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I, Researches in Physical Geology. By Witi1am Hoprxrns, M.A., 
Fellow of the Cambridge Philosophical Society, and of the Geological 
Society, and Mathematical Lecturer of St Peter's College, Cambridge. 

[Read May 4, 1835.] 

INTRODUCTION. 

NorwitHsTaNDING the appearances of irregularity and confusion 
in the formation of the crust of our globe which are presented to 
the eye in the contemplation of its external features, geologists have 
been able in numerous instances to detect, in the arrangement and 
position of its stratified masses, distinct approximations to geometrical 
laws. In the phenomena of. anticlinal lines, faults, fissures, mineral 
veins, &¢c., such laws are easily recognized; and though, when we 
consider how large a portion of the surface of the earth remains 
geologically unexplored, it may appear premature to assert that these 
are perfectly general laws, yet, founding our reasoning on our know- 
ledge, and not on our ignorance, and feeling that confidence which 
we are entitled to feel in the universality of the laws and operations 
of nature, we shall, I conceive, be justified, if not in the absolute conclusion, at least in the presumption, that the laws already observed 
in phenomena such as those above mentioned will be found, by the 
wider extension and increased accuracy of geological research, to be the 
approximative general laws of those phenomena. 

If the legitimacy of this inference be allowed, we are necessarily 
led to the conclusion, that the phenomena alluded to are referrible 
not to the particular and irregular action of merely local causes, 
but to the more widely diffused action of some simple cause, general 
in its nature with respect to every part of the globe, and general in 
its action at least with respect to the whole of each district throughout 

Vor. VI. Parr I. A 
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which the phenomena are observed to approximate, without interruption 

to the same geometrical laws. Between these phenomena and _ their 

actual causes necessary relations must of course exist; and in this 

paper I purpose to examine how far such relations do exist between 
our observed phenomena and a certain general cause to which they 

may be attributed. But in the first place it will be necessary to state 
distinctly the nature of the phenomena to which I refer, though with- 

out entering into more detail than may be necessary for my immediate 

object. 

I. Faults. 

a. In districts where faults abound, two distinct systems are usually 

found, in each of which the faults approximate to parallelism* with each 

other. 

8. The common direction of one of these systems is approximately 
perpendicular to that of the other. 

y.. The plane in which the dislocation at a fault has taken place is 

frequently somewhat inclined to the vertical; and it appears that the 
side of the fault on which the strata are most elevated, is more fre- 

quently that ‘towards which the plane of dislocation inclines from a ver- 
tical through the lowest point of a section of the fault, by a vertical 
plane transverse to the plane of dislocation +. 

II. Mineral Veins. 

A distinct idea of a mineral vein is perhaps most easily formed by 

conceiving a vertical fissure, varying in width from a few inches to a 

few feet, to have been formed, extending downwards from the surface, 

and to have been subsequently filled up with matter in the midst of 
which the ore which properly constitutes the mineral veint is deposited, 

* This term must in certain cases be taken in a modified sense, as will be explained 

hereafter, whatever may be the phenomena to which it is applied. 

+ See Encyclopedia Metropolitana, Art. Geology, p. 541. 

{ This is termed by miners in the Northern districts a Rake-Vein. In Cornwall the 
whole substance contained in the fissure is called a Lode. 
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sometimes in a regular vertical layer, and sometimes in irregular and 

detached masses. I shall therefore occasionally, without wishing to pre- 

judge the question of the formation of veins, speak of the jissures in 

which they are deposited. 

a. The direction of the intersection of a vein with a horizontal plane 

usually approximates to rectilinearity. It is not meant that every short 

portion of this intersection forms a straight line, but, when considered with 

reference to its whole extent, these variations are not for the most part 

considerable. 

8. In every mining district the largest and most important veins 

are divided into two distinct groups, in each of which a very decided 

approximation to parallelism is observable, and of which the directions 
are nearly perpendicular to each other. 

y. When the veins occur in stratified masses, the direction of one 

of these systems usually coincides with that of the general dip of the 

strata, the other being consequently perpendicular to that direction*. 

6. A large proportion of the most productive mineral veins are found 

in the former of these systems. The latter (frequently termed by the 

miner cross courses) carry ore very irregularly. 

e. It seems doubtful whether any actual limits of a fissure containing 
a mineral vein were ever arrived at by the miner, though the division 

of a large fissure into several small ones not unfrequently seems to 
indicate a near approach to such a limit in the direction of its length. 

I know of no case, however, in which such indications have been ob- 

served of an approach to both extremities of a large vein. It is probable 
that their linear extent is frequently much greater than has yet been, 

or in many cases ever can be, observed. In numberless instances they 

* I first observed this relation between the general direction of the mineral veins and 

that of the dip of the strata in the mining district of Derbyshire. I find on enquiry that the 

same relation holds in the Alston-moor district, and in Flintshire. In Cornwall also, when the 

lodes are in stratified rock, I apprehend this is generally the case, assuming the killas 

formation in the immediate vicinity of the granite to be stratified. 

A2 
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have been traced for four or five miles in the mining districts of this 
country, and in some cases to the distance of eight or ten miles. 

¢. Their depth appears to be uniformly greater than that to which 

man has been able to penetrate. 

». The width of the fissures in that system of the two above mentioned 

which contains the most productive and the most continuous mineral 

veins, varies in general from a few inches to about 12 feet. In the 
same vein the width will frequently vary, and sometimes suddenly 

along the same vertical line. In passing through a horizontal bed of 

clay the fissure will be sometimes almost entirely closed; and the toad- 

stone of Derbyshire produces the same effect, frequently closing the 

fissure so effectually that it can only be traced through it by means of 
small ramifying veins of calcareous spar. The average width however 

does not appear at all to diminish as we descend*. The strata through 
which the fissure penetrates generally form well defined though uneven 

walls bounding it on either side, and perfectly firm and solid, except 

where the strata themselves cease to be so. 

6. The width of the cross courses is frequently greater than that 

above stated, and generally much more irregular. 

. The fact of the strata in one wall of a fissure being higher than 
the same strata in the opposite one, has been recognized by all miners 

in some parts of almost every vein of consequence that has been ex- 
plored, when existing in a distinctly stratified mass. This difference in 

general does not exceed a few feet, though it has not unfrequently 

been found to be many fathoms, in which case the vein of course coin- 

cides with a fault, This is sometimes termed by miners the ¢hrow+ of 
the vein. 

* In the mining district about Alston-moor there appears to be a few exceptions to this 

rule, as well as to the assertion of the preceding paragraph (€), in what are termed gash veins. 

These are comparatively wide at the top, and become gradually narrower as they descend, 

till they appear to terminate. (See Forster’s account of this district, p. 186.) They are pro- 
bably rents the formation of which began at the surface, but are hardly worthy of notice as 

exceptions to our general rules. 

+ A throw is in fact a small fault. 
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x. The ielination of the plane of the fissure to a vertical plane, which 
is frequently termed by the miners of the more northern districts the 
hade of the vein, and by the Cornish miners its underlie, is very un- 
certain, amounting not unfrequently to as much perhaps as 20°, generally, 
however, to considerably less, though in particular cases to considerably 
more. It will sometimes vary at different depths along the same vertical 
line, so that in some instances, when the hade is small, it will be in 
one direction in the upper, and in the contrary direction in the lower 
part of the vein. Upon the whole, however, the hade is not very great, 
and tolerably regular in each vein*. 

u. Masses of the adjoining rock, more or less perfectly detached 
from it, are frequently found imbedded in the matter which occupies 
the fissure +. 

v. Apparent or real displacements in the position of a vein are 
frequently observed at its intersection with another vein, or with some 
particular stratified bed, which is generally found to be a bed of moist 
slimy clay. These intersections are of various kinds. 

o. First, that of a vertical or nearly vertical vein, with a clay bed 
horizontal, or nearly so. The displacements in this case are shewn in 
the figures annexed, which represent vertical sections perpendicular to 
the plane of the vein. 

> x 

It is manifest that here either the part of the vein above the stratum 
ed has been moved, or that below it, or both, if the two portions were 
ever in the same plane. 

* The underlie of the Cornish lodes is frequently greater, I conceive, than in our other 
mining districts. It may possibly also be more irregular. 

+ These insulated masses are frequently termed by miners, Riders. 
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a. Secondly, we may have the intersection of two vertical veins, 

the planes of which are inclined to each other at any given angle. 

In such case it frequently happens, that while the continuity of 

one vein is preserved that of the other is broken, apparently by a 

relative displacement of the portions on opposite sides of the unbroken 

vein. This kind of displacement is exhibited in the annexed figures, 

which represent horizontal sections. 

i fo 

p. Thirdly, we may have the intersection of veins the planes of 
which are inclined, but at different angles, to a vertical plane. If such 

veins be near enough to each other, their intersection will take place 

sufficiently near the surface to be within the limits of observation, and 
if they meet the horizontal surface in parallel lines their line of inter- 

section will be horizontal. If the subjoined figures represent vertical 

ee 
sections perpendicular to this line, the displacements observed will be 
such as they exhibit. , 

These phenomena of faults, and mineral veins, are those which appear 
to approximate the most distinctly to well defined laws, and therefore 

afford the best means of testing the truth of any theory of elevation. 
The following phenomena also bear equally on the investigations con- 
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tained in this paper, though their characters are in general much less 
distinct than those of the phenomena already cited. 

IIT. Anticlinal and Synclinal Lines. 

When two or more anticlinal lines, with the corresponding synclinal 
ones, are found in the same geological district*, their general directions 
frequently approximate to parallelism with each other+. 

IV. Longitudinal Valleys. 

a. Along the flanks of elevated ranges, longitudinal valleys are not 
unfrequently found running nearly parallel to the general axis of 
elevation t. 

B. The partial elevations along the sides of an elevated range have 
usually these escarpments presented towards the central ridge ||. 

* I mean by a geological district, any tract of country throughout which the phenomena may be regarded as following the same laws without discontinuity. 
t If we take two planes coinciding at any proposed point of an anticlinal line, with the portions of the surface of a stratified bed on opposite sides of that line, these planes’ of 

stratification will intersect in a straight line not necessarily horizontal; and the direction of 
the anticlinal line at the proposed point will be determined by the azimuth of a vertical plane drawn through this intersection, or the direction of the intersection of this vertical plane with the horizon. Again, if through the proposed point we draw vertical planes respectively perpendicular to the two planes of stratification above mentioned, their respective intersections with them will be the lines of greatest inclination of the strata, and consequently the azimuths of these vertical planes will determine the directions of the dip. The angles between these two latter vertical planes, and the one before mentioned as determining the direction of the anticlinal line, will not generally be equal; they will become so only when the inclination of the planes of stratification on either side of the line is the same; i. e. the directions of the dip on opposite sides of an anticlinal line at any proposed point of it will 
not generally make equal angles with that of the line itself, unless the dip on opposite sides be the same. There is however an exception to this rule, when the direction of the dip on each side of the anticlinal line is perpendicular to it. This will occur when the two planes of stratification first mentioned intersect in a horizontal line. 

$ Saussure, Voyages dans les Alpes, Vol. I. Chap. x. 
|| Traité de Geognosie, by D’Aubuisson, Vol. I. §. 24, p: 82.; and Saussure, Voyage dans les Alpes, Vol. III. Chap.x. This rule is probably very general. 
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V. Transverse Valleys. 

Deep valleys are sometimes found of which the directions are nearly 

at right angles to that of the general elevation*. 

VI. Dykes or Veins, and Horizontal Beds of Trap. 

«. The dykes are usually found in nearly vertical planes, and, when 

they occur in the vicinity of each other, with a general tendency to 

parallelism. 

B Extensive beds of trap are found apparently interstratified with 

the stratified rocks. 

VII. Granite Veins. 

The form of a vein of this kind is frequently very different from 

that of mineral or trap-veins, as above described, inasmuch as a section 

of it does not generally approximate in the same degree to rectilinearity +. 

These approximations to general laws have been, I believe, very 
generally recognized by geologists, and more especially in faults and 

mineral veins, in almost all cases in which these phenomena exist 

throughout districts of considerable extent; and this appears unquestion- 

ably to justify the notion, that they are not to be referred to par- 

tial causes, but to some cause general at least with reference to 
the district throughout which the same laws are observed to hold with- 

out breach of continuity. Local and accidental causes may in some 
cases act with sufficient energy to obliterate all traces of general laws 

in phenomena such as those above mentioned; but still this will mani- 

festly not invalidate our inference with respect to those districts. in 

which such laws have been clearly recognized. We may moreover 

* These valleys may frequently be due in great measure to the effects of erosion. In some 

instances, however, they appear to have been obviously formed by the elevation of the strata 

on either side of them. The valley of the Wye, in Derbyshire, offers a beautiful example 

of this kind of formation. 
+ Trap veins sometimes assume the tortuous form of a granite vein. See M‘Culloch’s 

Description of the Western Islands of Scotland. Vol, III. Pl, xxx. 
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observe, that the law of approximate parallelism which equally charac- 

terizes the phenomena of anticlinal lines, faults, and mineral veins, affords, 

a priori, a strong probability that they are all assignable to the same 

general cause. We may also further remark, that if, with the previous 

conviction that the stratified beds have been deposited from water, and 

with a knowledge of the physical impossibility of beds of uniform 

thickness being so deposited except on planes but little inclined to 

the horizon,—if, I say, under these circumstances, we examine many 

of the phenomena above mentioned, it seems impossible not to be 

struck with the idea of their being referrible to the action of some 

powerful elevatory force acting beneath the superficial crust of the 

globe, and thus producing those elevations and dislocations which we 

now witness. And, accordingly, such is the almost universal impres- 

sion on the minds of geologists. 

It appears, then, that we are arrived at that stage of geological sci- 

ence in which we are able to recognize certain well defined geological 
phenomena, distinctly approximating to geometrical laws; and we have 

also a distinct mechanical cause to which geologists, with almost one 

consent, have agreed in considering them to be assignable. The next 

step we are therefore called upon to take is obvious—it is to institute 

an investigation, founded on mechanical and physical principles, of the 

necessary relations which may exist between our observed phenomena 

and the general cause to which we attribute them. This investigation 

I have attempted, and now beg to lay it before the Society. I hope 

the nature of it will be deemed a justification of my introduction of 

a new term into the science, that of Physical Geology. 

I have conducted the investigation by the methods supplied by 

mathematical analysis. I am aware, however, that to some persons the 

application of these methods to geological problems may appear like 

an affectation of an accuracy which the nature of the subject may not 

be conceived to admit of; but from this opinion I dissent entirely. 

We have, as I have before remarked, observed phenomena approximating 

to well-defined laws, and which we are prepared to regard as the effects 

of an assigned and definite cause; and to shew that this hypothetical 
Vou. VE grarr I. B 
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cause is the true one, we must shew that, supposing all local and partial 

causes with which we are acquainted to be removed, it would produce 

effects strictly in harmony with those laws to which the actual pheno- 

mena are observed to approximate. The most obvious cause of deviation 

in our phenomena from strict geometrical laws, is irregularity in the 

intensity of the elevatory forces, and in the constitution of the masses 

on which they are supposed to act. Abstracting these sources of uncer- 

tainty, we have before us a definite problem, viz., to determine the nature 

of the effects produced by a general elevatory force acting at any assigned 

depth on extended portions of the superficial crust of the earth, and with 

sufficient intensity to produce in it dislocations and sensible elevations. 

To this simple and definite form the problem may be reduced; and at 

least a correctly approximate solution of it must necessarily be obtained 
by some means or other, before we can pronounce on the adequacy of 

the assigned cause to produce the observed effects. ‘The complete solution 
of the problem presents many difficulties, which, however, are avoided 
by restricting ourselves to a first approximation, which will amply suffice 
for all practical applications of our results. This approximate solution 

is what I have now to offer; and I may be allowed to observe, that those 

who may object to the mathematical resources of which I have availed 
myself, are at least bound to offer a solution equally conclusive and 
available by some method more adapted to the general reader. A slight 
examination however of the problem will suffice to shew that it can 
admit of no accurate solution independently of reasoning too intricate to 

be clearly embodied in any language but that of mathematical analysis. 

The hypotheses from which I set out, with respect to the action 
of the elevatory force, are, I conceive, as simple as the nature of the 

subject can admit of. I assume this foree to act under portions of 
the earth’s crust of considerable extent at any assignable depth, either 
with uniform intensity at every point, or in some cases with’a some- 

what greater intensity at particular points; as for instance, at points 

along the line of maximum elevation of an elevated range, or at other 

points where the actual phenomena seem to indicate a more than or- 

dinary energy of this subterranean action. I suppose this elevatory force, 
whatever may be its origin, to act upon the lower surface of the uplifted 
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mass through the medium of some fluid, which may be conceived to 
be an elastic vapour, or in other cases a mass of matter in a. state 
of fusion from heat. Every geologist, I conceive, who admits the 
action of elevatory forees at all, will be disposed to admit the legiti- 
macy of these assumptions. 

The first effect of our elevatory force, will of course be to raise 
the mass under which it acts, and to place it in a state of extension, 
and consequently of ¢exsion, The increase of intensity in the elevatory 
force might be so rapid as to give it the character of an impulsive 
force, in which case it would be impossible to calculate the dislocating 

effects of it. This intensity and that of the consequent tensions will 
therefore be always assumed to increase continuously, till the tension 
becomes sufficient to rupture the mass, thus producing fissures and dis- 
locations, the nature and position of which it will be the first object 
of our investigation to determine. These will depend partly on the 
elevatory foree, and partly on the resistance opposed to its action by 
the cohesive power of the mass, Our hypotheses respecting the con- 
stitution of the elevated mass, are by no means restricted to that of perfect 
homogeneity; on the contrary, it will be seen that its cohesive power 
may vary in general, according to any continuous law; and moreover, 
that this power, in descending along any vertical line, may vary according 
to any discontinuous law, so that the truth of our general results will be 
independent, for example, of any want of cohesion between contiguous 
horizontal beds of a stratified portion of the mass. Vertical or nearly 
vertical planes, however, along which the cohesion is much less than 
in the mass immediately on either side of them, may produce con- 
siderable modifications in the phenomena resulting from the action of 
an elevatory force. The existence of joints for instance, or planes of 
cleavage in the elevated mass, supposing the regularly jointed or slaty 
structure to prevail in it previously to its elevation, might affect in a 
most important degree, the character of these phenomena, ‘To a mass 
thus constituted, these investigations must not be considered as gene- 
rally applicable. Vertical or highly inclined planes ef less resistance, 
will only be assumed to exist partially and irregularly in the elevated 
mass, 

ne 
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With these hypotheses then respecting the nature of the elevatory 

force, and the constitution of the elevated mass, I shall proceed in the 

next section to investigate the directions in which fissures will be 

formed in it when subjected to given internal tensions sufficiently 
great to overcome the cohesive power which binds together its com- 

ponent particles. These tensions, so far as this investigation is con- 

cerned, may either be supposed to be produced by external forces 

causing an eatension of the mass, or by such as prevent that contrac- 

tion of it which might be conceived to result from the loss of moisture 

or of temperature. It must be understood however that these internal 
forces are quite distinct from that sort of molecular action on which 

any kind of laminated or crystalline arrangement of the component 

particles may depend. 
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SECTION I. 

1. THe simplest form of the mass in which we have to consider 

the formation of fissures, is obviously that of a thin lamina. The in- 

vestigations therefore of this section will be applied directly to this 

ease, from which the results applicable to a mass of three dimensions 

are immediately deducible. It will appear that its cohesive power may 

vary according to any continuous law. 

§. Lamina subjected to one System of Tensions. 

2. Suppose the lamina acted on by external forces, which shall 

place it in a state of tension, such that the direction of the tension at 

every point shall be parallel to a given line CD*. Let AB be any 

B 

va 
Wea. OF ¥ 

mm 

A 

proposed line in the lamina; P any point in this line. Also assume 

F to be the tension at P, estimated by the force which the tension at 

that point would produce, if it acted uniformly on a line of which the 

length should be unity, and which should be perpendicular to CD, the 

common direction of the forces of tension. Then if we take Pp a small 

and given element of the line 4B, and draw PQ parallel to CD, and 

pm perpendicular to PQ, the force of tension on Pp in the direction 

PQ will be measured by F'.pm, or F'. Pp.siny, (BPQ =): or the 

—a 

* The reference will always be made to the figure in the same page, unless stated to 

the contrary. 
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tendency of the forces of tension to separate the particles which are 

contiguous, but on opposite sides of the geometrical line Pp, by causing 

them to move parallel to CD, will be measured by 

pm. F sin, 

=d62.Fsiny (Gf AP = 2). 

The tendency to separate the particles at P, by causing them to move 

in a direction making an angle @ with CD or PQ, will be estimated by 

éa.cos@.siny. F. 

This is greatest when @ = 0, and y= = as of course it ought to be, 

AB being then perpendicular to CD. 

§. Lamina acted on by two or more Systems of Tensions—Direction in 

which their tendency to produce a fissure is greatest. 

3. Let us next suppose a second system of parallel tensions super- 

imposed on the former, their common direction making an angle 8 with 

that of the first system. Let PQ, PQ’, in the following figure, be the 

directions of the tensions acting on the element da, of the line AB at 

P, and therefore QPQ'= 3; and let the intensities of these tensions 

(estimated as in Art. 2.) be represented by # and f Then if QPB 

=, and therefore Q PB =.wWs-—, we shall have the forces da. Ff. 

sin, and éa.f.sin(y—) acting on the element dx; and to find 
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the tendency of these forces to separate the contiguous particles on opposite sides of the elementary portion $2, of the geometrical line 
AB, estimated by their tendency to give an opposite motion to these particles along any assigned line > PR, we must resolve the forces in the 
direction of that line. Let RPQ=6; then will the sum of the resolved parts of our forces in the directions PR and Pr be 

ox . F' sin yy cos 0+ dx. f'sin (8) cos (IS = 0)\...2.ge..sdex as (A). 

If the value of this expression, considered as a function of the inde- pendent variables ~ and 6 be made a maximum, we shall manifestly obtain from the corresponding value of y that angular direction of the line 4B along which the two sets of tensions we are considering have the greatest tendency to form a fissure. 

Differentiating the expression with regard to @, we have 
dx. Hsin y sin 6 ~ 82. /sin ( — ) sin (@—6) =0, 

The left-hand side of this equation is the expression for the sum of the resolved parts of the forces dx. F' siny and dx/sin (y — 8), per- pendicular to the line PR. Consequently the equation expresses the condition that PR must coincide with the direction of the resultant of the above forces. 

Again, differentiating with respect to v. we obtain 

F'cos yy . cos6 + feos (~ — B) cos (B — 6) =0. 

From the above equations we must determine yy and 6. If we put 
=p, we obtain from thence Syl, 

1 + « (cosB—sin£ cot y)) (cosB— sin B . cot 0) =0, 

1+ (cos +sinB. tan) (cosh + sin tan 0) =0, 
or, putting cos B=c, sin B=s, cot@=.2, cot Vs, 

1+ (c— sx) (e—sx) =0, 

l+u (c+<) (c+2) =o. 
x x 
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: E Sa : 1 
From the inspection of these equations it is manifest that Bape for 

: 1 
putting this value for x, and therefore also —— for 2, the two equa- 

~ 

tions will only be converted into each other. Substituting in the first 

equation, we have 
a+ 

1 +m (e—ss) © -=@ 
s ~ 

which gives 

o. l+ul(e=s8). 
x 1=0, 

acs 

) 9 Ltucos 2, 
or cot View “itn igiesin BGs. cot 7 —- 1=0 Cb alas ets cesdnccew (1). 

4. Let Wy, y be the two values of y given by this equation. Then, 

since the last term is —1, 

cot y, cot ¥.= — 1; 

which shews that the difference between y, and \w. is a or 

us 
a ler ai 

and if 6,, 0, be the values of @ corresponding respectively to yy, and y,., 

we have 
1 

ot 0, = — cot cot Vi; 

= cot; 

“8 =h=h- 5 

and Q, = Wi = Yo + 5- 

The angle BPR is consequently a right angle. 

5. Since PR coincides, as shewn above, with the direction of the 

forces of tension acting on ‘the element’ da of the line AB, the ex- 

pression (A) is the value of that resultant. Consequently , and y,, 

which correspond to the maximum and minimum values of the quan- 

tity (A), determine the position of the line 4B in which the resultant 
of the above-mentioned forces of tension is a maximum or minimum. 



Mr HOPKINS, ON RESEARCHES IN PHYSICAL GEOLOGY. 17 

6. If the two systems of tensions be equal and perpendicular to 
each other, equation (1) becomes 

sin . cot’ / — 2 (1 + cosz) cot. —sinz =0, 

and is satisfied independently of particular values of w. In this case, 

therefore, there is no greater tendency to form a fissure in one direc- 

tion than another. If F' be greater than ff the equation becomes 

, 1 : 
siz. cot’ — 2 (~-1} cot —sin7=0, 

fh 

of which the two roots are 0 and «, which shews that the greatest 
tendency is to form a fissure in a direction perpendicular to that of F. 

7. The above investigation easily admits of generalization for any 
number of systems of parallel tensions superimposed upon each other. 
Let F' denote, as before, the intensity of the tension in the direction 

from which @ and y are measured; f,, f,, &c. the tensions in direc- 
tions making respectively angles B,, 8,, &c. with the direction of the 
tension F’. Then shall we have 

da. }F'sin y/cos6 + f;sin (\/—f;)cos (8—f,) + fin (¥-—B.) cos (9@—,) + &e.} = max.; 

and proceeding exactly in the same manner as in the previous inves- 
tigation, and adopting an analogous notation, we shall manifestly obtain 
the following equations : 

1 + 1 (€, — 8:8) (€, — 5, %) + ng (C2 — 828) (C2 — 82.2) + &C. =0, 

S 3 8. S. 
l+m (+2) (4. +2) + pe (+=) (c. +2) + &c.=0, 

1 - 
and putting, for the same reason as before, 2= —z we obtain 

wee 1+, (¢, —5,x) —— + &. = 0; 

~ & +, {e,8, + (c,?—s")s—¢,5,2°} + &e. = 0; 

or — §4,€,8, + 420.5. + &e.} x” 

+ §1 +4, (c" — 5°) + wo (c2 — 54) + &e.t & + 4, C,8, + meted, + &e. = 0; 

Vot. VI. Parr I. Cc 
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L+ Sales) oo a or x Sey 1=0; 

z 1+ cos2B > cot), — 2) =a eteee SS One. . cot?y Sore t._ 0 (2) 

The same remarks will apply to this equation as to equation (1). 

Hence, then, when the directions of the different tensions to 

which a lamina is subjected, and the ratios of their intensities, are 

known, this equation will determine that position of the line AB 

passing through any proposed point P, in the direction of which there 

is the maximum or minimum tendency to cause a fissure to begin at 

that point. If 8 be less than a right angle, it is manifest by imspec- 

tion that the negative root will correspond to the former, and the 

positive root to the latter case. 

8. The actual direction in which the fissure will begin to be formed 

at P, may, however, be different from that in which the tensions have 

the greatest tendency to form it; for if there be any particular line 

through that point, along which the cohesive power of the lamina is 

less than in any other, the fissure may begin to be formed in that 

direction, though it may not coincide with that of the maximum re- 

sultant tension. If however the cohesive power at the proposed point 

be equal in every direction, 7. e. if it vary continuously in passing from 

one point to another, and not suddenly as at a line of less resistance, 

the direction in which the fissure will begin to be formed, will coin- 

cide with that of the maximum resultant tension determined by equa- 
tion (2). This observation respecting the constitution of the mass to 

which the investigations of the previous articles are applicable, is im- 

portant. The cohesive power may vary according to any continuous law, 

as was before stated. (Introd. p. 11). 

Direction in which the Fissure will be continued.—Partial System of 

Tensions imposed on the Lamina about the extremities of the Fissure— 
Direction of the Fissure not affected by it in the case proposed, 

9. In the preceding investigations the tensions have not been con- 

sidered necessarily sufficient to produce a fissure. Let us now suppose 
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their intensity to increase till the resultant tension becomes greater than 
the cohesive power at any proposed point P. A fissure will then begin 
to be formed in the direction determined by equation (2), in which the 
values of , ws, &c. express the ratios of the different tensions at P, 
at the instant the fissure begins to be formed there. Let us suppose 
the fissure 4B to have been thus formed, and that the cohesive power 

«/ 

K 
of the lamina beyond 4 and B is sufficient to prevent its further 
propagation, and let us then consider whether any modification of the 
tensions will be produced immediately beyond 4 and B, which may 
possibly influence the direction in which there will be the greatest 
tendency to continue the fissure. 

10. Let GK be any physical line broken by the fissure. It is ob- 
vious that if it pass near the extremity of the fissure, its extension, 
and therefore its tension, will not be very much diminished; but since 
this tension is no longer counteracted at g and & by an equal and 
opposite tension, as in its unbroken state, it is manifest that the force 
exerted by each portion Gg, Kk, must produce an increased stress upon 
the portions of the lamina, immediately contiguous to and beyond the 
extremity of the fissure; and since a similar effect, differing only in 
degree, will be produced by each physical line broken by the fissure, 
it is possible that the intensity of the whole additional tension, thus 
partially superimposed upon the lamina, may be very considerable in 
comparison with the general tensions impressed upon it. 

Now it is manifest, that the direction in which there is the 
greatest tendency to continue the fissure from 4 or B, under the cir- 
cumstances we are supposing, will be determined by the whole tension 

c2 
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contiguous to those points, consisting of that superimposed as above 

described, as well as of that impressed generally on the lamina; and 

consequently, if we conceive the latter of these tensions, (and therefore 

also the former) to increase till the resultant tension is sufficient to 

overcome the cohesive power at 4 or B, the fissure will not necessarily 

be continued in the same direction, as if its continuation were inde- 

pendent of the partial system superimposed about its extremities. 

It will be observed, however, that in the case just considered, in 

which the forces are not producing motion in the mass, the whole force — 

exerted by gG, and /K, and similar lines is effective in producing 

the superimposed system of tension about the extremity of the fissure. 

We shall shew however, that such is not generally the case during 

the propagation of the fissure, if propagated in the manner we shall sup- 

pose it to be, and that consequently this force will have no material 

effect on the direction in which the fissure will be continued, and which 

will therefore be very approximately determined by equation (2). 

11. For this purpose, let us suppose in the first place, any systems 

of tensions impressed on the lamina, of which the resultant tension (2) 

shall be less than the cohesive power (II), at any proposed point P; 

and let us then conceive subsequently superimposed on these another 

system of which the direction is different to that of R, and of which 

the intensity ® shall increase continuously with the time ¢ till the re- 

sultant of #& and ® shall be equal to HJ, so that a fissure shall then begin 

to be formed at P. Its direction will evidently depend on R, and 

the value (®,), which ® shall have acquired at the instant the fissure 
commences. If R differ but little from Il, ®, will be generally small*, 

and cannot (however the forces producing ® may subsequently act 

on the lamina), produce any material influence on the direction of 

the fissure, which will therefore, in such case, nearly coincide with 

the direction in which the tensions whose resultant is # may. have the 

* If the direction of ® coincided with that of R, the fissure would manifestly begin te 

be formed when R+, should=II, or &,=!I—R, which by hypothesis is small. If the angle 

between the directions of R and ® be not too near a right angle, it is equally manifest that 

®, must be small. In the actual case considered in the text, this angle obviously cannot be 

very considerable. 
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greatest tendency to form it, ¢.e. it will be nearly perpendicular to the 
direction of that resultant. 

12, Let us now suppose P, to designate a point in the lamina, 
at which a fissure shall begin, and P. another point through which it 
shall be subsequently propagated; and let [,, [., denote the cohesive 
powers of the lamina at those points respectively, II, being the least. 
It has been already stated, (Introd. p. 11.) that in the case to which 
these investigations are to be applied, the intensity of the elevatory 
force, and therefore, of the tensions produced by them, will be assumed 
to increase continuously from the commencement of the action of. this 
force, to the formation of the fissures; we shall here also make an 
additional assumption, viz., that this intensity shall increase rapidly, so 
that a very small time shall elapse between the commencement of the 
elevatory action, and the instant when the fissures shall begin to be 
formed*. The tensions therefore to which our lamina is subjected, will 
be assumed to increase in the same manner. Let F, denote the intensity 
of their resultant at the time ¢; then if ¢, be the time when the fissure 
begins at P,, 2, must be equal to the cohesive power at P,=T],. When 
the fissure is thus begun to be formed, the partial system of tensions 
described in Art. 9,, will be superimposed about its extremities. Let 
®, denote its intensity at the time ¢, and at any proposed point. As 
the fissure in its progressive formation approaches P., this force will 
be superimposed on the lamina there, in addition to the force R, pre- 
viously acting there, so that if ¢, be the time when the fissure is first 
formed at P., we must have at P., the resultant of F,,, and of ®, = Th. 
Now, if during the time ¢,—¢, R, increases from R#,, or U1, so that R,, 
nearly = [1., ®,, must be small at P., and therefore can have but little 
influence on the direction of the fissure through that point, whatever 
be the direction of that tension, or the intensity it might acquire if 
the cohesive power at P, were sufficient to prevent the propagation of 
the fissure beyond that point (Art. 11.) In such case therefore the direction 
of the fissure will be at least very approximately determined by equa- 
tion (2), p. 18, in which the values of » do not include the tension ¢, 

* This assumption is not absolutely necessary for the truth of the approximation we 
have to establish or for the proof of it. It renders however the approximation more ac-~ 
curate, and the proof much more simple. 
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but only the values F, f, fZ, &e. of the general tensions, at the 

instant when the fissure is propagated through the proposed point*. 

13. Under the circumstances here supposed, the fissure will be pro- 

pagated from P, to P., nearly in the time ¢,—¢, during which R, increases 

from Tl, to [1 Consequently, if the difference between these latter 

quantities be not great, 7. e. if the cohesive power do not vary rapidly ; 

or if R, (heretofore assumed to be the same at the same time at different 

points of the lamina) increase with rapidity, it follows that the velocity 

of propagation will be extremely great, becoming infinite, when the 

cohesive power, and the tension #, are accurately uniform throughout 

the lamina. 

If F&, be not uniform, it is easy to see that reasoning similar to the 

above will hold equally true, with respect to the progressive formation 
of any fissure. 

14. The fissure will be propagated in a straight line, if the values 

of » in equation (2) remain the same, 7. e. if the ratios of the tensions 

at different points be the same at the instant the fissure is propagated 

through them. If these ratios be different for different points, the 

fissure will generally be curvilinear; there is, however, an important 

exception to this rule, when there are only two systems of tension, of 

which the directions are perpendicular to each other; for in this case 

it appears by Art. 6, that the direction of the fissure will always be 
perpendicular to that of the greater of these two tensions. 

Effect of Lines of Less Resistance on the Direction of a Fissure. 

Permanent Direction of Cleavage. 

15. In the preceding articles, we have supposed the cohesive power 

of the lamina to vary according to some continuous law. Let us now 

* When the cohesive power of the lamina is not sufficient to prevent the propagation 

of the fissure, the problem presented to us is no longer a statical one. In the case aboye 

considered, a small portion only of the extraneous forces producing the tension ®, is 

effective in causing an additional tension of the lamina before the formation of the fissure. 

The greater part is effective in communicating motion to those parts of the mass, the re- 

ceding of which from each other causes the opening of the fissure. On the contrary, when 

the formation of the fissure is arrested, the whole of these forces is effective in producing 
this partial system of tensions. 
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consider the effect of the existence of dines of less resistance in the lamina, in which case the continuity above assumed will no longer exist along these lines. 

Let DE be a line of this description, along which the cohesive 
power estimated in a direction perpendicular to it = TI’, that of the 
lamina near to DE being =TI. Also let F,, acting in the direction 

PR, be as before, the resultant at the time ¢ and at the point P, of 
the general systems of tensions impressed upon the lamina; and let 
&/ denote the tension along PR’ perpendicular to DE at the time t. 
Then if 

R, 
iis 

it is manifest that the fissure will begin to be formed along the line 
DE, rather than in a direction perpendicular to R,, in which it would 
be formed in the absence of a line of less resistance*. 

16. Let us now suppose this line to terminate at D and HE. When the fissure has been propagated to those points, its progress will be arrested till the tension R, and that superimposed just beyond the extremities of the fissure, and before denoted by ®, (Art. 11), produce a resultant tension greater than the cohesive power II. The direction in 
which the fissure will be then immediately continued, will not be known, ®, being unknown; but without staying to enquire what this may be, we may observe, that the fissure must very soon in its pro- 

* It is assumed in the above condition, that if the fissure be formed along DE, the par- ticles on opposite sides of the fissure in separating would move in lines perpendicular to DE. This would be only approximately true. 
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gressive formation, arrive at a point at which &, will be very nearly ° 

equal to the cohesive power, {since that force by hypothesis increases 

rapidly with ¢, (Art. 12){, and where, consequently, the direction of the 

fissure must necessarily be very approximately that determined by 

equation (2), as explained in Art. 12. Hence then we may conclude, 

that under the hypotheses we are taking, whatever may be the direc- 

tion first given to the fissure by any local cause, its subsequent direc- 

tion will soon become independent of that cause. 

17. If the fissure, instead of beginning at some point in a line 

of less resistance meet it, in its progressive formation, it will pass 

along it, or will cross it, according as a condition exactly similar to 

that given above (Art. 15), be satisfied or not. At the termination of 

this line, the fissure will soon resume the direction given to it by the 

general systems of tensions to which the lamina is subjected, as just 

explained. Such also will be the case at the point at which the line 

of less resistance, should it be a curved or broken line, may assume 

a direction in which the condition just referred to is no longer 

satisfied. 

18. The condition given in Art. 15 gives us 

Rw 
Rielly 

The first of these ratios will in each particular case be a function 

of the angle RPR’ or EPB, the angle between the line of less re- 

sistance and the direction 4B, (perpendicular to PR) in which the 

B, FE 

general tensions tend to form the fissure, the value of the function 

decreasing as RPR' or EPB increases from zero to a right angle, 
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since the resultant tension is a maximum in the direction PR, and a minimum in that perpendicular to PR. (Art. 5). Consequently, the greater the ratio which the former of these resultants bears to the latter, the more rapidly will R/ decrease while RPR’ increases, and the smaller will be the angle EPR, within which the above condition will be satisfied, and the narrower therefore will the angular limits, within which a line of less resistance must be situated, in order that it may cause a fissure proceeding in any assigned direction to deviate from its course. A line through P perpendicular to PR, may be 
termed a permanent line of cleavage. If the ratios Zz L &e. be the 
same at every point of the lamina, all such lines will be straight lines (Art. 14) and parallel to each other. A fissure will always have a tendency to resume this direction, when made by any partial cause to deviate from it, and will resume it taking our assumptions respecting the im- pressed tensions, (Art. 12)} almost immediately after the cessation of such cause. It will be well to examine this tendency in a few parti- cular cases. It may be considered as measuring “what may be termed the permanence of the fissure’s general direction. 

19. Let there be two systems of tensions, the directions of which are perpendicular to each other, and of which the intensities are F' and /f respectively, at any proposed point, when they become sufficient to form the fissure there. The greatest of these (F’) will be the max- imum, and J the minimum resultant tension, (Art. 6), and therefore the less f£ is, the greater will be the permanence of the permanent direction, perpendicular to that of F. If J = F, there will be no permanence in any particular direction, We have already seen (Art, 6), that there is, in fact, no greater tendency in this case to form a fissure in one direction than another. 

20. Again, let us suppose in addition to the systems of tensions, of which the intensities are Ji; fz; &e., and which have determinate directions, a force acting within the fissure perpendicularly to its direc- tion, and with equal intensity on its opposite sides, exactly as a fluid would act when forcibly injected into a fissure formed in a solid mass. Vou. VI. Parr I. D 
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Let P’P be the fissure. It is manifest that this force (p) will produce 
a tension on the mass contiguous to the extremity of the fissure, in 

a direction Pp perpendicular to P’P, and must therefore tend to pro- 

pagate the fissure along P’P produced. Hence it will follow that such 

a force cannot affect the permanent direction of cleavage as determined 
by the tensions f,, fz, &c. alone. For, suppose PR the direction of 

the maximum resultant (#) of these tensions, it is manifest that the 

whole resultant tension (including that produced by p) immediately 

beyond the extremity P of the fissure, must be in a direction PR’ 

between Pp and PR; consequently, the direction of propagation from 

P will deviate from P’PN, and approximate more nearly to perpen- 

dicularity with PR’, and therefore also with PR. For the same reason, 

the direction of its further propagation will approximate still more nearly 

to a line perpendicular to PR, till it coincide with it. The permanent 

direction will therefore be the same as if the force p did not exist. 

If however p be large compared with R, it is manifest that the 
angle pPk’ will be very small, and that the tendency to resume the 

permanent direction, when the fissure has been obliged by any partial 

cause to deviate from it, will be much less than if p were relatively 

smaller. 

21. If the lamina be subjected to no tension, and the fissure be 

produced entirely by p, the tendency will be to propagate the fissure 
in the direction in which it may originally be formed. Suppose 4P, 

to be its original direction, but that from P, it follows a line PP, 

‘ 
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of less resistance; then if we suppose the force Pp not to act effectively 
in propagating the fissure, except near its extremity *, its action will 
not extend beyond the portion P,P. of the fissure, and consequently “ 

B, 

A 

its tendency will be to propagate it in the direction of P,P, produced, 
after it has reached the termination of the line of less resistance. There 
will be no tendency, as in the former cases, to resume any particular 
direction. 

§- Modification of the Tensions in the vicinity of a Fissure. 

22. Let us now suppose a fissure to have been formed in the 
manner above described, and extending between two points in the 
lamina, where we may conceive its propagation to have been arrested 
either by an increased cohesive power, or by a diminution of inten- 
sity in the tensions. It is manifest that the state of tension in the 
vicinity of this fissure, will become entirely different from that which 
existed previously to its formation; and that the subsequent formation 
of any other fissure not very remote from the first, must therefore be 
influenced by the modification of the original tensions thus produced. 
It will now therefore be our object to examine this consequence of 
the existence of a fissure. For the greater simplicity, we may suppose 
it to be rectilinear. It will also suffice for our immediate purpose, to 
suppose the lamina subjected to two sets of tensions acting perpendi- 
cularly to each other, the direction of the fissure being perpendicular 
to that of the system of the greater intensity. 

* This will be true in the actual case to which it is intended to apply this part 
of the investigation. 

D2 
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23. Let AB represent the fissure, 4U, BV, the physical lines 
perpendicular to it, and passing close to its extremities, and for the 

greater distinctness, let us suppose the boundary of the lamina along 

UV to be parallel to the fissure. Let HF’ be a physical line originally 

parallel to the straight line 4B. After the formation of the fissure, 

A B 

P 

U s we 

} 

it will evidently assume a curved form resembling that of 4PB; but 

its curvature will be less than that of the latter line, since the curva- 

ture of all such lines must obviously be smaller the nearer they are 

situated to the fixed straight line UV, along which it becomes evanescent. 

If, however, the length of the fissure be considerable, the curvature of 

APB will be very small, and therefore the variation of curvature in 

successive physical lines such as HF, will be extremely slow, 4U 

being very large *. 
> 

Also, let PQS be a physical line, parallel before the opening of the 

fissure, to 4U. If the form of every such line as EQF' were exactly 

the same, this line would still be accurately straight and parallel to 

AU, and consequently in the case we are supposing it will be ap- 

proximately so. The tension of all such lines will evidently be much 

affected by the opening of the fissure. Since there is no force acting 

at P, the tension of SP in the direction of its length, will, at that 

* If the boundary of the lamina be not parallel to the fissure, UV may be con- 

ceived to be a physical line in the lamina, very distant from and parallel to the line AB, 
previously to the formation of the fissure, since the position or rectilinearity of such a 

line will not be sensibly affected by the opening of the fissure, as appears from the text. 



Mr HOPKINS, ON RESEARCHES IN PHYSICAL GEOLOGY. 29 

extremity, become evanescent; but since the line is extended, though 

not by a force at its extremity P, it must at every other point be 

subjected to a certain tension, and our object will be to compare this 

tension at any point @ with that acting in the direction HQF' at 

the same point, with the view of ascertaining within what limits 

another fissure might be formed subsequently to the formation of 4B, 

and parallel to it between the lines 4U and BV. Such a fissure could 

not be formed through Q, by the tensions to which we are supposing 

the lamina subjected, if the tension in the direction HQF' at that 

point should be greater than that in the direction PS, since the fissure 
must necessarily be formed perpendicular to the greater of these ten-° 

sions (Art. 6). 

24. In the first place, let us suppose a physical line of indefinitely 
small width to be attached at its extremities to the fixed points 4, B, 

and then conceive parallel forces to act on each element of this line, 

with the same or different intensities at different points, and in direc- 

tions perpendicular to 4B. The line will thus be made to assume a 

curvilinear form, and if the extensibility be small, as we shall suppose 

it to be, the curvature will be small, so that if 4Q=s, and x be the 

original length of 4Q, x and s may be considered as very approximately 

equal. Let z denote the tension at Q, p the radius of curvature, and 

@ the intensity of the force at that point, @ being any function 

of x. Then the force on the element ds, will be @.céa, and the nor- 

mal force produced by the tension 7, will = “ estimated by the effect 
P 

it would produce, if it acted uniformly on a unit of the line, so that 

the normal force acting on the element os, will = a . da very 
P 
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approximately. Consequently, if the normal make an angle a7 n with 

AB, we shall have for the conditions of equilibrium of 3s, 

58 — p.6% cosy = 0, 

or + p . dx sin y = 0, 

Te 
or — — dcosyn = 0. 

ag ties 

= +o siny = 0, 

Again, let us suppose another physical line exactly similar and equal 

to the former, with its extremities fixed to two other points in lines 

through A and B respectively, and perpendicular to 4B, and so that 

the two lines shall be in contact, when not acted on by any force. 

When the force ¢ acts in exactly the same manner on both, they will 

assume exactly similar positions, and those elements of the two lines 

respectively which were in contact when the lines were straight, will 

remain so when they have assumed their curvilinear form, and will be 

in exactly the same relative positions with respect to each other, as if 

the lines had been united into one previously to their becoming curved. 

Whence it follows, that there can be no more action between these 
lines when united, as we have just supposed, than if they were per- 

fectly independent, and therefore the tension of each must remain the 
same as if this independence existed. If we conceive any number of 

lines to be united in a similar manner, so as to form a lamina, the 

same conclusion will apply to each. 

25. Let us now take then a rectangular lamina 4BGH, which 

we may conceive to be formed in this manner, and which we will sup- 
pose to be brought into the position represented in the annexed figure, 

by the force ¢ acting perpendicularly to AB, and in the plane of the 

lamina. F' represents a physical line originally parallel to 4B; and 

PM another originally straight and parallel to 4H, and therefore, still 

evidently remaining so, though in a different position, in the curved 

form of the lamina. Let 2 be the original distance of PM from AH, 
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which will be approximately = 4P, or HQ; then will dx be the original 

width of the element PM; and if AEH, or PQ=y, Sy will be the 

width of HQF. Also, if J’ denote the tension of the lamina at Q, 

(estimated as in Art. 2.), in the direction of a tangent to HQF' at 

B 

that point, it is evident that Z'.dy will equal the tension above denoted 

by +. Therefore the force produced by this tension in the direction of 

the normal to HQF at Q, will =< .ov. dy, acting on the element 

common to the two physical lines PM and EQF at Q. 

Now it is manifest, that the tension 7, and a ; will remain unaltered 

so long as the position of every element of the lamina remains so, what- 

ever be the forces by which it is kept in that position. The action 

of @ will be the same at any point Q in PM as at P, since Q and 

P are similarly situated points in HQF and APB, and by hypothesis 

this force acts in the same manner upon each physical line, similar to 

APB. Consequently, the whole force on PM=%.PM.dx. Let us 

suppose this force instead of acting on each element of PM, to be ap- 

plied entirely at its extremity M. If this be done to every such line 

as PM, and the lamina be sensibly inextensible in the direction of these 

lines, the position will remain undisturbed, and the normal force st ba. Oy, 
P 

at Q will not be altered. Hence, if 7’ denote the tension of the lamina 

at Q in the direction PM, and therefore 7’da the tension of PM at 

that point, and 7 the angle which the normal there to HQ#F' makes 

with PM, we shall have for the conditions of equilibrium of the ele- 

ment common to PM and HQF, 



32 Mr HOPKINS, ON RESEARCHES IN PHYSICAL GEOLOGY. 

& ba. dy — 3(T" 82) e087 = 0. 

6(T. dy) + 8(7". 62) sinn = 0, 

or since 6(7".d2) -= dy.ox, and 6(7". dy) = Moa. by, 

and » is by hypothesis very small, 

io an 
PR Yee 

QT sag 0, 

Git ape 
neglecting terms involving 1’. 

obit, ae: ; 
In the case we are considering, — is a function of a alone, and there- 

P 

fore the first of the above equations gives 

T=2 y+ 

a 
== een apap deer CAB aor 
ae 

since J”’=0, when y=0. This is subject to the condition 7’.dz2 = 

force at M=9.PM.3dx, or T’=$.PM. 

The second equation gives 

T = const. nearly ....-0.0cseceeoseseee (2). 

26. If instead of supposing the lamina inextensible in the direction 
PM, we suppose it capable of small extension in that direction as well 

as in that parallel to 4B, and still assume it to be acted on by forces 
applied at each point of HZMG, so as to keep that extreme -boundary 
in the same position as before, the physical line HF’ will assume a position 

differing in a small degree from its former one. Since the angle » will 

still be very small, we shall still have Z'= const. nearly. The curva- 

ture at Q will no longer be the same as that at M, and p will therefore 

be a function of y, as well as of «w. Consequently equation (1) of the 
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previous Article will no longer be accurately true; but since the vyaria- 
tion of p as a function of y will be very slow, et may still, for a first 

P 

approximation, be considered constant from y=0 to y=a considerable value. Consequently both the equations (1) and (2) of Art, 25 may in our present case be considered as approximately true. 

27. The case at which we have last arrived is exactly similar to that of Art. 23, which it is our object to investigate. For a portion ABGH of the lamina, bounded by a line HMG, similar to EQF, 

may be considered as being retained in its actual position, by the ten- sions acting parallel to 4U and BY, at every point of HG, exactly in the same manner as that in which we have supposed the lamina repre- sented in the figure in p. 31, to be kept in its position by forces acting at each point of HG in that figure. Also it has been shewn (Art. 23,) that the curvature of any such line as EQF, varies very slowly with its distance from AB. Consequently the variation of p, the radius of curvature at Q, is extremely small, considered as a function y (42). This being the case, it is manifest likewise (assuming the original system of tensions parallel to AB, to have been uniform)* that 7" (the tension 
of HF) will vary very slowly with 4E; and that therefore : as a 
function of y, may approximately be considered constant. Consequently we shall have in this case 

AY < -Y, Nearly, 

* This is not essential to the truth of our general conclusions. Vor. VI. Parr T, E 
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If the fissure be of considerable length, p will be extremely large. 

and this equation will hold approximately for large values of y, and 

if y be less than p, 7" will be less than 7. 

28. Hence then it appears, that if the fissure be such that the curva- 

ture of its sides is extremely small, the greatest tension at any point 

within the lines AU and BV, and not extremely remote from AB, will 

be in a direction parallel to AB; and that consequently, if any fissure 

were propagated through Q, by the tension there, it must necessarily be 

in a direction perpendicular to that line. 

§. On the Formation of Systems of Fissures. 

29. The result enunciated in the last Article is important, as 

shewing the impossibility of forming in succession parallel fissures 

not far distant from each other in a mass subjected to such ten- 

sions as we have supposed. Let us suppose, for instance, a fissure 

AB to have been formed in a lamina subjected to two systems of ten- 

sions, of which the directions are perpendicular to each other. The 

A k Qa r By 

propagation of the fissure beyond 4A and B, may be conceived to have 

been prevented by a greater cohesive power of the lamina there, or 

by a diminished intensity of the tensions perpendicular to 4B. Let 

us also suppose another fissure to commence at 4’, subsequently to the 

formation of 4B, and not remote from it, from the increased intensity 

of the tensions perpendicular to 4B. Its direction AF will be parallel 

to AB, but it cannot be propagated in that direction from E# to F'; 

for the tension at Q along EF (as above stated) will be greater than 

that in a direction perpendicular to it, and therefore if a fissure be 

formed at all through that point, it must be perpendicular to HF’. Nor 

would the formation of a fissure from E to F' be rendered the more 

possible by the existence of this fissure through Q perpendicular to 4B; 
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for it will be immediately seen, that this latter fissure together with 

AB, would destroy all tension at @, and would of course prevent the 

possibility of the formation of any other fissure through that point*. 

30. Hence it follows, that in any system of parallel fissures which 

are not remote from each other, the fissures could not be formed in succes- 

ston. It will be easy however to understand how, in the case above as- 

sumed, of two systems of tension perpendicular to each other, any number 

of parallel fissures may be formed simultaneously. Let AB, A'B’ be 
two such fissures, and let GH be parallel to and equidistant from them. 

A B 

A’ b' 

Now if the two fissures begin simultaneously at 4 and 4’, (the line 

AA’ being perpendicular to the direction of propagation,) and be pro- 

pagated with equal velocity, it is obvious that no point in the physical 
line GH will have any motion communicated to it by the relaxation 

of the portion of the lamina between the fissures. Hence, if the line 

GH were to become absolutely fixed, the formation of the fissures would 

not be affected; but in this case the portions of the lamina on opposite 
sides of GH might be regarded as two absolutely distinct lamine, 
having that line for a common fixed boundary. Consequently it is as 

easy to understand the simultaneous formation of any number of parallel 
fissures, under the circumstances supposed, as that of a single fissure. 

31. Let us assume the two systems of tension not to be perpen- 

dicular to each other, and suppose 4B, A’B’, two parallel fissures of 

which the directions are perpendicular to the maximum resultant tension. 

These fissures would not necessarily be continued parallel to each other. 

* It must be recollected that the impossibility here spoken of assumes the tensions not 

to be produced by impulsive forces acting on the mass, the intensity of these tensions being 

always supposed to increase continuously, till sufficient to produce the fissure, and not to acquire 

that requisite intensity instantaneously, as previously stated in the Introduction, p. 11. 

E2 
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For let YY’ be parallel to the direction of one system, XX’ (meeting 

the fissure .4’B’) to that of the other. The opening of A’B’ will relax 

x4 

the tension along XX’, while that along YY’ will not be affected. 

Consequently the ratio of the tensions at Q will not be the same as 

originally, when 4B, A’B’ began to be formed. The direction of pro- 

pagation of the former will evidently deviate towards perpendicularity 

with YY’, and that of the latter in the same manner more nearly to 

perpendicularity with XX’. They will not therefore in such case pre- 

serve their parallelism. 

A finite time, however, will be necessary to produce the relaxation 

at Q, after the opening of A’B’, and therefore if the distance between 

the fissures be not too small, and the velocity of propagation very great, 
as we have shewn it may be (Art. 13) 4B may be propagated through 

Q before the relaxation is produced there, and the fissures might under 
such circumstances preserve, at least approximately, their parallelism. 

32. It is evident, however, that in whatever manner a system of 

parallel fissures may be produced, that, after their formation, the only 

tension of the mass between them must be in a direction parallel to 
them. Consequently, should any other system be subsequently’ formed, 

it must necessarily be in a direction perpendicular to that of the first 

system. No two systems of parallel fissures, not perpendicular to each 

other, could be formed by causes similar to those of which we have been 

snvestigating the effects. Yt will appear also, as in Art. 30, that this 

second system must be of simultaneous origin. 
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33. From our assumptions respecting the variable cohesive power 
of the mass, it is manifest that different fissures might commence simul- 
taneously at different points, and be propagated in opposite directions. 

Thus, suppose the fissure CD to commence at D, when AB and EF com- 
mence at A and E respectively. When the first of these arrives at C, 
as the two others arrive respectively at B and F, the further propagation 
of each of them may be prevented by the relaxation of the mass. Con- 
sequently a system of fissures might thus be formed similar to that 
represented in the above figure. 

§. Application of the previous Propositions to a Mass of three dimensions. 

34, These investigations have been applied immediately to the case 
of a thin lamina, to avoid the complexity which would necessarily have 
been introduced in their immediate application to a mass of three di- 
mensions. The extension of the preceding propositions, however, to this 
latter case is sufficiently obvious to require little more than an enun- 
ciation of the results, which may also serve as a summary of the 
most important of those at which we have arrived in this section. 

A slight inspection of what has been advanced in Art. 15, will 
shew that the existence of a line of less resistance in a thin lamina, 
will have no effect on the propagation of a fissure in a direction per- 
pendicular to it; and similarly, if we Suppose any mass acted on by 
horizontal tensions, it is manifest that a horizontal plane of less resist- 
ance will have no effect on the verticality or horizontal direction of 
the vertical fissures resulting from such tensions. Consequently, the 
tensions being horizontal, the cohesive power of the mass may be sup- 
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posed to vary continuously or discontinuously along any vertical line, 

and, as explained in Art. 8, it may vary according to any continuous 

law in any horizontal lamina of the mass. The same assumptions are 

made respecting the continuous but rapid increase of the tensions, as in 

Art. 12. 

I. If this mass be acted on by a single system of horizontal 
parallel tensions, a fissure beginning at any point will be propagated 

in a vertical plane perpendicular to the direction of the system. 

(Art. 2). 

II. If the mass be subjected to any number of systems of parallel 

tensions, the fissure will be propagated through any point in a direc- 

tion perpendicular to the maximum resultant tension at that point, at 

the instant the fissure reaches it, (Art. 12.) the horizontal direction 

being determined by equation (2), (Art. 7). If the ratios of the ten- 

sions at each point at the instant of propagation through it be the 

same, the fissure will, in general, be formed in one vertical plane. 

(Art. 14.) 

III. If there be only two systems of horizontal tensions, and these 

be perpendicular to each other, the fissure will lie in one vertical 

plane perpendicular to the direction of the system of the greatest in- 

tensity, whatever be the ratio of the tensions at each point in the 

two systems, provided the tension at each point always remain the 

greatest in the same system. (Arts. 6, 14.) 

IV. Each fissure under the conditions assumed, will be propagated 

with extreme velocity. (Art. 13.) 

V. The tendency of the tensions to propagate the fissure in one 

particular direction rather than in any other, or the permanence of the 

permanent direction of cleavage, depends on the rapidity with which 
the magnitude of the resultant tension, estimated in a particular direc- 
tion, decreases as that direction deviates from that of the maximum 

resultant tension; or generally, on the ratio which the maximum bears 

to the minimum resultant tension, which is perpendicular to it. (Art. 18.) 
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VI. If in addition to a system of horizontal tensions, there be 

also a force acting on the opposite sides of the fissure, perpendicularly 

to its direction, and tending to increase its width*, the permanence of 

direction in the progressive formation of the fissure will be diminished, 

but the permanent direction will remain the same as if there were no 

other force than the system of horizontal tensions, 7. e. if the direction 

in which the propagation of the fissure is taking place be disturbed by 

any partial cause, it will still constantly tend again to perpendicularity 

with the directions of the system of tensions; but this tendency will 

be less than if the force always acting perpendicularly to the fissure did 

not exist. (Art. 20.) Consequently, deviations from the permanent di- 

rection of cleavage will, in the case we have supposed, be greater 

than if the sides of the fissure were not subjected to the action of 

this last-mentioned force. 

VII. If there be no tension acting on the mass, and a fissure be 

formed solely by this force, acting perpendicularly to its sides, the fis- 

sure will be propagated in the plane in which it begins to be formed, 

if the cohesive power of the mass vary according to any continuous law. 

There will be, however, but little permanence in its direction, so that 

if it be turned from its original direction by planes of less resistance, 

there will be little tendency to resume that direction, and the fissure 

may thus assume any form of irregular curvature. (Art. 20.) 

VIII. If a fissure commence at, or in the course of its progressive 

formation meet, a partial plane of less resistance at an acute angle, 

it will, under certain conditions, be propagated along it; but when from 

any cause this ceases to be the case, the fissure will almost immediately 

resume a direction parallel to its original one, supposing it produced 

by tensions, which, independently of the existence of planes of less re- 
sistance, would produce rectilinear fissures. (Arts. 17, 18.) 

IX. If the mass be subjected to two systems of parallel tensions, 

of which the directions are perpendicular to each other, two systems of 

* This will be the case if the fissure be filled with any kind of fluid subjected to a 
great pressure from some external cause. 

* 
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parallel fissures may be produced, of which the directions will be per- 

pendicular to each other. No two systems of parallel fissures could be 
thus formed, of which the directions should not be perpendicular to 

each other. (Art. 32.) 

X. If the fissures in either of these systems be near to each other, 

they could not be formed by such tensions as we have been considering, 
in succession. They must be formed simultaneously in each system. One 

system, however, might be formed at any time subsequently to the other. 

(Art. 30, 32.) 
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SECTION II. 

35. LeEtT us now proceed to apply the results obtained in the last 

section to the actual case of a portion of the earth’s crust, under the 

hypotheses respecting the action of the elevatory forces and the cohesive 
power of the mass, which have been already stated, (Introd. p. 11, and 
Art. 12.) And, first, let us suppose, for the greater simplicity, the surface 
of the mass acted on to be of indefinite length, and bounded laterally by 
two parallel lines. If we first suppose the elevatory force to be uniform, 
it is manifest that the extension, and therefore the tension, will be 
entirely in a direction perpendicular to the length; so that its whole 
tendency will be to produce longitudinal fissures, or such as are parallel 
to the axis of elevation. 

§. Formation of Longitudinal Fissures—Their Position and Width— 
Complete and Incomplete Fissures. 

36. Let the annexed diagram represent a transverse section of the 

elevated mass, and let us suppose it symmetrical with respect to the 
line CC’, and also that the mass below the horizontal line AB remains 

perfectly undisturbed. The cavity 4CBD, containing the fluid through 
the medium of which the elevatory force is supposed to act on the 
lower surface of the elevated mass, (see p. 10), may either be supposed 
to have existed previously to the action of the elevatory forces, or to 
have been partly produced by them. 

Vor. VI. Parr I. F 
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If we suppose the mass not to become compressed, and the dis- 

turbance not to extend beyond the vertical lines 44’, BB’, it is mani- 

fest that the lengths of the lines ACB, A’C'B' will be equal; and since 

their original lengths were so, their extension will be the same. 

It is evident, however, that the force required to elevate the 

mass ABB'A’ will be much greater than that just necessary to over- 

come its weight, on account of the forces called into action at the ex- 

tremities of the elevated mass, and that some degree of compression of 

the mass will consequently exist, which will render the vertical line 

pr p i paae Meine tae fi: 

poate G5 | ae) Vo B! 

CC’ shorter than its original length. It is also evident that the dis- 

turbance of the upper part of the mass will extend laterally beyond 

the verticals through 4 and B, as above represented. 

The compression of CC’ will clearly make the curvature of 4’C’B’ 

less than that of ACB, and will consequently render its extension less 

than it would otherwise be. The greater extent of lateral disturbance 

in the upper portion will also produce the same effect. For let us 

suppose the portion A’p of the upper curve exactly similar, and equal 

in length to pC’, then is it easily seen (assuming the extension of A’B’ 

to be uniform throughout) that the line joining the physical point p, 

and its undisturbed position will be vertical, while similar lines for 

P» p, and q,, will be inclined, as in the figure. Hence it immediately 

appears that the difference between the lengths p,q, and aB will be 

less in this case than if p, and qg, were in the verticals through A and 

B respectively. We may therefore infer that the same will hold gene- 

rally, since the condition of the similarity of d’p and pC will be 

approximately satisfied when the tangents at A’ and C’ are parallel, and 

the curvature small, as we may here assume it to be. 
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Hence, then, we may conclude that the extension of the physical line ACB, wnder the circumstances supposed, will be at least equal, and generally greater, than that of any similar line in the higher portions of the uplifted mass. It seems also probable, that in cases occurring in nature the extensibility will be less in the lower portion of the cle- vated mass (at least to a certain depth) than in that which constitutes its upper surface, 

Now the tendency of any horizontal portion of the mass to separate, so as to form a vertical fissure, will vary directly as the extension, and inversely as the extensibility, We may therefore safely conclude, that when a mass has been elevated as above supposed, the greatest tendency to rupture will not be in its upper portion; and consequently, that if any fissure be produced, whether by a gradual increase of the horizontal tension, or by any more sudden impulsive action on the mass in its State of tension, such fissure will not commence at the surface, but at some lower part of the mass. 

37. It appears, from what has been proved in the previous Section, that if we suppose the fissure produced solely by the tensions to which the mass is subjected, the plane in which it will lie will be perpendicular to the direction of the single system of tensions which, in this case, act upon the mass, and will consequently decline as much from a vertical plane as that direction deviates from horizontality. According to the hypothesis we have made, however, of the force acting on the elevated mass through the medium of an elastic vapour, this vapour will necessarily ascend into the fissure, and exert a fluid pressure on its sides, in a direction perpendicular to them, and of which the in- tensity may bear a considerable ratio to that of the tension. To form a rough estimate of this intensity, let » be the radius of the circle which shall most nearly coincide with the curve 4CB (Fig. p. 41), p the pressure of the fluid on a unit of surface, 7’ the intensity of the tension (supposed uniform) of the elevated mass estimated as in the previous section, and } the thickness of the mass. Then the whole tension exerted on a portion of the mass included between two vertical planes perpendicular to the axis of elevation, at a distance unity from each other, will = 67, and we shall therefore have 
FQ 
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p=-.f. 

The value of 7, according to the same rough approximation, will be 

nearly = a which will always be very large; but as 4 also is pro- 

bably large, p may bear a very considerable ratio to 7. 

Here then we have the case which has been anticipated in the in- 

vestigation of Art. 20; and it appears that the action of this force p 

will greatly tend to increase the effect of any local causes in producing 

partial deviations in the plane of the fissure from a vertical plane, but 

that it will not alter generally its position when considered with refer- 

ence to its whole extent. 

38. Again, with respect to the comparative width of the fissure at 

different depths, it is manifest, taking the case of the Fig. p. 41, where 

the extension of each lamina is the same, that if the mass, when relieved 

from its tension by the rupture, return to its original horizontal length, 

the width of the fissure will be the same throughout its whole depth; 

and in the case of the Fig. p. 42, the same conclusion might be con- 

sidered as very approximately true under the same hypothesis. If, how- 

ever, the different lamin, which I have supposed to have different 

powers of cohesion, have also different degrees of elasticity, this dif- 

ference may materially affect any approximation to this uniformity of 

width. It seems probable, however, that the mean width (at least within 

certain limits) will rather increase than decrease with the depth. 

39. Any number of these fissures might thus be formed simul- 

taneously, (Art. 30.); and this simultaneous formation would be very 

much facilitated by the action of the pressure p in the interior of the 

fissure. If it be supposed, however, that partial causes prevent the com- 

mencement of the formation of each fissure at the same instant, exactly 

equal forces will not be exerted in the production of each, and con- 

sequently they will not be propagated with the same velocity. Some 

therefore will reach the exterior surface sooner than others; and when 

a certain number have thus been formed from the lower to the upper 
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surface of the mass, the tension of it may become so far relaxed that 

_ the further formation of the others shall cease. We may therefore 

suppose it highly probable that the number of fissures formed in the 

inferior parts of the elevated mass, will be considerably greater than 
the number which reach the surface. 

40. The phenomena, then, to which our investigation at present 
extends, may be represented as in the annexed diagram, a few of the 

fissures being complete ones, or running up to the external surface of 

the mass, and the others being incomplete ones, or rising to different 

heights, without reaching the surface. 

41, If we recur to what has been previously advanced respecting 
the depths of veins, (Introd. 11. p.), we shall see the importance of the 

fact established above, that the formation of fissures produced by the 

causes we have supposed must necessarily begin in some lower portion, 

and not at the upper surface of the mass, where it might perhaps at 

first sight be supposed more probable that they would begin. 

42. We may also see, in what has been above stated, one cause of 

the inclination or hade of a fissure. (See Introd. 11. «.) 

§. Formation of Transverse Fissures—Fissures of a Conical Elevation— 

Modification in the Position of Longitudinal Fissures. 

43. In the case we have been considering, the whole tendency of 

the elevatory force, acting with perfect uniformity, will be, as we 

have before remarked, to produce longitudinal fissures; and a_ vertical 
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section of the elevated mass parallel to the general axis of elevation, 

will be bounded above and below by straight horizontal lines. If, how- 

ever, we now conceive this force to act with greater intensity at particular 

points along the general line of elevation, the section just mentioned 
will present such an appearance as represented in the annexed diagram, 

in which the line 4 BC, previously to the elevation, was horizontal. In 

such case we shall have longitudinal extension, (equal to the difference 

between the line ABC and the dotted line AC), which, if sufficiently 

great, will necessarily produce transverse fissures, similar to the longi- 

tudinal ones already described, and such as represented in the above 
section. 

44, We may represent to ourselves this more intense action at 

particular points, by conceiving an additional force superimposed on a 

uniform force producing the general elevation independently of the 

irregularities resulting from this partial action. It is manifest therefore 

that the tension perpendicular to the line of elevation will result from 
the sum of these forces, while the longitudinal tension will be produced 
by the superimposed force alone. The former will therefore, when the 

partial force is not great, be much the greatest; and we may conse- 

quently conclude, that the longitudinal fissures may in such case be formed 

first, during the continuous though rapid increase of intensity in the ele- 

vatory forces, according to the assumption we have made respecting them, 

(Art. 12.); and when this system is once formed (the fissures in it not being 

remote from each other), the transverse system must necessarily be approxi- 

mately perpendicular to it, whether it be formed at the next instant, 

or at any succeeding epoch, and notwithstanding any irregularity in the 

forces producing it, provided they do not act impulsively. In this 
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manner it is easy to understand the formation of a transverse system of fissures approximating to the law of parallelism, though resulting from forces which, acting partially, and under other circumstances, would produce the most irregular phenomena. 

45. If however this more intense action at particular points be suf- ficiently great, and exactly simultaneous with that of the general elevatory force, it may modify materially the position of the longitudinal fissures. To determine the nature of this modification, we must consider the directions of the tensions which would be produced by an elevatory force, acting solely in the vicinity of any proposed point of a mass; because such tensions superimposed upon those produced by a force acting uniformly along the whole range, will be very nearly equivalent to the tensions produced by the simultaneous action of two forces such as those just mentioned. 

46. For the greater simplicity, we may take a cone as the ap- proximate type of the partial elevation we have to consider. 

Let 4’C’B’ represent this cone, C’D its axis. Then if we assume the physical line A’pC’ to be equally extended, and 4D to be its original length, we have 

The original length of A'p : A'p : A'D : aie, 
and therefore, 

The original length of 4’p = Ap. aD 
AC 

= A’m, 
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mp being parallel to DC’. Consequently, the distance of the physical 

point p from the axis of the cone, will not be altered by the elevation ; 

and since the same holds for every physical point in the circumference 

of the horizontal circle whose radius is px, there can be no tension at 

any point of the physical line forming that circumference, in the di- 

rection of its tangent at that point. This is consistent with_our as- 

sumption of the equable extension of every part of the line 4’C’, which 

will therefore be true*. Similarly, if we conceive the whole mass 

AA'B'B to be formed by the superposition of similar conical shells, 

it is easily seen that the same result will hold for every horizontal 
circle concentric about the axis of the cone. Hence it follows, that if 

any vertical plane be drawn through the. axis of the cone, there will be 

no tension at any point of the mass in this plane in a direction per- 

pendicular to it. The tension will be entirely in the plane, and parallel 

to the slant side of the cone. 

If, then, a fissure which should pass through any proposed point 
P, were formed according to the greatest tendency of the tensions of 

the unbroken mass to form it, it would manifestly coincide with the 

surface of an inverted cone, whose base would be the circle of which 

the radius is px, and whose axis would coincide with that of the 

elevated cone. If p should coincide with C’, an orifice would be formed 

along the axis C’C; and if we consider that the force will act, ac- 

cording to our hypothesis, with the greatest intensity at C, it seems 
highly probable that the first dislocation will usually take place along, 

or very near to that axis. For the greater distinctness, suppose this 

to be the case. 

47. The instant this has occurred, the conditions of the problem 

will be entirely altered. The force at C’ maintaining every such line 

as A’C’ and BC’ in its state of tension, being now destroyed, the 

* Suppose a tension 7 to exist along the physical line forming the circumference of the 

circle whose radius is pz. This would produce a force = acting at p in the direction pn, 

the resolved part of which in the direction pC’ would increase the tension of 4’p. In such 

case the extension of A’C’ would be greatest at 4’, and our assumption of the uniform extension 

of that line would not be true. 
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extremities of those lines at C’ will separate from each other by the con- 
traction of A’C’ and B’C’; and the same will be true for every similar pair 
of lines. An extension of the orifice at C’ will thus be produced, and con- 
sequently a tension of the mass contiguous to it in the direction of a tangent 
to a horizontal section of it, while the tension in the direction of such 

lines as C’A’ will be entirely destroyed near to C’, and much lessened 
at lower points. The whole tension therefore in the upper part of the 
mass, will be in the directions of the tangents of horizontal circles con- 
centric about the axis; and the tendency to form a fissure there, will 

be entirely in a vertical plane passing through the axis of the cone. 

It is easily seen also that the tension at the vertex will be greater 
than in any other part. Consequently, if fissures be formed under 
these circumstances, they will commence at the vertex, and be in posi- 
tions such as that just inentioned. 

48. Let us now suppose the elevatory force to act with additional 

intensity beneath the point C of the annexed diagram, (which repre- 

sents a horizontal section,) so as to superimpose on the general elevation 

A c B 

x ye 7B 

a conical one, having its apex at C. In addition to the tension (F) 
acting at any point P within the bounds of the cone, and in the 
direction perpendicular to the general axis of elevation, we shall also 
have another tension (/) acting at P, in the direction PQ’ perpen- 
dicular to CP, (taking the case of Art. 47.) and the tendency of these 
tensions will be to form a fissure deviating from perpendicularity with 
PQ, in a degree depending on the relative intensities of f and F. 
Consequently, a fissure A’PB’ will deviate from parallelism with the 

line of general elevation, approximating towards C in the manner above 
represented. 

49. If the partial elevation instead of approximating to the conical 

form, be more nearly spherical, without any such rupture at C, as 
Vor, VIZ" Fan I. G 
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above supposed, the principal tension due to it will be in the direc- 

tion CP, instead of being perpendicular to that line, in which case 

the deviation in the direction of the fissure will be the contrary of 

that above represented. 

j. Formation of Longitudinal and Transverse Faults—Anticlinal Lines— 

Longitudinal Valleys—Transverse Valleys—Comparative Effects of 

subsequent Movements on the Width of Longitudinal and Trans- 

verse Fissures—Throw of a Vein. 

It appears then, that in the case we have considered, and under 

the conditions assumed, the elevating forces will produce two systems 

of fissures with a general approximation (subject to certain modifica- 

tions) to rectilinearity, and perpendicular to each other. Let us further 

consider what positions the different portions of the mass may assume 

subsequently to the formation of these fissures. 

50. The diagram in page 45, represents a transverse section of the 

elevated range, immediately after the contemporaneous formation of 

the complete fissures MN, CC’, &e. It does not appear probable that 

the effects of the continued action of the elevatory force will after- 

wards follow any general law; for the subsequent movements of the 

different portions of the mass, now rendered in some degree indepen- 

dent of each other by the fissures which separate them, must be con- 

stantly influenced by that irregularity in the action of the elevatory 

force, and those accidental and local causes of which it is now impos- 

sible to form any estimate. If the elevatory force be produced by an 

expansive vapour, or act through the medium of any fluid, as we have 

supposed it to do, its intensity must decrease after a certain time, 

thus causing subsidencies in the elevated mass, the degree of which 

in different portions will probably be in general determined by acci- 

dental circumstances. One consequence, however, of these irregular 

causes, would appear to be necessarily a very general one, viz. a 

difference of elevation in the adjoining parts of different portions 

of the mass separated by the fissures, whether longitudinal or trans- 
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verse, thus producing systems of Jongitudinal and transverse Jaults, such as described in the Introduction, (1. a, B.) 

51. Sections of longitudinal faults which may be thus produced, are shewn in the annexed diagram, which represents one of the forms which, it is manifest, the uplifted mass represented in page 45, may ultimately assume from the causes above mentioned (Art. 50). In such case we shall have an anticlinal line through N”, running parallel to the general one through C’ in the central part of the elevation; and a synclinal line through N’ parallel to the two former ones. The existence also of these longitudinal fissures and consequent irregulari- ties of surface, will obviously tend to direct the action of superficial 

M’ 

agents of denudation along longitudinal courses, and thus to facilitate the formation of longitudinal valleys, particularly in the case in which the relative elevation of two adjoining portions of the mass is such as represented at N. If this kind of elevation be continued for a considerable distance longitudinally, a distinct longitudinal valley must be the necessary consequence. 

52. It not unfrequently happens that we observe in anticlinal lines a degree of deviation from approximate rectilinearity, which might at first sight appear inconsistent with the mode of formation which this theory would assign to them, assuming that great predominance of general over partial and accidental causes, throughout an extensive area, with which very irregular deviations in the direction of a fissure would 
not be accordant. It seems, however, highly probable, that this cha- racter of anticlinal lines would not, in fact, be the unfrequent conse- quence of the general causes we are considering. In the first place, we may observe that longitudinal fissures are not necessarily continu- ous for any great distance, as we have explained in Art. 33, and 

G2 
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therefore an anticlinal line formed along one fissure, may easily be 

conceived to be continued along another, not exactly in the same 

line. If we conceive several transferences of this kind to take place 

from one fissure to another, we shall have a discontinuous anticlinal 

line, each portion of which will be as rectilinear as the fissure with 

which it coincides; but if the physical structure of the mass should 

be placed under that disguise so frequently spread over it by super- 

ficial agencies, the geologist, instead of detecting this discontinuous 

line, consisting of a number of straight ones having parallel directions, 

will probably only recognize a somewhat ill defined anticlinal line of 

irregular curvature, and apparently destitute, in a considerable degree, 

of those characters of rectilinearity and parallelism with the general 

axis of elevation which this theory might appear to assign to such 

lines. It may also be observed, that since on the opposite sides of a 

transverse fissure the movements of the adjoining masses will be in 

some degree independent of each other, it is easy to conceive that 

this cause also may sometimes facilitate the transference of an anti- 

clinal line from one longitudinal fissure to another, and thus destroy 

its apparent rectilinearity. 

Similar observations will equally apply to the directions of longi- 

tudinal valleys, as far as their formation may be referrible to the causes 

above mentioned. 

53. It has been stated how much the ultimate position of the dis- 

located mass may generally depend on accidental causes. In particular 

cases however, and especially with respect to those portions of the mass 

adjoining the lateral boundaries of the general elevation, there appears 

reason to expect that the phenomena would, according to our theory, 

frequently follow a certain law. Suppose the diagram, page 51, to repre- 

sent the portion of the mass bounded by two parallel transverse’ fissures, 
produced as described in Art. 43, by a greater intensity of the elevatory 

force acting at the point C. For the greater simplicity, we may also 

suppose this force to act symmetrically with respect to the two transverse 

bounding fissures. Then, after the general elevation has proceeded as far 

as represented in the diagram, page 45, and the fissures have been formed, 
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if the elevatory force act at C with a considerably greater intensity 

than at JZ, it will communicate to the mass CC'NM, together with its 

general upward motion, a rotatory one, of which the axis will be hori- 

zontal and perpendicular to the transverse boundaries. This motion will 

tend to depress the extremity M, particularly if CM be of sufficient length. 

No such cause will exist in the adjoining mass 4A4’NM to lower its 

extremity NM; and moreover it may be remarked, that this mass once 

elevated is more likely to be supported by the debris produced by a con- 

vulsive movement such as we are supposing, and therefore its extremity 

N will be less likely to subside than the adjoining extremity of the con- 

tiguous mass. From these causes it would seem highly probable that 

these two portions of the general mass should assume the relative posi- 

tions above represented. A partial elevation and escarpment may thus 

be produced in accordance with the general fact stated in the Intro- 

duction, (Iv. B. p. 7.) 

We may also observe, that the fault thus formed at N must 

very generally possess the character mentioned in the Introduction, 

(I. y. p. 2.) 

54. In the diagram, page 46, DHFG may represent a section pa- 

rallel to the general axis of elevation of the portion of the mass 
which we have supposed, in the preceding article, to be subsequently 

elevated in a greater degree than the portions contiguous to it on either 

side, as represented in the diagram of the following page. If we conceive 

the portion also of which the section is #”D'E'G’ (p. 46.) to be raised 

in the same manner, it is obvious that a transverse valley will thus be 

formed between these two partial elevations, such as described in the 

Introduction. (v. p. 8.) 

55. A section of one of our partial elevations above mentioned, by 

a vertical plane parallel to the axis of the general elevation and the 

longitudinal fissures, will now present an appearance (taking the phe- 

nomena as far as we have yet investigated them) similar to that of 

the annexed diagram, in which DEFG represents the portion of the 

mass defined by the same letters in the diagram of page 46. The broken 
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line edgh, supposed to be originally horizontal, indicates the faults 

along DE and FG. We may easily conceive, however, a further modi- 

fication of the phenomena from any irregularity in the action of the 

elevating force, or in the resistance opposed to it, in adjoining portions 

of the mass on opposite sides of any one of the incomplete transverse 

D 

fissures, similar to that which we have assumed to produce the faults 

‘DE, FG, at complete fissures ; for if this inequality of action on two such 
portions of the mass be sufficient, it may evidently convert the incomplete 
fissure into a complete one, provided the fissure extend near enough to the 

surface to weaken the mass so much as to render it unable to counteract 

the tendency of this unequal action, to give a greater elevation to the 

portion on one side of the fissure than to that on the other. In such 

ease a fault would almost necessarily be produced, but probably smaller 

than that- which would be produced by the same cause at a complete 
fissure. In either case, however, the fault may of course be of any 

magnitude, depending on the intensity of the action producing it. 

If then we conceive the phenomena represented in the preceding 
diagram to be thus modified, and the superficial elevations to have been 

partially removed by denudation, the actual phenomena may be repre- 

sented as in the annexed section. The broken line abcdefghi is as 

before, supposed to have been originally continuous and horizontal, or 
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if the mass be stratified, to represent a line of stratification. ed and gh 

are faults; the differences of elevation ab, de, fg, are supposed too small 

to be so designated. Small relative elevations of this kind constitute 

what is frequently termed the throw of the vein. (Introd. 11. «. p. 4.) 

56. It is important to observe the different effects which will be 

produced on the form of the longitudinal and transverse fissures by 

the movements above described. It has been shewn (Art. 38.) that a 

fissure immediately after its formation, and before any subsequent move- 

ment of the mass has taken place, must offer a certain approximation 

to uniformity of width; but an inspection of the diagram in page 51, 

will make it appear very evident, that this subsequent movement must 

in general destroy, in great measure, this character in the longitudinal 

fissures, since it must almost necessarily close them in some parts and 

open them considerably in others; while a movement similar to that 

described in Art. 53, and represented in the figure, page 54, will 

not necessarily produce any derangement in this respect in a_ perfectly 

uniform fissure, because the motion of one wall of the fissure is parallel, 

or nearly so, to the other. We should expect therefore, as a necessary 

consequence of this view of the subject, a much nearer approximation 

to uniformity of width in the transverse, than in the longitudinal fissures. 

This is strikingly in accordance with what has been stated in the Intro- 

duction (1. 4. p. 4.) a rule to which, I believe, there are comparatively few 
exceptions. 

§. Proper signification of the term “System of Fissures”—Simultaneous 

Formation of Systems of Fissures. 

57. I have hitherto spoken of systems of parallel fissures, as if the 

parallelism of the fissures constituted the essential characteristic of each 

system; and in the case we have been considering of an elevation of 
indefinite length, and of which the axis is rectilinear, this parallelism 

will characterize the two systems at right angles to each other, and which 

I have designated as longitudinal and transverse. If, however, the axis 

of the general elevation of indefinite length be not in a right line, the 
fissures of the longitudinal system (assuming them to be produced in 
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the manner I have indicated,) will be still parallel to this axis (in the 

sense in which one curve line may be said to be parallel to another) 

and every fissure of the transverse system will be perpendicular to 

each fissure of the former system at the points of their intersections, 

and consequently the fissures in this transverse system will not be 

parallel. Again, if we suppose the superficies of our elevated mass 

to be of finite length, and to be bounded for instance by a line 

approximating to the form of an elongated ellipse, the directions of 

the fissures in the transverse system, as we approach towards either 

extremity of the elevated range, will gradually change from perpen- 

dicularity with the major axis (the axis of elevation) till they become 

parallel to it, at the extremities of the ellipse, always preserving their ap- 

proximate coincidence with the directions of the lines of greatest incli- 

nation of the general surface of the mass. The fissures of the other 

system will be approximately perpendicular to these lines. In this case 

then, the two systems will be no longer characterized by any constant 

relations which their directions bear to that of the axis of elevation, 

and therefore the terms longitudinal and transverse will cease to desig- 

nate them so correctly as in other cases; and still more is this the 

case, where the elevation approximates to the conical form, in which all 

the fissures analogous to those we have termed transverse, diverge from 

the vertex of the cone. I have not, however, thought it necessary to 

supersede these terms by others, since they are very generally applicable 

with great propriety. It is highly important, however, as respects the 

application of this theory of elevation, to distinguish these two systems 

carefully from each other. It has been pointed out (Art. 56) how much 

the transverse fissures exceed the others in regularity of formation, and 

it seems not improbable, that this fact may be in some way connected 

with that of their containing mineral veins, so much more continuous than 

those found in the more irregular fissures of the other system, (Introd. 

u. 6. p. 3.) The most general rule will probably be, whatever be the 

form of the elevated mass, that the direction of a transverse fissure 

approximates to that of the dip of the strata, (supposing the mass stratified ) 

the direction of a longitudinal one, consequently, approximating to that 

of the strike of the stratified beds. It should be observed, however, 

that the present form of the elevated mass may in some cases. differ 
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materially from that which was originally given to it, by the move- ment to which the formation of the principal fissures must be referred. The rule would probably be more applicable immediately after this first elevation, than after the modifications in the position of the mass, which may possibly have been produced by subsequent ones. 

It will be observed that the law of parallelism, which characterizes alike the phenomena of anticlinal lines, faults, mineral veins, &c., is to be traced, according to the view we are taking of the subject, to the same origin; viz. the formation of the two great systems of fissures, which have been shewn to be, under certain simple conditions, the necessary effects of the elevatory force to which they have been re- ferred. The term parallelism, therefore, when used as characterizing systems of any of the above phenomena, must be equally regarded as subject in its interpretation to the exceptions or modifications pointed out in the last paragraph. In fact, if the extent of the mass be comparatively small, and its boundary irregular, this property would cease altogether to characterize the phenomena. If the elevated mass be of great superficial extent, partial irregularities in its boundary will have no appreciable effect on the directions of the fissures; and though two remote fissures of the same system might, in such case, (as appears from the preceding paragraph), be inclined at any angle to each other, any two adjoining fissures would in general be approximately parallel. The law of parallelism, however, in the strict acceptation of the term, could only hold through the whole extent of the elevated mass, in the case above considered of a rectilinear elevation of indefinite length. In other cases, the law must be subject .to the modifications indicated above. 

58. If the approximate accuracy of our assumptions be allowed, as applied to the crust of the globe, it appears, from our investiga- tions, that an elevated range characterized by continuous systems of longitudinal and transverse fissures, referrible to the causes to which we have been assigning such phenomena, could not be produced by successive elevations of different points, by the partial action of an elevatory force. It has been shewn (Art. 46) that in such elevations Vor. VI. Parr I. H 
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fissures would necessarily diverge in all directions from the central 

points, so that parallel systems such as above mentioned could not 

possibly be thus produced. It has moreover been shewn, (Art. 30.) 

that every system of parallel fissures in which no two consecutive 

fissures are remote from each other, must necessarily have had one 

simultaneous origin. Subsequent efforts of the subterranean forces may 

enlarge these fissures, and propagate some of them to the surface, con- 

verting incomplete into complete fissures, but it would seem essential. 

according to our view of the subject, that their positions in the lower 
portion of the mass, where their formation will commence, (Art. 36.) 

should be determined contemporaneously. 

j. Formation of Riders—Explanation of the Phenomena at the Intersections 

of Mineral Veins. 

59. If two systems of fissures were formed by forces acting in the 

manner we have supposed on a mass without vertical or nearly vertical 

planes of less resistance, these systems would present to us cases of 

intersection only of nearly vertical fissures with horizontal beds, or 

with other vertical fissures at right angles to the intersecting ones. 

It is manifest, however, that the existence of planes of less resistance, 

combined with an irregularity of intensity in the elevatory force such 

as we have assumed, may produce some fissures irregular both in 

direction and inclination to the horizon, though the general pheno- 

mena may still present that distinct approximation to the laws we 

have indicated, which would be the necessary consequence of the great 

predominance of general over local causes. It is at the intersections 

of the two perpendicular systems of veins (metalliferous veins and cross 

courses) that the most important of the phenomena we are about to 

consider are found, while others occur at the intersections of veins of 
more irregular formation. 

60. Before we proceed to examine these phenomena more particu- 

larly, we may notice one probable consequence of this occasional irregu- 

larity in the formation of veins, viz., the production of what are usually 

termed riders. If a fissure be propagated through a point in which 
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two planes of less resistance meet, it is very possible that it may be propagated simultaneously along these planes. These diverging branches 
may continue separate, and present themselves at the surface as two distinct fissures, or they may meet again, and thus including a portion 
of the mass in which they are formed, produce the phenomenon above 
mentioned. If the insulation be perfect, the mass, if not too large, will 
of course fall, and may descend to any unknown depth; and possibly 
this may be one cause of the partial irregularities in the width of the 
fissures of mineral veins. If the insulation be imperfect, or the width 
of the mass be greater than that of the fissure immediately beneath it, it will be supported in its original position, or it may under other cir- 
cumstances lodge at a certain depth below it. In either case if such 
a mass come within the sphere of the miner's observation, he terms it a rider, (Introd. 11. »). 

If the rider be originally supported as above suggested, till a suf- 
‘ficient quantity of matter shall have been deposited in the fissure, to 
afford a support to it independent of its contact with the walls, and 
the fissure be then increased in width by any renewed action similar 
to that which originally produced it, the rider may present itself to 
us supported by the vein-stuff, in a state of perfect insulation from 
the solid mass on either side of the vein*. 

61. In the phenomena attending the intersections of veins, described 
in the Introduction (11. 0, 7, p,) the broken veins are generally supposed to 
have been originally continuous, and to have been broken by a relative 
movement of the portions of the mass on opposite sides of the unbroken 
vein. Adopting this hypothesis, we have not. the smallest difficulty 
in accounting for the appearance represented in the figures, p. 6. (Introd. 
II. p,) since our elevatory force must necessarily produce in many cases 
that relative elevation of different sides of a fissure, which at once ac- 
counts for the phenomena in question. The other two cases above 

* This perfect insulation of riders has been recently urged as an objection of the most serious weight against the mechanical origin of veins. It appears to me, on the contrary, to be an almost necessary consequence of the causes we are considering acting on a mass con- stituted like the crust of the earth. 
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alluded to, (Introd. 11. 0, 7,) presenting apparent horizontal displacements 

of the mass on one side of the unbroken veins, is not at first sight so 

easily accounted for, since it can hardly be regarded perhaps as physi- 

cally possible that any horizontal pressure can have acted on the mass 

with sufficient intensity to produce an absolute displacement equal in 

many instances to the apparent one. A very ingenious mode has, how- 

ever, been suggested* of explaining phenomena of this kind, by referring 

them to relative vertical movements of the masses in which the fissures 

have been formed. It will not be difficult to convey an idea of the 

manner in which this may be effected. 

62. Let the annexed figure (1) represent a horizontal section at the 

surface, of two veins which intersect, both being somewhat inclined to 

vertical planes through 4B, ED respectively. Now suppose the portion 

of the mass bounded by the horizontal surface MN, and the nearly verti- 

cal plane ABC’ (Fig. 2.)+ of the vein 4B, to be elevated (or the opposite 

portion to subside), so that the surface M’N’ may be at a lower level than 

MN. If this change be effected by a movement parallel to the plane 4 BC’ 

of the vein 4B, CE (Fig. 1.) will assume the position C’E (Fig. 2.); and 

if EFG be a plane parallel to 4 BC’, and intersecting the vein DCE 

(Fig. 1.) in EG (Fig. 2.) C’EG will be the plane of the vein in the sub- 

sided mass, and it will no longer coincide with the plane DCC”, the origi- 

nal plane of the fissure DCE. If we now conceive the higher portion of 

* By the late M. Smidt. 

+ The same letters denote the same points of the mass in the diagrams (1), (2), (3), (4)- 
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the mass to be removed by denudation, the general surface will coincide 

with M’N’, and the broken plane of the vein will no longer intersect 

it in a continuous line, but as represented in (Fig. 3), along the broken 

(3) 

line EHC’C’D’; thus producing the appearance of a horizontal movement 

of the mass on one side of the vein AB, relatively to that on the other. 

63. That these phenomena cannot, in some cases, have been pro- 

(4) 

duced by actual horizontal movements, appears to admit of the most 

demonstrative proof; for it is sometimes found that when two veins 
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intersect a third, both are apparently shifted horizontally, but in opposite 

directions, presenting the appearance represented in the preceding diagram 

(4), (a horizontal section), where C”D' and c’d’ are apparently so shifted, 

though it is manifestly impossible that they should be so heaved by 

any horizontal displacement of the mass containing them. 

This case admits, however, of a perfectly simple explanation on the 

hypothesis of a vertical motion, provided the two veins, which are 

apparently shifted, hade or underlie in different directions. This will 

be immediately seen by a reference to the diagram (2), where dec” repre- 
sents the plane of the second vein intersected by AB in the higher 

portion of the mass, and c’eg in the lower. The line ce’ being parallel 

to CC’, it is manifest that when C’ coincided with C, c’ would coincide 

with e; and consequently, after the denudation above supposed, the 

intersections of these veins with the exterior surface will present the 
appearance represented in (Fig. 4). 

64. The case just described is admirably calculated to afford a 

decisive test, as to whether these phenomena have, or have not been 

produced by vertical movements, or rather by upward movements paralle! 

to the plane of the unbroken vein. It is manifest that the explanation 

above given depends on the fact of the veins CD, ed, inclining in 

opposite directions, or more correctly, upon their intersecting the 

plane of the vein AB, in lines inclining towards each other from the 

parallel lines CC’, ce’ respectively. Consequently, it may be stated in 

general terms, that if the two shifted veins incline in the same direction, 

the above explanation is inadmissible; but if, on the contrary, it be 

found that these displacements in opposite directions occur only in 

veins which hade in opposite directions, the truth of the explanation 
can no longer admit of a reasonable doubt. 

65. Other cases also of the apparent displacement of a single vein, 

may afford most valuable evidence respecting the fact of the kind of 
elevation of which we have spoken. It is manifest, that whatever the 

case of displacement may be, the horizontal extent of it must depend 

on the following quantities: the inclinations of the planes of the broken 

and unbroken veins to the horizon (the complement of the angles which 
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measure the hades), the angle DCB (Fig. 1.) between their intersections with the horizontal surface, and the length of the line CC’, which evi- dently measures the throw of the unbroken vein 4B, produced by the supposed movement.* To express the horizontal displacement of the vein in terms of these quantities, suppose a sphere described with center C in the previous diagram (2), for in the following one in which the same letters denote the same points as in (2)}, and any radius so as to 

form the spherical triangle abe, by its intersections with the planes of the veins and the horizontal plane. Let 

a =angle bac, the inclination of the plane DCC” of the broken 
vein to the horizon. 

£ = abe, the inclination of the unbroken vein to the horizon. 

6 = ab = DCB the angle between the intersections of the veins with 
the horizon. 

be = angle BCC’, 

h = CC’, the throw of the unbroken vein. 

Then shall we have 

cot 0 = cota. sin B cosec. § + cos. cot d: 
and the apparent horizontal displacement C’C” 

=h.cot@ 

= h feota.sin B cosec .8 + cos 3 cot d}. 

The quantities C’C’, a, 8 and 8 can generally be obtained with very 
considerable accuracy, as may h also, when the mass in which the veins 
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are formed is distinctly stratified. In such cases therefore, by comparing 

our observed and computed values of C’C’”, we might obtain very ac- 

curate tests of the truth of the explanation which has been given of 

these phenomena. 

66. The value of the explanation which has been given above of 

the phenomena we are now considering, consists in the substitution of 

vertical for horizontal movements, and therefore depends on the approxi- 

mate verticality of the unbroken vein, parallel to the plane of which 

the motion is assumed to take place. It not unfrequently happens, 

however, that a horizontal displacement of a vertical vein takes place 

at the thin horizontal beds of moist clay, of which so considerable 

a number is found interstratified with the mountain limestone. The 

slimy nature of these beds undoubtedly affords a great facility for a 

relative movement of the masses respectively above and below them; 

and therefore where the displacement is small, there seems no difficulty 

in accounting for it on the supposition of this relative motion. In other 

cases a more probable cause may be found in the following considera- 

tions. 

67. In the annexed figure let ed represent a thin stratum of clay, 

Ei: 

mal oP los yah 
Cc Cc’ 

D 

of such a nature as to give a considerable facility to a relative horizontal 

motion of the masses above and below it, and suppose a fissure to have 

been propagated upwards by the action of horizontal tensions, from 

D to C. If there were no cohesion whatever between the upper and 

lower divisions of the mass, it is manifest that the position of DC 

would not in any degree influence the position of a fissure C’H, which 

might be produced in the same manner and at the same time in the 
upper portion of the mass, and consequently the point C’ would then 
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be determined by the constitution of the upper mass, or some circum: stance not immediately depending on the position of DC. In such a case, therefore, there might be an apparent horizontal shift of any magnitude. 
If, however, a certain force, arising from cohesion and friction, should oppose a relative horizontal movement of the upper and lower portions of the mass, a limit will be imposed on the extent of the apparent shift, for it is obvious that this force must be called into action in the formation of C’E, (in the progressive formation upwards of the fissure) by the opposite motions of the upper surface of the lower mass, and lower one of the upper mass between C and C’, and in no other part. Consequently, if the resistance at C’ to the formation of a fissure in the upper mass, together with the lateral force just mentioned, be greater than the resistance to the continuation of the fissure from C towards 

”", the former fissure cannot be formed in preference to the latter, 
and thus a limit will be imposed on the distance CC’. It is easy, how- 
ever, to conceive, from the known constitution of the beds which appear to give rise to phenomena of this kind, that this distance may be suf- ficient to account very easily for all such appearances of displacement as we are now considering. 

68. If we conceive the figure in page 64 to represent a horizontal 
instead of a vertical section of the mass, and ed to represent a fissure, 
then, if a fissure DCC'E be propagated across it, it is manifest that 
considerations exactly similar to the above would enable us to account 
for the apparent displacement CC’ in this as well as in the former 
case, and it appears highly probable that such appearances may have 
been not unfrequently thus produced. We may also observe, that if 
the fissure ed has not been completely filled, and its sides again cemented. 
together, the movements of the masses on opposite sides of it will be 
in a certain degree independent of each other, so that a fissure DC 
propagated so as to meet ed at C, might be continued on the other 
side of ed, from a point C’ quite remote from C. In such case DC 
would appear to terminate at C, and this, in fact, (DC being a small, 
and ed a large vein) is not of unfrequent occurrence, 

69. There is also another manner somewhat different from the above, 
in which an apparent displacement of a fissure may be produced. It 

Vou. VI. Parr I. I 
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has been already shewn (Art. 17), that if a fissure in its progressive 

formation meet with any line of less resistance, it will under certain 

conditions be propagated along it for a certain distance, and then 

resume its original direction. If AB (Fig. 3, p. 61) be a line of less re- 

sistance, EC’C’D’ would represent a horizontal section of the fissure 

formed in the manner just supposed, and thus presenting the apparent 

displacement C’C”. 

It must be remarked, however, that an apparent displacement due 

to this cause must necessarily be such as represented in the figure just 

referred to, viz. on the side of the obtuse angle HC’C”, or D'C’C, 

and not on that of the acute angle ec’c’, or dec’c’ (Fig. 4, p. 61): 

and we may also observe, that neither this cause, nor that pointed out 

in the previous article, appear sufficient to account for the fact, which 

has been frequently recognized, of two or more adjoining veins being 

apparently displaced, or heaved, to the same extent and in the same direc- 

tion by the same cross course. We see no reason why the apparent displace- 

ments of two such veins should be related in either of these particulars, 

when produced by the cause indicated in Art. 68; and if produced by that 

mentioned in the preceding paragraph, though the apparent displace- 

ments would necessarily be in the same direction, there seems to be 

no reason why they should be of the same extent. When the heaves, 

therefore, of adjoining veins appear to be related to each other both in 

extent and direction, the above two causes do not appear to offer an 

adequate explanation of the phenomena. 

70. It was a notion first propagated, I believe, by Werner. 

and subsequently adopted by many other geologists and miners, that 

when two veins meet each other, of which one is heaved, and the 

other unbroken, the formation of the latter must necessarily have 

been posterior to that of the former. The theory of elevation, how- . 

ever, which we have been discussing, will not authorize this conclu- 

sion. If we assume the modes of producing apparent displacements 

considered in Arts. 68 and 69, it is evident that we must adopt a rule 

exactly the reverse of the one just stated; and if we suppose the displace- 

ments to be real, it is manifest from what has been advanced in this and 
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the previous section, that the formation of one or both of the fissures may have been either contemporaneous with, or anterior to that move. ment of the mass which produced these displacements; and consequently the existence of the heave in the one or the other of two intersecting veins, can afford no test of their relative ages. In cases, however, where several veins are found to have been heaved in the immediate vicinity of each other (as in some of the Cornish veins) indications may be obtained of their relative ages from the phenomena they exhibit, assuming them to have been produced in the manner just supposed. 

71. It has been stated (Introd. », p- 4), that the fissure of a vein is 
frequently almost entirely closed in passing through a thin stratum of clay. This fact may, I conceive, be easily accounted for from the greater extensibility, and less elasticity of this stratum, as compared with the masses with which it is interstratified. The former quality would allow it to remain unbroken, with an extension which the general mass could not but yield to, or if broken, it would from the latter property have little tendency to recede to its original extent. 

72. It is not my intention to enter into any discussion on the 
mode in which the fissures of mineral veins have been filled*; but I would 
remark, that the frequent occurrence of the fact above mentioned seems 
equally unfavorable to the hypothesis of this process having taken place 
by superficial agency, or by any species of injection from beneath. The 
difficulty, however, assumes a far more formidable character when con- 
sidered with reference to the toadstone of Derbyshire, which, as I have 
already stated (Introd. 11. ».), produces the same effect, in nearly destroying 
the continuity of the fissure, as the clay beds above mentioned. But 
in this case, instead of a bed of a few inches in thickness, we find 
a bed of toadstone of from ten to forty fathoms, through which the 
vein can sometimes be traced only by mere threads of calcareous 
spar.- How then can we conceive the upper part of such a fissure 

* I do not here allude merely to the process by which the mineral vein properly so called, (see p. 2.) has been deposited, but that by which the whole fissure may have been filled with the vein stuff which now occupies it. The fissure may be several feet wide, while the mineral vein is not an inch in width. 

12 
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to have been filled from below, or the lower part filled from above? 

Either the one hypothesis or the other appears totally inadmissible, 

unless we suppose the communication between the upper and lower 

parts of the vein to have been formerly very much more perfect than 

at present. This hypothesis would, perhaps, present no very serious dif- 

ficulty, because it is very possible to conceive the toadstone to have 

been so imperfectly solidified at the time of the formation of these 

fissures, as afterwards to diminish their width, by yielding in some 

measure under the pressure of the superincumbent mass. But if 

we suppose the portions of the fissure both above and below the 

toadstone to have been filled either from above or below, while 

there existed a wider fissure connecting them through the toadstone, 

this fissure in the toadstone must also have been filled before its 

ultimate degree of contraction, in which case it appears almost im- 

possible that there should not be a much more determinate trace of 

a vein through the toadstone, than is at present observed to exist. 

We seem almost necessarily driven in these cases to the hypothesis of 

some process of segregation or infiltration ito fissures previously formed 

for the reception of the segregated or infiltrated matter. 

§. On the Formation of Granite Veins. 

73. These veins have been described (Introd. vir.) as distinguished 

in general by the absence of that tendency to rectilinearity and parallelism 

in their directions which so distinctly characterize the principal mineral 

veins in each mining district. The fact of these veins being found 

only at the junction of masses of granite with other masses of dif- 

ferent mineralogical constitution, has naturally suggested the idea of 

these veins being veins of injection; the granite being assumed to be 

of igneous origin. This opinion seems strictly in accordance with the 

views which we have been developing. The rectilinearity of mineral 

veins is due, according to this theory, to the predominance of tensions 

acting in a particular direction, whereas fissures formed in great measure 

by the hydrostatic pressure of injected fluid matter, in a mass sub- 

jected to no tension very determinate in its direction, might assume 
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any tortuous course. The irregular and violent action, also, to which 
the mass through which, according to this view of the subject, the 
granite is supposed to have been protruded, would have a great ten- 
dency, independently of the hydrostatic pressure just mentioned, to form 
in the broken mass irregular fissures, which would facilitate the injec- 
tion of the fluid matter, and increase the irregularity of the form of 
the injected veins. 

6. On the Formation of Trap-Dykes and Veins. 

74. ‘The results above obtained respecting the formation of fissures 
in the crust of the globe will manifestly hold equally, whether we suppose the uplifted mass acted upon immediately through the medium 
of an elastic vapour, or by matter in a state of fusion in immediate 
contact with its lower surface. In the latter case, however, this fused 
matter will necessarily ascend into the fissures, and if maintained there till it cools and solidifies, will present such phenomena as we now recognize in dykes and veins of trap. The same phenomena would result from the injection of the fluid matter at any period posterior to that of the formation of the fissures as above described. To repre- 
sent to ourselves, therefore, the phenomena of trap-veins, as referred to the causes to which we are referring them, we have only to con- ceive the fissures previously described filled with trap. The larger 
ones will thus form dykes, and the smaller ones veins of that rock. 

