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I. Mathematical Investigations concerning the Laws of the Equilibrium

of Fluids analagous to the Electric Fluid, with other similar Researches.

By George Green, Esq. Communicated hy Sir Edward Ffrench

Bromhead, Bart. M.A. F.K.S.L. and E.

[Read Nov. 12, 1832.]

Amongst the various subjects which have at different times occupied
the attention of Mathematicians, there are probably few more interesting

in themselves, or which offer greater difficulties in their investigation,

than those in which it is required to determine mathematically the

laws of the equilibrium or motion of a system composed of an infinite

number of free particles all acting upon each other mutually, and ac-

cording to some given law. When we conceive, moreover, the law of

the mutual action of the particles to be such that the forces which

emanate from them may become insensible at sensible distances, the

researches to which the consideration of these forces lead will be greatly

simplified by the limitation thus introduced, and may be regarded as

forming a class distinct from the rest. Indeed they then for the most

part terminate in the resolution of equations between the values of

certain functions at any point taken at will in the interior of the sys-

tem, and the values of the partial differentials of these functions at the

same point. When on the contrary the forces in question continue

sensible at every finite distance, the researches dependent upon them
become far more complicated, and often require all the resources of

the modern analysis for their successful prosecution. It would be easy
so to exhibit the theories of the equilibrium and motion of ordinary

fluids, as to offer instances of researches appertaining to the former

class, whilst the mathematical investigations to which the theories of

Electricity and Magnetism have given rise may be considered as in-

teresting examples of such as belong to the latter class.

Vol. V. Pakt I. A



2 Mr green, ON THE LAWS OF THE EQUILIBRIUM OF FLUIDS.

It is not my chief design in this paper to determine mathematically

the density of the electric fluid in bodies under given circumstances,

having elsewhere* given some general methods by which this may be

effected, and applied these methods to a variety of cases not before

submitted to calculation. My present object will be to determine the

laws of the equilibrium of an hypothetical fluid analagous to the electric

fluid, but of which the law of the repulsion of the particles, instead of

being inversely as the square of the distance, shall be inversely as any

power n of the distance ; and I shall have more particularly in view

the determination of the density of this fluid in the interior of con-

ducting spheres when in equilibrium, and acted upon by any exterior

bodies whatever, though since the general method by which this is

effected will be equally applicable to circular plates and ellipsoids.

1 shall present a sketch of these applications also.

It is well known that in enquiries of a nature similar to the one

about to engage our attention, it is always advantageous to avoid the

direct consideration of the various forces acting upon any particle p of

the fluid in the system, by introducing a particular function V of the

co-ordinates of this particle, from the differentials of which the values

of all these forces may be immediately deduced f. We have, therefore,

in the present paper endeavoured, in the first place, to find the value

of V, where the density of the fluid in the interior of a sphere is given

by means of a very simple consideration, which in a great measure

obviates the difficulties usually attendant on researches of this kind,

have been able to determine the value F^, where p, the density of the

fluid in any element dv of the sphere's volume, is equal to the product
of two factors, one of which is a very simple function containing an

arbitrary exponent fi, and the remaining one J" is equal to any rational

*
Essay on the Application of Mathematical Analysis to the Theories of Electricity and

Magnetism.

t This function in the present case will be obtained by taking the sum of all the molecules

of a fluid acting upon p, divided by the (n
—
1)* power of their respective distances from^;

and indeed the function which Laplace has represented by F in the third book of the

Mecanique Celeste, is only a particular value of our more general one produced by writing
2 in the place of the general exponent n.
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and entire function whatever of the rectangular co-ordinates of the element

dv, and afterwards by a proper determination of the exponent /3, have

reduced the resulting quantity ^ to a rational and entire function of

the rectangular co-ordinates of the particle p, of the same degree as

the function f. This being done, it is easy to perceive that the reso-

lution of the inverse problem may readily be effected, because the

coefficients of the required factor f will then be determined from the

given coefficients of the rational and entire function V, by means of

linear algebraic equations.

The method alluded to in what precedes, and which is exposed in

the two first articles of the following paper, will enable us to assign

generally the value of the induced density p for any ellipsoid, what-

ever its axes may be, provided the inducing forces are given explicitly

in functions of the co-ordinates of p ; but when by supposing these axes

equal we reduce the ellipsoid to a sphere, it is natural to expect that

as the form of the solid has become more simple, a corresponding degree
of simplicity will be introduced into the results ; and accordingly, as

will be seen in the fourth and fifth articles, the complete solutions both

of the direct and inverse problems, considered under their most general

point of view, are such that the required quantities are there always

expressed by simple and explicit functions of the known ones, inde-

pendent of the resolution of any equations whatever.

The first five articles of the present paper being entirely analytical,

serve to exhibit the relations which exist between the density p of our

hypothetical fluid, and its dependent function V; but in the following
ones our principal object has been to point out some particular appli-

cations of these general relations.

In the seventh article, for example, the law of the density of our

fluid when in equilibrium in the interior of a conductory sphere, has

been investigated, and the analytical value of p there found admits of

the following simple enunciation.

The density p of free fluid at any point p within a conducting sphere

A, of which O is the centre, is always proportional to the {n
-

4)"' power
of the radius of the circle formed by the intersection of a plane per-

pendicular to the ray Op with the surface of the sphere itself, provided
A 2



4 Mr green, on THE LAWS OF THE EQUILIBRIUM OF FLUIDS.

n is greater than 2. When on the contrary n is less than 2, this law

requires a certain modification ;
the nature of which has been fully

investigated in the article just named, and the one immediately fol-

lowing.

It has before been remarked, that the generality of our analysis will

enable us to assign the density of the free fluid which would be induced

in a sphere by the action of exterior forces, supposing these forces are

given explicitly in functions of the rectangular co-ordinates of the point
of space to which they belong. But, as in the particular case in which

our formulae admit of an application to natural phenomena, the forces in

question arise from electric fluid diffused in the inducing bodies, we
have in the ninth article considered more especially the case of a con-

ducting sphere acted upon by the fluid contained in any exterior bodies

whatever, and have ultimately been able to exhibit the value of the

induced density under a very simple form, whatever the given density
of the fluid in these bodies may be.

The tenth and last article contains an application of the general
method to circular planes, from which results, analagous to those formed

for spheres in some of the preceding ones are deduced; and towards

the latter part, a very simple formula is given, which serves to express
the value of the density of the free fluid in an infinitely thin plate,

supposing it acted upon by other fluid, distributed according to any

given law in its own plane. Now it is clear, that if to the general ex-

ponent 11 we assign the particular value 2, all our results will become

applicable to electrical phenomena. In this way the density of the

electric fluid on an infinitely thin circular plate, when under the in-

fluence of any electrified bodies whatever, situated in its own plane,

will become known. The analytical expression which serves to repre-

sent the value of this density, is remai-kable for its simplicity ;
and by

suppressing the term due to the exterior bodies, immediately gives the

density of the electric fluid on a circular conducting plate, when quite

free from all extraneous action. Fortunately, the manner in which

the electric fluid distributes itself in the latter case, has long since

been determined experimentally by Coulomb. We have thus had the

advantage of comparing our theoretical results with those of a very
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accurate observer, and the differences between them are not greater

than may be supposed due to the unavoidable errors of experiment,
and to that which would necessarily be produced by employing plates

of a finite thickness, whilst the theory supposes this thickness infinitely

small. ]\Ioreover, the errors are all of the same kind with regard to

sign, as would arise from the latter cause.

1. If we conceive a fluid analogous to the electric fluid, but of

which the law of the repulsion of the particles instead of being in-

versely as the square of the distance is inversely as some power n of

the distance, and suppose p to represent the density of this fluid, so

that dv being an element of the volume of a body A through which

it is diffiised, pdv may represent the quantity contained in this element,

and if afterwards we write g for the distance between dv and any

particle /> under consideration, and these form the quantity

the integral extending over the whole volume of A, it is well known
that the force with which a particle p of this fluid situate in any

point of space is impelled in the direction of any line q and tending
to increase this line will always be represented by

(1).
I^\:

1-n \dq)
'

?^, being regarded as a function of three rectangular co-ordinates of

p, one of which co-ordinates coincides with the line q, and (—7-)

being the partial differential of V, relative to this last co-ordinate.

In order now to make known the principal artifices on which the

success of our general method for determining the function V mainly

depends, it will be convenient to begin with a very simple example.

Let us therefore suppose that the body ^ is a sphere, whose centre,

is at the origin O of the co-ordinates, the radius being 1 ; and p is

such a function of x', y', %, that where we substitute for x', y', »' their

values in polar co-ordinates
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X = r' cos 0', y'
= / sin 9' cos tst', %' = r' sin Q' sin tr',

it shall reduce itself to the form

P
= (l-/y./(0;

f being the characteristic of any rational and entire function what-

ever: which is in fact equivalent to supposing

p
= (1

- /' - y" - %'f.f{x" + y" + z'^).

Now, when as in the present case, p can be expanded in a series

of the entire powers of the quantities x, y', %', and of the various

products of these powers, the function V will always admit of a similar

expansion in the entire powers and products of the quantities x, y, %,

provided the point p continues within the body A*, and as moreover

V evidently depends on the distance Op — r and is independent of 6

and -sr, the two other polar co-ordinates of p, it is easy to see that the

quantity V when we substitute for x, y, z these values

x= r cos 9, y = r sin 9 cos w, z = r sin 9 sin tst

will become a function of r, only containing none but the even

powers of this variable.

But since we have

dv = r"dr d9' d-ur sin 0', and
/>
= (1

- ry.f{r'%

the value of V becomes

V= f-^, = jr'^dr'd9'd-w' sin 9' (1 -
r''ff{r") .g'"",J g"

the integrals being taken from tst'= to tr' = 2 tt, from 9' = to 9' = w,

and from r' = to r' = l.

* The truth of this assertion will become tolerably clear, if we recollect that V may be

regarded as the sum of every element pdv of the body's mass divided by the (n—l)"" power

of the distance of each element from the point p, supposing the density of the body A to be

expressed by p, a continuous function of x, y, z. For then the quantity V is represented

by a continuous function, so long as p remains within A ; but there is in general a violation

of the law of continuity whenever the point p passes from the interior to the exterior space.

This truth, however, as enunciated in the text, is demonstrable, but since the present paper

is a long one, I have suppressed the demonstrations to save room.
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Now V may be considered as composed of two parts, one V due

to the sphere B whose centre is at the origin O, and surface passes

through the point p, and another V" due to the shell S exterior to B.

In order to obtain the first part, we must expand the quantity g^~"
t

T
in an ascending series of the powers of — . In this way we get

^1
-« _

^1 ^2rr {cos 9 cosff -\- sin 9 sin 9' cos (^'
-

-sr)] + r'^]

l-n
2

= r'
" "

,

If then we substitute this series for g^'" in the value of F", and

after having expanded the quantity (1
—

r'^f , we effect the integrations

relative to r, 0', and w', we shall have a result of the form

r' = r*-'' [A-i-Br+Cf^ + Sic.]

seeing that in obtaining the part of V before represented by V, the

integral relative to r' ought to be taken from r =0 to r' = r only.

To obtain the value of F", we must expand the quantity g^-" in

an ascending series of the powers of — , and we shall thus have

l-n
2

g^-''={r^
— 2rr' [cos 6 cos 0' + sin 9 sin 6' cos (tst

-
-nr')] + r"')

the coefficients Qo, Qi, Q2, &c. being the same as before.

The expansion here given being substituted in P", there will arise

a series of the form

of which the general term T, is

T,= fd9'd^' sin ff QJr-'dr ^^^(l-ry.f{ry,

the integrals being taken from r' = r to r' = l, from 0' = O to & — it, and

from •z«r'
= to 'ar' = 27r. This will be evident by recollecting that the
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triple integral by which the value of V" is expressed, is the same as

the one before given for V, except that the integration relative to r,

instead of extending from /=0 to r'=l, ought only to extend from

r =r to r= 1.

But the general term in the function J'{r'^) being represented by
Atr'^\ the part of T^ dependent on this term will evidently be

(2) Atr'fde'dw' sin 9'.QJr'''+^-^-''dr' {l-r'y-,

the limits of the integrals being the same as before.

We thus see that the value of T, and consequently of F'" would

immediately be obtained, provided we had the value of the general

integral

flr^dril-ry,

which being expanded and integrated becomes

^ 1 +Mzl). 1
_&c.

b + l l'b + 3 1.2 'b + 5

^+1 Q fj,+3 /3(/3-l) r'+»
+ T • i
—

;r
— ~ 7 r. • ~i = + <^c-

6 + 1 16 + 3 1.2 '6 + 5

but since the first line of this expression is the well known expansion of

(f)

r lf\ r li

or

nTm'
when n = 2.p — h + \ and

5'
= 2(/3 + l) we have ultimately,

By means of the result here obtained, we shall readily find the

value of the expression (2) which will evidently contain one term multi-

plied by r' and an infinite number of others, in all of which the quantity

r is affected with the exponent n. But as in the case under considera-

tion, n may represent any number whatever, fractionary or irrational,
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it is clear that none of the terms last mentioned can enter into V,

seeing that it ought to contain the even powers of r only, thence the

terms of this kind entering into V", must necessarily be destroyed by

corresponding ones in V. By rejecting them, therefore, the formula (2)

will become

m —^ ^-^
Air'.fde'd-Br' smd'Qs.

But as V ought to contain the even powers of r only, those terms

in which the exponent s is an odd number, will vanish of themselves

after all the integrations have been effected, and consequently the only

terms which can appear in V, are of the form

r(#+2-y-|) r(/3 + i)

(4)
^ Atr'^fde'dTir' sin ff Q,r,

2r(^
+ /3 + 3-*'-|)

where, since s is an even number, we have written 2 s' in the place of

s, and as Qu- is always a rational and entire function of cos 9', sin 0'

cos w', and sin 9' sin -sr', the remaining integrations may immediately be

effected.

Having thus the part of T'a,- due to any term Atr'''* of the function

y(r'*) we have immediately the value of T'.^' and consequently of F'",

since

r"= u'+ t:+ t:+ t:+ T:+kc. -,

U' representing the sum of all the terms in F" which have been rejected

on account of their form, and T,' T,' T,' the value of T, Ty T„ &c.

obtained by employing the truncated formula (2) in the place of the

complete one (2).

But -v=v'+ V" = r'+ u^Ti^ r;+ t: + 7v+ &c.

or by transposition,

r-T:-T;-Ti-Ti-hc.=r-YU,
and as in this equation, the function on the left side contains none

but the even powers of the indeterminate quantity r, whilst that on

Vol. V. Part I. B



lO Mr green, on THE LAWS OF THE EQUILIBRIUM OF FLUIDS,

the right does not contain any of the even powers of r, it is clear that

each of its sides ought to be equated separately to zero. In thi& way
the left side gives

(5) r=T:+T,'+T:+T:+kc.

Hitherto the value of the exponent /3 has remained quite arbitrary,

but the known properties of the function r will enable us so to

determine /3, that the series just given shall contain a finite number

of terms only. We shall thus greatly simplify the value of F) and

reduce it in fact to a rational and entire function of r*.

For this purpose, we may remark that

r(0)=«, r(-l)=oo, r {
—

2)
= CO, in infinitum.

If therefore we make — - + /3
= any whole number positive or

negative, the denominator of the function (4) will become infinite, and

consequently the function itself will vanish when s is so great that

1- /3 + i + 3 - *' is equal to zero or any negative number, and as
tit

the value of t never exceeds a certain number, seeing that f{i^^) is

a rational and entire function, it is clear that the series (4) will termi-

fMrte of itself, and V become a rational and entire function of r*.

(2) The method that has been employed in the preceding article

where the function by which the density is expressed is of the particular

form

may by means of a very slight modification, be applied to the far more

general value

P
= (1

- ryf{^, i, a')
= (1

- x" - y"
-
--'ff{x, y', z)

tvhere f is the characteristic of any rational and entire function what-

ever : and the same value of /3 which reduces V to a, rational and entire

function of r^ in the first case, reduces it in the second to a similar

function of x, y, % and the rectangular co-ordinates of p.
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To prove this, we may remark that the con-esponding value V will

beeoMie
F = fr"dr'de'd^' sin 6' (1

- ryf{x', y', «')^'-";

tJie integral being conceived to comprehend the whole volume of the

sphere.

Let now the function y be divided into two parts, so that

fi^, y, %') =/ ix', y', z') +f, ix', y', ^') ;

/i containing all the terms of the function J] in which the sum of the

exponents of af, y, %' is an odd number ; and ^ the remaining terms, or

those where the same sum is an even number. In this way we get

the functions F'l and V^a corresponding to^ andj^, being

V, = fr"dr'de'dvr' sin'0' {l~ryf, {x', y\z')g'-',

V^ = lr"dr'd&d-^ sin& (1
- ryf, {x', y% a') g^-\

"We will in the first place endeavour to determine the value J^j; and

for this purpose, by writing for x, y, %' their values before given in

r', ff, w', we get

f,{x',y,%')^rW')\

the coefficients of the various powers of r'^ in ^{r'^) being evidently

rational and entire functions of cos 0„ sin & cos w', and sin sin w.

Thus
V, = jr^dr'dffdTs' sin 6' (1

-ry />/.(/') ^'-";

this integral, like the foregoing, comprehending the whole volume of

the sphere.

Now as the density corresponding to the function Fi is -

p,=.{l-af^-y'^-^^ff,{x',^,%%

it is clear that it may be expanded in an ascending series of the entire

powers of x', y, »', and the various products of these powers consequently,

as was before remarked (Art. 1.), Fl admits of an analagous expansion

in entire powers and products of x, y, %. Moreover, as the density /i,

B 2
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retains the same numerical value, and merely changes its sign when
we pass from the element dv to a point diametrically opposite, where

the co-ordinates x, y ,
% are replaced by - x ,

-
y' , —% \ it is easy to

see that the function V-^, depending vxpon /s,, possesses a similar property,

and merely changes its sign when x, y, %, the co-ordinates of p, are

changed into -
x, —y, — as. Hence the nature of the function Vi is

such that it can contain none but the odd powers of r, when we sub-

stitute for the rectangular co-ordinates x, y, %, their values in the polar

co-ordinates r, 6, zs.

Having premised these remarks, let us now suppose Vx is divided

into two parts, one V^ due to the sphere B which passes through the

particle p, and the other V" due to the exterior shell aS*. Then it is

evident by proceeding, as in the case where p
= (1

- r"^Yf{i% that Vi

will be of the form

the coefficients A, B, C, &;c. being quantities independent of the variable r.

In like manner we have also

F/' = fr'^dr'ae'dsr' sin ff {\-ry .r'>\,{r'')g^-'';

the integrals being taken from r' = r to r = l, from 6' = to 0' = 7r, and

from Gr' = to 'z<r' = 2 7r.

By substituting now the second expansion of g^" before used (Art. 1.),

the last expression will become

r," = t; + Ti + r. + ^3 + &c.

of which series the general term is

T, = fd9'dw' sin ff Q, fr"-dr' (1
- ry^ x/. {r").

Moreover, the general term of the function \l^ {r'-) being represented by

Air'^\ the portion of 1\ due to this term, will be

(a) r fdffdw' smO' Q,Atjr''-''^''-Ulr' {l-ry-,

•the limits of the integrals being the same as before.
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If now we effect the integrations relative to r' by means of the for-

mula (3), Art. 1, and reject as before those powers of the variable /•,

in which it is affected, with the exponent w, since these ought not enter

into the function Fi, the last formula will become

(^^"F^V(3+i)
(a) ;r-7rrj ^-rr: r'fde'diir' sin 6'Q,A„

2 r C

^ + ^/J-w + g^-jyx
•' ^'

and as F, ought to contain none but the odd powers of r, we may make
* = 2*' + l, and disregard all those terms in which s is an even number,

since they will necessarily vanish after all the operations have been

effected. Thus the only remaining terms will be of the form

t^''^' fde'dsr' sin 9' Q,,.^, A,;
2.T '

)

where, as At and 02/+ 1 are both rational and entire functions of cos 0',

sin ff cos •ht', sin ff sin -sr', the remaining integrations from 6' = to 9' = tt,

and Tsr' = to tjt' = 2 tt, may easily be effected in the ordinary way.

If now we follow the process employed in the preceding article, and

suppose To', Ti, T2, &c. are what T^, Ti, 71, &c. become when we use

the truncated formula («') instead of the complete one (a), we shall

readily get

F, = t: + t: + t: + r/ + &c.

In like manner, from the value of V^ before given, we get

r," = fr'dr'd&dsr' sin &{1- ry(p{r")g'
-"

;

the integrals being taken from r' = r to r = l, from 9' = to 9' = ^, and

from -ar= to tsr = 2 tt.

Expanding now g^'" as before, we have

r;'= t;-„+t7,+ z7.+ j7, + &c.

where

U. = fdffd-sr' sin sr'Qjy'-'^dr'il-ry ^ (/*),
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acnd the part of U, due to the general term i?(/-''^' in (/*), will be

(J) r'fd&diir' sm 9' Q^Bt/lr'^-"^^'-' dr' {l-ry-,

which, by employing the formula (3') Art. 1., and rejecting the inad-

missible terms, gives for truncated formula

[ 2 j

By continuing to follow exactly the same process as was before

employed in finding the value of Fl, we shall see that * must always
be an even number, say 2 s'; and thu« the expression immediately {Br-

eeding will become

,, l4!-n + 2t-2s

^ (6-n + 23 + 2t-2s'
2r I

;
—r'^' fdO'dw sin d'^2.- B,.

2 J

Moreover, the value erf V^ will be

r, = u: + u:+ u: + u: + &c. ;

U^, Ui, Ui, U3, &c. being what Uo, Ui, Ui, &c. become when we use

the formula {b') instead of the complete one (h).

The value of V answering to the density

p = p, + p,
= (l-ry./{:>/, y',z'),

by adding together the two parts into which it was originally divided,

therefore, becomes

r= r,+r,= t: + t: + t: + t/ + &c.

+ £/„' +t4'+C7;'+t7e' + &c.

When /3 is taken arbitrarily, the two series -entering into V extend

in infinitum, but by supposing as before. Art. 1.,

— n n
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w representing any whole number, positive or negative, it is clear from

the form of the quantities entering into JLs'+i and U2/, and from the

known properties of the function F, that both these series wiU terminate

of themselves, and the value of F' be expressed in a finite form ; which,

by what has preceded, must necessarily reduce itself to a rational and

entire function of the rectangular co-ordinates x, y, ss. It seems needless,

after what has before been advanced, (Art. 1.) to offer any proof of this:

we will, therefore, only remark that if 7 represents the degree of the

function f{x', y\ &'),
the highest degree to which V can ascend will be

7 + 2 a> + 4.

In what immediately precedes, w may represent any whole number

whatever, positive or negative ;
but if we make w= —2, and consequently,

^ = ^ the degree of the function J^ is the same as that of the factor

A^\ y', ^),

comprised in p. This factor then being supposed the most general of

its kind, contains as many arbitrary constant quantities as there are

terms in the resulting function V. If, therefore, the form of the rational

and entire function V be taken at will, the arbitrary quantities contained

in fkpd, y, %')
will in case w = — 2 always enable us to assign the corres-

ponding value of p, and the resulting value of
J'{a;', y, %') will be a rational

and entire fimction of the same degree as T-^. Therefore, in the case

now under consideration, we shall not only be able to determine the

value of F' when p is given, but shall also have the means of solving

the inverse problem, or of determining p when V is given ; and this

determination will depend upon the resolution of a certain number of

algebraical equations, all of the first degree.

3. The object of the preceding sketch has not been to point out

the most convenient way of finding the value of the function ^, but

merely to make known the spirit of the method ; and to show on what

its success depends. Moreover, when presented in this simple form,

it has the advantage of being, with a very slight modification, as ap-

plicable to any ellipsoid whatever as to the sphere itself. But when
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spheres only are to be considered, the resulting formula?, as we shall

afterwards show, will be much more simple if we expand the density p

in a series of functions similar to those used by Laplace {Mec. Cel.

Liv. iii.) : it will however be advantageous previously to demonstrate

a general property of functions of this kind, which will not only serve

to simplify the determination of F, but also admit of various other

applications of dcr.

Suppose, therefore, J^''' is a function of 9 and trr, of the form con-

sidered by Laplace {Mec. Cel. Liv.
iii.), r, 9, -zs- being the polar co-ordi-

nates referred to the axes JT, Y, Z, fixed in space, so that

ar = r cos 0, y = r %\w9 cos Tsr, x = /• sin sin vr
;

then, if we conceive three other fixed axes Xi, Y^, Z,, having the same

origin but different directions, P'^'^ will become a function of 0, and
•zjti,

and may therefore be expanded in a series of the form

(6) r <^> = r/"' + F.*'> + F/^' + F/^' + &c.
.

Suppose now we take any other point p and mark its various co-ordinates

with an accent, in order to distinguish them from those of p ; then, if

we designate the distance pp by {p, p), we shall have

^ - =
f
r' - 2rr' [cos 9 cos ff + sin 9 sin & cos {tn-

-
•sr')] + r'^\

"*

as has been shewn by Laplace in the third book of the Mec. Cel., where

the nature of the different functions here employed is completely ex-

plained.

In like manner, if the same quantity is expressed in the polar co-

ordinates belonging to the new system of axes X-,, F„ Z,, we have,

5ince the quantities r and r' are evidently the same for both systems,

{^p, p) r \^ r r IT I

^nd it is also evident from the form of the radical quantity of which
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the series just given are expansions, that whatever number i may re-

present, Qi*** will be immediately deduced from Q*'> by changing 9, sr,

9', -sr' into 0„ "sr,, 9/, ^r,'. But since the quantity
- is indeterminate,

and may be taken at will, we get, by equating the two values of . ,

. f
and comparing the like powers of the indeterminate quantity -,

If now we multiply the equation (6) by the element of a spherical

surface whose radius is unity, and then by Q<*' = Q/*>, we shall have,

by integrating and extending the integration over the whole of this

spherical surface,

fdf.dwQ"^ r® =
fdfx, d-ar, Q/** { F/"' + Y^+ F*^' + &c.

}
.

Which equation, by the known properties of the functions Q**' and Y^^\

reduces itself to

when h and i represent different whole numbers. But by means of a

formula given by Laplace {Mec. Cel. Liv. iii. No. 17.) we may imme-

diately effect the integration here indicated, and there wiU thus result

"-2^ + 1-^^
'

F;'<*> being what Fi''" becomes by changing 9^, tsti into 0,', •ar/, and as

the values of these last co-ordinates, which belong to p, may be taken

arbitrarily like the first, we shall have generally F,**', except when

h = i. Hence, the expansion (6) reduces itself to a single term, and

becomes

F® = F®.

We thus see that the function F<'' continues of the same form even

when referred to any other system of axes X„ F„ Z„ having the same

origin O with the first.

This being established, let us conceive a spherical surface whose center

is at the origin O of the co-ordinates and radius r', covered with fluid.

Vol. V. Part I. C
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of which the density p = P''*''
; then, if d<r' represent any element of

this surface, and we afterwards form the quantity

the integral extending over the whole spherical surface, g being the

distance p, da and
y\f

the characteristic of any function whatever. I

say, the resulting value of V will be of the form

V= Y^B;

R being a function of r, the distance Op only and K<'' what Y'^^ becomes

by changing 9', w, the polar co-ordinates, into 9, tit, the like co-ordinates

of the point p.

To justify this assertion, let there be taken three new axes JT,, I^„ Z„
so that the point p may be upon the axis Xx ; then, the new polar

co-ordinates of da' may be written r', ff, tjt', those of p being r, 0, •sr.

and consequently, the distance will become

g = ^{r" - 2 rr' cos 9,'+ r^) ;

and as da^' = r'^d9i'd'sri sin 9,', we immediately obtain

r = fY'^'Vde.d-sr, sin 9, f (/•-- 2rr' cos d,' +O
= r'^SZd9; sin 0/ ^{r'-^rr' cos 0/ -f r'^)f^Zd-ur( Y' <".

Let us here consider more particularly the nature of the integral

In the preceding part of the present article, it has been shown that

the value of Y'^'^, when expressed in the new co-ordinates, will be of

the form P'/*'' ; but aU functions of this form (Vide Mec. Cel. Liv. iii.)

may be expanded in a finite series containing 2 « + 1 terms, of which

the first is independent of the angle "sr,', and each of the others has

for a factor a sine or cosine of some entire multiple of this same angle.

Hence, the integration relative to ro-/ will cause all the last mentioned

terms to vanish, and we shall only have to attend to the first here.

But this term is known to be of the form

, / ,. i.i— \ ,. „ i.i—l.i-2.i— S
,,• , « N
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and consequently, there will result

where ni = cos 9^ and ^ is a quantity independent of 6/ and tr/, but

which may contain the co-ordinates 9, -ar, that serve to define the

position of the axis JCi passing through the point p.

It now only remains to find the value of the quantity k, which may
be done by making 0i' = O, for then the line r coincides with the axis

JTi, and K*'' during the integration remains constantly equal to Y^\

the value of the density at this axis. Thus we have

^ ^rin ^ 7 [-. ii—l i.i — l.i—2.i — 3 „ \

V 2.2?— 1 2.4.2«— 1.2^ — 3 I

or, by summing the series within the parenthesis, and supplying the

common factor 2 7r,
-

•jr(i)
_ ^-^-^ ^

J,

1.3.5 2«-l '

and, by substituting the value of k, draAvn from this equation in the

value of the required, integral given above, we ultimately obtain

If now, for abridgement, we make

^^>
= ^' -

2:27:11^'
+
2.4.2i-1.2i-3

^' -^^-

we shall obtain, by substituting the value of the integral just found in

that of V before given,

r= r(^27rr'%i44^^^-^^^^^/_}r?^/(^H(^-2rr'M/ + r'^);

which proves the truth of our assertion.

From what has been advanced in the preceding article, it is likewise

very easy to see that if the density of the fluid within a sphere of

any radius be every where represented by

c 2
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<p being the characteristic of any function whatever; and we afterwards

form the quantity

where dv represents an element of the sphere's volume, and g the dis-

tance between dv and any particle p under consideration, the resulting

value of V wiU always be of the form

V^^ being what I^'*" becomes by changing 9^, nr , the polar co-ordinates

of the element dv into Q, w, the co-ordinates of the point p; and R
being a function of r, the remaining co-ordinate of p, only.

4. Having thus demonstrated a very general property of functions

of the form P"*'', let us now endeavour to determine the value of F"

for a sphere whose radius is unity, and containing fluid of which the

density is every where represented by

p
= {l-x''-y"-zyf{x',y',z');

on', y , z' being the rectangular co-ordinates of dv, an element of the

sphere's volume, and Jl the characteristic of any rational and entire

function whatever.

For this purpose we will substitute in the place of the co-ordinates

x', y ,
z' their values

x = r cos &\ y = r sin & cos w'. z = r' sin ff sin -bt' ;

and afterwards expand the function/(a;', y', s) by Laplace's simple method,

{Mec. Cel. Liv. iii. No. 16.). Thus,

(7) /{x, y, z) =/<«>+/'" +/'<^> + &c +/'«;

s being the degree of the function /{x, y', z').

It is likewise easy to perceive that any term
/''''

of this expansion

may be again developed thus,

/'(•) =/;(•>/* +/'«/-= +^'<V^+^ + &c.;

and as every coefficient of the last developement is of the form [/'",

(Mec. Cel. Liv.
iii.), it is easy to see that the general term y'''V'+^' may

always be reduced to a rational and entire function of the original

co-ordinates x, y', »'.
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If now we can obtain the part of ^ due to the term

we shall immediately have the value of V by summing all the parts

corresponding to the various values of which i and t are susceptible.

But from what has before been proved (Art. 3.), the part of V now
under consideration must necessarily be of the form F"*'^; representing,

therefore, this part by F"/'', we shall readily get

r/" =/J/'+^'+^</r' (1
-

ryjtl-nr'de' sin ^/'<'^^'-".

Moreover from what has been shown in the same article, it is easy

to see that we have generally

fV'^'^clu'de' sin e'^ig"-)
= Stt F« ^f'f •:'^'~^ /-i'c?Mi' (i) yl^{r'-2rr',x,' + r") ;

\(/ being the characteristic of any function whatever, and P'^'' what P''"*

becomes by substituting 9, w the polar co-ordinates of p in the place

of 6', TB-', the analogous co-ordinates of the element dv. If therefore

in the expression immediately preceding, we make

F'«=/'« and fig^) =^'.- = (^^)^,

and substitute the value of the integral thus obtained for its equal in

Vf-'^ there will arise

where yj® is deduced from Jl'^^ by changing 9", %r' into 6, w, and (i), for

abridgement, is written in the place of the function

,;
i.i-1 ,;_; ,

i.i-l.i-2.i-3 ,^_^ .

'"~2.2e-l'" ^2.4.2i-1.2«-3'"
*'''•

As the integral relative to n\ which enters into the expression on

the right side of the equation (8) is a definite one, and depends therefore

on the two extreme valvies of fj.\ only, it is evident that in the deter-

mination of this integral, it is altogether useless to retain the accents
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by which n\ is affected. But by omitting these superfluous accents,

we shall have to calculate the value of the quantity
I-n
2 ,

fj.dfi. (^) . (r'
- 2 rr'/m + r")

where
,. . i.i— 1 . i.i-i,i-2.i-3

; , -

^'^
=
''-2:2^:1'' +

2.4.2i-1.2i-3-^
-^^-

The method which first presents itself for determining the value of
l-n

the integral in question, is to expand the quantity {r^
—

2rr'/u. + r'^)
^

by
means of the Binomial Theorem, to replace the various powers of m by
their values in functions similar to (i) and afterwards to effect the in-

tegrations by the formulee contained in the third Book of the Mec. Cel.

For this purpose we have the general equation

.-s
i

...
,

i.i— 1 ,. „. ,

i.i—l.i— 2.i— 3,. ,,
^^^ '^ =^^)+ 2:271:1 (^-^^-^2X2I33:27::5(*-*)

i.i-l.i-2.i-3.i-4!.i-5 .

2.i.6.2i-5.2i-7.2i-9 ^' '") + ^^'

To remove all doubt of the correctness of this equation, we may
multiply each of its sides by (i, and reduce the products on the right

by means of the relation

which it is very easy to prove exists between functions of the form (?).

In this way it will be seen that if the equation (9) holds good for any

power fx' it will do so likewise for the following power ^'+^ and as it

is evidently correct when i='l, it is therefore necessarily so, whatever

whole number i may represent.

Now by means of the Binomial Theorem, we obtain when r^r'

= 2,

r"'-K(r'-2rr'^ +r"y =
(i-2m J

+
^,)

y>n—l.n + l.n-\-3 n + 2s— 3

l—n
3

2s

If now we conceive the quantity (2ju- rj
to be expanded by
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the same theorem, it is easy to perceive that the term having f—
|

for factor is

i + 2t'

7i-l.n-\-l.n + 3 « + 2^•+ 4^'-3 ,^,„ ,^„, /r\

2.4.6 2e + 4r
'^ W)

i + iV

n-l.n + 1 n+ 2i + 4>t'-5 ,^,,_, ,+,„_, fn'^"''!!
i+^t-1

2 . 4 2? + 4#'-2
'" """ '

\r')

2.4 2« + 4ir-4 ^ '^^ VJ /•'' 1.2
— &c &c &c

/^\ i + 2('

and therefore the coefficient of I
—

I in the expansion of the function

will be expressed by

v "-^-^ + l ^ + 2^'+4^'-2^- 3 ,,,,.,, ..

2.4 2« + 4^'-2* ^""^^ '^ ^

« + 2#'-*.^ + 2^'-«-l ^+ 2^-2* + l

Hence the portion of this coefficient containing the function (i), when
the various powers of /i have been replaced by their values in functions

of this kind agreeably to the preceding observation will be found, by
means of the equation (9), to be

. .X „ n — l.n + 1 n + 2i+4<t'~2s— 3
^^^ 2 . 4 2? + 4^'-2*

^^ + 2/-2^.^• + 2^'-2,y-l i + 1
"^

2.4 2^-2*x2^ + 2if'-2* + 1.2^ + 2f-2#-1...2^ + 3

i + 2t'-s.i+2t'-s-l i + 2^-2#+l
.2*+^''-=»(-l)»x- 1.2.3

n-l.n + 1. n + S n + 2i+it' -2s-3 ,,,,.,.,..^^2.4.6 2« + 4^-2« ^ ^
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^^ + l.^^ + 2.^^ + 3.^' + 4 i + ^t' -s
^
1.2.3 *x2.4.6 2^-2* X 2? + 2^'- 2* + 1 2e + 3

_ . (-1V.W-1.W + 1.W + 3 w + 2? + 4^' -2.9 -3
-2'-W-2g^ 2?x2.4 2*x2.4 2#'-2* x 2^ + 2^'-2*+1...2^ + 3

3.5.7 2« + l ... n-\.n + \.n + S ?« + 2m2^'-3
f^(0 X

1.2.3 i
^^ 3.5.7 2« + 2r + l

r - 1 V
^ + ^^'+ ^^-1 w+ 2? + 4/-2.y-3

^ "^ ^ 2.4.6 2^-2*

2t + 2^'-2.y + 3 2? + 2/' + 1
^

2.4.6 2*

where all the finite integrals may evidently be extended from * =
to * = 00 , and it is clear that the last of these integrals is equal to the

coefficient of a^ in the product

(, w + 2i + 2#'-l » + 2i + 2/-l.w + 2i + 2/' + l „ „ . . .,
{1+ x +

^-^
oi? + hc.tninf.\

,, 2? + 2^ + l
,

2i + 2r + 1.2? + 2#'-l „ . . . ^,X {1
~ x+ ^-^

af-kc. intnf.]

If now we write in the place of the series their known values, the

preceding product will become

n+2i+2f-l 2i+2t' + l i-n

(l-or)
"

x(l-;r)
' ={\-x)\

and consequently the value of the required coefficient of af^ is

« — 2.W.W + 2 w + 2/'— 4

2 .4. 6 2^'

This quantity being substituted in the place of the last of the finite

integrals gives for the value of that portion of the coefficient of

which contains the function (i) the expression

3.5.7 2?+ l n-l.n + 1 w+2?'+2^'-3 n-2.n m+2^ -4 , .,

1.2.8 i ^3.5 2e + 2^+ l
^

2.4 2t'
^*^'
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By multiplying the last expression by
(

—
)

, and taking the sum

of all the resulting values which arise when we make successively

^ = 0, 1, 2, 3, 4, 5, 6, &c. in infinitum,

we shall obtain the value of the term I^<'> contained in the expression

,
l-n

(l
- 2m^ +

^,)

~
= Y^'^ + rc> + F(=> + F^^' + &c.

Hence,

1.2 i
^^^ 3.5 2i + 2f+l

n-2.n n + ^t'-i /rV*^*'
"^

2.4 2t' [?)
'

the finite integral extending from t' = to t' = oc.

But by the known properties of functions bf this kind, we have

by substituting for F'"' its value

/_\d^ (i) (l - 2m p + ^^~=/-\d^ (i) . F«

3.5.7 2« + l ., ,.,„ ^n-l.n + l n+ 2i + 2t'-3=
1.2.3 i

/^^(O^x^ 3 . 5 2e + 2^' + l

n-2.n «+ 2/-4/rV*"'
2.4 2t' (p)

^ 1.2.3 i n-l.n + 1 n + 2i + 2t'-3~
1.3.5 2?-l 3 . 5 2i + 2t' + 2

71 — 2. n n + 2t' — ^! fr'

t'

~

\r'}
'

2.4 2t

since by what Laplace has shown {Mec. Cel. Liv. iii. No. 17.)

^^^ W^= 2m I1.3.5 2e-l j
•

Vol. V. Paet I. D
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If now we restore to n. the accents with which it was originally

affected, and multiply the resulting quantity by r'""\ we shall have when

r<r''

(10) /Ad^\(i) if-^rr't^, +
'

=/»-y_;</M'i ii)
(l

- UJ-. +
^-.)

_ ,j_„
1.2.3 i w-l.w + 1 ?^ + 2^^+ 2^-3~
'1.3.5 2«-l 3 . 5 2e + 2#'+l

;« — 2.W « + 2#'-4 /r

2.4 2jf' 9
j + 21'

and in order to deduce the value of the same integral when /•' /. r, we

shall only have to change r into /, and reciprocally, in the formula

just given.

We may now readily obtain the value of Vi^ by means of the

formula (8). For the density corresponding thereto being

:/;«/•'+=' (l-r"7,

it follows from what has been observed in the former part of the

present article, that ^'®r'^^' may always be reduced to a rational and

entire function of icf, y, %' the rectangular co-ordinates of the element

dv, and therefore the density in question will admit of being expanded

in a series of the entire powers of x, y',
%' and the various products of

these powers. Hence (Art. 1.) F/'' admits of a similar expansion in

entire powers, he. of x, y, z the rectangular co-ordinates of the point p,

and by following the methods before exposed Art. 1 and 2, we readily

get

^t ^-^J J r' ui
y>.

, ) .^ 3.5 2t + 2t'+ l

n-2.n.n + 2 » + 2#'— 4 /r\'+"'
X

2 .4. 6 2t'

-4
/r^y^-""

"
V'j

'

and thence we have ultimately,

(,ii; rt Airj, ^33 2i + 2t' + 1 2.4 2/'
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r r-%^"-'')r(3+i) r{/3 + i)r(i^)

,2r^*'

=2Trf,^\ ^^ -—-r'
/2t-2t' + 2fi + 6-n \

^'
/ 6 + 2/3-w\

4-n.6-n 2t~2t'+2-n n-2.n n + 2t'-4!

6 + 2fi-n 2t-2t'+2l3 + 4>-n
^

2.4 W
n—1 .n + 1 n + 2i + 2t'-3

^
"^

3 . 5 2i + 2t' + l
'

the finite integrals being taken from t' =0 to t'=cD and r being the

characteristic of the well known function Gamma, which is introduced

when we effect the integrations relative to r' by means of the formula

(3), Art. 1.

Having thus F"/" or the part of F corresponding to the term
j^''*',

in J'(x', y, as')
we immediately deduce the complete value of V by giving

to i and t the various values of which these numbers are susceptible,

and taking the sum of all the parts corresponding to the different terms

hi the expansion of the function fix', y', &').

Athough in the present Article we have hitherto supposed J" to be

the characteristic of a rational and entire function, the same process will

evidently be applicable, provided y"(a;', y, z') can be expanded in an

infinite series of the entire powers of x', y, z' and the various products
of these powers. In the latter case we have as before, the development

fix', y, z') =/'<»> +/'<•> + /'® +/'<^) + &c.

of which any term, as for example f'^''> may be farther expanded as

follows,

/'« =/;«r" + /'«r"+^ +/'«/•"+*+ &c.

and as we have already determined F"/*' or the part of V corresponding

toyt'''V'+^'',
we immediately deduce as before the required value of V,

the only difference is, that the numbers i and t, instead of being as

in the former case confined within certain limits, may here become in-

definitely great.

D 2
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In the foregoing expression (11) /3 may be taken at will, but if we
qq ^

assign to it such a value that -~— may be a whole number, the

series contained therein will terminate of itself, and consequently the

value of Vt^^ will be exhibited in a finite form, capable by what has

been shown at the beginning of the present Article of being converted

into a rational and entire function of x, y, %, the rectangular co-ordinates

of p. It is moreover evident, that the complete value of V being com-

posed of a finite number of terms of the form Vt-'^ will possess the same

property, provided the function fix, y , %) is rational and entire, which

agrees with what has been already proved in the second Article, by a

very different method.

(5) We have before remarked, (Art. 2.) that in the particular case

where /3
= ———

, the arbitrary constants contained in y(a;', y', %) are just

sufficient in number to enable us to determine this function, so as to

make the resulting value of V equal to any given rational and entire

function of x, y, z, the rectangular co-ordinates of p, and have proved
that the corresponding functions V and J" will be of the same degree.

But when this degree is considerable, the method there proposed becomes

impracticable, seeing that it requires the resolution of a system of

^ + 1 .^ + 2,.s + 3

1.2.3
linear equations containing as many unknown quantities ;

s being the

degree of the functions in question. But by the aid of what has been

shown in the preceding Article, it will be very easy to determine for

this particular value of /3 the function J'{x', y, %') and consequently the

density p when F' is given, and we shall thus be able to exhibit the

complete solution of the inverse problem by means of very simple
formulae.

For this purpose, let us suppose agreeably to the preceding remarks,

that p the density of the fluid in the element dv is of the form

p = {l-r^)-^/{x',y',z);
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f being the characteristic of a rational and entire function of the same

degree as V, and which we will here endeavour so to determine, that

the value of V thence resulting, may be equal to any given rational

and entire function of x, y, % of the degree s.

Then by Laplace's simple method {Mec. Cel. Liv. iii. No. 16.) we

may always expand F" in a series of the form

r= r<«> + r(» + r® + &c + r«.

In like manner as has before been remarked, we shall have the

analogous expansion

f{x',y', ,')=/''«' +/'<'>+/'^=>+/'<'>+ &c +/'«,

of which any termy*'' for example, may be farther developed as follows,

/'« =^'('V' +y;'''V"+'^ +//»/'+* + &c. = r" (/'« +y;'('V'^ +/'»;.'^ + &c.)

y", yj'<'>, j^''*^,
&c. being quantities independent of / and all of the form

K'"' {Mec. Cel. Liv. iii.) Moreover F/" the part of F' due to the general

term Jl'^'^r''+^*
of the last series, will be obtained by writing for (i

in the equation (11), and afterwards substituting for

(n — 2\ _ f4i-n

r(!t^)r(l^) us value- n-2
sin

In this way we get

27r;/;'V ±-„,e-n 2t-2f + 2-n
'

. fn-2 \ 2.4 2t~2t'
sm

(-^.j

n-2.n w + 2#'-4 w — 1 . w + 1 n + 2i + 2f — 3
^^

2.4 2?
^

3 . 5 ...... 2i + 2t' + l
'

yj<'^ being what J]''-^
becomes by changing 6', -ar' into 6, sr, and the finite

integral being taken from t' = to t'=<x .

Let us now for a moment assume

^(0=
n-2.n w + 2#'— 4 «-l.« + l n + 2i+ 2t'-3

X
2.4 2t' 3.5 2i+ 2t'+ l

'
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then the expression immediately preceding may be written

^J7\r 4<-n.6-n Q,t-2t' + 2

(n-2 \ 2.4 2t-2t'
dn [-^ .)
sin

and by giving to t the various values 0, 1, 2, 3, &c. of which it is sus-

ceptible, and taking the sum of all the resulting values of F/'' the quantity

thus obtained will be equal to V^^ or that part of V which is of the

form Y^\ Thus we get

27r^ r'
fr(i),

sm

.«/)(0)./„«

+ &c &c &c.

since aU the terms in the preceding value of Vi-^ in which t'>t vanish

of themselves in consequence of the factor

/2^-2^ +4-w\

= (when t > t).2 . 4 2i?-2^ „,. ., . _ „ /4-w
(-'«) rC-?)

But F"^'^ as deduced from the given value of V may be expanded in

a series of the form

r«=?''. {r„®-i- r;(v^+ r,»./^+ v^'>t^+kc.\

and if in order to simplify the remaining operations, we make generally

__„ 27r^ n-2.n M+2/-4 n-\.n + l n + 2i+2t-3 ^„.,
'

. [n-2 \ 2.4 2t 3.5 2« + 2^+l
'

sm [—.]
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27r'

X<J>{t).W,
. /n-2 \
sm (— .)

the equation immediately preceding will become

^(0= ^I-:£ X
{(j) (0) . f7o"' + 0(l) . t7;(W(^ (2) C7,». r' + &cc.\

[n
— 2 \

which compared with the foregoing value of F^'\ will give by suppressing

the factor '—
,
common to both, and equating separately the

sm(-^.)

coefficients of the different powers of the indeterminate quantity r the

following system of equations

&c=...&c &c &c.

for determining the unknown functions fo'-^, /<*', f/\ &c. by means of the

known ones f7"o*'\ Ui'-'\ ZJg*", &c. In fact the last equation of the system

gives U^^=fP, and then by ascending successively from the bottom to

the top equation, we shall get the values of fs^\ /,%, f}%, &c. with

very little trouble. It will however be simpler still to remark, that the

general type of all our equations is

where the symbols of operation have been separated from those of

quantity and e employed in its usual acceptation, so that
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But it is evident we may satisfy the last equation by making

/«=(l-e)''^C7-«.

Expanding now and replacing e?7„'''; e^UJ^^, &c. by these values UJIi,

U^%, &c. we get

from which we may immediately deduce ^'® and thence successively

/'« = r" (/„'« +/'« r'^ +/;« r" +//« r'» + &c.)

fW, !/, 85') =/'<"' +/'«+/'<^' + &c +/'«

and > = (1
- X'"- - y"- z'"-y^.f(x', y , %),

Application of the general Methods exposed in the preceding Articles

to Spherical conducting Sodies.

(6) In order to explain the phenomena which electrified bodies

present. Philosophers have found it advantageous either to adopt the

hypothesis of two fluids, the vitreous and resinous of Dufay for

example, or to suppose with jEpinus and others, that the particles of

matter when deprived of their natural quantity of electric fluid, possess

a mutual repulsive force. It is easy to perceive that the mathematical

laws of equilibrium deducible from these two hypotheses, ought not to

differ when the quantity of fluid or fluids (according to the hypothesis

we choose to adopt) which bodies in their natural state are supposed

to contain, is so great, that a complete decomposition shall never be

effected by any forces to which they may be exposed, but that in

every part of them a farther decomposition shall always be possible by
the application of still greater forces. In fact the mathematical theory

of electricity merely consists in determining p* the analytical value of

*
It may not be Improper to remark that p is always supposed to represent the density

of the free fluid, or that which manifests itself by its repulsive force; and therefore, when

the hypothesis of two fluids is employed, the measure of the excess of the quantity of either

fluid
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the fluid's density, so that the whole of the electrical actions exerted

upon any point p, situated at will in the interior of the conducting
bodies may exactly destroy each other, and consequently p have no

tendency to move in any direction. For the electric fluid itself, the

exponent n is equal to 2, and the resulting value of p is always such

as not to require that a complete decomposition should take place in

the body under consideration, but there are certain values of n for which

the resulting values of p will render fpdv greater than any assignable

quantity ;
for some portions of the body it is therefore evident that

how great soever the quantity of the fluid or fluids may be, which

in a natural state this body is supposed to possess, it will then become

impossible strictly to realize the analytical value of p, and therefore some

modification at least will be rendered necessary, by the limit fixed to

the quantity of fluid or fluids originally contained in the body, and

as Dufay's hypothesis appears the more natural of the two, we shall

keep this principally in view, when in what follows it may become

requisite to introduce either.

7. The foregoing general observations being premised, we will proceed
in the present article to determine mathematically the law of the density

p, when the equilibrium has established itself in the interior of a con-

ducting sphere A, supposing it free from the actions of exterior bodies,

and that the particles of fluid contained therein repel each other with

forces which vary inversely as the w"" power of the distance. For this

purpose it may be remarked, that the formula (1), Art. 1, immediately

gives the values of the forces acting on any particle p, in virtue of

the repulsion exerted by the whole of the fluid contained in A. In

this way we get

1 dV
- _ .-jr

= the force directed parallel to the axis X,

1 dV
- _ . y— = the force directed parallel to the axis Y,

fluid which we choose to consider as positive over that of the fluid of opposite name in any
element dv of the volume of the body is expressed by pdv, whereas on the other hypothesis

pdv serves to measure the excess of the quantity of fluid in the element dv over what it

would possess in a natural state.

Vol. V. Paet I. E
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1 dV
.-^- = the force directed parallel to the axis Z.

1 — » d%

But since, in consequence of the equilibrium, each of these forces is

equal to zero, we shall have

„ dVJ .
dV ,

,

dV . .-,= -5— dx + -7— dy + -J- d% = dV\dx dy d%

and therefore, by integration,

F = const.

Having thus the value of V at the point p, whose co-ordinates are

X, y, %, we immediately deduce, by the method explained in the fifth

article,

/w-2 \
sm

P =
2'

^.(l-r'*)

seeing that in the present case the general expansion of K there given

reduces itself to

If moreover Q serve to designate the total quantity of free fluid in

the sphere, we shall have, by substituting for

sin f TT
j

its value

rl^)r[^y

\ 2 / rrz-ij >i.Ji/i '2\""S~ ^"^
sm

Q =
/pe/«;

= ^5 i F/liW^dril-r")

See Legendre. Exer. de Cal. Int. Quatrieme Partie.

In the preceding values, as in the article cited, the radius of the

sphere is taken for the unit of space ; but the same formula may

readily be adapted to any other unit by writing
— in the place of r',

and recollecting that the quantities p, V, and Q, are of the dimensions

0, 4— «, and 3 respectively, with regard to space; a being the number
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which represents the radius of the sphere when we employ the new

unit. In this way we obtain

P = —V4—- r{a'-r")~, and Q = lii—
;

. V.

Hence, when Q, the quantity of redundant flviid originally introduced

into the sphere is given, the values of V and of the density p are like-

wise given. In fact, by writing in the preceding equation for

ry, and
sin(^7r),

their values, we thence immediately deduce

and F= ^ ' '

a'-.Q.
\/7r

The foregoing formulae present no difficulties where « > 2, but when

H < 2, the value of p, if extended to the surface of the sphere Jl, would

require an infinite quantity of fluid of one name to have been origi-

nally introduced into its interior, and therefore, agreeably to a preceding

observation, could not be strictly realized. In order then to determine

the modification which in this case ought to be introduced, let us in

the first place make n>2, and conceive an inner sphere S, whose

radius is a— Sa, in which the density of the fluid is still defined by
the first of the equations (12); then, supposing afterwards the rest of

the fluid in the exterior shell to be considered on ^'s surface, the portion

so condensed, if we neglect quantities of the order Sa, compared with those

retained, will be

-- r f^±i)
2* V 2 / ^,

'
V2/

E 2

(1)

QJa 2
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and since, in the transfer of the fluid to ^'s surface, its particles move

over spaces of the order ^a only, the alteration which will thence be

produced in V will evidently be of the order

n — 2 n

and consequently the value of V will become

k being a quantity which remains finite when ^a vanishes.

In establishing the preceding results, ti has been supposed greater

than 2, but p the density of the fluid within S and the quantity of it

condensed on ^'s surface being still determined by the same formulae,

the foregoing value of V ought to hold good in virtue of the generality

of analysis whatever n may be, and therefore when w is a positive quantity
and hi is exceedingly small, we shall have without sensible errors

v;^m^m«'--*
'

Conceiving now P' to represent the density of the fluid condensed

on A's surface, 47ra^P' will be the total quantity thereon contained, which

being equated to the value before given, there results

-y/TT

(I)

and hence we immediately deduce

fn + Vn — 4 -p

2~ m
Moreover as Q represents the total quantity of redundant fluid in the

entire sphere A, the quantity contained in B is
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-)„=.

If now when w is supposed less than 2, we adopt an hypothesis

similar to Dufay's, and conceive that the quantities of fluid of opposite

denominations in the interior of A are exceedingly great when this

body is in a natural state, then after having introduced the quantity Q
of redundant fluid, we may always by means of the expression just

given, determine the value of Sa, so that the whole of the fluid of

contrary name to Q, may be contained in the inner sphere S, the

density in every part of it being determined by the first of the equa-

tions (12). If afterwards the whole of the fluid of the same name as

Q is condensed upon A's svirface, the value of V in the interior of S
as before determined will evidently be constant, provided we neglect

n

indefinitely small quantities of the order ht'\ Hence all the fluid con-

tained in J3 will be in equilibrium, and as the shell included between

the two concentric spheres, A and S is entirely void of fluid, it follows

that the whole system must be in equilibrium.

From what has preceded, we see that the first of the formulae (12)

which served to give the density p within the sphere A when n is

greater than 2, is still sensibly correct when n represents any positive

quantity less than 2, provided we do not extend it to the immediate

vicinity of A's surface. But as the foregoing solution is only approxi-

mative, and supposes the quantities of the two fluids which originally

neutralized each other to be exceedingly great, we shall in the follow-

ing article endeavour to exhibit a rigorous solution of the problem,
in case w < 2, which will be totally independent of this supposition.

8. Let us here in the first place conceive a spherical surface whose

radius is a, covered with fluid of the uniform density P', and suppose

it is required to determine the value of the density p in the interior

of a concentric conducting sphere, the radius of which is taken for

the unit of space, so that the fluid therein contained, may be in equi-

librium in virtue of the joint action of that contained in the sphere

itself, and on the exterior spherical surface. "•
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If now V represents the value of V due to the exterior surface,

it is clear from what Laplace has shown, {Mec. Cel. Liv. ii. No. 12.) that

^ =
!y^

=
(3^:^

K«+^r"-(«-'-M;

rfo- being an element of this surface, and g being the distance of this

element from the point p to which V is supposed to belong.

If afterwards we conceive that the function V is due to the fluid

within the sphere itself, it is easy to prove as in the last article, that

in consequence of the equilibrium we must have

V +V= const.

But V and consequently V is of the form F^"', therefore by employ-

ing the method before explained, (Art. 4.) we get

/(ar', y', %) =/'(»' =/„("> +/(">. r'' +//>. r'' + &c. = B, + B,r'' + B, r" + &c. ;

where, as in the present case, ^''°>, yi'<°', ^''% &c. are all constant

quantities, they have for the sake of simplicity been replaced by

J?o, jBi, B.^, &c.

Hitherto the exponent /3 has remained quite arbitrary, but by making

/3= —-—^ the formula (11) Art. 4. will become when « = 0,

ir(o)_o 7? <2y V 2 ; ^ ,,,
4-».6-w 2t-9.t' + ^-n

^' -2'^^'-
YW)

'

4 . 6 2^-2^+2
n-2.n-l « + 2^- 3

"^

2.3.4 2^ + 1

{/i-2)Tr'Bt ^ ,„ 4-W.6-M 2^-2/'+2-« w-2.«-l « +2/-3
2.?^ . ^ -r^ ^w . n ^

. (71-2 \
• 4.6 2^-2^+ 2 2 . 3 2^' + l

'

sm(— .)

Giving now to / the successive values 0, 1, 2, 3, &c. and taking

the sum of the functions thence resulting, there arises

r= F<°' = Fo<"> + rr + T^-P + ^3<°* + &c. = s. r/">

(«-2)7r'^ ^P^ ,,,
4-W.6-W 2t-2f + 2-n n-2.n-l «+2^'-3

"""T^ri"^ ' 4.6.8 2^-2^' + 2
""

2 . 3 2/' + l
'

sm (^.)
where the sign S is referred to the variable t and 2 to ^.
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Again, by substituting for V and V their values in the equation

V^ + V= const, and expanding the function V we obtain

,/^*' ti-2.n-l.n n + 2f-3
const. =47rP'«'-".2

«^"" 2 . 3 .4 2^ + 1

(w-2)7r' „ „ ,,/4-».6-?? 2^-2^'+2-w n-2.n-l ti+2t'+3
"^

(n-2 X
'^^^'''

4 . 6 2f-2f + 2
^

2.3.4 2^ + 1
sm

..)2

which by equating separately the coefficients of the various powers of

the indeterminate quantity r, and reducing, gives generally

(n-2
2P'«'-"-"'. sin /• TT

2 I „2 — «.4 — « 2s— n-^
2 . 4> 2s

^''^'-'

Then by assigning to t' its successive values 1, 2, 3, &c. there results for

the determhiation of the quantities B^,Bi, JB^, &c. the following system

of equations,

2P'
„

. (n-2 \ p ^ 2-n „ 2-n.4<-n „ ,
»

2P' . fn-2 \ „ „ 2 — « „ 2 — ;«.4— ra ^ .=^ «'-".sin —r-TT .«-^ = P,-f —r- P. + —^—r— P3 + &C.
TT V 2 / 2 2.4
2P'

,
. (n-2 \ ... „ 2-M„,2-ra.4-/<

a'-", sm
( -^— t]

• '^ = P.' + —^ -^^ +
~~;> 4

— P4 + &C.

&c &c &c &c

But it is evident from the form of these equations, that we.may satisfy

the whole system by making

B, = B^.a\ B, = B.a-\ B,= B,,(r\ B, = B^.a-M>ic.

provided we determine Po by

2P' . /n-2 \ „ ,, 2-n , 2 — n.4>-n ... .
,

= P„(l-a-)'

„ 2P . (n-2 \ .
, ,,^

n-2

,-2\ 2

n — 2
Hence as in the present case, ^ = —^ , we immediately deduce the

successive values

2P . fn-2



40 Mr GREEN, ON THE LAWS OF THE EQUILIBRIUM OF FLUIDS.

/(or', y\ «')=/'(")
= ^„ + P,r'^ + ^.r'^ + &c. = if„

(l
-
^']",

and p = (1
-O ^

./(x', y', %')
=^ sin {—^

^)
. («=

-
1)"...

(«^
-

/'')-Ml
- 0~-

In the value of p just exhibited, the radius of the sphere is taken

as the unit of space, but the same formula may easily be adapted to

any other unit by writing j
and y- in the place of a and / respectively,

and recollecting at the same time that in consequence of the equation

•dv.p . rdaP'
const, = r^r^j!^ + jis -^ g

before given, ^ , is a quantity of the dimension — 1 with regard to

space: h being the number which represents the radius of the sphere
when we employ the new unit. Hence we obtain for a sphere whose

radius is bg, acted upon by an exterior concentric spherical surface

of which the radius is a,

2P'a.sin {—-"] 2-n ^
(/3) p = -^ ff-b')

'

{a'-r")-' {b'-r")
^

;

7r

P' being the density of the fluid on the exterior surface.

If now we conceive a conducting sphere A whose radius is a, and

determine P' so that all the fluid of one kind, viz. that which is re-

dundant in this sphere, may be condensed on its surface, and afterwards

find b the radius of the interior sphere S from the condition that it

shall just contain all the fluid of the opposite kind, it is evident that

each of the fluids will be in equilibrium within A, and therefore the

problem originally proposed is thus accurately solved. The reason for

supposing all the fluid of one name to be completely abstracted from

S, is that our formulas may represent the state ofpermanent equilibrium,

for the tendency of the forces acting within the void shell included

between the surfaces A and B, is to abstract continually the fluid of

the same name as that on ^'s surface from the sphere S.
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To prove the truth of what has just been asserted, we will begin
with determining the repulsion exerted by the inner sphere itself, on

any point p exterior to it, and situate at the distance r from its centre

O. But by what Laplace has shown {Mec. Cel. Liv. ii. No. 12.) the

repulsion on an exterior point p, arising from a spherical shell of which

the radius is r', thickness dr and center is at O will be measured by

I'Kr'dr'p d_ (r + r)^-"
-
(r-/)^-"

1 — ti.S — n'dr' r
'

the general term of which when expanded in an ascending series of

r'
the powers of — is,

+ ^"- 2.3.4.5 27Tl ^-.r-prfr,

and the part of the required repulsion due thereto will, by substituting

for p its value before found, become

%F . (n-2 \ ,o ,,,^ -2 + wx«.» + l M+2*-3xw + l*-lSi' . fn-2 \ , , ,„,:

2.3 . 4 2« + l

,'2\ -1 »-2

X

It now remains to find the value of the definite integral herein con-

tained. But when 11 -\ is expanded, and the integrations are

effected, by known formulae, we obtain

(14) M 1 - ^ I (*'
-O '

r''^^'dr'=/o' 2^ -jj {b'-r")
' .r"'+'dr'

^^ "a''
r^, ,3 X

"^ 'f n 3\

, 2^ + 3 y 2^+ 3.2^ + 5 ¥
* 25 + 3 + w a' 2* + 3 + ».2«+ 5 + wa'

"* ^'^

^,^,

^
(2)

^
r "^

2) {^s+l-^n){l-xy'' r^_, , ^, ,.„ . _ „ , , „ 'dx
, 1J2S + 1

2° •

/ « 3>
r
(.+

- +
-)

(1-.^)-

Vol. V. Pakt I.
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r f^^l r (-\ —'

\2J \2) 1.3.5 2s + lb''+'+" (l-af)' fx'^^'dx
1+w

^
^•'^+'+" ^o'

2 J
{\-x)

Avhere after the integrations have been effected, x ought to be made

equal to -
.

The value of the integral last found being substituted in the expres-

sion immediately preceding, and the finite integral taken relative to s

from * = to * = X gives for the repulsion of the inner sphere.

a ^ ll+n\ f2 — n

¥~J V'~2 )

-2.7i.n + 2 n + 2s-4> (by"(l-x')'' raf'^'dx
''^" 2.4.6 2s [r) ic^'+'-^" J„

(1-x^y
.2\2

-47rv/,rP^a^/-" » n-2.n.n+ 2 w + 2^-4 (a^ rj..^„ /, _^.^\
„fl+n\ l2-n<:^'

2.4.6 2s (rj
'"'^^'^ ' ^* ^' '

i ) [ 2 J

since F (^) =\/ir, sin (

tt]
=

^'D^C-?)'

and as was before observed, a; = -
.

a

But we have evidently by means of the binomial theorem,

/ _ ff-j;-\i^ _ . n-2.n. w4-2 w + 2^-4 /«^y,
I rW

' ""
° 2.4.6 2* \r] '

and therefore the preceding quantity becomes

(15) 7^^ L dxaf 1
'

(l-x^)" .
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TX*
If HOW we make x — — , the same quantity may be written

(16) , . , -; tx'dxiX-x^)' 1 —\'-

Having thus the vahie of the repulsion due to the inner sphere B
on an exterior point p, it remains to determine that due to the fluid

on ^'s surface. But this last is represented by

, 2 7raP^
(L_ {a-\-rf-''-{a-rf-

'
l — 7i.S — ndr r

{Mec. Cel. Liv. ii. No. 12.) Now by expanding this function there re-

sults

1~ r
"*"

4.5 ^ "*"

4.5.6.7
^TrP'a'-'r.^^ U + "T l^ 2'- + """,T^":"

' "

.g^+^cl

. r./ i» 2-w .^, ra.w + l.?« + 2 /i + 2*-l, ^.r"=
4.PV-V.-g-.2„ ,.5.6 ,,^3 (^-^1)^-

The last of these expressions may readily be exhibited vinder a finite

form, by remarking that

flx"dx{l-a^)
^

(l
-
-^)

^

=/lx''dx(l-x')
" S^^ g ^^^ .-^

/2^ + w + l \ /4-/A
«.?f + 2.;? + 4 w + 2jf-2 y^' V 2 / V 2 /~

"
2. 4 .6 2s 'a^'' ^^l2s + 5\

2 r

r {lzl\ r fl+^^
V 2 / \ 2 I 2-n ^^ n.n + l.n + 2 n + 2s-l

, ,.r^'

©
3

' "
4. 5 . 6 2* + 3

' 'a

Hence, since r (^)
= v^tt, the value of the repulsion arising from ^'s

surface becomes

F 2
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Now by adding the repulsion due to the inner sphere which is given

by the formula (16), we obtain, (since it is evidently indifferent what

variable enters into a definite integral, provided each of its limits re-

main unchanged)

f'afdxCl -x")
''

.{1 , ,

1 + w\ /2-w \
•'^

^ '
V (f )

\ 2 j

'

for the value of the total repulsion upon a particle p of positive fluid

situate within the sphere A and exterior to S. We thus see that

when P' is positive the particle p is always impelled by a force whicli

is equal to zero at JS's surface, and which continually increases as p
recedes farther from it. Hence, if any particle of positive fluid is

separated ever so little from 2?'s surface, it has no tendency to return

there, but on the contrary, it is continually impelled therefrom by a

regularly increasing force
;

and consequently, as was before observed,

the equilibrium can not be permanent until all the positive fluid has

been gradually abstracted from B and carried to the surface of A,
Avhere it is retained by the non-conducting medium with which the

sphere A is conceived to be surrounded.

Let now q represent the total quantity of fluid in the inner sphere,

then the repulsion exerted on p by this will evidently be

qr-',

when r is supposed infinite. Making therefore r infinite in the expression

(15), and equating the value thus obtained to the one just given, there

arises

q= —:: tclx-afil-x')'.

2 J \ 2

When the equilibrium has become permanent, q is equal to the total

quantity of that kind of fluid, which we choose to consider negative,

originally introduced into the sphere A ;
and if now qi represent the
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total quantity of fluid of opposite name contained within A, we shall

have, for the determination of the two unknown quantities P' and b,

the equations

5',
= 4nra'.P',

and ^ = —
, "^""^ X" dxx" (1

-
af)^,

and hence we are enabled to assign accurately the manner in which the

two fluids will distribute themselves in the interior of A; q and
«/, , the

quantities of the fluids of opposite names originally introduced into A
being supposed given.

9. In the two foregoing articles we have determined the manner

in which our hypothetical fluids wiU distribute themselves in the interior

of a conducting sphere A when in equilibrium and free from all exterior

actions, but the method employed in the former is equally applicable

when the sphere is under the influence of any exterior forces. In fact,

if we conceive them all resolved into three JT, Y, Z, in the direction

of the co-ordinates x, y, « of a point j9,
and then make, as in Art. 1,

rpdv

we shall have, in consequence of the equilibrium,

1 dr „ ^ \ dV ^ ^ \ dV „0= -J— + X, = 5- + ^' = 7- + Z,
1 —ndx \ —ndy 1 — ndz

which, multiplied by dx, dy and d% respectively, and integrated, give

const. = =-^ V + f{Xdx + Ydy + Zdz) ;

X ^~
ft/

where Xdx + Ydy + Zd% is always an exact differential.

We thus see that when X, Y, Z are given rational and entire functions

V will be so likewise, and we may thence deduce (Art. 5.)

p = (1
_

;j;'^
_

y'2
_

«'^)f^ ./{a;', y', x'),

where/ is the characteristic of a rational and entire function of the Same

degree as V.
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The preceding method is directly applicable when the forces X, Y, Z
are given explicitly in functions of x, y, x. But instead of these forces,

we may conceive the density of the fluid in the exterior bodies as given,

and thence determine the state which its action will induce in the con-

ducting sphere A. For example, we may in the first place suppose
the radius of A to be taken as the unit of space, and an exterior con-

centric spherical surface, of which the radius is a, to be covered with

fluid of the density U"^'^: ZJ"'"* being a function of the two polar co-

ordinates 6" and zsr" of any element of the spherical surface of the same

kind as those considered by Laplace {Mec. Cel. Liv.
iii.).

Then it is

easy to perceive by what has been proved in the article last cited, that

the value of the induced density wiU be of the form

p = [/-'Wr'' (1
-
r"'y' .f{r") ;

r', &, -ar' being the polar co-ordinates of the element dv, and £/'<'* what

Z7"<'> becomes by changing Q", -sr" into 9', tst'.

Still continuing to follow the methods before explained, (Art. 4. and 5.)

we get in the present case

f{af, y', «')
= t7'<Vy(r'^) =/«,

and by expanding y(r'^), we have

/(r'^)
= i?o + B,r" + B,i'' + B,r" + &c.

Hence, /'" = B,U'^\ and

'

. ln-% \-"'^'''^ 2.4.6 2^-2^
^

2.4 2^'

sm(-^.)
n-l.n + 1 w + 2? + 2if-3

^3.5 2«-l-2«r + l

Then, by giving to t all the values 1, 2, 3, &c. of which it is sus-

ceptible, and taking the sum of all the resulting quantities, we shall

have, since in the present case V reduces itself to the single term V^\

sm (-^.)
n-l.n + 1 n + 2i + 2t'-3

^^
S . 5 2i+ 2f + l

'

the sign S belonging to the unaccented letter t.
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If now V represents the function analagous to V and due to the

fluid on the spherical surface, we shall obtain by what has been proved

(Art. 3.)

V = WK 27r«^ W'^ ^'7^ /-i(/M {i) (f-2artx-V a'i^',
X • ^ ,Ot« • • • t

{i) representing the same function as in the article just cited.

Moreover, it is evident from the equation (10) Art. 4, that

,. ,j ,., ,^ ^ , ,.^ ^,1.2.3 i ^n-l.n + 1 n + 2i + 2t'-S
/ild^{t){r^-2ar^ + a^)^ = 2«'-"

^ 3 ^_^ 2
^ ^ ^i + ^TTT

n-2.n n + 2t'-4> IrV^^^'
""

2.4 2^ \a)
'

and consequently,

(.9) r'=cr<o.w-..
'';';''^';;;;;'-^f;^;:^7^

«-2.w ?« + 2if'-4 /r\' + ''

2.4 2^' \a)

the finite integrals extending from t' = Q to t'=<x).

Substituting now for F' and ?^' their values in the equation of equi-

librium,

(20) const. = r'+ f;

we immediately obtain

const. = i7".47rflr' ".2
3 . 5 2i + 2t' + l

n-2.?i w+ 2^'- 4 //•\'+'''

2 .4 2f Q
^ 2^" rm 97? v,.<+2,'

^-1-^^ + 1 « + 2i + 2^'-3
^

. fn-2 \
' "3.5 2» + 2r-l

sm(-^.)
n-2.fi Ti-{-2t'-4> 4-W.6-W 2^-2^' + 2-«

"^

2 .4 2?
^

2 . 4 2^-2^

the constant on the left side of this equation being equal to zero, except

when i = 0.
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By equating separately the coefficients of the various powers of the

indeterminate quantity r, we get the following system of equations :

^ . (n-2 \
2 sm ——— TT . AC

2 . 4

^ • fn-2 \

, I o -n Tk 4 — w „ 4i — n.6 — n .

TT 2 2.4
^ . fn-2 \

2sm(-^.)
TT 2 2.4

&c &c &c.

But it is evident from the form of these equations, that if we make

generally ^,+i = a'^Bt, they will all be satisfied provided the first is, and

as by this means the first equation becomes

2 sm —-— TT , A AC
Tr»/, 4 — « „ 4 — M.b — « . . \

«-»- = J?„
(l

+ -g-«- +
3 ^

a-^ +
&c.)

= J5o(l-«-'^)
^ = .Bo«*-"(a'-l)

^
.

there arises

„ . /M-22sm (n-2 \

^^ La-'-'{a'-l)' , B, = B,.a-\Bo = -— -a-'-'ia'-l)' , B, = B,.a-\ B,= B,.a-\ !>ic.

TT

Hence

f{r") = B,+By' + B,r'' + &c. = ^„
(^1

+ ^ + ^ +
&c.)

