1^{2}}^{l^{2}}+{ }_{1^{2} \cdot 2^{2}}^{l^{4}}-\frac{1^{\frac{1}{3} \cdot 2^{2}} \cdot 3^{2}}{l^{2}} \pm \text { ctc. } \tag{27}
\end{equation*}
$$

if we put $l=h \lambda$.

From the expression

$$
\left(\left(i, h^{\prime}, c\right)\right)=\Sigma l_{-h^{\prime}}^{\left(-i^{\prime}\right)}(i, i, c)=\Sigma_{h^{\prime}}^{i} J_{h^{\prime} \lambda^{\prime}}^{\left(k^{\prime}-i^{\prime}\right)}(i, i, c)
$$

it is evident that when $h^{\prime}=0$, or when both i^{\prime} and h^{\prime} are zero, this expression camot be employed.

To find the values for these exceptional cases let us resume the equation

$$
P_{n}^{\prime \prime}={ }_{2-1}^{1} 1 \int_{e^{\pi-1}}^{0} y^{\pi+} z^{--1} d z
$$

When $h=0$ we have

The equation

$$
z=y \cdot c^{-\frac{c^{1}}{z_{i}}\left(y-y^{-1}\right)}
$$

gives

$$
\begin{equation*}
{ }_{z}^{d z}={ }_{y}^{d y}-e_{2}^{e}\left(1+y^{-2}\right) d y \tag{28}
\end{equation*}
$$

Hence

$$
\left.I_{0}^{(i)}={\underset{2 \pi}{1}-1}_{1}^{\int_{e^{-\pi,-1}}^{c}} e_{2-1-1}^{e_{2}^{i-1}} y_{2}^{e} y^{i} y^{e} y^{i-2}\right) d y
$$

When p is a whole number

$$
\int_{e^{-\pi_{1}-1}}^{e^{-\pi_{1}-1}} y^{p} \cdot d y=0
$$

except when $p=1$, when this integlal is $2 \pi \sqrt{ }-1$.
Hence it follows that

$$
P_{01}^{(1)}=\dot{P}_{0}^{(-1)}=-\frac{1}{2} e
$$

When $i=0$, we have

$$
P_{0}^{(n)}=1
$$

Using the expression

$$
\begin{aligned}
\left(\left(i, h^{\prime}, c\right)\right)=\Sigma . P_{-h^{\prime}}^{\left(-i^{\prime}\right)}\left(i, i^{\prime}, c\right)=P_{-h^{\prime}}^{\left(-i^{\prime}\right)}\left(i, i^{\prime}, c\right) & +P_{-k^{\prime}}^{\left(-i^{\prime}-1\right)}\left(i, i^{\prime}+1, c\right) \\
& +P_{-k^{\prime}}^{(-i+1)}\left(i, i^{\prime}-1, c\right)
\end{aligned}
$$

we have

$$
((0,0, c))=(0,0, c)-2 \lambda^{\prime}(0,1, c)
$$

for the constant term, the double value of this term being employed.

For $h^{\prime}=0$, we have

$$
\begin{aligned}
((1,0, c)) & =(1,0, c)-\varkappa^{\prime}(1,1, c)-\varkappa^{\prime}(1,-1, c) \\
((1,0, s)) & =(1,0, s)-\varkappa^{\prime}(1,1, s)-\varkappa^{\prime}(1,-1, s) \\
((2,0, c)) & =(2,0, c)-\lambda^{\prime}(2,1, c)-\varkappa^{\prime}(2,-1, c) \\
((2,0, s)) & =(2,0, s)-\lambda^{\prime}(2,1, s)-\lambda^{\prime}(2,-1, s) \\
\text { etc. } & =\text { etc. }
\end{aligned}
$$

In what precedes we have put

$$
\begin{aligned}
& y=\text { the mean anomaly } \\
& \varepsilon=\text { the eccentric anomaly } \\
& c=\text { the Naperian base } \\
& z=c^{g^{\prime-1}-1} \\
& y=c^{\varepsilon_{i}^{\prime-1}}
\end{aligned}
$$

and obtain

$$
\begin{aligned}
& z^{h}=y^{h} \cdot c^{-h \frac{e}{2}\left(y-y^{1}\right)} \\
& y^{i}=z^{i} \cdot c^{i e\left(y-y^{-1}\right)}
\end{aligned}
$$

where $e^{-h e}\left(y-y^{-1}\right)$ is expressed in a series, the general term of which is

$$
h^{m} \lambda^{m}\left(1-\frac{h^{2} \lambda^{2}}{1 . m+1}+\frac{h^{2} \lambda^{4}}{1.2 . m+1 . m+2}-\frac{\left.h^{6}\right)^{6}}{1.2 .3 m+1 . m+2 . m+3} \pm \text { etc. }\right) y^{m .} .
$$

Thus

We have also put

$$
\begin{aligned}
& c^{-h_{2}^{c}\left(y-y^{-1}\right)}=\Sigma_{-\infty}^{+\infty} J_{-h \lambda}^{(-m)} \cdot y^{-m} \\
& c^{h_{2}^{\prime}\left(y-y^{2}\right)}=\Sigma_{-\infty}^{\infty} J_{l \lambda}^{(m)} \cdot y^{m}
\end{aligned}
$$

and since

$$
J_{-l, \lambda}^{(-m)}=\cdot J_{l \lambda}^{(m)}
$$

have found

$$
\begin{aligned}
z^{h} & =\cdot J_{h \lambda}^{(m)} \cdot y^{-m} \cdot y^{\prime \prime}, \\
& =\cdot J_{h \lambda}^{(h-i)} \cdot y^{\prime},
\end{aligned}
$$

if

$$
m=h-i
$$

Again supposing

$$
\begin{aligned}
& z^{h}=\Sigma_{-\infty}^{: \infty} l_{i}^{(h)} \cdot y^{\prime} \\
& y^{i}=\Sigma_{-\infty}^{1 \infty} I_{h}^{(i)} \cdot z^{\prime \prime}
\end{aligned}
$$

we have found

$$
P_{h}^{(2)}={ }_{h}^{i} \cdot\left(_{i}^{(h)}={ }_{h}^{i} \cdot \cdot_{h \lambda}^{(h-i)} .\right.
$$

Thus we have

$$
\begin{aligned}
z^{h} & =\mathscr{J}_{h \lambda}^{(h-i)} \cdot y^{i} \\
& =J_{h \lambda}^{(h-i)}[\cos i \varepsilon+\sin i \varepsilon \vee-\mathbf{1}] \\
y^{i} & ={ }_{h}^{i} J_{h \lambda}^{(h-i)} \cdot z^{h} \\
& =\frac{i}{h} \cdot J_{h \lambda}^{(h-i)}[\cos h y+\sin h g \vee-1] .
\end{aligned}
$$

Equating real and imaginary terms, we have

$$
\left.\begin{array}{l}
\cos i \varepsilon=\frac{i}{h} \cdot \Sigma_{h=-\infty}^{h \times} J_{h \lambda}^{(h-h)} \cdot \cos h g, \\
\sin i \varepsilon={ }_{h}^{i} \cdot \Sigma_{h=-\infty}^{h=\infty} J_{h h \lambda}^{(h-i)} \cdot \sin h g \cdot \tag{29}
\end{array}\right\}
$$

We notice that

$$
\begin{aligned}
& I_{0}^{(1)}=I_{0}^{(-1)}=-! \\
& I_{0}^{\prime \prime \prime \prime}=1 .
\end{aligned}
$$

For all other values of i

$$
I_{n}=0
$$

If a large number of the of functions are needed they are computed by means of equations (24) to (27), as shown in the example given in Chapter V.

If we wish to determine any of them independently we have from

$$
\begin{align*}
& J_{h \frac{e}{2}}^{(2)}=\stackrel{\left(h \cdot{ }_{2}^{c}\right)^{2}}{1.2}\left[1-h_{3}^{2} \cdot e_{4}^{e^{2}}+{ }_{24}^{h^{2}}{ }_{26}^{e^{4}} \mp \text { etc. }\right] \tag{30}\\
& . f_{h \frac{c}{2}}^{(3)}=\underset{1.2 .3}{\left(h \cdot \frac{c}{3}\right)^{3}}\left[1-h_{4}^{h^{2}} \cdot e^{e^{2}}+{ }_{40}^{h^{4}} \cdot e_{16}^{4} \mp \text { etc. }\right] \\
& J_{h \frac{c}{2}}^{(1)}=\underset{1.2 .3 .4}{\left(h_{2}^{c}\right)^{1}}\left[1-\frac{h^{2}}{5} e_{4}^{e^{2}} \pm \text { etc. }\right]
\end{align*}
$$

In these expressions we have written for t its value $\frac{1}{2}$.
Since h has all values from $h=+\infty$ to - we find any value of J_{h} by attributing proper values to h.

From equations (29) we find the values of the functions cos if, sin in, in terms of $\cos h g$, $\sin h g$, and the .I functions, just given; always noting that when $h=0$, we have only for $i= \pm 1,-\frac{1}{2} e$ as the value of the function.

We can employ equation (22) when only a fow functions are needed, or as a check.
A. P. S.-VOL. XIA. G.

It may be of value to have y^{i} in terms of z^{h} and the J functions. From the second of equations (20) we have

$$
\begin{aligned}
& y^{1}=-\lambda+J_{\lambda}^{(1)} \cdot \hat{z}+{ }_{2}^{1} J_{2 \lambda}^{(1)} \cdot z^{2}+\frac{1}{3} J_{3 \lambda}^{(2)} \cdot \hat{z}^{3}+\text { etc. } \\
& -J_{\lambda}^{(2)} \cdot z^{-1}-\frac{1}{2} J_{2 \lambda} \cdot z^{-2}-\frac{1}{3} J_{3 \lambda}^{\prime \prime} \cdot z^{-3}-\text { etc. } \\
& y^{-1}=-\lambda+J_{\lambda}^{(1)} \cdot \hat{z}^{1}+\hat{z}_{2}^{1} J_{2 \lambda}^{(1)} \cdot \hat{z}^{2}+{ }_{3}^{1} \cdot J_{: \lambda}^{(2)} \cdot z^{-3}+\text { etc. } \\
& -J_{\lambda}^{(2)} \cdot \%-\frac{1}{2} \cdot \rho_{2 \lambda} \cdot z^{2}-\frac{1}{B} J_{i \lambda}^{\prime \prime} \cdot z^{3}-\text { etc } . \\
& y^{(2)}=-\frac{2}{1} J_{\lambda}^{(1)} \cdot z+\frac{2}{2} J_{2 \lambda}^{(0)} \cdot z^{2}+\frac{2}{3} J_{3 \lambda}^{(1)} \cdot z^{3}+\text { etc. } \\
& -\frac{2}{1} \cdot J_{\lambda}^{(3)} \cdot z^{-1}-\frac{2}{2} \cdot J_{2 \lambda}^{(4)} \cdot z^{-2}-\frac{2}{3} J_{z i \lambda}^{(3)} \cdot z^{-3}-\text { etc. } \\
& y^{-2}=-\frac{2}{1} \cdot J_{\lambda}^{(1)} \cdot z^{-1}+\frac{2}{2} J_{2 \lambda}^{(0)} \cdot z^{-2}+\frac{2}{3} J_{3 \lambda}^{(1)} \cdot z^{-3}+\text { etc. } \\
& -\frac{2}{1} J_{\lambda}^{(3)} \cdot z-\frac{2}{2} J_{2 \lambda}^{(4)} \cdot z^{2}-{ }_{3}^{2} \cdot J_{3 \lambda}^{(5)} \cdot z^{-3}-\text { etc. }
\end{aligned}
$$

Then from

$$
\begin{aligned}
& y^{i}+y^{-i}=2 \cos i \varepsilon \\
& y^{i}-y^{-i}=2 \sqrt{ }-1 \cdot \sin i \varepsilon
\end{aligned}
$$

we find the values of $\cos \varepsilon, \sin \varepsilon, \cos 2 \varepsilon, \sin 2 \varepsilon$, etc.
In case of the sine, as for example when $i=1$, we have

$$
y-y^{-1}=2 \sqrt{ }-1 \sin \varepsilon ; \text { but in } z-z^{-1}=2 \sqrt{ }-1 \sin g
$$

we have the same factor, $2 \sqrt{ }-1$, in the second member of the equation.
From

$$
r=a(1-e \cos \varepsilon)
$$

we find

$$
\begin{aligned}
& \binom{r}{a}^{2}=1-2 e \cos \varepsilon+e^{2} \cos ^{2} \varepsilon \\
& \binom{a}{r}^{2}=1+2 e \cos \varepsilon+3 e^{2} \cos ^{2} \varepsilon+4 e^{3} \cos ^{3} \varepsilon+\text { etc. }
\end{aligned}
$$

For $\binom{r}{a}^{2}$ we have

$$
\left(\frac{r}{a}\right)^{2}=1+\frac{1}{2} e^{2}-2 e \cos \varepsilon+\frac{1}{2} e^{2} \cos 2 \varepsilon
$$

But

$$
d g\binom{r^{2}}{a^{2}}=2 e \sin \varepsilon(1-e \cos \varepsilon)_{d y}^{d z}=2 e \sin \varepsilon,
$$

and

$$
\sin \varepsilon=\left[\cdot J_{\lambda}^{(0)}+\cdot J_{\lambda}^{(2)}\right] \sin g+\frac{1}{2}\left[\cdot J_{2 \lambda}^{(1)}+\cdot J_{2 \lambda}^{(1)}\right] \sin 2 y+3\left[\cdot J_{i \lambda}^{(2)}+\cdot J_{j \lambda}^{(1)}\right] \sin 3 g+\mathrm{etc} .
$$

Multiplying by $2 e$. $d y$ we have for the integral of $\begin{aligned} & d \\ & d y\end{aligned}\binom{r^{2}}{a^{2}}$

where $e=1+3 \epsilon^{\prime}$.
By means of (22) this becomes

$$
\binom{r}{a}^{2}=1+\frac{3}{2} e^{2}-\frac{1}{1} \cdot J_{\lambda}^{(1)} \cos g-\frac{1}{4} \cdot f_{2 \lambda}^{(2)} \cos 2 g-\frac{4}{4} \cos 3 y-\mathrm{ctc}
$$

In case of $\binom{r}{a}^{-2}$, we have
$3 e^{2} \cdot \cos ^{2} \varepsilon=\frac{2}{2} e^{2}(1+\cos 2 \varepsilon), 4 \cos ^{2} \varepsilon=e^{2}(3 \cos \varepsilon+\cos 3 \varepsilon)$,
$5 e^{4} \cdot \cos ^{4} \varepsilon={ }_{5}^{5} e^{1}(3+4 \cos 2 \varepsilon+\cos 4 \varepsilon), 6 e^{5} \cdot \cos ^{5} \varepsilon={ }_{18}^{18} e^{7}(10 \cos \varepsilon+5 \cos 3 \varepsilon+\cos 5 \varepsilon)$,
$7 e^{6} \cos ^{6} \varepsilon={ }^{-}{ }^{\top} e^{6} e^{6}(10+15 \cos 2 \varepsilon+6 \cos 4 \varepsilon+$ etc. $)$
and hence

$$
\begin{aligned}
& \binom{r}{a}^{-2}=1+3 e^{2}+15+82 e^{5}+\text { etc. } \\
& +\left[2 e+3 e e^{3}+\frac{4 n}{16} e^{i}+\text { etc. }\right] \cos z \\
& +\left[\frac{3}{2} e^{2}+\frac{2 n}{8} e^{1}+\frac{1125}{32} e^{1}+\text { etc. }\right] \cos 2 \\
& +\left[e^{3}+\frac{3 n}{11} e^{j}+\text { cte. }\right] \cos 3 x \\
& +\left[{ }^{2} e^{1}+\frac{4}{3} e^{6}+\text { etc. }\right] \cos 4 \varepsilon
\end{aligned}
$$

Atributing to i proper values in equation (29) we find the expressions for $\cos \varepsilon$, $\cos 2$, $\cos 3$ e, etc. We then multiply these expressions by their appropriate factors and thus have the value of $\binom{n}{\text { a }}^{-2}$. Let

$$
\binom{r}{n}^{2}=\Sigma_{-\infty}^{r} R_{1}^{\prime \prime} \operatorname{cosig}, \quad\binom{\prime \prime}{\prime \prime}^{-2}=\Sigma_{-\infty}^{\infty} R_{i}^{\prime} \cos i g
$$

The following are the values of $R_{t}^{(\lambda)}$ and $\mathscr{R}_{i}^{(-2)}$ to terms of the seventh order of ϵ.

$$
\begin{aligned}
& \boldsymbol{R}_{0}^{(2)}=1+{ }_{2}^{3} e^{2} \\
& R_{1}=-2 e+1 e^{3}-{ }_{31}^{1} e^{5}+{ }_{f 6}^{1} b^{1} s^{2} e^{7} \\
& R_{2}^{2}=-e_{1}^{1} e^{2}+{ }_{4}^{1} e^{n}
\end{aligned}
$$

$$
\begin{aligned}
& R_{+}^{2 \prime}=-{ }_{i j}^{1} e^{1}+i_{i=}^{2} e^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& h_{6}^{(2)}=-\frac{9}{5} e^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{R}_{0}^{(-2)}=\frac{1}{V_{1-1}-e^{2}}=1+e^{2}+{ }_{4}^{3} e^{1}+\frac{15}{8} e^{(6}+\text { etc } . \\
& R_{1}^{2-2}=2 e+\frac{3}{4} e^{3}+956 e^{5}+\frac{2675}{460} e^{7} \\
& R_{2}^{-2}=\frac{5}{2} e^{2}+\frac{1}{3} e^{1}+\frac{21}{2} h^{6} \\
& R_{3}^{(-2)}=\frac{13}{4} e^{3}-\frac{25}{6} e^{5}+\frac{392}{5} e^{7} \\
& R_{1}^{-21}=\frac{103}{24} e^{1}-\frac{357}{2} 7 e^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{R}_{6}^{(-2)}=\frac{1223}{160} e^{(i)} \\
& R_{-}^{(-2)}=\frac{47973}{40108} e^{7} .
\end{aligned}
$$

See ILinsen's Fundamenta nova, pp. 172, 173.

We add also the differential coefficients of $h_{i}^{(2)}, R_{i}^{(-2)}$, relative in ϵ_{0}

$$
\begin{aligned}
& { }_{d v_{0}}^{d N_{0}^{*}}=3 e
\end{aligned}
$$

$$
\begin{aligned}
& d_{b_{2}^{2}}^{2}=-e+\frac{2}{3} e^{3}-\frac{1}{5} e^{i} \pm \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d h_{3}^{2}}{d e}=-\frac{2}{3} e^{3}+\frac{1}{5} e^{5} \text { Fetc. }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{d e}^{d R_{6}}=-\frac{2}{4}+e^{i} \pm \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { etc. }=\text { etc. } \\
& { }_{d e}^{d R_{0}}=r+3 e^{3}+{ }_{4}^{2 \pi}+1!2 e^{2}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{d R_{2}^{-2}}^{d e}=5 e+1, e_{10}^{i} e^{3}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{d h_{0}^{-2}}=3 \sin ^{2} e^{2} \\
& \begin{array}{c}
d D_{8}^{-3} \\
d e^{\prime}
\end{array}=\text { ann! }
\end{aligned}
$$

The value of $\begin{array}{r}r^{2} \\ a^{2}\end{array}$ found by integrating $d\binom{r^{2}}{r^{2}}=2 e \cdot \sin \varepsilon \cdot d y$, is

$$
\frac{r^{2}}{a^{2}}=1+\frac{3}{2} e^{2}-\frac{4}{1} \mathscr{J}_{\lambda}^{(1)} \cos g-\frac{1}{4} e_{2 \lambda}^{(2)} \cos 2 g-\frac{4}{9} J_{3 \lambda}^{(3)} \cos 3 g-\text { etc. }
$$

In terms of the $\boldsymbol{R}_{i}^{(2)}$ functions,

$$
\frac{r^{2}}{a^{2}}=1+3 e^{2}-R_{1}^{(2)} \cos g-R_{2}^{(2)} \cos 2 g-R_{3}^{(2)} \cos 3 g-\text { etc. }
$$

Again, since

$$
\frac{d!}{d!}={ }_{r^{2}}^{a^{2}} \sqrt{ } 1-e^{2}
$$

we have

$$
\frac{a^{2}}{r^{2}}=R_{i}^{(-2)} \cos i g=\frac{1}{\sqrt{1-e^{2}}} \cdot \frac{d f}{d y} .
$$

Let

$$
f=g+\Sigma_{+1}^{+\infty} C_{i} \sin i g ;
$$

then

$$
\frac{d f}{d g}=1+\Sigma_{+1}^{+\infty} i C_{i}^{\prime} \cos \eta g
$$

and hence

$$
\boldsymbol{R}_{i}^{(-2)}=\stackrel{i \cdot C_{i}}{1-\rho^{2^{2}}}
$$

The coefficients represented by C_{i} designate the coefficients of the equation of the centre.

Using the values of the C_{i} coefficients given by Le \mathbf{V} frrabr in the Imales de l'Observatoive Impérial de I'aris, Tome Premier, p. 203, we have

$$
\begin{aligned}
& +\left[\frac{103}{6}\left(\frac{e}{2}\right)^{4}-\frac{9 n 2}{15}(5)^{6}+\frac{193}{4}\left(\frac{e}{2}\right)^{5}-\text { etc. } \quad\right] \sin 4 y \\
& +\left[\frac{1098}{3}\left(\frac{1}{2}\right)^{5}-\frac{5957}{36}(6)^{7}+164921\binom{e}{504} \quad\right] \sin 5 y \\
& +\left[\left.1 \frac{1223}{15}\left(\frac{1}{2}\right)^{4}-\frac{15820}{35}\left(\frac{1}{2}\right)^{4}+\operatorname{ctc} . \quad \right\rvert\, \sin 6 \mathrm{y}\right. \\
& +\left[\frac{47273}{252}\left(\frac{c}{2}\right)^{7}-\frac{1773271}{1440}\left(\frac{e}{2}\right)^{y} \quad\right] \sin 7 g \\
& +\left[\frac{5.56403}{1260}\left(\frac{6}{2}\right)^{8}\right] \sin 8 y \\
& \left.+\left[\frac{10661993}{10080}\left(\frac{c}{2}\right)^{y}\right] \quad\right] \sin 9 y
\end{aligned}
$$

Converting the coefficients into seconds of arc, and writing the logarithms of the numbers, we have for the equation of the centre,

$$
\begin{aligned}
& f-g= \\
& +\left[5.9164851\left(\frac{c}{2}\right)-5.6154551\left(\frac{1}{2}\right)^{2}+5.5362739\left(\frac{\epsilon}{2}\right)^{5}+5.787506\left(\frac{1}{2}\right)^{7}+6.25067\left(\frac{6}{2}\right)^{3}\right] \sin g \\
& +\left[6.0133951\binom{e}{e}^{2}-6.1797266\binom{e}{2}^{i}+6.067753\left(\frac{e}{2}\right)^{6}+5.59571\left(\begin{array}{l}
2
\end{array}\right)^{s}\right] \sin 2 y \\
& +\left[6.2522772\left(\frac{c}{2}\right)^{3}-6.6468636\left(\frac{e}{2}\right)^{6}+6.690089\left(\frac{c}{2}\right)^{7}-6.22336\left(\begin{array}{c}
c
\end{array}\right)^{1}\right] \sin 3 y
\end{aligned}
$$

$$
\begin{aligned}
& +\left[6.8775105\left(\frac{e}{2}\right)^{5}-7.533150\left(\frac{6}{2}\right)^{\top}+7.82927\left(\frac{e}{2}\right)^{3}\right] \sin 5 y \\
& +\left[7.225760\left(\frac{c}{2}\right)^{6}-7.96973 \quad\left(\frac{c}{2}\right)^{1}\right] \sin 6 g \\
& +\left[\begin{array}{ll}
7.587638 & \left(\frac{c}{2}\right)^{\top}-8.40481 \\
\binom{c}{2}^{3}
\end{array}\right] \sin 7 y \\
& +\left[\begin{array}{ll}
7.95944 & \binom{e}{2}
\end{array}\right] \sin 8 y \\
& +\left[\begin{array}{ll}
8.33880 & \left.\left(\frac{c}{2}\right)^{4}\right]
\end{array}\right] \sin 9 \mathscr{G}
\end{aligned}
$$

CIIAPTER HI.

Development of the Perturbing Function and the Disturbing Forces.

By means of the formula given in the preceding chapter, the functions $\mu \cdot\left(\frac{a}{\Delta}\right)$, $u \cdot u^{2}\binom{a}{j}$, etc., can be put in the desired form. The next step is to determine the complete expression for the perturbing function, and also the expressions for the disturbing forces.

If h^{2} is taken as the measure of the mass of the Sun, and m the relation between the mass of the Sun and that of a planet, the mass of the planet is represented by $m l^{2}$.

If x, y, z, be the rectangular coördinate of a body, those of the disturbing body being expressed by the same letters with accents, the perturbing function is given in the form

$$
\Omega=\frac{m^{\prime}}{1+m}\left[\begin{array}{l}
1 \\
j
\end{array}-\frac{x x^{\prime}+y y^{\prime}+z z^{\prime}}{r^{\prime 3}}\right]
$$

Now

$$
\begin{aligned}
\Delta^{2} & =\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}+\left(z^{\prime}-z\right)^{2} \\
& =r^{2}+r^{\prime 2}-2 r r^{\prime} \cdot I I ;
\end{aligned}
$$

hence

$$
a \Omega=\frac{m^{\prime}}{1+m}\left[\begin{array}{l}
a \\
j
\end{array} \frac{a r}{r^{\prime 2}} \cdot H\right]
$$

If $a \Omega$ is regarded as expressed in seconds of are, and if we put
we have

$$
a \Omega=!\cdot\binom{11}{\jmath}-(H)
$$

Finding the expression for (II) first by the method of Hansex, we let

$$
\begin{aligned}
& h=l_{k^{2}}^{\prime \prime} \cdot k^{\prime} \cdot \cos \left(11-K^{\prime}\right), \quad k^{\prime}==_{k^{2}}^{\prime \prime} \cdot \cos \phi \cdot \cos \phi^{\prime} \cdot k_{1} \cdot \cos \left(11-k_{1}\right) \\
& l=k_{k^{2}}^{\prime \prime} \cdot \cos \phi \cdot k \cdot \sin \left(11-K^{\prime}\right), l^{\prime}=k_{2^{2}}^{\prime \prime} \cdot \cos \phi^{\prime} \cdot k_{1} \cdot \sin \left(11-k_{1}\right),
\end{aligned}
$$

and have, if we make use of the eceentric amomaly,

$$
\begin{aligned}
(I I) & =h \cdot \cos \varepsilon\binom{a^{\prime}}{r^{\prime}}^{2} \cdot \cos f^{\prime}-e h\binom{a^{\prime}}{r^{\prime}}^{2} \cdot \cos f^{\prime}-l \cdot \sin z \cdot\binom{u^{\prime}}{r^{\prime}}^{2} \cdot \cos f^{\prime \prime} \\
& +l^{\prime} \cdot \cos \varepsilon\binom{u^{\prime}}{r^{\prime}}^{2} \cdot \sin f^{\prime} \cdot \cos 4^{\prime}-l\binom{u^{\prime}}{r^{\prime}}^{2} \cdot \sin l^{\prime \prime}+\ell^{\prime}+h^{\prime} \cdot \sin \varepsilon\binom{a^{\prime}}{r^{\prime}}^{2} \cdot \sin f^{\prime \prime}
\end{aligned}
$$

Putting

$$
\begin{aligned}
& \binom{a^{\prime}}{r^{\prime}}^{2} \cdot \cos f^{\prime}=\gamma_{1}^{\prime} \cdot \cos y^{\prime}+\gamma^{\prime} \cdot \cos 2 y^{\prime}+\gamma^{\prime} \cdot \cos 3 y^{\prime}+\text { etc. } \\
& \binom{u^{\prime}}{r^{\prime}}^{2} \cdot \sin \cdot f^{\prime}=4^{\prime}=\delta_{1}^{\prime} \cdot \sin y^{\prime}+\delta_{2}^{\prime} \cdot \sin 2 y^{\prime}+\gamma_{3}^{\prime} \cdot \sin 3 y^{\prime}+\text { ctc. }
\end{aligned}
$$

we find

$$
\begin{aligned}
& (I N)=\frac{1}{2}\left(l \gamma_{1}^{\prime}-l h^{\prime} \prime_{1}\right) \cos \left(-y^{\prime}-\varepsilon\right)+\frac{1}{2}\left(l \gamma_{1}^{\prime}-l h^{\prime}{ }_{1}\right) \sin \left(-g^{\prime}-\varepsilon\right) \\
& \text {-eliz' } \cos (-!)+\quad \text { didisin }(-!), \\
& +\frac{1}{2}\left(h \gamma_{1}^{\prime}+h \gamma_{1}^{\prime}\right) \cos \left(\quad\left(y^{\prime}-\varepsilon\right)+\frac{1}{2}\left(l \gamma_{1}^{\prime}+l^{\prime} \lambda_{1}\right) \sin (\quad, \quad(-\varepsilon)\right. \\
& +2\left(h \gamma^{\prime}-7 \delta_{2}^{\prime}\right) \cos \left(-2 g^{\prime}-\varepsilon\right)+2\left(\gamma^{\prime}-7 \gamma^{\prime}\right) \sin (-2 y-\varepsilon)
\end{aligned}
$$

$$
\begin{aligned}
& + \text { ete. }+ \text { ete. }
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{1}=\quad f_{A^{\prime}}^{(\prime \prime \prime}+\cdot f_{\lambda^{\prime}}^{(2)}, \quad \gamma_{1}^{\prime}=\quad j_{A^{\prime}}^{\prime \prime}-I_{\lambda^{\prime}}^{(2)} \\
& \delta_{2}=\frac{1}{2}\left[f_{2 x^{\prime}}^{\prime \prime}+J_{2 x^{\prime}}^{\prime \prime}\right], \quad \gamma^{\prime}=\frac{1}{2}\left[J_{2 x}^{\prime}-I_{2 x^{\prime}}^{\prime \prime}\right] \\
& \text { etc. } \\
& \text { vete. }
\end{aligned}
$$

[^0]When the numerical value of (I) has been found from this equation we transform it into another in which both the angles involved are mean anomalies. For this purpose we compute the values of the of functions depending on the eccentricity, e, of the disturbed body just as has been done for the disturbing body. The values of the .I functions can be checked by means of the values of $f_{h i \lambda}^{(1)}$, $f_{h \lambda}^{(1)}$, given in EngelMAN's edition of the Abhandlungen ron h'riedrich Ifilhelm Bessel, Erster Band, seite 103-109, or by equations (30)

Thas by means of the equation

$$
J_{h i \lambda}^{(m)^{1)}}+J_{h i \lambda}^{(m-1)}=\frac{m}{h \cdot \lambda} \cdot J_{\lambda}^{(\cdot, \cdot h)}
$$

It must be noted that the argument of Bessel's table is 2. he or 2. 72 , or he Thus if it is sought to find the value of $\tilde{J}_{2 \lambda}^{(1)}$, we enter the table with 2.2λ or $2 e$ as the argument.

When we need the functions for h from $h=-1$ to $h=4$, we must find the

The values of ${ }_{2}^{1} . f_{2}^{(1)}$ and of $f_{2}^{(0)}$ we take from the table. To find of $f_{4}^{(3)}$ we have

For. $\sigma^{(2)}$ we have

$$
J_{3}^{2}=-J_{2}^{\prime}+{ }_{3.6}^{1} \cdot J_{3}^{\prime}
$$

And for J_{c} we have

$$
J_{2}^{\prime}=-J_{0}^{\prime \prime}+\frac{1}{2} J_{0}^{\prime \prime}
$$

The expression for ($I /$) can be put in a form in which both the angles are mean anomalies. Thus, resming the expression for ($/ /$),

$$
\begin{aligned}
& (I I)=h \cdot \cos r\binom{a^{\prime}}{r^{\prime}}^{2} \cos f^{\prime \prime}-h_{2}\binom{a^{\prime}}{r^{\prime}}^{2} \cos \cdot f^{\prime \prime}-l \sin r\binom{a^{\prime}}{r^{\prime}}^{2} \cdot \cos \cdot l^{\prime \prime}
\end{aligned}
$$

in which

$$
\begin{aligned}
& h={ }_{n}^{n} \cdot k_{i} \cdot \cos (11-K) \\
& h^{\prime}={ }_{n_{2}^{2}}^{n} \cdot \cos \phi \cdot \cos \phi^{\prime} \cdot k_{1} \cdot \cos \left(11-\kappa_{1}\right)=\frac{1}{2} \cdot n \cdot{ }^{v} \operatorname{con}^{\prime \prime}
\end{aligned}
$$

we find the expressions for $\binom{a^{\prime}}{r^{\prime}}^{2} \cos f^{\prime \prime},\binom{n^{\prime}}{r^{\prime}}^{2} \begin{gathered}\text { sin } f^{\prime} \\ \text { cos } c^{\prime}\end{gathered}$ as follows. We put as before

$$
\begin{aligned}
& \binom{a^{\prime}}{r^{\prime}}^{2} \cos \eta^{\prime}=\gamma_{1}^{\prime} \cos !\eta^{\prime}+\gamma_{2}^{\prime} \cos 2!\eta^{\prime}+\gamma^{\prime} \cos 3!\eta^{\prime}+\mathrm{ctc} . \\
& \binom{a^{\prime}}{r^{\prime}}^{2} \sin !^{\prime \prime}=\gamma_{1}^{\prime} \sin !^{\prime}+\gamma_{2}^{\prime} \sin \ddot{f^{\prime}}+\gamma^{\prime} \sin \ddot{g}^{\prime}+\mathrm{ctc} .
\end{aligned}
$$

If we differentiate ", cos f relative to $g^{\prime \prime}$ we have
since
and hence

Nimilarly, in the case of $\begin{gathered}r^{\prime} \sin f^{\prime \prime} \\ a^{\prime} \cos \varphi^{\prime \prime}\end{gathered}$ we have

$$
\frac{d^{2}}{d y^{\prime \prime}}\binom{r^{\prime} \sin f^{\prime}}{a^{\prime} \cos \varphi^{\prime}}=-\frac{a^{\prime 2}}{r^{\prime 2}} \cdot \frac{\sin f^{\prime \prime}}{y^{\prime \prime}} \cdot \frac{f^{\prime \prime} \varphi^{\prime \prime}}{}
$$

But ${ }^{\prime \prime}$ " $\cos f^{\prime \prime}=\cos \varepsilon^{\prime}-e^{\prime}, \quad$ and $\begin{aligned} & r^{\prime} \sin f^{\prime \prime} \\ & a^{\prime} \cos y^{\prime}\end{aligned}=\sin \varepsilon^{\prime}$.

I Ience

Now

$$
\begin{aligned}
& \cos \varepsilon^{\prime}=-\lambda^{\prime}+\left[J_{\lambda^{\prime}}^{(0)}-J_{\lambda^{\prime}}^{(2)}\right] \cos g^{\prime}+1\left[J_{2 \lambda^{\prime}}^{(1)}-J_{2 \lambda^{\prime}}^{(3)}\right] \cos 2 g^{\prime}+\text { etc. } \\
& \sin \varepsilon^{\prime}=\quad\left[J_{\lambda^{\prime}}^{(0)}+J_{\lambda^{\prime}}^{(2)}\right] \sin g^{\prime}+\frac{1}{2}\left[J_{2 \lambda^{\prime}}^{(1)}+J_{2 \lambda^{\prime}}^{(3)}\right] \sin 2 g^{\prime}+\text { etc. }
\end{aligned}
$$

From the values of $\cos \varepsilon^{\prime}$ and $\sin \varepsilon^{\prime}$ we have
$\frac{a^{\prime 2}}{r^{\prime 2}} \cos f^{\prime}=\left[J_{\lambda^{\prime}}^{(1)}-J_{\lambda^{\prime}}^{(2)}\right] \cos g^{\prime}+2\left[J_{2 \lambda^{\prime}}^{(1)}-J_{2 \lambda^{\prime}}^{(3)}\right] \cos 2 g^{\prime}+3\left[\cdot J_{3 \lambda^{\prime}}^{(2)}-J_{3 \lambda^{\prime}}^{(+)}\right] \cos 3 g^{\prime}+$ etc.
$\underset{r^{\prime 2} \cos \varphi}{\mu^{\prime 2} \sin f^{\prime \prime}}=\left[\cdot J_{\lambda^{\prime}}^{(0)}+J_{\lambda^{\prime}}^{(2)}\right] \sin g^{\prime}+2\left[J_{2 \lambda^{\prime}}^{(1)}+J_{2 \lambda^{\prime}}^{(3)}\right] \sin 2 g^{\prime}+3\left[J_{3 \lambda^{\prime}}^{(2)}+J_{3 \lambda^{\prime}}^{(1)}\right] \sin 3 g^{\prime}+$ etc.

We now assume

$$
\begin{array}{ll}
\gamma_{i}={ }_{i}^{1}\left[\cdot J_{i \lambda}^{(i-1)}-J_{i \lambda}^{(i+1)}\right], & \delta_{i}={ }_{i}^{1}\left[J_{i \lambda}^{(i-1)}+J_{i \lambda}^{(i, 1)}\right] \\
\gamma_{i}^{\prime}={ }_{i}^{\prime}\left[\cdot J_{i^{\prime} \lambda^{\prime}}^{\left(i^{\prime}-1\right)}-J_{i^{\prime} \lambda^{\prime}}^{\left(i^{\prime}+1\right)}\right], & \delta_{i}^{\prime}={ }_{i^{\prime}}^{1}\left[\cdot J_{i i^{\prime} \lambda^{\prime}}^{\left(i^{\prime}-1\right)}+J_{i^{\prime} \lambda^{\prime}}^{\left(i^{\prime}, 1\right)}\right] .
\end{array}
$$

Comparing these expressions for $\gamma^{\prime}{ }^{\prime}$, δ_{\prime}^{\prime}, with those found in the expression for $n^{\prime \prime 2} \cdot \sin f^{\prime \prime}$ given above, we see that the relation between them is $i^{\prime 2}$.

The expressions for $\cos \varepsilon$, sin ε, are the same at those of con γ^{\prime}, sin x^{\prime}, il we omit the accents.

Hence if we perform the operations indicated in the expression for (II), we have

$$
\begin{aligned}
& (I)={ }_{a^{2}}^{n^{2}} \cdot\binom{a^{\prime}}{r^{\prime}}^{2} \cdot{ }_{n}^{r} \cdot I I
\end{aligned}
$$

i and i^{\prime} having all positive values.
Attributing to i and i^{\prime} particular valuer, we find, noting that $\lambda_{n}=0$, and $\delta_{n}=0$,

$$
\begin{aligned}
& (H)=\frac{1}{2}\left[h_{2} \cdot \gamma_{1} \gamma_{1}^{\prime}+h^{\prime} \delta_{1} \gamma_{1}^{\prime}\right] \cos \left(g-g^{\prime}\right)-\frac{1}{2}\left[l_{1} \gamma^{\prime}+l^{\prime} \gamma_{1} \gamma_{1}^{\prime}\right] \sin \left(g-g^{\prime}\right) \\
& +\frac{1}{2}\left[h \cdot \gamma_{1} \gamma^{\prime}-h^{\prime} \delta_{1} \gamma_{1}\right] \cos \left(-g-g^{\prime}\right)-!\left[2 \lambda_{1} \gamma_{1}^{\prime}-l^{\prime} \gamma_{1} \gamma_{1}^{\prime}\right] \sin \left(-g-g^{\prime}\right) \\
& +\frac{1}{2} h \cdot \gamma_{0} \cdot \gamma_{1}^{\prime} \quad \cos \left(-g^{\prime}\right)-\frac{1}{2} l^{\prime} \gamma_{1} \gamma_{1} \quad \sin \left(-g^{\prime}\right) \\
& +2\left[h \cdot \gamma_{1} \gamma^{\prime}+h^{\prime} \cdot \delta_{1} \delta^{\prime}\right] \cos \left(g-2 g^{\prime}\right)-2\left[l_{0} \lambda_{1} \gamma^{\prime}+l^{\prime} \gamma_{1} \gamma^{\prime}\right] \sin \left(g-{ }^{\prime} g^{\prime}\right) \\
& +2\left[h \cdot \gamma_{1} \gamma^{\prime}-h^{\prime} \delta_{1} \gamma^{\prime}\right] \cos \left(-g-2 g^{\prime}\right)-2\left[l . \delta_{1} \gamma^{\prime}=l^{\prime} \gamma_{1} \gamma^{\prime}\right] \sin \left(-g-g^{\prime} g^{\prime}\right) \\
& +2 h \cdot \gamma_{0} \gamma_{2}^{\prime} \quad \cos \left(-2 g^{\prime}\right)-2 l^{\prime} \cdot \gamma_{0} \gamma_{2}^{\prime} \quad \sin \left(-2 g^{\prime}\right) \\
& +\frac{9}{2}\left[h \cdot \gamma_{1} \gamma^{\prime}+h^{\prime} \cdot \lambda_{1} \gamma^{\prime}\right] \cos \left(g-3 y^{\prime}\right)-3\left[l . \gamma_{1} \gamma^{\prime}+l^{\prime} \cdot \gamma_{1} \gamma^{\prime}{ }^{\prime}\right] \sin \left(g-3!\eta^{\prime}\right) \\
& + \text { etc. - ete. }
\end{aligned}
$$

$$
\begin{aligned}
& + \text { etc. - etc. }
\end{aligned}
$$

The numerical value of ($I I$) given by (1) must firs be transformed into a series in which both the angles involved are mean anomalies before it can be compared with the value given by the equation just found.

If we find the value of ($I I$) from the preceding equation, it can lee checked by means of the tables in Berseris II erlie.

The expression for " $\binom{"}{\jmath}$ is known; and with the expression for (/I) just givern. we obtain the value of

$$
\because . \Omega=\|\binom{ "}{\jmath}-(H)
$$

The next step is to obtain expressions for the distur)ing forces.

Let v the angle between the positive axis of X and the radius-vector measured in the plane of the disturbed body, here called the plane of $X Y$. The diflerential cocflicient of the perturbing function Ω relative to the ordinate Z perpendicular to this plane is found by differentiating Ω relative to z and afterwards putting $z=0$.
Thus fiom

$$
\begin{aligned}
\Omega & ={ }_{1}^{m} m^{\prime}\left[\begin{array}{l}
1 \\
1
\end{array} r_{r^{\prime}}^{\prime 3} \cdot I I\right] \\
& =m^{\prime}+m\left[\begin{array}{l}
1 \\
1
\end{array} \frac{r^{\prime} r^{\prime}+y y^{\prime}+z z^{\prime}}{r^{\prime 3}}\right] \\
\Delta^{2} & =\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}, \\
& =r^{2}+r^{\prime 2}-2 r^{\prime} H,
\end{aligned}
$$

we find

$$
\begin{aligned}
& { }_{d v}^{d x}=\begin{array}{c}
m^{\prime} \\
1+m
\end{array}\left[-\frac{1}{ل^{2}} \cdot{ }_{d v}^{d\lrcorner}-{ }_{r^{\prime 2}}^{r} \cdot d u\right], \\
& { }_{d r}^{d \Omega}=\frac{m^{\prime}}{1+m}\left[-\frac{1}{J^{2}}\left(\frac{r-r^{\prime} H}{\rho^{\prime}}\right)-\frac{H}{r^{\prime 2}}\right], \\
& d \Omega={ }_{1}^{m^{\prime}}\left[\begin{array}{l}
1 \\
J^{2} \\
\left.\cdot d \Delta-z^{\prime} \cdot{ }_{r^{\prime 3}}^{d z}\right], ~
\end{array}\right. \\
& \Delta_{d v}^{d\lrcorner}=-v_{d}^{\prime d H}, \quad \Delta_{d v}^{d\lrcorner}=r-r^{\prime} H, \quad d_{d z}^{d\lrcorner}=-\quad{ }_{j}^{z^{\prime}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{d \Omega}{d v}=-\frac{m^{\prime}}{1+m}\left[\frac{1}{J^{3}}-\frac{1}{r^{\prime 3}}\right] r^{\prime} r^{\prime} \\
& r_{d}^{d \Omega}=\frac{m^{\prime}}{d+m}\left[\frac{1}{J^{3}}-\frac{1}{r^{\prime 3}}\right] r^{\prime} I I-\frac{m^{\prime}}{1+m \cdot \frac{r^{2}}{ل^{3}}} \\
& \frac{d \Omega}{d Z}=-\frac{m^{\prime}}{1+m}\left[\frac{1}{J^{3}}-\frac{1}{r^{3}}\right] \sin I \cdot w^{\prime} \sin \left(f^{\prime}+\Pi \Pi^{\prime}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
H Z^{\prime} & =\sin (f+\Pi) \cos \left(f^{\prime}+\Pi^{\prime}\right)-\cos I \cos (f+\Pi) \sin \left(f^{\prime}+\Pi^{\prime}\right) \\
z^{\prime} & =-r^{\prime} \cdot \sin I \sin \left(f^{\prime}+\Pi^{\prime}\right)
\end{aligned}
$$

As before the origin of angles here is at the ascending note of the pane of the disturbed body on the plane of the disturbing body, and the plane of reference is that of the disturbed body.

If we differentiate the expressions for $r^{\prime \prime 2}$, , 1%, we find

$$
\begin{aligned}
& r^{2} \quad \frac{d^{2} \Omega}{d r^{2}}+r \frac{d \Omega}{d r}={ }_{1+m}^{m^{\prime}} \quad{ }_{J^{3}}^{3}\left(r^{2}-r^{2} I I\right)^{2} \\
& +{ }_{1+m}^{m^{\prime}}\left(\begin{array}{c}
1 \\
j^{3}
\end{array}-r_{r^{\prime 3}}^{1}\right) m^{\prime} I I-2_{1} m^{m^{\prime}} \cdot r_{j^{3}}^{r^{2}} \\
& r^{d^{2}!}{ }_{d r l Z}=\begin{array}{c}
m^{\prime} \\
1+m
\end{array} \cdot{ }_{d^{s}}^{3}\left(r^{2}-r^{\prime} I I\right) \sin I r^{\prime} \sin \left(f^{\prime}+\| I^{\prime}\right) \\
& \frac{d^{2} \Omega}{d Z^{2}}=\begin{array}{c}
m^{\prime} \\
1+m
\end{array}{ }_{J^{5}}^{3} \sin ^{2} I r^{\prime 2} \sin { }^{2}\left(f^{\prime \prime}+\Pi^{\prime}\right)-m_{1}^{\prime} \cdot{ }^{1} \cdot{ }^{3} \\
& { }_{d Z^{\prime}}^{d g}={ }_{1+m}^{m^{\prime}}\left(\begin{array}{ll}
1 \\
j^{3}
\end{array}-\begin{array}{r}
1 \\
r^{3}
\end{array}\right) \sin \text { I.r } \sin (f+\Pi)
\end{aligned}
$$

To eliminate $I I$ from some of these expressions we find from

$$
\Delta^{2}=r^{2}+r^{2}-2 r r^{\prime} \cdot I I
$$

that

$$
\underset{\lrcorner^{3}}{r^{\prime} H}=\underset{2 コ^{3}}{r^{2} \mid r^{2}}-\frac{1}{2}
$$

The expression for $r_{i,}^{\prime \prime!}$ then becomes

$$
r_{d!}^{d r}={ }_{1: m}^{m}\left[\frac{r^{\prime 2}-r^{2}}{2\lrcorner^{2}}-\frac{1}{2\lrcorner}-{ }_{r^{2}}^{r} \Pi\right]
$$

From the value of Δ^{2} we lave, further,

$$
\underset{J}{r^{2}-r r^{\prime} H}=-\begin{gathered}
r^{\prime 2}-r^{2} \\
2 j^{3}
\end{gathered}+\begin{gathered}
1 \\
2 j
\end{gathered},
$$

and hence
the latter of which, by means of the expression for ${ }^{d 2} Z^{\prime 2}$, becomes

The expression for Δ^{2} also gives
by means of which we find

If we put, for brevity,

$$
\begin{aligned}
& (I)={\underset{a^{2}}{\mu}}_{\mu}^{\mu} \cdot \sin I\binom{a^{\prime}}{r^{\prime}}^{2} \sin \left(f^{\prime}+\Pi^{\prime}\right) \\
& (I)^{\prime}={ }_{a^{2}}^{\mu} \cdot \sin I\binom{a^{\prime}}{r^{\prime}}^{3} \cdot\binom{r}{a_{1}} \sin (f+\Pi) \\
& (I)^{\prime \prime}={ }_{u^{2}}^{\prime \prime} \cdot \cos I\binom{a^{\prime}}{r^{\prime}}^{3}
\end{aligned}
$$

the expressions which have been given for the forces, together with the perturhing function, are

$$
\begin{aligned}
& a \Omega=\mu\binom{n}{j}-(I I)
\end{aligned}
$$

$$
\begin{aligned}
& a^{2}\left(\frac{d \Omega}{d Z}\right)=-\mu a^{2}\binom{" \prime}{J} \cdot \sin ^{\prime} I \theta^{\prime} V^{\prime} \sin \left(f^{\prime \prime}+I I^{\prime}\right)+(I)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 n u}{2}\binom{a}{j} \frac{\sin I}{a} r^{\prime} \|^{\prime} \sin \left(f^{\prime}+11^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{a} a^{\prime}\left(\frac{d!}{d Z^{\prime}}\right)=\mu a^{2}\binom{a}{\jmath}^{3} \cdot \underset{\sim}{\sin I} \quad \text { " } \sin (f+I I)-(I)^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2}!\mu u^{\prime \prime}\binom{\prime \prime}{J}^{3} \cdot \begin{array}{ccc}
\sin I & r \\
a & \text { a }
\end{array}
\end{aligned}
$$

The form given to these expressions is the one best adapted to numerical computations; and the equations are readily derived from the preceding in which the magnitudes occur in linear form.

Thus from
A. P. S.-VOL. XIA. I.
we have
where, as before,

$$
u=\frac{m^{\prime}}{1+m} \cdot s, \quad(I I)={ }_{a^{2}}^{u} \cdot\binom{a^{\prime}}{r^{\prime}}^{2} \cdot{ }_{a}^{r} \cdot I I, \quad u={ }_{a}^{a^{\prime}}
$$

In a similar mamer all the other expressions for the forces have been derived.
When we compute only perturbations of the first order with respect to the mass we need the perturbing function

$$
u \Omega=!\binom{a}{\jmath}-\Pi
$$

and the forces

The other forces are only needed when we take into the account terms of the second order also with respect to the mass.

An inspection of the expressions for the forces shows that besides the functions

$$
\mu\binom{\prime \prime}{\jmath}, \mu x^{2}\binom{a}{\jmath}, \mu \alpha^{\prime}\binom{a}{\jmath}^{\bar{a}}
$$

we need expressions for the magnitudes

$$
\begin{aligned}
& \binom{\frac{l}{}_{\prime}^{\prime}}{a^{\prime}}^{2},{ }_{a^{2}}^{1} a_{a^{2}}^{\prime}, \underbrace{\sin I}_{a} a^{\prime} \\
& a^{\prime} \\
& (I I),(I),(I)^{\prime},(I)^{\prime \prime} .
\end{aligned}
$$

When these are known we multiply the function !u* $\binom{a}{\vdots}^{a}$ by

$$
\begin{aligned}
& {\left[\begin{array}{l}
{\left[\begin{array}{l}
r^{\prime} \\
a^{\prime}
\end{array}\right)^{2}-\frac{1}{a^{2}} \cdot} \\
r_{a^{2}}^{r^{2}}
\end{array}\right], \quad \sin I^{\prime \prime} \cdot r^{r^{\prime}}, \sin \left(\rho+\Pi^{\prime}\right),}
\end{aligned}
$$

the function ua (" $\ddagger)^{s}$ by

$$
\begin{aligned}
& 3^{\sin ^{2} I}{ }_{a a^{2}}{ }_{a}^{\prime} \sin (f+11)_{a^{\prime}}^{n^{\prime}} \sin \left(f f^{\prime}+\Pi^{\prime}\right) .
\end{aligned}
$$

We will now find the expressions for $(I),(I)^{\prime},(I)^{\prime \prime}$, and for the various factors just given, that are the most convenient for numerical computation.

We have

$$
(I)={ }_{n a^{2}}^{\prime \prime} \sin I\left(l^{a^{\prime}} r^{2} \cdot \sin \left(f^{\prime}+\Pi I^{\prime}\right)\right.
$$

Putting, for brevity,

$$
\begin{aligned}
& b=-{ }_{n^{2}}^{\prime \prime} \cos \phi^{\prime} \sin I \cos I I^{\prime} \\
& b^{\prime}=n_{n^{2}}^{\prime \prime} \sin I \sin I^{\prime}
\end{aligned}
$$

and noting that

$$
\begin{aligned}
& \binom{a^{\prime}}{r^{\prime}}^{2} \cos f^{\prime}=\left[\cdot J_{\lambda^{\prime}}^{(0)}-f_{\lambda^{\prime}}^{(2)}\right] \cos y^{\prime}+2\left[. I_{2 x}^{(1)}-I_{2}^{(x)}\right] \cos 2 y^{\prime}+\text { etc. }
\end{aligned}
$$

we have

$$
\left.\begin{array}{rl}
(I) & =b\left[\cdot J_{\lambda^{\prime}}^{(1)}+\cdot f_{\lambda^{\prime}}^{(2)}\right] \sin \left(-g^{\prime}\right)+b^{\prime}\left[\cdot J_{\lambda^{\prime}}^{(1)}-\cdot J_{\lambda^{\prime}}^{(2)}\right] \cos \left(-g^{\prime}\right) \\
& +2 b\left[\cdot J_{2 \lambda^{\prime}}^{(2)}+J_{2 \lambda^{\prime}}^{(3)}\right] \sin \left(-2 g^{\prime}\right)+2 b^{\prime}\left[\cdot J_{2 \lambda^{\prime}}^{(1)}-\cdot J_{2 \lambda^{\prime}}^{(2)}\right] \cos \left(-2 g^{\prime}\right) \\
& +3 b\left[\cdot J_{3 \lambda^{\prime}}^{(2)}+\cdot J_{3 \lambda^{\prime}}^{(4)}\right] \sin \left(-3 g^{\prime}\right)+3 b^{\prime}\left[\cdot J_{3 \lambda^{\prime}}^{(2)}-\cdot J_{3 \lambda^{\prime}}^{(1)}\right] \cos \left(-3 g^{\prime}\right) \tag{3}\\
& + \text { etc. } \quad+\text { etc. }
\end{array}\right\}
$$

'The value of (I) ' is found from

$$
(I)^{\prime}={ }_{a^{2}}^{n} \sin I\left(\frac{a^{\prime}}{a^{\prime}}\right)^{3} \cdot{ }_{a}^{r} \sin \left(f^{\prime}+\Pi\right)
$$

From

$$
\prime^{\prime}=1-e^{\prime} \cos \varepsilon^{\prime}
$$

we find

$$
\binom{u^{\prime}}{r^{\prime}}^{:}=\left(1-e^{\prime} \cos \varepsilon^{\prime}\right)^{-3}
$$

Expanding,

$$
\begin{aligned}
\binom{a^{\prime}}{i^{\prime}}=\frac{1}{\cos ^{5} \varphi^{\prime}} & +\left(3 e^{\prime}+\frac{27}{8} e^{\prime 3}+\text { etc. }\right) \cos g^{\prime} \\
& +\left(\frac{9}{2} e^{\prime 2}+\frac{7}{2} e^{\prime 1}+\text { etc. }\right) \cos 2 g^{\prime} \\
& +\frac{33}{8} e^{\prime 3} \cos 3 y^{\prime}+\frac{231}{24} e^{\prime 1} \cos 4 g^{\prime}+\text { etc. }
\end{aligned}
$$

which, for brevity, we write,

$$
\binom{a^{\prime}}{r^{\prime}}^{\prime \prime}=\rho_{0}+2 \rho_{1} \cos g^{\prime}+2 \rho_{2} \cos 2 g^{\prime}+2 \rho_{3} \cos 3 y^{\prime}+\text { etc. }
$$

But

$$
\begin{aligned}
& f \cdot \frac{\sin f}{a} \cdot\left[\cdot f_{\lambda}^{(0)}+\cdot J_{\lambda}^{(2)}\right] \sin g+\frac{1}{2}\left[f_{2 \lambda}^{(1)}+J_{2 \lambda}^{(3)}\right] \sin 2 g+\text { etc. } \\
& r \cdot \cos f=-3 \cdot \frac{3}{a} e+\left[J_{\lambda}^{(0)}-J_{\lambda}^{(2)}\right] \cos g+\frac{1}{2}\left[J_{2 \lambda}^{(1)}-J_{2 \lambda}^{(3)}\right] \cos 2 g+\text { etc. }
\end{aligned}
$$

Putting

$$
\begin{aligned}
& l={ }_{n^{2}}^{2} \cdot \cos \phi \sin I \cos I 1, \quad l_{1}={ }_{n}^{\prime \prime} \cdot \sin I \sin I 1, \\
& \gamma_{1}=j_{\lambda}^{(\prime \prime)}-j_{i}^{(2)} \quad \lambda_{1}=\rho_{i}^{(n)}+.1_{\lambda}^{(2)} \\
& \gamma_{2}=\frac{1}{2}\left[\rho_{2 \lambda}^{\prime \prime \prime}-\rho_{2 \lambda}^{\prime \prime \prime}\right] \quad \delta_{2}=\frac{1}{2}\left[\rho_{2 \lambda}^{\prime \prime \prime}+\rho_{2 \lambda}^{\prime \prime 2}\right] \\
& \text { etc. } \\
& \text { etc., }
\end{aligned}
$$

we have

$$
\left.\begin{array}{rlrl}
(I)^{\prime}= & & -\frac{3}{2} l_{1} e \cdot \rho_{0} \\
& +l \cdot \rho_{0} \cdot \lambda_{1} \sin g & & +l_{1} \cdot \rho_{11} \cdot \gamma_{1} \cos g \\
& +l \cdot \rho_{1} \cdot \lambda_{1} \cdot \sin \left(g-g^{\prime}\right) & & +l_{1} \cdot \rho_{1} \cdot \gamma_{1} \cos \left(g-g^{\prime}\right) \\
& -l \cdot \rho_{1} \cdot \lambda_{1} \cdot \sin \left(-g-g^{\prime}\right) & & +l_{1} \cdot \rho_{1} \cdot \gamma_{1} \cos \left(-g-g^{\prime}\right) \\
& & -2 l_{1} \rho_{1} \cos \left(-\quad-g^{\prime}\right) \tag{4}\\
& +l \cdot \rho_{2} \cdot \lambda_{1} \sin \left(g-2 g^{\prime}\right) & & +l_{1} \cdot \rho_{2} \cdot \gamma_{1} \cos \left(g-2 g^{\prime}\right) \\
& -l \cdot \rho_{2} \cdot \lambda_{1} \sin \left(-g-2 g^{\prime}\right) & & +l_{1} \cdot \rho_{2} \cdot \gamma_{1} \cos \left(-g-2 g^{\prime}\right) \\
& & -2 l_{1} e \cdot \rho_{2} \cos \left(-2 g^{\prime}\right)
\end{array}\right\}
$$

For ($I)^{\prime \prime}$ we have the expression

$$
(I)^{\prime \prime}={ }_{a^{2}}^{\prime \prime} \cdot \cos I\binom{a^{\prime}}{a^{\prime}}^{3}
$$

Putting

$$
l_{s}=2 \cdot{ }_{a}^{2} \cos I, \text { and using the } p_{i} \text { coefficients as for }(I)^{\prime},
$$

we have

$$
\begin{equation*}
(I)^{\prime \prime}=l_{z}^{l_{3} \cdot \rho_{\prime \prime}}+l_{z} \cdot \rho_{1} \cos \left(-y^{\prime}\right)+l_{z} \cdot p_{2} \cos \left(-\ddot{z}^{\prime}\right)+\mathrm{ctc} \tag{5}
\end{equation*}
$$

To obtain an expression for the factor $\left[\binom{r^{2}}{a^{2}}^{2}-1 r^{2} \begin{array}{l}a^{2}\end{array}\right]$ it is only necessary to have that for $\left(\frac{1}{a}\right)^{2}$.

In terms of the eccentric anomaly we have, at once,

$$
\begin{aligned}
\binom{r}{a}^{2} & =1-2 e \cos \varepsilon+e^{2} \cos ^{2} \varepsilon \\
& =1+\frac{1}{2} e^{2}-2 e \cos \varepsilon+\frac{1}{2} e^{2} \cos 2 \varepsilon_{0}
\end{aligned}
$$

Substituting the values of cos ε, and $\cos 2 \varepsilon$, we have

$$
\binom{\dot{l}}{a}^{2}=1+\frac{3}{2} e^{2}-\frac{1}{1} \cdot J_{\lambda}^{(1)} \cos g-\frac{1}{4} e_{2 \lambda}^{(2)} \cos 2 g-\frac{1}{y} J_{3 \lambda}^{(3)} \cos 3 g-\text { etc. }
$$

To find an expression for the factor ${ }_{a}^{\sin I} \cdot{ }_{a^{\prime}}^{\prime \prime} \sin \left(f^{\prime}+\Pi^{\prime}\right)$, for brevity, we let

$$
c_{1}=\frac{\sin I}{\alpha} \cdot \cos \phi^{\prime} \cos \Pi^{\prime}, \quad c_{2}=\frac{\sin I}{\alpha} \cdot \sin \Pi^{\prime}
$$

and from the known expressions for $\begin{array}{ccc}r^{\prime} \sin f^{\prime \prime} & r^{\prime} \\ a^{\prime} \cos \varphi^{\prime} & a^{\prime} & \cos f^{\prime} \text {, we get }\end{array}$

$$
\begin{aligned}
& \frac{\sin I}{\alpha^{\prime}} r^{\prime} \\
& a^{\prime} \sin \left(f^{\prime}+\Pi^{\prime}\right)
\end{aligned}=\left[J_{\lambda^{\prime}}^{(0)}+J_{\lambda^{\prime}}^{(2)}\right] c_{1} \sin g^{\prime}+\frac{1}{2}\left[\cdot J_{2 \lambda^{\prime}}^{(1)}+\cdot J_{2 \lambda^{\prime}}^{(3)}\right] c_{1} \sin 2 g^{\prime}+\text { etc. } .
$$

In the same way, if

$$
c_{3}=\frac{\sin I}{\alpha} \cdot \cos \phi \cos \Pi, \quad c_{4}=\frac{\sin I}{\alpha} \cdot \sin \Pi,
$$

we find

$$
\begin{align*}
\frac{\sin I}{a} \cdot{ }_{a}^{r} \sin (f+\Pi) & \left.=\left[J_{\lambda}^{(1)}+J_{\lambda}^{(2)}\right] c_{5} \sin g+\frac{1}{2}\left[\cdot J_{2 \lambda}^{(1)}+J_{2 \lambda}^{(3)}\right] c_{3} \sin 2 g+\text { etc. }\right) \\
& \left.-\frac{3}{2} e c_{1}+\left[J_{\lambda}^{(0)}-J_{\lambda}^{(2)}\right] c_{1} \cos g+\frac{1}{2}\left[J_{2 \lambda}^{(1)}+f_{2 \lambda}^{(3)}\right] c_{1} \cos 2 g+\text { etc. }\right) \tag{6}
\end{align*}
$$

By means of the expressions for the factors

$$
\binom{r}{a}^{2}, \quad \sin _{a} I \cdot r_{a^{\prime}}^{r^{\prime}} \sin \left(f^{\prime}+\Pi^{\prime}\right), \quad \sin I \cdot{ }_{a}^{r} \cdot \sin (f+\Pi),
$$

just given, we can form those for

$$
\begin{aligned}
& :\left[\begin{array}{lll}
r^{\prime 2} & 1 & 1^{2} \\
i^{\prime 2} & 1 i^{2} & i^{2}
\end{array}\right]^{2} \\
& 3 \sin I \cdot{ }^{\prime \prime}{ }_{a^{\prime}}^{\prime} \sin \left(f^{\prime}+I^{\prime}\right)\left[\begin{array}{lll}
r^{\prime 2} & 1 & r^{2} \\
r^{2} & r^{2} & a^{2}
\end{array}\right] \\
& 3^{\sin ^{2} I} \underset{u^{2}}{\mu^{\prime 2}} \cdot{\mu^{\prime 2}}^{2} \sin ^{2}\left(f^{\prime}+\Pi^{\prime}\right) \\
& { }_{2}^{3} \sin _{\alpha} 1 \cdot{ }_{a}^{\prime \prime} \sin (f+11)\left[\begin{array}{lll}
r^{\prime 2} \\
a^{\prime 2} & -1 & 1 a^{2} \\
a^{2} & a^{2}
\end{array}\right] \\
& 3 \stackrel{\sin ^{2} l}{u^{2}} \cdot{ }_{\|}^{r} \sin (f+I I) \cdot \frac{r^{\prime}}{n^{\prime}} \sin \left(f^{\prime}+I I^{\prime}\right)
\end{aligned}
$$

CHAPTER IV.

Derivation of the Equations for Determining the Perturbations of the Mean Anomaly, the Radius Vector, and the Latitude, together with Equations for Finding
the I'alues of the Arbitrary Constants of Integration.

Hansen's expressions for the general perturbations are

$$
\begin{aligned}
n_{0} z & =n_{0} t+g_{0}+n_{0} \int\left[W_{0}+\frac{d W_{0}}{d t} \cdot \delta z+v^{2}\right] d t \\
v^{\prime} & =C-\frac{1}{2} \int\left[\begin{array}{c}
d W_{0}^{\prime} \\
d t
\end{array}+\frac{\overline{d^{2} W_{0}}}{d t^{2}} \cdot \delta z\right] d t \\
d R_{0} & =h i_{H_{0}}^{\prime \prime} \sin \left(\omega-f^{\prime}\right)\binom{d!}{d Z} \cos i
\end{aligned}
$$

where

$$
\begin{aligned}
\frac{d W_{0}}{d t}=h_{0}\left\{2_{r}^{\rho} \cos (f-\omega)-1\right. & \left.+2 \frac{h^{2} \rho}{\mu_{0} a_{0} \cos ^{2} \varphi_{0}}[\cos (\bar{f}-\omega)-1]\right\}\left(\frac{d \Omega}{d v}\right) \\
& +2 h_{0} \frac{\rho}{r} \sin (f-\omega) r\left(\frac{d \Omega}{d r}\right) .
\end{aligned}
$$

In this chapter we will show how these expressions are derived from the equations of motion, and from quantities already known.

The equations for the undisturbed motion of m around the Sun are

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+h^{2}(1+m) \frac{x}{r^{2}}=0 \\
& d^{2} y \\
& d t^{2}+h^{2}(1+m) \frac{!}{r^{3}}=0 \\
& \frac{d^{2} z}{d t^{2}}+h^{2}(1+m)^{z}=0
\end{aligned}
$$

The effect of the disturbing action of a body m ' on the motion of m around the Sun is given by the expressions

$$
m^{\prime} k^{2}\left(\begin{array}{c}
x^{\prime}-x^{\prime} \\
j^{3}
\end{array} x_{r^{\prime}}^{x^{\prime}}\right), m^{\prime} k^{2}\left(\begin{array}{c}
y^{\prime}-y \\
j^{3}
\end{array} y_{n^{\prime}}^{\prime 3}\right), m^{\prime} k^{2}\binom{z^{\prime} z-}{j^{\prime}} .
$$

Introducing these into the equations given above we have in the cave of disturbed motion

$$
\begin{align*}
& \frac{d^{2} x}{d l^{2}}+k^{2}(1+m)^{x}=m k^{2}\left(r^{\prime}-x-y^{3}\right) \\
& d^{2} y+l^{2}(1+m) l_{n^{3}}^{\prime \prime}=m^{\prime} k^{2}\left(y^{\prime} J^{3}-y^{\prime}\right) \tag{1}\\
& \frac{d^{2} z+l^{2}(1+m)_{i^{3}}^{z}=m^{\prime} h^{2}\left(\begin{array}{c}
z^{3} \\
d^{3}
\end{array} z_{n^{3}}^{z^{\prime}}\right) ~(1)}{}
\end{align*}
$$

The second members of equations (1) show the diflerence between the artion of the body m^{\prime} on m and on the Sun. The action of any member of bodies $m^{\prime}, m^{\prime \prime}, m^{\prime \prime \prime}$, ete., can be included in the second members of these equations, since the action of all will be similar to that of m^{\prime}.

The second members can be put in more convenient form if we make use of the function

$$
\Omega=\underset{1}{m} m\left(\begin{array}{l}
1 \\
1
\end{array}-\frac{x x^{\prime}+y y^{\prime}+z z^{\prime}}{y^{\prime}}\right) .
$$

Differentiating relative to ar

$$
d!x=\begin{gathered}
m \\
1+m
\end{gathered}(-\underset{j=}{1} \cdot d\rfloor
$$

But since

$$
د^{\prime}=\left(x^{\prime}-y^{2}+(y-y)^{2}+\left(i-a^{2},\right.\right.
$$

we have

$$
\frac{\prime \prime}{\prime \prime}=-r^{\prime}-r
$$

A. P. S.-VOL. NIX. .J.
and hence

$$
(1+m)_{d x}^{d x}=m^{\prime}\left(\begin{array}{c}
x^{\prime}-x \\
s^{3}
\end{array}-\frac{x^{\prime}}{r^{\prime 3}}\right) .
$$

In the same way we derive the partial differential coefficients with respect to y and $\%$.

The equations (1) then become

$$
\begin{align*}
& d l^{2} x+k^{2}(1+m)_{,^{3}}^{\prime}=k^{2}(1+m) \frac{d!}{d x} \\
& d t^{2} \tag{2}\\
& d^{2} y \\
& d t^{2}+k^{2}(1+m)_{, 3}^{y}=k^{2}(1+m)^{d!!} \\
& \frac{d!}{d t^{2}}+k^{2}(1+m)_{r^{3}}^{z}=k^{2}(1+m) \frac{d \Omega}{d z}
\end{align*}
$$

Let X, Y, Z, be the disturbing forces represented by the second members of equations (2),
R, the disturbing force in the direction of the disturbed radius-vector,
S, the disturbing force, in the plane of the orbit, perpendicular to the disturbed radius-vector, and positive in the direction of the motion.

If f be the angle between the line of apsides and the radius-vector, the angle between this line and the direction of S will be $90^{\circ}+f$. We then have

$$
X=-S \sin f, \quad J^{\prime}=S \cos f
$$

In case of h, we have

$$
R=X_{i}^{\prime}+Y_{n}^{y} ;
$$

and for S,

$$
S=I_{,}^{r}-\Gamma_{r}^{\prime \prime}
$$

From these we find

$$
\begin{aligned}
& \bar{X}=R_{r}^{r}-S_{r}^{y} \\
& \Gamma=R_{r}^{y}+S_{r}^{x}
\end{aligned}
$$

If we wish to use polar courdinates we have

$$
\begin{aligned}
& d!=R^{2} \cos f-S \sin f \\
& d!=A^{\prime} \sin f+s^{\prime} \cos f \\
& d y=
\end{aligned}
$$

From

$$
x=r \cos f, \quad y=r \sin f
$$

we find

$$
\begin{aligned}
& d x=d r \cos f-r d f \sin f \\
& d y=d r \sin f+r d f \cos f \\
& d^{2} x=d^{2} \cos f-r l^{\prime} f \sin f-2 d r d f \operatorname{in} f-r d f^{2} \cos f \\
& d^{2} y=d^{2} r \sin f+r l^{2} f^{\prime} \cos f+2 d r d f \cos f-r d f^{2} \sin f
\end{aligned}
$$

From the expressions for $d x$ and $d y$ we find

$$
\begin{aligned}
& d y \cos f-d x \sin f=r d f \\
& d x \cos f+d y \sin f=d r,
\end{aligned}
$$

and hence

$$
\begin{aligned}
& d!=-1 \cdot d!\sin f+\frac{d x}{d r} \operatorname{dr} f \\
& d!=\quad, \quad d!\cos f+\frac{d!2}{d!} \sin f ;
\end{aligned}
$$

from which we see that

$$
R=k^{2}(1+m)_{n}^{d!}, S=k^{2}(1+m)_{1}^{1} \cdot n!
$$

If we multiply the expression for $d^{2} x$ by cos f that of $d y$ by sin f^{\prime}, and add, we obtain

$$
d^{2} x \cos f+d^{2} y \sin f=d^{2} r-l^{\prime}
$$

In a similar manner we find

$$
d^{2} y \cos f-d^{2} x \sin f=r d^{\prime} f+2 d r d f .
$$

Operating on equations (2) in the same way, we have

$$
\begin{aligned}
d t^{2} \cdot \cos f+\frac{d^{2} y}{d t^{2}} \cdot \sin f+\frac{k^{2}(1+m)}{t^{2}} & =X \cdot \cos f+Y \cdot \sin f=R \\
& =Y \cdot \cos f-X \sin f=S
\end{aligned}
$$

Comparing the two sets of equations, we have

$$
\begin{align*}
& r_{d t^{2}}^{d^{2}}+2_{d t}^{d r} \text { dit}=k^{2}(1+m)_{r}^{1} d \Omega \\
& d^{d^{2} r}-t^{2} \cdot \frac{d f^{2}}{d t^{2}}+\underset{r^{2}}{k^{2}(1+m)}=k^{2}(1+m) \frac{d \Omega}{d r} \tag{3}
\end{align*}
$$

The second members of equations (1) and (2) are small, and in a first approximation to the motion of m relative to the Sun, we can neglect them. The integration of equations (2) introduces six arbitrary constants; and the integration of equations (3) introduces four. These constants are the elements which determine the undisturbed motion of m around the Sun. Having these elements, let

$$
\begin{aligned}
& a_{0} \text { the semi-major axis, } \\
& n_{0} \text { the mean motion, } \\
& g_{0} \text { the mean anomaly for the instant } t=0, \\
& e_{0} \text { the eccentricity, } \\
& \phi_{0} \text { the angle of eccentricity, } \\
& x_{0} \text { the angle between the axis of } x \text { and the perihelion, } \\
& v_{0} \text { the angle between the axis of } x \text { and the radius-vector, } \\
& f_{0} \text { the true anomaly, } \\
& \varepsilon_{0} \text { the cceentric anomaly. }
\end{aligned}
$$

These elements are constants, and give the position of the body for the epoch, or for $t=0$. Let us now take a system of variable elements, functions of the time, and let them be designated as before, omitting the subscript zero, and writing χ in place
of π_{0}. The former system may be regarded as the particular values which these elements have at the instant $t=0$.

In Elliptic motion we have

$$
\begin{aligned}
n t+y_{n} & =\varepsilon-e \sin \varepsilon \\
r \cos f & =a \cos \varepsilon-a e \\
r \sin f & =a \cos \phi \sin \varepsilon \\
v & =f+\chi \\
a^{3} n^{2} & =l^{2}(1+m)
\end{aligned}
$$

Now let $n_{0} z$ be the mean anomaly which by means of the constant clements gives the same value for the true longitude that is given by the system of variable elements. Further, let the quantities depending on $n_{z} \not$ be designated by a superposed dash, and let the true disturbed value of r be given by the relation $r=r(1+r)$.

We have then

$$
\begin{aligned}
n_{0} z & =\varepsilon-e_{0} \sin \varepsilon \\
r \cos f^{\prime} & =a_{0} \cos \varepsilon-a_{0} e_{0} \\
r \sin f^{\prime} & =a_{0} \cos \phi_{0} \sin \varepsilon \\
v & =f+\pi_{0} \\
a_{0}^{\prime} n_{0}^{2} & =i^{2}(1+m)
\end{aligned}
$$

We will now first give Briunvow's method of finding expressions for the perturbation of the time, and of the radius vector.

Neglecting the mass m, multiplying the first of equations (1) by !, the second by x, we have

$$
x_{d t}^{d y}-y_{d t}^{d x}=\int\left(Y x-X^{\prime} y\right) d t+C
$$

C being the constant of integration.
Introducing

$$
\cos f^{\prime}=r, r
$$

into equations (2), neglecting the mass m, we find

$$
\begin{align*}
& \frac{d^{2} x}{d t^{2}}+\frac{h^{2} \cdot \cos f}{r^{2}}=\boldsymbol{X} \tag{4}\\
& \frac{d^{2} y}{d t^{2}}+\frac{l^{2} \cdot \cdot \sin f=Y}{r^{2}}=\boldsymbol{Y}
\end{align*}
$$

We have also

$$
\begin{aligned}
& \frac{d x}{d t}=\cos f \cdot \frac{d r}{d t}-r \sin f \cdot \frac{d f}{d t} \\
& \frac{d y}{d t}=\sin f \cdot \frac{d r}{d t}+r \cos f \cdot \frac{d f}{d t}
\end{aligned}
$$

and hence

$$
x_{d t}^{d y}-y_{d t}^{d x}=r^{2} \cdot \frac{d f}{d t}
$$

Or

$$
r^{2} \cdot \frac{d f}{d t}=\int(Y x-X y) d t+C
$$

and

$$
r^{2} \cdot \frac{d f}{d t}=\int S r \cdot d t+C
$$

In the undisturbed motion we have

$$
r_{0}^{2} \cdot \frac{d f_{0}}{d t}=k \sqrt{ } p_{t}
$$

p_{0} being the semi-parameter.

Hence

$$
\begin{aligned}
r^{2} \frac{d f}{d t} & =\int S r \cdot d t+k \sqrt{ } p_{0} \\
& =k \sqrt{ } p
\end{aligned}
$$

From these relations we derive

$$
\begin{equation*}
\frac{1 l^{\prime}}{1 / p_{0}}=1+\frac{1}{k_{1} p_{0}} \int^{\circ} S_{i} \cdot d t \tag{5}
\end{equation*}
$$

and also

$$
\begin{equation*}
{\underset{1}{1} p}_{p_{0}}^{v^{\prime}}-\int_{h_{1} p_{0}}^{1} \int_{1 p}^{1} \overline{p_{0}} S r . d t \tag{6}
\end{equation*}
$$

If we climinate ${ }_{x^{2}}^{1}$ from equations (4), noting that

$$
r^{2} \frac{d f}{d l}=k \cdot \frac{1}{p}, \frac{1}{p} \cdot \frac{d_{l} p}{d t}=\frac{1}{k} \cdot{ }_{p}^{1} \cdot s,
$$

we have

$$
\begin{align*}
& \frac{d x}{d t}+\frac{k \sin !}{1 p}=\int\left[X-\frac{\sin f}{p} \cdot S_{0}\right] d t \tag{7}\\
& \frac{d y}{d t}-\frac{k \cos !}{1 p}=\int\left[T-\frac{\cos f}{p} \cdot S_{i}\right] d t,
\end{align*}
$$

neglecting the constants of integration.
Since $r=r(1+r)$, we have allo

$$
x=x(1+r), y=y(1+r)
$$

The equations (7) then become

$$
\begin{align*}
& x \cdot{ }_{d y}^{d v}+\left(1+v^{\prime}\right) \frac{d x}{d t}+\frac{k \sin !}{1 p}=\int\left(T-\frac{\sin !}{p} \cdot S_{v}\right) d t \tag{8}\\
& y \cdot \frac{d v}{d t}+(1+v)^{d y}-\frac{k \cdot \cos !}{1 p}=\int\left(Y+\frac{\cos !}{p} \cdot S_{r}\right) d t
\end{align*}
$$

From the equations

$$
\bar{x}=a_{01} \cos \varepsilon-a_{11} e_{n,} \quad \bar{y}=a_{11} \cos \phi_{11} \sin \bar{\varepsilon}_{0},
$$

we have

$$
\begin{aligned}
& d x=-a_{10} \sin \varepsilon d \varepsilon \\
& d y=a_{0} \cos \phi_{0} \cdot \cos \varepsilon d \varepsilon
\end{aligned}
$$

Then since

$$
d y=\frac{r}{a_{0}} d \varepsilon, d f=\cos \phi \cdot \frac{a_{0}^{2}}{r^{2}} d y, \frac{d f}{d z}=\frac{h^{2}}{h r^{2}}, h_{0}=\frac{k}{\sqrt{p_{0}}},
$$

using the values of $\sin \varepsilon, \cos \varepsilon$, in terms of $\sin f, \cos f$, we find

$$
\frac{d x}{d z}=-\frac{k \sin \bar{f}}{\sqrt{1} p_{0}}, \frac{d y}{d z}=\frac{\cos f+e_{0}}{V p_{0}}
$$

And these give

$$
\begin{aligned}
\frac{k \sin \bar{f}}{V^{\prime} p} & =-\frac{d x}{d z} \cdot V_{1}^{\prime} p_{0} \\
\frac{k \cos \bar{f}}{\sqrt{p}} & =\frac{d y}{d z} \cdot 1_{1}^{\prime} p-\frac{k e_{0}}{1^{\prime} p} \\
& =\frac{d y}{d z} \cdot \frac{1 p_{0}}{1 / p}-k e_{0}-\int_{p}^{c_{0}} \cdot \operatorname{si} d t
\end{aligned}
$$

The equations (8) then become

$$
\begin{align*}
& x \frac{d v}{d t}+\frac{d x}{d z}\left[(1+v)^{d z}-\underset{V}{V} p_{0}\right]=\int\left(X-\frac{\sin f}{p} \cdot S_{r}\right) d t \tag{9}\\
& y^{d y}+\frac{d y}{d z}\left[(1+v)^{d z}-\underset{V^{\prime}}{d t}\right]=\int\left(Y+\frac{\cos f+e_{0}}{p} \cdot S_{r}\right) d t
\end{align*}
$$

the constant $-{ }_{V^{\prime} p}^{k e_{0}}$ being included in the integral.
We will now transform equations (9), and for this purpose we multiply the first by $\frac{d y}{d z}$, the second by $\frac{d x}{d z}$, and noting that

$$
x_{d z}^{d y}-y_{d \bar{z}}^{d x}=k \sqrt{ } p
$$

we have

Now multiply the finst of (9) by y, the second by n, putting for $1 / 2$ its value given by (6), noting that

$$
y_{, \prime \prime}^{\prime \prime \prime}-x_{\prime \prime \prime}^{\prime \prime \prime}=-k^{\prime} p_{\prime \prime}
$$

we have

We can write ${ }^{\text {d }}$, in the form

$$
{ }_{\prime \prime}^{\prime \prime}=2\left(1+v^{\prime}\right)_{d l}^{\prime z}-\left(1+v^{2}\right)^{2} \cdot{ }_{\| \prime}^{\prime z}+v^{2} \cdot{ }_{\| \prime}^{\prime z}
$$

We have

$$
\begin{aligned}
& \left(1+i^{\prime}\right)=\frac{r}{r}, d_{d t}^{d f}=d f_{d z}^{d z} A_{d t}^{d t}=n_{r^{2}}^{n^{2}} \cos \phi, \\
& { }_{\| \prime}=n_{0} \cdot a_{n}^{a_{n}^{2}} \cdot \cos \phi_{19} a^{\prime \prime} n^{2}=a_{11}^{3} n_{0}{ }^{2} .
\end{aligned}
$$

Making use of these relations we find

$$
{ }_{\prime \prime}^{\prime \prime}=\begin{array}{cc}
1 & 1 \\
(1-y) & 1 \\
1
\end{array}
$$

and for "t ${ }^{\prime \prime}$ given above we have
A. P. S.-VOL. NIX. K.

The equation (11) is thus changed into

The equations (10) and (12) can be put in briefer form.
Let

Then

$$
\begin{align*}
& d_{d}=\cos _{\rho 0}^{\cos +e_{0}} \int X_{s} d t+\sum_{N_{0}}^{\sin f} \int_{c} d t, \tag{13}
\end{align*}
$$

The values of x, y, found in these equations we get from

$$
\begin{align*}
& x=x_{0}+\frac{d x_{0}}{d t}(z-t)+\frac{1}{z} \cdot d t^{2} \cdot r_{0}(z-t)^{2}+\text { etc. } \\
& y=y_{0}+\frac{d y_{0}}{d t}(z-t)+\frac{1}{2} \cdot d d^{2} y_{0}(z-t)^{2}+\text { etc. } \tag{14}
\end{align*}
$$

From the expressions for ${ }_{\| z}{ }_{\| z}, d_{z},{ }_{\|}$, we have also

$$
\begin{align*}
& { }_{p_{0}}^{\cos f+e_{0}}={ }_{k_{1} \eta_{0}}^{1}\left(\begin{array}{l}
d y_{0} \\
d t^{2} \\
d^{2} y_{0} \\
d t^{2} \\
(z-t)
\end{array}\right)+\text { etc. } \\
& -\frac{\sin !}{p_{0}}={ }_{k_{1} j_{0}}^{1}\left(\frac{d x_{0}}{n t}+\frac{1}{2} \frac{d^{2}, r_{0}}{2 t^{2}}(z-t)\right)+\text { etc. } \tag{15}
\end{align*}
$$

The quautities given by equations (14) and (15) are found in equations (13) without the integral sign. They can be put under the sign of integration and regarded
as constant if we designate all magnitudes in these factors dependent on t by a fireek letter.

We thus obtain

These efuations include terms of the second order with respect to the mass. If we put
we get

$$
\begin{align*}
& n_{0} z=n_{1} t+g_{0}+n_{0} 0\left[\|+I_{1} W^{\prime} \cdot d z+n^{2}\right] d t \tag{17}
\end{align*}
$$

In equations (17) y_{1} is the mean anomaly for $t=0 ; \lambda$ is the constant of integration in the value of \because.

From the value of IH^{+}given above, we have

Now since

$$
\begin{aligned}
& \mathrm{X}=\cos f_{d \prime}^{\prime 2}-\sin f^{2} \cdot{ }_{d!} \cdot d! \\
& Y=\sin f ._{1,}^{\prime \prime 2}+\cos f \cdot, \|!
\end{aligned}
$$

$$
\begin{aligned}
& s={ }_{i, n}^{1.11}
\end{aligned}
$$

neglecting the common factor $k^{2}(1+m)$,
we have

And as

$$
v=\rho \sin \omega, \quad E=\rho \cos ()
$$

this becomes

$$
\begin{aligned}
& { }_{d \prime}^{d W}={ }_{k_{1} \mu_{0}}^{1}\left[\left(-1-2_{1^{\prime}}^{\frac{1}{p} p_{0}}\right)_{d!}^{d \Omega}-2 \rho \sin \omega \cdot \cos f \cdot \frac{d \Omega}{d f}+{ }_{r}^{2} \cdot \rho \sin () \sin f \cdot \frac{d \Omega}{d f}\right. \\
& +2 \rho \cos \omega \cdot \sin f \cdot d \mu+2 \rho \cdot d \pi \cos \omega \cos f+2 \rho \cdot \frac{\sin \omega \cdot \sin f d g}{\mu} \\
& \left.+2 \rho \frac{\cos \omega \cdot \cos f d \theta}{\eta} \frac{e_{\rho}}{\mu} \cdot \rho \cdot \cos \omega_{d!}^{d!}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.+2_{l \prime}^{f} \cos (f-0) \frac{d \Omega}{d f}+2 e_{11} \cdot{ }_{f}^{\prime} \cos \omega \frac{d \Omega}{d!}\right]
\end{aligned}
$$

But

$$
2 e_{0} \rho \cos \omega \cdot \frac{h^{2}}{h^{2}}-2 p_{0} \cdot h_{h_{2}^{2}}^{h_{2}^{2}}=2_{h_{1}^{2}}^{l_{1}^{2}}\left(e_{0} \rho \cos \left(0-p_{0}\right)=-\rho \cdot 2_{h^{2}}^{h^{2}}\right.
$$

also

$$
h_{0}={ }_{1!}^{k}, \quad h=\frac{k}{1!}
$$

Hence since $R^{2}(1+m)$ is included in X, I, R, S, we have

$$
\left.\left.\begin{array}{rl}
{ }_{d t}^{d W}=h_{n} & {\left[2_{r}^{\prime} \cos (f-0)\right.} \tag{18}
\end{array}\right)-1+h_{h^{2}}^{20 \cdot h^{2}}(\cos (f-\omega)-1)\right]_{!!}^{\prime!!}
$$

If we write $h_{0}{ }^{\prime \prime} \cdot \mu_{11} \cos ^{*} \phi_{n}$ in place of k^{2} in equation (18), we have the same expression for $\frac{d W}{d t}$ as that given by IIansen.

Equations (17) and (18) are fundamental in ILANsex's method of computing the perturbations. We will now give Haxsex's method of deriving them.

Using the same notation as before, we have, since

$$
{ }_{r}^{\prime \prime}=\sqrt{1+r \cos t} \cdot
$$

also

$$
\begin{aligned}
& r \\
& a_{0}
\end{aligned}=\frac{\cos ^{2} \varphi_{0}}{1+\cos _{0} \cos t}
$$

hence

$$
\therefore \therefore=\frac{1+e \cos f}{\cos ^{2} \varphi^{4}} \cdot \cos ^{2} \varphi_{0}+n_{0} \cos _{1}
$$

Using $f+\pi_{0}-\chi$ in place of f, and developing, we get

$$
\frac{\therefore a_{0}}{\therefore \cdot a_{0}}=\frac{r \cos \rho \cdot \cos \left(\gamma-\pi_{0}\right)+r \sin f \cdot \sin \left(\%-\bar{\pi}_{0}\right)}{a_{0} \cos ^{2} \varphi_{0}}
$$

Let us put

$$
\begin{align*}
& e \sin \left(\chi-\pi_{11}\right)=r_{1} \cos ^{"} \phi_{1 \prime} \tag{19}\\
& e \cos \left(\chi-\pi_{11}\right)=\check{\varepsilon} \cos ^{\prime \prime} \phi_{11}+r_{n \prime}
\end{align*}
$$

since $e=\sin \phi$, we have

$$
\cos ^{2} \phi=\cos ^{2} \phi_{11}\left(1-2 e_{n}-\cos ^{2} \phi_{1}-\cos ^{2} \phi_{1} r_{1}^{2}\right) .
$$

With this value of $\cos ^{"} \phi_{\text {, }}$ and $r=a_{11} \cdot \cos \phi_{11}-\varphi_{11} r \cos f$,
we find

$$
\begin{aligned}
& \begin{array}{r}
\therefore n_{0} \\
\therefore u_{0}
\end{array}=\frac{a_{0} \cos ^{2} \varphi_{0}-\rho_{0} \cdot r \cos f+r \cos f\left(\xi \cos ^{2} \varphi_{0}+\varphi_{0}\right)+r \sin f \cdot n \cos ^{2} \varphi_{0}}{a_{0} \cos ^{2} \varphi_{0}}
\end{aligned}
$$

and hence

From

$$
\frac{d v}{d \prime}=\frac{d f}{d t}=\frac{d f}{d:} \cdot d z
$$

and

$$
\frac{\prime \prime}{\prime \prime}=\frac{k_{1} \overline{p(1+m)}}{r^{2}}
$$

we have

$$
\frac{d f}{d t}=n \cdot{ }_{n^{2}}^{u^{2}} \cdot \cos \phi
$$

In like manner we find

$$
\frac{d f}{d z}=n_{11} \cdot n_{0}^{2} \cdot \cos \phi_{00}
$$

We have therefore

$$
d z=\begin{gathered}
n \cdot a^{2} \cdot 1^{2} \cdot \cos \varphi \\
n_{0} \cdot a_{0}^{2} \cdot r^{2} \cdot \cos \varphi_{0}
\end{gathered}
$$

Further, in the case of r, we have

$$
1+v=
$$

Then since

$$
\pi n^{2}=u_{11} n_{n}^{2}, \quad \begin{aligned}
& n \\
& n_{0}
\end{aligned}=(1+b),
$$

and

$$
\frac{\cos ^{4} \cos ^{4} \varepsilon_{0}}{}=\left(1-2 e_{0} \varepsilon-\cos \phi_{0} \phi_{0}-\cos ^{2} \phi_{11} r_{0}^{2}\right),
$$

we have

If we let

$$
\begin{aligned}
& .1=1+{ }_{\prime_{v}}^{\prime} \cos f^{\circ} .5+{ }_{\prime_{0}}^{\prime} \cdot \sin f . \sigma_{0} \\
& B=1-{ }^{2} e_{n} \sigma^{5}-\cos ^{2} \phi_{0} \underline{L}^{2}-\cos ^{2} \phi_{1} r^{2}, \\
& \begin{array}{l}
\mu_{0}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)^{i}, \\
h_{0}^{2}
\end{array}
\end{aligned}
$$

we find

From the latter we have

$$
\binom{v}{1+2}^{2}=1-2(1+b)^{\frac{2}{3}} \frac{A}{B}+(1+b)^{4} \cdot \frac{A^{2}}{b b^{2}} .
$$

Hence

$$
\begin{aligned}
& =\frac{h_{0}}{h_{1}}-\frac{\ddot{h}}{h_{0}} A+\frac{d z}{d l^{\prime}}
\end{aligned}
$$

If we put

$$
H^{r}=2{ }_{h_{0}}^{h}-\frac{h_{0}}{h_{1}}-1+2 \frac{h}{h_{0}} \cdot E \quad{ }_{a_{0}}^{r} \cos f+2 \frac{h}{h_{0}} \cdot r_{1} \cdot \frac{r}{a_{0}} \sin f
$$

we have

$$
\begin{equation*}
\frac{d z}{d t}=1+W+\frac{h_{0}}{h}\binom{v}{1+v}^{2} \tag{21}
\end{equation*}
$$

We have yet to express $\frac{h_{0}}{h}$ in terms of the elements.

From

$$
B=1-2 e_{0} \varepsilon_{n}-\xi^{2} \cdot \cos ^{2} \phi_{0}-r_{0}^{2} \cdot \cos ^{2} \phi_{0}=\frac{\cos ^{2} \varphi}{\cos ^{2} \varphi_{0}}
$$

and from

$$
\begin{aligned}
n^{2} & =\frac{n_{0}^{\circ}}{n_{0}^{\circ}}, \\
1+b & ={ }_{n_{0}}^{\prime \prime}
\end{aligned}
$$

we have

$$
h_{h_{0}}^{h_{1}}=\binom{\prime \prime}{\prime \prime}^{\frac{1}{3}} \cdot \cos \varphi_{0}
$$

or

$$
h_{h_{0}}^{h_{0}}=\frac{a n}{\cos \varphi} \cdot \frac{\cos \varphi_{0}}{a_{0} n_{0}}
$$

If we put

$$
h_{i}=\begin{gathered}
\omega_{0} \mu_{0} \\
\cos \varphi_{0}
\end{gathered},
$$

we have

$$
h={\underset{\cos \varphi}{a n} .}^{a n}
$$

 expressed in terms of the elements and of r ，in a very simple form．To find the rela－ tion between ${ }_{d t}^{d z}$ and r ，we use the equation

$$
\left(1+i^{\prime}\right)^{2}=\frac{1 i^{2}}{A^{2}(1-b)^{i}}
$$

and as this is also equal to $\begin{gathered}h_{0} \\ h_{i}^{\prime \prime},\end{gathered}$
we find

$$
{ }_{d z}^{d z}=\begin{gather*}
h_{0} \\
h
\end{gather*} \frac{1}{(1+v)^{2}}
$$

For the purpose of keeping the formulae simple and compact，Hinsex makes use of the device of designating the time，and the functions of the time other than the elements，by different letters．

Thus for $t, x, \varepsilon, f, z, r, x, y$ ，we write，

$$
\tau, \rho, r_{1}, \omega, \zeta, \beta, 5, v, \text { respectively. }
$$

Whenever we integrate，these new symbols are to be treated as constants，noting that the original symbols are used after integration．

A．P．S．—VOL．N゙IX゙．I。

If in equation (21) we introduce τ instead of t we shall have

$$
\begin{equation*}
d_{\tau}^{d \zeta}=1+W+\frac{h_{0}}{h}\left(\frac{\beta}{1+\beta}\right)^{2} \tag{23}
\end{equation*}
$$

where

$$
\|=2 \frac{h}{h_{0}}-\frac{h_{0}}{h_{1}}-1+2_{h_{0}}^{h_{0}} \cdot{ }_{2} \cdot{ }_{a_{0}}^{\rho} \cos \omega+2 \frac{h}{h_{0}} \cdot \eta \cdot \frac{\rho}{a_{0}} \sin \omega .
$$

We have also

$$
\begin{equation*}
{ }_{1 \%}^{l_{1}}=\frac{h_{0}}{h(1+\beta)=} \tag{24}
\end{equation*}
$$

The courdinates of a body vary not only with the time but also with the variable elements. In computations where the elements are assumed constant, that part of the velocity of change in the courdinates arising from variable elements must, evidently, be put equal to zero. Coordinates which have the property of retaining for themselves and for their first differential coefficients the same form in disturbed as in undisturbed motion, Hinsen calls ideal coürdimates.

If L be a function of ideal coürdinates, it can be expressed as a function of the time and of the constant elements. Thus let the time, as it enters into quantities other than the elements, be itself variable and, as before, designated by τ.

The function dependent on t, τ, and the elements we designate by Λ. Then

$$
\frac{d L}{d t}=\begin{gathered}
\overline{d 1} \\
d t
\end{gathered}
$$

${ }^{\circ}{ }^{\circ}$

$$
d L=\left(\frac{d \Lambda}{d \tau}\right) d t
$$

where the superposed dash shows that after differentiation τ is to be changed into t.
Let us write the equation (24) in the form

$$
{ }_{l=}^{N_{1}}(1+\beta)^{2}=h_{n}^{n_{0}}
$$

Differentiating relative to τ, we have

$$
\frac{d \tilde{y}}{d_{t}}=-\frac{d^{2} \zeta}{d \tau^{2}}-2 \frac{d \xi}{d \tau}(1+3)
$$

The differentiation of (23) also relative to τ gives

$$
\frac{d^{2} \zeta}{d \tau^{2}}=\frac{d W}{d \xi} \cdot \frac{d \zeta}{d \tau}+h_{1}^{h_{0}} \cdot \frac{2 \tilde{2}}{\left(1+\beta^{3}\right)^{3}} \cdot d \xi
$$

Eliminating ${ }_{\frac{h_{1}}{1}}$ by means of (24), we have

$$
\frac{\frac{d^{*} \zeta}{d \tau^{2}}}{\frac{d \zeta}{d \tau}}=\frac{d W}{d \zeta}+\frac{2,3}{1+\beta \cdot \frac{d,}{d \tau}}
$$

Substituting in the expression for $\frac{1 / 9}{d / 2}$ we have

$$
\frac{d, s}{d \tau}=-\frac{1}{2} \cdot \frac{d W}{d \xi}
$$

Since r is an ideal coorrdinate, we get from this

$$
\begin{equation*}
r=N-\frac{1}{2} \int\binom{\sqrt{W}}{\sqrt{3}} d t \tag{array}
\end{equation*}
$$

N being the constant of integration, and the dash having the same signification as before.

This expression for r is a transformation of that given in the equation

$$
1+\nu=\begin{gathered}
1-2 e_{0} \hbar-\cos ^{2} \varphi_{0} \xi^{2}-\cos ^{2} \varphi_{0} \cdot \tau_{1}^{2} \\
\left.(1+h)^{\frac{3}{2}\left(1+5 n^{\prime}\right.} \cos t+r_{0}^{\prime}{ }_{\mu_{0}}^{\prime} \sin f^{\prime}\right)^{\circ}
\end{gathered}
$$

Since z is also an ideal coordinate, we have from (23)

$$
\begin{equation*}
n_{0} z=n_{0} t+g_{0}+n_{0} \int\left\{\Pi^{r}+h_{i}\left(l_{1}\right)^{2}\right)^{2} ; d \tag{26}
\end{equation*}
$$

g_{0} being the constant of integration and being the mean anomaly for $t=0$.

When we consider only terms of the first order with respect to the disturbing force, ζ changes into τ, and we have

$$
\left.\begin{array}{rl}
n_{0} z & =n_{0} t+c_{v}+n_{0} \int \widetilde{\Pi}_{0} d t \tag{27}\\
v^{\prime} & =N-\frac{1}{2} \int\left(\frac{\bar{d} W_{0}}{d \tau}\right) d t
\end{array}\right\}
$$

where

$$
\begin{equation*}
W_{0}=2_{\frac{h}{h_{0}}}^{h}-\frac{h_{0}}{h}-1+2_{h_{0}}^{h} \cdot \xi \cdot \frac{\rho}{a_{0}} \cos \omega+2_{h_{0}}^{h} \cdot \eta_{0} \cdot^{\rho}-\sin \omega, \tag{28}
\end{equation*}
$$

and ρ and ω are functions of τ, being found from

$$
\begin{aligned}
n_{0} \tau+c_{0} & =n-e_{0} \sin \gamma_{1} \\
\rho \cos \omega & =a_{0} \cos n-a_{0} e_{0} \\
\rho \sin \omega & =a_{0} \cos \phi_{0} \sin n_{0} .
\end{aligned}
$$

Also in the last two terms of $W_{0}, \frac{h}{h_{0}}$ is put equal to unity.
When terms of the order of the square and higher powers of the disturbing force are considered, ζ cannot be changed into τ. In this case let

$$
n_{0} t=n_{0} \tau+g_{0}+n \delta z_{0}
$$

Likewise let

$$
n_{0} \zeta=n_{0} \tau+g_{0}+n \delta \zeta
$$

where

$$
n \delta \zeta \text { is a function of } \tau \text { and } t \text {. }
$$

According to Taylor's theorem we have

$$
W=W_{0}+\frac{d W_{0}}{d \tau} \cdot \delta \zeta+\frac{1}{2} \frac{d^{2} W_{0}}{d \tau^{3}} \cdot \delta \zeta^{2}+\text { etc. }
$$

the value of W_{0} being given by (28).

We then have

$$
\frac{d W}{d \zeta}=\frac{d W_{0}}{d \tau}+\frac{d^{2} W_{0}}{d z^{2}} \cdot \delta \zeta+\frac{1}{2} \cdot d^{d^{3}} W_{0} \cdot \delta \zeta^{2}+\text { etce }
$$

Retaining only terms of the second order, the equations (25) and (26), replacing $\delta \xi$ by δz, give

$$
\begin{align*}
n_{0} z & =n_{0} t+g_{0}+n_{0} \int\left[\overline{W_{0}^{F}}+\frac{d \bar{W}}{d \tau} \cdot \delta z+v^{2}\right] d t \tag{29}\\
v & =N-\frac{1}{z} \int\left[\frac{d \overline{W_{0}}}{d \tau}+\frac{d^{2} W_{0}}{d \tau^{2}} \cdot \delta z\right] d t
\end{align*}
$$

The equation (26) has been put in simpler form by Hill. For this purpose from (?l) and (22) we have

$$
\frac{h_{0}}{h}\left(\frac{v}{1+\nu}\right)^{2}=v^{2 d z} \frac{d z}{d t}=\frac{d z}{d t}-(1+W)
$$

Hence

$$
i^{2 \cdot} \cdot \prime z=v^{\prime 2}\binom{1+W}{1-y^{2}}
$$

Developing the second member and adding $\bar{\Pi}$, we have

$$
\begin{equation*}
n_{0} z=n_{0} t+g_{0}+n_{0} \int \frac{\bar{W}+v^{2}}{1-2} d t \tag{30}
\end{equation*}
$$

The next step is to express $\frac{d W_{0}}{d t}$ and $\frac{d h}{d t}$ in terms of the disturbing force. From (19) we find

$$
\begin{aligned}
& \underline{s}=\frac{e}{\cos ^{2} \varphi_{0}} \cdot \cos \left(\chi-\pi_{0}\right)-e_{0}^{\cos ^{2} \varphi_{0}} \\
& r_{1}={ }_{\cos ^{\prime} \varphi_{0}}^{\prime \prime} \cdot \sin \left(\chi-\pi_{0}\right)
\end{aligned}
$$

Using these values of ξ and n, and $e_{0} \rho \cos \omega=a_{0} \cos ^{2} \bar{\phi}_{0}-\rho$, in equation (28), we find

$$
\Pi_{0}^{\top}=\frac{2 \rho}{h_{0} a_{0} \cos ^{2} \varphi_{0}} \cdot h e \cos \left(\chi-\pi_{0}-\omega\right)+\frac{2 \rho}{h_{0} a_{0} \cos ^{2} \varphi_{0}} \cdot h-\frac{h_{0}}{\bar{h}}-1 .
$$

Since

$$
h=\frac{a n}{\cos \varphi}=\frac{l^{\prime} 1^{\prime}+m}{1^{\prime} l^{\prime}}
$$

we have from the expression of h already given,

$$
h=\frac{k^{2}(1+m)}{r^{2} \cdot \frac{d v}{d t}}
$$

By means of

$$
\begin{aligned}
f & =\bar{f}-\omega-\left(\chi-\pi_{0}-\omega\right), \\
{ }_{r}^{p}-1 & =e \cos f \\
h & ={ }_{\cos . \varphi}^{a n}
\end{aligned}
$$

we may transform the expressions

$$
\begin{aligned}
& d v=\frac{a^{2}}{r^{2}} \cdot n \cos \phi \\
& d r=\frac{a n}{\cos \varphi} \cdot e \sin f \\
& d t
\end{aligned}
$$

into

$$
\begin{aligned}
r \cdot \frac{d v}{d t}-h & =\cos (\bar{f}-\omega) \cdot h e \cos \left(\chi-\pi_{0}-\omega\right)+\sin (\bar{f}-\omega) \cdot h e \sin \left(\chi-\pi_{0}-\omega\right) \\
\frac{d v}{d t} & =\sin (f-\omega) \cdot h e \cos \left(\chi-\pi_{0}-\omega\right)-\cos (f-\omega) \cdot h e \sin \left(\chi-\pi_{0}-\omega\right)
\end{aligned}
$$

Multiplying the first of these equations by $\cos (f-\omega)$, the second by $\sin (f-\omega)$, and adding the results, we have

$$
h e \cos \left(\chi-\pi_{0}-0\right)=\left(r \frac{d v}{d t}-h\right) \cos (f-0)+_{d \prime}^{d r} \sin (f-0)
$$

Substituting this value of $h \cdot e \cdot \cos \left(\chi-\pi_{0}-(\omega)\right.$ in the expression for W_{c}, noting that

$$
\stackrel{1}{h_{0} \cdot \epsilon_{0} \cdot \cos ^{2} \varphi_{0}}=\frac{h_{0}}{h^{2}(1+m)}
$$

we have

$$
\begin{aligned}
W_{0}=\frac{2 \cdot h_{0} \cdot \rho}{h^{2}(1+m)} \cdot \cos (f-\omega) r_{\prime \prime}^{\prime \prime} & +\frac{2 h_{0} \cdot p}{h_{0}^{2}(1+m)} \cdot \sin (f-\omega)_{\prime \prime}^{\prime \prime} \\
& -\frac{2 \rho}{h_{0} \cdot a_{0} \cos ^{3} \varphi_{0}}[\cos (f-\omega)-1] h-\frac{h_{0}}{h_{1}}-1 .
\end{aligned}
$$

Differentiating relative to the time t alone, τ remaining constant, and having care that all the terms of the expressions be homogeneous, we have

$$
\begin{aligned}
& -\frac{2_{\rho}}{h_{0} \pi_{0} \cos ^{2} \varphi_{0}}\left[\cos \left(f^{\sigma}-(0)-1\right]_{d t}^{d h}+h_{h} \cdot d t,\right.
\end{aligned}
$$

and

$$
d h=-\frac{k^{2}(1+m)}{r^{2}\binom{d}{d}^{2}} \cdot d^{d^{2} u} d t^{2}=-\underset{L^{2}(1+m)}{l^{2}\left(u^{2}\right.} \quad d t^{2}
$$

Substituting

$$
\begin{aligned}
& k^{2}(1+m){ }_{r^{2}}^{1}\binom{d!}{d v} \text { for } \begin{array}{l}
d^{2} \\
d m^{2}
\end{array} \\
& k=1+m)\binom{d!}{d v} \text { for } \begin{array}{l}
n=r \\
d=
\end{array}
\end{aligned}
$$

we have

$$
\begin{align*}
\frac{d W_{0}}{d t}=h_{0}\left\{2_{r}^{\rho} \cos (\bar{f}-(0)-1+\right. & \left.\frac{2 h_{h_{0} \rho} \rho}{\cos _{0} \varphi_{0}}[\cos (f-0)-1]\right\}\left(\frac{d \Omega}{d v}\right) \tag{30}\\
& +2 h_{0}{ }_{r}^{\rho} \sin (f-\omega) \gamma\binom{d \Omega}{d r} \\
\frac{d h}{d t}= &
\end{align*}
$$

This expression for ${ }^{d}{ }^{W} W_{0}$ is the one used by Hansen in his Auseinandersetzung. It is given in a much simpler form in his posthumous memoir, and as the latter is the form in which we will employ it, we will now give the process employed by Hansen to effect the transformation.

