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PREFACE

THE following work owes its origin to a course of instruction

given during the last few years to the senior class in electrical

engineering at Union University and represents the work of a

number of years. It comprises the investigation of phenomena
which heretofore have rarely been dealt with in text-books but

have now become of such importance that a knowledge of them

is essential for every electrical engineer, as they include some of

the most important problems which electrical engineering will

have to solve in the near future to maintain its thus far unbroken

progress.

A few of these transient phenomena were observed and experi-

mentally investigated in the early days of electrical engineering,

for instance, the building up of the voltage of direct-current

generators from the remanent magnetism. Others, such as the

investigation of the rapidity of the response of a compound

generator or a booster to a change of load, have become of impor-
tance with the stricter requirements now made on electric systems.

Transient phenomena which were of such short duration and

small magnitude as to be negligible with the small apparatus of

former days have become of serious importance in the huge

generators and high power systems of to-day, as the discharge of

generator fields, the starting currents of transformers, the short-

circuit currents of alternators, etc. Especially is this the case

with two classes of phenomena closely related to each other: the

phenomena of distributed capacity and those of high frequency
currents. Formerly high frequency currents were only a subject
for brilliant lecture experiments; now, however, in the wireless

telegraphy they have found an important industrial use. Teleph-

ony has advanced from the art of designing elaborate switch-

boards to an engineering science, due to the work of M. I. Pupin
vii



PREFACE TO THE SECOND EDITION

DUE to the relatively short time which has elapsed since

the appearance of the first edition, no material changes or

additions were needed in the preparation of the second edition.

The work has been carefully perused and typographical and

other errors, which had passed into the first edition, were

eliminated. In this, thanks are due to those readers who
have drawn my attention to errors.

Since the appearance of the first edition, the industrial

importance of transients has materially increased, and con-

siderable attention has thus been devoted to them by engineers.

The term "
transient" has thereby found an introduction, as

noun, into the technical language, instead of the more cumber-

some expression ''transient phenomenon," and the former term

is therefore used to some extent in the revised edition.

As appendix have been added tables of the velocity functions

of the electric field, sil x and col x, and similar functions,

together with explanation of their mathematical relations, as

tables of these functions are necessary in calculations of wave

propagation, but are otherwise difficult to get. These tables

were derived from tables of related functions published by
J. W. L. Glaisher, Philosophical Transactions of the Royal

Society of London, 1870, Vol. 160.
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SECTION I

TRANSIENTS IN TIME





TKANSIENTS IN TIME

CHAPTER I.

THE CONSTANTS OF THE ELECTRIC CIRCUIT.

1. To transmit electric energy from one place where it is

generated to another place where it is used, an electric cir-

cuit is required, consisting of conductors which connect the

point of generation with the point of utilization.

When electric energy flows through a circuit, phenomena
take place inside of the conductor as well as in the space out-

side of the conductor.

In the conductor, during the flow of electric energy through
the circuit, electric energy is consumed continuously by being
converted into heat. Along the circuit, from the generator
to the receiver circuit, the flow of energy steadily decreases

by the amount consumed in the conductor, and a power gradi-

ent exists in the circuit along or parallel with the conductor.

(Thus, while the voltage may decrease from generator to

receiver circuit, as is usually the case, or may increase, as in

an alternating-current circuit with leading current, and while

the current may remain constant throughout the circuit, or

decrease, as in a transmission line of considerable capacity
with a leading or non-inductive receiver circuit, the flow of

energy always decreases from generating to receiving circuit,

and the power gradient therefore is characteristic of the direc-

tion of the flow of energy.)
In the space outside of the conductor, during the flow of

energy through the circuit, a condition of stress exists which

is called the electric field of the conductor. That is, the

surrounding space is not uniform, but has different electric

and magnetic properties in different directions.

No power is required to maintain the electric field, but energy
3
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is required to produce the electric field, and this energy is

returned, more or less completely, when the electric field dis-

appears by the stoppage of the flow of energy.

Thus, in starting the flow of electric energy, before a perma-
nent condition is reached, a finite time must elapse during
which the energy of the electric field is stored, and the generator

therefore gives more power than consumed in the conductor

and delivered at the receiving end; again, the flow of electric

energy cannot be stopped instantly, but first the energy stored

in the electric field has to be expended. As result hereof,

where the flow of electric energy pulsates, as in an alternating-

current circuit, continuously electric energy is stored in the

field during a rise of the power, and returned to the circuit

again during a decrease of the power.
The electric field of the conductor exerts magnetic and elec-

trostatic actions.

The magnetic action is a maximum in the direction concen-

tric, or approximately so, to the conductor. That is, a needle-

shaped magnetizable body, as an iron needle, tends to set itself

in a direction concentric to the conductor.

The electrostatic action has a maximum in a direction radial,

or approximately so, to the conductor. That is, a light needle-

shaped conducting body, if the electrostatic component of the

field is powerful enough, tends to set itself in a direction radial

to the conductor, and light bodies are attracted or repelled

radially to the conductor.

Thus, the electric field of a circuit over which energy flows

has three main axes which are at right angles with each other:

The electromagnetic axis, concentric with the conductor.

The electrostatic axis, radial to the conductor.

The power gradient, parallel to the conductor.

This is frequently expressed pictorially by saying that the

lines of magnetic force of the circuit are concentric, the lines

of electrostatic force radial to the conductor.

Where, as is usually the case, the electric circuit consists of

several conductors, the electric fields of the conductors super-

impose upon each other, and the resultant lines of magnetic
and of electrostatic forces are not concentric and radial respec-

tively, except approximately in the immediate neighborhood
of the conductor.
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In the electric field between parallel conductors the magnetic
and the electrostatic lines of force are conjugate pencils of circles.

2. Neither the power consumption in the conductor, nor

the electromagnetic field, nor the electrostatic field, are pro-

portional to the flow of energy through the circuit.

The product, however, of the intensity of the magnetic field,

<f>, and the intensity of the electrostatic field, "^ is proportional
to the flow of energy or the power, P, and the power P is there-

fore resolved into a product of two components, i and e, which
are chosen proportional respectively to the intensity of the

magnetic field <I> and of the electrostatic field V.
That is, putting

P = ie (1)

we have

<E> = Li = the intensity of the electromagnetic field. (2)

Mf = Ce = the intensity of the electrostatic field. (3)

The component i, called the current, is defined as that factor

of the electric power P which is proportional to the magnetic

field, and the other component e, called the voltage, is defined

as that factor of the electric power P which is proportional to

the electrostatic field.

Current i and voltage e, therefore, are mathematical fictions,

factors of the power P, introduced to represent respectively the

magnetic and the electrostatic or "
dielectric

"
phenomena.

The current i is measured by the magnetic action of a circuit,

as in the ammeter; the voltage e, by the electrostatic action of

a circuit, as in the electrostatic voltmeter, or by producing a

current i by the voltage e and measuring this current i by its

magnetic action, in the usual voltmeter.

The coefficients L and (7, which are the proportionality factors

of the magnetic and of the dielectric component of the electric

field, are called the inductance and the capacity of the circuit,

respectively.

As electric power P is resolved into the product of current i

and voltage e, the power loss in the conductor, Ph therefore can

also be resolved into a product of current i and voltage e
t

which is consumed in the conductor. That is,

P, = ie
t
.
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It is found that the voltage consumed in the conductor, eh is

proportional to the factor i of the power P, that is,

e
t

=
ri, (4)

where r is the proportionality factor of the voltage consumed

by the loss of power in the conductor, or by the power gradient,

and is called the resistance of the circuit.

Any electric circuit therefore must have three constants,

r, L, and (7, where

r = circuit constant representing the power gradient, or the

loss of power in the conductor, called resistance.

L = circuit constant representing the intensity of the electro-

magnetic component of the electric field of the circuit,

called inductance.

C = circuit constant representing the intensity of the electro-

static component of the electric field of the circuit, called

capacity.

3. A change of the magnetic field of the conductor, that is,

of the number of lines of magnetic force
</> surrounding the

conductor, generates an e.m.f.

'-3 <>

in the conductor and thus absorbs a power

*"-*-< (6)

or, by equation (2) : <J>
= Li by definition, thus :

d& , di i r>/ T di- = L -,and: P' = Lt -, (7)

and the total energy absorbed by the magnetic field during the

rise of current from zero to i is

WM --P'dt (8)

=

LJidi,

that is, ,,

WM -
(9)
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A change of the dielectric field of the conductor, ^, absorbs

a current proportional to the change of the dielectric field :

and absorbs the power

or, by equation (3),

P=ei'=e, (11)

(12)

and the total energy absorbed by the dielectric field during a

rise of voltage from to 6 is

WK ==p"dt (13)

=
cfede,

that is *n

The power consumed in the conductor by its resistance r is

Pr
= ieh (15)

and thus, by equation (4),

Pr
= tV. (16)

That is, when the electric power

P = ei (1)

exists in a circuit, it is

p r
= tfr = power lost in the conductor, (16)

WM =
l = energy stored in the magnetic field of the circuit, (9)
l

Ll

WK = = energy stored in the dielectric field of the cir-

t

cuit, (14)
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and the three circuit constants r, L, C therefore appear as the

components of the energy conversion into heat, magnetism, and
electric stress, respectively, in the circuit.