»8
2 sm I

——-
TTJ ^_„

= ^„fl_ !l)-i = ^„a=(a^_/^)-'= L* ia'+'(a^-l)~(a^-r'^)-\
\ a I If

and the required value of p becomes

(21 ) (D
= C7'<V; (1

-
r'^)^/(r'0

2sm(-^.j
(a'
-

l)'^"a i7'»
f^')

'(«=
-

/=)-' (1
- r"y\
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But whatever the density P on the inducing spherical surface may
be, we can always expand it in a series of the form

P = C7"<°>+ Z7"<'>+ C7"<^>+ Z7"® + &c. in inf.

and the corresponding value of p by what precedes will be

„ . /n-Q,2sm

P = - <a{a'-l)
'
.{a'-r")-H^-r")

X { t7'W+ [/'<')- + t7'<='^ + f7'<^>^ + &c. in inf.] ;

Ijm^ U'M^ jjm^ &c. being what U"^'\ U"^'\ U"^% &c. become by changing

d", w" into ff, Ts-', the polar co-ordinates of the element dv. But, since

we have generally

^d&'d-uy" sin 6)"PQ« = fdff'd^" sin 6" C7"<"Q» = ^^ C7<",

{Mec. Cel. Liv.
iii.)

the preceding expression becomes

-sm(-^.)
p = _> a{a'-\)

' K-r'^)-'(l-0 '
jd&'d-sr" sin &'.

2:(2e + l)PQ«^;a*

the integrals being taken from 0" = O to 0" = 7r, and from bt" to sr" = 27r.

In order to find the value of the finite integral entering into the

preceding formula, let R represent the distance between the two ele-

ments dff, dv ; then by expanding -^
in an ascending series of the powers

r'
of — we shall obtain

a

— = ^ _
2°°Q<*>.—-,B Va^ - 2ar' [cos 0' cos 0" + sine' sine" cos (-ar' -•23-")+/*

° *«"

Mec. Cel. Liv. iii.). Hence we immediately deduce

^ = .r«»e^, and .^4,^^ =
K(^.>1)«?»^.

Vol. V. Part I. G
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If now we substitute this in the value of p before given, and after-

// o ft^ __ >«'2

wards write — and „3 in the place of their equivalents,

dd"dnr" smO", andvV'^'^,
clr R

we shall obtain

. (n-2

p- i7^
— («^-i)^ (i-O^ /-^;

the integral relative to da being extended over the whole spherical sur-

face.

Lastly, if p^ represents the density of the reducing fluid disseminated

over the space exterior to A, it is clear that we shall get the corres-

ponding value of p by changing P into pida in the preceding expression,
and then integrating the whole relative to a. Thus,

, = -!iy4 (i-..)=i^/a-«.)*-?/**£i.

But dada= dvx\ dvi being an element of the volume of the exterior

space, and therefore we ultimately get

fn — 2_ 4—n. /n — 2\
(22) p= y5 -i^-r")'^ .fp^dv, ^ ,

where the last integral is supposed to extend over all the space exterior

to the sphere and R, to represent the distance between the two elements

dv and dv^.

It is easy to perceive from what has before been shown (Art. 7.), that

Ave may add to any of the preceding values of p, a term of the form

h being an arbitrary constant quantity : for it is clear from the article

just cited, that the only alteration which such an addition could produce
would be to change the value of the constant on the left side of the
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general equation of equilibrium ; and as this constant is arbitrary, it is

evident that the equilibrium will not be at all affected by the change
in question. Moreover, it may be observed, that in general the additive

term is necessary to enable us to assign the proper value of p, when

Q, the quantity of redundant fluid originally introduced into the sphere,

is given.

In the foregoing expressions the radius of the sphere has been taken

as the unit of space, but it is very easy thence to deduce formula^

adapted to any other unit, by recollecting that —, -p, j^ and
y^^,

are quantities of the dimensions 0,
—

1,
— 1 and S — n respectively with

regard to space: for if h represents the sphere's radius, when we employ

any other unit we shall only have to write, t> j, -j-
>

-jr-
and

j-
in the

place of r, r, R, dvi and a, and afterwards to multiply the resulting

expressions by such powers of h, as will reduce each of them to their

proper dimensions.

If we here take the formula (22) of the present article as an example,
there will result,

• /W-Q ^ 4-n

(23).... p= 1-|_-I(i"-/^)^ fp,dv^-^-^,

for the value of the density which would be induced in a sphere A,

whose radius is b, by the action of any exterior bodies whatever.

When w > 2, the value of p or of the density of the free fluid here

given offers no difficulties, but if » < 2, we shaU not be able strictly to

realize it, for reasons before assigned (Art. 6. and 7.) If however n

is positive, and we adopt the hypothesis of two fluids, supposing that

the quantities of each contained by bodies in a natural state are ex-

ceedingly great, we shall easily perceive by proceeding as in the last

of the articles here cited, that the density given by the formula (23)

will be sensibly correct except in the immediate vicinity of A's surface,

provided we extend it to the surface of a sphere whose radius is

h—^b only, and afterwards conceive the exterior shell entirely deprived

of fluid: the surface of the conducting sphere itself having such a

G 2
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quantity condensed upon it, that its density may every where be repre-

sented by
ftl 2 \ „-4 „_2 4-n

Application of the general Methods to circular conducting Planes, &f:.

10. Methods in every way similar to those which have been used

for a sphere, are equally applicable to a circular plane as we shall im-

mediately proceed to show, by endeavouring in the first place to determine

the value of V when the density of the fluid on such a plane is of

the form

p = {\-ry.f{x',y'):

f being the characteristic of a rational and entire function of the degree *
;

x\ y' the rectangular co-ordinates of any element dcr of the plane's

surface, and r', & the corresponding polar co-ordinates.

Then we shall readily obtain the formula

r= ff^ = rrrdr'd9'{l-ry.f{x',y')
^

.

'' g"'' ''^

{f^-Zrr' cos {9-9') + r"f^'

where r, 9 are the polar co-ordinates of p, and the integrals are to be

taken from 9' = to 0'= 27r, and from r' = to /•' = !; the radius of

the circular plane being for greater simplicity considered as the unit

of distance.

Since the function /{x', y') is rational and entire of the degree j,

we may always reduce it to the form

(24) f{x', y')
= A^°^ + A^'^ cos 9' + A^'^ cos 20' + ^*'' cos 39' +

+ ^« sin 9'+ B'-'^ sin 29' + B^'^ sin 30' +

the coefficients A'-''\ A^'\ A^'\ &c. B^'\ B^% B^\ &c. being functions

of r' only of a degree not exceeding *, and such that

^('•'=«'o°' + «<V^ + 4"V'* + &c.; ^«= («?> + alV + 4'V'V)/;

^(» = (jw -I- J(/)r'^ + i(»r'^ + &c.) r' ; B'^ = {bf> + hfr" + &c.) r'\
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We will now consider more particularly the part of V due to any
of the terms in f as -<4^'^ cos i& for example. The value of this part
will evidently be

rr /dr'dff{\ - r"fA^^ cos iff

{r'-^rr' cos (Q - ff) + r'')~^

'

the limits of the integrals being the same as before. But if we make
6' = 9 + (p,

there will result dff = d<p, and cos i9' = cos id cos e0
— sin iO sin «0,

and hence the double integral here given by observing that the term

multiplied sin i<p vanishes when the integration relative to
(p is effected,

becomes

cos ie/lA^'^r'dr' (1
- ry f^

^"^ ^"^
''I'

—^ ;

°

{r''
— 2rr' cos

(p + r"^)~^

If now we write F"/*^ for that portion of V which is due to the term

«/*^r"+^* in the coefficient A^'^ we shall have

r,»= «/'> . cos ieflr^^'^^'dt" (1 -ry /"
"^"^ ^"^ "^ ^ .

"

{r^
— 2rr' cos

(p + r"^)~^

But by well known methods we readily get

•^'^
d(p cos

i(})L
{r'
— ^rr' cos

(f>
+ r'^)

^

i ^i-.-iv» ^"' n-l.n + 1 n+2t'-S n-l.n + 1 n+2i+2t'-3
-2irr.r

i„^„,. 2 _ ^ 2^
""

2 . 4 2i + 2t
'

when r'>r, and when /<r, the same expression will still be correct,

provided we change r into r' and reciprocally.

This value being substituted in that of Fj*'' we shaU readily have by

following the processes before explained, (Art. 1. and 2.)

F,w= 27ra/'V* cos 10 2o r ' —r 7 -—p

P^^ . ,.„ ,S + 2t-2f~n\
»-l.» + l « + 2« + 2#'-3 "^f^ ' I

\ 2
X —

^:: -. 7;r-
—

:;^-r, X
(/3 + i)r[^

2 . 4 2i + 2/'
( 2li + 5 + 2t-2 f)

^^[ 2 J
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= TTtt/'V COS i6 . —5— .

, „P n-1 .n + 1 n + 2f — 3 7i-l . ji + 1 n + 2i + 2t'-3
" 2.4 2t'

^
2 . i 2i + 2f

3-n.5-n 1 + 2^-2^'-??
^^

2(i + 5-n 2fi + 3 + 2t+2t'-n'

the sign of integration 2 belonging to the variable f.

Having thus the part of V due to the term a,''' cos i9' in the expansion
of J'iaf, if) it is clear that we may thence deduce the part due to the

analogous term J/'^ sin i& by simply changing «/" cos iQ into J/'' sin iO, and

consequently we shall have the total value of V itself, by taking the

sum of the various parts due to all the different terms which enter

into the complete expansion of y(a;', y').

11 3
If now we make iS = —-— and recollect that

2

sin

the foregoing expression will undergo simplifications analogous to those

before noticed (Art. 5.) Thus we shall obtain

TT^a/" , .^^„„M-1.« + 1 n-k2t-3
r/" = "-:^ r' cos iQ . 2 r''''

. (nsin I -
2

n-1 \ 2.4 2t'
sin —-— IT

(-

n-1 .n + 1 n + 2i + 2f-3 3-n. 5-n 1 + 2^-2^- w
'^

2 . 4 2i+ 2t' ^2.4 2if-2^

or by writing for abridgment

,.
^

n-1. n + 1 n + 2t'-3 n-l.n + 1 n + 2i+ 2f-3
"P^^'*^'- 2 . 4 2f

""

2 . 4 2i+ 2t'
'

there will result this particular value of /8

,^(. ^«/'> . .^ „ ,„ 3-n. 5-n l + 2t-'2f-n ^,. „^
^' =

. (n-1 .
^^osze.^r-^. ^^^ ^^_^^, .<p{t;t'),
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and afterwards by making

ro= ro» + r/'> + r.» + r« + r« + &c.

we shall have

TT*

V^'^= , r* cos i6 into x
/« — 1

sinsin
(-^vr)

«<,'>.1.0(«;O)

+
a<'>.?^.<^(e;0)

+ «?>.!. 0(«; 1) . r=

+^'- 2.4.6 •<^(^;o) + «^"-2r-^— 0(^;i)-^

+«^^^.0(«; 2).r' + af.l.cj>{i;3).f^

+ &C +&C +&C +&C

Conceiving in the next place that F is a given rational and entire

function of x, y, the rectangular co-ordinates of p, we shall have since

X = r cos 0, y = r sin 0.

{25) r= C<") + C('> cos 6 + C-'^ cos 20 + C('> cos 3 + &c.

+ ^« sin + ^('' sin 29 + E^'^ sin 30 + &c.

of which expansion any coefficient as C^'> for example, may be still

farther developed in the form

C« =
""'-^

{di\(p{i', 0) + c>{K(p{i; l).r'+4^.(p{i; 2).r' + ke.}.

sm (-^ .J

Now it is clear that the term C> cos iO in the developement (25)

corresponds to that part of F which we have designated by F''', and

hence by equating these two forms of the same quantity, we get

F» = Cw cos ie,
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which by substituting for F"*'' and C^ their values before exhibited, and

comparing like powers of the indeterminate quantity r gives

/> , 1-^ 3 — n,. 3 — n.5 — n,i. 3 — n.5 — n.7 — n,., ,

2

&iC.— &c &c

of which system the general type is

C<'> = (1
- e)~ . «« ;

the symbols of operation being here separated from those of quantity,

and e being used in its ordinary acceptation with reference to the lower

index u, so that we shall have generally

f.m „(i) _ ^ (0

The general equation between «!'' and cll^ being resolved, evidently gives

by expanding the binomial and writing in the place of eci'', e''&i\ ^c'i\ &iC.

their values c„*j\ , cj-i\, Cu%, &;c.

(26) ««=(l-e)^c« = c<;>+^c„« +
''~^-''~^

2
— '

2

... «— 3 . ra — 1 . w + 1
(i) , s%+ 2.4.6 "-- + ^"-

Having thus the value of af we thence immediately deduce the value

of ^<'' and this quantity being known, the first line of the expansion

(25) evidently becomes known.

In like manner when we suppose that the quantity J5^'> is expanded
in a series of the form

j5:« =—^TTT ^^»"- *^ (^' ' 0) + ^'* "^ (^' ; 1) • ^' + ^^'* <^ (« ; 2) . f^ + &c.
^

sinsin(^.)
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we shall readily deduce

A«= (1
- ef^e^^^ + ^e.%+ ""'^'""l^ e.% + &c.,

and ii,^ being thus given, B'-'^ and consequently the second line of the

expansion (25) are also given.

From what has preceded, it is clear that when V is given equal to

any rational and entire function whatever of x and y, the value of

f{x', y') entering into the expression

p={l-r'-^)-^.f{x',y'),

will immediately be determined by means of the most simple formulas.

The preceding results being quite independent of the degree s of

the function f(x', y) will be equally applicable when s is infinite, or

wherever this function can be expanded in a series of the entire powers
of x, y', and the various products of these powers.

We will now endeavour to determine the manner in which one fluid

will distribute itself on the circular conducting plane A when acted

upon by fluid distributed in any way in its own plane.

For this purpose, let us in the first place conceive a quantity q of

fluid concentrated in a point P, where /•= « and 6= 0, to act upon a

conducting plate whose radius is unity. Then the value of V due to this

fluid will evidently be

g V'

((^— 9,ar cos Q + r^)~^

and consequently the equation of equilibrium analogous to the one marked

(20) Art. 10., will be

(27) const. = ^ ^+ F;

(«'-2«rcos e + r^)~

V being due to the fluid on the conducting plate only.

If now we expand the value of V deduced from this equation, and

Vol. V. Part I. H
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then compare it with the forrnulag (25) of the present article, we
shall have generally E^^ = 0, and

C"'=-2ga-^.l^(r;O)+0(e;l)^+«^(/; 2) ^ +,^ («; 3) J + &c.^

except when i = 0, in which case we must take only half the quantity
furnished by this expression in order to have the correct value of C*"'.

Hence whatever u may be,

2 sin
I ^-Q—

T
I^ - 0, and cf= ^^ qa}

-"-*-^"
;

TT

the particular value f=0 being excepted, for in this case we have agreeably
to the preceding remark

sin
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and consequently,

sin (^.)
. (n-\

2 sin
I —7: /r

I 3_^ ,2 ,4

;ii^^«--(«=-ir.''(i-5)"'

•* sin 1 ^ "I B-B „M

q{a'-V)—{a'-r'y\-,

the particular value -4'°^ being one half only of what would result from

making i = in this general formulje.

But 4'' = evidently gives £^''^=0, and therefore the expansion of

f{a!, y') before given becomes

fix', y')
= J^'^ + A^'^ cos ff + A-'^ cos 20'+ ^''^ cos 30' + &c.

= 1-^ -g(«^-l)
^

(«=-r'0-'.{| + - cos0'+ -cos20' + &c.|

or by summing the series included between the braces,

. (n
— 1 \ 3-»

JKx,y)- -^ ^a^-2«r'cos0' + r"'

sin (^ .)
Q

iJ being the distance between P, the point in which the quantity of

fluid q is concentrated, and that to which the density p is supposed to

belong.

Having thus the value of /(a;', y') we thence deduce

(n — 1 'N 3-,

p = (1- /»)-/(x', y')
= -—

i-|
i

(1
-

/')
^

?
—

^.

sin 1

—
:::

— TT I „_3
(a^ — Yy^

H 2
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The value of p here given being expressed in quantities perfectly

independent of the situation of the axis from which the angle 6' is

measured, is evidently applicable when the point P is not situated upon
this axis, and in order to have the complete value oi p, it will now

only be requisite to add the term due to the arbitrary constant quantity
on the left side of the equation (26), and as it is clear from what has pre-

ceded, that the term in question is of the form

n-3

const. X (1
-

/')
2

,

we shall therefore have generally, wherever P may be placed.

P = (l-r-)

1-3
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(n-1
sin

I

-—— TT

(28). .p
= {]r-r')'

.|const.
Jp.dcr,-

—
^^]

By supposing w = 2, the preceding investigation will be applicable

to the electric fluid, and the value of the density induced upon an

infinitely thin conducting plate by the action of a quantity of this

fluid, distributed in any way at will in the plane of the plate itself

will be immediately given. In fact, when n = 2, the foregoing value of

p becomes

1 7 , y/a'-b']
^ =

7ltptHst--^/^'^<^' B'

If we suppose the plate free from all extraneous action, we shall

simply have to make pi
= in the preceding formula; and thus

,„^, const.
(29) p

=
Vb'-r"'

Biot (Traite cle Physique, Tom. ii. p. 277.)> has related the results of

some experiments made by Coulomb on the distribution of the electric fluid

when in equilibrium upon a plate of copper 10 inches in diameter, but

of which the thickness is not specified. If we conceive this thickness

to be very small compared with the diameter of the plate, which was

imdoubtedly the case, the formula just found ought to be applicable

to it, provided we except those parts of the plate which are in the

immediate vicinity of its exterior edge. As the comparison of any
results mathematically deduced from the received theory of electricity

with those of the experiments of so accurate an observer as Coulomb

must always be interesting, we will here give a table of the values of

the density at different points on the surface of the plate, calculated

by means of the formula (29), together with the corresponding values

found from experiment.
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Distances from the

Plate's edge.
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Under the present form it is clear the determination of V can offer

no difficulties after what has been shown (Art. 2.). I shall not there-

fore insist upon it here more particularly, as it is my intention in a

future paper to give a general and purely analytical method of finding

the value of V, whether p is situated within the ellipsoid or not. I

shall therefore only observe, that for the particular value

(30) ,
=
^\^-ii^-%-i]'

= ^^(^ -'")
'

'

the series Uo + U2' + U/ + &c. (Art. 2.) will reduce itself to the single

term Uo, and we shall ultimately get

2sin("— .)

which is evidently a constant quantity. Hence it follows that the ex-

pression (30) gives the value of p when the fluid is in equilibrium

within the ellipsoid, and free from all extraneous action. Moreover,

this value is subject, when n < 2, to modifications similar to those of

the analagous value for the sphere (Art. 7.)-

G. GREEN.





11. On Elimination between an Indefinite Number of Unknown Quantities.

By the Rev. R. Muephy, M. A. Fellow of Cuius College, a?id of

the Cambridge Philosophical Society.

[Read Nov. 26, 1832.]

SECTION I.

INTRODUCTION.

Fourier, in his treatise,
* Theorie de la Chaleur,'

* has given an

example of the determination of an indefinite number of unknown

quantities, subject to the same immber of conditions. If n be the

number of those quantities, in order to discover their law by this

method, it will be necessary to eliminate successively the first (ni- 1)

and the last («
—

»^) unknown quantities, thus determining the »^'^ by
a final equation containing that quantity only.

This process is obviously too laborious, and the results too compli-

cated, to be practically useful, in most cases.

The same objection applies to the elegant method of Laplace, which

makes the determination of one of the unknown quantities, depend
on the discovery of all the (w

—
1) arbitrary multipliers introduced in

the process. It has besides the disadvantage of not seizing, in many
cases, the facilities offered by the peculiar forms of the proposed equa-

tions.

• Vid. Fourier, p. 1 69 to 174-

Vol. V. Paet I. I
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In the physical investigations, which conduct to an indefinite num-

ber of equations, it is of great importance to discover the law of those

quantities, corresponding to the law by which the given equations are

connected. The method which I here propose for this object is founded

on the two following principles.

First, if we make the right-hand member of the a;*'' equation dis-

appear by transposition, the left-hand member is then a function of x,

which vanishes when x is any number of the series 1, 2, 3, w; and

therefore it must be of the form

P.(.r- 1) {x-2) (x-S) (x-n).

Secondly, if an identity exist between two formulas which are

partly integer, partly proper algebraic fractions (of which the numerators

are of lower dimensions than the denominators) the integer and fractional

parts are separately equal.

To demonstrate this principle, let

represent such an identity, where each symbol denotes an entire function

of X, and the dimensions of P, P' are respectively lower than those of

Q, Q'; then we have

(N-N)QQ = PQ- PQ'.

If therefore N—jV' be not identically nothing, we shall have the

entire function, represented by the left-hand member, identical with one

of lower dimensions ;
but this is impossible, because in integer formulae

we may equate like powers of x, hence we must have iV=iV' and,

therefore also,

Z! - ^
Q- Q'

By means of this principle, we shall be able to expand a given

entire function P, in terms of other given functions, whenever such an

expansion is possible.
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SECTION II.

Application of the First Principle.

The first principle alone is sufficient, in a great number of instances,

to resolve the proposed equations ;
we shall illustrate its application by

selecting three distinct classes of equations to be resolved.

First, when the terms which compose the general or a;**" equation are

proper fractions.

Example :

To find the values of the n unknown quantities ssi, %i, sss, s,, sub-

ject to the n equations following,

»1 «2 ^ »„ ^ _ 1

3 4
"*

5
"^ » + 2 2'

«i
, ^ ^ ,

g« =_ 1
4

"*"

5 6
"^

« + 3 3*

» + l « + 2 ra + 3 2w »
The general, or a;**" equation, when its right-hand member is trans-

posed, becomes

- + — Y —-^
\- H — =0.

a; x+1 x + ^ x + n

N
Suppose these fractions are actually added, and let -^ represent the

sum; where D= x{x-\-\)(x-\-9l) {x + n) and A'' is some function of x

of n dimensions. . ,-
• .•

i2
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Hence we have 7^ =0, and therefore iV=0, provided a; is any num-

ber of the series 1, 2, 3,....ti and consequently iV (which is of ?i dimensions)

has a factor (^— 1) U —
2) (x

—
ti); and can therefore admit of no

other factor, but a constant c.

Hence we have in general,

^^ X x + 1 x + 2 x+n x(x+l){x + 2) {x + 3)...{x+n)'

Multiply this equation by x, and then put x = 0, hence c = (
—

1)\

Multiply the same by x + 1, and then put x = —I;

, n n + 1
hence ssi = - -

.
—-—

.

Similarly, multiply by x + 2, and put x= —2,

_ n.{tt—l) {n + !)(« + 2)
• • '^ ~

1 . 2
•

1 . 2
'

and generally, if we multiply equation (a) by x + m, and then put
x= -m, we get

'"'^ ' 'I. 2.3 m ' 1.2 m '

It is clear from this example, that if the general or x^^ equation were

a+bx^ a' + h'x
^ d'\¥x ^

«<"' + i<"'x
~ "'

we should find the sum of the fractions composing the left-hand member
to be

c .{x—\){x — 2) {x — n)

(a + hx) [a + h'x) («" + h"x) (a" + i^a;)
'

then multiplying by n + bx and putting x= —
j,

we should find e,

-I

multiplying by a'+b'x and putting .r=-,,, we should find s,,

&c &c &c
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In the example above taken, we have supposed that the number

of equations and unknown quantities were the same, but if we supposed
that following the same law as in that example, the number of equa-

tions were n + m, then the numerator N which was shown to be of

n dimensions, ought to vanish when x is any number of the series

1, 2, 3 n + m; that is, the equation A^=0 has more roots than it has

dimensions, which is impossible ; it is therefore equally impossible to

satisfy all the given equations.

On the other hand, if the number of the given equations was

only n — m, then n would by the preceding reasoning have a factor

{x
—
l){x

—
2) {x-7i-{tn),

and since it is of n dimensions, it must have another factor of m dimen-

sions, as C {x
-

a^) {x
—

a-i) (x — a„).

Hence -
-\
—^ H

"*

^ ^-
X x + 1 x + 2 x + n

_ C(x—'l){x—2) .{x~ tl + m){x — ai) jx — a-^ {x~a,„) ^~
''"'xT{x + l){x + 2) [x + n)

'

following now the same steps as before, we find

^^ cj-iy.a.az g. . g^( ly
"('»-^) jn-m + i)

«.(« — 1) {n-m + 1)'
''

'
'

ai.a-i a,„

c(-l)".(l+ai)(l+a.> (Ifg.) ^ (l+aiXl+aa) (!+«„,) w n-m + l

'~
(w-1)(m — 2) {n

— m + 2) o, . a^ a,„ '1' 1

^. ., , (2 + a,)(2+a,) {2+a^) n.{n + l) (ti-m+l) {n-m+ 2)
Similarly, %^= - ~ —

•

., ^
•

i ^ •

The quantities a„ a.^ a„ are evidently arbitrary, and each of the

required quantities », z-., he. x„_„, are here determined in such a manner,

as to contain the m arbitrary constants. This is therefore the most,

complete solution of the problem.
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Another useful observation may be made in this place ; if the function

which represents the a;"' eqvxation were discontiiuious, i. e. if any of the

equations, for instance the second, were

3
+

5
'
7

~
'

2 2 2

and consequently an exception to the general law expressed by the x^^

equation, we should have then N—0 when x=\,S, 4 w, also when
A' = ^, but not when a; = 2, hence in this case,

iV=c. (ar-i)(x-l) {x-S) (x-4) {x-n);

after this the remainder of the process would be the same as before.

We have been thus particular about the preceding example, as being
well calculated to shew the spirit and advantages of the present method.

The next class of equations, which may be solved by the first principle

alone, consists of those in which the terms composing the a;*'' equation
contain common factors ;

for if we then assign to x such values as may
successively cause such factors to vanish, the unknown quantities will

be determined.

Example :

To find the values of asj, %2, %^ a, subject to the n equations

following; viz.

a:, + 1 ,2.S!2 + 1.2.3.S53+ + 1.2.3 «s!„= -1,

2s!, + 2.3.a!2 + 2.3.4.X3+ + 2 . 3 . 4...(w+ l)x„= -1,

3a, + 3.4.&,+ 3.4.5.«3 + + 3 . 4. 5...(w+2)a;„= -1,

n8Sl + ?i(w + l)8:2+M(w+ l)(w + 2)S83+ + W (w + 1) (« + 2)...2W2!„= -1.

If we transpose the right-hand member of the above equations, the

.r"" or general equation becomes

\ + x%,+ X {x + l)%.,^ X {x-\-\){x + ^) .%; + +a;(d;+l)(a:+2)...2x.!£„ = 0.
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This equation is evidently of w dimensions with respect to x, and its

roots by the first principle are 1, 2, 3 n; the left-hand member

must therefore be identical with the product

c{x-l\{x -2){x-S) (x-ti),

whatever value may be assigned to x.

i
— lY

Put therefore x = 0. Hence c = -—^ '
,1.2.3 «

X ^^ X.»..>........V[ ^^ -^
fif

^-~" 2a— ,g ^ ,

n . (w — 1)

1\¥

_ _ «(w-l)(w-2)* ^ a:,--
1222.32

&c &c

and generally, «,„
=

^^ ^ . 3 ^)^~ •(-!)•

We may verify this result by observing, that if we substitute this

quantity for 25,„ in the general or x^^ equation, then its left-hand member

becomes

n . (w-1) X . (x + l) w.(w-l)(w-2) ^(£+_l)_(a; + 2) ,

'

^""'^'*"
1.2 •~T:2 1.2 . 3

•

1.2 7 3
^*'''-

This quantity is evidently the part which does not contain h in the

product,

f, , x{x + l) ,„ x{x + l)ix + 2) ,3,o„l f, n
,
n{n- l) 1 1

or in
(l-//)-'.(l-|)".

it is therefore the coefficient of //" in the expansion of

But this coefficient is manifestly when x is any positive integer, which

evidently agrees with the proposed conditions.
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Another class of equations which may easily be resolved by the

first principle, occurs when the x^^ equation is of n dimensions, and

arranged according to the powers of some function of .r ; it is then

merely necessary to expand

c.a:{x — l)(x-Q) (x — n)

according to the powers of that function ; and equate the coefficients

of like powers in both cases.

Example:

Ki + SSs + «3 + + SS,
= -

1,

2a!, + 2-S2 + S'xs + + 2»ss„ = -
1,

Sz, + 3-S5, + 3^X3 + + 3'%„ = -
1,

w^i + w'asa + ?r%3 + + n''z^ = — 1,

to find «„ %2

The general or «"" equation in this case, is

1 + x»i + x"%i + + afz^ = 0,

the roots of which equation are x= l, 2, 3 ;/.

Hence, the left-hand member is identical with the product

c.{x-l){x-2){x-3) (x-tt),

or c(-iy{S„-xS„., + x'S,_,- (-l)".x"|,

where S„ denotes the sum of the quantities 1, 2, 3 n when taken

in products m and m together.

Hence, by equating, we get

c(-lY S =1- • r = \^y ..

-
c(-1)".aS'„_,= «,; .-. x,= -aS'_,;

c( — 1)" .«>„_2= »2; .•. SS2=— 0,2;

and generally £., = S,,,

where S.„ denotes the sum of the reciprocals of the quantities of which

a9„ represents the sum.
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SECTION III.

Amplication of the Second Principle.

To expand a given function of x as P, in terms of other given

functions

Qo, Q., Q. Qn,

all being supposed of n dimensions in x.

Let P=aoQo + «iQi + «2Q2+ +«nQ»,

where a^, ffi, Oa «» are constants to be determined.

Divide all the functions by Qo, and let the corresponding quotients

be respectively

P', Qo, Q'l, Q.....Qn,

and the remainders

p', g^o, q\, q'i q\-

Then by attending to the second principle, we have

P' = «oQ'o + «lQ'l + (kQ2+ +«„Q'n,

p' =aoq'o + aig-'i + «25''2 + +a„q'n,

when we obviously have Q'o=l and §''0=0.

Dividing the last equation by q'l
and using a similar notation, we

get in like manner

P'=«.Q". + «2Q"2 + ««Q"„,

p"= aiq"i + (hq"2 + anq\,

where Q"i = l and q'\
= 0.

Divide the equation last obtained by q"i, and we obtain

P"'= a,Q"',+ +a„Q\,

p"'==a»q"', + +«„^"„,

in the latter of which equations the first term = and in the former

it equals unity.

Vol. V. Pakt I. K
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The systems of the first equations thus obtained may be written in

an inverse order thus,

&c.= &;c

whence «„, «„_i, a„_2, &c. are successively known.

We have supposed all the functions to be of n dimensions, for

these necessarily comprise all of lower degrees.

Example :

To expand unity in terms of the functions

af, {x-^hy, (a; + 2A)", (a; + «A)°.

Put l=«o*" + «i(^ + ^0° + '''^(^ + 2^)" + + «„(a;+wA)"; dividing by
a;", we get

= ao + ffi +«2 + + «„,

1= ai?'i + Oag-'s + + «»<?'»,

where we have o'„ = A. {waf"*.»i-l
—

, ^
' hm^af-^+ \.^ 1.2

Divide now by g'l
and we obtain

= ai + 2a2 + + wa»,

1= «2g'"2+ + a„g^'„,

where in general g'"„
= A^ |—^

—
^—

^ a;""* {m^— m) + &c. > .

This process is easily continued, and we obtain successively the

equations = 1.2a2 + 2.3a3 + (»— 1). w«„,

0= 1.2. 3 03+ {n- 2) (71-1) nan.

and lastly, ^= 1.2.3 «a„
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From these equations taken in the inverse order, we get

^ 1
"' ~

1.2 .3 nh"'

«„-!= - na,n>

„ _ n(n-\)
1 . 2

&C.= &C

Hence the required expansion is

To apply this principle to equations, we may observe that when

the general or a;"' equation is cleared of fractions and its right-hand

member transposed, it is of the form

-P+ XiXi +^2X2 + +i8„X„= 0,

where ssi, sss a, are the unknown quantities, and P, Xx, X^....

known functions of x.

The left-hand member must, by the reasoning of the preceding

Section, be divisible by (« — l)(x— 2) {x—n).

Let Xi, Xi, &c. when divided by this quantity leave the re-

mainders Q'l, Q'2, &c. and P, the remainder P', hence

where all the functions are necessarily of less than n dimensions, the

application of the process above described, would then determine the

quantities ssi, asj, »„.

R. MURPHY.
Caics College,

March 5, 1833.

K«





III. On the General Equation of Surfaces of the Second Degree.

By Augustus De Morgan, of Trinity College.

[Read Nov. 12, 1832.]

The present investigations are a continuation of those upon lines

of the second degree, published in Vol. IV. Part I. of these Transactions.

I have omitted various algebraical developments, as unnecessary, and

tending to swell this communication to a length more than proportional

to its importance.

As the theory of the reduction of oblique to rectangular co-ordinates

is a very necessary part of what follows, I proceed first to give the

equations which will be required under this head. Let x, y, %, be

oblique, and x', if,
a' rectangular co-ordinates to the same point, with

a common origin. Let the angles made by the first system be

A A A ^
y% = ?, %x =

t), xy =
^,

and let the rectangular and oblique co-ordinates be so related thatAAA
COS xsd = a, COS yx' = /3, cos xyf = a', &c. ;

whence the following equations:

a/ = ax + fiy + yx,

y'
= a'x +, /3'y + y'z (1),

S8' =a"x + fi"y + 7"i8;

l = a'+a" + a'", COS ? = /37 + (i'y' + fi"y'\

l=l3f>+ fi'^+ fi'% COS t, =ya + y'a! + y"a" (2),

1 = y + y^ + y% cos ^ = a/3 + a'/3' + a")8".
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Make the following abbreviations, to which, for facility of reference,

are annexed those which will afterwards appear in treating the general

equation of the surface,

aaf + bif-ir cz" + 2ai/z + 2bzx + 2cxy + 2aa? + 2% + 2cs! +/= (3),

the co-ordinates of the center of which call X, Y, and Z. Throughout
this paper, all subscript indices indicate the dimension of the quantity

signified, in terms of the coefficients of (3) :

p =/3'7"-/3"7',

/ = /3"7-/37",

p"-=^y' -d'y.

y'a"-y"a'.
^1 ff If

q = y a—ya ,

q"= 7«' -7'«'

r =a'/3"-a"/3',

t" = a"(i-a(i"..

r"=«/3' -a' 13.

(4),

a^^= be— a',

b^,
= ca- b%

c„
— ab — (?.

tto
= sin' I,

b^= sin'*;.,

Co
= sin^

^.

.(5),

a^= 6 + c— 2acos^,

b,= c + a— 2b cos rj,

Cf
= a + b — 2c cos

^,

l^^ —bc-aa, I,
= &cos^+ccos»7-« — acos^, \ = cos v cos ^— cos ^,

m, = ca — bb, mj=: ccos^ + acos^—b -bcosrj, 7»o= cos^cosf— cos ^...(6),

91^1
= ab— cc, n,=a cos j? + 6 cos ^—c~c cos

^, «„ = cos ? cos tj
— cos

^.

=»?„«o-ao 4-^ cosA
= «o lo-boMo-T- COSri\...(7),

.= /o««o-Co«o-T-cosg

(8),

(9),

Fo=l+2cos^cos.jcos^-cos^^-cos'»j-cos'^'

V, = aai + bb^-\-cCa + 2ala + 2bma + 2cnf,

Vi= a„ + b^, + c„ + 2/,, cos '^\-2m„ cos r\-\-<iLn„ cos ^

=
*/;C//-/,; ^«1

.(10),Vz~abc^2(ibc— a<i— b¥— c& \ =.c„a„—m,J-^b\

r; = a,,a' + J,,6^ + c,,c^ + 2/,,6c + 2»?,,ca + 2w,,«F (11),

= m„n„-a„l„ -=ra

.nj„ -b„m„^b
= l„m„-c„n„ ^c

W=-^ +/= aX+ 6 F+cZ+/ .(12).
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From (4), we find by inspection that the following six quantities
are severally equal:

pa + qft + ry, pa + p'a' + p" a'\

p'a' + g^/3' + r'y', qfi + ^/3' + q"fi" (13),

p"a" + q"(i" + r"7", ry + r'y' + r"y",

and moreover, that any symmetrical interchanges of accents in the first

three, or of letters in the second, give results severally equal to nothing.
Such are joa' + g'iS' + ry, p li +p (i' +p"fi", &c. Let the common value

of the first six be T. We have then

pa -{ q& + ry = T,

pa +ql3'+ry'=0 (14),

pa" + qli" + ry"= 0.

From which, by obvious multiplications and additions, looking at equa-
tions (2), we have

p +3' cos (^+r cos ri=Ta,

pcos ^+q +r COS ^=T(i (15),

p cos t] +q cos^+r = Ty.

From either of which sets we deduce

1^ ¥<f -Vi^-^^qr cos + 2rp cos n-\-^pq cos^= T^
(16),

and similar relations may be deduced between
jo', g', r', and

jt>", ^", r'
;

T being the same throughout.

Again, form the several quantities

flo, /o, &c. or 1 - cos^ f, cos n cos ^- cos f, &c.

from the second set of equations in (2), and make the results homo-

geneous and symmetrical from the first set; for example, write for

Oa and /o

(7« + V«' + 7"«") («/3 + a')3' + a"/3")
-

\c?^oi^^cl'''\ (fiy+fi'y'+(i"y"),
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in which the factors equal to unity, and introduced for symmetry,
have the brackets []. Develope these expressions, from which we

obtain the following equations:

fl„=p^+y^+jo"% l,= qr-^qr' + q"r",

h^=q' + q'' + q"\ m,= rp^-t'p' + r"p" (17),

Co = r^ + /" + r"*, n„=pq +p'q' +jo'Y'.

These, added together, the three last having been respectively multi-

plied by 2 cos I, 2 cos rj, 2 cos ^, give from (16)

«o+ *o+Co + 24 cos f+ 2»?o cos »? + 2«„cos ^=3T\

The first side of which, developed from (5) and (6) gives 3 V^* whence

T=y/Vo (18).

If the process by which (17) w^as obtained from (2) be repeated

upon (17), that is, if at,ha-lo, Wana—a^la, &c. be formed, we shall have

equations of a similar form, substituting instead of p, p' &;c. such functions

of them, as they themselves are of a, y3, &c., the first sides of the equations

being from (7), ^o ^^ *^^ ^^^^ three, and V^ cos f, F^ cos ri, Vg cos
^,

in

the last three. These equations are such as would arise from sub-

stituting in (2),

^ ^
,^— instead of a y~ — and y-^

^ for a and a", &c...(19),

which are therefore the values of a, a', &c. in terms of p, q, &c.

From (1), by means of (14) and (18), can be deduced the following :

^/YgX=px'+p'y'-!t-p"^,

VT,y = qaf+ q'y'+q"fi (20),

-v/Fo as = rx' +/ 2^' + r"%',

and the equations of the axis of x', referred to the oblique axes

X, y, and k, are any two of the three,

qx-py — 0, ry— q% = 0, p%-rx=Q (21),
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The equations of the center, central line, or central plane, as the

case may be, of the surface expressed by (3) are

aX+'cT+bZ+a = 0,

cX+bY+aZ+%= (22),

bX+aY+cZ+c= 0,

and in the two following sets of quantities, it will be found that the

sum of the products made by taking a term from each in the same

horizontal line is = F^ ; while if the terms be taken from different horizontal

lines, it will be = 0.

a
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denominators in (23) must be severally equal to nothing; but if

f^3 = 0, the equations in (10) shew that it is sufficient that one of

the numerators should be equal to nothing; or that the conditions

may be stated thus,

r,= 0, a/o^, « + \/T,* + 'v/cIc = (26).

When F'i = 0, F't is a perfect square, (10) and (11), its root being

the second expression in (26). Hence W appears in the form -
. From

two of equations (22), substitute in (25) values of any two co-ordinates

of the center in terms of the third; it will be found that the co-

efficient of the third disappears under the conditions in (26), and that

the resulting value of W, which we denote by W, may be expressed

in either of the following ways:

„^, b(^— 2cab + a¥
,

„ cb^— 2acb + b<f ^
ab—& bc— tt

^ _ ad'-^bac + ca'
.^^.

ac — V

When no two of the equations (22) are independent, there is a

central plane. The conditions of this case are, as appears from the

equations, that a„, 6,,, c^,, /„, «»,,, «,,, must be severally
=

;
of which how-

ever it is sufficient that any three should exist. We have moreover

a a : c '. b (28).

From all which it appears that W is now in the form -. From

one of the equations (22) substitute in (25) the value of one of the

co-ordinates in terms of the other two; the coefficients of the last two

will disappear, as before, and the different forms of the value of W,
which we call W", will be

W"^ -
I +/= -

J +/=
-
7 +/• (29).

By substituting W or W", when necessary, for W or
<p {X, Y, Z)

in (24) the equation of the surface will be obtained, referred to any

point in its central line or plane.
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Let the equation of the surface, referred to the principal axes, be

Aa;" + A'y" + A"z''+W=0 (30),

which must be identical with (24) when the values of x', y', «', found in

(1) are substituted. We must then have

a==Aa' +A'a" +A"a"\

h = Ali' +A'(i"' +A"(i"\

c= Ay^ +A'y" +A"y'\
(31),

a= Al3y +A'fi'y' + A"li"y",

h=-Aya +A'y'a -{A"y"a',

'^= Aafi+A'a'^ +A"a"li",

which equations are reduced to those in (2) by substituting unity for

A, A', A", a, h, and c; and cos f, cos n, and cos
X,

for a, h, and c. Thus,

whatever equation is deduced from these, we immediately find another,

containing a, /3, &c. in the same way, by the last mentioned substitu-

tion. Multiplying the first of these by p, the last by q, and the last

but one by r; and adding, we obtain by the use of (14),

pa + qc +rb =Aa\/Vo

p +qcoS(^+ rcosr]= ay/V^

from which, and similar processes, we obtain

(32),

p{A — a) + q{A cos ^—c) + r {A cos t}
—

b)
= 0,

p{A cos^-c) + q(A-h) + r(^cosf-a) = (33),

p{Acc^ri — b) + q{Acosl^—a) + r{A — c) =0;

which agree in form with (22), if a, J, and c be struck out, and A — a

substituted for a, ^cos^— a for a, &c. But 1^3= is the result of (22),

with the last terms erased ; that is, if in V^ the substitutions just men-

tioned be made for a, a, &;c. the result developed and equated to zero

wiU give the equation for determining A, A', and A". That equation is

r,A'- r^A'+r,A-v,=o (34).

L 8
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We also find from (33), for substitution in (21),

-:-:-:: l^
— l^A + loA' : m^^

— m^A + m^A^ : n^,
— n,A + n^A^ (35).

The equation (34) must have all its roots possible. For from (31)

it appears that A' and A" cannot be of the forms X + m V-l and X—m \/- 1,

unless a' and a", /3' and /3", 7' and 7" are of the same form ; from which,

since

{K + xV'^){o-(p\/'^) - («-x\/^)(0 + 0\/^T)

is of the form k\/ — 1, it will follow that p, q, and r (4) must be of

this form : which is inconsistent with (32), if we suppose V^ positive ;

since it may be seen from (31), and will presently appear otherwise,

that a is possible when A is possible.

We might find equations of the third degree to determine jh q, &c.

but it will be more convenient to express them in terms of A, &c.,

supposed to be found from (34). To do this, let a,,, a^, I,,, I,,
&c. (5)

and (6), be found in terms of A, a, he. by substituting the values of

a, h, a, h, he. from (31). The results, after reduction, are

a,,=A'A"jf +A"Ap" +AA'p"', a,=U'+'^")f +{A"+A)p" +{A+A')p"%

h,^A'A"(f +A"Aq" +AA'q"\ b={A'+A")q' +{A"+A)q" +{A+A')q"%

c„=A'A"f^ +A"Ar" +AA'r"', c=U'+^"V +U"+A)r" +{A+A')r"\
..(36),

l„=A'A"qr+A"Aqr'+AA'q"r", 1,={A'+A")qr+{A"+A)q'r'+{A+A')q"r",

m„=A'A"rp+A"Ar'p+AAy'p", m={A'+A")rp+{A"+A)rp'+{A+A')r"p",

n,=A'A"pq+A"Ap'q'+AA'p"q", n=U'+^")Pq+i^"+-^)p'q'+i^+^')P'Y'

which equations, with those marked (17), give the following values

of
p'', qr, he.

a,-a^A + a,A' _ l„
-

l,A + kA'^~
{A-A'){A-A")'

^
{A-A'){A-A"y

" — ^ii~^t^ +hoA^

_ m,,-m,A + irigA^ .

^'~ {A-A%A-A"y ''P~
{A-A'){A-A")

^^^'

•i _ C//
—

g,^ +CoA
^

_ n,,
- n,A + n^A'^ ~

XA^^t^ -
^"')

' ^^~ {A- A) {A - A")
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In which equations the letter p, q. A, &c. may be accented throughout

singly or doubly, striking off three accents from any A which thus

obtains three or more.

By squaring the equations (15), writing V^ for 7", substituting

the values just obtained for p^, qr, &c. and then multiplying the same

equations together two and two, and making

Li = *„Co + b^c,,
- 2 IX, Z/2 =

in,,n,+ m^n,,
-

aj,,
-
a„k,

Ni = «„*„ + «o*//
- 2 n„n^, Ni = l,,m, + lotn^^

-
c^n„

—
c„«o,

we get

^_ F,-L,-{F,-aK)A + F,A' r,-M,-{F-br,)A+ F.A^
**"

V,{A-A'){A-A")
' ^~

r,{A-A'){A-A")

2 F-N,-{r,-cr:)A+V,A' ,„.
^-

K{A-A'){A-A")
^^^^'

„ _ FiCos^ — Lz — jVi cos^—aF'o)A+ FgCosBA^
^'y~

F{A-A'){A-A")

_ Fcos tj
— Mi- (Fj cos tj -bFp)A + FqCos t/A^

'y"-
F,{A-A'){A-A")

^ F, cos t-'^2-{F, cos ^-c F„) A + F„ cos ^A'
"^~

F^{A-A'){A-A")

in which the letters may be singly or doubly accented as before, and

from which the determination of the position of the principal diameters

is made to depend directly upon the solution of (34).

Let the surface whose equation is (3) be referred to another origin

and other axes, and let the quantities corresponding . to those already

given or deduced, which belong to the new origin or axes, be denoted

by the same letters and accents enclosed in brackets [ ]. Thus the

angles made by the new axes are [^1 [>;],
and [^] ; the coefficients of



86 Mr DE morgan ON THE GENERAL EQUATION OF

the new equation are [a], [«], &c.; the functions of these coefficients

already noticed are [«J, [/„], [F,], &c. Since the principal diameters

of the surface are the same, from whatever equation they are derived,

w r w'l
that is, since —'T

~ ~ rlT ' ^^' *^^ roots of (34) bear to those of [34]

the proportion of W^ to [W^ ; whence, \ being an indeterminate quan-

tity, since one coefficient in (3) is indeterminate.

.(39),

LjO'^'k' M-^'

These equations* correspond to the general relations (6), (7), and (9),

given in my former paper, and from them may be deduced the pro-

perties of systems of conjugate diameters, and the remarkable property
of the reciprocal squares of three semi-diameters at right angles to one

another.

Let wT', V, and Z', be the co-ordinates of the second origin referred

to the first, so that if the co-ordinates be changed, [y] and (p{JC', Y', Z')
will be corresponding terms of two equations, the terms of which should

be respectively proportional. Assume X, the indeterminate quantity
above-mentioned, so that

[/] = \4>{X', Y', Z') (40).

and multiply together the first and last of (39), recollecting that

W =
-r.-^f^ [^i =

-[Fj^t/].

* These relations have been given by M. Cacchv, for the case of rectangular co-

ordinates, in his "
Lcfons sur les applications du Calcnl Infinitesimal d la Geometrie," Vol. i.

p. 2441. The equation (34) of this paper, in as general a form, has also been given, since

this was written, by Mr Lubbock, in the Philosophical Magazine.
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and we obtain

[^J-X^(r-,F-.Z')[^J=X.(^-/^;).

Substitute from the last of (39) for
[jfl,

and develope <f>{X', V, Z'),

removing the term which contains it to the left hand side; which

gives

ca=
r, + F, jaX" + br" + cZ'' + &c. &c.)

(41),

answering to (8) in my former paper.

We shall afterwards proceed to some applications of these general

formulas, and now enquire into the several varieties of the equation (3),

and the criteria for distinguishing between them. The following table,

immediately to be explained, gives a synoptical view of the various

caseSi inhcrfHt i->9.R :i;f<>1 '"\'r^hr' 5r .-^.v:

When the Equations of the

Center denote
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Taking the first line of this table, and the signs of W, V^, V^, and

V^, (on which, as will presently be shewn, the variety of the equation

depends,) being such as to denote that the equation is impossible, a

change of sign in W only will indicate the ellipsoid, the elliptic cylinder,

or parallel planes, according as the centre is a point, a line, or a plane.

When the sign changes, if W be then = 0, the variety of the equation

belongs to a point, a right line, or a plane ; while if W be infinite,

we have an elliptic paraboloid, a parabolic cylinder, or a plane. In

using W, we mean its real value, W or W", when the primitive form

of W becomes -
.

The following table, from which the preceding may be deduced, and

which I proceed to establish, gives the signs of W, &c., and also of V^,

&c., for the different cases. When p alone, or p and n occur on the

same line, p may signify either sign, provided n stands for the other.

Also when a sign is enclosed in brackets, it is a necessary consequence
of what precedes it, and not an independent assumption. The num-
bers over the headings are references to the equations.

The last part of the table, including all the varieties under W= -
,

forms a similar synoptical table for the curves of the second degree.

The following are the values of W, W", V^ and Fi, expressed in the

notation of my former paper, the equation of the curve being

ay* + hxy + ca^ + dy->rex +f= ;

and the angle made by the axes being Q,

.^, _ cd^ + ae^— hde „

™,„ _ _ dr-^a£_ &-^^cf
id

~~
4c

'

V, =- (b'-iac),

Vi = a + c — h cos Q.
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First, with regard to the coefficients K^, Vi, V^, V3 in equation

(34) it appears from spherical trigonometry, that V^ is always positive

when
'(;, J/, and ^ are the sides of a spherical triangle; while from the

possibility of the roots, as well as from the quantities themselves, we
infer that if V3 is finite, Fj and Vi can never vanish at the same

time, while if ^i = 0, and ^= 0, Fj, must be negative.

If we suppose TV finite, and the order of signs in (34) to be

H (-- or + + + +, in which case all its roots are of one sign ;

that is, if K2 be positive, and Vi and V3 of the same sign, the equa-
tion (30) shews that the surface is impossible or an ellipsoid, according

as W and F'a have the same or different signs. From (36) it appears

that in this case, a^^, b,^,
and c„ must be positive, whence a, h, and c have

the same sign ; which conditions, together with that of V^ having the

same sign as a, are equivalent to those given in the Table for the

impossible case or the ellipsoid. If we examine independently into

the conditions under which the aggregate of the first six terms of

(24) always has the same sign, we shall find them to be that a^, b„,

and c„ must be positive, and V3 must have the common sign of a, h,

and c. And it is evident that the first three terms of (30) are the first

six terms of (24) in a different form. It may be worth noticing, that

these conditions are equivalent to supposing ,-- ,
-- —, —7=5= to be

's/ he \/ca y/ab

the cosines of the sides of a spherical triangle. When any other order

of signs except the two already noticed, is found in (34), we shall have

one positive root only, or one negative root only, according as V3 is

positive or negative ; that is to say, one possible axis, or a double

hyperboloid, when V^ and W have contrary signs ;
and one impossible

axis or a single hyperboloid, when they have the same signs.

When W—0, V^ being finite, equation (30) represents a point, or

a cone; the first when all the roots of (34) have the same sign, the

second in any other case. When V3 = 0, Vi being finite, or W infinite,

the center is at an infinite distance, and the equation belongs to an

elliptic or hyperbolic paraboloid, according as V^ is positive or negative.

Since when V3 = 0, «,,, 5„, and
c,, have the same sign, (10), which is
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also the sign of V^, a,^ may be substituted for Vi. In this case, (10)

and (9), V2 has the form

P+ Q + 2? + 2\/QK" cos ?+2\/;BP cos .7+2 ^/PQ cos ^,

which, when P, Q, and R have the same sign, is always of that sign;

and therefore can only be = when P, Q, and B are severally
= 0.

When ^"3=0, and F'i = 0, in which case W appears in the form -,

and its real value is W (27), the simplest criteria of which are ex-

pressed in (26) the equations (30) and (34) assume the forms

Aaf' + A'y"+Jr'=0 (42),

KA'- r,A + r,=o (43),

the first of which, if V^ be positive, and F", and W of the same sign,

is impossible, and belongs to an elliptic cylinder if V^ be positive,

and Fi and W of different signs. As before, we may substitute a„

for Vi. If V2 or a^i be negative, (42) belongs to an hyperbolic cylinder :

and if V2— O, in which case a^^
= 0, h,i

= 0, and
c^^
= and W is infinite,

we have a parabolic cylinder. It appears therefore, that any surface of

the second order, which has three parabolic sections, not having a

common line of intersection, is a parabolic cylinder. The central line

of this surface is at an infinite distance. When W' = and V is

positive, equation (42), considered as of two dimensions, represents

only the origin, and therefore belongs to a straight line, the axis of

iB'. When Fa is negative, W being =0, (42) is the equation of two

planes intersecting at an angle whose tangent is

2^/-AA' 2V-F,r,
A + A'

' °^
r,

When the equations of the center belong to a plane, and W as

well as W appears in the form -, the real value of W is W", given

in (29) and the simplest conditions are, as in (28),

«//
=

*//
=

C//
= 0,

a : b : c '.: a : c : b.

M 2
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The equations (42) and (43) take the forms

Ax"+jr" = (44),

F,A - F, =0 (45).

The first of which is impossible if W and Fl have the same sign,

that is, if W" and a have the same sign ; for when a„ = b,^
=

c„ = 0,

T^i takes the same form with respect to a, b, and c which Vs took with

respect to a„, b^,, and c„ in the last case. When a and W" have

different signs (44) belongs to two parallel planes, which coincide in

one where W" = 0. That is (29) the surface is impossible, two parallel

planes, or one plane, according as af—c^ is positive, negative, or nothing.

When W becomes infinite, or a = 0, in which case b, c, a, b, and c are

severally = 0, the proposed equation (3) is in fact of the first degree.

Though oblique co-ordinates have hitherto been used, yet they

might have been dispensed with so far as the criteria of distinction

between the different classes of surfaces are concerned. It would take

some space, and complicated algebraical operations, to prove this in

all the individual cases, but the following general consideration is equally

conclusive. So long as we only consider those distinctions which are

implied in calling the surface bounded or unbounded, of one sheet or

of two sheets, &c. in which no numerical relations of lines, &c. appear,

it is evident that any equation will preserve the same character, how-

ever the axes on which its results are measured are inclined to one

another. That is, when the sign of a quantity is alleged to be a cri-

terion of distinction, it cannot stand as such, if by any alteration of

I, >/, or ^,
consistent with V^ remaining positive, the sign of that quantity

can be changed. Again, if the signs of two out of the three, a, b, and c

be changed, as well as that of the third letter in a, b, and c, (those of

a, b, and c, for example) it is evident that the surface remains the same

in form and magnitude, those parts which were below one of the co-

ordinate planes being transferred above it, and vice versa. That is,

it is impossible that any aggregate of terms of an odd degree, with respect

to a, b, and c, b, c, and a, or c, a, and b, can affect the sign of any



SURFACES OF THE SECOND DEGREE. 93

of the criteria. If we look at F'l, V^, Fs, and F^, we find that those

terms, and those terms only, which are multiplied by cosines of f, &c.,

are of the first or third degree, with respect to any of the three sets

just mentioned.

The case is very much altered when we consider any numerical

relation, however simple. For example, I give the condition which

expresses a surface of revolution, or a surface two of whose axes are

equal. If A and A' belong to the equal axes, a, a, &c. become in-

determinate; hence the numerators of the six equations (38), will, when

equated to zero, have a common root. Eliminate F - FA + FoA" from

the values of a* and (3y, &c. in (38), which gives

.-_ XaCOsf-Z^ MiCO^ri-D iVgCOS^-iV^ ,^AFa = r"=- = -7 T~ -
y

- V4b),
a cos ^—a cos t]

— o ccos^— c

which does not admit of any material simplification. There are evidently

other ways of obtaining corresponding conditions from (38). I have

chosen this because the corresponding formulae have been given in the

case of rectangular co-ordinates. In this case,

cos ^ = cos >;
= cos ^ = 0, and Li = -

l„, &c.

whence,

^ _ ^/ _ ^/
a b c

(See Mr Hamilton's Analytical Geometry, p. 323.)

To apply the formulae (39) and (41), let there be two planes whose

equations, separately considered, are

\'x+ fi'y+ i/'a + l =0 J

but which together must be one of the varieties of equation (3). Let

new and rectangular axes be taken, the intersection of the planes

being that of x. Their equation will then be

[c] z" + 2[a]yss = 0,
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IV. On a Monstrosity of the Common Mignionette. By Rev, J. S.

Henslow, M.A. Professor of JBotany in the University of Cambridge,

and Secretary to the Cambridge Philosophical Society.

[Read May 21, 1832.]

Having met with a very interesting monstrosity of the common

Mignionette {Reseda odorata,) in the course of last summer (1831),

I made several drawings of the peculiarities which it exhibited. I beg
to present the Society with a selection from these, as I think they may
both serve to throw considerable light upon the true structure of the

flowers of this genus, which is at present a matter of dispute among
our most eminent Botanists, and also tend to illustrate the manner

in which the reproductive organs of plants generally, may be con-

sidered as resulting from a modification of the leaf.

It is well known to every Botanist, that Professor Lindley has

proposed a new and highly ingenious theory, in which he considers

the flowers of a Reseda to be compounded of an aggregate of florets,

very analogous to the inflorescence of a Euphorbia. Mr Brown, on

the other hand, maintains the ordinary opinion of each flower being

simple, and possessed of calyx, corolla, stamens, and pistil. I shall

not here enter upon any examination of the arguments by which

these gentlemen have supported their respective views, but will refer

those who are desirous of seeing them to the " Introduction to the

Natural System of Botany, by Prof. Lindley," and to the "Appendix
to Major Denham's Narrative, by Mr Brown," My present object will

be little more than to describe the several appearances figured in plates

1 and 2.
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Fig. 1. is one of the slightest deviations that was noticed from the

ordinary state of the flower. It consists in an elongation of the pistil (a),

and a general enlargement of its parts, indicating a tendency in them to

pass into leaves. This is accompanied by a slight diminution in the size

of the central disk. The number of the sepals was either six or seven.

Fig. 2. is a portion of the ovarium of the same flower opened, in

which three of the ovules are somewhat distorted.

Fig. 3. Here the three valves of the ovarium have assumed a dis-

tinctly foliaceous character (a); the same has happened to some of the

stamens {b), and to the petals (c) ; but the sepals are unaltered. The
central disk has entirely disappeared.

Fig. 4. This is a still closer approximation to the ordinary state of

a proliferous flower bud, when developed. Those parts which would
have formed the pistil, if the flower had been completed, are no longer

distinguishable, and only a few of the stamens are to be seen, disguised
in the form of foliaceous filaments crowned by distorted anthers (h).

Fig. 5. A slight deviation in one of the petals from the usual

character. The fleshy unguis is somewhat diminished, and the fimbriae

are becoming green and leaf-like. These are aggregated into three

distinct bundles, the middle one being composed of a single strap,

and the two outer ones of five straps each, blended together at the

base.

Fig. 6. The line of demarcation between the unguis and the fimbriae

has completely disappeared, and the number of the latter is considerably
reduced. The whole is more green and leaf-like than fig. 5.

Fig. 7. The fimbrige reduced to a single strap ; the position of the

lateral bundles being indicated by slight projections only. Other in-

stances occurred in which the petal appeared as a single undivided

uniform green strap.

Fig. 8. The two exterior whorls of a flower, consisting of seven

regularly formed sepals, and eight petals. The latter deviate more or

less from the forms represented in fig. 6 and 7. The whole of a green

tint, and leaf-like.
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Figs. 9, 10. These are parts of one and the same flower dissected

to shew the several whorls more distinctly. The whole has assumed

a regular appearance, and is composed of seven sepals, alternating with

seven green strap-shaped petals, which are succeeded by about twenty
stamens without any fleshy disk

; the pistil is somewhat metamorphosed.
This is perhaps the most remarkable deviation that was noticed from

the ordinary state of the flower, and as several examples of it occurred,

it is not likely that there is any error in this account of it. It appears
to lead us in a very decided manner to the plan on which the flowers

of the genus may be considered to be constructed, and to shew us

that they are really simple and not compound.

Fig. 11 to 15, represent the appearances assumed by some of the

stamens, indicating various degrees of deviation from the perfect state

towards a foliaceous structure.

There were other circumstances, besides the appearances in figs. 9.

and 10, which may lead us to conclude the structvire of the flowers

of the genus to be simple and not compound. A compound flower

arises from the development of several buds in the axillee of certain

foliaceous appendages more or less degenerated from the character of

leaves, and consequently these buds and the florets which they develop
are always seated nearer to the axis than the foliaceous appendages
themselves. If we suppose a raceme of the mignionette to degene-
rate into the condition of a compound flower, we must allow for the

abortion of the stem on which the several flowers are seated, so that

these may become condensed into a capitulum, each floret of which

will be accompanied by a bractea, more or less developed, at its base.

Let us compare this supposition with the diagrams represented in

figs. 16, 17, 18.

Fig. 16. is an imaginary section of the flower in its ordinary state,

(a) the pistil, (b) the stamens on the fleshy disk, (c) the petals, {d) the

sepals alternating with them.

Fig. 17. represents the position of the several buds (e) which com-

pose the florets of the flower on the supposition of its being com-

pound. Here it will be noticed that these buds alternate with the

Vol. V. Part I. N
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sepals instead of being placed in their axils where we might rather

expect to find them.

Fig. 18. represents a fact which was observed in the present case,

where some of the latent buds in the axils of the altered petals were

partially developed. This development might perhaps be considered as

indicating the construction of a compound flower, and those buds which
in ordinary cases compose the outer and abortive florets, it might be

said, are here manifesting themselves. But the axes of these buds lie

nearer to the axis of the whole flower than the petals in whose axils

they are developed; whereas it appears by fig. 17, that they ought to

be further from it, since the centres of the five outer circles marked (e)

would represent the axes of the several buds, whose partial develop-
ment must be supposed to be on the side next the axis, if we allow

any weight to the analogy between the position of the abortive

stamens on the supposed calyx, and the fertile stamens on the central

disk.

These figures are all that I have thought it necessary to give for

the purpose of illustrating the structure of the flower; but as there

were several interesting appearances noticed upon dissecting the pistil,

I have selected some of them for the second plate, as they may
possibly serve to throw some light upon the relationship which the

several parts of the ovarium bear to the leaf, and to support the

theory of their being all of them merely modifications of that im-

portant organ.

Fig. 19. is a pistil in which the three ovules have become foliaceous,

and the central, or terminal bud of the flower-stalk is developing in

the proliferous form represented in fig. 4.

Fig. 20. The central bud is not developing ; but the three axillary
buds in the bases of the transformed valves of the pistil are here

assuming the form of branches on which one or two pair of leaves are

expanded.

Fig. 21. 22. unite the appearances in
fig. 19 and 20, with the

addition of a glandular body seated between the leaves at their
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junction. This apparently originates in the union of the two glandular

stipules seated at the base of the leaves of this genus, and which

may also be seen to accompany the scale-like leaves on the central

bud within.

Figs. 23. to 25. Interior views of metamorphosed pistils, in which

the ovules are seen transformed to leaves, and the glandular stipules

are all that remain of the leaves which should compose the central

bud, their limbs having entirely disappeared.

Fig. 26. The appearance of these stipules on a leaf-bud, develop-

ing under ordinary circumstances.

Fig. 27. One of them more highly magnified.

Figs. 28. 29. Their appearance on the small scale-like leaves of the

central buds in fig. 21, 22.

Fig. 30. Similar to fig. 23, but without any appearance of the

transformed ovules; the glandular stipules are seen in the bottom of

the ovarium.

These glandular bodies assume a very prominent character in the

anatomy of the metamorphosed pistils, and I was for some time

puzzled to account for them, thinking that they might represent an

altered condition of the ovules. I believe however that I have rightly

considered them as the only representatives of the various leaves which

would have made their appearance on the branch if the bud had

developed in the ordinary way. They do not appear to diminish in

size though the limb of the leaf has disappeared.

Fig. 31. Four pedicillated semitransformed ovules, seated on a pla-

centa of a pistil metamorphosed similarly to that in fig. 9-

Figs. 32. to 35. Other appearances of a similar kind, all representing

various approaches of the ovules to a foliaceous character. The little

theca-shaped appendages are hollow, with a perforation at their apex,

representing the foramen.
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Fig. 36. One of these dissected, exhibiting a free clavate cellular

body within, resembling the columella in the theca of a moss, and

"here probably representing the nucleus of the ovule.

Fig. 37. In this case the theca-shaped body was partially open

exposing the included nucleus.

Fig. 38. This nucleus more highly magnified.

These appearances surely indicate a development of the investing
coats of the nucleus into leaves ; but how far these developments

might be extended, and whether the nucleus itself is capable of being
further separated into a series of investing coats does not appear from
these specimens.

J. S. HENSLOW.
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On the Calculation of Newton's Experiments on Diffraction. By

George Biddell Airy, M.A. late Fellow of Trinity College,

and Plumian Professor ofAstronomy and Experimental Philosophy

in the University of Cambridge.

[Read May 7, 1833.]

Since the publication of Fresnel's experiments on Diffraction, it has

been usual to employ as the source of light, in all experiments of this

class, the image of the Sun formed by a lens of short focal length. On
the undulatory theory, the effect of light thus produced is precisely

the same as if the minute image of the Sun were the real origin of

the light diverging with equal intensity through a solid angle whose

diameter is many degrees. The spherical or chromatic aberration of

the lens produces no sensible effect in any of the common experiments,

in all which the angle, made by rays which afterwards interfere, is small.

In calculating experiments thus conducted we proceed therefore with

full confidence that no consideration is left out of sight, the omission

of which could cause sensible error.

Newton's experiments however were conducted in a different way.

His origin of light was a hole, from Jg^ to ^ of an inch in diameter,

through which the Sun's light was made to pass. The effect of this

light, on the undulatory theory, is not the same as if the bright hole

were the origin of light. It becomes then a matter of some interest

to examine mathematically what is the effect produced by transmitting

the sun-beams directly through a hole of sensible size ; and whether this

effect, in practice, will differ much from the effect produced by forming

an image of the Sun with a lens of short focal length.

The integrals which occur in this investigation are of such a kind

that their values cannot be exhibited even in tables of numbers (except

Vol. V. Part II. O
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of course in any particular case, when by very tedious summation nume-
rical results might be obtained). The only thing which can be attempted

is, to shew that the integrals are precisely the same as those that occur

in a very different instance where Fresnel's method of experimenting
is adopted. Even thus far however I have not succeeded except in one

case, namely, where the hole is a rectangular parallelogram of any length,
and where the diffracting aperture is also a rectangular parallelogram
in a similar position ; including in this general case the particular instance

in which one or both parallelograms have no boundary on one side.

To consider, in the first place, a case similar to Newton's. A plane
wave is supposed to enter an external parallelogram and then to pass

through a slit with sides parallel to those of the parallelogram ; and the

intensity of the light which falls upon a screen at a given distance is to

be found. First, it is to be observed, that in estimating the comparative

intensity of light in a direction parallel to one side of the parallelograms

(suppose for instance the shorter) there is no necessity to take into ac-

count the length of the parallelograms in the other direction ;
as it will

easily be seen, upon attempting an integration, that the intensity of light

is expressed by the product of two quantities, of which one depends only
on the lengths of the parallelograms and the position of the point of

the screen in one dimension, and the other depends only on the breadth

of the parallelograms and the position of the point of the screen in the

other dimension. The intensity of light along a given line parallel

to one side of the parallelogram will therefore, so far as it depends on

the other side, be affected only with a constant multiplier. Neglecting
therefore the lengths (by which term I designate that dimension of the

parallelograms which is perpendicular to the line on which the comparative

brightness is to be ascertained), suppose a normal to the front of the

wave to be di-awn, and suppose the limits of the breadth of the external

aperture measured from this line to be a, fi, (the distance of any point
of the aperture being v), and suppose the limits of the breadth of the

slit to be 7, 5, (the distance of any point of the slit being w)'. and

suppose the distance of the point on the screen, whose illumination we
wish to ascertain, to be x. Let the distance of the external aperture
from the slit be a, and the distance of the slit from the screen h. Suppose
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the front of the wave where it enters the external aperture to be divided

into a great number of small parts ^v
;
and suppose each of these to

be the origin of a small wave which diverges from it as a center. The
distance from the point v of the aperture to the point w of the slit is

^{a' + {v-wY]=a+ —(v-wy;

and the disturbance produced at w by the small wave spreading from the

space Sv at v will therefore be proportional to

^tj.sin. — {vt- A —a— —-(v — wY].

Integrating this with respect to v, the coefficient of sin — {vt
—A- a)

will be

L cos ~{v-wy,

and the coefficient of cos —- (\t—A —
a) will be

A

-Xsin^(«-M;)^

The first of these integrals
= X cos ^ iv \/ —r — w V -r-J

''

and putting ^(s) for f. cos f- »M, this integral between the limits v = a,

v = l3, will be proportional to

<h\^\/ -- —W\/ -—]
—

d>\a \/ -— - W\/ ^\.

(TV

\ TT- xM , the integral
-

/„ sin -—
(v
—

ivy

between the same limits will be proportional to

- ^
l*^^ - " ^^) + H° ^Fx - =" ^i)'

o 2
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The whole displacement at the point w will therefore be

sm — {yi-A-a)x{ (p(iB\/^-w\/^]-<p(a\/%-w\/-^]]'

I ^V aX aXJ ^\ aX aXl j

2ir f /

+ cos —— (yt —A —
a) X < -

\l/ [j3 aX
— w

aXJ ^
\ aX aXl ]

Suppose now this displacement to be the origin of a small wave

which diverges from it as a center. The distance of the point w of

the slit from the point x of the screen is

^{¥ + {w-xY]=h^^{w-x)\

and this distance must be added to ^ + a in the expressions

sin -^{yt-A-a) and cos ~ {vt— A-a),X X

in order to find an expression proportional to the displacement produced

by it on the screen at the point x. The expression must also be mul-

tiplied by Sw, the breadth of the small space from which the wave

proceeds. Thus we find for the whole displacement at the point x of

the screen.

sin

-.)..{ ^(/5V^-«,v'|;)-?.(«\/|;-».V|;)}'
COS J— {w

{vt-A-a-b)y. { — —

+COS -:^{vt-A -a-b)x j

si„i(„-.)..{-*(^ v^-. V„4).«(<.v/|;-. V|)}j

.co.i
(.-.)'x{-V.(/3 V|;-»Vi) .+(« V|;-«- X/|) Y
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where the integrals are to be taken between the limits w= y, w = S. The

brightness at the point x of the screen will then be proportional to the

sum of the squares of the coefficients of sin---(yi—A — a — h) an(f

cos—(yt— A — a— b).A

To consider in the second place a case in which the illumination is

produced in Fresnel's method. Let the distance from the origin of light

to the aperture be a', and from the aperture to the screen V. Let a

line be drawn from the origin of light perpendicular to the screen, and

let the limits of the aperture measured from this line, in the same

direction as the breadths of the parallelograms in Newton's case, be e and ^

(the general letter for the distance of any point in this direction being p),

and let the limits in the direction perpendicular to this be rj + np, 6+ nj),

where m is constant. (It is readily seen that this implies the figure to

be rhomboidal, with two sides parallel to the length of the parallelograms

in Newton's case.) Let q be the general letter for distance in this second

direction : also let of and y' be the distances, in the directions of p and q,

of a point on the screen from the same line. The distance from the

origin of light to the point p, q, in the aperture is

and the displacement there will therefore be proportional to

The distance from the point p, q, in the aperture to the point or', y', on

the screen, is

and this must be added to

A + a' +^ + ^,,

in the expression for the displacement, in order to find the displacement

produced at the point x',y', of the screen by the wave diverging from
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the point p, q, of the aperture. For the effect of the wave spreading
from the small rectangle whose sides are ip, ^q, we must multiply by
^p, Sq. Hence we find that the quantity to be integrated is

where, after integrating with respect to q, the limits of q must be ex-

pressed in terms of p before the next integration.

Puttmg A' + a' + b'+
^ ^ = B', this expression becomes

The first integral is

27r
sm

-COS -
{..-2?

- ^— (p
_
_^) J

/^
sm

{2 .-^r^ (?
-^) }

/tt 2(«'+ft')/ «y^'l ,
TT / ./2{a'+b') ,^/ 2m:' y

which between the limits q = r}-irnp, q — Q-^np, is proportional to

^1
^

«7yx ^ ^
i' («' + *')x^ «'*'x J

The quantity proportional to
.4

sin
j^.i^lt*}

L _ 4^) |
will be ex-

pressed in the same manner, putting >//
in the place of 0.

The whole displacement of ether at the point x', y', will therefore

be found to be
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cos
\ a'h' V a' + b'J I ^\

^
a'b'X ^^

b'la' + b')\

sm~(yt-B')x f
^

jp

+ sin;

27r, .

f-COS— (v^A -B')x\ <

Jp

. TT a'+b' f a'x'Y r f. . /2 (a' + b') ,./ 2a' i

+ COS;
TT a'+b' 1^ a'x' Y r

, L./2(«' + 6') ,./ 2^^

where the integrals are to be taken between the limits p = €, p = ^.

The brightness at the point x', i/, of the screen will then be propor-

tional to the sum of the squares of the coefficients of sin— (v#— ^')A

and cos -— {v t - B').A

We have now to shew that, for a constant value of
y', and a vari-

able value of x', these expressions may be made similar to those ob-

tained in the first case. For this purpose it will be necessary, first, to

make the coefficients of the expressions under the integral sign equal:

secondly, to make the limits of integration the same.
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rr,! /. , •! i- • •^ IT a' + b' a'x'
1 he first consideration gives vis j— = -

.
—rrr

' x = -;
—

rt ;^ h\ \ a'b' af + b"

"^aX ''^
«'6'X y ^

b'{a' + b')\'
^ a\ ^

a'b'X
'

and the second consideration gives 7 = e; S = ^; whence 5 — 7 = ^-c. The
first set of equations, reduced, are

6
= ^' +

1 1 *,OaA ^./l 'aA

a\/ - = tj'S/ J-
—

y' \/ jn\ whence (/3
—

a) v - = —
>?; and w= — V-

The purport of these equations, in common language, may be stated

thus :

If in Newton's method light pass through a rectangular hole whose

horizontal breadth is /3
—

a, and through a slit whose horizontal breadth

is 5-7, at the distance a from the former, and fall finally on a screen

at the distance b from the slit:

And if in Fresnel's method light pass through a rhomboidal hole,

with two vertical sides, at the distance a' from the Sun's image; and

fall on a screen or eyepiece at the distance V from the hole, so that

1 1__ 1

a'^ b'~ b'

And if the length of the vertical sides of the rhomboid be \/- x
til

the horizontal breadth of the external hole in the first case (or /3
—

a);

and the horizontal breadth of the rhomboid be equal to the horizontal

breadth of the slit in the first case (or 5 -7); and the tangent of the

angle made by the sides of the rhomboid be \/ j, (the acute angle of

the rhomboid being on the side where x is negative and y positive).
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Then the proportion of the intensities of light along the horizontal

line in the first case will be the same as the proportion of the inten-

sities of light along a horizontal line in the second case: the distance

x' = x y. -r in the second case corresponding to the distance x in the first

case.