Substituting first the value of h, omitting the dash placed over certain quantities, noting that in the posthumous memoir ϕ takes the place of $(\omega$, and remembering that we are here concerned only with terms of the first order with respect to the mass, we have

$$
\begin{aligned}
& \frac{d W}{d \bar{t}}=\frac{a \cdot n}{11-e^{2}}\left\{2 \frac{\rho}{r} \cos (f-\omega)-1\right.\left.+\frac{2 \rho}{a\left(1-e^{2}\right)}[\cos (f-\omega)-1]\right\}\left(\frac{d \Omega}{d f}\right) \\
&+2 \frac{a n}{1-1-e^{2}} \frac{\rho}{r} \\
& \sin (f-\omega) r^{2}\binom{d \Omega}{d r}
\end{aligned}
$$

From the relation

$$
\rho=a\left(1-e^{2}\right)-e \rho \cos \omega
$$

we have

$$
\bar{a}\left(1-e^{\overline{2}}\right)=1-\frac{c \rho \cos \omega}{a\left(1-e^{2}\right)} .
$$

An inspection of the value of $\frac{d W}{d t}$ shows that its expression consists of three parts, one independent of τ, the other two multiplied by $\rho \cos (0$, and $\rho \sin s$, respectively.

Put

$$
\frac{d W}{d t}=\frac{d E}{d!}+\frac{d Y}{d!}(\rho \cos (1)+\overbrace{2} e)+\frac{d M^{\prime}}{d!} 0_{"} \sin (1)
$$

and we have

$$
\begin{aligned}
& { }_{n d t}^{d Y}=2_{1-1-e^{2}}^{a}\left\{\left[\begin{array}{c}
a \cos f \\
r
\end{array}+\frac{(\cos f+e)}{1-e^{2}}\right]\binom{d \Omega}{d f}+\begin{array}{c}
a \sin ! \\
1
\end{array} \cdot r\binom{d!}{d n}!.\right. \\
& \frac{d F}{n d t}=2 \frac{a}{V 1-e^{2}}\left\{\left[\frac{a \sin f}{r}+\frac{\sin f}{1-e^{2}}\right]\left(\frac{d!}{d f}\right)-\frac{a \cos f}{r} \cdot r\left(\frac{d!}{d r}\right)\right\} .
\end{aligned}
$$

But

$$
\begin{aligned}
& \frac{d f}{d!}=\frac{a^{2}}{r^{2}} \sqrt{1-e^{2}}=\frac{a e \cos !}{r_{1} \sqrt{1-e^{2}}}+\frac{\rho \cos !}{\left(1-r^{2}\right)^{2}}+\frac{1}{\left(1-r^{2}\right)^{2}} \\
& d r \\
& d y \\
& d y \\
& a^{\prime \prime} \sin ! \\
& \frac{d f}{d e}=\left(\begin{array}{c}
\prime \prime \\
r
\end{array}+\frac{1}{1-e^{2}}\right) \sin f \\
& \frac{d r}{d e}=-a \cos f ;
\end{aligned}
$$

hence

$$
\begin{aligned}
& \frac{d \equiv}{u d t}=-3 a\binom{d s}{d!}, \\
& \frac{d Y}{n d t}=\frac{2}{e}\left[a\binom{d!}{d g}-\frac{1}{1-1-e^{2}} d\binom{n!!}{d!}\right], \\
& n d=, 2, \quad a\binom{d \frac{2}{d}}{d e} .
\end{aligned}
$$

Again from

$$
\left(\frac{d \Omega}{d g}\right)=\binom{d!}{d!}\binom{d f}{d y}+\binom{d!!}{d i}\binom{d!}{d!}
$$

A. P. S.-VOI. NIX. M.
we have

$$
\binom{d!}{d!}=\binom{d!}{d!}_{\mu_{1}^{2}} \frac{r^{2}}{\overline{1}-i^{2}}-r\binom{d!}{l r^{0}} \frac{r e \sin f}{\mu\left(1-e^{2}\right)}
$$

Eliminating $\binom{d!}{d /}$ from the expression for \quad " $1 / \prime \prime$, we have

In the same way we find

$$
\begin{aligned}
& \left.+\begin{array}{c}
\pi\left(1-e^{2}\right)^{3}
\end{array}\right] \operatorname{ar}\left(\frac{d \Omega}{d r}\right)
\end{aligned}
$$

But if we employ the relation

$$
I=\frac{\prime \prime}{\prime\left(1-r^{2}\right)}+\frac{r e \cos t}{a\left(1-e^{2}\right)}
$$

in the term, $\frac{a \cos !}{r} \sqrt{1-e^{2}}$, of the preceding expression, the whole term becomes

$$
-\left[\frac{r^{\prime} \cos f}{\left(1-r^{2}\right)^{3}}+\frac{e}{11^{-}-t^{2}}+\frac{r e}{a\left(1-e^{2}\right)^{3}}\right] \text { it }\left(\frac{112}{d r^{2}}\right)
$$

Using the equation

$$
0=-r e \cos f-r+a\left(1-e^{2}\right)
$$

multiplying by

$$
a\left(\frac{e}{\left.a \cdot r^{2}\right)^{2}} a r\left(\frac{d \varrho}{d r}\right)\right.
$$

adding to the preceding, it becomes

Further, we have

$$
\frac{d}{d g}\left[\begin{array}{r}
r \\
a \\
\left.\left.\sin f+\frac{r^{2} \sin f}{a^{2}\left(1 r^{2}\right)}\right]={ }_{r}^{a} \cos f \sqrt{ } 1-e^{2}+\frac{\cos f}{11 e^{3}}+\frac{11}{1} \sin ^{2}+2_{a(1}^{r e} e^{2}\right)
\end{array}\right.
$$

Reducing this expression in the same manner as employed before, it becomes

$$
d_{g}\left[\begin{array}{l}
\prime \prime \\
{ }^{\prime \prime} \\
\sin f+ \\
n^{2}\left(1-a^{2}\right)
\end{array}\right]=\frac{2 r \cos !+3 a c}{(1)}
$$

Multiply this by dy, the last expression for "ull becomes
the integral to be so taken that it vanishes at the same time with g.

this expression can be made to take the simple form

$$
\begin{equation*}
\frac{d w}{n d l}=A a\left(\frac{d!}{d!}\right)+B \operatorname{cor}\binom{1!!}{1!} \tag{31}
\end{equation*}
$$

in which

Since

$$
\begin{aligned}
& d \cdot n^{2}=2_{a_{1}}^{r \sin !} \\
& \frac{d \cdot m}{a^{2} \cdot d}=-2_{a}^{r} \cos f,
\end{aligned}
$$

we have

$$
\begin{aligned}
& A=-3+\frac{1}{1-e^{2}}\left\{\left[\frac{d \cdot \rho^{2}}{n^{2} \cdot d e}-3 e\right]^{r^{2}-u^{2}\left(1-e^{2}\right)}-\frac{d \cdot r^{2}}{a^{2} e} \int\left[\frac{d \cdot r^{2}}{a^{2} \cdot d e}-3 e\right] d y\right\} \\
& B=\frac{1}{2\left(1-a^{2}\right)}\left\{\frac{d \cdot v^{2}}{a^{2} e \cdot d y}\left[\frac{d \cdot r^{2}}{u^{2} \cdot d e}-t e\right]-\left[\frac{d \cdot v^{2}}{a^{2} \cdot d e}-3 e\right] \frac{d \cdot r^{2}}{a^{2} e \cdot d y}\right\} \cdot
\end{aligned}
$$

These expressions for A and B can be much simplified.

Thus from

$$
r^{2}=1+\frac{3}{2} e^{2}-\left(2 e-\frac{1}{1} e^{2}\right) \cos g-\left(\frac{1}{2} e^{2}-\frac{1}{6} e^{4}\right) \cos 2 g-\frac{1}{1} e^{3} \cos 3 g-\frac{e^{4}}{6} \cos 4 g-\text { ctc. }
$$

and a similar expression for $\frac{r^{2}}{a^{2}}$, we get

$$
\begin{aligned}
& \frac{d \cdot \rho^{2}}{a^{2} e \cdot d \gamma}=\left(2-\frac{e^{2}}{4}\right) \sin \gamma, \\
& \frac{d \cdot r^{2}}{a^{2} \cdot d e}-3 e=-\left(2-\frac{3}{1} e^{2}\right) \cos \gamma, \\
& \frac{d \cdot r^{2}}{a^{2} e \cdot d y}=\left(2-\frac{e^{2}}{4}\right) \sin y+\left(e-\frac{e^{3}}{3}\right) \sin 2 y+\frac{3}{4} e^{2} \sin 3 y+\frac{2}{3} e^{3} \sin 4 y+\text { etce }, \\
& \int\left[\begin{array}{l}
d \cdot r^{2} \\
a^{2} \cdot d e
\end{array}\right]=3 e d y=-\left(2-\frac{3}{4} e^{2}\right) \sin g-\left(\begin{array}{l}
e \\
2
\end{array} e_{3}^{e^{3}}\right) \sin 2 g-\frac{e^{2}}{4} \sin 3 g-\frac{e^{3}}{6} \sin 4 g-\text { etc. },
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \cdot r^{2}}{1^{2} \cdot d e}-4 e=-e-\left(2-\frac{3}{4} e^{2}\right) \cos g-\left(e-\frac{2}{5} e^{3}\right) \cos 2 g-\frac{3}{4} e^{2} \cos 3 g-\frac{2}{3} e^{3} \cos 4 g \text {. }
\end{aligned}
$$

From which we obtain

$$
\begin{align*}
& A=-3+\left(t+2 e^{2}\right) \cos (\gamma-g) \quad B=-\left(2+e^{2}\right) \sin (\gamma-g) \\
& +\left(e+\begin{array}{c}
e^{3} \\
f
\end{array}\right) \cos (\gamma-2 g) \quad-\left(e+e_{4}^{e^{3}}\right) \sin (\gamma-2 g) \\
& -\left(5 e+\frac{2 \bar{n}}{\alpha}\right) \cos \gamma \quad-\left(e+\frac{i e^{3}}{8}\right) \sin \gamma \\
& +{\frac{r^{2}}{2}}_{2} \cos (\gamma-3!\eta) \quad-3 e^{2} \sin (\gamma-3 g) \tag{32}\\
& +{ }_{i j}^{i^{3}} \cos (\gamma-4 y) \quad-\frac{e^{3}}{3} \sin (\gamma-4 y) \\
& +\frac{e^{2}}{2+} \cos (\gamma+2 g) \quad+\frac{e^{2}}{2+} \sin (\gamma+2 g)
\end{align*}
$$

These are the expressions of A and B whose values are used in the numerical computations.

When we have the coefficients of the arguments in which γ is +1 , and -1 , we obtain the coefficients of the arguments in which γ is $\pm i$, with very little labor.

Let us resume the expression for $\frac{d W}{n \| l}$, that is,

$$
\frac{d W}{n d t}=\mathcal{A} a\binom{d!}{d j}+B a r\binom{d!}{d r}
$$

A and B having the values given before.

Since $\underset{a^{2}}{\frac{a^{2}}{2}}$ can be put in the form

$$
a^{2}=\Sigma R^{(k)} \cos k g
$$

we have

$$
\frac{2 r \sin f}{{ }_{11} 1-\frac{e^{2}}{d}}=\frac{d^{r^{2}}}{e^{2}+l_{y}}=-\Sigma_{e}^{k} R^{k} \sin k y, \quad 2_{"}^{r} \cos f^{\prime}=-N_{n}^{\prime \prime}=-l_{n}^{\prime \prime} \cos k y,
$$

and

But since

$$
\begin{gathered}
r^{2}=1+\frac{3}{2} e^{2}-\left(2 e-\frac{1}{4} e^{3}+\frac{1}{96} e^{5}\right) \cos g-\left(\frac{1}{2} e^{2}-\frac{1}{61} e^{4}+{ }_{4}^{1}{ }^{1} e^{6}\right) \cos 2 g \\
-\left({ }_{4}^{1} e^{3}-\frac{9}{4} e^{5}\right) \cos 3 g-\text { etc. }
\end{gathered}
$$

we have

$$
\frac{\left.d i^{0}\right)^{2}}{d e}=3 e
$$

Hence the integral just given is simply ${ }_{k i d e}{ }^{\prime \prime(k)} \sin$ kig.
A and B can then be written
$A=-3+\frac{1}{1-e^{2}}\left[\left(2_{a}^{\rho} \cos (1)+3 e\right) \frac{a^{2}\left(1-e^{2}\right)-r^{2}}{a^{2} e}-\frac{2 \rho \sin (0) d h^{(k)}}{a_{1} 1-e^{2}} k d e-\sin k g\right]$
$B=\quad-\underset{1-e^{2}}{1}\left[\left(2_{a}^{\rho} \cos \theta+3 e\right)_{2}^{\rho} k R^{k} \sin k g-\frac{2 \rho \sin \omega}{{ }_{1} 1-e^{2}}\left(\frac{d R^{(k)}}{d e} \cos k g-2 e\right)\right]$

Putting

$$
\frac{\rho^{2}}{a^{2}}=\Sigma R^{(\kappa)} \cos x \gamma,
$$

we have likewise

$$
2_{a}^{\rho} \cos \theta=-{ }_{d e}^{d_{a^{2}}^{\rho^{2}}}=-\frac{d R^{(\alpha)}}{d e} \cos \alpha \gamma, \quad 2_{a}^{\mu} \sin \theta=\frac{d d^{\mu^{2}}}{e \cdot d \gamma} \sqrt{\mu^{2}} \overline{-e^{2}}=-e_{e}^{k} \boldsymbol{R}^{(\alpha)} \sin x \gamma
$$

Introducing these values of $2_{a}^{\prime \prime} \cos \omega$, and $2_{a}^{\beta} \sin \omega$ into the expressions for A and b, after integration relative to γ we can write H in the form

$$
W=\alpha^{(k)} \sin \left(x \gamma^{\dot{\alpha}}+\beta t\right)
$$

where

$$
\begin{aligned}
& u^{(*)}={ }_{d l^{* * 1}}^{U+x^{l^{* *)}}} \mathrm{I}^{*} \\
& 3=i y+i y,
\end{aligned}
$$

U and I^{\prime} being two functions depending alone on t.
Putting $x=+1$, and -1 , we have

$$
\begin{aligned}
& u^{(1)}=\frac{d R^{2}}{d e} U+R_{e}^{R^{1}} 1^{-} \\
& u^{(-1)}={ }_{d e}^{d i^{2}} U-\frac{i^{2}}{e} I^{\prime} ;
\end{aligned}
$$

and hence

Thus we find
or putting
we have

$$
\begin{equation*}
u^{\prime *}=r^{*)} u^{(1)}+\theta^{*} u^{-1} . \tag{33}
\end{equation*}
$$

The values of $\gamma^{\prime *}$ and $\theta^{(k)}$ are readily found from

$$
\begin{aligned}
y^{2} & =1+\frac{8}{2} e^{2}-\left(2 e-\frac{1}{4} e^{3}+\frac{1}{96} e^{5}\right) \cos \gamma \\
& -\left(\frac{1}{2} e^{2}-\frac{1}{6} e^{\frac{1}{4}}+\frac{1}{48} e^{6}\right) \cos 2 \gamma \\
& -\left(\frac{1}{4} e^{3}-\frac{9}{6 t} e^{5}\right) \cos 3 \gamma-\text { etc. } \\
&
\end{aligned}
$$

We have

$$
\begin{aligned}
& R^{(1)}=1+\frac{8}{2} e^{2} \\
& R^{(1)}=-\left(2 e-\frac{1}{4} e^{3}+\frac{1}{96} e^{5}\right) \\
& R^{2 \cdot}=-\left(\frac{1}{2} e^{n}-{ }_{15}^{1} e^{4}+{ }_{4}^{1}{ }_{5} e^{6}\right) \\
& R^{(3)}=-\left(\frac{1}{4} e^{3}-\frac{9}{6 t} e^{j} \quad\right) \\
& \text { etc., }=\quad \text { etc. } \\
& \frac{d l^{0}}{d e}=3 e \\
& \left.\frac{d h^{1}}{\pi}=-(2)-\frac{3}{k} e^{2}+\frac{\pi}{6} e^{4}\right) \\
& { }_{d e} d_{i^{2}}^{2}=-\left(e-\frac{2}{3} e^{3}+\frac{1}{5} e^{5}\right) \\
& \frac{d l^{i, 3}}{d e}=-\left(\frac{3}{4} e^{2}-\frac{45}{b i t} e^{4}\right) \\
& \frac{d l^{*}}{d e}=-\left(\frac{2}{3} e^{3}-\frac{1}{5} e^{5}\right) \\
& \text { etc. }=\text { etc. }
\end{aligned}
$$

For $r^{(2)}$ we have

$$
\begin{aligned}
& =\left(\frac{1}{16} e-\frac{7}{96} e^{3}-\frac{1}{1!12} e^{5}\right)+\left(\frac{1}{4} e-\frac{5}{96} e^{3}+\frac{1}{38 t} e^{5}\right) ;
\end{aligned}
$$

or

$$
\begin{equation*}
r^{(2)}=\frac{1}{2} e-\frac{1}{3} e^{3}-\frac{1}{38 \pm} e^{5} . \tag{34}
\end{equation*}
$$

For $\theta^{(2)}$ we get at once

$$
\theta^{(2)}=-\frac{1}{4 y} \epsilon^{3}-\frac{1}{12 S} e^{j}
$$

In a similar way we have

$$
\begin{equation*}
r^{\prime 2}=\frac{3}{9} e^{2}-e^{1}, r^{1}=\frac{1}{3} e^{0} . \tag{35}
\end{equation*}
$$

In case of the third coordinate we also compute the coeflicients of the arguments having no angle γ from those having $\pm \gamma$. For this purprese, putting $x=0$ in the expression for $\alpha^{(k)}$ we have
where

$$
x^{\prime \prime}=\begin{gathered}
d i^{\prime \prime} \\
\frac{d}{2} \\
\vdots \frac{d l^{\prime 2}}{d e}
\end{gathered}
$$

For $r^{(1)}$ we then have

$$
\begin{equation*}
r^{(1)}=-\binom{3}{3}+i_{1 ;}^{\prime \prime} e^{3} \pm \mathrm{et}\left(e_{0}\right) \tag{36}
\end{equation*}
$$

Perturbation of the Third Coindinate.

Let b the angle between the radius-vector and the fundamental plane,
i the inclination of the plane of the orbit to the fundamental plane,
$v-\sigma$ the angular distance from the ascending node to the radius-vector.
We have then

$$
\operatorname{in} b=\sin i \sin (v-\sigma) .
$$

If we use for i and σ their values for the epoch and call them i_{n} and δ_{n}, \& being the longitude of the ascending node, we have

$$
\sin l=\sin i_{n} \sin \left(v-a_{n}\right)+s:
$$

s is the perturbation.
Thus we find

$$
\therefore=\sin i \sin (v-\sigma)-\sin i_{11} \sin \left(t-5_{0}\right) .
$$

A. P. S.-VOL. N. NIX.

Putting

$$
p=\sin i \sin \left(\sigma-\Omega_{n}\right), q=\sin i \cos \left(\sigma-\Omega_{0}\right)-\sin i_{0},
$$

we find

$$
s=q \sin \left(v-\delta_{0}\right)-p \cos \left(v-\delta_{\delta_{n}}\right) .
$$

Instead of s, let us use

$$
u={\stackrel{r}{i_{0}}}_{r} s,
$$

and we have

$$
u=\frac{r}{a_{0}} q \sin \left(v-\delta_{0}\right)-\frac{r}{a_{0}} p \cos \left(v-\delta_{0}\right) .
$$

Introducing τ and calling R the new function taking the place of u, we have, putting $\omega+\pi_{0}$ for v, π_{0} being the longitude of the perihelion,

$$
\frac{d R}{d t}=\frac{d q}{d t} \frac{\rho}{a_{0}} \sin \left(\omega+\pi_{0}-\delta_{01}\right)-\frac{d p}{d t} \frac{\rho}{a_{0}} \cos \left(1+\pi_{0}-\delta_{0}\right) .
$$

To find $\frac{d q}{d t}$ and $\frac{d p}{d t}$ we will employ the method given by Watson in the eighth chapter of his Theoretical Astronomy.

Thus α and β being direction cosines we have

$$
z_{1}=\alpha x+\beta y
$$

also

$$
z_{1}=r \sin i \sin (v-\sigma)
$$

But

$$
r=r \cos v, \text { and } y=r \sin v
$$

Hence

$$
z_{1}=-x \sin i \sin \sigma+y \sin i \cos \sigma
$$

and

$$
a=-\sin i \sin \pi, \quad j=\sin i \cos \pi
$$

The values of p and q then are given by the equations

$$
\begin{aligned}
& p=-u \cos \delta_{n}-\zeta \sin \delta_{n}, \\
& q=-u \sin \delta_{n 1}+弓 \cos \delta_{n}-\sin i_{n} ;
\end{aligned}
$$

from which we have

$$
\begin{aligned}
& { }_{d t}^{d q}=-\sin \delta_{00} d_{d t}^{d t}+\cos \delta_{n n} \frac{d_{1}}{d t} .
\end{aligned}
$$

From the equation $z_{1}=a x+3 y$ we have, first regarding u and β as constant, then regarding x and y as constant,

$$
\begin{aligned}
& \binom{d z_{1}}{d t}=u_{d t}^{d x}+3 \frac{d!}{d t} \\
& {\left[\begin{array}{c}
d z_{1} \\
d t
\end{array}\right]=d^{d t} d t+y^{d d_{2}} \frac{d t}{d t}=0 .}
\end{aligned}
$$

Differentiating the first of these, regarding all the quantities variable, we have
Z_{1} being the component of the disturbing force parallel to the axis z_{1}, and X and Y the other two components, we hare

$$
Z_{1}=u X+3 Y+Z \cos i
$$

Writing for X and I their value-

$$
\frac{d^{2} x}{d t^{2}}+k(1+m)_{n}^{\prime}, \quad i^{2}!!+k(1 \cdot m)^{\prime}
$$

and reducing by means of

$$
z_{1}=\alpha x+\beta y,
$$

we have

$$
Z_{1}=u_{d t^{2}}^{d^{2} x}+3_{d t^{2}}^{d^{2} y}+k^{2}(1+m)_{i^{3}}^{z_{1}}+Z \cos i,
$$

or ${ }^{*}$

$$
\frac{d^{2} z_{1}}{d t^{2}}=u^{t^{2} \cdot x}+t^{2} \frac{d^{2} y}{d t^{2}}+Z \cos i
$$

Comparing this with the other expression for $\begin{gathered}d^{2} z_{1} \\ d t^{2}\end{gathered}$, given above,
we have

$$
\frac{d u d x}{d t d t}+\frac{d \beta d y}{d t d t}=Z \cos i
$$

From this equation, and the value of $\left[\begin{array}{c}d z_{1} \\ d t\end{array}\right]$, since

$$
x_{d t}^{d y}-y_{d t}^{d x}=k v^{\prime} p(1+-\bar{m})={ }_{h}^{1}
$$

we find

$$
\begin{aligned}
d t & =-h r \cos i \sin v Z \\
d \beta & =h r \cos i \cos v Z
\end{aligned}
$$

Substituting these values in the expressions for $\frac{d y}{d t}$ and $\frac{d q}{d t}$,
we have

$$
\begin{aligned}
& \frac{d p}{d t}=h r \cos i \sin \left(v-\delta_{0}\right) Z \\
& \frac{d q}{d t}=h r \cos i \cos \left(v-\delta_{0}\right) Z
\end{aligned}
$$

Introducing these vilues into the expression for ${ }^{\text {d/i }}$
we have

$$
\begin{aligned}
& { }_{d t}^{d h}=h r \cos i \cos \left(v-\lambda_{n}\right)_{a_{n}}^{p} \sin \left(10+\pi_{n}-\Omega_{0}\right) Z \\
& -h r \cos i \sin \left(r-\Omega_{n 1}\right)_{n_{0}}^{\prime \prime} \cos \left(1+\pi_{n}-\Omega_{n}\right) / / \\
& =h_{r} \cdot \cos i_{a_{0}}^{\prime \prime}\left[\sin \left(0 \cos \left(v-\delta_{n \prime}-\left(\pi_{n 1}-\Omega_{0}\right)\right)\right] Z\right. \\
& -H_{1} r \cos i_{n_{0}}^{\mu}\left[\cos a \sin \left(v-\delta_{n}-\left(\pi_{0}-\delta_{n}\right)\right)\right] / / \\
& =h r \cdot \cos i_{\mu_{0}}^{\mu_{0}} \sin \left(\omega-f^{\prime}\right) \frac{d!}{d Z} . \\
& \text { Introducing } n=\frac{k_{1} 1-m}{n_{2}} \text {, and } h=\begin{array}{c}
11 m \\
1 \%
\end{array},
\end{aligned}
$$

we have

$$
\begin{equation*}
\frac{d l_{1}}{n d l}=\frac{1}{1} \quad r \sin (a-t) a^{2} \frac{d \Omega}{d \ell} \cos i \tag{37}
\end{equation*}
$$

Let

$$
\mathbf{r}_{i}=1_{1}^{1} e^{2} a a_{0}^{\prime} \sin (0-f)
$$

then

$$
{ }_{\cos i n i l}^{d n}=C \cdot a^{2}\binom{1!!}{i z} .
$$

To find an expression for C similar to those for A and B we have, first,

Substituting the values of ${ }_{"}$ "cos $f,{ }_{a}^{"} \sin t$, given before, and similar ones for ${ }_{\mu_{0}}^{\prime} \cos \left(0,{ }_{\mu_{0}}^{\prime} \sin (1\right.$, we find

$$
C=1\binom{d_{0} \cdot v^{2}}{a_{0}^{2}+d^{2}}\binom{d \cdot r^{2}}{a^{2} e d y}-\frac{1}{1}\binom{d_{0} \cdot v^{2}}{a_{0}^{2} e d y}\binom{l_{1} \cdot r^{2}}{a^{2} d e} .
$$

Substituting the values of these factors we obtain for C the expression

$$
\left.\begin{array}{rl}
C & =\left(1-\frac{1}{2} e^{2}\right) \\
\quad \sin (\gamma-g) \tag{38}\\
& +\left(\frac{1}{2} e-\frac{3}{16} e^{3}\right) \sin \gamma \\
& \left.+\frac{3}{8} e^{3}\right) \sin (\gamma-2 g) \\
& +\frac{3}{8} e^{2} \sin (\gamma-3 g) \\
& -\frac{1}{48} e^{3} \\
& \sin (\gamma-4 g) \\
& \sin (\gamma+2 g)
\end{array}\right)
$$

Haring found the expressions for $\frac{d W}{n i t}$ and $\frac{d u}{\text { ndt } \cos i}$
we have, finally, for determining the perturbations, the following expressions:

$$
\begin{aligned}
n d z & =n \int \Pi^{r} d t \\
u^{\prime} & =-\frac{\square}{2} \int_{d y}^{d y} d t \\
\frac{n}{\cos i} & =\iint a^{2}\binom{d!}{d z}
\end{aligned}
$$

Two integrations are needed to find $n d z$. We first find W^{\top} from $\frac{d W}{n d t}$; then, forming \bar{I} and $-\frac{1}{2} \frac{d \bar{W}}{d \gamma}$ from H^{+}we have $n \delta z$ and r by integrating these quantities. In the integration of $\frac{d W}{n d t}$ we give to the constants of integration the form

$$
k_{0}+k_{1} \cos \gamma+k_{2} \sin \gamma+r_{1}^{(2)} k_{1} \cos 2 \gamma+r_{1}^{(2)} k_{2} \sin 2 \gamma+\text { etc. }
$$

Then in case of - " ${ }^{\prime \prime}$ we have

$$
+\frac{1}{2} k_{1} \sin \gamma-\frac{1}{2} h_{2} \cos \gamma+\gamma_{1}^{2} \sin 2 \gamma-x_{1}^{2} k_{2}(0-2 \gamma+\text { etce }
$$

In the second integration we call the two new constants C^{\prime} and N, and the constants of the results are in the forms

$$
\begin{aligned}
& C+k_{0} n t+k_{1} \sin !\eta-k_{2} \cos !\eta+\frac{1}{2} r_{1}^{2} \sin 2!\eta-\frac{1}{2} k_{2} \cos 2!\pm \text { etc. } \\
& N \quad-\frac{1}{2} k_{1} \cos !-\frac{1}{2} k_{2} \sin !-!k_{1} \cos 2!-!k_{2} \sin 2!-\text { etc. }
\end{aligned}
$$

In case of the latitude the constants are given in the form

$$
l_{0}+l_{1} \sin g+l_{2} \cos !\eta+r_{1}^{(2)} l_{1} \sin \ddot{2}_{!}!+r_{1}^{2} l_{2} \cos -!!+\text { etc. }
$$

The constants are so determined that the perturbations become zero for the epoch of the elements. Ifence also the first differential coeflicients of the perturbations relative to the time are zero. We substitute the values of !f and !/ at the epoech in the expressions for ndz, r, "" " " " "n (niz), etce, including in ! the long period term. Putting the constants equal to zem, and designating the values of ma, r, ete, at the epoch by a subscript zero, we have the following equations for determining the values of the constants of integration:

$$
\begin{aligned}
& \boldsymbol{N}-\frac{1}{2} k_{1} \cos g-\frac{1}{2} k_{2} \sin !-\frac{1}{2} r_{1}^{2} k_{1} \text { co } \ddot{n}_{!}-\frac{1}{2} r_{1}^{(2)} k_{2} \sin \ddot{n}_{!}-\text {etco }+\quad\left(r_{1}\right)=0
\end{aligned}
$$

To lind k_{1} and k_{2}, we derive from the preceding
$\pi_{1}\left[\cos !-\varepsilon+r_{1}^{(2)} \cos 2!+n^{(3)} \cos 3!+\right.$ etc. $]+k_{2}\left[\sin g+r_{1}^{(2)} \sin 2 g+\right.$ etc. $]$

$$
-3 Z_{0}+6(n)_{0}+4 \frac{d}{n d t}(n \delta z)_{0}=0
$$

$k_{1}\left[\sin g+2 n^{(2)} \sin 2 y+3 r^{(3)} \sin 3 y+\right.$ etc. $]-k_{2}\left[\cos g+2 n_{2}^{(2)} \cos 2 y+\right.$ etc. $]$

$$
+2_{n d t}^{d} \cdot\left(r^{\prime}\right)_{0}=0
$$

The value of \bar{N} is found further on.

Having k_{1} we find k_{0} from

$$
-k_{0}-e k_{1}-3 Z_{0}+3_{n d \prime}^{d}(n \delta z)_{0}+6(2)_{0}=0
$$

We have

$$
l_{11}=-e l_{2}, \lambda=-\frac{2}{3} k_{0}-{ }_{i 5}^{e} k_{1}-\frac{1}{2} Z_{0}
$$

where Z_{0} is the constant of $\mathrm{II}^{\text {. }}$.
Let us find the expressions for the constants N and K, K being the constant of integration in the expression for $\delta \frac{h}{h_{0}}$.

The equation (22) we can put in the form

$$
\frac{d z}{d t}=\frac{h_{0}}{h}-2 v+\left(3 v^{2}-4 v^{3} \pm \text { etc. }\right) \frac{h_{0}}{h}-2 v\left(\frac{h_{0}}{h}-1\right) .
$$

The differentiation of $n z$ relative to the time gives

$$
\frac{d z}{d t}=1+K_{0}+Z_{0}+Z_{1}+\text { periodic terms }
$$

where $Z_{0}=-32^{\prime \prime} .7162$, in the case of Althæa, and Z_{1} the part to be added when terms of the second order of the disturbing force are taken into account.

The expression for 2 is

$$
y=\Lambda+\text { periodic terms. }
$$

The approximate value of $h_{"}^{h_{"}}$ being 1 , the complete expression for the integral of $d_{h}^{h_{0}}$ is given by

$$
h_{h}=1+k_{3}+\text { periodic terms, }
$$

k_{3} being the constant of integration.
Putting $\left(3_{v^{2}}-4 v^{2}+\text { ctc. }\right)_{h}^{n_{0}}-2_{2}\left(\begin{array}{l}h_{0} \\ h_{1}\end{array}-1\right)=1_{1}+$ periodic terms, and subutituting this expression, together with those of r^{\prime} and $h_{h}^{h_{0}}$, in the expression for dz we have, preserving only the constant terms,

$$
N=!_{2}^{\prime}\left(k_{3}-k_{0}-Z_{11}-Z_{1}+1_{1}\right) .
$$

It is necessary now to find the value of k_{3} in terms of the constants. If in the expression for ${ }^{a}{ }^{2} W_{0}$ given by equation (18) we write for ρ, its equivalent $a_{0} \cos$ " ϕ_{10} - $e_{0} \rho \cos \omega$, we will have

$$
\begin{aligned}
& +2 h_{0} \rho \sin (f-0)\binom{\prime \prime!}{l!} d t .
\end{aligned}
$$

We also have

$$
d_{h}^{h_{0}}=h_{0}\binom{d!!}{d!} d t
$$

Selecting from the expression for $d W_{0}$ the terms not containing $p \cos$ and $\rho \sin \omega$, we have

$$
d \mathrm{~W}_{0}^{-}=-h_{J}\left(1+2_{h_{0}{ }^{2}}^{h_{2}^{2}}\right)\binom{1!2}{1!} d t .
$$

A. P. S.-VOL. XIX. O.

If the eccentric anomaly is taken as the independent variable we have for the complete integral

$$
H_{0}^{r}=k_{0}+k_{1} \cos r_{1}+k_{2} \sin r_{1}-h_{0} \int\left(1+2 \frac{h_{L^{2}}^{2}}{h_{0}^{2}}\right)\left(\frac{d \underline{g}}{d f^{\prime}}\right) d t
$$

Introducing the true anomaly instead of the eccentric, we have,
since

$$
\begin{gathered}
\cos n=\frac{\cos \omega+e}{1+e \cos \omega}, \quad \sin n=\frac{\sin \omega \cos }{1+e \cos \omega}, \\
J_{0}^{r}=k_{0}+e_{0} k_{1}+\frac{k_{1}}{a_{0}} \rho \cos \omega+\frac{k_{2}}{a_{0} \cos \varphi_{0}} \rho \sin \theta-h_{0} \int\left(1+2 \frac{h_{1}^{2}}{h_{0}^{2}}\right)\left(\frac{d \Omega}{d f}\right) d t .
\end{gathered}
$$

Neglecting the terms having $\rho \cos \omega$ and $\rho \sin \omega$ we have in ω_{0} the constants k_{0} and $e_{0} K_{1}$.

The integral of $d \frac{h_{0}}{h}$ is

$$
\frac{h_{0}}{h}=1+k_{3}+h_{0} \int\binom{d \Omega}{d!} d t
$$

From the expression for $d_{h} h_{h}$ we find

$$
d \frac{h}{h_{0}}=-h_{h_{0}}^{h_{0}^{2}}\left(\frac{d \Omega}{d f}\right) d t
$$

Integrating this, making use of the value of h_{h}, and adding the constants, we have

$$
2{ }_{h_{0}}^{h}-\frac{h_{0}}{h_{1}}=1+k_{0}+e k_{1}-h_{0} \int\left(1+2 \frac{h^{2}}{h_{0}^{2}}\right)\left(\frac{d \Omega}{d f}\right) d t
$$

And since the quantities under the sign of integration do not have any constant terms we can write

$$
\begin{aligned}
2_{h_{0}}^{h}-\frac{h_{0}}{h} & =1+k_{0}+e k_{1}+\text { periodic terms } \\
\frac{h_{0}}{h} & =1+k_{3} \quad+\text { periodic terms }
\end{aligned}
$$

Since $\left(\begin{array}{l}h_{0} \\ h_{1}\end{array}-1\right)$ is a quantity of the order of the disturbing force we have

$$
\frac{h_{1}}{h_{n}}=1-\left(\begin{array}{l}
h_{n} \\
h_{1}
\end{array}-1\right)+\left(\begin{array}{l}
h_{n} \\
h_{n}
\end{array}-1\right)^{2}-\left(\begin{array}{l}
h_{n} \\
h_{1}
\end{array}-1\right) \pm \mathrm{etc},
$$

from which we get

$$
2_{h_{n}}^{h}-h_{h}^{h_{n}}=1-3_{h}^{h_{n}}+\because\left(\begin{array}{l}
h_{n} \\
h_{1}
\end{array}-1\right)^{2}-\because\left(h_{h_{n}}^{h_{1}}-1\right) \pm \cdot(\cdots .
$$

Now putting.

$$
\left(\begin{array}{l}
h_{0} \\
h
\end{array}-1\right)^{2}-\left(\begin{array}{l}
h_{0} \\
h
\end{array}-1\right)^{3} \pm \text { etc. }=H_{1}+\text { periodic terms. }
$$

substituting this expression and those for ${ }^{-}$

$$
\because_{h_{1}}^{h_{1}}-{ }_{h 1}^{h_{n}},{ }_{1 \prime}^{h_{n}}
$$

the preceding expression for

$$
\ddot{2}_{h_{0}}^{h}-h_{h}^{h_{1}}
$$

gives, preserving only constant terms,

$$
k_{3}=-\frac{1}{3}\left(k_{0}+c k_{k_{1}}\right)+\frac{2}{3} H_{10}
$$

Introducing this value of $/$ in into the expression for N it becomes

$$
N=-1_{1 i}^{1}\left(4 L_{0}+e K_{1}+3 Z_{0}\right)+\frac{1}{6}\left(3 I_{1}+2 H_{1}-3 Z_{1}\right) .
$$

Preserving only the terms of the dirst order we have

$$
N=-i_{i}^{\prime}\left(4 k_{0}+e k_{1}+: 3 / h_{1}\right)
$$

To find the value of $h^{\prime \prime}$, the constant of integration in cate of $\left.\right|^{\circ} \lambda_{h}^{\prime \prime}$, we have

$$
\frac{h}{h_{0}}=1+\boldsymbol{K}+\text { periodic terms, }
$$

A NEW METIOD OF DETELMINING

also

$$
{ }_{h_{0}}^{h_{0}}=1+k_{0}+\text { periodic terms. }
$$

From these we get

$$
{ }_{h_{0}}^{\prime}-1+h_{h_{1}}^{h_{1}}-1=h^{-}+h_{s}=I H_{1}
$$

Hence

$$
K=-k_{2}+I I_{1}=\frac{1}{3}\left(k_{0}+e k_{i}\right)+\frac{1}{3} I I_{1}:
$$

or, neglecting the term of the second order,

$$
K=\frac{1}{3}\left(k_{0}+c k_{1}\right) .
$$

CHAPTER V.

Numerical S'ample Giving the I'rinsipel Formate Needed in the Computation Together with Directions for their Application.

The epoch is 1894 人ug. 23.0.

The elements of Jupiter are those given by Inill in his New Theory of .fupiter and Saturn, in which the epoch is 1850.0 . Applying the ammal motion of $57^{\prime \prime} .9032$ in π^{\prime}, of $36^{\prime \prime} .36617$ in δ^{\prime}, to Mhe's value of x^{\prime}, and of Ω, we have the values given above. The mass of Jupiter is $141 \frac{1}{1}$.as. The elements of Althatare those given in the Berliner Astromomisches. Jahroteh for 1896. The ectiptic and mean equinox are for 1890. To reduce fiom 1890 to 1894 we employ the formule of Witson in his Theoretical Astronom!, pp. 100-102.

$$
\begin{aligned}
& i=i+z \cos 1^{-}-(0)
\end{aligned}
$$

$$
\begin{aligned}
& \pi^{\prime}=\pi+(t-)_{, ~ \prime t}^{\prime \prime}+r \sin (2-n) \text { tan! } \quad i
\end{aligned}
$$

where

$$
\begin{aligned}
t & =351^{\circ} 36^{\prime} 10^{\prime \prime}+39^{\prime \prime} .79(t-1750)-5^{\prime \prime} .21\left(t^{\prime}-t\right) \\
r & =0^{\prime \prime} .468\left(t^{\prime}-t\right) \\
d \prime & =50^{\prime \prime} .246 . \\
d t &
\end{aligned}
$$

These expressions for i^{\prime}, Ω^{\prime} and x^{\prime}, can be used for the disturbed body as well as for the disturbing body by considering the unaceented quantities to be those given, and the accented quantities those whose values are to be found for the time, t^{\prime}. Habliness, in his work, The Solar I'arallax and Its Related Constants, using the most recent data, gives the following expressions for θ, r_{1}, and ${ }_{d t}^{d l}$, when referred to 1850.0:

$$
\begin{aligned}
& \theta=353^{\circ} 34^{\prime} 55^{\prime \prime}+32^{\prime \prime} .655(t-1850)-8^{\prime \prime} .79\left(t^{\prime}-t\right) \\
& r=0^{\prime \prime} .46654(t-1850) \\
& { }^{\prime \prime}=\left[50^{\prime \prime} .23622+0^{\prime} .000220(t-1850)\right]\left(t^{\prime}-t\right)
\end{aligned}
$$

Let $u={ }_{n^{\prime}}^{n}$,
we have then

$$
\begin{aligned}
u & =0.34955 \\
\underline{u} & =0.69910 \\
3 u & =1.04865 \\
4 u & =1.39820 \\
5 u & =1.74775 \\
6 u & =2.09730 \\
\text { etc } & =\text { etc. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
& 1-3 u=-.04865 \\
& 2-6 u=-.09730
\end{aligned}
$$

This shows that the arguments $\left(y-3 y^{\prime}\right)$, and $\left(2 g-6 y^{\prime}\right)$, have coeflicients in the final expressions for the perturbations greatly affected by the factors of integration. In case of the argument $\left(g-3 g^{\prime}\right)$, we should compute the cocfficients with more decimals; also those of $\left(0-3 y^{\prime}\right)$ and $\left(2 g-3 g^{\prime}\right)$, since in the developments the coeflicients of these aflect those of $\left(y-3 g^{\prime}\right)$.

From

$$
\begin{aligned}
& \sin \frac{1}{2} I \cdot \sin \frac{1}{2}(i+\Phi)=\sin \frac{1}{2}\left(\Omega-\delta^{\prime}\right) \sin \frac{1}{2}\left(i-i^{\prime}\right) \\
& \sin \frac{1}{2} I \cdot \cos \frac{1}{2}(i+\Phi)=\cos \frac{1}{2}\left(\Omega-\delta^{\prime}\right) \sin \frac{1}{2}\left(i-i^{\prime}\right) \\
& \cos \frac{1}{2} I \cdot \sin \frac{1}{2}(i-\Phi)=\sin \frac{1}{2}\left(\Omega-\delta^{\prime}\right) \cos \frac{1}{2}\left(i+i^{\prime}\right) \\
& \cos \frac{1}{2} I \cdot \cos \frac{1}{2}(i-\Phi)=\cos \frac{1}{2}\left(\Omega-\delta^{\prime}\right) \cos \frac{1}{2}\left(i+i^{\prime}\right)
\end{aligned}
$$

where, if $\Omega^{\prime}>\delta^{\prime}$, we take $\frac{1}{2}\left(360^{\circ}+\delta_{0}-\delta^{\prime}\right)$, instead of $\frac{1}{2}\left(\Omega_{3}-\Omega^{\prime}\right)$, we find

$$
\begin{aligned}
& \Psi=116^{\circ} \quad 15^{\prime} \quad 36.7 \\
& \Phi=\begin{array}{lll}
11 & 50 & 33.9
\end{array} \\
& I=\begin{array}{lll}
0 & 11 & 35.3
\end{array}
\end{aligned}
$$

An independent determination of these quantities is found from the equations

$$
\begin{aligned}
& \cos p \sin q=\sin i^{\prime} \cos \left(\Omega-\Omega^{\prime}\right) \\
& \cos p \cos \eta=\cos i^{\prime} \\
& \cos p \sin r=\cos i^{\prime} \sin \left(\Omega-\Omega^{\prime}\right) \\
& \left(\cos p \cos r=\quad \cos \left(\Omega-\Omega^{\prime}\right)\right. \\
& \sin p \quad=\sin i^{\prime} \sin \left(\Omega-\Omega^{\prime}\right) \\
& \sin I \sin \varphi=\sin p \\
& \sin I \cos \Phi=\cos p \sin (i-q) \\
& \sin I \sin (i-r)=\sin p \cos (i-q) \\
& \sin I \cos (i-r)=\quad \sin (i-q) \\
& \cos I \quad=\cos p^{\prime} \cos (i-\eta) .
\end{aligned}
$$

From

$$
\begin{aligned}
& \mathrm{H}=\pi-\Omega-\Phi \\
& \mathrm{H}^{\prime}=\pi^{\prime}-\Omega^{\prime}-1
\end{aligned}
$$

we have

$$
\Pi=156^{\circ} 11^{\prime} 55^{\prime \prime} .7, \Pi^{\prime}=156^{\circ} 58^{\prime} 22^{\prime \prime} .8
$$

Then from

$$
\begin{aligned}
& k \sin K^{\prime}=\cos I \sin \Pi^{\prime} \\
& k \cos \Pi^{\prime}=\cos \Pi^{\prime} \\
& k_{1} \sin K_{1}^{\prime}=\quad \sin \Pi^{\prime} \\
& k_{1} \cos K_{1}^{\prime}=\cos I \cos \Pi^{\prime} \\
& p \sin P=2 \alpha^{2^{e^{\prime}}}-2 \alpha k \cos \left(\Pi-K^{\prime}\right) \\
& p \cos P=2 u \cos \phi^{\prime} k_{1} \sin \left(\Pi-K_{1}^{r}\right) \\
& v \sin I^{r}=2 u \cos \phi k \sin (\Pi-K) \\
& v \cos I^{\prime}=2 u \cos \phi \cos \phi^{\prime} \boldsymbol{k}_{1} \cos \left(\Pi-\boldsymbol{K}_{1}\right) \\
& w \sin H^{r}=p^{p}-2 u^{2}{ }_{c}^{t^{\prime}} \sin P \\
& w \cos W=v \cos \left(I^{r}-I^{\prime}\right) \\
& w_{1} \sin H_{1}=v \sin \left(I^{\top}-I^{\prime}\right) \\
& w_{1} \cos W_{1}^{r}=2 u^{2} \frac{e^{\prime}}{e} \cos I^{\prime},
\end{aligned}
$$

we find

$$
\begin{array}{lrrl}
K^{\prime}=1.77^{\circ} & 5 & 36^{\circ} .6 & \log k=9999614 \\
K_{1}=156 & 51 & 7.4 & \log k_{1}=9.997849 \\
P=93 & 3 & 2.0 .0 & \log p=9.932748 \\
H^{\circ}=359 & 6 & 2.4 & \log x=0.601463 \\
H^{\prime}=266 & 4 & 39.5 & \log w=0.605196 \\
H_{1}=266 & 15 & 380 & \log w_{1}=0.601352
\end{array}
$$

Then from

$$
R=1+k^{2}-2 x^{2} e^{\prime 2}, \quad \gamma=u^{2} e^{\prime 2},
$$

we have

$$
\log R=0702855, \quad \log \gamma_{2}=7.976021 .
$$

The values of the quantities from II to γ_{2} should be found by a duplicate computation without reference to the former computation, since any error in these quantities will affect all that follows.

We now divide the circmemerence into sixteen parts relative to the mean amomaly, and find the corresponding values of the eccentric anomaly E from

$$
!=E-e \sin E
$$

where e is regarded as expressed in seconds of are. Substituting tho sixteen values of e in the equations

$$
\begin{aligned}
& f \sin \left(f-I^{\prime}\right)=w \sin \left(E-\|^{\prime}\right)-e p \\
& f \cos \left(F-I^{\prime}\right)=w_{1} \cos \left(E+W_{1}^{\prime}\right)
\end{aligned}
$$

we olotain the corresponding values of f and F.
A. P. S.-VOL NIX. P.

Then in a similar manner from

$$
\begin{aligned}
& y=F+x \\
& C=\gamma_{0}+\gamma_{2} \sin ^{2}() \\
& \log q=\log f f+y
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } s=206 \div 64^{\prime \prime} .8, \quad \log \%_{0}=9.63778,
\end{aligned}
$$

we find the values of $Q, C, \log q, x$, and y.

Thus we have found all the quantities entering into the expression

$$
\binom{1}{a}^{2}=\left(C-q \cos \left(E^{\prime}-Q\right)\right)\left(1-\frac{\gamma_{2}}{q} \cos \left(E^{\prime}+(\rho)\right) .\right.
$$

Instead of this, we use the transformed expression

$$
\binom{a}{j}^{n}=N^{-n}\left(1+a^{2}-2 a \cos \left(E^{\prime}-(\varrho)\right)^{-n}\left(1+b^{2}-2 b \cos \left(E^{\prime}+()\right)^{-n} 2\right.\right.
$$

and have, for finding the values of N^{+}, a, b^{2}, the equations

$$
\begin{aligned}
& { }_{y}^{\prime}=\sin \chi \\
& r_{2}=\sin \chi_{1} \\
& q \\
& a=\operatorname{tg} \frac{1}{2} \chi \\
& b=\operatorname{tg} \frac{1}{2} \chi_{1} \\
& N=\frac{\sec }{V} \frac{\frac{1}{2} \chi \sec \frac{1}{2} \chi_{1}}{U} .
\end{aligned}
$$

To find the value of $\binom{n}{1}^{n}$ we put

$$
\begin{aligned}
& + \text { ete. }]
\end{aligned}
$$

For finding the values of the coifficients in these expressions we use Ruvkle's Tubles for Determining the I'ulues of the Coefficients in the Perturbative Function of Planetary Motion, published by the smithsonian Institution. With the sixteen values of a as arguments we enter these tables and find at once the corresponding values of
 from the sixteen values of $3^{2}=\stackrel{a^{2}}{1-a^{2}}$.

Since b in $\left(1-2 b \cos \left(E^{\prime}+(2)\right)\right.$ is very small it will suffice to put

$$
\begin{aligned}
\frac{1}{2} B_{n}^{\prime \prime} & =1 \quad, B_{2}^{1}=b \\
B_{3}^{\prime \prime} & =3 b, B_{3}^{\prime 1}=5 b .
\end{aligned}
$$

Then from

$$
\begin{aligned}
& c_{n}^{\prime \prime}=\frac{1}{2} N^{n} B_{\substack{n \\
n \\
n}}^{(i)} \cos 2 i! \\
& s_{\ddot{\prime \prime}}^{(\prime \prime}=\sum_{n}^{n} V^{\prime \prime} B_{\ddot{n}}^{(n)} \sin 2 i(!,
\end{aligned}
$$

we have, in case of $\mu\binom{$ (1 }{$\jmath}$,
and, for uni $\binom{a}{1}$,

$$
!r_{0}^{\prime \prime \prime}=1 N^{3}, \quad \frac{1}{4} c_{3}^{\prime \prime}=\frac{1}{1} N^{3} 3 b \cos 2 \%, \quad \frac{1}{8} s_{2}^{(1)}=\frac{1}{16} N^{3} 3 b \sin 2(\%
$$

We divide by 8 to save division after quadrature.
With these values of $c_{" \prime \prime}^{\prime \prime \prime}, s_{" \prime \prime}^{\prime \prime \prime}$, and the values of the coefficients $b_{n}^{(i)}$, , we find the values of k_{i}, K_{i}, fiom

$$
\begin{aligned}
k_{l} \cos \Lambda_{1}^{\prime}=b_{\underline{2}}^{(i)} c_{\underline{2}}^{(0)} & +\left(b_{\underline{2}}^{(i-1)}+b_{\frac{n}{2}}^{(i)}\right) e_{\underline{2}}^{1)} \\
& +\left(b_{\frac{n}{2}}^{(1)}-b_{\frac{n}{2}}^{(1)}\right) s_{\frac{n}{2}}^{(1)}
\end{aligned}
$$

For $i=0$, we find k_{0} from

$$
k_{n}=\frac{1}{2} b_{\frac{n}{2}}^{(0)} c_{n}^{(n)}+b_{\frac{1}{2}}^{(1)} c_{\frac{12}{2}}^{(1)} .
$$

Then in case of $\mu\binom{n}{\jmath}$ from

$$
\begin{aligned}
& A_{i, \kappa}^{(w)}=\underline{n} m^{\prime} s k_{i} \cos \left[i(Q-!)-K_{i}^{\prime}\right] \\
& A_{i, \kappa}^{(i)}=\frac{1}{5} m^{\prime} s k_{i} \sin \left[i(\Omega-g)-h_{i}^{\prime}\right]
\end{aligned}
$$

where m ' is the mass of the disturbing body and $s=206264 .{ }^{\prime \prime} 8$; and from

$$
\begin{aligned}
& A_{i, \kappa}^{(m)}=\frac{1}{g} m^{\prime} s u^{2} k_{i} \cos \left[i\left((\imath-g)-K_{i}\right]\right. \\
& \mathcal{I}_{i, \kappa}^{(s)}=\frac{1}{g} m^{\prime} s u^{2} k_{,} \sin \left[i\left((\imath-g)-K_{i}\right]\right.
\end{aligned}
$$

in case of $\mu \omega^{2}\binom{\prime \prime}{\jmath}^{*}$, we find the values of $\Lambda_{i, \times}^{(c)}$ and $A_{i, \times}^{(*)}$ for the 16 different points of the circumference, and the various terms of the series.

Again, since $A_{i, k}, A_{i}^{\prime \prime}$ are given in the forms

$$
\begin{aligned}
& i_{t, n}=\Sigma C_{i, v}^{(v)} \cos n g+\Sigma C_{i, n}^{(v)} \sin n g \\
& i_{i, x}=\Sigma S_{i, v}^{(v)} \cos n g+\Sigma S_{i, v}^{(v)} \sin n!
\end{aligned}
$$

we have the following equations to find the values of the coullicients (${ }_{i, n},{ }_{1}, \ldots$, , N, $S_{i, v}^{(*)}$:

$$
(0 . t)=(0.8)+(1.12)
$$

$$
(1.5)=(1.9)+(5.13)
$$

$$
(2.6)=(2.10)+(6.14) \quad(0.2)=(0.4)+(2.6)
$$

$$
(3.7)=(3.11)+(7.15) \quad(1.3)=(1.5)+(3.7)
$$

$$
\begin{aligned}
& 4\left(c_{0}+\underline{c_{n}}\right)=(0.2) \\
& 4\left(c_{0}-2 c_{8}\right)=(1.3) \\
& 4\left(r_{2}+c_{6}\right)=(0.5)-(1.12) \\
& 4\left(c_{2}-c_{i}\right)=\{[(1.9)-(5.13)]-[(3.11)-(7.15)]\} \cos 45 \\
& 4\left(s_{2}+s_{6}\right)=\{[(1.9)-(5.13)]+[(3.11)-(7.15)]\} \cos 45 \\
& 4\left(s_{2}-s_{i}\right)=(2.10)-(6.14)
\end{aligned}
$$

$$
\begin{aligned}
& 8 c_{1}=(0.1)-(2.6) \\
& 8 s_{1}=(1.5)-(3.7)
\end{aligned}
$$

$$
\begin{aligned}
& (0.8)=Y_{n}+Y \quad\left(\frac{1!}{3}\right)=\zeta_{n}-\zeta_{.} \\
& (1.9)=Y_{1}+Y_{0} \quad\binom{1}{!}=Y_{1}-Y_{0} \\
& (2.10)=Y_{2}^{*}+Y_{10} \quad\left(\frac{2}{1_{0}}\right)=Y_{2}^{*}-Y_{11}^{*} \\
& (7.15)=Y_{7}+Y_{15} \quad\left(Y_{15}^{7}\right)=Y_{i}-Y_{15}
\end{aligned}
$$

$$
\begin{aligned}
& f\left(c_{1}+c_{7}\right)=\binom{n}{0}+\left[\left.\binom{2}{10}-\binom{n_{1}^{6}}{1} \right\rvert\, \cos 45^{\circ}\right. \\
& 4\left(c_{1}-c_{7}\right)=\left[\left(\frac{1}{5}\right)-\left(\frac{7}{1} \cdot\right)\right] \cos 220.5+\left[\left(\frac{8}{11}\right)-\left(\frac{5}{1.5}\right)\right] \cos 67^{\circ} .5
\end{aligned}
$$

$$
\begin{aligned}
& 4\left(s_{1}+s_{7}\right)=\left[\binom{3}{3}+\left(\frac{7}{15}\right)\right] \sin 22^{\circ} .5+\left[\left(\frac{3}{11}\right)+\left(\frac{5}{10}\right)\right] \sin 67^{\circ} .5 \\
& 4\left(s_{1}-s_{7}\right)=\left[\left(\frac{2}{10}\right)+\binom{\left({ }_{1}^{6}\right.}{17}\right] \cos 45^{\circ}+\left(\frac{4}{15}\right) \\
& 4\left(s_{i}+s_{5}\right)=\left[\left(\frac{1}{3}\right)+\left(\frac{7}{10}\right)\right] \cos 22^{\circ} .5-\left[\binom{\frac{3}{1}}{11}+\binom{5}{1_{5}^{5}}\right] \cos 67^{\circ} .5 \\
& 4\left(s_{3}-\kappa_{0}\right)=\left[\left(\frac{9}{10}\right)+\left(\frac{6}{14}\right)\right] \cos 45^{\circ}-\left(\frac{4}{12}\right)
\end{aligned}
$$

The values of c_{1}, s_{1} must satisfy the equation

$$
\begin{aligned}
\mathscr{A}_{i, \times, y}^{(c)} \text { or } \Lambda_{i, x}^{(s)}=\frac{1}{2} c_{11} & +c_{1} \cos g+c_{2} \cos 2 y+\text { etc. } \\
& +s_{1} \sin g+s_{2} \sin 2 y+\text { etc. }
\end{aligned}
$$

i answering to i in $b_{n}^{(i)}$, and x being any one of the numbers, from 0 to 15 inclusive, into which the circumference is divided. We use c_{i}, s_{v} as abbreviated forms of $C_{i, n}^{(0)}$ $C_{i,}^{(s)}$, ete. Having found the values of c_{0}, s_{n} from the 16 different values of $A_{0}^{(c)}, A_{1}^{(c)}, A_{1}^{(s)}$, $\Lambda_{2,}^{(0)}, \Lambda_{2}^{(s)}, \ldots A_{0}^{(e)}, \Lambda_{0,}^{(s)}$, both for $\mu\binom{a}{\jmath}$ and $\mu u^{2}\binom{a}{\vdots}$, we have the values of these functions given by the equation $\binom{a}{J}^{n}=\frac{1}{2} \leq \Sigma\left(C_{i, v}^{(c)} \mp S_{i, v}^{(s)}\right) \cos \left[\left(i \mp v^{\prime}\right) g-i E^{\prime}\right] \mp \frac{1}{2} \leq \Sigma\left(C_{i, v}^{(i)} \pm S_{i, v}^{(c)}\right) \sin [(i \mp r) g-i E]$

The values of the most important quantitie, from the eccentric anomaly E to c_{i}, s_{n}, needed in the expansion of $\mu\binom{a}{\jmath}$ and $\mu \alpha^{2}\binom{a}{\jmath}^{3}$, are given in the following tables, first for $\mu\binom{"}{\jmath}$, and then for $\mu \mu^{2}\binom{a}{\jmath}^{3}$, when not common to both.

Values of Quantities in the Development of＂$\binom{"}{A}$ and＂ui $\binom{\prime \prime}{J}$ ．

！	E	$E+11$	$E+11_{1}$	$F-1$	I＇
	＂	＂	－＇＂	，＂	＂
（ ${ }^{(1)}$	$\begin{array}{llll}10 & 10\end{array} 0$	26．6＋ 39.5		26itj 21 15．2	38.934
（ 1）	$\because 4.4 .2$	2940 20 40．7	2！9） 39412	29，1－ $7 . \mathrm{K}$	2：3） 11 ： 4 ¢
（2）	4－26：	$314: 3116.7$	$31+42$	813 ＋11－ix．t	46 ＋4 20.4
（i）	315029	3837814	\％ 3×8		$6: 9$ 5\％16．${ }^{6}$
（ 4 ）	1488） 14.1	118398	（1）502．11	30！ 41 1．3	
（i）	11683651.7	$2.211: 3$	－5－5	21868	115038
（ ${ }^{\text {（ })}$	$135+29.4$	44 ： 4.9	44208	$4 \% 45 \quad 3$.	1：3650 30．4
（ 1 ）	159）$\times 19.6$	81010601	16.02356	6.5 － $5 \times .4$	15＊120 1\％t
（s）	1508080	81 $+33!5$	N1\％1538．0	sti 1： 41.4	$\begin{array}{lllll}179 & 17\end{array}$
（ 11$)$	200 51 419．4		$10781 \times .4$	107 1．5 14．0	$\underline{2010} 1 \times 4.0$
（10）	－201 at 30．6	120410.1	120 11 ※．f	10゙っが46．5	$2.21: 314.5$
（11）	－4：3 2：3 8， 3	14.9745		1514×2.15	$\because 4311154.6$
（12）	$\cdots 6.546$	$17120!9$	1714024.1	172 皆 31.4	$\bigcirc 6.5{ }^{2} \mathbf{- 7} 1 \times 4$
（1：3）	2x－ 780.1	1941214．4	$10.120 \% 1: 3$	131519	2以以 2046.4
（14）		\cdots	2164980.8	－15400．9	$: 31146$
（15）	38.58585	－41 411 ：	$\because 418180$	－42	
$\stackrel{\text {－}}{ }$					161：84 15．9
$v^{\prime \prime}$					143： 4 C 10．6

（／	Log．f°	！	x	3	Iog．q ．	Log．${ }^{\text {（ }}$ ．
			＂	－，＂		
（0）	$0.612+27$		13.2	$3.972{ }^{3}$	0.611176	0.51665
（ 1）	10．612068	－． 1000 ctio	4：1．5	$\underline{2}$ \％ 1×46		10．706：349
（ ${ }^{\prime \prime}$ ）	0，609\％：3\％		－Sis．ll	415 it 2 2nt	0．64092：3	11.50 anost
（3）	$0.64524+2$	－．mbo！al	F：30．0	T11 ： 3 \％	0．6462：3\％	10.710440%
（4）	0．601：10	－．64129	$5 \times .6$	92 4 4： 29.7	0.6112644	11．70： 3 － 11
（i）	$0.59 \times .069$	\therefore－momesti	1716．！	114 it 35.9	0．0．69＋15	$11.502 \pm+1$
（ ii）	0．597：310	－．00009\％	－1926．6	$1: 36404$	0．6．1641	0.501493
（ 1 ）	0.0515194	－．16409．04	－4．3． 1	15s in $11 . \%$	0．63023	$4 . \overline{\text { a }} 101011$
（8）	（1．0956201	－． 101103 2－2	1．5．7	17.91680 .7	10．516299	0.7100 －
（ 1 ）	0.65105	－． 0104996	＋408．7	2104	$0.5!16112$	$0.7104!1$
（10）	0.59 ¢\％	－． $11 / 10180$	dis． 1			10.700021
（11）	0.59917	－．10007：	4 4， 4.18	$\because 18: 2011.2$	0.6948904	0.69896
（12）	0．6005）4 4	－19412T	－ 96.7		13．640） 682	
（13）	$0.60: 316: 3$	－．mu10：30	364： 1		0.60413%	11.7110020
（14）	$0.6065{ }^{\text {a }}$	－man 48	cive． 1	311	10．thrax－	0.7640%
（15）	0.610302	－．014080．	tix．t	38．5 24.82 .1	0.10695	
\pm	4.523×3.5	\because	${ }^{16.5}$	161：317－4	4．0．0：30\％	可6こここの1
$v^{\prime \prime}$	4.503034	\because	－ 11.7	14：3： 4717.9	4.4084	的位ご2010

Values of Quantities in the Development of $\mu\binom{a}{\jmath}$ and $\mu \alpha^{2}\left(\frac{a}{\jmath}\right)^{3}$.

(/	χ	$\chi 1$	Iog. 6	Log. a.	a.	Log. ${ }_{\text {N }}$
	\checkmark ' "'	, ''				
(1)	$5: 9845.3$	757.80	7.0603618	9.701484	0.502902	9.695669
(1)	5:3 20 +1. 3	757.78	7.015076	9.701945	$0.50: 34: 3$	9.695880
(2)	5:) $1+15.6$	758.97%	7.0165778	4.699988	0.5011178	9.69589
(ii)	$525+30.7$	\& 8.3 .30	7.008581	9.696576	0.497514	9.6958:3
(4)	52 2855.6	- 7.35	$7.07 \geq 405$	5.892804	0.492951	9.695616
(5)	$5268: 1.2$	810.45	7.055061	9.689223	0.458907	9.695401
(i)	$515: \% 41.2$	\& 1:3.2:3	7.07761\%	9.687169	0.4805917	9.695400
(7)	514650.0	- 11.0 合	7.078754	\%.686668	0. 45 a $=364$	9.695430
(8)	$514!41.3$	\& 14.49	7.0787 ± 1	1.686502	0.485877	9.695629
(9)	52052.3	8183.57	7.077913	$9.688: 321$	0.48788.	0.696190
(10)	$5 \geq 18 \quad 366.9$	< 12.12	$7.176680{ }^{\text {a }}$	0.691160	0.1910×9	9.696905
(11)	523621.2	\& 10.3. 4	7.075061	9.693986	0. 4 ! 4294	9.695532
(12)	$5248: 3.5$	S 8.19	$7.07: 3150$	9.69606	0.496699	9.6996831
(1:3)	525 ¢ 10.6	85.58	7.170~25	\$.6.97448	0.498251	$9.6971+1$
(11)	$5: 3510.5$	$8 \quad 9.58$	7.068138	9.698559	0.4995037	9.6963 .354
(15)	531854.4	750.70	7.0655 .54	9.6989932	0.501109	9.69574%
-				77.55 .388	3.95 (6815	77.5690946
Σ				7-5.5380:	3.950845	77.569088

9	Log. $\frac{1}{8} c_{\frac{1}{2}}$	Log: ${ }^{\frac{1}{8}} c_{1}^{(1)}$	Log. $\frac{1}{8} s_{\frac{1}{2}}^{(1)}$		Log. $b_{12}{ }_{1}^{(1)}$	Log. $b_{1}^{(2)}$
((1)	8.7525%	6.16064	4.452 Cl	0.332110	9.145094	9,329969
(1)	8.792790	5.98934	6.122930	0.33 .186	9.745669	9.331018
(2)	8.7980	4.9×50510	6.16178	$0.83: 1867$	9.746235	9.3265671
(3)	8.792981	6,0.0.050n	5.95267	0.331369	9.742375	9.319511
(4)	8.792 .526	$6.16737 n$	5.14693n	0.330530	9.737346	9.310298
(5)	8.7923:31	5.982190	6.1055620	0.330182	9.732946	9.302924
(ii)	8.792310	4.939934	6.1783 ¢n	0.339878	9.730425	0.297590
(i)	8.792340	6.14:383	6.01614"	0.329907	9, 3 29076	9.295111
(s)	8.792539	6.17549	4.57507	0.32976	9.7294636	9.296143
(9)	8.793030	(5,46359	5.99045	0.320045	9.581836	9.300183
(11)	8.793515	5.23 .82	6.171067	0.33045	9, 735322	9.306586
(11)	8.79442	5.948120	6.45618	0.330914	9.738805	9.312970
(12)	8.794541	6.16466 n	5.36411	0.3.31246	9.741407	9.317738
(1:3)	8.594051	6.06290.	5.942020	0.3331460	9.743078	9.320808
(14)	8.793296	5.237420	6.16200 m	0.0 .331637	9.744461	9.323327
(15)	8.7926 .38	5.9778 .9	6,0413+11	0.331858	9.746165	9.306443
Σ^{\prime}				$\begin{aligned} & 2.647715 \\ & 2.647721 \end{aligned}$	$\begin{aligned} & 77.912926 \\ & 57.91295 \end{aligned}$	74.508 ± 22 74.508268

$$
\text { Values of Quantities in the Development of } \mu\left(\frac{1}{\jmath}\right) \text { and } \mu \alpha^{2}\binom{a}{\jmath} \text {. }
$$

！	$\log \cdot b_{1}^{2}$	$\mathrm{Log} \cdot b_{1}^{(1)}$	Log．$b^{\frac{5}{2}}$	$\log \cdot \bar{b}_{\frac{1}{2}}^{(i)}$	Log．${ }_{\text {b }}^{\square}$	Log． b_{1}	Log． 0_{1}
（ U）	8.954999	S．660017	－セッグ	7.4215	7．．3！15	7．2（6．） 1	6． 2.4206
（1）	8.956515	A．biel 14	S．25：14	7.924	7.6917	7．06091	12.946 S
（ ${ }^{\text {a }}$ ）	8.950082	S．5．4：36：3	－．24：4	7.91120	7．5x04	7．25－2	6．9286
（3）	8.983×65	－．ivarit	－20：	7．$\times 2.210$	7．5ら\％	－．20フ1	（6．x） 09%
（ 4 ）	5．9260ㄹ）	S．Etioty	－．2110	T．stion	$7.6 \mathrm{O} \times 1$	7.193%	13，26， 17
（5）	8.914×18	S．itibu	－ 15121	7．8444	7．5いご	7． 16.06	（1．．．これら
（6）	8.908160		－1812	7．x．314	7.450	7．14iti	1i．＊u9t
（ 7 ）	8.904504	－．riatl1	－．17．） 4	T． $\mathrm{SN}_{2} 4$	7．45x．9	7．1：37：	6.79981
（ 8 ）	8．90600\％	S．sibiont	－ 17%	T． 2.93	7．4かっこ	7．1411	fi．nume：
（9）	8.911861	8．54：37：3	S．185	7． 83×10	7．4！5：	7.1561	6．$\times 201$
（10）	8.921142	心．0う万心夊	－26\％${ }^{\text {d }}$	7.856	7．5160	7.1794	1i． 8464
（11）	8.1803892	※．らだっ！\％	S．2172	7.874	7.5836	7．20：31	1i．4．es
（12）	8.9872018	大．57501	8．ご）¢	7.885	7．55）${ }^{\text {a }}$	7.220 .5	13．542：
（13）	8.941742	8，5－28：	－．20．．．	7.6560	T．6tils	7.2017	fi．904．
（14）	8．945：3s	大．डs761	S． $2+15$	7.61080	7.5701	$7.2+111$	（6．915）
（15）	8.949×0	人．5！ 5 \％ 4 ！	＊．こ．4＊＊	7.9117	\％．¢sun	7．25－4	1．9．920
Σ	71．449530		in．74st	63i．0060	60.3071	57.6402	5） 4.9494 .8
－＇	$71.4495!9$		（in．itse	123．046：3	（64．3n\％	¢T．19404	万4．94095

A．P．S．－VOL．XIX．Q．

Values of Quantitics in the Development of $\mu\binom{1}{j}$ and $\mu \mu^{2}\binom{1}{j}^{3}$ ．

！	$\text { Log. } h_{3}^{11}$	Iogeg ${ }^{\text {b }}$		Log．b_{3}^{71}	$\log \cdot b_{\frac{3}{3}}^{(\bar{s})}$	${ }^{-}$Log．$b_{\frac{3}{2}}{ }^{\left(\frac{1}{2}\right.}$
（ 11		9.445	9.180 .2	8．8118	8．6ises	$8.810{ }^{\text {c }}$
（ 1）	！\％ 51121	9.4512	9．1854	8.918.	¢．642：	8.3665
（ \because ）	9.51116	9．4．3：	9.1716	85	8.624	8.8471
（ $\because 1)$	3.18×5.84	9.42103	9.1496	8.854%	8.59163	8.315
（4）	9．664．in	9．39\％	9.1 20\％	8.8418	8.5545	$\therefore .274$
（ ir）	！ 1.14 （6i3s	9.8739	9．0．9， 6	8．s1：3	8．529\％	N．2389
（ i ）	9．19364）	9.3614	9．0心1：	S．5！mes	S．508：	8.2184
（ i）	（9，64304：	9，3i． 49	！ 01175	8.8580	․4！9！1	8.2077
（心）	9， $6: 3024$	9.3676	9.1176	8.8 814	8.5083	8.2119
（ 11$)$	4.641×1	9.3154	9 908！	8．805s	8.5191	8.9298
（111）	9.16815	9.88 .96	9.1169	8.828.	$8.54+9$	8.2585
（11）		9.4025	9．19\％	8.8515	8.5705	8.28188
（12）	0.65105	9.4156	9． $1+411$	s．s6st	8.5893	8.3078
（1i：）	9.6 Scit	9.423	9．1037	8.8591	8．tielt	8．321：3
（14）	9．61\％	9．4310	9.1614	8.858.	\＆．h118	8.3329
（1．5）	9．5¢02\％	9．4：309	9.1711	S．8990	$8.62+4$	8.3464
\because	77.38459	75．293！	7：3．1151	70． \％$^{2} 69$	$76 \times .5804$	66.8184
Σ^{\prime}	75．8746	75．2：31	7：3．047	\％ 10.8 .269	6心．680：3	16.818132

（／$\left|\log . k_{0}\right| \log . k$

（ ${ }^{(1)}$	$8.82+187$	$8.5+492$	8.10560	7．750420	7.39550	7．リス2\％	6.7168	6.4105
（ 1）	8.828302	$8.54+3.3$	8．10\％s	7．5．51200	7.391678	7．0640	（0．71！ 10	6.4054
（ 2 ）	8 8293605	8.53×75	$8.11!16$	7．7406993	7.386034	7.1416	6.7046	6.3714
（ 3 ）	8.822669	8.53172	8.1098 .2	7．7303：61	7.37091	7． 12×15	6．68：32	6.3298
（ 4 ）	8.821601	x．astis	8.09966	7.716101	7.350261	7.10007	6.6505	6.2932
（5）	$8.8 .2114: 3$	$8.522 \cdot 3$	8.09246	7.5102015	7．3：3807	6.98208	6.6349	6.2764
（6）	8.8211183	8．50306	$8.090+0.9$	7.7010 .55	7.93130	6.9173	6.60299	6.2809
（ 7 ）	8.8 .21395	8.62970	8.08981	7.699028	7.32855	6.9698	6.6157	0.2913
（ 8）	8.821810	8.62061	8.09164	7.701501	7.38151	6.9138	6.6026	6.3027
（3）		8.52 sec 9	8.09567	7．70715\％	7.383845	6.9824	6.6337	6.3093
（10）	8.8033203	8.52965	8.1007	T．51520	7.35002	6.9905	6.6506	6.3129
（11）	8.8204009	8.53059	8.10550	7.7 －3016！	7.36070	7.0100	6.66669	6.3147
（12）	5.829293	\therefore ¢53159	8.10915	7.728940	7．36874	7.10202	6.6793	6.3196
（13）	8.820405	8.53359	8.11233	7．1．：340	7.8746	7.0274	6.6889	6.3342
（14）	8.523809	8.58851	8.11602	7．7：38311	7.38805%	T． 10345	6.6960	6.3608
（15）	5.823826	8.54164	8．12113	7.74423	7．38745	7．04，3：3	6.7062	6.3901
$\stackrel{\square}{2}$	70.583551	68．25926	64.85258	61.693910	58.89655	56.0927	53.3508	50.6520
V＇	70.583841	64．25722	64.85260	（61．8！3：92）	58.59658	56.0020	53.3505	50.6512

Values of Quantities in the Development of＂（ $\left.\begin{array}{c}" \\ \jmath\end{array}\right)$ and ！＂ci $\binom{a}{\jmath}$ ．

！	Log．k_{s}	Log．k_{1}	K_{1}	K_{2}	$K_{;}$	K_{1}	に，	$K_{6 i}$	K_{i}	K_{1}
			，	，	，	，	，	，	，	
（ 1 ）	6.0609	5.78 S	－ $11.8 i$	11.1	－11．3	11.3	－－14．3	11.3	－ 0.8	－ 11.8
（ I）	6.01936	5．711：	21．：3	12.1	－ 11.4	－ 11.1	－10．6	－ 110.1	－1．$!$ \％	－7． $8 . \%$
（ 2 ）	6.0454	5.7212	－7．！	$17 . \mathrm{K}$	－15．19	，15．2	14．i	$\bigcirc 14.0$	－1385	－12．5
（3）	6.0178	5.6904	－12．t	11.7	－11．2	－111．0	$!.1$	－ 9.4	－ 9.2	$\bigcirc 8.8$
（4）	5，M0：30	6． 60.51%	－	1．5	1.1	－1．5	1.5	－ 1.5	－1．5	-1.5
（5）	5.9541	5.6191	－2．9	11.5	1 －	-12.11	$11 . \%$	11.6	11.4	－11．0
（ 10	5．93：91	5.6019	－2！9\％	19．4	11.7	15.7	15．3	14.9	14.5	1：3．7
（ 7 ）	S．9316		21.7	1：\％ 2	11．1；	11.9	11.0	111.1	3， 1	8.9
（8）	5.9364	5.5185	11.7	11.5	11.4	10.4	11.1	11.8	－－ 11.3	－ 4.8
（ 11$)$	5.9512	5.6151	；1！ 3 ：	12．：3	（10．9	＋10．2	9.8	＋ 9.1	\therefore－！ 10	＋ 8.2
（10）	5.9737	5.6840	$2!9.1$	18．1i	． 16.4	15．：	－ 14.9	－ 14.5	14.1	＋13．3
（11）	5． 9985	5.6659	2－1	14.8	－1：3．1	＋12．3	－12．1	－11．9	$\dagger 11.7$	－11．．
（12）	（6．0104	5.6512	14.5	\because	－ 2.5	－ 2.4	-2.4	－2．：${ }^{\text {a }}$	＋． 2.3	－1．2．2
（13）	6.10251	5.6968	17.1	11.	－ 9.6	－8．9	8.6	－－8．i	－ 8.19	－ 8.4
（14）	4．0．3．4	5．708：3	－2x． 1	16.8	－15．7	-14.7	14.3	－13．4	-183.6	－13．0
（15）	6.0468	5.7224	－21．10	1：3．4	－11．8	－11．1	11.16	-10.2	－ 9.8	－ 8.11
$\stackrel{\square}{ }$		45.348 .9	． 5	．${ }^{\prime}$	2	＋\quad \％			－－\quad i	
－		45．3441	0	1	${ }^{\prime}$	＋ 8			－． 1	

y $\quad \log . k_{0} \quad \log . k_{1} \quad \log . k_{2} \quad \log . k_{3} \quad \log . k_{1}$

（ 0 ）	8.465292	S．tinesa
（1）	8.466927	$8.60+10$
（2）	8.41026 .37	8.59×49
（3）	8．457236	－¢\％wls
（ 4）	8.450500	－Sisumf
（ 5 ）	8.458362	$\times 0.614$
（ 6	8.448224	
（7）	8.425008	Suntion
（8）	8.444020	$\therefore .569 .5$
（ 9 ）	8.444689	－．intio
（10）	8.453274	－S－2010
（11）	8.458368	8.5 ¢¢
（12）	8.461465	2．0．9345
（1：3）	8.461920	－ 5.598 .8
（14）	8．461584	－\％¢以号
（15）	－．46－259	8.39940
－		6＊．69172
$\underbrace{\prime \prime}$		16．6．6101

× \％－，	8.14634	$7.8 .44 \times 1$
	8.14514	7．8．9694
	8．1：393．	T．84－56：
¢．369\％	8.12505	T． 6158
－．3iosu	S．10719	7.8464 .5
※．34：3：11	－．09259	7.808
心．：30－	－．1く54：	7.51920
x．3：3．01	－Uxe2\％ 4	7.81490
8．6．3：40	8.188 .221	7.51×411
․atstit	8．109：354	7.2×17
8．3\％．0．3	8.10100^{2}	7.5401
	8.11×0.1	－． 5×4.8
\＆．3T1．：3	S．12180	T． 6 6907
s．：3ilm	s．1：120	
	－1：347	－－－\％
8．ibulas	$\bigcirc 18: 942$	－xaciof
bin．！u：31		fo－x．

Log．$k_{3} \log . k_{6} \log . k_{7}$

7．6：3． 1	7.3189	7.0975
7.19369	7.3712	7．101：3
7．102：3	T．3．361	7.0848
T．fives	7.3	7.0537
7.574	7.3026	7.1029
7．5359	7 \％\％\％	6.94950
7．544t	7．264	6．9\％\％）
7．5．39\％	7．2．51	13．1596
7．54：\％	7．262：	6．47\％
7．5n．${ }^{\text {a }}$	7．2360	13．398．
7．57： 4	T．2961	7.0146
7．5！ 1 \％	7．：317	7.0140
T．lutit	$7.3: 301$	7．0．044
7.1614.$)$	7．：30\％	7．1464
7．13163	7．3472	7．117：3
7.12 e ＋2	7．3．06t	7.10845
（6．76\％）	－x．2er	－6t．309\％
sin．ildit	¢心．63，	56．34\％

Values of Quantities in the Development of $\mu\left(\frac{a}{\jmath}\right)$ and $\mu \alpha^{2}\left(\frac{a}{\jmath}\right)^{3}$.

!	Log. $7_{\text {s }}$ Log. h_{3}		h_{1}	K	h_{7}^{\sim}	$(Q-g)-K_{1}$		$2(?-g)-K$		$3(Q-g)-h_{3}$		
			,	'	,				,		'	"
(11)		10.348	-0.1	19.1	-0.1	$35!$	$2 \overline{5} .1$	355	49.5	358	13	55.0
(I)		6.6.5322	+1.4	$+1.4$	+4.4	0	28.5	1	24.6	2	14	53.0
(\because)	(5.80!	19.53317	-18.0	-15.0)	$+6.0$	- 1	$\underline{-3.5}$	3	81.1	5	27	34.4
(${ }^{3}$)	(5.759)	(6.4!Ns	- 3.9	+:3!	- 3.9	$\underline{ }$	15.2	4	55.5	7	30	83.3
(4)	6.7114	6.45166	- 0.6	0.6	-6.6	\because	46.3	5	28.8	8	12	\cdots
(i)	6.749%	6. 4209	-4.7	-1.7	-4.6	\because	+6.3	5	3.8	-	26	37.6
(ii)	16.64921	6.41016	-6.2	-10.2	-16,2	$\underline{\square}$	9.9	3	34.1	5	16	57.0
(1)	6.0837		-4.3	-4.8	- 4.3	11	$5 \overline{5.7}$	-	23.2	1	516	39.0
(8)	6.6857	6.3896	-0.2	-0.2	- 0.2	839	17. ${ }^{\text {a }}$	358	34.3	357	51	3.3
($1{ }^{\text {a }}$	6.8058	13.4165	- -4.0	-4.0	$+4.0$	357	36.2	35.	38.7	35.3	35	39.5
(111)	6.7.307	6.4463	$+6.1$	- 0.1	- 6.1	356	13.4	$35: 3$	(0.5)	349	51	14.9
(11)	1. 6.58 s !	6.4592	+5.0	- -5.11	$\underline{-5.0}$	35.	26.8	331	25.7	347	17	$\underline{29} 4$
(12)	6.757:	6.4!58	$+1.0$	$\therefore 1.0$	-1.1)	30.5	24.4	330	55.0	3415	$\underline{-4}$	12.8
(13)	6.758 .3	(6.50) 1	-3.5	- 3	- 3.5	356	1.7	\%31	40.2	317	23	40.2
(14)	6.7976	(0.5187	-6.0	6.19	-6.0)	357	4.6	35.3	30.7	850	5	3.8
(15)	6.8098	18.53317	-4.5	-4.9)	$-4 . \overline{5}$	358	15.9	:356	3.1	353	56	2.25
E	54.0630	51.79161	. 1	. 0	. 0	1793	47.8			1581	22	3.6
$\underbrace{\prime \prime}$	54.0628	31.7457	+ $\quad 3$	T . $\%$	$+.3$	1433	47.3			1421	21	59.1

In the expansion of $\mu\left(\frac{l}{J}\right)$.

!	$\boldsymbol{A}_{0}^{(c)}$	$A_{1}^{(c)} \Lambda_{1}$	$A_{2}^{(c)} \quad 1_{2}^{(s)}$	$\mathrm{A}_{3}^{(c)}$	$A^{(3)}$	$A_{1}^{(c)}$	$\boldsymbol{A}_{4}^{(s)}$
	"	" ${ }^{\prime}$	"	"	"	"	"
(0)	183.13109)	$8.9027-.0701$	2.6081 -.05339	+1.1074.	.10:3 418	.tns:	.10201
(1)	18.13458	$6.59383+.1531$	2.6294	1.10917	.104350	4! 401	+ 1126\%
(2)	1:3.11:32	(6.503: ${ }^{\text {a }}$ - - 1712	2.5849 - 1.588	1.0×848	.1035\%	. 4751	-.0615
(3)	18, 085.1:3	(6.6912- - - 683	2.5254 - 2176	1.04890	-1:307	40.	¢.18849
(4)	13.05615		2.464i + 23:36	1.01:393	. 14604	. 4858	1.0840
(5)	18,033:309	$16.5457+.3187$	$2.4259-2.50$	0.990 .4	+.12935	4294	- 0733
(6)	13.04058	$6.5084+.245 \%$	$2.1122-.1548$	0.98367	1.0906:5	. 4150	+ 0.009
(1	13.04700	$6.5880+.1065$	$2.4148+.0585$	$0.98: 36$, 103:3:3:9	. 4190	- . 0184
(8)	13.05942	6.6190 - . 0816	$\underline{2.4317-.0606 ~}$	0.98938	-.0:3712	. 4215	-.0211
(9)	13.06500	$6.6877-2759$	$2.4464-1863$	0.996607	-. $1118:$.424!	.1133:
(10)	13.10500	$6.6498-.4389$	$\underline{2}+645-2979$	1.015:93	-. 18002	. 4287	-.102:
(11)	13.12.573	6.655 5 - . 83801	$2.4816-.3742$	1.01487	- .2885	.432-	.1:10
(10)	13.13:248	$6.6727-0359$	9.4991-.3925	$1.0 \geq 4: 17$	- 2458	. 4 \% 7 \%	.14:1
(1:3)	13.1:61:	$6.7090-.4658$	$2.5224-.3648$	1.03:984	-23254	. 4463	.1:354
(14)	13.11967	6.7727 - .3458	$2.5559-.2907$	1.06142	-. 18.55	. 4600	. 1090
(15)	13.12018	6.8478 -.2074	$2.5454-1791$	1.08668	-. 11.337	. 4660	.1068:3
z'	104.75791	$53.5708-.7340$	$20.0460-.5531$	8.26916	-. $34+21$	+3.5661	-. 11992
${ }^{\prime \prime}$	104.75663	$53.5705-.7354$	$20.0463-.5531$	8.26992	-. 34409	+3.566\%	-. 1982

!	$A_{\bar{j}}^{(c)} \quad A_{\bar{j}}^{(s)}$	$A_{6}^{(c)} \quad A_{6}^{(s)}$	$\mathcal{A l}_{7}^{(c)} \quad \boldsymbol{A}_{7}^{\text {(s) }}$
	"	" "	"
(0)	+.2217-.0114	+.1023 -.046:	+.0505 - .00:36
(1)	.2203 + .0151	.102\% + .0085	.0498-.0048
(2)	. 21388 +.03500	.098- - .0194	$.0451+.0105$
(3)	$.2028+.0454$.0916 - .0249	. $0401+.0128$
(4)	. 1916 -. 0465	.0850 + 02025	.0363 +.0126
(5)	.1848-..0401	. $0821+.02015$	$.0356+.0109$
(6$)$.18:32-.027	.0815 - . 0115	.0308 + .0078
(7)	. $1833+.0099$. $6816-10072$.0884 +.002-8
(8)	. $1847-.0116$.1028\% -. 01019	. $08394-.00385$
(9)	. $1860-.03 .46$. $188208-.0145$.0388-.0102
(10)	. $1870-.0561$.1882-..0301	.0036-2-.0160
(11)	. $1880-.0292$.10827-.10259	. 0.354 - 0.0199
(12)	.1904-.0793	.18837 -. 010429	.0350 - . 02216
(13)	. 1456 -. 08.984	.10867-.0411	.0369 - . 62.10
(14)	.2041 -.0613	.0918 - 010838	. $0414-.0150$
(15)	.2140-.0:35	.0978 -. 0214	$.0468-.01-0$
Σ	+1.5765-.1105	$+.7007-.10598$. $3219-.0318$
${ }^{\prime \prime}$	$+1.5768-.1106$	+.6058 -.0.99x	$+.3218-.0318$

$\boldsymbol{A}_{S}^{(c)} \quad \boldsymbol{A}_{S}^{(8)}$	$\boldsymbol{A}_{9}^{(c)} \quad \boldsymbol{1}_{9}$
" "	" "
.0226-.0019	1.0107 -.0010
. 02206 -	.0108 - . .0014
. $0211-40057$.0099 - .0430
.019 - . 0071	.1008: + .000:3
.0176 -..0470	.0080 .00
. 0167 - 7.0059	.10076 - . 10.30
.0166 -..0440	
. 1165 +.0014	.60\%7--.1006
. 1169 -.1017	.1078 - .1010:
. $11688-.10051$.11075 - .11420
. 11166 -.008:3	. 10075 -. 11048
. $11603-.1108$. 01072 - $.1045 \%$
. 1160 -. 0120	. 10002 - .1046
. 0178 - -.0119	. 10076 -. 01040
. $01.90-.0096$.10085 -. 10051
.10210-.01062	.0098 -..10:3:
.1467-.7168	-.0634 -.008\%
. $1465-.0168$	-.0107t -.00xis

In the expansion of $\mu \alpha^{2}\left(\frac{11}{J}\right)^{s}$ ．

！	$\mathcal{A}_{0}^{(c)}$	$\mathcal{A}_{1}^{(c)} \quad A_{1}^{(s)}$	$A_{2}^{(c)} \mathcal{A}_{2}$	$A_{3}^{(c)}{ }^{(s)}$	$\vec{A}_{4}^{(c)} \quad A_{4}^{(s)}$
	＂	$"$＂	＂－＂	＂＇ 1	＂
（0）	23．3520	＋ $32.0569-0.3301$	$+19.4613-0.4009$	＋11．2092－0．8464	$+6.269-0.258$
（1）	23．4045	$32.1403+0.4199$	19．5273－0．0272	$11.2569+0.4603$	$0.300+0.345$
（－）	2．3．2107	$31.7192+1.0083$	19．1618－1．2486	$10.9731+1.0737$	$6.096+0.802$
（ 3 ）	－2．9239	31.104%＋ 1.35003	$18.6835+1.6470$	$10.5748+1.4097$	$5.813+1.041$
（ 4）	2．5．37	$30.8521+1.4508$	18．0：367－1．7こ40	$10.1342+1.4580$	$5.516+1.063$
（ 5 ）	$\underline{20.3056}$	$29.8387+1.295 .2$	$17.5987-1.5122$	$9.8190+1.2644$	$5.310+0.912$
（6）	22.1960	$29.6180-0.9110$	$17.4156-1.050 .5$	9．6988＋ 0.8 .83 .3	$5.239+0.606$
（ 5	$\underline{2}-1545$	$29.5473+0.3542$	$17.3564-0.3782$	$9.6618+0.3118$	$5.219+0.2020$
（ 8）	22．2348	24.6867 －0．351：3	17．455－－ 0.4897	$9.7264-10.3654$	$5.259-0.204$
（ 19$)$	22.4049	$30.0100-1.1185$	17．6808－1．3068	$9.8617-1.0915$	$5.3381-0.786$
（10）	－2．7157	$30.5036-1.803 .3$	18．11294－2．1159	$10.0630-1.7562$	$5.436-1.285$
（11）	$\underline{2.9837}$	$30.9679-2.3042$	18．8471－2．7150	$10.2558-2.2962$	$5.536-1.667$
（12）	23.1482	$31.2707-2.4810$	$18.5855-3.9416$	$10.4121-2.5144$	$5.627-1.839$
（1：3）	20.1725	$31.4193-3.3026$	$18.7500-2.78: 3$	$10.5580-2.3763$	$5.789-1.748$
（14）	23.1706	$31.5386-1.8210$	18.9291 － 2.2155	$10.7412-1.9027$	$5.895-1.409$
（15）	28.2292	$31.7564-1.1097$	$19.1791-1.3716$	$10.9764-1.1843$	$6.091-.882$
－	182．6038	$246.7658-3.4223$	$147.0656-4.1071$	$82.9580-3.5000$	＋45．3．3＇－ 2.564
$\underline{\prime \prime}$	182.5968	$246.7862-3.4356$	$147.0719-4.1125$	$82.9644-3.4985$	$+45.339-2.563$

$!$	$\stackrel{(c)}{\text {（c）}}^{\text {A }} \quad{ }^{(s)} A_{5}$	$\stackrel{(c)}{(c)}^{(8)}{ }_{6}$	$\stackrel{(c)}{\text {（c）}}_{7} \quad \stackrel{(8)}{4}_{7}$	$\stackrel{(c)}{(c)}^{\text {（s）}}$	$\boldsymbol{A}_{9}^{(c)} \quad \hat{A}_{9}^{(s)}$
	／1	＂＂＇	＂＂	＂＂1	＂ 11
（ 0 ）	$+3.440-0.17$	$+1.863-.115$	＋1．000－．072	$+.532-.044$	＋．282－．027
（ 1）	$3.458+0.240$	$1.574+.157$	$1.005+.098$	$.535+.060$	．283＋．036
（ ${ }^{\text {a }}$ ）	$3.318+0.550$	$1.851+.356$	． $94+.201$	． $497+.134$	．260＋．076
（ 3 ）	$3.130+0.706$	$1.660+.453$	$.865+.279$	． $450+.163$	． $231+.098$
（ 4）	$\underline{0.935}+0.713$	$1.540+.453$	． $297+.276$	$.409+.164$	． 208 － 0.095
（ 5）	$\because .812+0.606$	$1.465-.381$	． $5048+.232$	．375＋．183	． $1906+.078$
（ i ）	$2.752+0.413$	$1.448+260$	． $748+.157$	． $3883+.092$	$.195+.053$
（ 1 ）	－． $866+0.146$	$1.446+.091$	． $150+.055$	$.386+.0322^{4}$	． $197+.019$
（ s ）	2．759－ 0.175	$1.459-110$	． $657-.053$	． 28.9 －．039	． $1993-.023$
（ 9 ）	2．504－0．522	$1.47 t-.329$	． 760 － .199	． 3 B ！－ 1115	． $197-.067$
（10）	$2.870-0.855$	$1.491-.540$	． 259 －． 326	． 385 －．192	$.193-.111$
（11）	$2.915-1.115$	$1.505-.705$	． 307 － 405	．379－． 251	$.187-.144$
（12）	2．96：3－1．235	1.528 －．783	． $767-178$	．382－． 280	． 188 －． 162
（1i）	$3.042-1.179$	$1.582-.553$	． $8103-457$	． 404 －．252	$.201-.158$
（14）	$3.164-0.957$	$1.670-.615$	． $8197-.378$	． 4443 －	$\underline{297}-.138$
（15）	$8.312-0.604$	$1.755-.391$	． $940-243$	． $495-.147$	． $259-.087$
ご	$24.253^{-1.723}$	$12.780-1.094$	$+6.6339-.648$	$+3.423-.392$	$+1.652-.232$
V^{\prime}	$24.259-1.722$	12．783－1．095	$6.641-.660$	＋ $3.415-.395$	$1.751-.225$

The Quantities $\frac{1}{2} C_{i, v}^{(n)}, \frac{1}{2} C_{i, v}^{(s)}, \frac{1}{2} S_{i, v}^{(n)}, \frac{1}{2} S_{i, v}^{(s)}$, arranged for () uadrature in the Expansion of $\because\binom{a}{\jmath}$.

The Quantities $\frac{1}{2} C_{i, v}^{(c)}, \frac{1}{2} C_{i, v}^{(s)}, \frac{1}{2} S_{i, v}^{(c)}, \frac{1}{2} S_{i, v}^{(s)}$, arranged for Quadrature, in the Expansion of

The quantities $C_{i, n}^{(c)}, C_{i, n}$ ，ete，of the preceding tables have been divided by 2 to save division after quadrature．To check the values of these coeflicients we will take the point corresponding to $g=22^{\circ} .5$, using the equation

$$
\begin{aligned}
& A_{1}^{(r)}, \text { or } A_{1}^{(r)}=! \\
&!C_{0}+C_{1}^{r} \cos y+C_{2} \cos \underline{2} g+\text { etc. } \\
&+S_{1} \sin y+S_{2} \sin 2_{y} y+\text { ctce }
\end{aligned}
$$

noting that the tables give one－half of the values of these quantities．
Thus we have

	$i=1$	$i=2$		$i=1$	$i=2$
$\therefore C$	－＂	＂	$1 S^{\text {（e）}}$	＂	
		20.116		0．73）	0.553
$\boldsymbol{(}_{1,1}^{(c)}$	＋1．01：	．－1\％	$S_{1,1}^{(s)}$	－1．306	． 174
（ ${ }_{\text {（8）}}^{1,1}$	0.094	（1032	$S_{1,1}^{(c)}$	1． 1440	． 031
$C_{1,2}$	1． 363	．1：5	$S_{1,2}^{(8)}$	$\therefore 10$	． 004
$C_{1,2}^{(i)}$	＋．181	． 114	$S_{1,2}^{(c)}$	＋－692	． 170
$\left({ }_{1,3}^{(r)}\right.$	． 015	． 60.	$S_{1,3}^{(8)}$	－．005	＋．．004
$C_{1, i}^{(s)}$	．197	． 04%	$S_{1,3}^{(c)}$	11	－． 001
$\left({ }_{1}^{(c)}\right.$	＂		$S_{1,4}^{(8)}$	＂	
$C_{1, \mathrm{t}}^{(\mathrm{s})}$	＂		$S_{1,1}^{(c)}$	11	
ミ	－3．126	$\text { ! } 11.01 \times$	ご	（1）．4．8	－ 10.51
12	1－6．x 61	26	12	0.057	－ 0.065
$\mathcal{A}_{1}{ }^{(c)}$	－6．893	2.624	${ }_{\text {A }}^{18}$	11.017	40.065

In this way we cheek the values of these quantities for all values of i ，in case of both $\mu\binom{a}{\jmath}$ ，and ！$\mu \mu^{2}\binom{a}{\jmath}$ ．

Applying to the coeflicients of the two preceding tables the formula $\left(\frac{a}{J}\right)^{n}=\frac{1}{2} \Sigma \Sigma\left(C_{i, v}^{(c)} \mp S_{i, v}^{(s)}\right) \cos \left[\left(i \mp \nu^{\prime}\right) y-i E^{\prime}\right] \mp \frac{1}{2} \leq \Sigma\left(C_{i, v}^{(s)} \pm S_{i, v}^{(c)}\right) \sin \left[\left(i \mp i^{\prime}\right) g-i E^{\prime}\right]$ noting that $\frac{1}{2}$ has been applicd，we have the values of＂$\binom{"}{\jmath}$ ，＂ue $\binom{a}{j}$ that follow： A．P．S．－VOL．XIN．R．

!/ $E^{\prime \prime}$	cos	\sin	COS	\sin
	i"	, "	"	"
"1"	$2[210.511+\ldots 0]$			
1 - 11	+0.256in ${ }^{\text {c }}$	- 11.25027	+4.8500	
$\because-11$	+0.0044\%	+ 10.1029	-0.2566	$+1.1803$
: - ${ }^{\text {a }}$	+0.03070	$+0.05945$	$+0.1113$	+ 10.5138
±-0	+0.000:37	--4.60105.)	+0.017	$\div 0.015$
-ッ-1	+0.02:	-0.041	$+0.1810$	-01.6464
-1-1	+10.427	- 11.15%	-0.01112	-1.4576
$11-1$	-1.158	$+0.101$	8.2161	+1.04:4\%
$1-1$	+53.571	+0.78.5	+246.5810	$+3.43 \times 8$
$\because-1$	$+2.254$	-0.144	-12.4116	1.2596
$\therefore-1$	$+0.087$	+ 10.119%	T 0.1909	+11.ist?
t-1	$+0.016$	$+0.041$	+0.0510	$+0.6570$
$-1-2$$4-2$$1-2$$9-2$$3-2$$4-2$			+0.093	0.285
	+0.098	-10.129	- 0.0 .101	-1.28:
	-0.5:91	+4.02!	-5.500	$\bigcirc 0.697$
	+ 20.046	$+10.508$	+14.0.06	$+4.110$
	+1.656	-0.06:3	$\div 13.946$	-1.9405
	+0.093	+0.0.32	- +0.590	$\div 10.483$
$11-3$	-0.009446	- 0.01101	+.4750	-0.1753
1-3	+0.04011	-0.07730	-.15991	-0.9741
\because - 3	-0.56048	+0.048: ${ }^{\text {a }}$	-5.164:3	-0.2912
3-8	+8.26978	+ 0.3 . 4414	--82.9613	+3.4992
4-3	+1.01947	-1.011936	- 10.x.367	-4.4375
$5-3$	-0.07682	+ 0.011608	- 0.10 .185	-0.2022
ti-:		+11.119.836	- 11.12 aris	$+0.24+1$
$1-4$	+10.003+10.020	- 11.1014	+ 10.00%	- 11.1098
$2-1$		--1.044	+ 0.10イ\%	- 10.674
	-10.829	- 10.6005	-3.859	$\div 10.062$
$4-1$	$+3.566$	+4.1993	+ 45.33.3	- 2.512
$5-4$		-0.001	+7.762	- 11.149
$\frac{i}{7-4}$	$+0.055$	$+0.008$	+0.15s	$+10.163$
			+10.078	$+0.162$
$2-5$	+0.0015	$\bigcirc 0.045$	+0.0193:3	- 0.049
: 5	$+0.016$	-10.025	+0.08s	-0.095
\pm -	-11.182	-0.0117	- 2.635	-0.041
5 - 5	$+1.576$	+ 0.110	424.256	+1.720
6 - 5	$\begin{aligned} & +0.825 \\ & +0.031 \end{aligned}$	+0.004	-5.163	-0.006
- - 5		+0.004	+0.067	$\div 0.436$
±-6	$\begin{array}{r} +0.009 \\ \hline+0.100 \\ +0.607 \\ +0.176 \\ +0.018 \end{array}$	-0.008	+0.079	-6.269
-		- 0.0 .0106	-1.717	-0.073
i - ${ }^{1}$		+0.06\%	+12.781	-1.095
7-6		$+0.00 .0$	+3.260	± 0.050
- ${ }^{\text {- }}$		-0.005	+0.408	$+0.057$

We have next to transform the expressions for $\mu\binom{a}{\jmath}$ and $\mu e^{2}\binom{a}{\jmath}^{3}$ just given into others in which both the angles involved are mean anomalies.

From

$$
r_{i n}={ }_{h^{\prime}, ~}^{m}
$$

begiming with $m=5$, we find the values of r_{5} for values of e^{\prime} from $\frac{e_{2}}{}$ to e^{\prime}.
Then we find

$$
p_{5}=\frac{1}{\gamma_{s}}
$$

Putting $m=4$, we find the values of r_{1} as in the case of r_{5}. Then we get p_{4} from

$$
p_{4}={ }_{r_{4}}^{1} \overline{p_{i}}
$$

We proceed in this way until we finally have the values of p_{1}. Then we find ef h^{\prime}, or $\left(J_{h^{\prime} \frac{e^{\prime}}{(0)}}^{(1) \text { from }}\right.$

$$
\dot{J}_{h^{\prime},}^{(0)}=1-l^{2}+l_{4}^{l^{4}}-\frac{l^{6}}{36} \pm \text { etc. }
$$

where $l=h^{\prime} \frac{2}{2}$,
and $J_{h^{\prime} \frac{(m)}{(m)}}$ from

$$
f_{h_{2}^{\prime}}^{(m)}=\cdot f_{h_{2}^{\prime}}^{(0)} \cdot p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5}
$$

The details of the computation are as follows:

Computation of the of functions.