4. The circuit constant, resistance r, depends only on the

size and material of the conductor, but not on the position of

the conductor in space, nor on the material filling the space

surrounding the conductor, nor on the shape of the conductor

section.

The circuit constants, inductance L and capacity (7, almost

entirely depend on the position of the conductor in space, on

the material filling the space surrounding the conductor, and

on the shape of the conductor section, but do not depend on

the material of the conductor, except to that small extent as

represented by the electric field inside of the conductor section.

5. The resistance r is proportional to the length and inversely

proportional to the section of the conductor,

r = p
l

T ' (IV)
J\.

where p is a constant of the material, called the resistivity or

specific resistance.

For different materials, p varies probably over a far greater

range than almost any other physical quantity. Given in ohms

per centimeter cube,* it is, approximately, at ordinary tem-

peratures :

Metals: Cu .................. ........... 1 . 6 X lO" 6

Al. .., ......................... 2.5 X 10- 6

Fe .............................. 10 X 10- 6

Hg ............................. 94 X 10- 6

Gray cast iron .............. up to 100 X 10~ 6

High-resistance alloys ....... up to 150 X 10~ 8

Electrolytes: N0 3
H ............. down to 1 .3 at 30 per cent

KOH ............. down to 1 . 9 at 25 per cent

NaCL . ............ down to 4 . 7 at 25 per cent

up to

Pure river water ....................... . 104

and over alcohols, oils, etc., to practically infinity.

Meaning a conductor of one centimeter length and one square centimeter*

section.
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So-called
' '

insulators" :

Fiber about 10 12

Paraffin oil about IQ
Paraffin about 10 14 to 10 16

Mica about 10 14

G1ass about 1014 to 1016

Rubber about 10
16

Air
practically oo

In the wide gap between the highest resistivity of metal

alloys, about p = 150 X 10~ 6

,
and the lowest resistivity of

electrolytes, about p =
1, are

Carbon: metallic down to 100 X 10~6

amorphous (dense) 0.04 and higher
anthracite very high

Silicon and Silicon Alloys:

Cast silicon 1 down to . 04
Ferro silicon 0.04 down to 50 X 10~a

The resistivity of arcs and of Geissler tube discharges is of about
the same magnitude as electrolytic resistivity.

The resistivity, p, is usually a function of the temperature,

rising slightly with increase of temperature in metallic conduct-

ors and decreasing in electrolytic conductors. Only with few

materials, as silicon, the temperature variation of p is so enor-

mous that p can no longer be c.onsidered as even approximately
constant for all currents i which give a considerable tempera-
ture rise in the conductor. Such materials are commonly
called pyroelectrolytes.

6. The inductance L is proportional to the section and

inversely proportional to the length of the magnetic circuit

surrounding the conductor, and so can be represented by

L =^ (18)

where /* is a constant of the material filling the space surround-

ing the conductor, which is called the magnetic permeability.

As in general neither section nor length is constant in differ-

ent parts of the magnetic circuit surrounding an electric con-
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ductor, the magnetic circuit has as a rule to be calculated

piecemeal, or by integration over the space occupied by it.

The permeability, /*, is constant and equals unity or very

closely fj.

= 1 for all substances, with the exception of a few

materials which are called the magnetic materials, as iron,

cobalt, nickel, etc., in which it is very much higher, reaching
sometimes and under certain conditions in iron values as high
as

fjL

= 6000.

In these magnetic materials the permeability /* is not con-

stant but varies with the magnetic flux density, or number of

lines of magnetic force per unit section, (B, decreasing rapidly
for high values of (B.

In such materials the use of the term /* is therefore incon-

venient, and the inductance, L, is calculated by the relation

between the magnetizing force as given in ampere-turns per
unit length of magnetic circuit, or by "field intensity," and

magnetic induction (B.

The magnetic induction (B in magnetic materials is the sum
of the "space induction" 3C, corresponding to unit permeability,

plus the "metallic induction" (B', which latter reaches a finite

limiting value. That is,

(B = 3C + (&'. (19)

The limiting values, or so-called "saturation values," of (B'

are approximately, in lines of magnetic force per square centi-

meter:

Iron .20,000

Cobalt 12,000-

Nickel 6,000

Magnetite 5,000

Manganese alloys up to 4,000

The inductance, L, therefore is a constant of the circuit if

the space surrounding the conductor contains no magnetic

material, and is more or less variable with the current, i, if

magnetic material exists in the space surrounding the conductor.

In the latter case, with increasing current, i, the inductance, L,

first slightly increases, reaches a maximum, and then decreases,

approaching as limiting value the value which it would have in

the absence of the magnetic material.
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7. The capacity, C, is proportional to the section and inversely
proportional to the length of the electrostatic field of the con-
ductor:

^ *A
G = T , (20)

where K is a constant of the material filling the space surround-

ing the conductor, which is called the "dielectric constant," or

the
"
specific capacity/' or "

permittivity."

Usually the section and the length of the different parts of

the electrostatic circuit are different, and the capacity therefore

has to be calculated piecemeal, or by integration.
The dielectric constant K of different materials varies over a

relative narrow range only. It is approximately:

AC = 1 in the vacuum, in air and in other gases,
K = 2 to 3 in oils, paraffins, fiber, etc.,

K = 3 to 4 in rubber and gutta-percha,
K = 3 to 5 in glass, mica, etc.,

reaching values as high as 7 to 8 in organic compounds of heavy

metals, as lead stearate, and about 12 in sulphur.

The dielectric constant, /c, is practically constant for all voltages

e, up to that voltage at which the electrostatic field intensity,

or the electrostatic gradient, that is, the "volts per centimeter,"

exceeds a certain value d, which depends upon the material and

which is called the "dielectric strength" or "disruptive strength"

of the material. At this potential gradient the medium breaks

down mechanically, by puncture, and ceases to insulate, but

electricity passes and so equalizes the potential gradient.

The disruptive strength, d, given in volts per centimeter is

approximately :

Air: 32,000.

Oils: 250,000 to 1,000,000.

Mica: up to 4,000,000.

The capacity, (7, of a circuit therefore is constant up to the

voltage e, at which at some place of the electrostatic field the

dielectric strength is exceeded, disruption takes place, and a

part of the surrounding space therefore is made conducting, and

by this increase of the effective size of the conductor the capacity

C is increased.
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8. Of the amount of energy consumed in creating the electric

field of the circuit not all is returned at the disappearance of

the electric field, but a part is consumed by conversion into heat

in producing or in any other way changing the electric field.

That is, the conversion of electric energy into and from the

electromagnetic and electrostatic stress is not complete, but a

loss of energy occurs, especially with the magnetic field in the

so-called magnetic materials, and with the electrostatic field in

unhomogeneous dielectrics.

The energy loss in the production and reconversion of the

magnetic component of the field can be represented by an

effective resistance r
r which adds itself to the resistance r of

the conductor and more or less increases it.

The energy loss in the electrostatic field can be represented

by an effective resistance r"
, shunting across the circuit, and

consuming an energy current i"
,
in addition to the current i in

the conductor. Usually, instead of an effective resistance r",

its reciprocal is used, that is, the energy loss in the electro-

static field represented by a shunted conductance g.

In its most general form the electric circuit therefore contains

the constants :

1. Inductance L, storing 'the energy,
-

,

ft

2. Capacity C, storing the energy,
-

>

&

3. Resistance r = r + r', consuming the power, tfr = ?

4. Conductance g} consuming the power, e
z

g,

where r is the resistance of the conductor, r' the effective resist-

ance representing the power loss in the magnetic field L, and g

represents the power loss in the electrostatic field C.

9. If of the three components of the electric field, the electro-

magnetic stress, electrostatic stress, and the power gradient, one

equals zero, a second one must equal zero also. That is, either

all of the three components exist or only one exists.

Electric systems in which the magnetic component of the

field is absent, while the electrostatic component may be consider-

able, are represented for instance by an electric generator or

a battery on open circuit, or by the electrostatic machine. In

such systems the disruptive effects due to high voltage, there-
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fore, are most pronounced, while the power is negligible, and

phenomena of this character are usually called
"
static."

Electric systems in which the electrostatic component of the

field is absent, while the electromagnetic component is consider-

able, are represented for instance by the short-circuited secondary
coil of a transformer, in which no potential difference and, there-

fore, no electrostatic field exists, since the generated e.m.f. is

consumed at the place of generation. Practically negligible also

is the electrostatic component in all low-voltage circuits.