If in the first case the center of the hole is opposite to the center

of the slit, the horizontal line in the second case must be drawn over

the middle of the illumination on the screen. But if in the first case

the center of the hole is not opposite to the center of the slit, but

deviates in the direction which makes x positive, then the horizontal

line in the second case must not be drawn over the middle of the

illumination, but on that side on which y' is negative. In general,

or when one side of either aperture in the first case is wanting, the

equations

may be used.

When the inequality of the sides of the rhomboid is considerable,

the form of the illumination is not very different from the illumination

when the hole is parallelogrammic. The coloured bars will be a little

inclined, so that those which for a parallelogram would be perpendi-

cular to its longest sides, will approach towards the direction perpendi-

cular to the longer diagonal of the rhomboid. Besides these, there is

a faint brush of light projecting from each part which corresponds to

an obtuse angle, and nearly in the direction of a line bisecting that

angle produced. These general notions will assist the reader in judging
what ought, theoretically, to be expected in the different circumstances

of Newton's experiments.

In Newton's experiments the external hole was in fact circular.

What would be the effect of this form it is impossible (theoretically)

to say: but judging from the insignificance of the effect produced by a

Vol. V. Tart II. P
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rectangular hole, I am inclined to think that, when the apertures are

centrally opposite, the same investigation will apply well to it.

I may now without impropriety mention the circumstances which

induced me to make this investigation.

In Newton's Optics, Book iii. Observation 6, Newton describes in

very striking language the effect of narrowing a slit on which the

sun-light fell after having passed through a hole a quarter of an inch

in diameter. He states that when the breadth of the slit was about

—t\\ of an inch, the illumination on the screen was interrupted by

a black shadow in the middle. It is certain, theoretically and prac-

tically, that if the experiment had been made in Fresnel's method the

center would be the brightest part. It seemed therefore worth while

to ascertain, by the best kind of investigation that svich an un-

manageable case admits of, whether the size of the external hole

could account for the dark shadow. From consideration of the form

of the illumination in the second case above, it appears certain that

it could not. The only resource (which the dullness of the weather

at that time denied me) was to repeat the experiment. This I have

now done three separate times in the presence of as many different

persons : I have used both parallelogrammic and circular holes of dif-

ferent sizes (the largest circular hole being ^inch in diameter) and

have sometimes diminished the aperture to as little as j^ inch (by

estimation). The distances have been 30 inches each, which appear

to have been the distances in Newton's experiments. In every in-

stance the center has been bright. I can account for this inaccuracy

in Newton's observation only by supposing that his eye was in such

a state as not to recover from the sudden impression which is pro-

duced by rapidly diminishing the central light on the screen (which

makes it for an instant appear black), and by referring to his candid

avowal in the Advertisement, that " the third book and the last pro-
"
position of the second were put together out of scattered papers,"

and that " The subject of the third book I have also left imperfect,
" not having tried all the experiments which I intended when I was
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"about these matters, nor repeated some of those which I did try

"until I had satisfied myself about all their circumstances." I may
add that Newton's measures of the distances at which the first dark

bar was formed are so irreconcileable with those of his admirer Biot

that, referring to the avowal above-cited, I think no reliance ought to

be placed on the accuracy of his observations of diffraction.

Since writing the above, I find that Biot has repeated the experi-

ment with the same result which I have obtained {Traite cle Physique,

Tom. IV. p. 749). He has not commented on or even mentioned

Newton's observation.

G. B. AIRY.

Observatory,

May 6, 1833.

p 2
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By the Rev. R. Muuphy, M.A. Fellow of Cuius College, and of

the Cambridge Philosophical Society.

[Read Nov. 11, 1833-3

INTRODUCTION.

The object of my former Memoir on the present subject, pub-
lished in the Fourth Volume of the Society's Transactions, was to

investigate the principles by which we might revert from a function

outside the sign of definite integration, to the function under that

sign, whenever the latter belonged to any of those classes usually
received in analysis. In that case the function outside the sign of

integration possessed the characteristic property of converging to zero

when a variable quantity x was made to increase indefinitely ;
in the

present Memoir I have endeavoured to complete this theory, by the

research of the forms and properties of the functions under the sign
of integration, when the characteristic above mentioned is not pos-
sessed by the function resulting from integration : and as the subject
increased in difficulty, those methods of analysis which possessed greater

simplicity and uniformity have been most adhered to, in the follow-

ing investigations.

The fourth Section is devoted to the research of the nature and

properties of the function under the sign of integration, when the

integral always vanishes between the limits (0 and 1) of the indepen-
dent variable which have been uniformly adopted in this as in the

first Memoir. The class of functions thus investigated possess the re-

markable property of vanishing an indefinitely great number of times
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in a finite extent; such functions correspond to an extended and

curious class of pheenomena in nature, when any principles of action

which have been observed, under peculiar circumstances cease to produce
the observed effects, as when equal charges of opposite electricities

are communicated to a body, or when a body electrised by influence

is removed from the vicinity of the influencing system ;
or lastly, as

when heat in its thermometric effects disappears in the chemical

changes which bodies undergo.

The properties of this class of functions are of great use and

importance in analysis, as they conduct directly to the theory of

reciprocal functions. This term I have here employed to denote such

functions, two of which being multiplied together the integral of the

product vanishes, except in one particular case. That function which

is in this sense reciprocal to another, is also in general different in its

nature. There are however many functions which are reciprocal to

functions of their own nature, and to this class belong the only two

species of reciprocal functions hitherto introduced into analysis ; namely,
the sines or cosines of the multiples of an angle, the integral of the

product of which always vanishes (when taken between proper limits)

except in the particular case of equimultiples; and secondly, such

functions as satisfy the well-known partial differential equation in the

third book of the Mecanique Celeste; where the integral of the product
also vanishes except in the particular case where the functions are of

the same order. It is this exception which renders reciprocal func-

tions particularly useful, as is evident from the application of the

trigonometrical functions in the theory of heat, and of Laplace's functions

in investigations relative to the distribution of electricity. In the same

Section I have shewn generally the means of discovering all species

of reciprocal functions, and given several examples : as an instance of

one of the most simple species possessing properties very analogous to

those of Laplace's functions, but giving a simpler integral in the case

where that integral does not vanish, it is proved in the succeeding
h

Section that if T„ be the coefficient of h" in -—
j , then when n and in

are vmequal ftT„T„ = 0, but when n = vu ftT„T„ = l.
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The theory of reciprocal functions is applied in the fifth Section

to the complete solution of the question, which was the object of this

and the preceding JMemoir, namely, to revert from any function what-

ever to that under the sign of definite integration, those reciprocal

functions being employed which are most convenient in each particular

instance.

The last application in this Memoir of the theory of reciprocal

functions, is to the development of given functions of x in descending

powers or other forms which vanish when x is infinitely great; the

results of which may be applied to the valuation of functions of

very great numbers, and to a great variety of physical problems.
These series have also the peculiarity, generally, to terminate for the

functions of integer numbers.
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SECTION IV.

Inverse Method for Definite Integrals which vanish; and Theory of

Reciprocal Functions.

1. When the equation fif{t).t'
=

(p{x) is supposed to be restricted

to particular values of x, then whatever may be the form of
(p {x),

J'{t) may always be determined
;

the values to which x is restricted

we shall suppose to be the natural numbers 0, 1, 2, 3 (w — 1), and

the method here pursued will also apply if the values of n should be

different from those mentioned.

2.
*
First, let f,f{t).t'

= 0, the limits of t being always and 1,

and let us seek for f{t) a rational function of t of the lowest possible

dimensions, which shall satisfy this equation when x is any integer from
to n — 1 inclusive.

Any value of f{t) which answers the proposed conditions may be

divided by the absolute term, and the quotient, it is evident, will

equally fulfil those conditions; we may therefore take the first or

absolute term in f{f) to be unity, and as the conditions to be satisfied

are w in number, we must have n coefficients in f{t), which will hence

be a rational function of the form

1 + Alt + A,f + + Ant";

and therefore (j>{x)
= + —-^ +—^ + + "—-^,

p
or =

T^r by actual addition,

putting Q for (a; + !)(« + 2), (x + w + 1), and P representing a function

oi X oi n dimensions.

Hence P=0, provided x be any number of the series 0, 1, 2....(/i
— 1);

these are therefore all the roots of that equation, P being of n dimensions
;

hence we must have

P = c.x.{x-l){x-2) {x-n + \)\

c representing a constant quantity.

* I have resolved this question in a different manner in the " Treatise on Electricity."
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We have thus

1 Ai A2 An c,x.{x-\) ....(ar-w + l)

« + l
"^
x + ^

"^
x + ^6

"^
x + n + 1

~
{x \-\) .{x + ^)....{x -{-n + 1)'

Multiply by x + 1, and then put x= —\\ hence c = (
—

1)",

by ar + a, a:= — 2; -(4i= — -
.
——

,

by . + 3, .= -3; 4=-"-^-^.^^^±ii^>;
&c &c.

1- j^/js -.
« w + 1 ^ «.(«-l) (?i + l).(w + 2) .„ Jhence /(0 = 1- j •-]-•

^+ ^T^-^-^ H^ ^./^-&c.

dt" 1.2.3....W

3. Denoting by P„ the value of f{t) which has been investigated

in the preceding article, it possesses the remarkable property ; that

ftP„P„ = 0, except when m — n, and then

r p jj __
^

.

•'' '" "~2w + l'

the limits being always and 1.

For when m and n are unequal, one of them as n is the greater,

P„ contains then only powers of t inferior to n, the integral of each

of which vanishes by the natvire of P„.

When m = n, the last term of P„, namely

(w + l)(w + 2)....2w ,

1 . 2 ....n
^ ^''

is the only term of which, when multiplied by P„, the integral does

• This value of _/(<) lias been shewn in the " Treatise on Electricity
"

to be the coefficient

of /j' in {1-2//. (1-2/)+/*^}-^.

Vol. V. Part II. Q
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not vanish ; and since in general

/p.. _/_ix. ^-(^-1) ....{x-n + 1)
'' "

"
^ '^^

•{x+l){x + 2)....{x + n + l)'

it is evident that in this case ftPj 2n + l
'

4. To illustrate the observation in Art. 1, with respect to the

generality of this method, let it now be required, to find a rationalfunction

of t, as f{t), of the lowest possible dimensions, to satisfy the equation

fif{t).t'
= 0, when x is any number of the series

p, p + 1, p + 2, .p + n-l.

Putting as before /(^) = \ + A,t + A-J'- + + Aj\ we have

/• f(f\ ft
_ 1

,

^'
,

-^2
,

-^-
"•^^^' x + 1 x-^2 x + S x + n + 1'

the sum of all which fractions must by the reasoning of Art. 2, be

c . jx—p) {x—p—l)....{x — p — ti + 1) _

{x + l){x + 2){x + 3)....{x+p + x)
'

and determining c, Ai, Ai, &c. in the same manner as in the Article

referred to, we have

1.2.3....W
c = (-l)».

(j9 + l).(jO + 2)....(jO + W)'

. _ n n+p+1
"^'~~1- p^\

'

. _ n.{n-\) (»+/? + l).(«+jP + 2)'~ 1.2
•

(^ + l).(;j + 2)
'

&c &c.

and therefore

'^ ' 1 ^ + 1 1.2 (jo + l).(jo + 2)

t^ d^ j /t _ ^ , n.{n-l) ^ „ 1

~ip + l).{p + 2)....(p + n)-dt''-y -V 1-^+ 1.2 .^-&c.|;
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or, putting l — t=^t', we obtain

J^'
(jo + l).(jo + 2)....(jp + «)" r/^"

5. From this result it follows that if we put

then shall ftj'{t).t''
= 0, provided x is any number of the series

0, 1, 2 (n-l);

Op representing any constant quantity.

Now OpfP may be taken for the general term of an arbitrary function J^;

hence the most general function which satisfies the equation ftf{t)-t''
— 0,

is expressed by

.,,. _ d^jtH'T)

In fact we have (supposing the integrals to commence from ^ = 0,)

f,f{t) . r =
t^f, it)

-
xt^-'f, {f)\X.{x- 1) ./s it),

&C.

representing by fn {t) the ri^ successive integral oifit), and putting for x

0, 1, 2....(w
—

1) successively, it follows that

Mt) = 0, f,{t)
=

.f„{t)
= 0, when ^=1;

that is,Jn{t) and its n differential coefficients vanish when t= and when

t=l; therefore y^ (/) contains a factor of the form ^".(1 — ^)",
and con-

sequently the most general form of f{t) is

d"(t"t'''r)

dt"

6. Hence we deduce the following general property:
''

If /{t) he

any function which satisfies the equation [tf{t) . t* = 0, a; being any integer

from to in — V) inclusive, then the equation f{f) = will always have n real

roots lying between and 1."

For the equation r.^'°F=0 has n roots t= and n roots ^=1; and

therefore f{t) which is the n^^ derived equation must have n roots be-

tween and 1.

q2
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Hence, if we suppose the equation J,f{t) .^ = to hold true for an

indefinite number of entire values of x, the equation f{t) = will also

have an indefinitely great number of roots all lying between and 1,

and the curve, of which the ordinate is f{t), and the abscissa t, would

intersect that portion of the axis of x, of which the length is unity
measured from the origin in an indefinitely great number of points;
thus we have a property characteristic of this class of functions.*

7. We have supposed J'{t) to consist of terms involving the

powers of t, but as we may proceed in like manner for any other

assumed form, we take the following as an example, because it leads

to some remarkable results.

To find a rational function of h. 1.
(f) as y(h. 1. t) of the lowest

possible dimensions, which may satisfy the equation ftf(h.\.t).t' = 0,

X being any integer from to n—1 inclusive.

Put /(h. \.t) = \ + A, h.\.t+ A^ (h. 1. ff + + A„ (h. 1. t)',

and observing that J,{h.\.{t)]"'.f
= {-\f. •^^^•:;\

,

we get f,f{\,.l.t).t'
=
^^-j^^^,+~^^^^- ±

-(^^nyr.T-.

and actually adding the fractions in the right-hand member of this

equation, the numerator which is a function of n dimensions, ought
to vanish when x is any number of the series 0, 1, 2...(w-l); that is,

{x + 1)» -A,{x + !)"- + 1 . 2^2 (a; + 1)""'
- 1 . 2 . 3 ^3 (a; + 1)""'

= C.x.{x-\){x-^) {x-n->r\).

Let Si represent the sum of the natural numbers 1, 2, 3.,..(«-l), n,

Si the sum of their products two by two,

^^3 the sum of their products three by three, &c.

* Vide Art. (4) in my first Memoir on the Inverse Method of Definite Integrals.

/
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Then by the theory of equations, the right-hand member of this

equation is equivalent to

c {(x + 1)'
- s,{x+iy-' + SA^+iy-' - SA^+i)"-', &c.|

whence c = l, ^i = aS',, ^2=, „, ^3= J -^, &c. hence the required

function is

8. It has been proved, that the function thus obtained (which we

shall denote by L„) in common with all others which possess the

property that ftj'(t) .f = 0, when x is any integer from to n — 1 in-

clusive, is of the form

d\ {ft'" V)
dt"

'

to verify this in the present case, we must sum the preceding series

which is represented by Z/„.

First, by the nature of multiplication, we have

hr + SJi^-' + S.h"-"- + +S„ = {h + \){h + ^) {h + n),

and the development of an exponential gives

i+7.h.l.(^+-A^ + +
i.a.3..,:,

+&c.=/-,

the coefficient of h" in the product of both the latter series is iden-

tical with that by which Z/„ is expressed.

But since that product =^(A + 1) (/« + 2) (A + w)

df

=
^{r(l+Ah.l.^4-^^l^^&C.)|,

it follows that the coefficient of h" is also expressed by

d" [f {h.\. ty\

1.2.3 ndf'
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this quantity is therefore the sum of the series which we proposed to

find.

Now the equation h. 1.
{t)
= is satisfied by ^ = 1 ; hence h. 1. t is

i' t'^

of the form t'. Q, {where Q= — (1 + - + — + &;c.)}, and therefore if we

Q"
put

—
^ = J^, we get the value of L„ to be

d".{t''t''''F)

df

which was the formula we had required to verify.

We may also observe that since in the equation L„ = 0, / must have

n values lying between and 1, therefore h.l. {t), according to the powers
of which L„ is arranged, must have n real negative roots, which we
see confirmed by the positive signs of all the terms which compose L,,.

9. If we form the equation

u (1
— h h. 1. u) =t,

we have by Lagrange's theorem

. J..UW.N, ^' d{t\iA.tf ^

¥ d'{t\\.\.tf ,« = . + ;i.h.l.(0+^.-^^^—
^

-f-^-^3.-A^^+&c.

from whence it appears that Li„ is the coefficient of h" in the value

of -^. Similarly if in Article (12) we form the equation

u \\ -h. (1
-

u)] =/,

du
we have P„ = the coefficient of h" in

-rj
.

10. If Q„ i<? the coefficient of h" in
-j-, supposing u to he deter-

mined by the equation u{l — hU) =
t, U bei)ig a function of u which

vanishes when u = l, and T the same function oft, then shall

j,Q„f ^ x.{x-\){x-2) {x-n + 1) ,

j/F'T 1.2.3 n
'^ ''
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For if we put ti = in the equation u{l — hU) = t we get 1 = 0,

and putting u = 1 we have by supposition U = and therefore t = I,

hence the limits of u are the same as the limits of f.

But j;Q„f = the coefficient of h" in f^^.f,^i U/t

and
l^^.if

= JJ^ = !„u''{l-hUr

expanding the part under the sign of integration, and taking the co-

efficient of h" we obtain

hHnt -
1.2.3 n -(-l)^^ ^-

11. If U he a rational and entire Junction of u which vanishes

when u = \, and if Q„ be the term independent of u in the product

U"- \\— —\
, then shall Q„ be itself a rational and entire function of

t possessing the property of ftQj'^ = 0, x being any integer from to

n—\ inclusive.

For it has been proved in my former Memoir on the Resolution

of Equations*, that the root of the rational equation <f){x)
= is the

coefficient of - in — h. 1. ^— , hence the value of u in the equation

u(\ -hU)=t, is the coefficient of - in -h.l. j(l--] -hul, and

differentiating, it follows that the value of -tt is the term independant

of u in

u)

* Camb. Trans. Vol. iv. p. 131,
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because the u under the logarithmic sign is the same as if we had

placed there, a or any arbitrary symbol, and is therefore treated as a

(jLu

constant in the differentiation; hence the coefficient of h" in ~t- is the

term independant of m in

(>
-

-:)

n + i '

that is, its value is Q„, and therefore by the preceding Article /Q.r
vanishes between the limits of x, and n — \, its general value being

T being the same function of / that U is of u.

By this theorem, every possible variety of rational and entire func-

tions which possess the above-mentioned property may be found, as in

the following

Example:

To find a rational function of t, in which the powers of the variable

are in arithmetical progression, such that jiQ,nt'=0 when x is any number

of the series 0, 1, 2 {n — 1).

In this instance put U = 1 — u"", m being any positive integer.

Hence Q„ = term independent of u in

/ t\ "*""*"'*

(i-^o».(i--)

^
« (w+ l)(w + 2)...(w+m) w. (w-l) (M+l)(w+2)...(?i+2OT) ^,„_.
1' 1.2...m 1.2 1.2, ..2m

in which if we take in particular m =1, we get the value of P„ before

found in Art. (2).

This formula for Q„ may be written in another form by which it

will comprise the case where /w is a fraction, thus

n (m+l)(m+2)...(m+n) ,„, w(«+l) (2»^+l)(2w^+2)...(2w^-^w) „
„

^-=^-i- r^:::^
-^ ^"ttt- t:2::ji

-^ "*'''•
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and it is, moreover, evident that either of those values are identical with

1.2...nde'
'

which is included in the general form given in Art. 5. viz.

d\ {ft'" V)
dj"

12. 2'o find a rational and entire function of f of h dimensions,

which if multiplied hy a rational and entire function of t' of less than n

dimensions, the integral of the product may vanish between the limits t =

and t=l.

Let the required function be represented by (p, q),„ so that

{p,q\^l + A,t^ + A,f-f + A,,f^,

and by the proposed conditions we must have

lAp, qXt-" = 0,

ni being any integer from to « — 1 inclusive, put t^ = T, the limits

of 7' are the same as those of t.

Hence J^ip, ?)» T~^~' T''= 0.

1-1

Now
ij), q)„ T" , is a function of T of which the indices are in

arithmetical progression,
-

being the common difference, and T' the

first term ; and as the nature of the question affords m independant

equations for the determination of the n coefficients Au A-,...A„, it

follows that there is only one function of the kind, which will satisfy

the proposed conditions, and by Art. 5, it is evident that the function

5
2'"''' (1
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l_i
follows that if we divide this function by T"^ , and then substitute f
for T, we shall obtain the value of {p, §-)„ ; we have thus,

_ ip + \){p + l+q){p^-\ + 2q)....\p + 1+{n-l).q] n

ia+g){l + 2q)....{l + (n-l).g\ l'

, (2p + l)(2p + l+q)....{2p-i-l + (n-l).q} n.(?i-l)

l.{l+q)....{l+{n-l).q}
'

1.2
^

.'^^•

13. The functions {p, q\ and
(5-, jo)„ may be termed reciprocal func-

tions, and possess the remarkable property, that if n and «' are any
different integers, then shall

ft(p,q)n.{q,p)n' = 0.

For if n>n' then {q, p)„' is a rational and entire function of t^ of

less than n dimensions, and therefore by the preceding Article the

integral of the product must vanish ; again if n' > n, then {p, q)„ is a

function of f^ of less than n' dimensions, and therefore when multiplied

by (q,p)„' the integral ought to vanish.

To determine the value of the same integral when 71 = n', it is

evident by the nature of the function {p, q)„ that we need only attend

to the last term in the expansion of {q,p)n, namely

. {nq^l){nq + l+p)....{nq^-l + {n-\).p}
^ "->•''

1.0.+p)....{l^{n-l).p}
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Now if we put for {p, q)^ the series assumed in Art. (12) aiid multi-

plying then by f, integrate from ^=0 to ^= 1, we have

ar + 1 a;+j9 + l a; + 2/> + l
"*"

x-\rnp + l

and actually adding these fractions, the denominator of the sum is

{x + '\){x +p + l)(;r + 2jo + 1) {x + np + 1);

and since the numerator is of n dimensions in x, and vanishes when

x = 0, q, 2q....{n- I) . q,

it follows that the sum is of the form

c .X . (x— q) (x—2q)....{x
— {n

— l).q]

{x + l).{x+p + l)....{x + np + l)

Multiply by ^ + 1 and then put x= —1; hence

^^ c.{-l)\l.(q + l)(2q + l)....{{n-l).q + l}
^

p . 2p . 3p....np

whence deducing the value of c, and substituting in the above integral,

we obtain

^'^^'^^''•^^^~P^'''l.{q + l){2q + l)....{{n-l).q+l\

^^
x.(x-q)(x-2q)....{x-{n-l).q}
{x+ l){x +p + l)....{x + np + l)

'

hence y;(^, g)„ .^"^ = (-^y .

^ ^^^ ^| ; ^^^^^ ^^ ^y

nq (nq
-

q) [nq
—

2y) .... \nq - {n — 1) . q]

{nq + l){tiq+p + l)....(nq + np + l)

from whence we obtain finally

n" 1 . 2 . 3 . . . .?{

f^ ip, q)n {q, p).,
=
„(^ + ^) + i

•

i(^q^l)„..{{n-.l).q+l\

nq(nq— q) {nq
—
2q)....{nq—{n

—
l). q}

''~'Up + l){2p + l)....{{n-l).p + l}

R 2
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that is, it

_ {pqY V .^' . 3'

n{p+q) + l'l.{p + l)(q+l){2p + l){2q + l)....{{n-l).p+l\{{n-l).q + l\

, 2 _ y f
1.2.3....W 1^

COR. j,(p,p}n- 2n + l-\l.{p + l).{2p + l)....{{n-J).p-i.l}f-

14. To find the reciprocal function to that denoted by L„ in Art. 8,

, d" {f (h.\. ty\
^' 1.2....W df

'namci

L„ consists of the powers of h. 1. /, and possesses the property of

ftL„t'
= when x<n; suppose now that we investigate a rational function

X„ which shall possess the property JtK {h.l. t)'
= when x<n; then it

is evident that j^X„i„/= when n and n are unequal; and therefore they

are reciprocal functions.

Put K=l + AJ + A,f +....AJ'',

Put Ar = 2" + 'B„ A, = 3''
+ 'B, A„ = {n + lY^\B,r,

hence we must have when x<n,

1'-' + a"-'^, + 3"-"^2 + (« + i)"-^jB, = 0.

Now the left-hand member of the equation is the same as

putting t= after the differentiations.

Hence the differential coefficients from the 1" to the w* inclusive

of the function between the brackets vanishes when ^=0; that function

of e' ought therefore to contain no power of t inferior to the (w + 1)"',

and conversely, a function of e* which does not contain such a power
of t, will fulfil the required conditions.
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Now this is the case with (1
—

e')''''"^
which is also when expanded

of the same form as the part between the brackets; hence equating like

terms, we have

Hence A,= -\.T, A,= '^^^^ .S" ^„ + ,
= (- 1)". (« + !)";

and therefore X„ = l-p2"^+'^^.3'7^- (-1)". (« + !)«. r.

Cor. 1. When ?^ and n' are unequal, then ftL„'\,„
= 0.

But when Ti'=fi, we need only take the last term of L,„ namely, (h. 1.
/)";

hence

j;x„z>„
=
j;(h.i.^)"{i-^.2"^+'i^j^^.3"^^-&c.|

=
(-l)..,...S....„{.-f.l.^^).l-.e.}

_ (-l)''.1.2.3....w~
ft + l

Cor. 2. j;x„(h.l.^)^'

= i
- ly .1 . 2 . 3....X ll'-^-' - n Q.""-' + ^~^ .3"-"-' - kc.\

= (
-

1)"-M .2.3 ...x A" . (A"-*-'),

h being put = 1 after the operation of taking the «* finite diiFerenc<»

on the supposition that the increment of k is unity ; from whence it

is easy to deduce

^^^' = <-')-'^--^-

Cor. 3. All the roots of the equation X„ = are real, and lie between

and 1.

For if we put h. 1. (/)
=

it, and X„e"= U,

then ;x„ (h. 1. ty = f. Uu^= ti^f^ U- xw-^f.: U+ ^4^^ // U, &c.
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and putting x = 0, 1, 2, &c. successively, it follows that fu"U and its («
—

1)

successive differential coefficient vanish when u = and w = - oo , Hence
U=0 has n real negative roots; and therefore X„ = has n real positive

and fractional roots.

15. In general let U,„ V„ be any functions of the variable t and the

integer n, and let A-^.-.A,,, ai...a„ represent constant quantities; or de-

pending on n only.

Put T„ = C/„ + A,U, + A,U, + .... + A^U„,

and T:= K + «i^> + «-.F, + .... + a,r„.

Then the n equations

j;r„r„=o, f,T„r,=o, j,t„v,=q ;r„r;_,=o,

Avill serve to determine the constants A^, A.,....A„.

In like manner let the corresponding constants «i, a2....a„ be de-

termined from the n equations

the functions T„ and T„' which are thus determined, are reciprocal func-

tions, and possess the general property ft T„ TJ = 0, except when n - n',

and then

ft 2\ T: = aJtT^K = A,, ft T: C7„ ;

this is the general principle of reciprocal functions.

Cor. Let f{t) be any function of t represented by the series

f{t) = c,T, + c. 2\ + c, T, .... &c.

where Co, c,, Cg, &c. are constant coefficients to be determined, then

multiply by T^, T(, T~U &c. and integrate the successive products,
and we get

c,ftT,Tl = ff{t)T^,

c^ftT.TI^ ftf(f).Tl,

c.fT,T^ =
f,f{t).T.I,

&c &c.

by means of which equations the required coefficients are given.
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16. Let «„, h„, c„, &c. be any functions of t, the reciprocal functions

to which for simple integration are «„', J„', c'„', &c.

Let a„, &c. be any function of another variable T, and let a/, &c.

represent the corresponding reciprocal function.

Put S„ = a„a^ + Kai + C^a^ +
and S,! = an'uo + i/a/ + c„'a.2 +

then S„, Sn are general forms for reciprocal functions with respect to

the double integration relative both to t and T.

For if we put m for n in the latter series, and multiply the series

for S„ and S,„' together, the integral of the products of any two terms

which do not hold the same place in either series when taken relative

to T must vanish, since a„, a„' are reciprocal functions.

Hence frSnSJ = a„a„' fj.aoaa + b„b,„' fraiai + c^cj frO^a./ +

Integrate now with respect to t, observing that when m and n are un-

equal, then

_^ «„«,„'
= 0, ftKbJ = 0, ftC„c„'

= 0, &c.

Hence /_4*S'„«S',„'
= 0, when m is not equal to n,

and ftfrSuSn =
ftfr {a„a^aoa^ + Kb„'aiai' + CnC^'a-^a^ +...].

Cor. 1. In the same manner reciprocal functions of any number

of independent variables may be formed.

Cor. 2. The equation S„ = has n real roots or values of t lying

between and 1, whatever value be assigned to 7', when a„, b„, c„, kc.

are functions possessing the property ftaj'= 0, &c, x being any integer

from to w - 1 inclusive ;
for then «„ must be of the form —

—jj-„
—-

>

by Art. 5, and similarly

, d\{t'-t"'V') _ d\{t^t"'F")"~
dt"

' ^"~ df '

and therefore

Hence »S',=0 must have n real roots between and 1. (Art. 6.)
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17. If it is necessary that the terms which compose the reciprocal

functions S,„ S,! should follow a simple law, it will be most convenient

to get first two reciprocal functions of t, as R,,, R,', which may contain

an arbitrary constant r, and to put for «„, J„, c„ &c. the values acquired

by R„ when r= 0, 1, 2, &c.
;
and similarly for «„', i„', c,,', he. the cor-

responding values of R\.

Example :

Thus, put R^^iiff'"^-^,
and RJ = {ttf'" '^, P„ being the

d" (tt'Y
function so denominated in Art. 3, namely,

—
^,^ ; then, integrating

by parts, we have

the part outside the sign of integration vanishes between the limits of

/, and repeating the same operation any number of times, the part out-

side the sign of integration is evidently of the form

dt'-"
'

dt"-' \ dt'

the latter differential coefficient will vanish between limits when k is

any number from to r inclusive, because it will always contain the

factor {tt'Y~'"^^ ; also when n and m are unequal we may suppose w to

d'P„
be the greater, and since ft''—

j-^
is of in + ;• dimensions, it follows

that if k> n + r, then k -1> in + 7-; and consequently the latter dif-

ferential coefficient will be identically zero.

^*-i / d'P
The only instance in which the factor ,

.._,
iff' , .'"

j

does not

Aanish between limits is, therefore, where k lies between r + 1 and r-\-n

inclusive, but then the first factor is changed to ft'''P„; and since k— r

is now some immber from 1 to « inclusive, this factor vanishes between

limits (vid. Art. 5.),
and therefore the part outside the sign of integration

vanishes in all cases, and we thus obtain ,

f,R.R.„ -(-1; j^-^^,-^.-^[tt -^jr)'
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Put now h = r, the first factor under the sign of integration becomes

simply P„, and the second factor is then of m dimensions; and there-

fore, by the nature of P„, the integral vanishes; and therefore, when

n>m, ftIl„Bm' = 0: and the same reasoning applies when m>n, only sub-

stituting RJ instead of R^ throughout the process, hence R„ and R,„' are
'

reciprocal functions.

When m = n, then in the general expression

j;R«.' = (-irj;p.^(«-^);
we need only take the term involving the highest power of t in

dr K^ dr )'

namely,
/ ,.... (« + !)•(« + 2)...(2w) d^

(..rd-.n
^ ' 1.2... n dr \ dt' 1

. ,, , (« + l) . (« + 2)...2« ,
.

, ,^ , ,x ,

and observing that /JP„#" = (
—

1)" . -,
.,, ,

—''"
/_—-^. ;

it follows that ftR„R,!=- . {n + r) {n + r-1) {n + r-2)...{n-r).

The reciprocal functions a„, a„' may be obtained by putting r =
in R„ and RJ ', similarly, if we put r = l, we get b„, b„', &c., and thence

we obtain the reciprocal functions relative to double integration, namely,

dP d^P d^P
S,'=:ao'{tt'Y ^n +

«.'(«')^^'^
+
«^'(«T^"^-f"

+
«3'(«')^-"^",

&c.

In the same manner if we vary the constant a while r remains constant,

we obtain the reciprocal functions

Vol. V. Part II. S
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Cor. 1. The simplest form for a„ is the sine or cosine of the w'"

multiple of an arc of which the limits are and 2w7r, as

A„ sin (2 nicT) + B„ cos (2 wtt T),

where A„, B„ are arbitrary constants, then we have (putting for sim-

plicity a = 0),

S„ = A,P„ + {A, sin ^TTT + B, cos ^-n-r) -^
+ {Ai sin 4 TTT + Bi cos 4 ttt) dt i >

this is the most general form for all the reciprocal functions which occur

in the Mecanique Celeste. (Vid. Prop, xi. Treatise on Electricity.)

CoK. 2. If T„, T,' are arbitrary functions of t, which do not become

infinite when ^=0 or 1, then, putting

Rn =
{tt'f Tr*^, and R,: = {tt'f T;.^ ,

the same reasoning as that used in the preceding example will show

that R^, R„' are reciprocal functions, and thus we get for a^^, aS",,' the

very general forms

S„ = «„ T,P„ + «. y.^ («')* + «^ T^ -^m + «3 T,^ {tt'f + &c.

S: = a„' 2;'P„ + a/ T;"^ {tt'f + a.: T^^ {tt') + ai Ti ^{tt'f + &C.

Cor. 3. If f{t, t) is any function of the variables /, t, which is ex-

panded under the form

f{t, t)
= a,S^ + a,Si + a^S; +

then, to determine the coefficients a^, Ui, a-i, &c., multiply successively

by So, Si, SJ.... and integrate from t=0 to t=l, and from t = to

T = 1 : we thus get

do ft fr SoSo =
ftfTSo'J'{t, t),

aiftfrSiSi' = ftf,Si/{t, t),

aJJ^S.,S.; =
f,f^S./f{t,T);

from whence the required coefficients are known.
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SECTION V.

Inverse Method for Definite Integrals which are expressed in positive

powers of x, or under any form.

18. Let <^{x) represent any function of x, such that Stf(Jt) .f = (p{x)

when X is any integer from to n — 1 inclusive, then excluding the

case of
(p {x)

= 0, which has been considered in the preceding Section,

it is evident that by putting

f{t) = A, + A,t + A,f + +An-,tf-\

the conditions of the question give n equations, which suffice to de-

termine the coefficients A^, Ai, A^, A„.^\ if we represent the

particular value of f{t) thus deduced by T„^i, and seek its most

general value, we have

;/(0 .t^ =
<p {x),

.-. f,{f(t)-T„.,}.t^ = 0.

Hence by the preceding Section, the most general value off{t)— Tn-i is

dt-
'

and therefore the most general value oi f(t) is found by adding this

appendage to its prime value T„_i.

19. When <p{x) is a rational and entire function of x, of m di-

mensions, we have by the proposed conditions

'P^'^'' x+l^ x + 2^ x + 3^ x + n'

and actually adding the terms which compose the right-hand member
of this equation, the common denominator is

(x + l){x + 2) (x + n),

s2
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and tlie numerator will be a function of ft — \ dimensions, represented

by v„, so that

v„

<p{x)
{x+ l)(ar + 2) (a; + M)'

when X is any integer from to (^^
-

1) inclusive; and if we multiply

by a;+ 1 and put x= —
1, and again by a; + 2 and put a-= — 2, &c. as in

the preceding Section, we get

A,
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«_, = (- 1)"+'. 1.2.3....n/-~-.u.2,

&c. = &c.

from whence the values of A^, Ai, A-z, &c. are known, and being sub-

stituted, give

J
.M_2^

n.(«.H)(.-f2) («-l)(.-2)
I^ 1.2 1.2

'

J

Example :

Let 0(a;)
= 1, then «, = 1, and therefore

«.(« + l)(w + 2) (w-l)(/?-2)
"*"

1.2 1.2 .f-&e.|

20. The function Tn-\ possesses a property analogous to the charac-

teristic property of those in the former Section, that is, the equation

2\_^ = admits of n — m-l roofs between and 1, and consequently

vanishes an indefinitely great number of times between the limits / =

and t=\ when n is taken indefinitely great.

For since r„., = (- 1)-'
|«M.,

-
^^^^jtil

.^V «., ^

n{n+l){n+2) {n-l)(n-2) ]

^
TTa

•

1.2 •«-3^&c.j

_ (-1)- ^\t^(u -VlzI u 1 1

(»-i)-(^^-a) „ t. .,„^l=
i.2.3....(.*-i)-rfrr \

'

1
^ ^'^^

i:% -"-a^-^c.JI

=
-r 2.3..U-i) -£^^'^"'"-^^"'^-
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tlie operation A being performed on the supposition that the finite

increment of x is unity, and x being put =1 after the operation A""'

has been performed.

Put i=l — f, and therefore,

A"-'(M_,r-') = A"-'M_,-^A'-'M_.(a;-l)+—— A"-'M_,(a;- 1) (a--2)-&c.

and since m_^ is of m dimensions, the first term of this series which does

not vanish is

ftn-m-\

-
1 2.-(«-/»- 1)

•^""'"-^^'^~ ^^ (^-^)--^^ -n + m + l),

and therefore the whole expansion is of the form

t'"-"-' r, 1.2.3 (w-l),

which being substituted gives

_ d'{t''t"'-'"-T}

and since the equation t''t''""'-'^F'=0 has at least 2n-m—l real roots,

viz. ti of them =0, and n — m—l of them = 1, it follows that the w""

derived equation T„ = has n —m—l real roots lying between and ] .

COK. Since r„_. =
,.,.3.1(,_^)

•^ {r^-^u.J-^},

if we actually differentiate we get

^-^=
1.2.3.!..(«-l)

-^""'^^-^-^+^>—^^+ "~^^"-^"'^-

21. Let now <l>{x) be any function whatever, and let it be required,

in general, to find J'(i), so that ftj'it) f = ^{x), provided x be any

integer from to w — 1 inclusive.

It has been shewn in Art. 18, that a function T„.i of w— 1 di-

mensions may always be found to satisfy the imposed conditions, and

for the most general value oi f{t) we shall then have
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Now 7'„-i contains only n constants, being of » — 1 dimensions, and

therefore if we denote by P„ the same quantity as in the preceding

Section, namely the coefficient of h" in

{1- 2h{l-2t) + h:'}-i,

we may put

T„.i = ttoPo + a^P, + (hP2 + + a„_,P„_i,

the right-hand member being of the same dimensions with the left, and

containing the same number of constants.

Now by the properties of P„ we have j;P„P„ = 0, when m and « are

unequal, and

2« + l

Hence we have fiP^T„_.,= «„

Hi
Jl'* 2 -* n-1 — "^

•

But by the conditions of the question,

jc being any integer less than n.

Hence

j;P„7;-i = ^r„_i = 0(O) = (f>{h)
when h is put =0,

iP 7'„_,=j;2;_, (1
- 2o=0(o)-20 (1)=

- A ^^y^ .<^ (A),
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and generally

i;p.r..,=;r._,{i-f.^.*.'-ti^.<?!^<|±?l.f-&c.)

= (-l)'"A"'.^^ '\ ^
'

^^

'-.d){h). When h is put =0.
'

1 . 2 m ^ ' ^

and by comparing the former integrals with the latter, the values of

ffo, «i, a-i, &c. are known, and being substituted give

T._, = P,0(/^)-3P,A^.0(A)
+ 5P.A^^^±^^^±^.0(A)

J. • <« • t7

// being put =0, after the operations are performed.

It should be observed here that the terms of this expansion are

perfectly independant of «, which only fixes the number of the terms;

hence this series may be continued to any number of terms, and we

shall always have ftT„.it^
=

(p{x) provided x is any integer less than that

number, and consequently if the series be continued ad infinitum, the

equation will be true for all integer and positive values of x.

Cor. Multiply both sides by if and integrate from t= to /f=l,

hence «^ (^)
=^ •

<^ ('') + ^ .

^^^j;;^^^^^
A^ . A

+
^-(x + l)(ar + 2)(x + 3)^ 1.2 '?>^ + *'C-

when /* is put =0.

This series may be used, not only for the integer and positive

values of x, but for any values which will not render it divergent.

(Vid. First Memoir, 'On the Inverse method of Definite Integrals,'

Art. 2.)
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22. When 0(a;) is given we may obtain f{t) in an infinite variety

of forms by means of the theory of reciprocal functions given in the

preceding Section. For instance, if we denote by S^ the sum of the

products of the natural numbers 1, 2, 3. n when taken m and m

together, and put

i.=i+«.h.i,^.j«^.(h.M.+ ^.(h.M-+....+ r^.ch.ur

,5!lM!!iM. (Art. 8. Section IV.)

and \„ = l-?.2"/+^4^^.3"f- ±{n+l)''t

= (-l)"A"{(A + l)''^*}, when h is put =0,

then L„ and \„ are reciprocal functions. (Sect. iv. Art. 14.)

Put therefore y*(^)=aoZ/o + «iZ/i + a2Z/2+a3i3 + &c.

and observing that

1.2.3....W
ftKL„= {-lY.- w + 1

we have «„= (
-

1)" .

^ ^"^ ^ . ftf{t) . X„.

But jl/{t) .\ =
ftf{f) . (

-
1)'. A" . (A + 1)" . t. When h is put = 0,

=(-i)"A"(a + i)»j;/(o.^

= (-l)».A".(A + l)«.0(A), since ft/{t).f= (p{x).

Hence «„=
^ ^^

—-
. A» . (A + 1)" . (k),

and therefore

f(f) = Lo(p{h) + 2Li—^

^'
r

^.gjr,^
—

i 2
+^-^^-—

i 2 3
'

Vol. V. Part II. T
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which series when convergent will satisfy the equation jtf{t) . f' = ^ («)

for all values of x\ but even if not convergent, it will satisfy that

equation for all the integer values of x from to n — \ inclusive,

provided it be continued for at least n terms.

If we multiply by f and integrate as before, we get

which series when convergent may be used for any value of x, but

only positive and integer values when divergent.

23. In Art. 21. when ftf(t).t'^(p(x) a given function of x, we have

found y(0 in a series expressed by functions of t of the same nature

as P„, now P„ is only a particular value of the general function
(jo, q)„

investigated in the former Section, Art. 12., namely, when p = q = l; we
shall now express /{t) according to this more general class of functions,

that is, under the form

fit) = «o ip, q)o + «i (p, q)i + «2 {p, q)2 + &c.

Now in Art. 12. above referred to, we have found

, . _ {p + l){p + l+q)....{p^l + (m-l).q] m
Kp,qh-i

l(l^q)....{i^{m-\).q} l"^

(2p + l)(2p + l+g)....{2jo + l + (?»-l).g} m.jm-l)^
i.(\+q)....{\ + {m.-l).q}

'

1.2
'^ " *''•

To simplify this expression, put

77 = (/>^ + l)(M + l+9)--{p^ + l+(^-l)-g}
'''

l{l+q)....{l+{m-l).q}

Let
yj^ express the operation of changing h into h + 1 (Vid. former

Memoir, Note B. 2.), >//^
the repetition of this operation a second

time, &c. ; the preceding series will then become
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{p, 9),„
=H,r -

f . ^H,,f" +^^^ >\^^H,.r

on the supposition that we put h= after the operations above indicated,

are performed.

Separate in this expression the symbols of operation and of quantity,

and we shall obtain the equation

(p,q),„
= (l-fr.H,J'':

But \U — 1 or \^
T-

x//°
indicates that we must subtract the original

value of Hp,q, from the value it receives when h + 1 is put for h,

that is, it is the same as performing the operation A of finite differences ;

this consideration transforms the preceding equation, to this

(p, q)m
= (-iy" A" . Hf.qt"", when h is put =0.

In like manner if we put

„ ^ i,qh-\-\) {qh + l+p) {qh + 1 -\-{m-l) .p}
"'

1(1+^) {\ + {m-\).p}

we have
(g-, jo)„

= (-l)"' A'" Jf^.pi?"', when A = 0.

Now observing that by the nature of reciprocal functions we have

S* ip, q)m (q, p)n
= 0, except when m = n,

and by Art. 13., fi{p, q\{q,p)^

_ ip, q)'" 1.1.2.2.3. 3 .m . m~
1 +mip+q) '1.1. (l+ju)(l + 9)(l + 2^)(l+29)...{l + (»w-l) .p} {l + {m-l).q}

'

then since f{t) = «„ (p, q)o + «i (p, q)i + a, {p, q)^ + &c.

we have ftf{t) . (q, p)„

_ (pq)'" 1.1.2.2. 3 m . m
"**"'•

l + m(p+q)'l.l{l+p){l+q) {l + im-l).p} {l+{m-l).q}
'

t2



144 Mr MURPHY'S SECOND MEMOIR ON THE

But if we put for (q, p)„ the value above found, and observe that the

operations A and
fi are with respect to different variables h and t, and

therefore their order is transmutable, we have also,

= {-iy A"^ H,,p<p{qh), by hypothesis.

Comparing this value of the integral with that already found, we get

'" ^ '

{pqT I'l" 2 2
•

3
•

3

l + {m-l).p \ +{m-\) .q"mm
X A" JZ", p {qh), when h = 0,

from whence we have finally

At) = {p, q). (qh)
-

ip, q), . ^+f/^ • T ' T " ^ ^V. <l>W
, , 1 + 2(0 + 0) 1 1 1+p 1+q .,„„ , ,

_(« «N l+^Ci>+g) 1 1 l+£ l+i 1±2£ 1+22 A3 W^'" ri.r«M^^'^'°-
(pqf ri- 2 •^^- 3 •—^^^'>f't>'^W

+ &c &c.

h being put =0, after the operation, and H', H", H', &c. being the

values of Hp,, when m = \, 2, 3, &;c. successively.

Cor. 1. Multiply by t\ and then integrate from ^= to ^=1; for

Itf{t).t' put its value <p{x), and for ft{p,q)mt'' its value

/ ,v„„,„ 1-2. 3. .-^^ xix-q)...{x-{m-l).q\
^ 'P

1 (1 + g)(l + 2y)...{l -!-(»«- 1| .^)*(a;+l)(a;+jt) + l)...(a; + »w^+l)'



INVERSE METHOD OF DEFINITE INTEGRALS. 145

by Art. 12 ; and lastly, put for H,,^ its value

(gA + 1) {qh + 1. +i)). . ..\ g^ + l+ {m-\).p\ .

1.(1 +;?).. .|i+(»w-iy:jo"i

we thus obtain

+ »(^- g> L+a(i>±2) ^. (^ ^ (^ (^
(a: + l)(a;+jo+ l)(a?+2^ + l) Sg''

'^ '^^ ^ /rv"/ /

x(a;— 5')(a;
— 2^)

*"

{x + l)(a:+jt> + l)(ar + 2/> + l)(2 + 3ja+ l)

^
^

1^.2^^^
^'^^^' + ^^^^^ +-^ + ^^^^^ + aja + 1) {qh)

+ &c. when A is put = 0,

and where />
and q are perfectly arbitrary.

Cor. 2. Put ^= ^ = 0, and make

where ^(0), 0'(O), 0"(O), and the values of ^{x) and its successive

differential coefficients when a; = 0, and the above expansion will become

</>(x)
= ^„.^ +

^,.^^-.,
+ ^..^3 + &c.

If, moreover, we put

rr, ,
« , , , W.(»-l) (h. 1. O'' „

which is the same as A„ when we put f for ^ (a;),
then it is easily

seen by the principles of the first Memoir, that jj Tj' = -, r-r—r , and/ r r , ji n

(a; + l)"+''
since we have also fij'it)

. /^ = {x), it follows that
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24. The functions which have been all along designated by {p, q)„ and

{q, p)„, have been already shewn to be reciprocal one to the other; putting

p = q, the resulting function {p, p)„ must be reciprocal to itself; that is,

ft{p, p)„{p, p),„
= when m and n are unequal positive integers; when

p = l the function {p, j)),,
is then identical with that denoted by P„ , which

has been before shewn to be reciprocal to itself; again, the function T„ or

n n.(n~\) {hA.ty ^ n.{n-l) .{n-^) (h. 1. If

is reciprocal to itself, for if we mviltiply by (h. 1. ty, and integrate, we get

j;r„(h.l.0"' = 1.2.3...«.(-ir{l-f^-^!^ (^±i)^_&e.}.

The expression between the brackets is the term independent of h in the

product (1+/^)"(1 +
t)

, or the coefficient of //-('"+'> in (1+A)"-'"-';

it is therefore zero when n>m, but when n = m its value is
(
—

I)'",

and when n<m, its value is

, _ (?w + l -n){m + 2-n)...m
^~ '

'

1 .2 ...n
'

Hence fi T„ 7'„ = 0, when m and n are unequal, and

1.2. ..n

25. Put h. 1. (^)
= T, and substituting in T„, we have

1.2...W J'„e'^
=

e"|l.2...M
+
w.2.3...Wx+^^^^^\3.4...WT^

+
&C.|

(dw c?"-'t" n.(n-l) d"-W „ 1

_ d"{e'^r'')

„ _, 6-^d" (e-T")Hence 7; = -^—p^ t-^ .

1.2. ..war"
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From , this formulae it appears that the equation T„ = has n real

values of t all negative; and therefore n corresponding values of t,

which are all included between and 1.

Moreover, if we form the equation

u = T + hu, or u
1-h'

it follows by the theorem of Lagrange, that T„ is the coefficient of h"

de" e'~*
in

^'^•-j->
that is, in -—y, and putting t for e% T„ is clearly the co-

h

efficient of h" in the expansion of the function y .

Conversely, we may now prove that the coefficient of h" in the ex-
h

pansion of -—- is a reciprocal function; for when h = 0, this function
A "" ft

is reduced to unity, we may therefore put generally

= ro+T,^+T,A^ + &c. where T,= \.

A

fX-k

1-h

Let h' represent any other arbitrary quantity, and we have

1-hj= T,+ T,h'+T,h" + &ic.

Multiply both series term by term and integrate, the result in the

left-hand members is

{i-h){i-h')^'
~
i-hh"

/which expanded becomes 1 + hh' + h^h'^ + kc.; which being identical with

the integral of the product of the right-hand members, will necessarily

require that the integrals of those terms which are not in corresponding

places in both series must vanish, and the integrals of the products of

the corresponding coefficients to be unity, which are the same properties
that have been demonstrated in Art. 24.
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Cor. Put .;

—r = ^» and the series\—n

t~^ = (\~.h){ T„ +T,h+ TJi^ + &c.
\
becomes

^^=^+ ^•r4T^+ ^-7;:ttv3 + *'^-

The principles which have been used in this Section to obtain ex-

pansions such as the preceding by means of reciprocal functions relative

to simple integration, will apply with equal simplicity to reciprocal

functions relative to any number of integrations.

R. MURPHY.

Caius College,

Bee. 18, 1833.



VII. On the Nature of the Truth of the Laws of Motion. By the

Rev. W. Whewell, M.A. Fellow and Tutor of Trinity College.

[Bead Feb. 17, 1834.]

1. The long continuance of the disputes and oppositions of opinion

which have occurred among theoretical writers concerning the elementary

principles of Mechanics, may have made such discussions appear to some

persons wearisome and unprofitable. I might, however, not unreasonably

plead this very circumstance as an apology for offering a new view of

the subject; since the extent to which these discussions have already

gone shews that some men at least take a great interest in them ;

and it may be stated, I think, without fear of contradiction, that

these controversies have not terminated in the general and undisputed

establishment of any one of the antagonist opinions.

The question to which my remarks at present refer is this: "What
is the kind and degree of cogency of the best proofs of the laws of

motion, or of the fundamental principles of mechanics, exprest in any

other way?" Are these laws, philosophically considered, necessary, and

capable of demonstration by means of self-evident axioms, like the

truths of geometry ;
or are they empirical, and only known to be true

by trial and observation, like such general rules as we obtain in natural

history ?

It certainly appears, at first sight, very difficult to answer the argu-

ments for either side of this alternative. On the one hand it is said,

the laws of motion cannot be necessarily true, for if they were so, the

denial of them would involve a contradiction. But this it does not,

for we can readily conceive them to be other than they are. We can

conceive that a body in motion should have a natural tendency to

move slower and slower. And we know that, historically speaking,

Vol. V. Paet II. U
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men did at first suppose the laws of motion to be different from

what they are now proved to be. This would have been impossible

if the negation of these laws had involved a contradiction of self-evi-

dent principles, and consequently had been not only false but incon-

ceivable. These laws, therefore, cannot be necessary ; and can be duly

established in no other way than by a reference to experience.

On the other hand, those who deduce their mechanical principles

without any express reference to experiment, may urge, on their side,

that, by the confession even of their adversaries, the laws of motion

are proved to be true beyond the limits of experience ;
—that they are

assumed to be true of any new kind of motion when first detected, as

well as of those already examined;—and that it is inexplicable how

such truths should be established empirically. They may add that the

consequences of these laws are allowed to hold with the most complete
and absolute universality; for instance, the proposition that "the quan-

tity of motion in the world in a given direction cannot be either

increased or diminished," is conceived to be rigorously exact; and to

have a degree and kind of certainty beyond and above all mere facts

of experience ; what other kind of truth than necessary truth this

can be, it is difficult to say. And if the conclusions be necessarily

true, the principles must be so too.

This apparent contradiction therefore, that a law should be neces-

sarily true and yet the contrary of it conceivable, is what I have now

to endeavour to explain ;
and this I must do by pointing out what

appear to me the true grounds of the laws of motion.

2. The science of Mechanics is concerned about motions as deter-

mined by their causes, namely, forces ; the nature and extent of the

truth of the first principles of this science must therefore depend upon
the way in which we can and do reason concerning causes. In what

manner we obtain the conception of cause, is a question for the meta-

physician, and has been the subject of much discussion. But the general

principle which governs our mode of viewing occurrences with reference

to this conception, so far as our present subject is concerned, does not

appear to be disturbed by any of the arguments which have been



OF THE LAWS OF MOTION. 151

adduced in this controversy. This principle I shall state in the form

of an axiom, as follows.

Axiom I. Every change is produced by a cause.

It will probably be allowed that this axiom expresses a universal

and constant conviction of the human mind ; and that in looking at

a series of occurrences, whether for theoretical or practical purposes,
we inevitably and unconsciously assume the truth of this axiom. If a

body at rest moves, or a body in motion stops, or turns to the right
or the left, we cannot conceive otherwise than that there is some

cause for this change. And so far as we can found our mechanical

principles on this axiom, they will rest upon as broad and deep a

basis as any truths which can come within the circle of our know-

ledge.

I shall not attempt to analyse this axiom further. Different per-

sons may, according to their different views of such subjects, call it a

law of our nature that we should think thus, or a part of the con-

stitution of the human mind, or a result of our power of seeing the

true relations of things. Such variety of opinion or expression would
not affect the fundamental and universal character of the conviction

which the axiom expresses; and would therefore not interfere with our

future reasonings.

3. There is another axiom connected with this, which is also a

governing and universal principle in all our reasoning concerning
causes. It may be thus stated.

Axiom II. Causes are measured by their effects.

Every effect, that is, every change in external objects, implies a

cause, as we have already said : and the existence of the cause is known

only by the effects it produces. Hence the intensity or magnitude of

the cause cannot be known in any other manner than by these effects:

and, therefore, when we have to assign a measure of the cause, we
must take it from the effects produced.

In what manner the effects are to be taken into account, so as

to measure the cause for any particular purpose, will have to be

u2
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further considered ; but the axiom, as now stated, is absolutely and

universally true, and is acted upon in all parts of our knowledge in

which causes are measured.

4. But something further is requisite. We not only consider that

all changes of motion in a body have a cause, but that this cause may
reside in other bodies. Bodies are conceived to act upon one another,

and thus to influence each other's motions, as when one billiard ball

strikes another. But when this happens, it is also supposed that the

body struck influences the motion of the striking body. This is inclu-

ded in our notion of body or matter. If one ball could strike and

affect the motions of any number of others without having its own
motion in any degree affected, the struck balls would be considered,

not as bodies, but as mere shapes or appearances. Some reciprocal in-

fluence, some resistance, in short some reaction, is necessarily involved

in our conception of action among bodies. All mechanical action upon
matter implies a corresponding reaction; and we might describe matter

as that which resists or reacts when acted on by force. Not only
must there be a reaction in such cases, but this reaction is defined

and determined by the action which produces it, and is of the same
kind as the action itself The action which one body exerts upon
another is a blow, or a pressure; but it cannot press or strike with-

out receiving a pressure or a blow in return. And the reciprocal

pressure or blow depends upon the direct, and is determined altogether
and solely by that. But this action being mutual, and of the same
kind on each body, the effect on each body will be determined by the

effect on the other, according to the same rule ; each effect in turn

being considered as action and the other as reaction. But this cannot be

otherwise than by the equality and opposite direction of the action and
reaction. And since this reasoning applies in all cases in which bodies

influence each others motions, we have the following axiom which is

universally true, and is a fundamental principle with regard to all me-
chanical relations.

Axiom III. Action is always accompanied by an equal and opposite

Reaction.
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5. I now proceed to shew in what manner the Laws of Motion

depend upon these three axioms.

Bodies move in lines straight or curved, they move more or less

rapidly, and their motions are variously affected by other bodies. This

succession of occurrences suggests the conceptions of certain properties

or attributes of the motions of bodies, as their direction and velocity,

by means of which the laws of such occurrences may be exprest.
And these properties or attributes are conceived as belonging to the

body at each j)^^^^ of its motion, and as changing from one point to

another. Thus the body, at each point of its path, moves in a

certain direction, and with a certain velocity.

These properties, direction and velocity for instance, are subject
to the rule stated in the first axiom : they cannot change without

some cause ; and when any changes in the motions of a body are

seen to depend on its position relative to another body or to any part
of space, such other body, or such other part of space, is said to

exert a Jbrce upon the moving body. Also the force exerted upon
the moving body is considered to be of a certain value at each

point of the body's motion ; and though it may change from one point
to another, its changes must depend upon the position of the points

only, and not upon the velocity and direction of the moving body.
For the force which acts upon the body is conceived as a property of

the bodies, or points, or lines, or surfaces among which the moving body
is placed; the force at all points therefore depends upon the position
with regard to the bodies and spaces of which the force is a property ;

but remains the same, whatever be the circumstances of the body
moved. The circumstances of the body moved cannot be a cause

which shall change the force acting at any point of space, although

they may alter the effect which that force produces upon the body.

Thus, gravity is the same force at the same point of space, whether it

have to act upon a body at rest or in motion ; although it still remains

to be seen whether it will produce the same effect in the two cases.

6. This being established, we can now see of what nature the

laws of motion must be, and can state in a few words the proofs
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of them. We shall have a law of motion corresponding to each

of the above three axioms ; the first law will assert that when no force

acts, the properties of the motion will be constant; the second law

will assert that when a force acts, its quantity is measured by the

effect produced ; the third law will assert that, when one body acts

upon another, there will be a reaction, equal and opposite to the

action. And so far as the laws are announced in this form, they will

be of absolute and universal truth, and independent of any particular

experiment or observation whatever.

But though these laws of motion are necessarily and infallibly

true, they are, in the form in which we have stated them, entirely

useless and inapplicable. It is impossible to deduce from them any
definite and positive conclusions, without some additional knowledge or

assumption. This will be clear by stating, as we can now do in a

very small compass, the proofs of the laws of motion in the form

in which they are employed in mechanical reasonings.

7. First, of the first Law ;
—that a body not acted upon by any force

will go on in a straight line with an invariable velocity.

The body will go on in a straight line : for, at any point of its

motion, it has a certain direction, which direction will, by Axiom I,

continue unchanged, except some cause make it deviate to one side or

other of its former position. But any cause which should make the

direction deviate towards any part of space would be a force, and the

body is not acted upon by any force. Therefore, the direction cannot

change, and the body will go on in the same straight line from the

first.

The body will move with an invariable velocity. For the velocity

at any point will, by Axiom I, continue unchanged, except some

cause make it increase or decrease. And since, by supposition, the

body is not acted upon by any force, there can be no such cause

depending upon position, that is, upon relations of space; for any
cause of change of motion which has a reference to space is force.

Therefore there can be no cause of change of motion, except
there be one depending upon time, such, for instance, as would exist
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if bodies had a natural tendency to move slower and slower, according

to a rate depending on the time elapsed.

But if such cause existed, its effects ought to be considered sepa-

rately ; and it would still be requisite to assume the permanence of

the same velocity, as the first law of motion ; and to obtain, in addi-

tion to this, the laws of the retardation depending on the time.

Whether there is any. such cause of retardation in the actual

motions of bodies, can be known only by a reference to experience;
and by such reference it appears that there is no such cause of the

diminution of velocity depending on time alone; and therefore that

the first law of motion may, in all cases in which bodies are exempt
from the action of external forces, be applied without any addition or

correction depending upon the time elapsed.

It is not here necessary to explain at any length in what manner
we obtain from experience the knowledge of the truth just stated, that

there is not in the mere lapse of time any cause of the retardation of

moving bodies. The proposition is established by shewing that in all

the cases in which such a cause appears to exist, the cause of retar-

dation resides in surrounding bodies and not in time alone, and is

therefore an external force. And as this can be shewn in every in-

stance, there remains only the negation of all grovind for the assump-
tion of such a cause of retardation. We therefore reject it altogether.

Thus it appears that in proving the first law of motion, we obtain

from our conception of cause the conviction that velocity will be

uniform except some cause produce a change in it
; but that we are

compelled to have recourse to experience in order to learn that time

alone is not a cause of change of velocity.

8. I now proceed to the second Law :— that when a force acts

upon a body in motion, the effect is the same as that which the same

force produces upon a body at rest.

This law requires some explanation. How is the effect produced

upon a moving body to be measured, so that we may compare it with
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the effect upon a body at rest? The answer to this is, that we here

take for the measure of the effect of the force, that motion which

must be compounded with the motion existing before the change, in or-

der to produce the motion which exists after the change: the rules for

the composition of motion being established on independent grounds

by the aid of definition alone. Thus if gravity act upon a body
which is falling vertically, the effect of gravity upon the body is

measured by the velocity added to that which the body already has :

if gravity act upon a body which is moving horizontally, its effect

is measured by the distance to which the body falls below the hori-

zontal line.

The effect of the force which we consider in the second Law of

motion, is its effect upon velocity only : and it is proper to mark

this restriction by an appropriate term : we shall call this the accele-

rative effect of force; and the cause, as measured by this effect, may
be termed the accelerathe quantity of the force.*

A law of motion which necessarily results from our second Axiom

is, that the accelerative quantity of a force is measured by the acce-

lerative effect. But whether the accelerative effect depends upon the

velocity and direction of the moving body, cannot be known indepen-

dently of experience. It is very conceivable, for instance, that the

force of gravity being every where the same, shall yet produce, upon

falling bodies, a smaller accelerative effect in proportion to the velocity

which they already have in a downward direction. Indeed if gravity

resembled in its operation the effect of any other mode of mechanical

agency, the result would be so. If a body moved downwards in

* The accelerative quantity of a force (the quantitas acceleratrix vis cujusvis of Newton)
is often called the accelerating forces and we may thus have to speak of the accelerating

force of a certain force, which is at any rate an awkward phraseology. It would perhaps
have been fortunate if Newton, or some other writer of authority, at the time when the

principles of mechanics were first clearly developed, had invented an abstract term for

this quantity : it might for instance have been called acceleralivity. And the second law

of motion would then have been, that the acceleralivity of the same force is the same,

whatever be the motion of the body acted on.



OF THE LAWS OF MOTION. 157

consequence of the action of a hand pushing it with a constant effort,

or of a spring, or of a stream of fluid rushing in the same direction,

the accelerative effect of such agents would be smaller and smaller

as the velocity of the body propelled was larger and larger. We can

learn from experience alone that the effects of the action of gravity
do not follow the same rule.

We assert that the accelerative quantity of the same force of gra-

vity is the same whatever be the motion of the body acted on. It

may be asked how we know that the force of gravity is the same

in cases so compared ; for instance, when it acts on a body at rest

and in motion ? The answer to this question we have given already.

By the very process of considering gravity as a force, we consider

it as an attribute of something independent of the body acted on.

The amount of the force may depend upon place, and even time, for

any thing we know a priori ; but we do not find that the weight of

bodies depends on these circumstances, and therefore, having no evi-

dence of a difference in the force of gravity, we suppose it the same

at different times and places. And as to the rest, since the force is a

force which acts on the body, it is considered as the same force,

whatever be the circumstances of the passive body, although the ejects

may vary with these circumstances. If the effects are liable to such

change, this change must be considered separately, and its laws investi-

gated ; but it cannot be allowed to unsettle our assumption of the

permanence of the force itself. It is precisely this assumption of a

constant cause, which gives us a fixed term, as a means of estimating
and expressing by what conditions the effects are regulated.

It appears by observation and experiment, that the accelerative

quantity of the same force is not affected by the velocity or direction

of the body acted on : for instance, a body falling vertically receives,

in any second of time, an accession of velocity as great as that which
it received in the first second, notwithstanding the velocity with which
it is already moving. The proof of this and similar assertions from

experiment produced, historically speaking, the establishment of the

second law of motion in the sense in which we now assert it. And
here, as in the case of the first law, we may observe that an important

Vol. V. Part II. X
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portion of the process of proof consisted in shewing that in those cases

in which the accelerative effect of a force appeared to be changed by
the circumstances of the motion of the body acted on, the change was,

in fact, due to other external forces ; so that all evidence of a cause

of change residing in those circumstances was entirely negatived; and

thus the law, that the accelerative effect of the same force is the

same, appeared to be absolutely and rigorously true.

9. When the motions of bodies are not affected merely by forces

like gravity, which are only perceived by their effects, but are acted

upon by other bodies, the case requires other considerations.

It is in such cases that we originally form the conception of force;

we ourselves pull and push, thrust and throw bodies, with a view, it

may be, either to put them in motion, or to prevent their moving,
or to alter their figure. Such operations, and the terms by which

they are described, are all included in the term force, and in other

terms of cognate import. And in using this term, we necessarily

assume and imply the co-existence of these various effects of force

which we have observed universally to accompany each other. Thus

the same kind of force which is the cause of motion, may also be

the cause of a body having a form different from its natural form
;

when we draw a bow, the same kind of pull is needed to move the

string, and to hold it steady when the bow is bent. And a weight

might be hung to the string, so as to produce either the one or

the other of these effects. By an infinite multiplicity of experiments

of this kind, we become imbued with the conviction that the same

pressure may be the cause of tension and of motion. Also as the

cause can be known by its effects only, each of these effects may be

taken as its measure ;
and therefore, so long as one of them is the

same, since the cause is the same, the other must be the same also.

That is, so long as the pressure or force which shews itself in

tension is the same, the motion which it would produce must, under

the same circumstances, be the same also. This general fact is not

a result of any particular observations, but of the general observation

or suggestion arising unavoidably from universal experience, that both
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tension and motion may be referred to force as their cause, and have

no other cause.

We come therefore to this principle with regard to the actions of

bodies upon each other, that so long as the tension or pressure is the

same, the force, as shewn by its effect in producing motion, must

also be the same.

10. This force or action of bodies upon one another, is that which

is meant in the Third Axiom, and we now proceed to consider the

application of this axiom in mechanics.

Pressures or forces such as I have spoken of, may be employed in

producing tension only, and not motion ; in this case, each force prevents

the motion which would be produced by the others, and the forces

are said to balance each other, or to be in equilibrium. The science

which treats of such cases is called Statics, and it depends entirely

upon the above third axiom, applied to pressures producing rest. It

follows from that axiom, that pressures, which acting in opposite di-

rections thus destroy each other's effects, must be equal, each measuring
the other. Thus if a man supports a stone in his hand, the force or

effort exerted by the man upwards is equal to the weight or force

of the stone downwards. And if a second stone, just equal to the 'first,

were supported at the same time in the same hand, the force or effort

must be twice as great ; for the two stones may be considered as

one body of twice the magnitude, and of twice the weight; and

therefore the effort which supports it must also be twice as great.

And thus we see in what manner statical forces are to be measured

in virtue of this third axiom
;
and no further principle is requisite to

enable us to establish the whole doctrine of statics.

11. The third axiom, when applied to the actions of bodies in

motion, gives rise to the third law of motion, which Ave must now con-

sider. Here, as in the cases of the other axioms, we must inquire

how we are to measure the quantities to which the axiom applies. What
is the measure of the action which takes place when a body is put
in motion by pressure or force? In order to answer this question, we

X 2
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must consider what circumstances make it requisite that the force

should be greater or less. If we have to lift a stone, the force which

we exert must be greater when the stone is greater : again, we must

exert a greater force to lift it quickly than slowly. It is clear, there-

fore, that that property of a force with which we are here concerned,

and which we may call the motive quantity of the force,* increases both

when the velocity communicated, and when the mass moved, increase, and

depends upon both these quantities, though we have not yet shewn

what is the law of this dependence.

The condition that a quantity P shall increase when each of two

others V and M does so, may be satisfied in many ways : for instance,

by supposing P proportional to the sum M+ V (all the quantities being

expressed in numbers), or to the product, MV, or to MF'-, or in many
other ways.

When, however, the quantities ^ and M are altogether hetero-

geneous, as when one is velocity, and the other weight, the first

of the above suppositions, that P varies as M + V, is inadmissible.

For the law of variation of the formula M+ V depends upon the

relation of the units by which M and V respectively are measured;

and as these units are arbitrary in each case, the result is, in like

manner, arbitrary, and therefore cannot express a law of nature.

«

12. The supposition that the motive quantity of a force varies as

M^-V, where M is the mass moved and V the velocity, being thus

inadmissible, we have to select upon due grounds, among the other

formulae MV, MV\ M'V, &c.

And in the first place I observe that the formula must be propor-

tional to M simply (excluding M.^ &;c.) for both the forces which

* The motive quantity of a force {vis cujusvis quantitas matrix of Newton) is sometimes

called moving force; we are thus led to speak of the moving force of a force, as we

have already observed concerning accelerating force. Hence, as in that case, we might

employ a single term, as motivity, to denote this property of force; and might thus speak

of it and of its measures without the awkwardness which arises from the usual phrase.
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produce motion and the masses in which motion is produced are capa-

ble of addition by juxtaposition, and it is easily seen by observation

that such addition does not modify the motion of each mass. If a

certain pressure upon one brick (as its own weight) cause it to fall

with a certain velocity, an equal pressure on another equal brick wiU

cause it also to fall with the same velocity ; and these two bricks

being placed in contact, may be considered as one mass, which a dou-

ble force will cause to fall with still the same velocity. And thus

all bodies, whatever be their magnitude, will fall with the same velo-

city by the action of gravity. Those who deny this (as the Aristo-

telians did) must maintain, that by establishing between two bodies

such a contact as makes them one body, we modify the motion which

a certain pressure will produce in them. And when we find experi-

mentally (as we do find) that large bodies and small ones fall with the

same velocity, excluding the effects of extraneous forces, this result

shews that there is not, in the union of small bodies into a larger one,

any cause which affects the motion produced in the bodies.

It appears, therefore, that the motive quantity of force which puts

a body in motion is, cceteris paribus, proportional to the mass of the

body ; so that for a double mass a double force is requisite, in order

that the velocity produced may be the same. Mass considered with

reference to this rule, is called Inertia.

13. The measure of mass which is used in expressing a law of

motion, must be obtained in some way independent of motion, other-

wise the law will have no meaning. Therefore, mass measured in

order to be considered as Inertia must be measured by the statical

effects of bodies, for instance, by comparison of weights. Thus two

masses are equal which each balance the same weight in the same

manner; and a mass is double of one of them which produces the

same effect as the two. And we find, by universal observations, that

the weight of a mass is not affected by the figure or the arrange-
ment of parts, so long as the matter continues the same. Hence it

appears that the mass of bodies must be compared by comparing their

weights, and Inertia is proportional to weight at the same place.
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Since all bodies, small or large, light or heavy, fall downwards with

equal velocities, when we remove or abstract the effect of extraneous

circumstances, the motive quantity of the force of gravity on equal

bodies is as their masses
;
or as their weight, by what has just been said.

14. For the measure of the motive quantity of force, or of the action

and reaction of bodies in motion, we have, therefore, now to chuse

among such expressions as MV, and MV^. And our choice must be

regulated by finding what is the measure which will enable us to

assert, in all cases of action between bodies in motion, that action and

reaction are equal and opposite.

Now the fact is, that either of the above measures may be taken,

and each has been taken by a large body of mathematicians. The former

however {MV) has obtained the designation which naturally falls to the

lot of such a measure ;
and is called momentum, or sometimes simply

quantity of motion : the latter quantity {MV^) is called vis viva or liv-

ing force.

I have said that either of these measures may be taken : the former

must be the measure of action, if we are to measure it by the effect pro-

duced in a given time; the latter is the measure if we take the whole

effect produced. In either way the third law of motion would be true.

Thvis if a ball B, lying on a smooth table, be drawn along by a

weight A hanging by a thread over the edge of the table, the motion

of B is produced by the action of A, and on the other hand the

motion of A is diminished by the reaction of B; and the equality

of action and reaction here consists in this, that the momentum {MV)
which B acquires in any time is equal to that which A loses : that is,

so much is taken from the momentum which A would have had, if

it had fallen freely in the same time; so that A falls more slowly by

just so much.

But if the weight A fall through a given space from rest, as 1 foot,

and then cease to act, the eqviality of action and reaction consists in

this, that the vis viva which B acquires on the whole, is equal to the

vis viva which A loses ; that is, the vis viva of A thus acting on B is
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smaller by so much than it would have been, if A had fallen freely

through the same space.

15. In fact, these two propositions are necessarily connected, and

one of them may be deduced from the other. The former way of

stating the third law of motion appears, however, to be the simplest mode

of treating the subject, and we may put the third law of motion in

this form.

In the direct mutual action of bodies, the momentum gained and lost

in any time are equal.