$l=$	$\frac{1}{2} e^{\prime}$	e^{\prime}	$3 e^{\prime}$	$2 e^{\prime}$	$5{ }^{5}$	$3 e^{\prime}$	I e^{\prime}	$4 e^{\prime}$
log. l	8.38251	8.68×3.34	8×596	8.94548	9.088145	3.12066	9.22761	9.28560
$\log \cdot r_{5}$	2.316	2.015.5:	1.839:3	1.71440	1.6174	1.538.31	1.47136	1.41837
$\log \cdot p_{5}$	7.68 .354	7.9xt5	-1641965	$\times 2 \times 56$		8.46169	8.520464	8.58669
$\log \cdot r_{1}$	2.21955	1.91852	1.74243	1.6159	1.520 .5	1.44140	1.36445	1.31644
$\log \cdot x_{4}-\log \cdot p_{5}$	4.53801	3.9330	3.5	3.0.:14	3.1:307	2.97971	2.84581	2.72983
Zech	1	-5	-12	- 20	-31	-45	-62	-81
	2.21954	1.91857	1.74 ± 31	1.41729	1.52027	1.44095	1.937383	1.31585
$\log \cdot p_{1}$	7.88046	8.10×1.53	8.2056	8.30×71	8.4 4 ¢	8.58965	8.62617	8.188415
$\log \cdot r_{3}$	2.109461	1.8935	1.6174)	1.4205	1.39564	1.31646	1.24951	1.19152
Diff.	4.31415	3.71205	3.38980	3.110984	2.91591	2.25841		2.50737
Zech	\cdots	-9	-19	- 34	-5	if	-1013	-135
	2.09445	1.893:4	1.61730	1.49291	1.39512	1.31510	1.24848	1.19017
$\log . p_{3}$	5.90541	8.20651	8.380	8.aners	8.60488	8.684:30	8.55152	8.80983
log. r_{2}	1.91505	1.61749	1.44141	1.31646	1.21985	1.140:3	1.07342	1.01543
Dift.	4.01:311	3.41098	3.054\%	2.80868	2.6146	2. 4560%	2.32190	2.20560
Zech	- 4	-17	- 3	-6i	-10.5	-152	-206	- 269
	1.91848	1.61732	1.41102	1.3157:	1,218.40	1.13885	1.07136	1.01274
$\log \cdot p_{2}$	8.108150	$8.38 \times 2 \times 8$		8.684201	8.78150	8.96115	8 8, 51884	8.98726
$\log \cdot r_{1}$	1,61749	1.31646	1.140:37	1.0154:3		0.80393 .4	0.51023	0.71440
Difti.	3,58599	2.993:30	2.581:9	2.:3120	2.1870	1.41819	1.84375	1.22 T 14
Zech	-1:3	-51	-114	-202	-315	-454	-618	- 807
	1.1617:36	1.81595	1.13:12:3	$1.111: 3+1$	10.915.37	0. 5.3450	0.76621	0.206333
$\log \cdot p_{1}$	8.3820 .4	8.68405	x.x仿	8.94659	90, 08463	9310520	9.23:39	9,2934\%
\log , l^{1}	3. 53.3004	4.73716	5.48 .50	5.1859	6.32954	6,64264	6.91044	7.14240
$\log \cdot \frac{l^{4}}{4}$	2.92798	4.13210	4.3034	5.30362	5.52386	6.04058	6.30838	6.54034
$-\log . l^{2}$	6.8650 la	7.36708n	2.71926m	5.96914n	$8.16296 n$	$8.32180 n$	8.45529n	$8.57120 n$
Diff.	3.5:304	3.23498	2. $\times \times 280$	2, 69329	2.43914	2.28084	2.14684	2.03086
Zech	-i	- 25	- 59	- 101	-15\%	- 29	-308	-402
$\log \cdot\left(-l^{2}+\frac{l^{4}}{4}\right)$	6.76495n	7.36693n	7.71869 n	7.9681:3n	8.1013920	8.3190 m	8.45214n	$8.56718 n$
	3.23505	$\underline{20.63307}$	2.281:31	2.03157	1.888661	1.680995	1.54786	1.43982
Zech	- 26	-101	- 226	-401	-695	- 896	-1213	-1575
$\log . J^{(0)}$	9.9997	9.99899	99.9978	4.99599	999375	9.99104	9.98787	9.98425
$\log \cdot p_{1}$	8.38204	8.68405	8.460t	8.98659	9.0846	9.16520	9,23:79	9.29365
$\log . J^{(1)}$	8.38238	8.68304	8.85850	8.95258	9.07838	9.15624	922166	0.27792
$\log \cdot p_{2}$	8.08159	8.38268	8.55889	8.68421	8.18150	8.86115	8.92864	8.98726
$\log . J^{(2)}$	6. 46390	7.06572	7.41748	7.666679	7.85988	8.01539	8.15030	8.26518
$\log \cdot p_{3}$	5.90541	8.20651	8.382\% 4	8.50759	8.60488	8.68430	8.55152	8.80983
$\log \cdot J^{(3)}$	4.36931	5.25293	5.8001 .5	6.17458	6.46456	6. 70169	6.90182	7.07501
$\log \cdot p_{4}$	7.58046	8.0815:3	8.25769	8.358071	8.45973	8.55905	8.68617	8.68415
$\log \cdot J^{(1)}$	2.14975	3.35376	4.05787	4.5509	4.94449	5.26074	$5.52 ¢ 99$	5.75916

Noting that $\log \cdot\left(J^{(0)}-1\right)=\log \cdot\left(-l^{2}+\begin{array}{l}l^{\prime} \\ 4\end{array}\right), \lambda^{\prime}=\underset{2}{e^{\prime}}$ ，and $l=h^{\prime} \lambda^{\prime}$ ，we form the following tables ：

h	$\log \cdot{ }_{1}^{1}\left(\cdot J_{1}^{\prime \prime}-1\right)$	Log．${ }_{h^{\prime}}^{1} e^{(1)}{ }_{l^{\prime} \lambda^{\prime}}$	Log．${ }^{1}{ }_{h^{\prime}}{ }^{\prime \prime} l_{l^{\prime 2} \lambda^{\prime}}$		Log．${ }_{h^{\prime}}{ }^{\prime} J_{l^{\prime} \lambda^{\prime} \lambda^{\prime}}$
1	6． 26.949		6．46：9	4．3693	2.149
\because	7．065isa	－\％avol	6.8 .764	4．9712	3，
：	7．2415m	－．3¢1：3\％	6．9414	5．：30：1	3.5010
4	7．3616		7．06．45		3．93．11
5	T．4624n	－	7．1611		4．245\％
${ }^{\prime}$	7．54190n	s．3icus	7．2392	5， 5	1．402
i	7．6ヶ\％	8 ¢	7．3415		4．640\％
8	7．66\％ $11 n$	8．3．4x：3	7.36101	6．171：	4．4502

$$
I^{\prime} \text { alue of } h_{h^{\prime}}^{i^{\prime}} H_{l^{\prime} \lambda^{\prime}}^{\left(h^{\prime}-i^{\prime}\right)}
$$

i^{\prime}	$h^{\prime}=$	$h^{\prime}=-$	$7 i=+1$	$h=\because$	$h=3$	$h^{\prime}=$	$h=5$	$h^{\prime}=6$	$h^{\prime}=7$	$h^{\prime}=8$
1	4．9712n	6．40398	6．7134！on		6，9404	5.5725	4.2450			
\because	3.30307	4．870：3	x．bsest1n	7．34693\％	2．fxe +1	7.3657	19．1460	4．74．35		
：			19．9414	x－s，91：	7．7130：9	x．8．764	7．103ヶ1	1i．teoti	5． 15.98	
4			4.9716	3.36675	x．！4： 4 4n	$7.9681: 3 n$	8.9×146	7．841\％	6，6585	5.45×3
5				ふリアルご	7．63398	$9.105949 n$	8.16114	9.07604	$\times .10042$	6．0．70！
6					6.10120	7．8432	9.15751 n	$8.319 n$	9.15471	8．140゙
7 For $\mathrm{h}^{\prime}=0$ ，						6．417in	$\times .0031$	9，20：20n	R．tioln	！ 1 1904：
8 ＇we have							cibisam	$8.140: 3$	！1．27965n	8．5062n
9		$4.38251 n$						6．5775n	－2094	！．8．3！45\％

In computing the values of the ．I functions，the line：headed Zech show that addition or subtraction tables have been used．For convenience，$\left(J^{(4)}-1\right)$ is em－ ployed instead of $f^{(n)}$ ，its values being found in the line headed $\log .\left(-l^{2}+\begin{array}{l}l^{l} \\ 4\end{array}\right)$ ．

From the expression

$$
\left(\left(i, h^{\prime}\right)\right)=\Sigma_{h^{\prime}}^{i^{\prime}} \mu_{h^{\prime} x^{\prime}}^{\left(k^{\prime}-i^{\prime}\right)}\left(i, i^{\prime}\right)
$$

h^{\prime} being the multiple of g^{\prime}, and being constant, and i^{\prime} being variable, we have

Now for $h^{\prime}=+1$, we have, if we write the angle in place of the coefficient,

$$
\begin{aligned}
& \left(\left(i g-g^{\prime}\right)\right)=\frac{1}{1} J_{\lambda^{\prime}}^{(0)}{ }_{\cos }^{\cos }\left(i g-E^{\prime}\right)+\frac{2}{1} \cdot J_{\lambda^{\prime}}^{(-1)}{ }_{\text {sin }}^{\text {sin }}\left(i g-2 E^{\prime}\right)+\text { etc. } \\
& -\frac{1}{1} J_{\lambda^{\prime}}^{(2)}{ }^{(2)} \cos \left(i y+E^{\prime}\right)-\frac{2}{1} \cdot \boldsymbol{J}_{\lambda^{\prime}}^{(3)}{ }^{(i n)}\left(i y+2 E^{\prime}\right)-\text { etc. } ;
\end{aligned}
$$

and for $h^{\prime}=-1$, we have

$$
\begin{aligned}
\left(\left(i y+g^{\prime}\right)\right)= & -\frac{1}{1} \cdot J_{-\lambda^{\prime} \text { iin }}^{(-2)}\left(i y-E^{\prime}\right)-\frac{2}{1} J_{-\lambda^{\prime} \sin }^{(-3)}\left(i y-2 E^{\prime}\right)-\text { etc. } \\
& +\frac{1}{1} \cdot J_{-\lambda^{\prime} \sin }^{(0)}\left(i y+E^{\prime}\right)+\frac{2}{1} \cdot J_{-\lambda^{\prime} \sin }^{(1)}\left(i g+2 E^{\prime}\right)+\text { etc. }
\end{aligned}
$$

Since

$$
J_{h^{\prime}}^{(-m)}=(-1)^{m} \cdot J_{h^{\prime}}^{(m)}, \quad . I_{-h^{\prime}}^{(m)}=(-1)^{m} \cdot J_{h^{\prime}}^{(m)}, \quad \cdot J_{-h^{\prime}}^{(-m)}=\cdot \cdot J_{h^{\prime}}^{(m)}
$$

the last two expressions give

$$
\begin{aligned}
& \left(\left(i g-g^{\prime}\right)\right)=J_{\lambda^{\prime}}^{(0)} \sin \left(i g-E^{\prime}\right)-2 \tilde{J}_{\lambda^{\prime}}^{(1)} \sin \left(i y-2 E^{\prime}\right) \pm \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(i g+g^{\prime}\right)\right)=-J_{\lambda^{\prime}}^{\left(i^{\prime}\right)} \sin \left(i g-E^{\prime}\right)-2 J_{\lambda^{\prime}}^{(3)} \sin \left(i g-2 E^{\prime}\right)-\text { etc. } \\
& +\dot{J}_{\lambda^{\prime}}^{(0)} \sin \left(i y+E^{\prime}\right)-2 J_{\lambda^{\prime}}^{(1)} \text { sium }\left(i y+2 E^{\prime}\right) \pm \text { etc. }
\end{aligned}
$$

And for the particular case of $i=1$, we have

Instead of $\cdot j_{\lambda^{\prime}}^{(1)}$, we use ($\cdot \dot{N}_{\lambda^{\prime}}^{(1)}-1$), as has been noted.
If we put $h^{\prime}=+\boldsymbol{2}$, we have

In the table giving the values of ${ }_{h^{\prime}}^{i^{\prime} J_{l \lambda^{\prime}}{ }^{\left(h^{\prime}-i^{\prime}\right)}}$, we have, under $h^{\prime}=2$, which applies to the equation just given,
for $i^{\prime}=1, \quad \log \cdot \frac{1}{2} \cdot f_{2 N^{\prime}}^{(1)}=838201 \quad \log .\left(-\frac{1}{2} \cdot f_{2 \lambda^{\prime}}^{(i)}\right)=4.9712 u ;$

for $i^{\prime}=3, \quad \log \left(-3 \rho_{2}^{\prime} \quad\right)=8.85913 n \quad$ etc. $=$ etc.
etc. \quad etc. $=$ etc.
 these are the forms of the function $h_{h^{\prime}}^{i^{\prime}} \dot{l}_{l^{\prime} \lambda}^{\left.\prime l^{\prime} i^{\prime}\right)}$ when $h=-2$, and $i^{\prime}=1$ and $i^{\prime}=2$.

In the expansion of the coefficient of ($i g-h^{\prime} y^{\prime}$) indicated above by ($\left(i g-h^{\prime} y^{\prime}\right)$), we have coefficients of angles of the form $\left(i y+i E^{\prime}\right)$. These can readily be put into the form ($-i y-i E^{\prime}$), but the form employed is convenient in the transformation.

Arranging the functions：＂$\binom{a}{\jmath}, \mu \alpha^{2}\binom{a}{\jmath}^{3}$ in this form，we have

	$\text { Iog. " }\binom{a}{d}$			$\log \cdot n \alpha^{2}\binom{0}{j}$	
！E^{\prime}	\cos	\sin		CO：	sin
11－1	$0.0637 n$	9．004\％		0．507tn	0.6210
11 －	8.9619	3，1106n		T．0040n	$0.108 \pm n$
U－3	T．64\％	8.04180		8.8751	$9.2487 n$
$1+1$	9.6304	9.2856		8．0493）	0.10 .37
1－1	1．7285	1）＜6，66\％		2．392：3	0．7．364
12	$9.9496 n$	8.4604		$11.7404 n$	9．84：3
1－：	8.60182	8.88×20		$\times .7116$	9．98rin
1－4	7．4751	7．6021／		$8.724: 3$	$8.95112 n$
$\geq+1$	8.8617	$\times 1.6128$	1.	9．117\％	9.81115
21	0.8930	9．1584n	1.	1．4959	$0.10978 n$
$\because 2$	1．3020：3	0 ！ 19	।	－16\％5	1．6．11：38
\because－	9．1486n	7．5uTy		0． 711450	$9.464 ⿻ 上$
$\cdots 4$	8.3010	8．144\％		8．9138	
25	6．6．920	7． 6 （6）${ }^{\text {a }}$			
：3－1	8.9839	8．7993		9.2808	9．8944
$3-2$	0．21！	8．799：3		1．1221	9.956 㒂
： 3 －	0.91750	0．5368		1.91×9	10.5440
$3-4$	9，51：32n	7．69900n		$0.5 \times 6.0 \%$	8.7924
$3-5$	8.2041	8.39979		8.9445	8．9テち～
t－1	R．2041	8.6104		8．9865	9.5287
4－9	8.9185	8 ¢0ヶ\％		9.7509	！1．68：39
$4-3$	0.0082	8.286 m		1．10： $4 \times$	9.6410 m
4－4	10.5520	9－2！8！		1.6565	11.408.
45	9．2601n	7． $9451 n$		16．4244n	$8.6128 n$
4－6i	7.3542	7．9093\％		8.8976	9．4298n
$5-3$	8.8505	8．2049		9，85， 64	9.4506
$5-4$	9， 168	T．\quad m\％＂	＋	1）． 8 ！90 ${ }^{\text {a }}$	$11.17: 32 n$
$5-5$	0.1936	！ 1.6114		1.3848	1．23：36
$5-6$	9.00000	7．7582n		0.2345	$8.86380 n$
fi－${ }^{\text {a }}$				8．9385	9.3876
i i－ 4	8.7404	5．9031	，	9.8370	9．2192
（i） 5	3.5119	T． 5 （6） 1		0.7109	－．788 n
$\text { ii } \quad i$	9．8494	8．7582		1.1066	0.0394
$1 ; 7$				$0.0224 n$	$8.8451 n$
i－6				0.5182	8.6990
7				0.822.	9.8156
$7-8$				9.7973	$8.7924 n$

We will now give examples to illustrate the application of the tables for trans－ forming from eccentric to mean anomaly，in ease of the function＂$\binom{"}{1}$ ．

Fon the anyle $3!/-3!{ }^{\prime}$ ．

$$
!\left(\frac{n}{\jmath}\right) \quad i^{\prime \prime} j_{l}^{\prime \prime \prime}
$$

$g E^{\prime}$	\cos	sin	（ h^{\prime} ：${ }^{\prime}$	Log．I＇rorluct．		I＇roduct．	
						＂	＂
$3-1$	8.9385	8．7993	6．9．9101	5.8749	6． 5397	7 －．100008	$+.00005$
$3-2$	0.2191	8.7948	8.65041	8.9015	7．6x15\％	＋． 07970	－．101308
$3-8$	0.91750	7．036	¢．71569\％	8.636 ± 17	5．2505	－． 04.827	－． 00180
$3-4$	9，51832	7．69：907	x．sw314n	8． 4966	6.65×4	－． 113189	＋．00048
$3-5$	8.2041	$8.89751 /$	7．10：39\％	5.8434	$0.0872 n$	－． 00007	－． 00011
						－8．26978	－ 0.34414
						－4．33775	＋0．33973

For the anyle g－orf．

			（ $\left.h^{\prime} \cdot 10\right)$	－		＂	＂
1－1	1．7ex 0 \％	9．566：	※．3以号1\％	（1．11144＂	8．21ぐめ	－1．29259	－．． 017%
$1+1$	9.6304	9.2056	$8.38251 / 1$	$8.0129 m$	$7.6681 n$	－． 01030	－．00466
						$+0.25653$	－0．2502i
						$-1.046: 36$	－0．2726 6

For the angle $g+g^{\prime}$ ．

$1-1$	1.7289	0.8663	f．143：3n	8.19280	6.3909	－． 1116	． 000
						‥0．427	± 0.193
						0.411	＋0．193

A．P．S．－YOL．XIN．S．

For the angle of -oy'.

104.8x, 1

For the angles represented by (ig- g^{\prime}), there may be cases when there are sensibe terms arising from $g+E^{\prime}, g+2 E^{\prime}$, etc. ; if so, we use the column for $k^{\prime}=-1$, and apply the proper numbers of this column to the coefficients of the angles named. Likewise in the case of $\left(i g+g^{\prime}\right)$, there may be terms arising from the product of the numbers in the column $h^{\prime}=1$ and the coefficients of the angles $g+E^{\prime}$, etc. This will be made clear by an inspection of the two expressions

$$
\begin{aligned}
& \left(\left(i y-y^{\prime}\right)\right)=\quad J_{\lambda^{\prime}}^{(0)} \text { siln }\left(i g-E^{\prime}\right)-2 J_{\lambda}^{(1)} \text { silin }\left(i y-2 E^{\prime}\right) \pm \text { etc } . \\
& --J_{\lambda^{\prime}}^{(2)} \cos \left(i y+E^{\prime}\right)-2 J_{\lambda^{\prime}}^{(3)}\left(i \sin \left(i y-2 E^{\prime}\right)-\text { etc. },\right. \\
& \left(\left(i g+g^{\prime}\right)\right)=-J_{\lambda^{\prime}}^{(2)} \operatorname{cing}_{\sin }^{(i g}\left(i g-E^{\prime}\right)-2 J_{\lambda^{\prime}}^{(3)}{ }_{\operatorname{con}}^{\cos }\left(i g-2 E^{\prime}\right)-\text { etc. }
\end{aligned}
$$

where $\left(\left(i g-g^{\prime}\right)\right),\left(\left(i g+g^{\prime}\right)\right)$ represent not the angles but their coefficients.
In retaining the form $\left(i y+i^{\prime} E^{\prime}\right)$ instead of the form $\left(-i y-i^{\prime} E^{\prime}\right)$ we can perform the operations indicated without any change of sign in case of the sine terms.

Making the transformations as indicated above, we obtain the following expressions for the functions $\mu\binom{11}{j}$, and $\mu \alpha^{2}\binom{1}{\jmath}^{3}$:

The transformation should be carefully checked by being done in duplicate, or better by putting the angle $i y=0$, in all the divisions of the two functions, having thus only the angles $\left(0-E^{\prime}\right),\left(0-2 E^{\prime}\right),\left(0-3 E^{\prime}\right)$, etc., etc.; also $\left(0-g^{\prime}\right),(0-$ $2 g^{\prime}$), etc. Adding the coefficients in each division of the functions before and after transformation, and operating on the sums before transformation as on single members of the sums, the results should agree with the sums of the divisions of the transformations given above.

The transformations of these functions were checked by being done in duplicate, but we will give the check in case of another planet. We have for the logarithms of the sums before transformation, and for the sums after transformation the following:

For the an	le $(0-1)$,	(1)-2),		$0-3$.			
"	"		"		"		"
-0.041	+ 0.1121	$+1.7 \pm 2$	- 1.007	$+$.062	-	. 0337
- 0.483	f 1.578	- .142	+ . 076	$+$. 871	-	1.574
.000	- 0016	$\pm .10: 3$	+ 1.346	$+$. 003	$+$. 097
+ 71.462	-41.724	.1112	- . 019	+	. 494	$+$. 791
$+70.545$	-40.188	$+15.104$	-32.714	-	. 020	-	. 011
+ 710.573	-49.196	+1!1509	-32.318	-	. 504		18.618
		+19.811	-32.319		0.906		19.352
					0.902		19.355

The numbers in the last line of each case are the sums of the divisions after conversion when iy is put $=0$.

To have close agrecment it is necessary that all sensible terms in the expansion of .$\mu\binom{a}{1}$ and u* $\alpha^{2}\binom{a}{\jmath}^{3}$ be retained. In the expressions for these functions given a large number of terms and some groups of terms have been omitted as they produce no terms in the final results of sufficient magnitude to be retained.

In transforming a series it will be convenient to have the values of the ef functions on a separate slip of paper, so that by folding the slip vertically we can form the products at once without writing the separate factors.

The numerical expressions for $\mu\binom{a}{\jmath}$ and $\mu \mu^{2}\binom{a}{j}^{3}$ being known, we need next to have those designated by (II) and (I), which represent the action of the disturbing body on the Sun.

To find ($I I$) we use two methods to serve as checks. We have first

$$
\begin{aligned}
& (I I)=!_{2}^{\prime}\left[h \gamma_{1} \gamma_{1}^{\prime}+h \delta_{1} \delta_{1}^{\prime}\right] \cos \left(!\eta-g^{\prime}\right) \quad-\frac{1}{2}\left[l_{1} \gamma_{1}{ }_{1}^{\prime}+l^{\prime} \gamma_{1} \delta_{1}^{\prime}\right] \sin \left(!-g^{\prime}\right) \\
& +\frac{1}{2}\left[h \gamma_{1} \gamma_{1}^{\prime}-h^{\prime} \lambda_{1}^{\prime}\right] \quad \cos \left(-!-g^{\prime}\right)-\frac{1}{2}\left[l \delta_{1} \gamma_{1}^{\prime}-l^{\prime} \gamma_{1} \delta_{1}^{\prime}\right] \sin \left(-g-g^{\prime}\right) \\
& +\frac{1}{2} \operatorname{l\gamma }_{0} \gamma_{1}^{\prime} \quad \cos \left(-f^{\prime}\right) \quad-\frac{1}{2} l^{\prime} \gamma_{1} \delta_{1}^{\prime} \quad \sin \left(-g^{\prime}\right) \\
& +2\left[h \gamma_{1} \gamma_{2}^{\prime}+h^{\prime} \delta_{1} \delta_{2}^{\prime}\right] \cos \left(y-2 y^{\prime}\right)-2\left[7 \delta_{1} \gamma_{2}^{\prime}+l^{\prime} \gamma_{1} \delta_{2}^{\prime}\right] \sin \left(y-2 y^{\prime}\right) \\
& +2\left[h \gamma_{1} \gamma_{2}^{\prime}-h^{\prime} \delta_{1} \delta_{2}^{\prime}\right] \cos \left(-!-2 y^{\prime}\right)-2\left[l \delta_{1} \gamma_{2}^{\prime}-l^{\prime} \gamma_{1} \delta_{2}^{\prime}\right] \sin \left(-g-2 y^{\prime}\right) \\
& +27 \gamma_{1} \gamma_{2}^{\prime} \quad \cos \left(-2 y^{\prime}\right)-2 l^{\prime} \gamma_{0} \gamma_{2}^{\prime} \quad \sin \left(-2 y^{\prime}\right) \\
& +9_{2}\left[h \gamma_{1} \gamma^{\prime}+h \delta_{1} \delta_{2}^{\prime}\right] \cos \left(!1-3 y^{\prime}\right)-2\left[l \delta_{1} \gamma_{3}^{\prime}+l^{\prime} \gamma_{1} \gamma_{3}^{\prime}\right] \sin \left(g-3 y^{\prime}\right) \\
& + \text { etc. }
\end{aligned}
$$

where

$$
\begin{aligned}
& \gamma_{1}=J_{\lambda}^{\prime \prime}-J_{\lambda}^{\prime 2)} \quad \lambda_{1}=J_{\lambda}^{\prime \prime}+J_{\lambda}^{(2)} \\
& \gamma_{2}=!\left[\cdot J_{2 \lambda}^{(1)}-J_{2 \lambda}^{(2)}\right] \quad \delta_{2}=\sum_{2}^{1}\left[J_{2 \lambda}^{(1)}+J_{2 \lambda}^{(3)}\right] \\
& \gamma_{3}=\sum_{3}^{1}\left[J_{3 \lambda}^{(2)}-J_{2 \lambda}^{(1)}\right] \quad \delta_{3}=:\left[\cdot J_{\lambda}^{(2)}+J_{3 \lambda}^{(1)}\right],
\end{aligned}
$$

and similar expresuions for $\gamma^{\prime}, \delta_{1}{ }^{\prime}, \gamma_{2}^{\prime}, \lambda_{2}^{\prime}$, ctc.; noting that $\gamma_{1}=-3 e$.

The other expression for (II) is

$$
\begin{aligned}
& (I I)=\frac{1}{2}\left[h \gamma_{1}^{\prime}-h^{\prime} \delta_{1}^{\prime}\right] \cos \left(-E-g^{\prime}\right)+{ }_{2}^{1}\left[\gamma_{1}^{\prime}-l^{\prime} \delta_{1}^{\prime}\right] \sin \left(-E-g^{\prime}\right) \\
& +\frac{1}{2}\left[h \gamma_{1}^{\prime}+\pi h_{1}^{\prime} \left\lvert\, \cos (E-g) \quad-\frac{1}{2}\left[l \gamma_{1}^{\prime}+l^{\prime} \delta_{1}^{\prime}\right] \sin \left(E-g^{\prime}\right)\right.\right. \\
& -e l \gamma_{1}^{\prime} \quad \cos \left(-g^{\prime}\right) \quad+e l^{\prime} \delta_{1}^{\prime} \quad \sin \left(-g^{\prime}\right) \\
& +2\left[h \gamma_{2}^{\prime}-h^{\prime} \delta_{2}^{\prime}\right] \cos \left(-E-2 g^{\prime}\right)+2\left[\gamma_{2}^{\prime}-l^{\prime} \delta_{2}^{\prime}\right] \sin \left(-E-2 g^{\prime}\right) \\
& +2\left[h \gamma_{2}^{\prime}+h^{\prime} \delta_{2}^{\prime}\right] \cos \left(E-2 y^{\prime}\right)-2\left[\gamma_{2}^{\prime}+l^{\prime} \delta_{2}^{\prime}\right] \sin \left(E-2 y^{\prime}\right) \\
& -4 e h \gamma_{2}^{\prime} \quad \cos \left(-2 g^{\prime}\right)+4 e l^{\prime} \delta_{2}^{\prime} \quad \sin \left(-2 g^{\prime}\right) \\
& + \text { etc. }+ \text { etc. }
\end{aligned}
$$

In both expressions for (H) we have

$$
\begin{aligned}
& h={ }^{n} k \cos (\Pi-K) \\
& h^{\prime}=\frac{\mu}{u^{2}} \cos \phi \cos \phi^{\prime} h_{1} \cos \left(\Pi-K_{1}^{\prime}\right)=\frac{1}{2}, u^{v} \frac{\cos V}{a^{3}} \\
& l={ }_{u^{2}}^{\mu} \cos \phi k \sin \left(\Pi-K^{\prime}\right) \quad=\frac{1}{2} \cdot u \frac{v \sin V}{a^{3}} \\
& l^{\prime}={ }_{a^{2}}^{\prime 2} \cos \phi^{\prime} k_{1} \sin \left(\mathrm{II}-h^{\prime}\right) \quad=\frac{1}{2} u^{\prime} \frac{p^{\prime} \cos I^{\prime}}{a^{3}}
\end{aligned}
$$

where as before

$$
u=\begin{gathered}
m^{\prime} \\
1+m
\end{gathered} \cdot 2062644^{\prime \prime} 8 \quad \text { and } \quad a=\frac{a^{\prime}}{a}
$$

In the second expression the eccentric angle of the disturbed body appears and we must transform the expression into one in which both angles are mean anomalies. With the eccentricity, e, of the disturbed body we compute the J functions just as we did in case of e^{\prime} of the disturbing body.

We have in case of Althata

	？	，	\％e	20
$\log .\left(. I^{(0)}-1\right)$			－llavoin	－H10： $11 / 1$
Log．．j ${ }^{(17)}$	31994：30	$9!9!119$	19．11\％3\％	
Log．．f ${ }^{(1)}$	E．gu： 41	x． 514031	9.0751	！－20016
Log．．f ${ }^{(2)}$	6．610302	7．017	「ぶッチ	8.1065
Log．．f	－ 0 0：30：	5．93：3im	（i．110：0	10.4030 .3
Log．．f ${ }^{(1)}$	：3．0：31	1． $2: 3 \times 1$	1．3415	5．110．3

From these values we may form a table of ${ }_{3}^{i}{ }^{i} J_{l / \lambda}^{(h-i)}$ as was done for the disturbing body．The values of these quantities can be checked by means of the tables found in Engelalanv＇s edition of Bressel＇s Werke，Band I，pp．103－109．

Finding the numerical value of（II）first by the second expression，we get

E	$!$	cos	sili
1 －	1	以，154	$\because 11.6 .31$
1	1	10．1ss	（1）．112
11	1	こ以い	11.111
1	\because	1．64	11.116
-1	\because	11.111	19.1011
11	\cdots	11．3：	10．0．1）
1 －	；	11．：アがい	（11．176）${ }^{\text {a }}$
－1	\because	11．011 11	
11	\because	11．11：304	11．110．1：3\％

To transform we change from（ $h E-i^{\prime} g^{\prime}$ ）into（ $\left.i^{\prime} f^{\prime}-h V^{\prime}\right)$ ．Making the transfor－ mation，writing also the values found from the first exprewion for the sake of compari－ son，and the value of（ I ）which will next be determined，we have

To find the numerical value of (I) needed in case of the function $a^{2}\binom{d \Omega}{d Z}$, we have

$$
\begin{aligned}
(I) & =b \delta_{1}^{\prime} \sin \left(-g^{\prime}\right)+b \gamma^{\prime} \gamma_{1}^{\prime} \cos \left(-g^{\prime}\right) \\
& +4 b \delta_{2}^{\prime} \sin \left(-2 g^{\prime}\right)+4 b b^{\prime} \gamma_{2}^{\prime} \cos \left(-2 g^{\prime}\right) \\
& +9 b \delta_{3}^{\prime} \sin \left(-3 g^{\prime}\right)+9 b b^{\prime} \gamma_{3}^{\prime} \cos \left(-3 g^{\prime}\right) \\
& + \text { etc. } \quad+\text { etc. }
\end{aligned}
$$

where

$$
b=-{ }_{a^{2}}^{\prime \prime} \cos \phi^{\prime} \sin I \cos \Pi^{\prime}, \quad b^{\prime}={ }_{a^{2}}^{\prime \prime} \sin I \sin \Pi^{\prime}
$$

Having the values of $\mu\binom{a}{\jmath}, \mu \alpha^{2}\binom{1}{\jmath},(I I)$, and (I), we next find those of

$$
a \Omega, \quad a r_{d r}^{d \Omega}, \quad \text { and } a^{2} d \Omega,
$$

from

$$
\begin{aligned}
& a \Omega=\mu\binom{n}{\jmath}-(I l) \\
& a r_{d r}^{d!}=\underset{2}{2} u a^{2}\binom{a}{\jmath}\left[\begin{array}{l}
r^{2} \\
a^{2}
\end{array}-\begin{array}{cc}
1 & r^{2} \\
a^{2} a^{2}
\end{array}\right]-\frac{1}{2} u\binom{a}{\vdots}-(I I)
\end{aligned}
$$

where

$$
\begin{aligned}
& { }_{r^{\prime}}^{r^{2}}=1+\frac{3}{2} e^{2}-\frac{1}{i} J_{\lambda}^{(1)} \cos y-\frac{1}{4} J_{2 \lambda}^{(2)} \cos 2 g-{ }_{9}^{4} J_{3 \lambda}^{(3)} \cos 3 g-\text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{2}^{2} e_{2}-\left[\cdot I_{\lambda^{\prime}}^{(1)}-J_{\lambda^{\prime}}^{(2)}\right] c_{2} \cos !f^{\prime}-\frac{1}{2}\left[J_{2 x^{\prime}}^{(1)}-\cdot J_{2 x^{\prime}}^{(i)}\right] c_{2} \cos 2 g \text { - etc. }
\end{aligned}
$$

c_{1} and c_{2} being given by the equations

$$
\begin{aligned}
& c_{1}={ }_{\alpha}^{\sin I} \cos \phi^{\prime} \cos \mathrm{II}^{\prime} \\
& c_{2}={ }_{k}^{\sin I} \sin \mathrm{II}^{\prime}
\end{aligned}
$$

We find

$$
\begin{aligned}
\frac{1}{2}\left[\begin{array}{l}
r^{\prime 2} \\
\eta^{\prime 2}
\end{array}-\frac{1}{a^{\prime} a^{2}}\right]=[9.5769400] & -2[8.38238] \cos y^{\prime}-2[6.46366] \cos 2 y^{\prime}-\text { etc. } \\
& +2[7.99450] \cos !+2[6.29667] \cos 2 y+\text { etc. } \\
-\frac{\sin I}{a} \frac{r^{\prime}}{a^{\prime}} \sin \left(f^{\prime}+\Pi^{\prime}\right)=[7.18046] & +2[8.39074] \sin y^{\prime}+2[6.77809] \sin 2 g^{\prime} \\
& -2[8.01941] \cos y^{\prime}-2[6.40668] \cos 2!\eta^{\prime}
\end{aligned}
$$

A. P. S.-VOL. NIN. T.

In multiplying two trigonometric series together, called by Hansen mechanical multiplication,
let α_{λ} the coefficients of the angles λx in case of the sine, β_{μ} those of the angles μx in case of the cosine, γ_{ν} those of the angles $r y$ in case of the sine, and δ_{ρ} those of the angles ρy in case of the cosine.

The following cases then occur:

$$
\begin{aligned}
& \alpha_{\lambda} \sin 2 x \cdot \delta_{\rho} \cos \rho y=\frac{1}{2} \alpha_{\lambda} \delta_{\rho} \sin (2 x+\rho y)+\frac{1}{2} \alpha_{\lambda} \delta_{\rho} \sin (\lambda x-\rho y) \\
& \beta_{\mu} \cos \mu x \cdot \gamma_{\nu} \sin \eta y=\frac{1}{2} \beta_{\mu} \gamma_{\nu} \sin (\mu x+\nu y)-\frac{1}{2} \beta_{\mu} \gamma_{\nu} \sin (\mu x-\imath y) \\
& \beta_{\mu} \cos \mu x \cdot \delta_{\rho} \cos \rho y=\frac{1}{2} \beta_{\mu} \delta_{\rho} \cos (\mu x+\rho y)+\frac{1}{2} \beta_{\mu} \delta_{\rho} \cos (\mu x-\rho y) \\
& \alpha_{\lambda} \sin \lambda x \cdot \gamma_{\nu} \sin \eta y=-\frac{1}{2} \alpha_{\lambda} \gamma_{\nu} \cos (2 x+2 y)+\frac{1}{2} \alpha_{\lambda} \gamma_{\nu} \cos (2 x-\nu y) .
\end{aligned}
$$

In every term of the second members the factor ${ }_{2}^{\frac{1}{2}}$ occurs. Hence before multiplying we rewolve the coefficients of one of the factors into two terms, one of which is 2. Performing the operations indicated, we have the values of $a \Omega$, ar ${ }_{d s}^{d s}, a^{2} d z$ that follow :

	11Ω		$\operatorname{sir}\binom{1!1}{1,}$		$a^{2}\binom{d!!}{d z}$	
！${ }^{\prime}$	cos	sill	cos	sin	cos	sin
	＂	＂	，	＂	＂	＇
11 － 11	1114．8802 1		16.2020		11.2885	
$1-11$	－ 1.114636	－2006	－． 4339	．4544	2.6311	18.117
$\because-0$	．1ヵロッ：1	＋1－207	．$\because 14$	．3： $2 \times$	．10：！	． $2: 3!$
$3-11$	．102パい	＋．10．893	．112\％	．14：1	．117	－． 817
$-1-1$	「．2：\％	－． 11514	． $1: 1$	．3i．）		－．129
$0-1$	1 t．itiz	－．17：	$1.16 i 4$	． 41	1．74：	$-1.1 .85$
1－1	－ 5.504	－．バす	1－．．3！	． 1510	．：18	．11ヶヶ
$2-1$	． 1611	－ 21	1．6ive	． 5	1.89	：3．う＂
$3-1$	$\bigcirc .011$	－． 1166	$\therefore 11$	$\therefore \times$	．11．\％！	． $2: 2$
1）－2	（6i3）	－． 121	． 46	． 114	1101	－－．14！
1－2	－4．201\％	． 106	1．1：3\％	－2110	－174	－－1i．199\％
	－19，907	－． i 4 t	4．3．int	1．2゙い	．149，	－． 1119
$3-2$	－1．1036	．11s6；	1．46\％	． 411	． 12	2.111
4－2	－ 0.02	；．103：3	．11．）	－． 1810	．116） 4	－． 114
1）－3	i．．035394	．11164	．1715	－． 01602	－．．17：	$\therefore .117$
1－：	． $8: 3: 3 \%$	－． 118.95%	．44：；		－． 114.	－． 146
2－3	＋	－上．10：3\％禹	2.1588	－．1：3：	－1．424	－－3．6．0\％
3－3	－8．3：38	$\bigcirc 310$	$2 \overline{3} \cdot 27$	1.104	－．．17\％ 4	－．18i4
$4-3$	\cdots ． 6 ．${ }^{\text {a }}$	－． 11.36	1．i：96	－－．269		－1．199
$5-3$	－．102\％	＋．1116	．14．；	－． 1.7	－． 1142	－ 120
$2-4$				－－． 2111	－． 1141	
$3-1$	－．20．	．10：	．880	．	－IS	－－2．115
$t-1$	8.1029	－ 181	－15． 4 \％ 1	がロ	－．1135	－． 1110
$5-4$	－ $.3!\%$	．111：	．8x：\％	－．1：7	－ミッ	－Smin
$6-4$	－． 10.1	＋．110n	．11：3	－．116：3	－．11：3	－． 1183
：\quad \％	+ ．020	．102：		．118	．1120	－．18：1
$4-6$	\％． 1107	－ 1112	．201	． 1111	－． 111	－1．15\％
$\therefore \quad \therefore$	－1．10：3	－ $10: 1$	Stion	． $51: 3$	1129	－
6 －	2－4	． 1171	1．141	．1Wis	－．1．is	． 311
4－6	＋ 10.1112	－．tms	11.1085	11．0．11		
5－i	．10！	－． 119%	2.225	－－．1120		
$6-6$	－	． 0.31	－1．859	－．iski		

Having $a \Omega$ we differentiate relative to $!$, and obtain $a^{\prime \prime \prime}!$.
We then form the three product:, $A . a_{d y}^{d!}, B \cdot \operatorname{ar}\binom{d!}{d},, a \cdot a u^{\prime}\binom{d!}{d z}$. To this end we find A, B, C, from

$$
\begin{aligned}
& A=-3+2\left[2+e^{\circ}\right] \cos (\gamma-g) \quad B=-2\left[1-y_{2}\right] \sin (\gamma-!) \\
& +2\left[\frac{e}{2}+\frac{e}{8}\right] \cos (\gamma--2 g) \quad-2\left[\frac{e}{2}+\frac{e^{2}}{5}\right] \sin (\gamma-2 g) \\
& -2\left[5 \frac{e}{2}+\frac{255^{\circ}}{16}\right] \cos \gamma \quad-2\left[{ }_{2}^{c}+{ }_{16}^{7} 0^{8} 0^{8}\right] \sin \gamma \\
& +2 \frac{e^{2}}{4} \cos (\gamma-3 y) \quad-2{ }_{3}^{3} e^{2} \sin (\gamma-3 y) \\
& +2{ }_{6}^{6} \cos (\gamma-4 y) \quad-2 \frac{9}{3} \sin (\gamma-4 g) \\
& + \text { etc. - ete. }
\end{aligned}
$$

$$
\begin{aligned}
C= & 2\left[\frac{1}{2}-\frac{1}{4} e^{e}\right] \sin (\gamma-!) \\
& +2\left[\frac{e}{4}-\frac{3}{16} e^{3}\right] \sin (\gamma-2 y) \\
& +2\left[-\frac{3}{4} e+\frac{3}{82} e^{e}\right] \sin \gamma \\
& +2 \frac{3}{11} e^{2} \quad \sin (\gamma-3 y) \\
& +2 \frac{1}{1} e^{3} \quad \sin (\gamma-4 y) \\
& + \text { ctc. }
\end{aligned}
$$

The numerical values of A, B, C in case of Althea are

$$
\begin{array}{rlr}
A= & -3 \\
& +2[0.302429] \cos (\gamma-g) & B= \\
& +2[8.604489] \cos (\gamma-2 g) & \\
& -2[9.001399] \sin (\gamma-g) \\
& +2[7.2076] \cos) \cos (\gamma-3 y) & \\
& & -2[8.606234] \sin (\gamma-2 g) \\
C= & +2[9.697567] \sin (\gamma-g) \\
& +2[8.30066] \sin (\gamma-2 g) \\
& -2[8.77953] \sin (\gamma-3 g) \\
& +2[7.08265] \sin (\gamma-3 g)
\end{array}
$$

For the three products we then have
1． $10\binom{1!!}{1!}$
13．ar $\binom{1!!}{1 i_{0}}$
（！$u^{2}\binom{1!!}{1!}$

γ	9	$!{ }^{\prime}$	\sin	COS	sill	COS	sill	COS
			＂	＂	＇${ }^{\prime}$	11	＂	＂
1	11	11	$2.16: 3$	－11．0．3il	1．1：3＋1	－11．6814	1．316：4	－3．100：3x
1	1	0	．112	． 51.0	．+1021	．$\because 60$	． 1257	.2411
1	1	11	．2－：311	．114：3！	－！！－＋	．1054？	为示	－．1502
1	\because	11	．19\％	． $2!!!$	－．1115is	．16．う	－．．1104！	．1109
－ 1	\because	0	2.175	－	－1．1：111	． 6	1．299，	2.975
1	：	0	$\therefore 61$	． 1.5	－． 12603	－$\because 7301$	．118：	－ 2101

1	2	I	-1.162	＇	．1－1		． $6: 8$		．$\because 14$	－． 11710	$\therefore 4: 3$
	－1	1	－．2tifi	－－	．11．）		．10，		｜ 171	－1．851	1．154
1	11	1	10.10112		．1．i；		1－．：3：\％		． 15	－ 31	131\％
1	11	1	7－． 160		．1－1	－－	．17		．$\because 14$	－．2ッ心	．17\％
1	1	1	－3．6511		． 1.7		．$\because 23$	－		大了	－1．745
－1	1	1	－1．11！	－	．11：；	－	． $1+1$	－	17\％	1． 21010	－1．1511
1	2	1	－$\because 3+2$		．15		． 3 ＋1ti		$\therefore 76$	－．1167	い！以
-1	$\stackrel{1}{2}$	1	－11．301		． 49		18．3：3\％	－	．185	－．17	－． $3.5!$
－1	3	1	＋ 2.360	－	－ 40	－	． 1 －	－－	an！	この	1．760
－1	4	1	－． 033		$\therefore 1$	－	－194	－	－ 6		

1	-1		$\stackrel{\square}{2}$	238	． 1161	－	． $2: 9$		－． 1 （1il	1．．191
1	11		$\stackrel{3}{2}$	6.503	． 102	$!$	7．3）似	\ldots	－1．2：い	$\therefore .112!1$
-1	（1）		$\stackrel{1}{2}$						－． 1101	．120！
1	1		$\stackrel{1}{2}$	－ 610.104	－19\％		4．5．412	1． 214	．1心	$\because 71$
-1	1		\because	－． $81 \times$	．10．	$\therefore-$		． 1104	－．1：3！	．2！ 01
1	$\stackrel{ }{2}$		\because	－1．fieis	．$\because: 口$	－	：3．474		．．．．167	－1．1111
－1	2		$\stackrel{1}{2}$	$\therefore 16.403$	－$\because 411$	－	7．817	－．2：3	1．2：3！	－：311：3i
1	3		\because	$\therefore \quad .422$	$\therefore 17$	！．	．1185	． 11 iv	．102	，12：？
－1	3		\cdots	－ $7!.1178$	\cdots－ 3 \％		15．41－	—1．2fi	．11．：）	$\therefore \square$
-1	4		\because	－－ 7.1107	－．Sm！	－	．$\because 1 \%$	\therefore－ 1	1．in	．！
-1	5		\because	． 108			．1！	． 11 iz		
1	0		3	．595\％	－．1．3．\％		． 4611	． 32131	．11ヶ2	1.7
1	1		：	2.8017	11107		1．1612	． $117+1$	－．丁口く：	1． 216 il
-1	1		3	－．176ill	－0161］		．10．）+1	115：3	．1112：	115
1	2		3	－．in． 1111	1． 2 m		27.29194	1．11－51	．11：3	．171
-1	2		：3	．．シー	． $170: 3$	－	． $5: 36$	ミッいて	1116	．1：3i
1	3	，	3	㤩い	－ $1!12$	－	2．＊！バ1	－．－－ 11	ご，	－．－－
－1	3		：	－3．48\％	－．17\％	－	1．111：	1417	「1\％	1．4．
1	4	＋－	：	＋． 213	． 1190	－	．11\％	－． 147	．1111	． 1115
-1	4	－	3	19．656	$2.115: 1$		$27.29!1$	－1．19\％	．112！	－-610
-1	5	）	：）	－6，0895	－こ！	1	8． 3 5！9	－．－． 21%	－	．）： 4

A. $a\left(\frac{d O}{d y}\right)$
B. $\operatorname{ar}\binom{d \Omega}{d r}$
$C \cdot a^{2}\binom{d \Omega}{d z}$

Next from

$$
\frac{d W}{n d t}=A \cdot a\left(\frac{d \Omega}{d g}\right)+B \cdot a r\left(\frac{d \Omega}{d r}\right)
$$

we find the value of $\frac{d W}{n d t}$. Then we find U and $\frac{u}{\cos i}$ from

$$
\begin{aligned}
W & =\int \frac{d W}{n d t} \\
\cos i_{u}^{u} & =\int C \cdot a^{2}\binom{d \Omega}{d z}
\end{aligned}
$$

We first form a table giving the integrating factors．From log．$n^{\prime}=2.4758576$ ， $\log . n=2.9323542$ ，we have $\frac{n^{\prime}}{n}=0.34954524$ ．

$i \quad i^{\prime}$	$i+i^{\prime} \frac{n^{\prime}}{n}$ I	$\log \cdot\left(i+i^{\prime} \frac{n^{\prime}}{n}\right)$	$\log \cdot\left(\frac{1}{i+i_{n}^{n^{\prime}}}\right)$	$i \quad i^{\prime}$	$i+i^{\prime} \frac{n^{\prime}}{n}$	$\log \cdot\left(i+i^{\prime} n_{n}^{\prime}\right)$	$\log \cdot\left(\frac{1}{i+i i_{n}^{\mu_{n}^{\prime 2}}}\right)$
－2－1	－2．34954	$0.37098 n$	9．62902n	$3-3$	$+1.95136$	0.29034	9.00966
－1－1	－1．34954	$0.13018 n$	9.4698 ± 2	4－3	＋2．95136	0.47002	9.52998
$0-1$	－ .34454	9.54350 n	0.456 ¢0n	$5-31$	$+3.93136$	0.5998	9.4032
$1-1$	$+.65045$	9．81：3217	0.186883	1 － 4	－． 395181	9.64008 n	$0.39992 \times$
$\cdots-1$	$+1.6045$	0.21760	9．5824	$2-4$	$+.601819$	9.78946	0.2054
$3-1$	＋26045	0.4293	0.5767	$3-4$	$+1.601819$	0.20461	9.79539
＋－ 1	$+3.65045$	0.5694	9.436	$4-4$	$+2.601819$	0.41528	9.58472
－1－2	－1．699909	0.230210	9.76989	$5-4$	$+3.601819$	0.5056	9.4435
$0-2$	－．69599	9.8446	0.15542	$6-4$	$+4.601819$	0.6633	${ }^{9.33370}$
1 －	＋．30091	9イットリン3	$0.5 \geq 1577$	$2-5$	＋ 25 2924	9.40187	0.59813
\because－	＋1．30091	$0.114{ }^{5}$	9.4855	$3-5$.	$+1.250294$	0.09750	9.90230
3－2	$+2.30091$	0.36190	9.63810	$4-5$	＋2．25 2 2－ 4	0.35263	9.64737
4 －	＋：30091	0.51×6	9.8814	$5-5$	-3.252924	0.5122	9.4878
5 －	＋ 1.36091	$0.65: 36$	9.3664	$6-5$	＋ 4.252024	0.688	9.3714
$0-3$	－1．04864	0．020620	$9.9793 \times n$	3－6	＋ 502 CO	9.9556	0.044
1－3	－．01さ63．．03	8． $6 \times 6950.3{ }^{\text {a }}$	1．31：30447n	4－6	＋1．9427e9	0.2794	9.70106
－－：	＋． 505136	9.9783	0.02165	｜ $5-6$	$+2.902729$	0.4628	9.5372

In regard to this table we may add that the form of the angles is $\left(i y+i^{\prime} y^{\prime}\right)=$ $\left(i+\frac{i^{\prime}}{\prime \frac{g^{\prime}}{y}}\right) y=\left(i+i^{\prime} \frac{n^{\prime}}{n}\right) n t$ ．The differential relative to the time is $\left(i+i^{\prime} \frac{n^{\prime}}{n}\right) n d t$ ．

The preceding table is applied by subtracting the logarithms of the column headed $\log .\left(i+i_{n}^{\prime \prime \prime}\right)$ ，or by adding the logarithms of the column headed $\log .\left(\frac{1}{i+i_{n}^{n^{\prime}}}\right)$ ．

We will now give the values of $\frac{d W}{m d t}, W$ ，and $\frac{u}{\cos i}$ ，remarking that in the inte－ grations the angle γ is constant；after the integrations it changes into g ．

The part of W^{γ} independent of γ arising from the factor, -3 , in the value of A, has not yet been given. Its integral, or $\int-3 a\binom{d!}{d y}$, is the following:

$j-3 a\binom{d!}{d y}$					
$g \quad y^{\prime}$	cos	sin	g ! ${ }^{\prime}$	\cos	sin
1-11	: 3, 133!2	-.8181	$4-3$	- 2.14	- 14
$2-0$	- .15u9	. $\because 7.57$	S-3	. 11	-.101
: -11	- 0858	- 173			
			$\cdots \quad 1$	$\therefore 7$	T. 1:3
-1-1	. 31	$\because 0$	$: 3-4$	1.84	-. $1: 3$
1-1	- 2 m .89	. $\%$	$4-4$	16.74	-. 91
$2-1$	+2.33	$\because .73$	5) -1	- 1.0i\%	.11.)
: -1	-. 114	- $\because \because$	6-4	,	-.11:3
$1 \geq$	- 11.910%	.10:4	\therefore i	. 11	. 16
$\because-\cdots$	- 01.40	-	4 -	\cdots	-.16i
3 - -	- 4.10	\bigcirc	5 - . i	7.49	-.in
$4-2$	-. 10	-.12	a-s	- 4	+112
$1-3$	-20.602-0	-4.9098	4-i	- . 117	+110
$2-3$	- 2.47	$\therefore 10$	$5-1 ;$	4*	-. 114
$3-3$	- 3 - 414	- 1.8\%	6-1i	:	\cdots

A. P. N. VOL. NIX. U.

ILaving the values of the coefficients of $\left(\pm \gamma+i y+i^{\prime} y^{\prime}\right)$, both for I^{+}and ${ }^{c}{ }^{u}$, 2 , we have next to find thone of $\left(\pm v^{\prime} \gamma+i!+i^{\prime} y\right)$, and of $\left(0 \gamma+i y+i^{\prime} g\right)$ in the case of $\frac{u}{\cos i}$.

The expressions for this purpose are

$$
\begin{aligned}
& r_{1}^{(2)}={ }_{2}^{1} e-\frac{1}{3} e^{3}-\frac{1}{384} e^{3} \\
& r_{1}^{(3)}=\frac{3}{3} e^{2}-\frac{1}{1} 2^{5} e^{1} \\
& r_{1}^{(4)}=\frac{1}{3} e^{3} \\
& r_{1}^{(0)}=-\left(\frac{3}{2} e+\frac{9}{16} e^{3} \pm \text { ctc. }\right)
\end{aligned}
$$

For Althrea we find

$$
\log \cdot \eta^{(2)}=8.60309 \quad \log \cdot r_{i}^{(3)}=7.38368 \quad \log \cdot r_{1}^{(0)}=9.08196 n
$$

We multiply the coefficients of $\left(\pm \gamma+i g+i^{\prime} g^{\prime}\right)$ by $r_{i}^{(2)}$, and $r_{i}^{(3)}$, respectively, to find those of $\left(\pm 2 \gamma+i y+i^{\prime} y^{\prime}\right), \quad\left(\pm 3 \gamma+i y+i^{\prime} y^{\prime}\right)$.

In case of $\left(0 \gamma+i y+i^{\prime} y^{\prime}\right)$ in the expression for $\frac{u}{\cos i}$ we add the coefficients of $\left(+\gamma+i g+i^{\prime} g^{\prime}\right)$ to those of $\left(-\gamma+i g+i^{\prime} g\right)$ and multiply the sum by $\gamma^{(0)}$.

We will give a few examples to show the formation of $I I$, and $-\frac{1}{2} \frac{d \dot{W}}{d \gamma}$.
With these two we give at once also their integrals, which are niz and 2 respectively.

		\bar{T}		$-\stackrel{1}{2}_{d}^{d V}$	
		$(0-0)$			
		\cos	\sin	\sin	\cos
		"	"	"	"
--1	1-0	-32.6972	+.0988	+16.:386	+ 0.0494
-	$2-0$	- . 01190	$+.0017$	+.0190	$+.0017$
		-32.3162			$+.0511$
		"			"
		—32.1162			+.0511nt

In the integration we apply the proper factor to each term of $11,-\frac{1}{2}{ }^{d W}$, and obtain the values of $n d z, r$, except in case of the terms (ig $+o y^{\prime}$).

Let us take the term $\left(y-o f f^{\prime}\right)$ or $(1-0)$, and let " the integrating factor to be applied.

Let c, u, d, b, represent the $\cos , \sin , n t \cos , n t$ sin terms respectively.

Thus we have

c	," ${ }^{\prime}$	${ }_{\square}$	b
- 1.3 .51	$-1.212 \mathrm{~mm}$	+.856	+33.236mi

and hence
or, since ! is unity,

In case of the term $(2-0), 1 /$ is $\frac{1}{2}$.
In the way indicated we derive the values of $n \delta z$, and 2 . In the case of $\frac{u}{\cos i}$ we have the values at once without another integration as was necessary for $n \delta z$ and ν.

In the value of IV° given above the arbitrary constants of integration have not been applied.

We give these constants in the form

$$
k_{0}+k_{1} \cos \gamma+k_{2} \sin \gamma+\eta^{(2)} k_{1} \cos 2 \gamma+r_{1}^{(2)} k_{2} \sin 2 \gamma+\text { etc. }
$$

Then in case of $-\frac{1}{2}{ }^{d W}$ we have

$$
\frac{1}{2} h_{1} \sin \gamma-\frac{1}{2} k_{2} \cos \gamma+\gamma_{1}^{(2)} k_{1} \sin 2 \gamma-\eta^{(2)} k_{2} \cos 2 \gamma \pm \text { etc. }
$$

Having W^{\top} from the integration of $\frac{d W}{m d t}$, we form $\|^{-}$from the value of W^{\top} and converting γ into $\%$

We thus have from the equation

$$
\begin{aligned}
& d_{d t}=1+H^{n}+{ }_{h}^{h_{0}}\binom{v}{1+\nu}^{2}, \\
& { }_{\prime \prime \prime}^{\prime \prime}=1+k_{0} \\
& +\left(1^{\prime \prime} .351+k_{1}\right) \cos !\quad+\left(0^{\prime \prime} .856+k_{2}\right) \sin g \\
& --1^{\prime \prime} .2175 n t \cos !+3^{\prime \prime} .2376 n t \sin g \\
& +\left(-{ }^{\prime \prime} .284+r^{(2)} k_{1}\right) \cos 2 g+\left(0^{\prime \prime} .589+r^{(2)} k_{2}\right) \sin 2 g \\
& \text { —". } 0488 n t \cos 2 y+{ }^{\prime} .1298 n t \sin 2 y \\
& \pm \text { etc. } \\
& \pm \text { etc. }
\end{aligned}
$$

In the second integration the constants of niz and $:$ are designated by C and N respectively, and the complete forms are

$$
\begin{aligned}
& C+k_{0} n t+k_{1} \sin g-k_{2} \cos g+!r_{1}^{(2)} k_{1} \sin 2 g-!r_{0}^{(2)} k_{2} \cos 2 g \pm \text { etc. } \\
& N \quad-\frac{1}{2} k_{1} \cos g-\frac{1}{2} \sin g-r_{1}^{(2)} k_{1} \cos 2 g-h_{2}^{(2)} k_{2} \sin 2!-\text { etc. }
\end{aligned}
$$

In case of the latitude the constants of integration have the form

$$
l_{3}+l_{1} \sin g+l_{2} \cos g
$$

We thus find

$$
\begin{aligned}
& n z=C+\left[1+k_{n}-32^{\prime \prime} .7162\right] n t \\
& +\left[4^{\prime \prime} .59+k_{1}\right] \sin g \quad+\left[-2^{\prime \prime} .07-k_{2}\right] \cos g \\
& -1^{\prime \prime} .2175 n t \sin g \quad-3^{\prime \prime} .2376 n t \cos g \\
& +\left[-0^{\prime \prime} .11+\frac{1}{2} r^{(2)} k_{1}\right] \sin 2 g+\left[-0^{\prime} .31-1 r_{1}^{(2)} r_{2}\right] \cos 2 y \\
& -0^{\prime \prime} .0244 n t \sin 29 \quad-0^{\prime \prime} .0649 n t \cos 2 y \\
& \pm \text { etc. } \pm \text { etc. } \\
& v=+0^{\prime} .0511 n t+N \\
& +\left[-0^{\prime \prime} .5 t-\frac{1}{2} k_{1}\right] \cos g+\left[-0^{\prime \prime} .58-\frac{1}{2} k_{2}\right] \sin ! \\
& +0^{\prime \prime} .6087 n t \cos !/ \quad-1^{\prime \prime} .6188 n t \sin ! \\
& +\left[0^{\prime \prime} .05-\frac{1}{2} r_{1}^{\prime 2} k_{1}\right] \cos 29+\left[-{ }^{\prime \prime} .21-\frac{1}{2} r_{1}^{(2)} k_{0}\right] \sin 2! \\
& +0^{\prime \prime} .0244 n t \cos 2!!-0^{\prime \prime} .0649 n t \sin 2!! \\
& \pm \text { etc. } \pm \text { etc. } \\
& { }_{\cos i}{ }^{\prime}=l_{0}+0^{\prime \prime} .3616+0^{\prime \prime} .3623 n t \\
& +\left[1^{\prime \prime} .52+l_{1}\right] \sin !+\left[-0^{\prime \prime} .68+l_{2}\right] \cos g \\
& -1^{\prime \prime} .3464 n t \sin 9-3^{\prime \prime} .0038 n t \cos \text { !/ } \\
& +0^{\prime \prime} .32 \sin 2 g \quad-0^{\prime \prime} .16 \cos 2 g \\
& -0^{\prime \prime} .0539 n t \sin 29-0^{\prime \prime} .1204 n t \cos { }^{\circ}!! \\
& \pm \text { etc. } \pm \text { etc. }
\end{aligned}
$$

The complete expressions for $n \delta z, r,{ }^{u}{ }^{u}$ in tabular form are the following :

The constants of integration are now to be so determined as to make the perturbations zero for the Epoch. The following equations fulfill this condition:

$k_{0}+k_{1} \cos \eta+k_{2} \sin !+r_{1}^{(2)} k_{1} \cos \theta_{!}!+r_{1}^{(2)} k_{2} \sin \ddot{n}_{!}!+\mathrm{ctc}+{ }_{n!\prime}^{\prime \prime}\left(n \delta z_{11}=0\right.$
$N-\frac{1}{2} k_{1} \cos g-\frac{1}{2} k_{2} \sin !-\frac{1}{2} \because_{1}^{(2)} k_{1} \cos 2 g-\frac{1}{2} \eta^{(2)} k_{2} \sin \ddot{2}_{!} \|-\mathrm{etc}+(r)_{0}=0$
$+\frac{1}{2} k_{1} \sin g-\frac{1}{2} k_{2} \cos !\eta+r_{1}^{(2)} k_{1} \sin \ddot{2}_{!}!-r^{(2)} k_{2} \cos \because!!\pm \mathrm{et} 0+\frac{d}{m}(2)_{n}=0$

$$
\begin{array}{r}
l_{0}+l_{1} \sin \eta+l_{2} \cos \eta+r_{1}^{(2)} l_{1} \sin 2!+r_{1}^{(2)} l_{2} \cos 2!+\text { etco }+\quad\binom{u}{\cos i}_{0}=0 \\
l_{1} \cos \eta-l_{2} \sin g+r_{1}^{(2)} l_{1} \cos 2 y-r^{(2)} l_{2} \sin 2!\pm \text { etc. }+\begin{array}{c}
u\left(\begin{array}{c}
u \\
n d t \\
\cos i
\end{array}\right)_{0}
\end{array}=0
\end{array}
$$

To find k_{1} and $k_{r_{2}}$ we have
$k_{1}\left[\cos g-e+r_{1}^{(2)} \cos 2 g+r_{1}^{(3)} \cos 3 y+\right.$ etc. $]+k_{2}\left[\sin g+r_{1}^{(2)} \sin 2 g+\right.$ etc. $]$

$$
-3 Z_{0}+6(v)_{0}+4 \frac{d}{n d t}(n \delta z)_{0}=0
$$

$k_{1}\left[\sin g+2 \eta^{(2)} \sin 2 g+3 \eta^{(3)} \sin 3 g+\right.$ etc. $]-k_{2}\left[\cos g+2 \eta_{1}^{(2)} \cos 2 g+\right.$ etc. $]$

$$
+2 \frac{d}{n d t}\left(r^{\prime}\right)_{0}=0
$$

where

$$
N=-\frac{2}{3} k_{0}-\frac{1}{5} K_{1}-\frac{1}{2} Z_{0}, \quad Z_{01}=-32^{\prime \prime} .7162,
$$

k_{0} being found from

$$
k_{0}=e k_{1}+3 Z_{n}-3 \frac{\prime}{n d t}(n \delta z)_{v}-6\left(w_{10}\right.
$$

We have also

$$
l_{0}=-\epsilon l_{y_{2}}
$$

The symbols $(n \delta z)_{0},(v)_{0}$, etc., represent the ralues of $n i z, v$, etc., at the Epoch.

To find the values of the angles $\left(i g+i^{\prime} g\right)$ at the Epoch we have

$$
\begin{aligned}
& !=332^{\circ} 48^{\prime} 53^{\prime \prime} .2 \\
& !=63 \quad 548.6
\end{aligned}
$$

The long period inequality, 5 Saturn - 2 Jupiter, is included in the value of g^{\prime}.
From these values of g and g^{\prime} we find the various arguments of the perturbations. Then forming the sine and cosine for each argument, we multiply the sine and cosine coefticients of the perturbations by their appropriate sines and cosines.

In forming $\frac{d}{n d t}(n \delta z)$, etc., we can make use of the integrating factors, multiplying by the numbers in the column $\left(i+i^{\prime \prime}{ }_{n}^{\prime}\right)$. Having their differential coefficients we proceed as in the case of ($n d z$), etc.

We thus find

$$
\begin{aligned}
& (n \delta z)_{0}=+401^{\prime \prime} .7, \quad(\cdots)_{0}=+180^{\prime \prime} .6, \quad\binom{u}{\cos i}=-22^{\prime \prime} .6 \\
& \frac{d}{n d t}(n \delta z)_{0}=-391^{\prime \prime} .6, \quad \frac{d}{n d t}\left(v^{\prime}\right)_{0}=+70^{\prime \prime} .5, \quad \frac{d}{\text { mit }}\left(\frac{u}{\cos i}\right)=+41^{\prime \prime} .5 .
\end{aligned}
$$

And from these we have

$$
\begin{array}{ll}
k_{1}=+412^{\prime \prime} .8, \quad k_{2}=-82^{\prime \prime} .9, & \lambda_{0}=-26^{\prime \prime} .21, \quad l_{0}=0^{\prime \prime} .0 \\
l_{1}=-45^{\prime \prime} .2, \quad l_{2}=+0^{\prime \prime} .4, & \lambda^{\prime}=+23^{\prime \prime} .3 \\
C=332^{\circ} 44^{\prime} 12^{\prime \prime} .6
\end{array}
$$

The new mean motion is found from ($1-32^{\prime \prime} .7162-26^{\prime \prime} .21$) nt, which gives $n=855^{\prime \prime} .5196$. With this value of n we find the only change is in the coefficients of the argument $(1-3)$, having $+405^{\prime \prime} .29$ instead of $410^{\prime \prime} .16$, and $-86^{\prime \prime} .30$ instead of $-87^{\prime \prime} .44$.

The constant C now has the value

$$
C=332^{\circ} 44^{\prime} 16^{\prime \prime} .3
$$

Introducing the values of the constants of integration into the expressions for $n z, r$, and "on, we have

$$
{ }_{c o s i}^{\prime \prime}=+0^{\prime \prime} .4 \quad+0^{\prime \prime} .3623 \mathrm{nt}
$$

$$
-4^{\prime \prime} .2 \sin !y \quad-0^{\circ} .7 \cos y
$$

$$
\text { - } \quad 1^{\prime \prime} .3464 n t \sin g-33^{\prime} .0038 n t \cos !
$$

$$
-\quad 1^{\prime \prime} .5 \sin \because!y \quad-0^{\prime \prime} .2 \cos \cdot \because!
$$

$$
\text { - } 0^{\prime \prime} .0539 n / \sin 29-0^{\prime \prime} .1204 n / \cos \mathscr{2}_{4}
$$

From the expressions of the perturbations that have been given, and the elements used in computing the perturbations, except that we use C in place of g_{0} and the new value of the mean motion, we will compute a position of the body for the date 1894, Sept. $19,10^{h} 48^{m 2} 52$, for which we have an observed position. From a provisional ephemeris we have an approximate value of the distance: its logarithm is 0.14878.
A. P. S.--vol. NIN. V.

$$
\begin{aligned}
& n z=333^{\circ}+4^{\prime} 16^{\prime \prime} .3+855^{\prime \prime} .51961 \\
& +417^{\prime \prime} .4 \sin !+80^{\prime \prime} .8 \cos ! \\
& \text { - 1'.2175 sing - } 3^{\prime \prime} .2376 \cos \text { ! } \\
& +16^{\prime \prime} .4 \sin 29+3 \prime .0 \quad \cos 29 \\
& \text { - } 0^{\prime \prime} .0244 n t \sin 2 g-0^{\prime} .0649 n t \cos 29 \\
& \pm \text { etc. } \pm \text { etc. } \\
& r=+28^{\prime \prime} .3+00^{\circ} .0511 n t \\
& -200^{\prime \prime} .9 \cos !\quad+40^{\prime \prime} .9 \sin g \\
& +00^{\prime} .6057 n t \cos y-1^{\prime \prime} .6188 n t \sin 9 \\
& \text { - } 5^{\prime \prime 2} 2 \cos 29+1^{\prime \prime} .3 \sin 2 g \\
& +\quad 0^{\prime \prime} .0244 n t \cos 2 y-0^{\prime \prime} .0649 n t \sin 2 y \\
& \pm \text { ete. } \quad \pm \text { ete. }
\end{aligned}
$$

Reducing the above date to Berlin Mean Time, and applying the aberration time, we have, for the observed date, 1894, Sept. 19, 72800,

$$
y=33919^{\prime} 3 x^{\prime \prime} .1, \quad y=65^{\circ} \cdot 4.1
$$

Forming the arguments of the perturbations with these, we find

$$
n \delta z=+4^{\prime} 43^{\prime \prime} .2, \quad r^{\prime}=+3^{\prime \prime} .6, \quad u^{u}=-2^{\prime \prime} .8
$$

To convert r into radius as unity and in parts of the logarithm of the radius vector we multiply by the modulus whose logarithm is 9.63778 , and divide by $206264^{\prime \prime} .8$. Thus we have from $v^{\prime}=+3$ " 6 , the correction, +.000008 , to be applied to the logarithm of the radius vector.

In case of ${ }_{\text {cos } i}^{u}=--\underline{y}^{\prime} .8$, we have

$$
i z^{\prime}=-2 .^{\prime} 8 \times a \cos i=-7^{\prime \prime} .19
$$

Converting into radius as unity, we have ' $z z^{\prime}=-.000035$. The courdinate z^{\prime} is perpendicular to the plane of the orbit. As we will use coordinates referred to the equator we have, to find the changes in x, y, z, due to a variation of z^{\prime}, which we have designated by ' z ', the following expressions:

$$
\begin{aligned}
& d x=(\sin i \sin \delta) d z^{\prime} \\
& d y=(-\sin i \cos \delta \cos \varepsilon-\cos i \sin \varepsilon) i z^{\prime} \\
& d z=(-\sin i \cos \delta \sin \varepsilon+\cos i \cos \varepsilon) d z^{\prime}
\end{aligned}
$$

where ε is the obliquity of the ecliptic.
For 1891 we find

$$
\lambda_{x}=(-.0404) d z^{\prime}, \quad \delta y=(-.3123) \delta z^{\prime}, \quad \lambda z=(+.9491) \delta z^{\prime}
$$

And for the date we have

$$
\delta_{x}=+.000001 \quad \partial y=+.000011 \quad \partial z=-.000033
$$

With $\quad i=5^{\circ} 44^{\prime} 4^{\prime \prime} 6, \quad \delta=203^{\circ} 51^{\prime} 51^{\prime \prime} .5, \quad \varepsilon=23^{\circ} 27^{\prime} 10^{\prime \prime} .8$, we compute the auxiliary constants for the equator from the formula

$$
\begin{aligned}
& \operatorname{cotg} A=-t_{y} \delta \cos i, \quad t y \mathrm{E}_{0}=\begin{array}{c}
\operatorname{ty} i \\
\cos \delta b^{\prime}
\end{array} \\
& \operatorname{cotg} B=\begin{array}{c}
\cos i \\
\cos \cos \varepsilon_{0} \cdot
\end{array} \frac{\cos \left(E_{0}+z\right)}{\cos s}, \\
& \operatorname{cotg}\left(1=\begin{array}{c}
\cos i \\
48 \cos E_{0} \cdot
\end{array} \begin{array}{c}
\sin \left(E_{0}+z\right) \\
\sin \varepsilon
\end{array},\right. \\
& \sin \theta=\frac{\cos \delta}{\sin A}, \quad \sin b=\frac{\sin \delta \cos \varepsilon}{\sin B}, \quad \sin C=\frac{\sin \Omega \sin \varepsilon}{\sin \theta} .
\end{aligned}
$$

The values of $\sin a, \sin b, \sin c$ are always positive, and the angle E_{0} is always less than 180°.
$\Lambda *$ a check we have

$$
t y i=\frac{\sin b \sin c \sin \left(\begin{array}{l}
0 \\
\\
\sin n \cos A
\end{array} \quad, \quad\right. \text {) }}{\sin }
$$

We find

$$
\begin{array}{rlrl}
A & =293^{\circ} 45^{\prime} 29^{\prime \prime} .3, \quad B & =2022^{\circ} 59^{\prime} 46^{\prime \prime} .9, \quad\left({ }^{\prime}=210^{\circ} 45^{\prime} 55^{\prime \prime} .0\right. \\
\log \sin a & =9.999645, \quad \log \sin b & =9.977735, \quad \log \sin c & =9.498012
\end{array}
$$

Applying $n d z=+440^{\prime \prime} .2$ to the value of g, we have

$$
n z=339^{\circ} 24^{\prime} 21^{\prime \prime} .5
$$

By means of g or $n z=\mathrm{E}-e \sin \mathrm{E}$ we find

$$
\mathrm{F}_{0}=337^{\circ} 39^{\prime} 23^{\prime \prime} .4
$$

Then from

$$
\begin{aligned}
& \sqrt{\prime} r_{1} \sin \stackrel{!}{2} v=\sqrt{\prime}(1+e) \sin !V_{2} \\
& \sqrt{r_{1} \cos 2 r} 1=\sqrt{2}(1-r) \cos !2 \mathrm{E}
\end{aligned}
$$

we find

$$
r=33.550^{\prime} 12^{\prime \prime} \because, \quad \log r_{1}=0.378 .46
$$

where v is the true anomaly.
Calling " the argument of the latitude we have

$$
u=v+\pi-\delta=143^{\circ} 52^{\prime} 41^{\prime \prime} .8
$$

Hence

$$
A+u=77^{\circ} 38^{\prime} 11^{\prime \prime} .1, \quad B+u=346^{\circ} 52^{\prime} \because 8^{\prime \prime} .7, \quad\left('+u=354^{\circ} 38^{\prime} 36^{\prime \prime} . \mathrm{S}\right.
$$

And from

$$
\begin{aligned}
& u=r \sin a \sin (A+u) \\
& y=r \sin b \sin (B+u) \\
& \therefore=r \sin c \sin (C+u)
\end{aligned}
$$

where

$$
\log r=\log r_{1}+\delta \log r=\log r_{1}+.000008
$$

we have

$$
x=+2.331894, \quad y=-.515433, \quad z=-.070208
$$

The equatorial coirdinates of the Sun for the date of the observation are

$$
\mathrm{X}=-1.002563 \quad \mathrm{I}=+.045198 \quad \%=+.019611
$$

Applying the corrections $\delta x, \delta y, \lambda z$, we have

$$
x+\delta x+\mathrm{X}=+1.329332, \quad y+\delta y+Y=-.470224, z+\delta z+Z=-.050630
$$

Then from

$$
\begin{aligned}
& j=\frac{z i z}{\sin i} h,
\end{aligned}
$$

we have, giving also the observed place for the purpose of comparison,

$$
\begin{array}{lll}
u_{c}=310^{\circ} 31^{\prime} 11^{\prime \prime} 4 & \lambda_{c}=-23^{\prime} 23^{\prime \prime} 1 & \log \nu=0.149514 \\
u_{0}=3403349.1 & \delta_{0}=-2225.4 &
\end{array}
$$

where the subseript ' designates the computed, and the subscript o the observed place.
Both observed and computed places are already referred to the mean equinox of 1894.0. If the observed position were the apparent place we should have to reduce the computed also to apparent place by means of the formula

$$
\begin{aligned}
& \Delta u=f+!y \sin (G+\alpha) t_{y} \lambda \\
& \Delta \lambda=\quad!\cos (G+\alpha)
\end{aligned}
$$

the quantities $f_{2}!\%$, and C_{i} being taken from the ephemeris for the year and date.
If the observed position has, not been corrected for parallax we refer it to the centre of the Earth by means of the formule

$$
\begin{aligned}
& \Delta u=-\frac{\pi p \cos \varphi^{\prime}}{\lrcorner} \cdot \underset{\cos \theta}{\sin (\alpha \cdots)} \\
& \tan \gamma=\frac{\operatorname{tg} 0^{\prime}}{\cos (x-\theta)} \\
& \Delta \gamma=-\mu \sin \varphi_{j}^{\prime} \cdot \sin (\gamma-i)
\end{aligned}
$$

where
α is the right ascension, λ the declination, Δ the distance of the planet from the Earth, ϕ^{\prime} the geocentric latitude of the place of observation, ${ }^{\prime \prime}$ the siderial time of
observation, p the radius of the Earth, and a the equatorial horizontal parallax of the Sun.

For the diflerence between computed and observed place we have
$\prime^{\prime}-0=-237^{\prime \prime} .7$ in right ascension, and (${ }^{\prime}-0=-57^{\prime} .7$ in declination.

By the method just given we have found the positions of the planet for several dates and have compared with the observed places. The comparison shows outstanding differences too large to be accounted for ly the effects of the perturbations yet to be determined, which are the perturbations of the second order, with respect to the mass, produced by Jupiter, and the perturbations produced by the other planets that have a sensible influence. We have therefore corrected the elements that have been used in the computations thus fir made, by means of differential equations formed for this purpose, employing as the absolute terms in these equations the differences between computation and observation for the several dates. A solution of the equations has given corrections to the elements that produce quite large effects on the computed place. Thus recomputing the position of the planet for the date given above with the corrected elements we find

$$
u_{e}=340^{\circ} 33^{\prime} 44^{\prime \prime} .5, \lambda_{e}=-\underline{2}^{\circ} 2^{\prime} 15^{\prime \prime} .6 .
$$

And since

$$
u_{0}=340^{\circ} 33^{\prime} 49^{\prime \prime} .1, \delta_{0}=-2^{\circ} 2^{\prime} 25^{\prime \prime} .4
$$

we have, for the difference between computed and observed place,

$$
C^{y}-O=-4^{\prime \prime} .6 \text { in right ascension, and } C-O=+9^{\prime \prime} .8 \text { in declination. }
$$

AR'TICLE II.

AN ESSAY ON THE DEVELOPMENT OF THE MOUTII PARTS OF CERTAIN INSECTS.
13 JOHIN H. SMITH, Sc.D.
Read before the American Philosophical Society, February 21, 1896.

Since the publication of my paper on the mouth parts of the Diperer, printed in the Transactions of the American Entomological Society for 1894, I have continued gathering material, have examined the oral parts of a very large number of species of all orders, and am more than ever convinced that in all essentials the conclusions already published by me are correct - revolutionary as they seem at first sight. That my ideas have not found unquestioned acceptance is not surprising; but no one has, to my knowledge, published anything that disproves the points made by me. It has been suggested, however, because I have not made continual reference to the works of previous authors, that I was ignorant of the literature, and several papers have been cited as contradicting my conclusions.

As a matter of fact I believe I am fully aware of all that has been written on the subject, and have, in each case where my attention has been called to a paper, studied it carefully, and found nearly always that the facts given bear me out, though the conclusions are adverse; simply because no author hat seriously questioned the universally accepted homology of the month parts in the varions orders. My own sturlies have been made on a basis so radically different from any heretofore accepted, that my results must stand on them alone, and my conclusions, if valid, must stand on the facts as they appear to me. I have used principally the disecting needles in my work; but have not neglected the section cutter. This latter instrment has been rather fon much used at the expense of the needles, and its results, though undoubtedly accurate as a record of facts, are easily misinterpreted if the basic homology which is assumed
to exist is inaccurate. For the reasons just given no references to previous writers will be made, except incidentally, and as I have in some rexpect- modified my view : as to the homology of certain of the parts, I will go into the entire subject in such detail as is necessary to prove my point; but without reprinting my first paper, which should be herewith consulted.

I do not expect denial at this day, when I claim that no explanation of the homologies of the mouth parts of insects can be considered satisfactory which will not stand the test of criticism by the theory of evolution. If we assume the origin of all insects from one original type, we must, necessarily, assume that all the mouth structures are derivatives of one type, and we must so study them as to be able to explain, step by step, just what specializations have occured. We may not be able to complete entirely each link in the chain of evidence, but we can, at any rate, reach a result consistent with all the facts known to us. Any explanation which satisfies all the requirements of a regular and natural development is to be preferred to one which demands an unexplained specialization of any part, not in line with its function in other series. It is therefore necessary to study carefully the make-up of every separate mouth organ, and of every sclerite in each, to become thoroughly familiar with its uses and to ascertain the lines in which it varies or develops.

It may be premised that the month parts of the Hemiptera in their present condition are not included in the range of these studies. I have examined numerous specimens and have devoted especial attention to Cicala and Thrips-the latter classed as hemipterous for present purposes only-and I believed at one time that I had made out the remmants of a mandibular sclerite, and so published it. Mr. C. L. Marlatt questioned my conclusions and asserted that the mandibles are represented by one pair of bristles. While I believe that I was wrong in my identification of the mandibular sclerite, I am yet convinced that I am correct in claiming that beak and setre are all maxillary structures. I have concluded, however, after a careful review of all my preparations and of what has been written, that the Hemiptera in the mouth structure are not descended from any well-developed mandibulate type, and that no trace of true mandibular structure occurs in any present form.

In other words, the Hemiptera equal all the other orders combined in rank, for all others are mandibulate or derivatives from a mandibulate type. The archetypal Thysanuran with undereloped mouth organs varied in two directions-toward the haustellate type now perfected in our present Hemiptera, and to the mandibulate type: and there has never since been any tendency toward a combination. The haustellate type proved ill adapted for variation and there is, in consequence, a remarkable sameness throughout. This kind of structure must be studied on an entirely new basis to
get at the steps by which the present "beak" was developed, and my material is not sufficient for that purpose. The mandibulate type, on the contrary, proved well adapted for variation, and its differences and modifications are here traced.

For convenience, Kolbe's figures of the mouth parts of a grasshopper are reproduced on Pl. III, Fig. 22, and may be referred to in comection with the following explanation.

In a well-developed mandibulate mouth we have, forming an upper lip, the labrum, often notched in front or toothed; but never a paired organ, never with appendages, and never mechanical in function. It is articulated at base to the clypens and serves to shield or protect the mouth in front; as a matter of fact, not a functional mouth structure at all. It is marked lbr in all figures.

More or less intimately associated with it on the inner side is the epiphargnx, which is compared in function with the palate of vertebrates, and is furnished with sensory hairs, pegs or pittings. It may be so closely united with the labrum as to form, practically, a part of it, or may be entirely free. If free from the labrum, the epipharynx is more closely united with the other mouth parts, and in such cases its supports go to the mentum or labial structures. Not infrequently it has attachments to both. In form it may be a mere pointed process, or it may be a more or less divided, plate-like organ; but its functions are gustatory or sensory in all cases-it never becomes a functional mechanical structure, and I have never found it without a more or less developed labrum to shield it. It is lettered epi in all figures.

Just below these covering and gustatory organs is a pair of mechanical structures -the mandibles-set, one on cach side of the head, and attached to the inferior margin of the epicranium or an extension from it. These mandibles are never jointed, rarely bear appendages, and never such as are functional, rarely have a movable tooth, and are usually solid and highly chitinized. They are actually made up of a number of sclerites, laterally united, but distinguishable in certain types like Copris, Pl. I, Fig. ©. I have elsewhere named and homologized these sclerites; but as the matter is not in dispute, and of no importance here, a simple reference to the figure in which they are named is all that is necessary. The position of this pair of mouth structures is invariable. They are completely disassociated from the maxillary or labial structures and remain attached to the head when all the other parts are removed in a body. They attach by socket joints to the epicranium and their tendons and muscles attach to its inner surface. They never change in function, never become united with or attached to the other mouth organs and never become internal structures. When not needed for chewing or biting the tendency is to obsolescence: never toward a change into a thrusting or piercing organ, so far as my observations extend.
A. P. S.-VOL. SIX. W.

Below the mandibles are found a pair of maxille, made up in all cases of a number of sclerites, and nearly always supplied with palpi or jointed tactile organs. The more particular consideration of these organs and their parts may be somewhat deferred.

Forming the lower lip and closing the mouth inferiorly is the labium, also made up of a number of sclerites and usually furnished with palpi. It is never entirely paired in existing insects, but is assumed to be made up of two more or less united structures, similar in essential character to the maxilla, as has been well stated by Prof. J. H. Comstock. This labium is an exceedingly important structure and forms the oral termination of the digestive tract or the mouth of the resophagus.

Attached to the immer surface of the labium is the hypopharynx, a variably developed structure, which is supposed to be the remmant of another originally paired organ, the endo-labium. I have never seen the genera in which it is said to be well developed, hence have no well-founded opinion to offer. I find it uniformly a single organ, often highly developed and gustatory in function, sometimes a merely passive structure more or less closely attached to the ligula, usually very near the opening into the digestive tract.

Briefly recapitulated, the insect mouth, when most fully developed, consists of two pairs of lateral jaws moving in a horizontal plane between an upper and a lower lip, which are furnished with gustatory structures forming the roof and the floor of the mouth respectively. This mouth is adapted for biting and chewing and varies to types adapted to lapping, to sucking only, and to piercing and sucking. The problem before me is to ascertain by what modifications these different changes in type have become established.

If we examine the head of a well-developed mandibulate insect from the under side-Copris carolina, Pl. I, Fig. 7, may serve as type-we find, centrally, the gula or throat, bounded laterally by the gente or cheeks, extending to the posterior margin of the head and bearing anteriorly the labium. The labium when carefully dissected out is found to consist of a broad basal plate, the submentum, more or less firmly articulated to the gula and never, in existing insects, a paired organ. It bears anteriorly another plate, the mentum, also a united organ, though sometimes traces of a division are apparent. It is usually smaller than the submentum, sometimes membranous, often entirely separated and frequently so mited with the latter part that the two are not separable. Though the submentum is the most persistent and dominant structure it has been customary to use the term mentum to apply to the united sclerites, and it will become convenient for me to so use the term hereafter when no confusion or misunderstanding can be occasioned. The structure is lettered m in all the figures.

Attached and articulated to the mentum anteriorly are the central ligula, a pair of paraglossa bounding it, and a pair of palpigers, one at each outer edge, bearing the labial palpi.

The ligula or glossa, marked $g l$ in all the figures, is a parred organ only in the more generalized orders, and is usually present as a single, central structure, which may be either chitinous and rigid or membranous and flexible. It is the most persistent of ${ }^{\circ}$ all the labial structures, is never attached except to the mentum, and always has associated with it the hypopharynx where that is present. We always find at its base the opening into the alimentary canal, or asophagus, as this part of it is termed, and this must ever be the test of labial structures-that they are attached to the mentum and have at their base the opening into the alimentary canal. The association is never broken, and the bave of the ligula, whatever its form or however it is modified, always marks this point. On the other hand, by tracing the alimentary canal to its external opening, we can always recognize the ligula by its position, however little it may resemble normal types.

The paraglossie are sometimes intimately united with the ligula, sometimes completely separated from it: they may be of the same or a different texture; but they always arise from the mentum on each side of and close to the central structure. Their tendency is to obsolescence, but they may become united and form a bed for the ligula which remains the inner organ. Their range of variation is not great; they are never jointed, and never become mechanical structures.

The palpi are tactile in function under all circumstances, though they may lose this function in great part and may, by coalescence, form a sheathing to the ligula. They are never, under any circumstances, attached anywhere except to the mentum, directly or indirectly, and their location must be constantly the same. They camot, without losing their essential character, become disassociated from the mentum, nor can they ever form an envelope or covering for it, or for the submentum, without a change entirely at variance with any reasonable theory of development. 'To accomplish this they would first lose their character as labial appendages. In brief, the labium is the external begiming of the alimentary canal, and none of the parts ever lose this association. Whatever their modification, no labial structures can ever be joined to the sides of the head outside of mandibular or maxillary structures.

As an illustration of the most generalized form of labium at present known to me, the roach (Periplaneta orientalis, Pl. II, Fig. 16) may be selected. Here we find the mentum with a well-defined impression resembling a suture, and bearing a broad paired structure, from which arise the slender, two-jointed ligula, the broad, fleshy
paraglossie, and the three-jointed labial palpi. This generalized structure fixes the relation of the parts, and from it we may pass to more specialized types.

In Harpalus caliginosus: (Pl. III, Fig. 7) we have a case where the ligula forms a single, central organ, laterally bounded and on one side completely enveloped by the softer paraglossa. The location of the palpi remains essentially the same. We have here two cases showing the change of a two-jointed membranous paired organ into a single, rigid, chitinous structure, and the identity of the parts is not questioned, nor I believe, questionable.

If we carry our dissections one step further and from the fresh specimen remove not only the highly chitinized parts, but also the softer attached structures, leaving maxille and mandibles undisturbed, we find in all cases the øesophagus in the cavity below the mentum and submentum, and these sclerites afford attachments for necessary muscles. They also form, by means of chitinous extensions and processes, a chamber or cavity protecting the osophagus and supplying muscular attachments when a sucking or pumping structure is needed. Thus the mentum and submentum, whether separated or united, are always inferior coverings to the œsophagus. To support this structure, processes sometimes extend almost or quite to the upper or anterior surface of the head, and in many cases, where the epipharynx is separated from the labium, it is comected by means of long processes with the mentum. This is true in many Coleoptera, quite usual in the Hymenoptera, and occasionally found also in the Diptera. In Pl. I, Fig. 6, is a lateral view of the labium of Copris carolina when - completely dissected out, and the clubbed processes, loosely attached to the inferior prolongation of the submentum, normally support the epipharynx. In Pl. I, Fig. 9, and Pl. II, Fig. 18, we note similar processes in Andrena vicina with part of the epipharynx still attached, and in Polistes metricus, where the structures are complete. Precisely the same structures occur in Simulium (Pl. I, Fig. 1^{d}), as will be more fully noted hereafter. It may be stated that I have adopted the term "fulcrum," used by Macloskic and others, to designate the structure formed by the mentum and submentum and containing the beginning of the alimentary canal.

In Polistes metricus (Pl. II, Fig. 18^{b}) I show the labium completely dissected out, with all its attachments, viewed laterally. It will be noted that here the mentum and submentum are united, highly chitinized, and form a scoop-shaped structure, bearing at one end the labial structures and enclosing normally the beginning of the osophagus. Attached by long chitinous rods to the posterior angles is the epipharynx, so that hypopharynx and epipharynx are bome on the same base, are closely opposed to each other and may be manipulated by muscles arising close together. The origin of the palpi is shown from the mentum. On Pl. II, Fig. 18^{a}, are shown ligula
and paraglosse of this same /'olistes. The structures are here membranous, somewhat bladder-like, and well adapted for lapping by means of thattened, bent processes, set in series on the entire inner surface. The paraglosse are completely separated and the mouth opening is shown at the base of the figure, as well as the chitinous ring marking the beginning of the resophagus.

In Andrena vicina (PI. I, Fig. 9) we find a similar yet quite different structure, i. e., the same parts, used for much the same purpose, yet considerably modified in detail. The mentum is here much longer, more shallow, but similarly bears the epipharyux on chitinous rods. The ligula is more inflated and the paraglossit are much reduced, but the palpi originate as before, and we have simply an illustration of the variation in form found in this united mentum and submentum. It is important to note here that in L'olistes, Andrena, and indeed the Hymenoptera generally, the labial structures are free from all lateral attachments to the head and may sometimes be projected forward quite a distance. The attachment to the head, indeed, is muscular and membranous entirely, and there is no direct articulation to any point by chitinous or rigid processes. There is nothing therefore to prevent the growth of the head sclerites around the mentum, which would thus become an internal structure-as has actually happened in the Diptera.

Another feature upon which Dr. Packard rightly places great stress is that a salivary duct opens into the hypopharynx at the base of the ligula, which he thereby identifies. As this ligula is always attached to the mentum, it follows that this structure may be identified in the same way, while no structures not originating from the same point can be labial in character.

Before studying further the specializations of the labial structures, it may be well to say that they sometimes tend to become useless or obsolete, or so much reduced that they are difficult of recognition ; and, curiously enough, in such cases the palpi seem to be the persistent organs. Thus in some species of Scoliulke among the Itymenoptera the mentum bears only little, feebly developed palpi. A striking case is in the Panorpide, where on Pl. III, Fig. 4^{b}, the mouth structures of Bittucus strigosus are shown. Here ligula and paraglosse have disappeared entirely; but the palpi are distinct and the curiously developed hypopharynx maks the beginning of the opening into the œsophagu*.

A modification of this type is to be found in the Lepidoptera, where practically in all cases the palpi alone, attached to a plate of variable -ize and shape, represent the labial structures.

It seems a long jump from the reduced type in Panorprite to the fully developed labium of the Apider ; yet, except for the fact that all the parts are much elongated,
there is no difference from Andrena or Polistes, which have been already studied. I have found no species which shows all the parts more fully developed than Xenoglossa pminosa (Pl. II, Fig. 15). Here all the parts are equally developed and all are functional; hence it makes a good starting point. The mentum is not shown in the figure except at the point to which the other parts are attached, and surmounting it centrally, we find the ligula; here a united, though extremely flexible organ. Lying centrally upon it, so as to close a groove, is the hypopharynx, in this case not easily separable from the ligula. Arising close to the central organ on each side are the paraglossie; almost as long as the glossa itself, flexible, unjointed, flattened and a little incurved at the margins so as to form, when closely applied to it, a partial shield for the ligula. Outside of all, situated at the outer margins of the mentum, are the palpi. These are four-jointed; but the basal joints are enormously elongated in proportion to the terminal two, and they are also flattened out, broadened and infolded, so that when at rest they cover and almost conceal the other labial parts, though not extending forward as far as they. In this insect the structures just described are almost entirely covered by the maxillæ, and a transverse section (Pl. II, Fig. 15^{a}) is interesting and instructive. It represents the structure at about the middle of the combined maxille and labium and illustrates the relative position of the parts.

The tendency in the bees is toward a loss of the paraglosse, which shorten gradually until they disappear altogether, as represented in a species of Bombus figured in Pl. III, Fig. 15. Every intergrade is represented in any good series of bee mouth parts, and in their rudimentary condition, without function, they appear in Bombus sp., represented on PI. III, Fig. 6. The palpi retain their unique development, and in the figure just cited are seen to be as long as the ligula itself, the basal two joints enfolding it almost completely, while the terminal joints are much reduced in size and set near the tip of the second joint, on the outer side. In other species these terminal joints are proportionately yet more reduced and are sometimes difficult to find. The essential point to be noted is that at their best development the paraglosse are not jointed and that they tend to complete obsolescence in the most highly specialized types. The palpi in Bombus require a little further examination: Reference to the figure last cited will show a short segment between the mentum and the first long joint, and this is membranous in texture. The mouth parts in Bombus are folded when at rest and the hinge is at the mentum; hence the necessity for some such provision to enable the palpi to bend safely.

Now let us assume that the ligula of this Bombus became rigid and chitinized, and that the edges of the palpi enfolding it became united to form a complete cylinder; and then let us examine Eristalis tenax (Pl. III, Fig. 5) in the light of this assump-
tion. First let me say that I have already shown that a change from flexible to rigid ligula is not uncommon, and the suggested union of the palpi is a much less violent requirement than that imposed by the current explanation of the Dipterous mouth. Referring for a moment to Pl. I, Fig. 3, we see the entire mouth structure of Eristalis tenax. Above is the mentum and submentum, very like the structure already described for Polistes and entirely homologous with it, and at its tip we find arising in a group the structures further enlarged at PI. III, Fig. 5. Centrally we find the now rigid ligula, deeply groored in the middle, the chamel closed by a flattened, also rigid and chitinized hypopharynx. Loosely enveloping this central ligula is a more membranous cylinder, evidently made up of two lateral halves, two-jointed, and the terminal joints separated or paired except at the base. As in liombus the mouth of Eristalis is hinged, and the joint is also at the base of the ligula. The latter organ is so articulated as to allow of the flexion; but in the palpi we find again the provision already noted in Bombus-a flexible, membranous, pseudo-segment. Now if we section the Bombus and Eristalis at the middle, we find the cuts alike, except that in Eristalis the palpi are completely united over the hypopharynx and closely approximated at the opposite side. If we section near the tip, the cuts in both cases are identical. That this mited structure in Eristatis is the united labial palpi seems to me beyond doubt. In the first place, the point of origin is normal, next to the ligula and at the tip of the mentum; and, secondly, it is a jointed organ and therefore cannot be paraglossa. It is in all points the structure of Bombus, with the terminal joints lost and the two halves united for the greatest part of the distance. That the parts named mentum and submentum are really such, is prored by the fact that the hypopharynx, which is not in dispute, originates from and that the esophagus originate. within it.

In Bombus fervidus the ligula is unusually developed and much longer than the labial palpi, while the paraglosse are wanting. In Pl. III, Fig. 12, is a comere lucidu sketch of the labial parts of a carefully mounted specimen. The structures here are exactly as normally held when at rest, and only the mentum is a little erushed by the cover glass on the shallow cell. Now chitinize this whole structure thoroughly, and then compare with the drawing of Chrysops vittatus (Pl. III, Fig. 13) made in the same way. The magnifications are different, of course, the Bombus being drawn at short range with a four-inch lens while the Chrysops, was drawn at long range under a one-inch objective. The object was to get the two of approximately the same size for convenience of comparison. In the Tabanids the mouth parts are rigid and not flexed, and no sort of joint or hinge is required; hence the structures are all rigidly united at the base to the mentum. In Bombus fervidus the palpi are reinforced by a heavier
chitinous rod a little to one side of the middle, and just this sort of structure we find everywhere in the Tabanids, lying outside of the ligula at base, articulated to the outer edge of the mentum. This, in fact, first led me to suspect the true nature of the structure. If now we section Bombus and Tabanus near base, the cuts will be alike, save that the palpi in the latter are united at one margin. If the cuts are made toward the tip, the sections are alike-ligula and hypopharynx alone appearing in both cases. We have then, in Chrysops also, a complete labium, save that the paraglosse are absent and the palpi are mited on one edge.

In the Simutidue are many interesting species with generalized mouth structures, and of these I have studied the "Buffalo gnat," from material kindly furnished by Dr. Riley, an undetermined Simutium sent me in numbers by Prof. Aldrich, and an undetermined little midge collected by me at Anglesea, N. J. The species are practically identical in the labial structures, and here again the mentum and submentum strongly recall Polistes and other Hymenoptera. The hypopharynx is well developed and the ligula are nearly divided; but I hare no satisfactory sections of this insect and the relations of the parts are not clear to me. At Pl. I, Fig. 1 ${ }^{b}$, the labium of the "Buffalo gnat" is shown. In the species sent by Prof. Aldrich I succeeded in getting a dissection illustrating the connection of the epipharyns with the mentum, and this is illustrated at Pl. 1, Fig. 1^{d}. This is really an exceedingly interesting specimen and it clears up the relation of the frontal prolongation of the mouth. That the structure so labeled is really the epipharynx there is little room for donbt, and the location of the little, chitinous, toothed processes, and their character, leaves no doubt in my mind that they are mandibular rudiments-exactly as I claimed in my firet paper. That they can be dermal appendages, as has been claimed, does not seem reasonable to me. They are too highly chitinized in comparison with their surroundings, and why should they so completely resemble miniature mandibles? I do not know of any case of dermal appendages of a similar character, and it is at least passing strange that such should be developed exactly where, normally, mandibular rudiments might, be reasonably expected.

The tendency in the piercing Diptera is constantly in the direction of simplicity of labial structures, and so we gradually note the loss of all trace of accessory labial structures, leaving the ligula and hypopharynx as sole representatives. In the Asilide there are no other attachments to the mentum, as shown in PI. III, Fig. 1^{c}.

These apparently single structures are sometimes interesting in section, as appears in Stomoxys calcitrans, Pl. I, Fig. 11. Here the cut shows two crescent-shaped structures connected at one edge by the thinnest kind of a chitinous shell, and closed opposite by a hypopharynx, which is almost tubular in structure.

Very interesting is the modification found in the Empride, illustrating the extreme in the loss of parts; for here the hypopharynx is also wanting, though the salivary duct remains, opening into the grooved ligula, as shown in Pl. III, Fig. 2 ${ }^{a}$. In this case the hypopharynx is replaced by an extension and peculiar modification of the labrum. This sclerite is elongated so as to extend to the tip of the labium, and is very much dilated, somewhat bulb-like at its base. In Pl. III, Fig. 2c, labrum and ligula of Rhamphomyia longicundu are seen from the side, while in Pl. II, Fig. 13, are shown the same structures in Empis spectabitis. The edges of the labrum are turned under sufficiently to leave a central chamel just large enough to receive the ligula, with which it then forms a closed tube through which the food is taken.

In most of the Muscid flies we find a structure approximating Eristalis with the labial palpi removed; and the parts may be longer, or shorter, or differently developed, while adding nothing to what has been already shown; they are, essentially, reduced piercing structures, no longer functional.

We have, however, in certain other species, where the mouth structures are short, very poorly developed labial structures. So in Hermetia mucens (Pl. III, Fig. 14) the broad and large mentum bears only a short, scoop-like ligula. The specimen from which the figure was made was somewhat distorted in mounting and the ligula is turned just half round. Similar structures occur in the Bibionidue, and Euparyphus bellus (Pl. J, Fig. 12) is not essentially different.

Heretofore the hypopharynx has been referred to mainly in species in which it was feebly developed and played but a passive part as a covering structure. It is sometimes a highly specialized sensory structure, though it varies greatly, even when functional.

A very curious type is found in Bittacus (Pl. III, Fig. 4"), where it takes the form of a simple cylindrical process, set with spines, almost like an odd joint of some slender palpus. In Copris carolint, Pl. I, Fig. 4, showing the epipharynx, may be accepted as a fair representation of the hypopharynx as well, save that the latter is on a much reduced scale. The opening of the salivary gland is in a dense mass of specialized spinous processes.

In the Libelluld, among the diagon tlies, we have an inflated, somewhat tonguelike organ (Pl. I, Fig. 10 ${ }^{3}$), in which the salivary duct is plainly traceable to its opening among a mass of crossed, specialized spines. The surface is richly supplied with sensory pittings and tactile hairs. It is a great modification from a structure of this kind to the simple, ribbon-like form of Bombus, or the flat. slender, chitinous form in Tabanus; but the intermediate stages are all present.

To recapitulate concerning the labial structures. The mentum and submentum A. P'. S.-VOL. XIX. X.
cover the esophagus. They may be united so as to form a single organ, and their tendency is to become internal head structures. The ligula has at its base the opening into the alimentary canal ; it is rarely paired, may be rigid or flexible, and has closely associated with it the hypopharynx, recognizable by the salivary duct which it shelters. The paraglosse arise on each side of the ligula or glossa, and may be chitinous or membranous. They are never jointed, never developed for any specific mechanical purpose, and their tendency is to become obsolete. The labial palpi are essentially tactile and never become mechanical save as they may form a covering or sheath for the ligula.

From the most generalized type found in the Blattide the modification is first from a divided to a single ligula; next to a disappearance or obsolescence of the paraglosse ; later the labial palpi also disappear, and finally the hypopharynx is also dispensed with. There is no break, and nowhere is there any violent change of structure or function.

We are now ready to take up the maxille, which, though composed of a larger number of sclerites, are usually more easily understood in the ordinary type of mandibulate insect. The organ is usually paired and never so completely united as the labial structures. The two parts are always external to the labium, which it is their tendency to enfold, and they never have any direct connection with the alimentary canal. Though the maxillary structures tend to form a covering or sheath for the labium and its appendages, there is never any intimate connection between them. No part of the maxilla ever unites with any part of the labium or with any of its appendages. The maxillie are essentially mechanical structures, and their range of variation is sufficiently great to meet the most diverse possible demands made upon them. A distinct and fundamental characteristic is the fact that each set of sclerites has its own peculiar possibilities and limitations, and once these are understood the most highly specialized type becomes simply explicable.

On Pl. III, Fig. 17, is a copy of Prof. Comstock's figures of Hydrophilus, showing the maxilla from both surfaces, and these may conveniently serve as a text to explain the sclerites composing it. At the base is the cardo or hinge, giving attachment to muscles and tendons articulating it to the head. It is to be noted that there is no firm or chitinous articulation to any head sclerite, and except by muscles or tendons no direct atfachment. This we found the case also in the labium in the more specialized forms, and in the Hymenoptera, for instance, labium and maxillæ together are easily dissected out without cutting any but muscular tissue, and without breaking any chitinous connections or joints. This is in marked contrast with the mandibles which, when functional, are always firmly articulated by chitinous joints to the external
head sclerites. Supported upon the cardo is the stipes or foot-stalk, deriving its muscular attachments largely from the cardo; but to some extent from the head itself, and this feature is a variable one. Surmounting the stipes is a palpifer or palpus-bearer, to which is attached a palpus, varying in the number of its joints. This derives all its muscles from the stipes in the typically developed maxille. On the inner side of the stipes is attached the subgalea, deriving its muscles from the head in large part; and this bears a two-jointed galea or hood. It is a matter of some importance to note that this galea is never more than two-jointed under any circum-tances, and that the tendency is to maintain that number; though in many instances it is reduced to one only. It is the most persistent as well as the most variable of the maxillary structures, and is present when any of them exist at all. Inside of the subgalea, and attached to it as a rule, is the lacinia or blade, which may or may not bear a digitus or finger. In the figures just cited we find what may be termed a normal or proportionate development of all the parts, in which no one sclerite is unduly developed or specialized. Before attempting to study pecializations it is important to note that, when carefully examined, the sclevites are seen to be arranged in three parallel series. That is to say three separable parts have grown together laterally, and this union bears with it the possibility of future disunion or separation for special purposes. We have as the inner series lacinia and digitus; as the middle, subgalea and gatea; and as the outer the cardo, stipes and palpifer with the attached palpus. Now if we examine some of the Neuroptera, e. \%., Siolis (Pl. III, Fig. 16), we find this lateral arrangement very strongly marked, and it is casily understood that each of these parallel sets may have their own peculiar limitations, and that each may be separately and independently modified.

But lest this seem, after all, a far-fetched conch ion, let us examine the maxilla of Bittacus strigosus (Pl. III, Fig. 4^{b}), and we find almost exactly the hypothetical state of aflairs actually existing! Lacinia, galea and palpifer all separated, of nearly equal length, but of quite different appearance. The appearance of a transerse seetion made at about the middle is shown as Fig. 4". For a generalized type this form is especially valuable, and we may fairly ue it as a guide in our discussion of maxillars possibilities.

There is no ab-olute rule in the matter, but usually the galea tends to become the dominant maxillary organ. In many Neuroptera, and e-pecially in their larval stages, the laciniate structure is best marked, as illustrated in PI. III, Fig. 9, representing the maxilla of a Perlid larva Here the galea is reduced to a subordinate rank, and in many predaceou: Coleoptera it is truly palpiform.

In many Orthoptera the development of the galea ju-tifies the name loy forming
an almost complete hood over the lacinia. This is well illustrated in the maxilla of the oriental cockroach, Periplanetr orientalis, shown at Pl. III, Fig. 8. At this point a comparison of the figure just cited with the galea of Simutium (Pl. I, Fig. 1 ${ }^{1}$) will prove interesting and instructive.

In the Hymenoptera the galea dominate throughout; no elongated palpifer is ever developed, and indeed the maxillary palpi are sometimes almozt rudimentary in the Apidx, as shown at Pl. III, Fig. 15.

In l'olistes, illustrated at Pl. II, Fig. 18', we find a common type of the Tespidce, where the lacinia forms a small, blade-like structure, free for almost its entire length, and the maxilla as a whole shelter a large part of the labium. In those cases in which the "maxille" are elongated, the galea is usually the organ affected.

Thus in many Meloids among the Coleoptera we have the mouth parts elongated, and a study of the maxilla of Nemognathe (Pl. III, Fig. 20) shows at once the sclerites concerned. Here the lacinia is much reduced, and if we remove it altogether we have the normal Lepidopterous maxilla, which tends to a locking together to form a complete tube. Recently it has been found that in certain Lepidoptera the lacinia are actually present, and the figures which I have seen indicate a structure in all essentials like that of Nemognatha.

While speaking of the Lepidoptera it may be well to cite Pronuba (Pl. III, Fig. 21), in which the palpifer is elongated in the female and highly specialized into a sensory and tactile structure, though unjointed. In a well-prepared specimen the point of origin is perfectly clear, and it is entirely homologous with the structure seen in Bittacus. In the male (Pl. III, Fig. 19) the "tentacle" is not developed, though the palpifer is enlarged to some extent.

In the Apide, among the Hymenoptera, the lacinia disappear entirely in extreme cases, or are at least greatly reduced, while as already stated the palpi are sometimes scarcely visible. The galea, on the other hand, is very prominently developed, and when at rest envelopes the ligula and paraglossae almost completely. In Pl. III, Fig. 15 , is represented the usual appearance of all the parts separated, while at Pl. II, Fig. 15^{n}, the transverse section of the mouth structures of Xenoglossa pruinosa shows their normal relation when at rest. It is seen that the galea actually overlap somewhat at one margin, and a union along this line would be scarcely considered a violent stretch of the range of variation. Assume such a union, eliminate the paraglossie which are organs tending to obsolescence, and then compare with the transection of Eristalis tenax (Pl. I, Fig. 3^{7}). If the palpifer be eliminated from this latter figure the cuts are practically identical.

Returning to our figure of Bombus (Pl. III, Fig. 15), we note at the outer edges
of the galea a series of ridges which, under a high power, look extremely suggestive of the stractures found in the labell:e of Diptera, especially where, as for instance in Bombylius, the pseudotrachea are imperfectly developed. These ridges vary much in the species; but are particularly marked in a little Andren near vicine, if not that species itself. Here we see (Pl. III, Fig. 3) the entire immer face clothed with a thin membrane which is crossed by numerons closely set fine chitinous lines! I claim that this structure is the homologue of the pseudotracheal structure in the Diptera, and that in the latter order it is in the galea that the development occurs, as it does here in the Hymenoptera. The relative differences in size are not of importance. As to the particular use of this structure in Andrenu I have no suggestion to make.

In the Proceedings Ent. Soc. Washington, Vol. III, Mr. Ashmead figures on Pl. III, some very suggestive mouth structures of parasitic Hymenoptera, of which that of a Pteromalid is reproduced on Pl. III, Fig. 18. The central labium with its attached structures is much reduced in size, and the maxille, bearing the well-developed palpi, are reduced to a single structure, the galea, resting unon what may be considered the stipes. Now if we bring these two parts of the maxille a little more closely together, we have almost the exact structure seen in Bibio (Pl. III, Fig. 11 ${ }^{\text {b }}$). The basal ring, bearing the palpi, corresponds almost exactly to the basal ring of I'teromalus except for size, white except that the surmonnting galea are two-jointed, the correspondence with the upper portion of the structure is equally marked. The labium in Bibio is much like that figured in PI. III, Hig. 1t, for Hermetia, and in Pl. I, Fig. 12, for Euparymbus.

I am making no very risky statement when I assert that the sclerite to which the maxillary palpi are attached must of necessity be maxillary; and further, it is equally safe to say that no maxillary sclerite can lear a labial appendage: and certainly not a labial palpus. It would be an absurdity, contrary to all the laws of a natural development, for a modified labial palpus to become attached to the sclerite bearing also the maxillary palpus; while if we consider it the two-jointed galea, its position is normal, requires no assumption of change or character, and does not differ in any essential points from the gale of the roach (Pl. III, Fig. S). Fet these two joints in Bibio will, with a ridged membrane thrown over them, represent the labellate tip of the Muscid proboscis. That such a ridged membrane is well within the range of galear variability we found in the Andrend near vicine (Pl. III, Fig. 3).

The structure in Euparyphus bellus (Pl. I, Fig. 12) resembles I'teromalus yet more closely, in that a single ring only surmounts the segment bearing the palpus. In this instance the maxilla is reduced to exactly the same segments seen in the Hymenopteron, and logic demands that we recognize them as the same. In this case, how-
ever, the lower ring is complete- $i . e_{.}$, the two halves of the stipes have become united. That it must be stipes is shown by the fact that it bears the palpus, and again the surmounting sclerite must be maxillary also.

There are other species allied to those already cited in which similar structures occur; but I need for the present call attention to only one more; a species of Olfersia (Pl. II, Fig. 19). Here the ring is complete in front, but broadly open behind, and bears the chunky, single-jointed palpus. Surmounting is a single sclerite, very much resembling in appearance that of Pteromalus, and undoubtedly homologous with it. Of course Olfersia is parasitic in habit, and the mouth parts are specialized for bloodsucking; but the sclerites composing them are nevertheless derived from the same source as in the "higher" types.

I have several times referred incidentally to Simulium, and of this the galear structures are figured (Pl. I, Fig. 1"). Dissecting the parts out carefully we find an almost complete ring at the base, the stipes, to which the palpus and palpifer are attached. Surmounting this is a pair of sclerites, each almost a half cylinder, representing the subgalea, and bearing the two-jointed galea. Here again I claim that the three joints just referred to must be maxillary because they are directly articulated to the sclerite bearing the maxillary palpi, and the labial structures are all shown at Fig. 1^{b}.

A step in the direction of union we find in the Anglesea gnat or midge-also a Simuliid, to which reference has been already made. Here we see (Pl. I, Fig. 2 ${ }^{\text {r }}$) the subgalea united most of their length at one side, while the galear joints are yet free. The basal stipes is not figured because none of my specimens showed it clearly; but the palpifer, palpus and lacinia, as they are connected with it, are shown in the specimen.

In the Asilide we find another suggestive structure, studied in the light of the facts already set out. Here we see, as illustrated Pl. III, Fig.. 1^{a} and 1^{b}, the basal stipes well developed, united posteriorly, but separated in front. The palpifer and its attached palpus are situated at the sides, clearly articulated to the stipes, whose character is thus fixed. Attached to this stipes is a broad, infolded structure, united behind but open in front; maxillary because of its attachment to the stipes, and subgalea from its location. It bears in orderly sequence the two-jointed galea of which the terminal joints are free. The species of the Asilidu are large and easily dissected, and the figures were drawn from a pecies of Laphrix. The attachments are but little different in the species, and as the figures, illustrate the structure from both front and rear, the position of the joints should be clear. These figures will be again referred to in another comection.

In all the species heretofore cited the galear joints were more or less distinct and the pseudotracheal system was little or not at all developed. As the face of the joints becomes covered by a ridged membrane the texture of the entire structure changes. It becomes less chitinized, and the chitine is not evenly distributed, causing sutures to become indistinct and poorly marked. Yet, keeping in mind the general line of variation, we can usually reach a correct conclusion.

