

HARVARD UNIVERSITY.

LIBRARY

OF THE

MUSEUM OF COMPARATIVE ZOÖLOGY.

$$
4343
$$

Duplicate book exchange

December 5, 1916

DEC 51916

 $2-740$

 xamach Manch

(2)

4exernc.

 $24-50 y=3$
 2
2

2.
 Hovery

Ko. 1

Ge (a)

Otheratario

TRANSACTIONS

OFTHE
 A MERICAN

PHILOSOPHICAL SOCIETY,

HELD AT
PHILADELPHIA,
FOR PROMOTING

USEFUL KNOWLEDGE.

VOLUMEV.

$$
\begin{array}{llllllllllll}
P & H & I & L & A & D & E & L & P & H & I & A
\end{array}
$$

PRINTED BY BUDD \& bARTRAM
For thomas dobson, at the stone-house, No 4I, SOUTH SECOND-STREET.

$$
\text { - } 1802
$$

¿УOLTOAZKLSTI

MUNH2 DDAYMA ionodos simodent

30
\qquad

 a) 14 4

A DVERTISEMENT.

THE following are the rules adopted for the government of committees in the choice of papers for publication.

First, "That the grounds of the Committee's choice " of papers for the prefs, fhould always be the import" ance or fingularity of the fubjects, or the advantageous " manner of treating them, without pretending to an" fwer, or to make the fociety anfwerable, for the cer" tainty of the facts, or propriety of the reafonings, " contained in the feveral papers fo publifhed, which " muft ftill reft on the credit or judgment of their refpec" tive authors.

Secondey, " That neither the Society, nor the "Committee of the prefs, do ever give their opinion as " a body, upon any paper they may publifh, or upon " any fubject of Art or Nature that comes before " them."

At a flated mecting of the Society, beld at their Hall, December 19 th, 1800 , the following Premiums were propofed:

I.

For the moft fimple, convenient, and effectual method of ventilating a fhip at fea, without manual labour; if fuperior to any now in ufe, a premium of one bundred dollars.

Memoirs to be delivered by the firt of April, 1802.

II.

For the cheapeft and moft effectual method of rendering common oil fit to be burned in the Argand lamp, either by purifying the oil, or by an improvement in the lamp : a premium of thirty-five dollars.

Memoirs to be delivered by the firft of April, 1802.

III.

For any fimple and effectual method of rendering turpentine, or any other cheap inflammable fubftance, a fit fuel for ftreet or houle lamps, or a proper material for candles: a premium of forty dollars.

Memoirs to be delivered by the firft of April, 1802.

IV.

For the beft experimental effay on the native red dies of the United States, accompanied with fmall fpecimens of the died ftuffs: a premium of one bundred and fifty dollars.

Memoirs to be delivered by the firft of January, 1804.

General Conditions for the above Premiums:

1. Every candidate, along with his performance, is to fend to the fociety a fealed letter, containing his name and
place of abode; which letter thall never be opened by the fociety, except in the cafe of a fuccefsful candidate.
2. No performance, invention or improvement, on any of the fubjects propofed, for which a patent or any other reward fhall have been obtained, before prefenting it to the fociety, fhall be confidered as entitled to the premium.
3. In lieu of the money which fhall be awarded by the fociety, as a premium, any fuccefsful candidate fhall have it in his option to receive a gold or filver medal, or piece of plate, with a fuitable infcription of equal value.
4. The fociety referve to themfelves the power of giving, in all cafes, fuch part only of any premium propoled, as the performance fhall be adjudged to deferve; or of withholding the whole, if it thall appear to have no merit above what may have been already publifhed on the fubject. The candidates may, however, be affured, that the fociety will always judge liberally of their feveral claims.

Mr. I. H. De MAGELLAN, of london,

Having made a donation, to the fociety, of two bundred guineas, to be vefted in a permanent fund; that the intereft arifing therefrom may be difpofed of, in annual premiums, to the authors of the beft difcoveries or moft ufeful improvements, relating to Navigation, or to Natural Philofophy, mere Natural Hiftory only excepted; the following are the rules and conditions, adopted by the fociety, for the difpofition of the propofed premiums, in conformity to the intention of the Donor, viz.
I. The candidate fhall fend his difcovery, invention or improvement, addreffed to the Prefident or one of the Vice-Prefidents of the fociety, free of poftage or other charges; and fhall diftinguifh his performance by fome motto,
motto, device or other fignature, at his pleafure. Together with his difcovery, invention or improvement, he fhall alfo fend a fealed letter, containing the fame motto, device or fignature, and fubfcribed with the real name and place of refidence of the author.
II. Perfons of any nation, fect, or denomination whatcver, thall be admitted as candidates for this premium.
III. No difcovery, invention or improvement fhall be entitled to this premium, which hath been already publifhed, or for which the author hath been publicly rewarded elfewhere:
IV. The candidate Gall communicate his difcovery, invention or improzement, either in the Englifh, French, German; or Latin language.
V. All fuch co:nmunications flall be publicly read or cxhibited to the fociety, at fome flated meeting, not lefs than one month previous to the day of adjudication; and fiall at all times be open to the infpection of fuch members as fhall defire it. But no member fhall carry home with him the communication, defcription or model, except the officer to whom it fhall be entrufted: nor thall fuch officer part with the fame out of his cuftody, without a fpecial order of the fociety for that purpofe.
VI. The fociety having previoully referred the feveral communications, from candidates for the premium then depending, to the confideration of the twelve counfellors and other officers of the Society, and having received their report thereon, fhall, at one of their ftated meetings, in the month of December, annually, after the expiration of this current year (of the time and place, together with the particular occafion of which mecting, due notice fhall be previoufly given, by public advertifement) procced to the final adjudication of the faid premium : and after due confideration had, a vote fhall firft be taken on this queftion, viz. "Whether any of the communications,
cations, then under infpection, be worthy of the propofed premium ?" If this queftion be determined in the megative, the whole bufinefs fhall be deferred till another year: But if in the affirmative, the Society hall proceed to determine, by ballot, given by the members at large, the difcovery, invention or improvement moft ufeful and worthy. And that difcovery, invention or improvement, which fhall be found to have a majority of concurring votes in its favour, fhall be fuccefsful. And then, and not till then, the fealed letter accompanying the crowned performance, fhall be opened, and the name of the author announced as the perfon entitled to the faid premium.
VII. No member of the Society who is a candidate for the premium then depending, or who hath not previoufly declared to the Society, either by word or writing, that he has confidered and weighed, according to the beft of his judgment, the comparative merits of the feveral claims then under confideration, thall fit in judgment, or give his vote, in awarding the faid premium.
VIII. A full account of the crowned fubject thall be publifhed by the Society as foon as may be, after the adjudication, either in a feparate publication, or in the next fucceeding volume of their Tranfactions, or in both.
IX. The unfuccefsful performances thall remain under confideration, and their authors be confidered as candidates for the premium, for five years next fucceeding the time of their prefentment ; except fuch performances as their authors may, in the mean time, think fit to withdraw : And the Society fhall annually publifh an abftract of the titles, object or fubject matter of the communications fo under confideration, fuch only excepted as the Society thall think not worthy of public notice.
X. The letters containing the names of authors whofe performances flall be rejected, or which fhall be found unfuccefsful after a trial of five years, fhall be burnt before the Society without breaking the fcals.
XI. In cafe there chould be a failure, in any year, of any communication worthy of the propofed premium, there will then be two premiums to be awarded in the next year. But no accumulation of premiums thall entitle an author to more than one premium for any one difcovery, invention or improvement.

X11. The premium thall confift of an oval plate of folid ftandard gold, of the value of Ten Guineas. On one fide thereof fhall be neatly engraved a fhort Latin motto fuited to the occafion-together with there words, The premium of I. H. De Magellan, of London, eftablibed in the year 1736. And on the other fide of the plate fhall be engraved thefe words, Awarded by the A. P. S. to
_ for his difcovery of __ A. D. Prefident. And the feal of the Society fhall be annexed to the faid golden plate, by a ribbon paffing through a fmall hole near the lower edge thereof.

The Society baving appointed a Committee to colleet information refpecting the pafl and prefent fatc of this country, the Committee during the laft year addreffed the following letter 10 fucb picrfons as cecre likely, in their opinion, 10 advance the object of the Society.

[CIRCULAR.]
PHILOSOPHICAL HALL, PHILADELPHIA.

Sir,
HE American Philofophical Society have always confidered the antiquity, changes, and prefent fate of their own country as primary objects of their refearch; and with a view to facilitate fuch difcoveries, a permanent committec has been eftablifhed, among whofe duties the following have been recommended as requiring particular attention.
r. To procure one or more entire 价elens of the Mammoth, fo called, and of fuch other unknown animals as either have been, or hereafter may be difcovered in America.
2. To obtain accurate plans, drawings and defcriptions of whatever is interefting, (where the originals cannot be had) and efpecially of ancient Fortifications, Tumuli, and other Indian works of art: afcertaining the materials compofing them, their contents, the purpofes for which they were probably defigned, \&c.
3. To invite refearches into the Natural Hifory of the Earth, the changes it has undergone as to Mountains, Lakes, Rivers, Prairies, \&cc.

Vol. V. b
4. To
4. To inquire into the Cuftoms, Manners, Languages and Character of the Indian nations, ancient and modern, and their migrations.

The importance of thefe objects will be acknowledged by every Lover of Science, and, we truft, fufficiently apologize for thus trcubling you: for without the aid of gentlemen who have tafte and opportunity for fuch refearches, our means would be very confined. We therefore folicit your communications, now or in future, on thefe fubjects; which will be at all times thankfully received, and duly noticed in the publications of the Society.

As to the firf object, the committee fuggeft to Gentlemen who may be in the way of inquiries of that kind, that the Great Bone Lick on the Ohio, and other places where there may be mineral falt, are the moft eligible fpots for the purpofe; becaufe animals are known to refort to fuch places.

With relpect to the fecond head, the committee are defirous that cuts in various directions may be made into many of the Tumuli, to afcertain their contents; while the diameter of the largeft tree growing thereon, the number of its annulars and the fpecies of the tree, may tend to give fome idea of their antiquity. If the works fhould be found to be of Mafonry; the length, breadth, and height of the wails ought to be carefully meafured, the form and nature of the ftones defcribed, and fpecimens of both the cement and flones fent to the committee.

The beft methods of obtaining information on the other fubjects will naturally fuggeft themfelves to you; and we rely on a difpofition favourable to our wifhes.
CIRCULAR LETER.

The Committee confift of the following Gentlemen, viz.
THOMAS JEFFERSON, Prefident of the American Philofophical Society, at Monticello in Virginia.
JAMES WILKINSON, Commander of the Army at Head Quarters.
Dr. CASPAR WISTAR, Vice Prefident of the A. P. S.
Dr. ADAM SEYBERT, Secretary of do. in Philadel. C. W. PEALE, and

JON. WILLIAMS.

Your communications may be addreffed to any one of the Committee, but the articles you may think proper to furnifh fhould be fent to this place.

> In behalf of the Committee,
> I am refpectfully,

Sir, your obedient fervant,
Chairman.
To

LIST of the OFFICERS

OF THE

AMERIGAN PHILOSOPHICAL SOGIETY,
For the Year 1801.

Patron. Thomas M'Kean, Efquire, Governor of the Commonwealth of Pennfylvania.

President. Thomas Jefferfon, Efquire.
Vice-Presidents. $\left\{\begin{array}{l}\text { Cafpar Wiftar, } \\ \text { Robert Patterfon, } \\ \text { Andrew Ellicott. }\end{array}\right.$
Secretaries. $\left\{\begin{array}{l}\text { John Redman Coxe, } \\ \text { Adam Seybert, } \\ \text { Jofeph Clay, } \\ \text { Burgifs Allifon. }\end{array}\right.$
Counsellors for
three Years. $\left\{\begin{array}{l}\text { Jonathan B. Smith, } \\ \text { William Currie, } \\ \text { Samuel Wheeler, } \\ \text { Peter Stephen Duponceau. }\end{array}\right.$
Curators.
$\left\{\begin{array}{l}\text { Charles Wilfon Peale, } \\ \text { Robert Leflie, } \\ \text { John R. Smith. }\end{array}\right.$
Treasurer. John Vaughan.

List of the Members of the Americain Philosophical Society, elected fince January 1799.

AMERICAN MEMBERS.
VILLIAM BOYS, A. M. Philadelphia.
John Redman Coxe, M. D. do.
Thomas Peters Smith, do.
Jofeph Clay, do.
B. Henry Latrobe, Engineer, do.

William Maclure, do.
Samuel Elam, Newport, R. I.
John R. Smith, Philadelphia.
Juftus Erick Bollman, do.
W. Dunbar, of the Miffiflippi Territory.

Samuel Brown, Kentuckey.
Samuel Miller, A. M. New-York.
Robert R. Livingfton, do.
Thomas T. Hewfon, Philadelphia.

FOREIGN MEMBERS.

Robert Lifton, Efq. his Britannic Majefty's Envoy Extraordinary and Minifter Plenipotentiary, near the United States.
M. Dupont de Nemours, late of France, now refiding in the United States.
Samuel Fhalberg, Phyfician to the Swedifh Government at St. Bartholomews.
Guftavus Paykul, of Sweden.
Alexander Remerez, firft Secretary of the Junta at Guatimala.
Francis Blanchet, of Quebec.
William Jones, Mathematical Inftrument maker, London.
Don Jofeph Joaquin de Ferrer, of Cadiz.
Don Francifco Feyrolon, Secretary of the Real Sociedad de Amigos del Pais de Valencia.

```
                                    ( xiv )
    P R E S E NT S
IRECEIVED BY THE
```


American Philofophical Society,

Since the Publication of their $4^{\text {th }}$ Wol: of Tranfactions,

WITE THE

NAMES of the DONORS.
1798. D o N OR s.

Presents.
Dec. 7. General James Various bones of the MamWilkinfon.

Mr. Thomas Paffinore.
1799.

March r. Author,
April 5. Author,

May 17.
Dr. A. Fothergill, of Bath.

Author, moth, chiefly of the limbs.

A very fine fpecimen of Talk, from the back part of New Hampfhire.

The Columbian Alphabet, by James Ewing.

Facts relative to Natural Hiftory, by James Edward Smith, M. D.

Rules, Orders and Premiums of the Bath and Weft of England Society.

Prefervative plan, or hints for the prefervation of perfons expofed to thofe accidents, which fuddenly
1799. Donor or

May 17. Author,

Author,

June 2r. Author,

Author,

Nov. 15, Author,

Jobn Vaughan, Efquire.
do.
do.

Presents. ly fufpend or extinguifh vital action, by A. Fothergill, M. D.

Plans of the Eclipfes of the Sun and Moon, which are to happen refpectively, in the years 1805 and 1806, by William Lambert, of Virginia.

Obfervations on Vifion, by David Hofack, M. D.

Fragments of the Natural Hiftory of l'ennfylvania, by Benjamin Smith Barton.

An Effay on the beft fyftem of Liberal Education, by Samuel Knox, A. M. of Maryland.

Lettre-Yolitico-Theologi-co-Morale fur les Juifs par D. Nafs-az, M. D.

Nautical Almanac for 1774 .
Differtation fur les Thermometres, par J. H. Van Swinden.

Obfervations fur le Froid Rigofeux du Mosde Jinvier Swinden.

Author,
Fifty copies of "Thermometrical Navigation," by Jonathan Williams, to be diftributed, under directions of the Society.

Dec. 6. Fonathan Williams, A large marine excrefcence.
Author,
Nine numbers of " Recreations in Natural Hiftory Arts and Mifcellaneous literature," by Dr. James Anderfon, with a promife of the fucceeding numbers.
1800.

Feb. 21. Samuel Elam, Efq. Five hundred dollars. of New-port, Khode Ifland,

March 2I. Author,

March 2I. Author,

April 4. Author,

Nouvelle Voilure propofée pour les Vaffeaux de toutes Grandeurs, par David le Roz.

Fhilofophie de l'Univers, par M. Dupont de Nemours.

A Map of the Ifland of St. Bartholemews and its vicinity, by Samuel Fahlberg, Phyfician of the Swedifh
1800. DoNoRs.

Author,

April 18.
William Jones, Efq. of London.

Presents. Swedifh Government in faid Illand.

Fauna Suecica Infecta, Guftavi Paikull, Sen. Suec. Reg. Cancellar. a confiliis.

A pair of eighteen inch globes. (Freight of the above relinquifhed by Mr. JofephSims to the fociety.)

The 4 th and 5 th volumes of the Geography of the United States of America, by D. Ebeling.

The Naturalift's and Traveller's Companion, by John Coakley Lettfom, M. D. the third edition.

Natural Hiftory of the Tea Tree, by John Coakley Lettfom, M. D.

Portraits of Dr. Lettfom, and Dr. Sims.

A Synoplis of the Chemical Characters adapted to the new nomenclature, by Meffrs Haffenfratz and Adet, fyftematically arranged C
1800. Do No
June 20. Author,

Andrew Ellicot.

Author,

Author,

Author,

Jonathan IVilliams.

Sept. 19. Author,

Presents. ranged by William Jackfon, Practical Chemift.

A Memoir on the Analyfis of the Black Vomit, by Ifaac Cathrall.

Three fpecimens of Iceland Chryftal, found on a fand bar, in the river Miffiffippi.

A Memoir on Goitre, by Benjamin Smith Barton.

An Inaugural Differtation on the effects of Light in refpiration, by Jofeph Trent of Virginia.

An Inaugural Differtation on Sedatives, by Robert Berkley, of Virginia.

An Inaugural Differtation on Abforption, by John Baptifte Clement Rouffeau, of Hifpaniola.

A Buft of Benjamin Franklin, by Houdon.

Sobre la excelencia y utilidades del Comercios y las que pueden refultar a Mallorca
1800. DONORS.

Nov. 7.
Fonathan Wiliiams, Efq.

Presents. lorca del eftablecimiento de una Compania, difcurfo por D. Jofef de Jaudenes y Nebot, \&c.

A Treatife of Artillery, containing a new fyftem, or alterations made in the French Artillery, fince 1765, with tables and plates explanatory, tranflated from the French, of Monfieur de Scheel, prefented by the tranflator,
Nov. 2 1. Willian Gones, Adam's Lectures on Natural

Efq. of London.

Author,

Dec. 19. Author,

An Introductory Difcourfe on the Science of Nature. Mr. Charles W. Peale.

Scriptores Logarithmatici, vol. 38, by Francis Mavol. 38, by Francis Ma-
feres, Efq. T. K. S. Curfitor Baron of the Exchequer.

Elements of Fortification
Elements of Fortification
tranflated from the French with an Appendix.

Leçons d'Anatomie Comparée, by G. Cuvier. Philofophy, five volumes 8 vo .
1801.

Feb. 6. Gonatban Willianis.

April 3. Author.

> :

(xxi)

C $\begin{array}{llllllll}\mathrm{O} & \mathrm{N} & \mathrm{T} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{S}\end{array}$

0 F

V O L U M E V.

No. Page.
I. EXPERIMENTS on the Tranfmiffon of Acids, and other Liquors, in the Form of Vapour, over feveral Subfances in a bot earthen Tube. By Dr. Joseph Priestley, r
II. Experiments relating to the change of Place in different kinds of Air through feveral interpofing Subfances. By Dr. Joseph Priestley, 14
III. Experiments relating to the Abforption of Air by Water. By Dr. Joseph Priestley, 2.1
IV. Mijcellaneous Experiments relating to the Doctrine of Phlogif- ton: By Dr. Joseph Priestley, 28
V. Experiments on the Production of Air by the Freezing of Wa- ter. By Dr. Joseph Priestley, 3^{6}
VI. Experinents on Air expofed to Heat in metallic Tubes. By Dr. Joseph Priestley, 42VII. Some Account of the Poijonous and Injurious Honey of NorthAinerica. By Benjamin Smith Barton, M. D.51
VIII. On the Ephoron Leukon, ufually called the White Fly ofPaffaick River. By Dr. Williamson,71
(. xxii)
No.
Page.
iX. Remarks, on certain Articles found in an Irdian Tumulus at Cincinnati, and now depjgited in the Muferm of the American Pbilofopbical Society. By George Turner, 74
X. A Drawing and Defripticn of the Clupea Tyrannus and Onif- cus Pregiffatso. By Benjamin Henky Latrobe. F. A. P. S. 77
XI. A Defcription of a newly invented Globe Time-Piece. By the Rev. Burgiss Allison, A. M. 82
XII. A Defcription of the Pendant Planetarium. By Burgiss Allison,
XIII. On the Ufe of the Thermomater in Navigation. By Wil- liam Strickland, 90
XIV. Sur les Vigétaux, les Polypes et les Infectes. By Dupont de Nemours, 104
XV. Memoir on the Analyfis of Black Vomit. By. Dr. Is $\Delta a c$ Cathrall, II7
XVI. Obfervations on the Soda, Magnefia, and Lime, contained in the Watir of the Oceati;: Joewing that they operate advantage- oufly there by neutralizing Acids, and among others the Septic Arid, and that Sca-Water may be rendered fit for wualling Clotbes zuitbout the Aidl of Soap. By Samuel L. Mitchill, of Nerv-York, 139
XVII. Defoription of a Stopper for the Openings by which the Sezvers of Cities receive the Water of their: Draswi. By Mr. John Fraser, of Cbelfex, London, 148
XVIIT. A. Memair on Animal Cotton, or the Infict. Fly-Catrier.By M. Baudiy des Lozieres, Menber of. Several Acadc-mics, and Founder of the Society of Sciences and Arts, atCapo Frangois,
XIX. Nole concernisg a Vegetảle found under Ground. In a letter from Colonel Bull, 160
Xx. Afronomical, and Tbermometrical Obfervations, made at theComfluence of the Mififippi, and Ohio Rivers. By. AndrewEllicott,162
(xxiii)No.XXI. Afronomical, and Thermometrical Obfervations, made on theBoundary between the United States and His Catbolic Majefty.By Andrew Ellicott,203
XXII. Obfervations on the Figure of the Earth. By Josepr Clay, M. A. P. S. 312

- XXIII. Defcription of fome Improvements in the cominonFire-Place, accompanied with Models, offcred to the confideration of the American Pbilofophical Society. By C. W. Peale, and bis fon Raphaelle, 320
APPENDIX. No. I. An Account of a Metbod of Preventing the prenature Decay of Peach Trees. By John Ellis, of. New- Ferfey, 325
No. II. Defription of a Metbod of Cultivating Peach Trees, ruitha view to prevent their premature Decay; confirmed by the ex-perience of Forty-five Years, in Delaware State and the avefternparts of Pemnjlyenniz. By Thomas Coulter, Efq. of Bed-ford County, Pennjlirania.327

TRANSACTIONS

OF THE

AMERICAN PHILOSOPHICAL SOCIETY.

No. I.
Experiments on the Tranfmifion of Acids, and other Liquors, in the Form of Vapour, over Several Subfances in a bot earthen Tube. By Dr. Joseph Priestley.

Read, Dec.

IHAVE publifhed an account of many experiments on the tranfmiffion of fteam, and alfo of acids, in the form of vapour, over fubftances of various kinds in hot earthen tubes, with an apparatus to receive both the air that was produced in the procefs, and the liquor that was diftilled. The following were made at the fame time, but were then thought lefs worthy of publication. Some of the facts may, however, be of ufe to thofe who may be difpofed to refume thofe experiments.

Sending the vapour of fpirit of nitre over an ounce of iron turnings, I got 140 ounce meafures of air with great rapidity. Of this no part was nitrous, or fixed, but it was flightly inflammable. The reft was phlogiflicated.

In the courle of the procefs, the finery cinder that was formed had united to the earth of the tube, and made a hole through it, but I collected 8 dwts. of the iron which had not been much affected.

With copper in the fame procefs I got pretty pure dephlogificated air, from the acid only, while the production was rapid, but when it came flowly, it was nitrous. The copper was covered with a peculiar kind of fcale, and fome parts were entirely reduced to it. It was brittle, but not black.

Sending the fame vapour over 240 grains of perfect cbarcoal, I got, with prodigious rapidity, and full of black linoke, 900 ounce meafures of air, flightly inflammable, without any fixed air. It was of the fame fpecific gravity with common air, and what remained of the charcoal weighed 47 grains.

From about an ounce of the charcoal of bones, out of which all air had been expelled by heat, I gor, by the tranfmiffion of the fame vapour, about an hundred ounce meafures of air, of which one-fifth was fixed air, and the reft phlogifticated. Continuing the procefs, the air that came afterwards was dephlogifticated, from the acid only.

From a quantity of melted lead I got, in the fame procefs, air that came with great rapidity, at firf dephlogifticated from the acid, afterwards, what was worfe than common air, as it extinguifhed a candle. After the procefs I found in the earthen tube much glafs of lead covered in part with a white powdery fubftance, which was, no doubt, nitrated calx of lead.

The experiment with $t i n$ in this procefs was fimilar to that with lead. After the procefs there was found a quantity of a white fubftance in hard lumps, and the tin that remained was covered with it. This was, no doubt, the nitrated calx of tin.

When this procefs was gone through with bifmutb the air produced was exceedingly turbid, and ftrongly nitrous. But
the greateft part of the acid came over in red vapours, which were imbibed by water, that afterwards gave out nitrous air. The metal was covered with a white powdery fubftance, but in fome places yellow, the nitrated calx of bifmuth. The liquor that was diftilled was of a blue colour, and the veffel in which it was received, was filled with red vapours.

Sending the vapour of marine acid over a quantity of copper, I got about 40 ounce meafures of air, the greateft part of which was ftrongly inflammable, but mixed with common air. For when, after being turbid, it became clear, and the production flow, the ftandard of the air was I.45.

I then fent the vapour of this acid through an empty earthen tube glazed on the outfide only, and got about 60 ounce meafures of air of the ftandard of 1.4 , or 1.35 very turbid. The refult was the fame when the tube was glazed both infide and outfide. This air I fufpect had been tranfmitted through the tube, while the vapour of the acid paffed through in the contrary direction.

With this acid vapour fent over 10 dwts. of perfect charcoal I got about 700 ounce meafures of air, without any fenfible quantity of fixed air ; but afterwards one tenth of the produce was fixed air, and the reft inflammable, of which 20 ounce meafures weighed two grains lefs than the fame quantity of common air. This air came over white as milk, and the acid that was diftilled was quite black.

I feveral times fent cauffic fixed alkali in vapour through an earthen tube containing iron, when the firft portion that was diftilled was flightly acid, but not afterwards. I had the fame refult in three proceffes, in which the glafs worm, and all the apparatus, had remained juft as it was after the preceding experiments; fo that nothing acid could well have come to it.

Experiments made with Charcoal, Pbofphorus and Animal Fibres in the Nitrous Acid.

I have formerly given an account of experiments on the folution of charcoal in the nitrous acid; and as there is fome diverfity in the refults, it may be of ufe to add the following :

Some pieces of pounded charcoal diffolved with difficulty in nitrous acid, but with heat it conftantly gave air, of which about one-fifth was at firft fixed air, and the reft nitrous; but at laft it was wholly phlogifticated. At another time half of the produce was fixed air, and the reft phlogifticated.

From 205 grains of perfect charcoal and three ounce meafures of ftrong acid of nitre, I got 180 ounce meafures of air, of which at firft only one-fixth, but at laft one half, was nitrous, and the reft fixed air. With frefh acid to the remainder of the fame charcoal I got 82 ounce meafures of air, of which at firft only one-fixth was nitrous, with equal meafures of common air occupying the fpace of 1.6 . Of the reft one half was more purely nitrous. The phial in which the folution was made becoming dry, and prefently after red hot, I got with great rapidity, and in a very turbid ftate, 50 ounce meafures more ; and of this one half was fixed, and the remainder phlogifticated.

Charcoal of copper appeared to differ from that of wood in that, being diffolved in the nitrous acid, it gave only nitrous air, without any fixed air, and very little phlogiticated air. From this it may be inferred that charcoal of copper contains no oxygen, which charcoal of wood does, and by which it can give fixed air.

The different refults of diffolving copper, phofphorus, and animal fibres in the fame quantity of the acid of nitre may give rife to fome ufeful obfervations.

Having found that a certain quantity of nitrous acid gave $79 \frac{1}{2}$ ounce meafures of nitrous air by the folution of copper, I put into the fame quantity of the fame acid as much phofphorus as it would diffolve, and found that it yielded 21 ounce meafures of air, all phlogifticated; a quantity very nearly to which the nitrous air yielded by the copper would be reduced by heating iron in it, and other phlogiftic procefles. There was a frong acidvapour in this phlogifticated air, even after being long confined by water.

In the fame quantity of the fame nitrous acid, diluted with as much water, I diffolved one ounce of dry boiled beef, and got from it 82 ounce meafures of air, all phlogifticated.

That dephlogifticated air, or oxygen, enters into the compofition of fixed air, I think I have proved in various ways, but moft decifively by heating charcoal of copper in dephlogilticated air. From the following experiment on the heating of charcoal of wood in it, it feems evident that both fixed and phlogifticated air are in part compofed of it.

In 79 ounce meafures of dephlogifticated air, which with two equal meafures of nitrous air occupied the fpace of 0.93 , I difperfed, by means of a burning lens, $15 \frac{1}{2}$ grains of charcoal ; when they were increafed to 91 ounce meafures, and by wafhing in water reduced to 53 , of the ftandard of 1.92. Again, in 74 ounce meafures of the dephlogifticated air, I difperfed $13 \frac{1}{2}$ grains of charcoal, when it was augmented to 80 ounce meafures, and it was diminifhed by wafhing in water to 48 .

That nitrous air contains oxygen, feemed probable from the burning of pyrophorus in it. The fame may perhaps be inferred from the burning of charcoal of wood. Filling a tall glafs jar with pure nitrous air, I placed
placed it as quickly as I could over a piece of hot charcoal, and obferved that it burned with a confiderable glow, much better than in common air : and the jar was filled with a white cloud. After a few minutes the air was diminifhed to about one-fourth of its original bulk ; but after remaining in this fituation all night, it was increafed to about one-third of the original quantity; and being then evamined, it appeared to be all phlogifticated. Dipping the fame charcoal into water, I got from it $1 \frac{1}{2}$ ounce meafures of air, all phlogifticated, but with a flight mixture of fixed air. This fubject may deferve farther inveftigation. For fince dephlogifticated air fo readily unites with nitrous air, and with it forms nitrous acid, it is not cafy to account for nitrous air containing any portion of the fame element, and retaining its aerial form. Alfo the juice of turnfole does not change its colour by faturation with nitrous air, which if it contained oxygen, it might be expected to do.

Miscellaneous Experiments.

1. On the colouring of the folution of copper in Volatile Alkali, and of various Jubfances in the marine acid.

In repeating my former experiments of this kind, a few circumftances occurred which I did not fo particularly attend to before; and may be deferving of notice, and of a farther profecution. They fhow that dephlogificated air is effential to thefe colours, and how they may be given and taken away at pleafure.

It is well known that the folution of copper in cauftic volatile alkali affumes a blue colour if it be made with accefs of air. Without it, it is perfectly colourlefs; and the colour may be difcharged by more copper, and reftored again by means of air, as long as the menftruum
is capable of diffolving the metal. The coloured liquor is alfo heavier than that which is without colour ; and if a phial of the colourlefs liquor be opened, the colouring will begin at the top, and defcend in the form of a fine thread in the center of it to the bottom, till the whole be coloured.

By means of this colourlefs folution 6 ounce meafures of air were reduced to 5 , completely phlogifticated, without any fixed or inflammable air in it.

Liver of fulphur difcharges this colour:
The folution of minium, and alfo that of red precipitate, in the marine acid is attended with much heat, the former with the emiffion of dephlogifticated marine acid air, and the latter without it. But when the folution of the red precipitate is become cool, and colourlefs, it is afterwards diffolved in this acid without any generation of heat.

The folution of finery cinder in this acid is not attended with heat.

The folution of minium has a beautiful yellow colour, but by diffolving red precipitate it becomes colourlefs. It will alfo difcharge any other colour made by a folution in this acid.

The folution of iron in marine acid acquires colour by accefs of air only, and the folution of more iron, even that which is rufted, will difcharge the colour.

This coloured acid became colourlefs by diffolving the black powder of mercury and lead. Much air was produced in this procefs, and it was pure fixed air, with a fmall refiduum that extinguifhed a candle.

An exceedingly fmall quantity of pure air is fufficient to reftore colour to the folution of any fubftance in the marine acid.

2. Of

2. Of the production of fulpbur by beating water impregnated weith vitriolic acid air.

When I firft made this experiment it was a long time before any fulphur appeared; but it is formed much fooner when the common air is expelled from the tube by heating a little of the impregnated water previoufly to its being hermetically fealed. By this means the fulphur will appear the firft day, and in three or four days the production will have attained its maximum, the whole tube being covered with white cryftals. After fome days there will be a little ball of yellow fulphur fwimming on the middle of the liquor, and a good deal of fulphur will be found at the bottom of it, by the cryftals on the fides continually fliding down into the liquor, as others are formed. The tubes I have generally ufed for this purpofe are fomething more than three feet long, and more than half an inch wide.

Sulphur is produced in the very fame manner and in the fame time by means of water impregnated with hepatic air. The only difference that I obferved was that I did not fee the fame dancing vapour in this procefs as in that with vitriolic acid air, which is a curious circumftance in the experiment.

Having evaporated to drynefs a quantity of water impregnated with hepatic air, there remained a black powder, like ethiops mineral. When this faturation is made with water confined by mercury, it has a white colour.

Opening a tube in which fulphur had been formed from water impregnated with vitriolic acid air under water, I found the air within it of the ftandard of $\mathbf{1 . 6}$, without fixed air, or any thing inflammable in it.
3. An experiment with Papin's Digeffer.

Aided by heat in this inffrument a folution of cauftic alkali made a liguor flicum with pounded flint glafs.
4. Of
4. Of Pbofpboric air.

Phofphoric air, though confined by mercury, will not always retain its property of taking fire by the admiffion of atmofpheric air. A quantity of this air which was made the 18 th of November would not take fire on the 22 d , but burned with a lambent yellow flame on the approach of a lighted candle, fmelling ftrongly of phofphorus. At other times I have found this air retain its peculiar property much longer; but it was always changed to a lambent inflammable air by keeping, nor would heat reftore it.
5. Of the purity or impurity of airs in various circumfances.

Some experiments feem to indicate that fomething pofitive is communicated to feveral fubftances, folid and fluid, in confequence of being expofed to heat. At leaft they are difpofed after this to attract pure air from the atmofphere, like other fubftances during the emiffion of phlogitton. The following obfervations may ferve to throw fome light on this fubject, and perhaps deferve to be profecuted farther.

Air from water frefh diftilled, from rain water, or frelh fpring water, gave out air fomething worle than that which had been expofed to the atmofphere.

Air from fnow water, from a folution of blue vitriol, and from water diftilled from this folution, gave air a little worfe than water long expofed to the atmofphere. Such alfo was air from river water during a flood from late rains.

Putting a fmall quantity of fpirit of wine into a phial, and covering it with a fmall glafs veffel ftanding in water, I found the air within it confiderably lefs pure than common air.

Air incumbent on water impregnated with nitrous vapour extinguifhed a candle.

Vol. V.
B

A phial which had contained aqua regia faturated with gold having a very pungent fmell, I examined the air within it, and found it to be of the ftandard of 1.65 , much worfe than common air.

Air which had been confined with muk was a little worfe than common air. There was no fixed air in it. Air confined in a fimilar phial, and with a fimilar cork, about the fame time was not worfe than common air, nor was air confined with camphor.

Water in which liver of fulphur was diffolved did not give out air worfe than before.
6. Of the proportion of latent beat in fome kinds of air.

That heat is neceffary to the aerial form of fubftances is as evident as that it is neceffary to form the vapour of water. I took the following method to afcertain the proportional quantity of latent heat in thofe kinds of air which are readily abforbed by water, expecting to find a confiderable difference between them, but I did not find any. I inclofed the bulb of a mercurial thermometer in one end of a glafs tube, and made the place airtight with a cork and cement ; then filling the tube with mercury, I introduced a certain quantity of water, which, furrounding the bulb of the thermometer, would foon impart to it whatever heat it received by the abforption of the air that was thrown up into it.

The quantity of water in all the experiments was 44 grains, and the jar of air that 1 threw up into it held nearly two ounce meafures. The kinds of air on which I made the experiment were marine acid air, vitriolic acid air, and alkaline air. In all the eafes the abforption of the air raifed the thermometer four degrees of Fahrenheit, which was a fpace of an inch and a half; fo that a finall difference would eafily have been perceived. The vitriolic acid air required a little agitation, and on
this account the heat would not be communicated fo fpeedily, and confequently fome would be loft. But the difference in this cafe was only that of 1.6 and 1.5 .
7. Experiments relating to aqua regia and the folution of gold and platina in it.

In impregnating marine acid with nitrous vapour, which makes an aqua regia much ftronger than that which is made by a mixture of two acids, there dropped from the end of the tube through which the phlogifticated vapour was conveyed a deep green acid, in the form of balls, which fell to the bottom of the veffel, and after continuing a fhort time burft with the emiffion of air, the green colour then difappearing and the acid gradually affuming its proper orange colour.

Going to make ufe of a quantity of aqua regia that had been made fome months, I found its colour changed, and that, by the efcape of the nitrous vapour, it was become mere marine acid. Impregnating it again with nitrous vapour, it was the fame as before. Diftilling the folutions of gold and platina in this compound acid, the liquor that came over was marine acid. Platina required more heat to diffolve it than gold.
8. I made the following experiments to obferve the different effects of phlogifticated and dephlogifticated nitrous acid in the folution of mercury.

In the dephlogifticated acid an ounce of mercury gave lefs of both nitrous and dephlogifticated air. I diffolved an ounce of mercury in dephlogifticated acid of nitre, and without changing the retort, which was cooled, and gradually expofed to a red heat till nothing more came over, I got about 15 ounce meafures of nitrous air, and 55 of dephlogifticated. From the calx that was fublimed 1 got 17 ounce meafures of dephloginicated air. In the fame procefs with phlogifticated nitrous acid 1 got 43 ounce meafures of nitrous air, and 63 of deB 2 phlogifticated ;
phlogiticated; and from the calx that fublimed I got 6 ounce meafures of nitrous air, and 15 of dephlogitticated.
9. That quicklime gets weight by expofure to the air is well known. The following experiment will fhew what that weight is.

An ounce of quicklime expofed in a fhallow difh on the ift of July increafed in weight till the 14th of Oct. when it had grained 320 grains. Another ounce had gained 300 grains in the fame time, and after this they gained nothing more. In the fame time an ounce of quicklime faturated with water, and then left to dry, had gained 294 grains : another ounce gained exactly the fame weight, and a third 325 grains.
10. Dyrophorus is generally made with the charcoal of vegetable or animal fubftances mixed with alum, or any thing that contains the acid of vitriol, and the heat by which it takes fire is occafioned by the eager attraction of this acid for water. I accidentally found that a pyrophorus may be made of fulphur and iron.

Having kept a cup full of this mixture made up with water in a quantity of common air about two months, 1 then took it out, and left it in the cup. The next day perceiving the cup to be warm, I emptied it upon a board, when it grew hot, finoked very much, gave out a ftrong fmell of vitriolic acid air, and at length became red hot. Putting a part of it into another cup confined by common air, the air was rapidly diminifhed.
11. Of the abforption of fixed air by a mixture of iron filings and fulpbur.

Among fome of the firft of my experiments were fome on the effect of this mixture on fixed air, as well as on that of the atmofphere. The following relate to the fame fubject, and may deferve to be profecuted further.

A mixture of this kind which had been fome time in common air, and was become brown, abforbed fixed air with great rapidity, without leaving any fenfible reflduum. But different portions of it abforbed this air very differently. Six ounce meafures of fixed air which had been a long time expofed to about an ounce of rufted iron had now a refiduum of about three-fourths of an ounce meafure, and it was wholly phlogifticated.

A bladder containing about 20 ounce meafures of fixed air was connected with an earthen tube in which were pieces of iron, and at the other end of the tube was another bladder, but empty. The middle part of the tube being made red hot, the bladder was preffed, fo as to make the air pafs through the hot iron, and thence it was driven back again, and the procefs repeated till the air was reduced to 6 ounce meafures, and by wafhing in water to 5 . It was flightly inflammable.

No. II.

Experiments relating to the cbange of Place in differcht kinds of Air ibrough feveral interpofing Subfances. By Dr. Joseph Priestley.

ONE of the moft extraordinary circumftances that ever occurred in the courfe of my. experiments is that of the vapour of water, or of mercury, changing places with any kind of air, in veffels through which air could not be made to pafs without great force, fo that for mof purpofes they might be confidered as air-tight. Of this remarkable fact, and of all the circumftances that led to the complete afcertaining of it, I have given an account in my former publications. I had alfo obferved that different kinds of air capable of forming a chemical union would do it through a bladder that was perfectly air-tight, that in this manner pure air was imbibed by the blood through the membrane of the lungs, while phlogifton was tranfmitted into the air within them. Since that time I have extended and diverfified the experiments, and have obferved that what was done by air and water, will be done by any two kinds of air, and whether they have an affinity to one another or not, that this takes place in circumftances of which I was not at all apprized before, and fuch as experimenters ought to be acquainted with, in order to prevent miftakes of confiderable confequence.

Having procured earthen veffels of a very clofe texture, fo as to be apparently impervious to air, containing about an ounce meafure, I could fill them with any particular kind of air, and then place them inverted in a large glafs jar containing a different kind of air. I then heated the finall earthen veffels through the glafs jar by means of a burning lens, and I never failed to find after
after the experiment, that the air within the earthen veffel was the fame with that which had been on the outfide of it, while that within it was mixed with that on the outfide; but in fome cafes the mixture was a chemical one, forming a kind of air different from either of them, while at other times they were only diffufed through one another. It will be neceffary therefore to recite the circumflances as I obferved them, that future experimenters may give more attention to them, and endeavour to afcertain the caufe of this difference, which I have not been able to do.

I put one meafure of dephlogifticated ait into the fmall earthen veffel in a large glafs jar containing inflammable air, and after heating it about half an hour, found the quantity of inflammable air confiderably diminifhed, and the air within the earthen veffel wholly inflammable, and increafed in quantity one half.

I repeated the procefs with inflammable air in the earthen veffel, and dephlogifticated air in the jar, and then found the dephlogifticated air fomething diminifhed, and the quality of it inferior to what it had been before. The air in the earthen veffel was wholly dephlogifticated, hardly diftinguifhable from that in the glafs veffel. There was no fixed air in either of them.

In both thefe cafes the mixture of the two kinds of air in the glafs jar was evidently a chemical one, the quantity being diminifhed; but the air that had been tranfmitted through the earthen veffel in the contrary direction had undergone no change, being the very fame with that in the glafs jar. Of the reafon of this difference I cannot form any probable conjecture.

When the two kinds of air were feparated by a bladder, and no heat was applied, I fometimes found that the tranfmiffion had been made both ways, without any chemical union.

Having filled a tanned bladder with dephlogiticated air, and put it into a large jar of inflammable air, I examined them about a month afterwards and found in cach of. them a mixture of both the kinds of air, and in the fame proportions. They both exploded alike; and with equal quantities of nitrous air occupied the fpace of 1.6. In the bladder there was flight appearance of fixed air, but in the jar none at all.

Reverfing this experiment, by putting a bladder filled with inflammable air into a veffel containing dephlogifticated air, and letting them remain from the 12 th of Dec. to the $5^{\text {th }}$ of Feb. I found the dephlogifticated air diminifhed, and of inferior quality. The bladder was air-tight, but much fhrunk. There was fixed air in them both, but more within the bladder. They both exploded with violence, but that in the jar feemingly lefs fo than that in the bladder. With equal quantities of nitrous air the ftandard of that in the jar was $\mathrm{r} . \mathrm{r}$, and that in the bladder 1.3.

That the fixed air in the refult of this procefs did not come from the corruption of the bladder, was evident from the following experiment. On the 2oth of June I put a bladder full of inflammable air into a jar containing 90 ounce meafures of dephlogifticated air, and on the 23 d of the fame month another bladder of inflammable air into a jar of the fame air, and on the 15 th of July I examined them both. The 90 ounce meafures of dephlogifticated air were reduced to 47, of the ftandard of 0.6 , whereas it had been of 0.16 , and the bladder was found. In the other jar the bladder was almoft diffolved, and exceedingly offenfive, and there was hardly any appearance of fixed air; whereas in the jar in which the bladder was found there was a great quantity.

The moft expeditious manner in which I found the two kinds of air to change places was when a quantity
of any kind of air was confined in an earthen tube clofed at one end, while the open end ftood in a bafon of water or mercury. After this I expofed the clofed end of the tube to a red heat, which I contrived to do by means of a hole purpofely made in the grate of a fmall furnace. In this cafe whatever kind of air was contained in the tube before the procefs, it was in a very fhort time of the fame quality with that on the outfide, which, being in the fire, was fomething worfe than the external air. It made no difference alfo whether the tubes were glazed or not ; and yet that they were air-tight appeared from their containing only a certain portion of air after their procefs, as well as before. There was always, however, fome change in the quantity, but on what principle this change was made I could not fatisfy myfelf.

Three and an half ounce meafures of inflammable air treated in this manner came out two ounce meafures, nearly common air, with nothing inflammable in it.

The fame quantity of nitrous air was reduced to $2 \frac{3}{4}$ ounce meafures and to the fame ftate. A candle burned very well it. The fame quantity of phlogitticated air came out $2 \frac{2}{3}$, of the fame quality with the preceding; but the dephlogifticated air was increafed to 4 ounce meafures, of a ftandard a little better than the reft.

In the preceding experiments the air was confined by water ; but the refult was the fame with thofe kinds of air that required to be confined by mercury.

Marine acid air treated in this manner was much increaled, but came out very nearly common air. Vitriolic acid air was neither increafed nor diminifhed, but was not to be diftinguifhed from common air after the procefs. Alkaline air alfo was unchanged in quantity, but in quality it was the fame as the reft.

In order to repeat my former experiment on the tranfmiffion of fteam in this eafy procefs, I filled one of thefe Vol. V.

C tubes
tubes with water; and expofing the top of it to the fire, I found after fome time $2 \frac{1}{2}$ ounce meafures of air in it, of the fame quality with the preceding.

All the preceding experiments having been made with the feveral kinds of air unmixed with any other, I was willing to try the effect of a mixture of dephlogifticated and inflammable air, fuch as explodes with great violence with the flame of a candle or an electric fpark. In thefe circumftances, however, this mixture did not explode at all, the quantity was unchanged, and the quality was, as before, nearly the fame as that of common air.

To my great furprife, I found that this misture of dephlogifticated and inflammable air did not explode in a red hot gun barrel, a copper tube, or one of filver; and though the heat was applied ever fo fuddenly. When it was put into a flint glafs tube, it was alfo heated without explofion, but the tube became black, by the calx of lead uniting with the inflammable air; but in a tube of green glafs, in the compofition of which there is no calx of lead, the mixture exploded. Why it fhould not explode in the earthen veffel, the gun barrel, or the copper and filver tube, I am unable to fay; but it is probably owing to the dephlogifticated air in the mixture uniting with the metal, and forming a cals rather than with the inflammable air, with which it was mixed. In an experiment with the copper tube the quantity of the air came out twice as much as it was when put in. Mixed with an equal quantity of nitrous air, the ftandard was $\mathbf{1 . 4 ,}$ and it exploded like a mixture of common and inflammable air.

To diverfify this courfe of experiments, I put the different kinds of air into earthen retorts fufficiently air-tight for any common purpofes, and putting the open ends into bafons of water, l placed the bulbs near to a fire, where the heat was about that of boiling water, and noted. the following refults.

Fourteen and an half ounce meafures of inflammable air having been expofed in this manner a good part of a day, was reduced to $8 \frac{1}{2}$ ounce meafures, nearly in the fame fate with common air, without any thing inflammable in it. But io ounce meafures of inflammable air from fpirit of wine was firft increafed to $10 \frac{1}{2}$, of the ftandard of 1.56 , then to $12 \frac{1}{2}$, of 1.37 ; and it was ftill nightly inflammable.

Seven ounce meafures of dephlogifticated air was increafed to 12 , of the ftandard of 1.9 , and it was afterwards brought to 1.25 with an equal meafure of nitrous air ; fo that it was in all refpects atmofpherical air.

Ten ounce meafures of phlogifticated air came out in, of the ftandard of 1.8. It was afterwards farther increafed, and was finally of the ftandard of 1.38 .

In all the preceding cafes the change was produced by means of the fine pores in the earthen veffel, but I found that in more time the fame change would be made through a quantity of water in a glafs retort. For four meafures of inflammable air having been expofed to heat in this manner, though it was not changed in its dimenfions, was become of the ftandard of 1.5 , and exploded like a mixture of inflammable and common air.

Inflammable air kept in glafs jars ftanding in water does not in general undergo any fenfible change in many months, except that it prefently faturates itfelf with water, and thereby becomes heavier than when frefh made. But, to my great furprife, I found that, though a glafs veffel was perfectly air-tight, yet if it had been broken, and the pieces had been joined with paint, or cement, the air would in time be changed for the external air. At firft I found that a jar of this kind of air had in it a confiderable quantity of common air by the manner in which it exploded, and by its being diminilh. ed by a mixture of nitrous air. But afterwards 1 found
\therefore On the TRANSPOSITION of AIRS.
the inflammable air which had been kept in a glafs veffel of this kind all the winter was of the ftandard of 1.45 , and had nothing fenfibly inflammable in it. I had many refults of the fame kind; but in a glafs veffel which was only cracked, but was air-tight, the inflammable air was not changed; though when a folution of copper in the nitrous acid was put into it, there was an efflorefcence from every part of the crack on the outfide, which fhewed that it was not in all refpects impervious.

No. III.

> Experiments relating to the Abforption of Air by Water. By Dr. Joseph Priestley.

IN my attempts to afcertain the proportion between the phlogifticated and dephlogifticated air that conftitutes the atmofphere, of which I gave an account in the fourth volume of the PbiloJopbical Tranfattions of Pbiladelpbia, I made one of my computations from the diminution of atmofpherical air by a mixture of nitrous air, confidering one-third of the quantity that difappeared to have been dephlogifticated air ; and fince by long fanding this diminution proceeded much farther than at the firft, I concluded that this farther diminution was occafioned by the fame caufe as the firf, only operating more flowly, and confequently that there was in the atmofphere much more dephlogifticared air than had been fuppofed. Since that time, however, I have found that this fecond abforption has fome different caufe, though I have not been able to difcover it; becaufe if fufficient time be allowed, all kinds of air without diftinction will be wholly abforbed by the water with which they are confined.

As this obfervation was made in confequence of refuming the experiments of which an account was given before, viz. on mixtures of nitrous and common air, I fhall firf recite thofe which were made with this mixture. In the beginning of May 1798 I fet by a mixture of this kind, then occupying the fpace of 1.25 , and obferved that, without agitation, the diminution kept proceeding (though it was fometimes fationary) till on the 18 th of October, I examined it, and found it to be
0.34, which was confiderably lefs than I had obferved before. Replacing it in the fame veffel, I found that on the 30th of Nov. it was 0.27 ; Dec. 2d it was 0.22 ; Jan. 1 ft it was 0.11 ; Feb. 12 th it was 0.09 ; Feb. $24^{\text {th }}$ it was 0.06 , and on April 3 d it was completely abforbed.

Obferving this progreffive diminution, I made other mixtures of the fame kind, and occafionally examined them, but I do not think it neceffary to recite more than two more of the refults.

Equal quantities of common and nitrous air put together Oct. $5^{\text {th }}$ was on Dec. 2d reduced from 1.25 to 0.83 ; Jan. Ift it was 0.5^{2}; Feb. 2 Ift. 0.31 ; March 3 Ift 0.25 ; April 3d 0.21 ; May 25th 0.22 ; July ift O.II; and on July 24th it was wholly abforbed. A nother mixture of the fame kind made Dec. inth was vanifhed July ift.

A mixture of equal quantities of common and inflammable air fired together Dec. 1 3 th, and then occupying the fpace of 1.29 , was wholly vanifhed July 1 gth.

That this diminution and abforption depended on the water by which it was confined, was evident from a mixture of equal parts of common and nitrous air being kept without any change confined by mercury from October to the April following.

Being now fully fatisfied that this diminution of air, and its final abforption, was wholly independent of the action of nitrous air, I expofed in the fame manner all kinds of air that could be confined by water to the fame influence; and I always found that, in more or lefs time, the whole of any quantity would be wholly abforbed, though a large furface of the water in which the veffels containing them were placed was expofed to the common atmofphere, and therefore had an opportunity of faturating itfelf with air, and of a purer kind than
than feveral of thole that were in the jars. And this is the circumftance which makes the experiment of fuch difficult folution. I always, however, found that when common air was fubjected to this experiment, the dephlogifticated part of it was abforbed in the firft place. For whenever I examined the air it was always found to be more and more phlogifticated, till at laft it was wholly fo; and this was generally the cafe when about threefourths of the quantity remained unabforbed.

Ten ounce meafures of common air expofed to rain water from the 28 th of July to the 15 th of Auguft, in a glafs jar about ten inches in diameter, were reduced to 7 ounce meafures, completely phlogifticated, as was another quantity of 20 ounce meafures, when it was reduced to 15 .

In order to afcertain what kind of air would be moft affected in thefe circumftances, I expofed equal quantities of them in the fame manner on the $19^{\text {th }}$ of Dec. and obferved them all to be gradually diminithed, till July ift; when the dephogifticated air was reduced to a very fimall bubble, and on July 6th the inflammable and common air, and an equal mixture of common and nitrous air, were all wholly vanifhed. Nitrous air was always abforbed fooner than any other, till it was reduced to the ftate of phlogifticated air, which, if the furface expofed to the action of the water was large, was foon effected.

Thinking that the nearer the air on which this experiment was made was to the common atmofphere, the fooner this abforption would be effected, and that the farther it was from it the more time would be requifite for it, I put a meafure of common air into a glafs tube 5 feet in length, placed in a trough of water 18 inches deep, fo that there were $6 \frac{1}{2}$ feet from the confined air to the atmofphere. But being left in this fituation from June 5 th to July 28 th, it was reduced to 0.8 , completely
pletely phlogifticated; fo that this long fpace of water had been little or no obftruction to this procefs.

Un the 21 ft of Jan. I fet by two quantities of common air, each one meafure, in two fimilar glafs jars, one plunged feveral inches under the water, and the other placed on the fhelf in the fame trough, thinking that a difference in the preflure to which they were fubjected might make fome difference in the abforption; and till the 26 th of March that which was on the fhelf was more diminimed than that which was under the water, and therefore more compreffed, but on that day they were exactly equal, viz. 0.55 . After this that which was funk in the water was more diminifhed than the other. On the 30 th of April, that which was funk was 0.4^{8}, and that on the Chelf 0.59 ; but on the ift of July, when I put an end to the experiment, the changes were reverfed again; for that which was funk was 0.17 , and that on the fhelf 0.08 .

I found, however, that dilatation by an air-pump prevented the abforption, and compreffion by a condenfing machine rather promoted it. To determine this I fubjected one meafure of common air to the preffure of about two atmofpheres a month, in which time I kept another equal meafure dilated about fix times, and another in a fimilar veffel without dilatation or compreffion. This was then found to occupy the fpace of 0.85 , the compreffed air 0.76 , and that which had been dilated had undergone no change at all.

I repeated this experiment on nitrous air from the 15 th to the 28 th of March, when the compreffed air occupied the fpace of 0.47 , the dilated was 0.91 , and that which had been neither compreffed nor dilated was 0.54 . They had all loft their power of affecting common air nearly in the proportion of their diminution.

The laft ftate of all thefe kinds of air was phloginticated, that of inflammable air as well as the reft; and fome idea of its gradual approach to this ftate may be formed from the following obfervations.

Five ounce meafures of inflammable air were reduced from Aug. $19^{\text {th }}$ to Sept. 5 th to $1 \frac{3}{4}$, barely inflammable. In the fame time 2 ounce meafures were reduced to 0.35 , wholly phlogitticated; and from the fame date to Nov. 9 th, 3 ounce meafures were reduced to $\frac{1}{2}$ an ounce meafure, wholly phlogifticated.

Having formerly found air much changed by agitation in water, I now repeated thefe experiments with this view, and obferved that the abforption went on rapidly to a certain point, but that the agitation impeded the total abforption, and when the water was warm the quantity was in fome cafes increafed. But unlefs the jar in which I agitated the air ftood in an open trough, a large furface of which was expofed to the atmofphere, the effect was inconfiderable.

After agitating one meafure of common air ten minutes it was reduced to 0.36 . After five minutes more it was 0.12 , but after another five minutes it was 0.16 ; and though the air was much phlogifticated, it was never wholly fo, being never worfe than of the ftandard of 1.85, when two meafures were reduced to one.

When one half of any quantity of inflammable air was abforbed in this procefs, it was wholly phlogifticated, though the air given out by the water in which it was agitated was of the ftandard of common air.

After agitating 2 meafures of inflammable air, in water which contained air of the ftandard of 1.6 , till it was reduced to lefs than one meafure, I found it wholly phlogiticated. The agitation was continued an hour. Meafuring after every five minutes, I obferved the quanVol. V.

D
tity
tity to be as follows: 1.66 ; 1.43 ; 1.25 ; 1.15; 1.05 and .99 .

Having agitated 2 meafures of inflammable air in diftilled water an hour, I obferved that, after being diminifhed, it was increafed in bulk, and after fome time it occupied the fame fpace as at firft. Being then examined, it was not at all inflammable, but had no fixed air in it, and it was of the ftandard of 1.13 , when the air in the water was i:oI.

I agitated 5 meafures of inflammable air in a trough of cold water fifteen miniutes, when it was reduced to 2 meafures, then in warm water, when it began to increafe. After agitating it 20 minutes in this warm water, it was 5 meafures; and being then examined it was not at all inflammable, and of the ftandard of 1.37. The air from the water was common air.

After agitating the fame quantity of inflammable air the fame time in cold water it was diminifhed to 3 meafures, without any appearance of increafe. There was then nothing inflammable in it, and it was of the ftandard of 1.37 .

Dephlogifticated air was foon reduced by this procefs to a much lower ftandard. After agitating 3 meafures of this air, of the ftandard of 0.05 with 2 equal meafures of nitrous air, the quantity was 1.66 of the flandard of 1.17. Three meafures of this air after five minutes agitation was 1.2I. After five minutes more it was 0.9^{6}, and being then examined, it was of the flandard of 1.7 with equal meafures of nitrous air.

After agitating a mixture of 2 meafures of inflammable air and one of dephlogifticated five minutes, it was reduced to 1.98 ; after five minutes more to 1.46 , and after another five minutes to 1.7 , when it extinguifhed a candle.

Agitation

Agitation had the fame effect on old and frefh made nitrous air. When both of them were reduced from $3^{\frac{1}{2}}$ meafures to about 2 , they diminifhed a meafure of common air to I .4 . The agitation was continued ten minutes.

No. IV.
Mijcellaneous Experiments relating to the Dotrine of Pblogifon. By Dr. Joseph Priestley.
I. T has been faid that the fixed air which I get L by heating iron in dephlogifticated air, comes from the plumbago contained in the iron, and that when it is found after the union of inflammable and dephlogititicated air, it was from plumbago diffolved in the inflammable air. But befides that there is no evidence of inflammable air containing any plumbago (fince when iron is diffolved in any acid the plumbago is left behind) the fixed air contained in this fubftance is very inconfiderable, the bulk of the air into which it may be refolved being inflammable.

From 6 dwts. of the fineft plumbago from an iron furnace, in the form of a light powder, I got in a glazed earthen tube 40 ounce meafures of air, one-twelfth part only of which was fixed air, and the reft inflammable, burning with a blue flame. Then fending fteam through it, I got 240 ounce meafures more, the whole of which was inflammable, of the pureft kind, exactly refembling that from iron by the acid of vitriol. The plumbago was concreted into one mafs, refembling a hard cinder, and weighed $2 \frac{1}{2}$ dwts.

Another experiment on plumbago I fhall mention in this place. Melting one dwt. of it with a burning lens, it threw out fparks, like caft iron treated in the fame manner, but not quite fo much; after which it was reduced to a lag, like finery cinder, weighing 4 grains lefs than it had done. I repeated the experiment with the fame refult.
2. The
2. The experiments on the revival of precipitate per $f e$ in inflammable air being differently reported by different experimenters, and being fometimes attended with hazard, 1 fhall add the following, which were made feveral years ago, to thofe which I have made and repeated fince.

In 9 ounce meafures of inflammable air from malleable iron and water I revived part of the precipitate fent me by Mr. Berthollet, which I had found to contain no fixed air, till not more than one-fourth of the air remained unabforbed ; on examination, I found about onetwentieth part of it fixed air; but mixing nitrous air with it, it appeared that the air diflodged from the precipitate had not united with the inflammable air; for the ftandard of equal meafures of them was 1.71. After the procefs 1 miffed 18 grains of the precipitate. But there are feveral caufes of lofs in this cafe, befides the quantity of air expelled from the fubftance.

In $5 \cdot 5$ ounce meafures of the fame inflammable air I revived fome of the fame precipitate till it was reduced to 0.77 ounce meafures. Of this one-fixth part was fixed air, and the refiduum of the ftandard of 1.6. It exploded at once when the flame of a candle was prefented to it.
3. As pyrophorus imbibes pure air when it is expofed to atmofpherical air, leaving nothing but phlogifticated air, (in which it refembles a mixture of iron filings and fulphur, which alfo makes a pyrophorus,) the fixed air expelled from it afterwards muft have been formed by the union of the pure air imbibed by it and the phlogifton contained in itfelf.

From a quantity of old and fpoiled pyrophorus I got 180 ounce meafures of air, of the firft part of which one half was fixed air, and the reft phlogifticated. At the laft, the one half was fixed air, and the reft was inflam-

On rhs DOCTRINE

inflanmable. In another experiment of this kind I found feven-tenths of the air fixed, and the reft inflammable.

The fixed air that is expelled from lime which has been long expofed to the atmofphere cannot have any other origin than the pure air that it has imbibed and fome phlogifton which it derived from the fire; for the air to which it is expofed is always fomething lefs pure than it was before.

From 15 dwts. of fallen lime I got 45 ounce meafures of fixed air, and 25 inflammable from the gun barrel in which the experiment was made. Whether quicklime has been expofed to the atmofphere, fo as to become what is called fallen lime, or has been faturated with water, they come in time to be of the fame weight, and to have the fame properties; the former continually gaining weight, and the latter lofing it.

From 15 dwts. of lime faturated with water, and then expofed to the atmofphere, I got 55 ounce meafures of fixed air.
4. If any metal be calcined in common air over lime water, a very thick fcum will be formed on its furface, and much of the air will be imbibed by the calx that is formed. I have recited the refult of this procefs with feveral of the metals, and I fhall now obferve that I had the fame refult with platina, filver, and gold. In the experiment with platina 33 ounce meafures of air were reduced to $26 \frac{1}{2}$, of the ftandard of 1.75 .
5. That phlogifticated air is fometimes formed by the union of dephlogifticated air and phlogifton is as clearly proved by experiment as that fixed air is formed from the fame elements. One proof of this is that common air can never be diminifhed fo much by the pureft dephlogifticated air as it may be by nitrous air, the refiduum in both the cafes being alike phlogifticated air. I
could not by any mixture of dephlogificated and inflammable air, fired by an electric fpark, reduce it to lefs than 2.5 ; whereas by nitrous air the fame dephlogifticated air was diminifhed to 0.04 ; fo that there muft have been a production of phlogifticated air when the inflammable air was ufed.