75. It has been observed by geologists, and particularly by M‘Culloch, that a large proportion of trap-dykes have been formed without pro- ducing any sensible disturbance in the ends of the stratified masses abut- ting against them. And this is precisely what we might expect, if we suppose such dykes to have been injected without excessive violence into fissures formed as above described, whether that injection be sup- posed to have taken place after the formation of the fissures, or con- 
temporaneously with it. Where injection, however, has taken place in 
great abundance, and with great violence, corresponding degrees of dis- 
turbance might of course be expected to attend it. 
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The geologist to whom I have just referred, in speaking of the 

trap-veins of the Isle of Sky, observes: “It is necessary to point out 

one extraordinary effect which must have resulted from the intrusion 

of these veins. Whatever proportion, collectively taken, they may bear 

in breadth to the lateral dimension of the strata which they intersect. 

it is plain that the whole mass of strata must have undergone a lateral 

extension equal to that quantity; a motion so great as not to be easily 

reconciled with the present regularity of the whole. It is also a singular 

circumstance, that on the opposed shore of Sleat a different effect takes 

place, and proportioned, it would here seem, to the number of veins; 

the red-sandstone strata of this coast being often turned from a slightly 

inclined into a nearly vertical direction, with other considerable marks 

of disturbance. It is impossible to account for these apparently capri- 

cious differences, and we must for the present be content to rank them 

among the numerous unexplained phenomena in which the science 

abounds.” 

These phenomena present no difficulty except in the apparent lateral 

displacement of the stratified beds, without any other appearance of 

disturbance; and if this effect is to be referred to the lateral pressure 
of the injected matter, it does indeed present a difficulty no less, I 

conceive, than a physical impossibility. In the first place, it appears 

inconceivable how sufficient resistance could be obtained from above to 

produce the enormous lateral fluid pressure necessary to cause this 

lateral movement, as we have before remarked respecting the horizontal 

heaves of mineral veins; and in the next place, it is still more incon- 

ceivable how this force could have been exerted without indications of 

such violent action. Under the point of view, however, in which I have 

regarded the subject the difficulty no longer exists; for it must be 

recollected that the aggregate width of the veins, or apparent lateral 

displacement, is not to be taken with reference to the breadth of the 

mass in which the veins immediately exist, but with reference to the 

whole extent of the mass, the tension of which may have been relieved 

by the formation of these fissures. No rational account can be given, 
I conceive, of such lateral movements of extensive masses, except by re- 

ferring them to the horizontal tension produced by vertical forces, and 
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the consequent contraction when the mass becomes fractured by too 

great an extension. 

§. On the Formation of Horizontal Beds of Trap—By Ejection—By 
Injection—Remarks on some Phenomena observed by M*Culloch— 
Effect of imperfect Fluidity in Horizontal Injections. 

76. If the quantity of fluid matter forced into these fissures be more 

than they can contain, it will of course be ejected over the surface ; 

and if this ejection take place from a considerable number of fissures. 

and over a tolerably even surface, it is easy to conceive the formation 

of a bed of the ejected matter of moderate and tolerably uniform thick- 
ness, and of any extent. If the ejection take place over a level surface, 

these properties of the resulting bed would seem to require a number 

of points or lines of ejection as a necessary condition, on account of 

the imperfect fluidity, which, according to analogy, we ought probably 

to assign to the ejected matter. If there were only a single center of 

eruption, a bed of such matter approximating to uniformity of thick- 

ness, could only be produced on a surface of a conical form, having 

the point of eruption at its vertex, and an angular elevation depending 

on the degree in which the fluidity of the ejected mass should differ 

from perfect fluidity. Where no such tendency to this conical structure 

can be traced, it would probably be in vain to look for any single 

center of ejection. On the supposition too, of ejection through con- 

tinued fissures, or from a number of points, that minor unevenness of 

surface which must probably have existed under all circumstances during 

the formation of the earth’s crust, would not necessarily destroy the 

continuity of a comparatively thin extensive bed of the ejected matter, 

in the same degree in which it would inevitably produce that effect 

in the case of central ejection. 

77. 1 will now proceed to consider the formation of a horizontal 

bed by injection; what limits may be imposed on the probable or possible 

extent of it, and with what phenomena it may be accompanied, which 

may serve as tests for distinguishing a bed so formed from one formed 
by ejection over the external surface. 
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Let us suppose then, that the fluid mass has risen through the 
fissure of which Cc is the section, till it has reached the stratum adb. 

If this stratum have sufficient tenacity and extensibility, and but little 

adhesion to that on which it reposes, it is easy to conceive that it may 

be elevated without being broken, if the fluid mass be impelled upwards 

with sufficient force to overcome the weight of the superincumbent mass. 

In this case the fluid will necessarily be injected horizontally, as repre- 

sented in the figure, and so long as the lower surface of the uplifted 

stratum remains perfectly continuous and unbroken, it is very possible 

that this injection may extend to any assignable distance without the 

production of vertical dykes, on veins branching from the upper surface 

of the injected bed. In this case there would appear to be no indications 

of mechanical action from which the geologist of the present day could 

ascertain whether such bed had been injected among the beds associated 
with it, or ejected over the surface acb at a period anterior to the 

formation of the superincumbent strata. 

The most favorable case we can conceive for the kind of injection 

we are considering, without the production of the vertical veins above 

mentioned, is that in which we assume the absence of all adhesion 

between the uplifted bed and that immediately beneath it; but even 

in this case the condition of unbroken continuity in the lower surface 

of the superincumbent, mass, must be satisfied, not approximately, but 
accurately; for if the smallest crevice existed in the uplifted portion, 

the injected matter would be impelled into it with a force proportional 

to the enormous pressure to which it would be subjected from the 

weight of the superincumbent beds; and if the injection should take 

place under the weight also of a deep sea, the probability of this effect 



Mr HOPKINS, ON RESEARCHES IN PHYSICAL GEOLOGY. 73 

would be exceedingly increased by the consequent additional pressure, 

while the process of injection would not be in the smallest degree facili- 

tated by it. Trap-veins would thus be produced, affording indubitable 
evidence of injection. 

Again, the hypothesis we have made above of the entire absence of 

adhesion between two contiguous beds, though it may in some cases 

be true for limited spaces, cannot be uniformly so in cases in nature 

for spaces of considerable extent. Now in those instances, in which 

the force of adhesion between the two beds, bears any kind of ratio 

to that which holds together the component particles of the uplifted 

portion, an enormous force will be required to overcome this adhesion. 

And how are we to conceive such a force applied without producing 

the smallest rupture in the lower surface of the uplifted mass? If 

there be no adhesion between the beds, no considerable horizontal 
tension will be produced in this mass; but if the adhesion be con- 

siderable, such a tension will be produced, proportional to the increased 

force of injection called into action. Under these circumstances the 
smallest break or crevice will be torn open, the fluid matter will 

enter it, and acting on its vertical sides with an enormous pressure, 

and with the mechanical advantage of a wedge, will add immensely to 

the tendency of the horizontal tension to produce a vertical fissure. 

78. It may perhaps be thought that the difficulty of conceiving 

the process of horizontal injection of considerable extent, without the 

production of vertical veins, may be obviated by supposing the fluid 

A 

matter injected from many points simultaneously between the same two 
horizontal beds. But this hypothesis appears extremely improbable, 

Vou. VI. Pazr I. K 
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unless it be also assumed that the want of cohesion between these beds 

is co-extensive with the injected bed, an assumption, which as I have 

before remarked, must probably be in general considered as_ totally 

inadmissible. The probable consequence of simultaneous injection from 

different fissures, (supposing the injected matter not in too great quan- 

tity), would be the formation of partial and unconnected beds as repre- 

sented in the annexed diagram. 

For these reasons then we cannot hesitate, I think, to conclude, 

when we consider the general structure of stratified masses, that the 

absence of numerous trap-veins and dykes, having their origin in the 

upper surface of a horizontal bed of trap, with the want also of very 

frequent indications of violent mechanical action in the lower portion 

of the superincumbent mass, affords indubitable proof of the fact of such 

horizontal bed having been ejected over the exterior surface existing 

at the time of its eruption. 

79. The existence of a single vein or dyke such as above described, 

in rocks incumbent on a horizontal bed of trap, is clearly an indubitable 

proof of injection; but it must not therefore be concluded, that every 

trap-vein or dyke in the superincumbent strata affords this unequivocal 

testimony, since it is manifest that such a vein or dyke might possibly 

be produced by injection, subsequently to the formation of the hori- 

zontal bed, which it may have traversed exactly in the same manner 

as any other stratum*. The decisive character of the evidence of injec- 

tion afforded by a vein, consists in its originating in the upper surface 

of the injected bed. We may also remark, that indications of mechanical 

action on the beds beneath a bed of trap will not necessarily afford con- 

clusive testimony as to the fact of injection, because such appearances 

might be produced, to a certain extent, by the force of an ejected, as 
well as of an injected bed. It is in the superincumbent beds that we 

must seek for the evidence in question. ; 

80. It is not my object to enter into any detailed comparison between 

observed facts, and these theoretical deductions, but I think it necessary 

* Many instances are given by M‘Culloch of veins of trap existing in trap. See “ Descrip- 

tion of the Western Islands.” 
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to allude to some cases of injection described by M‘Culloch in the Western Islands, in which the injected beds assume for considerable distances the appearance of being regularly interstratified, thus seeming, it might be thought, to offer exceptions to the rule I have deduced from theoretical considerations, Four or five only of these exceptions I think have been expressly mentioned by that author. Those on the coast of Trotternish in the Isle of Sky, which appear to be the most striking, are described as follows: 

“In one ease, which occurs not far from Holme, there is a bed extending for a great way, surmounted by a parallel series of the secondary strata in contact with it; but on a narrow inspection, in- numerable veins are seen branching into the strata in every possible direction, illustrating in a very perfect manner the origin of at least one order of veins. In a second case, three beds of trap can be traced in a parallel direction for a considerable space, separated by the regular strata, when suddenly the whole unite into one mass. Had not this occurrence at length betrayed the true nature of these beds, there would have been no hesitation, from a limited observation, in describing them as unquestionable instances of alternation. In the last case which I shall mention, one regular bed of trap may be traced for more than a mile, lying in a parallel and undisturbed continuity between the secondary rocks. On a sudden, however, it bends downwards so as to pass through the strata immediately in contact, and then continues to hold its regular course for a space equally great, with a thickness and parallelism as unaltered as before*.” 

The first of these instances presents in its branching veins, exactly the phenomena which, I have been contending, must necessarily attend any extensive horizontal injection of a fluid mass. The others seem to indicate the possibility of this injection without such phenomena, for at least the extent of a mile. Nor am I disposed to doubt this possi- bility, though I should in general consider a horizontal injection of that extent without ramifying veins, as extremely improbable, and especially if the injected bed were not a very thin one. In fact, however, there 
* Description of the Western Islands of Scotland, Vol. 1. p. 382. 
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appears no reason to conclude that such has been the case. The whole 

of Trotternish is described as consisting of an enormous overlying mass 

of trap, which appears to have risen in numberless places through the 

stratified rocks on which it reposes. It extends (if I understand the 

description rightly) quite to the coast, so that scarcely any stratified 

rocks are visible, except in the vertical section formed by the steep 

cliffs along the beach, and in which the appearances above described 

are observed. Hence it is*probable that these horizontal beds are con- 

nected with vertical masses of trap, at distances from the visible sections 

of them, small in comparison with their apparent range along the cliffs, 

and consequently it is very possible that the extent of horizontal injec- 

tion may have been much less than at first sight it appears to have been. 

The same observation will apply to the other phenomena of the 

same kind as described by the author just quoted; and so far from 

offering any thing opposed to the theoretical views I have been ex- 

plaining, they may, I think, be considered, when taken in conjunction 

with numberless cases of vertical dykes and veins, as strongly corrobo- 

rative of them; since the comparatively insignificant number of these 

injected horizontal beds, clearly proves them to offer only so many 

exceptions to the very general rule of verticality in trap-veins, so fre- 

quently recognized by M‘Culloch himself. 

81. In speaking of horizontal injection, I have not yet alluded to 

the consequences of imperfect fluidity in the injected matter. If we 

may be allowed to judge of the degree of this fluidity from the analogy 

which the injected matter may be presumed to have borne to modern 

lava in its eruption, we may conclude it to have fallen considerably 

short of that of perfect fluidity. Consequently the lateral pressure 

communicated by the fluid, would never be equal to the direct pressure 

impressed upon it, and this, it is evident, would increase the difficulty 

of horizontal injection in the cases which I have already considered. 

The most important consideration, however is, I conceive, that this 

property of imperfect fluidity, would thus impose a limit to the pos- 

sible extent of lateral injection, supposing the injected matter not to 

form a bed lying in one plane, but to form an irregular surface, such 
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that the following diagram may represent a vertical section of it. For 
\ th 

suppose the fluid capable of transmitting the (=) of a force impressed 

upon it, in a direction perpendicular to that of the impressed force; then 
if the pressure be transmitted along a broken line consisting of straight 
lines at right angles to each other, it is clear that the force transmitted 

along the first straight portion (supposed horizontal), will be = p; p 

being the impressed force and acting vertically. Along the second portion 

of the broken line the transmitted force will be ais p, and generally 

along the 7" portion it will be (=). p. If the different portions of the 

broken line be not at right angles to each other, or instead of being 
straight be curved, the diminution of the transmitted pressure must 

still be calculated on the same principle. It is important, however, to 

observe that the thickness of the injected bed would probably influence 

this diminution very materially, as may be illustrated by the following 
figure. If the section of the bed be represented by the space between 

Uy B 

the lines ab and cd, a straight line may be drawn in it from one 
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extremity to the other, and therefore the transmitted pressure at one 

extremity would nearly equal that impressed at the other. On the con- 

trary, if the space between the lines ab and a,b,, represent the section 

of the bed, it is manifest that the smallest number of straight lines 

which could be drawn entirely within this space, so as to form a con- 

tinued but broken line between a and b, would be considerable, and 

that consequently the loss of transmitted pressure would be considerable. 

The magnitude of the impressed pressure at @ is limited by the power 

belonging to the incumbent mass of resisting dislocation there; and 

when the loss of pressure by transmission is so great, that there is no 

longer sufficient force to cleave the mass into which the injected matter 

is penetrating, the horizontal injection will cease. I think it very pro- 

bable that the limits thus imposed on the extent of possible injection, 

in the case of a thin bed like that just described, may be much nar- 

rower than some geologists seem to have conceived. 

§. Effect of Joints in determining the Directions of Fissures. 

I have stated (Introd. p. 11), that the investigations of Sect. I., are 

not to be considered as applicable to a mass in which the jointed 

structure should prevail generally, because the cohesion of the mass 

being in great measure, or altogether destroyed along the joints, the 

fissures resulting from any external force, would of course be formed 

along them. If, however, there should be two systems of joints existing 

previously to the action of the elevatory forces, in directions respectively 

parallel and perpendicular to the general axis of elevation, it is evident 

that the systems of fissures produced by this force, as well as all the 

phenomena resulting from them, would be exactly the same as those 

already described. If the direction of these systems should be only ap- 

proximately parallel, and perpendicular to the axis of elevation, the same 

would still be true as respects the distinctive characters of longitudinal 

and transverse fissures, (see Art. 56). If, however, the directions of these 

two systems of joints should not have approximately these relations 

to that of the axis of elevation, or should not be nearly at right angles 

to each other, systems of fissures will result different from those which 
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we have already described as the consequence of a general elevatory force. 

Since the existence of joints in rocks appears to be very general, it becomes a matter of interest to enquire what effect they may pos- sibly have had in determining the positions of the lines of dislocation, which we at present observe in the crust of the globe, as already described. Our present limited knowledge of the extent of joints, hori- zontally and vertically, and of their relative directions, will not enable us to return any direct and definite answer to this enquiry. We may however, observe, (and the observation is important as respects the ap- plicability of this theory) that in those districts where the directions of faults, mineral veins, cross courses, &e., bear those relations to a well defined axis of elevation, which would exist according to these theo- retical views, and which observation, so far as it has proceeded, has shewn to hold very generally, it would appear absurd to assign those directions to the influence of joints, unless some cause can also be assigned why the elevatory force should act in such a manner as to give to the axis of elevation, a direction bearing a necessary relation to that of any previously existing system of joints. As it appears al- most impossible to conceive any such cause, we may, I think, without hesitation, in the cases above-mentioned, reject the hypothesis of any extensive influence of a jointed structure upon the phenomena in question. Should a general coincidence be hereafter observed in the directions of joints, and those lines of dislocation which follow the laws before mentioned, it would seem far more probable, that the former had been influenced by the latter, than the latter by the former phenomena. 

In asserting the generality of the laws above mentioned, it must not be supposed that we are assuming the absence of all exceptions, or that the directions of mineral veins may not, in some instances, have been determined by causes different from those we have been 
considering. This, I think, has been unquestionably the case in the veins or lodes of St Austle moor, in Cornwall, where we recognize systems of lodes forming acute angles with each other, and obviously 
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referrible to some cause totally distinct from the action of extraneous 

forces on the general mass. This, however, forms no argument against 

our theory, as applied to those cases in which the phenomena present 

to us features entirely different from those just mentioned, and in per- 

fect accordance with our theoretical deductions. 

With the causes which may have superinduced the jointed structure 

in rocks, I have at present no concern, except so far as it might possibly 

be influenced by the action of extraneous forces. It has been shewn, 

however, (Art. 32), that such forces could only tend to produce systems 

of fissures crossing each other at right angles, whereas regular systems 

of joints appear to meet each other frequently at acute angles, and 

consequently, must necessarily have been owing to some different cause. 

I do not therefore conceive that any general tension of the mass pro- 

duced by extension from elevation, or contraction in the course of 

solidification, can have had any material effect on the formation of joints. 

It is probably, I think, to be referred entirely to some kind of internal 

molecular action. 

Txoucu the law of approximate parallelism has long been recognized 

by geologists as characterizing mineral veins, faults, &c., I am _ not 

aware that any attempt has hitherto been made to deduce this important 

law from the causes to which these phenomena have been referred. In 

the preceding investigations, however, I have shewn, that under certain 

simple conditions, such a law is the necessary consequence of a general 

elevatory force acting in the manner I have supposed; and I have 

moreover shewn, that this law is entirely inconsistent with the partial 
action of such a force; because an elevatory force acting thus partially 
at a particular point, would necessarily produce fissures diverging from 

that point, so that in a general elevated range produced by the eleva- 

tion of different portions in succession, there could be no general system 
of parallel fissures. This deduction appears to me perfectly conclusive 
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as to the respective claims of two theories, one of which should assign 

the phenomena of elevation, in which the law of parallelism is observ- 

able, to the partial, and the other to the general action of an elevatory 

force, the terms general, and partial being taken in the sense in which 

I have heretofore used them, (see p. 1.) It must not, however, be sup- 

posed that our theory would lead us to the conclusion, that the whole 

elevation of any elevated range must have been communicated to it at 

once. It requires only that the first movement should have been general, 

and sufficient to produce at least the commencement of the systems 

of fissures, by which the range may subsequently be characterized, 

(Art. 58). Elevations, partial or general, may afterwards take place 

without producing other fissures following any law different from that 
of the preceding ones. 

In the present state of geological theory, this deduction will not, 

I conceive, be deemed unimportant. It forms no part, however, of my 

present purpose to examine the merits of the different theories of ele- 

vation, which have been propounded by geologists; nor have I entered 

into these investigations in the spirit of advocacy of any peculiar and 

preconceived notions. My object has been simply to develope the 

necessary or probable consequences of certain definite hypothetical causes, 

and to compare them with those results which appear to be at present 

best established by observation; but, at the same time, leaving the 
theory of elevation founded upon our hypotheses, open to that refu- 

tation, or more complete verification, which must arise from the com- 

parison of the results of more extended and accurate geological research 

with those of theory, deduced not by vague and indeterminate methods, 

from assumptions still more vague and indeterminate, but by accurate 

methods, from hypotheses the most simple and definite, which the nature 
of the subject will admit of. 

In our own country the elevated range extending from Derbyshire 

to Northumberland, seems peculiarly calculated to afford us an oppor- 

tunity of comparing the results of observation with those of the theory 

we have been investigating. On the slightest inspection of a map 

of this portion of the island, the direction of the central line of ele- 

Vorsny Geek wer 1. L 



82 Mr HOPKINS, ON RESEARCHES IN PHYSICAL GEOLOGY. 

vation is indicated to us by the sources of the rivers, which pursue 

their courses from it respectively to the eastern and western coasts. 

This line appears to be almost straight, running nearly north from its 

southern extremity to the valley of the Eden, where the well defined 

ridge of Cross Fell commences, in a direction almost north-west and 

south-east. On the eastern side of this range, the different formations 

succeed each other with a general regularity in the order of their super- 

position, which would appear to indicate the absence of any compara- 

tively irregular action of the elevatory forces in that region; and the 

existence of extensive mining and coal districts along this range, afford 

the surest means of ascertaining with accuracy the exact positions of 

the fissures and lines of dislocations which exist in it. Hitherto these 

phenomena have not, however, been made the objects of sufficiently 

careful examination, and if these observations should have the effect 

of leading to a more detailed investigation of them, one object of my 

entering into these researches will be accomplished. According to our 

theory the mineral veins in the southern part of the range above 

mentioned ought to run east and west, while in the Cross Fell part 

we should expect them to assume a direction more nearly north-east 

and south-west. From my own observation I have ascertained that in 

the mining district in Derbyshire, the phenomena are in this respect 

as well as in others strikingly accordant with theory, and I have 

reason to believe that in the coal district lying along the eastern 

boundary of that country they will be found so likewise. I hope, 

however, shortly to bring the details of this district under the notice 

of geologists. 

The northern and southern portions of this range present us also 

with the important and interesting phenomena of extensive horizontal 

beds of trap, (the toadstone of Derbyshire, and the whinsill of the north) 

apparently interstratified with the sedimentary rocks with which they 
are associated. In the preceding investigations, I have entered with 

considerable detail into the subject of the formation of such beds, from 

the conviction that the notion of injection with reference to them 

has been carried by some geologists much too far, and that conclusions 

have been adopted without a due regard to the necessary effects on 
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the contiguous beds, of that enormous hydrostatic pressure, which the process of injection of an extensive horizontal bed would necessarily call into action. That the toadstone of Derbyshire is not an injected bed, admits, I think, of the most indubitable proof from observation; and if the interstratification of the whinsill of the north, with com- paratively thin beds of limestone and shale, be as regular as it is repre- sented to be, I should have no hesitation in coming to the same conclusion with respect to that bed, for the reasons which have been heretofore mentioned, (Art. 77). 

In the preceding investigations, I have spoken of the law of paral- lelism only as recognized in phenomena of faults, mineral veins, &c., comprized within narrow boundaries as compared with those to which it has been attempted to extend it, in the theory of Elie de Beaumont. It is very possible, however, that the physical causes to which I have referred this law, may have had a far more extensive operation than that I have ventured to assign to them. The paral- lelism of two mountain chains might thus be accounted for as simply as that of two neighbouring anticlinal lines; but it is obvious, that the more remote they should be from each other, the less would be the probability of the fissures to which our theory would refer them, belonging to the same system, and the less satisfactory would our solu- tion become. 

I have been anxious to avoid, for the present, any speculations respecting the interior constitution of our globe, beyond what is com- prized in the simple assumptions on which these investigations have been founded; we may, however, include in those assumptions, the hypothesis of the elevatory forces having acted in different cases at different depths. The application of our theory, alluded to in the pre- ceding paragraph, would perhaps require the hypothesis of these forces having acted at a much greater depth in such instances, than in those where the resulting phenomena are on a much smaller scale ; and we may observe, that if the formation of the fissures should com- 
mence very far beneath the surface, it is extremely probable that very few would become complete fissures (see Art. 39), or would ever reach 

L2 
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nearly to the surface, in comparison with those which would do so in 

cases where these fissures should originate at a much smaller depth. 

The complete fissures would consequently be distant from each other 

and very large, and all the phenomena of elevation resulting from them 

might be expected to be of proportionate magnitude. I have no inten- 

tion, however. of insisting on this extended application of our theory, 

but merely to indicate its possible extension (should established geo- 

logical facts appear hereafter to require it) to account for phenomena 

on a much larger scale than those to which I have considered it essential 

to refer in the preceding investigations. 

W. HOPKINS. 

St Perter’s CoLiEce, 

May 4, 1835. 



il. Investigation of the Equation to Fresnel’s Wave Surface. By 

ARCHIBALD SmiTH, Esa., Trinity College, Cambridge. 

[Read May 18, 1835.] 

“THE mathematical difficulties under which the beautiful and in- 

teresting theory of Fresnel has hitherto laboured are well known, and 
have been regarded as almost insuperable, He tells us in his Memoir 

(see the Memoirs of the Royal Academy of Sciences of Paris, tom. vir. 

p- 136.) that the calculations by which he assured himself of the truth 
of his construction for finding the surface of the wave were so te- 

dious and embarrassing, that he was obliged to omit them altogether. 
A direct demonstration has since been supplied by M. Ampére (An- 

nales de Chimie et de Physique, tom. xxxix. p. 113.); but his solution 

is excessively complicated and difficult.” A geometrical demonstration 

of considerable simplicity has been given by Mr M* Cullagh in a paper 

in the xvi" Volume of the Transactions of the Royal Irish Academy, 

from which the preceding paragraph has been quoted. 

The difficulties which were experienced in this problem arose from 

two causes of the same nature:—want of symmetry in the funda- 

mental equations, and the use of the essentially unsymmetrical method 

of differential coefficients. By putting the fundamental equations of 

Fresnel] under a symmetrical form, and by the use of the Method 

of Multipliers as it is employed in the Mécanique Analytique, the 
eliminations may be effected without difficulty. 

To render what follows more intelligible, and to show in what it 

differs from the other methods, I shall give the fundamental equations 
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of Fresnel and Ampére, and state shortly the steps by which they are 

obtained. 

In the Memoir of Fresnel referred to above it is shewn, that if 

a section of the “surface of elasticity”, whose equation is 

(2° +9 +2) =a a+b? + Cx? .....00-. (1) 

be made by the plane 

Sess //DEPAE OU] saponnoon sage (2), 

the greatest and least radii vectores of the section will be the values 

of v, derived from the equation 

(a? ~—v’) (C — v°) n+ (B—v*) (CP -v*) m’?+(a—v’) (P—v’)=0... (3), 

and that if a plane be taken, parallel to the former and whose distance 

from the origin is one of the values of v, this plane, whose equation is 

Z=ML+NY HVA LEM +N oe... (4) 

will be a tangent to the wave surface. 

To deduce the equation to the surface we may solve (3) to find »v, 

and substitute this value in (4), which will give the equation 

(s—ma—nyP=S5(C+B) m+ (C+ ev +a+b 

+ J (C= Bb) m? + (@— &) n? + (@— BYP 4 (EB) (@— 8) min’. 

And if we differentiate this equation first with regard to m and then x, 

and eliminate m and » between the three equations, we shall obtain the 

equation to the wave surface. This is the method which M. Ampere 

employed with success. 

Instead of eliminating v at first, we may differentiate (4), considering 

v as a function of m and » determined by equation (3), we shall thus 

obtain the equations 

(a? —v°) (ce? —v*) n° + (b?—v*) (C -v*) m? + (a — v*) (6 —v*) =0 ... (1), 

(8 — max —ny)? =O" (L + MPN) corcccccrscersercceeerens (2), 
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di 
(®-—ma—ny)x+umst(l +m +n) vo" = 0 soe doagaocice (3). 

dv Are ad Is Ais Shr eter 
Je (1 +2”) (a? —v’) + (14+ m’) (Bb? — 0°) 4+-(m? + n°) (Ce —v*)t 

S772 (Be er 02) (Gear) = 10) ove es sion ccsiciroeece'zscees (4). 

dv “5 
(s—ma—ny)yt+vn+(1 +m GL) hee Sob. SBE (5) 

Tn (1 + 2°) (a? —v*) + (1 +m’) (Bb? — v*) + (m? + n°) (ce? — v*)} 

HA (CoO) | (Cea) = Ol octave eden seers (6). 

5 : = iff lv dw 
Between these six equations the five quantities m, », v, a BAS are to 

dm? dn 
be eliminated, and the resulting equation will be that of the wave 

surface. These are the equations given by Fresnel, but he was not 

successful in effecting the requisite eliminations. 

The fundamental equations may be put under a symmetrical form 

by the introduction of an additional symbol. 

If for m and x we substitute respectively — ' and — ~ and suppose 

/, m,n, connected by the equation 

Pim+n>=1, 

we shall, instead of (3) and (4), have the three equations 

Lamy A WS) =U) ww dentesiaev- ork (1), 

Bg cee (Q)5 

ibe m* n° 
CAT gare I ——S, + 0) eee ees eee . p= a a3 v ee b v 2 (3) 

Differentiate these equations with regard to /, m, n, and v. 

adl+ydm +xdn=dv ............ (4), 

lal +mdm+ndn=0. .......-.0+- (5), 

EL 2 dl + dm + zo dna\(%, a + ( _ .) + ( ~ ‘| } vdv... (6). 
va’ — 7 v'-Cc 7) 
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Multiply (5) by 4, (6) by B, and subtract the sum from (4), making 

the coefficients of each differential equal to zero. We thus obtain 

v= Al 4+ = Sioa acoso aA onaeaticnS Leg gE eon. (7) 
v—a 

Bm 
y= Am + Cy 2) Re a acne sons enclae Secale castelins (8), 

Bu 
s=An + Sle oer ea ee ree (9) 

(7) 2+ (8)m+ (9) gives 
fe me n* 

- . — 2 2 2 ee Laas ee 

lat+my+nz=A (+m? +n)+B (== Lig Gelge ae 

which by equations (1), (2), (3), is reduced to 

v=A; 

(7) + (8)° + (9) gives 

ty tea A (E+ mtn) +24B (so + 5 aa ) 

+B {(etg) + (2a) + (ata) } 
which by (2), (3), (10) is reduced to 

V+y+x2%=A? + = 

putting 7° for a? +y°+s°, and for A its value v, this becomes 

Be=v (r’°-v’). 

Substituting these values of 4 and B, equation (7) becomes 

rv 
r=lv+lv. a 

or a (a’—v')=lv (a 7"). 
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: ee : 5 . 
Putting z Sa (7? —v*) + 0° (a -9°)t for a’—v’*, this becomes 

@x (7 —v*) = (lur’ — xv®) (a —?7"*) ; 

ax v 
or = = = (lr — 20). 

a-r Pra=w 

a bo v 
Similarly re Pare (mr*— yr), 

Seas (nr — xv). 
Cr rv 

Multiplying these by 2, y, x, respectively, and adding 

—_— = & 22 a 2 2 2 ae + ia Seen (ee fo". (la+my +nz)—v (arty? +x°} 

Se (7°v — vr’) rv 

This is the simplest form which the equation to the wave surface can 

assume. 

If we clear it of fractions, and replace 7* by x°+y’+2°, we obtain 

the equation given by Fresnel, viz.: 

(x+y? +x°) (a? +b’y’+c°x") —a (b?+0°) 2° -b* (ate) y’-¢ (a+b) ¥ +a°b'c’ =0. 

ARCH”. SMITH. 
Trinity CoLiecE, 

May 8, 1835. 

Vor. VI. Parr I. M 
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III. On the Resolution of Equations in Finite Differences. By the 
Rev. R. Murpny, M.A. F.R.S. Honorary Member of the Royal 
Cork Institution, Fellow of Caius College, and of the Cambridge 
Philosophical Society. 

[Read Nov. 15, 1835.] 

WHEN the degree of equations in Finite Differences does not 
exceed the first, whatever may be their order, methods for their solution 

in most cases have been furnished by analysts. With respect to those 
of higher degrees, scarcely any thing has been done to assist in ob- 
taining explicitly an algebraical expression for the unknown quantity *. 
The utility of solutions for such equations, occurring, as they do, in 

the theory of chances, is more apparent by the proof which they afford 
of the expansibility of various kinds of successive functions on which 
some doubt has hitherto existed. 

The difficulties which those have encountered who attempted to 

obtain expansions in an algebraical form, for functions which from 

their nature may be denominated repeated functions, are known, such 
are for instance 

(« times) 

a 

log. log. log. .........(@ times) {a} 

sin. sin. sin..........(@ times) {a}, 

* In the great work of Lacroix this subject is entirely passed over. 

M2 
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in which x is to be integer or fractional, positive or negative, real or 

imaginary: so anomalous have they appeared as to induce a belief in 

some, that they did not admit of an algebraical expansion, and there- 

fore might be supposed to affect some of the first principles of the 

Differential Calculus. 

In fact, the application of Maclaurin’s Theorem requires the know- 

ledge of the differential coefficients, which can only be deduced @ priori, 

in forms which leave them still unknown, while the application of 

Taylor’s Theorem in Finite Differences introduces impracticable coefficients 

of a nature more complicated to value than the proposed functions 

themselves. 

As an illustration, suppose we denote by w, the successive function, 

(a times) 

« being the base of Napier’s Logarithms, then, to find its differential 

coefficient, we have the equation 

, aha dts 
Urey, = 65 and putting a = Was 

, (a 
UW ett — (he) ee 

r 
u 

therefore —~— = e“. , 
r—L 

To solve which, put uw’, = e”, 

b, = be-1 = Usy-15 

therefore if « should be an integer, 

b, = comst + wy + Uy + Uses. + Up 

or more generally, 
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which contains an arbitrary multiplier; but it is plain that the ex- 
pansion of w, being unknown, Sw, is also unknown, and the successive 
differential coefficients would similarly be expressed in forms of un- 
known functions; and therefore the expansion by the immediate ap- 
plication of Maclaurin’s Theorem would be impracticable. 

Taylor's Theorem in Finite Differences gives the identity 

z.(*4#—1 «.(a—1)(x—2 : : Up = Uy + LAU, + = ) eat, + oD) atu, &e. 

now to find A"z, in this case, we must have recourse to the theorem 

n(n—1 n(n—1)(n—2 
AU) = Uy, — NUy_) + ed) Uy, 2 — a) cle) OC. 

the coefficients thus found being obviously more complicated than the 
function itself. 

Try again to find uw, by a series arranged according to the powers 
of x, and containing indeterminate coefficients, that is, put 

w= A+ Bat+ Cx? + D2 + &e. 

and since w,= log. ts413 2". M = log.w =log.e =1; «. 4 =1. 

Then the equation w,,, = e” becomes 

1+ B(x+1) + C(w4+1) + D(x+1), &e. = €. 8." ". &e. 

and equating like powers of x we get, 

1+B+C+D+&.=e6, 

B+2C+3D+4E+ &. =B..¢, 

C+3D46E+10F + be. =e roe cae 

&c. &e. 

which clearly show that the coefficients cannot be found but by the 
resolution of equations of infinitely high degrees. 
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Now similar difficulties opposing the expansion of other kinds of 

successive functions, these can only be removed by attending carefully 

to the equations in finite differences, by which the law of the formation 

of the functions is expressed. I therefore here propose a means for 

resolving such equations, of whatever order or degree, in an algebraical 

form. 

FIRST CLASS OF EQUATIONS. 

All successive functions such as those above mentioned, are repre- 

sented by the equation w,,,=(w,), for this manifestly expresses the law 

of the successive functions, 

w= 4 w= (a), w= OPM, w= HHH(a), 

Ur = PPPP--.-- (x times)...... fat; 

hence the expansion of w, in every such case depends on the solution 

of this equation. 

Put uw, =f(y") the form of the function f and the quantity y re- 

maining at present unknown, and also let y* = x. 

Then, since uw, = f(z), and w41 = (ys), we have 

Sy) = $(F8). 

Suppose now f(x) = 4 + Bs + Cx’? + Dx + &c. 

the preceding equation becomes 

A + Byst+ Cy’ + Dy’, &e. = {4 + Bs + Cz’? + D2’, &e.} 

and it remains to expand the latter function, in order to compare like 

powers of x, and thus obtain the assumed coefficients and the quantity y. 

Now by Taylor's Theorem the development will be of the following 

nature, viz. 

(A) + Z.p'(A) + Zp"(A) + Z,p'"(A) + &e, where Z,, Z:, Z, &c. 

are functions of s completely independent of the form of the function ¢, 

and ¢'(A), (A), &c. represent the successive differential coefficients 
of (A). 
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To determine Z,, Z, &c. put $(A) = e“4, a being an arbitrary quan- 
tity. 

Hence by substitution we have 

ei (At Bz+ C2?+ D2?, &e.] = ent + Zia + Za ae Z,a° + &e.} 

Now the value of the left-hand member of this equation is also 

8, &et {1 +aCez’, &e.}. {1 +a Dz’, &e.t .&e. 
2 RB B 

aA Zz: 2 a € {i+aBx+ 75.8 +79 3% 

And if we equate the coefficients of x" in each we get 

BODE). es 
=> Ags 

Z, ee brx ely Oe eal), ood xe 

subject to the two conditions 

Paina epee fet 2 

64+2c4+3d+ &e. =m. 

These conditions being satisfied we obtain the identity 

BCD. y 2 o3 z =. 3 =e eee AD LOC ume 

ONES SAGAS ENTE is Mean EOE TET Ne CET MONG ante 

and comparing this result with the first expansion, viz. 

A+ Bryzx + Cry?x? + Dy x aft ree + Mry™ 3" + &e. 

BCD". = Robe Mn) As 
Sate mi ome aie os 1 ace te 

where it must be observed, that b, c, d, &c. having previously satisfied 

the equation b + 2c + 3d, &c. = m, the quantity x is then found by 
summing 8b, ¢, d, &c. 

Put C=¢, By D=cB,  E ='¢,.B'. &c. 

and making m = 1, 2, 3, &c. successively, we get the following identities, 

by which A, y, ¢:, ¢, ¢:, &¢. are completely known. 
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A= (A), y= 9'(A), 

ay = une ay ag (A), 
2 

4 eet! 
ay = — ate cp" (A) sk c.9'(A), 

- (A 1 ” ” v 1 y Cap sets, # = "(A) + ap’ (A) + 5 9"(A) + eah'(A), 

&e. = &e. 

The general law of which equations is thus expressed : 

mn (i(ay(ayes..: a 

Cary" = 2 xo. xl dat eed ie.” eA), 

b, c, d, &e. being regulated by the two conditions before mentioned. 

From hence we obtain the complete integral of the proposed equa- 

tion U4: = ~(u%,); for since 

S(@=)=A+ Bs + Ce + D¥ + &e. 

wt, = A+ By + (By) + o(By'f + (By), &e. 

The arbitrary constant B is determined as usual by assigning a particular 

value to a, as 

m=A+ Bic +¢B + 6B, &e. 

by the reversion of which series B is found in a series arranged ac- 

cording to the powers of w.— A. 

Before proceeding to any particular applications of this general solu- 

tion, a few observations will be useful, 

I. When ¢(w,) is of the form w, + const., then A becomes generally 

infinite, and y becomes 1, the solution therefore fails in this case, but 

more generally it may be remarked, that it also fails when the value 

of A deduced from the equation 4 = ¢(A) satisfies the equation ¢’(A) =1; 

for this, by making y=1, renders infinite the coefficients ¢, ¢, &e. Such 

cases of failure will shortly be separately considered, 
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II. When the equation w,,, = (u.) is of the n™ degree, the equa- tion for finding A is of the same degree, and therefore 4 has x values; then y = ¢'(A) has also n corresponding values, which, being represented by y,, 2, ... y,, and putting for abridgment F(By') for the series above found for Ux, Wwe have 

u, — F'(Byy;*) =0, u, — F (B.y#) = 0, &e.; 
and the complete solution is found by taking the product of the members on the left side and equating to zero: the result will only contain one arbitrary constant, since B,, B., &c. are all found in terms of u,, as before shewn. 

III. w, is a known function-of B, u, is the same function of By’. 

IV. Since PPP orc. {x times} (Un) = Usans 

ee CONGO aaa tx times} (w_,) = uy. 

Let p~' be the function which is inverse to p, that is, such that p-'p(a) =a, then it follows that 

Us=h'P'd",,.... {x times} (w,). 

The same formula therefore which represents the x” successive direct function of %, will also give the x successive inverse function by 
’ 5 

y merely writing —.« in place of x. 

V. Put pea or ae =e Z, hence og. 

oop {— 7ee% times} (a) = 4 +1 + 6 + ¢ + ¢;, &e 
eee wwe log. 0 

1 2 3s s 

which is a known numerical quantity and may be represented by a; 

hence, ¢¢...... {ise = times} (a) = uM. 

Thus the number of times it is necessary to take the successive 
: : log. B functions @ of a, to arrive at wu, as a result, determines lop.’ and 

since y is known, B may be thus also determined. 
Vox. VI. Parr I. N 
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EXAMPLES: 

I. Ure, = a+ bu, = h (u;). 

ft = 5 + 6.6 

Results ...... 
a 

ln = re b te B 

uu; — a 
Il. Given tr, = = $ (ts): 

Immediately applying the general formule above found, they give 

A=b+J¥sa =1+ /(1+$); 

2 

J oe 

Peres Seer eee pip ee eh &e. 5 
A Bbaly Uy Pay EPS)? Om by GP— ao” 

and by substituting these values, we have 

; B eye (By’) 

7 By' eC eee es 
Bera is SAR ia (y— 1) 26 (y — I) (¥— 1) 

(By')* . y + 5) &e. ; 
SP Gea 1)iGgi— T)y 

and B js known by reverting the series 

2 
he = nee ek Mee 1) te - Ke. 

By) ayo -DwyaDd 

To facilitate the determination of B in every case of the general 

solution, viz. u,= 4 + By’ +¢(By*) +o (By’)', &e, we may apply 

the general theorem 

B=. ae 2... (% = 1) (u, oe A)o(= a2 . ce)” c,2 &e. 

; M Shab: x Wee .eB, x WBE D, x, bcc: 3 

where the indeterminate indices are subject to the two conditions 
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bo + b, +b+&.=n 

2b, + 3b.4+ &. =n —1, 

which I have given in my Memoir on the Resolution of Algebraic 
Equations.* 

With respect to the inverse function in this particular example, 
we have 

Uy = 4/(@ + 2buss1)3 Ug = Vie + 2bu_ wy} 

and putting for a successively 1, 2, 3... a, we get 

Un = Sf @ + 2b tae + W2rv/fa t+ ... + WiA/(a + 2bu,)}, 

the number of roots being x; and for the value of this successive 
function we have 

(By re (By-*) 
dhe (j =). Ge Su oe 

u_,=by+ By + 

Thus to find the value of 1/{20 + 4/{20 + 1/{20 +...} a times, 

we have a@ = 20, 26 =1, y = 10, 

+B GB) (¢ BY ae = Lyi,=1t+ 10° *2.9.10"* 2.9.99.10* &e. 

and B is very readily found by putting 2=1, and thence the required 

value of w_, is obtained in a series extremely convergent. 

As another numerical example, let w,., = 2u,° — 1. 

Here y = 4, by =1, and therefore 

Boe 7 No 
: = 22 ee ee Se, Uw=l+B.2 +o@ n+ 2@- 1) @ 1 

Wai Oe 
se + &e. 
2(= 1)@ = H@= 1 

for B write — _—_ and this series becomes 

* Trans. of Camb. Phil. Soc. Vol tv. p. 144. 

N2 
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yi (Ca ae CD (2°6)° (2°60) 

i=l Te Laas 1.2.8 

= cos. (276), 

and the continued surd which is the inverse function may be similarly 

expressed. 

apices 

a.d 

III. To expand the function «.a, the indices being continued 

a times. 

Denoting this quantity by w,, we have 

Urn =a. ae =o (us); 

and adapting the general formule to this case, we have 

A =a.a‘, whence A is known, 

y = A.-h.l. (a), 

A (h.1. a)? 

aps tg tan 
A (h. 1. a)’ 

ap = eg ted GLa tor, 

&e. = &e.3 

and then wu, = 4 + By’ + ¢,(By’) + @(By’) + &e., 

u=Ad+BiecB+¢ B+ ke. 

, and take logarithms in For the inverse function if we put a= ; 

the system of which the base is a, we have 

u, = log. B + log. w.., = log. (Bur41), 

u_, = log. {Bu_w_y}, 

u_, = log. {B. log. {Blog. f...... log. Bu}, « times ; 
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and for its expansion, 

ur.=A+ By*+ (By) + ¢4(Byy &e., 

the quantities 4, B, y, ¢,, ¢, &e. being the same as before. 

Before leaving this example, we may observe, that the most rapid 
way of finding A, is this, let log. B =), i.e. a = B; and _ since 

1 

a8 
take its log. and add to b for a second; take the log. of the second 

approximation, and add to 4 for a third; and when 6>1, we shall get 
a very converging series of values for A. 

.a4, .. 4=b+log.A; take 6 then as a first approximation, 

If we had applied Lagrange’s theorem in this case to the equation 

A=a*’, we should have A expressed in a divergent series; it is 

necessary therefore to limit the announcement, that this general series 

gives the least root, to the case of real roots, for when there are some 

imaginary, we see that it may express one of these instead of the 

least real root. 

IV. By a similar process we easily obtain 

m (Bin')? 

m—1'°1.2.3 

m* (m? + 3°) (Bm'y’ 
(m? — 1)(m* —1)°1.2.3.4.5 

m? (Bm-")' 

(Gi = 1D) ALS ORS} 

m' (m? + 3°) (Bm-"y 

" (i? = 1) (m*—1)°1.2.3.4.5 

sin. m sin. m sin,...m sin.mu, = Bm? — 

&e. 

. Lace ie i lies 
— sin.-' — sin.-! — sin.~?...... — sin. 4, = Bm-* — 

m m m 

&e. 

the value of B being the same in both, and found as before. 

CASE OF FAILURE OF ‘THE GENERAL SOLUTION. 

When the equations ¢(4) = 4, ¢'(A) = 1 are simultaneously true, 

the terms in the expansion of uw, become infinite, as before remarked, 

we shall therefore give a solution in a different form, for this case. 
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The equation ¢(4) =A must here have two equal roots, suppose 

each = c; transform the proposed equation by putting uw, =v,+ ¢, 

Us, =—C+o(v, +c) = F(x), 

the corresponding equation 4 = F(A) has then two roots each equal to 

zero, and consequently #'(4) must be of the form 

A + mA’ + nA + &e., 

and accordingly F'(v,) or vs, is of the form v, + mv, + nee + &e. 

Hence if v, vanish, v,, %, v3, &e. successively vanish, and therefore 

we put generally 

0, = A,v, + B,.0f + C,. 0; + D,, v,' &e. 

in which series the coefficients are unknown functions of a, but 

independent of 2. 

Hence, v1, = 4,.0, + B,.v; + C,.03 + D,.0, &e...... (1), 

and vo, = F'(v,.) =F. + Fe. + Bye? + Ff, . 0) &e. 

2 EE (O) nan 
where Ff, is put for ra eC by Maclaurin’s Theorem. 

Beside the foregoing form of expressing v,,,:, there are two others, 

Viz. 

F'(v,) ae it OU, ct ts. Os + Be pee ok, . Dar Wises ce (2), 

Ooiy = Aes oe Bask Bee Coir. Ol lai Ope, 00% sen (3), 

and since F’, is manifestly unity, if we compare the expressions 1 and 

2, when the latter is arranged according to the powers of v, we obtain 

A,=1, which is obvious by the law of the successive formation of the 

quantities 7, tv, &e.; also putting x = 0 in the general value of x,, 

we have v, = % + Bo.v? + G.ve + Dov’ &e., 

which shews that B, = 0, C, =0, &e.; this being premised, we have 

by comparing the expressions (1) and (3), the following identity ; 

v, + Bess. 0° + Cog. 08 + Dry, vo! &e. = {0 + Fy. 0) + Byod +B. 0' &e.} 
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+ B,v? {1 + F.0, + Fyv,? &e.}? 

+ Cv {1 + Fx, &e.}* 

+ D,v' {1 + &e.}* 

+ &e. 

and comparing like powers of », we have 

ha Hee AC, = F, + 2F', B., 

AD,= F, + (Fi +2F)).B.4+3F..C, 

whence integrating, so that each integral may vanish when «2 = 0, as 
has been proved to be necessary, we have 

B.=F,.2, C,= Fya + F?.«(2#-1), 

a (x—1) 
FO DEEN (7 RIT SL) fe Vp eee ee RSE 

a(x —1)(a—2) 
2 3 i 

&e. = &e. 

and v, = + B,v,+ C,v* + D,v', &c. is completely known. 

Ex. 
riatisace tte Bie Sad ore . Ey a(t—1)| ,,.. 

Sin. sin. sin...... {a times} of (0)=0 Lag? esastisaite ke. 

sin.~'sin.~' sin.~'}a times} of (9) =@ + i A 5 4 (ETD => 7 5} &e. 

Before leaving this class of equations, we may remark a curious relation 

between the equations 

Uy = Bier : 

and 241 = fo (v2) 

which is such that the solution of one leads to that of the other, for 

if we put f(u,)=v,, we have 

Urs = P(v.); 

+ +f (Uer1) =S P(e), 
OF Vs = Sp (U2) 5 

if then we determine w, so that »%»=/(w,), v, will be readily found from w,. 
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SECOND CLASS OF EQUATIONS. 

Given @ {Us, Useis Urigeees+-Urynt =O. 

Put wu, =4,+ By + a (By! +¢(By’)’ &e. 

Uri=At+y. By tay (By y tay(By'y &e. 

Ur2=As+y. By tay (By) tay (By'y &e. 

&e. = &e. 

and ® = ${A,, A, A3......Aniit, 

and ultimately make ed cee 

Substituting in the proposed equation we have 

O+ C,. By +T..(By)+Ts.(By")+ ke. =0, 

rher pees BOR 2 ad » 28m 

WORE ie gan Raa gy Aa ls ane ay 

E sa pe ee 1 &O 
* Slee Weta s aaa, he ae sara 

BEER ode Ee 1 ae. Pe a 

oe tae Y ‘dA, Y OA - dA, : 

cc: = &e 

Hence ®@=0, T,=0, T.=0, &c. 

the equation & = 0 (putting 4,=4.=......4,,.) determines 4, 

r, = 0 will give » different values of y, any of which may be used, 

lr. = 0 will determine c¢,, 

and B will remain an arbitrary constant. 

Now in linear equations the sum of the particular solutions gives 

the complete integral, but this is not generally the case in other in- 
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stances; but there is a method at once common to algebraic equations, 
differential equations, and those of finite differences, which leads from 

particular solutions to the general: this, however, more properly be- 
longs to the 

THIRD CLASS OF EQUATIONS. 

The most general form of an equation in finite differences of any 
order and of any degree is represented by 

CSe Mi, ler ts orane. CP aoace ss Usint = 0: 

log. x 
log. y 

substituted, = consequently entering in a different form from 2x, the 
transformed function may be represented by 

Fix, f (2%), L(y%)> L778) Pf (7'8)} = 0. 

Putting x= 0, F'}0, f(0), f(0).......- -f(0)} = 0, 

from whence f(0) is known. 

Put uw, = f(y’) =/(s), and wherever 2 enters, let its value be 

Differentiating relative to x, and then putting »=0, the result is 

manifestly of the form 

F,+ F,.f (0) + Foy, f'(0) + «+00 Fray’ f'(0) = 0, 

from whence (0) is known in terms of the indeterminate quantity y, 
unless F',=0 when y becomes known, and ,f’(0) remains the indeter- 

minate constant. 

The successive differentiations putting =0 after each, will determine 
t’(0), £0), and thence by Maclaurin’s Theorem, 

S (8) =f) +f (0). +f"(0). 5 &e. 

y* 

te =f (0) +f(0) 7° +70). 5 &e. 
Vou, VI. Parr I. O 
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which solution is particular, since it contains only one arbitrary constant, 

viz., f'(0) or y; denote this value of uw, by XY,, and put u,= X, + %,, 

and having found v, with another arbitrary, from the transformed equa- 

tion, put v,= X.+7¢,, X, containing two arbitraries, and by continuing 

this process, we shall obtain the complete solution, viz.. 

uz = X, + X, + X35 4+.....- ox. 

R. MURPHY. 
Caius CoLLEGE, 

Nov. 1, 1835. 



IV. Geometrical Theorems, and Formule, particularly applicable to some 

Geodetical Problems. By Wit.t1am Wautacet, A.M. F.R.S. Edin., 

F.R.A.S. Lond., Member of the Cambridge Philosophical Society, 
and Professor of Mathematics in the University of Edinburgh. 

[Read Nov. 30, 1835.] 

Art. 1. THE Geometrical Theorems and Trigonometrical Formule 

which are given in this paper are peculiarly applicable to the solution 
of some Geodetical Problems, in particular to this which follows. 

“Three stations being given in position, or else the angles made 

by the lines which join them; also the angles which these lines sub- 

tend at a fourth station in the plane of the others; to determine the 
position of that fourth station.” 

This problem is remarkable on account of its antiquity, and the 

object to which it was applied. Hipparchus made use of it to deter- 

mine the position of the Moon’s apogee and the radius of her epicycle, 

and Ptolemy actually resolved it by a trigonometrical computation in 
his Mathematical Syntaxis*. Vieta has given a geometrical construction 

in his Apollonius Gallus+. He had in view the solution of Hipparchus’ 

problem; but the fiction of epicycles being now rejected, Ptolemy’s 

application of the problem is merely an interesting fact in the history 

of the ancient Astronomy. 

* Histoire de l’Astronomie Ancienne, par Delambre. T. II. p. 150—164. 

+ Vietee Opera Mathematica, p. 344. Edit. 1646. 

02 
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2. In comparatively modern times an interesting application of the 

problem was made to geodetical measurements. In the year 1620 

Snellius, when ascertaining the distance between Bergen-op-zoom and 

Alemaer, with a view to the determination of the magnitude of the 

Earth, employed it in finding the position of his Observatory. He 

assumed as given points three stations whose positions had been deter- 

mined, and taking the angle which each two of them made at the Obser- 

vatory, he was able to determine, by a trigonometrical computation, 

the distances of the stations, and thence its position*. The same 
problem was proposed by Richard Towneley as a chorographical problem +, 

and resolved trigonometrically in the Philosophical ‘Transactions about the 

year 1670, by John Collins. 

3. We are informed by Delambre} that Lalande wishing to com- 

pute some observations of the Moon which had been made at the 

Military School, Paris, proposed to find the longitude of the station 

where the observations had been made, by observing there the angles 

subtended by three steeples whose positions were known. He was 
thus led to the same application as had been made long before by 

Snellius, without knowing or without thinking of his solution. La- 

lande’s patience was exhausted by the length of the calculations, and 

the slips he made in performing them: he therefore referred the 
problem to Delambre, who gave a solution which was printed in Cag- 

noli’s Trigonometry (First Edition), and again, but with more detail, 

in his own treatise Methodes Analytiques pour la Determination d'un 

Arc du Meridien. 

Delambre’s solution, which is analytical, is good, his formule have 

however but little of that symmetry and simplicity which constitute 

elegance in a geometrical speculation, and make it easy to be compre- 
hended and remembered. 

4, In considering the problem I have found two Theorems; from 

one of them a particularly simple and elegant geometrical construction 

* Snexuius, Erastosthenes Batavus, p. 203. 

+ Lowthorpe’s Abridgement of Phil. Trans. Vol. I. p. 120. 

{ Histoire de l’Astronomie Moderne, T. II. p. 109. 
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is obtained, and both Suggest various solutions, some lineo-angular, others trigonometrical, to this and other related problems. 

THEOREM. 

mplet a Ae he two straight lines which meet in 4; and AD, Ad other two, which make with the former equal angles BAD, CAd. these last being either both within (figs. 1, 2.) or both without the angle 

Fig. 2. 

Sas Fig. 3. c = § 

V 
B C 

BAC (fig. 3). Let the lines be such that the rectangle DA.dAd is equal to the rectangle BA.AC; draw lines from D and d to B and C: 

DEMonsTRATION. Because by hypothesis AD.Ad=AB. AC, there- fore AB: AD=Ad: AC. Now the angles BAD, dAC are equal by hypothesis, therefore the triangles BAD, dAC are similar. 

Also because AB : 4d=AD : AC, and the angles B.Ad, DAC are equal, for they are the sums or differences of the equal angles BAD, 
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CAd and the common angle DAd, therefore the triangles BAd, DAC 

are similar. 

Corollary. Let ABC be any triangle, and let straight lines 4D, 

BD, CD be drawn to D, any point in its plane; at the point B in 

the line BA make the angle 4Bd equal to the angle ADC, viz. that 

which the side opposite to B subtends at D; at the point C in the 

line CA make the angle 4Cd equal to the angle 4DB, which 4B the 

side opposite to C subtends at D; draw a line from the remaining 

angle A to d the intersection of the lines Bd, Cd; the triangles ADC, 

ABd are similar; and the triangles 4DB, 4 Cd are similar. 

5. The truth of the Corollary may be inferred from the theorem: 

it may however be proved directly as follows. 

Let E be the intersection of the lines dB, CD (fig. 1.); join ALF. 

Because by construction the angles ADC, ABd are equal, the angles 

ADE, ABE are equal; therefore the points A, D, B, E are in the 

circumference of a circle; hence the angle AB is either equal to the 

angle ADB, or is its supplement; now by hypothesis the angle d4DB 

is equal to ACd; therefore AEB or Ad is either equal to ACd, or 

is its supplement; hence, in each case, the points A, d, C, E are in the 

circumference of a circle; and therefore the angle ACD or ACE is 

equal to 4dB; now, by construction, the angle ADC is equal to the 

angle ABd; therefore the triangles 4.DC, ABd are similar; and since 

the angle CAD is equal to dAB; by adding or subtracting the angle 

dAD, we have the angle CAd equal to DAB; now the angle ACd is 

by construction equal to ADB; therefore the triangles 4Cd, ADB 

are similar. 

6. In the demonstration, it was assumed that when the angles 

BAD, CAd are equal, then BAd, CAD are equal; this will always 

be true when the lines 4D, Ad are either both within the angle BAC, 

or both without that angle, or, which is the same thing, when the 

similar triangles BAD, dAC are similarly situated; and the same is 

true of the similar triangles BAd, DAC. 

7. I shall now apply the geometrical theorem to the construction 

of the problem enunciated in the beginning of this paper. 
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PROBLEM. (Figs. 1, 2, 3.) 

Three stations A, B, C are given in position; also, there are given 

the angles 4 DB, ADC which the lines joining A, one of them, and 

B, C, the other two, subtend at a fourth station D in their plane; 

to determine the position of the fourth station, by a geometrical con- 

struction. 

Solution. At the point B, in the line BA, make the angle 4Bd 

equal to ADC the angle which AC subtends at D; observing, that 

the line Bd must have such a position, that if the angle 4Bd were 

placed on ADC, so that BA lay along DA; then Bd would lie on 

DC. Also, at the point C, in the line C4, make the angle ACd 

equal to ADB, the angle which AB subtends at D; observing that 

the position of Cd must be such as to admit of the angle 4Cd being 

applied on ADB; join A, and d the intersection of the lines Bd, 

Cd. By the theorem, the triangles 4DC, ADB will be similar to 

ABd, ACd respectively; and as all the angles of these last are ma- 

nifestly given, because their sides are given in position, therefore all 

the angles of the triangles ADC, ADB will be known; the angle 

DCA being equal to BdA; DBA to CdA; DAC to BAd; and 
DAB to CAd. 

Scholium. Since the angle BdA is equal to DCA (fig. 2.) and 

CdA to DBA, the angle BdC is equal to the sum of the angles 

DCA, DBA. Now it may happen that their sum is equal to two 

right angles; then, Bd and Cd will be in one straight line; and, 

there being no intersection, nothing can be determined in respect to 

the angles BAD, CAD. But in this case, since DCA, DBA make 

two right angles, the points 4, B, C, D are in the circumference of a 

circle. Thus it appears, that when the point D is in the circumference 

of a circle which passes through 4A, B, C, the problem is indeterminate. 

8. It is deserving of remark that this simple construction, by which 

the point d is found, has served to change the proposed geodetical 

problem into another which at first view appears easier of solution; for 



112 Mr WALLACE, ON GEOMETRICAL THEOREMS, AND FORMUL&, 

since the angle 4Bd= ADC is given (figs. 1, 2, 3.), and also the angle 

ACd= ADB; and moreover, because the angles which the lines 4B, 

AC make with a line drawn from B to C may be considered as 

known, the angles dBC, dCB are known. 

The proposed problem is now transformed to this: 

“ Having given all the sides, or else all the angles of two triangles 
ABC, d BC which have a common base BC, it is required to find the 

angles which the line 4d joining their vertices makes with the sides.” 

This is the geometrical expression of a well known geodetical problem 

which is more frequently resolved than the other; probably, because its 

solution is supposed easier. The geometrical property of the figure by 

which the one problem is converted into the other, namely, the equality 

of the rectangles 4D.Ad and AB.AC is easily remembered, a cireum- 

stance of considerable importance in practical applications of Geometry. 

9. The following Theorem is a deduction from the proposition : 

“If straight lines BD.BE be drawn from B, one of the angles of 

a triangle 4BC, making equal angles 4BEH, CBD with the sides about 

Fig. 4. 

B Cc 

that angle; and also straight lines CD, CE, making equal angles BCD, 
ACE with the sides about another of the angles, and meeting the 

former lines in D, E, then, straight lines drawn from the remaining 
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angle 4 to D and E shall make equal angles BAD, CAE with the 
sides about the angle*.” 

The well known proposition, that the lines which bisect the three 

angles of a triangle meet in the same point is a particular case of this 

Theorem. 

10. The Trigonometrical solution of the Geodetical Problem of 

Art. 1. which is deducible from the construction here given, is suffi- 

ciently obvious: I shall therefore, without at present entering into it, inves- 

tigate another theorem which comprehends the former and various others. 

Let the sides of any triangle be a, 6, c, (fig. 5, 6). 

The opposite angles 

Fig. 5. 

Let straight lines be drawn from any point D to the angles of the 

triangle, and put 
AD=x, BD=y, CD=s. 

A A A 
Also the angles yzx=a, w2=B, xy=y, 

* I owe this elegant proposition to T. Galloway, Esq. F.R.S. to whom it occurred 

when considering the Theorem. 

Vou. VI. Parr I. P 
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where it must be observed that the angles a, 8, y, must be so reckoned. 

that their sum is four right angles. 

By a known Trigonometrical formula, 

L?— QALY COS YHYPHC? os. ececrceecenene (1), 

U—2xx COS 3 +2? =D" os.,00.0-jc00 unre (2), 

Yr — BYR COSA +R HA? orcs sserecrsesees (3). 

The condition that the triangle 4BC is made up of the three tri- 

angles ADB, ADC, BDC (fig. 5), or else of the excess of two of 

them above the third (fig. 6), is expressed analytically by this other 

equation, 

vy sin y+ax sin B+yx sina=6e sin J ......... (4). 

These hold true, whatever be the position of the point D, observing 

always that the angles a, 8, y must satisfy the condition of making up 

four right angles. 

By adding the first and second equations, and subtracting the third, 

we obtain, 

Qa°—Qxy cos y—2axx cos B+ 2yx cosa=b>+c—a’. 

But &+c¢—a’=2be cos A; therefore, 

x’ —axy cos y— xx cos B+ yx cosa=be cos A ...... (5). 

Let equation (5) be multiplied by sin a, and equation (4) by cos a: the 

results are i 

a sin a—2y Sin a cos y—#xSiN a cos B+ yx sin a cos a=be sin a cos A, 

xy COs a sin y+ #% COs a sin B+yx SiN a cos a=be cosa sin A. 

By subtracting the second of these equations from the first, and ob- 

serving that 
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sin a cos yy +Cos a sin y = -—sin p, 

sin a cos 8 +cos a sin B =—sin y, 

sin a cos A—cos a sin 4 =sin (a—A), 

we obtain 

xv sma + xy sin B + #z sin y = be sin (a — A). 

Hence we derive this elegant theorem, 

: A A be . 
“zsima+ysinp - & siniy = — sina — A). 

11. From the form of the function which is the first member of 
this equation, it will remain the same, although we change the angles 
A and «a into B and f; or into C and y, provided corresponding 
changes are made in the lines a, b,¢ and a, y, x: so that, on the whole, 

we may conclude that 

eae 

: : : ac . 
a2sina+ ysinB + ssiny age coe 

= © sin (y — ©), 

This is the property of the figure which I proposed to investigate ; 

and it manifestly comprehends this other property, 

ax Oy BY 3 cx , 
sin(a— A) sin(B— B) © sin (y — C)’ 

from which it also follows that 

a 6 sin(a— A). 
y a 'sin(B— B)’ 

zc sin(a — A), 
z a@'sin(y— C)’ 

novi sin (8 — B) 

x 5b sn(y—C)’ 

P2 
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These formule, which are remarkable for their symmetry and sim- 

plicity, suggest various solutions to the problem enunciated in Art. 1. 

Their evident analogy to the property of a triangle “that the sines of 

the angles are proportional to the opposite sides”, has suggested another 

form under which they may be put. 

12. The hypothesis and notation of Art. 10. in regard to the tri- 

angle ABC (fig. 5. No.1. and 6.) being retained, another triangle 4’BC 

(fig. 5. No. 2.) having remarkable relations with it, may be constructed 

as follows: 

Let straight lines D’4', D'B’, D'C’ meet in a point D’, the angles 

ADB, BDC, ADC being equal to 4DB, BDC, ADC respectively. 

At A’ any point in D’d’ make the angles D'd’B’ equal to DBA, and 

DAC' equal to DCA, thus forming two triangles D'd4’B', D'A’C 

(fig. 5. No. 2.) similar to DBA, DCA (fig. 5. No.1). Join B’C’; be- 

cause DB: DA=D'A': D'B' and DA: DC=DC': D'A’; there- 

fore, ex eg. DB: DC = DC’: D'B’; hence the triangles BDC, C'D'B’ 

are similar. 

Let the lines and angles in the triangle 4'B’C’ be expressed by the 
same letters as are used for the triangle 4BC, with the distinction of 

an accent over such as differ in magnitude, so that 

BC =d, AC = b, AG — ¢. DA = 2D BR —y, DC =. 

: ; : 2 \ 
The angles about D in the two triangles being equal; viz. y’x’ = a, 
A N 

as = B, a'y =y¥. 

13. The similarity of the partial triangles which constitute- the two 

triangles 4 BC, A’'B'C’, besides the equal ratios « : y = y': 2’, by which 

they were formed, give us also a: c=y': cc, y:c=a': ¢; therefore 

ve’ = yy, yoga ag and a like result for each pair of triangles; 

hence the lines in the two triangles have the following properties: 
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a y c 
= Sew 
y oy c 

x x b 

a a’ LL a! Se. adn i 

y x a 
x! iF / 7 a a 

UX = YY = 

14. In the triangle ABC, the angle a is the sum of the three 
angles 4, ABD, ACD, of which the last two are equal to the angles 
BAD, CAD that make up 4’, hence we have this property : 

A+ A =a, B+ B=8£, C+ Ca¥ 

The affinity of the two triangles in respect of these, and other pro- 
perties which are to follow, may not improperly be indicated by calling 
them Conjugate Triangles. 

15. Because 4 =a — 4’, and 4’ =a- 4, also, similarly, 

B=6-B, B=8-B, C=¥-C, C=4-6 
the formule of Art. 11. gives us these, 

=— sin 4’ 
2 

; 3 ; a 
zsina + ysinB + xsiny 

c 

je gt sin B’ 

_ ae sin C’ 

F SHOCPOROnCE rie Ub 
c 

¢ 

b 

| b 

y 

| % 

Bec. 
ig 

x 

z'sina+y'sin B + 2% siny =F sin B 

[at onc 
x 
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z 6 sind’ b 
Hence we find — = —-.~y=- 

y asnB a 

ture, which are comprehended in 

; ab 
i 

hae ea | 

BoE, 
yt Si te y Raikes 

adie 
a3 2 >= 3 = 

@ wc 

DT ES Cs ie Ls 

Ae said, 
y Boe 

ac 
@s8 =sS:tcs 

ae 

These formule give the ratios 
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fa and other formule of a like na- 

this table. 

noe Se 
6 ib 

_ UTM 
Ue ils 

ie 
i cere 

te ee. 6 IV. 

Laid 
ay nea 

Lule! 
"abe. ela 

Lee, 
wee ae: 

of the six lines a, y, 2; 2’, y', 3, when 

the lines a,b,c; a’, b', ¢, or their ratios, are known; when the angles 

a, 2, y contained by these lines are given, the lines themselves may be 

found by known propositions in Trigonometry. To these I shall in the 

sequel add others. 

16. We have found that 

xsina + ysin B + 

Now y = 

: bc . ; 
ssin y = — sin 4; 

Ss) 
w, 

These values of y and x being substituted in the above equation, it 

becomes 

‘ G10)... ae 
# {sina + 7.7, sinB + —. 

, ; OGFs es 
7 im ys = sin 4’. 

Similar expressions may be had for y and x, and from these the fol- 
lowing formule have been obtained : 
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/ ,{@ . Be Cay, a s 
# ff sina +5 sin B + © siny} = “de sin a 

b 

ia. We ge: 0 ; \ . 
y {iO sina + 5 sin B + Ssin yh =F aesin B Aree V. 

, 
are : Cf: c ' 
#4—sina + +sin B + — sin =—absnC 
- b B c as c 

By changing a, y, z, a, b,c, A’ into w’, y’, x, a, b,c, A and the contrary, 

these formule serve for the conjugate triangle 4’B’C’. 

17. Another expression analogous to that found may be had by 

substituting for y and z their values in the formula 

ys sina + #xsinB + ry sin y = besin A. 

By proceeding as before, we obtain 

7 bik. c. eS abe : 
2’ /— sina + = sin B + = sin =—.,.—bcsin A 
. pape. B c 7} abe 

a. ae c . vac A 
°2— sin =| sin 3 + — sin SS 5 SO SUN I 875 Gapacnoce Wall 

y GP 5 B c 7 b'de 

, 
: (ae Coa ca b f 

2 |S sina + Fsin B + sino} = 2.5.7 ad sin C 

It is remarkable, that the coefficients of sin a, sin 8, sin y in these 

formule are the reciprocals of their coefficients in the preceding. 

18. Other values of 2 may be obtained’ by putting the values of 
y and x in terms of « in the formule 

a — 2xy cosy + y= Cc, 

a — 2xx% cos B + 2? = B’, 

y —2yx cosa +28 =a. 

Of these I shall only put down that deduced from the last, as the 
most symmetrical, 
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(5)-25-F ere + () =) 
Similarly (£) - 22 £ cos (3 + Ere (5) 508 Bape VII. 

and (<) - of cos + Gi- (Ea 

The three sets of fumule V, VI, VII, are remarkable for their 

symmetry and simplicity, qualities of great importance in analysis; the 

last, viz. VII, seems however to be the most concise. 

19. The computation of x from the expression _ 

af (220, phe (te ae 
x \(5) = a5 +, cosa ar (<) }=a 3 

may be made by subsidiary angles; to determine these, let us assume 

that 

ae Bs ue c b 
% =v sin = Gv COs P; then, tan @ =7.7; By’ 

uy Bc 
and #{(5) - 27-7 cosa + (2) } =v’ (1 — 2 sin ¢ cos ¢ cos a) = a”. 

b 

Let 6 be such, that sin @ = ,/(2sin d cos p cosa) = 4/(sin 2¢ cos a) ; 
i 

then v cos @=a’, and v = 
cos 9° 

If cosa be negative, we must assume 

tan @ = /(2 sin ¢ cos d cos a) = 1/(sin 2¢ cos a), 

and then v sec @ =a and v = @ cos@. 

To determine x from the expression 

U 2 b c 

2 _— — —_— — #{(5) a7, COB 

we have now these formule. 

rane , + E}-« c 
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Case 1. When az 90°: find g and 0, such, that 

tan Pits 73 sin @ = 1/(2sin ¢ cos ¢ cos 6) = 1/(sin 2¢ cos a). 

, 6 sin c cos 
Then, x =a'.= Pye SS ? 

“b' cos @ ec” cos 0° 

CasE 2. When a>90°; find ¢ and @, such, that 

, 

tan @ = 5 a nee tan 0 = 1/(2 sin ¢ cos ¢ cos a) = /(sin 2¢ cos a): 

Shen. 2 — 2 2 sin @ cos 0 = as cos @ cos 0. 

20. I shall now apply the formule to a case of Geodetic sur- 

veying, taking an example from Delambre’s Methodes Analytiques pour 

la Determination @un Arc du Meridien, (p. 141—2). 

ABC (fig. 5.) is one of the triangles employed in measuring an arc 

of the Meridian in France; 4 is Villers-Bretonneux; B Vignacourt ; 

C Sourdon; D is a station within the triangle. To determine its po- 
sition, there are given, 

Log. Sines. Logarithms. 

A= 99°. 5°. 492 9:9945029 a 42734544. 

B= 49 . 4.13:°0 9°8782424 b 41571936. 

C= 31 .49 .57°8 9°7221739 ce 40011255. 

a=168 .43 .49°7 9°2909798 da (Assuined log.) 5:0000000. 

sin B’ 
= . . tee . 9 : B=130 .44 .16°5 9°8794988 aw i a 5'0234267 

pags Clee. y 
y= 60 .31 .53°8 9:9398323 eer we 4°7094635. 

From these angles we find 

A’ =(a—.4)= 69°. 38, 05 9°9719645 © 0°7265456. 
VM 

=(8—B)= 81.40. 3°5 9:9953912 r 0°8662328. 

C' =(y—C)= 28 .41 . 56-0 96814280 < 37083380. 

Vor. VI. Parr I. Q 
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Here a’, b’, c are the sides, and 4’, B’, C’ the angles of the triangle 

(fig. 5. No. 2.) which is conjugate to ABC; as a, one of the sides of 

the conjugate triangle, may be any number, it may be considered as analo- 

gous to radius in Trigonometry, and its logarithm might be assumed = 10, 

or any other convenient number, by which negative or large indices 

may be avoided; it is here assumed to be 5. The lines to be deter- 

mined are 4D =a, BD=y, CD=s. 

21. We shall begin with the formule 

#\(5) - gee cosa + (5) } =a", (Art. 18.), 

a D Abit 
ce 

Y=75” Den (Art. 15). 

The calculation may stand as follows: 
b’ 

; 0'8662328 

c 

< 0°7083380 

b\? (5) = 5400892 1°7324656 

c'\? (5) = 2610213 1:4166760 

80°11105 
be’ rs 1°5745708 

cos a (negative) 9°9915445 

2 0°3010300 

6 ¢ 
~ 25.5 cosa = 7364533 18671453 

a 2 rer ahi So 

(<) = 153°75638 21868332 

a? 10:0000000 

x 78131668 

x = 80646 39065834 
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We have now 2, and its logarithm ; from which y and x are found 
as follows: 

P 3°9065834. 3°9065834 
< 12734544 12734544 
by c 

y = 1112425 4°0462706 2 = 7733-49 3-8883758. 

22. The computation by subsidiary angles from the formula for 
Case 2, Art. 19, may be as follows: 

L 0°8662328 

c 

= 0°7083380 

tan, (d= 55° . 11.35 75) 10°1578948 

sin (2 = 110°. 23’.11”: 5) 9:9719082 

COS a 9°9915445 

2)19°9634527 

tan (0 = 43°. 47.49” 2) 9°9817263 

cos 6 9°8584297 

sin @ 9°9143866 

a 5°0000000 

b 
v 9°1337672 

x = 806461 3°9065835. 

This way of proceeding seems to have no advantage over the direct process farther than being a verification. 
a2 
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23. The analytical elegance and compactness of Formula V. Art. 16. 

has induced me to make the calculation which follows: 

sin a 92909798 

ma 0°7265456 
a 

< sin a = 1041179 0°0175254 

sin 6 9'8794988 

L 0:8662328 

ae [sin B= 5568415 07457316 

sin y 9:9398323 

& 0°7083380 

: sin y = 4448056 0°6481703 

1+ 11:057650 2-9563371 

= 0°72654.56 

b 4°1571939 

c 4°0011255 

sin A’ 99719645 

£ 78131666 

x = 806461 39065833 

This Formula employs more logarithms than Formula VII; therefore, 

the latter is better for practice than the former. 
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24. Formula VI. may be easily computed along with Formula V. 
as a verification of it, for the same logarithms serve to find the coeffi- 
cients of sin a, sin 2, sin ry; in both. In this way I have found 

< sin a = 0366804. 

= sin 8 = ‘1031017 

< sin y = “1704097 

a bee Bee qg ina + 7sin B+ ¢ Sin y = *3101918 (Ar. Com.) 0:5083697 
a 

= 0°7265456 

b = 7 11337672 
c = 
o 1:2916620 

b 41571939 
a 40011255 

sin 4 99945029 

ee 78131668 

x = 806461 3°9065834. 

This calculation involves more logarithms than either of the former; 
however, some of them occur twice. 

25. The angular calculus applies with great advantage to the so- 
lution of problems of the kind which we have been considering. Re- 
suming the consideration of the triangles ABC, 4’B’C (Fig. 5. No. 
1. and 2), and the notation of Art. 10, we have by Trigonometry and 
Formule IV. 
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Hence, by compounding these equal ratios, 

A N 
sinex ¢ sinB _,, since _ d' sin y _ sin B sin y 

a Wine ys . A eé sin ye OS 
sin bx z sin ba eee Sint B 

Fig. 5. No. 1. 

Thus, to determine the angles ca, ba, we have their sum and the ratio 

of their sines. 

Again, by Trigonometry and Formule IV, 

A 
snay_ sx bc _bsnC 

Way ¢.6 een” 

TX, amin 
also ayt+ax=7—a; 

A 
hence, as before, the sum of the angles ay, as is given; also, the ratio 

of their sines, to determine the angles. 

: potas pee NEES 
Lastly, since sin cy = > siny, and sin bs ao sin B; 

: b 
therefore ae, also lay ae ea = 

A ~ e*sin 3° 
sin bx 

By these cy and 6s may be found. 

26. The results which have been obtained may be applied to the 

pairs of like angles and tabulated for use as follows: 
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VIII. 

A 
. uN . PR . = sincz _ sin sin y ca +ba=A, __\ = sin @'sing (1), 

sin ba 

A A 1 i in A’ sj sin cy _ sin sin vy 
out aus 2, mele gan Gin (2), sin ay 

A A . Ff . A . B 
sin bx sin sin bz +ax=C, Sk Ga EF ahi Eee) 
sin ax 

IX. 

heen ara i} in C’ sin a sin ay+azx=r—a, ny = aie veceerees (1), 

sin az 

A A i 4 ee On sin ba a sin ba+bz=7—£, ; iN => = ‘sind’ vecveccee (2), 

sin bz 

. AN 
. A A sin cx a@ sin B CX + CY=7—y, A => B a a (3). 

sin cy 

xX 

A A f b : sin ¢ sin cy+bzs=/’, = = ae coseenane (1), 
sin bz 

x A 

sin cx a sin vy 
cx+az=B8, AGS sine (2), 

sin ax 

A A he in B ; sin ba a sin br+ay=C, 
A — ra sill eens me (3). 
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27. The application of the formule in these tables, and many 

problems in Astronomy, require the solution of this problem in the 

Calculus of Sines: 

Given the sum or difference of two angles, and the ratio of their 

sines, to find the angles. 

This problem is identical with a case of Plane Trigonometry ; but it 

may be elegantly resolved without any reference to Trigonometry, by 

means of subsidiary angles. 

Let g and y be the two angles: there are given @+y, or else 

o-W, a na 2 4 to determine ¢ and y. 

First solution. Let « be an angle, such that 

= gigs SNL, Yoo 

ak om sin d’ | 
Retiecnieae ALY): 

Phen 202 P=) — tan? Gis? — 4 ) ie 
tan 4 (@+yW) 2 

Second. Take e such that cos « = ala se | 
sin © 

ee (2). 
tan 1 (p—W) : 

the en toe de 

sin y. 
sin d” Third. Find ¢« so that tan e = | 

a ae lille as (3). 

then ae ee an so] fan 3 (p-¥) 

Fourth. Take, tan « = an -. 

tan 3 ($-¥) 
hens tam (GV) = COS Ze 
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28. We may employ two subsidiary angles A and E, one of which 
may be taken at pleasure. 

Fifth. Supposing E to be any known angle, let A be such that 
sin W 

oats sin @ 

tan L(¢-wW) _ tan 4 (E—A) Teeuwen 

tand(p+wW) tan feral 

sin E; 

ON 
then, 

Siath. Taking E as before any angle, take A such that 

si @ 

then, an ccrea ice 4(E+4) tan 4
 (Ea) 

Seventh. Assuming E any angle, find A so that 

cos A = ay ve cos E; 

tan A = — tan E; 

eg s ePeeLBe Linen a 
an $(p—\) _ sin (E—A) 

tan 3 (p+) sin = 2+| 
then, 

29. These formule determine the sum or difference of the angles, 
the one from the other. I shall now investigate a formula that de- 
termines either angle by itself. 

Let a, @ and @ be three angles such, that 
cot 9=cot P—cota; then cot ¢=cot a+ cot 6. 

Now cot ¢—cot a = SSP _ cS a _ sin (a~@) | 
sm@ sina sina sin p° 

Cosa , cos@_ sin (a+ 6) 
sina‘ sin@ sinasin@° 

and cot a+cot 6 = 

. i ‘ 1 1 t for cot 9 and cot a their equivalent He 1s Hence, putting for a Ir equivalents are and Ga wt 
appears that 

; sin a sin sin a sin @ if tan 9 = a 
sin (a—@)’ Hai acs sin (a +6) ° 

Vou. VI. Parr I. R 



130 Mr WALLACE, ON GEOMETRICAL THEOREMS, AND FORMUL&, 

By assuming that cot @=cot a—cot ¢, we find that 

sina sind. sin a sin @ 
if on 6 ale ae then tan ¢ = sin (@—a)’ 

Now, make a=@+¥ in the first of these formule, and a=g—wW in the 

second, and we get these other formule. 

Eighth, If tan @ =~" sin (p+); | eens 

sin 0 : f 
then tan ¢ = <n 4e ak sin (p+) 

sing. ‘ 
If coe (p-wW); | a NBs 

then tan ¢ = pnd sin (p — vy] sin {0—($—W} 

30. We may apply the eighth formula to the case of Trigono- 

metry, in which there are given two sides a and 6 of a triangle, and C 

the angle they contain, to find 4 and B, the two remaining angles, 

of which A is opposite to 4, and B to 6. 

Find @ so that tan @ = ‘ sin C. 

sin 0 ‘ 
Then tan A = sin (C—6) sin C. 

This formula is particularly applicable when an angle and the loga- 

rithms of the sides containing it are given. 

- E . Sind a@ : ny Tae 
To verify the solution, try if ame by their logarithms. 

31. I shall now apply to the example (Art. 20.) one of the formule 

for determining the angles which the lines a, y, x (Fig. 5.) make with 

the lines joining the stations: and for this purpose select No. 1. of 

Formule vii. 



PARTICULARLY APPLICABLE TO SOME GEODETICAL PROBLEMS. 131 

A rN 
Putting «b=¢, xc=W, we have 

a sind = sin B.sins(y-C) 
o+W=A, sin sin y.sin (8 — B)’ 

Again, to find @ and y we may use any one of the eight formule of Art. 27 and 28, the eighth for instance, Viz., 

is Sint. ; find @ so that tan @ = gin 4 sin (p+), 

sin 6 : 
tan p = sin 0+ p+¥) sin (p So Ww), 

sin B 9°8794988 
sin (y - C) 9°6814280 

1+sin y 0:0601677 
1+sin (B— B) 0:0046088 

sin'A= 99°. 5. 49”°2) 9°9945029 
————_________ 

tan (@= 22 .38 . 21 9) 9°6202062 

sin @ 9°5853822 

1=sin (9+4=121 . 44 - 11 1) 0:0703374 

sin A 99945029 

A 
tan (p=axb= 24 . 4 . 49 -6) 96502995 
N 

y=ac=(d-¢)= 75 . 0 . 59 6) 

A A 
The angles xb, we being now known, all the angles of the triangles 

about the point D may be found by addition and subtraction. 

To verify the solution we may try whether the angles @ and Wy 
. 4. sing  —_—itan @ satisfy the condition sin’ ~ ain (6+¥)" 

garithms than will be wanted to determine y and x. 
R2 

This will require no more lo- 
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A 
sin (p=2xb) 9°6106802 tan @ 9°6202062 

NA 
sin (~=ac) 9:9849774 sin (P+ W) 9:9945029 

9°6257028 9°6257033 

The near agreement of the logarithms shews that the angles ¢, ¥ are 

determined with sufficient accuracy. 

The angles of the triangles are as below: 

Triangle ADB. Triangle BDC. Triangle ADC. 

A A A 

cx=75°. 0'. 596 ay= 4.37. 64 ba= 24°. 4, 49'°6 

A N A 
cy=44.27. 6°6 ax= 6.39. 3°9 bs = 25.10.53:°9. 

y=60.31.53 8. a=168 . 43.49 °7. B=130 . 44.16 °5. 

We may now find y and x for the computation of which we have 

all the logarithms. 

In triangle ADB. In triangle ADC. 

c 4°0011255 b 4°1571939 

A rN 
sin xe 9°9849774 : sin #b 9°6106802 

1+sin y 0:0601677 1=+sin B 0'1205012 

y = 1112425 40462706. x=7733°484 3°8883753. 

From what has been done in this paper, it is manifest that the 

Geodetical problem which has suggested it may be resolved in a great 

variety of ways. Probably the solution by the Angular Calculus will 
be the most convenient in practice. 

32. There is a geodetical problem akin to that which has been 
here so fully discussed, to which the propositions delivered in this 
paper apply elegantly. It is this: 

“Given the elevation of an object above a plane as observed at 

three stations in that plane whose positions are known; to find the 
place of the object reduced to the plane.” 
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This is identical with the following ‘geometrical problem : 

“From three given points, to draw straight lines to a fourth in 
their plane, so that the lines may have to each other given ratios.” 

This problem may be easily construeted geometrically by the theo- 
rem of Art. 8. I shall here however give an analytical solution. 

Let 4, B, C the angles of the triangle 4BC, be the given points, 

Fig. 5. No. 2. 

and D the point to be found; and employing the notation, of Art. 10, 

Let the sides of the triangle be ...........000. iy A, @ 

the opposite angles Laie eee Seen ae ee A iC: 

the distances of D from the anoles teens senses X,Y, % 

the angles which the sides subtend at D ... a, Jen ove 

There are given a, b, c, and therefore 4, B, C, and the ratios 
BLY, £8 Y : s 40 find 2, \y, x: 

Let the sides of a triangle conjugate to ABC (Art. 14.) be 

a; 05 e, 

the opposite angles 4’, B’, C’. 

The angles of the two triangles must satisfy the conditions, 

A+A =a, B+ B=, C+C=y, (Form. 1. Art. 14). 

It has been found (Form. rv. Art. 15.) that 

a bp dane’ : bv ; co 
Ti: x=>—s miy=—i5 = a aéee 
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Let p, g, 7 be given numbers which express the given ratios of 
x, y, x to one another, viz., 

wi Y=) UGS a3 3 Sip! yg ES | 

then a’: b=pa:qb, a :cd=pa:re, b: ¢=gb: re. 

Since we may give one of the lines a’, J’, c any magnitude, let us 

assume that 

a=pa; then b'=qb and c'=re. 

Thus a’, 5’, c’ the sides of a triangle are given, from which the oppo- 

site angles 4’, B’, C’ may be found, and therefore are known; and 

since A, B, C are known, a=4+ 4’, B=B+ B’, y=C+C' are known; 

the problem is now made identical with that of Art.'7. and the for- 

mule which apply to the one, resolve also the other. 

Since the lines a’, b’, c’ are the sides of a triangle, any two of them 

must be greater than the third; and unless this condition be satisfied, 

the problem will not admit of a solution in that particular case. 

The angles of a triangle, whose sides a, b, ¢ are given, may be 

most conveniently found from this formula. 

Find s=h(at+b+o), Rar 9 C-DEm9}, 
8 

R R R 44 @ ==: oy eee of gee: then tan 44 ag ae itan 4B 5a? tan} C A ae 

This way of finding the angles gives the advantage of a verification, 

viz. 4(4+B+C)=90°". The line # is the radius of a circle inscribed 

in the triangle*. 

33. Since the function R may be either positive or negative, the 
angles .4’, B’, C’ may be either all positive or all negative; hence 

a, B, y will have each two values, viz., 

atin OR CS C, 
a=A—A, B= B- B, y= C—C’. 

* There is a formula perfectly similar to this for spherical triangles. 
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Thus the problem has two solutions, which may be deduced from 
Art. 14. and Formula vir. Art. 18. as follows: 

1. Find 4, B, C the angles of the triangle whose sides are a, b, ¢. 

2. Also A’, B’, C’ the angles of a triangle whose sides are pa, qb. re. 

Sit Se 1s 
a cal }q?—2qr cos (4 + A) +7°*t 

There are like expressions for y and x, which are more simply. 

g 
Y=, 5s = 

Zs P 
x, 

SIs 

34. The value of « may be found from the formula by subsidiary 
angles. The radical ,/(q’—2g7r cos a+7*) being the base of a triangle 
whose sides are g and 7, and the contained angle a= 4+ J’, its value 
may be found by the formule of Trigonometry ; for example, by one 
which I proposed in the Transactions of the Royal Society of Edinburgh, 
Vol x. viz. 

Let a, 6, c, be the sides, and 4, B, C the opposite angles; 

a+b : a—b=tan $(4+B) : tan}(Ad-B), 

cos 4(4—B) : cos4(4+B)=a+b: ¢; 

Also sin} (4—B) : sn }3(4+ B)=a-b: ¢. 

Hence, to find a, find E, such that 

1S 
cotan E = 

q 

a 
a, cot da. 

_ pa snE 

qtr sinda 
Then z 

- pa cop£ 

~ g—r cos $a’ 

35. We have seen that the first problem in this paper is convertible 

into another, in appearance easier. The solution of the latter is usually 



136 Mr WALLACE, ON GEOMETRICAL THEOREMS, AND FORMUL#, 

given as an application of the rules of Trigonometrical calculation 
rather than as a distinct problem, But as it frequently occurs in Tri- 

gonometrical surveys it may be convenient to have formule for its 

solution in accordance with those which resolve the others. 

PROBLEM. (Figs. 7, 8, 9). 

Let 4A, B, C, D be four points or stations in a plane; there are 

given BC, the distance between two of them, and all the angles of 

Fig. 8. 

D 

the triangles 4BC, DBC which have BC as a common base; to find 

AD, the distance between their vertices. 

Following the notation used in Art. 10. I shall express the lines by 

single letters, putting : 

BC=a, AC=b, AB=c; DC=p, DB=q, AD=x. 

By Trigonometry, in the triangles ACD, ABD, BDC; 

*. N . N . A 

sin bap smeq _& snap q, 

Sighs hal ules aA gine aeatven yp 
sin bp sinex ! sin aq P 
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Hence compounding these ratios, 

ie Ee ae 
sim O02.sin cq . Sin ap == i x, eS re Ne ene a (1). 
sin bp.sin ea. sin aq 

In like manner, in the triangles ACD, ABD, ABC; 

N A A sinpa b sin cq _ 2 sin abc. 
Ap witer Pat mie Ar <a? RRP sin bp sin ga sin ac 

A rAN A 
sin px.sin eg.sin ab therefore L A g A tice: Li onekew xen acee.. (2), 
sin bp.sin gx. sin ac 

The triangles ACD, ABC, DBC give these equal ratios, 
A A sin bx p smac_ b sin pq _ a. 

Be Ro ee Ree WE aah? sin pa sin be sin aq 

. b . A - A sin 6a%.sin @c.sin pq _ therefore X i R= Levee Apel (3). 
sin px .sin bc. sin aq 

And again the triangles 4BD, DBC, ABC give 

. \ . A . A smcx q sin ab _¢ sm pq _ a. 
RS CU Ree gli e Ag” sing« sin be sin pa 

. A . ws . A 

sin cx.sin ab.sin therefore — in Maier 8 eee (4). 
singx.sin be .sin pa 

From the formule (1), (2), (3), (4), we form this table, from which 
it appears that the problem may be resolved in four different ways 
by the formule of Art. 28, which determine two angles whose sum or 
difference is given, and in addition, the ratio of their series. 
VoL WL Gant I, Ss 

137 



138 Mr WALLACE, ON GEOMETRICAL THEOREMS, AND FORMULA&, 

A A A j ‘! j Ae i sin ex sin ap.sin 
cx+bx= cb, A= : eu ee satnwmaess @): 

sin bx sin aq.sin bp 

a tae Ash laa = ee 
a sin px _ sin ac.sin bp 

prxrqr=pq, as an K nee ater (2). 
sn qv sin ab. sin cq 

A s A EN i A se UN 
sin px  sinac.sinp 

yxt+ba=r—pb, P = 7 it 3¢c bpadonag (3). 
sin bx sin be.sin aq 

4 A A A 

Is sin cx sin bc.sin a 
CX +qr=r—Cq, aA cae ee wal vis sinoaieg’s (4). 

: ; Ae TX 
singx sin ab. sin pg 

When the angles are known, the line « may be found from any 
A: ih oh 

one of the four angles ba, cx, px, qx by two proportions which when 

united give these four values of «, viz. 

A A A A 
_ sin bp.sin ac _ sin bp.sin aq 
sy ae: Rot Ti Dk ae 
sin px .sin be sin ba.sin pq 

“2 A A “ A A 
__ sin eg.sin ab __ sin eq.sin ap 
= A ae = io 

sin ga.sin be sin ca. sin pq 

36. Application to a problem in Algebra. 

The Angular Calculus was applied with advantage to the reso- 

lution of Quadratic Equations, first, I believe, by Dr Halley, in 

Lectures given at Oxford in 1704. From this it might be inferred 

that it may be applied to the solution of every Algebraic problem 

which produces a Quadratic Equation, without a previous reduction to 

that form, although I do not know that this application has been 

expressly treated of, and examples given. The formule which have 

been investigated in this paper apply with peculiar advantage to the 

solution of a known problem in Algebra, which appears at first sight 

to be by no means easy. It is this: 
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Find «, y, and x, from these equations 

Y+ryt+y=e, 

Y+a3 +2 =0?, 

Y+ys+% =a’. 

Here a, b, ¢ are given numbers. 

139 

These equations become identical with the equations of Art. 10. 
or 18, if we suppose the angles a, 8, y to be all equal, and each 120°, 
because then 2 cosa=—1. Therefore 4, B, C being the angles of a tri- 
angle whose sides are a, b, c, and 

A'=120°— A, B‘=120° — B, C’=120°—e. 

In this case Formula v. becomes 

ra : en B ee <| sin 60° = “We sin 4’. 
a [je 9B a 

Here a’ may be any number, provided we take 

pete ey sin C!, 

As a numerical example, let 

&+aeyty=193=e, 

e+az+2? =219=6*, 

Y+yzs +8 =271 =a’. 

In this case a= 16°46208 Laima: 

b =14°79865 1:1702226, 

c=13°89244 11427786. 

And by the formula, Art. 32. 

A=69°. 56’. 12”, A'=50°. 3’. 18” 98846034, 

B=—57 .36. 46, B =62. 23.14 9°94'74829, 

G=52 326.32, C67 738. 28 99657965. 

82 
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Let us assume log a = 2°0000000, 

then log 4’ = 2:0628795, 

log c’ = 2°0811931. 

With these logarithms, proceeding exactly as in the calculation Art. 23, 

we find x=7, and hence, as in Art. 21, y=9, s=10. 

We might find 2 otherwise from formula vi. Art. 18, which may 

stand thus: 

(G)+5-¢+() =); 
and it is a remarkable propery” of this expression that it is exactly 

similar to the equation 

Pt yx+P=e, 
, 

© and - take the places of y, x, and a. 
b 

whee oe 



V. Mathematical Considerations on the Problem of the Rainbow, shewing 
it to belong to Physical Optics. By R. Porrer, Esa. of Queens 
College. 

[Read Dec. 14, 1835. ] 

Havine lately, in the course of my academical studies, had occa- 
sion to read more carefully the theory of the Rainbow, I was con- 
vinced of the inadequacy of the popular mode in which it is treated 
in elementary books (this is Sir Isaac Newton’s explanation, see 

his Optics, p. 147). The reason which is given, why the various 
prismatic colours are seen, each, so brilliantly in the rainbow, is that 
the intensity of any colour fades away so rapidly from its maximum, 
that it does not prevent, in any great degree, the other colours being 
seen as such. 

This is clearly an arbitrary assumption, which will not bear ex- 
amination, for within the primary bow, the grayish light is of very 
considerable intensity when the display is a fine one, and in a like 
proportion in fainter displays. So that we should naturally expect the 
brilliant colours yellow and green (even laying aside the red and orange) 

to have still an intensity at the places of the indigo and violet, sufti- 

cient to drown the effect of colour in those weak shades. 

We find that this is the fact in certain cases, as in Fog bows 

and similar appearances, when the size of the aqueous spheres is very 

small, but in other cases the violet especially is very bright. he 

popular theory, however, offers no reason why the size of the spherical 

drops should influence in any degree the colours of the bows, and it 
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is only in referring the problem to Physical Optics, and considering 

the interference of the light which arises, that we understand how the 

size of the drops varying and determining the angular positions of the 

bright and dark fringes for any colour, causes the appearances to vary, 

by. modifying the extent of the overlapping of the various colours. 

The existence of the supernumerary bows furnishes a still more 

weighty objection to the common explanation; which supposes only 

one maximum of intensity for each colour, at the angle at which two 

consecutive rays emerge from the drop parallel to each other. But 

these supernumerary bows shew that the true explanation must furnish 

reasons for a succession of maxima and minima for each colour, and 

this the principle of interference does in a manner perfectly in accord- 

ance with recorded observations of the phenomena. 

It was not until after I had finished the mathematical investigations, 

that I learned from Mr Whewell, that Dr Young had previously applied 

the principle of interferences to explain the supernumerary rainbows. 

If I had known this earlier, I probably should never have entered fur- 

ther into the subject; as it is, it will be found that I have shewn a 

method of obtaining the result, which I am not aware that he has 

any where given; and at any rate I shall have awakened the attention 

of mathematicians to this interesting phenomenon. 

Dr Young’s account is very concise, and insufficient as a mathema- 

tical explanation; he, however, notices the brilliancy of some of the 

colours being assisted by the interference of the others. At page 470 

of his Lectures on Natural Philosophy, he says, ‘‘ We have already seen 

that the light producing the ordinary rainbow is double, its intensity 

being only greatest at its termination where the common bow appears, 
while the whole light is extended much more widely. The two por- 

tions concerned in its production must divide this light into fringes; 

but unless almost all the drops of a shower happen to be of the same 

magnitude, the effects of these fringes must be confounded and de- 

stroyed; in general however they must at least co-operate more or less 
in producing one dark fringe, which must cut off the common rainbow 

much more abruptly than it would otherwise have been terminated, and 
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consequently assist the distinctness of the colours. ‘The magnitudes of 
the drops of rain, required for producing such of these rainbows as 
are usually observed, is between the 50 and 100 of an inch; they 
(i.e. the supernumerary bows) become gradually narrower as they are 
more remote from the common rainbows, nearly in the same propor- 
tions as the external fringes of a shadow, or the rings seen in a con- 
cave plate.” 

At page 643. Vol. 1. in a reprint of a paper of his in the Phil. 
Trans. for 1803, he goes further into particulars, and says, “In order 
to understand the phenomenon, we have only to attend to the two por- 
tions of light which are exhibited in the common diagrams explanatory 
of the rainbow, regularly reflected from the posterior surface of the drop, 
and crossing each other in various directions, till, at the angle of greatest 
deviation, they coincide with each other, so as to produce, by the greater 
intensity of this redoubled light, the common rainbow of 41 degrees. 
Other parts of these two portions will quit the drop in directions parallel 
to each other; and these would exhibit a continued diffusion of fainter 
light for 25° within the bright termination which forms the rainbow, 
but for the general law of interference, which, as in other similar cases 
divides the light into concentric rings; the magnitude of these rings 
depending on that of the drop, according to the difference of time oc- 
cupied in the passage of the two portions, which thus proceed in parallel 
directions to the spectator’s eye, after having been differently refracted 
and reflected within the drop. This difference varies at first, nearly as 
the square of the angular distance from the primitive rainbow: and 
if the first additional red be at the distance of 2 from the red of the 
rainbow, so as to interfere a little with. the primitive violet the fourth 
additional red will be at the distance of nearly 2° more, and the in- 
termediate colours will oceupy a space nearly equal to the original 
rainbow. In order to produce this effect the drops must be about 4 of 
an inch or .013 in diameter: it would be sufficient if they were be- 

1 Il ee 
tween 5 and ;.” &e. 

Dr Young does not explain the method by which he found the 
diameters of the rain-drops should be = of an inch. 
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I regret my inability to deduce results perfectly rigorous by the 

method which I have followed on account of the complicated and tran- 

scendental nature of the relations between the quantities to be expressed, 

but I have pushed the mathematical part of the investigation to as 

close an approximation as the general discussion of the problem may 

require. 

I have adopted the method, of first finding the caustic; because 

this and a very numerous class of interferences is produced, not by a se- 

paration of the original luminiferous surface into two separate surfaces, 

as in the cases ordinarily considered, but by a reduplication of the 

surface upon itself after reflection, or refraction, or both. In these 

cases, as I have shewn in a paper read before the Physical Section, 

at the meeting of the British Association at Cambridge, and published 

at Brussels in M. Quetelet’s ‘Correspondance Mathematique et Phy- 
sique, there is an aréte de rebroussement of the luminiferous surface 

at the caustic surface, or, in the usual sections a cusp in the section 

of the luminiferous surface at the caustic, and the former curve is 

always an involute of the latter. Having once found the caustic, this 

consideration enables us to proceed to the calculation of these compli- 

cated effects with a close approximation to the accurate result. 

Proceeding first to find the expressions for the caustic when pa- 

rallel rays have been twice refracted and once reflected in a transparent 
sphere, as in the primary rainbow, and using the ordinary mode of 

determining the caustic by considering it the locus of the intersections 

of consecutive rays. 
Let p= z of incidence, 

o' = 2 of refraction, 
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=supplement of the angle of deviation of any ray (this angle is frequently itself called, incorrectly, the deviation), 
%, and D,, the values of g~ and D corresponding to the minimum 

deviation, or the maximum of its supplement D. 
Let O be the centre of the sphere and origin of polar co- 

OP—-, 

4 POT=0; 

D=20OTS 

ordinates, 

let QOAT be the ray incident perpendicularly on the sphere, 
qgPSpT any other ray emergent at 5S, 

OS'= radius =r, 

also 2 OST'= z of incidence, 

=, by property of a refracting sphere ; 
let also « OPT=y=7—(D+0), 

then Op=p.sin y=r. sin ; 

_7.sn dp 
sin y 

Now when the point P is the intersection of consecutive rays, p and @ remain constant, whilst @ and y vary ; 

- Quy SLY Cos p- sin p cos ydyy 
sin’ y : 

and dyy= —d,D; 

“, tan y=tan pdyy, 

or tan (D+ 6)=tan ody D oo... eee. 
But as shewn in elementary treatises on Optics, 

D=2(29'—9), 
also we have sin p=x sin qd’; 

*. dy D=2 (2d4q' —1) 

9 (- cos _ 1) 

cos Pp 
Vor, VI. Parr I. 4 
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Again, substituting for sin y its value, we have 

eats J/1 + tan*® 0) (dyy)’ 
p=r.sim PT Ba, yy TAA 

whence p=7r = + sin’ 
(dy) ? 

Sl es Ee 
re Jue cos d— cos ali cats 

This (3) with the equations (1) and (2) would suffice to eliminate ¢ 

and D, and give p in terms of @ and constants, if the transcendental 

relations of ¢, ¢ and 6 did not prevent it: that expression would be 

the polar equation of the caustic for the primary bow: we may how- 

ever trace this curve from equation (3). 

Taking » = ; , as is usually done for red light, we find two 

values of @ which give p=7, 

namely, @=0, and ¢ = a 

Again .p becomes = + , when 

= cos p—cos ¢’=0, 

or 4 cos’ P=p'—sin’ Pp; 

mee con AOD 
3 

which, as seen in elementary books, is the angle of minimum deviation, 

the ray at this angle being an asymptote to the caustic. 

The deviation diminishing from ¢=0 to P=, the intersections of 

consecutive rays are behind the sphere, but from ¢=@, to =3 

the deviation increases, and the intersections are in front. So that the 

two branches of the caustic are as at da, Bb in the Fig. 2. being 

perpendicular to the sphere at 4, and tangential to it at B, and the 
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line ce being the ray which has the minimum deviation and an asymp- tote to the two branches. 

The section of the luminiferous surface at any position will be 
Fig. 2. 

similar to ege’, the branch e’g being an involute of the caustic Bb, 
and eg of the caustic Aa, or more accurately the part of eg as far as 
the asymptote is the involute of the virtual branch Aa, and the re- 
mainder of the other branch. 

For want of knowing the equation of the curve ege’, I have used 
this approximation of considering the two branches near g for the 
small angular distances which we employ as coinciding with their os- 
culating circles, at the given points. 

Then finding p and 9, which correspond to this angular distance, 
and taking rectangular co-ordinates parallel and perpendicular to cc, we 
easily get the values of the co-ordinates (a, b) (a’, b') of the centres of 

T2 
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these osculating circles. Returning thence to polar co-ordinates for the 

branches eg and e’g to the same pole O, we find the space (pp’) between 

the branches at the required point. The caustic in any observation 

of the rainbow may be considered at the eye as coinciding with its 

asymptote, as a spherule of water of + inch diameter subtends no sen- 

sible angle at 1000 yards distance. 

Let A be centre of circle osculating at p, 

A' Serene were r eee eos e sete eve reseesessesees p's 

a, b rectangular co-ordinates of 4, 

ge BERS SS EET OO AA 

Op=radius vector=u, 

CO} a TE ate — ie 

Also 2 xOp=a. 

Now if (« —a)°+(y—b)?=R’ be equation of circle whose centre is 4, 

(RT BRE Baas mob, opal elle eon ele: ARR” 
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then #=wu cos a, a’=wu’' COS a, 

y=u sin a, y =u sin a, 

substituting u’—2 (a.cosa+6.sin a) uta’?+bh?=R’'; 

*. #=a.cosa+b.sin atVR -@—B& + (a. cos a+6.sin a)’ 

2 Dine: = 2 
=a cosa+b sin at{R eae — Ea | nearly. 

: 

12 ! , Qoac \2 

Similarly w'=a' cosa+b’ sina {Re see ealaiian os a at 

-. pp’ =u - u=(a —a) cosa+(b'—b) sin a+ (R’ - R+ &e.) 

To establish the condition that the two branches are in contact at 

the cusp g, and remembering at the same time that, in an observation. 

the rain-drop is at a great distance, and that therefore R and R’ are 

large quantities compared with a, b, a’, b', we have 

when a=0, u—u=0, 

and, @—ai(R’- R)=0, 

substituting wu’ —u=(a'—a) cos a+ (b' — b) sin a— (a —a) nearly. 

Or, since 4’ lies on the side of the negative 2; therefore a’ is negative ; 

also 6 > b’, and they are also both negative, in our problem; therefore 

wu’ —u=(a—a’) (1—cos a)—(b- 3B’) sina 

= 2 (a—a’) sin’ = — (b—8’) sin a. 

To put this into a form for use in calculation, let 

a=, a=-, b= —-)5,, b= —b,. 

then w —u=2 (a,+4a:) sin’ = + (b,—6.) sin a. 