In a Leptid, species unknown, we find the appearance shown in PI. II, Fig. 1. Here there is a united basal plate, covered on one surface with a membrane, and from the chitinous portion arises the palpifer with its attached palpus. Surmounting the chitinous base are two joints, the galea, the chitinous parts of which only are sl:own in outline, the balance of the space being covered by membrane. Here again the attachment of the maxillary palpus to the basal selerite determines the maxillary character of all the sclerites directly articulated to it.

In Inermetia mucens (Pl. II, Fig. 17) the entire structure is much more membranous, yet the basal chitinous plate is paired, and while the parts are shown in a distorted position, the two galear joints and their relation to the basal, palpus-bearing structure is yet perfectly obvious. The other maxillary structures have completely disappeared, while what is left of the labium is seen at Pl. III, Fig. 14.

The mouth parts in some species of Tipula are interesting, and a fair illustration of one of the "snub-nosed" species is seen at PI. I, Fig. 5. Here the origin of the palpus at the immediate base of the chitinized part of the labella indicates its character, and if we divest the chitine of the surrounding membrane we get the appearance shown at Fig. 5 ${ }^{\text {a }}$. Practically we have a completely paired organ, the relations of which are perfectly simple when the confusing and unimportant membrane is removed.

The peculiar relation of labrum and labium in the Empuhe has been already noted, and this makes it easy to separate off all the other parts adhering to the margin of the head, but not in any way comnected with the labium. The relation of the parts to each other in Empis spectabitis is shown on Pl. II, Fig. 13, while on Pl. III, Fig. 2', are shown the maxillary structures of Rhemphomyin longicanda. In this latter figure we note that the parts, except palpifer, are entirely membranous. From the basal sclerite the palpi arise so a to form only a continuation of the membrane itself with an extremely slight attachment to the chitinous palpifer; and to this very same membrane there is articulated by a slightly thickened suture the subgalea, united posteriorly, but separated in front; and this bears in turn the indistinctly segmented galea. This entire structure obviously belongs together and is one organ-necessarily the maxilla.

A very similar structure is found in Chrysops (PI. II, Fig. 14) and in other species
of the Tabanide. Now it will be remembered that in this genus I showed the connection of all the labial parts with the mentum, where they normally belong; hence all the other parts must be, of necessity, maxillary. So we find also in PI. II, Fig. 14, that the central labellate structure, two of the piercing structures and the maxillary palpi all arise from a single united basal sclerite, the stipes.

In Eristalis tenax (Pl. I, Fig. 3) these labellate structures are shown, turned aside to expose the labial structures. Here also I showed the presence of labial palpi in close comection with the ligula and hypopharynx, normally attached to the mentum, and again it follows that the other structures must be maxillary. Again also I must call attention to the fact that the palpi are mere continuations of the enveloping membrane, and that this membrane continues without break to the tip of the labella. Unless we are to believe that a continnous membrane may give rise to both the maxillary and labial palpi, we cannot possibly consider the labella as labial structures.

I have now traced out what seems to me a continuous development of the modifications of the subgalea and galea, and have shown, I think, that from Pteromalus in the Hymenoptera to Eristatis in the Diptera, a continuons chain may be constructed, requiring nowhere any change of character, function or location. No disassociation from other maxillary structures and no connection with labial structures.

In taking up the modifications of the palpifer I am confined almost entirely to the Diptera, in which this sclerite is best developed. In Bittacus I showed its development to an elongated structure of no particular type or function and of about the same texture as the galea. In Promba I showed its development into a highly specialized "tentacle," tactile and sensory as well as mechanical in character. In the Diptera it is quite usually present as an elongated, rigid, chitinous organ adapted for piercing. It occurs in all the piercing types and is present as a rudiment in many others. It undergoes a curious and interesting change in function as the Dipterous mouth changes from the piercing to the scraping or lapping type, and as it becomes flexed.

The simplest form occurs in those piercing Diptera in which the proboscis is not flexed. Thus in the Buffalo gnat (PI. II, Fig. 9) it is a stout, semicylindrical piercing organ, enlarged both at base and at tip, at which latter point it is also toothed. The connection of the palpus with the subgalea was already shown on PI. I, Fig. 1^{a}, and this shows how the chitinous palpifer forms part of the combination. The palpifer arises, normally, outside of the galea; yet at the tip it is found in connection with all the other piercing structures inside of that organ. How it gets there is illustrated in the Anglesea Simuliid (Pl. I, Fig. $\mathbf{2}^{a}$), where all the maxillary parts are shown in proper connection, and it is seen that the palpifer enters the galear envelope in the
incomplete articulation between galea and subgalea. By separating of the galear structures, the relation of palpifer and lacinia in Simutium is illustrated (on Pl. I, Fig. $\mathbf{1}^{c}$), and the convergence of the two at tip is not distortion, though perhaps a little exaggerated by pressure. The result of this change of position is that a section made near the base of the proboscis would show as illustrated on Pl. I, Fig. 2', while one made nearer the tip would show as in Fig. 1". Incidentally it will prove interesting to compare these sections with that of Bittucus strigosus (PI. III, Fig. 4 ${ }^{\text {l }}$), leaving out of consideration the abnormal labium of the latter. The resemblance is perfect, and the resemblance expresses fully the actual condition of the matter. A very similar state of affairs exists in the Asitidue (Pl. III, Fig. $1^{\prime \prime}$). Here the palpifer is the only maxillary piercing organ, and the figure itself shows clearly how easily it would swing inside the ample space left in the subgalea for its entrance. The curvature of the organ is such, also, that when in place it meets the central ligula so as to form a solid puncturing organ.

So in Chrysops (Pl. II, Fig. 14) the structure is seen to be similar to that in Simulium ; but here, as almost everywhere else in the order, it is cylindrical or nearly so, in marked contrast with the lacinia, which is always flattened.

As we get into types that have lost the piercing habit, the function of the palpifer fails or changes. If the species have a short, nonflexed proboscis, it simply dwindles from disuse. So in Stratiomyia and in Leptis (Pl. II, Figs. 1 and 2) it simply forms a little chitinous appendage to the palpus-a mere remmant without function. If, on the other hand, the species are able to flex the proboscis, another change takes place. There is needed then some lever to which muscles for flexing can be attached, and no structure seems to have been so easily adaptable as the palpifer. So we find in the Empide, where only slight flexion is required, only a small basal extension, shown at Pl. II, Figs. 4 and 3, for Empis spretabilis and Eulonchus tristis, and at Pl. III, Fig. 2^{\prime}, for Rhamphomyia longicauda.

In the Bombyliide is a step forward. The insects are not predaceous, have the habit of hovering over flowers and using the proboscis in feeding in that position. This requires a much better control, and as a result the basal extension is much better developed, as shown in Pl. II, Figs. 6 and 7, illustrating Bombylius and Anthrax.

As we get into types like Eristalis and other Symphilue, the basal extension becomes the most prominent and the piereing portion diminishes in size (Pl. II, Fig. 5), and keeping step with this modification is a gradual sepraration of the palpus itself from the palpifer. This is well illustrated both in Eristalis and Spluerophoric, and this tendeney continues until in Lucillia (Pl. II, Fig. 10) the separation is complete, though the piercing portion of the palpifer is yet distinguishahle. In refliphore even A. P. S-VOL NIX. Y.
this disappears and the chitinous rod is entirely disassociated from the palpus. Finally in Stomoxys calcitran.s (Pl. II, Fig. 12) there remains nothing to indicate the existence of any relation between the slender chitinous rod and the distant maxillary palpus. It is not in the least strange that guesses as to the character of this structure in Musca domestica should have been so often wide of the mark; though with a proper series as now shown, its origin is clear.

There remains to be accounted for the lacinia, and this in the Diptera is the flat, bade-like structure generally identified as the mandible. It has been shown that while the lacinia is often the dominant organ in many mandibulate insects, the tendency is, on the whole, to a decrease in size, ending in the IIymenoptera in its entire elimination. In the Dipterat it present in the blood-sucking species only, and it may be identified by its position and its relation to the other maxillary structures. It has been everal times referred to incidentally, and in the Anglesea Simuliid (Pl. I, Fig. 2^{r}) its relation to the other maxillary parts is shown. In Pl. I, Fig. 1c, is illustrated the connection between the palpifer and lacinia in the Simutium sent me by Mr. Aldrich. This comection is not fanciful but actual, and no sclerite so intimately connected with an admitted maxillate structure can be anything but maxillary.

Again in Chrysops (Pl. II, Fig. 14) I have illustrated the fact that all the structures which I consider maxillary have a common origin. At Fig. 14^{n} I show the lacinia alone, and it is to be noted that at the base it is modified for attachment with reference to the palpus. Now unless this is a maxillary sclerite, why should it be modified to accommodate the maxillary palpus? Docs it not seem rather absurd to believe that this cin be a mandible brought to originate from one point with the palpifer and modified to allow it to envelope at base the maxillary palpus?

One of the most serious difficulties in the way of the proper understanding of the mouth parts of hanstellate insects has been the desire to provide for the mandibles on the theory that they are among the permanent structures. Let I cannot understand why this should necessarily be the case. When functional, mandibles are essentially chewing or biting organs, and when the insects do not require such structures, it seems to me most natural that they should become obsolete: and that is exactly what has occurred according to my reading of the facts. Their functional character never changes; they simply dwindle from disure and gradually disappear. So we find them in the Lepidoptera as mere rudiments, connected with a highly specialized maxilla; and in the Rhynchophora they are rometimes mere remnant;, oceasionally reversed in position-exactly as I pointed them out in Simutium. I think that in view of all the evidence presented by me, none of the piercing organs of the Diptera can be considered mandibles, and I camot even yet, after carefully weighing all that Dr. Packard
has written, see any reason why the rudimentary structures an the tip of the labral extension in Simulium are not mandibles.

If we refer back again for an instant to the Panorpids we note (Pl. I I I, Fig. 4") that in Bittacus strigosus the origin of the mandibles form an extension of a lateral head sclerite, with the labrum-epipharymx between them. In I'anorpa the mouth structures are much shorter, set on an immensely elongated stipes, and at the tip of the frontal extension of the head we again have the mandibles, mach reduced, with a small, lappet-like labrum-epipharym between them. Now the situation of the rudiments in Simulium corresponds almost exactly with that of the undoubted mandibles in I'anorpe rufescens (Pl.III, Fig. 4') : but in the Empuider wind a yet more closely allied structure. I have already called attention to the pecular elongation of the front of the head in this family, and now if we examine this at tip, in Empis spectabilis (Pl. II, Fig. $13^{\prime \prime}$) its very close resemblance to $/$ 'anorpo is at once evident. We find a central lappet-like structure with a sensitive surface, which looks like and logically should be the epipharynx, and moving below it is, a pair of appendages which, in my opinion, represent mandibles. They are membranous and probably not functional ; but this is no argument against their character. I believe that the similarity in the appearance between Pl. III, Fig. 4^{c}, and Pl. II, Fig. 13^{2}, is the expression of a true homology, and that mandibles in the Diptera exist in no other form or situation. It is likely that other species, showing theni much more perfectly, will yet be discovered; but so indeed do I beliere that labial palpi, properly comected with the mentum, will yet be found, so distinct in character that, even if not functional, their homology camot be mistaken.

Labrum and epipharynx have been frequently referred to in the course of this paper, and in the introduction the general relation of these two parts hats been explained. Both structures occur in many families of the Diptera. As in the case of the hypopharyns, the epipharynx has always connected with it a salivary duct. In its intimate connection with the labrum it is shown on Pl. I, Fig. 10^{2}, illustrating the epipharynx of Libellalu. Here the chitinous tube giving bassage to the duct is fully shown. As an example of a highly developed structure, the eppharynx of 'opris carolina is shown (Pl. I, Fig. 4), and here the salivary duct opens among the dense central mass of spinons processes. The epipharyns of Polistes wats referved to in the description of the labium, as was that of Andrena in the comnection. In the Ifemiptera the labrum and epipharynx are usually well developed and the salivary duct is in many cases very well marked.

Among the Diptera some of the larger Sigr, hider have the latrum quite distinct, and on the under surface is a sensitive surface into which an obvious duct, with chit-
inous protecting margins, is led, as shown on Pl. III, Fig. 10. Λ much better developed organ, strongly resembling that in some of the Hemiptera, we find in the Asilide (Pl. III, lig. $1^{\prime \prime}$), and here also the salivary duet is obvious. The structure in Simmliam has been atready referred to, as has that in the Empider.

To recapitulate concerning the maxille: The sclerites form three series, each of which has its own possibilities of development. The lacinia never develope into anything other than a chewing or piercing organ and always arises inside of the galea. The galea varies in the direction of forming an enveloping organ for all the other mouth parts, and the subgalea erentually unites along one margin for that purpose. There is a tendency to develop a ridged membrane on the imner surface of the galear joints which culminates in the pseudotrachea of the muscid labella. The palpifer has a small range of development, from an unjointed, flexible, tactile organ, to a rigid, piercing structure; and as this becomes useless, to a process for the attachment of muscles used to flex the proboscis.

It remains only to acknowledge the assistance received from my entomological friends. Dr. S. W. Williston has from time to time sent me such specimens as I thought might help me; Mr. C. W. Johnson has given me numerous species of families selected because of apparent differences in the mouth structure; and to Mr. J. M. Aldrich I owe many other species in some numbers, among them the Simuliid already referred to. Mr. E. P. Fell kindly sent me specimens of I'anorpa and Bittacus, which enabled me to make a much more complete study of these insects than would have been otherwise possible. To all these gentlemen, as well as to the others who have in any wise aided me, I desire to express my thanks.

Concerning the figures-most of them are camera lucida drawings. A few are drawn from micro-photographs, assisted by the specimens themselves. The figures of transections are largely made from actual preparations; some are redrawn from other sources, while a few are ideal.

Explanation of the Plates.

The lettering of the parts, the same throughout, and the abbreviations, are as follows: Lbr, labrum; epi, epipharynx (the two sometimes combined as lbr-epi); mel, mandible; car, cardo; st, stipes; pfr, palpifer; mp, maxillary palpus; gul, galea; sy, submalea; luc, lacinia; dig, digitus; sm, submentum; m, mentum; gl, ligula or glossa; par, paraglossar ; lp, labial palpi; hyp, hypopharynx.

Plate I.

Fig. 1. Buffalo gat. 1^{n}, galear structures with palpi attached ; 1^{b}, labial structures ; 1 , lacinia and palpifer of Simulium from Aldrich; 1d, labrum and labium of Simulium from Aldrich; 1 , transverse section through middle of mouth of Buftalo guat.
Fir. 2. Simulium from Anrlesea, N. I. $2^{\prime \prime}$, the maxillary structures in their actual relation to each other; $2^{\prime \prime}$, transverse section of mouth parts toward the base of subgalea.
Fig. 3. Mouth parts of Eristelis tenux. $3^{\prime \prime}$, transverse section of same at the middle of subgalea.
Fig. 4. Copris carolina, epipharynx.
Fig. 5. Mouth structures of Tipula sp. ; 5', the chitinous parts of the same.
Fig. 6. Copris carolina ; labial structures dissected out and seen from side.
Fig. 7. Copris curolina ; chitinous part of under side of head.
Fig. 8. Copris carolina; mandible with the sclerites named and homologized.
Fig. 9. Andrena vicina; labial structures, with part of epipharynx attached.
Fig. 10. Libellutu sp. a, the epipharynx ; b, the hypopharynx.
Fig. 11. Stomoxys calcitrans; transverse section through the middle of the ligula.
Fig. 12. Mouth parts of Eiuparyphus bellus.

I'lute $I I$.

Fig. 1. Maxillary structure of Leptis. sp .
Fig. 2. Palpifer of Strutiomyin.
Fig. 3. Palpifer of Eutonchus tristis.
Fig. 4. Palpifer of Empis spectabilis.
Fig. 5. Palpifer of Spharophoriu cylindrica.
Fig. 6. Palpifer of Bombylius.
Fig. 7. Palpifer of Anthrax.
Fig. 8. Palpifer of Chrysops ciltatus.
Fig. 9. Palpifer of Simulium.
Fig. 10. Palpifer of Lucillia.
Fig. 11. Palpifer of Calliphora.
Fig. 12. Palpifer of stomoxys.
Figs. 10 to 12 inclusive were accidentally reversed in making up the plate.
Fig. 13. Mouth parts of Empis spectabilis. 13n, elongated head structure at tip, showing mandibles and epipharyna; 13^{b}, transverse section at midule of subgalea.
Fig. 14. Mouth parts of Chrysops vittatus showiug maxillary structures attached together. 14a, the lacinia; 14t, [:itlpifer and palpus; $14 c$, transverse scction at middle of galea.
Fig. 15. Labial structures of Xenoglossa pruinosa, a, transverse section al about midhle.
Fig. 16. Labial structures of Periplaneta orientalis.
Fig. 17. Maxillary structures of Hermetia mucens.
Fig. 18. Mouth structures of Polistes metricus. 18a, ligula, paraglossa and mouth opening; 18", Labium as a whole, with epipharynx attached; 18c, maxilla.
Fig. 19. Maxilla of Olfersia, 19^{a}, seen from front; 19 , seen from behind or below.

198

 AN ESSAY ON THE DEVELORMENT OF THE MOUTH 1'ARTS OF CERTAIN INSECTS.
Plate III.

Fig. 1. Mouth structures of Asilidie-Liphrie sp. u, maxila from front; b, same from behivd; c, labium ; a, lab. rum ; e, transverse section of mouth at juaction of galea and subgalea.
Fig. ㄹ. Mouth structures of Rumphomyia longicaula. a, the labium ; b, maxilla; c, extension of front of head ; l, relation of this extension to the labium.
Figr. 3. Galea of an Andrena allied to vicinet.
Fig. 4. Jouth parts of Bittucus strigosus. \quad, mandibles and labrum; b, maxilla and labium; c, mandibles and labrum-epipharynx of Panorpa rufescens.
Fig. 5. Labial structures of Eristalis tenax. 5^{a}, transverse section at about middle; 5^{b}, same at about tip.
Fi… 6. Labial structure of Bombus sp. $6{ }^{a}$, transection at about middle; 6^{b}, same made near tip.
Fin. \%. Labium of Marpalus calignosus.
Fig. 8. Maxilla of Periplaneta orientalis.
Fis. 9. Maxilla of Perlid larvit.
Fig. 10. Epipharynx of Eristalis tenax.
Fig. 11. Mouth parts of Bibio sp. a, maxilla from behind; b, same in front ; c, transcetion made wear the base.
Fig. 1:. Labium of Bombus fervidus; the transections are lined to the portions referred to.
Fig. 13. Labium of Chrysops cittatus; the transections are lined to the parts referred to.
Fig. 14. Labium of Hermetia mucens.
Fig. 15. Maxillæ and labium of Bombus, showing the relation of the parts to cach other.
Fig. 16. Maxilla of Sialis.
Fig. 1\%. Maxilla of Hydrophilus from upper and lower surface, redrawn from Comstock.
Fig. 18. Maxilla and labium of Pteromalus, redrawn from Ashmead.
Fig. 19. Maxilla of Pronuba, male.
Fig. 20. Maxilla of Temognatha.
Fig. 21. Maxilla of Pronuba, female.
Fig. 22. Mouth parts of Locusta from Kolbe. i, labrum ; ii, mandibles; iii, maxille ; iv, labium.

-

..

ARTICLE III.
 SOME EXPERIMENTS WITH THE SALIVA OF THE GILA MONSTER (IIELODERMA SUSPECTUM).

BY JoHn Van blindragit ph. D.,

CUHATOR DERSRTMENT OF HERPETOLOGY, CALIFOENIA ACADEMY OF M(IENY EM

Read before the American Philosophical Society, September 3, 1897.

I. INTROI)UCTION.

When, in 1651, Francisens Hernandez published his Historite animatium et minerelium Nome Mispemice he gave to Europe the first account of a curious reptile native to those far-western lands which the Gamiards had won beyond the sea. This was a large lizard, said to grow three feet long, thick-set, heary-jawed, protected by an armor of wart-like bony plates, gatily colored in orange and black-withal so repulsive that Wiegmam, nearly two hundred years later, christened it Iteloderma horvidum.

For many years, this name was applied to these lizards wherever found, but in 1869 Prof. Cope discovered that those which had been canght within the borders of the United States and Sonora differ in many details from their more sonthern relatives. He named the smaller, northern species Helodermu stospectum. It is this species which, because of its former abundance near the Gila river, in Arizona, has hecome popularly known under the name Giila Monster.

The Indians and Mexicms clamed for these lizards power to inflict a bite even more deadly than that of the rattlenake, but, since they clamed like powers for other reptiles known to be quite innocent of renom, their evidence was of little value. It receised some confirmation, however, when the herpetologists of Europe found that the teeth of the Heloderma bear grooves similar to those which in some powoms shakes serve to introduce renom into the wound. Since this was discovered the question of the poisonons nature of the bite of the Cila Monster has attracted considerable attention and many opinions have been published.

1. P. ※ーV゙OL. XIX. \%

In 18:it. Inr. J. E. (iray, of the Mritish Musemm, wrote:
"This lizard is said to be nuxions, but the fact has not been distinctly proved."
seven years after this there appored a popular accomet of the habits of the Mexican :peries (II. homorlmon), in which M. sumichast, after dwelling at some length upon the general halite of the amimal, wrote:
" In support of this pretended malignity, I have been told of a great number of cases in which ill effects were produced by the bite of the animal, or by eating its flesh in mistake for that of the Iguana. I wished to make some conclusive experiments on this point; but, unfortunately, all the specimens which I could procure during my stay in the countries inhalited by it were so much injured that it was impossible to do so. Without giving the least credit to the statements of the natives, I am not absolutely disinclined to believe that the viscons saliva which flows from the mouth of the animal in moments of excitement may be endowed with such acridity that, when introduced into the system, it might occasion inconveniences, the gravity of which, no doubt, has been exaggerated."

Prof. Cope, in 1869, stated:
" That though the lizards of this genus could not be proven to inflict a poisonous bite, yet that the salivary glands of the lower jaw were emptied by an efferent duct which issued at the basis of each tooth, and in such a way that the saliva would be conveyed into the wound by the deep groove of the crown."

Six years later Dr. Yarrow sad :
" It is believed to be very poisonous, but such is not the case; for, although it will bite fiercely when irritated, the wound is neither painful nor dangerous. The Pueblo Indians of this place said they were quite common, and were regarded by the Mexicans as poisonous; the poison being communicated by the breath as well as by the teeth. This has no foundation in fact."

The same year, M. Bocourt published some notes which he had received from M. Sumichrast, who, having finally been able to make a few experiments, concludes:
" (Quoique ces expériences soient insuffisantes pour prouver que la morsure de l'Héloderme est véritablement venimeusc, elles me paraissent asse\% concluantes pour faire admetre qu'elle ne laisse pas de causer de très-rapides et profonds désordres dans l'économie des animaux qui en sont l'objet.
"Je ne doute pas que des expériences, faites avec des individus adultes et nouvellement pris, ne produisent des effets beaucoup plus terribles que ceux qu'ont pu occasionner la morsure d'un individu jeune et affaibli par une captivité de près de trois semaines."

In 18se, several opinions were published on each side of the question. A Heloderma, which hat been received at the 'aniological Gardens in London, bit some small animals, and because these died several English writers-as Günther, Boulenger, and Fayrer-concluded that the Monster was pensonous, while some American authors have thought that death in these cases might have resulted from the mechanical injuries recoived. The Amerteren ITaturalist noted that "Dr. Irwin, U. S. A., experimented with the 11 . suspectum in Arizma, fifteen years aso, and concluded that it was harmless."
 wrote:
"On the 18th inst., in the company of Prof. Gill of the [Smithsonian] Institution, I examined for the first time Dr. Burr's specimen, then in a cage in the herpetological room. It was in capital healh, and at fust I handled it with great care, holding it in my left hand examining special parts with my right. At the close of this examination I was about to return the fellow to his temporary quarters, when my left hand slipped slighty, and the now highly indignant aud irritated Heloderma made a dart forward and seized my right thumb in his mouth, inflicting a severe lacerated wound, sinking the teeth in his upper maxilla to the very bone. He loosed his hold immediately and I replaced him in his cage, with far greater haste, perhaps, than I removed him from it.
" By suction with my mouth, I drew not a little blood from the wound, but the bleeding soon ceased entirely, to be followed in a few momente by very severe shooting pains up my arm and down the corresponding side. The severity of these pains was so unexpected that, added to the nervous shock already experienced, no doubt, and a rapid swelling of the parts that now set in, caused me to become so faint as to fall, and Dr. Gill's study was reached with no little difficulty. The action of the skin was greatly increased and the perspiration flowed profusely. A small quantity of whiskey was administered. This is about a fair statement of the immediate symptoms; the same night the pain allowed of no rest, although the hand was kept in ice and laudanum, but the swelling was confined to this member alone, not passing beyond the wrist. Next morning this was considerably reduced, and further reduction was assited by the use of a lead-water wash.
" In a few days the wound healed kindly, and in all probability will leave no sear; all other symptoms subsided without treatment, beyond the wearing for about forty-eight hours so much of a kid glove as covered the parts involved.
. . . ." Taking everything into consideration, we must believe the bite of II lodermu nuspectum to be a harmless one beyond the ordinary symptoms that usually follow the bite of any irritated animal. I have seen, as perhaps all surgeons have, the most serious consequences follow the bite intlicted by an angry man, and several years ago the writer had his hand confined in a sling for many weeks from such a wound administered by the teth of a common cat, the even tenor of whose life had been suddenly interrupted."

Only a few monthe had passed atter the puhlication of Dr. Shafidats: article when there appeared an acount of the lirst carefully conducted serios of experimente with the saliva of the Heloderma. This was hy Dres. Weir Mitehell and Edward T. Redehert, who conclude that :
"The poison of Heloderma causes no local injury.
"That it arrests the heart in diastole, and that the organ afterwards contracts slowly-possibly in rapid rigor mortis.
" That the carliac muscle loses its irritalility to stimuli at the time it ceases to beat.
"That the other muscles and the nerves respond readily to irritants.
"That the spinal cord has its power annihilated abruptly, and refuses to respond to the most powerful electrical currents.
"This interesting and virulent leart poison contrasts strongly with the renoms of serpents, since they give rise to local hemorrhages, and cause death chiefly through failure of the respiration, and not by the heart, unless given in overwhelming doses."

For a time, it seemed that the experiments of Mitchell and Reichert had answered the question of the poisonous power of the Helodermance and for all. But five years later, Dr. Yarrow, then Homorary Curator of the Department of Reptiles in the C'nited States Sational Museum, performed some equally careful experiments upon rabits and chickens. These, he says,
" Would seem to show that a large amount of the Heloderma saliva can be inserted into the tissues without producing any harm, and il is still a mystery to the writer how Drs. Mitchell and Reichert and himself obtained entirely different results. Were it not for the well-known accuracy and carefulness of Dr. Mitchell, it might be supposed possilly that the hypodermic syringe used in his experiments contained a certain amount of Crotalus, or cobra venom, but under the circumstances such a hypothesis is entirely untenable."

Notwithstanding Yarrow's results, Dr. Mitchell still held his original opinion in 1889.

The following year, Prof. Samuel Carman, of the Museum of Comparative Zoölogy of Harvard Cniversity, published an account of experiments, in which he caused an active Gila Monster to hite the shaved legs of kittens without serions effect. He concludes that
"The results of the experiments suggest danger for small animals, but little or none for larger ones. Large angle worms and insects seemed to die much more fuickly when bitten than when cut to pieces with the scissors."

Thus while in England the Heloderma was umamonsly held to be renomons, Dr. Shufeldt, in 18:91, summarized American opinion as follows:
"Here in America the evidence would seem to be rapidly leading to the demonstration of the now entertained theory that the saliva of this heretofore much-dreaded reptile is possibly entirely innocuous."
"Thus the matter seems to stand at the present time-perhaps the rast majority of physicians who followed Drs. Mitchell and Reichert in their experiments fully believe to-day that the bite of a 'Gila Monster' will very often prove fatal even in the case of man; while, on the other hand, naturalists almost universally believe that the saliva of this saurian is hardly at all venomous, and then only under certain conditions."

II. THE MOOTTH FLUTDS.

In the winter of $1896-97$ I began a series of experiments with the saliva of the Gila Monster, the results of which are given in the subsequent pages. My object was to answer the following questions:
(a) Is the bite of the (rila Monster prisomous?
(b) If poison is present what are its physiological effects:
(c) What are the canses of such diversity of opinion?

My Heloderma was the sole survivor of eight or ten lrought from Arizoma in 1892 and, although seemingly fat and healthy, was not very adive. It was of moderate size, being about eighteen inches long. The amount of saliva whatable from it was so small that it could be gathered satisfactorily only by causing the reptile to bite aboorthent paper wrapped around a piece of soft rubber and afterwarde diwolving out the saliva in water. For this purpose filter paper was used.

It would not do to let the Monster bite the pigeons, because if this were done and the pigeons died the skepties might justly clam that death wat due to the mechanical injury inflicted by the powerful jaws, with their long, corved fangs, rather than to any poison having been inserted. Even when the Heloderma's saliva solution wat injeeted hypodermically and death could not have been oceasioned by the severity of a wound there might be some doubt as to the effect of a quantity of water suddenly phaced under the skin, or it might be chamed that some substance was present in the water or the paper used quite poisonous enough to cause a pigeon's death irrespective of any renom from the Monster. So samples of all the materials used had to be subjected to carefial tests to show that they were harmles.:*

Mects.

A greater or less quantite of thick mucus is present in the back part of the month of the Cila Monster. Some of this often adheres to the filter paper in stringy mases. It is entirely without poisonons properties and need not be mentioned again.

The Poroxocs suiva.

The water solution of saliva when extracted from the paper is a shighty yellowish or opalescent liguid, often more or less atained with blood owing to ingury the the gums. It is faintly alkaline, and ordinarily poseseses a pungent and highly chanacteristice though not mpleasant oder. 'This oflor becomes lessand less noticeable when the Monster is caused to bite every day, but its strength seems to be no indication of the lethat power of the saliva. That the solution of saliva thus obtained contains a very powerful poison is shown in the following experiments:

Experiment I.-Nov. 11, 1896. The Heloderma was caused to bite on paper three times. The

* In order to test my materials, and some other things as well, the followiner preliminary experimente were performed, the first repeatedly:

Expenimext.-A sample of filtor paper was soaked in water, which was then injocted subcutanconsly in front of the wing of a pigeon. During two hours there was no eflect, and the next dag the hird was still well.

Exiefimast. - Mixed human saliva with an equal quantity of waterame injectod about twenty minims in wing of pigeon at 12.01 P.M. No eflect. Next das Werll.
 pigeon. No eftect.
water solution-about twelve minims-was then imjected subcutaneously in front of the shoulder of a pigeon at 3.18 P.M. In three minutes the pigeon was no longer able to stand, aud fell over on its side with eyes closed. At the end of the tenth minute the bird was unable to hold up its head when raised by its wings. During the eleventh minute respiration was in gasps, and at the end of the eleventh minute the pigeon was dead. [No local effects; heart beating regularly.]

Experiment II. - Nov. 12, 1896. Monster was caused to bite seven times during about as many minutes. Saliva then dissolved in about seventy minims of water, of which ten minims were injected under the skin in front of right shoulder of pigeon, at 11.24 A.M.
11.28. Pigeon barely able to walk.
11.29. Not able to walk.
11.30. Cannot stand; lies on side; eyes closed.
11.31. Head nods; respiration is forced.
11.32. Muscular straining; head drawn back between shoulders.
11.33-38. Respiration greatly forced; bill opens and shuts with each breath.
11.39. Violent contractions of caudal muscles.
11.40. Violent contractions of head and wings.
11.401. Head falls forward onto talle.
$11.40 \frac{1}{2}$. Death.
No local effects; ventricles empty, auricles full of clots; blood almost black.
If these experiments leave any room to doubt that the bite of the Gila Monster is poisonous it is entirely removed by the results of a large number of experiments which I afterwards performed and in which death followed the injection of Heloderma saliva quite as certainly and almost as quickly as when rattlenake renom is used.

It now hecame of interest to learn whether this powerful poison is affected by boiling or decay, or the presence of alcohol, ete.

The Effect of Boiling.-Two experiments were performed which show that the poisonons properties of the saliva are not injured by boiling. The solution becomes opaleseent and, if boiling be prolonged, loses its odor or gives off one similar to that of boiled barley.

Experiment III. - Nov. 12, 1896. The Heloderma was caused to bite seven times during about as many minutes. Saliva then dissolved in about seventy minims of water. Ten minims of this solution, having been boiled a few seconds, were injected under the skin of the right shoulder of a pigeon, at 2.21 P.M. The temperature of the pigeon before injection was $104^{\circ} \mathrm{F}$.
2.22. Sits down, but is able to stand when frightened.
2.26. Sits down.
2.27. Sits down immediately after being caused to stand, seems dizzy.
2.29. Lies on side; temperature 100°.
2.34. Cannot stand; temperature 98°.
2.36. Violent respiration; temperature 96°.
2.38. Violent resuiration; temperature 98°.
2.39. Violent respiration; temperature 100°.
2. 421.2 . Violeut respiration ; temperature 1011°.
2.45. Violent respiration; temperature 100°.
2.48. Respirations about 108 per minute; temperature 99°.
2.50. Temperature 100°.
2.53. Respiration more Jabored ; temperature 99°.
2.54. Temperature 98°.
2.55. 'Temperature 97°.
2.56-57. Temperature 93°; respiration short and forced, 39 per minute.
2.58. Wheezing; vomits.
2.581. No motion except quivering of wings; temperature 90°.
2.59. Wings and tail fiapped twice.
3.00. Dead.

No local effect; small clot of blood in base of right lung; ventricles full of black clots; auricles beating; arteries empty; veins dilated with blood.

This experiment would seem to show that the action of the poison is slightly delayed by boiling. Experiment IV shows that such is not the case.

Experiment IV.-Nov. 14, 1896. Ten minims of the solution used in experiments II and III were boiled about five minutes on Nov. 12, and again Nov. 13 and 14 , and then were injected under the skin of a pigeon's wing at 3.30 P.M.
3.34. Respirations 32 per minute.
3.37. Staggers about with peculiar circular motion.
3.39-40. Respirations 48 , becoming constantly more forced, so that at end of minute tail moves up and down.
3.42. Cannot stand.
3.44-45. Respirations 49.
3.46. Falls on side.
3.47. Head nods; pupil seems slightly dilated.
3.52. Respirations 47, irregular.
3.53. Bill begins to open and shut.
3.54. Convulsive action of wings and head, head drawn under to breast.
3.55. Death.

The Effect of Decoly. When a solution of saliva is allowed to stand for a few days it son begins to decay, and this process continues until astrong odor of putrescence is given off and a muddy sediment appears at the botome of the liguid. After this had occurred, very large doses of the solution were ingected into pigeoms without producing the slightest illeeffect. Decay, then, appears to destroy the lethal power of the saliva, hut my experiments are not absolutely condusive because the solution was not tested while fresh.

Experisient V.-Saliva of several bites was collected, November 14, and dissolved in about ten minims of water per hite. November 16 there was a marked odor of decay. November 23 the odor of putresceuce was very strong and the liquid appeared muddy with a slight sediment. At 2.31 P.M., ten minims were injected under the skin in axilla of pigeon whose temperature at 2.29 (when frightened) was $106 i^{\circ}$.
2.35-36t. Respirations 3 3 .
2.40. Temperature 105°.
2.44-45. Respirations 32.
3.09. Temperature 104°.
3.10-11. Respirations 32.
3.28-29. Respirations 82.
3.31. Temperature 104°. Repeated injection.
3.33-34. Respirations 34.

3,55-56. Respirations 32.
4.21-2\%. Respirations 33.

November 24, etc. Still perfectly well.
Experiment VI.—December 1, 1896. Injected forty minims of solution used in experiment V under skin of legs and wing of pigeon at 12.45 P.M.
4.30. Still no effect.

December 2. Well.
The Effect of Dryiny.-That drying does not affect the power of the renom was shown by the following experiment, although the dose was too small to canse death.

Experiment VII.-December 1, 1896. A small quantity of the solution used in experiments II, III and IV, having been dried, was redissolved in water and injected subcutaneously in a pigeon at 3.40 P.M.
4.10. Respiration slightly forced.
4.:0. Cannot walk well.
4.45. Very " tame;" respiration forced.

December 2. Pigeon recovered.
The Effeet of Alcolol.-When alcohol is added to a water solution of saliva, the solution becomes opalescent, as when boiled. This change in color is probably due to the formation of a finely divided almminous coagulate. It is not removed by filtration through paper. Alcohol does not influence the action of the renom.

Experiment YHII.-About twenty minims of the solution used in experiments II, III, IV and VII was mised with an equal quantity of ninety-five per cent. alcohol, November 14. About half of this had evaporated when ten minims of the remainder were mixed with ten of water and thrown down the throat of a pigeon at 11.25 A. M., November 18.
11.46. Seems well.
2.15 P.M. No effect.
2.26. Injected the other ten minims in left axilla.
2.29. Shows uneasiness of left wing and cannot always control it.
2.291. Sits; cannot walk.
?.30. P'upils contracted ; cannot stand.
2.31. Lies on side; respiration convulsive.
2.32. Respiration still more labored.
2.33. Seems unable to feel pinching of legs.
2.37. Rate of breathing very greatly increased.
2.38-39. Respirations 62.
2. $40-41$. Respirations 84 .
2.43 -44. Respirations 64 .
2.45-46. Respirations 53.
$2.46-17$. No respiration; convulsions.
2.48. Death.

Auricles beating; ventriclez still; blood black, clotted; auricles and veins full; ventricles and arteries empty; slight extravasation in coat of small intestine near head of pancreas; no local effect.

Sinety-five pre eent. aleohol when added to madiluted saliva does not injure its poisonons propertits, mor doen the aloohol act as a solvent of the remom, athough its solubility in water is mathecterl.

Expmanent IN.-November 2:3, 1896.
a. Filter paper containing saliva was washed in about one ounce of alcohol for about twenty hours. The alcohol was then poured into an open dish. As soon as evaporation began a thin white scum appeared on the surface of the alcohol, but did not increase much as evaporation proceeded to dryness. This scum was not soluble in water, even after the addition of salt (NaCl). Placed under the skin of a pigeon, it produced no effect.
b. The alcohol-washed paper was soaked during a few minutes in sixty minims of water. Twenty minims of this water were injected under the skin of each wing of a pigeon at 3.25 P. M., November 24. Half an hour later twenty minims were injected into the left leg.
4.07. Pigeou sits down.
+.12-1\%. Respirations 45.
4.15-21. Stands on right leg only.
4.22-23. Respiratious 54.
4.23-24. Respirations 49.
4.25. Temperature still normal, $10 \geq{ }^{\circ}$
4.35. Temperature 99°.
4.39-40. Respirations 48.
4.42. Temperature 98°.
4.44-4\%. Respirations :35 per minute.
4.t7. Temperature 96°. Slides along on breast when trying to walk.
4.47-48. Respirations 44, very weak.
A. P. ※ーVOL. XIX. A.
4.is. Temperature 96°.
$4.58-54$. Respirations 44.
4.5if-57. Respirations 31.
4.5.5. Temperature 96°.

万.00-01. Respiration, wheezing pants.
5.01-02. Respirations, wheezing pants, 21.
5.02. Temperature 966°. Death without struggles.
 its eflecotivencs, though this seming injury may be due to the slowness with which the wrerine is absmbed, preventing the poison from reaching the circulation rapidly enough tor rexult fatally.

Experment X .-Paper containing saliva of four bites was placed in about forty minims of glycerine and left for some hours. The glycerine, having been extracted, was injected in the breast muscles of a pigeon at 12.10 P.M., December $4,1896$.
1.00. Still no effect.
5.15. Still no effect.

December 5. Well, but with yellowish-white swelling on breast.
December 17. Well, but breast muscles sloughing. Used in experiment XII,
Experiment XI.—December 4, 1896. Since it was quite possible that the poison had not been dissolved by the glycerine, the paper used in the last experiment was well washed in alcohol to remove glycerine, and then, after the alcohol had been removed by pressure and evaporation, was placed in water (thirty minims). This water was injected into a pigeon at 3.15 P.M.
3.30. No sigus of poison.
5.15. No effect yet.

December 5. Well.
December 8. Well.
Experiment XII.-December 17. Saliva of the lower jaw from about three bites was collected and divided into two parts, one slightly larger than the other. The larger part was then soaked in glycerine, a little more than one-half of which was afterward injected in leg of pigeon used in experiment X.
4.35 P.M. Injected subcutaneously.
5.30. Seems slightly drowsy; "otherwise well.

December 18. Found dead.*
Experniext XIII.-December 17, 1896. To test the power of the saliva used in experiment XII the smaller portion of the saliva-soaked paper was placed in a small quartity of water, and one-half of the resulting solution injected in the breast muscles of a pigeon, December 18.
4.07. Injected.
4.30. Bird sitting; staggers when raised.

[^1]4.31-32. Respiration still normal, i. e., 35.
4.35. Can still stand.
4.36-37. Respirations 30.
4.39-10. Respirations 31.
4.46-47. Respirations 29 ; sits with eyes closed.
4.53. Does not notice loud noises, as stamping on floor; cannot stand.
4. $55-56$. Respirations 31.
4.58. Head moves from side to side, slightly.
4.59-5.00. Respirations 30 .
5.03-04. Respirations 34, slightly forced.
5.09-10. Respirations 34, slightly forced.
5. $1: 3-14$. Respirations 4%, a little more forced; head nodding.
5.15-16. Respirations :36, nearly normal.
\therefore-18-19. Respirations 32, slightly forced.
5.21-22. Respirations 50, much forced.
5.23-24. Respirations 32, convulsive.

万.24-25. Respirations 23, convulsive.
5.25 . . Raises tail and flaps wings.
5.26-27. Respirations 13, weak.
5.28. Heart still beating strongly and regularly.
5.30. Death.

Heart irritable and nerves of pectoral muscles, etc., likewise; blood very dark, semi-liquid, coagulating quickly; no local effects.

The Himmens suliva.

There is, then, in the saliva of the Gila Monster a rery powerfal poison which may be subjected to very rough treatment without imparing its lethal vigor. This prison is present in the sulier of one jore only. If, when collecting the mouth thats, the rubber be propery placed between two laters of paper, the saliva from eateh jaw may be reatily obtained mmixed with that of the other. When thus ohtaned and disadred in water, the saliva of the upper jaw is a yellowish liguid, usually more or lest tinted with homel. slighty alkaline, without any odor, and absolutely harmless at the very time when the lower jaw is flooded with deally venom. 'The quantity of saliva whiche may be conllected from the upper jaw at any one time is only a little less than is ohtamable from the lomer ; but in one case all of the saliva from the upper jaw was injereter into a piexem withont censing the slightest ill effect, while one-fifth of that ohtained at the same time fiom the lower jaw caused death in fifty-two minutes.

The following experiments are quite numerous emomeh to show heromm doulte the difference in effect betweren the two kinds of saliva.

Experimett NIV.-November 2l, 1896. Saliva of upper jaw from four bites was dissolved in water one-half of which (ten minims) was injected into a pigeon at 11.40 A.M.
3.08. Still no effect; repeated injection.
5.40. Still no effect.

November 2.5. Well.
Experiment MY. - November 24,1896 . Same as last experiment, but with saliva of lower jaw in another pigeon.
12. 15 P.M. Temperature 104°.
12.17. Injected.
12.20-21. Respirations 31.
12.27-28. Respirations 31.
12.3.). Temperature 100°.
12.36-37. Very " tame." Respirations 38.
12.38. Sways backward and forward.
12.39-40. Respirations 32.
12.42. Temperature 98°.
12. 47 -48. Respirations 30 .
12.50. Very drowsy. Temperature 97°.
12.54-55. Respirations 34, irregular.
1.03-04. Respirations 28, labored.
1.06. Temperature 95°. Can still stagger when placed on feet.
1.09-10. Respirations 38 , very irregular.
1.11. Temperature 96°.
1.16. Temperature 95°.
1.17-18. Respirations 42, greatly labored.
1.23. Temperature $9 \mathbf{7}^{\circ}$.
1.24-25. Respirations 46, bill opening and shutting. Can still walk slowly.
1.28-29. Respirations 55.
1.30. Temperature 96°.
1.33-34t. Respirations 52. Can barely walk.
1.36. Temperature 96°.
1.37. Cannot walk.
1.37-38. Respirations 54.
1.46. Temperature 94°.
1.47-48. Respirations 49, head nods.
1.53. Temperature 94°.
1.54. No respiration.
1.55. Temperature 93°.
1.56. Death with conculsione.

Experiment XVI.-November 25, 1896. At 2.15 P.M., injected a pigeon with all of solution of saliva of upper jaw from four bites.
2.30. Still mo effect.
2. 40. Still no effect.
3.07. Still no effect.
5.05. Still no effect.

November 26. Well.
Experiment XVII. - November 25, 189\%. Injected one-half of the solution of lower-jaw saliva from same bites as last experiment.
?.02-0:3. Respirations 87; temperature 104°.
$\therefore 06$. Injected as above stated.
.).14. Temperature 102°.
3.2:-24. Respirations : 88.
$\therefore .27$. Very" tame," temperature 98°.
$\therefore 28$. Cannot stand.
$3.28 \frac{1}{2}-29 \frac{1}{2}$. Respirations 5\%.
3.30. Temperature 98°.
3.32-33. Respirations 45.
:3.33. Temperature 98°.
3.37. Temperature 98°.
3.38-39. Respirations 45.
3.40. Temperature 96°.
3.40-41. Respirations 45.
3.51 . Temperature 94°.
3.5;-54. Respirations 4\%.
3.56. Temperature 94°.
$3.58-59$. Respirations 45.
4.07. Temperature 93°.
4.15-16. Respirations 51.
4.21. Temperature 93°.
t.27-28. Respirations 26.
4.29. No respiration.
4.30. Death.

Heart (auricles and ventricles) beating strongly when exposed at $4 .: 11$ and until t.31; blood in veins; arteries and ventricles empty; no local eflect.

Experiment XVIII. - November 28, 1×96. Injected all of solution of saliva from upper jaw, in pigeon, at 11.55. No effect.

Experiment XIX.-November 28, 189\%. Injected all of solution of saliva from lower jaw (same bites as last experiment) in pigeon at $12.15 \mathrm{P} . \mathrm{M}$.
12.19. Tips forward on legs, therefore cannot stand still.
12.20. Seems dizzy.
12.201. Sits.
12.22. Can walk well.
12.24. Very "tame;" hardly able to walk.

12,27 . Can stagger with help of wings.
12.34. Respiration terribly labored, loud, wheezing pants, about 28 per minute.
12.39. Head drawn far back; still panting.
12.40. still panting, but more slowly and weakly, 24 per minute.
12.41. Strugres, lies on side with head on floor.
12.42. Respiration practically stons.
12.421. Dead.

Experiment NX .-December 1, 1896. Injected solution of saliva of upper jaw from two bites, at 12. 30 P. M.
1.30. Pigeou has shown no signs of poisoning.
3.30. Still no elfect.
t.:30. Still no etfect.

万.00. Still no effect.
December 2. Well.

Experiment XXI. Injected solution of saliva of lower jaw from same two bites (experiment XX) at 2.25 P. M., December 1, 1896.
$\therefore .25$. Totters; lies down when set on feet.
4.00. Totters, leaning forward.
4.10. Can still totter.
4.20. Cannot rise or stagger.
4.30. Muscles all tense; bill opens and shuts.
$4.30 \frac{1}{2}$. Respiration ceases.
4.31. Death.

Experiment XXII.—December 2, 1896. All of the solution of saliva of the upper jaw from three bites was injected under the skin of the wing of a brown pigeon at $3.05 \mathrm{P} . \mathrm{M}$. without any effect.

Experiment XXIII. - December ², 1891. Two fifths of the solution of lower-jaw saliva from the same three bites as last experiment were injected under the skin of wing of a pigeon at 3.15 P. M.
3.25. No effect yet.
3.28. Staggers slightly; sits immediately; respiration slightly forced.
3.32. Respiration very rapid-forced.
3.36. Respiration very slow but labored.
3.40. "Skates " on breast when trying to walk.
3.4\%. Convulsive guivering of wings.
3.44-45. Convulsive quivering of wings.
3.45. Lies stretched out on floor; convulsive respiration; wheezing with each breath.
3.48. No respiration.
3. 4×2. Death.

Experiment XXIV.-December 2, 1896. Two-fifths of the solution used in the last experiment (XXIII) were injected in the breast muscles of a slate-colored pigeon at 3.16 P.M.
3.25. - Barely able to walk.
3.26. Not able to stand; respiration forced.
3.28. Lies on side with head drawn back.
3.34. Respiration very rapid and convulsive, bill opening and shutting; head twisted on side.
3.39. Respiration ceases.
3.391 . Apparently dead.
3.40. Heart still beating.

Experiment XXV.-December 2, 1896. One-fifth of solution used in experiments XXIII and XXIV was injected in a gray pigeon at $3.20 \mathrm{P} . \mathrm{M}$.
3.25. Respiration deeper.
3. 42-43. Respiration very rapid and shallow, 148 per minute.
3.51-52. Respirations 167 ; can still walk, but sits immediately.
3.58-59. Respirations 168.
4.02. Cannot stand.
4.04. Slight trembling.
t.05-06. Respirations 149.
4.08. Head drawn back; bill opens and shuts.
4.09-10. Respirations 62.
4.10. Slight general contractions of muscles.
4.11)-111. Respirations 4.
$4.11 \frac{1}{2}-12$. No respiration.
4.12. Death.

Expfinent XXVI. - December 8, 1896. Solution of upper-jaw saliva from one bite injected in breast of a gray pigeon at 3.08 P. M without effect.

Experiment XXVII. -December $x, 1896$. One-half of solution of lower-jaw saliva, same bite as experiment XXVI, was injected in breast muscles of a gray pigeon at 3.16 P. M.
3.26. Pigeou very quiet.
4.00 Drowsy.

December 9. Well.
December 18. Well.

The sumber of sumy.

We have seen that two very difterent flaids are present in the month of the I felndermat the onc-from the lower jaw-apable of cansing profound disorder when introduced into the cirenlation of pigeons, the other-from the upper jatw-producing no more effect that so much water. What are the sources of these flaids?

In Hetudermen sumpetum, there are two large glames, one on each side of the anterior pate of the lower jaw between the win amd the bome. When one of these glands haw been freed from its outer shath it is fomed to be bot a single gland but a series of three of four glands. eath perfectly distimet from the nthere and emptied by a separate duct. These ghands increase in size posteriorly, so that the last is very much larger than the first. They vary in number becanse of the occasional mion of the first and second glands, or the presence, posteriorly, of a small, isolated, ductless portion. Their ducts open between the lower lip and gum, as deseribed by stewart. It is shown later on that these are the renom-producing glands.

No glands have yet beem demeribed asexisting in the upper jaw ; indeed there seems to be no rom there for a well-developed gland. Neverthelest, paper which comes in contact with the uper jaw during the hite collects almont as much fluid as is obtained from the lower jaw. This, however, is true muly when the paper is hitten a very few times. The saliva of the upper jaw is exhansted moch more quickly than that of the lower. This fact, taken in connection with the absence of known glands, might lead one to sumped that the upper jaw receives its saliva from the lower and holds it in the eomplicated folds of its gums. This might perhaps he true if one or more segments of the sub)labial glands secreted a harmles floid, but the following experiments show that all are spectialized for the protuction of renom. I helieve that the harmless saliva is secreted by minute glands which lack of material has prevented me firom finding-that it is in fact the ordinary hoceal liquid of lizards. That it is present in the lower jaw as well as in the upper would seem to be shown by the fact that the fluids of both jaws are decidedly alkaline, while a solution of the porson gland itself is quite neutral.

The following experiments were performed to show that cach part of the sublabial glands is devoted to the production of remom:

Expernment XXVIII.-January 5, 1897. Soaked the first portion of the right sublabial gland in water and injected the resulting solution (three minims) into the breast muscles of a small finch, at $12.26 \mathrm{P} . \mathrm{M}$.
12.28. Respiration forced; eyes closed.
12.29. Respiration greatly forced.
12.31. Flutters.
12. 312 . Convulsions and death.
12.33. Heart beating weakly; blood dark but lightens quickly.

Experiment XIIN. -January 5, 1897. Soaked the second portion of the right sublabial gland in water and injected solution (four minims) into breast muscles of a small finch, at 12.00 M .
12.04. Eye nearly closed; respiration normal.

1:05. Respiration slightly forced.
12.051. Bill begins to open and shut.
12.07. Respiration greatly labored.
12.08. Convulsions followed by death.
12.10. Heart still beating; blood dark, lightens slowly.

Experiment XXX. Treated the third portion of right sublabial gland as the first and second were treated in experiments XXVIII and XXIX, and injected four minims into a small finch at 11.34 A. M.
11.35. Wheezes; sitting down; eyes closed; tail moving up and down with each breath.
11.36. Same, but bill opening and shutting.
11.37. Does not open eyes when handled.
$11.37 \frac{1}{2}$. Respiration very short and jerky.
11.38. Respiration ceases, followed by couvulsions and death.
11.41. Heart still beating, empty; blood dark brown, reddening very slowly.

Experiment XXXI.-January 5, 1897. Injected four minims of solution of fourth portion of right gland into a small finch, at $11.07 \frac{1}{2}$ A.M.
11.081 . Unable to stand erect; head drooping.
11.09. Respiration labored.
$11.09 \frac{1}{3}$. Respiration greatly labored.
11.10. Bill opens and shuts.
11.11. Bird falls on side.
11.121. Respiration in gasps.
11.13. Convulsions and death.

Heart responds to mechanical stimuli; blood black but becoming red on exposure.

Experiment XXXII. Injected five minims solution of first portion of left sublabial gland into a small finch, at 2.41 P.M.
2.42. Eyes closed.
2.45. Respiration labored; bird leaning on side.
2.46. Almost unconscious; bill opening and shutting.
2.47. Convulsions.
2.473. Death.

Experiment XXXIII. Injected six minims of water into the breast muscles of a small finch without effect.
mif. The physiological action of heloderma ponson.
When a pigeon has received an ingection of Gila Monster saliva it at first whow no ill effects, and feeds or fights with its fellows ath hefore. Som, however, it hegins to wink very frequently, and ceases to show interest in anything about it. It stands thus for a A. P. S.-vol. wix. 2 b.
longer or shorter time and then sits down. If now it be frightened into attempting to Walk, it appears dizay and stagers about, or, if mable to stand, slides along on its breast. If not calused to arise, it never dues so of its own accord, but becomes more and more drowsy and sits with eyes choed. The rate of respiration now becomes very rapid for a time, but son the heathe are shallower and then gradually fewer and fewer. The legs become more or less paraly\%ed, hut the wings retain their power, although the courdination of their motions sometimes is destroyed. The temperature falls as the respiration becomes slower. The hird rolls over on its side. The head is drawn down orer the back. Respiration becomes nothing more than a series of wheezing gasps, with each of which the hill opens and shuts. The head falls formard to the floor. The pigeon is unconscious. Breathing ceases. There may be slight convulwions followed by death, or death may come quictly.

If the pigeon now be opened, it is found that the blood is rery dark-often almost bhack instend of red or bue. The heart either is beating or responds readily to mechanical stimuli. The arteries and usually the rentricles of the heart are empty, while the reins and anriclen are full of blood which ustally is more or less cloted. There is no trace of discoloration about the proint of injection, nor is the slightest extravasation of hood to be found in any of the organs.

With all these facts in view, it is very evident that death is due to asphyxiation ; to the failure of the blood to provide the varions tiswes of the body with the oxygen necessary for their welfare. But, although we may say that death is due to asphyxiation, we have not really answered our question, for there are several ways in which this failure on the part of the bood might be brought about :

1. If the poison anded upon the nerve centres which control the movements of respiration in such a way as to interfere with the action of the lungs, the blood would be mable to procure its naal supply of air. We have seen that there is a very decided disturbance of the repiratory function. \dagger It may, perhaps, be due to direct nerre-poisoning; but I am inclined to helieve that it is entirely a secondary phenomenon.
\therefore. If the poison caused a breaking down of the capillaries of the lungs-such as Martin+ clams to have found in certain cases of death from the renom of the Australian hack snake-the same effect would be produced, but there appears to be no such change.
\therefore If the action of the heart became eradually weaker-an Mitchell and Reichert have stated of their experiments-the flow of blood would be diminished and the tissues

[^2] -

would not receive their nomal amount of oxygen. In all my experiments the heart continued to beat regularly long after respiration had ceased, so that this cannot have been the caluse of death.
4. If the perison acted upon the blood in such a way an to destroy its power to carry oxygen-as ('unningham *says is true of eohra renom-or,

万, if the prism cansed the formation of clots in the reins, thus stopping the flow of Wood-as Martin tells we the vemom of the Anstralian black smake does-in either case the effect would be the same as if the action of the lungs were to cease.

The sudden death of my (iila Monster prevented me from testing these possible calses of asphyxiation from its poison, hat I shall not be surprised if it be found that in one or both of them exists the explanation of the phenomena exhibited.

But perhaps I should limit this statement somewhat, for Mitchell and Reichert state bery pratively of their experiments that death was occasioned by the action of the prison upon the heart. Here is an apparent contradiction of my results, and by the highest American authority upon reptile poisoms; but the seeming contradiction disappears, perhaps, when we recall that Dr. Mitchell's Gila Monster saliva was less dilute than mine, and that it is known of some serpent poisons that "with higher concentration of renom the hart is the more rapidly affected, but the contimuous operation of the poison in small concentration more quickly affects the respiratory" system.

IV. NOME CALSEN OF DIVERSITY OF OPINION.

We have now reached our last question: Why has the bite of the Gila Mronster so oftem been considered harmless?

Several reatons must, I think, already have suggested themselves. Dr. Shufeldt, it will be remembered, was severely bitten on the thumb, and concluded that the bite of the Gila Monster is no more poisonous than that of other angry amimals; for example, a cat. But Dr. Shufeld expresely states that the wound was made by the upper teeth penetrating to the bone, and we have already seen that the saliva of the upper jaw is harmless at all times, the renom being confined to the lower jaw.t So it well may be that Dr. Shufelat owes his life to the circumstance that the injury to his thumb was inflicted by the upper instead of the lower teeth of the Monster.

This same fact will account for the experiences of other authors who have thought the hite of this reptile harmless, but there are other reasons for the occasional failure of the Heloderma to inflict a deadly womd. The teeth, although sharp and long, are very weakly fastened to the jaws, and often so many of them have been broken out that the

[^3]Monster is unable to inflict a wound at all. Even if the teeth are in working order the chances of the poison finding its way into the wound are very few, for the teeth are not directly connected with the poison glands, and the latter are below the fangs instead of above as in poisonous smakes. The prison simply flows out onto the gums below the teeth, and, to be effective, has to be foreed up into the wound. Unterse the flow of saliva be abondant and the teethall present and forced into the bitten flesh so deeply as to press it down upon the poison ducts where they open between the lip and the gum, it is difficult to see how even the smallest quantity of poison could enter the wound, even though the teeth are grooved to afford it a passage. The strange thing, then, is not that bitten animals should sometimes survive, but that they should sometimes die.

Nevertheles, small animals often do die from the bite of this, the only poisomons lizard, and we must believe that a renom which can kill a pigeon in seven minutes and a rabhit in less than two might easily under favorable circumstances cause a wound to prove fatal even to man-a belief which is rendered far from improbable by the extraordinary virulence of the poison and the lizard's habit of holding like a bulldog to whatever it bites.

V. BHBLIO(iRAPHY.

1651. IVERANDEZ, F - Historise animalium et mineralimm Novie Hispanixe, p. 315.
1652. Wiegmaxi, A. F.-Ueber das Acaltetepon oder Temacuilcahuya des Mernandez, eine nene Gattung der saturer, Heloderma. Isis, pp. 627-629.
1653. Gray, J. E.-On the Genus Necturus or Menobranchus, with an Account of Itskull and Teeth. Proc. Zöll. Soc. Lond., P. 62.
 chices des scien. phays. (t mut.). XIX, pp. 45-61. [Reprint pp. 1-5.]
1654. Sumicurast, F.-Notes on the Habits of Some Mexican Reptiles. Aumek ume Jh!f. Sut. Mist. (3), XIII, pP. 497-500.
1655. Cope, E. D.-[Remarks.] Proc. Ac. Fat. Scl. Philu. p. 5.
 LXXVII, Pp. 1069-1071.
1656. Bocount, F.—Observations sur les mands de l'Heloderma horridum, Wiegmanm, par M. F. Sumichrast. Comptes Remelus Actel. des Sciences, IAXX, pp. 67G-6\%9.
1657. VArbow, H. C.-Report upon the Collections of Batrachians and Reptilesmade in Portions ot Nevadat. Ltah, Califormia, Colorado, New Mexico and Jrizona luring the years 18\%1, 18\%\%, 1873, and 1sit. U. S. s゙ure. W. 100 औh Herie., V, pp. 562, 563.
 306, Pls. XX E, Figs. 1-12, XX (\mathbf{r}, Figs. 1, 3, 6, 7, 8, 9, 10, 11.
1658. Sumichrast, F.-Bulletin de la fociété \%oologique de France, 1. 178.
1659. Amemican Nistubnifist.-[Note.] Im. Nif., NVI, 1. 842.
1660. HoUx.ENGFi, G. A.—[Remarks.] Hoc. Koäl. soc. Lomd., p. 631.
1661. FAYMER, J.-[Remarks.] lroc. \%oöl. suc. Loul., p. 632.
 Bd. V, pp. 2-16, PI. III.

 ！10\％， 908.

 H 11

 the（ibla Monster．Merkiorl Vers．Phila．．XILI，No．8，Feh，24，pp．209－212．
1s8．Hocradart，G．A．－Catalogne of the Lizards in the British Museum，Vol．II，pp．300－302．
188．Gextuer，A．C．－Biologia Centrali－Intricama，Reptiles，mp．43，44，Pl．XXYI．
185\％．Bexmme，（․ E．－Whip Scornion and the Gila Mouster．Forest and Stream，XXIX，4，Iug．18，pp．64，6⿹勹巳．
1887．Siffeidit，1R．Wr．－The Gila Monster．Foreat dred stretm．XXIX，2，Aug．4，p． 24.

1888．La mbock，J．—［Lecter from S．A．Treadwell．］Proc．Zoül．soc．Lond．，p． 966.
1889．Mrtchel，S．W．－The Puison of Serpents．（＇tutury Mequzine，XXXVIII，4，p． 505.

1890．Shffelpt，IR．WV．CContributions to the study of Helodemer anspectum．Proc．Zool．Soc．Lored．，pp．148－244， Pls．XVI－NVIII．
1891．Bothencrer，（r．A．－Notes on the Osteology of Heloderthe horritum and $I I$ ．suspectum，with Remarks on the Systematic Position of the Helodermaticle and on the Fertebre of the Lacertilia．Proc．Zool．Soc． Lomet．，1 1p．109－118．
1891．Boulenger，（i．A．－The Inatomy of Heloderma．Niture，XLIV，p． 444.
1891．Shufelit，IR．W．－The Poison Apparatus of the Heloderma．Tuture，XIIII，p． 514.
1891．Shufelidt，R．W．－Firther Notes on the Inatomy of the Heloderma．Suture，XiIV，1）． 294.
1891．Shyfeint，R．W．－Some（Opinions on the Bite of the＂Gila Monster＂（Ifelodemat suspecturn）．Nreture＇s Realu，II，4，April，P！．125－1：29．
1891．Sncfelot．R．W．－Medical and Other Opinions Lpon the Poisonous Nature of the Bite of the Heloderma． Seic Fork Merlenl Journul，LIII， 21 （651），May 23，pp．581－584．
1891．NTEWART，C．－（n Some Points in the Anatomy of Heloderma．Proc．Zoöl．Soc．Lond．，Pp．119－121，Pl．XI．

ARTICLE TV.

resulits of recent researcies on the eyolution of the steliar systems.
(Plates IV and V.)
BY'T.J. J. SEE, Д.M., PП.I). (BERTIN),
ASTRONOMER AT THE LOWELL OLSERVATORY.
Read before the American Philosophical Society, January 7, 1898.

It is now two hundred and eleven years since Newton published the Principiu, embodying his grand generalization of the law of gravitation, and the proof of this law for the most obvious and fundamental phenomena of the solar system. Geometers have since been occupied with the development and extension of the principle discovered by the illustrious Newton, and have finally explained with almost entire satisfaction the motions and attractions of the planets, satellites, comets, and other bodies which revolve about the sun. This great development can hardly fail to excite the admiration of those who contemplate the history of scientific progrese, and most be accounted one of the most noble and enduring monuments of the human mind. So sublime an achievement has required the combined labors of a long series of men of transcendent mathematical and mechanical genius, each building upon the foundation laid by his predecessors. Though many distinguished geometers have borne an honorable part in this remarkable development of Physical Astronomy, it will not be inappropriate to point out the great credit for the perfection of the Newtonian theory due to Clairatut and Euler, Lagrange and Latplace, Gauss and Hansen, Adams and Leverrier. Among living investigators in mathematical astronomy the names of Hill and Neweomb, Darwin and Poincare oceupy the foremost place. These great men have brought the mechanics of the hearens to so high a state of perfection that in almost every case we may now predict the heavenly motions as accurately as we can observe them. In view of the rapid perfection of telescopes and other instruments of precision, this achievement, from the intricacy of the analysis required in the problem, and the abstruseness of the methods used in the reduction of
(b)eervations, must be ranked as incomparably the most profound yet attained in any branch of Physical science.

Notwithstanding these splendid trimmph of the science of Celestial Mechanics, an even greater and more recondite work remains to be done in a closely related field. This is the inventigation of the origin and eomical history of the planetary and other systems ohserved in the immensity of space. Eyen if some eredit for pioneer work on this problem be assigned to Kint, or, more remote still, to the Greeks of the pre-Socratic age, it yet remains true that Laplace is the real discoverer to whom we are indebted for the first ideas which proved fruitful for the advancement of science. About a century ago this great geometer outlined for the solar system the celebrated Nebular Hypothesis, upon Which nearly all subsequent investigation has been based, and which has since been substantially confirmed, though but very little modified until within the last twenty-five yeurs. Passing ower as irrelative in the present discussion the early work of Herschel and Ruse, Helmholtz and Kelvin, Neweomb and Lane, we come down to the modifications introduced by Darwin about 1880.

In extablishing the theory of gravitation, Newton assigned also the true cause of the tides of the seas, though his explanation carried with it all the defects of the equilibrium theory. Nore than a century passed before the dynamical character of the problem of the ocemic tidal oscillations was clearly perceived, when Laplace developed and applied the true theory with all the penctration characteristic of that great mathematician. Yet in spite of the profundity which marks his treatment of the tides of the oceans, it scems never to have oceurred to him, or at least he made no record of the fact, that the attraction of the moon necessarily produces tides in the body of, as well as in the aqueous layers covering, the carth. We need not be supprised at this omission on the part of Laplace and those who followed him, if we recall that for many years after the perfection of Analytical Mechanics by D'Alembert and Lagrange, the subject was treated wholly from the point of view of material particles, and the resulting system was what is now called Rigid Dynamics. Little attention was bestowed upon the theory of fluid motion, partly because of its intricacy, and partly because there were no obvious applications of the results except in the case of the tides, already treated by Laplace with great penetratration and extreme generality. As mathematicians since the time of Newton had been occupied chiefly with the development of the theory of planetary perturbations along the line of rigid dynamics, it did not occur to them that they were building on a false premise, that in reality the heavenly bodies so far as known are not solid, but fluid, though Laplace with his usual sagacity had long forescen that in the case of our planets the nuchei are covered with fluid layers held in equilibrium by the pressure and attraction of their parts. His grand treatment in the Mécenique Ceteste recognizes the fluidity of
the envelopes of the planets, and exhastively examines the oscillations that will arise therein. Nor did he fail to consider fully the deviations from -uherical form and the probable laws of density for the layers which compere the boties of the planets.
 one hand it brought Physical Astrommy to an mexpetent atate of pretertion, while on the other it produced the impression on the lese ceative mints that there were ne great problems untouched by the mater-mind of Laplate. His work had indecd well-nigh
 of rigid dynamies ; at least subsequent work has been fio the mon fart little more than refinement or perfection of the methods and processes given in the dreamigne celeste. The work of Laplace was devigned for the solar syeme and the idea that the miverse is really compored of thuid bodies, self-luminous stars and motula in space, seems never th have occurred to him, or he would have foreseen that howerer adequate Rigid Dynamico may be for effecting a first appoximation, the true theorice of ultimate (elestial Mechamics must be found mon the laws of viseous fluids in motion. So great is the intluence of tradition that it is difficult for us to realize fully that the stans and nobute are viscous fluids, self-luminous liquid or gaseous mases, and that eren in the solar system the bodies are all fluids of various viscosities. This new point of view resereting the actual facts of the miverse has bronght about an important modification in the metular hypothesis and in the ultimate theries of Cenctial Mechanies, of which we thall now give some account.

About 1875 , (C . II. Darwin, who had qualified himself for the Law and been called to the IBar, on aceount of ill-health, abandoned his profesion to malertake for Land Kelvin some sedentifie work, which among other things included the reduction of a sereat mase of Indian tide obsersations with a riew of throwing light upon the problem of the rigidity of the eath. This work, besides leading Land Kelvin the the chatademelman that the earth as at whole is " probably more rigid than stecl, bot mot quite so rigid ang glase," wat the occasion of the younger Darwin developing the theng of bedily tides, or the theory of the tides which would arise in the earth on su!!meition that it is mot rigid ats at
 While some allusions to bodily tides can be foum ins ciontite literature as far back as

mann motion, it is yot indipatable that Darwin was the firs writer to treat the problem in a fotcmatic, thorough-going and original way. liccounizing that at some epoch in the pais, the earth was pmolly a mase of viscons fluid, he ret for himself this problem: Tondetermine the bodily tidab distortion of the carth, and the effects of this alteration of fisure upon the ortital motion of the moon, and upon the earth's rotation. His papers were communtated to the Royal hociety between 1878 and 1882, and are celebrated contributions to the gencral theory of tides. In these papers he has traced the moon back to choce proximity to the earth, when the two, at the breaking off of the moon, were most probably revolving in about 2 h . 41 m . The moon has since receded from the carth under the action of tidal friction, while the ratation of the earth has been slowed up in corresponding degree. It was renderet certain that in the origin of the Lunar-Terrestrial System, the action of tidal friction had played a prominent, if not a paramount part, and the question naturally arme whether it had not been equally potent in the development of other parts of the sular system. When, however, Prof. Darwin came to apply the results to Wher satellite systems and to the solar system as a whole, it was found that here the effects had been much less considerable than in the case of the earth and moon, owing chiefly to the small masses of the attendant bodies. Thas the major axes of the orbits had perhaps been rery slightly increased, and the rotations corre-pondingly exhausted, hut no ratical change had taken place. Under these circumstances it was natural that Darwin should drop the subject without further search for extension of the principle he had developed.

Dowt November 1, 1888, while I was still an undergraduate at the Missouri State University I became much interested in the origin of the double stars. The immediate canse of my taking up the subject was the Missouri Astronomical Medal, occasionally awarded hy the University to a graduate of highest standing in the Mathematical and Physical siences. Having been informed by Prof. IV. B. Smith that I was eligible to write for the medal, hy virtue of my standing in the Physical Sciences, our conversation drifter on to the probable subject of the 'Thesis, and in this way he was led to sugest a methem of Darwin's work on the origin of the moon. He remarked: "You may find this only a pocket, already worked out, and not a continuous vein of rich ore, hut it sems to me worth thinkiug of. At any rate I would not advise you to write on the orthodox Laplacean Nehular Hypothesis, for that subject is worn threadbare."

The sugretion of a critique of Darwin's work did not cquite meet my approval, for I leared the sulject was already exhansted and would leave no dield for future progress. As I had heen observing varions dumble stars for the past two years, and had seen no suggention rexarding their monle of development, it aceurred to me that perhaps the tidal thenry might find aphliation among the stan. When I had collected such orbits as were
available in the books at my disposal (Humboldt's Cormos, Hershel's Outlines, ete.), I discovered to my surprise that malike the orbits of the planets and satellites, they we very eccentric, though not so eceentric as those of the periodic comets. It was at once evident that it would be hopeless to attempt to explain the origin of the stellar systems, if we could not explain the canse of the high eceentricities of the orbits. The next day I called on Prof. Smith and told him of the diseovery that the orbits are very eceentric, and asked whether he thought I might explain this peculiarity on the tidal theory; rubbing his head for a moment in quiet reflection, he replied: "Oh! I see what you mean; you think the dragging of the tides in the bodies of the stars has protuced the clongation you find in the orbits. Such an idea can hardly be discusced off-hand, hut it is at least worth examining; it may prove fruifful." "That is exactly what I mean," satid I, "and you have correctly interpreted my line of thought." After this conversation, which is here reported exactly as it occurred, there was nothing else before my mind for several days, as I was wholly occupied with finding out whether the problem undertaken was soluble, and, if so, whether it would result in any important Physical Truth. Having established the fact of high eccentricity as thoroughly as the published orbits at my disposal would admit, I set about that same day the problem of explaining the canse of the eceentricities; and as I worked the impression continucd to grow on the mind that since the stars are not solid, but self-luminous Huid bodies like our sum, and the two members of a system comparable in mass, the action of cach body would produce tides in the other, and the lagging of the tides in the two stars would gradually expand and elongate the orbits as now observed in space. And before 1 had obtained aceeses to the learned papers which Darwin had commmicated to the Royal Society, or even to his article "Tides" in the Encyclopedia Britamica, I proved hy an elementary process that when the bodies rotate more rapidly than they revolve, the eceentricity of the orbit would gradually increase. Here then was a result confirmatory of the happe intuition, and for the past nine years my energies have been largely devoted to the extemion ami generalization of the theory of bodily tides in relation to cosmical ewolution.

After concluding my undergrathate studies at the I'nisersity of Misouri, I continued the work at the University of Berlin. It is particularly of that work and the extension which I have since mate of it that I shall speak to-night. 'The theory of tidal friction developed in the Inmenfural Inssertution presented to the Faculty of the E'niversity of Berlin is esentially a special treatment of the general theory an oredrs in nature, while that previously developed by Darwin in connection with the moon and planets is restricted by the condition that the perturting body is very small. I shatl therefore discuss the general case as presented in my own researehcs.

[^4]suppone we dennte an clement of the mass of a pheroid by m, and its distance fiom the axis of rotation h e d : then the moment of inertia is
$$
\mathrm{I}=\sum^{m} \mathrm{~m}^{2}
$$

If the shocroid be rotating with an angular velocity y, then $I y$ will be the moment of momentom of the bely alout its axis. Fon a second boty where moment of inertia is I^{\prime}, and amglar velocity \because, the monent of momentum is $I^{\prime} z$.

Foblowing the amalogy of Darwin's procelure, we choose a system of units designed to simplify the realting erpations. Let nis take an the unit of mase

$$
\begin{gathered}
M \quad M \\
M+1 l^{\prime}
\end{gathered}
$$

and as the unit of length a wate I' weth that the moment of inertia of the spheroid about its axis of rotation shall be equal th the moment of inertial of the two spheroids treated as matcrial prints, ahout their common centre of inertia when distant apart I'. Then we have

$$
\begin{aligned}
& M\left\{M^{\prime} M^{\prime}\right\}^{2}+M^{\prime}\left\{\frac{M}{M+M}\right\}^{2}=I \text {, or } \\
& I^{\prime}=\left\{\begin{array}{c}
I\left(M+M+M^{\prime}\right) \\
M M^{\prime}
\end{array}\right\}
\end{aligned}
$$

Lat the unit of time be the interval in which one pheroid dereribes $57^{\circ} .3$ in its whital motion about the other when distant I°. In this case, ${ }_{\theta}^{1}$ is the orbital angular velocity of the borly. The generalization of Kepler's law given

$$
\begin{aligned}
H^{-2} \Gamma^{\prime \prime} & =\|(M+M), \text { and } \\
\theta & =\left\{\begin{array}{c}
I^{3}\left(M+M^{\prime}\right) \\
n^{\prime}\left(M M^{\prime}\right)^{\prime}
\end{array}\right\}
\end{aligned}
$$

Now sulnere the two stars to remolve about their common centre of inertia in a circular ondit, with an amzular velocity Ω, when the radius vector is ρ. Then the orbital moment of momentum is:

$$
M\left(\frac{M M^{\prime}{ }^{\prime}}{M+M}\right)^{2} \Omega+M\left(\frac{M \rho}{M+M M^{\prime}}\right)^{2} \Omega=\binom{M M^{\prime}}{M \mp} \rho^{2} \Omega .
$$

which in special units is ph. Now the total moment of momentum of the sytem is constant, and is given by

$$
\begin{equation*}
H=I!+I^{\prime}:+U_{2} M M(M+M) \quad \boldsymbol{p}_{2}^{\prime} . . \tag{1}
\end{equation*}
$$

The kinetic energy of orbital motion is

The kinetic energy of rotation is

$$
{ }_{2}^{1} I y^{2} ;{ }_{2}^{1} I^{2}
$$

The potential energy of the system is

$$
-\|_{\rho} \quad M W^{\prime}
$$

By adding all these energies together we get the total energy of the system:

$$
\frac{\varepsilon_{2}}{\underline{2}}=\frac{1}{2} I y^{2}+\underset{\underline{2}}{1} I_{2}^{2}-z_{\underline{2}}^{\mu} \frac{M V^{\prime}}{\rho}
$$

where E is twice the whole energy.
In the system of atecial units, $l, u l / L F$, are equal to unity. If we put $k=\frac{l^{\prime}}{I}$, we shall get

$$
E=y^{2}+1 i z^{2}-\frac{1}{p}
$$

Let $x=\Omega^{-1}$, and then $\Omega^{-4}=\rho^{\frac{1}{2}}, x^{2}=\rho^{\frac{3}{2}}$, and we have finally

$$
E=!n+\because-\frac{1}{n}
$$

If we :uppose the two stars to turn on their ance in the same time in which they revolve in their orbits, so that they show always one face to each other, the motion of the system will be as if the mases were rigidly comneted. This condition is given by

$$
\begin{gather*}
\Omega=!=\therefore o r \\
\Omega^{-}=r=!^{n}=z^{-!}, n \\
r!=1, r^{\prime}=1 \ldots \tag{i;}
\end{gather*}
$$

Aecordingly we have the system of fundamental equations:

$$
\left.\begin{array}{l}
I I=y+h z+x, \text {, lane of momentum, } \\
E=y^{2}+k z^{2}-\frac{1}{x}, \text { suface of energy, } \tag{4}\\
r^{\prime}!y=1, n^{2}:=1 \text { curve of rigidity. }
\end{array}\right\}
$$

These equations represent all possible interactions of the system, but in their present form are very difficult to interpret. The general problem to which they give rise secms to be insoluble, but we can solve and interpret them fully for one particular (ase which is in close accord with the conditions existing in mature; and it is possible to show by analogy that all other cases will be ensentially similar to the one of which we shall treat.

By taking the case of two equal stans rotating in the same direction with equal angular velocities, or substituting (8) of (4) in (1) of (4), we reduce the plane of momentum to a particular line of that plane:

$$
x^{1}-H x^{3}+(1+k)=x^{1}-H x^{3}+2=0, \text { since } k=1
$$

The equation of the energy surface passes into the form

$$
E=\frac{(H-x)^{2}}{1}{\underset{r}{r^{2}}}_{1}^{2}
$$

The curve of rigidity becomes

$$
n=\frac{I}{1}-x, \text { where } n=\sqrt{\prime} y^{2}+z^{2}
$$

Every point in the plane of momentum represents one configuration of the system, i.e., one distance apart, one velocity of axial rotation, one moment of momentum of orbital motion. This point therefore determines the dynamic condition of the system, and by the motion of this point we may discover the changes which are taking place in any case that may be imagined. As we have restricted the plame of momentum to one line, the guiding point representing the conliguration of the system will simply glide back and forth along this line. In the same manner the surface of energy is now restricted to a curve formed by cutting that surface by a certain phane; the guiding point that would slide along the energy surface is thus restricted to one line of the surface given by the transformed equation. [The reader who may devire to examine this question exhaustively must be referreal to my Intumbul Dissertution, Dis Entuickeluny des Doppelaternsysteme, Berlin, 189%, R. Friedliander \& Sohn.]

As the tides raised in the stars are subjected to frictional resistance, energy is

DIAGRAM FOR THE CURVES OF A SYSTEM OF EQUAL STARS, UNDER THE INFLUENCE OF TIDAL FRICTION.
-
thereby converted into heat, and lost by radiation into surrounding space; thes the total energy of the system must decrease with the time. Hence it follows that, howerer the system be started, the guiding point repreventing the contiguration of the system must slide down a slope of the energy curve. In the acompanying illustration the curves are drawn for the value of $H=4$.

If the guiding point is set at " it may move either of two ways: it may slide down the slope tee, in which ease the stars fall together ; or it may slide down the long slope $a b$, in which case the stars recede from eath other under the influence of tidal friction. This latter case is the one of chief interest in respect to systems actually existing in space, and the several other ideal cases need not be diseussed in this paper. The condition at $/$ is dynamically unstable, and correponds to that of the system at the instant when the stars are first separated. At this juncture they rotate as a rigid system, hut as each is losing energy by ratiation, the axial velocities will soon surpass the velocity of orbital motion, and then the tides will begin to lag, and the mutual reaction of the stars will drive them asunder. Thus the guiding point in general slides down the slope ab. This means that as the stars recele from each other, the period of revolution for a long time surpasses that of axial rotation, but that in time the two periods again become synchronous when the guiding point haw reached the minimum of energy at h, where the bodies once more revolve as if rigidly commected.

The question now arises with rapect to the dranges of the eccentricity. The differential equation for the change of the eccentricity is shown to be

$$
\left.\begin{array}{c}
1 d e \\
e d x
\end{array}=\begin{array}{c}
1 \\
2 x x^{3}(H-x)-36 \\
x^{3}(I I-x)-2
\end{array}\right\}
$$

which, on integration, is put into the form
where B is an arbitrary constant; $u, b, u \pm \beta$, are the roots of the biquadratie equation. $x^{1}-M x^{3}+2=0$. Equation (\bar{b}) is illustrated in the lower part of the preceding figure, the origin being shifted downwad to (0' to provent confusion of too many curves in one diagram. Now as the guiding point on the energy curve slides down the slope ab, the eccentricity at first very slighty decrases, then increases slowly, finally much more rapidly, until a high maximum is reached, after which it agan diminishes, owing to the libratory motion in the system. Thas it is clear that as the stars recede from each other, the orbit becomes highly ecentric, but will ultimately become circular when
the system revolves as a rigid body. This last condition cannot come about while the stans are still contracting and shining by their own light, and hence all visible systems are characterized by highly ecentric orbits.

To leave no doubt that tidal friction is a sufficient cause to aceount for the elongation of the orbits of the double stare, I applied the theory to a special case, in which the massen, distances and relocities are known. Taking two spheroidal fluid masses each three times as large as the sun, expanded to fill the orbit of Jupiter, and set revolving in an orbit of 0.1 eccentricity at a mean distance of :0 astronomical units, I find that by tidal friction the major axis of the orbit will be increased to 48 astronomical units, while the eccentricity will rise to 0.57 . In this problem the masses are net rotating at such a rate as will produce an oblateness of about $\frac{2}{5}$, so that the equilibrium is stable. Different conditions will produce different results, but it is easy to see by this numerical example that tidal friction is a sufficient cause to account for the observed elongation of the orbits of double stars.

Though it may be supposed that there could be little doubt of the generality of the law of the eccentricity which I inferred in 1888, yet the importance of this fundamental fact of the universe is so great that I did not feel satisfied till all the observations of double stars had been examined anew and this conchsion touching the eccentricity established upon the most unshakable foundation. At length I have been enabled to show by the most exhaustive inventigation of stellar orbits ever attempted, that the most probable eccentricity is 0.48 ; while on the other hand extremely eccentric and extremely circular orbits are equally rare, and must be referred to some unusual circumstances. Thus of the 40 orbits now well-known, it turns out that none be between the eecentricition 0.0 and 0.1 ; two hetween 0.1 and 0.2 ; four between 0.2 and 0.3 ; eight between 0.8 and 0.4 ; nine between 0.4 and 0.5 ; mine between 0.5 and 0.6 ; two between 0.6 and 0.7 ; four between 0.7 and 0.8 ; two between 0.8 and 0.9 , and none between 0.9 and 1.0. It follows therefore that hy whatever process the stars developed, their orbits assumed a form which is about a mean between the nearly circular orbits of the planets and the extremely elongated orbits of the periodic comets.

Now a double star can originate by hat one of two processes: either such a system is the outgrowth of the breaking up of a common nebula, or it is made up of separate stars brought together in a manner amalogous to that involved in the capture of a comet. That these systems are not the outgrowth of accidental approach of separate stars we may at once affirm; for if we suppose them to be so produced, there being no third disturbing body which acts like the sun in the capture of comets, the eaptured star would recede to a distance equal to that from whence it came. In that event we should ohserve stars moving in pathe of very immense extent, and consequently
revolving at the quickest in some hundreds of thousands of years．If the pathe be elliptical，the major axes of these ellipses would be of the same order of magnitude an the distance which separates us from α Centauri ；while if the pathes be parabolic or hyperbolic，the two objects would pass and then seprate forever．（）n the other hand whe can conceive of nothing which could diminish the dimensions of a very long ellipse， unless it be something analogous to a resisting medium．Such a medium to be effective in reducing the size of the orbits would have to act for a great period of time，and besides would probably be visible in space as diflused nebulosity．No netulusity is observed about revolving double stars，nor is there any evidence of a sensible resisting medium cither among the stars or in our own solar system．We may therefore reject the idea that the dimensions of the orbits were originally very large，and have since been diminished．As the orbits are now of the size of those of our greater phenets，and there－ fore comparatively small，it follows that the stellar systems have origimated by some process other than by the union of separate stars．

As a nebula is a very rare and expanded mass，and is yet held in equilibrium hy the pressure and attraction of its parts，it neceswarily rotates very showly ；and hence when it divides into two parts under the acceleration of rotation due to sectlar condensa－ tion，the orbit pursued by the detached mass must be of small ecentricity．For even if the forces producing separation could be exerted suddenly to produce a violent rupture， the detached mass in pursuing its eceentric orbit would again come to periastron，where it would encounter resistance in its orbital motiom，and the result of the grazing collision would be a diminution of the size of the orbit，and consequently an exageration of the resistance at the next periastron pasage：in this way the system would very wom degenerate into one mass．On the other hand were the initial exentricity small，the newly－divided masses would pass fireely，and when the orbit eventually became highly eccentric the secular contraction in the size of the mases would prevent disturbance at periastron．Subsequent collision could not pasibly wecor，because the periation distance would steadily though perhapsonly showly increase as the stans are phithed asumber and the orbit is rendered constantly more and more eccentric．

It follows therefore that in the beginning the orbits are only slightly ecentrice and that the eccentricity is developed gradually as the result of secular fidal friction working through immense ages．Acordingly in the clongation of the onthite mon whaved we see the trace of a caluse which has been working for millions of years．The cxifonce of this cause and its effects on stellar cosmogmy could probahly never be inferen exectat in the mamer by which I approached the problem．（）n the one ham it apmars that we have inferred the true cause of the expamsion and dongation of the stedlar orbits． while on the other the trace left by this canse has enabled hes to detert the exietence of
masen tides in every part of the havens. In alluid wniverse tides necessarily result from gravitation, and are anisemal as this ereat law of nature. In my later researches
 That gravitation is really unisemsal* and consequently that the fides we have assumed a tually exist in the hodie of the stars. It is thus made certain that the foundation upon

IVe now come to the second part of the problem: By what process did the stars soparate". In colleqe lectures I had heard the ammar theory of Laplace expounded for the sular system, and yet I failed to see how this theory could account for the separation of coual of comparable matses, such as whe werve among the stars. Realizing that the double stare wre in fact made up of two bodies of comparable mass, I reached the conclusion while still at the Misouri C'niversity that there must exist some process by which a mehula divide into equal or comparable parts, in a manner analogous to that of fiswion among the protozoa. Thout November, 188:, very soon after I entered upon my studies at the ('niversity of Berlim, I found that Darwin had recently published an important mathematical paper on the figures of equilibrium of rotating masses of fluid, and had referred therein to the profound work of Poincaré published about a year before. When I behed the figures of equilibrium which these mathematicians had computed, I recognized at once the cosmical process I had ahready assumed to exist; it Was indeed a great satisfaction to see a demonstration that under gravitational contracfion homogeneons incompressible fluid masses may divide into equal or comparable parts. The next question was: Are there nebule of this form in the actual universe? In rearching over the paper of Sir John Herschel in the Philowophical Traxsactions for $18: 30$, I found some drawings of dounle nethlie almost exactly like the figures mathematically determined by Darwin and Poincaré. It was no longer possible to doubt that the real proses of domblestar genesis had heen discovered. Further investigation and reflection have confirmed this inference, and I believe we may now accept with entire confidence the result rathed at learlin in Nowember, 1889.

In the first investigation I'oincaré begins with the Jacobian ellipsoid of three unequal axes, and imagines it shrinking in shth a way as to remain homogeneons, and yet gain ronstanty in velocity of axial mation. When the oblateness has become about $\frac{2}{5}$ he finds that the equilibrim in this form heromes unstable, and the mass tends to become a dumb-bell with mequal huths-an unsmmetrical pear-shaped figure which I have calleal the Apinid. As the contraction contimues the whole evidently ruptures into two (omparable masses, and the smaller will then revolve orbitally about the larger. If

[^5]
we suppose either mass to contract still further, it is evident that the rotation will begin to exceed the orbital motion; and the tides raised in either mass by the attraction of the other will lag, and tidal friction will henceforth play just the part we have already described.

Starting from a different point of view, Darwin was already at work on essentially the same problem when Poincare's paper appeared, and he held his results back for nearly a year longer, hoping to make application of the principle Poincare had announced. In this second method of treatment two masses of homogencous fluid were brought so close together that the tidal distortions of their figures caused them to coalesce into one mass; set in motion as a rigid system, the problem was to find the resulting figure of equilibrium. It turned out to be a dumb-bell with equal or unequal bulbs according to the relations of the primitive masses. Thus we see it proved from two

Fig. 1.

The Apoid of Poincaré, showing how a rotating mass of latud separates into two unequal parts.
independent points of view that a division such as I assmed in 1888 can theoretically take place; and among actual nebule of space such division seems to be a general law. During the years of 1896 and 1897 , I have examined a number of such objects in the southern hemisphere, and find them substantially as drawn by Herschel many years ago. Burnham and Barnard had previonsly assured me that the interpretation of the figures of double nebula based on the drawings of Herschel was in accord with the phenomena of nature, but the studies more recently made with the great. Lowell telescope supplements their large experience in a very happy manner, and may be said to remove the last doubt that could attach to the division of nebula by the process of fission.

Before concluding these remarks it ought to be pointed out that in space we have to deal with masses which are not homogeneons, nor are the nebulae by any means incompressible; yet many considerations lead us to believe that in most cases the density of
a nebula is not rery heterogeneous, and hence in general the foregoing conclusions would not be greatly moslified. In this reasoning I have assumed nothing but that the nebula are figures of equilibrimm under the action of gravitation. That these masses are fluid is contain, for the loright lines of their spectra indicate that they are self-luminous gas; on the other hand the same force which controls the motions of the stars must operate among the particho of the nebulx, and thus determine the figures of the masses in accordance with the laws of mechanics.

As the conditions here assumed certainly exist in the beavens, we need only add that when the masses separate they are probably revolving as a rigid system. When they eontract under the influence of gravitation, they must by a well-known mechanical law gain in velocity of axial rotation, and tidal friction then begins expanding and elongating the orloits; in the course of some millions of years we have a double star like a Centauri or 70 Ophinchi.

The stellar cosmogony here suggested may be regarded as a very general theory. ()ur solar system is so remarkable that it is uncertain whether a theory which explains the formation of double stars could assign also the cosmogonic processes which have given birth to the planets and satellites. The masses of the planets are very small compared to that of the sum, and the masses of the satellites are equally insignificant compared to those of the planets about which they revolve. Moreover the orbits are very circular, and these varions circumstances make our system absolutely unique in the known creation. Yet so far as our researches on the double stars may illuminate the problem of planctary comogony, they indicate that the separation took place in the form of lumpy or globular masses-not in rings or broad zones of vapor such as Laplace supposed.

From the surver thus hastily made of a very large subject, it appears that we have taken a step) in the generalization of the theory of tides and of tidal friction, and have indieated the probable mode of formation of the stellar systems. Little or nothing is known of the development or even of the mechanism of star clusters; the problem of explaining the more complicated systems must ultimately occupy the attention of astromomers if we are ever to trace the development of the visible universe. As a step in the direction of accounting for the origin of multiple systems, it may be said that ohservations on triple and quadruplestars have shown that they, too, developed by repetition of the fission procests. One or both components of a binary have again subdivided, just as I inferred was the case when still at the Missouri State University in 1888. While the views here expressed are the results at which I have arrived after a partial investigation of the theory of tides and of the figures of equilibrium of rotating masses of fluid and a comparison of these theories with the phenomena observed in the heavens, I reserve the right to modify any opinion or conclusion which future research may show

$H_{2} 1252$		$\mathrm{H}_{2} 604$
$\mathrm{H}_{2} .1146$	$\mathrm{H}_{2} 444$	$\mathrm{H}_{2} 2197$
$\mathrm{H}_{2} 1408$	$\mathrm{H}_{2} 936$	$\mathrm{H}_{2} 2487$
$\mathrm{H}_{2} 2002$	$\mathrm{H}_{2} .3241$	

to be unsound or incomplete. That tidal uscillations which were first noticed by the navigators of our seas are at length seen to be but special phenomena of a general law operating throughout the universe is alike honorable and gratifying to the human mind. It is equally inspiring to recall that by the known laws of these phenomena we are enabled to trace existing systems through immeasurable time, and the diselose comical history which mortal eye could never witnest. In our time it is no longer sufficient to maintain the traditions of the past, to trace the planets, satellites and comets through centuries, and explain observed amomalies in their figures, attractions and onital motions by the law of gravitation. We must essay to discover the cosmical processes by which the existing order of things has come about. Though it seems probable that a fair beginning on this problem has already been made, a much greater work remains to be done during this and the coming century.

What is needed is a more thorough exploration of the face of the heavens, by astronomers who are familiar with the laws of mechanies ; and a far-reaching investigation of the general theory of tides in viscous liquid and gaseons mases such as the stats and nebule of remote space. Even if the full extent of the hopes here expressed can be realized only after the lape of several centuries, I venture to believe that the achievement will not be unworthy of the past history of Physical Aitronomy.

ARTICLE V.

ON 'IUL' (ILOSSOPIIAGINGE
(Plates VI-NV.)
BY HARRISON ALLEN, M.D.
Read before the American Philosophical Society, January 21, 1898.

Having an impressioni that the genera of bats are best defined by minute character: in the skull, teeth and wing membranes, I am led to review the (ilosophagima-a subfamily of the Phyllostomidide, concerning which unsatisfactory accounts exist both as to structure and relationship.

The bats embraced in the group are characterized by a slender protrusile tongue, an elongated jaw and a deeply cleft lower lip.* The temporal impression is faintly marked and the sagitta is absent or confined to the frontal bone. The thumb and foreamine long. The olecranon lies on the upper side of the wing membrane. The canine teeth are long and the upper molars without hypocone. The incisors are so diminutive as to permit the tongue to be freely projected without wide separation of the jaw:

According to P. Osborne (Proe. Zool. She., 1865, 82) the thmmb aids in the seizure of small fruits, the tecth tear through the skin and the long tongue extracts the semi-fluid contents. As in the Edentata, the elongation of the jaws and tongue has led to the simplification of the tecth. But reduction in number of the teeth has gone on sareely at all; indeed, the most highly specialized forms are those having the largest mumber of teeth.

The genera are arranged in three alliances-the glossophame, the chornycterine and the phyllonyeterine. The first is composed of Glossophery, Leptomyeteris and probably Monophyllus: they certainly relate closely to the Vamperi. The seeond of the highly specialized and more doubtfully placed group of (heerngetoris, Lomelorglosist and - frume,

[^6]is probably also of Vamprine origin. The third division contains but a single genus, vi\%, Phyllongeteris. It iss near Brachyphylle that it would be easy to effect the transition and remove the gemus to the alliance expressed by the term brachyphylline. It is akin, therefore, if not ammectant, to the subfamily Stenodermines.*

The material available for the stuly just completed was not large, and two genera, namely, Monophyllus and Gilossonycteris, I have not seen. I have concluded from the published descriptions of Glossonyeteris that doubts can be frankly expressed concerning the validity of this gemus. Perhaps not enough stress has been laid upon the effects of age in attempting to separate it from Anura.

Reliable characters are found in the lower molars. The extension forward of the ridge (anterior commissure) between the protoconid and the paraconid is more marked than in any other group, and is in consonance with the compression of the crowns. The ridge is not spinose, and is scarcely raised. In Glossophegut the ridge is constantly as in the Vampyri, but in the other genera it is an extension forward from the protoconid. No trace of hypocone is seen in the upper molars.

The row of glands lying to the outer side of the nostril is discernible in all genera except Phyllongcteris. Ninnte distinctions are found in the degree of development of these glands. They are best developed in the glossophagine group, and least so in the charmyeterine. In Phyllonycteris the ecto-nareal gland-row is oceupied by a flattened fold of skin which becomes incorporated with the nose leaf. \dagger

The proportions of the width of the third and fourth digital interspaces taken at the distal ends of the metacarpal bones when the wing is extended is found to be as valuable :m aid in determining affinities as elsewhere in the order. In like manner the shapes of the terminal cartilages of the fourth and fifth digits, the arrangements of muscles and nerve markings of the wing membrane are noted as furnishing excellent characters.

The following weheme of interdigital diameters is given :

Enough can be gleaned in the way of inductions from the shapes of the anterior

[^7]extremities and the details in the phalanges and terminal cartilages to warrant the introduction at this pare of a few remarks on the subject of dight.

Leptongcteris. 'The greatest restriction in the movements of the digits is found in Leptonycteris. The sharp flexure of the second row of the phalanges on the first impede rapidity of flight, while the axially dispored, terete terminal cartilages show alsence of strain. The second and third metacarpals ahwas maintain an acute angle to the foream.

Gibssophenge and Cherngeteris. These genera resemble Lepfonyctorio, ditfering therefrom in degree only in the greater degree of interphatageal flexure and in the angulation of the second and third digits to the forearm.

Anere shows seareely any tendency to flexure or angulation of the parts above named while the terminal cartilages of the third and fourth digits are markedy deviated from the axial prositions and thes appear to corvelate with increase of wing strain.

Lomehoglosse is intermediate between A foum and the preceding group.
Phyllometeris shows an isolated position from the foregoing group as a whole, on atcount of the teminal cartilage of the fifth digit being entirely embated by the wing membrane. It is a curions cireumstance that the remote Leptomycteris exhibits a similar peeuliarity.

It camot escape notice in studying the group that the extraction of soft pulp from a fruit is not mbike the lapping of blood. Acquirements apparently so diverse as fruit-ating and bood-taking are not so improbable as they might appear to be at
 habite of the species, concluded from the structure of the tongue that the animal was at blood-sucker." In adapting the head so ate to create a blood-lapping from a pulpextrating form the greatly elongated jaws are shortened, the face Hattened, and the teeth become kuife-like. In this manner we may trace the tramsitions which have taken place in the Vampyri in creating on one hamd the Gilossophotige and on the other hand the Dexmotime.
 ass far as the distal third, at which point it crosese the curved radins beach the carpus. In Cherngeteris and Lomedoylossan the tendon of this muscle lies to the lower border of the nearly straight radius.
 which form it supplies the first and fourth digits only. In Ily.gltompertoris it omits only the second, while in Lomeloghlossan and filossompheten it supplics all the digits.

[^8]

The arigin of the (ibssompugime is easily traceable to the group denominated by Peters the Vampri. But the division betweon the genem eomporing the Vampyri is of a charactur to angese two grompings at least, and the term Vampri is hest used in a westrieted sense. Indeed, it is a small duster of four genera only (I'empyrus, Macrotus, dehionstome and the aherrant Hemidormen), which possess a large, triangular, first upper promotar and in intlated, weak periotic region.

Of the second gromp (Phyllostomi), of which Phyllostomm is the type, I have imperfect knowledge-having studied besides this form the general Lomechorhime and Lophostomu. But they agree in having the tirat upere premolar smatl and acicular, a perenliarity I find ligured in (iemais (Erp. du xtul.) as characteristice of Tylostome and Momophylhem

 no satisfactory knowledge of the perintice region in this gromp, but can say that it is boldly dedimed, conceave, and bot inflated in Phyllostomen, Lomehoshine and Lophestome.

Now it has beell seen that the Colossophengime yied two gromp-that of the (ilossophagi and that of the Lemchoglossi. In my jutgment these do not have a common origin. The flomophagi agree with the Vimprex as above restricted in the shape of the first "prer premolar and the inflated periotie region, while the Lonchoglossi are much nearer the Phyllostomi. (Chenycteris possesses a triangular premolar (with large denticles) and a moderately truncate concabe periotic region, but its other characterw, taken as a wholes comene the form intimately with the Glossophagi.

The taxmomic value of the terminal cartilage can be determined only by the cxamination of extemed series. It tirst I had inferred that the shapes of the cartilages of the fourth and fifth digit. were of comsidemble value. But inspection of the largest number of indivituals of the most common werite-namely, (rlossophaye soricime-gave me an impresion that they were really variable structures; thas in one individual from (${ }^{2}$ ata Rica the were both apatulate; in another from Bahama Islands they were both aciculate: and yet in a thirel specimen from the last-named locality the fourth digit was * patulate and the fifth aciculate. Nevertheles the variability itself is of interest and I have, therefore, figmed the cartilage, helieving that after extended observation they may asist in mone firmly detining the minor groups of peceies than is now the case.
(ibloswophatia.
[Jpar incisus in a continnons mat: Length of forearm not excerding 36 mom.; thumb, stma: whempernt the tail is shent with free tip on the dorsum of the interfemoral

The Flecen profinulus digitorum supplien secomed and third digits whis. The Somimembranosers and bierpos fomoris are absent. The tendoms of the firemitis and bemitembinosis dosely approximate and give the appearane of being fised, but be gentle traction they am be shown to be distinct.
 48), the type being a female. He whempently described and meatured a areond eperimen (spricil. Zoial, III, 1767, 24), a male, which he disseeted. Ho now mond the presence of a short tail and figured the skeleton in which the tatil is plamly seen. Geofloy adecepted the first deseription as limal, and proposed a separate name

 sustains (iray's position without comment. Peters set the matter to righte in 1 stis, wey a hundred years after Pallas' finst simple errer of observation.

Of the elaborate measurements of Pallas thene taken of the make are the most acenrate and include those of the skeleton ase well. The figure of the head by (ienffiry alse conforms in rertical moaturement. The width of the basal part of the mese leat in lese than in our figure. Pallats, (ieoffoy and Spix all acourately figure the interfomoral membrane as approthing the ankle, certainly reaching a point below the level of the middle of the tibia, which is the distance given by Dobem.

The fact that the two forms of Gibosemperye differe widely make it desimalde that the characters of the first recorded pecien be carefully moted. A revien of the origimal deseription of Pallas is of restricted value, other than the amatomy of the soft parts. notwithstanding the praise (ieoffroy and Dohson award it. Genfloy states he had dissected an aleoholic specimen and confirmed Pallan' ohservations. But Pallas did mot note so conspicuous a fact that in the first digit the metacarpal bome in much shomer than the combined lengthe of the phatanges. The cranial and dental outlines we worthless but one camot sainsily the value of the figure of the fimbriated and elongateal tomgue.

> Synopricell Table of C'emorn.

苞	L'alatal portion of pemaxillat forming a rostrom in adrance of median inciaise forambers phatams smaller than seomen fimbrix not confoned to tip, hut expemting well hath aloner the tongue.

[^9]> 4. Malian upher incisors larger than lateral; promolars with hase lyine insule puition of lateral incisor; median incisor foramen bavely in adsance of pairel foramina; ufner incisors inelined; pit over proximal thind of face redtex.
> b. Wher ineisus in contimmus row; molas a thumb; one-fourth the fength of forearm $: 31-:: 1$ mom.
> .Glossophaga.
> b. There incisons with wide intorval between centrals; molas ${ }_{2}$; thmm (mesixth the length of foratin (45 mm .)
> .Leptonycteris.
 with hase mot lying inside position of lateral incisor; median incisor foramon well in athance of pared formmana wher incisors vertical.
ρ. Lonser canine compressed, with cingulum; metacarpal hone of thumb exccetis length of phalanges.
d. Ňo phaikn to second disit of manus; premolars $\frac{3}{3}$; tail present; thmmb one-seventh the length of forearm
 c^{\prime}. Lower canine rotumd, no cingulum; metacarpal of thumb equal Jemgth of phatanges.
d'. Dhalanx to second digit of manus; tail present; thumb, one-tighth the length of forearm (38 mm .)..................... Lonchoglosse.
$d^{\prime \prime}$. No phalanx to second digit of manus; no tail; thumb one-sixtl the length of forearm. \qquad Anura
Ciloswophacina aberrantia.

Palatal portion of premaxilla not rostrum-like; gland mass crosses muzale back of nose leaf ; tympanic hulla ahmost touches postglenoid process; oceipito-squamosal suture with large foranen; ethmoid bone not convex in hain case; an ectopterygoid lamina. In thind to difth manal digits first and second phalanges eyual; premolars $\frac{2}{3}$; molars $\frac{3}{3}$; fimbrite of tongue at tip only.

Tail present; excealing short interfemoral membrane; thumb one-fourth the length of forearm (45 mm .). Phyllonycteris.

Gilossomphege soricinn Pallas.
Anvicle cmereginnte "t "pher half of the outer border; internel besal lobe fiee from lorad and intications of hersal vidlye. Lapppet in side of the extepnal bersal lobe stout, pminterl. Winy mombrane from ankle. Tromimal captilate, fourth digit spatulute Pudimont of an wisending procerss form the zyyome.

Auricke subrombled, internal hatal loke with suggestion of vertical ridge, outer margin of ample simate; external hasal lohe large, obtuse, retroverted, intemal lappet a more projecting nodule. Tragus straight on inner, convex or obscurely serrate on outer, margin. The nowe leaf hairy and mall, midrib confined to the pedicle. The leaf proper pwiecting nearly one-half it length abowe the conspicuous gland mass. The upper lip as well as the borders of the groove in the upper lip farnished with four to nine minute warts. Alowe, the fur is dark, sonty gray, at the tip the remainder of the hair being lighter the mowhere white Beneath paler, unicolored. Interfemoral membrane almost
as long as tibis. The calcar is one-half the length of the thin. The interfement membrane is often incised rather than semicireular:* The tip of the pail peogete from the free margin of the interfemoral membane. Tongue on donsum fere from weme papilare.

The first phatanx of the first digit is as lomg as the metacapal. Eutire ligit ome fourth or nearly one-fourth the length of the forearm (10 to fot, of is tu a kis. The lirst phatax of the second digit is ome-thirtieth the length of the meturarpal: the entire digit is not as long as the thind metacerpal. The first phatanx of the thisd digit is smaller than the secome ; the third is flexible ; the separation from cartilage tip is indeterminate. Motatarsi equal. The row of first phatanges of tox equal.

The Skull.-The brain case papyrateous; the prition of the boty and hemisphemes of the cerebellum-the mesencephatom and prosencephaton-being cleaty ontlined on the periphery. Pretemperal crests satrecly defined and not contimons with the owhital margin; mesotemporal not seen; postemporal not distine from the weepital.

The face vertex is flat with shatlow median depreswon were the othmod beme. 'The convex naval bones are ontlined hy wrooves, of which the median is the widest and deepest. Each nasal bone is incised on its free margin at the anterior nasal aperture The sides of the face are comvex, with a conspocoms, though small fromto-maxillary inflation. 'The inframbital foramen answers in pesition to the function of the premolars. The lateral border of the anterior nasal aperture is prodeced; between it and the prominence over the camine tooth a groove is defined. The height of the alveolus is one-thime the width of the neek of the canine, and one-reventh the vertieal diameter of the anterion nasal aperture. The posterion border of the hard palate near the exgmatio rent is spinose. The palatal noteh at the mesopteryoid fossat is acoutely incised, carricel back to a line answering to the glenoid notch and is without median pine. It reaches a puint

 rounded. Pase of cranium with prominemt, median, romerine ridee. 'The lateral depres-
 bone is separated from the postelenoid process by an interval. The emomoid proxese of the lower jaw is carried above the level of the condyle and is subacminate. 'Ther angle is hamular and deflected outward with a noteh between it and the lower border of the masseteric impression and projects backwards shighty leyond the comdyhid promes. Symphysis not carinate. The junction of the ethmod and aphemod thane in hrain case convex.
 The cusps are sharp, the incisors and premolars are adapted for cutting and the molar-

[^10]for erimang. In the upper jaw, with the exeption of an intersal on either side of the camine, all the teeth are contigume: In the lower jaw there is no interval on either site of the canine for the lateral incisur ame the first premolar are in contact with it. The upper incous are arranged in a small are, which is smaller than the space between the canines.
 is smaller than central, with imer boder twiee the length of the outer. The canine is romeare on the palatal surface. The premolars are triangular subequal, get the heel of the second twoth is twiee the size of the first. The eingules are searedy disedrnible. The first molar is subtriagular with W^{F}-shaped cown reduced, the fluting on the paracomid, rudimental; the metacone is anited to protocone by a ridge. The second molar is subpuadrate, W^{\prime}-pattern scaredy reduced: the fluting on the paracone marked; the ridge from the metarone not reaching the protocone, hat a distinet thengh narow ralley intervening. The third molar is one-half the size of the second, the seeond V being rudimental. The longitudinal axis of both second and third molar is ohlieque to axis of the alvedar proceses. The thim molar shighty werlaps the second at the buecal border.