If after any diminutions of common air by phlogiftic proceffes more phlogifticated air is found in fome of them than there is in others, the additional quantity muft have been formed in the procefs; and that there is a great variety in thefe refults I have obferved before.

Heating fine needles in common air over mercury till, after its greateft diminution, it was increafed to its original bulk, I found that it had nothing fenfibly inflammable in it, but was wholly phlogifticated; whereas the addition of one-fourth of inflammable air to three-fourths of phlogifticated air was eafily diftinguifhable by the flame of a candle. Fixed air will be produced in this procefs if it be made over lime water, but not with certainty in any other circumftances.

When fubftances that diminifh air, and leave it phlogifticated, emit inflammable air before and after the procefs, it is reafonable to conclude that they did the fame during the procels; and fince nothing inflammable is found in the air after it, that it united with the pure part of the air to which it was expofed, and by that union formed part of the phlogifticated air; fo that lefs of this kind of air exifed in the atmofphere than has generally been fuppofed. This I have obferved to be the cafe with a mixture of iron filings and fulphur. It was the fame with iron that had been partially diffolved in vitriolic acid. After diminifhing a quantity of air I immerfed it in mercury, and it gave out a fmall quantity of inflammable air.

I have

I have recited one cafe of phlogifticated air being formed by expofing rufted iron to inflammable air, which muft have been formed by the oxygen in the ruft and the phlogiton in the air. There is, however, much uncertainty in this refult, depending on circumftances which I have not been able to afcertain. But one clear cafe of the kind is fufficient proof of the hypothefis, and I have met with feveral.

On the 15 th of Augult 1799 I examined a quantity of inflammable air which had been confined by mercury with dry iron rufted in nitrous acid from the 18 th of March 1798, and found nothing inflammable in it, though there was no apparent change in the colour of the iron. This was alfo the cafe of another quantity of the fame kind of air which had been confined in the fame manner from the $14^{\text {th }}$ of July. At the fame time, however, another quantity of inflammable air that had been confined the fame time, and in the fame manner, with iron rufted in vitriolic acid was not much changed, though the iron was become black.

Since pure nitrous air wholly vanifhes when it unites with pure dephlogifticated air, the phlogifticated air that is found after heating iron in it mult have been formed from fome oxygen contained in the nitrous air and phlogifton from the iron. After heating turnings of caft iron in $5 \frac{1}{2}$ ounce meafures of nitrous air from mercury it was reduced to $3 \frac{1}{2}$ ounce meafures, and by wafhing in water to $2 \frac{1}{2}$, one ounce meafure having been fixed air. But when I heated malleable iron in 60 ounce meafures of the fame nitrous air it was reduced to 24 ounce meafures, all phlogifticated. When I continued this procefs beyond the point of greateft diminution, the air produced was inflammable.

Since water contains but a fmall quantity of air in proportion to its bulk, and.generally confiderably purer than
that of the atmofphere, the phlogifticated air that is found by heating fteam in a copper veffel muft have been formed from phlogifton in the copper, and the pure part of the air contained in the water; and whenever I have heated water in this manner and have kept it a confiderable time in the form of fteam, I have found a quantity of air completely phlogifticated, and the longer I kept it in this ftate the more of this air I found.

I have obferved that when metals are calcined in common air over water, the air is always diminifhed, and if it be done over lime water, fixed air is produced. If the calcination be continued after the greateft diminution of the air, it will be increafed by an addition of inflammable air. If this inflammable air came from the decompofition of the water, the water over which the procefs was made would either be acid, or contain pure air, but this is never the cafe. This water is both free from all acidity, and gives out air lefs pure than that of the atmofphere. Alfo the air confined in the fame phial with it is lefs pure than that of the atmofphere. If the oxygen of the water entered into the calx that is formed, hydrogen, or inflammable air, ought, according to the new theory, to be formed, which it is not.

Alfo air from water in which mercury has been agitated is confiderably worfe than common air. A candle went out in it. Had the black powder which is formed in this procefs been owing to the decompolition of the water, fince this powder is mercury fuper-phlogiticated, the remaining water would have been in a ftate of oxygenation; and therefore the air expofed to it would have been purer than that of the atmofphere.

It is faid that metals become calces by imbibing oxygen ; but no oxygen has yet been difcovered in finery cinder, and very little, if any, in flowers of zinc. If minium or red precipitate, be diffolved in marine acid, none of the

Vol. V.
E
dephlo-
dephlogifticated air which thefe fubfances contain is then extricated ; but if the folutions be evaporated, and the dry refiduum be heated by a burning lens, the pure air is evolved. For the common air in which they are heated receives an addition of pure air. But the reverfe is the cafe when the folutions of finery cinder or flowers of zinc are treated in the fame manner.

I heated a folution of the pureft flowers of zinc in marine acid in common air, and obferved that it emitted a denfe white vapour for about an hour after it was evaporated to dryncis. The air was but little diminifhed, but worfe than common air, in the proportion of 1.45 to 1.35.

I have obferved that common air which has been expofed to hot charcoal is both diminifhed and phlogifticated, but that the air which by immerfion in water comes out of this charcoal is likewife phlogifticated. This proves the generation of phlogifticated air in the procefs. The water over which this procefs is made alfo gives out air lefs pure than that of the atmofphere.

Charcoal that had been expofed in common air under a receiver fome days, did not, when immerfed in water, give out more than half as much air as charcoal heated and put into water immediately after it was cold. Both being placed near the fire, ftill immerfed in water, gave out more air, but in the fame proportion. Alfo, fanding in this fituation a long time made no difference in this cafe.
6. That finery cinder contains nothing but water and cals of iron, I think I have fufficiently proved by feveral obfervations, efpecially by its enabling hot charcoal to give out the fame kind of air that water will do. I had a fimilar refult with terra ponderofa acrata, which gives no fixed air with mere heat, but does it when red hot by means of water.

I mixed

I mixed a quantity of this fubftance pounded with pounded finery cinder; and putting it into a gun barrel, got from it fixed air as copioufly as if a fream of wate: had paffed over it. There was a confiderable refiduum, which was inflammable air from the iron.
7. Dr. Woodhoufe obferves that if the manganeze be heated in inflammable air, and much of the air difappear, the metal is not revived. But not only may the calces of metals imbibe much phlogifton before their complete revival in a metallic form, but other fubftances alfo appear to do the fame. After heating calcined alum in inflammable air, it became black, and the air was diminifhed one-fifth. The infide of the veffel in which the procefs was made had alfo a black coating. And brick, which contains iron ore, becomes black in the fame circumftances; but it is not even attracted by a magnet afterwards. Pounded flint glafs becomes black, and abforbs inflammable air, when it is melted in it with a burning lens; but-no lead is formed.
8. I have obferved that when a mixture of dephlogifticated and inflammable air is exploded, acid is produced if there be any excefs of the dephlogifticated air, but only water with phlogifficated air if there be any excefs of the inflammable air. Thefe proportions I endeavoured to afcertain, and I found that acid is formed when 100 meafures of inflammable air are united to 51 meafures of dephlogifticated air ; but that only water was produced when 100 meafures of inflammable air were united to 47 meafures of dephlogifticated air.

No．V．
Experiments on the Production of Air by the Freezing of Water．By Dr．Joseph Priestley．

Read April N 1793，when I was in England，I publifhed
18， 1800 ．$⿴ 囗 ⿱ 一 一$ a courfe of experiments on the generation of air from water，and after my arrival in this country，I refumed the experiments，and publifhed a fequel to them． The refult of the whole was that，after all air had been extracted from any quantity of water，either by heating， or by taking off the preffure of the atmofphere，when ever any portion of it was converted into vapour，a bubble of permanent air was formed，and this was al－ ways phlogifticated．The procels with the Torricellian vacuum I continued fome years，and found the produc－ tion of air equable to the laft．The neceffary inference from this experiment is，either that water is convertible into phlogifticated air，or that it contains more of this air intimately combined with it than can be extracted by thefe proceffes in any reafonable time．

Finding that no air is contained in ice that is free from vifible bubbles，I thought to afcertain the truth of one or other of thefe hypothefes by expofing to froft a quan－ tity of water from which 1 had，by repeated proceffes with the Torricellian vacuum，expelled all the air that I poffibly could；thinking，that if it really contained no air，it would appear by the ice being perfectly folid；fo that when it was melted no air would be got from it． This experiment I repeated feveral times，but always found that though the outfide of this ice was perfectly tranfparent，and free from air，the central parts were opaque；and though there were no diftinct air bubbles in it，yet when it was melted a great number of bubbles iffued from it．The whole quantity，however，was not
greater than might have been produced from the fame water in the other proceffes in a reafonable time; and in them the production of air had no limit.

Difappointed in my expectations of getting by this means ice perfectly free from air, (which when a large quantity of water freezes very flowly it is eafy to do, the air contained in it retiring from that which is frozen to that which remains fluid) I diffolved ice that was perfectly tranfparent, and therefore free from air, in veffels containing mercury, and expofed it to froft a fecond time. But I always found that when the whole of it was frozen, though the extreme parts were tranfparent, and therefore free from air, the central parts were opaque, and when diffolved yielded air. And though I repeated this procefs ten or a dozen times with the fame water, always letting out the air that was procured by freezing prefently after it was extricated under mercury, and before it could have been reabforbed, yet on expofing it to another freezing, I never failed to get more air; and the harder the froft was the more air I procured.

As there is an evaporation from ice, no lefs than from water, the interftices formed by the cryftallization of the water when it is converted into ice will foon be filled with vapour; and this vapour, like that which is formed by hear, becomes, I fuppofe, the bafis of a quantity of air. Since, however, ice that is the moft tranfparent fwims in water, this alfo muft have interftices; but they contain no air; being fuch as exift in the moft folid bodies, in which (gold itfelf not excepted) the component particles are not in perfect contact ; fince they are reduced into lefs dimenfions by cold.

As the veffels I made ufe of in the exe experiments were either cylindrical jars, or conical wine glaffes, and confequently the bubbles of air procured by freezing were expofed to a confiderable furface of water, and would in
time (though not, I found, in the courfe of a day) have been abforbed by the water, now free from air, I procured glafs veffels of a conical form, terminating in narrow tubes, into which the air diflodged from the ice might afcend, and not be fubject to be abforbed. I was fo fortunate as to have feveral of fuch veffels, and they completely anfwered my purpofe for five or fix proceffes. Thefe veffels were firft filled with mercury, and then I introduced into them a quantity of water freed from air by previous freezing; and when, after expofure to froft, the ice was melted, the air diflodged from the ice afcended into the narrow tubes, and remained without any fenfible diminution of bulk feveral days; and every time that the water was expofed to the froft, an addition was made to it. At length, however, though the veffels were very ftrong, and contained much mercury, which by its tendency to defcend would give the water room to expand with the lefs danger of breaking the veffel, none of them ferved for more than the number of proceffes abovementioned.

After the breaking of my glafs veffels, I got other cylindrical ones made of iron, feven or eight inches in height, and near three inches wide at the bottom, the upper orifice clofed with a cork and cement, in the centre of which was a glafs tube, the diameter of which was about a fifth of an inch. And as the glafs tube was in the greateft danger of breaking by the freezing of the water, and this had happened feveral times before, notwithftanding all my care to guard it from the froft, I now made ufe of fnow and falt, to freeze the water in the iron veffel only, placed in a veffel of mercury, having been previoufly filled as the glafs veffels had been.

The water on which I now operated was about three ounces, and it had been made as free as poffible from air by previous freczing. With this apparatus I repeated the
the procefs of freezing nine times, without changing the water, and the laft portion of air that I procured in this manner was as great as any of the preceding; fo that there remained no reafonable doubt, but that air might be produced from the fame water in this manner ad libitum. Having got near two inches of air in the glafs tube, I put an end to the experiment; and examining the air, found it to be wholly pblogificated, not being affected by nitrous air, and having nothing inflammable in it.

During the procefs of freezing the air in the tube was generally compreffed into about one-fifth of its ufual bulk; but, when I began to thaw the ice, which I did by means of hot water in the place of the freezing mixture, it foon expanded to its former dimenfions, and no fenfible portion of it was abforbed during the whole procefs, which was about a week. Sometimes the violence of the preffure, occafioned by the expanfion of the water in freezing, would force a little water out of the veffel between the cork and the glafs tube, or the iron veffel, which prefently became ice. This I always carefully removed, and applied frefh cement to the place, to prevent the introduction of any air from without before I began to melt the ice. And that no external air had entered, was evident both from the manner in which the air was produced as the water recovered its fluidity, and from the quality of it when examined after the procefs.

In the courfe of the experiments with the glafs veffels a phenomenon occurred that was wholly unexpected by me, and which was very amuling. Having left the veffels filled partly with water and partly with mercury in the evening, I generally found them in the morning feemingly quite full of mercury, every part of the ice within the veffel being covered with it. This muft have been occafioned by a vacuum having been formed between the glafs and the ice, and into this the mercury had
had been drawn up on the principle of the capillary tubc. When this was not the cafe, the interftices of the ice towards the centre were filled with thin laminæ of mercury, which alfo exhibited a curious appearance.

Sometimes, when there was no mercury between the glafs and the ice, an interftice was made between them when they were placed within the influence of the fire. In thefe circumftances I have feen the mercury drawn up to the height of feveral inches. As this fpace was enlarged by the increafe of the heat, the laminæ of mercury were contracted, till coming into the form of balls, too heavy to be fupported, they fell down to the mafs of mercury in the bafon.

The moft natural inference from thefe experiments is that water, when reduced by any means to the fate of vapour, is in part converted into phlogifticated air ; and that this is one of the methods provided by nature for keeping up the equilibrium of this conftituent part of the atmofphere; as the influence of light on groacing vegetables is the means of recruiting that other part of it; and both of them are fubject to abforption and diminution in feveral natural proceffes. Inflammable air I have alfo thewn to be convertible into phlogifticated air ; and this is another means of fupplying the atmofphere with this ingredient in its compofition.

That water contains phlogifton I have fhewn to be probable from feveral confiderations, efpecially that of its refembling metals in their property of being conductors of electricity, for thefe fubftances certainly contain phlogifon, if there be any fuch thing. Mercury alfo becomes fuper-phlogifticated by agitation in water, and this without limit, and without changing either the water or the mercury; and the remaining water contains no more oxygen than before, for the air expelled from
it is not more pure but confiderably lefs fo , and it is perfectly free from acidity.

I would farther obferve that thefe experiments, which prove the converfion of water into phlogifticated air, are inconfiftent with the antiphlogiftic theory, which makes water refolvable into dephlogifticated and inflammable air; but that they are highly favourable to the hypothefis of water being the bafis of every kind of air, the difference between them depending upon the addition of fome principles which we are not able to afcertain by weight. Alfo, if any fpecies of air be entitled to the appellation of bydrogen, it is phlogifton, and not inflammable air.

> Vol. V.

F
No.

No. VI.

Experiments on Air expofed to Heat in metallic Tubes. By Dr. Josepif Priestley.

Read Aug. THVING lately fent to the fociety an ac15.1800 . count of fome pretty remarkable experiments upon air heated in earthen tubes, I now take the liberty to communicate the refult of fome that I have made on air heated in metallic tubes. They are not lefs remarkable than the others; and being unable to explain feveral of them on any known theory, I hall be glad of the affiftance of the members of the fociety in the inveftigations to which they may lead.

1. Of a mixture of depblogifficated and inflammable air not exploding in a red beat.

One remarkable circumflance attending the heating of air in earthen tubes, and alfo in thofe of metal, is that no mixture of dephlogifticated and inflammable air will explode in them, though it always does in tubes of glafs in which there is no metallic ingredient. With refpect to earthen tubes, the fact may perhaps be explained by the eafy tranfmiffion of air through the heated tube, and cven before the tube is red hot. The air in the infide changing places with that on the outfide. In metallic tubes, this is not always the cafe, and when it is, it takes place much more flowly; fo that an explofion might be expected notwithftanding this property.

Since, however, this mixture of dephlogifticated and inflammable air will not explode in tubes of flint glafs, in which there is the calx of lead, and they become black in this procefs, as they do when inflammable air only is heated in them, this air muft be feparated from the dephogifticated, and unite with the calx of lead. It is therefore
therefore probable that this takes place in the metallic tubes, though the metal is not in the fate of a calx, but may be, as it were, fuper-faturated with phlogifton. When I opened one of the copper tubes in which this experiment had been made, I found the metal exceedingly bright; whereas had any phlogifton been feparated from it, it would have been covered with fcale, being reduced to the ftate of calx. Whether the fame metallic tube would continue to have the fame effect in this procefs, or whether, when faturated to a maximum with phlogifton, the mixture of air would have exploded in it, I did not try; feveral of the copper tubes, or the foder, having melted before this could be afcertained.

I alfo found that when I threw the focus of a burning lens upon fome clean filings of copper in inflammable air, much of the air difappeared; having, no doubt, been imbibed by the metal, which muft thereby have acquired more phlogifton than naturally belonged to it.

For the purpofe of thefe experiments I prepared a mixture of one-third dephlogifticated and two-thirds inflammable air, each very pure, fuch as made the loudeft explofions when a lighted candle was prefented to any portion of it; but neither in tubes of iron, copper, filver, or gold, was there any explofion at all, though as frong a heat as they would bear without melting was continued ever fo long. As the quantity and ftate of the air after the experiments deferve fome attention, I fhall recite fome of them.

One meafure of the mixture above mentioned heated in a copper tube was reduced to 0.45 , and was wholly phlogifticated. Another meafure of the fame mixture expofed to heat ten minutes in a tube of filver was reduced to 0.73 , and then exploded. Another meafure expofed in a tube of gold was diminifhed about one-third, and made a dlight explofion afterwards.
2. Of the tranfmifion of air through the fulfance of fome metallic tubes.

When I had difcovered the ready paffage of air through bladders and earthen tubes, I thought the fact a very extraordinary one, and fill more, that the internal and external air fhould change places, as I obferved in my laft communication to the fociety. But I have fince that obferved that even fome metallic tubes, though perfectly air-tight, admit the tranfmiffion of air through them when they are heated. Of this I had no fufpicion till after heating air in the experiments above mentioned, I fometimes let them remain a confiderable time before I examined the air they contained; not doubting but that whenever it fhould be convenient for me to do this, I thould always find the air in the fame quantity, and of the fame quality. But I frequently found that it was much increafed, and that in thefe cafes there was always a confiderable proportion of atmofpherical air in them. This, however, was never the cafe with iron tubes, but with thofe of copper, filver, and gold. As the firft copper tubes I made ufe of were made of theet copper fodered, I had one caft folid; and though I found it to be perfectly air-tight, (as appeared by fetting a fyringe to it, and being unable by that means to force any air through it) it was evident that it was fufficiently porous for the tranfmiffion of air.

Having put $4 \frac{1}{2}$ ounce meafures of inflammable air into this copper tube, fodered to a piece of a gun barrel, the end of which was immerfed in a bafon of mercury, 1 found that two ounce meafures were expelled by the heat when the clofed end was furrounded with hot coals. After continuing fome time in this fituation, 1 found in it 1.45 ounce meafures, partially phlogifticated, fo that 25 meafures were reduced to 1.45 . Afterwards, though the tube continued perfectly air-tight, after a repetition of the fame
fame procefs, there were found in the tube 3.5 ounce meafures, which though it extinguifhed a candle, was of the ftandard of 1.7 ; fo that fome atmofpherical air muft have got into it.

One ounce meafure of inflammable air expofed to heat feveral hours in a filver tube, and left to cool gradually, came out two ounce meafures, of the ftandard of 1.42 . The fame quantity of the fame air, after continuing only one hour in the heat, and examined immediately after it was taken from the fire; was only 0.72 , and wholly phlogifticated. At another time I kept the fame quantity of the air three or four hours in the fame heated tube, and being examined immediately it was only 0.2 i wholly phlogifticated, fo that the tranfmiffion of air did not take place while it was hot, but while the tube was cooling, which I thought very extraordinary.

The tube of gold was melted by inadvertently heating it too much before I had made many experiments with it; and feeing reafon to conclude that its effect on the air confined and heated in it was no other than that of thofe of filver, or copper, I did not renew it. I found, however, that a meafure of inflammable air heated one hour in this tube was fomething more than a meafure, and then extinguifhed a candle. There muft, therefore, have been an addition to the air within from that without, though I neglected to examine it by the teft of nitrous air.

It was not neceffary to expofe thefe tubes, and the air confined in thern, to a red heat, in order to have this effect; for I had a fimilar refult when I only placed them near the fire in a degree of heat little greater than that of boiling water.

Air contained in clear water, is, as I have obferved, fomething purer than that of the atmofphere; but when I filled a copper tube with water, and kept it a whole day in the circumftance above mentioned, the air within
within it was of the ftandard of 1.4. This, however, might have been tranfmitted through the water, as in fome former experiments; but to prevent this I placed the open end of the tube (which was a piece of a gun barrel) in a bafon of mercury. Still, however, I found after fome time the air was confiderably increafed in quantity, and almoft as pure as the air of the atmofphere. This, therefore, mult have come through the pores of the veffel, which, however, when it was examined in every method that I could think of, appeared to be perfectly air-tight.

Experiments relating to Pblogificated Air.

There is a peculiar difficulty refpecting the conftitution of phlogifticated air ; fince fome of my experiments feem to fhew that it contains the principle of acidity, and others that it is intirely free from it ; fo that excepting its bafe (which is like that of all other kinds of air, viz. water) it confifts of nothing but fome modification of phlogifton.

When dephlogifticated air is decompofed together with much inflammable air, phlogifticated air is produced; and in this cafe there does not appear to be any thing befides this phlogifticated air into which the oxygen of the dephlogifticated air can enter. That the water which is found after this experiment does not contain any oxygen, I think I have fufficiently demonftrated ; fince it is not contained in finery cinder, where the new theory lodges it.

Alfo when rufted iron becomes black by long expofure to inflammable air, and is thereby converted into phlogifticated air, the oxygen in the ruft cannot be found except in this phlogifticated air.

Notwithftanding

Notwithftanding this, in feveral other experiments inflammable air becomes phlogifticated air without any addition of oxygen; as when it is expofed to heat in copper or filver tubes, and probably, therefore, thofe of other kinds of metal. Inflammable air treated in this manner is generally diminifhed in quantity, though not always in the fame proportion.
Three ounce meafures of inflammable air expofed half a day to a red heat in a copper tube were reduced to 0.5^{2}, completely phlogifticated. Two cunce meafures expofed to the fame degree of heat only a few hours, came out $\mathbf{1 . 2 5}$. Another equal quantity was reduced to three-fourths of an ounce meafure; and two ounce meafures expofed in this manner twenty minutes came out I.5, completely phlogifticated.

I have, however, found a remarkable difference in the refult of thefe experiments made with two caft copper tubes, in one of which the metal is much thicker than the other. In the larger and thicker of thefe tubes, the air was always diminifled; and though it continually approached to the ftate of phlogifticated air, it was very flowly; whereas in the thinner tube the inflammable air was always increafed in quantity, though the whole of it never failed to be phlogifticated. In this tube phlogifticated air alfo was always increafed in quantity; whereas in the larger tube it was neither increafed nor diminifhed by the fame treatment.

When I filled the fmaller tube with water only, and expofed the clofed end to a red heat, I always found much more phlogifticated air in it than when I ufed the larger tube in the fame manner. Having filled the fmaller tube with water, and only kept it in an inclined pofition over the fire, fo that the heat to which it was expofed did not much exceed that of boiling water, I found in it the next morning 4 ounce meafures completely phlogifticated.

In order to vary the circumftances of this experiment, I heated clean filings of copper, and alfo bits of filver, in inflammable air, by means of a burning lens; and the refult was fimilar, viz. a converfion of the inflammable into phlogifticated air, for not only was the quantity of air diminifhed, but the remainder was much lefs inflammable than before. After heating filings of copper in 14 ounce meafures of inflammable air, till it was reduced to 7 ounce meafures, I fired a quantity of it together with a quantity of dephlogifticated air, when the diminution was to 0.77 ; though when the fame dephlogifticated air was exploded together with the fame quantity of the original inflammable air the diminution was to 0.62 . The fame procefs being repeated with the remainder of the inflammable air till it was reduced to $3 \frac{1}{2}$ ounce meafures, the diminution, when fired with the fame quantity of dephlogifticated air, was only to 1.25. When fimall bits of filver were heated in the fame manner in inflammable air, the refult was the fame, viz. a diminution both of its quantity and its inflammability.

In the following experiments phlogifticated air was produced from atmofpherical, dephlogifticated, and nitrous, air.

Three ounce meafures of atmofpherical air expofed a whole day to a red heat in a copper tube were reduced to $2 \frac{1}{2}$, completely phlogifticated ; which is in the proportion of 91.6 of phlogifticated air in 100 . Confequently, there muft have been a production of phlogifticated air in the procefs.
' 'wo ounce meafures of dephlogifticated air, of the ftandard of 0.64 , heated three or four hours in a caft copper tube were reduced to fomething lefs than 2 ounce meafures, wholly phlogifticated. And 4 ounce meafures of the fame dephlogifticated air were in half
a day reduced to $\mathbf{1 . 2 5}$. In another tube, two ounce meafures were in the fame time reduced to 0.45 , both completely phlogifticated.

Four ounce meafures of nitrous air were reduced in this procefs to two completely phlogifticated; whereas, in any other procefs, only one-fourth of phlogifticated air can be found in any given quantity of nitrous air.

Air naturally contained in clear water is fomething purer than common air; but air produced by expofing metallic tubes filled with water to a moderate heat, fo as to be kept fome time in the ftate of Acam, is always lef's pure than atmofpherical air. There muft, therefore, be a production of phlogifticated air in this cafe alfo.

Having filled a filver tube with water, and kept it fufpended over the fire a whole day, I found the air within it of the ftandard of 1.25 , when the air expelled from the fame water was of the ftandard of I.O. Ufing a tube of lead, in the fame manner, the air within it was of the ftandard of 1.6. In both thefe cafes, therefore, there muft have been a production of phlogifticated air, and probably from the phlogilton of the metals.
P. S. Since I wrote the preceding account I have found that inflammable air heated in a gun barrel is fo far from approaching to the ftate of phlogifticated air, that, when it is fired together with dephlogifticated air, the diminution is greater than with the original inflammable air. This I tried twice, keeping the gun barrel in a red heat the whole day, and not examining the air till the next morning. This difference between the effect of copper or filver, and of iron, on inflammable air, in the fame degree of heat, is not a little remarkable.

To the account of thefe experiments I fhall add, that pure phlogifticated air may be procured in the eaficft Vol. V.
and
and fureft manner, by means of iron only, without any misture of fulphur. To do this I fill phials with turnings of malleable iron, and having then filled them with water, pour it out, to admit the air of the atmofphere, and in fix or feven hours it will be diminifhed in the fame proportion as by iron filings and fulphur ; and the fame iron will anfwer this purpofe I do not know how long, but it will be till all the iron is converted into ruft. What remains of air in the phial will be the pureft phlogifticated air. Iron that is quite dry has no fuch effect on air.

The radieft method of procuring phlogitticated air is, no doubt, by means of a mixture of nitrous air with that of the atmofphere: but it is liable to feveral objections; efpecially that from not knowing the exact quantity of nitrous air to be employed for this purpofe, on account of the different ftates of each of thofe kinds of air; though I have not found that of the atmofphere to be ienfibly different, except in circumftances of which every experimenter is fufficiently apprized.

Many of the moft important experiments recited in thefe papers were made with a burning lens of fixteen inches diameter, with which I was generoully furnifhed by Mr. Parker, who has fo much diftinguifhed himfelf by his improvements in the art of grinding glafs. To his liberality in fupplying me with various veffels made of glafs, the public is indebted for a great proportion of my other experiments on air.

No. VII.

Some Account of the Poifonous and Injurious Honey of Nortb America. By Benjamin Smith Barton, M. D.

Read July N_{N} the year 1785 , I had an opportunity of ob${ }^{18,1} 1794$. 1 ferving fome of the difagreeable effects of our wild honey upon feveral perfons who had eaten of it, in the weftern parts of Yennfylvania, near the river Ohio. From thefe effects I was perfuaded, that a fubftance which is generally confidered as entirely innocent, is capable of doing much injury to the conftitution. I was, therefore, induced to pay fome attention to the fubject. The refult of my inquiries I now communicate to the Philofophical Society.

It is not neceffary to make any remarks on the fabric of honey. It may be fufficient to obferve, that the honey will always partake, in a greater or a leffer degree, of the fmell, the tafte, and general properties, of the flowers from which it is obtained. This obvious fact fhould have folicited more of the attention of thofe whofe employment it is to raife large numbers of bees, for the purpofe of obtaining the valuable product of thefe little infects. But, in this country at leaft, hardly any attention has been paid to the fubject. Perhaps, the following loofe hints, by pointing out fome of the fources from which an ill-flavoured or pernicious honey is obtained; may be of fome fervice to the new or remote fettlers of our country.

I muft obferve, that in thefe hints I do not mean to include among the difagreeable confequences of the eating of honey, the occafional effect of its purging: for although, as I fhall prefently obferve, a purging is one of the common effects of the poifonous honey, yet the moft
innocent honey will often induce the fame fate of the body, when it is eaten in large quantities, or when it meets with an irritable ftate of the bowels.

The honey which I call deleterious or poifonous honey produces, as far as I have learned, the following fymptoms, or effects: viz. in the beginning, a dimnefs of light or vertigo, fucceeded by a delirium,* which is fometimes mild and pleafant, and fometimes ferocious; ebriety, pain in the fomach and inteftines, convulfions, profufe perfpiration, foaming at the mouth, vomiting, and purging; and, in a few inftances, death. In fome perfons, a vomiting is the firft effect of the poifon. When this is the cafe, it is probable, that the perfons fuffer much lefs from the honey than when no vomiting is induced. Sometimes, the honey has been obferved to produce a temporary palfy of the limbs; an effect which I have remarked, in animals that have eaten of one of thofe very vegetables if from whofe flowers the bees obtain a pernicious honey.

Death is very feldom the confequence of the eating of this kind of honey. \ddagger The violent impreffion which it makes upon the ftomach and inteftines often induces an early vomiting or purging, which are both favourable to the fpeedy recovery of the fufferer. The fever which it excites is frequently relieved, in a fhort time, by the profufe perfpiration, and perhaps by the foaming at the mouth. I may add, that as the human conftitution refifts,

[^0]fifts, to an aftonifhing degree, the effects of the narcotick and other poifonous vegetables that are beft known to us, fo we need not wonder, that it alfo refifts the effects of the deleterious honey, which is procured from fuch vegetables.

It deferves to be mentioned, that the honey which is formed by two different hives of bees in the fame tree, or at a little diftance from each other, often poffeffes the moft oppofite properties. Nay, the honey from the fame individual comb is fometimes not lefs different in tafte, in colour, and in its effects. Thus one fratum or portion of it may be eaten without the leaft inconvenience, whilft that which is immediately adjacent to it fhall occafion the feveral effects which 1 have jult enumerated.

I have taken fome pains to learn what are the figns by which the deleterious honey may, at firft view, be diftinguifhed from innocent honey. I am informed that there is no difficulty in the matter.

The poifonous honey is faid, by fome, to be of a crimfon-colour: by others, it is faid to be of a reddiflibrown colour, and of a thicker confiftence than common innocent honey.

Thefe are the figns by which, I am told, the moft experienced hunters, in the fouthern parts of NorthAmerica, are enabled to diftinguifh pernicious from innocent honey.

On a fubject fuch as this, I feel every difpofition to pay a good deal of deference to the experience of an American hunter. Even philofophers may obtain much ufeful information from hunters, however wandering their life, however rude their manners. It is in the power of our hunters to enrich natural hiftory with many important facts. But we ought not, I prefume, to confide implicitly in every thing they tell us.

I have

I have good reafons for doubting whether the figns which I have mentioned will enable us, in every inflance, to determine whether honey be poifonous or innocént.

The honey of the bee, undoubtedly fometimes partakes of the colour of the flowers from which it is gathered. The bees gather honey from many flowers of a crimfon colour, and from many flowers whofe colour is a reddifh brown. In thefe cafes, it is probable that the honey will fometimes borrow, in fome degree, the colour of the flowers. Yet there are many crimfon-coloured and reddifh-brown coloured flowers that are perfectly innocent. The honey obtained from them will, I prefume, be innocent allo. Mr. Bruce fays he was furprifed to fee, at Dixan, in Abyffinia, " the honey red like blood, and nothing," he remarks, "can have an appearance more difgufting than this, when mixed with melted butter." ". Nothing is faid, by this author, that can lead us to fuppofe that the Dixan honey was poifonous. From the manner in which it is mentioned, it is pretty evident that it was not poifonous. Linnæus, informs us that in Sweden the honey, in the autumn, is principally gathered from the flowers of the erica, or heath, and that this honey is of a fomewhat reddith colour; and accordingly, he obferves, thofe provinces of the country that are deftitute of the heath, fuch as the province of Oelandia, furnifl a white honey. \dagger The great naturalift fays nothing concerning the properties of the heath-honey. However, we may prefume, when we recollect the minute accuracy of Linnæus, that this honey did not poffefo any dangerous properties, otherwife he would have noticed the circumftance. Whilft I refided in Edinburgh, I had

[^1]I had the honey from the Highlands frequently brought to my table. I often remarked that this honey had a dirty brownith colour, and I was told that it was chiefly procured from the different fpecies of erica, perhaps principally from the " blooming hather,"* which abound in the Highlands. I never heard the people in Edinburgh, although they confume large quantities of this honey, complain that it poffeffes any noxious property. If it were actively poifonous, or injurious, the quality would have been, long fince, obferved. I well remember, however, that, for two years that I ufed it, it almoft always rendered me drowfy. Sometimes, indeed, it compoled me to fleep as effectually as a moderate dofe of laudanum would have donc. A foreigner, who hil not been accuftomed to eat anodyne honey, was better capable of remarking the effect which 1 have mentioned than the natives, who had been in the habit of ufing it, from their infancy. I do not find that this fingular property of the Scots honey has been noticed by any writer. \dagger I have, therefore, related it, though it rather oppofes any objection to the figns employed by our hunters to diftinguifh poifonous from innocent honey. But he who is ftudious of truth, fhould relate ufeful facts, as they are, without regarding what is their connection with a favourite fyftem, or opinion.

The learned Jofeph Acofta fpeaks of a grey-coloured honey comb which he faw, in the province of Charcas, in South-America. The honey of this comb, he fays, is "fharp and black." He fays nothing farther of its properties. \ddagger

[^2]An ingenious friend of mine,* to whom the public are indebted for a variety of valuable information concerning the natural productions of various parts of NorthAmerica, informs me, that, in the Carolinas, and Floridas, the poifonous honey is often fo fimilar, in colour, tafte, and odour, to the common, or innocent honey, that the former cannot be diftinguifhed from the latter. It is owing, he fays, to this circumftance, that fo many accidents daily happen from the ufe of the wild honey. He was informed, that it is experience alone which enables the hunters and others to determine, whether the honey which they find in the woods be poifonous or innocent. They have obferved that the injurious effects manifeft thenfelves in a flort time after the honey is taken into the ftomach. They are accuftomed, therefore, to eat a fmall quantity, before they venture to fatisfy their appetite. Should this produce any difagreeable effects, they do not think it prudent to continue the ufe of it. But, if in a fhort time, it fhould occafion no inconvenience, they think they may, with perfect fafety, indulge their appetite to the full

I have been informed that the poifonous honey, by boiling and by ftraining, may be rendered as innocent as any honey whatever. It is, likewife, faid, that by long keeping it becomes harmlef3.

The honey of which I am treating is poifonous to dogs; as well as to men.

Hitherto, I have not been able to obtain any certain information concerning the means to be purfued in the treatment of perfons labouring under the effects of the poifonous honey. It is faid that the Indians, and fome of the Whites, ufe cold bathing with advantage. It is probable that this practice has been ufeful. As the effects produced by this honey are fo fimilar to thofe produced
by feveral narcotic vegetables that are well known to us, fuch as opium, henbane,* thorn-apple, \dagger \&c. it is probable that the fame means of treatment will be found ufeful in both cafes. Of thofe means it is not neceffary to make particular mention in this place.

It would be curious to afcertain, whether the bees are ever injured or deftroyed by the quaffing of the nectar of the flowers from which they prepare the poifonous honey. It is probable that they are; and, perhaps, fome of the difeafes of thefe little infects may arife from this fource. ${ }_{+}^{+}$It is true, indeed, that there are fome poifonous plants the nectar of which the bees will not touch. This is the cafe with the fritillaria imperialis, or crownimperial.§ 1 do not remember to have feen bees in, or immediately about, the flowers of the common rofebay, or oleander, $\|$ in the tube of which there is a fluid which deftroys thoufands of the common houfe flies. But what is called inftinct is not always fure. The bees may prepare an honey from plants that are very injurious to them. The excellent Mr. Evelyn, fpeaking of the elm fays, " but I hear an ill report of this tree for bees, that, furfeiting of the blooming feeds, they are obnoxious to the latk, $\|$ at their firf going abroad in fpring, which endangers whole flocks, if remedies be not timely exhibited; therefore, 'tis faid, in great elm

Vol. V.

* Hyorcyamus niger.
\dagger Datura ftramonium.
\ddagger Dr. James E. Smith afferts that the honey or nectar of plants is not poifonous to bees. Syllabus to a Courfe of Lechures on Botany, p. 23. I have fome good reafon to believe that, fometimes at leaft, the contrary is the care.
§ Linnæus, fpeaking of this plant, fays, "Nulla, excepto Meliantho, copiofiori melle fcatet planta, quam hæc; fed apes id non colligunt!" Prælectiones in Ordines Naturales Plantarum. Edidit Gifeke. P. 287. Hamburgi, 1792.
\|| Nerium oleander.
IT This is one of the molt mortal difeafes of bees. It is beautifully defcribed, and the remedies for it mentioned, by Virgil, Georgic. Lib. iv. 1. 351-280.
countrics they do not thrive; but the truth of which I am yet to learn." "*

In South-Carolina, in Georgia, and in the two Floridas, but more efpecially in Eaft-Florida, the inftances of injuries from the eating of wild-honey are more numerous than in any other parts of North-America, that are known to us.

There is a tract of country included between the rivers St. Illa and St. Mary's, in Eaft-Florida, that is remarkable for abounding in vaft numbers of bees. Thefe infects, which were originally introduced into Florida by the Spaniards, \dagger have encreafed into innumerable fwarms, from the facility with which they procure their food, in perhaps the richeft flowered-country of North-America. In this tract of country, the alarming effects of the wildhoney are often experienced, by the fettlers, by wandering hunters, and by favages.

It is highly probable, that this poifonous honey is procured from a confiderable number of the flowers of the countries which I have mentioned. A complete lift of thefe flowers would be acceptable: but fuch a lift it will be difficult to procure at prefent. Perhaps, my hints may induce fome intelligent native of the country to favour us with his obfervations on the fubject. Meanwhile, I am happy to have it in my power to mention fome of the vegetables from whofe flowers the bees extract a deleterious honey, not only in the country between the St. 11la and St. Mary's, but alfo in fome other parts of North-America.

Thefe vegetables are the kalmia angunlifolia and latifolia of Linnæus, the kalmia hirfuta of Walter, + the andromeda mariana, and fome other fpecies of this genus.
I. Every

[^3]I. Every American has heard of the poiforous properties of the kalmia anguftifolia and latifulia. The former of thefe plants is known, in the United States, by the names of dwarf-laurel, ivy, lambkill, \&rc. It has long been known, that its leaves, when eaten by fheep, prove fatal to them. The following fact will fhow that the flowers likewife are endued with a poifonous property.

About twenty years fince, a party of young men, folicited by the profpect of gain, moved, with a few hives of bees, from Pennfyivania, into the Jerleys. They were induced to believe that the favannas of this latter country were very favourable to the encreafe of their bees, and, confequently, to the making of honey. They, accordingly, placed their hives in the midft of thefe favannas, which were finely painted with the flowers of the kalmia anguftifolia. The bees encreafed prodigioully, and it was evident that the principal part of the honey which they made was obtained from the flowers of the plant which I have juft mentioned. I cannot learn that there was any thing uncommon in the appearance of the honey: but all the adventurers, who eat of it, became intoxicated, to a great degree. From this experiment, they were fenfible that it would not be prudent to fell their honey; but, unwilling to loofe all their labour, they made the honey into the drink' well known by the name of metheglin, fuppofing that the intoxicating quality which had refided in the honey would be lof in the metheglin. In this refpect, however, they were miftaken. The drink alfo intoxicated them, after which they removed their hives.

In North-Carolina, this fpecies of kalmia and the andromeda mariana are fuppofed to be the principal vegetables from which the bees prepare the poifonous honey, that is common in that part of the United States.
II. The kalmia latifolia, known in the United States by the names of laurel, great-laurel, wintergreen, fpoonhaunch, fpoon-wood, \&c. is alfo a poifon. Its leaves, indeed, are eaten, with impunity, by the deer,* and by the round-horned elk. \dagger But they are poifonous to theep, to horned-cattle and to horfes. In the former of thefe animals, they produce convulfions, foaming at the mouth, and death. Many of General Bradock's horfes were deftroyed by eating the leaves and the twigs of this Thrub, in the month of June 1755, a few days before this unfortunate General's defeat and death. In the fevere winter of the years 1790 and 1791, there appeared to be fuch unequivocal reafons for believing that feveral perfons, in Philadelphia, had died in confequence of their eating our pheafant, \ddagger in whofe crops the leaves and buds of the kalmia latifolia were found, that the mayor of the city thought it prudent and his duty, to warn the people againft the ufe of this bird, by a publick proclamation. I know that by many perfons, efpecially by fome lovers of pheafant-flefh, the circumftance juft mentioned, was fuppofed to be deftitute of foundation. But the foundation was a folid one. This might be fhown by feveral well-authenticated facts. It is fufficient for my prefent purpofe to obferve, that the collection of a deleterious honey from the flowers of this fpecies of kalmia gives fome countenance to the opinion, that the flefl of pheafants that had eaten of the leaves and buds of this plant may have been impregnated with a pernicious quality.§

I have

[^4]I have been informed, that our Indians fometimes intentionally poifon themfelves with a decoction of the leaves of this kalmia. The powder of the leaves has been employed (but 1 fufpect with little advantage) in the inflammatory fage of certain fevers. From experiments made upon myfelf, I find that this powder is fternutatory.

To fome conftitutions the flowers of the kalmia latifolia, even externally applied, are found to prove injurious.
III. The kalmia hirfuta appears to poffefs nearly the fame properties as the two fpecies which I have juft mentioned. This pretty little fhrub is a native of SouthCarolina, : Georgia, and Florida:

In Georgia and in Florida, this fpecies of kalmia is fuppofed to be the principal vegetable from which the deleterious honey in thofe parts of our continent is procured.
IV. The andromeda mariana, or broad leafed moorwort, is a very common plant in many parts of North America. The leaves are poifonous to fheep. The petioli, or foot-ftalks of the leaves and the feeds, within the feed-veffel, are covered with a brown powder, fimilar to that of the kalmiæ. This powder applied to the noftrils occafions violent fneezing.* From the flowers of this plant, the bees extract confiderable quantities of honey; and it deferves to be mentioned that this honey, as well as that obtained from fome other American fpecies

[^5]fpecies of andromeda, has frequently the very fmell of the flowers from which it is obtained.*

I have already obferved, that it is highly probable, that the American poifonous honey is procured from the flowers of a confiderable number of the plants of the country. I have mentioned but a few of them. But there are many others which I have fome reafons for fufpecting are alfo capable of affording an injurious honer. Indeed, every flower that is poifonous to man, and is capable of affording honey, may produce an honey injurious to man; fince the properties of this fluid are fo dependent upon the properties of the plants from which it is procured. There is, therefore, more poetry than philofophy in the following lines of Mr. Pope:
> "In the nice bee, what fenfe fo fubtly true,
> "From pois'nous herbs extracts the healing dew."
> Essay on Man. Epiatle I, lines $211 \& 212$.

I have been informed that in the fouthern parts of our continent, there is' a plant, called hemlock, from the flowers of which the bees prepare a honcy that is poifonous. The flowers are faid to be yellow, and the root a deadly poifon. I do not krow what plant this is. Moft probably, it is fome umbelliferous plant, perhaps a cicuta, an angelica, or a fcandix.

Some fpecies of agaricus, at leaf fome fungous vegetables, that grow in the fouthern fates, are extremely poifonous.

[^6]poifonous. As accidents from the ufe of deleterious honey have happened in the fame countries in which thefe poifonous fungi grow, it has been fuppofed, and afferted, that the poifonous honey is prepared from a dew that collects upon thefe fungi. Perhaps, this fuppofition is not entirely devoid of foundation.*

I thall now mention a few vegetables from the flowers of which, I think, it will be found, that the bees collect a poifonous, or injurious honey. Thefe are:
I. The rhododendron maximum, or Pennfylvania mountain laurel. This belongs to a very active genus of plants. We have already feen, that one of the fecies, the rhododendron ferrugineum, was, long ago, obferved to produce the fame effects which have been afcribed to the kalmia latifolia. Another fpecies, the rhododendron cryfanthum, has been found a powerful medicine, and has

[^7]has been ufed, in Ruffia, with much advantage, in the ifchias, in chronick rheumatifm, and in other difeafes; and we fhall immediately fee that from another fpecies a poifonous honey has been procured in the neighbourhood of the Euxine-Sea. The footitalks of the leaves, and alfo the feeds, of our rhododendron maximum are covered with the fame brown powder as I obferved covered the leaf-footftalks and the feeds of feveral of the andromedx, and the kalmix. This powder in the rhododendron, as well as in the andromedæ and kalmiæ, excites fneezing; and it is curious to obferve that a fneczing is mentioned by Diofcorides among the fymptoms produced by the honey about Heraclea Pontica. That honey, as will be prefently fhown, is procured from the rhododendron ponticum.
II. The azalea nudiflora. This fine fhrub is well known in Pennfylvania, and other parts of the United States, by the name of wild honeyfuckle. Of its properties I know nothing certain. It has, however, too much of the family face, and is too frequently found in company with the rhododendron maximum, and the kalmix, not to make me fufpicious that it partakes alfo of the characters of thefe deleterious vegetables. Moreover, a fpecies of this genus, the azalea pontica of Linnæus, is fuppofed to be the ægolethron of Pliny, who mentions it as the plant from which the poifonous honey about Heraclea Pontica is prepared. The tube of the flower of our azalea is perforated by the large bee, called bumble-bee.
II. Datura ftramonium. This plant is known by a variety of names, fuch as Jameftown-weed, gymfin, fink-weed, French-chefnut. Its active and poifonous properties are now pretty generally known. Children have often been injured by eating the feeds. The tube of the flower contains a confiderable quantity of honey.

This honey is bitter, and lias much of the poifonous imell. Bees quaff it. But admitting that it is of a poifonous nature, it does not follow that our cultivated bees (if I may be allowed to ufe this expreffion) will collect fo much of this honey as to prove injurious to thofe who eat of it. But, in particular places, where this plant has been permitted to increafe to a great degree, large quantities of honey may be collected from it: and 1 cannot help fufpecting that the ufe of this honey may prove injurious*.

Some of the ancient writers of Grcece and Rome have related inftances of the deleterious properties of the honey of certain countries. The botanift Diofcorides, fpeaking of the rhododendron ponticum, a fpecies of the fame genus to which our mountain laurel belongs, has the following words: "About Heraclea Pontica, at certain feafons of the year, the honey occafions madnefs in thofe who eat of it; and this is undoubtedly owing to the quality of the flowers from which the honey is diftilled. This honey occafions an abundant fweating, but the patients are eafed by giving them rue, falt-meats, and metheglin, in proportion as they vomit. This honey," continues the Greek botanift, "is very acid, and caufes fneczing. It takes away rednefs from the face, when pounded with coftus. Mixed with falt or aloes, it difperfes the black fpots which remain after bruifes. If dogs or fwine fwallow the excrements of perfons who have eaten of this honey, they fall into the lame accidents. \uparrow "

Pliny has alfo taken notice of this poifonous honey. "In fome years," fays the Roman naturalift, "the honey is very dangerous about Heraclea Pontica. It is not known to

Vol. V.
authors

[^8]authors from what flowers the bees extract this honey. Here is what we have learned of the matter. In thofe parts, there is a plant called ægolethron, whofe flowers, in a wet fpring accuire a very dangerous quality, when they fide. The honey which the bees make of them is more liquid than ufual, more heavy, and redder. Its fmell caules fneezing. 'Thofe who have eaten of it fweat excelinely, lie upon the ground, and call for nothing but cool drinks.*" He then makes the very remarks which I have quoted from Diofcorides, whofe words, indeed, as Mr. Tournefort obferves, he feems to have merely tranflated. The following remark, however, appears to belong to Pliny. "Upon the fame coaft of the Pontus, there is found another fort of honey, which is called mœenomenont, becaufe thofe who eat of it are rendered mad. It is fuppofed, the bees collect it from the flowers of the rhododendros, which is common among the forefts. The people of thofe parts, although they pay the Romans a part of their tribute in wax, are very cautious how they offer them their honey \ddagger."

The Greeks and the Komans have often defcribed the various plants that were known to them, in fuch dark and obfcure terms, that the botanifts of modern times are frequently at a lofs to determine, not merely the fpecies but alfo the genus the ancient writers have mentioned. With refpect, however, to the plants which I have juft mentioned, the difficulty does not feem to be great. Mr. Tournefort has, I think, fhown, in a very fatisfactory manner, that the ægolethron of Pliny is the chamxrhododendros pontica maxima, Mefpili folio, flore luteo of his Inflitutiones, a plant fince defcribed by Linnæus, and

[^9]and by other botanifts by the name of azalea pontica. Mr. Tournefort has likewife fhown, that the other plant called by Pliny rhododendros is his chamærhododendros pontica maxima, folio laurocerafi, flore cæruleo purpurefcente*. This is the rhododendron ponticum of Linnæus. It is confiderably allied to the azalea pontica.

Xenophon has recorded the remarkable effects of fome poifonous honey, in his celebrated work, called Memorabilia.

When the army of the ten thoufand had arrived near Trebifond, on the coaft of the Euxine or Black-Sea, an accident befel the troops, which was a caufe of great confternation. "As there were a great many bee-hives," fay the illuftrious general and hiftorian, "the foldiers did not fpare the honey. They were taken with a vomiting and purging, attended with a delirium, fo that the leaft affected feemed like men drunk, and others like mad men, or people on the point of death. The earth was ftrewed with bodies, as after a battle; not a perfon, however, died, and the diforder ceafed the next day, about the fame hour that it began. On the third and fourth days, the foldiers rofe, but in the condition people are in after taking a ftrong potion. \dagger "

The fame fact is recorded by Diodorus Siculus.
Mr . Tournefort thinks there is every probability that this poifonous honey was fucked from the flowers of fome fpecies of chamærhododendros, or rhododendron. He obferves that all the country about Trebifond is full of the fpecies of this plant, and he remarks that Father Lambert, Theatin miffionary, agrees that the honey which

[^10]the bees extract from a certain fhrub in Colchis or Mingrelia, is dangerous, and caufes vomiting. Lambert calls this fhrub oleandro giallo, or the yellow rofe-laurel, which Mr. Tournefort fays is, without difpute, his chamæshododendros pontica maxima, Mefpili folio, flore luteo*; the azalea pontica, already mentioned.
'There are feveral paffages in the Koman poets, which plainly fhow, that they were na ftrangers to the poifonous properties of certain kinds of honey. It is not neceffary to mention all thefe paffages. But the following are worthy of notice.

Virgil cautions us not to fuffer a yew tree to grow about bee-hives:

Neu propius tectis taxum finc.
Georgic. Lib. IV. 1. 47 .
In his $9^{\text {th }}$ Eclogue, the fame philofophic poet fpeaks of the yews of Corfica as being particularly injurious to bees.

Sic tua Cyrnaas figiant examina taxos. 1. 30.
The honey of Corfica was, as Dr. Martyn ftrongly expreffes it, "infamous for its evil qualities \uparrow."

The

[^11]The raifing of bees, for the purpofes of procuring their honey and their wax, may, at fome future period, become an object of great importance to the United-States. Surely then, it would be a matter of confequence to attend to the cultivation or prefervation of thofe vegetables which furnifh an innocent and a well-flavoured honey, and a good wax. But even in a more limited view of the fubject, fome knowledge of thefe vegetables feems to be indifpenfibly neceffary. And in the new fettlement, whither the fettler has carried his bees, where improvements are ftill very imperfect, it cannot be deemed a trivial tafk to have pointed out fome of thofe vegetables from which an injurious honey is obtained.

The ancients, who, in fome refpects at leaf, were equal to the moderns, appear to have paid much attention to this fubject. Virgil* and Columella have both told us what plants ought to grow about apiaries. It is unneceffary to repeat, in this place, what the two Roman writers have faid on the fubject. The Georgics of the Mantuan poet are in the hands of every man of tafte; and the work of Columella \dagger /bould be read, wherever agriculture engages the attention of gentlemen.

The proper management of bees may be confidered as a fcience. It is not fufficient that bees merely make honey and was. Their honey may be injurious or poifonous, and their wax may be nearly ufelefs. To affift, and to direct the labours of thefe little infects, the knowledge and the hand of man are required. Let, then, this interefted

[^12]70 On the POISONOUS HONEY, \&c.
interefted being be at leaft attentive to his own benefits and pleafures. Let him carefully remove from about the habitations of his bees every fetid or poifonous vegetable, however comely its colour or its form. In particular, let him be careful to remove thofe vegetables which are noxious to himfelf. In place of thefe, let him fpread the " marjoram and thyme," and other plants, "the love of bees,*" and his labours will be rewarded. He may, then, furnifh his table with an honey not inferior to that of Mount Hermettus, or of Athens; nor to that of Sicily, to which Virgil has fo handfomely alluded in the feventh Eclogue:

> Nerine Galatea, thymo mibi dulcior Hybla, Candidior cygnis, bederâ formofior albâ.

$$
\text { L. } 37,3^{8 .}
$$

- Armitrong.

> No.

(71)

No. VIII.

On the Ephoron Leukon, ufually called the White Fly of Pafluick River. By Dr. Williamson.

Read Feb. THESE infects are of the order called neui, 工799. T roptera. Lin. Syf. Nat.
The eyes are large and prominent.
The ftemmata are wanting.
The wings are plain, patent, membranaceous, reticulated. The under wings fhorter and narrower than the upper wings by more than one half. They are attached to the body a little behind and below the upper wings and are nearly covered by them.

The antennæ are cetaceous, half an inch long, having fix articulations befides the bafe.

From the tail there are two cetaceous appendices about one inch and a half long. They diverge making an angle of 12 or $\times 4$ degrees. Each of them contains 1_{5} or 20 fmall knots refembling articulations.

The tail, perhaps of the males, is furnifhed with two fmall croosed flaments hardly one-tenth of an inch in length, that are inferted below the cetaceous appendices, their points turn inward fo as to form pincers.

The length of the infect is half an inch.
The trunk is not thicker than a grain of rye. The abdomen is much fmaller.

The wings, abdomen and legs are perfectly white.
The eyes black; the trunk of a brownifh colour.
Their flight in fpeed is nearly equal to that of the dragon flies.

Neither mouth nor feet could be defcribed from the want of a microfcope.

They begin to rife out of the river 35 or 40 minutes after the fun fets and continue rifing about fifteen minutes.

We have no information concerning the larvæ of thofe infects.

The cryfalis, in which form they rife to the furface of the water, is not diftinguifhable from the perfect infect in fhape or colour.

The cryfalis depofits a thin white pellicle or fkin on the furface of the water and rifes a perfect infect. It continues on the wing about an hour and perifhes.

Some of them, not one in a hundred, rife from the water in the form of a cryfalis. They fly immediately to the fhore and in lefs than a minute they creep through the white pellicle that covered the trunk, abdomen and appendices, and rejoin their companions on the wing.

In their flight they feldom rife more than fix or eight feet above the water, but they ufually fkim or play near the furface.

The female drops two clufters of eggs upon the water and perifhes immediately.

The eggs are yellow. Each clufter is nearly one quarter of an inch in length and the thicknefs of a common pin, refembling the roe of a fifh and containing about 100 eggs. They fink in the water.

As thofe infects are not feen to couple on the wing it is prefumed that the male fecundates the eggs when they drop on the water.

Thefe flies are fo numerous that they appear fome evenings like thick driven fnow in a cloud that is hardly tranfparent.

Thefe infects, who differ in many particulars from the ephemera, are not eafily reduced to any genus defcribed by Linnæus, Geoffroy or Scheffer. They muft
be of the order called neuroptera, but an eighth genus is to be added to that order.

They are natives of the river Paffaick, but their utmoft range on that river is not above two miles and a half.

- They rife about three quarters of a mile below the bridge at Belville and one mile and a half above that bridge. Within thofe limits they rife without number, but no where elfe in the river, though there is a regular tide nine miles above the bridge and there is not any falt water within three miles of it. They are not found, as we are told, in any of the neighbouring rivers.

Their firft appearance every year is about the 20th of July, and they continue rifing every evening more or lefs about three weeks.

They feek the light, for they fly in crouds to a lamp or candle, but they are fuppofed to be the only genus of winged infects that never fee the fun.

The infect of an hour, that is never at reft, might ferve for a ftrong figure in the hands of a peevilh philofopher.

No. IX.
Remarks on certain Articles found in an Indian Tumulus at Cincinnati, and nowe depofited in the Mufeum of the American Pbilofopbical Society. By George Turner.

Philadelphia, November 25th, 1799•
Sir,

Read Dec.

AS the writer of the paper No. XXiI. Vol. Cth, 1799. appears to be under fome mifconceptions concerning sertain articles found in an Indian tumulus at Cincinnati, and now depofited in the Society's mufeum, I beg leave to offer a few remarks on them.

* Fig. 1. and 2. are each defcribed to be "a ftone or compofition."
Remark. Both are natural fones. The former refembles the greenifh grey porphyry: the latter is a jafper [beliotrope] marked with blood-coloured veins and fpots on a green bafis.
Fig. 3. "A cryfalline fubfance," \&c. " of confiderable tranfparency."
Rem. This is pure rock cryfal, perfoctly tranfparent.
Fig. 4. "As figure 1. Mixed black and yellow colours.'
Rem. This, too, is a natural ftone, a beautifil fpecimen of granite.
Fig. 5. "Probably a compofition," \&cc. "feems to have been hardened by the fiun or fire, and unequally compreffed by the operation."

Rem.

[^13]Rem. This is evidently a natural production; a ferruginous fone, and perhaps of volcanic origin.
Fig. 6. "A reprefentation of the bill of fome bird not now known in this country."
Rem. It is a bill or beak by no means unknown in the United States, being common to all rapacious birds, fuch as the eagle, hawk, vulture, \&c. their upper mandible, like that of the prefent fubject, having a cultrated point, the diftinguifhing mark of birds belonging to that clafs. From the fize and general form of this figure, it appears to have been defigned to reprefent the beak of an eagle.
Fig. 7. "A regular circular figure, of rufty black colour, tolerably well polifhed, and not unlike ebony in appearance, but much lefs ponderous; probably either of coal or a compofition."
Rem. The former part of the writer's conjecture as to the fubftance of this article is right, as far as it goes: it is not the ordinary coal, however, but what is ufually termed Cannel coal [ampelites] as the bare infpection of the fubject will difcover.* Col. Sargent fuppofes, that the fimall perforations in the rim were defigned to fecure it upon a large axis. But, if a rotatory motion was intended to be given to it, an angular perforation in the centre, inftead of the circular one there, would have far more efficiently anfwered that purpofe. It is worthy of remark here, that in the Tranf-

[^14]actions of the Scots Antiquaries, vol. i. p. 388 , there is a plate of two ancient fibulx, both formed out of Cannel coal. One of them, like this, is of a circular figure, but narrower in the rim, and rather lefs in diameter. Perhaps, both were defigned for fimilar purpofes by their ancient rude owners, though feparated by an ocean a thoufand leagues wide! Kindred acts will fpring from kindred manners.
Fig. 8. "Alfo a fimilar figure,* yellowifh colour; appears to have been hardened by the fun or firc, and glazed," \&c.
Rem. This, which is much fmaller than the preceding fubject, has neither been hardened by art, nor glazed. It is formed of a fat tenacious argilla, fuch as conftitutes the Indian pipebowls. This earth is found of various hues, acquires, by expofure to the air, a pretty firm texture, and is fufceptible of a fine polifhwhich, in the prefent inftance, has been miftaken for glazing.

I am, with great refpect,

Sir,

Your moft obedient,
G. TURNER.

Prefident of the
A. Philo. Soc.

* A third fibula (if I may fo term it) of nearly the fame diameter with this, but of copper, was afterwards taken out of the fame tumulus. It was compofed of two plates of the metal, united and perforated at the centre.

No. X.

> A Drazing and Defcription of the Clupea Tyrannus and Onijcus Praguftator. By Benjamin Henry Latrobe. F. A. P.S.

The committee to whom was referred Mr. Latrobe's paper on a fpecies of onifcus, called by the author onifcus praeguftator, reports, that the fame is worthy of publication.

> BENJAMIN SMITH BARTON. February $17 t h, 1800$.

Feb. 21, 1800 .
Philadelphia, December i8th, 1799.
To Thomas P. Smith, one of the Secretaries of the American Philofophical Society. Sir,

Read Fcb. BEG leave, through your means, to commu-
7, r800. L nicate to the American Philofophical Society, an account of an infect, whofe mode of habitation, at leaft during fome part of his life, has appeared to me one of the moft fingular, not to fay whimfical, that can be conceived.
In the month of March 1797, illnefs confined me for feveral days, at the houfe of a friend on York river in Virginia, during his abfence. My inability to move further than to the fhore of the river, gave me leifure to examine carefully, and in more than an hundred inftances, the fact I am going to mention.

Among the fifh that at this early feafon of the year refort to the waters of York river, the alewife or oldwife, called
called the baj-alewife (clupea nondefcripta) arrives in very confiderable fhoals, and in fome feafons their number is almoft incredible. They are fully of the fize of a large herring, and are principally diftinguifhed from the herring, by a bay or red fpot above the gill-fin. (fee the drawing) They are, when caught from March to May, full-roed and fat, and are at leaft as good a fifh for the table as the herring.

In this feafon, each of thefe alewives carries in her mouth an infect, about two inches long, hanging with its back downwards, and firmly holding itfelf by its 14 legs to the palate. The fifhermen call this infect the loufe. It is with difficulty that it can be feparated, and perhaps never without injury to the jaws of the fifh. The fifhermen therefore confider the infect as effential to the life of the fifh ; for when it is taken out, and the fifh is thrown again into the water, he is incapable of fwimming, and foon dies. I endeavoured in numerous inftances to preferve both the infect and the filh from injury, but was always obliged either to deftroy the one, or to injure the other. I have fometimes fucceeded in taking out the infect in a brifk and lively ftate. As foon as he was fet free from my grafp, he immediately fcrambled nimbly back into the mouth of the firh, and refumed his pofition. In every inftance he was difguftingly corpulent, and unpleafant to handle; and it feemed, that whether he have obtained his poft, by force, or by favor, whether he be a mere traveller, or a conftant refident, or what elfe may be his bufinefs where he is found; he certainly has a fat place of it, and fares fumptuoully every day.