The effect of the resistance on the flow of electric energy in

industrial applications is restricted to fairly narrow limits: as

the resistance of the circuit consumes power and thus lowers the

efficiency of the electric transmission, it is uneconomical to

permit too high a resistance. As lower resistance requires a

larger expenditure of conductor material, it is usually uneco-

nomical to lower the resistance of the circuit below that which,

gives a reasonable efficiency.

As result hereof, practically always the relative resistance,

that is, the ratio of the power lost in the resistance to the total

power, lies between 2 per cent and 20 per cent.

It is different with the inductance L and the capacity C. Of

the two forms of stored energy, the magnetic and electro-

e*C
static , usually one is so small that it can be neglected com-

fk

pared with the other, and the electric circuit with sufficient

approximation treated as containing resistance and inductance,

or resistance and capacity only.

In the so-called electrostatic machine and its applications,

frequently only capacity and resistance come into consideration.

In all lighting and power distribution circuits, direct current

or alternating current, as the 110- and 220-volt lighting circuits,

the 500-volt railway circuits, the 2000-volt primary distribution

circuits, due to the relatively low voltage, the electrostatic

energy
-
^ is still so very small compared with the electro-

2

magnetic energy, that the capacity C can for most purposes be

neglected and the circuit treated as containing resistance and

inductance only.
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Of approximately equal magnitude is the electromagnetic

energy and the electrostatic energy
-

^ in the high-potential
Zi iL

long-distance transmission circuit, in the telephone circuit, and
in the condenser discharge, and so in most of the phenomena
resulting from lightning or other disturbances. In these cases

all three circuit constants, r, L, and C, are of essential impor-
tance.

10. In an electric circuit of negligible inductance L and

negligible capacity C, no energy is stored, and a change in the

circuit thus can be brought about instantly without any disturb-

ance or intermediary transient condition.

In a circuit containing only resistance and
"

capacity ,
as a

static machine, or only resistance arid inductance, as a low or

medium voltage power circuit, electric energy is stored essentially

in one form only, and a change of the circuit, as an opening of

the circuit, thus cannot be brought about instantly, but occurs

more or less gradually, as the energy first has to be stored or

discharged.
In a circuit containing resistance, inductance, and capacity,

and therefore capable of storing energy in two different forms,

the mechanical change of circuit conditions, as the opening of a

circuit, can be brought about instantly, the internal energy of

the circuit adjusting itself to the changed circuit conditions by
a transfer of energy between static and magnetic and inversely,

that is, after the circuit conditions have been changed, a transient

phenomenon, usually of oscillatory nature, occurs in the circuit

by the readjustment of the stored energy.

These transient phenomena of the readjustment of stored

electric energy with a change of circuit conditions require careful

study wherever the amount of stored energy is sufficiently large

to cause serious damage. This is analogous to the phenomena
of the readjustment of the stored energy of mechanical motion:

while it may be harmless to instantly stop a slowly moving light

carriage, the instant stoppage, as by collision, of a fast railway
train leads to the usual disastrous result. So also, in electric

systems of small stored energy, a sudden change of circuit con-

ditions may be safe, while in a high-potential power system of

very great stored electric energy any change of circuit conditions

requiring a sudden change of energy is liable to be destructive.
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Where electric energy is stored in one form only, usually little

danger exists, since the circuit protects itself against sudden

change by the energy adjustment retarding the change, and

only where energy is stored electrostatically and magnetically,

the mechanical change of the circuit conditions, as the opening
of the circuit, can be brought about instantly, and the stored

energy then surges between electrostatic and magnetic energy.

In the following, first the phenomena will be considered which

result from the stored energy and its readjustment in circuits

storing energy in one form only, which usually is as electro-

magnetic energy, and then the general problem of a circuit

storing energy electromagnetically and electrostatically will be

considered.



CHAPTER II.

INTRODUCTION.

11. In the investigation of electrical phenomena, currents

and potential differences, whether continuous or alternating,

are usually treated as stationary phenomena. That is, the

assumption is made that after establishing the circuit a sufficient

time has elapsed for the currents and potential differences to

reach their final or permanent values, that is, become constant,

with continuous current, or constant periodic functions of time,

with alternating current. In the first moment, however, after

establishing the circuit, the currents and potential differences

in the circuit have not yet reached their permanent values,

that is, the electrical conditions of the circuit are not yet the

normal or permanent ones, but a certain time elapses while the

electrical conditions adjust themselves.

12. For instance, a continuous e.m.f., e
OJ impressed upon a

circuit of resistance r, produces and maintains in the circuit a

current,

In the moment of closing the circuit of e.m.f. e on resistance r,

the current in the circuit is zero. Hence, after closing the circuit

the current i has to rise from zero to its final value i . If the

circuit contained only resistance but no inductance, this would

take place instantly, that is, there would be no transition period.

Every circuit, however, contains some inductance. The induc-

tance L of the circuit means L interlinkages of the circuit with

lines of magnetic force produced by unit current in the circuit,

or iL interlinkages by current i. That is, in establishing current

i in the circuit, the magnetic flux i
Q
L must be produced. A

change of the magnetic flux iL surrounding a circuit generates
in the circuit an e.m.f.,

d
e -

*
16
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This opposes the impressed e.m.f. e
,
and therefore lowers the

e.m.f. available to produce the current, and thereby the current,

which then cannot instantly assume its final value, but rises

thereto gradually, and so between the starting of the circuit

and the establishment of permanent condition a transition

period appears. In the same manner and for the same reasons,

if the impressed e.m.f. e
Q
is withdrawn, but the circuit left closed,

the current i does not instantly disappear but gradually dies

out, as shown in Fig. 1, which gives the rise and the decay of a



18 TRANSIENT PHENOMENA

moment of closing the circuit, an infinite current would exist

charging the condenser instantly to the potential difference e .

If r is the resistance of the direct-current circuit containing the

condenser, and this circuit contains no inductance, the current

Q
starts at the value i = -

, that is, in the first moment after

closing the circuit all the impressed e.m.f. is consumed by the

current in the resistance, since no charge and therefore no

potential difference exists at the condenser. With increasing

charge of the condenser, and therefore increasing potential
difference at the condenser terminals, less and less e.m.f. is

available for the resistance, and the current decreases, and

ultimately becomes zero, when the condenser is fully charged.
If the circuit also contains inductance L, then the current

cannot rise instantly but only gradually: in the moment after

closing the circuit the potential difference at the condenser is

still zero, and rises at such a rate that the increase of magnetic
flux iL in the inductance produces an e.m.f. Ldi/dt, which

consumes the impressed e.m.f. Gradually the potential differ-

ence at the condenser increases with its increasing charge, and

the current and thereby the e.m.f. consumed by the resistance

increases, and so less e.m.f. being available for consumption by
the inductance, the current increases more slowly, until ulti-

mately it ceases to rise, has reached a maximum, the inductance

consumes no e.m.f., but all the impressed e.m.f. is consumed by
the current in the resistance and by the potential difference at

the condenser. The potential difference at the condenser con-

tinues to rise with its increasing charge; hence less e.m.f. is

available for the resistance, that is, the current decreases again,

and ultimately becomes zero, when the condenser is fully

charged. During the decrease of current the decreasing mag-
netic flux iL in the inductance produces an e.m.f., which assists

the impressed e.m.f., and so retards somewhat the decrease of

current.

Fig. 2 shows the charging current of a condenser through an

inductive circuit, as i, and the potential difference at the con-

denser terminals, as e, with a continuous impressed e.m.f. e
,

for the circuit constants r = 250 ohms; L = 100 mh.; C =
10 mf., and e = 1000 volts.

If the resistance is very small, the current immediately after
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closing the circuit rises very rapidly, quickly charges the con-

denser, but at the moment where the condenser is fully charged
to the impressed e.m.f. e

,
current still exists. This current

cannot instantly stop, since the decrease of current and there-

with the decrease of its magnetic flux iL generates an e.m.f.,

1000

4 800

Fig. 2. Charging a condenser through a circuit having resistance and
inductance. Constant potential. Logarithmic charge: high resistance.

which maintains the current, or retards its decrease. Hence

electricity still continues to flow into the condenser for some
time after it is fully charged, and when the current ultimately

stops, the condenser is overcharged, that is, the potential dif-

ference at the condenser terminals is higher than the impressed
e.m.f. e

,
and as result the condenser has partly to discharge

again, that is, electricity begins to flow in the opposite direction,

or out of the condenser. In the same manner this reverse

current, due to the inductance of the circuit, overreaches and

discharges the condenser farther than down to the impressed
e.m.f. e

,
so that after the discharge current stops again a charg-

ing current now less than the initial charging current -

starts, and so by a series of oscillations, overcharges and under-

charges, the condenser gradually charges itself, and ultimately

the current dies out.