The lower incisus are provided with that smooth edges to the erowns and are adapted to cmshing rather than to cutting food. The canine is directed slightly backward and is peovided with a small heel. The premolars are triangular, equal, the bases increasing in thicknest from before backward. The molars exhbit marked commissural extensiom in adrance of proteronid and paraconid. The hypoconid is cospidate and as high as metaconisl; all the teeth are much alike, but become progressively smaller and narrower from the first to the third, while the extension in front of the paraconid and protoconid herome lese and lese marked. The third tooth is not more than two-thirds the length of the first.

In a skull of an embryo which masared smm. long, the lower jaw projected well in front of the upper and bore the dediduns canines. The shapes of the incisors and pre-

In an atult which retained the right uper lateral incisor only and the molars were much wern, the omly treth in the uppere jaw that were in contact were the second and thind molars. In the lower jaw the third monar was separated from the tooth both the
 the lateral teeth. I am inclined to leelieve these are variations due to advanced age.

[^11]

 a species moder this name I have sombluded to rename the form, nowithetambing that

 Curator of Mammals of the National Musemm, Mr. F. W. True. I hemewith reprotuee the deveription, which now has the adrantage of andearing with appropriate figure of the head, skull and teeth.
 of any of the forms embraed in the eroup of (ilosenphagi, and has been collected from he widest range of any of its rame, should have preanted degreen of variations so low as never to have permitted the recomition of mote tham angle ofectes. The compliated syonymy sucersfully mareded by Peters, it is true. contains a mumber of names of species, but these were proposed through misapprehension of asomed generic values and bear wo relation to questions of eperitice distinetiom.
 States National Musem haw comvinced me of the necessity of rexergizing two eperies of

Auricle entire on onter border or sighty emargimate. Intemat baval hobe bumd down to head without trace of ridge. Exeepting in length of head and monk werywhere smaller than (r. suricime. 'The ase the same part in that eperies. Wimg membrane from distal fourth of thiat. 'The terminal cartilage of the fourth digit terete.

The auricle is without ridge at hase of the internal hasal bobe, which is searedy defined and clovely bound down to head: onter margin almot antire: extemal hasal how and nodule inconspicuons. 'Traghe with wate of semation on outer margin, Masal habe large, quadrate.

The nowe leaf, hairy, without midribat intemarial pediche. pergeting satmely all all
 one-fourth the lenoth of the feream-namely, nime the thite-two. The tat hat
 in preparing the skin,

 apical third; it extemds along the entire length of the doxsifatial region. No. 9522 , [. s. N. M.. quite the same hat is dark lorown instead of sooty.
 The areombing procens of the zagoma is lomger and more pointed than in the species just mamed: the patatal noteh is lese acote. The fionto-maxillary inflation is conspicuous. 'The symphysis menti is carinate. 'The angle of the lower jaw projects batekwed slightly beyond the line of the condyloid process. The brain case is $1: 2 \mathrm{~mm}$. and the face 7 mm . long.

The upper contral incisors loroal with shighty eoncolve cutting edges; the lateral incixom are narow with ohlique catting edges. The premolars are shighty separated from one another and the second premolar firom the first molar ; they are compressed, subeyual, and triangular ; the secomel premolar is thickened posteriorly. The other teeth "losely resemble thone of (x. sorteint. 'The first upper molar is longer that the second amd the eremal longer than the third; there are no ridges extending from the paracone (0) the metacone. 'The third upper molar does not overlap the secomel molar at the buccal bomerer

The masele fascicles and nerve markings of the endopatagiom disposed as in
 terminal cartilages are thronghont terete.
 sortioime of Peterse revision, and exclude those sperimens here embraced under (trothe
 hut the shape of the tragus and internal besal lobe of the emricle are like those of the finm under consideration. Ibut the figure is evidently based upon a dried specimen.
 the teeth in an old example of (f. surveime. 'This is an interesting fact, inasmuch as it
 alult lite of : another".

The following proportions are notemorthy: The first phalane of the third digit is longer than the weomd. The thime metacarpal bome is as long as the foreame. The

[^12]forearm is 1.15 mm , the smallest in the group. The calcar is one-third the length of the tibia. The first phalamx of the first toe extends slightly berond the first phatangeal joint of the second toe. The first row of phalanges decreases progressively from the second to the fifth toe.

Type.-No. 952:, U. S. N. M.

> Measurements of Cilossophetgen truei.

Millimeters.
Head and body (from crown of heal to base of tail) ... 15
Head and forearm..
First digit:
Length of first metacarpal bone... 4
Length of first phalanx... 4
Second digit:
Length of second metacarpal bone...................... ...
Length of first phalanx ..
Third digit:
Length of third metacarpal bone... 30

Length of third phalanx ... ©
Fourth digit:
Length of fourth metacarpal bone.. 27
Length of first phalanx .. 9
Length of second phalanx ... $)$
Fifth digit:
Length of fifth metacarpal hone... ${ }^{\circ}$
Length of first phalanx
Length of second phalanx... is
Length of head........... ... 21
Height of ear.. 11
Height of tragus ..

Monopilylues.

Upper incisors not in a continuous row. The first and second upper molars with hypucone. Length of forearm, $: 37 \mathrm{~mm}$.; length of thumb, 10 mm . The tail projects from the margin of the short interfemoral membrane. The proencephaton does not create an eminence on the brain case. No vertical line is found on any of the interdigital pateen.

Dental formula: i. $\frac{4}{4}-c \cdot \frac{1}{1}-$ prm.

[^13]The single sperimen of Momophythe which was avaibable was that of a skin of an
 gemus is in dowedliance with (ilosmphaga-closex, indeed, than any two genera of the group). The retention of the hyperone in the first and second upper molars, the presence of a keel on the smphysis of the lower jaw and abeence of the vertical line in the interdigital paters, separate the two forms. Other characters if they existed massisted by those just named would be those of relation and proportion. The presence or absence of the callare wath not be determined.

Momophyllus redmani Leach.
Aluricle with blunt tip, secticely cmeryimete on outer border. Winy membrane from busel thined of the tibiu: Lermimel ewtilage of the fourth digit, spatulate. Marked rudiment of rasendian processe from the ayguma. Sospe leaf, upper lip and membrene much as in (ílossomplayin traci.

The auricle resembles (i. omei nearer than (ir. soricine. It is blunt at tip, searcely at all concale on the onter margin. I faint emargination is noted on the imner margin which may be exagserated in the dried skin. The external basal lobe was everted by the method used in preparing the specimen. The parts do not differ from those studied in (ilossonphum. The tragus is blunt, presenting two coarse sinuations at the outer side and two denticulations at the base. The noke leaf, upper lip and mentum almost precisely the same as in G. truei. No warts are anywhere present.

Fur abowe is dark brown the head, neck and shoulders a lighter shade than the back of thoma and loin. Examined with a lens, the fur has an admixture of fine gray hairs, which are more mmerons on head, neck and shoulders than elsewhere. The fur beneath is gray and hown, about equally admixed. Both above and helow the hair is micolomed. Sparse gray hais extemb helow om arm to elbow and shighty over the endopatagimm. The legs are naked.

There is mo vertical line on the menthrane of any of the interdigital spaces. The condopatagiom exhibits a few coarse vertical lines. The fourth interdigital space is wharomely areolate.

The -kull was mutilated at oreiput and pasterior third of the base. It closely resem-
 intation is lese define than in that gemus. The posterior patatine noth, narrow. Seen from above, the posterion bordere of the inframbital foramen appears as a blunt spine. A narmo hat well-defined growe extend the entire length of the face, beginning at a firamen wear the pretemporal ridge. The aseending process from the zegomit is areatly in exces of the same character in filosemphefe. The external auditory opening
is smaller than in the gemus just named. The thick skull does mot atmit of the divisions of the bran being disecerned. The lower jaw is more rolmet-the depression in adrance of the angle most marked of any geme in the group; the angle is raised high above the level of the lower border of the high ramus as in the Lobostomina: the symphysis is provided with a large kerel.

On the whole the skull is more robus in texture and is of a larser amimal than Gitessmphetre, but the face structures more extended, and presmably from the symphysal modifications, a longer and more prehensile tongue.

The CPper Teeth. -The incisors are not arranged in a continuons row or in paire, hut intervals: are fom between the teeth.

The space between the eentral incisors is wider than that between these tee th :med the laterals. The central incisors are obscorely hatehet-shaped, while the baterals are conical. Wide intervals ako exist between the came and the first premolar and between the first and second premolars. The other upper teeth are contiguons. The premolars are aciculate, compressed, with prominent base conules. The first and second molars are quadrate with conspienous hyporone. The third molar is more triangular and resembles the first and second molars of (flossopherge.

The Lomer Teeth.-The incisors are reduced to tubereles, arranged in pairs, which are widely separated hoth from the symphysis and the canine tooth, though nearer the latter than the former. The central incisor is larger than the lateral. All the other teeth are contiguous, exept the second and third premolars, which are separated be an interval equaling that in the upper series. The first premolar is distinctive. It chasely resembles the homologons tooth in Cildssophefy and anteriorly overlies the lase of the camine. 'The second and third premolars are similar to those in the uper jaw. The molars are of the same type as in Cilossopheryn, but elongated and compressed in advance of the proforone and paracone as in Leptonyeteris.

The comparison of the kull and lower jaw seen from in front with (ildsatphoty is instructive in the differences in the shapes and relations of the shapes of the teeth abreaty noted. The upper canines are observed to be longee and more trenchant in lhomphallus: than in Colossophletyre.

Rugae ten in number, the anterior five undivided and the materion five divided.

> Hensursements of Homophythes petmeni.

Millinncter:
Head and boty (from crown of head to hase of tail) .. 1

 between the central incisors. In the table of renem all the upher incisors are sad to be armanent in fairs.
Pirst Rigit: Millimeters
Lengeth of first metacarpal bone 4
Loneth of first fhatans ©
Secomel digit
Length of second metacarpal home 34
Lemeth of tirst phalimx. $\stackrel{2}{2}$
'Third digit:
Length of thind metacarpal bone $3 \times$
Langeth of list bhalamx 13
Lemgth of secome phalams. 19
Length of thim phalanx 9
Fourth diswit:
Lemeth of formoth mexacaral home 35
langth of first phatamx 8
Lemgth of neromel phatams 12
Fifth digit:
Length of fifth metatarial lome 30
Lenortlo of first phalanx 9
Iangth of second phalanx 10
Lemgth of head 25
Ifright of ear 10
Height of tratus 3
Length of thigh 11
Length of tibia 15
Lengrth of font 11
Lengeth of interfemoral membrame 4
Lellotlo of tail 5

Leptonycteris.

Upper central incisors, separated hy wide interval. Proencephalon not forming an cminence on the brain case. No spine at upper margin of the anterior nasal aperture cansed ly umion of the free margins of the nasal bones. Tail none. Second phalanges of third, fourth and fifth digits sharply flexed on the first.

$$
\text { Dental formula: i. } \frac{4}{4}-c \cdot \frac{1}{1}-\mathrm{prm} . \frac{2}{2}-\mathrm{m} \cdot \frac{2}{2}=18 .
$$

Leptonycteris niverlis Sanssure.

Auricle small, nearly onc-lulf the lenyth of the fuce, slightly emarginate at basal half onter berder. Internal busal lobe seetrecty free; eaternal basal Tobe convex, inner luppet eresecentic. Trayns struight on imuer, comvex on outer side; basal lobe conspicuous. Nuse leaf projecets, fur beyond non-ribbed pedicle. The lutter forms a wart-like contour inforionly. The upper lip is nurvou and provided with two inconspicuous nodules. Cartileryes at the ond of diyits are as in Glossophagu. Calcar mdimental, seareety one-fifth the length of the tibiou.

Tongue furnished on sides and dorsum with minute, hair-like papillæ. The side of
the mental groove fimnished with an obsoure row of minute wats and the whin berome the groove thickened with gland clumps.

Fur short, villose, longer on neck, above deep ash verging to gray, base white, helow paler. On neek, hazal part tawny, hut abdomen ahmost unicolored. The hair is dighty whiter at pubis. Distal half of humerus (above and below) hairy-the rest of the limbs, except the base of thumb, second digit and all of dorsum of font, covered with a sparse growth of short hair.

The muscle fascicles on wing membrane are much the same as in Phyllongeteris. They are wide apart generally, but do not extend over so large a fied. The reticulated arrangement of fibes near the forearm is conspicuons. The longitudinal line in the third and fourth interspaces distinct. The nerve markings are characteristic. Buth arise from the digits far above the joint, the anterior being at distal third of the fourth motacarpal bones.

The terminal cartilage of the fouth digit seareely patulate; that of the fifth digit is terete and not free. In this respect Leptongeteris resembles the remote Phyllongeteris. The skin in the second interspace is not pigmented.

The Sketl.-Skull not papyraceous; proseencephalon not defined. The pretemporal crests subtrenchant and form a short, faint conjoined line with its fellow at the sagitta; the scarcely discernible mesotemporal depressed, not reaching sagita; pastemporal reaching occipital crest. Face vertex with depression over ethmoid, but the nasal hones are scarcely defined in median line and not separated at all laterally from the concave sides of the face. Fronto-maxillary inflation barely discernible and crosed by the orbital ridge. Alveolar process in height equals one-seventh the width of the neck of the upper canine and one-twenty-second the vertical diameter of the anterior nasal aperture. The depression between the lateral margin of the anterior nasal aperture and the root of the canine footh much deeper than in Golossophage somime Ascending process of axgoma rudimentary. The premaxilla weak in advance of the large incisive foramina; poterior border near the zygoma root not pinose. The rounded noteh at the mestoperygod fosia midway hetween zygoma root and glenoid cavity. Scarcely any difference olserved between the level of the basiocepital and the basisphenoid. The mastoid process acminate. The tip of the pterygoid process in advance of the oral formen. The masals are incised at the anterior nasal aperture. The angle of the lower jaw acute, not hamular' it is on the same plane with the masseteric impresion, not separated therefrom inferionly hateh, and project, backward beyond the condyloid process. Symphysis mot carinate. The lower berder of the masseterie impression carried in a semi-eireular line beyond the horizontal ramus.

The Teeth.-Teeth crowded for the most part. Upper inciens as in Grimsonphorga soricina; the central hatchet-shaped, separated by an interval. The lateral incisor's as
lange or larger than centrals. (anine comeave on palatal surface. The first premolar without hasal chap and separated from the canine and the second premolar. The second premolar with batal (asp) and in contact with the first premolar. The first molar much larger than the second, the paracone subtriangutar, the outer sufface of the paracone and mesacone are scarcely at all fluted, hence the $\mathrm{IV}^{\text {-pattern }}$ not evident. The second molar without fluting on the rudimental mosocone, hence the posterior limb of the second V is absent.

The single lower incisor which is seen in the two examples lies in close contact with the canine. The canines are large and divergent, projecting to the innerside of the lateral incisor. The three premolars are triangular with compicuous cingules; lingual aspect of the first premolar concave and in contact with the canine; the second free from the first and the third premolar. The protoconid with a long anterior extension which has the value of a second functionalized cusp. The paraconid is matl and placed slighty back of the protoconict. The mesoconid is higher than either of the other elements, and together with the hypoconid form a low, broan heel. Molars slightly overlapping at buceal borders; the metaconid and hyporonid are of great size with wide valley.

Metatarsi equal ; first row of phatanges decrease progressively from the second to the fifth.

The measurements of Dobsom do not agree in some respect, with the three specimens examined. The thumb is smaller, while the first phalanx of the third finger is much larger. He states the "tail none or exceedingly short."

In the charnycterine alliance the genera (hrernycteris, Lonchoglossa and Amore are placed. They have in common three premolars and three molars in each jaw.*

Cherifyterla.

Naked skin fold defining nostril laterally. Pterygoid procens in contact with tympanic hone. No phalanx to second digit. Length of forearm, 42 mm ; thumb, 7 mm .

$$
\begin{aligned}
& \text { Dental formula: i. } \frac{4}{4}-\left(\cdot \frac{1}{1}-p r m \cdot \frac{3}{b}-m . \frac{3}{3}=29 .\right. \\
& \text { Cherngcterix mexicam 'Tschudi. }
\end{aligned}
$$

Auricle sulbelliptical, smarginete om praterior border; internal besal lobe large, entirely fiee from the head and hairy; aternell beval lobe small, acute; internal lappet conspicnors. Tiragus elliptical; lusal lobe simple, deffected backerard.t

Interfemoral membreme longer then tibine, semicircular. Calene half the length of the

[^14]
 nareal pedicle with midrib; ledure two warts at mediem line in the showt lip; suter themge
 not ucerosse the faee buck of the nose toeft.

Tail two-thirds the length of the femur and appearing free above the interfemoral membrane. Vibrisae on muzale very long. Fur everywhere silky. Above, tij) dark brown, the remainder of hair lighter brown. Beneath, lighter in shade, light brown, unicolored. No. 399. Acad. Nat. Sei., is smaller than the epecimen named. The length of forearm is $3: 3$ mm. (about $1^{\prime \prime} .30$), and shorter than that asigned (hermgeteris minor Peters. The calcamemm, however, is not as long as the foos. The central incisors are abeent in the upper jaw. In other respect- the specimen resembles (: mexicena. I do not identify this specimen with (: mimor, but regard it as a variation of C. mexicemu.

The Skull.-Skull papyracous; the divisions of the cerebellum and cerebrum diseernible through the periphery. Temporal ridge almost mil, not forming mion at any part of the sagitta. Fronto-maxillary inflation abent, but the inner wall of the orbit and the fronto-nasal depression unite to form a ridge which bears a foramen. Face vertex without median fronto-nasal pit, but in its plate a flat surface which bears a median ridge. No groove indicating positions of the masal bones, but the outlines are seen through the tramslucent periphery. The sides of the face uniformly convex. The upper border of the anterior nasal aperture incised. The lateral margins of the anterior nasal aperture scarcely produced; the groove between them and the eminence over the canine teeth rudimental. The simple infraorbital foramen over the first premokar tooth.

Alveolar process in height one-thirty-first the width of the neck of the canine and one-thirteenth the vertical diameter of the anterior nasal aperture. Six incomsicuons ruge. Wagoma incomplete. The infroorbital foramen on same vertieal line between the second and third premolare. Hasl palate acotely arched in molar range. The posterion border near root of ageoma with slightly comvex margin; oval foramen well in advance of the ptergood free tip which reaches the tympanic bone. The tympanice bome not reaching the postglenoid proces. The palatal bone extemes the the anterior lacerater foramen before forming the large subacominate notch. Pteryguid procese anvex gutward, forming bulla-like recesces. The mespterygoid fosea with a faint vomerine ridge which is continuons with the eompicmous hasioceipital ridge. The comand process acute, deflected outwad, the angle prohered beyond the comblyid process, and continuous with the depressed lower border of the masceteric impression. Symphysis with
 as long ats the bratin casee.

The Toth.-Wide interval botween upper incisors. The central as described by Dobem, is smaller than the lateral. But in two specimens examine by we the centrals were larger than the laterals. Both teeth are inconspicuous and seareely raised above the sum line. The palatal surface of the slender canine flat. Of the two premolars present, the first puscesses both anterion and proterior cingules and without increase of width back of the chap. 'The seeond is without posterior cingule, but is widened back of the cusp. The first molar with paracone extending the entire length of the tooth, hat sloping from betore backward. Protocone and mesocone without buccal Huting or palatal ridges. The second molar as the first, but the protocone ends at the begimning of the mesocone. The third molar as the second much smaller and all parts rudimental.

The lower incisors deciduous. The slender canine with rudimental lingual cingule which does not extend beyond the level of the lateral incisor. The first premolar close to canine with cingule subequal to the cusp. The second and third premolars with eusp much larger than the prominent cingules. The first molar with protocone and paracone almost coalesced; the protocone well advanced. The posterior border of the tooth is fimished with a prominent cingule apparently developed from the hypocone. The first molar is separate from the third premolar and the second and third from one another.
('hernyctorise exhihits vertical muscle fibres in the endopatagimm, the nerve markings of the interdigital spaces and the shapes of the terminal cartilage of the fourth digit in a mamer quite the same is in (ifossophagu, though the structure last named is less spatulate than in that genus.

Mequmements.-The first phalanx of the first digit shorter than the metacarpal; no phatanx is present in the second digit. The metatarsi and the first row of phatanges erpual.

Tongue attached to floor of month at the level of the space between the second and the third molars, (a) 12 mm . from the smphysis. Penis not pendulous.

Anera.

Interfemoral membrane hairy; tail ahsent; wing membrane attached to midtarsus; calcar alnent ; no phalanx to second digit; two warts on upper lip; groove in lower lip whle with many warts. First premolar large remote from canine.

$$
\text { Dental formula: i. 者-e. } \frac{1}{1}-\text { prm. } \frac{3}{3}-\mathrm{m} \cdot \frac{3}{3}=22 .
$$

Romombance to Lomehoglozat very clone. The general appearance the same even to the whape of the terminal cartilages of the phalanges. Skull and number of the teeth the same. But it is held that the tail, calcal and phalans to the second digit all being whent, selarate dmum from the gemus just named.

The first lower premolar possessen a small, anterior, basal cuspand is, therefore, almost as large as the other premolars. The man cusp throughout samedy higher than the basal cusp.

Amum mierlii Peters.

Auricle much the same as in Lomenoglosiste. The tip of the tragus is pointed. Nose leaf simple, acuminate, no depression athove nostrils. The gland mase at the side of the nostril continuons with that extending up to the side of the nowe leaf. Epper lip with two equidistant warts. Fur everywhere long and silky. Above, apical third dark brown, basal two-thirds Isabella brown. Below, apical third Isabella brown ; hasal two-thirds dark gray. Thas the armgement of color is boldy contrasted with that of other forms in the group. Fleshy mass of forearm, the interfemoral membrane, the thigh and the feet covered with short hair. On the ventral aspect the forearm is covered with fur which extends thence a short distance on the interfemoral membrane.

The proportions of the wing of Amura are those of a larger animal than Lonchosglossel, though the thumb is of the same size. The lower extremities are almost identically the same in size, the calcar alone being larger in Lonchoylonste. The absence of the phatanx hats already been noted in Chormgetoris. Alliance with this genus is suggested in the great width of the cleft in the lower lip and in the possession of warts on the upper lip.

The masele fascicles and membrane markings are as in Gilossophofer, but the terminal cartilages of the fourth digital interspace while satulate exhibit the limb on the somad side greatly prolonged. This character is not seen dsewhere in the group. The cartilage of the fifth digit while terete is ako greatly probonged on the free margin of the endopatagium. These characters indicate that there is more strain on the wing during flight than in any other genus.

The Skull.-The skull is almost identical with that of Lomehoglosise. 'The alseolar height is one-third the width of the neek of the canine and one-serenth the rextical diatmeter of the anterior nasal aperture. The gyema by careful maceration is shown to be cartilagimous. A specimen of Lomehoglossen shows the same structure. 'The skull is Qt mm. long. The brain case is 60 mm . long, and the face 40 mm . The lower horder of the masseterice impression is mot produced. Dohnon's figure. Pl. XX X'II, Fig. 4, does not agree in all respects with our example

 assighs this form a place moder ('hermgeterix, it is well th atate that while (i. cillowe Renger retains three premolas in both faws, that the tail is ahsent, the interfomoral

membance is hut half an inch deep at the rump, and the lateral upper incisors are amaller than the centrals. 'The interfemoral membrane is hary. This species is nearer Anura in most of its characters than any other genus in the group.

L. AONCHOGLOSS.

Tail short: wing membrane attached to ankle; calcar present but small, about onethird the length of the tibia ; a phatanx to second digit; groove in lower lip narrow with a few incomspicuons warts; no warts on upper lip; basal part of nose leaf rudimental; apical third of tomgue filamentose; interfemoral membrane mot hairy.

$$
\text { Dental firmula: i. } \frac{1}{4}-c \cdot \frac{1}{1}-\mathrm{p} \cdot \frac{3}{3}-\mathrm{m} \cdot \frac{3}{3}=22 .
$$

The first lower premolan small and without anterior, hasal cusp; the main cusps of the entire series twice the height of the hasal cusps.

The presence of the tail and a phatanx to the second digit are sufficient grounds to scparate Lonchoghtosise from Anume.

Lomehogldossan coulifern Geofi:
Auricle peintel, intermal bersal lobe bound domen to head. External border faintly simutes serteretly; uny eaternul busell lobe; the inner leppet lerige. Tretgus blunt at tip. Suse letfersimple, without pecticle; lateral glend masis of base redimentel; upper lip short, without werts.

Large numerous vibrisse from face, especially from mentum. Filaments on tongue large, not meeting in midde line of dorsum. Wing membrane reaches to calcar. Seven ruge on the hard palate, the last two alone divided. The tail not quite as long as the whort interfemoral membrane, the tip not free.

The hair of the dorsum exhibits apical third brown, basal two-thirds pallid. Beneath paler, preailing hue brown (but with searcely a contrasted shade toward base), tending tw become grayer, almost unicolored on loin. Limbs naked.

The wing markings both in the nerves and muscle fascicles are as in Colossophenew, but the terminal cartilage of the fourth digit is terete, and that of the fifth digit is small and swarcely deflected.

The whull.-The bones very thin, permitting the subdivisions both of cerebellum and cerelorm to be seen through the periphery. The pretemporal ridge unites with its fillow at the anterior fourth to form a faint, linear crest; the mesotemporal and posttempral ridges not separately defined, seareely discernible. Fronto-maxillary inflation -mall. Fare vertex without pit at the frontor-nasal region ; outlines of nasal bones not hetimed. Siste of face convex. The lateral borders of the anterior nasal aperture modaratep producel. The foramina hetween the two premaxille near the incisor margin large.

The alveolar process so slender that it camot be measured. The parts as viewed from in front embrace the floor of the nasal chambers at the premaxillary part and permit the median formen to be seen. The grgoma without a trace of ascending proxest. The posterior palatal margin near the root of zygoma spinose ; the posterior palatal noth with conspicuons spines. Pterygoid process ahost reaching tympanic bone and extends beyond the oval foramen. Mastoid process aciculate. Mesopterygoid fossat with inconspicuous vomerine spine. Basioceipital depressions. shatlow. The cormond procest searcely raised above the level of the condyloid process. 'The deflected hamular angle projects in a marked degree beyond the condyloid. The lower horder of the masseterice impression is produced conspicnonsly beyond the border of the ramus. Symphysis with large keel. One skull 21 mm . long; face 8 mm . long; hrain case 15 mm . Iong.

Upper Teeth.-The small central incisors separated by wide interval, and cach tooth in close contact with the large lateral. The central ineisor with owod drown searecly wider than neck; the lateral incisor projecting below the level of the central with crown wider than neck and conspicuously ohlique outer border. The interval between lateral inceisor and the canine nogreater than in other genera. Canme with inmer surface flat. First premolar one-half the size of the others; separated from the camine and the second premolar, but nearer the last-named tonth. The second and third premolar triangular, with large basal cingules.

The W-pattern of the molars discernible. In one specimen the long, sloping protocone with suggestion of hypocone, recalling the parts as in Ilucopos; in the second the teeth were without hypocone. Camine with rudimental heel. First premolar separate from the canine and second premolar. Second premolar separate from the first and third: third premolar separate from the second, hut contiguous to the first molar. First molar with cingule of the protocone extended forward, searcely deftected inward and werlapping third premolar; protocone and paracone approximate, united at base.

Lower Teeth.-First lower premolar without anterion basal (anp, and is, therefore much smaller than the other premolars. In the entire series of premolan the man cusp is twice as high as the height of the haval cusps. The first and seoond molars of the same plan with the foregoing, the third being slightly the smatler.

The lower teeth with jaw are figured by Leche (l. co, 'Taf. II, Fig.s). The first promolar is represented as being exactly like others of the series. This waracter would
 ectudifere of this essaty.

I'eriations.-The above deseription is hased on two - pecimens, which were suhject to some variation. In one the pretemporal (areste did mot unite. In whe the cons) at the teeth were much worn.

Sules on the Nopleton.-Kils thirtern: dirst costal cartilage not wider than the rib. Hammens with pertoral comst matively high, ome-half the diameter of distal end of bone The stmmal crest after (aneful removal of the pecotorals is very high and apparently without notels, hut the wrater part of the interpectoral septum is mombranous. 'The phalanx
 toes expual.
 :11m, 1.:\%). 1 mm .

Bhachyphyldina.

I propeste to establish the Ibrachyphyllina to inchude the generat brathyphylle, and I'y.yllomgeteris, forms whioh have hitherto been assigned weparate groups in the Phyllostomider, the first mamed to the Nemodermata and the second to the Glossophaginat

Brach!yphyllina.
 domsman. In the (ilnsaphagina the papillae are arranged not only at the tip but the sides for great lengths. The mimute first upper premolar wedged in between the canime ath large second premolari coromoid process aleute, raised high above the level of the condyloid procers. Meropteryond fossa deep, apex answers to the junction of the anterior and middle third of the zygoma. Nasal bones high, arehed, defining a depression between them and the maxilla. Sacitta entire with well-defined pretemporal crests. The glands of muzzle continuons behind nose leat'. 'Thmmb large, one-fourth the length of the foream, nearly. Auricle namow, oval with pointed tip. 'Tragus coarsely sermate (2ntire length of outer horder. Upper lip hairy, without warts. Lower lip with shallow median eroove, margined with large warts. Isips not fringed internally.

Brachypifylda.

Upper erentral incisors very much larger than the laterals. Length of forearm, 65 mm.; that of thumb, 16 mm . this heing about one-fourth the length of the foream as in Phyllonycteris. (irindings surfaces of molars with numerous large mammillations, cuspidation distinct. Angle of lower jaw quatrate, massive; nostril entire, the wide onter margin and the side of the rudimantal nose leaf continuous. 'Tragus entire on inner homer. 'lhe tail rudimental, one-fourth the length of tibia, and concealed in the interfemoral membrane.

$$
\text { Dental formula: i. } \frac{4}{4}-c \cdot \frac{1}{1}-1 \text { mm. } \frac{2}{2}-\mathrm{m} \cdot \frac{3}{3}=20 \text {. }
$$

* I have not stalied Rhinophalli, but the conclusions arrivel at after reading the accounts of Peters and Dobson imbtue me to place the senus in the sme alliance with wencre just named. But in the absence of material I amem-

Brachyphylla caternermm (iray.

 inner, and cootescly serpete on outers, metergin.

Sose leaf with entire nostrils and wide ectonareal flange; (rect protion of mose leaf rudimental-concave and often minutely crenulate on midmargin. Supranarial margin concave on either side of an obecure median ridge. Inframarial margin wide, continuous with upper lip and faintly incised. The hasal gland-clump continuou acros face-vertex back of nose leaf. The upper and outer parts are thick and bear a fen coarse bristles, while the lower are thin and lost on the uper lip. Twelve wats are arranged in pairs on the side of a mental \backslash-shaped gronp, the median groove being shallow. 'Two median Wats may be said to have slight morpholugical significance.

The fur above is yellowish white except the tip, which is hrown. Below the tints are the same, but the shaft is more tawne and the tips much lighter. The distal third of the arm above and below is covered with hair. The distal half of the thigh is similarly covered. A sparse growth of hair is limited to the upper half of the doral surface of the interfemoral membrane.

The calcar is rudimental. 'The terminal cartilages of the fourth and fifth digits are uniform, elongated and searecly wider at fiee margin than on the sides. The second interdigital pace is almost devoid of pigment. The third pace retains a vertical line for nearly its entire length, while the fourth exhibits one for about an inch near the free margin, the rest of the pace being areolated. The endopatagim is furnished with numerons thick muscle fascicles; near the tibia it is thick and leathery.

Pteral formula:

$$
\begin{array}{ccc}
\text { Second interspace, } & \text { Third interspace, } & \text { Fourth interspace, } \\
3 \mathrm{~mm} . & 19 \mathrm{~mm} . & 35 \mathrm{~mm} .
\end{array}
$$

The Skull.-The walls of the skull are thin and permit the divisions of the hrain th be discerned. The sagittal, pretemporal and oceipital creste are well defined and trenchant. The fronto-maxillary inflation is conspichous and bears the pretemperal arest. The immer orbital wall is moderately convex, and is marked by a conspicums foramen. The infraorbital foramen is placed well in advance of the orthit in line of the recomd premolar. The zygoma with a rudimental ascending process at the penterior third, but none anteriorly to contribute to the limitation of the orlat.

Lomer Teeth.-The incivons are stont, in continnous row. The palatal hasal cusp is on level with the crown, which thas presents a broad, quadrate surtace, marked in the middle from before backward by a ridge. (amine without conspicurnus haval cusp. Premolars subequal, the first the smaller and triangular, the seeond with large hasal cusp).

Finst and second molars with quadrituherenlar curps well defined, a large mammillation on the anterior commisure of the second molar; the thind molar triangular, tritubercular.

Unper Tepth. Whe central incions are very large, triangular, nearly filling the interval between the canines. The lateral incisors are minute, not over one-fourth the size of the centrals. The amterion surface is concalse; the crown is blunt and quadrate, with hasal dusp and cutting edge equal. The canine with anterior and posterior denticles, the posterion of the two being enomons and presenting the aspect of being an outshoot from the side of the crown. The first premolar minute and of the same form as the lateral incisor. The second premolar large, triangular and prejecting heyond the molars. The basal cusp (denterocone) conspichous. Molars tritubercular, without $\mathbb{W}^{\text {-shaphed }}$ pattern. Several mammillations are present on the grinding surfaces. Third molar is one-half the size of the secomet.

Mectsuroments of Brachyphylla coternartum.
Millimeters.
Head and boly (from crown of head to lase of tail) 66
Length of arm 40
Length of forearm. 65
First digit:
Length of first metacarpal hone. 1
Lennth of phalanges 12
Second digit:
Length of second metacarpal lone. 46
Length of first phalanx 5
Third digit:
Length of third metacarpal bone 5.5
Length of first phalans 17
Length of secoud phalanx 23
Leveth of third phalanx. 11
lourth digit:
Length of fourth metacarpal bone. 51
Length of first phalanx 15
Length of second phalans 17
Filth digit:
Length of fifth metacarpal hone. 55
Lengeth of tirst phalan 15
Leugth of second phalanx 14
Length of hear. 34
Height of ear. 12
Height of tragus
lemerth of thigh $2 ?$
Lamsth of tibia. 97
L.ength of foot 39
Length of interfemoral mesmbane. 21
length of tail. \%

Phylanycteres.

Upper incisors separated from the laterals by wide intervals; maked skin-fold defining nostrils laterally ; nowe leaf not reaching above the level of approximate clubshaped gland masses. Thmmb the largest in the group nearly one-fourth the length of the forcarm. Length of forearm, to mm . Teeth with cusps nearly obliterated, no Wpattern on molars. Large vacuity between oecipital bome and pars-rguanosal of the temporal. Fimbriee not arranged in rows, hat form a miform covering to the tip of the tongue. The firstand fifth metataral bones longest. The first row of phatanges of third to fifth digit of manus, sime length as the recond row. Calcar wanting. Vagomatic arches fibro-cartilagimots.

$$
\text { Dental formula : i. }{ }_{4}^{\frac{1}{4}}-\varepsilon{ }_{1}^{1}-p^{m m} \cdot \frac{2}{3}-m \cdot \frac{3}{3}=21 \text {. }
$$

Phyllomgeteris was deweribed by (imudlach, but puhlished under the care of Peters, who does not appear to have known the form. Gandach correctly compares the genus to Brachyphylla. Dohson follows (Amutlach elowely, his description being little more than a tramsation of the original article. When he departs from the text he make statements which do not agree with the specimen on which the present essay is based. Thus he says, "the incisors are as in Cilossopherge; the molars like those of Cemollien (Ifemidermen), but the W^{W}-shaped cusps scarcely developed;" whereas the upper lateral incisor is twice the size of the central and the groma may be complete. With the exeeption of the skulls, Dobmon did not sudy Phyllomyelerix at first hand.

Phyllomgeteris sezecomi (iundl.
Auricle simple, sente, with rounded perinted lip. Externct metline withoul subdivision

 point sceterely longer.

Nose leaf simple, obtuse with internarial pedicle. The perinarial flange is lamillar and distinct from gland masis. The structure last named well defmed, apparently crossing muzale back of the nowe leaf, hut two chab-shaped masses are nearly approximate. Upper lip high without warts. Interfenoral membrane deeply incised, extending from distal third of the tail to the caleanemm. The tail is short, seareely projecting beyond the interfemoral membrame. The fur long and silky above light gray tipped, subtipsooty, the rest of the hair pale verging to white. Beneath muth paler, neary miform gray The tip of hair tawny, the rest of the hair of a somewhat lighter shade.

Amost the entire fied of the endopatagium lilled with widely separated nearly equidistant vertical musele fasciches. There is no retionlated armarement of fiberes. The
newe markings in the fourth interspace as in cilossopletyg exeept that from the fourth digit there are three instend of one nerve. The terminal cartilage of the fourth digit is (h)ecurely patulate.

The shull.-The skull not papraceous, the division of the cerebellum, but not of the cercharm, discernible on periphery. The pretemporal crest distinct. It begins over the moderate fronto-maxillary inflation to form a delicate crest by union with the fellow nf the qupesite side at the anterior third of the sagitta. Mesotemporal and posttemporal crests mot diseremed. The orbital ridge is rudimental, hut the frontonasal pit conspicuous at proximal end of the slightly convex nasal bones. The large infratorbital foramen lies ower interval hetween second premolar and first molar and is thatched by a ridge. The alveolus (i. o., the distance from the central incisor to the anterior nasal aperture) equals in height one-fifth of the base of the upper canine and one-eighteenth of the vertical diameter of the large, anterior, nasal aperture. The zegoma often complete.* The maxilla at root of zygoma with a very mall ascending procens. The premaxilla at the side of the anterion nasal aperture walient. Neither the groove hetween the nasal bones or the depreswion on the maxilla at the side of the naval bones are conspicuous. The depression between the aperture last named and the eminence over the canine is shallow. The hard palate just back of the last molar is sharply defined by a double crescentic transverse ridge; the palatal notch is acute and deep, the apex reaching the level of the anterior third of the zegomatic arch, the pteryoid process corresponding in position to the oral foramen. The tympanic bone touches the postolenoid process. The junction of the ethmoid and ephenoid bones in the brain case not convex. A vacuity is found in the line of junction of oxecipital and whamosal bones.

The basioceipital bone with searcely any pit-like depressions; the romerine ridge scarcely discernible in the mesopteryenol fossa. The mastoid process small, conical. The proportion of the face to the brain case is as ! 1015 mm .

Louer . Fun:-Coronoid process acmminate. The hamular angle not deffected or projected heyond the condyluid process: lower horder of the masceteric impression not distinguished from the corresponding horder of the horizontal ramus. Back of the molars and at hase of coronoid process a tubercle for insertion of temporal muscle is seen. symphysismenti hrod, non-carinate, the surface near the incions marked by coarse vemons foramina.

The Toth.-The upper central incisors hatchet-shaped, contiguous; laterals much smaller, mot halt the size of centrals and separate therefom. The incisors not entirely oropying pate between the canines. (imine horad at bave, robust, convex entire length

F Ibolson (Cat. Chirop. Br. ITus. I in text state that they are incomplet, but acknowledges the fibro-cartilagium arch in a fonmote
of palatal surface. First premolar very small, nodular, about one-fourth the size of the second and not much larger than the lateral incisor. Second premolar triangular, without basal cusp; posterior half of palatal surface concave. Molars without well-defined cusps and decrease in size gradually from before backward. The third molar one-half the size of the second. The protocone, paracone and metacone scarcely indicated; no Wshaped pattern.*

Lower lateral incisors twice the size of the centrals; all are non-contignous and nodular. Canine with conspicuons concave heel ; all other parts convex; cingulum extends inward so as to lie back of the lateral incisor. The premolars thick and robust, subequal ; the first smaller. The molars decreasing in size from before backward without details.

Of the measurements it is noted that the first phalanx of the first digit is scarcely longer tham the metacarpal bone. In the second digit the single phalanx is one-tenth the length of the corresponding metatarpal bone. The entire second digit is as long as the third metacarpal bone. In the third digit the first and second phaknges are equalthe third phalanx is nearly one-half the length of the second. The terminal cartilage of the fourth digit is moderately spatulate, and that of the fifth digit is deflected toward the body. The wing membrane attached to the tibia at the distal seventh or to the ankle. Interfemoral membrane attached to tip of the small calcanem.

The Skeleton.-The sternmm is boldly keeled over the presternum and metastermum. The ribs are twelye in number. The first costal cartilage is discoidal. The humeral pectoral crest is relatively low and not half the diameter of the proximal end of the bone. The fifth metatarsal bone is much the largest of the series. Palatal rugee eight, last three to four interrupted in centre. The first and fifth metatarsals are longer than the others. The boncs of the first row of phalanges of the toes are equal.

* Peters and writers following him rive all flosophagine qenera W'shaped pattern of molars. I have hat no opportunity of examining the type of Phyllonycheris in the Berlin Musemm, bat I have received through the kind oflices of Mr. Paul Matschie a photograph of the skull which I find conforms to the account above given.

> Thble of Alrusurementis (in millimeters).

			要				
Head and lowly (from crown of head in bave of tail)..........................	45	45	St	-	40	12	32
Length of arm..	19	?		$\because 0$	$: 20$	90	25
Length of fortarm..	26	3%	50	42	35	35	45
First digrit :							
Length of first metacarpal bone ..	4	4	4	4	3	3	5
Length of first phalanx	1	4	4	3	3	3	7
Secoud digit :							
Length of seconel metacarpal hone..	30	45	40	40	$29+$	33	33
Length of first phalanx...	1	\because	3	0	\sim	0	3
'Thirl digit :							
Length of third metaearpal bone..	34	30	47	45	37	3 S	$3 \times$
Length of first phalanx..	$1: 3$	11	11	17	19	13	14
Lenerth of second phalanx..	16	1:3	3)	$\because 1$	12	$\because 1$	14
Length of thind phalanx...............	\%	6	N	9	9	11	8
Fourth digit:							
Length of fourth metacarpal hone...	33	27	4.	40	34	37	35
Length of first phalanx ...	10	9	11	1)	9	10	13
Iength of second phalanx..	10	9	16	15	12	13	11
Fifth Migit:							
Iength of tifth metacarpal hont..	30	27	40	35	30	30	35
Length of first phalanx...	9	s	10	10	7	8	11
Leugth of second phalanx...	9	8	10	13	11	12	10
Lemgth of head..	23	$\because 1$	27	32	25	29	25
Height of ear..	14	11	$1: 3$	13	13	14	11
Height of tragus .	4	3	4	5	4	$4 \frac{1}{2}$	5
Lengrth of thigh..	10	?	15	15	13	14	19
Length of tibia ...	14	11	20	17	13	13	20
Yongth of foot..	-	\checkmark	12	10	7	γ	13
Length of interfemoral membrane in median line.	10	9		20	4	6	7
Ienyth of tail..	5	?		8	4	0	10

Note - The Secretaries dem it proper to state that this, as well as the succeding paper, was presented to 1low Socicty after the author's death, which lamented erent oceurred on Norember 14, 1897 , and that, therefore, it has not had the benefit of his revision in its passage throngh the press. ?

FXPLANATLON OF THE PLATES.

Pl.ite VI

Fig. 1. (ilossophagu soricimer. Head seen from in front. $\times 2$.
Fig. 2. Glossophagu soricina. Skull vertex. \times ib.
Fig. 3. Gilossopherge soricina. Skull profile. \times is.
Fig. 4. Glossophenge soricina. Skull hase. $\times 3$.
Fig. 5. Glossophegu soricind. Jaws with incisors and canines seen from in front. \times
Fig. 6. Glossophagu soricine. lipper teeth. $\times 10$.
Fig. 7. Glossophugu soricime. Lower teeth seen from ahove. $\times 10$.
Fig. 8. Glossophaga soricina. Ieft lower molars seen in profile from lingual aspeet. The first molar is to the right. $\times 10$.

Phate: VII.
Fig. 9. Vilossophagatruei. Head seen from in front. $\times \%$
Fig. 10. Glossoplugue truei. Skull vertex. \times B
Fig. 11. Glossophagut truci. Skull protile. \times s.
Fig. 1: Glossophagat tmei. Skull hase. $\times 3$.
Fig. 1:3. Gilossophagu trmi. Upper teeth. $\times 8$.
Fig. 14. Cilossophergu truei. Lower teeth seen from above. $\times R$.
Fig. 15. Glosxophugu truet. Left lower molars seen in protile from lingual asject. 'The first molar is to the right. $\times 8$.

Plate Viti.

Fig. 16. Monophyllus redmumi. View of head from in front, showing ear and nose leaf. \times.
Fig. 1\%. Honophyllus rechmon. skull of same. Norma verticalis. $\times 3$.
Fig. 18. Monophyllus rodmoni. Skull of sme. Norma lateralis. $\times 3$.
Fig. 19. Monophyllus redmuni. skull of smme Norma basilaris. x :
Fig. :30. Monophylles redmumi. Upper and lower jaws seen from in front. X.
Fig. D1. Monophyllus redmami. Teeth of the stme as seen from the surfaces of crowns. $X x$.

I'LATE IS.

Fig. 22. Brachyphyllu curernomm. View of head showing ears and nose leaf.
Fig. $3: 3$. Brachyphyllu cutcrutmm. Skull of same. Norma verticalis. $\times 3$.
Fig. ©4. Brachyphylla checumtrmu. Skull of same. Norma lateralis. \times is.
Fig. ${ }^{2} 5$. Brachyphyllet mevrutrmm. Skull of same. Norma basilaris. \times. 3 .

Fig. 5\%. Brachyphylla culcernurlm. ' Teeth of same seen from the surfaces of crowns. X.

l'hate XI.

Fig. 10. Teptonycteris mimalis. Head seen from in front. $\times \because$.
Fig. 41. Leptonycteris mirulis. Skull vertex. \times :
Fig. 4., Leptonycteris mirnlis. Skull profile. $\times:$
Figr 43. Leptonycteris nicalis. skull hase. x is.
Fig. 44. Leptongcteris riculis. Jaws with incisors and canines seen from in front. \times -
Fig. 45. Leptonyctoris mimilis. Upper teeth, $\times R$.

Fig 16i. Lapforapteris mimelis. Tower teeth. $\times 8$.
Fig. 1\%. Leptombeforis nimbis. Left lower molars seen in profile from limual aspect. The first molar is to the right. $\times 10$.

Plati: XII.

Fis. 19 (l/m layctoris mexirmma. skull vertex. $\times 3$.

Fig. is ('hamempleris mexictmet. Lower teeth. $\times 10$.
 ringt. $\times 10$.

plate Nill.

Fig n!t. Lemurloglossate cmuliferer. Skull base. X :
Fig dio Lomshoglossit cumbifert. Jaws with incisors and canines seen from in front. $\times 8$.
Fig. (;1 Lommoglossen candifera. Upper teetn. $\times \times$.
Fiir. fis. Lomehoglassu cmelifion. Lower teeth. X.
Itig. (is. Ionchoglowst comelifiom. First and second right lower molars seen from lingual aspect. The first tooth in to the right. $\times 10$.

Plate XIV.

Fing (i) Antrot friclii. Head seem from in front. \times.

Fige fit. Aultra wielii. skull hase. $\times 3$.
Fig. fich Amura arichli. Jaws seen from in front showing incisors and canines. $\times 8$.
Fig. (ad). Amma rimiti. Upjer teeth. $\times 8$.
Figer \%o Allwra mionlii. Lower teeth. $\times 8$.
Fig il Almmit irimai. Left lower molars seen from lingual aspect. The first tooth is to the right. $\times 10$.

I'late XV.

Fing is. Ihyllonyctiris sezcozmi. Head from in front. \times.
Fier F : Phyllomyptoris stzecormi. Skull vertex. $\times 3$.
Fing it Ihyllomycteris sezeconm. skull profile. $\times 3$.
Fier Fin Phylloreycteris sszecormi. skull hase. $\times 3$.
Fier Tif Ilyhllonycteris scacommi. Upper teeth. $\times 10$.
Fig it Phyllonyctoris sezccorni. Lower teeth. $\times 10$.
live is Ihyllmbeforis sezcomi. Jaws seen from in front showing incisors and canines. $\times 8$.

\downarrow

15

13

1.1
.

MONOPHYLLUS REDMANI

BRACHYPIIYLIA (*AYERNARUS

$\therefore 2$

$\therefore 1$

in

43

CHCERNYCTERIS MEXICANA

(x)

LONCHOGLOSSA CAUDIFERA

PHXLLONYCOTERIS SEZECURNI

ARTTOLE VI.
'TIH SKULI, ANI 'IHFTII OF ECPOPMYLJA ALBA.
(Plate NYI.)
BY HARRIBON ALLIEN, M.D.

Read before the American Philosophical Society, January 21, 1898.

In 1892 (Proc. U. A. Nat. Jus., 1892, No. 91:3, 441), I deseribed a bat from Honduras under the name of Ectophylla ullor. The single specimen was without skull. I have been permitted through the courtesy of Mr. Oldfield Thomas, of the British Museum, to inspect a second example of the genus. The material consisted of a dried skin and a skull of a male individual which was mutilated by shot in the pterygoid and orbital regions. The specimen was collected at San Emilio, Lake Nic-Nac, Niearagua.*

The normaterticalis shows faint fronto-temporal lines which barely approximate near the bregma, but recede from that point posteriorly so that no trace of a temporal erest exists. The fronto-maxillary inflation is conspicuons and makes a swollen border for the upper and anterior orbital margins. The nasal bones are sharply clevated above the plane of the maxilla. Sufficient of the norma besiteris remains intact to show that the hard palate is elongated and the palatal bones are produced, thus separating the gemus sharply from Stenoderma and its allics and allying it to I'empyrops (see Synoptical Key). The basioccipital bone is deeply pitted for museular impressions. In this respect it presents a marked contrast with J'ampyrops, in which this bone is nearly flat. The tympanic bone is small, leaving the greater part of the cochlea exposed. The norma oceipitatis shows a weak occipital ridge. The junction of the ectopetrosal + surface of the pars-petrosa with the occipital bone is complete, while in Vempmpops at vacuity exists.

The lower jaw retains a curved aciculate angle relatively twice the size of the same

[^15]part in Vampyrops. The masseteric muscle extends to the lower margin of the ascending ramus. The coronoid process is one-third smaller than in the genus last named.
$$
\text { Dental formula: i. } \frac{2}{2}-c \cdot \frac{1}{1}-\text { prnn. } \frac{2}{2}-m . \frac{2}{2} \times 2=28 \text {. }
$$

The Teeth.-Upper incisors conical ; the centrals larger than the laterals with relatively broader bases. The centrals are separated from each other by a smaller interval than exists between these teeth and the laterals, or between the teeth last named and the canines. The canines are slender and slightly longer than the second premolar. The first premolar is pointed, root much exposed and is about one-third the size of the second. The first upper molar is quadrate with trenchant marginal cusps in position of protocone, paracont and metacone; the crown defined by these elements is concave. The second molar is pyriform, the base being toward the palate. A pointed marginal cusp is seen in the position of the paracone and a second in that of the metacone. The crown is concave and simple, saye for a longitudinal ridge. The premolars and molars are separate from one another; the greatest interval being between the premolars.

The lower incisors are blunt cones, contiguous, filling space between canines; the teeth last named are deeply excavate posteriorly. Premolars are aciculate, the first tooth almost touching the canine and is smaller than second. The second tooth is deeply con(ave posteriorly with a conspicuous heel and cusp. The molars are subequal, without Wpattern. The first molar is obscurely quadrate, slightly narrowed in front with enormous sharply pointed paraconid; other cusps are absent; the lingual border is not raised. The second molar is subrounded, no trace of cusps being present other than a longitudinal ridge in the middle of the deeply excavate crown. The front and lingual borders of the tooth are greatly elevated, the former furnished with two sharp processes, the latter cremulate. The teeth are all separated from one another beyond the canine, the smallest interval being that between the canine and the first premolar and the widest between the premolars.

Ectophylla is in alliance with Tampyrops. It resembles this genus in the upper incisors and first upper premolar being conical and in the prolongation of the palatal bomes. The shape of the lower first molar possesses a large paraconid, but is without protocomid. In the dental characters last named Ectophylla is like all other Stenoderminæ, excepting Brachyphylle, Artibens, Dermanura and Sturnira.

The forms exhibiting the stunted, first, lower molar are again divided into two groups by the palate and the lower jaw. In Chiroderma, Vampyrops and Ectophylla the palate is oblong; the palate bone extends to a point answering to the anterior root of the zygoma, or even the posterior third of the arch, and the lower jaw has a well-defined posterior border to the ascending ramus, with no deflected angle. In Pygoderma, Stenoderma and

Trichocorys, the palate is rounded, as a rule excarated and rarely reaches a perint answering to the anterior root of the zegoma; the lower jaw has no well-defined posterior border, the boldly deflected angle almost reaching the condyloid process.

The position of Eetophylle in the stenodeminae is shown in the synoptical natural key. Brachyphylle is an annectant gemus to the Glowsophagina through Phylfometeris Artibeus, Dermemure and Sturnire apparently relate to the Vampyri, but while the structure of the molars is essentally that of this group, no amectant form is known. Stumira in the simplicity of the tooth structure recalls Hemiderma. The relation between the remaining genera of the table is intimate. The Stenoderminge constitute, with the exception of the Heamatophillia, the most aberrant group of the Phyllowtomidide.

I recognize, therefore, the following natural arrangement of the gencra:

> subfamily stexodermatine.

Brachyphyllini.. Brachyphylln.

A Natarel simnoptieal Key of the stenodermider, Bused om Charactors Inerived from the whoull and Tectle.
I. First lower molar elongrate with paraconid distinct.

Group brachyphyllini....	ramus defined. Mard palate ohlong, palatal bones proluced. IMrer incisors conical, molars $\frac{3}{3}$; crowns coarsels ridged ; all cusps of the first lower molat suberaal...
	Bruthyphylla.

[^16]
II. First lower molar subpuadrate without paraconid.

* Mr. U. 'Illomas (Ann. and Mag, Nat. Mist, 1ی=l. ן. T0) tirst employed this character to separate this group from the foregoing.

Wersarrements of Edophylla allore (in millimeters).

Head and boxly (from crown of head to hase of tail), $: 6$ $: 3$
Lengrth of arm 17
Length of forearm. 品First digit:
Length of first metacarpal hone. 3 8
:
Length of first phatanx.
second digit :
Length of secomd metacarpal bone. 1 20
Lenseth of first phalanx. :
Third digit :
Length of thirl metacarpal bone 3
Length of tirst phalanx. 2
Lengeth of secomd phalans 13
Length of third phatanx 6
Fourth digit :
Lengeth of fourth metacarpal bone. 25
Length of tiset phalanx. $-$
Lengrth of second phalanx 7
lifth digit :
Lemgeth of difth metacapal bone.\because
Lemgth of first phalamx $1 i$
Length of second phalanx i
Lengrth of heard 11
Height of car 111
Height of tragus\because
Lengrth of thigh\because
Lempth of tibia 10Lenerth of foot-
Length of interfemoral membrane 1

In concluding the account of this interesting specimen, I will call attention to the molar teeth of (ephatoles, a member of the remote group of the Itpropmadide. The two genera, however, remble one another in being frugivoross, in retaning few or mot tubereles to the molars and, probably on this acoomt, in exhibiting elongated crests in the centre of deeply exeavate crowns. A tenable hypothesis for the wigin of this central cuop may be expressed as follows. The grinding away of the crowns haw gome on to a degrete that lorings the enamel cap down near to the division in the alvendus, between the sockets for the roots of the teeth, so that this ridge acts as a point of resistance to further wear and leads to a reasertion of the principle of cuspidation at this puint.
A. I. S.—V"OL. NIX. © I.

One of the mast marked characteristion of the teeth of fruit-cating bats is the disparition for the los of (ans in the molar teeth. This takes place withont intermediate grakes sutar is kown. In two of the three sulativisions of the Phyllostomide it werme as exceptions to the mule- Hemiderme in the Vamperi and Ihyllomyeteris in the (ilussophagina, hat is the rube rather than the exception in the stenoterminae. In the I'terepodide the tendeney to the loss of cuspidation is the rule, the genus Pereqlopex heing the mly exception. Such ahrupt variation within the limits of small groups indicates that the tendency to external pecialization has weakened the type and exposes it under the influene of enviromment, wharily acknowledged as active in modifying forms, to gross modification always on the side of deterioration.
ENPLANATION OF PLATE XVI.

Fis. 1. Ectophylla alba-norma verticalis.
FI上. ? Ectophylla alla-nomma lateralis.
Fis. :3. Evlophylla alba-ulper ant lower teeth.
Fig. 4. Ertophylla alha-lower molar (protile).
Fige - Ertophylla alba-ramus of lower jaw.
Fig. (f. Cophalotes peroni-fist right upher molar.
Fig. 7. Cephalotes peroni-first and secomel riwht lower molars.

ECTOPHYLLA ALBA-CEPHALOTES PERONI.

ARTICLE VTI.

(Plates XVII and XVIII.)
THE OSTEOLOGY OF ELOTMERICM.

BY W. B. SCOTT.
(INYESTIGATION MADE UNDER A (iRANT FRHM THE ELIZAHETH THOMDESIN FUXH UF THE A.A.A. S.)

Read before the American Philosophical Society, February 4, 1898.

Etotherium is one of the many genera of fossil mammals concerning which the growth of our knowledge has been exceedingly slow, and only of late has it become practicable to give a complete accomst of its. bony structure. The gemus was named in 1847 by Pomel (' 47 a, b) and shortly afterwatd remamed Entelodom by Aymard ('48) from a better specimen, but for several years only the dentition was known and that imperfectly.
 senerie identity with the European forms, he at first refered it to a new genus, Aecherotherium. Leidy's material enabled him to give a fairly complete aceome of the skull. Kowalevsky, in 1876, described an imporfect skull found in france and he further showed that the fect were didactyl, a very mexpected fact in view of the pig-like character of the dentition. In this country Profs. Marsh and Cope have added materially to
 former has published a restomation of one of the species. In spite, howerer, of this list of workers who have, from time to time, oceupied themselves with the study of Elulherium, much still remains to be learned regarding its structure, and its phylogenctic relationships are even more obscure.

In the summer of 1894, Mr. H. F. Wells discovered in the White River Bad Lande of South Dakota certain bones, which, with the expenditure of infinite pains and skill, were exearated from the rock by Mr. .J. B. Hatcher, and which proved to be a moxt remarkably complete skeleton of Elotherium. This beatiful pecimen (Princeton Museum, No. 10855, formed the subject of a preliminary communication which I made to
 described in the following pages. Exeept for a single thomede vertehna (and perhap a
lew (ambalw and part of the hyod apparatur, the seleton is complete; it is represented in Pl. XVII, which will emable the reader to judge of its musual state of preservation. Aditional matterial, belonging to several species, will also be made use of for purposes of of comparison, but the description will deal almont exclusively with the White River finms.

The Artiodacylat may almost be designated as the despair of the morphologist. So manifold are the forms which this puzaling group has assmed, and so variousty are the characteristics of its minor groups combined, that the confusion seems hopeless. The only way in which this tamgled skein can be maveled and its many threads separated and made straight, is by the slow but sure method of tracing the phylogenetic development of each family step hy step from its incipient stages. Many years must pass before sufficient palacontological material has been gathered to make this posible, but already some progress has been made in the work. Each successive form in a series, as soon as it is recoserel, should be fully described and illustrated for the benefit of other workers, a necessity which must exense the mimutenes of detail into which the following deseription enters. Fon the sake of convenience the entire bony structure of the animal will be described, including those parts which are already well known, in order that the reader may be apared the trouble of searching through many scattered papers, written in several languages.

I. The I)extition.

The teeth of Etothorimm are already familiarly known and require but a brief account here. The dental formula is I 䖲, $\mathrm{C} \frac{1}{1}, \mathrm{P} \frac{4}{4}, ~ \mathrm{M} \frac{3}{3}$.
A. Tpper Jtur-The incisors, three in number, increase regularly in size from the first the the third, the latter being much the largent of the series; it has a conical or somewhat trihedral (arow and resembles a canine in shape and appearance. In some individmals the crown of this towth is worn in a peculiar mamer, a deep groove or notch being formed on ite postering side, in a place where it camot have been made by the attrition of any of the lower teeth. The other incisorn have spatulate crowns, with blunted tips, the attrition of use wearing down the apices as well as the posterior faces of these teeth. This description applies more particularly to the larger White River species, such as E. infors and E. imperator; in E. montomi the upper incisors are of more nearly equal size and more conical shape. In all, the median incisors are separated from each other hy a considerathe notch, and the whole series is much more extended intero-posteriorly tham transersely, the external incisor standing behind the second one. I ${ }^{3}$ is separated hy a thort diastema from the canine and at this point the premaxillary border is quite depply nothed to recedve the lower canine.
'The canine is a very large and powerful tusk, with a swollen, gibbous fang; the
erown is long, massive, recurved, and bontly pointed; it in oval in section, and hats a prominent posterior ridge.

The premolars are very simple in construction. The first there are well spaced apart and have comprensed, but thick, conical crowns, without aceenory cons of any Kind, and each is implanted by two fangs. In size, they increase posteriorly and p " has a decidedly higher crown than any other premotar. $I^{\prime}+$ is smaller than p^{*} in every dimension exeept the tramserse, this diameter being increased by the addition of a large internal enop (the denterocone) and the crown is carried upon three fangs. In the smaller species of the genus, such as E. mortomi, p^{3} and p^{4} are phaced dose together, while in the larger forms these teeth are separated by a short epace, and the diastemata between the other premolars and between p^{1} and the canine are relatively somewhat greater, the enlargement of these teeth hardly keeping pace with the elongation of the muzale. In the European species, E. moymm, the arrangement of the premolare is somewhat different, $p^{2},{ }^{3}$ and ${ }^{4}$ forming a continuous serien, while p^{1} and ${ }^{2}$ are quite widely separated.

The molars are relatively quite small ; m ${ }^{-2}$ is the largest and m " the smallest of the series. The crowns are low and bunodont, bearing six tubereles arranged in two transvere rows. The hypocone, though functionally important, is decidedly smaller than the protocone, and structurally is still a part of the cingulam. Schlosiser is, however, mistaken in supposing that there is any important difference between the American and the European species of Elotherium with regard to the position of the protecone. In m", Which has a more oval erown than the other molars, the sexitubercular pattem is obscured by the development of numerous small tuberede upen the hinder half of the tooth. The cingulum of the molars is quite strongly marked, expecially upon the atterior and posterior faces.
B. Loner Jun.-The incisors resmble those of the upper jaw, except that they are of more nearly equal size and somewhat more spatulate shape; $i_{\overline{3}}$ is little entarged and is much smaller than the corresponding tonth in the uper jaw.

The canine is a very large, recurved turk, like the uper one in size and shape; it bites between the upper camine and anlarged external incisor, the three teeth together making up a very formidable lacerating apparatus. An interesting hint as to the habite: of this animal is given by a peculiar mode of wear of the lower canine which oredre in some well-preserved specimens. In these we find adeep groove on the posterion fate of the tooth, beneath the enamel cap and close to the level of the gem. No other tooth can reach this point to canse such a mode of attrition, and the groove is doubtless dhe the the habit of digging up roots with the lower tusk; the pull of the root- copectally whem covered with samd of other gritty material, would maturally wear whe a groove. The

* This ingenious and highly probable explataton of a somewhat puzaling fact was sugerester to me ley my collearue, Prof. C. F. Brackett.
same explanation applies th the curions nothes sometimes worn in the external upper incisor. The numernes epecimens examined do not indicate that there was any difference between the make and the females in the size of the canines, the tusk being invariably large and powerful. If, as here suggented, the comines served other purposes than those of weapoms, the lack of any suth sexual difference would be intelligible enough.

The premolars are very simple and quite like those of the uper series in shape; their crowns are masive, compressed cones, without additional cusps. The cingulum is nsially prominent, but varies in the different species. I_{8} is much the highest of the series, epecially in E. importor, where it rises to the full height of the canine, and gives a wery characteristic appearance to the lower dentition. P_{\mp} has its posterior face flattened, forming an incipient fosia with a number of small tubercles in it. $\mathrm{P}_{\overline{3}}$ and ${ }_{f}$ stand quite clowe together, and p_{1} is separated by a short sace from the canine, while p_{2} is isolated by considerable diastemata both in front of and behind it.

The lower monars are small in proportion to the size of the jaw and to the space ocerpied by the premolar series. In size they increase posteriorly, and they have a simple, quadritubereular pattern, the crowns surounded by astrong cingulum. There is much variation in the development of the fifth or posterior umpared emp (hypoconulid); it is frequently absent and represented only by a strong cingulum, though sometimes it is present as a distinct (mb) on $\mathrm{m}_{\bar{I}^{\prime}}$ or $\mathrm{m}_{\overline{2}}$. It is less commonly found on $\mathrm{m}_{\overline{3}}$ and only in the very large E. leidyomum is it well developed.

The Milk Dentition.-The temporary canines and incisors differ from the permanent ones only in size. It is uncertain whether the first premolar, in either jaw, has a predecessor in the deciduons series, nome of the specimens distinctly showing such a predecesior. In one individual, however, the tip of p^{1} is just visible in the centre of a large alveolus, from which a milk-tooth has apparently been shed. If this change does actually oceur, it must take place at an early stage, and, on the whole, it seems probable that, at least in the upper jaw, the number of deciduous premolars is four. Dp 2 has a compressed, elongate, conical crown, without accessory corps of any kind; it is carried on two widely separated fangs, and is iswlated by diastemata both in front of and behind it. Dp ${ }^{3}$ consists of three principal ensp. The antero-external (mep) (protocone) is an acutely pointed pyramid, while the postero-external (as' ${ }^{\prime}$ (triterome) is lower and smaller. The internal cusp (tetartnconc) is posterior in position and placed on the same tramserse line as the tritocone, while between the two is a small comule. The cingulum is distinct on the front and hind facee, wheure on the coter and absent from the imner face of the crown. Dp^{4} is molariform, hut differs somewhat from the molar pattern in the fact that the posterointernal curp is even more distinctly an clevation of the cingulum and that the posterior comule is double.

The lower milk-premolans are even simpler than the uper; dpe and a are com-
 summit. Each of the eve teth is supported upon two fange. Ip a is of the usual artiodactyl type, consisting of there tramserse pairs of cuspe, of which the median pair is the largest, and the anterior pair the smalleat. A small talon is formed by the elevation of the cingulum in the median line, behind the posterior pair of (nops.

This account of the milk dentition applies only to E. montomi; I have not seen these teeth in the larger species.

*No. 111 101.

II. 'The skuth.

'The skull of Ehollominn is ome of the most remarkahbe features of this very curions amimal. It is datracterizal by great longth and senderness, with the supravecipital and nasal bones lying in the same horizontal phane. The mozale is exceedingly long and narrow, and tapors womewhat anteriorly, thongh expanded by the sockets of the great tusks; the orthit hem shifted far hack, its anterior border being, in some species, over m^{2}, and in others above m^{3}. The cramimm is short and of absurdly small capacity, which, with the great temporal openings, gives an almost reptilian appearance to the Null when viowed from above or helow. The sagittal crest is very high and thin, and the zyomatic arches, though rather short, are enomonsly developed. One of the most pecoliar features of the skull is the great, compreseed plate which is given off from the ventral surface of the jugal and descends helow the level of the lower jaw, and this groterque apparance is further increased hy two pairs of knob-like processes on the rentral borders of the mandible. The oeciput (Pl. XVIII, Figs. 1, ロ2) is high and rery broad at the base, but narrowing rapidly to the summit; above the foramen magnum it forms a broad, flat projection of almont miform hreadth, with a very deep fosa on each side of it.

The besionefpital is stout and rather short, keeled in the median ventral line and slightly contracted to receive the auditory bullee; at its junction with the basisphenoid it forms a pair of small, roughened tubereles. The exociphtals are very large bones, espe(ially in the transerve direction along the hase of the oceiput, dorsally they narrow fast. Ahove the formen magmm they form the very beod, prominent and nearly square projection which has adready been mentioned ; this is thick and is filled with cancellons bone, the fossal for the vermis of the cerehellum making but a slight depression upon its internal face. ()n each side of the projection is a large and deep triangular fossa, which, however, is not confined to the exoceipital, the periotic and squamosal both being concerned in its, formation. 'The inferior part of the exoecipital extends widely outward, reaching to the line of the glemed eavity, and ending in the large, prominent and massive, but not domgate pareceipital process. In this region the exoceipital is brought very close to the zegoma, lut, ventrally at least, docs mot quite touch it, a narrow band of the tympanic intervening between them. The foramen magnum is strikingly small and of a transersely oval shape. The occipital condylen are relatively rather mall, especially in the vertical dimension, laterally they are well extended, and they are widely separated both above and below. In the very large E. imperator the extemal angles of the condyles are abruptly truncated in a curions way, and hear flat articular surface, though in some individuals this truncation in found only on one side; while in the smaller species the condyles are of the usual form. The sinpronecipital is a large lone, widest at the base (i. e., the suture with the exoccipitals) and narowing dorsally. Superiorly it is drawn out into two posterior wing-
like procerses, such as are foum in Oremon and other White River ungulates. between these wings the himder face of the bone is concave and at the bottom of this conseavity are two small, but profomel pits. The supranceipital is contimued wer upen the roof of the cranimm and forms a part of the sagital crest.

A considerable part of the percotio is expened on the surface of the wall, at the bottom of the lateral oncepital fossat, where it is enclosed between the exoceipital and the squamosal ; it does not give rise to any distinct mastoid process.
 'Taf. XVII, Fig. $\overline{\text { O }}$), is difterent in many detais from that whol characterize the American spectes. It has more of an hour-glase wape, not so wide at the base, more contrated in the middle and more expanded at the top, hat with much lese compsomous wing-like processes, and it has no such progection above the foramen magnom, nor such deep lateral fosse. The combles are lager and of an entirely difterent wape, having their principal diameter vertical, instead of tramserec. The paroecipital procesces are bonger, more compressed and mot so widely extended laterally. The foramen magnom is large and of more nearly circular outline.

The bessaphenoid is narower than the hasioceipital and is mot keeded on the wontral surface, but is otherwise like that bene. So much of its course is concealed by the mion of the palatines and perverods: along the median line that its length camot be determined, while the prephenoid is nowhere exposed to view.

The tympenie is veryextensively developed (Pl. AVIII, Fig. 1). Part of it is inflated into an oxal, somewhat flattened and rather small anditory bulla, which differs from that of IIipropetemme amd of all existing sullines in being hollow and mot filled up with spongy tissue. On the outer side of the hula the tympanic is extended as a marow atrip. which broalens comsiderably between the squameal and the exmedpital, with loth of which it articulates suturally, as well as with the alisphenod in frome. The hulla itwit terminates anteriorly in a blunt spine.

The elisplenoil is smatl and forms very little of the side of the cranium. It is mest elongate antero-posteriorly along the ventral line, but has hardly any distinetly developeal pteryend process. At the line of the shenoidal fissure. which mothere but dows mot perforate the bone, the alisphenoid is mareowed, to expand again at its suture with the paristal and frontal. The mbitosplemed is relatively rather barese but is law in the weptical
 external face of the bone enclose al V-haped groove in which lie the ontie firamen amd foramen lacerum anterius.

The perietula are very large propertionately to the size of the aramim, hat guite small as compared with the entire length of the skall : they rate in mot of the ceredral

${ }^{\text {d }}$ hamber, hut tward the ventral side they rapidly contract, forming narrow strips lofween the sqummal and frontal. Throughout their length the parietals unite to form the very high, thim and plate-like eagital crest, which is one of the most characteristic features of the skull. In the Europern species, E. metmum, this crest has a remarkably straight and horizontal course, but in the known American species it is gently arched from before backward. Large sinuses are developed in the parietals, so that the cerebral chamber is even smaller than it appears to be, when riewed from the outer side. These sinuses extend over the entire roof of the cerebral fossa, even invading the supraccipital ; they appear to be traversed by momerons small trabecula, the ends of which are seen, in the sagittal section, embedded in the matrix which fills the sinnses.

The fromtula are much larger than the parietals. In the postorbital region they are very narrow, in conformity with the very small size of the brain, but at the orbits they expand widely to form the brod, lozenge-shaped forehead, which is convex from side to side, though slightly depressed, or "dished" in the middle; the supraciliary ridges are very inconsponons. Anterionly the frontals diverge to receive the nasals between them, sending forward long, pointed nasal processes, which, owing to the great clongation of the muzzle, are widely separated from the premaxillaries. The orbit is large and projects prominently outward ; it is completely encircled by bone, the long and massive postorbital process of the frontal miting suturally with the shorter process of the jugal. The orbits do not rise above the level of the forehead, as they do in Hippopotemus, and present more anterionly, less directly outward, than in that animal. Mention has ahready been made of a groove on the orbitotphenoid, which terminates below and behind in the foramon lacerum anterins; this groove is contimued upward and forward upon the frontal, steadily widening as it adrances. The postero-superion ridge hounding the groove is the more prominent ; it extends almost to the postorbital process, from which it is separated by a distinct noteh, while the antero-inferior ridge dies away within the orbit. In most of the American pecies the forehead rises very gradually and gently behind to the sagittal crest, but in l. ingens the rise is much more sudden and steep. The frontal simuses are large, giving the convex shape to the forchead which has been described; these sinuses appear to commonicate with those formed in the parietals.

Except posterionly, the sqummosel forms but little of the side-wall of the cranimm, its suture with the parietal curving abruptly downward and forward; its compressed and prominent hinder margin forms nearly the whole of the lambdoidal erest, though a confinuation of it extends upward upon the supraccipital, ending in the wing-like processes of that lome. 'The zyomatic procest is enormonsly developed; it extends widely outward from the side of the skull as a masive, rertieal plate, which is shaped much as in Ifipmonelemmes, and is not contimued forward as a broad, horizontal whelf, such as is found
in sus. The superior border curves upward into a great, hook-shaped process, which
 region of the skull. That pertion of the zagomatie process which in direded imteriorly is short and, thongh masive, is much less so than that which extemds out laterally; in front it is received into a noteh of the jugal. The glemode cavity is harge, tramsermely directed and quite decply concave, though the postglenoid process is mot strmgly developed and is hardly more conspicuons than the preglemod ridge. This disposition is unusual among the mgulates, hat it orems also in the Evene gemus. Achemmen and in the modern Dicotyles. The glenoid cavities of the two sides are bery widely equated, their inner margins lying extemal to the line of the paroceiphal proceses. The prittympanie process of the squmosal is small, and is clowely applied to the parocipital procest. The shape of the zygomatic arches, together with the extreme narrownes of the cramimm proper, causes the temporal opening to be very large and to appear widely open when the skull is viewed from above. These openings are, however, less extended tramseredy and more antero-posteriorly than in Hipmontemes, while in sus they are hardly visible from above.

The jugul is a very remarkable bone and constitutes one of the most extramedinary features of the Elotherium skull. Posterionly it is notehed to receive the zyematand sends out a process along the ventral fare of that bone, extending to the preghemod ridge The jugal forms the inferior half of the nearly circular orbit, and for this purpoe its dowal border is made deeply concave, giving off a stout powtomital provess to meet that of the frontal, while anteriorly it is moderately expamed upon the face in front of the orbit, where it is wedged in between the lachrymal and the maxillary. The mest perthliar feature of the jugal, however, is the immensely developed vertical phate, which descende from beneath the orbit downwad and outwad to below the level of the ventral border of the mandible, recalling the similar, but much less masive procesese fomed in certain edentates, e. g., Megutherime. These plates are laterally comprosed, hat yuite thick, and when the skull is viewed from the front, they are reen to diverge quite strongly downward; their shape varies in the different precies. In the very latge forms from the Protoceras beds, such as E. imperater, the proces retains its phate-like form thronghout, its free end being omly moderately thickened. This apmears to be true alsen of E. mortomi, though my material is mot sufficient to allow me tw make this satement positively, but in the large pecies firm the Titamotherimm and (oventom hedo (E . impons) it forms a club-like thickening at the tip, which in E. impons is corarely comulate on the posterior border (see Pl. XV'II). There processes are, so far as is yot known, quite unigue among the hoofed mammals, and it is difficult to fomm even a dompecture as what their functional significance may have been. Fome misumberatanding haw arion as the the
dies in which these jugal plates are fomm. Nothing is known concerning their presence or ahsence in the Eurnpean representatives of the genus. Leidy's material gave him no renson t - sumpet their ocerrence in the species described by him, and he consequently restored tho argomatic archew whont them (6:), Pl. XVI). Marsh first disoovered the procesten in a skull of the pocces named hy him E. corasicum, and it has sometimes been answmed that they were more particularly characteristic of that form. As a matter of fiact, they have been observed in all of the American species of which well-preserved -kulls are known, viz., E. montoni, E: ingens, and E. imporetor, and, in all probability, all the American forms, at least, posessed them.

The lechrymel is a rather large bone and forms nearly half of the anterior boundary of the orbit. On the face it is expanded into quite a large plate, which articulates below with the jugal, in front with the maxillary, and above with the frontal, the long anterior process of which prevents any contact between the lachrymal and nasal. In Hippopotemus the very short, hroad frontal has no anterior proces, and so the nasal and lachrymal are comnected, as they are also in sus. Within the orbit the lachrymal is but little extended; the formen is single, very small, and placed inside the orbital margin. The lachrymal pine is very low.

The mesuls are narow, stender and rery much elongated. Their greatest width is at the anterion end of the natal processes of the fromal, and here is ako their greatest transerse convexity; from this point they narrow and fatten, both in front and hehind. Anteriorly they contract very gradually and terminate in sharp points, with their free ends quite deeply notched. In E. ingens the nasals appear to be relatively shorter than in the other species. In Mippopotemus these bones have much the same shape as in Elothorimm, but they narrow more abruptly behind the point of greatest width, and their free ents are not noteched. In sus the masals are truncated posteriorly and in front their free tips project far beyond the borders of the premaxillaries.

The promaillaries are very large and heary bones, the horizontal or alveolar portion epecially so. Posteriorly, this portion is constricted, forming a groove for the reception of the lower camine, expanding again in front to carry the large incisors. The palatine processen are not much developed, the very large incisive foramina leaving but little space for them; the pines are long and slender, extending behind the canine alveolus. 'The ascending ramus of the premaxillary is low and rises gradually behind, and though hroad at first, it rapidly becomes very slender, terminating behind in a fine point. Though these bones in Elotherium have a very different appearance from the immensely enlarged memaxillaries of Hippopotamus, yet both may have been formed by divergent modifications of a common plan.

The maxillary is greatly extended antero-posteriorly, in correspondence with the
clongation of the whole muzale ; its facial portion in low, gradually diminishing in height forward, where its suture with the premaxillary forms a very gentle, sweping curve The longest suture of the maxillary is that with the masal, the connection with the fromal being very short, owing to the extension of the lachrymal. Posterionly, this bone projects but little beneath the orbit, which has an impertectly developed flow, and the projection which it sends out to the jugal is much lese massive than in IIpmpotemus. The face gratually narrows forward, until it reaches the infraorbital foramen, expanding again in front of the foramen and welling out inte the prominent canine abreotus. The palatime processes of the maxillaries are long and narrow, and as the molar-premolar series of the two sides form ahmost straight and barallel lines, the bony palate is of nearly uniform width, slightly concave transversely, but almost plane antero-posteriorly. In front, these palatine processes are deeply emargimated by the large incisive foramina, and in the median line are still further notched to receive the long premaxillary pines.

The puletines make up but very little of the bony palate, forming only a narow strip in front of the posterior nares, and narrow bands along the sides. The patatal notches are small and shallow. The perygoids are elongate, but quite low ; there are no hamular processes or pteryenid fosse; the two bones mect suturally along the median dorsal line, completely conceating the prexphenod from view. The poterior nares are long, narow and low, extending forward to the middle of m^{2}; the opening gradually contracts posteriorly, where it becomes very narow, while the side-walls shope upard and die away upon the alisphenods. Anteriong the nares are divided by the very large comer, which is distinctly visible, and which at its hinder termination cxpands inter a tramserse plate, articulating with the palatines. The meeting of the two pterygoids forms a small canal, which appears to overlie the whole length of the posterion mare amb to open forward into the nasal chamber on each side of the vomer. This is a very exefttional arramgement, and I am unable to shasent what its functional meang may be (see Pl. XVIII, Fig. 1, c).

The eremicel formeme are, in some respecte, quite peculiar. The comblar foramen is harge and eonspicoous, heing placed well in front of the condyle; it is, howeser, smaller than in the specimen of E. maymm which Kowalevay has figured. The done appoximation of the paroceipital and stylomastoid procesces, and the outward extension of the tympanic between them, have given a semewhat musual position to the postelemoid and styomastoid foramina; they are crowded dose together at the posteronexternal angle of the auditory bulla, and both of them perforate the enlarged tympanic bone. The foramen lacerm posterius forms a long, narrow and curved slit at the postoro-internal angle of the bulla, while the formen lacerum medium and the opening of the enstachan canal occupy their ordinary position at the front end of the bulla. No distinct carotid canal is visible externally.

Kowalersky inferred firom the study of his peecmen that the formen ovale " nicht als mollatimdige Foramen existirte, wie z. B. hei den Ruminanten, sondern mit dem For. Lac: med. versehmolzen war, wie bei den heutigen suiden und bei Hippopotamus" (76, p. fa: $\%$). This is probally a mistake; at all events, it is not true of the Americam speries, in which the foramen ovale is a long, conspienous opening, of oval shape, perforating the alisphemod. As in the ungulates generally, there is no separate formen rotundum, that opening being fused with the foramen lacerum anterias. The latter is a large and somewhat irreqular opening, which notches the anterior border of the alisphenoid, passing between that bone and the orbitosphenoid. The optic formen is small and well separated from the formen lacerum anterins, lying in front of and at a slightly higher level than the sphenoidal fissure; it does not open so far forward as in E. maymum, and, in consequence, it does not form such a remarkably elongated canal as in the European species (see Kowalersky, '76, 'Taf' XVI, Figs. 1 and 3, del), but, on the other hand, it is far from being a simple perforation of the orbitosphenoid, such as wecurs in the recent ungulates. This elongation of the optic canal should probably be correlated with the rery small size of the hrain, which would seem to have been relatively smaller than in the ancestons of the genus. Though the orbits are far behind their primitive position, the backward shifting of the optic tract would seem to have kept pace with the change in the position of the orbits.

The posterior palatine formmina are large and conspicuons openings, placed at the maxillo-palatine suture, and separating the two bones at these points; the palatine plates of the maxillaries are deeply grooved for some distance in front of the foramina. The incinive formina are likewise large, invading both the maxillarien and the premaxillaries; indeed, their size prevents the development of any considerable palatine processes on the latter bones. 'These formmina are in very marked contrast to those of Hippopotamus, in which the enormonaly expanded and massive premaxillaries are perforated by fwo mall and widely separated openings; in Ses also the incisive foramina are proporfiomately much smaller than in Elotherium. The infraorbital formmen is large and is separated from the orbit by a considerable interval, opening above the anterior border of 1^{n}. In from of the formmen a deep groove channchs the outer face of the maxillary for a short distance. The camal itself is much elongated, in correspondence with the great length of the jaws, and its posterior orifice, within the orbit, is very large. The lachrymal foramen, which is single, is quite small and is placed inside of the orbit.

The supranhital foramen is sulject to some variation in the different species. In E. ingens, from the Titanotherimm beds, these openings are of good size, are placed quite near to the median line, and have well-marked vaseular chamels rumning forward from them. In pecimens of E, mortoni from the Oreodon beds, and in the very large species
(E. imperator) from the Protoceras beds, the openings have become minute; they are shifted laterally and have no anterior grooves leading from them.

The mandible is not the least curious part of this remarkable skull. The horizontal ramus is extremely long and nearly straight, with an almost horizontal inferion border. The depth and thickness of the ramus vary considerably; even in sulls of the same length the mandible is decidedly more slender in some perimens than in others. The materials are, howerer, not yet suffient to determine whether this difference is of a socific, sexual, or merely individual character. A remarkable knob-like process is given off from the ventral border of the mandible, beneath p, which is subject to muth variation in shape and clongation, in aceorlance with the age and size of the animal. In young individuals still retaining the milk-dentition, the process is a mere ruguse elocation, and in the adults of the smatler speces it is hardly more than a knob, while in the large forms it becomes greatly clongated and (dub) ondaped. No marked difference in this regard is observable between the pecies from the upper and those from the lower horizons of the White River formation, the process being relatively quite as long and prominent in E. ingens from the 'Titanotherium beds, as in E. imporator from the Protoceras beds, but in the huge John Iny epecies it has become partieularly hong and heary

The symphysis is quite long and very thick and masive ; the two rami are indistinguishably fused together and laterally expanded, so as to somewhat reemble the symphysis of Hipmopotemus, though not attaining any such extreme degree of masiveness as in the modern genus. The chin is abruptly truncated and flattened, and rises very steeply from below; on each side, beneath or a little behind the camine alvedus, there arises from the ventral border a second chobshaped process, similar to, but much heavied and more prominent than the posterior process already described. These two pairs of knobs give to the jaw a highly peculiar and characteristic apparance; they form another of the enigmatical features of the Elotherime skull, for it is diflicult to imasine what part they cam have played in the exomy of the ammal.

The two inferior dental series pursue a nearly parallel course diverging backward but little, but behind the molars the two rami turn outwand and diverge rapidly, so that posterionly they are very widely separated, in correxpondence with the great interval between the glenoid catrities of the two shamosals. The angle of the mandible is prominent and descends below the ventral border of the horizontal ramus. much as in $I i_{\text {ipmon }}$ potermes, though not to the same extent. The ascemting ramus is mot high, hut of comsiderable antero-posterior extent. The maseteric fossa is quite small, hut repre deeply impressed, and is situated quite high upon the side of the jaw. The comple is relatively little raised above the level of the molar tecth, and it is sessile, hence inconspicums, though it is large, trameversely expanded, and strongly embex. 'The coromoid process
is strikingly low and small; it is of triangular shape, erect and not at all reeured, and is separated from the condyle by a very wide sigmoid notch. The mental foramen is small, single, and placed below po.

Fereral of the hyoid elements are preserved in comnection with the skeleton of E. ingens which forms the prineipal subject of this description. The stylohyal is quite long and shender' its proximal portion is laterally compressed and very thin, but moderately hroadened in the fore and aft direction. For the distal two-thirds of its length the bone is thicker and of a compressed oval section, expanding into a club-shaped thickening at the lower end, which is excavated for the comecting eartilage. The ceratohyal is considerably shorter tham the stylohyal, but of quite similar shape ; its proximal end bears a cup-shaped expansion, heneath which it becomes very thin and much compressed, but brondened antero-pwiteriorly; the inferior part of the shaft is slender and oval in section, with another cup-shaped expansion at the distal end. The epilhyal and basihyal have not been preserved. The thyrohyal is of remarkable length and slenderness, and obviously was not coomsified with the basihyal; the bone is of subeylindrical shape, with expansions at the proximal and distal ends.

This hyoid apparatus does not resemble that of any artionactyl with which I have been able to compare it. The elements of the anterior arch somewhat resemble those of Hippopmetans, but are more slender and elomgate. In the modern genus, on the other hand, the thyrohyak are very short, and are ankylosed with the basihyal, a totally differcont arrangement from that which characterizes Elotheriam.

From the foregoing deseription and acempanying figures it will be obvious that the skull of Ehotherinm is an extremely pecaliar one. Among recent anmak that of Hippopottomes approximates it most closely, and displays, with many striking differences, sevcral decided and, it may be, significant resemblances. Some of these resemblances, such as the straight cranio-facial axis and the long sagittal crest, are of no particular importance, becalnse they oceur so very generally among the primitive ungulates of all groups. Other similarities, agam, are not of this nature. The proportions of the cranial and fincial regions, the degree of backward shifting of the orbits, the relations of the zygomatic and paroceipital processes, the broadening of the muzale, and the general plan of skull construction, are all similar in the two genera. On the other hand, each genus has certain peculiarites corvelated with its manner of life. Thas, the elevation of the orbits and the backward displacement of the posterior nares in IIippopotomus are adaptations 10 its aquatic habits. Doubtlews the extraordinary peculiarities of Ehotherium, such as the dependent processes of the jugals and the great knobs on the mandible, are of a similar nature, thongh, in the absence of the soft parts, it is difficult even to conjecture what their use may have been.

hecarnerments.

	No. 1115 F	So. 105\%	No. 12 mar	So) 11440,
Skull, extreme lenuth on hasal line...	0.503	$\because 0.615$	$\because 0.450$	
" Width across zyentatic arches (behind jutal process)	$\because 500$.443	.297	261
" Widthat b'.	.13\%	. 140	089	.188
Cranimm, length to anterior border of orbit.	282	.288	. 198	.193
Fince, length to anterior loorter of orbit.	. 518	?378	2\%10	. 12
Oceipme, breath of hast...	. 2×1	.252	.160	.158
- herirli..	. 158		. 120	
Bony parate, lenth in median line.		$\because 360$. 27	
Zygonatic areh. lunghla..............	299	$\therefore 81$.14\%	.19\%
Desceming process of jural, lenerth.	. 330	.256		.120
Mamlinle, length...	.659*	.1;0s		
- - height at coronoid process	$\therefore 253 \%$. 171		. 107
" hepthat ${ }^{\text {a }}$.	$.133^{*}$. 091		.0.23

* No. 111101 .
MI. The: Bridn.

Attention has been repeatedly called, in the foregoing description of the skull, to the extraterlinarily small size of the hrain-carity. Even on viewing the well extemally, this smalluess of the cranium proper strike the observer immediately, and, in comnection with the long, slender mazale, gives the skull something of a reptilian aspect. When the cranimm is sawn open in longitudinal section, it becomes apparent that the bram is even smatler than would be inferred from the external view alome, moch of the patee being, so to speak, wasted in the great frontal and parietal simmes which werlie the whole cerebral chamber. In a large, full-grown skull this chamber will hardly contain an ordinary human fist.

The olfectory lubes are very large and are comected with the cerehrum by shom thick olfactory tracts. The lobes are mot at all overlapped by the hemispheres. hut are entirely exposed for their whole length.

The cerebrel homispheres are relatively small, thongh they are of emore, much larger than the other segments of the brain; so whert are they that they do mot extemd wer the olfactory lobes in front, or the cerebellum behime. In shape, they are low and wide, narowing grathally forward, but with blunt anterior termination. The frontal lobe is very small, for the frontals take but little shave in the roof of the cerebral chamber. The parietal lobe, on the other hand, is relatively large and forms the greater part of the hemisphere, for there is, properly spaking, no oecipital lobe, the oecipital bomes mot taking any part in the formation of the cerebral forsa. The temperomphemodal lobe is also quite lage and prominent, but is short antero-pesterionly. The hain-cast hows that the A. P. S.—YOL. NIN. こに.
hemisheres were convoluted, but the comolutions are so feebly marked that they are hardly worth description. It is obions, however, that the gyri were fewer and simpler than in any of the modern ungulates.

The corebellum is rather small, though the cerebellar fossa has a vertical diameter not much less than that of the cerebral fissa. Antero-posteriorly the former is quite short and its transerse brealth is not great. This breadth is still further reduced by the relatively very large size of the periotic bomes which extend freely into the fossa.

IV. The Vertebral Column.

The vertebral formula is: (7 , Th? 13, L $6, \mathrm{~S} 2, \mathrm{C} d 5+$
The athe: (Pl. XVIII, Fig. :3) is very wide transersely, and at the same time it is of considerahle antero-posterior extent, a shape which recalls that of Anoplotherinm, rather than that of the recent rmminants or suillines. The anterior cavitics for the oceipital condyles are deep and wide, hut low and depressed. Dorsally, these cotyles are widely separated by a broad, but not very deep emargination of the neural arch, nor do they approximate each other very closely on the rentral side, a notch of considerable width intervening between them at this point. The neural arch is thick and heary, but short from before backward and quite narrow transversely ; it is also low, not arching strongly toward the dorsal side, and nearly smooth, being free from any but the most obscurely marked ridges. The formmana perforating the arch for the first pair of spinal nerves are musually large. The neural spine is rudimentary and forms only an inconspicuous tubercle. The neural canal is low and broad, forming a transversely directed ellipse. The inferior arch is considerably more elongated antero-posteriorly than the neural, and has but little tramserse curvature, except laterally, where it rises to form the sides of the neural canal. The hypapophysis is represented by a small, backwardly directed tubercle, which arises from the hinder margin of the ventral arch, and occupies the same position as in the pigs, but is much less strongly developed. The articular surfaces for the axis are low and broad, and have a very oblique position, presenting inward toward the median line, almost as much as backward; they have also a slight dorsal presentation. In shape, they are very slightly concave and are surrounded by prominent borders. The facet for the olontoid is wide, and deeply concave in the transverse direction, but quite short antero-posteriorly. This facet is connected at the sides with those for the centrum of the axis, but distinct ridges are formed along the line of junction.

The transverse processes of the atlas extend out widely from the sides of the arch, attaining their greatest transerse breadth along the posterior line ; they are also very long in the fore-and-aft direction, reaching far behind the surfaces for the axis. For most of their course the transwerse processes have thin borders, but posteriorly the
margin becomes much thicker and more rugose. The vertebrarterial camal, which is notably small, occupies much the same position as in Sus, opening posteriorly upon the dorsal side of the hinder border. The anterior extension of the transverse procestes has converted into foramina (atlanteo-diapophysial) the notches for the inferior branches of the first pair of spinal nerver. On the ventral face of each process is a large fossa, enclosed between the side of the inferior arch and the greatly thickened posterior border of the process. The resemblance in shape to the atlas of A nophotherium, to which attention has already been called, affects more particularly the form of the transwere proceston but they are more extended transersely than in that genus and are not so pointed at the postero-extermal angles.

The axis (Pl. XVIII, Fig. 4) is a short, but very massively constructed bome, which in general shape and appearance resembles that of leippopotemus. The centrum is short, anteriorly very broad and depresed, but thickening posteriorly, and with a nearly circular and slightly concave hinder face. A strong and prominent keel runs along the ventral face of the centrum, enlarging backward, and terminating behind in a trifid hypapophysis. The odontoid process is short, heay and conical, with no tendency whatever to assume the depressed and flattened shape which occurs in so many White River ungulates. The ventral articular surface of the odontoid seems like something superadded to the process itself, for it is clearly demarcated by a groove ruming all around it, and projects slightly in front of the body of the process. On the dorsal side of the centrum a broad and well-defined ridge runs backward from the odontoid along the floor of the neural canal. The athanteal articular surfaces are very broad and low, not risimg so as to enclose any part of the neural canal. They are rery oblique with reference to the median line of the centrum, with which they form angles of about 45°. These surfaces are slightly convex in both directions, and ventrally they project much below the level of the centrum.

The transverse processes are short, thin and compressed, much lesw masive and widely extended than in Hippopotemus; they are perforated by very large foramina for the vertebral arteries. The pedicels of the neural arch are low and short, hut very heary ; they are not pierced for the passage of the secomel par of pinal nerves, as they are in Mippopotemus and in some of the pigs. The neural canal is decodedly small, especially its anterior opening; behind, it enlarges somewhat, particularly in the dorsoventral dimension, the posterior opening being high and narrow, while in Hipmonommes it is low and broad. The newal spine is a large plate which is very thin in front, but becomes thick and massive behind, ending in a broad rugosity. This spine resembles that of Hippopotamus, but is not produced so far backward and does not overhang the third cervical. The postagapophyses are large, slighty concave, and prement obliquely
outward, as well as downard; their hases are searated by a brad and deep groove, Which is continued mpard upon the posterion side of the nemral spine.
 fromus, diflering only in sume points of detail. The centrum is short, heavy and moderately opsthocolons, depresed, hot increasing posteriorly in vertical thickness. It bears astromg rentral ked, which terminates hehind, as in the axis, in a trifid hypapophysis. The perdicels of the neural arell are not, as in the pigs, piereed by foramina for the spinal nerves; they are low and short, but rery thick, and the neural canal is strikingly small. The dorsal side of the areh is short, brod and nearly flat. The neural spine is remarkahly well-deyeloped (when the anterior position of the vertebra is taken into aceomet), rising as high as that of the axis. It is rather thin and compressed, although its base ocerpies the whole fore-and-aft length of the arch. From the base, however, it rapidly tapers upward and terminates in a small, rongh tuberde. In Hippopotemus the third cervical has an even better developed nempal apine, not higher, but broader and less tapering than in Elothorium. The preaygaphyses are large, oblique and somewhat convex ; they are placed very low, wo that their inferior margins are separated from the centrmm only hy narrow notches. The posterior zygapophyses are much larger and more prominent than the anterior pair ; they are also less oblique in powition and are raised higher above the centrum, corresponding to the posterior elevation of the neural arch. The tramserwe process is a compressed plate, which has no great vertical height, hat is well extended from before hackward, exceeding the centrum in length; the posterior portion of the process is thickened and recurved, ending in a rugose hook. The ahsence of any distinctly marked diapophysial element distinguishes this vertebra from the corresponding one of Hippopotemes and sus, and in the latter genus the inferior lamelta is more slender and rod-like, while the spinal nerves make their exit through formmina in the pedicels of the neural arch.

The fourth ceprical reptebrel is different, in many respects, from the third. The contrum is somewhat shorter and is less distinctly carinate on the ventral side, but is more decidedly opisthocmlons. The neural arch is remarkably short in the antero-posterior dimension, so that the articular faces of the postzyapophyses actually extend forward heneath those of the anterior pair, which gives to the pedicel of the neural arch, when reen from the side, a curionsly notehed appearance. The neural spine is higher, but more shander and recurved than that of the third cervical. The transverse process is altogether different in shape from that of the latter. It has, in the first place, a very prominent diapophysial element, which projects outward as a heavy, depressed bar, thickened, rugose, and slightly upourved at the distal end. In the second place, the inferior lamella is much higher vertically, but decidedly shorter from before backward.
 newal pine is notathy heavier.

The fifth corvend revtebor has an even shorter nemal areh than the fourth and a much higher neural pine. The epine tapers rapidly form the bese upward and becomex
 is somewhet larger than in the fourth vertoba, hat, an in all the cervicals, it is strikingly small as compared with the size of the vertehat as a whole. The diapophye is strong and prominent, hat more fender than on the preceding verteba, while the inferior lamella, though relatively short from hefone backwad, hats attaned great vertical height and is strongly everten. In Elotherime the fifth vertehra in of the same type as the wixth, whereas in Higmpotemus it more nearly resembles the fourth.

The sixth cervicell is reve like the fifth, hat displats certain obvions ditferences. Thus, the nemal arch is even shorter antern-pmateriony, and the nemal pine is higher,
 and are very characteristic in their markedly whique pasition, for they rise steeply hackward in a way that ocers in nome of the other vertehad. The diapophysis is shorter hat heavier than that of the fifth, white the inferior lamella is of similar whe hat larger, higher and with the free margin more thickened. In Mipmonermis this vertebra has much the same comstruction as in Elotherimm, but the spine is shorter and more massive and the inferior lamella is much larger. In was the sixth cervical beare comsiderable resemblance to that of the White River gemus.

The serenth cemien is characterized by the height and thicknes of the spine, which in these repects much exceeds that of the sixth. 'This spine tapers superiorly, hut expands again at the tip into a rough tuborele. The pesterion greapphlysestand at at higher level than the anterion pair and are unumally moncave. The perentiarities sem in the postzyapophyse of the sixth and seventh reveloge are to provide fore the corvature of the neck, which changes ite direction at this print. From the oceiput the theth cervical the neck is nearly stratight and imelines downwat and batckatod, while the seventh vertelra begins the rise which anminates in the anterter thonacie region. This change in direction requires greater freedom of motiom. Which is suppleal he the monlifi-
 usaal, not perforated by the vertehrarterial canal: it is rather whot, hut healy amd much expanded at the distal end. On the pasterion face of the eentrum are large faceote form the heads of the first pair of ribs. In Mippopmames the memal pine of the erventh cervical is relatively much longer and heavier than in Ekotherimm of in sios.

As a whole, the neck of Eththoriom is short and mas-ive with very tromgly developed proceses for mosular and ligamentons attachments. as are imberl noressitaten
by the immense weight and length of the head. Among recent artiodactyls Hippopotamus has couvical vortehre most like those of Elotherium, though there are many differences in the details of construction. The most apparent of these differences lies in the greater and more uniform height and thickness of the neural spines in the modern genus. Doubtless the even more exaggerated massiveness of the skull in the latter is the occasion of this increased development of the cervical sines. In sus the perforation of the neural arches for the passage of the spinal nerves constitutes an important difference from Elotherinm.

The thonacie reptebre would appear to have numbered thirteen, though this point camoot, as pet, be determined with entire certainty, and white the thoraco-lumbar vertebre were, in all probability, nineteen in number, as is well-nigh universal among the artiodactyls, yet there were doubtlens variations in the number of ribs, as is very frequently the case among existing animals.

The first thoracic has a rather small centrum, with decidedly convex anterior and nearly flat posterior face; the facets for the rib-heads are very large and deeply concave. The transwerse process is rather short, but very large, heary and rugose, and bears an musually large, concave facet for the tubercle of the first rib. The prezygapophyses are of the cervical type, but present more obliquely inward than in the vertebre of the neck, while the postzygapophyses are, as in the other thoracics, placed upon the ventral side of the neural arch. The neural canal is high and narrow and its anterior opening has assumed a cordate outline. The nemal spine is inclined strongly backward, much more so than that of the seventh cervical, and though laterally compressed it is extremely high, broad and massive, greatly exceeding in all its dimensions that of the last neck vertehra.

The anterion six thoracie vertebra (see IPI. XVIII, Fig. 5) are very much alike in appearance. The first three have broader and more depressed centra, which in the others become deeper vertically and more trihedral in section. The transverse processes are very large and prominent and carry large, deeply concave facets for the rib tubercles. The neural spines are very high, thick and heavy, and are strongly inclined backward, with club-shaped thickenings at the tips. At the seventh thoracic begins a rapid reductiom in the length and weight of the spiners, a process which reaches its culmination on the eleventh vertebra, which has a remarkably short, weak and slender spine. This arrangement results in a great hump at the shoulders, somewhat as in Titanotherium, though in a less exaggerated form. In both genera, the length of the anterior thoracic spines should be correlated with the great elongation and weight of the skull which requires immense muscular strength in the neck and shoulders. Hippopotamu: has no such hump, but this is probably explained by its largely aquatic habits.

A change in the character of the facets for the rib thbereles oceurs simultaneonsly with the shortening of the neural pines; they suddenty become much reduced in size and are plane instead of concave. The transerse proceses, however, remain very large and prominent as far back as the eleventh thoracie. In no case are the proceses perforated by vertical canals, such as occur in sus. The twelfth thoracie is the antictinal vertebra and has a nearly erect spine of lombar type, though somewhat more slender tham in the true lmbars. On the thirteenth the spine is quite like that of the lumbers and inclines slightly forward. Tramserse proceses are absent from the last two thoracie vertebre, which display the feature, very unusual in an mgnlate, of large and conspionose anapophyses.

As far back as the eleventh vertehra the zygapophyses are of the ordinary thomacio type; they are small, oval facets, the anterior pair on the front of the neural arch and presenting upward, the posterior pair on the hinder part of the arch and presenting downward. On the eleventh thoracie a change takes place ; the anterior aygapophyes are as before, but the posterior processes are flat and present obliquely outward, rather than downard, the two together forming a prominent, wedge-shaped mars. The prezygapophyses of the twelfth rertebra are correspondingly modified; they present obliquely inward and together constitute a cavity which receives the wedge-like project tion from the eleventh. Prominent metapophyses also make their appearance on the twelfth thoracic. The posterior zygapophese of the latter and both paiss of the thirteenth are of the cylindrical, interlocking type characteristice of the lumbars. These processes are remarkably complex and in a fashion that does not occur in Mippopretomes, but is found in Sus and many of the Pecora. The complexity is occasioned by the development of large episphenial processes, which give an additional articular surface above the zygaphyses proper ; in section these processes have an S-like ontline, and the constitute a joint of great strength.

The lember certebice (PI. XVIII, Fig. (i), almost certainly six in number, have rather short, but massive centra. In the anterior part of the region the centra are somewhat eylindrical in shape, but they hecome more and more depressed and dattened as we approach the sacrum. The neural canal is broad and very low, copecially in the posterior part of the region. The neural ppines are inclined forward and are of moderate height; they are broad antero-posteriorly, but thin and laterally compressed, except at the tips, where they are thickened. The spine of the last lumbar is a little different from the others in being more erect and slender. Episphenial processes are present on the first, second and sixth vertebre, but not on the third, fourth or fifth. These processes are apt to be somewhat asymmetrical and better developed on one side than om the other, and it is probable that more extemive material would show them to be sulject
to much individual rariation. Mctapmplyses are prominent only on the first and second lumbars, rudimentary on the third and athent from the others. The transverse processes are very ferbly devchoped in proportion to the size of the vertehres. On the first lumbar they are shont and straight, and sradually incereace in length up to the fifth, but in all they arestrikingly thin and stender. The last lmon har has transperse processes of unusual lengeth, satere for them being whatem he the sudden eversion of the anterior ends of the ilia, hat even here they are weak.

The trunk-vertehre of Hipmophltmos are much more maswively constructed than those of Elotherimm, the decerease in lengeth of the thoracic spines posteriorly is more gratual, while the nevoral spines and transveree procesces of the lumbars are much longer and in every way heavien. 'The thoraco-lumbar series of Sus bears considerable resemhance to that of Fhotherinm, but in the former the transvere processes of the tharacice vertebned are perforated hy verticol canals, and those of the lumbars are much longer and stonter.

The suramm comsists of two vertelore only. The first has a broad, depressed centrum and very large plemapophyses, which carry most of the weight of the ilia, though the secomd sabral has ahas a limited contact with the pelvis. On the first vertebra the proygapophysuate vory well-derdoped and have large ephisphenial processes to receive those of the lant lembars. The two neural spines are coöscified into a high but short ridere. The ereond sateral has a rery much smaller and expecoinly a narrower centrum than the first, amd retains moderately (omplete postaygapophyse

In Mipmpetemus and in Sios the satcrum is relatively moth larger tham in Elutherium, and consists of at least four vertehore, sumetimes even as many as six. Fiven in aged individuals of the 11 hite Rivere gemus I have not seen more than two vertebre in the salcrum.
 assuciation with onc individual, indicate a tail of only moderate length, and present a nomber of prouliaritios. The first andal has somewhat the appearane of a miniature lumbar ; its centrum is short, broad and depresch, with quite strongly comver faces; the nemal camal is retatively large and a distinct, though smatl, nemral spine is present. 'The zyodpophyses, especially the anterion brair, are barge and prominent and project much in front of and behind the centrum. 'The transverse processes are quite long and heary, and are directed outward and backward. A pair of tubercles on the ventral side of the centrum represent rudimentary hedmapephyses.

The sucoerding candal verterbret resemble the first in a general way, but passing latekward, the centrat herome more and more semeler and elongate, while the neural canal diminishes in size, and the sarious processes are reduced. The hamapophyses, on the
other hand, increase in size and on the (?) fifth vertehnather curve toward eath other, almost meeting and encloning a canal, which continues an far berk as the (\%) eighth vertebra, behind which the hemapophyes are again retuced. 'The middle portion of the tail is composed of very long, eylindrical vertehre, which in shape strikingly resemble those of the great cats, and which are proportionately moch bonger, though apparently less numerous than those of Amplothomem. At the anterior end of each vertebra are six prominent, notular procenes, the gegapphyes, transerse proceson and hamapophyses respectively. Posterionly the eentra become more amd more sender, hut are not much diminished in length, for what appears to be the penultimate vertetma is nearly a long as those in the middle region. The barious processes are, however reduced to very insignificant proportions. The last vertehar has ite anterion pretion shaped like that of its predecessor, hat it rapidly tapers behind to a smonth, shender. compressed and subeylindrical rod, with a clubshaped thickenings at the end. Is I have seen but a single specimen of this curions verteha, I camot feel quite confident that its shape is a normal one and not due to some injury or morbid process.

The tail of Hippopotemen is of about the same relative length as that of Elotherimm, but the individual vertebra are very different, being all shorter and heavier, and diminishing in size more gradually to the end. In She the callalal vertetrex are somewhat more like those of Elotherimm, but none of them have such slender elongate centrat. Little is known concerning the caudals of Anthruentherimm. Kowalevaly says of them: "Von den Schwanzwirbeln liegt mir nur ein einziges for. Ohwohl seine Erhaltung eher mangethaft erscheint, kam man doch ans diesem klemen Stück dens shlusw ziehen, dase der Schwan\% bei den Anthracotherien kur\% war und somit gar keine Achnlichkeit mit
 The vertehat described by Kowalevay is an anterion caudal and is much smallow and in every way more reduced than the correnomding ones of Elothorimm. Amomg existims artiodactyls, it is the giratfe which most resember the White River gemus in the pecoliar character of its candal vertebres.