The drawings annexed to this account were made from the live infect, and from the fifh out of whofe mouth he was taken. I had no books to refer to, then; but examining the Syftema Naturæ of Linnæus, I was furprized to find fo exact a defcription of the infect as follows
follows (fee Salvii editio, Holmix ${ }^{17} 76$ 3. p. 1060. alfo Trattner's Vienna edition, fame page).
"Infect. apt. Oniscus, Pedes XIV.
Antennæ fetaceæ
Corpus ovale.
O. Phyfodes, abdomine fubtus nudo, caudâ ovatâ. Habitat in pelago ; corpus præter caput, et caudam ultimam, ex feptem fegmentis trunci, et quinque caudx. Antennæ utrinque duo, breves. Caudæ folium terminale omnino ovatum ; ad latera utrinque fubtus auctum duobus petiolis diphyllis, foliolis lanceolatis, obtufis, caudâ brevioribus. Caudæ articuli fubtus obtecti numerofis veficulis longitudine caudx."

From the particularity with which the onifcus phyfodes is defcribed by Linnæus, it is evident that he had the infect before him, or a defcription by an attentive obferver. It appears alfo from the "Habitat in pelago," that the O. phyfodes, if this be the infect, is found detached from his conductor. There are a few points in which the O. phyfodes differs from my infect. I did not obferve the antennæ, perhaps for want of fufficient attention, or of a microfcope. The petioli of the tail were not, to appearance, two-leaved, and 1 am certain that the fegments of the tail, and the tail itfelf, were without the veficuli long itudine cauda:

There are many circumftances, to afcertain which is effential to the natural hiftory of this infect. The fifh whofe mouth he inhabits comes, about the fame time with the chad, into the rivers of Virginia from the ocean, and continues to travel upwards from the beginning of March, to the middle of May; as long as they are caught upon their paflage up the river, they are found fat and full of roe. Every fili which I faw had the onifcus in his mouth; and I was affured, not only by the more ignorant filhermen, but by a very intelligent man who
came down now and then to divert himfelf with fifhing, that, in 40 years obfervation, he had never feen a bay alewife without the loufe. The chad begin to return from the frefh water lean and flotten, about the end of May and beginning of June, and continue defcending during the remaining fummer months. No one attempts then to catch them, for they are unfit for the table. Whether the bay alewife returns with the chad, I could not learn, but it is certain that after June it is not thought worth the trouble to catch them. No one could tell me $p o f_{i-}$ tively whether the onifcus fill continues with them, but it was the opinion of my informant, that, like every other parafite, he deferts his protector in his reduced ftate, for he could not recollect that he had ever feen him in the mouth of thofe accidentally caught in the feine in July or Auguft.

I confider, therefore, the natural hiftory of the onifcus, which I now communicate, as very imperfect ; and it were to be wifhed that fome lover of natural fcience would follow up the enquiry, by endeavoring to afcertain whether he continue with, or quit the fifl before his return to the ocean, and alfo whether he be the onifcus phyfodes of Linnæus, qui babitat in pelago.

Should he be an infect hitherto undefcribed, I think he might be very aptly named onifcus pragufator.

The bay alewife is not accurately defcribed in any ichthyological work which I have feen; nor can I from my drawings, which were made with a very weak hand, venture a defcription. From his having a regular præguftator, I would fuggeft that he ought to be named clupea tyrannus.

The onifcus refembles the minion of a tyrant in other refpects, for he is not without thofe who fuck him. Many of thofe which I caught had two or three leaches on their bodies, adhering fo clofely, that their removal coft
them

The Eniscus praequstater, drawn to its natural size, by, measurement

I'late 1

Teaches, frumd -upen the Insect.

Mutline of the CTupea lyramns, comectly drain to its natural size.
them their heads. Moft of the marine onifci appear to be troublefome to fome one or other filh. The onifcus ceti is well known as the plague of whales, and many of the reft are mentioned in Linnæus and Gmelin, as peftes pifcium.

BENJN. HENRY LATROBE, F. A. P.S.
P. S. A gentleman well fkilled in entomology informs me that he believes, that in Block's Hiftory of Fihes, a work not to be had in Philadelphia, this onifcus is mentioned. But, from a late examination of G melin and Fabricius, 1 am convinced that the onifcus præguftator is a fpecies not hitherto accurately defcribed-Gmelin had probably feen the Linnæan infect, having changed the antennæ utrinque duo, to antennis quaternis, and left out moft of the long defcription given by Linnays. Neither he, Linnæus nor Fabricius mention the circumftance of habitation in the mouth of the fifh, and the induftrions and copious Fabricius, who having changed the names of the genera, calls him cymothoa phyfodes, copies the defcription of Gmelin, excepting the mention of the 4 antennx, which in his arrangement form a characier of the genus.

L
No.

No. XI.

A Defcription of a newoly invented Globe Time-Piece. By the Rev. Burgiss Allison, A. M.

April 4th, 1800.
The committee to wetbom reas referred the communication from Burgifs Allijon, report

That having examined the drawing of his globe timepiece and the references they are of opinion that it difplays confiderable mechanical ingenuity. They think however that too much has been attempted by the inventor. The part intended to exhibit the phafes, \&cc. of the moon is too little connected with the other parts of the mackinery, and is not of great importance, as even were it not liable to objection on account of its detached fituation, it would only fhew the mean and not the true time at which the different phenomena would nccur. An error will alfo arife in the apparent place of the fun on account of the equable motion of circle of illumination. This objection is of no great confequence. From the mode which the inventor propofes of making the hours on the equator it is evident that the time fhown by the globe will be for that meridian only on which the hour of fix is marked. The committee therefore recommend to the inventor to remove the lunar part entirely; and to have the hours marked on a moveable hoop or circle which may be attached to the globe fo as to fuit any meridian. Upon the whole however the committee deem the communication worthy of publication.

Briftol, February 28 th, 1800.
Respected Sir,
Read April T is now a confiderable time fince I have 4th, 8800 . made fome improvements in different mathematical inftruments and machines; which I did not, however, think of fufficient confequence to prefent to the fociety : but having not long fince fhewn them to fome of my friends, they have induced me to prefent the inclofed drawing and defcription of my globe timepiece. If this fhould meet with a favourable reception, I fhall be encouraged to bring forward fome others which I now have by me. The globe time-piece, I have not actually conftructed, but have begun it, and when finifhed will with pleafure exhibit it to the fociety. I'remain, Sir,

Refpectfully your humble fervant,

BÚRGISS ALLISON.

Thomas Jefferson, Esq. Prefident of the American Philofophical Society.

AA is a terreftrial globe of any convenient fize, fay 8 inches in diameter, then will the hours marked on the equator be about I inch afunder. Within the globe is the movement of a fpring time piece by which the globe is turned round on its axis once in 24 hours. BB is a flat hoop of brafs in which the globe turns as it docs in the brazen meridian of common globes, and which ferves to point out the hours as they pafs in fucceffion under it. CC is a light hoop with the minutes marked on it, and which may be carried round by a femicircular wire attached to a cannon moving round the north pole, and thence communicating with the internal move-
ment. But if the lunar part be added, then the minute circle muft be carried round by fimilar arms on the infide of the globe, and an opening left, next the hour circle, between the northern and fouthern hemifpheres, for it to move in ; the two hemifpheres being connected by 4 , or more fmall connecting wires, which may be detached at pleafure to remove the northern hemifphere when there is occafion to come at the movement. Or for conveniency the minutes may be fhown on a circle round the north pole. DD is a brafs circle moving round once in a year on the poles of the ecliptic, Showing the different feafons. This being the circle of illumination, one fide thereof may be made black to diftinguifh the dark hemifphere. It is carried round by the cannon E which turns round a firm fupporter that fuftains the hoop B13, and of courfe the globe, \&cc. The cannon carries round with it the circular plane FF on the upper part of the foot to which is attached the ftem G and which rifing as high as the centre of the circle of illumination and at right angles to it, carries on its top a figure of the fun, whofe place in the ecliptic is pointed out on the edge of the foot, on which is alfo drawn the figns of the zodiac, day of the month, \&c. Or if it fhouid be preferred the figns, day of month, \&xc. may be drawn on the circular plane FF which being left at reft, while the fem bearing the fun, being connected with the cannon G will point out, ut fupra, the fun's place in the ecliptic, \&c. M reprefents the moon which is carried round the earth in its proper period by the $\operatorname{arm} \mathrm{L}$ and axis K being connected with the plate P which revokves round the pole of the ecliptic in about 19 years carrying the axis of the moon's orbit with it in an angle of $5 \frac{1}{2}$ degrees this is effected in the following manner. The plate P with its wheel O is moved round a cannon fixed to the hoop $B B$ by which
the wheels $\mathrm{a}, \mathrm{b}, \mathrm{c}$, are turned, the laft of which being immoveable on the fixed cannon e turns the wheel b fince with its axis it move round the faid cannon, which is the pole of the ecliptic, once in a year. Again the moon's axis K is turned by a wheel d fixed to an arbor paffing through the cannon e and on its lower end carrying another wheel, which is turned one tooth per day, by a pin fixed in the globe. If it is required for the moon to turn on its axis fo as to keep the enlightened fide to the fun, it may be done by fubftituting for the arc \mathbf{L}, the horizontal arm R at the extremity of which let there be the arbor and wheel S of the fame fize as the wheel at K and turned by it with its wire W at the lower end of which is the moon. It is obvious from the diftance of the wheels that they are defigned to be turned by bands. And here I hall avail myfelf of Mr. Hawkins's newly invented fpiral wire bands, which being elaftic are applicable to all kinds of machinery without the inconveniency of altering with the weather.

The piece is wound up by a key at the fouth pole, which pole is a cannon connected with a frame within the globe, containing the wheel work: and the north pole is the fame being firmly fixed to the hoop BB. The cannon E and circle DD are made to revolve once a year in the following manner. On the poft within the cannon E is a lever, which once a day is drawn afide by a pin fixed in the globe near the antarctic circle, and by a wire attached to its lower end, a crank near the edge of the foot is pulled, by which a circle having $3 \sigma_{5}$ teeth is moved one tooth per day, which wheel is connected with the plane FF, unlefs that is defigned to be ftationary, and in that cale, the wheel muft connect with the cannon E by a wire which will ferve to fupport the fun's ftem, and the movement is effected. From
the defcription and drawing it is eafy to conceive that the following problems may be done by the machine. 1. The hour and minute of the day. 2. The hour and minute of fun-rifing and fetting in every part of the world, as the places pafs in fucceffion before or behind the circle of illumination. 3. The different feafons, and lengths of day and night. 4. The fun's place in the ecliptic and day of the month. 5. The phafes of the moon; her age, place of nodes, eclipfes, rifing, fetting and fouthing, in every part of the world, fhewn by a wire circle of lunar illumination attached to the moon's axis and at right angles to the plane of her orbit ; whofe interfection with the folar circle of illumination, will thew the height of the fun, at the rifing or fetting of the moon.

No.

(87)

No. XII.

A Defcription of the Pendant Planetarium. By Burgiss Allison.

$a a a a$ is a frame fupporting the whole machine. $b b$ is a fixed rod or arbor fupporting the fegment c, and the fun s by a fine wire. d is a wheel fixed to the upper part of the cannon e carrying round by its lower end the arm $f f$ and the planet Mercury fufpended by a fine dark wire. $g g$ is an arm fixed by fcrews into the frame $a a$ at each end, and alfo to the upper end of the fixed cannon $b b$, which fupports by its lower end the frame $i i$, which, as explained in fig. 2. is an elliptic plane, fupporting by four or more ftuds $/ /$ the concave piece $k k$ forming an elliptic ring. $m m$ is a wheel on the moveable cannon $n n$ which carries the arm 00 , fupporting on one end the planet Venus by a fine wire, as above. $p p$ as before is a fixed frame attached to the immoveable cannon g and the elliptic plane $r r$, fupporting by ftuds the concave ring $s s$, ut fupra; and thus the wires by which the plancts are fufpended, and the concave rings are alternately fupported by the moveable and fixed cannons, \&cc. until the whole forms a concave like the heavens; having the fmall grooves or apertures through which the planets fupporters move round, forming elliptic lines in the concave fegment of a fphere marking out the planets paths, according to their excentricity and fhewing at one view the places of aphelion, perihelion, \&c. of all the planets. The concave fegment being painted a dark blue and fpangled with filver ftars in the pofition that fome of the fixed ftars would appear from the centre of the fun, will have a
fine effect, efpecially as the fupporting wires of the planets will be dark and fo frmall as to render them almoft invifible, the frame being fufpended from the ceiling. Their latitude may readily be afcertained by a line drawn from the centre of the fun through that of the planets place to the hoop $t t$ encompaffing the whole, marked with eight degrees on each fide of the ecliptic. The elliptic orbits and inclined planes are obtained by the method fhewn in fig. 2. viz.
$a a$ is an elliptic plane faftened to the lower end of each fixed cannon, having its excentricity calculated to that of the planet which is to be affected by it. $b b$ is the arm attached to the moveable cannon. $c c$ is a flider moving on the arm 66 by four little friction rollers. d is a friction wheel on the under fide of c turning on a pin which is faftened firm in c and moves, with it, through a groove in $b b$ which wheel running againft the edge of the ellipfis $a a$, forces $c c$ out, which is again drawn in by the fpring c, thus caufing the planet to revolve in an elliptic orbit, as it is carried round by the arm $6 b$, the moveable cannon, and wheel work.

For the inclined plane, g is a wheel turning on a pin faftened into $c c$, and carried round on it by a projecting arm of b^{*}. On one fide of this wheel is a fmall pin, whofe fituation and diftance from the centre is to be determined by the place of the planet's nodes and the inclination of its plane to that of the ecliptic: to this pin is faftened a fimall waxed filk cord which paffing over the pulley b fupports the planet by a fine hair wire, as before defcribed and draws it up and lowers it down in its orbit according to its angle of inclination to the plane of the ecliptic. The planets fhould be made of polifhed metal to give them weight and briliancy, or of fimall glafs

[^15]

$$
3
$$
\square

 \square
glafs globes filled with mercury. The fun may be a globular glafs fountain-lamp with a cork fitted to the tube, containing a tin pipe for the wick, fo that the blaze being in the centre of the globe and furrounded with oil, will be magnified on every fide and exhibit a fplendid fun. It will be readily underfond that motion is to be given to the wheels, turning the cannons, \&c. by an arbor having as many wheels as the planets have, all firmly fixed to the arbor and calculated to move them in their proper periods. The whole may be made of wood, if required, and the wheels turned by elaftic wire bands. To the machinery may be attached a fimple movement whofe weight may defcend down the wainfcot of the room in any convenient place. Thus the planets will be feen moving round the fun in the concave above, in elliptic orbits and inclined planes, apparently revolving in the heavens without any fupport.

It is eafy to conceive how the fame principle, as far as it refpects the excentricity and angles of inclination, may be applied to either vertical or horizontal orreries; by having the wires which fupport the planets fufficiently fout to bear their weight either in a perpendicular or horizontal pofition, and fliding in and out of fmall tubes as they pafs round in the elliptic grooves on the face of the orrery. They may be drawn in by the wheel pin and cord as defcribed in fig. 2. and forced out by fmall fprings. In this cafe their latitude may be marked on the fupporting wire, and the top of the tube in which they flide will ferve as an index. Or the degrees may be marked on the edge of a groove cut in the tube through which an index, faftened to the moving wire or ftem which fupports the planets, may pafs; and thus give the latitude.

No. XIII.

On the Ufe of the Thermometer in Navigation. By William Strickland.

Sir,
York, April 1798.
Read May SHORT time before I failed from Eng${ }^{16}$, 1800. land in 1794, the third volume of the Tranfactions of the American Philofophical Society fell in my way. Being at that time attentive to maritime affairs, I could not but be much ftruck with your maritime obfervations, and on fhewing them to a nautical friend, he recommended me to purfue the fame courfe of obfervations. This advice I followed; and being well fatisfied in having made the experiments in my outward bound voyage, I purfued the fame courfe in my homeward bound voyage ; and am about to report the refuit of both to you, though the laft appears likely to be of no farther ufe than confirming what has already been faid on the fubject by yourfelf.

The obfervations at large I do not fend you, being too prolis, the thermometer having been recurred to, much more frequently than here ftated; I have noted here only the changes which occurred in the temperature of the water, and thereby the table is confiderably abbreviated.

In the outward bound voyage the fubject appearing moft worthy of attention is the probability of a branch ftriking off from the gulf-ftream in a northerly or northeafterly direction, flowing to the eaft of and fomewhat parallel to the banks of Newfoundland. This we appear to have ftruck on the 18 th of Aug. P. M. and continued in it till the 23 d A . M. except that on the 20 th we croffed a cold current probably here running in upon
the other from the north-weft. That this is a branch of the gulf-ftream is rendered probable by the appearance of great quantities of gulf-weed on the 18 th A. M. and the circumftance of the flying-fifh appcaring on the 1 gth which probably had followed the warm ftream into an higher latitude than I can, after looking into many voyages, find them to have been previounly noticed. It will appear alfo from the homeward bound track, that on the 18 th of Aug. A. M. we firuck a warm current and continued in it feveral days, which from the longitude could be no other than the current before noticed in 1794, as after quitting the gulf-ftream, we had been for ieveral days in the feas cooled by the proximity of the banks of Newfoundland. I have dwelt longer than at firlt fight may appear neceffary on this current, becaule, though it has been fuppofed to exift to the fouth-eaft of the banks of Newfoundland, it has not been traced fo far north as the latitude of the fuppofed Jacquet-Ine, that is to lat. 47, long. 39. It is probably continued in about a northcaft direction, and extends entirely acrofs the Atlantic, till it ultimately ftrikes the coafts of Ireland and the Hebrides, after having loft in its long courfe in thofe northern latitudes much of its heat and at laft being reduced to the temperature of the feas, through which it flows. That fuch a current really exifts through the whole of this extent is rendered highly probable from various productions of the tropical regions being frequently thrown on thofe fhores, hitherto fuppofed to be the accidental effects of ftorms and not of the unvarying courfe of nature. The firft notice of fuch fubftances being caft on thofe Iflands will be found in Vol. III. p. 54c, of the Abridgement of the Philofophical Tranfactions, which abridgement was publifhed in 1749; but the papers abridged many years before.* We here find the facts M 2
ftated

[^16]Itated but not attempted to be accounted for, except that in confequence of fome of thefe having obtained the name of Molucca beans, they are fuppofed to have found a way out of the North-Pacific ocean, through the northweft paffage, then fuppofed to exift. From that time little if any notice was taken of thefe exotic productions, till Mr. Pennant made his tour in the Hebrides in $\mathbf{1 7 7 2}^{2}$, when he mentions his receiving prefents of them.*

That the exiftence of fuch a current never occurred to the inquifitive and penetrating mind of Mr . l'ennant is a fufficient procf, that at the time no knowledge was had of it, he is content with fuppofing thefe things to be drifted upon the coafts by ftorms, and the prevailing wefterly winds; but you probably will hold with me that they conftitute a frong prefumption, if not indubitable proof, of the exiftence of a regular current; that the courfe of that current has been hitherto unnoticed; but that could it be afcertained, much advantage would accrue to navigation, by facilitating the voyages from America, through the North-Atlantic, as well as preventing veffels returning by that track from ftemming that current, as the Fair-American probably did in her courfe, almoft the whole of the way to Newfoundland; by fuch knowledge voyages both ways might be materially fhortened, as they now are by the like knowledge of the courfe of the gulf-ftream in its eafterly and fouth-eafterly progrefs towards the coafts of Europe and Africa. The current in the North-Atlantic might be detected through the greateft part of the fpace which it runs by the attentive ufe of the thermometer, until it has approximated the ufual temperature of the fea in the northern latitudes; it might be thus probably afcertained to the fiftieth or difty-fifth degrec of north latitude, as the courfe of the gulf-

[^17]gulf-ftream has already been determined for an equal or greater diftance by the fame means. It is therefore very defirable that a veffel fhould be employed to crofs the Atlantic in an eafterly and wefterly direction in various latitudes, between latitude 47 and 60, when the direct courfe of this current might be detected, and the torpitude of each fide of it fixed as far as could be done by the thermometer. Having run into great length on the probability of a current, it is now necelfary to return to facts more immediately connected with our fubject, the accuracy of the thermometer in afcertaining our fituation at fea.

On the 22 d of Auguf late in the evening the water fell in temperature four degrees to 64 ; on the next day at noon having fallen to 62 and fufpecting that we might be in foundings, though no alteration had taken place in the colour of the water, I induced the captain to found, but no bottom was found at 140 fathom; on the $24^{\text {th }}$ it will appear by the chart to have fallen to 58 , and on the 25 th to 56 , about which time we were undoubtedly on Jaquet, or Falfe bank, and on the 26th having fallen to 5^{t} at 8 A . M. and affumed a green caft. I was defirous of founding again, but in confequence of the ill fuccefs attending our former attempt, and not yet placing any reliance on the thermometer, the captain was unwilling to lofe time in founding, fuppofing that we were only approaching Jaquet or Falfe bank, but the next day having fpoke a banker, he informed us that we were on the grand bank, and that Cape Race bore W. N. W. 150 miles. Upon founding at noon we ftruck the ground at 37 fathoms. Here let me remark, that our reckoning as hewn on the chart has been well kept, and that the thermometer has with great precifion indicated our fituation; on the 21 ft at noon in a fuppofed branch of the gulf ftream $7 \mathbf{2}^{\circ}$. $\mathbf{2 2}$ d, approaching Jaquet bank and at
no great diftance from it, $68^{\circ} .-23 \mathrm{~d}$, ftill nearer 62°. $24 t h$, on the edge of the bank $55^{\circ}-25$ th, on Jaquet bank 56°.- 26 th , on the grand bank 52°. -thus, at this feafon of the year is there a difference of 20 degrees of the thermometer between the water on the bank, and in the fame latitude in the ocean, not far to the eaft of it.

Our captain a fenfible and obferving man, as well as very experienced mariner, fruck with the regular gradation of the thermometer on the approach of the bank, and convinced of its having pointed it out long before he had fufpected his arrival upon it, from this time paid much attention to the thermometer. He found as I had forctold that it would equally thew by the rife when we had quitted the bank, and obferved that as it would ftill more accurately define the limits of the gulf-ftream, as it was hotter than any other part of the ocean, he might with great advantage make his paffage to New-York by following the northern eddy of the ftream. This eddy he knew to exift, but was unacquainted with the limits of it, and knew not how to afcertain them, except by the thermometer. We purfued this eddy pretty accurately having made good the latitude of New-York in long. 69. in about nine days from quitting the banks, and every day performed nearly equal and good days works. In this courle from Newfoundland the thermometer indicated every where the approach to danger; on the $5^{\text {th }}$ of September, the vicinity of Sable Ifland banks caufed a fall of 7°; and on the 7 th, a bank not marked on any chart I have feen caufed a fall of 11° degrees. Upon founding on this bank the ground was fruck in 55 fathom, fine white fand, with fome fpecks of red and black. Captain Allyn was fo much pleafed with the accuracy of the thermometer and with the fecurity in which he had failed for fome time in confequence of it, and fo clearly perceived the advantage to
be derived from it in many inftances, that he declared he would never more go to fea without one.

The track of the Fair-American appears to have laid very near to Jaquet ifland, which in governor Pownall's chart is marked as very doubtful ; a good look out for it was kept for feveral days, but with no effect; this may fo far tend to confirm the fufpicion of its non-exiftence.

The journal from America to England, does little more than confirm the previous obfervations made in this track; the thermometer fell no lefs than 20 degrees on paffing to the fouth-eaft of Newfoundland, and rofe again 9 degrees in the fame longitudes where in our outward bound voyage, we fuppofed ourfelves to be croffing a branch of the gulf-ftream. The fall from hence of the thermometer, as the coaft of Europe is approached is very remarkable and uniform.

WILLIAM STRICKLAND.

To JONA. WILLIAMS, E/q.
Pbiladelpbia.

Thermometrical

Thermometrical fournal of the Timperature of the Atmosplere and of the Sea on a Paffage from Hull in Engl Nezu York, on Board the Ship Fair-American of Neru York, Capt. Ebenezer Allyn, in the year 1794. W. Strickland.						
Dates. 1794.	Hour of the Day.	Place at Noor. Lat. N. Long. W.	Cemp Air.		Appearance of Water.	Notes and Observations.
$\begin{array}{r} \text { July } 19, \\ 20, \\ 27, \end{array}$	$\begin{aligned} & { }^{12} \stackrel{\mathrm{P}}{4} \mathrm{M} . \\ & 8 \mathrm{~A} . \mathrm{M} . \end{aligned}$	River Humber.	70°	68° 64	muddy clear	July 19th. Sailed early this morning from Hull roads. At 4 P. M. Spurn lighthoure E. S. E. 5 miles.
	8 A. M.	$\left\{\begin{array}{c} \text { Clofe in with the } \\ \text { Butt of Lewes, } \end{array}\right.$	54	56	dark green	20th Spurn lighthoure E. by S. 3 miles.
	4 P. M.		56	56		29th at 8 A. M. St. Kilda E. N. E. 4 leagues. Temperature of the water 56°. The water of
30,	8 A. M.		56	57	bright blue	the river Humber on the 19 th was 68° the
	4 P. M.		60	58		weather having for fome time been very hot;
3I,	8 A. M.	$56^{\circ} 24^{\prime}$	60	57		on entering the fea it was 61° our courfe was
	4 P. M.	5540	61	58		chiefly in fight of land till our departure from
Aug. I,	8 A. M.		57	58		St. Kilda this day, and the water frequently
	4 P . M.	55 2 15 38	63	57		varied between 61° and 56° influenced proba-
2,	8 A. M.	5257	58	58		bly by the rivers and varying depth of the
11,	4 P. M.		66	58		coaft; about noon the water changed to a
	8 A. M.		63	61		bright blue, Ocean Water.
	${ }_{4}$ P. M.	$49 \quad 1 \quad 3043$	65	61		30 th at 6 A . M. water 57° acquiring warmth as
15,	8 A. M.		63	62		we recede from land; in the evening 58°.
16,	${ }_{4} \mathrm{P}$. M.	$4^{8} \quad 36$	$6+$	64		Auguft 1 Ith. Eleven days have now paffed with-
	8 A. M.		60	66		out any alteration in the temperature of the wa-
	4 P. M	474135 51	66	66		ter. 58° may probably be the ufual tempera-

$\begin{aligned} & \text { Datcs. } \\ & \text { 179) } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Hour of } \\ & \text { the Day. } \end{aligned}\right.$	Place a Lat. N.	Noon. Long. W.	Temp Air.	rature Water	Appearance of Water.	Notes and Observations.
g. 17,	8 A. M.	1		$\begin{aligned} & 64^{\circ} \\ & 65 \\ & 68 \end{aligned}$	64°		ture of the Atlantic at this feaion of the year above latitude 50°. This day the water gains three degrees of heat.
	+ P.M.	$47^{\circ} 44^{\prime}$	$33^{6} 16^{\prime}$		64		
	8 A. M.				67		
re,	${ }_{4}^{1}$	4647	$3^{8} 35$		68		15 th. This morning it has gained four degrees, in
19,	$8 \mathrm{~A} . \mathrm{M}$.			69	68		the evening fix. 16th. The temperature is 66°
	$4 \mathrm{P} . \mathrm{M}$.	4618	3941	69	67		18 th 68°. Moft of this day much
20,	8 A. M.		4120	62	64		ed 'in the fea, which firtt led us to fuppofe our-
	4 P. M.	4545	41. 20		62		felves in a branch of the gulf ftream, though
$2 i$,	6 A. M.			60	70	bright bluc	the thermometer appears to have indicated it
		$45 \quad 18$	432		72		fince the morning of the 10 th by a rife of fevc-
	\pm P. M.			70	72		ral degrecs; this day at noon according to our
22,	${ }^{8} \mathrm{~A} . \mathrm{M}$	4528		69	69 68		reckoning were precifely where Jaquet lfle ought to have been; it is marked as very
			4544	72	65		
	ıO P. M.				64		as we kept a conftant look out for it du
23,	8 A. M.			62	62		days it probably does not exif.
24,	$4 \mathrm{P} . \mathrm{M}$.	$45 \quad 28$	4541	65	62		20th. Moft of this day the water was found to
	S A. M.			59	58		vary between 64° and 62°. During fix hours
25,	4 P. M.	4541	$46 \quad 2$	61	58		A. M, and as many P. M. the wind was Arong
	8. A. M.			60	57		from the N. W. attended with heavy fqualls
25,	$4 \mathrm{P} . \mathrm{Mi}$	4515	4639	6.	56		and rain which might have driven before it a
	${ }^{5} \mathrm{~A} .2 . \mathrm{M}$.			57	51	greenif	current from a colder region, or the thermome-
		4537	4827		52 52		ter in the air being as low as 62° the air night

Vol. V.

September 6th. The fea becomes again of a bright blue, much gulf weed, and fome rock weed, was feen this evening. The fame circumftance occurred on the ad; a wefterly breeze raifing the eddy of the ftream and a N . breeze allaying it.
7th. Becalmed till fix A. M. during the calm a frong current fetting to the S. or S. S. W. was very perceptible, fuppofed the eddy of the gulf ftream.
8 th. The water having changed colour and fallen in temperature to 61° founded at $10 \mathrm{~A}: \mathrm{M}$. and found a bottom at 55 fathom, fine white fand. This bank indicated yefterday about noon by the fall of the thermometer: whatever bank this may be, it does not appear to be in the Charts, we were juft 24 hours upon it. At 4 P. M. water 70° and bright blue -no bottom. This day at noon becalmed, the water on the furface was at 78°, but in water taken from a depth of 55 fathom, the thermometer ftood at 63°.
1 th. At 3 P. M. the water having changed colour, and fallen 9 degrees, indicated an approach to foundings. At 5 P. M. foundings 33 fathom green ooze.
15th. At noon Montuck Point in Long-Inland N. N. E. 12 miles. . It will appear by the Chart that the reckoning has been well kept; and that what variation occurs, may be fuppofed to have arifen within the laft 7 or 8 days in confequence of currents and calms.
Thermometrical Yournal of the Temperatare of the Atmolpbere, and of the Sea, on a Pafjuge from Pbiladelpbia to Falmouth on Boarll the Camilla, Captain George Irzein of Pbiladelphia, in the Year 1795, kept by Willian Strickland.

No. XIV.
Sur les Végétaux, les Polypes et les Infectes. By Dupont de Nemours.

Read June TL eft très facile, et peut-être affez naturel, á 20th, 8800 . 1 un animal auffi ravageur que l'homme de traiter avec peu de confidération les plantes qui fe laiffent dévorer fi paifiblement.

Cependant je ne voudrais pas avoir offenfé les Rofes.
Perfonne n'eft plus difpofé que moi a croire, avec les anciens, que tout arbre eft l'azyle, ou la prifon, d'une nymphe.

Nous ne favons pas bien nettement quelle eft la nature des végétaux, ni silis font un régne dans la nature.

Douter, obferver attentivement ; penfer beaucoup, pour apprendre peu; voila le tot de notre faibleffe, quand elle eft fage.

Nous remarquons dans les végétaux trois ou quatre principaux phénomenes, leur croiffance, leur fanté, leurs amours, leur réproduction; et deux efpèces de vie: celle qui les fait pouffer, fe nourrir et s'étendre, qui nouls parait purement végétable: celle qui les fait aimer, connubicr, fe féconder, porter des fruits, des graines qui ont toutes les propriétés des ceufs; maniere d'être fi actîve ct fi voluptueufe qu'elle touche prefque à l'anilamité, fuppofé qu'elle ne la foit pas.

Tout près des végétaux font cortainement les Polypes; et peut-être les pucerons, les volvox, la plus part des infectes microf copiques féminaux ou infufatoires, qui femblent fe multiplier comme les plantes, des deux façons, par la génération et par lé bourgeơñeinent.

Une plante eft elle une forte d'animal privé d'yeux, d'oreilles, et de jambes; doué, en compenfation d'unc multitude
multitude de bouches, de bras fupérieurs et inférieurs, de mains, et d'organes réproductifs; chez qui le nombre étonnant de fes plaifirs fupplée à ce qui peut dans chacune de leurs fenfations, manquer de retour fur foi-même, de fel, de pointe et d'energie? un pommier porte vingt mille fleurs, cent mille parties fexuelles du genre feminin et quatre cent mille du genre mafculin, toutes, ou la plufpart, en amour à la fois: que de félicités!

Une plante eft elle une famille, une République, une efpèce de Buche vivante dont les habitans, les citoyens, les membres ont en communauté la nutrition, mangent au réfectoire; mais où chaque fleur, et pluftôt encore chaque etamine, chaque piftil, eft un Individu, ayant fon amination, fes befoins impérieux et doux, fes voluptés, fon bonheur et fes fouffrances à part?

Eft-ce l'un ou l'autre? eft-ce l'un et l'autre? cela vaut la peine d'y regarder.

Les plantes ont toutes une moëlle épiniere; des myriades de trachées, par lefquelles les racines attirent à elles et conduifent au tronc, les eaux, les huiles, les fels qui leur conviennent dans la terre, ou que leur apportent les engrais, et les branches, les feuilles, l'écorce pompent les fluides aqueux ou aëriformes dont elles font fans ceffe baignées. Elles fe nourriffent comme nous mêmes, à la feule différence quelles ont leurs fugoirs en dehors et que nous avons les notres en dedans. Elles digérent. Elles ont un chyle qui leur approprie leurs alimens, et qui, après qu'elles ont évacué par des tranfpirations, par des excrétions régulieres ce qu'il ne leur ferait pas bon de garder, leur fournit une fêve qui circule comme notre fang et notre lymphe. Elles ont un fuc propre qui a beaucoup de rapport avec notre fluide nerveux. Elles ont leur veille et leur fommeil.* Elles ont leurs afpirations, leurs expirations, leur confommation, leur combuftion de l'air Vol. V.

[^18]atmofpherique qu'elles ont abforbé, et la féparation de fes élémens divers, des différens gaz qui le compofent, dont elles s'incorporent les uns et rejettent les autres comme font les animaux, ou avec peu de différence. Elles ont donc des poulmons quoiqu'ils nous foient peu vifibles; car où fe trouvent des effets femblables font des organes de la snêmie nature, ou fufceptibles des mêmes ufages. Leurs poulmons leur font encore plus utiles que ne nous font les notres. Ils n'ont pas les mêmes répugnances, parce qu'ils leur fervent en même tems d'eftomac. Notre eftomac s'accommode affez bien de l'azote que nos poulmons ne peuvent fupporter. L'flomac-poulnon des plantes agrée !'azote et l'oxigêne; fe nourrit du premier, ne confume qu'une partic de l'autre et en renvoie le furplus après l'avoir prefque entirement debarraffé de moffete. C'eft ainfi qu'elles rendent aux animaux mobiles l'important fervice de purifier l'air que les animaux ont befoins de recevoir plus oxygêné. L'illuftre et vertueux La Rochefoucould, qui aimait avec une ardeur fi pure les fciences et la patrie, et dont l'aflaffinat fut un des plus grands crimes de norre révolution, avait fait à cet égard de tres belles et tres inftructives expériences.

11 y a beaucoup d'apparence que c'eft la moëlle épiniere qui, communiquant par les utricules horifontaux et les prolongemens medullaires avec les trachées de l'écorce, remplit dans les plantes la fonction puhnonaire. Nous avons licu de le préfumer, non pas tant à caufe de la texture molle et valvuleufe de cet organe (qui ferait cependant une forte d'indication) que par l'obfervation du fait qui précede la mort naturelle des plantes et qui eft très remarquable dans les arbres.

Tant que la plante eft jeune, vigoureufe, la circulation libre et facile de la fêve l'appelle à grands flots vers la cịme, où la moëlle moins revêtue, plus près de l'écorce, communiquant par un bois plus menu et plus tendre, par
des trachees et des utricules plus ouverts avec un air plus renouvellé, exerce une refpiration mieux déployée éprouve plus fortement l'incendie qui l'accompagne chez tous les êtres refpirans. La fêve afcendante y apporte fon tribut de l'hydrogêne que lui fourniffent l'humidité de la terre et les arrofemens. C'eft en fe preffant pour s'elever vers le fommet dans lea fibres longitudinales ferrées l'une contre l'autre, comprimées par l'écorce, et toujours un peu coniques, qu'elle les force prefque mécaniquement à pouffer en longueur et qu'elle fait croitre la plante. Enfin la fêve arrive au foyer principal: le contact des deux airs qui s'y réuniffent dent l'un vient de la terre et l'autre du ciel, et le mouvement refpiratoire qui les confond, qui les bat enfemble, opérent la combuftion. Celle-ci donne à l'inftant comme dans les animaux une produftion d'eau nouvelle..* Cette production de l'eau par la combuftion des deux airs pendant la refpiration de la plante et au bout de fa tige eft démontrée par l'excès de la fềve defcendante fur la fève montante: excès que prouve fans replique le bourrclet plus gros qu'elle forme, quand la circulation eft artifciellement interrompue, \dagger et remarquons en paffant dans cetite production de l'eau par le même procédé chez les animaux et chez les plantes, à quel point la nature eft uniforme! combien toutes fes loix font générales, belles et fimples!

Yar

[^19]Par la fuite la grande hauteur de l'arbre, fon âge avancé, l'endurciffement, l'engorgement de fes canaux empêchent la fêve devenir en même abondance fe faire bruler avec l'air afpiré à l'extrêmité du flambeau, au foyer le plus vif de cette lampe végétale, comme le fang et la lymphe des animaux viennent fe faire bruler avec l'air dans la lampe animale qu'on appelle leurs poulmons. Alors cet air dont l'incendie ne ceffe pas, et devient même plus ardent en raifon de ce que l'hydrogene y balance moins l'oxigêne, confume, à la place de la fêve qui n'arrive qu'en moindre quantité les vaiffeaux qui devaient la lui fournir. La moëlle moìns rafraichie éprouve une oxidation qui n'eft d'abord qu'une efpece de dartre et qui dégènere bientôt en un véritable état de gangrene. L'arbre fe couronne : et fi l'on n'y apporte pas un prompt remède, le fphacele gagne tout le canal médullaire; puis les couches intérieures: l'arbre fe creufe; il meurt. C'eft lá fa mort devicilleffe. Elle eft três rapprochée de celle qui termine les jours des animaux, lorfque des bleffures ou des maladies n'ont pas précipité leur derniere heure.

Mais, ô miracle! la plante montre pour la confervation de fa vie, plus d'animation, ou du moins une animation plus tenace que les animaux eux-même. La théorie et la pratìque de nos maladies médicales et chirurgicales trouvent chez elle une parfaite application;* et les moyens curatoires font plus furs, plus efficaces pour elle que pour nous. On peut retarder la mort des plantes, on peut les rajeunir.

Quand l'affreufe maladie que nous venous de décrire, quand l'impitoyable vieilleffe attaque leurs poulmons, dévore leur moëlle et parait les conduìre au trépas, il fuffit de leur couper la tête jufqu'au deffous du poìnt que le germe de la gangrene avait atteint, où la moëlle avait été affectée,

[^20]affectée, et de bien garantir la bleffure du contact de l'air, pour qu’il repouffe à la place de la tête frappée de décrépitude une jeune tête pleine de vigueur.
si plufieurs branches font malades, on retranche les branches infortunées et de nouvelles branches fe hatent de les fuppléer. Le fuccés eft certain fi l'on n'a pas trop retardé l'opération, fi dans la partie que l'on a confervée la moëlle, qui eft le vifcére noble des plantes, eft demeurée entierement faine et communique avec une écorce qui ne foit ni viciće ni dédieree et dont les pompes afpirantes foient en bon érat.- On peut couper le tronc même à fleur de terre; et fur fes debris fur fon écorce, de fa fêve, de fes bourgcons, plufieurs arbres nourris d'abord par les mêmes racines, et qui enfuite en pouffent qui leur font perfonnelles, fuccédent à l'arbre qu'on a facrifié. Il leur a tranfmis une vie qui ne fut point interrompue; rien ne meurt que ce qui a été abattu.

Ce n'eft pas un privilege des arbres. Les fimples herbes jouiffent du même fort. Le jeune gazon fauché de bonne heure, conferve fa verdure immortelle et ferre de plus en plus fes nombreux rejetons. Vous le frappez: il fouffre, il fe rebelle. Fils de la terre, comme Antée, il renait fous vos coups, plus fort et plus frais qu'auparavant.

D'où cela vient-il? c'eft que, outre la viẻ générale dont la plante eft animée et qu'elle communique à fes banches, chaque branche eft une plante femblable à celle dont elle émane, implantéc fur le tronc comme lui même l'eft dans le fol, , ayant fa vie et fon particulieres et qui contribue par elles à la bonne conftitution du tout dont elle tire fa principale fubfiftance.

Vol. V.
P
Cette

[^21]Cette partie de l'hiftoire de la plante l'embraffe toute entiere à tous fes âges. Elle préfente une multitude de propriétés vifiblement animales, que l'on ne peut confiderer, fans être forcé de convenir, non feulement que la plante eft uil animal, en prenant ce mot dans le fens le plus générique, mais qu'une plante eft une confédération d'Amimaux, tous parens, tous intimement unis, tous s'entr'aidant les uns les autres, travaillant tous au bien de leur fociété, et toujours prets à réparer les malheurs de la guerre, qu'ils ne peuvent fuir, qu'ils favent braver.

Eft-ce là tout ?-Non, vraiment-ce n'eft rien encore.
Hâtons nous d'arriver aux fleurs-chacune d'elles a fon enfance, fon épanouiffement, fa puberté, fa paffion. Chez celles qui font androgynes, où chaque corolle eft l'habitation d'un ménage, le château fraternel, amical de quelques aimables princeffes, ou le palais d'une augufte et fenfible impératrice l'œeil nud peut quelquefois diftinguer, et la loupe prefque toujours appercevoir, à des attitudes, à des mouvemens, à des geftes qui n'ont rien d'équivoque, l'amour, d'abord fupliant et refpectueux, puis impitueux des mâles; la reconnoiffance énivrée des femelles. Il en eft de timides que leurs amans preffent et femblent violer. Il en eft de coquettes et de hardies qui vont les chercher, les exciter, les épuifer l'un après l'autre.

Chez celles où les deux fexes font féparés et appartiennent à des fleurs diverfes, foit fur la même plante, foit fur des plantes analogues, mais différentes et qui peuvent être éloignées l'une de l'autre, les mâles ont quelque chofe de l'ardeur mélancolique et folitaire des victimes cloitrées, et les femelles qui tiennent tout leur bonheur du zéphir, et qui périffent en férilité s'il n'a point fait de vent, montrent un peu de cette extâfe des ames tendres et réfignées qui n'efpérent et ne reçoivent aucun bien que de la bénédiction du ciel.

Tout cela, je l'avoue, n'eft que faible et confus; car, qui n'a que peu de fens, n'a pas beaucoup de fenfations, ne faurait les animer l'unc par l'autre, et les raifonne peu. Mais tout cela eft, et j'ai plutôt adouci qu'éxagèré le tableau.

J'invoque vos reflexions, lecteur philofophe.-Si les défirs, fi les plaifirs, fi la furabondance de fanté, fi la réunion heureufe, l'action réciproque, la jouiffance, l'effufion, le mélange intime, la fecondation enfin, ne fuppofent pas ne conftatent pas l'individualité, fon exercife mutuel, la féité, la vie, où faudre-t'il les chercher? à quoi pourrons nous les reconnoitre?

N'ous avons quelques fens de plus. Nous avons l'ufage de tous nos fens dans un degré plus éminent, ce qui tient beaucoup à la combinaifon de leurs rapports: car il n'y a pas un fens qui ne foit multiplicande et multiplicateur de fes voifins : c'eft ce qui fait que la perfection plus ou moins grande des animaux réfulte du nombre et de la bonté de leurs fens. Mais le fonds de nos amours, c'eft-à-dire de l'affaire la plus importante et la plus maitrifante de notre vie, n'eft-il pas le même que celui de l'amour des plantes? leur effet n'eft-il pas complettement pareil. -Toutes les fois que je rencontre mon femblable, je le falue.

Voyons un peu plus loin-Suivons la chaine des fimilitudes et des analogies.

La plus part des infectes ont pour chaque individu quatre fortes de vie : deux endormies, deux actives. Ils font œufs; ils font chenilles, vers ou larves; ils font chryfalides; enfin, ils font mouches, ou papillons, ou fcarabées, ou tipules ou cupreftes, ou-ou-\&c. et ce n'eff que fous cette derniere forme qu'ils deviennent productifs.

La plante en miniature eft d'abord immobile dans fa graine comme l'infecte dans fon œuf.-Elle reçoit par
la grermination un premier aliment des cotylédons entre lefquels elle eft placée; et qui, communiquant avec elle par l'infertion de canaux correfpondans, lui tranfmettent l'ćmulfion, le lait dont ils font remplis; de même que l'infecte, et chez les oifeaux le poulct, fe nourrifent par leur cordon ombilical des fluides de l'œuf dans lequel ils nagent ; et de la même maniere encore que les petits des quadrupedes, des bipedes, et de tous les vivipares, reçoivent pendant la geftation leur nourriture du placenta qui ee dévelope et groflit lui même, ainfi que les lobes de la graine transformés en feuilles féminales.

Vers la fin de cette époque le radicule qui a pouffé devient remarquable, les véritables feuilles pointent. Alors et la plante eft éclofe. Elle n'a plus befoin de fon œuff dont elle a confommé les liqueurs et la fubftance amylacée, et dont la coquille tombe en lambeaux. Elle vit; et travaille pour vivre par elle même, comme l'infecte nouveau-né. Elle n'a cependant acquis que fa vie de plante, déja laborieufe et non encore féconde: de même que l'infecte forti de l'œuf a fa vie de ver, ou de larve, qui cherche fa fubfiftance et fes commodités, mange, refpire, penfe, et ne connoit point l'amour, et n'en a ni les organes, ni les idées.

Dans cette feconde vie, la plante éprouve une agitation interne. Flle renouvelle à plufieurs reprifes fon épiderme, fon écorce, fes tuyaux, comme le bombix et la plus part des autres chenilles changent lcur peau. Elle a, non pas vraifemblablement fans quelque plaifir, des bourgeomemens qui lui font pouffer une tige, des branches, des feuilles, un corps, des bras, des mains tellement vivaces que nous avons vu qu'on peut les couper ct qu'ils repouffent comme les pattes des ecreviffes et des falamandres, comme la tête des limaçons, comme la queue de quelques ferpens, comme les dens venimeufes de toutes les vipercs, comme le corps et tous les membres des polypes.

Celles dont le bois eft tendre, la moëlle abondante,* le tiffu fpongieux, les faules, les fureaux, les menthes, les lianes, la vigne, \&c. ont, comme les polypes encore, dans chacune de leurs branches, la poffibilité, la faculte quand on l'a feparée du tronc, et pourvû qu'elle trouve une nourriture convenable, de reformer un nouvel être, femblable à ce tronc dont elle a été détachée et à toutes fes dépendances. Cette propriété leur eft commune ávec un grand nombre de vers qui, loriqu'on les coupe en deux, ou en trois, refont, la partie antérieure une queue, la partie poftérieure une tête, et celle du milieu tête ct queue.

Très pareillement, toutes les plantes privées de leur tête en refont promptement une nouvelle; et les branches de toutes celles qui font propres à la bouture, mifes en terre humide, fe fabriquent une nouvelle racine. Leur bâton même, renverfé, fe forme, un peu plus lentement, mais très bien, une tête un gros bout qui répondait aux racines, et des racines au petit bout qui n'avait jamais donné que des branches et du feuillage. $11-\mathrm{y}-\mathrm{a}$ revulfion dans toutes fes liqueurs, renverfement, contournation dans tous fes bourgeons: ils fouffrent un tems, mais ils ne meurent pas: ils gueriffent et s'accoutument à leur nouvel Vol. V. Q état.

[^22]état. C'eft un des rapports de la plante avec le polype qu'on a retourné.
Cette avanture eft ordinaire aux mangliers; et les faules, furtout le faule pleureur, foutiennent la même expérience. Quand une de leurs branches eft marcottée, fi on la fépare de l'arbre en lui laiffant quelque longueur, la racine qu'elle a pouffé nourrit deux faules: l'un qui finit en pointe, c'eft la prolongation de la branche: l'autre qui eft têtard et dont la tige refte long tems plus groffe par le haut que par le bas. Cette tige renverfée retourne affez vite toutes fes brindilles, tout fon feuillage; et les branches qui partent de fa tête, retournées dans leur bourgeon même, prennent fans difficulté l'attitude naturelle.

Bien là dedans ne reffemble encore qu'à ce qui arrife fréquemment à plufieurs animaux glaireux dont le principe vivifiant eft répandu toute leur glaire, à différentes efpeces de vers, et aux polypes fans amour : mais c'eft beaucoup pour une plante.
On me demandera incidemment, fi les polypes connaiffent l'amour? je n'en fais rien. J'ai peine à croire qu'il ait été refufé à perfonne. Les polypes ont vifiblement quelques paffions animales: la faims qui les conduir à une grande activité et au raifonnement dans le travail, et la gourmantife qui leur en fait favourer le fruit. Les polypes reffemblent aux plantes par la bouture, le bourgeonnement, les drageons, les cayeux. Nous ne les avons pas encore furpris dans des émotions plus tendres; mais DIEU eft très bon, la Nature eft très généreufe, et nous fommes très ignorans.

Quand aux plantes plus faciles à voir et à manier, que les polypes il nous a été poffible d'apprendre que la bourgeons, les boutures, les graines même, ne produifent que des végétaux qui demeurent long tems dans leur état que
j'appellerais volontiers de chenilles, dans leur état d'abfence de l'amour.

Mais enfin la plante atteint un âge qui lui fait produire des bourgeons d'une autre efpece. I'areils fous plus d'un rapport à des chryfalides, ils renferment des embrions dont la figure n'eft plus la même que celle de la tige qui les porte. . Ces bourgeons-cbryfalidẹ rompent leur enveloppe; les fleurs déployent, comme des ailes, leurs petales brillantes-ce font de nouveaux êtres. Elles ont une vie particuliere, plus animée, plus exquife que celle de l'arbre ou de l'herbe qui les foutient, qu'elles décorent: Elles font plus influencées par l'air ambiant, et réagiffent plus fortement fur lui. Elles le décompofent d'une autre maniere et d'une maniere qui reffemble plus parfaitement encore à celle que produit la refpiration des animaux dont le jeu des poulmona nous eft vifible.

La plus part des plantes abforbent l'azote et dégagent une partie de l'oxigêne. Un grand nombre de fleurs s'abreuvent d'oxigêne et repouffent l'azote comme l' homme lui même, et avec une fi grande puiffance qu'elles balancent et furpaffent la confommation que tout le corps de leur plante fait pour fa nourriture de ce fluide irrefpirable.

Cet oxigêne dont les fieurs font fi avides, et dont elles fe pénétrent fi rapidements, en fi énorme quantité pour leur petit volume, eft l'air vital par excellence. Il les embrafe, elles aiment, elles jouiffent-font-ce les amours de la plante qu'elles font? font-ce les leurs? ce font tous les deux. La mère ne peut être entierement infenfible au bonheur de fes enfans, d'enfans qui font partic de fon propre corps.-La plante eft devenue papillon; ou pour inieux dire elle s'eft converte d'une foule de papillonsplantes de l'un et de l'autre fexe, qu'elle a tirés de fon fein, et qui femblables prefqu'en tout aux autres papillons, ont une vie très courte, la dépenfent en voluptés fans fonge

116 SUR LES VÉGÉTAUX, \&c.
fonge à l'entretenir, exhalent leur tendreffe en parfume, s'occupent avec délices et fans relache de la génération; et fe fanent des qu'elle eft confommée laiffant, au fonds d'un ovaire des ceufs fécondés et féconds.

Trouvez vous la parité fuffifamment exacte? jugez vous encore que la diftance foit incommenfurable entre la nymphe, ou les nymphes d'une mimeufe et l'ame d'un ciron.

Je ne décide rien. Je ne fuis qu'un enfant curieux. Je vous apporte les fleurs que j'ai cueillies, et les papillons que j'ai pu attrapper. Savans profeffeurs dites moi ce que c'eft?

No. XV.
Memoir on the Analyis of Black Vomit. By Dr. Is a ac Cathrall.

Read June $T \mathrm{HE}$ inverfigation of the properties of fecre2oth, $\mathbf{3 0 0 0}$. 1 ted fluids has long engaged the attention of the phyfiologitt and chemift : but, their enquiries have generally been directed to a knowledge of thofe fluids in a healthy ftate, while little notice has been taken of the fecretions of fome of the moft important vifcera after a ftate of difeafe, The caufe of this deficiency, in the examination of morbid fecretions, and particularly in that denominated the black vomit, muft be afcribed to the danger fuppofed to attend fuch an undertaking; though moft obfervers muft have been ftruck with the fingular appearance of this difcharge, and much aftonifhed with the fpeedy diffolution that enfued ; yet, none that I have had an opportunity of confulting, have attempted an analyfis of this fluid. When I firt contemplated an examination of the black vomit, in 1793 and 1794, I confidered it as an hazardous undertaking, and limited my views merely to diftinguifh that fluid from putrid bile; but, after fubjecting it to many experiments, and finding that it had no effect on my health, I have been enabled to advance one ftep farther in the enquiry; and, I have now the fatisfaction of fubmitting to the Philofophical Society, an analyfis of that fluid, together with its effects, when applied to the healthy fyftem.

Defcription of the Black Vomit.

The black matter, or vomit, fo called, appears to be of two kinds. One, confilting of a number of black flaky VoL. V. R particles,
particles, refembling the grounds of coffee. The other, of a dark-coloured infpiffated mucus : of each of thefe, 1 fhall give a feparate defcription.

This flaky difcharge was always preceded by violent ficknefs and vomiting; and, as a precurfor to the ejection of this matter, in fome cafes, the patients vomited a fluid like whey, or muddy water, or one confifing of a bromn flaky fubitance, refembling chocolate, or fpoiled porter, mixed with brownifh-coloured mucus.* I hefe fubftances were fometimes of a lighter colour, and were fufpended in a glarey yellow-coloured fuid, which became nearly tranfparent when at reft, by the fubfiding. of a fmall namber of brown particles. This coloured matter was generally vomited in fmall quantities, and with confiderable difficulty; but, when the black flaky difcharge commenced, it was frequently ejected in large quantities, and with fimilar force to a fluid from the action of an emetic. As the difeafe advances, this matter affumes a darker colour, and its quantity fometimes becomes fo much augmented, that I have known one grallon vornited in 48 hours, befides a confiderable quantity, which was of a much thicker confiftence, that was difcharged by the bowels. This black vomit, after ftanding fome hours, depofits a black flaky fubfance, from a glarey yellow-coloured fluid, fimilar, in appearance, to an infufion of green tea. Thefe depofitions were fometimes in diftinct particles, but, frequently, in a kind of dark powder. The above particles were various in fize, and of a very irregular figure, not unfrequently mixed with picces of the villous coat of the ftomach. Thefe may be diftinguifhed by their being longer in fubfiding

[^23]fiding to the bottom of the vefiel, than the flaky fubfance. There were fome difproportions between the yellow-coloured fluid, and the quantity of flaky fubitance, as in the other appearance of the vomit. The flaky matter was very readily re-incorporated with the yellow-coloured fluid, by the leaft agitation of the veffel; and, when kept in a phial, corked for eight or ten days, affumed rather an agreeable faccharine odour, and was extremely brifk, like fermenting beer. This laft property is not peculiar to this fluid, but common to fome other animal fecretions. When the black vomit was kept for two years in a ftate of reft, the flaky particles became perfectly feparated. On agitating the veffel, the former was immediately incorporated with the latter; and, after remaining at reft fix months, fhowed fcarce any difpofition to feparate. This was the appearance, if 1 recollect, accurately, of the black vomit, exhibited by Dr. Monro, of Edinburgh, to his clafs, in 1792, and which had been fent to him from the Weft-Indies: yet, as the profeffor did not permit it to go out of his hand, 1 cannot fpeak correcily as to the fact ; but, believe it was not feparated, and confifted of a turbid black-coloured fluid.

The mucus-matter which was fometimes vomited in the yellow fever, and particularly in that which appcared in 179 , was very ropy, and of a black colour. This matter floated on a fluid of a dark colour, which appeased to receive its tinge from the colouring-matter of the mucus. When this matter was agitated in a phial, the mucus fhowed no difpofition to mix with the Huid-part of the vomit, and, when it was repeatedly wahed, in clear water, became nearly of the colour of the mucus fecreted in the alimentary canal. This black matier was difcharged in large quantities, in the cales which proved mortal in 1797, and was a very inR_{2} active
active fluid when applied to the moft fenfible parts of the healthy body, and was effentially different from the coffec-ground vomit.

Analyfis of fluids, ejected a few bours before the commencement of black vomiting.

The fluids, on which the fubfequent experiments were made, were obtained from three patients, from one to fixteen hours previous to the vomiting of the brown-coloured matter, which has been defcribed as generally preceding the black difcharge. In all of thefe cafes, the fick refufed every other drink but plain water. Notwithftanding the fimplicity of the drink, the fluids, which are the fubject of inveftigation, were of the following colours: The firft had nearly the appearance of whey; the fecond was of a yellowifh colour, occafioned by the mucus it contained. The third appeared like muddy water, or refembled water that had been coloured by afhes. Thefe fluids had a difagreeable faccharine tafte, and emitted an odour analogous to that arifing from fluids which had been ejected from debilitated ftomachs, after paroxyfms of indigeftion. They underwent but little change after remaining at reft for twentyfour hours, except that fome part of the mucus-matter affumed a white afpect, and fubfided to the bottom of the veffel.
(a) Thefe fluids changed the infufion of turnfole to a red colour ; paper ftained yellow with turmerick remained unaltered, but, when previoufly changed by an alkali, was reftored to its priftine colour.
(b) Caloric, or diluted acids, would not coagulate this fluid.
C.
(c) Lime-water produced no clouds or turbidnefs.
(d) Solution of fulphate of iron, or nitrated mercury, caufed no precipitation.
(e) Muriated barytes occafioned no alteration ;
(f) Nitrated filver produced a copious white precipitate;
(g) Sulphate of copper did not fhow the prefence of ammoniac ;
(b) Fixed alkalies occafioned no alteration;
(i) Oxalic acid produced no change;
(k) Alcohol of galls, or prufliate of pot-afh, did not produce any precipitation.
(l) Thefe fluids, when expofed to cold, were congealed in the temperature in which water freezes; the ice was nearly tranfparent, and, when rendered fluid, had the appearance of water, and tafted like that fluid after being boiled.
The above fluid, therefore, appears to contain an acid in a free ftate (a); but no coagulable matter (b), nor carbonic acid, in a difengaged ftate, or combined with alkalies or earths $(c \& d)$; the acid (a) is proved not to be the fulphuric (e). The prefence of the muriatic acid is fuppofed, from (f); no ammoniac is contained in this fluid (g), nor earths (b), nor lime, or the falts formed of lime and acids (i); no reafon to fufpect metallic matter (k); but a confiderable proportion of water (l).

> Analyjis of black romit.

We have already obferved, in the defcription of the black vomit, that it fpontaneoully feparated into yellowcoloured fluid, and black flaky fubfance.
(No. 1.). The yellow-coloured fluid, and flaky fubfance being thrown on a filter of two-folds of paper, four ounces of a fluid paffed through, which was fimilar, in appearance, to an infufion of green-tea. It
was moderately vifcid, and had a faint fweetifh animal .odour, and a faccharine tafte, perceptibly acrid to the lips. The matter which remained on the filter, was fimilar, in colour and confiftence, to Venice treackle. It was weakly glutinous, and had the fame odour as the yellow-coloured fluid. When this fubftance was dry, it weighed thirty grains. It was friable, and not of fo black a colour as immediately after being removed from the filter. When this matter was obtained by evaporating the black vomit over a moderate heat, it was brittle and Chining, but had no peculiar tafte or fmell; and, when expofed to a moif atmofphere, became foft and glutinous.
(a) Eight drachms of the filtered fluid (No. r.) was evaporated in a fhallow veffel, by a gentle heat : the vapour being condenfed, was found to confift of water, which tafted neither acid nor alkaline; but emitted a ftrong odour of the vomit. The evaporation being continued until an adhefive refiduum remained of a dark colour, refembling melted fugar. This fubftance affected the lips in a more obvioully acrid manner than the fluid did previous to the evaporation. It was highly inflammable when dried, but not entirely foluble in water.
(b) Six drachms of the filtered fluid (No, I.) and as many of water, were expofed in feparate phials, clofely corked, to an atmofphere, when the mercury, in the thermometer, was as low a3 25°. The filtered fluid congealed as foon as the water. The two different fluids werc examined, after ftanding a whole night; when the phial, containing the coloured fluid, was found entire, and its contents not quite frozen; as, a part of the fluid, on placing the phial on its fide, flowed among the ice. The water, in the other phial, was completcly frozen, and the veffel broken in pieces. The ice, in the
the former phial, was of a yellow-colour: The colour-ing-matter of which could be fo much difengaged, by wafhing it with water, as to give it the ufual tranfparency of ice. The aqueous part of the vomit, obtained in this manner, diffolved foap, with facility, but had not the odour of the vomit. This fluid was neither acid nor alkaline. Pruffiate of pot-afh, or oxalic acid, did not caufe any precipitation.
(c) Some alcohol was poured on the adhefive refiduum (a), and a confiderable portion of it was diffolved, which tinged the menftruum of a yellowihh-colour, and gave to it the perceptible tafte of the yellow-coloured fluid. A part of the refiduum remained infoluble, which appeared to be of a mucilaginous nature. The menftruum was poured off, and, by the affiefion of diftilled water, the fluid became milky, and a refinous fubftance, of a yellowifh-colour, was precipitated, that had an osour fimilar to the yellow-coloured fluid.
(d) The filtered fluid (No. I.) betrayed the prefence of an acid to the infufion of turnfole, as the mixture became manifeitly reddened. 2. Lime-water, when added to a portion of this fluid, occafioned no change : 3. Solution of fulphate of iron cauied no precipitation, nor did nitrated mercury, or muriated barytes.
(e) To fome of the filtered Huid, I added nitrated filver, and a copious white-coloured precipitate was formed. Four drachms of the above fluid was evaporated over a moderate fire, until it was reduced to about one drachm; when fuffered to remain at reft, in a cool place, cryftals, of a cubic figure, were formed. Thefe decrepitated upon coals, and had all the characters of muriate of foda, or common falt.
(f) To feparate portions of the filtered fluid (No. 1.) was added oxalic acid, prufliate of pot-afh, infufion of galls, and a folution of fulphate of copper; but neither of them produced any precipitation.
(g) Some diftilled water being digefted on ten grains of black flaky fubitance (No. r.) for twelve days, after which it was gently heated and committed to the filter. 1. This liquor immediately changed the vegetable blue to a red colour. 2. Lime-water caufed no precipitation. 3. Muriated baryres effected no change; but, on the addition of nitrated filver, a white-coloured precipitate was produced. Some of the above fluid being cautiounly evaporated to a certain quantity, on cooling, cryftals of a cubic figure were formed. Thefe had the properties of muriate of foda, or common falt.
(b) Some marine acid, a little diluted, was poured on ten grains of the black flaky fubftance, (No. I.) a flight coagulation was produced, after ftanding twelve days. The mixture was filtered, and divided into four portions.