This law depends upon experiment, and is perhaps best proved by

some of its consequences. It follows from the law so stated, that the

motive quantity of a force is proportional to the momentum generated in

a given time; since the motive quantity of force is to be equivalent

to that action and reaction which is understood in the third law of

motion. Now, if the pressure arising from the weight of a body P
produce motion in a mass Q, since the momentum gained by Q and

that lost by P in any time are equal, the momentum of the whole

at any time will be the same as if P's weight had been employed
in moving P alone. Therefore, the velocity of the mass Q will be

less, in the same proportion in which the mass or inertia is greater:

and thus the accelerating quantity of the force is inversely propor-

tioned to the mass moved. This rule enables us to find the accele-

rative quantity of the force in various cases, as for instance, when bodies

oscillate, or when a smaller weight moves a large mass; and we

can hence calculate the circumstances of the motion, which are found

to agree with the consequences of the above law.

16. But the argument may be reduced to a simpler form. Our

object is to shew that, for an equal mass, the velocity produced by a

force acting for a given time is as the pressure which produces the

motion; for instance, that a double pressure will produce a double

velocity. Now a double pressure may be considered as the union of

two equal pressures, and if these two act successively, the first will

communicate to the body a certain velocity, and the second will com-
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municate an additional velocity, equal to the first, by the second law

of motion
; so that the whole velocity thus commvinicated will be the

double of the first. Therefore, if the velocity communicated be not

also the double of the first when the two pressures act together, the

difference must arise from this, that the effect of one force is modified

by the simultaneous action of the other. And when we find by expe-
rience (as we do find) that there is no such difference, but that the

velocity communicated in a given time is as the pressure which com-

mimicates it, this result shews that there is nothing in the circumstance

of a body being already acted on by one pressure, which modifies the

effect of an additional pressure acting along with the first.

17- I have above asserted the law, of the direct action of bodies

only. But it is also true when the action is indirect, as when by

turning a winch we move a wheel, the main mass of which is farther

from the axis than the handle of the winch. In this case the pres-

sure we exert acts at a mechanical disadvantage on the main mass of

the wheel, and we may ask whether this circumstance introduces any
new law of motion. And to this we may reply, that we can conceive

pressure to produce different effects in moving bodies, according as it

is exerted directly or by the intervention of machines; but that we

find no reason to believe that such a difference exists. The relations

of the pressures in different parts of a machine are determined by con-

sidering the machine at rest. But if we suppose it to be put in

motion by such pressures, we see no reason to expect that these pres-

sures should have a different relation to the motions produced from

what they would have done if they were direct pressures. And as

we find in experiment a negation of all evidence of such a differ-

ence, we reject the supposition altogether. We assert, therefore, the

third law of motion to be true, whatever be the mechanism by
the intervention of which action and reaction are opposed to each

other.

From this consideration it is easy to deduce the following rule,

which is known by the designation of D'Alembert's principle, and

may be considered as a fourth law of motion.
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WJien any forces produce motion in any connected system of matter,

the motive quantities of force gained and lost by the different parts
must balance each other according to the connexion of the system.

By the motive quantity of force gained by any body, is here

meant the quantity by which that motive force which the body's mo-

tion implies (according to the measures already established) exceeds

the quantity of motive force which acts immediately upon the body.
It is the excess of the effective above the impressed force, and of course

arises from the force transmitted from the other bodies of the system
in consequence of the connexion of the parts. The motive quantity
of force lost is in like manner the excess of the impressed above the

effective force. And these two excesses, in different parts of the sys-

tem, must balance each other according to the mechanical advantage
or disadvantage at which they act for each part.

This completes our system of mechanical principles, and authorizes

us to extend to bodies of any size and form the rules which the

second law of motion gives for the motion of bodies considered as

points. And by thus enabling us to trace what the motions of bodies

will be according to the rule asserted in the third law of motion,

(namely, that the motive quantity of forces is as the momentum pro-
duced in a given time,) it leads us to verify that supposition by experi-
ments in which bodies oscillate or revolve or move in any regular
and measurable manner, as has been done by Atwood, Smeaton, and

many others.

18. We have thus a complete view of the nature and extent of

the fundamental principles of mechanics; and we now see the reason

why the laws of motion are so many and no more, in what way they
are independent of experience, and in what way they depend upon

experiment. The form, and even the language of these laws is of

necessity what it is; but the interpretation and application of them is

not possible without reference to fact. We may imagine many rules

according to which bodies might move (for many sets of rules, dif-

ferent from the existing ones, are, so far as we can see, possible) and

we should still have to assert—that velocity could not change without

Vol. V. Pakt II. Y
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a cause,—that change of action is proportional to the force which pro-

duces it,
—and that action and reaction are equal and opposite. The

truth of these assertions is involved in those notions of causation and

matter, which the very attempt to know any thing concerning the rela-

tions of matter and motion presupposes. But, according to the facts

which we might find, in such imaginary cases as I have spoken of,

we should settle in a different way—what is a cause of change of ve-

locity,
—what is the measure of the force which changes motion,—and

what is the measure of action between bodies. The law is necessary,

if there is to be a law ; the meaning of its terms is decided by what

we find, and is therefore regulated by our special experience.

19. It may further illustrate this matter to point out that this

view is confirmed by the history of mathematics. The laws of motion

were assented to as soon as propounded; but were yet each in its turn

the subject of strenuous controversy. The terms of the law, the form,

which is necessarily true, were recognised and undisputed ; but the

meaning of the terms, the substance of the law, was loudly contested;

and though men often tried to decide the disputed points by pure

reasoning, it was easily seen that this could not suffice ;
and that since

it was a case where experience could decide, experience must be the

proper test: since the matter came within her jurisdiction, her authority

was single and supreme.

Thus with regard to the first law of motion, Aristotle allowed that

natural motions continue unchanged, though he asserted the motions

of terrestrial bodies to be constrained motions, and therefore, liable to

diminution. Whether this was the cause of their diminution was a

question of fact, which was, by examination of facts, decided against

Aristotle. In like manner, in the first case of the second law of

motion which came under consideration, both Galileo and his oppo-
nent agree that falling bodies are uniformly accelerated ; that is, that

the force of gravity accelerates a body uniformly whatever be the

velocity it has already ; but the question arises, what is uniform acce-

leration ? It so happened in this case, that the first conjecture of Ga-

lileo, afterwards defended by Casraeus, (that the velocity was propor-
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tional to the space from the beginning of the motion) was not only

contradictory to fact, but involved a self-contradiction; and was,

therefore, easily disposed of. But this accident did not supersede the

necessity of Galileo and his pupils verifying their assertion by refer-

ence to experiment, since there were many suppositions which were

different from theirs, and still possible, though that of Casrasus was

not.

The mistake of Aristotle and his followers, in maintaining that

large bodies fall more quickly than small ones, in exact proportion

to their weight, arose from perceiving half of the third law of motion,

that the velocity increases with the force which produces it ;
and from

overlooking the remaining half, that a greater force is required for the

same velocity, according as the mass is larger. The ancients never

attained to any conception of the force which moves and the body
which is moved, as distinct elements to be considered when we en-

quire into the subject of motion, and therefore could not even propose

to themselves in a clear manner the questions which the third law of

motion answered.

But, when, in more modern times, this distinction was brought into

view, the progress of opinion in this case was nearly the same as with

regard to the other laws.

It was allowed at once, and by all, that action and reaction are

equal ;
but the controversy concerning the sense in which this law is to

be interpreted, was one of the longest and fiercest in the history of ma-

thematics, and the din of the war has hardly yet died away. The

disputes concerning the measure of the force of bodies in motion,

or the vis viva, were in fact a dispute which of two measures of action

that I have mentioned above should be taken ; the effect in a given

time, or the whole effect : in the one case the momentum {MV) in the

other the vis viva, {MV'^) was the proper measure.

20. It may be observed that the word momentum, which one party

appropriated to their views, was employed to designate the motive

quantity of force, or the action of bodies in motion, before it was

Y2
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determined what the true measure of such action was. Thus Galileo,

in his "Discorso intorno alle cose che stanno in su I'Acqua,'" says, that

momentum "is the force, efficacy, or virtue with which the motion
moves and the body moved resists; depending not on weight only,
but on the velocity, inclination, and any other cause of such virtue."

The adoption of the phrase vis viva is another instance of the extent

to which men are tenacious of those terms which carry along with their

use a reference to the fundamental laws of our thought on such matters.

The party which used this phrase maintained that the mass multiplied
into the square of the velocity was the proper measure of the force

of bodies in motion; but finding the term moving force appropriated

by their opponents, they still took the same term force, with the

peculiar distinction of its being living force, in opposition to dead

force or pressure, which they allowed to be rightly measured by the

momentum generated in a given time. The same tendency to adopt,
in a limited and technical sense, the words of most general and fun-

damental vise in the subject, has led some writers (Newton for instance,)

to employ the term motion or quantity of motion as synonymous with

momentum, or the product of the numbers which express the mass

and the velocity. And this use being established, the quantities of

motion gained and lost are always equal and opposite; and, therefore

the quantity which exists in any given direction cannot be increased

or diminished by any mutual action of bodies. Thus we are led to the

assertion which has already been noticed, that the quantity of motion

in the world is always the same. And we now see how far the

necessary truth of this proposition can be asserted. The proposition is

necessarily true according to our notions of material causation ; but the

measure of "quantity of motion," which is a condition of its truth, is

inevitably obtained from experience.

21. It is not surprising that there should have been a good deal

of confusion and difference of opinion on these matters : for it appears

that there is, in the intellectual constitution and facvdties of man, a

source of self-delusion in svich reasonings. The actual rules of the

motion and mutual action of bodies are, and must be, obtained from
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observation of the external world : but there is a constant wish and

propensity to express these rules in such terms as shall make them

appear self-evident, because identical with the universal and necessary

rules of causation. And this propensity is essential to the progress of

our knowledge ;
and in the success of this effort consists, in a great

measure, the advance of the science to its highest point of simplicity

and generality.

22. The nature of the truth which belongs to the laws of motion

will perhaps appear still more clearly, if we state, in the following-

tabular form, the analysis of each law into the part which is necessary,

and the part which is empirical.

First

Law.

Second

Law.

Third

Law.

Necessary.

Velocity does not change
without a cause.

The accelerating quantity
of a force is measured by the

acceleration produced.

Reaction is equal and op-

posite to action.

Empirical.

The time for which a body has al-

ready been in motion is not a cause of

change of velocity.

The velocity and direction of the mo-

tion which a body already possesses are

not, either of them, causes which

change the acceleration produced.

The connexion of the parts of a body,
or of a system of bodies, and the action

to which the body or system is already

subject, are not, either of them, causes

which change the effects of any ad-

ditional action.

Of course, it will be understood that, when we assert that the con-

nexion of the parts of a system does not change the effect of any
action upon it, we mean that this connexion does not introduce any
new cause of change, but leaves the effect to be determined by the

previously established rules of equilibrium and motion. The connexion

will modify the application of such rules
; but it introduces no ad-

ditional rule: and the same observation applies to all the above stated

empirical propositions.
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This being understood, it will be observed that the part of each law
which is here stated as empirical, consists, in each case, of a negation
of the supposition that the condition of the moving body with respect
to motion and action, is a cause of any change in the circumstances of

its motion; and from this it follows that these circumstances are de-

termined entirely by the forces extraneous to the body itself.

23. This mode of considering the question shews us in what
manner the laws of motion may be said to be proved by their sim-

plicity, which is sometimes urged as a proof. They undoubtedly have

this distinction of the greatest possible simplicity, for they consist in

the negation of all causes of change, except those which are essential

to our conception of such causation. We may conceive the motions

of bodies, and the effect of forces upon them, to be regulated by the

lapse of time, by the motion which the bodies have, by the forces

previously acting ; but though we may imagine this as possible, we do

not find that it is so in reality. If it were, we should have to con-

sider the effect of these conditions of the body acted on, and to com-

bine this effect with that of the acting forces ; and thus the motion

would be determined by more numerous conditions and more complex
rules than those which are found to be the laws of nature. The laws

which, in reality, govern motion are the fewest and simplest possible,

because all are excluded, except those which the very nature of laws

of motion necessarily implies. The prerogative of simplicity is possessed

by the actual laws of the universe, in the highest perfection which is

imaginable or possible. Instead of having to take into account all the

circumstances of the moving bodies, we find that we have only to

reject all these circumstances. Instead of having to combine empirical

with necessary laws, we learn empirically that the necessary laws are

entirely sufficient.

24. Since all that we learn from experience is, that she has no-

thing to teach us concerning the laws of motion, it is very natural

that some persons shovdd imagine that experience is not necessary to

their proof. And accordingly many writers have undertaken to esta-

blish all the fundamental principles of mechanics by reasoning alone.
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This has been done in two ways:—sometimes by attending only to the

necessary part of each law (as the parts are stated in the last para-

graph but one) and by overlooking the necessity of the empirical

supplement and limitation to it;
—at other times by asserting the part

which I have stated as empirical to be self-evident, no less than the

other part. The former way of proceeding may be found in many
English writers on the subject; the latter appears to direct the reason-

ings of many eminent French mathematicians. Some (as Laplace) have

allowed the empirical nature of two out of the three laws
; others, as

M. Poisson, have considered the first as alone empirical ;
and others, as

D'Alembert, have assumed the self-evidence of all the three indepen-

dently of any reference whatever to observation.

25. The parts of the laws which I have stated as empirical,

appear to me to be clearly of a different nature, as to the cogency
of their truth, from the parts which are necessary ; and this difference

is, I think, established by the fact that these propositions were de-

nied, contested, and modified, before they were finally established. If

these truths could not be denied without a self-contradiction, it is

difficult to understand how they could be (as they were) long and

obstinately controverted by mathematicians and others fully sensible to

the cogency of necessary truth.

I will not however go so far as to assert that there may not be

some point of view in which that which I have called the empirical

part of these laws, (which, as we have seen, contains negatives only,)

may be properly said to be self-evident. But however this may be,

I think it can hardly be denied that there is a difference of a fun-

damental kind in the nature of these truths,—which we can, in our

imagination at least, contradict and replace by others, and which, his-

torically speaking, have been established by experiment;—and those

other truths, which have been assented to from the first, and by all,

and which we cannot deny without a contradiction in terms, or reject
without putting an end to all use of our reason on this subject.

26. On the other hand, if any one should be disposed to maintain

that, inasmuch as the laws are interpreted by the aid of experience
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only, they must be considered as entirely empirical laws, I should not

assert this to be placing the science of mechanics on a wrong basis.

But at the same time I would observe, that the form of these laws is

not empirical, and would be the same if the results of experience
should differ from the actual results. The laws may be considered as

a formula derived from a priori reasonings, where experience assigns

the value of the terms which enter into the formula.

Finally, it may be observed, that if any one can convince himself

that matter is either necessarily and by its own nature determined to

move slower and slower, or necessarily and by its own nature deter-

mined to move uniformly, he must adopt the latter opinion, not only
of the truth, but of the necessity of the truth of the first law of

motion, since the former branch of the alternative is certainly false : and

similar assertions may be made with regard to the other laws of motion.

27. This enquiry into the nature of the laws of motion, will, I

hope, possess some interest for those who attach any importance to the

logic and philosophy of science. The discussion may be said to be

rather metaphysical than mechanical ; but the views which I have en-

deavoured to present, appear to explain the occurrence and result of

the principal controversies which the history of this science exhibits ;

and, if they are well founded,' ought to govern the way in which the

principles of the science are treated of, whether the treatise be intended

for the mathematical student or the philosopher.
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VIII. Researches in the Theory of the Motion of Fluids. By the Rev.

James Challis, late Fellow of Trinity College, Cambridge,

and Fellow of the Cambridge Philosophical Society.

[VieaA March 3, 1834-3

1. The subjects treated of in this communication are of a miscel-

laneous character, referring to several points of the theory of fluid

motion, respecting which the author conceived he had something new
to advance. In illustration of the principles he has attempted to establish,

solutions are given of two problems of considerable interest:—the

resistance to the motion of a ball-pendulum ; and, the resistance to the

motion of a body partly immersed in water and drawn along at the

surface in the horizontal direction. The principal object in the solution

of the latter problem is to account for the rising of the body in the

vertical direction on increasing the velocity of draught, which in some
recent experiments on canal navigation has been observed to take place.

In the course of the paper I have had occasion to refer several times

to a previous communication* to this Society respecting fluid motion,
for the purpose of giving to the views there advanced some corrections

and confirmations which have been suggested by more mature considera-

tion. For the sake of distinctness the subjects of the present essay
are divided into sections.

• Camb. Phil. Trans. Vol. HI. Part in.

Vol. V. Part II. > Z
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SECTION I.

On the Integral of the Equation -j-^ + -~ = Q.

2. This equation is applicable to all problems respecting the motion

of incompressible fluids, which require for their solutions the consideration

of motion in one plane only. Mathematicians have obtained integrals

of it suited to the particular questions they were discussing ; for instance,

in solving the problem of waves propagated in a canal of uniform

width, M. Poisson has given a value of
(p, which, while it satisfies the

equation in question, is exclusively applicable to that problem. But

it is well known that by the common method of finding the integrals

of linear partial differential equations of the second order between

three variables, a value of
cp may be found prior to any consideration

of the circumstances under which the fluid was put in motion. There-

fore any inferences respecting the nature of the motion, which may be

drawn from this integral, must be equally applicable to all problems of

this class. To obtain such inferences is the object of the following

reasoning.

3. The integral I speak of is.

To ascertain its general signification, I propose to determine the forms

of the functions F and jf, independently of any hypothesis respecting

the mode in which the fluid was put in motion. The quantity (j)
is

subject to the condition {d(p)
= udx-^vdy, where u and v are the

velocities at the poiiit xy in the directions of the axes of x and y

respectively. Hence ^^=«, -j^=v, and

u = F' {x + y^/'^\)+f {x-y^/'^),

v=V^lF'ix + y\/^^)-\/'^fix-yV^l).
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First, it may be observed that u and v are not both possible for any
values of x and y, unless the functions F' andy be the same. Again,
as the form of F' we are seeking for is to be independent of all that

is arbitrary, it will remain the same whatever direction we arbitrarily

assign to the axes of co-ordinates. Let therefore the axis of y pass

through the point to which the velocities u, v, belong. Then

y= 0, u = 2F'{x), v = 0.

If now the axes be supposed to take any other position, the origin

remaining the same, u will be equal to /
^ ^ F' {^/x^ + y^).

Hence

F'{x +y^^) +
F'(x-yV-l)=-^^y^^=^.F'(./^FTr),

a functional equation for determining the form of F'. Let

x + yy^ - l=m, and x—y^/— 1 =n;
then

2x=m + n, and "s/ x^ -k-y^^s/mn.

Therefore,

c
It is easily seen that if F\y/mn) =—f=, the equation is satisfied.

Hence ^

^ = ^-7=+ ^== =A^ and^--^^. ^-^
dx x +yV^l^ a;-yV-l x'^ + y^' dy~x^ + y'-'

2C -^ -

and consequently the velocity at xy, or \/ u'^ + v^ = —-r=^ ^- ,., ,,

These results shew that the velocity is directed to or from the origin
of co-ordinates, and varies inversely as the distance from it. But we
must observe that this limitation as to the point to which the velocity

is directed, is owing to the particular forms, x+y'\/~^, x-ys/ — \,

z2
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of the quantities which the function F' involves. For the equation

^j% + -T-? = 0, is also satisfied by the following,

((>
=F {{a^- X cos d - y m\ Q) + {^ + xsm9 +y cosO) ^/^^}

+y {(" + a; cos 0-y sin 0)
-

(/3 + a; sin f y cos 9) V~^\ '>

and this analytical circumstance has its interpretation in reference to

the motion of the fluid. By supposing the function f to be the same

as F, and giving to F' the same form as before, we shall find,

'

d^ _ 2 C(.r + g cos g + /3 sin 9)

dx
~

(a + xcos9— i/
sin 9y + (13 + x sin 9 + y cos 9)-

d^ 2C(y + /3cosg-asin 9)

dy {a -\- X cos 9 — y sin 9'f + (/3 + a; sin + y cos 9Y

/d^y /d^Y 4C^
\dx ) \dy)

~
{a + x cos9-y sin9y + (^ + x sm9 + y cos9y

Or, if a cos 9-\-fisin9= —a, and /3 cos 9— a sin 9= —b,

d(f> 2C(x-a)
dx (x— ay + {y

— bf
'

^ or V- ^^(y-*)
dy ^x-ay + iy-by

Vu' + v^ =
y/ix-af + iy-by'

This shews that the velocity is directed to the point whose co-ordinates

are a, b, and varies inversely as the distance from it. And as we have

arrived at this result without considering any circumstances under which

the fluid was caused to move, the inference to be drawn is, that such

is the general character of the motion. Nothing forbids our considering

C, a, and b, functions depending on the time and the given conditions

of motion in any proposed problem. Also if at a given instant, a line

commencing at any point, be drawn continually in the direction of the

motions of the particles through which it passes, C, a, and b, may be
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supposed to vary in any manner along this line. The foregoing-

reasoning only proves that in passing at a given instant from one

point to another indefinitely near along the line, these quantities may
be considered constant.

4. The nature of the integral we have been discussing will perhaps
be understood by comparing it to the general integral of a common
differential equation, which has a particular solution. The latter, we

know, is that which gives the answer to a proposed problem, and the

general integral is used (though not necessarily) to obtain this solution.

So, I conceive, the integral above is useful for arriving at the particular

functions of x, y, and t, which give the velocity and direction of the

velocity at any point and instant in any proposed question. The

integral of -—^ + -r^ =
, which M.M. Poisson and Cauchy have

obtained for the solution of the problem of waves, may be called the

particular solution of the equation, for that particular problem ; and I

think it probable that the same might have been obtained by employing
what I would call the general integral, though I am not prepared to

state exactly the process.

5. The following considerations are added in confirmation of the

foregoing reasoning. In whatever manner the fluid is put in motion,
we may conceive a line, commencing at any point, to be continually
drawn in a direction perpendicular to the directions of the motions at

a given instant of the particles through which it passes. This line

may be of any arbitrary and irregular shape, not defined by a single

equation between x and y. But it must be composed of parts either

finite or indefinitely small, which obey the law of continuity. Con-

sequently the motion, being at all the points of the line in the directions

of the normals, must tend to or from the centres of curvature, and

vary, in at least elementary portions of the fluid, inversely as the

distances from those centres. An unlimited number of such lines

may be drawn through the whole extent of the fluid mass in

motion.
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6. If we put (f}
=

(pi
+ (p2 + (f>3

+ Sac. we shall have

d^ d^_ (d^ d^\ Id^ dy,\ id^ d-^<pA ,

. _ „

daf
"*"

df
~

\dx'
^
dfj

'^
\dx'

"^

df)
*

\dx'
^
df)'^^-~^-

Hence if there be any number of functions which severally satisfy the

given equation, the sum of these will satisfy it. But from what has

been proved above, if

d^i Ci(x— a,)
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the plane. Hence as the division offluids* may be effected without the

application of force, nothing will be altered if we suppose the plane to

become rigid and to intercept the communication of the fluid on one side

with that on the other. The motion on each side will then be reflected,

and the angle of incidence will be equal to the angle of reflection. -

8. I propose now to adduce an application of the proposition
above demonstrated (Art. 3.) respecting the general law of fluid motion,

which may serve to shew its utility. Suppose water in a cylindrical

vessel (for instance, a glass tumbler,) to be caused to revolve with con-

siderable rapidity about the axis of the cylinder. There is no practical

difficulty in making the fluid revolve so that every particle shall de-

scribe approximately a horizontal circle about the axis. Then, the fluid

being left to itself after the disturbance, each particle may be considered

to move as it does, by reason of a centripetal force tending to the

axis in a horizontal plane. This force must be owing to the action

of the cylindrical surface on the fluid particles in contact with it,

deflecting them continually from a rectilinear course. If V be the

velocity of the particles in contact with the surface, and a the radius

V-
of the cylinder, the force tending to the axis is — , the effect of

friction being neglected. The deflections which this force is continually

producing in the directions of radii, are transmitted through the fluid,

and as they tend to a centre, will vary, according to the proposition
above proved, inversely as the distance from the centre.f Hence the

V^ a V^
centripetal force at the distance r is — x -, or — . This shews^ a r r

that at any distance r the velocity is still V. Experience seems to

confirm this result. For if light substances be strewed on the surface

of the water, those nearer the centre always perform their revolutions

* The introduction of this consideration here is merely reverting to a principle -which

Professor Airy (very properly, I think,) has proposed to make the basis of the mathematical

treatment of fluids. Without referring to a principle of this nature, I do not see that

problems of reflection can be satisfactorily solved.

+ The total motion is compounded of these deflections and rectilinear motions along

tangents to the circles, which by Art. 6. may be considered separately.
''' ' •"'-''
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in less time than those more remote. This is particularly observable

in two of the floating particles which are near each other, and at nearly

equal distances from the centre. That which is less distant overtakes

the other, as it ought to do, supposing it to describe a less circle with

equal velocity. At the centre a kind of eddy is formed, the more

observable as the motion at every point of the surface is more nearly

in concentric circles. When the revolving motion takes place in a

conical tunnel from which the water is issuing, the appearance at the

axis is very remarkable, a hollow space like a sack, being formed a

considerable way down the axis. What has been here said may serve

to explain in some measure the manner in which eddies in any case

are produced.

SECTION II.

On the Integration of the Equation -^ + -r^ + -r^
= 0.

9. M. Poisson has expressed the general integral of this equation

by means of definite integrals ; {Memoires de rAcademie des Sciences,

Ann. 1818), and this, I believe, admits of a discussion similar to that

applied above (Art. 3.) to the integral of -^ + -~ = 0. But perhaps

the following reasoning, analogous to what was indicated in Art. 5.,

may be considered sufficient. In whatever manner the fluid is put in

motion, we may conceive a surface to be described, which shall be

every where perpendicular to the directions of the motions at a given
instant of the particles through which it passes. This surface may be

of an arbitrary and irregular shape, not necessarily defined by a single

equation between x, y, and %. But it must be composed of parts either

finite or indefinitely small, which are continuous, and consequently have

radii of curvature subject to the same conditions as those of regular
curve surfaces. Hence the normals to all the points of any element

of the surface will pass through two focal lines, situated at the centres

and in the planes of greatest and least curvature, and cutting the
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directions of the normals at right angles. The motion, being in the

normals, will be directed to the focal lines. If we describe another

surface indefinitely near the first, and cutting in like manner the direc-

tions of the motion at right angles, all the points of any fluid element

intercepted between two opposite elements of the surfaces, will at a

given instant ultimately have their motion directed to the same focal

lines : but this cannot be said in general of more than an elementary

portion. If we suppose the form of the superficial element to be a

rectangle, the normals through all the points of its sides, will inclose

a wedge-shaped mass, the transverse section of which at any point, it

is easy to shew, will vary as the product of the distances of that point

from the focal lines. Hence the velocity in passing at a given instant

from the first to the second of the surfaces above-mentioned wiU vary

inversely as this product. Let therefore r and r + l he the distances

of the point whose velocity is V, from the focal lines to which the

C
motion is directed. Then V= .

j-,
in which expression C, /, and

the positions of the focal lines are constant at a given instant, when

r varies through a space which may either be finite or indefinitely small.

Let a, /3, 7, be the co-ordinates of the middle of that focal line which

is distant by r from the point in question. The velocity (m) in x will

then be V. ;
the velocity {v) in y, V. ;

and the velocity

{w\ in », V. ^. Hence
' r

udx + vdy + wd%= Vi—~dx + ^
, dy H -d%\ .

Now since r- = {x — af + {y
—
fif-\-{%~yY, if we make r vary with

X, y, and %, while a, )3, 7, remain constant according to what has just

been said, we shall have rdr— {x — a)dx + {y-fi)dy + {%
—

y)dti. Hence

tfdx + vdy + wdz=F^dr; and as F" is a function of r and /, the right

side of the equation is a complete differential of a function of

X, y, %, and t, with respect to the three first variables, t being con-

stant. Therefore also the left side is the same. Let the function be
<p.

Vol. V. Part II. A a
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Then

dr ' dx '

dy
'

d%

We proceed to shew next that the equation

d^d) d^d) d^d> „ du dv dw
zr^ + j^ + -j^ = 0, or J- + T- + ^- = 0,daf df d%^ dx dy dx

is satisfied by the kind of motion we have been describing.

10. Let P (Fig. 1.) be the point whose motion we are considering;

Or, Nq, the focal lines to which the motion of the element at P is

directed. Let PNO be the straight line which passes through P and

the focal lines, cutting them in N and O. Suppose O to be the

origin of a system of axes, of which ONP is the axis of x, Oy coinciding
with the focal line Or the axis of y, and 0% perpendicular to the plane

yOx, the axis of %. The co-ordinates of P referred to another system
of rectangular axes AX, AY, AZ, are X, Y, Z: p is a point

indefinitely near to P, Pp is parallel to AZ, and the co-ordinates of

p are X, Y, Z+SZ: pqr is the straight line which passes through p
and the focal lines cutting them in q and r. Now let the equations
of Pp referred to the system Ox, Oy, 0%, be x = a% + a, y — b% + fi,

and the equations of pqr, x = dz-\-a, y= b'z + li'. Then

„ l+aa' + bb'
cos ^ Ppq =

„ ,— .

Let ON=l, NP=r. Hence because Pp passes through P whose

co-ordinates referred to the axes Ox, Oy, Oz, are I + r, 0, 0, it follows

that l+ r = a, and /3
= 0. Thus the equations of Pp become x = az + l+ r,

y = bz. Again, because the line ^^gr passes through r, whose co-ordinates

are x — 0, z = 0, we have a' = ; and because it passes through q, whose

co-ordinates are y = 0, x = l, we have l=a'z, and = i's: + /3'. Hence

a: = - = -
-n, and consequently ft'

= r. Thus the equations of

pqr become x— a'%^ y^V% y . Also because Pp and pqr pass
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through the same point p, a;= «'x= a« + /+r, and therefore ^ = -7 .

And y = hz = h'% ^i therefore z = -rm—tx • Hence -; = —rrr,
—

7t>''
a' a{b'-h) a -a a{b-b)

which gives h' = —
; j^.

From p draw ps perpendicular on Ox,

and let P.?= 5. Then ^ = x-{r+ l). Bnt x = a'z = t!^±Il, Therefore
' a —a

^ = —
7

'-
. Hence it will be found that a' = ——» , and

a —a 6

V = —
J
—-. This latter quantity, if we neglect powers of S above

the first, is equal to (l H—
rj

A. Therefore by substitution

„ d r \ r{l + r)J
cos / Jr«o = — -.

. , , ,.

a'(^r + l)+(l+d' + b'—]s= (neglecting ^, &c.) V ^ /

Here / „
=== is the cosine of the angle pPs. Hence if ^ = the

V 1 + a^ + o^

velocity at P in Ox, and w the part resolved in the direction parallel

Va
to AZ, w — —

/ 2~^i • ^^^ ^ ~ ^^ resolved portion of the velocity

at p in the same direction. Now the velocity at p is ultimately the

same as that at s, and is therefore equal to V . -, A^ \
—r-

,

according to the law of variation from P to s determined
. by the

AA2
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considerations with which we commenced this investigation. Neglecting

powers of I above the first, this quantity becomes V \\ ^ J

.

Consequently

a
But S = SZcospPs = SZ X ,

'g.Jp' Hence

w'-w _ „ / \-d 1 ¥-a^ 1

~IZ U +«' + *' /+ r
"^

l+«2 + fr^'r

If now a, ft, 7, be the angles which the axis AZ makes with

Ox, Oy, 0%, respectively, we have

Hence passing from differences to differentials,

-7- = (COS^'V
— COS'o)^ + (cOS^/3-COS*a) -

(1).
d% ' '

l+ r ' r '

So if d, /3', 7', be the corresponding angles for the axis of Y, and

a", /3", 7", for that of ^, v the velocity in F", and u that in ^, we shall

have by a like process,

^ = (COSV- COs'a') ,— + (coS^/3'
-

COS^a') ....... (2) ,

^ = (cos^y- COs'a") y^ + (cos'/3"-COS^a")
^

(3).
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But as a, a, a", are the angles which Ox makes with three rectangular

axes,

cos" a + cos" a + COS" a" = 1,

so cos-/3 + cos^/3' + cos^/3" = l,

and cos'^7 + cos'^7' + cos^7" = l.

Therefore by adding the equations (1), (2), (3),

du dv dw _
7lX^ dY^dZ~

11. The general conclusion from all that precedes is, that the law

of the variation of the velocity from any point to another indefinitely

near in the direction of the motion, at a given instant, may be expressed
C

by -^
—

J-,
the quantities C, r, and I, being such as we have stated

C
in Art. 9- If 1=0, we have- as a particular case, V=-^. In my

former paper on the motion of fluids, I assumed, as it now appears,

C
incorrectly, that —

represents the general law of the variation of the

velocity. None, however, of the results in that paper are affected by
the assumption. For instance, the expression for

as it only requires that
(p

should be a function of r and /, will remain

the same. This expression may also be briefly obtained thus. We

have seen that -~- = V. Now as r is ultimately in tlie direction in

which the velocity V takes place, if a line commencing at a given

point be drawn constantly in the direction of the motion at a given
instant of the points through which it passes, dr may be considered the

increment of this line. Hence if we call its length s reckoned from

the fixed point, -j^ = -^ = F. Then integrating, c}>
= jVds -^/{t);
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and differentiating under the sign /, ^ =
f -r-^^ +J''(^)- Hence

substituting for -^ in the known expression for the pressure {p),

p = f(Xdx + Ydy + Zdz) - f^ds - ^ -fit).

If f^ be always the same in quantity and direction at the same point,

dr V^
-^

= : so that, p = j{Xdx + Ydy + Zd%) - -— -f{t).

This equation may thus be considered to be strictly deduced from the

general equations of fluid motion.

Considerations analogous to those applied (Arts. 6 and 7) to motion

in a plane, might here be introduced to shew that the motion at any

point, when due to several causes, is the resultant of the motions which

would be produced by the causes acting separately ;
and also to determine

the same law of reflection at a plane surface.

12. The following simple instance of fluid motion may serve to

illustrate some points of the preceding theory. BCD (Fig. 2.) is a

conical vessel with its axis vertical. A mass of fluid DBhd is made
to descend so that its lower surface hd is bounded by a horizontal

plane to which any arbitrary velocity is given. The upper surface is

also supposed to be plane and to be kept horizontal by the force of

gravity. It is required to find the consequent velocity and pressure

at every point of the fluid.

It is evident that the motion will be in vertical planes passing through
the axis, and will be, the same in all such planes. Take therefore two

planes making an indefinitely small angle with each other, and let

AB, AE, be their intersections with the upper surface, ab, ae, with

the lower. Let PQSB be an element of the upper surface, P and B
being equidistant from A, as also Q and S. If now at any instant

lines commencing at the four points P, Q, B, S, be continually drawn
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in the direction of the motion at the points through which they pass,

these lines must be rectiUnear, because there is no curvilinear motion

at the boundaries of the fluid, and therefore no cause to impress a

curvilinear motion on the parts interior. The straight lines commencing
at P and R will intersect ah and ae at p and r, points equidistant

from a, and those commencing at Q and S will intersect the same

lines at q and s also equidistant from a. Now from the law of

the variation of the velocity above found, at every point of the cunei-

form element Ps, the velocity will be inversely proportional to its

transverse section. Let therefore V =^ the vertical velocity with which

(lb is made to descend, and v the vertical velocity with which the

surface DB descends. Let AB= a, AQ= x, PQ= X, ah = h, aq = x',

pq= 'S.', and the angle BAE = e. Then the element PQSR^^xeX,
and pqsr= x'e\'. These elements are proportional to the transverse

sections at P and p ; and the vertical velocities V, v, are to each

other as the velocities at p and P in Pp. Hence — = -;
—

,
= -V-, •

-' * V X e\ xX

F • Wence ^,
-
^

because the motion is along the slant surface. Therefore in this case

X a
r-,

=" T. Suppose X to be given, and let Xi be the consequent value
X o

of x'. Then — =
-r, and -. = y . If now x be taken = « — X, from

X, o b-Xi o

what has been just shewn, x' will = 6 — X, . Hence 4— =
j^, and

\0
—

Xi) X2 o

consequently
— = t- Therefore X2 = Xi; and so on. From this it
X2 o

follows that if AB and ab be divided into the same number of

indefinitely small equal parts, the straight lines joining the corresponding

points of division will give the directions of the motion, which is

consequently every where directed to the vertex of the cone. Hence the

velocity af^ any point W whose distance CpW from C is p, varies as —
.

P'

Let CA =h, Ca = k, z ACW= 9 ; then the velocity at p=V sec 9, and

the velocity at W= V sec 9 .
^
—

;
this resolved in the vertical

But — also =
jj,

. Hence ^j^,
=

71 • If we take x= a, x' must = h.
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f^k'sec'6 VTf
direction gives j—— , which = — — = velocity at Z. Hence the

vertical velocity is the same at all points of any horizontal plane, and

the fluid will consequently descend in parallel slices.* Let us now
determine the pressure at any point on the particular supposition that

V is uniform. Then if

Vk"&eee ^, , .. , „r dw Vsec'd ^,dk 2F"Asec'0
w =

::
the velocity at W, -7- =

;
— x 2«-7-- =

y,
.

p' 'at p^ at p-

And

Idt^' ^-Jdt'^P-J 7
=

-p

+ ^

»

Hence
„ 2r'kse&9 r'k'sec'e

p = C-g. + . __.

And as when z = h, p —
0, and p cos Q = h, it follows that

The above solution I do not consider to be of any value, except as

illustrating the process to be followed in determining mathematically
the way in which the interior of a mass of fluid is affected as to

velocity and pressure, in consequence of given conditions at the

boundaries. This part of the theory of fluid motion is very
defective.

*
I obtained this result in the number of the Phil. Mag. and Annals of Philosophy

for .Jan. 1831, but omitted to shew that it is entirely dependent on the arbitrary condition

that the inferior -surface of the fluid is bounded by a horizontal plane. Qji any other

supposition the problem would be one of much greater difficulty. This omission has not

without reason caused a misapprehension as to the application of the solution, on the part of

Berzelius in a notice taken of it in his Annual Review. {Jahres-Bericht, 1833.)
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SECTION III.

Application of the Principles of the foregoing Section to an instance of
the Resistance of an Incompressible Fluid to a Body hounded by a

Spherical Surface moving in it.

13. Let a solid sphere, partially immersed in water, being of less

specific gravity than the fluid, be drawn along in a horizontal direction

with a given uniform velocity ; it is required to find the height of

its centre above the horizontal surface of the water.

We shall suppose for the sake of simplicity, that the fluid is

unlimited in extent both in the vertical and horizontal directions, and

that the surface of the sphere is so smooth that it impresses no velocity

on the water in contact with it in the direction of a tangent plane.

Let CDJBJE (Fig. 3.) be the sphere, O its centre, ADE the intersection

of the horizontal surface of the fluid by a vertical plane through the

centre of the ball; OQ a line through the centre parallel to ADE.
This will be the direction of the motion of O, since the velocity is

supposed to have become uniform, and ON to be constant. Let A,
a fixed point in ADE, be the origin of co-ordinates, AN=a, NO =

'y,

at any instant. Then the velocity {V) of O = -r-. Draw OB vertical;

let P be any point of the surface immersed; through P draw the

spherical arcs PQ, PB, and let the angle QOP=6, and the angle

PQB = to. The velocity impressed by the sphere on the fluid at P
is F'cos 9, as none is impressed in the direction of a tangent plane.

This velocity is directed to the point O, because in the case of a

spherical surface / = 0. Hence if « = the radius of the sphere,

C
FcosO = —. (Art. 11.) The velocity at every point of the line OP

produced, wiU at a given instant be in the direction of this line,

Vol. V. Part II. B b
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because when the fluid is of unlimited extent, there is no cause* to

produce motion at any point of the line, but the impression made at P,

which is transmitted instantaneously, varying at different distances

from O according to the law of the inverse square. Hence if ^ be a

point in OP produced, and OR = r, the velocity at R — —, = ^
—

.

Let ADE be the axis of x, a vertical through A the axis of z reckoned

positive downwards, and a line through A perpendicular to the plane
of these two the axis of y. Then if the co-ordinates of R be x, y, %,

we shall have r- = (:r
—

a)" -I- y^ + (s + 7)' ; and cos0= . Therefore

the velocity {v) at R,
•A-A I'?

VoH^X-a)
Ka;-ay^ + y' + (» + 7)-}5"

And

Hence

dv dv da re rr :i 4. ..k

~j-
=

7- • 77 > (lor ^ and 7 are constant),

_ F«^(3cos-e-l) (la

r"
'

dt

rV(3cos*^-l)

/^rf,=/(o-g5:(3cos'e-i).

Therefore, gravity being the only force acting on the fluid, the pressure

ip) at R,

* This cannot be said of the parts of the fluid adjacent to the radii produced which pass

through the circle in which the surface of the water meets the surface of the sphere, because

the water outside of the conical surface formed by these radii must be put in motion by that

within by reason of the difference of pressure occasioned by the motion. On account of the

difficulty of estimating this effect, it is left out of consideration in our solution, which can

therefore be only considered approximate.



OF THE MOTION OF FLUIDS. 191

= ^« + -27^(3008-'^- 1)
-

-g^-cos'e -f{t).

When r is indefinitely great this equation becomes p=g^—f{t)', and

as for this value of r the velocity = 0, p must = g% ; therefore /{t) = 0.

If now we put r = a, and i8 = ss,, the co-ordinate of P, we obtain the

?^* cos20
pressure (/>,) at P, = gz, -\ . The portion of this resolved in

the vertical direction is
jo,

x cos i FOB. But from the spherical

triangle PQB, cos /. FOB = cos w sin 9. Therefore the vertical pressure
is p, cos w sin 6. The element of the surface at F = ad9 x a sin ddw.

Hence the whole vertical pressure = //jOia'sin''^ cos wt/^c^w

=ga^ff%i sin^OeoswdOdw + ——— ffsin^9 cos29 cos wd$dw.
M

The first term is plainly the weight of water displaced, and is there-

fore equal to —-(2«' — 3«'7 + 7*), the specific gravity of the water

being 1. The integrations with respect to u> must be taken from

a,= — cos"^—jT—r to -f cos"^—^-;r , and the integrations with respect

to 6 from sin"'— to the supplement of that arc. Between these limits

of w, fcoswda)= 2\/i T ; and between the limits of 9,
a'^sm''9

2fsm'9cos29d9 x/i _
,
'^^ =_ J fi _:>:!') .

•^ ^
«*sin''0 2 V «V

Therefore if JV = the weight of the sphere, which is the same as the

whole vertical pressure, and w = the weight of fluid displaced,

IV=w-
4

B B 2

i^-i)-
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This result shews that the weight of fluid displaced is greater than

the weight of the sphere, and consequently that the centre O is lower

than it would be in a state of rest.

Suppose a portion of the sphere to be cut off" by a horizontal

section at the distance of b from the centre ; and let 7 become 7', the

centre being still above the surface of the water. Then if we suppose
the motion to be always in the direction of the radii*, and the horizontal

bottom to have no effect in impressing motion, the equation for this

case will be.

W=w- TrF'a'

ttTV= w :
—

The difference between W and w is here less than before on account

of both the factors —; and 1 — -yr ; for -?- is greater than -
. This

a* b* b ^ a

seems to shew that curved bottoins tend to depress the vessel when it

begins to move, and consequently to increase the resistance.

As the term —-—
ffsm^6eos26 cos uidOdu) is positive from 0=:sin"' —

to = 45°, and from = 135° to 6 = the supplement of sin"' — , let us
Cv

integrate for the portion of the surface corresponding to these limits,

or what amounts to the same, take the double of the integral between

the first limits, those of w remaining the same as before. In order to

abstract from the consideration of the portion of the surface not taken

into account in this integration, we may suppose the portions for

which we integrate to be connected by a cylindrical surface, the radius

of which = a sin 45°. The length of this cylindrical part may be any
we please : the vertical pressure against it will be only equal to the

* This again cannot be true in the direction of the radii which pass through the lower

circular boundary of the surface.
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weight of fluid displaced. Also the shape of the floating body above

the part immersed is of no importance to the problem. The form of

the whole body may be such as is described in Fig. 4, ABCDEF
being a half cylinder of which the axis is GH, and ALC, FKD, the

extreme portions of the body, bounded by spherical surfaces which have

their centres at M and N. Now in general ^ jjsin^d co^^O co& wdQdw,

commencing at = sin~'— , and ending at any other value of 9, will

be found to be

cosefssin^e + l-^') V sin^e-^ -\(\-—i

And if we put cos 9 = —?= , we shall have

COS0

a-

VW = w +

As the second term is necessarily positive, the floating body will be

higher than it would be in a state of rest, and consequently the

surface against which the resistance acts becomes less by an increase

of velocity.

To obtain a numerical result respecting the rise of the body

corresponding to a given velocity, we will suppose for the sake of

simplicity of calculation that when the vessel is at rest, the centres

of the spherical ends and consequently the axis of the cylindrical part,

are in the plane of the horizontal surface of the water. This circum-

stance may be produced by loading the upper part of the body

.
without altering its specific gravity. Let / = the length of the axis

of the cylindrical portion. Then the area of the horizontal section of

the vessel at the level of the water surface is ID H
— —

, its
4 2

breadth being D. Now W—w must be equal to the difference of the
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quantities of fluid displaced in the states of rest and motion, and is

therefore equal to yg \ID+'^ —
j

, 7 being small. Therefore

neglecting powers of — above the first,

Let ^ = 3. It will then be found that F' = 696** x 7. And if 7 = one

inch, or ^, this equation gives ^=519 miles per hour; consequently

if ^=10*4 miles per hour, 7 = 4 inches.

2

In general, neglecting "—, &c.

TV-w== r'a'
sin e cos e (2 sin'0 + ^

)

~
|)

'

also W — w = yg llD + ^---iAO
- sin 9 cos6)\ nearly ;

therefore, as I>= Zasm9, it will be found that

F- sin2 0(2sin'0 + l)-0 , . ^ /
y = -r- •'-4 '--TT,

—
• r.n r,n y w? bemg put for -y\.'

4!g 4!msm'9-sm26 + 29 " * D

If 9 be assumed equal to 15°, and 711 = 3, this equation gives ^"=7-35
miles per hour when 7 = 4 inches.

These results, which probably are but very rough approximations
to matters of fact, may yet suffice to shew that when vessels and boats

of the usual forms sail in the open sea, they may be expected to rise

in some degree upon an increase of their velocity, and so much the

more as they are less adapted to cleave the water. Our theory shews

that the rise is the same for bodies of the same shape and proportions,

moving with the same velocity, whatever be their absolute magnitudes;
also that this effect is equally due to the pressures on the front and
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stern of the vessel. The theory, in fact, determines these pressures to

be in every respect alike, so that if we proceeded to investigate the

total pressure in the horizontal direction, we should find it to be

nothing, when the motion is uniform. This may serve to shew that,

if friction be left out of consideration, a front ill-adapted to cleave the

water, is not unfavorable to speedy motion, if the stern be of the same

shape; and that the resistance to the motion of vessels in the open
sea is principally owing to the friction of the water against their

surface. This cause operates to produce unequal actions on the front

and stern, making the directions of the motions of the particles in

contact with the surface of the former, less inclined to the horizon

than they would be in the case of no friction, and of those in contact

with the surface of the latter more inclined. To counteract this inequality

probably the stern should be less curved than the front.

SECTION IV.

General Propositions respecting the Motion of Compressible Fluids.

14. The considerations applied at the beginning of Section II. to

incompressible fluids, are equally applicable to compressible. I shall

therefore assume that in a mass of fluid in which the density varies

as the pressure, the directions of the motion at all the points of any
element pass at a given instant through two focal lines. Let p be

the density at a point distant by r and r -vl from the focal lines, and

V the velocity : p and V the same for a point indefinitely near the

former. Also let the transverse section of a cuneiform element aclk

(Fig. 5.) which is bounded by four pli.nes passing through the focal

lines kl, mn, be at the first point efgh, and at the other, abed. The

pressure and consequently the density will be the same at all points

of the section eg; as also the velocity; at least our reasoning does not

apply to cases in which this condition is not fulfilled. The same may
be said of the section ac and of all sections intermediate to ac and eg.
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Let now the area of eg = m, and that of ac = m'. Then if the motion

which exists at a given instant, be supposed to be continued uniform

for the small time t, the quantity of fluid which passes the section eg
in that time, is mpF^T, and that which passes ac is m'p'Vr. Hence
the increment of matter between the two sections is — {m'p'V'T — mpVT),
whether the velocity tend from or to the focal lines, being considered

negative in the latter case. The increment of density {Ip) of the element

in the time t, is consequently — ^^—-—
r—,
—

—.
—— But — = —^^ =^ .^ •'

m{r'-r) m r{r + l)

Hence

pT'r'ir' + D-prnr + l)
_^^^^^^Sp_^

And passing from differences to differentials,

^^^^^'dt
~

dr

or dp dV ,.dp ,^ /i 1 \

As before udx + vdy + wd% = V dx + V^^—— dy + V d% = Vdr,"
f* T T

if a, /3, 7, be the co-ordinates of the middle point of the focal line hi.

Now as we have supposed that in passing from one point to another

of tlie element acge, the change of velocity at a given instant depends

only on the change of r, we may consider V a function of r and t,

and Vdr a differential of a fimction of r and t. Then udx ^ vdy
+ wdfi = d(l),

a complete differential of a function of x, y, and as; and

-~ = V. But in this case we have the known equation,

a' Nap. log. p^fiXdx + Vdy + Zd%) -^ -~
(B.)

Therefore considering X, V, Z, to be independent of the time,

d'dp _ d^(p dV d'(ji d(p d'<p

pdt
~

df dt ~d¥
~

'dr
'

drdt
'
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But from (A),

pdt pdr
'

dr dr' dr \r r + l)
'

And differentiating (B) with respect to space only,

^1^ = Xdx+ Vdy +Zdx-d.^ - VdV.
p at

If the variation be from one point to another in the direction of the

motion, dx = dr, dy = -—— dr, dz = dr. Hence,
r ^ r r

a\dp ^ X ^-°
, Y y~^ + Z ^^^ _-^ d(p d'(f>

pdr
'

r
'

r
'

r drat dr
'

di^
'

Substituting this value of —^ in the foregoing equation, and then

equating the two values of ,'] , we shall obtain,

/ d£\d^_Q^ d^ d^t . ,.d^(l , J_\
\

~
dt^j dr' dr

'

drat df "*"

dr\r
"^

r + l)

+ ^ (x^^ + ry^ + Z'-^) =0 (C.)dr \ r r r I

This is an equation of general application. If, as a particular case,

I, a, /3, 7, each = 0, we shall have the equation I obtained in my
former paper (Art. 4.) by assuming ^ to be a function of v^a^ + y^ + s!^

and t in the equation {n) of the Mecanique Analytique (Part II.

Sect. XII. Art. 8.)

It may be proved as in Art. 11, that -^ =
/~77 ^*' ^^ ^'^^ incom-

pressible fluids, and that the equation applicable to steady motion is,

a' h. 1. p = fiXdx + Ydy + Zd%) - ^ + fit) .

Vol. V. Part II. Cc
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15. If r be indefinitely great in equation (C), the motion is in

parallel lines, and putting r= c + s, j=j- Let -^ = w, and

suppose no force to act ; the equation for this case becomes

d''(p 2w (Pep 1 d'(p _
~d?

~
'^^' dsdt

"^
o^^T^

' dF~^'

This equation combined with a* N. 1. p = — -^ — —
, gives as a particular

integral, u] = al:iA. p =/"{«- {a + w)t\. By varying a little the mode of

_ ^( as.

integrating, I found also w — a^A. p =/( atj, {Camb. Phil.

Trans. Vol. III. Part III. p. 399), and endeavoured to shew the way
in which each integral ought to be applied. But this enquiry was

unnecessary ; for the integral may present itself under an unlimited

number of different forms. The equations

w = a^.\.p=f{.^-{a + io)t + ^{w)], or «, = «N.]. jo=/(^^^^%i^l ,

will equally satisfy the differential equations, being, in fact, only
different forms of the first-mentioned integral. The principle according
to which it now appears to me, an integral of this nature should be

employed, is to apply it immediately only to the parts of the fluid

immediately acted upon by the arbitrary disturbance, in order to

determine the law according to which the initial velocity is transmitted

to the contiguous parts ;
then to determine the law of transmission

from these to the next; and so on in succession. In the present

instance by making * and t vary so that w and p remain the same,

ds
we shall find a + w for

-j~
the velocity of transmission, under whatever

form the integral may appear. The second term m of this quantity

is due to the transmission of velocity through space by the motion of

the particles themselves ; the other a is the velocity of propagation

along the particles. In this example, as the velocity and density are

propagated uniformly and undiminished, it is easy to determine at any
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instant the velocity and density at any given point, which result from

a given disturbance. In other cases in which the velocity of propaga-

tion is variable, the determination would be more difficult, but must

probably be arrived at by the same principle of reasoning. Variable

propagation is analogous to variable motion, as uniform propagation to

uniform motion, and would seem to require integration to determine

the time at which the effect of a given disturbance is felt at a given

place.

16. If in the equation (C), a be an indefinitely great quantity,

the terms which do not contain a^ as a factor may be neglected in com-

'parison of those which do, and the equation will become

dr^
^
dr\r

^
r + l)

'

which by integration gives -^ = —
j-,

the same as for incompressible

fluids. This result was to be expected, because a, as is well known,
is the velocity of propagation in the compressible fluid, and when this

becomes infinite, the propagation is instantaneous, and the fluid there-

fore incompressible.

If / be indefinitely great, it will be found in the same way that

-r~
— —

, and the motion is such as was considered Art. 3.
dr r

Let now -^ be very small compared to «, and X, V, Z, and /

each = 0. The equation (C) reduces itself to

"-11?^^"^ dr df-^' '''''•
dr' -~dF~'

a particular integral of which is r^=^'P{r— at). This gives

d^ ^ F\r-at) _ F{r-at)
dr

~
r r^

^ "'

CC2
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At the same time, because a^'N.l.p=
—
-^ nearly, we shall have

, T , F'{r-at) ,^,
«.N.l.p =^ -(2.)

The equations (1) and (2), involving but one arbitrary function, can

apply only to a single disturbance, which takes place in a direction

tending from a centre, as I have elsewhere shewn*. It is important
to observe that when r is very small, the term of equation (1) which

involves r"- in the denominator may be much greater than that in-

volving r. In fact, if we expand the fxmctions, supposing r to be

very small.

&c._ F{-at) _ F'{-at) _ F"{-at)

When therefore the disturbance is made by a sphere of very small

radius r, the motion is transmitted from its surface to other parts of

the fluid, nearly as if the fluid were incompressible.

SECTION V.

Application of the Principles of the foregoing Section to determine the

Resistance of the Air to the Motion of a Sail-Pendulum.

17. For the sake of simplicity, I will suppose gravity not to act.

The ball being spherical and perfectly smooth, the direction of the

motion of the aerial particles in contact with its surface tends at every

* Camh. Phil. Trans. Vol. HI. p. 402.
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instant from its centre. Therefore / = 0. Also if the radius of the

ball be supposed very small, the equation -f-
= ^-t^> obtained at the

end of the preceding Article, will be approximately applicable to the

motion of the fluid in contact with the ball. Hence the velocity which

is impressed at any point of the spherical surface may be considered

to be transmitted instantaneously in the direction of the radius through
that point, and to decrease according to the law of the inverse square

of the distance. The problem, with the limitations above made is

solved in the same manner for air as for water.

Let now the origin of co-ordinates be A, (Fig. 6.), the position

of the centre of the ball when it hangs at rest. I^et its centre perform

oscillations of very small extent in nAN, which we will consider to

be rectilinear. Suppose N to be the position of the centre at the

time t reckoned from a given epoch, and call AN, a. Take P any

point of the surface, join NP and produce it to R, and let NPR make

an angle Q with ANQ, and the plane RNQ an angle /3 with the

plane SAQ. The velocity of the centre = ^; and the velocity of

da
the air at P — -rrCosO. Hence if NP=h, and NR = r, the velocity

at ^ =
-„

—
. -^ . Now if AN be the axis of x, AS of a, and a

r- at

line through A perpendicular to the plane SAN, the axis of y, and

the co-ordinates of R be x, y, %, then r^ = {x
— aY + y^ + %^. Consequently

the velocity (^) at R=,
r^ ^
—

2
•

;77-
Hence differentiating V^

With respect to the time only,

dr _ d'a b^cos9 2b^cose{x-a) d^ h^
da d.cosO

dt
~
W-' r'

"^ 7 •

dt^
'^

r"' df dt
'

^ ^ x — a d.cosO 1 da cos^6 da sin^O da
But as cos9 = , r:

— = --77 +

Therefore

dt . r
'

dt r
'

dt r
'

dt

dV_d^ ¥cos9 ^b'cos'e da' b'sin'0 d^
dt

~ df r^
^

r'
'

dt' r'
'

dt^
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Hence

J dt df
•

r 2?
•

df
'

Substituting in equation (B),

j\-. - d^a FC0S9 b'^
ir, 2/, -am da b* COS^ 9 da „.^^« ^-^-P =

df —r- + ap (2cos=0-sm=0) ^ - -^^ . ^ -M.

When /• = infinity, /o
= 1 : therefore f{t^ = 0. Hence when /• = A,

„,T. , «?^a , . COS 20 <:?a^

Where p = 1, let j9
= n = a^ Hence when

(O
= 1 + o-, p = e' (1 4-

a-)
= n + aV.

But because a- is very small, «^N. l.jo
= «V very nearly. Therefore,

„ d^a , - cos 20 rfa^

^ = n+^.*cos0 + -^.^.
The total pressure resolved in the direction NA is ffp¥ eos6sm9d9dfi,
from /3 = to /3

= 27r, and from = to = 7r. It will consequently

be found to be equal to —— . -^ : and if A = the ratio of the specific

gravity of the ball to that of air, the accelerative force produced by
1 d'a

this pressure is —
. -7-7 . But the accelerative force of gravity in the

same direction, if SA = A, is ^ (
1 ~ t"

)
» taking account of the weight

of air displaced. Hence

_ cP_a _g^(-._}\ j_ d^

d'a
^

or «^__^ ±^_§^(l_l] nearly

1 + K
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Therefore if L be the length of the seconds pendulum in vacuum,
2s *

I in air, / = Z«
(
1 — —

j

The correction of the length of the pendulum is thus determined

to be double of what it would be if the motion of the air were not

considered. It is to be observed that these calculations apply strictly

only to the case of a very small ball. The experiments of M. Bessel

give 1"956 for the coefficient of —
. Those of Mr Baily, which were

made most nearly under the circumstances which the theory supposes,

give 1"864. The effects of friction and of the suspending wire, would

tend to make the coefficient rather greater than less than 2. I am
therefore unable to account for the difference between the experimental
and theoretical determinations, which it appears by Mr Baily's experi-

ments, is greater as the radius of the ball is greater, excepting perhaps
the confined space of the apparatus may have had some effect on the

experimental results.

It would not be difficult to shew from the nature of the analytical

expressions, that if the confined space in which the balls vibrate were

taken into account in the theory, the same results would be obtained

for two balls of different diameters, vibrating in different spaces, if the

linear dimensions of the spaces were in the proportion of the diameters,

their forms being alike. If this could be verified experimentally, it

would shew that the difference of the values of the numerical coefficient

which Mr Baily calls n, for balls of different diameters, as well as its

deviation from the theoretical value 2, is very probably owing to the

confined space of the vacuum apparatus. It would at any rate be de-

sirable to ascertain by experiment whether the same ball gives the same

value of n, when it oscillates in apparatus of different dimensions.

Papworth St Everard,

March S, 1834.

* This result I obtained in the London and Edinburgh Philosophical Magazine (September,

1833), by assuming the principle of the conservation of vis viva, without employing equa-

tion (B).
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IX. Theory of Residuo-Capillarij Attraction; being an Explanation of

the Phenomena of Endosmose and Exosmose on Mechanical

Principles. By the Rev. J. Power, M.A. Fellow and Tutor

of Trinity Hall, and late Fellow of Clare Hall, Cambridge.

[Read March 17, 1834-3

1. The curious and elegant law, according to which an interchange
takes place between two fluids separated from each other by a thin

membrane, one of the fluids generally (but not universally) the lighter

of the two, being transmitted in greater abundance, was discovered a

few years ago by Dutrochet.*

His experiments tended to show that the unknown force which

operated this effect, whether measured by the fluid transmitted in a

given time, or by the pressure required to stop the process, was, for

the same substances, proportional to the difference of densities of the

mixtures on each side of the membrane.

The vast importance of this law in animal and vegetable physiology,
renders it highly desirable that its theory should be investigated on

mechanical principles, and such is the object of the present enquiry.

2. The opinion which would attribute this phenomenon to the

existence of electrical currents, is now pretty nearly abandoned, even by
Dutrochet himself, with whom it originated, and who maintained it with

great zeal, until the publication of his later researches, in which he

*
L'Agent immedial du Mouvement Vital, (Paris, 1826), and Nouvelles Recherches sur

I'Endosmose et VExosmose (Paris, 1828).

Vol. V. Part II. Dd
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confesses himself compelled to resign it, though he does so with

manifest reluctance. That electricity, artificially excited, is capable of

accelerating the process, is indeed sufficiently established by the experi-

ments of Dutrochet; but it is equally certain that this agent is by no

means essential to the operation, since, in the natural process, the most

delicate galvanometer gives no indication of its existence.

3. To me it appears unquestionable, that the phenomenon results

from the corpuscular attractions, which the particles constituting the

membrane and the fluids, exert upon each other : that electricity,

by heightening or modifying these attractions, should produce a sensible

effect upon the operation, is nothing more than its ordinary chemical

agency would lead us to expect.

4. By corpuscular attractions are meant the forces which the

ultimate atoms of different materials, whether simple or compound,
exert upon each other. These forces are enormously great (though not

infinite) when the particles are in immediate contact, but diminish with

extreme rapidity, as the particles separate, becoming insensible at a

sensible distance. The effects of corpuscular attraction are different,

according as it is exerted between particle and particle, or between

mass and mass. In the former case it gives rise to the phenomena of

chemical affinity ; and in the latter, to those of cohesion, adhesion, and

capillary attraction, which may be regarded in general, as the mutual

attraction of contiguous masses, being the combined effect of the

corpuscular attractions of their integrant particles. It is under this

point of view that La Place has considered the subject of capillary

attraction, and his theory will be of the greatest use in the present

investigation.

5. Although no pores can be detected in the membranous partition

by the help of the most powerful microscope, yet the fact that the

fluids are transmitted, is a certain proof that such pores exist. They
must indeed be extremely minute, and it will be seen that it is on

this very minuteness that the energy of the sustaining force depends.

These pores must be regarded as communicating with the opposite fluids
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at their two extremities, while the fluids meet and mix in the

interior.

6. Dutrochet argues that capillary attraction cannot be the cause

of endosmose, because it can only raise a fluid to a small height in a

capillary tube, and is utterly incapable of drawing it beyond the limits

of the tube.

In stating these objections, he perhaps does not consider that the

height at which a fluid may be sustained in a capillary tube is inversely

as its diameter, and consequently in a tube of so extremely small a

diameter as those of which it is necessary to suppose the membrane to

consist, that height might be almost indefinitely great. It is true that

in the case of a single fluid, this effect would require for its production

that the tubes themselves should be coextensive with the fluid raised ;

but this is no longer necessary when the two ends of the tube are

immersed in different fluids. The reason why a homogeneous fluid

cannot be drawn beyond the limits of the tube, is, that, were it to

be so, the tube, acting equally at its two ends, would produce no

effect whatever upon the fluid. But the circumstances are very different

when the extremities communicate with different fluids. In that case the

full residual effect, consisting of the difference of effects, which the same

tube indefinitely extended, is capable of impressing separately upon the

two fluids, might be produced by an extremely small length of tube,

not exceeding a small multiple of the sphere of attraction of the par-

ticles of the tube, and there is no doubt that the thickness of the

finest membrane is a considerable multiple of this magnitude. In fact,

if we cut off" from the ends of the tube a distance greater than the

tube's sphere of sensible attraction, it is plain that the fluids which

occupy the intermediate part, in whatever way they may communicate

there, will suffer no effective attraction from the tube, since every

elementary portion will be drawn by it equally in both directions. The

only effective attractions will therefore be those exerted by an insensible

portion at each extremity ; we may therefore imagine these two por-

tions to be brought together as near as we please without any diminution

of effect.

D D 2
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7. In order to form some sort of estimate of the forces which may
be expected to result from residual attractions of this kind, let us

suppose the fluids to be water and alcohol, and the tube to be of glass.

Now Gay Lussac found by experiments of great accuracy, that in a

tvibe of glass whose diameter was 1.29441 millimetres, water would
stand at the height of 23"'.3791, and alcohol of specific gravity O.8I96

(that of water being 1) at the height of g^^'.SgSOS. This column of

alcohol would be equivalent to 7™.7176 of water; the difference of

effects would therefore be measured by a column of water of I5"'\66l5.

Suppose now the diameter of the tube to be diminished a thousand

times, or to become 0'"'.001294, the column of water which measures

the difference of effects would be 1566l™'.5: or, since the French

millimetre = .0393708 of an English inch, a glass tube of diameter

0'".0000507, or about the twenty-thousandth of an inch, would produce
a residual effect, with water and alcohol, measured by 616.6 inches or

51" 4'" of water, which is equivalent to the pressure of nearly two

atmospheres. When it is considered that a platina wire of one three-

thousandth of an inch in diameter may be seen by the naked eye, it is

probable that the magnitude we have assigned to the capillary tube

is considerably greater than the diameter of the membranous pores,

which evade the powers of the strongest microscope. From this ex-

ample I think the conclusion may be fairly drawn, that, so far at least

as the magnitude of the force is concerned, we need be under no

apprehension but that the residual capillary forces are sufficient to

account for the sustaining force of endosmose. How far they will

account for the law of its variation will be seen hereafter.

8. An attempt to explain the phenomenon by the principles of

capillary attraction has been already made by a distinguished mathema-

tician, Mons. Poisson. He first abstracts from the pressure of the

adjacent fluids, by supposing their altitudes above the membrane to be

inversely as their densities. The fluid in the tube being now equally

pressed on both sides, he supposes that that liquid, for which the tube

has the stronger attraction is drawn by this attraction to the opposite

end, thus filling the whole tube. The fluid within the tube, he now

argues, will be urged by two forces : 1st, the attraction of the liquid
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to which it belongs ; 2dly, the attraction of the opposite liquid. If then

the latter attraction be superior to the former, the fluid which fills the

tube, he says, will be drawn in an uninterrupted stream into the

opposite vessel.

Dutrochet justly objects to this theory, that it will only account for

a motion in one direction, whereas the phenomenon of exosmose requires

a corresponding motion in the opposite direction.

Professor Henslow, in a number of the Foreign Quarterly, suggests
as a modification of Poisson's theory, that whilst the fluid within the

tube is carried in the direction of the stronger attraction, the natural

tendency of the fluids to mix, may carry the other fluid (or, perhaps,
a slight infusion of it) in the opposite direction, and thus produce the

exosmose.

I perfectly agree with Professor Henslow that the natural process
of mixture is the cause of the exosmose, it being only necessary to

suppose that the rapidity with which this process extends itself witliin

the tube is somewhat greater than the velocity with which the whole
mass of fluid which fills the tube is drawn in the opposite direction.

But the theory of Poisson is further objectionable on this account,

that it makes the continuation of the process solely dependent on the

action of the fluids, whereas the experiments of Dutrochet incontestably
demonstrate that it depends mainly on the action of the membrane.
No doubt, the effect both of the fluids upon themselves, and of the

membrane upon the fluids, ought to be taken into consideration, and

this will be done in the following theory.

9. If a capillary tube be divided into two parts by a plane perpen-
dicular to its axis ; the attraction of one of these parts upon a fluid

which exactly fills the other part is \cH, c being the contour of the

inner surface of the tube, and H a certain definite integral or constant,

depending solely on the materials of which the tube and the fluid

consist. The contour of the tube may be of any shape whatever, curved

or polygonal. (See Mec. Cel. Sup. au X* Liv. pp. 14—21.)
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It is convenient to give a name to the quantity H \
we will call

it the capillary affinity between the two materials of which the tube

and fluid are composed.

It is easy to see that the quantity H will remain unchanged if we
conceive the tube and the fluid to exchange their materials; for, by
the equality of action and reaction, the elementary attractions, of which

cH—— is the sum, will be equal in the two hypotheses. The tube may

be regarded either as solid or fluid, and this fluid may be either the

same as that which fills its interior or a different one.

If we conceive the density of the inner fluid to be diminished in

any ratio, all the elementary attractions, and therefore H, will be

diminished in the same ratio ; and if, further, the density of the tube

be diminished in any ratio, H will be diminished in the compound
ratio.

10. Next, let u and v be the original quantities by volume of two

vmmixed fluids. Then, if no penetration of dimensions takes place,

u + v will be their volume after mixture. If we regard the fluids after

mixture as coexisting, each with a diminished density, within the same

volume u + v, calling r, and pi these diminished or partial densities,

(r) and {p) the densities of the unmixed fluids, we shall have

,^ J and 7— ,

{r) u + v \p) u + v

whence

^ +-^ =1
{r)

^
(p)

Again,
ri + pi

= r,

r being the total or ordinary density of the mixture. The two last

equations serve to express ri and pi in terms of /•, (;•) and {p).
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If then we have a second mixture of the same two original fluids,

we shall have

— + -^ = 1

and r-i +
p-i
=

p ,

where rj and
p-i

are the two partial densities, and p the total density of

this second mixture. These equations serve in like manner to express

r-i and
p-i

in terms of p, {r) and {p).

11. Let us now endeavour to express the mutual capillary affinities

which exist between the two mixtures just mentioned, and a third

material (as that of a membrane or tube), in terms of the densities

of these mixtures and the mutual capillary affinities between this same

material and the unmixed fluids.

Let the former affinities be denoted by H, K, L, M, N, namely,H between the tube and the first mixture,

K between the tube and the second mixture,

L between the first mixture and the second,

M between the first mixture and its like,

N between the second mixture and its like;

and let the latter affinities be denoted by {H), {K), (L), {M), (A^),

namely,

{H) between the tube and the fluid of density (r),

(K) between the tube and the fluid of density (p),

{L) between the fluids of densities (r) and
{p),

{M) between the fluid of density (/•)
and its like,

(iV) between the fluid of density (p) and its like.

The attraction ^cH of No. (9) will be the sum of two partial

attractions, namely, that of the tube upon two coexistent cylinders of

the opposite fluids, whose densities are those of the original unmixed
fluids diminished in the ratios r^ : (r) and p^ : (p). Hence by the latter

part of that No.,

ic^=ic(^)^
+
ic(^).^;
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whence

By similar reasoning, superposing all the different attractions, each

diminished in the ratio of the densities of the attracting and attracted

materials, we shall have

..i^=.(/.,^.g+(M,.^H-W^..

By combining each of the last five equations with the four equations
of No. 10, and eliminating r,, ^2, /a,, p^, we shall obtain H, K, L, M,
N, in terms of the actual densities r, p, the original affinities (H),
(K), (L), (M), (N), and the original densities (r) and (p).

12. Let us now proceed to apply the principles of the three last

numbers to explain the experiments of Dutrochet. And first let us

consider those which relate to the statical force of endosmose. In

these experiments the process was allowed to continue until the fluid

raised, or rather the mercurial column which was hydrostatically sub-

stituted for it, attained its maximum altitude ; at this moment the

densities of the two liquids were experimentally determined
; and

instituting different experiments with different mixtures of the same

substances, Dutrochet found that the maximum altitudes were propor-
tional to the corresponding differences of densities.

The substances employed in his experiments were saccharine or

gummy solutions on the one hand, and water on the other, and the
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water was found to be transmitted in greater abundance. Common
treacle is a very convenient substance for experiments.

Let us suppose then that the lower part of the endosmometer is

filled with treacle, and having a thin membrane tied over its mouth,

is immersed in water ;
and let us suppose that the fluid is allowed

to ascend until the operation ceases.

At this moment we may regard the capillary pore which traverses

the membrane, as communicating at its two extremities with fluid in

the same state of mixture as the fluid in the contiguous vessels,

there being a gradual transition from one end to the other.

Let C1C1C2C2, be a portion of

the membrane, AiAiAsA^ one of

its capillary pores, with its axis at

right angles to the plane of the

membrane, communicating originally

with the water at A^A^, and with

the treacle at A^A^, but when the

fluid has reached its maximum al-

titude, communicating with the ^
first mixture of No. (10) at AiA^,

and with the second mixture of

that No. at A2A2.
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Let us now estimate all the forces which tend to move the central

column DyD^D-iDi in direction of its axis.

It is plain that, in whatever manner the fluids may communicate

in the interior of the tube, the tube can produce no effect upon
ByBiBiBi, since every elementary portion of this part of the fluid

will be drawn in both directions as by an infinitely extended tube.

We may also neglect, as producing equal and opposite forces in

both directions, the attraction between the tube A^B^ and the fluid

AiAiBiBi; between the tube A^Bi, and the fluid A^AzBiB,; be-

tween the fluid tube dA^Di, and AiA^D^D^ ; between C2A2D,, and

AzAzDiDs, between the membrane and C^A^D^-, between the mem-
brane and CiA-iD-i.

Lastly, we may neglect all the mutual actions of the particles

composing the central column DyD^DiDi, their tendency being only
to mix the opposite fluids, and not to move the column as a

mass.

Of the remaining attractions we shall have at one end the

attraction of the tube B^Bt, upon B-^B^A^A^, (
= \ cH) + the

attraction of the tube A^B^, upon D^D^A^A^, {= ^ cH) — the

attraction of the fluid tube C^A^D^, upon A^A^B^B^, {=\cM);
c

constituting the capillary force - {2H — M). This will be opposed

by a similar force — {^K—N) exerted at the other end of the tube.

The residual sustaining force is therefore

I .{2H-2K-M+N').

It now only remains to express this force in terms of the actual

densities r and p, and the initial constants

{r), ip), {H), (K), (L), {M), {N).
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13. For this purpose let

^-=...
and

^=..;

therefore by No. (10).

making these substitutions in the equations of No. 11., we have

K = s,{H) + il-s,){K).

L =s,.{l-s,){L) + s,.{l-s,){L) + s,s,{M) + {l-s,){l-s,){N').

M= 2s, (1 -*0 {L) + s,' {M) + (1 -*,)' (^)-

N = 2s, (1
-

s,) {L) + si (M) + (1
-

s,y (N).

Hence 2H-2K-M+N=A (H) + BiK) + C {L) + D{M) + E{N-),

where A = 2. {s,
—

S2).

B= 2.{l-s,)-2.{l-s,)

= -2{si-s,).

C=-2s,.{l-s,) + 2s, (1
-

s,)

= -2{s,-s,) + 2{8{'-si).

D=-{s,'~si).

E=-{l-s,Y+ {l-s,Y

= 2{s,-s,)-{s,'-'Si).

EE2
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The residual force is therefore

I {s,-s,){2{H)-^{K)-2{L) + 2{N)}2

+ l-{s,'-s.'){2{L)-{M)-{N)}.