Fig. 3 shows the oscillating charge of a condenser through an

inductive circuit, by a continuous impressed e.m.f. e . The

current is represented by i, the potential difference at the con-

denser terminals by e, with the time as abscissas. The con-

stants of the circuit are: r = 40 ohms; L = 100 mh.; C =

10 mf., and e
Q
= 1000 volts.

In such a continuous-current circuit, containing resistance,

inductance, and capacity in series to each other, the current at

the moment of closing the circuit as well as the final current
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is zero, but a current exists immediately after closing the

circuit, as a transient phenomenon; a temporary current,

steadily increasing and then decreasing again to zero, or con-

sisting of a number of alternations of successively decreasing

amplitude : an oscillating current.

If the circuit contains no resistance and inductance, the cur-

rent into the condenser would theoretically be infinite. That
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present case zero, to the final value of the curve i, can either
be gradual, as shown by the curve i

l
of Fig. 4, or by a series

of oscillations of gradually decreasing amplitude, as shown by
curve i

2
of Fig. 4.

15. The general solution of an electric current problem there-
fore includes besides the permanent term, constant or periodic,

l

/i
>c-

Gradual or Logarithm o start of current:

Oscillatory or 1

S

arjthui
e start

rigonometrio s

I****[rtartV

Fig. 4. Starting of an alternating-current circuit having inductance.

a transient term, which disappears after a time depending upon
the circuit conditions, from an extremely small fraction of a

second to a number of seconds.

These transient terms appear in closing the circuit, opening
the circuit, or in any other way changing the circuit conditions,

as by a change of load, a change of impedance, etc.

In general, in a circuit containing resistance and inductance

only, but no capacity, the transient terms of current and volt-

age are not sufficiently large and of long duration to cause

harmful nor even appreciable effects, and it is mainly in circuits

containing capacity that excessive values of current and poten-
tial difference may be reached by the transient term, and there-

with serious results occur. The investigation of transient terms

therefore is largely an investigation of the effects of electro-

static capacity.
16. No transient terms result from the resistance, but only

those circuit constants which represent storage of energy, mag-

netically by the inductance L, electrostatically by the capacity

C, give rise to transient phenomena, and the more the resist-
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ance predominates, the less is therefore the severity and dura-

tion of the transient term.

When closing a circuit containing inductance or capacity

or both, the energy stored in the inductance and the capacity

has first to be supplied by the impressed e.m.f. before the

circuit conditions can become stationary. That is, in the first

moment after closing an electric circuit, or in general changing

the circuit conditions, tne impressed e.m.f., or rather the source

producing the impressed e.m.f., has, in addition to the power
consumed in maintaining the circuit, to supply the power which

stores energy in inductance and capacity, and so a transient

term appears immediately after any change of circuit condi-

tion. If the circuit contains only one energy-storing constant,

as either inductance or capacity, the transient term, which

connects the initial with the stationary condition of the circuit,

necessarily can be a steady logarithmic term only, or a gradual

approach. An oscillation can occur only with the existence of

two energy-storing constants, as capacity and inductance, which

permit a surge of energy from the one to the other, and there-

with an overreaching.
17. Transient terms may occur periodically and in rapid suc-

cession, as when rectifying an alternating current by synchro-

nously reversing the connections of the alternating impressed
e.m.f. with the receiver circuit (as can be done mechanically
or without moving apparatus by undirectional conductors, as

arcs). At every half wave the circuit reversal starts a tran-

sient term, and usually this transient term has not yet disap-

peared, frequently not even greatly decreased, when the next

reversal again starts a transient term. These transient terms

may predominate to such an extent that the current essentially

consists of a series of successive transient terms.

18. If a condenser is charged through an inductance, and the

condenser shunted by a spark gap set for a lower voltage than

the impressed, then the spark gap discharges as soon as the

condenser charge has reached a certain value, and so starts a

transient term; the condenser charges again, and discharges,

and so by the successive charges and discharges of the condenser

a series of transient terms is produced, recurring at a frequency

depending upon the circuit constants and upon the ratio of the

disruptive voltage of the spark gap to the impressed e.m.f.
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>uch a phenomenon for instance occurs when on a high-

potential alternating-current system a weak spot appears in the

cable insulation and permits a spark discharge to pass to the

ground, that is, in shunt to the condenser formed by the cable

conductor and the cable armor or ground.
19. In most cases the transient phenomena occurring in

electric circuits immediately after a change of circuit conditions

are of no importance, due to their short duration. They
require serious consideration, however, -

(a) In those cases where they reach excessive values. Thus

in connecting a large transformer to an alternator the large

initial value of current may do damage. In short-circuiting a

large alternator, while the permanent or stationary short-circuit

current is not excessive and represents little power, the very
much larger momentary short-circuit current may be beyond
the capacity of automatic circuit-opening devices and cause

damage by its high power. In high-potential transmissions

the potential differences produced by these transient terms may
reach values so high above the normal voltage as to cause

disruptive effects.

(6) Lightning, high-potential surges, etc., are in their nature

essentially transient phenomena, usually of oscillating character.

(c) The periodical production of transient terms of oscillating

character is one of the foremost means of generating electric cur-

rents of very high frequency as used in wireless telegraphy, etc.

(d) In alternating-current rectifying apparatus, by which the

direction of current in a part of the circuit is reversed every half

wave, and the current so made unidirectional, the stationary

condition of the current in the alternating part of the circuit is

usually never reached, and the transient term is frequently of

primary importance.

(e) In telegraphy the current in the receiving apparatus

essentially depends on the transient terms, and in long-distance

cable telegraphy the stationary condition of current is never

approached, and the speed of telegraphy depends on the duration

of the transient terms.

(f) Phenomena of the same character, but with space instead

of time as independent variable, are the distribution of voltage

and current in a long-distance transmission line; the phenomena

occurring in niultigap lightning arresters; the transmission of
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current impulses in telephony; the distribution of alternating

current in a conductor, as the rail return of a single-phase railway;

the distribution of alternating magnetic flux in solid magnetic

material, etc.

Some of the simpler forms of transient terms are investigated

and discussed in the following pages.



CHAPTER III.

INDUCTANCE AND RESISTANCE IN CONTINUOUS-
CURRENT CIRCUITS.

20. In continuous-current circuits the inductance does not

enter the equations of stationary condition, but, if e = impressed

e.m.f., r = resistance, L = inductance, the permanent value of

/>

current is ia
=

r

Therefore less care is taken in direct-current circuits to reduce

the inductance than in alternating-current circuits, where the

inductance usually causes a drop of voltage, and direct-current

circuits as a rule have higher inductance, especially if the circuit

is used for producing magnetic flux, as in solenoids, electro-

magnets, machine-fields.

Any change of the condition of a continuous-current circuit,

as a change of e.m.f., of resistance, etc., which leads to a change
of current from one value i to another value iv results in the

appearance of a transient term connecting the current values

i and iv and into the equation of the transient term enters the

inductance.

Count the time t from the moment when the change in the

continuous-current circuit starts, and denote the impressed

e.m.f. by e
,
the resistance by r, and the inductance by L.

p

i
l

= - = current in permanent or stationary condition after

the change of circuit condition.

Denoting by i the current in circuit before the change, and

therefore at the moment t = 0, by i the current during the

change, the e.m.f. consumed by resistance r is

ir,

and the e.m.f. consumed by inductance L is

di
L

dt'

where i = current in the circuit.

26
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di
Hence, e

Q
= ir + L > (1)

dt

or, substituting e
Q
=

if, and transposing,

-i*-iV
This equation is integrated by

- -t =
log (i

-
ij

-
logc,

where log c is the integration constant, or,

r

i i^
= ce L .

However, for t = 0, i = i
Q

.

Substituting this, gives

I
Q

i
l
=

c,

-ft
hence, i = i

l + (i
-

t\) e
'

, (3)

the equation of current in the circuit.

The counter e.m.f. of self-inductance is

e^-L^rtf.-*,).^', . (4)

hence a maximum for t = 0, thus :

i
= r (i,

-
i,). (5)

The e.m.f. of self-inductance e
x
is proportional to the change

of current (i t\), and to the resistance r of the circuit after

the change, hence would be <*> for r = <*>
,
or when opening the

circuit. That is, an inductive circuit cannot be opened instantly,
but the arc following the break maintains the circuit for some

time, and the voltage generated in opening an inductive circuit

is the higher the quicker the break. Hence in a highly inductive

circuit, as an electromagnet or a machine field, the insulation

may be punctured by excessive generated e.m.f. when quickly

opening the circuit.

As example, some typical circuits may be considered.
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21. Starting of a continuous-current lighting circuit, or non-in-

ductive load.

Let e = 125 volts = impressed e.m.f. of the circuit, and

tj 1000 amperes = current in the circuit under stationary

condition; then the effective resistance of the circuit is

= 0.125 ohm.

Assuming 10 per cent drop in feeders and mains, or 12.5 volts,

gives a resistance, r = 0.0125 ohm of the supply conductors.