The firf portion was faturated with lixivium of mild pot-afh, but no precipitation enfued; yet, in a few hours, a faline fubftance appeared at the bottom of the veffel.

To the fecond portion was added fulphuric acid. This threw down a copious flocculated precipitate, of a white colour, which I fuppofed to be lime; but, on pouring off the fluid, a thin layer, of a white, fatty fubflance, was fpread over the bottom of the veffel. This had an unctuous feel, and ftained paper like oil; and emitted an animal odour when thrown upon coals. This matter, when kept in a phial, corked for two weeks, affumed a yellow-colour, and had an odour like rancid fpermaceti.

To the third portion, pruffiate of pot-afl was added, and Pruffian blue produced.

To the fourth portion, alcohol of galls was added, and the mixture faturated with lixivium of mild pot-afh, which immediately ftruck a black colour.
(i) One hundred and twenty grains of the nitric, and as many of fulphuric acids, were digefted on ten grains of dry black flaky fubftance (No. 1.) placed in different veffels, for twelve days. At the expiration of that time, the black fubftance was entirely converted, without the application of heat, into the fatty matter before mentioned. That on which the nitric acid was ufed, was of a yellowith colour; the acid appearing to have undergone no perceptible change. But the fulphuric had affumed a black colour, and the matter that had precipitated, was as white as fnow. This, in both acids, rofe to the furface, and aflumed the appearance already defcribed.
(k) Some diftilled water was boiled on the unctuous matter (i). This liquor was filtered; but, on the addition of oxalic acid, no precipitation enfued.
(l) Two ounces and a half of black vomit was put into a retort, adapted to a receiver. This was placed in a water bath. Soon after, the fluid began to boil. Two drachms of a brownifh white-coloured fluid, having a fmall quantity of oil on its furface, paffed into the receiver. This had a ftrong odour of ammoniac and an oily, difagreeable tafte. Finding that no more fluid would come over, the retort was placed in a fand-bath, and a confiderable quantity of a fimilar coloured fluid was obtained. The refiduum, in the retort, confifted of a dark-coloured fpongy coal. This, when expofed, a fhort time, in a red hot crucible, gradually affumed a grey colour, and, at length, was reduced to afhes.*
(m) Some diftilled water was fuffered to ftand ten days on fifteen grains of afhes (l), after which it was gently heated and filtered. This liquor did not change the co-

Vol. V.
S
lour

[^24]lour of paper ftained yellow with turmerick. Muriated barytes produced no alteration; but nitrated filver capufed a copious white precipitate. On the afhes, which remained undiffolved, two drachms of nitric acid a little diluted, were digefted. This mixture being filtered, was divided into two equal parts. To the firft portion, pruffiate of pot-afh was added, which immediately ftruck a blue colour, and Pruffian-blue was produced. To the fecond portion, lixivium of mild pot-afh was added, and a copious precipitate was formed. This, when collected and dried, had the appearance of lime, and was almoft entirely foluble in diftilled water. This fluid, when filtered, and oxalic acid added to it, caufed a copious white fediment. That this precipitate was lime, was, in fome meafure, confirmed, by adding diluted fulphuric acid to it, with which it formed a fubftance like felenite, or fulphate of lime. I found, that, by re-diffolving this precipitate in fulphuric acid, and precipitating it again with an alkali, and treating it in the manner mentioned, it gave ftronger proofs with oxalic acid of the prefence of lime. On the remaining afhes, which was not diffolved by the nitric acid, I digefted fulphuric acid a little diluted; after which it was boiled on them, notwithftanding there remained a fixed refidue. This mixture, when filtered, fhowed the prefence of lime and iron to chemical tefts.
(n) Three ounces of black vomit were put into a retort, and the pneumatic apparatus being affixed, the retort was placed in a fand-bath, which was gently heatcd, after exhauting the air in the neck of the retort. The firlt meafure of air that was obtained, did not appear to burn when a lighted taper was prefented to it. The fecond meafure of air was incorporated with water, and fome iron-filings inferted in the phial, which was fuffered to remain for 24 hours. This mixture
was found to precipitate lime from lime-water. Alcohol of galls produced a violet tinge. The vomit which remained in the retort, after the air had been extracted, from being of a very black colour, was changed, by the application of heat, to a light brown.

From reviewing the preceding analy fis, the black vomit appears to be compofed of the following ingredients :
($a \Im b$) Prove it to contain a confiderable proportion of water;
(c) A refinous and mucilaginous fubftance;
(d) Proves a predominant acid which is not the carbonic, phofphoric, or fulphuric acids; but, in all probability, an acid analogous to the one contained in the fluids, ejected previous to the commencement of black vomiting. In repeating this experiment, on the fame coloured fluid, taken from twenty different patients, during feveral feafons of the prevailing yellow-fever, I always found a fimilar acid to predominate. May not the inceffant vomiting and the ejection of black matter, itfelf, which has been faid to be flopped by the exhibition of lixivium of mild pot-afh, or lime-water, accomplifh that end, by combining with this acid, and forming a fubftance lefs irritating to the ftomach, than the acid in an uncombined fate?
(e) That it contains muriate of foda, or common falt;
(f) Proves it to contain neither lime, metallic matter, nor ammoniac.
(g) Proves the black flaky fubftance (No. r.) to contain an acid, in a difengaged ftate, probably analogous to the one predominant in the filtered fluid. This experiment likewife fhows it to contain muriate of foda, or common falt.
(b § i) Prove an unctuous animal fubftance, and a confiderable quantity of iron. The former refembled in fome refpects, fpermaceti. How far this fubflance is
analogous to that analyfed by the mafterly talents of Fourcroy, I cannot determine; as I had not a fufficient quantity of it, to enable me to endeavour to imitate his analyfis. From the black flaky fubftance being entirely converted into the fatty matter (i), it is probable that it refembles the fatty fubftance, defcribed by Dr. Gibbs:*
(k) Shows the unctuous fubftance to contain no lime:
(l) The black vomit yielded, on diftillation, a brownifh white-coloured fluid, and a quantity of dark-coloured oily matter.
(m) The carbonaceous matter (l) appeared to contain muriatic acid in a combined ftate; likewife lime and iron:
(n) lroves carbonic acid gas. \dagger

The proportion of the different fubftances which conftitute the black vomit, 1 had not an opportunity of eftimating, as I could not obtain a fufficient number of grains, of the black flaky matter, to fubject it to a more regular analyfis.

Exfcriments to afcertain the effects of black vomit on the living Jyltem.

From the internal furface of the fomach and inteftinal candl appearing, on diffection, inflamed and fphacelated, particularly in fome patients who had vomited black, it has been believed that the black vomit was corrofive, and

[^25]had a power of acting on parts it came in contact with.* This power has likewife been inferred from fome patients complaining of a forenefs in their throats, immediately after the ejection of this black matter.

To determine how far it was capable of acting on the healthy body, it was fubmitted to the following experiments :

11t, In October, 1794, immediately after a quantity of black vomit was taken out of the ftomach, after death, I applied fome of it to my tongue and lips; to the latter it gave, a fhort time after application, the fenfation of a fluid perceptibly acrid. This experiment was, the next day, feveral times repeated, with the fame refult.

2d. A friend of mine applied it to his lips, and it produced a fimilar fenfation; but would not affect his tongue.

3 d. Finding the effects of this matter fo different from what was expected, I began to believe that this difcharge varied materially in point of activity, in different patients; but, on fubjecting the black vomit, procured from a number of perfons, to the fame teft, it produced the fame effect.
$4^{\text {th }}$. Two ounces of a fluid, refembling chocolate, was obtained, which was vomited a few hours befure death. This was applied in the fame manner; but, there could not be perceived any difference in the refult.

5th. In the beginning of October, 1799, Nir. Jofeph larker, an active and intrepid member of the board of health, obligingly prefented me with five ounces of black vomit, obtained from the phyficians of the City-Hofpital. Some of this I applied to my tongue, in his prefence, but could not perceive the leaft corrofive effect. When this fluid was applied to the Kkin on different parts of the body, it produced no other effect, than what water did of
the

[^26]the fame temperature. I have often immerfed my hand in black vomit, immediately after it was difcharged from the ftomach, and whilft it was warm, without exciting the leaft uneafy fenfation in the fkin.
(a) October $4^{\text {th }}, 1799$, three cats were confined in a room, and fed with beef, which had a confiderable quantity of the flaky fubftance of the vomit inferted into it. This manner of feeding was continued until they had eaten one drachm and a half of the flaky fubftance, a nd had drank fereral ounces of the black vomit. On the 5 th, the excretions of the borvels were of a dark colour ; yet there could not be difcovered any difference in their health; but, from their being ftrangers to each other, they had a conftant propenfity to combat. This malicious fpirit continued until the 20th, when they were difmiffed in good health.
(b) A large dog was confined in a room, and, by an affiftant, his jaws were forced afunder, and he was compelled to fwallow an half pint of black vomit. The following day, the excretions by the bowels were fluid and of a black colour; but there could not be obferved the leaft alteration in his health, from the time of making the experiment, until he was difmiffed; which was about three weeks after.
(c) Two full-grown fowls were confined, and fed with bread, fteeped in black vomit for twelve days. This, Mr. Parker, as well as myfelf, obferved, they ate with great avidity; but it had no evident bad effect upon their health ; for they continued as well after as they were befure the experiment, and feemed to [give the preference to that kind of food] to every other which was prefented to them, and they appeared to thrive equally as well as if they had been fed upon corn.
(d) On the 3 d of October, 1799 , in a fmall yard adjoining the houfe in which I live, feveral ounces of the black
black vomit, recently obtained, were evaporated over a moderate heat, in order to obtain the flaky fubftance. During this experiment, Mr. Parker held his head over the veffel for fome minutes, fo as to inhale the fteam of black vomit; after which, we continued within two yards of the veffel, without experiencing any unpleafant effect.
(e) The following day, I caufed the windows and doors of a room to be clofed, and the fame experiment was repeated on a fand-bath, conftructed in the middle of a room. The fluid was evaporated until the atmofphere was fo impregnated with the effluvia of the vomit, as to render the apartment extremely unpleafant, not only from the odour of the vomit, but the warmth of the room. In this atmofphere, I remained one hour; during which, I had a conftant propenfity to cough, and had, at times, naufea and inclination to vomit; but, after walking out in the air, thefe effects gradually fubfided. I experienced, however, a fenfe of wearinefs at my cheft for many hours after.

From the above experiments, it appears that the black vomit, when applied to the moft fenfible parts of the body, produced little or no effect.

Secondly, It appears that large quantities of this fluid, may pafs through the ftomach and bowels of quadrupeds and other animals, without apparently difturbing digeftion, or affecting their health. This fact inconteftibly proves the inactivity of this fluid ; and renders it probable, that the fpeedy death which enfues, after this difcharge in yellow-fever, is not from the deftructive effects of this matter on the ftomach and bowels; but, moft likely from the great degree of direct or indirect debility, which had been previoully induced, on which the black vomit is fometimes an attendant, and ftrongly expreffes the great danger to be apprehended from the enervated fate of the fyftem.

Laftly, The experiments ($d \mathcal{E}^{2}$ e) tend, in fome meafure to prove, that an atmofphere highly impregnated with the odour of black vomit recently obtained, would not produce fever, apparently under the moft favourable circumftances.

Of the opinions of authors concerning the black vomit.

The opinions of authors concerning the properties of the black vomit, from the days of Hippocrates, until the prefent period, may be reduced to four heads. Firft, that it confifted of putrid bile. Secondly, that it was putrid blood, or, according to fome writers, a mixture of blood and bile. Thirdly, that it was the villous coat of the ftomach in a ftate of diffolution, produced by inflammation, terminating in mortification. Fourthly, it is conjectured to be bile changed to a black colour, in confequence of meeting with the feptic acid, which is fuppofed, by profeffor Mitchell, of New-York, to be generated in the ftomach and inteftinal canal. The firf of thefe opinions, viz. that the black vomit is putrid bile, I believe has been adopted merely from its being found, on diffection, in the gall-bladder; for their properties are very diffimilar. The black flaky fubftance, which is the only part of the vomit bearing the leaft analogy to bile, is generally of a darker colour, of a thicker confiftence, and is compofed of a number of flaky particles. This fluid gives a black or brown tinge to linen; whereas, bile, even after becoming highly putrid, and after being retained in veffels for months, and even years, imparts a yellow colour to water and linen, and has an intenfely bitter tafte. This property and colour of bile is not deftroyed by a high degree of putrefaction. The experiments made on thefe fecreted matters, render the diffimilarity of properties ftill more obvious. The black flaky fubftance, by digeftion with fulphuric acid, may be entirely
entirely converted into the fatty matter before-mentioned : but, fulphuric acid, when digefted on putrid bile, foon diffolved into a blackifh green liquor. This colour was rendered more apparent by the addition of water; and the mixture had an extremely bitter tafte. When diluted acids were added to putrid bile, they afforded a much larger quantity of coagulable matter, than when mixed with the flaky fubftance of the vomit. Moreever, thefe fluids differ, in their fpecific gravity; for, that of the black vomit, compared with diftilled water, is as I is to I-025, whereas, that of putrid bile is as I is to or 25.

Thefe effential differences make it evident, that the black flaky fubftance is not bile of any defcription, or it fhould poffers fome of the diftinguifhing properties of that fluid.

The fecond opinion is, that the black vomit confifts of putrid blood. With refpect to this opinion, fimilar objections may be made, to what we have already advanced, againft its being putrid bile. Blood, after becoming highly putrid, and kept for fix months, will impart a red colour to water. This property, like that in bile, is not deftroyed by an high degree of putrefaction. Blood farther differs from black vomit, in not confifting of flaky particles, likewife by fhowing no proof of containing an acid in a difengaged ftate. It farther differs from black flaky fubftance, in not being converted into the fatty matter, by digeftion with the mineral acids. And, likewife, in its fpecific gravity; for, that of the black vomit, compared with diftilled water, is as 1 is to $1-025^{5}$, whereas, that of putrid blood is as I is to 0417.

Viewing putrid blood in its fimple fate, it certainly bears but little analogy to the flaky matter of the vomit, either in colour, odour or tafte ; but, when it is combined with the muriatic, nitric, or fulphuric acids, and the mixture diluted with an infufion of green tea, it refembles, in Vol. V. T many
many refpects, the black vomit. The odour, arifing from this combination, fo much refembles that arifing from black vomit, which had been kept for feveral years, that I could hardly diftinguifh one from the other. The clofe analogy of this compound to black vomit, would incline one to believe, that the latter was nothing more than blood combined with a diluted mineral acid; but, as the prefence of thefe acids, in the black vomit, in a difengaged ftate, could not be detected by the beft tefts that we are acquainted with, and, as it is not probable that they are fecreted by the liver, which we fhall fhortly endeavour to prove is the vifcus that fecretes the colouring-matter of the vomit, this idea of its formation, muft, of courfe, fall to the ground.

The black vomit has been faid to confift of a mixture of putrid blood and bile. Equal quantities of thefe fluids, when fuffered to become putrid, in a combined ftate, had a ftrong, bitter tafte, imparted a red tinge to water, and, in other properties, had not the leaft refemblance to the black flaky fubftance of the vomit.

With refpect to the third opinion, viz. that the black romit confifts of the villous coat of the flomach, in a date of diffolution, produced in confequence of inflammation, terminating in mortification: That black vomiting may bc induced by gangrenous termination of inflammation, few will be difpoled to deny ; but, that the black vomit, in yellow-fever, and that from mortification of the fomach, are the fame, the refult of almoft every diffection muft oppofe. The former of thefe fubftances appears to come from the liver, while the latter confifts, principally, and particularly its flaky portion, of the villous coat of the fomach. Befides, the black vomit is frequently thrown tip in large quantities, when the fomach, after death, has not been found much inflamicd or fphacelated. In thefe cafcs, it certainly could not confift of the villous coat of
the fomach in a ftate of diffolution, but muft be derived from fome other fource. This opinion is ftrongly countenanced by the diffections of Dr. Jackfon, and other writers, on the fubject of yellow-fever. That experienced phyfician remarks, that the black colour of the vomited matter was evidently owing to a mixture of vitiated bile ; the paffage of which might be eafily traced from the gallduct into the pylorus*. Dr. Lining, of Charlefton, obferves, that the black flaky fubftances are, the bile mixed or adhering to the mucus of the fomach; for, upon diffecting thofe who died of this difeafe, not only in this, but in former years, I always obferved, fays this accurate phyfician, that the mucus of the ftomach was abraded, and the bile, in its cyftis, was black, and fometimes very vifcid; and, in forme cafes, had the confiftence of Venice turpentine, and was extremely tough. $\uparrow \mathrm{Mr}$. Defportes, of St. Domingo, remarks, that they found, on diffection, the gall-bladder full of black bile, the colour of ftrong coffee + . This circumflance of the colouring-matter of the vomit being derived from the gall-bladder, is fill farther corroborated by fome diffections made by Dr. Phyfick and myfelf, at the hofpital, at Bufh-hill, during the prevalence of the difeafe in 1793. In two perfons who died at an advanced period of the difeafe, the ftomach contained, as did alfo the inteftines, a black liquor, fimilar to what had been vomited, and purged, before death. This liquor appeared to be a fluid, in all refpects, of the fame quality with that which was found in the gall-bladder.§ Thefe diffections, without adducing any other of a fimilar nature, muft, no doubt, convince every impartial obferver, that the black matter of the vomit is derived from the liver, and does not confift of a diffolution of the villous T 2
coat

[^27]coat of the flomach. The difference in the ejected matter being now eftablifhed, and, in a manner, proved to be the effect of different caufes, I fhall proceed to confider the fourth and laft opinion, viz. that the black vomit is bile, changed to a black colour by meeting with the feptic acid in the fomach, and inteftinal canal. The preceding diffections clearly prove this opinion to be erroneous, as they evidently fhow, that the black flaky particles, or co-louring-matter of the vomit, come from the gall-bladder ; therefore, it could not receive its brown or black colour from meeting with the feptic acid, fuppofed to be generated in the fomach and inteftinal canal.

The black vomit confidered as an altered fecretion from
the liver.
The colouring matter of the vomit appears, from the authors already quoted, to be generally traced, after death, to the gall-bladder. This pofition being incontrovertibly eftablifhed by diffections, the power of the liver to fecrete that fubitance will be admitted, of courfe, as it could not be fecreted by the gall-bladder, or tranfmitted into that vifcus through any other paflage, but by the hepatic duct. If this view of the fubject be, in any meafure, juft, it is a fact afcertained, beyond the fhadow of a doubt, that the black flaky fubftance of the vomit is an altered fecretion from the liver. This matter, being fecreted by the liver, and depofited by the hepatic duct in the gall-bladder, in the laft hours of this difeafe, is from thence forced, by the contractions of the gall-bladder, and cyftic duct, in conjunction with the violent action of vomiting into the fomach. It there receives the addition of the yellowcoloured fluid, which is almoft always ejected with the faky fubfance. That this fluid is combined with the Glaky matter in the ftomach, and not in the gall-bladder, every
every enquiry into the appearances, after death, fully confirm. This circumftance renders the yellow-coloured fluid fubject to fome difference in its propertics, according to the nature of the fluids received into the fomach a fhort time before vomiting; but, all that I have had an opportunity of examining, have nearly the appearance we have already defcribed. That the fecretory œeconomy of the liver may be fo far arrefted in its healthy action, by the progrefs of difeafe, as to affimulate a fluid having not the leaft analogy to bile, every work, on morbid diffections, certainly prove. Lieutaud mentions a cale from Rivalerius, in confequence of a difeafed liver, where the fluid, in the gall-bladder, refembled milk; and Storke relates a cafe of dropfy fucceeding an intermitting fever, where the fluid, in the gall-bladder, refembled the white of an egg. To thele, I may add one, that came under my own obfervation, of a gentleman who died dropfical, in confequence of an enlarged liver. The gall-bladder contained a fluid, of a dark-colour, having not the leaft refemblance to bile. Thefe, and many more cafes, could be adduced to prove the power of the liver, under certain circumftances, to fecrete a fluid diffimilar to bile ; but, it would be needlefs to recite them, as the inftances already quoted, are, no doubt, fufficient to eftablifh the fact. 'This peculiar condition of the fecretory veffels, in the yellowfever, is not confined folely to the liver; for, we find that other fecretory functions are fometimes affected in a fimilar manner, during the fame difeafe, and nearly at the fame period of time. In confirmation of the fe obfervations, I believe moft phyficians muft have remarked, that, in fome cafes, the kidnies, during the period of black vomiting, fecretes a fluid of a dark-colour, which has a thick pellicle on its furface, and appears almot as different from urine, as the black vomit does from bile. This difcharge is frequently a precurfor to a fymptom, which never
fails to predict a fpeedy diffolution, viz. a paralyfis of the fecretory functions of the kidnies.

The more I confider the material change produced in the different fecreting veffels, during the laft flage of this difeafe, the more this theory appears to be fupported by reafon and the plaufibility of truth. But, though a morlid condition of the glandular oconomy of the liver may produce the coffee-ground coloured vomit, it does not feem probable that the black infpiffated mucus-matter which was ejected in the cafes that proved mortal in ${ }^{1797}$, is derived from the fame fource; for, the liver, under no condition of difeafed action, that we are acquainted with, is capable of fecreting mucus of fuch an appearance; therefore, we think it moft reafonable to refer it to the furfaces, which are deftined, in a flate of health, to fecrete mucus. Now, admitting the axiom, "that fimilar caufes produce fimilar effects, under fimilar circumftances," why may not the glandular ftructure of the ftomach be affected in a fimilar manner to that of the liver and kidnies, fo as to enable ir to fecrete the mucus-matter above mentioned? This opinion, I think may be affirmed by other analogies, not only in the fthenic, but in the afthenic condition of fecreting furfaces, in which there are equally as great a deviation from healthy fecretion as the one alluded to. This we have clearly exemplified in veffels deftined to fecrete mucus in a fate of health; but, when labouring under inflammation, evidently fecrete pus. Other cafes, of a fimilar nature, might be adduced to prove this power in fecreting veffels. But, it rould be taking up the time of the fociety to little purpofe, to recite other inftances to cftablifh a fact which appears to be already fully confirmed.

ISAAC CATHRALL.

May 23, 1800.

No. XVI.

Obfervations on the Soda, Maguefia, and Lime, contained in the Water of the Ocean; Jlewing that they operate advantageoufly there by neutralizing Acids, and among others the Septic Acid, and that Sea-Water may be rendered fit for wafbing Clotbes ruitbout the Aid of Soap. By Samuel L. Mitchill, of New- Tork:

Read July 18, 1800. 1 . ANY attempts have been made to render the water of the ocean fit for the purpofes of drinking and cooking, and fome of thefe have been attended with flattering profpects of utility. By a cheap and eafy procefs, water tolerably frefh may be diftilled from common falt-water, fo as to help materially in a cafe of fcarcity or want, on board a hip of good equipment. The names of Hales, Lind and Irvine, are remembered to their honour, for their exertions in this work.

To furnifh needy men with the means of eating and drinking, is certainly a noble difcovery. But there is another operation fcarcely lefs neceffary to the prefervation of health than eating and drinking, and that is wafling as applied to the human body, and more particularly to the clothing which it befouls. In a communication to profeffor Duncan, which has been publifhed in the Edinburgh Annals of Medicine for 1799, and in the third volume of the New-York Medical Repofitory, I have endeavoured to flate the facts in detail concerning the matters fecreted from the fkin and wiped off by the clothes, and to fhew how fome of thefe became unwholefome, or infectious and peftilential, as they grew nafty. It was there ftated that foaps and alkalies would render foul clothing clean, and both prevent and deftroy animal poifon if it was engendering there. And in
in a letter I wrote to Timothy Pickering, late Secretary of State to the American Government, in November 1799, I recommended barilla or foda as a fubftance by which the falt-water of the ocean could be fo foftened and altered in its qualities as to become fit for wafhing the clothes of feamen.

A fea-veffel is peculiarly fitted for concentering foul and corrupting things, and for converting them into peftilence and poifon. This is one of the moft common accidents in failing to the latitudes where there is heat enough to promote corruption and to exalt feptic fubftances into vapour.

One of the moft difgufting fights during a voyage is the perfonal naftinefs of many of the crew. It is pretended that much of this is neceffarily connected with the fervice, that the work is dirty, and efpecially that frefh water cannot be fpared from the vefficl's ftores to wafh the company's clothing; that foap cannot be ufed with ocean-water, that falt-water alone will not get them clean, and that therefore they are under a neceffity of being uncomfortably nafty on long voyages, efpecially toward the latter part of them. Now, naftinefs of a man's perfon and garments is neceffarily connected with a fimilar condition of his bed, bedding, hammock and berth, and moft commonly of every thing he handles or has ought to do with. If a feaman has ftrength of conftitution to keep about and do duty, his feelings are neverthelef's very uncomfortable, he is thereby predifpofed to difeafe and in danger cuery moment of becoming fick; and if this thould really happen, his chance of recovery is exceedingly leffenced by the filth with which every thing that touches him is impregnated, and the venom into which that filth is inceffantly changing.

Thus, the great difficulties with which a feaman has to fruggle, are, ift, the unfitnefs of ocean-water to wafh
with; and $2 d$, the inutility of foap to aid that fluid in cleanfing his clothes. If thefe can be furmounted, he will have no excufe for his uncleannefs. If after this he becomes uncomfortable or fickly from that caufe, it will be owing to his own lazinefs or negligence.

Few fubjects have been difcuffed with more folicitude than the one, How did the ocean acquire its faltnefs? Whether that mals of waters derived its briny quality gradually by diffolving ftrata of falt, or whether it was furnifhed by its Creator with a due quantity of that material from the beginning, are queftions not neceffary now to be anfwered. It is fufficient to obferve that it is kept fweet and guarded againft offenfivenefs and corruption by the great quantity of alkaline matter it contains. The ocean may indeed be confidered as containing fome portion of every thing which water is capable of containing or diffolving, and its water is therefore found to furnifh different refults on analyfis, when taken up from different depths and in different latitudes.

Yet various as the compofition of ocean-water is, it always contains foda, maynefia and lime, in quantity confiderable enough to be eafily detected. Of thefe foda is the moft abundant. Magnefia is next in quantity. And lime, though plentiful, is believed to exift in fmaller proportion than either.

The alkaline matter fo plentifully difperfed through the water of the ocean, exerts its cuftomary neutralizing power after the fame manner and according to the fame laws which govern its feveral kinds on the land and in other places.

The acids commonly prefent in ocean-water are the fulpburic, the feptic and the muriatic. The former of thefe exifts apparently in fmall quantity, and is only mentioned becaufe in fome experiments it has been faid to have been obtained from it in the form of a fulphate of
Vol. V. U lime,
lime, though according to the law of attractions, we might expect to find in it fulphate of foda. The vaft amount of animal matter exifting in the fea, would lead one à priori to a perfuafion that in certain cafes, particularly along marhes and fhores where the ftagnating water was much heated, putrefaction would engender Septic acid, and that this would in fome meafure mingle with the water in its vicinity, and not fly away wholly in vapour. The quantity of this acid is fo confiderable in fome coves and bays where falt works have been eftablifhed, that a quantity of it adheres to the muriate of foda or common falt and vitiates its quality. And this happens in fome fituations to fo high a degree, that Neumman (Chemical Works by Lewis, p. 392, j takes notice of it, obferving " that fea water often contains a nitrous matter, the ACID spirit distilled from sea salt proving a menstruum for gold, which the marine acid by itfelf never does, and which nothing but the nitrous will enable it to do. Though however this is frequently the cafe, it is not always: I have examined marine falt whofe acid had no action upon gold."-As to the muriatic acid, whether it is as fome of the older chemifts fuppofe a modification of the fulphuric and the nitrous, or as certain of the moderns believe, but a compound bafis of fulphuric and hydrogene, there is evidence enough of its exiftence in the ocean, in very great plenty.-On the whole, it may be concluded that fea-water always contains muriatic acid, frequently Septic and fometimes fulphuric.

There are thus three predominating alkalies and as many acids in the ocean; and by the intervention of water they are liquefied and put in a condition to act each upon the other. Confequently the foda in the firft place, as the ftronger alkali, attaches and neutralizes the acids in the order of chemical affinity, and forms fulphate, feptate and muriate of foda. But as the two former are comparatively
paratively rare or fcarce, the latter is the predominating compound. When there is any acid in the water beyond the capacity of the foda exifting there to neutralize, that part is attracted by the two earths, and according to the force of their refpective combinations, forms fulphates, feptates and muriates of lime and magnefia. Thefe falts with earthy bales, in which the muriatic acid is by far more abundant than the other two acids, conftitute the bittern and firatch or Jack of the falt makers. There falited earths attract water fo frongly that it is difficult or impoffible to make them cryftallize; but wherever they are they keep up a dampnefs and refufe to dry.

When chemifts fpeak of fea falt they wifh to be underftood as meaning "the pure muriate of foda." This neutral compound however in its pure ftate is a great rarity. Perhaps indeed there is no fuch thing. Experience fhews it is always mingled with greater or lefs quantities of the deliquefcent falts with eartby bafes. And thefe are fo abundant in fome forts of falt that they render it unfit for the prefervation of animal provifions. Beef and even pork, are not guarded by falt fo adulterated, from becoming tainted and putrid. That fea falt of this impure quality fhould be fit for curing provifions, it ought to undergo a particular refining operation to rid it of its foreign admixtures. For want of fuch a procefs, fome forts of fea falt, though fair to the eye, do not poffefs an intire and undivided antifeptic power, but fo far as the muriate of foda in the mafs is alloyed by the middle falts of magnefian and calcarious compofition, thofe parcels of common falt fo vitiated become unfit for oppofing completely the procefs of putrefaction. And fo far they make a departure from the antifeptic power of pure muriate of foda, the manner of whofe action, I endeavoured to inveftigate in a Memoir addreffed to
profeffor
profeffor Woodhoufe and publifhed in the fecond volume of the New York Medical Repofitory.
by reafon of thefe foreign and adventitious matters, it happened in Sir John Pringle's experiments, that the common falt employed by him, inftead of preventing the corruption of meat, when added in fmall quantity, rather promoted its decay. (Paper III. Exp. 24.) His trials he obferves were made with the white or boiled falt kept here (in Lonuson I fuppofe he means) for domeßtic ufes. (Appendix to Obfervations on Difeafes of the Army, \&c. p. 345, Note.). This kind of falt is known to abound with the cartby falts with which ocean water is charged.

Dr. Percival's experiments on fea falt have a tendency to thew that the feptic quality afcribed by the learned Baronet to fmall quantities of common falt is owing to the mixture of bitter follt with it. A quantity of this, he obferves, adheres to all the common falt ufed for culinary and dietetic purpofes, and as far as its influence goes, it counteracts the wholefome and prefervative powers of the clean and unmixed muriate of foda (I Effays Medical, \&c. p. 344,) and that this feptic qualiiy of the fea falt depended upon the prefence of fome heterogenecus fubftance was the opinion of Pringle himfelf. (1bid. p. 347.)

Such then being the compofition of ocean water, it is eafy to explain wherefore it is not fit by itfelf, for wafhing garments and making them clean. It has a deficiency of alkaline falt in it; and alkaline falts are well known to be the moft excellent and complete detergents. And it is quite as eafy to affign a reafon why it will not anfwer to employ foap with ocean water. The acids united to the lime and magnefia being more ftrongly attracted by the alkali of the foap, quit their connection with thofe earths, which fall to the bottom, while the lighter and deferted oil rifes to the top. The activity of the alkali of the foap
thus overcome by the neutralizing acid of the water, can be of little fervice, and the difengaged greafe immediately thereafter becomes a real impediment.

The bafis of all bard foap is foda. The alkaline matter of foft foap is potajb. This probably happens becaufe the former is prone to efflorefce, the latter to deliquefce in the air. The reafon of mingling oil, turpentine and tallow with potalh is that this falt is too corrofive to be handled naked or alone. By its caufticity potafb deftroys the fkin and flefh of the wafher, and unlefs carefully employed, will deftroy the goods too. But this is not the cafe with foda; which in conjunction with carbonic acid may be diffolved in water without exercifing any cauftic effect upon the arms and fingers of the perfon who ufes it. By virtue of this convenient and excellent quality, the carbonate of foda can not only be ufed in a lixivial form to cleanfe goods, but may be employed to alkalize or foften ocean water and to render it fit for wafhing with.

It has been afcertained long ago by Profeffor Home in his experiments on bleaching, that neither fea falt, nor any other of the perfectly neutral falts compofed of an acid and an alkali give any bardnefs to water; that the common forts of fea falt make water bard by means only of the heterogeneous falts they retain from the bittern; and that alkalies by precipitating the earth of falts with an earthy bafis and by neutralizing their acids, will foften water.

Ocean water, it has been fhewn, befides a ferfect neutral falt, contains a quantity of faline matter with eartby bafes. To thefe latter, it owes its bardnefs, or quality to decompound foap. But carbonate of foda decompofes thefe terrene falts and forms with their acids refpectively perfect neutral falts. The water therelipon becomes foft, or in other words, fit for wafhing goods.

I find on experiment that carbonate of foda thrown into ocean water, inmediately renders it turbid, the lime and magnefia inftantly turning milky on their difengagement from their refpective portions of acid. To make the water fit for wafhing, fo much foda muft be added as not only to effect a complete precipitation of thefe earths, but to render the water fufficiently lixivial or alkaline. It will then exert its detergent and purifying powers.

Having entertained doubts at firft, whether the water ought not to be decanted off after the lime and magnefia had fettled to the bottom, or whether it would not require fraining or filtering to render it fit for ufe, I convinced inyfelf by experiment that foul linen could be rendered clean and white by being wafhed in alkalized ocean water which contained its whole quantity of precipitated earth diffufed through it. I rather think the fmall quantity of thofe impalpable and white particles which adhere to the linen worn upon the body will be advantageous and wholefome, as the fhirts and other garments will thercby be enabled to neutralize a portion of the acid and oftentimes noxious matter formed from the fiveat and other excretions of the fkin, \&c. Thus they will be rather ferviceable than otherwife, and as both are in their carbonated fate (having borrowed fixed air from the foda) they cannot do any harm.

The general inferences from the whole of the preceding reafoning are thefe: 1. Alkaline fubftances, fuch as magnefia and more powerfully lime and foda, are plentifully diftributed through the ocean, to keep it from becoming foul, unhealthy and uninhabitable, which doubtlefs would be the cafe if the fulphuric, feptic and muriatic acids abounding in it were not neutralized. 2. Where either of thefe acids is but imperfectly faturated, as happens when they are united to magnefia and lime, they decompound
pound foap, let loofe its greafe, and become unfit for wafhing by aid of that material. 3. If foda or barilla is added to ocean water in fufficient quantity and the water lixiviated or alkalized, the earths will of courfe be precipitated and the acids neutralized. 4. In this ftate, dirty linen may be cleanfed in it; and men at fea be thus enabled to have their clothes wafhed without the aid either of foap or of frefb water. 5. For this purpofe, a quantity of barilla or foda fhould alwáys be provided as an article of the fhip's ftores, and iffued to the men on wafhing days. 6. Thus by the operation of this alkaline falt, a great proportion of the naftinefs and infection bred in the clothes, bedding and berths of perfons at fea might be prevented, and the crews and paffengers fo far forth preferved from fevers and dyfenteries. 7. No more room would be occupied by water cafks in the holds of veffels, than at prefent. 8. The fmall quantity of magnefia and lime adhering to clothes wafhed in this way, is an advantage over and above what takes place in ufing frefh water. And 9. A broad and noble view is opened of the economy of Providence in diftributing alkaline falts and earths, fo liberally throughout the terraqueous globe.

Eaft Rutger's Street, July 4, 1800.

No. -XVII.

Defcription of a Stopper for the Openings by which the Sezeers of Cities reccive the Water of their Drains. By Mr. John Fraser, of Chelfea, London.

Read, sept. THE parts of this Atopper reiemble fo much ${ }^{12}, 8800$. 1 the hopper and thoe of a grift-mill, that they may be called by thofe names. The opening by which the water from the drains paffes down into the common fewer, is generally fecured at its orifice by a curb or frame of wood, and by an iron grating which prevents large bodies from falling in. Let the iron grating open on a hinge, then fet into the curb a hopper of wood, fheet or caft-iron, fo clofely fitted at its top to the curb as to prevent the paffage of air between them. Under this hopper fufpend a hoe or box, clofe except at top, within which the lower opening of the hopper may empty itfelf, and the water flow off over the brim of the fhoe, into the fewer. When the water ceafes to flow, the Choe remaining full, keeps the lower opening of the hopper clofed, fo that no air can pafs up through it. The iron grating is fhut down on the hopper to keep bodies from falling into it.

In Charlefton and Savannah, where the ftreets are not paved, and are very fandy, fuch quantities of fand are carried by currents of air down through the drain holes into the fewer, as to choke that entirely. To prevent this, lay a lid on the hopper, fitted to it, and having an aperture in its centre of half its own diameter. Under this aperture, and very near to it, and confequently within the hopper, fufpend a pan or other veffel fomewhat larger than the aperture, but lefs than the lid itfelf. The fand
fand conveyed by the wind will fall through the aperture of the lid into the pan, and will foon fill it and clole the aperture, fo that all the fand which follows will blow over and pafs off. When it becomes neceffary that the aperture fhould be re-opened to let the water of the drains pafs through, that water will itfelf very quickly work its own way through the fand in the pan, wafh it over the brim, and down through the hopper and fhoe into the fewer, and reftore the water paffage; and thus the wind and water will alternately perform the functions of clofing the paffage againft fand, or opening it for water as fhall be neceffary.

In the two fections here reprefented
A B C D is the opening of the fewer into the freet.
E. F the curb at its orifice.

G HIK the hopper.
L M the fhoe.
In the fecond figure NOPQ is the fand-lid of the orifice, and OP the aperture in that lid. R S the pan fufpended under it.

Vol. V.
X
No.

No. XVIII.

TRANSLATION.

A Mcmair on Animal Cotton, or the Infect Fly-Carrier. By M. Baudry des Lozieres, Member of feveral Academies, and Founder of the Society of Sciences and Arts, at Cape François.

Gentlemen,

BEFORE I enter upon the fubject of this memoir, I ought to pay the tribute of praife which is due to your ufeful labours. But the ftyle of eulogy is ill fuited to the plainnefs of an American farmer, and while you are conftantly employed in deforving praife, you cannot fpare time to bear it.
l am now going to communicate to you, with fome obfervations upon it, a fact of entomology which I have myfelf witneffed during my refidence at St. Domingo, and which, if I am not miftaken, deferves your greateft attention, becaufe it may introduce a new branch of commerce with the Weft India colonies, and render very ufeful an animal which has hitherta been known only by the mifchief which it occafions.

Every inhabitant of the Weft Indies knows and dreads the greedy worm which devours their indigo and caffada plantations. But people have hitherto turned their attention more to the means of deftroying it than of rendering it ufeful. It is indeed very natural to endeavour to deftroy our enemy, but to compel him to be of fervice to us is by far the greater triumph.

Its Birth, Growth, and Death.

The caffada worm is produced like the filk worm, that is to fay, from the eggs which the mother fcatters every where, after the has undergone her metamorphofis into a whitifh butterfly, or of a light pearl colour.

The egg is hatched about the latter end of July. Its developement is quick, for in September the worm is changed into a butterfly.

This month of September is the feafon of his loves. The conftant motion of his wings fhews the ardency of his paffion which he indulges day and night and even while feeding. The excefs of this indulgence foon deftroys him, he dies in the fame month after violent convulfions.

1 have faid that his life begins at the end of July. He is decked at his birth with a robe of the moft brilliant variegated colours. This elegant livery, which nature feems to have delighted in forming, renders him always agreeable to the eye, which always dwells upon it with pleafure.

Its Affinities.

It has appeared to me to be a fmooth caterpillar whofe external thape is exactly like that of the filk worm.

It differs however from it, by its fize, by its thicknefs, and by the beauty of its colours.

It again differs from the filk worm, becaure it does not irfelf work the cone which I am going to fpeak of.

I leave it to the learned to delineate its external configuration, and to determine upon the family of infects to which it belongs. I thall only fay that I do not believe it has, like the filk-worm, an inteftine going in a direet X 2
line
line from the mouth to the anus, becaufe it appears to me that this caufe of elaboration would not have the fame deftination.

Its Food.

It feeds on caffada leaves, of which it is extremely greedy. It feeds at all hours, day and night. It alfo nibbles the leaves of the potatoe, this is however but a tranfitory tafte, it foon returns to the caffada leaf.

I have to obferve that after it has taken its food, when the time of its metamorphofis arrives, it does not purge itfelf by diet, like the filk worm, but continues to eat to the laft moment.

The Approach of its Metamorploofis.

In the month of Auguft, and when on the point of undergoing its metamorphofis; it ftrips off its fuperb robe, and puts on one of an admirable fea-green, this fundamental colour reflects all its various fhades, according to the diffcrent undulations of the animal, and the different accidents of light.

The Sting of the Icbneumon Fly.

This new decoration is the fgnal of its tortures. .Immediately a fwarm of ichneumon flies affail it. I think I am not miftaken when I affert that there is not one of its pores that has not one of thofe flies faftened to it. There is even no neceffity of making ufe of the microfcope to fee that he is covered with them.

In vain he ftruggles with all his might, raifes himfelf upright to get rid of his cruel tormentors-He muft fubmit. Thofe flies, of the fmalleft fpecies, and which can only be ftudied by means of the microfcope, drive their ftings
flings into the fkin of their victim, over the whole extent of his back and fides. Afterwards, and all at the fame time, they flip their eggs into the bottom of the wounds which they have made.

After having performed this dreadful operation, the ichneumon flies difappear, and the patient remains for an hour, in a drowzy and even motionlefs ftate, out of which he awakens to feed with his former voracity. Then he appears much larger, and his fize increafes every day. His green colour aflumes a deeper hue, and the tints produced by the reflection of the light are more ftrongly marked. The animal in this fate of factitious pregnancy, if 1 may fo exprefs myfelf, is worthy of all the attention of the obferver of nature.

I fhall not undertake the defcription of the ichneumon fly, it is well defrribed in the books. If I have obferved a difference, it is the fame which exifts between the European gnat and the mufguitoe of hot regions, that is to fay, that our Weft-India flies are of a leffer fize.

1 have now to defcribe the operation which the ichneumon flies, which are extremely fmall, perform at the very moment of their coming into the world; you will judge, gentiemen, whether this expreffion is accurate.

Animal Cotton.

A fortnight after the ichneumon flies have thus cruelly depofited their eggs by perforating the unfortunate caffa-da-worm, that is to fay, fome time in the month of Auguft, thofe eggs may be feen by the help of a microfcope, hatching on the body of that animal.

Thofe eggs are all hatched at the fame moment, and it is impoffible to catch the moral point of time which may intervene between the birth of one and that of another,

154

 MEMOIR on ANIMAL COTTON.ther. At one glance, the caffada-worm is feen covered with all the little worms that have juft been hatched. They iffue out of him at every pore, and that animated robe covers him fo entirely, that nothing can be perceived but the top of his head. He then turns to a dirty white, the little worms appear black to the eye, but their true colour is a deep brown.

This operation lafts hardly more than an hour, and is followed by another which is not much larger but which is much more curious.

As foon as the worms are hatched, and without quitting the fpot where the egg is which they have broke through, they yield a liquid gum, which by coming into contact with the air, becomes folid and flimy.

At the fame time, and by a fimultaneous motion, they raife themfelves on their lower extremity, thake their heads and one half of their bodies, and fwing themfelves in every direction. Now is going to begin an operation which will afford the greateft delight to the admirer of nature.

Each of thofe animalcula works himfelf a fmall and almoft imperceptible cocoon in the fhape of an egg, in which he wraps himfelf up. Thus, they make, as it were, their winding fheet. They feem to be born but to dic.
'Thofe millions and millions of cocoons, all clofe to each other, and the formation of which has not taken two hours, form a white robe in which the caffada-worm appears elegantly clothed. While they are thus decking him, he romains in a ftate of almoft lethargic torpidity.

As foon as this covering is woven, and the little workmen who have made it have retired and hid themfelves in their cells, the worm endeavours to rid himfelf of thofe barbarous guefts, and of the robe which contains them,
them, but he does not fucceed in this attempt without the greateft efforts.

He comes out of this kind of enclofure, entirely flaccid and dull, inftead of his former fat and Thining appearance, his k kin now appears flabby, wrinkled and dirty, and gives him the appearance of decrepitude. He is now an exhaufted, fuffering being, threatened with approaching death.

He will ftill gnaw a few leaves, but he no longer eats with that voracious appetite, which indicated an active and vigorous conftitution. Shortly afterwards he paffes to the ftate of a chryfalis, and after giving life to thoufands of eggs, he fuddenly lofes his own, leaving to the cultivator who has not yet bethought himfelf of calculating the advantage that he may draw from him, an advantage which may be fo improved as to much more than compenfate the ravages which he occafions.

Sbcll of the Icbneumon Fly.

I had imagined that the thoufands of little worms which this fhell contains in the cocoons of which it is compofed, would be hatched fome day. I Thut it up therefore in a box clofed with great caution. Every morning, and very often in the courfe of the day, I examined it, in order to catch the moment when thofe little animals were to be born a fecond time.

In fact, at the expiration of about eight days, I found the infide of the box lined with a cloud of little flies. I made myfelf certain that they iffued out of the little cocoon. Several which iffued out of them before my eyes, left me no doubt as to the fact.

I then took up fome of thofe flies, and putting them on a pincer, I examined them with a microfcope.

${ }^{156}$ MEMOIR on ANIMAL COTTON.

They are bold and lively: they have four wings. Their antennæ are long and vibrating, their belly hangs by a very fine thread: there are fome that have a tail, and others that do not fhew it. Afterwards I fatisfied myfelf that they feed upon fmall infects that appear to be of the family of Acarus. Thofe indications appeared to me fufficient to be fatisfied that they belong to the family of the ichneumon.

Obfrrvaiions on Animal Cotton.

I have often held in my hand that cotton fhell or wrapper. It 3 whitenefs is dazzling. As foon as the flies have quitted the cocoon, it may be ufed without any preparatory precaution. It is made up of the pureft and fineft cotton.

I call it cotton becaufe it is idio-electric and is pervious to the electric fluid.

I add to this denomination the epithet animal, in con-tra-diftinction to common cotton, which may henceforth be called vegetable cotton, fo that the two fpecies may be diftinguifhed from each other by their names, as they are by their origin, although they are very nearly related to each other in their effects.

It is to be obferved, that what might be called cob-wecb in the covering of the fly-carrier, or fmall flocks of filk which are probably intended to fhelter the animal from the rain, is far fuperior to what is called ferrit before, and Reet filk after the preparation of the finer filk. There is no refufe, no inferior quality in animal-cotton. Every thing in it is as fine and beautiful as can be imagined.

It is poffible, if we may form a judgment by analogy, that medicine, which has extracted from filk what is calIed Englifb drops, a remedy to which the greateft efficacy
is attributed, may derive a fimilar advantage, perhaps for the cure of other diforders, from an cxtrad of the arimal cotton, which might be called the St. Domingo drops.

In ffort there is no need here of any of the precautions which the filk-worm requires. The robe which covers the fly-carrier, is worked every where, and every where perfectly well.

I fhall only obferve that as the rain fpeedily deftroys the caffada-worm, the inftant might be feized on when the ichneumon fly has depofited her eggs, to put the flycarrier under fhelter. His natural food might be procured for him, as is done with the filk-worm.

The ichneumon fly never fails thus to come and depofite her eggs. 1 have never feen a fly-carrier that was not covered with the robe or fhell that 1 have fpoken of. I have continued this obfervation for many years, and the crop was fo abundant, that I alone, could collect in lefs than two hours, the quantity of one hundred pints, French meafure.

I repeat it, animal cotton is attended with none of the difficulties which occur in the preparation of vegetable cotton. It is fo pure, that as foon as the ichneumons have left it, which happens 8 or 10 days after their reclufion, it may be carded and fpun.

If it Chould want any preparation, it could be only in cafe it thould not have been fufficiently guarded againft duft and rain.

Vegetable cotton, befides the feeds that produce it and with which it is charged, is filled with extraneous matter, of which it cannot be freed, but with a minute attention, many hands and much time, or with the help of machines which have not yet been brought to perfection.

In every point of view, animal cotton appears to me to have a great fuperiority over that of the vegetable kind.

Yol. V.

It will, perhaps, be wondered at, that experience has not long ago afcertained this fact, but let it be confidered that the filk-worm and its ufe, were known long before any ufe was made of them, and that we are now carefully repairing the loffes that we have fuffered by the carelefs indifference of our fore-fathers.

The fly-carrier may experience the fame fate, becaufe it is lefs difficult to reafon than to make experiments, but I dare hope that as foon as it Chall have prevailed over the fophiftry of indolence, it will fland the competition with filk and vegetable cotton. It is more abundant than either. It requires lefs time and lefs trouble to procure it.

I have but one word more to add. Silk and vegetable. cotton ferve only to envenom and inflame wounds, which is attributed to the afperities of their filaments; I have frequently employed animal cotton as lint in the hofpital of my plantation, it has always fupplied the want of that made of flaxen linen, and I have not obferved the fmalleft inconvenience to arife from the ufe that I have made of it.

Had it not been for the troubles that have laid our colony wafte, and which have prevented the neceffary communication, I fhould have brought to you a fly-carrier in every one of the periods of his life. You would have feen the eggs, the magnificent robe with which he is decked at his birth, the kind of food that he is fond of, the fimple but noble veftment in which he wraps himfelf up on the approach of his tormentors, you would have feen thofe covering his whole body as it were with points, you would have feen him covered with his fhell, and that fame fhell carded, fpun and ready for the weaver. I had in a greit degree already executed this defign.

But it is too well known that I have not been able to fave any thing in my flight from home, you will, however, be able at a future day to afcertain the truth of the
fact that I have ftated to you. I thought that a fact of this nature deferved to be depofited among your archives, and I may perhaps requeft of you the permiffion of depofiting there fome other fill more curious facts.

BT. DES LOZIERES.

Philadelphia, ${ }^{\text {d }}$ Feb. 1797.

No. XIX.

Note concerning a Vegetable found under Ground. In a Letter from Colonel Bull.
Dear Sir,
Read Nor. THE inclofed is a copy of a letter from Co2rif, r3oo. I lonel Bull, a gentleman of refpectable information and veracity, to the late Mr. Rittenhoufe. It records a curious fact, which appears to me to be worthy of prefervation. You are at liberty to make any ule of it you may think proper. I fee no good reafon to doubt the accuracy of the obfervation. We have abundant proofs, that many fpecies of animals are capable of fubfiting, for a long time, in the borecls of the earth, though the furface of the earth appears to be, and no doubt is, the natural place of refidence of thefe very animals. Why, then, Thould we doubt, that the fame fpecies of vegetables are capable of accommodating themfelves to thele two fituations? It is never fafe, nor right, to draw extenfive inferences from folitary facts, efpecially when thofe facts are fomewhat equivocally related. But in fome fciences (I mean thofe which are merely fpeculative) conjectures, however improbable or feeble, cannot do much harm. l'erhaps many of thofe impreffions of vegetables upon flate, free-ftone, coal, and other ftony matters, which are fo abundantly diffufed through the earth, are the impreffions of vegetables which bave paffed through all the flages of their exiftence in the bowcls of the earth.

I am, dear Sir, Your fincere friend, bENJAMIN SMITH BARTON.

Mr. Andrew Ellicott.
Pbilad. Sepr. 27 th, 1800.

"ITAKE the pleafure of giving you an account of a fingular bloffom, which I difcovered laft May,* in digging of a mill-race, on Opeckon creek, \uparrow through a rich bottom of low ground, covered, in general, with well grown large timber, of various kinds, particularly oak, poplar, and walnut, feveral of which trees are from three to four feet through, ftanding on the ground through which the race was dug. The curiofity is this, that between five and fix feet under ground, chiefly a loomy, folid clay, one of the diggers difcovered a bloffom, not in full bloom, nearly of the colour of the lilac, which Atruck his attention. He called me to fee it, not knowing what it could be. Upon viewing it, I recollected the form, and told the diggers it was the fame kind of blue flower, which had grown upon the furface of the ground adjacent, and was then faded. In order to prove it, I defired one of the men to dig up the root of the one under ground, and the one upon the furface, which, upon examination, proved to be the very fame kind. The body of earth where the plant was found mult have been formed perhaps fome centuries, by reafon of the uncommon fize of the timber which it contained, and from which the moft heavy part of the mill-timber was procured."

[^28]No. XX.

Philadelphia, Auguft 4th, 1800 .

Dear Sir,
Read Ang. TJITH this you will receive my aftronomical, and thermometrical obfervations, made at the confluence of the Miffiflippi, and Ohio rivers, in Dec. ${ }^{1796}$, and Jan. 1797, at Natchez in the years 1797 and 1798 -likewife at the city of New Orleans, in Jan. and Feb. 1799, to which are added the obfervations on the tranfit of made at Miller's plantation on the Coenecuch, commonly, (though erroneoufly), called the Efcambia.-The aftronomical obfervations made at the confluence of the Milfiffippi, and Ohio rivers, the equal altitudes of the fun at Natchez, with the obfervations made at New Orleans, are entered according to the civil account, for the purpofe of bringing the thermometrical obfervations into the journal, in the manner they are generally regiftered.

The oblervations made on the boundary between the United States, and his Catholic Majefty, will conftitute a feparate paper, and of very confiderable length, in which the longitudes, of a number of points in the line are determined, both by lunar obfervations, and the eclipfes of u's fatellites. This work, will probably be ready for the fociety fome time the enfuing winter.

Aftronomical, and Thermometrical Observations, made at the Confluence of the Mififippi, and Ohio Rivers.

I 796.

Dec. 18th. Arrived at the confluence of the Miffiffippi, and Ohio rivers about 2 o'clock in the afternoon. -Cloudy all day.-Thermometer 24° in the air at fun fer, and 34° in the water. roth. Pitched a tent, and feet the clock up in it.Cloudy all day, except a fort time about noon. - Thermometer by Fahrenheit's dale 9° at fun rife, role to 19°; fell to 12° at fun feet, and to 11° at 9^{h} P. M.
20th.

$$
\begin{aligned}
& \text { Equal altitudes of the Sunk } \\
& \text { A. M. } \\
& 10^{\mathrm{h}} 23^{\prime} \\
& 54^{\prime \prime} .
\end{aligned} \text { P. M. } \mathbf{1}^{\text {In }} 37^{\prime} 37^{\prime \prime} .
$$

Cloudy, except about $1 \frac{1}{2}$ hours before and after noon, which accounts for the equal altitudes not being taken farther from the meridian. Cleared off in the evening. -Thermometer $1 I^{\circ}$ at fun rife, role in the afternoon to 22°, fell to 11° at 9^{h} P. M.

Immefion of: the 3 d fatellite of 4 observed at $9^{h} 8^{\prime}$ 47." P. M. Magnifying power of the telefcope 120-4 being very low, and attended with an uncommon tremour, which rendered the observation fomewhat doubtful.

2 If. Flying clouds all day, but difappeared in the evening. -Thermometer 11° at fun rife, fell to 8° at $10^{\text {h }}$ A. M. role to 9° at noon, fell to 3^{0} at 7^{11} P. M.

Emerfion of the if fatellite of 4 obfetved at $6^{h} 56^{\prime \prime}$ $0^{\prime \prime} \cdot$ P. M. Atmosphere a little hazy.-Magnifying power of the telefcope 120 .
1796. The weather was fo intenfely cold, that although a pot of live coals was kept in the tent near the clock, the thermometer which was fixed to the cafe, fell to 4°, and the clock ftopped at $5^{\text {b }}$ the next morning.
22d. Keen north wind; with fqualls of light fnow. -Clear in the evening.- Thermometer 5° below o at 8 o'clock A. M.-rofe to r° above o at 2^{h} P. M.-fell 5° below 0 at 9^{h} P. M. - Both rivers on account of the vaft bodics of ice, thrown up in a variety of pofitions, make a romantic, and to us (on account of our boats) an alarming appearance.
23d. Clear day: Wind from the N. W. Thermometer $7 \frac{1}{2}^{\circ}$ below o at $8^{\text {h }}$ A. M. 6° below 0 at $10^{\text {b }}$ A. M. 1^{0} above 0 at noon, 8° at 2^{h} P. M. and at 8^{b} Y. M. 7°.
24th. Clear day. Thermometer 7° at 9^{h} A. M. -17° at 1^{n} P. M. - and 7° at 8^{ho} P. M.

Traced a meridian by the circum-polar ftars.
25th. Clear day. Thermometer 7° at fun rife, rofe in the afternoon to 17°. Applied the magnetic needle to the meridian, and found the variation to be $7^{\circ} 15^{\prime}$ eaft.

Set up a fmall zenith fector of about 19 inches radius. Face to the eaft.

26th. Cloudy in the afternoon. Thermometer 10° in the morning, rofe to 17°.
Q^{\prime} 's preceding limb on the meridian at - $11^{1{ }^{\mathrm{b}}} 59^{\prime} 45^{\prime \prime}$
Subfequent do. at
$12 \quad 2 \quad 9$
Centre at
$12 \quad 57$
2, 7 th

THERMOMETRICAZ OBSERVATIONS. 16_{5}
Dec. 27th. Clear day.: Thermometer 3° at fun rife, rofe to 33° in the afternoon.

©'s preceding limb on the meridian at.
Subfequent do. at

Centre at

28th.: Clear day. Thermometer 8° at fun rife, rofe in the afternoon to 33°.

Equal altitudes of the: Suin.
A. M. $9^{\text {in }^{1}} 40^{\prime} 2^{\prime \prime}$. P. M. $2^{\text {h }} 24^{\prime} 56^{\prime \prime}$.

Emerfion of the It fatellite of $2 f$ obferved at $8^{18} 4^{8^{\prime}} 38^{\prime \prime}$ P. M. 4 very low, the atmofphere hazy, and the belts fcarcely difcernible. Magnifying power of the telefcope 120.

29th. Clear a fhort time about noon. Thermometer 17° at fun rife, rofe in the afternoon to 45°
3oth. Gloudy with light fnow during the day.Clear in the evening. Thermometer 32° in the morning, rofe to 35° in the afternoon.
3 rf. Cloudy in the evening and night. Thermometer 21° at fun rife, rofe in the afternoon to 45°.

> Equal altitides of the Sun.
> A. M.: $9^{\text {in }} 53^{\prime} 7^{\prime \prime}$. P. M. $22^{\text {in }} 16^{\prime} 25^{\prime \prime}$.
> Obferved zenith diftance of a Lyire $\quad \because \quad 1^{\circ} 37^{\prime} \quad 23^{\prime \prime}$ x.
1797. Clear and calm in the morning, flying Jan. 1ft. clouds in the afternoon.-From $10^{1 /}$ A. M. till noon, three fine luminous circles appeared in the atmofphere, fimilar to thofe defcribed Vol. V.
by Dr. Smith in his opticks*. Thermoneter 21° at fun rife, rofe in the afternoon to 40°.
2d. Cloudy with fnow the whole day.-Thermometer 16° at fun rife, rofe in the afternoon to 28°, and fell to 19° at fun fet.
3d. Cloudy till noon, clear in the afternoon and evening. Thermometer 6° at fun rife, rofe in the afternoon to 18°, fell to 10° at $8^{\mathrm{h}} \mathrm{P}$. M. Obferved zenith diftance of © Cygni - $7^{\circ} 35^{\prime} 32^{\prime \prime} \mathrm{N}$.
do. . . $\quad \beta$ Andromedx $225 \quad 3^{8}$ s. do. . . . β Medufe - 3 II 46 N.

4th. Cloudy in the morning, the remainder of the day clear. Thermometer $12{ }^{\circ}$ at fun rife, rofe in the afternoon to 37°, fell to 16° at fun fet.

Equal altitudes of the Sun.
A. M. $9^{\text {h }} 26^{\prime}$. $36^{\prime \prime \prime} . \quad$ P. M: $2^{\text {h }} 47^{\prime}, 6.5^{\prime \prime}$.

Obferved zenith diftance of a Cygni $\quad 7^{\circ} 35^{\prime} 29^{\prime \prime}$ N.
Turned the face of the Sector to the weft.
Obferved zenith diftance of β Andromedr $2^{\circ} 30^{\prime} 24^{\prime \prime}$ s. do. . . β Medufx • $3 \quad 7$ N.

5 th. Clear all day. Thermometer 23° at fun rife, rofe in the afternoon to 42°, fell to 30° at fun fet.

Equal altitudes of the Sun.

$$
\text { A. M. } 9^{h} 42^{\prime} 21^{\prime \prime} \cdot \quad \text { P. M. } 2^{h} \cdot 3^{\prime} \cdot 3^{1^{\prime \prime}}
$$

Obferved

* Book Sccond, Chap. IIth.

THERMOMETRICAL QBSERVATIONS. 16%

Obferved the times, and diftances of the D 's neareft limb from that of the \odot as follows:

$$
\text { P.M. }\left\{\begin{array}{lll}
2 & 50 & 53 \\
2 & 52 & 56 \\
2 & 54 & 40 \\
2 & 58 & 43
\end{array}\right.
$$

Ditances.

84	15	20	
$8+$	16	0	Error of Sex-
$8+$	16	30	tant $+7^{\prime \prime}$.
84	18	20	
$8+$	16	32	

Obferved zenith diftance of \propto Lyrz . $x^{\circ} 33^{\prime} 28^{\prime \prime}$ N. do. . . a Cygni a 7 3I 19 . do. . - \quad Medufx $3 \quad 7 \quad 5$ n.

6th. Cloudy in the morning, clear in the afternoon. - Thermometer 24° at fun rife, rofe in the afternoon to 34°, fell to 12° at fun fet.

Obferved zenith diflance of β Medufie - $3^{\circ} \eta^{\prime} \boldsymbol{7}^{\prime \prime}$ *.
7 th. Clear day, wind N. W.-Thermometer 7° below o at fun rife, 5° below o, at $9^{\text {h }}$ A. M. rofe to 19° in the afternoon, fell to \circ at fun fet.

Obferved zenith diftance of a Lyrx - $1^{\circ} 33^{7} 37^{\prime \prime}$ N.

Turned the face of the Sector eaft.
Sth. Clear day. 'Thermometer 7° below 0 at fun rife, rofe in the afternoon to 29° above O, fell to 10° at $7^{\text {h }}$ P. M.

Obferved zenith diftance of a Lyrx $\quad 1^{\circ} 37^{\prime} 40^{\prime \prime}$ s.
do. . . β Andromedæ 22547 s.
do. . . . β Medufa - 3 II 49 N.
Z 2
9th.

9th. Clear day. Thermometer 3° below \circ at fun rife, rofe in the afternoon to 42°, fell to 32° at fun down.
Obferved zenith diffance of a Lyre - $1^{\circ} 37^{\prime} 40^{\prime \prime} \mathrm{N}$. do. . . β Andromedx 25 56 $\quad 20$ do. . . $\beta_{\text {Medufe }} 3^{11} 27$ N.