Again, r = r^+p, =
{r).^^+{p).^

=
('•) *! + (/») (1-*.);

(p)-r
••. *,

=={r)s, + {p).{l-s,);

•
'~ip)-irr

_ p
— r

ip)
-

{r)

„ . „_?ie)zik±rl.

i_^

{ip)-ir)r {{p)-ir)r'

The expression for the residual force is, therefore,

p^ -r
i-fvFW*'<'^>-''^>-<'^>''
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which may be put under the form

cA{p-r)-{-cB(p'-t^)*,

making

^-(^)-(r)-r^) ^^^)+(^)-(r)L^^> {p) + {r) J}'

and^=..^{(Z)-W^H{ip)-ir)rv' 2 r

The agreement of theory with experiment, then, requires that

jM) + jN)
(^) 2

should be either nothing, or very small compared with

14. When I first began to investigate this subject, certain con-

siderations, which it would be tedious to detail, led me to imagine
that the fluids might communicate in the interior of the tube,

forming a series of interlacing cylinders one within another, and I

found the forces which tended to protrude the cylinders into the

opposite fluids, all multiplied by (L)
— -—'-—^—-

. I therefore looked

upon this expression as a measure of the tendency of the fluids to

mix, and this tendency being, as experience shows, very small in the

case of treacle and water, as well as in the case of the gummy
solutions and water, afforded an explanation why the force should

be so nearly proportional to the difference of densities, as Dutrochet's

*
I have elsewhere erroneously stated, that the residual force is c A(p—r) + c B(p—ry,

a mistake which I am glad to have this opportunity of correcting.
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experiments seemed to indicate. But the preceding theory being

perfectly independent of the mode in which the fluids communicate,
it is better not to have recourse to a supposition, which is in the

slightest degree precarious, especially as I am now prepared to show,

that, in whatever way the fluids may arrange themselves within the

tube, the rapidity of the mixing process will depend upon the mag-

nitude of (X)- (^);W .

15. In fact, in whatever manner the mixing process may be

effected,- we may at any moment imagine the fluid to be divided

into an indefinite number of contiguous strata, of any arbitrary or

convoluted form, the density being the same for the whole extent of

any one stratum, but varying from one to another.

If the surface which separates two contiguous strata be a perfect

plane, it is evident, by the equality of action and re-action, that this

would be a position of momentary equilibrium, (abstracting from

gravity, which I am not here considering.)

Suppose, now, that this surface becomes

undulated in an arbitrary way, and take any

point A upon it, and draw a tangent plane

BAD, including with the surface EAC, a kind

of lens BDEC, which, with La Place, we

may call a meniscus. Draw the normal FAG ;

and let Ri, and R^ be the radii of greatest and

least curvature at the point A.

Now La Place has shown that the attraction of such a meniscus

upon the column of fluid AF is ("»"+ p")--^> where H is the

capillary affinity between the material of the meniscus, and that of

the fluid in the sense already defined. (See Supp. au X* Liv.

page 14—17.)
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He has also shown that the attraction of the meniscus is the

same whichever way it be turned.

If the meniscus instead of consisting of the left hand fluid, (as

in the figure), consisted of the right hand fluid, the common boundary

being the plane BAD, there would be equilibrium, the column

AF being attracted by the right hand fluid, just as much as the

column AG is by the left.

Since then the meniscus consists of the left hand fluid instead of

the right, the effect of the disturbance upon the column AF, tending
to draw it in the direction FA, is the attraction of the meniscus

upon AF, regarding it as consisting of the left hand fluid, minus

the attraction of the same meniscus regarding it as consisting of the

right, that is

\R,
^ EJ \2 2

supposing the left hand fluid to be the first mixture of No. (10),

or the lower fluid of No. (12).

If then we estimate the effect in the direction AF, it is

1 1\ /L M\
(1_ J_\ (± _M

In the same way, the effect of the disturbance upon AG, in the

direction GA, is the attraction of the meniscus, regarded as consisting

of the left hand fluid, minus the attraction of the same meniscus,

regarded as consisting of the right, that is

Ui "^ BJ
•

\2
^

2 j-

Hence the whole attraction in the direction GF, is

{i^k){--^)-
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If we substitute for L, M, N, the expressions at the commence-

ment of No. (13), we shall find

^L-M-N=A{L) + B{M) + C{N), where

^ = 2*i.(l-«2) + 2*2.(l-*,)-2*i.(l -*i)-2 52.(l-«2)

= 2 *,
- 2 *,«2 + 2 *2

- 2 «i*8
- 2 *, + 2 «i'

- 2 *2 + 2 «/

= 2*,*- 4*1*2+ 2*/

= 2(*i-*,f.

= -(*!- s^f.

= -{(i-*0-(i-*.)}'

= -(«i-*2)';

.-. ^L-M-N={s,-s,)\{2 (L)
- {M) - {N)}

The effect of the disturbance in the direction GF, is therefore

consequently if (i) be greater than
^—

'-^
—'-

, or, if the capillary

affinity of the opposite fluids exceed an arithmetic mean between

the capillary affinities of the two fluids for fluids of their own kind,

the tendency will be to depart still farther from the position of
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equilibrium, and the tendency is the greatest where the curvature is

the greatest.

16. Hence it is easy to see that the protruding segments of each

fluid will become more and more pointed at their summits of greatest

curvature as they advance into the opposite fluids, thus forming

interlacing spiculse, shooting into the opposite fluids, and at the same

time inosculating with each other by their lateral protrusion, and

that this process cannot cease until the fluids have divided each

other into segments of a magnitude comparable with that of the

sphere of sensible attraction.

Beyond this limit the theory does not hold. It is very possible then,

that in some cases a limit may be attained where the mixing fluids

have arrived at such a state of subdivision, that the conditions for

continuing the subdivision are no longer satisfied ; in other cases it

is possible that the subdivision may proceed until the ultimate atoms

of the opposite fluids act upon each other by ones, twos, and threes,

thus effecting a chemical decomposition : nature presents numerous

instances of both kinds.

17. But though the mathematical theory is not strictly applicable

when the subdivided segments are of less magnitude than the sphere

of sensible attraction, it may be considered as an approximation to the

truth considerably beyond this limit. For, the most effective part of

the attraction of each segment being that exerted by the particles

in immediate contact with the normal column, the diminution of

the segments will only have the effect of removing the more feeble

part of the attractions which the theory takes into the account. It is

therefore probable that, even in cases where no chemical decomposition

takes place, the subdivision of the fluids may be carried to a limit far

beyond that to which the theory is strictly applicable. Besides, the

processes of nature are not interrupted of a sudden; the tendency
therefore to farther subdivision cannot be suddenly arrested, but in

cases where it is ultimately reduced to nothing, it must be so by

passing through all degrees of magnitude. This reasoning is further

Vol. V. Paet II. F f
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confirmed by those experiments which demonstrate the almost infinite

subdivision of matter by repeated dilution, experiments which are

familiar to every one. This infinite subdivision is, in fact, involved in

the mathematical conception upon which this theory is founded, namely,
that in the state of mixture the two fluids may be regarded as

coexisting within the same volume, each with a diminished density.

This conception cannot of course be a rigorous representation of nature ;

but is sufficiently so for the application of La Place's theory, or, which

comes to the same thing, for the summation of the attractions by the

principles of the Integral Calculus.

18. In cases of simple mixture, unattended with a chemical change,

the ultimate segments of the opposite fluids, though in an extreme

state of subdivision, have a separate and independent existence, which

renders it highly probable, that the volume of the mixed fluids should

equal the sum of the volumes of the unmixed fluids. This supposi-

tion has been made in the preceding theory, and I find by experiment
that in mixtures of treacle and water it is accurately true. The same,

I believe, is true in all cases of simple mixture, where no chemical

result takes place, such as the precipitation of solids, or the disengage-

ment of heat or other volatile constituents. To liquids whose union

is accompanied by such phenomena the present theory is inapplicable,

not only on account of the penetration of dimensions, with which

such phenomena are generally attended, but on account of the change
of affinities, which the escape of some of the constituents must

necessarily produce, including heat, which, regarded as a chemical

constituent, is as important as any.

19. The addition of a third fluid to one of the liquids, by altering

the chemical affinities-, must likewise alter the capillary aflfinities, which

are only a different modification of the same corpuscular attractions

which produce the former. It is not surprising then, that Dutrochet

should have discovered some substances which accelerated the process

in his experiments, and others which retarded it or stopped it

altogether.
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Water impregnated with sulphuretted hydrogen was found not only

to stop the process, but to destroy the energy of the membrane for

subsequent experiments with pure water and pure saccharine solutions.

No doubt the sulphuretted hydrogen had decomposed the surface of

the capillary pore, leaving a coating of putrid matter, which was not

possessed of such capillary properties as to supply the place of the

material of the membrane. That this is the true explanation is shown

by the fact, that when the membrane was for a long time steeped in

water and well washed, its energy was restored : in fact, the putrid
matter being washed away, the membrane presented an unvitiated

surface to the fluids. Heat and electricity may be classed amongst
these chemical agents, as they operate their effect precisely in the same

way, namely, by changing the chemical and consequently the capillary

affinities.

20. If we wish to compute the height to which the fluid will

rise in the endosmometer, let ^ be the height of the supported column

above the surface of the membrane, and z the height of the lower fluid

above the same, w the transverse section of the tube; the difference

of the pressures of the cylindrical columns w^ and wg, having the

common section w, is gpco^—grioz: this must be counterbalanced by the

sustaining force cA(p — r) + cS{p^— r"), which denotes a pressure on the

same scale ;

" o ff \ p J oi ff \ p / p

If a column of mercury be hydrostatically substituted for the

ascending fluid, as in the experiments of Dutrochet, calling Z the

altitude of the mercury, and R its density, we must have

„ c A (p-r\ cB (p^-r^\ r^ =
-.- g

•

K-w) "
-.^ K-R-)

" R^'

this of course being subject to a correction when the cistern of the

mercury is not on a level with the membrane.

F F2
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21. If the pore be circular, let ^ be its diameter, then

c = 2'7r.-, and to = tt .
—

:

2 4t

€ 4
•'.
- =

-J ;.

CO

the sustaining force is therefore inversely proportional to the diameter

of the pore, as in ordinary capillary attraction.

Hence we see how the membrane^s delicacy of texture contributes

to the intensity of the sustaining force.

22. It is now easy enough to see in what manner the process is

effected. The residual force cA{p — r) + cB{p'^
—

r"), which would result

if the ends of the tube communicated with fluid of the densities

r and p, being greater than the altitudinal pressure upon the section w,

would cause the fluid within the tube to move as a mass into the

endosmometer, thus bringing fluid more and more diluted to the

issuing orifice; this will continue until the residual force is weakened
to such a degree as exactly to counterbalance the altitudinal pressure.

Contemporaneously with the former motion, the mixing process will

transfer the two fluids in opposite directions, the current from the

endosmometer towards the water producing the exosmose, and the

opposite current supplying the deficiency caused by the exosmose, and

therefore not contributing to the endosmose. The diluted fluid which

was carried into the endosmometer by the residual force, will gradually

mix with the treacle within, whether that mixture be carried on near

the orifice of the tube, or whether the diluted fluid be raised by its

specific levity higher up in the endosmometer. The extremely small

portion of diluted fluid which has thus been transmitted, and the

viscosity of the treacle, render it most* probable that it would not be

* This probability amounts nearly to certainty when we consider that the denser fluid

has no access to the lower part of the transmitted fluid. It is only when a lighter body
is insulated, or partially insulated^ in a denser that it rises by its specific levity.
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carried up by its specific levity, but rather adhere to the membrane

in the way that bubbles of air adhere to the sides of vessels containing

water or mercury. But, be this as it may, the end of the tube which

communicates with the endosmometer, will soon be surrounded by a

stronger infusion of the treacle, which will again bring the residual

force into action
;

thus a fresh portion of the fluid will be introduced

into the endosmometer, and the same process will be repeated as before.

For the sake of explanation, I have supposed the residual force to

produce its eflPect discontinuously, but it is easy to see that the process will

really be continuous, the united actions of the endosmose and exosmose

always keeping the orifices of the tube surrounded by fluid in such a

state of dilution that the magnitude of the residual force will be exactly

sufficient to create a supply proportioned to the demand arising from

the mixing process which is continually proceeding within the endosmo-

meter. The residual force cannot be less than this, for if it were, the

encroachment of the treacle upon the issuing orifice would immediately
increase it

;
nor can it be greater, for then the accumulation of the more

diluted fluid at that same orifice would immediately diminish it,

23. The quantity transmitted in a given time must depend more

upon the rapidity with which the mixing process is carried on within

the endosmometer than on the magnitude of the residual force. This

force is certainly essential to the transmission, but its effect is no other

than that of a pump which supplies the fluid from below as fast as it is

wanted, and no faster, and that of a catch or valve to sustain it when it

is once elevated. The moving force at the summit of any protruding

spicula is by No. (14) represented by [^ + ~p) ^(p — ^)^ and is,

therefore, for spicule of given shape, as the square of the difference

of densities. It might appear then, at first sight, more probable that

the quantity of the lower fluid absorbed by the fluid in the endosmo-

meter in a given time, would be more nearly as the square of the

difference of densities, than as the simple power of this difference, which

is the law the experiments of Dutrochet tend to establish. But such

a conclusion would be very precarious, as will appear by the following
considerations.
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24. Let us imagine two different experiments, all circumstances,

as regards the materials, form and disposition of the apparatus, being

exactly similar, but the proportions in which the substances are mixed

on each side the membrane, being different in the two experiments.
Let us suppose also that the mixing process takes place in both experi^

ments after exactly the same type, only with different velocities, that

is to say, that at certain times, t and t', t + T and t' + r, # + 2t and

#' + 2t', &c., the protruding spiculae from the lighter fluid exist in

exactly the same state in both experiments, as regards their number,

shape, size and situation.

This supposition being made, the volume of the lighter fluid absorbed

by the fluid in the endosmometer in the two experiments, will be equal
in the intervals t and t' : also the summits of the spiculae will have

described the same paths in the two experiments during these same

corresponding intervals. Let t and t be indefinitely small, and let us

equate the spaces described by the summits of any two corresponding

spiculae between the epochs t and # + r, t' and t' + t', and also between

the epochs t and ^ + 2t, t' and #' + 2t'.

Let a be the sphere of sensible attraction, and imagine a small

normal column 2 a at the vertex of each spicula, being half in one

fluid and half in the other.

The two spiculse having by the hypothesis the same shape, the

moving forces upon these columns are as {p
— rf and [p'

—
r'f, and the

masses moved are as ap + ar and ap' + ar', that is, as p + r and p' + r;

the accelerating; forces will therefore be as — and '^
, / ; let^ p+r p +r

(p_ rY (p — r'f
them be k^ '- and ^ k . ^ f- . Then if v and v' be the velocities

p+r p +r
of the two summits at times t and t', equating the corresponding spaces,

we shall have

and
P + r

" ^'
p+r'

^
p + r ^

p +r
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These equations are equivalent to the following:

VT = VT, and — = -^-—,
——.— ;

p-irr p ^r'

whence

v'

~
T
~

p'
— r'

'

p + r
'

Let q be the volume of fluid absorbed in the times t and t', which

we have seen to be the same in each experiment; and let Q and Q'

be the quantities absorbed during a given time T, T not being so

great but that r, p, r' and p may be considered the same during this

interval.

If then there be a law connecting the quantities absorbed in a given
time with the densities, we must regard this absorption in each experi-

ment as uniform during the time T\

.: Q : q y. T : T,

and Q '. q V. T : r'\

... Qr= qT=Q'T';

+ /

^ T p'
— r' p + r

The supposition we have made, as to the exactitude of type in the

two mixing processes, is particular ; but if there be a general law whicli

is applicable to all cases, that, must include the case supposed, and

therefore the result of the particular case must coincide with that of

the general law. If then there be such a law, it is expressed by the

proportion

Q.Q .'.

p-r . p-r
"s/p + r

'

\/p' + r'

'

This being true in different experiments, must be true in different

stages of the same experiment.
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Now in the same experiment p diminishes and r increases as the

experiment proceeds, and therefore the variation of p + r is small com-

pared with that of p
— r; the quantities absorbed will therefore be

pretty nearly in the ratio of the difference of densities, as Dutrochet

found them to be. Whether the proportion

Q:Q' :: -E^ : -IzL
y/p + r Vp + r'

may be a more accurate representation of nature than the law of

Dutrochet, is left to the test of experiment.

25. It may perhaps be objected to the theory of No. (12), that

the ordinary theory of capillary attraction supposes the dimensions of

the tube to be incomparably greater than the sphere of sensible attrac-

tion, whereas the fact, that these pores are so small as to elude

microscopic observation, might lead us to apprehend that their dimensions

were of a size comparable with that sphere. The example which has

been calculated in No. (7), does not seem to leave any cause for such

an apprehension. But supposing this were the case, the only difference

it would make in the theory is this : that, whereas, on the former

supposition, the quantities \cH, \c K, &c., denoted the results of

integrations extending from nothing to infinity, and not otherwise

depending on the form of the tubes than by involving the contour c

as a multiplier; on the second supposition, the limits of the integra-

tion will depend on the form of the tubes and the texture of the

membrane : but these limits being the same in the cases compared, it is

easy to see that the theory will be still true on the latter hypothesis,

provided we look upon ^c{H), ^c{K), &c., as denoting certain

unknown limited integrals depending not only upon the nature of the

materials, but also upon the form and size of the capiUary pores. The

residual force will, therefore, on this hypothesis also, be of the form

a{p-r)+ h{p'-r').

26. By the application of similar reasoning to the theory of No. (15),

it is not difficult to conclude that the moving forces upon the normal
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columns at the summits of spiculae of given shape and sixe will be as

(p
—

r)-, even when the dimensions of the spiculse are indefinitely less

than the sphere of sensible attraction. For, the attraction of a meniscus

bounded on one side by a plane surface, upon the conterminous normal

column, will in all cases be a definite integral depending on the shape

and size of the meniscus, and the demonstration of La Place, by which

he shows that the attraction of such a meniscus is the same whichever

way it be turned, is perfectly independent of its size and the shape of

its curved surface.

Let then I be the attraction of any meniscus upon the conterminous

normal, the meniscus consisting of one mixture, and the normal of the

other; m, the attraction of the same meniscus when the meniscus and

column consist both of the first mixture; and n, the same thing when

they consist of the second mixture. Then reasoning exactly as in

No. (15), the moving force upon the column GF will be 2l—m— n;

and if (/), (m), (»), be the initial values of I, m, n, it may be shown

exactly as before, that 2l—m — n = c/C_^ >.^g
• {2(/)

- (m) - (n)}, the

theory of No. (11) being equally applicable in this case. Hence, how-

ever minute the spiculae may be, the moving force upon the central

column will, for spiculse of given shape, be as the square of the difference

of densities.

This consideration applied to the theory of No. (25), gives it a

generality which renders it as satisfactory as can well be desired.

J. POWER.
Trinity Hall,

Marck 29, 1834s

Vol. V. Part II. Gg
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X. On Aerial Vibrations in Cylindrical Tubes. By William
Hopkins, M.A. Mathematical Lecturer of St Peter's CoUege,

and FeUow of the Cambridge Philosophical Society.

[Read May 20, 1833.]

The problem which has for its object the determination of the

motion of a small vibration propagated in an elastic medium along a

prismatic tube of indefinite length (the motion of every particle in

each section of the tube perpendicular to its axis being the same) was

long since solved by Euler and Lagrange. The problem, so nearly

allied to this—to determine the motion of an aerial pulsation in a tube

of definite length
—has not been so satisfactorily solved, the tube being

either open at the extremity or stopped with a substance possessing

some degree of elasticity. In addition to the difficulties of the former

problem, we have in this latter one those still more formidable difficulties

which exist in the determination of the circumstances of the motion

at the confines of two elastic media in the closed tube, or at the

extremity of the open one, where the air in the tube communicates

with the circumambient air. These motions must no doubt be deter-

minable from the nature of the media, and the causes producing and

maintaining the vibrations, having nothing arbitrary in them, except
what may be so in the original disturbance ; but I am not aware

of any progress having been made in the direct solution of these

questions, which now forms one of the greatest desiderata in the appli-

cation of mathematics to physical science; and in our inability to

determine these motions at the extremity of the tube, either by theory
or direct observation, we are driven to the necessity of assumptions.

It is from a difference in these assumed conditions that we have the

GG2
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different solutions which mathematicians have given of the problem in

question. The principle on which we ought to proceed in making such

assumptions is obvious ; they should be subjected to no restrictions,

(not imposed on them by our theory), which are not necessary to draw

those deductions and inferences from our mathematical results^ which

admit of verification by experiment, to the test of which an assumption,
in any degree arbitrary, must necessarily be subjected before it can claim

our confidence. The physical conditions however on which the solutions

of this problem depend, (as far as it is distinct from that of the motion

of a wave along a uniform tube of indefinite length), have neither

been assumed on this principle, nor subjected, as far as I am aware,

to this experimental test. It has been principally with the view of

remedying these defects that I have prosecuted the researches, an account

of which I have now the honour of laying before the Society.

1. The physical conditions assumed by Euler, and by most of those

who have since written on the subject, are, that the particles of air at

the extremity of a closed tube are always at rest; and that no con-

densation of the air takes place at the extremity of an open one. The
first condition involves the supposition of the perfect rigidity of the

material with which the tube is stopped. This cannot be accurately

true, but probably leads to no error very appreciable to observation.

The second condition assumes an eqviality in the densities of the external

air, and of that within the tube immediately at its open extremity,

during the whole time of the vibrating motion, in the same manner as

if the air were at rest. This supposition carries with it but little

appearance of being even very approximately true; for it is difficult

to conceive how a sonorous wave could thus be produced and maintained

in the surrounding air from the open extremity of the tube, and it

appears perfectly irreconcileable with the fact of the sudden cessation

of sound after the cause producing it has ceased, M. Poisson, struck

with these objections, has assumed another physical condition as appli-

cable to any tube, whether open or stopped, viz. that there exists at the

extremity of the tube, during the whole motion, q constant relation

between the velocity of the particles of the fluid at any instant, and

its condensation, this relation depending on the nature of the substance



IN CYLINDRICAL TUBES. SSS

with which the fluid at the extremity of the tube is in immediate

contact. This condition is manifestly less restrictive than those of

Euler, since it involves no supposition of the perfect rigidity of bodies,

and leaves room for a certain degree of condensation and rarefaction

of the fluid at the extremity of the open tube, thus removing the

difficulty above-mentioned respecting the maintaining of aerial pulsations

from the open end, in the circumambient air ; while it enables us also

to account in some measure for the rapid cessation of sound with the

cessation of the cause producing the vibratory motion of the air in

the tube.

2. The two authors above-mentioned have written elaborately on

this subject of the vibrations of elastic fluids in tubes. Mr Challis

also in his paper published in the Transactions of this Society, (Vol. III.),

has been led to the consideration of the conditions which hold at the

closed or open extremity of the tube in which the air is in a state

of sonorous vibration, though the determination of this point forms

with him a collateral rather than a principal object. He assumes that

a pulse proceeding along a cylindrical tube will be reflected from the

further extremity if the tube be stopped, the intensity of the reflected

pulse being equal to that of the incident one; and that if the extremity
of the tube be open, it will pass into the circumambient air, sending
back no reflected wave within the tube. If this were the case, it

would immediately account for the apparently instantaneous cessation

of sound above-mentioned ; but there are other equally obvious

phenomena, for which this hypothesis appears to offer no adequate

solution.

3. It will be observed, that Euler has supposed either the velocity

of the particles or their condensation to have, at the extremity of the

tube, a constant value, independently of the time ; while M. Poisson

has supposed this constancy of value to belong to the quantity ex-

pressing the relation between the velocity and condensation. It does not

however appear to me probable that any such conditions, independently
of the time, should hold. All the above assumptions are equally

arbitrary, and equally require to be put to the test of experiment. In
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applying this test, I find that the deductions from the results, derived

from any of the three hypotheses above-mentioned, do not sufficiently

accord with the observed phenomena to be perfectly satisfactory. This

discrepancy is more particularly observable in the position of the nodes

or points of minimum vibration in the open tube. According to Euler's

hypothesis, these nodes would be places of perfect rest ; and they would

be distant from the open end by an exact odd multiple of -, where

\ = length of a whole undulation. From the hypothesis of M. Poisson,

their positions would be the same as in the above case, but they would

become points of minimum vibration, and not of perfect rest. Mr
Challis's supposition would lead to the conclusion that no nodes existed

in this case, except they should be produced by some vibration of the

tube itself, a cause the total inadequacy of which to produce any appre-
ciable effect, must be immediately recognized by every one who has

made experiments on this subject. The facts, as determined by experi-

ment, are very obvious ; and it appears that there are nodes, which

are points of minimum vibration and not of perfect rest ; that they are

equidistant, but that denoting this distance by -, the distance between

the open extremity and the nearest node is considerably less than -.

I shall not in this place proceed further with the detail of experimental
facts ; but shall first shew how the theory of this subject may be

generalized by the assumption of conditions less restrictive than those

which have been made by the writers I have mentioned. In the second

section, I shall describe the experiments which have suggested these

assumptions ; and shall conclude with some observations on the resonance

of tubes, so far, more particularly, as it is allied to the investigations

contained in this paper.

The form under which I shall consider the problem, is that under

which it presents itself, as nearly as possible, in the experiments I have

to describe.
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SECTION I.

4. Suppose the tube AB, (fig. I.), open at A, and stopped at B,

with some substance possessing any degree of elasticity ;
and suppose

the vibrations first produced and kept up by a rigid diaphragm, vibrating

according to a given law at A, and perfectly excluding the air within

the tube from any communication with the external air. We have

the usual equations

v=f{at-x) + F{at + x)]

(A),

as=f{at-x)-F{at + x)]

V denoting the velocity of a particle at distance a; from the origin,

and s the condensation at the same point at the time t, and a being
the velocity of propagation of an aerial pulse along the tube.

One of our conditions must necessarily be, that the velocity of the

air within the tube and immediately in contact with the diaphragm,
must constantly have the same velocity as the diaphragm itself, con-

strained to move according to a given law. Let this velocity = <p{at).

Then shall we have

(j){af)=/{ai) + F{at) (1).

5. To ascertain the nature of the second condition, which must

hold at B, where the motion of the wave propagated along the tube

is interrupted, we must consider the effect which will be produced on

the stop by the action of the air within the tube. The vibratory motion

wUl produce alternations of condensation and rarefaction at the ex-

tremity B, which will tend to put the substance forming the stop in

vibration; and if it will admit of vibrations having the same period

as those of the air in the tube, this effect will be produced by the

constant reiteration of the cause above-mentioned. If the substance is

not susceptible of vibrations of this kind, no appreciable effect will be

produced upon it.
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The determination of the nature of these vibrations, or of the

function expressing the velocity at any instant of the extreme section

of the stop, will necessarily depend on the material of which it is made;
and any solution of the problem in question, independently of this

consideration, cannot be regarded as complete. Still, whatever may be

the nature of the stop, we know that the period of its vibrations must

be the same as for those in the tube; and it is also manifest, that each

vibration of the stop must begin at a time later by an interval at least

nearly = -, (/= the length of the tube), than the corresponding vibration

in the diaphragm at A, whence the original disturbance is supposed to

proceed. I say that this interval is' nearly equal -, because certain

phenomena, of which I shall speak hereafter, seem inconsistent with

its being in particular cases exactly = -. I shall therefore, to give the
ct

assumption all the generality possible, consider it as generally = —f- arbi-

trary quantity, to be determined in each particular case by experiment.
Hence then, if ^ denote the form of the function of the time expressing

the velocity of the extreme section of the stop, we shall have the

velocity = v/'l «/
—

(/ + c)}, c being arbitrary. This must also be the

velocity of the extreme section of the air at B, consequently we have

as a second condition

•^{at-{l-^c)}=f{at-l) + F{at^-l) (2).

We have from (1)

(t>{at + l)=f{at + l) + F{at + l);

and eliminating F(at + l),

f{at + l)-/{at-l) = <p{ai + l)-f{at-{l+ c)\ ;

or, writing at + 1 (or at,

f(flt-ir^l)=f{at)-y\f{at-c) + <t>{at + ^l) (B).
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The substance forming the stop being known, so that we might

regard the vibrations produced in it under given circumstances de-

terminable, the relation between the functions
xj^

and J" would be

known, and the function y would be the only unknown one in the

above functional equation, from which, any particular form being

assigned to
(p,

that of y must be determined. The arbitrary quantity
which will be involved in the solution of this equation, must be

determined by the original value of the function jf.

6. We have here supposed the tube to be stopped, but the

equation (B) will still be true for the open tube, \|/ {«/-(/ + c)}, de-

noting always the velocity of the 'extreme section at the time f.

Equation (2) gives us

F{at + l)=-f{at-l) + y\,{at-{l+c)},

and writing at + x, for at + l,

F{at + x)= -f{at-{2l-x)} + >// {at -{2l + c -x)}'.

Hence,

v =f{at-x)-f{at-{2l-x)} +^ {at-{2l + c-x)\-\

as=f{at-x)+f{at-{2l-x)}-yl^{at-{2l + c-x)}]

The form of J" being determined by equation J?, these last equations
will give the complete solution of the problem.

7. Before we proceed to consider particular cases, we will exhibit

these equations (C) under another form, which will be useful in

deducing some general inferences as to the nature of the motion in

the tube.

Let T denote a period of time, from the commencement of the

motion at A, less than that which is necessary for the pulse to

travel twice the length of the tube ; consequently at will be less

than 21.

Equation (B) gives us

/(ar + 9.1)=/ {ar)
-

v// («T
-

c) + ^ {aT + 2l),

Vol. V. Part II. Hh

•(C).



238 Mb HOPKINS ON AERIAL VIBRATIONS

and for ar, writing ar — x,

/{(aT+ 2/)-^}=/(aT-ar)-x//{«T-(a; + c)}+0(«T + 2/-;r) (3).

Also putting ar + ^sl—x, for ar,

/{(aT + 4/)-ar}=/(aT + 2/-ar)-v|/{«T + 2/-(a; + c)} +0(«t + 4/-^)

=f{aT-x)-^{aT-{x-^c)}

-x//{aT + 2/-(a; + c)}

+ 0(aT+2/-a;)

+ (i>{ar + 4!l-x).

And similarly, we have

2/^

/{»(.+ ^v^*

^{«('^
+ —

)-(*'
+ c)},

/{aT-x)-< f
{"(-r +—)-(« + c)},

&c.

, (
r 2{n-l).l-\ .

&c.

.^{«('^
+
-|-)-^}
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In the same manner,

1.

=f{aT-{%l-x)\-\

+ (

>/^{«T-(2/+c-a!)},

(2
A

&c.

./.{a(x+?i^^^)-(2/ + c-^)}.

&c.

2«/

^{«(-
+ ^)-(2/-^)}.

Hence we have at the time (t+ j,

V =f(aT-x)-f{aT-(2l-x)}

-{>|/[rtT-(«+c)]->|/[«T-(2/+c-a;)]}

— &c.

f, , r 2(n-l)J-\ , x> . , r 2(w-l)./n -^, ,J

+ ^|/ {« [t
+ —

j
-(21 + C-X)}

+ &c.

2w/^
+
^{a[r

+
^)-a^}-ct>{a[r+^)-i2l-a^)},

HH2
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or,

v=-f{aT-x)-f{aT-{^l-x)} ,
^

r^n ^ it /

. . .
^nl

Similarly, we find

as=f(fiT-x)+/{aT-{2l-x)},

+ 2,., {<t> [« (r
+ ^) -(.r + c)] + [«

(^. 4-^^) -(2/ + C- .r)]}.
^

\...(D)(1).

\.. .(D)(2).

8. The function /(ar — x), in the expression for v, represents the

velocity of any particle produced by the first wave, propagated

along the tube from the original disturbance at A, so long as t

is less than -
; and if this wave were reflected entirely from B,a

the first line of the above expression for v, would give us the velocity

of any particle within the sphere of the reflected wave, the time t

not exceeding
—

.

With our supposition as to the original disturbance, the form of f
T less than — I will be immediately known from that of

(p. The
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other terms in the general vahie of v, shew how the general waves

in which we have
If

v, = /,(af-x), and v, = Jl{at-(2l-x)},

are formed by the superposition of successive waves, as the time

increases. If the velocity becomes by this superposition so large, that

it can no longer be considered extremely small as compared with

the velocity of propagation (a), our analysis will be no longer ap-

plicable ; but if V never exceed a certain value, the motion will

become regular, and follow the law which our investigations indicate.

Let us consider in what cases we may expect these effects to be

produced.

9. We have at present imposed no restrictions on the forms of

the functions denoted by cp, f and
\//, except that their greatest

values shall be small compared with a. In order however that the

undulations may be sonorous, <p,
and consequently y and

\f/,
must

denote periodical functions, so that the values of (p {z), f (2), and ^ (ss),

will recur as often as % is increased by a certain quantity. We will

also iinpose an additional limitation upon them, to which, in all

practical cases they will probably be subject very nearly, as will

certainly be the case in the experiments to which I shall hereafter

more immediately refer. Supposing then their values to recur, when

s becomes %-Vm\, {m any whole number), we will also suppose them

to recur with different signs when z becomes x±m' -; {m! being

any odd number).

10. First suppose the greatest value of
\//,

small as compared with

that of y or 0, as must be the case in a closed tube. In the above

expression for v, it will be observed that the quantity represented by
% increases as we proceed from one term to the next, in a vertical

line by 2/.

Suppose then

%l = m' . -, or l = m' -
2 4
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In this case it is manifest that the consecutive terms taken in the

order just mentioned will destroy each other ; and there will con-

sequently be no accumulation of motion in the tube, and the

vibrations will go on uniformly. Again, let

2l = m\, or / = 2m. -.
4

In this case the values of the successive terms taken as before in

the expression for v will be equal, and with the same sign. Hence,
if we take x of any value, except such as would render

<(>{at-x) = <p {at-{9.l-x)],

f which value of x is I — m -\ , it is manifest (since the value of (p

is greater than that of
\|/),

that the motion will constantly increase

for such points, and will soon become greater than is consistent

with our original suppositions. Such a vibration then cannot be

maintained. .

11. Again suppose the functions
(p, f, and ^, to be continuous,

and suppose

2/=m'^+2\', or / = m'^+\',2 4

X' being any quantity less than -; the consecutive teims of 1.(f>(%),
tit

will not then destroy each other, but as the number of pairs of terms

increases, the sum will increase till ^(s; + 2r/) becomes negative, it will

then decrease, after having thus attained a maximum value. Maxima
and minima values will thus occur alternately, and the same will hold

for 2. >//(»). If these maxima values do not render v greater than our

original suppositions allow, the vibrations may be maintained.

Since these maxima values are 0, when l= m'.-, and greatest

when l=m' .-, we conclude that they will be intermediate for inter-

mediate values of I, following some continuous law. Hence we infer
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the possibility of maintaining sonorous vibrations of which the period

is -
, in stopped tubes of which the length differs considerably from

?«' .
-

, particularly if the greatest value of V/ should not be very

small. If the supposition we have made respecting the continuity of

the function (p more particularly, should not be quite true, it is not

likely in those practical cases to which we can best refer, to be so

far wrong as to render the above reasoning otherwise than at least

approximately true.

12. Our supposition has been that the intensity of the distvu-bance

denoted by v//,
is considerably less than that indicated by (p, the tube

being stopped with some substance having a certain degree of elas-

ticity ;
if the tube be open, it seems probable from certain pheno-

mena, that the reverse of this supposition is true.

Assuming this to be the case, the expansion of the expression
for V may be put under a more convenient form.

Let

y{r {at-{2l+ c-x)} =2f{at-(2l- x)]
-

f, {at- (21+ c' -x)],

Then

v=f(at-x)+f{at-{2l-x)}-xj.,{at-(2l + c'-x)} (a),

and equation (3) becomes

/(aT + 2l-x)= -/(aT-x) + x|/, {aT-(x + c')} +<p(aT + 2l-x) (4).

By proceeding exactly as in the former case, we obtain

v = {-irif(aT-x)+flar-(2l-x)}}

-fAci{'r+^)-(2l + c'-x)}

+
2,^,(-l)-{<^[a(T

+ ^) -X] + 0[«
(t

+ ^y(2l-x)]}

1

ME)(1)-



.(E)(2).
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Similarly, we find

«*=(-l)"{/(ar-^)-/[«T-(2/-a;)]} >^

+
^l,,{a[T +—j-{2l^c-x)}

+
2,^,(-l)»-{<^[« (t

+
?^) -.V]

- 0[« {'r+~)
-

(2/
-

x)\\.
^

Reasoning on the expression for v, exactly similar to that used

above, will in this case show that sonorous vibrations cannot be

maintained if / be too nearly equal to an odd multiple of -
; but

that they can be continued, if / do not differ too much from an

even multiple of - .*

13. If we examine the expressions for as in the last article, and

in Art. 7, it will appear that the condensations and rarefactions at

the surface of the vibrating plate within the tube, are such as to

produce forces opposing more strongly the motion of the plate as

the lengths of the tubes approximate respectively to those particular

lengths for which it will be impossible to maintain the vibrations in

the tube ;
and when the lengths differ from the above by -

, these

condensations and rarefactions are such as to promote the motion of

the plate, instead of opposing it.

14. The expanded expression for v may be put also under another

form, which it may be useful to point out for the case in which

the intensity of the disturbance denoted by \//,
is considerably greater

than that denoted by <^.

* The quantity c' in these general inferences is not taken into account. Its value

however is considerable, as will be seen hereafter.
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This is deduced, by assuming

i,,{at-(x + c')}= (if(at -a;)+yl.'{ai-(x + c")},

or,

x/. {«/- (x + c)}
= (2

-
/3) /(«^ -x)+ir' {at -(x + c")}.

Then the equation (a) (Art. 12) becomes

v=f{at-x) + {l-l3)f{at-{2l-x)}-i,'{at-{2l+c"-x)} (/3).

We may observe, that since the vibration denoted by \j/,
is pro-

duced by that denoted by Jl it seems a necessary consequence that

their periods must be the same. Their phases also are nearly so ;

and if in addition we assume that the Jbrm of the function ex-

pressing the one motion, does not differ very widely from that ex-

pressing the other, (however the intensity of the vibrations may differ)

it is manifest that /3 may be so taken that the intensity of the

vibrations denoted by the unknown function
\j^'

shall be small com-

pared with that indicated by <p.

Equation (4) becomes

f{ar + 2l-x)=-Cl-ft)f(aT-x) + i.'{aT~(x + c")}+(j>(aT + 2l-x) (5),

= -hf{ar -x)^-^' {a-r
-
(^ + c")} + («t + 2/- x),

if 1-/3 = *.

This gives us

And the equation (/3) becomes, (when t=T-\-
j,

v^{-hY {f{aT-x)+hflar-{2l-x)]}

+
S,,,(-&)-|>/.'{«[t+ ^^^^^)-^]-(x+0}+&^^1«[t+ ^^''^^^-/]-(2/+c"-;»^)}I

-^'{a(r + ^)-{2l + c"-x)].

r-n ^ W/ \ (t )

Vol. V. Part II. 1 1
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Since b is less than unity, and n soon becomes a very high
number, after an extremely short time the first line in this expression

may be neglected, as may also all the terms in the other lines in-

volving high powers oi h.

Whence it follows that the original disturbance (on which the

form of the function f will depend), will cease in an extremely short

space of time to have any effect on the form of the existing vi-

bration, supposing the vibrations maintained by some cause distinct

from that producing the original disturbance.

Also, if the cause maintaining the vibrations cease, the vibrations

themselves may cease in an extremely small space of time.

The inferences we have drawn from the former developement (E)
of the expression for v, may be drawn from this and perhaps with

still greater facility.

15. If we suppose >|/' (ss) always = 0, the expression for v will

reduce itself to the same as that given by M. Poisson. But in this

case it will be observed that all the functions involving the quantity c"

disappear, which renders it impossible to account on this theory for the

position of the modes or points of minimum vibration as determined

by experiment*. For the purpose of determining the positions' of

these points theoretically we will recur to the equations (C), the first

of which is

~ v = f{at-x)-f{at-{^l- X)} +^ {at -{2l+ c - X)} (6).

If we neglect ^{at-{2l+c— x)}, (or suppose the substance with

which the tube is stopped perfectly rigid) we shall have » = 0, when-

ever

{at
—

x)
-

{at
— {^l- x)}=Q, or mX,

{m being any whole number), or when

{l-x) = m.-.

* See Art. 36, Sec. II.
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This condition is independent of t, and consequently at all points

distant from the stopped end, any multiple of -, the motion will be

the same as at that extremity, i.e. it will always equal 0, and there

will be perfect nodes at those points.

16. We may take the general case, and let

f\at-{il-x)\-^ {a/-(2/+ c-ar)} =j(; {at-{<il->rc, -x)},

and :.v=f{flt
—

x)
—
x\a't—{^l^-Cx

—
x)\,

^ being still small. The forms of J" and
x// being known, that of ^

will be determined ; its period will also be the same as that of J"

and ^. It expresses the velocity of each particle produced by the

whole wave actually reflected from B. The nodes will in this case

be points of minimum vibration, and not of perfect rest.

For the sake of clearness we will assume that y(x), and
>//(x), are

such that

and therefore

x(-»)=-x(x),

that y(»), and ^(z), {and therefore x(*)} admit of only one maximum

value between x= 0, and 8;=-; and that the ratio which y(s!) bears

to
ylr (%) is always considerable, as by hypothesis it is when those

functions have their maximum values. There can be little doubt but

that these assumptions are at least approximately true in all practical

cases ; and appear as simple as any we can make (and some must

be made), in order to give distinctness to our inferences as to the

positions of these points of minimum vibration.

17. For the determination of c, in terms of c, let the origin of

t and X be so taken that y(0) = 0, then making at- {2l— x)
— 0,

we have

-^(-c) = x(-c,);

or =\l/{
—

c).

112



248 Mb HOPKINS ON AERIAL VIBRATIONS

By our hypotheses, x (*) must be always greater than
\// (%) ; and

if we suppose c and c^ less than the least value of z, which gives

to ^ (%), or X (^) its maximum value, it is manifest that from this

last equation, c, must be considerably smaller than c, and must be

c
affected with a different sign. Suppose c^

=
j^,

where k is consider-

ably greater than unity. It follows then that if the phase of the

vibration of the extreme section of a stopped tube be retarded by a

certain quantity c, the phase of the actually reflected wave will be

c
accelerated by a quantity t.

18. Giving then the proper sign to c„ we have

v=f(at-x)-x{at-(2l-^-a;)} (7),

and to determine the points of minimum vibration, we may observe

that this expression is exactly the same, as if the wave for which

v, = x{at-{2l-^-x)},

were reflected immediately from a section B' whose distance from A = l— —x.

Suppose a rigid diaphragm at this section constrained to move

exactly as the fluid does there
;
we may then suppose the actual

stop B removed, and the points of minimum vibration will remain

the same.

Now to determine them in this case, we observe that whenever

at— x = at—{2l — T — x) + m\.

the value of v will be the same as when

c
at—x= at—{2l— T -

x).

In the latter case



IN CYLINDRICAL TUBES. 249

and in the former

or l-^=m\ +
^^',

consequently, at any point in the tube whose distance from B" =m
.-^,

the velocity will be the same as at B'. These then will be points of

minimum vibration in this hypothetical case, and therefore also, from

what precedes, in the actual case.

Making c = 0, we have l—x = m.-, which will give the positions

of the nodes when there is no retardation.

Hence we have this general conclusion with respect to the stopped

tube—that if there be a retardation in the phase of the vibration of

the extreme section, the positions of the points of minimum vibration

will all be further from the stopped end by —j, than if there were

no such retardation, the distances between these points respectively

remaining unaltered.

19. We will now consider the case of the open tube, in which

we suppose >|/(a!)
to be always considerably larger than J'{%). Assume,

as in Art. (12),

yl,{at-{2l + c-x)}-y{at-{^l-x)}~^, [at
- {21 + c' - x)} (8),

v=f{at-x)-¥f{at-{2l-x)}-^,{at-{2l + c'-x)}.

First neglecting the function
>|/, , v will = whenever

f{at-x)^-/\at-{2l-x)}; ^

i. e. whenever

at—x = at—{2l—x) + m'.- {m' an odd number),

or I— x=m .-,
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a condition independent of /. Consequently, at every point whose

distance from the open end is an odd multiple of -, there would be

a perfect node.

20. Put

f{at-{2l-x)\-y},,{at-{2l+ c'-a;)] =x {at- (2l+c,-x)\ (9).

Then

v=/{at-x) + x{at-{2l + c,-a;)} (10).

To find the relation between d and c, we have from equation (8),

(proceeding as in Art. 7, and with the same assumptions),

^(_c)=-x/„(_c'),

or >|,i(c')= -x|/(c);

and since >//(») is much larger than
>/'i(i8),

we shall have c'. considerably

larger than c, and affected with a different sign. We may therefore put

ki being greater than unity.

Again from equation (9),

-^.(-0=x'(-c.),
•

or x'(<=-^)=-Uc').

If we suppose x'(«) nearly equal to
v//^,(i8), (which probably is not

far from the truth), we shall have

C2= —c' nearly,

Hence in this case if the phase of the vibration of the extreme section

be retarded by a quantity c, that of the actually reflected wave will

be retarded by kic; and it will appear by the same reasoning as in the

case of the closed tube, that the distance of the points of minimum

vibration from the open end will be m' -r
1-, {m' being any odd

number).
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21. If e and e' be the distances through which the nodes are moved
by a supposed given retardation of phase, the same for each, at the
extremities of the open and closed tubes respectively,

e= — kki e ;

6 will consequently be much larger than e'.

The quantities m' i- in the open tube, and m- + -^ in the
4 2 ^ 4 2«

closed one, must be determined by experiment.

22. I will recapitulate the principal inferences from this theory.

I. In the tube AB, open at the extremity B opposite to that at

which the vibrations are produced, there will be a series of nodes

equidistant from each other by -, or half a whole undulation, the

distance of the nearest node from the open extremity being considerably

less than -, the whole system of nodes being thus brought nearer to

the open end than the position assigned to it by the investigations of

Euler or of M. Poisson. The distance of each node from the open
end will be independent of the length of the tube. (Art. 20.)

II. If the tube be closed at B, the nodes will still be equidistant as

X

2
before by -

. The distance from B of the node nearest that extremity

will be -
, or a quantity rather greater than that, if we suppose a cause

of displacement of the whole system of nodes to exist in this case of

the closed tube, similar to that which exists in the open one ; the dis-

placement however being necessarily much smaller in the former than

in the latter case, and in the opposite direction. (Art. 18.)

III. These nodes are not places in which the air is perfectly at

rest, but points of minimum vibration. (See Art. 16.)
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IV. Sonorous vibrations, whatever be their period, may be main-

tained in a tube of any length, except that of which the length does

not approximate too nearly to something less than an even multiple

of J in the closed tube, or to an odd multiple of - in the open one.

(Arts. 11, 12.)

V. The intensity of the general vibrations in the tube varies with

the length of the tube, being greatest for the lengths just mentioned,

and least in the closed tube when its length is rather greater than an

odd multiple of -; and in the open one, when it is something less than an

even multiple of -r . (Art. 10.)

VI. In these latter cases also of both tubes, the opposition afforded

by the vibratory motion of the air within the tube, to the vibrating

of the plate, is least; and greatest for the lengths which approximate

to those mentioned in (IV.), as those with which the vibrations cannot

be maintained. (Art 13.)

VII. When the cause producing the vibrations in a tube ceases,

the vibrations themselves may cease, not instantaneously, but in a period

of time not exceeding the small fraction of a second, supposing the

tube not to exceed a few feet in length. (Art. 14.)

VIII. If we suppose the original disturbance to produce an un-

dulation different in any respect to those produced by the cause which

afterwards maintains the vibratory motion of the aerial column, this

original disturbance will cease to affect the form of subsequent undula-

tions in a period of time not exceeding the small fraction of a second,

depending on the length of the tube*. (Art. 14.)

* Similar inferences to the above may be drawn equally from M. Poisson's investigations,

except that the phenomena according to his solution would take place for lengths of the open

tube materially different from those above-mentioned.
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SECTION II.

23. I WILL now proceed to describe the experiments which have

been made with a view of putting the different theories on this subject

to an experimental test. Sonorous vibrations are usually excited in a

tube, either by directing a stream of air across the open end, as in

blowing across the embouchure of the flute; by means of a vibrating

tongue, as in all reed instruments ; or by placing an open end of the

tube close to the surface of a vibrating body. In the two first cases it

seems impossible to conceive that the same disturbance can be com-

municated to each part of the extreme section of the air in the tube

where the original motion is produced, a condition which is always
assumed to hold at least approximately in all our mathematical investi-

gations of the subject. This irregularity of the motion will no doubt

extend to some distance within the tube, and it is impossible to say

how it will affect the phenomena even in those parts of the tube in

which the motion may become more uniform. In the second case too

in particular, a stream of air must constantly be passing through the

tube, a circumstance not contemplated in our analysis of the problem.
This may or may not influence materially the observed phenomena,
but at all events the danger of derangement from any such cause

must be avoided, if we would render our experiments decisive tests

of the truth of any theory professing to account for phenomena of so

delicate a nature as those which are now the objects of our investigation.

The third method, however, above-mentioned, is entirely free from the

latter objection, and may be made almost entirely so from the former,

and is, therefore, that which I have adopted.

24. The apparatus is very simple. Figure I. represents it. A
plate of common window glass is held firmly in a horizontal position

by a pair of pincers at its middle point. AB is a gltiss tube, having
a short brass tube closely sliding within it at the upper end B, so

that the whole tube AB can be lengthened or shortened at pleasure.

Within the tube a small* brass frame M, having a delicate membrane

*
Fig. (2) represents this frame with the membrane ab, which may be tuned, or rendered

sensitive in different degrees, to the vibrations produced by any proposed note, either by

Vol. V. Paet II. K k
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stretched across it, is suspended by a fine wire or thread from the upper

extremity of the tube, in such a manner that it can be heightened or

lowered at pleasure. The other parts of the apparatus are merely such

as are adapted for facility and -accuracy of arrangement of the tube

and plate.

25. The air in the tube is put in a state of sonorous vibration

by means of the plate, which is made to vibrate by drawing the bow
of a violin equably across its edge in a direction perpendicular to its

plane ; the vibratory motion of the air is communicated to the membrane

suspended in the tube, and the degree of motion is indicated by the

agitation of a small quantity of light dry sand sprinkled upon it*.

Suppose the tube to be open at the upper end B, and let the membrane
be drawn up near that extremity. Tf the sand indicate a considerable

motion when the plate is vibrating, let the membrane be gradually
lowered ; a position will thus be found in which the sand has little

or no apparent motion, thus indicating the existence of a node. On

lowering the membrane still further, the sand will again become strongly

agitated, and will then come to another place of rest, (or at least of

minimum vibration), and so on till it reach the lower end of the tube.

These alternations of points of rest and motion can of course only take

place when the tube is sufficiently long in comparison with the length
of an undulation produced by the vibrating plate, to admit of them.

These nodal points are thus found to be at equal distances from each

other, the distance of the upper one from the top of the tube being less

than half that between the nodes. This is independent of the length of

the tube. These results are accordant with our theory, (Art. 22, I.), from

which it appears that this constant distance between two consecutive

nodes must be -.
2

If we call the distance of the upper node from B, -— C, C denotes

what I have termed the displacement of the nodes.

altering the tension by means of the small cylinder round which the end b of the membrane

passes, or by moving the small bridge cd, and thus altering the length of the vibrating part.
* This was the method adopted by Savart in such a variety of caseSj in which he wished to

ascertain the intensity of sonorous vibrations in air.
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26. If the membrane be rendered very sensitive by being exactly

tuned to the note produced by the vibrating plate, it will not indicate

perfect rest at the nodal points, shewing them in fact to be points of

minimum vibration, which agrees with our theory, (Art. 22, III.).

With such a membrane it will be difficult to determine the position of

these points with accuracy, and its sensibility should be diminished,

till the sand appears perfectly at rest when it is placed exactly at the

node. If the membrane be rendered still less sensitive, it will appear

at rest for a space on each side of the node, the position of which will

in such case, be determined by observing those points immediately

above, and below the node at which the motion of the sand is just

sensible. The middle point between them will of course be the

node.

27. Now suppose the length of the tube to be any odd multiple

of -, and the membrane to have such a degree of sensibility, as just

to remain at rest only when placed in a node or within a very small

distance of it. After it has been placed in this position, let the brass

tube sliding within the upper part of the glass one be raised through a

space less than -
. While the whole tube is thus lengthened, let the

distance of the membrane from the upper end B remain the same;

the membrane will consequently be still in a node. The plate being

now put in vibration, the membrane will remain perfectly at rest, not

only in this position, but also when moved to one considerably above

or below the node, the new length of the tube remaining the same.

This indicates a less degree of motion in the tube than in the former

case, and we find that the intensity of the vibration in the open tube

is least when its length is equal to something less than an even

multiple of -T, or 2m.j
— C; and becomes greater as the length

approximates to rather less than an odd multiple of -, or {2m' + 1)-—C,

m and m' being any whole numbers. (Art. 22. V.). This diminution of

motion is also very obvious when the membrane is placed in those

KK2
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parts of the tube where the motion is most sensible. In all cases,

however, the distances of the nodes from B is independent of the

length of the tube.

28. If we take a tube closed at B instead of the open one, we

observe the same alternations of points of greatest and least vibration,

and (the plate being made to vibrate in the same manner as before)

at exactly the same distances from each other as in the closed tube;

but the distance of the upper node from the closed extremity of the

X I

tube is now observed to be -, the same as the distance between the
2

nodes. Proceeding as in the former case, it is found also that the

strongest vibrations are excited when the length of the tube is about equal

to a multiple of -
;
and the least vibrations when the length = an odd

multiple of -
. I find also that in the open tube stronger vibrations exist

4

in the nodal points than for corresponding cases of the closed tube.

29. In performing the above experiments with reference to the

intensity of the vibrations in the tube, care must of course be taken

to prevent the influence of any other cause than that of which I have

spoken, viz. the length of the tube with respect to X. It has been as-

sumed that the vibration of the part of the plate immediately in contact

with the mouth of the tube is in all cases the same, which requires

that the tvibe should always be placed over exactly the same portion

of the plate. This portion also should be included in one and the same

ventral segment; for if a nodal line on the plate pass across the mouth

of the tube, the vibrations transmitted from opposite sides of this line

will be in exactly opposite phases, and will consequently neutralize each

other in a degree depending on the ratio which the intensity of one

of these undulations bears to the other. If the nodal line divides the

part of the plate in contact with the mouth of the tube into two

equal portions, parts of similar ventral segments, the interference

will be so complete as to destroy all sensible motion in the
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tube*. It is only however as regards the intensity of the vibrations

that this precaution respecting the relative position of the nodal

lines and mouth of the tube is important ; it does not affect the

positions of the nodes. The reason is obvious—it does not affect the

value of X.

30. Again, taking the tube open at B, let the extreme section

at A be made to coincide nearly with the surface of the vibrating

plate. If the plate (the bow being applied to it) vibrate freely, let

the length of the tube be gradually increased or diminished. It will

thus be found, that as the tube approximates to certain lengths, the

plate vibrates with less facility, requiring a greater pressure of the

bow, and continuing to vibrate audibly for a shorter time after its

removal; and in many cases, between certain limits in the length of

the tube, it becomes almost impossible to make the plate assume that

state of vibration which it assumes freely for other lengths ;
and the

vibration, if it be produced, appears to cease almost instantaneously
on the removal of the bow, instead of being audible for several

seconds, as it would be if the tube were removed, or were of a

different length. These phenomena recur for every increase of — in

the length of the tube ; and if I be any length with which it becomes

almost impossible to make the plate vibrate in the manner proposed,

then will / + - be that length with which it vibrates with the same

facility as if the tube were removed.

*
It is easy by a very simple experiment to give ocular demonstration of the fact that the

union of two intense sounds may produce perfect silence. Take a branch tube ABA' (Fig. 3.),"and

stretch over the open end B a fine membrane or a piece of common writing paper. Place the

open extremities A, A' of the equal and similar branches CA, CA' over portions of two ventral

segments of a vibratory plate in the same phase of vibration. A small quantity of sand strewed

over the membrane at B, will immediately shew it to be in a state of strong vibration. Let A, A
be then carefully placed over suiiilar portions of similar ventral segments of the plate, in opposite

phases of vibration ; the sand on the membrane will remain perfectly at rest, shewing that the

waves propagated along AC and A'C in opposite phases so completely interfere at Cas to produce
no undulation along CB. In other words, no sound would in this case be transmitted along the

tube to its mouth B.
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So far these phenomena are in accordance with the results of

theory, (Art. 22, VI.) ; but when we examine the length I just men-

tioned, we find it entirely at variance with them. In fact on

investigating the circumstances more narrowly, we find that the value

of / depends in a considerable degree on the small distance between

the vibrating plate, and the extreme section A of the tube, a cir-

cumstance which nothing in our theoretical deductions has led us

to anticipate. This will be seen in the results of the following ex-

periment made with an open tube.

Diameter of the tube = 1 . 35 inches.

Value of- ,.=4.82 for temperature 63°.

Position of the mouth (^A) of the

tube (Fig. I.)

Value of the length /

above mentioned.
Theoretical value of /.

As close to the plate as

possible without interfering

with its vibrations

About T^ inch from thel
lo I

vibrating plate.

.12.25 inches.

*
1 1 . 46 inches.

12. 6

31. This discrepancy however between the theoretical and ex-

perimental results is only apparent. It arises from the circumstance

of one of the conditions assumed in our mathematical investigation,

not being accurately satisfied, namely, the perfect prevention of all

communication between the external air and that within the tube at

the extremity next the plate. And this is easily proved experi-

mentally, by placing the extremity of the tube as near as possible

* In this value of Z I have taken account of the displacement of the nodes, which is .59

inches, as determined by experiment. (See Table, Art. S6.)
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to the surface of the plate, without interfering with its vibrating

motion, and then putting round the edge of the tube, a small

quantity of fluid which by its adherence to the tube and the plate

fills up the interstice between them, and prevents communication with

the external air. When this precaution is taken, the lengths of the

tube which correspond to the above mentioned phenomena exactly agree

with theory; that is—
The .vibration of the plate is unaffected by the presence of the open

tube, Avhen its length is equal to something less than an even multiple

of —
, or 2 m. J— C, and of the closed one when its length is equal to

4 4

an odd multiple of -; but as the lengths of the tubes approximate

respectively to quantities differing by
-

, from the above lengths it

becomes almost impossible to make the plate assume the same vi-

bratory motion. (Art. 22, VI.)

32. It might at first appear probable that the neglect of this

precaution might have some effect on the position of the nodes, as

well as on the phenomena above mentioned. This however is not

the case; and the reason will be obvious if we recollect that the

position of the nodes depends on the periodicity of the vibrations, or

the value of X, which is unaffected by the communication with the

external air at A ; whereas the force opposing the vibration of the

plate depends on the condensations and rarefactions of the air, at the

surface of the plate within the tube, which will necessarily be much
affected by the communication just mentioned.*

33. If we take a closed tube, a similar discrepancy or accordance

in the results of theory and experiment will be found under the

same circumstances as above described.

* It does not appear so easy to account for the phenomena as above described, when the

influence of external air is not prevented. This, however, does not immediately belong to the

object I have proposed to myself in this paper, which is, to establish as accurately as possible the

identity of the results of theory and of experiment in those cases in which the conditions assumed

in our mathematical investigations are experimentally satisfied.
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The phenomena above mentioned, agree with those observed by
Mr Willis, and described in his paper on the Vowel sounds, pub-

lished in the Transactions of this Society, Vol. III. The manner

however in which his experiments (having a different object from

mine) were conducted, render them unfit for the verification of any
of our mathematical results in this subject.

34. From what I have above stated, respecting the difficulty of

making the plate vibrate with certain lengths of the tube, it is manifest

how we may avail ourselves of this phenomenon, in the determination

of the value of X, corresponding to any particular mode of vibration

of the plate, supposing those particular lengths of the tube can be

ascertained with sufficient accuracy. Now this can be done almost

as accurately as the position of a node can be determined by the

vibrating membrane, and consequently the value of X may thus be

found. For if A and 4 denote two observed values of /, we shall have

— =
,
n being a whole number easily ascertained. (See Arts. 30, 31.)

35. Though I have had frequent occasion to speak of this displace-

ment of the nodes in the open tube, from the positions assigned to them

by the common theory, I have hitherto said nothing as to the ex-

perimental determination of its magnitude. The most direct way of

accomplishing this, is to determine the actual positions of the nodal

points by means of the vibrating membrane ; but this method becomes

inconvenient when the diameter of the tube is small, as, for instance,

less than an inch. Those which I have used most commonly are

from 1.3 in. to 1.5 in. diameter. If the tube be larger than this, it

will generally be too large to admit of the extreme section of it

being placed entirely upon the same ventral segment of the plate,

as is always desirable, (see Art. 29) ; and if much smaller it becomes

necessary to make the surface of the membrane so small as to be

inconvenient, in order that it may not bear too great a ratio to the

area of the section of the tube, in which case the presence of the

membrane might be supposed to render the vibrations in the tube

materially different from what they would otherwise be.
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The best method therefore of determining the positions of the

nodes in tubes considerably smaller than those I have mentioned, is

that by which the value of \ is determined, as described in the

last Article.

Thus, suppose / to be the length of tube, with which it is found

most difficult to make the plate vibrate
; then (the tube being open)

we shall have

l={2m + l)^-C,

where m is a whole number, which will be known when \ is de-

termined by either of the methods pointed out above. The quantity
C evidently shews how much the distance between the open ex-

tremity, and the nearest node differs from —
, or it expresses the

displacement.

From the above equation,

C={2m + l))-l,4

and the displacement is thus determined.

36. The following table exhibits the magnitude of this displace-

ment in a tube of given diameter, as determined experimentally for

different values of -
. The positions of the nodes were in these cases

carefully ascertained by means of the membrane suspended in the

tube.

Vol. V. Paet II. L i.
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Diameter of the tube = 1.35.*
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column, that 10.88-6.78 = 4.10 must =2.-, which gives us - = 2.05,

differing but .006 from the more accurate value. The error in the

two numbers above mentioned, 10.88 and 6.78, does not probably exceed

.01 or .02, and cannot, I conceive, exceed .04, and consequently, I think,

the utmost limit to the error in the corresponding numbers in the

fourth column cannot exceed .05, and is probably considerably less. The

same may be concluded respecting the numbers .47, .59, in the same

column.

The above results may, then, be considered sufficiently accurate to

determine the fact of the magnitude of the displacement increasing

with increased values of X, though not sufficiently so to determine with

certainty the law of this corresponding increase.

The displacement does not depend only on the value of \ ; it depends

also on the area of the mouth of the tube, as appears from the following

table.

Values of ^ •



264 Mr HOPKINS ON AERIAL VIBRATIONS

kind, and are too small both in the large and' small tube. They can

leave no doubt of the fact of the magnitude of the displacement being

dependent on the diameter of the tube.

It is important to observe, that the values of X determined in the

large tube and the small one, from the consideration that the distance

between any two nodes must equal some multiple of -
, was exactly

the same, being for the first case in the table 2.05, very nearly agreeing
with the accurate value 2.044. This proves that the distance between

the nodes is independent of the diameter of the tube, provided the dis-

turbance take place uniformly throughout its extreme section.

37. I have before remarked, that there can be nothing arbitrary

or indeterminate in the vibratory motion of the air at the extremity

of the open tube when the vibrations in it are excited according to

some known law ;
and consequently, if our theoretical knowledge of

the subject were complete, we should undoubtedly find in our investiga-

tions the cause of the retardation of phase, of which I have spoken,

in the reflected wave of the open tube, supposing it to be the actual

cause of that displacement of the whole system of nodes which I have

established as an experimental fact. Our knowledge at present, how-

ever, is totally inadequate to this purpose, and therefore we can only

conjecture what may be the probable cause of this retardation in the

reflected wave; but at all events, our formulse, with the modifications

1 have introduced into them, do become perfect representations of all

those phenomena which we can distinctly determine by experiment,

in the cases to which our mathematical investigations apply. The fact

too, of a retardation of phase in the reflected wave may not be very

difficult to conceive, or appear improbable, if we suppose the undulation

proceeding from the open end of the tube to advance through a certain

space before it assumes that form in diverging into free space, which

it must ultimately assume when it sends back no reflected wave from

any point of its path. Before it reaches this state, a partial wave may
be reflected in its course from each point towards the tube; and an

indefinite number of these reflected waves will form a general reflected
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wave, of which the period will be the same as that of each of its

component waves, but the phase of which will be retarded as compared
with that of a wave reflected immediately from the extremity of the

tube. This is equivalent to our supposing a certain space beyond the

extremity of the tube as subject to a disturbance (acting at consecutive

instants along this space) such as to produce a wave diverging in all

directions, and consequently sending a portion of this general wave

back along the tube.

To give generality to the investigations of the preceding section,

I have considered the effect on the position of the nodes which would

be produced by any retardation of the phase of the wave reflected from

the stopped end of a tube. It appears, however, that there is not in

this case any displacement of the nodes appreciable by the mode of

experimenting I have described. The only reason, in fact, for supposing

any retardation of phase in this case, is founded in the imperfect

analogy between the cases of the open tube and the tube closed with

an elastic substance. The cases are far too different, however, to admit

of any thing but vague inferences from such analogy ;
and it is

manifest that no reasoning similar to that above applied to the open

tube, can be applied to the closed one. If any retardation do exist in

this case, I can only conceive it to arise from a cause similar to that

suggested by Mr Willis*, viz. that time must be necessary for the

action between the elastic stop and the air to produce its effect. This,

however, appears much less probable in this case than in that which

suggested the idea to Mr Willis, in which the action between the air

and the vibrating body (a membrane) was lateral instead of being direct,

as in the present instance. I have not been able to detect any indica-

tion of such law of force in a displacement of the nodes in the closed

tube, though I have examined the case with great care, conceiving

that any facts bearing directly upon the nature of the mutual action

of two elastic media at their common surface must necessarily be of

importance.

*
Cambridge Transactions, Vol. IV. Part III. p. 346.
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The experimental deductions in the preceding part of this section

are based on the evidence afforded by the exploring membrane, because

it is more direct than any other evidence which the phenomena appear
to admit of, and therefore better calculated to supply those decisive

and positive tests for ascertaining the accuracy or fallacy of our theoretical

results, which it is my object to supply. We have seen the perfect

accordance of these results with the general indications of the membrane,
and also with the striking and well-defined phenomenon of the im-

possibility of making the plate vibrate in a certain manner with tubes

of certain lengths. It remains for us to consider also how far our

theory agrees with the phenomena of resonance, in those cases in

which the conditions assumed in our mathematical investigations are

satisfied, viz. where the communication between the external air and

that in the tube at the surface of the plate is prevented, and the

disturbance extends uniformly over the whole orifice. In such cases

it will appear from the following enunciation, that the intensity of

the sound is proportional to that of the aerial vibrations, as indicated

by the membrane, and by the difficulty or facility with which the

vibrations of the plate may be maintained. (See Arts. 27, 31.)

The resonance of the open tube is scarcely perceptible when the length

of it does not differ much from something less than an even multiple

of -, or 2m • j
- C ; but as it approximates to something less than an odd

multiple of that quantity, or (2m'+ 1)-
— C, the resonance increases, and

at length becomes ofpainful intensity, increasing till it is no longer possible

to maintain the same mode of vibration of the plate. Whether the length
of the tube be gradually increased or diminished in approximating to

the above-mentioned lengths, the phenomena are precisely the same.

I was the better pleased to obtain this result, inasmuch as those

which I first obtained (when the precaution of preventing communication

with the external air was not attended to*), as well as those of previous

* In such cases the resonance was always greatest (as in the case considered in the text)

when the difficulty of making the plate vibrate was greatest. The corresponding lengths of the

tube may be seen in Art. 30.
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experimenters, appeared either to contradict theory, or at least to be

altogether anomalous. According to our common notion on the subject,

an open tube gives the strongest resonance when its length is nearly

equal to an even multiple of 7, instead of an odd multiple, as above

stated ;
and Savart* has given this as the result of his own experiments

for tubes of about the same diameter as those I have usually employedf ;

but asserting also that the length is less as the diameter is increased,

and this too whether the disturbance extend over the whole orifice of

the tube or not. My results, however, are entirely at variance with

this latter assertion, for I confidently conclude from them that if the

disturbance extend uniformly and equably over the orifice of the tube,

the phenomena will be independent of its diameter:]:, with the exception

of the effect it may have on the displacement of the nodes
|. If, however,

the disturbance extend but partially over the orifice, I see no reason

to doubt the accuracy of the last-mentioned results of M. Savart ; and

this supposition will also account for the apparent discrepancy between

his results and mine as respects the length of the open tube (of which

the diameter does not much exceed an inch) producing the greatest

resonance; for it is manifest that with this partial disturbance none

of that condensation and rarefaction on the surface of the plate can

take place, which in my experiments necessarily attends, and may be

considered as causing, that powerful resonance of which I have spoken.
It is easily seen, in fact, that when the length of the tube is neany

equal to an odd multiple of -, the phase of the waves reflected from

any considerable part of the orifice not occupied by the vibrating plate,

will be directly opposite to that of the waves propagated by the plate

itself; and that thus a great part of the vibration within the tube will

be destroyed by interference.

There is no difficulty, therefore, in explaining the non-existence of

resonance in this case. If the tube, however, be lengthened or shortened

by about -
, (still supposing the disturbance at its mouth partial), a

* Annates de Chimie, Tom. XXIV. p. 56. t See Art. S6.

t See Art. 36, p. 264. § Art. 36.
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resonance will be heard, though extremely feeble as compared with

that I have found in my experiments. This is, in fact, the kind of

resonance which has been observed by all experimenters. It does not

appear to me to admit of the same obvious explanation which the

other admits of
; that which is usually received being, as I conceive,

in itself insufficient, when subjected to those restrictions which must

be imposed upon it by the general laws which govern the communication

of motion from one particle of matter to another. At present, however,

it is not my object to enter on the discussion of this and of some

other points relative to this part of the subject. It is sufficient for

me now to have shewn that that powerful resonance which I have

observed in my experiments is exactly accordant with the results of

our mathematical investigations, when the conditions assumed in those

investigations are fully satisfied. I hope to return to the careful examina-

tion of other cases at a future period.

I have already alluded* to a paper by Mr Willis, published in the

Transactions of this Society, in which he has described some experiments

bearing on this subject, and affiarding a general corroboration of some

of the results above stated. He fixed a reed to a sliding tube, and

observed the intensity of the sound, when the reed was made to speak,

produced by different lengths of the tube, and by means of a microscope

carefully adjusted, he was able to observe the excursions of the reed

in its vibration, and to obtain micrometer admeasurements of them.

He thus found that when the length of the tube equalled about an

even multiple of -
, it gave the exact note of the reed with no perceptible

resonance. As the tube was gradually lengthened, the tone was flattened,

and as the length approximated to about an odd multiple of -, the

extent of the reed's excursions was diminished, its vibrations became

irregular and convulsive, till at length it ceased to produce any musical

tone. When the tube, however, was a little lengthened beyond this

point, the reed suddenly assumed its original form of vibration,

producing a note of painful intensity, similar to that which I have

* See page 260.
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described in my own experiments, although the extent of excursion of

the reed was in this case less than in that in which no resonance was

produced.

One discrepancy is observable between this experiment and mine,

inasmuch as the intensity of the sound, instead of increasing as the

length of the tube approximated to the odd multiple of -
, as in my

experiments, gradually decreased*. The explanation, however, of this

fact, is easily found in the diminished excursion of the reed, and still

more, I suspect, in the irregularity of its vibration, by which the

undulations produced by it are probably rendered imperfectly sonorous^.

With this explanation of this apparent discrepancy, the general results

of Mr Willis's experiments afford as strong a corroboration of those

Avhich I have obtained, as the difference between our modes of experi-

menting will allow. The flexibility of the reed, however, and its

consequent ready obedience to the vibrations of the air, as compared
with the inflexible obstinacy of a glass plate, together with the partial

disturbance produced by the reed, render it a totally unfit agent in

obtaining experimental tests for our mathematical results, though it

presents to us in its own motions many interesting points of enquiry.

Our theory will also perfectly account for one of the most striking

phenomena observable in wind instruments, viz. the rapidity with which

different states of vibration are assumed within the tube, corresponding

to different effective lengths of it, as determined by the opening or

closing of the finger holes. We have seen (Art. 22, VII. VIII.) that

* For a very clear and distinct account of these experiments, I must refer the reader to the

excellent paper from which the above is taken. It will be observed, however, that the results

mentioned in the text were not the direct objects of Mr Willis's investigations, but were such as

naturally offered themselves in the course of his experiments on the production of the vowel

sounds.

t I think it very possible that \heform of the aerial vibrations may have more to do with our

sense of the intensity of sound than has been generally supposed ; and perhaps some cases of

resonance may admit the most satisfactory explanation on this hypothesis.

Vol, V. Part XL M m
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according to theory, if the cause maintaining the vibratory motion in

a tube be suddenly changed, (as in passing from one note to another),

the effect of the former mode of disturbance on the form of the

succeeding vibration will become inappreciable in an exceedingly short

period of time. Now in the most rapid musical passages, the number

of notes played in a second never probably exceeds ten or twelve,

and these usually embrace only the higher notes of the scale, for

which there must be many hundred vibrations in a second. Suppose
this number, however, not greater than about two hundred ; any undula-

tion transmitted from the reed or embouchure would still be reflected

about twenty times at the open end in the interval between two

consecutive notes in the most rapid musical passage. Now assuming

unity to represent the intensity of a wave incident at the open extremity
of the instrument*, let 1 — )3 represent that of the reflected wave,

(1
—

/3)".
will represent (at least sufficiently approximately) its intensity

after n reflections ; and consequently, as we have no reason to suppose /3

very small as compared with unity, it is probable that after five or six

reflections, the intensity of this wave will be quite inappreciable. Hence

the apparently instantaneous cessation of sound after the exciting cause

has ceased, and the most rapid transition from one note to another,

are perfectly accordant with theory.

M. Poisson, in the Memoir referred to in the early part of this

paper, has also investigated the vibratory motion of air in two tubes

of different diameters united together at one extremity. I hope to

examine this case also experimentally. His results must necessarily be

erroneous, as far as they depend on the physical condition he has assumed

to exist at the extremity of the open tube, and which I have shewn to

be inconsistent with observed phenomena in the uniform tube.

* See Art. 14.

W. HOPKINS.
St Peter's College,

i\r««/ 20, 1833.
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XI. On the Latitude of Cambridge Observatory. By George Biddell

Airy, M.A. late Fellow of Trinity College, Plumian Professor

of Astronomy and Experimental Philosophy, and one of the

Flce-Presidetits of the Society.

[Read April 14, 1834.]