In such large conductor the inductance may be estimated as

10 mh. per ohm; hence, L = 0.125 mh. = 0.000125 henry.
The current at the moment of starting is i =

0, and the general

equation of the current in the circuit therefore is, by substitution

m (3))
i = 1000 (1

- e-1000
')- (6)

The time during which this current reaches half value, or

i = 500 amperes, is given by substitution in (6)

500 = 1000 (1
- s- 1

"*"),

hence e"1000 ' =
0.5,

t = 0.00069 seconds.

The time during which the current reaches 90 per cent of its

full value, or i = 900 amperes, is t = 0.0023 seconds, that is,

the current is established in the circuit in a practically inappre-

ciable time, a fraction of a hundredth of a second.

22. Excitation of a motor field.

Let, in a continuous-current shunt motor, e = 250 volts =

impressed e.m.f., and the number of poles
= 8.

Assume the magnetic flux per pole, <l> = 12.5 megalines, and

the ampere-turns per pole required to produce this magnetic
flux as $ = 9000.

Assume 1000 watts used for the excitation of the motor

field gives an exciting current

1000
h =- = 4 amperes,

and herefrom the resistance of the total motor field circuit is

r = e
-? = 62.5 ohms.
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To produce JF = 9000 ampere-turns, with i
l

= 4 amperes,

cjr

requires
= 2250 turns per field spool, or a total of n = 18,000

l
\

turns.

n = 18,000 turns interlinked with <I> = 12.5 megalines gives

a total number of interlinkages for i
1

= 4 amperes of n<& =

225 X 109
,
or 562.5 X 109

interlinkages per unit current, or

10 amperes, that is, an inductance of the motor field circuit

L = 562.5 henrys.
The constants of the circuit thus are e = 250 volts; r = 62.5

ohms; L = 562.5 henrys, and i = = current at time t = 0.

Hence, substituting in (3) gives the equation of the exciting

current of the motor field as

'

i = 4 (1
_ e

-o-m
") (7)

Half excitation of the field is reached after the time t = 6.23

seconds;

90 per cent of full excitation, or i = 3.6 amperes, after the

time t = 20.8 seconds.

That is, such a motor field takes a very appreciable time

after closing the circuit before it has reached approximately
full value and the armature circuit may safely be closed.

Assume now the motor field redesigned, or reconnected so

as to consume only a part, for instance half, of the impressed

e.m.f., the rest being consumed in non-inductive resistance.

This may be done by connecting the field spools by two in

multiple.

In this case the resistance and the inductance of the motor

field are reduced to one-quarter, but the same amount of

external resistance has to be added to consume the impressed

e.m.f., and the constants of the circuit then are: e = 250

volts; r = 31.25 ohms; L = 140.6 henrys, and i = 0.

The equation of the exciting current (3) then is

i = 8 (1
- e"

' 2222
0, (8)

that is, the current rises far more rapidly. It reaches 0.5

value after t = 3.11 seconds, 0.9 value after t = 10.4 seconds.

An inductive circuit, as a motor field circuit, may be made
to respond to circuit changes more rapidly by. inserting non-

inductive resistance in series with it and increasing the im-
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pressed e.m.f., that is, the larger the part of the impressed
e.m.f. consumed by non-inductive resistance, the quicker is the

change.

Disconnecting the motor field winding from the impressed
e.m.f. and short-circuiting it upon itself, as by leaving it con-

nected in shunt with the armature (the armature winding
resistance and inductance being negligible compared with that

of the field winding), causes the field current and thereby the

field magnetism to decrease at the same rate as it increased in

(7) and (8), provided the armature instantly comes to a stand-

still, that is, its e.m.f. of rotation disappears. This, however,

is usually not the case, but the motor armature slows down

gradually, its momentum being consumed by friction and other

losses, and while still revolving an e.m.f. of gradually decreas-

ing intensity is generated in the armature winding; this e.m.f.

is impressed upon the field.

The discharge of a motor field winding through the armature

winding, after shutting off the power, therefore leads to the

case of an inductive circuit with a varying impressed e.m.f.

23. Discharge of a motor field winding.

Assume that in the continuous-current shunt motor dis-

cussed under 22, the armature comes to rest t
l
= 40 seconds

after the energy supply has been shut off by disconnecting the

motor from the source of impressed e.m.f., while leaving the

motor field winding still in shunt with the motor armature

winding.
The resisting torque, which brings the motor to rest, may be

assumed as approximately constant, and therefore the deceler-

ation of the motor armature as constant, that is, the motor

speed decreasing proportionally to the time.

If then S = full motor speed, S (l
- -

j
is the speed of the

motor at the time t after disconnecting the motor from the

source of energy.

Assume the magnetic flux 3> of the motor as approximately

proportional to the exciting current, at exciting current i the

magnetic flux of the motor is <&=
^<&

,
where 4> = 12.5 mega-

lines is the flux corresponding to full excitation i
t
= 4 amperes.
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The e.m.f. generated in the motor armature winding and

thereby impressed upon the field winding is proportional to

the magnetic flux of the field, <I>, and to the speed $ (l J,V
and since full speed S and full flux <I> generate an e.m.f. e =

250 volts, the e.m.f. generated by the flux < and speed S 1 1 - -\>

that is, at time t is

and since

we have

--r/ 4

e = ir (l
-

-J;
(10)

or for r = 62.5 ohms, and t
l
= 40 seconds, we have

e = 62.5^ (1
- 0.025 t). (11)

Substituting this equation (10) of the impressed e.m.f. into

the differential equation (1) gives the equation of current i

during the field discharge,

henC6<
rtdt di

integrated by

where the integration constant c is found by

hence,

t = 0, i = iv log ci
i
=

0, c = -
,

2

(15)
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This is the equation of the field current during the time in

which the motor armature gradually comes to rest.

At the moment when the motor armature stops, or for

it is
rtl

i
2
= v~^. (16)

This is the same value which the current would have with

the armature permanently at rest, that is, without the assistance

of the e.m.f. generated by rotation, at the time t =

The rotation of the motor armature therefore reduces the

decrease of field current so as to require twice the time to reach

value i
2 ,
that it would without rotation.

These equations cease to apply for t > tv that is, after the

armature has come to rest, since they are based on the speed

equation S ( 1
J

,
and this equation applies only up to

t = tv but for t > tj_
the speed is zero, and not negative, as

given by S ( 1 -
-j

That is, at the moment t = ^ a break occurs in the field

discharge curve, and after this time the current i decreases in

accordance with equation (3), that is,

L \ ) /-i >7\
I = 1

2
> (17)

or, substituting (16),

i = v"
1
'*'*'. (18)

Substituting numerical values in these equations gives :

for t < tv

i= 4 -0.001388*'.
(19)

for t = t
l
= 40,

i = 0.436; (20)

for t > tv

i = 4 r -mi (<
- 2o)

. (21)
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Hence, the field has decreased to half its initial value after

the time t = 22.15 seconds, and to one tenth of its initial

value after t = 40.73 seconds.

40 seconds

5 10 15 20

Seconds

Fig. 5. Field discharge current.

Fig. 5 shows as curve I the field discharge current, by equations

(19), (20), (21), and as curve II the current calculated by the

equation
i = 4- <M111

<,

that is, the discharge of the field with the armature at rest, or

when short-circuited upon itself and so not assisted by the

e.m.f. of rotation of the armature.

The same Fig. 5 shows as curve III the beginning of the field

discharge current for L = 4200, that is, the case that the field

circuit has a much higher inductance, as given by the equation

i __ 4 0-000185 1-

As seen in the last case, the decrease of field current is very slow,

the field decreasing to half value in 47.5 seconds.

24. Self-excitation of direct-current generator.

In the preceding, the inductance L of the machine has been

assumed as constant, that is, the magnetic flux < as proportional
to the exciting current i. For higher values of <, this is not

even approximately the case. The self-excitation of the direct-

current generator, shunt or series wound, that is, the feature
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that the voltage of the machine after the start gradually builds

up from the value given by the residual magnetism to its full

value, depends upon the disproportionality of the magnetic flux

with the magnetizing current. When considering this phenom-

enon, the inductance cannot therefore be assumed as constant.

When investigating circuits in which the inductance L is not

constant but varies with the current, it is preferable not to use

the term " inductance" at all, but to introduce the magnetic
flux 4>.

The magnetic flux varies with the magnetizing current i by
an empirical curve, the magnetic characteristic or saturation

curve of the machine. This can approximately, within the range

considered here, be represented by a hyperbolic curve, as was

first shown by Frohlich in 1882 :

*--' (22)

where
<f>
= magnetic flux per ampere, in megalines, at low

density.

= magnetic saturation value, or maximum magnetic flux,

in megalines, and

.!+ (23)

can be considered as the magnetic exciting reluctance of the

machine field circuit, which here appears as linear function of

the exciting current i.