The quantities a, a, b, b, are to be calculated from the values found 

for p and @ corresponding to any particular value of a, which I have 
taken, for example, as the angular distance from the red to the purple; 

* a=1°. 46’, we have also D=D,,-a=40°. 16’. 
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Finding the two values of ¢, the one above and the other below the 

angle of minimum deviation for this value of a, and then deducing those 

corresponding for p and 0, I find 

p = 50", p=1.9612977, @= —17°. 16°. 33”, 

~=67 .55, - p= 1.272036r, @= 92°. 58’. 31", 

a= .89960047, b, = .89933007, 

a, = 1.7810317, b, = 82134897. 

Applying these to the above expression, we find 

u’ — u=.0036783r, 

and that the second maximum of the red may occur at the place of 

the first violet, we must have, if \ be the interval of the luminiferous 

surfaces for red light, 

uw —u=r=.0000256 inch, 

and the diameter of the drop =27, 

.0000256 

.0036783 

I 42 
= 79 inch nearly, 

which does not differ greatly from Dr Young's result ma for I have 

taken a=1°. 46’, and he has taken it =2°. 

We see also that if » were very small, as in mist and in ordi- 

nary clouds not producing rain, probably much less than ja," of an 

inch, then the primary red would extend far beyond the violet’s place, 

and so likewise with the other colours, and we ought to expect a bow 

with colour scarcely perceptible, and such is recorded as the fact. 

In the case calculated the primary purple mixing with the second 

red would give a reddish purple, which agrees with an observation I 

made on a very splendid display on the 5th of June 1834, immedi- 

ately after a heavy thunder-shower. I saw three sets of purples at the 



SHEWING IT TO BELONG TO PHYSICAL OPTICS. 151 

summit of the bow, and I have this memorandum: ‘but the purple 

of the principal bow was evidently mingled with the red of the second, 

and I believed the purple of the second also to be mixed with the 

red, and perhaps the orange also of the third bow. The three bows 

thus considered were also of decreasing breadths as fringes in diffraction.’ 

But an observation by Dr Langwith, quoted by Dr Young, proceeds 

much more into details than the one I made as above, and the dis- 

play must have been still more splendid. He says, “You see we 

had here four orders of colours, and perhaps the beginning of a 
fifth: for I make no question but that what I call the purple, is a 

mixture of the purple of each of the upper series with the red of the 
next below it and the green a mixture of the intermediate colours.” 

Again he has this important and philosophical remark: “There are 

two things which well deserve to be taken notice of, as they may per- 

haps direct us, in some measure, to the solution of this curious pheno- 

menon. The first is, that the breadth of the first series so far exceeded 

that of any of the rest, that as near as I can judge, it was equal to 

them all taken together. The second is that I have never observed 

these inner orders of colours in the lower parts of the rainbow, though 
they have often been incomparably more vivid than the upper parts, 
under which the colours have appeared. I have taken notice of this 

so very often, that I can hardly look upon it to be accidental; and 

if it should prove true in general, it will bring the disquisition into 

a narrow compass; for it will shew that this effect depends upon some 
property which the drops retain, whilst they are in the upper part of 

the air, but lose as they come lower, and are more mixed with one 

another.” 

The first question, as to the decreasing breadths, is answered by 

Dr Young in the previous quotation, and is an effect familiar to those 
who have studied Physical Optics. The second also receives a com- 

plete solution from considering the expression we have obtained, and 

the state of rain in falling from a cloud. For though the drops were 

of small size on leaving the cloud, and such as to produce the super- 

numerary bows, yet as they fall down, having different velocities from 
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the higher and lower parts of the cloud, they must come in contact, 

and gradually form large drops, and thus their diameters become at 

length too, great to give an appearance of supernumerary bows. There 

are other points still, however, which theory will guide us to look 

for in future; thus if the drops are larger, the second maximum of 

the red may happen in the green’s place, and thus the green be di- 

luted with white light whilst the orange and yellow would be brilliant, 

but the second maxima of these latter falling in the blue and purple, 

these colours would again be diluted. In such bows the red, orange 

and yellow, would form the most striking part. I am not aware that 

there are any recorded observations relating to this or similar effects. 

If we can judge by observation where the second series of maxima 

commence, we shall be able to calculate the size of the drops forming 

the bow. 

There are observations on record of supernumerary bows attending 

the secondary rainbow: their solution is perfectly similar to the one 
given for the primary one. 

The comparison of the results of interference with the common 

explanation of the rainbow, required that the plan followed should be 

in accordance with the undulatory theory of light. If the effects were 

considered to be those due to a difference of } an interval in the paths 

of the rays at the cusp, the results would be similar, only modified 

a little in quantity. 

I have also taken, as ordinarily is done, that p =< for red rays, 

although Fraunhofer’s observations shew it to belong to the letter D, 

nearly, and the middle of the orange. 

Again, I have taken the interval , as given from Sir Isaac -Newton’s 

measures, although unpublished measures of my own confirm those of 
M. Fresnel in shewing that they are somewhat too small. 



VI. On the Dispersion of Light, as explained by the Hypothesis of Finite Intervals. By P. KELuLanp, Ese., B.A. Fellow of Queens’ College. 

[Read Feb. 22, 1836.] 

PRELIMINARY OBSERVATIONS, 

THERE is no phenomenon in Optics more familiar and prominent than that a beam of solar light is composed of differently coloured rays, each endued with its own peculiar properties. 

It was first satisfactorily proved by Newton, that the parts are dis- tinct from each other, and are susceptible of separation and recompo- sition, sc that any particular colour can be examined apart from the rest. At a very recent period Wollaston and Fraunhofer have examined more intimately the constitution of a beam of ordinary white light, and from the accurate measures of the latter, we are put in possession of a series of data by which, in a variety of substances, the position of each particular portion of the beam is accurately defined. Having then before us such observations, we are in a state to proceed to an explanation not merely of facts broadly and generally stated, but of the minutest details, and most trivial deviations from the rough outline. 
It might perhaps be more easy to proceed on the hypothesis which Newton himself advanced, as it would be a matter of little difficulty to assign such forces or inertia to the particles of light, combined with the constant attractive or repulsive forces of the material particles com- Vou. VI. Parr I. U 
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posing a refracting substance, as should lead to results in unison with 

those of observation. There are, however, a variety of complex pheno- 

mena, to which scarcely any modification of Newton’s hypothesis will 

apply, whilst that of undulations accounts for them in the clearest and 

most satisfactory manner. The phenomena of dispersion for a con- 

siderable time stood almost alone in the way of this theory, and ap- 

peared incompatible with its principles. It was assumed, and with 

good reason, that colour was dependent on the lengths of a wave, 

whilst the velocity of transmission determined the refractive index of 

the medium. It became then evident that the theory was at fault, 

unless the velocity of transmission within refracting media could be 

shewn to depend on the length of a wave. What was still worse, 

from the appearance of the stars we were forced to allow, that light 
of all colours was transmitted uniformly through vacuum. 

Several suggestions were made, which, if they did not remove the 

difficulty, tended at least to clear the theory from suspicion of inca- 

pability, and to shift the ground of attack from the principles them- 

selves to our power in applying them. Thus Mr Airy, reasoning from 

analogy, observes: “We have every reason to think that a part of the 

velocity of sound depends on the circumstance that the law of elasti- 

city of the air is altered by the instantaneous developement of latent 

heat on compression, or the contrary effect on expansion. Now if this 

heat required ¢ime for its developement, the quantity of heat developed 
would depend on the time during which the particles remained in 

nearly the same relative state; that is, on the time of vibration. Con- 

sequently the law of elasticity would be different for different times 

of vibration, or for different lengths of waves: and therefore the ve- 

locity of transmission would be different for waves of different lengths. 

If we suppose some cause, which is put in action by the vibration of 

the particles, to affect in a similar manner the elasticity of the me- 

dium of light, and if we conclude the degree of developement of that 

cause to depend on time, we shall have a sufficient explanation of the 

unequal refrangibility of differently coloured rays.” 

These observations are important, inasmuch as they remove from 

the Undulatory Theory the imputation of being inadequate to account 
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for dispersion, at the same time I think that simple as they may ap- 
pear at a first glance, and satisfactory as they undoubtedly are to a 
certain extent, it will be found a difficult task to pursue them into 
detail, even in the case of sound. We know little or nothing of the 
laws which regulate the developement of heat, which affect the velocity 
of light, at least if we adopt the hypothesis of molecular radiation, and 
have thus only shifted our difficulty without removing it. If on the 
other hand, we choose to regard heat as an effect consequent on the 
alteration of the positions of the attractive or repulsive particles within 
a medium (which seems reasonable from some recent experiments on 
the Polarization, &e. of Heat), then, by analogy, Mr Airy’s hypothesis 
amounts in fact to supposing the particles endued with attractive or 
repulsive energies, influenced by the particular positions into which they 
are thrown, and varying with the change of these positions, to the 
action of which all the effects are assigned. 

The great obstacle to a simple explanation of this subject appears 
to have arisen from the fact, that theorists generally have not divested 
themselves of the idea of motion directly : velocity has been substituted 
for force, and wave for change of force. 

It occurred to me about two years since, that if we could deduce 
a simple equation of motion on the supposition that the particles of 
a medium are at a finite distance from each other, we might arrive at 
results very different in form from those usually adopted. In fact it 
appeared probable that the velocity might depend on the positions into 
which the particles should arrange themselves, and thus might be 
affected by the length of a wave. 

Such a formula I actually obtained, and deduced from it the ne- 
cessary result, that the square of the velocity is represented by a series 

: SIng\e 4 of terms of which c¢ ee ) is a type. There was, however, one point 

in my analysis which I regarded as fatal to the whole; namely, that 
having a function involving the distance between two consecutive par- 
ticles, and the space through which a particle is disturbed, I had ex- 
panded it in terms of the ratio of the latter quantity to the former. 

U2 
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It appeared to me at the time doubtful whether this series might not 

be a diverging one, and thence it became extremely probable that the 

existence of the function in form above, was owing to the absence of 

terms omitted in this expansion. Lately M. Cauchy’s Memoir on the 

same subject has fallen into my hands, and an opportunity has been 

afforded me of comparing his results with my own. The comparison 

has shewn me that although in some points we differ, in the essentials 

of principle, at least, we coincide. 

Whatever difficulty may attach itself to my hypothesis as to the 

sphere of action of the particles, will attach itself equally to his, as they 

are identical: at least I have reduced mine to the same state as his. 

Although there were many points of coincidence in our processes, 

there were not a few of difference, to many of which the present 

Memoir is indebted; as I have not scrupled to adopt anything which 

would tend either to simplify or generalize the results; my object being 

by no means to regard my formula as a re-discovery of what M. Cauchy 

had published in 1830, but rather to attempt an improvement on 

what is already known. I may be allowed to add, that M. Cauchy’s 

equations, owing to his proceeding with great generality at first, and 

only adding new hypotheses to simplify them when they became per- 
fectly unwieldy, are so buried in symbols, that a person must possess 

no ordinary sagacity to give to them azy interpretation. And further, 

there are some points in which the result is more general than the 

hypothesis would render necessary. 

The plan which I have pursued is to simplify the equations as 

I proceed, and not to retain any result which admits of reduction. 

SECTION I. 

Analytical Investigation. 

THE problem about which we are to occupy ourselves, is the mo- 

tion of any system of material particles, exerting on each other forces 
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varying according to any function of the distance. It would be a use- 
less generalization, in the present state of analysis, to proceed at once 
to the solution of this problem without any further restrictions, for 
even should we succeed in integrating the resulting equations, whether 
by approximation or any other method, we should at length be obliged 
to have recourse to particular hypotheses in order to interpret our 
results. 

I propose then to make the following hypotheses: 

1. That the distance between the particles is sufficiently large com- 
pared with their sphere of motion, to allow the square of the latter 
quantity to be omitted compared with that of the former. 

2. That the disposition of the particles is a disposition of symmetry. 
It may serve to fix our ideas, if we consider them symmetrically situ- 
ated with respect to the three co-ordinate planes; as, for instance. 
arranged in the angular summits of cubes, whose edges are parallel to 
the co-ordinate axes, and whose centre is the origin. This is, however, 
merely stated as something to guide us, since we must suppose, in 
whatever manner it can be accomplished, that the disposition is per- 
Jfectly symmetrical. On these two hypotheses, which, virtually at least, 
are M. Cauchy’s hypotheses, I shall now proceed to determine the 
equations of motion. 

Let a, y, x be the co-ordinates of any particle P in its state of rest, 
the origin being taken at pleasure, and the axes any axes of symmetry. 
a+ dx, y + dy, x +z those of any other particle Q, which lies within 
the sphere of sensible attraction to P; 7 the distance PQ; x+a, y+. 
x + ¥ the co-ordinates of P after any time ¢ from the beginning of the 
motion; +a+da+da, y+ B + dy + dp, S++ os + dy those of Q 
at the same time; 7 + p’ the corresponding value of the distance PQ. 
Let the accelerating force of Q on P at the distance P® be represented 
by the function (7 + p’).p(7 + p’). Resolving this attraction parallel to 
the axis of «, it gives p(7 + p’).(S% + da), whence we obtain 

da 
de = =.o(r = p’) (da So da), 
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the symbol = having reference to the sum of similar expressions, taken 

for all the particles whose action on P is sensible. By expansion we 

obtain 

o (7 +p)=¢ (7) SEE (Tap of acsconescees 

F'(r) being the differential coefficient of (7) taken with respect to 7, 

but (7 +p’)? =(6a + da)’ + (dy +08)? + Oz +oy)’s 

 P42rp =r42 (dxda+ dydB + oxy), 

omitting powers of p and da, oB, oy; 

a = = (6wdatdysB +o dy), 

and by substituting this value in the above equation it gives 

d’a 
dpa {or soe — ~ (Sadat dyoB +dzdy) + Re } (da+46a) 

but =#(r).dx is manifestly the accelerating force, resolved parallel to 

x, on the particle P in its state of rest, and consequently is equal to 

zero; we have then 

d*a 

dé 

which we will call equation (1). 

=3.{o7r.0a gat 2? (Sadat da + dySB + dadz8-y)} 

Previous to the solution of this equation in its general form, let 

us examine what it becomes in that particular case where those par- 

ticles only which are in the immediate vicinity of P sensibly affect its 

motion, an hypothesis which is tantamount to supposing all the par- 

ticles very near each other, as it is manifest that on the latter sup- 

position the sum of the forces exerted by those particles nearly in con- 

tact with P, is beyond all comparison greater than those of particles 
> 

at a finite interval from it. Proceeding on this supposition, we obtain 
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4 Ga bat Pa dy | d'a de 
de 2 | dy a + ge a 
da da da 

cf dady dady a dads dxdx + age cigivviswanverscts'els 

and similar expressions for $3 and oy. 

But it is evident that the sum of a series of terms of which one factor in each is (r) and the other dz”. 3 y".ox?, where m+n+ p is an odd integer, will be identically equal to zero; since if m, for instance, is odd, we shall have, for any particular values of 7, oy, 6x, two equal values of $a, the one positive, and the other negative, and one of the quantities m, n, Pp must be an odd number. Substituting, therefore, the above values of da, 5B, dy in equation (1), and omitting quantities which vanish identically ; we get 

da y da Se dra eee: , de 2 =P (a ea tiga” + aa oe slelafaialetaure (2), 

and again =. ¢ (7) bx" = 2p (r)dy’ = Ip(r) dx? = In, 
writing »° for abbreviation ; 

¥ da care {rs d’a Ee da 

(dP \da* "dy Trail 
d’p - ; d’pB dB dB 

"ha = * aa qt 
d’y __ {d*y ay dy 
de =” (ae ae as Zep 

three equations of remarkable simplicity and elegance; of which the 
following are evidently solutions: 

a=a cos i {nt—(ex+fy+gx)}, 

B=b cos k {nt—(ex +fy +gx)}, 

7=¢.cos k jnt—(ex+fy+gx)}, 

subject to the restriction that e?+ J’ +g°=1. We can easily get rid of 
this restriction by writing cos @ for e, cos ¢ for f; and cos \ for 2: 
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8, @ and y being the angles which a straight line makes with the 

co-ordinate axes of 2, y, x. For simplicity put 

x cos@ + y cosp + 8 COSW =~, 

p being the projection on the line making angles 0, ¢, y with the 

axes, of the distance OP of the point P from the origin: the above 

equations then become 

a = acosk (nt — p), 

- B=bcosk (nt — p), 

y = c cosk (nt — p). 

It is true a more general solution of these equations would have been 

obtained by assuming the values of %, 0, $, W different for each of 

the three equations, but as the complete solution will consist of a series 

of terms similar in form to the above, it is sufficient for our purpose 

to exhibit that term above which has the same period for each of the 

three directions, and which consequently corresponds to one and the 

same undulation. 

From these equations it is manifest that the same state of motion 

reeurs when /p is increased by 227, and consequently = is the length of 

a wave; also the motion at the end of ¢+ AZ is the same at the point 

p + Ap as at the time ¢ at p, when mAt = Ap, whence the velocity of 

transmission parallel to p = a = 2, 

It may be worth while to notice here that the proposition which 

we have considered assumes the velocity of transmission to be the same 

in all directions: in general, however, this will not be the case, the 

direction of transmission being defined by the simultaneous transmission 

of a system of waves, and the velocity will have reference to that 

direction only; but as a is independent of any particular direction, and 
Lt 

depends only on the nature of the substance, it must be either the 

velocity of transmission itself, or the velocity in a direction making 

a constant angle with that of transmission, and consequently varies as 
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that velocity. And for the same reason p must be either in the direc- tion of transmission, or making a constant angle with it, and as the introduction of a constant cannot in any manner affect our results, we : U : , ; may consider p and Hi respectively as defining the place and velocity 
of the wave at the end of the time ¢. 

Another remark is also important, that since from the constitution of the medium it is indifferent in what direction the axes of co-or- dinates are taken, all the functions which we may introduce involving dp must finally turn out independent of 0, @ and Y, so that we might at once suppose the direction of transmission to be the axis of y, and put oy for dp; this, however, I shall not do, as it does not appear necessary, and it is convenient to retain the symbol p, on other accounts to be noticed hereafter. The above remark will be mainly useful in pointing out to us what are the quantities to be rejected in our equations of motion. 

Let us now take as the solution of equation (1) the form we have obtained from equation (2), which is perfectly allowable, since the latter is only a particular case of the former: the quantities x and & are of course not necessarily the same for both. 

Put the solution under the form 

a=a Cos (ct—kp); 

“, 6a=a cos (ct—kp—kSp) —a cos (ct—kp) 

= — 008 (ct—kp).(1—cos kbp) +a sin (ct—kp) sin kép, 
where dp=62 cos 6 +dy cos p + dx cos y is the projection of the distance P® on the line OP. : 

By the substitution of this expression for da, and analogous ones for 68 and dy; our equation (1) becomes 

ae = — 2a>(r) sin’ ae + asin (ct—kp) 3(r) sin hodp 

+= oe da? { - 2a sin? ae + a sin (ct—kp) sin kdp} 

Vor. VI. Parr I. X 
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a dady {—28 sin® ie + b sin (et—kp) sin kop} 

ASS = dady {-2y sint 6? + e sin (ct—kp) sin kép} ; 

now it is manifest that =@(7) sin Adp=0; and also because sin (ct—p) 

is independent of =, and the term => —— a dxdy sin kép is of an odd order, 

wherever there is a positive term, bare will be a corresponding ne- 

gative one: the whole expression denoted by the symbol = in this 

term will therefore be identically equal to zero. 

Precisely the same reasoning applies to all. similar expressions. 

— Fr) 
Further as regards the term = dady sin* ate, bearing in mind 

the remark above made with oe to p, it is manifest that the part 

sly nee = dy will have one and the same value, for two equal 

nes of He with different signs: thus, to assist the conception refer- 

ring to the cube as at the commencement of this paper, the point P 

being at its centre, suppose a particle at each of the two upper cor- 

ners of the face on which you are looking, and y vertical, then the 

‘ Fir) . ko : 
expression qa sin? a by is the same for each of them, but dx in 

one corresponds to —da in the other, and the sum of the above func- 

tion for two such particles vanishes. It is clear, therefore, that this 

= an . hop 
expression Sdxdy aes and all analogous ones are identically 

equal to zero. 

Our equations then become much reduced, and assume -the re- 

markably simple form, 

a =- a2>{ort+ FO) pan} sin 2° =— na, 

a’B TB __ pos tor + EO ay sie Ae = — np, 
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or = aes chee ip(r) + FO 30 sin? HPs a 
wy, 

if n= 23 {p(r) + dary sine 22, 
r 2 

it being evident that 

3 fp (r) + 2 30%} =» fo) + ZO Fe) 5, 
Now it must be observed that we have not deduced the above equa- 
tions directly from the equations of motion; but have obtained them 
by first solving for one particular case, and assuming that the same 
form holds in the general one: our solution is 

a=a cos (nt—kp) 

B=b cos (nt—kp), 

y=c cos (nt—kp), 

n being now that given by the equation 

= 25 {o( (7) + 2) 0 a}. 

These results appear to be very simple in their form, and recommend 

themselves from the readiness with which they can be applied. It is 

true, we have not obtained them on a general hypothesis, but I think 

we may venture to say they rest on one which carries with it an air 

of probability; and I confess there seems more difficulty to conceive 

an -hypothesis different from this for uncrystallized media, than to con- 

cede this. It is, moreover, the same which M. Cauchy adopts, but the 

results obtained differ in one especial point, viz. that his assume, and 

are of so general a form, that little construction beyond the explana- 

tion of dispersion can be put upon them. Professor Powell has, it is 

true, deduced from them the expression HT we for the velocity. 

I shall make no remark on this deduction, as it arose from the simple 
consideration of one attracting particle, which is too limited to be re- 
garded as even an approximation to a general result. I shall merely 

x2 
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observe that in the sequel, owing to the negative value of one of the 

terms (/) there adopted, it is clear from experiment that the above 

form is incorrect. 

It is true, some subsequent hypothesis might be necessary to adapt 

the formula as we have it to all cases, but for the present we have a 

form as simple as possibly can be obtained, and whose interpretation 

will be a matter of little difficulty. Before, however, I proceed to 

such interpretation, it may be useful to examine how it applies to the 

known dispersions of a number of glasses and other substances, since, 

unless it has some pretensions to supply us with results coinciding 

with those of observation, it can have little claim on our notice. 

SECTION II. 

Examination and Illustration of the Formula. 

Ler ) represent the length of a wave; v the velocity of transmission. 

Now from the equation 

a=a cos (nt-kp) we deduce 

a=a COS {ne— (tp aF =)}. 

or the same state recurs after intervals of a which is consequently 

the length of a wave, or 2. 

Also we obtain 

a=a cos jn (¢+At)—k(p+Ap)}, 

wherever 2.At=k.Ap; 
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n> F », sin® Lhd 
v= = 22 1h) 5 oat eee 

ae Op 
oh === 

= 23 {o(r) + =) 0%} > 
) r 

The first remark suggested by this equation is, that when the dist- 

ance between the particles is exceedingly small, the values of dp for 

: IEG Re 3 : : : 
which = (pr + —— 6a") will have a sensible magnitude, must be incon- 

siderable: if they are so small that ee may be neglected, we shall have 

oo a =ip(r) + ssh da*} dp’, 

which coincides with that obtained from equation (2), and the velo- 

city is independent of the length of the wave. 

If this reasoning do not appear entirely conclusive, I shall in the 

sequel offer another argument to shew that, assuming the velocity in- 

dependent of the length of the wave, the particles of zther (by which 

name we designate the medium of light) are nearer each other than 

in dispersive media. 

Now it is a well known fact, that the direction in which a star 

appears to the eye is that of the diagonal of a parallelogram whose 

sides represent in magnitude and direction the velocity of the Earth 

and of light. It is manifest then that if the velocity of light in vacuo 

varied considerably by the variation of the colour, a star would be 

stretched out into a spectrum and not appear a point as it actually 

does. This is one of the old objections to the theory, but it is imme- 

diately removed by the considerations above, introducing, however, as 

a necessary consequence, the condition that the particles of ether are 

very much nearer to each other im vacuo than in refracting media, and 

of course the density greater. 

With respect to the velocity of transmission in this case, the second 

factor of v’ is clearly a maximum, and as the function ¢ (7) is doubtless 
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some inverse function of the distance, we have the first factor also very 

large, and have therefore reason to conclude that the velocity is a max- 

imum. 

This consideration then to which we are driven by the observed 

phenomena is perfectly consistent with itself, and it does not appear 

to bear about it any @ priori absurdity. That it will be found a matter 

of some difficulty to adapt it to the explanation of certain phenomena 

which are reduced to mathematical computation by the contrary sup- 

position, is no argument against its validity. 

But let us examine how this result works when applied to the ex- 

planation of other phenomena. It is clearly reasonable to conclude, that 

since the action of a material substance on the particles of «ther causes 

a diminution of their density, that diminution will increase in propor- 

tion as the number of material particles increases, and consequently for 

the same kind of material particles the density of the xther bears some 

inverse ratio to that of the substance. 

Suppose the particles of glass through which light is transmitted, 

compressed by a force acting parallel to the axis of x: this, according 

to the above conclusion, would lead us to infer that the particles of 

zther were more dilated in the direction of x, than in other directions. 

Now it is evident that whatever law of force we conceive as the 

true one, it must diminish as the distance increases, and consequently 

F(r) must be negative. 

Also if we consider the vibrations transversal (an hypothesis which 

will be noticed hereafter), we have the square of the velocity of trans- 

mission along the axis of 2, of a vibration parallel to x, equal to 

S= pln) + fe ox°t da* nearly, 

whilst the analogous expression for a wave transmitted along the axis of 

% 1s 

ET ip(r) + a) dx°} dz, 
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which, both on account of F(r) being negative, and of every dx being greater than the corresponding 8x or dy, is greater than the former ; whence we conclude that a wave is transmitted with the greatest’ velo- city when it passes in the direction of the pressure. 
The piece of glass will consequently be analogous to a negative 

crystal, (Vid. Ency. Metrop. Light. Art. 803.) the direction of pressure corresponding to that of the axis of the crystal. 

In like manner, had the glass been dilated the velocity would have been least along the axis, and the properties of a positive crystal would have been exhibited. Now by reference to the Transactions of the 
Royal Society for 1816, p- 158, Sir David Brewster informs us that he arrived at the following conclusion by experiment: 

“When a piece of glass is under the influence of a compressing force, its structure is the same as that of one class of doubly refracting crystals, including calcareous spar, beryl, &e. (negative); but when it 
is under the influence of a dilating force, its structure is the same as 
that of the other class of doubly refracting crystals, including sulphate 
of lime, quartz, &c. (positive).” 

Here then our formula gives results coincident with experiment. 
This can, however, be considered only as a mere test of the general 

accuracy of our deductions; and a more satisfactory mode of exami- 
nation will be obtained when we apply them to those substances of 
which we know accurately the refractive indices for different colours. 

We have seen that the square of the velocity is equal to 

tile hy, 
sin* —— 

$2 {9() +22) ga 
2 
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Now the refractive index ,» varies inversely as the velocity; hence we 

1 
may put — under the form 

be 

1 100,000.g — 1,000,000 . Z 
it Eaten se ge Oe eh eee a x nearly, 

where p= A {(7) + FO) 3223 op’, 

(100,000)? g = = AS {p(r) + ai a Sa°t Sp’, 

(100,000)! Z = “7 AS f(r) + = dat Sp’, 

A being some constant factor. 

I have extracted from the. article on Light in the Encyclopedia 

Metropolitana the values of \ for the seven fixed lines, as determined 

by M. Fraunhofer, and have also taken the values of « given by the 

same author for seven kinds of glass and three fluids, water, solution 

of potash, and spirit of turpentine. 

For each of these substances we shall have seven equations between 

p, 7 and 7, with the known values of » and ». I have always de- 

termined p, g, 7 from the equations given by the lines (B), (2) and 

(H), and by substituting the values of the last two quantities, g and 

7 in the other equations, have determined from them values of p. 

The verification of our formula consists in the near coincidence of 

the values of p with each other. The rest will be easily understood 

from the following tables. 

100,000 1,000,000 
—— and ——7— 

” rv 

different fixed lines expressed in parts of a Paris inch: they are 

multiplied by some power of 10 merely to avoid decimals. 

Table I. contains the values of 4, for the 
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17047 

——___ 

1,000,000 
as 23987 | 29060 | 44685 

The next Table contains the 
I have not considered the succee 
accuracy to admit of our 

21139 

_———__ 

riments on the same substance are given, 

D E 

1.6350 

1.6337 

1.6506 | 3.6873. 

1.6035 | 1.6145 

1.5591 er 

1.5296 res 

1.5280 | 1.5314 

1.4783 

1.4056 

1.6420 

1.6405 

1.4744 

1.4028 

__ ——— 

5 

Refracting Medium, | B Cc 

Flint Glass, No. 13. | 1.6277 | 1.6297 

Flint Glass, No. 23. | 1.6266 | 1.6285 

Flint Glass, No. 30. | 1.6236 | 1.6255 

Flint Glass, No. 3. 1.6020 | 1.6038 

Crown Glass, letter M. | 1.5548 1.5559 

Crown Glass, No. 9. 1.5258 | 1.5268 
fee 

Crown Glass, No. 13. 1.5243 | 1.5253 

Oil of Turpentine. 1.4705 | 1.4715 

Solution of Potash. 1.3996 | 1.4005 

Water. 1.3310 | 1.3317 

Vor. VI. Parr I. 

8.5536 | 1.3358 

1.5667 | 
1.5360 

eS 

1.5343 

1.4817 

1.4081 

1.3378 

169 

| 157650 | 217690 

values of « to four places of decimals. 
ding places determined with sufficient 

reasoning on them, as will likewise strike any person who examines the Tables wherein the results of two expe- 

G va 6 

"1.6710 | 
1.6588 | 1.6697 

1.6808 | 1.6408 
1.5735 | 1.5795 

1.5416 | 1.5466 | 

1.5447 

1.6603 

1.5399 

1.4882 

1.4126 

1.3413 

1.4939 

1.4164 

1.3442 
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The following Table contains the values of ™ 
we 

Refracting Medium. B (G, D E F G HH 

Flint Glass, No. 13. .37744 | .87652 | .87408 | .37090| .36807 | .36276 | .35813 

Flint Glass, No. 23. 87795 | .37707 | .37467 | .87158 | .36874 | .36342 | .35869 

Flint Glass, No. 30. .87923 | .37847 | .37610| .387303 | .37032 | .36492 | .36029 

Flint Glass, No. 3. .38965 | .38877 | .38651 | .38364] .38104] .37601 | .37162 

Crown Glass, letter M.| .41867 | .41308 | .41139 | .40929 | .40740 | .40389 | .40083 

Crown Glass, No. 9. 42954 | .42892 | .42741 |] .42551 | .42385 | .42078 | .41806 

Crown Glass, No. 13. 43039 | .42983 | .42831 | .42646 | .42479 | .42171 | .41909 

Oil of Turpentine. .46246 | .46183 | .46001 | .45759 | .45549 | .45152 | .44808 

Solution of Potash. .51050 | .50984 | .50817 | .50615 | .50435 | .50114 | .49846 

Water. .56456 | .56388 | .56228 | .56043 | .55875 | .55584 | .55344 

Designating the values of ce by 6, c, d, &c. we obtain the following 

equations : 

b=p—15488.q+ 23987./, 

c=p—17047.q+ 29060./, 

d=p—21139.q+ 44685.7, 

e=p—26434.q+ 69875 ./, 

=p—31071.q+ 96541./, 

&=p—39705.q + 157650. /, 

h=p— 46657 .q¢ + 217690 .2; 
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*. b—e=10946.q— 45888 ./, 

e —h=20223 .q—147815 ./; 

. 20233 (b—e)— 10946 (e—h) = (147815 . 10946 — 45888 . 20223) x J, 

a 10946 (e — h) — 20223 (b—e) | 
~ - 147815. 10946 — 45888 . 20223’ 

_ b= + 45888 1 
a 10946 2 

p=b+ 15488 . q— 23987 U. 

And four other values of p are to be found from the equations ec, d, 

SJ: &- 

The following Table contains the values of qg and 7 deduced from 

equations 8, e, h. 

Refracting Medium. Value of q. Value of 7. 

Flint Glass, No. 13. -000,000,551,79 | — .000,000,010,898 

Flint Glass, No. 23. .000,000,513,47 | — .000,000,016,333 

Flint Glass, No. 30. -000,000,481,15 | — .000,090,020,391 

Flint Glass, No. 3. -000,000,48812 | — .000,000,014538 

Crown Glass, letter M. | .000,000,37568 | — 000,000,0058347 

Crown Glass, No. 9. -000,000,367,88 | — 000,000,000,071 

Crown Glass, No. 13. | .000,000.351,77 | — 000,000,001,733 

Oil of Turpentine. .000,000,44217 | — .000,000,000,81361 

Solution of Potash. -000,000,42045 | + .000,000.005,4999 

Water. .000,000,41988 | + .000,000,010,356 
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The following Table contains the values of p deduced in the manner 

before mentioned. 

Refracting Medium. B (Oy E F G H 

Flint Glass, No. 13. 38624 | .38624 .38624 | .38626 | .38639 | .38624 

Flint Glass, No. 23. .38629 | .38629 .38629 | .38627 | .28637 | .38629 

Flint Glass, No. 30. .38717 | .38726 -38717 | .38722 | .38732 | .38717 

Flint Glass, No. 3. .89755 | .39751] . -89755 | .39760} .89755 | .39755 

Crown Glass, letter M.| .41963 | .41965| . 41963 | .41963 | .41971 

Crown Glass, No. 9. 43524 | .43520] . 43524 | .43528 | .43538 

Crown Glass, No. 13. | .43588 | .43588 | . 43588 | .43588 | .43594 

Oil of Turpentine. 46932 | .46938 | . .46932 | .46931 | .46939 

Solution of Potash. .51688 | .51685 | . 51688 | .51689 | .51696 

Water. .57082 | .57076 .57082 | .57082 | .57090 | .57082 

The principal discrepancy in these results arises from the values of 

p given by the line G, they being in nearly every case too great. 

I can only conclude from this, that our approximation ought to 

have been carried to another term, as for G and HT the value which 

the third term introduces is considerable, and there can be little doubt 

but that the fourth would produce a sensible effect to the fourth place 

of decimals. It would, however, diminish the variation which the ex- 

pression admits of, to proceed to other terms, and for that reason, con- 

sidering our object merely to test the accuracy of our conclusions, no 

better plan has suggested itself than to leave the expressions in their 

present form. 

If, however, it were requisite to determine accurately the values of 

p,q... of course the plan to be adopted would be, that of introducing 
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seven constants, and determining their values from the seven given equations. With respect to the results we have deduced, there is little doubt but that the values of 5 are very far from correct, as indeed any person will perceive who will take the trouble to determine that quan- tity in any case from the first three fixed lines. As to sign, however, there can be little doubt of its correctness; and, taken as a mean value for the determining p and g, I have no reason to complain of the sufficiency of the approximation. I have indeed adopted a process not the most likely to give results widely inconsistent with each other, but at the same time sufficient latitude is allowed for discrepancies far greater than those which actually appear. We could not in reason expect a coincidence in the results greater than that in the bases from which they were deduced; and it appears to me, that as an approxi- 
mation, we could not have anticipated results more nearly coinciding, 
had we known, @ priori, that the formule from which they were de- 
duced were accurate. 

I will point out a few of the discrepancies (omitting the consider- 
ation of G). 

In Flint Glass, No. 13, the greatest error from the result from B, 
FE and H, which I shall call the mean result, is .00002, or about 

1 th 
= of the whole. 

In No. 23. it is .00003. 

In No. 30. it is .00009, or about om of the whole. 

In No. 3. it is .00005. 

In Crown Glass, letter M, it is .00004. 

In No. 9. it is .00005. 

In No. 13. it is .00006. 

In no case, then, except for water, does the error amount to a 
figure in the fourth place of decimals, and hence, by what I have re- 
marked above, in no case is there any error. 

With respect, however, to the line G, the result is almost always 
too great: the worst deviation, however, which is that for Flint Glass, 
No. 23. is .00015, or only an wnit in the fourth place of decimals. 
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But since the two errors will be in opposite directions, let us ex- 

amine the difference between the greatest and least result. 

These differences will be found equal to .00016, .00011, .00015, 

.00013, .00012, .00019, .00012, .00008, .00015, .00020. With only one 

exception, then, this difference has unity in the fourth place of decimals, 

and for that exception, which is water, the error is .00020, or barely 

2 in the fourth place of decimals. 

Results more nearly agreeing might doubtless be obtained by pro- 

ceeding to one place farther in the expansion of sin aes but the above 

will suffice to establish the general accuracy of the formula. 

With respect to water, I should have been surprised had the re- 

sults been more closely coincident, for the values of the refractive in- 

dices for B and C are respectively 1.330935, 1.331712 from one expe- 

riment, 1.330977, 1.331709 from another, the difference between these 

values being in one case .000777, and in the other .000732; the former 

we should have written .0008, in taking to the fourth place only. 

This difference arises, I suppose, from the different circumstances as 

regards temperature under which the experiments were performed. 

SECTION III. 

Deductions from the general expression not confined to the explanation of 
Dispersion. 

Ir our results are founded on correct principles, and are in them- 

selves right, it is natural to expect that many important and interesting 

conclusions will follow from them. Some of these I proceed briefly to 

notice. 
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We have already deduced from the expression for the velocity a reason for its uniformity in vacuo. The necessary condition was, that the distance between the particles in vacuo should be much smaller than in refracting media. We will now recur to this point, and con- sider the subject in rather a different light. However it may arise, 
this is certain, that if S be expanded in a series of the form rT 

the quantity g vanishes with respect to p in vacuo, whilst it does not in refracting media. On no hypothesis that I can conceive, of the 
action of forces producing undulations, should we expand our functions in a series descending by powers of A, and also by those of the dist- ance between two particles, for we must approximate by considering one quantity small compared with another; nor can I consider a series ascending by powers of the ratio of » to the distance between two particles, as it would involve an absurdity. There seems, then, every reason to suppose that the form at which we have arrived is the cor- 
rect one. I can indeed conceive it possible, and not at all improbable, that the particles of which the substance is composed should influence the motions of the particles of «ther. But should they do so, the form of our functions would not be affected; and the only difference would 
be, that p would equal AX § p(r) + ae da} dp*, a quantity independent 
of the distance between two particles of ether, and varying only by the peculiar constitution of the material particles composing the me- dium. This, then, cannot in the slightest degree affect our reasoning. 

Having, then, sufficient ground for the adoption of the results in 
their present form, we will proceed to re-examine the expansion from 
which p, g and / were derived. The general form is 

1 FE aS AS {p(r) + — da*} sin? Ze 

Now in expanding the sine of an are it is requisite that the are itself 
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be less than ss if the arc be greater than this =5 + 7% suppose, since 

sin (5 + é) =sin {x ~ (F + @)| = sin (5 ~ 4) me Gea Aa 7 2 ; 

the expansion instead of proceeding in terms of the are itself must 

proceed in terms of its supplement, and an analogous rule applies to 

larger arcs: 

as long then as a is less than 5 

op y: 
when = lies between 4 and 1, we have 

; Op rt. ™5p Sa ( =?) 3 6p* 
sin > = sin + ee x a4 ~~) + &e. 

and so on for other values. 

The expansion, then, with this restriction, which is perhaps not re- 

quisite, as at any rate the principal terms are those which arise from 
: : r) : 

particles near P, proceeds with powers of = and we obtain 

P=Asd {p(r) + 2 ba" opr 
a Sa 

q=B= {p(r) + —— b2*} dp 

Suppose the function which expresses the mutual action of two par- 

ticles on each other, some power of the distance, or let 7o(7) ate. 

$0) =m, 

Flr) =- a+ 
pnt ? 
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p=A,= joa nate op’, 
o nth ynt3 

1 (2 +1) 52") , 
q= B21 ae Sp’ 

let the distance between two consecutive particles be denoted by «, 

and for da, dy, dx, dp respectively write e&, en, ef, ec: & being the num- 
ber of particles along a line through Q perpendicular to the plane of 

yx, and similarly of », ¢ and o. 

By substituting these values 

1S A,= {——_, a. eee sick 

@4+P+@)™ (+7 + Qe € 

ee fa pe se 
pla Geren O tae (Sat gpa 

fea Ui ai 22 he 
(E-+74+@) 2 (P+7°+Q) 2 

Now each part of these expressions, with the exception of the factors 

‘Bie : i ; 
pat and —, is a numerical quantity not dependent on the nature of 
€ € 

the medium, except inasmuch as it requires the medium of symmetry, 

B, . . . . . fa 
and a8 evidently some number: in fact it is equal to 3 x (100,000): 

by page 28; hence the only possible mode of causing p to become 

large in vacuum whilst g is small, at the same time that p is not 

large and q not small, (I speak comparatively) in glass, will be by 

1 
supposing a large, and 5 small, in the former, whilst the same 

quantities are not so widely different in glass: but e¢ is small in 

1 
all cases; in order, then, that ——; shall be large, »—1 must be positive, 

e” 

and that «"-' may be small at the same time, and vice versd, ¢'-* must 

be negative; therefore m >1 < 3, or if n=, all the conditions are satis- 

Vor. VI. Parr I. Z 
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fied: this requires the further condition, that e shall be much less in 

vacuum than in refracting media. 

We have, then, clearly been led to the conclusion, not only that 

the density of the ether is greater in vacuum than in refracting media, 

but also that its particles act on each other with forces varying i- 

versely as the square of the distance. 

But I do not stop here; it is a remarkable fact, and one which 

demands particular attention, that various phenomena appear to indicate 

not merely that the motion is in general transversal, but that it is al- 

together so. 

Let us consider this point a little more accurately. Suppose the 

forces which the particles of the medium exert to be repulsive, as 

those of air, from which arise the phenomena of sound. A series of 

particles constituting any vertical line being simultaneously impelled in 

a horizontal direction would, by virtue of their repulsion, cause a similar 

motion in those immediately in front of them, whilst the latter particles 

would tend to check the impetus of the former, and thus vibrations 

in the direction of transmission are simple to conceive, and easy to 

explain. 

On the other hand were the particles attractive, no such motion 

would be possible, except under peculiar restrictions. 

But suppose, notwithstanding, that the forces which the particles 
exert are attractive—Let the system of particles in a vertical line have 

a vertical motion, and the slightest consideration will shew us that the 

immediate consequence is the production of a vertical motion in the 

particles immediately in advance of them; whilst, as before, the reci- 
procal action of the latter particles tends to impede the motion of the 

former. Here, then, we have as clear a case as before, and our general 

conclusion from the whole is, that repulsive forces allow of direct, at- 

tractive, of transversal vibrations only. In the former case I would 

refer for a simple conception to the wind blowing over a field of corn, 

and to a rope held between two persons, and jerked by one of them; 

in the latter, as they illustrate both the mode of vibration and the 

action of the forces. 



AS EXPLAINED BY THE HYPOTHESIS OF FINITE INTERVALS. 179 

I do not mean, however, to consider the above reasoning as appli- cable to all possible arrangements of particles; it might happen, and very probably is the case, that a differently constituted medium from that which we, merely for the sake of simplicity, have imagined, would 
lead us to results different from the above. As my object is not now to 
examine every possible circumstance attending the motion, but merely 
to illustrate one particular view, I shall proceed on the hypothesis of 
the arrangement in cubical forms. We will then endeavour to ascer- 
tain, from an examination of our mathematical results, what assistance analysis affords us in the investigation of the law of transversality of 
vibration. I shall here assume that the law of. the inverse square of 
the distance has been proved; and shall adopt the same notation which I applied to the investigation of that property. Suppose, then, to fix 
the ideas that the wave is transmitted along the axis of y. 

If v, v', v’ be the velocities of transmission respectively of vibrations 
whose motion is parallel to 2, ¥y, %, we have 

¥ ox + dy? + dx*— 352° . TON v—2A.>. (== eee sin my 

2A 
e 

2 2 = Gigs i 
p ESE SE im Ze 

2A r+e—e ., > TEN 
= eT ae ae har 

7 
4 2 2 2. 

BA St tote tinh BE 48 9 sin = r 

2A 4+ e_ Oy? , > TEN =>. 3 sin GE 

“2 2 Saat 2 a8 y Pet BE wen a T r 

2M 5 B+7— 2h . ren acai Ssiinghn Ae xr . 

Z2 
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Now, from the symmetry of the medium, we have 

sin? men) sin? Bo SMe 
Xr 

i Re ear i aaa are, 

24 _n—® .,7en 
f= 3s = Si F—_ = , 

e 2A 7 ca Qn ., WEN 4A 7 —-& 29 MON Py 2 === = sin’ and v? = a 3 sin’ — 2 s x 

= —9v'= —9v”. 

But by reference to the preceding part of the investigation it will be 

found, that the forces have been considered positive when they acted 

in the direction in which the disturbing particle lay, and wice versd; 

that is, they have been considered attractive. It appears, then, that 

such a supposition makes v and v” possible and equal, but v impos- 

sible, and of a different magnitude. 

If, on the other hand, we had considered the forces repulsive, the 

factor A would have been negative, we should also have had v’ pos- 

sible, whilst » and v” would have been impossible. Hence attractive 

forces give rise to transversal vibrations only, repulsive to direct vibra- 

tions only. The latter corresponds, both as to forces and vibrations, to 

the particles of air, the former then may be reasonably supposed true 

for light; and hence it follows, that from a comparison of our formula 

with observed facts, the forces are found to be attractive. I must, 

however, observe, that the equations deduced as I have obtained . them 

will but very imperfectly apply to sound; there seems, however, a great 

probability that the general form will be an analogous one; and should 

it be found to be the same, then since all the waves of sound of dif- 

ferent lengths travel with an equal velocity, the conclusions which we 

have deduced as to the forces varying inversely as the square of the 

distance might hold equally in air, a conclusion to which I hope shortly 
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to recur in a separate Memoir, and for that reason shall defer any fur- ther consideration of the subject until then. 

Another observation that suggests itself is, that since p is a factor 
of = and q of «, the product SY is independent of ¢, and consequently € 

would, were the action of the particles of sther alone influential, be the same for all substances. By a reference to the numerical values above given, it will appear that this only holds as a very rude approxi- mation for the glasses, and altogether fails for the fluids. Thus much, however, may be gathered from an inspection of the tables, that there is a tendency to verify the result, and that we should not be induced 
to regard the effects of the material particles of such considerable mag- 
nitude, as to vitiate the general conclusions. When, however, our re- 
sults are pursued into details, the action of the material particles (or 
whatever other actions we choose to consider, if these be rejected) pro- 
duces a sensible effect. For it will be observed, that all the solids 
have 7 negative; whilst, on the contrary, water and solution of potash 
make it positive. Now the distances between the particles cannot affect 
these signs, nor can the absolute forces, as long as these forces are sup- 
posed all of the same nature. This, then, is a difficulty in our way 
which it would be well to remove. I cannot, however, enter into this 
subject further than to observe, that if there were zo extraneous forces, the quantity 7 would undoubtedly be positive; and that, as the action of the particles on each other is attractive, an alteration in sign must arise from an addition of repulsive effects; and that since these effects are not particularly great in affecting p and q, the function to which they will give rise will be a series not so rapidly converging as that which expresses the velocity due to the actions of the particles of zxther 
on each other. 

I ought, however, to state that it is not impossible that this effect 
would have been explained, had we taken into account the terms in 
the expansion of (r+p).p(7+p), &c. to the third order. This expla- 
nation I have not been able to succeed in deducing, as the equation of 
motion then assumes the following form: 
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da 1 38a" 

qe a2: (p— ) 8 

ee *) da 

Bae 29-7 y {datdat +852°0 Dy} 8a, 

which would seem to indicate that the velocity is not altogether inde- 

pendent of the eatent of vibration. 

It would, however, lead us too far into speculations, which, after 

all, may have little grounds to rest upon, should we pursue what I 

have here barely alluded to. 

We shall obtain a value of e¢ by dividing p by g, for supposing 

the wave transmitted parallel to the axis of y, 

1 n 
=A,> Fa! 

a ae aoe aay ora : 

per fet Mey pay Sines. lean 
; 3 Fer one (P44) ia 

-_ PeACERES oe ae + ara re : 

=f ae ESRI. ae 
(Co Can, (erat 

which will serve to determine e, if the above numerical quantities can 

be assigned. 

The numerator can be determined without any considerable diffi- 

culty, but owing to the very slow convergence of the denominator, 

I have not been able to assign its value to any degree of accuracy, 

I shall consequently content myself with proving (what is essential to 

my remarks on the transversality of the vibrations) that each of the 

quantities is positive. 
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Let m & be any values of » and &, then the position of the nu- merator, omitting the known factor, for these particular values of the 7 and & is 

(& ah m+ G?) (& + my + 6°) (@ ap m+ Gy 

This sum being taken for all values of € from 0 to infinity. But in the limits of a wave, » and ¢ will have equal corresponding values, so 
&? — ,”) G 

(+ ae + Ge 
that there will be a term the ¢ being here a particular 
value of 7. 

And for the next wave the expression becomes py ee SN mi) 
(E+ n° + 0?) which gives a result of the same form. Hence the sum of these two (ne — Gy 

(E+ G? + 9,72 
positive quantity; and this is true for every particular value of » and {, and is therefore true for the sum of all the values; whence the nume- rator above is a positive quantity. Similar to the corresponding 

terms is = taken only on one side, which is an essentially 

2 2 B28 
term of the denominator is Pie aa which is also essentially 

oer 7 + (2) 
positive. 

This result is necessary to the reasoning I adduced above, in order to shew that the forces which the particles exert on each other are E 
attractive. 

I wish it were in my power to offer any considerations relative to the phenomena of polarization by reflexion from the surface of glass, and so on. There appears to be little doubt of the truth of the results which have been deduced by M. Fresnel relatively to the coefficients of the intensity of reflected and transmitted light produced by the different vibrations. I cannot however think that the hypothesis of the ether within the glass being more dense than that without in the 
ratio of uw : 1 is altogether satisfactory, but I forbear making any re- marks on that subject further than to shew what is the corresponding relation of the densities deducible from our hypothesis. 
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1 P.., @ise 
We adhe EI am sangsace 

and taking only a very approximate value, we obtain 

2 
€ 

B= Pp’ 

but the density evidently varies as the cube of the reciprocal of «, 

or density o< a 
‘& 

In conclusion, I would remark, that although what has here been 
treated of has been but roughly and approximately developed, there 
is good reason for supposing that the laws we have arrived at are 

the correct ones, not only as regards the action of the particles of 
wther, but as regards those of air also. 

The law of the inverse square of the distance has always appeared 

to me a necessary law; necessary, I mean, as regards the actual state 

of the constitution of the Universe: and although I could allow that 
the particles of matter might have been impressed with any law at 

their creation, I cannot, in consistence with the simplicity of all known 

actions, -conceive any other than Newton’s law. It is true, the phe- 

nomena of Capillary Attraction seem to militate decidedly against it, 

but no person that I am aware of has proved that the phenomena 

could not arise from discontinuing the fluidity, and until that has been 
done, I think (I speak with deference to others far more capable of 

judging) we ought not to be too hasty in adopting a law of force, 

however simply it may account for the particular phenomena in question, 

which we have no reason to suppose is applicable to any others. 

But I fear I am trespassing beyond the proper limits of my subject, 
and shall therefore proceed no further than merely to observe, that the 

farther we proceed in our investigations, the more simple do our con- 

clusions become, and that from the apparent discrepancies, as, for in- 
stance, in the lateral spread of sound passing through an aperture, 

which is not the case for light, in general arise the strongest confir- 
mations of the unity of the whole. 



VII. Sketch of a Method of Introducing Discontinuous Constants into 
the Arithmetical Expressions for Infinite Series, in cases where 
they admit of several Values. In a Letter to the Rev. George 
Peacock, &¢. &c. By Avcustus Dr Moreay, of Trinity College, 
Fellow of the Society, and Secretary of the Royal Astronomical 
Society. 

[Read May 16, 1836.] 

Dear Sir, 

Two years ago, I presented to the Society through 
yourself, the detail of some anomalies which I had observed to 
exist in certain series which I then produced. They arose out of 
investigations connected with Functions, and since published in my 
Treatise on that subject in the Encyclopedia Metropolitana. But on 
further consideration, I find that I have not distinctly expressed the 
method by which the anomalies of the series in question may be 
reconciled, or rather by which the series may be so obtained that the 
difficulties shall not appear. 

1 beg leave therefore, to request that you will lay the following 
view of the subject before the Society. 

The assumption of a given form for a development amounted to 
an express exclusion of several considerations, which, so it happened, 

did not affect the results of ordinary operations, in cases where the 

form assumed was that of development in whole powers of a variable. 

Among the exclusions, was that of the possibility of a discontinuous 
constant, which was never considered, I believe, until the errors which 

the omission of it created in the inversion of periodic developments 
Vote Vil EantyL, Aa 



186 Mr DE MORGAN, ON INTRODUCING DISCONTINUOUS CONSTANTS 

forced attention to the subject. And even then, the discontinuous 

constant was only a new fundamental symbol, inserted in its proper 
place, in such form and manner as what I may call discontinuous 

investigations shewed to be necessary. In the method which I propose 

to explain, discontinuity not only appears in its proper place, but 

with its proper symbol. 

When » terms of the series can be expressed in terms of x, the 

supposition m= oc will generally point out, in one way or another, 

whether any, and what, discontinuity exists. The method which I 

proceed to explain, while it depends for its strictness upon the passage 

from a finite to an infinite number of terms, does not require the 

actual expression of » terms as a condition of practicability. 

As usual, let px, ¢’a, &c. represent the results of successive func- 

tional operations; the symbol @x admits of two distinct characters, in 

the periodic and non-periodic cases. Hither ¢"x=., for a finite whole 
value of x, or for no whole value whatsoever, except in the extension 

n=0. In cases where ga is not periodic, it has this peculiarity ; 

that "«, whatever may be the value of a, will either increase (with 

x) without limit, or will, for successive whole values of x, give a 

series of approximations to m different limits which are severally roots 

of @"x =a. I am speaking of positive or negative functions, and of 

real roots. With this proposition my only concern here is as to the 

case where @¢"x has one limit, in which case it evidently must give 

~L=L, L being the limit in question. And this proposition is 

already well known in every part of mathematics. For instance, most 

direct methods of successive approximation depend upon the use of 

Taylor’s Theorem, in a manner which will be recognized in the fol- 

lowing particular case. If 

ss ee te = OP Va=a er where PS =a 

then the limit of successive operations gives a root of Wa =a; that is, 

either of ga =0, or of =0 atte 
px 
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But =, considered as the limit of gx, may be one root of 
px=.x, for values of x intermediate to one set of limits, and another 
for another. For instance, let p be greater than unity, and let 
gx =x’. Then we have 

p< =x" =0 when #<1=1 when « =1 = o when x>1. 

We might generalize the theorem, by a supposition which common 
algebra would admit. An equation of any degree, considered as one 
of a higher degree with evanescent terms, has infinite roots. In the 
common mode of speaking, we must say that g=« is either infinite, 
or a root of @x=-x2. In that just alluded to, we should simply say 
that ~=2 is a root of ga =a. 

As a second example, let gx =a(wx + m) — m. 

Then $*2 = a= (x + m) — m, 

and is infinite for all values of x except —m, when a is greater than 
1, and =-™m, for all values of x, when a is less than 1. But —m 
is the root of ¢r=a. 

It must, I suppose, be well known that successive approximation 
will not be vitiated by any error introduced into the approximate 
results, unless that error be so great that the process is made to tend 
towards another solution, or to increase without limit. For instance, 
in the solution of 

oe by a continued fraction. 
1 

1l+2 

The value of may be what we please at the commencement, 
or the obtained value may be altered; and the attainment of any 
degree of accuracy, though retarded, is not rendered impossible. In 
a similar manner, a purely graphical process will lead to information 
upon the value of #* in particular cases, such as with a little care 
may be made equivalent to demonstration. Let OA be a line equally 
inclined to OX and OY, rectangular axes to which the curve Y=pu 
is referred. Taking any point P,, which has the abscissa required, w, 

AA2 
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proceed alternately from the curve to OA, parallel to the axis of «, 

and of OA to the curve parallel to the axis of y, The ordinates of 

the successive points of the curve P,, P., P;, &c. are the values of 

pu, px, gx, &e. for the given value of 2. 

The general expression $“a, is then one which requires a develop- 

ment of the following kind, 

Ci, + tC, +4 0,4 +». 

where 2, 2, 2, &e. are specifie quantities depending upon the func- 

tion in question, and C,, means 1 when 2 lies between a and 6, and 

0 for all other values, &c. 

Let px = Ba + yx. pat...... (Gh). 

where aa, Bx, yx, are given functions, not periodic, and gw is to be 

found. In my treatise on the Calculus of Functions already alluded 

to, it is shewn that the complete solution of the preceding is 

px=pax t+ va. tax, 

where pa is any particular solution, va any particular solution of 

px=yx pax, and ~aa the general solution of oa = gaz. 

Among the solutions of (1) is the series 

Buet+yx.Baxt+ yx, yar. Bax + ya. yart.ya'a Baie + .,.... 

obtained as follows: 
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Pr = Ba+ yx. pax 

paw = Baw + yar. pax 

ne 

pare = Bax + ya'e. pa"*' x, 

whence, for a finite number of terms, 

PX —yX.yax,..ya"x pate = Ba + yt.Bart.., +yX.yakt,,.ya""'2, Bax. 

The first rule of which is a case of 

me + vt. Eat — yX.yak....ya"e (ua a + va"t*x, £a°t? 7), 

In which va = ya.vav=ya.yar....ya"a va" 2, 

and ~ax = eeu =e = Eat 2a, 

whence the expression in question becomes 

Be— yX.yak.,..ya"x.pa"t'g, 

which cannot, as might appear at first sight, give a different value for 
every different value of una: for, since two values of px can only 
differ by some solution of $2 = yx.daa, the preceding expression is 
the same whatever value of ga be adopted. 

For an infinite number of terms of the preceding series, we have 

BX — YL. yar....yaX, maX xX. 

And the equation gx = ya.qaa, if va be one solution, can have no 
others, except of the form va.éazx. But 

yU.yak....yax 

evidently satisfies pa = yx pax; or if we take va = y@. vax, we find 

the preceding product to be va + va~a, Consequently, the expression 

for the series in question is 
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If therefore, the expression for a*a be 

%,C,, + C,, + 

that for the sum of the series is discontinuous, and represented by 

: BX, MX: 
(ua — ee) Cis + (ux = rial C,.. + eee 

I shall take the two instances given in my former paper, which 

will of course be the most satisfactory, as the difficulty was prior to 

the explanation. The first was the series ‘ 

x oe x ig x 
x ‘ 

a eee Rs ee an a 

in which fa = ye =7—>, ax = x 

a2 = 2 = «Ce, 14+ C_,+0C1,4:+C., + oC, .. 

The equation of the series is 

x x 

oe Te ti ae 
a particular solution of which is px = # = ua, 

a particular solution of ¢x = mo? (2*) being gpa = x — t = yes 

whence the expression for the series in question is 

Pela 
gt gp z}° 

which, if x lie between — cc and — i} sal 
ic 

or +occ and +1 a’ 

if w# lie between —1 and +1, is 2. 

To explain the cases where ax = x, return to the expression for the 
series, which then becomes 

wax tl — (yx), 
giving in this case for «= 0, the value 0, 

and for «=1 the value 1, 
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The result may be easily verified. The given series may be thrown 
successively into the forms 

a LPS naa Z ast; ea 

Wicket Betzped .}, that is, x 

24 (a>1) pes z Sar ST wy tot vol, 

1 cnore = 1 
2 _—_ 

7 _— or (a {5+ — + 9 that is, = 

The second example in my former paper was the series 
x es ax t a x 

(l+2)(1+az)° (l+az)(1+@2)" (+ a’x) (1 + ax) a 

= 
yx = 1, ax = aX, Cy SS a9, (1 + 2) (1 + az) 

The equation of the series is 

x 
P°= Fay aay * 9 (a), 

1 a particular solution of which is ua# = @-l@-1)’ 

and a particular solution of ga = ¢(ax) is « = C = va, 

x Be 2 by, : eva @” (a= 1) (+1) @— 1a thy’ 
1 a ek a Tee 1): 

1 1 se eect Poa Vy aye Use rh. 

This result may also be verified; for the original series developed 
. 1 1 : : ; term by term in powers of a and = and corresponding series of 

powers of - collected gives 
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ama anne Say 2a ij 1 

fo@ 0 1—-a len. | 6 aeetled es 

and resolved into series of positive powers of a and a, with a similar 

subsequent process, it yields 

x cig ts he x 

t-¢@ Low fae eat +a) 

Let us now apply this method to examine some of the more 

common series of analysis: let us take 

1+a+@+@+... 

Multiply every term by a, and it will then appear to be 

man x 
ux —~ ———va, where at = ax, 

vax 

and ua and va are any particular solutions of 

pxu=a+ plan), pu =p(a2), 

x 
1—@ i akg 

let wx = 

then the series is 

Like all other results of strict methods of passing from the sum 

of n terms to the sum of an infinite series, this expression is infinite 

when the series is infinite. But my object here is to remark, that 

owing to a"x =a having only the root «=0, there can be no dis- 

continuity among the values which correspond to arithmetical yalues 

of the above series. 

If we consider the series 

2 3 

1 it Wt ig: toes 
tee. 

as a case of 
att} a‘*? 

Choa Gal) Gane) 

we find the value of the preceding to be as follows, 
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>» gr=at+ 
1 

aie @tD: 

A particular solution of ga = oes) 
& 

No more simple value of «a can be found than the finite integral of 

is va =T (@ + 1). 

wx Qa’ 

ae oe 7 ae a 

If ux could be expressed, the value of the preceding series would be 

ee Sa 

What we have here to observe is, that in consequence of ax=2 +1, 
a“ increases without limit for all values of z, and there is no dis- 
continuity. 

I shall only further remark, that the preceding results confirm, so 
far as they go, an opinion which I have long entertained, namely, that 
series which may be divergent, or which may be brought as near to 
divergency as we please, such as that for e%, require much less cir- 
cumspection than those which can never be made to diverge. In the 
first, generally speaking, the arithmetical value (between the limits of 
convergency) is the analytical value throughout; in the second, there 
is frequently discontinuity in the arithmetical values, and the general 
equivalent of analysis is not easily expressed. I will not however 
enlarge upon so general a topic, but beg to remain, 

Dear Sir, 

Yours very truly, 

AUGUSTUS DE MORGAN. 
5 Uprer Gower Street, 

April 30, 1836. 

P.S. Some time ago, I communicated to the Society what I con- 
sider a failure in the proof of the celebrated theorem of M. Abel, on 
the expressibility of the roots of equations which are values of a 
periodic function. As I have since printed my objection in the Cal- 
culus of Functions alluded to in the preceding paper (§. 90, 302, 303,) 
I take this opportunity of referring to the subject. 

Vou. VI. Parr I. Bes 
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VII. = Piéscium Maderensium Species quedam nove, vel minus rite cog- 
nite, breviter descripte. Auctore R. T. Lowe, A.M. Iconibus 
lustravit M. Younae, 

[Read November 10, 1834. ] 

VEL prudentissime cunctanti fugit inexorabile tempus; et qui rem 
dubiam, nimio suadente metu erroris, semper in crastinam horam differt, 
superbie forsan sua potiusquam scientia commodo consulit. Piscium 
nempe Maderensium species quasdam insigniores, pro novis_habitas, 
prorsus stabilire, aliis comparatis speciebus affinibus in Museis Britan- 
nicis tam servatis quam editis in libris, ipse de die in diem frustra 
eunctatus speravi. Quum autem rei certioris me fefellit spes, icones per- 
pulchras saltem, cura vel exquisitissima pictas, pro erroris culpa in re 
qualibet momenti levioris indulgentiam impetraturas credens, animum 
recepi. Si enim opiniones et nomina falsa, veteresque pro novis spe- 
cies ponuntur, icones bone nunquam non utiles; minus tantum quam 
ex votis auctoris evadunt. Eum si culpa rodit, scientia vix ulla, le- 
viore certe, afficitur injuria: immo ipsius periculo potius augeatur ! 

Orp. ACANTHOPTERYGIANA. 

Fam. Percide. 

Gren. SERRANUS, Cw. et Vail. 

Sp. 1. Serranus fimbriatus, Nob. 

1. SS. fusco-nigricans, luteo maculatus, maculis evanescentibus: pinna 
caudali, dorsalisque analisque parte molli, postice rotundatis, nigris, can- 
dido fimbriatis: spinis pinne dorsalis analisque distincte filamentosis ; 

2B2 
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operculo spinis tribus latis, distinctis: praoperculo deorsum subsinuato, 

denticulato: osse intermaxillari esquamoso. 

5 U. 44+ViIII 
5 
3 0. 44+VII 

D. 11415 vo: 16; A. 3485 P. 183 Vo 1-5; © 

Tas. I. f. 1, e juniore hujusce magnitudinis picta. 

f. 2. squama ejusdem, lente vitrea aucta. 

S. marginatus nob. in Proceed. Zool. Soc. 1833. 1. p. 142. “ Mero,” 

Lusitanice. 

Rarior. Ad 2 pedum longitudinem crescit, habitu et colore T’ncam 

vulgarem Cuv. quodammodo referens. 

Nomen mutare egre et quasi coactus decrevi, ob Serranum margi- 

nalem Cuv. et Val. (Holocentrum marginatum Lacep.) 

Sp. 2. Serranus fuscus, Nob. 

2. §. fusco-nigricans, maculis griseis, obscuris, confluentibus sub- 

variegatus s. marmoratus: pinna caudali truncata, supra sublobata, 

s. subemarginata; dorsalique postice angulata, analique postice truncata, 

nigris: spinis pinne dorsalis analisque simplicibus s. exappendiculatis: 

operculo spinis tribus; duobus inferioribus angustis; superiore obsoleta, 

rudimentali, squammiformi: preoperculo deorsum subsinuato, obsolete 

denticulato: osse intermaxillari deorsum squamoso. 

8+VII 

Dy 11-415,v..163., A. 84:11: P16); Vi 1+5;;'C. 
3+V1 

; M. B. 7; Vert*. 24. 

« Badeijo” v. “* Badeija,” Lusitanice. 

Priori, quamvis distinctissima, simillima. 

Gen. PRIACANTHUS, Cw. 

Sp. P. fulgens, Nod. 

P. cauda integra, truncata: pinna dorsali et anali postice rotundatis; 

ventralibus abdomini adnatis. 

D. 9 v. 10413; A. 3+14v. 15; P. 17-19; V.1+5; C. 18 v.19; M.B.6; Vert®. 23. 
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Tas. II. 

An Pr. macropththalmus, Cuv. et Val. iii. 972 Potuisve Pr. boops 
Korund. iii. 103 ? 

Serranus rufus, Bowd. Exe. in Mad. p. 122, note? sed nomine lu- 
sitanico falso, ad Squalum quemdam pertinente. 

Rarior. Variat corpore toto splendide rubro, dorso  fuscescente : 
pallidove, rubro maculato. 

Species haud forsan nova. Quum vero nihil in re tam incerta affir- 
mare ausim, genus quoad specierum distinctiones veras adeo confusum, 
icone bona illustrare, Ichthyologicis haud ingratum fore speravi. 

Gen. BERYX, Cw. 

Sp. B. splendens, Nob. 

B. ruber, squamis muriculatis scaber: pinnis ventralibus radiis mol- 
libus duodecim: membrana branchiostega novem-radiata. 

54x 
3; M. B. 9; Vert®. 24. 

5 + 1x 
D. 4414 v.15; A. 44+30; P.1+17; V. 1412; C. 

Tas. III. magnitudinis ad normam reducte. 

B. splendens nob. in Proceed. Zool. Soc. 1833. 1. p. 142. 

Ab uno ad duos pedes longus evadit. Oculi maximi, zneo-ful- 
gentes. Squame asperex, s. superficie dimidii posterioris sub lente re- 
trorsum muriculato vel spinuloso, margine denticulato. Piscis in 
Madera, vernali presertim tempore vulgatissimus: ob oculorum mag- 
nitudinem, et colorem pulcherrimum conspicuus. 

Fam. Bramidz, Nob. 

Caput declive; rostro brevissimo, truncato. Pinne verticales (basi 
saltem) squamose; dorsalis unica; spinis tenuibus, paucis. |Vomer, 
ossa palati, et intermaxillares plerumque dentibus scobinati, rarius nudi. 

Obs. -Hue referenda genera Brama Bl., Polymixia nob., et Leirus nob. ; quam- 

vis hoc, dentibus formaque pinnarum verticalium aberrans, characterem haud paul- 

lulum turbat. An charactere simpliciore facto, genera Pimelepterus, Dipterodon, 
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Pempheris, et Towotes Cuv. huc quoque referenda; familia Cheetodontidarum Cuv. 

jam vastissima simul reducta, magisque definita facta? 

Gren. POLYMIXIA, Nob. 

Corpus elliptico-oblongum, compressum; squamis asperrimis, sat mag- 

nis. Caput parvum, declive, nuchaque squamosum, epunctatum. Ros- 

trum brevissimum, obtusum, nudum: maxilla inferiore squamosa, cir- 

risque geminis longis symphysi subtus affixis. Ossa intermaxillaria, 

omnia palati, dentaria, linguaque dentibus minutis creberrimis scabra. 

Operculum inerme, rotundatum, squamosum. Praoperculum squamosum ; 

limbo inferiore anguloque nudo, striato, margine eroso-denticulato. In- 

teroperculum nudum, minutissime denticulatum. Pinna dorsalis ana- 

lisque nude, antice elevate, spinis debilibus, inconspicuis, brevibus, 

paucis; basi in sulco sita, squamisque marginalibus sulci elevatis utrin- 

que celata. Pinne ventrales septem-radiatw#; radio primo simplici, ut 

molli, articulato. Cauda furcata. Membrana branchiostega quadri-ra- 

diata. 
Sp. Polymixia nobilis, Nob. 

5 + 1x 
D. 5436; A.4+16; P.1+16v.17; V.1+6; C.———; M.B.4; Vert®. 29. 

4 +4 VIII 

Tas. IV. f.1. Magnitudinis ad normam reducte. 
f. 2. Squama, lente vitrea aucta. 

Hab. rarior in alto, prope Maderam. 

Gulosorum Maderensium delicia, Svornuato-prwv crux. Characteribus 

plurimis gravioribus Percidarum familiam omnino referens; sed habitu 

et affinitate generi Brame Bl. procul dubio revera quoque proximum ; 

inter utramque herens: Chetodontidis autem veris, quibuscum Brama 

Bl. a cl. et defl. Cuviero relegatur, conjungi prorsus abhorret. Ideoque, 

ni fallor, Bramam Bl., cum generibus quibusdam forsan affinibus ab 

aliis jam _ stabilitis, familiam constituere novam Chetodontidas et Per- 

cidas utrinque osculantem, genera duo Maderensia Polymixia et Leirus, 

illa Percidis, hee Chetodontidis 2 Brama quasi centro utrinque tendens, 

necnon sibi invicem ac Brame affinia, satis superque edocent. 

Preter affinitatem Brame supra indicatam, proxima inter Percida- 

rum genera affinitas est Polymivie: hine Beryct Cuv.; ob squamas 
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asperas, ob pinnarum ventralium numerum radioram anomalum, ob 

spinas pinnz dorsalis analisque tenues et paucas, ob formam illarum 

triangularem, antice elevatam, situmque: hine Mullis; ob cirros gemi- 

nos ad symphysin maxilla inferioris, numerumque radiorum membrane 

branchiostege. Rectius forsan dices, Polymixiam Beryci affinem, Mudlo 

analogam esse. Analogiam hance spectat nomen piscis vernaculum Lu- 

sitanico-maderense, “ Salmoneta do alto;” i.e. Mullus Surmuletus WL. al- 

ticolens. Nomen Polymixia a modus, multus, et wiéia, mistura, multiplicem 

generis relationem refert. Charactere scilicet a plurimis generibus com- 
mixto, sive conficto, gaudet. 

Gren. LEIRUS, Nob. 

Corpus ellipticum, compressum; squamis deciduis, levibus, parvis. 

Caput parvum, declive, nuchaque nudum, punctato-gelatinosum. Ros- 

trum brevissimum, nudum, truncatum. 

Os parvum: maxilla superior obtusissima, inferiore brevior, truncata. 

Dentes minuti, simplices, in utraque maxilla uniseriati: palatini nulli. 

Opercula inermia, squamosa, marginibus serratis. Pinna dorsalis ana- 

lisque squamose, postice latiores. Cauda subfurcata. Membrana branchi- 

ostega septemradiata. 

Obs. Genus inter Bramidas et Chetodontidas revera osculans. Quamvis 

Brame Bl. habitu et affinitate proximum, dentibusa berrat, Chztodontidis veris 

propior: dum squamis levibus &c., necnon dentibus, a Percidis longius quam 

Polymiwvia, vel etiam Brama ipsa, recedit. 

Sp. Leirus Bennettii, Nod. 

38+14+vVvIII 
D. 6—8+30 v. 31; A. 3421 v. 22; P.14+21; V.14+5; C. ————; M.B.7; Vert®. 25. 

38+I1+VII 

Leirus Bennettii Nob. in Proceedings of the Zool. Soc. 1833. 1. p. 143. 

Tas. V. f.1. Piscis, magnit*. ad normam reducte. 

f. 2. Squama, lente vitrea aucta. 

Rarior. Pisces admodum deliciosus, nulli nisi pracedenti sapore 

cedens. Nomen ferat in honorem amici E. T. Bennett, Ichthyologi 

summi, qui affinitatem cum Brama Bl. primus indicavit. 
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POLYMIXIA. 

(P. Nobilis, Nob.) 

Hasitus et forma Brame .... . 

Scobinati 
Inter fin fascia 

Maxille | ares |(ai2 uri 
Dentes superioris Palati 

Vome- ) Copiosi. 
risque 

Maxille oc in fascia 
inferioris lata utrinque. 

Lingua aspera ...... : - 

Preoperculum squamosum, limbo 

denticulato, nudo. 

Operculum squamosum, integrum, 

inerme. 

Interoperculum nudum, minutissime 

denticulatum. 

Caput epunctatum. 

Squame aspere ....-. +--+ 

Cirri duo ad symphysin maxille in- 

ferioris. 

Suborbitaria eroso-dentata. 

Pinna Dorsalis et Analis nude, basi 
in sulco sita, antice elevate: spi- 
nis tenuibus, paucis. 

Pinna caudalis furcata, squamosa. 

Pinnarum Ventralium radio primo 
molli, flexili, articulato nee spino- 
so-pungente; ultimo libero. 

Ceca numerosissima, parva, s. te- 
nuia, densissime fasciculata. 

Vesica natatoria mediocris, simplex, 

elliptica. 

D. 5436 

541x 
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BRAMA. 

(B. Raii Bl.) 

Exteriores 
uniseriati. 

inter Interiores 
. eta ~ ') scobinati 

Maxille ares Tin fascia 
Dentes/ SUPEeTIors angusta. 

- sIn fascia 
Palati angusta. 

Vomeris { Nulli. 
Maxille 5 Biseriati, fascia in- 
inferioris 2 termedia angusta. 

Lingua levis.......... iy Sic 

Preoperculum squamosum, limbo 
integro, nudo. 

Operculum squamosum, integrum, 
inerme. 

Interoperculum squamosum, inte- 
grum. 

Occiput, nucha,ambitusque oculurum 
minutissime punctati. 

Squame leves............. 

Cirrignulliy, By yate.. . eticiha: 

Suborbitaria integra ......... 

Pinna D. et A. squamose, antice 
elevate: spinis tenuibus, paucis. 

Pinna caudalis fureata, squamosa. 

Pinnarum Ventralium radio primo 
(spina) brevi, tenui, vix pun- 

gente, haud articulato; ultimo 

libero. 

Ceca quinque; duobus longis, tri- 
bus brevibus. 

Vesica natatoria nulla. 

D. 4+32 
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P.2+19.. 

Wet nih nc; al veh tanp tnceins a Ses. 3 

e2eun weet Ser 
6+VII 

Me BZ ier: of thu micurect sete as 

Vert®. 43. (41, Cuv. et Val.) 

LEIRUS. 

(L. Bennettii, Nob. 

Habitus et forma Brame. 

Inter Uniseriati 
maxil- minutis-~ 

Maxille lares simi. 
Dentes/ superioris) _Palati ‘ 

Vomeris- {s ull. 
que 

Maxille § Uniseriati, minutis- 
inferioris ¢ simi. 
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Preeoperculum squamosum, limbo 
denticulato, nudo. 

Opereculum squamosum, denticula- 

tum, inerme. 

Interoperculum squamosum, minu- 
tissime denticulatum. 

Occiput, nucha, ambitusque oculo- 
rum punctato-gelatinosi. 

Squame leves. 

Girri muller ees earae tere tt ere 

Suborbitaria integra, 

Pinna D. and A. squamose, postice 
elevate: spinis tenuibus, paucis. 

Pinna caudalissubfureata, squamosa. 

Pinnarum Ventralium radio primo 

(spina) tenui, pungente, nee ar- 

ticulato; ultimo corpori adnato. 

Czca quinque, palmatim fasciculata ; 
magna, duobus sublongioribus. 

Vesica natatoria magna, simplex, 
elliptica. 

D. 6-8 +30 v. 31. 

A.3+21 v. 22. 

P. 142). 

V. 1+5. 

3414+ VIII 
Corian: 
M. B. 7. 

Vert™. 25. 
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Orp. MALACOPTERYGIANZ. 

Fam. Pleuronectide ( Poissons plats,” Cuv.) 

Gen. RHOMBUS, Cue. 

SS. 2. Oculi remoti; superiore subpostico. 

Sp. R. maderensis, Nob. 

R. corpore ovali; latere sinistro scabriusculo, etubereulato, olivaceo- 

fusco, ferruginascente, annellis punctorum albidorum ocellatim picto: 

pinne dorsalis analisque radiis inclusis, indivisis: dentibus minutis, uni- 

seriatis: maxilla superiore ambituque oculorum antice tuberculato-cornutis. 

D. 91 —95; A. 69-713; C. 15 —17. 

P. sinistra 10 v. 11; dextra 9 vy. 10. 

V. sin. 6; dext. 5 v. 6. 

R. maderensis, nob. in Proceedings of the Zool. Soc. 1833. 1. p. 143. 

Tas. VI. f. 1. magn’*. nat*. 

f. 2. Ejusdem pars anterior lateris dextri. 

Hab. rarior in statione navium prope urbem Funchalensem. Ad 

Insulam Portis Sancti frequentior dicitur. 

Funcuat, Mapeina, 

July 24, 1834. 
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TX. On Fluid Motion, so far as it is expressed by the Equation of 

Continuity. By 8. Earnsuaw, M.A. of St John’s College. 

[Read March 21, 1836.] 

Tue difficulty of this subject is so universally admitted, that I 

hope it will be received as a sufficient excuse for bespeaking the 

reader’s indulgence should any thing occur, in the course of this 

paper, which he may judge not sufficiently borne out by the argu- 

ments on which it is sought to be established. 

Though the subject of this communication is by no means new, 

yet what is brought forward in it will be found to possess some 
novelty both as to the results obtained, and the manner of treating the 

subject. Hitherto, nothing more could be done, beyond investigating 

the differential equations of fluid motion, than to endeavour to generalize 

the results obtained from a particular integral of the equation of con- 

tinuity d/p+d,o¢+dp~=0. It is manifest, however, that the results 

of such generalization from a particular case, how skilfully soever de- 

duced, must at least be clogged with some degree of uncertainty, and 

be therefore in some measure unsatisfactory. But in consequence of the 
discovery of the general integral of the equation 

dep + d/o + dip = 0, 

not only is the difficulty of the subject shifted farther from the threshold 

of our researches, being reduced to that of interpreting this integral, 

but we are able to proceed with a much greater degree of generality. 

Vou. VI. Parr II. Dob 
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GENERAL PROPERTY. 

1. If in a fluid medium we describe a surface whose differential 

equation is 
udx + vdy + wdzx = 0, 

the motion of each particle through which this suxface passes is in the di- 

rection of the normal at the point where the particle is situated. 

u, v, w are the velocities, estimated parallel to the co-ordinate axes, 

of the particle whose co-ordinates are x, y, x. Let there be another 

particle in the surface very near to this; and let its co-ordinates be 

a+da, y+dy, »+dz; and let ds be their distance from each other; 

by a, B, y denote the inclinations of ds to the axes. Let also V' be 

the velocity of the former particle, and by a’, f’, y’ denote the incli- 

nations of the direction in which V takes place to the three axes. 

Then, 0 = udx + vdy + wdz 

= Vas.(% dx wv dy. w a) 
Vids * Vids” Vids 

= Vds.(cosa! cosa + cos B’ cos 8 + cosy’ cos y): 

and since, from the nature of the case, neither V nor ds is equal to 
Zero, , 

. cosa’ cosa + cos’ cosB + cosy’ cosy = 0. 

But the left hand member expresses the cosine of the inclination 

of V to ds, which being equal to zero, V and ds must be at right 

angles to each other; that is, the motion of the particle whose co- 

ordinates are 2, y, x, takes place in a direction perpendicular to the 

surface whose equation is 

udxz + vdy + wdz=0. 

We may simultaneously draw surfaces of this nature through all 

parts of the fluid in motion, and shall thus obtain the direction of 

the motion of every particle. It is manifest that these surfaces are 
very analogous to the Jevel-surfaces, which occur in investigations con- 

cerning the equilibrium of heterogeneous fluids. 
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2. If the expression udx +vdy+wdx be integrable either imme- 
diately or by a multiplier, the integral of the equation 

udz + vdy + wdz = 0, 

will be of the form 

EE, ay, Se) =O; 

which will furnish the surfaces alluded to in last article. But if the 
above expression should neither be integrable at once nor by a mul- 
tiplier, the integral of the above equation will be of the form 

S (@ ¥; aa 

W(a, y, x)= 03’ 
and will denote, not a series of surfaces, but a series of curve lines. 

3. It appears that all the particles through which the surface 
passes whose equation is 

udz + vdy +wdz = 0, 

are connected by the common property proved in Art. 1; and as we 
have no other idea of a wave-surfuce than that it is the locus of 
particles in a similar state of disturbance, we may be permitted to 
take the above equation as the expression of that similarity which 
constitutes a wave-surface; or in other words, we may assume the 
equation 

udxz + vdy + wdz = 0, 

as the mathematical definition of a wave-surface, or of a wave-line, as the 
case may be. 

By the assistance of this definition we may enunciate the propo- 
sition of Art. 1 in these terms ;— 

The motion of every particle of the fluid is perpendicular to the 
wave-surface in which it is situated. ; 

4. It is proved by Pontécoulant in his “Théorie Analytique du 
Systeme du Monde,” Tom. I. p. 163, and by most other writers on 
Hydrodynamics, that if wda + vdy + wdx be at any one instant a complete 

DD2 
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differential, it will be so as long as the motion lasts; this is the 

mathematical expression of the following physical fact ;— 

Tf, at any one instant, the motion of the fluid be in wave-surfaces, 
each surface will travel unbroken through the medium independently of all 

the rest; that is, as if the others did not exist. 

Or, in other words, if the motion at any one instant be in wave-lines 

(Art. 2), then the motion can never resolve itself into wave-surfaces ; 

and, conversely, if the motion at any one instant be in wave-surfuces, 

it can never break up into wave-lines. 

5. If it happen that a particle be situated in two or more wave- 

surfaces at once, either the particle must be at rest, or the surfaces 

must have a contact at that point; for, if in motion, its direction 

must be perpendicular to all the wave-surfaces. 

However complicated the motion of the fluid may be, it will 

always take place either in wave-lines or wave-surfaces. For the former 
will be the case when udx+vdy+wdz is not integrable per se or by 

a multiplier, and the latter when this expression is integrable. 

Some of these remarks are illustrated in the following example. 

Ex. Suppose the motion of the fluid to be such that 

uda + vdy + wdz = w (ydx — xdy). 

In this case the differential equation of the wave surfaces is 

ydx - xdy=0; 

and therefore, y = f(é).x 

is the general equation of a wave-surface in such a motion of the 

fluid. 

Hence, all the wave-surfaces are planes passing through the axis 

of x, and the motion of the particles, being at right angles to them, 

will be in circular arcs parallel to the plane of zy. 

All the particles in the axis of s will be at rest, for there the 
wave-surfaces intersect each other. 
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6. It does not appear possible to carry these investigations much 
farther in a perfectly general form; it will be necessary therefore to 
introduce the hypothesis’ of the expression uwdax +vdy+wdz being 
integrable per se. Denote its integral by ¢, then 

gp = constant = f(¢). 

will be the equation of a wave-surface. 

The effect of this hypothesis will be, to exclude from our re- 

searches many cases of motion in wave-surfaces, and all motion in 
wave-lines. 

FLUID MOTION OF TWO DIMENSIONS. 

7. I have preferred commencing my investigations with this simple 

case because the results more frequently admit of perfect investigation, 

and are more easily and briefly expressed in words than in the case of 

three dimensions. 

The equation of continuity now to be considered is 

dp + dZo =0, 
and its integral is 

p= F if(a—a) + gly—B) A & & 

+ Fri f(e—a) — gy), 8s 3 

subject to the following condition between the arbitrary constants / and g. 

Jose 29 

In this integral the forms of the functions #' and F, are perfectly 
arbitrary, to be adapted in any example to express the law of sequence 

(as to space) of coexistent wave surfaces, according to the nature of 

the original disturbance. The arbitrariness of these functions shews 

that the fluid can transmit a disturbance of any kind which does not 

violate the continuity of the fluid. a, 8 are arbitrary constants enabling 

us to fix the origin of co-ordinates in the most convenient position: 

they may besides contain functions of ¢, which depend upon the nature 

of the original agitation. The functions of ££ g, 4 which enter under 
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F and F, enable us arbitrarily to fix the epoch from which the time 
is reckoned, and further to accommodate the wave-surfaces to any pro- 

posed form, 

These observations will be fully illustrated in a subsequent part of 

this paper. 

8. The object to which it will be necessary first to turn our attention 
in the above integral is the discovery of the meaning of the constants 

J. g. Whatever forms be given to F, F, whatever origin be taken 

for co-ordinates, whatever epoch for the time, still f and g are un- 

affected: and as an infinite number of quantities fulfilling the condition 

f? +g =0 may be invented, and any one set will satisfy the equation 
dp +d;o=0, which in a general view of the question is the only 

further condition to which they can be subjected, it follows that all 

imaginable values of and g ought equally to appear in the general 

integral (see Art. 27); one set of values giving only a partial solution of 

the proposed differential equation. Hence the general integral of the 

equation of continuity of a moving fluid of two dimensions is 

PHF {fi (a-a) +8i(y- Pi) fs So + FY {fi (@— a) —S1(y - Bi), As Sis 

+F, ih (x — a,) +22 (y—:), fas 82s e + Fi! {fh (a — a2) S83 (y— B.)s fr; 8x t} 

the quantities of f, f’; fs... 8, g’, gs.... embracing all values from 

—x# to +o. It is manifest, however, that inasmuch as each set of 

values can be separately made to satisfy the equation of continuity, 

each set will represent a possible motion, 7. e. a motion of such a nature 

that the fluid can transmit it. Hence the general integral just exhibited 

furnishes us with the following physical fact, which I believe has never * 

before been fully accounted for ;— 

* It has been remarked that ¢ may be represented by F,(«+y,/—1) + F, (w+ yf —1)+ we 

tS A(Gi=VN fab ey (a-y,/—1)+... 

and thence the superposition of disturbances has been inferred: but before this principle can 

be inferred, is it not necessary to shew that F,(#+y,/—1)+F,(a+y,/-1)+... 
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Any number of disturbances separately, though simultaneously, excited 
m a fluid medium, will be separately, independently and simultaneously 
transmitted through the fluid, each as perfectly as though the others did 
not exist. See Art. 4. 

9. Having ascertained this to be the meaning of the integral in 
its general form, it will be sufficient now to consider the transmission 
of one disturbance only; and if. this investigation be carried on upon 
the general hypothesis of a single disturbance of any kind affecting the 
fluid, the results will be of a general character also. This point will 
be gained by keeping our integral under the form 

p= F if(e—a) + ey-B), f g, t 
+ Fi f(a—2) — g(y-B), f, g, th. 

From this we shall proceed to deduce the following results. 

I. Motion cannot be represented by one of these functions alone. 
For, if possible, let motion be represented by 

P= PV S@= 2) + Y-B), fre, tt, 
or, for brevity, by ¢ = F. 

Then the (velocity)* of the particle whose co-ordinates are (a, y) would 
be 

= (d,) + (dp) 

=f? FF? + g*, Hr” 

SS oe Soe — 01; 
that is, the medium is at rest. F” is used to denote the differential co- 
efficient of #' with regard to the quantity /(2—a) +e (y—-). 

is a more general expression than one function F (a+y,./—1)? In the Integral Calculus, we 
know that C,+C,+C,... represents only one constant C: are we certain that F Wah Eg es ote 
represents more than F? are we sure that F, , F,, F... are so essentially distinct that they 
cannot be united in one function? 
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II. Sometimes the disturbance may be such as to render it possible 

to introduce ¢ entirely into the parts f/(«—a) + g(y—), so that the 

integral may be written 

¢=F {f(a-a-T) + gy-B—-7), fF 83 

+ Fi {f(a—a-T) - g(y—B-7), fs §; 

T and 7 being functions of ¢. 

Let us in this case refer the motion of the fluid to the moveable 

origin, in the plane of vy, whose co-ordinates are 7'+a, 7+; which 

will be done by writing a+ Z'+a,¥/+7+ for x and y; then the state 

of the fluid is expressed by 

p= F (fe + gy,t.8) + Fife — sy. 8); 
an equation which does not involve ¢; the state of the medium is there- 

fore perfectly invariable with respect to the moveable origin. The original 

disturbance, then, of what kind soever it may be, is transmitted 

through the medium wnaltered in all respects, with a velocity equal 

to that of the origin of co-ordinates, that is, of the point 7’ + a, 

++; hence the velocity of transmission, in the direction of 2, =d,T, 

and in the direction of y, = dr. 

III. It may happen that it will be impossible to introduce ¢ 

entirely within the parts f(« — a) + g(y — B); let it however be done 

as nearly as possible, so that the equation may be written 

p= F {f@-a-T) + gy-B-) fi & & 

+ Fi{f(e-a-T)-gly—-B-7) Sf & th. 

After transposing the origin as before, this becomes 

=F i fttsy, fig t+ Fif—sy: Sf & t. 

Whence it appears that the forms of the equations of the wave- 

surfaces will remain unchangeable; but ¢ entering into the parameters, 

shews that the magnitudes of the wave-surfaces will change with the 

time. In this case therefore the wave-surfaces will be transmitted through 
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the medium, unchanged as to their nature only, but not as to their 
magnitude. Thus, if the original disturbance produced cylindrical wave- 
surfaces of concentric circular bases which at a given instant had certain 
magnitudes, the wave-surfaces would continue cylindrical throughout 
the motion, but the common centre of the bases, or the common axes 
of the cylinders would be transmitted in the direction of x with the 
velocity d,7', and in the direction of y with the velocity d,r, and the 
radii of the cylinders would constantly undergo variation of magni- 
tude. 

10. These are the principal results of a general character which I 
have been able to obtain. There is yet to be considered a certain 
integral of the equation of continuity ; namely, 

ro) = Clogr + (Oe 

where 7° = (a — a)’ + (y — B)?; which has hitherto formed the basis of 
investigations in this part of fluid motion. 

Now in the general integral for a single disturbance, namely, 

$= Bi flea) + By-B), fh + Fil flea) — gy-B), f gh, 
let the forms of F' and F’, be assumed to be logarithmic, then 

b= 9 log if(e-a) + g(y—B)} + € log { flea) —¢ (y—A)} 

DQ S/Q wl 

- log {,f? (@ — a) — g* (y — B)?} 

ORT rs 8 ff = — 2" 

Clogr + Clog f 

=Clogr+C. 

From this investigation it appears, that this integral is not equi- 
valent to the general integral found by the usual process of integration, 
but is in reality a very particular integral, applicable only to those 
disturbances in which the sequence of the wave-surfaces can be ex- 
pressed by logarithms. 

Vor. VI. Parr II. Er 
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1l. By assigning other forms to # and F,, other, and some of 

them very simple*, expressions for @ may be obtained, and as in 

Art. 5 the character of the motion may be determined. But as re- 

sults so obtained would only be of a partial application, it is unnecessary 

to pursue the idea further. There is one form however which seems 

deserving of some consideration, as it presents us with a species of 

fluid motion entirely distinct from that denoted by the integral 

g = Clogr+C’; 

and of such a nature as was supposed by Euler to make uwda+vdy not 

a complete differential; it is the following, 

p =a tan‘ (X=). 
v=" OL, 

The equation of a wave-surface being in general (Art. 6) @=constant, 

will in the present case be reduced to 

y—-B=f@-(@ — 4) 
which is that of planes intersecting each other in a line, parallel to the 
axis of s, which passes through the point (a, 8), which is moveable or 

fixed according as a, 8 are or are not functions of ¢ And since the 

motion of every particle is perpendicular to its wave-surface, the general 

motion of the fluid at any instant will be in arcs of circles having 
their centres in the line which passes through (a, 8): and the velocity 
of a particle being 

= Vid. py + gy = +5, 

in this case varies inversely as its distance from the centre. 

The law of velocity in this instance is therefore the same ‘as in 

the one last considered; but while that velocity carried the particles 

towards or from a fixed or moveable centre, it here carries them round 
that centre in such a manner that all of them describe equal areas 
in equal times about it. 

* A very simple one is g¢=a..?*=%. cosh (y—#). 
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MOTION OF THREE DIMENSIONS. 

12. The differential equation for this case is 

dip +d/p + dp =0, 
and its integral is 

p= Fil fl(e—a)+ey—B)+he-), fg h, 

+ Bij — flea) +a (y-B)+he-), f a hy B 

+ F,{ f(x -a)-gly-B)+h(s-), fg, h, R 

+ Bi fe —a)+aly—B)-he-) 4 & h th, 
J, & h being constants, subject only to the condition 

fa 2 he — 0: 

It appears that in this case each set of values of f; g, hk furnishes 

jour independent arbitrary functions in the value of @; and without 

repeating the reasoning of Art. 8, we may at once state, that the 

general value of @ will consist of the sum of an infinite number of 

such sets of values as the one above exhibited: and the same physical 

inferences may also be made here for three dimensions, as there for 

two; namely, that each set of values of f£ g, h furnishes a distinct 

wave-surface, which is transmitted independently of all the others. 

It may also be mentioned, that if these distinct wave-surfaces 

should be so situated as to be geometrically describable according to 

the same law, that is, if their equations be of the same form, and 

differ only in the value of the parameters which enter into them, 

and if those values are consecutive, then we are not to take the 

separate surfaces, but the surface which touches them all, as that 

form of the wave which in such a case is denoted by the general 

integral. Instances of this process will be given afterwards, see Art. 28. 

This property will enable us to deduce integrals of the equation of 

continuity adapted to wave-surfaces of any proposed form. See Art. 29. 

13. By reasoning precisely similar to that employed in Art. 9, 

we may arrive at the following results which are general. 
EE2 
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I. Motion cannot be represented by one of the functions alone, 
which enter into the value of ¢. 

II. Under certain conditions a disturbance may be transmitted 

through a medium unchanged in form and intensity, and the velocity 

and direction of transmission seems to be arbitrary: that is, to depend 

on the manner in which the disturbance is excited. 

III. In other cases the velocity and direction of the transmission 

may be arbitrary as before; but the form and intensity of the dis- 
turbance will undergo continual change with the time. 

IV. The proper motion of every particle is in the direction of a 
normal to the wave-surface in which it is situated. 

ON THE MOTION OF ELASTIC FLUIDS. 

14. The general equation of continuity for this case is 

d, (pu) + dy(pv) + d.(pw) + d,(p) = 0. 
But as it is impossible to enter upon the discussion of this equation 
in the general state in which it now stands, we shall, as in Art. 6, 

be under the necessity of introducing some hypothesis. 

First. We may suppose the expression 

pudx + pvdy + pwdz + a’pdt, 

a complete differential of 2, y, x, ¢: in which case 

p(uda + vdy + wdz), 

will be a complete differential of x, y, x: and therefore 

udx + vdy + wdz 

will be integrable by a multiplier: wherefore the properties of 

wave-surfaces proved in the first five Articles will be applicable to 
this case. 
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Now putting @ for the integral of the above differential of 
x, y, x, t, we have 

pu=d.d, pv=d,d, pw= d.p, +ta'p=dd: 

and consequently the equation of continuity becomes 

dip + a (dep + dZp + d’p) = 0, 

which will furnish two cases, according as a’ is positive or negative. 

Secondly. We may limit ourselves to those cases in which the 
proper motions of the elastic medium are very small: which limitation 
will enable us to neglect d.p, d,p, d.p, inasmuch as the variation of 
density produced by such small changes of the relative position of 
the particles, will be too trifling to require attention when multiplied 
by the small quantities uw, v, w; and consequently the equation of con- 
tinuity may be written 

Ao + d,u+djv+dw= 0. 

Now as it has been proved* for this case that ude + vdy + wdx, is 
a complete differential (= dp suppose), this will become 

“e + dip+d;p+dip =0: 

P ; ; Ae j : in which we may write -“# for ae as is shewn by all writers 
on this subject, a being equal to the fraction 

pressure 
density * 

Wherefore by help of this hypothesis, we are able to present the 
equation of continuity under the following form 

dip = a (dp + dp + dio). 

“ Pontécoulant, Théor. Anal. Vol. 1. p- 164. 
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15. If we take the equation 

O=d?o+a(d-p+ d/p + dp), 

its integral is 

p= Mifwe-at+gly—B)+he-—y) +a Ff g h} 

+ Fife —a) + gly —B) +he—y)— at f & hs 

+ F,{-f(e-«) + gy - B)+he—y) +46 f g, hy 

+ Fii-f(e-«) + ey—B) +h -7)-a fg, h} 
st arOcCare a 

subject to the condition 

Ste +h4+1=0. 

Each set of values of ££ g, 4 will furnish eight arbitrary functions 

in the value of ¢. As there are no arbitrary functions of ¢ to be 

added to complete the integral, as was necessary in incompressible 
fluids, ¢ enters only in the form above exhibited; and it is evident 

that the integral is of such a nature as to render it impossible to make 

¢ disappear by changing the origin (as in Art. 9, II.): wherefore the 

reasoning of (III. Art. 9) can be applied here; from which we infer, 

that the extent and intensity of the disturbance are continually chang- 

ing, inasmuch as the equation of the wave-surface does not change its 

form, but only the magnitude of its parameters which are functions 

of ¢ As a wave-surface expands, a point which has a certain 

relation to it remains fixed in the medium: so that the expansion 

may be said to take place about this point. 

16. The following is also a solution of the differential eguation 

of last Art. 

ro = F(r+atV—1)+ f(r -atV-1); 

r being = V(x — a)’ + (y — B) + — y)*- 

And by assigning particular forms to F' and f; we shall obtain cases 

of possible motion ad libitum. 
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Thus, let F' and be logarithmic, as in Art. 10. 

- rp = Clog(r + at V1) + Clog (r — at V1) 

= Clog (7° + a’); 

Clog (7? + @f . os Js 

This will denote spherical waves converging towards their common 
centre with the velocity 

et 
z 

17. The following is also a solution: 

Tpe— C tan= (4); 

which denotes spherical waves diverging from a common centre with 
a velocity a. 

18. I come now to by far the most interesting case; namely, 
that wherein the velocities of the particles of the fluid are small in 
comparison of a, and where : 

dp = udzx + vdy + wdx. 

The differential equation for this kind of motion is, 

dip = a (dip + dp + d2o), 
and its integral is 

~ =F, if (@ — a) + ely — B) +h(z—-) +at, f, g, ht 
+ Fi if (e - a) +gly — B)+h(z- y) —at, fi g, ht 
+ &e. ... 

the form of the integral being precisely the same as in Art. 15, but 
the equation of condition among the constants 7; g, h is here 

J?+e°+h=1. 

We observe that f£ g, h, may all be possible, and in what follows 
they will be supposed possible quantities. This circumstance will alone 



218 Mr EARNSHAW, ON FLUID MOTION. 

completely distinguish the fluid motion now under consideration from 

all that has yet been investigated. 

Each set of values of f g, # will furnish eight independent arbitrary 

functions in the expression for ¢, but for reasons precisely similar 

to those advanced in Art. 8, we need only consider one set at a 

time, which we know denotes a possible motion; the possibility of the 

coexistence of: any number of such sets in the value of @ being 
physically interpreted by saying,—that the fluid can simultaneously 

transmit any number of disturbances, each as though the others did 

not exist. 

In Art. 13 it was mentioned that one arbitrary function alone 

could not represent fluid motion; but in the case before us, each 

function represents a possible motion, and it will be shewn hereafter 

that the eight arbitrary functions furnished by one set of values of 

f, g, h denote as many independent waves moving in different direc- 

tions: and therefore no generality will be lost by employing only 

one of the eight functions; and the reasoning upon it will be ap- 

plicable to the other seven; and the full effect denoted by one set 

of values of f, g, / will be seen by supposing the eight waves cor- 

responding to the eight functions to coexist and to be transmitted 

simultaneously in the medium. 

19. We are at liberty to take any one of the eight functions as 

a general representative of all, suppose then that 

p= Fi f(a-a) + g(y—B) + he—7)-4t f. &s hh (1) 

The origin of co-ordinates is a fived point in space; but let it be 

transferred to the point X, Y, Z, which will be done by writing 

X+a’, V+y, Z+2x for a, y, = respectively, and then 

p= F {fe +gy the +f(X-a)+g(¥-B)+h(Z—y)- at, f g, hy. 

Now as the new origin is arbitrary, we will suppose it moveable 

instead of fixed, and that it moves in such a manner as to satisfy 

the equation 

S(X — 0) +g(¥ — B)+4(Z- y) = 41... (2) 

which supposition is allowable because jf, g, / are possible quantities, 
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When referred to this new origin, the state of the fluid is repre- 
sented by the equation 

$= Fl fe + gy + hx, f, g, h)......(8). 

Now the co-ordinates of the moveable origin are _Y, ¥eCZ. amongst which quantities there is no relation but. that which is expressed by equation (2); wherefore, though the origin must be some where in the plane whose equation is (2), its position in that plane is perfectly indeterminate. And what point soever in this’ plane we take for origin, the state of the fluid in reference to that point is expressed by (3), an equation which does not involve ¢t. Hence the state of the fluid is cxvariable with respect to the plane (2); 7%. e. to whatever point in this plane we transpose the origin, the same values of vy, 
will give the same value of f, or denote a point in the same wave- surface. Hence the wave-surfaces denoted by (1) are always parallel to the plane (2), and preserve an invariable distance from it. Conse- quently the wave denoted by (1) is a plane wave travelling parallel to, and at the same rate as, the plane (2), which may be called the plane of origins. 

Now because f? + g? +h? = 1, J: & hk denote the cosines of the angles of inclination of a line to the axes of co-ordinates; the line itself is, as is well known from the principles of Analytical Geometry, perpendicular to the plane (2), and if drawn from the origin of the co-ordinates X, Y, Z, that is, from the original origin fixed in space, its length is equal to at. Wherefore the plane of origins travels in such a manner that at is the length of the perpendicular upon it from a fixed point: and consequently it moves with the uniform velocity a. As the wave-surfaces are always parallel to it, and preserve their distances from it unchanged, they are transmitted through the medium with the same uniform velocity a. 

20. If the distance of a wave-surface from the plane of origins 
be denoted by p, 

p=ft! + gy + he, 
Vou. VI. Parr II. Fr 
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and therefore the state of the fluid particles composing that wave- 
surface, is represented by 

p= Fp, fg, b). 

Wherefore the state of the particles composing a wave-surface is 

a function only of its distance from the plane of origins. By 

varying p we pass from one waye-surface to another; and a correspond- 

ing change takes place in the value of F'(p, f. g, h) or p; the degree 

or law of this variation in ¢ entirely depends upon the form of the 

function #’, which is arbitrary. If now we enquire what is meant by 

the fact of @ being denoted by an arbitrary function, it is clear we 

learn from that arbitrariness, that wave-surfaces may follow each other 

according to any arbitrary law of sequence; if that law be continuous 

(that is, if # be a continuous function) it will furnish us with an 

infinite number of wave-surfaces following close upon each other and 
composing a simple wave, due to an original single disturbance of a 

continuous nature. If # be a discontinuous function, the law of se- 

quence of the wave-surfaces will be discontinuous also, and therefore 

in this case we shall have a wave composed of the broken parts of 

several waves, joined together, or separated by finite intervals, as the 

case may be. All this will be very evident, by considering p as the 

abscissa, and , which represents the state of the medium, as the or- 

dinate of a curve whose equation is 

p= Fp, fg; h). 

Upon the whole, then, equation (1) represents a plane-wave, (made 

up of plane wave-surfaces), which is uniformly transmitted in a di- 

rection from the origin with the velocity a, unchanged in all respects, 

through the medium; in such a manner that it continues parallel to 
itself during the transmission, and the perpendicular upon it from the 

fixed origin falls within that part of space where a, y, s are all positive. 

21. By similar investigations which it is not necessary to enter upon, 

it may be shewn that, the seven other functions involved in the expres- 

sion for ¢, denote respectively seven plane waves, each transmitted 



Mr EARNSHAW, ON FLUID MOTION. 221 

uniformly with the velocity a. And perpendiculars let fall upon them 

from the fixed origin will lie in the seven other parts into which space 

is divided by the co-ordinate planes, one in each. All the properties 

which have been shewn to belong to the plane-wave in the last Article, 

may be shewn to belong also to each of these. 

22. Without further proof it will be sufficiently evident that if 

we suppose @ to take its most general shape, that is, to be the sum of 

an infinite number of arbitrary functions, involving all possible values 

of f; g, h, it would represent an infinite number of independent plane- 

waves, each transmitted with the same velocity a: and each moving 

parallel to itself. These waves would be inclined at all possible angles 
to the axes. This corresponds to the most general form of the integral. 

Any number of values of f, g, h might be omitted in the integral, and 

then the corresponding plane-waves would be deficient: or, f/ g, h 

might vary according to some continuous law. ‘Two cases therefore 

ought to be considered, 

1. When f g, #& vary in passing from one function to another in 

the value of @ independently. 

2. When f. g, k vary continuously. 

The former of these cases has already been shewn to belong to 

independent plane-waves: but the latter, which is most important, will 

be considered presently. (Art. 26.) 