Latitude

THERMOMETRICAL OBSERVATIONS. IC9

Lengitude deduced from the eclipes of 2 's fatellites and one lunar obfervation.
1796. Dec, 20th. Clock too faft meint time $\quad 2$ 10. Daily gain. Stopped on the 23 d by the extreme cold. .. ,

The immerfion of the 3 d fatellite of 4 was obferved on the 20 th of December at $9^{\text {h }} 8^{\prime \prime} 47^{\prime \prime}$ P. M. as before noted: The clock by equal altitudes of the fun taken on that day appeared to be too faft $2^{\prime} 10^{\prime \prime}$ mean time, and gained by fubfequent obfervations at a mean rate about $10^{\prime \prime}$ per diem. The clock was therefore too fatt at the time of the obfervation \mathbf{z}^{\prime} $14^{\prime \prime}$, the obfervation was of courfe made at $9^{h} 6^{\prime}: 37^{\prime \prime}$ P. M. mean time, to which add $\mathrm{a}^{\prime} \mathrm{r} 3^{\prime \prime}$ 'the equation of time, the fum $9^{\prime \prime} 7^{\prime} 50^{\prime \prime}$, will be the apparent time of the immerfion, which taken from $15^{\mathrm{h}} \mathbf{z}^{\prime} 34^{\prime \prime \prime}$, the apparent time at Greenwich by the theory, will leave $5^{\text {n }} 54^{\prime} 44^{\prime \prime}$ for the difference of meridians.

An emerfion of the firt fatellite of 4 was oblerved on the 2 itt of December at $6^{61} 5^{6 \prime} 00^{\prime \prime}$ P. M. The clock at that time by admitting the mean daily gain to be $10^{\prime \prime}$ was too falt $2^{\prime} 25^{\prime \prime}$ mean time, the obfervation was therefore made at $6^{h} 53^{\prime}, 35^{\prime \prime}$. mean time, to which add $o^{\prime} 46^{\prime \prime}$, ule cquation of time, and the fum $6^{1 \prime} 54^{\prime} 21^{\prime \prime}$, will be the apparent time of the obfervation, which deducted from $12^{h} 49^{\prime} 29^{\prime \prime}$ the apparent time at Greenwich by the theory, will give $5^{1 /} 55^{\prime} 8^{\prime \prime}$ for the difference of meridians.
A nother emertion of the int fatellite of 4 was obferved on the 28 th of December at $8^{\text {h }} 48^{\prime} 3^{\prime \prime \prime}$ P. M. The clock at that time was about $\mathrm{I}^{\prime \prime}$ too flow mean time. The obfervation was therefore made at $8^{h} 48^{\prime} 39^{\prime \prime}$ mean time, from which deduct $2^{\prime} 44^{\prime \prime}$ the equation of time, and the remainder $8^{18} 45^{\prime} 55^{\prime \prime}$ will be the apparent time of the obfervation, which deducted from $14^{n} 41^{\prime} 53^{\prime \prime}$ the apparent time at Greenwich by the theory, will give $5^{\mathrm{h}} 55^{\prime} 58^{\prime \prime \prime}$ for the difference of meridians.

On the 5 th of January 1797, at $2^{\text {h }} 54^{\prime} 1^{\prime \prime}$ P. M. by the clock, the diftance between the neareft limbs of the © and D was obferved to be 84° $1^{\prime}{ }^{\prime} 39^{\prime \prime}$ the clock at the time of obfervation was $1^{\prime} 2^{\prime \prime}$ too faft mean time, the obfervation was therefore made at $2^{\text {h }} 53^{\prime \prime} 16^{\prime \prime}$ mean time, from which deduct
deduet $6^{\prime} 15^{\prime \prime}$, the equation of time, and the remainder $2^{\text {b }} 47^{\prime} 1^{\prime \prime}$. will be the apparent time of the cbfervation. "The obferved diftance corredted for parallax refradion, \&c. will anfwer to about $8^{h} 42^{\prime} 22^{\prime \prime}$ at Greenwich, by which the difference of meridians appears to be about $5^{\mathrm{h}} 55^{\prime} 21^{\prime \prime}$.

By fuppofing the obfervation on the 3 d fatellite of 24 , with the lunar obfervation to be equivalent to either of thofe on the if fatellite, the mean longitude will be had as below.

*		Lengitude by the 3 d fateliite . do. by, the lunar obfervation	5	54 55		
		Mean do. by the Ift fatellite on the $\}$ 2 Ift of December . $\}$ $\left.\begin{array}{l}\text { do. by do. on the } 28 \text { th of } \\ \text { December }\end{array}\right\}$	5 5	55 55 55		
	Mean $\quad . \quad 55,22.8=\$ 88^{\circ} .50^{\circ}$ nwich, or o $54+78=13^{\circ} 4^{1^{\prime}} 57^{\prime \prime}$ weft from the					

The foregoing obfervations were made under very unfavourable circumftances, the weather intenfely cold, and not a fufficient number of tents to fecure our inftruments, and cover our men: our fore-boat having been left behind, and was frozen up near the mouth of the Wabafh river till about the 20 th of January. The fpirits in the veffel in which the plummet of the fector was fufpended were frequently congealed, and what appeared fomewhat fingular, was that the firits began to freeze on the outfide of the veffel very near to the upper edge, from which it extended in prongs, like bucks-horns, and did not congeal within till the fpirits fell about $\frac{4}{10}$ of an inch below the upper edge.-The veffel was $\frac{1}{2}$ inches in diame-ter.-The ice on the outfide did not appear to contain a full proportion of fpirit. Although the obfervations were made under unfavourable circumftances, I have no reafon to fuppofe them liable to any material objection, and therefore prefume that the determinations of the latitude, and longitude, of the confluence of the two rivers are fufficiently correct for gcographical purpofes, notwithftanding
ftanding a difference of about 2 degrees in longitude, and 14 minutes in latitude, from Mr. Hutchins's map.
1797.

Feb. 24th. Arrived at Natchez.
27 th. Encamped at the north end of the village.
28th. Set up the clock.
March ift. Set up the large zenith fector, with the face to the eaft.

3d. A. M. ${ }^{\text {Equal altitudes of the Sun. }}$
The obferved times, and diftances of the \odot 's and D 's neareft limbs.

Repeated.

* All the obfervations comected with, or dependent upon time, are entered as obferved by the clock, and will therefore require a correction to reduce them to mean folar time, which may readily be done from the futement of the errors of the clock, with its rate of going, to be found at the end of each courle of obfervations.

Repeated.

	1	,	"
	4	24	18
	4	26	15
	4	28	14
	4	29	50
	4	32	5
Means	4	28	10

0	1	$\prime \prime$
60	11	55
60	12	30
60	13	20
60	13	35
60	14	20
60	13	8

4th. The obferved times, and diftances of the \odot 's and D 's neareft limbs.

Diftances.
0^{\prime}, "
$72 \quad 5 \quad 30$
$72 \quad 5 \quad 50$
72630 Error of the Sextant $0^{\prime \prime}$.
72640
727 ○

| $72 \quad 7 \quad 30$ |
| :--- | :--- | :--- |

$\begin{array}{lll}72 & 6 & 29\end{array}$

Repeated.

Vol. V.
A a
6 th.

6 th.
Equal altitudes of the Sun.
A. M. $9^{\text {it }} 37^{\prime} 57^{\prime \prime}$. P. M. $2^{\text {h }} 18^{\prime} 54^{\prime \prime}$ 。

The observed times, and ditances of the ©'s and D's nearer limbs.

Fth. Obfervedzenith difance of β Taut
do. \quad Cantor

do. \cdot| 3 | 7 | 57 |
| ---: | ---: | ---: | ---: | ---: |

Eth. Equal altitudes of the Sun.

$$
\text { A. M. } 9^{\mathrm{h}} 23^{\prime} 4^{\prime \prime \prime} 0 \quad \text { P. M. } 2^{2^{\mathrm{h}}} 3^{1^{i}} 26^{\prime \prime} .
$$

Observed zenith difance of β Tauri
do.
do.
$9^{\text {th. Turned the face of the factor weft. }}$
Observed zenith diftance of Pollux - 340 s.
roth. do. ... Cantor ..: do. . . . Pollux . $3 \quad 3 \quad 59$ s.

IIth, 12 th, and $I 3^{\text {th }}$. Cloudy with conftant, but not heavy thunder.
14th. Cleared off very early in the morning with a violent gale of wind which blew down a number of the tents, and puthed in the fide of the one we unfed for the obfervatory againft the clock, where it retted till the gale was over, which did not exceed 15 minutes.

THERMOMETRICAL OBSERVATIOANS.

Equal altitudes of tie Sun.
 A. M. $9^{\text {h }} 41^{\prime}: 58^{\prime \prime}$. P. M. $2^{11} 7^{\prime} 36^{\prime \prime}$.

Observed zenith diftance of β Tauri \quad - $3.8 \quad 58$ s.
$15^{\text {th }}$, and 16 th. Cloudy with fome thunder and a little rain.

1 7 th. Obferved zenith diftance of β Tauri $\because 3.8 .58$ s. do. . $\quad \therefore \quad$ Caftor - 04457 N

The obferved times, and diftances of the \odot 's and D 's neareft limbs.

		Times			anc		
	1	$1-$	"	-	,	"	
	20	57	41	109	43	40	
	20	59	55	109	42	30	
	21	1	44	109	41	20	Error of the Sextant $0^{\prime \prime}$.
	21	2	51	109	40	30	Error of the Sextanto.
	21	4	35	109	39	30	
	21	5	49	109	39	$\bigcirc 0$	
Means	9	1	49	109	41	5	

18 th.

$$
\text { A. M. } 9^{\text {h }} 13^{\prime} 10^{\prime \prime \prime} . \quad \text { P. M. } \mathbf{2}^{\mathrm{h}} \cdot 31^{\prime} 38^{\prime \prime} .
$$

21 ft . Stopped the clock and fet it forward about 9 minutes.-Screwed up the pendulum bob.

Equal altitudes of the Sun.
A. M. $9^{\text {h }} 53^{\prime \prime} 24^{\prime \prime}$. P. M. $2^{\text {h }} 3^{\prime} 43^{\prime \prime}$ 。

A a 2
The

The obferved times, and diftances of the \odot 's and D 's nearef limbs.

	¢	,	"
	21	30	35
	21	31	40
	21	33	19
	21	34	41
	21	36	10
	21	37	43
	21	39	14
Means	21	34	46

0	\prime	$\prime \prime$
65	46	40
65	46	30
65	46	30
65	46	0
65	45	30
65	45	20
65	45	0
65	45	56

22d. Obferved zenith diftance of β Tauri $\cdot 3^{\circ} 8^{\prime} 57^{\prime \prime} \mathrm{s}$.
The obferved times, and diftances of the ©'s and D's nearelt limbs.

23d. Obferved zenith diftance of β Tauri $\cdot 3^{\circ} 8^{\prime} 5^{\prime \prime \prime} \mathrm{s}$ 。
The

THERMOMETRICAL OBSERVATIONS.

The obferved times, and diftances of the \odot 's and D 's neareft limbs.

	Times.		
	21	21	16
	21	23	7
	21.	2.4	13
	21	25	15
	21	26	. 2^{2}
Means	21	24	9

Diftances.		
0	1	$\prime \prime$
43	53	10
43	52	40
43	52	20
43	52	10
43	5^{2}	00
43	52	28

From this time I was too much occupied in other concerns, occafioned by the different commotions in the country, to attend to a regular feries of obfervations till Uctober ; there are therefore but few entered till that time.

28th.
Equal altitudes of the Sun.
A. M. $9^{\text {h }} 28^{\prime} 32^{\prime \prime}$. P. M. $2^{\text {h. }} 26^{\prime} 43^{\prime \prime}$.

April 7th. Obferved zenith diftance of Caftor - $\circ^{\circ} 44^{\prime} 56^{\prime \prime} \mathrm{N}$.
From this time, till the $4^{\text {th }}$ of June no attention was paid to the clock, it ran down feveral times.

June 12th.
Equal altitudes of the Sun.
A. M. $8^{\text {h }} 5^{8} 4^{\prime \prime}$. P. M. $3^{\text {hi }} 8^{\prime} 50^{\prime \prime}$.

Immerfion of the Ift fatellite of 4 obferved at $15^{\text {h }} 28^{\prime}$ $25^{\prime \prime}$.-Belts tolerably diftinct, magnifying power of the telefcope 120.

I7th.
Equal altitudes of the Sun.
A. M. $8^{\text {h }} 54^{\prime} 4 \mathrm{I}^{\prime \prime}$ 。 P. M. $3^{\mathrm{h}} 13^{\prime} 49^{\prime \prime}$.

26 th. Clock removed from the tent, into a houfe where I went to refide myfelf, but on account of the ficknefs which prevailed on the river, I removed in July with my people about feven miles into the country and encamped, where
where I remained till the 27 th of September, and then returned to the village of Natchez. 28th. Cleaned the clock and -let it a-going.

Inmerfinn of the int fatellite of $\boldsymbol{\sim}$ observed at $14^{\text {h }} 30^{\prime}$ $10^{\prime \prime}$.- Belts distinct, magnifying power 120 .

29th.
Equal alitudes of the Sunn., "
A. M. 8 53:21.5. P. M. 3 5 17.5.

Doubtful 2 or 3 feconds.

Both.

> Equal altitudes of the Sun.
> A. M. $8^{\text {h }} 59^{\prime} 44^{\prime \prime}$. P. M. $2^{\mathrm{h}} 5^{8^{\prime}} 35^{\prime \prime}$.

Immerfion of the If fatellite of 4 observed at $8^{\text {h }} 59^{\prime} 19^{\prime \prime}$. Belts ditinct, magnifying power 120.

OCt. 2d. Prepared to observe an eclipfe of the 4 th fatellite of 4. The satellite was not eclipsed, neither am I convinced that it touched the fhadow of 4 , it was very ditiner, and appared when neareft, to be its full diameter from the body of the planet.

Equal altitudes of the Sun.

$$
\text { A. M. } g^{h} 2^{\prime} 10^{\prime \prime} . \quad \text { P. M. } 2^{h} 54^{\prime} 14^{\prime \prime} \text {. }
$$

From this time, till the beginning of January following, it was with difficulty I. could fit up long enough to make an obfervation, owing to a fevers fever.

I 8 th.
Equal alitutules of the Sun.

$$
\text { A. M. } 8^{\mathrm{h}} 58^{\prime} 4 \mathrm{I}^{\prime \prime} . \quad \text { P. M. } 2^{\mathrm{h}} 56^{\prime} 52^{\prime \prime} \text {. }
$$

25 th. Emerfion of the if fatellite of 4 observed at $5^{\text {h }} 55^{\prime} 12^{\prime \prime}$. - Belts diftinct, magnifying power 120.

26th.

$$
\begin{gathered}
\text { Equal altitudes of the Sun. } \\
\text { A. M. } 9^{9^{14}} 9^{\prime} 25^{\prime \prime} . \\
\hline
\end{gathered}
$$

Nov. 22d. Clock ran down, wound it up, fat it a-going, and lowered the pendulum bob.

$$
\begin{aligned}
& \text { A. M. } 9^{\text {Equal }}=8^{\prime} 26^{\prime \prime} . \quad \text { P. MI A. } \cdot 2^{\mathrm{h}} 3^{8^{\prime}} 35^{\prime \prime \prime} \text {. }
\end{aligned}
$$

Emerfion of the Ift fatellite of 4 obferved at $8^{\text {h }} 7^{\prime} 33^{\prime \prime}$. -Bolts ditina, magnifyiag power 120.

26th.

> Equal aithitules of the Sun.
> A. M. $92^{\text {hi }} 30^{\prime \prime} 44^{\prime \prime}:$ P. M. $2^{\text {h }} 37^{\prime} 48^{\prime \prime}$.

Dec. ift. . Thermometer rule to 70.0 -Mufquitoes very troublefome at night.
2d. Thermometer 50° at fun rife, fell to 47°.Cloudy.
3d. \quad Thermometer 22° at fun rife, rofe to 35°. -Snow and hail without intermiffion till $6^{\text {h }}$ P. M. when it cleared away with a ftrong N. W. wind.

Cbervations on a lunar eclipfe.

During the above obfervation the thermometer was at 20°.
$4^{\text {th }}$. Thermometer 18° at fun rife, rofe to 33°. - Mr. Dunbar's thermometer was at 17° in the morning.

$$
\text { A.M. Equal alitudes of the sun. } 9^{h} 17^{\prime} 7^{\prime \prime} \cdot \text { P. M. } 2^{\mathrm{h}} 57^{\prime} 35^{\prime \prime} \text {. }
$$

$5^{\text {th. }}$ Thermometer 20° at fun rife, rofe to 37°. 6th. Thermometer 18° at fun rife, rofe to 39°.

Egual altitades of the Sun. . "

$$
\text { A.M. } 925 \text { 15.5. P.M. } 251.24 .5 .
$$

7 th. Thermometer 30° at fun rife, rofe to 49°.

Emerfion of the 2d fatellite of 7 obferved at $7^{\text {H }} 56^{\prime}$ $31^{\prime \prime}$.-Belts diftinct, magnifying power 120.
8th. Thermometer 33° at fun rife, rofe to 51°.

> Equal altitudes of the Sun.
> A. M. $9^{\text {nh }} 56^{\prime \prime} 15^{\prime \prime} \cdot \quad$ P. M. $2^{h} 22^{\prime \prime} 19^{n \prime}$.

9th. Thermometer 30° at fun rife, rofe to 47°. -Cloudy.
10th. Thermometer 28° at fun rife, rofe to 56°.
it th. Thermometer 40° at fun rife, rofe to 60°.
12th. Thermometer 52° at fun rife, rofe to 75°. -Cloudy part of the day.
I 3th. Thermometer 60° at fun rife, rofe to 75°. -Flying clouds.
r 4 th. Thermometer 63° at fun rife, rofe to 75°. -It was 74° at 9^{h} in the evening, a thunder guft at midnight.
15th. Thermometer 46° at fun rife, rofe to 50°. -Flying cloúds.
I 6th, Thermometer 30° at fun rife, rofe to 51°.
Equal altitudes of the Sun.
A. M. $9^{\text {h }} 28^{\prime} 0^{\prime \prime}$. P. M. $2^{\text {h }} 58^{\prime} 15^{\prime \prime}$.
igth. Thermometer 50° at fun rife, rofe to 55°.
Emerfion of the ift fatellite of 4 obferved at $8^{\mathrm{h}} 24^{\prime} 30^{\prime \prime}$. -A little hazy, but the belts were middling diftinct, magnifying power 120.

18th. Thermometer 43° at fun rife, rofe to 54°.

$$
\text { A.M. } 9^{\text {Equal altitudes of the Sun. }} 50^{\prime} 14^{\prime \prime} . \quad \text { P. M. } 2^{\mathrm{h}} 38^{\prime} 8^{\prime \prime} .
$$

19th. Thermometer 30° at fun rife, rofe to 53°. -Cloudy with fome cold rain.

THERMOMETRICAL OBSERVATIONS. I8I
20th. Thermometer 34° at fun rife, rofe to $5^{1 \circ}$. -Cloudy with cold rain.-Cleared off at night with a N. W. wind.
$21 f$. Thermometer $17 \frac{1}{2}^{\circ}$ at fun rife, role to 37°.
Equal altitudes of the Sun.

$$
\text { A, M. } 946 \text { 43.5. P. M. } 24458.5
$$

22d. Thermometer 23° at fun rife, rofe to 41°. -Cloudy.
23d. Thermometer 28° at fun rife, rofe to 37°. -Flying clouds.
24th. Thermometer 41° at fun rife, rofe to 50°.
Emerfion of the ift fatellite of 4 obferved at $10^{\text {h }} 21^{\prime} \mathrm{I}^{\prime \prime}$. -A little hazy, belts middling diftinct, magnifying power 120.

25th. Thermometer 55° at fun rife, rofe to 60°. -Cloudy with a little rain.
26th. Thermometer 64° at fun rife, fell to 40°. -Cloudy with a N. E. wind.
27th. Thermometer 22° at fun rife, rofe to 39°. -Wind N. W.
28th. Thermometer 28° at fun rife, rofe to 54°. 29th. Thermometer 31° at fun rife, rofe to 52°.
30th. Thermometer 53° at fun rife, rofe to 65°. -Heavy rain:
3 Ift. Thermometer 55° at fun rife, rofe to 57°. -Heavy rain.
1798.

Jan. ift. Thermometer 31° at fun rife, rofe to 67°.

> Equal altitudes of the Sun.

$$
\text { A. M. } 9^{\text {h }} 50^{\prime} 10^{\prime \prime} . \quad \text { P. M. } 2^{\text {h }} 53^{\prime} 43^{\prime \prime} \text {. }
$$

2d. Thermometer 48° at fun rife, rofe to $6 \mathrm{I}^{\circ}$. —Cloudy.
Vol. V. B b

At 15 minutes after 80^{\prime} clock A. M. Atopped the clock about 19 minutes by my watch, and lowered the pendulum bob a fmall matter, but farcely difcernible with a magnifying glals.
3d. Thermometer 45° at fun rife, rofe to 52°.
 -Cloudy great part of the day.

Immerfion of the 3 d fatellite of 44 Belts diftinct, magni-

5th. Thermometer 27° at fun rife, rofe to 67°.

> Equal altitudes of the Sun.A. M. $9^{\text {h }} 33^{\prime} 5^{\prime \prime} \cdot \stackrel{\text { P. M. }}{ } 2^{h} 3 G^{\prime} 44^{\prime \prime} . 。$

6th. Thermometer 37° at fun rife, rofe to 61°. -Cloudy.
$7^{\text {th. }}$ Thermometer 55° at fun rife, rofe to 72°. -Rain.
8th. Thermometer 55° at fun rife, rofe to 73°.
Equal altitudes of the Sun.
A. M. $9^{\text {h }} 4 \mathrm{I}^{\prime} 30^{\prime \prime} . \quad$ P. M. $2^{\text {h }} 30^{\prime} 55^{\prime \prime}$.

Emerfion of the 2 d fatellite of 4 obferved at $7^{\mathrm{h}} 22^{\prime} 12^{\prime \prime}$.
-Belts dittinet, magnifying power 120 .
9th. Thermometer 35° at fun rife, rofe to 62°.
Equal alitudes of the Sun.
A. M. $9^{\text {h }} 40^{\prime} 21^{\prime \prime}$. P. M. $2^{\mathrm{h}} 32^{\prime} 52^{\prime \prime}$.

Emerfion of the ift fatellite of 4 obferved at $8^{\text {h }} 23^{\prime} 10^{\prime \prime}$. -Belts diftintt, magnifying power 120.

10th. Thermometer 24° at fun rife, rofe to 66°. -Cloudy.

IIth.

THERMOMETRICAL OBSERVATIONS. 183

y ith. Thermometer 23° at fun rife, rofe to 61°. -Cloudy with fome rain.
12th. Thermometer 27° at fun rife, role to 57°. -Cloudy.
I 3 th. Thermometer 50° at fun rife, rofe to 65°. -Cloudy part of the day with rain.
14th. Thermometer 62° at fun rife, fell to 55°. Heavy rain.
15th. Thermometer 37° at fun rife, rofe to 60°.
Equal altitudes of the Sun.

> A. M. $\begin{aligned} & 92910.5 .\end{aligned}$ P. M. $24^{2} 4820$. Doubtful 3 or 4 feconds.

Emerfion of the 2 d fatellite of 4 obferved at $9^{\text {h }} 58^{\prime} 28^{\prime \prime}$ 。 -Belts obfcure, the planet and fatellites very tremulous.Magnifying power 120.

16th. Thermometer 32° at fun rife, rofe to 69°.
Equal altitudes of the Sun.

$$
\text { A. M. } 9^{\text {h }} 23^{\prime} 55^{\prime \prime} . \quad \text { P. M. } 2^{\mathrm{h}} 54^{\prime} 20^{\prime \prime}
$$

Emerfion of the ift fatellite of 4 obferved at $10^{\text {h }} 19^{\prime} 19^{\prime \prime}$.
-Belts tolerably diftinet, magnifying power 120.
17th. Thermometer 33° at fun rife, rofe to 76°.
18th. Thermometer 34° at fun rife, rofe to 64°.
19th. Thermometer 40° at fun rife, rofe to 60°. -Cloudy with fome rain.
20th. Thermometer 54° at fun rife, rofe to 71°. -Cloudy.
2 If . Thermometer 53° at fun rife, rofe to 68°. -Cloudy with rain.
22d. Thermometer 67° at fun rife, rofe to 76°. -Cleared off with a N. W. wind.
$23^{\text {d }}$. Thermometer 22° at fun rife, rofe to 46°. VoL. V. B b 2

Equal alitudes of the Sun.
 A. M. $9^{\mathrm{h}} 13^{\prime} 47^{\prime \prime}$. P. M. $3^{\mathrm{h}} 8^{\prime} 2^{\prime \prime}$ 。

The obferved times, and diftances of the \odot 's and D 's neareft limbs.

						fan		
	¢		"		\bigcirc		"	
	3	23	15		74	27	5	
	3	24	36		74	27	15	
	3	26	24	-	74	27	40	
	3	27	25		74	28	-	
	3	28	34		74	28	10	
	3	29	34		74	28	30	Error of the Sextant $0^{\prime \prime}$.
	3	30	25		74	28	50	
	3	31	16		74	28	55	
	3	32	8		74	29	-	
	3	33	4		74	29	30	
	3	33	46		74	29	40	
	3	34	28		74	30	00	
Means	- 3	29	35		74	28	33	

The obferved times, and diftances of the D's weftern limb from Aldebaran.

24th. Thermometer 18° at fun rife, rofe to 49°. $-N$. W. wind.

$$
\text { A. M. } 9^{\text {Equal alitudes of the Sun. }} 22^{\prime} 58^{\prime \prime} . \quad \text { P. M. } 2^{\text {h }} 59^{\prime} 21^{\prime \prime} \text {. }
$$

$25^{\text {th }}$. Thermometer 48° at fun rife, rofe to 60°. 26th.

26th. Thermometer 66° at fun rife, rofe to 76°. -Cloudy.
27th. Thermometer 49° at fun rife, rofe to 61°. 28th. Thermometer 34° at fun rife, rofe to 63°. Equal altitudes of the Sun.

$$
\text { A. M. } 9^{h^{\prime} 11^{\prime}} 52^{\prime \prime} . \quad \text { P. M. } 3^{h} 11^{\prime} 51^{\prime \prime}
$$

29th. Thermometer 55° at fun rife, rofe to 76°. 30th. Thermometer 66° at fun rife, rofe to 82°. 31 ft . Thermometer 67° at fun rife, rofe to 81°.
Feb. Ift. Thermometer 59° at fun rife, rofe to $8 \mathrm{I}^{\circ}$. -Cloudy with fome rain.
2d. Thermometer 64° at fun rife, rofe to 76°.
3d. Thermometer 63° at fun rife, rofe to 80°. -Cloudy.
$4^{\text {th }}$. Thermometer 66° at fun rife, rofe to 78°. -Flying clouds.
5 th. Thermometer 55° at fun rife, rofe to 79°.
6th. Thermometer 61° at fun rife, rofe to 71°. -Cloudy with a little rain.
7 th. Thermometer 54° at fun rife, rofe to 80°.

> Equal alitudes of the Sun.
> A. M. $9^{\text {h }} 30^{\prime} 53^{\prime \prime} \cdot$ P: M. $^{\prime \prime} 2^{\prime \prime} 53^{\prime \prime} 4^{\prime \prime \prime}$.

8th. Thermometer 55° at fun rife, rofe to 66°. -Heavy rain laft night and this day.
9th. Thermometer 33° at fun rife, rofe to 57°. -Wind N. W.

Equal altitudes of the Sun.
A. M. $9^{h} 4^{\prime} 35^{\prime \prime}$. P. M. $3^{h} 19^{\prime} 50^{\prime \prime}$.

Emerfion of the 2 d fatellite of 24 obferved at $7^{\circ} 2^{\prime} 52^{\prime \prime}$.
-Belts diftintt, magniifying power 120.
1oth. Thermometer 31° at fun rife, rofe to 50° 1 Ith. Thermometer 55° at fun rife, rofe to 70°.
r2th. Thermometer 61° at fun rife, rofe to 78°.

> Equal altitudes of the Sun. A. M. $9^{\mathrm{h}} \mathbf{1}^{\prime} 43^{\prime \prime} \cdot$ P. M. 3^{h} $22^{\prime}$$\frac{28^{\prime \prime} .}{}$

1 $3^{\text {th }}$. Thermometer 64° at fun rife, role to 80°. -Cloudy with a little rain.
14th. Thermometer 61° at fun rife, rofe to 81°.
15th. Thermometer 55° at fun rife, fell to 50°. -Some rain.
16th. Thermometer 40° at fun rife, rofe to 55°. -Cloudy in the forenoon.
 -Belts middling well defined; magnifying power 120.
${ }^{1} 7$ th. Thermometer 30° at fun rife, rofe to 49°. -Cloudy with a heavy rain at night.
18th. Thermometer 50° at fun rife, rofe to 56°. -Cloudy.
19th. Thermometer 42° at fun rife, rofe to 55°. -Cloudy.
20th. Thermometer 40° at fun rife, rofe to 54°. -Cloudy part of the day.
2 ift. Thermometer 41° at fun rife, rofe to 66°.

> Equal altitudes of the Sun.
> A. M. $9^{\mathrm{h}} 39^{\prime} 19^{\prime \prime}$ P. M. $2^{\text {h }} 43^{\prime \cdot} 4^{\prime \prime}$.

End of the obfervations at the Town of Natchez.
1797. The rate of the clock's going, at the town or village of Natchez.

Clock too flow mean time March 3d. . . 12 " 2.4 Daily lofs.

* The alteration in the going of the clock after the 14th muf have been occafioned by the tent being blown againft it, as mentioned on the 15 th.

Stopped the clock and raifed the pendulum bob.

$$
\begin{aligned}
& \text { do. } \\
& 21 \mathrm{ft} \text {. } \\
& \begin{array}{cccc}
1 & \prime \prime & \text { Daily gain. } \\
8.40 .1 \\
7 & 26.2 & & \\
\hline
\end{array}
\end{aligned}
$$

From this time till the $4^{\text {th }}$ of June the clock was but little attended to, and ran down feveral times.
Clock too faft mean time June 12 th . . 3 . 55 Daily lofs.

$$
\begin{aligned}
& \text { do. I } 1 \text { th } \\
& \begin{array}{ll}
3 & 55 \\
3 & 40.6
\end{array} \\
& 2.9
\end{aligned}
$$

June 26th. The clock was taken down and removed into a houfe, where it was not attended to till September 28 th.

Nov. 22d. Clock ran down, wound it up, fet it a-going and lowered the pendulum bob.

1799°
Jan. 2d. Stopped the clock about 19 minutes and lowered the pendulum bob.

1797.

The refults of the obfervations made at Natchez for the Longitude.
March 3d. Longitude weft from Greenwich by a lunar oblervation the D from the © . . . 66624
do. 6641
do. $6 \quad 5 \quad 54$
$4^{\text {th. }}$ do. 6
6th. . do. 64
17th. . do. 6
2 Ift. . do. 6

23d. . do. 6637
June 12 th. . do. by an immerfion of the ift fatellite of 46665
Sept. 28th. . do. 6
30th. . do. 66

Nov. 24th. . do. 6558
$\begin{array}{lllllll}\text { Dec. } & 3 \mathrm{~d} \text {. . by the beginning of the lunar eclipfe } & 6 & 5 & 36\end{array}$
do. beginning of total darknefs . 666
do. end of total darknefs . . . 6529
do end of the eclipfe . . . $6 \quad 5 \quad 3^{8}$
7th. Dy an emerfion of the 2d fatellite of 46665
17th. . do. . . If fatellite . $6 \quad 5 \quad 58$
24th. . do. . . do. . . 6 6 12
1798. Jan. $4^{\text {the }}$. By an immerfion of the 3 d fatellite $\quad 5 \quad 58$ If
do. emerfion do. . . . 6047
$\left.\begin{array}{l}\text { The immerfion of the fame fatellite by } \\ \text { de Lambre's Tables }\end{array}\right\} \quad 2 \quad 58$
Emerfion of do. by de Lambre's Tables 6457
8th. . Emerfion of the 2d fatellite . .. 6543

26th. . do. . ift : . . 6545

THERMOMETRICAL OBSERVATIONS. 189

The longitude of Natchez is fated in the $4^{\text {th }}$ volume of the Tranfactions of the American Philofophical Society, page 451 , at $16^{\circ} 15^{\prime} 469$ weft from Philadelphia, or $91^{\circ} 29^{\prime} 16^{\prime \prime}$ which is equal to $6^{\mathrm{h}} 5^{\prime} 5 \%^{\prime \prime \prime}$ weft from Greenwich.-That determination includes all the foregoing obfervations previous to the roth of January, except the immerfion, and emerfion of the 3 d fatellite* on the 4 th of that month, which from the imperfection of the theory were omitted.

Vol. V.
C c
Refult

[^29]The telefcopes ufed by Mr. de Ferrer and mylelf were both acromatic, and nearly of the fame magnifying power, (that is about 120), the difference of the meridians will therefore require no correction on account of the difference of the inftruments, and may be fafely taken as above ftated: by which it appears that the town of Natchez, is $\mathbf{x}^{h} 3^{8^{\prime}} 7^{\prime \prime} \cdot 3$ or $24^{\circ} 31^{\prime} 49^{\prime \prime}$ weft of la Guaira.-The latitude of la Guaira as determined by Mr. de Ferrer is $10^{\circ} 36^{\prime} 40^{\prime \prime} \mathrm{N}$.

ASTRONOMICAL AND

Refult of the obfervations for the latitude of Natchez.
Oberved Zenith Diftances of the following Stars.
Face of the Sector Eaft.

Face of the Sector Well.

	- 4455 0.4457 - +450 -•....... . . -4456	$\begin{array}{ccc} 3 & 4 & 0 \\ 3 & 3 & 59 \\ \hdashline 3 & 3 & 56 \end{array}$
	0	$\begin{array}{lll}3 & 3 & 58.3 \\ 3 & 2 & 58.2\end{array}$
$\begin{array}{rlrr}\text { Means } & \cdots \cdots & 8 & 27.5 \\ \text { Refractions } & \cdots & +3.1\end{array}$	0.4525 .2 +0.7	$\begin{array}{cc}3 & 328.2 \\ +3\end{array}$
True zenith diltance . . . 3 - 30.6	- 4525.9	$3 \quad 3 \quad 31.2$

Aftronomical, and Tbermonetrical Obfervations, made at the City of Nere-Orlcans on the Milfil/ippi.

1799.

Jan. Ioth. Set up the clock, thermometer 70° in the afternoon.
IIth. Cloudy all day, thermometer 73° in the afternoon.
12th. Cloudy with mift, thermometer 72° in the morning, fell to 65° in the evening.
I 3 th. Cloudy in the afternoon, thermometer 70° in the morning, fell to 64° in the evening.
14th. Clear, thermometer 62° in the morning, rofe to 63° in the afternoon.

Equal alitudes of the Sun.
A. M. $9^{\text {h }^{\prime}} 6^{\prime} 42^{\prime \prime}$. P. M. $2^{\text {h }} 53^{\prime \prime} 3^{\prime \prime}$ 。

Emerfion of the ift fatellite of 24 oblerved at $6^{\text {h }} 10^{\prime} 37^{\prime \prime}$ P. M.-Night clear, belts diftinat, magnifying power 120 .

15th. Clear day, thermometer 61° at fun rife, rofe in the afternoon to 68°.

> Equal altitudes of the Surn. A. M. $8^{\mathrm{h}} 52^{\prime} 25^{\prime \prime} . \quad$ P. M. 3^{h} $6^{\prime}+8^{\prime \prime}$.

Set up the Sector of fix feet radius. Face to the eaft.
Obfervations on the paffage of the D over $\boldsymbol{\psi}$, and three of his fatellites.

C c 2
The

ASTRONOMICAL AND

The 3 d fatelite at the time of its immerfion was obfcured by a fmall cloud, and as it emerged about the time that 4 was $\frac{2}{3}$ emerged, it was not attended to fo accurately, as to entitle it to a plece among the obfervations.

16th. Cloudy with rain, thermometer 62° at fun rife, fell in the afternoon to 59°.
17th. Cloudy with rain, thermometer 58° at fun rife, rofe in the afternoon to 67°.
I8th. Cloudy, thermometer 59° in the morning, rofe in the afternoon to 61%
19th. Clear, thermometer 56° at fun rife, rofe in the afternoon to 66°.

$$
\begin{aligned}
& \text { Equal altitudes of the Sun. } \\
& \text { A. M. } 9^{\mathrm{h}} 10^{\prime} 47^{\prime \prime} . \quad \text { P. M. } 2^{\mathrm{h}} 46^{\prime} 10^{\prime \prime} .
\end{aligned}
$$

Obferved zenith diftance $\boldsymbol{\beta}$ Andromedx $\begin{array}{lllll}4 & 36 & 28 & \mathrm{~N} .\end{array}$

20th. Clear in the morning, cloudy in the evening, thermometer 60° at fun rife, rofe in the afternoon to 69°.

Obferved zenith diftance a Coro. Borealis $z^{\circ} 3 z^{\prime} 5 z^{\prime \prime}$ so
Equal altitudes of the Sun.
A. M. 94027 P. M. 21549.5 .
arf. Cloudy all day, clear in the evening, thermometer 60° in the morning, rofe to 69° in the afternoon.

Emerfion of the inf fatellite of 4 obferved at $8^{\text {h }} 2^{\prime} 9^{\prime \prime}$ P. M.-Delts diltinet, magnifying power of the telefcope 120.

Obferved zenith diftancé Tauri . 131 10 s. do. . . . Caftor . 22214 N. do. . . \therefore Pollux . 12631.5 s. 22 d

22d. Clear day, thermometer 61° at fun rife, rofe in the afternoon to 72°.

Equal altitudes of the Sun.

23d. Clear day, thermometer 66° at fun rife, rofe in the afternoon to 74°.

Obferved zenith diftance a Coro. Borealis | 2 | 3^{2} | 5^{1} | s. |
| :--- | :--- | :--- | :--- | :--- | do. . . \quad Andromedx $\begin{array}{llll} & 3^{6} & 30 & \mathrm{x} .\end{array}$

Turned the face of the Sector to the weft.
Obferved zenith diftance of Pollux . $1^{\circ} 28^{\prime} 16^{\prime \prime} \varepsilon$.
24th. Clear day, thermometer 68° at fun rife, rofe in the afternoon to 77°.

Obferved zenith diftance of α Coro. Borealis $2^{\circ} 34^{\prime} 34^{\prime \prime}$ s. Equal altitudes of the Sun.
A: M. $8^{\mathrm{k}} 54^{\prime} \mathrm{o}^{\prime \prime}$.
P. M. $2^{\text {h }} 59^{\prime} 33^{\prime \prime}$.

The equal altitudes of this day are doubtful 2 or 3 reconds, from the violence of the wind.

Obferved zenith diftance \& Andromedæ $4^{\circ} 34^{\prime} 49^{\prime \prime} \mathrm{N}$.
The above zenith diftance is doubtful, from the effect of the wind on the plumb-line.

Obferved zenith diftance β Tauri . 1. 3247 s.
do. . . Caftor . 22035 N.
do. . . Pollux . I 28 17 s.
25th. Heavy fog in the morning, thermometer 70° at 60^{\prime} clock A. M. and 79° in the afternoon.

Oblerved

26 th ．
Obferred zenith diftance of β Andromeds $4 \quad 34 \quad 46 \quad \mathrm{~N}$ ．

Clear till 90° clock A．M．afterwards flying clouds，thermometer 75° all laft night，rofe in the afternoon to 79° ．
27th．Cloudy with fine rain－the thermometer continued at 77° all laft night，fell to 68° at 2^{11} P．M．The wind which had been foutherly fince the roth，fhifted to the north，and the mercury fell to 56° in the evening．

Ieb．6th．

> Equal alitudes of the Sun.
> A. M. $9^{\text {h }}{ }^{1} 8^{\prime} 44^{\prime \prime}$. P. M. $2^{\text {h }} 23^{\prime} 44^{\prime \prime}$ 。

7th．and 8th．Heavy rain，accompanied with fharp lightning，and heavy thunder．
9th．Clear－the thermometer 36° at fun rife， rofe in the afternoon to 57° ．
1oth．Clear－the thermometer 30° at fun rife， rofe in the afternoon to 60° ．

Emerfion of the 2 d fatellite of 4 obferved at $9^{\text {h }} 10^{\prime} 26^{\prime \prime}$ ． －Very clear，belts diftink，magnifying power of the tele－ frope 120.

IIth．Clear－the thermometer 31° at fun rife， rofe in the afternoon to 65° ．
12th．Clear－hoar froft－thermometer 38° at fun rife，rofe in the afternoon to 71° ．
17th．Clear－the thermometer 59° at fun rife， rofe in the afternoon to 74° ．

Equal alitiudes of the Sun．
A．M． $9^{\text {h }} 33^{\prime} 16^{\prime \prime}$ 。 P．M． $1^{\text {b }} 57^{\prime} 33^{\prime \prime}$ 。
Latitude of the City of New-Orleans deduced from the 'Zenilh Difances.

 lace of the Scetor Eaft.
 Means face woft
훈웅 Correct zenith diftances
Mean declinations, 23 d Jan. 159 Aberrations - suonzu!pop on ra Correet zenith diftances applied
Latitude

The above determination differs but $1^{\prime \prime} .3$ from the latitude of NewOrleans as ftated in the requifite tables, and which may have arifen from the obfervations being made in different parts of the city.

Longitude of the city of New-Orleans, deduced from the eclipfes of 4 's fatellites.

From the 24th of January, till I left New-Orleans, I was engaged in decking, and rigging a fchooner, to tranfport our baggage, apparatus, and provifions along the coalt, and therefore unable to attend conitantly to the going of the clock, which was fet up in a place much expofed, and probably the cafe was by fome accident fhifted a fmall matter between the 6th, and 17 th of February, from the pofition it had when fet up: This appears likely from the rate of the clock's going during that interval.

An emerfion of the ift fatellite of $4 f$ was obferved on the i4th of January at $6^{\text {h }} 10^{\prime} 37^{\prime \prime}$ P. M. - the clock was then too flow mean time 10^{\prime} $05^{\prime \prime}$, the obfervation was therefore made at $6^{11} 20^{\prime} 42^{\prime \prime}$ mean time, from which deduct $9^{\prime} 4^{\prime \prime}$ the equation of time, and the remainder $6^{h} 10^{\prime} 54^{\prime \prime}$ will be the apparent time, which deducted from $12^{\text {h }} 12^{\prime} 19^{\prime \prime}$ the apparent time at Greenwich by the theory, the remainder $6^{h} I^{\prime} 25^{\prime \prime}$ will be the difference of meridians.

An emerfion of the ift fatellite of 4 was obferved on the 21 ft of January at $8^{h} 2^{\prime} 9^{\prime \prime}$ P. M. The clock at the time of obfervation was $14^{\prime \prime} 34^{\prime \prime}$ too flow mean time, the obfervation was of courfe made at $8^{\mathrm{h}} 16^{\prime} 43^{\prime \prime}$ mean time, from which deduct $1 z^{\prime} 0^{\prime \prime}$ the equation of time, and the remainder $8^{h} 4^{\prime} 43^{\prime \prime}$ will be the apparent time of the obfervation, which deducted from $14^{\prime \prime} 5^{\prime} 43^{\prime \prime}$, the apparent time at Greenwich by the theory, the remainder $6^{h} 1^{\prime} 00^{\prime \prime}$ will be the difference of meridians.

On the 10th of February at $9^{\text {h }} 10^{\prime} \mathbf{2 6}^{\prime \prime}$ P. M. an emerfion of the 2 d fatellite of 4 was oblerved, the clock was then $26^{\prime} 26^{\prime \prime}$ too flow mean time, the obfervation was therefore made at $9^{n} 36^{\prime \prime} .52^{\prime \prime}$ - mean time, from which deduct $14^{\prime} 38^{\prime \prime}$ the equation of time, and the remainder $9^{\text {b }} 22^{\prime} 14^{\prime \prime}$ will be the apparent time of the oblervation, which taken from $15^{\text {h }} 22^{2} 5^{\prime \prime}$ the apparent time at Greenwich by the theory; the remainder $5^{\text {h }} 59^{\prime} 52^{\prime \prime}$ will be the difference between the meridians.

The longitude given by the 2 d fatellite, does not appear from the theory to be entitled to more than half the weight of either of thofe by the firf ; this being admitted, the longitude will be had as below.

Longitude weef.
By the emerfion of the ift fatellite?

Mean . - . . 6
$6.0 \quad 56=90^{\circ} \quad 14^{\prime}$ weft from Greenwich, or $1^{h 1} O^{\prime} 21^{\prime \prime}=15^{\circ} 5^{\prime} 15^{\prime \prime}$ weft from Philadelphia.

The longitude of the city of New-Orleans is fet down in Robertfon's Navigation at $89^{\circ} 54^{\prime} 0^{\prime \prime}$ or $5^{\text {h }} 59^{\prime} 36^{\prime \prime}$ welt. In the requifite tables at $89^{\circ} 58^{\prime} 45^{\prime \prime}$ or $5^{\mathrm{h}} 59^{\prime} 55^{\prime \prime} \mathrm{W}$. and by the French academicians* at about 90° or $6^{\text {b }}$ welt from Greenwich.-The difference is not confiderable, and perhaps the refult of nyy obfervations may agree with the foregoing authorities fill more nearly, when compared with correfponding ones, or others made about the fame time, at any obfervatory the longitüde of which has been accurately fettled.

The obfervations on the paffage of the D over 4 , and three of his fatellites, before mentioned, will be reduced to apparent time, by adding $34^{7 \prime}$ to each obfervation.

Obfervations made on the tranfit of $\not \underset{q}{ }$ in May 1799 at Miller's place on the Coenecuch river, commonly, (though erroneoufly), called the Efcambia, in lat. 30° $49^{\prime} 33^{i} \mathrm{~N}$. by meafurement, from the fouth boundary of the United States, and due fouth from the end of two hundred and forty-eight miles, and one hundred and eighty-fix perches eaft from the Miffifippi, in the parallel of $31^{\circ} \mathrm{N}$. lat.

May 2d. The inftruments arrived in a boat from the head of Penfacola-Bay.

$$
\text { VoL. V. D d } 3 \mathrm{~d} .
$$

[^30]3d. Put up the clock and ret it to apparent time nearly.

> Equal altitudes of the Sun; $3^{\mathrm{d}} 20^{\mathrm{h}} 22^{\prime} 34^{\prime \prime} \cdot \quad 4^{\mathrm{A}} 3^{\mathrm{S}} 37^{\prime} 27^{\prime \prime}$.
$4^{\text {th }}$.

> Equal altitudes of the Sunn. $4^{\mathrm{d}} 20^{\mathrm{d}} 30^{\prime} 17^{\prime \prime} .5^{\mathrm{d}} 3^{\mathrm{h}} 29^{\prime} 51^{\prime \prime}$.
$5^{\text {th. }}$

$$
\begin{aligned}
& \text { Equal altitudes of the Sur. } \\
& 5^{\mathrm{d}} 20^{\mathrm{h}} 22^{\prime} 47^{\prime \prime} \text {. } 6^{\mathrm{d}} 3^{\mathrm{h}} 37^{\prime} 45^{\prime \prime} \text {. }
\end{aligned}
$$

6 th. At $19^{\text {h }}$ 最 appeared beautifully defined through a midding heavy fog on the face of the fun, at $2 \mathbf{1}^{\text {b }}$ the fog dirappeared.

The external contact is certain within the $\frac{1}{2}$ of a fecond.
-Magnifying power of the telefcope 200.
The internal contact at the egress?

$\left.\begin{array}{l}\text { Minor, His Catholic Majefty's } \\ \text { conmiffioner, at }\end{array}\right\}$
The external do. at 224814
Magnifying power of the telescope 35 .
The internal contact at the egrefs
$\left.\begin{array}{l}\text { was observed by my affiftant } \\ \text { Mr. David Gillifpie at }\end{array}\right\}$ • 2246 21
The external do. at 224759
Magnifying power of the telefcope 25 .

$$
\begin{aligned}
& \text { Equal altitudes of the Sunn. } \\
& 6^{\mathrm{d}} 20^{\mathrm{h}} 15^{\prime} 21^{\prime \prime} \cdot 7^{\mathrm{d}} 3^{\mathrm{h}} 45^{\prime} 36^{\prime \prime} .
\end{aligned}
$$

The rate of the clock's* going deduced from the equal altitudes.
Daily gain.

The clock was $4^{\prime} 5^{\prime \prime}$ too falt mean time when the obfervations on the tranfit of \wp were made, and the equation of time $3^{\prime} 44^{\prime \prime}$ additive to the mean time, the difference therefore between $4^{\prime} 5^{\prime \prime}$ and $3^{\prime \prime} 44^{\prime \prime}$ being dedusted from the obfervations will give the apparent times.

A Lunar obfervation made near the moutb of the Chatian bocba.

It was my original intention to have taken charts of the fouthern parts of all the rivers interfected by the 3 Ift degree of N . lat. and falling into the gulf of Mexico between the Miffiffippi, and St. Marks: But having no buefinefs up or down the Pafkagola, (which is a large river and navigable for boats of burden many miles above the boundary), it was omitted.-The Chattahocha, or as it is fometimes called the Appalachicola, is a river of more importance than the former, and a map of it from the boundary to its mouth was a defirable object ; but owing to the precipitate manner we had to leave the country in confequence of the hoftile difpofition of the Indians, and defcending the river partly in the night, it was impoflible to take a fketch of it with any tolerable degree of accu-racy.-About 4 minutes of a degree north of the entrance of its weftern branch into St. George's Sound, I found the latitude to be about $29^{\circ} 46^{\prime} 5^{3} \mathrm{~N}$. - At the fame place

D d 2
on

[^31]on the bank of the weftern branch, the following obfervations were made to determine the longitude.

The obferved times, and difances of the ©'s and D's neareft limbs.

The firf and third fets of obfervations were made to determine the crror of the watches and their rate of going. By the firft fet of obfervations watch N°. I appeared to be too llow $13^{\prime \prime}$ and $\mathrm{N}^{\circ} .2$ too falt $9^{\prime \prime}$. By the third fet made about $44 \frac{\frac{x}{2}}{}$ minutes after the firft, the watch $\mathrm{N}^{\circ}{ }^{\circ}$. I was too llow $23^{\prime \prime}$ and $\mathrm{N}^{\circ} .2$ too faft $6^{\prime \prime}$-hence $\mathrm{N}^{\circ} .1$ loft $10^{\prime \prime}$ in $44 \frac{\mathrm{x}}{2}$ minutes and N°. 2 lolt $3^{\prime \prime}$ nearly in fame time: The errors of the watches reduced to the time of the lunar obfervation and applied to it will give $22^{\mathrm{d}} 21^{\text {h }} 2^{\prime \prime} 41^{\prime \prime}$

THERMOMETRICAL OBSERVATIONS.

for the correct apparent time. The longitude of the place of obfervation was eftimated at $5^{11} 39^{\prime}$ weft from Greenwich. From the latitude of the place, the apparent time of the obfervation, and the eftimated longitude, the true altitude of the D 's centre comes out $64^{\circ} 53^{\prime} 52^{\prime \prime}$ and that of the

which added to 23 days will give for the time at Greenwich	
from which deduet the apparent time of the obrervation	2221241
Longitude of the place of obfervation weft	$0: 539.23$

The above determination of the geographical pofition of the place of obfervation,- is probably as correct, if not more fo, than in our beft charts. From this example it may be feen with what eafe, both the latitudes, and longitudes of places may be determined on land for common geographical purpofes with a good fextant, a well made watch with feconds, and the artificial horizon, the whole of which may be packed up in a box of 12 inches in length, 8 in width, and 4 in depth.

This paper being now carried to the length intended, and embracing the objects propofed, I have only to add that

> I am with fincere efteem,

Your friend, \&cc.
AND ${ }^{w}$. ELLICOTT.

Mr. Robert Patterson,
V. P. American Yhilooo
phical Society.

No.

No. XXI.

Aftronomical, and Thermometrical Obfervations, made on the Boundary betrucen the United Stales and His Catbolic Majefly. By Andrew Ellicott.

Philadelphia, Scpt. $23 \mathrm{~d}, 180^{\circ}$.

Dear Sir,

T is with real pleafure, that I embrace this opportunity of prefenting through you to the American Philofophical Society the following aftronomical and mifcellaneous obfervations, made on the boundary between the United States, and His Catholic Majefty.

So far as this addrefs can be confidered as a mark of refpect, you are entitled to it from the fervices you have rendered this country, in the uniform attention, and the judicious manner, in which you have difcharged the laborious duties, of profeffor of the mathematicks in the univerfity of Pennfylvania: But exclufive of this, you are entitled to it from me in a more particular manner, as the preceptor of my youth, and at all times fince, my difinterefted friend.

I feel a confidence that any crrors, or inaccuracies, which may be found in the following work, will not only meet with your indulgence, but with that of every other perfon of fcience, acquainted with the difficulties under which I laboured. - To William Dunbar, Efq. of the Miffiffippi Territory I feel myfelf under the greateft obligations, for his affiftance during the fhort time he was with us; his extenfive fcientific acquirements, added to a fingular facility in making mathematical calculations, would have reduced my labour, to a mere amufement, if he had continued.-To my affiftants Meffrs. Gillefpie, Ellicott, junr. and Walker, the former of whom acted as furveyor,
veyor, I have likewife to acknowledge my obligations, for the promptitude with which they executed the orders, they received, and the aid they gave me in making the obfervations.

An Account of the Apparatus ufed on the Bouxdary between the United States and His Catbolic Majefly.

On behalf of the United States we had,
iftly, One zenith fector of nearly fix feet radius fimilar to the one made by Mr. Graham for Dr. Bradley and Mr. Molyneux, with which the aberration of the ftars, and nutation of the earth's axis were difcovered, and the quantities determined.
adly, Another zenith fector of 19 inches radius to be ufed when the utmoft accuracy was not neceffary, and where the tranfportation of the large one could not be effected without great expenfe and difficulty. Thefe inftruments were principally executed by my late worthy, and ingenious friend Mr. Rittenhoufe, except fome additions which 1 have made myfelf. The plumb lines of both fectors are fufpended from a notch above the axis of the inftruments, in the manner defcribed by the Rev. Dr. Markelyne the prefent Aftronomer Royal at Greenwich, in the introduction to the firft volume of his Aftronomical Obfervations. A particular defcription of thofe inftruments is rendered unneceffary, by being accurately done in a number of fcientific works, particularly by M. de Maupertuis in his account of the meafurement of a degree of the meridian under the arctic circle. The fector is of all inftruments the beft calculated for meafuring zenith diftances which come within its arch. The large
large one above mentioned extends to 5 degrees north, and fouth of the zenith, and the fimall one to between 8 and 9 degrees. Stars when fo near the zenith are infenfibly affected by the different refractive powets of the atmofphere arifing from its different degrees of denfity, add to this that the error of the vifual axis is completely corrected by taking the zenith diftances of the ftars with the plane, or face of the inftrument both eaft and weft.

3dly. A large acromatic telefcope made by Mr. Dclland of London, which exclufive of a terreftrial eye piece which magnifies about 60 times has three other eye pieces for celeftial purpofes, the magnifying powers are 120 , 200 , and 300 , the firft I generally ufed. This inftrument for producing a well defined clear image is excceded but by few reflectors.

4 thly. A tranfit and equal altitude inftrument, which I conftructed and executed in the year 1789 , and ufed in running the weftern boundary of the ftate of New York, and afterwards in running the boundaries of the diftrict of Columbia, and the principal avenues in the city of Wafhington. It is mentioned in the 4 th Vol. of the Tranfactions of the American Philofophical Society, No. 6. page 49.

5thly. Two acromatic telefcopes for taking fignals with fliding tubes, one of them drew out to upwards of 4 feet, and the other to about 15 inches,-the latter for its length is remarkably good, it fhews the fatellites of Jupiter very diftinctly.

6thly. A regulator which I executed in the year 1784. 7 thly. An inftrument of 8 inches radius for taking horizontal angles, made by the late Mr. George Adams of London, and fimilar to the one defcribed by M. de Maupertuis in the work already mentioned'.

8thly. Three brafs fextants; one of them executed by Mr. Ramfden in a fuperior ftyle. It is 7 inches radius, and by the vernier divides to 20 feconds, which may be
VoL. V. E e again
again fubdivided with eafe by the eye, aided with the microfoope. This fextant I ufed in taking all the lunar diftances.
gthly. A furveying compafs made by Mr. Benjamin Rittenhoufe upon the neweft, and mof approved plan.

Iothly. Two excellent fop waiches, with fecond hands, to be ufed if any accident fhould happen to the regulator, or at places to which it could not be taken.
inthly. Two excellant cafes of drawing, and plotting inftruments.
i2thly. Two copper lanterns to be ufed in tracing meridians, and giving the direction of lines when determined in the night by celeftial obfervation. Thofe lanterns had four fides, each fide about $4 \frac{1}{2}$ inches wide, and 3 inches high : in the front of each is a flit, or aperture of about 5 inches in length, and 3 tenths of an inch in breadth; through which a lighted candle is to be feen in the night. To render this flit, or aperture more confpicuous in day-light, a flip of white paper was fometimes faftened to the copper on each lide of it, and at others a piece of white paper was placed behind the lantern, which rendered the aperture very diftinct, when the door which is on the oppofite fide to the aperture was opened. L. L. L. Plate V. are different views of the lanterns.

I 3thly. An apparatus to fecure the water in ufing the artificial horizon againft the effects of the wind : As an accurate knowledge of the time, is of the utmoft confequence in aftronomy, it is abfolutely neceffary that the obfervations for that purpofe be made with certainty. On this account I fhall be more particular in defcribing the method I have purfued for fifteen years, without finding it liable to any objection of weight. It is well known that equal altitudes of the fun, or ftars, afford the readieft method of obtaining the time for occafional purpofes, and at land thofe equal altitudes mult be taken from an artificial horizon if a quadrant, or fextant be ufed. It is therefore
therefore neceffary that the water, or any other fluid made ufe of fhould be entirely free from any undulation both fore, and afternoon, when the obfervations are made, which will not be the cafe if the furface is expofed even to a very light breeze, to effect this purpofe I have made ufe of the following apparatus, viz.

Plate V. Fig. 1. reprefents a tin cup, about 2 inches deep, 5 inches long, and 3 wide; it is well to have the buttom made heavy by fitting fome lead in it. This cup is to be filled with water and the wind kept from it by covering it with the roof (Fig. 2.) the ends, and lower parts of which are made of tin, and the principal part of the fides, or inclined planes are of talc or ifinglafs; which fhould be of a good quality, and rendered fufficiently thin by feparating, and taking off a number of laminæ with the point of a penknife. The lower part of the roof fhould be fo conftructed, as to go down into the cup about 3 tenths of an inch. The degree of inclination of the planes, forming the two fides of the roof is of little importance. The planes of the one I have always ufed ftand nearly at right angles to each other. The lower part of the roof fhould go eafily into the cup, becaufe it fometimes happens that the evaporation from the water, will be fo abundant as to cover the ifinglafs, and render the image of the fun which is reflected from the water obfcure: In that cafe the roof muft be removed a few feconds of time, and the particles of water on the ifinglafs will difappear. As the ifinglafs when properly reduced will be very thin, and confequently tender and delicate, it is neceffary that it fhould be defended againft accidents when not in ufe, for this purpofe a cafe of tin fuch as reprefented by Fig. 3. will be found convenient. The equal altitudes in the following work, with a few exceptions, were taken with fextants, fometimes by three perfons following each other as quick as puffible, the E e 2 correfponding
correfponding forenoon, and afternoon obfervations, were added up in feparate fums, and divided by the number of terms for the means, by which they were reduced to a fingle expreffion, as entered in the journal or diary. The three fextants gave nine obfervations, and it frequently happened that the extremes of the nine obfervaicins, did not differ more than 1 or $1 \frac{1}{2}$ feconds. After the forenoon obfervations were made, the fextants were carefully laid away, care being taken not to touch the indexes till the afternoon obfervations were completed.

14 thly. Two two-pole chains of the common conftruction.

The apparatus on the Spanifh fide was much lefs conindcaivle : It confifted of the following inftruments.
ift. An excellent fextant, which graduated by the vernier to 10 feconds: It was prefented by William Dunbar, Eiq. to Governor Gayofo, after my arrival in that country.
adly. An aftronomical circle executed by Mr. Traughton of London, for the above mentioned William Dunbar, and fold by him to Governor Gayofo to be ufed on the boundary. This inftrument is in itfelf a portable obfervatory, and executed in a mafterly manner ;-the different circles are by the vernier divided into 5 feconds, and may very eaflly by the eye, aided with the microfcope be again fubdivided. The graduations appear to be perfect, fo far as human dexterity extends. This inftrument was fent away a few days before the Indians made an attack upon us at the mouth of Flint River.

3dly. An old furveying compafs very flightly made, and was for a thort time accommodated with a wooden fight, which was done (with confiderable dexterity) by Mr. Patrick Taggert, a deputy furveyor on the Spanifh fide, who was very ufeful in every fage of the bufinefs.

Obfervations

Obfervations made with the fix-feet Zenith Sector on Union Hill near the Miffiffippi river, for determining the firft point in the boundary between the United States, and His Catholic Majefty's provinces of Eaft and Welt Floridas.

Face of the Sector Eaft

10th.	Obferved zenith difance of	β Pegafi	3	59	37.5
th.	do.	a Coro. Borealis	3	$3+$	$4+$
12th.	do.	\& Andromedæ	3	C	32
	do.	Caftor	1	20	10
	do.	Pollux	2	28	3^{8}
	do.	a Coro. Borealis	3	34	46
$13^{\text {th. }}$	do.	a Andromèdx	3	-	31
	do.	Caftor	I	20	8.8
	do:	Pollux	2	28	38
	do.	3. Pegafi	3	59	40.5
14th.	do.	a Andromedx	3	-	34
	do.	\& Coro. Borealis	3	34	47
15 th.	do.	a Andromedæ	3	0	35
	do.	Caftor	1	20	12
	do.	Pollux	2	28	40
6th.	do.	β Pegafi	3	59	40

Face of the Sector Weft.
The foregroing Obferved Zenith Diftances when ar

1798.	a Andromed	Caftor.	Pollux.	${ }_{0}^{\beta} \text { Pegafi. }$	« Coro. Borealis.
May 6th.	32 II s.	11839.5 N .	23019 s .		
7 th.	3212.8	11833.3	$230 \cdot 19.5$	4115 s.	
8 th.	3212.6		230×8.6	$\begin{array}{llll}4 \\ 4 & 1 & 13.5 \\ 4 & 1 & 16.3\end{array}$	$\begin{array}{llll}3 & 36 & 28.8 & \text { s. } \\ 3 & 36 & 26.2 & \end{array}$
	3212.1 s	1833.3 N	23019.1 s.	4.14 .9	3.3627 .5 s .

			35937.5 s .	$\begin{array}{llll}3 & 34 & 44 & \text { s. }\end{array}$
$3 \circ 32 \mathrm{~s}$.	12010 N.	22838 s.		33446
$3 \circ 3 \mathrm{I}$	120888	22838	35940.5	
3.34				33447
$3 \bigcirc 35$	2012	22840		
			35946	
$\begin{array}{lllll} \hline 3 & 0 & 33 & 5 \\ 3 & 2 & 12.1 & 5 \end{array}$	$\begin{array}{llll} 1 & 20 & 10.3 \mathrm{~N} \\ \mathrm{I} & 18 & 33.3 \mathrm{~N} \end{array}$	2 38 38.7 5 2 30 19.1 s.	$\begin{array}{rrrrr}3 & 59 & 39.3 & \mathrm{~s} \\ 4 & 1 & 14.9 & \mathrm{~s} .\end{array}$	$\begin{array}{cccc}3 & 34 & 45 \cdot 7 & \mathrm{~s} \\ 3 & 36 & 27.5 & \mathrm{~s} .\end{array}$
3.122 .5 s.	$\begin{array}{cc}119 & 21.8 \mathrm{~N} . \\ + & 1.3\end{array}$	22928.9 s $+\quad 2.5$	4.027.1s.	$33536.6 ~ s$. +3.5
3125.5 s.	1923.1 N.	22931.4 s.	4 - 31.1 s.	33540.1 s.