Considering the same shunt-wound commutating machine as

in (12) and (13), having the constants r = 62.5 ohms = field

resistance; <l> = 12.5 megalines
= magnetic flux per pole at

normal m.m.f.; SF = 9000 ampere-turns
= normal m.m.f. per

pole; n = 18,000 turns = total field turns (field turns per pole

= 18
'
QQQ = 2250), and ^ = 4 amperes = current for full

8

excitation, or flux, 4> = 12.5 megalines.

Assuming that at full excitation, 4>
,
the magnetic reluctance

has already increased by 50 per cent above its initial value, that
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ampere-turns i
is. that the ratio -

. _ > or
,
at <P = 4> = 12.5 mega-

magnetic flux <J>

lines and i = i
l

= 4 amperes, is 50 per cent higher than at low

excitation, it follows that

1 + bi,
=

1.5,

or

b = 0.125.

(24)

Since i = i
v
= 4 produces $ = $ =

12.5, it follows, from

(22) and (24)

< - 4.69.

That is, the magnetic characteristic (22) of the machine is

approximated by

-

Let now ec
= e.m.f. generated by the rotation of the arma-

ture per megaline of field flux.

This e.m.f. ec is proportional to the speed, and depends upon
the constants of the machine. At the speed assumed in (12)

and (13), $ = 12.5 megalines, e = 250 volts, that is,

ec
= -^ = 20 volts.

$0

Then, in the field circuit of the machine, the impressed e.m.f.,

or e.m.f. generated in the armature by its rotation through the

magnetic field is,

e = ec<b
= 20$;

the e.m.f. consumed by the field resistance r is

ir = 62.5 i;

the e.m.f. consumed by the field inductance, that is, generated
in the field coils by the rise of magnetic flux <, is

(<i> being given in megalines, eQ in volts.)
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The differential equation of the field circuit therefore is (1)

(26)

n

Since this equation contains the differential quotient of 4>, it

is more convenient to make 4> and not i the dependent variable;

then substitute for i from equation (22),

which gives

or, transposed,

100 ~dt
'

100

n

(27)

(28)

(29)

This equation is integrated by resolving into partial fraction

by the identity

ec
-

r)
- bec

resolved, this gives

hence, A

B
<j>ec

- r - bec

-r)- (Abec * - B *);

(30)

<t*c
~ r

br

and

100
+

. r) (<l>ec
r be,

This integrates by the logarithmic functions

100 1 4 r

(31)

(32)

n ec (<t>ec
-

r}
log(<j>ec-r-bec $>)+C. (33)
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The integration constant C is calculated from the residual

magnetic flux of the machine, that is, the remanent magnetism
of the field poles at the moment of start.

Assume, at the time, t = 0, 4> = 4>r
= 0.5 megalines = residual

magnetism and substituting in (33),

and herefrom calculate C.

C substituted in (33) gives

100 1
<}>

<$> r
<l>ec -r- bec3>

n

or,

substituting

and

n

em =

where em = e.m.f. generated in the armature by the rotation in

the residual magnetic field,

n ( e (bec r be

(36)

This, then, is the relation between e and t, or the equation
of the building up of a continuous-current generator from its

residual magnetism, its speed being constant.

Substituting the numerical values n = 18,000 turns; (f>
=

4.69 megalines; b =
0.125; ec

= 20 volts; r = 62.5 ohms; 4> r
=

0.5 megaline, and em = 10 volts, we have

t = 26.8 log $ - 17.9 log (31.25
- 2.5 $) + 79.6 (37)

and

t = 26.8 log e - 17.9 log (31.25
- 0.125 e)

- 0.8. (38)
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Fig. 6 shows the e.m.f. e as function of the time t. As seen,

under the conditions assumed here, it takes several minutes

before the e.m.f. of the machine builds up to approximately
full value.

20 40 60 80 100 120 140 760 ISO 200 Sec.

Fig. 6. Building-up curve of a shunt generator.

The phenomenon of self-excitation of shunt generators there-

fore is a transient phenomenon which may be of very long

duration.

From equations (35) and (36) it follows that

<l>ec
- r

e = 250 volts (39)

is the e.m.f. to which the machine builds up at t = o>, that is,

in stationary condition.

To make the machine self-exciting, the condition

fa - r >

must obtain, that is, the field winding resistance must be

r < fa
or,

(40)

(41)

r < 93.8 ohms,

or, inversely, ec ,
which is proportional to the speed, must be

r

*<>$'

or,

er > 13.3 volts.

(42)
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The time required by the machine to build up decreases with

increasing ec ,
that is, increasing speed; and increases with

increasing r, that is, increasing field resistance.

25. Self-excitation of direct-current series machine.

Of interest is the phenomenon of self-excitation in a series

machine, as a railway motor, since when using the railway motor

as brake, by closing its circuit upon a resistance, its usefulness

depends upon the rapidity of building up as generator.

Assuming a 4-polar railway motor, designed for e = 600 volts

and i
v

= 200 amperes, let, at current i = i
1
= 200 amperes, the

magnetic flux per pole of the motor be 4> = 10 megalines, and

8000 ampere-turns per field pole be required to produce this

flux. This gives 40 exciting turns per pole, or a total of n =

160 turns.

Estimating 8 per cent loss in the conductors of field and

armature at 200 amperes, this gives a resistance of the motor

circuit r = 0.24 ohms.

To limit the current to the full load value of ^ = 200 amperes,
with the machine generating e

Q
= 600 volts, requires a total

resistance of the circuit, internal plus external, of

r = 3 ohms,

or an external resistance of 2.76 ohms.

600 volts generated by 10 megalines gives

ec
= 60 volts per megaline per field pole.

Since in railway motors at heavy load the magnetic flux is

carried up to high values of saturation, at i = 200 amperes the

magnetic reluctance of the motor field may be assumed as three

times the value which it has at low density, that is, in equation

<22 >'
. 1 + W, -

3,

r
'

6 - 0.01,

and since for i = 200, <b = 10, we have in (22)

<
=

0.15,

hence, $ = -
'

(43)

represents the magnetic characteristic of the machine.
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Assuming a residual magnetism of 10 per cent, or <I>r
=

1 megaline, hence em = ec 4> r
= 60 volts, and substituting in

equation (36) gives n = 160 turns; <f>
= 0.15 megaline; b =

0.01; ec
= 60 volts; r = 3 ohms; 4>r

= 1 megaline, and em =
60 volts,

t = 0.04 log e - 0.01333 log (600
-

e)
- 0.08. (44)

This gives for e = 300, or 0.5 excitation, t = 0.072 seconds;

and for e = 540, or 0.9 excitation, t = 0.117 seconds; that is,

such a motor excites itself as series generator practically instantly,

or in a small fraction of a second.

The lowest value of ec at which self-excitation still takes place

is given by equation (42) as

ec
=

^
= 20

>

that is, at one-third of full speed.

If this series motor, with field and armature windings connected

in generator position, that is, reverse position, short-circuits

upon itself,

r = 0.24 ohms,

we have

t = 0.0274 log e - 0.00073 log (876
-

e)
-

0.1075, (45)

that is, self-excitation is practically instantaneous :

e = 300 volts is reached after t = 0.044 seconds.

Since for e = 300 volts, the current i = = 1250 amperes,

the power is p = ei = 375 kw., that is, a series motor short-

circuited in generator position instantly stops.

Short-circuited upon itself, r =
0.24, this series motor still

builds up at ec
= - =

1.6, and since at full load speed ec = 60,
9

ec
= 1.6 is 2.67 per cent of full load speed, that is, the motor

acts as brake down to 2.67 per cent of full speed.

It must be considered, however, that the parabolic equation

(22) is only an approximation of the magnetic characteristic,
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and the results based on this equation therefore are approximate

only.

One of the most important transient phenomena of direct-

current circuits is the reversal of current in the armature coil

short-circuited by the commutator brush in the commutating
machine. Regarding this, see

"
Theoretical Elements of Elec-

trical Engineering," Part II, Section B.



CHAPTER IV.

INDUCTANCE AND RESISTANCE IN ALTERNATING-
CURRENT CIRCUITS.

26. In alternating-current circuits, the inductance L, or, as

it is usually employed, the reactance x = 2 nfL, where / = fre-

quency, enters the expression of the transient as well as the

permanent term.

At the moment =
0, let the e.m.f. e = E cos (0 ) be

impressed upon a circuit of resistance r and inductance L, thus

inductive reactance x = 2 xfL; let the time 6 = 2 xft be counted

from the moment of closing the circuit, and be the phase of

the impressed e.m.f. at this moment.
In this case the e.m.f. consumed by the resistance =

ir,

where i = instantaneous value of current.

The e.m.f. consumed by the inductance L is proportional

to L and to the rate of change of the current, , thus, is L ,

at at

or, by substituting 6 = 2 nft, x = 2 nfL, the e.m.f. consumed

by inductance is x
do

Since e = E cos (0 )
= impressed e.m.f.,

di
E cos (6

-
)
= ir + x (1)

is the differential equation of the problem.