23. When the disturbing cause gives rise to a plane-wave, the ex- 

pression for the state of the medium must be 

p= Fi f(z —«)+e(y—B) + &(s—y) — at}. 

Now it has been shewn for this case (Art. 19) that the state of the fluid 

may be represented by 

¢=F (f2' + gy’ + he’), 

x, y, % not involving ¢, and being measured from an origin situated 

any where in the plane of origins whose equation is 

f(a —a) +e(y—B) +h(e—y) =at. 
FF 2 
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Now this equation denotes a plane of infinite extent, and as the wave- 

surface may be referred to any point in it, without altering the equation 

p= F (fr + gy + he), 

which expresses the state of the fluid, the same values of 2’, 7’, ~, 

which, measured from a given origin, give the value of @ at a dis- 

turbed point, will give, when measured from every point in the plane 

of origins, a series of other points in the fluid, at which the value of 

g is the same as before; therefore the plane of origins and the wave 

would seem to be of equal extent. What are we then to infer from 

this circumstance? The plane of origins is manifestly infinite, but 

the wave cannot stretch out beyond the limits of the medium. As far, 
however, as the fluid extends, so far we can prove the wave-surface to 
extend; for nothing prevents the equation 

p= F (fa + gy + he’) 

from being true for an infinite plane, but the fact of there being, beyond 

certain limits, no fluid medium: so far, therefore, as there is fluid, so 

far the wave-surface extends. Hence, 

A plane-wave cannot be transmitted through any fluid unless it extend 

completely across the medium, from boundary to boundary. 

Hence, if the medium be divided into two parts by a fixed screen, 
in which is a finite aperture, the fragment of the wave-surface (supposed 

parallel to screen) which passes through the opening cannot continue 

plane; but it must somehow or other abut upon the back of the screen. 

What is the precise form which it takes is very difficult to determine. 

The problem, however, does not seem to be absolutely impossible; and - 

appears to depend entirely upon the discovery of some means of. intro- 

ducing the condition of a limit to the medium into the mathematical 

expression for @. 

24. I think it is sufficiently clear that the expression for a plane-wave 

necessarily supposes the extent of the medium to be ijinite. When, 
therefore, the fluid is of finite extent, we must suppose it infinite, 
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and then introduce fixed screens so as to inclose a portion of any pro- 
posed shape. Now the effect of a fixed screen is simply to prevent the 
particles in contact with it taking any normal motion; and this being 
the only effect, we may suppose the screen removed, providing we intro- 
duce into the expression for such a function as shall represent the 
condition of the normal velocities being zero. In one case this can 
be very simply done, and may serve as an example of what is to be 
effected, and the process to be followed in other cases. . 

Suppose the medium bounded by a plane whose equation is 

and let a plane-wave be transmitted through this medium, such that 

p= F( fr t+ gy + hz - at)......... (2). 

This equation supposes the medium infinite; and we must now intro- 
duce the condition, that at every point in a plane whose equation is (1) 
the velocity in the direction of x is zero. Let, therefore, the value 
of » which fulfils this condition be expressed by the equation 

P= E(fatey +he—at)+ FL f (ea) +e (y—B) +h (x—y) —ath: 
this is the proper* form of assumption, for otherwise the equation of 
continuity would not be satisfied. The velocity in direction of x is 
d, =f" (fu + gy +hx—at) arf LR (a —a) +9" (y—f) +h' (x—-y)—at}, 

which must be zero when x=c. 

 O=f. F" fe+gyt+hz—at) tf (c—a) +g" (y—B) +h (s—-y)—att. 

Now it is impossible that this equation should always be true, seeing 

* The general integral of the equation of continuity shews that ~ must consist of the 
sum of a series of functions of the form 

F{f(x-a)+g(y—f)+h(z-y7)~—al}. (Art. 26.) 
Hence we might add to the right-hand member of equation (2) several functions, but as we 
have only one condition to satisfy, one additional function is sufficient. Hence, that assumed for in the text is the proper form for the problem under consideration. 
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that y, x, and ¢ are indeterminate, unless the forms of F” and F'’ be the 

same; hence we may write 

SF (fet gy ths—at)=—f). F'Yf (c—a)+g' (y— B) +h @—y)—ath; 
ie 

and fe+gy+hs—at=f' (c—a) +g" (y—B)+h'(z—y) - at; 

oe Se 

h=h 

c= —(ce-—a) or a=2c 

B=0 

y=0. 

. =F (fat gyths—at)+ FS f(Qc—2)+gy+hz—at}. 

This expression represents two plane-waves: the latter of which is the 

effect of the screen, and is that which is usually called the reflected- 

wave. It is evident that the angles of incidence and reflection are equal. 

25. When f=0, there is no reflected-wave. Now when f=0, the 

wave and the screen are at right angles to each other. Hence, a wave- 

surface may be cut into any number of parts by fixed xormal screens, 

without affecting the motion. Consequently a plane-wave may be trans- 

mitted as perfectly through a prismatic tube, as through an infinite 

medium. 

If the boundaries of the medium are not normals to the wave there 

will of necessity be reflection. This circumstance produces nodes and 
loops, and probably affects the timbre of the notes, and the tone of 

musical instruments. 

26. I come now to consider the second case of Art. 22, viz. Where 

SF. g h in the value of @, vary continuously in passing from one function 

to another. 

In this case, that @ may be complete, fg, # must have all values 

from —1 to +1, and therefore in assigning to f| g, h, all possible values 

in the function 

Fif(x —a)+g(y— B) + h(s— y) — ath, 
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we shall obtain all possible functions, and amongst others 7 functions 
similar to those mentioned before (Art. 21). This function, therefore, 
may be considered as the representative of all, and consequently ¢@ is 
now properly represented by 

p= 2Pi f(a — a) + e(y— B) + h(z- y) — at, fg, hi. 
This equation is the representative of any continuous wave, whatever 

be its form. The integral of the equation of continuity furnishes no 
other general means of representing a continuous wave. Hence, what- 
ever be the nature of the original disturbance which gives rise to a 
continuous wave, the above equation teaches, that the wave may be hy- 
pothetically resolved into an infinite number of plane-waves moving 
with the same velocity a. 

Plane-waves are therefore shewn to be the proper components of curvi- 
linear waves. 

And since the values of f g, h are the cosines of the inclinations of 
these component-waves to the co-ordinate axes, if the original disturbance 
produce a single wave, f, g, h will follow some Jaw, that law being in 
fact the condition that the original disturbance may be single. 

The disturbance being thus resolved into component plane-waves, 
each component is to be supposed transmitted parallel to itself with 
the velocity a, and at any time we may compound them into a single 
wave, by finding the surface to which they are all simultaneously tangent 
planes. 

27. In confirmation of these views, I shall make a few observations 
upon general and singular solutions of common differential equations of 
two variables, the theory of which is well understood and allowed. 

Suppose, for instance, it were required to find a curve, such that the 
rectangle of the perpendiculars drawn from two given points upon any 
tangent shall be constant. This problem produces a differential equation 
whose general solution is 

y = fxr J af’ + b, 
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J being an arbitrary constant. This quantity gives rise to a difficulty. 

For though the proposed problem is sufficiently specific, yet it affords 

no data for the determination of and consequently the curve sought 

remains as undetermined, and the problem apparently as unsolved, as 

ever; all that we can gather from the above integral being, that a 

straight line whose position depends on the value of f will fulfil the 
_ proposed conditions. 

It may be said, however, that any value given at pleasure to / will 

determine a line answering the conditions of the question; but it is 
clear that a line so found can only be considered as a partial solution; 

inasmuch as the fixing upon a particular value of / tacitly implies the 

possession of data enabling us to decide upon that value in preference 

to all others. Now such a decision cannot be received, unless the data 

which led to it are supplied by the conditions of the proposed problem ; 

and, as we have seen, no such data exist; consequently no particular 

value of f can be received. Thus it appears, that though the integral 

y=fut Jaf? + b°* 

furnishes partial solutions of the proposed problem without number, 
it does not present us with the required curve. The only resource 
left is, to employ equally all possible values of f from —o to +; 

all having an equal claim to have weight in the general interpretation 
of the above integral. This will present us with an infinite number 
of straight lines, not drawn at random, but according to a law expressed 
by 

y= fer Saf? +B, 

and by the intersections of consecutive lines forming a curve to which 

they all have an equal relation, being tangents, which is allowed to be 
the curve required. 

* Since f admits the sign — as well as +, we have, by taking all the variations of 
sign, four straight lines; one in each portion of space comprehended between the co- 
ordinate axes. See Arts. 18, 21. 
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The general inference from this reasoning appears to be this: that 

when the integral of a differential equation contains constants (intro- 

duced by integration), the values of which the proposed conditions of 

the problem are not sufficient to determine, the singular solution* is 
the proper integral for that particular problem. 

28. Upon these grounds I state the following general principle, 

A wave may, at any moment, be resolved into plane component waves, 

each of which is a tangent to the original wave. These components may 

be supposed to be uniformly transmitted with the velocity a, and at any 

time they may be compounded into a single wave by taking that surface 

to which they are all simultaneously tangents. 

Hence if the form of a wave-surface at any one instant be known, 

its form at any other time will be determinable from geometrical prin- 

ciples. 

The thickness (or, as it is sometimes called, the breadth) of a wave 

is never altered by transmission. 

Ex. 1. In a quiescent medium let us suppose one of its particles 

to expand, pushing equally from its centre on every side the adjacent 

particles. The effect of such a disturbance will be a sudden condensa- 

tion in its neighbourhood, which we may divide into concentric spherical 

wave-surfaces, for each one of which ¢ is constant; though from surface 

to surface @ may vary. Now resolve any one of these surfaces into 

its components by drawing an infinite number of tangent planes to it; 

each one is transmitted with the velocity a@ parallel to its edge, and 

thus at the end of any period they will be equidistant from the centre 

of original disturbance, and be tangent planes to a spherical surface, 

which is therefore the form of the wave at any moment. 

Ex. 2. In a quiescent medium let all the particles situated in a given 

* Or rather the solution determined by the usual method of finding the singular 

solution, for as is well known such a one may not happen to be a singular solution 

but a particular integral. 

Vox. VI. Part II. Ge 
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straight line suddenly expand equally. In this case each surface of equal 

density is a cylinder with hemispherical ends; the given line being the 

axis, and the extremities of the line being the centres of the hemi- 

spheres. 

By resolving each wave-surface into component waves, by drawing 

tangent planes to the cylinder and hemispheres, and supposing these 

components transmitted, each parallel to itself with the velocity a, it 

will appear that at any time each wave-surface is of the form of a cylinder 

with hemispherical ends. The radius of the cylinder increases with the 
uniform velocity a. 

29. It is sufficiently manifest, from what has already been done, 

that the form of a wave-surface depends only on the form of it at 

any given moment, or indeed only on its initial form; its magnitude, 

but not its nature, depends on the time. This is equivalent to saying, 

that the nature of the equation of a wave-surface depends only on the 

form of the given disturbance, while the parameters of that equation 

depend upon the time. This will sometimes enable us to determine 

the properties of the wave when it is curved, without employing the 
general integral 

p= =F} f(«—a)+gly—B)+h(s - y)-— at, fi g, hh. 

Having determined the form of the wave-surface upon the prin- 
ciples of Art. 28, let its equation be x(a, y, x; A, B, C...)=0; in 

which 4, B, C... ‘are parameters depending on the time only; also 

let the state of the fluid be expressed by the equation 

g=V(@y, 8; A, B,C...) 

Now for any point in a wave-surface = constant; that is,-any 

values of a, y, s which make x = 0, will make = constant. y there- 

fore can only be made to change in value by writing different values 
of A, B, C. We may therefore say that is a function of 4, B, C... 
only, which are connected by the equation y = 0. We may therefore 

consider x, y, x as functions of 4, B, C... by virtue of y =0; and 

having found the values of d,’9, d,’~, dp in terms of the partial 
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differential coefficients of @ with regard to 4, B, C... we may change 
the equation 

dip =a’ (dp + d/p + d2g) 

into another not containing a, y, x. It is to be observed that 4, 
B, C... are dependent only on ¢ and quantities which are absolutely 
constant; B, C,... are therefore expressible in terms of 4, and con- 

sequently there is only one independent parameter 4. Hence the 

process above pointed out will give us an equation between d,’¢. 

dip, dsp and A: that is, @ will be a function of 4 and ¢ only. 

30. As one of the simplest examples of this process, let us sup- 
pose the form of the waves to be spherical. Then y = 0 is 

rept s =7, 

r being the parameter 4. Now @ being a function of ¢ and r 
only, and x, y, x being functions of 7 only, we have 

d2o = - dip t (> = = d,, 

( agp =", .a:9 + (5-4) ag, 

bo 

s 

a 

2 2 2 1 : C 
dip =a .dep t+ (= = =) dp; 

2 2 ee a . dp =a (dg + e. .d,o) = .d? (ro); 

. af (rd) = ad? (r¢). 

This equation being integrated gives 

rp= FE (r-at) +f (r + at), 

which expresses the state of the fluid when the motion is in spherical 

waves: the former term F'(7-a?t) shews that spherical waves may 

diverge from a fixed centre; and the latter f(7 +a?) that they may 
converge towards a fixed centre. The velocity of either wave is a. 

The motion of each particle is directed towards or from the fixed 

centre Art. 3, and its velocity = d,@ 
GG2 
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a). — at) F = a) for the diverging wave, 

and = — —— + caus for the converging wave. 

31. Since in general the motion of each particle (Art. 3) is perpen- 

dicular to the wave-surface in which it is situated, the motions will be 

directed to or from focal lines, which may be fixed or moveable: and 

if the motion of the wave were perpendicular to its front we might 

always deduce the law of variation of the velocity of a particle ; 

but inasmuch as the direction of a wave’s motion entirely depends on 

its form, and is never in the direction of a normal except at those 

points where the curvature is a maximum or minimum, or when the 

waves are spherical, no general law of the velocity can be deduced; but 

we must first find the value of ¢ by the method of Art. 29, and 

then the velocity may be obtained. 

32. When the form of the waves is spherical the law of variation 

of density may be found. 

For if p be the equilibrium density, and p the density at a 

point in the wave-surface, ; 

a’ f,. = =—dago= . . F' (ry — at) for the diverging wave; 

fy ait 29 A): “. log. (5) = a F' (r — at); 

’ F (r—at) 

“ p=p-€ 7 

For a given part of this wave (as the front or the middle,...) 

r—at is constant, and therefore F" (7 — at) is constant = Ada suppose, 

ee: 
+ p= peers 

wherefore as the wave travels through the medium, the density of a 
A 

given part of it varies as €", which rapidly diminishes. 
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Similarly it may be shewn, that the density of a given part of 
B 

the converging wave varies as €’, which rapidly increases. 

33. If a plane-wave be transmitted through the medium, the 
particles as it successively reaches them are displaced with the same 
velocity; and there is a certain relation between the density and the 
velocity of displacement which holds good for all plane-waves. 

For, denoting the velocity of displacement of a particle by v, and 
the density as before, 

g=F (fat+gy+ hz — at), 

and v* = (d,p)’ + (d,p)’ + (dp)? 

(fo +g? +h’) LF’ (fa + gy + hz—at)}*; 

. o= t+ F'(fx+gyt+hs—-at); 

ll 

and by referring this to a moveable origin (as in Art. 19), we have 

v= + Bi fa’ + gy + he) = + F'(p); 
which is independent of ¢, and is constant for all particles situated in 

the same part of the wave, because for such particles p is constant. 

Again, 

a log. & =- dp = ak" (fu +gy+hx—at) = +av; 
P 

; 1 o*3 
oe P = P -€ . 

If v be reckoned positive in the direction of the wave’s motion, 

and negative when in the opposite direction, 

(DSTO 

Hence in plane-waves all points of equal velocity are points of 
equal density. 

Again, when p is >, v is positive, 

when p = /’, v is evanescent, 

when p is <~, v is negative. 
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Hence, at points of mean density the particles are stationary; at points 

of condensation the particles are moving forwards; and at points of 
rarefaction they are moving backwards. 

34. The property which was proved in Art. 23, respecting plane- 

waves, may be extended to curvilinear waves; and we may shew gene- 
rally, 

That no wave-surface, terminated abruptly by sharp edges, can be 

transmitted through a medium unless its edges rest upon the boundaries 
of the medium. 

For, the only expression for a curvilinear wave which the equation 
of continuity furnishes is 

pat. Fi f(u—a)+g(y—B)+hs—y)—at, f g, hh; 

which, as before observed, teaches that we may suppose the wave com- 

posed of plane-waves, which we may suppose transmitted through the 

medium, and then we shall have the true wave-surface by taking that 
to which they are all tangents. 

Now, suppose a wave-surface terminated abruptly to be by some 

means or other excited in a medium. Upon referring to the above 

expression for @, we should find that the tangent-planes at the edges 
-of the wave-surface, or rather the component waves, represented by 

. these tangent-planes, and expressed by terms of the form 

Ff f'(e—«) +e" (y—B) +h e-y)—at, fg, KY, 

stretch out indefinitely beyond the boundary of the wave-surface into 

the medium: and when these components are transmitted and afterwards 

compounded into one wave, the portions of these waves which (as it 

were) hung over the proper wave-surface must remain. Hence it 

appears, 

First, That a wave-surface terminated abruptly by sharp edges cannot 
be excited in a medium: and 
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Secondly, That if such a wave were excited, it could not be trans- 
mitted in that form. 

Hence, if a curvilinear wave in traversing a medium meet with a 
fixed screen in which is an orifice, the part of the wave which passes 
through the orifice must afterwards abut with its edges upon the back 
of the screen. 

35. In the Undulatory Theory of Light, each point in the front of 
a wave is considered as the origin of an indefinitely small wave. (See 
Airy’s Tracts, 2d Edit. p. 267. Art. 21). This hypothesis, however, as 
is well known, is affected by a very troublesome difficulty. “ What is 
to limit the waves diverging from each of these small sources of mo- 
tion? The disturbance spreads generally in a spherical form, so that 
the front of each little wave is a sphere: are we to suppose the sphere 
complete, so that each small undulation is propagated backwards as well 
as forwards?” (Airy, Art. 22.) 

It will have been perceived from what has been done in this paper, 
that in the transmission of waves by pressure through an elastic me- 
dium, the tangent-planes are to be taken, and that these tangent-planes 
move only in the direction of the wave’s motion. Might not the same 
hypothesis be applied in the Undulatory Theory of Light, in which 
case the above difficulty would be avoided? 
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X. On the Motion of a System of Particles, considered with reference 
to the Phenomena of Sound and Heat. By Putuie Krvuanp, B.A. 
Fellow and Tutor of Queens’ College, Cambridge. 

[Read May 16, 1836.] 

INTRODUCTION. 

In a former Memoir, it was my endeavour to simplify the equa- 
tions of motion of a system of particles attracting each other with 
forces varying according to any law. The discussion of these equations 
was restricted to their bearing on the phenomena of Light, on which 
account one of the three was left untouched. 

It appeared that the hypothesis of attractive forces led to the result 
that two of the equations corresponding to the motion in a plane 
perpendicular to the direction of transmission, indicated vibratory motion, 
whilst the third assumed a form altogether different, shewing that, as 
far as it was concerned, the motion was not vibratory. 

On the other hand, the hypothesis of repulsive forces would give 
the motion in the direction of transmission vibratory, whilst the con- 
trary would be the case in a plane perpendicular to this direction. 

The discussion of the equations corresponding to motion in the 
direction of transmission is the object of the present memoir. 

It is not improbable that to the action of forces, such as those of 
which we are treating, a considerable number of the phenomena of 
nature may be referred; but on account of our imperfect knowledge 
of the analogies subsisting between phenomena which apparently differ 
widely from each other in some essential points, we are obliged to 
restrict ourselves to the most simple, or to those which have been the 
most carefully examinet. 

Vou, Vit Parr IT. Hu 
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Instances offer themselves in the cases of sound and light, since 

both have, for a long period, been referred to vibrations, though the 

difference in the nature of these vibrations had to be pointed out 

before it was admitted that a complete parallel was not to be expected 

between them. The same observation is applicable to the theories of 

light and heat. Remarkable as are the analogies between them, 

demanding as it would seem from their very nature the same mode 

of explanation in each, there are nevertheless peculiarities in the latter 

which seem to strike at the very foundation of the theory, and to 

require the construction of another on totally new principles. 

On whatever grounds then a theory be raised, we must not be 

discouraged if some succeeding facts appear for the moment to militate 

against it, and particularly, when that theory is one in which the 

action of force in its different modifications plays a conspicuous part, 

for there we are presented with a range so wide that facts, almost 

antagonist to each other, are brought together in the interpretations 

of the various kinds of motion which occur. 

In the present memoir, I have ventured to push these interpreta- 

tions to a considerable extent, from a conviction that the explanation 

of many phenomena is contained in them, and the hope that in some 

cases at least the real explanation may coincide with, or at any rate 

bear a close resemblance to, those which I have attempted. 

I have adopted the hypothesis that the medium, whose motion we 

have under consideration, is not composed of particles of one nature, 

but of a regularly distributed series of particles of two kinds, of 

which each is endued with forces and inertia differing from those of 

the other. For the sake of distinction, in forming the equations, I 

have called these media 4 and #, which when applied to- sound 

signify air and vapour, when applied to light and heat, ether and 

calorie or those substances, by whatever names they may be designated, 

which serve for the propagation of these respectively. 

We will assume that the /aw of force is the same in both cases, 

an assumption which there appears no reason to suspect. 
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SECTION I. 

Interpretation of the Equations corresponding to Vibratory Motion. 

1. Ler the mass of a particle of medium 4, estimated by its 

repulsion at the distance unity, be represented by P; that of a par- 

ticle of medium B, estimated in like manner, by Q; and the moving 

force of a particle of A on a particle of B by M, which is also the 

moving force of a particle of B on one of A. 

We will first consider the motion of a particle of medium A. 

Let x, y, = be its co-ordinates when at rest, 

x + dx, y + dy, s + ds those of another particle of the same medium, 

x+ Ax, y+ Ay, » + As those of a particle of B; 

R=VJSAx + Ay + A&. 

Let the same quantities at the end of the time ¢ become 

U+a;, Y, &. 

@+a+toa+ da, y + dy, s + ds. 

t+a+Ax-+ Aa, y+ Ay, &+ Az. 

r+ or. 

R+ AR. 

(the motion being in the direction of the axis of 2) 

and let the function which expresses the force be ror. 

The action of the particles of A on the particle in question parallel 

to x, is evidently the sum of all such expressions as the following, 

PP’. p(r + dr) (da + da); 

and that of the particles of B on the same particle the sum of 

M.p(R + AR) (Ax + da), 
HH 2 



238 Mr KELLAND, ON THE MOTION OF 

hence, = =—o.Po(r+ dr). (da+8a) — Be 2o(R + AR) (Aw + Aa); 

s and > indicating the respective sums taken for all the particles which 

are in motion. 

2. In order to reduce these expressions to an integrable form, it 

is requisite to adopt some process of approximation. Suppose then we 

omit Sa compared with d2: this appears at the first glance a doubtful 

process, for we cannot here suppose, as we did in the case of light, 

that the particles have a very small motion; we know, in fact, that 

this is not the case for sound; but all seruple will be removed when 

we reflect that any particular da is the approach of two particles to each 

other, whilst the corresponding dw is their original distance; and from 

the fact of the repulsive nature of the forces, we cannot, even in the 

most unfavourable case, suppose the approach other than a small fraction 

of the original distance. Or again, if da be the amount of recess of 

the particles, since any recess must, in the case of vibrations, have 

a corresponding approach, the same reasoning applies. 

3. Now o(7 + 6r)= or + Fr.dr nearly, where F(r) stands for 

the differential coefficient of (7), taken with respect to 7, 

(r + dry?= (8a + da)*+ dy? + dx; 

-. Qrdor = 2dada 

éa 
ér = = eats , 

w. plr t+ dr). (da + 8a) = (pr + — dada) (Sa + da) 

= gr.da + (pr +2 80") da. 

Similarly, p(R + AR).(Ax + Aa) = GR.Ax + (PR + TE nat) Aa; 

2 

. = =—Po.f{or.da+ (or t+ EP at). 3a} 

M a ene 
- Pp gk. dx +(pR + R Aa’) Aa}, 
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but P*.cgpr.dx + M.=pR.A-x is the force which acts on the particle 
at rest; and consequently is identically equal to zero; 

assume a =a cos (ct — ka), 

then da = a cos (ct — kx — kdx) — a cos (ct — kav) 

= a jcos (ct — kx) cos kox + sin (ct — ka) sin kdx — cos (et — ka)} 

= asin (ct — kx). sin kéa — 2a.sin* = 

In the same manner, if both particles vibrate in the direction of 

transmission, 

ery 
Aa = asin (ct — kx) sn kAx — 2a sin?—— = 

and, by the hypothesis that each medium is a medium of symmetry, 

we shall, by reasoning precisely the same as that which I adopted on 

a previous occasion, [Part 1. p. 156. of this Vol.], arrive at the following 

result : 
d’a 
dt’ 

= {2Po(or + — zi >; Ot") sint HS 

a 2M S(pR + AF aa) sin’ “ot « 

= — Ca suppose, 

where a = a cos (ct — ka). 

4. It is clear that, in order to effect this, we must suppose 

a(pr + H* 3at) ja” 

: : 1 
a negative quantity. Now if pr = par oF the force vary as the in- 

verse n power of the distance, this can be accomplished ; 
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for Deh Coma 
LMR a ig 

F eee ba? + dy? + dx? — Dypogeees ko 
Sis (pr + —* ba") sin’ = a Z y u gets . : ae sin’ = 

dy? + dx’ —néa* . how 
= 41 —___—_ . sir’ —, pts 9 

and ob fr = ods fr; 

Fr, xc, hot Q6y°— nda? . , kox 
hence, «(pr + = oF) res — sin’ 

2 2 ria kd 
Now on expanding the sine, it is clear that when = becomes 

greater than unity, or which is the same thing, when da becomes greater 

xr FE 3 £ 
than rE we must put the supplement instead of the are in the expansion ; 

but we saw reason in the case of light to suppose that the expression 

for the whole force has the same sign, as the expression for the force 

exerted by those particles only which lie within the range of the first 

half wave. 

In fact, if the different half waves give different signs, it is evident 

that they must give them alternately; and thus the above hypothesis 

would be confirmed; we shall therefore retain only the first term in the 

: ., Hox . ee : ; 
expansion of sin® as and reduce our investigation to the consideration 

of the sign of ety ene 52°, taken within the range of the first 
gts 

half wave. 

For every value of dy within this range there is a corresponding 

equal value of $a, and vice versd: so that we may write the above 

expression as follows; 

i (254? — nda*) Sa® + (25a°—ndy’). dy’ 
arts 

pa n.(dy' + dat) — 4dy%d.a | 
9, ents 
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sats ‘ sii”: oy* — da”) 
from which it appears that if x = 2 our expression is — o eyint easy an z 

essentially negative quantity. This conclusion was seen to be requisite, 

in order to satisfy the conditions of direct vibrations with repulsive 

forces. 

It is also evident that the same conditions would be fulfilled by 

making 2 greater then 2, whereas if x be zero or negative this will 

not be the case. The hypothesis, which makes » equal to unity, we 

shall examine hereafter. 

5. By integration of the equation (1) and reduction, we obtain for 

the square of the velocity of transmission, 

2 
ean moa TREN es 

P no02*°— 287° IN M  nhx#’—2Ay¥ as ar : 
a a rts : T Pas Rs ; 

r r 
13 

which, if « be put for the distance between two consecutive particles 

of A, and & for that between two of B, and we make 

62 = Ee, oy = 7e, és = Ge, 

> 8 T a & > 
LS 

i = & z fl N & 
becomes 

iP, ne?—2n mies ore | é rey ey 

For the present, we will omit that part of the expression which 

depends on the length of a wave; hence we have 

a, 2 Vj ues Z 

e=37e{" a7 t th pope {A rt. 

“GAT Sa ahs (K+ PR 4 Bye 
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6. In the same manner, denoting by accented letters the quantities 

corresponding to a, &c. for the motion of a particle of medium B, 

we obtain 

of = + {2Qz(pR + aS A2’) sin =2* 

2M Tg. gilt 2 Mor’ 
ai A aR eh =} .0 eaajser oe. (2), 

a 2 

whence v® = 46 5a fe re arate 5 fac &e,)| 
€ (2 in oe ¢) z 

il nX*—-2Y* 7 f + 4Q3 qa {—"*—* 5 (4 - 5, + &e,)} 
CAF ee pee 

which independently of » is equal to 

gene {22 tage {7 2F xl 
€ @ 4+ we Ze ©) 2 (Xx? oe yYy? a ZB)? 

7. If we were to suppose every part of medium 4 to be mixed 

with a portion of medium B according to a given law, all that we 

should require would be the direct integration of these equations, con- 

sidering M a constant quantity depending on the relative natures of 

the media: but it will be more analogous to the nature of the question 

when applied to air or ether, if we suppose a want of uniformity in 

the mixture. Conceive, for example, that a given mass of medium 

A, impregnated with medium BP, is enclosed by other portions of the 

same medium not thus impregnated. 

Let €, be the distance between two consecutive particles in the 

latter mass: then it is easily seen, that the attraction of the mass of 

A, in the mixture, on a particle at its confines is C ca the quantity 
€ 

C depending on the mass so impregnated, 

and that of the mass of B is C = 
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hence the action on a particle of A is oie but this is 

retained at rest by a corresponding quantity of A at distances ¢,'; 

Je Hl ye 

Catan) = Dz. 
Similarly, the action on a particle of B at the confines of the 

medium gives us 

oie Hip 3 
€,3 

MP* he MY PAG 
hence Es pet ae 

or M’ = P*Q 

M = PQ; 

and, by substitution in the above approximative equations, 

: Li = 

the integrals being evidently equal 

wea {S+ aeh 

= v 

or the velocity with which the motion of a particle of B is trans- 
mitted, is equal to the same quantity for a particle of A. 

8. Thus far we have neglected the influence, which the particles 

of matter with which the media are united, (such are the elements 

of solid bodies) exert directly on the motion. Such influence will be 

calculated by resuming our equations, and supposing, in addition to the 

forces exerted by the particles which have motion, other forces pro- 

duced by particles at rest. 

Let Aw, Ay, Ax be the co-ordinates of a material particle, mea- 

sured from the place of rest of the particle under consideration; 
Vor Via barn LT: Ir 
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R its distance from that point: then it is manifest that the only dif- 

ference in the form of this term will be, that in the present case the 

difference of the co-ordinates of the two particles parallel to the axis 

of 2, instead of being Aa +a+da—a, is Ax—a; whence we obtain, 

supposing the force to vary inversely as the square of the distance. 

da At—a 

ae ~~ 2 ry apy t & 

=- Q: et - SSA + be 

but (R + AR) = (Aw — a)’ + Ay’ + A® 

R+ 2RAR = Ff - 2Az.a; 

TAR =! = a 

whence by substitution we get 

da A&@—a Ax Ge =~ Q3 (ASE) (14+ 80 FF) + &e. 

: Aa 
=- Qs (Ax —a + 3a55 7 ) the 

QR R — 3A2*).a + &e. 

Qe ps (ay + As? — 2A2%) + &e. 

hence the expression 2 (Ay? + Ax? — 2Aa*) is zero, 

and the velocity is independent of Q; the only effect which is pro- 

duced by the material particles being an indirect one, arising from the 

alteration of distance which they produce in the particles themselves. 
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9. In the preceding investigation, it has been supposed that the 

force, which a particle exerts on another particle of the same medium, 

as well as that which it exerts on a particle of the other medium, 

is repulsive. 

Had we adopted the contrary course, considering the action either 

attractive or repulsive as it might happen to be, we should clearly 

have arrived at the following conclusions, the force varying inversely 

as the square of the distance. 

Pre eae ene 'a aa 
TES eae es yes 
#2 = a3 (f- 88%) aw + Me (2) ot 

Be en al aa 
where éa, 3B, dy represent the variation of motion for two particles of 

A estimated in the directions 2, y and x. 

Aa, SB, Ay represent the variation of motion between the given 

one of A, and one of B. 

A’a', A'', A’y’ represent the variation of motion between two of B. 

Aa’, Af’, Ay’ represent the variation of motion between the given 

one of B, and one of A. 
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10. Now, by reference to (7), it will be seen that the conditions of 

equilibrium will be satisfied by making JJ = — PQ, or supposing, in 

analogy with Coulomb’s hypothesis, that if the mutual action of similar 

particles be of one nature, that of opposite ones will be of another. 

The two equations in a, a’ then become 

os = Po A.8a — QEB. Aa, 

id _ = eA Res QBN. ra oA .QBa + : a, 

writing 4 and B for the functions of x. 

Now if both series of particles vibrate, we must have 

a = acos (ut — ke), 

a =a'cos(wt—kx +c); 

: ry tare 5 : 
*, da = — Qa.sin’ ie (omitting terms which vanish), 

A’! = — usin’ 2%, 

Aa = a’ cos {u't —k(w + dx) +c} — acos (ut — kx) 

= a'§cos (u't — ka + c) coskdx + sin (wt — ka + c) sin koxt 

— acos (ut - kx) = a’ cos. koa — a, 

Aa’ =acos (ut — ka — kia) — a'cos (wt — ka + c) 

= a {cos (ut — kx) coskdax + sin (ut — ka) sin kdx} 

— ad cos(wt —ka + c) =acoskox — a’; 

hence by substitution : 

da =—2PcA .sint #22 —- QZB.coskda.a' + aQzB 
dt} 

=-2PcA sin’ #2 — Q>B.a'+ 2QsB sint#* + aQ>=B 

2 

since [B= 0. (see page 244.) 

=—2PcA _sint oa 4 2Q=B. ae 
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Bene Gal 2 , hoa H 5 , hou 
Similarly, ap as 2Q=B. sin pat 2PocA.sin mart 

a 

°B d’B 
In the same manner pie Re 

d?r/ eee d’y 

dt dt? 

11. The integral of one of these equations is 

da da 
apo? ape: oo ccc ccc cecesc vec ccs (2), 

ay oS SIU EE IMS sspcandodce (3), 

but the circumstance that we have proceeded by supposing 

a = acos (ut — ke), 

a =a cos(ut — kx +c), 

gives wWa+u?a =0, by (1), 

also wa sin (ut — ka) + ud sin (ut — kaw +c) =— M. 

Thus a +a = Mt+N becomes 
Pe 

a—-—,a= Mt+N, 
u 

u\ da 

(\- ia) ae 7% 
hence, u = w, 

a=-a, 

or, a cosc = — a, 

a sine = 0; 

and c= 7, 

/ 
a=a, 
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therefore the following solutions 

a = acos (ut — k2), 

, 
a =— acos (ut — ka), 

appear to be the only possible way of satisfying the equations so as to 

retain the form. 

12. Had we, however, taken the more general expression for a, viz. 

a = acos (ut — kx) + bsin (ut — ka), 

it is not impossible that we should have obtained other modes of 

solution. The above is sufficiently general for my present purpose. 

Recurring again to the differential equations it will be found that they 

become 

da 2 hoa c koa 
a Ye acca boy 2 ‘ ain (2PoA sin’ it 2Q>=B sin aaa ) a, 

d'a’ / _ , kOw &: koa\; 
7am (2Pa4 sin’) + 2Q>B sin =| a, 

so that when the forces, which the particles of the same kind exert 

on each other, are repulsive, we have vibrations in the direction of the 

motion; when attractive, transverse to that direction. 

13. This conclusion is not altogether uninteresting, as it leads us 

to the possibility of a transfer of particles, owing to vibratory motion, 

which we shall discuss in the sequel. Suppose, for instance, the solution 

of one equation made it appear, that the particles, of which it re- 

presented the motion, had an uniform velocity of transmission along 

a certain line, then the corresponding equation for the other series of 

particles would shew us, that these particles were transmitted with the 

same velocity, along the same line, but in an opposite direction: thus 

giving us a transfer forwards of one series of particles to supply the 

places of the other series of which the transfer would be backwards. 

For the present then we may confine ourselves to the consideration 

of one medium, as none of its results, so far as regards its own motion, 

have a different form on account of the interposition of another. 
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14, Let us proceed, in the next place, to examine some of the 
results which we have above deduced, and to apply them to the case of 
sound. 

We suppose, in this application, that the two media are air and 
vapour, and we have seen that, on the hypothesis of a repulsive energy 
(7) in each, the velocity of transmission of the vibration of vapour 
is equal to that of air, not only when the two media are united in 
an uniform mixture, but even when they are not so, provided they are 
so distributed, as to be in equilibrium when not under the influence 
of an external disturbance. 

This would probably be the case during a day, in which the 
fluctuations of the barometer were inconsiderable; on other occasions 
we might expect a slight difference in the velocities, and thus might 
be explained the circumstance, mentioned by Mr Herschel in the 
Encyclopedia Metropolitana, of the double report of a gun. I should 
searcely, however, consider the above results consistent with the fact. 
did it not appear probable, that such phenomena occur at a time, 
when either the vapour is passing into water, or some other change 
is taking place which destroys the equilibrium of the mass. 

15. When the vapour has actually become water, if it act on air 
by an attractive or repulsive force, its effect on the transmission of sound 
will disappear altogether: the formula for this case is that which we 
have investigated (8) for a mixture with air of material particles, or 
particles whose magnitude or inertia is such, that whilst they affect 
the motion of air, themselves are not sensibly affected by its vibrations. 
We found that such a system introduced no additional force to that 
which the particles of air exert on each other. 

16. On examining the expression for the velocity, it is evident 
that unless 2 be supposed very great, we should expect to find the 
velocity influenced by the length of the wave, so as to increase with 
it. It is generally assumed that no such influence is sensible, but no 
very conclusive experiments appear to have been undertaken for the 
express purpose of ascertaining what the fact really is. That of 
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M. Biot carries with it the greatest weight, yet it is far from decisive, 

and the subject appears to be still open to investigation. 

If, indeed, experimental enquiries had completely set this point at 

rest, it would remain for us to determine whether the hypothesis 

which we have adopted was applicable to sound. We should have, 

if we did not entirely reject it, to introduce a modification, the effect 

of which would be to cause the second term in the expansion of the 

velocity to vanish. The same modification would probably apply to 

the motion of light i vacuo. 

17. Regarding this part of our subject then as probably not 

opposed to facts, although not deducible from them, let us recur to 

our equations. 

We have seen that vibrations in the direction of transmission are 

possible for any law of force, which can be expressed in terms of 

powers of the reciprocal of the distance, greater than the first (4). 

Now if we suppose x some large quantity, since = enters as the 

coefficient of the square of the velocity, P must be excessively small, 

for the velocity itself is not large, and, in fact, bears a very small 

ratio to that of light, which is expressed in an analogous form. 

We are then limited in the choice of our power on both sides— 

first, must be positive, secondly, not large, and we shall see pre- 

sently it cannot be equal to unity. 

Suppose the particles actéd on in such a manner that the moving 

force of one on another is a quantity bearing a given finite ratio to 

the velocity of transmission: this gives 

P 
n = C, 

e 

P : : a but gai Varies as (velocity)? = C’, hence = oe ; 
2 

n—t 

€ 

7 
.gan-d Oni 2. 
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18. This argument, undoubtedly, does not carry with it much 
weight, although it appears to a certain extent plausible. It will be 
extremely difficult to attempt a formal proof of the law after which 
we are seeking. Experimenters have had their attention drawn to any 
thing rather than this; for it must be remembered that it is not by 
the examination of broad facts and familiar phenomena that we can 
generally construct a Theory, but by the intricate pursuit of the slight 
deviations from, and apparent exceptions to, the general rule. 

Supposing such a law established as we have given above, it is 
manifest, that the velocity must be deéreased in the higher regions of 
the atmosphere, whilst the variation of the velocity, due to an altera- 
tion of the length of the wave, is increased in the same ratio. 

We might then hope to arrive at satisfactory conclusions, and indeed 
completely establish a law of repulsion, could we make observations jn 
the higher regions of the atmosphere, as for instance, on or near the 
summits of considerable mountains. 

At the same time, supposing such experiments have been made, 
and that the apparent result of them is contrary to that obtained, on 
the above supposition, I should still hesitate before I reject-a law of 
force which is, as far as we at present know, the universal law for 
all particles not in actual contact. 

The case here is widely different from that of light. In the latter 
the length of a wave is only about the G00 part of an inch; in the 
former, it is several inches; calling to mind then that even for light 
the difference of velocity bears but a small ratio to the whole, we 
should not expect, unless some of the other quantities proportionally 
increase, that a difference so minute would be sensible to the ear. 
Should this be the case it is unfortunate, as it deprives us of a ready 
mode of ascertaining the fundamental property which pervades the 
whole. 

19. But in the absence of the observations requisite for obtaining 
accurate results, we may still discover, by some indirect process, 

Vou. VI. Parr II. Kk 
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relations which shall furnish arguments in favour of any particular 

assumption. With this object let us compare the equations for the 

motion of light with those before us, limiting their interpretation by 

the phenomena of which they are the mathematical expressions. 

In both cases the variation of velocity due to the length of a 
/ 2 

wave must depend on the magnitude of the term i) , and, from the 

smallness of this variation in the case of sound, (if it does vary at all), 

we conclude that € cannot be /arge in sound compared with its value 

in light, yet the velocity of sound is very small compared with that 

: : fe 
of light, whence it appears that the term peal 8 small, not by reason 

n—-1 

of the comparative increase of e¢""', but by the diminution of P. 

We will then endeavour to ascertain the value of 2 which renders 

the expression 

(taken from 0 to infinity with respect to each of & » and ¢) a small 

quantity. 

20. It is obvious that this may be effected by making m very 

large, but it is doubtful whether this will be the mode by which it 

actually becomes small from the circumstance that ¢’~' becomes pro- 
portionally small by the same hypothesis. 

In order to find another value of », which will satisfy the same 

conditions, we pursue the following process. After writing 2, y, 

instead of ¢ » and ¢ for convenience, let the above function be 

expanded in a series ascending by powers of x; then the finite sum of 

the expansion with respect to x, will be the value of the expression 

corresponding to given values of # and y. 

n+ gy" 

+ — + &e. But AG tl oi 5 
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hence it is evident that, omitting all the terms of the summation 

except those respectively which involve the highest power of x, we 

have, as the sum with respect to x, nothing more than the integral 

with respect to x; and, by the integral Calculus, we know that 

a0 dx n.(n — 2)...2 1 

1) 
Eee Fis - n+2° L(t 4g? 4 af)? (x +1).(m —1)...3 (a? + y’) 2 

Pursuing an analogous process for y, we obtain 

iy dy _ (n- 1). (a — 8)...1 f dy 
Y22 (a? yy? n.(m — 2)...2 “S(a? + y*) a" 

Le 1h Ge) ae ie 

TTR CS So) Re ia 1 

P y dy (x — 3).(n — 5)...1 1 
J, = (m — Q)...2 Cee w13 y=2 (a? +9’) 

_@=A).(4—3)...1 1 2 

FON (Tee Ce at 

ne (aeatA) ani 5)ee2 1 oie) haa, 

DAW 2B)orO winarah?Q? 

1 n.(n — 2)...2 (nm —1)...1 7 
} ——__—_, = é 4 
ge i! 2 (x +1)...3 m.(m — 2)...2 2x*~? ‘(at + y+ 2)? 

1 pal T 

m+1 art! 9 

x y a(n — 2)...2 "| (@ — B)...1 
Wg, te) (Re FP Ry eae 

plese Rl iak ap aay 
7 (a +1). (@ = 1) a 2” 
KK 2 
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whence the above expression becomes 

-( 2g He Ba 

Gaitfe bs +1 (@ti1).(@ Si FT ks 

the coefficient in which contains ens 

This owes its value to the factor (n - — i) sas 

We could not, consistently with the restriction before imposed on 

this quantity that it shall be small, suppose »=1, as that hypo- 

thesis would make it very large, and, what is worse, would affect it 

with the negative sign. 

If x be a considerable quantity, the factor of = is not large, 

but — is itself considerable. 

If x =2 the expression is reduced to zero, and the velocity will 
be found by extending the expansions in finding the finite integrals, 

and retaining the smaller terms, and will consequently be very small. 

The condition which we required, therefore, that the velocity should 

be very small is satisfied, and, apparently, only satisfied by the hypo- 

thesis of the force varying inversely as the square of the distance. 

21. It may not then be uninteresting to examine this law of the 

force a little more closely, although it appears by no means _ probable 

that the statical condition of the pressure varying as the density, can 

be reduced to this law, or indeed to any other, properly so called. 

The investigation which follows, of the statical condition of a system 

of particles exerting repulsive energies of this nature, will sufficiently 

prove this, if proof be necessary. 
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SECTION II. 

PRESSURE. 

22. CONCEIVE a vertical tube of given dimensions filled with air, 

of which the distance between two consecutive particles is ¢, and 

whose law of action is that of the inverse square of the distance; 

the particles-in the tube being acted on as well by the external air 

as by that in the tube. It is clear that the force on any particle 

will be, that of the air in the tube, diminished by the force of an 

equal volume of air of the density of the atmosphere. 

Let 2a =the length of a side of the section, which, for convenience, 

suppose square; and consider the action on each unit of the base to 

be equal to that on the central unit, which is, however, by no means 

accurate; then, if da, dy, dz be the co-ordinates of any other particle 

measured from this, we have the pressure due to the air in the tube 

» 
Oh 

r. al Cs + oy? + 5eP? 

dx being in the direction of the length of the tube: 

but if da = “e...... 

cigs 
€ ~ (a’* +7? +%)3 

x, y, * being respectively the number of particles by which the par- 

ticle under consideration is distant from the point in the base. 

: Soe : h 
The limits of this sum are a2 = = y= - : 

Now whilst y and = have any one particular value respectively, « 

will go through a// its values; if then we expand the above function 

and take the finite integral of each term separately, we shall, by 

summing the resulting series, have the repulsion corresponding to any 

value of y and x. 
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x { 3 3.5 a & 

Thus way se! Gre afte 24g rey 

and) >,.  — a 

eae 
2 —— __ os SiGe gt 

gt! a” 

pS = — (a + 1) uaa ieun 

Substituting and, for the present, retaining only the first term, 

which amounts to supposing 5 very large, we have 

s & =e US : 

“(e@+yeey (ts) ty te) 

Proceeding with this in like manner for x, we obtain 

2 & Lo Vespre—a Ver yx +e 

“@ay se! 28 Jeg yest a Jat y— a’ 

and applying the same process to y, we obtain finally 

& 

Vvet+yty 
x 

>> 

Ve+ryte 
5 + wlog = y log 

Very tery 
Vets 

Ve+rytr x +a ee es eee A 
ae: Vy +e 

— «log 

s/ae+ry +s 

vy 

= : {i cot Av ae + B + 2alog 

+ %.cot7! 

2+/7 “| 
f3+i 

If we further suppose the height of the tube considerable, com- 
4 

pared with the side of the section, we may omit compared with a: 
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hence pressure from the air in the tube 

_ Ap 2+vV2  a| 
=— 2a. tog al ah 

=0.D{1+$, 
h 

C depending on the size of the tube. 

23. If it be allowable thus to suppose an action on the fube. this 
gives the elastic force 

E=c.Dhi + Fh. 
h 

Let now a given mass of air be supposed compressed, as in Pro- 
eee . 4 ah fessor Robison’s experiments, then since the mass « “ = z 

;x D. 

The conclusion then at which we have arrived is that #= CD (1+ gD): 
qg being small. 

Now the external air, acting in the same manner, produces a force 
which is C’D'(1 + qD); subtracting these we get for the pressure 

p=CD(1+aD)-— CD. 

Now if D=D=1, p=o; 

p=C{iD(1 +aD)— (1 +a)}. 

Met 0" ga Ts Ce 

p=D$§1+a(D-1)} -1; 

but p +1 is the actually measured pressure, hence calling this P, 

P=Di31+a(D— 1} (2) 

which, however, supposes a to depend on the volume of the tube. 
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24. Let us apply this expression to Professor Robison’s experiments 

for dry air, considering it merely empirical: from this we obtain 

D=9; 1.957 = 2(1 + a); 

. a=— .022, 

P=D 31 — .022(D - 1)}; 

= P = 3(1 — .044) = 2.868, 

= P =4(1 — .066) = 3.736, 

a P = 5.5(1 —+099) = 4.955, 

= P= 6(1 — A1) = 5.340, 

D=7.62, P= 7.62(1 — .1456) = 6.50. 

If we arrange these in a table with the measured results, we have 

as follows: 

Calculated. Observed. 

The first and third differ by .02, the rest are nearly accurate, so 

that the empirical formula is not far from the truth. 

25. In the summation of the preceding series (22), we have only 

retained the first terms of the various integrals, which amounts, in 

fact, to substituting the fluent for the definite integral. On applying 

this process to the expression for the velocity, it was shewn to be 
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equal to zero (20). The process is, in fact, manifestly insufficient in 
that case. The objection, however, which there applies, does not affect 
the expression under consideration, as the latter consists of a single 
term, whilst the former is the difference of two terms, in each of 
which the principal part is the same. It is not impossible that some 
of the omitted terms, even in the present case, should be considerable. 
The first of these has been exhibited merely on account of the sym- 
metry of its form. 

26. Recurring to the preceding expression for the pressure, and 
5 gis h taking as the limits x = 1, s = =. we get 

h 
PA se ays 1 3 1 “aed € 
Cr a ie fess Oy Ra tear 

ge Me VG 
“(+ y? +z) e r/ f+ (2) Vy +1 

ah 
1 2 

"2 fa sone ANG 
ia aff +(2)} ly +(2} 

ee ee el By Oy Fora 
ices: from 2=0, to w=f. 

Soo aye ~ g (ieee! ATEE s ontag 24-V5I 
Vou. VI. Parr ITI. Lu 
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fry Ghee AGP ocelot’ ola) 29-7). 
(26/9 +8 fa / (2) ay 41 Be

 a 
€ 

Swcaetuth ; 
and putting Fi for y, we find the pressure on an unit of surface due 

to the air in the tube | 

Ap at Ve h AVS 8a0+h 
sree WS cot 

€ 8 3+ +1 € a 

a a+/9¢+h at+JVadt+e Jase h 

Sa4 2+ atJ/a+th Ja@ih € 

/ 2 2 

4 Foot” “ +. 

If we adopt the same process as before, (?. e.) suppose # large 

compared with a, we have the pressure 

. 24a 

Au \2a 242 a 469 . 
ie °8 B/3t+1 + ch og ari 

We see then that the introduction of another term has not, in 

the slightest degree, helped to extricate us from our difficulty; the 
result still depends on a; nor can I see any mode of avoiding this, 

and must therefore content myself with leaving it as a difficulty, or 

rather come to the conclusion that it does depend on a, and that, 
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consequently, pressure is not produced in this manner, except this 

mode of summation by integrating is not allowable, which I am 

rather inclined to think is the case. 

27. This, however, would not deter me from still retaining the 

above theory for the motion of air producing sound. 

Pressure may be produced, and I think there is good reason for 

supposing this the case, by the actual contact of particles. It appears 

to be the most simple hypothesis to which we can refer it. I do 

not conceive it necessary to such a supposition that an atom should 

be variable in its form and dimensions. It would be more simple, 

to consider each particle as a collection of atoms arranged about a 
central nucleus of attractive or repulsive imponderable matter. Thus 

the whole pressure on a suzface would be the pressure produced by 

the material particles actually in contact with it, the only effect of 
the immaterial particles being to compress the material ones together, 

and their sensible effect being consequently zero. Dr Dalton, however, 

supposes each atom surrounded by an atmosphere (as he terms it) of 

its own, which hypothesis although far more simple, does not, I 

think, so readily solve the difficulties, as that which I have adopted. 

28. We recur then to the motion of the particles on the hypo- 

thesis of a law of force: the transmission not being an effect of 

actual contact, but of agitation amongst the immaterial particles. Of 

course such an agitation will produce, or be produced by, variations 

in the actual pressure, and thus the pressures may in one sense be 
said to produce the motion. 

Having given reasons above for supposing the particular form of 

the law to be that of the inverse square of the distance, we shall in 

future adopt it. 

Let us now proceed to consider the effect of the factor . on the 

velocity. Conceive an atmosphere of one kind; let r, r be the dis- 

tances of two strata from the centre of the Earth; ¢, e« the distances 

LL2 
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of two immaterial particles at those points, respectively; then, for the 

equilibrium of a small portion of air between them, if p, p’ be the 

units of pressure; we have 

2 s Pr Se (c being due to gravity), 
€ E> 

ey pr 

or ls paola 
dr” 

d.pr s Gem: 
hence e. ae —2 eer 

Wet te =e477 0... 

then p is the force upwards produced by the coating of atmosphere, 

diminished by that of gravity acting downwards, and 

a 1 1 

de iad fe 
MS 1 p q 
nips + o | Ap ++ zds 

eipuine tl LIF. 
en. 7? r DP ia poe 

alec MRIS AAS 
=~ 27 Berit 

Now if xn=2 this is 4, also if »=1 the same form is true ; 
7 

assume therefore 

p=53 “. pr =a, 

d pr c 
hence we ae Pip becomes 

d a ene. 

dré@ @’ 

also ¢ = Ar + B. 
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Now the altitude of the thermometer diminishes (ceteris paribus) 
nearly uniformly as 7 increases, hence, putting r =a — ¢, we get 

dae Pepe 55 ery. 
€ “Are BT abe’ 

and — = V'"(1+et); 

. & = F2(1 +t); ll 

v=V,V/1 +t, 
which is the common expression. 

29. Newton’s hypothesis, founded on the law of the pressure varying as the density, is that the particles exert on each other forces varying as the reciprocal of the distance between them, but that the sphere of influence of each particle is terminated in the particles immediately adjoining it. The latter clause has been over- looked by many writers on the subject, although, as Professor Robison observes, it is absolutely necessary to retain it; and, indeed, it appears from our foregoing conclusion (20), that direct vibrations are incom. patible with the hypothesis of the law of force varying as the reciprocal of the distance. 

There seems to have been a great disinclination manifested to the adoption of Newton’s Theory. Even writers, since Professor Robison, who have amply extracted from his work, have omitted the restriction of the law to the adjoining particles. Nor is it very extraordinary that this should be the case, when we consider how little pretensions this has to be considered a law of force at all. 

Robison mentions an hypothesis which would reduce the above to a more intelligible form, which is, that the particles be supposed elas- tic and in contact. At the same time he rejects it, alleging as his reason for doing so, that if the particles were originally spherical, they 
would, before the pressure was doubled, become cubes. If this be the only objection against it, I confess that it appears to me to stand on 
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a firmer foundation than any other. The hypothesis I should adopt 

from the formula p = D {1+ e(D—1)} would be that the air consists 

of aggregations of different kinds of particles about a fluid which i: 

attractive or repulsive, or, perhaps, of aggregations about two fluids. 

The particles themselves might be indifferent to each other's action, 
and obey the pressure of this fluid. Thus we should reduce the 

problem of pressure to that of particles in contact. 

30. The result of our foregoing calculations has gone to shew, 

that, if we may suppose the phenomenon of sound due to the action 

of the repulsive energies of particles varying according to the New- 

tonian Law, there is no necessity for introducing an auxiliary hypo- 

thesis of the developement of Heat, but that the modifications, which 

the forces themselves produce, supply the requisite change in the 

energies of the action. The fact, that the same supposition is in- 

applicable directly to Pressure, is no argument against its validity for 

Sound; as it is clear, that, if these attractive particles be not the 

particles of air itself, but of some one or two media, exerting pres- 

sures on those of air, we must refer the statical pressure of the 

atmosphere to that of the particles of air, uniformly acted on; but 

the motion, at least the vibratory one, must be attributed to the con- 

densation or rarefaction of the attracting particles, and therefore to 

the variation of the action of these particles on each other, and on 

the air. 
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SECTION III. 

Combination of the Vibratory Motion of Particles with the 
Motion of Translation. 

31. In the preceding Section we have considered the forces repul- 
sive: though, as far as their mutual action on each other is concerned, 
there appears to be no reason for so doing; indeed it appeared from 
considerations connected with light that the ether, at least, is an ex cep- 
tion to this rule. The difficulty attending the hypothesis of attractive 
forces consists in the apparent instability of a system of such particles. 

This difficulty, however, is readily obviated, as the following con- 
siderations sufficiently evince. 

32. If the particles have the cubical arrangement which I have 
before adopted, it is clear that the action of the forces on any par- 
ticle, moved slightly from its position of equilibrium, would tend to 
bring it back. And if a series of particles in a given plane be 
simultaneously moved, they, in like manner, would be brought back. 
But another case presents itself which is not so easily solved, viz., 
that, in which a series of particles in one plane are moved simul- 
taneously at right angles to that plane. We will then endeavour to 
find what is the force exerted on a particle in these circumstances. 

33. Take the position of equilibrium of any particle, so displaced, 
as the origin of co-ordinates: let 2, y, x be the co-ordinates of any 
other particle, at the distance r, suppose the displacement to be through 
the space a, and that the force varies inversely as the square of the 
distance, then the attraction on this particle to carry it forward, is 

nae RTE ee sh I fap anamitee 
V(@—a) + y +x) taken to infinity 
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tendency will be to restore the equilibrium, if 
2 

25 (x*—3y*) is negative. 
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In order to ascertain this, I have adopted an approximative process 
of finding and comparing the integrals, and the result being negative, 
we may conclude that the tendency is to restore the equilibrium in 
this case. It is true an objection may be adduced from the enormous 
complication of disturbances which must affect the equilibrium. The 
only answer I can offer to this, is, that the rapidity with which a 

disturbance is transmitted is enormous in the same proportion, and 

hence we may conclude that the disturbances are easily righted. 

34. Adopting then a series of attractive particles, or two series, 
each of which attracts its own, but repels the others, we obtain, as 
our equations of motion, (the direction of transmission being that of 
the axis of 2): 

da Oe {°2 + 67 Hee sin te* 

df 7 y 

——— {Pate S A SEY inet aie 

Lae Em [ree + C— QF sin? 7S - 

i c we) _ (eee 
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ary _ 2P as —¢. 

Et), hice ane sin’ . rit 

and by what has been shewn in (4), 

Se A 

the quantity apt = ¢ ae aes is positive: 

let it be equal to 2w°, and we shall have 

@a if 
dé = 2u'a, 

d'p : 
iby oni 
dy a 
de? =- wy. 

On examining the investigation for light, we perceive that the 

solution of the last two equations was suggested by that of the 

approximate ones 

and: applying the same suggestion to this case, we should have to 

solve the equation 
da  2u* da 
de * @ de ~% 

which would arise from supposing the extent of influence of the par- 

ticles small, or the length of a wave large. 

This equation is nearly identical, in form, with that, which Fourier 

has so amply discussed in his treatise on Heat. 

35. It may not be uninteresting to compare the results in the 

case of inelastic fluids with ours. I shall adopt the usual notation, and 

suppose the motion to take place in the following manner. A series 

of waves is transmitted along the axis of x, whilst the motion of an 
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individual particle is partly in the same direction and partly in a 
vertical direction, which we will call that of y. There is no motion 
in the direction of x. 

It is evident that we are here considering the motion of waves on 
water or of the tide waves. 

The equations of motion are 

aoa teem ta 
dy dt 

dp _ d(u) 
dx D{- dt |. 

which give one as their result, viz. 

d d(v)_ d du) 

da dt dy dt 

also we have the equation _ + ——=0 

dt’ 

and the additional hypothesis that the motion is a wave motion, in- 
troduces the further conditions 

“u = asin =" (ct — x) fy, 

v= boos = (et — x) F'(y), 

Jy) and F'(y) being any functions of Y 

By substitution in the equation 

dus dv 

da * dy ~ 
we get 

— = aos > (et — x) fy + bcos" (et — «)F"y=0; 

MM 2 
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br 
5 iment ws 

Nes ae ; 
and eee. sin — (ct — x). F’y; 

Qr r 

5 2 
and representing ~ (et— 2) by 0, we thus get 

du 
da = 7 20088. Fy, 

Gh TON 4 
ay ae Ys 

be = chcos@. FH’ Fees Fy, 

dv Qn. 
da 8 808 Fy: 

ca FF" 
dy relies 

dv Wr ty 
Wo esind By; 

_ d(u) Br 
aaa gq Sin 8 cos 8 (E"y)’ + ee sin@cos@. Fy Fy 

+ cheosé. F"y 

= 2 sin @coso {Fy F"y — (F’yy’} + chcosé. F’y 

a 
B sin? 6 Fy Fy + bcos’ 6 My F’y — Arey sin 0. Fy 

=i Fy Fy 2 rel sind. Fy; 

and hence the equation (a) is reduced to 

<T eb cos0. Fy 
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= _ sin 6 cos0 (Hy Fy — F’y F"y) + chcos0. Fy, 
T 

and dividing by cos, and equating coefficients of sin@ and of unity 
to zero, we have 

Fy Fy — F'yF’y = 0, 

The latter gives 
Qa 

1) SO! 

which also satisfies the former, and we obtain 

- Qa zB, 
2) = bsin (et — Z)Er* , 

2a 

I= beos = (et — a)er*. 

37. It is clear from these equations that if there be a motion 
vertically, there must be a corresponding horizontal motion, and that 

A 3 3 A s 
when the vertical motion is zero, as when c¢ — x = a0 2 the hori- 

zontal is at its maximum, and vice versd. 

If we take the origin at a given depth #, and suppose the maximum 

values of w and wv at that point = m, we have m=, and the greatest 

velocity at the surface is 
Qa 

u=mer"= v. 

38. Suppose now we have two sets of fluid, and that at the depth 

h in one, and /, in the other, the maximum velocity is m. 

Let uw, u, be the maximum velocities at the surface, 

am, 

then uw = mex, 

Qn) 
———= 1h 

u = mer’, 

Qa 
u —(h—h 

then at amc 
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so that if & be greater than h, w is greater than w, or for the same 

length of wave (on this hypothesis) the velocities increase with - the 

increase of the depth of fluid. 

I return to the equations in (34). 

39. It is possible, that the original disturbance may have been 

such as to make a = 0, that is, entirely transversal; such an hypothesis 

will in no way affect our investigations, as it does not interfere with 

the other equations, and moreover in the case of light is probably 

correct. 

Again, the original disturbance may have been such as to ¢mpel 

forwards the particles, at the same time that a transversal vibration is 

communicated to them. Integrating the first equation, we have 

da\* 20 (=) = dua? + C, 

Ps 

V being the velocity communicated; hence, we have 

aan 

and if we assume that a = mt + ae“.coska, we have 

oa =— ae". o sine 5# coska + tim ~ 

. ko & 
=— (a —- mt) sint =" + tom; 

da 
yap Qu? (a — mt) + tf(2), 

the latter term arising from m being a function of 2; 

da 

dt 

v. C(a — mt) = 2u (a — mt) + t.f (2); 

but = acecoska = (a — mt); 

and by equating coefficients of a we get 

= Wr, 
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from which it appears that J(%)=0, or m is a constant = V: and 
hence a = Vt + ae‘’**'.coska is a solution of the equation. 

40. We conclude that a motion of translation is perfectly con- 
sistent with vibrations, and, from the form of the solution, it will be 
perceived that the transmission is not uniform, but proceeds as it were 
by fits; the uniform motion of transmission being combined with a 
variable one, depending on the lengths of the waves in the  trans- 
versal vibration. In other words, at particular points the direct motion 
is accelerated or retarded by the effect of the transverse motion of 
the particle. 

41. In order to ascertain the value of V’ it will be necessary to 
recur to the circumstances under which any particle started into motion. 

Let the particles behind it be in motion according to the regular 
type, then clearly the force acting on this particle at the first moment 
is represented by } 

S oxr+ta ia 3 ot 

{Cx + a) + Cy + BY + Ox + yyyt We? 
taken only on one side of it with reference to a plane perpendicular 
to the axis of x. 

The expression becomes by expansion, 

sot ta {1 38 2 (ade + Boy + vox) +a? + B+ 2 
7 2 Fs 

a 3. 5 4 (a? da" + Boy? + ¥°dz") +8 (SadyaB + =) 5 oe 
2.4 r' ip 

1 3 Q2(a°da + aBoy + ary oz) 3 y 3 SIS to 2) eG (Rte «A pens : 328% (8° + 7") 
3.5 4(da*.a? + dady’. B? + 6x 0x"-y?) 
2.4 ye 

3 2.ada* + (a° + B+ ¥*)da =F: a este 
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1 9 SiSee> us Si dandy? Ss pale 2 pastes pete BF ee 2 2 
35 {« 9 -d@.a ae. poe 2 . 7” (8 Y) 

Bory — 3 (8 +»). 
Suppose the particle under consideration situated at the confines of 

a medium, whose temperature is less than that of the medium in 

which the uniform motion has been transmitted; we have then a=0, 

and the force exerted 

= A(P’ + 7’) 

= A.(b’ + c*) suppose, 

omitting the variable part, so that the value of a@ in this instance 

depends on 6? + &. 

It will readily be perceived that the above investigation has refer- 

ence to the possibility of a transmission of the particles whilst they 

are in a state of vibration. And since we have shewn that the ten- 

dency to motion forwards varies as the extent of the vibratory motion, 

we have stumbled upon an interpretation which coincides with the 

physical characters of Heat. 

42. But all that we have hitherto done is to suppose the motion 

of a series of particles, symmetrically situated with respect to the 

axes. Such an investigation will probably be correct for Light, but 

when treating of the transmission of Heat, the contrary must un- 

doubtedly be adopted. 

Leaving out of the question then the above investigation which 

may apply to constant radiation, and which is nearly identical with 

Leslie’s hypothesis, we come to the case of a medium having more 

particles on one side of a plane, parallel to that of yx, than on the 
other; and our object is to determine the initial velocity and motion 

of transmission of a particle along the axis of x. 

We shall in this investigation suppose no reciprocating motion of 

the particles along the axis, and consider them to have had no velocity 

of transmission, which supposition will not affect the results due to 
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that velocity if it exist, but merely introduce a portion to be added 
to the former. 

Now (r+ p)*=dx" + (dy +86)? + (dx + dy)? 

=r + 2(dydB + dx dy) +88? + dy? 

=r + p' suppose ; 

eal Fess poy, tnibtare 
Ct Men? (1+ 2 

and p= 4(dy°S 8" + dx°dy*) + 4dy dx dB by; 

” hence ~ 1, — 4 {,_ 8 28y88 + adsdy + 96" + By" (Epo tle 

4 3:5 40y° 0B’ + 482° dy’ + 4dy dx dB by 
* 2. 4 7 \, 

hence Be is Be 
7 pallet p» 

= 3/5 - 3 da (dR + dy’) 
P) r 

+ 258 gg VEPs Seer 

oy 1 _ ba? + by? + 8x? but = re ate 7 nearly, 

ie, 

i Baie 
Cin Ot. oS 5(SB’+dy*) 38 5B? + Sy? 
Gee Wh GO Re argue ig era aT 

==S438 pBaeay 

Vous Vie “Pans IT, 
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or, omitting the first term on the principle above stated, and putting 
for 68° and éy* their values 6 cos (ut—ha) c.cos (ut—ka +A), it becomes 

oe = FR 4b’ cos’ (ut—ka) +c cos’ (ut—ka+ A)} 

+e B 
=R ger aa Bi cos 2 (ut—kx)+c° cos 2(ut—hx+ A)} ; 

da +e 
i. help tea = (eee cos 2(ut—hkx)+c° sin 2(ut—kx+A)} 

e+ We: ; , 
=R .¢ omitting the reciprocating part, 

and supposing = =0, when ¢=0; 

hence, when the medium is of this kind, there will be a transmission 

depending on the motion of vibration. 

Thus it appears that the quantity of one substance A, which enters 

a medium, depends, ceteris paribus, on the intensity of the undulation 

excited in the particles without the medium. At the same time, a 
quantity of the other substance B is withdrawn from the medium, 
and retires to supply the place which the former has left. 

43. The only doubt, which I can perceive, of this being a sufficient 

explanation of the coincidence of phenomena, which require consider- 

ations of an undulatory, as well as of a corpuscular, nature arises from 

the apparent smallness of the term and the consequent smallness of 

the transmission. 

It would appear, from the recent experiments of Professor Forbes 

on the Polarization of Heat, that some such terms must enter from 

whatever considerations they may be deduced. It will, perhaps, with 

some shew of justice, be objected to the above statement, that all 

that has been attempted is, to shield ourselves from the necessity of 

accounting for Polarization of Heat, by referring to its parallel in 

the absorption of light. 
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I cannot, however, admit such an objection, as the great difficulty 
which hangs about absorption is its elective character, which is not 
at all necessary, as far as we know, for Heat. 

44. But allowing all the difficulties, it is desirable to adopt an 
hypothesis which has some chance of meeting a few of them, and 
I hope it is not quite unimportant to shew that if the vibration in 
one plane be stopped (as for instance if b=0), the transmission is 
affected by a constant loss, and if another substance be so_ placed, 
that the corresponding planes in the two are parallel, c’ will not be 
destroyed by it, whilst on the other hand, if they are perpendicular, 
it will; which is, in fact, such an explanation as will account for 
the phenomena. 

It appeared to me utterly impossible to refer the phenomena of 
Heat to vibrations in the same manner as we do those of light, from 
the obvious circumstance that a new and permanent force seems 
necessary in the consideration, and this must plead my apology for 
bringing these speculations before the Society. 

45. I would have it observed that although in the majority of cases 
I have spoken as though I consider one attractive medium (at least 
as far as the action of the particles on each other is concerned,) 
sufficient to account for the phenomena, it is not at all my wish to 
have it supposed that I am anxious to advocate such an hypothesis. 
If we choose rather, in the present state of our knowledge of the 
subject, to admit Coulomb’s hypothesis of two media, whose particles, 
respectively, act repulsively on particles of the same medium, and 
attractively on those of the other, none of my conclusions will be in 
the slightest degree affected, provided we allow that the effects of 
vibration, and transfer of which we have been speaking, have refer- 

: : : P ; oe 
ence to the medium A, for which the quantity — ate = is positive, 

or aa, so that the mutual action of two consecutive particles of 

the moving media is less than that of the other. 

NN 2 
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I should, however, prefer retaining the two media above considered, 

for reasons which I shall presently adduce. 

46. The conclusion at which we have arrived will be strengthened, 

if we can shew that the value of 6°+c’ is considerable, in cases in 

which we have good reason to attribute to it effects, the magnitude 

of which is determined by experiment. Such effects appear to me 

to take place in the case of light. I must here refer to my Memoir 

on that subject, as I am not aware that it has elsewhere been pursued 

into detail. 

By a reference to that Memoir, it appears that, representing the 

square of the velocity by a series of terms of the form 

the quantity 7 is for all excepting two of Fraunhofer’s substances 

negative. 

This curious result is by no means attributable to the sum of the 

series which represents it on the hypothesis of an ordinary vibration, 

peice , 4 : 
viz. a = —2@5 Lsin’ (1- ~S). The coefficients would thence 

be the same for all substances independently of a common factor. 

47. The explanation which I ventured to suggest of this anomaly 

was one of which I have seen no reason since to repent. At the 

same time I fear in repeating it that it may be pronounced incon- 

sistent with facts. It is that the remaining terms in the expansion 

must be retained: an hypothesis which seems to imply that the re- 

fraction will depend (though probably very slightly indeed,) on the 

intensity of the light. ; 

This hypothesis is, I suppose, totally unsupported by any experi- 

mental evidence, but it so readily solves the difficulty that I should 

not be justified in leaving it unnoticed. 

Suppose then we adopt the hypothesis and examine the equations 

of motion which thereby result. 
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By a similar process to (42), we have 

1 ar 3 2 (Sadat dy 58+ dx Sy +ba? +96" + doy) 
PN 2 r aoe 

3.5 (4(8a* da? + dy? dB? + dz* dy*) + 4(dada dy 5B +...) 
24 ( : n a 

i 4 (da? +08" + dy’) (S25a+dy dB + bx on) 
re 

3.5. 

67° 
T (Sn8a + 336+ dxdt, 

and by multiplication and reduction, this gives us 

33y°3B 3 , da? +3824 by? =3 | Se 
7 ? 

eae = 2x (88- -) Pz 

3.5 9, da* da’ + dy? dB? + dz° doy? + dy? (Sa? + 8" + dy") tite op 7 

Shae uF 
Pia ry ne fe 

hence, writing dy for dz: also, putting 6a=0, this is reduced to 

6B 3dy° 3 (dR? + by? 2Ob toy | 85 by 8," 
sf {i- r mall r 7 ey r t 3 re )}. 

Now the integral of this is not a simple quantity, as in the for- 
mer case, but some knowledge of it, at least, may be obtained by 
the assumption (which is perfectly allowable) that the same form still 
holds ; 

let then 8 = b cos (ut—kx); 

similarly dy = — 2+ sin® oy 
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and we obtain 

d?B 1. koe se fy _ 3ey- 
ae = > 2B2 3: sin? a 

3 /, (B+) 105y") a 35 4 9p OY" sis HOH 
= § (4S a eae ag ae ain 

1 3oy*\ . ,kox 
= - 2635 (1~- “) sin’ + 

1 “ 1087 . kee 35 ,,0y° . , kon 
Seer ame 2 2 ee 6 Lesh 6 6B 5 {i + 7°) (1 } sin’—5- + 3? sin = \. 

3 r 

Now a term of the form f° is expressed by 

B cos’ (ut — kx) = us §3.cos.(ut — kw) + cos3 (ut — kx) 
4 

oa 
4 

but 8 is supposed, in fact, to consist of an infinite number of terms, 

the type of which is the above, hence, omitting all terms which do 

not come under this type, for B* we shall write $5°,. 

2 

Similarly for B-y*, we shall write — and we obtain by substitution, 

putting also b =¢, 

ap 1 Boy") . , rox 
Ge =~ 28253 {(1 — F) sin 

> 

5 1007" 7 oy no moe 
a APS ( ia i. =) sin A 4 

so that on this hypothesis 

1 Soy. rot 150° 100y° , Uy ror 2 (a= Paes ME 1) —#F 4 r eee 
Qa a 
x 

which shews that the introduction of this term will affect the third 

term of the expansion for v*, but not the second. 
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In fact v? now takes the form 

z . _ FOL 
2A being the coefficient of sin’ above. 

48. Of course, I do not mean to offer this as a solution of the 

equation, but merely as a proof of the possibility of its taking the 

above form: the quantity 4d may, in fact, be very different indeed 
from that above exhibited. 

49. Now we found in the case of the ten substances examined 

by Fraunhofer, that eight of them gave the coefficient x negative, 

whilst the other two gave it positive; the value of 4b? must then be 
considerable (supposing the explanation of the fact to be contained 
here), and greater in the cases of glass than of water. 

Now 4°, in the view above given, will determine the quantity of 
heat transmitted with the spectrum under any given circumstances, it 
follows therefore that substances which transmit heat most freely give 
4 small, and hence referring to the list in my former paper, I obtain 
the following order for transmission of Heat, beginning at that in 
which the freedom of transmission is the greatest. 

Flint Glass, No. ai 

ena cccccavenccnsss Sie 

sivble>« se siesisasiieg 3. 

vo ccevencvcvsesec 13. 

Oil of Turpentine. 

Crown Glass, Let. M. 

pplapceniat one No. | 

Water. 

Solution of Potash. 
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50. I am not aware that the transmissibility of these substances 

has been accurately ascertained: it appears, as far as I have had oppor- 

tunity of judging, that they exactly coincide with the above table. 

But further, the velocity of transmission of the heat depends on 

the quantity 5°, according to the view of the subject which I havé 

given above. We ought then to find the refractive index for heat, 

or rather that for the point of greatest heat in the spectrum, dimi- 

nishing as 5° increases, that is, as 2 in my former paper diminishes: 

the above table then must represent the order in which the points of 

greatest heat deviate from direct transmission, beginning with that of 

least deviation. 

This subject has not been examined so extensively as to enable me 

to compare the results of theory with those of observation, numerically. 

M. Seebeck’s results for Water, Crown Glass and Flint Glass, 

coincide with the above, and they are the only ones which he has 

given for Fraunhofer’s substances. 

51. It would be leading me too far into loose speculation, were 

I to proceed to consider the effect produced in the refractive index 
by the increase of temperature. In fact, we have so few experiments, 

by which such speculations could be guided, that it would be almost 

impossible to enter upon this subject. If we had a variety of sub- 

stances, whose specific heat was well determined, and refractive indices 

known very accurately, it might be possible to trace the analogy that 

exists between light and heat with considerable accuracy. Admitting 

that the two fluids (which we have, for the sake of distinction, desig- 

nated ether and caloric) are what we usually mean by those terms, 

it appears from the investigation that a transfer of caloric corresponds 

to an expulsion of ether. Hence, if the temperature (7. e. the density 

of the surrounding ether), and also the density of the body remain 

the same, whilst the latent heat is increased, we should expect the 

ether proportionably diminished, and anticipate a corresponding increase 

of the refractive index. 

Of course I am guided, in saying increase of the refractive index, 
by the hypothesis that the refraction increases as the density of the 
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ether diminishes, which I have, elsewhere, shewn reasons for supposing 
true (Trans. Camb. Phil. Soc. Vol. v1. Part t. p- 165.); on this ground 
we may explain the high refractive power of water compared with that 
of ice. 

52. Following this reasoning a little further, it is evident that the 
refractive indices for bodies should increase, ceteris paribus, with the 
specific heat corresponding to equal volumes. We will assume the 
ordinary expression for the refractive energies of the different gases, 

‘ ei 
V1Z. » & being the specific gravity, and compare the results with 

their specific heat. 

In the following Table I have placed, on the left-hand side, the 
order of the refractive energies of eight different gases, calculated 
from the above formula, and, on the right, the order of their specific heat; in each beginning with the one lowest in the scale. 

The Table of Refractive Energies has been derived principally from M. Biot’s Précis Elémentaire; that of Specific Heat entirely from 
MM. de La Roche and Berard. 

Refractive Energy. | Specific Heat. 
Oxygen. | Oxygen. 
Air. Air. 
Carbonic Acid. | Nitrogen. 
Nitrogen. | Carbonic Oxide. 
Carbonic Oxide, Carbonic Acid. 
Nitrous Oxide. | Nitrous Oxide. 
Olefiant Gas. Olefiant Gas. 
Hydrogen. | Iydrogen. 

The only want of coincidence in these two Tables occurs in the 
case of carbonic acid. It arises from the specific gravity being very 
great compared with those of the gases below it. Had we taken some 
root, as the cube root of the density instead of the simple power 
for our denominator in the formula for the refractive energy, which 
seems more correct, it is not improbable that all our results would 
have agreed. 

Vou. VI. Parr IL Oo 
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The above, however, is sufficiently accurate for my present pur- 

pose, which is merely to give a colour to my investigations, and to 

shew that, at least, they tend towards the truth. 

53. I do not suppose the same results would be applicable to 

solids, even if they are to fluids. For in solids the effect is modified 

or altogether destroyed by the action of the material particles. Indeed, 

the quantity of either kind of particles, and the arrangement of them 

within the body must depend so much on the constitution of the body, 

that, in many cases, I could imagine no ether, and, in others, no 

caloric, according as either from the disposition of the material par- 

ticles or their peculiar nature, the forces which the one or the other 

exerts would keep up an equilibrium with the external forces of the 

mixed ether and caloric. 

And even fluids from their greater or less fluidity would in like 

manner essentially modify the effects of transmission of vibrations 

through them; instances of the above we have seen in the case of 

light, to which I have before alluded. At the same time that I make 

these remarks, I have not attempted either to- verify or disprove the 

above analogy. 

54. The connexion which we thus establish between light and heat 

is of the most intimate description. I shall briefly mention one or two 

circumstances in the latter, which can be readily explained. 

Reflexion of light must arise from the vibrations at the reflecting 

surface being stopped: it is evident then that the transmission, put 

in play by such vibrations, will also be stopped; hence if heat be in 

the act of emerging from a polished metal, when the pulsations reach 

the surface they will diminish greatly in magnitude, and thus the 

corresponding impulse of radiation will be small, whilst from an un- 

polished surface, the converse will be the case. The same is true of 

the acquisition of heat. This is abundantly confirmed by experiment. 

The same reasoning applies to total internal reflexion for heat as for 

light, with the exception that in the former the word /ofa/ would refer 

only to such motion as is due to the action of the vibratory forces. 
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55. From what has been said, (10, &c.) it appears that if bodies 

be impregnated with two systems of particles which are endued with 

forces attractive in their action on particles similar to themselves, but 

mutually repulsive of each other, the following results will ensue. 

That a transverse vibratory motion of the one must, in general, 

be accompanied by a transverse vibratory motion of the other, (10) 

(34); that a translation is generally consequent on, and varying in 

intensity with, this vibratory motion (36). That when one fluid moves 

forward the other moves backward (10). By reference to those sub- 

stances in which it would appear that the vibrations of the internal 

ether were considerable, the velocity of transmission of heat was found 

(by means of the hottest point of the spectrum) to be also consider- 

able. And further, that when a body contained a large quantity of 
caloric, it uniformly (with one exception, and that not a striking one,) 

has been found to contain a proportionably small quantity of ether; 

results in which theory is confirmed by experiment. 

002 
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SECTION. IV. 

Combination of Vibratory Motion with Motion of Translation when the 

Forces are repulsive. 

56. In the last Section we were occupied with the interpretation 

of the equations resulting from supposing the particles attractive, or, 

at least, the force on any one of the same denomination as would 

result from this hypothesis. It is possible to conceive that in nature 
the particles are so mixed and so varied in their properties as to 
allow the above supposition, at the same time that the total action 

produced on another system is of the opposite denomination. We 

ought then to examine the nature of the motion on each supposition 

separately, and, finally, to combine them. 

57. I should be trespassing beyond the bounds of my subject, 

were I to proceed to the consideration of the modification which such 
an hypothesis introduces. 

I shall therefore content myself with a few observations. 

If we examine the equations of motion of the medium acted on 

by repulsive forces, we find them assume the form 

= = — Q2n’a, 

da’ 

i = n'B, 

ad? 

ae * 
from which we conclude, as before, that there is a vibration in the 
direction of transmission, and that there is a transfer, the motion of 

any particle being im the plane of the front of a wave. 
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This seems to be connected with the fact of Electro-Magnetism, in 

which a current produces a force in a plane perpendicular to its direc- 

tion. I said a force, but it will easily be conceived that if a system 

be put in motion, and some other body containing similar particles 

be within its sphere, the effect will be a repulsion in the direction 

of the motion, as a particle within the body will have a tendency 

to motion. 

58. The conclusions at which we have arrived, as to the difference 

of motion in the two systems of fluids, seem also to bear upon this 
point; for, from our analysis, it appears that the motion of one fluid 

will be exactly the opposite of that of the other. The greatest diffi- 

culty that Electro-Magnetism presents, is the circumstance that each 

system acts always in one direction. 

It is foreign to my present purpose to consider this point, but 

it seems probably connected with the circumstance that a flow of 

Galvanism necessarily commences from the source; whether that be 
the positive or negative, I am not prepared to say. 

59. In conclusion I would observe, that nothing which I have 

advanced has the slightest tendency to invalidate the results to which 
M. Fourier and others have been led. 

The equations which they obtain may be deduced from the prin- 

ciples of this method with the same facility as from their own. I 

regret that it is not in my power to multiply examples by which, 

not only the application of a process can be tried, but even the truth 

of the principles be tested. The relation between the sign of a small 

term in the expansion, when the coefficients are determined by obser- 

vations of the places. of the fixed lines in the spectrum, and the 

permeability of the substance to heat combined with the place of the 

hottest point in the spectrum, is of a kind that tends to strengthen 

our convictions in the truth of the principles when satisfactory; and, 

to help us to modify those principles when unsatisfactory: on which 

account, I cannot help expressing my regret that those Philosophers, 

who have so admirably shewn the intimate connexion between Heat 



288 Mr KELLAND, ON THE MOTION OF A SYSTEM OF PARTICLES. 

and Light, should not have undertaken observations on substances 

such as to compare the gradations in the affection of the latter with 

those of the former. 

The nature of the investigation I have here attempted must plead 

my excuse for having been rather discursive. My object has been so 

to consider the constitution of the atmosphere, that one single hypo- 

thesis shall suffice as a key by which to proceed to the examination 

and explanation of the varied phenomena which present themselves to 

our notice. I do not presume to suppose that I have succeeded, but 

the necessity of keeping the different kinds of phenomena in as in- 

timate connexion as possible, has induced me to offer the above to 

the notice of the Society. 

ERRATUM. 
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XI. On the Relative Quantities of Land and Water on the Surface of 
the Terraqueous Globe. By S. P. Ricaup, A.M. Savilian Professor 
of Astronomy in the University of Oxford. 

[Read Feb. 13, 1837.] 

From the constitution of the Earth it is obvious that the greatest 
part of it is unfitted for the habitation of human beings. This, how- 
ever, has been well accounted for. The fertility of the land depends 
upon the moisture of the atmosphere, which could not be furnished 
in sufficient supply, except from a wide expanse of waters and with 
mountains which may assist in its condensation. The oceans, therefore, 
bear a large proportion to the continents; but the relative distribution 
of them still remains a subject of great difficulty. The more accu- 
rately we study nature, the more clearly we see the operation of final 
causes, and, as a general truth, there can be no doubt that some 
beneficial objects are attained by the relative situation of those dif- 
ferent portions of land, which rise above the level of the waters. 
Future investigations may lead to the discovery of them, and the 
best assistance, which can at present be given to the inquiry, must 
depend upon obtaining an accurate view of the facts. Even if we 
can as yet advance no further than physical phenomena, it is well 
worth while to examine them with precision. 

The irregular figures and sinuous outlines of the land are serious 
impediments to the common methods of measuring its extent. It has 
therefore been suggested, that by cutting out the delineations of it 
and weighing the several parts, an estimate might be made of its 
relative magnitude. Dr Halley, in 1693, published an account, which 
he had in this manner collected of the number of acres in each 
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county of England, “having cut a six sheet map in pieces for that 
purpose*.” He used “nice scales” but he did not consider that he 

arrived at more than a certain approximation, which however he 

chiefly attributed to the imperfection of the maps on which he had 

to work. The projection, likewise, that was used for them, obliged 

him to reduce all the parts to the same mean size of the acre, and 

consequently the experiment best known for the purpose, and described 

by Dr Long in his Astronomy+, possessed in this respect a decided 

advantage. He says that by “weighing thus the papers of Mr Senex’s 

globe of 16 inches diameter, the weight of the paper whereon the 

sea was represented was 349 grains, that of the land 124 grains: 

so the surface of the sea is almost three times as great as_ that 

of the land hitherto discovered. I omitted,” he adds, “weighing the 

parts contained within the polar circles, because it is not known to 

any degree of exactness how much of them is land and how much 

is sea.” Mr Vince refers to this passage{t, and observes, that “the 

conclusion would be more accurate, if the land were cut out from 

the sea before the paper was put upon the globe;” and he gives his 

opinion that “after all our modern discoveries, this method would pro- 

bably give the proportion of land to water, to a considerable degree of 

accuracy.” Senex died in December 1740, and Dr Long published the 

first volume of his work (which contains the passage just quoted) in 
1742: they may, therefore, be considered as contemporaries; and no dif- 

ficulty can be well imagined to interfere with the plates being obtained 

before they had been used. But Mr Vince prints the word “before” in 

Italics, which seems to indicate that he alludes to some tradition which 

was credited in his time. Under such circumstances, however, the ex- 

periment must have been worth absolutely nothing. The varnish must 

have been broken off unequally, and the greatest care could not have 

been sufficient for taking off the paper without some of it remaining in 

adhesion to the substance of which the globe was formed, or other 

portions bringing off some of that substance with them. We have, 

* See a Collection for the Improvement of Husbandry and Trade, by John Houghton, 

F.R.S.° Nos. 25, 26. 

+ Article 580. t Astronomy, 4to. Vol. 1. p. 112, 
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however, no later accounts of such a determination of these quantities. 
Several persons are said to have repeated the experiment, but as they 
have not published its results, it seemed desirable to try it again with 
that care, which might at least ascertain the reliance which can be 
placed upon the method. The advanced state of modern geography 
affords a more reasonable expectation of accuracy than could, under the 
most favourable circumstances, have been attained in the time of Dr 
Long; and the beautifully distinct manner, in which globe-plates of the 
largest size have now been executed, gives great advantage to the trial. 
In 1823 Mr Carey allowed me, for this purpose, to make use of the 
plates of his 21-inch globe; and when I recently wished to check the 
results, at which I had then arrived, Mr Addison obliged me with 
those which he has had engraved for a globe three feet in diameter— 
he took the trouble, likewise, not only of inserting all the latest dis- 
coveries, but of having the impressions expressly worked off for me 
with every precaution and attention. 

There are some difficulties in the pursuit of this inquiry, which 
make it necessary to proceed with great care. Dr Halley observes, 
“that the moisture of the air imbibed by the paper, did very notably 
increase its weight, which made me very well dry the pieces before 
I weighed them, that so I might be assured there was no error upon 
this account; and in so doing, I found that in a very few minutes 
of time, their weight would sensibly increase by their reimbibing the 
humidity of the air.” This effect is indeed so rapid that artificial 
drying is possibly the worst thing that can be done; it will occasion 
the weights to vary while the paper is in the scale, and will thus 
destroy the precision of the ratio, which may be derived from the 
examination of parts of the same sheet. A much better method is 
to lay the paper out for some time in a large room, where there is 
no danger of much fluctuation in the state of the air, the materials 
will then reach a nearly saturated state, in which they will generally 
continue stationary during the time which they are in hand. Such 
an exposure will of course on different days produce different degrees 
of dampness; but uniformity in this respect, for any great length of 
time, is unattainable, and if it can be secured for the interval, which 

Vou. VI. Parr II. Pe 
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A 

the immediate operation requires, all is gained that can be hoped for. 

The results, which are now about to be described, were all obtained 

during the summer in this manner: each piece was weighed before 

the land was cut from the water, the separate parts were then 

weighed independently; this was usually repeated,” when the second 

was very seldom found to vary from the first determination by 7'> of 

a grain, and the sum of the parts most commonly made up exactly 

the weight which had at first been found to belong to the whole. 

Dr Halley points out another difficulty, for he says “that the map 

consisting of several sheets of paper, they were found to be of dif- 

ferent thickness or compactness, so as to make a sensible difference, 

which obliged me to examine the proportion between the weight and 

acre in each sheet.” Dr Long refers to this where he observes that 

“the paper whereon it” [the engraving of the globe] “is printed 

should be of an equable thickness as near as possible.” Mr Addison 

obligingly endeavoured to obviate any such cause of inaccuracy by 

taking care that the impressions should be worked off on paper of an 

uniform texture. It was not possible to succeed in this so far as to 

have all the equal gores of the same weight, but there were hardly 

any knots to produce partial inequalities, and, by working out the 

results separately for each part, as near an approximation to the truth 

was upon the whole arrived at as the method seemed capable of pro- 

ducing. Relative quantities are all that were required, and by this 

means they rested on the uniformity of paper only of a small com- 

parative size, a quality which might be assumed without any material 

error. The plates of Mr Addison's globe cover a plane surface of 

40714 square inches, and from the many parts, into which they are 

of necessity divided, there is a fair chance for compensation, because 

it may be presumed that if the land were on the thicker part in one 

instance, it might be on the thinner in another. This compensation, 

being a general effect, might at first sight appear to be best secured 

by weighing all the land of the globe together, and all the water; 

but in addition to other advantages in the different process, there are 

objections to this method, which make it inexpedient. It would require 

constant and long attention in keeping the respective parts together 
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after they have been once separated from the whole. To cut up the 
plates with due care is the work of many days; if suspicion occurred 
of any part being mislaid, or lost, it would be, in such a mass, im- 
possible to obtain any satisfaction of the truth; and when a number 
of small islands or lakes were to be cut out and distributed, they 
could hardly be recovered, if it should be wished, from the divisions 
in which they had once been placed. These are not imaginary diffi- 
culties. We must suppose that the precaution would in this case be 
taken of ascertaining in the first instance the weight of the whole, 
and if the sum of what was found for the parts should not be equal 
to it, there would remain no possibility of determining the cause of 
error: there might be a deficiency, and there would be no means of 
discovering whether it was to be assigned to the land or to the water, 
or to both. But even if all this could be provided against, there 
would still be an essential obstacle in the different degrees of humidity, 
which would be imbibed by the several parts of so many pieces of 
paper, which could not all be equally exposed to the air. These 
difficulties were almost entirely avoided by the careful and distinct 
examination of each piece, and the further advantage was gained, that 
not only the ratio might by this means be determined for the whole, 
but, as it had been settled in detail, the corrections from future dis- 
coveries may, at any time, be introduced, without the necessity of 
repeating the entire examination. 

The gores of Mr Addison’s globe are made each for 15 degrees of 
longitude, and there are five divisions of each for the five zones. The 
twenty-four for the torrid zone were cut into two at the equator, and 
examined in forty-eight portions, in order to have the quantities for 
each of the hemispheres. The forty-eight gores for the two temperate 
zones, when added to these, make up ninety-six, which may be con- 
sidered as having been analysed with tolerable completeness. In one 
or two instances the precise terminations of land and water were of 
necessity assumed in an arbitrary manner, but this was to a very 
limited extent, and could not materially affect the general conclusion. 
In the polar circles there is a much greater degree of uncertainty, 
and for these it was necessary in some parts to have recourse to con- 
jectural estimates. The southern was taken as consisting entirely of 

PP? 
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sea. The expedition, about to sail from the United States of America, 

will make us better acquainted with the constitution of these parts; 

and if it should discover any lands in them, the correction which this 

circumstance will require may easily be applied. In the Northern 

Polar Circle the parts which belong to Europe and Asia seem to be 

sufficiently distinct; but the land, in high latitude, of North America, 

admits as yet of no certain measure. It is impossible, in many parts, 

to tell what belongs to a continent and what are the boundaries of 

islands, of which seldom more than a_ portion of the coasts has been 

traced out. In this state of things nothing more was attempted than 

a very rough guess, that from 180’ to 270° of longitude, one half of 

the American portion of the circle, might be considered as land, 

which also (on account of the probable extent of Greenland) might. 

from 270° to 360°, have to the water a ratio of 2 to 1. 

Every care was taken to separate the land and sea with accuracy. 

All the bays, estuaries, and indentations, were attended to, especially 

when the precise form of them appeared to indicate the representation 

of actual surveys. The several weights were taken, to the tenth of 

a grain, which was considered to be as minute a measure as was 

consistent with the nature of the experiment. 

A table of versed sines gives the ratio of the spherical superficies, 

to any parts of it which are bounded by given circles. Hence the 

hemisphere being taken at 1, the portion between the equator and 

the tropics will be 1 — 0.6012509 = 0.3987491; that within the tem- 

perate zone will be 0.6012509 — 0.0829399 = 0.5183110; and that within 

the polar circle 0.0829399: but for the immediate comparison of the 

results it seemed most convenient to suppose the surface of the globe 

to be divided into 1000 parts, and to reduce all the measures to this 

standard ; consequently, under this condition, 0.3987491 x 500=199.37455 

199.37455 eS 

= 8.30727 will give the magnitude of each of its gores; in the same 

manner for the temperate zones 0.518311 x 500 = 259.1555 is the quan- 

259.1555 

24 

will give the relative magnitude of the half torrid zone, and 

tity for the whole, and = 10.79814 for each of its parts: 
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and 0.0829399 x 500 = 41.46995 will be equal to the surface of the 

whole polar circle. The reduction of absolute weights to the proposed 
scale is dependent merely on the rule of three, and the numbers 

which were found from it may be seen in the following tables. 

TORRID ZONE. 

NORTHERN HALF. SOUTHERN HALF. 

Longitude. Water. Longitude. Water. 

0... 15 | Africa....... 7.1391 | 1.1682] 0... 15 | Africa....... 1.3426 | 6.9647 | 
P52: 80 ||) Africare... 8.3073 15... 30 | Africa....... 8.3073 
30... 45 | Africa....... 6.6296 O7085 | 90--- 45°) Africa....... 5.2567 3.0505 

| Asia......... 0.9741 } “tl 45... 60 | Africa......- 0.8631 7.44.42 
45... 60 | Africa....... 0.9585 4.8459 GOs) 7oul\eAsian een Ol0251 8.2822 

UN alas tetera 2.5028 } : (Bone WO')) csopetsacesomosgodasnc 8.3073 
602.5 75. | Asia... OOLIE 7.6957 | 90...105 | Asia......... 0.4512 7.8561 
75.26 90 | Asia......... 2.8031 5.5042 | 105...120 | New Holland 0.3851 6.876 
90...105 | Asia......... S201 | .4, SBR AN Bee. 22 Asia......... 1.0458 \ Heth 
105...120 | Asia......... 2.1998 6.1074 | 120...135 | New Holland 3.1152 
120...135 | Asia......... 0.7417 | 7.5656] ......... Wate 0.7528 \ ano? 
135...150 | Asia......... 0.0258 8.2815 | 135...150 | New Holland 2.5260 
RAIA Ns ie aot aid ss 9 1a 8-4 \CR SiSOTONS eae oh (\\ es 1.3281 \ ta 
165. .180 |" Asia.... 006. 0.0249 8.2824 }] 150...165 | Asia......... 0.2929 8.0144 
SOME TQB Ot Nae sR ee sare 8.3073 | 165...180 | Asia......... 0.0789 8.2284 
195...210 | N. America.. 0.0548 8.2524 | 180...195 | S. America... -0.0261 8.2812 | 
ROMEO DEN crac seca rate sscves ois SISOTSEP IGS: -2108|Pat on... anette er oe 8.3073 
PESEE vf) | eee UEDA ROCCE e SiSO7SEPLUO ss 225: ae EL oe 8.3073 
240...255 | N. America.. 0.1068 S:SO04E F205." 24.0 eae. -.., enna eae 8.3073 
255...270 | N. America.. 1.7969 Gr5 LOST 24a 255 IRS oon cree alreeieeeeielie as 8.3073 
270...285 | N. America.. 1.2958 6.3635 255...270 | S. America... 0.0274 8.2799 

| S. America... 0.6479 \ : 270...285 | S. America... 1.4617 6.8456 
285...300 N. America.. 0.2314 4.3503 285...300 | S. America... 7.5114 0.7959 

S. America... 3.7255 \ : 500...315 | S. America... 8.1095 0.1978 
300...315 | S. America... 1.3721 6.9352 | 315...330 | S. America... 3.2528 5.0544 | 
Serer Meietets’ ateiclblafe:cioin’s\ ie <. > aie'e iets S30 73M S30) in OL Fb tes. vse eater be te 8.3073 

330...345 | Africa....... 0.4646 SAQA GAD) 11 BOOM |e oe veer vec sepetraeiche 8.3073 | 
345...360 | Africa....... 6.2240 2.0832 

52.5582 | 146.8162. 46.1592 | 153.2156 | 
52.5582 | 4.1592 

199.3744 199.3748 

Africa. ...... 29.7231 . ASTICA.1.. = ».0.<,° 15.7697 ~ 
7.8): ) OE 13.6039 Pert ee ae 8.9743 

N. America... 3.4857 New Holland. 6.0263 
S. America... 5.7455 S. America... 20.3889 

52.5582 46.1592 
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TEMPERATE ZONE. 

SOUTH. 

Longitude. Water. Longitude. Water. 

SEH = ators 10.7981 

25 3.1713 7.6268 

Europe......  4.5¢ eis ica....... 0.5386 10.2595 
Africa i s ) Sats ea....... 0:0977 10.7004 

Kaan. UO: os ia. ....... 0.0227 | 10.7755 
Europe H Arist Yoo sos sake Aid 10.7981 
WASTE escsayssears ome . vee Pee, wis easia's aieharetes «is 10.7981 
Africa i one New Holland 1.3656 9.4326 
Europe...... 2. ere New Holland 3.1005 7.6977 
JABIAS ciiecs evo alts } MS, New Holland 4.5622 6.2359 
Aeon = i b a5 New Holland 0.6780 10.1201 
ABE s oc.c0se0e LO . : Oo 0.5081 10.2900 

Aista 2 Ponatlad 2 10! l aie Pete atverso atin Paves oiedece.c 10.7981 

PABIB:« 5jn:c5 00s» Ls h Paya”) RD. Bisa c'saie oOo. 5 10.7981 
AB. tasatinde Gi i wae aes een ies 10.7981 
Asia i : aoe Siva chibicadeantehe + 10.7981 
Asia ; } Lm: My Be alone he Cale LOtGad 
PASIA Soe coe, ee 10.0472 aie mie aasivubeie(nceinmvare sicate 10.7981 

VARIES CoRR OF \ 10.5558 wis S. America... 0.0283 | 10.7698 
N. America. . ; site S. America... 5.8762 4.9219 
N. America.. 1. 9.5677 Nis S. America... 2.5996 8.1986 
N. America... 1. 9.5984 et Sue Re ioe rere 10.7981 

N. America... 3. 7.1988 30... oceania teeta rarels & 10.7981 
N. America.. is 1.6965 a £4 aete-wriag eembiotteecte ccs 10.7981 

N. America... 9. 1.6550 
N. America.. 6. 4.74.46 
N. America... 38. 7.2558 
N. America.. 0. 10.0559 
N. America.. 0. 10.4258 

| 10.6033 

Europe...... 1. 
Africa Hi } 6.0607 

126.6308 | 132.5247 22.5488 | 236.6060 
———| 126.6308 | 22.5488 

259.1555 259.1548 

- -15.6989 
10.2760 

65.5901 New Holland. . ‘9. 7063 
N. America. ..35.0658 S. America...... 8.5041 

126.6308 . 22.5488 
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NORTH POLAR CIRCLE. 

Longitude. 

Europe. ... 0.9524 
8.1684 | Asia... 5.0329 
6.6951 | N. America. 12.0410 

5.1294 18.0263 
N. America. 5.1293 
N. America. 6.9117 3.4558 

18.0263 | 23.4437 
18.0263 

41.4700 

From these numbers we have the following conclusions :— 

Land. Water. 

For the north polar circle............ 18.0263... 23.4437 or a ratio of 100 to 139 

the north temperate zone ...... 126.6308...132.5247 ....+..+02-. 100 to 105 

the north half of the torrid zone 52.5582...146.8162 ............ 100 to 279 

the south half of the torrid zone 46.1592...153.2156 ......... .-. 100 to 332 

the south temperate zone ....... 22.5488...236.6060 ........2.- 100 to 1049 

thelsouthypolaricircle csccssjnces) | +e aa. 41.4700 

theaw holes pherewamssseesnesnaen 2009 2S 0 gt SAcO 102 a venisee scsi 100 to 276 

the northern hemisphere,........ 1Q721538. 5. 8027840) oc cnc ceces 100 to 154 

the southern hemisphere......... 68.7080...431.2916 .....-.6.+6. 100 to 628 

the whole torrid zone...........- 837 L723. 80010318 Gy. He .tedeses 100 to 304. 

It has been mentioned that Dr Long, omitting the polar circles, 

found the ratio of land to water as 124 to 349, or 100 to 281; in 

the present case it comes out, under the same circumstances, as 100 

to 270. This is not a greater difference than might be expected from 

the advance in geographical knowledge since the time of Senex; 
and it seems to relieve Dr Long from any suspicion of having neg- 

lected to take proper precautions in trying the experiment; but it 

must be acknowledged that the numbers just stated differ much from 

those which M. Malte Brun* has assigned to the same portions of 

* Geography (Eng. Trans. Edinb. 1822) Vol. 1. p. 159. His words are, “We have found, 

by a pretty exact computation, that the land in each hemisphere and the zone bears to the 

whole the following proportions: 

Son 
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the Earth’s surface. Whether his results are more to be depended 

upon than those which have been now obtained, must be left for others 

to decide; but there is a circumstanee which seems to corroborate very 

strongly the dependence which may be placed on the present method, 

since there is a remarkable comcidence between the numbers, which 

were found from Mr Carey’s globe-plates in 1823, and Mr Addison’s 

in the more reeent examination. 

The proportionate quantity of land in the southern hemisphere was 

found in 1823 to be 69.58, which exceeds that which is now given 

by only 0.87. The extents of the continents, likewise, with the islands 
respectively belonging to them, came out as follows: 

1823. 1836. 

UTOPE... cteeesennees 16,80 16.65 

Je NTE e eg oucicanaoocods Lea! 88.73 . 
104.48 104.46 

New Holland, ...,..15.27 15.73 

ADTICA treteesiscaewee sc 59.14 59.58 

North America...... 46.99 50.59 

South America......35.36 34.64. 

«In the icy zone of the north ......... 0.400” (or the ratio of the land to the water 100 to 150) 

«In the temperate zone of the north ... 0.559" (sss see eee ee ence eee ence eee eee 100 to 79) 

«In the northern part of the torrid zone 0.297” ( «1... .eeev eee eee e eee erences 100 to 237) 

«In the northern hemisphere ......... 0.4.19” 

«In the icy zone of the south......... 0.000” 

«In the temperate zone of the south ... 0.075" ( 12+ .-eeee eee e cece eee eee e eee 100 to 1233) 

«In the southern part of the torrid zone 0.313” (1... ee eee eee eee eee eee eee eens 100 to 219) 

“In the southern hemisphere ......... 0.129” 

As M. Malte Brun does not explain his method of computation for the several zones, no 

more can at preset be said, in that respect, than is pointed out in the text: but it may be 

remarked that he is not correct in the quantity of land, which he has deduced from his own data 

0.400 + 0.559 + 0.297 uf 1.256 =0.419 and 0.075 + 0.313 pe 0.388 

3 3 3 3 

but the fundamental decimals are parts of three different integers, and consequently the third of 

their sum will not give the true proportion of them when taken together, to the whole. 

for the two hemispheres, =0:129; 
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When it is recollected that these calculations were made from the 

works of two distinct geographers, the agreement is possibly as near 

as could be hoped for; but it is really closer than, at first sight, can 

appear; for some little variations were accidentally introduced by the 

first determinations not having been referred to, until the second had 

been completed. It was then found that Van Dieman’s land had been 

weighed with New Holland in 1836, but that it had been taken with 

the other Asiatic islands in 1823. The interior of Africa is so im- 

perfectly known, that in the last instance it was thought best to 

omit all attention to the inland lakes that were drawn upon this part 
of the plates, although they were cut out from the other quarters of 

the globe. This exception was not made in 1823, which will account 

for the somewhat smaller quantity which was then found for this 

continent. The difference in North America is to be attributed to 

the discoveries which have been made of late years, and the larger 

allowance which was in consequence assigned to the land within the 

North Polar Circle. The deficiency for South America is not great, 
but it was sufficient to make it desirable to ascertain, if possible, a 

cause by which it might be occasioned. The larger dimension of 

Mr Addison’s plates afforded the means of cutting more deeply into 

the great rivers of this continent: and Mr Carey, having been con- 

sulted, pointed out another probable source of variation in the outline 

of the eastern coast, which, in consequence of recent surveys, is not 

now laid down exactly as it was in 1823. It certainly is remarkable 

that the deficiency, which in this case amounts to 0.72, is very nearly 

the same as occurs for the whole southern hemisphere; and it may also 

be stated, that the land of the northern hemisphere came out in 1823 as 
193.19, which is 4.02 less than is now assigned for it, while the quan- 

tity (as may be seen above) which was then found for North America 
was also less by 4.60. 