 Mean declination, on the roth May Nutations
Semi. ann. equations...
True declinations...
True zenith diffances applied.
Latitudes ...

Latitude

Latitude by	2 Andromedx	30	59	45.7
do.	Caltor	30	59	44.4
do.	Pollux	30	59	45.2
do.	B Pegafiz	30	59	38.3
do.	α Coro. Borealis	30	59	45.1
Mean Latitu	de north	30	59	$43 \cdot 74$

From the refult of the above obfervations it appears that the obfervatory was $16^{\prime \prime} .26$ or about one thoufand, fix hundred and forty-four feet and eight-tenths of a foot Engliih meafure too far fouth, which difance was laid off to the north on a meridional line drawn from the obfervatory O to the point A, (fee Plate V. Fig 4.). The point A is in a deep hollow, or chafm. -From the point A a vilta was opened both to the ealt and welt, and as near at right angles to the meridian as pofible: but the point A being too low for doing it with certainty, the clevated pofition B ealt from A, and diftant thirty-four perches; was pitched apon as the moft proper place for commencing our operations. The tranfit inltrument was accordingly put up at B , and the perpendicular or vertical fibre of the telefonpe, was brought to defcribe the prime vertical by taking equal altitudes of Arcturus. -This was effected in the following manner: a piece of timber T , flatted on the upper fide, was placed at the point C, difitant frm B feventy-one perches, and at right angles to the vifta; on this piece of timber at U, one of the copper lanterns already defcribed was placed on the 18 th in the afternoon; the tranfit inftrument being previoully adjufted, and the vertical fibre which was a fingle thread of fider's web, being brought to bifect the aperture in the front of the lantern.-A few minutes before the ftar in its afcent was expected to appear in the field of the telefcope, it was elevated about forty-one and an half degrees: immediately upon the far's making its appearance, the horizontal fibre of the telefcope was brought to bifect it, and kept upon it by gradually elevating the inftrmment until the far arrived at the interfection of the fibres, at that infant the elevating arc was faftened, and afterwards the clamp of the perpendicular axis was loofened. On the morning of the 1gth, the level of the intrument was carefully examined and adjulted. A fhort time before the ftar was expected to appear in the field of the telefcope, in its defcent, the telefcope was directed weit: as foon as the ftar appeared in the field, the clamp was faltened and the vertical fibre brought to bifect the ltar, and kept upon it by the ferews which direct the arm of the clamp until it arrived at the interfection of the fibres- The elevating are was. then loofened, and the telefcope taken out of the Y 's and reverfed; a lighted candle having been previouly put into another lintem fimilar to the firt, and placed on the fame piece of timber. 'The aperture of the fecond lantern was brought into the direction of the vertical fibre (which fuppofe to be at n) by an affiftant at C, who received the neceltury fignals for that purpofe from the obferver at \mathbf{B}. - In the forenoon of the fame day the diatance between the apertures of the two lanterns was carefully bifected,
which fuppore to be at S. Tlie firt lantern was then removed and the aperture brought to coincide with the point of bilection. In the afternoon of the fame day, the rertical fibre of the telefcope being brought to bifect the aperture of the lantern at S, Arcturus was again obferved in its afcent, and the morning following in its defcent.-The inftrument was reverfed as in the firft cafe, and the aperture of the fecond lantern which was now put on the flatted piece of timber V, placed about 18 inches below the firft, and brought truly jnto the direction of the vertical fibre by an affiftant. Tlie candle in the firft laniern at S was then lighted, and the flames of boin were biected by the rertical fibre. Being by this obfervation convinced, that the telefoope moved accurately in the prime vertical, the line was then opened weft with that direetion, the diftance of two hundred and thirty-five peaches to high water mark: as the inftrument then defcribed the prime vertical, the offset into the parallel of latitude, (which became a tangent to the arc', was laid off to the north, being two and an half inches, where a hewn polt was fet up and furrounded by a mound of earth.-At S, the tungent of an angle of $2^{\prime} 36^{\prime \prime} 45^{\prime \prime \prime}$ having BC for its bafe was laid off to the north by meaturing from the middle of the aperture of the lantern, the diftance of 10.68 inches, at the termination which fuppofe to be at r, a fine mark was placed, which the verticle fibre was brought to bifect. -This mark gave the direction of an arc, which continued the diftance of ten miles, would again interfert the parallel of latitude, which would then become a chord to the arc, and the offsets be to the fouth, and fall within the vifta we were opening: by taking fo fmall an arc, the trouble and expence of opening two lines through one of the molt impenetrable couniries in the world was avoided.

At the termination of the firlt mile Ft. In. which was 85 perches eaft of the tranfit $\}$ I 0 . was laid off to the fouth. fation at B an offset of

At the termination of the fecond mile

4	5	\vdots	do.
7	0	\ddots	do.
8	9	\vdots	do.
9	9	\ddots	do.
9	11	\ddots	do.
9	4	\vdots	do.
8	8	\vdots	do.
5	9	$:$	do.
2	9	\ddots	do.

On the $17^{\text {th }}$ of July, we mowed our camp to Big Bayou Sara, about $37^{\prime \prime}$ north of the parallel of 31° and 9.6 perches eaft of the ten mile polt. On the 19th fet up the clock, and prepared to oblerve fuch of the eclipfes of 4 's fatellites as fhould be vifible while we continued at that fation.

$$
4
$$

(a)

> Equal altitudes of the Sun.
> A. M. $8^{\mathrm{h}} 9^{\prime} 35^{\prime \prime} . \quad$ P. M. $3^{\mathrm{h}} 4^{6^{\prime}} 56^{\prime \prime}$.

Prepared to obferve an immerfion of the if fatellite of 4.-At $13^{\text {h }} 43^{\prime}$ a fmall cloud began to obfcure the moon. but 4 and his fatellites continued very bright till about ${ }^{\prime} 3^{\text {b }} 44^{\prime} 26^{\prime \prime}$ when the if fatellite began to lofe its luftre; At $13^{\text {h }} 44^{\prime} 35^{\prime \prime}$ the cloud which appeared over the moon, extended itfelf almoft inftantaneoully over the whole hemifphere, and obfcured the fars and planets.

> Equal altitudes of the Sun.

$$
\text { A. M. } 8^{\mathrm{h}} 6^{\prime} 4^{\prime \prime} \text {. } \quad \text { P. M. } 3^{h} 4^{\prime} 19^{\prime \prime} .
$$

Equal altitudes of the Sun.

$$
\text { A. M. } 7^{h} 57^{\prime} \text { i } 9^{\prime \prime} . \quad \text { P. M. } 3^{\text {h }} 56^{\prime} 2^{\prime \prime}
$$

9th. Emerfion of the 2 d fatellite of 4 oblerved at $13^{\text {h }} 13^{\prime} 9^{\prime \prime}$. The planet and his fatellites middling bright. Magnifying power of the telefcope 120 .

On the 6th and gth of this month, at the diflance of 9 miles and ninety perches from the firft tranfit ftation B, and diftant from the point D Plate VI. 10 miles and 5 perches, equal altitudes of a Delphini were taken in the fame manner, as already related with A returus, to determine the direction of our are, which on a bafe of 212.5° perches, was 3 t inches fouth of the prime vertical, which is equal to an angle of $2^{\prime} 3^{14} 6^{\prime \prime}$. This angle ought to have been but $2^{\prime} \times 3^{\prime \prime} 59^{\prime \prime \prime}$, the difference $0^{\prime} 17^{\prime \prime} 7^{A \prime \prime}$ was therefore the error of the arc to the fouth. Now fuppofe this error to have been gradually accumulating, which is very probable, it would at the diftance of 9 miles and 90 perches, (the fpace between the' tranfit ftations;, have carried the arc about 2 feet too far to the fouth: But the tranfit at the diftance of 9 miles and 90 perches from-the-firt fation, ought to have been 2 feet and 7 inches north of the parallel, the difference therefore of 7 inches is the difance of the tranfit to the north of the parallel at its fecond ttation, and which is included in the offsets fon the fecond are to the termination of 18 miles, and 118 perches from the point D.-On the yth another are for 10 miles was laid off, making an angle of $2^{\prime} 36^{\prime \prime} 45^{\prime \prime \prime}$ with the prime vertical. The bafe was 212.5 perches eaft, and the perpendicular 32 inches north from the aperture of the lantern.

* The equal altitudes of the fun, and his paffage over the meridian with the thermometrical obfervations when they occur, are entered according to the civil account, the others according to the mode of aftronomers.

15 th.
Equal altitudes of the Sun.
A. M. $8^{\text {h }} \cdot 3^{2^{\prime}} 55^{\prime \prime} \quad$ P. M. $3^{\text {h }} 15^{\prime} 55^{\prime \prime}$

16 th. Immerfion of the $2 d$ fatellite of 4$\}$
Emerfion . do. . $\quad 15 \quad 48 \quad 16$ The night clear, Belts diftinct, magnifying power 120.
isth.
Equal altitudes of the Sun.
A. M. $8^{\mathrm{h}} 14^{\prime} 57^{\prime \prime}$
P. M. $3^{\text {h }} 3^{\prime} 27^{\prime \prime}$

23 d.

$$
\begin{aligned}
& \text { Equal. altitudes of the Sun. } \\
& \text { A. M. } 8^{\mathrm{h}}{ }_{23^{\prime}} 8^{\prime \prime} . \\
& \text { P. M. } 3^{\mathrm{h}} \\
& 19^{\prime} \\
& 54^{\prime \prime} .
\end{aligned}
$$

Immersion of the 2 d fatellite of 4 observed at $15^{\text {br }} .58^{\prime} 25^{\prime \prime}$. Belts ditinct, magnifying power 120 .

3 eth.
Equal altitudes of the Sun.
A. M. $8^{\mathrm{h}} 22^{\prime} 40^{\prime \prime} . \quad$ P. M. $3^{\mathrm{h}} 14^{\prime} 34^{\prime \prime}$ 。

3ıf. Clock ran down in the morning, wound it up and et it a-going; and took the following
$\begin{gathered}\text { Equal altitudes of the Sun. } \\ h\end{gathered}, \quad / 1$
A. M. $94^{2} 22.5$.
P. M. 22611

Sept. ifs.

> Equal altitudes of the Sun.

$$
\text { A. M. } 8^{\mathrm{h}} 28^{\prime} 47^{\prime \prime} . \quad \text { P. M. } 3^{\mathrm{h}} 38^{\prime} 54^{\prime \prime}
$$

Immersion of the oft fatellite of 4 observed at $15^{\mathrm{h}} 58^{\prime} 50^{\prime \prime}$. Belts very distinct, magnifying power 120 .

2d.
Equal altitudes of the Sun.

$$
\text { A. M. } 8^{\mathrm{h}} \cdot 29^{\prime} 15^{\prime \prime} . \quad \text { P. M. } 3^{\mathrm{h}} 37^{\prime} 32^{\prime \prime} \text {. }
$$

This was the laft observation made at Bayou Sara.

Refult

Refult of the equal altitudes of the Sun taken at Bayou Sara.

Clock ran down early in the morning of the 3 Ift , wound it and fet it a-going.
Clock too faft mean time Aug. 3 ift. 4 " Daily "lofs.

- Longitude deduced from the eclipfes of Jupiter's fatellites, obferevd at

Bayou Sara.

When the firf point of latitude was determined on the Miffiffippi, the annual inundation prevented our approaching the banks of the river: But on the 28 th of July, the waters having fubfided it was mutually agreed that William Dunbar, Eíq. his Catholic Majefty's aftronomical commiffioner, fhould proceed to the point D at high water mark, and extend the line from that point to the ealtern bank of the river aforefaid, which he completed on the 18 th of Augult, and whofe report is in the following words.
"On the 28th of July, the line then approaching the 10 th mile, and learning that the waters of the inundation were retired within the banks of the Miffilippi, fo that the lands were become fufficiently dry to give firm footing to the labourers, the aftronomer for His Catholic Majelty taking upon himfelf the extending of the line through the river low ground to the eaftern margin of the Miflifippi. The party allotted for this fervice did accordingly encamp at the point D , pufhing the line forward in continuation of the tangent commencing at the point B. Judging the prefent a convenient pofition for verifying the direction of the line, the attronomer for His Catholic Majefty eftablifhed his obfervatory near the point D, and made the following obfervations with the circular inftrument*. placed in the direction of the tangent, viz.

$$
\mathrm{Ff}_{2}
$$

"On

* The aftronomical circle already mentioned.
＂On the aftronomical 1 sth of Augult were taken equal altitudes of the itar $\tau \mathrm{Pe}$ afi the cattern oblervatory＊being made precifely on the vertical arc correfponding to the line，and the fecond to the weitward being com－ pleted，and the circle with its telefcope reverfed，the axis of the inftrument was found to make an angle to the fouth of $20^{\prime \prime}$ with the lantern placed carefully in the direction of the line，and confequently the direation of the line at the obfervatory is $10^{\prime \prime}$ ．to the north of eaft．The diftance of the ob－ fervatory from the point B is 3430 French feet，\dagger therefore by calculation the line paffing through the obfervatory makes an angle of $21^{\prime \prime} 41^{\prime \prime \prime}$ nor－ therly＂with due eaft ：But by obfervation this angle is only． $10^{\prime \prime}$ ，hence it would appear that the line inclines too much to the fouth by the quantity of $11^{\prime \prime} 41^{\prime \prime \prime}$ ；which in running 100 miles would caufe a deviation of nearly 28 French feet．So fmall a difference between the two fets of obfervations may well arife from the imperfection of intruments，combined with the un－ avoidable errors of obfervation．
＂The line being extended to the margin of the Mifliffippi on the ryth of Augult，the meafurement from the point D was found to be 2 miles and 180 perches Englifh mealure，or 2III． 42 French toifes．At the diftance of I and 2 miles at the points x and y ，were erected fquare polts furrounded by mounds．of earth，and at the ditance of 88 French feet from the margin of the river，and in the parallel of latitude was erected a fquare polt io feet high furrounded by a mound of eight feet in height．On this polt is infcribed on the fouth fide a crown with the letter \mathbf{R} underneath； on the north U．S．and the weft fronting the river，Agofto 18th，1798．Lat． $31^{\circ} \mathrm{N}$ ．In erecting the mile polts，due regard was paid to the quantity of the offsets to the north of the tangent，and are by calculation as follows，

Difance from the point B ．							Offsets Englifh Meafure		Offets			
							French	Meafu				
Mounds．	芲	華		突	葡	范免			岕			
D	602	3.	2	0	234	\bigcirc	0	2.6		2.5		
x	1426	2.	－	1	234	0	1	2.4		1.6		
y	2250	1.	8	2	234	\bigcirc	2	11.86		9.7		
\approx	2690	0.	7	3	88	4	4	3.6		0．4＂		

On Monday the 20th of Auguft，the aftronomer for His Catholic Majefty returned with his party to camp at Bayou Sara．
＊The point B．
\dagger Mr．Dunbar＇s obfervatory，was a fhort diftance eaft of the point D ， which is at the foot of a fteep hill．

On the firft day of September following, William Dunbar, Efq. after making the foregoing report declined any further fervice and returned home.

Sept. 3d. Moved our camp to Thompfon's. creek, diftant from the point D at high water mark 18.75 -miles.

4th. Cleaned the clock, and fet it up againft the ftump of a tree, which was left high, and prepared for that purpofe.
$7^{\text {th. }}$

8th.

9th.

1oth.

$$
\text { A. M. } \delta^{\text {E }} \text { Equal alititudes of the Sun. } 21^{\prime 2} 27^{\prime \prime} \text { P. M. } 3^{n} 3^{\prime \prime} 28^{\prime \prime} .
$$

Immeffion of the 2 d fatellite of 4 obferved at $10^{\text {h }} 45^{\prime \prime} 8^{\prime \prime}$ do. ift. . do. 12191 I The night remarkably fine, belts very diftinct, magnifying power 120 .
rith.

12th.

$$
\begin{aligned}
& \text { Equal alititudes of the } \begin{array}{l}
\text { Sun. } \\
\text { A. M. } 8^{4} \\
28^{\prime} \\
9^{\prime \prime} . \\
\hline \text { P. M. } \\
3^{\prime \prime}
\end{array} 9^{\prime \prime} 20^{\prime \prime} .
\end{aligned}
$$

Equal alititudes of the Sun.

A. M. $8^{\text {h }} 18^{\prime} 12^{\prime \prime}$. P. M. $3^{\mathrm{h}} 38^{\prime \prime} 45^{\prime \prime}$.
$13^{\text {th }}$.
Equal altitudes of the Sun.

16th.

16 th.
Equal altitudes of the Sun.
A. M. 818 13.5.
P. M. $33^{6} 44.5$.

Ifth.
Equal altitudes of the Sur.

$$
\text { A. M. } 847 \text { 33. } \quad \text { P. M. } 36 \text { 57.5. }
$$

Inmerfion of the 2 d fatellite of 4 obferved at $13^{\text {h }} 23^{\prime} 35^{\prime \prime}$ Night clear, belts diltinct, magnifying power 120.

19th.
Equal altitudes of the Surs.
h $1 /$ h , "
A. M. 93 50.5. P. M. 24939.5

23 d.
Equal altitudes of the Sun.
A. M. $9^{\text {h }} 4^{\prime} 3^{\prime \prime}$. P. M. $2^{\text {h }} 47^{\prime} 37^{\prime \prime}$.

24th.
Equal altitudes of the Sun.

$$
\text { A. M. } 84957 . \quad \text { P. M. } 3123.5
$$

Immerfion of the 2 d fatellite of 4 obferved at $1 \sigma^{\text {h }} 2^{\prime} \quad 1^{\prime \prime}$ do. 1 ft . do. . 16840 Night clear, belts diftinct, magnifying power 120.

25 th.
Equal altitudes of the Sun.
h ' " h ' "

$$
\text { A. M. } 84^{6} \text { 32.5. } \quad \text { P. M. } 3422.5 \text {. }
$$

26th.

> Equal alititudes of the Sun.
A. M. $8^{\text {b }} 44^{\prime} 54^{\prime \prime}$. P. M. $3^{\text {h }} 5^{\prime} 41^{\prime \prime}$.

Immerfion of the 1 it fatellite of 27 obferved at $10^{\text {h }} 37^{\prime \prime} 10^{\prime \prime}$ do. . 3^{d}. do. . 11283^{2}
Emerfion do. . do. . 131540
Night fine, belts ditinet, magnifying power 120.
The

The arc being now extended to the weft fide of Thompfon's creek, the following offsets into the paralle! of latitude were laid off, viz.

Took equal altitudes of τ Pegafi, to determine the direction of our arc, which at the diftance of 206 perches eaft from the tranfit, was 19.35 inches fouth of the prime vertical, which fubtends an angle of $1^{\prime} 40^{\prime \prime} 48^{\prime \prime \prime}$. The tranfit was 8 miles and IIS perches ealt from its fecond fation, which diftance fhould have given an angle of $1^{\prime} 44^{\prime \prime} 52^{\prime \prime \prime}$, hence it appears, that the are was directed too far north by $4^{\prime \prime} 4^{\prime \prime \prime}$ on a fuppofition that this was gradually accumulating, the tranfit was too far north by 6.8 inches, which is accounted for in the offsets for the 19 th, $20 t h$, and 21 ft miles.
$27^{\text {th }}$. Re-examined the direction of our arc by taking equal altitudes of the fame ftar, the coincidence was lefs than $\mathrm{I}_{2}{ }^{\prime \prime}$ which was probably occafioned by an imperfection infeparable from obfervations: this fmall difference was bifected and the diftance of 20.8 inches was laid off from the point of bifection to the fouth, and the arc continued through its termination as in the former cafes.

29th. Clock ran down in the night. 3oth. Wound up the clock and fet it a-going.

Oct. $7^{\text {th. }}$

> Equal altitudes of the Sun.
A. M. $8^{\mathrm{h}} 3^{6^{\prime}} \mathrm{I}^{\prime \prime}$. P. M. $3^{\mathrm{h}} 21^{\prime} 44^{\prime \prime}$.

19th.
Equal altitudes of the Sun.
A. M. $8^{\mathrm{h}} 27^{\prime} 29^{\prime \prime}$. P. M. $3^{\text {h }} 27^{\prime} 50^{\prime \prime}$ 。

Immerfion of the ift fatellite of $4 f$ obferved at $10^{\text {h }} 55^{\prime} 31^{\prime \prime}$
do. 2d . do. . 132115 Night very fine, belts difinft, magnifying power 120 . 20th.

20th.
Equal allitudes of the Sun.

$$
\text { A.M. } 9306.5 . \quad \text { P. M. } 2255
$$

End of the aftronomical obfervations made at Thompfon's creek.

The following offsets complete the work done, with the Tranft inftrument, viz.

At the termination of the 19 th mile an offset of $4 \quad 3$ was laid off to the S. do. . 20 . do. 12 do. do. $\because 21 . \quad$ do.,-3 to the North.

Refult of the equal altitudes of the Sun taken at Thompfon's creek.

Clock too faft mean time Sept.

Clock ran down on the 2 gth, was fet a-going on the 30th.

Longitude

[^32]

Longitude deduced from the eclipfes of 4 's fatellites obferved a: Thomfon's Creek.

At the end of the 21 ft mile in the line, the land became of a more inferior quality, from which we concluded to purfue a lefs fcientific but a more expeditious method, until the goodnefs of the foil would juftify a greater degree of accuracy: Agreeably to this conclufion, we had a line traced eaft with a furveying compafs, from the end of the 2 Ift mile, from high water mark on the Miffiffippi, to the eaft fide of Pearl or Half-way river, the diftance being 85 miles and 194 perches, at the end of which the following obfervations were made.

Nov. 19th. Put up the clock and fet it to apparent time nearly.

20th.
Equal altitudes of the Sun. A. M. $9^{\text {h }} 22^{\prime} 40^{\prime \prime}$. P. M. $2^{\text {h }} 37^{\prime} 30^{\prime \prime}$.

Emerfon of the Iftatallite of 4 obferved at $9^{\text {b }} 43^{\prime} 30^{\prime \prime}$. -Belts diftinct, magnifying power 120.
2 Ift.
Equal alitudes of the Sun.
A. M. $9^{\text {h }} 33^{\prime} 19^{\prime \prime}$. P. M. $2^{\text {h }} 27^{\prime} 6^{\prime \prime}$ 。

22d.

Vol. V.
Equal altitudes of the Sun.
A. M. $9^{\text {h }} 38^{\prime} 34^{\prime \prime}$. P. M. $2^{\text {h }} 22^{\prime} 9^{\prime \prime}$ 。

G g
Obfervations

Obfervations on a Lunar Eclipfe.
At $1 \eta^{\text {b }} 10^{\prime}$ the D 's limb entered the penumbra, but was not indented till ${ }^{1} 7^{\text {h }} 11^{\prime} 34^{\prime \prime}$. -The earth's fhadow was not well defined, and the atmofphere fmoky. The D was obfcured by clouds at $17^{\text {h }} 25^{\prime}$. -Magnifying power of the telefcope about 60 .

25 th.
Equal altitudes of the Sun.

$$
\text { A. M. } 9^{h} 34^{\prime} 39^{\prime \prime} . \quad \text { P. M. } 2^{h} 27^{\prime} \text { I } 9^{\prime \prime} \text {. }
$$

28th.
Equal altirudes of the Sun.

$$
\text { A.M. } 9^{\text {h }} 18^{\prime} 42^{\prime \prime} . \quad \text { P. M. } 2^{h} 44^{\prime} 55^{\prime \prime}
$$

3oth.

> Equal altitudes of the Sun.

$$
\text { A. M. } 9^{h} 17^{\prime} 11^{\prime \prime} \text {. P. M. } 2^{h} 44^{\prime} 19^{\prime \prime} \text {. }
$$

The fmall zenith fector arrived, which we agreed to ufe for the determination of this point in the line.-The large one having been fent by water by the way of New-Orleans, and we were uncertain when it would come to hand.

Thermometer 84°.
Dec. Ift. Polifhed the reflectors of the eye-piece, of the telefcope of the fmall zenith fector, and fet it up

With the face to the Weft.
Cloudy.-Thermometer 60° at fun rife, rofe to 83°.
2d. Cloudy.-Thermometer 64° at fun rife, rofe to 84°.

3ch.
Equal altitudes of the Sun.

$$
\text { A. M. } 934 \text { 8.5. } \quad \text { P. M. } 23^{1} 45.5 .
$$

Thermometer 54° at fun rife, role to 70°.

4 th.
Equal altitudes of the Sun.

$$
\text { A. M. } 9^{\mathrm{h}} 30^{\prime} 11^{\prime \prime \prime} . \quad \text { P. M. } 2^{\mathrm{k}} 36^{\prime} 26^{\prime \prime} .
$$

Thermometer 28° at fun rife, role 50°.

Observed zenith diftance of \propto Lyra . $734 \quad 9$ N.

Emerfion of the in fatellite of 4 observed at $13^{\text {h }} 32^{\prime} 35^{\prime \prime}$. -Night clear, belts distinct, magnifying power 120.
$5^{\text {th. }}$
Equal altitudes of the Sun.
A. M. $9^{\text {hi }} 40^{\prime} 59^{\prime \prime} . \quad$ P. M. $2^{\text {h }} 26^{\prime} 35^{\prime \prime}$.

Face of the Sector East.

Thermometer 26° at fun rife, role to 45° in the afternoon, and to 60° after night.

Obferved zenith diftance of a Andromeda $2^{\circ} 59^{\prime} 0^{\prime \prime}$ s. The isar was feen but a few times during the observation between the clouds as they paffed.

Goth. Cloudy with forme rain in the morning, and fo dark that we had to breakfast by candee light at $8^{\text {h }}$ A. M.

G g 2
7 th.

7 th. Cloudy with fome rain.-Thermometer 55° at fun rife, rofe to 70°.
Sth. The clouds blew off a few minutes, when the following obfervation was made.

Obferred zerith ditance of a Andromedx $2^{\circ} 59^{\prime} 6^{\prime \prime}$ s.
Immediately after the above obfervation was made, the hemiphere was covered with dark clouds, which were attended with rain, fharp lightning, and heavy thunder till the next morning.

Thermometer 60° at fun rife, rofe to 82°.
gth. Obferved zenith diftance of a Lyrx $\quad 73^{8} \circ \mathrm{w}$. do. . . β Pegali . 35516 s. do. . . a Audromedx $2 \quad 59$ 8. do. . . \quad Andromedx $3 \quad 3511 \mathrm{~N}$.

Cloudy the remainder of the night. Thermometer 51° at fun rife, fell to 31° in the evening.
roth.

> Equal allitudes of the Sun-

$$
\text { A. M. } 8^{h} 20^{\prime} 21^{\prime \prime} . \quad \text { P. M. } 3^{h} 50^{\prime} 33^{\prime \prime} \text {. }
$$

Obferved zenith diftance of a Lyrx • 73^{8} I w. do. . . $\quad \beta$ Pegafi $\quad \begin{array}{lllll} & 58 & 19 & \text { s. }\end{array}$ do. . . α Andromedæ $259 \quad 9$ s. do. . . $\beta_{\text {Thauri }} \quad 2 \quad 32 \quad 32$ s.

Juft before the obfervation on a Andromedæ was made, a cloud appeared above the horizon and about 30° fouth of weft: From this cloud a number of ftreamers iffued fimilar to an Aurora borealis, but much whiter.-One of them paffed above the fouthern horizon, and terminated in the weft fhoulder of Orion; another paffed over Mars and Jupiter, and extended almoft to the eaftern horizon; 3 third paffed through the northern part of Andromedæ, and a fourth through Urfa Minor. -Thefe ftreamers in a few
few minutes broke into very minute clouds which moved with great rapidity towards the eaft, and in lefs than fifteen minutes extended over the whole hemifphere. The flars appeared and difappeared almoft inftantly; I fuppofe that a Andromedx not lefs than thirty times during the obfervation; β Andromedæ was likewife feen, but it appeared and difappeared too rapidly to be obferved with any degree of certainty. β Tauri was feen almoft as frequently as \& Andromedæ, but the obfervation neverthelefs appeared to be correct. Before Caftor and Pollux came to the meridian, the clouds became heavy and dark, and obfcured all the ftars for the remainder of the night. This phenomenon was not attended with any wind.

Thermometer 31° at fun rife, rofe to 45°.
IIth.
Equal altitudes of the Sun.

$$
\text { A. M. } 837 \text { 12.5. P. M. } 33422 .
$$

Emerfon of the ift fatclite of 24 obferved at $15^{\text {h }} 26^{\prime} 34^{\prime \prime}$. -The planet was low and tremulous, the belts middling diftinct, magnifying power of the telefcope 120 .

Thermometer during the three laft obfervations at 21°.
32th. Cloudy all day.
3th. Cloudy till evening.

Emerfion of the ift fatellite of 4 obferved at $9^{h} 54^{\prime} 2^{\prime \prime}$. The night clear, belts very diftinct, magnifying power 120.

Thermometer 22° at fun rife, rofe to 57°.
$14^{\text {th }}$. Immerfion of the 3 d fatellite of 24 observed at $7^{\text {h }} 44^{\prime} 6^{\prime \prime}$. -The belts very diftinct, and the fatellites remarkably bright, magnifying power 120 .

Thermometer 31° at fun rife, rofe to 61°.
I 5 th.

> Equal alitudes of the Sun.
> A. M. $8^{\text {h }} 20^{\prime} 34^{\prime \prime} . \quad$ P. M. $3^{\mathrm{h}} 52^{\prime} 42^{\prime \prime}$.

Emerfion of the 2d fatellite of $2 f$ obferved at $12^{\text {h }} 50^{\prime} 19^{\prime \prime}$. -Belts diftinct, magnifyıng power 120.

End of the obfervations made at Pearl river.
Rate of the clock's going deduced from the equal altitudes of the Sun

$$
\begin{aligned}
& \text { Refult }
\end{aligned}
$$

[^33]Refult of the obfervations for the longitude.

Nor. 20th. Emerfion of the ift fatellite of 46
Dec. 4 th

- • • $5 \quad 58 \quad 58$

1th. - do. . . . 559
13th. - do. • $\quad 5 \quad 59 \quad 53$
14th. Immerfion of the 3 d do. by $\}$ de Lambre's Tables. $\} \quad \begin{array}{llll}5 & 59 & 43\end{array}$
15th. Emerfion of the 2d do. $\quad \begin{aligned} & \text { de Lambre's }\end{aligned}$
By the lunar eclipfe November 22d.
If the D 's firlt touching the penumbra be $\}$ \(\left.\begin{array}{l}confidered as the beginning, the longitude will be

If the D 's being indented be taken for the\end{array}\right\}\)| 5 | 59 | 38 |
| :--- | :--- | :--- | $\left.\begin{array}{l}\text { If the } D \text { 's being indented be taken for the } \\ \text { beginning, the longitude will be }\end{array}\right\}$ $\} 6 \quad 1 \quad 12\}$

Weft from
Greenwich.
Refult of the obfervations for the latitude.
The foregoing obferved Zenith Diftances when arranged fand as below.

From the above refult for the latitude, it appears that the obfervatory was too far north by $2^{\prime \prime} .7$ or about 272 feet, and the guide or compafs line being 68.8 feet fouth of the obfervatcry, it appears that the guide or compafs line oppofite to the obervatory was too far north by 213.2 feet. This correction of 213.2 feet was carefully laid off to the fouth, and the guide, or compais line corrected back to the 2 ift mile, by laying off to the fouth from the end of each mile a proporticnal part of the 213.2 feet -For a chart of this part of the boundary fee Plate VII.* From the termination of the 213.2 feet, another guide or compafs line was carried eaft 99 miles, and 194 perches, to the weftern bank of the Mobile, or Tombecby river, where the following obfervations were made.

I799.

March i8th. Put up the clock and fet it to apparent time nearly.

Set up the large Sector with the Face to the Eaft.
19th. Cloudy with heavy rain at night.
20th. Flying clouds great part of the day, heavy rain in the afiernoon, and evening, attended with tharp lightning, and remarkably loud thunder.
21 ff. Cloudy all day with a little rain and frong north wind, cleared off about niidnight with a violent wind from the N . W.

Obferved zenith diftance of a Coro. Borealis $3^{\circ} 3^{6} 55^{\prime \prime}$ s.
The above obfervation is doubtful owing to the violence of the wind which affected the plumb-line.

[^34]22d.
Equal altitudes of the Sun.

Obferved zenith diftance of β Tauri $\quad 2^{\circ} 35^{\prime} 0^{\prime \prime} .5 \mathrm{~s}$.
do. . . A Coro. Borealis $33^{6} 53$ s.
Thermometer 40° at fun rife, rofe to 51°.
23 d.
Equal altitudes of the Sun.
A. M. $8^{\text {h }} 44^{\prime} 36^{\prime \prime}$. P. M. $3^{\text {h }} 13^{\prime} 23^{\prime \prime}$.

Obferved zenith diftance β Tauri . 23459.5 s. do. . . Caftor . 1826.7 N. do. . . Pollux . 23029 s. do. . α Coro. Borealis $33^{6} 55$ s.

Set up the tranfit and equal altitude inftrument, and took the greateft elongation of a Urfæ Minor. Weft.

Thermometer 39° at fun rife, rofe to 67° in the afternoon.

24 th.
Equal alititudes of the Sun.

$$
\text { A. M. } 9^{\text {b }} 29^{\prime} 0^{\prime \prime} \quad \text { P. M. } 2^{h} 28^{\prime} 2^{\prime \prime}
$$

Took the greateft elongation of a Urfæ Minor. Weft, which did not differ perceptibly from the oblervation of yefterday.

Obferved zenith diftance of Caftor $1^{\circ} 18^{\prime} 28^{\prime \prime} .8^{\prime} \mathrm{N}$. do. . . Pollux 23030 s.

Took the greateft elongation of α Urfæ Minor. Eaft.
The obfervations on a Urfæ Minor, were made for the purpofe of tracing a meridian, a particular account of which will clofe the work done at this Itation.

Thermometer 39° at fun rife, rofe to 59°.
25th.
Equal altitudes of the Sun.
A. M. $9^{\text {h }} 0^{\prime} 21^{\prime \prime}$. P. M. $2^{\text {h }} 55^{\prime} 49^{\prime \prime}$.

Obferved zenith diftance of $\quad \beta$ Tauri $\quad 2^{\circ} 34^{\prime} 57^{\prime \prime} \cdot 5 \mathrm{~s}$.

Took the greatelt elongation of α Urfæ Minor. Weft.

$$
\begin{array}{rlllll}
\text { Obferved zenith diftance of } & \text { Caftor } & 1^{\circ} & 18^{\prime} & 27^{\prime \prime} \cdot 5 & \mathrm{~N} \\
\text { do. } & & \text { Pollux } & 2 & 30 & 26
\end{array}
$$

Took the greatelt elongation of α Urfæ Minor. Eaft.
Thermometer 40° at fun rife.
26th. Set the clock two minutes forward, and raifed the pen dulum bob.

Turned the face of the Sector Weft.
Equal altiludes of the Sun.
A. M. $9^{\text {h }} 3^{\prime} 52^{\prime \prime}$. P. M. $2^{\text {h }} 55^{\prime} 26^{\prime \prime}$.5.

Traced a meridian by bifecting the angle, formed by the greateft elongations of \& Urßæ Minor. Ealt, and Welt.

> ©'s preceding limb on the meridian at il 58 26* A. M.
> Subfequent do. . . . O 034 P. M.
> Centre at II 5930 A. M.
$\left.\begin{array}{l}\text { Sirius paffed the firft fibre of the } \\ \text { tranfit inftrument at }\end{array}\right\}$ - $\begin{array}{llll}6 & \text { II }\end{array} I^{\prime \prime}, ~$
The meridian at 61229
The third fibre at . 6×324
27th. ©'s preceding limb on the meridian at in 5815
Subrequent do. . $\quad 12$ o 23 P. M.
Centre at II 59 19 A. M.

Obferved zenith diftance of β Tauri $2^{\circ} 36^{\prime} 38^{\prime \prime} .5 \mathrm{~s}$.
$\mathrm{H}_{1} 2$
Sirius

[^35]

Thermometer 41° in the morning, raifed to 67°.
28 th. ©'s preceding limb on the meridian at in 58 5.5 A. M. Subfequent do. . . $12 \circ 14$ P. M.

Centre . . : . 1159 9.7 A. M.
Sirius paffed the firlt fibre of the tranfit inftrument at $\}$

The meridian at . 6455
The third fibre at 65 5I
Obferved zenith diftance of Caftor $1^{\circ} 16^{\prime} 48^{\prime \prime} .6 \mathrm{~N}$. do. . . Pollux $\begin{array}{lllll}32 & 5 & \mathrm{~s} \text {. }\end{array}$

Thermometer 49° at fun rife.
29th. ©'s preceding limb on the meridian at II 5759 A. M. Subfequent do. . . . 12 ○ 7 P. M.

Centre do. . . . II 59 A. M.
Obferved zenith diftance of Caftor $1^{\circ}{ }^{1} 6^{\prime} 50.0$
do. . . Pollux $2-32 \quad 3$
Thermometer 51° at fun rife, rofe to 73°.
30th. Cloudy with rain.
3Ift. ©'s preceding limb on the meridian at II 5741 A. M. Subrequent do. . . . 115950 A. M. Centre do. . . . 115845.5 A. M.

Thermometer 84° at 4 o'clock P. M.
April Ift. \odot 's preceding limb on the meridian at
115731 A. M.
Subequent do. . . . 115940 A. M.
Centre do. . . II $5835.5 \mathrm{~A} . \mathrm{M}$.
Cloudy in the afternoon attended with fharp lightning, heavy thunder, and a great fall of rain.

2d. Sirius paffed the firft fibre of the tranfit infrument at $\}$

Obferved zenith diftance of a Coro. Borealis $3^{\circ} 3^{8} 27^{\prime \prime} .5 \mathrm{~s}$.
d. h ${ }^{\prime \prime}$

3d. ©'s preceding limb on the meridian at 1157 I5 A. M.
Subfequent do. . . . 115924 A. M.
Centre do. . . . II 58 19 A. M.
of paffed the meridian at . $1^{\mathrm{h}} 24^{\prime} 32^{\prime \prime}$ centrum.
Obferved zenith diftance of $\&$ Tauri $\quad 2^{\circ} 36^{\prime} 3^{\prime \prime} .7 \mathrm{~s}$.

$4^{\text {th. }} \odot$'s preceding limb on the meridian at in 579 A. M.
Subfequent do. . . II 5918 A. M.
Centre do. . . . 115813.5 A. M.

5th. Cloudy all day.
6th. ©'s fubfequent limb on the meridian at in 59 io A. M. Deduct the paffage of the femi diameter - I 4.5
Centre on the meridian at . II $5^{8} \quad 5.5$ A.M.
\& paffed the meridian at . $\mathbf{1}^{\mathrm{h}} 27^{\prime} 30^{\prime \prime}$ Centrum.

7th. ©'s preceding limb on the meridian at in 5655 A. M.
$\begin{array}{llll}\text { Subfequent do. . } & { }_{11} 59 & 5 & \text { A. M. } \\ \text { Centre . do. . } & 1158 & \circ & \text { A. M. }\end{array}$

8th. Cloudy with a little rain in the evening. Thermometer 39° in the morning.

Obferved the times, and ditances, of the nearett limbs of the \odot and D as below.

Taken again as follows.

9th. ©'s preceding limb on the meridian at $11^{\text {h }} 56^{\prime} 47^{\prime \prime}$ A. M. Subfequent . do. e ir 5856 A. M.

Centre at . . II 5751.5 A. M.

I paffed the meridian at . $1^{\text {b }} 30^{\prime} 38^{\prime \prime}$ Centrum.

> Equal altitudes of the Sun.
> A. M. $8^{\mathrm{n}} 47^{\prime} 50^{\prime \prime} . \quad$ P. M. $3^{\mathrm{h}} 8^{\prime} 9^{\prime \prime}$.
$\left.\begin{array}{l}\text { Sirius paffed the firft fibre of the tranfit } \\ \text { inftrument. }\end{array}\right\} \quad$ - $\begin{array}{ccc}\text { it } & 1 & 11 \\ 5 & 19 & 12\end{array}$
The meridian at 520 I
The third fibre at $520^{*} 56$
roth.

10th. Took down and packed up the initruments.
During my employ on the boundary I made it a point to multiply my aftronomical obfervations as much as poffible when it did not interfere with my other bufinefs: in this I had two views; firft, becaufe obfervations accurately made never become obfolete, and may at fome future day be found effentially ufeful, and fecondly, to determine by experiment, what reliance might be placed in obfervations made at temporary fations, without any of the conveniences annexed to permanent obfervatories.'The meridian being traced upon accurate principles, furnifhed an opportunity of comparing equal altitudes of the fun, with the tranfits of his centre over the meridian. The foresroing oblervations made at this ftation, furnifh the two following comparifons.

On the 26th of March the \odot^{\prime} 's centre pafled the
meridian at
Equal altitudes of the \odot on that day.

$$
\text { A. M. } 93 \text { 52. P. M. } 25526.5
$$

Add
12
$1+5526.5$
Deduct forenoon's obfervation 935^{2}
2) 55 I 34.5

Half 25547.2
Add forenoon's obfervation 9352
II 5939.2
Deduet for change of \bigcirc° 's declination . . - 9.6
©'s centre paffed the meridian by equal altitudes II 5929.6
Which differs but $\frac{4}{10}$ this of a fecond from his paffage over the meridian by obfervation.

On the 9 th of April the \odot^{\prime} 's centre paffed the $\} \quad 1^{\text {h }} 57^{\prime} 51^{\prime \prime} \cdot 5$ A. M.
meridian at

Equal altitudes of the Sun on that day.

Which differs from the obferved time but $\frac{6}{80}$ ths of a fecond.
The paffage of the fars over the meridian afford an eafy, and accurate method of determining the rate of the going of a clock, as is well known to all aftronomers; and when the right afcenfion of a far is well fettled, the error of a clock can be determined by it with great precifion,-as for example, take the paffage of Sirius on the 27 th of March.

Right afcenfion of Sirius the beginning of 1800 accord-
ing to Ne Zach*
Deduct ann. preceffion for one year - 2.6
Right afcenfion the beginning of 1799 . . . 636×7.3
Aberration and preceffion on the 27 th of March $\quad+0.6$
Nutation . do. - 0.7
True right afcenfion of Sirius $6{ }_{36} \mathbf{1 7 . 2}$
\bigcirc 's right afcenfion by the Nautical Almanac at the time?
Sirius paffed the meridian, deduct

- 2653.5

Sirius paffed the meridian apparent time at . . . $6 \quad 923.7$
Do. . . by obfervation . . . 684 I
Clock too Now apparent time 0 . 42.7
Vol. V.
I i
\bigcirc 's centre

* Vide Obfervationibus Aftronomicis Annis 1787, 1788, 1789, 1790.
©'s centre paffed the meridian on the 27 th of March at if $5919 \mathrm{~A} . \mathrm{M}$.
Equation of time $+5^{\prime} 20^{\prime \prime} .8$. \quad. 12520.8
Clock too flow mean time 6
Dy the paffage of Sirius over the meridian on the 27 th 7
and 28 th the clock gained on mean folar time, about
$10^{\prime \prime}$ per diem, which is equal to about $2^{\prime \prime} .5$ when
Sirius was obferved, which is to be deducted

| Clock too flow mean time when Sirius paffed the meridian o | 5 | 59.3 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Equation of time | do. | 0 | 5 | 16.1 |

$\left.\begin{array}{l}\text { Clock too flow apparent time, which differs but } \frac{\frac{2}{2}}{} \mathrm{a} \\ \text { fecond from the error given by Sirius }\end{array}\right\}-0 \quad 043.2$
$\left.\begin{array}{l}\text { Clock too flow apparent time, which differs but } \frac{2}{2} \text { a } \\ \text { fecond from the error given by Sirius }\end{array}\right\}$ - 043.2
-2.5
'The neareft diftances of the limbs of the Ω, and D, were taken twice at this fation, (as entered in the journal), and may fervc as ezamples of the accuracy of that method of determining the longitude.-As their altitudes were not taken at the time of the obfervations, they were determined by calculation : The latitude and time being known from obfervation, and the declinations deduced from the Nautical Almanac upon a fuppofition that the longitude was about 5 hours, and 52 minutes, weft from Greenwich. - The method of calculating an altitude ; the latitude, time, and declination being given, may be found in moft books of fpherical trigonometry, and a very eafy one, particularly adapted to this purpofe, in the requifite tables problems 5,6 and 7 ; but to prevent any errors which might arife from this fource, and affect the determination of the longitude, I would recommend that the altitudes be determined both ways, as checks upon each other.-Either of the methods bring out the true altitude of the \odot 's, or D 's centre ; but as the apparent is generally wanted, it will be had by fubftacting the parallax in altitude, and adding the refraction.

The firf obfervation was made by the clock April 8th at . 225341 Clock too flow apparent time

225547

[^36]Refult of the Obfervations made on the Mobile river for afcertaining the Latitude.

Latitude

左 1

\qquad

From the refult of the above obfervations, the compafs line was too far north by $1^{\prime} 23^{\prime \prime} .7$, or 518.55 perches, which diltance was carefully laid off to the jouth, and a fone fet up at the termination, marked on the north fide U.S. Lat. 31° 1799,-and on the fouth fide DOMINOS de S.M. C. CAROLUS IV. Lat. 3 I $^{\circ}$ 1799.-From this flone, the line was correeted back as in the foregoing cafe, agreeably to plate VIII.

On our arrival at the end of the compais line on the Mobile river, one ferious difficulty prefented itfelf, that was the continuation of the line through the fwamp, which is at all times almof impenetrable; but at that feafon of the year abfolutely fo : being wholly inundated:-But fortunately we found in the neighburhood of our camp a fmall hill, the fummit of which was juft elevated above the tops of the trees in the fwamp. From the top of this hill, we could plainly difcover the pine trees on the high land, on the eaft fide. Upon afcertaining this fact, we fent a party through to the other fide, (along the water courfes, by which the fwamp is interfected in various directions), with orders to make a large fire in the night with light-wood; the fame was likewife to be done on the hill before mentioned, to obtain nearly the direction from one place to the other.The atmofphere was too much filled with fmoke, to difcern a flag, or other fignal, -the woods being on fire on both fides of the fwamp-lt happened unfortunately that the day before our fires were to be lighted, the fires in the woods had extended over almoft the whole of the highlands, on both fides of the fwamp; by which fo many dead trees were fet on fire, that there was no pollibility of difcriminating between them, and our fires.-It was then agreed that the parties thould iight up, and extinguifh their fires a certain number of times; making fated intervals.-This fucceeded fo well, that we became certain of not taking a wrong fire in determining the angles. - Contrary to our expectation, a heavy rain fell on the fame night, a hort time after we had finifhed the experiment, and extinguifhed all the fires in the woods. - The ftorm cleared off with a ftrong north-welt wind, which carricd off all the fmoke, and enabled us to determine the angles in the day, by erecting fignals, which was accomplifhed on the fecond day of April. - This work was connected with the obfervatory in the following manner. At the obfervatory A (fee Fig. G, plate IX.) a meridional line was traced, by taking the greateft elongations of a Urfx Minoris, both eaft, and weft, with the tranfit and equal altitude inftrument:-equal diftances were carefully meafured in each dircetion, and a fine mark placed at the termination of each meafurement, - the difance between thofe marks was accurately bifected, and a fine mark placed at the point of bifection for the meridian.
moridin. The fame operation was performed a fecond time, and although the difference in the refults, appeared too trifing to need any attention, it was neverthelefs bifented, and that point of bifection taken for the meridian, 一which is defignated by AE and terminated by a parallel of latitude drawn through B.--From the point A, a vifta.was opened to the fummit of the hill at B: from B, to C, another vifta was opened, which formed the bafe: the bafe was too fhort if it could have been avoided; but the hill would not admit of its being any longer.-D the fignal on the eaft fide of the fwamp.-The angles were meafured on the horizontal arc of the aftronomical circle already mentioned.-This inftrument by means of a vernier is graduated to $5^{\prime \prime}$, which by the help of a microfcope may be eafily fubdivided by the eye, into $1 \frac{7}{2}$, or 2 feconds.-The meafurements, and angles fland as below.

$$
\begin{aligned}
& \mathrm{AB}=3 \mathrm{ro.} 8 \text { perches. } \\
& \mathrm{BC}=70.356 \text { perches. } \\
& \geq \mathrm{BAE}=37^{\circ} 5^{\prime \prime} 4^{8^{\prime \prime}} \\
& 7 \mathrm{ABD}=574321 \\
& \geq \mathrm{BCD}=139 \begin{array}{lll}
33 & 58
\end{array} \\
& \geq \mathrm{DBC}=3947 \quad 1
\end{aligned}
$$

From there data, AE is found to be equal to 244.9 perches, BE to 191.26 perches, BD to 32×1.65 perches, EF to 2987.44 perches, and DF to 316.7 perches. DB being confidered as an arc of a great circle, forming with the prime vertical an angle of $5^{\circ} 42^{\prime} 9^{\prime \prime}$ to the north, being the excefs of the angles BAE, and ABD above 90.-From the refult of the obfervations for the latitude, the obfervatory appeared to be too far north by 518.55 perches, which is defignated by AH. It therefore follows, that the fignal at D, was too far north by the fum of the diftances DF, EA and AH, which is equal to 1080.15 perches: this diftance was meafured due fouth from the point D , and would interfect the paralell of 31°, at the end of 215 miles and 169.6 perches from high water mark on the Milif. fippi.

From the termination of the above mentioned 1080.15 perches, another guide, or compals line was continued eaft, to the eaft fide of the Coenecuch; but the termination of the compafs line, not being in a proper place for a courie of obfervations, the obfervatory was erected north of it, in the meridian of the termination of the 257 th mile; where the following obfervations were made.

1799.

May gth. The inftruments arrived, fet up the clock, and both fectors, the finall one was ufed by the commiffioner for His Catholic Majefty, at this ftation, on the Chatahocha river, the mouth of Flint river, and at our fation up the St. Mary's.

Faces of the Sectors to the Eaft.

13th. Tuined the face of the Small Sector Weft.
Cloudy with rain.
14th. Cloudy all day with heavy howers of rain. 15th. Cloudy with rain till after dark, then clear.

Vol. V. K k I 6th.

Ioth. Cloudy with heavy fhowers of rain great part of the day.

At this ftation, no obfervations but for the determination of the latitude were made, - the eclipfes of Jupiter's fatellites not being vifible, the planet being too near the fun. - The clock was put up to advertife us of the time a ftar would appear in the field of the telefcopes, which is at all times of importance ; but at this place particularly fo, on account of the flies, and mufquitoes, which were fo numerous, and troublefome, that an obfervation which would not require more than one minute, could not be made without great pain.
Refult of the Obfervations made with the large Sector on the Coenecuch, to determine the Latitude.

Refult of the Obfervations made with the fmall Sector on the Coenecuch to determine the Latitude.
The Zenith diftances ftand as below.
Face of the Sector Eait.

Face of the Sector Welt.

Latitude by - Bootis do. . a Coro. Borealis do. . a Lyræ	$\begin{aligned} & 3 I \\ & 3 I \\ & 31 \end{aligned}$	-	$\begin{aligned} & 43 \\ & 407 \\ & 34.7 \end{aligned}$
Mean Latitude North	$3{ }^{1}$	-	39.5

The difference of the refults given by the two inftruments appears to be $I^{\prime \prime} .6$; but the radius of the large fector, being more than three times that of the fmall one, it may fairiy be confidered at leaf three times as accurate; and as double the number of fars were taken with the large one, it is on that account entitled to double the accuracy:-hence if to five times the latioude given by the large fector, the latitude given by the fmall one be added, and the fum divided by fix, the quotient $30^{\circ} 0^{\prime} 38^{\prime \prime}$. I will be the latitude in which each infrument has its due weight; from which it follows, that the obfervatory was too far north by $38^{\prime \prime}$.1, or 3853.8 feet; but the end of the guide line was 3617.8 feet fouth of the obfervatory, hence the end of the guide line was too far north by 236 feet, which was carefully laid off to the fouth, and the guide line corrected back as in the former cafes agreeably to Plate IX. From the termination of the meafurement another guide, or compa!s line was carried on to the weft fide of the Chatahocha, or A palachicola river the diftance of 381 m"les, and 7 perches, eaft of high water mark on the Millilippi.

At the termination of the compafs, or guide line on the Chatahocha, or Apalachicola river, the following obfervations were made.

July 2 th. Arrived at the end of the guide line, in a heavy fhower of rain.
26th. Cloudy with rain all day.
27 th. Cleaned, and fet up the clock.-Cloudy with rain.
28th. Cloudy with rain all day.-Thermometer 82° in the morning, fell to 80° at 10 o'clock $^{\prime}$ A. M.

29th. Thermometer 74° in the morning. . Thick fog. Thermometer $\mathrm{S}_{4}{ }^{\circ}$ in the afternoon.
Put up both Seciors, with their Faces to the Eaft.
30th. Thermometer 74° in the morning, rofe to 87°.
Obferved

Observed zenith diftance of a Corr. Borealis $3 \quad 36$ is s. do. . . Andromeda 3 I 18.6 s . do. $\quad \begin{array}{lllll}\quad & \beta \text { Andromeda } & 3 & 32 & 48 \\ & \mathrm{n} .\end{array}$ do. fall fetor do . $3^{3} 34 \quad \mathrm{r} .5 \mathrm{~m}$. do. . . Cantor . $\begin{array}{lll}1 & 18 & 38.5 \mathrm{~N} .\end{array}$ do. . . Pollux . $230 \quad 13$ s.

3 rift.

> | Equal altitudes of the Sun. |
| :--- |
| A. M. $8^{\mathrm{h}} 44^{\prime} 49^{\prime \prime}$. |
| P. M. 3^{B} | $6^{\prime \prime} 15^{\prime \prime \prime}$.

Observed zenith diftance of a Cora. Borealis $33^{6} \quad 8.5 \mathrm{~s}$. do. . . α Andromeda $\approx \quad 3 \quad 1 \quad 2 I$ s.

Immerfion of the 3^{d} fatellite of 24 observed at $16^{\mathrm{h}} 8^{\prime} 18^{\prime \prime}$. -Belts diftinct, magnifying power 120.

Observed zenith diftance of $\begin{aligned} & \beta \text { Andromedx } \\ & 3\end{aligned} \quad 32 \quad 49.5 \mathrm{~N}$. do. fall fetor do. . | 3 |
| :--- |
| 3 |
| 58.5 N |

 do. . . Pollux . 230 10 s.

Thermometer 74° at fun rife, role to 86°.
Aug. Int. Thermometer 84° all lat night. -Heavy rain about 1 o'clock in the morning, cleared off before 3 o'clock.

Observed zenith diftance of β Pegafi . $4 \circ 26 \mathrm{~s}$. do. fall factor do. . 3599 s.
do. Andromedx 3 I 22.5 s .
do. fall fetor . . . 3 ○ 19 s.
The above two observations are doubtful, the far not being feen more than $3^{\prime \prime}$ through the clouds.

Thermometer role to 88°, frequent light Showers.
2d. Thermometer 74° all last night, role to 84°.-Showery with thunder great part of the day.

$$
\text { A. M. } 9^{h} 30^{\prime} 13^{\prime \prime} \cdot \quad \text { P. M. } 2^{h} 9^{\prime} 50^{\prime \prime}
$$

Obferved zenith diftance of a Lyrx (fmall fetor) $7^{\circ} 37^{\prime} 30^{\prime \prime} \mathrm{N}$.
3d. Thermometer 75° all laft night, rofe to 85°.-Clouds flying with great rapidity the fore part of the day from the N. W. cleared off in the afternoon.

Obferved zenith diftance of \& Coro. Borealis $33^{6} 7.5 \mathrm{~s}$.
do. fmall fector Lyræ . $7373^{6} \mathrm{~N}$.
do. - fmall fector $\quad \beta$ Pegafi \quad do. $\quad \begin{array}{llll}4 & 0 & 25 & \mathrm{~s} . \\ \text { do. }\end{array}$
The obfervations on E Pegafi are doubtful, the ftar was difcerned for a few feconds only between the clouds as they palied by.

Cloudy the remainder of the night. - At $21^{\text {h }}$ the clouds difappeared, at $22^{\text {h }} 15^{\prime}$ the fky was fine, at $22^{h} 20^{\circ}$ I prepared to obferve the zenith diftance of Caftor, but in lefs than 2 minutes, an extenfive cloud formed in the zenith, with feveral others to the northward, they all difappeared in about 5 minutes but the obfervation was loft.

Obferved zenith dittance of Pollux - $2^{\circ} 30^{\circ} 14^{\prime \prime}$ s.
$4^{\text {th. }} \quad$ Thermometer 73° all laft night, rofe to 87° in the afternoon.

Obferved zenith diftance of © Coro. Borealis $33^{6} \quad 8.5 \mathrm{~s}$. do. (fmall fector) \& Lyræ - 73712 N . do. . . $\&$ Pegafi . 4 ○ 28 s. do. fmall fector do. . 35912 s . do. fmall fector α Andromedx $3 \bigcirc 28$ s. do. . . $\hat{\beta}$ Andromedx $\quad 33_{2} 49 \mathrm{~N}$. do. fmall fettor do. . 3347.5 . do. . . E Tauri $\quad 23447.5$ so do. . . Caftor - 18836.4 N . do. . Pollux . 23012 s .

5th. Thermometer 72° all laft night, rofe to 84°.
Face of the large Sector W'eft.

Obferved zenith diftance of a Lyrx (fmall fector) 7373^{6} :i.
do. . . β Pegafi do. 35924 s.
do. . . a Andromedæ do. 3016 s.
do. . $\quad \beta$ Andromedx do. 334 IN.
6th. Thermometer $7 \mathrm{I}^{\circ}$ all night, rofe to 79°. -Cloudy all day, clear in the evening.

Face of the fimall Sector Weft.

Obferved zenith diftance of β Pegafi $\begin{array}{llll}4 & 2 & 9 & \text { s. }\end{array}$
do. fmall fector do. . $433^{6} \mathrm{~s}$.
do. . . á Andromedix $\begin{array}{lllllll}3 & 3 & 5.5 & \mathrm{~s} \text {. }\end{array}$
do. fmall fector do. . 3430 s .
do. . . \& Andromedx $331 \quad 5 \mathrm{~N}$.
do. fmall fector do. . 32930 N .
do. . . Pollux . 2300.5 s .
7 th. Thermometer 70° all night, rofe to 82°. —Cloudy part of the forenoon and rain in the evening.

Obferved zenith diftance of β Pegafi $\quad 4^{\circ} 2^{\prime} 7^{\prime \prime} .5$ s.
At I $4{ }^{h}$ the ftars were inftantly covered by clouds, which were followed by heavy rain.
Sth. Thermometer 70° all night, rofe to 79°. -Heavy rain till 7 o'clock in the evening, cleared off at $\delta^{\text {li }}$ P. M.

Aug. 9th. Thermometer 70° in the morning, rofe to 75°.-Heavy rain all the forenoon, cleared off at noon. - Thunder-guif in the afternoon, clear in the evening.

Obferved zenith diftance of a Lyrre (fmall fertor) 73245 N . do. . . β Pegafi . do. 4322.5 s. do. . a Andromedx do. $3 \quad 3 \quad 4.5 \mathrm{~s}$. do. fmall fector do. . . 3427 s. do. . β Andromedx $33^{I} 7.5 \mathrm{~N}$ do. finall fector do. . . 3293^{I} N.

At $19^{h} 20^{\prime}$ a cloud formed in the zenith which in a few minutes extended in a belt almoft to the eaftern and weftern horizon, at 20^{h} it difappeared, by this circumftance the obfervation on β Tauri was loft.

The obfervations on Caftor, and Pollux are fomewhat doubtful, each of them being feen but once, and that for a few feconds only between the clouds which moved with great rapidity from the weft, to the eaft.

10th. Thermometer 70° all laft night, raifed to 81°.-Rain at noon.

At $5^{\mathrm{h}} 55^{\prime}$ prepared to obferve the zenith difance of « Coro. Borealis,-in two minutes a fpace of feveral degrees about the zenith was obfcured by a cloud from the welt, at $6^{13} 6^{\prime}$ the 1 ky was fufficiently clear but the ftar had paffed the field of the inftrument.

Obferved zenith diftance of a Lyræ (fmall fector) $733 \quad 4.5 \mathrm{~N}$. do. . . \& Pegafi do. 4331.5 s 。

Cloudy the remainder of the 24 hours.
Vol. V.
L 1
1 Ith.

IIth. Thermometer 74° all laft night, rofe to 86°.-Cloudy with thunder from $3^{\text {h }}$ P. M. till fome time in the night.
12th. Thermometer 76° at day light, rofe to 85°. —Beautiful fky till 7^{14} A. M. when it became very cloudy from the N. W.-heavy rain from 1 o'clock P. M. till 90^{\prime} 'lock A. M. of the
13th. Thermometer 72° at fun rife, rofe to 81°. —Clear a Chort time about $9^{\text {h }}$ A. M. - Cloudy with frequent fhowers of rain the remainder of the day.
84th. Thermometer 74° at fun rife, rofe to 82°. Obferved zenith diftance of a Coro. Borealis 33756 s. do. fmall fector a Lyrx - 733 I .5 N . do. . . Pollux . $\quad 32 \begin{array}{ll} & 0.5 \\ \mathrm{~s} .\end{array}$

It. was too hazy to difcover Caftor, and Pollux was fcarcely difcernible.
15th. Thermometer 74° at fun rife, rofe to 87°. -Fog during the morning.

ved zenith diftance of a Coro. Borealis 3 37 56.5 do. fmall fector \& Lyræ Ly 7 33 4.5 do. \cdot B Tauri $:$ 2 36 32 do. . Caftor 0 1 16 54						

The obfervation on Caftor is very doubtful being not feen more than $3^{\prime \prime}$ between the clouds.

Obferved zenith diftance of Pollux - $2^{\circ} \quad 32^{\prime} \quad 1^{\prime \prime} .5$
76th. Thermometer 78° at fun rife, rofe to 88°. -Thunder-guft in the afternoon.-Cloudy with rain the remainder of the 24 hours.
r 7 th. Thermometer 73° at fun rife, rofe to 87°. -Cloudy all day and night.

Obferved zenith diftance of \& Tauri $\quad 2^{\circ} 33^{6 \prime} 33^{\prime \prime}$ s.
18th. Thermometer 70° at fun rife, rofe to 81°. Obferved zenith diftance of a Coro. Borealis $3^{\circ} 37^{\prime} 59^{\prime \prime} .5 \mathrm{~s}$.

Cloudy during the night.
19th. Thermometer 70° at fun rife, rofe to 74°. -Showery all the afternoon.