The accurate determination of the latitude, with an instrument

like the Mural Circle now in use at the Observatory, seems at first

sight to be an easy business. In practice, however, it is not without

difficulties. I do not here allude to the correction for refraction ;

since, though there may be a trifling uncertainty in regard to its magni-

tude, it is easy to leave , a result subject to that uncertainty, and

admitting of correction without any trouble whenever a correction of

the refraction shall be established. Nor do I allude to the uncertainty
in the corrections by which, from a star's apparent place on any day
of observation, its mean place at a fixed epoch can be inferred; since

the uncertainty about any of these is far less than the smallest quantity
for which we could pretend to answer in fixing the latitude of any

place ;
and its effects being periodical, would in a comparatively short

series of observations, produce no sensible effect. The difficulties to

which I allude are instrumental: they are not periodic in time, like

the latter; nor do they admit of correction from posterior researches,

like the former of the causes of uncertainty which I have mentioned
;

they are moreover such as would scarcely be suspected to exist, until

their effects are discovered from the discordance of the results of

observations.

The Mural Circle is an instrument which gives simply the reading
of that point of the graduated limb which is opposite to an imaginary

fixed index when the telescope is pointed to the object of observation.

M M2



272 PROFESSOR AIRY ON THE LATITUDE

A single observation therefore gives us no tangible result. It is

necessary to have one other observation, or a series of observations,

by which the reading of that point of the limb can be found which

is opposite to the same index when the telescope is directed to some

point of reference; then the difference between this reading and the

former is the angular distance of the object observed from the point
of reference. It was intended originally by the maker that this point
of reference should be the celestial pole. In practice, however, it is

found necessary to descend one step nearer to terrestrial things, and to

adopt for the point of reference the zenith
; a point which, though not

marked any more than the pole by any obvious phenomena, can yet

be discovered by a process which involves less of astronomical assump-

tions, and requires a shorter time for the complete determination.

The method of determining the zenith point from observations

by reflexion at the surface of mercury, has been introduced into

observatories almost entirely by the practice of the present Astronomer

Royal at the Greenwich Observatory. The use of two similar circles

(as at Greenwich) makes the process one of little labour, though requiring

the co-operation of two observers. The same celestial objects being

repeatedly observed by direct vision with both circles, the differences

of the corresponding readings of the two circles are found
; and any

observations made with one can be referred to the other. Then when

any bright star passes the meridian, one circle is employed in observing

it by direct vision, and the other at the same time is employed in

observing it by reflexion at the surface of mercury ; the reading of the

latter circle is referred to the former circle; and then the reading

which is a mean between the reading for the direct observation and

the referred reading for the reflected observation, is the reading that

corresponds to a horizontal position of the telescope; and by adding

or subtracting a quadrant, the reading which corresponds to a zenithal

position of the telescope is obtained.

With a single circle this process cannot be adopted. In some

instances it has been imitated by observing a star directly on one

night, and observing the same star by reflexion on another night. The
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calculation for the zenith point then relies on our perfect acquaintance

with the variations of refraction and other corrections from one night

to another ; and thus a cause of inaccuracy is introduced, which does

not exist in the other method. In the Cambridge Observatory a different

method is regularly employed (for the idea of which I am indebted

to a suggestion of Mr Sheepshanks). When a star is to be observed

by reflexion, the circle is set approximately for the reflected observation,

and the six microscopes are read; when the star has entered the field,

and before it has reached the center, it is bisected by the micrometer

wire, (which in fact measures its distance from the fixed wire, and thus

gives a correction to be applied to the mean of the six microscopes,)

and then there is ample time to allow the circle to be turned to the

position in which the star can be observed directly, shortly after it

has passed the center of the field. Thus a direct and reflected observa-

tion are obtained at the same transit. This method is, in my opinion,

much preferable to the second that I have mentioned, and in some

respects superior to the first.

Either of the methods which applies to one circle enables us, as

will shortly be seen, to examine severely into the consistency of the

results obtained in different positions of the circle ;
and this must be

considered as a most valuable property of this method of determining
the zenith point, and one which places it far above the use of a collimator

or any similar instrument.

I had hoped, on commencing observations with the Mural Circle

at the beginning of the year 1833, to be able in a very short time to

obtain a very approximate latitude. I proposed to observe some stars

every night in the manner above described, as well as circumpolar stars

(which might or might not be observed in the mercury): by the former

I should obtain a very good zenith point; and then each observation

of the latter, above and below the pole, would give me a value of the

co-latitude.

But after a few nights' observations, I found that the reading for

the zenith point, as determined by different stars, was not the same.
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Had the discordance been wholly without regularity, this would have

given me no anxiety. But the first Aveek's observations enabled me to

see with certainty that one general rule could be laid down : the reading
for the zenith point as determined by northern stars was invariably

greater than that fovmd from southern stars. As the readings increase

while the telescope is turned towards the south, this discordance is of

the same kind as that which would be produced if the object end of

the telescope dropped by its own weight.

After much anxious thought and many fruitless attempts to explain

this discordance, I was obliged to give it up entirely. The method

which was adopted for approximate reduction of the observations, easily

admitting of future correction, was the following. When in one night,

or in several nights which it appeared practicable to group together,

stars had been observed by reflexion in different parts of the meridian,

1 took the three means of zenith points determined by stars far north,

by stars far south, and by stars near the zenith, as three separate results ;

and then I took the mean of these three for the zenith point. For an

approximate co-latitude I used 37°. 47'. 6",83.

At the beginning of March the telescope was moved about thirty

degrees on the circle; at the beginning of August it was again moved

thirty degrees, and on this occasion (as it appeared that the circle was

not exactly balanced) a pound of lead was attached to the eye end of

the telescope ; at the beginning of December it was again moved
about thirty degrees. It does not appear however that the fact of the

discordance has been affected, but its law seems to have been in some

degree altered.

A discordance of the same kind exists, I believe, in every circle

that has been properly examined. I am informed by Mr Henderson

(late Cape Astronomer) that he has found it in the Cape Circle. It

was recognized as existing in the Greenwich Circles : and, though the

system of observing there, which I have described, does not allow us

to trace the unmixed faults of either circle, yet from the discordance

in the places of stars as determined by the two circles, and its variation
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in different points of the meridian, I am inclined to think that the

defect in one circle is different from that in the other.

In vain have I endeavoured to discover the cause of this discordance.

I once thought that it might be owing to the circumstance, that for

the reflection-observation the circle is at rest for some minutes after

the microscopes are read, and possibly it might (though clamped) have

changed its position. A series of observations expressly made, showed,

however, that there was no sensible change either in a few minutes

or in many hours. I thought that the surface of the mercury might
be sensibly curved, and that from a habit of observing in one part of

the trough, an error might be produced. A set of experiments proved,

however, that there was not the least sensible difference in the results

found from observing at one or the other end of the trough. A flexure

of the wire in the field of view would not explain it, as the discordance

which that would produce is of the opposite kind. There appeared
to be no reason for supposing an error in the determination of the

coincidence of the micrometer wire with the fixed wire, in the value

of the micrometer screw, or in the observation with the micrometer

wire. The object glass, repeatedly examined by myself and once by
Mr Simms, did not appear to be loose in its cell. I am driven at last

to the supposition that the circle sensibly changes its figure ; but I

have no proof of this, nor do I see distinctly how it should produce
the discordance in question. Three sets of readings of every 10° under

all the microscopes, have not assisted me to discover such change.

My a priori opinion is, that a change in figure is hardly possible. The

telescope, it must be remembered, is attached at its ends to the limb

of the circle : the limb is in one piece (cast in several pieces and burnt

together) ; and the whole arrangement of parts seems admirably adapted
to prevent any change. If I had to fix on an astronomical instrument

which appeared less likely to change than any other, I should certainly

choose the Mural Circle.

To discover experimentally the law of discordance, I proceeded
as follows. The observations being reduced, and those of each star

being digested under the heads of D, R, SP. D., and SP. R., I
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selected for the three first positions of the telescope all the un-

exceptionable corresponding observations D and R. (The stormy

weather of December made it impracticable to observe low stars by

reflexion). In each case of a double observation, the difference of

the results D and R would be double the difference between the

zenith point as found from that star, and the zenith point adopted
in the reductions. The mean of the differences of all the correspond-

ing results D and R, would therefore be double the mean of all

the differences between the zenith points found from the particular

star, and the zenith points found from all by a tolerably uniform

system : and thus it might be considered as double the difference

between the zenith point found without error of observation from

that star, and a certain imaginary well defined point. These values

for all the stars, and for each position of the telescope, were arranged

in tables (for which, as well as for some other numerical values, I

must refer to the Cambridge Observations, Vol. VI.)

The next step was, to connect these, approximately at least, by a

law. I soon found that to attempt this by calculation was almost hope-

less. Combinations of constants, sin Z.D., sin Z.D. cos^ Z.D., cos2Z.D.,

were tried in vain. I therefore adopted a graphical method similar

to that used by Sir John Herschel, in the reduction of his sweeps,

and described by him in the Phil. Trans. 1833. Taking the line of

abscissae for zenith distances, and the ordinates to represent the mean

of the differences above mentioned, I made a curve to pass among
the points so determined, as well as I could, giving to each point

an importance depending on the number of observations. From this

curve I measured off" the ordinates for every 10° of zenith distances;

half of this quantity I considered to be the correction to the ob-

served zenith distance, to be applied with different signs to the

direct and the reflected observation. The only respect in which

theoretical consideration may be said to have assisted me is the

following. Since the error in the relation between the position of the

telescope and the reading of the circle, to which the discordance

must be due, is periodical and never infinite, it may be expressed by
sines and cosines of the Z. D. and its multiples. Now it is useless
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to take sines of even multiples, or cosines of odd multiples, because

when 180° — Z.D. is substituted for Z. D., the result is equal in

magnitude but opposite in sign ;
and therefore when the two are

added together, (as they are in finding the zenith point from each

star), no trace of these terms would remain. Thus there may be

sensible flexure in the circle which cannot be discovered from ob-

servation by reflexion. The sines of odd multiples, and the cosines

of even ones, (all which may be expressed in finite series of powers
of sin Z.D.), will produce the same values with the same signs for

180° — Z.D. as for Z. D., and these will affect the zenith point.

Thus it appears that the terms which aff*ect the zenith point are

the same for a direct observation and for the corresponding observation

by reflexion, and it is this which justifies us in applying half the

discordance to each. It appears also that when Z. D. = 90°, the

function is maximum or minimum, and hence the curve in the

graphical process above described must there be parallel to the line of

abscissEB.

The tables of corrections being thus formed, I now considered

myself entitled to apply them to the reduced r^ults of all the

observations, whether there were corresponding observations of the

opposite kind or not. ' >»/ ^ i -

The principal steps of the succeeding process may be gathered
from the subjoined table. The first column contains the name of

the star, its position with regard to the pole, (the lower transit being
marked by S.P.), and the method of observing it (the letters D and

R being always used for direct and reflected vision). Here it is to

be observed that a star above the pole and the same star below the

pole are reduced as separate stars, which is necessary, because the

observations have been reduced with an assumed co-latitude, or an

assumed place of the pole, the error in which assumption can be

found only by comparing the separate results for the same star above

and below. The second column contains the number of observations.

The third contains its mean N.P.D. for Jan. 1, 1833, as found from

the mean of all the results in each position and mode of observation.

Vol. V. Part II. Nn
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and reduced with the assumed co-latitude 37° . 47' . 6,"83 : those de-

termined from the lower transits of the star have the negative sign.

For refraction, Bessel's tables are used. The fourth column contains

the seconds only, as corrected for the errors above described ; this

has been done by taking the number of observations in each position

of the telescope on the circle, and finding the mean correction,

supposing that to each observation the correction proper to that

position was applied. The negative sign has still been retained for

the lower observations. The fifth column contains the whole number

of observations in each position of the star : and the sixth contains

the mean N.P. D. for each position, as inferred from the combina-

tion of direct and reflected observations. The seventh contains the

whole number of observations for both positions. The eighth contains

the algebraic sum of the two determinations of N.P.D., as the star

is above or below the pole. If the assumed co-latitude were correct,

this sum would =
; if the assumed co-latitude be increased by x,

this sum would be increased by ^x, and therefore to make it now
= 0, X must be taken = — i x sum in 8th column. The results, as

might be expected, are however different for different stars, though
the difference is much smaller than I could almost have hoped ; the

extreme difference in the correction of latitude being 1,"3, and this

being the difference between two results from stars nearly in the

same parallel (shewing that it does not arise from error in the cor-

rections above described), and which had been not much observed.

It now becomes necessary to determine how the relative importance
of these results shall be estimated. It would not be right to give

a value proportionate to the number of observations, because part of

the discordance may be produced by errors of division and other

causes which, in the observations of a single star, produce constant

errors. The ninth column contains the immbers by which (from my
estimation of the comparative influence of constant and variable errors)

I suppose the value of each result to be estimated. The tenth con-

tains the product of the corresponding numbers in columns 8 and 9-

The sum of the numbers in column 10 being divided by the sum of

those in column 9, gives + 2",82 for the double correction, or + 1",41
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for the single correction, of the co-latitude ; and the co-latitude thus

corrected is 37° . 47' . 8",24, or the latitude 52°. 12'. 51",76. This result

I conceive to be correct within a small fraction of a second. The
number of circumpolar stars used for this determination is 10, and

the whole number of observations 917.

In describing the process by which I have arrived at the above

result, it has been my wish to present to the Society not only a

determination possessing considerable local interest, but also an account

of instrumental anomalies which are of general scientific importance.
In further illustration of the latter point I will allude to the dis-

cordances in the determinations of the obliquity of the ecliptic. It

is well known that most astronomers have found the obliquity smaller

from observations at the winter solstice than from those at the

summer solstice. Now if I had used only the latitude found from

direct observations of circumpolar stars, and had applied no correction

to the observations of the Sun, I should also have found two values

for the obliquity discordant by about 5", the winter obliquity being
the smaller. With the corrections above described, (and which were

formed entirely from observations of stars, and before I had even

examined my sun observations) the two values of the obliquity

agree within 1". I might have altered the corrections so as to re-

move part of this discordance, but I prefer leaving them in

the shape in which they were given by independent considerations.

Indeed if I had confined myself to the January observations for the

winter solstice, and omitted those of December when the correction is

less certain, the discordance would wholly have disappeared. A very
small alteration of the constant of refraction (such as would not alter

the latitude much more than 0",1), or a very small alteration in the

law of refraction (which would not be sensible in the latitude) would

remove this difference. But I hardly venture to assume that obser-

vations of the Sun, near the winter solstice, can be relied on to this

degree of accuracy.

I will only add, in conclusion, that I believe the method which

I have used to be the only one of those in practice from which a
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good result can be obtained. Had I determined my zenith points

by a floating collimator, the result of observations on Polaris and

^ U. Minoris would have given the latitude more than a second

wrong, and the polar distance of every southern body more than

two seconds wrong : the result of observations on the Sun would have

given nearly the same error in the latitude but with the opposite

sign. If a circle reversible round a vertical axis had been used

(as at Dublin, Palermo, &;c.) its errors would (supposing the mere

circle exactly as good,) have been just as great as if a collimator

were employed. The method adopted above appears most valuable,

not only because it gives numerical conclusions more accurate than

any other, but also because it enables us to observe discordances and

to suspect faults which, though they confused our results, might
otherwise have wholly eluded our discovery.

G. B. AIRY

Obskkvatouy,

March 23, 1834.
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Table exhibiting the Calculations j^r correcting the Latitude o/" Cambridge
Obseuvatory ; the Observations having been reduced with the assumed

Latitude 52M2' . 53",17.

star's Name.

No.
of

Obs.

Polaris D
Polaris R
Polaris S.P D
Polaris S.P R

8 Urste Minoris D
S Ursa; Minoris R
S Urs» Minoris S.P. ..D

2 Ursae Minoris S.P. ..R

/3 Ursae Minoris D
/3 Ursae Minoris R
/3 Ursifi Minoris S.P. ..D

/3
Ursae Minoris S.P. ..R

/3Cephei D
/3 Cephei R
ySCephei S.P D
/3 Cephei S.P R

2 Draconis D
I Draconis R
S Draconis S.P D
S Draconis S.P R

a Draconis D
a Draconis R
a Draconis S.P D
a Draconis S.P R

a Ursae Majoris D
a Ursae Majoris R
a Ursae Majoris S.P. ..D

a Ursae Majoris S.P. ..R

Uncorrected mean
N.P.D.

Corrected
for

Discordance.

« Cephei D
a Cephei R
a Cephei S.P D
a Cephei S.P R

S Ursae Majoris D
S Ursae Majoris R
Ursae Majoris S.P. ..D

g Ursae Majoris S.P. ..R

a Cassiopeiae D
a Cassiopeiae R
o Cassiopeiae S.P D
o Cassiopeiae S.P R

113
42

111

58

43

37
39
23

20
17
22
2

4
none
12

7

3
10

6

14
11

7

32
32
5

none

43
35

13

8

26
26
3

3

34
15

26

9

1 . 34 . 52,22

51,00
1 . 34 . 53,77

55,70

- 3

3.24.45,21
43,48

24 . 46,34

48,42

15. 9-41,65
42,02

15. 9.44,58
47,54

20 . 10 . 15,91

- 20 . 10 . 16,97

17,24

22 . 37 . 54,40

53,95
- 22 . 37 . 54,99

56,31

24 . 49 . 24,80
24,51

- 24 . 49 . 26,90
28,90

27 . 20 . 55,75
55,73

- 27 • 20 . 59,30

28,

28.

7.11,43
11,64

7 . 12,67

13,47

32. 2.18,12
18,40

32. 2.20,38
23,23

34 . 22 . 45,38

46,36
- 34 . 22 . 47,37

47,00

No.
of

Obs.

51,38

51,78
- 54,62
- 54,83

44,44

44,24
- 47,40
- 47,28

41,25

42,40
- 45,52

-46,18

15,74

- 17,74
- 16,52

54,34

54,01
- 56,14
-55,31

24,76
24,47

-28,10
- 27,90

55,84

55,64

-59,86

11,58

11,50

13,27
• 12,93

18,41

18,09

21,16
- 22,45

45,73

46,03
- 47,93
- 46,54

Concluded
N.P.D.

155

169

80

62

37

24

4

19

6

16

25

10

64

5

78

21

51,49

- 54,70

44,35

- 47,35

41,78

- 45,57

15,74

- 17,29

54,17

- 55,83

24,63

• 28,04

55,74

59,86

11,54

-13,13

No. Algebraic
of Sum of

Obs. Determin.

52
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XII. On the Diffraction of an Ohject-glass with Circular Aperture. By
George Biddell Airy, A.M. late Fellow of Trinity College,

and Plumian Professor of Astronomy and Experimental Philosophy
in the University of Cambridge.

[Read Nov. 24, 1834.]

The investigation of the form and brightness of the rings or rays

surrounding the image of a star as seen in a good telescope, when a

diaphragm bounded by a reetihnear contour is placed upon the object-

glass, though sometimes tedious is never difficult. The expressions
which it is necessary to integrate are always sines and cosines of mul-

tiples of the independent variable, and the only trouble consists in

taking properly the limits of integration. Several cases of this problem
have been completely worked out, and the result, in every instance,

has been entirely in accordance with observation. These experiments,
I need scarcely remark, have seldom been made except by those whose

immediate object was to illustrate the undulatory theory of light.

There is however a case of a somewhat different kind; which in

practice recurs perpetually, and which in theory requires for its com-

plete investigation the value of a more difficult integral ; I mean the

usual case of an object-glass with a circular aperture. The desire of

submitting to mathematical investigation every optical phaenomenon of

frequent occurrence has induced me to procure the computation of the

numerical values of the integral that presents itself in this inquiry :

and I now beg leave to lay before the Society tlie calculated table,

with a few remarks upon its application.

Let a be the radius of the aperture of the object-glass, f the focal

length, h the lateral distance of a point (in the plane which is normal

Vol. V. Part III. Pp
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to the axis of the telescope) from the focus. Then, the lens being

supposed aplanatic, and a plane wave of light being supposed incident,

the immediate effect of the lens is to give to this wave a spherical

shape, its centre being the focus of the lens. Every small portion of

the wave, as limited by the form of the object-glass, must now be

supposed to be the origin of a little wave, whose intensity is propor-

tional to the surface of that small portion ; and the phases of all these

little waves, at the time of leaving the spherical surface above alluded

to, must be the same. If then Sx x Sy be the area of a very small part

of the object-glass, q the distance of that part from the point defined

by the distance b, the displacement of the ether at that point, caused

by this small wave, will be represented by

Sx X. Sy X sin—- {vt— q — A) ;

A

and the whole displacement caused by the small waves coming from

every part of the spherical wave will be the integral of

sin — (vt—q — A)

through the whole surface of the object-glass, q being expressed in

terms of the co-ordinates of any point of the spherical surface.

Now let X be measured from the center of the lens in a direction

parallel to i; y perpendicular to x and also perpendicular to the axis

of the telescope; and % from the focus parallel to the axis of the

telescope. Then

q=.^{{x- by + y- + x}
=

-y/ix' +f+x'-2bx)

omitting squares and superior powers of b. But x^ + y^ + z' —f^^
since the wave is part of a sphere whose centre is the focus ; therefore,

q = VW^-^bx)=f-j,x nearly;

and the quantity to be integrated is

sm— \vt -f - A + -x).^ J
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The first integration with regard to y is simple, as y does not

enter into the expression, which is therefore to be considered as con-

stant. Putting y, and y^ for the smallest and greatest values of y

corresponding to x, the first integral is

{yi-yx)y-^m-^{vt-f-A^r-x).

To this point of the investigation the expressions are general, including

every form of contour of the object-glass.

We must now substitute the values of y^ and y^ in terms of x,

before integrating with regard to x. For a circular aperture

y,
-

y.
— ^y/a^-x"

where the sign of the radical is essentially positive. Hence the dis-

placement of the ether at the point defined .by the distance A is re-

presented by

2 f, Va' - x" . sin— {vt-f- A + ^x)

= 2sm -^{vt-/— A) f^\/a^-af .cos-— .^x\ Ay

+ 2cos —-
{vt—f— A) X a/«^ — x\sm—-.^x,A ^ J

and the limits of integration are from x = — a to x = + a. Between

these limits it is evident that

;- /-: « . 2-ir b
f^Va' — x^ .sm—- . ^x = 0,

^ J

(as every positive value is destroyed by an equal negative value) ;
and

the displacement is therefore represented by

2sin—-(«^—/— ^) ji\/«^
— ar'.cos ^ .^x,^

,

^ ./

the integral being taken between the limits x= -a, x— -^a.

p p2
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If we make - = w, ——
. -2r

= n, the expression becomes

2a^.sm-—{vt-f~A)J^V^-uf'Cosnw, fromw=— 1 tow=+\,A

or 4«^ sin —- {vt-f~ A) j„\/l — tt;''. cos nw, irom w = to w= l.
A

It does not appear, so far as I am aware, that the value of this

integral can be exhibited in a finite form either for general or for

particular values of w. The definite integral

J„^/\
— vf . cos nw (from w=-0 to w = \,)

(which will be a function of 7i only) being expressed by N, it may be

shewn that N satisfies the linear differential equation

n
'

dn dv?
'

which may be depressed to an equation of the first order that does

not appear to yield to any known methods of solution.

If we solve the equation by assuming a series proceeding by powers
of n, or if we expand cos nw and integrate each term separately, we
arrive (by either method) at this expression for the integral

TT . rf_
n^ _ _ ""

Xr \

4
"" ^ 2.4"^2.4^6 ^:^\Q'.S^^^-'

The table appended to this paper contains the values of the series

in the bracket, for every 0,2 from w=0 to w = 12. Each value has

been calculated separately, the logarithms used in the calculation have

been systematically checked, and the whole process has been carefully

examined. The calculations were carried to one place further than the

numbers here exhibited. I believe that they will seldom be found in

error more than a unit of the last place; except perhaps in some of

the last values, where the rapid divergence of the series for the first

five or six terms made it difficult to calculate them accurately by

logarithms.
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In the use of tins table n must be taken = —-.-^. If instead of

using the linear distance h to define the point of the field at which

we wish to ascertain the illumination, we use the number of seconds *,

then A = /. *.sin 1", and n must be taken = — as sin 1". If \ be taken

for mean rays = 0,000022 inch, n must be taken = 1,3846 x as, a being

expressed in inches. From this expression, and from the numbers of

the table, we draw the following inferences.

1. The image of a star will not be a point but a bright circle

surrounded by a series of bright rings. The angular diameters of these

(or the value of s corresponding to a given value of n) will depend
on nothing but the aperture of the telescope, and will be inversely as

the aperture.

2. The intensity of the light being expressed (on the principles

of the undulatory theory) by the square of the coefficient of

sin-^ivt-f- A),

and the intensity at the center of the circle being taken as the standard,

it appears that the central spot has lost half its light when « = l,6l6,

I 17
or s = ——

; that there is total privation of light, or a black ring, when

2 76
n = 3,832, or * = ——

; that the brightest part of the first bright ringa
Q WQ -I

corresponds to w = 5,12, or * = —— , and that its intensity is about — of
a Oi

5 16
that at the center; that there is a black ring when n = 7,14, or s= --—

;

a

that the brightest part of the second bright ring corresponds to ra = 8,43,

or * = —— , and that its intensity is about —r of that of the center ;

7 32
that there is a black ring when w =10,17, or *= ——

; that the brightest
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part of the third bright ring corresponds to w = 11,63, or *= ——
, and

that its intensity is about ^—
- of that of the center.

The rapid decrease of light in the successive rings will sufficiently

explain the visibility of two or three rings with a very bright star

and the non-visibility of rings with a faint star. The difference of

the diameters of the central spots (or spurious disks) of different stars

(which has presented a difficulty to writers on Optics) is also fully

explained. Thus the radius of the spurious disk of a faint star, where

light of less than half the intensity of the central light makes no

1 17
impression on the eye, is determined by making /* = 1,616, or s=—— :

whereas the radius of the spurious disk of a bright star, where light

of — the intensity of the central light is sensible, is determined by

1 97
making n = 2,73, or * = ——

.

The general agreement of these results with observation is very

satisfactory. It is not easy to obtain measures of the rings; since

when a is made small enough to render them very distinct as to form

and separation, the intensity of their light (which varies as a^) is so

feeble that they will not bear sufficient illumination for the use of

a micrometer. Fraunhofer however obtained measures agreeing pretty

well (as to proportion of diameters, &c.) with the results above.

For verification of the numbers it would probably be best to use

an elliptic aperture. By an investigation of exactly the same kind as

that above it will be found that the rings will then be ellipses exactly

similar to the ellipse of the aperture, but in a transverse position ; that

the major axes of the rings for the elliptic aperture will be the same

as the diameters of the rings for a circular aperture whose diameter

— minor axis of ellipse of aperture, but that the intensity will be

greater in the proportion of the squares of the axes. I have not yet

had an opportunity of examining this in practice.
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I shall now apply the numbers of the table to the solution of

the following problem. To find the diameters, &c. of the rings when
a circular patch, whose diameter is half the diameter of the object-

glass, is applied to its center, so as to leave an annular aperture.

The radius of the patch being -, it is easily seen that the dis-

placement (using the same notation) is

2sm-—-(vt—J'—A)fr\/a^-x'.cos—-.^a; (from a;—-a to x=+a)

- 2sin ~(vt-f-A)J\/---af. cos-^ .^x
(from x= -- to x= +^.

Putting
- =w, — = u, this becomes

4a^ . sin -T-{vt —f — A) /„ \/l — vf . cos— .—^wA A /

-4.^.sm yC^^-/- ^)/«vl-M'.cos— .— .M,

the limits of integration both for w and for u being and 1. Omitting
the factor oV, the intensity will be expressed by

V(»)-i*(l)}".

where (p{n) is the number given in the table.

Upon forming the numerical values we find that the black rings

correspond to values of w=3,15, 7,18, 10,97: and that the intensities

of the bright rings (in terms of the intensity of the center) are —
,
—

.

Thus the magnitade of the central spot is diminished, and the bright-
ness of the rings increased, by covering the central part of the object-

glass.

In like manner, if the diameter of the circular patch = a ( 1 —
/>), the

intensity of light would be proportional to {<p {n)
— {l— pf .^{n—pn)}".
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The quantity under the bracket, if p is very small, is equal to

X) ft

2p .<p {fi)
+ pn<p' (n) = -

. -J— {n^<p{n)}.

In the case of a very narrow annulus therefore the diameters of the

black rings will be determined by making ?i^(p (») maximum or

minimum. It appears then that there ought to be only one black

ring corresponding to each black ring with the full aperture, and that

its diameter ought to be somewhat smaller. This conclusion does not

agree with the experiments recorded by Sir J. Herschel, in the Encyc.

Metrop. Article Light, page 488 : but it is acknowledged there that

the results are discordant with Fraunhofer's : and I am inclined there-

fore to attribvite the phasnomena observed by Sir J. Herschel to some

other cause.

The investigation of cases of diffraction similar to that discussed

here appears to me a matter of great interest to those who are

occupied with the examination of theories of light. The assumption
of transversal vibrations is not necessary here as for the explanation
of the phasnomena of polarization : and they therefore offer no argu-
ments for the support of that principle. But they require absolutely

the supposition of almost unlimited divergence of the waves coming
not merely from a small aperture, but also from every point of a large

wave : and the results to which they lead us, shew strikingly how
small foundation there was for the original objection to the undulatory

theory of light, viz. that if waves spread equally in all directions.

there could be no such thing as darkness.

Obsbrvatory, Cambridge,

November 20, 1834.

G. B. AIRY.
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4j r •

Table of the values of 0(w) = — f^vl — vf.co& nw from w= iow=\.

11
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XIII. On the Equilibrium of the Arch. By the Rev. Henry Moseley,
B.A. of St John's College; Professor of Natural Philosophy and

Astronomy in King's College, London.

[Read Dec. 9, 1833.]

1. Let a mass acted upon by forces applied to any number of

points in it be imagined to be intersected by an infinite number of planes,

dividing it into exceedingly small laminse. Suppose the direction of the

resultant of the forces acting upon one of these, having for its ex-

ternal face a portion of the surface of the body, to be determined.

Combining this force with those acting upon the different points of

the next, contiguous lamina; let their common resultant be ascertained.

Proceed similarly with the next, and with each succeeding lamina.

These lines will then be the tangents to a curved line, called in

the following paper the line of pressure, whose intersection with each

lamina, marks the point where a single force might be applied so as

to produce the same effect with all those impressed upon that lamina,

this single force being impressed in the direction of a tangent to the

curve.

If any of these imaginary intersecting planes be supposed to become

real sections of the mass, so as to separate it into distinct parts, the

conditions necessary that no one of these parts may slip or turn over

on those contiguous to it, will manifestly be determined by the direc-

tion of the line of pressure in reference to the plane of the section.

In general it will be observed that forces applied to a system of

variable form are, when in equilibrium, subject to the same conditions

as though its form were invariable, together with certain other conditions,

dependant upon the nature of the variation to which the form of the

system is liable. In other words the conditions of the equilibrium of

a system of invariable form are necessary to the equilibrium of a system
of variable form ; but they are not sufficient. We shall first determine

QQ2
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the form and position of the line of pressure on the hypothesis, that

the form of the system is invariable, and then consider the modifica-

tion to which these are subjected by the opposite hypothesis.

2. Let there be conceived a mass, the connexion between the parts

of which may be any whatever, and the nature of whose surface is

determined by the equation
^ xy% = 0.

Let it be intersected by an imaginary plane whose position in reference

to a given system of rectangular co-ordinates is determined by the arbi-

trary constants A, B, C, and whose equation is

z = Ax + By + C (1).

Let Ml, Mi, Ms represent the sums of the forces acting upon one

of the parts into which the mass is divided by the intersecting plane,

resolved in directions parallel to the axes of x, y, z, respectively. Also

let JVx, N'z, ^3 be the moments of these forces about the same axes.

Then Mi, Mi, Ms; Ni, N^, iVs are given in terms of the arbitrary

constants A, B, C—of the given forces—and of the constants involved

in the given equation to the surface of the mass.

Let the position of the intersecting plane be supposed to be such,

that the forces acting upon the above mentioned portion of the mass

may have a single resultant, an hypothesis which involves the known
condition

MiN, + M,N, + M,N, =
(2).

The equations to the resultant in any given position of the inter-

secting plane, are

Ml ^Ni

^'=M^-'Ms
Let the arbitrary constant C be eliminated from this equation, and

from the equation to the intersecting plane by means of equation (2) ;

and let the plane be then supposed to take up a series of positions,

the law of which is fixed by its equation, and of which, each is im-

mediately adjacent to the former.
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Further, let it be supposed that the resultant of the forces upon
the portion of the mass, cut off by the plane, in each of its positions,

intersects with the resultant similarly taken in its immediately previovis

position—an hypothesis which introduces a new condition into the

question and establishes a second relation between the quantities

M„ M„ M,; A, B, C.

That relation is determined as follows.

Since x, y, as are to be considered as the co-ordinates of a point of

intersection of two consecutive resultants; we may differentiate the

equations (3) with respect to the arbitrary constants A and B, consi-

dering X and y as constant. From this differentiation, the following

equations are obtained:

= ss

= »

KS../(t).J,KSL/_i).,dA dAv dB .dB + dA

dA

dB

dA+-^dB{dB

(4),

whence, eliminating z

^M^^A^-^dBdA dB

dA + r^ft— aJ? IdA dB

dA

d
dA +

N,
M,
dB

dA dB

dBi

^^^^clA+-^dB{

=
0...(5).

This last equation determines the relation between A and B ne-

cessary to the continual intersection of the consecutive resultants ; and

the elimination of these quantities between equations (3) and (4),

produces two equations in x, y, % which are those to the locus of

that intersection. That is, they are the equations to the line of

PRESSURE.
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3. By the elimination of A,y B and C between the equations (2), (3)

and (5), a relation is obtained between the co-ordinates of a point in

the direction of the resultant force, applicable to every position of the

intersecting plane. Being in fact, the equation to that developable
surface which is the locus of the resultants, and, which has for its

edge of regression, the line of pressure. This surface will be properly
called the surface of pressure.

It is evident that at that point where the line of pressure even-

tually cuts the surface of the mass, there must be applied a force equal
to the resultant of all the other forces impressed upon the system
and in the direction of a tangent to the line of pressure at that point,

or there must be applied to the surface of the last lamina cut off

by the intersecting plane, forces whose resultant is of that magnitude
and in that direction.

4. These conditions may be expressed as follows.

Let P' be the force—or the resultant of the forces—applied to the

last lamina, x^, y,, ss, the co-ordinates of the intersection of the line of

pressure with it, a, fi, y the inclinations of P' to the axps of x, y, %.

^ Also let

be the equations to the line of pressure.

Since the point Xx, y^, %i is a point in the surface of the mass,

.-. ^Xiy.z, = 0.

Also, since it is a point in the line of pressure,

.-. Xi = Fi%i

y,
= F^%x

Since the direction of P' is that of a tangent to the line of

pressure,

tan a =

tan /3
=

d%,
'

d%i
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Also

p = VM^VMr+~m,
where M^, M.^, M-j are supposed to be taken throughout the tvhole

mass.

Thus there are six equations of condition, which together with the

equation

cos^ a + cos^ /3 + cos^ 7 = 1.

determine the seven quantities P', Xi, y^, %i\ a, /3, 7 in terms of the

forces (other than P') which compose the system, and the constants

which enter its equation. These fix the relations necessary to the equi-

librium of the mass considered as one continued geometrical solid.

Before proceeding to the discussion of the additional conditions

requisite to the equilibrium when the mass passes from the invariable

form here supposed, to a variable form, it will be well to give an

example of the application of the principles which have been already

laid down to the actual determination of the line of pressure in a par-

ticular instance.

5. Let then ABCD (fig. 1.) represent a heavy mass, bounded at its

extremities by parallel planes AB and CD, and laterally, by the planes

AC and BD inclined at any angle to one another.

Let the mass be imagined to be intersected by an infinite number

of planes parallel to AB, of which one is mn, and to be supported

by forces acting at p and p' at angles cp
and

<f>'
with the horizon.

It is required under these circumstances to determine the form and

position of the line of pressure.

Let the line P'G bisect AB and CD. Draw P'E horizontal and

PM vertical.

Let P'M= A, CD = 2b, P'p =
k,

AB = 2a, P'G = h, Gp' = k'.

Inclination of P'G to the horizon =7, -

AB =
/3.



298 Vi Mil MOSELEY, ON THE

Now,
BP' - Pm _ BP - DG

PP'
~

GP' '

2a — (mn) _ 2 (a — i) _
'

^sec7
~"

^ '

/ V « 2 («
-

A) .

.'. (mn) = 2a —r—-

secy . A;

.-. area (BAnm) = ^ {{AB) + {mn)\ . (P'P) . sin (PP'A)

= sin {(3 +y) secy {2aA- ^-^ .secy .A"};

d\aYea(BAnm)} - /o , \ ia 2(a — b)
.'. -^

V^
^ = 8111 (/3 + 7) sec 7 {2a

^
,

^

sec7 . A\.

- Now each element of the area has its centre of gravity in P'G ;

,-, moment of area = 2^sin (/3 + 7) sec 7^{a^ ^— sec7^'}

=^sin(/3 + 7)sec7{«^* ^"7 ^

sec7^H.

Now,

iVs = moment of p + moment of area (BAmn)

2 (a — b)= PffK sin (0 + /3) + ^sin (/3 + 7) sec7 {aA^
^

,
'
sec 7 A"").

Also,

Mx — pg cos (p, Mz = 0,

M^ =pgsm(j> - g sin (/3 + 7) sec 7 {2a^ ^ sec 7 ^^},

iv, = 0, iV3 = o.

Calling therefore x and » the co-ordinates of any point in the re-

sultant of the forces applied to the area (ABmn), we have for the

equation to that resultant.
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or, zpgcoscp
-
pgsivKp + xgsm{(i + 7)sec7{2a^ -r—secy.A^}

=pgK sin ((p + /3) +gsm{fi + 7)8607 {aA^ ^-—r—^sec7 . A^}.

Differentiating which equation with regard to the arbitrar}' constant

A, we obtain

A = x,

whence by elimination and reduction,

^^l(
^- ^

]
(seey.sm{f3 + y) \ ^^

\ pk J \ COS(p j

'

_ /_a\
[

sec 7. sin (^ + 7) ] ^
\pj \ cos(p /

+ tan
(f)

. X

_^ sin((/> + /3)

COS0

The above is the equation to the line of pressure. It indicates a

point of contranj flexure corresponding to

ah
X = 7 cos <h.

a — h ^

The curve is concave to the axis of x, between the origin and this

point. It is afterwards continually convex.

A minimum value of % is determined by the equation

\Jta\
f / ip\^ sin>cos^7 )^ \a-AV^ ^ ^

Ui •sinMi8 + 7)r *

It will be observed that since all the forces applied to the system

may be supposed to act in the same plane, the two conditions.

First,
" That in every position of the intersecting plane, the forces

shall have a single resultant," and Secondly, "That the consecutive re-

sultants shall intersect," are necessarily satisfied.

Vol. V. Paet III. Re
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To simplify the question, let the planes AC, BD which bound the

mass laterally be supposed to be parallel, the figure ABCD assuming
the form of a rectangle. Fig. 6.

This hypothesis will introduce the following conditions :

« = *' ^ = J
-

7-

Hence, by substitution the equation to the line of pressure becomes

% — . sec 7 . sec . a;^

+ tan ^ .X

cos (7
-

0)
cos

Avhich may be put under the form

, p . ^ 1 , P , (
cos (y — (j)) P sin^ cos 7 -,

^x — -~ sm cos^r = - cos 7 .cos . \k
' + -7

^-—
;

—- —
*|.* 2a ^ "a ' ^ ^

COS0 4« cos '

It is manifest therefore, that the line of pressure is in this case

a parabola—having its axis vertical and at a distance = —- sin cos 7^ a

from the origin
—having its concavity downwards—its vertex at a height

_ cos (7
—
0) p sin' cos 7~

cos 4 « cos
'

above the axis of x—and having for its parameter the quantity

•
(^j

. cos cos 7.

Let us now seek to determine what relation must exist between

the forces impressed upon the mass which we have hitherto considered

of invariable form, that the equilibrium, may continue under the same

circumstances when its form and dimensions are made to admit of

variation. And let us suppose
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First. That certain of the sections, which we have imagined, be-

come real sections of the mass, dividing it into separate and distinct

parts, each of which retains the properties of a perfect solid.

Secondly. Let us suppose every point in the system to admit of

displacement, subject, within certain limits, to the law of perfect

elasticity.

The determination of the conditions of the equilibrium in these

two cases, will constitute a complete theory of construction.

The discussion contained in the remainder of this paper will be

confined to the first case.

6. Let the mass AB (fig. 2.) have for its line of pressure the

line PP'. Now it is clear, that if this line cut the plane QQ of any
section of the mass in a point n' without the surface of the mass ;

the tendency of the opposite resultants of the forces acting upon the

two parts AQQ and SQQ', into which that section divides the mass,

will be to cause them to revolve about the nearest point Q' of its

intersection with the surface of the mass. And, this tendency being

wholly unopposed, motion will ensue. And so in the mass represented

(fig. 6.) the force p and with it the line of pressure pp' being given,

it appears that, being cut transversely as shewn in the figure, the mass

cannot be supported by any single force p if it extend beyond CD':

any such force must, to produce equilibrium, be applied at q; and

being applied there, the portion C'C"Z)"'iy will be wholly unsupported.
The line of pressure being continued cuts the planes of the sections

CD', CD', &c., without the surface of the mass.

Thus then it is a condition of the equilibrium, that the line of

pressure should intersect the plane of every section of the body within

its mass.

This condition will be satisfied if this line nowhere cut the surface

of the mass except at the points P and P. Fig. 2. Or if the equation

^F^z, F^z, « = 0,

RR Z
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found by eliminating the values of a; and y between the equation to

the surface and the equation to the line of pressure, involve only

such possible values of z as correspond to the points P and i*, where

the intersecting plane touches the surface, or to points where the line

of pressure touches it.

It is a further condition of the equilibrium that the line of pressure

should not cut any section of the mass, at an angle with the perpen-
dicular to that section greater than a certain given angle, dependant

upon the friction of the surfaces in contact, and having for its tangent
the coefficient of friction.

The resistance of surfaces is not exerted exclusively in the direction

of the normal, according to an hypothesis, which was probably in-

troduced into the theory of Statics in order to simplify the investi-

gations of those who originated that science, but which there seems

no reason for retaining any longer. It is exerted in an infinity of

different directions included within a certain angle to the normal, or

rather within the surface of a certain right cone, having the normal

for its axis and the point of resistance for its vertex. Any force,

however great, applied within this conical surface will be sustained

by the resistance of the surface of the mass—and no force however

small, without it.

Let R represent a single force on the resultant of any number of

forces applied to a fixed surface, and let R' and R" be the resolved

parts of R in the directions perpendicular and parallel to the surface.

Also let p be the inclination of R to the vertical, andf the coefficient

of friction. The friction of the surfaces in contact is therefore repre-

sented by fR, and motion will, or will not, ensue according as R" is

K"
greater or is not greater than /R'. Or, according as

-p,
is greater or

is not greater than f. Or, if y = tan
(p, according as tan p is, or is

not, greater than tan
(p,

or as p is greater or is not greater than
(p.



EQUILIBRIUM OF THE ARCH. 308

In the remainder of this paper the angle 0, or tan-'^ will be called

the limiting angle of resistance*.

From the above then it appears, that unless the tangent to the

line of pressure at the point where it cuts any section of the mass,

make with the perpendicular to the plane of that section an angle,

which is not greater than the limiting angle of resistance, the surfaces

there in contact will slip upon one another.

This condition may be expressed analytically as follows :

% = Ax + By + C

is the equation to the plane of any section of the mass, therefore

x-x^ = - Ai^-z), y-y,= -B {x-z),

are the equations to the perpendicular to that section. And the angles

which that perpendicular makes with the co-ordinate axes have for

their cosines

-A -B -1
VA^TW+\' VA' + B'+l' VA' + B' + l'

Also it appears from the given equations (3) to the resultant

force, or tangent to the line of pressure, that this line makes angles

with the co-ordinate axes which have for their cosines the quantities

M, M, Ms

Hence, therefore if / be the inclination of these lines to one

another,

* It is here supposed that the coefficient of friction f is constant for the saifie surfaces,

whatever be the force B! by which they are pressed together. This is usually assumed

to be the law of friction. It is only however an approximation to that law. The ex-

periments of Mr Rennie shew that f must be considered a function of R' increasing con-

tinually, but very slowly, up to the limits of abrasion.

:fs:.
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AM, + BM, + Ms
cos /= —

{{A' + B' + 1) {Mr' + Mi + Mi)}k
'

in which expression M^, M^, M^, and B, are known functions of A.

Now / must not exceed the limiting angle of resistance. Therefore

cos / must not be less than the cosine of that angle.

On the whole then we have these two conditions necessary to the

equilibrium of a mass intersected by a series of planes, under the cir-

cumstances supposed.

1. That the equation

-VF,%, F^z, » = 0,

shall involve no possible roots, except such as correspond to the ex-

tremities of the line of pressure, or to points where it touches the

surface of the mass.

2. That the fraction

AM, +BM, + Ms

shall for all values of A, corresponding to real sections of the mass,

be not less than the cosine of that arc, whose tangent is the coefficient

of friction.

The first of these conditions being satisfied, the parts of the mass

cannot turn upon one another. The second being satisfied, they can-

not slip upon one another.

We have supposed the whole of the forces impressed upon the

system to be known excepting the force P', which has been deter-

mined in terms of the rest. The force P' may be supplied by the

resistance of a point in a fixed surface, in which case the amount and

direction of that resistance will be known.
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If, however, there enter two or more resistances of surfaces among
the forces which compose the equilibrium, since the magnitudes of

these and also their directions may be any whatever, within the limits

imposed by the friction of the surfaces; the problem remains, in so

far as the known conditions of equilibrium are concerned, indeterminate,

and recourse must be had for its solution to other principles.

7. Suppose the mass AJS to be acted upon by any number of forces

among which is the force P being the resultant of certain resistances,

supplied by different points in a surface Sb, common to the inter-

sected mass and to an immoveable obstacle SC.

Now it is clear that under these circumstances we may vary the

force P', both as to its amount, direction, and point of application,

without disturbing the equilibrium, provided only the form and

direction of the line of pressure continue to satisfy the conditions im-

posed by the equilibrium of the system.

These are manifestly, that it no where cut the surface of the mass,

except at P" and within the space JSb, and that it no where cut a

section of the mass or the common surface of the mass and obstacle,

at any angle with the perpendicular greater than the limiting angle
of resistance. "

Thus, varying the force P', we may destroy the equilibrium, either,

first, by causing the line of pressure to take a direction without the

limits prescribed by the resistance of the section through which it

passes ; or, secondly, by causing the point P to fall without the surface

Bb, in which case no resistance can be opposed to the resultant force

acting in that point ; or, thirdly, the point P lying within the surface

Bb, we may destroy the equilibrium by causing the line of pressure

to cut the surface of the mass somewhere between that point and P'.

Let us suppose the limits of the variation of P' within which the

first two conditions are satisfied, to be known
;
and varying it, within

those limits, let us consider what may be its least and greatest values
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so as to satisfy the third condition ; and where, and in what direction

they must be applied.

In the first place it will be observed, that by diminishing the force

P', its direction and point of application remaining the same, the line

of pressure is made continually to assume more nearly that direction

which it would have, if P' were entirely removed.

Provided then, that if P were thus removed, the line of pressure

would cut the surface, that is, provided the force P' be necessary to

the equilibrium ; it follows that by diminishing it, we may vary the

direction and curvature of the line of pressure until we at length make
it touch some point or other in the surface of the mass.

And this is the limit; for if the diminution be carried further, it

will cut the surface, and the equilibrium will be destroyed. It ap-

pears then that under the circumstances supposed, when P' acting at

a given point and in a given direction, is the least possible, the line

of pressure touches the surface of the mass.

In the same manner it may be shewn, that when it is the greatest

possible, the line of pressure touches the surface of the mass.

Now by varying the direction and point of application of P', as

well as its amount, this contact may be made to take place in infinite

variety of different points, and each such variety supplies a new value

of P', producing the required contact. Among these, therefore, it

remains to seek the absolute maximum and minimum values of that

force.

To express these conditions analytically, let Xi, y^, z.^ represent the

co-ordinates of a point where the line of pressure touches the surface

of the body.

Since the point x^, y^, & is common to the line of pressure and

to the surface of the body,

.-. -^Xty^Xi = 0, Xi = F%o, y.,
= F^x^.
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Also, since it touches the surface in the point ar^ysSSj;

dz-i id-^x-iyiZj
^^

\ dXi J

(d'^x^.yi%i\

dF,%., V dz, ) ^ ^
d%2 ld'^X2yi%i\

\ dyi I

Eliminating x.^, y^, z.^ among these Jive equations two relations are

established between the force P'*, the co-ordinates of its point of ap-

plication, and the angles which fix its direction (see Art. 4) ; by elimi-

nation between which a further relation is established between six of

these seven quantities, and, finally, by the equations of condition

COS^ a + COS^ /3 + COS* 7=1.

a relation is obtained between four of them.

Thus then we may obtain the value of P' in terms of three of

the quantities x^, y^, s, ; a, /3, 7.

Its maximum and minimum values are then at once determined by
the known conditions of the maxima and minima of functions of

three variables.

8. It is evident that the minimum value of P', being that which

just counteracts the tendency of the mass to revolve about the point

where the line of pressure touches its surface, is also precisely that

force which would be exerted there by another equal and similar mass,

acted upon by equal forces, under the same circumstances, but placed
in a contrary position, so that its line of pressure shall have, at P,
a common tangent with the line of pressure of the first mass.

* The line of pressure is here supposed to commence at P', and the force P" to enter

among the other forces which determine its equation.

Vol. V. Part III. S s
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Two masses, therefore, thus placed together would remain in equi-

librium, without the aid of any external force, and by reason only of

their mutual pressures and the resistance of their abutments.

It is also evident that since the line of pressure is similarly situated

in both, they cannot be thus placed together so that their lines of

pressure may meet and have a common tangent at the point where

they meet, unless both lines of pressure be perpendicular to the com-

mon surface at that point.

This condition throws two new equations into the system, and de-

termines the value of P' in terms of a single variable.

The value of P' is not in this case that which we have called

the absolute minimum or minimum minimorum, but simply the greatest

or least force, which applied at a given point, in a given direction will

support the system.

If however instead of a single point of contact we suppose the

masses to be in contact throughout the whole surfaces of two planes,

it is evident that the point P' * will take up for itself that position,

which we have supposed to correspond with the absolute minimum ;

a condition to which the form of the line of pressure, and the

position of its point of contact with the surface of the mass, will also

be subjected.

Hence it appears that two masses, thus in contact throughout the

surfaces of two planes, sustain a less aggregate of pressure, on their

common surface of contact, than two similar masses in contact only

by a single point, unless that point, and the position of the masses,

be such as to correspond to the minimum minimorum.

In the preceding pages we have supposed the form of the solid

to be given, together with the positions of the different sections

made through it, and we have thence deduced the form of its line

of pressure and the direction of that line through its mass.

. ?;* The point P is here the point of application of the resultant of the resistances on

the different points of either plane. .:iorte«pi sJi -^..rnaHb

..H .Ui T
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It is manifest that the converse of this operation is possible.

9. Having given the form and position of the line of pressure, and

the positions of the different sections to be made through the mass, we

may, for instance, enquire what form these conditions impose upon the

surface which bounds it.

Or we may make the direction of the line of pressure and the

form of the bounding surface subject to certain conditions not abso-

lutely determining either. '"* t'^ oxi'>»^i'« inn ouJ ifion

For instance, if we suppose the form of the intrados of an arch to

be given, and the direction of the intersecting plane to be always per-

pendicular to it, and if we suppose the line of pressure to intersect this

plane always at the same given angle with the perpendicular to it,

so that the tendency of the pressure to thrust each from its place may
be the same,—we may determine what under these circumstances must
be the extrados of the arch. ,''^'^",'

'"'^

If this angle equal constantly the limiting angle of resistance, the

arch is in a state bordering upon motion, each voussoir being upon
the point of slipping downwards or upwards, according as the constant

angle is measured above or below the perpendicular to the surface of

the voussoir.

The systems of voussoirs which satisfy these two conditions are the

greatest and least possible.

If the constant angle be zero, the line of pressure being every-
where perpendicular to the joints of the voussoirs, the arch would

stand even if there were no friction of their surfaces.

It is then technically said to be equilibrated. It is impossible to

conceive any arrangement of the parts of an arch by which its stabi-

lity can be more effectually secured*.

10. The theory stated above readily explains the phenomena ob-

served in the settlement and fall of the arch.

* The great arches of late years erected by Mr Rennie, in this country, have for the

most part been so loaded as very nearly to satisfy this condition.

ss 2
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Thus let ABS" (fig. 3) represent an arch having the joints of its

voussoirs perpendicular to the intrados as they are usually made.

Let RQPQR' be the line of pressure, touching the intrados in the

points Q and Q'. It is manifest that this curve is then perpendicular

to the joints of the voussoirs at Q and Q, and inclined in respect to

those above and below these points. The inclination being downwards,

or towards the intrados, in reference to the former, and upwards, or

from the intrados, in reference to the latter.

Hence, therefore, it appears that the tendency of the pressure is

to cause all the voussoirs above the points Q and Q' to slide down-

wards, and those beneath those points, upwards.

And that these effects may be expected to follow the striking of

the centre of the arch ; the weight being then suddenly thrown upon
the voussoirs, and these admitting of a certain degree of motion in

the directions of the forces impressed upon them.

Now this is precisely what was observed at the bridge of Nogent,
of the construction of which Perronet has left a detailed account.

Three straight lines were drawn upon the face of the arch before

the striking of the centre, shewn in the figure 4, by the polygon

nmm'n', mm' being horizontal, and the other two mn and m'n' stretch-

ing from the extremities of mm' towards the springing of the arch.

After the centre had been struck, the lines were observed to have

assumed the curved forms indicated by the dotted lines MM', MN',

M'N', indicating, in accordance with the theory, a downward motion

in all the voussoirs above Q and Q', and an upward motion in those

beneath those points.

These observations have been confirmed by numerous others, and

especially by those (made also by Perronet) at the Pont de Neuilly.

The sinking of the voussoirs at the crown necessarily tends to pro-

duce a separation of their joints at the intrados in the neighbourhood
of that point, and thus to cause the actual contact of the key and

adjacent voussoirs to take place only at their superior edges.
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If therefore the settlement be considerable, we may conclude that

the line of pressure touches the extrados at the crown, and for

some distance on either side of it. The material of the arch may
therefore be expected to yield more particularly about that point and

the points Q and Q' than any other; a great proportion of the

pressure being there thrown upon the edges of the voussoirs.

11. If by reason of such yielding, or from any other alteration in

the forces impressed upon the mass, or in the circumstances of their ap-

plication, the form of the line of pressure be altered, it may manifestly
be expected to intersect the surface of the mass first about those points;

the least possible alteration of form being there sufficient to produce
the intersection. And this being the case, the portion of the arch above

Q and Q' must separate into two portions, revolving at those points
about the lower portions of the arch (see fig. 5) and at A, upon the

extremities of one another.

Nevertheless this revolution is manifestly impossible unless the

points Q and Q yield outwards. And this can only take place by
the yielding of the material at Q and Q', by the slipping back of

the voussoirs there, or by the portions of the arch or its abutments

beneath those points revolving outwards, in consequence of the inter-

section of the extrados by the extremities QR and QR' of the line

of pressure (fig. 3).

The last is in point of fact the cause which leads, in the great

majority of cases, to the fall of the arch.

The extremity R of the line of pressure is made to cut the

extrados of the arch, or the outer surface of the pier, by the

diminution or removal of some force which acted there in opposition

to the tendency of the arch to spread itself, and which kept the

direction of the line of pressure within its mass,—the resistance of

a mass of earth for instance, or the opposite thrust of some other

arch springing from the same pier or abutment.

On the whole, then, it appears that in the commencement of its

fall the arch will divide itself into six distinct portions, of which four
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will revolve about the points S, S', Q, Q' and A, as represented in

the figure 5. Now this is what is uniformly observed to take place

in the fall of the arch.

12. Gauthey, having occasion to "destroy a bridge, caused one of its

arches to be insulated from the rest; and the adhesion of the cement

being sufficient to counteract the tendency of the pressure to rupture

the piers, he caused them to be cut across. The whole then at once

fell, the falling portion separating itself into four parts. Having con-

structed small arches of soft stone, and without cement he loaded them

until they fell. Their fall was always observed to be attended with the

same circumstances. Before the arch finally yielded the stone also was

observed to chip at the intrados about the points Q and Q', round

which the upper portions of it finally revolved.

Some experiments made by Professor Robinson with chalk models

were attended with slightly different results. Having loaded them at

the crown until they fell, he observed first, that the points where

the material began to yield were not precisely those where the rupture

finally took place.

This fact presents a remarkable confirmation of the theory expounded
in this paper.

It is manifest, that according to that theory, with any variation

in the least force P', which would support the semi-arch if applied

at its crown, there will be a corresponding change in the position of

the point Q.

Now as the load upon the crown is increased, this least force P'

is manifestly increased. The result is a corresponding variation in the

• form of the line of pressure, tending to carry its point of contact

with the intrados lower down upon the arch.

This is precisely what Professor Robinson observed. The arch

began to chip at a point about half way between the crown and the

point where the rupture finally took place.
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The existence of the points Q and Q', about which the two upper

portions of the arch have a tendency to turn, and about which the

material is first observed to yield, has long been known to practical

men. The French engineers have named these points the points of

rupture of the arch ; and the determination of their position by a

tentative method forms an important feature in the very unsatisfactory

theory which they have applied to this important branch of Statics.

13. The theory of the equilibrium of the groin and that of the

dome are precisely analogous to the theory of the arch.

In the former case a mass springs from a small abutment spread-

ing itself out symmetrically with regard to' a vertical plane passing

through the centre of its abutment. It is in fact nothing more than

an arch, whose voussoirs vary as well in breadth as in depth. The

centres of gravity of the different elementary voussoirs of this mass

lie all in its plane of symmetry. Its line of pressure is therefore in

that plane, and its theory is embraced in that which has been already

laid down.

Four groins commonly spring from one abutment
; each opposite

pair being addossed, and each adjacent pair uniting their margins.

They thus lend one another mutual support, partake in the properties

of a dome, and form a continued covering.

The groined arch is of all arches the most stable ; and could ma-

terials be found of sufficient strength to form its abutment and the

parts about its springing, it might be safely built of any required

degree of flatness, and spaces of enormous dimensions might readily

be covered by it.

It is remarkable that modern builders, whilst they have erected the

common arch on a scale of magnitude nearly approaching perhaps the

limits to which it can be safely carried, have been remarkably timid

in the use of the groin.

H. MOSELEY.
King's College, London,

Ocl<^er 9, 1833.
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INTRODUCTION.

In the two preceding Memoirs on the Inverse Method of Definite

Integrals, the limits of integration had been fixed throughout at and

1, but in the sixth Section, which is the first of the present Memoir,
the integrations terminated by arbitrary limits are fully considered; and

when performed with respect to any function of the independant vari-

able, the proper methods for discovering reciprocal functions are given,

and it is remarkable that the forms thus obtained for the trigonome-
trical functions, for Laplace's and an infinite variety of other reciprocal

functions, are all similar, differing only by a constant.

In identities obtained between the »"" differential coefficient of a

function not containing n, and its expanded value, we may, generally,

by changing the sign of n, obtain a corresponding identity between

the ra"" successive integral and its expansion, abstracting from the ap-

pendage of integration which ought to contain ?« arbitrary constants ;

this property however extends also to certain reciprocal functions which

contain n ; and this consideration leads in the same section to the com-

plete resolution of Laplace's equation for the reciprocal functions of

one variable, which are the coefficients in the developement of the reci-

procal of the distance of two points; the w*"" coefficient when multiplied

by an arbitrary constant, satisfies that equation, as is well known, but

as the equation is of the second order, another function multiplied by
^ Vol. V. Part III. Tr
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an arbitrary constant must be also represented by the same equation,

this function, which is here found, is altogether different in its form and

properties from Laplace's coefficients.

The great class of reciprocal functions above alluded to possess the

remarkable property, that their integrals vanish between any of their

own maxima or minima values.

In this Section I have noticed some curious trigonometrical func-

tions of which the properties are very elegant, particularly as affording

simple means of representing by Definite Integrals the general differ-

ential coefficients of rational and integral functions ; another applica-

tion of trigonometrical functions is made, in representing the sum of

the divisors of any given number, by means of a Definite Integral.

The seventh Section is on Transient Functions. The way of forming

reciprocal functions by means of arbitrary coefficients, when the form of

the general term was given, has been shewn in the Second Memoir on

this subject. To this I have here added the method of finding the

functions which shall be reciprocal to any proposed one, and applied

the method to the cases where the given function is r, (log. t)", and

cos" {t) ; the reciprocal functions which thence resulted are transient, that

is, they have but a momentary existence between the limits of inte-

gration ; that existence is however sufficient to make their integrals

finite, and to endow them with remarkable properties. They are capa-

ble of representing the electrical state of a body when an electrical

spark is infinitely near, and about to form a part of the system ; they

are also capable of representing, under continuous forms, the state of a

body considered as composed of absolute mathematical centres of forces,

separated mutually by infinitesimal intervals.

The eighth and last Section is on the Resolution of Equations which

contain Definite Integrals; the first method for this purpose is to de-

compose the integrals into elements, and then determine the unknown

functions by elimination. This tedious process is useful in verifying

results otherwise obtained, and in giving numerical approximations in

the most difficult cases. Afterwards I have considered separately,
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Equations to Definite Integrals ; first, when they contain but one Defi-

nite Integral and one parameter ; second, when they contain two or

more Definite Integrals and as many parameters; third, Simultaneous

Equations ; fourth, Definite Integral Equations of superior orders and

degrees; besides which, the nature of the appendage analogous to the

arbitrary constant of integration is discussed in the same Section.

Throughout the whole of this Memoir, a considerable number of

examples, illustrative of the corresponding theories, are dispersed.

TT2
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SECTION VI.

Method of' discovering Reciprocal Functions when the integrations are per-

formed with respect to any Junction of the independant variable.

(l) When the limits of integration are arbitrary.

1. The investigations of reciprocal functions contained in the Second

Memoir on the Inverse Method of Definite Integrals, are founded on the

supposition that and 1 are always the limits of the independant

variable, but it is often of importance to possess reciprocal functions in

which the limits of integration are different from those quoted. The

principle by which this is most easily accomplished, is to suppose the

integrations performed relative to a function of the independant vari-

able, which must be so chosen, that when the values and 1 are

assigned to the independant variable, the corresponding values or the

function may be the proposed limits of integration.

2. Let Q„, R„, be functions of a variable (^), the limits of which

are arbitrary, as a and h, between which limits f^Q^Rm always must

vanish, except when the integers m and n are equal.

Suppose that a function of
<p,

as t, is found such that when ^ = a

t= 0, and when (p
= h, t=l, conditions which it is always easy to satisfy.

We may now conversely regard as a function of t, and then the

preceding integral becomes fiQ„Rm-jr, the limits being now reduced to

and 1. Suppose that -~ is separated into any two factors, X and X';

then since f,QnX x R,„\' = 0, except when 7n — n, it follows that Q„X,

R„\' are mutually reciprocal, and may therefore be found in an inde-

finite variety of modes by the principles explained in Section iv; and

dividing these functions respectively by X, X', and substituting in the

quotients the value of t expressed in terms of ^, the required functions

Q„, Rm will be obtained.
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If it be desired that Q„, R^ should be functions of the same

nature, differing only in the order expressed by m and n, that is

self-reciprocal, put \ =W = \/{-~\, and having found any kind of

self-reciprocal functions in which the limits are and 1, as for ex-

ample, the functions denoted by P,„, P„ in the preceding Memoirs, we
then obtain

3. If a function V can he determined so that the quantity

d°f(ttyV} dt^
dt" d0

may he of n dimensions in t, (where t' = 1 — t as in the former Memoirs),
this quantity will he a self-reciprocal function when the integrations are

performed relative to
(p.

Denote this quantity by Q„, and supposing m to be an integer

less than n, it is necessary to show that f,pQmQn — 0, or that

d''{{ttyn
^'^-

di"
-^'

the limits of t being and 1.

Now Q„ being of m dimensions in t, let its general term be re-

presented by Oj.f, where it is evident that p cannot exceed n — 1,

since m<n; the part of the preceding integral dependant on this term is

""'^'^
dv'
—

•

The latter integral may by partial integration be put in the form,

the last term being

and therefore the index of differentiation never becomes negative.
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The first term, and 'a fortiori', all the succeeding terms of this

series vanish between the limits ^=0, and t=\, or t' = 0, for

d''-'{{tt'rV} _rr d"-'{tt'Y ,,^ ^,dV (f-^tty
dt--'

~
dt^-'

^^ ' dt dt"-'

{n-l){n~2) dT d^-^itt'f ,
"^

1.2 dt' dt"-'
"^ '

the first term of this latter series contains a factor tt', the second a

factor {tt'f, &iC., and therefore the whole vanishes between limits.

The following exception to this theorem must however be attended

to; V must not he of the form {tt')".Vj, where r is equal to, or

greater than unity, for the above reasoning will not be applicable,

since then

d"-mtt'Yr\ _d'-'{{tty-^r,}
_i

dt"-^ dt'

which being expanded as above, will not vanish unless r be less than

unity.

4i. If a function V can he determined so that the quantity

d''f(ttrvi d0
at" dt

may he of n dimensions in t, then the factor hy which -^ is here

multiplied, will he a self-reciprocal function when the integrations are

performed relative to
cp.

Denote this coefficient by q„, then

r -r ^0 _ / <^" (tf'Y ^ d<t>

and as we may suppose m<n, the general term of qm-^, as a^t^

cannot be of greater dimensions than n — 1, and therefore the part of

the whole integral dependant on this term vanishes, as has been

shewn in the preceding article, hence f^qmq„
= 0, when m and n are

unequal.
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We must except, as before, from the application of this theorem

the case where V is of the form {tt')-\Vi, and r greater than, or

equal to unity.

5. If (f)
be any of the transcendants contained in the indefinite

integral jj (tt')", where m is between — 1 and + x exclusive, and if

^"~ 1.2.3...ndt"'^"^
'

then shall Qn be a self-reciprocal function for integrations relative to
<p.

For Q„ is evidently of the form —
~rp: ~TZ' ^'^d ^ is not

of the form excepted in Art. 3., since m is between —1 and + oo.

Moreover, by actual differentiation we get

1 .^.S-.-ndt"

where a, b, c, &c. are constant quantities.

Hence,
Q„= at"' ^btt'"-' +ctH"'-^ + kc.,

which is of m dimensions in t, and therefore all the conditions re-

quired in Art. 3. are here fulfilled; therefore Q„ is a self-reciprocal

function relative to
<p.

6. If (p
be any of the transcendants expressed by the indefinite

integral jj (tt')"", where m is between + 1 and — oo exclusive, and if

qn =-
d° (tt')°-

1.2.3....ndt'
n»

then is qn a self-reciprocal function relative to
(p.

d' (tfy V
For

§-„
is here of the form i

'—
, and V does not belong to

the excepted cases, moreover

# _ d'^.jtt'y-'"
^'' dt

~
\.2...ndt"-^^^^

is evidently of n dimensions in t, therefore all the conditions of

Art. 4. are here satisfied.
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7. For the purpose of convenience both in evaluating and using

reciprocal functions, the knowledge of the functions which they generate

is very useful. The generating function, for example, being the quan-

tity denoted by q^, Art. (6), the process for finding in this case the

function generated, will sufficiently exhibit the general principle, and

therefore it is now proposed tb sum the series q^ + q^h + q^k' + q^h^, &c.

Substituting for q„ its value given in the preceding article, and

representing the required sum by S we have

o /. 'V J. ditty-'" le d'itt'f-'" M dHtfy-'" , ,

But if we form the equation, u = t + ku (1 — u), and suppose y'(M) to

be the derived function from J'{u), we have generally

^^ r(«\-f'(A^h^it^^)-^A. *' d^{f'it).(ttj}

,_f^_ d?\f{t).{tty\+ 17273
•

df
*'''

which is obtained by differentiating the value of /(«) given by La-

grange's Theorem.

The preceding series coincide by supposing

f(f) = {ttf)-"'
= t-" il-t)"",

and therefore /'(«) = «"" (l-w)"" = j^-L

by the assumed equation.

(u-t)-'" du
Hence 5- = -^^ .

^^
.

Now the actual solution of the assumed quadratic equation gives

u =
2h , where R= {l-2h{l-2t) + h'}K

, B-l-\-h{l-2t) . du 1
whence u-t= ^ ,

and
-^

=
^i
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therefore S =
|/2

- 1 + A (1
-

2/)}
-"

R

Knowing thus the generated function S, we can conversely find q„ by

taking the coefficient of A" in the quantity S, and substituting for t

its value in terms of
<^.

An exactly similar process applied to the function Q„ of Art. (5),

woxild give

as the function generated,

and observing that

R'-{\-h{\-^t)\" ^ 4^h'tt',

this quantity may be transformed to

a III

^\R^\-h{\-^t)}-";

so that Q„ is the coefficient of h" in the expansion of this function.

8. From the theorems given in Arts. (5) and (6), we can determine

reciprocal functions relative to <p, which quantity may denote any
transcendant contained in the formula Jt{tt'y, from m—-<xi to »« = + x ;

circular arcs are amongst these transcendants, namely, when m = —
^,

and since both theorems are true simultaneously, when m is between

— 1 and + 1, we shall get in this instance the two species of circular

self-reciprocal functions, namely, the sines and cosines of the multiples

of the simple arc.

I. To evaluate Q„ when «/ = —
i-

For the variable with respect to which the integrations must be

performed, we have

^ = jXtty^ =
l^y^r^

-= COS- (1-2^),

neglecting the constant which is unimportant.
Vol. V. Part III. Uu
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By Art. (7),

2-4
Q„ = coefficient of Jf in -^ {^+ 1 - A (1-2^)}^,

in which R represents |1
— 2// (1

-
2/) + /i'}*.

Putting for t its value in terms of 0, we obtain

J? = {1-2/i cos^ + /i^}-i
=

(l-Ae*^^)i.(l-//e-'''^^)^^

and l-/i(l-2it) = l-/4cos0 = 1(1 -Ae*^^) + ^ (1 -//e"*^^).

Hence, ^ + 1 -/i (1
-

2/f)
= |{(l-^e*^^)^ + (1 -//e-*^^)-^'';

therefore, Q„ = coefficient of /r in x
.

Jj

"
^t-v-!!-^4' "r'^^!

= ^ coefficient of A" in (l-/<e*^^)-* + (1
—
Ae-*^'^)-*

= c c . cos n<p]

13 5 (2« — 1)
where c = ' ' '"^ ^

, the limits of ^ are and w.
2.4.6... 2ra

II. To evaluate q„ when y« = — i.

As above, we have (p
= eos"' (1

—
2t),

and q„
= coefficient of h" in

^-^ . {^- 1 +/< (1
—

2/)}''.

But i? - 1 + /. (1
- 20 = i p-^;!:l'^>' - (i::.^-_:!:^^)H'^ .

I V -1 V-l j

-. q„
= ^ coefficient of /«"

+ ' in

\/-i V-i

c —
.

= c sin (1 + n) (p,* v — 1

, 1.3.5...(2m + 1)
^^^••^ ^' =

2.4.6.(2;^4-2)
'
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9. But whatever may be the value of m, the quantities Q„, q„ may
always be simply expressed in terms of t by the theorem of T^eibnitz,

viz.

d"(uv)_ cV'v clu d'"^v 7i.{n — l) dHi^
f/"'^ v

after {yiplying which we may substitute for t its value in terms of
(p.

Thus when m= — ^

1.3.5....(2«-1) n 2n-l
2.4.6....2W ^' ~1- 1

"

•

'

J. n{n-l) {2n-l){2n-3) , ,„_, _ „ .

_ 1 .3.5.. ..{2n - 1) , 2n{2n-l)-"
2.4.6... .2» ^^ 1.2

"

, 2^(2?^-l)(2>^-2)(2«-3) ,,^,„., .

"^
1.2.3.4

^^ "^''•^

•^ 2.4.D....2ra ^ ' ' ^

and in the same way we have

d''(tt'Y*i
^"~ rr2. 3. ...«<//"

_ 3.5.7....(2» + l) » 2;» + l~
2.4.6....2« ^^^ 1- 3

^' "

w(w-l) (2w + l)(2«-l) 5, 3 „ ,

= I 3.5.7.--.(2?? + l) , ^--- . ^ ,—
i /.h2»+2)

2V"=l"2.4.6....(2« + 2)
^^^ +^^^) -(^ _V-1#0 \,

uu2
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and passing to the variable
cp,

since 1 — 2^=cos^; therefore ^= sin —
id

and /' = cos-^, whence #'^ +\/ — 1 #* = cos^ + \/ — 1 sin^ by substi-
2 2

~"
2 -^

tuting which we obtain

„ 1.3.5....(2w-l) ,

^'-^
2.4.6....2/. •^"^^'^'

1.3.5....(2«4-J) .
, ,, ^

'?''=2:476::::(2¥T2)-''"^''^'^-'^'

which values are the same with those in Art. 8.

The numerical coefficients in these formuhe may be rejected as having
no importance in self-reciprocal functions ; it is also observable that q„

contains a different multiple arc from that in Q„, the reason of which

is that Q„, <7„
are to be self-reciprocal functions for all entire values

of n from to + oo, and then
f,j,q„q,n

= except when 7i= »i, this ex-

ception (on which the main value of reciprocal functions depends) would

not hold universally true if q„ were of the form sin(«0), for then
5-0
= 0,

and therefore f^qo.qo=f> contrary to the principle of the exception,

but in the form above found this irregularity does not occur.

10. From the results found in Art. 9, it follows that if we put

the real functions Q„, q„ possess a common property, viz.

except when m = n, which exception does not apply to the last integral

when m = ?i = 0.

From the same results the following identities are obtained :

, ff'^*!T\. 1. («')^
= cos {n cos-' (1-20}

1.3.5....(2tt-l)</^"
^ ' ' \ Ji

(» + l)2''+'rf"(«T^ •

J/ , -,. w, o*\\

i-3-^i-^^^-^,,
=sm U« + 1) cos

'

(1 -20}.
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We shall now consider whether analogous formulee hold true for negative
values of n the index of differentiation.

Generally if u and v be functions of t and fi'u denote the w"' suc-

cessive integral of ti, then

for if we take the w* differential coefficient of each term in this series,

all the terms resulting mutually destroy each other except the first

term tiv.