As the force of the present argument depends upon the two trials 

being not only distant in time, but in every other respect independent 

of each other, it may not be superfluous to mention that the numbers 

were also deduced from them in two different ways. On Mr Carey’s 

globe the gores are 20° wide, and they extend each from the equator 

Vor. VI. Parr II. Qa 
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to the pole, so then the land being separated from the water, their 

ratio could immediately be found for each of the thirty-six parts, with- 

out any reduction for the different magnitudes of the several zones. 

*.* The different portions of ink on the different parts of the paper may be thought 

to affect their weights. These are generally in larger quantities on the land than on the 

sea, but not always: there is uniformly a kind of shading, which extends to some dis- 

tance from the several coasts, and when the interior of a country is little known, it is 

comparatively blank. There is reason also to believe, that when the ink is thoroughly 

dried, it adds very little to the weight. The difficulty of reducing the paper, at different 

times, with any certainty, to the same degree of dryness, prevents a direct trial of the 

alteration, which might be produced in printing, but workmen consider it to be very 

small. Two pieces as nearly as possible of the same size, having been cut out of the 

same gore, the one which was perfectly white weighed 8.2 grains, while the other which 

was covered with names weighed only 8.1. The difference must have been occasioned by 

some accidental circumstances; but the experiment, as far as it goes, will tend to shew 
that no sensible error was likely to be occasioned by the attempt not having been made 

to introduce an allowance for this particular. 



/ XIL. On the Results of Observations made with a new Anemometer. By 

the Rev. W. WuEwe 1, M.A. Fellow and Tutor of Trinity College. 

[Read May 1, 1837.] 

In the present paper I shall give an account of the mode which 

has been employed in using an Anemometer which I have invented 
and caused to be erected. By this account I hope to shew that such 

instruments may be made to give consistent and comparable results, 

and may lead to a more complete knowledge of the course of the 

winds than we yet possess. 

It is not necessary to describe in detail the construction of the 

instrument here spoken of; its general principles may be easily ex- 

plained. A fly (resembling the fly of a revolving ventilator or the 

sails of a windmill) is fixed to the small end of the vane of a weather- 
cock, so as always to be turned with its circular disk to the wind; 

and it consequently revolves by the action of the wind with a rapidity 

increasing as the strength of the wind increases. The revolutions of 

the axis of this fly are converted, by a train of toothed wheels and 

screws, into a vertical motion, by which a pencil is carried downwards 

touching the surface of a vertical cylinder, the cylinder having the 

axis of the weathercock for its axis. As the vertical rod on which 
the pencil slides is attached to the vane of the weathercock, the point 

of the compass from which the wind blows is recorded by the side of 

the cylinder on which the mark is made, while the quantity of the 

wind is represented by the extent of the descent of the pencil. 

In the instruments which I have had constructed, the pencil 

descended one-twentieth of an inch for ten thousand revolutions of 

the fly, and the cylinder on which the marks were made was sixteen 

ae2 
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or eighteen inches high. By this means the surface of the cylinder 
would contain the trace of the wind of one or two days when there 
was much wind, and of several days when the winds were lighter. 

These instruments were made at first by Mr Newman of Regent 
Street, and since, by Mr Simms of Fleet Street. They have been 
erected and observed by Professor Forbes and Mr Ranken at Edin- 
burgh, by Mr Southwood at Plymouth, and also at other places; but 
the observations of which I am able to give the most complete account 
are those made under the direction of Professor Challis at the Cambridge 
Observatory, and under my own direction at the house of this Society. 
The Anemometer at the Observatory was placed over the portico, in 
which situation it was free on the other sides, but considerably sheltered 
by the dome of the equatoreal, on the north side. The Anemometer 
placed on the top of the Society's house is favourably circumstanced, 
being higher than any neighbouring building which is near enough to 
intercept the wind. The observations were made with care and regu- 
larity by Mr Crouch the Society’s housekeeper. 

Various improvements in the instrument were suggested by using 

it; and as it had not been foreseen what strength of workmanship would 

be requisite to resist the weather, all the instruments were, at one time 

or other, disabled, so as to interrupt the observations. 

One of the difficulties which most interfered with the precision of 

the observations, was that which arose from the wavering of the wind. 

The weathercock is in almost constant motion, swinging to and fro 

through an are often not less than a quadrant, and the consequence is, 

that the pencil describes upon the cylinder, not a single line, but a 

broad path of irregular form, made up of the transverse lines which 
the oscillation of the vane occasions. It might at first be supposed 

that this oscillation arose from the momentum of the vane, and might 

be remedied by some contrivance which should cause the change of 

direction of the wind to come into effect more slowly; such for example 

as the ¢ail of a windmill. But the cause of this oscillation is in reality 

almost entirely the constant shifting of the wind, as may be seen by 
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examining the motions of the vane, for it often swings into a new 
position or stands still awhile before it swings back again. 

In consequence of this circumstance the direction of the wind cannot 
be ascertained with very great precision. By carefully taking the middle 
of the broad path, the direction may be read off to a single point of 
the compass; but in the observations at the Society, we contented 
ourselves, for the most part, with reading off to the double points (one 
sixteenth of the circumference). 

The vertical scale is divided into tenths of inches, and read off by 
means of two indexes, which slide on the same vertical rod which 
guides the pencil. The detail of the process of observation will be 
best understood by attending to the following directions. It may be 
observed that the cylinder is of brass japanned white, on which common 
pencil marks can be rubbed out in the way described below. 

Directions for observing with Whewell’s Anemometer. 

1. Pace the instrument in a situation well exposed on all sides, 
and fix it so that when the wind is South, the pencil is on the line § 
on the barrel. 

This may be done by clamping the weathercock part of the instru- 
ment with the pencil on the line S, then turning the box till the vane 
points due north, and then fixing it in that position. 

2. Read off the instrument every day at a constant hour. 

The pencil in descending will make a broad path, in consequence 
of the wavering of the wind. The darkest part of this path must be 
taken; and from this, the direction of the wind determined, by reference 
to the points of the compass marked at the bottom of the cylinder ; 
and, as the wind changes, the directions of the successive strips of wind 
must be noted. A 
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3. To read off the amount of the wind in each of these successive 

strips ;—slide the lower index so that the point is upon the top of the 

first strip; then slide the upper index to touch the lower; then slide 
the lower index to the bottom of the first strip, or the top of the second 
strip of wind; then read off on the graduated rod, the interval (in 

tenths of inches,) through which the lower index has moved; then 

again slide down the upper index to touch the lower, slide down the 

lower index to the bottom of the second strip, and read off the interval ; 

—and so on. Write down these intervals under the corresponding 

directions of the strips of wind, observed as above. 

4. When the pencil has reached the bottom of the barrel, the in- 
strument must be wound up, by unscrewing the clamping screw of 

the nut, removing it to the top of the barrel, and clamping it. 

At the same time the barrel must be cleaned, by rubbing it with 

a soaped cloth enclosing a smooth wooden rubber. 

5. The following is suggested as a simple way of marking the 

points of the compass; for example, from the North to the East the 

points may be 

N. Ne. NNE. NEn. NE. NEe. ENE. En. E. 

and so on for the other quadrants. 

The only ambiguities which can arise by this method, are Ne, Nw, 

Se, Sw; which must be distinguished from NE, NW, SE, SW. 

Ne is N by E; and so of the rest. 

I shall now give the Register of the wind as observed for the 
months of January, February, March and April of the present year 

at the Society’s house. I shall add also the observations made at the 

Observatory for a portion of the month of February. The readings 

are in tenths of inches on the scale. 

* The asterisk indicates the times when the instrument was wound 

up. ; 



MADE WITH A NEW ANEMOMETER. 305 

INDICATIONS OF WHEWELL’S ANEMOMETER 
AT THE HOUSE OF THE PHILOSOPHICAL SOCIETY. 

JANUARY, 1837. 

N. N. NE. 
12 2 0 

[ NNW. SW. SSW. SW. 

1 45 9 

SW. Nw. 
11 58 

NNW. 
56 

NNW. WSW. 
7 2 

sw. WNW. 
2 1 

NW. 
0 

ENE. 
0 

ENE. 
12 

SSE, 
6 

FEBRUARY. 

SSW. W. 

40 8 

Under repair. 

WSwW. 
50 

WSW. SW. 
37 15 
S. ssW. WNW. 
150 413 53 

[ NW. NNW. 
23 6 

Under repair. 

NE. N. WSW. 

ano 7 

NE. 
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Marcu, 1837. 

Wsw. ssw. SSE. 
12 | 95 9 2 

WSw. SSE. 
eae 10 
jg | NE. N, S. SSW. 

ee ATE) Apes 
| NNI Fae | NE. ENE. NNE. NNW. 

Slee al 4 15 

_ | NNE. N. NNW. | ENE. NE. NNW. WSW. WNW. 
53 il 69 28 10 14 6 3 

. |WNW. NNW. N. NE. NE. NNW. NNE. NNW. | 
16 2.38) 3.1.20 9 6 5 3 

NNE. WNW. NE NNW. wsw. | 
15 2 17 13 : 10 18 

WNw. 19 | NE WiahiSWs LS gal 
12 12 21 18 28 

| Ww. WSW. a9 | XE 
22 «17 39 19 15 

NNE. NE. N. 
60 60 22 10. 5 

63 

APRIL. 

WSW. WNW. WSW. SSW. |Total. 
4 8 2 2 | 16 

ssw. S. NNW. 
16 «13 0 

NNE. WSW. a 

8 10 18 

NW. 

Under repair. 

SSW. WSW. WNW. |Total. 

3 5 0 8 

NW. 

40 

NNW. SSW. 

6 23 

WNw. Wsw. 
36 29 : 

N. NNE. NE. Wsw. 
8 if 5 9 

SW. WSW. 
35 6 41 

WNW. WSsW. 
10 4 14 

SSW.  WSW. ier 
1 3 

WsW. 

NE. NNE. 

27 11 

NE. N. 

Under repair. 
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Several questions obviously offer themselves respecting the numbers 

thus registered. What is their real import? How far is each instru- 

ment consistent with itself? In what manner are two such instruments 

comparable ? 

I cannot at present answer these questions completely, but I will 

make a few observations on each. 

As to the import of the indications of this Anemometer, it is evident, 

that their magnitude will increase with the force of the wind, and with 

the time to which each number refers. If we could assume that the 

velocity of revolution of the fly of the Anemometer is always propor- 

tional to the velocity of the wind, the space which the index passes over 

on the scale would be proportional to the velocity of the wind, and the 

time during which it has blown, jointly; that is, to the total quantity 

of the aerial current which has passed the point: and however the 

velocity of the wind might vary, the instrument would give the sum 

of all the elements of the current, or in other words, would integrate 

the velocity multiplied into the differential of the time. Hence I 

term the amount registered by this instrument the Integral Effect of 

the wind. That the velocity of the fly is thus proportional to that of 

the wind, I have not yet ascertained; and till that is done, I can only 

urge, that it appears highly probable that the instrument will afford at 

least some approximation to such a result; which no instrument hitherto 

erected, so far as I am aware, has ever pretended to do. 

The question whether the instrument be consistent with itself, is 

one of considerable difficulty; for it does not readily appear how we 

are to obtain any permanent standard by which we may test its indica- 

tions at different times, and thus ascertain whether its scale has varied. 

It is certainly very conceivable that the friction and other impediments 

to motion should alter considerably from month to month, so as to 

affect materially the rate at which the instrument would move with a 

given wind. We might however imagine means by which the actual 

velocity of the current of air which turns the instrument should be 
ascertained, and thus this difficulty overcome. For example, the Ane- 

mometer might be placed on some part of a large machine which moves 
Vou. VI. Parr II. Rr 
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for a long time with a known velocity; and thus the actual value of 
the indications of the instrument might be determined. And a small 

Comparative Anemometer, more easily transferable from place to place 

than the working instrument, might be employed to obtain the value 

of the scale of the instrument in this manner. This process might be 

performed at any time, and might therefore serve to compare the 

Anemometer with itself at different times. The relation between the 

velocity of rotation produced, in a wheel with oblique blades, and the 

velocity of a fluid which flows past it, is so steady, that the rotation 

of such a machine has already been used in measuring the velocity of 

the motion, in Masson’s Patent Log, and Saxton’s Current-meter. 

The same process which would compare an instrument with itself, 
would also compare it with another instrument of the same kind. But, 

as we have not yet any such means of judging what is the comparative 

going of different Anemometers, we may say a word or two of the 

comparison of them by means of their results. The station at thie 

Society’s house and the Observatory are so near each other, that there 

can hardly be any great difference in the quantity of wind which blows 

at the two places. Assuming these quantities to be equal, it appears 

that the index at the Observatory moves nearly twice as fast as that 

at the Society’s house. The equality of the wind at Cambridge and 

Edinburgh cannot so safely be assumed; but if we proceed upon the 

equality for March, as our only accessible basis, we shall find that the 

index of the Society’s Anemometer moves more than twice as fast as 

that of the Edinburgh one. But I shall return to this comparison in 

another form. 

In order to exhibit the general course of the winds at each place 

I have adopted the following graphical method. 

Assuming, on a sheet of paper, the proper relative directions of the 

points of the compass, I begin from a point and draw a line in the 

direction of the first recorded wind, and of such a length as to represent 

this wind in magnitude on a scale of equal parts. From the extremity 

of this line, I draw another line representing in direction and magnitude 

in like manner the second recorded wind; and from the extremity of 
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this line, a third; and so on. In this manner I obtain a continuous 
line, which represents the course of the wind as long as it is con- 
tinued. Such lines were drawn for February and March 1837; those 
for March are exhibited in Plate VII, which represents the curves for 
March, drawn for the stations, at the Society, at the Observatory and at 
Edinburgh. In all the cases the observations experienced interruptions, 
which make it difficult to draw any general conclusions from them. But 
we may remark that in February the wind blew almost constantly from 
a more westerly point at the Observatory than at the Society. It is 
not difficult to conceive this result to be occasioned by the peculiar 
circumstances of the Anemometer at the Observatory: but it is also 
possible that it may be a general fact that such differences obtain at 
neighbouring places, in consequence of the direction of valleys, &e. 
Further observation alone can clear up this and similar points. 

It has been deemed an important point by Meteorologists to obtain 
the mean direction of the wind at a given place for a given time, for 
instance, a year. Kiamtz in his Meteorologie, Vol. 11. p- 218, has 
collected several results of this kind. But in these researches the force 
of the wind has entirely been left out of the account, and each wind 
was reckoned according to the number of days which it blew. It is 
clear that such a procedure is entirely fallacious; for the high wind 
of one day may be greater, with regard to every possible effect, than 
the gentle breezes of a week. The mean annual direction is probably 
constant at each place within certain limits: and the mean directions 
at different places are perhaps connected by certain general relations, 
depending upon the quantity of fluid transferred, and upon other atmo- 
spherical conditions, which may hereafter be found to be important 
elements of meteorological speculation. But it is not at all likely that 
this will. hold if the mean direction be taken without reference to the 
strength of the wind; and no mode of measurement can be good for 
this purpose which does not give the whole quantity of the aerial cur- 
rent, depending both upon velocity and upon time. 

The Anemometer here referred to is, as I have said, the only one, 
so far as I know, which has been constructed with the view of thus 

RRQ 
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registering both the quantity and direction of the wind; and however 

imperfect its construction may yet be, it must give some approximation 

to the quantity which it is our object to measure, and must thus afford 

the means of a better estimate of the mean direction for a year (or 

for any other time) than has hitherto been possible. 

It is obvious that the mode of obtaining the mean direction of the 

wind for any time would be to resolve each partial wind into its com- 

ponent parts E. and W. and N. and 8. The sum of all the west com- 

ponents, subtracting the east elements, give the effective west wind; 

and the sum of all the south elements, subtracting the north elements, 

give the effective south wind. The magnitude and proportion of these 

two effective winds compounded will give the magnitude and direction 

of the effective wind, between west and south, which belongs to the 

whole time. And the same may be said of any other cardinal points. 

The reduction of any wind to these cardinal directions is of course 

to be performed by considering it as the hypotenuse of a right-angled 

triangle, and here the multipliers by which the reduction is to be per- 

formed are easily found. We may take fractions which are sufficiently 

accurate, and yet simple enough to be easily used. Thus the éfer- 

cardinal winds, NE, SK, SW, NW, are reduced to the cardinal direc- 

tions N, 8, E, W, by multiplying by i The subordinate winds 

NNE, ENE, ESE, SSE, SSW, WSW, WNW, NNW, are reduced 

to the cardinal directions by the multipliers a and a: thus a wind 

NNE 65, is equivalent to N 60 and E 26. The oblique winds N by E, 

&e. might be reduced in the same manner by the multipliers a and 

98 
ae But these last I have not used. 
100 

2 
ory ls 100° 

I annex calculations made in this manner for the months of January, 

February and March, 1837; in which I have resolved the days into 

periods during which a certain group of neighbouring winds were pre- 

valent. Thus from January 1 to 14, the prevailing winds were SSW, 

SW and WSW/;; from January 26 to 30 they were NE, ENE and E. 
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It appears in this manner that on the scale of the Society’s Anemometer 

the total wind for these three months was W. 321, S. 558. 

It may be observed that the graphical method offers at once the 

mean direction of the wind, and the resolution of the winds into their 

cardinal parts. A straight line drawn from the beginning of the curve 

to its end is the direction and magnitude of the resulting wind; and if 

lines E and W and N and S be drawn from its extremities, they 

will give its component parts. 

If we were to draw the graphical curve of the wind as registered 

by the Anemometer for a year, and were to do this for several years 

at the same place, beginning from the same point, we should probably 

have a set of curves in which a considerable resemblance might be 

traced; for there is a kind of annual cycle of the winds at each place. 

The mean of such curves for a sufficient time would be the mean 

annual type of the winds for that place. The mean annual type of the 

winds at different places would vary very much, as is clear from the 

materials which Kamtz has collected. Thus he finds (Vol. 11. p. 223) 

that the mean direction at Paris is S 68° W, at Montmorenci N 48° W, 

at Utrecht N 85° W, and Amsterdam S 61° W. And though, as we 

have seen, his method of obtaining these results is very insufficient, 

it still serves to show that they would probably be various by any 

method. 

If Anemometers of the kind now described were fixed in various 

parts of the world, and the annual type, and other circumstances of 

the wind thus obtained, it cannot be doubted but that this portion of 

meteorology, and probably other portions which are connected with this, 

would soon make great progress. 

Ww. W. 

Trinity CoLLecE, « 

May 1, 1837. 
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ANEMOMETER, 1837. 

NNE. | NE.| ENE. | E. | ESE. | SE. | SSE. 

0) 

12 

12 

11 

REDUCTION. 

s. | SSW. |SW.) Wsw.| W. |WNW./NW.| NNW.| N. 
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76 | 11 
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65 

89 
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NNE. | NE.| ENE. | E. | ESE. | SE.| SSE. 

34 44 8 
65 
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10 

84 | 167 8 
24 
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E.| 186 

15 48 
14 5 
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7 151 
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N. 
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Feb. 27—Mar. 8. 

Mar. 9-13. 

13 
15 
5 

Mar. 14-21. 

Mar. 22-24. 

22 
22 

44 
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N, NE.| ENE. | E. | ESE. | SE.| SSE. | S. | SSW. |SW.| WSW.| W. | WNW.|NW.| NNW. 

7 12 7 16 5 
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37 
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XIII. On the Explanation of a Difficulty in Analysis noticed by Sir William 

Hamilton. By Artuur Avcustus Moors, Esa. of Trinity College. 

[Read May 1, 1837.] 

In the Memoirs of the Royal Irish Society, Sir William Hamilton 
has made an important observation upon a general principle of Analysis, 
which has been used by La Grange as the basis of his Calculus of 
Functions. Sir W. H. remarks that there is a case in which this prin- 
ciple (which had till then been considered axiomatic and universally 
true) does not hold good. The case which Sir W. H. cites is the 
function e-3, which M. Cauchy had already in his Caleul Différentiel 
shown to be an exception to another generally received principle of 
analysis*. M.Cauchy seems to be of opinion that the existence of this 
anomaly is a sufficient reason for rejecting the mode of exposition of 
the Differential Caleulus of which La Grange is the author, and which 
is certainly based upon the assumption of both these principles, the 
latter however of which is comprised in the former as a particular case. 
But the function e-# is only one of a general class of functions which 
with another constitute the only known exceptions to La Grange’s principle. 
The latter class has no apparent analogy with the former, but on ex- 
amination we shall find that both these apparent anomalies are immediate 
consequences of the fundamental conditions of analytical developement, 
and that the only reason why they were not at once recognized, @ priori, 
as exceptions to the general principle was that in the demonstration 

* M. Cauchy remarks that this function and all it differential coefficients vanish for the 
particular value of the variable 2=0, although the function itself does not vanish for any 
other value of the variable, thus constituting an exception to a generally received analytical 
principle. 

§s2 
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of this principle itself we commit the error of passing directly from 

finite to infinite states of functions and variables, instead of estimating 

and comparing their relations in the different stages of their convergency. 

I have attempted in what follows to give a rigorous demonstration of 
the principle in question, at the same time fixing the precise limits of 

its application, and enumerating the different classes of functions to which 

it necessarily does not apply. 

1. To effect this object I shall begin by explaining what is under- 

stood by infinitesimals of different orders. If a function of « converges 
indefinitely towards zero along with a2, in such a manner that, for a 

very small value of 2, f(x) shall be less than any given magnitude, 

the function /(#) at the limit of those values of « which converge in- 

definitely towards zero is called an infinitely small quantity or infinitesimal. 

But as for similar decreasing values of 2 the ratio of convergency may 

be much higher in one function than in another, we are led naturally 

to consider indefinitely decreasing quantities of different degrees or orders 

of convergency. And having fixed upon some one function whose 

ratio of decrease we assume as the unit of convergency, we call a 
second function which for similar decreasing values of x decreases in 

m times as fast a ratio as the first, an indefinitely decreasing quantity 

of the m' order. We extend this definition to the infinitesimals which 

are the limits of these quantities, and call the infinitesimal which is 

the limit of the former of the quantities, an infinitesimal of the first, 
and the infinitesimal which is the limit of the latter, an infinitesimal 

of the m" order. Choosing a itself for the function whose ratio of 

decrease is taken as the unit of convergency, we see clearly that when 

x is less than unity 4a” is an indefinitely decreasing quantity of the 

m order, where m may be integer or fractional. From this we infer 

that 4a" may represent an indefinitely decreasing quantity of any order, 

and that the limit of 4a” for values of « which converge indefinitely 

towards zero may represent an infinitesimal of any order. This we 

shall designate by the notation lim,-,(4a"). A very wide generaliza- 

tion, which only suggests itself from the study of the different analytical 

functions, is given to this definition by defining lim.-, {,f(«)} to be 

an infinitesimal of the m™ order, if any finite and positive value of m can 
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JHB) 
be found which will render lim af a finite quantity. A corollary 

to this definition immediately offers itself, viz. that if lim,_, { /(#){ is 

: hae ; (a) . 
an infinitesimal of the m™ order, the function Ji@) increases or decreases am 

indefinitely, while 2 converges indefinitely towards zero, according as m, 

is greater or less than m. For 

fie) _ fe) 1 
uv eyed . oy paige -—m ? 

and as L (2) converges towards a finite limit while # converges indefinitely a 
S (x) 
Aa 

increases towards zero, it depends upon the sign of m,—m whether 

or decreases indefinitely at the same time. But if no finite and positive 

J (x) 
value of m can be found which will render lim... {2 a finite quan- 

tity, there are two cases to be considered. Ist. If = converges inde- 

finitely towards zero along with x however great m may be taken, it 

follows from the general definition of an infinitesimal of the m™ order 

that lim,_, §,f(«)} is an infinitesimal of an infinitely high order. 2d. If 

a“). : ; 1 : : 
— increases indefinitely towards a for values of « which converge in- 

definitely towards zero, however small m may be taken, it follows from 

the same general definition that lim,-, {,f(«)} is an infinitesimal of an 

infinitely low order. 

2. Of infinitesimals in general I may enunciate the following 

theorem. 

THEOREM. 

th If lim, { f(#)} is an infinitesimal of the m" order, and if 

lim ,-o{p(a)} is an infinitesimal of the mj" order, the equation /(«) = (2) 

cannot exist for the general value of 2. 

Dem. For if f(2) can be equal to p(#) for the general values of 

x, dividing by x”, we find that 2) can be equal to = which is 
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(a) 1 equal to Say tga converge FO na 22) 
a” 

Now by hypothesis 

towards a finite limit as w converges indefinitely towards zero, whilst 

1 : : 
converges towards 9 oF zero at the same time, according as m, 

is greater or less than m. Therefore a quantity converging towards 

a finite limit can throughout be equal to another which converges 

1 

0 
¢ (x) for the general value of 2 Q.E.D. 

amen, 

towards = or zero, which is absurd. Therefore f(x) cannot be equal to 

Cor. If lim,_,{/(#)} is an infinitesimal of the m order, and 
lim ,=0$@ (x)}, lim. {i (#)}, lim oo fps (w)}, lim .-, {n-1(@)} infinitesimals 

of the mj", m3, mi, orders, f(x) cannot be equal to 

A(x) + Boi (x) + Co.(2) 

for the general value of a. 

SCHOLIUM. 

Hence we see that the law of homogeneity, which is so essential an 

element of all analytical developements, holds good at the limits of the 
functions and variables as well as for values varying between finite 
limits. We shall now see that this law is alone sufficient to demon- 

strate La Grange’s principle within the proper limits of its application, 

as well as to indicate at once the cases in which it is necessarily in- 

applicable. 

3. I shall now enunciate and demonstrate La Grange’s principle. 

THEOREM. 

If f(x) be a function of x continuous between the limits 0 and 4, 

and if lim,-,{/(#)} is an infinitesimal of a finite and positive order <, 

the function /(#) for any value of x within those limits may be analy- 

tically represented by a series of terms of the forms 4a*+ Ba + Cay+&c. 

where A, B, C are finite coefficients, and a, B, y finite and positive 

exponents. 
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Dem. As lim ,_, {,/(x)} is an infinitesimal of the finite and positive 

order «, it follows that the limit of the ratio J (2) for the values of « x 

which converge indefinitely towards zero, is equal to a finite quantity. 

This finite quantity is the coefficient 4. From this and from the con- 
tinuity of the functions (the difference of two continuous functions 

being itself a continuous function) it follows that if we make «# increase 
insensibly from zero to some finite quantity within the limit a, the 

values which the functions 

= {29 _4\, w {FA _ ah, w (fo ae" cl 
xe av 

successively assume, may be respectively represented by B®, Cx, Dx’ 

where B, C, D are finite, and a, 8, y, 6 finite and positive with the 

law B>a, y>, 6>y. Therefore, reducing and transposing, we see that 

for any finite value of « within the limit x», /(#) may be analytically 
represented by the series 42*+ Ba®+ Cav+ Dwv'+&e. @.E.D. 

Cor. We may from the preceding proposition deduce a mode of 

finding successively the terms 4x*, Ba*, Cav, and thus of actually 

effecting the developement of f(x). This is best explained by an example. 
Let f(x) be sina and assume sina = 4x + Ba? + Ca7¥+&e. Dividing 

sin x 
by 27 we get = A+ Bul-*+ Cay-*+&e. Now making 2 con- 

verge indefinitely towards zero, as B>a and y>a, it is manifest that 

sin & : - sr 
=, where a is that finite and positive number 
€ 

A is equal to Tim 5-0 ( 

which can render lim,_> ea a finite quantity. But by the ordinary 

rules of the Differential Calculus for finding the values of fractions which 
f 5 0 

for certain values of the variable become 9° we find that 

: sin & : Cos x 
lim »=0 rai — TT, 5 r . 

ae} 

which for a=1 becomes finite and equal to unity. Therefore 

sin e=a4+ Ba? + Cav + &e. 



322 Mr MOORE, ON A DIFFICULTY IN ANALYSIS, &e. 

Treating the function sinz—w in the same manner as we have just 
3 

1.2.3 
Similarly sin #— a + 

; 1 
treated sinz, we get B=3 and B= Fes 

gives B=5 and C= + , and thus finally 
1 

1.2.3.4.5 
eo x 

1.2.37 1.2.3.4.5 
This process is general, and may be easily applied to demonstrate the 

theorems of Taylor and Maclaurin. 

sin 27 = 2 — &e. 

4. The theorem of the last article is La Grange’s principle, and 

was used by that analyst as the fundamental principle of his Calculus 

of Functions. By the corollary to the theorem in Article 2, it is 

clear that it is inapplicable to functions whose limits for the values of « 
which converge indefinitely to zero are infinitesimals of an infinitely 

high or an infinitely low order, 4x*, Bx®, Cav being at the same limit 

infinitesimals of finite orders. There are however only two known classes 
1 

of functions which have this property, viz. e “ and a . The limit of 
fo) 

1 

the ratio of e * to a*is easily shown to be infinitely small, however 
1 

great a may be taken. Lim, -,(e “) is therefore an infinitesimal of an 
1 

infinitely high order, and consequently e * cannot be represented by a 

series like 4a*+ Ba?+Ca7+&c. On the contrary, the limit of the ratio 

1 . A 
of log @ to #* may be shown to be infinitely great, however small a 

may be taken. Lim,-, cS} is therefore an infinitesimal of an infi- 

nitely low order, and therefore cannot be represented by a series such 
as A4at*+ Ba'+ Cav +&c. In either case indeed, if we assuméd the 

principle, we should, by passing to the limits of the equivalent series, 
find an infinitesimal of an infinitely high or infinitely low order, equal 

to a series of infinitesimals of finite orders, which would violate the 

principle of homogeneity which exists equally in finite and infinitesimal 
quantities. 



XIV. On the Transmission of Light in Crystallized Media. By Putwip 
Kevan, B.A. Fellow and Tutor of Queens’ College, Cambridge. 

[Read Feb. 13, 1837.] 

INTRODUCTION. 

THE object which I have principally had in view in the Memoirs 
which I have hitherto laid before this Society, has been the develop- 
ment of the equations for the motion of a series of particles in a 
form calculated to lead to a simple and tangible interpretation. 

The point of greatest interest connected with the subject, is the 
determination of the daw of force by which the particles act on each 
other. The data for the investigation of this law are neither numerous 
nor well defined, and one difficulty in particular attaches itself to every 
part of it, arismg from our uncertainty respecting the number and 
nature of the causes which may conspire to the production of any 
particular phenomenon. 

In my first Memoir I discarded all complexity from my investiga- 
tions, and conceived the whole effect to be due to the action of par- 
ticles of the same kind: from a comparison of my results with those 
of observation, I was led to the conclusion that the law of force is 
that of the inverse square of the distance, and by means of that law 
was enabled to shew that the vibrations are necessarily transversal. 

In my second Memoir I treated the subject in a more general 
manner, attributing the phenomena to the action not of one system 
of particles, but of two, which act mutually on each other. There 
appeared numerous coincidences, which, if they did not suffice perfectly 

Vou. VI. Parr II. Ab 
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to establish the law in question, afforded strong presumptive evidence 

in its favour; not confined to the action of the particles of ether, but 

extending to those of air, and giving xormal vibrations in the latter 

instance as the cause of the phenomena of sound. 

All the investigations were, however, confined to a perfectly sym- 

metrical medium, on which account the results were limited to non- 

crystallized substances. 

My object at present is to complete the view I have taken of the 

subject, by extending analogous artifices of simplification to particles 

arranged not in a perfectly symmetrical manner, but symmetrical only 

with respect to three planes at right angles to one another. 

In entering on this subject, I must remind you that I take for 

granted the law of the inverse square of the distance as established ; 

and the novelty which is presented by the present view of the subject 

arises from the difference in the orm of the force corresponding to a 
disturbance in the zormal direction, from that put in play by a dis- 

turbance in the ¢ransverse direction, 

I have limited my operations to one series of particles, from the 

circumstance that the form is not altered by introducing another series, 

provided the latter act on the former, and are themselves subject to 

the action of the former. The results arising from the combination 

of two sets, I have proved to be the sums or differences of the results 

arising from each set respectively. 

It is true that the action of material particles has been totally 

omitted, the material particles being supposed to exert on those of 

ether an influence by which they themselves are not reciprocally 

affected. My reason for this omission is, that such influence will not 

affect the motion in a non-crystallized medium, (see Trans. Camb. Phil. 

Soc. Vol. vr. p. 244.) and, consequently, will not materially affect it in a 

erystallized one. The charge which has lately been brought against the 

hypothesis which M. Cauchy and others have adopted, is, that it omits 

altogether the action of the particles of matter. 
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Now I conceive that this is by no means a fair charge, for if the 
material particles themselves vibrate, we have two systems of vibrating 
particles, the combined motion of which has been considered, and if 

they do not vibrate, they produce no effect. 

As regards the law of force, a Memoir has lately been circulated, 
in which M. Cauchy arrives at the conclusion that it is the inverse 
fourth power of the distance. Adopting this law, Professor Lloyd has 
proved that the vibrations are transversal, in a paper read before the 
Irish Academy, in November last. In a short abstract of that paper, 
it is stated that the object of the Author has been simplification, and 
the mode of accomplishing that object is given. This mode is precisely 
that which I adopted, and some of the conclusions are apparently the 
same; as for instance, that the vibrations are transversal. This con- 
clusion is stated as follows: ‘“ When this law of force (the inverse 
fourth power) is substituted in the corresponding relation for the zormal 
vibration, the velocity of propagation is infinite; so that the normal 
disturbance is propagated instantaneously, and gives rise to no wave.” 

I do not think from this statement that the grounds on which the 
law of the inverse square stands, are less tenable than those which lead 
to the inverse fourth power, and shall not therefore consider it incum- 
bent on me to change my views with respect to the law. 

I have dwelt at considerable length on this point, as it is of essen- 
tial importance to all my succeeding investigations that the law of the 
inverse square of the distance be not set aside; and I think it will 
be allowed, that as far as the above speculations are concerned, that 
of the inverse fourth power does not appear to be established. 

In attempting to offer any investigations connected with the trans- 
mission of light through crystals, we are naturally prompted to recur, 
as to the established theory, to those of M. Fresnel, which stand pro- 
minent as an example of clearness of conception and distinctness of 
explanation. The agreement of the results with those of observation, 
the remarkable predictions which they have afforded of phenomena 
which have fully verified those predictions, the simplicity with which 

TT 2 
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they explain a multitude of various and complex phenomena, have 

stamped them with a character so firm that it would be presumptuous 

to attempt to set them aside. Truth however compels me to state, 

that whilst I feel the highest admiration of M. Fresnel’s theory, I am 

at the same time doubtful whether some of the points on which it 

rests are not defective, at least as commonly stated. I allude only 

to the mechanical part of it; nothing can be more complete or more 

elegant than the geometrical part. I trust I shall not be understood 

in anything which follows as endeavouring in the slightest to detract 

from M. Fresnel’s fame. I mean far otherwise; but having advanced 

the opinion that some parts of the mechanical theory are inaccurate, 

it becomes incumbent on me to explain in what manner this inaccuracy 

is introduced, and how it happens that from imperfect premises accu- 

rate conclusions have been deduced. 

It shall be my endeavour then to point out, as clearly as I am 

able, the circumstances in which the theory labours under a difficulty, 

and then to shew the cause of this difficulty. 
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SECTION I. 

Remarks on M. Fresnel’s Theory. 

M. FresneEx in his Memoir on double refraction, p. 103, states the 

principle, that “the elasticity put in play by luminous vibrations de- 

pends solely on ¢heir direction and not on that of the waves.” Of 

this principle he demonstrates, in a very satisfactory manner, the 

theoretic possibility, and there appears little room to doubt its truth. 

Taking it for granted then, he proceeds (p. 106.) to an application of 
it in the following manner. 

If we have two displacements corresponding to different waves, we 

may consider each of them as belonging to a new wave, the front 

of which is the plane passing through them, and shall, if we wish 

to combine the two, have only to combine two vibrations in the 

front of a common wave. Thus far, I think, there can be no ground 

for the slightest objection. But the statement in p. 107 cannot, I 
think, lay claim to the same degree of evidence as this. 

It would occupy too much space to give here the whole of this 

statement. It will be quite sufficient to give an abstract of it, which 

I copy from Professor Airy’s Tracts, p. 343. 

“If the displacement of a particle considered in any direction be 

resolved into three displacements in the directions of a, y, x, the va- 

riations of force in those directions produced by the alteration of a 

single particle (and consequently the force produced by the whole 

system) are the same as if the displacements in those directions had 

been made independently. From this it easily follows that the sum 

of any number of displacements causes forces equal to the sum of 

the forces corresponding to the separate displacements: and then any 

number of undulations, produced by vibrations in different directions, 

may coexist without destroying each other.” It will be seen that 

this statement supposes the force put in play to depend only on the 
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displacement, and not at all on the position of the front of the wave. 
If, indeed, it could restrict the hypothesis by adding that the force 

put in play by a displacement in any direction im the front of a 

wave is independent of the position of that front, or remains constant 

whilst that front is made to revolve about the line of displacement, 

it would coincide with what M. Fresnel had established above. 

It will be seen then that I object not to the supposition that 

the force put in play is independent of the position of the plane of 

the wave, but to the converse, that if a displacement be resolved 

parallel to 2, y, x, the forces put in play will be the same as if the 
wave was in each individual case perpendicular to yx, xx, wy re- 

spectively. 

It is clear that such an hypothesis takes for granted, what I 

should not think Fresnel could mean, that the force on each particle 
in any direction is of the same form as if that particle alone were in 

motion in that direction. 

It will not suffice to urge in answer to these objections, that 

however they might apply to motion in general, in the particular 

instance of vibrations the nature of the arrangement is such as to 

render them invalid. On no hypothesis, that I can conceive, would 

the force due to a displacement im the direction of transmission be 
the same as that in a perpendicular direction, and when the law of 

force is that of the inverse square of the distance, far from being 

identical, they are of a directly opposite character; and the effects 
which they produce, instead of being analogous, are totally different 

even in form; the one being an oscillation, the other a progression. 

But this is not the only objection which I adduce. M. Fresnel de- 

termines by his construction the two directions in which a vibration 

taking place the law of transmission is satisfied. He finds the force 

in each of these directions, by supposing the whole force put in play 

to be resolved into two; one in the direction itself, and the other, 

perpendicular to the front of the wave. The former of these he 
assumes as the force which produces vibration, the latter he omits 
altogether. 
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Now the fact of considering that the force in any direction is the 

resolved part in that direction of the whole force put in play, re- 
quires that the forces be all of the same nature: how does it happen 
then that a part of them may be omitted altogether? Should it be 

urged in reply, that the motion of a particle in a given direction is 

not affected by a force which acts always at right angles to that 

direction; I answer that this is not the solution of the real difficulty, 

though most persons appear perfectly satisfied with it. That the ab- 

solute motion of the particle will be such as continually to change 

the plane in which it moves is quite obvious. If then, as M. Fresnel 

supposes, the velocity depends on the position of this plane, the ve- 
locity itself must be continually varying for the same ray. 

Nor has the plane in which the particle moves a_ reciprocating 

motion. The construction consisting of an ellipsoid cut by the plane 

of vibration through its centre sufficiently proves this; for it is 

found that the whole force due to a displacement in one of the axes 

of the elliptic section acts in the direction of a normal to the ellipsoid 

at the extremity of that axis. Suppose then the particle to be at its 

greatest distance from its position of rest; the action of the normal 

force causes it to return in a direction above the plane of its dis- 

turbance, (suppose). When it has reached the other extremity of its 

oscillation, the force tends to pull it below the line of its retum: 

by each action, therefore, the change from its original line of motion 

is in the same direction, and this will take place continually, so that 

the plane of motion will continually vary, and the velocity of trans- 

mission constantly increase or constantly diminish. 

These points appear to me weak points in the theory: the former 

is indeed of such magnitude, that were there nothing to limit its 

effects, the results would be very far from the truth. The error, 

however, which is committed by this step is exactly righted by the 

second, and thus two hypotheses which individually are erroneous, do. 

when combined, lead to correct results. Indeed it is manifest that 

whereas the former error arises from not giving to the front of the 

wave its due effect, the latter arises from giving it an effect which 
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it could not produce: the former requires that the force should act 

out of the plane of the wave, the latter rejects the part which does; 

and these will right each other if we can shew (as I trust I have 

done in the sequel) that the actual vibratory force is 7 the front of 

the wave. I could have desired that my investigations should have 

assumed a more inviting form, but I have not the means at present 

of throwing them into a shape other than that under which they 

appear. 

The first step I have taken is to prove the transversality of the 

vibration, and thus having established a direction in which vibrations 

do take place, I suppose that the forces put in play by a displace- 

ment may be determined (as far as their action in the direction of 

that displacement alone is concerned) in the same manner as Fresnel 

does. The modification then which I propose, consists in restricting 

the theorem of Fresnel, and reducing it to the following: 

«That the whole vibratory force put in play by a displacement ix 

a direction which admits of a vibration, is the sum of the resolved 

parts along that direction of the vibratory forces due to the resolved 

parts of the displacement along the axes of elasticity.” With a 

direction normal to those of vibration I have nothing to do, except 

to prove that the force in that direction is not part of the vibratory 

force. 
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SECTION II. 

Investigation of the Motion of a System of Particles within a Crystal. 

1. We shall assume that the arrangement is an arrangement of 

symmetry with respect to three planes mutually at right angles to each 

other. 

Let their lines of intersection be taken as the axes of co-ordinates. 

2, y, * the co-ordinates of the particle under consideration in its po- 

sition of rest. 

u+a, y+, x+¥ its co-ordinates after the time ¢. 

x+da, y+oy, x+0x% the co-ordinates of another particle whose dis- 
tance from the former is 7. 

Then, by pursuing a process precisely analogous to that which 

applies to non-crystallized media, (Trans. Camb. Phil. Soc. Vol. v1. Part 1. 

page 162.) supposing the particle in vibration, we have the following 

equations of motion: 

d°a a il 36a kop ox oy kop 

de = ~ 22 (3 — =) sint 3° — 62 “5 sint 8 
oxox . ,kdp 

—6y= 3 a9)? 

OB 1 30a kop ody . kop 

dt (he ie ae Cae ary 

oy ox. , kop 
= vy> 2 sk 67> QP sl ome 

d’y & 1 ahop 6x Ox hop 
Tn —2y7= (5 = —, ) sin 6a mn a0 

oy Ox hop —~68B>—2— sin? ——f 6B , 9 

Vou, VL Pax IL Uv 
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gsi sin* eit =i) 22 e iy =) sin® di = 
Fe 2 ? ce 2 

jy? - dp u 36y° kbp 
22778 =i. oS (= - | sin 2 =b, 

68" 2). 
25 sin? — P =p, 1Q> (= = a ) sine 30 =e 

and calling by 
6262. at i 
= sin’ paiear Ven where a+6+c=0. 

}y ox r kd (pa - ee. 

Ane hdp 6= =e s sin’ 3° =Z, 

multiplying the equations by P, Q and F respectively, and adding 

them, we may put the result under the form 

pus aoe +ROY =— A (Pat QB + Br) (1), 

provided we make 
(a—A) P=QZ+ RY, 

(6—A)Q=PZ+ RX, 

(e—A)R=PY+QY. 

’ 

By eliminating P, we obtain 

§(a— A) (b— A) - 2} Q={VZ+ (a-A)X} F. 

{(a— A) (c— A)— ¥*} R={VZ+ (a—A) X} Q, 

and finally 

(a— A) (b— A) (ec— A)— X* (a- A)— Y*(b—-A)-Z (c- A)-2XVZ=0, 

or (A—a) (4 -b)(A—c)—X*(A4-a)- ¥*(A-b)-Z*(A-c) 

+2XYZ=0, (2); 

an equation which it may be readily shewn gives three possible values 

of A. 
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2. These values are either two positive and one negative, or two 

negative and one positive, for if we write the equation under the form 

A’—(a+b+0) A? + fabt+act+be-(X*+ V+ ZZ): A 

—abe+aX*+bY’+cZ’?+2XVZ=0, 

it will be evident that the coefficient of A* is equal zero (1). 

The roots then must assume the form 4,4,—(A,+ 42), in which 

A, A, may be either both positive or both negative: suppose the former. 

3. Now, corresponding to any value of A, a value of P, Q, R, 

respectively can be determined; but 4 is the velocity of transmission 

of a vibration whose direction makes with the co-ordinate axes the 

angles cos~' P, cos~' Q, cos~' R respectively, and which is transmitted 

in a direction making with the same axes other angles 0, @ and y. 

We conclude then, that there are in general fwo directions and 

no more, in which a vibration taking place, the transmission along a 
given line is possible. A disturbance in a given direction being re- 

solved into these two, will give rise to two different rays, transmitted 
with different velocities. 

4. The third value of 4A which is negative, will not correspond 

to a vibration; the manner in which it may affect the motion, and 

the probable results to which it gives rise, I have fully discussed in 

a paper read before this Society a short time since, and shall leave 

it untouched in the present Memoir. 

Discussion of the E-quation for A. 

5. As a preliminary step towards a complete discussion of this 

equation, we will first consider the medium perfectly symmetrical. 

Transform the co-ordinates in such a manner that the axis of 2’ 

shall coincide with the direction of transmission, and that of y' lie 

in the plane of avy. 

Denote the angle between the axes of # and 2’ by the symbol 
(ax), and so on for the others : 

UU2 
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then cos (aa’) =cos 0, 

cos (xy) =Ccos 

cos (a'%) =Cos Wy; 

and cos (y'a) cos @ + sin (7/2) cos p=9; 

*, tan (ya) = — ae 

also cos @ cos (xa) + cos p cos (xy) + COS y
 COS (x's) =0, 

cos (yx) cos (x’a) + sin (y'x) cos (xy) =0, 

cos? (x’x) + cos” (x'y) + cos? (e’s)=15 

which three equations give 

cos (x'«) = — cot yy cos 8, 

cos (xy) = — cot yy cos d, 

cos (#’#) =sin 3 

and Sp=6da' =da cos 0 + dy cos p + dx Cos Wy, 

dy sin yy = — da cos p + dy cos 8, 

Sx’ = —Sa cot W cos 0 —dy cot y cos ¢ + dx sin W, 

da=d.2' cos o-2y'S — dx’ cot y cos 6, 

Sy =a" cos p + dy/ a — dx cot W cos d, 

Sx=da' cos yy + dx’ sin W. 

6. Making the substitutions, and calling m+n +p =h, we Eve 

ere 
sin’. kbp 

a=h—6(d2' eos 6 — 8G = — 32’ cos yy cos 0)" .—=— 

kop 
cos! g sin’. aa 

=h-—62(da” cos’ 6 + by aoe + dx” cot? W cos’ 6). aa 



IN CRYSTALLIZED MEDIA. 335 

for by the symmetry of the medium 

aby . , hea’ 
= Y sin? = 5 Oa 

and similar expressions for da’, dy’ and dz’ must all equal zero: 

*a=h — 3(m'cos 0 +n aS + p' cot’ vy, cos’ 6), 

cos? 
b—h— A h = h — 3(m'cos’p + n’ cary, +P cot WW cos* p), 

ce = h — 3(m'cos’y + p’sin® W), 

adopting a notation similar to that in (1). 

» COST 
ar — 8x’ cot W cos ¢) Also _X = 6. {ew cosp + dy 

ree 
x (dx' cos ¥/ + dx’ sin 1 : 

= 62 (d2" cos p cos yy — dx? cos cos W) 

= 3(m' — p') cos $ cos W, 

Y = 3(m' — p’) cos@ cos W, 

Z = 3(m' — + p’ cot? y/) cos @ cos ¢. 
n’ 

sin®. yy 

7. These values of a, b, &c. will be much simplified in an un- 

crystallized medium, for in that case it is evident that 

kip ._,kSp 
sn ——— sin? —+ 

2 = se? 9 
5 r° 

U Loy” yMakid =.) =p". 

This reduces the above equations to the following, in which I have 
suppressed the accents for the sake of brevity. 
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a =h —3(mcos @ + psin’ 6), 

b = h — 3(mcos’ + psin’ ¢), 

c =h — 3(mcos’ + psin’ W); 

AX = 3(m — p) cos? cos, 

Y = 3(m — p) cos @ cosy, 

Z = 3(m — p)cos 0 cos p. 

8. To find the coefficient of 4A in equation (2). 

ab + ac + be = 3h? — 6h §m(cos’@ + cos’ + cosy) + p(sin’é+...)$ 

+ 9 $m? (cos* @ cos? @ + cos*@ cos’, + cos’  cos* yy) + p* (sin* é sin* p +...) 5 

+ 9mp (cos @ sin’ @ +...) + 9mp (cos’ Pp sin’ O + ...), 

let cos’ @ cos’ p + cos* @ cos’ + cos’ d cos? py = f 

cos’ @ cos’ Pp cos’ = 8, 

and ab + ac + bc = 8h? — Gh + 9 Sm f+ p?(1 +f) 

+ 18 mp (1 -f) 

— 3(m + 2p)? +. 9(Qmp + p*) + Of m? — 2mp + p’) 
— 3(m + 2p)? + 9(Qmp + p?) + 9f(m — p). 

Again X? + Y° + Z? =9(m — p)f; 

-. coefficient of 4 = ab + ac + be - (X*° + Y' + Z) 

=— 3(m + 2p)? +9 (2Qmp + p*), 

= — 3m’ + 6mp — 3p", 

=— 3(m - p)’, 

which is independent of jf or of the direction in which the particle 

vibrates. 
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9. To find the last term of the equation 

abc=\h—3(meos 0+ psin’@)| {h—3(m cos p+ psin d) | |h—3(meos yy +psin' yy) | 

= 2h'+ 9h {(m — p) f+ 2mp + p*} 

— 27 {mig + p' (f— g) + mip (f— 8g) + mp" (1 — 2f'+ 8g)| 
= —22(m+ 2p) +9(m+ 2p) \(m — p) f+ p> + 2mp} 

— 27 {(m ~ pig + p(m — py f+ mp'| 
aX? +bY*?+cZ? = 9(m — p){(m + 2p) f — 3(3mg + p(f- 3g)5 

= 9(m — p) {(m — p).(f- 9g)} 

= 9(m — py (f— 98); 

2XVZ = 54(m — py.g; 

* —abe+aX*?+bY*?+eZ?+2XVZ 

= 2(m + 2p) — 9(m + Ap) (p? + 2mp) + V7 mp* 

+27 (m — p) {(m— p).g +pf}—9(m + 2p) (m — py f 

+ 9(m— py (f- 9g) + 54 (m — py. 

= (m + 2p) (2m? — 10mp — p*) + 27mp* 

= 2m* — Om’ p + 6mp? — 2p* 

= 2(m — p)’, 

which is also independent of the direction of vibration. 

10. By the substitution of these values the equation in x is 

reduced to the simple form 

A’ — 3(m — p’ A+ 2(m — p) =0, 

the roots of which are evidently 

m—p, m—p and —2(m — p). 

This result shews that the vibrations are transmitted with the same 

velocity in every direction in which such can possibly be transmitted. 
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11. We proceed now to the determination of these directions, and to 

commence with the last value of A, substituting in the equations of 1; 

-a—-A=m+ent p—3(mcos'd + psin’d) + 2(m — p) 

3msin®@ — 3psin’é 

3(m — p) sin’ 0; 

b — A = 3(m— p)sin’ 9, 

c— A =3(m — p)sin’y; 

-. §9 (m — p)’sin®@sin® p — 9 (m — p)* cos 6 cos’? p} @ 

= §9 (m — p)’ cos® @ cos p cos fy + 9 (m — p) sin’ @ cos p cosy} BR; 

or (1 — cos’@ — cos’) @ = cos p cos \ R, 

cos’ y. Q = cos cosy fh, 

cos) Q = cos f R, 

Similarly, from the other equations we deduce 

Psin’ @ = Qcos 0 cos + K cos 6 cos yy 

= cos* yy 
= Qos 0 (cos + ae) 

sin’ @ 
en rg 

i 
oF cos cos p’ 

which shews that P, Q, R have the ratio 

cos@, cosd, cosy; 
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hence P = C.cos@, 

Q = C.cos ®, 

R = C. cos, 

C being some constant factor. 

Substituting these values in the equation 

d d° pee ea dg =~ A(Pa+ QB + Ry), 

we obtain C (cos gas + cos p ae + COS = ) 

= — AC (cos0.a+cosp.B + cosy. ry), 

which by making acos@ + Bcos¢@ + ycosW = 4, 

2 

gives q — Ad dt 

Il 2(m — p)d, 

a form which does not correspond to a vibration. 

The expression acos6+Bcosp+-ycosy is evidently the resolved 

part of the disturbance parallel to the direction of transmission: it 

follows therefore, that there is mo vibration in the direction of trans- 

mission, or in other words, that the vibration is entirely transversal, 

a result to which I also arrived in a former Memoir. 

12. To determine the directions of vibration corresponding to the 

values m—-p of A. 

a—A=m-+2p — 3(mcos’@ + psin® 6) — (m — p) 

= 3p cos’ @ — 3mcos’@ 

= — 3(m — p) cos’, 

b- A =— 3(m— p) cos’ ¢, 

c— A =— 3(m — p) cos’ 

Vou. VI. Parr II. ox: 
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which values substituted in (1) give 

(cos? 8 cos” p — cos? 6 cos’ @) Q= (cos’ 8 cos P cos y — cos’ 6 cos p cos WV) R, 

an identical equation independently of Q and &: and the other equa- 

tions give 

—3(m—p) cos’ 9. P=3 (m—p) cos 0 cos p. Q + 3(m—p) cos 8 cos WR, 

which is satisfied by making either cos 6=0 

or Pcos0+Q cos p+ cos y=0, 

and the former is evidently impossible, wherefore the latter equation 

must be satisfied: and it is the only equation in P, Q, R. 

Suppose now the direction of motion of the particle to make 

angles X, Y, Z with the axes of a, y, , then the displacement A is 

A=a cos X +f cos ¥++¥ cos Z: 

but it is also oe ; 

 Pae Q_ a 
y G =008 X, C = 008s ¥, G = 008 4 

and from the above equation 

cos XY cos 0+ eos Y cos # + cos Z cos yy =05 

which shews that the directions of displacement, and of transmission 

are at right angles with each other, and since this is the only con- 

dition which exists amongst the quantities P, Q, R, the displacement 

may be in any direction in the plane perpendicular to the direction 

of transmission, and it is propagated with a velocity equal in all 

directions. 

13. We will now return to our equations, and suppose the me- 

dium symmetrical with respect to each of the axes respectively, but 

not absolutely a medium of symmetry: suppose, for instance, that in 

passing from the plane of ay the distance between two consecutive 
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particles is ¢€; in passing from the plane of ax~e’ and in passing 
from the plane of ys—e’, our equation still retains the form 

A’ + fab+ac+be-(X*+ ¥*+ Z)} d—abe+aX?+b¥*4+cZ? 

+2XVZ=0, 

which is evidently analogous both in its form and mode of derivation 
from the elimination of P, Q, R to that for determining the three 
principal axes of a solid: and may therefore be proved in the same 
manner to give three values of 4 corresponding to directions at right 
angles to each other. 

From the form of the equation it is obvious that of the three 
directions two only correspond to a vibration. 

14. For these two vibrations we shall manifestly have equations 
of motion analogous to those in other cases. 

The plane in which they lie is called the front of the wave, and 
the values of A are the velocities of transmission in a direction per- 
pendicular to the front. 

Let the axes of 2,, y,, %, be the three directions; 2, being that of 
no vibration, and let them make angles @¢,\,; @d¢.eo; Obs with 
the axes of a, y, x, respectively. 

Then we must have 

da, _ LE . 38a)... ox, 
dt = alee P ) sine 2° 

Deh) 1 30y; hon, 

dé 22 (5 - sh) sin’ : 

ay, _ 1 36%? hoa, . 

ae ee a= a: 
extending to a,, ,, y, &c, the same meaning as to similar quantities 
along other axes. 

xxX2 
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15. Now if we had taken the three axes of 2,, y,, %, as those of 

co-ordinates in the commencement, we should have had the extra 

ca os sin? ge 
term (supposing a,=0) >——{— in each. 

Our equations then arise from making this quantity vanish. 

Let v, wv be the velocities of transmission of the vibrations respec- 

tively perpendicular to the front of the wave. 

1.  Soy\ < 2how 
les = 1 sts | Then v’=2> = 7 } sin 3? 

sy. kod, 
py? =2> (; - Ee ) sin? ——". 

i 2 ae 

These values of the squares of the velocity depend (it is supposed) 

only on the direction of vibration, provided that direction be perpen- 

dicular to the direction of transmission: the quantity 

1 

ee ule tba 
r Vai 

is in fact the force due to the displacement ,, and the position of /, 

in the front of the wave defines its value. Now this displacement 

may be resolved into three parallel respectively to «, y, x, and Fresnel’s 

hypothesis is, that the force put in play by that resolved part bears 

the same ratio to it as it would were the vibration one simply in that 

direction. 

16. This supposition amounts to the following: 

That if we take the expression 32th « sin? eu and transform the 

expression dy; into an equivalent one in "be dy, 6x; placing before each 
Bil een nee 5 

of the terms, not the expression sin® =: but an expression of the same 

form corresponding to a transmission at right angles to the axis belong- 

ing to that term; the expression will be unaltered. 
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Now dy{=(dx cos 0, + dy cos d, + ox Cos W,)*5 

- oes sin 40m = M cos* 0. + N cos’ ¢. + P cos’ wv, 

t 2 kee 
and = 5 sin’ =63 

oa? . key oy . kor 
— pee adit y= > jee when M= = 3 in’ N 7 sin, 

past ine A 

and .. v°'=2{(e—3M) cos’ 0. + (e—3.N) cos’ @, + (e-3P) cos’ W.} 

=a cos’ 0, + b cos? d2 + & cos? Wr *, 

a, b°, c being respectively the squares of the velocity of transmission, 

when the vibration is simply in the direction of one of the axes. 

Similarly v* =a’ cos* 6; + b? cos® p; + €° cos Ws. 

17. Now we have seen that 

5 ide 5 akon 
7 aN 

Applying the same process to this equation, we obtain 

M cos 6, cos 6; + N cos d, cos d; + P cos YW cos y,=0, 

which will determine the directions of vibration corresponding to the 
values of the squares of the velocities given above. 

18. In order to determine these directions, we express the co-ordinates 

and angles by making ¢ the angle between the axis of x and the line of 

intersection of the planes of y,x, with wy; and calling « the angle between 

this line and the axis of y, y, the angle of inclination of x,y, to «xy. 

Thus «PN=e, (see note at end of Sup.) 

NPy =p. 

* This equation I have obtained by a totally different process in a subsequent Memoir. 
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We shall find 

cos 0, = sine sin W, 

cos g;= — COS € sin W, 

cos v7, = cos Wy, 

cos 6, = COS » COS e— SIN w SiN € Cos /, 

COS dz =COS u SIN € + SIN u COS € Cos fy, 

COS YW. = SiN « sin yy, 

cos 6; = —sin p COS e— COS » SiN € COS W, 

cos g,= — SiN » SiN € + COS 4 COS € COS Wf, 

COS Ws = COS m SiN W. 

19. By these values of the angles, the equation in (17) is reduced 

to 

—M (cos » cos e— sin» sin c cos Wy) (sin » tos € + COs « SiN € COs W) 

— N (cos » sin ¢ + sin p COs € Cos W) (SiN u SIN e — COS p COS € COS yy) 

+ P sin p cos » sin’ y=0, 

or — WM {sin 2p (cos? e— sin’ « cos* )+cos Qu sin Ze cos Wt 

—W $sin 2p (sin? e— cos’ e cos* \-) — cos 2u sin Qe cos Wt 

+ P sin 2u sin’ ~p=0, 

or sin 2p {(M—N) (cos? e—sin’ e cos?) + (N— P) sin’ ¥} 

+ cos 2u (M—WN) sin 2e cos =0. 

20. The same substitutions reduce the value of v*® to 

v’ =a’ cos’ 0, + b’ cos® d, + ¢ cos’ Wz 

= a’ (cos* uz. cos’ e + sin’ « sin? e cos’ /— 4 sin 2u sin 2e cos W) 

+ 6° (cos’ « sin’ e + sin® u cos ¢ cos’ y + } sin Qn sin Ye cos W) 

+c’ sin’ p sin’ y; 
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v = a’ (sin’ u cos’ € + cos’ 4 sin’ ¢ cos’ + 3 sin Qu sin Qe cos W) 

+ b? (sin® « sin’ € + cos® cos’ € cos? Wy — 4sin 2u sin Qe cos W) 

+ ¢ cos’ sin W. 

Hence v’ + 0” = a’ (cos’€ + sin’ € cos’) + b? (sin’ € + cos’ € cos* W/) 

+ csin®?W...... CEs 

ve —v = (@ — 6) {sin 2usin Qe cos — cos 2u(cos’e — sin’ € cos’ yy) 

== (GE — ses Nae CORB Miia Sodio Sauce co's Sea ec ak (2). 

21. Now in the equation of condition (19) since 

c @ c b? c Ce 

EG a Sim 6 Fe aioe Gt 

: _ (a — b’) ep ae 
SVS r= Ss 6 ; N= P= 6 : 

by substituting these values, that equation becomes 

sin 2u {(a@° — &) (cos’€ — sin’ € cos’ y,) + (b? — c’) sin® wy} 

+ cos 2p (a° — b*) sin 2e cosy = 0; 

. (@ — 6°) (cos € — sin* € cos) + (b° — c*) sin’ yy 

= — cot 2u(a’ — b*) sin Qu cos W...... (a) ; 

M. 
: s1n 2e COs \, 

sin 2p 
hence v” — v* = (a — b*) sin Qu sin 2e cos + (a’ — 8?) 

sin 2 cos 
sin Qu 

= (a — 6?) 

Ey ip 3 it appears from the above equation for cot2u(a), that 

Tv 

uw =0, or and 2° 

*, SIMie=—O} 

This value therefore does not make the expression vanish, as would 
appear at first sight; it can vanish only, when 

sinQe = 0; 
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e— 0; 

Tv 

or Se 

and the vibration is either in the plane of ax or of yz. 

And from equation (a), if « =0, 

a@—b + (b&—e)sin’y = 0, 

: B— a’ 

ae, oe 
i ar 

and, tan = ne) tae 

therefore a is intermediate to 6 and ec. 

If € = 5 we get (a’ — b')cos'y = (b* — e’)sin’y; 

2 2 

.. tany = a 

and 6 must be intermediate to a and c. Both these cannot be true 

for the same medium: let the latter only be true, then the transmis- 

sion is in the plane of wx, and there are two directions, one on each 

side of the axis of x, for which the velocities of transmission of both 

vibrations are the same, which directions are the optic axes*. 

We will call m the angle made by this optic axis with the axis 
of x, so that 

b 
tan? m = a 7 

22. The equation (a) gives 
2 78 8 payee 2 Bist on? EA hog (a’ — Bb’) (cose — sin € COS wW) + (B? — c) sin’ 

(a — 6°) sin 2 cos 

__ cos’e — sin’ € cos’, + cot* m sin* y 
2 sin 2€ cos 

* The optic axis here is not the same as that which Fresnel calls by the same name. 

This is determined by the direction of the wave, his by that of the ray. As I shall 

have to compare them, I will use the term radial axis instead of optic axis when speak- 

ing of the latter. 
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(cot m sin yy — sine cos p) (cot m sin + sine cos wy) ee) NEE ESE ch ST €,COS yr) 
COS € COS € a ce 

2 cos yy sin € 

COS € 

Now if O and R# in the figure (18) be the two optic axes, it is evi- 
dent that 

BX, = Wy, wx0=5- 6 weR = 7 +e; 

*. cot Ox,x = cot msin yW sece — cos y tan e, 

cot Hx,x = cot msiny sece + cosy tan e; 

“. — cot2n = cot(Oaz — R22), 

7 — 2un = Oxxz— Rays 

= Ony, — Ray, + 2eny, 

= Ony, - Ray, + 2(xa,N — xu) 

= Ony, - Ray + 7 - Qn; 

-. Oxy, = Ray; 

therefore the plane which defines one vibration bisects the angle be- 
tween the planes passing through the normal to the front of the wave 
and these two optic axes. 

The plane which defines the other is manifestly at right angles 
to this. 

23. We saw in (21) that the expression for the difference of the 
squares of the velocities is 

2 ® = (op? _ J) Si Be cosy 
v v (a? — b?) ana 

COS € sin m 
Now sin Ox, = ——~-—— 

sin O2,x 2 

cos € sin m ‘ 

sin Ra,x ’ 

Vou. VI. Parr II. Yy 

sin Ra, = 
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2 ae . : cos’ € sin? m 
+. sin Oa, sin Ra, = —~———_— 

; 1 sin Oa,z sn 2,8’ 

and sin Oa,zsin Ra,x = — sin Ow,s sin (Qu + Oms) 

cot m sin yy — cosy, sin € 
COS € 

= — sin’ Oa, (sin Qu + cos 24) 

cotm sin — cos\sine cos’e — sin’e cos’ + cot*’m sin’ 
( COS € a sin 2€ cos Wy 

ae m sin) — sin € cos = 

COS € 

— sin 2u 

sin 2u cose | 
2sin € cosy,’ 

sin Qe sin’ m cos Wy 
*. sin Oa, sin Ra, = : 

sin Qu 

a@ — BD’ sin Qe cosy 
a—e¢ sin 2p 

vy? —_ v 

(en Hee 

. vo? —v = (a — c) sin Ox, sin Ray. 

24. From M. Fresnel’s construction it appears that the sum of the 

squares of the velocities of the two waves perpendicular to their front, 

and travelling in the same line (we are speaking of vibrations not 

of the motion of the rays conveyed by them) is (Hncy. Met. Light, 

p. 544.) 
a+b’ +m? (6 +c) +n? (a +c’) 

1 +m +n’ 

where s = ma + ny is the equation to the plane in which the vibra- 

tions take place, so that . 

m : 4 
+ S——- = smesiny 
/1 +m + n° 

n F 
- SS = — ~COSE SIN 

J/1 + m + 7? u 

il 
S$. = cosy, 
/1+ m+ n 
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and the sum of the squares of the velocities is 

(a? + b°) cos’ wy + (a? + €*) cos’ € sin? Wy + (b? +c”) sin? € sin? M7 

= a’ (cos* yy + cos’ € sin’ yy) + 5° (cos* yy + sin’ € sin? y/) 

+¢ sin’? yy 

a’ (cos* € + sin’ € cos’ yy) + 5° (sin® € + cos” € cos? wy) 

+ ¢’ sin? 

which is the same expression as we deduced for the sum of the squares 
of the velocities in (20). 

25. Having then results coinciding with those of M. Fresnel, I 
shall pursue the subject no further. The formula which I have given 
for the value of the difference of the squares of the velocities of the 
two vibrations, is a very elegant and useful one. Whether it had 
ever before been deduced from theory, or not, I cannot tell. Mr 
Herschel states that it has long been established by experiment. The 
only analogous one which I can find, is that of M. Fresnel, viz., 
“that the difference of the squares of the reciprocals of the velocities 
of the two rays is proportional to the product of the sines of the 
angles which their common direction makes with the optic axes of 
the crystal.” M. Fresnel also defines “optic axes” as those in which 
the rays travel when their velocity is the same for both. I have 
preferred to retain the name of optic axes to those diréctions which 
are normals to the directions of waves which move with a common 
velocity perpendicular to their own front; and it is very evident that 
these are the optic axes of experiment. 

I wish to add that, as far as I am aware, M. Fresnel’s law, 
beautiful as it undoubtedly is, appears to me utterly incapable of 
being tested by experiment; so far as I can see, it requires a con- 
nexion with the index of refraction in order to apply experiment at 
all, and the index of refraction depends only on the wave. It must 
however be observed, that the older experimenters always use the 
word ray, but the slightest examination is sufficient to convince us 
that they mean, what we now call wave. 

Roe ry 
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It is not then a matter of surprize, that modern writers should 

in some cases confound the two; and this particular formula has been 

differently enunciated by different writers. 

Thus Mr M‘Cullagh, in the Transactions of the Royal Irish 

Academy, enunciates Fresnel’s proposition as follows: 

“The difference of the squares of the reciprocals of the velocities 

of the two rays having a common direction in the crystal, is pro- 

portional to the product of the sines of the angles which that direc- 

tion makes with the optic axes.” 

Mr Airy gives the following: 

“The difference between the reciprocals of the squares of the ve- 

locities of the two rays is proportional to the product of the sines of 

the two angles made by the front of the wave with the two circular 

sections, or to the product of the sines of the angles made by the 

normal to the front with the two optic axes.” The latter is, I have 

no doubt, incorrect. 

Having then, in some instances, contradictory statements of the 

nature of the theory, I have, probably, here misled in some points. 

With respect to the mechanical part to which I object, all statements, 

which I have seen, coincide. 

96. I refrain from making any extended application of the subject, 

but will only trouble you with one case, which T adduce on account of 

its great importance. The explanation of the lemniscates in biaxal crys- 

tals depends on the difference of the retardation of two vibrations which 

have a common normal to their front. The usual method of proceeding 

has been to find the retardation for uniaxal crystals, and from the cir- 

cumstance of the retardation in that case being proportional to the 

difference of the squares of the velocities of the two waves, the same is 

true of the difference of the squares of the velocities of the two rays 

in biaxal crystals, and then, finally, to assume the difference of the re- 

ciprocals of the squares of the velocities of the rays to vary as the 

product of the sines of the angle made by the normal with the optic 
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axes. The expression which I have given above is remarkably elegant, 
and is evidently the one on which the differences of the refractions of 
the different rays depends, whilst M. Fresnel’s formula is not susceptible, 
as far as I know, of ‘any application, except in those numerous instances 
where, being incorrectly adopted, it still gives a result nearly correct. 
This arises from the difference of the reciprocals of the squares of the 
velocities of the rays varying as the difference of the squares of the 
velocities of the vibrations parallel to their fronts. 

27. To apply the formula to the particular case in question : 

Let 7 be the thickness of a plate of a biaxal crystal cut perpen- 
dicularly to the greatest or least axis of elasticity ; 

V the velocity in air; 

v, v those of the vibrations perpendicular to their front, the inci- 
dence being nearly perpendicular ; 

g~, the angles which the perpendiculars to the fronts of our 
waves before and after incidence make with the normal; 

Then the retardation of this wave may be easily shewn (Airy’s 
Tracts, p. 376.) to equal 

is i — cos P cos ¢’ — sin @ sin °| 
cos g! 

fell ZG ‘ Poor eu: = ag {e ~ ck V1 sit g'— sine g 7 

ome fk V 24 COs ae = cs te i al de Be sin P} 

TX cos gy — i Jaa V? sin gh 

i} 7\r cos p’ — 1| nearly. 
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Similarly the retardation for the other ray is 

V 
T\7 cos 1}, 

v 

and the difference of these retardations is 

TV cos q’ (; _ =) 
v 

, oS 
= TV cos Swe) 

EV senshi oil t,.o0: ‘ 
= el aaa (a@—c*) sin Ox, sin Ra, (23). 

Now (a°?—c’) is a small quantity, hence, if the square of such a 

quantity be omitted, 
v'v (v' + v)=20; 

and difference of retardation becomes 

TV 
aa cos ¢’' (a’—c’) sin Oa, sin Ray. 

28. In conclusion, the principal point in which the present view - 

of the subject differs from those which have gone before, is in the 

fact of the non-existence of a normal vibratory force, or, in other 

words, that there is no resolved part of the force perpendicular to 

the front of the wave. The greatest utility of this view of the sub- 

ject will appear when we shall consider the effect which takes place 

at the confines of: two media, for it is evident that in resolving our 

vibrations at the point of change, we shall be obliged to consider the 
whole resolved part as lying in the plane of the front of the new 

wave. The complete discussion of this point, however, involves con- 
siderable difficulty, and I must delay it for the present, hoping shortly 

to make it the subject of a separate communication. 



XV. Supplement to the Memoir on the Transmission of Light in Crystallized 
Media. By Purtrie Kevianp, B.A. Fellow and Tutor of Queens’ 

College. 

[Read May 1, 1837.] 

(BIOT’s LAW.) 

1. In the latter part of this Memoir, I make an application of 

the formula which I had before deduced, viz. “that the difference of 

the squares of the velocities of two waves having a common normal, in 

the direction of that normal, is proportional to the product of the 
sines of the angles made by it with the two optic axes of the 

crystal.” 

As my object was merely to shew that it was a Theorem wanted 

for such considerations, I adopted all the approximations which [I 

found in common use. On examining the subject more attentively, 

I find that some of them if allowable are superfluous, and that the 

same result is attained, by proceeding to work in a direct manner. 

I am not, it is true, quite sure that the authors of the investigations 

considered them as approximations; they make no remark to that 

effect, but assume at once that the ray and wave coincide. 

2. In order to find the appearance presented on the transmission 

of polarized light through a plate of biaxal crystal, the most impor- 
tant point to be determined is, the difference of retardation of the two 

waves. 

The want of a proposition, such as that which appears in (23), 

seems to have driven writers to adopt an approximative process of 

the following nature. 

First, a ray is supposed nearly to coincide with a wave, and the 

theorem that the difference of the squares of the reciprocals of the 

velocities of the two rays is proportional to the product of the sines 
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of the angles which their common direction makes with the optic 

axes suggested (apparently) that the same Theorem approximately held 

when wave was put for ray, and normal to front for direction, &c., 

and thus a Theorem which is in no way connected with the result, 

does from the circumstance of its close analogy to the true one, give 

correct results, or nearly so. 

3. Let BC be the direction of one ray in the crystal; BE a normal 

to its front; CG perpendicular to BA; @ the angle of incidence; 

¢’ the angle which BE makes with the normal to the plane surface 

of the crystal; BC makes @ with the same; T7' the thickness of the 

plate. (Note at end.) ; 

Then if v be the velocity before incidence, v’ the velocity perpen- 

dicular to the front after refraction, 

v sng’ 

o sing’ 

and the ray has moved perpendicularly to its former front through a 
space 

= BG = CB cos(¢ - @) 

pd. cos (¢ — 8), 
~ cos 0 

since =e = BC; also pore aati is the velocity along BC; 
cos 6 2 cos (0 - ¢’) vf g ; 

“. time of describing BC = Deos(O= #), 
v cos @ 

therefore the space which the wave would describe in the same time 
in air, is 

Tv 
eos 0 °° (0 — ¢’'), and the retardation is 

a {-{c0s (0 — v')} — cos(g — )} 



IN CRYSTALLIZED MEDIA. 

1 

= ase (cos 6 cos #’ + sin @ sin $') ~ cos p cos 0 — sin psinol 

f LETS) \ 
= a {or e08 8 05 - cos pcos 6h 

v U = T vy CoS _ cos | 

r| 

r\", J/1 = <sin®p — cos gh 

and if v, be the velocity of the other wave, its retardation is 

vD Te ae 
V1 — sin’ p cos 

Di Se nei { il sin @g — cos | 

the angle of emergence being supposed the same for both. 

Hence the difference of retardation is 

T\~ = 4) = Tv {~ = i nearly. re mv % 0 

355 

4. This hypothesis that the two waves are moving parallel to 

each other at emergence, is clearly not compatible with the hypothesis 

that they have the same normal within the crystal. 

If v, be the velocity of the wave which has a common normal 

with that whose velocity is v,, we have 

retardation of this E {2 cos p’ — cos 9 

ll 
v v 

T \— cos’ — : = inh - {2 p 1 z sin’ p 

Vor. VI. Part II. Zz 
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and the difference of retardation is 

= Tvcos?’ \~ - aA 
2 

TvV/1 — sin® | ~ = 

1. (Re. 
Tv = - >| if d’ be very small; 

2 

hence the hypothesis that the angle of incidence is small, reduces this 

case to the same form as the former, and we may in such circum- 

stances consider the difference of the retardation as proportional to the 

difference between the two refractive indices. 

5. In the applications of this formula, we must introduce the 

relations which are given by the constitution of the crystal determined 

by the passage of light through it. Such relations must, I conceive, 

depend on the refractive energies of the crystal in different directions. 

Now the refractive energy has undoubtedly no connexion whatever 

with the velocities of transmission of the rays, since these velocities 

are merely nominal ones; that is, they are not estimated in the direc- 

tion in which the effect is transmitted. Indeed, I do not suppose we 

have any notion of these velocities independent of theory, whilst the 

velocity of the wave is a physical motion, apart from the idea which 

is suggested by the expression. 

I have been under the necessity of giving the term radial to 

M. Fresnel’s axes, since they are not at all the same thing as the 

optic axes. M. Fresnel himself remarks, that “although the difference 
between them is very slight in almost all crystals, there are some 

where it becomes more sensible, and in which we must not confound 

the two.” 

6. We are concerned only with waves which have a common 

direction in air, and must consequently assume that the difference of 

the velocities of the two corresponding refracted waves, is very nearly 

the same as the difference of the velocities of two waves which travel 
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in the direction of one of them, omitting consequently the variation 
of velocity of one wave due to difference of its velocity from that 
of the other, or in other words, omitting the variation of the differ- 
ence of the velocities, compared with that difference itself which is 
perfectly allowable. 

Let m’, n’ be the angles made by the direction, which we consider 
common to the two, with the optic axes. 

a, B the angles made in air by the incident ray, with rays, which, 
when they enter the crystal, move in rays; the normals to which are 
the axes. 

: 1 1 Then retardation = Tv (- = ra 
w% wv 

1 Al ie = Vv, 

vv, 

v — v? 

v'v, (v' + v,) 

(@ — c’) sin m’' sin n’ 
T 

v'v, (v' + v) 
(23). 

And v' + v, = wiki » being the mean index of refraction ; 

A ; 2 

o9..= a3 

so that sing = usin@’ as a factor of small terms. 

Px = ¢', (see note at end) 

Qs = >. 

Rz =m, 

: o. v. , sin Sx = 7 sin Rx = 7 Sinm = usinm, 

Tz = Sx, PsO = 6, 

O and R& the optic axes. 

ZZ2 
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Then sin’m’ = 1 — cos’m’ 

= 1 — (cos¢’ cosm + sin’ sinm cosé@)* 

sin*n’ = 1 — (cos’ cosm — sing’ sinm cosé)’ ; 

*, sin’m’ sin?’ = (1 — cos*¢’ cos’m — sin’d’ sin*?m sin’)° 

— 4sin’¢’ cos’¢’ sin’m cos*m cos’ é@ 

= jsin’¢’ + sin’m sin’ p’ sin?m (1 + sin*@)}* 

— 4sin*¢’ cos’ df’ sin’ m cos’ m cos’ é ; 

sin’a sin’?B = {sin’d + sin® T's — sin*¢ sin’ 7's (1 + sin’é@)}* 

4 sin® p cos’ sin® T's cos’ T'x cos*6 

= p' S[sin’¢’ + sin?m — wu’ sin’¢’ sin’m (1 + sin’@)]? 

— 4sin’¢’ sin’m cos*¢ cos’ T's cos*6}. 

Now if ¢' and m be both small, this expression becomes 

sin’a sin’? = p' (sin'm + sin'd’ — 2sin°m sin’ ¢P’ cos 26), 

and sin’m’ sin’n’ = (sin‘m + sin'¢’ — 2sin*m sin* P’ cos 26) ; 

*, sin’asin®B = ut sin®m’ sin®n’. 

If m be very small compared with ¢’ 

sin’asin’?B = u'sin'¢’ 

p! sin’ m’ sin’ 7’. 

If ¢' be very small compared with m 9 

sin’a sin’?B = yp‘ sin'm = p' sin’ m’' sin*n’. 

In all cases therefore, provided one of two, either ¢’ or m be 
or if they are both small, we have 

sina sin B = »’sinm’ sinw’ ; 

small, 



IN CRYSTALLIZED MEDIA. 359 

and by substitution we obtain, difference of retardation 

Dae oa Sima Sin i72" 
= — (a - &) —_—_ 

Qv V; 

T (a - c’) sinasinB 
Qvb j 

7. This formula for the retardation on which depends the expla- 
nation of the coloured lemniscates, is true it would appear even if 
the angle between the optic axes were considerable. I do not know 
whether this be true experimentally or not. 

I forbear from proceeding further in the development of the lemnis- 
cates, as that has been already effected with a formula coincident with 
my own, or nearly so. As to the experimental verification of formule 
such as these, they involve so much of calculation that there is con- 
siderable difficulty in being able to form a correct judgment on their 
coincidence; as far as I am aware, Sir J. Herschel and Sir D. Brewster 
calculate the angles between the optic axes (see Phil. Trans. 1820.) 
from assuming the law of refraction to be the Snellian law; this is 
evidently not treating of rays but of waves; and consequently any 
law of velocity which would be by this means established, would be 
one relating to the velocity of a wave; and in the same manner, the 
directions within the crystal can be no other than the normals. 

So that M. Biot’s law when translated into the language of the 
undulatory theory, is precisely that which I have enunciated above. 
Indeed as far as I can collect, Sir J. Herschel appears to state it so 
in one place. (Hncy. Met. 1812.) 

Many writers make M. Fresnel’s beautiful law of the reciprocals 
of the squares of the velocities of the rays, to be the same thing as 
this of Biot and Brewster. The cause appears to lie in the confusion 
of language which naturally has been fallen into by different writers, 
the one denoting by ray what the other denotes by wave, and so on. 
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I have dwelt a long time on this subject, from a wish rather 
to obtain information on the subject than to communicate it. It is 

no slight matter of astonishment to me, that a law so elegant as is 

that which we have been discussing, and one too, the necessity of 

which (or something analogous) must have been felt at every step 

which was taken in the development of the Biaxal Theory, has never 
been mentioned in connexion with this theory, in any writers that I 

have seen, whilst others apply M. Fresnel’s law in its stead without 

stating their reasons. I do not presume to suppose that it had not 

been established, my object will be fully attained if I shall have suc- 

ceeded in exhibiting its importance, and in obtaining for it its proper 

place in the theory which has been usurped by the no less elegant 

Theorem of M. Fresnel. 

Note. The figure referred to in (18) is constructed by drawing three rectangular 

axes Px, Py, Pz, and Px,, Py, inclined to these; PN being the line in which y, 2, 

intersects wry. 

O, R are two points in xz equally distant on opposite sides from Pz. 

The figure of (4) in Supplement, is a broken line AB, BC, CD; as an incident, 

proceeding and emergent ray of common optics. 

AB is produced to G 

That of (6) is a series of spherical triangles, SRzOT being a large are, Sz=2zT, 
Rz=20. ‘ 

TPQ, PR, PO, QS, QT all ares. 



XVI. A Statistical Report of Addenbrooke's Hospital, for the Year 1836. 
By Henry J. H. Bonn, M.D. 

[Read March 13, 1837. ] 

IN-PATIENTS, 1836. 

Numper of Beds: 

66 in the general Wards. 

12 in the Fever Wards. 

Rotallses, = 78 

Number of Patients in the Hospital : 

Maximum .... 78 

Minimum ...,.. 49 

Meanise-c ences 67 

Length of Time Patients remained in the Hospital : 

Mean duration 354 days. 

Admissions from January Ist, 1836, to January Ist, 1837: 

Male Patients 337 

Female ....... 260 
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Previous Residence of the Patients: 

226 (38 per cent.) in the Town of Cambridge. 

371 (62 per cent.) in the Country, principally in Cambridgeshire and the 

Isle of Ely. 

Description of In-Patients : 
> 

Male. 

180 (53 per cent.) Labourers, chiefly agricultural. 

~ sonngahst Boys of ten years of age or under. 

8 sealsirisia'eis Grooms. 

7 Snopes Tailors. 

7 erases Watermen. 

6 — .eeeeeee. Carpenters. 

6 spodens: Servants. 

Ge amoeeetents Tramps. 

OF cence eve Of forty-five different occupations, four being the largest 

number belonging to any one of them. 

Female. 

100 (38 per cent.) Servants. 

Vy oanecsesc Women occupied at home with the care of their families, 

or children above ten years of age, residing likewise 

at home. 

22 “parcincoe Girls ten years of age or under, living at home. 

3 nee sane aa Dressmakers. 

3 e eeidewaes Laundresses. 

42 hpocsre Occupations of, not registered. 
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Ages of In-Patients (597). 

Male. Female. Total. 
6 6 12 5 years or under. 

16 19 35 from 5 to 10 inclusive. 
22 32 54 ae LOLS. USteare ae 
44 83* 127* mas LOT ss. 20). mes 
39 47 86 ove 20), ASS pe 
40 22 62 200 200 mm OOn oooae ee 
29 9 38 ses 00. BOM, 2-0. os 
34 14 48 asi FOO NAD Gone 
14 2 16 Goo 0 agg CES “eee oe 
25 12 37 ao ee D0) Me aes 
14 5 19 500 00) sea OD) gs eee 
22 2 24 O95) Jah OOM yo aciae's 
8 3 11 60 Ob ee Weestee 

11 3 14 CSO) Deen. 
2 0 (MOG Ae. 
2 1 3 sell Oeea LEO meee 

328 260 588 

Ages not registered 9 9 

337 597 

Results of the 597 In-Patient cases : 

348 Recovered. 

57 Benefitted. 

17 Discharged at their own request. 

Ph ho osieosisct oa for irregular conduct 

Wh aBdrde veers as incurable t. 

15 Died 

81 Made Out-Patients. 

539 Discharged from the Hospital in 1836. 
58 Remaining in the house at the end of the year. 

597 

* 83 gives 31.9 per cent. on the whole number of female In- Patients (260). 
MOUS BI RI oo cb ted sdates ah des In-Patients (588). 

+ Principally Phthisical. 

Vor. VI. Parr II. 3A 
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Mean stay in the house of the 539 that were discharged was 35} days. . 

cpaccccncsecvcccsoccecsscseccessesatM@OaS: discharged asimecovered 33} ... 

PER CENT. PER CENT. WEEK. 

Of the 539 a ae Of the 348 discharged 
titeeeet } 4.6 were discharged in 1 

as recovered, ...... 

peaebeecucauas:) WLOL0 Se ceelsidatseivent AGOGR cases achcon 2 

Poca re ee 15.3 aaUbaises deeem 16.4 

Srponee tre op 16.2 waieUdiaeclbiew alice 15.8 

einial sia aie Socemsao i Vr viddideisie s(a\ sei com 11.4 Sioieiaisatarelsipiaaiciere 

. . . . . . . oo 

Sosiesainmuwsmsces 5.7 occiinesonece sos 6.7 ceccecvccvevces 

cocescveccecece 4.6 vadiccecocccees 4.1 wos vensccccsvee 

© ao —~ & o& see eeccescecees 4.2 vod vecccccvecce 4.1 

Ueucnulecssees ee 2.8 scaebcicewics ce ae 2.3 SAgrisucnonssnog 10 

cmeeneueneeess 8.8 See vee. sc8k 6.3 booeeavene OM O to1ae 

99.3 99.5 

The recoveries (348) were 64.5 per cent. on the whole number of those discharged 

or made Out-Patients (539). 

The deaths (15) ..........+-- 2.7 (or 1 in 36 nearly) 

Diseases, Ages, &c. of the 15 fatal cases. 

From 10 to 20 
inclusive. 

30 to 40. 
60 to 70. 

| September. | December. 

Fractures.....-... 
Phthisis 
Reverse ciate cree 
Pneumonia ....... 

Sa le | November. wwre 

Apoplexy........- 
Erysipelas ........ 
Disease of Kidney 
Syphilis 

mt et et BO GO CO OD 
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Number of Operations : 

MENEHOLOM Valerie olen vets otaeeleatteatole= (ei 6 

AMPUTATIONS a ee-ciaecoss<csisceeseseccss) 8 

18 (CRNLTENS AaeOe up peOBCOREGORSOCACOL COTO tel 

Axtitictalieb in pilicsc sen. teseect cate 1 

Excision of large Tumor in Thigh 1 

17 (besides minor Operations.) 

OUT-PATIENTS, 1836. 

Admissions from January Ist, 1836, to January Ist, 1837: 

Previous Residence of Patients: 

486 (57 in 100) in the Town of Cambridge. 

Oo (Cah asonpee ) in the Country, principally Cambridgeshire and Isle of Ely. 

6 Residence not registered. 

857 

Ages of the 857 Out-Patients: 

23 in 100 of the females were from 15 to 20 years of age: a larger proportion than 

that of any other quinquennial period. 

15 in 100 of the males were from 20 to 25 years of age; a larger proportion than 

that of any other quinquennial period. 

30 in 100 of the total 857 Out-Patients were from 15 to 25 years of age; a larger 

proportion than that of any other decennial period. 

3A2 
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Results of the 857 Out-Patient cases: 

374 Recovered. 

44 Benefitted. 

5 Discharged at their own request. 

1 ....+++26-. for irregular conduct. 

Sil ee sees <2 ++. as incurable*. 

18 Died. 

56 Made In-Patients. 

231+ Discharged for having discontinued attendance. 

737 Total of Patients discharged from the Out-Patients’ Register. 

120 Remaining under treatment as Out-Patients at the end of the year. 

The recoveries (374) amount to rather more than half the whole number of those 

discharged or made In-Patients. 

The 18 registered deaths amount to 2.4 per cent. on the discharges, or 1 in 41. 

Report of the In-Patients and Out-Patients combined. 

Of the 597 In-Patients, - 52 were previously Out-Patients, leaving 545 

857 Out-Patients, 81 .................. In-Patients, ...... 777 

Total number of cases treated in 1836 ......... 1322 

* These cases were chiefly phthisical. 

+ Of the 231 discharged from the registers for non-attendance, from the nature of the 

entries respecting them, two thirds, it seems, were at the time of their last attendance, either 

recovering, or not affected with complaints of a fatal or grave nature ; but either neglected 

to present themselves to be discharged on their recovery, or for various reasons discontinued 

attendance. The remaining third were patients labouring apparently under disorders of a 

fatal nature (a large proportion being phthisical); and who, probably from the advanced 

stage of the disorders, were unable longer to come to the Hospital, or at the time of their 

discharge from the register had already died, but whose deaths were never reported to the 

medical officers. 
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Monthly admissions*—of the 1322 there were admitted: 

January...... 127 Mia sncceces 130 September..... 79 

February.... 144 JUNC ss veces 93 October ....... 98 

March ....... 128 MUL astaiateretstoe'= 105 November .... 99 

AN ant eeoner Bee 126 August....... 112 December ..... 81 

613 Male Patients 
Of the 1322, ee Female ...... 

656 came from the Town of Cambridge. 

666 came from the Country, principally Cambridgeshire and the Isle of Ely. 

Description of Patients: 

Male. 

307 (50 per cent.) Labourers, chiefly agricultural. 

HiSp wk? beplack sees Boys of ten years of age or under. 

oe eee cs sstle Shoemakers. 

WES “Saenc6 300 Tramps and Hawkers. 

1 5315550 cx90 Servants. 

Wh saseneges Watermen. 

san 00a00 Tailors. 

SapA6poo0 Carpenters. 

Printers. wee eesces 

Brewer’s men. 

Grooms. 

Shs Bricklayers. 

Dyers. 

op Butchers. 

DETR ES «a0 cia Of fifty-eight different occupations, three being the greatest 

number belonging to any one of them. 

PrP DAT © © 

. : . . : 

613 

* The number of admissions in any one month is not determined solely by the greater 

or less prevalence of illness, but by other circumstances also, as the facility in obtaining 

recommendations for admissions, which is not the same at all seasons of the year, and the state 

of the weather beirig favourable or unfavourable for the conveyance of patients to the Hospital. 

The number of admissions is always lower in September, in consequence of the subscribers 

having then, for the most part, exhausted their recommendations; an unfortunate circumstance, 

since at this season so much illness usually prevails. In the present year, the admission 

of 
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Female. 

245 (above one-third) Women occupied at home with the care of their families, 

or children above ten years of age, living at home. 

239 (one-third) Servants. 

80, ee ete 2 Girls of ten years of age or under 

ET gpa bogie Laundresses, 

14 saoonocns Sempstresses. 

GMT s ciitoeiess Of five different occupations. 

TOKO  cehocncic Occupations not registered. 

709 

Ages of the In-Patients and Out-Patients combined (1322) : 

Male (598). Female (713)*. Total. 

44or 7.35 perc’. 38or 5.32 perc. 82 or 6.25 per ct. 5 years or under. 

BGbas 40:02) weaves 40% ne O00 eee ss MG coer DATO cements from 5 to 10 inclusive. 

SOh +) 0:52) seciacte ROscs —OsGN Seasme OD! cc eke ers anes and LO sc dd 

68%... 10:58" ccc VSG) 50 25290. cence En an OE eis oldies she nina 15'5:«20 

64)... 10:60) <2 :\ees UGrecte LOs2Ob see ces USO" sc . Lote east ecetas cd 20... 25 

67 12 cere 59 Beal odeneee 126 GGT foo cosend 25 80 

54 9:03) weaaes 42 BuSO meen 06.55 FBS TRS cece 30 35 

62 LOB) seni ns 46 6.45 .s.000 108 oe AGH AER DOE, 85 40 

35 Sl cpsceceI9 25 Cio re cians 60 BD eae cet vanced 40... 45 

37 GiB caters 45 G3 Uae Soe 82 Gib ete 3 aae 45 50 

25 4.08) veeivale ay / iets) Sq00r 42 Gea Maat eae seinen 50 600 55 

Bess AL Suse's 8 UC? aBRAaA 38 2.89 2 55 60 

22 SIGT. santecte 9 126 cesses 31 Q-B6 Pee okcce ned 60... 65 

13 at. wieslain's "if 0.08 csces 20 PS AS er 65 70 

0.50" Jecces 2 OBE tie. : 5 MISO Ne, Dod cas cou 10-600 75 

0:66) <coces Boe 0.42", 2S 5 7... 0.53 ........++2.75.... 80 and upwards. 

1311 

11 Ages not registered. 

1322 

of so small a number in December was caused by the state of the weather at the end of 

the year, being such as to prevent the conveyance of patients from the country. 

* Most of these probably should be added to those at the head of the list. 

+ The ages of four females are here accidentally included which are not included in the 
previous statements. 
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Results of the total 1322 cases admitted in 1836: 

722 Recovered. 

101 Benefitted. 

22 Discharged at their own request. 

s+eeeeeee for irregular conduct. 

2 Rae -sesee. aS incurable. 

231 Discharged for non-attendance. 

1189 Total number of Patients discharged. 

183* Remaining under treatment as In or Out-Patients at the end of the year. 

1322 

The (722) recoveries were 63.38 per cent. on the total number discharged. 
The (83) deaths ......... 2:80 (Or UM 34) Too sciaiesisasaanjsectitcced bass asa 

Diseases, Ages, &c. of the 33 Fatal Cases. 

50 to 60, January. 
December, 

| 10 or under. 

: bo | September. 

m2 | October 

Phthisis ...... Ap A 
Continued Fever.. 
EXACHHTES ec lte ec ia.ce 
Bronchitis ........ 
Pneumonia........ 
Pertussis 
Puerperal Fever. . 

st st 

we | moe | November. 

Disease of Heart.. 
Dyiarmnccas. cea 
Apoplexy ......... 
Cerebral Disease. . 
Erysipelas ....... 
Rachitis 
Disease of Kidneys 
Syphilis te 0D 0 HD 

Males....... 
Females..... 

— 

* There is an error of 5 patients; 178 only appearing on the registers as remaining 

under treatment. 

t Among those discharged for non-attendance or at their own request, it seemed, from 

the nature of the entries respecting them in the registers, that 107 were at the time of their 

discharge 
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The annexed table contains a list of the diseases or accidents of 
Out and In-Patients combined, and represents the frequency with which 

each of them occurred. 

An attempt has been made to arrange them in a somewhat physiological 

order, for convenience of reference ; and also that, with some approxima- 

tion to truth, the comparative frequency of certain classes of diseases or 

accidents, or the relative frequency with which individual systems or 

organs were the seat of disorder, might appear. 

It was conceived that it would render the table more serviceable, 

if the proportion to the annual total of cases were given, as well as the 

precise number of the cases of each class of disease, and of the most 

prevailing of the individual diseases. 

The table likewise represents the monthly distribution of the cases 
of each disease. It was here still more necessary, when the cases of 

any disease or class of disease were sufficiently numerous to make them 

an object of analysis, to give their proportion to the amount of cases 

of all kinds admitted in each month respectively, as well as their 

absolute number; since, as has already been stated, the number of 

admissions in each month is not an accurate criterion of the prevalence 
of disease. 

It is not, however, pretended that any general conclusions respecting 

the prevalence of diseases according to seasons can be drawn from the 

present table, which is constructed with a view chiefly to its con- 

nection with reports of ensuing years, by which some useful inferences 

may eventually, it is thought, be derived. At least, the remarks that 

are made upon it at present are intended only as provisional: indeed, 

had the numbers been much higher, the report of a single year, from 

January to January, would still have been insufficient for the pur- 

pose; since the year should be otherwise divided with the view of 

discharge labouring under disorders of a fatal description (a large proportion being phthisical) ; 

these 107, added to 33 registered deaths and the 27 grave cases discharged as incurable, 

give an amount of 167 cases out of the 1139 patients discharged, which appeared likely to 

terminate fatally, i.e. 14.66 per cent., or 1 in 6.82. : 
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PITAL FOR 1836. 

October. November. September. 

he 
Eye 99...(7,59) |" 

os: ee 2. Bie 
7,78 9...(8,91) | 8---(7,27) | 9---(111) | 7.--(7,16) | 9---(9,18) 7...(9,72) 

Ear AR areas ive 
Teer. wise Tepe. Tse ase 1 

sane : 

3,26) | 2...(1,98) | 2.--(1,81) | 2---(2,46) .++(2,04) | 3.-.(8,06) | 3..-(4,16) 

ixternal Local )|. 2 
Diseases .... 1 

toe eH ee 0 

Toray . 



Diseases of 

— | 

De BOND'S STATISTICAL ACCOUNT OF ADDENBROOKE'S HOSPITAL FOR 1836. 

Lineal ToPaties, | Teak Jeary a = — = 

(re ent) 
Ranula..... 

15...(0.99) Taflammation of F es, 
Pryalism ..... orn 

Dyspesin 

Stomach .--..+00+-++ss00-eess 86...(6,60)!| Gastrit 
Disease of 
Hamatemesis 

Mouth and Fauces 

7(6,51) u (7,69) 

neo wow 
15,, (10,40) 

2 we 
= 
1 
1 

(27) 
Diarrhan 
yee Constpalon 

Hermorehoids 
Vermes .- 

Intestines «ces secrvasinetsv ees DTunTAS) | Pee ee 
Enteritis 
Peritonitis 
bes mesenterica 

Abdominal Tumor 
\) Hernia (1 strangul 

= 
8,029) 10:-.(9,09) | 11...03,88) | 6..,(6)12) | 4..,¢h08) 

$- 

weaouegns 
(6,29) (Gar) | 15,0080) | 6.06 Perc} nu (10,00) 10-012.) 

Liver.» : 13:.(0.09)) Fr se Liver 
Spleen 1s... | Enlargement of Spleen ...... | 1 

Catarrh .. 
Croup... 
Shronie Caryn 

ing Cou Bronchitis 
Chronic Cough. 
Hemoptysi 
Phthisis 
Pneumonia .. 
Pleurisy . 

Divcases of 

Palmonary Organs 140. (10,74) 

weoee Prey) 

13,60) | 181.(12,68) 17,.,(13,60) 10...(10,86) 9...(11) | 10°(10,20) 8... Gn) \ 
‘Thyroid Gland <ss2) (0,88) | Bronchoeele « ..-.00.--s000 

Pericarditis . 
Disease of Heart (organic): 
Palpitation 

Cireulsting System s+ 86...(2,76))| Epistaxis, ner 
Phlebitis 20. scycscess-s 2 

| Varicose Veins . 
Anemia and Chiorosis - 6 

0,00) 
4,59) 

Intermittent Fever .....-...- 
Continued Fever....--...-.. | 24...(4,06)] 89..(2,99)) 3. (2140) 
Dropsy (ascites 12) -.-...--.. | 18 26...(1,99)) 

| Scrofulous Glands 13 25..,(1,91)) 
| inn, | 
Renal 
Gravel .. 

Fevers : ” ike 
= un =e Dropsies : 26 

Scrofisla nace Phi oe na Peer yrs - pune 

Kidneys : 6 i 
1 

| Enoresis c 1 
Disease of Biaider.-...-. 1 12 
Caleulns an : #(1,85)| 8 

1 
1 
1 

Bladder 

ee se 
Gonorrhea and Sy (5,25) |41.-.(6,14) 
Hydrocele .. fa |e os 5 3 
Discue of Tenis saaresnese Ee || re F A P 

jo-vaginal Fistula --....- 1 s A 
Deranged | Amenorshisa. coc... 12...(2,03)|46...(8,53)]| 2 (1,60)) 9 (6,80) 5(3,81)} 3(8.40)| 76,51) | 33,26) | jerange fou 09 Menorrhagia Qari 2 A 

External Genital Organs. { 

3 (2,72) 1 (1,28) 5 (5,10) $(40n)] 8 (4.16) 
Sake 

2 lo i eiest eis ES 2 
6.660) | 11--.(7,69) G88) | 45.6620) | 7.2.(6,51) | se.(4,94) | 2-98) | 3---(,72))-2.-.2,46) | 7--.(7.19) 

(0,80) : ¥ a tr F ie 

Menstruation | Dysroenorehiea 
| 
Leucorthiea, ... 1 

\ Uterine Hamorthage.. 
Giese Ly. coe) Peaapemy Weer 

Uterus 

| Disease | Polypus Uteri 
Carcinoma Uteri 

| Disease of Uterus (7). 
Abscess of Mamma .. 
Carcinoma of Mamma...... ane A s..(088| | 

1 <...2. | Pregnancy (simulated amenor.) 
(4,19) 84) | 7...(5,60) | 10...(7,87) (5,43) | 3. (207) 5.-.(4)58) | 4.--(4,98) | 8.--(8,16) | 2--(2,08)] 2-+-(2,77) | Rheumatism © 8 10, ..(8,00) 

| Wry-neck.... cs 1 
1 
1 

Muscular System, &e- 70.( 

6 | Debility 
2 | Irritation of Spinal Chord 

Neuralgia. 
Convulsions (inn ehildren) 
Chorea n 
Epileps; 
ByHaie 
Tremors 

© 

J Nervous}, Paralytic 
Syncm fIOGC@ 18), Kereta, (1,61) Apoplexy 

Delirium tremens 
}16...(,92)}) Mania... 

|| Hypochondriasie 
Vertigo 
Cephalalgia and Hemicrania 
Cerebral Congestion 

Mental 
Disorders 13...(0,99)|} 1s. 2 

14.(1,07)] 4 
wm 

Skin 57..(4,97) : 
impetigo a 2 

| Lepyatenil (Piariadsisrs 2 
hema Nodosum 1 

1 
2 

| Chimney-aweepor’s cancer 
[eres ‘and other cutaneous (0,76) “6 Ek rok uh 0 1 a0 ect ft dre tas Bb 4 

= 5 Heaven 

Ss 
~ 

i Calvities* see . - 

| 7, -.(6,60) 
Ophthalmia (conjunctival) ... | 1 fu} (lien 

eed t Jatlammation. of Tarai... jpaities and ulcers of Carnes 

(0,80) 
(0,80) moos A 1 

(0,23) Tess 1 
(0,23 

~-(6.98) 2 + (3,84) g 4.688) | 7..:(6.98) T1970) | 2---(@,08) | 6:..(612) 

wucewnune 

9 
1 
7 

api cere 
Kye 9. (7,60) Ralsios of Iris..--- a 

Arnaurosi 3 1 
| Fistula Incr malin a 

Injuries to Lye 
| 8.40) | # 10...(7,63) S a <= 

Ear 4 «| Deafness Q 4..(0,80) 
Nose 1 Polypus nasi ......6.. Oly ee ifn 

Ulcers of Leg... +--+ a2... | 88 we 5...(4,00) | 3. 
Ulecrn.. 41}| Syphilitic ulcer 7 i ae 1 ri fi i | i ge 

eS = S = 
lcers creoreccan| ass {PE ef ‘ 

Abicemes 0. certs \fit Ji cats. |i 
‘Tumors (external) -- 4 6 
External Inflammations...... |18 ... |30 
Sphucelus of Foot .....--- | 1 see | 2 

(7,52) External Local Dimas ol 
eu 

ry 

Bure Inflammation of Burse cos |) {|{Gangtion acess: i 
Taflammatlon of Kee Jolats.. [18 .-. | 36 

cf SST cc oncers [Pts 15 
i Joints, 45..(9,65) Se 

6 

=e —« 

cy 
eo 

Floating Cartage in Kee ‘ é 
Joint ; 

Disease of Vertebran .- 
other Bones - eo Bones 16..(1,22) 2... | chit 

i Congenital Deformity of Foot 
5 | Burns and Sealds.- 

fi2 | Lacerations and Bruisea 
Fractures of Fem) 

‘Pibula an 
Humerus 
Radius .. 
Clavicle . . 

= ube ween en neeae Sa oHOo 

woe Sn 

Proctures .. $0 
Accidents... 110...(8,44) 

Dislocations of Humerus .... 
Elbow 

——— Cat- 
Tec el| 

eos 
Dislocations 10! 

15 10 6 
9 l= — i) ia 195 VA 131 196 187 2 jor 0 81 98 98 

1332 
Casos not recorded in the Table 

* Complate Baldness occurring twice after Ague. 
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determining the prevalence of diseases according to seasons ; the December 

of one year should be associated with the January and February of the 
ensuing year, to constitute the winter season. 

The following results, extracted from the table, have been selected, 

as deserving some notice. 

Arrangement of the different Classes of Cases, or of the Affections (of 

whatever kind) of individual Systems or Organs, according to the 

respective frequency of their occurrence. 

Diseases of the Pulmonary Organs ............ssseeeeeseeeees 

ENGCIGENES pdatececsceov or es tot si ccisnng on ceuesciorO nce «cnites cnepie soe 

Diseases of Nervous System.............0-+sscecccecssesereces 

Dasipasiccsens  LNtESLINES s.a05 p aaip'eraie Spwmatacjale entices section ties 

sSoocucccanh LEW Geadens9309.500000 00005000) SEN COnea bag ASU TOMOCBCAE 

External local diseases.........es:0008 BGDOE ODS OSADNABOAMOOOBOCOA 

MOC erasers Geen cine rise sing vinsincelbesisinsleeiaisWalceidlema cadoncaesepaecae ou 

DIBCARCE KOE SCOMACHS « a css concisiene scele alsin otis Weloaieivec!dsspielecesiens 

Rheumatic complaints ..............++ SOCOCINE HOS CUR EOC ORG 

WMiscAsesy Ol) MCURIXUALION s.r ocicesicocicesiepsiesscssierecarenelcedecs 

oe, ada aacene. TOE SKU vos scieseces aocieacieesieehivosleesaaccetenaenctrs 

ee etre clea. 0 OlltS ern vocs ee ceniccecceacolssetbssesseceecscecs 

Eee reso MINCE sc cfeckinan ssc dpadpieslavedscuiccesess vaeccec wee 

Diseases of other organs, &c. constituting 16 other classes 

Vox. VI. Part II. 3B 

Proportion to 
Total of Cases. 