Wersinvoment.

Atlas, length	111611
Atlas, mreatest wilth.	$\because 11$
A Wis. lenget of centrim	いい;
Axis, lengtly of oilontoil	$0: 17$
IVis, anterior lireatth	10.
Ixis, posterior breadth	11.7
Third cervical, leagth.	nifi
Serenth cervical, length	O.is;
First thoratie. lemeth...	14.1

Mensurements.
Fifth thorecoic, height of noural spine. 241
First lumbar, length 0 .50
Sixtla lumbar, lemgth. 01-
sixth lumbar. lorealth acous transverse processes. 176
Filumb, lougth. 111 m
 010
secomal wemat, witht of centrman. 023
Anterior caudat. Jemgth $.03:$
Medan candal, leneth $116 ;$

V. The Ribs and Sternum.

The , ibs of Elothorimm are decidedly smaller and lighter and indicate a less capacious thorax than we should expect to find in such a large animal, a fact which adds to the apparent height of the skeleton, because of the long interval between the thorax and the ground.

The first rib is short, subeylindrical proximally, but brodening considerably at the distal end; it hat only a dight lateral curvature, appearing nearly straight when viewed from the front, but it arches moderately backward. The head is large and compressed, and is separated by a deep and narrow noteh from the very large and conspicuous tubercle, which is also compressed laterally. The ribs increase gratually in length up to the seventh or eighth of the series, and the posterior fire, though successively shortening, retain a considerable relative length throughout. The first five or six ribs are laterally compressed and of moderate breadth, but the posterior part of the thorax is composed of very slender and subevindrical ribs, very different from those which we find in most ungulates, except in the more primitive groups. The tubercle reaches its maximum of size and prominence on the third rib, behind which it gradually diminishes in size and becomes more and more widely separated from the head, and more sessile in position. On the twelfth and thirteenth pairs the tuberches are absent, corresponding to the lack of transverse processes on the twelfth and thirteenth thoracie vertebre.

In Hippopotemus the ribs are relatively very much longer, broader and heavier than those of Elotheriom, and grow broader toward the hinder end of the thorex, where the great bony slatos are in the sharpest possible contrast to the slender and subeylindrical rods of the extinct genus. In sus the ribs are more like those of Elotherium, but they have mot such a regular and symmetrical curvature as in the latter.

The stermum of Elotherimm is a very remarkable structure, and although it is of distinctly suilline type, it is, nevertheless, not altogether like the sternum of any known genus, recent or fossil. The presternum, or manubrium, forms a very large, thin, compressed and keel-shaped plate, which is especially remarkable for its great vertical depth,
this dimension exceeting the antero-posterior length, and is proportionately much greater than in Hippopmemes or the modern suillines. The boty of this segment is extremely thin, but the anterior border, and to some extent the ventral border also, is thickened and rugose. The facets for the first pair of sternal ribs form prominences, which are situated near together and close to the posterosuperior angles of the segment, wo that mearly the entire length of the latter projects in tront of the first pair of ribs.

Of the mesosternum four segments and a part of the fifth are preservel. The dirst segment some what resembles the prestemmin shape, being short, narrow and rery deep; the dorsal border is mudh thicker and wider than any other part of the segment, and the ventral border is also thickened, thongh in a less marked degree. Ponteriomp, this dement becomes somewhat wider and shallower. The second segment of the mesostermum is decidedly broder and shallower than the first, but still retains a very musual degree of revtical depth. Both the dorsal and ventral surfaces are much brodened, while the body of the bone is a thin, vertical plate, which comnects the horizomally directed dorsal and rentral borders, giving a cross-rection somewhat like that of an I-beam. In the third segment these progressive changes are carried still farther, and the bone becomes very distinctly broader and lower than the second segment. The dorsal and rentral borders still project much beyond the vertieal comecting plate; this phate, however, is much thicker transversely than in the preceding serment. The ventral surface is rendered quite strongly concave by the elevation of its lateral borders. In part, this eoncavity maly be due to the pressure which has somewhat distorted the entire sternm, but the ventral groove is sosmmetrical that it can hardly be altogether due to distortion. The fourth and tifth regments exhibit similar changes, each one being broader and lower than the one in fromt of it ; the vertioal plate beomes very much thicker and the rentral groove more widely open. Though the epecimen is of an animal past maturity, yet the hast three regments distinctly show the median whture, alongre which their lateral halves mited.

In Hippopatemus the breast-bone is quite like that of Elotherimm, but the pretermum is longer and not of such exaggerated depth, and the rib-facetw are phated much nearer th the anterior end, while the mesosternum consists of fewer, brodder and shallower segments. In sus the stermum is still more like that of Eluhbrimm, hut has a deededlys longer and lower presternmm.

VI. The Fore Ifmbe

The fore limb of Elotheriem is quite elongate and, in commeetion with the shatlow thorax, and very long neural spines of the anterion thomace vertehras it gives the the skeleton a somewhat stilted appearance.

Tho sertpule is remarkably high, narrow and slender, at least in the White River speries, while in the John bay forms there is reason to believe that its proportions are quite different. The glenoid cavity forms a narrow, elongate oval, with its long axis directed antero-posteriorly, and is not very deeply concave. The coracoid is a large, but not very comspicuous rugosity, which sende off from its inner side a compressed, hook-like frocess: when the shoukler-hade is seen from the external side, this process is concealed from view. The neck of the scapula is broad and rather thick, and there is no distinct coraco-scapular notch. The coracoid border in its upward course inclines forward but little, and for the upper one-third of it height curves gently backward, to join the suprascapular borker, which is exceedingly short. The glenoid border is more oblique, and inclines backward and upward at a moderate angle. The spine is shifted far forward, dividing the hade very unequally, so that the prescapular fossal is very much smaller than the postecapular. Indeed, the distal one-third of the shoulder-blade can hardly be said to have any prescapular fossa at all. The spine itself is rather low, and for much of its course its free border is curved backward and thickened to form a massive metacromion. The acromion is very short and inconspicuons, ending considerably above the level of the glenoid carity.

The scapula asociated with the large species of Elotherium from the John Day beds, which Cope has described under the name of Boöcherus ($79,1 \%$. 59), is very different in shape from that of E. ingens. from the White River, to which the description in the preceding paragraph more particularly applies. The blade is very much broader, both fosse widening rapidly toward the dorsal end; these fosse are of nearly equal width and the spine is placed almost in the middle of the blade. There can be little doubt that this scapula is properly referred to the incomplete skeleton with which it was found associated. Aside from its similarity in color and texture to the rest of the skeleton, there is no other animal known from the John Day horizon to which so large a seapula could belong.

The shoulder-blade of Hippopotamus is much broader, in proportion to its height, than that of E. ingens; the coracoid is more prominent and the coraco-scapular notch is distinctly marked; the postscapular fossa is somewhat larger than the prescapular, but the difference is much lese extreme than in the White River species, the spine occupying a more median position ; the acromion is much the same in the two forms, but the metacromion is larger in the fuscil. In Sus also the scapula is relatively broader than in E. ingens, and, in particular, it has a wider prescapular fossa, but is without any distinct comeonesapular notch. The spine rises from the suprascapular border very steeply to the high (but much smaller) metacromion, and then descends gradually to the neek, without forming an acromion. In spite of these differences, the resemblance in the character of the scapula between Sus and Elotherium is ummistakable.

The humerus is relatively long, but is, at the same time, a massively constructed bone. The head is large and very strongly convex, expectally from atome downward, although it is not set upon a very distinct neck, nor does it project far behind the pame of the shaft. The external tuberosity is very large, forming a massive and roughened ridge, which runs across the whole anterior face of the head and rises toward the internal side, where it terminates in a high, thick and recurved hook, overhanging the bicipital groove. The internal tuberosity is very much smaller, but is, nevertheless, puite prominent; it likewise projects over the hicipital groove, which is rery broad and deeply incised into the bone. The great transverse breath of the external tuberosity dixplaces the groove far toward the internal side of the humerus. The shatt is long and heary: its proximal portion has a great antero-posterior diameter, and itw transeree thicknes, though less, is still very considerable. The fore-and-aft diameter gradually diminishew downward, until the shaft assmes an ahost eylindrical shape, below which point it begins to expand transersely. The deltoid ridge is rugose and prominent, and runs far down upon the shaft, but forms no deltoid hook. The distal end of the what is very heary, being both broad and thick. The supratrochlear foss is low, wide and shallow, while the anconeal fossat is very high, narrow and deep, its depth being much increased by the great production of the posterior angles of the distal end. 'The supmator ridge is rough, heary and prominent. The trochlea, which is very completely modernized, in correspondence with the adranced differentiation of the uha and radius, is somewhat oblipuely placed with reference to the long axis of the shaft, decending toward the ulnar side. The trochlea differs very markedly from that of such primitive artiotactyls an Oreodon and Anophotherimm; it is high, full and rounded and is divided into two mequal radial facets, of which the imer one is decidedly the larger. The intercomdylar ridge, which, in most primitive artiodactyls, forms a broad and rounded protuberance, is, in Elotherium, compressed into as sharp and prominent ridge, and shifted well toward the external side. The internal epicondyle, which is solargely developed in Grotom and other early artiodactys, has practically disappeared.

The humerus of Hipmontemus is relatively much shorter and more massive than that of Elotherium ; the extemal tuberosity is not extended so far across the anterion face of the bone and the bicipital groove is, in consequence, not shifted so tar toward the inner side; the deltoid ridge is much better developed and gives rise to a prominent deltoid hook. In the existing epeceics of Ilippopotemms the intereondylar ridge is narrower and less conspicuous, but in a Plioerne specien from the Val d'Aron it has quite the same appearance as in Ehotherimm (see de Blainville, () atoographice, Hippopotamus, Ple V'). The epicondyles are much more prominent than in the latter, and the postero-internal border of the ameoneal forsa progecte much mone than dose the
external burder, while in Elothorium this differenee is decidedly less marked. In Sus the humens resembles that of the White River genus in form, but is proportionately bery much thorter; the deltoid ridese is shorter and lesi prominent, while the supinator ridge and the epicondyles are mores so.

The valius and ulnu (Il. AYIII, Fig. 10) are firmly coïssified in all the known - ferecos of Elotherimm, thongh the suture between them is clearly marked, even in old animals. The radius is relatively very long, but rather slender; the heal is quite thick, lat of omly moderate breadth, projerting most toward the external side. The humeral surface is composed of three comnected ficets, of which the internal one is much the largest and bears an clevated ridge for the corresponding deprension on the humeral trochlea. The groove for the interemdylar ridge of the latter is quite brod and notches the anterion borele of the radins. The shaft is rather narrow transversely, but quite thick and heary, and archer forward but moderately; the distal portion is brodened and thickened and bears upon its dorsal face a deep tendinal sulcus, bounded by very prominont ridges. The distal face is quite broad, but without much dorso-palmar extension, amd carries two wedl-distinguished carpal facets, which pursue an oblique course, from before backward and inward. The seaphoidal facet, which is the smaller of the two, is (ombave in fromt, saddle-shaped behind, and is reflected up upon the posterior face of the bone. 'The facet for the lunar is much larger than that for the seaphoid, and has a somewhat similar shape, hat the anterior concovity is not so deep, and the articular surface is carried much firther up upen the patmar side of the radius. The radius has no contact with the prymidal.

In IIipmpotemus the forearm bones are ankylosed, though somewhat less intimately than in Elutherinm. The ratius is rery short, broad and thick, and is almost straight. The extermal facet for the humerus is larger and more concave and the carpal facets are of more nearly equal size, while that for the lunar rises much more steeply toward the uhar wide. In sus the two boncos are separate, and the radins is short, very heavy and arched formard; its distal end is much more thickened than in Elotherium, the facet for the reaphoid is relatively larger, whik that for the lanar is smaller and is extensively reflected upom the patmar face of the radius. In Dicotyles the uhat and radius have coalened even more completely than in Elotherium.

The ulou has a very long, thick and prominent olecranon, which projects far behind the plane of the shatt. The process is convex on the outer side and concave on the inner, thickened and chath-shaped at the free end, which displays a broad, shatlow sulcus for the extemine temdons. The sigmoid notch is deep and the coronoid process prominent, as is reguired by the great depth of the anconeal fossa on the humerus. The articulation of the uhat with the latter is confined the posterior and superior aspects of the humeral
trochlea, no part of the articular surface on the uha presenting proximally, for the radins: occupies the entire distal aspect of the humerns. Only the proximal portion of the facet for the humerus extends across the entire breadth of the uhat for the rest of its comere this face is confined to the imer side. The shaft of the uha is somewhat reduced, bat is not interrupted at any point and, indeed, it is quite stont for its entire length; its principal diameter is the transerse, the anters-posterior thickness being decidedly diminished. Below the head it narrows and then expands to its maximum breadth, from which point it narows gradually to the distal end. On its external side the shaft is quite deeply chameled. The distal end is small and hears a saddle-shaped facet for the pramidal, which is concave transereely and convex in the doren-palmar direction; its extemal border is compresed and extents as a sharp edge behind the body of the bome forming a concavity on the palmar face. The piviform face is continuons with that for the promidal. The uha extends distally below the level of the ratins and thas arives the very exceptional condition of an articulation between the nhat and the lunar. The facet for this carpal element is small and is contirely confined to the radial site of the ulna, the distal end of the latter mot extending at all upon the proximal face of the lunar. In most artiondactyls in which the functional digits have been reduced to two, the radius tends to encroach more or less extensively upon the proximal face of the paramidal, for which extension the dimimution of the ulna makes at was. In Eloflofrom the arrangement is different, the uhat ocepping the entire proximal surface of the pyramidat, and by extending below the level of the radius securing a lateral contact with the lunar. Indeed, this arrangement quite prechudes the attamment of the more usual radial-pramidal articulation.

The ulna of Hippopotumbe is proportiomately much shorter and in every way more massive than that of Eloflocrinm; it also has a very much larger and more prominont olecranon, as would naturally follow from the immensely greater weight of bowly which requires support upon the limbs. There appears to be a slight disto-lateral contact between the ulna and the lunar: at all events, the radius does not extend ower upom the pramidal. In sus the what is free throughont and its shaft is relatively much shonter and heavier than in Elutherimen ; the uhas and lunar do not come inter contact. The nhat of Dicelyles is more reduced than that of the White liver gemus and the comene tions of the earpals with one another and with the metacarpus are upen fuite a different plan.
Mrasurements.

[^17]Mensurements.
sapula, erlenoid cavity transueqse diameter. 0 .30
Humaris, lengeth 105
Hamerus, width of proximal emt. $1: 3$
Humbran, thickne of prosimal emal. 1:4
Humernas. willly of diatal tall. 095
Ladins, length. 3511
liadius. withth of proximal end. 107
Rathus, width of distal end. $.06^{\circ}$
Ulna, lengeth 143
[lna, length of olecramon fr. coronoid process. 103
flna, wituth of distal ent 035

VII. The Maxts (I’l. XVIII, Fig. 11).

The principal facts of the structure of the fore foot have already been determined by Kowalevky, hat the material now at command permits a more complete account to be given. Certain differences also which ohtain between the European and American repreFontatives of the genus should not be passed over without mention.

The conpers of Elothorium is a curious one in many ways, and while modified to suit the didactel condition of the foot, by the reduction of the lateral and enlargement of the median clements, it has yet retained many of its primitive characteristics.

The setpluid is high and thick in the dorso-palmar direction, but very narrow transremely. The doral and internal (i.e., radial) surfaces of the bone are very rugose, and on the palmar horder, which is the narrowest part of the scaphoid, is a blunt and massive mammillary process. The articular surface for the radins is of unusual shape. It is divided into two parts, an antero-extermal and a postero-internal; the latter is much the larger and is sadtle-shaped, convex transversely and concave in the dorso-palmar direction, while the former is convex and descends steeply toward the ulnar side. These two parts of the articular surface are continuons, hut they meet at nearly a right angle, and their junction forms a ridge, which is the highest point of the scaphoid. On the ulnar side are three facets for the hanar ; the largest one is proximal and dorsal, and is continuons with the surface for the radius, which it meets at almost a right angle; this facet is very oblique and presents distally as well an laterally, the seaphoid here forming a projection which extends over the hunar. The second lumar facet is dorsal and distal in pmition; it is small, nearly plane and not rery distinctly separated from the facet for the magnom. The third lunar face in distal and palmar, and is placed upon the ulnar side of the mammillary process already mentioned; it is of oval shape and nearly flat. The contact between the scaphoid and the lunar is confined to these three points, and as the

[^18]facets on both bones are more or less prominent, they are elsewhere separated bey considerable interspaces. The distal side of the seaphoid is much natrower than the proximal and is occupied by facets for the trapezod and magnum, no articular surface for the trapezium being apparent. The traperoidal facet is considerably the smaller of the two, and is simply concave. The magnam facet is in two parts, a very slighty concave distal portion, and a somewhat smather lateral portion on the ulnar face of the saphoid.

In the European pectes figured hy Kowalevaky (76 , Taf. XXV'I) the seaphoid is somewhat broader than in the American forms. In both groups a remarkable resembance to the seaphoid of Anthracotherimm is observable, which extends to even the eletaits of'structure (see Kowalevaky, 'Th, Taf. XI, Fig. 38). As Anthrometherime is, however, a tetradacty form, the seaphoid is somewhat broaler in proportion to its height than that of Elotherium, thongh hardly so much so as would be expected. In Hippopotemmes and Sus the scaphoid is of 'quite a different shape from that of the fossils, being distinctly shorter and wider.

The loner is a very large and complex carpal, which excects the scaphoid in all of its dimensions, and copecially in breadth. The radial facet is in two parte, contimuing those which oceur on the saphoid; the anterior or dorsal part extends acrose the width of the bone and is very convex antero-posteriorly, while the pahar portion is very mud larger and is concave in the same direction. The donsal border rises steeply toward the ulnar side, where the lunar is drawn out into a blunt, projecting, hook-like process, which extends over the pyramidal, as the scaphoid does over the lumar. On the radial side are three facets for the saphoid, corresponding to those on the latter, which have already been described. The palmar face is greatly extended transervely, and, though lower, is much broaler than the dorsal surface. On the ulnar side are two fatects for the pyramidal, which eonstitute an interlocking joint of unnam firmmess and strengeth. One of these facets is proximal and dorsal and overlaps the pramidal ; the second, which is very much larger, is palmar and distal in position, and has a wadde-like whap ; it interlocks dosely with a similar facet upon the pramidal. When seen from the fromt, the contact between the lumar and the magnom appears to be entirely lateral, but as it pasese towand the palmar side, the magnum face broadens, becomes very concorve, and asumes a distal position. The unciform face is aliso oblique and the beak between the two is not in the median, but shifted far toward the radial side. Dorsally the unciform facet is considerably wider than that for the magnum, but on the pabmar side these proportions are reversed.

The lunar of E. mumum figured by Kowalevale resemble that of $E \therefore$ ingens, except that its proximal surface does not rise so stepply toward the uhar side and does mot
A. P. A.-VOL. XIX. 2M,

 much thicker, and the distal beak is more nearly in the median line. In Hippopotemus the lumar is hroal and rests almon equally upen the magnum and the unciform, as it dexes also in cirs.

The pryenmidul epuite resembles the scaphond in shape, hat is much broader, not so thick antero-pheteriorly, and generally of a more rugose and massive appearance. In view of the reduced lateral digits and the conssified radius and ulna, the relatively large sige of the pyramidal is somewhat surprising. The proximal end is occupied by the ulnar facet, which is convex transervely and deeply concave antero-posteriorly. On the palmar side is a narrow, plane facet for the pisiform, which is very oblique in position. This fateet is carried upon a compressed and shighty recturved, hook-like ridge, which runs for nearly the full vertical height of the bone, though not quite reaching to the distal cond. On the radial side are two facete for the lunar, separated hy a wide and deep sulcus; the palmo-distal one is larger than the comperpmoding surface on the lumar, and its curvatures are, of course, in oppusite directions to those of the latter, being concave in the vertical, and consex in the dorso-palmar diameter. 'The distal end of the prramidal is taken up by a large, but slightly concave facet for the unciform.

In the material dencribed hy kowaleraky the pramidal of Elotherium in not represented, while that of Anthremotherium is so badly preserved and of such uncertain reference, that any comparison founded upon it would be valueless. The pramidal of Hippopotames is broad, square and heary, as is also that of Ses, on a smaller scale.

The pisiform is quite small and slemder, thongh of considerable length; it is strongly recurved toward the median side of the carpus, presenting the convexity externally; the distal end is thickened and chub-shaped, thongh but little expanded in the vertical dimension. 'The pramidal face is nearly plame and ohlique in position, broadest externally and narrowing to a peint on the radial side. The ulnar facet is rery moch smaller and somewhat concave; the two meet at alnost a right angle.

The pisiform of E. mummm (Kowalevsky, 'ot, 'Taf. XXVI, Fig. 27) is mot unlike that of E E. imgros, but is uf a more irregular shape, which looks ats though it might be
 similar shape, though much larger. In sus the pisiform is of an entirely different shape from that of either of the extinct genera, being much deeper vertically, more compressed and plate-like, and less strongly recurved. That of IIipopotames is more like that of the finsil forms.

The fropecinm is not associated with any of the epecimens which I have seen, nor is any facent for it distinctly visible on either the scaphoid or the trapezoid. If present at
all, it must have been in a very redued and rudimentary condition, having lost all finctional importance.

The trepezoid is high, narrow and thin; it is closely interlocked with the magmum, lying in a depression on the radial side of that bone. The faret for the saphoid is simple and strongly eonvex. Three facets for the magnum ocerur on the ulnar side, one proximal and two distal; the former is much the largest of the three, but is confined to the dorsal part of the ulnar side. Of the two distal facets, one is dorsal and one palmar ; they are separated by a morow space and are situated in different planes, ahmost at right angles to each other. On the radial side, near the distal end, is a shathow depression, which may have lodent a rudimentary traperium, though there is no face for such a bome The distal side of the traperoid bears a small, plane face of triangular shape, fior the rudimentary second metacarpal.

The trapezoid is not yet known in comection with the European species of Ehothe rimm, or with Anthrecotherium. In Hippopatemus it is lower and broader and of more functional importance than in Elothermm, as it abo is in sies, and in the latter, differing from all of the other senera mentioned, it articulaten extensively with the third meta(arpal.

The matmm is a relatively large and masese bone, the three diameters of which are nearly equal, though the domso-patmar dimension somewhat exeeds the other two. The doral monety of the bone is the lower, quite a prominent head rising proximally from the palmar portion. The palmar hook is represented by a short, but brod, rough and massive ridge. The proximal end is medually divided between the fitcets for the scaphoid and lunar; dorsally the former is much the wider and oecopies almost the entine breadth of the bone, but it does not extend sof far posterionly and on the head is comfined to the antero-intermal abeect of that elevation. The lumar face is very marrow on the dorsal side, and lateral rather than proximal in position, but pesteriorly it widens and covers nearly the entire head. When riewed from the uhar side, the lanar face appears to be of a horechoeshape, narow ams extemeling far down upon the domal and patmar borders, and separated below he a very large sulcus. There two arme of the lonar facet are obserrely demarcated from the two small facets for the unciterm, in Which they may be said to terminate distally. The distal end of the magnum is covered by the large, saddle-shaped surface for the third metacarpal, which is comvex tramsersely and concave antero-posterionly ; and proximal to this, on the ratial side is a small fanet for the second metacarpal. On the radial side also is a depresciom, ruming abmot the full vertical height of the magmm, for the reception of the trapornill. The deperation contains a larger proximal and two whatler distal facets for the traponid, worreponding to thoze already described on the latter.
'The magnom figured by Kowalevaky ('Th, Taf'. XXVI, Figs. $21,: 32$) is of the same gremeral type an in the American species, but with some differences of detail. Thus, the bume is of relatively greater antero-poterior thickness ; the palmar face is narrower and the palnar hook very much more prominent; the sulens which, on the ulnar side, separates the two arms of the lmar facet is much narrower, and, in consequence, the arms themselves are broder; the head of the magnum rises less abroptly toward the patmar side. The magnum of Anthracotherimm is not sufficiently well known for comparison. That of Mippopotemmes is low and broad, and differs from the magnum of Elotherimm in that the domal portion of the lunar facet is proximal in position. In Sus also the magnom is low and wide; its lunar facet is relatively larger than in Hippopotermes, and it has no articulation with the second meturapal, from which it is excluded by the contact of the third metacarpal with the trapezoid; the head is low.

The unciform is the largest and most massive bone of the carpus; in shape it is low, hroad and thick, with its principal diameter directed transversely, and has on the palmar side a hook-shaped process, which is not very prominent, hut hroad and heary. The proximal end is orecopied by the facets for the lunar and pyramidal, of which the latter is much the wider ; the junction of the two forms a prominent ridge which curves across the proximal end, from the dorsal to the palmar side. These two facets are both slightly concare tramsersely, hut very strongly consex antero-posteriorly, being reffected far down upon the palmar face. On the radial side are two vertical articular bands, separated by a wide and deep sulcus. The dorsal band, which is much the wider of the two, is composed of two very obsemely separated facets, a minute proximal one for the magnum and a very large distal one for the unciform process of the thited metacarpal. The palmar hand is a high and narow facet for the magmum only, and is much more extended vertically than the corresponding surface on that bone. The distal end carries a large facet for the head of the fourth metacarpal, and on the ulnar side is a minute facet for the rudimentary fifth metacorpal.

The unciform of Kowaleroky's perimen does not differ in any signifieant way from that of the American suecies. In Authrocotherium this bone is much wider and lower than in Elotherimm and the face for the fifth metacarpal is more distal than lateral. In Ilippopolumm: the unciform is exceedingly large, and its dorsal face is of a low, wide, rectangular outline, and its great headth corresponds to the large size and functional inportance of the fifth metacarpal. The proximal end is divided almost equally between the lunar and prymital facets, and the absence of a distal beak on the lunar allows a larger contact between the unciform and magnum. In Sias, which has much reduced lateral digits, the unciform is narower than in Hippopotemens, but broader than in Elotherinm, and the facet for the fifth metacarpal is not so completely dixplaced toward the uhar side as in the latter.

The meffectrpus consists of four members, two functional, the third and fourth, and two mere rudimentary nodulas, the second and fifth.

Metacterpal $I /$ is not preserved in any of the specimens which I have seren, thongh it is figured by Marsh (\%3, Pl. VIII, Fig. 4), bat the facets on the neighboring bones show that it was carried by the trapezoid and retained a lateral comecetion with the matmom, excluding me. iii from any contact with the trapezoid. The manns of elotheriem is thus a typical example of what Kowalerky has called the "inadaptive moxe" of digital reduction.

Metacterpal III is long and massive. The head is heare, entarged in both dimensions, and has a stout prominence upon the patmar side; it hears a broad, sadde-shaped surface for the magnom. On the radial side is a depreswion for me. ii, at the proximal end of which are two small facets for that bone. The unciform process is very large, prominent and heary, and projects far over the head of me is, but is, as usuab, confined to the dorsal half of the head. On the distal side of this process and on the uhar side of the shaft is a continuous, concave facet for the head of me. is. A second facet for the same metacarpal is borne upon the palmar profection from the head. The shaft of me iii is broad, but moch compressed and flattened antero-posteriorly; both width and thicknesw are nearly uniform throughout, but increase shighty toward the distal end. The distab trochlea is broad and rather low, but is reflected well up upon the palmar face ; on the dorsal side it is demarcated from the shaft only by an obscure ridge, with no deep depression above it. The carina is very prominent, but is confined entively to the patmas face. The lateral pit on the ulnar side is large and deep, but that on the radial side is faintly marked.

In Kowalersky's epecimen ('76, Taf', XXVI, Fig. 21) the third metampal does not differ in any important way from that of the American species, thongh the mannm facet is somewhat more concave tramsersely and the shat is rather more stender. In Anthrocothorimm (Kowalevay, '7a, 'Taf' XIII, Fig. so) me. iii is very similar to that of Elotherim, but is relatively heavier ; at the proximal end the tuberele for the insertion of the extensor carpi radialis masele is more conspicuons, and the palmar projection of the head more prominent.

Mefacerpal IV is a little shorter and narrower than me iii, with which it articulates by two large facets, separated by a wide and deep groove; of these facets the domsal one which is overlapped by the unciform process of me. iii, is strongly convex, white the palmar facet is flat and borne upon the patmar profection. The uhar side has a shallow groove, in which lies the nodular me. v; the articulation with the latter is hemems of a single, small, triangular facect. The shaft is somewhat harrower transersely than that of me. iii, but is otherwise like it, as is also the distal trochleat.

In E. matmm, Kowalevky's figure shows a somewhat differently shaped proximal end ("76, Tatf. XXVI, Figs, 21, 24), the head is somewhat more extended transyersely, expectally toward the ulnar side, while the patmar projection is narrower and less prominent. In Anthrerotherimm the head of me, iii has no such tramsverse extension.

Mefocorpul I^{\prime} is an almond-haped nodule, almost exactly like the specimen figured by Kowalersy ('aff XXV', Fig. 25), though of a rather more regular outline. Proximally the module has quite a large, subquadrate, and slightly concave facet for the unciform, which presents more laterally than superionly, and forming a very obtuse angle with this surface, is a smaller, triangular facet for me iv.

The metacarpus of Hippopotemus has four functional members, though the median pair are longer and stouter than the lateral. Compared with those of Elotherium they are relatively shorter and much heavier. In Sus there are also four metacarpals, but the laterals are much reduced, while the median pair, which carry most of the weight, we very short and thick, and the distal carina surrounds the entire trochlea, dorsal as well as palmar. The mode of articulation between the earpals and metacarpals is quite different from that found in either Elotherium or Hippopotemus, the head of me. iii being much broadened and articulating extensively with the trapezoid, so that me: ii is cut off from any contact with the magnum. This is what Kowalersky has called the "adaptive method" of digital reduction, and it is in decided contrast to the inalaptive method exemplified in Elotheriome.

The phalenges, which are quite short, as compared with the length of the meta(arpals, are developed only in the median pair of digits. The proximal phatanx of digit iii is relatively elongate, straight, broad and depressed; its proximal end is both wide and thick, and carries a concave facet for the metacarpal trochlea, which is deeply notehed on the palmar border for the carina. Toward the distal end the phalanx narmos hat little, though diminishing much in the dorso-palmar diameter; the distal trochlea is low, wide, depressed and only slighty notched in the median line. The second phatanx is short, hood and thick, and of quite asymmetrical shape; its proximal trochlea is obsemely divided into two facets, of which that on the radial side is the larger and extends more in the palmar direction, while the median dorsal beak is not prominently developed. The distal trochlea is much thicker than that of the first phatanx, is reflected much farther upon the dorsal face, and is more distinctly notched in the median line. The course of this surface is oblique, so that it faces somewhat to the what side. The mgual phatanx is curionsly small and nodular in shape, and is short, hut quite hroal and thick; the proximal trochlea is imperfectly divided into two slightly comeave facets. The palmar surface is nearly phane, except for its rugosities, while the dorsal margin descends athruptly to the blunt distal end.
 the same general type as in Elotheriam, but are proportionately muth shoter and stouter. In Hipmonomes they are short, broad and very heary, white the magals are reduced and of nodular form. In sies the there phatanges of a digit are together considerably longer than the metacarpal, which is far from being the case in Etothorimn; they are also of quite a different shape from these of the latter. 'The proximal phatanx is much thicker in proportion to its length, and its proximal trochlea is depply srowes! across its, whole face for the metacapal carina. The ungual phatanx is lomger, broater and more depressed and pointed.

> Mensuremernt..
Carpus, lueight $: 11.0 \%$
Carpus. willh 109
seaphoid, hue sht 11:~
staplomi, breadth 020
s'aphoil, thickness 047
Innar, height. 017
Ismar, breadth. 0:36
L.unar, thickness 0.20
Pyramidal, height $.0 \% 3$
l'yramialal, hroath $12)^{-}$
l'vamidal, thickness $0 ; 3$
l'isiform, length 018
Traju\%oill, heernht. 02.5
'Trape\%oit, hreath (101:
Traperoil, thicknens. 1019
Magnmm, height (excl. of hear) 0
Magnum, brearth 03 O
Magnum, thicknem 11ば
l'neiform, height. 10:3
I'neiform, breathl 10:
Inciform. thicelinesis. 1.31
Metatargal iii, length, in metian lim $11: \%$
Dotacatal isi. "idth proximal emol. 1111
Metacerpal ii , wilth distal embl. 11:3:1
Metararpal iii, thicknese proximal ent 11:59
Metacarpal is, length. 161
Metacarpal is, width proximal end 11:5
Metimarpal iv, width distal emt.. (1):
Metararyal is, thickno-s proximal rad (1):
Ihalanx 1, digit iib, lengeth. Hio
['hatanx 1, digit iii, witth proximal emu. (1):!
Phalamx 1, digit iii, width distal eme $0: \%$
Phalann : 2 , digit iii, Jemgeth 11-
Ihalanx: digit iii, width proximal end. 0:1
1haland 3. digit iii. length 0:3

Vill. 'The Hivi Limbs.

The pertio is remarkable in many ways. As a whole, it is corionsly long and narrow, except anteriorly, where the sudden and strong eversion of hoth ilia gives it considerable breadth. The ilium is elongate, and has a long, heary, trihedral peduncle, Which expande quite abruptly into the hroad anterior plate. This plate is very strongly everted in its antero-inferior portion, and in shape is not at all like that of sus, or of most existing artiodactyl, but rather resembles that of woh ancient perisoodactels as Pulversynps. The plate rises high above the sacrum and conceals much of that bone from view, when the pelvis is seen from the side; the gluteal surface is concave and the sacral surface strongly consex ; the supraliace border is quite thin for most of its course, but becomes very thick and rugose at its inferior angle. The iliac surface is relatively wide and may be traced through the whole length of the bone, the pubie border being very distinctly marked throughout. The ischial border is, for the most part, thick and romded, but becomes sharp and compressed above the acetabulum. The pectineal process is a very prominent and rough tuberosity, and a second rugosity lies above and behind it. The acetabulum is rather small, hat deep, and is of almost circular form ; its articular surface is but little reduced by the deep and narrow sulcus for the round ligament.

The ischimm is likewise clongate, though much shorter than the ilimm; above the acetabulum its dorsal horder arches upward into a high, thin and roughened crest, the ischial -pine, very much like that seen in sus, behind which is a distinct ischiadie noteh, a difference from the true pigs, which have no such notch. For most of its length, the ischimm is laterally compressed, but expands posterionly into a large, thick plate, with everted hinder border and very massive tuberosity. The pubis is short, heary and depressed. The smphrsis, in which both the pubes and the ischia take part, is very long, the poxterion notch between the two ischia being shallow. Consequently, the ohturator foramen is much elongated anteroposteriorly, and of oval shape. This regicn of the pelvis is entirely different from that of Sus, in which the ischia are widely separated behind, the symphysis is short, and the obturator foramen is nearly circular in outline. In Hippopotumus the pelvis is more like that of Elotherizom, but is much larger and more massive in every way ; the peduncle of the ilium is not so elongate or so sender, the ppine of the ischimm is very much less prominent, and the posterior expansion of the ischium is very much larger and heavier. Unfortunately, the pelvis is not sufficiontly well known in Ancotus or Anthrucotherium for comparison with that of Elotherium.

The femur is a long and proportionately rather slender bone. The proximal end is
quite widely expanded in the transverse direction; and in shape recalls that seen in the camels and llamas. The head is almost hemispherical in form and has a small, deep pit for the round ligament; it is set upon a very distinct neek, which is comnected by a long, narrow bridge of bone with the great trochanter. The latter is very latge and massise, especially in the antero-posterior direction, but does not rise above the level of the head, and hence is not very conspicuous, when the femm is seen from the fromt. The digital fossa is deep and widely open, which is due to the great thickness of the trochanter, but is not much extended in the vertical direction. The second trochanter is ako large and very rugose, but not very prominent; it projects almost entirely backward, so that the trochanter is hardly visible, when the bone is viewed from the anterior side. There is no plainly marked intertrochanteric ridge, connecting the great and second trochanter-s, but from the latter a ridge runs proximally and almost reaches to the head.

The shaft of the femm, which in its proximal portion is much expanded transversely and compressed antero-posteriorly, rapidly narrows downward, and below the second trochanter becomes quite slender and subeylindrical in shape. Toward the distal end the shaft widens considerably, though increasing little in thickness. Above the external condyle is a long, narrow pit, with rugose margins, which serves for the origin of the plantaris musele. The rotular groove is very broad, but quite shallow; its imner border is much thicker and more prominent than the outer, and aseends higher proximally, where it terminates in a short, overhanging hook, while the external border dies away more gradually. The condyles are relatively mall; they present directly backward, though not projecting very strongly behind the plane of the shatt, and are of ahowt equal size, the external one but slighty excecting the internal in height and breadth. The intereondylar fossa is broad and deep and has nearly straight borders.

The proportionately small antero-posterior diameter of the distal part of the femme in Elotherium is in decided contrast to the thickness of this region in Auroulus. The femur of Anthracotherium is much like that of Elotherinm, but it is even more slomeder in proportion to its length, and the condyles are smaller. Shes has a femur of quite a different type; the proximal end is not so wide, the head is more sessile and has a much larger pit for the round ligament; the bridge connecting the head with the great trochanter is shorter and much thicker, and the trochanter itself is more prominent ; the shafi is relatively less elongate, the rotular groose has borders of neary equal height, and the condyles are more prominent. The femur of lioporpotumus, though extremely massive, has yet a certain resemblance to that of Elotherimm, as may be seen in the transerse expansion of the proximal end and in the obliquity and asmmetry of the rotular groove.

The putelle is large, massive and of rather pectiat shape. It is high, quite broad A. $\mathrm{p}, \mathrm{s},-\mathrm{VOL}, \mathrm{Nid}, 2 \mathrm{~N}$.
and thick in the middle portion, hut with the distal part quite thin and narrow, and tapering to a blunt point; the proximal portion is also narrow and rises above the articular surface ats a compressed, but thick and rugose process. The femoral surface is convex transersely, and only very obscurely divided into external and internal facets by a broad and low median ridge. This patella bears very little resemblance to the very thick knec-eap of Ancoches and still less to that of Sus. In the latter the patella is a short, rather narrow, but very thick bone, the posterior surface of which is of a regularly oval outline. ILippropotomus also has a patella which bears but little resemblance to that of Elotherium; it is short, hut very broad and extremely thick, and sends off" a long, horizontal process from the internal border.

The tibit is a massive bone, considerably shorter than the femur, but relatively heavier. The proximal end is rery broad and thick; the condyles are of the usual saddle-shaped form and have a rather small antero-posterior extension; the imner condyle is somewhat more extended in this direction, while the outer one is wider transrervely, and projects over the external side of the shaft. The fibular facet is small and is confined to the postero-external angle of the outer condyle. The tibial spine is low and hifid. The cnemial process is exceedingly heavy and prominent, and runs far down upon the shaft, extending for nearly half the length of the bone; its proximal portion displays a depression for the long patella, and the sulcus for the tendon of the extensor longus digitorum is deeply incised. The shaft of the tibia is heay throughout, not diminishing much in diameter distally; it has a decided lateral and a slight anterior curvature. 'The distal end is quite broad, but not very thick, and has an unusually quadrate outline. The astragalar surface is divided by a low intercondylar ridge into two facets, of which the external one is much the larger and the inner one more deeply impressed. The intercondylar ridge, which pursues a very straight course across the distal end, is remarkable for its bifid termination at the anterior margin. A considerable sulcus is placed upon the intercondylar ridge, invading the articular surface on each side. On the extermal side of the distal end of the tibia is a broad, rugose depression for the fibula, hut with only a very small external facet for the latter; ain additional fibular facet forms a narrow band upon the distal surface, the tibia extending somewhat over this portion of the fibula. The malleolar procens is short and compressed, and has no great anteroposterior extension.
'The tibia of Authracotherium (Kowalevsy, '73, 'Taf'. X, Fig. 29) is much like that of Elothorimm, but is relatively shorter and heavier. Sus also has a similar tibia, differing only in minor detals. The tibia of Hippopotemus is of the same general type, but is extremely short and massive.

The ftbulu is complete and is not coüssified with the tibia at any point, but is, never-
theless, very much reduced. The proximal end is laterally compressed and very narrow, but retains considerable intero-posterior extent, and bears a narow, obliquely placed and slightly convex facet for the tibia. The shaft tapers and becomes exceedingly thin and delicate, though of very irregular shape; distally the shaft thickens much in the fore-and-aft diameter, but remains very narrow. The distal end forms a large external malleolus, but continues to be very narrow. The malleolus projects inward bencath the tibia and has a narrow facet which presents proximally and articulates with the facet, already mentioned, on the distal fate of the tibia. 'The astragalar facet is quite large, extending for almost the whole thickness of the malleolus and corving downsard in front; the caleaneal facet, which occupies the centire distal end of the fibula, is narrow, but has a very considerable antero-posterior extension. On the outer side of the malleolus are two decply incised sulci for the peroneal tendons. In Sus the fibula is very much stouter and less reduced than in Elotherium, while the distal end is less enlarged and does not extend beneath the tibia. The fibula of Hippopotemus is relatively very slender, hat it differs from that of the White River genus in having a smaller proximal and very much larger distal end.

Measurements.

Pulvis, lometh 11. 101.7
I'dvis, antero-inferion lowalth $3: 4$
Poltin, brath at arevabulum 1!1
Ilimm, lemrth 2-11
Hlimm, greatest width $1!$
Ivhium, length $\because 1.5$
Ohturator foramen, leneth. 091
Symphysis, lennit. 1! 19
Femur, length. (1).5
Fomur, breath proximal end 115
Femur, lutedthalistal (mat 1119
Femur, thickness distal eml. 10:'
Femurr, breath of trochlea (2.0)
l'ate'lia, sortieal diameter. 110
Patediat tatishore diameter 0.14
Tibit lemeth : ::
Tibia, hrealth provimal amt. (1! •
Tilnia, brealth diatal and. 0):;
Tibia, thickness proximal ent. 12-
Tilaia, thielsness distal emd 10.1
Fibulat, lengeth. $\because 4$
Fibula, loreadth prosimal ent 11 1 ?
Fibula. beadth di-tal emut. (11;
Fibula, thickness proximal end 023
Fibula, thickness distal end 1110

IX. 'The Pes.

'The torsum has undergone little specialization, although the hind foot, like the fore foot, is didactyl.

The estrotulus is elongate, though broad and massive as well. The proximal trochlea is deeply but rery broadly grooved and its two parts are unequal, the external condyle rising much more, both proximally and dorsally, than the internal, but not produced so far distally. While the outer condyle is widely separated from the cuboidal facet, the imer one is continued so far distally as to become confluent with the navicular surface. A very large and deep pit occupies a great part of the dorsal surface between the proximal and distal trochleat. The distal trochlea is broad and is mequally divided into facets for the cuboid and mavicular, the latter being much the wider and of a different shape. The surface for the cuboid is strongly convex in the dorso-plantar direction, but nearly phane transersely, while the navicular facet is hour-glass shaped, and on the fibular side of the median line has a distinct, though wide and shallow groove for a corresponding ridge on the proximal side of the navicular. The junction of the two facets forms a sharp but not prominent edge.

The facets for the calcaneum somewhat resemble those which we find in Ancodus, but they have not attained to such a degree of specialization as in the American species of that genus. The proximal external facet is divided by a sulcus into two parts, both of which are concare and present distally, as well as laterally. The proximal portion is set on a conspicums prominence of the fibular side of the astragalus, and is clearly visible when the bone is seen from the dorsal side, while the distal portion is also prominent, but is concealed when looked at from the same point of view. The sustentacular facet is very large and is strongly convex in the proximo-distal direction, but almost plane transversely ; ith external border projects as a shelf beyond the body of the astragalus, and thus helps to enclose the large and deep sulens which is found upon the external side of the bone. The distal external facet for the calemem is very small. The fibular facet is well extended in the proximo-distal diameter, but is narrow in the dorso-plantar direction.

In Kowalevsky's specimen (76, 'Taf. XXVII, Fig. 34) the astragalus, so far as it is preserved, resembles that of the American species, but the external part of the proximal trochlea is too much damaged to show the charactexistic external (alcaneal facet. In Anthracothorium (Kowalevay, 'os:, 'Taf. XI, Fig. 59, de Blanville, Ostéographie, Anthraco. Pl. II) the astragalus is proportionately much broader and lower than in Ehothorimm, the ridge on the distal trochlea, formed by the junction of the two facets, is more prominent and pursucs a more ohlique comse. The sustentacular facet is narrower and shonter and the proximal calcaneal facet projects less. The astragalus of Sus is quite
like that of Elotherium, expecially in the proportions of the distal trochlea. In Mippoperlumus the astragalus is remarkable for its extreme shortnese, for the asmmetry of its proximal trochlea, the outer condyle much exceeding the inner in size, and for the almost equal division of its distal trochlea between the navicular and cuboid facets.

The cutcencum has a long tuber, which is deeply chameled on the external side and for most of its length is compresend and rather slender, but swells at the free end into at mascive, club-shaped expansion, which has a broad, shallow tendinal sulcus on the plantar face. From the free end the dorso-phantar diameter of the calcanemm incrases gradually to the fibular facet, where it reaches its maximum, and from which it contracts rapidly toward the distal end. The sustentaculum in very prominent and bears a wide, slighty concave facet for the astragalus. The distal astragalar facet is much more extended in the dorso-plantar direction than is the corresponding surface on the astragalus and indicates an musual amount of movement between the two bones. The cuboidal facet is narow transversely, but much extended antero-posterionly; it is divided, though very obsurely, into dorsal and plantar parts, of which the former is the larger and has something of a saddle-like shape, while the latter is smaller and concave.

Kowalersky does not describe the calcaneum of E. matmem and his description and figures of Autheucotherium do not furnish data for comparison. 'The calcaneum of sue resembles that of Elotherium, but is broader and has a tuber of more uniform thicknese, not chameled on the outer side. The articular surface for the cuboid is very distinctly divided into two facets, the junction of which forms a sharp ridge. In Hipmopotemms the calcancum has an excedingly long and massive tuber, which is greatly swollen at the free end.

The maxicular is a large bone, not very broad, but of considerable dorso-phantar diameter. The surface for the astragalus is hour-glass shaped, with two concavities seppat rated by a broad, convex ridge, which on the dorsal side is marked by an elevation of the proximal margin. The concavity on the tibial side is the larger of the two and itw plantar border rises much higher than that of the extemal concavity. There are there facete for the cuboid on the fibular side of the bone, one plantar and two dorsal; the former is very strongly convex, projecting well outward, and is high vertically, but namow anteroposteriorly. The two dorsal fatects are both small and plane, and are placed at the proximal and distal margins of the navicular. The plantar hook is very much reduced, forming hardly more than aroughened ridge. The distal end is oreupied principally by the large facet for the ectocunciform, which extends acrose the whole dorsal side and much of the tibial side also. Partially separated from this is a minute surface for the mesocunciform. The face for the entocuneiform is much larger than the latter ; it stands isolated at the postero-internal angle of the distal end and is somewhat sadde-shaped,
concenve antero-pasteriorly and convex transersely. In one species of Elotherium, not Set identified, a somewhat different proportion of these cuneiform facets is found ; the mesenmeiform face is larger and that for the entocmeiform smaller and in shape and in prestion more as in the recent pigs.

Kowalevky's figures (76, Taf. XXVII, Figs. 34, :37) do not display any characteristice difference in the structure of the mavioular between the American and the European speceits of Ehutherium. In - Inthromotherium (Kowalevaky, '78, 'Taf. XI, Figs. 48, 59) the navicular has a lomg, masive and rugose hook, given off from the plantar side; the facet for the ectocuneform is relatively smaller and that for the mesocuneiform much larger than in Elutherium, and the two surfaces are distinctly separated. Much the same description will apply to Nus. In Hipumpormus the navicular is very low and broad, and its distal facets are well distinguished.

The entecunciform is in shape not menlike the rudimentary, nodular metapodials; it is high, narrow and compressed, thickest proximally and tapering distally to a blunt point. The navicular facet is relatively large, and is saddle-shaped, with curves the converse of those which oecur on the corresponding surface of the navicular. Distally, there is a face on the fibular side for the plantar progection from the head of the third metatarsal.

This clement has not ret been found in comection with Anthracotherium, or with the European species of Elotherium. In ses it is of quite a different form and decidedly smaller, while in Hipmpotrmus it is broder, heavier and shorter than in the fossil form.

The mesocumeiform is firmly ankyloned with the ectocunciform, but its shape is, nevertheless, clearly distinguishable ; it dues not extend quite wo far distally as the latter and is rery small, equecially transersely, and narrows toward the distal end. Its facet for the second metataral isobscurely displayed and it has no contact with the third. In E. magmem
 fised than in the American species. In Anthracotherium the mesocuneiform is separate and has a large surfoce for articulation with the second metatarsal, as is ako the case in Hippopettmes. In sus this element is likewise distinct, but higher and narrower, and articulates with the seromd metatarsal more extensively than with the third.

The entomoneiform is a large bone, of irregularly quadrate shape; its proximal surface hoars a large, plame facet for the navicular, and the distal end is occupied by a still larger surface for the third metatarsal ; the latter is abruptly contracted toward the plantar side. ()n the tibial side and distal to the mesocuneiform is a minute lateral facet fire the second metatarsal. The contact with the cuboid is restricted to two facets near the proximal end, one dorsal and the other pantar, of which the latter is the smaller, but the more prominent. In E. magnum this bone is very much as in the American species, but the distal faceet is of a different shape not contracting so much toward the plantar
 Taf. XI, Figs. 48,59 the ectocmeiform is lower and has a more extended comection with the second metatarsal. 'The ectocumeiform of Mipmomfames is low, hut very broad, in keeping with the great size of the thind digit. In sies this element is mot so wide ats in Elotherium, and differs from that of all the genera mentioned in having no contact with the second metatarsal, from which it is cont of by the articulation of the mesocuneiform with the third.

The colmed is massive and large in all its dimensions, high, broad and thick. The proximal surface is about equally divided between the faect for the caleanewn and that for the astragalus, though the latter is slightly the wider. This facet, which is simply concave antero-posteriorly, is wilest near the dorsal border, and in the middle of its course is deeply emarginated from the tibial side. The calcancal facet is imperfectly divided into two parts, of which the dorsal portion is mach the larger, particularly in width, while the plantar portion curves inward so as to lie, in part, behind the astragalar surface. The cuboid is firmly interlocked with the navicular by means of the deeply concave facet on the tibial side near the plantar margin, which receives the progections from the mavicular abrady deseribed. Donsally the contact between these bones is limited to two small facets, one of which is proximal, and the other is distal on the navicular, median on the cuboid, where it helpe to form the projection between the navicular and the ectocunciform; this prominence is , howerer, very short. The facets for the cetocuneiform are also dorsal and plantar, and are just distal th thowe for the mavicular. The distal end of the cuboid is taken up ly the large facet for the fourth metatarsal, that for the rudimentary fifth being very small and lateral in position. The plantar hook is not long, but is very broad and masive, and bears on its tibial side a facet for the frosterior projection from the head of the fourth metatarsal.
 not so high in proportion to its breadth as in the Ameriean species, and the temtinal sulcus on the fibular side is deeper. The cuboid of Anthrecotherimm is broader and lower and has, of course, a larger and more distal face for the fifth metatarsal. In suas similar proportions recur, and the division of the calcameal surface into two parts is complete. In Hippopotemus the cuboid is very low and broad, and the astragalar face is much wider than the calcameal.

The metuterses, like the metacarpus, consists of two functional (iii and iv) and two rudimentary members (ii and v).

Wetutersal $I I$ is a small nodule, which is much compresend laterally amd tapers to a point at the distal end; the articulations are proximally with the mownoneform and laterally with the ectocuneiform and mo iii.

Wetutarsat $/ / I$ is comsiderably longer than the corresponding metacarpal and of a different shape, being much narrower transersely and thicker in the dorso-plantar diamoter. The hend is of mokerate width, but the long and massive projection from the plantar side wives it great thickness. On the tibial side of the head is a depression in which lie the notular mo ii. The plantar projection bears a rounded, plane facet on rath side: that on the tibial side is for the entocuneiform, and that on the fibular side is for mt. iv; a second facet for mt. iv is formed by a shallow depresion near the dorsal border. The haft of mon. iii is long, straght and slender; it is flattened on the plantar and dihular sides, romded on the others. Toward the distal end the shaft gradually expands both in width and thickness; a very prominent and rough tubercle is developed on the fibular border of the dorsal face, just above the trochlea. The latter is rather low and narrow and has a prominent carina, which is confined altogether to the plantar face.

Mefotersen / I is a counterpart of mot. iii, with which it forms a symmetrical pair, Though the plantar projection is even larger and heavier than that of the latter and articulates with the posterior hook of the cuboid. The comnection with mit. iii is by means of two facets, the dorsal one a low, rounded prominence which fits into the depression on mt. iii already described, and the plantar one on the tibial side of the posterior projection. The two metatarsals are held rery firmly together, extermally by the hook of the cuboid and internally by the entocmeiform. A small depression on the fibular side of the head lodges the rudimentary mt. v. The shaft and distal trochlea are like those of mo iii.

Jetutersenl V is evem more reduced than mot. ii. It has a thickened club-shaped head, which bears a face for the colboid and another for mot. if, the two meeting at a very open angle. What remains of the shaft is slender and styliform. The mode of digital reduction in the pes, ats in the manns, is entirely "inadaptive," the rudimentary mot. is still clinging to the mesocuneiform and preventing mot. iii from reaching that tarsal, which is much diminished in size, while the ectocuneiform follows the enlargement of mo iii.

Kowalersky found no metatarsals associated with E. maynum. In Anthracotherium (Kowalerwy, 'ob, Taf. XI, Fig. $4 \pi, 5,59$) the lateral metatarals are still large, functional and provided with phalanges; the median pair are relatively shorter and heavier than those of Elotherium, hat in other respects resemble them closely. Hippopotamus hos very short and massiye metatarsals, which do not exceed the metacarpals in length and which retain the primitive mode of articulation with the tarsals. The metatarsals of sus clifter from those of Elotherium in much the same way as do the metacarpals of the two genera. The laterals are still functional, though much reduced, and the medians are short and very heary, with the carime completely encircling the distal trochlea; mo iii has accuired an articulation with the mesocmeiform, cutting off mt . is from the ecto= cuneiform.

The phetenges of the pes differ from those of the manns principally in their greater slenderness. The first phatanx is a little longer than that of the fore-foot, and decededly more slender; the proximal trochlea is less deeply concave and the groove for the carima narrower and decper. The second phatanx is of nearly the same length as in the forefoot, but is much narrower and somewhat less asymetrical in form. As Kowalevay points out, the proportions of this phatanx are very exeeptional among manates. The ungual is smaller in every dimension than that of the mans and, in particular, is mar-
 the same difference between the phalanges of the per and those of the manus and does Etotherium. In sues and Mippopotemus the phatanges of the two extremities differ very little.

Merastrememis.
Antraralus. lengeth $0.11-3$
I-tagealus, withth pronimal trobliea 105
Xiaricular, heinlat. 11:1
Navicular, width $0 \because!9$
Navicular, thiekness. 011
Euterun-jform, height $0: 3$
Fintocunciform wilth. 011
Mexocumeiform, luinht 016
Eotocunciform, luinht (1):
Eetocunefform, width. 0.2 .5
('uboull, height 11. 5
Cuboisl, winth. (1):
C'aboid, thickners. 017
Metatarmill iii, lergeth 1-1
Metatarsal iii, witth proximal an: 10:!
Metatarsal iii, width distal ent (0:2:3
Metatarsal iii, thickness proximal end. 011
Mctatarsal is, length 1-1
Metatanal iv, width proximal emd 0:,:;
Metatameal in, witth distal emel. (10:1
Metatarsal iv, thickness proximal emel. 014
Prosimal phalanc, lengeth (16)
Iroximal phatans, width proximal cml. 10%
Proximal phalanx, width distal end. (1)"
Seromil phabans, length 1013
Seome phalatis, width grosimal (ant. 10:11
second phatanx. whidh distal cend. $0: 1$
Ungual phalanx, Lengeth. $0: 3$
Cusual platanx. withth poximat amb. $10: 3$
A. 1 , $\mathrm{S}, \mathrm{VOL}, \mathrm{XIX}, \mathrm{DO}_{0}$

X. Restoration of Elotherium (Plate X V'II).

The skeleton of this genus has a remarkable and even grotesque appearance. As in so many of the White River genera, the skull is disproportionately large, and the immense, dependant projections from the jugals, together with the knob-like protuberances on the mandible, produce a highly characteristic effect. The long, straight face, the prominent and completely enclosed orhits, the short cranium, the high sagittal crest, and the enormonsly expanded zygomatic arches give a certain suggestion of likeness to the skull of Hippoputumus. The neck is short, nearly straight and very massive, with prominently developed processes for muscular attachment. The trunk is short, but heary ; the anterion thomerie sines are very high and heary, while those of the posterior region are short and quite slender. In consequence of the sudden shortening of the thoracic spines, a conspicuous hump is formed at the shoulders. The thorax is of moderate capacity and the loms are short. The tail appears to be of no great length, though the individual sertebra are sreatly elongated. The limbs are long and rather slender, and the fore and hind legs are of nearly equal height; the humerus and femur are almost the same in length, as are also the radius and tibia, while the pes is somewhat longer than the manus. The scapula is very large, expecially in the vertical dimension, which considerably exeeds the length of the humerus, and has a short but prominent acromion; the pelvis, on the other hand, is rather small, the ilium having a long and slender peduncle, and only a moderate anterior expansion. The elongate limbs and slender, didactyl feet are in curious contrast to the huge head and short, massive trunk, and form a combination which wouk hardly have been expected.

Prof. Marsh has pulblished, with a very brief explanatory text, a restoration of Elotherimm (2) P1, IX) which differs in several details from the skeleton here figured. It is difficult to tell from the data furnished exactly how much of this restoration is conjectural, or to determine how far the discrepancies to be mentioned are the result of the aswociation of parts of many different individuals in a single figure, and how far they are due to actual specific characters. On comparing the two figures, one is struck by the following differences: (1) In Marsh's resturation the skull is somewhat smaller in proprovion to the length of the limbs. (2) The neck is more slender and the spines of the cervical vertebre, notahy those of the sixth and seventh, are much less developed. (3) The trunk is decidedly longer and twenty thoraco-lumbar vertebre are figured. No reason is assigned for this departure from the well-nigh universal formula of the artiodactyls, which is nineteen, and we are therefore ignorant of the evidence by which it is supported. (4) The spines of the thoracie vertebre are much more slender and decrease more gradually in length posteriorly, so that there is no such decided hump at the
withers. These epines are figured at having curious expmentons at the tipe, which are either absent or much less distinctly shown in the skeleton deseribed in the present paper. (5) The lumbar region is longer and has nemal epines which are lower and incline more strongly forward. (6) 'The conjectural restoration of the prestermum is entirely different from the specimen herewith figured. (7) The seapula is relatively shorter and broader, and has a less prominent acromion. (8) The ilium has a shorter neck, expanding more gradually into the anterior plate and with the acetabular border of an entirely different thape. The ischium is much more sender, is more everted and depressed at the posterior end, and has a much lesis massive and prominent tuberosity.

Materials are yet lacking to determine hon wide is the range of variation in the skeleton of the different species of Etotherium. So far as I have been able to wherve, there are no important differences between the species, save those of size and proportions, the larger forms having more massive as well as longer bones. In particular, the great John Day species have exceedingly heary limb and foot bones.

XI. The Relationships of Elotherium.

There has been a very general agreement, among those who have made a study of this genus, regarding the systematic position of Elotherime. The acute, compressed premolars have, however, led some observers to see affinities with the Carnivora and de Blainville went so far as to include the genus in his carnivorous family Gubursi. Amost every other writer has referred these animals to the suillines. Ledidy says of it: "Elotherium is a remarkable extinct genus of suilline pachyderms. . . . It a allies among
 amimals the Hog, Peceary and Hippopotamus" (69, p. 174). Kowalersy expresses the same idea in a more definite and specifie way: "Schon bei dem ersten Anblick der Bezahnugg beibt kein Zweifel über die Familie zu der diese Form sehärt, nïmlich den Suiden; sie bidet aber darim wegen des auffallemden Batues der didactyon Extremitaten eine sehr eigenthïmliche Gattung. Plötzlich komente eine derartige Form sich nicht bilden, das Entelodon hatte gewiss Vorahnen, deren Konochenban dinen allmäligen Uebergang von der tetradactylen zu der didactylen Form vermitelten, his hente abor sind uns solche noch gianzlich unbekannt" ('76, p. 4ote). Kittel refters the genus to the Achenodontince, a subfamily of the Suitre ($94, \mathrm{p}$. 33) . Marsh erects a separate family for the genus, and says of it: "The Ehotheride were evidently true suillines, hut formed a collateral branch that beeame extinct in the Miocene. They doubtless branched off' in early Eocene time from the main line which still survive in the existing swine of the ofd and new worlds" ("O4, p.408). Schlosser has expressed asmewhat different opiniom
and has referved the esenus to the bunodont division of the family A futhracotheridere, which family he derives from an Eocene stock common to the Antlouentheriblde, the Anoplothe rible, the Mippopotromide and the retedee ('s7, p. 80).

The complete account of the dental and skeletal structure of Elotherium is now before us and yet it is hardly less difficult than before to determine its phylogenetic relationships and sytematic position. The genus is so far specialized that it implies at long ancestry, not a member of which is, as yet, certainly known, althongh there are certain Eocene genera which throw some light upon the problem. In the absence of this ancestral series, we are without any sure criterion by which to distinguish parallelisms from chatacters of actual affinity, since only by tracing, step by step, all the gradations of a differentiating phylum, can we safely determine the true position of its members. However, some facts seem to bear a clear and definite significance. In the first place, it is plain that Massh is right in forming a separate family for this genus, as it belongs to a line which diverged rery early from the main stem, whatever that was. In the second place, the relationship of this family to the Suide must be a very remote one. When we compare the skeleton of Elotheritm with that of the swine and peccaries, point by point, the only notable resemblance between the two groups is found to consist in the bunodont character of the molar teeth, and this resemblance, standing by itself, cannot be regarded as at all decisive. The selenodont molar has been independently aequired by several distinct lines, and so far as the artiodactyls are concerned, the bunodont pattern is almost certainly the primitive one. That two widely separated families should each have retained a common primitive character is too frequent a phenomenon to excite surprise. In all other structures, skull, vertebral column, limbs and feet, no particularly close correspondences between the Elotheriider and the suidee can be detected, though that a common early Eocene progenitor should have given rise to both families is altogether likely.

Between Elotherium and LIippopotamus, on the other hand, are many points of resembance. The likeness in the dentition is here quite as great or eren greater than between either of these genera and the suide. In the skull there is much to suggest relationship, though combined with many striking differences, which may perhaps be referable to different habits of life, such as the enormous massiveness of the premaxillary and symphyseal region in the modern genus, the peculiar development of the canines and incisors and the elevated tubular orbits. In the skeleton the two genera are widely separated; Elotherium is a long-limbed, long-footed, didactyl creature, with small thorax and slender ribs, evidently of terrestrial habits. Hippopotemes, on the contrary, is a short-limbed, short-footed, tetradactyl and isodactyl form, with immense thorax and broad, almost slath-like ribs, which is chiefly aquatic in its habits. Whether the resem-
bances in skull and dentition indiate any relationship between the two fimilies (an be determined only when their history has been worked out. In any event, it is not probable that the relationship can prove to be closer than that both lines were derived from a common stock which separated from the other Artiodactyla at a very carly date.

As has already been observed, no direct ancestors of Ehotherinm have yet been recovered, but there are eertain Exeme forms which seem to be related to these ink wown ancestors in such a way as to sugesest the character of the latter. The dedermenton (Elotheriem) uintense of Obborn (95, p. 102) is, such a form and differs from the A. robustum of the Bridger in the "great elongation of the face and the shortening of the cranium, both of which characters relate it to Elotherium" (l.c., p. 10:3). This peceses is more specialized in several respects than the White River Elotheres, and like its forerumers of the Bridger, A. mbustum and A. insolens, it has but three premolar: in eath jaw, and hence is not at all likely to be ancestral to the later genus. In the Wisated Achenodom is represented by A. (I'erahyus) retum Marsh, which likewise has but three premolars, and, so tar as it is known, differs from the Bridger species only in its maller size. There is some reason to think, as ().horn has pointed out, that even A. wintense had four functional digits.

While it is very unlikely that Achenodom can have been the direct ancestor of Elotherium, there are, nevertheles, so many suggestive resemblances between the two genera, and the types of their dentition are so nearly identical, that we can feel little doubt as to their real phylogenetic relationship. In this case, Achenodon will reprewent a somewhat modified side-branch of the stem which culminated in Elotherium. A species of A themodom, or of some closely allied genus, with unreduced dentition and unshortened face, may wedl prove to be the desired ancestral form. If so, the line had already beeome distinct in the Wasateh and the group thus has no subsequent comection with any existing artiodactel family, unless possibly with the IFippopotemide. Elutherimm would then represent the termination of an ancient and very peculiar line, which attained a remarkable degree of specialization in many parts of its structure and which extented its range over the whole Northern Itemisphere. At the same time, the eerebral development of the gemme was: rery backward and this was donbtless one, at least, of the factors which led to jts extinction. After the John Day, the line disapmared, leaving no whecestors.

Lateriatione.

[^19]

-69. Leidly, J. The Extinet Mammalian Fama of Dakota and Nebraska, Phila., 1069.
?a. Mersh, O. (". Notice of New Tertiary Mammals. I't. II Amer. Jounn. Sei., Bl Ser., Vol. V.
?: Mrersh, O. C. Description of Miocede Mammalia. Mith, Vol. th.
91. Morsk, 0. (. Restoration of Elotherium. Mhil.. Vol. 47.

'\&й. Pomel, A. Sur un nouvean Pachyderne du Bassin de la Gironde (Elotherium magnum). Bull Soc. Geol. de France, Tom. IV, 1-16-7.

$\rightarrow-$. Sehlusse, M. Deiträge zur Kenntniss derstammesqeschichte der Hufthiere. Morph. Jahrh., BI. XII.
-96. Solt, II. B. On the Osteology of Elotherium. Comte-Rend. d. Séances du 3 we Congrès Internat. de Zoologie, Levilen, 1896.
`94. Zithe, hr. A. Maudbuch der Palsontologie. Ba. IV, Munchen and Leipzig.

Explaxation of the Plates.

Plute X'I'II.

Nkeleton of Elotherimm ingens Leidy, from the Titanotherium bets of South Dakota, about ${ }_{2}^{1}$ natural size. Only the eighth thoracic vertebra and the distal ends of certain ribs are conjectural. The tail may well have been considerably longer, as only the vertehre associated with the skeleton have been drawn.

Plate XIIII.

Fir. 1. Eloth rium mortomi. Basal view of skull, ${ }_{3}^{1}$ nat. size. Ty, tympanic bone; c, canal opening ahove and behind the posterior nares.
Fig. 2. Elotherinum mortomi. Oeciput from behinh, $\frac{1}{3}$ nat. size.
Fise. s. Elotheriem ingons. Itlas, ventral side.
Fig. 4. Elutherium ingens Axis, left side.
Fig. 5. Elotherium intlens. Fifth thoracic vertelora, from the front.
Fig. 6. Elotherium ingens. Last lumbar vertebra, from hehind. os, episphenial process.
Fig. J. Eolutherinm ingons. Anterior candal vertelra. from above.
Fig. \&. Eiloth rimm ingous. (!) Fifth caudal vertelora, left side.
Fig. 9. Elotherinm ingens. I'osterior caudal.
F'ig. 10. Ey/othorium ingeme. Light ulna and radius.
Fis. 11. Filoth rium ingus. Risht manus. ii. second metacarpal (conjectural); re, fifth metacarpal.
Fig. 1s. Elotherinm ingens. Kight pes. ii, 8 , second and tifth metatanmals.
(Figx. :-1: 'ere upproximutely $\frac{1}{4}$ nut. size und "tit of bemex belonginey to the sheleton figured in Plate IVM.)

AR'TICLE VIII.

13 Y W. 13. SCOTT.

(Plates NIX and XX.)
Read before the American Philosophical Society, February 4, 1898.

The problems concerning the origin and mutual relationships of the varions fanilies into which the Carnivora Fiswipedia are divided have not yet been satisfactorily solved, principally becanse of the rarity of well-preserved fonsils representing the earlier and more primitive members of the families. Especially obseure are the questions dealing with the derivation and systematic position of the Felider, a fimily which by many authorities is regarded as occupying an entirely isolated position, not directly connected with any of the other groups. Hardly less puzzling, howerer, are many of the facts of camine phylogeny, such as the relations between the two great series of the wolves and the foxen, and the conmection between the many divergent genera of sucessive geologitai horizons. No satisfactory answer to these questions can be given until many complete phylogenetic series of the Carnivora shall have been diseovered, for so long as the numerons wide gats which now separate the known members of the rarions series remain unhridged, those series must continue to be largely conjectural. At any time, new discoveries may call for an entire readjustment of our views regarding the lines of descent of the different families.

Recently, there has come into my hands some uncommonly well-preserved material for the phylogenetice history of the ('emider and is the oceasion of the present paper. 'This material wasobtained for the musem of Princeton Chisersity by Mesers. (iddey and Wefls. who in the summer of 1896 made al eollecting trip throngh the Bad Latuds of Nebraska and Nouth Dakota. They had the good fortune to diseover eertain unworked localities where the exposures of the White River Oligocene proved to be richly fossiliferons and, in particular, yielded many unusually complete specimens of primitive dogs. I study of this material has brought to light some very remarkable and unexpected facte, which, the the writer at least, seem to require a revision of some corrent riows upon the phybugery of
 relating to the origin of the cats. The most valuable of these specimens are referable to
the genns Duphemns Leidy, which has long been known, though but very imperfectly, and sereral partially preserved acletons permit an almost complete account of its osteology to be given.

DAPHEEALS Leidy.

 $18: 3,1$. 50 .
This genns represents nearly the most primitive type of dogs which has so far been determined from the Tertiary deposits of North America. It was originally deseribed and named by Leidy, who afterward mistakenly referred it to the European genus Amphicyon, a reference which was also adopted by Cope. Though more than forty years have thus elapsed since the first discovery of these animals, singularly little has been known about them, for the material obtained has been very scanty and rery badly preserved. Fragments of jaws, a few very imperfect skulls and fewer limb-bones have hitherto been the only pecimens found, in spite of long and careful search, and beyond the fact that Dophornw was apparently a primitive member of the canine phylum, little coudd be predicated of it.

The now material gathered by Messw. Gidley and Wells fortuately removes this difficulty and gives us information regarding nearly all parts of the skeleton of these curious amimals. These skeletal characters are of a very surprising nature and their interpretation is by no means easy. Expecially remarkable are the many points of resemblance which we find between the structure of Duphemes and the corresponding parts of such primitive Machatirotonts as Dimetis. Aside from the dentition and the shape of the mandible, these resemhance in structure between the primitive dogs and the early sabre-tooth cats are ubiguitons, and recur in the structure of the skull, of the vertetrax, of the limbse and of the feet. 'To bring out the full force of these remarkable characteristice, it will be necensary to cnter into a detailed and somewhat tedionsly minute description of the osteology of Detphemes, so that the means of comparison may be completely laid before the reader.

I. The Dextition.

The dental formula of the genus is $\mathrm{I} \frac{8}{3}, \mathrm{C} \frac{1}{1}, \mathrm{P} \frac{4}{4}, \mathrm{M} \frac{3}{3}$, the same as that of Amphirayn, a resemblance which cansed the erroneons identification of the two genera already referred to.
A. Uprer Jaw (Pl. XIX, Fig. 2).-The incisors are closely crowded together and form a nearly straight transerse row; they are smaller and occupy less space both
transersely and antero-posterionly than in most recent precies of cimis. As in that genus, the external incisor is much the largest tooth of the serien, and forms with the upper and lower canines a formidable lacerating apparatus. The diatema between the incisors and the canine is somewhat greater than in (Gemis, and the premaxillary is quite deeply constricted at that point, forming a groove for the reception of the lower canine.

The camine is of the usual compressed, oval section, but the compression is less decided tham in Cemis, the longitudinal diameter not so greatly exceding the tramserse. The fang of the canine is long and stont, producing a marked whelling upon the outcr face of the maxillary ; the crown is of only moderate length, hut is both actually and proportionately heavier than in the covote (6 . Lutroms).

The premolars are notably smatl and simple; they increase in size regularly from the first to the fourth, the sectorial being, of course, much larger than any of the others. The first premolar is implanted by a single fang, and has a small crown of eompressed conical shape, with much less conspicmons internal cingulum than in the recent species of the Cenide. The second premolar is decidedly smaller than in most of the modern dogs, and is separated by longer interspaces from both the preceding and the suceceding tooth; it has a low, pointed, simple and much compressed crown, without the small posterior tubercles which are found in nearly all the recent species of the family. The third premolar is much longer and especially has a higher crown than p^{2}, but has a similar shape, without posterior loasal tubereles, and, like p^{2}, is inserted by two fangs. The rectorial (p^{4}) is very primitise in character, as compared with that of the typical recent species of Chnis. Certain modern members of the family, such as Otocyon and Comis convete, for example, have, it is true, even smaller and simpler sectorials than Duphems, but as in these forms this is doubtless due to a secondary simplification, they need not be drawn into comparison. The primitive character of the sectorial in the White River gemus is shown in the thick, pramidal shape of the antero-external cusp (protorome) which is less compressed and trenchant than in the modern species, in the smaller size of the posteroexternal cutting ridge (tritocome) and in the umreduced internal cosp (denterocome) which is very much larger and more prominent tham in Chuis, and is carried upon a larger fang. The position of this inner cusp with reference to the protocone is the same as in the recent genus. As a whole, the sectorial is small and gives to the dentition a decidedly microdont character.

The premolar sories of the two sides diverge quite rapidly posterionly, each tooth, exept p^{1}, being ohlique in position, with reference to the long axis of the skull, thas giving the bong palate its greatest width at the hinder edge of the sectorials. The obliquity of the teeth and their diverence posteriorly are even more strongly marked than in most recent dogs.

1. P. S.-VOL. XIX, '2 I'。

The upper molars are large and well developed, though the different pecies vary in this respect, D). cotus having larger tuhereular molars than D. hutshomiomus. The first molar is, in seneral, like that of Conis, hut differs in certain details. Thus, the two "xternal (onspare more conical in shape, more nearly equal in size, and are not placed :o near to the outer edge of the arown, resembling in this respect the upper molars of certain creodonts, such as Sinopot the large imner crescentic cosp is much as in Conis, though hardly so prominent, epecially in D. homanomiomus; in D. vetus it is larger. The second molar is much like the first in shape and construction, hut smaller and somewhat simplified, the comules being minute or altogether absent. The third molar is very small and has a low, transersely owal crown, in which separate elements are not distinguishable. This tooth is rarely preserved and none of the specimens at my disposal posess it, though the alveolus for it is almost always present ; it is well figured by Leidy (69, Pl. I, Fig. 5).
B. Lower daw (Pl. XIA, Fig: $\overline{\text { j }}, 6,7$). In none of the available specimens are the lower incisors sufficiently well preserved to be worth description.

The camine is very much the same as in the recent members of the family. The premolars are somewhat more complex than those of the upper jaw. The first is very small and simple, while $p . \frac{\overline{2}}{}$, $\frac{8}{3}$ and ${ }_{4}$, increase progressively in size and in the development of the posterior hasal cusps. In the more ancient and primitive species? D. dodgei, from the Titanotherium beds, the premolars are lower, thicker transversely and less acutely pointed, and have larger posterior basal cusps than in the later species from higher horizons. In all the species these teeth are more widely separated than in the modern genera.

The molars are very characteristic of the genus, but well-marked specific differences may be ohserved. In ? D. donlyei the anterior triangle of the lower sectorial is of only moderate height and the heel is but slightly concave, the outer and inner ridges (hypoand contoconids) heing very little raised. In D. hartshomianus the protoconid is high, namrow and pointed, and the talon is more concave than in the first-named species, and has more prominent internal and external cusps. In D. vetus the imner cusp of the taton (entocomid) is reduced and, as Cope has already pointed out ('84, p. 898), there is a tendency toward the formation of a talon with a single trenchant ridge, a tendency which is fially carried out in the gencral Trmnoeyon and Mypotemnodon of the succeeding John Daty horizon. In all the epecies of Inaphemus the inferior sectorial is much more primitive than in the typical modern Comide, as is clearly shown hy the higher and more conima protoconid, the lower and smaller paraconid and much less reduced metaconid. In fact, both the superior and inferion sectorials of Dophemus have a close resemblance to these of the crendont family Jiucerine, from which this genus conld hardly be separated "pon the gromad of the dentition only.
 they are proportionately larger tham in I). hertshornimus. MI. is relatively large, especially in the antero-posterior diameter ; it remembes the corveponding tooth of Cenis, except for the presence of the small paracomid, thus giving to the tooth all the elements of a true sectorial, ats is also the "ase in the creodont Minceider, though in the White River genus all the cuspo are lower and more tuboreular. M is quite small, though both proportionately and actually larger than in species of Cheme of similar stature, and is inserted by a single fang; the crown is of oval shape and has an irregularly ridged surface, without distinct curps.

As a whole, the dentition of Daphemes is that of a primitive member of the Conider and resembles the dentition of the recent members of the family in general plan and structure.

Mensurements.

		No. 11421.	No. 11124. !	No. 1053.	No. 11423.	No. 11425.	No. 11422.
Upper clental series, length C to M s..		0.069	,	0.076			
"	incisors, transberse width .0 0111		.1015			
"	canine, leurth 010		.011\%			
${ }^{\prime \prime}$	" width...	.0102		. 010			
"	I 1, lengrth..	(10.)	.10\%	. 1306			
"		. 1102	(H) 25	. 00035			
"		. 009		8.010	. 1009 *	1	
${ }^{6}$?.011	. 014.5	. 015	.015		
"	I' 4, width..	. 00125	. 1009	. 1110	. 1110.5		
"	M1, Jength...	.111:	. 011	. 0111	.101:		
.	M 1, wilth111.5	. 11.8	. 111.5	. 11116		
"	M 』, lengrh...	. 1006.5	. 1107	. 0107	. 1018		
-	M 2 , width.	. 110	.111	. 1111	. 1111		
Lower dental series, length C to M 3...................		.088	1		.1900**	. 1190	.0:31:
"	premolar series, lensth036			. 014 \%	. 1110	
"	molar series, length020	.10:15		.11:31*	. $13: 31$	
*	canime, length.	. 011			. $1111{ }^{*}$. 112	. 1111
"	- wiulth.	. 0108.5			(1415	. 100 m	. 1105
,	[1, length...	. (11)1.)*			. 100.3	.1001	.110:3
"	1ヵ, "	.1015-5	(191-		. $1119{ }^{*}$.1110	. 1 H1\%
*		. 101095	.010		.010*	. 1111	.00-
-		.1112	. 112		. 1112 \%	.01:	. 011
"	M 1, "	. 1111	.1913		. $111{ }^{*}$. 018	. 011
-	M1, width..	.10\%	. 1007			. CH 18	. 1103
'*	M 2 , length 10825	.0n\%		. 010915^{*}	. $10.99 .{ }^{*}$	
"	M ®, witth..	.006	. 10.3 S				
"	M :3, length..	. 11033^{*}	.1004**		. $1111 i^{*}$. 1011^{*}	
	M 3, width...	.110: ${ }^{\text {a }}$.111:]				

*Alveolus.

II. 'The Skule (Pl. XIX, Figs. 1-7).

The skull of Dophomus is exceedingly primitive in character and plainly shows many traces of the ereotont ancestry of the genus. Unfortunately, well-preserved skulls are exceedingly rare and none of the species is represented by an altogether complete specimen. Howerer, several more or less imperfect specimens have been recovered, which together give us information concerning nearly all parts of the skull.

As in the creodonts gencrally, the cramial region, reckoning from the anterior edge of the orbits backward, is exceedingly elongate, while the face in front of the orbits is Pery short, slender and tapering. The elongation of the cramium is not due to an enlargement of the cerebral fossa, which on the contrary is short, narrow and of relatively small capacity. The postornital constriction, which marks the anterior boundary of the cerebral fonsal, is notably deep and is removed much farther behind the orbits than in Cemis. On the other hand, the cereloellar forsa is long, and the postglenoid processes occupy a more anterior position than in the existing species. In consequence of the elongate cranial region, the zygomatic arches are very long, as in the more primitive types of creodonts. The uper contour of the skull is nearly straight, the descent at the forehead being very slight and gradual, which gives to the skull an alopecoid rather than a thooid aspect. This resemblance is, however, entirely superficial, for the frontal sinnses are large and well developed, as in the thooid series of the modern Cemide. The sagittal crest is low, but varies in the different species, being decidedly thicker and more prominent in the larger and heavier D. vetus than in the smaller and lighter D. hatshormianus.

Turning now to the more detailed study of the elements which make up the skull, We shall find a number of striking and significant differences from the existing representatives of the family, thongh the general aspect of the whole is distinctively canine.

The busioccipitel is broad and quite elongate and has a much more decided median keel than Cumis. All the occipital bones are firmly ankylosed in the specimens at my disporal; hence, in the absence of sutures, it will be necessary to describe the compound bone as a whole, without much reference to the elements of which it is made up. The occiput is of quite a different shape from that found in the existing members of the fanily, locing broader, lower, and with a wide, gently arched dorsal border or crest (see I'l. IIX, Fig. 3) ; in Cemis this crest is pointed and somewhat like a Gothic arch in shape. The occipital crest is thin, but much more prominent than in Canis, which is due to the larger and deeper depressions of the cranial walls behind the oceipital lobes of the cerebral hemispheres, the shape of which is plainly visible externally. The foramen magnum has much the same low and broad outline as in Canis. The condyles are low, hat well extended transversely, and on the ventral side they are sepa-
rated by a wider noteh than in Cemis. The depresion, or finsal, external the the eondye is very much deeper and more conspicuons than in the modern genus, in consequencer of which the condyles project more prominenty hackward from the oreiput than in the modern dogs. The parocepital processes are short, but quite stout and blantly pointed; they project mach more strongly hackward and less downwand than in the living forms, and are less compresed laterally. Another difference from the modern genns consists in the fact that, while in the latter the parocepital process hat quite an extensive sutural contact with the tympanic bulla, in Dophemes there is no such contact, the minute bulla being widely separated from the proces. The direction taken by the paroceipital process in its course is thus evidently not determined by the size of the bulla, for in the Johm Daly genera, Temnocyon, IIppotemodon and ('ynodesmus, in which the tympanic is greatly inflated, the shape and direction of the paroccipital are the same as in Daplereme, with its insignificant bulla. A considerable portion of the mastoid is expersed on the surface of the skull, but it is rather lateral than posterior in position, a difference from Camis, in which the mastoid is hardly visible when the skull is viewed from the side. The mastoid process is slighty larger than in the existing gents and is chameled on the imer side by a groove leading to the stylo-mastoid foramen.

The limits of the bresighenoid are not clearly shown in any of the specimens, but this element appears to have much the same broad and flattened form as in the recent dogs. The presphenoid is long and narow and, as in the existing species, is almost concealed from view by the close approximation of the palatines and peryonds along the median line. The ali- and orbito-sphenoids are not well displayed in any of the specimens, but so far as they are preserved, they differ little from those seen in the more modern members of the family.

The auditory bulla of Dephemus is very remarkable and differs from that of any other known carnivore. Its principal peculiarities were observed and noted by Lede, but the material at his command was insufficient to enable him to describe these peculiarities with confidence. The tympumic is exceedingly small, and is but slightly inflated into an inconspicuous bulla, the anterior third of which is quite flat and narrows forward to a point. There is no tubular auditory meatus, the external opening into the bulla being a mere hole, but the anterior lip of this opening is drawn out into a short process, somewhat as in existing dogs. Behind the bulla is a large reniform vacuity or fossa, of which Ledy remarks: "At first, it appeared to me ats if this fossa had been enclowed with an auditory bulla and what I have described as the latter was a peculiarly modified auditory process" (69, p. 3:3). Several specimens representing both the White River and John Day species of Daphemus show that the forsa is nomal and was either not enclosed in bone, or, what seems less probable, that the bony capsule was so loosely attached that it
invariahly became separated from the skull on fossilization. At the bottom of the fossa (i.e., when the skull is turned with its rentral surface upward) is seen the exposed prontic, or petrosal, which is only partially overlapped and concealed by the tympanic. Such an arrangement is far more primitive than that which is found in any other known member of the canine series, and is not easy to interpret. A clue to its meaning may, howerer, he found in the mode of development of the bulla in the recent Canidce. Here, as is well-known, the structure consists of an anterior membranous and posterior cartilaginous portion, which eventually ossify and coalesce into a single bulla. Reasoning from this malogy, we may infer that in Dophemus the bulla was also composed of two portions, but that only the anterior chamber was ossified, the posterior one remaining cartilaginous. Commmication between the two chambers was provided for by the space which separates the hinder edge of the anterior chamber from the petrosal. If this interpretation be correct, it supplies an interesting confirmation of the results derived from the ontogenetic study of the recent genera. At all events, it seems much more probable that we have to do here with a primitive rather than a degenerate structure.

The perietals are large and roof in most of the cerebral forsa; they are much less convex and strongly arched than in Chis, in correspondence with the smaller size of the cerebral hemispheres, and posteriorly the depressions behind the hemispheres are much larger and deeper. As already remarked, the sagittal crest varies in the different species, and is much thicker and more prominent in D. vetus than in D. hurtohorniumus. The frontals are more or less damaged in all the specimens and in none of those at my disposal is it possible to determine the posterior limits of these bones, though from the position of the postorbital constriction we may confidently infer that they formed a smaller proportion of the cranial roof than in the modern members of the family. The supraciliary ridges are feehly developed, especially in D. hartshomianus, and the postorbital processes are likewise much less prominent than in most of the recent dogs; from this process a ridge desecends downward and backward to the optic foramen, which, though not prominent, is yet more so than in Chnis. The frontal simuses are large and yet in spite of them the forehead is nearly flat, both longitudinally and transversely, with a very shallow depression along the median line. The nasal processes of the frontals are long, narrow and pointed, and are separated by only a short interval from the ascending rami of the premaxillaries.

The squemasal is of moderate size and differs only in subordinate details from that uf C'unis. One such difference is the presence of a broad shelf-like projection, the posterior extension of the root of the zygomatic process, which overhangs the auditory meatus and is doubtles to be correlated with the lesser breadth and convexity of the brain. The glemoid cavity is like that of the recent species, but has a much more distinct interual boundary, due to an elevation of the squamosal at that point. The
zygomatic process is stmut and well-developed, especially in I). when, which has heavier arches tham a latre wolf, while in D. herkhornimus the zygoma is lighter and more slender, much as in the coyote. The jugal is strongly curved upward, as well as outward, and is shaped quite as in C'anis, forming nearly the whole anterior and inferior boundary of the orbit; the postorbital process is very feebly indicated, being cern less prominent than in the modern genus, so that the orbit is more widely open behind. The lachrymal is rather larger than in Cunis, forming more of the anterior orbital border, and has a quite well-developed spine.

The unculs have a general resemblance to those of (amis, but, in correspondence with the shortness of the whole facial region, they are considerably shorter, and somewhat broader and more convex transversely; their posterior ends are more simply rounded and have a less irregular suture with the frontals, while the anterior, free ends are much less deeply notched.

The maxillary is somewhat peculiar in shape, corresponding to the remarkably constricted, narrow muzale. The facial portion of the bone is relatively higher than in existing representatives of the family, especially in front, its anterior border rising in a steeper and bolder curve. Just in adyance of the orbits the maxillaries expand quite suddenly in the transverse direction, much more abruptly than in Camis. The infraorbital foramen occupies nearly the same position, with reference to the teeth, as in the latter genus, being above the front edge of the sectorial, but it is very much nearer to the orbit, which occupies a more anterior position. The palatine processes of the maxillaries follow the shape of the muzzle, and are long, narrow for most of their length, but broadening much behind; anteriorly they are emarginated in an unusual degree to receive the long premaxillary spines.

The premaxillaries, especially their alveolar portion, are somewhat narower than in Canis, and behind the external incisor the alveolar border is constricted on cach side, forming well-marked grooses for the reception of the lower canines. The exposed part of the ascending ramus is much narrower than in the modern genns, forming a mere strip on the side of the narial opening. At the same time, this ascending ramme is relatively longer than in existing dogs and extends almost to the nasal process of the frontal. The anterior narial opening is somewhat larger proportonately than in the recent members of the family, especially in the vertical direction, and its borders are less inclined ; the floor, formed by the dorsal surface of the horizontal rami of the premaxillee, is more simply and deeply concalve, and the horizontal rami themselves are less massive. The patatine processes of the premaxillaries are distinetly smaller than in Conis, while the spines are relatively longer and more slenter. The incisive foramina are large and from them quite deep grooves are continued forward to the alveolar border, while in the modern gems these grooves are very shallow and fechly marked.

The pulutiness are shaped sery much as in demis. As a whole, the bony palate differs from that of the latter gemus in the greater and more abrupt expansion of its posterion half, begiming at 1^{3}; it is also somewhat more concave transversely and has a more prominent ridge along the median line. The palatine foramina are likewise somewhat different from those of recent dogs; one conspicuous opening on each side oceupies the same position as in the latter, opposite the middle of the sectorial, but instead of a single opening opposite m^{1}, is a group of two or three minute foramina.

The Cranial Fortemina. Unfortumately, none of the specimens are sufficiently well preserved to permit a complete account of the cramial formina, though the more important facts concerning these structures may be determined. Leidy states that in I). wetus" the anterior condyloid, Eustachian and oval foramina present very nearly the stme condition as in the Wolf" (69 , p. 33). The specimen upon which Leidy's description was founded, belonging to the Academy of Natural Sciences of Philadelphia, has been mishaid and is not at present available for comparison, but the description cited above does not altogether apply to the cranium of D. Kertshomiomus, of which an account has been given in the foregoing pages. In this specimen the condylar foramen is widely removed from the condyle, much more so than in Canis, and is placed near the edge of the reniform fossa which lies behind the tympanic bulla. The existence of this fossa removes the necessity for a distinct foramen lacerum posterius, which is indicated only by a noteh in the hinder margin of the fossat ; similarly, the stylomastoid foramen is an open groove, only partially enclosed by bone. The postglenoid foramen is large and compicuous and is not concealed by the anterior lip of the auditory meatus as is the case in the John Day Cymodesmus. The foramen lacerum medium appears to oceupy a somewhat more internal position than in Cumis, though this is not altogether certain, becamse of the unfavorable condition of the fossil just at this point. The Eustachian canal is more concealed muler the long anterior process given off from the tympanic bulla than in the existing genus, and the foramen ovale is separated from the entrance to the canal by a much more prominent bony ridge, so that the foramen presents forward instead of downward.

By a curions coincidence all the crania of Dophemus in the Princeton museum are damaged in such a way that none of them displays the alisphenoid camal, the foramen rotundum or the foramen lacerum anterius, though there is no reason to doubt that all of these formma were present and corresponded in position to those of Chemis. The optic foramen is overhung by a ridge, already deseribed, which is much more prominent than in the latter, and the lachrymal foramen is decidedly larger and more conspicuous. The parictal is perforated by a venous foramen which opens in the depression behind the cerchal hemispheres ; this foramen, the postparietal, is not found in the modern genus.

The mandible differs considerahly in the sarious pecies, though the comparisen between them can as yet be but partially made, for the only specimen known to me in which the angle and coronoid process are preserved, is that figured by Leidy (l. co, Pl. I, Fig. 2), which belongs to D. cetus. In ? D. doelyci (Pl. XIX, Figs. 6, 7.) the horizontal portion of the mandible is thick, heary and relatively short; the inferior border is very far from straight, rising beneath the maseteric foxsa almost to the level of the molats and descending forward from this point in a bold, sweeping curve, quite as in the modern Comis cureus; the masseteric fossa is very deep and its ventral border forms a prominent ridge, distinct from the lower border of the jaw; the symphysis is short and the chin abruptly rounded and steeply inclined.

In I. vetus the horizontal ramus is of an entirely different shape (see Pl. XIX, Fig. 5) being longer, more compressed and slender and with a decidedly straighter ventral border; the symphysis is longer and the chin more gently rounded, rising more gradually from the inferior margin of the ramus. The masseteric fosca is quite deeply impressed, though less so than in ? D. dodyei, and is very large, extending far up upon the ascending ramus. The angle is a stout hook, which is less elevated above the general level of the horizontal ramus than in modern wolves or foxes. The condyle also has a low position, below the level of the molars, while in recent species the condyle is raised above the molars, and in some species very much so. The ascending ramus has great antero-posterior extent, by which the condyle is removed far back of the last molar. This is a primitive feature which recurs in most creodonts and is evidently correlated with the characteristic elongation of the cranimm and zagomatic arches. The coromoid process is high and wide, and has a bluntly rounded end; it inclines much more strongly backward than in Canis and has a much more concave posterior border. The condyle resembles that of the recent dogs, hat is set upon a more distinct neek, is more extended transversely, and is less cylindrical in shape, tapering more toward the outer end.

In D. hertshorniomes the mandible, so far as it is preserved in the various specimens, resembles that of D. vetus, save that the horizontal ramus is somewhat shallower and more slender.

The Brain. Very little can be said concerning the brain, since no complete cast of the cranial cavity is available for study. The general shape and development of the brain are, however, indicated in the specimen of D. hutwhorniomus already deseribed (Pl. XIX, Fig. 1). Its proportions are very different from those found in existing members of the family, a difference which may be briefly stated as largely consisting in the much greater relative size of the cerebral hemispheres and smaller size of the offactory lobes in the modern species. In Dapluemes the brain is narrow and tapers rapidly toward the anterior end; the cerebellum and medulla oblongata are long, the
A. P. S.-VOL. XIX. 2 Q.
hemispheres marow and short, and the olfactory lobes very large. The partially exposed cast of the cerehral fossa show that the cerebral convolutions are fewer, simpler and straighter than in ayy known species of (tunis, and are even more primitive than those of ('ymodesmus (ree foott, "4, Pl. I, Fig. 2). The only sulcus visible in the specimen is apparently the supraslvian, which is short and pursues a nearly straight course, but curving downward slightly at both ends. From the external character of the skull it is clear that the hemispheres overlap the cerebellum but little.

Mersurements.

	No. 11421.	No. 11424.	No. 10338.	No. 11423.	No. 11425.	No. 11422.
Skull, length...		\%0.1.31				
Cranium, length fr. oce condyles to preortital horter		. 108				
Fice, length in front of orhits065	?.0.50	. 08.3			
\%ygomatic arch, length.....................................		.100				
Pakate, length...	. 076		. 092			
" width at $\mathrm{p}^{ \pm}$..	.04**	. $017{ }^{*}$.05\%			
Mandille, lenyth from chin to masseteric fossa........	.102			. 093	. 096	?.979
" depth at m_{1}.................................	. 020	. 018		.023	. 025	. 025
. ${ }^{\text {a }}$. r_{1}...............................	.01\%	0 0.5		. 017	.1020	. 019
	. 010	. 015		. 010	. 012	. 012
* Approximate.				-		-

III. 'The Tertebral Column.

The vertehral column is remarkable in many ways. All the regions of the column are well represented hy several secimens of D. whes and D. hertshorniomus, but no complete backbone belonging to a single individual has as yet been recovered.

Cervical Vertebre. The collection contains only a single imperfect specimen of the athas and this belongs to D. cetus. Imperfect as it is, this atlas displays some important differences from that of Conis and most of these differences are approximations to the feline and viverrine types of structure. In Daphemus the atlas is elongate in the antero-posterior direction, the anterior cotyles are small and only moderately concave, and are somewhat more widely separated on the ventral side than in Cemis. When viewed from above, the cotyles are seen not to project so far in front of the neural areh as in the cats, but farther than in the dogs. The posterior cotyles for the axis are small, nearly plane, and but slightly oblique in position, with reference to the fore-and-aft median line of the vertebra. These cotyles are more distinctly separated from the articular surface for the odontoid process of the axis than in the modern dogs, in which
all three facets are confluent. The neural arch is low and broad, considerably chongated from before backward, and without ridges of any kind, sase an inconsporows tuberele, which represents the neural spine. Near its anterior border the arch is perforated by the usual foramina for the first pair of spinal nerves. The inferior ach is very slender, forming a more curved bar and has a much less antero-posterior extension than in Cemis.

Wortman ('9t, p. 137) has pointed ont that the foramina of the athas display certain characteristic features in the various carnivorous families. "In all of the Felide which I have had the opportunity of studying, the [vertebrarterial] canal pierces the transerve process at its extreme posterior edge, where it is thickened and joins the body of the bone. The superior edge of this posterior border stighty overhangs the inferior edge. This chanacter appears to be very constant in the Felider and so far as we know the structure of the atlas in the more generalized Vimbreide [Macharodont:], it is true of them also. In the Cunctre, upon the other hand, the foramen for the vertebral artery is situated well in adyance of the pooterior border of the process, and instead of having a fore-and-aft direction, as in the cats, pierees the procesw amost vertically from above. In the Tivervile amd Inyemide the position of the foramen is very much as in the cats. There is, however, an important difference between these two families and the felines where the artery enters the suboceipital formen in the anterior part of the atlas. The difference consists in the formation of a bony bridge in this situation, which gives to the subocepital foramen a double opening in the hyenas and civets, whereas it is single in the cats:"

In Daphemes, it is interesting to observe, the foramina of the atlas are in all respects like those characteristic of the eats and thas depart in a very marked way from the arrangement formd in the recent Camide. The transerse proceses are broken away, so that their shape is not determinable, but enough remains to show that the atlanten-(liapophysial noteh is not converted into a foramen, thus agreeing with the canines and felines and differing from most of the hyenas and civets.

The uxis is likewise feline rather than came in its general character and apparance. The centrum is elongate, narrow and depresed, with a thin and inconspichons: hypapophysial keel, ruming along the ventral surface, and has a slighty concave posterior face. The articular facets for the atlas are convex and rise higher upon the siles of the neural canal than in Cemis, and on the ventral side they propect below the level of the centrum, so that they are separated hy a broad noteh, which is not present in the modern dogs, and is not well marked in the cats. The odontoid procese is a long, wender, bluntly pointed peg, with a heary, rounded ridge upon its dorsal surface, which is continued back along the floor of the neural camal. The transwerse processes are quite long and relatively very stont; they are shorter and hearier than in Chems, and keep more nearly
parallel with the centrum, not diverging so much posteriorly. As in the felines, the vertelnarterial canal is longer than in the modern dogs, and its posterior opening is not visible when the vertebra is seen from the side; the anterior opening is larger and is placed farther forward than in the recent (tomide. The neural canal is proportionately larger than in the latter, both rertically and transversely, nor does it contract so much toward the hinder end. The neural spine forms the great, hatchet-shaped plate usual among the Carnivora, and in its details of structure it is feline rather than canine. In the latter group, the spine is not continued back of the postzygapophyses into a distinct process, but its hinder borders curve gently into them. In Daphereus, as in nearly all the cats and viverrines, the spine is drawn out into a blunt and thickened process behind the zygapophyses, from which it is separated by a deep notch. The zygapophyses are rather small and do not project so prominently from the sides of the neural arch as they do in (somis.

The other cervical vertebre are more slender and lightly constructed than in the existing Canide of correxponding stature. The centra are long, narrow, depressed and very feebly keeled in the ventral median line; in most of the species this keel does not terminate in a posterior hypapophysial tubercle, such as is found in the existing dogs. In the largest species, however, D. felinus, the keels are more prominent, especially on the third and fourth vertebre, and there is some indication of the tubercle. The centra are slightly opisthoceelous and the faces are somewhat oblique in position. In very few of the specimens are the transerse processea sufficiently well preserved to require description, and in such cases as they are present (as, for example, on the fifth and seventh cervicals of one individual of D. hertshornienus) they display no noteworthy differences from the correxponding processes of Ctuis. The vertebrarterial canal is, however, somewhat longer than in the latter.

The neural arches are very different from those seen in the modern representatives of the family. In them the dorsal surface of the neural arch is rery broad and on each *ide projects outward as an overhanging ledge, which connects the prezrgapophysis with the pootzygapophysix of the same side; ridges and rugosities for muscular attachment are well marked and in the large species often very prominent; the zygapophyses, and expecially the posterior pair, project but little in frout of and behind the arches, and those of cach pair are separated by notches of only moderate depth. In consequence of this arrangement, there are but small interspaces risible between the successive arches, when the rertelrex are in position. In Depheenus, on the other hand, the dorsal surface of the neural arch is relatively narrow, somewhat convex transversely and usually smooth, without ridges or tubrercles; the overhanging ledge which gives such an appearance of breadth in the arth in C'anis is little developed ; the zrgapophyses project far in advance of and
behind the arch, and between each transerse pair is a deep noteh which greatly reduces the antero-posterior length of the bony arch in the median line. When the vertebree are placed in position, the openings between the successive arches, on the dorsal side, are very large and are longer antero-posteriorly than brod transermely. In these peculiarities of the cervical vertebre of Dephernes we find no approximation th the structure of the cats or the viverrines.

The neural spines are also quite differently developed from those of the recent dogs. The third cervical has no spine, merely a very faintly marked keel, the overhanging spine of the axis leaving no room for the development of one on the third vertebra. The fourth cervical has a very low spine, and on each successive vertehra the spine becomes higher and more pointed; that of the seventh is very high and slender, very much more prominent than in Canis, being ahost as high, though not nearly so stout, as the spine of the first thoracie vertebra in the modern genus. The length of the spimes in the neck constitutes another similarity to the structure of the felines.

Thoracic Vertebre.-The number of trunk rertebree characteristie of Duphomus (ammot as yet be definitely determined for any of the species, for mo wecimen has been found with complete backbone. In one specimen of D. vetus are preserved twelve thoracie and five lumbar vertebre and the type of D. felimes contains six lumbars. It is altogether prohable that the extinct genus agreed with the existing dogs in having thirteen thoracies and seven lumbars. The first thoracic has a broal, very much depressed centrum, with anterior face convex and posterior face decply concave. The preagapophyses project forward very strongly and, as in the eervicals, the notch between them is very deeply incised, invading the base of the opine, a very different arragement from that seen in Conis; these processes are relatively larger and more concare in D. vetus than in D. hertshorniemus. The postzyapophyses are much smaller, hout project prominently from the hinder end of the neural areh, extending both laterally and posteriorly ; the articular faces are somewhat consex transersely and have an oblique position, presenting outward rather more than downward. The neural spine is high and compressed, shaped very much as in Canis, hut somewhat more sender. 'The transvere processes are very long, prominent and heary, espectally in the large species, D. felimes; at the distal end of the process is a large and decply concave faceet for the tuberele of the first rib.

The second thomace very much resembles the first, but has a smaller, narower, lighter, and much less depresed centrum; the prezyeapophyse are smatler, less conceave and less widely separated, while the postaygophyses are larger and present downard, instead of obliquely outward, as they do on the first. The tramserse processes are mudh smaller in every dimension than those of the first thoracice, and spring from the nemal
areh at a higher level, though they are still very prominent and carry large, concave facets fore the second pair of rithe. The newal spine is somenish heavier than on the precoling vertebra, and was prohably higher, as well, but in none of the specimens is the - pine preserved fior its entire length.

The wher vertebre in the anterior part of the thoracie region have rather smath contra, and in general (haracter are very much like those of Comis. The (?) sixth vertelna has a curiously shaped spine, which exaggerates the condition seen in the modern genus ; its proximal portion is inclined very strongly backwad, while the distal portion is (ourved so as to project unard; the other thoracies, as far back as the (?) tenth, have similar fines. One very marked difference from the recent Conide consists in the deep notch which, in Ity, is probably, as in the existing doge, the tenth, and at this point the thoracic vertebra undergo an abrupt change of character, aswming more the appearance of lumbars. In Cimis the spine of the tenth thoracic is exceedingly small and much lower than those of the ninth and eleventh, but in Daphemus, on the other hand, the spine is much better developed, both in length and thickness; the postzygapophyses are small, somewhat convex and placed high up upon the neural arch, presenting outward. The (?) eleventh thoracic is not preserved in any of the specimens. The (:) twelfth and thirteenth are much like lumbars, except for the smaller and lower spines, thickened at the distal end, and for the entire absence of transwerse processes, which in Canis are present, though very short, eren on the thirteenth; the anapophyses are remarkably long and stout, being much hearier and more prominent than in the recent dogs, and high, massive metapophyes rise ahove the pregrgapophyses.

The lumber cortebre (Pl. XIX, Fig. 8) were probably seven in number, though not more than six have been found in connection with any one specimen. These rertebre are remarkable for their relatively great size and massiveness, and for the length of all their processes, being in these respects feline, rather than canine in character and appearance. Assming that seren is the full number, the missing one will then be the third, and the following lescription is made upon that assumption. The centra increase in length posterionty, reaching a maximum in the fifth and sixth, but the seventh is no longer than the first, though much broader and heavier. Compared with those of Camis, these entra are longer, stouter, less depressed and more rounded. The transverse proceses are longer and hearier than in Comis and less so than in the large species of Felis. The neumal apes are likewise intermediate in character between those of the recent dogs and of the larger felines; they we much higher, more extended antero-posteriorly, more thickened at the distal end and morestecply inclined forward, than in the former. In I). felims: especially, the great height of these spines is very striking and the resemblance
of the lumbar vertebse (t) thone of the contemporary Machairedom Dimetio is repre great. Another similarity in the structure of the lumbar vertebre betwen Daphemes and the felines comsists in the great height and heaviness of the metapophyen, whieh are much better developed than in the recent Cemider; on the last lambar the pe processens become very much reduced and are, in fade almost rudimentary. The anapophyses are smaller than on the thoracie vertebre and diminish in size on each suecessive vertehat posteriorly ; only on the first and second are they very large and prominent. In the existing representatives of the Coniche these processes are rudimentary, except on the first lumbar, where they are small. This constitutes another point of resemblance between Dopleteres and the cats, and emphasizes the statement abrearly made, that the posterior thoracic and lumbar vertebre of this Oligocene dog, for as such it must be regarded, are decidedy more feline than canine in apparance, using those terms only with reference to their modern application.

The succom (Pl. XX, Fig, 14) consists of three vertebree, and, in correppondence with the great development of the tail, it resembles that of the larger cats in many respects. Only the first sacral vertebra hats any contact with the ilium and bears massive plemapophyses. The centra are much larger and heavier than in the motern dogs and the postaygapophyes much more prominent. The rescmblance between the sacrum of Dephemes and that of the large cats is not very close, and the following differences may be noted: (1) the neural spines are much lower and weaker; (2) the neural canal is smaller ; (3) the transverse processes of the second, and execially of the third vertebra, are decidedy shorter, so that the posterior portion of the sacrum appears much narrower. From the sacrum of the recent dogs that of Detphenus differs particularly in its greater proportionate length and massivencss.

Comelel Vertebre (Pl. XIX, Figs. 9, 10).-In none of the specimens of the collection is the tail completely preserved, the largest number of vertebree fomed being thirteen of one individual and eleven of another, but enowg remains to satisfactorily demonstrate its character. The tail is remarkably long and stout and is, in fact, almost asell developed as in the leopard or tiger, and, consequently, is much longer and thicker than in any of the existing Comidu.

The first caudal vertebra is quite like that of the lion, hut is relatively lighter and more slender in all its parts, and has a short hut distinet nemal spine; the zegapophyse are very prominent, and even the motapophyse are distinctly thown the transerse processes are very long, hut are not so brod proportionately an in the liom, and are quite strongly recurved. Posterionly the catulal vertehre beoome sucessively more and more slender and elongate, while all of the processes are gradually reduced in size. The middle region of the tail is made up of extramdinarily elongate vertemex,

Which are very much like the eorexpmoting candals of the long-tailed cats, but are decidedty longer and more idender proportionately. Near the tip of the tail the vertebre become rery small.

The pits are represented only hy fragments, which, so far as they are preserved, do nut differ materially from those of the modern Canide. From the character of the postorion thomeic vertehre, it may be inferred that the eleventh, twelfth and thirteenth pairs of ribs did not poseses tubercles.

Of the sternm rery little is preserved. One segment of the mesosternum is associated with the type precimen of D. felinus; it has much the same shape as in modern dogs, but is somewhat thicker transversely and shallower vertically, in proportion to its length. Another segment ateompanies aspecimen of D. vetus (No. 11424) and is much wider and more depressed than in any of the existing fissipedes, exeept certan hyanas. As the association of this weathered fragment with the skeleton of Dopleemes may be areidental, no great stress can be laid mpon it.

Mersuruements.