Putting u-=t'-"-^, v = t""-^, and rejecting the constants of integration
in the latter, we have

also — - ^^L±lt'--l, ^ - (2« + l)(2« + 3) .,_„_!
»

Hence fiitf)'"-^

(-2)"(^0-- (.,-.
n 2«+l ,_^_, n{n-l) (2^+l)(2« + 3) „_ „ „

,=

i.3.5....(2«-i)^^ "i-~T~-^ ^+-r¥-- Ts ^ ^-^^-'^

«r
^327

•

dt-'^
^^^ >

= cos {mcos-' (1
—

2^)^,

the appendage which contains all the arbitrary constants being

{^o+ ^it+ ^.f+...A„_J"-'\ . {tt')K
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Dividing the last equation by {tty, and integrating witt respect

to t, we get

1.3.5...(2w-l) d-'^^-'iffy-i 1 . c i/i o.M
7
—

x;
—^

• TT
—

1
= - Sin \ncos-Ul-2t)}.

Putting » = ???- 1 , we get

, ,, 1.3.b...(2m-S) <?-"(«')
-'" +

-i
. <,, , ,,, ^,,

('"-1) •

{-2)'"-'
•

dt^
"''" {(i-»i) cos-' (l-2t)},

thus are obtained the corresponding formulae for negative indices.

11. The two series of reciprocal functions arising from the theorems

in Arts. 5. and 6., differ essentially, only in reference to the inde-

pendant variable of integration, for in Art. 5., ni may be any quantity
between —1, and +x, and in Art. 6. any quantity between +1 and
— 00

; change in the latter theorem m into — m, and the limits of w
Avill then be the same in both ; for distinctness, also let 6 be used

instead of
(p

in the value of
§'„.

d" itt'Y*'"
Hence, Q^=

i ^.s.'.ndf ^*^'^'""' ^"'^
<t>
=

!^itfY,

d" (ttY'^"

^- lALndt" ^ ^"d ^ = ;(«')-'".

Now the reciprocal functions of Art. 5., give the equation

UQnQn=0, or feQM,. ^=0.

But ^ =(«')", and ^ =(«')-'" ; therefore ^ =
(«7'».

Hence, feQAtt'Y ^ QAtt'Y = 0.

And since QAtt'T = qn, and QAtt'y = q„; it follows that UQnQn' is

equivalent to [dq„qn; the only difference being with respect to the

variables
(f>

and 9 employed for integration.
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If in the formulEe of Arts. 5. and 6., we assign to m all possible

values between —1 and 4-1, we obtain two series of self-reciprocal

functions, which when m = become identical with each other, and

with the functions denominated P„ in the preceding memoirs. For

every other value of m between those limits, there are two different

kinds of reciprocal functions, one of which only is a rational and entire

function of t, for instance when m= —\, we have found the functions

cos n(p and sin {7i+ l)<p, the former of which only is a rational fvmc-

tion of cos
<p.

12. (1.) W/ien m= -i-

To determine cp in this case, make sin 9 = ii — / ', squaring and ob-

serving that t + f' = l, we get sin^ 6 = 1 -2 {tt')K whence »

/i + ?;'i = V^(2
- sin- 0), and 2'\tty = cose.

Differentiate the assumed equation, and we get

^os ^ = a ^**'\\ • ~7^ '
therefore —-^ . -r^

= 2 cos . -7 ;i 5

2 {tty
•

cie'
^"-'-—

^tt')i d0~ ti + t'i

hence, (p
= 2E {e)-F(d).

The extreme values of the amplitude of these elliptic functions

being
— -, and + -; the limits of ^ are 0, and 4:Ei — 2JF\, where

El and Ei denote the complete functions when the amplitude extends

from zero to a right angle.

The reciprocal functions for integrations relative to
(p,

are

_>3.7.11...(4?i-l)Q,= 4.8.12 4.W

4n{^n-l) 4n{4>n-l)(in-i){4u-5) „ ,

^* sTi
* ^^

3.4.7.8
^ (,^^-U



330 Mb MURPHYs THIRD MEMOIR ON THE

5.913...(4« + 1)
q. 4.8.12 4«

, (,0J {t--
(4>^ + l)-4^,.-.,^ (4. +

l).4^».^(4«-3)(4»-4)
^,„.,^, ^^^^

(2.) When m= — 1.

In this case
<?„
=

1.2.3...,,^^,

and
<^
= j;(«')-'=h.l.

(I).

Hence, ^
= e*, ^

= 1 + e* ;

therefore

_(«+ l)_ ^^ ^+1 nin-X) {n^\){n) ^_^ ,

9»
(1 + £</>)»+'=

»^ 1- 2
-^ ^

1.2 2.3
"^ '^'^^'

where the limits of ^ are — « and + w .

13. To express the functions Q^ and qn z« terms of t alone.

By Art. 6., we have

^'~ 1.2.3...ndf

= (w-?»)(w-OT-l)...(l-OT) _ „_ 71 n-m
1 .2.3...W

v ; •
J

j^

.

^ _^

«j^_l) (/^-m)(«->»-l) ,^
1.2

•

(l-»»)(2-»/)
^ ^>&c.}.



INVERSE METHOD OF DEFINITE INTEGRALS. 331

Suppose 1- 1 substituted for t' in each term between the brackets,

then expanding each, the coefficient of t" in the whole will be

n{n-'l)...{n-r + l) , ^y t-. , „ »-"^
,
r(r-l) {n~m){n-m-l) , ,_ ,

1.2...r "^ ^^ ^^^^l-m^ 1.2
'

{l-m){2-m)
^^^'^

«(«-!). ..(M-r+l).(-l)' (^„-„ d't'-'" d.f-'" </'->. r-"

1.2...rx{l-tn) (2-m)...{r-m)
'^ dt' dp

'

dt'-'

r.(r-\) d^ . t"-" d'-' . p-'"
^

1.2
•

dt^ '~dF^' ^^•^'

when t is put equal to unity after the differentiations.

But by the theorem of Leibnitz, the part within the latter

brackets is equivalent to

fjr fr+n—2m—
-^-
— =(n-2m + l) (n-2m + 2)...{n— 2m + r).t"-'"",

hence, the required coefficient of

,_,_., «(»- l)...{n-r+l) {n-2m+ 1) {n — 2m + 2)...{n
— 2m + r)

~^ '' 1.2...r
^

il-m) (2-m)...(r-m)

Henpe,

« _ (»-ffi)(n-m-l)...il-m) . . , n n-2m+l
7"- 1.2.3...n ^'~^' ^^~T' l-m '^

n(n-l) (n-2m-\- 1) (n - 2m + 2) ^ , ,

"^
1.2

•

{l-'tn)i2-m)
* > ^<^'h

Again, by Art. 5.,

_ d"(ttT'"^"-
l.2...ndf-^^^'

(n + vi) (n + m—l)...(l+m) j^,„ n n+m ,„_,

1.2...n *
1 1+m

t'"-' t

,
n.jn-X) (n + m) (n + m -I) ^„.,^, \_,

"*
1.2

•

(l+m)(2 + m)
' ^'^^.j,

Vol. V. Part III. Xx
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the reduction of which to the powers of t is effected as before, putting

— m for m, whence

(w + ot) (w + m-l)...(l +»?) (
n n + 2m + l

^"~
1.2...ra

^ 1* 1+m

When j» = 0,

« o 1
** " + i M«:il) (w + i)(w + 2)

which is the same as the value of P„, Sect. ii. Art. 2.

When m= —
2̂

and t = sin^
2̂

{(w + ly-l^{(>^ + ly-2-} _,^.^,0
2.3.4.5

Q»=2.4 2n •il-1.2'^
''"

2
+ 1.2.3.4

-^ ''"
2 *'''-^-

14. To express the quantities Q„, q„ by means of a differential

equation.

Suppose /{t) is a function of #, subject to the condition

t(l-i) ./"it) + (»»+ 1) (1-20 ./' (0 + « • (« + 2/»+ 1) ./{t)
= 0,

where /"(^ denotes the second, and /'(^) the first differential co-

efficient of f{t) relatively to t ; differentiating this equation, we get

t{l-t) .f"{t) + (»« + 2) (1
- 2^ ./"(/) + (»- 1) (« + 2»? + 2) ./' (^)

= 0,

^ (1 -0 ./"" {t) + (w + 3) (1
- 20 ./'" (0 + («

-
2) (W + 2»« + 3) ./" {t)

= 0,

and generally,

/(i-0/""^'no+('»+^-i)(i-20-/""'^'"'MO+(^-^+2)(«+2/»+r-i)./"'<'-»(0=o.
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Put # = in all these equations successively, thence we have

{m + l)./'{0) =-n.{n + 2m+ l).f{0),

(m + 2) ./" (0)
=- in~l){n + 2m + 2) ,/' (0),

m + 3 ./'" (0)
= -

(ra
-

2) . (« + 2w + 3) ./(O),

&e.

it follows from this by Maclaurin's Theorem, that the preceding equa-
tion will be satisfied, as a particular solution, by taking

^•/^v ^/«v(i ^ n + 2m+l .n.{n-\) (w + 2w^ + 1) (w + 2>» + 2) ., ,
.

./(0=/(0){l-i.-i-^^-.^
+^^. (i + ^).(2 + «.)

^ ^^-&c-}»

and ,/(0) being arbitrary if we put it equal to

(1 + m) (2 + w<) (3 + ?») (n + m)
i '. 2 ; 3 TTTT^ n '

this value oi f{t) will become the same as the value found for Q„ in

the preceding article
; hence, replacing \ — thy its equal t', we get

(«')^ + (« + 1) (1-2^) .^ + « . (w + 2m + 1) . Q„ = 0.

But if in the value of /{() we change the sign of m, putting

... _ (l-m)(2-?w) {n-m)
'^^"^~ 1.2 n '

then y*(#) becomes equivalent to q„ {tt')" ; and if we put this for y (#)

in the first supposed equation, and divide the result by {tf)"', we get

{ti')^
+ im +

l){l-2t).^+{n+l){n-2m).q„
= 0.

(2) Particular inferences resulting from the preceding theory.

15. Denoting as before by <f>
the" indefinite integral fi(tt')'", and

putting

xxS
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then assigning to m all possible values from — oc to +00, the functions

Q». qn will give an infinite series of reciprocal functions relative to all

the transcendants contained in ^ considered as the variable of integra-

tion ; and when m is between - 1 and + 1, pairs of reciprocal functions

will be obtained, except when ?»= 0, when both coincide.

In this series are included the trigonometrical functions, namely,
when m-= —\'., and Laplace's functions, when /« = 0.

In all the reciprocal functions thus arising, there exists one common

property, namely, the definite integral always vanishes between the

limits which make the functions themselves maxima and minima; this

remarkable property I have had occasion in another place to notice, in

the particular case of Laplace's functions.*

To prove this generally take the equations of the preceding article,

viz.

/#'^ + (»» + l)(l-20.-^''
+ «(w + 2»« + l)Q„ = 0,

«'^ + (?» + l)(l-20•-^+(« + l)(w-2»^)9„ = O.

Multiply both equations by {tiy, and integrate reserving the con-

stants under the integral sign ; hence,

{tt'Y^^^ + « (« + 2m + 1) j: Q„ (tty = 0,

'

(^0'""''-^+ (« + l)(«-2»^)/,^„ («')"*
= 0;

and changing the independant variable by the condition
7;r =(^^')"'"» we

have

(«')""+^^
+ w (« + 2/» + 1) 4 Q„ = 0,

(<0*"*'^ + (» + 1) (»«
-

2»w) /^ ^„
= 0.

Electricity, Introduction.
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But when Q„, q„ are maxima and minima, -^ and -^ respectively

vanish ; therefore, between the corresponding limits of
(p,

we must have

U Q» = 0, f^qn
= 0, which general property is easily verified when

Q„ = «cos«0 and q„
= a sin {n + 1) (p.

16. To find the complete integral of the differential equation

tt' ,

-^-^
+ (m + 1) (1

-
2t)^ + n (n + 2m + 1) tr =s 0,

where n is integer and m any constant.

The differential equation for Q„ (Art. 15.) is of the same form as

the above equation, and therefore u=cQ„ is a particular solution, c

being an arbitrary constant.

The form of the differential equation for q„ will become the same

as that of the given equation, if —
(w + 1) be written instead of n in

the former; hence, another particular solution is c'q-^„+^y

The complete solution is therefore

u = cQ„ + c'q.^„+iy

This solution fails first when m = 0, for then the functions Q„,

5'-(«+i)
in their expanded forms become both identical with Laplace's func-

tion P„, and consequently the two constants c, c' merge into only one,

viz. their sum ; but if we put generally

b ,
, b

c = a -\
— and c =

,m m

then M=«Q„ + &.
^"~ ^-'"^'

m

And putting m = 0, the latter term becomes a vanishing fraction, and

therefore,

u = aP, + ^^{Qn- S'-(«4.i)} when m =0.
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The term by which b is here multiplied, is the coefficient of m in

Qn-q-i,„^^), which is easily found from the expansions in Art. 13; hence,

n{n-\) (« + ])(w + 2) r 1 1 I 1 1 Ux,.

The general solution also fails when m is an integer, for then some
of the terms in the expansion of Q„ or g-.^+u will become infinite, and

the principle of vanishing fractions will simply enough in this case

also be applicable in determining the complete solution
; but if we put

for Q„, q„ their differential forms, the solution will never fail, for the

failures arise from the entrance of logarithms into the result, and these

will actually enter in the latter forms; changing our constants, the

complete solution for all cases is

it is therefore necessary to shew that the functions by which the ar-

bitrary constants are multiplied, are particular solutions.

Putting v-itty-"^, then -t- =(» + »») (1-2^) («')"+""-',

and -^ =(m + »?) {n +m -
1) (1

- 2tf («')"+'"-^- 2 (?< +«?) {tt'f *''-'.

Hence tt'.-^ -{n + m—\){l-2f) -r.-\-2{n-\-m) .v-0,

and by successive differentiations the following equations arise:

(«').^-(« +
'«-2)(l-20.^+2(2« + 2«^-l)^=0,

(«')f^-(» +^«-3)(l-20.^+2(3« + 3»e-3)g=0.
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and the law of the successive formation of these equations being very

simple, we have generally

(„.,^-(»+».-*-i)(.-.o^>.{(*+i)(»+»)-*i*±L>}.g=o.

Put k = n, hence

d"v
Transpose n(n + 2m + l)-j—,

and multiply by {tt')-", hence

from which it follows that M = (it')"" .d".
'

satisfies the equation of

Art. 16.

dv'
Again put «j' = («')"'"*'"^^ or tt' -j- +(n + m + l)(l-2t)v=0, and by

successive integrations we obtain

tt' . v' + (n + m) (1 -2t) ftv' + 2 (n -\-m) ft'v =0,

tt' . ftv' + {n +m-l) (1 -2t) .
ft'

v -\-2(2n + 2m- 1) J^'v;
= 0,

and generally
*

tt' ft*-'v'+ {n +m-k + l){l-2t) ft'v' + 2h{n + m) - ^ '^^~^^
\ . ft"-' v==0.

Put k = n, hence

tt' fr' V + (m + 1) {1 -2t) .

ft"
v' + 91 (n + 2m + 1) . ft"*' v' =

;

from which it appears that m =
jJ" +*(»') is also a particular solution, and

therefore the complete solution of the general equation is
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Laplace's equation occurs when we put m = 0, and therefore

the first term alone of which is the type of Laplace's functions, the

equation is therefore more general than the functions it was used to

designate.

The term ^"+' («')-<"+"'+') gives n + 1 constants of integration which
enter as coefficients of the appendage which is a rational function of

n dimensions, but this must be rejected, since the constants must be

determined so that the rational function of n dimensions may satisfy
the given equation, and this only identifies the appendage with the

d' ift'Y^"'
other term in u, viz. aitf)""— , /— .

17. To find explicitly the omitted part of the complete integral in

Laplace's equation.

The general equation of Art. 16. becomes in this instance

and the complete solution is

u =
a^^^^+bfr'{tt')-^'-'\

the first term being Laplace's function, and the second the transcendant,

it is required to find explicitly.

Let a, /3 be any arbitrary quantities, then we have

dar\t-a' fi-a)
~
^-a da^\t-a)^'^da\fi-a] da'-'\t-al

n{n-l) d^ / 1 X d'-^ / 1 N
^

1.2 Ma'[(i-a) da"''[t-a)'
^'
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hence

^-/ 1
I

+ 1 I_ \«-a)(/3-a)| ^ 1 r 1 W +

,

(n +mn + 2) 1 L_ + &cl
(« + !)(« + 2)

Commuting in this equation the quantities a and /3, we have

(» + !)(» + 2) 1 1

,., '^"{(f-/3)(a-/3)} _ 1
r

.

^ ^ +11 1

(» + l)U + 2) 1 1 1

1.2 {a-(iy{t^(iy^ ^^j

If both equations be added observing that

1 1
+

(#-a)(/3-a)
^

(/-/3)(«-/3) {t-a){^-t)'

the sum of the left-hand members

fpn £

1^2'.3^...M'«?a"C?/3"

rf".-^ ef-.
^

^_1)„^
^-« /3-^

1.2.3...wrfa"' 1 .2.3...W6?/3"

1 1

Vol. V. Part III. Yy
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Hence, we get the general identity,

1 1

K^-«)(/3-^)l"^' (/3-ar'

i 1 ,^ +11 1 (n + l){n + 2) 1 _JL_&cl
(^-ar'

"^
1 -fi-a-it-ay^ 1.2 •(/?- a)^

'

(#-«)'-
'[

^_^ ^^±1 ^^ 1 (« + l)(>^ + 2) 1 _J__£,c
^(/S-O'*""^ 1 •/3-a-(/3-0" 1.2 •(/3-af-(/3-#)'-' •]

Put now a = 0, /3
= 1, and therefore (i

- t = f, hence,

>+'
"^

1 •/"
"^

1.2 ^"-'

[+F^"*" 1 V""^ 172 •^-^
+

*'c.j

in which identity n must be one of the natural numbers 0, 1, 2, 3, &c.

and the number of terms in each series must be limited to w-f 1.

Suppose the (ra + 1)* successive integral of each term of this expansion

is taken after multiplying, for convenience, by 1.2.3 n, the result

will consist,

1st, of a logarithmic part, viz. .

(-,)-.h.i.w{i-f.^.^.^^. <''";'.'r''''-M

where the part between brackets in the upper line is equivalent to

the function P,„ and in the lower to (-1)".P„, and therefore the whole

to (-l)".P„.h.l.
^,.

* This method is applicable in every case to the decomposition of fractions, the denomi-

nators of which contain equal factors.



INVERSE METHOD OF DEFINITE INTEGRALS. 341

2d, of a rational and entire function />„ which satisfies the equation,

dP
since the term 2 (

-
1)". -^ is the result which arises if the logarithmic

term (
— 1

)" P„ . h. 1. -> be put for u in the actual equation.

3d, of an appendage containing n + 1 arbitrary constants, which as

before remarked must be rejected altogether.

Differentiating the equation for p„ above obtained, we get

(«',^- + Mi-20.^-+>-i)(«+^)# + 2(-ir.^--o,.

(«-l)(l-20.^" + 2(2«-l)^^" + 2(-l)»^^=0,

•
:

^"
df-^

+ ^^^> ~dF~^'

when these equations terminate, since j9„ is of « — 1 dimensions.

Put ^ = 0, in all these equations beginning with the last, observing
that then

^ = (-l)-.(« + l)(» + 2)...(2«),

^^ = -
(
-

1)" . « (« + 1) (« + 2)...(2«
-

1),

'^=^-^)"-^^i^^-^'*''^)^'' + ^) (2«-2),&c.

Y Y2
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Hence -^^
= - 2. (« + !)(» + 2)...(2»- 1),

^^" = (m + 1)(« + 2)...(2m-1), &c.

and the value of j9„ is the rational function

^
1.2...{n-l)

^^ +^'^ +A,f ...+A„^,],

in which the coefficients are successively formed from the equation

{n-m-lf.A„ + {m + 2){2n-m-l).A„^i

+ 2(-ir "i^-'^)-("^ + ^) n{n-l)...(n-m-l) _
'

'1.2...{n-m-l)' 2n{2n-l)...{2n-m)

and the omitted part in the integral of the proposed equation is

6|p„h.l. (I)
+
(-l)».^.

18. When m = —^, the general equation of Art. 16. becomes

and putting ^ = cos"^(l — 2#), we have Q„ = cosn<p, §'_,„+,)
= sin ncp, the

complete solution is therefore M = a cos«^ + 6 sin «^.

Though the trigonometrical functions were the first used in analysis

as reciprocals, for the purposes of expressing functions by means of

definite integrals and of expanding them, in the former instance of

their application there remain a few remarkable cases which do not

seem to have been noticed, with which we shall conclude this Section.

19. The two functions which possess the remarkable properties al-

luded to, are

e = e^'<«» . COS {x sin &), and 6' = e^
""^^ sin {x sin B).
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The successive differential coefficients with respect to x of the func-

tions 0, 6' follow simple and elegant laws, thus

do dQ'= 6^'=°'* cos fa: sin + 0}, ^— = e^'=»*« sin {a; sin + 0},

d'Q d^Q'

d^
= 6"^"°'' cos {ar sin + 20}, ^^= e^'^"** sin {« sin + 20},

and generally

d" d° 0'
•

^-;
= e^'°'^ cos {x sin + «0}, -j—

= e^
">"* sin {x sin + «0} .

Again, the successive integrals relative to x, follow the same laws,

omitting the arbitrary constants of integration,

/^0 = e^cose cos {a; sin 0-0}, /,©' = e^<=°'» sin {« sin 0-0},

//e = e^cose cos 1^ sin -
20}, f,'Q'

= e^'^"^* sin {x sin 0-20},

fj-Q = e^'^"'^ COS far sin0-w0}, f/O' = 6^<=<«« sin {a;sin0-«0},

for it will readily be seen by actual differentiation that

d" d"=
^-;; {e^'="'''cos(xsin0-«0)}, 0' = T-^ i^icose sin (a; sin0- m0)}.

Again, changing the forms of the proposed fimctions, we get

= 1 {e-'^ + 6"-'^^}, 0' = -4== {e"'^^ - e"''"^'},

whence, expanding and passing from the exponential to trigonometrical

functions

a;* of= 1 + a; cos + -—-
. cos 20 + , . ^,

cos 30 + &c.
1.2 1.2.3

0' = a; sin + —— . sin 20 + , ^ „ sin 30 + &c.
1.2 1.2.3
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jeW cos wy — -.
j—g—g ^ the limits of being and ir, these formulee

\ apply for all integer values of n, except

Now e cos nO ± e' sin nO = e^^s* cos {x sin + «0|.

Hence /ee"""^ cos {arsin^- w0| =7r .
——-—

,

l^^xcose cos {arsin0+ wej =0.

The particular case where w = is included in the first of these two

equations.

20. By the results thus obtained, we are enabled to represent any
rational and integer function of a; in a form adapted to general differen-

tiation.

By applying Maclaurin's theorem, we first have

(}>(x)
= Ao + A,.x +^2- j^ + ^3 -

^ g 3
+ &c.;

and passing to definite integrals by the formulae of the last article,

(h{x)
= -

/ge^cose 1^^ cos (x sin 9) + A^ cos {x sin 6-9)

+ ^2 cos (.r sin - 20) + &c.
J

also if A^u A^i, A_3, &c. represent arbitrary constants,

= -
/ee^'=°^* {A-i cos(x sin + 0) + ^_2 cos (ar sin + 20)

+ ^_3 cos (a; sin + 30) + &c.}

both of which integrals must be added before <p (x) can be subjected in

a complete form to general differentiation.

We then obtain the w*'' differential coefficient by adding n9 under

each cosine in this sum, that is.
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'-pp- =
i

/ee'-^o'S {Ao cos (x sin + n9) + A, cos [a; sin d + {n-l)e'\
(toe '^

+ ^a cos [ic sin +(» — 2)0] + &c.}

+ _|ge'^cose |^_jCos[xsine + (re + l)0] + ^_,cos[xsin0 + (w + 2)0]

+ ^_3 cos [a; sin + (w + 3) 6*] + &c4 .

I. When n «'* a positive integer, the whole of the second line

vanishes, there will then be no arbitrary constants; also, the first n

terms of the upper line disappear.

II. When n is a negative' integer, the first n terms of the second

line remain, and these contain n arbitrary constants.

III. When n is jractional, the whole of the second line remains,

giving an infinite number of constants.

21. The theory of numbers as connected with definite integrals,

afibrds another remarkable application of reciprocal functions.

Let n be any integer of which the divisors are n, Ji', n" 1; also

let m be any intger, and d an arc of which the limits are 0, tt.

Then, generally,

1 -2Acos»?0 + A'' = (l - A6'»e^^)(l- Ae-"*^^);

and hence,

h. 1. (1
— 2 A cos ra + A")

= - 2 {
A cos m + ^ ^' cos 2 »J + ^ A^ cos 3 /w + &c.

I
.

Suppose now that m is one of the numbers n, n', n" 1; this

series must contain one term involving cos»0, viz.

— A^cos w0:
n

and therefore.

Tit —

j^cosw^h.l. (1
— 2Acos»»0 + A^)

= — TT. — . A"".

But when m is not a divisor of n, there will be no term in the

expansion found to contain the arc n9, and therefore,

^cos«0h.l. (1 -2ACOSJW0 + A^)
= 0.
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Put now for m successively every integer from 1 to w inclusive, and
take the sum of all the definite integrals thus resulting, hence

/ecos»0h.l. {(l-2Acos0 + A^)(l-2Acos2e + A^)...(l-2Acos«0 + A*)}

\n , w' -^, w" -4, 1,1= - ttX- .h + - .h" + — . A" + ...- . h").
\n n n » J

Now the quantities -, —
,
—

, &c. are the reciprocals of all the
Tt ft Ti'

possible divisors of n, and therefore this definite integral may also be

expressed by

"^

-^{k + -,h''' + \h"" + ...-h"}.'^

n' n n '

For 9 in the preceding equation write 20, the limits of the latter

variable will be and -
.

2

Also put h = 1, and therefore,

1 -2hcosd + h' = 2{l-cos2(p) = 4!sm^(f),

1 - 2A cos 20 + ^2 = 2 (1
- cos 40) = 4 sin' 20,

&c. ;

.-. h.l. {{l-2heos9 + h') {I -2hcos2e + h'')...{l
- 2hcosne + h')}

= 2w h. 1, (2) + 2 h. 1. {sin sin 20. ..sin w0}.

The integral of the constant multiplied by cos2«0 vanishes, and therefore

7^ h.l. {sin sin 20 sin 30. .. sin »0} , cos2»0 = — t|~ + — +—, +...4-ll;

and multiplying both sides by , we get this theorem.

The sum of all the divisors of a given number n, including the

number itself and unity, is expressed by the definite integral

4t7l

/^h. 1. {sin sin 20 sin 30. .. sin w0} . cos2w0.
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SECTION VII.

On Transient Functions.

22. Let ^ (h, t)
be such that when h has a particular value as-

signed, the whole function vanishes whatever may be the value of t,

except in one case ; (/^, t) under those circumstances, is a transient

function having only a momentary existence.

Thus the function _ ,
(^ —0.t\l.hH^ ' ^^*^" ^' ^^ P"^ equal to

unity is a transient function, because its value is zero in every case

except when t = 0, for then it becomes t-—
j-^

when h is put equal

to 1, that is, it acquires momentarily an infinite value.

If the value of the function had been always zero, its definite inte-

gral relative to t would also be zero; but if we actually integrate from

^ = to t = \ without previously assigning a particular value to h, the

definite integral

2A \\-h \+h\~ '

thus this integral is independent of h, and therefore remains the same

when h=\, that is, for the transient function.

By the principles of the Second Memoir we can always form a

self-reciprocal function in which the general term may be of any par-

ticular kind ;
thus if f{t, n) were the type of the general term, and

if we put generally,

Fit, n) = a,f{t, 0)+a,f{t, l) + a^f{t, 2)+ + a„fit, n),

lastly, if we determine the coefficients a,, «2, a„ in terms of «„ and n,

by the n equations (arising from the definite integrals) following,

f,F{i,n).fit,0)=0,
Vol. V. Part III. Zz
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!,F(t, n) ./{t, 1)
= 0,

SF{t,n).f(t,n-l) = 0;

then the function F(t, n) will obviously be self-reciprocal.

But if f{t, n) not containing arbitrary coefficients, but being abso-

lutely given as P, (cos^% &c. is proposed as a function to which some
unknown function is reciprocal, the discovery of the latter, which is

effected in the next article, is of a more difficult nature than the pro-
cess above mentioned; and in the particular cases quoted, as well as in

many others, this required function is transient, it is therefore in this

character that transient functions are here introduced.

23. Given f (t, n) a Junction of known form with respect to the vari-

able t and the integer n, it is required to find another Junction of t and

n, as ^ (t, n), such that the definite integral jjf (t, n) ^(t, n') may always
vanish when the integers n and n' are unequal.

Begin with forming a self-reciprocal function F{t, n), the general

term of which may be of the given form J{t, n) ;
thus

F{t, n)
= a,f{t, 0) + a,f{t, l)+a,f{t, 2)+ +a„f{t, n),

where the coefficients are determined in the manner indicated in the

preceding article.

Suppose next that the required function {t, n) is expanded in an

infinite series of which the general term is of the form F (t, n), thus

<p{t, n):=Ao.F(t,0)+A,F{t,l) + ...+A„F{t,n) + A„^,F{t, (n + l)}, &c.

Multiply by f(t, 0), f(t, 1), f{t, 2) f(t, n - 1) successively, and

integrate the products between the given limits of t, observing that

f,F{t, 1) .fit, 0)
= 0, f,F(t, 2) .fit, 0) = 0. ..J,F{t, n)f{t, 0) = 0,

by the property of the functions F {t, n) ;
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and similarly,

jlFit, 2)fit, 1)
= 0, f^Fit, 3)/{t, l) = 0...f,F{t, n) .f{t, 1)

= 0,

&c. &c.,

we thus obtain the following equations ;

j; {t, n) .fit, 0) = A, j,f{t, 0) . F (f, 0),

^,<^{t, n) .fit, 1)
= A,S,f{t, 1) . F{t, 1),

^0 (A n) .fit, w - 1)
= A._,!,f{t, n) . Fit, n-l);

hence the imposed condition of reciprocity requires that the first n co-

efficients Ao, Ai...A„-i in the expansion of 0(#, w), may be each equal
to zero ;

and therefore,

0(^, n)=A„F{t, n) + A„^,F{t, n + 1) +A„+,F{t, n + 2), &c. ad inf.

Multiply successively both sides by f{t, n + 1), f{t, n + 2), &;c., and

integrate; and since n + \, n + 2, &c. are each > n, the definite integrals

must vanish.

Hence,

AJ,F{t, n) .fit, n + l) + A„^J,Fit, n + 1) .fit, m + 1) = 0,

AJtFit, n) .fit, »+ 2) + An^,^,Fit, w + 1) .fit, n + 2)

+ A„^2ftFit,n + 2).fit,n + 2)
= 0,

&c. &c.,

from whence the coefficients An+i, ^„+2, &c. are known in terms of A^
and ti, and therefore the required function ^ it, n) is known.

24. To find the function which is reciprocal to t°.

First, we must form a self-reciprocal function, of which the general
term is of the form /"; this has been already effected in Section

IV., namely,

:,.

n n + 1
^ , nin-\) in + !)(» + 2) ^^,,-1- j.-y- t+ ^^ .

j-^
.t -&C..

z z2
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which has been also proved to be the coefficient of A", in the ex-

pansion of {l
— 2h{l — 2f) + h^\~^, (Section IV. Art. 9), and to be equal

cl" (tt'Y
*^

1
—oQ—~Tf^' where t' = \ — t, (Section iv. Art. 2.)

Then representing by V„ the required function which is reciprocal

to f, we have by the preceding article

where it is obvious that when n' is less than w fiVj"' = 0, and it is

only necessary that the coefficients may be so determined, that the

same equation may remain true when n is greater than n
;
and since

one of these coefficients is arbitrary, we may put ^„ = 1.

Now in general, we have by Section iv. Art. 2.

x{x~l) {x — 2)...{x-n + \)
f,Pj'' = {-iy.

(a; + 1) (a: + 2) (a; + 3)...(;r + w + 1)
'

hence, i F„ #"
+^=

(
- 1 )" { 7

^^

zr~r ^^-h-r^
—

v^' ^ ^
\(w + a; + 1) (w + a; + 2)...(2« + ar + l)

_. {n-¥x) {n+x-\)...x . {n+x) {n+x~\)...{x—l) . 1~ "*'
(w+ar+l)(ra+ar+2)...(2w+a;+2)^ '"'"{n+x+\){n+x+9)...{'in+x+S)~ ]

Therefore, when x is any integer from 1 to x
, we must have

A ^ A X{X — Y)

2w + X + 2
""

(2» + a; + 2) (2 w + j; + 3)

. x{x-\) (;r-2)~ "*"
(2» + x + 2) (2w + a; + 3) (2w + ar + 4)

"^ '

and putting for x the successive integrals 1, 2, 3, &c.

1= l-^„+i. 2m + 3'

« , ^ 2 . 2.1
0=1— .4„+i. X—-—: -r-4„+2

2« + 4
"+'

(2w + 4)(2m + 5)'

^ , . 3 . 3.2 . 3.2.1

2w+5 ^"""+^-
(2w+5) (2w+6)

"+"
(2«+5) (2«+6) (2m+7)*

&c. &c.
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From whence we obtain

A„^, = 2n + 3, A„^,=
^ ^ .(2n + 5), Jn+3=~ fgg '.(2n + 7),

and to prove that this law of formation is general, we may observe

that since

/
iy+2^+i_

2n + 2x+l 1 (2w + 2a; + 1) (2n + 2x)...{x + 1)

V~ h)
~

1
' h^ "^

1.2...(2w + ^ + l)

iy+^-^'
I X 1 x.jx-l) i,^\^

\ hi '\ 2n + x + 2' h {2n + x + 2){2n + x + S)' K" ]'

Qfi 4- 2
and (l-hy^'-^'Hl + h) = l + {2n+.3) . h + . {2n + 5).k'

(2« + 2) (2w + 3) ,„ „. ,3 J+ ^
o 9

• ^^^ + 7).h^ + &c.

Multiply both, and take the coefficient of
,^„^^^,

in the products,

and we get

{2n + 2x + ]) {2n + 2x),..{x + 1) ^
x ,

\.2.3...{2n+x + \)
*

~
2n + x + 2'^ '

x{x-l) (2w + 2)(2w + 5)

*"(2w + a; + 2) (2« + a; + 3)' 1.2 ' ^^

= coefficient of -1- in (-IV (l+^Xl-^r''

= (-1)'. coefficient of A' in (1 +^) (1-^)^'-.

Now the coefficient of h" in (1 +^) (1 -Af""', is evidently the sum

of the coefficients of h'~\ and of h\ in the expansion of (1
—

A)*'-';

that is, the sum of the coefficients of the two middle terms in a

binomial raised to an odd power, and with alternate signs of + and
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—
, hence the quantity we are considering must be zero, and there-

fore

2w + 3 X {2n + 2) (2w + 5) x(x—l)~
i '2ra + a; + 2'*' 1.2

'

(2n + x + 2) {2n + x + 3)

_ (2» + 2) (2?^ + 3) i2n + 7) x{x-l) {x-2) „~
1.2.3

'

{2n + x + 2){2n + x + 3){2n + x + 4>)

"'

which shews the generality of the observed law of the coefficients ^„+i,

Substituting now these values in the general formula for V,„ we

get the required function which is reciprocal to t", namely,

rr- r. /„ „v T, (2« + 2)(2w + 5) „K = P„+{2n + 3).F„^, + ^ ^ ^
. P,+8

(2w + 2) (2w + 3) (2w + 7) „ „

"-

17273 •^"*^' *'''•

25. The Junction which is reciprocal to t" is transient.

For in general

d".(tt'Y _ d^itt'T
\.2.3...ndt''

^ ^ '

1.2.3. ..ndt'"'

and putting 1-t' for t, and expanding the binomial (l-t')", and

lastly actually performing the differentiations indicated, we have

^ A) .^n-A 11*^1.2 1.2

and therefore

V-l) ''n-JA ii'^+i2 1.2 *

-(2w + 3)|i T"
• ~T~ ~~T72~~

•

1T2 '

(2«+2) (2W+5) ,,
»+2 n+3 - (w+2)_(^+l) (w+3) (w+4) ,,2_^ >

+
172 t^~ 11 1.2

•

1.2 "^

-&c. &c.
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The term which is independent of t' is

but in general we have

(l-A)(l+A)-(^"+^' = l-(2« + 3).A + (^" +
^^)(|^

+ 5) ^._^^

and putting h = \, we find that the term independent of if is zero.

Again, multiplying the last equation by A"+'", we get

(*"+"
-

A"*""*') (1 +^)-<'"+'* = A"+'» - (2 w + 3) . A"-^""*' + (^"+yv^"+^) . ^.+"..
>^ _ &c.

Now it is easily seen that when h = 1, we have

-Tj^ (A"+'"-A"+"'+') = (w+w)(«+»?-l)...(«-/»+l)-(«+/» + l)(«+»»)...(«-w+2)

= — 2»w . (w + >w) (w + TW — l)....(w
— m + 2),

-(A"+'"-A"+'"+')=
- (2m-l)(«+m) («+m-l)....(«-»w+3).

&c. &e.

and therefore when A is put =1 after differentiation, we have

Jim

_^^ {(A"+'»-A"+'"+>)(l+A)-'"+'} = -2-<""+''.2>«. («+»«) (w+»«-l)...(w-M+ 2)x

,
,
2w+2 2OT-1 1 (2w + 2)(2w + 3) (2m -

1) (2?»-2) . .

* ^* i «-»^^-2"^2^ 1.2 (w-w + 2)(»-»» + 3)
*^"»

which series consists of only Im terms, and is equal to the infinite

series obtained by differentiating the other side of the equation, viz.

w(« — !)....(« -OT+l)x (w + l)(« + 2)....(w + »«)

- (2«+3. («+!)». ...(«-»» + 2) X (w + 2)(» + 3)....(» + »« + l)

+ (^^+^)(^"
+ 5)

(n + 2)(w + l)...(w-»^+3)x(w+3)(w + 4)....(w + »?+ 2)

— &c. oe? infinitum.
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Now it is obvious by putting m = 1, 2, &c. successively, that the

finite series is always =0, and therefore the infinite series [which is

(
— t'Y

the same as the coefficient of ^ ^
—

^
in the expression for (

—
1)°^„]

vanishes also, so that if V„ be arranged according to the powers of t',

it is + 0. ^' +0^'^ + &c,, nevertheless its value is in one instance infinite,

namely, when t = 0, for then P„ = P„+i = &c. = 1, and therefore

F„ = l + (2. + 8) +
("^ +

f^f-^^^^^"
+
^)^fV")(^^

+ ^) + &c.

= (l+A)(]-A)-«''+^ when h is put =1.

= X .

And if V„ did not possess this infinite element ft Vj", from i> =
to t = 1 would vanish, whereas its actual value is the same as

26. To express the transient Junction Vn in a finite form .

Since by Art. (24.) K = P, + (2w + 3)P„+,

,
(2w + 2)(2w + 5) (2« + 2)(2w + 3)(2w+7) « „

"•

j~^2
'^^

2 2 3
• "..+3, «c.

therefore

1.2.3...(2w+l) r'„
= l .2. 3.. .2?? X (2« + l)P„

+ 2.3...(2w + l) X (2w + 3)P„+,./f + 3.4...(2w + 2) x (2« + 5)P,+s^\ &c.

when A is put equal to unity.

But in general,

{1
- 2A (1

- 20 + K"]
-^ = P„ + P,h + P^A^ + ...P„A" + P„+, A"*' + &c. ;

c?^''^"{l-2^(l-2j?)+^'|-i^

= 1.2.3...2?«.P„ + 2.3,.,(2w4-l).P„+, A + 3.4...(2« + 2).P„+2AH&c.
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Multiply by 2A"+i, and diiFerentiating once more, we get

^Thr djf^ 1

= 1.2.3...2wx(2« + l)P„A'-i + 2.3...(2w + l)x(2» + 3)P„+,A"+J+&c.

Hence, F„ = ^h-^^ . j. [jf^l^^ j^ I "^
' " "^>

-^,f^ .

c?A\ 1.2.3...(2« + 1).</A^° j'

when A is put = 1.

Put for abridgment the radical {1
— 2A (1

-
2#) -f A^}-J

= ^, then

rf^ . {Rh") _ 2«.(2w-l)...(w + l) ^^B
rfA^

~
1.2...«

• •

</A''

.
2w(2w- l)...w ^ ^ ,c?"+'J?

.

^ ' ' '

\c?A" W + 1 1 C?>&»+1

w(w-l) _A^ c?»+^B 1

(« + l)(« + 2)'1.2'rfA»*'" *''^7

Whence 2 ~
{^-i ^^^^|

= 2» (2«- !)...(« + 1)
{(2«

+ 1) A«-4^
2w + 3 n

,^^ d'^'R 2n + 5 h"*^ .n .{n-l) d'^^R
^

1 •« + !
•

dh"^'
"^

1 . 2
*

(» + l) (w + 2)
•• d¥^ • *'*'•

c?A"+' w + 1 c?A"+- J

u 100 Tr d'R
.

2w + 3 « .d^^'RHence 1 .2.3.. .wF^, = -jT- + r—-^. .^ „ ,,

2w + 5 w (w-1) ^^ rf»^^jB
"''

2» + 1 (» + 1) (ra + 2) 1 . 2
•

rfF^ "* *'''•

2
^^

c?"^^Jg 2 n d'^'R
2« + 1

*

t/A"+'
"^
2w + l» + l </A"+^

2 n(n-l) h^ d'^^R
2w + l*(w + l)(« + 2)*1.2' <^A»^'

•" *'^-

Vol. V. Part HI. 3 A
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h being put = 1, after the differentiations; this value of 1.2,..?iF^, is

expressed in two finite series, each containing only w + 1 terms.

If we actually add the terms in this formula, which contain the

same powers of A, we get

V - 1 K:? w + 2 h d"^^R (n + 3)"~
1 . 2...W \dh"

"^
w + 1 1

'

dh"^'
"^

(w + 1) («

, n h' d'^'R

+

n + 2)' 1.2" c?A"+'

(« + 4).ra(w-l) k" d'+^Ê
SL 1

{n + l){n + 2){n + 3)'l.2.3' dh

when h is put equal to unity.

27. -Discussion of the transient function N
^.

Put « = in the general expression for ^„ in the preceding article,

dR
hence V. = R -^ 2h -y^-dh

= U-2A(l-20+A^}-^ + 2A(l-2jf-A) {l-2A(l-2^) + A^}-i

(1-A)(1+A) , , .

This function, as has been observed in Section vii. (22), is in general

zero, except in the particular case when ^= 0, when its value is infinite.

If we imagine a curve of which the equation is

y
{l-2A(l-2a;) + ^^}4'

where h is less than unity but nearly equal to it, the limiting values of

y as A approaches unity, will give the geometrical interpretation of

the transient function V^.
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Take (Fig. 1.) AB = 1, AH = 1 - h, or

BH = h both along the axis of x, and make
A the origin, then putting x = 0, we have

1 -i- h
y
—

jz
—

T7^, which is very great, and tends to be

infinite as h approaches unity, and is represented

by AC\ next putting x = l — h = AH, we get the

corresponding ordinate HE =
(jZThf)

'

(T+W'
which also tends to infinity ; lastly, putting x = l

we have y = l-h = BD, which tends to vanish
(1 + h)i

in the ultimate case representing V^.

Now varying the parameter h so as to make
it approach unity, the points C and £1 recede

indefinitely from the axis of x, and the point
7> approaches it indefinitely.

Yet the area DBACE remains constant (for

the integral between x = 0, and x = \ of

{l-2^(l-2x) + A''}J

relative to x is evidently unity).

And the altitude GN of the centre of gravity of this area is also

constant, for

ANH H

h!^f

and therefore is the same as that of the parallelogram HF, when

AF=^AB, for the distance Gg from the axis of y

x{\-h){\^h) \~h AH
{l-^h(X-2x) + ¥\l 2 2'

Hence G tends ultimately to the point g in the axis of y, which

shews that the area DBH'E' tends absolutely to vanish, HE' being
3 A 2
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an ordinate drawn near the origin at any small distance not varying

with the parameter Ji, and since -r- has the same sign in the interval

from B to H', H or A, it is evident that the portion of the curve

BE' tends to coincide with the axis BH', the curve therefore which

represents V„ coincides with AB, except infinitely near the origin

A, when it suddenly mounts to an infinite height.

Since the general function V„ is reciprocal to t", it follows that

fi Vaf = 0, except when w = 0, and then the definite integral is unity ;

hence if f{t) be any function containing only the positive and integer

powers of t, the transient function Vo possesses the remarkable pro-

perty expressed by the equation [tV'o /{f)=J^{Q).

Fig. 2. Let 2a = AB, equal the

length of the axis in a solid of revo-

lution, the surface of which is covered

with an indefinitely thin stratum of

fluid, let any abscissa ON measured

from the centre O be put equal to

a (1
-

2#), the limits of t will evidently

be O and 1 .

Let the law of density or accumulation at any point P of a section

perpendicular to the axis be expressed by the transient function \V^,

X being constant, and let the total action of the fluid on any point Q
in the axis be required, the law of force being capable of expansion

according to the positive and integer powers of t.

Put PA'' = y, then the whole quantity E of fluid is manifestly
ds

equal to ^Xtt ft T^^y -r, ,
s representing the arc AP.

dsNow it is easily seen that the value of y-yr at the point A where

y vanishes is iaR, R being the radius of curvature at that point, and

by the nature of V^ this quantity is the value of the above integral,

or E = SXttuR.
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Again, if we represent the distance PQ by r, and the law of force

by y(/-) and put AQ = k the initial value of r, the total action is

r rr ds „, ^ ON
2ATJ;r,y^./(r).^,

which by the property of F"o is equal to S\traRf{k), or to E .f{k).

Let us now suppose an equal quantity of fluid, but of a contrary
nature in its action, and therefore represented by —E to be collected

in a single point C in the axis produced to a small distance AC- a.

The total action of the compound system on Q will then be

E{f(,k)-f(k + a)},

which tends to vanish as C approaches A.

Lastly, suppose a unit of fluid when distributed over the surface

according to a law expressed by {t), which depends on the figure of

the solid, will exert no action on any point Q in the axis; then if

the law of distribution of the fluid be expressed by X V^ + c
(p {t),

the

total action on Q including that of C, will be still E {f{k)
- f{k + a) ^

.

From which it follows that when an electrical spark -Eh in-

finitely near to the vertex of a conducting solid of revolution charged
with a quantity of electricity E', the distribution of the latter under

the influence of the former is expressed by the law

pi

\Va + c<i>{t) where \ — ^ ^,otraH

and where c is determined by the equation*

Having thus given the geometrical and physical interpretations of

Vo, it will not be necessary to discuss the transient functions V^, V^,

&c., of which the properties are very analogous.

* Vide First Memoir, Art. 35, the expression there obtained for a sphere being in-

cluded in that obtained above, when the influencing point is infinitely near the sphere.
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28. To find the quantity to which V„ is the generating function.

By Art. 26.

_ d^'iRh") ^hd''*^ (Rh")

I .2.S.,.2ndh;"' 1 .2.3...(2» + l)rfA"^"

where R= {l~2h(l — 2t) +h^}~K and h is ultimately equal to 1.

Forming the equation u==h + &uK we have

A^ d^f{h)h\ k^ d^f{h).m}

hence {l-2«(l-2^) + «1-^^^ = ^iZ + ^'
^^
^

1T2 <//^'
+&c.;

dh'

du
dh

^l^^'-^^^^^' rS^F^ = '^' "°"^'^""' °^ ^"" ^"
{l-2t.(l-20 + >/'M

In like manner,

«-i{l-2«*(l-2/) + «n-^.^
=
2?A-^+^'|f^

/fe^ d\{RM) ¥ d'jRh)

therefore,

_^M!!!1(^) = the coefficient of >P«- in
., , ^ f^^ .,, ;

1 .2...(2« + l)rf^''+* {1-2m(1-20 + «'H

(* + 2Am-^)^
consequently, V„ = the coefficient of ¥'^*' in

v^ _ ^^(i _ 20 + «'}^
'
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Now, by the assumed equation we have

ui — hu~i = k,

du
and by differentiation («J + Am"*) -jr

= 2m ;

but also (m^ + hu~^) = k + 2hu~i;

hence, {k + 2hu~i)'Tr=2u;

and therefore, F„ = 2 the coefficient of ^"+' in u {l-2u(l -
2t) + u"} -^

from which it follows that if we form the two equations,

u'=h + (ku')i] . \U' =u' {l-2u' (l-2t) + u''}->^
} putting i

u" = h + (ku")i] [t7" = «"{l-2«"a-20 + «"'i^^;

then ^^j— = ^0 + J^^k + V^¥ +r,k'kc. ad inf.

supposing that in the left-hand member h is finally put equal to unity.

It may be observed that the quantities u', u" are the two roots of the

equation u'^ — {2h + k)u' + h!'= 0.

29. To expand a given ^function (pit),
in terms of the transient

function \^ .

Let the general term of the expansion be A„V„, then by the nature

of reciprocal functions we have

= AJtPj", (Art. 24.)

M.(W-l) 1= (-l)".^„
(w + !)(« + 2) (2« + l)'

lience,(p(t)=Kft<l>(t)-^^rj,(p(t)t-\-^^.FJt<}>(t).f-&ic.



362 Mr MURPHY'S THIRD MEMOIR ON THE

Examples :

/» - -J_ V _ ^-3 V J.
g-4-5 ^ .

p_j^ 2«+3 „ (2w+4)(2«+5) (2m+5)(2« + 6)(2w+7) .^ ,-rn—r„
J

. ;'„+,+
I ^

. f'n+a
J

. f'n+g&C.

the latter series would also result by reverting the series for V„, in

Art. 24.

30. To find a function U„ which shall he reciprocal to (h.l.ty.

Following the steps indicated in Art. 23, we must first form a self-

reciprocal function of which the general term is a constant multiplied

by (h. 1. ty ; this has been already effected in Sect, v, namely,

and then the form of the required function will be

[/„ = t; + a 2;+ , + 6 1;^^ + c 7;+3 + &c.

Multiply by (h. 1. ty, supposing m>n, and observing that

j;r„(h.l.0" = 1.2.3...>^.(-ir. "-^'^-;)^:-f-("-'^-^^) bySect.v,

and ir7„(h. 1.
/)•"

=

by the nature of reciprocal functions, we get the general identity

m{m — \){m — Q)...{m
— n + l) , m— n , {m-n){m -n—\)®

r.2.3...« •^^""•^TT+*- (« + i)(« + 2)

—
*'*'-^'

but on the same supposition that m is greater than w, we also have

= (l-l)'"-"= l-(m-w)+^^ 4p— ^-&c.;
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and by comparing the corresponding terms

- ^ + 1 ^_ (« + l)(w + 2) _ {n + l)(w + 2)(w + 3) .

therefore,

rr-7--L'' + ^ T ,
(w +!)(« + 2) .

(w + 1)(w + 2)(m + 3)
Ly„ — J „ -I

J
. ^ „+i + r— . -I „+2 i r—-—

. X „+3, Cue.

31. To express the function Un which is reciprocal to (h. I. t)" in

a finite form, and also the function which Un generates.

l.2.3...nU„ = 1.2.3...nT„+2.3. 4...(w + l) T„+,+3 . 4 . 5...(w+ 2) . T,.+,+&cc.

=^ { r„ + r,A + 7;a^+ ... T^h'+T^^.h"^^ + &,c.],

h being put equal to unity after the differentiation.

But by Section v, we have

h

J—^ = T,+ T,h + T^h' + &c. ad inf. ;

"(A)
therefore, U„ = -———

-jt when A = 1.
1.2. 3...ndh"

Now by Taylor's Theorem, this quantity is the coefficient of k" in

the expansion of -—
j~r^ the latter is therefore the function which

U„ generates.

32. Properties of Un-

.1. jiUn (h. 1. ty = f,T„ (h. 1. ^)"
= 1 . 2 . 3...W, by Sect. v.

II. Changing the sign of k in the quantity which U„ generates,
we get

Vol. V. Paet III. sB



364 Mr MURPHY'8 THIRD MEMOIR ON THE

pT''
= Uo- U,k + U,¥ - U^¥ + he.—f-f^§--}

III. Since f =\ +x\i.\.t+ -^ . (h. 1. tf + j-^-j (h. 1. <)' + ««:

by means therefore of a single integral, x" may be adapted to general

differentiation.

As this result is remarkable, we may confirm it by the general

rule in the First Memoir. (Vide Sect, i.) Thus,

1

put (x) =
:j

T— =l-\-xk + a^J^ + &c.

*±i
/-*

then fit) = —-T =U,+ U,k+ U^k" &c. ;

for all values of k, whence JiUnf — xf as before.

33. Discussion of the Junction U^.

h

fl-h

By Art. 31. Uo = -—r when h is put eqifal to unity. Like the

transient function Vo, discussed in Art. 27-, the quantity Uo is always
zero for values of t between and 1

; but when t = 1 its value is

infinite, and thence its integral between the limits and 1 of / is finite,

viz. unity.
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To prove this property, conceive a curve Y

APC, of which the abscissa measured from

A along AB is taken equal to /, and the

corresponding ordinate y is equal to f''',

and let us suppose h very nearly equal to

unity, and at any point P draw a tangent

PT; then since

dt

h

y = t'-\

therefore, 11^ is the limiting value of the tangent of the angle PTB.

Take AB = 1 and the ordinate BC = 1, then it is evident that

A and C are constantly points of the curve when the parameter h

varies so as to approach unity.

Again, for the entire area APCB the expression is Ji^'~*, from t=0
1 — A

to t=l, that is,
-—Y, which evidently tends to vanish as the para-
.«
— fl

meter k approaches unity ; and as no part of the area is negative, it

follows that the curve APC tends ultimately to coincide with the two

right lines AB, BC, and therefore when T is sensibly distant from

B the tangent of the angle PTB tends to vanish, but when indefinitely

near to B it tends to infinity ; and therefore Ug, which ultimately re-

presents these tangents, is zero from A to indefinitely near to B where

t is unity, when its value becomes infinite.

In like manner the remaining functions C/i, U^, &c. may be dis-

cussed with similar results.

It may be observed that for values of t>l (which however do not

enter the definite integral), the values of t/'^ are infinite.

34. Expansion of given Junctions in terms of the functions Un .

The general formula for this purpose is

0(0 = V^kW) + UJt<p{t). hA.it)

1.2 ^,<t>{f).ih.\.tf +
u.

1.2.3 .j;<^(0.(h.i. /)' + &c.

3 b2



366 Mr MURPHY'S THIRD MEMOIR ON THE

T -u - ^±1 u + (^ + i)(^+^) r/ _ &c
1 1.2

which latter series is also produced by reverting to that which expresses

C7„ in terms of 71 in Art. 30.

35. To find a function reciprocal to t" when the limits of t are 0,

and GO .

Let M„ be the required function, and put t = e"',

then ^lUj'^ = 0, from # = to ^ = x
;

«» /V- 1 N™ ^ i>_ = to T = 1,therefore /"- (h. 1. t)-"
= 0, from t =

^»
"

h_
1-*

hence m„ = t C/„ = t ;
—

^ttt when h = \
1 . ^...ndh''

36. Tb ^«c? « function F„ ^t>A^cA *Aa?/ ie reciprocal to cos" ^, ^A^

- awa -.
2 2

ZmeV* o/*^ Je^?^
— - and -

Following similar steps to those adopted in the preceding Articles

we shall obtain,

w + 2
in cosines F„ = cos n<p

—
. cos {n + 2)(f>

(« + l)(w + 4) , ,,,^ (w+l)(w + 2)(« + 6) , ,-,-, .

+ —^-12 ^•cos(« + 4)0 -^
^ g g

^cos(w + 6)<^, &c.
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in sines Fn = 2 sin (p {sin {n+ l)(p
—

. sin {n + 3)(p

+ ^^ -^ . sm (« + 5) <^
- &c.

]

37. The Junction F„ is transient.

Either of the preceding values of F„ give F„ = Fn—F", where

F: = cos {n(t>)
- ^±i

. cos {n + 2).(p + ^^"^^^^^^^ • ^^^ (« + 4) <^ + &c.

F„"= cos (w + 2) <^
- ^^ . cos (« + 4) .

<^ +
{n + l){n + 2) ^^^ („ ^ g^ ^ ^ ^^.

passing from trigonometrical to exponential values,

1 1.2'

1 1.2"

_
("g.^vrr ^ g-</>vrT\-"

= 2cos«0,

2F„" = £("+2)*^^ - ""'"^
. e("+4)*v^ + (" + l)(^ + 2)

_ ^(„^g)^^— _ ^^
1 1.2

+ g-(n
+ 2),^V:rT _ ^jt2,e-(n +4)0V^ ^ (w+ 1) (W + 2)

^-(„ +4)^vri _
j^^.^

= 2 COS «^,

hence F„=-F';-F„"=0.
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However, if n be even, and our limits be —
^ and ^, the function

becomes suddenly infinite at the limits, for the expansion of F„ is

then identical with that of (1 -!)-'"+'•.

38. To express infinite terms the transient function Fn.

Put

i?'„'
= cos ra(^

-^ . ^ cos (« + 2) + ^^i|^-^^ . A'' cos (« + 4) «/)
- &c.

F:'= hcos (n+2)(f>
-^ . A^ cos {n+4>).<l> + <"+!) (^ + ^)

^^ cos (w + 6)0-&c.1 1 • ^1

Then F„ is the limit of F^—F" when h approaches unity.

Put also 2 cos = a; + -
,^ X

hence 2-F„'

x~^ X

~
{l+A(a:^+a;-^) + *'}"+'

W+ 1 (W+ X^ Tt W+ 1

COSW0+—j— .Acos(w-2)0+^—
—
^^.A^cos(«-4)0...—

—
-.A"cosw0+A"+^cos(«+2)0

~
fiTaFcosa^TFp^^

*

the number of terms in the numerator being w+ 2.

In like manner,

2F„" X
+

h (aT-' + Aa;)"+i (x + Aa;-')"*'

_ X (a; + Aa;-')"+' + a;-' (a;"' + Aa;)"+'
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eos{n+2)(l)+'^r— .h cosn(f)+- -^ .k^cosin-2)<p+ . . .
—— .h" cos{n—2)(p+ h"*' cosn<p

^
fTT2rcos2^1~Fp^'

'

Hence,

costKj) .{I -h"*^)+h\——cos{n-2)(p-cos{n+2)<p\+hH—
—~-cos(w-4)0——cosw0>

^"
{l + 2Acos20 + ^^}»+'

' ^'

when h is put = 1.

Thus F = (^-^)(^ + ^^

which is evidently a transient function, as its general value for A = 1

7r

2
is zero, except ^ is an odd multiple of -, when its value becomes

infinite.

And in general F„' and F„" are equal, when h is put equal to

unity, and therefore F„ has a factor 1 — A in its numerator, which causes

TT

its general vanishing state, except when ^ =
„, or an odd multiple of

^, when the denominator becomes (1-A)^"'*"^ and as the numerator is

of only n + 2 dimensions, it is evident F„ in this case is infinite, when

k= I.

In general f , ~i. r.^ 1:2
= 2 tan"' . I^^^ . tan 0> + const.,

which taken from = to ^ = - is equal to tt, a quantity independent

of h, a result similar to those already obtained from other transient

functions.

39. When the sum of a series containing transient functions is

required, the following process, with only such modifications as may

simplify particular cases, will apply.
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Let S = UaVo + fli Fi . ss + (hV.i.%^ + ... + «x ^^K' + &c.

be the series proposed.

By the inverse method, put a^ = U/{t) . t' from t = to t = 1 .

Then S = /^/(r) \V, + F.tz + V.t'z' + &c.|

But V^+ V^k + VJe^, &;c. is the function which V„ generates, and may
be represented by ^ {t, k), we have then

S = X-/(t) . <p{t, T%), from T = to T = 1.
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SECTION VIII.

On ike Resolution of Equations involvings Definite Integrals.

(l) By the Decomposition of the Integrals into Elements.

40. The utility of the method of decomposition consists principally
in the verifications it offers to results obtained by other analytical pro-

cesses, the difficulty in the eliminations which it requires.

Pm-i-^ Pm+if Pa Put/

Suppose a cylindrical shell exerts no force on any point in its axis

AB, the law of force tending to each particle of the shell being given,

but the law of density of the shell unknown, then the application of

the method of decomposition is this :

Divide the shell into « + 1 equal portions by planes perpendicular
to the axis PiQi, P2Q2, &c.

Let the density throughout each portion be supposed uniform, and

let the successive densities be pa, pi, p->....pn-

Let the total actions on the points of division Qj, Q2...Q„ be equated
to zero, which will give n equations, and another will be obtained by
considering the mass of the shell.

From these n + 1 equations, let po, p^, p^, &cc. be determined in terms

of ». ..

Finally, make n infinite.

Vol. V. Part III. 3C
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41. General Calculus for the Cylinder with any law offorce.

Let «o, «i. a^.-Mn represent the total actions on the point A which

would be exerted by the successive portions P^Pi, PiPz of the shell,

if the density of each were unity; these quantities are given, since the

law of force is supposed known.

Then aopo, a^p^, a^p^, &c. represent the actual forces on A.

Again, the action of any portion as P„+4P„+5 on any point Q„ of

division in the axis, will be to the action of the similarly situated

portion P^P^ on the point A in the ratio of the corresponding densi-

ties, and in this case would be atpm+i.

By this consideration the total actions on the points Qi, Q2...Q„
are easily estimated, and equating each to zero, we get the following

system of n equations, which serve to determine the ratios —
,
—

, &c. viz.

pa Pa

aopo- Ctopi
—

aipz
—

Chps
—

asPi
—

dn-lpn-l
—

(tn-iPn
= 0,

aipo+ aopi
—

aop-i
—

aipi
—

aipi —ctn-spn-i
—

an-ip„
= 0,

Oipo + aipi + ttopi- ttops—aipi
—

«n-4/'n-l
—

«n-3/'«
= 0,

a^po + a^pi + aip2 + aopa— Oopi —ctt,-ipn-i
—

(i„^ip„
= 0.

a„-2po + an-3pl +«„_4p2 + «n-5/03 + «»-6P4
—

«2/0«_l
—

fl!l/0»
= 0,

ffn-lpO + fin-2Pl + «»-3p2 + «»-4j03 + «n-5/04 +«l/On-l
"

aoPn
= 0.

Comparing the first equation with the »*'', the second with the (w-l)"",
&c. it is obvious that po is involved in the same manner as

/o„, p^ as

Pn-l, &c.

Hence, p„
=

po, p„_i
=

pi, p„.i
=

p^, &c.

Form now two functions in the following manner:

a known function, M = «osin0 +«isin30 + a8sin50+ .,.«„_isin(2w-l)0,

an unknown, aS'„
= jOoCOSw0+|OiCOs(w-2)0+ ^sCOs(«-4)0+
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the first series may be continued to n terms or infinity indifferently,

and the last term in the second series will be ^p^ when n is even,
2

and p„_x . cos 9 when n is odd.

Suppose now that the product 9,u.Sn is decomposed into the sines of

the multiples of 9, and that all the multiples higher than the «'" are

rejected from this product, the remaining part will evidently be,

—
{aopo—aopi

—
aip2

—
a»-i/Oo} .sin(n— l)0,

—
{aipo + Uopi

—
aopi —a„.2po}.sm{n— 3)0,

•

—
{(hpo + ctipi + aop2 —a„-3po}.sm{n — 5)$, &c.

the whole of which by the given equations is equal to zero.

Hence,

2S.u=A„sm{n + l)9+ B„sin(n + 3).9 + C„sm{n + 5).B, &c. ;

.-. 4 cos . S„u = A„ sin (nB) + {A„ + B„) sin in + 2)9+ {B„+ C) sin (« + 4)0, &c.

and 2Sn.iU = A„^i sin {n9)+B„.i sin {n + 2).9 + C„_i sin (« + 4) . ;

.-.

2{2cos9.Sn-j^S,.^}
.u =

i^A„
+B„-A„.^\.sm{n+ 2) . 9, &c.

Hence it follows that if we put So=po, S^ = po cos 9,

and u = aoSin9 + a^ sin 3 + a^ sin 59 &c. ad inf., then.

First, Supposing S^.^ and S,n known, form a quantity \„ by dividing
the coefficient of sin(/» + l)0 in 2S,„u, by the coefficient of sin(/»0)

in S/S'm.i .u. •

Secondly, Form a quantity S^^^, by the equation

-S'„+i
= 2 COS0 . /y^ - X^iS*™.! ,

by which S^, S3 a^^ may be successively formed.

Then it is obvious that the product 2S„u contains no multiple of 9

below the «'\ and therefore the coefficients in S„ must be the required

quantities po, p^, pi pn-j^
when n is odd, or p^, pi, pt ^p^ when

2 3

n is even. _
Sc2
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42. Applications, when the law of force is the inverse square of the

distance.

(1) Let AB be the axis of a very broad cylindrical plate, the

round side of which is covered with a fluid, attractive or repulsive,

and so distributed as to exert no action on any point in the axis.

Put AB = 1, APo= a the radius of the base.

Let ab be one of the very small annuli into which the edge is

divided, and put aPo= x.

Then it is easy to prove that the action of the annulus a 5 on the11
point A is proportional to

-^ -jr,
or ultimately to the differential

1 X .

coefficient of -7— with respect to x, that is, to -t-t? ryj, which quan-Aa {o'' + arj»

tity expanded is proportional to a; — f rj + &c. ;
and as b is very great

compared with x, we need only take the first term of this expansion.

In this case we may therefore put ao = l, a,
= 2, ai = 3, &c.,

and therefore, M = sin0 + 2sin30 + 3sin50 + 4sin70 + &c.

The calculus of S„ as indicated in the preceding article will be as

follows :

So = pay Si = |OoCOS&,

f ^ coefficient of sin2g in ZS^u ^31
\

'
"~

coefficient of sin0 in 2SoU
~

2)'

•

Si = 2coseSi - x^So

=
Po Jcos20-^};

•
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i _ coefficient of sin30 in 2SiU _2\
\

*
~

coefficient of sin29 in 2«S^m
~

3j

S:i=2COS0S,-\Si

= Po{cos39 — -cosO], ....

J _ coefficient of sin40 in 2S3U _ 5\

\
'
~

coefficient of sin30 in ZSaU ""6/

*S. = 2cos9S3 - Xs.S^ .

=
po|cos40

— -cos 20 — ->,

f coefficient of sin50 in 2SiU _ 91

\

'^
coefficient of sin4!0 in gAysM

~
lOj

Si = 2cos9S^ - XiSi
-

=
po |cos 50

- - cos 30 — -> .

{2 2 11
cos60 — ^cos40

—
^cos20

—
^>

{2 2 2 1
cos 70 — = COS 50 — - COS 30 — - cos 0> .

Generally when n is an odd integer, suppose

-^^ =
cos(w-l)0-^— {cos(m-3)0 + cos(« - 5)0 + ... + cos20 + i},

and — = cos »0 {cos (w
—

2) + cos (« — 4) + ... + cos 30 + cos 0}.
po n - -

The coefficient of sin w0 in 2»S'„_,« = -. p„,
n — 1

^

of sin(M+l)0 in 2S„u = .p^;n

therefore, x„ = <^±fi^ = 1 - ^ +^ .

n(n + l) n n + 1
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Hence, ^=2cos0.—-X^*^
pa pa po

= cosln+l)9 -{cosin-l^e + cos(n-S)e + ...+cos29+i},

and by a repetition of the same process,

O Q . ,> .*,{ ,-; . •-:..

—^ = cos(»+2)0 -{cbsw0 + cbs(«- 2) . + ... + cos30 + cos^}.
pa n-TXt

Hence the laws by which S^-x and S^ are expressed are uniform,

and therefore we get for the required unknown quantities,

2 2 2 _
po
=

Pa, pi=--pa> P8=~^Po P—i -P<>> Pn-Po-

The positive values may be taken for the repulsive and the negative

for the attractive parts of the fluid, and if E denote the excess of the

former, we have

[n n n n n] n [ n } n

.-. po=»^-T
—

> which gives the complete solution of the problem.

Thus the application of a process purely algebraical, conducts in this

instance to a transient function, for if we suppose the final and equal

densities po, p^ to be finite, all the intermediate values of the densities

p^, pa pn-x become indefinitely small when n is made infinite; yet

they are not to be rejected, for if so, the total charge would be 4nra^,
it

whereas its actual value is only inra ~, an infinitesimal of the secondpa
as Its itutuiu vaiuc is

fJiii-y
•±'iru,

—

order.

.Vo

Pm/
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(2) Let AB be a right line perpendicular to the bounding planes,

which terminate a solid composed of parallel strata of indefinite extent,

but uniformly dense throughout that extent ; and let the law of den-

sity of the different strata be such that there is no action on any

point Q„ within.

Let the solid be decomposed into n + 1 equal portions in which the

densities are as before represented by po, pi, p% /o„.

In this case the quantities ao, flj, 02 ci„ are all equal, and putting
them equal to unity, we have

u= sm9 + sin39 + sm56 + SiC.

So= po, Si=poCOS9, \ = 1»

S2 = 2cos9 . S^ — XiSo=poCos29, X8= l,

Ss=-2cos9.Sz — \2Si = poCOs39, X3=l,

and generally, S„=pocosn9, and\„ = l.

Hence the solution is pi
= 0, p2

=
p»_i

= 0, pn
=

po'

And if E be the whole mass and A the area of the bounding planes,

which is supposed very great, we have

E = 2iA.po.

This result is analogous to the well-known fact, that electricity can

reside only on the surfaces of bodies, and affords another instance of

a transient function.

The method of decomposition may always be applied to obtain

numerical approximations in cases which involve Definite Integrals;

for instance, in the distribution of electricity on bodies, and in esti-

mating the forces between bodies which are electrised.

(2) By means of Reciprocal Functions.

43. Equations which contain only one definite integral.

Let f(f, a) be a function involving a variable f, and an arbitrary

parameter a; F{a) a function containing a only, and (p (t) a function
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containing t only, the first and second of these functions being given,
it is required to find the third so as to satisfy the definite integral

equation

!,<l>{t).f{t,a)
= F{a),

the limits of t being given.

Suppose (p {t) expanded according to any given class of self-reciprocal

functions as P„, that is,

^(^)
= CoPo + CiPi + C2P2 + C3P3, &c. ad infinitum,

where the coefficients Co, c,, Ca, &c. are unknown.

Let J^{t, a) be expanded according to the same reciprocal functions,

f{t, a)
= AoPt, + A^P^ + A2P2 + A3P3, &c. ad infinitum.

Then j?P„P„= 0, and fiPnPn = a„ a known numerical quantity depend-
ant on n, and on the particular species of reciprocal functions which

are employed.

Multiply both series and integrate between the given limits of /,

and the proposed equation gives us

F (a)
= Aoao.Co + Ai ai.c^+ A2 as . C2 + ^303 . C3, &c. od infinitum.

Now An being a known function of a and n, we can by Art. 23.

Sect. VII., find another function of a and n, as An such that fiA„A„' = 0,

when m and n are unequal integers.

Multiply the equation successively by Ao, A^', Ai, &c. and take the

definite integrals relative to a, hence

jaA(s-P\a) = CoOojaAaAt, ',
.'. Co ^ C A ' A '

f.A,'F{a) = e,aJ.A,A,'; •.: c, = ^^4^,

and generally c„ = r'^'j •

Hence <b(f) = ^ /^^°'--^(«) + ^ fgA^Fja) ^
P. fa-A^'Fja) ^ ^^^ '

ao
'

faAo'Ao a,' faAi'Ai aj faAa'A^
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44. Examples.

In the following examples two things are to be observed. First,

that the given functions are supposed to be continuous, and therefore

the equation proposed must hold true for all values of the parameter a.

Secondly, In the final equation for determining the unknown coeffi-

cients, instead of using a reciprocal multiplier any means more simple

may be occasionally employed.

Ex. 1. Given ^^(/), cos («^)
= 1 to determine <^{t\ ^he limits of t

being and tt.

Put (^{t)
= Co + Ci cos/ + d cos (2/) + d cos (3/), &c. ml infinitum,

and cos {at)
= Ao + A^ cos t + A2 cos (2/) + A^ cos (3/), &c.,

where to determine Ao, A^, A,., &c. we multiply successively by 1,

cos t, cos 2 A &c., and integrate from t = to t = ir, whence

, _ sin {a-n) J _ 2asin«-7r , _ 2«sin«7r

J n ^ / ,x„ 2« sin air ,

and generally A^ = (
—

1) .
—
ri ^ when n> 0.

7r {a — n J

Multiply both series and integrate, and we get by the proposed

equation,

[Co a.€i
,

«C2 aCi .
\

1 = sm a-K
{

—=- + ~„
—-„ z

—
-5 + &c.>

{a a^—1 «^ — 2^ «^— 3^ J

Put a = 0, 1, 2, 3, &c. successively, and we get

_ 1 2 3 .

C(j
—

, Cj — , C2 = —
, oZC.

•TT TT TT

Hence tr(p{t)
= 1 + 2cos/ + 2cos2# + 2cos3#, &c.

The value of <t)(t) is therefore the transient function -
. =^^
—

^-.'^ ^
—

i-^ .^^ ^
TT I — Hh cos t + h^

{Vide Art. 38. Function Fo), when h is put equal to unity.

Vol. V. Part III. 3D
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Ex. 2. Given fi(p(t) .cos {at)
= cos (a 0).

As before (p{t)
= c„ + Cj cos t + c^ cos 2t + CaCosSt + &c.

sin flTT fl 2«cos^ 2« cos 2^ 2a cos 3^ „ ]
cos at = < J \ h &c.>

therefore cos a0 = sin(a7r)l-
- -~- + f^' „ ^^j + &c.l

'

[a a^ — 1 a^— 2' a- — 3^ J

But also by reciprocal functions we get

sinaTrQ 2acos0 2acos20 2acos30 „ 1

cosae = __
|-

_ _,__ +
--^-^^ -,__ +

&c.}

TT 1 2COS0 2cos20 2cos30 „Hence Co = -
, c,

=
, c, = , Cs — , &c.

TT TT TT TT

therefore 7r^(#)
= 1 +2cos0 cos^ + 2 cos20 cos 2^ + 2 cos36 cos 3# + &c.

or 27r(pt= 1 +2COS {9 + t) + 2 cos 2{e + 1) + 2COS 3{9 + 1) + Sic.

+ l + 2cos{9-t) + 2cos2{9-t) + 2 cos 3{9-t) + &c.

^ (1-A)(1+^) (1-A)(1+^)
l-2h cos{9 + + A' 1 - 2A cos (0

- ^ + *'

when A is put equal to unity.