10.74 

8.44 

8.13 

7.74 

7.59 

7.52 

7.06 

6.60 

5.27 

4.68 

4.37 

3.45 

1.22 

82.81 

17.19 

100.00 
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Sixteen diseases out of 143 diseases or accidents enumerated in the 

table, furnished, it is seen by the subjoined list, nearly the moiety of 

the cases. 

IP ithisis® ecaese cease ates ease eres 6.89 

RHE GMIALISM t.scnoscescromssmiece seaicas 5.29 

DY SPePlalemecaeion semis =laeislactelns's om 5.21 

Ophthalmia....\..c2220:.css0-s20s0a50- 4:60 

IA GUC ec ucenajacecasieedieetsecmedenae sais 4.06 

Amenorrhea... terctensseeveaeecee’s 3.53 

Syphilis and Gonorrhea ......... wee 3.14 

Continueds event nencsesacaacreeaeee = 2.99 

IBronchitingeuessesuecesscosicnecs aes ees 2.37 

Constipation ........s000+-ceseecrenses 2.30 

UDI) 35) / conor concn apes boson oaconneroe 1.99 

Scrofulous Glands ......:c00cccsesses 1.91 

Opacities or Ulcers of Cornea..... 1.30 

Paralysisics...22:00ssceececeveseoreccians 1.22 

(Ghlorosis..nccss-ecs wosrecaceaste cesses dald 

Diaerhoed.o.-c0.tcccteccesose esa seess senpelion 

49.02 

The following seem to be the results most worthy of notice (as far 

as a single year can funish data) in relation to the monthly distribution 

of the cases. The numbers represent the proportion per cent. on the 

admissions of each month. 

Maximum 13.58 in September. 

Minimum 2.17 .. June. 
Diseases of the Stomach .... { 

faa 12.34 .. September. 
... Intestines.. ee Minimum 4.34 .. June. 

Maximum 13.60 .. January and April equal. 
Pulmonary Diseases..,.....++ ates 
WnnOnaEy, Minimum 5.45 .. August. 

: Maximum 7.20 .. January. 
Intermittent Fever..........+. 

Minimum 0.00 .. August. 

* The numbers annexed to Phthisis, Hzmoptysis, and Tussis, are here all included 

under Phthisis, as it was nearly certain that they were all phthisical cases. 
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ft epee ee ee pes 5.10 .. November. 

Minimum 1.57 .. May. 

Maximum 7.69 .. February. 
Diseases of Menstruation ,... | oa 

Minimum 1.23 .. September. 

, Maximum 8.00 .. January. 
RUB eUMALISI Fo geinrerwiancieiejes's aa.0 ble 

Minimum 2.04 .. November. 

; . Maximum 6.93 .. July and December equal. 
Cutaneous Diseases ........... aes : 

Minimum 1.60 .. April. 

Maximum 11.11 .. September. 
Diseases of the Eye ......... ao6, 2 P 

Minimum 5.20 .. April. 

The following results (not derived from the table) are added from 

an analysis of the cases of a few of the most prevailing diseases. 

Of 57 cases, entered in registers as Phthisis or Hamoptysis ;— 

28 were males, i.e. 4.56 in 100 of the male patients (613) were phthisical. 

29 were females, i.e. 4.09 .....ssccees females <..30.1u(709) meeetetas eee 

Residing previously in the Town 33, i.e. 5.04 in 100 of Town Patients (654) were phthisical. 

Country 24, ive13:60)22.,tae Country .s: 1(666) Natl. .1> 066 ee eeeeeseeeree 

Ages of the 57 cases. 

From 

10 to 15 40 to 45, 

inclusive. 

Hence, nearly a third of the consumptive patients were between 25 

and 30 years of age, and of all the patients admitted between these 

limits of age, one in eight was consumptive. 

3B2 
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One half of the female consumptive patients were between 25 and 35 

years of age, and one in six of all the female patients admitted between 

these limits of age was consumptive. 

One third of the male consumptive patients were aged between 20 
and 30, and of ali the male patients admitted between these limits of 

age one in 7.69 was consumptive. 

Of the 29 female consumptive patients 20 were following domestic 

occupations, and 7 were in service. 

Of the 28 male consumptive patients 13 were Labourers, 2 Watermen 

(number of Watermen admitted being 11), and the remaining 13 were 

distributed among nearly as many different occupations. 

Results of the 24 In-Patient cases of Fever;—13 males, 11 females. 

16 Recoveries. 

2 Convalescent from fever, but continued under treatment for chronic disorders. 

1 Left the house during a relapse. 

3 Died, (one during a relapse), two males and one female. 

2 Remaining under treatment at close of year. 

Ages. 

From 

10 to 15 | 15 to 20. | 20 to 25. | 25 to 30. 
inclusive. 

Ages of the three fatal cases respectively, 58, 18, and 14. 
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Of 78 cases of Ophthalmia or Ulceration and opacity of Cornea (the 

greater proportion being of a scrofulous nature), 

30 were males, i.e. 4.89 in 100 of the male patients. 

48 ... females, i.e. 6.77 Soenerss Ee LEMALC wen cece 

Ages of the 78 cases. 

Malem csrien 50 

Female...... 48 

ToraL... 78 

Residing previously in the Town... 42, i.e. 6.57 in 100 of the Town Patients. 

Country 36, 1.e. 5.40. / ...,.....  Country...... wee eeereererresres 

Of 47 cases of Amenorrhea, 

25 resided previously in the Town, i.e. 3.82 in 100 of Town Patients. 

22 SodeaeCOnnIAN Country, aie. 3.30 5i.4.3..02 Country: .sa.6 

Ages of the 47 cases, 

7 were 15 years or under. 

29 from 15 to 20, or 15.58 in 100 of the female patients admitted between 

these limits of age. 
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Of 59 cases of Rheumatism, 

34 were males, i.e. 5.54 in 100 of male Patients were rheumatic. 

95. ..< females,.1:.e:, B52 | veces female 

These cases were distributed equally between the Town and Country Patients 

The range of ages extended from 10 to 75 years. 

Of 75 cases of Dyspepsia, 

17 were maalen: j.e. 2.77 in 100 of male Patients. 

58) Sec females, i.e. 8.18 ......... female ...... 

35 Resided previously in the Town, i.e. 5.35 in 100 of Town Patients. 

40 me sie sleintaaleaaiurs's Country, i.e. 6.00 ......... Country ...... 

Ages of the 8 cases of Calculus (6 of which had been operated on 

and had recovered) were respectively 4, 5, 6*, 7*, 10, 49, 55, 58. 

VACCINATION. 

333 individuals were vaccinated in the course of the year 1836 at 

the Hospital: of these, 

Cases in which the vaccination succeeded .......ccsescesseseeceesesseccvecrecces 298 

Cases in which the vaccination did not succeed + ......sesseeseseeseeceeesernes 9 

Cases in which small-pox supervened during the progress of the vaccination 2 

Cases which were not presented after vaccination....c.sesseeseseceseeseereeses 24 

* Remaining for operation. 

+ Seven of these had previously been vaccinated. 



OF ADDENBROOKE’S HOSPITAL. 

REGISTER OF BAROMETER AND THERMOMETER, 

(Computed from the RecisvER at the Putiosornicat Society.) 

BAROMETER AT 8 A.M. 

E Ee 
1836. Mean. 4 é Range. 

= = 

January..... | 29.60} 30.65} 28.98] 1.67 

February... | 29.80] 30.42) 28.94] 1.48 

March....... | 29.52] 30.29| 28.85] 1.44 

Aprile retoisr 29.85 | 30.34! 29.05| 1.29 

May 30.21] 30.61] 29.75] .86 

OME ahaa ie) 4 29.92 | 30.31] 29.56 ‘75 

July 29.98 | 30.35| 29.59] -76 

August...... | 30.03} 30.35] 29.58 rH f 

September... | 29.88] 30.35) 29.35) 1.00 

October..... | 29.79} 30.44] 28.88} 1.56 

November... | 29.60| 30.12} 29.05| 1.07 

December... | 29.78} 30.35 | 29.09} 1.26 

For the year | 29.83) 30.65) 28.85| 1.80 

Least 

Diurnal Range. | | 

SS SS 

> NS) 

-00 

-00 

-00 

Mean 

Diurnal Range. 

+24 

377 

1836. 

THERMOMETER. 

E : g ig | ee 
Mean. E E z 5 5 - 

a a a 

37.90° | 52°| 19°| 38°] 22°) 3°] 9.75° 

37.89° | 52°] 25°| 27°] 19°] 3°] 10.79° 

44.29° | 68°} 80°) 38°| 23°) 6°] 12.22° 

44.95° | 61°| 32°) 29°| 23°) 5°] 13.98° 

54.29° | 79°| 36°| 45°) 34°| 12°| 19.30° 

62.43° | 86°| 46°] 40°] 34°) 5°] 18.38° 

63.77° | 93°| 43°) 50°| 36°| 5°| 19.00° 

60.95° | 80°} 45°, 40°] 31°} 10°| 18.74° 

53.90° | 71°| 36°) 35°| 26°| 7°} 13.80° 

48.19° | 65°| 28°| 37°| 22°| 5°! 13.16° 

| 42.00° | 56° 29° 27°| 23°] 4°| 12.259 

|| 39.389 | 55° 24 31°| 20°} 2°] 8.12 

49.16" | 93°) 19°, 74°| 36°} 2°| 14.12° 

Minimum 

Number of Days at 32° or under. 

= cs 

_ or 

ios) 
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XVII. On the Intensity of Light in the neighbourhood of a Caustic. 
: By Grorce Bippeit Airy, Esq. A.M., Astronomer Royal: 

Late Fellow of Trinity College, and Plumian Professor of As- 
tronomy and Experimental Philosophy in the University of 
Cambridge. 

[Read May 2, 1836, and March 26, 1838.] 

WHEN a great physical theory has been established originally on 

considerations and experiments of a simple kind, which by degrees 

have been exchanged for comparisons of more distant results of the 

theory with more complicated cases of experiment, it has always been 

considered a matter of great interest, to trace out accurately by mathe- 

matical process the consequences, according to that theory, of different 

modifications of circumstances: which can then be compared with 

measures that have been made, or that may easily be made in future. 

It is with this view that I solicit the indulgence of the Society, for 
the following investigation of the Intensity of Light in the neigh- 

bourhood of a Caustic, as mathematically estimated from the Undu- 

latory Theory. 

The investigation which I present here belongs, ostensibly, only to 

the case of reflection. ‘The introductory part of it will, however, (with 

the proper modifications) apply equally well to all cases of refraction 

and all combinations of reflection and refraction. ‘here seems also to 

be no reason why the latter part (the estimation of the intensity of 

light, by considering the wave of light when it leaves the last surface 

to be divided into a great number of small parts, whose separate effects 
You. VI. Parr III. 8 C 
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are then to be compounded,) should not apply to those cases. For 

though, strictly speaking, we ought to consider the wave to be thus 

broken up where it leaves the first surface, in order to find the inten- 

sity of vibration at every point of the second; yet it seems clear, that 
those reasonings which establish the definite reflection or refraction of 

a wave, (and which are founded upon the consideration above alluded 

to,) point out that there will be as to sense a mutual destruction of 

all vibrations at the second surface, (supposed to be not distant from 

the first,) excepting those which would be fully taken into account on 

the ordinary laws of Geometrical Optics. Where the light meets the 

second surface in the state of convergence, this conclusion perhaps is 

not so clear: but even there I believe that it may easily be shewn to 

be correct. I have mentioned these points because one of the most 

interesting cases of natural caustics (the rainbow) is affected by them; 

the exterior bow involving the first-mentioned condition, and the in- 

terior bow involving both the first and the second. 

1. The notion of a caustic, and its mathematical definition, are 

essentially founded upon the laws of Geometrical Optics; and to these, 

therefore, we must refer in order to discover a representation of the 

conditions adapted to the investigations of Physical Optics. For sim- 

plicity we shall confine our diagrams to the plane of reflection, and 

shall consider the reflecting surface as symmetrical (to a sensible 

extent) with respect to that plane, so that the portion of the caustic 

formed by that part of the surface will be in the same plane. 

2. In fig. 1. let the origin of light § be the origin of co-ordi- 

nates; 2, y, the co-ordinates of a point X of the reflecting surface; 

p, q the co-ordinates of a point P in the reflected ray; V the length 

of the path of light from § to any point of the reflecting surface and 

thence to the point P. The ordinary law of reflection informs us that 

the angles of incidence and reflection are equal; and therefore, that, 
if we take a point YY’ on the reflecting surface very near to X, and 

join it with the origin and the point P, the lengthening ZX’ of one 
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of these lines will be equal (ultimately) to the shortening XZ’ of the 

other, and their sum (ultimately) will not be altered; or that, putting 

_ for the differential coefficient of V with regard to 2, considering 

Vd y also as a function of a, (which is otherwise written ide + a) 
dx dy dz 

d(V’) 
Fie gh This is the condition which holds at the point of reflection. 

3. Now if p,q, be the co-ordinates of a focus, since in that case it 
is a point in the paths of rays reflected from every point of the sur- 

d(V) av) 
ee dx dx* 
d'(V) : te a ae? &e. are = 0 at every point. This is the condition for the re- 

= 0 at every point, and therefore V = constant, and 

flection of rays to a focus. 

4. But though the condition 7 = C and all its consequences are 
necessary for the convergence of reflected rays to a focus, yet this 
condition is not necessary for the convergence of a very small pencil 
of rays incident on the reflecting surface. It is only necessary for 

this, that the equations A) = 0, and a) = 0 should hold at the lx dx 
same time, when « = « + da and V’” has the corresponding value; that 
is, that the following equations should be true at the same time, 

AV). PV) sx a&(V) (xP 
dx dee 1 Fae Le 

From this we obtain 
d*(V) EP) 8a 
dx’ dz "1.2 

expressing that the rays incident at the points x and x + da intersect: 
and making da indefinitely small, this reduces itself as nearly as we 

LV : 3 Z ae = 0. This then is the equation which 

+ &ce. = 0, as the equation 

please to the equation 

must hold for the ultimate convergence of rays. 
3c2 
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5. Now the definition of a caustic in Geometrical Optics, is “the 

locus of the ultimate intersections of reflected rays:” and therefore, for 

dV) GP) = 0 when that value of 
dx dx 

x is used which corresponds to the point of the reflecting surface, from 

— ean every point of a caustic, 

which the light is reflected to each particular point of the caustic. But 
GV). ; : f : : J — is not necessarily = 0: and in general its value is finite. For 

if, in fig. 2, we take a point P’ of the caustic nearer to the reflecting 

surface than P, and if X’ is the corresponding point of the reflecting 
surface; then we know from the geometrical theory of caustics, that 

SX’ + XP’ + PP = SX + XP. 

Now if we join X’ with P, it will be evident that 

Agee PPP. 

Therefore, SX’ + X’P< SX + XP, 

ON Ue 

Similarly, if we take a point P” on the caustic further from the 
reflecting surface than P, and X” for the corresponding point on the 
reflecting surface, 

SX" + X"P” = SX + XP + PP". 

Botta Pea PE SX" P*. 

Therefore SX” + X"P + PP">SX+XP+ PP". 

Or SX"+ X"P> SX + XP, 

or V%>VPV; 

consequently the first differential coefficient of V which has a finite 
value is of an odd order: and as, in the general case, we must, from 
the very meaning of the word general, take those conditions which 
require the smallest number of peculiar equations, we must fix on the 
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first coefficient of an odd order which has not yet been fettered by any 
equation; and therefore in the general case, for a point in a caustic, 

d(V) 
rE has a finite value. 

3 ) ND 
It may possibly happen at singular points that zl » and ae 

fo dx' 
d(V) i : ae has a finite value: but of these peculiar cases I intend 

to take no further notice. 

vanish, 

and that 

6. By pursuing this train of investigation we should find that at 
1 ae EP) &(V) GV.) e 
re ive i ge Ware dx' fe 

a finite value. I shall not however pursue this subject further. 

a cusp of a caustic = 0, and 

7. The conditions then which hold, with reference to any point 
of a caustic in general, are these: If V be measured from the origin 
of light to any point of the reflecting surface and then to the given 
point of the caustic: in the case of the point of the reflecting surface 
coinciding with the corresponding point of reflexion, 

I es 
dz i 

GU) 
de 

d'( VP) ie 

oF aa C, 

C being a finite function of a, y, p, and g. The sign of C may be 
thus found. In the case assumed in (5) and represented in fig. 2, 
PV’ was < V and V">V; if then V" implies that x is diminished, or if 
x is measured from the convexity of the caustic, C is positive. If x is 
measured towards the convexity of the caustic, in that case C is negative. 

8. The value of C may thus be found. Draw P’Q’ perpendicular 
to PX’: then Q’X’ may be considered equal to PX’ (it will differ from 
it only by quantities depending on the fourth power of PP’ or ¥.¥"); 
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and therefore V — V’, which in (5) was found = X'P’+ P’P — X’P, is 

= PP—QP. Let x be measured nearly perpendicular to the caustic 

at P; put p for the radius of curvature of the caustic at P, and ¢ for 

the small angle made by PX and PX’. Then da = PX.¢, therefore 
3 3 

ae =. And P'P— QP =p.,4, = ery res: Making this 
equal to the corresponding term in Taylor’s series for V’, we find 

Ca ee 
ag (PAY 

g. Now take a point near the caustic, whose co-ordinates are p +ép 

and g (sp being measured from the convexity of the caustic parallel 

to a, or nearly perpendicular to the caustic at P). Let V, be the length 

of the path of light from the origin to any point of the reflector and 

thence to the point p+ op, g. Then we have 

ViaSat y + J(@—pyt y-@ 

Vi=JSt+ yx + VJ (e—p—Spy + y-gs 

or Vi = V+ S@—p—dpy+ y—g) — V(@- py + y-@ 

which, if we expand to the first power of dp, becomes 

L=V = a) 
JV («—p)+(y-9)? 

and therefore, in the general case of measuring V through any point 

of the reflecting surface, 

dV) _ a(P) 
ii tts Bag eee 

dV) _ &(P) . aaa re + B.dp; 

a(V) _a(V) ae = Ga + D. Op, 

A, B, and D, being finite functions of a, y, p, and q. 
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In the particular case of measuring V through the point which 

reflects rays (according to the ordinary rules) to p, gq, 

d(V’) Tas A .Sp, 

a = B.dp; 

ae = C+ D.39p, 

or, as we shall always suppose dp small, 

ae 7 e 
10. Consequently, if V’’ be put for the length of the path through 

x+oa, y+dy, to p+dp, q, (sp being entirely independent of 4x), 

V = V+ dip + Bap. erie Ain, 
18} 

or, putting x for dz, 

i V+ Abp.7 + Bop.+ 5+ C.s33: 

omitting the following terms. 

11. The value of C has been found: that of 4 (the only other 
quantity which interests us) will be obtained by actual differentiation 
of the expression for VY}: Thus we find 

/ 

(e—p)y-9)- - mg): 

2 ete ea 1 =PY+U-Dte 
= eS inte) Th. a9 4 mel; 

Or, as a—p is supposed to be very small, 4 = air aa 

12. There is one case so peculiar, and which seems so likely to 

cause a failure of these expressions, that it merits a particular investi- 

gation: the more so as it occurs in the rainbow. It is the case in 
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which, on ascertaining the deviation (from a fixed direction) of the rays 

reflected or refracted, we find, on proceeding in the same direction 

along the reflecting or refracting surface, that the deviation increases 

to a certain amount and then diminishes, or vice versd. In this case 

the caustic consists of two unconnected infinite branches in opposite 

directions, with a common asymptote parallel to the position of maxi- 

mum or minimum deviation of the rays. To investigate this case, we 

shall examine the form of the front of the wave immediately after 

leaving the reflecting or refracting surface, and shall measure the 

lengths of paths of light from that front. In fig. 3, let A be the 

point at which the asymptote intersects the front of the wave (which 

will be the same as the point of the front where the deviation is 

maximum or minimum) whose co-ordinates are 0 and 6: let X be any 

other point in the front, whose co-ordinates are x and y, (a being 

measured from the asymptote and y parallel to it:) and p and q the 

co-ordinates, similarly measured, of any point P near the asymptote. 

If the length AX be called s, and the angle made by the tangent at 

X with the tangent at A be called 0, then the condition that the 

deviation of the direction of the rays from a fixed direction (or the 

deviation of the tangent to the front of the wave from another fixed 

: ‘ = 3 me ‘ OP 
direction,) is maximum or minimum gives @ = o a being some con- 

stant. Observing that = = cos 0, and = = sin 0, we get with suf- 

s 
x x 

=bh+ ae and the front of 
3a 3a’ 

the wave is therefore a cubical parabola. ‘The distance of the point P 

from X 

ficient approximation a = s, y= 6 + 

= J/(a=p)+(y- phe A/S —2Q2pxr+a° + (b—g)’+ — = 

and, expanding this to the third power of «, and putting c* for p>+(b-q)’, 

2 a? Me 2 m2 

PX=cf1-Bo+h. yeas (G Nees PD) eh. 
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If we take only the principal part of each coefficient (which for any 

practical case will be abundantly sufficient, observing that 3 

probably never, in observation, amount to tan 2°), this becomes 

Pe will 
—4q 

Mi alyil Ao drip to ee ee 
PX =(b-q) {1 @—q)* *? Gg t sebag*h 

ert 1 x 

b-4q 3a 
- On bee eer a+. 

In the applications of this, it will be important to notice that the 
coefficient of a is independent of p and q, (depending only on the 
dimensions of the rain-drop or other refracting or reflecting body,) and 
that the coefficient of 2 depends only on the angle made by P_Y with 
the asymptote. 

13. It appears, therefore, that in both the cases considered, the form of 
the expression for the length of the path of the wave to the point under 
consideration near the caustic, passing through the general point of the 
reflecting surface or of the front of the wave, is that of a genera] formula 
of the third order; in which the coefficient of the first power of the 
ordinate of the point on the front of the wave is proportional to the 
distance of the illuminated point from the caustic or the asymptote, and 
in which the coefficient of the third power is independent of that dis- 

: : IPX2TB. 6 tance. If in the first instance we make x + PAG Bop =’, the first 

expression becomes (putting EH for a term independent of x, and in 
the coefficient of x omitting the term involving dp* in comparison 
with dp,) 

p 6RBXe 
6PX. {x3 — ‘ op .xt. Vi=E+ 

And if in the second instance we make x +2. i 7 ="2', and ob- 

serve that for the rainbow a is a very small fraction of an inch while 
pmay be many feet, and that a may therefore be omitted in comparison 
with p, 

ty tana Po, 
PX= Fee, fa bag} 

Vou. VI. Parr III. 3D 
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14. To proceed now with the intensity of light at the illuminated 

point. I shall omit entirely the integration for the ordinate perpendicular 
to the plane of 2, y, because it would only introduce a factor common 

to every part, and therefore would not modify the proportion of 

intensity at different points. The great wave of light being supposed 
to be divided into indefinitely small parts, each of which is the origin 

of a small wave spreading in all directions: the disturbance of ether 

at the illuminated point produced by this small wave, on the 

Undulatory Theory, will be estimated by 

portion of surface of small wave x sin 5 (vt — whole path) 

which in the first case becomes 

oe ied gD pagel ee 22. i 
dx x sin "fot — EB — eho ( 5 Sp .x)}, 

and in the second case 

P a lar 
ba’ x an 53 (2 oP, x). 

15. In the first case therefore, the expression for the whole 
disturbance is 

6. PX? 
vt—E- aay - op. s')}. 

. Qar 
f- sin 7 { 

The limits through which the integration is to be performed are from 

sa sensible quantity negative to x’ a sensible quantity positive, and on 

account of the minuteness of the divisor \, and the inefficiency of the 

rays whose paths differ from H by many multiples of 2, this will be 
the same as taking it between the limits — infinity, + infinity. Now 

the integral is the same as 

2a ; Je ; A 
sin 5 (ot - ee, ‘eres (s°— ——— .dp,2’) 

- cos 2 — Hs E) / an . SPY 

But between — infinity and + infinity it is evident that 

6. PX? Qr 
je sin ce 6px @- .dp.s') = 0, 
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because every positive value is balanced by an equal negative value; 

and therefore the expression for the disturbance of ether at the 

illuminated point is 

uy 2G Qn Es F 
sin 5 (o¢— E) cos > - raat Ce .Op.%'), 

the integral being taken between — infinity, + infinity ; 

Qa 6PX* 
or, asin = (ot — E) {- cos — = Se : aaa op , 8’), 

the integral being taken from 0 to infinity, 

=f P 3r\t : 
Making — gpRr 5u or 3 = PX lan) .w, and putting m 

‘i 
for dp x (=) , and omitting the constant factor, we find as the ex- 

pression for the disturbance of ether at the illuminated point 

sin = (ot - E) j., cos 3 (w*— m.w), 

and therefore the expression for the intensity of light is 

Lf, cos = (w* — m.w)}’, 

the integral being taken from w = 0 to w = infinity. 

It will be observed that m is proportional to dp, and therefore the 
intensity of light at the Geometrical Caustic, or where 3p = 0, is found 
by making m =0 in this formula. 

16. In the second case, the expression for the whole disturbance 
of ether is 

Se Wag) Sigh 2: ea OS ot fe sin : fot -F aqi@ eg oe 

which, as above, is shewn to be equal to 

. Qn Qe Ling 8a 
2 sin eae as x ‘aq (# b—ghit 

from 2’ = 0 to 2’: = infinity. 
8pd2 
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1 

3a’ 

3a°r 

4 

+ 
Making = z= 5 or 2’ = ( yw, and putting m for 

2\ 4 
a x (==) , and omitting the constant factor, the intensity of light, 

as above, is shewn to be 

Lf, cos = (w*? — m.w)}?, 

the integral being taken from w = 0 to w = infinity. 

It will be remarked that m, in this case, is proportional to 5 ae 

it is therefore 0 for points in the direction of the asymptote, and for 

other points it is proportional to the angle made by the line from the 

center of the wave with the asymptote. 

17. The values of /, cos a (w'— m.w), from w=0 to w = infinity, 

and the squares of these numbers, for every 0°2 from m=W— 40 to 
m = + 40, are contained in the following table: for the calculation of 

which I refer to the Appendix. 

Corresponding values Squares Corresponding values 

Of fc cos 7 (t3— m. 1) of the last Of fie cos F (w— m.w) 

umbers 
from 0 to b PY from 0 to 

+0 00298 0 - 0000089 
+ *00431 - 0000186 
+ +*00618 * 0000382 
+ +00879 * 0000773 
+ *01239 * 0001536 
+ +*01730 * 000299 
+ * 02393 + 000573 
+ °03277 * 001074 
+ + 04442 - 00197 

+. + 05959 * 00355 
+ +*07908 * 00625 
+ *10377 + 01077 
+ 

+ 

+ 

+ 

= 

+e 

ate 
=a 

or 
+ 

+ 

+0°91431 
+0-97012 
+1-00041 
+ 0+ 99786 

- 95606 
* 87048 
+ 73939 
- 56490 
- 35366 
+ 11722 
- 12815 
+ 36237 
- 56322 
~ 70874 
- 78018 
*76516 
- 66054 

— 0° 47446 

* 13461 + 01812 
17254 » 02977 
21839 04769 
* 27283 * 07444 

- 33621 - 11304 
* 40839 - 16678 
+ 48856 + 23869 
+ 57507 - 33071 
* 66527 + 44259 
* 755387 - 57059 

0+ 84040 0- 70628 

SCHODEWOADMHFNWNTAHSNW OAD 

=) 
*8 
“6 
+4 
"2 
‘0 
“8 
*6 
"4 
oie 
‘0 
‘8 
‘6 
+4 

"2 
‘0 
*8 
‘6 
"4 
"2 
mu 
"2 
“4 
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The extent of this table for the positive values of m is not so great 

as I could wish; but it goes far enough to enable us to point out the 

most remarkable circumstances of the distribution of illumination. 

18. From m=-— 40 to m =— 16, the illumination is almost in- 

sensible. (In fact it appears to diminish, as the negative value of m 

increases, in a nearly geometrical or perhaps hyper-geometrical progres- 

sion). It then increases rapidly, and acquires its maximum value when 

m= + 1-08 nearly; its value is then nearly 1:001. It then diminishes 

rapidly till m = + 2°48 nearly, when the illumination is zero. It then 

increases till m = + 3:47, when the illumination is nearly 0°615, or about 

three-fifths of its former maximum. It then diminishes rapidly to the 

end of the table: and appears likely to become zero for a value of m 
differing little from + 4°4. 

19. One of the most important points to be remarked is, that the 

maximum illumination does not take place at the Geometrical Caustic. 

or where m= 0, but where m = + 1:08, that is, on the external side 

of the convexity of the caustic, or on the luminous side of the geome- 

trical position of the rainbow, that is, (for the primary bow,) within it. 

The following rule derived from the numbers above, will suffice, in 

practice, to determine the geometrical position. When the first spurious 

bow is visible, measure the distance of its maximum intensity from 

that of the brilliant bow; then the geometrical bow is exterior to the 

brilliant bow by a of this distance. 

20. It is a matter of curiosity to ascertain the relation of the 

intensities, or at least of the places of maximum and minimum inten- 

sity, as determined thus by a complete investigation on the theory of 

undulations, with those which would be found on the imperfect theory 

that light proceeds in straight rays according to the laws of Geome- 

trical Optics, and that rays of light are capable of interfering ac- 

cording to the simple rules of interference. We have first to discover 
the position of the two rays which interfere at any point. Now the 
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length of the path of any ray to the illuminated point is # + i (w'— m.w): 

and, by (2), the first differential coefficient of this quantity with regard 

to w will be zero for those rays which pass according to the ordi- 

nary rules of reflection and refraction. Performing this differentiation, 

3w?—-m=0: w=+ a/ 3: the lengths of path therefore of the two 

rays are H — ; r/ = and £ +4 / a and the difference of these 

is 5 / oe The destruction of light would therefore take place, on 

3 

this imperfect theory, when “/ ~ =1, or=3, or=5, &c.; that is, when 

ey a) 8 

m= wes or= V/ 7, &c.; or when m=1°89, 3°93, &c.: and there 

would be no light whatever for negative values of m. We have found 

above, on the complete theory, that there is sensible light for negative 

values of m, and that the destruction of light takes place when m=2°48, 
4°4 (nearly). According to the imperfect theory, the intensity would 
be infinite when m=0, and the next maximum would be nearer to 1:89 

than to 3°93: perhaps when m=2-7: we have found above that the 

intensity is nowhere infinite, that the first maximum takes place when 

m=1°'08, and the second when m=3:47, 

21. In figure 4, I have represented the intensity of the light by the 

ordinates of a curve, of which the abscissa represents different values of m. 

The strong line corresponds to the determination of the complete theory : 

the dotted line, to that of the old theory of emission (supposing the 
intensity inversely as the square root of the distance from the caustic): 

and the faint line, to that of the imperfect theory of interference 

mentioned above, giving to the maxima values in some degree pro- 

portionate to the ordinates of the dotted line. The absolute values of 

the ordinates in the faint and the dotted line are not to be understood 

as necessarily referred to the same unit as those in the strong line: 
but the abscissee correspond exactly in all. 
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APPENDIX. 

On the numerical computation of the definite integral /, cos As m.W), 

between the limits 0 and > 

The simplicity of the form of this differential coefficient induces me 

to suppose that the integral may possibly be expressible by some of the 

integrals whose values have been tabulated. After many attempts how- 

ever, I have not succeeded in reducing it to any known integral: and 

I have therefore computed its value by actual summation to a consider- 

able extent and by series for the remainder. 

The summation was continued jfor each of the values of m in the 

table given in (17)}, as far as w= 2. This extent was divided into 

eight sections, corresponding nearly to quadrants of the circular fune- 
tion when m = 0, as follows: 

Ist section, from w = 0 to w = 1:00, 

2nd from w = 1:00 to w = 1°26, 

3rd from w = 1°26 to w = 1°44, 

4th from w = 1°44 to w = 1°58, 

5th from w = 1°58 to w = 1°70, 

6th from w = 1°70 to w = 1°82, 

7th from w = 1°82 to w = 1°92, 

8th from w = 1°92 to w = 2:00, 

These sections were divided into small intervals corresponding to 

uniform increments in the value of w, as follows: 

In the Ist section the increment of w was 0:04, 

RNG on vests cis ce cadence couleatess cess seh 024 

BUA os sia sfaiceacieleistion nico aacans onacatae 018, 

MEE e es theca ciacnanccterete eet ssc.e5. 014, 

Shar csys dtc destessacsenisoneceet cate 012, 

6th . Bry aie 010, 

7th .. Depts 010, 
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As the increments in the 6th and 7th sections were the same, the 

calculations for these two sections were conducted without the inter- 

ruption which was necessary at the separation of the other sections. 

The values of w and - (w* — m.w) corresponding to the middle of 

each interval were then computed, and the appropriate value of 

cos 5 (w' —-m.w) 

was formed. Thus, in the first section the computations were made 

for w = ‘02, ‘06, ‘10, &c: in the 4th section, for w = 1:447, 1°461, 

1-475, &c. For a reason that will be shortly mentioned, the values of 

cos 3 (ue —m.w) were also computed for two values of w preceding 

the first, and two values following the last, of each section. These values 

were then differenced as far as the 4th order: which operation, besides 

giving a means of checking most severely the accuracy of the compu- 

tations, supplied the numbers necessary (in the next process) for con- 

verting the sum into an integral. 

Now, suppose, that uw, is a function of a, and that the quantity 

h is so small that the furictions w,,,, %.2, admit of being expressed 

with sufficient accuracy by the formula u, + b.h+c¢.h’+d.h’ + e.h', 

u, +-6.(2h) +¢.(2hy+d.(2h) +e. (2h). This assumption is abundantly 

accurate for the numbers of which we are treating here. Set down two 

values preceding uw, and two following it, and take their differences as 

far as the 4th order, thus 

bh papas teew Ist Differences. 2d Differences, 3d Differences. | 4th Diff. 

u,—2bh+4ch’-8 +16e 
: bh—3ch?+7dh®—-15eh* 
ac 2 3 4 2 3 4 

u,— bh+ ch®?— dh®+ eh HS in Ss 2ch?— 6dh3+14eh 6dh®—12eh4 

eg isamecsaiee rege ee ee caitss2cat | 24°* 
wit Gh+ chat ee eee oe "| ach?+6dh3+14eh* 
sighed RORIG ee 
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These expressions correspond to the following quantities : 

Uz—o1 | 
| Atos 

2 ” 
Ur—y Nei A“, Aun 

U, = A" 2 AM 

A'n Ann 
2 ” 2 

Unth | Ag oi YN 

Urreh . 

Equating the quantities on the middle line, or the sums of the 

quantities next above and next below, 
we A 

a, en oA 

An a AM n 

i : d 12 

KU NG bu 

f= SS ht Se 5 

Ce =o. Chaat grit Ga 

J Tp ike eee A Ae ADs 

Now the integral with respect to x of the function w,,. or 

u, + bs + c® + d® + ext, 
1s 

u e+ b 3 ab iG a3 as d vi ta é ~? 
ye 9 . 3° Do 4, _~ 5 ~ 

E ~~ h h. 
and this between the limits x = — 2 and x = + 3 iS 

80 

mw Ww 

Lig spiel 7s teh + oh + h 

uw 

= ty + oh seg + toa 

i AG ‘us Le =| 

‘ {u. + 94 ~5760 

This formula applies to the order of the calculations described above, 

because we have computed the value of uw, for the middle of each of 

Vou. VI; Par III, 3E 
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the intervals into which w is divided. And as the same formula 
applies to every one of the intervals, it applies to the sum of all. 
«nd the sum of all the partial integrals through each section is the 
whole integral through each section. Thus we find, 

sum of computed values of cos = (w*—m.w) 
Integral through each section | 

: 1 
= interval x sum of corresponding 2d differences 

L i | 
17 

576 u™ of corresponding 4th differences 

sum of computed values of cos 5 (wm. w) 

a ee cl - difference following the last term — 1st st 
eae 24 preceding the first term : 

a hd ‘i difference following the last term — 3d difference 
5760 preceding the first term 

This process was used throughout. For the purpose of forming the 
3rd difference following the last term and that preceding the first term, 
. qT . it was necessary to compute two values of cos = (w*—m.w) following the 

end of each section and two preceding its beginning. 

The values of aC — m.w) were computed by means of Delambre’s 

Tables Trigonomeétriques Décimales. 'The centesimal division of the circle 
is, in every instance in which I have used it, far more convenient than 

the sexagesimal: but in an instance like the present, where there is 
continual addition or subtraction of ares, and where the whole are amounts 

to several circumferences, the labour and liability to error would be so 

great with the sexagesimal division, as to make the operation almost im- 

practicable. The numbers were thus formed in each section. The first 

four values of = w* were computed independently and differenced, and 

with these differences the rest of the series of - w* was formed: the 

last was also computed independently as a check. The first term of 
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‘ : Ope aoe, aCe : Tt each series of @ (¥ m.w) was formed by applying — qv to the first 

. T r . 
term of the series of 5 w*: and the first difference was formed, all through 

. : T . . > the series, by applying — 9 ™ .6w to the corresponding 1st difference of 

Tv é . 
» @. The last terms of all the series were compared together, as a 

T . check. Then for every term the are less than q Was taken whose sine 

. . . 7 m 

or cosine (with proper sign) represented cos 5 ur — m.w). The natural 

numbers were taken to the 7th decimal place, and differenced, as has 

been mentioned. The number of arguments thus computed is 5166; 

and the number of natural terms for the summation is the same; and 

the whole of these have been differenced on paper to the third order, and 
mentally to the fourth order. 

The integration as far as w = 2:00 being thus completed, and with 

the utmost accuracy, the next step was to compute the integral from 

w = 200 to w = infinity. Let wu = 5 (wi —m.w): the problem is now 

to find f, cos uw. If we make + = v, this integral 

dw 

- OS u ee =vsinu— f,sinu 2 =osinu—fo ao sin u ae 
imc 3 dw ¥ dwi dw’ 

where the last term may be integrated by parts as before. Proceeding 
with this operation, and putting 

Y=, 

nll dv 
N= 7 

re” _ dv. 
v,=07- (vo), 

1 ( d 20 as |? do (Pan) > 
st Pla mys op n=07 fo a L” aes (v a) |} 

S3E2 
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and so on, we find for the integral generally 

(% — 0, +%—V; + &C.) sin u + (¥,— Vs + Vs — V; + &C.) Cos u. 

The first limit of the integration being w, and the last being infinity, 
and the quantities %, 1, &c. vanishing for w = infinity, the value of the 

integral between these limits is, 

(—% +%—v, +¥,—&e.) sin w+ (- v, + &;—v; + v;— &e.) Cos w. 

It will be observed here that v = ge ARS 
7 3w* — m 

The following are the expressions for v%, v,, &c. 

2 1 
v, =. 

a 3n°—m?’ 

24 n 

m * (3n*—m)*’ 

aa 240 1 288m 1 

“md (8n®—m)i”  x® * (8n?— my)? 

ey 11520 n 17280m n 

9 art * (327 m)e nm" (3m°—m)i? 

pas 253440 1 725760m 1 483840 m? 1 

m "(3 —m)? n° (3*—m) 7 (3m*—m)?? 

mss 21288960 mw 69672960 m w 52254720 m? w 

e 75 (3*—m)? n “(3°—m)" a “($m —m)"? 

ea 23824640 1 3413975040 m 1 4981616640 m? 1 2299207680 m" 1 

war mT *(3w?—m)"” = a (3w*—m)" dir (Bw —m)=* co (3w?—m)'*? 

_ _ 86858956800 w 450644705280 m w 717352796160 m" ww 358676898080 m' wo 

bd a “(3 wm)" a “Bum? ie (3u*—m)" ‘i ca "ho (3 w?—m)'*" 

Making w = 2°00, computing these expressions for every value of », 

and substituting them in the expression for the integral from w = 2°00 
to w = infinity, the numerical value of the integral for each value of 

m was found. 

This process was exceedingly accurate for all the negative values of m, 

and for the positive values about as far as m = + 3°0, when a difficulty 

presented itself. It must be remarked that when 3w* — m (or in the 
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present instance 12 — m,) amounts to several integers, the values of the 

successive terms decrease at first with great rapidity: yet, in all cases, 

they increase at some part or other in hyper-geometrical proportion, and 

finally become greater than any assignable quantity. This will be seen 

most readily on observing the law of the terms when m = 0. 

| Q9\? -—2 DNS 25 
Weehaveutheno, = 9 ere {ea Sh 5 2 5 

37 w 31 w 37 w 

2\* —9.5. 5° 9.5.8. 
v3 = (-) Beige, vU =(4) ee &e. 

wit 

It is evident that these terms, however small may be the quantity 
2 2 : 2 : one 

Sree ee will at some stage receive in succession new multipliers, greater 
37r.w’ 

37 .w : ce sesi0 : 
than ——5— ; that after this they will increase, and that the rapidity of 

~ 

their proportionate increase will go on continually increasing. From 

this point then the magnitude of the terms will increase hyper-geome- 

trically. 

The value of the integral however will be finite; and a limit for 

the value remaining after the computation of any number of terms in 

the series %, v,, &c. may be found. For, wherever we stop, the residual 

lv dv n 
term will be of the form /, cos vu. =— or /, sin uv. : where wv, is the 

dw dw 

term last found in the series. Now it is evident that either of these quan- 

-dv, 
tities is less than logs for the magnitudes of the quantities to be in- 

tegrated are always smaller, except in the particular cases when cos « 

or sin « = +1; and their signs are constantly varying as the value of 

"is always the same. The residual in- 
tw 

tegral, therefore, is certainly less than v,, the last term found in the 

series, and is probably much less: and therefore, if the last term com- 

puted consist only of integers in the last place of decimals which we 

; ; dv 
w varies: whereas the sign of 3 
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wish to retain, even though the divergence of the series be just 

beginning, the use of these terms will give the integral required with 

the utmost practical accuracy. 

Now when m= +3°0 nearly, it is found that the divergence com- 

mences at v., or before it; and that the term v,; is not so small that a 

quantity which is likely to be a sensible portion of it can be safely 

neglected. To approximate here, I have used the following considera- 

tion. It is known that the slowly converging series 

A—B+C-D+H-F+ke. 

may be converted into a series of the same kind with much smaller 

terms by putting it in this form, 

1A 
¥(42 BBC) 54 (C_ D) DE) 4 Le F)— be: 

In the instance before us, such a series would be produced by commencing 

the integration by parts with 4(, — v.) instead of v,; and the residual term 

will be of the form of 

d : d 
3 if, cosu. ae (v,—Ungx) or $f, sin u a (O, — Un42)- 

dv, is, for all Now if the progression is stopped at such a point that to 

n+2 
the following values of w, greater than — , then the quantity —— = (U,—Un+2) 

has always the same sign, and the reasoning above shews that the residual 

integral will be less than }(v,—- v,,2). A close approximation therefore 

will be obtained by summing the series as if we had begun with }(v,—v.) 
instead of »,: and this, it is easily seen, will be effected by taking half of 

the last term in each of the series multiplying sin w and cos ~. The 
multipliers which I have used are, in fact, 

— UH +— VU +435....00.2-+--f0Fr SiN U, 

Vi FV3— Vs + EV crcrveveees for cos u. 

The doubt which remains extends, I apprehend, to digits in the fifth 

place of decimals, but no higher. 
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The number of terms computed by logarithmic process for this part 

of the integral is about 900. 

I could have wished to extend the computation as far as m= +6, 

so as to include perhaps one or two more maxima of the values of in- 

tensity. Indeed, if it had been possible to foresee the approximate 

places &c. of maxima, I should probably have commenced the compu- 

tations to that extent. The trouble however would be great, as the 

summation must be extended as far as w = 2'5. Should any person be 

disposed to go to that extent, I would recommend that the summation 

of the values computed in this Paper should be also extended, for the 

values of m beginning with + 3-0. 

I subjoin a Table of the different sections of the summation and _ re- 
maining integration for all the values used in this Paper. 
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TaBLE of the different parts of /,, cos = (w—m.w), from «=0 to x = infinity. 

Values of Values of the integral found by actual summation. fieremamineanteerale | 

From ¢=0.00 | Froma=1-00 | From a=1-26 | From2=1-44 | From x=158 | From v=1-70 | From v=1-92 | Term depend- | Term depend- 
to. v=1-00. to 7=1:26. | tow=144. to =1°58. to x=1770, to r=1-92. to v=2°00. ing onsinu. | ing on cos wu. 

4:0 +°0929154 | 1621545 | +"1280207 | —0757713 | —-0036556 | —-0150365 | +:0374784 | 0000000 | +0011788 | +-0029754 
—3°8 +°0899076 | "1537134 | +1071428 | 0318602 | —-0507057 | +-0210294 | 0021156 | +-0236322 | +-0009898 | +-0043069 
—3°6  +:0783010 | 1250013 | +:0663779 | +-0200012 | —-0852129 | +-0538698 | —0412717 | +°0387234 | +-0003926 | +-0061800 
—3'4| 40591033 | 0787271 | +:0125367 | +:0683706 | —0979422 | +-0721698 | —-0655350 | +-0392214 | —-0004079 | +-0087896 
-32| 40342032 — 0200615 | —"0450110 | +:1023750 | —0852309 | +-0684171 | —-0658255 | +°0245557 | —-0011101 | +0123920 
—3°0 | +:0066555 | +-0439416 | —0959701 | +-1141579 | "0500345 +°0418171 | —-0418367 | *0000000 | —-0014269 +°0173039 
—2°8/ —0202801 | +:1051981 "1309732 | ++1006947 | ~0012464 | 0008297 | —-0022201 | —°0252118 | —-0012011 | +'0239304 
—2°6 | —-0426027 | +°1556300 |—"1433068 | +:0645600 | +°0485494 | —0467686 | +-0385325 | 0413456 | 0004776 | +°0327706 

~24 | —-0562773 | +1882352 —"1301966 | +-0134390  +"0863295 | —0810887 | +-0653953 | "0419123 | +-0004974 | +0444215 
~2:2 | —-0574983 +1980667 | —0934064 | —-0415027 | +"1020423 | "0915539 | +-0683497 | —"0262631 | +-0013569  +*0595912 
—2°0 —-0430375 | +°1829652 | —"0390242 | —-0880664 | +"0912823 | —-0729091 | +°0461214 “0000000 | +-0017488 | +:0790805 

1-8 0105661 | +"1439504 #0235453 | 1157328 | +°0565228 | —-0291543 | +-0067189 +°0270131 | +-0014761 | +"1037734 
1-6 +°0410858 | +-0852018 | +:0832149 |—-1190453  +0065563 | +-0271234 | —-0354520 | +'0443405 | +-0005884 | +1346138 
14 +1117252 40136169 | +:1291863 |—-0941134 —"0457342 | +-0783376 | —-0648587 | +°0449910 | 0006146 | +-1725361 
—1:2 +°1996990  —0620069 | +"1529169 |—-0488959 | 0866990 | +:1074010 | —-0705636 | +°0282196 | —0016814 | +2183897 
—1°0 | +°3019144 | —1320681 | +"1497066 | +-0078255 —1054914 | +:1034152 | —"0502948 | °0000000 | —"0021732 | +-2728342 
—0°8 | +°4139711 1873967 | +°1196276 | +-0635668 | 0969417 | +-0656568 | —-0113461 | —-0290842 | —-0018395 | +"3362141 
—0°6) +°5303921 | 2204699 | +°0675952 | +-1058949 | 0629782 | +-0044341 | +°0320494 | —-0477897 | —0007356 | +-4083923 
—0°4 | +°6449407 | —-2264423 +°0025723 | +-1252092 | 0122017 | —0616677 | +°0639213 | —0485430 | +:0007707 | +°4885595 

—0'2 +°7510400 | 2038501 | "0639887 | +-1169208 | +70422963 | "1114242 | +°0724424 | —"0304813 | +°0021152 | +°5750704 
0°0 +°8422086 | —"1548861 | “1201662 | +-9925417 | +°0863120 | —1278013 | +-0543205 | 0000000 | +:0027427 | +-6652719 
+0°2 | +°9125150 | 0852037 |—1557205 | +-0294203 | +71082374 | —"1037569 | +°0160657 | +°0314867 | +-0023295 | +-7553735 

+04 +:9570127 | —-0032555 —*1639662 | —-0308393 | +°1021275 | —°0450631 | —°0283460 | +°0517992 | +:0009347 | +*8404040 
+0°6 | +°9721117 | +:0807460 | “1430312 | 9848876 | +:0693085 | +°0309509 | —0625827 | +°0526798 | —-0009826 | +:9143128 

+0°8 +°9558650 | +°1561216 | 0962649 | —-]906499 | +0181032 | +°1005011 | 0739646 | +°0331201 | —-0027067 | +-9701249 
+10 +-9081446 +'2131038 | —0317049 —*1299775 | —0382828 | +"1408098 | 0581618 | 0000000 | —°0035225 j+1°0004087 

41:2) +°8306993 | +°2441213 | +°0393109 | —-1105332 | 0851711 | +1375753 | —0208408 | —-0343016 | —-0030028 | +-9978573 
+14) +°7270641 | +°2448168 | +°1041461 | 9663663 | —"1102398 | +:0899919 | +'0243670 | 0565062 | —"0012095 | +-9560641 
+16 +°6023587 | +°2146627 | +71511250 | 9970683 | —-1067638 | +°0115856 | +°0608471 | —0575460 | +-0012765 +°8704775 

+1:8 | +'4629601 | +°1570802 | #1716481 | +-9543138 | —0754212 | 0736006 | +:0751107 | —"0362310 | +°0035295 | +-7393896 
+2°0 | +°3160989 | +°0790543 | +°1617709 | +-1941549 | 0241758 | "1383955 | +°0617838 | *0000000 | +°0046115 | +-5649030 

+2:2 | +'1693705 | 0097331 | +*1229644 | +-1312871 | +°0337502 | —1611914 | +°0256330 | +°0376336 | +'0039467 | +°3536610 
+2°4 | +:0302520 | —0981192 | +°0619006 | +-1295037 | +°0832918 | 1331501 | —0201404 | +:0620890 | +0015960 | +°1172234 
42-6 | "0944017 | —"1748910 | —"0107004 | +-0989853 | +°1114670 | —-0615225 | —-0587219 | +°0633290 | 0016907 | —-1281469 

42-8 | 1987892 | 2302290 | —"0819605 | +-0463043 | +'1107817 | +:0321479 | —-0758654 | +-0399339 | —-0046921 | —-3623684 
43:0 | —°2785332 | —'2569831 | 1391417 | —-0169919 | +°0812275 | +°1185093 | —-0651540 | “0000000 | 0061508 | —5632179 

43-2 | 3309399 | 2516145 | —"1719364 | —-0769201 | +°0303310 | +°1696336 | —"0304033 | —-0416103 | 0052779 | —"7087378 

43-4 | 3551338 | —-2146670 | "1743344 | —-1201569 | —0287648 | +°1680727 | +°0156965 | —-0687550 | —-0021380 | —"7801807 
43-6 | 3520567 | —*1507154 | —1457300 | —-1370101 | —0807012 | +°1128004 | +°0562188 | —-0702322 | +:0022653 | —"7651611 
+3:8 | 3243480 | 0677906 |—:0910614 | 1235960 | —1119003 | +°0200155 | +°0762169 | --0443.470 | +-0062719 | —-6605390 
+40 | 2761063 | +-0236462 | -0199552 | —-0827357 — 1141216 | —°0815972 | +°0682405 | -0000000 | +:0081698 | —-4744595 

G. B. AIRY. 
Royvat OxssERvATORY, GREENWICH, 

March 12, 1838. 



XVIII. On the Reflexion and Refraction of Sound. By G. GREEN, Esa., 

of Caius College, Cambridge. 

[Read December 11, 1837.] 

THE object of the communication which I have now the honour of 
laying before the Society, is to present, in as simple a form as possible, 

the laws of the reflexion and refraction of sound, and of similar pheno- 

mena which take place at the surface of separation of any two fluid media 

when a disturbance is propagated from one medium to the other. The 

subject has already been considered by Poisson, (Mém. de ?Acad., &c. 

Tome X. p. 317, &ce.) The method employed by this celebrated analyst is 

one that he has used on many occasions with great success, and which he 

has explained very fully in several of his works, and recently in a digres- 

sion on the Integrals of Partial Differential Equations. (Théorie de la 

Chaleur, p. 129, &c.) In this way, the question is made to depend on 

sextuple definite integrals. Afterwards, by supposing the initial dis- 

turbance to be confined to a small sphere in one of the fluids, and to 

be everywhere the same at the same distance from its centre, the formule 

are made to depend on double definite integrals; from which are ulti- 

mately deduced the laws of the propagation of the motion at great dis- 
tances from the centre of the sphere originally disturbed. 

The chance of error in every very long analytical process, more 

particularly when it becomes necessary to use Definite Integrals affected 

with several signs of integration, induced me to think, that by employ- 

ing a more simple method we should possibly be led to some useful 

Vou. VI. Parr III. 3F 
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result, which might easily be overlooked in a more complicated investi- 

gation. With this impression, I endeavoured to ascertain how a plane 

wave of infinite extent, accompanied by its reflected and refracted 

waves, would be propagated in any two indefinitely extended media of 

which the surface of separation in a state of equilibrium should also be 
in a plane of infinite extent. 

The suppositions just made simplify the question extremely. They 

may also be considered as rigorously satisfied when light is reflected. 

In which case the unit of space properly belonging to the problem is 

a quantity of the same order as \= 55a inch, and the unit of time 

that which would be employed by light itself in passing over this small 

space. Very often too, when sound is reflected, these suppositions will 

lead to sensibly correct results. On this last account, the problem has 

here been considered generally for all fluids whether elastic or non-elastic 

in the usual acceptation of these terms; more especially, as thus its 

solution is not rendered more complicated. One result of our analysis 

is so simple that I may perhaps be allowed to mention it here. It is this: 

If A be the ratio of the density of the reflecting medium to the density 
of the other, and B the ratio of the cotangent of the angle of re- 

fraction to the cotangent of the angle of incidence. Then for all fluids 

the intensity of the reflected vibration 4A—B 
the intensity of the incident vibration 4+ B’ 

If now we apply this to the reflexion of sound at the surface of 
still water, we have 4 > 800, and the maximum value of B<4. Hence 

the intensity of the reflected wave will in every case be sensibly equal 

to that of the incident one. This is what we should naturally have 

anticipated. It is however noticed here because M. Poisson has inad- 

vertently been led to a result entirely different. 

When the velocity of transmission of a wave in the second medium, 

is greater than that in the first, we may, by sufficiently increasing the 

angle of incidence in the first medium, cause the refracted wave in the 

second to disappear. In this case the change in the intensity of the 
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reflected wave is here shown to be such that, at the moment the re- 

fracted wave disappears, the intensity of the reflected becomes exactly 

equal to that of the incident one. If we moreover suppose the vibra- 

tions of the incident wave to follow a law similar to that of the 

cycloidal pendulum, as is usual in the Theory of Light, it is proved 

that on farther increasing the angle of incidence, the intensity of the 

reflected wave remains unaltered whilst the phase of the vibration 

gradually changes. The laws of the change of intensity, and of the 
subsequent alteration of phase, are here given for all media, elastic or 

non-elastic. When, however, both the media are edastic, it is remarkable 

that these Jaws are precisely the same as those for light polarized in a 

plane perpendicular to the plane of incidence. Moreover, the disturbance 

excited in the second medium, when, in the ease of total reflexion, it 

ceases to transmit a wave in the regular way, is represented by a quan- 

tity of which one factor is a negative exponential. This factor, for 

light, decreases with very great rapidity, and thus the disturbance is 

not propagated to a sensible depth in the second medium. 

Let the plane surface of separation of the two media be taken 
as that of (yz), and let the axis of x be parallel to the line of inter- 

section of the plane front of the wave with (yz), the axis of x being 

supposed vertical for instance, and directed downwards; then, if A and 

A, are the densities of the two media under the constant pressure P and 

s, s, the condensations, we must have 

A (1 + s) = density in the upper medium, 

eae +s,) = density in the lower medium. 

P(1+ As) =pressure in the upper medium, 
ip (1 + A,s,) = pressure in the lower medium. 

Also, as usual, let @ be such a function of 2, y, x, that the resolved 

parts of the velocity of any fluid particle parallel to the axes, may be 
represented by 

io tah Medi 
dz’ dy’ dx° 

In the particular case, here considered, p will be independent of x, and 
the general equations of motion in the upper fluid will be 

SF 2 
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dz dy’ 

iy AD a5 0 
a Pe 

where we have 
,. BA 

Citeale 
or by eliminating s 

a Stay (58+ 94). 

where 

The above are the known general equations of fluid motion, which 

must be satisfied for all the internal points of both fluids; but at the 

surface of separation, the velocities of the particles perpendicular to this 

surface and the pressure there must be the same for both fluids. Hence 

we have the particular conditions 

LES) 
dx dz (where 2 = 0), 

As =A, 

neglecting such quantities as are very small compared with those retained, 

or by eliminating s and s, we get 

do _ ao, 
A of qa when « = 0) 

at” ewdt 

The general equations (1) and (2), joined to the particular conditions 

(4) which belong to the surface of separation (yz), only, are sufficient 
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for completely determining the motion of our two fluids, when the velocities 
and condensations are independent of the co-ordinate x, whatever the 
initial disturbance may be. We shall not here attempt to give their 
complete solution, which would be complicated, but merely consider the 
propagation of a plane wave of indefinite extent, which is accompanied 
by its reflected and refracted wave. 

Since the disturbance of all the particles, in any front of the incident 

plane wave, is the same at the same instant, we shall have for the 

incident wave 

p =f (ax + by + ct), 

retaining 4 and ¢ unaltered, we may give to the fronts of the reflected 
and refracted waves, any position by making for them 

o =F(dx + by + ct), 

gb, = f (a,x + by + ct). 

Hence, we have in the upper medium, 

(4) p=f (ax + by + ct) + F(aa« + by + ct), 

and in the lower one 

(5) b,=f(a« + by + ct). 

These, substituted in the general equations (1) and (2), give 

c= 77(a + 5), 

(6) c= (a? +B), 
Ce = y7(a? + 5). 

Hence, a’= + a, where the lower signs must evidently be taken to 

represent the reflected wave. This value proves, that the angle of inci- 
dence is equal to that of reflexion. In like manner, the value of a, 

will give the known relation of sines for the incident and refracted 

wave, as will be seen afterwards. 

Having satisfied the general equations (1) and (2), it only remains to 

satisfy the conditions (4), due to the surface of separation of the two 
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media. But these by substitution give 

af (by + ct) — aF' (by + ct) =a, f/ (by + ct), 

AVS (by + ct) + F'(by + et)} = Af) (by + et), 

because a’= — a, and x = 0. 

Hence by writing, to abridge, the characteristics only of the functions 

A a 
een Ua) (etd J / 

F=4(E+ Sr 
(7) - 

a ae eee “) 4 
Misa iz a} 

or if we introduce 0, @,, the angles of incidence and refraction, since 

cot 0 = ; 5 

a 
cot 6, = 7 ; 

A, _ coté U = a Wy Pons 4 

Pot G wot 8) d 

»_ 1 (A, _ cot 4 

Ss & cot 0/7" 

A, coté, 

Fa cote 
and therefore ~ = Ay, cot 8, > 

A cota 

which exhibits under a very simple form, the ratio between the intensities 
of the disturbances, in the incident and reflected wave. 

But the equations (6) give 

ar (Gss)=a( +9) 
and hence 

the ordinary law of sines. 
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The reflected wave will vanish when 

which with the above gives 

= 97 t@= a cotd = A a/ Ay = Oy 
Hence the reflected wave may be made to vanish if y° — y, and 

(y A)’ — (y,4,) have different signs. 

For the ordinary elastic fluids, at least if we neglect the change of 
temperature due to the condensation, 4 is independent of the nature 
of the gas, and therefore 

Hence 

which is the precise angle at which light polarized perpendicular to the 
plane of reflexion is wholly transmitted. 

But it is not only at this particular angle that the reflexion of 
sound agrees in intensity with light polarized perpendicular to the plane 
of reflexion. For the same holds true for every angle of incidence. 
In fact, since 

4,_ ¥ _ sin’é@ 

y;  sin?@’ 
| yRe= yy, A); 

and the formule (7) give 

sin’ @ _ tan@ 
#” _ sin’9,_tan@ _ tan(@- 6) : 
f' sin?@~— tan@ tan (9 + 0) 

i Sos ye + = 7 

sin*d tan @ 
4 

which is the same ratio as that given for light polarized perpendicular 
to the plane of incidence. (Vide Airy’s Tracts, p. 356.) 
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What precedes is applicable to all waves of which the front is plane. 

In what follows we shall consider more particularly the case in which 

the vibrations follow the law of the cycloidal pendulum, and therefore 
in the upper medium we shall have, 

(8) g=asin(ax+by+ct)+Psin(-ax+by+et). 

Also, in the lower one, 

p, =a,sin(avu+by+ect): 

and as this is only a particular case of the more general one, before 

considered, the equation (7) will give 

A a 

A Se De Se 
B a(3 a) 

If y, > y, or the velocity of transmission of a wave, be greater 

in the lower than in the upper medium, we may by decreasing a render 

a, imaginary. This last result merely indicates that the form of our 

integral must be changed, and that as far as regards the co-ordinate « 

an exponential must take the place of the circular function. In fact 

the equation, 

axe dy 

& >, phat (re 4 & ob, \; 

may be satisfied by 

g, =e". Bsiny, 

(where, to abridge, + is put for by + ¢?¢) provided 

C=) (- a? +b"); 
when this is done it will not be possible to satisfy the conditions (4) 

due to the surface of separation, without adding constants to the quantities 

under the circular functions in @. We must therefore take, instead of (8), 

the formula, 

(9) @=asin(ar+by+ct+e)+Psin(—ax+by+ct+e). 
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Hence, when w = 0, we get 

d 
a = a@acos (W + e) — af cos (Wy + e), 

@ — cacos(y +0) + ¢ Bos (¥ + é,), 

dp, _ Pent: 
ee — a; Bsny, 

do Pre akg Bos; 

these substituted in the conditions (4), give 

acos (Wy + e) — Bcos(~ +e) =— “ B sin W, 

a cos (W + e) + Boos (y+ ¢) =~ Bos y; 

these expanded, give 

a cose — B cose, = 0, 

/ 
: ‘ a 

—asine + Bsine,=— 7 B, 

A 
acose + Bcose, = a B: 

asine + Bsine, = 0. 

Hence, we get, 

C a 
(10) Qasine = a2 

A 
2acose = aq B: 

2Bsine,=— “« B, 

4, 2B cos e,= zB: 

Vor. VI. Parr III. 3G 
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and, consequently. 
e=-€@, Bp=a 

and 
aN 

tane= + ——. 
aa 

This result is general for all fluids, but if we would apply it to 

those only which are usually called elastic, we have, because in this case 

yA=72A, ‘ 
CRN ex, 

t ie tO é é 

aaa A ay 

But generally 

(11) C= ¥)(— a? + 6) = (a + 6); 

and therefore, by substitution, 

ay, ie Sa ee 
Gee 2h NS ey 

ay 
: = pV u?tan?6 — sec? 6, 

ay 

b 
because « = Y , and — = tané. 

¥ a 

As e=—e, we see from equation (9), that 2e is the change of phase 

which takes place in the reflected wave; and this is precisely the same 

value as that which belongs to light polarized perpendicularly to the plane 

of incidence; (Vide Airy’s Tracts, p. 362.) We thus see, that not only 

the intensity of the reflected wave, but the change of phase also, when 

reflexion takes place at the surface of separation of two elastic media, is 

precisely the same as for light thus polarized. 

As a = #, we see that when there is no transmitted wave the inten- 

sity of the reflected wave is precisely equal to that of the incident one. 

This is what might be expected: it is, however, noticed here because 

a most illustrious analyst has obtained a different result. (Poisson, Me- 

moires de UV Academie des Sciences, Tome X.) The result which this 

celebrated mathematician arrives at is, That at the moment the trans- 

mitted wave ceases to exist, the intensity of the reflected becomes 

precisely equal to that of the incident wave. On increasing the angle 

of incidence this intensity again diminishes, until it vanish at a certain 
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angle. On still farther increasing this angle the intensity continues to 

increase, and again becomes equal to that of the incident wave, when 

the angle of incidence becomes a right angle. 

It may not be altogether uninteresting to examine the nature of 

the disturbance excited in that medium which has ceased to transmit 

a wave in the regular way. For this purpose, we will resume the 

expression, 

,= Be-“*siny = Be“ * sin (by + ct); 

or if we substitute for B, its value given by the last of the equations 

(10); and for a/, its value from (11); this expression, in the case of 

ordinary elastic fluids where y* A = 77 4,, will reduce to 

p, = 2ap' cose. — Jems sin (by + cf), 

\ being the length of the incident wave measured perpendicular to its 

own front, and @ the angle of incidence. We thus see with what rapidity 

in the case of light, the disturbance diminishes as the depth 2 below the 

surface of separation of the two media increases; and also that the rate 

of diminution becomes less as @ approaches the er?fical angle, and entirely 

ceases when @ is exactly equal to this angle, and the transmission of a 

wave in the ordinary way becomes possible. 

3G2 
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XIX. On a new Genus of Fossil Multilocular Shells, found in the 

Slate-Rocks of Cornwall. By D. T. Anstep, B.A. of Jesus 

College; Fellow of the Society, and of the Geological Society. 

[Read February 26, 1838.] 

Ir is not many years since the slate-rocks of Cornwall were de- 

scribed as contemporary in their formation with the Granite, and other 

igneous and altered rocks of that county. They were of course pre- 

sumed at that time to be absolutely without trace of fossils; and 

when remains of organic life were first observed, the very possibility 

was questioned; but, after some doubt and sufficient inquiry, the fact 

was admitted, to the overthrow of the theory alluded to. 

Since it has been granted that fossils may be expected in these 

beds, the search after them has not been unattended with success. 

Among others, Professor Sedgwick, during his geological researches in 

the South-west of England, has obtained many, in various states of 

preservation, which, with a few collected from the neighbourhood of 

Petherwyn, are now in the Woodwardian Museum; and it was during 

the temporary arrangement of these specimens, that I was struck with 

the occurrence of what seemed to me a new genus of multilocular 

shells, and induced to lay this paper before the Society. 

_'The rest of the organic remains consist chiefly of fossil marine 

vegetables; many shells allied to terebratula; several species of or- 

thoceratites; portions of the stems of radiated animals, and parts of 
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some very small trilobites. Besides these, there are two species of a 

genus which has generally been considered identical with goniatites, 

although it appears to depart very widely from the type of that curious 

and well-known group. 

In the Annales des Sciences Naturelles, for 1834*, will be found the 

translation of a paper by Count Miinster, announcing the discovery 

of a new genus, which he calls Clymenia, and which he found among 

several new species of goniatites, in the transition limestone of the 

Fichtelgebirget. It is to this genus, hitherto unknown in English 

Paleontology, that the newly-discovered Cornish fossils must be re- 

ferred; although there appears to be so much difference in some respects, 

that they may possibly form a sub-genus, peculiar to the formation in 

which they occur. 

The name Clymenia, however, is peculiarly unfortunate, both because 

it is already appropriated, (for it designates one of Cuvier’s genera of 

Annelides,) and also from its entire want of analogy with all other 

names of fossil cephalopods. As it must be abandoned, I would pro- 

pose to call the genus Endosiphonites, which has the advantage of 

indicating the most remarkable and important character—the ventral 

position of the siphuncle; while at the same time it sufficiently re- 

sembles the names of allied genera, and by a slight alteration of the 

first two syllables, might be applied to mark the different positions 

of the siphuncle which characterise ammonites, nautilites, &c. 

The peculiar character of this genus is, as I have already remarked, 

the position of the siphuncle, in which it differs both from ammonite 

* When my paper was read before the Society in February, I was not aware of the ex- 

istence of this notice in the Annales des Sciences. It is to Professor Phillips that I am 

indebted for the reference; and he has already made use of it in the article “ Goniatite,” in 

the Penny Cyclopedia. 

+ These hills are situated in the South-eastern part of Germany, to the East of the 

Maine, and not very far North of Nuremberg. The central ridge is of granite and the 

transition limestone. 
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and nautilus. According to Count Miinster, the species from the 

Fichtelgebirge admit of the following description:—The narrow siphuncle 

is constantly found on the ventral part of the spiral shell, where it 

passes through a succession of small funnel-shaped apertures in the 

chambers. The whorls of the spire are free, never entirely enveloping 

the inner ones; and the last, and part of the last but one, of the 

turns have no septa. The intersections of the septa with the shell 
form undulations, or simple lateral lobes, at oblique angles, and dorsal 

and lateral rounded saddles*; but the line of intersection is not den- 

ticulated as in goniatites, or marked in the more intricate lines which 

characterise the ammonite. The siphuncle not being generally visible, 

it is by means of the dorsal saddle that this new genus is distinguished 

from goniatite, which always has a dorsal lobe on the medial line of 

the back. Count Miinster elsewhere observes, that it is so difficult to 

obtain specimens having the septa apparent, that without extreme care 

it is almost impossible to avoid error; and that it is still more rare 
to find the siphuncle visible, since in the new genus, as well as in 

goniatites, it is so slender and so close to the shell as to be usually 

invisible, even when the marble in which it is found is polished. 

Now the condition of the Cornish specimens I have examined is 
very different from that of the German ones, and much more perfect 

in some respects than these seem to have been; but there are many 

points in the above description which do not at all agree with my 

observations. One of the most important of these is the nature of 

the siphuncle, which seems to be obscure in Count Miinster’s species, 

but is very prominent and easily seen in those which I have made 

out. But it is not only easily seen—it is decidedly large; and al- 

though near the shell cannot possibly be overlooked. In one species the 
diameter of the aperture in the septum is one-fifth of the extreme 

length of the septum; a proportion much larger than is commonly 

found in any species of nautilus, and which indeed is only paralleled in a 

* The word saddle is here used to denote those separations between the lobes upon which 

the mantle of the animal is supposed to have rested. Dr Buckland has explained the lan- 

guage introduced by Von Buch on this subject, in a note, page 353, of his Bridgewater 

Treatise, to which I must refer for a more complete explanation. 
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few species of orthoceratites. If then, as there seems every reason to 

suppose, the siphuncle is the most important character in the shells of 

multilocular cephalopods, this very great difference would of itself war- 

rant the formation of a separate group. All the species from Cornwall 

are provided with decidedly large apertures in the chambers, and in 

all, these funnel-shaped tubes are easily seen, produced beyond the 

septum about half way into the next chamber. 

But again, the markings on the shell which seem so useful in deter- 

mining Count Miinster with regard to any doubtful cases, are in our 
English species apparently not to be depended on. Our fossils are in 

beautiful condition; the actual shell certainly remains in one specimen at 

least, and we can trace a succession of transverse stri# marked with great 

beauty and regularity upon it; but although the casts of the chambers 

may be separately examined, the nature and use of the lobes does not 

quite appear. One thing is certain, they do not correspond to the inter- 

section of the septa and the shell, and in only one of three species do 

they occur at all, Some idea of the form of a septum will be obtained 

from Fig. 4, Plate VIII. which represents a side and front view of the 

cast of a chamber belonging to a species not determined. 

The technical description of the genus will be thus expressed :—a 

discoid spiral multilocular shell; sides nearly simple ; whorls contiguous, 

the last not enveloping the rest. Septa transverse, numerous, concave 

outwardly, and perforated on the ventral margin for a siphuncle, 

In order to determine the place of this genus among other shells 

of cephalopods, it will be necessary to pay most attention to goniatite and 

nautilus, as it is to these that the nearest approximation is made. Von -° 

Buch gives as the character of the former group, the dorsal siphuncle 

of the ammonite, comparatively small and delicate; the lobes of the septa 

completely deprived of lateral denticulations, and the strie of growth 
resembling those of nautilus, in not being directed forwards, as in am- 

monites, but reflected backwards. The nautilus is known by its usually 

central and comparatively large siphuncle, and the greater or less envelope- 

ment of the whorls of the spire by the last one formed. 
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The new genus Endosiphonites differs from goniatites and nautilus in 

the position of the siphuncle, and it agrees with both in the direction 

of the striz of growth. The whorls, though contiguous, never envelope ; 

and the septa seem usually very nearly simple. Taking D’Orbigny’s 

classification, which being founded chiefly on the position of the siphun- 

cle, must be preferred, we refer this genus to the family Nautilacea, 

and place it between Nautilus and Lituite. 

We come now to consider the species, and the English localities 

not having been searched with a view to the discovery of these fossils, 

we have at present only three sufficiently well defined to admit of de- 

scription. These are figured in Plate VIII. and I have named them as 

follows :— 

(1). Endosiphonites Minsteri nob. Puatr VIII., Fig.1. This being 

the largest species, I have named it in honour of the first discoverer 

of the genus. The individual figured is an extremely beautiful fossil, 

and, as will be seen from the figure, shows the siphuncle very clearly. 

It is partially burnt, having been obtained by the fracture of a lump 

which had passed through a kiln without being reduced to a calx; 

so that most of the strie of growth are destroyed, although I have 

no doubt they were before the burning sufficiently clear. It is the 

only species in which there are decided lobes, and is remarkable for 
the very large size of the last whorl, the area of the aperture being 

more than five times as large as that of the corresponding chamber 
in the former whorl. It is also very flat, the length of the aperture 

being more than twice its width, and this without any appearance of 

the shell having been injured or crushed. It measures four inches across. 

(2). EE. carinatus nob. Puiate VIII., Fig. 2. This species is re- 

markable for its elliptical form, and for having a keel running along 

the dorsal margin. Its dimensions are fourteen-tenths by nine-tenths of an 

inch. It is marked by a series of fine but beautifully distinct strie, 

which may be clearly seen in some parts of the specimen figured, where 

in all probability the original shell remains. This is the species alluded 

to above as having a very large siphuncle, seen in the figure at (a). 
Vor. VI. Parr III. CJA | 
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It is also one of those without the very slightest trace of the lobes 

alluded to by Count Miinster. 

(3). E. minutus nob. Puiate VIIL, Fig. 3. twice the natural size. 

This very small and pretty species much resembles two of those de- 

scribed by Count Miinster, except in the size of the siphuncle, but I 

have thought it better to give a new name, because of the great im- 

portance of this difference. Waved stria may be observed on some 

parts of the only specimen I have examined, but they are very minute, 

and required the aid of the microscope to discover them. 

It remains now that we consider, from analogy with known genera, 

how far the animal inhabitant of this new genus may have resembled, 

in its habits or locality, those of other multilocular shells most nearly 
allied to it. 

What then are those points in the description of the shell that 

tell most of the history of the animal, and what light is thus thrown 
on the subject now under consideration ? 

It was the opinion of Von Buch, an opinion strengthened by the 

later researches of Dr Buckland, that the siphuncle must be considered 

as an all-important organ in the structure of a multilocular shell. It 

is true that the position of the tube has generally been considered 
much more than its magnitude, but the size must not be neglected : 

for assuming Dr Buckland’s opinion of its use to be true, vix. that 

the whole mass of the animal and shell has its specific gravity changed 

by the pericardial fluid passing into the siphuncle, it is quite clear 

that the larger this tube in proportion to the area of the septa, the- 

more sudden will be the change of specific gravity, and consequently 
the .greater the facility with which the animal could alter its depth 

in the water. 

Now in almost all the known species of the family nautilacea, 

this contrivance is large, well defended, and eminently adapted for 

resisting external injury, while on the other hand, it is comparatively 

rare to find a large siphuncle in an ammonite, or any allied genus, 
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and sometimes the tube is found to have dwindled away and become 
a mere thread. While, however, the siphuncle diminishes in size and 
importance, the general shape of the shell and peculiar form of the 
septa indicate an increased capacity for resisting pressure and support- 

ing the weight of a high column of water. 

Perhaps, viewing the subject in this light, we may not be far wrong 
in assuming a natural ground of separation between these two families 

of cephalopods, since the one appears to have a contrivance for enabling 

it to swim freely in the ocean, and rise or sink at pleasure, while 

in the other, there is only as it were the rudimentary appearance of 

this contrivance; but, on the other hand, additional strength in its ha- 

bitation, fitting it to dwell more at the bottom of the sea and at 

considerable depths, and there to keep within necessary limits those 

crustacea and molluscs, which might otherwise, by their rapid increase, 

have interfered with the established course of nature. 

In applying this theory, if it may be called so, to our new genus, 

we must necessarily consider separately the group described by Count 

Miinster as having a small siphuncle, and the species now introduced 

to your notice. In the former, there seems to be a provision for 

strength, without great power of locomotion; for the septa seem less 

simple than even in some goniatites, and the lobes must be supposed 

to increase the resisting power. In the latter there are no lobes, but 

the siphuncle being so much larger, we may reasonably suppose that 

the extent of the inhabitant’s power of altering readily its depth in the 
water, must have been in a corresponding degree greater. 

The study of comparative anatomy introduces to our notice, in a 

very striking manner, the strong resemblances in the structure of dif- 

ferent animals, and the universal occurrence of what would seem rudi- 

mentary attempts at higher and more complete organisation. Such, for 

instance, are the rudimentary bones in the fins of swimming mammalia, 

which correspond to the bones of the extremities in man; and such 

would seem to be the case in this siphuncle, sometimes very large, 

then diminishing in size and importance, till it dwindles down to the 
3H 2 
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merest thread, which can no longer be capable of performing any office 

in the animal economy. 

As an extreme instance of this, I would refer to the fossil represented 
in Plate VIII., Figs. 5, 6. It is in extremely good preservation, but 

does not show the slightest appearance of a siphuncle on the dorsal 

margin, or elsewhere, although it resembles in some respects one of 

Count Miinster’s goniatites, named G. subsuleatus. I have had it 
figured, because it shows very beautifully the singular extent to which 
the envelopement of one whorl by the rest is sometimes carried, and 

the marked resemblance which the specimen bears to some of the mi- 

croscopic genera of D’Orbigny’s Foraminifera. Its shape is lenticular, 

and it measures more than three-quarters of an inch across. In the 

absence of better information, I am compelled to call it a goniatite, 

but I cannot help thinking, that for this and many other species also 

doubtful, it may be found necessary to establish a separate group, 
founded on the almost total absence of the siphuncle. 

In conclusion, I would observe, that among the known, but as yet 

undescribed fossils of the Stlurian System, there is no instance of any 

species referrible to our new genus; and thus we have another instance 

of the wide separation denoted even by the zoological character 
of these ancient formations, which are indeed sufficiently distinct by 

the known occurrence of intervening deposits. It is the opinion of 

Professor Sedgwick, that these Cornish rocks, which contain the organic 

remains described, are the lowest fossiliferous rocks of Devonshire and 

Cornwall, and far, very far removed in the order of their deposit from 

the mountain limestone, with which it has been attempted to identify 

them. 

D. T. ANSTED. 

Jesus CoLLEGE, 

18th May, 1838. 



XX. On a Question im the Theory of Probabilities. By AvuGcustus 
De Morean, of Trinity College, Professor of Mathematics in 

University College, London. 

[Read February 26, 1837.] 

THe object of this paper is the correction of an oversight made 

both by Laplace and M. Poisson, in pages 279 and 209 of their 

respective works on The Theory of Probabilities. 

The reputation of neither of those analysts requires an explanatory 

eulogium to accompany the detection of an error in their writings, 

particularly on a subject so liable to cause mistake as the theory in 

question: I shall therefore proceed at once to the point. Both arrive 

correctly at the conclusion, that* 

Ee fol  N ET lie € 20 
Ws ft € Gt it Seren 

represents the probability that the number of arrivals of A shall fall 

between v—/ and v+/, both inclusive, where »(=v+w) is the num- 

ber of trials, and v and w are proportional to the chances of arrival 

or non-arrival in a single trial. That is, if the number of times 

which A will happen in x trials be called 4,, the preceding formula 
is the probability that uw, as deduced from 

(1) 

A, =np+u, (p =<), 

will lie between —7/ and +7: on the supposition that p is given, and 

A, to be found by trial. And both Laplace and M. Poisson imme- 

diately infer that the preceding result therefore represents the same 
probability in the case where A, has been observed, and p is to be 

* See the Addition at the end. 
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inferred by reasoning from the observed event to the probability of 

its cause. That is, they assume in effect that the probability of the 

equation (a, y) =a, where x is given and y presumed, must be the 

same as in the case where y is given and a presumed. The preceding 

formula is neither admissible upon the reasoning produced, nor in fact 

correct: as the following investigation will shew. 

There having been made x2 (or v+w) trials, at each of which 

either 4 or B must have happened; and dA having happened v times, 

and B w times: required the presumption that the probability of 4 

happening lay between two given limits a and b (b> a). 

The presumption that this probability lies between @ and 3, is 

Six (l= ade (2) 
So # (1 — x)"dx 

to the approximate determination of which, when v+w is a con- 

siderable number, I proceed to apply the method of Laplace. 

Let y be a function of « which vanishes when «=0 and when 
%=1; and let Y, the intermediate maximum value of y, correspond 

to «=X. Assume y = Ye, so that while x increases from 0 to _X, 
and from X to 1, ¢ shall increase from —ce to 0, and from 0 to +c, 

Let « =X + 6, and determine @ from 

Y+yrY" 5 re aad rs Zt = Ke", (8) 

Y" being = 0, since Y is a maximum value of y. 

Let this process give 

6= Bt+ Be + Bit +...... 

and let «=a, and a = 5, give ¢=yn, and t=». 

Then, since dx = dé 

Siyda = VEB Ste" dt +2 Bfle'tdt + 3 Bfle"edt + , 

=F (Bi +3 B+. )Sletdt+ ¥ (B+ # B+...) & 

—- YB. + : ae ier tA) 
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The general formula for the determination of B, is 

1 d” i BE 

B, — sm ef ae Se 
a 

2.3... Ax" ( log Ti) when « = X}, 

but the first terms may be readily found by actual reversion of (3), 
(n) 

which gives, if Y, stand for Vy ; 
Y 

/. 3 1 4 
= Vag B= 3p 

gn bY - 8%. (Y= 3 ¥) Y, 
a 18 Y,' OF GRO 

When a=0, 6=1, we have nh =—x, v=+cc 

f yde = Y(B,+$By+...) fC Sestat, 

whence the formula (2) becomes 

fretat ie 2B, (e-" — €—”) + 3B; (ue — ve’) (5) 1 
Ver (2B, +3B) Vr ; 

neglecting the terms not previously expressed. 

Tables of the values of 

1 
ql rd or ye fo e*dt, 

aed ie 

were published in the Berlin Astronomisches Jahrbuch for 1834, and are 

reprinted* at the end of my article on the Theory of Probabilities, in 

* The increasing importance of this Table makes it worth while here to state that it 
will shortly appear in a comparatively popular Essay on Probabilities on which I am now 

engaged, and also, as I am informed, in the Article on the subject in the new edition 
of the Encyclopaedia Britannica. 
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the Encyclopaedia Metropolitana. By means of this table, and its dif- 

ferences, and the formule 

aa GY = ay — 3 aty +} dy — vebeae 

2 

(Ax)? as = Ay = A®y +o. 

we can also determine with sufficient accuracy 

ee we 
—= and ——. 
V3 Va 

Thus, uw, Au, &e. being taken positively as in the table (remembering 
that A’w is really negative, and that Aw = 01), we have 

2 BB 2 
~~. | e'dt=u, Jaa 
Qe-K" pate (Au + 4 Au +4 vail 

; nearly. 

4ue"" — 10000 (A‘s ¢A*8) | : 
Va 

In the case before us we have, writing @ for X, 

y=a°(1 — 2)”, w= 
v+w- 

Differentiate log y four times in succession ; 

y' Ss {r - w } 

y av (l1—2)J’ 

xe ye a sitife) w 
y (7) 0 eeeasale 

Magee A Pe aS: 2 {er - » } fall Te aly) Ratna har aon apt 
> > > 

|S 
| > 

S| se |S 
+ 3 2 

P art eS ew se |S, 
os 
—s~ PSS ed 

iL} 

lor} 
ora els, a 

ll l lop) 
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+ 
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From which, making «2 = an BS wr 
vo+w 

3 Facto: peel lO OY 2 n Ee 

VW @w(1— 7g) 

cake 2(v+w)(w—w) _ _ 2(2e—1)n 
ay. vw * w(l—w)’ 

2 _ 6(v+w) (ve — vw +") | 6 (3m° —- 3a +1)n. 
Ee Se vw mie me (ta) : 

re Qvw oe ee), 

(v + wy n 

pot v—w So a eS 

3 (v+wy 3 n 

pattiv-iNew (v+w) 18%@°-137+1 1 i 
; 9(v+w) 2vw 9Va(1—a) Von’ 

120w(v+w)+v+w—llew . /(v+wy 2B,+3B,= FICE) 3 — 

_ 128n7 (1 — 7) +13m° - 1397+1 

3/2nz (1 — aw) ; 

whence the formula (5) becomes 

1 he 
— dt 
Tabet 
4 4 8n (1-200) Vw (1 =) (e-™ — €-) + (182 — 13.0 $1) (ne 

{12ne@ (1 — w) +1380 — 139741} Sr 

—vEe~ 

427 

ay 

The rejected terms are at lowest of, the order x and « and » 

are determined from 

are(] pos ayn (=a) = wo"? (1 —_ a) (la) 6-H, 

b= (1 3 by O-2) — w"a(] EE a)" (1-a@) ¢-"* 

Vou. VI. Parr III. 31 
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or, » = n@ lo Fin Gta lon 
¥ Ba l-a 

¥ =nw log > +n (1 | 

Let a=o —0, b=aw+0, where @ is a small fraction both of w 

and 1— am: then 

ae OP Be oe ed ae 
a aah =a) ae) 

and the presumption that p, the probability of the arrival of A, lies between 

Aiea /2e == w) 

u «5 LL ptt tg? — U8a?= 13m + lu 
tinh fs 5 Gna (1 — a) 

In the formula of Laplace and M. Poisson, the result has 

nearly : 

— pe 

‘i us 
Sy 

: instead of — (13m* — 13m + 1)ne 

> V/ Ine (1 — w) Ora (1 — aw) fa 

The latter is of a lower order than the former, and may safely be 

rejected. By taking successively for the limits 

@a—6@and gw w-—80 andw+9 wo and w+, 

we find that the presumption of p lying between the several pairs of 

limits stated in the first column is expressed by the formule in the second. 

p lies between Probability of the preceding. 

/2@(1 ==) a Oe Cees JS2(1-2e) , 
- ——-__~" and s= |e *dt+ —— fer’ wp - and w al a a eh 1} 

wp a/ sates) and a+u sstes) is [o"e-"at 
Va lu 

2 1- 1 : -t? V2(1— 2a) —pe 
w@ and = ay A/ See) Fade OAT eee part la i 
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the first and third become equal when a =}; that is, when 4 happens 
as often as B in » trials: a result which we might have looked for 
a priori. It also appears that when a is less than 4, it is more likely 
that p should exceed @ than fall short of it; which is in accordance 
with another result of the theory, namely, that the chance of drawing 

o+1 

o+w— 2 
A at the (x +1)" trial is » which is nearer to 4} than 

v 
o+w 

-? ; 1 Let a =1—« where « is small (not being less than )- 

Let the limits be @=1—X« and b=1; where X is greater than 
unity, or « is negative, and »v is positive and infinite. We have also 

1l-« 1 
Tone te log , mK (A — 1 — log d) nearly : mw = n(1—x) log 

so that if A happen x(1 — «) times out of n, the presumption that its 
probability lies between 1 — Ax, and 1 is 

| ayy csc V/2nk — we aS e*de— Mate 7 {u = —/ nx ./X — 1 — log nh. 
& 

Next, let a = 4—x«, where « is small (not being less than *), and 

let a=0, b=4; that is, required the presumption that the less frequent 
(slightly) of two events is the less probable. Then » is infinite and 
negative, and » is positive and derived from 

¥ =n(% —k) log (1 — 2x) + 2(h + «) log (1 + Qx) 

= 2nk* nearly. 

The presumption required is then 

Sip e-"dt or 4 + sales etde 
Wie Gy Pa) 

AUGUSTUS DE MORGAN. 
University CoLuecr, Lonpon, 

December 30, 1837. 
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Addition. 

THE formula (1) at the beginning of this paper is unnecessarily 

complex, seeing that if 7+ 4 were written instead of / in the limits 
of the integral, the increment of the latter would differ from the 

additional term only by a quantity of such an order as was rejected 

in the approximation. 

If then v and w be the components of » (or v +w), which are as 
the probabilities of 4 and B in a single trial, the probability that 

A will happen a number of times between v0 +/ and v —/ in x 

trials is 

Bu fill tal Pads 
a2 ; Quwe? dt; 

which is of the same order of exactness as the formula given by 

Laplace, and is somewhat more symmetrical and less difficult to cal- 
culate. 

Perhaps it may not be here out of place to notice that the usual 

approximation to the product 1.2.3....... a may be made very much 

more exact without being rendered materially more difficult to caleu- 
late. As follows: instead of 

VO cca te NL Dae ee 

substitute 

1.2.3......2 =VSOn attle-*tin 

this follows immediately from 

a 1 1 ’ 1.28 Sh" = V2 atte (1 + - + saat... a= V/ 2m athe Pies ciopae 

since the third term of the series is half the square of the second. 
The approximation is so close that even if we take # = 1, the error is 

very little more than the five hundredth part of the whole. 



XXI. On the Diffraction of an Object-glass with a triangular Aperture. 

By S. Earnsoaw, M.A. Of St John’s College, Cambridge. 

[Read December 12, 1836.] 

Tue general adoption of Fresnel’s theory seems to indicate that the 

scientific world is convinced that the Newtonian theory is inadequate to 

the explanation of the phenomena of Diffraction; and that the theory 

which ascribes them to reflexion at the edges of the obstacle is equally 

unsatisfactory; and hence it is that the phenomena of this class have 

been declared by Sir J. Herschel, to form the strongest points of the 

undulatory theory of light. Professor Airy also at the end of his paper 

on “The Diffraction of an Object-glass with a circular Aperture,” 

(Phil. Trans. Vol. vy.) has thus stated his opinion of the importance of 

these phanomena in the present state of science: “The investigation of 

cases of diffraction similar to that discussed here, appears to me a matter 

of great interest to those who are occupied with the examination of 

theories of light.” This sentiment was expressed in 1834, and since 

that time I am not aware that any thing has been done in the com- 

parison of theory with experiment in this class of phenomena. It is 

true, theory may have been applied to certain cases of diffraction, but 

it does not appear that the persons who have so applied it have ever 

contemplated more than merely to shew that theory gave a result some- 

thing like the observed phenomenon. Such an inference being wholly 

useless in the present state of the theory of light, there is still need 
for the minute discussion of particular cases of diffraction, and for the 

impartial comparison of the results of theory and experiment. I have 
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selected for this purpose, the diffraction of light at the object-glass of 

a telescope with a triangular aperture, for two reasons,—because the 

phenomenon is very singular and very beautiful;—and because Sir 

J. Herschel has declared that “to represent analytically the intensity 

of the light in one of the discontinuous rays, will call for the use of 

functions of a very singular nature and delicate management.” His 

description of the phanomenon is as follows. (EHncyclop. Metrop. 
Light. Art. 772.) 

“When the object-glass of the telescope was limited by a dia- 

phragm so that the aperture was in form of an equilateral triangle, 

the phenomenon seen by viewing a star through the telescope was 

extremely beautiful: it consisted of a perfectly regular, brilliant, six- 

rayed star, surrounding a well-defined circular disc of great brightness. 

The rays do not unite to the disc, but are separated from it by a 

black ring. They are very narrow and perfectly straight; and appear 

particularly distinct in consequence of the TroTaL destruction of all 

the diffused light, which fills the field when no diaphragm is used: 
a remarkable effect, and much more so than the mere proportion of 
the light stopped.” 

Let us suppose the aperture of the telescope an isosceles triangle, one 

of whose equal sides = a; the perpendicular from the vertical angle upon 

the base = 3c, and the inclination of either side to the base = a. 

Let the image of the star be received upon a screen passing through 

the focus of the object-glass; and take the projection of the centre of 

gravity of the triangular aperture upon the screen for the origin of co- 

ordinates; the axes of # and y upon the screen being respectively per- 
pendicular and parallel to the projection of the base of the triangular 
opening, and the axis of x coinciding with the axis of the telescope, and 

passing through the centre of gravity of the aperture. Suppose b = focal 

length of the object-glass, and let «, y, x be co-ordinates of any point P 
in the wave surface, which emerges from the object-glass, and tends to 
the origin of co-ordinates as its focus; 

e’+yt+x2=5, and 8c=asina. 
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Let p,q be co-ordinates of any point M in the screen: then the dis- 
turbance caused at M by the element dx.dy of the wave surface may 
be represented by 

ox. oy 
PM . sin =" (v1 - PM). 

But as 2 refers only to the intensity of the light, which emanates 

from P, when it reaches M, it will not vary sensibly with the variation 
of PM in the problem under consideration, since both the triangle and 
its image are small. No appreciable error, therefore, will be committed if 
for the purpose of simplifying our calculations we suppose PM constant 
in this term, and assume the disturbance at M due to the element 
éx.dy to be 

ou. dy sin =n (vt — PM). 

Now PM* = (a — p) + (y—qy +2 

H= e+ y+ ¥ — ep — 2yq + p+ ¢7 

b+ p? + g — 2pa — 24qy; Il 

. PM = pa ht PX _ gy _ PM=b+ oF o i nearly 

ay 7 a cage ae ean: arene 

Hence the disturbance at M due to the element 3a .dy is represented by 

ont ay sin (wt — B +f + w). 
D 

The whole disturbance at M will be found by integrating this ex- 
pression, first with regard to y, between the limits y = — (2c — 2) cota, 
and y = (2c — x) cot a; and then with regard to 2 between the limits 
2 =—c and «= 2e. 

The integral with regard to y is 

and Bir 8 Qa Pr gy. 
= be. go cos "(ot — B+ F + HY), 
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which taken between the proper limits becomes 

LN 
‘Qqn° 

, a j :0t 2¢ - + P*Geo ae Qa 
Sa s—(vt — B— da feos = (vt 

Qa acqcota p—gqeota |. 
_ cos —— (vé — B+ Page Sp My : 

and the integral of this, taken with regard to x between the limits before 

mentioned, is 

cp + 3cq cot a) 

ah ae 
: ) a 
fel Br 57) sine (vr - B 

rx A 

pt+qcota 

b ry sin == (ve es army — sin sa (vt yppaitiee .2C9. oeq ote) 

p-qcota 

Let us now refer the image on the screen to polar co-ordinates, which 

will be done by writing 7 cos 0, 7 sin @ for p, g respectively. For brevity, 

Bae. Oe or its equal 
bsina’ d”’ 

also, write V’ for = (ve - B+ =), and 2m for 
b 

a ; then the above expression for the disturbance at MZ may be written 

a sina [es {V-2m sin(a+)} _ sinV—sin {¥—2m sin eo} 
4m* sin 0° sin (a + @) sin (a — 0) ; 

By expanding the numerators of these fractions, and arranging the 
result in two terms containing respectively sinV and cos V, this ex- 
pression for the disturbance at M may be written in the following 
form: 

a’ sina fe — cos {2m sin(a + 0)} _ 1 — cos}2m sin (a — =) sin 
4m* sin @° sin (a + 0) sin (a — @) 

@ sina j= {2m sin(a+@)} _ sin{2m sin (a — 0)} 
4m?* sin @ sin (a + 6) sin (a — 6) se is 
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The intensity of the light at the point MZ, as is well known, is 
equal to the sum of the squares of the coefficients of sin V and cos V, 
and therefore calling it Z, we find 

_ @sin’a {1 — cos {2m sin (a + 6)} yp 1 — cos }2m sin (a — @)} 
~ 8m' sin?6° sin? (a + @) sin* (a — @) 

_ 1—cos {2m sin (a+6)} — cos} 2m sin (a—@)} + cos(2m. 2 cosa sin 0) 
sin (a + 0). sin (a — 6) 

_ @sin’a feu {m sin(a+9)} — sin? {m sin (a — 0)! 

~ 4m’ sin?d* sin’ (a + 0) sin* (a + 6) 

sin*}m sin (a + @)} + sin’ }m sin (a — @)} — sin® (2m cosa sin 0) 
inh sin (a + @).sin (a — @) 

a’ sin’ a.cosa ” 

~ 2m*sin@.sin (a + 6).sin(a — @) 

[en (2m cosasin@) _ sin*}msin(a+6)} — sin®’Smsin(a— 0) ih 
2 cosa sin @ sin (a + @) sin (a — 0) 

fj 2 4 O arr 4 
If in this expression we write ian for its equal m, we have the 

brightness at any point of the screen expressed in terms of its polar co- 

ordinates 7 and 80. 

When the triangle is equilateral «a = 60°, and the equation for the 
brightness assumes the very symmetrical form 

ea 3a‘ 

~ 16m* sin 6. sin (60° + @) . sin (60° — 6) 

ja (m sin@) _ sin* {m sin (60° + 6)t ss sin* }m sin (60° — @)t) . 
‘ sind sin (60°+ 6) ~  sin(60°—6) h; 

Z 

or more simply 

wpa 3a’ 

a 4m sin 30 

jae (m sin@) _ sin* {m sin (60° + 0)} zn sin* jm sin (60° — @)t 
sin 6 sin (60° + @) sin (60° — 6) 

Vou. VI. Pasr III. 3K 

bit (B.) 
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The Interpretation of the Formula for the Brightness. 

Ir will be found upon trial that the value of Z is not altered when 

—@ is written for +6; and hence it follows that the light is symmetrically 

arranged with regard to the axis of 2. 

It will likewise be found that the value of Z is not affected when any 

one of these values, 0+ 60°, @ + 120°, 6+180°, 6 + 240°, @ + 300", is 

substituted for @; and hence it follows that if from the origin of co- 

ordinates, or centre of the screen, six lines be drawn upon it making 

respectively the angles 0°, 60°, 120°, 180°, 240°, 300° with the axis of 2. 

or, which is the same, inclined at angles of 60° to each other, the light 

upon the screen is similarly and symmetrically arranged with regard to 

every one of them. 

Wherefore, the light being symmetrically arranged about these six 
lines, it will only be necessary to examine our formula for Z between 

the values 9=0 and 6=30’. 

It will at once be seen from an inspection of the equation preceding 
the one marked (B), that the value of Z depends upon the three terms 

sin?(msin 0) sin’ {msin (60° + 6)} sin’ $m sin (60° — 6)} 

sin?@ sin (60° + 0) d sin’ (60° — 0)” 

each of which is precisely similar to the principal term in the expression 

for the intensity of light in the experiment of Fraunhofer’s gratings ; 

and at first sight it might be deemed sufficient to examine each of these 

terms separately, and thence judge of their united effect: but it will be 

found upon trial that the multipliers by which they are connected toge- 

ther exercise such an important influence upon their values, as to render 

this method utterly inapplicable in the present instance. Thus, if 6 be 

very small, the second and third terms are very nearly equal, and having 

different signs their sum is very small; but being afterwards divided by 

sin@, the quotient is large; and their united effect is as great as that 

of the first term, 
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From the necessity which thus exists of taking in at once the whole 

of the expression for Z at every step of our examination, we shall be 

obliged to feign several cases, and effect corresponding expansions and 

reductions for each: and from these particular results infer, in the best 

manner we are able, the general appearance and brightness of the image 
upon the screen. 

1. Let us suppose 7 and therefore m extremely small. This will be 
true of parts very near the centre of the screen. In this case we must 
expand the expression for Z in a series of terms arranged according to 
the powers of m. This may be effected most readily as follows. 

If f= sind, 2 = sin(60° — 6), and f, = — sin(60° + 0), fi, fi. f; will 

be the roots of the equation 

x — 34+ 1sin 30 = 0. 

And that part of the expression for Z which is enclosed within the 
inz 

brackets is equal to = ez mp, ) é 
Hf 

Ae 
Now 22 mf _1 ae 

a 2 at? 4 tha ‘ m° 

ue tea cee att acre 
2 (ee) nll: We a er era 

By the usual method of finding the sums of the powers of the roots 
of equations, we easily find 

z(f) =9, 

aha la 

ZF.) =— iG . sin 36, 

z=(f’) =- 6h . sin 38, 

ae 12 
SS ah 3 PGT) 256 sin 30 — 256 sin’ 30, 

OCA OCs 

3K2 



438 Mr EARNSHAW, ON THE DIFFRACTION OF AN 

Hence, 

3 (ma) sin3@ ‘i _ sin3@ yee sin 30 ps — 818in 38+ 4 sin’34 ns 

ey ey eee AS RETA ae EC ey An 
Wherefore, by substitution, we finally obtain 

3a m* m: _ (81 + 4sin’ 36) m’ 

eG oie Beem 
Sys an (r\* ain (r\' (814+ 4sin’?30)a'x' 7)" 

Feta {l= Fe ) + etoela) > “sears-o108 a) 73 
A striking feature of this series is, that its leading terms are entirely 

independent of 6, and therefore while 7 is so small as to allow the series 

to be represented by its first three terms, the brightness will be independent 

of @: and therefore consecutive circles of uniform brightness will surround 
the centre. - 

When ry is = 0, the brightness = i ae which is independent of 4, 

and therefore the central point of the image is white. 

When » is so large as to require the fourth term of the series to be 

taken notice of, the circles which correspond to those radii will have 

their brightness diminished by a term of the form sin’3@: they will 

therefore be most bright when sin3@=0, that is, where they are inter- 

sected by the rays drawn upon the screen as before mentioned ; at points 
more remote from those rays the brightness will gradually diminish, and 

be least when sin 30 = 1, that is, at those points which lie exactly between 

them. 

2. Let us now examine the image in the neighbourhood of the six 
rays; for this purpose @ must be supposed small, and Z must be expressed 
in a series ascending by powers of @. Upon this hypothesis we find 

Cie he Se Alig 5/4 4/3 
= roma Si sa (m»/3) + g sin (*¥ 

For any of the six rays we may write 6 = 0, and therefore the bright- 
ness of any one ray is pie. te by 

Z= a {re = an (m/3) +3 = sin’ (7x) 

es sin (m /3) a4 

= {l=- J/3 sme) + )}. 

)| + terms involving 6, 6. 

= sin ( 
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Since this expression for Z is the sum of two squares, Z can never 
= 0, and therefore the six rays cannot be interrupted by a_ perfectly 
black band or ring. Perhaps, however, there may be a ring of light of 
such feeble intensity, interrupting the rays, as to appear like a black 
band cutting off the rays from the central part in the manner described 
by Sir J. Herschel. To ascertain if this be the case, let us find the value 
of m which gives Z a minimum. By differentiation we obtain 

a‘ MrA/3 eee EAL ONG 
dL =~ {mos ( 9 ) -Fesin ( z )}. 

The only factor in this expression which can be equated to zero, 
for the purpose of finding the maximum and minimum values of Z, 
being an exact square, Z admits neither of a maximum nor minimum. 

but decreases perpetually from the centre of the screen, as the fol- 
lowing Table will shew. 

Values of Values of Values of 
Corresponding Corresponding Corresponding 

mv 3 Brightness. mv3 Brightness. mv 3 Brightness. 
2 2 2 

In this Table the central brightness (= a «’) is taken as unity, 
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3. Let us now examine the part of the screen which is inter- 

mediate to two rays. The brightness of this part will be obtained by 

writing 30° for @ in equation (B); which by that means becomes 

sin ~\' 
ie 3a’ 2 

— 16 . m > 

2 

or taking the central brightness as the unit 

sin * 2 
z= ( ) 

m 
2 

When m=0, Z=1; and as m increases Z diminishes; at first 

rather slowly, but afterwards rapidly, so that when 

m m 
—=7, OF 

3 27 
=1r/f/3= 2 nearly, 

there is perfect blackness; some time before this, however, the light 

will be too feeble for vision, and there the light on the screen will 

appear to terminate unless the star or original luminous point of light 
be very bright, for as m goes on increasing, Z never attains a value 

so great as 40° 

From this it follows that if there be a black ring surrounding 

the central dise of light as described by Sir J. Herschel, its radius 

will be such that ~ = = = nearly. By reference to the above 

Table, we perceive that the six rays have, at that distance from the 

centre, a brightness of about : a1? the central brightness being represented 

by unity. 

If this be considered sufficiently feeble to constitute a black ring, we 

are at a loss to account for the prolongation of the six bright rays men- 
tioned by Sir J. Herschel, since their intensity has been shewn to decrease 
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from the centre; and therefore when at any point in them the light is 

too feeble for vision, at every more distant point the light is still more 

feeble. Hence it would appear that, according to theory, the six rays 

are not interrupted by a dark ring, or band, in any part. In this particular. 

therefore, there is a decided disagreement between theory and the experi- 

ment recorded by Sir J. Herschel. 

4. Let us now examine the intensity in that part of the screen which 

is situated between any two of the six rays. As we have already seen 

the results when 6 = 0, and when 0 = 30°, we shall now suppose the values 

of @ to lie between 0° and 30°. 

Since is a factor of equation (B), it follows that the general 
1 

m' sin 30 

brightness of the spectra will decrease very rapidly from the centre; and 

at a given distance from the centre the brightness is less the more @ differs 

from 0°, and is least when 6 = 30°. The places and extent of the spectra 

are pointed out by the other factor of equation (B), viz. 

sin*(m sin @) _ sin’ jm sin (60° + ){ | sin® jm . (60° — 6)} 

sin @ sin (60° + 6) Sins (G0) 10) ml ee 

This expression vanishes entirely whenever m and @ are such that 

{(msin @) and (m,/3cos@) are simulta- 

neously both odd or both even multiples 

of z. If M be such a point, and MG, ” 

MH be drawn parallel to O4, OB, two BN / 

of the six rays, then the distance of HM oe G My 

from OA, and the distance of MG from | : 
" SO H A 

OB are both multiples of (>) . Hence — 

there will be an infinite number of per- 

fectly dark spots situated in the farther 

corner of parallelograms, such as HMGO, 

whose sides are parallel to OA, OB. 

If the line HM be such that its distance from OA is an even multiple 

b ie ; 83 : 
of =, then for every point in that line, the principal factor in the ex- 
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pression (C) is sin® ( 
mV/3 

2 
cos 0), which denotes spectra of the same charac- 

ter as are exhibited in Fraunhofer’s gratings. 