Obferved zenith diftance of β Tauri $\quad 2^{\circ} 36^{\prime \prime} 30^{\prime \prime} .5 \mathrm{~s}$.
After this obfervation it was cloudy the remainder of the day.
20th. Thermometer 71° at fun rife, rofe to 80°. -The morning remarkably fine and clear, wind from the eaft, -at $9^{\text {h }}$ A. M. it almoft inftantly became cloudy from the fouth, and between noon and 1 o'clock, a gult of rain accompanied with large hail ftones from the S. W. paffed about four miles to the north of our camp.

End of the obfervations made on the Chatahocha.

Longitude weft from Greenwich by the immerfion of the 3d fatellite of 4 on the 3^{\prime} ift of July $5^{\text {h }} 37^{\prime} 59^{\prime \prime}$.
Refult of the Obfervations made with the Large Sector on the Chatahocha, for the determination of the latitude.
The Zenith Diftances when arranged ftand as below.
Face of the Sector Eaft.

	ペ: \dot{m} m : mm $m \cdot m m$	$\begin{gathered} n \infty \\ \dot{+} \\ \mathrm{i} \\ \mathrm{~mm} \\ \mathrm{~mm} \end{gathered}$		0 \sim \sim N
		com		- - + +
			no min m m	$\begin{gathered} n \\ \underset{\sim}{n} \\ \underset{c}{n} \end{gathered}$
			n $\substack{ \\m \\ \sim \\ N}$	∞ ∞ \sim \sim \sim \sim
	$\begin{aligned} & \text { in: } \\ & : ~ \\ & 0 \\ & 0 \end{aligned}$			$\left\lvert\, \begin{gathered} n_{0}^{0} \\ \pm \\ \underset{y}{n} \\ m \end{gathered}\right.$
				$\left\|\begin{array}{c} n \\ \ddot{y} \\ \dot{y} \\ m \\ n \\ n \end{array}\right\|$
		$\left.\begin{array}{ll} 0 & 0 \\ 0 & a \\ m & m_{1} \\ m & e \end{array} \right\rvert\,$		$\left.\begin{gathered} c \\ \dot{n} \\ + \\ + \\ + \\ \\ m \\ m \\ \hline \end{gathered} \right\rvert\,$

Refult of the Obfervations made with the Small Sector on the Chatahocha, for the determination of the Latitude. The Zenith Diftances ftand as below.
Face of the Scçtor Ealt.

 Means .
Means face eaft Means True zenith diftance . Mean declination Auguft 8th. Aberrations . . Semi-annual equations

 Latitudes.

Latitude

From the foregoing determinations it appears that the latitude given by the large fector, exceeds that given by the fmall one, $1 " .1$; but as the refult given, by the large one, all circumftances brought into view, may be confidered five times as accurate as that by the fmall one: If therefore to five times the latitude given by the large fector, the latitude by the fmall one be added, and the fum divided by fix, the quotient $31^{\circ} 1^{\prime} 10^{\prime \prime}$ may be taken as the true latitude of the obfervatory; which exceeds the parallel of $31^{0 .}$ by $1^{\prime} 10^{\prime \prime}$, or about 7110.5 feet, which diltance was carefully laid off to the fouth, and the line corrected back as heretofore agreeably to plate X.-From the end of the laft mentioned correction, a map, or chart of the river Chattahocha, or Apalachicola, was taken to the mouth of Flint river (fee Plate ${ }^{\circ}$ XI.) but the mouth of Flint river not being a proper place for a courfe of obfervations, we encamped on a commanding eminence where the following obfervations were made.

Aug. 23 d. Thermometer 91° in the afternoon.
24th. Set up the clock, and equal altitude inftru-ment.-Thermometer 75° at fun rife, rofe to 91°.

Began the obfervatory.
Equal altitudes of the Sun.

$$
\text { A. M. } 8^{\mathrm{b}} 35^{\prime} 23^{\prime \prime} . \quad \text { P. M. } 3^{\mathrm{h}} 22^{\prime} 14^{\prime \prime}
$$

Thermometer 74° at fun rife, rofe to 88°. -Finifhed the obfervatory and fet up

Both Sectors, with their faces to the Eaft.
Shower between i2 and I o'clock, cleared off in a fhort time, cloudy in the evening.

Obferved zenith diffance of Caftor . $1^{\circ} 37^{\prime} 42^{\prime \prime} \mathrm{N}$.

26 th.
Equal altitudes of the Sun.

$$
\text { A. M. } 9^{\mathrm{h}} 27^{\prime} 28^{\prime \prime} \text {. P. M. } 2^{\mathrm{h}} 29^{\prime} 34^{\prime \prime}
$$

Thermometer 76° at fun rife, rofe to 85°. Shower of rain at noon, cloudy at 30^{\prime} 'clock P. M. followed by a heavy rain. During this long continuation of rainy weather, the winds have been very light, and fcarcely perceptible even when the clouds moved with prodigious rapidity. The winds have occupied no particular portion of the horizon, but have come from all quarters, and that in a fmall portion of time. - The nights have generally been fairer than the days.

$$
\begin{array}{cccccccc}
\text { Obferved zenith diftance of Caftor } & \cdot & 1 & 37 & 43 & \mathrm{~N} . \\
\text { do. } & \cdot & \text { Pollux } & \cdot & 2 & 11 & 7 & \mathrm{~s} .
\end{array}
$$

27th. Thermometer 74° at fun rife, rofe to 96°.

$$
\begin{aligned}
& \text { Equal altitudes of the Sun. } \\
& \text { A. M. } 8^{4} 6^{\prime} 14^{\prime \prime} . \text { P. }^{\prime \prime} 3^{\mathrm{n}} 50^{\circ} 8^{\prime \prime} \text {. }
\end{aligned}
$$

Obferred zenith diftance of \& Lyrx (fmall fector) $\begin{array}{lllll}7 & 56 & 18 & \mathrm{~N} .\end{array}$ do. . . β Pegafi . . 34^{1113} s. do. fmall fector do. . . 340 o s.
do. . a Andromedx . 2428 s.
do. fmall fector do. . . 24051 s .
do. . . Andromedæ . $3 \quad 52 \quad 1.5 \mathrm{~N}$
do. fmall fector do. . . $3 \quad 52 \quad 53$ N.
do. . . \quad Tauri . . $215 \quad 37$ s.

28th. Thermometer 74° at fun rife, rofe to 96°.

> Equal altitudes of the Surt. A. M. $8^{\mathrm{h}} 26^{\circ} 6^{\prime \prime}$. P. M. 3^{h} $29^{\prime} \cdot 42^{\prime \prime}$.

THERMOMETRICAL OBSERVATIONS.

At half paft 4 o'clock P. M. the fky to the north loft its fine blue, and became of a whitifh brown, which in a fhort time extencled over the whole hemifphere, and broke into fmall clouds.-The evening was very diftreffing, the atmofphere hazy, and fuffocating, and not a breath of air perceptible till about 8 o'clock P. M. when we had a light breeze from the eaft, which cleared, and corrected the atmofphere.

Obferved zenith diftance of

29th. Fog in the morning, fucceeded by flying clouds.-Thermometer 80° all laft nightrofe to 93°.

Obferved zenith diftance of a Coro. Borealis $3^{\circ} 17^{\prime} 4^{\prime \prime} \mathrm{s}$.
Turned the face of the large Sector to the Weft.
Obferved zenith diftance of a Lyrx (fmall feftor) $7^{\circ} 5^{6^{\prime}} 6^{\prime \prime} \mathrm{N}$.
Turned the face of the fmall Scetor to the Wen.

30th. Thermometer 74° at fun rife, rofe to 95°.
Vol. V.
M. m
Obferved

$3 \mathrm{lf}$. . Thermometer 76° at fun rife, rofe to 93°.

Obferved ze	nith diftance of	«Coro. Borealis	3	18	46	s.
do.	fmall fector	α Lyrz	7	52	55	N.
do.		β Pegafi	3	42	51	s
do.	fmall fector	do.	3	43	33	s.
do.	f	a Andromedæ	2	43	44.	5
do.		β Andromedx		4	${ }_{23}$	s.
do.	fmall fector	do.	3	49	26	N
do.		\& Tauri	2	17	17	
do.	-	Pollux	2	12	47	

Sept. ift. Thermometer 74° at fun rife, rofe to 94°.

> Equal altifudes of the Sun. A. M. $\mathbb{S}^{\mathrm{h}} 18^{\prime} 37^{\prime \prime} \cdot$ P. M. 3^{h} $34^{\prime}$${+11^{\prime \prime}}^{\prime \prime}$

Obferved zenith diftance of a Lyre (fmall fector) $7 \quad 52 \quad 42 \mathrm{~N}$.
do. . . β Pegafi do. $\begin{aligned} & \text { d } \\ & 43 \\ & 28 \\ & \text { s. }\end{aligned}$
do. . . α Andromedx do. $\begin{array}{lllll}2 & 44 & 38 & \mathrm{~s} .\end{array}$

2d. Thermometer 75° at fun rife, rofe to 90°.
Equal altitudes of the Sun.

$$
\text { A. M. } 8^{\mathrm{h}} 27^{\prime} 24^{\prime \prime} . \quad \text { P. M. } 3^{\mathrm{h}} 25^{\prime} 20^{\prime \prime} .
$$

Cloudy part of the afternoon.

THERMOMETRICAL OBSERVATIONS. 263
3d. Thermometer 73° at fun rife, rofe to 91°. -Cloudy great part of the day and night.
$4^{\text {th. }}$ Thermometer 76° at fun rife, rofe to 89°. Cloudy all the afternoon and night.
$5^{\text {th }}$. Thermometer 74° at fun rife, rofe to 87°. -Several fhowers of rain in the courfe of the day.

> Between 13 , and 14 hours, traced a meridian by \% Caffiopex, and a Urfx Minoris.

Emerfion of the 3 d fatellite of 24 obferved at $14^{\text {h }} 40^{\prime} 35^{\prime \prime}$. -a little foggy, but the belts were pretty diftinct, magnifying power of the telefcope 120.

6th. Thermometer 73° at fun rife, rofe to 89°. -A fine clear morning, the 1 ky remarkably blue.
©'s preceding limb on the meridian at Subfequent do. at

Centre at $11 \quad 55.12 .5$ A. M.
When the above obfervation was made, the tremor was fo exceffive that there was no poffibility of bifecting the meridional mark with precifion, nor of examining the line of collimation with the neceffary accuracy.-'Thun-der-guft in the afternoon.

Inmerfion of the Ift fatellite of ψ obferved at $14^{\mathrm{h}} 1 \mathrm{~g}^{\prime} 7^{\prime \prime}$ -Delts ditinct, magnifying power: 120 .

7 th. Thermometer 73° at fun rife, rofe to 860 . -Heavy fhower at day break, cloudy great part of the day with a little rain.

8th. Thermometer 73° at fun rife, rofe to 87°. -Shower at day break.
About 8 o'clock this morning the minute hand of the clock was moved by an impertinent young Indian. The glafs having been unfortunately broken by which the hands were left expofed.-The clock was then fet by my watch.

Shower in the afternoon.

		h	1	"
d. Draconis paffed the meridian at	\cdot	7	57	10
D's weftern limb on the meridian at	\cdot	8	0	34
a Aquilx on the meridian at	-	8	25	36

The obferved times, and diftances of the D 's weftern limb from Antares.

	b	$\prime \prime$	$\prime \prime$
8	41	14	
8	42	28	
8	43	42	
8	44	28	
8	45	39	
	8	46	54
	8	44	4

\circ	\prime	$\prime \prime$	
39	51	0	
39	51	20	
39	52	0	Error of the Sextant
39	52	20	add $1 I^{\prime \prime}$.
39	52	30	
39	5^{2}	50	
39	52	0	

The

THERMOMETRICAL OBSERVATIONS. $2 \sigma_{j}$
The obferved times, and difances of the D 's weftern limb from Fomalhaut.

9th. Thermometer 74° at fun rife, rofe to 90°. —Thick fog till 8^{h} A. M.
\odot 's preceding limb on the meridian at Subrequent do. at II 536 A. M. II 55 16 A.M. Centre at
$11 \quad 5411$ A. M.
$\wp^{\prime} s$ weflern limb on the meridian at . . $2^{\text {h }} 13^{\prime} 45^{\prime \prime}$
Equal alitudes of the Sun.
A. M. $8^{\text {h }} 10^{\prime} 10^{\prime} 23^{\prime \prime}$. P. M. $3^{\text {h }} 37^{\prime} 26^{\prime \prime}$ 。

Thefe equal altitudes are doubtful 3 or 4 feconds from fog and clouds.

The obferved times, and diftances of the D 's weftern limb from Antares.

The

The oblerved times, and diftances of the D 's weftern limb a Aries.

h	$\prime \prime$	11
8	31	55
8	32	55
8	33	45
8	35	7
8	36	4
8	36	53
8	37	59
	8	34

0	1	$\prime \prime$	
95	30	20	
95	30	0	
95	29	40	
95	29	20	Error of the Sestart
95	29	0	add $8^{\prime \prime}$.
95	29	0	
95	28	40	
95	29	26	

Ioth. Thermometer 71° at fun rife, rofe to 82°. -Foggy.

Sirius on the firlt fibre of the tranfit inftrument at 19 . II 16
The meridian at $1912 \quad 9$
The third fibre at 19130
1Ith. Thermometer 74° at fun rife, rofe to 91°.
Note. The obfervation on Sirius mult have been entered wrong, or the clock moved about $45^{\prime \prime}$ forward during my abfence yefterday.
$\therefore \quad$ Cloudy all the afternoon with a little rain.

2tho Thermometer 74° at fun rife, rofe to 89°. Thunder-guft at noon.

Equal altitudes of the Sun.
 A. M. $8^{\text {h }} 23^{\prime} 0^{\prime \prime}$. P. M. $3^{\text {h }} 24^{\prime} 37^{\prime \prime}$.

Thefe equal altitudes are doubtful 6 or 7 feconds, on account of clouds which have intervened every afternoon fince the 7 th.

a Aquilæ pafted the firft fibre of the tranfit inftrument at $\quad 8 \quad 9 \quad 50$
The meridian at 8 10 4 1
The third fibre at . .- . . . 8 II 30
 remarkably clear and fine, and I do not remember ever to have feen the fatellites, and belts, more beautifully defined.-Magnifying power 120.

Sirius pafed the firlt fibre of the tranfit inftrument at - ig 3 I9
The meridian at I9 4 I3
The third fibre at 19 5 3
13th. Thermometer 76° at fun rife, rofe to $9 \mathbf{1}^{\circ}$.

Equal altitudes of the Sun.
A. M. $8^{\text {h }} 9^{\prime} 4^{\prime \prime}$. P. M. $3^{\text {h }} 36^{\prime} 56^{\prime \prime}$ 。

a Aquilæ paffed the firft fibre of the tran-
$\begin{aligned} & \text { fit inftrument at } \\ & \text { The meridian at }\end{aligned}$
$\begin{array}{lllll}\text { The third fibre at }\end{array}$

Immerfon of the ift fatellite of $2 f$ obferved at $16^{h} 9^{\prime} 20^{\prime \prime}$. -Belts middling diftinct, magnifying power 120.-The fatellite diappeared uncommonly quick after it began to lofe its luftre.

Sirius paffed the firft fibre of the tranfit inftrument at 18
The meridian at 19015
The third fibre at 1916

14th. Thernometer 74° at fun rife, rofe to 91°. -Cloudy part of the afternoon.
$\rho^{\prime} \mathrm{s}$ weftern limb on the meridian at $\quad \begin{array}{lll} & 2^{\text {h }} & 2^{\prime} \\ 45^{\prime \prime}\end{array}$ Equal altitudes of the Sun.

$$
\text { A. M. } 8^{h} 21^{\prime} 22^{\prime \prime} . \quad \text { P. M. } 3^{h} 24^{\prime} 3 S^{\prime \prime} .
$$

Sirius paffed the firf fibre of the tranfit inftrument at 18 年 $\begin{array}{llll}55 & 25\end{array}$
The meridian at $18 \quad 56 \quad 19$
The third fibre at $1857 \quad 9$
15th. Thermometer 72° at fun rife, rofe to 92°.
©'s preceding limb on the meridian at in $51 \quad 47 \mathrm{~A} . \mathrm{M}$. Subfequent do. at • - ir $53 \quad 55 \mathrm{~A} . \mathrm{M}$. Centre at . . . II $52 \quad 5$ i A.M.

Ncte. Before the above obfervation was made, upon examining the tranfit inftrument I found the ferew which forews the perpendicuiar axis was flackened, which probably in fome degree affected the preceding obfervation upon Sirius.
f's weftern limb upon the meridian at . . $20{ }_{2}$
Sirius pafied the firft fibre of the tranfit inftrument at $18 \quad 51 \quad 31$
The meridian at $18 \quad 52 \quad 25$
The third fibre at . . . : $18 \quad 53 \quad 15$
26th. Thermometer 76° at fun rife, rofe to 96°. -Cloudy part of the afternoon.

End of the obfervations made at this ftation.

Examination of the meridian by the tranfits of δ Draconis, and a Aquilx.

Difference in A. R. between δ Draconis, and x Aquilx on $\}$ the 13 th, mean folar time $\begin{array}{lll}0 & 28 & 26.5 \\ 0 & 28 & 27.0\end{array}$
Obferved difference on the $13^{\text {th }}$. . . . 02827.0
Error of the meridian to the eaft 0000.5

Thofe fars being well fituated to detect any error in the meridian, and as the error comes within the probable error of taking an obfervation, it may be confidered fufficiently correct.

Examination of the meridian by the equal altitudes* and tranfit of the \odot 's centre on the 13 th of September.

Equal alitudes of the Sun on that day. ".
A. M. 8 9.48.
P. M. $3 \quad 3^{6} \quad 56$

The

* The equal altitudes before this day were taken with the equal altitude infrument. The cup for holding the water with the roof, for making an artificial horizon being folen by the Indians, and not returned till the 12 th. By a conftant practice of 16 years I find the equal altitudes taken from the artificial borizon rather more accurate, than when taken with the equal altitude inftrument.

The difference by the above obfervation likewife comes within the probable error of making an obfervation.

The rate of the clock's going at this ftation.

On the 10th. between 10^{h} A. M. and 6^{h} P. M. the clock was altered about 45 " forward by accident, or otherwife.

Clo " daily lofe
mean time $\}$ I 3 th. 27.4 By the tranfit of the \odot 's centre do. 14th. 28.4 daily gain. $\begin{aligned} & \text { over the meridian. } \\ & \text { By equal altitudes of the } \odot \text {. }\end{aligned}$
do. . 15 th. $26.0 \quad 2.4 \quad$ By the tranfits of the \odot 's centre do. . 16th. 26.0 over the meridian.

Longitude of our obfervatory as deduced from the eclipfes of 4 fatellites and Lunar obfervations.

Sept. 5th. By an Emerfion of the 3d fatellite -
6 th . Immerfion of the 1 ft do. $\quad \begin{array}{llll}5 & 38 & 58 \\ 5 & 39 & 18\end{array}$ 8th. D's diftance from Antares . $\begin{array}{ccc}5 & 36 & 56\end{array}$
do. from Fomalhaut . $\begin{array}{llll}5 & 38 & 30\end{array}$
gth. . do. from Antares - $\begin{gathered}57 \\ 39 \\ \text { Weft from }\end{gathered}$
do. from a Aries • $\left.\begin{array}{llll}5 & 38 & 8\end{array}\right\}$ Greenwich.
sith. Immerfion of the ad fatellite - $\begin{array}{ccc}5 & 37 & 29\end{array}$ Emerfion do. . . $\begin{array}{llll}5 & 36 & 35\end{array}$
12th. Immerfion of the 3 d do. . $\quad \begin{array}{ccc}5 & 37 & 3\end{array}$
13 th. do. . Ift do. . $\begin{array}{llll}5 & 39 & 20 \text { J }\end{array}$
Refult of the Obiervations made with the large Sector, at our fation ncar the mouth of Flint River, to determine the Latitude.
The Zenith diftances fland as below.
Face of the Sector Eaft.

Face of the Sector Weft.

$\begin{array}{ccc} 3 & 50 & 22 \\ 3 & 50 & 23 \\ \ldots & \ldots & \ldots \\ \hline \end{array}$	$\begin{array}{lll}2 & 17 & 17.5 \\ 2 & 17 & 16 \\ 2 & 17 & 17 \\ . . . & .\end{array}$	$\begin{array}{lll}1 & 36 & 0 \\ 1 & 36 & 3.5 \\ \cdots & . & \cdots \\ 1 & 36 & 3.5\end{array}$	$\begin{array}{lll}2 & 12 & 49 \\ 2 & 12 & 47 \\ 2 & 12 & 47 \\ . & . & .\end{array}$	$\begin{array}{ccc}3 & 18 & 46 \\ 3 & 18 & 46 \\ \ldots\end{array}$	$\begin{array}{llll}3 & 42 & 51 \\ 3 & 42 & 51 \\ \ldots\end{array}$	$\begin{array}{lll}2 & 43 & 46 \\ 2 & 43 & 44 \\ \ldots & \ldots\end{array}$
$\begin{array}{lcc} 3 & 50 & 22.5 \\ 3 & 52 & 2 \\ \hline \end{array}$	$\begin{array}{lll} 2 & 17 & 16.8 \\ 2 & 15 & 37 \\ \hline \end{array}$	$\begin{array}{lll} 1 & 36 & 2 \cdot 3 \\ \text { I } & 37 & 43 \\ \hline \end{array}$	$\begin{array}{rrr} 2 & 12 & 47.7 \\ 2 & 11 & 7.5 \\ \hline \end{array}$	$\begin{array}{rrr} 3 & 18 & 46 \\ 3 & 17 & 4 \\ \hline \end{array}$	$\begin{array}{lll} 3 & 42 & 51 \\ 3 & 41 & 12.1 \\ \hline \end{array}$	$\begin{array}{llll}2 & 43 & 45 \\ 2 & 42 & 8.2\end{array}$
$\begin{array}{r} 3512.2 \\ +\quad 3.8 \\ \hline \end{array}$	$\begin{array}{r} 2626.9 \\ +\quad 2.3 \\ \hline \end{array}$	$\begin{array}{r} 3652.6 \\ +\quad 1.6 \\ \hline \end{array}$	$\begin{array}{r} 21157.6 \\ +\quad 2.2 \\ \hline \end{array}$	31755 $+\quad 3.3$	$\begin{array}{r}342 \\ +\quad 3.5 \\ \hline\end{array}$	$\begin{array}{r}24256.6 \\ +\quad 2.7 \\ \hline\end{array}$
35116.0	$216 \quad 29.2$	$13^{6} 54.2$	21159.8	31758.3	$342 \quad 5 \cdot 2$	24259.3

	$\text { B Andromed }{ }_{0}$	${ }_{0}^{\beta} \text { Tauri. }$	Caftor.	Pollux.	$\mid \underset{\sim}{\text { Coro. Borcalis. }}$	${ }_{0}^{2} \text { Pegaris. }$	$\left.\right\|_{0} \text { Andromed }$
Mean declinations Aus. 28th.	343318.2 N.	2825 29.1. N.	321851 N.	282956.6 N.	272352.1 N.	$265951.3 \mathrm{~N} .$	27598.1
Aberrations	- 1.1	$\cdots 2.2$	-0.7	$+0.5$	+ 14.8	$+4.8$	+ 2.5
Nutations	- 2.6	+ 6.8	+ 8.4	+ 8.5	- 2.9	- 6.4	4.6
Semi-annual equations	+ 0.4	0.4	+ 0.2	+ 0.1	0.5	+ 0.2	+ 0.4
True declinations	343314.9	282533.5	$\begin{array}{lllll}32 & 18 & 58.9\end{array}$	$28 \quad 30 \quad 5 \cdot 7$	${ }^{27} 24$ 4.2	265949.9	27 +
True zenith diftances applied	-3 316	+21629.2	$\begin{array}{llll}-1 & 36\end{array}$	+2 11159.8	$\begin{array}{r}\text { + } \\ +31758.3 \\ \hline\end{array}$	+3 $42 \quad 5.2$	+2 4259.3
Latitudes N. . .	304158.9	$3042 \quad 2.7$	30424.7	$3042 \quad 5 \cdot 5$	$3042 \quad 2.5$	$3041 \quad 55.1$	$3042 \quad 5.7$

	内
	7
	-

Refult of the Obfervations made with the fmall Sector, at our fation near the mouth of Flint River, to

The Zenith Diftances arranged fand as below.
Face of the Sector Eaft.

Latitude

From the refult of the foregoing obfervations, the latitude of our obfervatory by the large fector, comes out $30^{\circ} .42^{\prime} \mathbf{2}^{\prime \prime} .2 \mathrm{~N}$. and by the fmall one $30^{\circ} 41^{\prime} 51^{\prime \prime} .3 \mathrm{~N}$. By proceeding as in the former cafes where both fectors were ufed, and the due weight given each, the latitude appears to be $30^{\circ} 42^{\prime} 0^{\prime \prime} .4$, which we took for the true latitude of the obfervatory.

The ground about the mouth of Flint river not being fit for encamping on, in confequence thereof, we pitched on the neareft commanding eminence, from which with the leaft labour in falling the timber, the junction of the rivers might be difcovered: In order to connect our work with the junction of the rivers, the following method was purfued. From the obfervatory A (fee Fig. G, Plate XI.) a vifta was opened to give us a view of the point of land B, between the rivers. The angle which the line $A B$ made with the meridian AN, we had to determine by meafurement, the aftronomical circle which was admirably calculated for that purpofe, was fent away a few days before (we were compelled by the Indians to leave the country) on account of its weight, as I was informed by the commiffoner for His Catholic Majefty! To find the value of this angle, the triangle ANC was formed on the ground.-AN a portion of the meridian was equal to 396.125 feet, AC, a portion of the line in the direction of the junction of the rivers was equal to 496.623 feet, and NC the fide oppofite to the required angle, was equal to 336.583 feet*-the fides being given, the angle CAN comes out to the nearelt fecond 45° 10' $19^{\prime \prime}$ weft of north. The diftance from A to B was found by meafurement to be 369 perches, from which by the folution of a plane right-angled triangle, the difference of latitude will be found to be 260.14 perches, or about $42^{\prime \prime} .4$, which added to the latitude of the obfervatory will give $30^{\circ} 42^{\prime} 42^{\prime \prime} .8$ for the latitude of the junction of the rivers.-The fides of the triangle, with the points of interfection were formed with the utmoft accuracy by the tranfit inftrument.

On the $17^{\text {th }}$ day of September, at the time we were preparing to extend the line from the mouth of Flint river to the fource of the St. Mary's, the hoftile difpofition

[^37]fition of the Indians, and an attempt to plunder our camp, compelled us to relinquith our defign, and leave the country. On the $9^{\text {th }}$ day of December following we met at the town of St. Mary's, and took into confideration the further profecution of our bufinefs, and came to a conclufion,- that we could not attempt with any probability of fuccefs, more than to determine the fource of the St. Mary's, with its geographical pofition, until the waters fhould fubfide, and the fwamps be dried by the fummer heats, which could not be expected in lefs than eight months, added to an oppofition we had a right to look for from the Indians. - In order to determine the geographical pofition of the river St. Mary's, we erected an obfervatory at l'oint l'eter, near the mouth of the river, as a given point; from whence the latitude, and longitude of the fource of the river might be determined by meafurement, if we fhould fail, either in carrying on our apparatus, or in obtaining a fufficient number of oblervations for that purpofe.

At Point Peter the following obfervations were made. Dec. $14^{\text {th }}$. Set up the clock.

15th. Cloudy.
16th. Set up the fmall Sector with the face to the Eaft.

Thermometer 51° at fun rife, rofe to 67°.

$$
\begin{aligned}
& \text { Equal altitudes of the Sun. } \\
& \text { A. M. } 9^{\text {h }} 14^{\prime} 59^{\prime \prime} . \quad \text { P. M. } 2^{1 h} 41^{\prime} 7^{\prime \prime} .
\end{aligned}
$$

Thefe equal altitudes are doubtful a few feconds, but not more than 4.

$$
\text { 3 } 3
$$

"

Cloudy all the afternoon after $3^{4} \mathrm{P} . \mathrm{M}$ and continued fo all night.
17th. Fog in the morning, cloudy all day. Thermometer 57° at fun rife, rofe to 70°. Heavy rain at night.
18 th. Thermometer 56° at fun rife, rofe to 64°. -Fine rain in the morning. Strong vind from the N. E.-Cloudy with rain all the afternoon and night.
19th. Thermometer 55° at fun rife, rofe to 59°. -Heavy fog early in the morning.-Flying clouds all day and rain in the evening.
20th. Thermometer 60° at fun rife, fell to 5°. -Cloudy all day, fine rain in the morning and a heavy rain at night.
21 it . Thermometer 59° at fun rife, fell to 54° in the afternoon, cloudy with heavy rain moft of the day.-Wind from the N. W. in the evening.
22d. Thermometer 54° at fun rife, rofe to 55°. -Cloudy early in the morning and in the evening.

Obferved zenith diftance of a Lyrx - $7^{\circ} 55^{\prime} 37^{\prime \prime}$ м
Equal alitules ef the Sun.
A. M. $9^{\text {h }} \mathbf{1}^{\prime} 32^{\prime \prime} . \quad$ P. M. $3^{\text {h }} \boldsymbol{r}^{\prime} 2 \delta^{\circ}$.

23d. Thermometer 54° at fun rife, rofe to 56°. -Cloudy all laft night and this day with fine rain, wind S . W. cleared off in the cvening with a N. W. wind.

ASTRONOMICAL AND

Emerfion of the 1 if fatellite of 4 obferved at $15^{\text {lh }} 40^{\prime} 51 \%$. Night clear, belts diftinct, magnifying power 120.

24th. Thermometer 34° at fun rife, rofe to 54°. Obferved zenith diftance of a Lyre $\quad 7^{\circ} 55^{\prime} 37^{\prime \prime} \mathrm{N}$.

Equal altitudes af the Sun.

$$
\text { A. M. } 9^{\mathrm{h}} 22^{\prime} 17^{\prime \prime} \quad \text { P. M. } 2^{\mathrm{h}} 50^{\prime} \quad 12^{\prime \prime}
$$

25th: Thermometer 30° at fun rife, rofe to 51°. Obferved zenith diftance of a Lyræ $\quad 7^{\circ} 55^{\prime} 4^{\prime \prime \prime}$ か.

> Aqual alitudes of the Sur. A. M. $9^{\text {h }} 20^{\prime} 21^{\prime \prime} \cdot=$ P. M. $2^{\mathrm{h}} 53^{\prime} 50^{\prime \prime}$.

Oblerved zenith diftance of a Andromedx $2^{\circ} 41^{\prime} 16^{\prime \prime}$ s.
do. . . β Andromedx $353 \leq 6 \mathrm{~N}$.
Emerfion of the if fatellite of 4 obferved at $10^{1 h} 9^{\prime} 50^{\prime \prime}$. Night clear, belts diftinct, magnifying power 120.

Obferved zenith diftance of Pollux . 2° Io $34^{\prime \prime} 3$.
26th. Thermometer 41° at fun rife, rofe to 49°. —Cloudy all day and night.

Turned the face of the Sector Weft.
27th. Thermometer 50° at fun rife, rofe to 64°. Obferved zenith diflance of a Lyrx . $7^{\circ} 4^{8 \prime} 25^{\prime \prime}$.

$$
\text { A. M. } 9^{\text {Equal altitudes of the Sun. }} 19^{\prime} 51^{1^{\prime} .} . ~ \text { P. M. } 2^{\mathrm{h}} 57^{\prime} 42^{\prime \prime} .
$$

Obferved

Obferved zenith diftance of a Andromedx . $2^{\circ} 4^{S^{\prime}} 35^{\prime \prime}$ s. do. . . β Andromedx $34548^{\circ} \mathrm{N}$.
 - Belts diltinct, magnifying power 120 .

28th. Thermometer rofe to 80°.-Cloudy in the morning.-Wind S. E.

Obferved zenith diftance of a Andromedx $2^{\circ} 4^{8^{\prime}} 33^{\prime \prime}$ s. do. . . β Andromedæ 34550 ג.

29th. Thermometer 67° at fun rife, fell to 63° in the afternoon.-Heavy rain great part of the day.-At 10 o'clock P. M. wind fhifted to the S. W. and blew with great violence, became clear at fhort intervals.

Thermometer 54° at fun rife, fell to 44° in the afternoon, and to 33° at $7^{\mathrm{B}} \mathrm{B}$. M. Strong N. W. wind with flying clouds.

In the evening finifhed our meridian by circum polar ftars, this work was begun on the evening of the 29 th.

31 ft. Thermometer 25° at fun rife, rofe to 44°.

$$
\mathrm{O} \circ 2
$$

[^38]Equal altitudes of the Sun.

$$
\text { A. M. } 9^{\mathrm{h}} 4^{1^{\prime}} 37^{\prime \prime} \text {. P. M. } 2^{\mathrm{h}} 42^{\prime} 19^{\prime \prime} \text {. }
$$

fiopex pafled the meridian atole flar at

1800.

Jan. ift. Thermometer 28° at fun rife, rofe to 54°. -Wind N. E. fcattering clouds from the S. \mathbb{E}.

Emerfion of the Ift fatellite of 4 obferved at $12^{\text {h }} 6^{\prime} 43^{\prime \prime}$. - Belts diftinct, magnifying power 120 .

An immerfion of the 4 th fatellite is entered in the Nautical Almanac to happen at Greenwich at $17^{\circ} 18^{\prime} 30^{\prime \prime}$, and the emerfion at $18^{h} 44^{\prime} 22^{\prime \prime}$. As the immerfion was to happen but $1^{\prime} \xi_{2 \prime \prime}^{\prime \prime}$ from the emerfion of the ift fatellite, it was a favourable opportunity to make both obfervations at one fetting. At $12^{\text {h }}$ I placed myfelf at the telefcope, and as foon as I had adjufted the inftrument to my eye, I thought the 4 th fatellite had loft fome of its luftre. After noting the emerfion of the if fatellite, I again applied myfelf to the inftrument, but the $4^{\text {th }}$ fatellite ftill continued vifible, and had altered but very little fince I firf obferved it ; it was wery diftinet at $12^{11} 42^{\prime}$, and at 13^{12} had nearly if not quite recovered its luftre.

2d. Thermometer 54° all day.-Heavy rain, wind $\mathrm{N} . \mathrm{E}$. till evening, fhifted to the N. W. in the night when it became clear.

Thermometer 39° at fun rife, rofe to 53°.

> Equal altitudes of the Sun. A. M. $9^{h} 27^{\prime} 30^{\prime \prime}$. P. M. $3^{h_{1}}$$I^{\prime} 18^{\prime \prime}$.

Emerfion of the ift fatellite of 4 obferved at $6^{\text {h }} 35^{\prime} 39^{\prime \prime}$. -Belts diftinet, and the planet and fatellites remarkably well defined, magnifying power 120.

Emerfon of the 2 d fatcllite of 24 obferved at $9^{\text {h }} 55^{\prime} 59^{\prime \prime}$. -Belts and fatellites very diftind, magnifying power 120.

4th. Thermometer 36° at fun rife, rofe to 54°. Equab

$$
\begin{aligned}
& \text { Equal alitudes of the Sun. } \\
& \text { A. M. } 9^{\text {k }} 48^{\prime \prime} 45^{\prime \prime} \text {. P. M. } 2^{\text {n }} 41^{\prime} 38^{\prime \prime} \text {. }
\end{aligned}
$$

5th. Thermometer 36° at fun rife-Cloudy all day.
6th. Thermometer 34° at fun rife, rofe to 61°.

$$
\begin{aligned}
& \text { Equal a altitudes of the Sur. } \\
& \text { A. M. } 9^{\mathrm{h}} 30^{\prime} 2 \mathrm{I}^{\prime \prime} . \\
& \text { P. M. } 3^{\mathrm{h}} \\
& 9^{\prime}
\end{aligned} 3^{\prime \prime} .
$$

7 th. Thermometer 38° at fun rife.-Cloudy all day.
8th. Thermometer 40° at fun rife, rofe to 48°.
Emerfion of the ift fatellite of 2 obferved at $14^{\text {th }} 3^{\prime} 12^{\prime \prime}$ -Hazy, neither 4 nor his fatellites well defined, magnifying power 120 .

9th. 'Thermometer 38° at fun rife, rofe to 42°. -Fine rain part of the day, and rain with hail during the night-wind N. E.
Ioth. Thermometer 37° at fun rife, rofe to 40°. -Snow and hail the whole day! which continued till 10 o'clock in the evening, when the thermometer fell to 32°, the wind Ghifted to $\mathrm{N} . \mathrm{W}$. and it became clear at midnight.
IIth. Thermometer 28° at fun rife, rofe to 40°. -Snow five inches deep.

$$
\begin{aligned}
& \text { A. M. } 9^{\text {E }} \text { nual alitudes of the Suno } \\
& 36^{\prime} \\
& 25^{\prime \prime} . \\
& \text { P. M. } 3^{\text {h }}
\end{aligned} 4^{\prime} 24^{\prime \prime} \text {. }
$$

I2th. Thermometer 34° at fun rife, rofe to 67°. -Cloudy great part of the day.
₹ 3 th. Thermometer 46° at fun rife, rofe to 57°. -Cloudy all day.

14th. Thermometer 40° at fun rife, rofe to $\sigma 2^{\circ}$. -Cloudy.
15th. Thermometer 42° at fun rife, rofe to 61°. -Cloudy in the evening.

> Equal altitudes of the Sun.
> A. M. $9^{\text {h }} 49^{\prime} 22^{\prime \prime}$. P. M. $2^{\mathrm{h}} 57^{\prime} 0^{\prime \prime}$.

16th. Thermometer 45° at fun rife, rofe to 67°. 17 th. Thermometer 64° at fun rife, fell to 42° in the evening, cloudy in the morning, light fhower at II ${ }^{h} A$. M. cleared off at noon with a moft violent wind from the weft, which shifted to the N. W. in the evening.

The obferved times, and diftances, of the \mathcal{O}^{\prime} 's and D 's neareft limbs.

	h	,	"
	20	40	4
	20	41	23
	20	42	7
	20	42	52
	2.	43	34
	20	44	10
	20	44	48
	20	45	30
Means	20	43	3

\circ	1	$\prime \prime$
86	23	50
86	23	40
86	23	10
86	22	40
86	22	30
86	22	00
86	21	55
86	21	30
86	22	39

Repeated.

	$2 \mathrm{I}^{\text {' }}$	1	
	21	1	58
	21	2	35
	21	3	7
	21	3	41
	21	4	13
Means	21	2	50

0	1	$\prime \prime$	
86	16	0	
86	15	50	
86	15	30	Error of the Sextant
86	15	30	add $8^{\prime \prime}$.
86	15	0	
86	14	40	
86	15	25	

r 8 th. IOth. Thermometer 38° at fun rife, rofe to 58°.

Equal altitudes of the Sun.

$$
\text { A. M. } 9^{h} 45^{\prime} 10^{\prime \prime} \text { P. M. } 3^{h} 5^{\prime} 8^{\prime \prime}
$$

At $6^{\text {h }}$ prepared to obferve the eclipfe of 24 's 4 th fatellite. - At about $6^{\text {h }} 20^{\prime}$ the fatellite began to lofe its luftre, which gradually diminilhed till about $6^{h} 46^{\prime}$,-from that time it was not difcernible with a magnifying power of 50 , but diftingt with $120 .-$ at $7^{\text {h2 }} 23^{\prime} 47^{\prime \prime}$ it was evidently more bright, and at $7^{\text {h }} 35^{\prime}$ had almoft recovered its ufual brightnefs.

The obferved times, and diftances of the \odot 's and D 's neareft limbs.

Repeated.

	11	1	"
	21	15	29
	21	16	33
	21	17	9
	21	17	52
	21	18	32
	21	19	9
	21	19	40
	21	20	22.
	2 I	20	54
	21	21	20
Means	21	18	42

0	1	$\prime \prime$
72	59	20
72	59	00
72	58	50
72	58	40
72	58	20
72	58	00
72	57	40
72	57	30
72	57	20
72	57	0
72	58	10

igth

19th. Thermometer 37° at fun rife, rofe to 54°.

> Equal altitudes of the Suin. A. M. $10^{\mathrm{h}} \mathbf{1}^{\prime} 6^{\prime \prime}$. P. M. $z^{\mathrm{h}} 50^{\prime}$ $21^{\prime \prime}$.

Thele equal altitudes are doubtful 2 or 3 feconds but not nore, from the violence of the wind.

Rate of the clock's going at Point Peter.
1799.

Clock too faft mean time Dec. Ioth. . $3_{3}^{\prime \prime}$ "r.
Daily gain.

Refult of the Obfervations for the Longitude.

THERMOMETRICAL OBSERVATIONS. 285
Refult of the Obfervations made at Point Peter to determine the Latitude.
799.

Face of the Sector Weft.

 Mean declinations Iece. 25 th. . Aberrations . .

Nutations
True declinatio pondde sowix!p y!uaz 2n.x.
Latitude

Latitude bydo.					\%
	β Andromedx	-	30.	43	58.
	- 'Tauri		30°	44	18
do.	Caftor		30°	44	14.6
do.	Pollux	-	30°	44	11.5
do.	a Lyre -	-	30	43	57.9
do.	a Andromedr	-	30	44	18.3
Mean Latitude north			30.		9.8*

Examination of the meridian by the tranfit of γ Caffoper and a Urix Minoris or the Pole ftar.

The above difference is nearly, in mean folar time equal to
Obferved difference on the 3 Ift of Dec.
Difference

The difference between the calculated, and obferved time, is fo fmall, that it is fcarcely fufficient with the very beft inftrument to be perceptible in the motion of the Pole ftar. The meridian may therefore be confidered as fufficiently accurate for the following purpofe.

[^39]
THERMOMETRICAL OBSERVATIONS.

In order to determine the exat pofitions of the flag faff in the fort at Point Peter, the fouth end of Cumberland Ifland, and the north end of Amelia Inland, the meridian was extended fouth from the obfervatory the diftance of 99.12 perches.

From the fouth end of the bafe the bearing of the flag ftaff in the fort was
rom do. to the fignal on the north end $\}$ of Amelia Illand
From do. to do. on the fouth end? of Cumberland Illand. $\}$
$\left.\begin{array}{l}\text { From thefe data by plain trigonometry the diftance } \\ \text { from the obfervatory to the flag ftaff in the fort }\end{array}\right\}$ from the oblervatory to the flag ftaff in the fort
comes out
From do. to the fignal on the north end of $\}$ Amelia Ifland
From do. to do. on the fouth end of $\}$ Cumberland Ifiand

Dif. of latitude between the obfervatory and flag ftaff . $0 \quad 0 \quad 29.5$

$$
\text { do. fignal on Amelia Ifland o I } 45.7
$$

$$
\text { do. do. on Cumberland Inland o o } 56.0
$$

The latitude of the flag ftaff is therefore $\left.\begin{array}{lllll}\text { do, } & \text { north end of Amelia Ifland } & 30 & 43 & 40.3 \\ \text { do } & \text { fouth end of Cumberland } & 30 & 42 & 24.1 \\ \hline\end{array}\right\}$ North.

From which it appears that the junction of the Chatahocha, or Apalachicola, and Flint Rivers, and the entrance between Cumberland, and Amelia Iflands into the found, are precifely in the fame parallel of latitude.

The angles were taken with the infrument already mentioned, made by Mr George Adams.
1800.

Feb. 6th. Afcended the St. Mary's as high as it was navigable for canoes.*

Pp2
7 th.

* We afcended the river with as little loading and baggage as polfibl.. -I even left my hat and thermometer.

7 th. Sent out a party to difcover the fource of the river or its communication with Okefonoke fivamp. Set up the clock.
Sth. Cloudy with heavy rain.
9th. Equal altitudes of the Sun.

$$
\text { A. M. } 9^{\mathrm{h}} 2^{\prime}+4^{\prime \prime} \quad \text { P. M. } 2^{\mathrm{h}} 53^{\prime} \text { I } 8^{\prime \prime} \text {. }
$$

Ioth. Cloudy all day with an appearance of rain.
I th. Shower at day break-Cloudy all day with cold N . wind.
12th. Smart froft, cold all day, and cloudy in the evening.

$$
\begin{aligned}
& \text { Equal altitudes of the Sun. } \\
& \text { A. M. } 8^{\mathrm{h}} 4^{6^{\prime}} \mathrm{I}^{\prime \prime} . \\
& \text { P. M. } 3^{\mathrm{h}} 10^{\prime}
\end{aligned} 5^{\prime \prime \prime} .
$$

The telefcope and tranfit inftrument arrived.
13th. Very cloudy, and cold in the morning:heavy rain all the afternoon and night.
14th. Cloudy with fine rain in the forenoon: cleared off in the afternoon with a N. W. wind.

Sct up both Sectors with the faces to the Eaft.

> Obferved zenith difance of β Tauri (fmall fector) 5231 s. do. . Caftor . I 586 N . do fmall fector do. $\quad{ }^{2} \quad 1 \quad 3 \mathrm{~N}$.
> do. Pollux - \quad. 50 49. s .

15th. Very cool, frong wind from the N. W.
Obferved zenith difance of β Andromedx $4^{\circ} 12^{\prime} \quad 3^{\prime \prime \prime}$ N.

Equal altitudes of the Sun.

$$
\text { A. M. } 8^{\mathrm{h}} 54^{\prime} 45^{\prime \prime} \text {. P. M. } 3^{\mathrm{h}^{\circ}} \mathrm{I}^{\prime} 24^{\prime \prime}
$$

Thefe equal altitudes are doubtful a few feconds (from the violence of the wind) but not more than four.

The obferved times, and diftances, of the \odot 's and D 's nearcf limbs.

	॥	,	"	0	,	"	
	19	48	31	90	56	30	
	19	49	35	90	56	co	
	19	50	28	90°	55	40	
	19	51	8	yo	55	30	Error of the Sex-
	19	51	42	90	55	20	tant add $5^{\prime \prime}$.
	19	52	9	90	55	\bigcirc	
	19	52	34	90	54	50	
	19	53	6	90	54	20	
Means	19	51	9	90	55	24	

I6th.
Equal olititudes of the Sun.

$$
\text { A. M. } 9^{\text {h }} 2^{\prime} 32^{\prime \prime} . \quad \text { P. M. } 2^{\text {b }} 53^{\prime} 29^{\prime \prime}
$$

There equal altitudes are doubtful 2 or 3 feconds from the interference of clouds.

Obferved zenith diftance of β Tauri - I $55 \quad 9$ s.
do. fmall fector do. . I $52 \quad 36 \mathrm{~s}$
do. \quad Caftor . 1587 N.
do. fmall fector do. . 2051 N .

do. Pollus
do. fmall fector \quad do. 5050 s.

do. fmall fector do. . i $473^{6} \mathrm{~s}$.
Emerfon of the ift fatellite of 4 obferved at $12^{\text {h }} 5^{\prime} 40^{\prime \prime}$. Night very fine, belts diftinct, magnifying power 120.

Obferved zenith diftance of: a Coro. Borealis $2^{\circ} 57^{\prime} 19^{\prime \prime} \mathrm{s}$: do. fmall fector . do. . . 25429 s.

17 th. Cloudy in the morning and continued fo at times all day.

> Equal altitutes of the Sun.
> A. M. $9^{2} 24^{\prime} 49^{\prime \prime} \cdot$ P. M. $2^{\text {h }} 3^{\prime} 3^{\prime \prime}$.

The above equal altitudes are doubtful 2 or 3 feconds on account of the clouds.

Hazy all the evening.
Obferved zenith diftance of Caftor. . $1^{\circ} 5^{8} \quad 9^{\prime \prime} \mathrm{N}$. do. . . Pollux . I 5050 s.

Between 14 and 15 hours iraced a meridian by \& Urfx Majoris and the Pole ftar.

Obferved zenith diftance of a $L_{\text {¢̧ræ (}}$ (fmall fector) $8^{\circ} I^{\prime} 8^{\prime \prime} \mathrm{N}$.
The obferved times, and diftances, of the \odot 's and D 's neareft limbs.

	h	,	N
	19	53.	40
	19	54	14
	19	54	43
	19	55	22
	19	56	1
	19	56	26
	$19{ }^{\text {r }}$	56	49
	19	57	21
	19	57	59
	19	58	3^{8}
	19	59	10
Means	19	56	24

64	40	00
64	39	50
64	39	40
64	39	30
64	39	20
64	39	00
64	38	50
64	38	40
64	38	40
64	38	30
64	38	20
64	39	7

18th. ©'s preceding limb on the meridian at
II 5635 A. M. Subfequent do. at . . II 584^{8} A. M.

Centre .. do. at ... II 5741 A. M.
Obferved

THERMOMETRICAL OBSERVATIONS.

Obferved zenith diftance of β Andromedx $4^{\circ} \quad 12^{\prime} 39^{\prime \prime}$ No. Equal altitudes of the Sun.
A. M. $8^{\mathrm{B}^{\mathrm{h}}} \cdot 57^{\prime} 23^{\prime \prime}$. P. M. $2^{\text {h }} 58^{\prime} 20^{\prime \prime}$ 。

Turned the Face of the fmall Sector Welt.
Cloudy at times all the afternoon and night.

Obferved zenith diftance of Caftor (fmall fector) $1^{\circ} 53^{\prime} 40^{\prime \prime} \mathrm{N}$ The obferved times, and diftances, of the \odot 's and D 's neareft limbs.

	h	$\prime \prime$	$\prime \prime$
20	0	7	
20	0	43	
20	1	22	
20	2	15	
20	3	6	
20	3	42	
20	4	27	
20	4	59	
20	5	37	
	20	6	14
	20	3	15

0	11	$\prime \prime$	
51	39	30	
51	39	20	
51	39	10	
51	39	0	
51	38	50	Error of the Ses-
51	38	40	tant add $5^{\prime \prime}$.
51	38	20	
51	38	0	
51	37	50	
51	37	40	
51	38	38	

$$
\text { D's Subfequent limb on the meridian at . } 20^{\mathrm{h}} 3^{8^{\prime}} 00^{\prime \prime} \text {. }
$$

The obferved timcs, and diftances, of the \odot 's and D 's neareff limbs.

	${ }_{1}$,	"	\square	1	"	
	20	37	42		28	30	
	20	39	14	51	27	50	
	20	39	50	51	27.	40	
	20	4 C	20	51	27	30	Error of the Sex-
	20	41	2		27	20	tant add $5^{\prime \prime}$.
	20	41	29	51	27	00	
	20	41	59		26	50	
	20.	42	30	51	26	40	
Means	20	40	31	51	27	25	

o paffed the meridian at . $21^{\text {th }} 1 I^{\prime} 32^{\prime \prime}$ centrum.
19th. Smart frof this morning, very cloudy at noon, clear at $2^{\text {b }}$ P. M.

$$
\text { A. M. } \begin{aligned}
& \text { Equal aititudes of thes Sun. } \\
& 4^{\prime 2} \\
& 44^{\prime \prime} \cdot \\
& \text { P. M. } 3^{\text {h }}
\end{aligned} 6^{\prime} 49^{\prime \prime} .
$$

Turned the Face of the large Sector Weft.

Obferved zenith ditance of β Tauri - I 5656 s . do. fmall fector do. . I 596 s.
do. . Caftor \quad I $56 \quad 17 \mathrm{~N}$.
do. fmall fector do. . I $53 \quad 33 \mathrm{~N}$.
do. . Pollux - 15237 s .
do. fmall fector do. . I $55 \quad 20 \mathrm{~s}$.
do. α Coro. Borealis $259 \quad 9 \mathrm{~s}$.
do. fmall fector do. . $3^{5} 4^{2}$ s.
Night cold, fharp froft, and water froze within 9 feet of our fires.

I paffed the meridian at . . 211238 centrum.

$$
\left.\begin{array}{l}
\text { D's fubrequent limb paffed the } \\
\text { meridian at }
\end{array}\right\} \quad \begin{array}{llll}
& 1 & 28 \quad 16.5
\end{array}
$$

20th. ©'s preceding limb on the meridian at II $\begin{array}{llll}5 & 25 & \text { A. M. }\end{array}$ Subfequent do. at . 115838 A. M. Centre at 115731.5 A. M.

Obferved zenith diftance of \AA Andromed $4^{\circ} 10^{\prime} 50^{\prime \prime} \mathrm{N}$.

> Equal alitudes of the Suzz.
> A. M. $8^{\mathrm{h}} 30^{\prime} 55^{\prime \prime} . \quad$ P. M. $3^{\mathrm{h}} 24^{\prime} 29^{\prime \prime}$.

Obferved zenith diftance of β Tauri . I 5656 s .
do. Caftor - I 56 I9 N. do. Imall fector do. . 15346 N . do. Pollux \quad I 52.35 s. do. aCoro. Borealis 2598 s. do. fmall fector do. $3^{1} 4^{2}$ s.

Cold for this climate, at 7^{h} P. M. linen that was wathed, and left out to dry, was frozen ftiff, and ice nearly $\frac{7}{6}$ th of an inch thick was formed within 9 feet of our fires, which were large, and kept up all night.

Obferved zenith diftance of a Lyrz (fmall fector) $8^{\circ} 10^{\prime} 58^{\prime \prime}$.
\& paffed the meridian at . 211348 centrum.
D 's fubfequent limb on the meridian at $22 \quad 25 \quad 8$
21f. ©'s preceding limb on the meridian at if 5620.5 A . M.
Subfequent do. at . . II 5833 A. M.
Centre at 115726.7 A. M.

Equal altitudes of the Sun.
A. M. $8^{\text {h }} 50^{\prime} 59^{\prime \prime}$. P. M. $3^{\text {h }} 4^{\prime}$ I $8^{\prime \prime}$.

Obferved zenith diftance of β Andromedz 41049 N. do. . . B Tauri - I $56 \quad 56 \mathrm{~s}$. do. fmall fector do. . 15927 s. do. . Caftor . I 56 19 N. do. fmall fector do. . I 5340 N . do. . Pollux . I 5237 s. do. fmall fector do. . I 5548 s.
of pailed the meridian at 2115 o centrum.
2d. ©'s preceding limb on the
$\left.\left.\begin{array}{c}\text { meridian at } \\ \text { Subfequent do. at }\end{array}\right\} \begin{array}{llll}\text { II } & 56 & \text { II } 8 & \mathrm{~A} . \mathrm{M} . \\ 5^{8} & 3^{8} \mathrm{~A} . \mathrm{M} .\end{array}\right\}$ tremulous.
Centre at . . ${ }^{115724 \mathrm{~A}}$. M.

Equal altitudes of the Sun.

A. M. $8^{\mathrm{h}} 53^{\prime} 59^{\prime \prime}$. P. M. $3^{\text {b }} \mathbf{1}^{\prime} 9^{\prime \prime}$.
\& paffed the meridian at $\quad 25^{b} 16^{\prime} 13^{\prime \prime} .5$ centrum.
VoL. V.
Qq 23 d.

23d. . Very warm.

$$
\begin{aligned}
& \text { Equal altitute of the Sun. } \\
& \text { A. M. } 9^{\text {h } 25^{\prime}} 41^{\prime \prime} . \quad \text { P. M. } 2^{\prime \prime} 29^{\prime} 19^{\prime \prime} .
\end{aligned}
$$

of pafted the meridian at : $21^{\text {h }} 17^{\prime} 22^{\prime \prime}$ centrum. 24th. ©'s preceding limb on the meridian at II 5610 A. M.

Sublequent do, at........ 1158 II A. M.
Centre at 1157 15.5 A. M.

Equal altituaces of the Sun.

$$
\text { A. M. } 8^{h} 41^{\prime} 37^{\prime \prime} \text {. P. M. } 3^{h 1} 13^{\prime} 18^{\prime \prime} \text {. }
$$

Immerfion of the 3 d fatellite of 4 obferved at $11^{h} 45^{\prime} 38^{\prime \prime}$. - Beits difinit, magnifying power of the telefcope 120.
? paffed the meridian . . $21^{\mathrm{h}} 18^{\prime} 30^{\prime \prime}$ centrum.
Very hazy; the planet at times not vifible.

25th. ©'s preceding limb on the meridian at it $56 \quad 6 \mathrm{~A} . \mathrm{M}$.
Subfequent do, at :- II 58 I6 A. M.
Centre at II 57 in A. M.

> Equal allitudes of the Sin.
> A. M. $8^{\mathrm{h}} 4^{8^{\prime}} 13^{\prime \prime} \cdot \quad$ P. M. $3^{h} G^{\prime} 3 z^{\prime \prime}$.

Emerfisn of the if fatelite of 4 oblerved at $8^{\text {h }} 30^{\prime} 26^{\prime \prime}$. A little hazy, but the belts were middling well defined, magnifying power 120 .

End of the aftronomical obfervations at this flation.

Rate of the Clock's going up the St. Mary's.
I 800.
Clock too flow mean time Feb, gth

ne	Feb. 9th.		16	48.5	
do.	12 th.		16	39.5	
do.	15 th.	-	16	35.6	1.3
do.	16 th.		16	35.7	
d	18 th.		16	34.8	0.4
do. .	19th.	-	16	34.1	0.7
do.	20th.		16	32.2	
do	zif.		16	28.7	3.5
do	22 d .		16	24.5	4.2
do.	23 d .		16	20.7	- 3.8
do.	$24^{\text {th. }}$.		16	15.2	- 5.5
do.	25 th.	-	16	10.2	$5 \cdot 2$

Note, In the above flatement, where the equal altitudes, and the paffage of the \odot over the meridian have not given the fame error, a mean has been taken, however the difference in all cafes was fo fmall, that it might arife from a want of perfection in making the obfervations themfelves.

Refult of the obfervations made up the St. Mary's for determining the longitude.

Feb. 15th: By the D 's diftance from the \odot 16th. Emerfion of the ift fatellite of 4 I 7 th. By the D 's diftance from the \odot $\begin{aligned} & \text { do. } \\ & \text { do. } \\ & \text { d }\end{aligned} \quad . \quad$. do of the 3 d fatellite of 4
24thi. Immerfion of the 3 d fatellite of 4
$\left.\begin{array}{ccc}10 & 1 & 11 \\ 5 & 29 & 18 \\ 5 & 29 & 7 \\ 5 & 29 & 55 \\ 5 & 30 & 18 \\ 5 & 30 & 10 \\ 5 & 29 & 16 \\ 5 & 27 & 58 \\ 5 & 28 & 53\end{array}\right\}$ Wreenwich.
Refult of the Obfervations made with the large Sefor, up the St. Mary's, to determine the Latitude.

		${ }_{0}^{\text {Andr }}$	omed			auri.										* Coro. Borealis.		
Mean declinations on the 18 th.						28			18		N.		829			2723		N
Aberrations		+				2.3											14.7	
Nutations .						$7 \cdot 3$							+					
Semi-annual equations		-			$+$	0.3			$+$	0.1				0.0			0.4	. 4
True declinations		433	28.3	28	25	37.9		32	18	53.4			329	54.1			27.8	
True zenith diftances applied		411	48.2	$+1$	56	5.5		-1	57	15			151	44.4		+258	16	
Latitudes N. .		21	40.1	30	21	43.4	N.	30	21	$3^{8.4}$	N.		O 21	38.5	N.	30	43.8	. 8

Refols
Refult of the Obfervations made with the Smmll Sector, up the St. Mary's, to detemine the latitude.

Latitude

The fame number of fars were taken with each fefor; but the large one from the length of its radius, being at leaft three times as accurate as the fmall one, the latitude by the large one, was multiplied by three, and the latitude by the fmall one added to that product, and the fum divided by four, the quotient $30^{\circ} 21^{\prime} 39^{\prime \prime} .5$ was taken for the true latitude of the obferyatory.

This being the higheft point to which we could afcend the river, and the country fo covered with water, that it was impofible with our few remaining broken down pack horfes to convey our apparatus by land to the fource of the river; we therefore had to determine the geographical pofition of its fource by a traverfe; the courfes of which are as follows: viz. beginning at the obfervatory A, (Plate XIl.) where a hewn poft was fet up and furrounded by a large mound of earth, from thence N. $10^{\circ} 1^{\prime}$ W. 4435.6 perches, thence S. $85^{\circ} \mathrm{J} 4^{\prime \prime} \mathrm{W} .115 .6$ perches, thence north 44.8 perches at the end of which a hewn poit was fet up, and furrounded by a mound of earth B.-Thefe courfes when tabled will fand as below.

Courfes.	N.	S.	E.	W.
iv. $10^{\circ} \mathrm{s}^{\prime}$ W. $4435.6 \mathrm{p}^{\mathrm{s}}$. S. $85^{\circ} 14^{\prime} \mathrm{W} .115 .6 \mathrm{p}^{\mathrm{s}}$. N. $44^{\circ} 8 \mathrm{p}^{\circ}$.	4368			771.2
		9.6	.	115.2
	44.8
	4412.8	9.6		885.4
	- 9.6			
	4403.2			88.4

The laft mettioned nound of earth was thrown the on the margin of the Okefonoke fwamp, and as near to it as any permanent mark could be placed on account of the water.

From Plate XII. upon which the above traverfe is laid down, it may be feen that the river St. Mary's is formed by the water draining ont of the Okefonoke furamp.along feveral marfhes, or fnall fwamps, which join into one, and form, or conftitute the main branch or body of the river. The principal, or largeft of thofe fwamps, or drains, is the molt eafterly one, and in which the current is the molt vifible. This marh, or drain is croffed by the laf courfe of the traverfe, which tetminates at the mound \mathbf{B}. From this mound north-eafterly into the fwamp, the water lias but little, if any percoptible current. The fource of the river is therefore in an indeterminate
determinate fpace ; and no fpecific point could be fixed on, as the fwamp is at all times almolt impenetrable, and at this feafon of the year abfolutely fo without immenfe labour, and expence. It was therefore agreed that the termination of a line, fuppofed to be drawn N. 45°, E. 640 perches from the mound B, fhould be taken as a point to, or near which, a line fhould be drawn from the mouth of Flint river; which line when drawn, fhould be final, and confidered as the permanent boundary between the United States and His Catholic Majefty, provided it palled not lefs, than one mile north of the mound B : but if upon experiment, it fhould be found to pafs within lefs than one mile north of the faid mound, it thould then be corrected to carry it to that diftance. To obtain as near as poffible the courfe of the faid line, with the diftance between the points to be joined, the following materials deduced from our previous operations were ufed. The longitudes made ufe of are from meafurements, compounded with the eclipfes of the ift fatellite of Jupiter.

The longitude of the obfervatory near the mouth of Flint river by the eclipfes of the 1 It fatellite of 4 is $5^{\text {h }} 39^{\prime} 19^{\prime \prime}$ weft from Greenwich. The longitude of our ftation on Thompfon's Creek, by a mean of five good obfervations is $6^{h} 4^{\prime} 4^{\prime \prime}$ weft from Greenwich. From Thompfon's Creek to the Flint river obfervatory, the diftance is 371.21 miles, which in the parallel of 31° is equal to $24^{\prime} 57^{\prime \prime}$ in time, which deducted from the longitude at Thomfon's Creek, will leave $5^{\text {h }} 39^{\prime} 5^{\prime \prime \prime}$ for the longitude of the obfervatory near the mouth of Flint river; which difagrees with the longitude by obfervation $32^{\prime \prime}$ in time. Meafurements when accurately executed, in a known parallel of latituds, are generally preferable to obfervations for diftances, not exceeding 100 miles: yet in this cafe, the meafurement is not entitled to that weight, being done in hafte, with a common chain, through thickets, fwamps, and ponds, where pins of more than ordinary lengths had to be made ufe of, which involved an unfurmountable fource of error: but not in fo confiderable a degree as to juftify its rejection. It was therefore concluded, that if to twice the longitude of the obfervatory near the mouth of Flint river, the longitude by meaturement from Thompfon's Creek be added, and the fum divided by three, the quotient $5^{h} 39^{\prime}$ $30^{\prime \prime}$ would be the longitude of the obfervatory near the mouth of Flint river, as correctly as it could be had from our materials: But the mouth of Flint river was found by meafurement to be 260 perches, equal in time to $3^{\prime \prime} .3$ weft from the obfervatory; which added to the above determination, the decimal .3 being rejected, as unimportant, when errors much larger are unavoidable, will give $5^{\prime \prime} 39^{\prime} 33^{\circ \prime}$ for the longitude of the mouth of Flint river. - -The latitude has already been fettled at $30^{\circ} \mathbf{4 2}^{\prime \prime}$ $42^{\prime \prime} .8$.