IV. The Fore Limbs.

(Of the sorfpule no part hats yot been recovered.
'lhe humerus (1'S. XX, Fig. 15) diflers in several important reperets from that of the recent (ienider. Unfortunately, in all of the sperimens the proximal end of the bone is broken away, so that nothing can be determined with rearad to the head, tuberosities, or bicipital groove. The shaft is rather short and stout, and is arehed strongly forward, though less so than in Chmis; the deltoid ridge descends low upon the shaft and is very prominent, much more so than in the existing cunines or felmes, though it does not attain the exaggerated derelopment seen in the early Machairodonts, such as Dimichis and Hoplophomens. The distal end of the humerus is remarkably cat-like in appearance, and does not suggest any relationship with the modern (Gmidre. The supimator ridge is very prominent and extends far up upon the shaft, while in Comis this ridge is almost obsolete. The intemal epicondyle is very muth larger, more rugose and more prominent than in the modern genus, quite as much so, indeed, as in the cats, and there is a large entepicondylar foramen, bridged over hy a stout, straight bar of bone. 'The anconeal fossa is lower, broader, shallower, and altogether more cat-like than in Camis, and does not perforate the shaft to form a supratrochlear foramen. 'The humeral trochlea is extremely low, its vertical diameter being conspicuously less than in Cumis and less even than in Felis, resembling in this respect the humerus of the sabre-tooth Moplophomens. The shape of the trochlea is of feline appearance, having a simply convex surface for the capitellum of the radins, and no such distinctly marked intereondylar ridge or convexity as is found in the recent C'mide. The internal border of the trochlea is prolonged downward into a large flange.

The ratius (Pl. XX, Fig. 16) is also singularly cat-like in struoture and in all its parts is much more feline than canine. The proximal end bears an oral and somewhat concave capitellum, for articulation with the humerus; its transverse diameter only slightly exceeds the antero-posterior dimension. The anterion noteh of the hameral surface is somewhat more deeply incised than in frelis, but not more so than in /Ioplophoneus, which has an entirely similar capitellum. 'The articular facet for the ulua surrounds more than half the circomference of the head of the radius, which is in remarkable contrast to the small size of this facet in (amis. 'The shape amd move of articulation of the bones which enter into the formation of the ellow-joint whow that Daphermes possessed unimpaired powers of pronation and supination of the manns. In the existing members of the C'midre, on the contrary, this power is lost, the head of the radius being so much expanded tramsversely, as to oeroppy nearly the whole width of the humeral trochlea, and interlocking with it in such a way as to allow only the movements of thexion and extension.
A. P. S.-VOL. XIX. .2 I:

The shaft of the radins in Duplepmus is slender and has a similar shape to that which we find in the cats, although it is not somuch expanded distally; it is thus very difterent from the broad, antero-posterionly compressed and almost uniform radial shaft of the morlern dogs. The distal portion of the radius is likewise very feline in appearance, but is rather lighter and narrower in proportion to the length of the bone; it is convex anteriorly and quite deeply concave posteriorly, with well-marked sulci for the extensor tendons upon the dorsal face. The distal facet for the ulna is small and of subcircular shape and forms quite a projection upon the uhar side; upon the inner side of the distal end is a tubercle, which is even more rugose and prominent than in Felis, and more distinctly set off from the carpal surface. This carpal facet has a shape like that seen in the cats, and is more concave transversely and narrower in the dorso-palmar diameter than in the existing forms of Canide, and its internal border is more prolonged distally into a downward projecting flange.

Had this radius been found isolated, one would hardly have hesitated to refer it to one of the Macharodont genera, so completely does it differ from the radins of the modern dogs. Fortunately, there is no room for scepticism regarding the reference of this bone to Daphumus, for several of the specimens, representing different species, have radii of the same type. In this connection, it may be of interest to note that the Eocene creodont genus, Hiacis, which has a remarkably canine type of dentition, has a very cat-like form of radius.

The ulnu is hardly less characteristically feline than the radius. In marked contrast to the creodonts, which have a very long olecranon, that of Dophemus is rather short; its antero-posterior diameter is proportionately less than in Felis, or even than in ('tuis, and its postero-superior angle is thickened and rugose, though somewhat less so than in either of the modern genera mentioned, which gives its proximal border a straighter contour tham in them. The tendinal sulcus is wider and deeper than in the recent dogs, less so than in the cats. The sigmoid notch is deeply incised, but describes a paraholic curve rather than a semicircle ; the proximal humeral facet is relatively much wider than in Comis, and is continuous with the broad distal internal facet, which is likewise broader than in the existing dogs and is shaped much as in the cats, while the external distal facet is nearly or quite obsolete. The radial facet is large, quite deeply concave, and contimuns or single, while in C'mis it is much smaller and is divided by a sulens inter two portions.

The shaft of the ulna is stout and, in the proximal portion, laterally compressed, tapering toward the distal end, where it hecomes trihedral in section. In shape this Shaft is rery much like that of the cats and differs entirely from the ulnar shaft of the recent (imnide, which has become very much more slender, reduced and styliform, a
change which is obvionsly correlated with the increased size of the rathes. The distal end of the uha in Daphenus is narow and carries a continuous comvex artionlar surface, which is not divided into separate facets for the pisiform and pyramidal. The distal radial facet is raised upon a prominent projection, another point of resemblance to the cats and of difference from the existing representatives of the Cheide.

Mersisurements.

	No. 11424.	No. 11425.
Jumerus, width of distal ent		0.0 .50 10:3:
Lialins, ant-post. diameter of head		. 0117
" transrerse " * "		. $0 \cdot 1$
" breadth of distal mel.	. $0: 2.2$)	
" ${ }^{\text {" }}$ " carpal facert..	. 011	
Ulua, " " distal end...	.01:3	
." ." carpal facet.....	. 000	

V. The Manus.

Of the corpus the only element preserved is a single scapho-hinar of I). Whens, interesting as showing that the coalescence of these elements had already taken place. This bone differs in a marked way from that of both recent canines and felises, but resembles the scapho-lunar of the White River sabre-tooth, Hoplophoneus. It is broad transversely and thick in the dorso-palmar diameter, but rery low proximo-distally, even more so than in Canis; the tuberele at the postero-internal angle of the bone is well marked, but smaller than in the felines or modern dogs. The radial facet is simply convex in both directions, not having the postero-internal saddle-shaped extension which oecurs in the recent dogs. This radial facet is reflected far over upon the dorsal and internal surfaces of the bone, converting the inner side into a thin edge, formed by the junction of the radial and trapezial facets.

On the distal end of the scapho-lunar are three plainly distinguished facets, for the unciform, magnum and trapezoid respectively. The very deeply excavated unciform surface reduces the uhar side of the scapho-lunar to an edge, not very much thicker than the radial border, and hence there is no well-defined facet for the pyramidal, such as occurs in Canis. The shape and proportions of the unciform and magnum surfaces are very much as in the latter genus, but that for the trapezoid is not demarcated from that for the trapezium, though there can be little doubt that the latter element articulated with the scaphoid, as it certainly does both in Cymodictis and in Cimis. The general
shape of the scapho-lunar, recalling that which we find among the mustelines, strongly suggesto that Depluemus had a plantigrade or, at least, a semplantigrade gait.
 hancee to those of the recent Cimide. Schlower ('88, p. 24) has pointed out the essential characteristios of the metacarpus among the modern forms, and it will be well to quote his description, in order to make clear how widely Dophomus departs from the arragement which has been attaned by the later representatives of the family.
"Die Metapodien haben sich auffallend gestreckt und sind zugleich kantig grworden. Sie zeigen nahezu quadratischen Querschnitt, in Folge ihres gegenseitigen Druckes; sie liegen einander nämlich mgemein dicht an. . . . Die distalen Gelenkflärhen habem das Ausehen von sehr kurzen Walzen und sind beiderseits seharf alogestutzt. Les laisst sich eine freilich sehr entfernte Achnlichkeit mit dem Fusse von Hufthicren, namentlich vom Schweine-nicht verkennen. . . . Die Anordnung der Carpalien ist seheinhar primitiver als bei den übrigen Raubthieren, wenigstens als dieselben unter einander und mit den Metacarpalien nur reihenweise artikuliren, statt wechselseitig in einander zu greifen. Auch hat nur das Scapholunare eine etwas beträchtlichere Grësse erveicht, Magnum sowie Trapezoid und Trapezium bleiben sehr kurz und enden sowohl oben als auch onten simmotlich in einer Ebene. Demzufolge liegen auch die proximalen Facetten der Metacarpalien so ziemlich in einer einzigen Ebene."

This description of the structure of the manus in the recent Comide does not at all apply to Daphemus. In this genus the metacarpals are remarkably short and quite slender; they are not very closely approximated, but diverge somewhat toward the distal end, and hence they have not acipuired the quadrate shape which Schlosser mentions as so chatacteristic of the modern dogs. The general appearance and character of the metacarpals, and their mode of articulation with each other and with the carpals are very much as in the wolverine (Culo).

The first metacorpul, even of the large D. felimus, is actually not much longer than that of the coyote (C. lutruns), but is much longer in proportion to the other metacarpals, as well as much stouter and in every way better developed. The proximal end is thickened both transversely and antero-posteriorly, and bears a large facet for the trapezium, which must have been a relatively large bone; this facet is convex in the dorsopahmar direction and is very slightly concave transversely, while in Canis it is deeply concave in this direction. In . D. wetes the articular surface for the trapezium is more whifue and inclined toward the radial side than in D. felimes. There is no other welldetined facet for any carpal but the trapezium, nor for me. ii. The shaft is shont, slender, of oval or subcireular section, and arched toward the dorsal side.

The distal end is large and hats at well-developed trochlea, which is much more strongly convex than in Cronis and of a different shape, the modern genus having here a trochlea which is more like that of a phatanx than of a typical metacapal. In Dophemens, but not in Cenis, there is a welledefined palmar carina, and the lateral proeesese for ligamentous attachment are more prominent than in the recent type.

The second metucterpal is much longer and stouter than the first, though very short with reference to the size of the animal and to the length of the other semments of the fore limb. The proximal end is not moch expanded transversely, but has a great dorsupalmar extension, the head projecting much farther behind the plane of the shaft than in Camis. The facet for the trapozoid is less concave tramsversely than in the modern gems. and is of more uniform width, narrowing less toward the palmar side; the ulnar borter rises more above the head of me. iii and has a more extensive contact with the magnom. Though larger than in the reeent Cemelle, this contact with the magnum is much smaller than in existing felines, and is of about the same proportions as in the early sabre-tooth, Hoplophonces. The combined facets for the magnum and for me. iii form a broad, curved band upon the ulnar side of the head, which is made slightly concave to receive the adjoining metacarpal. No distinctly marked face for the trapezim is visible upon the radial side. The shaft is short, weak, of transversely oval section, and is arched toward the dorsal side. The distal end is expanded, and made broad by the large, rugose processes for the attachment of the lateral metacarpo-phalangeal ligaments, proceses which are much better developed than in Camis. The distal trochlea is of a quite different shape from that seen in the modern genus, being narrower, higher and of more nearly pherical outline, and is demareated from the shaft by a decp depression, such as does not oceur in the existing members of the Cimide. The patmar carina is prominent and thins to a narrow edge.

The third metuctopal is incomplete in the only manus foum in the collection (D. felimen, No. 1142.5, Pl. XX, Fig. 17) as it lates the distal end. The protion preserved is, however, as long as the whole of me. ii and the complete hone was evidently considerably longer. The shape of the proximal end is much as in Ganis, exept for the relatively greater dorso-palmar diameter. The magnum face is narrow, hat deep, somewhat concave transersely and strongly convex antero-posteriorly, but less so than in existing dogs. The facet on the radial side for me ii is larger, more ohligue and more prominent, and is more extensively oxerlapped by me. ii than in the latter, and the surface for me. iv, while not so deply conceave, is larger. When the thired and fourth metacarpals are placed together in their natural positions, it is seen that the former rives higher proximally than the latter and has a contact with the radial side of the unciform, which, though narrow, is larger than in Cemis. The shaft is somewhat mone semer than
that of me, ii and is of a more yuadrate seetion, the dorsal and lateral surfaces forming distinct angles.

The fouth metuctrpul has a narrow, hut deep head, which projects prominently behind the plane of the shaft ; the facet for the unciform is slightly concave in the thanserse and strongly convex in the dorso-palmar direction. Compared with the corresponding bone of Comis, the following differences in the shape of the facets for the arljoining metacarpals may be observed. The surface for me. iii is, as in the recent animak, divided into dorsal and palmar portions, but they are not completely separated; the dorsal moiety is much larger, but not nearly so prominent, and the palmar portion is much smaller. The facet for me. v is of about the same shape in both genera. The shaft is slender and nearly straight, but slightly arched toward the dorsal side; though relatively short, it considerably exceeds me. ii in length. The prominence of the lateral ligamentons processes gives great proportionate breadth to the distal end. The trochlea is like that of me. ii, except for its greater size and presents the same difterences from the modern type.

The fifth metucenpal has been lost from the specimen.
The phathoges are very remarkable, but can be most conveniently deseribed in connection with the pes, with which the most complete specimens are associated.

Measurements.

	No. 11424.	o. 11425.
	- . -	
Sapho-lumar, levalth	0.015	
" ${ }^{\text {a }}$ chepth dorms palmart.	. 011	
Metauarual i , kenuth.	. 023	. 026
s6 breadth of proximal end.	. 007	. 009
"6 " distal end.	. 006	
" ${ }^{\text {c }}$ distal trexhleah.	. 1045	
Metaraturl ii, length..		. 0395
.. " heradth of proximal end.		. 009
" 60 " distal end.		.012
" " 0 " trochlea		. 009
Metacarpal iii, breatth of proximal end.		.0105
Mata*apal is, lengeh		. 050
. 60 breadth of proximal end.		. 0095
" - . distal end		. 012
" " " " trochlen.		. 010

Vi. The Hind Limb.
 and D. felines, all of them incomplete, but so supplementing one another, that the shape of the os imominatum may be determined, with the exception of the anterion border of the ilimm, which is unfortunately missing from all the individuals.

So far as it is preserved, the pelvis is rather feline than canine in character, both in its gencral outlines and in its details of structure. The neck or pedtuncle of the ilium is wider and shorter tham in Cemis, narrower than in Felis; the anterior plate expands to its full width somewhat more abruptly than in the latter, but enough of the broken fossils remains to show that the iliac plate has the narrow form which is found in the cats and does not expand so much at the free end as in the modern dogs. The gluteal surface is not simply concave, as it is in the two recent genera mentioned, but is divided into two unequal fosste by a prominent longitudinal ridge, such an oceus, though not so prominently developed, in certain viverrines. This feature is repeated in another White River dog, Cynodichis, and is almost duplicated in the contemporary sabre-tooth, Dinetir, another of the many correspondences between Dophemus and the carly Machairodonts. The sacral surface is placed much less in advance of the acetabulum than in (honis, and occupies about the same relative position as in the cats. The ischial border of the ilium is, for most of its length, nearly straight and parallel to the acetabular border, but descends more abruptly tham in either the recent dogs or cats, and follows a course more like that seen in Viveru. As in Canis, the acethoular border is more distinctly defmed tham in the true felines, and ends near the acetabulum in a long, roughened prominence, the anterior inferior spine. The pubie border is rery short, and hence the iliae surface is not well defined. The acetabulum is of moderate size and has somewhat more elevated borders than in the cats.

The ischium, which in the existing Cenide is much shorter tham the ilium, in very elongate, and is proportionately even longer than in the felines. The anterior portion of this element is straight, rather slender, and of obscurely trihedral section; behind the acetabulum the dorsal border is arched upward into a convexity, the spine of the ischium, terminated abruptly behind by the ischiadie noteh, which is as conspicuous at in the eate, while in Canis it is very faintly marked. The posterior part of the ischimm is expanded into a broad and massive plate, which is rery rugese upon the extemal surface. 'This posterior portion is not so strongly everted and depressed as in the modern dogs, and there is no such stout and prominent tuberosity, which, again, constitutes a resemblance to the cat.

The probis is L-shaped and its anterior, deseending limb is unusually long, broat and thin, much more so than in the felines or modern dogs. The obturator foramen is
very large, forming an oval, with its long axis directed antero-posteriorly, in shape and size agrexing much more closely with the condition found in the cats than with that of the reerent dogns.

The fomer (Pl. XX, Fig. 18) is stont, and long in proportion to the length of the fore-limblones, but mot very long as compared with the size of the ammal. While not dithering in any very marked fathon from the thigh-bone of Canis, it yet has some resemblanese to that of the felines. The small, hemispherical head is set upon a longer neck than in recent dogs and has a smaller, deeper and more circular pit for the round ligament, than in the latter. As in Cheis, the head projects more obliquely upward and less directly inward than in Felis. The great trochanter is large and has a very rugose surface, but it has no such antero-posterior extension, does not rise so high and is not so pointed as in the existing forms of Cemide. In consequence of this shape of the great trochanter, the digital fowa is smaller and much shallower than in the cats or recent dogs. From the great trochanter a sharp and prominent ridge, the linea aspera externa, descends along the external border of the shaft. Whether a third trochanter was present camot yet be definitely determined, because in the only two femora preserved in the collection, the outer edge of the shaft is broken away at the point where the third trochanter would be, if present. In all probability, however, Daphemus did possess this trochanter, at least, in rudimentary form, as may be inferred from the analogy of the sabre-tooth Dimictis, and still more from the little contemporary dog, Cynodictis, which in many respects approximates the structure of the modern Cander more closely than does Dophemus. The lesser or second trochanter is larger, more prominent, and of more decidedly conical shape than in the recent species of either Camis or Felis.

The shaft of the femur is long, slender and nearly straight, though slightly arched toward the dorsal or anterior side; it differs from that of the modern dogs in its lesser curvature, and in broadening and thickening more gradually toward the distal end, and from that of the true cats in heing more slender and of more nearly cylindrical shape: The rotular trochlea is rather narrower transversely than in the true cats, or even than in Dinictis, hat is characterized by the same shallowness, and resembles that of the latter genus in its shortness rertically and lack of prominence. Transversely, the grove is but slightly comeave, and it has much less prominent borders than in the existing pecies of Conis; these borders are slightly asymmetrical, the external one rising a little higher and being a trifle more prominent than the internal. A decided difference from both Cunis and Felis consists in the fact that the trochlea hardly projects at all in from of the plane of the shaft, the anterior face of the latter gradually swelling (1) the hevel of the groove. In both of the recent genera mentioned, and especially in the (anines, the trochlea projects prominently in adrance of the shaft.

The femoral condyles are feline rather than canine in shape; they are small and of nearly equal size, though the outer one is slightly the larger of the two, and project much less strongly behind the plane of the shaft than in Comis. They are also less widely separated and less expanded transversely than in the latter genus. As in so many features of the limb bones, the whole distal end of the femur is more like that of Dinictis than it is like the corresponding part of the modern dogs or cats. In Dinictis, however, the rotular groove is shorter proximo-distally and broader, and the condyles are even less prominent.

The patella is very different from that of the recent Camide, in which group this bone is small, narrow and thick, but has more resemblance to that of Dinichis. It is quite broad, but very thin in the antero-posterior dimension; the anterior face is more roughened than in the Machairodont genus and the proximal end is more pointed, not so abruptly truncated. The facet for the rotular trochlea of the femur is, in correspondence with the shallowness of that groove, but slightly convex transersely and slightly concave proximo-distally.

The tibia (Pl. XX, Figs. 19, 20) is relatively short and slender, and bears considerable resemblance to that of Dinictis, more than to that of Canis. The proximal facets for the femoral condyles are small and but little concave; the outer facet is somewhat larger than the inner, and projects farther beyond the line of the shaft, both poteriorly and laterally. On the distal side of the overhanging shelf thus formed is a facet for the head of the fibula, which is much larger than in the recent dogs and more rounded in shape than in Dinictis. The spine of the tibia is very low and is more distinctly bifid than in the Machairodont genus, though much less so than in Canis. As in the former, the enemial crest is not very strongly developed; it is far less prominent than in the existing Canide and does not descend so far upon the shaft as in them.

The tibial shaft is slender and nearly straight, not displaying the lateral and anteroposterior curvatures seen in Canis; proximally the shaft is of trihedral section, becoming approximately cylindrical below and transversely oval at the distal end. 'The latter is shaped much as in Dimictis and is conspicuonsly different from that of Chem; the astragalar facets are less deeply incised, and the intercondylar ridge is less elevated than in the latter, but the facets are deeper and the ridge higher than in the Machairodont, in correlation with the deeper grooving of the astragalus. The large transvere sulcus, which in the recent dogs invades these astragalar facets, is not shown in Daphemus. The internal malleolus is very large and resembles that of Dinctis, save that its posterior border is more inclined and the process is thus distally somewhat narrower. The sukns for the posterior tibial tendon is very distinctly marked, more so than in Chens. The

[^20]distal fibular facet is quite large, being moth as in Dinictis and consequently much larger than in the recent Chnide.

The fibuln (Pl. XX, Figs. 19, $2(0)$, which is greatly reduced in the modern dogs, is in Depphemus much stouter and has heavier ends, both proximal and distal. In Camis these ends have the appearance of being reduced and simplified from the condition seen in the White River genus. In the latter the proximal end of the fibula is relatively very large, especially in the fore-and-aft dimension, in which it considerably exceeds that of Dinictis, thongh the excess is principally due to a large tuberosity which projects from the hinder border, and which is present, though much less prominent, in the Machairodont. The facet for the head of the tibia is longer antero-posteriorly and narrower transersely than in the latter, forming a long, narrow, irregular oval. The shaft of the fibula is slender, though very much thicker both actually and proportionately than in Camis, and has about the same proportions as in Dinctis; it is laterally compressed, the principal diameter being the antero-posterior one, and of oval section, though its size and shape vary from point to point in an irregular fashion.

The distal end of the fibula resembles that of Dinictis, though it is somewhat smaller, in proportion to the length of the bone. The enlargement is both antero-posterior and transverse and gives rise to a very stont outer malleolus, at the postero-external angle of which is a deep sulcus for the peroncal tendons. The distal tibial facet is rather larger than that of Dinictis, while the surface for the astragalus is somewhat smaller, the two together making a high narrow band.

Mersurements.

VII. The Pes (Pl. XX, Figs. 21, 21a, 22).

The pes, which displays structures of the highest interest, is much better represented in the collection than the manus and may be more adequately described. As a pre-
liminary, it will be useful to cite Schlossers account of the salient characteristices of the hind foot among the recent Comide.
" Die Anordnung der Tarsalien und Metatarsalien weicht natülich weniger ab von jener der übrigen Garnivoren als, jene der Carpalien und Metacarpalien, doch finden wir auch hier immerhim einige nicht unwesentliche Modificationen. Es hat sich das Naviculare ziemlich beträchtlich verschmälert, so dass es nicht mehr die Aussenseite der unteren Astragalus-Partie umhüllen kann. Das Metatarsale II, das sonst nur von zwei Punkten mit dem Mt. III in Beriührung kommt, legt sich hier seiner ganzen Breite nach an das Oberende desselben. In Folge der Verkürzung des Tarsus ist auch der aufeteigende Fortsatz des Mt. V sehr kurz geworden. Die Phalangen haben gleich den Metapodien nahezu quadratischen Querschnitt, die Krallen sind sehr pitz, aber wenig gebogen, haben jedoch ziemlich bedeutende Linge. Die Hunde sind die ausgesprochensten Zehengänger unter allen Carnivoren" ('88, p. 22).

In Daphemus the astragulus is decidedly different both from the astragalus of Dinictis and from that of Cimis, but approximates more the latter. The trochlea is low and but moderately grooved, decidedly more than in Dinictis, but less than in the modern dogs, and the articular surface does not descend so far upon the neck as in the latter. The trochlea is asymmetrical, the outer condyle considerably exceeding the imner in size. The neck of the astragalus is much longer than in Hoplophonens, Dinictis, or eren than in Camis, and is directed more strongly toward the tibial side of the foot; the head is depressed, but very convex. The external calcancal facet is hardly so large or so oblique in position as in Dinictis, but it is more like the facet seen in that genus tham like the facet of Camis. The sustentacular facet is shorter and wider than in the latter, and the sulcus separating it from the external facet is very much shallower. In Dinictis the sustentacular facet has a posterior concave prolongation, such as is not found in Daphemus, nor does the latter possess the distal aceessory face for the calcanemm which is so distinctly shown in Cemis. The navicular facet is depressed, but very convex, and there is a small facet for the cuboid.

The calcaneum is more like that of Dinictis than that of the recent dogs; though the fuber calcis is longer, thimer and more compressed than in cither of those groups, and its dorso-plantar diameter is more uniform, increasing less toward the distal end; its free end is less thickened and more deeply grooved by the sulcus for the Achilles tendon. Along the outer edge of the dorsal border is a quite deep and comspiconous growse, which occurs also in Dinetis, but not in Chems. The external astragalar face is very like that of the Macharodont, being more angulated and more obligue in position than in the modern dogs, presenting inward as much as dorsally. The sustentaculum also rexombles that of Dimictis in being less oblique, much more per minent and in having its facet much
more widely separated from the external astragalar facet than in Canis. In the latter genus oceurs a third astragalar facet, which is distal to the sustentaculum, and which is found in neither Dimictis nor Daphemus. The distal end of the calcaneum is occupied by the large cuboidal facet, which is more regularly oval in outline and much more deeply concave than in the existing forms of Comidu. In these forms we find a facet for the navicular, which adjoins and forms a right angle with the accessory astragalar surface already mentioned, but is not present in either of the White River genera. On the external side of the calcanem, near the distal end, is a prominent projection for ligamentous attachment. This process is not present in Canis, but it recurs in Dinictis, less markedly in Hoplophoneus, and is found in many of the recent viverrines, mustelines and raccoons.

The cuboid is not peculiar in any noteworthy way; it is longer proximo-distally than in Dinichis and is proportionately narrower and thinner (i.e., in the dorso-plantar (liameter). The long, thick and rugose ridge which on the fibular side of the bone overhangs the sulcus for the peroneal tendons is more prominent, especially on the plantar face, than in the Machairodont, but lacks the great, rugose plantar protuberance, which occurs in the recent Canide. The facet for the calcaneum is more convex than in Dinictis, very much more so than in Canis, in which this surface is almost plane. On the tibial face of the cuboid are three facets, a narrow proximal one for the navicular, and a median and minute distal facet for the ectocuneiform. The facet for the head of the fourth metatarsal is very much more concave than in the modern dogs, while that for $\mathrm{mt} . \mathrm{v}$ is smaller than in the recent forms, and lateral rather than distal in position.

The navicular, as compared with that of Canis, is short proximo-distally, but broad transversely, not having undergone the reduction in width which Schlosser mentions as characteristic of the recent members of the family. The astragalar facet is not more concave than in the latter, and there is no such stout tubercle on the plantar side of the bone as occur's in them. Two very small facets articulate with the cuboid, one near the dorsal and the other near the plantar border of the fibular side. The distal facets for the three cunciforms have nearly the same shape and proportionate size as in Canis, but they are more in the same transverse line, the surface for the entocuneiform being less displaced toward the plantar side.

The entocumeiform is of similar shape, but relatively better developed than in Canis, as would naturally be expected from the presence of a complete hallux in Daphemus. The bone is long proximo-distally, thick antero-posteriorly, and narrow, though broader than in Canis, and its proximal and distal facets, for the navicular and first metatarsal reapectively, are relatively larger and more concave. The only other facet is an obscurely marked one on the tibial side for the mesocuneiform.

The mesocmeiform is a very small, wedge-shaped bone, brodest dorsally and thinning to an edge on the plantar side. The navicular facet is concave and rery different from the curious oblique surface which we find in Dimichis. As is well-nigh universal among the Carnisora, the proximo-distal diameter of this bone is much less than that of either of the two adjoining cuneiforms, an arrangement which allows the heal of the fourth metatarsal to rise above the level of the first and third.

The ectocuneiform is, as usual, much the largest of the three, though it is not so large proportionately as in Dinichis. The shape of this element is very much as we find it in Comis, but with certain minor differences. Thus, the proximal end is less extended in the dorso-plantar diameter, and the navicular facet is more concave; the plantar tubercle has a more constricted neck and enlarged, rugose head; the facets on the tibial side for the mesocuneiform and second metatarsal, and on the fibular side the inferior facet for the cuboid are more distinctly developed, while the distal facet for mt. iii is more concave and has a shorter plantar prolongation.

As a whole, the character of the tarsus is rather more machairodont, or viverrine than canine. A conspicuons difference from the tarsus of the modern Chenitre is to be seen in the fact, that the articulations which in the latter are nearly plane (e. g., the cubo-calcaneal) in Daphemus retain their more primitive concavo-convexity.

The metatarsus consists of five members, which are longer and relatively more slender than the metacarpals, though an exact comparison between the two camot yet be made, because the collection contains no specimens in which both metacarpals and metatarsals are represented by ansthing more than fragments.

The first metatarsal is considerably longer and stouter than the correponding metacarpal. In this case we can determine the true proportions, for of the species to which the finely preserved hind foot (Pl . XX, Fig. 21) belongs, D. hutishominnus, we also possess a pollex, though associated with a different specimen. The almost exactly similar skulls of the two individuals show that the ammals were of approximately equal size. The head of mot i is enlarged in both the transerse and doran-plantar diameters, and bears a roughened tubercle upon the plantar side. The proximal ficent, fior the entocunciform, is large, and strongly convex antero-pateriorly, nearly plane transervely; mo other facet are visible on the proximal end. The shaft is slonder and arched toward the dorsal side; in section it is transersely oval, expanding somewhat at the distal end, where the breadth is increased by the prominent tubereles for the lateral ligaments. The distal trochlea is small, but well developed, and of irregularly sheroidal shape, with phantar carina. The first metatarsal of Dinictis is like that of Dophumus, and certain viserrines, such as Conogrele, also have a hatlux of much the same proportions, but in all the recent Chenide, with the exception of certain domexticated breeds, mot. i is reduced to a nodule.

The seremed melalersalal is much longer and stouter than the first, but it is much Shorter and weaker than mo ii in Comis, and rather resembles that of the viverrine genus 'Smonte, though it does not have the peculiar shape of the proximal end which characterizes that genus. In Dinietis mot. ii is somewhat heavier than in Daphemus, but is otherwise similar. In the latter the proximal end of mot. ii rises considerably above the level of mot. i and iii, owing to the shortness, proximo-distally, of the mesocuneiform, and is firmly wedged in between the ento-and ectoctneiforms, an arrangement common to all families of the fissipedes and already general among the creodonts. On the fibular side is a wedge-shaped projection which is received into a corresponding depression on mt. iii, thus making a very firm and close comection between the two bones. Above this projection are two facets for the tibial side of the ectocuneiform, one near the dorsal border and the other on the plantar projection. The shaft is straighter than in Canis, but is slightly arched dorsally, the distal end not curving toward the tibial side, as it does in the modern genus. In section the shaft is transversely oval, while in the recent dogs it has become trihedral for most of its length, owing to its close approximation to the shaft of mt . iii. The distal trochlea resembles that of Dinctis and differs from that of Canis in its more spheroidal and less cylindrical shape, and in its demarcation from the Whaft by a deep depression ; the lateral ligamentous processes are likewise more symmetrically developed.

The third metatarsal is much longer and stouter than the second, the difference between the two being greater than in Dimictis or the viverrines, or even than in Camis. The proximal end bears a facet for the ectocuneiform, of the usual shape, but the plantar prolongation of this facet is shorter and broader than in the last-named genus, and it rescmbles that of Dinictis in being oblique to the long axis of the bone, inclining decidedly toward the tibial side of the foot. The tibial side of this facet is deeply incised to receive the wedge-shaped prominence of mt. ii, an incision which does not appear in the recent dogs, but occurs, though somewhat less conspicuonsly, in Dinictis. On the fibular side are two facets for mt . iv; one near the dorsal border, which is a deep sherical pit, and the other at small, plane surface placed upon the plantar prolongation of the head. The shaft, when viewed from the front, appears quite straight, but when looked at from the side is seen to have a slight curvature toward the dorsal side. The distal end displays the same differenees from Cemis as do the other metatarsals.

The fouth metatursal forms a symmetrical pair with the third, very much as it does in the recent dogs and cats, though in Dophenus they are relatively shorter and weaker. In C'inis these two metatarsals are closely presed together for most of their length, and their shafts have thus acquired a more or less trihedral section, with the approximate surfaces flattened, while the distal ends curve away from each other, somewhat as in

Pochoolherium. In Deqperemes it is only the proximal portions of the two shatts which are thus closely pressed together ; for the greater part of their lengeth they are not in contact, and thas preserve the primitive oval section. As their divergence is due to the relative positions of the tarsal bones, there is no necesity for the lateral curvature of the distal ends. The two metatarsals are very closely interlocked and in much the same fashion as in Cemis. On the head of mins. is are two facets for mot. iii, of which the dorsal one is a stout hemispherical prominence, which is received into the pit on the head of mt. iii, already deseribed. The plantar face is actually upon the plantar rather than on the tibial face of the bone; the prolongation from the head of mot. iii extends around and embraces this facet, and by means of the double articulation a very firm interlocking of the two bones is effected. On the fibular side of mt . is is a large and deep depression which receives the projection from m. v. The facet for the head of the latter is large, slighty concave, and contimes without interruption from the dorsal to the plantar border, while in Camis there are two distinct and quite widely separated facets. The shaft resembles that of mt. iii, but is somewhat more slender. In both of these metatarsals the distal carima is placed symmetrically with reference to the trochlea, hut is lesis compressed and prominent than in C'unis.

The fifth metatarabl is not completely preserved in any of the specimens, the only representative of it being the proximal end, belonging to a large individual of D. vetus (No. 11423). As the specimen is incomplete, nothing can be determined respecting its length, but probably this was equivalent to that of mo ii, the two forming a symmetrical pair, much as in Dinictis, though mt. re, so far as it is preserved, seems to be somewhat the stouter of the two. On the fibular side of the head is a very prominent projection, ending in a roughened thickening, and directed obliquely outward and upward, the "ascending process" (anfsteigender Fortsatz) of which Schlosser speaks in the passage already quoted. In the recent dogs this process is very moch reduced, while in Dinictis it is of quite a different shape. In the Machairodont the process is a long and prominent ridge, extending along the whole dorso-plantar thickness of the head, and projects much more proximally than externally, while in Dophermes it is a blunt hook which projects more outward than upward. The Machairodont Hoplophomens has the process developed in very much the same way as in Daphemus.

The facet for the cuboid differs from that of (ímis in being quite concave transwersely and in presenting as much toward the tibial side as it does proximally, while in the modern genus the facet is small, plane, subcircular in outline and altogether proximal in position. On the tibial side is a rounded protuberance which fits into the pit on the head of mt. is; this protuberance is more prominent than in Cenis and decidedly more so than in Dinietis. What little of the shaft is presersed is tramsersely oval in section, with a

Shap ridge ruming down the fihular side, and is thas quite different from the trihedral wetiom, with flattened tibial side, which is found in Canis, and is much more like the corresponding motatarsal of Dinictis.

The parallel arrangement of the metatarsals which we observe in the modern Conidue is in Dophecnus replaced by a radiating arrangement, the bones diverging toward the distal end. This distal divergence is, howerer, less decided in the pes than in the manns.

The phatenges display a rery curions and surprising combination of characters. They are long, both actually and proportionately; compared with the tibia as a standard, they have about the same length as in the recent species of Camis, but they are decidedly longer than in that genus when compared with the length of the metatarsals.

A proximal phetums of one of the median digits is long and depressed, but quite strongly arched upward or dorsally. The metatarsal facet has quite a different shape from that seen in Ctmis, the transverse diameter being relatively greater and the dorsoplantar lesi. The facet is also somewhat more oblique to the long axis of the phalanx, presenting rather more dorsally and less entirely proximally; the notch for the metatarsal carina is less deeply incised. Similar differences are observable in the body of the bone; its hreadth being proportionately greater and its thickness less. The distal trochlea, which in Cenis deseribes a semicirele from the dorsal to the plantar surface, is in Duphemus much more restricted, projecting less prominently from the plantar side and not reflected so far upon the dorsal face. On the other hand, this trochlea is more deeply cleft in the median line than in the modern genus and the tubercles for the attachment of the phalangeal ligaments are larger.

In all the differences from the modern Canider which have been mentioned, we may observe resemblances to the corresponding phalanx of Dinictis, in which the bone is somewhat shorter and broader than that of Daphemus, and has rather more prominent ligamentons tubercles, but is otherwise very like it.

The proximal phalanges of the lateral digits differ from those of the median pair only in heing shorter, more slender and less symmetrical, and in having a lateral curvature which becomes very pronounced in the hallux.

The scoond phulunx is of about the same length, with reference to the first, as in Cunis, but is broader, more depressed, and more asymmetrical than in that genus. The proximal facet, for the first phalanx, is more distinctly divided into two depressions by a more prominent median ridge, and the beak-like process of the median dorsal border is much more promounced. The distal trochlea is reflected farther upon the dorsal side and projects more from that side, but extends less upon the plantar face; it is thas more convex in the dorsuphantar direction, but much less concave transversely than in Canis.

The asymmetry of this phatax is quite marked：its tibial side is straght，while the fibular border is quite concare，and the dorsal surface is hollowed，or cut away，near the distal end，allowing a retraction of the clares，to a limited extent，as may be radity seen when the second and third phalanges are put together．This asymmetry of the secoud phatax is much less conspicuons than in Dinictio，not to mention the motern felines， but it is，nevertheless，ummistakable and is certainly one of the most surprising features in the whole structure of Daphenus．

That an animal with the skull and dention of a primitive dog should prove to pos－ sces even imperfectly retractile claws is not what our previous knowledge of the early carnivores would have led us to expect．So mooked for was this character，that at first I was strongly inclined to believe that the association of the hind foot shown in I＇l．XX， Fig．21，with the skull of D．Indohomiomes was an accidental one，and that the pes must belong to some genus of felines or Machairodonts as yot mown．Fortunately，how－ ever，the eollection contains a number of other individuals with more or less well－pre－ served hind feet，and the agreement among them all is complets．Curionsly enough，the characteristic second phatanges are preserved only in connection with the specimen figured，but other specimens have parts of the tarsus，metatarsus，proximal and magual phatanges，and a comparison of them shows that the reference of this particular hind foot is not open to question．The fact that the pes and the skull were found enclosed in the same block of matrix corroborates this inference，though，of course，such a fact is not of itself entirely conclusive．

The unguel pheteme is hardly less peculiar than the second，being short，very much compressed laterally，and bluntly pointed；it is very little decurved and has a plainly marked groove on the plantar face near the distal end．The narrowness，compression and straightness of this claw are in very decided contrast to the heary and strongly decurved magual phalanges of the modem Comidre，though among the latter there is con－ siderable variation in these respects．The articular surface for the second phatanx is much more strongly concave than in Chenis，permitting a greater freedom of motion in this joint，as was necessary in order to provide for the retraction of the claw．The sub）－ ungual process is not so large as in the modern genus and does not project so promi－ nently upon the plantar face of the bone，but it is produced much farther proximally， extending beneath the distal end of the second phalanx，when the two are in their mat－ ural position．The long hood which envelopes the base of the claw is of about the same size and shape as in Cemis，though the space between this hood and the body of the ungual phatax is narrower．The ungual phatanx of Dimetix is shorter，more compressed， but deeper in the dorso－plantar diameter than in Driphemus，and has a decidedly larger subungual process，in correlation with the more complete retractility of the claws．The

[^21]few specimens of thes phatange which I have seon are without the bony hood aromed the base of the chaw, having mush the appearane of the mongals in the viverrine genus Comogele. It is prasible that the apmane absence of the hood may be due to the breaking away of that delicatestructure, hot this does not seem rery likely.

Wetasurements.

	No. 10.36.	No. 11421.	No. 11424.	No. 11423.	No. 11425.
Calcaneum, lengtl ...	0.015	0.0 .41		0.051	0.05 .5
." dorso-plantar diammer...................................	.016	. 01.5		.020	. 030
" length of tuber..	. $0: 10: 1$	193)		. $0: 10$.040
-6 estreme distat lmaulth....................................	. 017	. 017		.1032	.022
Astragalus, luength 108		(10:31	. 131
". proximal lmeath,..		. 1118		. 0.21	.029
" width of bead...		.011		. 1110	. 019
('utmid, lefight.		.11\%	.116		
" Width...		1111	.01:		
Navicular, wilth..		017		019	
Eetocumeiform, width010		. 110	
Metatamsal i, length.		. $0: 31$			
" brealth prox. end.......................................		. 0109		.010	
" * dist. ..		. 00%			
Metatarst ii, Ingrth...		. 011			
"r brauth prox. crul ..		.006		. 007	
" ${ }^{\text {a }}$ dist. ${ }^{\text {a }}$.009			
Metatarsal iii, length..		. 0.51			
"6 hreulth mox. 'mit.......................................		. 000		. 011	
" " dist. ". 1110.5			
Metatarst is, length ..		. 11.20			
. breatth pros. ntif.......................................		. 11016			
		. 010			
Metatarsal b, breath prox. chd 011	

The species of Dryphernus hitherto pecognized are three in number, two of them, D. whes Leidy and D. Kurtshomimus: (ope, from the White River stage, and the third, D. 'uspigerus (ope, from the dohn Iny. Two additional wecies are elescribed in the sequel, one of which, however, can be refermed only provisionally to the senus, until more complete material has heen ohtaincel, thongh the species in question is evidently very closely allied to Dotiphemes, if mot actually referable to it.

Dabhemis verus Leidy.

This seremes has a skull about equal to that of the coyote (Cimis latrans) in size,
but the vertebre are mach larger and the tail is longer and stouter. The tuberoular molars of both jaws are relatively larger than in the othersperis. 'The inferion sectorial has a low anterior bate, and the intemal curp of its tahn is reduced in size. 'The horizontal ramus of the mandible is long and slender and has a nearly straight inferior border. White River.

Daphents hatemomande Cope.

 Vertebrate, p. 896.

This species is somewhat smaller, and the tubereular molats of both jaws are proportionately smaller than in the preceding species; the anterior triangle of the lower sectorial is high and acute, and its talon is busin-shaped, with the internal (ensp as large as the external. The horizontal ramus of the mandible is straight and slender. Both this species and the preceding one have been foum in the middle division (Oreoden beds) of the White River formation, but not as yet, to my knowledge, in the lower (Titamotheriam beds) or the uppermost division (Protoceras heds).

Daphents cuspherus C'ope.

 Terres. Vol. vi, p. 17s; Tortiery Vertedurate, p. s:4s.
D. mespigeres is much the smallest known epeecies of the ermus. The sagital arest is very short and inconspicunus; the cranimm is faller and more rounded, the postorhital constriction is shallower and more anterior in position than in the White hiver pectes, and the mandibular ramus is nearly straight and very semete. The inferion secturat is very robust and has a low anterior triangle and hasin-shaped heed, John Day stage.

Daphester felinets, apons.
The inferior dental series of this species slightly exeenels in lemgth that of It. whes and the sectorial is larger. The lower tuberedar molars are inserted in the border of the ascending ramms of the mandible, and, judging from the alventi. wore reduced in size. The horizontal ramus is not much longer, hut much haviop than in I) rofus, and has at more simons ventral border, which rises more beneath the masecterice fosat. The limb
bons and vertelrae are somewhat larger and heavier than those of I. wetus, and the nenral spines of the lumbar vertehre are very high and incline strongly forward. In size I) folimus is the largest and most massive spectes of the genus. The type specimen romsists of a fragmentary skeleton (No. $11+2.5$) with which are associated both mandibular rami, and which was found hy Mr. Gidley in the Oreodon bets of Hat Creek Basin, Nel., in 1896.
? Daphenus Dodgei, sp. not.
As alrady intimated, the reference of this species to Daphemus cannot yet be definitely make, hut the material so far obtained, consisting of lower jaws, affords no sufficient gromd for separating it from that genms. The inferior dental series is relatively short; the premolars are much smaller, especially in the antero-posterior dimension, than those of the later species from the Oreodon beds, hut, at the same time, they are proportionately thick and heary. The lower sectorial has a low, massive anterior triangle and a basin-shaped talon, with the imel cusp much smaller than the outcr. The horizontal ramus of the mandible is short, but relatively much stouter than in any of the other species, and has a more sinuous rentral horder, which rises steeply toward the angle.

This species is dedicated to my friend, Mr. Clevelamd H. Dodge, of New York, whose liberality has made possible much of the work undertaken by the Princeton Musemm and to whose kindness I am under the greatest obligations.

The type specimen (No. 11420) was found by Mr. Gidley in the Titanotherium beds of the Hat Creek Basin.

Before proceeding to an examination of the next genus of White River Cemider, 'imodictis, it will be necessary to introduce a brief' deseription of a species which has been found in the Cintas stage of the uper Focene (or lower Oligocene) and which apparently represents the forermmer of Duphams, though more perfect specimens will be required before its position in the canine phylum can be definitely determined.

MLACIN Cope.

This form differs from Inaphome in the construction of the upper tubereular molar:. \[${ }^{1}$ has an exceedingly broad external cingulum, forming at the antero-external angle a bery large projection ; the internal umpaired cusp found in Deqhemus and in all subsequent genera of the Ctemide is athent in both m^{1} and m^{2}. The upper sectorial is of very primitive and undeveloped character in the shortness of the posterior cutting ridge and the great transverse breath of the crown.

Mamis utatersh Ostorm.
Bull. Am. Mhes. Net. Mish. N. I., Vol. vit, p. 77.
Size rather less than that of I). Kurfohminmes; upper sectorial relatively watl amd tubereular molars large; premolars short and thick.

> Mcasurements.

Fig. A. -Fint upper molar of the left side:
1, of ? Miacis uintensis. 2, of Daphomus hartshomianus. : of Canis iatrans. r, rusp usually regarled as the protocone.

If Mine is be rightly regarded as having a patee in the canine phylum, then the structure of its uper tubercular molars in of great interest and will require a revision of the current views concerning the homologies of the cusps in the upper molas of the dogs. In Crmis, aceording to the usual interpretation, m ${ }^{1}$ is comporsed of two extermal cusps, the para- and metacones, and at the apex of the triangle of which the parat-and metacones form the base, an mpaired intemal cusp, the protocone, with the protu- and metaconules on the anterior and posterior sides of the friangle respectively. Internal and somewhat posterior to the protocone is a large erescentic entp, which is commonly regarded as an enlargement of the cingulam, although in mawon teeth a faint cingulum may be traced all around this cresentic (asp) and is continuous with the prominent angulum which bounds the anterior wall of the crown. If this interpretation of the "asp
 genus is without "protorome and has only the para- and metacones, minnte combles and the large inner crescentic cusp. It serms much more mational to conclude that the latter is really the protocone and that the ensp, which has been so nemed in (innis is an additional element subsequently developeal. In Dequmens this immer ereseentio ensp amel
the comule are relatively smaller than in the modern sepresentatives of the family, which gow formbirm the comblusion that the name protocone should be given to the imemost cosp and that in (ionis the middle part of the crown has undergone a spectal increase in (omplexity.

C'YNODICTIS Gervais.

Amphicyou Laidy, Marsh, in part. Chas Cope, in part. Calecymue Cope, nom Owen.
It is with much hesitation that I employ the name of this European genus for North American peceies, for there are ecrtain constant differences which Schloser ('88,) apmears to comsider as being of generic value. An actual comparison, however, of the American forms with specimens of 'Gmodictis lucustris, Gervais' type species, and from the typical locality, Debruges, has failed to reveal any important differences between the two, and, therefore, for the present at least, I retain the name of the European gents for the American spectes, whith are very closely allied, if not positively referable to it.

The structure of these small camivores, eqpecially of the John Day species, is much bofter known than that of Dophomas, thomgh our knowledge of the White River species has hitherto remained very incomplete, and even of the better known John Day forms only Copers brief deseriptions have as yet been published. Despite the fact that Cynodictis is one of the commoner White River fossils, well-preserved specimens are comparatively rare and of these the greater part consist only of skulls. The bones of the *keten are somall and so fragile that it is exceedingly difficult to obtain more than fragmente of them. liy dint of great care and attention paid to these small forms, Messre. Hatcher and Gidley have suceeded in gathering some very fine specimens for the Princeton Musem, and others I owe to the kindness of Mr. Johm Eyerman. Together, these varions individuals represent nearly all parts of the skeleton and enable us: to reconstruct the animal and to compare it with the better preserved and more aboudant species of the suceecting John Day formation.

I. The Dentition.

The dental formula of Comodictis is: $\mathrm{I}: \mathrm{C}_{1}^{1}, \mathrm{P} \frac{1}{4}, \mathrm{M} \frac{2}{3}$, differing from that of Dophemm: only in the absence of the third upper molar.
A. Ipper othr.-The incisors are very small, simple and antero-posteriorly compressed, giving them chisel-shaped cowns; they increase in size from the first to the thid, but the latter does not greatly exceed the others; not nearly so much, for example, as in (tunis or Inaphomes, and hardly more than in the viverrines. A very short diastema reparate the lateral incisor from the canine.

The canine has a stmot, giblous fang, which produces a marked convexity upon the side of the maxillary; its erown is quite elongate and somewhat recurved and much com-
pressed laterally. The tooth is relatively smaller than in the recent dogs and thimmer transersely, and has therefore quite different proportions from those seen in louphemes.

The premolase incrase in size posteriorly ; in the unworn comtition they have high, compressed, thin and very acote crowns, hat in old individuals, without showing much apparance of wear, these teeth have low crowns, elongated in the fore-and-aft direction. The first premolar is very small and simple; it is inserted by a single fang and follows immediately bohind the camine, without a diastema, which is a diflerence from Detphenus. The second premolar is much larger than P^{1}; it is implanted by two fimge and has a perfectly simple crown, without posterior basal tuberele, though the cingulum is thickened at that point. The third premolar is still harger, expecially in the verticel height of the crown, and is distinguished be the presence of a posterior tuberele in addition to the thickening of the cingulam already found in $l^{\prime}{ }^{2}$. The fouth premolar is a very effectively constructed, though small, sectorial blale, being much more compressed and trenchant tham in Duphemes. The anterior cot of the shearing bate (protecome) is relatively higher and thimer and has a sharper peint and edge tham in the latter gemus, and the posterior cutting ridge (tritacone) is better devoloped and more dfficient. (On the other hand, the intermal eusp (denterocone) is bery much smather (hardy harer proportionately than in (emis) and ocopios a more poterion position. In the European species of Cymodietis the denterocone is not so much redueed and is phaced as firr forward as in Dapluemes.

The first molar is large, particularly in the transerse dimemsiom, and is of subpuadrate outline. The outer cuspe are high and quite acutely pointed, and the central curp (ustally called the protocone) is lower and of crescentie shape, and the internal cusp is a broad, crescentic shelf, which orempies about the same position as in chenis. The conules are very small, but of nearly equal size, a difference from the moderngenus, in which the metacomule is large, while the proteronule is rutimentary or absent, and even in Daphemes the posterior conule is much the larger of the two. 'The cingulum is very prominently developed upon the outer side of the tooth and forms a large progection at the antero-external angle, as in Dapluemes, thongh not in Cimix, a reminiscencer of ereor dont ancestry:

In the John Day pecies, (: grismoriomus and (! lemme and still more in (! Intidens, the first upper molar hats at moch more distinctly quadrate conwn, due to the enlargoment of the metaconule, which has beeme ats large as the central corep, and to the more symmetrical development of the internal anp (\% protomene). In the typical European -pecies, C: luedetris, on the contrary, the crown of this tonth retains a more trigonondont chameter.

The second molar is very small, being relatively much more retuced than in Dapher-
＂uns．It is eomphesed of the same elements as $1 \mathrm{~m}^{1}$ ，but has a different shape，owing to the wreater propurtionate lemeth，antero－posteriorly，of the inmer portion of the crown． In applathate this tooth is a miniature roper of that of Comes．
 The time of i ，is pushed bate ont of lime with the other two．
＇The canine，which is even more compressed laterally than the upper one，is long and reourved；it is separated from ］＇by a very short diastema．

The first premolar is a very small，simple cone，imserted hy a single fang．The sec－ ond is munh lareer and is supported by two roots；it has an anterior basal cusp，which is fommed by the eingulum and is sulgeet to considerable variation，being much larger in sume individuals than in others．The third premolar has a high，compressed and sharp－ pointed（rown and beaxs three acessory cospe，anterior and posterior basal cusps formed by the cingulum，and athird developed upon the posterion edge of the protoconid，very monch as in（＇emis．＇The fourth premolar is shighty larger than I_{3} and has more dis－
 Variation and in some specimens they are feedy marked or eren absent．

The Enropean（ $!$ imbermedius has very smilar premolars to those of C！gregerius， and in both species the anterior basal cusps（which are not present in Duphemus）give a somewhat viverrine charatere to the alentition．
＇The first molar has a quite elevated anterior triangle，with a high，pointed proto－ conid tud a well－developed paraconid，both of which are more compressed and trenchant than in Daphents．The metaconid is smaller than in the latter and is placed lower down and more posteriorly，so that it is visible from the outer side，much as in the mod－ ern dogns．＇The heel is hasin－shaped and is composed of a large，crescentic external cusp and a smabler internal cusp．In the Luropean species may be observed certain differ－ ences in the structure of the lower sectorial from the White River form，though these differences are not wreat．In the Okl World species the anterior triangle is higher and the protoconid less compressed，while the metaconid is larger and ocenpies a more ele－ vated and anterior position；in other words，the anterior triangle resembles that of Drophemus．Another diflerence from the American forms consists in the presence of a serond intemal（ensp）in the heed of the rectorial，which may be observed in most of the individuals figured by Gehlosser and filhol．However，in a specimen of C．Tacustris from I㐌加uses，which the Princeton Musemm owes to the courtesy of Prof．Gaudry，this sec－ ond consp，is not visible．In perfectly unworn teeth of Dephemeshertidornicmus a feeble inclication of this second cons）may be seen．

The serond molar is tuberoular and of a narrow and elongate oval shape ；in consti－ tution it entirely remembles that of Comis；the paraconid has disappeared，while in

Daphemes it is still distinctly visible, though very small. The proto- and metaconids are of equal size and placed on nearly the same transwerse line; these cusps are higher, more sharply pointed and more slender than in the recent Ctmide. The talon, which is somewhat lower than the anterior half of the tooth, retains a distinctly basin-like form. In the European species we find a more primitive character of m_{2} in the retention of the paraconid. The third molar is very small; it has an oval, roughened crown and is carried upon a single fang. As Cope has pointed out, this tooth is usually missing in the fossils, and occasionally a specimen is found which has not even an alveolus for it.

The dentition of Cynodictis greyurius is, on the whole, a little more modernized and advanced than that of the European representatives of the genus. This advance is shown in the reduction of the inner cusp of the upper sectorial ; in the somewhat more quatrate outline of m^{1}; in the leas elevated shearing blade and more posterior position of the metaconid on the lower sectorial, and, finally, in the more complete reduction of the paraconid of m_{2}. In the John Day sercies, especially in (\because grismeritunes and (: lutidens, the departure from the European trpe is even more maked.

Measurements.

Tho skull of' (!nutictix is dededly primitive and in general appearance resembles that of such viverrine sencra as Pomenowems, rather than that of the modern Cemide. Ammen the latter the alopeenil series have sulls more resembling the type of Cimodich than do the thonds, thengh the Ibraziman hoth-dog (Ieticyon) is, on the whole, most like the fossil in the proportions of its skull.

In (ignutiotis, as in Inmpermes, the facial or preorbital region of the skull is very short and the cranial portion reay long. The oceiput is low and the upper contour of the skull rises stecply from the inion to about the middle of the parietals, whence it desembe in an almost straight line to the anterior nares, the only departure from straightnew heing a hardly moticeable concavity or "dishing" of the nasals about midway in their length. In I Iulpes the profile is quite similar, but the posterior rise from the occiput is much shorter and less sterp, and the dishing of the masals is more conspicuous. The sagittal (rest is low and weak, and in the Johm Day (. lemur, the smallest species of the genus, the erest is replaced by a lyrate sagittal area. The cranimm, though slender, elongate and contracting anteriorly, is relatively fuller and more capacious than in Dophemus, and the postorbital constriction, though much deeper, is as near the orbit as in the modern foxes, and is, therefore, much farther forward than in Daphemus. The John Day specimens, which Cope has referred to C' greymerius ('85, PI. LXV'III, Fig. 6), have an eren fuller cranium and shallower postontatal constriction, which should, perhaps, be a reaton for separating these animals specifically from the White River forms. The muzzle in (imodictis is very slender, but tapers gradually and is not so abruptly constricted at the line of the infrathital foramina as in Dequemus. In the European representatives of the genus the skull is much like that of the American species, but is somenhat more primitive and like that of Dophemes. Thus, the mazale is more abruptly constricted, and the postorbital constriction is deeper and oceupies a more posterior position.

A more detailed examination of the skull brings out the following facts:
The occiput is low, very broad at the base and narowing toward the summit less than in the large wolves, hut more than in I'upes or lrocyon; a well-marked median convexity is produced by the vermis of the cerebellum. The crest of the inion is low and weak, much less prominent than in Daphenus. The foramen magnum differs somewhat in shape in the different individuals, being in some low and broad, and in others of subcircular cutline, a difference which may, in part, be due to a slight erushing. The dorsal margin of the foramen projects much more prominently than in the recent Comide.

The businceipital is long, broad and of nearly uniform width throughout; it is
slighty concave transversely, hat has a low median eonvexity, with very feobly developed keel, the convexity being much less prominent than in Incp/urmis.

The exoceipituty are low ind wide and so consex in the median line that this pertion projects much behind the sides. The condyles are low and depressed and are separated on the ventral side by a narrower, deeper and more V-shaped noteh than in the modern wolves or foxes. The parocepital processes are very small and project almost directly backward, as if to aroid the auditory bulla, with which they are not in contact at any point.

The sepprenceipital is a large bone, both high and broad; donsally it is reflected over upon the cranial roof, and in this region is thickenct and diphoettic.

The mastoid is exposed quite extensively upon the oecepital surface, somewhat more so than in the modern representatives of the family, and as the distance between the parocepital process and the postympanic process of the splamosal is greater than in the latter, the mastoid occupies a rather more lateral position. The mastoid process is very small, almost ohsolete.

The splenoid bones camot be described, as none of the specimens allow the limits of these elements to be determined.

The fympence differs in very important ways from that of Dophomes. In the first place it is inflated into a very much larger anditory bulla, filling out the entire fossat and leaving no part of the periotice exposed; and in the second place, the pesterior chamber of the bulla is ossified and fused with the anterior chamber. 'The line of junction between the two elements which compore the bulla is very planly marked by aroove upon the external surface, and shows the posterior chamber to he considerathy the smatler of the two. I have not been able to detect any, even partial, septum botween the two chambers, but such a septum as that of (imis may well have been present. The bulla is relatively as elongate as that of (tomix, but is much narrower and more compresened, and therefore hats a less inflated appearance. The external anditory meatus is a very large, oval aperture, without any tubular prolongation, the borders being fat, execpt the anterior one, which forms a more prominent lip than in (enis and partially conceals the postglenoid foramen. The auditory bulla of ('ymodictis is thus thomougly eymoid in development and displays no resemblanee to the characterintic viverrine type.

The perictels are proportionately very large bones and make up the greater part of the sides and roof of the cramim. Throughout their lemgth they unite to form a very low and weak sagital crest, which becomes moderately prominent only at the comeavity of the cramium formed between the oceipital crest and the hinder wall of the eerehral fossa. Owing to the larger size and backwate extension of the ecerebral hemispheres, as well as to the lowness of the occipital erest, this comeavity is shorter and much shatlower
than in Daphemus. In some specimens, even aged ones, the anterior half of the parietals carries a very narow sagital area, mather than a crest, but only in the little Co lemur from the dohn Day does this area assume the lyrate form. This fact is of importance in detemining the primitive or secondary nature of the sagittal crest, concerning which there has been some dispute.

The fromtul: form relatively as much of the cranial roof as in Canis and have, when viewed from ahove, an hour-glass shape, which is due to the deep postorbital constriction, though the depth of this depression varies considerably in different individuals. The postorbital processes are very small and owe their prominence entirely to the constriction. The forchead is slightly convex, both transversely and longitudinally, though in some specimens it has a narrow and shatlow depression along the median line, such as is found, though much more distinctly, in modern species of both Canis and Vulpes. The forehead is bounded by the obscurely marked supraciliary ridges converging posteriorly to the sagittal erest, which is entirely upon the parietals, none of it being formed by the frontals. Anteriorly the frontals are emarginated to receive the narrow nasals, and send forward slender nasal processes, which are separated by short interspaces from the ascending rami of the premaxillaries. A noteworthy difference from Daphenus consists in the chsence of frontal simusex, in which respect Cymodictis agrees with the alopecoid series of the modern Canidee, as Daphanus does with the thooid series. The significance of this fact will be disenssed in a subsequent chapter.

The squamosal has a relatively small extension upon the side of the cranium, and this portion of it has a different shape from that seen in the modern dogs, the parietal suture descending very steeply forward from the occipital crest, while in the modern genera this suture pursues a nearly horizontal course. From the base of the zygomatie process to the posttympanic process of the squamosal runs a projecting shelf, which orerhangs the auditory meatus and is much wider than in Canis or Vulpes, though not so broad as in Cymodesmus, IHypotemnodon or Dapherme. The posttympanic process is not larger than in Cunis, but is made more conspicuous by the absence of any tubular meatus auditorius. The zygomatic process is relatively somewhat heavier than in V'lpes, and in shape and proportions much like that of the wolves, though not so strongly arched upward; anteriorly it extends to the postorbital process of the jugal. The glenoid cavity is broad and the postglenoid process is proportionately heavier, more extended transversely and its distal end is more curved forward than in Canis. There is no preglenoid ridge.

The jugul also resembles that of Cenis, though it displays some differences. Thus, it is not quite so long as in the modern genus and does not extend so near to the glenoid cavity; it has a less decided upward curvature, and the postorbital angle (it can hardly be called a process) is even less conspicuous; the masseteric surface is broader, more lat-
eral and less inferior in position, and is bounded above by a distinct crest ; the anteroinferior, or maxillary, process is shorter, and the ascending, or frontal, process is nurrower, bat extends farther upwat along the margin of the orbit. As a whole, the gygomatic arch is of nearly the same proportionate length as in Comis latrens, but has a straghter fore-and-aft course, being much less strongly arched upward, though curving outward quite as decidedly from the side of the sknll. This comparative shortness of the arch, in association with the rery elongate cramium, is due to the anterior position of the zagomatic process of the squamosal, which is placed much farther in advance of the occipital condyle than in the recent members of the family.

The lachrymal forms but a very smail portion of the anterior rim of the orbit and carries a rudimentary spine. Within the orbit the bone is relatively more extended and oceupies a more elevated position tham in the modern dogs, while the ascending or fromtal process is much shorter ; the lachrymal foramen is large and is farther removed from the frontal suture.

The nasuld are short, narrow and slender, splint-like bones, which are convex transversely and very slightly concave antero-posteriorly; their general shape is much the same as in Vulpes, except for the much less distinct fore-and-aft concavity and their lesser elongation.

The premaxillaries are small ; the alveolar portion is weak, in correspondence with the smallness of the incisors, and is not produced anteriorly in the spont-like form which characterizes Daphemus; the groove for the reception of the inferior canine is much less deeply incised than in the latter. The ascending ramus is long and slender, hot forms a wider strip upon the side of the muzale than in the last-named genus. The anterior narial opening is small, oval in shape and more oblique in position than in either Ctenis or V'mlpes. The palatine processes of the premaxillaries are short and very narrow, and the incisive foramina are small. This portion of the palate has an entirely different apparance from that found in Dophennes; the premaxillaries are not nearly so much extended in front of the canines, the incisive formina are shorter and have no such grooves extemding forward from them; the spines are very slender and much shorter, reaching only to the canines and not to the line of p^{1}, as they do in the larger genus. In most of these respects Daphemus is nearer to Canis and Vulpes than is Cymoticlis.

The mexilluvies are relatively very short, much shorter than in the existing eenera, a statement which expectally applies to the facial or preorbital portion. At the same time the vertical height is proportionately great. Except for the swelling produced by the root of the canine, the ficcial surface of the maxillary is simply convex, there being no distinctly marked fovea maxillaris. Owing to the shortness and height of the facdal portion, its superior and anterior margin, formed by the sutures with the frontal, natal and premaxillary, is more strongly curved and descends much more steeply in front tham
in Cienis. As in Thephemus, the inframbital foramen is placed very near to the orbit, white in the modern genera it in moh in advance of the orbit. The arrangement seen in (ignulichis is due chiclly to the anterior position of the orbit and in much less degree to the backwarl shifting of the formen itself. The palatine processes of the maxillaries are shont and narow, corresponding to the shortness and senderness of the mazale, and they ramble thone of Duphemus in leeing sightly concave transversely, with a faintly marked median ridge along the line of suture.

The pulutimes have nearly the same shape and proportions as in Cenis lutrans (though they are relatively somewhat narrower) and extend forward to the anterior edge of $\mathrm{p}^{-\frac{1}{2}}$; the palatine noth is more deeply incised than in either Cemis or Vulpes and is nearly as decp as in Cromym. Only a single posterior palatine foramen is visible on each side. As a whole, the bony palate resembles that of Canis more than that of Depluenus in its much less aboupt narrowing at the level of the sectorials. The posterior nares have about the same shape and position as in Jthpes and have a similar median spine-like procests on the anterior border.

The perryoide terminate in longer, more distinct and more thickened hamular procosses than in the recent genera, some of which, like Urocyon, have no vestige of such processes. From the descenting process of the alisphenoid is given off a prominent lateral spine, which, in Comis and Vulpes, is represented only by a low ridge.

The mendible hats a slender and compressed horizontal ramus, which tapers rapidly toward the anterior end; it forms a long symphysis with its fellow of the oppositeside and curves very gently upward at the chin. The ventral border describes a somewhat sinnons course, curving downward beneath the sectorial, from which point it rises very gradually and regularly to the symphysis, while bencath the masseteric fossa it is concave. There is no trace whatever of the lobation which is found in so many of the existing (fonidue, both alopecoids and thooids. The ascending ramos, which forms an ohtuse angle with the horizontal, has a propertionately smaller antero-posterior width than in Daphemes, though a greater one than in the modern genera; the coronoid process, in particular, is much narrower than in the former, and the sigmoid notch is wider than in the living forms. The masseteric fossa is very deeply impressed, but it has nos such definitely marked upper boundary and it does not extend forward so far beneath the molars as in Cimis, features of resemblance to the alopecoids. The angle is formed by a short, slender and blunt, hook-like process. The condyle, which is not in any way peculiar, is clevated much more above the level of the molar teeth than in Duphictas.

The rominl fortmion are very minute and hence are often difficult to detect, save in exceptionally well-preserved specimens, a very slight degree of crushing being often sufficient to obliterate them. In general, they may be described as characteristically
cynoid. The condylar formen is an opening, hardly larger than a pin-hole, which perforates the ridge ruming mesially from the paroccipital process ; its position in just as in Canis. The formen lacerum posterius is rather smaller than in existing representatives of the family, which is due to the greater proportionate elongation of the auditory balla, and for the same rason the stylomastoid formmen is less conspicuonsly displayed. An important difference from Conis and l'ulpes consists in the presence of a well-defined external opening of the carotid canal, which grooves the imer side of the auditory bulla somewhat behind the middle of its course ; it is much better shown in some specimens tham in others. In the modem C(tridere, "the carotid camal is complete and of tolerable dimensions; but its extermal opening is not visible on the surface of the bulla, being deep in the formen lacerm posticum" (Flower, '69, p. 24). The other (arnivorous families, however, have the carotid canal with visble opening, but varying in position in the different groups.

The foramen lacermm medium and the Eustachian foramen are very much as in Cemis, but the glenoid foramen is somewhat conceated by the prolonged anterior lip of the anditory meatus. The foramen ovale is a narrow slit which may be readily overlooked, and is closed by even a slight distortion of the skull. An alispheneid canal is present, and the other openings, the optic, anterior lacerated and round foramina, are ats in the recent cynoids. The whole structure of the cranial basis and its formman are thus canine in character, with only a single difference, the distinctness of the carotid canal. There is nothing to suggest relationship with the viverrines.

> Dersurvements.

	No. 10493	No. 10513.	No. 10989.	No. 11012.	No. 11381.	No. 11382.	No. 11432.
Skull, length (fr. oce. condyles)................................			0.1493	0.1093		0.0) 6 \%	0.020
Crasium, length (oce. condyles to preorbital border)....	. 060	?.063	. 0641	. 016 l 1		. 0.59	. 010%
Face, preorbital length.		-	. $0 \cdot 0 \cdot 2$. $0: 30$. 0130	.03-
Occiput, breadth across mastoid processes0\% 03	.0:3	.0:31	0:	(10: ${ }^{\circ}$	$0 \cdot 3$.0\%:
Brain case, grealest breatth10:1	0.32	0:3	.03\%	. 0133	.03\%	.10:\%
skull, width across \%ygomas	(0.0)	$!$				(0, 0	
Zygomatic arch, leugth	012	.013	.01:3	.101:		012	. 1044
Face, width at $p^{\text {t }}$. $1: 30$.023 ${ }^{3}$. $0: 30$.0:3)	.025\%
" 66 " canin			. 1116	. 117		.110	.115
Mawdible, lengtli (fr.condyle) $066: 3$. 060	
" depthat m	.009	. 011	. 011	. 011		. 010	
" "6 "			. 010	(6)		. 017	
" thicknces at m	. 1045	. 010.5	. 010.3	.100.7		. 080	
" height of coronoil process (from ventral							
borler)...	.027	. 029	?.0:\%			. 039	
" height of condyle fr, angle.........................	. 014			.		.01:3	

III. 'Time Birain (Pl MIX, Fig. 12)

The brain of' (imontichis has already been described by Bruce ('83, p. 41), but as I wish to comsider it from a different standpoint, some account of it will be necessary. In this genus the brain is relatively smaller tham in any of the recent Canide. The olfacfory lobes are large and are left exposed by the hemispheres, with which they are connoced by short and thick olfactory tracts. The cerebral hemispheres are pear-shaped, brod behind, but tapering rapidly forward, where they decrease in vertical as much as in tramserse diameter. The frontal lobe is short, narrow and of small vertical depth, while the parietal lobe much surpasses it in every dimension; a transverse depression marks the houndary between the two. The temporo-sphenoidal lobe is also quite well developed and adds materially to the dorso-ventral diameter of the brain in this region. Posteriorly the hemispheres slightly overlap the lateral lobes of the cerebellum (which appears not to be the case in Daphomus), but lave the vermis entirely uncovered. The shape of the cerebrum is thus alopecoid rather than thooid in character. In the former series the hemispheres are wide behind and taper anteriorly, with slight incurvations at the sylvian and presylvian fissures, while in the thooids the cerebrum is narrower behind and at the presylvian fissure the sides are abruptly incurved almost at a right angle; the frontal lobes are much larger relatively than in the foxes (see Huxley, '50, pp. 245247). The hemispheres of (ynodictis agree well in shape with those of the alopecoids, and when compared with the hrain of the later and more adyanced genus Cymodesmus from the dohm Day, the greater width of their posterior region is distinctly to be seen. The whole character of the skull makes it evident that Cynodesmus is a thooid, while both hrain and skull structure approximate Cymodictis more to the alopecoids.

The hemispheres are very simply convoluted and the sulei are few, simple and short, though it should not be forgotten that the brain-cast very probably fails to reproduce all of the fissures. In the recent Canide the convolutions are momerous and complex, and the sulci pursue a remarkably curved course, giving to the convolutions, when seen from the side, the appearance of a succession of U-shaped, concentric coils, grouped around the sylyian fissure as a centre. In C'Inodictis, on the other hand, the visible sulci are few, shallow, short and nearly straight. On the dorsal surface of the hemisphere only two fissures are to be observed, the lateral and the suprasylvian, the former of which is short and almost straight, dying away before it reaches the hinder part of the parietal lohe If the coronal sulcus is present at all, it is in the same fore-and-aft line as the lateral, and has not the outward sweep around the crucial fissure which is so characteris-* tic of Chmis. Notrace of the crucial fissure is preserved in the brain-cast, and if it was present in the brain, it must have been short, as is indicated by the straight course of the
lateral sulcus. The suprasylvian sulens is likewise very short and but little curved, and is not divisible into anterior and posterion pertions. The sylvian fisure itself is but feebly marked upon the cast, but the rhinal sulcus, on the contrary, is very distinctly shown and extends for neady the whole length of the hemisphere. Making all due allowance for the fact that a cast of the brain-case can but imperfectly reproduce the features of the brain itself, yet it is clear that the cerebrum of cymodictis was convoluted in a much simpler way than in any of the existing Comide, and that it retains characteristies which among the modern dogs are embryonic and transitory.

The cerebellum is rather large and is less overlapped by the hemispheres than is the case among the recent members of the family. The vermis is narow, but prominent, and is quite clearly divisible into three lobes, corresponding apparently to the lobus centralis, lobus monticuli and declivus of chmis. The vermis is less regularly curved in the antero-posterior direction than in the modern genus, the posterior surface forming nearly a right angle with the dorsal. The lateral lobes of the cerehellom have quite a diflerent appearance from those of the recent rimide. Thus, the lobus quadrangularis is less extended tramsveraly and narrows leses toward the extermal side, while the lobus lumatus inferior is very imperfectly developed, and the lobi semilunares appear not to be represented at all, or, if present, they must be excedingly small. This latter point is difficult to decide definitely, because a small fragment of the skull, which camot be removed without danger to the specimen, covers the place where the semilunar would be if present. A smatl additional lobe, not represented in (emis, lies upon the dorsal surface of the lobus quadratus and near to the vermis. Complex as it looks, the cerebellum of Cignodichis is simpler than in the recent dogs.

M Mra゙Mrement.

The backbone is not preserved entive in any of the specimens, hut by the atis of the more complete individuals from the dohn lay, the numbers of the varions categories of vertebree may be inferred.
A. P. S.-rol. Nix. © V^{2}

The ufles (P l. XIN, Fig. $1: 3$) is somewhat more canine in character than that of Dephomus, having a short and broad borly and moderately developed transverse procosses. The anterior cotyles are shallower and more depressed than in Cenis; the nenral ard is well extended in the antero-posterior direction and is quite smooth, without ridges or tubercles of any kind; it is very strongly convex, giving to the neural canal an almost circular shape. The inferior arch is very slender and has but a rudimentary hypapophysial tubercle. The posterior cotyles for the axis are somewhat more concave than in ('tuin and present more obliquely toward the median line. The transverse processes are rather small and are much less extended antero-posteriorly than in Canis, not reaching so far behind the surfaces for the axis, nor so far forward upon the neural arch; in consequence of this, the atlanten-diapophysial notch is less deeply incised. The posterior opening of the vertehrarterial canal presents backward, as it does in Daphenus, but has shifted a little more toward the dorsal side of the transverse process, thus showing a tendency to assime the position which is characteristie of the recent Camide.

The excis is not especially canine in appearance, but rather resembles that of Viverra. The centrum is long, narrow and very much depressed anteriorly, becoming somewhat deeper vertically toward the hinder end, which has a transversely oval and nearly flat face for the third vertebra; the ventral keel is relatively better developed than in Daphemu. The articular surfaces for the atlas are low and wide, but project much less outside of the pedicels of the neural arch than they do in Cenis, and are more convex than in that genus. The odontoid process is slender and elongate, more so than in I'merre, and the articular surface on its ventral side is not, as in Cemis, continuous with the lateral facets for the atlas, but is separated from them by a feebly marked ridge. The transverse processes, which are very thin and compressed, are of no great length; they are perforated by the vertebrarterial camal, which is relatively longer than in the recent dogs. The pedicels of the neural arch are short from before backward, but are (puite high, and the neural canal is proportionately much larger in both dimensions than in the existing dogs. The neural pine, at least in the White River species, resembles that of Dophemus much less than it does that of Cemis. It is long, not very high, and in fromt extends far in adyance of the pedicels, lut posteriorly it does not project Dehind the zygapophyses, as it does so conspicuously in Dophemens; as in the modern genns, the domal border of the spine is continued into the hinder margins of the neural areh. The aygapophyses are rather small and do not extend out so prominently from the sides of the neural areh as in Cemis.

The axis of the John Day species, C yeismerienus, as figured by Cope ('85, Pl. $1 X^{2}$ 't, Fig. 12), differs from that of ('. gregurines in having a much higher neural spine, which is continued posteriorly into a pointed projection, similar to but shorter than that

The third reveical reptedore is markedy different from that of Ihephepmes and duite like the eorresponding vertebra of 'imis. The centrum is moderately chomate (thongh shorter with reference to the axis than in most of the modern dogse, , quite depresed amd slightly opisthocelous, and has a stout, prominent rentral keed, which is better developed than in Dophereus, or eren than in Genis, and ends behind in a tuberede. The anterior face is broad, depressed, quite convex and rery oblique in position with referenee to the fore-and-aft axis of the centrm, while the posterior face is more nearly circular in outline. The transerse process is, in general character, quite like that of (imis, but has a relatively smaller extension from before backward, and is less obvionsly divided into anterior and posterior projections, the ventral margin of the process being nearly straight. The vertebarterial canal is proportionately much longer than in (iomis, being nearly as long as the entire centrum. The neural canal is relatively larger and especially wider than in the modern genus, while the neural arch is long and broad amd but slightly convex on the dorsal surface. One noteworthy difference from (itmis consists in the fact that the arch does not project over the sides, or pedicels, an an orerhanging shelf, or does so but slighty. The nemal spine is represented only by in inconspicuous ridge.

The zygapophyses are small and extend but little in front of and behind the neural arch, which constitutes a very marked difference from Dophemos. In the latter, it will be remembered, the neural arches are deeply emarginated between each transwerse pair of zygapophyses, so that when the vertebre are placed in their natural position, large vacuities occur between the successive neural arches. In Cymotiotios, as in Cremin, these interspaces are very narrow and in certain parts of the neck they are hardly at abible.

The fouth certebre is somewhat shorter than the third, hut is otherwise very much like it and also like the corresponding vertebra of Cemis. The transverse procest is somewhat larger and heavier than on the preceding vertebra, and the groater antero-posterion extension of its outer portion makes the vertebrarterial canal relatively longer than in Gemis; the inferior lamella is rery thin and light. The newal spine is short and shender, but is relatively better developed than in most of the modern representativen of the family.

On the fifth ecmical the neural spine is higher hat more slender than on the fimerth.
The sixth is not preserved in connection with any of the specimens.
The serenth cervicul is almost a miniature copy of the same rertehat in (imis; the neural spine is relatively higher, more slender and more pointed than in most pecies of the existing genus, and the transverse processes are proportionately longer and thimer, but otherwise the resemblance is very close and detailed.

The number of thoracie certebre camot, as yet, be definitely stated, because in
mone of the perimens in the somis prewed antire. Probably, however, these vertebre numbered thirtern, as is commonly the case among the recent representatives of the fimily. 'The specimen of ('Sprismmbitums figured by Cope ('S5, Pl. LAX a) has the posterior ton thoracos in phace, and there must have been at least three additional ones. 'The anterion vertehne of this reqion have very small, contracted centra, but long and prominent transerse processes and nevral spines which are relatively higher and more shender than in Cemis, and are alio inclined more strongly backward than in the latter. Ponterionly the centra beeome longer, hroader and more depressed, and are quite distinctly keeded in the median rentral line. In addition to this median keel are two shorter and less prominent latheral ridges, which, however, terminate behind in distinct tubereles and thos give a very charateristicappearance to these verther. The transverse processes become more and more shortencal and the netural spines lower, less strongly inclined, but more compressed and brodened at the base (antero-posteriorly). The antepenultimate thoracie (presumally the eleventh) is the anticlinal vertebra, of which the neural spine is low, broad, compressed and erect. The penultimate (? twelfth) and last (? thirteenth) thoracies are very much like lumbars in appearance and structure, but have no transverse procestes, while in Ctemis these processes, though small, are quite distinct on the twelfth and thirteenth thoracics. Large, heary and prominent anapophyses and metapophyses are present on the last two thoracies.

Of lumber veptelme this genus probably possessed seven, that many being preserved in position and in comnection both with the thoracies and with the sacrum in Cope's specimen of ('.geismetrimus. In the White River material at my command not more than five lumbars have been found in ascociation with any one individual, but the series is obvionsly incomplete, and there is no reason to suppose that C. gregatius differed in this respect from the John Day species. The lumbar region is proportionately long and stout and the individual vertebre are quite massively constructed (i.e. for so small an animal), indicating a powerful museulature in this region. The centra increase in length up to that of the penultimate vertebra, while the first and the last are the shortest of the series. These centra are broad and depressed, and bear distinct median ventral keels, While the lateral ridges and tubereles are present on the first two vertebre, but not on the last three. The faces are kitney-shaped, slightly convex in front and concave bohind, and are placed obliquely with reference to the long axis of the centra. This ohlifuity is to provide for the cmpature of the loins, which rise to the pelvis, the rump standing considerably higher than the shoulders. The transverse processes, which are quite fhort on the anterior lumbars, increase steadily in length up to the sixth, where they hecome very lomg; they are slender, depressed, pointed and curved forward. The neural spines are low, compressed and thin, broad at the base, narrow and pointed at
the tip, and are inclined forward rather more decidedy than in Canis. Anapphyser are quite prominent on the anterior lumbars, but diminish posteriorly, becoming rudimentary on the fifth, while the metapophyses are conspictons in all. The zygapophyses are but moderately concave and convex respectively. The gencral aspect of the lumbar region is not canine in character, but rather resembles that of the civets and mustelines.

The sacrum is quite short and consists of three vertebre, only the first of which has a contact with the ilium. The first sacral has a broad and much depresed centrum and large, expanded pleurapophyses, which give considerable width to the vertebra. The neural spine is a mere feehly marked ridge, while the spines of the second and third are higher and separate. The transerse processes of all the sacrals are fused into a contimous lateral ridge, but that of the third vertehra extends outward much farther that the others and ends in a point, an arrangement which gives to this sacrum an apparance quite different from that of Camis. The prezygapophyses of the first vertebar are large and conspicuous, but all the other zygapophyses of the sacrum are small. The neural foramina are remarkably small. The centrum of the last vertebra is almost as large an that of the first and the widely extended transerse processes make the sacrum nearly as broad behind as it is in front.

The coudul vertebre are not preserved entire in any of the specimens, nor, indeed, can all of them be recovered from all the individuals combined, so that the number of tail vertebre is, as yet, conjectural. However, enough remains to show the character of the tail and of the various elements which compose it. The tail was evidently very well developed, being relatively longer and stouter than in any of the recent Camider, and much like that of some of the long-tailed viverrines, such as Herpeates. The anterior caudal vertebrat have short, but heary centra and very long, broad and depressed transverse processes, which extend out nearly at right angles with the line of the centrum. The breath of the first caudal across the transerse procesces about equals that of the last sacral. The zygapophyses of the anterior caudals are large and prominent. The anterior caudals are succeeded by a number of vertebre with very clongate centra, which resemble in miniature the corresponding vertebre of Dophomus, having distinct remnants of the various processes. Toward the tip of the tail the vertebre become very slender and of a cylindrical shape, the centra being slightly contracted in the middle and expanded at the ends.

The ribs, so far as they are preserved in the varions specimens, are remarkable chiefly for their length and slenderness and for their subeylindrical shape. 'Tubercles appear to be absent from the twelfth and thirteenth pair. The sternum is of the usual carnivorous character, without being especially like that either of the dogs or of the
divets. 'The mambrim is lome, mone so than in (temex, as well as narrower and more compresed. The first pair of ribe is attached to a pair of wing-like procestes, which are manally far from the second pair. In front of these processes the bone is compresed and very narrow. For much of it, longth the manubrimm possesses a ventral ken. The semments of the mesenternm, so far as they are preserved in the various specimens, are more chongate, more slender and depressed and more contracted in the midde than in the recent Cemider.

Mersurements.

Y. The Fore Limb.

The setpuln is quite remarkable and is in character rather viverrine or raccoon-like than canine. The shoulder hade is rather low and broad and is divided by the spine into pre- and postscapular fosse of nearly equal breadth, while in the modern dogs the scapputa is high, narrow and of suhquadrate shape, and has the spine so placed as to make the pestscapular fosia much the larger of the two. The glenoid cavity is moderately concare, and is clongate antero-posteriorly, hut narow transversely. The coracoid
process is unsually large, forming an incurved hook, which, howewer, does not appear prominently when the scapula is viewed from the external side; in the recent dimile the coracoid is reduced to much smatler proportions. A resemblance to the shoulder-h) ate of Cemis is to be found in the broad neek of the scapula and in the absence of any welldefined coraco-scapular notch. The coracoid border is slightly concave at the neck, hut then curves forward and upward, giving great width to the prescapular fossit; the glenoid border is, as usual, straight and is steeply inclined, so that the postreapular fossa, which is very narrow distally, becomes very broad proximally. The spine is high and ends in a very long and prominent acromion, which descends below the lovel of the glenoid cavity, which suggests that in this genus the clavicles were much better developed than in the existing dogs. A very large metacromial process is also present. The metacromion may be observed in most of the existing families of Camivora, but it is seldom so large and so prominent as in Cymotictis; perhaps, the nearest aproach to it among modern genera is in Arctictis.

The humerus is much more suggestive of viverrine than of canine affinities. A s compared with the bones of the forearm, or even with the femur, the humerus is chomgate, but it is short in proportion to the length of the back or loins. The head is strongly convex and projects farther behind the plane of the shaft than in the modern dogs; the external tuberosity is a heary, but low ridge, which barely conceals the head when the bone is viewed from the front; a large, irregularly circular area near the hinder end of this ridge plainly indicates the insertion of the infraspinatus musele. The external tuberosity is both lower and shorter than in the modern dogs, hot the internal one is rather more prominent, and the bicipital groove is more widely pen, more internal in position and more of it is visible from the anterior side. The shaft is rather long, and, when seen from the side, exhibits a sigmoid curvature, which is somewhat better marked than in Canis. For most of its length, the what is laterally eompressed and has but a very short cylindrical portion before expanding laterally at the distal end. Most of the ridges and prominences for museular attachment are well developed, more so than would be expected in so small am animal. The deltoid ridge is much more prominent than in the recent dogs, and is more like that of the cats and viverrines; the supinator ridge is likewise very much more prominent than in Cimis, in correlation with the power of rotation of the radius, which Cynotichis appears to have retained in almost undiminished degree. On the other hand, the rough ridge, which rums down from the head upon the outer side of the shaft (spinal lumeri) and serves for the attachment of the teres minor, anconetus cxternus and brachialis internas muscles, is much fanter than in Cemis and the linea tubereuli minoris is very foodly marked. The supratrochlear fosa is very shallow and the anconeal fosta is much smaller and wallower than in the modern representatives of the family, there being no perforation of the shaft

ふS: NOTES ON THE CANIDE OF TIIE WHITE RIVER OLIGOCENE.
at this point. The intemal epicoulyle is much more prominent and more massive than in (tomis, and a conspicnons epicondylar foramen is present, in the form of a long, narrow slit. The external cpicondyle, on the contrary, is rather smaller than in the recent gembs.

The humeral trochlen has a much smaller proximo-distal diameter than in the existing (tomidte, in which respect it preserves a primitive character and resembles the trochlea of such viverrine genera as Cymogule and Viverre. The radial surface is small and simply convex, while the uhar facet is much larger than in the recent dogs; the inner flange of the ulnar facet is also more produced distally and forms a sharper edge than in the latter.

The radius is not at all suggestive of canine affinities, but rather resembles the corresponding bone of the cats and viverrines. The capitellum is small and of subdiscoidal shape; while it is somewhat more extended transversely than in Felis, it is much less so than in Cemis; its articular surface is moderately concave and is slightly notched on the anterior border. The proximal facet for the ulna is a simple, convex band, separated from the humeral surface by a distinct angle and entirely resembling that of Daphemus. The character of the articulation at the elbow-joint and the large development of the stpinator ridge on the humerus would seem to imply that in Cynotictis a considerable degree of freedom in the rotation of the manus had been preserved, though probably less than in the cats and in many viverrines. The bicipital tuberele is prominent, but occupies a more posterior position than in either the cats or the recent dogs, and is not visible when the radius is looked at from the front.

The shaft of the radius is relatively short, slender and rounded, very different from the broad, oval and antero-posteriorly compressed shaft seen in Canis; it has a slight double curvature, arching anteriorly and externally, and is of almost miform thickness throughout its length, except at the distal end, where it broadens considerably. A very striking difference from Camis consists in the very great size and prominence of the styloid process, which forms a relatively enormons tuberosity ; it is even much larger proportionately than in the cats or civets and is as large as in Mellicora, though of a differcont shape. In Duphemis, as we have already learned, the styloid process is very prominent and of a generally feline appearance, but it is proportionately smaller than in Cymodietis. The radius figured by Schlosser' ('89, Taf. VII, Fig. 8) and by him attributed to one of the European species of the latter genus has a styloid process in the form of an enormous, recurved hook, much longer and much more slender than in the American pecies and of an entirely different appearance. The distal tendinal sulei are not very well marked, though that for the abductor and extensor museles of the pollex is a deep groove. The distal facet for the ulna is smaller and less deeply impressed than in Canis. The carpal facet is small and slighty concave, narrowing toward the internal side; it
 deep notch.

The ulne is, in its way, as peculiar as the radias. The olecranon is quite trpionlly fissipede in chatacter and differs from that of the creodonts in its comparative fhorthess and hreadth; thongh proportionately somewhat longer than in (buis, it is hatly so lomg as in Daphemus, and the suleus for the tendens of the ancontal museles is more distinct than in the former. The sigmod noteh is hardly so deep as in Chnis, and, in partioular, the intermal facet for the humerus projects lesse in frome of the phane of the shatt, and the external process is very feebly developed. The radial fate is narower and less deeply concave than in the modem ('emidre, hut has a somewhat greater vertical diameter.

The shaft of the uha is decidedly less reduced tham in the recent representatives of the family, and for most of its length is little or not at all more slemder than that of the radius. In its proximal portion the shaft is much more compresed laterally and thicker antero-posteriorly than in ('anis, in which genus this pertion of the shatt is trihedral. 'lhe middle and distal portions are of triangular section, nome of it having the suberlindrical shape which chanacterizes the distal one-third of the shaft in the recent gemus. 'The distal end has quite a different shape from that seen in Dopluenus, a difference which is due to the much greater prominence of the radial facet in the latter. In Cimomictis this facet is almost sessile and projects but little more than it does in Cemis. The carpal facet is very small and quite simply convex.
Mersurements.

A. P. S.-TOL XIN. 2 W。

By a fortunate diseovery of Mr. Hatcher's, I am enabled to give an account of an almost complete carpus belonging to Cymodictis, which has hitherto been entirely muknown.

A seapho-lumer is present, formed by the coalescence of the scaphoid, lunar and central, which distinguishes (ymodictis from the creodonts. This bone resembles that of Cemis in general character, but displays quite a number of differences in points of detail, and these differences are, at the same time, approximations to the structure found in Dopherms. The scapho-lunar has a rery small vertical (proximo-distal) dianeter, especially on the radial side, where it thins away to a mere edge, the facets for the radius and the trapezium almost meeting. As compared with the corresponding earpal of Canis, this bone has a somewhat greater transerse and smatler dorso-palmar diameter. The radial facet is simply convex both transersely and antero-posteriorly, and has not the saddle-shaped extension at the interno-palmar angle which is found in the recent dogs. This facet descends quite low upon the dorsal side of the bone, as is also the case in the modern plantigrade and semiplantigrade carnivores. The hook-like process which arises from the postero-internal angle of the scapho-lunar is much shorter and less massive in every dimension than that of Chmis. Another difference from the modern genus consists in the absence of any distinct articular surface for the pyramidal, the facet for the radius and that for the unciform almost coming into contact along the ulnar side of the bone.

On the distal side of the scapho-lunar are four facets, for all the carpal elements of the distal row. That for the unciform is relatively smatler than in Camis, and is confined to a narrow strip near the ulnar border; the magnom facet is much the same as in the modern genus, but is somewhat more oblique in position. The surface for the trapezoid is fairly large and keeps more nearly parallel with that for the magnom than in the recent dogs, while the trapezinm facet is small and of almost circular shape.

The paramidal is a very different-looking bone from that of the modern dogs, being hroad, depressed and scale-like in shape; its vertical (or proximo-distal) diameter is very small and relatively much less than in Cemis, and there is no such process from the ulnar side of the bone as in the latter, in which the pyramidal articulates with the head of the fifth metacarpal by a much more extensive facet than in Cynodictis. The recont viverrines have the pyramidal shaped very much as in the White River genus. The proximal surface is divided into two narrow and somewhat concave facets for the ulna and pisiform respectively, of which the latter is slightly the larger. On the distal side is a single large and concave facet for the unciform, and posterior to this
a very narrow surface which appears to be destined for articulation with the head of the fitth metacarpal.

The pisiform differs very decidedly in shape from that of Comis. This carpal is small and light ; its proximal (i.e., articular) end is greaty depressed, but much extended transversely (in the existing gemus the principal diameter of the proximal end is the vertical one) and the facets for the pramidal and ulna are correspondingly broadened transversely and narowed vertically. The pyramidal facet is the larger of the two and is quite deeply concave, while that fim the ulma is small and neaty plane; the two facets together form an acote angle and are separated only by an inconspicuous ridge. The distal end of the pisiform is moderately expraded, but in the vertical dimension, so that the proximal and distal expansions are almost at right angles with each other. Between the two expansions the body of the bone is much contracted and very slender, which is in marked contrast to the shape seen in Cemis.

A so-called "rudial sesmmoid" appears to have been present; at least, there occurs in the same block of matrix through which the carpals of one individual were scattered, a small, irregularly wedge-shaped bone, to which I can give no other interpretation. Assuming that this reference is corred, we find in the relative size and shape of this bone another resemblance to such viserime genera as Herpestes, (Imogule and P'arudocurus, ete. The radial sesamoid also oceurs in Chenis, at least in certain species, but is very mimute.

The trepeziem is very small and differently shaped from that of Cemis; its principal dimension is the dorso-palmar, while the transerse diameter is the least. The surface for the scaphoid, which in (tumis is a very ohlique, convex facet, is in Ciynodectis entirely proximal in position and nearly plane, and there is mo such large concave facet for the trapezond on the ulnar side as in the modern genus; the distal facet for the head of the first metacarpal is less distinctively sadde-shaped than in the latter. In view of the well-developed pollex, the small size of the trapezium is somewhat surprising.

The tropezoid is shaped very much as in the existing dogs, but with certain minor differences, especially moticeable in the very small revical diameter and in the thiming of the bone to an edge on the nhar side. The proximal end bears a simply convex facet for the seapho-lunar, while the distal facet, for the second metacarpal, is very slighty saddle-shaped; on the palmar side the traperaid contracte to a print.

The motmom is small and that portion of it which is visible from the dorsal side, when all the carpal chements are in their natural positions, is minute, espectally in its proximodistal dimension. In shape the magnum does not differ materially from that of the reeent dogs, but the proximal surface is narrower and rises more abruptly to the "head," and on the patmar side the bone broadens out in a fashion not repeated in Cinis.

The unciform facet is large and plane and does not rise so high upon the head as in the modern genns. On the radial wide we find no distinct facet for the trapezoid, which, as already mentioned, thins to a mere edge toward the magnmm, but there is a well-defined facet for the progection firom the head of the second metacarpal, which is proportionately latrger than in C(bmis. On the distal end of the magnum is a narrow facet for the third metacarpal, a facet which is less concave in the dorso-palmar direction than in the case of the last-named gemus.

The unciform is viverrine rather than canine in character, being much narrower in proportion to its vertical height than in the recent dogs. The facet for the seapholunar, which in Cienis has an almost entirely proximal position, is in C'ynotictis much more nearly lateral. The pyramidal facet is also decidedly more steeply inclined than in the existing genms, the two articular surfaces meeting at a very acute angle and making the proximal end of the unciform narrow and wedge-shaped. On the radial side is a large facet for the magnum and a small one, confluent with it, for the extension from the head of the third metacarpal. The distal facets, for the fourth and fifth metacarpals respectively, are narmwer than in Chis, contracting especially toward the patmar side.

The motucterpols, five in number, are remarkably short, slender and weak and have hat little resemblance to those of the recent dogns.

The first metuctopal is very small, but is, nevertheless, proportionately much less reduced than in (amis, taking the length of me iii in each genns as a standard of comparison. The head is thicker and relatively heavier than in Cumis and on the radial side, internal to the trapezium facet, is a tubercle for the attachment of the lateral ligament. The facet itself is much lews deeply concave transversely than in Cumis, but more convex in the dorsopalmar direction. The shaft is short, slender, arched toward the domal side, antero-posteriorly compressed and of oval section, tapering considerably toward the distal end. The distal trochlea is very small, but formed entirely like those of the other metacarpals; it is strongly convex, almost hemispherical and bears a distinct carina upon the palmar tace, just as in Dophemus. In Camis, on the other hand, this structure is of an entirely different character, forming an asymmetrical hemicylinder, with a broad shallow groove placed somewhat internal to the median line, and thus resembles the trochlea of a phalanx rather than that of the other metacarpals.

The sromed meturerpal is represented in the collection only by a single imperfect specimen, consisting of the proximal end. This shows a much stouter shaft than me i, being of ahout the same diameter as the corresponding portion of me iv, and more slender than that of me iii. The head is narrow and bears a saddle-shaped facet for the trapezaid, but sends out a projection which rises more above the head of me iii than in Cimis and articulates with the magnum by a larger facet than in that genus.

The third metecorpal, though short and slender, is somewhat the longest and heariest of the series. The proximal articular surface for the magmum is shaped very much as in Cemis, but is slightly broder in proportion and rather more concave transversely ; on the radial side of the heal is a large facet for me ii, which has a more oblique position than in the modern genus. On the ulnar side is a small projection which abuts against the unciform and is relatively larger than in C'mis. The shaft, and indeed the whole metacarpal, has a viverrine rather than a canime appearance; it has not acpuired the prismatic, quadrate shape which is so characteristie of the modern dogs, but is of oval seetion and is of atmost uniform width thronghout, but broadens shighty at the distal end. The distal trochlea, though much lower in the vertical diameter, is yet of decidedly more canine character than is that of Itephemes, being broad and hemicylindrical in shape instead of suhphericall. The pit ahove the trochlea, which is absent in Dephemus, is distinctly marked and the lateral processes for ligamentons attachment are much less prominent. All of these conditions are approximations to the conditions seen in C'mis.

The fourth metacerpul is not completely preserved in any of the specimens, but it appears to have been of about the same length as me iii and to have formed with it a symmetrical pare, athough the two metampals are not so closely appersed as in Cimis, but diverge slighty towat the distal end. The head hat a simply convex facet for the unciform and is somewhat narrower proportionately than in the existing members of the Cander, owing to the orerlapping of the head hy me iii, in order to reath the unciform. So far as it is preserved, the shatt is rather more slender than that of me iii and of a more cylindrical, less compressed shape.

The fifth meteranpel is remarkahly short, mach more so in proportion to the length of me iii than is that of (cmis. The heal is less broadened and thickened than in the latter genus, and carries a simple, comvex facet for the unciform. In the modern genus there is likewise a large facet for the pramidal, which extemds down over the unciform and comes into contact with me v. In rignodictis there appeass to be a facet of a similar kind, but if so, it is very small and ohseurely marked and may be regarded as in only an incipient stage of development. The shaft is slender proximally and broadens distally, the reverse of the proportions which ohtain in Chenis, and the distal trochlea is small and is of somewhat more pherical, lese colindrical, shape than in the existing members of the family.

The phelenges. It is unfortmate that in all of the epecimens in the collection the phalanges are in such a fragmentary state that only an incomplete aceome of them can be given, and some important questions must be left manswered for the present. The proximal phatanx of one of the median digits is short, slender and straight, and is rela-
tively buater hot more depresed than in (imix. As in Daphumes, the proximal artienlat surface is sommhat mon depply comeareand presents more obliquely toward the dorsal side than in the recent gemus. The distal trochlea likewise resembles that of Daphenus in having a decher median wrowe and in being more confined to the patmar aspect of the bome than in Cimis. which has the distal trochleat reftected well over upon the dorsal side of the phatanx.

Of the secomel phatanx only the proximal half is preserved in any of the specimens, and I have su far failed th fimd even a frament of the distal end. So far as can be judged from the material at hame, (imnotictis would appedr to have differed from Depheenus: in the very important respeet that the claws were not at all or only very imperfectly retractile. In Duphemes the asymmetry of the second phatanx is clearly displayed even in its proximal protion, white in C'ymotictis the proximal end is quite symmetrical and does mot preses any depresion or exabation upem the ulnar side. However, a certain resembance to Iophemmend diflerence from (tanis may be observed in the greater concavity and more marked separation of the two pits into which the proximal facet is divided, as well an in the wreater prominence of the beak-like process which rises from the dorsal margin and fits into the median distal groove of the first phatanx. In the absence of the distal end of the second phatanx, it cannot be positively stated that (Imodictis had lost (or had never possessed) all trace of the retractility of the claws, but it does not seem malikely that such was the case.

Mersurements.

Cappus, hejght in mealian line		0.006
hacalth		. 011
Metamatal i. Juneth		.01:
. \cdot - wathl of prosimal amb	. 01013 y	. 004
" " 6 " ristal erat		. 003
Metacarpal ii, wilth of proximal end		. 0035
	.0\%	. 0215
" - witth of proximal ent...	. 001	.0035
" " " 0 distal erul	.00.)	. 0045
Metamaral is, width of proximal emb	. 004	. 0035
	. 017	. 016
Whah of provilut $1 . \mathrm{ml}$. 004	. 004
d-Tal elul.	. 1004	.004.7

The ungual phatanx differs in several not unimportant details both from that of Dotuhumes and that of (ianis, and is, on the whole, intermediate in character between
the phatanges of the two generat. As compared with the ungual of Duphormes, it has a somewhat less concare proximal trochleat, smatler subungual procese, and a much hess extensive bony hood reffected over the base of the claw. Inderd, this hood is rudimentary and can hardly be said to exist att all. The phatanx in also slighty thicker and has more convex faces. Comparing this ungual with that of Cenis, we find it to be decidedy sharper, narrower and more compressed and to have a more deeply concave trochlea. In the modern genus tho bony hood is almost as well developed as in Incophemes.

Vll. The Hini Limb.

The peleis approximates more nearly to the modern canine type than does that of Daphemus, though still retaining a number of primitive characters. A conspicuons difference from the recent members of the family consists in the elongation of the postacetabular portion of the pelvis, which in Cimis is short, and in the consequent change of shape of the obturator foramina. The ilimm is fairly elongate and in shape is rather more viverrine than canine ; the peduncle is short and laterally compressed, but of considerable dorso-ventral breath. The anterion expansion of the ilium is less extensive than in Cemis, in which genus the ilium widens gradually to the free end, or crista, while in Camorlictis it attains nearly its full width immediately in fromt of the peduncle, and from this point forward the dorsal and rentral (or isehial and acetabular) borders purse an atmost parallel course. The widening is atmont confined to the ischial border, being very feebly marked on the acetabular border, and owing to this the shape of the ilium is much as in the modern Iterpestes. The ghteal surface dose not display the wide and simple concavity which is seen in Chmis, but, as in Inchluemes and IVinichis, there is a narrow dorsal depression and beneath this a convex ridge, hut this ridge is not so prominent as in the other White River genera which have been mentioned. The iliace surface is short and narrow, and the sacral surface is smath and placed far hack, so that the ilium projects well in front of the saterum. When viewed from atowe, the two ilia are seen to curve outward less, and to diverge lesin anterion y than in the modern dogs. The acetabular border ends in a well-marked tuberele and the ilio-pectineal process is also quite prominent.

The ischium is relatively long and its anterior portion is sender, but poteriorly it expands into a broad phate. This posterion portion is muth less devededly everted and depressed and ocoupies a more vertical position than in Cemix, and the ischial tuberosity, just as in Duphemus, is much more feebly developed tham in the existing ('midte. (On the other hand, the spine of the ischimm and the ischiadie noteh are much more distinctly shown and are placed farther behind the acetabulum than in the latter, though mot so far back as in Herpestes. The obturator foramen is narower and more elongate than in
(imes, and its anterion border is notheal her the obturator sulcus. The acetabulum is small, deep and nearly circolar.

The anterion or dexcending ramus of the puhis is long and slender and encloses with its follow a brom anterion pelvie opening. The horizontal ramms is proportionately longer and stonter and the symphyis is longer than in the recent dogs, almost as long as in the cats. The horizontal ramme is lose flattened and depressed than in the former, forming a prominent ridge along the ventral side of the symphysis.

The os penis may be comveniently described in comection with the pelvis. In none of the White River specmens that have fallen monder my observation is this bone preserved, but in the beatiful secimen of (6 :grismeritunes figured by Cope ('85, Pl. $L_{X X}$) it is present and in nearly its natural position, though Cope has omitted any mention of it in his deseription. Flower ('6:) has pointed out the characteristics of this bone in the three sections into which he divides the fissipede carnivores. The Aretoidea "all have a large penis with a very considerable bone, which is umally more or less curved, somewhat compressed, not grooved, dilated posteriorly and often bifureated or rather bilobed in front" (p.14). The cats and viserrines "all have a comparatively small penis, with a more or lest conical termination, and of which the bone is small, irregular in shape, or not unfrequently altogether wanting" (p.22). To this statement (Foptoproctu forms an exception, having a bone relatively long, "slender, compressed, slightly curved, not grooved or divided anteriorly, rounded and slightly dilated at each end, but thickes posteriorly" (p.23). In the hyenas the bone is wanting. The dogs resemble the raceoons, weasels, ete., in having a large os penis, "though the os is of a different form, being straight, wide, depressed and grooved" (p.26). In Cymodictis this bone is entirely different from that of the mokern C'mider; it is long, slender, compressed laterally and strongly curved and is slightly grooved upon the sides, but not on the dorsal border ; the anterior end is so broken that the presence or absence of a bilobation camot be determined. The resemblance in the character of the as penis between Cymodictis, on the one hand, and Comptoprocte and the mustelines, on the other, is an important fact, the significance of which will be disenssed later.

The bones of the hind limb proper considerably exceed in length those of the fore limb, more so than in Ctmis, though the difference is rather between the proportions of the radins and thia than between those of the homerns and femur.

The femur is slender and quite elongate and in essentials differs but little from that of 'temis. The head is small, of hemispherieal shape, and is set upon a somewhat longer and more distinct neck than in the modern gents, projecting more directly inward and less upward; the pit for the round ligament is deeply impressed but very small. The great trochanter is lower than in cemis and is separated from the head by a narrower,
shallower noteh, while the digital fonsat is relatively much smaller. The seomd trochanter occupies nearly the same position as in the modern genus, though somewhat more posterior, so that it is almost or entirely concealed when the femur is viewed from the front; it is of about the same prominence as in the existing dogs, hat rather more slenter and pointed. The intertrochanterie ridge, which connects the greater and the second trochanters, is rather better developed than in Cenis, especially in the larger and longerlimbed individuals. What may fairly be regarded as a remmant of the third trochanter is present in the form of a low, short, thickened and rugose redge, which is placed a short distance below the great trochanter. The third trochanter is all but universal among the Creodonta, and in rudimentary form it persists in many of the earlier and more primitive carnivores, such as Dimichis, but it is somewhat surprising to find it retained in so adsanced a genus as Cimodictis. It is true that in certain muscular and powerfal domestic breeds of dogs the third trochanter recurs, thongh it is not distinctly shown in the existing wild species of Canille.

The shaft of the femur is long, slender, arched strongly forward and slightly toward the internal or medial side. As would naturally be expected in so small an animal, the ridges for maseular attachment are not so prominent ats in the modern pecies. On the anterior face no ridge for the vastus externus muscle is distinguishable and on the posterior face the linea aspera is neither solong nor so prominent as in Cemis. The distal end of the femmer has quite a different appearance from that seen in the existing members of the family ; a difference which is principally due to the smaller size and hess prominent projection of the condyles and rotular trochlea. The trochlea resembles that of the viverrines in being shallow and in having the two borders of nearly equal height and length, and also in the absence of any distinctly marked suprapatellar fossat. On the other hand, this trochlea is relatively narrower and extends farther up the shaft than in the civets. The condyles are small, of nearly equal size and prominence, and are separated by an intercondylar space which is relatively narrower than in Cenis; small sesamoid bones were evidently, as in the existing species, attached to the proximal fires of the condyles.

The petelle is viverrine, or more accurately herpestine, wather than camine in character. It is a short, rather wide, thin and scale-like bone, of subquadrate more than ovate shape. The articular surface for the femur, in correlation with the shallownes of the rotular groose, is but slightly concave proximo-distally, and even less convex transremsely.