If the distance of HM from OA be an odd multiple of = then 

m 
the principal factor in the expression (C) is cos’ ( 9 g cos é), which 

represents spectra of the same kind as before, but intermediate to them 

in position. 

For a given value of m, 7 is greater for red than for violet 

coloured light, and consequently the spectra will have their red ends 

outwards, that is, farthest from the centre of the screen. 

What is here said of MH referred to OA, is equally true of GM 

referred to OB: and what is said of the portion of the image within 

AOR, is true of the portion within BOR; the line OR bisecting the 

angle AOB. 

In Sir J. Herschel’s experiment no spectra of this nature were seen, 

but with strong sun light they are very distinctly visible, and form to 

the six bright silvery rays a very beautiful appendage. In fact, on ac- 

count of the remarkable symmetry of its parts, and of the great extent 

and extreme narrowness and whiteness of its six principal rays, which 

stretch completely across the field of view; and on account of the 
number and geometrical arrangement of the coloured spectra, this ex- 

periment is inferior in beauty and splendour to very few of all those 

that have been exhibited in illustration of the science of Physical 

Optics. . 

S. EARNSHAW. 



XXII. On the Decrement of Atmospheric Temperature depending on the 
Height above the Earths Surface. By the Rev. J. Cuaruis, 
Plumian Professor of Astronomy and Experimental Philosophy 
in the University of Cambridge. 

[Read February 13, 1837.] 

THE temperature at any height above a given place on the Earth’s 
surface is here considered to be the mean which would be found by 
a great number of thermometrical observations, made at that elevation, 
for a time sufficiently long to eliminate the diurnal and annual va- 
riations and the more irregular changes from winds. This mean tem- 
perature, it is known, varies with the height, and the object of this 
Paper is to enquire respecting the law of the variation. 

The causes which determine the temperature of the atmosphere at 
a given elevation, are probably of a very complicated nature, but among 
the principal may be reckoned the diminution of density in the higher 
regions. In the following reasoning it is assumed, that the tempera- 
ture and density are functions of the height, and the effect of decrease 
of density will be considered apart from every other circumstance. If 
then @ be the temperature and p the density at the height x, we shall 
have 

d0\_d0 dé dp 

(Fa) ge cen' got 0) 
Vor. VI, Parr III. 3L 
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; : : 10 ay g2 
in which equation a expresses the variation of temperature corres- 

ponding to a change of height, so far as it varies independently of 

change of density. If also p be the pressure where the density is 
p, and g be the force of gravity, we have 

d 
e=- ep (2). 

Lastly, we have the known relation between the pressure, density, 
and temperature, given by the equation 

p=dp(l1 + a8), (3). 

in which the temperature @ is supposed to be reckoned in degrees of 

the centigrade thermometer, a’ is the pressure where p=1 and @=0, 

and a is the numerical coefficient 0,00375. With respect to the equa- 

tion (2) we may remark that though it is in strictness applicable 

only to the air at rest, it is very nearly true when the atmosphere 

is in motion; for the direction of winds is necessarily nearly parallel 

to the Earth’s surface, and consequently the effective accelerative force 

in the vertical direction is very small. Hence eH is nearly equal to 
pdx 

the impressed accelerative force, that is, to the force of gravity. 

The equation (3) differentiated gives, 

d d dé 
of = a oe e! + a0) + aap (=) ‘ 

Hence by means of (2) we get, 

‘eo 7) dp _ Cie ART te 

dss aw (1 +a0) 

and by substituting this value of = in (1), it will be found that 

1 IG 7 SI 
(22) _ dx” a@(1 +40)" dp 
dz i ap dO > (4). 

" 1+a0 dp 
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The solution of the problem requires, therefore, the knowledge of 

expressions for the partial differential coefficients ce and 2 . There 
4 

are at present no means of finding these by a method entirely a@ priori; 

and recourse must consequently be had to experiment and observa- 

; 10 : tion. To obtain the value of 7 we shall refer to the experimental 
P 

determination of the velocity of sound, beginning, first, with some 

Propositions for finding the velocity theoretically. 

Prop. I. To find an expression for the velocity with which a given 
state of density is propagated in any medium. 

The motion is supposed to be in parallel lines. Take an axis 
parallel to the direction of motion, and let v, p, be the velocity and 
density of a particle in motion at the distance x from a fixed origin, 

and at the time 4 Then we have the equation, 

dp d.vp 

dt * “de 

(Poisson, Traité de Mecanique, Tom. II. p. 674.) 

= 0. 

The differential coefficients are partial with respect to time and 

space. Let now p’ be the density at the same time at the distance 
a+éa. Then, 

‘ d 
p =pt+at dx + &e. 

After the small time d¢ let the density at the distance 2+da be- 
come p. Consequently, 

p =p -  8t+ he. 

312 
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By equating these two values of pp’ we obtain, 

=— - (taking the limits) 

da 

| 

S| noe i) 
oC ot = oO So ad Oo lo (o] [o) —_e =} lo lo} 

oO 
2 fe} Ea (=] es oy 

dz 

Now “= is the rate at which the density at the distance a is 

transferred to the distance 2 +dx, and is equal to the velocity of 

the particles + the velocity of propagation. 

dv 

Therefore the velocity of propagation = =. 

=e 

If the given state of density be propagated with the uniform 
velocity 6, it follows that : 

do_, dp 
de” pdx’ 

an equation applicable to uniform propagation under whatever circum- 
stances it takes place. By integration, v = 4. Nap. log p, assuming that 
v =0, when p=1. 

Supposing the medium to be such that p = 6’, the propagation is 

known to be uniform and equal to 4. Therefore for this medium 

=H = 0. oF. Hence the relation between the velocity and density is 
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the same in any medium which propagates a given state of density 
with the uniform velocity 4, as in the medium defined by the equa- 
tion p = b*p, provided the motion in both be subject to the condition 
that v= 0 where p= 1. 

By help of what precedes the following Propositions may be solved. 

Prop. II. To find the impressed accelerative force which will alter 
the rate of uniform propagation in a medium whose density varies as 
the pressure. 

Let the medium be such that p = a’p, and let b be the altered rate 
of propagation. It has been shewn that the motion is the same as in 
a medium for which p = b*p, no impressed force acting. Hence the 
effective accelerative force is the same. Hence 

SP ye 
pdx I dt 

"dp _ Bdp 
Hence, aaa ede 

= » ap and X = (a — ec 

Prop. III. To find the relation between the pressure and the density 
im a medium which propagates a given state of density uniformly. 

It is here supposed that there is no impressed force. The two 
equations following are therefore to be applied: 

dp _ dv\ _ dv dv 
de~~ lg) =~ ea gg? 
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Now by supposition a given state of density is propagated with a 

uniform velocity. Hence if 6 equal the velocity of propagation, by 
Proposition I, 

Integrating, 

v=b Nap. logp +9; 

and introducing the condition that v = 0 wherever p = 1, which can be 
satisfied when, as we suppose, the propagation is in a single direction 

only, it follows that #(¢)=0. Hence, differentiating with respect to 
time only, 

Substituting these values of ge and 2 in the equations (a) and (6), 

we obtain, 

dp  vdp_ bdp eae eee ()) 
pdt pda” pdx 

dp ,bdp _, dp _ 
pda dit °° oa =.0. 

Multiplying the first of these by 6 and subtracting, the result is, 

dp — & dp. 

dx ‘da’ 

and. integrating, 

p=lp+ yd. 

We can now find an expression for the velocity of the propagation 
of sound in the atmosphere, assuming the velocity to be uniform. Let 
8, be the temperature of the air when at rest. Experiments shew that 
by sudden compression the temperature is increased, and by sudden 
dilatation diminished. Let 0,+@ be the temperature corresponding to 
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any density p at a distance x from the origin, the air being in vibration. 

Then 

p=a@pi{l+a0+ oy}, 

dp | a 
.. az dx 

saa Laie ice ear 

dx dz 

The same result may be obtained by means of Proposition II. For 

we may consider the effect of the heat developed or absorbed by the 

sudden condensation or rarefaction of the air in vibration to be the 

same as that of an impressed force, which alters the rate of uniform 

propagation. The velocity of propagation, supposing the temperature 

constant and equal to @,, is aV/1+a0, Hence, by what has been 
proved, 

dp 
X = fa’(1+a0,) — 8} oda 

But the effective accelerative force which urges the element pdx 

in the direction of x, is — P, and 
pd. rf 

The first term of the right-hand side of this equation is the accelerative 

force which would act supposing no change of temperature; the other 
is due to variation of temperature. he Swe | 

fa (1 + a6,) — BY} = 

This leads to the value of b* obtained above. 

The vibrations which take place in the propagation of sound are 

so rapid as not to allow sufficient time for any sensible alteration of the 
difference of temperature of two contiguous portions of the air by 

communication of heat from one to the other. This difference may 
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consequently be considered to be entirely owing to difference of den- 

sity. We have therefore ¢ a function of p, and 

d.pp _d.pp de 
da dp ‘dx 

Hence the value of & may be put under the form, 

—. a d.po\t 
aV/1 +ab, {1 Pisee: dp f. 

The known facts of the transmission of articulate and musical 

sounds prove that different parts of the same aerial wave and waves 

of different magnitudes are propagated through air of given tem- 

perature with exactly the same velocity. It follows from this that 

oe ® is constant for a given value of 6, Suppose 
P 

“7% = = (1 + a0), (ec). 

Then, 
b =aV/1+ a0, /1+k; 

the numerical value of 1 + & can therefore be obtained by an experi- 

mental determination of the velocity of sound. The mean value found 

by this method is 1,4152.* 

The equation (c) gives, 

ps De ad. ph 
1+a0, dp © 

‘ 

Hence, 
(1+a0)dp + ad.po 

(1 +a0)d p 

_ d.a’p{1+a(0,+9)} 
Dende Ga @ pli + ab). a. 

The expression under the latter form shews that 1+ is the ratio of 

the increment of pressure due to an increase of density produced sud- 

denly and consequently accompanied by an increase of temperature, to 

l+k= 

* From the experiments of Professor Moll. See Phil. Trans. of the Royal Society, 

1824. p. 424, and 1830. p. 213. 
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the increment of pressure due to an equal increase of density without 

change of temperature. It may be supposed that the temperature is 

in both cases @ before the alteration of density, for @ in the above 

expression may be taken as small as we please. The experiment of 
Clement and Desormes, which is in fact a practical imitation, as. near 

as may be, of what takes place in the sonorous vibrations of the air, 

may consequently be used for determining 1+. In this experiment 
as described by Poisson (7vaité de Mécanique, Tom. II. p. 641. 2d. Edit.) 

p-—p' is the difference of pressure due to a sudden alteration p” — p’ of 

density, accompanied by a change of temperature; and p” — p’ is the 

difference of pressure due to the same difference of density, the tem- 

perature being the same as it was before the sudden alteration in the 

first case. Hence, 
, 

1 ee 
B= jl 

The numerical values of p, p’, and p”, given by the experiment, are 

respectively 0,7665, 0,7527, and 0,7629. The value of 1 +4 derived 

from these is 1,3529. A similar experiment by Gay-Lussac, gives 

1,3795. These values fall short of that derived from the observed 

velocity sound, probably because the experiment cannot be performed 

so exactly as to avoid all variation of temperature by communication 

with surrounding bodies. The above expression for 1 + & is a little dif- 

ferent from that of Poisson, and something larger in numerical value. 

It appears both from experiments of the same kind as that above 
mentioned, and from the observed velocity of sound in different tem- 

peratures and at different heights, that the constant & is independent 

of the temperature and density. 

Recurring now to equation (¢), we may derive from it, 

w@ioig +a) — . 
pap 

This equation gives the variation of temperature from one point to an- 

other at a given time, depending on variation of density only; or it 

gives the difference of temperature of two contiguous elements, which, 

Vou. VI. Parr III. 3M 



452 PROFESSOR CHALLIS, ON ATMOSPHERIC TEMPERATURE 

but for difference of density would have the same temperature. Though 

derived from the consideration of fluid in motion, it may be extended 

to fluid at rest, if we take a case in which the effect of the motion is 

insensible. Thus supposing the velocity at every part of the wave to 

be exceedingly small, and consequently @ very small, and the density p 

to be very little different from p, the density the fluid would have at 

rest, the ratio “e approximates to = (1 + a@) as its limit, which is of 

finite magnitude. This limiting value must therefore express the ratio 
of the difference of temperature of two contiguous elements at rest, to 

their difference of density, supposing the variation of temperature to 

depend on nothing but variation of density. 

Hence, @ being the temperature of the atmosphere at any altitude «x, 

where the density is p, 

Bins Baha diy 3 (ey 
ap 

We are thus conducted by reasoning, which, though indirect, appears 

to be exact, to an expression for Fa proper for substitution in equation 

(4), and containing constants of known numerical value. By making 

the substitution, 

dé 1 dé gk 
geht ae ie Mahesh Pore 

Neglecting for the present the first term on the right-hand side of 

the equation, and taking g = 32} feet, av/1+k = 1090 feet, k = ,4152, 

and a = ,00375, it will be found that 

(=) wie Es 
ds} ~~ 334 

Hence x = — 3340, 

supposing @=0 where s=0. Hence if 6=—1', the height = 334 feet: 

that is, the centigrade thermometer falls 1° for an elevation of 334 feet 
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above the Earth’s surface. The fall is, consequently, 1° of Fahrenheit 
for an elevation of 186 feet. This, according to the theory, would be 

the case if the temperature were a function of the density only; and 
for every additional height of 186 feet there would be an equal fall 
of temperature. It appears, however, from the discussion of a large 
number of thermometrical observations at different elevations, contained 

in a Memoir by Mr Atkinson, in Vol. II. of the Memoirs of the Royal 

Astronomical Society, that the decrement of temperature is 1° of Fah- 
renheit at an elevation of 250 feet. Also, that the decrements are not 

exactly equal for equal increments of height, but rather for increments 

of height which increase in a slow arithmetical progression. The ex- 

planation of the difference in these two respects between the facts of 

experience and the above results of the theory, is to be sought for in 

the term involving a By neglecting this term we, in fact, supposed 

the temperature to be given when the density is given, and consequently 

neglected the tendency which contiguous portions of air of different 

densities have to assume the same temperature. When a limited por- 
tion of air is suddenly rarefied, its temperature falls, in the first instance, 
but in a short time it assumes the temperature of the surrounding 
bodies, its density remaining the same, and the time required to pro- 
duce this effect is greater as the portion of rarefied air is larger. 
A similar cause must be in operation in the atmosphere, tending to 
produce a nearer approximation to equality of temperature in the upper 

and lower regions, than would exist if the temperature were a function 
of the density merely: although the temperature of the different parts 
can never be entirely equalized, on account of the radiation from the 

cold parts above into the still colder spaces beyond the limits of the 

atmosphere. As the effect of the above-mentioned cause is to increase 

the temperature of the colder and diminish that of the warmer portions 

‘ me hn 0m. ee 
of the atmosphere, so far as this action is concerned, a will be a positive 

quantity. 

Again, in consequence of the unequal distribution of the Sun’s 
heat, different columns of the air are differently heated. Motion con- 

3M2 
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sequently ensues, the warmer parts ascend and are continually being 

replaced by the descent of colder. The effect of this circulation is to 

make the gradation of mean temperature from the lower to the upper 

strata less rapid than it would otherwise be, and so far as this cause 

do... a: dé 
also operates, Ba will be positive. Hence we may assume 7 to be 

some positive function of x, and as we have no means of determining 

@ priori the form of this function, we will assume that 

OS init awe Od erie: 
dz 

Then substituting in equation (5), we have 

aQ\) A gk B Ore 
(&) ~1+k~ @al(l+h) olka Lakos eu 

and integrating, 

7) + &e., ere ee 
lth aa 2(1+hk)  3(1 +4) 

supposing @ = 0 when x = 0. 

The empirical formula which Atkinson gives in his Memoir, for 

expressing the relation between the altitude () in English feet above 

any place on the Earth’s surface, and the depression of temperature (7) in 

degrees of Fahrenheit at that elevation, is the following: 

= nm §251,5 + 3(m — 1). 

This in our notation is, 

% = — 4500 + 4,86 0°, 

from which it will be found, that 

x? # zg 

450 * 18750000 ~ 390625000000 * @=— 

The third term amounts to about 1° for an elevation of three miles, 

and may, within the heights to which observations can extend, be neg- 
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lected in comparison of the others. Then finding the numerical values 

of A and B by comparing the two expressions for 6, we shall obtain, 

ae ngs ed gina a ] 
dz — 964° 6624505 9°": 

This result accords with the preceding theoretical considerations in 

nde one (7) - 
giving a positive value to =f It also enables us to estimate to what 

amount the variation of the atmospheric temperature with the height 

above the Earth’s surface is affected by causes distinct from that of 

variation of density. It appears, that for small altitudes the term in 

equation (5) involving S is about one-fourth the other term. The 

formula of Atkinson from which these inferences are made, is strictly 

applicable only to the lower parts of the atmosphere where the grand 

aerial currents prevail, beyond which the law of the decrement of 

temperature probably undergoes some variation. 

I have thus endeavoured to advance in the theoretical part of this 

problem, as far as the present state of our knowledge appears to admit, 

and to give as much exactness as possible to the mathematical reasoning. 
With respect to the latter, the course pursued in this paper may lay 

some claims to originality, but the fundamental principles regarding the 

atmosphere are not essentially different from those advanced by Dalton 

and Ivory in their writings on this subject. 
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XXIII. On the Motion of Waves in a variable Canal of small Depth 
and Width. BY GrorcE GREEN, Esa. B.A. of Caius College. 

[Read May 15, 1837.] 

THE equations and conditions necessary for determining the motions 
of fluids in every case in which it is possible to subject them to Analysis, 

have been long known, and will be found in the First Edition of the 
Mec. Anal. of Lagrange. Yet the difficulty of integrating them is such, 

that many of the most important questions relative to this subject seem 

quite beyond the present powers of Analysis. There is, however, one 
particular case which admits of a very simple solution. The case in 

question is that of an indefinitely extended canal of small breadth 
and depth, both of which may vary very slowly, but in other respects 

quite arbitrarily. This has been treated of in the following paper, and 

as the results obtained possess considerable simplicity, perhaps they may 
not be altogether unworthy the Society’s notice. 

The general equations of motion of a non-elastic fluid acted on by 
gravity (g’) in the direction of the axis x, are, 

Pp _dp (1). ee ai fe 

@. one ees St 
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supposing the disturbance so small that the squares and higher 

powers of the velocities &c. may be neglected. In the above formule 

p=pressure, p=density, and @ is such a function of x, y, x and ¢, that 

the velocities of the fluid particles parallel to the three axes are 

+= (8) o= GB) «= da” 

To the equations (1) and (2) it is requisite to add the conditions 

relative to the exterior surfaces of the fluid, and if 4 =0 be the equa- 

tion of one of these surfaces, the corresponding condition is [ Lagrange, 

Mec. Anal. Tom. II, p. 303. (I.)], 

ds” 

Hence 
_@4 dA dp ddA dp dA = 

(A) 0 ar tag ae © ay dy nO ge (when 4 =0). 

The equations (1) and (2) with the condition (A) applied to each 

of the exterior surfaces of the fluid will suffice to determine in every 

case the small oscillations of a non-elastic fluid, or at least in those where 

udx+vdy + wdz 

is an exact differential. 

In what follows however, we shall confine ourselves to the consider- 

ation of the motion of a non-elastic fluid, when two of the dimensions, 

viz. those parallel to y and x, are so small that @ may be expanded in a 

rapidly convergent series in powers of y and x, so that 

Y mt pee. 

g= Pot PF + 9,5 +h Lath ye + b.q5 + + &e. 

Then if we take the surface of the fluid in equilibrium as the plane 

of (a, y,) and suppose the sides of the rectangular canal symmetrical with 

respect to the plane (a, x,) @ will evidently contain none but even powers 

of y, and we shall have 
™ 2 Pag 

(8). P= Got get GPa dizg t he 
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Now if y= i+ B, 

represent the equation of the two sides of the canal, we need only 

satisfy one of them as 
y aa? Be = 0, 

since the other will then be satisfied by the exclusion of the odd 

powers of y from @. 

The equation (A) gives, since here 4 = y — 8 

1 
(a). 0 = = ae ms oe (when y = £). 

Similarly, ifs — y, = 0 is the equation of the bottom of the canal, 

U ly d 
(d). o= Ff - qe a Fora ght (when z = ). 

If moreover, = — ¢,, = 0 be the equation of the upper surface, 

( _dp _ addp 
co ~ de de de “ai 

DOE (when s = ). 

But herep = 0; .-. also by (2) g¢ = ag| 

Substituting from (3) in (b) we get 

s _ ay {doo _ dp, y iG , 0=¢,4+ 9,7 + &e. ede ~ att ke. pe 

or neglecting quantities of the order +’, 
; dy dd, 

(0’). 0= 6,4 by - Ft 

Similarly (a) becomes 

@). o=gp-2 : dz dz’ 

and (c) becomes, since ¢ is of the order of the disturbance, 

3 a 0O=¢%,- i 
(). when s = % A 

tpn! or neglecting (disturbance)* x = 

provided as above we neglect (disturbance)’. 

VornVie,  Lann TIT, 3N 
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Again, the condition (2) gives by equating separately the coefficients 

of powers and products of y and x, 

Fh. ” 

0 = &e. 

(2’). 

If now by means of (a), (6'), (ce) we eliminate 9”, from (2’), there 

results 
do, 2 { dp “eI dg, 1 (52) 

(4) Oras tiigae gdal de ey CaP) 

It now only remains to integrate this equation. 

For this we shall suppose 6 and y functions of x which vary very 

slowly, so that if written in their proper form we should have 

p= W(o2), 

where w is a very small quantity. Then, 

2 

= = wf (wt), = = wl" (wa), &e. 

Hence if we allow ourselves to omit quantities of the order w*, and 

assume, to satisfy (4), 

o = Aft+ X), 

where A is a function of 2 of the same kind as 6 and y, we have, 

omitting (54) ’ 

dh, =. v7 

| ln i 
dp, _ ,4X ,, ,dA 
da 4 da! * de? 

dA dX ,, dp, aX)? oy aX ,, == Ge = 4 (ge) Gandia ft Bae ass 
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Substituting these in (4), and still neglecting quantities of the order w", 
we get 

_ dX a A WW 

0={4(F) - Ae 
cx ~ dA dX dp dy AX) py. 

+ {405 +254 dx (east sash 4 Ge 

equating now separately the coefficients off’ and vie ", we get 

lea ines dx gy’ 
aX 
da dA dB 
dX + 2 dx * Bde * a 
dx 

0 = 

The first, integrated, gives 

dx m+ fH 

dX 2 By _ A*By} eee teh is Fe aa ag nyse 

Hence if we neglect the superfluous constant #\/g, the general inte- 
gral of (4) is, (.. 4 = B-}y-), 

d nnperils (te [$5 om ( f-$5)} 
therefore, by (c’), 

dp, By dx i 
OS eis ese oe (—fFe)}. 

and the actual velocity of the fluid particles in the direction of the axis 
of x, is 

_ dp = “he _ Body? ( dx 
oa URE (7 (1+ [Fe la mele fet, 

neglecting quantities which are of the order (w) compared with those 
retained. 

and the second 

3N 2 
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If the initial values of ¢ and w are given, we may then determine 

jf and F", and we thus see that a single wave, like a pulse of sound, 

divides into two, propagated in opposite directions. Considering, there- 

fore, only that which proceeds in the direction of x positive, we have 

(aie f eee. anaes af 
Ja): 

a ol («- fZ2). 

Suppose now the value of F’(x)=0, except from «=a to x=a+a, 

and $a to be the corresponding length of the wave, we have 

(6). ripe - 

t- if ae =a+a, 
ver 

and ¢— if GE. = —= = a very nearly. 
VE Ja 

Hence the variable. length of the wave is 

(7). 8@ =a. V2. 

Lastly, for any particular phase of the wave, we have 

oe = const. ; 
VEY 

therefore 
dx 

(8). dt ov &y 

is the velocity with which the wave, or more strictly speaking the particular 
phase in question progresses. 

From (5), (6), (7), and (8) we see that if 6 represent the variable breadth 

of the canal and + its depth, 

¢ = height of the wave o B-+y-4, 

actual velocity of the fluid particles x B-}y-4 & ll 

re 8 | = length of the wave ox +}, 

and 7, = velocity of the wave’s motion = V oy: 



XXIV. On the Theory of the Equilibrium of Bodies in Contact. By the 

Rev. H. Mosetry, M.A., of St. John’s College, Professor of 

Natural Philosophy and Astronomy in King’s College, London. 

[Read May 15, 1837.] 

In a paper on the Theory of the Arch, read before the Cambridge 
Philosophical Society in October 1833, and published in the fifth Volume 

of their Transactions, I have discussed the conditions of the equilibrium 

of a system of bodies in contact, on a principle referring it to the direction 

in respect to the surfaces of contact of a certain line, given in terms of 

the magnitudes and directions of the forces which compose the equilibrium. 

The condition that no one portion of the system shall twrn on the edge 

of its surface of contact with another, being determined by the condition 

that the point at which the line leaves the surface of any one of the con- 

tiguous bodies, to enter the adjacent body, shall be within the boundary 

of the common surface of contact of the two; and the condition that 

no two contiguous bodies shall s/ijp upon one another, by the condition 

that the direction in which this line intersects their common surface shall 
lie within a certain angle, which I have called the “limiting angle of 

resistance,” and which is dependent for its magnitude on the circumstances 

of the friction of the two surfaces upon one another. 

If a surface be imagined to intersect the system, and continually to 

change its position, and, if necessary, its form so as to coincide, in order, 

with all the surfaces of contact, and if, in each position, the resultant be 

taken, in respect to those forces which are impressed upon one of the 
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two parts into which this surface divides the system; then the locus of the 

consecutive intersections of these resultants is that curved line to which I 

have assigned the properties of equilibrium described in the preceding page. 

I wish now to correct this definition. 

To the properties assigned to this line it is necessary that at each of 

the points where it intersects contiguous surfaces of the component masses, 

the whole pressure upon those surfaces should be supposed to be applied. 

Now, according to the definition given of it, this supposition is not, except 

under certain circumstances, admissible. 

The resultant of the pressures upon each surface of contact is necessarily 

at some point or other a tangent to the locus of the zztersections of the 

resultants, but it may be, and except in particular cases, will be, a tangent 

to it at a point other than that in which this line intersects the surface 

of contact itself. 

The point where the resultant intersects the dividing surface to which 

it corresponds, is that element in the theory on which the condition, “ that 
one portion of the system shall not urn over upon the boundary of its 
surface of contact with the adjacent portion,” depends. I propose, there- 
fore, in the following paper, to determine the line which is the locus of 
intersections of the consecutive resultants, with the corresponding imaginary 

surfaces of division, these surfaces being, here, supposed to be planes. 

This line I shall call the Line oF Resistance, including as it does 

the points of application of the resultants of all the resistances of the 
surfaces of contact. 

The direction in which the resultant intersects two common surfaces 

of contact, is that on which the condition, “that these surfaces shall not 

slip upon one another,” depends; moreover this direction is a tangent to 

the line which is the locus of the intersections of the consecutive resultants, 

drawn from the point where the dine of resistance cuts the surface of 

contact. The determination of ¢his line is therefore also an important 

feature in the theory. I propose that it should retain the name before 

given to it of the Linz or Pressure. 
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One of these lines—the line of resistance—determining the point of 
application of the resultant of the pressures upon each of the surfaces of 
contact of the system, and the other—the line of pressure—the direction 
of that resultant, the determination of the two includes the whole theory 

of the equilibrium of the system. 

In its application to the theory of the arch there belong to the line 
of resistance all those properties treated of in my former paper which 
have reference to the condition “that the voussoirs shall not turn upon 
the angles of one another.” 

It follows, therefore, on the principles established in that paper that 
this line éowches the intrados of the arch at certain points equidistant from 
the crown, called points of rupture, and that the position of these points, 

and, consequently, that of the point of application of the resultant of 

the pressures upon the key-stone, are subject to the condition that this 

resultant is a minimum; and this condition being supposed, all the cir- 

cumstances which connect themselves with the equilibrium of the circular 

arch, as a complete segment, and a broken or gothic arch, subjected to 

any variety of loading, are discussed and determined in the eleventh 

section of the following paper. 

The condition, however, that the resultant pressure upon the key-stone 
is subjected in respect to the position of its point of application to the 

condition of a minimum, is dependant upon hypothetical qualities of the 

masonry. It supposes an unyielding material for the arch-stones, and 

a mathematical adjustment of their surfaces. These have no existence 

in practice. On the striking of the centers the arch invariably sinks at 

the crown, its voussoirs slightly opening there upon their lower edges, 

and thus pressing upon one another exclusively by their upper edges. 

Practically, the line of resistance then touches the extrados at the crown; 

whilst the condition of the minimum is satisfied by its contact with 

the intrados at the points of rupture in the haunches. This condition 
being assumed, all consideration of the yielding quality of the material 

of the arch or of its abutments is eliminated. It is thus discussed as a 

practical question in the twelfth section of this paper. 
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1. Let a continuous mass to which are applied certain forces of 

pressure, be supposed to be intersected by a plane whose equation is 

s= Ax+ By + C...... (1.) 

Let the sums of the forces impressed upon one of the parts and 

resolved in directions parallel to three rectangular axes, be respectively 

M,, M., M,, and the sums of their moments M, N.2, Ns. 

Let, moreover, the position of the plane be such that these forces 

are reducible to a single resultant, a condition determined by the equa- 

* tion 
MN, + MN, + MN, = 0......(IL) 

The equation to this single resultant will then be 

DE its 

oT Bh m| (III M, n(n “) 

ee arent We 

If between the four preceding equations in which M,, MZ, M,, 

N,, N., N, are functions of 4, B, C, these three quantities 4, B, C 

be eliminated, there will be obtained an equation in a, y, x, which is 

that to a surface of which this is the characteristic property; that it 

includes all the points of intersection of the resultant force with its 

corresponding intersecting plane in every position, which, according to 

the assumed conditions, this last may be made to take up. 

This surface is the SurracE oF RESISTANCE. 

If to the preceding conditions there be added this, that in each 

two consecutive positions of the intersecting plane the corresponding 

resultants shall intersect, the surface of resistance will resolve itself into 

a line, which is the LINE orf RESISTANCE. 

Differentiating on this hypothesis the equation III. in respect to 

A, B, C, we have 
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(Ms +(e (a N, N, N, 

[ae AB a Ae ache (a a Lt aL acho 
a(t ap (BE ag (N Pa 
Pan ne a |OAD ae  ay “H)ac|-o 

Eliminating x 

(Mey (Ms (My af % 
I 7) ide ni dB+ Ls a 10) ac (else) wae at) oe) 

Fs | Pe . By 
-{4l3e) ak = ‘(an) act Lae (az Ae ast) prs daz “t50) | 

From the elimination of 4, B, and C, between the five equations 

I, I, III, V, will result the two equations to the Line or Restst- 

ANCE; and from the elimination of the same three quantities between 
the five equations II, III, IV,* the two equations to the LINE or 

PRESSURE. 

The inclination « of the resultant pressure to a perpendicular to the 

intersecting plane, in any of its positions, may be determined (see paper 

on Equation of Arch), independently of the line of pressure, from the 

equation 
AM, + BM, + M, ' 

{(4° + B+ 1)(Mi + MZ + Mi) 
cos. =-— 

2. Let the mass be a Prism whose axis is horizontal, and the forces 

applied to which are, its weight and certain pressures, P, whose direc- 

tions are in planes perpendicular to its axis and inclined at angles @ to 
axis of x, and whose points of application are uniformly distributed along 

lines on the surface of the prism parallel to its axis; all those pressures 

which are applied in each line being equal to one another. 

* Tt will be observed that the condition V. is included in these. 

Vou. VI. Parr III. 30 

= ULV.) 
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The relation of the forces which compose the equilibrium of the 

whole Prism, will then be the same with that of the forces impressed 

on any one of its sections perpendicular to the axis. 

Let CBD, (Fig. 1,) represent any one of these sections. Suppose 

the mass to be intersected in any direction parallel to its axis by a plane, 

and let N, N. be the intersection of this plane with the section CB 

of the mass. 

And first, let this intersecting plane in altering its position be sup- 

posed to remain always parallel to itself. 

Take Ax, the axis of x, perpendicular to NM, N., and let it make 

an angle 9 with the vertical. 

Let MN, =, MN. = y» AM=c, AK = k. 

M,=0, 

M,==P sin v’—sin 9 f{(y.-—y) dC, 

M,=>P cos ®+cos 9 [(y,—y) dC, 

N,=4 cos 0 f(y?—y#) dC + sin@ fC (y.—y.)dC + 2+ Pk cos o, 

N,=0, 

N,=0 

This hypothesis with regard to the position of the axis of x, and these 

substitutions being made, all the equations of condition vanish except 

equation I, the second of equations III, and the second of equations IY. 

These resolve themselves into the following :— 

_ {2 P sin ®sin © f(yi—y») dC} z+ 3 cosO Sy? ee eS dC+=+Pk cos 

=P cos ®+ cos 9 [(yi-—y2) dC 

,jzBsn® (cpeeee eae dC—(y— 42) (e— ©) sin © — 3 (y, +92) c08 } 
ee ee Se eee 

y= ADS Ee LL | ee (3). 

sor dO + (y~ ys) £089 
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The equation to the line of resistance is determined by eliminating 

C between the equations (1) and (2), and that to the line of pressure 

by eliminating it between (2) and (3). 

If the first elimination be made, and it be observed, that 

— J -y) dst jz(—i—y.) dz = — [i(y—y) de’, 

there will be obtained the following general equation to the line of 
resistance, 

_ 22 Psin 0+} cos 0 /(y? — y.*) dz — sin 0 {/(y, — y.) dx? + 2+ Pk cos ® 

Aer =P cos 6+ cos 6 | (y, —y.) dz a 

The second elimination is greatly simplified in the case in which 

P, ®, k are independent of C. Since in this case, equation (3) gives 

y —3(m + ys) + (2 — C)tanO = 0............ (5). 

If the intersections be supposed to be made horizontally, (Fig. 2.) 

G6 must be assumed = 0. If they be made vertically, (Fig. 3) 6 = a 

In the latter case, equation (5) gives C = z. 

The elimination of C between (3) and (2) is therefore the same as 
that between (1) and (2), and the line of pressure in this case, coin- 

cides with the line of resistance. 

3. Let the mass be a trapezoidal form. (Fig. 4.) 

Let AB and CD be inclined to the axis of x at angles a,, a, and 

assume C4 =a; .. Yi=at+sztana, Y =z tan a. 

Hence (yi — y:) dx = ax(a + tana) + 42° (tan® a, — tan? “)] 

Mn -— y) dz = ax + 4x (tan a, — tan a)er-+s (6) 

Ny — y) d? = Lax + + s(tan a, — tan at 

Therefore by substitution in equation (4) we have for the equation 

to the line of resistance 

52*{tana,—tana,}{tana,+tana,—tanO} +4a2*|tana,—tanO}+z{secO = Psin D+ 3a*}+sec 02+ Pkcos® 

3 {tan a,—tan a,} +az+secO=P cos 

802 

.. (4). 
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This equation being of three dimensions in , it follows that for certain 

values of y there are three possible values of x. The curve has therefore 
a point of contrary flexure, and is somewhat of the form shewn in the 
figure. 

The Line or Pressure in a trapezoidal mass has been determined 

in my former paper. It is there shewn to be of three dimensions in x, 

and to have, like the line of resistance, a point of contrary flexure. 

The Points or Rupture being those where the line of resistance 

meets the Intrados or the Eatrados of the mass may be determined by 

assuming in equation (7), y= a+ 3%, tana, and y=. tana; whence 

there is obtained 

: 3a 2 4 688 O=P sin ® — secO tana, >P cos’ - $a | 
$ Stanu, — tana} {tana, — 2 tana, — tanO} “' 

Do & 

i + ton a, — tana,” 

see 9 {3 + Pkecos® — a= P cos 0} 
haem 8), 

+6 {tan a, — tana,}{tan a, — 2 tana, — tan e} (8) 

3a _ sec 92 P sin & — sec Otan a, =P cosd’ + 3a’ 
ef + —————_ .3 + 6 

* "tana, — tan a,” {tana, — tana:}}tana, - 2 tana, — tan oe} 

sec OS + Pk cos ® +6 {fan a, — tana,} {tana — 2tana,— tano} (9). 

If tan a, — 2tana, = tanO there is but one point of rupture in the 

Extrados. 

If tana, — 2tana, = tan® there is but one point of rupture in the 

Intrados. 

These single points of rupture are determined in the two cases by the 

equations 

¥ = + Pk cos’ — a>P cos (10) 

~ tana =P cos — =Psin& + 4a’coso"*" ; ST 

re = + Pkcos ® (a1) 

~ tana,=P cos@ — =P sind — 4a’ cose" : Re 
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4. Tuer BuTrTress. 

If © be taken = 0 the trapezoidal mass will assume the position of 
the ordinary buttress, (Fig. 5), whose line of resistance is determined by the 
equation 

_ 4%*{tan* diac tam at +4a#tana,+2{/=Psino +2 Z@4+2+ Pkeosd 

AER eae — tan ast + az + SP cos o weegliQiys 

And its greatest possible height by the least root of the equation 

3a i =P sin? — tana, =P cosh — a 
tana, — tana," ”' }tan a, — tan a,} Stan a, — 2 tana} 

6 j= + Pkcos® — a> Pecos} 
}tan a, — tana,}}tana, — 2tana,t — 

a3 
Gnd | 

The best dimensions of the buttress would seem to be those which 

bring the line of pressure to the center of the base. These may be de- 

termined by assuming in equation 12, y = 4 ja + %,(tan a + tana,)}, 

whence, 

23 }tan’a,—tan’a,} + 3ax3} tana, + tanazt — 6%; {22 P sin ®-(tan,+tana,)=Pcoso} 

— 6 {224 Pkcos® — azPcos?} =0...... (14). 

To determine the line of pressure in the buttress, assuming © = 0 

in equation (2), we have 

=Psind +4 f(y—y)dC + 2+ Pkeos 
ing >Peos@d + In - 7 | (RE 

Also assuming P, #, & not to be functions of C, and taking © = 0, 

y, =a+ Ctana, y, = Ctana,, we have, by equation (5), 

Fai ee aR a ead (16). 
tan a, + tan a, 

Performing the integrations indicated in equation (15), substituting 

this last value of C, and reducing, 
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: : tan a, — tan as F tan a, 
2D in@® = 2———______, # +. 2q@ —____—____ 

ne 3 (tan a, + tan a)? y (tan a, + tan a.) y 

en a,+2 tan ay fla? " ,tan a,+3tan a, 

12° (tan a,+tan a.)* +” (tan a,+ tan a,)? 
-=P cos« bt y+ =+ Ph cos ®...(17). 

§ eo Prer. 

If a, = a, (see Fig. 6), the mass may. be taken to represent a pier or 

a wall of uniform thickness, and the equation (7) to its line of resistance 

will become 

4 ax’ {tan a,— tan 0} +x}sec O2Psin b+3a*} +secOD+ Pk cos 
ax +-sec 0= P cos & . 

y= ..(18). 

Which is the equation to an hyperbola whose axis is inclined to the 

axis of x at an angle represented by the formula 

2 1 tan-? ieee il ss } tan {eas : ei ee a 

and the co-ordinates of whose center are 

=P sin ® — (tan a, — tan 6) > Pecos ® + 4a’ =P cos & 
ae = ee (20) 

a cos 8 acos 8 

In the case in which 9 = 0, or the intersections are horizontal, 

(Fig. 7), equation (17) gives for the equation to the line of pressure, 

1 
74 cota—=+ Ph cos ®...(21), 

1 
sz P sin & =5wcota.y'— [icot _- 2Peosihy + 

which is the equation to a parabola whose axis is vertical, whose para- 

1 acota 2 
meter is 3=Pane’ and the co-ordinates of whose vertex are 

1 acota 1 
asPange —* tan a Peos®)*— hat ++ tana=+ Pk cos}, 

1 
and ta— q tan a=P cos ®. 
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The supposition a,= 6 =0 gives the case of an upright Pier with 

horizontal intersections (Fig. 8), and the equation (18) to the line of 

resistance becomes 

inv s}2Psin © + $a°} += + Ph cos o* 
y= mesPtsh ( 

the equation to a rectangular hyperbola, whose axis is by formula (19 

inclined at an angle of 45° to the axis of , whose asymptotes are 

therefore vertical, and the co-ordinates of whose center C are by for- 

mule (20), 

=P sin & > ‘ 
hee +4a, and KC= —- ares 3 

a a 
AK 

CE being an asymptote to the hyperbola, it is clear that if 4K be less 

than 4D, that is, if 
be aa 
— be less than 4a, 

or 2>Psin® be less than a’, 

the line of resistance will not meet the extrados of the pier however 

great may be its height. But that if 

2=Psin® be greater than a’, 

it will somewhere cut the extrados; there is, therefore, in this case, a 

certain height of the pier beyond which, if it be continued, it will be 

overthrown. 

This maximum height of the pier is determined by the equation 

Bee =+ Pkeos’-—a>P cos’ (23) 
_ la—SP sno eeuvaedes ye 

* This equation may be put under the following form, whence all the circumstances 

mentioned in the text are apparent, 

a 
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6. Tue SrraicuHt ArcH, or PLatTeE BANDE. 

Let © be now assumed = 3 , the sections will then be vertical (Fig. 3), 

the line of resistance will coincide with the line of pressure (Art. 2), and 

the equation common to both will be 

_ s2P sin o— f/(y—y.) dx’ ++ Pk cos 
5 Hite ale SpE ae wR are laste 

In the case of a trapezoidal mass (Fig. 9), this formula gives by 

equation (7) 

—+2°{tan a, — tan a} —4as*+s>Psin®+2+ Pk cos? 
=P cos & y = (25), 

and the points of rupture are determined by the equation 

x! Stan a,—tan a} +3ax;+6}tan a =P cos ’—=P cin d!x 

+ {azPcos @- 3+ Pk cosb} = 0....(26). 

If a, =a, (Fig. 10), the equation to the line of resistance and to 
the line of pressure becomes 

_ —dax+x>Psind + 2+ Pk cos® ) =e ee Ca ee a 

The equation to a parabola whose axis is vertical, whose parameter 

s greek SES and the co-ordinates of whose vertex are 

=P sin ® a>+Pkcos®+14(=P sin 0) 
——— and —=————___,_2 

a azP cos ® 

The elements of this parabola are thus independent of the position 
of the mass. 

Let us suppose the impressed forces P to be placed symmetrically 

(Fig. 11), then will the vertex of the parabola manifestly be situated 

midway between the extremities of the mass. Let the length of it 
be 2b; 

_ =P sin & 
Oe u Mak we = 
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If, moreover, the forces P be supposed to be resistances, the line of 
resistance will fowch the extrados (Fig. 12); 

ane aX+ Pkcos® + 43(2P sin o)’ = BP aad ae he 

Suppose that there is only one force P applied at each extremity ; 
therefore by equations (28) and (29), 

Psnd=ab, &@ =+ak+3Psino& tano; 

tan > = aee Lr ae (30) 

b P =ab J1+4(4) ma de, 5 (31) 

Ny 
Pcos® = 4 Ge ee ae (32) 

This last equation gives that portion of the force P which is resolved 
in the direction of a horizontal line. If 4=0 or the force P be applied. 
at the angle A of the mass, 

2g Peat seLins 
tand=, P=bV/@+T6, Pecos = hb......(33). 

It is worthy of remark, that the last of these expressions is inde- 
pendent of a, the depth of the voussoirs. 

Let a straight arch be supposed to be supported upon the edges 
of two vertical piers, (Fig. 12). 

. 

The point of rupture in the extrados of the pier, or its greatest 

height, so as to stand unsupported, will then be determined by the 

following equation derived from equation (23), by taking * = 0 and 

writing for ® its complement, since in the straight arch ® is measured 

‘from the horizontal axis of x, in the pier from the same axis in a 

vertical position, so that ® in the one case is the complement of & 
in the other: 

Vou. VI. Parr III. Sue 
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D —- Pa sin® 

“~~ ta — Peosd’ 

Eliminating therefore P sin 6, and P cos ®, between this equation 

and equations (33), and calling a, the width of the pier to distinguish 

it from the depth of the arch, we have 

2aa,b 
= 73 

B—a; 

7. Let it now be supposed that the forces P are impressed upon 

all the points of the face BC (Fig. 2) of a mass, and that the plane 

of intersection is horizontal. Let moreover all these forces P be parallel 

to one another, and let them be represented respectively in magnitude by 

the values of a function P of x, continuously from Z to x; 

“. =P cos ® = cos ® [ Pdx, >Psin © =sin ® [ Pdz, 

2+ Pkcos® = [PY cos @— x sin &) dz. 

These substitutions being made, the equation (4) to the line of re- 

sistance gives the following: 

3 Gyi-yi) de + zsin ® [ Pdx + [ P(y.cos d—=sin ®) dz 

cos ® [Pads + iC — yp) dx 

3 {(yi-y.)ds + sin o [ [ Pdv + COs ® f° Py.dz ae) 

or y = — ei 2 ss Bake ake 36). 
cos ® [ Pdz + fy-yds 

8. DyKEs AND EMBANKMENTS. 

Let the forees P be the pressures of a fluid mass upon the face of 

an embankment, supposed a plane, inclined to the vertical at the angle a, 
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see Fig. 13); ® will then become = 4+ a,, and P will vary as x; let it § 3 9 MW 
equal 4x. Substituting in equation (35), and integrating, 

LY — ¥:)—$a(®— Z) sec a: + ux (x? Z?) cos a, 
/) = == 

2 fy — Yo) d3 - p(x? — Z’) sina, 

From this equation the line of resistance may be determined for any 
given inclination of the internal face or form of the external face of the 
embankment; or conversely, these circumstances may themselves be de- 
termined according to a given equation to the line of resistance. 

If the section of the embankment be of the form of a trapezoid 
(Fig. 14), by the integration (6) we have 

y a2 pa (tan®a, — tan* a) — u($seca, — cosa,)} + ax‘tana, +2(@— u Zcosa,) +24 Zseca, 
7 =} tan a, —tana,—y» sina} +2ax+pZ sin as : 

If Z=0 or the fluid extend to the edge of the embankment, this 
becomes the equation to an hyperbola. 

The point of rupture of the extrados, or the greatest possible height 
of the embankment, may be determined as before, by assuming 

yY¥=a+extana, 
whence 

4 2*{(tan a; —tana,)(2tan a, + tan ay) — w [3 cos (a, —a,) seca, — 2sec ay} +a27{2tan «,—tan a,—p sina.{ 
=(0)5 ° cos(a,—a 2J2 oak fe taf ats Zr 829 } 7 {27 s00 ay —asina’} 

COs a, 3 

The supposition now about to be made, with regard to the line of 
resistance, is, that it traverses the center of the embankment. We have 
thence, by equation (37), 

Sy — y:) dx — 3u(x — Z) sec a + wx (x*— Z°) cos a 
2/(% — yr) dx — w(x — Z*) sina : 

a(y~1 + Y) = 

whence observing that 

(A+ Y)Iy  y)de= [ly — y) dz. dy +y.) + My — y)) ds 
Ny: — y:) dx dy, + y:) 

-.(38). 

- - (39). 

= w4(x* — Z*)[x cos a, +4 (y, + y,) sin a,] — 2 (x* — Z') sec ay} ...+..(40). 
8P2 
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Whence substituting for y, its value x tan a, and differentiating twice 

in respect to x, a differential equation will be obtained, the solution of 

which will determine the required relation of y, and x. If a, = 0, or the 

intrados be a vertical plane, we obtain, by the first differentiation in re- 

spect to x, 

1 iydy = — 2 2 Yt - AE 2 
a fh 

if A be the breadth of the embankment on the level of the surface of 

the fluid ; 

De ee ae eA CAL 
ue 

The equation to an hyperbola, whose center is in the inner edge of 

the embankment 4, the ratio of whose axes is ,/u, and whose semi-axis 

is (2? ~ + 4°). 
Me 

9. Tue ARcH. 

The plane of intersection has hitherto been supposed, in its successive 

changes of position, to remain always parallel to itself. Let this hypothesis 

now be discarded, and as the simplest case of a variable inclination of the 

plane, let it be supposed to revolve about a given horizontal line or axis 

within itself. Let moreover the extrados and the intrados be supposed 

to be cylindrical surfaces, having this line for their common axis; and 

suppose this arch to have a load uniformly distributed along the extrados 

in a line parallel to the axis and at a horizontal distance from it equal 

to x. 

Let 4 BD (Fig. 15), represent any section of this mass perpendicu- 

lar to the axis C, and X the corresponding load. Let the horizontal 

force P be applied in AD at a vertical distance p from C’; and let CT’ 

be any position of the intersecting plane, intersected by the resultant 

of the forces P and X, and the weight of the mass 4S'7'D in R, 

PCA=0, PCR =4, CT = R, CS = 7, CR = p. 
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Therefore by the condition of the equality of moments. 

is {ir sin @dddr +X «+ Pp=p{Pcos0+X sin 6+ sind [* [’rdedr} »»--(42). 

At the point of rupture the line of resistance meets the intrados: 
therefore at this point 

Also, generally, sufficient dimensions of the arch being supposed. 
the line of resistance touches the intrados at this point ; 

e dp jes dr 
OR = dove (44). 

Moreover, R= FO, r = f0....1...(45), 

these being given functions of 0. 

assuming ¥ to be the value of @ at the point of rupture, and sub- 

stituting it for @ in the five preceding equations, we may eliminate 
between them the four quantities p, R, r, p, or the four p, R, r, ¥. 

There will result an equation involving the quantities P and ¥ in the 

one case, and P and p in the other. 

Now if the force P be supplied by the pressure of another opposite 
and equal semi-arch, it has been shewn, (see Memoir on the Theory of 
the Arch, Vol. V. Part 111.) that if the masonry be supposed perfect, P 

is a minimum in respect to the variable p; moreover if the masonry 
be supposed to possess those yielding properties which obtain in practice, 
and which shew themselves in the settlement of the arch, then p =R; 

according to either of these conditions. P and ¥ may therefore be de- 
termined. 

The values of P and p becoming thus known, they may be substi- 
tuted in equation (42), and the equation to the line of resistance will 
thus be completely determined. 



4380 PROFESSOR MOSELEY, ON THE THEORY OF 

10.. THe CircuLar ARCH. 

Let the intrados and extrados be circular cylindrical surfaces; - 

a Pig sin 6dédr = —1(R* —7r*)(cos 0 — cos 0), 
r 8 

sin 6 [rear =4sin 0(R?—7*)(@—8); 

“. 4(R' —7')(cos 8 - cos 0) + Xa+ Pp 

=p\X sin 0+ P cos 0 +43(R—7*)(@— 0) sin @}...... (46). 

Therefore, by equation (43), 

1 (RB - 7*\(cos 8 — cos ¥) + Xa+Pp 

=r{X sin ¥ + Pocos ¥ + 4(R’—7")(¥— 6) sin ¥}...... (47). 

By equation (44), observing that x =0, 

4(B' —91")sin¥ = r{ Xcos ¥—Psin ¥ + $(B* —7*)(¥ — ©) cos ¥ + 3(R2-7") sin¥}; 

hence, assuming R = r(1+a) 

(°F + a (Qa + 3)} tan v=[— 3a(a + 2)0} +80 (a+ 2)¥......(48). 

By equation (47), 

P}p—rcos¥} 

= {Xr+hr( RK —7r)(¥ -0){ sin¥-Xa+4(R — 7°)(cos¥—cosO)......(49). 

Also, by equation (48), 

Xr +hr(R’—7)(¥ —0)= {Pr +470? (Qa + 3)} tan¥ ; 

«. P\p—rcos¥} = {Pr+t7*a°(2a+3)} tan ¥ sin ¥ 

— Xa +ra (ha +a+1)(cos ¥ —cos 0) ; 
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sec ¥—1 
hence, observing that tan ¥ sin ¥ = 

sec ¥ 
, we obtain the equation 

Xx+Pp Pe ; 
{7 +0(ha+4)} sect ¥—| 7 +a(}a'+at1)cos Ob see¥=—af bat} ..(50). 

11. THe EQUILIBRIUM OF THE CIRCULAR ARCH, THE MATERIAL 

BEING SUPPOSED UNYIELDING AND THE CONTIGUOUS SURFACES 
MATHEMATICALLY ADJUSTED. 

Let now the force P be supplied by the opposite pressure of an equal 

semi-arch, then on the hypothesis made, P is a minimum function of ¥. 

Therefore, by (48), 7 
se’? ¥ = a se a(vicis\eimja\e's ace. (51) 5 

a +a’ (Qa + 3) 

6 
rae (oP. a’ (Qa + 3)| tan ¥ 

~*~ lg = eG—___”_—_—_—_———; 9 Ee cee + 3a (a + 2) 

therefore, by equation (48), 

4X 
sin 2¥ = oe - 20} +2¥......(52). 

From which equation ¥ may be determined. Also by equation (50), 

pe {Sala +2) cos? ¥ —al(Ba + 8)} esses. (53). 

whence P is known. 

Also by equations (50) and (51), 

4 3 
[AEA EP 5 alta +a+1)coso} [eee =a(at2); 

Ai = tal (Lata 
FA gat) 

2P 
re [Xe* FP. a(qata+1)cos = n/ PP 4 a(Ga+ 1)la(a+ 2); 

Yr 
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3 

ge >| VJ a(a+9) 2 +e Gat 1)} ae +a +1) cos @ - a} (6A). 

¥, P, p are thus completely determined, and all the circumstances of 

the equilibrium of the circular arch, thus loaded, are known. 

If there be no loading, and the two semi-arches be parts of the same 

continuous cylindrical mass, X =0, and 0=0. 

Therefore, by equation (52), ¥ = 0. 

In this case, therefore, the point of rupture is in the crown of the 

arch (Fig. 18), at the intrados, also by equation (53), 

P=r \a-4a'}; 

therefore, by equation (54), p= 7. 

Substituting these values of P and p in equation (46), we obtain 

for the equation to the line of resistance in the unloaded circular arch, 

Natal +2—(4a* +a+1) cos? 
p ~ “ Gatl) 0 sin 6 + (1 —4a°") cos 0 

Let y be the angular distance from the crown, at which the line 

of resistance meets the eatrados, (Fig. 17), as ¥ is that at which it 

meets the intrados. Therefore, by the preceding equation, 

a+2—(ta°+a+t+1)cosy | 
(Ja+1)y¥ siny + (1—4$a°) cosy’ 

1. (1+a)(ha+1) y siny + (2+ 2a— $a’) cosy = a+2....0004 (56). 

lta= 

y determined from this equation will measure the greatest semi-arch, 

which being unloaded, can be made to stand. 

To determine the inclination © of the resultant P, to the vertical, 

corresponding to the angle @, we have 

P, sin &= horizontal force on segment = P =r fa—ta't, 

P, cos D= vertical .........c0sseccesseenes =mass of segment = 47° fa° + 2a} 6; 
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9 
.. tan®d = 

Suppose the arch to be supported upon upright piers of a given 

breadth a, (Fig. 18), and let it be required to determine what is the 

greatest height (x) to which they can be carried. 

By equation (23), 

+ P,(k—a) cos ® 

~ 4a—P, sind’ 

where k = p — 7. 

Also by equation (55), 

6 6) 
a r(a+2)( tans ar} 

et "Eat 16 =a) cote 

r(a+2) (tan ve ;) 
r (ta +a)0 $2 9 Sn eae as ee ee Somes eG ee 58) 
= a (4a4+1)0+4+ (1—4a’) coté een 

If 6 =7, or the arch be a semi-circle, 

1 T 

tr(sai+a)r a: 
ant () 2a Bs as s= = al ral - ) | sees (59). 

4 

It is evident, from equation (50), that as X is increased ¥ increases ; 

that is, the points of rupture descend continually upon the arch as it is 

more loaded. The experiments of Professor Robison on chalk models 

are explained by this fact*. 

* Having constructed chalk models of the voussoirs of a circular arch, and put them 

together, he loaded the arch upon its crown, increasing the load until it fell. The first 

tendency in the chalk to crush was observed at points of the intrados, equidistant from the 

crown on either side, but near it; these points were manifestly those where the line of 

resistance first touched the intrados. As the load was increased, the tendency to crush ex- 

hibited itself continually at points more distant from the crown—that is, the points of rupture 

descended, 

Vout. VI. Parr III. 8Q 
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12. Tue EQuILIBRIUM OF THE CIRCULAR ARCH UNDER THE CONDI- 

TIONS WHICH OBTAIN IN ITS ACTUAL CONSTRUCTION. 

The condition, taken as the basis of the conclusions arrived at in the 

last section, “that the resultant pressure P of the opposite semi-arch 

(see Fig. 15) is applied to that point in the depth 4D of the key-stone 

which corresponds to its minimum value,” true under an hypothetical 

perfection of the masonry, does not obtain as a practical condition. 

It supposes a mathematical adjustment of the contiguous surfaces 
of the stones to one another, an immoveability of the abutments, and 

an unyielding quality of the arch-stones and cement, which have no 

practical existence. 

Every arch, on the striking of the centers which have supported it 

whilst it was built up, sinks at the crown. 

The effect of this sinking or setilementé is to cause the voussoirs about 

the crown to separate slightly from one another at their lower edges, 
somewhat like the leaves of a book, and thus to throw the whole of 

their pressure, upon one another, on their upper edges. 

However skilful may be the masonry of an arch, and however small 
comparatively may be its first settlement, some settlement always per- 

ceptibly takes place; and there can be little doubt that in every arch a 

transfer of the whole pressure upon the voussoirs at the crown to these 

upper edges, from the first, obtains. 

Moreover it is certain, from numerous experiments of Gauthey and 

others, that when an arch is in the state bordering upon rupture by the 
yielding of its abutments, the direction of its pressure is through the 

superior edges of its voussoirs at the crown, and through the inferior 

edges of the voussoirs at its points of rupture, in the haunches. Now 
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the great practical question is to determine the conditions of the pressure 

under those possible circumstances, which are most unfavourable to the 

stability of the arch; circumstances which manifestly occur in the state 

bordering upon its rupture. This question necessarily then supposes a 

direction of the pressure, and therefore of the line of resistance, touching 

the extrados at the crown, and the intrados at the haunches; and, this 

being supposed, all those conditions of the equilibrium which depend 

upon the nearer approach of the voussoirs after the first striking of the 

center, or which arise from the long continued pressure, or from the in- 

fluence of changes in the temperature, are eliminated. 

Let us then assume that the line of resistance touches the extrados 

at the crown, so that p = 7(1 + a) cos 0; by equation (49), 

P}(1 +4) cosO — cos¥}={X +7 (he? + a)(¥ — 0)} sin¥ 

+ (a + a® + 44°) (cos ¥ — cos 8) — = 

By equation (48), 

Ptan¥ =X +r(Sa't+a)(¥ — 0) — ra (ha+4)tany; 

_ (1 + a) cos 9 — cos ¥ 
es tan ¥ 

app ifn =| ! 250. es Xx —= + (40° + a)(¥ — 0)} sin’ + (a+a + 3) (cos ¥ — cos ©) — —- 

A+ (het + a)(¥— 0) - @ (a + }) tan 

Dividing this equation by sin ¥, subtracting unity from both sides, 

and reducing 

(1 + a) cos 8 — cos ¥—sin ¥ tan ¥ 

tan ¥ 
rye 

XxX 

r 
a(ta+4)tan¥ sin ¥ +(a+a’ + 4a‘)(cos ¥ — cos 0) — 

5. Ss (ho? +0)(¥— 0)—a'(ha +4) tan ¥ a ate ga -+a)(¥ — 0)—a’(ta +4) tan 

3Q2 
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Now, 

(1+a)cos@—cos ¥—sin¥tan¥ _ acos 9 —(1—cos®@)+1 —cos ¥ —sin ¥ tan ¥ 
tan ¥ * tan ¥ 

5 (8) YY ¥ NG 
= — 2) ea —_— a — — =a cos 8 cot ¥ —sin 5 (cot 7) tan 5) tan Q 

sf ols) he eae fe 
=a cos 0 cot ¥ —sin 2 cots cos @ tan 2° 

Substituting this value for the first member of the preceding equa- 

tion; multiplying by the denominator of the fraction in the second 

member, and neglecting powers of a above the first, 

xe cos © cot ¥ - 2 fin’ is! cot es +cos* an 3 rs a a ei Q 09 Xe 
=a(cos ¥ — cos 8) — a 

 afsin* 2 cot = + cos" S tan 5 shir 6} 

Whence, by transposition and reduction, 

jaa setae gael sin g Cot G + cos 9 ans oar 

~ {(cos ¥- cos 8) + (sin’5 Coot 5 +c0s'g “og tang 3) 0) -* cose cot ¥}...(60). 

8 YY gece) oy 
Assume cos’ tan qtsin’ a cot = Y3 

te cos' S tan 5 — sin’ 5 cot 5 = Vy — sin 6; 
2 

te ees (a) : 

tan = Ly+J/y¥ — sin’ 6} sec* ra fe sua relia aeorastets(OL)'s 

= Y 
dtan 5 diy+Vy'— sin’ 0} sec? tan 5 

dy Vy —sin® 0 cos? S tan - sin? S cot = 
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Hence, by Lagrange’s theorem, we have from equation (60), neg- 
lecting powers of a above the first, 

a Y 
tan — = tan — qa 3 

(S) a iS) 
{(cosy,- cos 8)+ (sin* A cot “deas! *— tan — \ (% -0)- cosoeot, tan 2 2 2 2 | far 

ib cos® 2 tan 5 osin’ 5 cot = 

5 

| 
Where ¥, is taken to represent the value of ~ when a = 0,* so 

that by equations (60) and (61), 

tan © = =3 {7+ + JZ — sinvo — sin? O@ o| sec! S Boe GORE (62). 

Now, 

(cos ¥,— cos 9) tan a — 2 sin 3(¥, +80) sin} (¥,— 6) sin? aa 
= — 2sin*— — Ss 

98 age ANAS) ¥, 9 aes 7 a asin? = =! 2 = sin? — — sin?— cos?” COS 5 tan 3 NS cot 7) cos" 5 sin g 7 Sin’, cos 2 

= (8) Wo a 0 
ee pel = aay t cos 2 tan 2 +sin 2 cot P) an 7) P) 

8 yee) We Rr 8° 2 = (js 2 2 cos 2 tan 2 sin Q cot 2 tan 2 — tan 2 

cos 8 cot ¥ 

8 Y, f 
s* — tan — - sin? — eot cos* 5 tan > 3 - 

~ 

* By Lagrange's Theorem, if y=z+a@y, then, neglecting powers of a above the first, 
and representing by fy any function of y, 

dfz 
Sy =fz+ pr. — a 

. 2=FY,, pz=F,Y,, fz=F,Y, Let y=FY, py=F,¥, ify — ees 

, then, neglecting 
If therefore F¥=FY,+aF,¥ and FY be any other function of ¥ 

powers of a above the first, 

dF, PY = FY, + FY, (a) ‘ 
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“ a a LON, 
ats tanG tans - fesin 2 

3 (1 tan’) (1-tan® SS (tan’ 4 tant) (¥,-8) > : 2 2 2/7 2 2 tan =| fet (63) 

tae items aj \xyo 
2 2 

By equation (48), omitting powers of a above the first, 

P=  {X+ar'(¥—60)} cot ¥......... (64) ; 

as = = ar cot ¥—}X+a7°(¥—6)} cosec’ ¥, 

also by equation (61), ¥ = 2 tan" {4 (y +-/y?— sin? ©) sec? = : 

d¥ {1+ y(y’? —sin® ©)-3} secs 
oa 

==> : .S) 
1+4{2y°+2y/y —sin® 6 —sin’ 6} sec! 2 

= ytV/y—sin* 0 

Jy’ — sin? {cos 0+ 4y (y+ /y'—sin? 6) sec’ 3 

Vg sO 
2 tan g © 2 

———— eS 
as) al 8 ¥ 0 8 NE 
sin’ — cot — — cos’— = av Sed ieee Was { F) 7) cos @ tan 7 {eos © + sin gq + cos g tan 4 

me chaes 50's sin ¥ 

| (ae ee 6, ¥ re) Ga 41 442..6.., ES 
sin’ 5 cot >—cos* 3 tan oI = ape oI aS COR ze { P) 3 3 P) cos gt COs @ tan 7) sin g cot 3 cos @ tan 2 
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aqdP_dP d¥_ ar’ cos¥ — {X + ar*(¥ — 0)} cosec ¥ hy at dy > TO: we Soot sin @ ts — cos 9 6. 

A+ ar {¥ — 0 - Lsin av} 

2 {eos sin? pose sin? S cos? 3 2 g 2 2 

Whence, by Lagrange’s Theorem, neglecting powers of a above the first, we have, by equation (60), 

P= 5X + ar (¥,— ©)} cot ¥, 

2 

, qy Y, |(co ¥, — cos @) + (sin? cot — + cos’ tan = ) (%— 90) - * cos 8 cot »,| + 

ar, 3 LA | ) (cos: 5 sin’ * — sin’ — cos’ *) | 2 

P= {X + ar (¥, — €)} cot ¥, 

Me $(1-tan'= (1-tan*3) 2 tant sec? 2 (¥.-©)] 
satacia ae 

2 Xo _ tan ©) tan Yo 2 (tan 2 tan 5) tan 

Equations (62), (63), (65) determine the values of P and ¥, that is, the pressure upon the key-stone and the positions of the points of rupture, for every condition of loading, and every form of the gothie and circular arch. 

Assuming 0=0 and eliminating the value of tan *o, we have, by 
equations (62), (63), and (65), 
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ton 2 (27 (2 42)" tan Z] +4 (2-2) We (66). 

p=3(2-7)-{1 +2 (G-S) - 22 tan Shar Riera (67). 

It has been supposed that the load X is collected over a single point 

in the arch, or rather in a single line stretching across it in a direction 

parallel to the axis of the cylinder of which it forms part. Let it 

now be imagined to be distributed in any way over the extrados, but 

symmetrically on the two opposite semi-arches. Find the center of gravity 
of the load on either semi-arch, and let 2 be its distance from the vertical 

which passes through the center of the circle of which the semi-arch 

forms part. Imagine the whole load X to be collected in this point, 

and on this hypothesis determine ¥ and P; the values thus determined will 

evidently be their ¢rue values. To find the line of resistance, substitute 

in equation (46) the value of P, and for X and x substitute their values 

in terms of 6; that is, for XY substitute the load incumbent upon that 

portion of the arch which subtends the angle 0, and for « the distance 

from the vertical through the center, of the center of gravity of that 

portion of the load. The resulting equation will be the true equation 

to the line of resistance. Thus the point where the resultant pressure 

of the arch intersects the supporting surface of the abutment will become 

known; and its direction being found, as in equation (57), all the cir- 

cumstances which determine the equilibrium of the abutment will be 
known, and the conditions of its equilibrium may be determined by 

the equation given in section 5 of this paper. The analytical discussion 

of these conditions, and of that case in which the arch being overloaded 

at the haunches, its rupture takes place by the elevation of the crown, 
is yet wanting to complete the theory of the arch, 

A very simple expression for P offers itself in the case in which 
a=0, or in which the thickness of the arch is considered evanescent in 

comparison with its radius. In this case 

2 -1 

P=X cot.=X{ (7 +4 ——sin* 0) -4° sec 3 (68). 
r 
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When ©=0 we obtain the segmental arch, and P then equals 

ix (E-4) r 

If the weight of the arch itself be imagined to be included in that 
of its loading, that is, in X, and if x be determined on the same hy- 
pothesis; if, moreover, R be substituted for 7, this expression for P will 
give im every case a useful approximation to its true value. It is a limit 
which the pressure on the key can never exceed, and to which it ap- 
proximates more nearly as the radius of the arch is greater in com- 
parison to its thickness. It possesses, moreover, this advantage to the 

practical man, that it admits of an easy geometrical construction. 

13. Let us suppose that the arch were supported at its springing on 
the edge of its joint at the extrados (see Fig. 19). Instead of assuming 
ps in equation (46), equal to 7, we must now assume it equal to R at 
the springing, since the line of resistance will manifestly pass through 

the point of support. By this supposition we obtain, taking p= R cos 0, 

Xj} Rsin0,-#}—4} R’-7*} {cosO-cos 0,3 +4 R§ R’-7'!'6,-Otsine, 
a F {cos 8 — cos 0,} (69). 

In the case in which 0 = 0 and Y = 0, 

7 

Boe rif cr +1) Scot 4(R4r+ Zz" Anes (70). 

* The author has verified this formula, and a corresponding formula, for the case in 

which the arch is supported at its springing on the inferior edges of its extreme voussoirs, 

by experiments of which the results were communicated to the Mechanical Section of the 

British Association of Science, at their Meeting in 1837. 

Vou. VI. Panr III. 3R 
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XXV. Account of Observations of Halley's Comet. By R.W. Roru- 
MAN, Esa., M.A. Fellow of Trinity College. 

[Read December 11, 1837.] 

THE accompanying observations of Halley's Comet were made on 

the great tower of Trinity College, with a 30-inch achromatic tele- 

scope, of 2¢ inches aperture, to which was adapted a ring-micrometer. 

The power used with this micrometer was about 25: the radius 

of the inner ring was found by the transits of stars near the meri- 
dian = 1258”: of the outer = 1710”. 

The observations here detailed form the whole of those that I was 

able to make on this Comet: I saw it on the 18th of Sept. and 1st 

of Noy., but was unable to get an observation. Whenever an ob- 

servation has been rejected, the circumstance has been noted in its 

proper place and the reasons for doing so assigned. 

The time employed is Greenwich mean solar time. The seconds 

watch I used was compared every evening with the clock by Moly- 

neux in the Reading Room, and that again the next day with the transit- 

clock at the Observatory. 

3R2 
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Sept. 20. 

Watch fast 3” . 30°. 

Ingress. Egress. 

h. m. s. h. m. 8 

Star 11.38. 37,0 11.41. 31,0 Inner Ring. 

Comet 39 . 54,0 42 . 21,0 Lower half of field. 

Star 53 . 20,0 56 . 20,0 Inner Ring. 

Comet 54. 24,0 57 . 29,0 Upper half of field. 

The Star is in the Histoire Céleste, p. 52, March 4, 1794, observed 

at 3rd wire 6"°.8™. 485,5. 

These are the first observations I ever made with the ring-micro- 

meter: the fractions of seconds of time were not noted. 

Sepr. 22. 

Watch fast 3”. 36°. 

Ingress. Egress. 

h. mn. se h. m. 8 

Comet 13.57. 18,8 13.59. 19,6 

Star 59 . 11,6 14. 0. 55,8 Inner Ring. 

Comet 14. 2. 5,2 14. 4.27,4 | Comet in the lower half 

Star 4. 3554 5. 24,6 of the field: 
, Star in the upper 
Comet 15. 48,4 17. 53,6 throughout. 

Star 17 . 49,6 19 .17,0 ; 

I imagined at first the Comet too far from the Star to be compared 

by means of the inner ring, and accordingly made one observation with 

the outer ring. Finding however measurements with the inner ring 

practicable, I proceeded to make them: always preferring to do so 

when possible, as more dependence can be placed on the perfect circu- 

larity of the latter. For this reason the single observation of the outer 

ring has been rejected. 
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The Star of comparison is s Aurige. Its ® has been taken from 

Airy’s Cambridge Observations for 1830, p. 103; its declination from 

Piazzi, vi. 98. 

SEPT. 25. 

Watch fast 4" . 0°. 

Ingress. Egress. 

he m. Ss h. m. s. 

Comet 10. 48. 54,0 10. 51. 38,2 

Star 49. 6,8 52. 16,6 Inner Ring. 

Comet 11. 4. 34,8 11. 6.54,8 | Both in the same half 
f the field : Star 4. 44,0 7. 39,8 re a 

: 9° | Comet above throughout. 
Comet 9 . 44,0 12. 44,0 

Star 10). 254: 13. 18,2 

The Star of comparison is Histoire Céleste, p. 212, Mars. 5. the first 

star: and also p. 273, Mars. 13. the first star. 

The Comet to-night was faint, and appeared to have diminished 
in size since first seen. I was perplexed during the observations by 

a singular circumstance: a small star was so close to the brightest ‘part 

of the nucleus, as to make it uncertain which point to observe. Owing 

to this cause, one observation, which on being reduced differed 10° 

in R from the mean of the rest, and where clearly the small star had 

been taken by mistake, has been altogether set aside, and does not 
appear. 

SEPT. 28. 

Watch fast 4.45%. 
Ingress. Egress. 
hom hom 8 Inner Ring. 

Star 11.28. 38,6 11.26. 48,8 | Star in the lower half: 

Comet Ei 0) 26 . 56,8 Comet in the upper. 

I have been unable to find this Star either in the Histoire Céleste 
or Bessel’s Zones. 
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\ SEpPT. 30. 

Watch fast 5”. 1°. 

Ingress. Egress. 

h. m. s h. m. s. 

Star (a) 10. 49. 40,0 LOR 5 2ye 31,0 

Comet 50. 50,4 53 . 24,8 . 
Inner Ring. 

Star (a) 54. 45,8 56 . 54,8 | Comet below, Star above : 

Comet 55 . 2254 58 . 26,0 in the same half of the 
field. 

Star (a) 10. 59. 39,0 WS 25 AG) 

Comet 11. 0. 37,8 3.27.6 

Ingress. Egress. 

he m. 5 h. m. 8 

Comet 11.18. 15,0 11.20. 10,4 

Star (b) 21. 12,4 23. 15,4 
Inner Ring. 

Comet 24 . 35,6 26.4754 Comet in the upper half: 
Star (b) Q7 . 52,4 29 . 29,4 Star in the lower. 

Comet 30 . 39,4 31. 54,4 

Star (b) 33. 4,6 35 . 27,8 

The Star (6) is 61 Auriga. Piazzi, v1. 252. Unfortunately, I have 

been unable to find the Star (a) in the Catalogues. 

Oct. 2. 

Watch fast 5". 18°. 

Ingress. Egress. 

h. m. 8. h. m. 5 

Comet 12. 12. 43,8 12.15. 47,0 

Star 14. 19,2 15. 31,0 . 
% 4 Inner Ring. 

Comet 17 . 41,2 20. 39,6 | Star in the upper 

Star 19 . 28,2 20 . 20,0 half of the field: 
_ Comet in the lower. 

Comet 22 . 31,0 25 . 26,0 

Star 24. 4,8 25. 21.6 
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One observation of the outer ring rejected, under circumstances 
similar to those of Sept. 30. 

The Star is in Histoire Céleste, p. 208. a. Transit at 6". 49". 48°,5. 

Oct. 4. 

Watch fast 5". 37°. 

Ingress. Egress. 

h. m. Ss. h. m. & 

Star 11.59. 53,0 12. 3.14,8 

Comet 12. 0. 25,0 2. 47,2 

Star 4. 45,6 8. 18,6 

Comet Se ONS - 57,0 : 
4 2 Hoots Inner Ring. 

Star 25 . 38,4 28 32,0 | Both in the same half 

Comet 26 . 10,4 28 . 12,0 of the field. The 
Comet above. 

Star 30. 11,6 33 . 10,8 

Comet 30. 31,6 33. 6,8 

Star 45. 1,0 49. 0,2 

Comet 45 . 28,0 48 . 50,2 

The Star is 58 Telescopii Herschel. Position for 1810 according to 

Groombridge, R = 7.7 .30°,5. N.P.D. = 44°. 26’. 52”. 

The Comet to-night was extremely faint, and the instants of ap- 

pearance and disappearance are little better than estimations. 

Ocnies: 

Watch fast 5™. 47°. 

Ingress. Egress. 

h. m. . hom $s Inner Ring. 
o] oa f mT . . 
Comet 11.17 . 55,4 11.21. 25,4. Comet in the upper half : 

Star 17 . 5554 20. 53,6 Star in the lower. 

They entered quite simultaneously. Tolerably good observation : 

the disappearance of the Comet may be marked a little too soon. 



498 

Ingress. 

h. m. s. 

Comet 11.19. 41,4 

Star 19 . 41,4 

Comet 24 . 48,2 

Star 24 . 49,0 

One_ observation 

jected, though it agrees 

Piazzi, vir. 15. 

marked as 

Mr ROTHMAN’S OBSERVATIONS OF HALLEY’S COMET. 

Oct! i, 

Watch fast 6" .10°. 

Egress. 

h. ™m. s. 

11. 23.16, § 
ee i Inner Ring. 

ei: Star above: both in 

the same half of 
. 54 

RS ; | the field. 
26 . 59,6 

doubtful in my journal has been re- 

pretty well on being reduced. The Star is 

Ingress. 

a om, s 

Star 8. 49 . 30,8 

Comet 53). 1,6 

Several comparisons 

Ocr. 10. 

Watch fast 6”. 41°. 

Egress. F 

pet x Inner Ring. 

8. 51.14,4 Comet in the upper half: 

55 . 20,8 Star in the lower. 

were made with the outer ring this evening, 

before the Comet approached sufficiently near the Star to admit of the 

use of the inner ring. 

explained. 

The Star is in Groombridge MR = 10. 48 . 58,14 

Ingress. 

h. m. s 

Star 12.5. 40,8 

Comet 62/5156 

These have been rejected for reasons already 

h. m. s 

for 1810. 

D = 25°. 33’. 37” 

Ocr, 31. 

Watch fast 6”. 54°. 

Egress. 

He a SO Inner Ring. 
12. 9. ai} Star in the upper half: 

12 . 20,8 Comet in the lower. 
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Two observations have been excluded: one because the Star’s entry 
was marked somewhat too late; the other, because the telescope received a slight blow during the observation which may have displaced it. Both of these on being reduced agree well, but I have thought it 
safer to reject them. 

The Star is in the Mémoires de Académie for 1790, p. 383, a. Transit at 12".39™. 35,0. 

Ocr. 18. 

Watch fast 8” .0°. 

Ingress. Egress. 
h. m. s h m. s 

Comet 7 . 48 . 39,2 7.50. 52, 
Star 52 . 48,4 53 . 56,6 

Comet 55. 8,4 57 . 19,6 Inner Ring. 
Star 59. 1,6 8. 0.29,6\ Star in the upper half G sy of the field: 

pumet~s «ol. 42; a? O Comet in the lower. Star 5 . 87,8 Wocnlite? 

Comet 39 . 20,8 41. 13,2 
Star 42 . 16,2 44. 55,0. 

The Star is in Histoire Céleste, p. 83, there called, but erroneously, 
46 Herculis. 

Vor. VI. Parr III. 38 
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Oct. 19. 

Watch fast 8” .7°. 

Ingress. Egress. 

h. m s h. m. s 

Comet 7. 5. 20,4 Wo. Ihowssileeg 

Star 5 . 2454 8. 11,2 

Comet Q. 0,4 10 . 58,0 

Star 8 . 56,8 11 . 41,6 

Inner Ring. Comet 16. 20,0 18. 1,6\ as vate i 
oth in the same ha 

Star 16), 850 18 . 50,8 ss : 2 of the field. 

Comet 25 . 38,8 rae 7.2 

Star 25 . 22,0 28. 6,6 

Comet 31. 35,8 32 . 52,6 

Star 30 . 58,2 33 . 35,8 

The Star is « Ophiuchi. 

Oct. 23. 

Watch slow 1.3°. 

Ingress. Egress, 

hom & Hl na Bias Inner Ring. 

Star 6. 24. 14,8 6.26. sel Both in the same half 

Comet 24 . 27,6 25 . 2,8 of the field. 

I have been unable to find this Star in the Catalogues. 
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Oct. 27. 

Watch slow 2". 36°. 

Ingress. Egress. 

he om. & he om. s 

Star 6.18. 33,2 6.19. 46,2 
Comet 19) 7,8 21. 12,0 

Star 23 . 58,6 25.21,6 
Comet 24, 42,8 26. 41,6 

Inner Ring. Star 27 . 59,4 29. 750 | ns — Hing Be . 
rin t 5 Comet 28. 33,2 0, ave fe ue the Upper ha 

Comet in the lower. 
Star 32. 59,0 34.15,8 

Comet 33. 37,4 35. 45,4 

Star 35. 5558 38 .18,2 

Comet 37 . 34,6 39. 41,6 

The Star is in Histoire Céleste, p. 290, 8. Transit at U7 fem sa 1 

To reduce these observations, it is necessary to allow for the dif- 
ferences of refraction in right ascension and declination, and also for 
the proper motion of the Comet. This proper motion was obtained, 
wherever it was possible, from the observations themselves : where this 
could not be done, as in the case of single observations, I made use of 
Mr Stratford’s Ephemeris. 

8s2 
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APPARENT PLACES OF THE STARS OF COMPARISON FOR THE RESPECTIVE 

TIMES OF OBSERVATION. 

Name of Star. Right Ascen- 
sion. 

Declination. Authority. 

Hist. Cél., p. 52. Mar. 4, 1794. 
transit at 62. 8™. 485,5. 

Hist. Cél., p. 212, first star, 
and p. 273, Mars 13, first 

61 Aurige 

Hist. Cél., p. 208. A. 
a=6", 49™ , 485,5 

58. Telescop. Herschel.....7.. 

Hist. Cél., p. 377. B. 
a=7",19™.13%,4 

Piazzi vir. 

AM. =10".48™.58°. 4 ] for 
N.P.D.= 25° .33'.37” (1810. 

Mém. de 1’Acad. for 1790. 
transit at 125. 39™. 33:} 
ps SAS HAUL) - ERR 

Hist. Cél., 46 Herculis 

P Ophineht «c\coet eamanee cients 

Hist. Cél., p. 290. B. 
transit at 17°. 8™. 32°. 

-11.30,9 

.17. 59,3 

- 22 . 53,8 

Hist. Cél., one observa- 
tion, 3d wire. 

M. Airy. Dec. Piazzi. 

Mean of two observations, 
each 3d wire. 

Piazzi vi. 252. 

wires. 
‘ees Cél., middle and 3d 

Groombridge, unpublish- 
{ ed Catalogue. 

Hist. Cél., observed at 
three wires. 

Piazzi. 

Groombridge, unpublish- 
ed Catalogue. 

Observed at three wires. 

Observed at middle and 
3d wires. 

Pond, Catalogue for 1830. 

Observed at 1st and mid- 
dle wires. 



The reduction of these observations, 
gives :— 
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Sept. 20. 

wo wo 

30. 

Oct. 2. 

h. m. &. 

11 . 37.386 

13. 54.17 

10.46.16 

~_ _ rs 

10.47. 6 

11.14.12 

Woe feheitaly( 

10. 56. 24 

1 Oh 56 

11.13.53 

Uo LG 

2. 59,5 

2. 50,4 

— 39,3 

40,8 

44,6 

0,9 

554 

757 

8,1 

+ 14,8 

+ 27,7 
30,1 

— 26.30 

+ 8.25 

3.17 

(a.) 

(b-) 
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allowing for the watch error. 
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Aa Ad 

d. h. m. s. m. & ’ “ 

Oct. 10. 8.47.26 + 3.44,4 — 39.59 

1De 4 Wee ee an + 1.49,1 + 26.19 

18. — ‘741846 — 3. 36,5 + 32.43 

48.14 3. 31,6 31.52 

54.51 3. 32,2 30.11 

8.32.17 3. 18,6 24.16 

1Oi8 8 1Gi58.819 — 22,4 = 9.2 

Wie ooo 20,4 9 . 42 

v. Owns 18,9 10.33 

7.18.2) 16,6 11.41 

7.23.57 13,0 11. 47 

23 6.26. 6 - 27,5 =A a 

27 6.22.46 +1. 0,2 — 33. 7 

28.18 agal 33. 6 

32.13 1. 4,0 32.14 

36.40 1. 4,0 32.17 

41.14 1. 6 32. 23 

Having applied these differences to the places of the respective 

stars, as given in the accompanying Catalogue, I have obtained the ap- 

parent places of the Comet for the respective times of observation; and 

then applying the proper correction for parallax, I have got the geo- 

centric places. In calculating the parallax, the Comet’s distance from 
the Earth was deduced from Mr Stratford’s Ephemeris. 
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APPARENT GEOCENTRIC PLACES OF THE COMET. 

Greenwich Mean Time. Right Ascension. | Declination. 2B! 
| Observations. 

Sept. 20 49 . 12. 36,5 
22.14, 2, . 16. 16,1 

- 27,9 
. 40,0 gu oritmde at 

- 49,5 

» 274 

. 37,6 

3,6 

. 2057 

. 14,0 

. 22,8 

. 53,6 
. 12,0 

t-te tet + Fe + 

I think that no reliance is to be placed on the places for the 2nd 
and 4th of October. It has already been noticed how difficult and 
uncertain the observations of the latter day were: those of the former 
present an anomaly for which I am at a loss to account. Though they 
appear to agree with each other, they indicate a retrograde instead of 
a direct motion in right ascension. The cause of this error I cannot 
assign. Excluding these two places, I have compared the others with 
Mr Stratford’s Ephemeris in the N.A. for 1839, in which the pertur- 
bations are taken into account. I have obtained the following results 
for the differences in right ascension and declination; where it will 
be observed that + indicates that the observed right ascension or decli- 
nation exceeds that found by calculation, and also that the differences 
in right ascension have been reduced from the equator to the parallel 
of the Comet. 
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Difference 
Date of Observation. in Right Ascension in Difference in Declination. 

Seconds of Space. 

Sept. 20 + 6 16 

22 - 5 14 

25 - 

30 

“ 

These differences do not depend entirely, though of course they 

do partly, on errors of observation. They are, in several instances, 

largest on the places that are best determined. This is the case in 

a remarkable manner with the declination of the 19th October. This 

is the best determined place of the whole series. It rests upon five 

observations in good accordance with each other; and the star of com- 

parison is in Mr Pond’s last Catalogue, and consequently is known with 

great accuracy. 

R. W. ROTHMAN. 

Lonpon, Nov. 23, 1837. 



XXVI. Mathematical Investigation of the Effect of Machinery on the 
Wealth of a Community in which it is employed, and on the 
Fund for the Payment of Wages. By Joun Tozer, Ese. B.A. 
of Caius College. 

[Read May 14, 1838.] 

In the third and fourth Volumes of the Society’s Transactions are 

two papers by Mr Whewell, in which symbolical language is applied 

to the solution of some problems of Political Economy. In the fol- 

lowing Paper another problem of the same science is subjected to a 
similar mode of investigation. 

An opinion has been expressed that the term Political Economy 

has acquired an extent and a vagueness of meaning which in a high 

degree unfits it for the purposes of science. Certainly any attempt 

to apply mathematical reasoning to all the subjects which have by 
different writers, and at different times, been included in the name, 

must be altogether unsuccessful. Neither do we possess the data, nor 

has analysis the powers, necessary to such a task. 

If, however, the investigation of the causes which affect the accu- 

mulation and distribution of wealth, be kept distinct from any con- 

siderations as to the effect of that accumulation, or the mode of its 

distribution on the happiness of mankind, and be also separated from 

any speculations or deductions as to the nature of those political and 

social institutions by which these causes may be modified or brought 

into action; the science that results, by whatever name it may be 

called, acquires an almost entirely demonstrative character—becomes a 
You, View anv IIL. 37 
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series of propositions which are logical deductions from assumed de- 

finitions, and form those properties of the things defined which furnish 

axiomatic truths, and is therefore a subject to which mathematical 

reasoning is not only proper but necessary. 

The introduction of any process by which accuracy may be given 

to the reasonings of Political Economists, as tending, however re- 

motely and indirectly, to place the science in this position, must be 

valuable; and even if we could suppose the principles to be as ac- 

curate in their enunciation, and as complete in their demonstrations 

as they can be rendered, there would still devolve on us the duty of 

rendering our deductions from them general, and of proving that they 

were necessary. 

The particular problem under consideration, is of very limited ex- 

tent, and of very easy solution. The method that has generally been 
employed has been to take particular numerical examples, and the re- 

sults of these have frequently been assumed to lead legitimately to 

general conclusions. If the examples chosen had always been supplied 

by statistical facts, we should at least have been assured that the phe- 

nomena displayed in these results either had or might have happened, 
however unsatisfactory the general conclusions from them might have 
been. 

This advantage, however, has not been afforded, the numbers have 

been generally assumed without reference to realities, and though it 

may sometimes have been carefully stated, that the conclusions could 

not possess a higher degree of truth than the premises, the impressions 

on the minds of general readers would be favourable to that particular 

conclusion which the example chosen tended to support. ; 

Pror. A portion of capital, which either has been or would have 

been employed in the payment of wages, is used in the construction 

of machinery; to determine the effect on the wealth of the community, 

and on the fund for the payment of the labourer. 

Let C be the capital, 

q—1 the ordinary rate of profit. 
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If C be engaged in paying wages, it will yield amnually a profit =C(q—-1); this, while the machinery is in progress, must be partly 
taken from capital. 

Suppose the machinery to take 6 years to complete, and a part 
Di (A= a to be expended every year in its construction till it is com- 

pleted, then the productive capital will be diminished, 

at the beginning of 1* year by 2 : 

Cc nd & a EF Grccosocs Ae +q)s 

wale Gwateleimnisiaice\ecieveisie nics Cibo ae 6 +9+q), 

th ~ Sees Cq-1 Saborg as sos SAORI One ee (Lie Wo eee CE ere i % qui’ 

C q¢-i1 th aacuieeleeniese cea stcee Lae bate - erent 

and at this time the whole capital will have been expended on the 
machine ; 

BACT a ih sited Moat! . fig aT and LAC as 

Let a fractional part, the m'” of the expenditure for machinery, 
go to the labour, and B,, By «0. +++ By be the sums by which the fund 
for paying wages is diminished during the 1°, 2"...... p" years of the 
progress of the machinery. 

Thus rs 
Cc 

B, = —(1-m), ye +q—m); 

B,; = a +q+q¢—m), 
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The total loss to the labour-fund while the machinery is in pro- 

gress is 
2% aes pas SRio eh 1+ @-1lt+...+9 = ag ge 

x q-1 

=f{er- +a * — bm 
a q-1 

C g-1 1 
a -b ger + m) 

_C.g=1 g-1 1 
= Ae aces, —b es at: m)t. 

And in the 1* year of its employment the whole capital C is abstracted. 

Let the machinery be made to last d, years by the expenditure 

Of @, Gz, Ay.-.++-@;, in the 1%, 2", d' years respectively and be worth 

a when rejected: also let the expenditure and profit be equivalent 

when the machine continues d years unimpaired, and then becomes 

useless. 

This condition gives 

OQ)" + eG + -cree + i,q9—a = C(qg-q’). 

or =(agq%-') —a = C(q" — q"); 

= A) A at wes fet and d= log. }(q") c (zag a)t fee 

Let V. be the exchangeable value of the machinery, 

A the annuity necessary to pay the profit on C and provide 

new machinery at the end of d' years, paying also for the 
necessary repairs during this interval, 

r,, the produce due to the use of the machinery, 

1 < Wadgececstecssseassee tO) the’ labour it displaces, 

P; Pi, prices of produce before and after its employment, 

G the whole annual gain to the community occasioned by its 
uses, 
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DBD dese D, sums by which labour-fund is diminished at the 

end of 1%, 97...... p" years after it comes into operation, 

D diminution during the 1* year. 

Then V,=C, 

“3 Ged A=C age 

Also, since the gain to the community may be measured by the 

price that would have been paid for the produce r, minus the price 

that is actually paid for it when the profits of the capitalist have reached 

the average rate, 

G=Cq.2-4=Cq(2-1-0). 

Or, this gain may be measured by the saving in expenditure, added 

to the cost of the additional produce enjoyed, reckoning that cost at the 
original price ; 

G=Cq-A+ 
| fig 

at Cq = Cq.2 — A as before. 

This will be an annuity in money or other produce, of which a k" 

part may be consumed for immediate enjoyment and a (1—4)" part 

used as capital, also of the former an m" part, and of the latter an 

m.'" part may go to the labourer, whilst an m™ part of the annuity 

A after deducting the profit C(q-1) is employed in the same way. 

Before the use of the machinery the expenditure was C. 

Hence, D= C, 

D, = C — m{A-(q-1)Ct—jmk +m, (1—k)t G, 

D, = C- m{A—(q—-1)C} — {mk + 2m. (1—-h)t G, 

C-— m}A—(q—1)C} -{mk+ pm.(1—h)} G iS Il 

= Teele Capeet en ~ chi — mo {mk + pm:(1—h)} q (7 rege 
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When this becomes negative, the fund for the employment of labour 

will have become greater than it would have been if the machinery had 

not been constructed, that is, when 

pa ee et fi BAe” 1 ye meq |" a 

1 l-q' <pm,(1-B)q{* — 5}, 
ip ee TS 1 may _ om A 

a ssgsy tenis nob =e] 
This advantage will increase by the addition of 

nist SM C.m(1- aq {? a 

annually, and will continue to increase indefinitely. 

We may in these formule, substitute for the produce in terms of 

the price. 

We have pr=Cq, p= 4=C9.5~ 0,3 

AN tipsdiesgy’ 
Tilie J l-q a9 

to 
=C {2-1} da G a Tag 

— = essa gee 
> Bot i} 

1; chi mo — {mkt me(1 pi q.(2 1) j=} 

It may be observed that p, cannot be >p; if it were, more than the 

ordinary profit would arise from employing labour, and the machine 
would be superseded. 

In general the motive of the capitalist in supplanting labour by 

machinery, is to procure for his capital more than the ordinary profit. 

If, then, he can raise his rate of profit to gq, 4'=C. =e will be the 
1 
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annuity which the produce must realize. The above values of G. 
however, are correct whatever g may become, since the gains of the 
capitalist are included in those of the community at large. 

In a State where there is any number of machines at work, and also 
any number in progress, wealth will be increasing more rapidly than it 
would have been if all the capital had been employed in paying wages 
if =G be positive, and less rapidly if 3G be negative, that is, more or 
less rapidly as, 

p.Cc al bi or Py pst Cy" or as “S22 SS 1-q"* ’ p~pd—-q") 1-q 

If in any case the machinery lower prices, the community must 
gain by its use, for if p, <p, G is positive. 

This supposes p, to give the capitalist no additional profit, @ fortiori, 
therefore the community will gain, if, when the rate of profit is raised 
to q—1, p, be <p. 

Let p” be the price that would pay ordinary profits q-1. 

r ” = Then pr, = C. = An = C.5 gn" 

p = Ruy Tepes grat 

The community will gain by the use of machinery, if 

Oi 1 ESC iee 

end ea 1D 2 1h 

If a portion of the dispossessed labourers, whose wages were paid 
by a part ¢.C of the capital, become dependent on society for support. 
there will result the equation 



514 Mr TOZER, ON THE EFFECT OF MACHINERY 

And the community would gain or lose as 
eee 5) 

ol os ames : ae 
r 1-q q 

The common mode of calculating the annuity 4 has been used, 

but it does not appear to be strictly applicable; it makes no provision 

for paying machine makers in the first year after the machinery comes 

into use, and does provide for their payment in the (d+1) year; 

that is, after the machinery is finished. 

To commence the manufacture of new machinery immediately an 

additional capital must be employed, to advance the wages of its 

makers; and if the same sum is paid every year in this way, the ad- 

ditional capital must equal that part of the annuity A which is avail- 

able for a similar purpose. 

Let Cy be the additional capital. 

Cy is the annuity, commencing at the beginning of 1* year and 

ending at the beginning of d™ year, which pays for the machine. 

Hence, since at the beginning of d™ year this amounts to 
da —1 a1) _ q Cy(l+qt+.... 9") = = 1? 

ad 

and at the end of d® year this is worth Cy.q. t=, which must = C, 

ae 
id g—-1 : 

Again, the produce must supply an annuity A, which pays the 

profits on C(1+y), and accumulates by the end of d™ year to C(1+¥y). 

The accumulation is therefore worth 

at end of 1“ year 4—C(1+y) (¢-1), 

SSS BES am year {A —C(1+y)(q-1)} (1+9q), 

th Jeg See eeeaieae d™ year {4—C(1 rT INCRE ae 7 

which must = C(1+y). 
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This gives 

Soe git 
get Nyaa? 

A= ae 7 C(14+y) e—. 

= 1 —g 4) 1 1 —g"' 

= Cy. {a = 

The whole capital employed is 

—(d+1) 

regi 
1—g°@) =!) BI USO 

D=C(l+y)-Cy=C. 

Also 

-1 pn=A= CU +y). fa pr=Cq(1+y); 
CE. Pil — get 
r oe CT ee 

and therefore, 

< i l-qg" p 

G= a ra = 5 -1}, 

1—q'“*" q-1 a r 1-q"' 
and Dp = Cr ieee — {mk+m,(1 2) p} (= = i olp 

As before, the condition necessary that the community shall gain by 
the use of machinery is 

and since p' cannot be > p, the community cannot lose, unless g, be < q; 
or the capitalist also lose. 

From the result of the above investigation it would seem that we 
are entitled to draw the following conclusions; 

Vor, VI, Parr III, 8U 
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If we assume that a capitalist will employ machinery or labour 

as the one or the other will procure for him the highest rate of profit, 

then the employment of machinery will always increase the wealth of 
the community. Not only is the capitalist unable to secure his own 

advantage at the expense of any other class, he cannot even prevent 

a general participation in the benefit. 

The operation on the labourer is to abstract a fund which has been 

or would have been annually employed in the payment of wages, and 

annually renewed by the produce due to his exertions, and to supply 

a new fund, by increasing the wealth of the community, a_ portion 

of which will in general be paid as wages; this portion is at first 

smaller than the fund abstracted, but it increases without any assign- 

able limit, the rapidity of increase depending on the proportion in 

which the new fund is divided between the labourer and the other 

classes of society. Speaking with reference to the formule, the rapidity 

of increase depends on the values of the arbitrary quantities m, My, Me, ke, 

and these values can be assigned with greater or less exactness, as our 

statistical knowledge connected with the particular case is more or less 

accurate. 
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APPENDIX. 

EXAMPLES extracted from writers on Political Economy. 

M* Cuxtocn, 2d Edition, 193. 

Comparison of two machines, one of which lasts one year the other 
ten years, the cost of each being £.20000, and their produce the same, 
the ratio of profit 10 per cent. 

When d = 1, 

21 por tf =a" A = C(q+1) = CZ, = 42000. 

When d= 10, let y and A become y' and A,, 

155 
Poa res C nearly = 3672. 

If G now represent the gain to the community by employing the 
more durable machine, 

8087 G=A-A, = F000 © = 38327. 

Again, when the machine lasted 1 year there was paid in wages 

mCy = = mC. When 10 years, the amount paid in the p™ year of its 

being employed will be 
5 

8087 mCy + fmik+ ma. (1-H) p} G = CLF m + {mk + m(1— hyp} #220} 
3u2 
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Therefore if D, be the loss to the labour-fund at the end of the 

p'" year by employing the more durable machine, 

10 5 ) - 8087 

ai C im (7 - gs) ~ 4270! 
my te + M, qa —k) pt, 

D, = cm2. 

If m,=m,=m=hk=1; D, will be negative, and the labour-fund 

will be increased at the end of the 1* year. 

SISMONDI. 

An improvement takes place in machinery which reduces prices 

5 per cent. 

Suppose the DSL LES the same. 

Cq _ 100 _ 20 an Aes 
The condition gives A as “UTS: Bi OF 30° 

G=Cy-A=Cy.x, 

a) i C—m{A— C(q—-1)} - G {mk + m,(1 — k)} p 

1 
Cil—m (3a-¢+1) - Z [mk +m, (1—A) pl}. 

1 
If m=, = m= k= }, and g= 2. 

200-11 11 1 
= Pa ————————— 

De= Ci — 3. Go9— — a00°4 1 + #3 
c = gop {411-116} 

If p> a the labour-fund will have gained. 

Hence, after 38 years the amount spent in wages is greater than 
it would have been if the improvement had not taken place, and 

increases beyond this period to an indefinite amount. 
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The values assigned to m, &e. are entirely arbitrary, if m, m,, ms, 
5 1 

=— k ae each 6° and 3 

C 
480 

and the labour-fund will be increased after 9 years. 

Dp = (91—11p); 

In the value of Dp the whole of C is supposed to be taken from 
the labour-fund, the data necessary for calculating the effect of the 
change enunciated in the proposition are not given. 

Ricarpo, 3d Edition, 469. 

A capitalist employs £.20000, £.7000 of which is vested in irremove- 
able capital, and £.13000 in labour, profits being 10 per cent. He then 
abstracts £.6500 to pay machine makers, and £1000 for half the profits 
during the year the machinery is in progress. His capital is now £.6500 
to pay wages, and £.7500 in machinery, in addition to the £.7000 irre- 
moveable. 

The machinery is supposed indestructible, and no more is produced 
by it than will pay the common profits on the £.7500. 

Take the capital as £.13000, and Suppose that with the aid of the 
£.7000 profits are raised on this from q-1 to m1. 

. i, _ 20000 _ 20 Then g—1= 13000 27) = 13 (7-1). 

Now before the machinery was employed the produce of the £.7500 
must have fetched 7500.q, and afterwards 7500 .(q—1); 

ry n-1 = Ce a arc 7 I Pie 
r n q 

and G = caf" 9 ae = Ca {1 —q-'—(1-q,"’)} = 0. 

Gan Da= c(1 ~ mi) — {mk+m:(1—h)p} G = C, 
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If therefore it were possible that the capitalist could be influenced 

by a motive which would induce him to employ machinery under such 

circumstances as these, the community would gain nothing, and the 

labourer would lose the whole. 

- Barton. 

A manufacturer has £.1000, with which he pays 20 men £.50 each; 

his capital is suddenly increased to £.2000, when he lays out £.1500 in 

machinery, which takes 1 year to complete, and does the work of 15 men, 

but requires 1 man to keep it in repair, and also lasts 15 years, profits 

10 per cent. 

Here C = 1500, b= 1, d= 15, q= 553 

Pa iteak A epee 
SHS engin Famgg? 

= (1-m)£=(-m 

But £.500 only of the £.1500 was before employed in labour, and 

therefore the loss to the labour-fund during the year that the machine 

is making, is 

a- m) 29009 _ 1000 = SP (4- TLE 

which is negative if m be > = or if the labourer receive more than + 

of the price of the machine; the amount paid for wages will be in- 

creased. 

After the completion, we have 

11" 
ap)" = 180 roNy ss” 

and the machine does the work of 14 men, for whose labour the con- 

sumer paid 50. 14.75 =770; 
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the gain in price is 770-197 =573, 

and the capitalist gains 100; 

“. G=100+ 573 =673. 

There has been taken from the labour-fund £.500. 

There is returned to it m(197—150) + {mk + m.(1—/) pt 673. 

Whence D, = 500 — (47m + 673m, hk) — 673 m.(1 — k)p. 

If m=m,=m,=k=}, 

1233 — 673p aa 

The labour-fund gains after the 2" year, and receives an addition of 

D, = 

£ ule every subsequent year. 

In this solution the value of 4, taken by Mr M‘Culloch (not #) in 

refuting Mr Barton’s views, is employed. 

Taking what I have assumed to be a more correct value, we get, 

-q' 9 5 1 
since y= a ea nearly, 

and) =4:—=(C- == (1 + y) = 220. 

The capital employed in the machinery = C(1+y)=1680; and there- 

fore it must produce as much as £.680 paid in wages. 

Hence, gain in cost of produce= it . 680 — 220 = 528, 

and the capitalist gains 100; 

*, G=528 + 100 = 628. 

Again, there has been taken from the labour-fund, 

C(l+y)— 1000 =1500. 5 — 1000 = £.680; 
there is returned to it 

mCy + {mk + m,(1—k) p} G=m180 + {mk + m, (1—*) p} 628 

=4[157m + {mk + m,(1—k) p} 157) 
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“. D,=4[170 — 45m — {mk + m,(1—%) p} 157), 

D,=4(170 — 45m). 

If m=m,=m, 

D, =4§170—m(45 + 157k) —m(1—%)p 157}; 

and if each of these and also = 3, 

247 — 157 
D, =4(170— he ~g P) = 333 — 157p. 

The labour-fund will have gained at the end of the 3™ year. 

The produce is here supposed the same before and after the machine 

was employed. The machine must therefore do the work of as many 

men as the capitalist is deprived of the means of paying. 



XXVIII. Novitie Flore Maderensis: or Notes and Gleanings of Made- 
ran Botany. By the Rev. R. T. Lower, M.A. 

[Read May 28, 1838.] 

FILICES. 

1. Acrosticuum paleaceum, Hook. et Grev. Icon. Fil. t. 235. 

Identical 1 apprehend with A. squamosum of Swartz. Although his 

character of “frondes 1—2-pedales” certainly exceeds the average of 

Maderan specimens, I have lately seen some fully 18 inches long, without 

the stipes: and I am informed by my friend J. I. Bennett, Esq., that in 

“the Banksian Herbarium are barren fronds of 15 or 16 inches in length, 

in addition to the stipes (as by Swartz described) of 3 or 4; and some of 

them, which are abruptly mutilated, would, I think, justify the describ- 

ing them as “1—2-pedales.” In every other particular Swartz’s descrip- 

tion perfectly agrees; and was, I have little doubt, drawn up from 

the Maderan plant. 

2. Polypodium drepanum, nob. 

Aspidium drepanum Sw. (Aspidium? drepanum nob. Primit. p. 6. 

No. 3.), proves, as I have already stated in the Botanical Miscellany 

(New Series, I. p. 26.), to be a genuine Polypodium; not having the 

slightest trace of an indusium in any stage of growth. The following 

description of the fructification is derived both from abundant wild 

specimens, and from others cultivated in my garden, and watched care- 

fully for several years. 

Indusia nulla. Sori nudi, globosi, valde convexi, tumidi, distinct- 

issimi, subconferti, biseriati, purpureo-nigri, capsulis nitidissimis; demum 

(sporis effusis) pallide ferruginei, minuti, punctiformes. Polypodii species 

vera. 
Vout. VI. Parr III 8X 
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3. Asplenium productum, nob. 

A. fronde deltoidea, apice caudata s. longe acuminata, glaberrima, 

lucida, quadripinnatifida: pinnis primariis productis, acuminatis; ultimis 

oblongo-cuneatis, apice inciso-dentatis: soris confertis, mox confluenti- 

bus: stipite fusco, levi, basi hirsutiusculo. 

Aspl. acutum, Hdll’s List of Mad. Plants in Hook. Bot. Misc. New 

Series, I. p. 15; haud Bory! 

Aspl. Adiantum nigrum var. nob. Ibid. p. 24; haud Linn. 