Ex. 3. Given ft <{> (t)
: cos {at)

=
27'(a).

jP(a) must be such (in continuous functions) as not to change when
— a is put for a, since cos (at) which is under the sign of integration

will not then alter its value.

Proceeding as in the former examples we get

ET/ ^
•

\<^o ac, ac, acs „
]

F{a) = sm«.
|-

_
-,_^ + -,_^ _

-^-^^
+

&c.}

Put successively a = 0, 1, 2, 3, &c. hence

Co = -
. 1^(0) , c.

= -
. F{1), c, = -. F{2), &c.

ir IT TT

hence 7r(p{t)
= F(0) +2F(1). cos #+ 2F(2) . cos 2#+ 2F(3) cos(30 + &c.
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Ex. 4. Given ft(p{t) . {/{a + t) +f{a-t)\ = F{a),

where the forms of the functions f and F are known, and that of

required.

Put
(f){t)

= Co -1- Ci cos t + d cos %t + c-i cos St + kc.

f{a) = oo + a, cos« + 02 cos 2«+ "3 cos 3a + &c.

where a,„ a^, a^, &c. are known numerical quantities; hence

J'{a + t)+J^(a-t)=^2ao+2ai cosacos t+2a2 cos 2a cos 2l + 2a3 cos 3« cos 3^-r&c.

and JP(«) = 27raoCo + 7raiCi COS« + wa^d COS2« + TrogCs cos3« + &c. ;

therefore Co = ——-
, c,

= —^— . fa F{a) . cos « , c^ = -^— L F{a) cos 2«, &c.

J w.. 1 r t:t/ X f 1 2C0S«C0S^ 2cOS2«COS2# „ ]and 7r(p{t)
= — f„F{a) \—- + + + &c.}

Tr [Zao Oj as J

the hmits of all the integrals being and tr.

Ex. 5. /*%=J-,.Jta — t a — h

In this case we shall employ the functions V^ reciprocal to t".

Put <^{t)
= CflFo + Ci F", At C'^V-i + &c. «c? infinitum,

1 1 !?;<'. , • ^ .

and
;:

= —
\

—
; ^—: + &c. «« infinitum;a-t a a' {^

"^

^, f 1 c„ 1 c, 2.1 6-2 3.2.1 Cs „

therefore r = ;r^ • -5 + ^ . e • ^ —
~.

—
^ c <-,

• -7 + &c-a-o a 2.3 e^ 3.4.5 a^ 4.5.6.7 «'

1 * A= 6'= -+—,+— + —4 , &c.
a a^ ci^ a

TJ 1
2.3 , 3.4.5 ,, 4.5.6.7 ,3 „

Hence Co = 1, c,
= ~

. *, c, =
^ ^

. V, c^ =
.^ ^ ^

. h\ &c.

and <^{t)
= r,-^.br, + ^^.b^F.,-^^^^.b^r.. &c.

= r„ -
1. r,.(4i) +— •FAuy -

1^^. r3(4*r + &c.

3d2
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Put F{k) = Fo + F,A + V-it + kc. ad infinitum,

as found in Art. 28. Sect. vii.

Hence F{ -
kr')

= K- V.kr" + V.,kr' - &c.

theretore
j^ ^^^-—^

-
2 ^^» a ^^*+ 2.4"

'^'^
2.4.6-'^'^''^

the limits of t being and 1
;

TT ^^ v'l-T^
»2' 2.4 2.4.6

Ex. 6. j,<l>{t).f{a-t)=f{a-h).

Denote by Pi,„ the reciprocal function P„ when ^ is the variable,

by Pi_ri when 6 is the variable.

Let/(«-0 = J,P,,, + A,Pt,, + A,P,,, + A^Pt,^ + &c.

and
(j>{t)

= CoPf.o + c,Pu + CaP,,^ + c^.Pt.z + &c.

.-. f{a-h) = ^oCo + g
. AxCi + g

. ^sC^ + \ .A^Ci + &c.

but changing t into J in the expansion of J'{a
—

t)
we get

f{a-h) = AoP,,o + ^,Pm + A,P,,, + A,P,, + &c.

which values are identical when Cc = Pi.,o, c,
= SPs,,, c^ = SPh.n, &c.

therefore
(j){t)

= PmP.o + SP^P., + 5P„,P,. + 7 P.^P.s + &c.

45. Ow ^A^ appendage necessary to complete the Solution of' a

Definite-integral Equation.

In the examples in which f{a, t)
= cosa^ given in the last article,

the function F{a) is adapted to general differentiation relative to a,

under the definite integral ; but besides the prime value thus obtained,

there must be an appendage to represent the same operation on zero.
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which contains an infinite number of constants multiplied by functions

of a, which may vanish or not, and be connected or unconnected ac-

cording both to the nature of the particular operation and the nature

of the calculus in which it is employed ;
this has been already shewn

by Mr Peacock*, and in Art. 20. Sect. vi. of this Memoir. The same

remark applies to the value of
(t)

in the general equation

to complete it we must add ^{t) where ft^{t) .f{t, a)
= 0.

To obtain \|/(/)
in the equation ft<p{t) .cos (at)

=F{a) above mentioned.

Let us suppose (pi {t), (p-^ {t), found by the method of Art. 44., to

satisfy the equations

Jt(px (t) . cos (at)
= 1 for continuity,

ft(p2{t) . sin {at)
= 1 for discontinuity,

differentiating with respect to a, the first 2n times, the second 2«— 1

times, we get

f,<pi{t).f"' cos (at) = 0,

ft (p.2 it), t"-' cos {at)
^ 0.

Hence,

^{t)
=

(p,{t) {At + Bf + Ct\ &c.} + 0,(0 {A'f + Bt^ + C't'^c.},

where A, B, C, &c. A', B', C, &;c. are absolute constants.

When transient functions appear in the appendage or even in the

prime solution, they must not be neglected (particularly in the mole-

cular investigations) except they are inadmissible by the nature of the

particular question, for they have a physical as well as a geometrical

meaning, as they are capable of expressing in continuous analytical

forms, the state of bodies and their mutual actions when they are com-

posed of absolute mathematical centres of forces, all separated mutually by

infinitesimal intervals.

Q/ Q; a> 04 Qf Jr

* Third Vol. Report of British Assoc, p. 212, &c.
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Thus let the ratio of the weight to the extent of an element P of

a straight rod AB be expressed by the transient function

(\-h){\+h) I, . ,-——^ /o -^N J.2 ' when ^ = 1 ;

and where AP=(p, and the whole length AJB = ir, and n is very great

and integer.

Then the whole weight is finite, viz. f -—^—^—'—-—-—'—n = 1, vet"
J^l

— 2hcos2n(p + h^ ^

this function has only an existence when = 0, -, — ,
— ...&c., and

therefore the rod is actually composed of disjoint particles Q,, Qa, Q3,

&c. which are separated by equal intervals, each infinitesimals, viz. -,

when n is very great, and equal to the actual number of particles ;

the action of such a system on another given one, may always be

estimated by using the transient function in its general form, and lastly,

putting h equal unity.

46. Equations which contain two or more Definite Integrals.

Given, jj cp (t) .f(t, a, b) + f,^l.{t) .F {t, a, b) = E {a, b),

the forms of the functions^ F, E being known, the forms of and

<\f
are required.

Put /(#, a, b) = ^oPo + A,P, + A^P^ + A^Ps + &c. ad inf.

where A^, Ai, A2, &c. are known functions of a and b, and Po, Pi, &c.

any self-reciprocal functions of t, such that ftPr!^
= a„, which will be a

known numerical quantity.

Similarly, F {t, a, b)
= B,Po + B,Pi + B,P, + B,P^ + &c. ad inf.,

where B^, Bi, B^, &c. are known functions of a and b.

Again, let (p{t) =CoPo + c,Pi +CaP2 + C3P3, &c. ad inf.

where Co, c,, Ca, &c. are unknown numerical quantities,

and
\l/{t)

= eoPo + ejPj+e2P2 + e3P3,&iC. ad inf..
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where eo, e^, e.,, &c. are also unknown.

The proposed equation then becomes

+ eoOoBo + eiUiBi + eia-iS^ + &c.)

Now to the function A„ there may be found a function A„ reciprocal relative to a,

and to B„ B„ b.

Let f„AaB„ = U„ a function of b only,

ftBoA,, = V„ a only.

Hence, f^AoE (a, b)-CoaofaAoAo= eoaoUo+ eia^Ui + 6.^0^112 + kc. ad inf.

ftBoE {a, b)
-

e^a^ fiBoB^ = c^a^K+ c, a, F; + c^a^ F; + &c. ad inf.

Let t/„ be the function of b, which is reciprocal to f7„,

V„ of «, V^.

\L k {Ao U,E {a, b)
- c,a,A,A^ t7"„)

= e„a„ /j t7„ U^
Hence, \ \,

\fJ,{Bo KEia, b)
- e„a,B,B,K) = c„«„/„F„rJ

by which equations the constants Co, e,, are immediately determined.

\fa fb (Ao U„E (a, b)
-
c^a^A^A^ U„) = e„ a„ /j Un UA

Also, \ >;

(/„ /, (^0 KE{a, b)
-
e,a,B,B, K) = c„a„ f„ V„ Vj\

and since c„, e^,
have been found, the latter equations determine gene-

rally the coefficients c„, e„, and therefore the required functions <p{t),

^ {t) are known.

In like manner by employing reciprocal functions relative to double

integration, we may solve equations containing three unknown func-

tions, &c.

The problem of the distribution of electricity on bodies of which

the surfaces are not . continuous, introduces equations of this nature.
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47. Simultaneous Equations to Definite Integrals.

Given l-^*^^^^
••^^^' *) +-'^^(^) • ^^^' «) = ^^^H

\!i<p{t)Mt, a) +f,i.(t) .FM a)
= EAa)i

'

the forms of the functions j^ F, E,fi, Fi, Ei, being known, the forms

of (p
and

\{^
are required.

Multiply the second equation by an arbitrary quantity \, and adding

to the first, put

f(t, a) + X/ {t, a)
= A,Po + A,P, + A,P, + &c.

F{t,a) +xF^{t,a) = AoQo + A,Q, + A,Q2 + &c.

(pit)
= CoPo + c,P,' + c,P^ + &c.

^^(0 = ^oQo' + e,Q, + e,Q: + &c.

where P„, P,, P2, &c.\ « .. /? ^ i^ ^ .-k o f are functions of t only,
Qo, Qi, Q2, &C.J

^

A^, Ai, Ai,\ known functions of a, X, and self-reciprocal relative

to a,

PI, Qn reciprocal to P„, Q„ respectively, hence

(putting /,P„P„'=;),„ j;Q„Q„'=^„) E{a) +XEM
= c^poAo + c,p,Ai + C2P2A2 + &c. + eoqoAo + e^q.A, + e^q^A-^, &c. ;

.-. faAoEia) + X faAoE^ (a)
=

{copo + eoqo)faAo\

faA,E{a) + XlA,E,{a) = iCiP^ + e,q,)faA^

and giving to X any two values in each of these equations, the first

will produce two equations which determine Co, eo, the second will

similarly give Ci, e^, &c., and thence the functions (p{t), \l/t
are known.

The same method is applicable to any number (n) of simultaneous

equations involving n unknown functions.

48. Definite-integral Equations of superior orders and degrees.

Methods similar to the preceding are applicable in most cases of

the former class thus :
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Given fj,<t>{t, T)f(t, T, a)
= F{a),

the forms F and J" being known to determine
(p.

By Art. 16. Sect. iv. let a function Q„ be formed which shall be

self-reciprocal, relative to double integration for t and t.

Put ^(#,t) = Co Q„+ CiQi + C2Q2 + &C. 1
_rrri'i

and/(^,T,«) = ^„Q„+^,Q, + ^,Q, + &c.r'''*
^^^ a»-i.^t^»,

hence F(a) = aoCo^o + aiCi^, +0203^2 + &c.

Let ^„' be a function of a reciprocal to A„,

then faA,'F{a) = c^aJaA.A^,

faA,'F{a) = c,aJaA,A„

&c. &c.

whence Co, Ci, &c. being determined, the function (p{f,T) is known.

Equations of superior degrees must generally be converted into equa-
tions of superior orders to be easily solved, thus;

Given f,(p{t) .fit, a) x
[,cp{t)

. F{t, «) = >/.(«),

the forms ^ F, and
-^^f being given to find the function 0.

Introduce another variable t having the same limits as t, then it is

evident that

J,<p{t) . F(t, a) = /^«^(t) . F{t, a) ;

.-. U^cp{t) .(pi-r) ./{t, a) . F{t, a) = f (a),

and since y(#, a) . F{t, a) is a given function of t, t and a, the unknown
function (p{t).(p(T) will be determined as above, and representing it by

<p^(t,T), let a be a root of the equation 0(t) = 1, then since (p{t).(p{T)
=

0i(#, t), we get the required function
(}>{t)

=
<pi{t, a), and again putting

^ = a we get ^1 (a, a)
= 1, from which equation a is known, and there-

fore <p{t)
=

<pi{t,a) is also known.

49. In researches on the subjects of electricity, and the phaenomena

dependent on the molecular construction of bodies, the only data which

can be furnished by experience are the total actions, and consequently
Vol. V. JPart III. SE
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the analytical processes of calculation require the solution of definite

integral equations: some of these have been resolved by Laplace and

others, by means of particular artifices by which the unknown functions

were subjected to differential equations ; but as no general method
existed for this purpose, the resolution of such equations has been ex-

tremely limited, and apparently simple physical problems, such as the

distribution of electricity on surfaces, (with the exception of a very
few cases) have consequently defied the powers of analysis. Besides,

an abundance of facts connected with the interior arrangement of the

molecules of bodies are of such a nature, that mathematics possessed
but little power of reducing them to analytical forms, calculated to

produce any valuable inferences ; these facts are daily increasing in

number, and the analyst is far behind the cultivator of Experimental

Physics. The Memoirs on the Inverse Method of Definite Integrals

which are now concluded, and which have been pursued when the

absence of ordinary engagements permitted, originated in the belief

that by proceeding gradually from the simplest classes of Definite

Integrals to the more complex, the general principles of an Inverse

Method would be discoverable. The formation of all possible classes

of Reciprocal Functions, and the Transient Functions included amongst
them, have at length furnished means for the resolution of equations
to Definite Integrals. The author is however well aware that there

must exist numerous imperfections in the manner in which his design
is executed, but believing also that by those endeavours, however weak,

some fresh powers have accrued to analysis, as an instrument of investi-

gation, he trusts they will deserve the approbation of the Society.

R. MURPHY.
Caius Colleob,

Dec. 24, 1834.
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XV. Oil the Determination of the Exterior and Interior Attractions of

Ellipsoids of Variable Densities. By George Green, Esq.,

Caius College.

[Read May 6, 1833.]

The determination of the attractions of ellipsoids, even on the hypo-
thesis of a uniform density, has, on account of the utility and difficulty

of the problem, engaged the attention of the greatest mathematicians.

Its solution, first attempted by Newton, has been improved by the suc-

cessive labours of Maclaurin, d'Alembert, Lagrange, Legendre, Laplace,

and Ivory. Before presenting a new solution of such a problem, it

will naturally be expected that I should explain in some degree the

nature of the method to be employed for that end, in the following

paper; and this explanation will be the more requisite, because, from

a fear of encroaching too much upon the Society's time, some very

comprehensive analytical theorems have been in the first instance given
in all their generality.

It is well known, that when the attracted point p is situated within

the ellipsoid, the solution of the problem is comparatively easy, but

that from a breach of the law of continuity in the values of the

attractions when p passes from the interior of the ellipsoid into the

exterior space, the functions by which these attractions are given in the

former case will not apply to the latter. As however this violation

of the law of continuity may always be avoided by simply adding a

positive quantity, u" for instance, to that under the radical signs in

the original integrals, it seemed probable that some advantage might
thus be obtained, and the attractions in both cases, deduced from one

common formula which would only require the auxiliary variable u to

become evanescent in the final result. The principal advantage how-

ever which arises from the introduction of the new variable u, depends
Vol. V. Part III. SF
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on the property which a certain function F'* then possesses of satisfy-

ing a partial differential equation, whenever the law of the attraction

is inversely as any power n of the distance. For by a proper applica-

tion of this equation we may avoid all the difficulty usually presented

by the integrations, and at the same time find the required attrac-

tions when the density p is expressed by the product of two factors,

one of which is a simple algebraic quantity, and the remaining one

any rational and entire function of the rectangular co-ordinates of the

element to which p belongs.

The original problem being thus brought completely within the pale

of analysis, is no longer confined as it were to the three dimensions of

space. In fact, p' may represent a function of any number s, of in-

dependent variables, each of which may be marked with an accent, in

order to distinguish this first system from another system of s analo-

gous and unaccented variables, to be afterwards noticed, and F' may
represent the value of a multiple integral of s dimensions, of which every

element is expressed by a fraction having for numerator the continued

product of p into the elements of all the accented variables, and for

denominator a quantity containing the whole of these, with the un-

accented ones also formed exactly on the model of the corresponding

one in the value of V belonging to the original problem. Supposing
now the auxiliary variable u is introduced, and the s integrations are

effected, then will the resulting value of ^ be a function of u and of

the s unaccented variable to be determined. But after the introduction

* This function in its original form is given by

-. /• p' dx dy dz

J
{{X

- xy + (/ - yf + (.'
-

2)2}"-^'

where dx dy dz represents the volume of any element of the attracting body of which p'

is the density and x , y , z are the rectangular co-ordinates ; x, y, z being the co-ordinates

of the attracted point p. But when we introduce the auxiliary variable u which is to be

made equal to zero in the final result,

jr _ r p dx dy dz

J{(^a:'-xf-\.{y-yy + {z-zf + u^yr'
- .YOii

both integrals being supposed to extend over the whole volume of the attracting body.
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of w, the function V has the property of satisfying a partial differen-

tial equation of the second order, and by an application of the Cal-

culus of Variations it will be proved in the sequel that the required

value of V may always be obtained by merely satisfying this equation,

and certain other simple conditions when p is equal to the product
of two factors, one of which may be any rational and entire function

of the s accented variables, the remaining one being a simple algebraic

function whose form continues unchanged, whatever that of the first

factor may be.

The chief object of the present paper is to resolve the problem
in the more extended signification which we have endeavoured to ex-

plain in the preceding paragraph, and, as is by no means unusual, the

simplicity of the conclusions corresponds with the generality of the

method employed in obtaining them. For when we introduce other

variables connected with the original ones by the most simple rela-

tions, the rational and entire factor in p still remains rational and

entire of the same degree, and may vmder its altered form be ex-

panded in a series of a finite number of similar quantities, to each of

which there corresponds a term in V, expressed by the product of two

factors; the first being a rational and entire function of s of the new
variables entering into V, and the second a function of the remaining
new variable h, whose differential coefficient is an algebraic quantity.
Moreover the first is immediately deducible from the corresponding

part of p without calculation.

The solution of the problem in its extended signification being thus

completed, no difficulties can arise in applying it to particular cases.

We have therefore on the present occasion given two applications

only. In the first, which relates to the attractions of ellipsoids, both

the interior and exterior ones are comprised in a common formula

agreeably to a preceding observation, and the discontinuity before

noticed falls upon one of the independent variables, in functions of

which both these attractions are expressed ; this variable being con-

stantly equal to zero so long as the attracted point j) remains within

the ellipsoid, but becoming equal to a determinate function of the co-

3f2
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ordinates of p, when p is situated in the exterior space. Instead too

of seeking directly the value of V, all its differentials have first been

deduced, and thence the value of V obtained by integration. This

slight modification has been given to our method, both because it

renders the determination of V in the case considered more easy, and

may likewise be usefully employed in the more general one before

mentioned. The other application is remarkable both on account of

the simplicity of the results to which it leads, and of their analogy

with those obtained by Laplace. (Mdc. C^. Liv. iii. Chap. 2.) In fact,

it would be easy to shew that these last are only particular cases of

the more general ones contained in the article now under notice.

The general solution of the partial differential equation of the second

order, deducible from the seventh and three following articles of this

paper, and in which the principal variable 1^ is a function of # + 1

independent variables, is capable of being applied with advantage to

various interesting physico-mathematical enquiries. Indeed the law of

the distribution of heat in a body of ellipsoidal figure, and that of the

motion of a non-elastic fluid over a solid obstacle of similar form,

may be thence almost immediately deduced; but the length of our

paper entirely precludes any thing more than an allusion to these ap-

plications on the present occasion.

1. The object of the present paper will be to exhibit certain

general analytical formulae, from which may be deduced as a very

particular case the values of the attractions exerted by ellipsoids upon

any exterior or interior point, supposing their densities to be represented

by functions of great generality.

Let us therefore begin with considering p as a function of the s

independent variables

»r
J , x<i , x^ ••••• o/i,

and let us afterwards form the function

dxjdx^ dxj dxl . p .^.

'{{x,-xiJ^{x,-xl)^^ ^(x.-xlJ^u'-S^
r=f- n-1

2
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the sign / serving to indicate * integrations relative to the variables

x^, x-i, X3', x/, and similar to the double and triple ones employed
in the solution of geometrical and mechanical problems. Then it is

easy to perceive that the function V will satisfy the partial differen-

tial equation

t/vr ^, d^ ^ n-s dV
" ~

dx,^
"^
dxi

"*" ^
dx^

'^ du^^ u du ^^'

seeing that in consequence of the denominator of the expression (1),

every one of its elements satisfies for V to the equation (2).

To give an example of the manner in w^hich the multiple integral

is to be taken, we may conceive it to comprise all the real values

both positive and negative of the variables ar/, x^, x,, which satisfy

the condition

the symbol /
, as is the case also in what follows, not excluding equality.

2. In order to avoid the difficulties usually attendant on integra-

tions like those of the formula (1), it will here be convenient to notice

two or three very simple properties of the function F".

In the first place, then, it is clear that the denominator of the

formula (1) may always be expanded in an ascending series of the

entire powers of the increments of the variables x^, x^, x„ u, and

their various products by means of Taylor's Theorem, unless we have

simultaneously

and therefore V may always be expanded in a series of like form,

unless the s + 1 equations immediately preceding are all satisfied for

one at least of the elements of V. It is thus evident that the func-

tion V possesses the property in question, except only when the two

conditions
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% + %^%+ +% z 1 and u = .(3)

are satisfied simultaneously, considering as we shall in what follows

the limits of the multiple integral (1) to be determined by the conr

dition (a)*.

In like manner it is clear that when

Z^2+ Jl+ + 77-2>^ (4)»
a?'

the expansion of V in powers of u will contain none but the even

powers of this variable.

Again, it is quite evident from the form of the function f^ that

when any one of the * + 1 independent variables therein contained be-

comes infinite, this function will vanish of itself.

3. The three foregoing properties of F combined with the equa-
tion (2) will furnish some useful results. In fact, let us consider the

quantity

fd.,d^,...d..duu-'.[[^)\ [^)\
+ (g)\ (^^)] (5)

where the multiple integral comprises all the real values whether posi-

tive or negative of x^, x^, x,, with all the real and positive values

of u which satisfy the condition

/!«
2 A< 2 « 2 /|/2

^^^^ +
-^^^^F^^ ^^^

* The necessity of this first property does not explicitly appear in what follows, but

it must be understood in order to place the application of the method of integration by

parts, in Nos. 3, 4, and 5, beyond the reach of objection. In fact, when V possesses this

property, the theorems demonstrated in these Nos. are certainly correct: but they are not

necessarily so for every form of the function V, as will be evident from what has been

shewn in the third article of my Essay on the Application of Mathematical Analysis to

the Theories of Electricity and Magnetism.
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«,, «2, a, and h being positive constant quantities; and such that

we may have generally

Ur > dr.

In this case the multiple integral (5) wiU have two extreme limits,

viz. one in which the conditions

V ^
or IT 71

-\ + -^ + + -^ + t;
= 1 and u— a. positive quantity (7)

are satisfied; and another defined by

% + %+ +-, /I and « = 0.

jVIoreover, for greater distinctness, we shall mark the quantities be-

longing to the former with two accents, and those belonging to the

latter with one only.

Let us now suppose that J^" is completely given, and likewise F,'

or that portion of f^' in which the condition (3) is satisfied ; then if

we regard F/ or the rest of T^' as quite arbitrary, and afterwards endea-

vour to make the quantity (5) a minimum, we shall get in the usual

way, by applying the Calculus of Variations,

/7F''

-fdx.dx, clx,u"-^^r,'~- (8)

seeing that ^V" = and SFj' = 0, because the quantities V" and F,'

are supposed given.

The first line of the expression immediately preceding gives generally

= 2'+'— — ^Hf^ {^•\
'

dxr du' u du ^ '

which is identical with the equation (2) No. 1, and the second line gives

dV= u'"''
~7-^(^' being evanescent) (9).
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From the nature pf the question de minimo just resolved, there can

be little doubt but that the equations (2') and (9) will suffice for the

complete determination of V, where V" and V-l are both given. But

as the truth of this will be of consequence in what follows, we will,

before proceeding farther, give a demonstration of it; and the more

wiUingly because it is simple and very general.

4. Now since in the expression (5) u is always positive, every one

of the elements of this expression will therefore be positive; and as

moreover V" and F"/ are given, there must necessarily exist a function

Fo which will render the quantity (5) a proper minimum. But it

follows, from the principles of the Calculus of Variations, that this

function Va, whatever it may be, must moreover satisfy the equations

(2') and (9). If then there exists any other function F", which satisfies

the last-named equations, and the given values of V" and V^, it is easy

to perceive that the function

will do so likewise, whatever the value of the arbitrary constant quan-

tity A may be. Suppose therefore that A originally equal to zero

is augmented successively by the infinitely small increments SA, then

the corresponding increment of V will be

Sr={F,-V,)SA,'

and the quantity (5) will remain constantly equal to its minimum

value, however great A may become, seeing that by what precedes

the variation of this quantity must be equal to zero whatever the

variation of V may be, provided the foregoing conditions are all satis-

fied. If then, besides F"o . there exists another function F"; satisfying

them all, we might give to the partial differentials of F", any values

however great, by augmenting the quantity A sufficiently, and thus

cause the quantity (5) to exceed any finite positive one, contrary to

what has just been proved. Hence no such value as F, exists.

We thus see that when F"" and F"/ are both given, there is one

and only one way of satisfying simultaneously the partial differential

equation (2), and the condition (9).
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5. Again, it is clear that the condition (4) is satisfied for the whole

of F"/; and it has before been observed (No. 2.) that when V is deter-

mined by the formula (1), it may always be expanded in a series of

the form

r = ^ + J?«' + Cu' + &c.

Hence the right side of the equation (9) is a quantity of the order

?/"-'+'
; and v! being evanescent, this equation will then evidently be

satisfied, provided we suppose, as we shall in what follows, that

n — s \ \ is positive.

If now we could by any means determine the values of V" and

V( belonging to the expression (1), the value of V would be had

without integration by simply satisfying (2') and (9), as is evident from

what precedes. But by supposing all the constant quantities a,, «2> «3

a, and h infinite, it is clear that we shall have

= V",

and then we have only to find V^, and thence deduce the general
value of V.

6. For this purpose let us consider the quantity

w ^ ^7 n-AdVdU dVdU
,

dVdU dVdU\
jdxidx.i...dx,duvr '{-r—-j— + -f— -j— + ••• + i—n— + -i t-)\ (10^

{dxidx^ dx.dxi dx.dx, du du j
' ^ '

the limits of the multiple integral being the same as those of the

expression (5), and U being a function of ;r,, x^, x, and u, satis-

fying the condition 0= U" when «,, a^, a, and h are infinite.

But the method of integration by parts reduces the quantity (10) to

— fdXidxi dx,—j— u'"-' . V
du

-/..........x..»».-.r|.,«^+^.^^} (H,

since = V"\ and as we have likewise = U", the same quantity (10)

may also be put under the form

Vol. V. Part III. SG
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dV— fdxidXi dxi—r—u'"-' . U'

.fdx,dx,...dx,duu''-'.u\^r'^,+^
+ '^^^ (12).

Supposing therefore that U like V also satisfies the equation (2'),

each of the expressions (11) and (12) will be reduced to its upper line,

and we shall get by equating these two forms of the same quantity :

idx^ dx2...dxs-j~ u'"-' V = fdxi dXi...dxs -y- «'"* U' :

au au

the quantities bearing an accent belonging, as was before explained, to

one of the extreme limits.

Because V satisfies the condition (9), the equation immediately pre-

ceding may be written

dU' dV
fdxidx2...dxs-j— u'"~' V = fdxidxi...dx,—y^u'"-' U,'.

du du

If now we give to the general function U the particular value

u= {{x,
-

x,"y + {x,
- x,y + + {x,

- xjy + u']^-,

which is admissible, since it satisfies for V to the equation (2), and gives
U" = 0, the last formula will become

dVi

/dxidx-i
dxsu'"'' —j-^du

{{x,
- x^y + {x,

- x:j + + (a;,
- xlj + m'^}^

_r dxydx^ c?;g,.(l-w) «'"-'+' V ,

\{x,
- xlj + (ar,

- xij + + {x,
- x:j + u''\'^

in which expression «' must be regarded as an evanescent positive

quantity.

In order now to effect the integrations indicated in the second

member of this equation, let us make
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x^
— Xi" = u'p COS 6i ; x-i—x" = u'p sin Qx cos 0^ ; Xi—x^'—u'p sin 0, sin 02 cos 03> &c.

until we arrive at the two last, viz.,

«,_! -x[^-^ = u'p sin^i sin ^^ sin0,_2 cos0,_i,

X, —
ar,"
=

«'/o sin ^1 sin 02 sin 0,_2 sin 0,_i;

u' being, as before, a vanishing quantity.

Then by the ordinary formulas for the transformation of multiple

integrals we get

dxi dx-i dx,= u''f/~^ sin^i'"^ sin 02*"' smO^^.^dp d6i dOi...dd,.i,

and the second number of the equation (13) by substitution will become

fdp d9i de, d9,_,p'-' sm9r'' sin 9,'-' sin e,_2 . (1
-

») r'

/ »+i (1*)-

But since u' is evanescent, we shall have p infinite, whenever x^, Xi,...x,

differ sensibly from x", x^',,..x"\ and as moreover w — * + l is positive,

it is easy to perceive that we may neglect all the parts of the last

integral for which these differences are sensible. Hence V may be

replaced with the constant value VI in which we have generally

Jbf ^^
vUf •

Again, because the integrals in (14) ought to be taken from 0,_, = o

to 0r-,
= 27r, and afterwards from 0,.

= O to 9r = -n-, whatever whole number

less than 5—1 may be represented by r, we easily obtain by means of

the well known function Gamma:

»

/sin^i'-'' sin 02'"' sin 03'"' sin0,_2C?0,</02...c?0,., = ^ZL;

and as by the aid of the same function we readily get

r»— * + l>

f P'~'dp _ V2/ V 2 )

Wi + ,f-^ 2r(^)
3g2
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the integral (14) will in consequence become

and thus the equation (13) will take the form

dx.dx, dx,u"^-^^
~^'^-^ ^~V^ )

J {{x,-x;J + {x,
- x;j +.... + (x,

- x:j + m'^
}
-^ r

(

w-l

In this equation V '\?, supposed to be such a function of x^, x.^ x,

and u, that the equation (2) and condition (9) are both satisfied. More-

over V'^O, and Vo is the particular value of F' for which

Let us now make, for abridgment,

dVP = u"-' -r-, {when u = 0) (A),

and afterwards change x into x\ and x" into x in the expression im-

mediately preceding, there will then result

_- s
ffi—s + V

r dx^ dx2 . ...dx,'P,'
""^^'^

I 2 / „, ,,^^
/ ^^ rr—r;

f^ •••U5),

{{x,'-x,f+{x,'-x,y + ...+{'>':-^sY+u"]— r(^)

--^(^).„

P' being what P becomes by changing generally Xr into x,', the unit

attached to the foot of P' indicating, as before, that the multiple

integral comprises only the values admitted by the condition {a), and

V being what V becomes when we make u = 0.

The equation just given supposes u' evanescent; but if we were to

replace u with the general value u in the first member, and make a

corresponding change in the second by replacing F'' with the general

value F, this equation would still be correct, and we should thus have
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r dx'dxi dxlP,' \ 2 J ,^ , „

f
' '—^ ^, = -L-jl—ir...(l6).-^

\{x,'-x,y+{x,'-x,y+... + {x:-x.y+u'\— r(^^)

For under the present form both its members evidently satisfy the

equation (2), the condition (9), and give V" = 0. Moreover, when the

condition (3) is satisfied, the same members are equal in consequence
of (15). Hence by what has before been proved (No. 4), they are

necessarily equal in general.

By comparing the equation (16) with the formula (1), it will become

evident, that whenever we can by any means obtain a value of V satis-

fying the foregoing conditions, we shall always be able to asSgn a value

of p which substituted in (1) shall reproduce this value of V. In fact,

by omitting the unit at the foot of P", which only serves to indicate

the limits of the integral, we readily see that the required value of p is

p'= \ P' {c).
r^ 'r. fn~S+l\ '

7. The foregoing results being obtained, it will now be convenient

to introduce other independent variables in the place of the original

ones, such that .

^1 = «i?i» «a = 02^2j x, = as^„ u = hv,

Oj, ttj, flj being functions of h, one of the new independent variables,

determined by

a,'
= «;* + h', a,- = (h' + h\ a/ = aj' + /^^

and V a function of the remaining new variables, f,, ^2, ^3, ^s satis-

fying the equation
1 = v' + |;^ + e/+ + U;

a,', a/, Os', 0/ being the same constant quantities as in the equation

(a), No 1. Moreover, Oi, a.^, a, will take the values belonging to

the extreme limit before marked with two accents, by simply assigning

to h an infinite value.



408 Mr green, ON THE DETERMINATION OF THE

The easiest way of transforming the equation (2) will be to remark,

that it is the general one which presents itself when we apply the

Calculus of Variations to the quantity (5), in order to render it a

minimum. We have therefore in the first place

and by the ordinary formula for the transformation of multiple integrals,

dx.dx, dx,du=^^^^ (l-2r' ^') d^,dl,...dldh.

• But since 1 - 2,'+' ^^ = v + ^»S,'+' ^,
a;

'

Ur

the expression (5) after substitution will become

fd^^d^i d^sdhui tti ih a.A""'!/""'"'.

Applying now the method of integration by parts to the variation of

this quantity, by reduction, we get for the equivalent of (2) the equation

^-
dh^^ V" ,^ a;) hdh^^^ ^^''^

ar'dl'
^' ""

^^^a:-dlr'

+ A^2^ X 2-^^ - A'22-Ml -^^ (2")

where the finite integrals are all supposed taken from r = l to r = * + l,

and from r' = 1 to r' = * + 1.

The last equation may be put under the abridged form,

d^ . ( ^«:^ dV
dJi

provided we have generally

o = -^+(»-s5-)^ + vr (n.
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coefficient o£^-mvV=~ {1 -^^'-2.'*' 1^ ^"' + ^ ^"}>

coefficient of^, i» V ^ = -^. lU

coefficient of -j^ in vF=-^|-» + 2^ ^i.

Moreover, when we employ the new variables

du
"

y-
^

^ .
;

•

Y' a? d^r dh ]'

and therefore the condition (9) in like manner will become—-(>-^r"i^ff-^} «'»^

where the values of the variables ^1,^2, ?, must be such as satisfy

the equation i;" = 0, whatever h may be; and as n-s-\-l is positive, it

is clear that this condition will always be satisfied, provided the partial

differentials of V relative to the new variables are all finite.

8. Let us now try whether it is possible to satisfy the equation

(2'") by means of a function of the form

r^Hct> (/?);

H depending on the variable h only, and
cp being a rational and entire

function of ^1, f^, f, of the degree 7, and quite independent of h.

By substituting this value of V in (2'") and making

^ d'H ( ^«:^ dH ,

„ ,,„^

we readily get
= v<^

-
'«P (18);

where, in virtue of (17) k must necessarily be a function of h only;
and as the required value of

(p,
if it exist, must be independent of k,

we have, by making h = in the equation immediately preceding,

= v'0 - ko(p (19);

ko being the value k, and v'^ that of v^ when h = 0.
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We shall demonstrate almost immediately that every function ^ of

the form (20), No. 9, which satisfies the equation (19), and which there-

fore is independent of h, will likewise satisfy the equation (18); and

the corresponding value of k obtained from the latter being substituted

in the ordinary differential equation (17), we shall only have to integrate
this last in order to have a proper value of V.

9. To satisfy the equation (19) let us assume

<^
= ^(e.^ ?/, ?3^ ?/)?,.?„ &c (20);

F being the characteristic of a rational and entire function of the

degree 2y', and the most general of its kind, and f,, ^„ &c. designating
the variables in which are affected with odd exponents only; so that

if their number be v we shall have

7 = 27' + c,

the remaining variables having none but even exponents. Then it is

easy to perceive, that after substitution the second member of the

equation (19) will be precisely of the same form as the assumed value

of
(p,

and by equating separately to zero the coefficients of the various

powers and products of ^1, |s, ^,, we shall obtain just the same

number of linear algebraic equations as there are coefficients in
<p,

and

consequently be enabled to determine the ratios of these coeflScients

together with the constant quantity ^0.

In fact, by writing the foregoing value of
(p

under the form

</)
= aS'^„„„, „„?.•"' ?."» ?»•" (20');

and proceeding as above described, the coefficient of ^ri ^/"t ^,'',

will give the general equation

K + 2)(m.+ ])

^..i K+2)K + i) .

"r
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the double finite integral comprising all the values of r and r, except
those in which r = r

, and consequently containing when completely

expanded s (s
-

1) terms.

For the terms of the highest degree 7 and of which the number is

7 + 1.7 + 2 y + s — l _ ^

the last line of the expression (21) evidently vanishes, and thus we
obtain JV distinct linear equations between the coefficients of the degree

7 in
<p

and ko.

Moreover, from the form of these equations it is evident that we

may obtain by elimination one equation in ko of the degree JV, of

which each of the iV roots will give a distinct value of the function

(p^'y\ having one arbitrary constant for factor; the homogeneous function

^''1'' being composed of all the terms of the highest degree, 7 in
(p.

But the coefficients of
(p'-^''

and kg being known, we may thence easily

deduce all the remaining coefficients in
(j>, by means of the formula (21).

Now, since the A'' linear equations have no terms except those of

which the coefficients of ^'^^ are factors, it follows that if ^0 were taken

at will, the resulting values of all these coefficients would be equal to

zero. If however we obtain the values of N' — 1 of the coefficients

in terms of the remaining one A from iV- 1 of the equations, by the

ordinary formulas, and substitute these in the remaining equation, we
shall get a result of the form

K.A=0,
where jRT is a function of ka of the degree iV. We shall thus have

only two cases to consider : First, that in which A = 0, and consequently
also all the other coefficients of 0*^' together with the remaining ones

in
<p,

as will be evident from the formulae (21). Hence, in this case

= 0:

Secondly, that in which kg is one of the iV roots of = K, as for

instance, ko in this case all the coefficients of will become multiples

of A, and we shall have

Vol. V. Part III. S«
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(j)
= Acpr.

01 being a determinate function of ^,, ^a, E<-

We thus see that when we consider functions of the form (20)

only, the most general solution that the equation

= v'^ -
*o'0 (19')

admits is

or, (p
= 0; or, (p

= atp;

a being a quantity independent of ^,, ^2, ^„ and (p any function

which satisfies for <p to the equation (19'). But by affecting both sides

of the equation

with the symbol v, we get

= V • v' -
*o' . V ^ ;

and we shall afterwards prove the operations indicated by v and v'

to be such, that whatever may be,

V v' = V' V 0-

Hence, the last equation becomes

v' (v ^)
-

k„' V (p;

and as V like (p
is of the form (20), it follows from what has just

been shewn, that

either = v cp, or, \7 (p
=

acp,

a being a quantity independent of ^i, ^2, ?«•

The first is inadmissible, since it would give ^ = 0; therefore when

(p
satisfies (19'), we have

V 0'
=

a(p, i.e. = V —
"0-

But since a is independent of ^1, ^2, Bs, this last equation is

evidently identical with (18), since the equation (18) merely requires that

K should be independent of fi, ^2, ^s-
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Having thus proved that every function of the form (20) which

satisfies (19) will likewise satisfy (18), it will be more simple to deter-

mine the remaining coefficients of
(j>

from those of
cp^^^ by means of

tlie last equation, than to employ the formula (21) for that purpose.

Making therefore h infinite in (18), and writing
~ in the place

of K, we get

where (22) comprises the —
^
——! combinations which can be formed of1.2

the s indices taken in pairs.

If now we substitute the value of before given (20'), and recol-

lect that for the terms of the highest degree we have 2»«r = 7, we shall

readily get

0=(7-2»«,)(7+2»?r+»-l)^™,,»,,....,+(7».+2)(»w,+l)^„^, „^+2,...„^...(22),

from which all the remaining coefficients in will readily be deduced,
when those of the part 0'^' are known.

10. It now remains, as was before observed, to integrate the ordi-

nary differential equation (17) No. 8. But, by the known theory of

linear equations, the integration of (17) will always become more simple
when we have a particular value satisfying it, and fortunately in the

present case such a value may always be obtained from by simply

changing f, into
'

, . In fact if we represent the value thus ob-

tained by Ho we shall have

cih
^'

</e/«v(2«:')'

and by a second differentiation

3H2
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(22) as before comprising all the ~—— combinations of the * indices

taken in pairs.

Hence, the quantity on the right side of the equation (17), when
we make H = Ho, becomes

+ 2(22)^^.-^;^,+ («-2^)2^.--^ (23).
d^rd^r a,«r'2«/ V «r / «^r o, 'v/(2«;^)

^

But if we recollect that we have generally

it is easy to perceive that in consequence of the equation (18) the

quantity (23) will vanish, and therefore the foregoing value of Ha
will always satisfy the equation (17).

Having thus a particular value of H, we immediately get the

general one by assuming

H= Hfzdh.

In fact, there thence results

H = KHj „„
'^"^^

.

±l(,~ Ux, Oi, (h a,

the two arbitrary constants which the general integral ought to con-

tain being K, and that which enters implicitly into the indefinite in-

tegral. But the condition = V" requires that H should vanish when
h is infinite, and consequently the particular value adapted to the

present investigation is

n - jr rr f
^""dh

J^ Mo'a^, «2 «»

11. The values of
(f>

and H being known, we may readily find

the corresponding values of V and p. For we have immediately
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r=i/^ =
jir^//./-gj£2^ «6),

and as the function
(p is rational and entire, and the partial differen-

tial of f^ relative to h is finite, it follows that all the partial differ-

entials of F^ are finite; and consequently, by what precedes (No. 7.)

the condition (9') is satisfied by the foregoing value of F', as well as

the equation (2) and condition = F". Hence the equations {b) and

(c) No. 6 will give, since

du- "V ^' ~^) Y" ^d^~~dh\'
and h must be supposed equal to zero in these equations

- r f^^ii)

p'
=—

, A. .---V^-^^ (where h = 0);

since where A = 0, a, = «/ ; and therefore,

1 - 2/^'^^ = 1 - ^r' V = ^'.

If now we substitute for V its value (26), and recollect that « — * + 1 is

always positive, we get

-r(^) ^
27r^r (^4^)

since it is clear from the form of Ho that this quantity may always

be expanded in a series of the entire powers of A^ In the preceding

expression, (27), H^ indicates the value of Ho when h = 0, and
(p!

the corresponding value of or that which would be obtained by

simply changing the unaccented letter fi, ^2, ^, into the accented

ones ^1', f/, ?/ deduced from

(7) x; = a,'?/ ; x.^
= «; ^/ ; x/ = «/ ^;.
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It will now be easy to obtain the value of V corresponding to

without integrating the formula (1) No 1, where F is the character-

istic of any rational and entire function. In fact it is easy to see from

what precedes (No. 9), that we may always expand JF' in a finite series

of the form

F{xl, x-l xl) = bo^o + ii0i' + bo(p2 + 63^3' + &c.

after a;/, x-J, &c. have been replaced with their values (7). Hence, we

immediately get

p'
= „"-«-' . {bo(po' + b,<p! + h(p; + &c.} (29).

By comparing the formulae (26) and (27) it is clear that any term,

as 5,0/ for instance, of the series entering into p, will have for cor-

responding term in the required value of V, the quantity

^ ^
i^„'«/< a:.b.<pM.f-jj^^'"/^ ^ (30):

''co -'^O "1 Ms (Is

Ha being a particular value of H satisfying the equation (17), and

immediately deducible from
(p by the method before explained.

12. AU that now remains, is to demonstrate that

V'V0 = VV> (31),

whatever <p may be. For this purpose let us here resume the value

of A0, as immediately deduced from the equation (2") No. 7, viz.

+ A^2^-A^2lx2i^ (32),

P
/w-1'
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where for simplicity the indices at the foot of the letters ^ and a have

been omitted, and their accents transferred to the letters themselves.

Moreover all the finite integrals are supposed taken from 1 to «+l.

By making A = in the last expression we immediately get v'<^,

and if for a moment, to prevent ambiguity, we write h, in the place

of the original «'r and omit the lower indices as before, we obtain

V>=(l-2a2^4p+(*-«-l)2|^ (33);

where to avoid all risk of confusion r has been changed into r" , and

the double accent of this index transferred to the letters ^ and h

themselves.

We will now conceive the expression (32) to be written in the

abridged form

the order of the terms remaining unchanged.

If then we recollect that the accents have no other office to per-

form than to keep the various finite integrations quite distinct, and

consequently that in the final results they may be permuted in any

way at will, we shall readily get

V'Va^ — VaV'0 =

(l-Sf)(4S2 ,^„,„ .-T^>-' +22-^, X 2^-^ I

+ 42^'x22-^.-,p^^, +22^x2^x2^-^
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^ '

[ a^b^ aa^\^^^ a^ c^V af (n) J

(1 - 2P^|-422—i^^^^— _22-L ^ 1

P g rf'0 P (/'^

2(l-2f)2JL.^ +22i:x2^^^

-2 (1-2^2^x2— ^ -2 2-x2^x2-^

all the finite integrals being taken from ?• = 1 to r = s + 1, and from

/ = 1 to r' = s + 1.

In order to obtain the required value

v'v^ -
w'<p,

it is clear that we shall only have to add the first of the five preceding

quantities to the sum of the four following ones multiplied by A', and

to render this more easy, we have appended to each of the terms in the

preceding quantities a number inclosed in a small parenthesis.

Now since the accents may be permuted at will, and we have like-

wise or = b^ + U, it is easy to see that the terms marked (1), (6) and

(12) mutually destroy each other. In like manner, (2), (3), (7) and

(18) mutually destroy each other; the same may evidently be said of

(13) and (16), of (15) and (17), of (9) and (19), and of (8) and (14).

Moreover the four quantities (4), (5), (10) and (11) will do so likewise,

and consequently, we have

V'V0 - VV> = 0.

Hence the truth of the equation (31) is manifest.



ATTRACTIONS OF ELLIPSOIDS OF VARIABLE DENSITIES. 419

Application of the preceding General Theory to the Determination of the

Attractions of Ellipsoids.

13. Suppose it is required to determine the attractions exerted by
an ellipsoid whose semi-axes are a', b', c' whether the attracted point

p is situated within the ellipsoid or not, the law of the attraction being

inversely as the w"*" power of the distance. Then it is well known
that the required attractions may always be deduced from the function

j^ _ r p' dx' dy' dx

{{x ~x'f + {y-yj + {x-%jy^
'

p being the density of the element dx' dy' d%' of the ellipsoid, and

X, y, % being the rectangular co-ordinates of p.

We may avoid the breach of the law of continuity which takes

place in the value of V, when the point p passes from the interior of

the ellipsoid into the exterior space, by adding the positive quantity

M* to that inclosed in the braces, and may afterwards suppose u eva-

nescent in the final result. Let us therefore now consider the function.

r=/ p' dx' dy' d%'

{{X
- x'y + (y- y'y + (z- zy + M^p

' '

this triple integral like the preceding including all the values of x', tf, »',

admitted by the condition

,/2
^-^— + — + — Z 1

If now we suppose the density /o'
is of the form

f^'^i^-T^^-h-z^
'
/(^',y.«') (34). .

which will simplify / {x', y, »') when p is constant and n' = 2, and then

compare this value with the one immediately deducible from the general

expression (28) by supposing for a moment n' = n, viz.

Vol. V. Part III. 3 1
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we see that the function f will always be two degrees higher than F.

But since our formula become more complicated in proportion as the

degree of F is higher, it will be simpler to determine the differentials

of V, because for these differentials the degree of F and f is the same.

Let us therefore make

, _ 1 dV _ r
/o' («— x) dx dy' d %~

1 m' fir
~

J >rTi '

i,ia;-x'Y + iy-i/r + {z-zr + u''}

—
then this quantity naturally divides itself into two parts, such that

A =xA' + A",

, ,, /- p dx dy d%
where A' — -^r J

'^

;;rr\ ,

{{x -x'Y + {y- yj + [%-%)' + u^}~

and A"=-f~
x'p dx' dy' dx

{{x-xy + {y-yy + {z-%y + u^~

By comparing these with the general formula (1), it is clear that

M — 1 = n' + 1, and consequently n = n + 2. In this way the expression

(28) gives

which coincides with (34) by supposing F=f.

The simplest case of the present theory is where y(a;', y', x')
= l, and

then by No 11, we have 0o'= 1 and &„ = 1. when A is the quantity

required, and as the general series (29), No 11, then reduces itself to

its first term, we immediately obtain from the formula (30), the value

of A! following,

* A=
,
—-- (the

\
—

7
—

(35),

2

because in the present case H^, = 1, « = 3, and n = n' ^ 2.

Again, the same general theory being applied to the value of A"

given above, we get
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F («', y', %')
= -

x'fix, y', a')
= - ar' (when /= 1),

and hence by Noll, F{x',y',%') — —
a'l'. In this way the series (29)

again reduces itself to a single term, in which

and the particular value H^ corresponding thereto, by omitting the super-

fluous constant
/(fj2,i,'i

—
tk will be (No 10),

Ho — a.

These substituted in the general formula (30) as before, immediately give

A" .
^""^^UJ ,3,, ,„ c ^'-'^dhA =

-^ ;
—7- « o C Pa /

—rr— ,

and consequently by reduction since a^ = x,

A=xA' + A''=-^-l-^r^l a'b'c'x f^^ (36).

r (
"^

]
"

The value of A just given belongs to the density

' _ fi _ ^" y! _ ?!\^

Hence we immediately obtain without calculation the corresponding

values

1 dV_ ^^^^U) ,,, , f h^-'^dh

1 dV *'"''
(2) ,-, ,

rU-'^'dh
2^5 r

r
C =

:; , -y— = ;f

—r" abc% /
—

, ^ .

l~2~j
31 2
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If now we suppose moreover

__ 1 d^ _ f f>
dx dy d%

the method before explained (No 11), will immediately give

Z) = —
,
—T— a cu /

T— ,

p/
w'+ 1 \ J^ abc

and therefore if for abridgment we make

-'^d') .,,

the total differential of V may be written

rfr=i»f{2^rf^/^-^^
+
2s.rfy/^-^^

+
2.t/./^—j-^

+
2«rf./^-^^},

which being integrated in the usual way by first supposing h constant,

and then completing the integral with a function of h, to be after-

wards determined by making every thing in F variable, we get

A being a quantity absolutely constant, which is equal to zero when

w' > 1. What has just been advanced will be quite clear if we recollect

that h may be regarded as a function of x, y, % and u, determined by
the equation

» = ?^' + 4^ + ?4^ ^- 1 - f + -' + f' -^ ' <''^>'

seeing that a' = a'*-\-h\ V = b'' + h\ and & = c" + h\

After what precedes, it seems needless to enter into an examination

of the values of V belonging to other values of the density p, since

it must be clear that the general method is equally applicable when
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wheref is the characteristic of any rational and entire function.

The quantity A before determined when we make u = 0, serves to

express the attraction in the direction of the co-ordinate x of an ellipsoid

on any point p, situated at will either within or without it. But by

making « = in (37) we have

, _ a^ y" z' ^
a" + h'

"*
b'-' + li'

'^
c" + h'

^
h'

^^ ^'

and it is thence easy to perceive that when p is within the ellipsoid,

h must constantly remain equal to zero, and the equation (38) will always

be satisfied by the indeterminate positive quantity
—

. When on the

contrary p is exterior to it, h can no longer remain equal to zero, but

must be such a function of x, y, %, as will satisfy the equation (38), of

which the last term now evidently vanishes in consequence of the

numerator o'. Thus the forms of the quantities A, B, C, D and F"

all remain unchanged, and the discontinuity in each of them falls upon
the quantity k.

To compare the value of A here found with that obtained by the

ordinary methods, we shall simply have to make n' = 2 in the expression

(36), recollecting that r(l) = 1, and r
(-] =i\/7r. In this way

, .,,,,/- hdh
^ ,,, ,

r daA = — Aiiraoc X \ -rrr- = — 4nrab c x / -7^—
J^ctbc J„drbc

= + ^a'h'c'x f 4?- = 4-«'*'c' J . , f
"^

But the last quantity may easily be put under the form of a definite

integral, by writing
- in the place of a under the sign of integration,

and again inverting the limits. Thus there wiU result

J 47r«'J'c' /•! v"dv^ =
'n^~ Ja •'o

a + ^«^)(i + ^-/-^^)a'
'

a-
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which agrees with the ordinary formula, since the mass of the ellipsoid

47r«'6'c'
IS

3
and «^ = d^ + h\

Examination of a j)articular Case of the General Theory exposed in the

former Part of this Paper.

14. There is a particular case of the general theory first considered,

which merits notice, in consequence of the simplicity of the results to

which it leads. The case in question is that where we have generally

Avhatever /• may be

a/ = a.

Then the equation (19) which serves to determine 0, becomes by

supposing kn = k . a"'

=
il-'2r'^r')^r'^,

+
(.v-»-l)2/*'?.^-A<^ (39).

If now we employ a transformation similar to that used in obtaining

the formula (14), No 6, by making

^i
=

P cos 9i, ^2
= p sin 9i cos On, ^3

= p sin 0, sin 9.^ cos 63, &c.

and then conceive the equation (39) deduced from the condition that

'"^'"i- "f-d-sf =)'^
{^*' (f)'

- r^l
must be a minimum (vide No 8), we shall have

rf^,rf^2 c?f,,
=

p'-' sin0/-^ sina/-^ sin 9^-, dp de,d9, «?0,_„

\d^rl \dp) p"
'

sin0,^sin0/ sine^,-,'

and 1 - 2^,= = 1 - p\

Proceeding now in the manner before explained, (No 8), we obtain

for the equivalent of (39) by reduction

d''(j) ,
( _ _ , V cos g,. d(f>

d'<p s-l-np' dcl> 1 d9;''^^^~'' Um9rd9,. k

dp'
^

p{l-p') 'dp p'
'

sm9,'sm9^' sin0^,., 1 _^2
9-V*U).
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But this equation may be satisfied by a function of the form

= Pe,e,e3 e,_,;

P being a function of p only, and afterwards generally 6, a function

of dr only. In fact, if we substitute this value of
(p

in (40), and then

divide the result by ^, it is clear that it will be satisfied by the system

e,,.,</e\_,

— ^<- 1

d'Q,.^
,

_ cos0,_2 o?e,_2
,

X._, ^ .^^^

Os-2 de^._s
'

sin 0,_2 9s_2</0s_2 sin 6^,-2

+ 2 . -7—-p^
—

77 j7i h -;——^
— = X,-

B._3d0\.3
'

sin 9^-3 Qs-3d9,_3 sin0^

&;c. &c. &c. &c.

combined with the following equation,

d'P s-l-np' dP \, k ^

P^p"
^

/" (1 -p') P«?/' />'
1 -p'

where k, X,, X^, X3, &c. are constant quantities.

In order to resolve the system (41), let us here consider the general

type of the equations therein contained, viz,

- ^'Q'-
, (r-i\

^"^^-- '^^^ + (
^'-^' X "i ft

d9\_,.
^

>sm9,_/d9,.r \sm9\., a,_,j
«,.,.

Now if we reflect on the nature of the results obtained in a preceding

part of this paper, it will not be difficult to see that 6,_r is of the form

e,_. = (sine._,)*;j
=

(1-M^)«;>;

where j9 is a rational and entire fimction of m = cos0s_r, and / a whole

number.

By substituting this value in the general type and making

\..r^i = -
i{i + r - 2) (43)

we readily obtain

=
{1-M.')^:

-{2i + r)^^- {X._. + i{i + r-l)}p.
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To satisfy this equation, let us assume

Then by substituting in the above and equating separately the coefficients

of the various powers of yu, we have in the first place from the highest

X._, = - e{e^-r—\) (44),

and afterwards generally

. e-i-9.t .e-i-M-\ .

'*'
~ ~

2/+ 2x2e + r-2#-3 "

But the equation (43) may evidently be made to coincide with (44), by

writing «*''' for i, and t^''+'^ for e, since then both will be comprised in

\,_,+, = -
e*--'

{e<'-* + r-2| (45).

Hence we readily get for the general solution of the system (41),

"^
2.4 X

{2f<'-> + r-3|{2«"-' + r-5}
" -

&C.J ;

where w = cos 9,_r, and i*''* represents any positive integer whatever, pro-

vided ^''' is never greater than ^*'*".

Though we have thus the solution of every equation in the system

(41), yet that of the first may be obtained under a simpler form by

writing therein for X^.i its value — i® deduced from (45). We shall

then immediately perceive that it is satisfied by

cos [ J

In consequence of the formula (45), the equation (42) becomes

^-
dp'

^
pO-p') dp \ / '^T^'i^'

which is satisfied by making ^= —\, -(«'*' + 2ft)) (e"*'' + 2a) + w — l), and
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p = „i") f„2. _ 2a>x2i'"+2^ + v?-2 o„_2
t' -(H 2 ^ 2i''» + 4w + »-3 ^

,

2«) . 2a)-2 X 2i'~' + 2ai + *-2 .2i'^' + 2w + *-4 , - „ ,

2.4 X 2«<-' + 4to + «-3,2« + 4w + w-5 ^ '

where w represents any whole positive number.

Having thus determined all the factors of
(f>,

it now only remains

to deduce the corresponding value of H. But Ho the particular value

satisfying the differential equation in H, will be had from by simply

making therein

since in the present case we have generally «/ = «'.

Hence, it is clear that the proper values of 0,, di, 9^, &c. to be here

employed are all constant, and consequently the factor

0102 ©3 ©s-l

entering into
(f>

is likewise constant. Neglecting therefore this factor

as superfluous, we get for the particular value of H,

a'

since
,0^
=

?.= + ?/ + + ?/ = ^^ = fj ,

ga a

and Pa represents what P becomes when p is clianged into —
.

a'
^

Substituting this value of Ho in the equation (25), No 10, there

results since a' = a'^ + h^

H=K.P„ f
^'"""^^

, (46)

a'

K being an arbitrary constant quantity.

Thus the complete value of V for the particular case considered in

the present number is

Vol. V. Part III. 3 K
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v= pe.e,......e..,.irp« f
"^

, (47)

a'

and the equation (27), No 11, will give for the corresponding value of
p',

in - IN-m M-4-1 K

where P/, 9/, 62', &c. are the values which the functions P, 0i, 02, &c.

take when we change the unaccented variables fi, ^2, ^, into the cor-

responding accented ones ^/, ^/, f/, and

p «-^+ l-w — ^ + 3 n — s + 2a}-l
'
~

» + 2i + 2ft)-l .7^ + 2^ + 2(0 + 1 n + 2i+ 4<w-3'

or the value of P when p = 1
; where as well as in what follows i

is written in the place of i'''.

The differential equation which serves to determine H when we
introduce a instead of h as independent variable, may in the present

case be written under the form

.
= a=(a^-«'^)Vr + «M»«'-(*- !)•«"}^^ ' dcf * ' ada

+ {?(« +*- 2) a'' -(«+ 2ft.)(« + 2a) + w-l)a'} H,

and the particular integral here required is that which vanishes when

h is infinite. Moreover it is easy to prove, by expanding in series, that

this particular integral is

*-l-n-2<o

provided we make the variable r to which A" refers, vanish after all

the operations have been effected.

But the constant k' may be determined by comparing the coefficient

of the highest power of a in the expansion of the last formula with

the like coefficient in that of the expression (46), and thus we have

"
yfc' = Kd'^"" (-\Y

« + 2^' + 2a)-l.w + 2? + 2a>+ l ?^ + 2^^ + 4a,^.-3
^ ^ 2.4 . 6 2o) .
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Hence we readily get for the equivalent of (47),

rr vtc^ c^ ^ « + 2« + 2a)-l .M + 2e + 2a)4-l n + 2i+ 4im-3
2.4. 6 2w

xKa'^'-'''"{-l)''a'A''a"-fdaa'-"'-'-"{a^-a"')
^

GO

In certain cases the value of V just obtained will be found more

convenient than the foregoing one (47). Suppose for instance we repre-
sent the value of f^ when h = 0, or a= a' by V^. Then we shall hence

get

r^ i»c> o o n + 2i+2a)-l .n + 2i + 2w + l » + 2i + 4ft.-3

2.4,6 2a>

g — l~n~Suo

OD

which in consequence of the well known formula

r(,-p)r(H±f^)
/"'a-'da (a' - a'')-"

= - «''-"-^? x -J^ i
,

by reduction becomes

fl+s— n\^[n+ 2i + 4!w — l'^

r(l±|z^)rp±-±i^)
2r(a,+

i)r(

^ +
^'^+^")

since in the formula (5), r ought to be made equal to zero at the end

of the process.

By conceiving the auxiliary variable u to vanish, it will become clear

from what has been advanced in the preceding number, that the values

of the function P within circular planes and spheres, are only particular

cases of the more general one, (49), which answer to *= 2 and s= 3

respectively. We have thus by combining the expressions (48) and

(49), the means of determining Vo when the density p is given, and

vice versa; and the present method of resolving these problems seems

more simple if possible than that contained in the articles (4) and (5)

of my former paper.

GEORGE GREEN.
3k2





XVI. On the Position of the Axes of Optical Elasticity in Crystals

belonging to the Ohlique-Prismatic System. By W. H. Millek,
A.M. Fellow and Tutor of St John's College, and Professor of

Mineralogy.

[Read Dec. 8, 1834.]

1. Fresnel has proved that whatever be the regular arrangement
of the medium which by its elasticity produces the optical properties

of a crystal, there are always three directions at right angles to each

other, which may be considered as axes of optical elasticity. This

being understood, it is further already established, that crystals belong-

ing to the tesseral system have three equal axes of optical elasticity ;

that rhombohedral and pyramidal crystals have two axes of elasticity

equal to each other and perpendicular to the crystallographic axis,

which therefore is the third axis of elasticity and also an optic axis;

and that crystals belonging to the remaining systems have three unequal
axes of elasticity, and consequently two optic axes (that is, axes of

optical phenomena) making with each other angles which are bisected

by the axes of greatest and least elasticity.

Sir David Brewster, who discovered the mutual dependence of the

forms and optical properties of crystals, has determined the angles be-

tween the optic axes of a great number of biaxal crystals; his obser-

vations, however, do not contain any data from which the positions of

the axes with respect to the faces of the crystals can be found.

2. In the right prismatic system the axes of elasticity coincide (as

might have been expected) with the rectangular crystallographic axes.

In the oblique prismatic system, if the three axes be XX', YY', ZZ',

the crystallographic axis {YY'), which is perpendicular to the other

two {XX', ZZ'), is always one of the axes of elasticity. This, in

Gypsum, at the ordinary temperature of the air, and in many other

crj'stals, is the mean axis, or it is perpendicular to the optic axes; in
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Borax, Acetate of Soda, Felspar, Tartaric Acid and Gypsum, when heated

to about lOO^C, as was first observed by Mitscherlich, it is the greatest

or least axis of elasticity, and is therefore in the same plane with the

optic axes and makes equal angles with them.

The position of one axis of elasticity having thus an evident rela-

tion to the crystallographic form, we are naturally led to inquire if

any relation can be discovered between the other two axes of elasti-

city and the crystallographic form. The only attempts to discover any
such relation, with which I am acquainted, are those of M. Soret,

(Memoires de la Socidte de Physique de Geneve, tome I.) and Pro-

fessor Neumann of Konigsberg (Poggendorff's Annalen, B. xxvii. S.

240). Neumann shews, that in Gypsum the axes of elasticity and also

the thermal axes, or the three lines in the crystal which remain at

right angles to each other at all temperatures, constitute a system of

rectangular crystallographic axes. It appeared at first sight not im-

probable that a similar relation might be found to exist between the

form and axes of elasticity of other oblique-prismatic crystals. Though
my observations appear to disprove the law which has thus been sug-

gested, they do not establish any other in the place of it. The only

general fact which I have noticed is, that in many instances, though not

in all, one of the two axes of elasticity which are perpendicular to

W, is also the axis of one of the principal zones of the crystal.

3. To find the angle between a normal to any face {T) of a

crystal, and the apparent direction of one of the optic axes as seen in

air through any parallel faces of the crystal.

Let the crystal be attached to an index, moveable on a graduated
circle having its plane parallel to the axis of the polarizing instrument,

or a table on which the position of the index may be marked by a

line drawn along its edge with a tracing point. Let the crystal be

placed in such a position, that the apparent direction of the optic axis

in air and a normal to T may be parallel to the circle. Move the

index till the center of the coloured rings coincides with a mark in

the axis of the polarizing instrument, and observe the points in which

it meets the circle. Turn the crystal half round in the plane of T,
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taking care not to alter the inclination of T to the index, (this may
be effected by moving the crystal, the index being fixed, tiU the image
of some well defined object seen by reflexion in T appears in the

same direction after the crystal is turned as it did before.) If the

index be now turned till the center of the coloured rings coincides

with the mark, the angle it has described between the observations

will be manifestly equal to twice the angle between the apparent
direction of the optic axis in air and a normal to T. The angle
between the optic axis in air and a normal to any other known face

of the crystal being found in the same manner, the direction of the

optic axis in air wiU be completely determined.

4. To find the optic axes, their apparent directions in air being
known.

Let Qlt, Q'K (Fig. 1.) be tangents to the circular and eUiptic sec-

tions of a wave diverging from O made by a plane through the optic

axes, and therefore OQ, OQ', perpendiculars to QB, will be the optic

axes; OP the direction in which the optic axis OQ is seen in air;

OS a perpendicular to the faces through which it is seen.

The vibrations in that part of the wave which has a circular sec-

tion are perpendicular to the plane QOQ, consequently a ray polar-

ized in the plane QOQ is refracted in that plane according to the

law of sines. Let m be the ratio of the sine of incidence to the sine

of refraction for such a ray out of air into the crystal, D the mini-

mum division of the ray when refracted in the plane QOQ' through

the prism formed by two natural or artificial planes meeting at an

angle / in a line perpendicular to QOQ. Then ^ sin ^ /= sin ^ (Z) + /),

and fM sin QOS = sin POS. Whence the direction of QO is known.

0*0 being found in the same manner, the axes of elasticity O^, Oi[,

which bisect the angles qOQ, QOQ, are also known.

5. The diagram which accompanies the description of each crystal,

is the representation of a sphere, to the surface of which the faces of

the crystal are referred by means of perpendiculars drawn from the

center of the sphere. The point in which the perpendicular to any
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face meets the surface of the sphere, will be called the pole of that

face. The measurements express the angles between the perpendiculars

to the faces, or the supplements to the angles between the faces them-

selves. This method of representing crystalline forms appears to have

been first employed by Neumann, in his Beitrage zur Krystallonomie,

and afterwards by Grassmann and Uhde. It has the advantage of ex-

hibiting all the faces of a crystal without confusion in one figure,

each zone being distinguished by a great circle drawn through the

poles of the faces composing it, and also of allowing all the requisite

calculations to be performed by spherical trigonometry applied to the

equations

T cosPX = T cosPY = 7 cos PZ,
h k I

or to formulse deduced therefrom, X, Y, Z being the points in which

radii parallel to the axes of the crystal meet the surface of the sphere,

and P the pole of the face {h; k\ l), which is parallel to the plane

h- + k\-^ I- = 0.
a b c

ad, /3/3', ^f, ^^' will be used to denote the extremities of diameters

drawn parallel to the optic axes, and the two axes of elasticity which

are perpendicular to YY' . In Figs. 5, 6, 7, 8 the faces are denoted

by the same letters as in the treatises of Mohs and Naumann. The in-

clinations of the faces of crystal (1) and (2) are deduced from a mean

of the best measurements of thirty or forty crystals, and are probably

within 1' of the truth.

The chemical notation and atomic weights are those employed by
Dr Turner, in the fifth edition of his Elements of Chemistry.
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EXAMINATION OF VARIOUS CRYSTALS ACCORDING TO THE METHODS
ABOVE EXPLAINED.

(1). Sulphate of Oxide of Iron and Ammonia. According to Mit-

scherlich (Jahresbericht 13), the composition of this salt, which belongs

to an extensive plesiomorphous group, is expresssed by the formula

H'^NS \- FeS -^ 1 H. Fig. 2. represents the poles of its faces. Their

symbols are A{1; 0; 0), C(0; 0; 1), H{0; 1
; 1

;) M{1', 1; 0),

P(l; 1; 1), Q(-l; 1; 1), T{2; 0; 1).

AT 42", 14'
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A{i; 0; 0), C(0; 0; 1), H{0; 1; 1), 2^(1; 0; 1), L{-1', 0; 1),

3f(l; 1; 0), P(l; 1; 1), Q(-l; 1 ; 1).

Cleavage parallel to the face A.

AK 520,31' AM 55»,2' Qd gr^a?' QA' 6o»,54'i

KC 39,53 HH' 81, 4.6 QL 41 ,l6^ CP 55,34

CL 38 CH 49 ,7 ^i* 63 ,22 PM 35 ,48^

L^' 49,36 PP' 94,55 PIT 28 ,12 JWQ' 34 ,53

iIfil/'69,56 PX 42,32 /TQ 27,31i QC 53,44-i.

Z>= 25'',17', the light being refracted through CK. The apparent

angle in air between the optic axes aa and AA', is 4°,55'. In oil,

the index of refraction of which is 1,741, the apparent angle between

the optic axes =42'',20'. This gives ^0 = 8", 7', A(i = 35'',54>', A^=W,M',
i'^ = 33°,12.

In this case the positions of some of the faces A, K, C, L must be

altered half a degree before they can be referred to the rectangular

axes ff, W, ^^' with tolerably simple indices.

(3). A solution of Benzoic acid in alcohol, when suffered to eva-

porate, affords crystals of which the faces C, K, I (Fig. 4) alone are

bright. Cifr= 69",25', C/=97'',20' nearly. Z) = 64°,45', refraction taking

place through the faces CK. The apparent direction of ad in air

when seen through CC makes with CC an angle of 4°, 30'. When
immersed in oil of which the index of refraction is 1,471, the appa-

rent angle between the optic axes is 75". Hence Ca =2'',47', C/3=59'',50',

C^=28»,31', ^^=40^54'.

tan K^, tan I^, tan C^ are nearly as the numbers 3, 1, 5.

The equation
1 tan /iT^

= tan 7^ = |^
tan C^ is satisfied by making Cf=

27°,56'^, JC= 97'',17'. Hence the faces C, I, K may be referred to the

rectangular axes ^f, YY
, l^ without greatly altering the observed

angles, and their symbols will be (-1 ; 0; 5), (1 ; 0; 1), (1 ; ; 3) re-

spectively.
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(4). In Felspar (Fig. 5.) the optic axes lie in the plane of the

most perfect cleavage, and make with a normal to M, angles of about

57" or 58°, (58^^ according to Sir David Brewster) which increase when

the crystal is heated. Hence, ^^' is the axis of the zone PM.

(5). The optic axes of Pyroxene (Fig. 6.) seen in air through a

slice cut perpendicular to MM are in the plane Pr, and make angles

of 16" with the axis of the zone MM. Hence, ^^' is the axis of the

zone MM', a, /3 approach ^ when the crystal is heated. At ordinary

temperatures a/3 is probably about 19"^. The best measurements of

Pyroxene shew that Pr, tr are nearly but not exactly equal, and

therefore, that its faces cannot be referred to ^^', YY', X,'C
as crystallo-

graphic axes. In all the crystals of Pyroxene which I have examined,

the rings surrounding ad are brighter than the rings surrounding /3/3'.

(6). The form of Borax (Fig. 7.) closely resembles that of Py-
roxene ; its optic axes however are very differently situated. It was

observed by Sir John Herschel and also by Professor Nbrrenberg, that

the optic axes for different colours do not lie in the same plane. This

being the case, we cannot expect to find any simple connexion between

the form and the directions of the axes of elasticity.

The mean directions of the axes seen in air through the faces 7'T"

make angles of aO"^, with a normal to the faces TT', and a perpendi-

cular to them makes an angle of 55° with MM'. The rings sur-

rounding ad, /3/3' are indistinct on the sides towards M'P and MP'

respectively, the extremities a, /3 of the axes being next to the eye of

the observer. This shews that the positions of ^f', ^^' vary slightly

with the colour of the light employed.

(7). In Chromate of Oxide of Lead, as I have been informed by
Professor Norrenberg of Tiibingen, the axis of the zone MM (see the

figure in Phillips or Naumann) bisects the angle between the optic

axes, and is therefore one of the axes of elasticity. The other two

axes of elasticity are, without doubt, the lines which bisect the angles

formed by normals to MM'.
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(8). In Epidote, (Fig. 8.) the optic axis aa seen in air through the

faces r, r, makes with r r' an angle of 8^ 50', /3/3' seen in air through
the faces M, M', makes with MM' an angle of Sl^SO'. The determina-

tion of m is rendered difficult by the complete absorption of the light

polarized in the plane MT. Assuming /x
= 1,7, which is probably near

the truth, we get /•a=5'',ll', M/3=18°,5'. According to Mohs 2V=51'',41',

TM=64>'>,30', therefore, T'a=46",30', 2)3 = 46'\31'. Hence ^^' is the axis

of the zone PT. The near approximation of the values of 7'a, Tfi to

equality must be considered accidental, as the positions of the optic axes

are usually uncertain to the amount of some minutes.

The question whether any proposed lines are crystallographic axes

must be decided, as has already been intimated, by the simplicity and

symmetry of the numerical relations which the expression of the faces

requires with reference to these axes. This according to the old Hauyian
views of the structure of crystals, is equivalent to saying that the pri-

mitive form must be such that the other forms can be derived from

it by simple laws of decrement. Now, we find that by assuming the

axes of elasticity to be crystallographical axes, we have in the crystal

(1) a face (2; 0; —23), which though not very probable is not im-

possible, and in (5) a face (
— 1; 0; 5); in (2) the observed and com-

puted positions of some of the faces differ half a degree.

In (6), the optical properties are not symmetrical.

In (4), (5), (7), (8) one of the axes of elasticity f^' or ^^' is the

axis of a zone.

St John's Collegb,

Dec. 8, 18S4.

W. H. MILLER.
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