This equation is integrated by the function

i = 7 cos (6
-

d) + A ~ a
, (2)

where e = basis of natural logarithms
= 2.7183.

Substituting (2) in (1),

E cos (6
-

)
= Ir cos (6

-
i) + Ars~ a0 - Ix sin (d-d)- Aaxs'"',

or, rearranged:

(E cos - Ir cos - Ix sin d) cos + (E sin - Ir sin 8

+ /x cos d) sin - ^e~ a"
(ax

-
r)

= 0.

41
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Since this equation must be fulfilled for any value of 6, if (2)

is the integral of (1), the coefficients of cos 6, sin 0,

~ a9 must
vanish separately.

That is,

E cos Ir cos d Ix sin d =
0,

E sin - Ir sin d + Ix cos d =
0,

and

Herefrom it follows that

ax r = 0.

Substituting in (3),

r
a= -

tan
X

=

and

where

(3)

(4)

(5)

and

and herefrom

and

z = W2 +

lag angle and z = impedance of circuit, we have

E cos - 70 cos (# -0^=0

E sin - 7z sin (d
-

X)
=

0,

(6)

Thus, by substituting (4) and (6) in (2), the integral equation
becomes

E --
i = - cos (0

- -
X) + As x

, (7)

where A is still indefinite, and is determined by the initial con-

ditions of the circuit, as follows :

for =
0, i = 0;

hence, substituting in (7),

E= -cos (0 + 0J + A,
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or,

A -_|cos& + *!), <(8)
z

and, substituted in (7),

i = -
z |

cos (I?
- - 0J- i~

x
cos (0 + OJ

j
(9)

is the general expression of the current in the circuit.

If at the starting moment = the current is not zero

but = iw we have, substituted in (7),

A = ^--(508(0

i =-- cos (d
- 6 - ^)-cos (0 + 0,)- e

*
. (10)

27. The equation of current (9) contains a permanent term

E
cos (0 dj, which usually is the only term considered,

E -~ e

and a transient term e
x cos (0 + t).

z

The greater the resistance r and smaller the reactance x, the

more rapidly the term : - e
;c

cos (0 -f
t) disappears.

This transient term is a maximum if the circuit is closed at

the moment = 6V that is, at the moment when the

E
permanent value of current, cos (0 t ), should be a

maximum, and is then

The transient term disappears if the circuit is closed at the

moment = 90 Ov or when the stationary term of current

passes the zero value.
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As example is shown, in Fig. 7, the starting of the current

under the conditions of maximum transient term, or 6
Q
= d

lt

X
in a circuit of the following constants: =

0.1, corresponding

approximately to a lighting circuit, where the permanent value

GO

<feN

so

Degrees

120

Fig. 7. Starting current of an inductive circuit.

XCM
of current is reached in a small fraction of a half wave; =0.5,

corresponding to the starting of an induction motor with rheo-
*M

stat in the secondary circuit;
=

1.5, corresponding to an

unloaded transformer, or to the starting of an induction motor

with short-cifcuited secondary, and =
10, corresponding to a

reactive coil.

/
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Fig. 9 shows, for the circuit =
1.5, the current when closing

the circuit 0, 30, 60, 90, 120, 150 respectively behind the

zero value of permanent current.

The permanent value of current is usually shown in these

diagrams in dotted line.

^^\Ss
m

1.5

120 180 240 300

Degrees
480 640

Fig. 9. Starting current of an inductive circuit.

28. Instead of considering, in Fig. 9, the current wave as

consisting of the superposition of the permanent term

/ cos (6 Q ) and the transient term h c

cos the current

wave can directly be represented by the permanent term

4

3

2

1

-1

-2

-3

-4

-ft
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distances of the sine wave 7 cos (6 6 ) from the exponential
--fi

curve /s cos Q
, starting at the initial value of perma-

nent current.

In polar coordinates, in this case 7 cos (0 ) is the circle,

- r-e

h x
cos the exponential or loxodromic spiral.

As a rule, the transient term in alternating-current circuits

containing resistance and inductance is of importance only in

circuits containing iron, where hysteresis and magnetic saturation

complicate the phenomenon, or in circuits where unidirectional

or periodically recurring changes take place, as in rectifiers,

and some such cases are considered in the following chapters.



CHAPTER V.

RESISTANCE, INDUCTANCE, AND CAPACITY IN SERIES.
CONDENSER CHARGE AND DISCHARGE.

29. If a continuous e.m.f . e is impressed upon a circuit contain-

ing resistance, inductance, and capacity in series, the stationary
condition of the circuit is zero current, i = o, and the poten-
tial difference at the condenser equals the impressed e.m.f.,

e
t
=

e, no permanent current exists, but only the transient

current of charge or discharge of the condenser.

The capacity C of a condenser is defined by the equation

. de

that is, the current into a condenser is proportional to the rate

of increase of its e.m.f. and to the capacity.

It is therefore

and

e-^-lidt (1)

is the potential difference at the terminals of a condenser of

capacity C with current i in the circuit to the condenser.

Let then, in a circuit containing resistance, inductance, and

capacity in series, e = impressed e.m.f., whether continuous,

alternating, pulsating, etc.; i = current in the circuit at time t;

r = resistance; L = inductance, and C =
capacity; then the

e.m.f. consumed by resistance r is

n;

the e.m.f. consumed by inductance L is

di

47
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and the e.m.f . consumed by capacity C is

hence, the impressed e.m.f. is

and herefrom the potential difference at the condenser terminals

is

Ci
= -L Cidt = e - ri - L -*

(3)
(/ / at

Equation (2) differentiated and rearranged gives

d?i di 1 . de

as the general differential equation of a circuit containing resist-

ance, inductance, and capacity in series.

30. If the impressed e.m.f. is constant,

e = constant,

de
then 37

=
0,

dt

and equation (4) assumes the form, for continuous-current

circuits,

This equation is a linear relation between the dependent vari-

able, i, and its differential quotients, and as such is integrated

by an exponential function of the general form

i = Ae-*. (6)

(This exponential function also includes the trigonometric
functions sine and cosine, which are exponential functions with

imaginary exponent a.)
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Substituting (6) in (5) gives

this must be an identity, irrespective of the value of t, to make
(6) the integral of (5). That is,

a?L-ar+- = Q. (7)

A is still indefinite, and therefore determined by the terminal

conditions of the problem.
From (7) follows

. (8)

hence the two roots,

r s

and
r +

(9)

where s =
y/r

2 - ^ .

(10)

Since there are two roots, a
t
and a

2 ,
either of the two expres-

ions (6), e~ ait and e~ a2t
,
and therefore also any combination of

these two expressions, satisfies the differential equation (5).

That is, the general integral equation, or solution of differential

equation (5), is

i = Ai^ +Ai^ . (11)

Substituting (11) and (9) in equation (3) gives the potential

difference at the condenser terminals as

e (12)
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31. Equations (11) and (12) contain two indeterminate con-

stants, A! and A
2 ,

which are the integration constants of the

differential equation of second order, (5), and determined by
the terminal conditions, the current and the potential differ-

ence at the condenser at the moment t = 0.

Inversely, since in a circuit containing inductance and capac-

ity two electric quantities must be given at the moment of

start of the phenomenon, the current and the condenser poten-
tial representing the values of energy stored at the moment
t = as electromagnetic and as electrostatic energy, respec-

tively the equations must lead to two integration constants,

that is, to a differential equation of second order.

Let i = i = current and e
t

= e =
potential difference at

condenser terminals at the moment t = 0; substituting in (11)

and (12),

t = A, + A
2

and e -

hence,

r s .

~~2~
l

and

r + s

(13)

s

and therefore, substituting in (11) and (12), the current is

r + s . r s

-^0 _rzf ,~L
> (14)

_'+, o-- -o-*

s s

the condenser potential is

r-t-s . rs.
~ 2L

(15)
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For no condenser charge, or i =
0, e =

0, we have

e

1
s

and

substituting in (11) and (12), we get the charging current as

ii^/ _ r * )2L -"
j.

(16)

The condenser potential as

r+s H)2L

J )

For a condenser discharge or i'
=

0, e = e
, we have

and

hence, the discharging current is

( _ r~ s r+s

S (

The condenser potential is

N
'

/

that is, in condenser discharge and in condenser charge the

currents are the same, but opposite in direction, and the con-

denser potential rises in one case in the same way as it falls in

the other.

32. As example is shown, in Fig. 11, the charge of a con-

denser .of C = 10 mf. capacity by an impressed e.m.f. of
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e = 1000 volts through a circuit of r = 250 ohms resistance

and L = 100 mh. inductance; hence, s = 150 ohms, and the

charging current is

6.667 fe-
500 ' - -

;

i = D.DD/ [e
" - e~*

""j amperes.