The thion, as in Comis, is of about the same length as the femur. Compared with the radius, the thia seems to be very long, hat that this is due rather to the shortnem of the radius than to the elongation of the tibia, appears from a comparison with the verte-

bral column, whence it becomes evident that all the limb bones of Cynodictis are proportionately shorter than those of (anis, and that the bones of the forearm are especially short. The tibis of "ynodictis differs from that of the modern comines in several particulars. The proximal condyless are of nearly equal size, but the external one projects much farther behind the plane of the shaft than in Canis, and on the distal face of the overhanging shelf thus formed is a facet for the head of the fibula, which is much larger and more distinct than in the recent gents. The tibial spine is bifid and very low, but the two parts are closely approximated, the condyles being less widely separated than in Canis. The cnemial crest, though stout and prominent, is much less so than in the modern forms, and the sulcus for the extensor longus digitorum is much less deeply incised. In its proximal portion the shaft is stont and trihedral, but for most of its length it is slender and subcylindrical, expanding moderately at the distal end; it has a double curvature, arching forward and outward. The various ridges which serve for the attachment of muscles are much the same as in camis and are, consequently, better developed than those of the femur. The distal articular surfaces of the tibia are intermediate in character between those of Daphemus and those of Canis. The grooves for the astragalar condyles are deeper and the intercondylar ridge higher than in the former, less so than in the latter, and the sulcus which in ('mis invardes the articular surface has not yet been developed. The internal malleolus is somewhat smaller than in Daphenus, but, as in that genus, it forms a heary, prominent ridge, which extends across the whole dorso-plantar diameter of the bone, while in Cemis the process has not half this extension. The groove for the tendon of the long flexor muscle is very distinctly marked and has more elevated borders than in the modern dogs. The distal fibular facet is somewhat larger than that of Comis and differs from it in having its principal diameter transverse instead of longitudinal. The resemblance in the structure of the distal end of the tibia between Cymodictis and Daphemus, on the one hand, and the primitive sabretooth Dinictis, on the other, is very marked and very suggestive, though Cymodictis has already begun to change in the direction of the modern Canida. Among living forms the tibia of Herpestes offers a close analogy to that of the White River genera which have been mentioned.

The forbla is relatively much less reduced than in the existing Canider, and both the shaft and the terminations are larger. The proximal end of the fibula is much larger and heavier proportionately than in Cemis, and though smaller than in Dinictis, it has a very similar shape; its principal diameter is the antero-posterior one, while transversely it is narrow and compressed ; the thickening of the anterior and posterior border is present, as in Diniclis, but much less conspicuous. The facet for the head of the tibia is large, suboircular in shape and proximo-lateral in position. The shaft, though
slender and delicate, is relatively very much less so than in Comis, in which genus the fibula has modergone a more extensive reduction than in Cignodichis. Another difference from the recent forms is to be foum in the fact that the fibula is not so closely applied to the tibia, the two bones coming into contact only at their proximal and distal extremities. The distal end is expanded and thickened to form a stont external malleolus, which is somewhat smaller than in Dephermes or Dimictis, but of much the same shape, and has on its onter side a deep sulens for the peroneus tertius temdon. The distal tibial facet is a narrow band, with its long diameter directed antero-posteriorly; obscurely separated from it is the larger, subcircutar facet for the astragalus.

Mensurements.

	No. 10493.	No. 11012.	No. 11381.	No. 11382.	No. 11432
Pelvis, length ..		? 0.0614			
"* breadth at aretabulum		.0:36	.03\%		
Ilium, length fr. acetahulum...		?. 033	.037		
" brealth of peduncle.		. 011	. 010	. 009	
" ${ }^{\text {" }}$ " ant. plate				. 013	
Ischium, length fr, acetabulum		.02\% ${ }^{\text {\% }}$. $0 \geq 26$	
Acetabulum, fore-ame-aft diameter		. HM	. 011		
Femur, length			.193)		.198i
- hesulth of puov. and.		.11\%	.120	015	. 016
" "6 "listal ellu.		. 11110	. 017	.014	. 014
Tilia, length.		(1)!	. 039		
'4 breatth of prox. end............015	.018	. 014	. 014
-6 thickness of prox. end ..		.01\%	.016	.01:	.01\%
.. breadth of elistal end.	. 0109	. 011	.012	. 0097	.009
Fibula, thickness of prox. end		. 010			
" " ${ }^{\text {c }}$ distal eml 01060		. 009		

Voll. The Pes (Plo XX, Fig. out).

The general apparance of the hind foot realls that of the viverines. The astragulus is quite like that of Dephlemus, but with some differences which tend in the direction of the modern C'mide, this bone in C'ymodictis standing intermediate in structure between the two extremes, though somewhat nearer to Dophemus. The proximal or tibial trochlea is but little more defply grooved than in the latter gems, and is therefore much shallower than in Comis, but its borders have the same cleamecht angularity as in the modern forms, instead of curving eradually into the facets for the thial and fibular malleoli. In Camis the tibial trochlea is extended over upon the dorsal side of the neck, but this is not the case in either of the White River canmes. 'The neck of the astraga-
las is relatively longer than in (emis or even than in I aphemes, resembling that of such viverrine arencra as Promboxume, hut is not directed so strongly towird the tibial side of the foot as in Iophlemos. The head with its eonvex navicular faceot is shaped much as in (amis, except that it is more depresed in the dorso-plantar dimension. In Derphere mes there is a distinct fieret for the enboid, which meets the navicular facet nearly at right angles; in (imotichis this cuboidal facet is very much smaller and sometimes it is altogether wanting, while in (benis the astragalus and cuboid are not in contact. As in Inphemms, the extermal calcameal fice is more oblique in position and more simply concove than in ('inmis, but the sustentacular face is different from that of both the genera mentioned; it agress with that of Japheruss in being shorter and wider than in the montern forms, but while in the former this face is separate from that for the navienlan', in ('ymonlichis, as in Cumis, it is confluent with it, but at a different point; i. co, more toward the tibial side. The interarticular sulews is somewhat deeper than in Daphernus, hut shallower than in (fmis. In the latter we find a third calcaneal facet which forms a namow band upon the fibulo-plantar side of the head and is connected at one end with the sustentambar faces. This aceresory calcancal facet does not oceur in either of the White River genera.

The coldonemm, like the astragalns, is more viverine than canine in general appearance and quite clowely resembles that of Poraloxurus, but the resemblance to Daphemus is cron more marked. The tuber is slender, compressed and proportionately much shorter than in (thmis; in the latter the tuber makes up more than two-thirds of the total length of the calcunem, while in Choolictis it is about two-fifths of this length. The fire emd of the tuber is moderately thickened and chab-shaped and is deeply groored by the sulcos for the plantaris temdom. As in Jophomas, the dorsal and plantar borders of the tulber are noarly parallel and its dorso-plantar diameter is thas almost uniform throughont, not increasing toward the distal end as it does in Ctomis. Near the distal end of the calleancom and on the fibular side is a very prominent process for the attachment of the lateral ligaments. This process is not present in the recent (omider, but is very conspiduons in the primitive camivores, such as Dimiotis and Daphemes, and it recurs amomy modern plantigrade and semiplantigrade forms, such as Irocyon, (ruto, Perotdommon, etc: Tsually, however, it is smaller and less prominent in the fossil than in the recent genera. The facets for the astragallus are somewhat different from those of both Inyplumus aml (bmis. In the latter the external astragalar facet is in two parts, one of which pursonts distally and the other dorsally, the two meeting at an angle which does not mache excend ! o ; in the former the whole facet forms one contimonsly coured conrexity. not dividen hy an angulation. In Cymolictis the two parts are distinguishable as in Cienix, but they meet at a much more open angle. The sustentaculum is of moderate
prominence and, as in Dopluemes, it carries a subcireular face for the astragalus; in the modern genus this surface is narrower and more elongate. The sustentaculum also agrees with that of Dequeremes in not being so obliquely placel, with referenee to the long axis of the calcanem, as in the existing members of the family. On the phatar side, between the sustentaculum and the body of the bone, is a groove, the sulens flexoris hallueis, which is better marked in Cumis than in either of the White River gentra. 'This is curions, in view of the fact that the latter possess a well-meveloped and functional hallux, while in the former this digit is reduced to the merest rudiment. In Cimis we find a third facet for the astragalus, a small plane surface distal to the sustentaculum, from which it is separated by a marow sulcus; continuoss with this acoessery facet, but at right angles to it, is a small face for the mavicular. Neither of these articular surfaces is to be found in Cymodictis. The facet for the cuboid, which in the recent dogs is almost plane and semicircular in shape, is quite deeply concave and of nearly ciseular outline.

The cuboid is relatively high and narrow, differing from that of (omis principally in the smallones of its tramerese and dorso-phantar diameters. The proximal surface is oceupied by a large facet for the calcameum, which, as in Inthemen, is much more conrex than in the existing dogs. The hook-like projection from the phantar side, which in Dophemus is very large and prominent and in Cemis is even more massive, in the present gems is quite inconspienons and is continuons with the projection from the fibular side which overhangs the deep tendinal sulens. The astragalar face is small and is comfined to the dorsal side of the cuboid, being much less extensive than in Intphenms. The facet for the navicular is not so prominent as in Cemis or even as in Dophomus, and is contimons with that for the ectocumeiform. The distal end of the couboid resembles that of Daphemes in having quite a concave facet for the head of the fourth metatarsal, while that for the lifth is lateral in position. In Cemix, on the other hand, the surface for mot. iv is almost plane and that for mot. v occupies an entirely distal position ; the pantar portion of the face for mot. iv is much narrower than in the two White River genera, and has thes quite a diflerent shape and appearance.

The navicular is almost a miniature enpy of that of Daphemme and presents the same differences from that of Conis. Feen from the proximal end, it is of more regulaty oval shape and is less contracted on the plantar side than in the modern gemus. The position of the navicular in the tarsus is likewise different. In Cenis this bone has been somewhat rotated, so that its principal diameter is the dorso-plantar one, and on the plantar horder it has been brought into contact with the calcamemm, for which it hat acquired a special faced. It is of interest to observe that a similar hat more extensive rotation of the tarsal elements has been carried out in the horses, as Ratimeyer has shown. In the White River genera, on the other hand, the principal diameter of the
navicular is transerse, and owing to the elongation of the neck of the astragalus, it is (amried so far distally that it can have no contact with the calcanem, the astragalus articulating with the cobmid. The astragalar surface is concave, but somewhat less so than in C'mis, and the facet for the cuboid is small and confined to the dorsal moiety of the fibular side. The distal end displays the usual facets for the three cuneiforms, which do not require any particular deseription.

The entocuneiform has much the same shape as in Ctenis, elongate in the proximodistal diameter, but very narrow and much compressed. The navicular facet is relatively smaller than in the modern genus and there is no such distinct facet for the mesocuneiform. The distal surface, for the head of the first metatarsal, is no wider but much more deeply concave than in Comis.

The mesocunciform is a minute bone and, as in the fissipede Carnivora generally, its sertical or proximo-distal diameter is much less than that of the adjoining ento-and ectocuneiforms, forming a depression or recess in the distal row of the tarsus, into which the head of the second metatarsal is tightly wedged. The only articular surfaces visible on the mesocuneiform are the proximal and distal, for the navicular and the second metatarsal respectively.

The ectocuneiform is much the largest of the three. Compared with that of Canis, it is narrower in proportion to its height and is also less extended in the dorso-plantar dimension, but the progecting process from the plantar surface is even more prominent, and is more thickened and club-shaped at the free end. On the tibial side is a minute facet (not double as in (cmis) for the side of mo. ii. The facet for the cuboid is much smaller than in the modern dogs and is confined to the dorsal border, while at the inferoexternal angle of the bone is a mimute facet for the head of mt. iv, which is not represented in Cheme. 'The distal end of the ectocuneiform is taken up by a facet for mo. iii, which is less concave and has a shorter plantar prolongation than in the modern genns.

The metutarstr: consists of five well-developed members. Unfortmately, there is not a single complete metatarsal preserved in comection with any of the specimens, but enongh remains to show that these bones were much longer and stouter than the meta(arpals, and that the disproportion in size and length between the fore and hind feet was much greater than in the recent dogs and quite as great as in many viverrines, such as Merpustes and Puradocimus or as in Daphemus.

The first metutarsel is sufficiently well preserved to indicate that the hallux was well developed and functional, though somewhat more reduced than in Daphemus, or in *uch recent viverrines as (imogule or Perodocmus. The head bears a narrow, convex facet for the entocunciform and uron its tibial side is a large, rugose prominence for the attachment of the lateral ligament. The shaft is very slender and is arched slightly
toward the fibular side of the foot, making the tibial border somewhat concave. The length of the bone, as already intimated, is not determinable, but the portion preserved in one specimen is nearly as long as the entire tifth metacarpal of the same individual.

The secome metutersel is much stouter than the first and more slender than the third. The head is very narrow, being slightly excavated on the tibial side. Owing to the shortness of the mesocumeiform, the head of mo. ii rises above the level of mot. i and iii and is firmly hed between the ento- and ectocunciforms, though there are no such distinct lateral facets for these tarsals ats we find in Canis; a stout prominence occupies the plantar side of the head. The shatt is slender and of owal section, not having acquired the trihedral shape characteristic of the recent dogs.

The third metatarsal is the stoutest of the series; the head is broad dorsally but very narrow on the plantar side, where there is a large, projecting process, more prominent than in Camis. The facet for the ectocunciform is consex (in the recent dogs it is slightly concave) and oblique in position, inclining downward towat the tibial side. Deep sulci invade the head on both sides; on the tibial side the sulcus is narrow, but that on the fibular side is hroad. A deep pit on the fibular side of the head receives a corresponding prominence from mt. iv, and an additional facet for the same metatanal is found on the plantar progection, so that the two median metatasals are very firmly interlocked. The shaft, for most of its length, is of transersely owal section, very different from the squared, prismatic shape seen in (amis, though an approximation to this shape occurs in the proximal portion of the shaft, where mo iii and is are closely appressed. The distal end is brodened and antero-posteriorly compressed; the trochlea resembles that of the corresponding metacarpal, save that it is larger and relatively somewhat lower.

The fourth metutursal is of nearly the same thickness as mt. iii, though a trifle more slender. The head is narrow and the facet for the cuboid is slighty convex in both directions; the plantar extension is neither so broad now so prominent as in Gamis. On the tibial side is a rounded protuberance, which is received into the depression already mentioned, in the head of mt. iii, while on the fibular side is an excavation for a prominence on mot. v, and proximal to this excavation is a narrow but well-defined facet for the same metatarsal. Very little of the shatt is preserved, and this proximal portion has much the same tetrahedral shape as in the recent dogs. Doubtes, however, the distal part of the shatt assumes a transversely oral section, as does that of mo. iii, though the digits of the pes evidently diverge less distally than do those of the manns.

The fifth metatarsal is entirely missing from all of the specimens, so that the interesting question regarding the reduction of the external ascending process cannot be answered.

The phenten!es of the pes do not differ firm those of the fore foon, except in their comsiderably greater size.

Hecastremonts.

	No. 10493.	No. 11012.	No. 11381.
	.101		
Gakameum, length	.0195	020	
- length of tuher .	.012	.01:	
.- dorso-plant. diam.	. 0107	. 008	
Astragalus, length 013	. 013	. 01.4
". width of trochlat	.005	. 0105	006
length of neek.	. 006	. 006	. 006
- width of head	.007	. 007	. 005
Savicolar, height	.10:3		
. width	. 046		
Eetoruneiform, heisht...	. 0045		.
- width dist. cmul	. 00 \% 5		
Matatanal i, "idth prox. emol	. 1004.5		
." ii. ." .6 "	.1003	.103	
" ini, ." "	. 1005	. 005	
iii, width dist. cmul...		. 005	
- is, widh prox. chil	, Mr: 0		

LX. Restoration.

The eencral appearance of the (iynodictis skeleton has little about it to suggest (anine affinitios, but has some resemblance to the civets and especially to the herpestine section of that family. This resemblance is not merely a general one of outline and proportions, but may abo be traced in many of the details of structure. The small head, with its elongate and narrow cranium and short, topering muzze, is of strikingly viverrine character. So is also the neck, which is relatively long and stout, the vertebra having heavy centra and well-developed processes. The resemblance to the civets continues into the thoracic region, where the vertehre are small, especially in the anterior portion, and have short, slender newral pines. The thorax itself, with its slender and moderately curved ribs, is narrow and comprested, as in the Camivora generally, while the prominent and compressed manbrium has a somewhat viverrine appearance. The lumbar region is lomg and is strongly curved upward; the vertebre are much elongated, with stout depressed econtra, very long, slender and anteriorly directed neural spines, which are not like thone of modern dogs or civets and most resemble the spines of Lymx. The transferse processes are likewise peculiar in their length and slenderness. The tail is unlike
that of the modern dogs, being much longer, stouter and in every way better developed; it was not, perhaps, quite so long proportionately as in Ihepuspers, hut nearly su. 'This, however, is a primitive feature, which is common to the greater part of the carlier carnivores and ungulates, and is even more conspicuous in Intphents than in '!gmodiatis, while the White River Macharodonts, Dimetis and Moplopleonets, have very long and maswive tails.

The limbs, thongh not so long proportionately as in the recent dogs, are much more so than in the John Day species, (: geismerienus, the hind legs being expechally elongate. The seapula is not at all canine in charater, being relatively rey large amb having the brod hade and irregularly carsed coracod border of the viverrines; the great length of the acomion the the unmatal size of the metacromion are peculiar. The humerus is short but quite heary, and with its low trochlea, prominent deltod amel supinator ridges, and large epicondyle and eppoondylar foramen, has an exeedingly viserine appearance. The uha and radins are relatively whot and shender, and the diseodal head of the latter shows that the power of rotating the manus had been but little diminished; the great stybid process of the radius is very characteristice. The capus is low and the metacarpals are exeentingly short and weak, resombling in their proportions those of Pemelocmers. The phatanges are elongate and the claws sharp and compressed.

The pelvis has a viverrme appearance in its shape and in the elomgation of its posterior portion, while the of penis resembles that of the mustelines in size and eurvature. 'The femur is long amd the thia is somewhat lomger than the femme, bearing much the same relation to that bone as in Comis, while the fibula is much stomer than in the moderngents. The pes is far larger in all its dimensions than the manns, the difference in size between the two being much greater than in Cimis. It is often exeredingly difficult to determine from the bones alone whether a given animal wats phantigrade on digitigrade in gait, but from the resemblance of the limb and font bones of ('ynotidis to these of the civets, it seems very probable that the fomer had a similar semiphatigrade gat.

The John Day precies, (6 geismerimens, is consideraby larger than the White liver forms, but resembed the latter in proportions. (ope says of it: " Jithough the skull and pelvis of this species have about the size of these of the fishere, the vertebre and humerus are more slender and the anterion foot is decidedly smather. It is probable that
 portions rather than a Cemis. It stood lower on the legs than a fix and had as slemder a body as the most 'vermiform' of the wearels, the elongation hemen mos marked in the region posterior to the thomx. The tail was evidenty as long is in the fobmemoms. Its carnivorons propensities were as well developed as in any of the epeceies mentioned,
A. P. S.-VOL, Nix. 2 y y
althongh, like all other ('mider of the 1 sower Miocene period, the carnassial teeth are redatiedy smaller than in the recent types" ('S5, p. 929).

The White River peecies of this genus are probably two in number.
C'ruonctis ghegabius Cope.
Syn. Amphicyon yrueilis Leidy (mom Pomel), Proc. Aced. Nat. Sei. Phile, 1856, p. 90 ; 1857, p. So ; Ex. IIamm. Ftumu Dak. and Telri, p. 36. Amphicyon angustidens Marsh, Amer. Joum. Nei. and Arts, Bel Ser., Vol. II, p. 124. Camis gregarius Cope, Ann. Rept. L. S. Geolog. Suri. Terrs., 1873, p. 506. Galecynus gregarius Cope, Tertiary Vertebrata, p. 916.

This is the species which has been described so minutely in the foregoing pages. It is one of the commonest White River animals and is very much more frequently met with than any of the contemporary carnivores. Despite this abundance of individuals, well-preserved pecimens are rate and even these consist mostly of skulls only. As will he seen from the tables of measurements, the different specimens vary little in size or in the proportions of the varions parts of the skeleton. One apparent exception to this statement may be formd in the case of No. 113s1, which is remarkable for the length of its hind limb, but this probably lelongs to the following species :

Crenis lippincotticnus Cope, A'gnopsis of I'entebrate Chllected in Colorado; Miscell. Publ.
 p. Sot. C'elecymus lippincottiomu: Cope, Tert. Vert., p. 919.

The status of this species is still a matter of some uncertainty; Cope, who established it upon mandibular rami, describes it as having "dimensions half as large again as in C!. gpeyenius," and adds: "Unfortmately there is not enough material in my hands to render it clear whether the specimens represent a distinct species or a large variety of the ("grequeties" (85, p. :20).

Anong the specimens deseribed in the foregoing pages is one (No. 11381) in which the limb bomes decidedly exceed in length and thickness those of the other individuals, while the cramium is but little larger. Probably this specimen should be referred to C. lippincottimus, but in the absence of teeth the reference can be only provisional.

In the John Day formation (bmodictis is represented by more numerous and more varied species than in the White River beds; from the former horizon Cope has deter-

Still another species should be mentioned in this comnection. In the American Musemm of Natural Listory, New York, are the remains of a small comod amimal from the Uinta beds, which may bolong to C'montietis, or if not, whould be referred to some closely allied gemus. It is important to observe that in the Uinta stage (uppermost Eocene or lowest Oligocene) we find that the two canine sorios, represented in White River times by Inophenus and ('ymmlichis, had already been estahlished.

The Puylogevy of the ('inide.

It seems probable that the forsil genera of this family already known are suflicient to indicate to us the main outlines of its phylogenetice history. The problem of reconstructing the series is, howerer, ohscured by two circumstances; first, the varicty and multiplicity of nearly allied genera, the mutual reationships of wheh are very complex and diffieult to disentangle; and in the second place, by the fact that only rately do we obtain satisfactory material of any of the genera. Wost of the forms are known omly from the skull and teeth, and the skeleton has. so far, been form in hut few of the species. Ctmolictix, Dephemes, Temoncyon and Ethrotom are now known from more or less complete skeletoms, but we shall need th loarn far more than we know at present concerning the structure of the other gemera before we can reach a solution of the many problems of canime phylogeny.

Before taking up the discossion of the phylogenetie problems, it will he convenient to establish the order of geological sucension in which the varions gencra make their appearance. We have seen that in the ('inta there appear to be two distinctly separated canine series, one of which is represented by? Jioneis and the other by a genme which is very closely allied to, if not identical with C!modictis. The former series would seem to be continued inte the White River hy Daphomes and the latter, of course, by Cynodictis. The latter gemus may well prove to be of Old Word origin, for in the European Oligocene it attains swh a variety and fullose of develoment as it never reached in America, although, on the other hame the American moodont geme Mimeris. from which Cimotictis probably tow its origin, has not yet heen found in Europe. In the John Day stage the camine phylum moderwent an extrandinary expansion. Duphermus persisted, but is represented only by a single small species, I). chiprigermes, while the series branched out into several distinct and more or less epectalized genemat, such as Temoneyon. Hypatemnodon, C!yodesmmes, Enhydrocyon, and perhaps even the !ittle known Myenocyon. No new genera of the '?gnotlidis series have yet been detected, but that genus itself beame differentiated into many more secoes than ocem in the White liver, and some of these may, on better knowledge prove to be generically distind. On the other hand, Ofigolmis probably represents, as schlosser has suggested, an immigrant
 to the Pliocone Simmeno. The dogs of the Loup Fork, with the exception of the aberrant Elurodom, are very imperteetly known and the remains of them which have been finud are not, acording topresent knowledge, generically separalbe from Cemis, though it hardly semos pobable that the momern gemo had actually heen differentiated so early as tho upher Mincene and we may regard it an extremely likely that these supposed represontatives of Cinis will eventually prove to belong to more primitive genera. None of the forms which have hitherto been found in the Loup. Fork beds can be referred to the Cymotictis line.

The mutual relationships between the two canime series, which are already so well distinguished in the Linta, are quite ohsenre and puzzling, although there is nothing to forthid the assmption that both erries converge to a common uncestor in the Bridger, perhags the genus. Jimeis. The ('ymmflimeries, when we first meet with it, is decidedy: more adranced than the other phylum, as is shown in the development of the skull, the reduetion of the dentition, the chancter of the limbs and feet and the digitigrade gait. Contiming through the White River age and, so far as North America is concerned, attaining its maximum of development in the abmonance and variety of its species in the John Day, the line apparently disappears and can be traced no farther. Whether the series actually died ont at the end of the dohn Iay, or whether it continned farther and posiseses representatives even at the present time, are questions which cannot yet be definitively anwered. A(hlosser ("Sh, p. 247) hats suggested that some of the pecies of Cymodictiss may, perhals, he of phylogenetic significence in the canine stem, but if so, they can hardly bee placed in the thood series, which apparently has no phace for them. M. Bomle ('S: , p: : 2 1), in an article upon the Pliseene (tonis megumustoides Pomel, comes to the condusion that the modern (buide are diphyletic, and have arisen by a process of convergence, the thonds and the bears being divergent groups derived from Amplicyon, whik the alopecods and viverrines are descended from rynodictis. In discussing the affinities of the Pliocene form boule says:
"La description précidente nons montre que le fossile de Perrier se rattache de plus pres anx Remards qu’ aux antres représentants actuels de la famille des Comidés. Par son erâme, le Cimix memmemstuides ressemble beatucoup le Renard de nos pays. Par la forme de sa mandibule, il se phace atu contraire pres des Renards américains (Canis
 australe. (is experes, motamment la derniore, sont regardées par tous les auteurs comme des formes primitives.
"Tout an ratifiant ce premiex rapprochement, la dentition presente des caracteres partiouliers gut nons retmurons en grande partie dans les Cymotictios et Cephalogale du Mineme (p. : $2=2$).
"Les belles récherches de M. Fillon nous ont révélé la richesse en experes do ees
 tis et les Cophelogule avaient la formule dentaire des Chiens antuels, mais leme dente presentaient un aspect particulior qui a valu ì ces amimanx fossiles le nom de Chiens
 de M. Filhol sur les Phosporite du (Duerey, j’ai été frappé de retrouser, comme paremío
 mastoictes" (p.82s).
" It semble done que les Renards atuels représentent une branche emane du buisson touffer des Cimoulictis, duquel se serait également detachée la branche des Viverridés. Je suppose que lorsu' on combaîtrat suflisament les membres des diverves expéces de (!ymodichis, on trouvera des formos de passage allant d'un cotóanx mombres des V'iverridés et d'un autre cote anx membere dos Renarels.
"Si ces considerations sont exates, les Chims ont une origine differente des Renards. Les Ampleicyons représentent les ancêtres communs des Guse dos Chiens, comme les Cynodictis représentent les ancêtres communs des ("ivettes ot des Renards" (p, : : Pe:) .
M. Bonle's argument as to the derivation of the foxes fiom 'ymodietis is mot a very convincing one and is open to several obvious oljections. In the first phace, M. Bunbe does not define the sense in which he uses the term fore: it is evidently not the same ane lhax-
 them as typical though primitive thooids. Ma. Bonle dews mot sily whether (: megtomestoides possessed a frontal simus, hut from the statement that "le frontal cat willant, a sur-
 mestoveds is not an aloperoid, but a thooid. The presence or ahsence of frontal simuse and the shape of the cerehral foxsa are the only diagnotie ehameters which Huxley domd find definitely distinguishing the two canine series from eath other. In the secomd pate, the resemblances in tooth structure between (ignolichis and C'enis meqummstomes, upon which M. Bonle pates such emphasis, are in themselves of no sreat value, because the resemblance of the latter epecees to Cephetegule is exen greater, and Cophelugule, as Schloser has shown, probahy belonge in a totally diflerent line, which has no existing representatives. In any event, the gap between the Pliocene and oligocene forms is still wo wide that no determination of the taxomomio value of their resemblane and differences cent yot be made.

Again, it is highly improbable that the viverrimes can be desededed from Cimmetios, for the latter, thomghavig eertain marked resemblances th the divets, is in all essentials of structure distinctly a membere of the Ctenider, and is no more ancient than certain unmistakable viverrines. Indeed, the genns Fioforn itself is reportenl from the
upper Focene of Europe, orebrring in the same horizons as those in which Cynodictis first appears. For similar reatons, it is very difficult to believe that Amphicyon can be the ancostor of the thooids, for that genus has already begun to become differentiated in the direction of the bears and is contemporary with or even younger than certain American genera, wheh as Temnoryon and cymodesmes, which are undeniable thooids.
M. Boule's hypothesis involves some rather startling consequences; if true, we shall be forced to conclude that the two series of modern Cemide have been separated ever since the close of Eocene times and that they had no common ancestor nearer than the middle Encene or Bridger stage. This conclusion would imply such an extreme and remarkable degree of parallelism or convergence as has hardly been believed possible, an exact parallelism in all parts of the dentition, skeleton and soft parts, terminating in almost complete identity of structure. Indeed, many systematists regard most of the modern foxes and wolves as belonging to the single genus Cemis, and Huxley speaks of the differences between them as being so slight, that a generic separation can be justified only on the grounds of convenience. Is it conceivable that two series of mammals which were already separated in the Eocene should have converged into what is practically a single gemos?

Unlikely as it may appear, I am inclined to believe M. Boule's hypothesis concerning the relationship of Cynolictis to the alopecoid is not to be summarily dismissed, but that it may eventually prose to be well fommed. It is certainly a suggestive fact that ('ynodiche, like the foxes, is deroid of any frontal simns, while all of the other American genera, from Doplumus onwand, have well-marked sinuses, as in the wolyes. Furthermore, whatever conclusion we may reach with regard to the single or dual origin of the Canida, there is much reason to believe that such extreme cases of parallelism and convergence have occured among mammalian phyla and that they may be more frequent than is commonly supposed. One very striking example is that of the true cats (Helime) and the sabre-tooth series (Ihechairodontine) originally pointed ont by Cope and elaborated in much detail by Adams (96).

Unfortunately, complete demonstration is lacking in this very extraordinary case of parallel development, because the early stages in the phylogeny of the true cats have not yet been recovered, but the successive genera of the Machairodonts are fairly well known, and they form a commeded series. None of these machairodont genera, not even the earliest and most primitive of them, can be regarded as ancestral to the true cats, for withont exception they all display the characteristic and ummistakable features which place them in the sabre-tooth series. The more primitive genera, such as Dinictis, possess a dentition which is but slightly modified in the direction of the eats, and cranial foramina resembling those of the early dogs in the presence of an alisphenoid canal, the separa-
tion of the condylar formen from the foramen lacerum posterius, ote; the femur has a third trochanter and the humerus an extremely prominent deltoid ridge ; the feet are plantigrade and pentadactyl and, like those of many of the viverrines, they are supplied with partially retactile and very incompletely hooded claws. In all probability these structural characters ako ocenred in the ancestral Felime, but what distinguishes even the earliest Machairodonts is the clongation and eompression of the upper canines, the reduction in size of the inferior ones and the development of bony flanges from the rentral border of the mandible for the protection of the superior tusks. From such beginnings the sabre-tooth series may be traced, with various divagations and side branches, to the Pleistocene Smilodon, which in all parts of its structure is extraordinarily like Felis, the only important differences consisting in the dentition (which is of similar type) and in the modifications of the skull, which are necessarily correlated with the mormons enlargement of the upper canine tuks.

Seeing, therefore, that the machairodont series is well-nigh complete and that none of its known members is at all likely to prove ancestral to the true cats, there can be little reasonable doubt that the remarkably chose resemblance which we observe between Felis and smilodon is not directly due to their relationship, but has been independently acquired in the two series and is the outcome of a parallel couse of development, continued from the Oligocene to the Pleistocene. If this be true, there can be no it primi ground for denying that the same phenomena may have been repeated in the dogs and that Boule's suggestion concerning the derivation of the alopeeoded from Cimontictio may possibly prove to be correct. In this case, however, the final identity of the two series is even more striking tham in the cats and Machairodonts; to verify the suggestion, it will be necessary to recover the missing links of the abopecoid phylogeny and th show that it has followed a course parallel to but independent of that of the thomids.

Another alternative posibility is that the foxes became separated from the principal canine phylum at a comparatively late date, and that, consequently, (imodiofis and its allies represent hut an abortive side-bratheh from the main stem. That the separation is of considerable antiquity is shown by the parallel armement of the two series to which Huxley has called attention. In both wolves and foxes we find eperies with miorodont and macrodont dentition, with sagital erests and lyrate sagital areas, with hohate and non-lobate mandibles. So far, at least, we are abmost certainly dealins with independently acquired characters. From the standpoint of present actual knowledge it is more probable that the separation did not take place before the end of the Mineene than that it had already been aceomplished in the Eocene, thongh this andusion involves the admission that Cymolictis had anticipated the foxes in quite a remarkable way. While very far from denying the possibility of such convergence ats is implied in Boule's
hyputheis, I think it should not be aswmed in a given case except upon the elearest pridence. Whichever of these alternatives be true, it is, in any event, probable that the alopeconds are not of American origin.

Still a third possible solution of the problem concerning the mutual relationships of the wolves and foxes is that Cymodictis, or some similar form, is the common ancestor of both lines, and that the supposed early thooids, such as Dephenus and Cignorlesmus, are deroid of permanent phylogenetie significance. This is decidedly the least probable of the thee alternatives, for the thoods of the American Oligocene and Miocene seem to form a truly commeden weries, in which Cynodictis has no place. Further, this view involves the assmption that the supposed thooids hase independently run at course parallel to that of the true thooids and thus encounters the very difticulty which it was intended to aroid. The conclusion which we reach is, therefore, that the thooids are probably of American origin and that the alopecoids are a branch which the wolf stem gave off after eertain of its representatives had datablished themselves in the Old World.

The thooid gencalogy itself is by no means free from difficulties. In a former paper (': 4), I sugested that the line begins in Dophomes of the White River, and is continued by the John Day (thoolesmus, but now that we have learned the remarkable characters of the skeletom, expecially of the limbs and feet, of the former genus, this view no longel appears so simple and natural, and its acceptance carries with it some far-reaching and unexpected consequences. In particular, it might be objected to this view that the peculiar differentiation of the feet in Dothermus would exclude that form from any place in the direct canine phylum, for it seems it priori unlikely that the dogs should first have acquired the power of retracting the claws and should then have subsequently lost it. Indect, may morphologists are inclined to deny altogether the possibility of this method of evolution. In the present state of knowledge, however, such a denial is at least premature, and there is a considerable borly of evidence which goes to show that it does not properly apply in the case of the camine phylum.

In the first place, the John Day genus Trmnocyon, the asteology of which has been very fully described by Eyerman ('Ot), appears to be a direct descendant of Dapheuse, with which it agrees in the essentials of structure, though, at the same time, it displays many maked changes and adrances. One of the most striking of these changes in the later form is in the great elongation of the limbs and the assumption of a digitigrade wait, both limbs and feet quite closely approximating those of the modern Cenide. Fet (xem in Temnoeyno a reminiseenee, as it were, of the partially retractile claws of Dequeremis may he ohserved in a certain asymmetry of the second phalanges of both manus and pes, which are slightly excarated on the ulnar and fibular sides respectively. While Daphoemus was a short-limbed, plantigrade or semi-plantigrade form, which, in all
probability, was not cursorial in habits, Tembocyom, on the other hand, was undoubtedly cursorial and probably assentially resembled the modern wolves in apparance and habits. In this change to a digitigrade gait and cursorial habit, it seems quite reasomable to suppose that the mode of using the claws should have been changed likewise, the feet being used almost exclusively for purposes of locomotion and the claws losing their importance as weapons and grasping organs. Under these circumstances the power of retraction would become superfluons and tend to disappear, although, as we have seen, temocyon retains recognizable traces of the structure which permits retraction of the claws. It is true that Temmorymen itself is not in the direct line which leads up to the modern Comide, for the heel of the lower sectorial and the whole of ma have become trenchant through the loss of the internal cosps, a curious specialization; but, on the other hand, there is no reason to suppose that it differed in any other important respect from its contemporary (iymoresmus, which appears to be a member of the direct phylum.

In the second place, a similar lose of the power of retracting the chaws has almost certainly occurred among the Felide. The hunting leopard or cheetah (Ciyncturus) has acquired something of the proportions and appearance of the wolves, having very elongate limbs and feet and a romning gat which is deseribed as quite different from that of the ordinary cats. Comparing the phatanges of Cymelurus: with those of Felis, some marked differences are at once apparent; in the lateral digits the second phatanx is quite symmetrical and is not exalvated on the ulnar (or fibular) side; the exaration is distinctly shown only in the third digit and is much les marked in the fourth. The bony hood of the mgual phalamx is much reduced, leaving more than half the length of the phatanx exposed, and the subngenal process is much smaller than in Felis. The tarsus, in fact the skeleton of the entire pes, has a canine aspect, and the retractility of the claws is very partial and imperfect. Now, there can be little doubt that Cymelurus is not the remmant of a very ament gromp, given off from the feline stem at a time when the power of retracting the daws had been but partially attaned, but that it was derived from ancestors which differed little from Prelis. If such a transformation could take place among the cats, there would seem to be no sood reason for denying that it might also oceur in the dogs.

Unfortumately, the phylogenetic history of the dogs is mot made clearer and more intelligible by reason of the new material of Duphemes, which has been deseribed in the foregoing pages, and which raises more problems than it solves. I am inclined to believe, however, that Iaphemus should still be given a place in the canine phylum, for the differentiation of its limhes and feet is hardly of that radical kind which would prevent a subsequent change in the trend of development, and its many resemblances to the early Machairodomis are, at least in part, survivals of primitive conditions, ser-
A. P. s.-VOL. XIX. \because \%
cral of which, like the shape of the radius, recur in Cymodictis. Tending to the same conclution is the fate that what little is known of the structure of the creodont Minces is of similar composite camine-feline character and it is to that creodont family to which most of the lines of fissipede (arnivora appear to lead back. It may be hoped that the prohlem will recerive its definite solution when we shall have recovered the as yet missing or very imperfectly known dogn from the Uinta, uppermont White River and lowest dohn Day formations, and are thus mabled to trace the successive changes step by step.

Assming, then, an probable that Daphenus should have a place in the direct canine phylam, the larger question at onee arises: What was the relation between the early members of the Cevider and Fellder, and of both of these groups to the other fissipede familise? It seems to be a comparatively rare phenomenon among the mammals that parallelism or convergence of development should be manifested in all parts of the structure of two independent lines, though that this may happen is shown by the case of the Machairolonts and felines, to which reference has already been made. Usually, however, parallelism is displayed in a few structures only, such as the dentition, or the feet, or the vertenae, and the more widely separated any two phyla are at their point of origin, the less likely are they to develop along similar lines. It will be sufficiently clear from the foregoing deseriptions that the resmblances between Daphemus and the more primitive Machairodonts, such as Diniclis, are not only execedingly close, but that they recur in all parts of the skeleton. The skull, the vertebral column, the limbs and the feet are all so much alike in the two series that, in the absence of teeth, it is often very difficult to decide to which of the two a given specimen should be referred. Such close and general resemblance is prime fucie evidence of relationship, even though it should have been independently acquired, because paralletism is much more frequent between nearly allied than between distantly related groups. In the present instance, however, there is no reason to infer that the resemblances were separately attained; on the contrary, the evidence now available seems to firor the conclusion that the dogs and cats are derivatives of the same Eocene stock. It camot be pretended that this conclusion is, as yet, a well-established one, nor can it be so extablished until we recover the missing links of the canine and foline gencalogies. Duphemus may eventually prove to be merely an abortive sidehranch without phylogenotic signifieance, thongh this seems molikely in view of its relationship to the John Day dogs. On the other hand, when we have learned more of the Uinta dogs, it may appear that all the many resemblances of Dophemes to the Machairodonts have been separately attained; but existing evidence does not faror this suggestion either. It seems excedingly likely that the dogs and eats are more closely related than has hitherto been lelieved and that they were derived from a common middle or late Focene progenitor.

On the assumption that the dogs and cats are thas quite closely connected, what cam be said concerning the relations of the other fissipede families with the greups and with one another? Of the derivation of the Procyonide nothing is yet known; the family may be traced back into the Loup Fork without finding essential changes, but beyoud that period we lose track of it altogether. The position of the bears and hyanas is reat sonably dear, the latter being late derivatives of the viverimes and the former of the dogs, neither family making its appearance until long after the other fissipede groups had become clearly differentiated. The limeridee have a great many characters in common with both the carly dogs and the early Machairodonts; almont all the structural features which are found in both Daphemes and Dinictis recur also in the viverrines, and the latter again have many points of similarity to Cignodictix, as hats often been remarked. 'That the viverrine features of C'ynodictis are more numerons and apparent than those of Daphenus is largely due to the small size of the former, which agrees much better with the stature usual in the recent viverines. The viverrines thas seem to be derisatives of the same Eocene stock as that which gave rise to both the dogs and the cats, though, perhaps, they are more nearly allided to the latter than to the former, and apparently they have departed less from that primeval fissipede stem than has either of the other families. Aside from the peculiar character of the auditory bulla and the reduced number of the molar teeth, such a genus as Viceror would seem to differ hat little from the hypothetieal Eocene ancestor of all the fissiperle families. The Mustelide represent a quite specialized branch of the fissipedes, but between its earlier and more primitise members and the corresponding representatives of the viverrines are so many structural resemblances that schloser does mot hesitate to derive them from a eommon stem. An interesting and significant example of this commmity of chamaters among the early representatives of the different lisipede families is given by the os penis of Cynodiches, which resembles that of the mustelines much more closely than that of the modern dogs. This probably indicates that all of the earlier fissipedes had this bone shaped very much ats in the existing mustelines, which have thus retained the primitive form, while in the other families it has become much modified in shape and size. This would explain the apparent amomaly of the very large os pemis of coaptoprocte which is so different from that of the other viverines. Acoording to this way of lowking at the subject, there was a middle Eocene group of tle h-caters, perhaps the creodont family Miacide, which rapidly diverged into four principal branches, the cat-, dogs, viverrines and mustelines, all of which families were established in the late Eocene or early Oligocene, and to these should perhaps be added a fifth family, the I'rorymidne, though of this we know nothing definite. The Fiswipedia are thus probathy a monophyetice rather than a polyphyletic group, which was derived from as single creodont family.

It is exceedingly diffecult to umravel all this complicated mesh-work of similarities and definitely to distinguish those characters which are due to genetic relationship from those which are merely phenomena of parallelism or convergence. But the important fact remains that in the late Encene and eary (Oligocene all of the families of fissipede Comivora which had then come into existence were very much alike and in all parts of their structure resemblat one another much more closely than do their modern representatives. They are obvionsly converging back to a common term, and the only quesfion is what that common term was and whether we are to look for it in the middle or the lower Eocene. It must be reiterated, however, that natural and probable as this conclusion appears to be, it is only tentative and camot be demonstrated until the successive phylogenetic stages of each family are much better known than they are at present.

SUMMARE.

1. Dephemus, so named in 1853 by Leidy and afterwards referred to Amphicyon, is very different from the latter and an entirely distinct genus.
2. The dental formula is: $\mathrm{I} \frac{3}{3}, \mathrm{C} \frac{1}{1}, \mathrm{P} \frac{4}{4}, \mathrm{M} \frac{3}{3}$; the premolars are small and simple and are set well apart in the jaws; the sectorials are small and primitive, especially in ? D. Dodyei, and the molars relatively large, most so in D. retus. The dentition is more like that of the creodont fimily Mincide than of the typical modern dogs.
3. The skull is of a very primitive character, with short face, very elongate cranium and high sagital erest; the cranial cavity is of mall capacity and the postorbital constriction is placed far back of the eyes. Latrge frontal sinuses are present.
4. The occiput is low and broad, with very prominent crest ; the paroccipital processes are short and hunt and are widely separated from the tympanic bullx.
5. The auditory bulla is minute and does not fill up the fossa, exposing the periotic ; it probably represents only the anterior chamber, the posterior chamber was either not ossified or was very loosely attached, so that it is lost in all the known specimens.
6. The cranial formina differ very little from those of Cenis.
7. The mandible has a short horizontal ramus, varying in its proportions in the different species; the ascending ramas is low and very broded.
8. The brain is remarkable for the small size and simple convolutions of the cerebral hemispheres and the large size of the cerebellum and olfactory lobes.
9. The formmina of the atlas differ from those of the recent dogs and resemble those of the cats.
10. The axis is also of feline character, especially in the shape of the neural spine.
11. The other cervical vertebree have more prominent zygapophyses, narrower neural arches and higher neural spines than in Canis.
12. The thoracie vertebre probably numbered thirteen; they resemble those of the modern dogs, except for their longer neural spines, and for the much more prominent anapophyses on the last three vertehare.
13. The lumbars, probably seven in number, are remarkahy large and massive and all their processes are very long; the apparance of these vertehat is feline rather than canine.
14. The satcrum is composed of three vertebre and resembles that of the latreer cats in its size and weight.
15. The tail is very long and stout, resembing in its proportions and in the development of the individual vertebre that of the leopard.
16. The humerus is in most respects like that of the Marharodonts, Dinietis and Hoplophoneus, having very prominent deltoid and supinator ridges, very low trochlea, Jarge epicondyles and an entepicondylar foramen.
17. The radtus is very feline in character, as is seen in the diseodal head, the slender curved shaft and expanded distal end.
18. The ulna is much less reduced than in the modern dogs, and its shape, especially that of the distal end, is much more feline than canine.
19. The only carpal element preserved is the scapho-lunar which is very like that of the Machairodont Hoplophoneus.
20. There are tive metacarpals which are not at all like those of modern dogs, the pollex being far longer and all of the metacarpals having short, slender, romeded shafts, spheroidal distal trochlese, and a divergent instead of a parallel arrangement. The contact of me. ii with the magnum and of me. iv with the meiform is much less than in the true felines and about as in the Machairodonts.

21 . The pelvis is machairodont rather than canine, the ilium being relatively short and narrow, the ischium long, with inconspichous tuberosity, and the obturator foramen large; the pubie symphysis is elongate.
22. The femur is not very long in proportion to the size of the animal ; its trochlea is very low and shallow; a third trochanter appars to have heen present.

23 . The patellat is like that of Dinictis, being broad, thin and almond-shaped.
24. The tibia is short and slender and beats considerable resemblance to that of Dimictis; its distal end bears a very large intermal malleolus and feebly grooved astragalar trochlea.
25. The fibula is much stouter than in Comis and has more thickened ends.
26. The tarsus is, on the whole, of machairodont or viverrine character, but with not a few canine features.

27 . The metatarsus has five members, a well-developed hallux being present; the

Charatere of these is intermediate between those of the dogs and those of the Machairodonts.
28. The phatimese are long amd elepressed; the second one is excavated on the fibular side, showing that the chenes were perlinlly retrectile, thongh much less completely so than in the cats; the monuals are straight, compressed and blently pointed, and with bony hoonds much as in (temis.
24. The known species of Itphuenus are: D. wetus Leidy, D. hertshomiemus Cope, I). filimus, :p. now., "D. Dolyei sp. nov., all firon the White River beds, and D. cuspiferess (ioper, firom the John I)ay.
30. The egnoid from the Uinta beds, Minceis uintensis, is regarded is the forermmer of Detphemus.
31. The small American cynoids of the White River and John Day, and, perhaps, of the LTinta, should be referred to the EAropean genus, (innodictis.
 small, the sectorials microdont and quite viverrine in appearance, but more trenchant than those of Dophuenus, and the tuberoniar molars are small.
$\because: \%$. 'The skull hes a very viverine look; the face is short, the cranium long, though shorter and fuller thin in Dephenues, and the postorbital constriction is near the orbit; the sagittal crest is low and weak, and in the small C: lemur is replaced by a lyrate area.
: 4 . There are no frontal simuses.
Ben. The occiput is low and broad, the crest inconspicuous and the paroccipital proreseses are small and not in contand with the bullere
:B6. The auditory bulla is very large and the posterion chamber folly ossified.
\therefore. 'The eranial foramina are like those of ('anis, save for the visible carotid canal.
:BS. 'The mandible has a short, slender horizontal ramus and the ascending ramus is muche narrowere than in Daphemens.
:30). While the (erebral hemispheres are larger and better convoluted than those of Daphuenes, they are smaller and have fewer, straighter sulei than in the modern Cenide; the olfactory lobes are large and the cerebollum complex.
40. The attas has short transverse processes and its foramina are feline in character.
41. 'The axis is much like that of Viverre.
42. The other eervicals are of canine type.

4:). The thoracic vertebre are small and have high, slender spines; on the last two are prominent anapophyses.
44. The lumbar region is long, heayy and arched upward; it is composed of seven vertehre, which have very long transverse processes and low, sender spines. Anapophyses are large anteriorly, but disappear on the sixth.
45. The tail was very much as in such viverines as Herpestes.
46. The sternum is of a generalized fiswipede character, without pectal memblanere to either dogs or viverrines.
47. The seapula has little resemblance to that of Chais, being low and broad, with spine placed nearly in the middle of the blade ; the metacromion is very large and the acromion exceedingly long and prominent, from which it may be inferred that the clavicles were less reduced than in the modern dogs; the coracoid is vory large.
48. The humerus is moch more viverine than canine in appearance, having, like Daphemes, very prominent deltoid and supinator ridges, a low trochlea and entepiondylar foramen, but no supratrochlear perforation.
49. The radins is like that of Depletenes, exeept for the immense styloid process.

5o. The ulat is much stouter than in the recent doges and differs from that of Daphemes in having the distal radial facet sessile.
51. The carpus contains a scapho-lumar which is quite like that of (tomis; the pyramidal is viverrine and the pisiform quite peenliar in shape; ar ratial sesamod appears to have been present ; the trapezoid and magnm are canine, while the meiform is viverrine.
52. The metacarpus has fire elements, which are very short and slender like those of the civets.
5.3. The pelvis is, in general, camine, hut primitive in the elongation of the postacetabular portion.
54. The os penis is very large and shaped like that of comptoprocte and the mustelines.

5n. The femur is elongate and differs little from that of the recent dogs, except in the presence of a small third trochanter and in the narrow, shallow rotular trochlea.
50. The patella is wide, thin and sale-like, herpestine in shape.
57. The tibia is of nearly the same length as the femur, and its distal end is like that of Daphemes and Dinichis, but more deeply grooved.
58. The fibula is relatively stont.
50. The general appearance of the pes is viserine and has many resembancen to that of I (pphemes and some to that of ('tmis.
60. A well-developed hallux is present and the metatarals exeed the motacarpals: in length much more than they do in (imis.
61. The phalanges differ materially from those of Daphemes in that the claws are little or not at all retractile; the unguals have but rudimentary hoods.
(i2. The skeleton of (' geismerimmes was very herpestine in proportions, white that of C'. Itegrevins was more like that of a sery small fox in which the hind leeg much exceeded the fore leg in length.
(3:3. The known American species of the genus are: C. gregurius Cope and C. lippincollimus (ope (the latter doultful) from the White River, and Cogregarius Cope, ('. geismmbiomus Cope, C. letridens Cope and (': lemen Cope, from the John Day.
tit. The dogs are represented in the Cinta by two lines, ? (ymodictis and Miacis, the former continued throngh the White River and John Day and the latter apparently passing into Dephemus of the White River, and through this into Temocyom, Hypotermotorn, ('ynodesmu: and Enhydromyon of the John Day, Oligobumis of this formation being probably in immigrant from the Old World.
65. M. Bonle's hypothesis that the alopecoids are derived from Cynodictis and the thooids from Amphimym implies an improbable degree of convergent development, but it is not to he rejected as impossible. According to present evidence the alopecoids arose relatively late from the thooid stem.
66. The thooid line appears to be Jiacis-Dapluemus-Cynodesmus-Ctemis, the retractile claws of Ihephemus having been changed when the digitigrade gait and cursorial habit were assumed.
67. The very many resemblances between Dophemus, Cymodictis and Dinictis were probably not independently acquired, but point to a common Eocene ancestor.
68. The early members of the canines, felines, mustelines and viverrines all have a great many more structural feature in common than do their existing representatives and would seem to converge to a single Eocene type, which may prove to be the ereodont family Micmite. The hyanas and bears belong to a later cycle of development and were derived, the former from the viverrines and the latter from the dogs.

Literature.

[^22]
Explanation of the Plates.

Plute NTX.

Fig. 1. Daphenus hartshornionus Cope. Side view of skull.
Fig. ". " " Palate and teeth of a second specimen.
Fig. 3. " " " Occiput ; same specimen as Fig. 1.
Fig. 1. " " "s Basis cranit of same individual : ty., tympanie; f., fossa behind bullib; c. f.,
condylar foramen.
Fig. 5. Daphomus humtshorminnus Cope. Right lower jaw.
Fig. 6. Daphenus Dodgei, sp. nov. Lower tecth, crown view.
Fig. 7. " " " " Side view of right lower jaw.
Fig. 8. Daphamas vchus Leidy. Lumbar vertebra, from the side.
Fig. 9. " " " Anterior caudal vertebra from above; same individual.
Fig. 10. " " " Posterior caudal vertelra from the side; same individual.
Fig. 11. Cynodictis gregarius Cope. Side view of skull (lower canine broken away).
Fig. 12. " " " Brain east from the right side: olf., olfactory lobe; rh., rhinal sulcus; $f \cdot$? frontal bone, showing the absence of sinus.
Fig. 13. Cynodictis gregarius Cope. Atlas from above.
(All figures nuturel size.)

Plate XX.

Fig. 14. Duphcenus vetus Leidy. Sacrum from above; sume specimen as Figs, R, 9, 10.
Fig. 15. Daphrnus felinus, sp. nov. Lower end of humerus, front view.
Fig. 16. " " " " $"$ Proximal end of radius; same indivilual.
Fig. 17. " " " " Metacarpals i-iv of left manus; same specimen.
Fig. 18. Daphenus vetus Leidy. Right femur, front view; same specimen as Fin. 14.
Fig. 19. Ihephenus hertshormiamus Cope. Lower half of right tibia and fibula.
Fig. 20. " " Distal ends of same.
Fig. 21. " " lkight pes; same individual.
Fig. $21 a$. " " $"$ ii digit, from thbial side ; same individual.
Fig. 92. Duphomus cetus Leidy. Left calcancum and astragalus; same specimen as Figr. 14.
Fig. 23. Cynorlictis gregarius Cope. Left manus, front view.
Firc. ${ }^{24}$ " " " Left pes, front view. (Specimens seen since this plate was drawn show that the metatamals should have been mate considerably longer.)
(All figures nutural size.)
A. P. S.-VOT. XIX. : A.

AR'TICLE IN.


```
OTTV&RN ANH FISUKRS.
    (Plates NXI-N゙VV.)
BY SADIUEL N. RHOADS.
```

Read before the American Philosophical Society, May 6, 1808.

An unusually fine series of the skins and skulls, with reliable data and measurements, of the beavers, otters and fishers of the United States and Canada having lately come into the custody of the writer, it is thought advisable to publish the results of a study of the various nominal forms of these mammals and brielly discuss the nomenclature involved. Owing to a lack of specimens from some regions whose faunal conditions are known to produce in many other mammals well-recognized geographic variations, this paper must be considered rather as a contribution to the subject, and in no sense a complete synopsis. The area covered by this study comprises solely that part of North America north of Mexico, no attempt being made to discuss the relationships of the tropical species.

To Mr. Outram Bangs the author acknowledges his gratitude for a most valuable loan of skins and skulls of noarly every pecies and race recorded in these pages. To the kindness of Mr. F. W. True, of the National Musemm, is due the loan of a series of skulls of the Alaskan otter.

The North Carolina Department of Agriculture has courteously loaned two skins and four skulls of beavers recently killed in Stokes county of that State through the kind offices of Mr. H. H. Brimley, the Curator of the State Museum.

Aid has likewise been generously given by Dr. J. A. Allen, Dr. C. Hart Merriam, Dr. T. S. Palmer, Mr. Gerrit S. Miller, Jr., Dr. MI. W'. Raub and Mr. C. S. Brimley.

THE BEAVERA OF NORTH AMERIC'

Contrary to evidence which must eventually be accepted by all zoillogists, the American beaver, Ctestor canadensis Kuhl, is still considered by many eminent authorities as
specifically the same as the Custor fiber Limmens of Europe. In 1897, Dr. E. A. Mearns described a subspecies of the typical Canadian animal, naming it Castor cancedensis frondator and assigning its habitat to the "southern interior area of North America, ranging north from Mexico to Wyoming and Montana." This appears to be the first attempt in literature to formally subdivide the American beaver, a species whose constancy of characters over the vast and varied habitat which it frequents had hitherto been unquestioned. There can be no donbt as to the tenability of Dr. Mearns' "Broad-tailed Beaver" as distinguished from the Hudson bay animal, whose habitat Kuhl designated as " ad fretum Hudsomi" in his original description of canadensis.

It is probable that the beaver's inhabiting the Carolinas, Georgia, Alabama, Mississippi and Tennessee are equally entitled to subspecific rank. So rare has the beaver become in these States, however, it would probably be impossible to verify such a prediction with specimens now in our museums. \dagger

From what we know of the relationships of the representatives of our eastern species inhabiting the Pacific slope, we are led to expect that the beaver of that region would also prove separable from comudensis. A very complete series of skulls, with three adult and three young skins from the Cascades of Washington and Oregon, shows this to be the case.

Fortunately the synonymy of the American beaver is not involved and requires no elucidation in this connection, as is shomn by reference to Dr. J. A. Allen's Monograph of the North American Rotentia. A synopsis of the American forms is herewith presented.

Canadian Beaver. Castor canadensis Kuhl.

Plate XXI; Fig. 3. Plate XXII; Fig. 3̀.
Custor cunudensis Kuhl, Beitr. Zool., 1820, p. 64.
?"Castor americamus F. Cuvier, Hist. des Mam. du Mus., 1825" (fide Brandt in Kennt. Süugt. Russl., 1855, p. 64).
Castor fiber americemus Richardson, Fuze. Bor. Amer., I, 1829, p. 105.
Castor fiber var. canadensis J. A. Allen, Monog. N. Amer. Rod., 1877, p. 444.
Type Locality.-Hudson bay ("ced fretum Hudsoni" Kuhl).
Geographic Distribution.-Northeastern North America, from the northern limit of trees south to the United States and west to the Caseade mountains; intergrading east of the Mississippi river into subspecies carolinensis, south-centrally into subspecies frondutor and westwardly into subspecies pacificus.

[^23]Color:*-Winter pelage, above, including sides, dark bay or blackish brown, tipped with chestnut or russet, becoming pure chestnut on top and sides of head and on chin, jaws and sides of neek. Rump and thighs purer chestnut. Ears black. Hair of feet, legs and under parts seal brown.

Anatomical Characters.-Size, smallest of the American forms. Sealy portion of tail more than twice as long as wide; hind foot with claw about 175 mm . Skull wide for its length; maximum size of skull 136 by 99 mm . in a New Brunswick example, No. 31 , collection of E . A. and O . Bangs. Rostrum and nasals relatively short and wide, the nasal bones averaging more than half as wide as long and extending but little behind the premaxillaries. Upper molar dentition wide and heavy, the crowns oblique, triangular and very wide anteriorly.

Heasurements.-Of a large, typical, adult male specimen from Quebee, No. 3825 , collection of E. A. and O. Bangs (measurements made by collector from newly killed specimen). Total length, 1130 mm . tail vertebre, 410 mm ; scaly portion of tail (dry meas. from skin), 268 by 122 mm .; hind foot, 176 mm .; length of skull, 132 mm . ; breadth of skull, 93 mm . ; length of nasal bones, 46 mm .; breadth of nasals, 21.4 mm . \dagger

Remarks.-The above diagnosis is taken mainly from the Quebec specimen, because of the authentic measurements and superior condition of the skin and pelt. The average beaver from the Hudson bay regions, however, is somewhat lighter colored than this specimen, which, in its darkness and richness of shade, rivals the best examples of pacificus. In size, and ratio of length to width, the skull of the Quebee specimen is typical, but the nasals are too narrow to serve as a standard for canudensis, whose nasals average wider than pacificus and narrower than frondator. In general terms, canudensis differs from frondutor in smaller size, narrower tail, much darker coloration and narrower nasals. It differs from carolinensis in smaller size, narrower, longer nasals and somewhat darker coloration. From pecificus it differs in smaller size, lighter coloration, wider nasals and broader skull. Subspecies pucificus differs from frondator in larger size, greatly narrowed and lengthened tail-paddle, rostrum and nasals, and in its dark coloration. In color frondator is decisively and uniformly lighter than eastern comodensis and curolinensis and western pacifios, but darkened comulensis (not melanistic) are nearly as dark as pacificus. In size, pacificus is much the longest of the three, with very long hind foot and tail. Its skeleton is slenderer and weaker in every part as compared with the massive frame of canadensis and frombtor of same age. Curolimonsis is nearly of the color of

[^24]lighter hued ecmudensie, but agrees with all the other characters of fromdator, to which it reems most nearly allied in eranial and caudal characters.

Specimens Examinet.-New Brunswick, 1 skull; Quebee, 1 skin with skull; ('anala (\%), 3 skulls, 1 skeleton, ٌ2 momnted skins; Ft. Simpson, N. W. T., 1 mounted skin: Idaho, 1 skin with skull.

Carodinian Beavels. Custor cumulensis curolinensis, subsp. nov.

Plate XXIII; Figs. 1 and 2.

Type Locality.-Dan river, near Danbury, Stokes county, North Carolina. Type No. \%.607, old ad. ${ }^{3}$, in the collection of the North Carolina State Museum, Raleigh, N.C. Collected by a trapper in flesh for the Museum, April, 1897.

Geographic Distribution.-Carolinian fauna, south into the Austroriparian.
Color--Of type and topotype: Overhair of upper head, neck, back and sides, bright hazel. Underfur of same parts, seal brown. Hinder back and rump lightening from hazel to cimmamon rufous and then to tawny olive near base of tail. Vent and under base of tail, dark, rich burnt umber. Ears pale blackish. Sides of head below eyes light hair brown, shaded with pale cimnamon rufous. Feet bistre. Below, from throat to vent, dark broccoli brown with wood-brown tips to overhair.

Anatomicul Churucters.-Size large, larger than canadensis, with relatively much broader tail, as in firometor.

Skull large and broad, with very short, broad nasals. In the type the base of ntsals does not reach back to the line connecting the anterior walls of the orbits. Rostrum very short and broad. Audital bullee remarkably contracted laterally, with a strongly developed osscous column on the outer wall and the transverse diameter less than the longitudinal. Incisors weak, narrowed; molars large, with triangular crowns. Pelage short and harsh as compared with conadensis.

Measurements. - Of the type, from carcass: Total length, 1130 mm .; scaly portion of tail, 279 by 158 mm .; hind foot, 184 mm .; car, from crown, 21 mm .; length of skull, 148 mm .; breadth of skull, 107 mm .; length of nasals, 43.5 mm .; breadth of nasals, 29 mm. Of the topotype (ad. 3^{7}): Total length, 1080 mm . ; scaly portion of tail, 260 by 146 mm .; hind foot, 174 mm .; ear from crown, 23 mm .

Remerks.-The two skins and four skulls upon which the above diagnosis of carolimonsis is based weresecured, just before the completion of this paper, from the authorities of the State Musemm of North Carolina. They are intended to form a group exhibit in the State Museum, and have been carefully measured by the curator, Mr. H. H. Brimley, while yet in the flesh. The old male which forms the type had lost one of its fore feet,
apparently in a trap, some years previons to its final capture, but its evident health and great size show that it had suffered little inconvenience from the loss of the member.

The strong cranial and candal affinities which this beaver shows to fromdutor as distinguished from conadensis indicate that it is more closely related to the western form. In color, however, it shows a nearer approach to coundensis, as, in fact, do many other animals of similar distribution and racial differences. The Mississippi and Lonisiana beavers are undoubtedly, from what I ean hear from the furriers, the darkest and thinnest pelted of our American beavers, hat their separability from what I have named carolinensis is not probable. They may be considered as belonging to crorolinensis wather than to frondator.

Specimens Examined.-Ntokes county, North Carolina, 4.
Sonoran Beaver. (Mestor cumedensis fromdutor Mearns.
Plate XXI; Fig. ㄹ. Plate XXII; Fig. .2.
Castor comadensis frometur Mearns, Proc. L. s. Nut. Mus., XX, adv. sheet, Mar. $5,1897$.
Type Locality.-San Pedro river, Sonora, Mexico, near monument No. 98, of the Mexican boundary line.

Gcogrophic Distribution. Southern interior of North America from Mexico to Wyoming and Montana, intergrading northwardly into coundensis, southeastwardy into the trans-Mississippian corolinemsis and westwardly into pecificus.

Color:- Much paler than comatlensis or corolinensis. " Hove russet, changing to chocolate on the caudal peduncle above and to burnt siema on the feet; toes reddish chocolate. Below grayish cinnamon, brightening to ferruginous on the under side of caudal peduncle. Sides wood brown enlivened by the tawny-olive eolor of the overhair." ${ }^{*}$ specimen from Red Lodge, Montana (No. :32, collection of E. A. and (O. Bangs), taken in November, is wood brown above and below, the longer overhair of upper pelage washed with pale rusty.

Anatomical Characters.-Size large, exceding average of Hudson bay beaver, with a longer foot and broad tail. Scaly portion of tail less than twice as long as wide, hind foot with claw about 185 mm . Skull masive, large, with short rostrum and rery wide, short, tumid nasal bones, the average skull probably exceeding commensis in size, eretainly exceeding it in relative width to length and in the relative breadth of the masals. Upper molar dentition as in cemedensis.

Measurements-Of the type: Total length, 1070 mme; tail vertebree from amus, :30 mm .; scaly portion of tail, 290 by 125 mm ; hind foot, 18.5 mm .; length of skull, $1: 3: 3$

[^25]mm.; breadth of skull, 99 mm . Maximum length of old males, measured by Dr. Mearns, 1130 mm .; of the tail paddle, 285 by 155 mm .

Remarks-Dr. Mearns' comparisons of frondator with canalensis were evidently not made with the largest specimens of the latter, as I have examined some whose cranial and body measurements are about equal to the maximum recorded by him for fromdator. Nevertheless, there is little doubt that the larger size of average frondator is well established. Its long hind foot, broad tail and light coloration distinguish it immediately from coundensis. Its approach to pacificus is solely along the line of great size as indicated by the length of body and hind foot, but in cranial characters, as also in color, it is farthest removed from that race. The close anatomical relation of frondutor to curolinensis has been mentioned.

Specimens Examined.-Montana, 1 skin with skull; Wyoming, 1 skull.

Pacteic Beaver. Castor canadensis pacificus, subsp. nov.

Plate XXI; Fig. 1. Plate XXII; Fig. 1.

Type Locality.—Lake Kichelos, Kittitass county, Washington ; altitude about 8000 feet. Type, No. 1077, ad. + , in the collection of S. N. Rhoads; collected in April, 1893, by Allan Rupert.

Geographic Distribution.-Pacific slope, of America, from Alaska to California.
Cok? - Above with very uniform, dark and glossy reddish chestnut overhair, almost concealing along dorsum the seal-brown underfur. Top of head like back; sides of head, throat, rump, thighs and vent not decidedly lighter than back and belly as in the other forms, these parts paling to walnut brown. Overhair of sides and under parts, between seal brown and broccoli brown; under fur of belly drab gray at the roots; hind feet dark seal brown ; fore feet and limbs, dark wood brown. Ears black.

Anatomical Characters.-Size, largest of the canadensis group, but of more slender build, the skeleton throughout being of much greater longitudinal and lesser lateral dimensious than in the other forms. Tail and hind foot relatively long. Skull large, relatively narrow, with long, narrow rostrum and nasals, the latter with outer margins nearly parallel and reaching basally decidedly beyond the premaxillaries. Upper molar dentition weak, the crowns of molar teeth rectangular.

Measurements.-Of the type from carcass: Total length, 1143 mm .; tail vertebre, :330 mm.; (from relaxed skin) scaly portion of tail, 295 mm . by 122 mm .; hind foot, 185 mm .; length of skull, 142 mm .; breadth of skull, 101 mm .; length of nasals, 53.6 mm .; breadth of nasals, 24 mm .; average length and breadth of five skulls from Tacoma and Lake Kichelos, Washington, 144 mm . by 99 mm .; average nasal length and breadth of same, 54 mm . by 23 mm .

Remarks.-Reliable measurements of only one adult skin pecimen (the typer of pacificus were accessible. An adult mounted specimen from Josephine county, Oregon, in the Wagner Institute, Philadelphia, confirms the color and measurements of the type so far as the latter can be aseertained from the stuffed amimal.

Pacificus, like its associates, Mustele americeme courina and M. canadensis preifice of the Pacific slope regions, is distinguishable by its rich and deep coloration from its darkest trans-Cascadian representatives. No specimens have come to hand from Alaka, but undoubtedly, from what we know of other species found there as well as from the accounts of trappers and furriers, the Alaskan coast beaver represents the maximum of size ${ }^{*}$ and the greatest richness and depth of fur coloration seen in Americun beavers.

Specimens Excmined.-Washington, Tacoma, 1 skeleton, 1 skull; Lake Kichelos. 1 adult skin with skull, :3 young skins with skulls, 1 skeleton, 12 separate skulls; (Oregon, Josephine countr, 2 mounted specimens; British Cohmbia, (?) Sumas, 1 skull; \dagger Victoria, 1 skull.

THE OTTERS OF NORTH AMERIC A.

As Mr. Oldfield Thomas has shown in his "Preliminary Notes on the Species of Otter," published in 1889 in the Procerdings. of the Lomdon Zoological Sociely, the characters and nomenclature of the North American species are in great need of study. Dr. Elliot Coues has elucidated with sufficient clearness, in his Monogreph of the Mustelider, the habits and characters, and, to some extent, the synonymy of the typical ('madian otter, Lutru hudsonicu Lacépede. Its relations, however, to other nominal species, especially to the otters of the Pacific slope of America from California northward, demand investigation.

As in the case of the American beaver, just treated, this paper has to do solely with one central Canadian type and its subspecies found in America north of Mexican territory.

Aroiding a general preliminary discussion of the rather perplexing questions of nomenclature and geographie variations and distribution, I will present these in order in the more formal and detailed synopses which follow.

[^26]A. P. S.-TVOL, XIX, 3 B .

Ifudsonian Otter. Lutru hudsonié ("Lacépède," Desmarest).
Plate XXIV; Figs. 1 and 2.
Mustete lutrat Linn., canudensis Schreber, Säugt., III, Pl. CXXVI, B. (dated 1778 on title-page, but, according to sherborn, the text of Vol. III was published in 1777 and this plate in 1776).
Mustelu (lutra) canulensis Kerr, Limu. An. Kimgd., I, 1792, p. 173 (see Thomas, Proc. Zoöl. Soc. Lond., 1889, p. 197, and Allen, Bull. Amer. Mus. N. Hist., V II, 1895, p. 188).
"Mhester hulsomict Lacép.[ide]," Desmarest, Nouv. Dict. w'Hist. Nat., XIII, 1803, p. 384 ; (Nouv. Ed.) 1817, p. 219.
Lutra cunadensis J. Sabine, App. Froukl. Jour., 1823, p. 653, and of nearly all subsequent authors (not L. canculensis F. Cuvier, Dict. Sci. Nat., 1823, p. 242 ; see O. Thomas, l. c., p. 197).
Lutra hudsonica F. Cuvier, Suppl. Buff., I, 1831, p. 194; Merriam, N. Amer. Fauna, No. 5, 1891, p. 82.
Lataxina mollis Gray, List Iamm. Brit. Mus., 1843, p. 70.
Lutra destructor Barnston, Canad. Net. and Geoloy., VIII, 1863, p. 147, Figs. 1 to 6.
Type Locality.-" Ou la trouve au Canada sur les bords de la mer."
Geographic Distribution.-Northern North America from the Aretic ocean southward into the United States and from the Atlantic ocean to the Cascade mountains ; intergrading southeastwardly into subspecies lataxina F. Cuvier and vaga Bangs, southcentrally into subspecies sorone Rhoads, and westwardly into subspecies pacifica Rhoads.*

Color (taken from two specimens in the Bangs collection, No. 5638, yg. ad. 0^{7}, Amapolis, Nova Scotia, November 23, 1896, and No. 4190, ad. f, Upton, Me, October 25, 1895).-Above, dark seal brown from nose to tip of tail, darkest posteriorly, below from breast to tail between broccoli and vandyke brown in the Nova Scotia specimen and between seal and randyke brown in the Maine specimen. Head and neck below a line rumning from nose to lower base of ear and base of foreleg light Isabella color anteriorly darkening on lower neck to wood brown in the Nova Scotia animal. In the Maine specimen the neck is Prout's brown. Feet, legs and tail corresponding to darker shades of upper and lower body. A summer specimen from New Brunswick is dark, vandyke brown, but little paler below than on back, and darker than winter specimens of lataxina from Maryland.

[^27]Anatomical Characters.:-Hize, medium (exceeded by ragn, somomen and preficiol). Tail relatively short. Inferior webs of feet and interspace between posterion and anterior callosities of manus, densely haired. Hind foot with claw about 12.5 mm . in old adults; but so variable as to have little diagnostic value. Total length rarely exceeding 1100 mm . Skull—size, medium (greatly exceeted by ragu and pretifiok). Tecth large, crowded longitudinally upon each other and obliquely overlapping. Postorhital neck of frontals relatively short and wide, its superior ridge on a plane with nasals and oecipital crest. Mastoid width much less than zygomatic width. Postorhital processes short and stout. Audital bullae large, tumid, rising abruptly from the sides of basioccipital.

Measurements.-Sce tables.
Remarks.-Variations in the size of adult otters from apparently the same region seem remarkable at first sight, hot I find that these are not always to be attributed to sex (for the female otter sometimes reaches near to the average size of the males), but to environment. The otters of the Alleghany momtain streams are uniformly smaller than those of the tide-water creeks and rivers of the Atlantic seaboard. This rule applies from Labrador to Florida and is undoubtedly the result of the relative diffeculty of obtaining food and securing shelter from enemies in the two kinds of hahitat. On the other hand, this difference lies wholly within the limitations of individual variation and in no sense affects the well-defined cranial and other characters which distinguish the races and species hereafter defined. It has to do solely with size, not with proportions. In a letter from Mr. C. S. Brimley, of Raleigh, North Carolina, the same feature is alluded to where he states: "A trapper of our acquaintance says that otters from the saltmarshes of eastern North Carolina average considerably larger than the otters of the small streams of the central part of the State."

There is rarely to be found a case in mammalian nomenclature more puzzling than that of the first tenable name of the Hudsonian otter. Its syonymy involves that of the mink and the fisher as well as the questions of priority of publication of Erxleben's and Schreber's great works on the Mammalia, and the tenahility of plate names. I have consulted Drs. C. H. Merriam and T. S. Palmer at length on these questions and have accepted their ruling as to the first tenable name of the Hudsonian otter being Lutre budsonica Lacépede and that of the northeastern mink to be Putorius rison schreber. In regard to the name of the fisher, however, I prefer to athide by (amon XLIII of the Code of the American Omithologists' 'rnion, which accepts, under certain comblitions, the names of species originally published on plates, which Drs. Merriam and Pabmer and Mr. Sherborn do not accept. Returning now to the ahstract of symonymy as given above for the Hudsonian otter, the case may be concisely stated thins: Ihustelu lution

[^28] liest applied to this otter. It would stand (A.O. U., ('mon XLIII) were it not unquestionably applied and intended by wehreber merely as a geographic name without reference to its specifie relations to "Mustele hetre Limn." For this reason alone it should be discarded. Furthermore, the name Thustele canadensis was used by Schreber on a previons plate in the same rolume (Pl. No. 126) in the specifie sense for the fisher. This plate was also (fide Sherborn) published in 1776, one year before the text, which was published in 1757, and the bound volume of text and plates were dated 1778. In 1777, Erxleben published a deseription of the fisher and named it Austela pennentii, by which name it has been since desigmated by authors generally. As this name is antedated by the tenable plate-name Jhatelu comadensis of Schreber by one year, I adopt it as the name of the fisher of Pemnant from the northeastern United States. Erxleben published in the same work a description of an amimal which he named Mustela canadensis, and which Baird and Cones have considered applicable to the mink, and the acceptance of the dates on the title-pages of Schreber's (1778) and Erxleben's (1777) works would give priority to Erxleben's name and displace Mustela rison of Schreber. But Sherborn's emendation of these dates makes M. conadensis of Erxleben for the mink untenahle, it being preocupied ly Schreber's plate-name M. canadensis for the fisher, as stated above. Besides this fact, Dr. Merriam considers that Erxleben's description of 1I. comadensis also applies to the fisher and the marten in such a way as to make it untenable for any species.

Returning to the search for a first name for the otter, we find Kerr's name, M. canadensis of 1792 , to be mavalable because he placed it under the old genus Mustela. Next in order appears to be the name hudwonict, which is accredited to Lacépède, in an article on the Canadian otter in the first edition of the Nomelle Dictionaire d'Histoire Naturclles, which is signed "Dem." I have not examined this reference personally, but am indebted to Dr. J. A. Allen for a transcript of these facts from the only known copy of the work in America which appears to be available, belonging to the library of the American Museum of Natural History. In agreement with my previous rendering of manuscript names, and on the supposition that Desmarest was the real author and publisher of this name and description of hudsonica, I cite it as Lutra hudsonica ("Lacépede," Demarest). I agree with Dr. Merriam that this name should stand for the otter of " castern (Guada. Frederick Cuvier seems to have been the first to place this animal in the genus Lutra under the Lacépede-Desmarest name hudsonica in 1831.

The Lutarime mollis of Gray and the Lutra destructor of Barnston are no doubt synonyms of hudsomice

Nyecimens Excminal-Labrador, Okak, 1 skull; Grand river, 1 skull; New

Brunswick, Restigouche river, 1 skin; Yova Scotia, Annapolin, 1 skin with skull; Maine, Upton, 1 skin with skull; Buckeport, 1 skull; Masachusetts, Kingston, 1 skin with skull; Westford, 1 skull; (iunton, 1 skull ; Missouri, 1 skull; British Columbia, Vernon, 1 skull; Alaska, Tanana river, 1 skuil.

Carolinian Oterr. Lelth budsonich letaxime (F. Cuvier).

$$
\text { Plate XXIV ; Fig. } 4 .
$$

Lutra lataxina F. Cuvier, Dict. des Acci. Nitt., 182: p. 242.
Type Locality.-South Carolina.
Geographe Distribution.-Carolinian fanal region, intergrading through the Transition region northward with hudsonice and southward through the Austrariparian into raga of southern Florida.

Color.-Much lighter than hulsonica. Above (from a specimen taken at Liberty Hill, Comn., No. 4252, ad. σ^{3}, Nov. 19, 1895, collection of E. A. and O. Bangs*), dark vandyke brown, tipped on upper head, neck and shoulders with wood brown, darkening posteriorly. Upper feet and limbs dark bistre. Below, from lower breast to end of tail, between Prout's brown and broccoli brown. Head, neck and breast, including ears, below a line connecting nose, upper eyclid, upper ear and upper base of fore leg, grayish wood brown, lightest on head, darkening posteriorly to color (l. c.) of breast. The average Carolinian winter specimens from Maryand southward are somewhat lighter and some are Prout's brown above, the wood brown of lower head and neck becoming a pale grayish buff.

Auatomical Charecters.-Size, smallest of the hudsomich subspecies. Inferior webs of feet and interspace between callosities of mams, sparsely haired. Hind foot with claw about 120 mm . Total length rarely exceeding 1100 mm . Skull relatively small, with very large teeth, and weak postorbital procesers. In other respects like the hutsonice type.

Morasmementio- Siee tables.
Remerks.-The relations of this subspecies to northern hudsomien on the one hand and to the southern cage on the wher are rather peculiar. It is without question a nearer ally to hudsomice than cage in the territory between Connecticut and fouth (arolina, but, as Mr. Bangs has implied in his remarks on rame, there is a tendency in the Georgia (and we may infer in the south (arolina) otter to the large size and peculiar

* This specimen comes from the northern edge of the Carolinian region. So cunally grool skins from more sonthern loalities being available, it is usel as typion of the Carolinian race. It corresponds closely to two dine $189 \%-8$ winter pilts of Maryland otters, examined through the courtesy of Mr. S. E. Shoyer, of Philadelphia.
skull and color characters of the south Florida animal. There is so much evidence of the intergradation of lutexime both north and south that the specific separation of vaga from it is not permissible. (On the other hand it is impossible to ignore the decided racial differences of the (arolinian otter from the Hudsonian type.

Cuvier's original description of lataxima gives "Caroline du Sud" as the locality where the type was taken ; it is, therefore, permissible to restrict this name to the Carolinian form as typified in the otters found in the Carolinian lowlands of the eastern United States from south of the "Transition Zone" of Dr. C. Hart Merriam, as far as middle South Carolina, Alabama and Mississippi, where it merges into vaga of the Gulf or southern "Austroriparian Realm" of Dr. J. A. Allen.

I know of no restricted synonyms of lataxina. Dr. Cones quotes in his Fur-bearing Animals a "Latax: letaxinu Gray, Ann. May. N. H., I, 1837, p. 119." The work referred to contains no such name. Cuvier's description of lataxina gives its color as "dark blackish brown, a little paler beneath. Cheeks, temples, lips, chin and throat pale brownish gray, and under side of tail grayish brown, the hair tips reddish." He compares the skull of lataxina with his Lutra enulris, "Loutre de Guianre" of the preceding page and remarks on the "straight line, even concave or depressed," joining the nasals and occiput. This is significant, as one of the peculiarities separating raga from Intaxina and hutsonice is the comvexity of the frontal plane in the former.

Specimens Examined.-Comecticut, Liberty Hill, 1 skin with skull; Pennsylvania, Clinton county, '2 mounted specimens; Monroe county, 3 skulls; New Jersey, Tuckerton, 1 skull; Mickleton, 2 disarticulated skeletons; Maryland, 2 fresh cased winter furs; North Carolina, Raleigh, 2 skulls.

Florida Otter. Lutra hudsonica vaga Bangs.

Plate XXV; Fig. 2.

Lutrah hutsonica rata Bangs, Proe. Bos. Soc. Thet. Mist., XXVIII, 1898, p. 224.
Tipe Locality.—Micco, Brevard county, Florida.
Greompaphe Distribution.-Florida, southeastern Georgia and the Gulf regions of Alabama, Missisippi and Louisiana, intergrading (?) northwardly into lataxina.

Chlor--Dark; less black than hudsonica, darker and redder than lataxina. Breast and belly nearly unicolor with back. Paler area of head and neck, scarcely reaching breast. Above and below, dark, rich chestnut, scarcely paler on belly. Lower head and anterion throat below line from nose to and behind ears, strongly tipped anteriorly with tawny Twabella color darkening to raw umber on throat, the underfur darker than overfur, instrad of lighter as in lataxina.

Anatomical Characters.-Size, large. Tail relatively long (fide Pangs). Inferior webs of feet and interspace of palms nearly maked. Hind foot with claw reaching maximum (No. 4998 Bangs Coll., yg. ad. ot 7, Citronelle, Florida) of 130 mm . 'Total length (maximum of No. 4998 , l. c., 1285 mm .) exceeding 1200 mm . Skull large, teeth relatively small, not crowded longitudinally. Postorbital neck of frontals long and narrow, suddenly constricted at base. Frontal plane strongly upraised above a line connecting occipital crest with base of nasals and above the level of postorbital processes. Mastoid width nearly equaling the zygomatic width in very old specimens, in young adult skulls the mastoid width is the greater. Wings of mastoid processes strongly developed and flattened laterally. Audital bullse as in hudsonica and letarime ; well developed, tumid at basioceipital margins. Postorbital processes relatively weak and slender. Underfur short, sparse.

Mersurements.-Sce tables.
Remarks.-This subspecies just described by Mr. Bangs in his most valuable paper on Florida and Georgia mammals is, as already noticed, quite different from lataxina, its nearest geographic ally. In color it comes nearer hudsonica intermediates from New England. In size and color and lack of hair on the webs and patms it shows approach to the remote pacifica, but its peculiar long-waisted and broad-based skull distinguishes it from all other American forms except, perhaps, those of the northern Central American and South American otters which I have examined. The yellowish and reddish shades of south Florida vago suggest aftinity with what we find published of the characters of the otters of the Caribbean coasts. In essential respects Mr. Bangs, diagnosis of this animal is very good. He, however, used the skull of a young adult male for cranial comparisons, and while it is true that the ratio of the mastoid to the zygomatic width is much greater in verge than hudsomice it is not as great as woald appear by Mr. Bangs' figure. In crania of old adult rayu in my collection the mastoid and zygomatic widths are about equal, the latter slightly wider. In hudsomicn, however, the excess of zygomatic width and slight development of the mastoid wings is marked.

Specimens Examined.-Florida, Tarpon Springs, 1 adult pelt, ${ }^{3}$ young skins with skulls and 2 extra skulls; Salt Rum, St. John's river, 1 skull.

Pacific Otter. Lutra hudsonica pucifica, subsp. nov.

Plate XXIV ; Fig. 3. Plate XXV ; Figs. 1 and 3.
Lutra paranensis and aterrima Thomas, P. Z. S., l.c., p. 199; Trouessart, Cutul. Mamm., 1897, pp. 286, 287 (not of Pallas, Zoogr. Ross. Asicto, 1811, p. 81).
Lutra culifornica Baird, Memm. N. Amer., 1857, p. 187 (not of Gray, May. Nut. Hist., I, 1835, p. 580, which is L. felime; see Thomas, l. c., p. 198).

Type Loculity.-Iake Kichelos, Kittitass county, Washington ; altitude about 8000 feet. Type No. 616, ys. ad. J^{2}, in the collection of A. N. Rhoads; collected in fall or winter ${ }^{*}$ of $1892-29$, ly Allan Rupert.
(reograpleic Distritution-Pacifie slope of North America, from Alaska to California.

Color:-Of type: Lighter than hudsomice, with a browner cast, approaching nearly to lutuximu. Average of coast specimens from Puget Sound northward, ruddy seal brown, sometimes rery dark in Alaskan coast specimens. Lower parts from breast to end of tail much lighter (Mars-brown) than back. Ventral region conspicuously lighter. Lower head, neck and breast rery pale wood brown, almost dirty gray.

Anutomicul Charucters.-Size, very large. \dagger Tail normal. Inferior webs of feet and palmar interspaces nearly naked. Hind foot not recorded in type, the calcaneum missing; no measurements of other specimens available. Skull largest of the North American otters (reaching a maximum of 119 mm . in occipito-nasal length and 83 mm . in zygomatic expanse in an Alaskan coast example) ; teeth relatively weak, less crowded longitudinally than in hudsonica. Interorbital width relatively very great, nearly $1 \frac{1}{2}$ times postorbital constriction ; postorbital processes long and stout. Mastoid and zygomatic proportions as in hudsonica. Audital bullæ remarkably flattened.

Mersurements.-See tables.
Remarks.-The type specimen, though taken in the mountains and not fully mature, is large and has a skull which would have, perhaps, eventually equaled the maximum size recorded above for an Alaskan specimen of much greater age. A very old female skull from the vicinity of Puget Sound confirms fully the diagnostic characters of pucifica as given.

In treating of the otters of the Pacific slope of America we are confronted with two nominal species to which they have been doubtfully referred by authors. In point of time the first to be considered is the Tiverra aterrima of Pallas, \ddagger described from a hunter's skin, lacking skull and feet, taken in northeast Siberia, "between the Uth and Amur rivers." Schrenck and Middendorff listed this animal in their works on Siberian Zoülogy with the remark that they were mable to verify its existence or clear up, the mystery of its strange characters as given by Pallas. Mr. Thomas (P. Z. S., l. c., p. 199) (queries, on the basis of a mistaken suggestion of Dr. Coues, whether it may

[^29]not prove to be the same as the so-called Lutra paranensis Rengg. which he assumed might oceur throughout the whole Pacific coust regions of America. 'The close relationship of our Pacific coast otters to hudsonica will effectually remove them from any complication with paramensis, but as regards aterima we must devote sufficient space to show the impossibility of referring the Alaskan land otter to that mimal, as Troutsmart has lately done.*

A careful study of Pallas' original deseription, together with the fact that no later author or explorer has been able to explain or rediscover the amimal, convinces me that it is either undentifiable or will prove not to belong to the Lutrime but to the Justelines. Pallas states it to be intermediate in size between the European otter and the European mink. He states the length of the skin to be 19 inches, 3 lines, and of the tail 5 inches with a brush of $1 \frac{1}{2}$ imehes! The color of the animal is said to be very black and shining, except the sides of the head between the eyes and ears, which change from black to "subrufescent." The absurdity of applying such a deseription to the animal which I have named pacifica, or, indeed, to any member of the genus Lutra, is certainly evident. So far as any animal now known to zoologists is concerned, the licerve uterime of Pallas should be consigned to oblivion.

Another name which has given trouble to those who had to deal with the I'acifice coast otter is the Lutre culiformied of Gray. Fortunately, Mr. Thomas has effectually exposed the history and at the same time the inapplicability of that name to a North American animal of the hulsonicutype. He has shown in his paper in the Procedings of the Zöllogical Socicty (l.e., p. 198) that Gray's type of californica did not come from Californa, but most likely from Patagonia, in which case he makes it a synonym of Latre feline Molina.

Specimens Excemimed.-Washington, near Tacoma, : skulls; Lake Kichelos, 1 skin with skull, 1 skull; Oregon, 1 skull ; British Columbia, Sumas, 1 skull; Alaska (coast?), 3 skulls; Kodiak Island, 2 skulls; Mission, 1 skull; Queraquinat Island, 1 skull.

Lutia canalensis Mearns, Bull. Am. Mus. Nat. Mist., III, 18:11, pp. Dön-250,
Type Locality.—Montezuma Well, Beaver creek, I'avapai county, Arizona. Trpe, ad. \circ, No. $\frac{3712}{309}$ in the collection of the American Musemm of Natural History. Collected December 26, 1886, by Dr. Edgar A. Mearns.

* Catalogre Mammalium, l. c.
\dagger It is conjectured that this skull came from the North Pacific. It bas Capt. T. J. Turner's name on it. I camnot find an island of this name on the maps.
A. P. S.—YOL. XIX. ${ }^{3}$ (.

G'cogrephic Distribution.-Arid sonthern interior of North America, from Nexico, prolably to Wyoming.

Colon.-Of type, fite Mearns, l. c.: "Above dark brown, without reddish tinge ; this color changing gradually to al light grayish brown below, being palest (almost whitish) upon the sides of the head below the level of the eyes and upon the under side of the head and neek as far back as the fore limbs. . . . The long hairs of the lighter portions of the body are pointed with yellowish gray and upon the upper surface of the head and neck the tips of the hairs are yellowish brown, giving a paler cast to that part of the dorsum."

Anctomical Charucters.-Size, large, with a very long hind foot, the body length measurements exceeding those of any other specimen of North American otter examined or recorded.: Welse of feet not densely haired beneath. Hind foot, 145 mm . Total length reaching $1: 300 \mathrm{~mm}$. Skull-size, large, nearly as great as in largest Alaskan peceifice, but small for the great relative length of body, "less massive, broader, with more evenly rounded aygomatic arches and with the brain case more convex or bulging in its outlines." "Arizona skulls differ from all others in the slender, attenuated postorhital processes and in the greater height of the lower jaw from angle to condyle, or to summit of coronoid procests. From its geographically near neighbor, L. felina of Central Ameriea, it presents many cranial and dental differences; in fact, skulls of the latter are so very distinct [in their inferior concavity, frontal depression, short muzzle, narrow postorbital constriction and absence of the heel in front of the antero-internal cusp of the last upper molar] from any known specimens from North America, north of Mexico, as to be distinguishable from them at a glance."

Mensurements.-Of type: "Total length, 1300 mm .; head and body (measured from tip of mose to amus), 815 mm .; tail measured from amus to end of vertebre, 472 mm ear, height aloove crown, 15 mm." No skull measurements given.

Remerrks.-I have accepted Dr. Mearns' very full and satisfactory diagnosis of the Arizona otter, given in the Bulletin of the American Museem of Natural History, as conclusive evidence of the existence of a recognizable race in arid interior America, south of Montana. Its great size and light color together form a combination not found in any other known or named otter.

It has been thought unnecessary to examine the type, as, owing to the author's removal from Philadelphia during the completion of this paper, such an examination would have cansed a greater risk to the type specimens than the facts warranted.

[^30]
Newfouniblayd (Otter. Lelto deyener Bangs.

Plate XXIV; Fig. 5.

Type Locality-Bay Nt. George, Newfoundland.
Geographle Distribution.-('onfined to Newfoundtand (\%).
 tions. Lars, seal brown. Lower head and neck areas grayish wood brown, beoming seal brown on breast; the remainder of lower parts nearly as dark as back. Tail unicolor. Feet seal brown and densely haired on under side of wels and palmar interspaces.

Anatomical Cheracters.-Size, much smaller than my of the hudsoniche group. Hind foot small, with claw averaging abont 112 mm .* long in the two specimens examined. Total length about 1000 mm . Tail relatively short. Null very mall, narrowed, weak and fragile; the brain case wide anteriorly; the frontal and interorbital widths narrow and the postorbital processes weak and slender, strongly grooved on their superior face. Sagittal crest not developed even in old specimens. Interorhital constriction about equal to postorbital constriction. Teeth weak, with normal cuspidation. Audital bulle normal.

Wectsurements.-See tables.
Remarks.-The type specimens of deyener, so generonsly loaned to me by Mr. Bangs, when compared with the large series usen in the preparation of this paper, comvince me that this depauperate insular form has no intereouse with the larger typical hudsonicel of Laborador and New Brunswick. I skull from (iram river, Labrador, shows no approach to the degener type, and another from Okak, Lahrador, agrees in the same differences. A young adult skull and sin of hedwomed from Nova hootia, and an athlt summer skin from New Bronswick, show that the maritime otter of the mainland sometimes attains a size nearly one-third larger than the largest known pecimens of old, adult deyener.

Specimens Examinct. - Newfoundland, Bay St. Gearge, ㄹ. skins with skulls, 1 extra skull.

THE FISHERG OF NORTII MMERIC A.

Apology must be made for the inferion series of skins and skulls which form the basis of the subjoined remarks on the Pokan. They serve, however, the ducidate some

[^31](fuestions sure to be som brought up in the active adrance of monographic work in American mammalogy

The symmyny of Pemmant's Fisher has already been discussed under Lutra hudsomich, and I have there given reasons for my adoption of the plate-name comadensis of scheber an having priority over the long-accepted name pennanti of Erxleben for this animal.

Penxixt's Fisher. Wusteln cumulensis Schreber.

Thustelt comultonsis schrehere, stompt., III, p. 4!2, Pl. CXXIV. Text published in 1757, plate in 1776 (ficte Sherborn).
Thusteln pernumtii Erxtehen, Myst. An., 1757, p. 470.
Wustele melenorhymehe Boddaert, Elench. An., 1784, p. 88.
J'iverven pisecten shaw, (Ben. Zoülo, I, 1800, p. 414.
Mustele nigpre Turton, ed. Limn. Systo Tat., I, 180-2, p. 60.
Mustele gotimemi Fischer, Syn. Memm., 1829, p. 217.
Type Locelity.-" New York and Pemnsylvania," Pennant.
Geompuphe Distribution. - Northern North America, east of the Cascade mountains, from the northerm limit of trees to Colorado and North Carolina in the mountains. Intergrading on the Pacific slope into subspecies pacifica, and probably in the southern Rocky mountain region into a paler race. Probably represented in the Hudsonian famal region by a subopecies:

Color--From an adult, male, winter specimen taken near Lancaster, Pa, March 11, 18:\%, and in the posession of Dr. M. W. Raub, of that city, who furnished the description: "Head and one-half of the length of body, gray and black mixed, gray predominating; throat darkest, with snout from tip to line of eyes dark brown. The hinder half of body gradually darkens into a deep chocolate color until it reaches the tail, which is almost black with a tip entirely black. Hind legs and tail, viewed at a distance of six feet, look very dark, almost pure black. The fore legs are black but not so deep. 'Tips of ears, darkest."

Two specimens from the Bangs collection, one from Moosehead lake, Maine, the other from Idaho county, Idaho, seem to answer closely the above description. The light upper and forward portions of body are a grizzled grayish brown, the long hairs hack tipmed. The basal half of hairs of anterior back are hair brown. I can discover no color characters to separate the Idaho specimen from the one from Maine, nor do the *kulls indicate any reliable differences. The Maine skin (of an animal two-thirds grown)

[^32]has white patches on lower fore leg, breast and rent, and an immature specimen of pacifice has white spots on throat, arm-pits and vent. The four adult specimens examined are not thus pied. Dr. Cones, in his Fur-bearing Animels, says that the fisher is an exception to the marten, mink and weasel in not having these patches. They may disappear with age in the fisher, but they do not in the other species.

Anatomical Cheructers.-Size, smaller than subspecies pacifich. Skull small; nasals relatively short, less clongate at basal apex. Posterior upper molar relatively small, its inner lobe not greatly developed longitudinally so as to only slightly exced the breadth of outer lobe; neck of crown of same tooth but slightly constricted.

Neusurements-Of Dr. Raub's Pennsylvania specimen, old ad. a', l. c.: Total length, from end of nose to end of tail hairs, 965 mm .; tail vertebre, 318 mm ; hind foot, 115 mm .; ear from crown, 27 mm . A mounted pecimen, No. 507, Academy Natural Sciences, adult ${ }^{-}$, from " Pemsylvania," has a total length of 1000 mm ., with tail (minus brush), 390 mm ., and hind foot, 112 mm ., taken from the dry mount. The Idaho specimen, No. 6964, young adult of, coll. of E. A. and O. Bang, is 978 mm . long,
 Me., total length, 117 mm .; zygomatic width, 63 mm .; mastoid width, 54 mm .; mesial nasal length, 22 mm .

Remarks.-The characters of the Pennsylvania fishers above enmmerated, so far as they are based on reliable measurements and color diagnoses, may be considered as representing typical canadensin, based on Pemnant's original notice of the animal. Whether a series of Alleghenian fishers will show the Hudsonian animal to be separable is an interesting question probably to be decided in the affirmative. 'The Jaho and Maine specimens examined, though not contrasted by me with Dr. Raub's pecimen, must be very close to it. No skulls of Pennsylvania fishers have been examined, hut the close resemblance of the Idaho skull to those from Maine, as indeed to purifice also, strongly indicates that no cranial differences exist between the cast American fishers of the north and south. The "saturated" color characters of pacifica are alone sufficient to distinguish it from all fishers found cast of the Cascales.

Specimens Extemined.-Pennsylvania, 1 mounted specimen (fide Dr. Raub, 1 mounted specimen) ; Maine, Mooseland lake, 1 skin with skull; Greenville, 2 skulls; Lincoln, 1 skull ; Idaho, Idaho county, 1 skin with skull. Other specimens from eastern North America, 1 mounted, "2 old atd. skulls.

Pacticic Fisher. Mustcle cemulensis pucitica, subsp. nov.
Type Locality.-Lake Kichelos, Kittitass comnty, Washington; altitude about soou
fect. Type, No. 10T.t, old aul. fo, in the collection of S. N. Rhoads; collected in the fall

(icomprophic I)istritution.—Pacific slope of America, from Alaska to California.
(otwi-Above, from between eyes to middle back, grizzled, grayish ochraceous heavily lined with black, hecoming hazel black on hind back and dark black on rump, thighs and tail. Whole head, hehind eyes clove brown basally, strongly grizzled with dirty white. Snout to eree blackish seal hrown. Chin, throat, breast and belly between dark chestnut and hazel, whocured with black. Legs and feet black, the fore legs showing the randyke brown bases of hairs. Basal half of hairs of anterior back are Prout's hrown as contrasted with the hair brown of canadensis.

Anutomical Churucters.-Size, large, skull very large, with relatively long nasals. I^{\prime} 'sisterior upper molar large, with spreading inner lobe much wider longitudinally than outer section of same tooth; the crown suddenly, constricted at the middle.

Mcasurements-Of type from relaxed skin: Total length, 1090 mm .; tail, 350 mm. without brush; hind foot not determinable, as the bones are missing. Measurements of a specimen two-thirds gromu, No. 295, coll. S. N. Rhoads, from near Tacoma, Wash.: Total length (relaxed skin), 970 mm .; tail, 400 mm .; hind foot, 112 mm .; ear from crown, 21 mm . Skull of type: Total length from hinder end of sagittal crest to front end of premaxille, 125 mm .; zygomatic expansion, 73 mm .; mastoid expansion, 54 mm .; interorbital constriction, 28.5 mm .; postorbital constriction, 20 mm .; mesial length of nasals, 27 mm .

Remorks.-The dimensions of the type skull, when we consider it was from a female, show that the fishers of the Cascade mountains attain a much greater size than those of the Appalachian chain. Young adult skulls of the same age from western Washington and Maine show the same distinctions. The younger specimen from Tacoma, while approaching nearer to Idaho and Maine specimens in grayer color, is very much darker than they, the difference in shade between the anterior and posterior dorsal areas of the former being slight, while in the latter it is striking. The tawny suffusion so deeply marked in the trpe of pacifich and which separates it at a glance from canadensis is also noticeable in the Tacoma specimen.

Specimens Eertmined.-Washington, Lake Kichelos, 1 skin with skull, 2 skulls; near Tacoma, 1 skin, 1 skull ; British Columbia, Sumas, 1 skull.

* Mr. Rupert. whose business is hunting and trapping, first sent me the fresh skull of a very old $ㅇ+$ fisher, which was entered in my catalogue as No. Ci2. I wrote him immediately that I would like to have the pelt belonging thereto, and in a later shipment the skin, whicls forms the tgpe of pacifich, was sent on wihout label. As it is also from a female and a very old animal, I consider the skiu and skull as belonging to the same individual.

Body Mersurements of Sorth American Otten (in millimetes).

Explavatiox of Plates.

Plutes NII and XXYI.

(Scale slightly less than twothirds natural size.)
 Lake Kibhelos, Kittitass county, Wash. Superior ant inferior, vertical aspects of seme skull.
 Lompre, Mont. Superior and inferior, vertical aspects of same skull.
Figs 3 and 3. C'fstor commensis Kuhl. No. 31, col. of E. A. and (O. langs; old adult (prohably fom , from Brunswick. Superior and inferior, vertical aspects of same skull.

Plete NXIII.

(Scale four-fifths natural size.)
Figs. 1 and 2. Castor comminusis carolmemsis Jhhouls. Type; No. 7. 609, col. of State Museum of N. Carolina ; old arhat from Dan river near Danbury, Stokes county, N. Cawhina. Superior amb inferior, vertial aspects of same skull.

> Plulr N 'V/J:
> (sceale six-serenthe natural size.)
 Mass. Superior, vertical aspect of skull.
 fort, Mass. Inferior aspeet of skull.
 Alaska. Inferior aspect of skull.
 Carolina. Superior, vertical aspert of skull.
 lami. Superior, veetical aspect of skull.

Plute NVI.

(seale slightly less than tise sixthe natural siza.)
 (the coast of ${ }^{\circ}$) Dlaska. Superior, vertical abpect of skull.
 Supetior, sertical aspect of skull.
 retioal aspect of skull.
.

RHOADS-NORTH AMERICAN BEAVERS

[^33]

RHOADS-NORTH ANERICAN BEAVERS
.

Q American Philosophical	
11	Society, Philadelphia

P6 Transactions
n. S.
v. 19

Physinal a
Applied Sci.
Serisis

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

Storage

[^0]: A. P. S.-VOL. NIX. H.

[^1]: \# Death may have been lue to the rather extensive sloughing of tho pectoral muscles, but that this was the case does not seem probable.

[^2]: *This is normally tme, lout respiration sometimes stops suddenlys even nearly at the time when it is most rapid.

 The tahle npm the opposite page shows the eflect upon the number of respirations and the temperature.

[^3]: s Cunningham, sri. Mem. Med. Officers Army India, IX, 1895, np. 1-54.
 I It would be interesting to know why the teeth of the upper jaw are grooved,

[^4]: for me to recall it in this paper to the American Philosophical society.

[^5]:

[^6]: sophawine hats. The diagnoses are unfortunately sometimes indequate and without eritical analyses of symonyy. The confusion arising from the circumstance last mamed is to be acknowledged : as a result, the task of bentification when not aided by inspection of type specimens is diticult. Dobson in his well-known catalogue of the Chiroptera in the
 whole shows less acumen than charaterizes his admirable work elsewhere.

[^7]: *In a paper by myself, entitled "On Almthidh münor" (Proc. Bost. N. Hist. Soc., 189"), I used inadvertently the term Stenerlumatille for this sulfamily.

 + The genera of the remote megaderminine genera are in like manner distinguished by characters in rows of glands as contrasted to folds of skin, though the structures are here not ectonareal, but infranareal. In Megoderme the glands are distinct, while in Lyroltrmel and Locin they are supplantel by a skin-fold which becomes an integral part of the mence leaf.

[^8]:
 see remarks on forlof.

[^9]: * Gervais (l. c.) belieses the form is not filowsophothet at all. but /homidirmer.

[^10]: * Geotiroy eapresed it thms. "counde en angle rentrant." but this shaure is oftemabrent

[^11]: 1-Fif, Mals. II, VII do not tomels.

[^12]: It is hut certain that the locality here given is the correct one. The recorl in the National Musemm catalogue is impurney
 "hichanmers th the ahowe deseription.

[^13]: phalanx of the thind manal digit, which is hut 12 mm . long.
 A. P. S.-VOL. NIX, ٌ2 F。

[^14]: * The only other forms possessing the same armament are the remote genera Irspertilio, Ceriaoula, Fatalus and Themopteru.

 In one specimen the tragns exhibited near the tip two papillee sen on hoth the anterior and posterior borders and an additional cluster of three on the posterior surface.

[^15]: * The skin was bally mutilated by shot and the nose leaf and chin plates so distorted that no attempt is made to compare the parts with the original deseription. The second interdigital shace is without pigment. head and neck hoth above and below are pure white. The lower third of the boty both on torsum and ventre is tiphed with ash-gray.
 back of the pars-squamosa the ectopetrosal part (.Journ. Acad. Nat. Sci., 1~96, Philalelphia).

[^16]:

[^17]:

 Scapula, breatth of neck 0 (6)
 Scapula, glenoid carity, ant.-post. diameter... 0 .

[^18]: * Somewhat reduced by erushing.

[^19]:
 of the Tervitories, Vol. V. No. 1.

[^20]: A. P. N.-VOL, NIX. 2 s .

[^21]: A．P．S．—YOL．ボIス．2T．

[^22]: Ansmis, (i, 1. 'grt. The Extinct Felide of North America. Amer. Jour. Sci., th Ser'., Vol. I.
 Botlen, M. '89. I.e Canis Meramastoiles du Pliocène moyen de Perrier. Pull. Soc. Géologique de France, Tome工VII.
 Firuce, A. T. Es: Olservations upon the Brain Casts of Tertiary Mammals. Bull. Princeton Geol. Museum, No. 3.
 Con'e, E. I). 'st. Tertiary Vertebrata. Washington, 1-84.
 Eyerman, J. ${ }^{2} 96$. The Gemus Temnocyon, ete. American Geologist, Tol. XVII.
 Flower. W. H. '69. On the Value of the Characters of the Base of the Cranium in the Clasification of the Order Carnivora, ete. Proc. Zosil. Soc. Lomion, 1sfig.
 Huxled, T. H. '*0. On the Cranial and Dental Charactens of the Canidx. P. Z. S.. 1880.
 Lerny, J. "f9. The Extinct Mammalian Fauna of Dakota and Nebraska. Philadelphia, 1-69.
 Schlosser, M. -8s. Ihe Affen, Lemuren, ete. 1. europ. Tertiairs. II. Th. Beitrüge zur Palacontologie OesterreichThgarns. Bd. VII.
 N'chlosser, M. '-9. Ditto, III, Theil, ibict. Bu. VIII.
 Scomt, W. B. '9t. Mammalia of the Deep River Beds. Trans. Amer. Phil. Soc., Vol. XVII.
 Wortmas, J. L. 'G4. Osteology of Patriofelis, etc. Bull. Amer. Mus. Nat. Mis., Vol. V.

[^23]: * Proc. Nut. Mus., Vol. XX (adv. sheet, March 5, 1^97).
 \dagger Is will be seen later, such specimens have since come to band and are described as Custor canadensis carolinensis.

[^24]: * Rilgway's Fomencluture of Colors is the standard used throughout this puiner.
 \dagger The narrow nazals of this specimen are an excention, the average of several cast Canalian specimens showing the ratio of length to breadth as less than two to one.

[^25]: * Quoted from Dr. Mearns' original description (l. c.) of type.

[^26]: * Dr. Allen's measurements of Alaskan skulls, pase 44\% of the Monogroph of A. A. Podentiu, to not inclicate unosual size, but as we have no precise locality given they may not havecome from the coast region, and, therefore, tho not represent pacificus.

 mm . Unlike all my pucificus specimens, No. 5515 has very wide convex pasnls.

[^27]: * The otters of Louisiana and Mississippi are stated by furriers to be very dark and light-pelted, resembling South Florida and (fulf-coast skins. No specimens having been examined, they are referred to vaga.

[^28]: * The diagnostic value of the nose pad has no significance in this study of the relationships of a monotypie groul.

[^29]: * The seasoo of capture was not recorded, but the pelt indicates that it was taken in full winter fur.
 \dagger I have no measurements of Alaskan otters, but judging by the great size of the skulls from there they must greatls exceed any known species of Lutro. On the basis of the skull they must attain a maximum length of over 1400 millimeters.
 + Zooy. Rowse. Asiat., 1. e.

[^30]: * The great size of the type, as compared with an aluit male also recorled by Dr. Mearns from Arizona, indicates that the sex of the type may have been wrongly determined. If correct, the size to be expected of a full-grown male sonore would be extroordinary.

[^31]: * The collector's measurement of the hind foot of type is wiven on label as " 126 mm ." "This is certainly incorrect. as the length determinable hy feeling the calcaneum in the dry skin could not have excedel 115 mm . This accorits with the small size of the bind foot and the length of other specimens of degener.

[^32]: * Typical curulthsia must be restricted to the Alleghenian form.

[^33]: RIUMDSNURTH AMERICAN BEAVERS