The longitude of the obfervatory at A, up the St. Mary's by obfervation is $5^{\mathrm{h}} 29^{\prime}$. The longitude of the obfervatory at Point Peter by four good obfervations is $5^{\text {h }} 26^{\prime} 34^{\prime \prime}$: the difference of longitude by obfervation is $2^{\prime} 26^{\prime \prime}$. - The difference of longitude between the obfervatories, by a traverfe taken for that purpofe, was 37.45 miles which is cqual to $2^{\prime} 32^{\prime \prime}$. The traverfe being made under very unfavourable circumftances, and confifted of an uncommon number of courfes, owing to the fwamps, and ponds, (with which the country abounds), being full of water, and im-
paffable: the mean $2^{\prime} 29^{\prime \prime}$ was therefore taken for the difference of longitude, which added to $5^{\text {h }} 26^{\prime} 34^{\prime \prime}$ the longitude of Point Peter will give $5^{\text {h }} 29^{\prime} 3^{\prime \prime}$ for the longitude of the obfervatory at A. -The difference of latitude between A, and the mound B, has been fhewn to be 4403.2 perches, and the difference of longitude 886.4 perches weft : thence to the end of the line fuppofed to be drawn N. 45 E. 640 perches from the mound B , the difference of latitude will be 452.5 perches; which added to the difference of latitude between A, and B, will give 4855.7 perches, or $13^{\prime} 8^{\prime \prime} .5$ nearly, which added to $30^{\circ} 21^{\prime} 39^{\prime \prime} .5$ the latitude of A, will give $30^{\circ} 34^{\prime} 48^{\prime \prime}$ for the latitude of the termination of the line fuppofed to be drawn from B.- From the obfervatory at A, to the mound B, the difference of longitude by meafurement has been ftated at 886.4 perches weft, from thence to the termination of the line fuppofed to be drawn from B , the difference of longitude is 452.5 perches ealt, which deducted from the wefting, will leave 433.9 perches weft, which is equal to about $6^{\prime \prime}$ in time, and when added to $5^{\mathrm{h}} 29^{\prime} 3^{\prime \prime}$ the longitude at A will give $5^{\mathrm{h}} 29^{\prime} 9^{\prime \prime}$ for the longitude of the termination of the line fuppofed to be drawn as above; which deducted from the longitude of the mouth of Flint river, will leave $10^{\prime} 24^{\prime \prime}$ for the difference of longitude between the points.

There are now given

The latitude of the mouth of Flint river $=\quad \cdot \quad 30^{\circ} 42^{\prime} 42^{\prime \prime} .8^{\prime}$ $\left.\begin{array}{l}\text { The latitude of the termination of the line fuppofed } \\ \text { to be drawn from B }\end{array}\right\}=\begin{array}{lll}30 & 34 & 48\end{array}$

The difference of longitude between the mouth
$\left.\begin{array}{l}\text { of Flint river, and the termination of the line } \\ \text { fuppofed to be drawn from } \mathrm{B}\end{array}\right\}=0^{\text {h }} 10^{\prime} 24^{\prime \prime}=2^{\circ} 36^{\circ}$

To find the courfe, and diftance between the given points, that is, between the mouth of Flint river, and the termination of the line fuppofed to be drawn from B , which is done as follows:

In the fpherical triangle DEF , let DE reprefent the co. latitude of the mouth of Flint river $=59^{\circ} 17^{\prime} 17^{\prime \prime} \cdot 2$. FE the co. latitude of the termination of the line fuppofed to be drawin from $B=59^{\circ} 25^{\prime} 12^{\prime \prime}$, and the included angle DEF $2^{\prime \prime} 3^{6^{\prime}}$, being the difference of longitude between the given points.

For the required fide.

	ρ	,	"		
Included angle Half	1	36 18	0	S	8.3557835
Diff. of the fides	\bigcirc	7	54.8		
Half	-	3	57.4	co. ar. S	3.9389855
DE	59	17	17.2	- $\frac{1}{2}$ S	4.9671851
FE	59	25	- 12	${ }^{\frac{2}{2}} \mathrm{~S}$	4.9674813
	89	39	44	- Tangent	12.2294354
	89	39	44	co. ar. S	0.0000075
$\frac{1}{2}$ Diff. of the fides	\bigcirc	3	57.4	S	6.0610145
	1	7	6.5	S	8.2904574

DF . . . : $21413=155.2$ miles nearly.

For the angles.

THERMOMETRICAL OBSERVATIONS.

From which it follows, that an arc of a great circle making an angle with the meridian at the mouth of Flint river from the fouth, towards the eaft of $87^{\circ} 17^{\prime} 22^{\prime \prime}$, being the fupplement of the angle EDF, will ftrike the termination of the line fuppofed to be drawn from B ; provided the diftance be as before ftated. But if the diftance between the points, fhould either exceed the diftance deduced from the previous operations feven miles, or fall fhort of it an equal number, the line will neverthelefs pafs within hali a milc of the termination of the fuppofed line, and therefore fall within the fpace of uncertainty-as to the real fource of the river.

If a common furveying compafs fhould be ufed, the before mentioned angle of $87^{\circ} 17^{\prime} 22^{\prime \prime}$ mult be diminifhed at the rate of about $1^{\prime} 32^{\prime \prime}$ for every three miles, to compenfate for the difference of $x^{\circ} 19^{\prime} 32^{\prime \prime}$ between the fupplemental angle already mentioned, and the angle DFE, to produce as near a coincidence as poffible with the are of a great circle.

After erecting the mound B, we defcended the river, and encamped on the fouth end of Cumberland Ifland,* to prepare the report of our procecdings to both nations, and make our arrangements for leaving the country. At that encampment the following obfervations were made.
1800.

March 6th. Unloaded the veffel, encamped and fet up the clock.
7th. Cloudy and very cold.
8th. Stormy with cold rain.
gthi. Storm continues.
roth. Violent wind, and hcavy rain.
I ith. Cloudy in the morning, ftrong N . wind and fine rain.-Thermometer 49° in the morning, rofe to 57°.
12th. Clear,-thermometer 47° in the morning, role to 70°.

Equal alitindes of the Sun.
A. M. $8^{\text {h }}: 53^{\prime} 50^{\prime \prime}$. P. M. $3^{\text {h }} 6^{\prime} 55^{\prime \prime}$.

13th. Thermometer 47° in the morning, rofe to 76°.
$\mathrm{Rr} 2 \quad$ Enserfion

[^40]
ASTRONOMICAL ANO

Emerfion of the Ift fatellite of 4 obferved at $6^{\text {th }} 58^{\prime} 49^{\prime \prime}$. -Evening very clear, the belts diftinct, magnifying power 120.

14th. Thermometer 49° at fun rife, rofe to 78°. Equal altitudes of the Sun.

$$
\text { A. M. } 8^{\mathrm{n}} 54^{\prime} 6^{\prime \prime} . \quad \text { P. M. } 3^{\mathrm{h}} 5^{\prime} 57^{\prime \prime} .
$$

15th. Thermometer 51° at fun rife, rofe to 84°.
Emerfon of the 2 d fatellite of 24 obferved at $11^{\text {b }} 54^{\prime} 41^{\prime \prime}$. -The planet was low and uncommonly tremulous-the belts indiftinet, magnifying power 120 .

16th. Thermometer 57° at fun rife, rofe to 81°.

Equal altitudes of the Sun.

$$
\text { A. M. } 9^{\mathrm{h}} 5^{\prime} 0^{\prime \prime} . \quad \text { P. M. } 2^{\mathrm{h}} 54^{\prime} 30^{\prime \prime}
$$

17th. Thermometer 60° at fun rife, rofe to 81°.

Equal altitudes of the Sun.
A. M. $9^{\text {b }} 7^{\prime} 24^{\prime \prime} \quad$ P. M. $2^{\text {h }} 51^{\prime} 57^{\prime \prime}$.

The obferved times, and diftances, of the \odot 's and D 's nearelt limbs.

	h	-	/1	o	,	"	
	19	45	15	82	10	20	
	19	45	59	82	10	-	
	19	46	3^{8}	82	9	50	
	19	47	15	82	9	30	the Sextant $7^{\prime \prime}$.
	19	47	51	82	9	20	
	19	48	30	82	9.	00	
Means	19	46	55	82	9	40	

Repeated.

c	1	11	
	20	15	10
20	15	51	
	20	16	22
	20	16	49
	20	17	29
	20	18	4
	20	18	33
	20	19	2
	20	19	35
	20	17	26

0		$\prime \prime$	
82	0	30	
82	0	10	
82	0	0	
81	59	50	
81	59	40	Add for the error of
81	59	30	the Sextant $7^{\prime \prime}$.
81	59	20	
81	59	10	0
81	59	0	
81	59	41	

18th. Thermometer 62° at fun rife, rofe to 81°. -Cloudy with thunder great part of the day attended with a little rain.
19th. Thermometer $\sigma 1^{\circ}$ at fun rife, rofe to 86°. -Cloudy part of the day.

The obferved times, and diftances, of the \odot 's and D 's neareft limbs.

	b	,	"	-	-	"	
	20	14	6	56	37	00	
	20	14	45	56	36	50	
	20	15	44	56	36	40	
	20	16	33	56	36	30	Add for the error of
	20	17	11	56	36	20	the Sextant $7^{\prime \prime}$.
	20	17	55	56	36	20	
	20	¢8	28	56	36	00	
Means			23			31	

20th. Thermometer 65° at fun rife, rofe to 82°.

> A. M. ${ }^{\text {Equal altitudes of the Sun. }}$ A. $44^{\prime} 35^{\prime \prime} \cdot$ P. M. $3^{\mathrm{b}} \cdot 13^{\prime} 53^{\prime \prime}$.

A thick

A thick fog towards evening from the S. E. -very cloudy at night.
21 ft . Thermometer 63° in the morning, rofe to 79°.
22d. Thermometer 60° at fun rife, rofe to 84°.

> Equal allitudes of the Sun.
> A. M. $8^{81} 50^{\prime} 17^{\prime \prime}$. P.M. $3^{\text {b }} 7^{\prime} 53^{\prime \prime}$.
> Doubtful 3 or 4 feconds.

23d. Thermometer 61° at fun rife, rofe to 62°. -Cloudy great part of the day with a violent wind from the S. E.
24th. Thermometer 58° in the morning, fell to 56° in the afternoon, rain with a ftrong wind from the S. E.
25th. Thermometer 56° at fun rife, rofe to 70°. -Flying clouds great part of the day.

Emerfion of the 3 d fatellite of 4 observed at $7^{\text {h }} 1^{\prime} 3^{\prime \prime}$. Belts pretty diftinct, magnifying power $\mathbf{1 2 0}$.

Difcovered that the clock was confiderably out of beat, owing to the poft to which it was faftened being moved by people inadvertently leaning againft it in the tent:-The poft being planted in loofe fand, no better foundation to be had.

26th. Thermometer 50° at fun rife, rofe to 60°.

$$
\begin{aligned}
& \text { Equal altitudes of the Sun- } \\
& \text { A. M. } 8^{\mathrm{h}} 44^{\prime} 23^{\prime \prime} .
\end{aligned} \text { P. M. } 3^{\text {h }} 13^{\prime} 0^{\prime \prime} .
$$

Emerfion of the $4^{\text {th }}$ fatellite of 4 obferved at $\delta^{h} 8^{\prime} 57^{\prime \prime}$. -Evening remarkably fine; magnifying power 200.-Although the fatellite was too vifible to be miltaken at the time above noted, it certainly had not fubly recovered its lutire
luttre at $8^{\text {a }} 35^{\prime}$ ，it emerged clofe to the 2 d fatellite，which gave me an excellent opportunity of judging of its bright－ nefs．

27 th．Thermometer 54° at fun rife，rofe to 68° ．

$$
\begin{aligned}
& \text { Equal altitudes of the Sur. } \\
& \text { A. M. } 8^{\mathrm{h}^{\mathrm{h}}} 399^{\prime} \cdot 4 \mathrm{I}^{\prime \prime} \cdot \text { P.M. } 3^{\text {h }} 17^{\prime} 35^{\prime \prime} .
\end{aligned}
$$

Emerfron of the ift fatellite of 4 obferved at $10^{\text {b }} 53^{\prime} 10^{\prime \prime}$ ． －The planet very tremulous，and the belts icarcely dif－ cernible－magnifying power 120.

28th．Thermometer 61° at fun rife，rofe to 76° ． －Cloudy in the afternoon．
29th．Thermometer 63° at fun rife，rofe to 81° ． －Thunder and rain in the morning．

> Equal altitudes of the Sun. A. M. $8^{\mathrm{h}} 42^{\prime} 54^{\prime \prime}$. P. M. 3^{h} $4^{\prime} 0^{\prime \prime}$ 。

30th．Thermometer 50° at fun rife，rofe to 75° ．

$$
\begin{aligned}
& \text { Equal alitudes of the Sun. } \\
& \text { A. M. } 8^{\mathrm{h}} 39^{\prime} 12^{\prime \prime} \text {. P. M. } 3^{\text {h }} 17^{\prime} 30^{\prime \prime} \text { 。 }
\end{aligned}
$$

The obferved times，and diftances，of the ©＇s and D＇s nearelt limbs．

0	1	$\prime \prime$	
69	48	00	
69	48	10	
69	48	30	
69	48	50	Add for the error of
69	49	15	the Sextant $7^{\prime \prime}$
69	49	40	
69	50	10	
69	48	56	

3 Ift. Thermometer 53° at fun rife, rofe to 86°. April ift. Thermometer 57° at fun rife, rofe to 87°.

$$
\begin{aligned}
& \text { Equal altitudes of the Sun. } \\
& \text { A. M. } 3^{\mathrm{h}^{1}} 53^{\prime} 46^{\prime \prime} . \\
& \text { P. M. } 3^{\text {in }} \\
& 2^{\prime}
\end{aligned} 7^{\prime \prime} .
$$

Doubtful feveral feconds on account of clouds.

Immerfion of the 3^{d} fatellite of 4 obferved at $8^{h} 1^{\prime} \quad 17^{\prime \prime}$. -The evening very fine, and the fatellite loft its luftre, and difappeared more gradually than I ever faw it before, -Magnifying power 120.

Emerfion of the fame fatellite obferved at $11^{\mathrm{h}} 5^{\prime} 19^{\prime \prime}$. -The planet was low, and tremulous, and the belts very indiftinct, magnifying power as above.

2d. Thermometer 61° at fun rife.
Emerfion of the $2 d$ fatellite of 4% obferved at $6^{\text {br }} 30^{\prime} 5 \mathrm{I}^{\prime \prime}$. -The belts were well defined, but the fun having been fet about 15 minutes and the day light being very ftrong, on which account the obferved time might be diminifhed 10 or 15 feconds with propriety, magnifying power 120 .
 -Cloudy all day with heavy rain, and thunder at night.
4th. Thermometer 63° at fun rife, rofe to 82°. -Cloudy all the forenoon.
$5^{\text {th. }}$ Thermometer 64° at fun rife, rofe to 84°.

$$
\begin{aligned}
& \text { Equal altizudes of the Sun. } \\
& \text { A. M. } 8^{h} 39^{\prime} 11^{\prime \prime} . \quad \text { P. M. } 3^{\text {h }} 17^{\prime} 27^{\prime \prime} \text {. }
\end{aligned}
$$

Emerfion of the Ift fatellite of 4 obferved at $7^{\text {h }} 13^{\prime} 19^{\prime \prime}$. -Belts well defined, magnifying power 120.

6th. Thermometer 61° at fun rife, rofe to $\delta 5^{\circ}$.

Equal altilulles of the Sun.
 A. M. $8^{\text {h }} 40^{\prime} 57^{\prime \prime}$. P. M. $3^{\text {h }} 15^{\prime} 4^{\prime \prime \prime}$.

7th. Thermometer 62° at fun rife, rofe to 83°.
8 th. Thermometer 65° at fun rife, rofe to 85°. 9th. Thermometer 70° at fun rife, rofe to 90°.

> Equal altitudes of the Sun. A. M. $8^{1 h} 23^{\prime} 52^{\prime \prime}$. P. M. $3^{h} 32^{\prime} 5^{\prime \prime}$.

Emerfion of the 2d fatellite of 4 obferved at $9^{\text {h }} 9^{\prime} 28^{\prime \prime}$. -A little hazy, magnifying power 120.

Ioth. Thermometer 62° at fun rife, rofe to 87°.

$$
\begin{aligned}
& \text { A. M. } 8^{\text {Eh }} 57^{\prime} 6^{\prime \prime} . \quad \text { P. M. } 2^{\text {h }} 59^{\prime} 48^{\prime \prime} \text {. }
\end{aligned}
$$

Took down and packed up the inftruments.

Rate of the Clock's going at the fouth end of Cumberland Ifland.

Vol. V.
S f
Refults

Refults of the obfervations, made for the longitude, at the fouth end of Cumberland IIland.

March 13th. Emerfion of the if fatellite of 4526

$$
\text { 15th. do. } 2 \mathrm{~d}
$$

$$
\text { I7th. By a lunar obfervation - } \quad 5=659
$$

$$
\text { 17th. do. . : } \quad 52625
$$

19th. do. $\quad 5 \quad 27 \quad 25$
25 th. Emerfon of the 3 d fatellite of $45 \quad 26 \quad 14$
26th. do. of the 4 th du. by?
the Nautical Almanac $\} 5 \quad 51 \quad 48$ By de Lambre's 'l'ables • $\begin{array}{llll}5 & 27 & 37\end{array}$
27 th. Emerfion of the If fatcllite of $\begin{array}{lllll}4 & 5 & 25 & 43\end{array}$
3cth. By a lunar obfervation \quad.
April ift: Inmerfion of the 3 d fatellite of $245 \quad 24$

Emeryion						
2d.	Emerfion of the 2 d fatellite of	4	5	26	0	
5 th.	do.	if do.	49			
9th.	do. .	2 d	do.	5	26	40

Weft frome Greenwich.

By a mean of the 3 eclipfes of the ift fatellite of 4 ; the longitude of the fouth end of Cumberland iftand comes out $5^{\text {h }} 26^{\prime} 17^{\prime \prime}$ weft from Greenwich: By a trāerfe from the obfervatory at Point Peter acrofs the found, the difference of longitude between that ftation, and the fouth end of Cumberland inand is $10^{\prime \prime}$ nearly, which added to the longitude above, will give $5^{\text {h }} 26^{\prime} 27^{\prime \prime}$ for the longitude of Point Peter; which is $7^{\prime \prime}$ lefs than by obfervation. But as there were more obfervations on the eclipfes of the ift fatellite taken at Point Peter, and a better agreement, that determination is enititled to the molt weight.-If therefore $2^{\prime \prime}$, be deducted from the longitude of the observatory at Point Peter as determined by obfervation, and $5^{\prime \prime}$ added to the longitude of the fouth end of Cumberland ifland as deduced from obfervation, the longitudes will fand as below.
$\left.\begin{array}{l}\text { Longitude of the S. end of Cumberland infand } \\ \text { Longitude of the obfervatory at Point Peter }\end{array} \begin{array}{ccc} & 5 & 1 \\ 5 & 26 & 22 \\ \hline & -26 & 32\end{array}\right\}$ Weft from

Thefe longitudes are probably as corred as they can be had by obfervations, the refult of which depends upon a theory not yet abfolutely perfeet: but, thefe, with other deductions of a like nature in the foregoing work, may be further corrected when compared with correfponding obfervations, or others made about the fame time, 'at obfervatories whofe pofitions have been accurately fettled. The latitude of the fouth end of Cumberland Ifland has already been ftated at $30^{\circ} 43^{\prime} 13^{\prime \prime} .8 \mathrm{~N}$.

The obfervations being now brought to a clofe, I have only to add, that they were made, and regitered with fidelity, and correctly copied from the original entries in my journal, without a fingle alteration.- The errors of the clock, with its rate of going, as entered at the end of each courfe of obfervations, may readily be examincd by the equal altitudes and other obfervations made for that purpofe: and for fear miftakes might happen, in reducing the obferved time of an obfervation for the longitude, to either mean, or apparent, the original entry as noted at the clock, has in all cafes been retained;-fo that any refult, which depends upon an accurate knowledge of the time, may be re-examined, and corrected if found erroneous.

It is prefumed, that no apology will be neceflary, for any finall inaccuracies which may be difcovered in the aftronomical obfervations, when it is confidered that they were made at temporary ftations, and the apparatus frequently expofed to the weather, for want of tents, and other covering; and almoft as frequently fo injured by the tranfportation from one place, to another, through the wildernefs, that if I had not been in the habit of conftructing, and making inftruments for my own ufe, our bufinefs muft have been feveral times fufpended, till the repairs could have been made in Europe.

No. XXII.
Obfervations on the Figure of the Earth. By Josmpir Clay, M. A. P. S.

THE fubject of this paper was fuggefted to me by a perufal of the "Studies of Nature," by Bernardin de St. Pierre. The pofitive manner in which that author afferts that the earth is a prolate fpheroid, the arrogance with which he challenges refutation, and above all the erroncous theories which he has built on this affertion, feem to require all doubts to be removed by a mathematical demonftration. It is known that degrees of latitude increafe in length as we approach to the poles. Upon this ground, St. Pierre places his principal argument which in fubftance is that if two lines diverging from the centre of an ellipfis, intercept a part of the curve, the further that part is from the centre, the longer will it be; and converfely, as the arch of one degree is longer near the pole than an arch of one degree near the equator, the axis muft be longer than the equatorial diameter. His error arifes from fuppofing, that degrees of latitude are meafured by the angles of femi-diameters of the meridian. This is not the cafe. The only mode of determining the latitude is by obferving the altitude of the heavenly bodies, either by the mural quadrant or fector or by Hadley's octant. Suppofing the fun to be the body altitude of which is taken, and fuppofing it to be in the equator and on the meridian, the complement of its altitude is equal to the latitude of the place of obfervation. The parallax of the fun is fo fmall, that rays of light coming from it may without fenfible error be confidered as coming in parallel lines; this being premifed, let
two right lines $b l o$ (Fig. I.) and HLO reprefent two tangents to the fame meridian; and let $\int l$ and SL reprefent two rays, parallel to each other, and to the common diameter of the meridian of the place and the equator; the angles $\int l b$ and $S L H$ will be the altitude of the fun at l and L as taken with Hadley's octant. Draw $z l m$ and ZLM perpendicular to the refpective tangents through l and L and meeting each other in M , then will the angles $\int l \approx$ and SLZ be the latitudes of l and L. Hence it appears that the latitude of a place is meafured by the angle formed by the common diameter of the meridian and equator, and a perpendicular to the horizon of the place; for the lines $f l$ and SL are parallel to the common diameter of the equator and meridian (by conftruction). Produce SL to T . The angle ST l is equal to the angle $f l z$, and confequently to the latitude of l and the angle TLM (cqual to SLZ) is equal to the latitude of L . The angle ST l is equal to the angles TLM and LMT taken together and confequently the angle LMT is equal to the difference between the two angles $\triangle T /$ and TLM, equal to the difference between the latitudes of the two places. That is, the difference of latitude between two places on the fame meridian, is meafured by the angle formed by the perpendiculars to the two horizons.*

By all the obfervations made at Greenwich and elfewhere, the altitudes of the heavenly bodies as obferved with the mural and plummet quadrants agree with thofe taken with the reflecting or Hadley's octant. \dagger Now let ABDE be an ellipfis (Fig. 2.) and HLO a tangent, ZLT a perpendicular to that tangent $\int \mathrm{L}$ a ray of light (the fun being in the equator and on the meridian) $\int L Z$ is

[^41]
314

the fun's zenith difance, and confequently equal to the latitude of the place. It is evident that bodies near the furface of the earth, are not attracted in lines paffing through the earth's centre; but in lines perpendicular to the horizon; for if it were otherwife a plummet would hang in the direction QLC (paffing through the centre of the ellipfis) and the latitude of the place would in that cafe be equal to the angle $\int L Q:$ but this angle never would, except under the poles and at the equator, coincide with the angle $\int L Z$. It is plain, therefore, that the difierence of latitude cannot, with any inftrument, be meafured by the angles between lines mecting in the earth's centre.

But as the difference of latitude is meafured by the angle formed between the perpendiculars to the two horizons, it follows that the nearer the curve of the meridian approaches to a right line, the longer muft the part of the arch be which fubtends any given angle.

Befides it is evident, that were the earth a plane, and of its actual diameter, no fenfible difference would be obferved in the fun's altitude on any part of its furface, and of courfe the nearer the earth approaches to a plane, the lefs will be the difference of altitudes oblerved by two perfons at any given diftance, and confequently the degrees of latitude mutt be longer as the earth is flatter.

Independent of thefe circumftances, Ict $A B D L$ be an cllipfis of which $A D$ and $B E$ are the axes and C the centrc. Make CF equal to AC. Draw AF which produce to G. Bifect $A G$ in K. Draw K. which produce to L and R. Through L draw HLO parallel to $A G$ and cutting AD and BE produced in O and H . Then by conics will HLO be a tangent to the curve in the point L. Through A draw Al perpendicular to AC and confequently a tangent to the curve, and $1 . T$ perpendicular to LO. Now becaure FC is equal to AC and

FCA is a right angle, the angles FAC and AFC will each be half of a right angle. LOT will alfo be half of a right angle, becauie $L O$ is parallel to AF , and confcquently LTO is half of a right angle. If then the cllipfis reprefent a meridian of the carth IA and HO will reprefent the common fections of that meridian and the horizons of two places; and AT, LT two perpendiculars to the horizons, and the angle ATL will be the difference of the latitude, (cqual to 45°). But A is at the end of one of the axes of the ellipfis, and therefore the point L will reprefent a place in the latitude of 45°.

Since all the degrees of latitude increafe in length as we approach to the pole, it is evident that the arch of 45° between the latitude of 45° and the pole, will be longer than the arch between the equator and the latitude of 45°. Now draw LS and LN parallel to BC and AC. Make $\mathrm{BC}=a, \mathrm{AC}=c, \mathrm{LS}=x, \mathrm{LN}=y, \mathrm{LS}=\mathrm{NC}$, and $\mathrm{LN}=\mathrm{CS}$. Then becaufe LOT is half of a right angle, and OSL is a right angle, OLS is alfo half of a right angle, therefore OS is equal to LS. In the fame manner we prove HN equal to LN and confequently HC equal to $O G$, put $O C(=x+y)=b$.

Then by conics $y: c:: c: b$ and $y=\frac{c^{2}}{b}$ and $b=\frac{c^{2}}{y}$

$$
x: a:: a: b \text { and } x=\frac{a^{2}}{b} \text { and } b=\frac{a^{2}}{x}
$$

Therefore $\frac{c^{3}}{y}=\frac{a^{3}}{x}$ and $y=\frac{c^{2}}{a^{2}} x$

$$
\text { but } \quad b=\frac{a^{2}}{x}=x+y=\frac{a^{2}+c^{2}}{a^{2}} x
$$

$$
a^{4}=\overline{a^{2}+c^{2}} \times x^{2}
$$

$$
\begin{aligned}
& x=\frac{a^{3}}{\sqrt{a^{2}+c^{2}}} \\
& y=\frac{c^{2} x}{a^{2}}=\frac{c^{2}}{\sqrt{a^{2}+c^{2}}} \\
& b=\frac{a^{2}}{x}=\sqrt{a^{2}+c^{3}}
\end{aligned}
$$

Put $\approx=$ the length of the elliptic arch AL
$v=$ that of BL
$\dot{z}=\frac{\dot{x}}{a} \sqrt{\frac{a^{4}-a^{2} x^{2}+c^{2} x^{2}}{a^{2}-x^{2}}}$ by the nature of the curve : put $a^{3}-c^{2}=d^{2}$ then $\dot{z}=\frac{\dot{x}}{a} \sqrt{\frac{a^{4}-d^{2} x^{2}}{a^{2}-x^{2}}}=\frac{\dot{x}}{a} \times$ $\frac{\sqrt{a^{4}-d^{2} x^{2}}}{\sqrt{a^{2}-x^{2}}}=\frac{\dot{x}}{a} \times \frac{\overline{a^{4}-d^{2} x^{2 \frac{2}{2}}}}{a^{2}-x^{2 \frac{1}{2}}} \cdot \cdots=$ the fluent of $\frac{\dot{x}}{a} \times$ $\frac{\overline{a^{4}-d^{2} x^{\frac{2}{2}}}}{\overline{a^{2}-x^{2}}}$
$\overline{a^{4}-d^{2} x^{2 \frac{1}{2}}}=a^{2}-\frac{d^{1} x^{2}}{2 a^{2}}-\frac{d^{4} x^{4}}{8 a^{5}}-\frac{d^{6} x^{6}}{16 a^{20}}-\frac{5 d^{5} x^{8}}{128 a^{24}}, \& \mathrm{c}$.
$\overline{a^{2}-x^{\frac{2}{2}}}=a-\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}-\frac{x^{6}}{16 a^{5}}-\frac{5 x^{8}}{128 a^{7}}, \& \mathrm{cc}$.
The former of which fries being divided by the latter, the quotient is $a+\frac{c^{2} x^{2}}{2 a^{3}}+\frac{c^{2} x^{4}}{8 a^{7}} \times \overline{3 a^{2}+d^{2}}+\frac{c^{2} x^{6}}{16 a^{11}} \times$ $\overline{5 a^{4}+2 a^{2} d^{2}+d^{4}}+\frac{c^{2} x^{8}}{128 a^{15}} \times \overline{35 a^{6}+15 a^{4} d^{2}+9 a^{2} d^{4}+5 d^{8}}$, \&c. which multiplied by $\frac{\dot{x}}{a}$ becomes $\dot{x}+\frac{c^{2} x^{2} \dot{x}}{2 a^{4}}+\frac{c^{2} x^{4} \dot{x}}{8 a^{8}} \times \overline{3 a^{2}+d^{2}}+\frac{c^{2} x^{6} \dot{x}}{10 a^{12}} \times \overline{5 a^{4}+2 a^{2} d+d^{4}}$ $+\frac{c^{2} x^{8} \dot{x}}{128 a^{16}} \times 35 a^{4}+15 a^{4} d^{8}+9 a^{2} d^{4}+5 d^{6}, \quad \& x$. the fluent of which is
$x+\frac{c^{2} x^{3}}{3 \cdot 2 a^{4}}+\frac{c^{2} x^{5}}{5.8 a^{8}} \times \overline{3 a^{2}+d^{4}}+\frac{c^{2} x^{7}}{7 \cdot 16 a^{21}} \times \overline{5 a^{4}+2 a^{2} d^{2}+d^{4}}$ $+\frac{c^{2} x^{9}}{9.128 a^{16}} \times 35 a^{6}+15 a^{4} d^{2}+9 a^{2} d^{4}+5 d^{5}, \quad \& c$. and by fubftituting for x its value $\frac{a^{3}}{\sqrt{a^{2}+c^{2}}}$ or $\frac{a^{2}}{b}$. $z=\frac{a^{2}}{b}+\frac{a^{2} c^{2}}{3 \cdot 2 b^{3}}+\frac{a^{2} c^{3}}{5 \cdot 8 b^{5}} \times \overline{3 a^{2}+d^{2}}+\frac{a^{3} c^{2}}{7 \cdot 16 b^{7}} \times \overline{5 a^{4}+2 a^{2} d^{2}+d^{4}}$ $+\frac{a^{2} c^{2}}{9.128 b^{9}} \times 35 a^{6}+15 a^{4} d^{4}+9 a^{3} d^{4}+5 d^{6}, \quad \& c$. again $\dot{v}=\frac{\dot{y}}{c} \sqrt{\frac{c^{4}+d^{2} y^{2}}{c^{2}-y^{2}}}$.

Which thrown into a faeries becomes,
$\sqrt{c^{4}+d^{2} y^{2}}=c^{8}+\frac{d^{2} y^{2}}{2 c^{2}}-\frac{d^{4} y^{4}}{8 c^{6}}+\frac{d^{6} y^{6}}{16 c^{20}}-\frac{5 d^{8} y^{8}}{128 c^{24}}, 8 z c$.
$\sqrt{c^{2}-y^{2}}=c-\frac{y^{2}}{2 c}-\frac{y^{4}}{8 c^{3}}-\frac{y^{6}}{16 c^{5}}-\frac{5 y^{8}}{128 c^{7}}, \& c c$.
The former of which being divided by the latter becomes,
$c+\frac{a^{2} y^{2}}{2 c^{3}}+\frac{a^{2} y^{4}}{3 c^{7}} \times \overline{3 c^{2}-d^{2}}+\frac{a^{2} y^{6}}{16 c^{11}} \times \overline{5 c^{4}-2 c^{2} d^{2}+d^{4}}$ $+\frac{a^{2} y^{8}}{128 c^{15}} \times 35 c^{6}-15 c^{9} d^{2}+9 c^{2} d^{4}-5 d^{0}, ~ \& c$. which being multiplied by $\frac{j}{i}$ is

$$
\begin{aligned}
& \dot{v}=\dot{y}+\frac{a^{5} y^{2} \dot{y}}{2 c^{4}}+\frac{a^{2} y^{4} \dot{y}}{8 c^{8}} \times \overline{3 c^{2}-d^{2}}+\frac{a^{2} y^{6} j^{3}}{16 c^{22}} \times \\
& \overline{5 c^{4}-2 c^{2} d^{2}+d^{4}}+\frac{a^{2} y^{8} y}{12} \overline{8 c^{16}} \times \overline{35 c^{6}-15 c^{4} d^{2}+9 c^{2} d^{4}-5 d^{6}}
\end{aligned}
$$

the fluent of which is
$v=y+\frac{a^{2} y^{3}}{3.2 c^{4}}+\frac{a^{2} y^{5}}{5.8 c^{8}} \times \overline{3 c^{2}-d^{2}}+\frac{a^{2} y^{7}}{7.16 c^{12}} \times \overline{5 c^{4}-2 c^{2} d^{2}+d^{4}}$ Vol. V.
$+\frac{a^{2} y^{9}}{9.128 c^{10}} \times 35 c^{6}-15 c^{4} d^{2}+9 c^{2} d^{4}-5 d^{6}$ and when $o=\frac{c^{3}}{b}$ the feries becomes
$v=\frac{c^{2}}{b}+\frac{a^{2} c^{2}}{3.2 b^{3}}+\frac{a^{2} c^{2}}{5.8 b^{5}} \times \overline{\times 3 c^{2}-d^{2}}+\frac{a^{2} c^{2}}{7.16 b^{7}} \overline{\times 5 c^{4}-2 c^{2} d^{2}+d^{4}}$ $+\frac{a^{2} c^{2}}{9.128 b^{2}} \times \overline{35 c^{6}-15 c^{4} d^{2}+9 c^{2} d^{4}-5 d^{6}}$ but $z=\frac{a^{2}}{b}+\frac{a^{2} c^{2}}{3.2 b^{3}}$
$+\frac{a^{2} c^{2}}{5.8 b^{5}} \times \overline{3 a^{2}+d^{2}}+\frac{a^{2} c^{2}}{7.16 b^{2}} \overline{\times 5 a^{4}+2 a^{2} d^{2}+d^{4}}+\frac{a^{2} c^{2}}{9.128 b^{9}}$
$\times 35 a^{6}+15 a^{4} d^{2}+9 a^{2} d^{4}+5 d^{5}$.
From a comparifon of thefe two equations, it will be feen that the law of continuation is the fame in both, excepting that in the value of v, the figns of the odd powers of d^{2} are negative, whereas in the value of \approx all the figns are affirmative. The powers and coefficients of a, c, and d, in the correfponding terms are the fame; and to whatever number of terms the feries may be carried, it is evident that this will ftill be the cafe. Hence if a be greater than c every term, except the fecond, of the equation of the value of z, will be greater than the correfponding term of the equation of the value of v; confequently the fum of the feries $=\approx$ will be greater than the furn of the feries $=\tau$: that is, if a be greater than c, \approx will be greater than v. Converfely if \approx be greater than v, a will be greater than c. If $a=c$, d^{2} will vanilh and the two feries will be equal to each other. If c be greater than a, d^{2} will be negative, and the odd powers of d^{2} in the feries $=z$, will in this cafe be negative, but in the feries $=v$ the odd powers of d^{2} will become affirmative, and v will be greater than z; converfely if v be greater than z, c will be greater than a.

Hence,

Hence, if the arch AL exceed the arch LB, BC is greater than AC ; but, if AD reprefent the axis of the earth, and BE the equatorial diameter, it is found by actual meafurement, that each degree of the arch AL is greater than a degree of the arch BL, and confequently the whole arch AL is greater than the whole arch BL, and therefore $B C$ is greater than AC. Q.E.D.

No. XXIII.

Defcription of fome Improvements in the common Fire-place, accompanied reitb Models, offered to the confideration of the American Pbilofophical Society. By C. W. Peale, and bis fon Raphaelle.

Read March 1 IRE-places now in ufe, are often fubject to 17, 1797. fimoke, and the unneceffary confumption of great quantities of fuel, without fufficiently warming the apartments, occafioned by the great quantity of heat efcaping through the funnels, confequently being loft in the external air; whereas thofe built after the models herewith fent, are not liable to fmoke, and emit the greateft quantity of heat into the apartments through cheap, durable and falubrious materials.*

The art of economizing fuel wholly confifts in preventing the efcape of heat and directing it where wanted. This is beft effected by taking fuch an entire command of the draught as that, when the combuftibles are inflamed fufficiently to continue them to ignition, their hafty deftruction may be prevented by leffening the draught as much as poffible without extinguifhing the fire.

Jambs confiderably flanting, as in the form given by the ingenious Count Rumford, are certainly the beft for throwing out heat, and with the addition of the
fiding

[^42]fliding-mantle and valve, or damper, \&zc. will be found the molt comfortable, fafe, and economizing.*

Explanation of the Plate.

Figure A is the fliding-mantle, made of fheet-iron or copper; the frame of which may for ornament be covered with plates of brafs, and brafs may alio cover as much of the grooves as are in fight on each fide of the fire-place in which the fliding-mantle moves. The arms a, a, extend to fuch a length as to free the marble and let the cord draw perpendicularly over the pullies b, b. The weights to balance the fliding-mantle, and move freely behind the pilafters or frame compofing the frontice piece of the chimney.

The grooves which receive the tongues of the flidingmantle, as well as the pullies, muft be fixed firmly in the brick work, and fitted to fet clofe to the wall forming the front of the chimney.- Thefe are covered by the wood work and marble flabs, which may be ornamented according to the prevailing fafhion.

The dotted lines fhew the arms, lines, pullies and weights in figure B, with the fliding-mantle drawn half way down to the hearth.

The frontice piece will be mof convenient if made in two or more parts. That part extending above the projecting mantle-piece which is to cover the pullies and flid-ing-mantle, needs only a fmall projection and may be made of pannel work or an ornamental mirror. It fhould be feparate from the other part of the brealt work, in order to replace the cords when worn out.

[^43]Iron hold-fafts drove into the brick work, to which the breaft work is fcrewed, is much preferable to the old method of putting wooden plugs which always fhrink with the drying of the mortar, and in a fhort time leave the frontice piece in a fhackling condition ; but if fcrewed to iron hold-fafts, are firm, and fuch parts as will be neceffary to remove occafionally, in order to renew the cords, may be taken down and replaced in a few minutes.

The marble cheeks as ufual are to be fixed firm to the brick work, covering a part of the grooves, which are to reccive the fliding-mantle, but the upper or crofs piece of marble is detached from the arch, allowing the lidingmantle to move behind it, but is fupported on the cheeks at each end; and a piece of hoop-iron, the length of the marble, fcrewed to the wood work on the back part, will frengthen and licep the marble in its proper place.

The valve C made of fheet-iron, is placed about 10 or I 2 inches above the opening of the fire-place in the throat of the chimney, and fitted to thut clofe on the top of the brick work, which hould be left flat. The pivots c, c, are on the inner front of the fire-place, and are received by the eyes d, d, which are faftencd into the brick work. The reafon for hanging the valve to the front part of the chimncy flue in preference to the back, is, that the foct which falls on the plate in fweeping the chimney, may fall through between the front wall and the valve, when opened. Befides there is more fafety in the efcape of heat paffing up the flue of the chimney at the back than in the front, for too often wood is placed in the brick work by thoughtlefs workmen, to the great danger of taking fire. e, is a rack, hinged on the under fide of the valve at f, the lower or rack end to move freely in an iron loop g, which is fixed in the jamb. The advantage of this method, is, that the valve can be moved with expedition

expedition if required, and if the notches furming the rack, are clofe together the fpace of opening for the draught may be more nicely adjufted.

The back and cheeks of the fire-place may be made hollow, yet ftrong, by alternately butting againft the wall, in what is termed by the bricklayers, flemifb bond,and a fmall hole made near the hearth of this hollowed way, communicating to the external air if convenient, if not, a hole may be made near the floor within the chamber, and other openings made in any convenient places higher than the opening of the fire-place, to let the heated air pafs from the back or inner part of the brick work into the chamber.

The conveniencies of this fire-place, are, that the fire may be kindled quickly, and after it burns freely, the valve or damper being lowered, leaving only an opening fufficient to carry off the fmoke, which in a well conftructed chimney may generally be clofed to an inch and half or two inches, but little heat will efcape in the throat of the fire-place.

If the chimney is fubject to fmoke, it is an eafy expedient to lower the fiding-mantle fo as to increafe the draught.

But the fafety from the dangers of fire with this fireplace is not of the leaft importance, for whatever fire is left in the place at night, with the valve clofe fhut, and the fliding-mantle lowered to join the hearth, the fire will be fmothered. In like manner if by accident the foot takes fire in the flue of the chimney, no alarm follows, as it may inftantly be extinguifhed.

The laft improvement which has been made, is to remedy the evil of the fmoke, paffing between the fliding mantle and breaft work and efcaping through the crevices round the mantle piece.

A hole is made in the brick work in the middle, a little above the opening of the fire place forming a fmall flue to let in the external air by which the fmoke is driven back into the chimney. This has been found to have an admirable effect even in fome chimnies which before had fmoked fo as to be deemed incurable.

N. B. In the plates referred to, as

Nos. V. VI. VII. VIII. IX. X. XI. XII.

1. 2. 3. 4. 5. 6. 7. 8, are marked on the plates.

> THE END.

ERRATA.
Page 199 line 28-after branch read or mouth:
201 -- $18 \& 20$-before S read c. as in lines 17 and 19.
208 - 6-for extremes read extreme differences.

- 7-after obfervations read when worked foparately.

266 - 1-after limb read from.
287-29-after Cumberland read IJland.

A P P E N D I X.

THE following papers, being tranfmitted by candidates for the premium which was offered by the fociety " for the beft method of preventing the premature decay of peach trees," were confidered as very deferving of public attention. It was therefore determined that the premium of fixty dollars thould be divided between their refpective authors, and that the papers fhould be inferted in the Tranfactions.

No. I.

Account of a Metbod of Preventing the premature Decay of Peach Trecs. By John Eldis, of New-Jerfey.

THE decay of peach trees is owing to a worm, which originates from a large fly; that refembles the common wafp: this fly perforates the bark and depofits an egg in the moift or lappy part of it. The moft common place of perforation is at the furface of the earth, and as foon as the worm is able to move, it defcends into the earth, probably from an inftinctive $\in f-$ fort to avoid the winter's froft. This may be afcertained by obfervation, the tract of the worm from the feat of the cgg being vifible at its beginning, and gradually increafing, in correfpondence with the increafing fize of the

VoL. V. U u worm;
worm; its courfe is always downwards. The piogrefs of the young worm is extremely flow, and if the egg is depofited at any confiderable diftance above the furface of the earth, it is long before the worm reaches the ground. The worms are unable to bear the cold of winter unlefs covered by the earth, and all that are above ground after froft are killed.

By this hiftory of the origin, progrefs and nature of the infect, we cin explain the effects of my method, which is as follows: in the fpring, when the bloffoms are out, clear away the dirt fo as to expofe the root of the tree, to the depth of three inches; furround the tree with ftraw about three feet long, applied lengthwife, fo that it may have a covering one inch thick, which extends to the bottom of the hole, the but ends of the ftraw refting upon the ground at the bottom. Bind this ftraw round the tree with three bands, one near the top, one at the middle, and the third at the furface of the earth, then fill up the hole at the root, with earth, and prels it clofely round the ftraw. When the white frofts appear, the ftraw fhould be removed and the tree fhould remain uncovered until the bloffoms put out in the fpring.

By this procefs the fly is prevented from depofiting its egg within three fect of the root, and although it may place the cgro above that diftance, the worm travels fo flow that it cannot reach the ground before froft, and therefore is killed before it is able to injure the tree.

The truth of the principle is proved by the following fact-1 practifed this method with a large number of peach trees, and they fourimed remarkably, without any appearance of injury from the worm, for feveral years; I was then induced to difeontinuc the ftraw with about twenty of them. All thofe whichare weillowt the ftraw buve diclined, while the oblbers wiblb bave bud the fraw conithue as vigoraus as ever.

Defcription of a Method of Cultivating Pcachs Trees, with a viere to prevent their promature decay; confirmed by the experience of Forty-five Xears, in Delaware State and the weftern parts of Pennfylvania. By Thomas Coulter, Efq. of Bedford County, Pennfylvania.

THE death of young peach trees is principally owing to planting, tranfplanting, and pruning the fame flock, which occafions it to be open and tender, with a rough bark, in confequence of which infects lodge and breed in it, and birds fearch after them, whereby wounds are made, the gum exudes, and in a few years the tree is ufelefs. To prevent this, tranfplant your trees as young as poffible, if in the kernel it will be beft, as there will then be no check of growth. Plant them fixteen feet apart. Plow and harrow between them, for two years, without regard to wounding them, but avoid tearing them up by the roots. In the month of March or April, in the third year after tranfplanting, cut them all off by the ground, plow and harrow among them as before, but with great care to avoid wounding or tearing them. Suffer all the fprouts or fcions to grow, even if they fhould amount to half a dozen or more, they become bearing trees almof infantancoufly on account of the itrength of the root. Allow no animals but hogs to enter your orchasd, for fear of their wounding the fhoots, as a fubftance drains away through the leaft wound, which is cffentian to the heath of the tree and the good quality of the fruit.

If the old inock is cut away the third year after tranfplanting, no more fhoots will come to maturity than the old fump can fupert and nourith, the remainder will die before they bear iruit, and may be cut away, taking care not to wound any other fock. The fprouts when
loaded
loaded with fruit, will bend and reft on the ground in every direction for many years, all of them being rooted as if they had been planted, their focks remaining tough and their bark fmooth for twenty years and upwards. If any of the fprouts from the old fump fhould happen to filit off and die, cut them away, they wiil be fupplied from the ground by others, fo that you may have trees from the fame for 100 years as 1 believe. I have now trees from one to thirty-fix years old, all from the fame ftump. Young trees formed in this manner will bear fruit the fecond ycar, but this fruit will not ripen fo carly as the fruit on the older trees from the fame ftump. Three years after the trees are cut off, the fhoots will be fufficiently large and bufhy to fhade the ground fo as to prevent the growth of grafis that might injure the trees, therefore plowing will be ufelefs and may be injurious by wounding them. It is alfo unneceffary to manure peach trees, as the fruit of manured trees is always fmaller and inferior to that of trees which are not manured. By manuring you make the peach trees larger and apparently more flourifhing, but their fruit will be of a bad kind, looking as green as the leaves, even when ripe, and later than that of trces which have not been manured. i'each trees never require : a rich foil, the poorer the foil the better the fruit : a middling foil produces the moft bountiful crop. The higheft ground is the beft for peach trees, and the north fide of hills is molt defirable, as it retards vegetation and prevent? the deftructive effects of late frofts, which occur in thonth of April in Pennfylvania. Convinced by lons, experience of the truth of thefe obfervations, the aut sr° wifhes they may be publified for public benefit, and has been informed that Colonel Luther Martin ind another gentleman, in the lower part of Maryiand, have adopted a fimilar plan with great advantima.
A 1 ح

[^0]: * An intelligent friend of mine related to me the cafe of a perfon who, for a fhort time, was feverely affected from the eating of wild honey, in Virginia. He imagined that a perfon feized him rudely by one arm, and then by the other. - After this, he fell into convulfions, from which, however, he recovered, in about an hour. It was imagined that this honey was obtained from a kind of poifonous mufhroom.
 \dagger The Kalmia latifolia.
 \ddagger We fhall afterwards fee, that not one of Xenophon's men died from the deleterious honey which they had eaten, in large quantities, on the Mores of the Euxine-Sea.

[^1]: * Travels to difcover the fource of the Nile, Vol. V. or Appendix, p. 151. Quarto edition.
 \dagger Fauna Suecica.

[^2]: * Burns.
 + Dr. Withering fays bees extract a great deal of honey from the - flowers of the erica vulgaris, or common heath, and he remarks that " where heath abounds, the honey has a reddifh caft." A Botanical Arrangement of Britifh plants, \&c. Vol. 1 Nt .
 \ddagger The Naturall and Morall Hiltorie of the Eaft and Weft Indies, \&c, p. 303 .

[^3]: * Silva : or a Difcourfe on Foreft-trees; \&c. p. 133 and 134. Dr. IHunter's edition.
 \dagger See Tranfactions of the American Philofophical Society. Vol. III. No. 3 r.
 - Flora Carolimiana, p. 138.

[^4]: * Cervus Virginianus of Gmelin.
 + Cervus Wapiti, mibi.
 \ddagger Tetrao Cupido of Linnzus.
 § It is not a new furpicion, that the fiefh of animals that have eaten of the leaves, \&c. of deleterious vegetables is fometimes endued with a poifonous property. Georg. H. Welichius, a very learned German writer, quoted

[^5]: quoted by Dr. Haller, (See Hiforia Stirpium Indigenarum Helvetic Inchoata. 'lom. I. p. 433.) fays, that the flefh of a hare which was fed with the leaves of the rhododendron ferrugineum proved mortal to the guefts. This fpecies of rhododendron is a native of Switzerland, Siberia, and other parts of the old world.

 * For fome information relative to the properties of the andromeda mariana, fee Collections for an Effay towards a Materia Medica of the United-States, pages 19, 20, 47. Philadelphia, 1798.

[^6]: * In juftice to the fine genus of andromeda, I mult obierve, that all the fpecies do not furnith a pernicious honey. The andromeda nitida or lucida of Bartram affords an abundance of nectar, or honey... The flowers of this fiecies are called by the country people of Carolina and Georgia, " honey"flowers," not, however, merely from the circumftance juft mentioned, but from the regular pofition of the flowers on the peduncle, which open like the cells of a honey-comb, and from the odour of thefe flowers, which greatly refembles that of honcy. This fecies grows abundantly in the fwamps called bay-galls. The inhabitants of Carolina are univerfally of opinion, that it affords the greateft quantity of honcy, and thate of the beft quality.

[^7]: * If the celebrated autnor of the Rechercles Pbilofopliques fur les Americans be till living, this account of our poifonous and injurious honey (ihould my memoir fall into his hands) would afford him fome entertainment. I would advife him to conneet the facts, which I here communicate, with the remarks concerning our infects contained in the firit volume of the Recherches (fee p. 159 and 170). I hope, however, that Mr. De Pauw, who, hotwithftanding his love of fyftem and his many errors, is certainly a man of great reading, will recollect, that the Greek and Roman writers: (as we fhall afterwards fee) have faid much concerning the poifonous honey of various parts of the old morld. : And now let me add, that in America there is as good honey as in any other parts of the world; and there is not a fcarcity of this good honey. The honey which is collected from the flowers of the tulip-tree (liriodendron tuilipicera), the buckwheat (polygonum fagopyrum), the red-maple (acer rubrum), the clover (trifolium), and many other plants is excellent. The Abbe Clavigero fays the bee of Yucatan and Chiapa makes "the fine clear honey of Eftabentun, of an aromatic flavour, fuperior to that of all the other kinds of honey with which we are acquainted." (a) The Fiffory of Mexico, Vol. I. p. 68. Pérhaps on fome future occafion, I may communicate to the Philofophical Society a lift of thofe indigenous vegetables which, as furnifhing an innocent and excellent honey, are worthy of prefervation in the neighbourhood of apiaries. The lift is an extenfive one.
 (A) ${ }^{\text {T This }}$ fine honey, according to the Mexican hiftorian, is "made from a fragrant white flour like jeffamine, which blows in September""

[^8]: * See the late Dr. Samuel Cooper's Inaugural Differtation on the Properties and Effects of the Datura Stramonium. P. 33. Pliladelphia, 1797.
 † Diolcorides, as quoted by Mr. Tournefort.

[^9]: * C. Plinii Secundi Naturalis Hiftoriz Lib. XXI. cap. xüi.
 \dagger From the Greek verb, Mairopar, infanio.
 t Ibid.

[^10]: * Inftitutiones, \& c.
 t Thefe are nearly the words of Mr. Tournefort's trannation. I am forry that I have not the original work of Xenophon at hand.

[^11]: * See Tournefort's Voyage into the Levant. Vol. iii. p. 68. Englifh tranflation. London, 1741 .
 \dagger See his Tranllation of the Georgics of Virgil, note to line 47, in book IV. Dr. Martyn's criticifins and annotations always demand attention. I greatly doubt, however, if the taxus of Virgil, be the common yew, or any fpecies of that genus. Martyn himfelf allows, that "it does not appear from other writers (befide Virgil), that Corfica abounded in yews." I have been alfured, that the yew is not an indigenous vegetable in that ifland, and that it is even rare among the foreign vegetables. It may, indeed, be faid, perhaps it was common in the time of Virgil. I would obferve, that the yew is much lefs poifonous than has been commonly fuppofed. I know not that any modern writer has pretended that the bees procure a pernicious honey from its flowers. Thefe facts give rife to my fufpicion, that the tarus of Virgil was not the yew, or taxus of the modern botanits. If not the yew, what vegetable was it? Perhaps, the buxus virens, or box. 'This veactable abounds in Corfica, where to this day it is known by the name of

[^12]: taxo. The gentleman from whom I received this information affared me, that the bees of Corfica are very fond of the flowers of the box, and that the honey from this fource is reputed poifonous. The box is, unqueftionably, a poifonous vegetable. But there is ftill a difficulty in the cafe. Virgil mentions both taxus and buxus. I think there can be no doubt that his buxus (fea Georgic. lib. II. 1.449.) is the buxus of the modern botanifts.

 * See Georgicorum, lib. IV. 1. 30.-32.
 \ddagger De Re Rưtica, libri XII.

[^13]: * See the plate, p. 180.

[^14]: * Were farther proof neceffary, I might refer to the fpecimen of Canne] coal brought from Cincinnati and by me prefented to the Society.

[^15]: * The circumference of the wheel mult be commenfurate with the diftance c c moves out.

[^16]: * Phil. Tranf. Vol. X. p. 396. and Vol. XIX. p. 298.

[^17]: * Tour to the Hebrides in 1772. Chefter, printed in 1774, p. 232.

[^18]: * Voyez Sennebier et Bonnet.

[^19]: * Voyez le mémoire ci joint fur la production animaie de l'eau.
 \dagger La fêve'afcendante paffe principalement par les fibres longitudimales, fait pouffer le boifet les bourgeons'̀ bois, donne:a la plante fa hauteur. La fêve defcendante revient en plus grande abondatice par les fibres corticulaires, développe les bourgeons à fruit, dilate lécorce, latendrit, la rend plus propre a fe prêter au nouveau nouvement que produira la fêve montante, et contribue ainf fécialement a l'accrcilfement de la plante en grofleur.

 Tels font autant qu'on a ru jufqu’a préfent le reconnoitre la marche et les effets de la circulation dans les azbres; d'où l'ea peut les inférer dans les autres plantes.

[^20]: * Voyez l'abbé Roger Schabol.

[^21]: * La vie particuliere à chaque branche, et fon implantation fur le trone font démonftrativement prouvés par le phénomène de la grafie qui introduit chez un arbre des branches étrangeres comme un gendre dans une famille. Il devitnt de la familie fans doute, mais on gardans fon individualité, ef même fon nom ; et la race qu'il donne à cette famille efl à lui.

[^22]: * Il faut répéter que la moëlle tient lieu à la plante de tous nos vifceres majeurs. Ce qui en tient lieu chez les polypes auxquels on ne contefte pas d'être des animaux eft encore moins compliqué.

 La moëlle eft donc pour la plante, fon poulmon, fon cœur, fon eftomac, fa cervelle, le faifceau diftributeur et correfpondant de tous fes nerfs ou de tous'les organes de fa fenfibilité. Et c'eft pourquoi celles qui ont le plus de moëlle ont la vie la plus rapide dans tous fes mouvemens, et la plus opiniatre. Elles croiffent plus vite, elles meurent plus vite quarid on ne leut porte pas fecours, parce que cette moèlle plus aminéc s'embrafe, fe gangrene plus aifément et plutôt. Mais elles ont plus de moyens de falut. Elles tracent et fe marcottent d'elles mêmes. Elles fe régénerent avec bien plus de facilité.

 Lorfqu'on obferve les compenfaticns que Dieu a mifes entre le deftin des différens êtres, on fe fent ébloui d'admiration, et l'on fe profterne de reconnoiffance.

[^23]: *'The chocolate, or coffee ficknefs, or the black ficknefs, fays Dr. de Moncris, is not taken from the blackifh hue or flade of the fkin, but it is derived from the foetid, blackifh matter difcharged from the firft palfages.

 See Difeares in Voyages to the Welt-Indies.

[^24]: * Many of the preceding experiments, were made in the prefence of a medical gentleman of refpectability, viz. Dr. Samuel Duffield, confulting phyfician to the port of Philadelphia.

[^25]: * See Tranfactions of the Royal Society of London, for 1794.
 \dagger When the foregoing experiments were committed to paper, and during the period of the late yellow-fever, I fubmitted them to the perufal of Dr. Adam Seybert, whofe chemical accuracy is well known to this Society. This gentleman obligingly favored me with his company on the 22 d of November, when moft of the experiments were fhown to him, made on the black vomit, referved for that purpofe, and the refult nearly correfponded with what has been already defcribed.

[^26]: * See Defportes, on difeares of St. Domingo, p. 203, vol. 1 .

[^27]: * See Treatife on the Fever of Jamaica, p. 173, and 174 .
 + See Oblervations, Phyfical and Literary, vol. ii.
 4 See Difeafes of St. Domingo, p. 202, vol. i.
 $\$$ See a medical Nketch of the Yellow-Fever, publifhed in 1794.

[^28]: * The year is not mentioned.
 \dagger A branch of the river Potomak, in Virginia.

[^29]: * I have lately been furnifhed by Jofe Joaquin de Ferrer, an ingenious Spanifh gentleman, with a number of valuable aftronomical obfervations, which he has made at different places on this continent: among them there are three on the eclipfes of Jopiter's fatellites made at la Guaira, which correfpond with an equal number of mine made at Natchez.-They are the following:

 $$
 \text { Apparent }_{n}^{\text {Time. }}
 $$

 1798. $\{$ Emerfion of the 3 d fatellite of 4 obferv- $\}$

 Jan. $4^{\text {th. }}\left\{\begin{array}{l}\text { ed by Mr. de Ferrer at la Guaira }\end{array}\right\}$
 10951
 $\underbrace{8 \mathrm{3I} 51}$ h , ",
 Difference of meridians : . . I $3^{8} \mathrm{c}$
 do. 8th. $\left\{\begin{array}{c}\text { Emerfion of the } 2 \text { d fatellite of } \\ \text { ed by Mr. de Ferrer at la Guaira }\end{array}\right\} \begin{array}{lll}8 & 54 & \text { II } \\ \text { Obferved at Natchez }\end{array}$
 Difference of meridians . . . $13^{8} 13$
 so. g4. $\left\{\begin{array}{l}\text { Emerform of the ift fatellite of } 24 \text { obferv. } \\ \text { ed by Mr. de Ferrar at la Guaira }\end{array}\right\} \begin{aligned} & 9540 \\ & \text { Obferved at Natchez }\end{aligned}$

[^30]: * Erpofition du calcul par de la Lande 1762.

[^31]: * The clock was well faftened to a poft fet $3 \frac{7}{2}$ feet in the ground, but being neither covered, nor furrounded by any building, and feveral hundreds of Indians in our camp, fome individuals of whom were frequently leaning againft the poft, (though admonifhed to the contrary), which circumfance might produce a fmall irregularity in the going of the regulator.

[^32]: * The night preceding this obfervation, the tent in which the clock was placed was blown down and lodged on the clock till morning, when it was removed.

[^33]: * Till this time the clock was left expofed, and people frequently leaning againit the poft to which it was faftened, and the poft fanding in fand, no better place to be had.

[^34]: * The offsets were too fmall to be laid down on the chart.

 Vol. V. H h 22 d .

[^35]: * The Sun's paffage over the meridian when it occurs, is entered according to the civil account.

[^36]: The longitude of our camp on Thompfon's ${ }^{h}$. " $\left.\begin{array}{l}\text { creek by the mean of five immerfions of } 4 \text { f's }^{\text {che }} \\ \text { firt fatellite was }\end{array}\right\} \quad 6 \quad 44^{8}\left\{\begin{array}{l}\text { Weft from } \\ \text { Greenwich. }\end{array}\right.$
 The diftance from Thomfon's creek on the parallel of 31°, to the obfervatory on the Mobile was by meafurement 184.46 miles eaft, which in time is equal to

 Longitude of the camp on the Mobile do. by the two lunar obfervations

 Difference

 | 5 | 52 | 31 |
 | :---: | :---: | :---: | :---: |
 | 5 | 52 | 0.5 |
 | 0 | 0 | 30.5 |

[^37]: * The three decimal places annexed to the feet arofe from taking the means of many meafurements made on each line.

[^38]: * On the meridian twice this day from fidereal time gaining on mean solar time.

[^39]: * Although this refult is deduced from obfervations made with the fmall fector only, it may be confidered as fufficiently accurate for the giceft geographical purpofes.

[^40]: * The mof fouthern inclination of the United Stater on the Atlantic ocear.

[^41]: * In this demonftration nothing, which has been before demonftrated, is, on that account alone, omitted.
 \dagger This part of the demonfration is neceflarily experimental, not mathematical.

[^42]: * Only a part of thefe defigns are now publifhed, the remainder will form a more general effay of economizing fuel and labour, by various methods, for common ufe, and more efpecially for the kitchen; which are now put into practice at the Mufeum, and moft probably will be fo far improved as to render them much nore interefting to the public, by further obfervations and management.

[^43]: * Thefe improvements are fecured by a patent right to Charles and Raphaelle Peale, afte: the communication of the defigns to the Philofophical Society.