Hab. in Madera, ab altitudine 1000 ad 3000 pedum ubique vulga- 

tissimum. 
This very common fern, the Asplenium Adiantum nigrum of most 

former lists of Maderan plants, I would now admit to be sufficiently 

distinct from the European species properly so called; the characters 

above enumerated proving permanent and uniform. With Holl and 

others I had long imagined it identical with <Asp/. acutum Bory: but 

to my surprise, a specimen so ticketed, and obligingly communicated 

to me by its author the Baron himself, is a very different plant in- 

deed: being undistinguishable from large narrow-leaved fruit-bearing 

Maderan specimens of my Asp/en. canariense W. 

Asplen. productum is distinguished from the true Aspl. Adiantum 

nigrum LL. by its more compound, finely divided frond; the contour 

of which, as my friend Mr Arnott has well observed, is triangular or 

deltoid; while in the European plant, the shape is rather that of a 

rectangle or oblong, terminated by a triangle; the sides being parallel 

for some length from the base. But the chief character of the Maderan 

plant is found in the caudate or produced extremities of the primary 

divisions. The apex of the frond especially is gracefully attenuated. _ 

With Asplen. canariense W. as understood at least by me, (Asplen. 
acutum Bory!) Aspl. productum has very little indeed in common. 

4. Nephrodium feenisecti 3. productum, Primit. p. 7. 

A plant certainly bordering very closely upon the true Aspidium 

spinulosum W. and Sm. in Eng. Flora; but which, on account of the 

less degree of parallelism in the sides of the ultimate divisions, the 

smaller punctiform sori, and above all the fragrant scent, I still think 

best referred to Nephrodium foenisecit. However this, rather than Aspi- 
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dium elongatum Sw., as formerly supposed, (See Hook. Bot. Misc. New 
Series, I. pp 25, 26.), may very possibly be Aspidium spinulosum of 
Herr HOll’s List. 

5. Nephrodium affine, nob. in Bot. Mise., New Series, I. 25. 
N. fronde subtus_hirsutiusculo, bipinnatifido; pinnis inferioribus 

brevioribus: pinnulis approximatis oblongis, subintegris ; apice truncato- 
rotundatis, minutissime eroso-denticulatis; basi tota adnatis: incisuris 
deorsum acuminatis, sursum latioribus: pinnulis superioribus confluen- 
tibus: soris biseriatis distinctis : stipite rhachibusque densissime paleaceis. 

Hab. rarior in Madera umbrosis, ab alt. 1500 ad 3500 pedum. 
Fronds two or three feet long, disposed in a coronet or circle; be- 

neath with scattered hairs, of a chaffy nature, at the margins and on 
the nerves of the pinnules. Stipes and rhachis throughout most densely 
chaffy ; the chaffs or scales remarkably large as well as copious. Lower 
two to six pair of pinnz smaller and shorter than the middle ones ; 
the lowest very much so. Pinnules closer together than in N. Filia 
mas: all of them, even the uppermost rounded (not merely obtuse) . 
at the apex; the lowest even truncate. In N. Filix mas the uppermost 
are acute, and the lower sometimes scarcely obtuse. The sides of all 
in N. affine are nearly entire, or with distant, scarcely perceptible, 
shallow teeth upwards; not in the least incised, or with any tendency 
to a higher degree of decomposition, like those of N. Filix mas, or 
of N. elongatum; their rounded apex irregularly notched with very 
minute shallow teeth, quite different from the obvious serrated teeth 
of N. Filiz mas, and without a lens, scarcely perceptible; the pinnules 
appearing entire. Incisures (i. e. the spaces between the pinnules) 
acute at the bottom, i. e. towards the nerve, and widening upwards 
or rather outwards; evidently not reaching to the nerve or midrib, 
as they appear to do in N. Filia mas, though really they do not. 
Hence the base of all the pinnules is in no degree incised on either side, 
as in N. elongatum; but the pinnules are adnate by the entire breadth 
of their base: neither is their lower side arcuato-decurrent as in N. Filix 
mas; but the base is truncate and the opposite sides or margins of each 
pinnule are parallel to each other down to its very bottom, where they: 

3x2 
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are both at right angles to the rhachis: whilst in NM. Filix mas, the 
lower or inner margin, i. e. that towards the main rhachis, quits its 
condition of parallelism with its opposite upper or outer one towards 

the base, and forms a curve downwards towards the pinnule next below 

it; which is what I have called arcuato-decurrent. Thus the incisure 

in N. Filix mas is either irregular, or abrupt, open, and broad at the 

base; not regularly acuminate; so that the spaces between the pinnules 

being larger, or at least not regularly narrower downwards, these last 

appear more remote and distinct than in N. affine. In fact the incisures 

(not at all the pinnules) of N. affine rather resemble those of Nephrodium 

(Aspidium Auct.) Oreopteris than of N. Filiz mas. ‘The pinnules of 

the lower pinnae, instead of having any tendency by incision to a farther 

degree of decomposition, as they have both in N. Flix mas and N. elon- 

gatum, are quite simple, and even more entire than the upper ones. 

Sori precisely similar in their arrangement and indusia to those of N. 

Filix mas. 

I possess specimens of N. affine from various localities, differing in 

exposure, shadiness, and elevation; but all agree in the foregoing cha- 

racters. By these, this fern approaches nearer to N. elongatum than to 

any other Maderan species: the true European N. Filix mas being the 

connecting link; from which it is curious to observe, these two Maderan 

ferns reciprocally recede in opposite directions: N. elongatum having 
the serratures much more aristate, and the stipes and rhachis, especially 

the latter, less chaffy than the European N. Filiz mas; while N. affine 

has the serratures much less developed, but the stipes and rhachis much 

more copiously chaffy than the same. 

The specimens of N. Filia mas, which I have particularly examined 

for comparison with N. affine, are British only: but my friend Mr J. Ben- 

nett has also compared specimens in the Banksian Herbarium, and noticed 

the same differences. Indeed his observations, exactly corresponding with 

my own, here made before and apart, have led me with considerable con- 
fidence to the conclusions and results here stated. 

I subjoin, for facility of comparison, the specific characters of WN. 

Filix mas and elongatum; eliminated however solely in reference to 

the three present species. 
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Nephrodium Filix mas. 

N. fronde glabro, bipinnato: pinnis inferioribus brevioribus : pinnulis 
subremotis, oblongis, obtusis, serratis, adnatis, basi inferiore arcuato-de- 
currentibus; inferioribus serrato-incisis; superioribus confluentibus: soris 
biseriatis distinctis: stipite paleaceo; rhachibus sparsim paleaceo-hirtis. 

Aspidium filix mas, Auct; Linn. Sm. Hook. &c. From English 
specimens, gathered at Dale Abbey in Derbyshire. 

Main rhachis sparingly hairy rather than chaffy, and the nerves and 
margins of ‘the pinnules beneath are not at all hairy. Pinnules subre- 
mote; so that the incisures are truncate or oblique at the base, or as 
wide at the bottom as at the top in the lower pinnules. 

6. Nephrodium elongatum. 

N. fronde rigido, glaberrimo, bipinnato: pinnulis oblongis, spinuloso- 
serratis ; superioribus apice rotundatis, confluentibus; inferioribus sub- 
lanceolatis, acutiusculis, crenato-incisis, distinctis, subpetiolatis s. basi 
utrinque incisis; incisuris triangulari-decurrentibus: soris biseriatis, con- 
fertis, subimbricatis nervo approximatis; indusiis glanduloso-scabris : 
stipite elongato rhachibusque pallidis, paleaceis ; paleis rhachidum aris, 
sparsis, distinctis, squamiformibus. 

N. elongatum, Hook. et Grev. Icon. Fil. t. 234. 

Aspidium elongatum, Sw., &c. 

Hab. in Madera ab alt. 1500 ad 5000 ped. vulgaris. 
Fronds not growing in a circle, of a much lighter and_ brighter 

green than in the two preceding species, and of a rigid brittle texture: 
with a greater tendency to a farther degree of decomposition than even 
N. Filix mas. Pinne, in full-sized specimens of 3 or 4 feet long, 
more remote and distinct; the lower ones not shorter than the rest, 
but rather the contrary. Upper pinnules close together; so that their 
edges often touch or even overlap each other, concealing the incisure; 
except at the base, where, by the incisure being produced downwards 
into the substance of the pinnule next below, and similarly, though in 
a less degree and sometimes not at all, into the pinnule next above, 
there is formed in all a kind of triangular hole, or open space, quite 
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different from any thing in the two preceding species; though of the 

two, most like N. Filix mas. Hence the incisures, not the pinnules, 

are decurrent: the lower base of the pinnules, as well as the upper in 

a less degree, being notched by the incisure, and their margins being 

parallel at the base. 

a 7. Cheilanthes maderensis, nob. in Bot. Mise. New Series, I. 26. 

C. fronde oblongo-lanceolato vel ovato, bipinnato, glabro: pinnulis 

(s. laciniis secundi ordinis) oblongis, obtusissimis, adnatis, decurrentibus, 

sinuatis; inferioribus basi pinnatilobatis; superioribus confluentibus ; 

omnibus vel omnino vel superne indivisis, foliiformibus, crenatis; lobis 

fructiferis rotundatis: indusiis interruptis, incisis; lobis rotundatis vel 

truncatis, margine integro: stipite rhachibusque paleaceo-hirtis. 

Hab. in fissuris rupium prope urbem Funchalensem Madere; etiam 

in muris ipsius urbis. 

Species cum aliis quibusdam diu confusa, revera distincta videtur. 

A Ch. suaveolente Sw. (Polypod. fragrans Desf. Fl. Atl. ii. 248. t. 257) 

prima facie differt fronde multo minus tenuiter diviso, nec leptophyllo; 

divisionibus sc. magis foliaceis, confluentibus nec distinctis; pinnulis 

oblongis, sinuatis crenatisve, multo majoribus, foliiformibus, omnino vel 

superne saltem indivisis; summis confluentibus; omnibus basi tota ad- 

natis decurrentibusque, nec puncto tantum centrali baseos s. petiolulo 

rhachi affixis: soris indusiisque incisis, interruptis, nec continuis ut in 

figura 1™. iconis jam citate delineantur. A Ch. odora Sw., planta sc. 

Helvetica et Pedemontana (Adiantum pusillum All.), iisdem characteribus, 

necnon fronde bipinnato nec tripinnato, indusiisque margine integris. nec 

“Jaceris, subciliatis” Sw., satis superque distincta videtur: huiec vero 

speciei procul dubio, monente amico J. I. Bennett, affinitate proxima. 

Ch. fragrante Sw., stirpe Indie Orientalis, cui cl. Swartzius olim dubio 

animo conjunxit, “forsan speciem diversam” tamen monens, magis ac 

magis recedit: quum ne alia dicam, illa pinnulis “ opposétis, ovatis, sub- 

petiolatis, lacinulis 2—3-partitis,” tenuibus; earum “ segmentis subacutis, 

apice soriferis” (monosoris); ‘“‘ sor2s minutissimis;” indusiisque dentifor- 

mibus distinctissima est. In stirpe Maderensi pinnule haud raro alterne ; 
in tribus supra indicatis potius opposite videntur. ; 
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PHANEROGAMAZ. 

GRAMINES. 

8. Phragmites congesta, nob. 

P. panicula lanceolata, stricta, contracta, densa, subsecunda; spiculis 

4—6-floris, glumis multo longioribus: culmis basi decumbentibus, ra- 

mosis; foliis planis mox convolutis, strictis, cuspidatis, glaucis. 

Hab. in Mader ora maritima rariss. 

Obs. P. communi Trin. (Arundini Phragmite L.) proxima, et forsan 

varietas tantum. Culmi basi ramosi, frutescentes, nudi, tenacissimi, late 

procumbentes ; apice foliosi, ascendentes 2—4-pedales: foliorum margine 

subserrulato ; vaginis apice, nodisque plerumque barbatis. Gluma inferior 

brevis, acuta, superior inferiore duplo longior, remota, acuminata. Pale 

inferiores florum inferiorum productz, flores superiores longitudine sub- 

zquantes; omnes lanceolate, acuminate, glabre. Rhachis supra florem 

inferiorem longissime sericeo-pilosa. Palea_ superior brevis, oblonga, 

plana,’ binervis, subciliata. Panicula erecta, arctissime glomerata, con- 

gesta, densissima, multiflora, 3—6-pollicaris longa, 1—2-lata, pallida. 

flavescens; demum albo-sericea. Radices repentes. 

9. Deschampsia argentea, nob. (Aire argentea nob. olim Prim. in Trans. 

Cam. Phil. Soe. tv. I. p. 9. No. 8.) Species distinctissima, D. cespitose 

Beauv. (Aire cespitose L.) proxima. Deschampsie Beauv. species legitima. 

Pedicelli, floresque basi dense pilosi. Palea inferior apice 3—4-dentata. 

10. Avena marginata, nob. 

A. glaberrima, levis: panicula simpliciuscula, coarctata, subsecunda: 

spiculis 4—5-floris, glumis sublongioribus; rhachi pedicelloque floris al- 

terius superioris abortientis villosis; floribus omnino glabris s. nudis, 

scabriusculis; palea inferiore apice quadriseta; s. bifida, laciniis bifidis 

in setulas productis; dorsi medio arista geniculata: foliis distichis, bre- 

vissimis, obtusis, carinatis, marginatis, rigidis, glaucis; ligula lanceolata, 

producta: radice fibrosa, subcespitosa, perenni. 

In rupibus Mader excelsis nuperrime inyenit am. Car. Lemann, 
M.D. 



530 Mr LOWE, ON MADERAN BOTANY. 

Culmi bipedales et ultra, 2—3 ex uno cespite, vaginisque rhachique 

ramisque primordialibus panicule omnino levibus, glabris. Pedicelli 

floresque scabriusculi. Panicula 4—5-pollicaris, suberecta, apice subnu- 

tante, subpauciflora. Spicule nitentes, semipollicares. Glume carinate, 

trinervie; nervis prominentibus. Flos summus spicularum minor, mas- 

culus, neuter, abortiensve, et ad pedicellum villosum reductus. Palea 

inferior nervosa, suleato-striata; apice bifida; laciniis bifidis in setulas 

albidas hispidiusculas productis: arista dorsali, fusca, subsemipollicari, 

i. e. flore duplo longiore, infra medium tortili. Folia radicalia plano-cari- 

nata, arescentia conduplicata, levia, margine elevato, conspicuo, discolore, 

serrulato-scabro, deorsum sepe undulato-plicata, s. corrugata; apice 

mirandum in modum obtusa, 2—3-pollicaria; caulina superiora vix semi- 

pollicaria. Vaginarum ora omnino nuda. Ligula elongato-triangularis, 

acuminata, arcte amplexicaulis, integerrima. 

11. Cynosurus brizoides, nob. 

C. panicula lanceolata, gracili, coarctata; spiculis neutris amentaceis, 

distinctis; bracteis setaceis, aristisque confertis, rigidis, scabris. 

Hab. in graminosis convallium Maderz rarior. 

Gramen annuum, exile, subinconspicuum. Culmi plures ex eodem 

radice, tenues, 1—2-pedales. Folia flaccida, brevia. Panicula parva, 

secunda, subpollicaris, simpliciuscula, aqualis; fructifera arcte contracta, 

sepe violaceo-purpurascens; spiculis neutris spiculas Festuce, Poe, aut 

Brize referentibus. Bracteze aristeeque recte, floribus multo longiores. 

12. Festuca jubata, nob. 

F’. cespitosa: culmo superne paniculeque lanceolate, abbreviate, 

subcoarctatz, subsecunde, rhachi ramulisque pedicellisque puberulis, haud 

scabris: spiculis lanceolatis, 3—5-floris, glabris; flosculis aristatis, sursum 

aristisque scabris: foliis culmos superantibus subsetaceis, subcanaliculatis, 

vaginisque striatis, glabris; ligula brevissima, abrupta: radice perenni. 

Hab. rariss. in rupibus convallium Madere, cum Deschampsia argentea 

nob., cui habitu simillima, nascens. Primus invenit Car. Lemann M. D. 

F. geniculate Willd. (Bromo geniculato L., Festuce stipoidei Desf.) 

proxima. Differt radice perenni; culmis haud geniculatis, dense cespitosis ; 

pedunculis subsimplicibus, &c. 
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Culmi pedales, tenues, teretes, erecti, glabri, paullo infra paniculam 
contractam puberuli, foliis breviores, haud geniculati, nodis demum fuscis. 
Folia numerosa, conferta, elongata, omnia subsetacea, tenuia, gracilia, 
rigidiuscula, glabra, striata; superiora sursum subplanata, subcanaliculata. 
Glume inzquales, laves; altera spicule subeequans, altera brevior. Flores 
glabri; basi tantum leves, sursum aristisque scabri; arista flore longior. 
Pedicelli simpliciusculi, sc. sursum vix subdilatati, cuneati, ancipites ; 
haud vero magis quam in multis aliis, 

13, Festuca Donax, nob. Prim. in Trans. Cam. Phil Soc. tv. I. p. 9. No. 9. 

(Character auctus, emendatus). 

F.. panicule glabre, large, laxe, diffuse, subsecundz, nutantis ra- 
mis elongatis, flexuosis : spiculis trifloris, lineari-lanceolatis, compressis, 
glomeratis; flosculis muticis linearibus, angulatis, scabris ; glumis sube- 
qualibus, spiculam equantibus: paleis apice membranaceis, obtusis, ab- 
ruptis, subbifidis, nervis prominentibus; exteriore quinquenervia, nervis 
equidistantibus; interiore binervia,. dorso canaliculata: foliis omnibus 
planis, elongatis, acuminatis, striatis, marginibus serrulato-scabris; culmis 
vaginisque levibus, glabris; ligula exserta, ovata: radice fibrosa, perenni. 

The nearest ally of the species is F. sylvatica Vill, (Ff. calamaria 
Sm.) 

14. Festuca albida, nob. Prim. in Cam. Trans. rv. I. p. 10. No. 10. 
a. longifolia; foliis culmum equantibus. 
B. brevifolia; foliis culmo multum brevioribus. In rupibus nuper invenit 

C. Lemann, M. D. 

CYPERACES. 

15. Carex sagittifera, nob. 

C. spica solitaria, androgyna, (9, superne g ), subpauciflora: stig- 
matibus duobus: fructibus oblongis, utrinque attenuatis s. fusiformibus, 
planatis, glabris, nitidis, reflexis, squama acuta, oblonga, persistente 
longioribus: culmo subtereti, superne subcompresso, hine subcanaliculato: 
foliis angustissimis, elongatis, Ssuperne canaliculatis, inferne carinatis ; 
carina marginibusque serrulato-scabris. 

Vou. VI. Parr III. yeh" 
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Hab. in sylvis Convallium Madere, in declivibus prope rivulos rarior. 

Dense cespitosa. Folia numerosa, conferta, culmos subequantia 

s. excedentia, fere (pro latitudine) setacea s. filiformia. Fructus niti- 

dissimi, magni, subremoti, squamisque fuscis, deflexis; inde sagittarum 

quasi cuspides plures, filo consertas, spica refert. 

Cum C. decipiente "Gay et La Perouse, monente am. Fr. Boott. 

M. D., conferenda. C. pulicari L. proxima, sed abunde distincta. 

JUNCE. 

16. Luzxula elegans, nob. 

L. foliis lanceolatis, pilosis: corymbi erecti, supradecompositi ramis 

capillaribus, mox divaricatis, deflexis: pedunculis unifloris: bracteis 

sepalisque setaceo-acuminatis, capsula obtusa, mucronata longioribus: se- 

minibus simplicibus, exappendiculatis. 

Hab. in rupibus convallium Madere murisque rarior. 

4—10-pollicaris ; corymbo fructifero elongato, oblongo-angustato, semi- 

pedali; ramis ramulisque inferioribus elongatis, plerisque divaricato-re- 

fractis, tenuissimis, hine inde pilosis. Flores solitarii, rufo-castanei, lucidi. 

AMENTACES. 

17. Quercus mitis, Herb. Banks. 

Since the publication of this, as a species, in the Cambridge Tran- 

sactions (Vol. rv. I. p. 15. No. 21.), from the specimen preserved in the 

Banksian Herbarium, I am quite satisfied, from observation of two 

growing trees, evidently identical with the above, that it is nothing 

but a slight variety of Q. Suber L., with broader, more entire leaves 

than usual; such as might be expected in trees, growing like these; 

in cool, shady situations, at a considerable elevation. Both these trees 

are the inmates of gardens: and it is quite certain that Madera pos- 

sesses no indigenous species of Quercus whatever. 

URTICACE. 

18. Parietaria gracilis, nob. Prim. in Trans. Camb. Phil. Soe. rv. I. 

p. 16. No. 23. 
(Character emendatus), 
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P. lucida, pubescens, ramosa: eaule ramisque gracilibus, erectis: 
foliis rhombeo-ovatis, rotundatis, abbreviatis, obtusis, trinerviis, petiolatis ; 
petiolis filiformibus, folia aquantibus: glomerulis axillaribus; floribus 
pedicellatis; pedicellis glomeratis, aliquando subcymosis, apice tribracte- 
atis: bracteis (7nvolucri Joliolis Auct.) unifloris, lanceolato-linearibus, ob- 
tusis, calyce (quadrifido, glabro) brevioribus, glanduloso-pubescentibus ; 
post anthesin inequalibus, uno duobusve dilatatis, foliaceis, calyeem 
superantibus, adpressis. 

Hab. in Madere rupestribus declivibus umbrosis rariss. 

EUPHORBIACE, 

19. Euphorbia refracta, nob. 

£. annua, ramosa, pilosiuscula: ramis pubescentibus humifusis 
prostratisve, suffrutescentibus, geniculatis, flexuosis, refractis, alternis, 
apice dichotomis, ad genicula nodosis: foliis oppositis, oblique-oblongis, 
subrhomboideis, inequilateralibus, argute serratis, hine deorsum integer- 
rimis, basi illine auritis, semicordatis, subsexnerviis, brevissime _petiola- 
tis, utrinque pilosis: floribus pedicellatis, in dichotomia ramulorum 
solitariis, ad apices aggregatis; bracteis bracteolisque foliis conformibus, 
angustioribus: glandulis quatuor albidis, exappendiculatis, transverse ova- 
libus: capsulis triquetris, levibus, glabris: seminibus minutis, nigre- 
scentibus, subtetrahedris, ovalibus, punctato-rugulosis s. corrugatis. 

Hab. in Madere regione inferiore et intermedio a mare usque ad 
1800 ped. rarior. 

CHENOPODES. 

20. Sueda laxifolia, nob. 

S. fruticosa, glabra: ramis patulis, decumbentibus, laxis: foliis 
laxis, patentibus, linearibus, obtusiusculis, subcarnosis ; supra depresso- 
planatis: floribus_ sessilibus, axillaribus, sub-solitariis ; stigmate trifido, 
ante anthesin exserto; calycibus post anthesin clausis, 

a. tenuifolia; foliis tenuibus; ramis debilibus, elongatis. 
8. crassifolia ; foliis carnosis obtusissimis, glaucescentibus; ramis validi- 

oribus. 

3Y2 
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Hab. in rupibus locisque saxosis maritimis Mad. et Portis 8": a vul- 

gatiss.; ab incolis “ Barilla” dicta. 

Calyx simplex, Suede Mert. vere. 

21. Suaeda tomentosa, nob. 

S. fruticosa, ramis fragilibus, superne foliisque carnosis, subtere- 

tibus, obtusiusculis, fasciculatis, incano-tomentosis. 

Hab. in collibus maritimis Promontorii P' Sao Lourenco dicti Ma- 

dere rariss; etiam in Portu S8”.—In insulis Canariensibus invenit cl. 

P. B. Webb, arm. In Herbario Banksiano sunt exempla, a cl. Masson 

olim in “Insula Desertas prope Madeira ” et “ Promont. S. Lourenco” 

sine floribus fructuve lecta, monente amico J. I. Bennett. . Hieme 

(Dec. Jan.) floret. Calyx simplex; nec spinescens, nec membranaceo- 

dilatatus. 

PoLYGoNes#, 

22. Rumeax maderensis, nob. 

R. paniculis amplis, aphyllis, multifloris: floribus hermaphroditis : 

valvis nudis, intigerrimis, orbiculatis, reticulato-membranaceis: verticillis 

paucifloris: foliis hastatis, acutis, succulentis: caule frutescente. 

a. glauca. 

B. virescens. 

Hab. in rupibus Mader ubique, vulgatiss. 

Suffrutescens, 1—2-pedalis. Flores mense Junii rupes maritimas 
excelsiores colore pulchre lateritio ornantes. A. R. scutato L. distinctam 
primus admonuit Cl. Lemann. 

PLUMBAGINES. 

23. <Armeria maderensis, nob. 

A, caule suffruticoso, simpliciusculo, humili, parum ramoso, ramis- 

que brevissimis, subcespitosis: foliis fasciculatis, gramineis, latiusculis, 

lanceolato-linearibus, acuminatis, planiusculis, levibus, lucidis, glabris, 

quinquenerviis, integerrimis: scapis teretibus, levibus, glabris, foliis 

3—4-plove longioribus: floribus pedicellatis, fastigiato-capitulatis ; capi- 
tulis oblongis, truncatis, pedunculatis, umbellatis, bracteolatis; umbella 
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laxiuscula, bracteata: bracteis lanceolatis; exterioribus acuminatis paten- 
tibus recurvisque ; interioribus pellucido-membranaceo-marginatis: bracte- 
olis magnis oblongo-ovalibus, latis, imbricatis, albo-membranaceis, obtu- 
Sissimis, apice eroso-dentatis crenatisve, glabris; exteriore basi tantum 
pubescente: bracteis bracteolisque floribus brevioribus : pedunculis tere- 
tibus, scapique vagina striata, granulatis, glabris: pedicellis teretibus, 
glabris: calycis laciniis brevissimis, latis, acutis; costis pilosis: petalis 
retusis, subemarginatis: stylis (5) basi pilosis: ovario glabro. 

Hab. in cacuminibus rupibusque preruptis montium excelsiorum 
Madere. 

Armerie plantaginee vel potius A. scorzsonerefolie Willd. Enum. 
et Staticei plantaginee All. F). Pedem. et Lam. et D. C. Fl. Francaise 
videtur proxima. Sed in genere tot nubibus offuscato, confusionem 
minus nomine novo quam falso augitur. 

Leaves bright, shining, rather dark green; not at all glaucous. 
Scapes from one to two feet high. Flowers rather large, deep rose- 
colour. 

LaBIaT2Z. 

24. Sideritis candicans, Ait. 

a. longifolia. (S. candicans, Auct.) 

B. crassifolia; .foliis incrassatis, subcoriaceo-tomentosis, rotundato-ovatis, 
abbreviatis, obtusissimis: labio superiore plerumque integro. 

Hab. in rupibus apricis maritimis Madere et Insularum Desertarum. 
25. Prasium medium, nob. 

P. hirsuto-pubescens: foliis ovato-oblongis, ovalibusque, acutis, basi 
in petiolum attenuatis, crenato-dentatis: dentibus calycis ovatis, acutis, 
mucronatis: corolla filamentis styloque glabris. 

Hab. in Madere rupibus maritimis. 

P. majus L. preserves all its characters in Madere; and the present 
plant appears a genuine species, though in some sort intermediate be- 
tween P. majus and minus; having the mucronate calyxes of the former, 
and hairiness of the latter. In the shape of the leaves it seems to differ 
from both. 
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26. Melissa rotundifolia, Sol. MSS, Herb. Banks! et Von Buch. 

M. hirsuto-pubescens: cymis subsimplicibus, laxis, paucifloris, folia 

ovato-rotundata, subserrata, superantibus: caule debili, ascendente, erecti- 

usculo, hirsuto; basi lignoso, frutescente. 

Thymus Calaminthoides, Reichb. (in Holl’s List) Hook. Bot. Mise. 

2d Series I. pp. 19, 38. 

Planto 1—2-pedalis, perennis, suffruticulosa. Folia parva, subsemi- 

pollicaria, obsolete et remote serrata sive crenata. Cymi vix decompositi, 

9_5-flores, floribusque plerumque folia excedentibus; pedunculis folii 

fere longitudine. Bracteee minime, lineares Flores conspicui, majus- 

culi, pallide purpurei, rarissime albi, pubescentes. Calycis subcylindrici, 
corolla fere triplo brevioris, fauce pilis inclusis, haud prominentibus, clauso ; 

dentibus ciliato-hirtis; tribus superioribus ovatis, acutis; duobus inferi- 

oribus longioribus, lineari-acuminatis, porrectis, elongatis. Semina ovoidea 

vel globosa, seepe triquetra, levia, obsolete et minutissime punctulata. 

Odor totius plante gravis, acris, subingratus, quodammodo Menthe 

Pulegii L. 
Cymi foliis longiores, ut in Thymo Nepeta L; subsimplices, pauci- 

flores, ut in 7. Calamintha 1, cui certe proxima. Pro mera varietate 

me diu habentem, summa tandem vincit cl. Solandri auctoritas. Cha- 

racteres sane plante, per totam Insulam pervulgatissime, nunquam 

variantes inveni. 

SOLANES. 

27. Nycterium triphyllum, nob. 

N. herbaceum, inerme, viscoso-pubescens: ramis angulatis petiolisque 

pedicellisque subtomentosis: foliis utrinque molliter viscoso-pubescentibus, 
quibusdam simplicibus, plerisque ternato pinnatifidis; foliolis cordatis 

vel oblongo-ovatis, repando-dentatis, integriusculis: racemis sparsis, folio 

multum brevioribus, corymbosis; pedicellis secundis, nutantibus: bacca 

calyce dilatato-foliaceo tecto. 

Hab. in Madera rariss: In parte Septentrionali prope S. Vicente secus 

vias invenit Car. Lemann M. D.: in orientali prope Portella serius 

detexit Lippold. Ex insulis Canariensibus, in Herbario Lemanniano, 

siecum quoque vidi. 
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Flores colore et magnitudine S. tuberosi L. Anthera rima longitudinali 

dehiscentia; 2—3-imis longe productis, cornutis. Bacca cerasi. magni- 
tudine, aurantiaca, globosa. 

CONVOLVULACEZ. 

28. Convolvulus solanifolius, Prim. in Trans. Cam. Phil. Soc. supra iv. I. 
p- 22. No. 35. 

In the first place, the discovery of the flowers of this rarest of Maderan 
plants, authorizes the removal of the mark of doubt before affixed to 
the generic name. ‘I'hey are white, and truly those of a Convolvulus. 
Hence therefore, no change of the specific name would be necessary 
on account of Ipomea solanifolia L. But, though unfortunately I am 
unable to decide the matter by reference to the Botanical Register, t. 133, 
I have very little doubt the plant will prove identical with Convolvulus 
Massoni Dietrich (C. suffruticosus Ait., non Desf.) 

JASMINACES. 

29. Olea Europea, L. var. 

Maderensis: foliis lineari-oblongis, angustis, mucronatis, integerrimis, 
utrinque subconcoloribus s. inferne nudiusculis: drupis subglobosis, 
purpurascentibus, demum nigris. 

Hab. in rupibus apricis Madera, presertim maritimis. 

Specimen in Herbario Banksiano, a cl. Masson olim lectum, sub 

nomine O. Europee a cl. R. Brown in “Von Buch’s Catalogue,” 
O. glabelle Herb. Banks. (O. exasperate Jacq. Hort. Schoenbr. 111. t. 1.) 
“valde simile” dicitur. Panicula vero terminali, ramisque tuberculatis 
hee satis differe videtur. 

Drupes about the size and shape of a small marble, half an inch in 
diameter, of a deep shining black, by no means constantly “crowned 

with the persistent style.” Skin and flesh very thin and dry, rather 
bitter to the taste. Stone very large. 

In drying, the plant gives out abundantly a whitish, powdery, gran- 

ulated, sweetish substance (Manna?); resembling fine powder-sugar. 
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CAMPANULACES. 

30. Prismatocarpus scaber, nob. 

P. scabro-pubescens: caule erecto, stricto, simplici, vel imo _ basi 

rarius ramoso; foliis radicalibus petiolatis, obovato-spathulatis oblongisve ; 

superioribus sessilibus, lanceolatis; omnibus margine undulato-crenatis ; 

summis integriusculis: floribus sessilibus, solitariis, per totum caulem 

axillaribus ; sepalis linearibus, patentibus, corollam subzequantibus. 

Hab. in Mader declivibus saxosis, rupestribus. Primus detexit 

amicus et plantarum indagator oculatissimus ac indefessus Car. Lemann, 

M. D. 

Herba annua, subpedalis. Corolla, prasertim terminalis majuscula, 

subconspicua, violaceo-cerulea. 

ComMPOSIT. 

31. Senecio incrassatus, nob. 

S. herbacea, erecta, glaberrima, nitida: foliis auriculato-amplexicauli- 

bus, carnosis, profunde sinuato-pinnatifidis; lobis integriusculis, aqualibus, 

remotis, obtusissimis: caule ramisque acutissime angulatis: floribus arcte 

corymbosis; pedicellis abbreviatis, sursum valde incrassatis, multibracteatis ; 

bracteis adpressis, basi tumidis carnosis, apice marcidis, nigris; radio pa- 

tente 7—8-ligulato: seminibus pubescentibus. 

S. crassifolius W. var. D. C. in litt. 1834. 

Hab. in collibus apricis aridis maritimis Madere rarior. 

Herba annua, subspithamea, ramosa, corymbo amplo, conspicuo, 

multifloro: sed magnitudine pro situ, aque copia, &c. valde varians; 

sc. caule sepe 2—3-pollicari tantum, simplici, uni-pauci-floro. Flores 

aurei, conspicui, sat magni, diametro semipollicari, radio marcescenti 

modo revoluto. 

32. Helichrysum? obconicum, D. C. 

In the Botanical Miscellany, 2d Series, Vol. 1. p. 35, I have very erro- 

neously spoken of the common Maderan plant called by Holl and Reichen- 

bach Antennaria leucophylla, and abounding on the rocky sea-cliffs and 
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islets of these shores, as if it were Gnaphalium crassifolium L.. Neither 
must it be confounded, I am advised by the Chevalier De Candolle, with 
the European (Majorca) plant, Gn. crassifolium Lam.: nor yet with a third 
species similarly named, Gn. crassifolium Willd. Its real affinity, the 
Professor writes, is with a fourth plant, which has also been confounded 
with Gn. crassifolium L., viz. Gn. ovatum Desf.; and with this, he is 
disposed to unite it into a genus, or at least a group, co-ordinate with 
the other Gnaphalian sections, or subgenera. That it is no true Anten- 
naria either in characters or habit is most certain. Speaking strictly, 
it is perhaps intermediate between Helichrysum and Gnaphalium : though 
I could be well content to refer it simply to the former genus. 

33. Chrysanthemum dissectum, nob. 

C. fruticosum, glaberrimum: foliis profunde pinnatifidis; pinnis re- 
motis, parallelis, aqualibus, linearibus, rectis, argute inciso-dentatis; la- 
ciniis omnibus acutis: floribus subsolitariis, vix corymbosis s. corymbo 
irregulari, paucifloro. 

C. grandiflorum (W.) Spr. Syst iii. 584. No. 6? 

Hab. in rupe quadam excelsa maritima Madera, Cabo Giram dicta. 
Species habitu seminibusque C. pinnatifidi L.. in Madera ubique obvii, 

sed distinctissima, floribusque minoribus. 

34. Calendula maderensis, nob. 

C. biennis subperennansve, basi suffrutescens, ramosa, viscosa: foliis 
semiamplexicaulibus, obovato-oblongis, repando-dentatis; junioribus ra- 
mulisque tomentosis: seminibus arcte inflexis, muricatis; exterioribus 

cymboideis, late triquetro-alatis; alis duabus dorsalibus expansis, inciso- 

dentatis. 

C. maritima, nob. Bot. Misc. New Series, I. p. 36; haud Gussone. 

C. amplexifolia, Reichb. in Holl’s List ? 

Hab. in littore, rupibusque maritimis ore prasertim septentrionalis 

Madere. 

Flores majusculi, crocei, ligulis paucioribus, longioribus quam in 
C. officinali Vu. aut arvensi Li. 

Nomen mutavi ob C. maritimam, Gussone. 
Vou. VI. Parr III. 3Z 
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35. Andryala robusta, nob. 

A. foliis crassissime molliterque incano-tomentosis, subintegerrimis ; 

caulinis abbreviatis, lanceolato-ovatis: caule robusto, stricto, paniculeeque 

ramis pedicellisque abbreviatis, anthodiisque magnis, hemisphericis vel 

globoso-capitatis, densissime fulvo-glandulosis, villosis. 

A. varia 3. nob. MSS. olim. 

Hab. in rupibus maritimis, presertim ore septentrionalis Madera et 

Insularum Desertarum: necnon in cacuminibus montium Insule Por- 

tis S". 

De Andryalis Maderensibus, ad unam speciem (4. variam nob.) olim 

redactis, diu vacillantem, formas tres insigniores (A. varie a, B, y. nob. 

olim) pro totidem speciebus melius habendas, observationes protractiores 

tandem suaserunt. Harum forma typica est A. varia nob (A. varia, a. 

nob. olim); cujus due adsunt varietates, a) foliis integriusculis; planta 

ubique obvia, vulgatissima, montana: et 8) foliis plus minus sinuato- 

pinnatifidis; indigena, montana, rarior; culta in Europe hortis sub- 

frequentior (A. cheiranthifolia Herit.): hac ad <A. ecrithmifoliam Ait. 

(A. variam y. nob. olim), illé ad A. robustam nob. (A. variam {3. nob. 

olim), utraque maritima, secedente. 

36. Carduus? squarrosus, D.C. in litt’. 

C. foliis decurrentibus, obovato-oblongis, indivisis, grosse  serratis, 

spinellosis, subtus albo-tomentosis; floribus aggregato-glomeratis ; anthodii 

squamis inermibus, scariosis, squarrosis, apice reflexis: pappo clavulato. 

Hab. rariss. in Convallibus interioribus Madere. 

Planta elatior, conspicua, floribus albis; a C. clavulato Link, 

planta Canariensi affinitate proxima, foliis indivisis, nec semipinnatifidis; 

squamisque anthodii squarroso-reflexis nec erectis, monente cl. De Can- 

dolle, distincta. 

Plantas e seminibus a me ipso olim a Madera a. p. 1829, ad 

amicum Rev. M. J. Berkeley Angliam missis, in horto Barclayano 

ortas, cl. et am. Alph. De Candolle fil, vidit: ex quibus desiccatis, 

species characteribus planta indigene prorsus congruentibus a patre 

illustri in litteris stabilita, est. 
C. clavulatus Link verus in Madere nullibi obvenit. 
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87. Cynara horrida, Ait. 

C. caule brevi, simplici, unifloro, incano, foliato: foliis pinnatifidis, 

ferocissime spinosis, subtus incanis: caulinis haud decurrentibus; pinnis 

distinctis, subremotis, angustis, longe acuminatis s. apice caudatis, inciso- 

laceris, spinis baseos pinnarum laciniarumque bi-pluri-aggregatis, basi 

connatis: anthodii squamis erectis, angusto-lanceolatis vel ensiformibus, 

acuminato-spinosis, rectis. 

C. horrida, (Ait:) Spr. Syst. iii. 369. No. 3. 

Hab. in collibus apricis graminosis Portis S" sat frequens, a. D. 

1828: in Maderz Promontorio Ponta $8. Lourenco dicto solo rariss. nu- 

perrime (A. D. 1837) invenit Lippold. 

Radix magnus, crassus, perennis, cum capitulis apud accolas Porttis 

S" edulis. Caulis subpedalis, strictus, firmus, erectus, rotundus. Capi- 

tulum sat magnum, spheroideum, diametro fere bipollicari. Flosculi 

“cerulei” (Lippold); desiccati in ipso exemplo Lippoldiano purpurei; 

a me nunquam rite expansi visi, sed albi ab incolis Portis S" dicti. 

Folia elegantissima; sed spinis rigidis, tenuissimis, acutissimis, nu- 

merosissimis pallide flavescentibus fulvisve horridissima tectis: radicalibus 
rosaceo-confertis, subpedalibus. 

RUBIACE. 

38. Galium productum, nob. Prim. p. 29. No. 50. 

An a G. cinereo All., Sm., D. C. satis distincta? Confer etiam 

G. erectum Huds., Sm., D. C. 

39. Galium geminiflorum, nob. 

G. pumilum: caulibus tetragonis, gracilibus, levibus, simplicius- 

culis, diffuso-erectis, dichotomis, subinermibus vel sparsim aculeolatis, aculeis 

subdeflexis: foliis 4—6-verticillatis, ovato-lanceolatis, cuspidatis, superne 

margineque aculeatis, aculeis antrorsum spectantibus: pedunculis gemi- 

natis, axillaribus, simplicibus, rarissime bifidis, unifloris, abbreviatis, s. folia 

vix superantibus: fructibus densissime uncinato-setosis hispidis. 

Hab. in summis cacuminibus Insulz Portis S" tantum. 

Planta rarissima, parva, inconspicua, tenera, mox evanescens; (. 

setaceo Lam., Desf., D. C. (G. capillart Cav.) affinis. 
322 
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UMBELLIFER&. 

40. Daucus neglectus, nob. 

D. caule superne aspero: foliis bi-tri-pinnatisectis, hirsutiusculis: 

foliolis (segmentis) omnibus ovatis, incisis; laciniis (segmentis ultimis) 

lanceolatis, acutis, cuspidatis : bracteis bipinnatifidis, umbella brevioribus ; 

bracteolis pinnatifidis, umbellulas aquantibus: umbella ample radiis 

valde inzqualibus; umbellularum floribus externis radiantibus: fructus 

ovalis aculeis ejus latitudinem equantibus, ad basin distinctis, apice 

glochidiatis.— 

a. asperocaulon: hispidus; caule toto aspero, inferne preesertim retrorsum 

strigoso: foliis hirsutis. 

3. leiocaulon: glabriusculus; caule fere nudo. 

Hab. in saxosis apricis rupestribus regionis inferioris Madere. 

Obs. Dauco hispido Desf. Fl. Atl. 1. 243. t. 63, praesertim foliorum 

habitu affinis. Laciniis vero foliorum acutis, imo cuspidatis, nec “ obtusis ;” 

bracteis (involucri foliolis) bipinnatifidis, umbelle ample radiis exteri- 

oribus longe productis, floribusque albidis, anisopetalis s. exteriorum 

petalis extimis magnis, dilatatis, nec omnibus “minutis, sub-zqualibus, 

pallide flavis,” mericarpiisque duplo majoribus, ovalibus, planiusculis nec 

“gemiteretibus,” satis differre videtur. Foliolis (segmentis) foliorum 

omnium conformibus a D. maximo Desf. distincta. 

Planta annua; caule 1—2-pedali, erecto, parum ramoso. Flos um- 

bella centralis magnus, carnosus, atropurpureus, abortivus. Umbelle 

multiradiate ; radiis defloratis incurvis. 

41. Melanoselinum decipiens, (Hoffm.) D. C. 

Hab. in convallibus umbrosis ore septentrionalis Madere, ad alti- 

tudinem 2—3000 pedum. 

The native country of this fine umbelliferous plant was unknown, 

till I discovered it, in the Autumn of the year 1829, growing plentifully 

high up the main, or central branch, of the Ribeira de Sao Jorge; 

both among the rocks and stones, forming the bed of the ravine, and 

up the steep shady banks on each side. It has since occurred in 

others of the shady ravines of the North. 
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42. Bupleurum salicifolium, Sol. MSS. 

B. fruticosum, erectum, ramosum; ramis levigatis, elongatis, gra- 

cilibus, inferne nudis: foliis angustis, lineari-lanceolatis, acuminatis, utrin- 

que attenuatis, planis, coriaceis, pallide glaucis, obliquis, sessilibus, inte- 

gerrimis, multinerviis: umbellis 5—i0-radiatis; bracteis 4—5, reflexis, bre- 

vibus, lanceolatis; bracteolis 4—5 conformibus, umbellula multo brevi- 

oribus. 

B. salicifolium, Sol. MSS. et Herb. Banks. (auct. J. I. Bennett.) 

Hab. in rupibus convallium Madere. 

A B. gibraltarico foliis multi- (nec uni—)nerviis prima _ fronte 

differt. B. plantagineum Desf., cui vero species nostra propior, foliis pro 

longitudine multo latioribus, obtusiusculis cum mucrone (nec acuminatis), 

coneavis (nec planis), bracteisque adpressis (nec, ut in nostra aque ac 

in B. gibraltarico, reflexis) a B. salicifolio nob. satis superque distinctum 

videtur. 

Frutex elegantior; ramis in rupibus declivibus sepe pendentibus. 

43. Bunium brevifolium, nob. 

B. (Conopodium D.C.) glabrum: radice subgloboso: caule simplici. 

striato, tereti, glauco: foliis petiolatis, rigidis, deltoideis, abbreviatis, om- 

nibus 2—3-pinnatisectis; laciniis planis, tenuibus, remotis, pectinatis, 

oppositis; ultimis brevissimis, lineari-lanceolatis, acutis, integerrimis ; 

vaginis amplis, elongatis, striatis, cum petiolo erecto-patentibus: bracteis 

bracteolisque nullis: stylopodiis tumidis, planatis; stvlis rectis, invicem 

adpressis, demum subdivergentibus. 

Hab. in regionibus excelsioribus graminosis montium Madere ; jam 

rarissima, ob puerorum et porcorum predationes. 

«A pube Maderensi monticolo sc in monte “ Pico Grande” dicto 

degente, cui tubera escam gratissimam prebent, “ Norsa” dicitur. Planta 

vero longe aliena, sc. Vamnus Norsa nob., ab incolis Portis Caurum 

versus (Porto Moniz) etiam “ Norsa’’ dicitur. 

PARONYCHIE®., 

44, Herniaria flavescens, nob. 

Hi. annua, herbacea, hirsuta, humifusa, flavescens: ramis ramulis+ 

que distichis, horizontalibus, cespitosis: foliis oblongo-lanceolatis. ciliatis : 

glomerulis frequentissimis, axillaribus, multifloris. 
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Hab. in collibus maritimis Maderz rariss: Portis S" frequentior. 

Radix tenuis, subtenax, tortuosa, parum ramosa, annua. Caules 

humifusi, ramis ramulisque flabelliformibus s. concinne et creberrime 

distichis, horizontalibus, undique terre arctissime per totam longitu- 

dinem adpressis; cespitem diametro 3—6-pollicari densam, pallide viridi- 

flavescentem, hirsutam formantibus. 

RosaceE&. 

45. Poterium megacarpon, nob. 

P. herbaceum: caulibus angulosis, deorsum hirsutis: rhachi foliorum 

foliolisque subtus hirtiusculis: foliolis inciso-dentatis; inferioribus sub- 
rotundis; superioribus ovalibus oblongisve: capitulorum solitariorum flo- 

ribus omnibus hermaphroditis; inferioribus subabortientibus: filamentis 

abbreviatis: fructibus maximis, rugosis. 

Hab. in collibus apricis graminosis saxosisque presertim maritimis 

regionis inferioris Madere. 
Habitus P. Sanguisorbe L.: sed humilior, subpedalis, totaque in- 

sipida, inodora. Capitula longe pedunculata. Filamenta brevia, albida, 

s. pallide flavescentia, nec purpurascentia. Stigmata brevia, parva, lete 

coccinea, Sepala plerumque 4, lata, ovalia, magna. glabra, persistentia. 

Fructus quam in P. Sanguisorba L. duplo triplove major; pericarpio 
fungoso, laminoso-scrobiculato. 

LEGUMINOS&. 

46. Vicia conspicua, nob. 

V. tenuis, gracilis; caulibus foliisque cirrosis tenellis, glabriusculis : 
foliolis subdenis (8—12), angustis, oblongis, mucronatis; foliorum infe- 

riorum spathulatis vel obcordatis; summorum linearibus: stipulis incon- 

spicuis, angustis, semisagittatis, paucidentatis; laciniis acuminatis, subtus 

ustulato-notatis: floribus subsessilibus, conspicuis, calyce 3—4-plo lon- 
gioribus; inferioribus solitariis, summis 3—4-nis, plerisque (intermediis) 

binis: laciniis calycinis duobus superioribus longioribus, angusto-acumi- 

natis tubo subequalibus: leguminibus subcylindricis, vix compressis, 

rectis, angustis, puberulis, 9—12-spermis: seminibus parvis, sub-globosis, 

vix compressiusculis, fuscis, atro marmoratis, glabris. 
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Hab. ubique vulgatiss. inter Vineta, segetes, graminosaque montana Madere. 
: 

Constantly distinct, and easily distinguished by its large and handsome flowers, delicate smooth foliage, fine narrow leaflets, and graceful habit, from V. sativa L., which preserves all its characters and much coarser habit in Madera, Neither is it to be confounded with V. angustifolia “Roth. and Willd.” (V. sativa B. Sm. in E. Fl); nor again with V. Bobartii Forst. (V7. angustifolia Sm. in EK. Fl. non Roth. et Willd.) It differs from the former in the much narrower leaflets of the upper, and inversely heart-shaped ones of the lower leaves : but more strikingly, in the much larger and conspicuous bright rich purple (approaching to crimson) flowers. In both these points it comes much nearer V, Bobartii: but still the flowers are larger; and those only which open first, at the beginning of the season, are solitary : later, they are two or three, and even sometimes quite the uppermost are four together: the leaflets are more numerous and smoother; and the whole plant is larger, with the stems from one or two to three feet long. 

47. Vicia capreolata, nob. : 
V. subpubescens, ramis gracilibus, elongatis, filiformibus: foliis cir- rosis; foliolis 5—11; lineari-olongis, remotis: stipulis parvis, lineari- oblongis, angustis, semi-sagittatis, simplicibusve, acuminatis vel apice bifidis, coloratis, marcescentibus: pedunculis submultifloris; floriferis folio equantibus; fructiferis duplo longioribus: calyce puberulo 2; dentibus duobus superioribus inter se arcuato-incurvis; tribus inferioribus longi- oribus, acuminatis: floribus secundis, subdenis: leguminibus oblongis, 

subfalcatis, glaberimis, obsolete reticulatis, 4—5-spermis: seminibus 3—4, subtetrahedris, oblongis, subecompressis, glabris, nigrescentibus; funiculo magno hiloque longo. 
Hab. in rupibus umbrosis convallium Madera. Florentem primus 

detexit. cl. Car. Lemann, M. D. 
Flores eorum PV. Cracce L. fere magnitudine, ochroleuci. Videtur 

V. ochroleuce Ten. affinis. An V. parviflora Cav., Brouss ? 
48. Biserrula Pelecinus 1. 

a. pubescens.—B, Pelecinus L. D. C, Prodr. ii. 307. 
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8. glabra, nob. 

Hab. ambe varietates in apricis maritimis incultis Madere et Por- 

tis S", una nascentes: sed £8. nostra, quamvis prima fronte valde distincta, 

nullo modo nisi glabritie differt; an vero species ? 

49. Lotus pisifolius, nob. 

__L. herbaceus, glaucus, glaber: caule flexuoso ramisque divaricatis, 

crassis, fistulosis, firmis, erectis vel subdeclinatis: foliolis obovatis stipu- 

lisque subcordatis maximis: capitulis multifloris, longe pedunculatis : 

calycibus campanulatis; laciniis ciliato-pilosis, zstivatione stellatis: legu- 

minibus...... seminibus...... 

Hab. in humidis graminosis Montis excelsi Pico Grande dicti: 

semel tantum lecta. 

An varietas luxurians monstrosa L. maoris Sm. e solo pinguiore 

orta? Sed habitu, colore, magnitudine toto ccelo differt. Foliola stipi- 

leaque 1—2-pollicarie ; juniora ad margines pilis raris sparsa. Pedunculi 

4—6-pollicares. Capituli 12—15-flores, basi folio ternato bracteati. Ala- 

bastra floresque ut in ZL. majore Sm. Tota planta eximie glauca 

2—3-pedalis, ramis flabellatim expansis, suberecta. 

50. Lotus macranthus, nob. 

L. subcinereo-glaucescens, sericeo-pubescens: radice annua aut bi- 

enni; caule basi lignoso, frutescente: ramis diffuso-prostratis, patulisve : 
stipulis subsessilibus, transverse ovalibus; foliolisque rotundato-obovatis 

minimis: floribus solitariis, versicoloribus, breviter pedicellatis: legumi- 

nibus lomentaceis, cylindricis, longissimis, rectis, glaberrimis, polyspermis: 

seminibus 30—40 minutis, orbicularibus, compressis, levibus, glabris, 

fuscis. 

Hab. in apricis maritimis Madere et Portis S" rarior. 

Habitus L. glauwci Ait; sed minus incana. Pubescentia totius 

plante brevissima, inconspicua, arctissime adpressa. Flores maximi, 

pollicares, cernui, pallide citrino-virescentes, mox fusco-purpurei; carine 

apice semper atro-purpureo. Legumina rectissima, subbipollicaria. Spe- 

cies notabilior, distinctissima. 

51. Lotus divaricatus, Sol. MSS. 
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ZL. annuus, pilosus, subcespitosus: caulibus prostratis, intricatis, 
numerosis, elongatis, flexuosis, ramosis, pallidis: foliolis obovato-cuneatis 
stipulisque ovatis subcordatis acutis: capitulis trifloris: leguminibus tur- 
gidis, erassis, brevibus. 

L. divaricatus, Sol. MSS. et Herb. Banks. 

Hab. incultis graminosisque montanis Maderz sat frequens. 
A. Loto diffuso, Sol., in Madera xque vulgari, capitulis normaliter 

tri- nec bi-floris, floribus aurantiacis, nee citrinis neque flavis, legumi- 
nibusque multo brevioribus, pinguibus, crassis, statim dignoscitur. 

52. Medicago pulchella, nob. 

M. subsericeo-pubescens, cinerascens: caulibus patulis prostratisve 
gracilibus: foliolis obcordatis vel obovatis, basi cuneatis, integris, sursum 
subdentatis, apiceque argute tridentato: stipulis integriusculis, ovato- 
lanceolatis, inferioribus acuminatis: pedunculis sub-bifloris, abbreviatis : 
leguminibus cochleatis, villosulis, parvis, inermibus, globosis ; cyclis 3—4, 
angustissimis ; margine simplici, angusto, lineari, utrinque costis promi- 
nentibus, oblique deflexo-arcuatis, grosse dentato: seminibus compressis, 
reniformibus, flavis. 

Hab. in collibus apricis saxosisque maritimis Madere et Porttis 
S" rarior. 

53. Ononis micrantha, nob. 

O. herbacea, annua, prostrata procumbensve  foliosa, glanduloso- 
pubescens: foliis (preter summa) trifoliolatis; foliolis ovalibus, argute 
serratis: stipulis amplis, foliaceis, oblongo-ovatis, mucronatis, subserrulatis 
integrisve: floribus (purpureis) inconspicuis, sparsis, axillaribus, subses- 
silibus, solitariis, folio brevioribus: calycibus amplis, foliaceis, post anthesin 
dilatatis; laciniis «quis, acuminatis, integris, corollam subzequantibus, 
unicostatis: legumine erecto, turgido, ovali, brevi sc. laciniis calycinis 
breviore, dispermo: seminibus rufo nigroque marmoratis, compresso-ro- 
tundatis, minutissime granulato-scabris s. verruculatis. 

“ O. arthropodia Br. Fl. Lus. 2. 94,” Herb. Banks. quoad exemplar unicum 

Gibraltaricum, a cl. Broussonet lectum aut communicatum!—haud 

Broteri in Fl. Lus. 1. e. 

An. O. parviflora, Brot. Fl. Lus. 2. p. 96? 
Vor. VI. Parr III. 4A 
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Hab. in collibus apricis maritimis Madere et Portus 8". 

Ab. O. villosissima Desf. Fl. Att. 2. p. 147. T. 192. vix nisi floribus 

sessilibus, sparsis, nee confertis, nec racemosis, stipulis calycibusque magnis, 

hirsutieque parciore differt. 

54. Ononis dentata Sol. (Prim. p. 34. No. 59. t. 4.) 

a. tridentata: laciniis calycinis 4 superioribus apice plerumque triden- 

tatis. 

O. dentata Sol. MSS. nob. I. ¢. 

Hab. in Portu S* et Insulis Desertis. 

B. simplex: laciniis calycinis simplicibus, conformibus, acuminatis. 

Hab. in Promontorio Madera Ponta Sad Lourengo dicto, Dr C. Le- 

mann; et in Insulis Desertis cum a mixta, Dr Lippold. 

Quoad cetera, planta omnino conveniunt: quoad imo calycis lacinias, 

status intermedii, sc. lacinia uni-bi-dentata facile adsunt. 

Hy PERICINE#. 

55. Hypericum nubigenum, nob. in Bot. Mise. 2d Series, I. p. 43. 

H. glabrum: caulibus simplicibus, erectis, strictis, ancipitibus, basi 

suffrutescentibus: foliis epunctatis, erectis, lineari-oblongis, obtusissimis 

vel retusis, amplexicaulibus, margine revolutis: panicula terminali, co- 

rymbosa: sepalis ovatis, zqualibus, dentato-glandulosis petalisque nigro- 

punctatis: floribus trigynis; antheris epunctatis s. eglandulosis. 

H. angustifolium, Primit. p. 35. No. 61; haud Lam. 

Hab. in Madere editioribus. 

H. angustifolium Lam. jam adest: ideoque nomen mutetur. 

MALVACE&. 

56. Side maderensis, nob Prim. p. 35. No. 62. 

Side canariensis W. mera varietas statusve videtur: qualis Sid@ car- 

pinifolize L. est verosimiliter Side carpinioides, D. C. 

CaRYOPHYLLEA. 

57. Cerastium vagans, nob. 

C. viscoso-pubescens, perennis: caulibus diffusis, deorsum  suffrutes- 

centibus, apice ascendentibus, paniculisque pedicellisque calycibusque 
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dense fulvo-glandulosis: foliis angustis, sublanceolatis, acuminatis : petalis 

bifidis, sepalis subduplo longioribus, conspicuis: capsulis ovatis, calyce 
sublongioribus. 

a. fulva; dense fulvo-tomentosa. 

B. subnuda; glabriuscula; foliis inferioribus glabris. 
Hab. rarior sparsimque in rupibus siccis excelsioribus Madere. 

Habitus quodammodo Stellarie. FPedicelli semper erecti. Capsule 

fructiferee calyce tect, abbreviate, obovate vel ovales. 

58. Arenaria serpyllifolia L. 

y. depauperata; viscida, glanduloso-pubescens. 

Hab. in Portu Sancto: etiam in cacuminibus summis Madere. 

59. Silene filiformis, nob. 

S. annua, pubescens: caule erecto: ramis divaricatis, filiformibus, 

gracilibus, strictis; internodiis sape viscidis: foliis angusto-lanceolatis, 

acutis; infimis obtusiusculis; summis raris linearibus: floribus solitariis, 

inconspicuis pedunculatis; pedunculis glabriusculis; calycibus oblongis; 

petalis linearibus, capsulisque cylindricis, sepala subaquantibus: an- 

thophoro capsule dimidium vix #quante. 

S. inaperta, Hort. Reid. quoad saltem stirpem Maderensem: haud 

Linn. 

Hab. in sterilibus apricis, alveisque siccis convallium Madere. 

Flores inaperti: petala viridi-fusca. SS. inaperte L. proxima; sat vero 

distincta. 

60. Silene ignobilis, nob. 

S. annua, glabriuscula, dichotome ramosa, erecta: foliis inferioribus 

subciliolatis, spathulatis, superioribus lanceolatis: floribus solitariis, in- 

conspicuis, pedunculatis; calycibus oblongis, haud inflatis, mox ventri- 

cosiusculis basique coarctatis, reticulatis; petalis inconspicuis, calycem 

vix superantibus: capsulis ventricosis, doliiformibus, calycem equantibus; 

anthophoro brevissimo. 

Hab. inter segetes Madere rariss. 

Viridis, vix glaucescens. Variat plus minus velutino-pubescens ; 

plerumque fere glabra. Petala apice purpurascentia. 
4A 2 
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61, Silene inflata, Sm., D. C., &e. 

Var. intricata nob.; vix glaucescens; caulibus ramosissimis, dense intri- 

catis, elongatis, pendulis, basi suffrutescentibus. 

Hab. in rupibus excelsis declivibus Convallium Madere. 

FRANKENIACE. 

62. Frankenia cespitosa, nob. 

F’, caulibus fruticulosis, ramosissimis, densissime cespitosis, humili- 

bus, humifusis, calycibusque basi velutino-pubescentibus: foliis sessilibus, 

basi connatis, linearibus, glabris, margine revolutis, basi breviter et parce 

ciliolatis: floribus in capitulos terminales congestis, subcymosis, foliis 
multo longioribus. 

Hab. in collibus maritimis sterilibus aridisque Promontorii Ponta 
S. Lourenco Mader; etium Portis S". 

F’. ericifolie C. 8m., necnon F’. corymbose Desf. nimis forsan affinis. 

VIOLARIE. 

63. Viola paradoxa, nob, 

V. suffruticosa, e basi ramosa; ramis subproductis, elongatis, sim- 

pliciusculis; inferne nudis, stipulisque simplicibus linearibus integris 

minutis saepe obsoletis, petiolisque elongatis marginatis ternato-fascicu- 

latis, foliisque rotundato-spathulatis crenatis basi abruptis cordatisve, 
glaberrimis: foliis summis cuneato-elongatis, in petiolum attenuatis, apice 
subtridentatis, petiolisque caulibusque subpuberulis: sepalis oblongis in- 

tegris, bracteisque pedicelloque pubescentibus: calcare obtuso, calyce 
longiore; nectario......... capsula obsolete hexagona, glabra; seminibus 
pallide flavescentibus, paucis (15—20), ovatis. 

Hab. rariss. in summis cacuminibus montium excelsiorum Madere, 
in fissuris rupium. Invenit cl. Car Lemann, M.D. 

Obs. Cum V. calearata L. conferenda. Flos aureo-flavus. Stylus 

ab apice ad basin attenuatus. Stigma urceolatum, utrinque fasciculato- 
pilosum, ore magno, expanso dilatato, inferne in labellum producto. 
Folia ad apices ramorum sterilium conferta. Pedunculi solitarii, axillares, 

subpollicares. Capsule abbreviate, obtuse. Semina, preter colorem, fere 

ut in PV. tricolore L. 
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CRUCIFER2. 
64. Stnapidendron salicifolium, Prim. p: 37. No. 65. 

Syn. Sinapis angustifolia, D.C. Prodr. 1. 220. 
Hab. in rupe quadam excelsa maritima, “Cabo Giram’” dicta, prope vicum Camera de lobos Maderz, nuperrime ab amico Rev’. M. Tucker, 

botanophilo vel oculatissimo, detecta. Species genuina videtur. 
65. Matthiola maderensis, nob. 

WM. biennis: caule herbaceo, erecto, elato, ramoso: foliis oblongis, 
integerrimis, incano-tomentosis; radicalibus densissime rosaceo-confertis : siliquis compressis, glanduloso-muricatis. 

Hab. in rupibus maritimis Madere et Portus 8". ubique vulg. 
Flores pallide violacei, vespere preesertim odori, rarissime albi. Species intermedia, habitu foliisque MZ. incane R. Br.; siliquis, 3—5 poll. 

longis, M. sinuate, ejusd. 

MapeEra, October 1837. 

SUPPLEMENTUM.. 

CHARACE®. 

66. Chara atrovirens, nob. 

C. atroviridis, pellucida, lucida, gracilis, foetens: caule ramisque 
tenacibus, tenuibus, flexilibus, hine inde articulatis superne sparsim mi- 
nutissime retrorsum papilloso-spinellosis, contorto-striatis: ramulis verti- 
cillatis, 5—6-articulatis; articulis inferioribus striatis ; summis simplicibus, 
bracteisque 2—4 inarticulatis, cylindrico-setaceis, nucula triplo quadruplove 
longioribus, levibus, haud striatis, glabris. 

Hab. in rivulis aquarum fluentium Madera rariss, 
C. vulgari Ag. proxima. Differt colore, scabritieque ramorum, ra- 

dicellos nascentes deflexos, sparsos amulante. 

Mavera, May 18938. 
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XXVIII. On a New Correction in the Construction of the Double 
Achromatic Object-glass. By Ricuarp Potter, Ese. B.A. 
Queens’ College. 

[Read April 30, 1838.] 

THE achromatism of the compound object-glass of telescopes has 
never, that I am aware of, been investigated otherwise than for very 
small pencils. 

Sir John Herschel, in his elaborate and excellent paper on the 
aberrations of compound lenses and object-glasses, published in the 
Transactions of the Royal Society for 1821, when noticing the investi- 
gations of Clairaut, Euler, and D’Alembert, makes no mention of any 
higher approximation having been attempted; and he himself follows 
no other method for the chromatic dispersion, although he has pursued 
the subject of the spherical aberration so far as to render the object- 
glass free from it, for astronomical and_ terrestrial objects at the same 
time. Indeed, from the following passage in the same paper, it is 
clear that he did not suspect the existence of any unconsidered residual 
dispersion, of the magnitude of that which I am about to discuss; for 
he says, “The simplest considerations, indeed, suffice for the correction 
of that part of the aberration which arises from the different refrangi- 
bility of the differently coloured rays; and accordingly this part of the 
mathematical theory of refracting telescopes was soon brought to per- 
fection, and has received no important accession since the original in- 
vention of the achromatic object-glass.” 
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It must have struck most persons conversant with the subject, that 

the effect of the lenses, in an achromatic combination of two or three 

lenses in contact, must be sensibly different near their edges, on account 

of the oblique passage of the rays, from what it is near their centers; 

and this difference will be the more important, as the area of that 

part of the surface of the lens, with this unconsidered effect, is so 

much more than that part of the surface near the center for which 
the common theorem is accurate, or nearly so. 

In the present paper, I have investigated the conditions of achroma- 

tism in a double object-glass for a ray passing through it at a distance 

from the center of its aperture, on the supposition that we may neglect 

powers, of the small quantities which enter the expressions, above the 

first, and also their products. It is also necessary to consider the 

thicknesses of the lenses, as that of their edges, for all parts at which 

the new correction rises to any important magnitude. 

I have arrived, by two different methods, at the same result, which 

involves the expression obtained by the ordinary mode, together with 

others depending on the thicknesses of the lenses. The spaces, through 

which a ray has passed within the lenses, have on the achromatism 

an effect which is precisely similar to that of the distance of the lenses 

in achromatic eye-pieces. If the lens have great thickness, a ray of 

light after an oblique passage through the glass, will meet the second 

surface at a different angle to what it would have done if that thick- 

ness had been small; and hence, if we consider a virtual prism to be 

formed by the tangent planes to the surfaces of the lens, at the points 

at which the ray is incident and emergent, the angle of this virtual 

prism will depend on the thickness of the lens, as well as on the radii 

of the surfaces and the distance of the point of incidence from the 

center of its aperture. We may easily conceive, that this variable angle 

of the virtual prism will need more accurate consideration when we 
pass beyond the ordinary first approximation. 

The new correction, which we thus arrive at, supposing the thick- 

nesses of the lenses in a double object-glass such as might arise in 

practice, is however not very large in magnitude. But nevertheless, if 
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it is important to correct as accurately as possible the spherical aber- 
ration, an error, which amounts to any sensible part of it, must also 
merit discussion. 

Of the two methods before spoken of, I shall here detail the one 
which appears the more regular process, and only indicate the other, 
which however has the advantage of being more continuous in the 
working out. 

Let R, 4 R. be a double convex lens, whose axis is GuOVOrR 
(see Fig. 1), O, and O, being respectively the centers of its spherical 
surfaces, 

and O,R, =7, 
Cie a their radii. 

Let Q&, be a ray of a pencil incident parallel to the axis, and let it be refracted at R, in the direction R, R, q meeting the axis in qi. 

Let IR,7,, IR. T, be tangents at R, and FR, respectively, draw 
Rk.M,, R.M,. and In, perpendicular to the axis ; 

and put &,M, = y, 

RM, = yp, 
also put the distance R, R, = Ae 

and let « = refractive index. 

Then 7\R,IR,T. represents the virtual prism by which the ray is refracted, and its angle J is thus found: 

2£Qf=27 Im + z T.Im 

’ = 2R,O,M,+ 2 R.0,M, 

- Ri M, R.M, 

— OR: OLR. 

=A nearly, 
v) V2 

since these angles are always small. 
Vou. VI. Parr III. 4B 
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But y= y (SR) y \G 

=n ( 
1 

=» (1-7) Yn mR, > 

nd 
nr, vr, 

1 Ts MTP es 

: 1 1 1 
or,, putting’ — + — = '—; 

Yr V2 fp 

1 —1 
re T = yn (— i Spe ) 5 

pi BT? 

and since the angle of incidence and the angle of the prism are always 

small, if D = the angular deviation of the ray, after emergence in the 

direction R.g, we have 

LD) = (m - 1) eaaviag F 

1 =l1 
=(e-1).n fe - 4." \. 

pi MMPs 

Again, if we consider the last lens as the outer lens of a double 

achromatic object-glass, and that the ray emerging immediately into a 

double concave lens is again refracted by it in the direction R, R, ¢.. 

as in Fig.2, the contiguous surfaces of the lenses having the same 

radius, and q, R., M2, O: being the same points as in Fig. 1, we shall 

have R, q, the direction of the ray, when it meets the concave lens at 

R,. Also let 

R, R; q. be the direction after refraction at R., (see Fig. 2.) 

Bey fg vee secreccsecseeseoncoesensens emergence at Ry, 
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then let the radii O, R. = 7, 

OVE; =7;, 

and R, I’, R, I’, the tangents at R, and R,, 

R, M,=y, 

R, M, = y;. 

Distance R, R, = t. 

Also let »’ = index of refraction. 

Then, as before, the angle of the virtual prism! = 2 7 

= 2 R. O, M, + ZR, O; M, 

py 4 De Ue 
M2 Ts 

and 4; = y (a 

—) (q-R.—- t) 
gh, 

ty 
sale (1 ary ak 

a Miley : 
Ag Mi ES hts VE i also a si ue R.’ nearly. 

1 1 
And) —— = 

- nk. nh, -t, 

tiger + 4 near] 
nk, (nk, y 

= a(S) By ; Bry : 

os Ms 
(pigeon 0 4 a—l (—*) 

gk, = V2 Bry Se oe Bry 

1 _ BM u— 1 (a 1) 

= ills SA sear de Mary 
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, 

u—l w—l 
= = —_ ; + &e.; 

M pi BPs 

u—l aw —1 
A Ys = Y2 |1- . Gas fa )}s 

or, substituting for y its value before found, 

ul ul wal 
Ys =" ln. oh } x fi —-h. (ae = wT ) 

a—l (u—] “ah 
= 1-¢,. te | 7 ae 7 
n| Br) \ Mm Pi BPs } 

and f= ae 
Ts Ts 

= %(1-4.4—) +2fr—4.5=) — &. (A+ --—)\ 

Vs wr) Vs BP) BP) BM 

1 i ul 1 ul a | i— i =e = —h. (— —)( =1.(4 me \. 
y = Vs Ts ‘ Pe a VPs M M pits al 

1 i i 
ete lea 

V2 13 Pe 

1 p-l u—l wl die ea oe ghee 8 RS hy. 
Pe LT) Ps M pi?3 MT s?s 

then z I’ =| 

and, if D’ be the angular deviation caused by this virtual prism, we 

have 

i Fi 1 u—1 —] ban} 

D= (1). {= 4! ~1,.(5 oes )}. 
MT ps Msp MTT, 

Now when the dispersion by one of these virtual prisms is equal 
and opposite to that of the other, we shall have 

é(D- D') =s3D-sD' = 0. 

Before however we find the actual value of this expression, we must 

shew that we may take ¢, and ¢, as constant quantities, namely, the 

thicknesses of the lenses at their edges. 

In Fig. 3, let B,, R,, q, M,, Mz, represent the same points as jn 

io. 1s 
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and, yi, = 9:5 

RM, = Yr; 

&e. &e. 

Also let mM. = } the aperture of the lens 

= 4, 

Calling AB the thickness of the lens at its edge = 7’, we shall have 
the central thickness 

CD= (7; f = + a) nearly, 

and R,R, = t, = ! T+ ae i “S41 =- iE 

= {T+ Se eh y el the) 

Now if it were necessary to retain the variable quantities y, and y, 
in this expression of the value of 4, and similarly y, and y, in that of 4, 
we should, from § (D-D’)=0, have the radii 7, 1, 1, to be expressed 
in terms of constants, and Yis Yrs Yss OY the surfaces would be surfaces of 
revolution generated by curves of variable curvature, in place of por- 
tions of surfaces of spheres. 

But the dispersion near the edge of a lens is always very great in 
amount compared with that near the center of its aperture; and _ it 
becomes proportionally more important that it should be accurately 
corrected for the edge, and especially as the enlargement of the aper- 
tures of our telescopes may depend upon it. In the example I have 

: a a : calculated, further on in the paper, ap and gp, are considerably smaller 
1 2 

; ay; a — y, than 7’, and accordingly at " and — are very small compared 
r "2 
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with 7 for a ray which passes near the edges, and are therefore neg- 

ligible; and also is again a much smaller quantity, and yr 
1.2.(¢,14,) 

therefore not needing attention: so that we shall consider ¢, and ¢, as 

the thicknesses of the lenses at or near their edges, and as constants. 

Differentiating the expressions for D and D’, and substituting in 

the expression 6(D — D’) = 0, we find, after the reductions, 

3 a — ‘—] J 2-1 6 

2 M 
2 . 

Pi p. \ & “ 7| Pe ee P12 

‘1 - ‘ 1 MTL Shri 
af( ; Rnd te oe = oe \ 

pe Mn 73 Pr Me MTs 

In the ordinary formula, the condition that a double object-glass 

shall be achromatic, is 

So that the expression we have obtained consists of the common one 

together with other terms involving the thicknesses of the lenses. 

The other method which I have mentioned will be easily com- 

prehended from Fig. 4. 

If abed in this figure represent a double object-glass, and R,, R., R,, 

M,, M., M;, q: Gs Gs, Yepresent the same points as in the two first 

figures; R, R, R,q, being the path of the ray incident at R,, then we have, 

tangent of the angle R, g, M@;, in which the emergent ray meets the axis 
at qs, 

RM, Ny 

q:M,’ 

and, in order that the combination may be achromatic, we must have 

the variation of this 4 Rg; MZ; (or its tangent since it is small) = 0, 

whilst » and »’, the refractive indices, vary for the different colours of 

the spectrum. For this purpose, expressing y; in terms of y, and the 

radii of the surfaces, and distances R,R,, R.R;, in the lenses; and g,M, 
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in terms of the radii and distances; and then performing the required 
differentiation, we find, for 3.tan R.q,M,, the same expression as we have 
just obtained for 3(D- D’), as we clearly ought to do. 

To enable us to judge of the value of the new correction, it is 
necessary to apply it to a case which may arise in practice. For this 
purpose I have chosen the third case in Sir John Herschel’s table in 
the paper before referred to; as the dispersive ratio in that case is 
what he considers the mean value for such glass as is usually obtained 
in England. I have also considered the radii of the interior surfaces 
to be the same, their difference being little more than a fiftieth of an 
inch in three feet, so that we have for our data for a telescope of ten 
feet focal length, as follows :— 

om wl 
ip ere ea 

p=1.524, 

fz =12 585); 

On 
whence —=.53743, 

Ou 

7,=6.7069 feet, 

72= 413.0488 + 3.0640}, 

= 3.0564, 

7r3= — 14.2937. 

If we take, now, the same dimensions, for our example, as those 
of the Northumberland telescope recently put up at the Cambridge Ob- 
servatory, in which the focal length is 19 feet, the aperture 113 inches. 
the thickness of the double convex crown lens 2 inch at the edge, and 
that of the concave flint lens 1 inch, we must take the radii of the 
surfaces in proportion to the focal length, and thus have 

7,=12.74311 feet, 

r= 5.80716, 

7, = — 27.15803, 
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y= u inches, 

=.47916 feet, 

4,=.03125, 

t. = .083, 
du’ =.03 nearly, from Sir D. Brewster’s tables. 

With these we obtain, by substituting in the formula before inves- 

tigated, as follows: 

3(D—D')=y,.du' {t,.0009555 + t, 00006055} 
= .000000501759375. 

To find the diameter of the least circle of dispersion, 

Let R,M, be as in the last figure, (see Fig. 5.) gR,q the angle of 

residual dispersion 
=d(D-D); 

then ab, the diameter of the least circle into which all the coloured rays 

are collected, 

= gq) x ee. 
eg = qM, p) 

6 F ; ,_ gR,.sin gRsq 
and in the triangle qR,q', we have gq = ining 

= nearly ; 

7 k, 

v. ab=qR, x (D-D’) 

=focal length x d(D—D'); 

and thus, in our example, the diameter of circle of residual dispersion 

= .000009533 of a foot. 

The angle which this subtends at the object-glass is ((D—D’); and, 

measured in seconds of a degree, becomes 

__ 0000005017 
~ .0000048481 
= 0".103 nearly. 
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A residual circle of dispersion of this magnitude is such as would 
never be tolerated in a telescope like the Northumberland one, from 
which we have taken our example. The observations made by Professor 
Struve with the Dorpat telescope, on most difficult double stars, shew 
that no uncorrected dispersion to an amount like the above could exist in that telescope; and the Northumberland telescope may be reason- ably expected to be no ways inferior. 

From this we are led to conclude, that practical opticians have 
through experience adopted curvatures for their lenses of much greater 
accuracy than those given by any theoretical computations hitherto 
published, and the production of critical defining power in an object- 
glass must be left to their skill and patience in finding the forms which 
produce the desired effect. 

To shew the effect of our correction on the radius of any one of 
the surfaces, I shall now give, as example, a case in which the convex 
crown lens is taken of a greater thickness than would occur in any 
modern object-glass, namely 

¢, = 4 inch, ¢,= 3 inch for an aperture of 6 inches, and focal length 10 feet. 

Calculating with these, we find 

3(D—D’) =.0000011629, 
and the diameter of the least circle of residual dispersion 

= .000011629 of a foot. 

Now the diameter of the least circle of spherical aberration in a 
crossed lens of plate-glass, refractive index =1.5, is for the same focal 
length and aperture = .00008370 ; 

so that the former correction would amount. to about one-seventh of 
the spherical aberration in an equivalent lens of the best form, and 
yet to correct this large residual dispersion would require only a very 
small alteration in the radius of one of the surfaces. To find this 
alteration, we must now take the value of 3(D—D')=0, and as both 
the terms in the residual value are positive, we cannot fulfil this con- 

es : é Ne dition whilst (#-<) Is separately =0, but must make the whole Pi P2 

Vou. VI. Panr III. 4C 
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expression =0, when the values of 4 and #% are given for any par- 

ticular lens. I have performed the calculation to this effect for the 

above example, supposing the last surface of the flint-lens only to be 

altered, and I find that its radius (7) must be increased by a lof ‘an 

inch nearly, which is a very small quantity in 14 feet, and shews us 

that it is scarcely to be hoped, that we can obtain a very fine object- 

glass by trusting to theoretical. computations solely; but that, after the 

general forms have been investigated for the optician, we must rely 

on his experience to vary his curvatures slowly until he has obtained 

the maximum effect of distinctness. 

With respect to the actual thicknesses adopted in England, I am 

indebted for information to the liberality of Mr Tully and Mr Robin- 

son; and as it is important that such information should be recorded 

in print, I shall not hesitate to give the full extract from Mr Robin- 

son’s reply to my letter to him requesting such information. He says: 

“Thinking that the best information might be obtained from Mr 

Tully, I called on him, and not being so fortunate as to find him 

at home, I left your letter, with the request that he would furnish 

the information you required; he has just now called on me and tells 

me, that there is no absolute rule for the thickness of either the 

coneave or convex lens; that great thickness for the convex lens, if it 

be of crown glass, is considered objectionable on account of its colour 

oceasioning loss of light; and its being thin is objected to, but merely 

because if it be ground to a sharp edge, there is danger of the edge 

being broken in polishing: he has just made an object-glass of 54 

inches diameter, the thickness of the crown glass is at the edge 2 of 

an inch, and that of the concave 2, and these he thinks very proper 

thicknesses and would not wish they should be thicker; but had these 

disks been thinner, they, (being of good glass,) would not have been re- 

jected on that account; and in general, the only rule for thickriess is, 

that it be such that the edge of the convex be not splintered in 

working, and the centre of the concave be not so thin as to change 

its form in polishing.” 



XXIX. A Statistical Report of Addenbrooke's Hospital, for the Year 1837. 

By Henry J. H. Bonn, M.D. 

[Read April 30, 1838.] 

IN-PATIENTS, 1837. 

NumsBer of Beds have been increased since Oct. 1, 1837, to 101. 

Number of Patients in the Hospital : 

Maximum... 94 

Minimum... 55 

Length of time Patients remained in the Hospital: 

Mean duration 384 days. 

Admissions from January Ist, 1837, to January 1st, 1838: 

Male Patients 374 

Female ....... 311 

Total... 685 

Previous residence of Patients : 

Males. Females. Total. 

164 (43 per c'.) 162 (52 per c'.) 326 (47 per c'.) in Towns, Cambridge principally. 

209 (57 per c’.) 149 (48 per ct.) 358 (53 per ct.) in the Country. 

1 i 1 residence not registered. 

4C 2 
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Number of In-Patients in 1837 discharged, including the 58 remain- 

ing from the year 1836: 

Males. Females. Total. Results. 

(58.2 per c’. on total t ‘ 
9 - 1 59.4perc’.) 388 (58. Tice. . 209 { ef disehkeeee) 79 (59.4 per c*.) (58.7 per c'.) Recovered 

38 17 55 Benefitted. 

15 14 29 Discharged at their own request. 

3 3 Ge ee cee Bette as for irregular conduct. 

th 5 12 seecseses-e. &8 incurable. 

22 (6.1 per c'.) 10 (3.3 perc’) 32 (4.8 perc.) Died. 

65 73 138 Made Out-Patients. 

359 3801 660 

Mean stay in the house of the 388 discharged as recovered was 334 days. 

PER CENT. é PER CENT. WEEK. 

Of the 660 ag we Of the 388 ca ad Get ere Miahiar ped ash 

discharged... as recovered ....... 

wu aeetevaipaviaee 11.96 BRE NOOCO OCI A* 13.40 nraitie 6 a/gin.a/othieiy alain 

eipafe'e ape. cleisin ravers 15.30 ~ Se Se Bate te 17.52 CAOAEBOTSC COCA oe) 

edeee ocean 15.75 AB ee aN LES ORE eee | 
SBOSRCIOOE CON CFS 12.42 ais ates ie eile, alates 13.65 nimiisis dicesieilelete) © uy 

Se cre einisiviareie alain 8.63 ee eek eee ainenas 9.79 Mikes cugissdassy, #0 

ABO OO HINO DOCS 6.06 aoe 4.89 woiete ae lclcwinealelnie ai) 

. y 4.69 coos 3.60 or 8 

Sa eidielsivistntepalee's 3.48 - 2.83 Mitiis cislgiepistaicace MO 

date a nantes [cise Zoot 8s waaee eens cee ce AU ma naale e sacle cis\siciares 10 

seaieeCuslese nes 11.66 wate é 8.24 .........from 10 to 48 

In-Patients remaining under treatment. Dec. 31, 1837. 

Males,........ 40 

Females ...... 43 

Total's .2e2. 88 
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Number of Operations ; 

Withotomiy ne. cOaes ao- vse bee 2 

NTIPIG ALORS tes tetecey cen seselee- 5 

Hl ermias eee coup seeceeigcccheseee ens 1 

Cataract) Miscspcaee nes cana oe 

Excision of Mammary Gland.. 2 

Be eee cee INI OUT aoe corsaes 1 

Removal of Testicle ........... Q 

15 

OUT-PATIENTS, . 1837. 

Admissions from January 1st, 1837, to January Ist, 1838. 

Totali..... 921 

Previous Residence of Patients: 

Males. Hemales. Total. 

208 (57 per c'.) 315 (56 per c'.) 523 (56 per c'.) in towns, Cambridge principally. 

151 (43 per c'.) 246 (44 perc.) 397 (44 per c*.) in the Country. 

1 1 residence not registered. 

Out-Patients discharged in 1837, including 118 of 120 Patients re- 
maining from 1836. 

Males. Females. Total. Results. 

160 (45.9 per c'.) 246 (45.5 per c'.) 406 (45.7 per c’.) Recovered. 

24 26 50 Benefitted. 

3 2 5 Discharged as incurable. 

4 4 ssocccercces soe TEPUIar. 
1 i/ SRE) el mee Cte cesta asl at their own request. 

6 (1.7 per c*.) 4 (0.7 perc’) 10 (1.1 perc'.) Died. 

22 47 69 Made In-Patients. 

129 204 333 Discharged for non-attendance. 

3 3 Result not registered. 

348 540 888 

Out-Patients remaining under treatment, Dec. 31, 1837, males 49, females 102, total 151. 
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REPORT OF THE IN-PATIENTS AND OUT-PATIENTS COMBINED. 

Number of Cases treated in 1837. 

Deducting 41 from the 685 In-Patients who were previously under 

treatment as Out-Patients, and 137 from the 921 Out-Patients who 

were previously under treatment as In-Patients, 

The number of cases treated in 1837 were 653 males, 775 females, total 1428. 

Of these, there were admitted in 

January...... 107. May <--....-. 133. September... 103. 

February .... 108. June. ....... 129. October...... 114. 

Marchese 119. Jaly 22.3.2: 124. November... 128. 

April eyes. = 127. August,..... 132. December ... 104. 

335 males, 428 females, total 763, came from towns, Cambridge principally. 

SLB ieecees 5 OAT teenenes cpecads 665. ...05 Been the country. 

Description of Patients admitted: 
Male. 

264 (40 per cent.) Labourers, chiefly agricultural. 

110 (16 per cent.) Children living at home. 

QBn) sarees <5 Shoemakers. 

LV jrri) 22 aee esp ( -Beioklayers; 

17. sséasaes-s »Caxpenters. 

1G eo cotiewtisic Servants. 

WD 0 ccsaveniee Grooms. 

NO?) eee ceenese Porters. 

15 soteucewe Printers. 

Te Sota s con Tailors. 

M28 eee a see Watermen. 

Qn  oaseisines Gardeners. 

Bh. cesses. Smiths. 

Tite Bees ..._ Waggoners. 

Brewers. wee wee wee 6 

Ol osesler, cue aulichers: 

3) Sots Tramps and Hawkers. 

5 astivsogna Bakers. 

84 Steiteecas Of 51 different occupations. 

653 
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Female. 

337 (43 per cent.) Women occupied at home with the care of their families. 
264 (32 per cent.) Servants. 

86 (11 per cent.) Children at home. 

22 

Laundresses. 

Needlewomen. 

Of various occupations. 

Occupations not registered. 

Ages of the 1428 Patients admitted in 1837: 

32 

Male (653). 

4.90 perc’. 34 or 

50 ... 

2) Gos 

70 

LOT. - 

Ob se, 

38. 

DAS S. 

TO a 

Female (775). 

or 4.38 per c’. 

52 Or7 OMe serees 

Ose Ale anbe- 

CLES RS CIO We oa 

Lei ees OS) waeee 

Fit «cot MONO Geena 

ena Ca eee 

OB ene S277) se ces 

250 aie ROT) lesen 

AN ey STC aoeee 

Mery ald eancac 

LO rae e405" vanees 

Teh sary Seles 5 ponte 

Ci Ait eth cagnee 

iD ieee HOO) scaisne 

SS Sn ACOA ETS) 

Total (1428). 

66 or 4.62 perc’. 5 years or under. 
102... 7.14 ... from 5 to 10 inclusive. 

LOO RRS ABIOS scheeseslO)... 5 

MaumisectOally ce caiseninenilaveaee ZO 

234 ... 16.38. ...5.....20 ... 25 

WAT Nectar VOL Ose ie. 2ek20) 651 SO 

SRN oe OdOI Esa otanenaOleasy 35 

NS area Os eA | date tae eee AO 

SB) 5. 4:06 65000000240 000) 45 

(Ost BODLOR sestee naan LO) eae OO 

AQ aca (2.94 ..000000050) 14. 55 

ABW ests fO:O0) shaaiencesDDi ses 60 

BO Bo EAB a decucneiUneen Ole 

Res Wa osononls bey 

8) ond ~~ ellie neneniaat(Oueneay te 

Sivee 21 seseeeeee75 «.. 80 and upward 
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Total number of Cases discharged in 1837 from both In-Patient and 

Out-Patient Registers : 

Males. Females. Total. Results. 

369 (59.5 per c'.) 425 (58.9 per c'.) 794 (59.4 per ct.) Recovered. 

62 43 105 Benefitted. 

10 7 17 Discharged as incurable. 

16 21 37 at their own request. 

3 10 

28 (4.5 perc.) 14(1.9 per ct.) 42 (3.1 perc.) Died. 

~ for irregular conduct. 

Discharged for non-attendance 
129 204 333 ; 

as Out-Patients. 

3 3 Results not registered. 

620 721 1341 Total number discharged. 

“From 10 to 20 
inclusive. 

September. 
October. 

| November. | December. 

Phehisis t.<.:.sege6 0-7 
Pnetimomiac... setae 
Disease of Heart 

Porotulas.. ..0...case hee 
Pleurisy. <-..ci9--).- se 
Bronchitis 
Peritonitis...¢<s0¢x. oe « 
Disease of Liver....... 
Paralysis 
Debility with ulcers... 
Disease of Hip-Joint... 
Carcinoma Mamme2 ... 

Utert see 
Sphacelus of Foot ..... 
BOER Sen sroak lls cea 

Males ii. .:.s81 2: 
Females...2:..-- 
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7 

Carcinoma of Lip «nd Tongue 5 
Ulcer of Tongue | 
Pryalism | y . | 1 Enlarged submaxillary gland. 3 aes ln i (i } 
Cynanche tonsillaris Hoi C0) | 1 1 | 
Discare of Esopha % - 6 , 

Drazaans of Mooru xp Faces 6 cop) (Os) reir TRE cteKoull cuca) ICES 7(679)|  7(68)| 86.28) 5 (480) 
| F 2 3 

05 | : 1 
12 (Out 0 | 1 1 

on ot) i ' a 

7 7 aaa) | 4-810) | 70620) | 9 9 1on(i0a7) | 00778) ) 97789) | 10,,che1) | 8 a fi) | 8o0740) | 11-028) wy ; { i 5 
Diarrhes 6 (0.61) : - : ‘ n i 1 2 ‘ 
Constipation (0,80) - 1 | | a | 
Intestinal Hemorrhage 1 Fy | 1 1 | 
Hemorrhoids 3. (0,88) 3 1 | ‘ | 2 1 , 1,00 8 1 } 3 ee 1 {hak 2... (030) 02 ' | | ; | 

1 i 
at 5. (06 | 1 5 + 1 ; 1 1 1 2 6...(091) 0,64) 1 ! i 

t 7. (0,90) 1 ! 7 x ‘ (0,80) ) 3 1 ; 7 - Fi S | 
Herni Giafo9t) | _ 2.00 5 a ay | 9(697)| 9 aa) | 8 est Tat) | 8--.(7,60) areas Stas) || 7: 9,67) || 101 A | s.(668) | Gr (600) | 12:--(G44) | 11G@a7) | 9-9N)| 9---¢ u jl} G86) | 10-5 (781 (7.69) 
Teter (0,30) 0.38 1 Ja 2 ; | N55 

Hepatitis 1 1 d , 1 : 

Disease of Liv (0, (0,35) —8...(0 | : | 
Diseases of Livt 8 i 7 90) || 1 To i 1 i 1 Spleen i 

6...(0.91 ‘ 10 6 (5,60) £ (3,70) 2 1 
Chronic I tis 1+ (0,18 6 7 1 r z : 1 1 
Hooping ( 2 | i 5 2(1,98) ) 5 (2,34 2 (1,92 
Bronchitis 18 5 45...(3.01) | 109,58) 8 (70) 4 (3,96) 4,93 1(078) | 1.98) 5238) 2( 

Chranie Cough 5 1 | ! | | | 7 
a Ce ae 4 ern 8(644)| 6 (4,53) 5 (2,34) 4(3,88) 

1107) 0,38) 1 1 i 1 1 ot 

disorders not specified 7.-.(0,90) 1 1 1 2 1 1 

Laoxany On 36 s+ ..,(10,83) || 1 6 (eae | 19 Sti zoy | 19-2 (1o.92) | 16--{12,59) | 12%.C908) | 12---(9.90) | 17 CASO) | 8: -(6.08) | 145(03.58) | 9--<(789) (wi59) | 137<(128) 

*Bronchocele ‘ asi) || 4 0.38 : 1 : 

Pericarditis 1 1 1 1 F 
Organic disease of Heart (0,10) 2 (0,49) 1 2 ; 
Palpitation 1. .(0.1 3...(0,88) || 1. (0128) | 1 1 1 1 
Variome Ve 1.(0.1 $.. (0,51 (0,33) 1 | 2 1 1 F 
Melam 1 1 
Ph ia J 1 1 1 
A and ¢ : r 6...(1,88) || 1 ‘ 1 1 1 1 ‘ 
Epitax t 1 : 1 

Diseases or Cincucatix SvaTEM 6 i «_(490) || 4 i E 
Intermittent Fever 18. (8)7 12 ’ 0 1,86) | 4...(8,70 (aac ‘ 73) | 1--.(0,77) 201 00)|}/ 1:=3(0,00))) 2.-.(1,78))| 2 2..,(1,92) 
( od Feve 10...(1 10. (1,20) 0... (140 186 1/85) 0,00) | 1...(0 7 1135) | 1.-.(0.80) | 4 (ooo) | 1.0087) | 1 1...(096) 
Meaulen 0530 mn 

Fava Ta g 2.83) (3.68 
*Dropay 070) 19) 1.54) 1 \4 1 1 : 2 1 sured 

‘ i ) 137 1 ( r Ac iva) | 0,00) | 1-.5(0,84) (hoy | 4-16.00) | 2..1G,55) | 4-068 6...(4,53) (0,00) | 3---(2,61) | 1.-.(0,78) (198 
ion of Absorber . 1 

tes 1 1 1 

Diaih i 1 i 
sor Kioxeve x 

Calculax 1.76 7 1 1 2 
Enurest 1 i 1 
Retention of Urin 0,4 1.66 4...(0,28 1 1 1 1 
Paralysis of Bladder 1 \ 1 | 
Irritation of Neck of Bladder, & 6 0,85) i 1 1 1 1 

Distaaks oy DiaDpEE ‘ is ‘ G 1 T3 
‘ Seca and Syphilis 66 ‘ ‘ 1 ‘ 2 ‘ 2 8 : 1 
Biiccural/e Uren ‘ 1 ro 1 1 1 
Hydroe ‘ 1 1 
ital iirewalis r 1 on 1 1 1 1 1 1 
Disease of 0,80 nis : 
Fistula in. perinco i i 

1 of Vagina i 1 1 
Disnases of Exriuxan Grnirac Oni rT wet uci 7 

8.748 #06) (8,41 as. 6(5,0)| — 6(4.72) (22 4(3,10) 2(1,61) 78) 4(3,88 8(7,01 8 (6,23) 1(0.06) 

oo *) |) 69 7 ant a8) | Gc 2 6.08 TUPI) | #1(600) | 4.58) | 100-0877) | 8 GES) 758) 
1 1 

2 14 1 1 
3 02 1 1 1 

1 1 
5 0.49) 1 1 

2 ) (0118) | 1 1 
6:..(0,77 6..(0.42) 2 1 1 | 

Lacist 6 4 2 2 1 

Rheumatiae 60...(9 7 0... (6.50 7) | 7.0.88 $20) | 6...(6,72) | 9.-.(676) | 11. (6 : 6.26 6...(6.82) | 18..(11,40) | 9...(7,08)|| 10...(9,61) 
Distasns or Muscoran Svwraw, a D 7) || 9 c 

ion 1 i 1 
Hysteria 19.-.(244 19 (8 1 1 j 1 1 \ ‘ 
Trem i 1 1 | 

Paraly 6...{0.01 1. (0,1 C 1 1 1 1 

tremer 0, mn 1 I 
ania i i 

handriasia 7..(4,0 9...(1 16...(01 1 1 1 ‘ ‘ 2 1 
Disonbens 0 18) || 10 29) || 20 140) | 

4 (0,61 (0,26) 6.. (0,42) J} 4 1 1 1 1 | 
and Hemicr 10. (1 i 1,54 4 1 1 5 i a 
sorden 4. (0,61 (0.90) u 1 1 1 2 1 2 i 1 1 

Ornun ¢ Aerier 18 7 1 70) 7 2 
Erysipe 4. (061 on ‘ 1 1 1 1 
Parp 1 1 1 
Eczema 6...(0.77 6...(6.42 1 1 1 \ 
Herpe i 1 2 1 i 
Urticaria febrilin 1 1 1 
Seal 1,07) t,-.(0,51) 11...(0,77) i | 31 1 1 ‘ 1 
i (0,43) 6..!lo777) 9,-.(0,63) 1 1 a 1 1 
In 1..(0,13) 4 (o's $5) 1 1 I) a 1 
E 1 1 1 
Lepra. 1 0,30) oe Or) 1 1 ta i i 
Exythe 1 On ¢ ak [roms 

fied un n 1 1 2 
: m\\\ 46° =) || 68 a6) || (ata) | 8 93) | 42=63,00) | 92-680) | 107(8,05) |} sinc 3.(&o1 Tothas) | 415,88) 

Conjunctival Ophthalmnia 7.0 6.91) 55... (9,85) i os 2(1185) 6 (ar 5 (6,01 9 (6.97) (a1 75,30) (2.91) 4(318) (288) 
Purulent Ophthalmia. 0,30 4...(0,28) 1 1 i 
Inflammation. of Tars 1 (0.1 ‘ott 6.-.(0,44) 1 | 1 1 1 
Opacities and ulcers of Cornea (os 0,64 (0,56) 1 1 ae 1 2 1 1 

c O18 1 | 1 
1 1 \ | i 

Firtula Jacrymalis 2 3 2... (0.18) 1 1 
Fungus of Bye 1 1 ! | 
Obgructed Puncta 1 1 1 
Other 1 +...(051) « i 2 

Diseanns a3) an) || 90 .-(8.80) (ita) | Tae) | 10.078 @.0a) | 127.030)| 7—G6e) | 11 CHas)| 9 636 5.690) | 7=-.(673) 
Deafness 1 1 1 
Ouiie \ \ ; 
*Polypas of nose 0,30) 1 1 
Ulcers of Leg 1..(478 70 2...(3,64) || 6. ..(5,60) 77) | 4..(a,3¢ i) | 4.-.(8,00) (0.00) (403) | 9. Gan) | # (4.88) (0,00) | 5...(4,80) 
Ulcers 7 4 to:31) 1 a) | 1 2 2 1 1 1 i 
Absceases 13... (1,99) 10 4.0(1,01) | 1 : i ‘ s ¢ : 
External Tumor (0.43) 2 6.2 i 2 1 
External Inflammations 7...(1,07) ear) 14-126) | 4 ‘ ‘ ‘ 
Sphacclus of Feet 1 1 | 1 

ExriayaL Locat Dinsases 6a) || ag ota) |] is ero) | | 
of Burse and Ganglion 0 g 14) 1 1 

*Relasation of Ligamentum Patelli 1 1 1 | 
*Periontitie 0,30) 0,18) | i ea Inflammation of HipJoint 10.41 tas ison | a 1 1 i 1 1 1 1 

= Knee 1199) "6 6 4 ‘ 2 i : dl | 
= Ank 1203) ey : 1 1 1 
SS 0, 2 os 1 1 

Diseases of Jonere 26 m8) | 18 “ 08 
Exostoses toy | }2 
Machitie 1 a. (040) i | 
Disease of Vertebra (0.76) 5b) 10...(0,70) 1 , 1 1 
Disease of other Bone 6..{o.91) (1,03) 14...(0.98) | 4 2 2 1 ! | 2 z , 

Disnasne or Downs Ww .(89) | 16 %) || 28 --.(1,96) | Burne and Seal 211 (0's0) sates 0% F 2 1 
Lacerations and Bruise 60 Teh 1658) ) 6 ; 5 1 10 10 10 | 
Fractures of Ribs 1 NA’ 1 |e | Clavicie ‘ ; 6. ..(0,42) 1 2 : 

Humerus y Pha st 10... .(0,70} 1 1 1 ‘ 
aay @...(0,80) hn 2... (0,18) ie | ! SS Fer 2! (0,80) 2. (0,18) | 

ibula } — G...o.01) | ane 7.040) | i 2 2 - lla 1 | (019), 4 | " | 
Compound Fracture of Arm 1 1 | leas | Leg | 3...(0,8) 3 1 ‘ | 

+. (01) ‘ 1 1 2 
2.0.30) 2 | 1 1 | 

Carpus $...(0,61) bat) 1 | 1 1 1 1 
Knee i 1 1 
Ankle i | 1 | | Sy Pee 

.CCLDRNTS 1 (18,83) 145 (10,15) | uu |e “ 15 | 18 mel |b) erie | LS as 6 un } 10 
oAimseinl tiseeea (ei peaenaier) (on) ePecont | | Ja | ree || | | x 
*Intoxieation } 
"Diseases not specified 
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The opposite table is constructed similarly to that of the report of 
the preceding year*, but additional columns have been placed which 
contain the relative distribution of each disease between the two sexes, 
and the proportion of the male and female cases of each to the total 
number of male and female patients respectively. 

Arrangement of the different Classes of Cases, or of the Affections (of 
whatever kind) of individual Systems or Organs, according to the 
respective frequency of their occurrence, as seen in the Soregoing 
Table. 

Proportion to 

Total of Cases. 
Diseases of the Pulmonary Organs .................006...... 11.90 
BS ANS a ea ee asslaeainfrs cies mcw alee retebeeieseecees 10.15 
Eocternae lovalediveares': 9.4. 2..05<<0-stucds.cc-decbe.c 8. 7-91 
WUSeAaREN fObe Mn GestNEBeaai.<2Sasocsa010sd coc ach oeceeuhecce cect 7.07 
Segececaees 2) S122 a Ais a es Be 6.86 
LSS 1 07 110) OE seems Sa i ea a 6.37 
EM euRCHEG ACR aN Men Oban be det dl Suita a 6.30 
Aye weseees Nervous DNSLEUMED tanasised. Stes tesscl eri ceat esc me ab as 

IISA cs PO ee an 4.83 
sy TEL SLOSS ie en 8 eee Ae mee ee 4.76 

LESS) contol Ses a a aa 3.64 
Diseases of Circulating System SOSIDCASOOUONCCOCABPEAEEBUEEC BO. MlGAGL 
aaa aes diss SOMES: weet toe doeece 3 3.08 
Ach cD ada Bones eee cic cl emclnaninoninald-bieecseavenxacsetiene ie ill. O6 

84.42 
Diseases of other organs, &e. constituting 25 other classes 15,58 

100.00 
—_ 

Out of the 161 diseases and accidents enumerated in the Table, 21 have been selected as the most prevailing, furnishing in the aggregate 54 per cent of the whole number of cases, and particulars respecting them arranged in a tabular form. 

* Vide Explanation of Table, p- 370. Vol. v1. Part mu. of the Transactions. 
Vou. VI. Parr III, 4D 
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Explanation of the Table. 

The number of cases admitted of the 21 selected diseases, and their 

proportion to the total of admissions, their distribution between the 

sexes and in decimal periods of age, the proportion of town and 

country cases to the respective totals of town and country patients, 

and the months in which the maximum and minimum of cases of 

each disease occurred, are here tabulated. Also the recoveries, benefits, 

and deaths, combining the total of the cases discharged in which the 

results were known, are added; with the average number of days 

during which the patients that recovered were under treatment. 
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The cases of the diseases and accidents not included in the pre- 

ceding Table, were, for each disease respectively, too few, to render 

the statistical particulars respecting them confined to a single year, of 

any importance,—but the materials from which the reports of this and 

the preceding year are derived, are so arranged, and the method of 

keeping the hospital registers so contrived, that the particulars and 

results of any one of the diseases enumerated in the tables may be 
hereafter generalized for any given number of years. 

The influenza, it may be remarked, attacked the greater part of the 
patients under treatment for other diseases, during its prevalence in 

January and February, and may have indirectly contributed to increase 

the mortality,—but few cases comparatively were admitted originally 
for that disorder. 

VACCINATION. 1837. 

Vaccinated. Taken. Not taken. 

February... . 4 ...-0+00- hee PO OCT 

JIUy, essence OMrcueenees (Re Bsccdocs 

August..... T ccveccces | eee 6 

September.. 13 ......... 13 .0.+s-s0e 

October wscgl dicen cn aie Vomeesecanse 

November... 4 ....++0. Al cee eae 

December .. 17 ....+.«.- UE apne sac 4 not presented after Vaccination. 

66 56 6 4 
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t 

or 

REGISTER OF BAROMETER AND THERMOMETER, 1837. 

(Computed from the Recistex at the PutLosopHicaL Society.) 

BAROMETER AT 8 A.M. THERMOMETER. 

Maximum. Minimum. 
Greatest 

Diumial Range 

Least 

Diurnal Range. 

Mean 

Diurnal Range. 
Maximum, Minimum. Greatest 

Diurnal Range. 

Least 

Diurnal Range. 

Mean 

Diurnal Range. Number of Days 

Minimum 

at 32° or under, 

January .... | 29.93 x So So i=) _ Co) 36.64° as) = 
° 

Lt Ko) Ss (eo) 
° 

res} = 

February... | 29.58 4a = So LS) 2 S 39.30° wo ~I 
° 

_ 
o 

_ Or 

30.00 & es 35.79° L = 

29.80 ¢ . : : 40.25° 

29.95 5 : : 48.90° 

29.99 .74| .27| .00| .15 || 60.10° 

29.99 7 : 4 5 63.20° 

30.01 7 : 5 62.20° 

September .. | 29.89 f ‘ 4 A 56.60° 

October .... | 30.01 fF ‘ a % 51.77° 

November... | 29.82 i d ; 40.73° 

December .. | 29.97 5 A : A 42.20° 

For the year | 29.90 : i A 48.14° 
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Cambridge Philosophical Transactions, Vol. VI. Part & 

Metcalfe t Falmer tithcy Garmbridae 
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Cambridge Plulosophical Transactions, Vol. VI. Part 4 

Meteutle he Falmer thoy Conbrvtye 





Camb Phil. Soc. Trans. Vol VI Plate 7. 

| \ | \ 
Peg Ml | \ 

§ \ 

| J 

\ | | 

\ 6 Y 

| 

Pi 
q| a 

xz 1 P 

Fig W 

\ The numbers below the line of abscissa are the vulues of m 

‘ The ordinates of the strong curve represent the witensily of light on the 
\ Theory of Undulations. 

i The ordinates of the faint curve represent the intensity on the anperfect 

\ . Theory of Interferences. ' 

: \ The ordinates of the dotted curve represent the density on the Theory 
] \ of Emission. 

| 5 
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