The condenser potential is

e
l
= 1000 {1

- 1.333 e~ 5<Mt + 0.333
- 2000<

j
volts.

12 16 20 24 28 32 36 40

Fig. 11. Charging a condenser through a circuit having resistance and induc

tance. Constant potential. Logarithmic charge.

33. The equations (14) to (19) contain the square root,

'4L

hence, they apply in their present form only when

4L

If r
2 = - -

,
these equations become indeterminate, or = >

and if r
2 < ,

s is imaginary, and the equations assume a
C

complex imaginary form. In either case they have to be

rearranged to assume a form suitable for application.
Three cases have thus to be distinguished :

(a) r
2 > -, in which the equations of the circuit can be

o
used in their present form. Since the functions are exponen-
tial or logarithmic, this is called the logarithmic case.
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(6) r
2 = is called the critical case, marking the transi-

tion between (a) and (c), but belonging to neither.

(c) r
2 < . In this case trigonometric functions appear; it

is called the trigonometric case, or oscillation.

34. In the logarithmic case,

4L<W,
that is, with high resistance, or high capacity, or low induc-

tance, equations (14) to (19) apply.
*-

t ^
r+s

t

The term e 2L is always greater than e 2L
,
since the

former has a lower coefficient in the exponent, and the differ-

ence of these terms, in the equations of condenser charge and

discharge, is always positive. That is, the current rises from
zero at t = 0, reaches a maximum and then falls again to

zero at =
oo, but it never reverses. The maximum of the

/?

current is less than i = -
s

The exponential term in equations (17) and (19) also never

reverses. That is, the condenser potential gradually changes,
without ever reversing or exceeding the impressed e.m.f. in the

charge or the starting potential in the discharge.

,
in the case r

2 >
,
no abnormal voltage is pro-

duced in the circuit, and the transient term is of short duration,

so that a condenser charge or discharge under these conditions

is relatively harmless.

In charging or discharging a condenser, or in general a circuit

containing capacity, the insertion of a resistance in series in the

circuit of such value that r2 > therefore eliminates the
C

danger from abnormal electrostatic or electromagnetic stresses.

In general, the higher the resistance of a circuit, compared
with inductance and capacity, the more the transient term is

suppressed.
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35. In a circuit containing resistance and capacity but no

inductance, L =
0, we have, substituting in (5),

rf +
j

L; =
0, (20)

or, transposing,

which is integrated by _t_
i - ce

rc
, (21)

where c = integration constant.

Equation (21) gives for t = 0, i = c; that is, the current at

the moment of closing the circuit must have a finite value, or

must jump instantly from zero to c. This is not possible, but

so also it is not possible to produce a circuit without any induc-

tance whatever.

Therefore equation (21) does not apply for very small values

of time, t, but for very small t the inductance, L, of the circuit,

however small, determines the current.

The potential difference at the condenser terminals from (3) is

e
l
= e ri

hence
t

e
t
= e - res

r

(22)

The integration constant c cannot be determined from equation

(21) at t = 0, since the current i makes a jump at this moment.
But from (22) it follows that if at the moment t = 0, e

l
= e

,

e = e - re,

e-e
Q

hence, c =--,
r

and herefrom the equations of the non-inductive condenser

circuit,

_t_

f _(6-e>"'
<7

(23)
r

and ''

As seen, these equations do not depend upon the current i
Q
in

the circuit at the moment before t = 0.
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36. These equations do not apply for very small values of
t,

but in this case the inductance, L, has to be considered, that is,

equations (14) to (19) used.

For L = the second term in (14) becomes indefinite, as it

,

contains e
,
and therefore has to be evaluated as follows:

For L =
0, we have

s = r.

and

r

and, developed by the binomial theorem, dropping all but the

first term,

r s =

2L

and
r-s 1

2L rC'

r -f s _r_
2L ~~L

Substituting these values in equations (14) and (15) gives the

current as

r r

and the potential difference at the condenser as

_j_

l
= e - (e

- e ) e
*

', (26)

that is, in the equation of the current, the term



56 TRANSIENT PHENOMENA

has to be added to equation (23) . This term makes the transition

from the circuit conditions before t = to those after t = 0,

and is of extremely short duration.

For instance, choosing the same constants as in 32, namely :

e = 1000 volts; r = 250 ohms; C = 10 mf., but choosing the

inductance as low as possible, L = 5 mh., gives the equations
of condenser charge, i.e., for i

Q
= and e =

0,

and

e,
= 1000 {1

- e- 400

'}.

The second term in the equation of the current, f- 50 - 000
', has

decreased already to 1 per cent after t = 17.3 X 10~
6

seconds,
while the first term,

- 400 '

;
has during this time decreased only

by 0.7 per cent, that is, it has not yet appreciably decreased.

37. In the critical case,

c

and s = 0, .

r

A, = - A
s

Hence, substituting in equation (14) and rearranging,

O 7" o 7"

^=(e-eQ
- r

-i^-^(^ ^ -)
(27)

The last term of this equation,

s s

'- L _,~"
f

o

D s 'a'
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that is, becomes indeterminate for s = 0, and therefore is

evaluated by differentiation,

ds

Substituting (28) in (27) gives the equation of current,

^'- (29)

The condenser potential is found, by substituting in (15), to be

(30)

The last term of this equation (30) is

(31)

For s = 0, the first term of this equation (31), by substituting

(28), becomes ^-~ ,
the second term = 1, and substituting in (30),

2 Li

this gives the condenser potential as

^'. (32)

Herefrom it follows that for the condenser charge, i
Q
= and

e =
0,

=
L

e

and

e. = e ?!-(! +

2L
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for the condenser discharge, i = and e = 0,

and

38. As an example are shown, in Fig. 12, the charging current

and the potential difference at the terminals of the condenser,

51000

36 40

Fig. 12. Charging a condenser through a circuit having resistance and induc-

tance. Constant potential. Critical charge.

in a circuit having the constants', e = 1000 volts; C = 10 mf.;
L = 100 mh., and such resistance as to give the critical start,

that is,

V = 200 ohms.V C
In this case,

and
i = 10,000 t~

looot

e,
= 1000 {!-(! + 10000

"
1000

'}.

39. In the trigonometric or oscillating case,

The term under the square root (10) is negative, that is, the

square root, s, is imaginary, and a
l
and a

2
are complex imaginary

quantities, so that the equations (11) and (12) appear in imagi-

nary form. They obviously can be reduced to real terms,
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since the phenomenon is real. Since an exponential function

with imaginary exponents is a trigonometric function, and

inversely, the solution of the equation thus leads to trigono-
metric functions, that is, the phenomenon is periodic or oscil-

lating.

Substituting s = jq, we have

(33)

and

Substituting (34) in (11) and (12), and rearranging,

^ = 2L

(34)

(35)

(36)

Between the exponential function and the trigonometric

functions exist the relations

and

= cos v + j sin v

y _
(37)

Substituting (37) in (35), and rearranging, gives

- (A, + A,) cos^^
+ j (A,

- A
2)

sin
-^ j.

Substituting the two new integration constants,

B, = A
V
+ A

2
]

and (38)

j^-7(A t -A,),J
gives

(39)
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In the same manner, substituting (37) in (36), rearranging,
and substituting (38), gives

.
t
-.-+**. (40

{
Zi Zi Ll Zi A Ll

}

B
l
and B

2
are now the two integration constants, determined

by the terminal conditions. That is, for t = 0, let i = i = cur-

rent and e^
= e =

potential difference at condenser terminals,

and substituting these values in (39) and (40) gives

and

rB, -I- qB,

hence,

and
(41)

Substituting (41) in (39) and (40) gives the general equations

of condenser oscillation:

the current is

and the potential difference at condenser terminals is

r (e ^O i
0' o

'

(43)

Herefrom follow the equations of condenser charge and dis-

charge, as special case :

For condenser charge, i
Q
=

0; e =
0, we have

A * (44)
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and

and for condenser discharge, i =
0, e = 0, we have

and

<V
T .

-*

61

(45)

(46)

(47)

40. As an example is shown the oscillation of condenser

charge in a circuit having the constants, e = 1000 volts; L =

100 mh., and C = 10 mf.

Fig. 13. Charging a condenser through a circuit having resistance and induc-

tance. Constant potential. Oscillating charge.

(a) In Fig. 13, r = 100 ohms, hence, q
= 173 and the current is

i = 11.55 e- 500t sin 866 Z;

the condenser potential is

e,
= 1000

{
1 - e- 50 '

(cos 866 t + 0.577 sin 866
}

.

(b) In Fig. 14, r = 40 ohms, hence, q
= 196 and the current

is

i = 10.2
- 200 ' sin 980*;

the condenser potential is

e,
- 1000

{
1 - e" 20 '

(cos 980 t + 0.21 sin 980
}

.
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41. Since the equations of current and potential difference

(42) to (47) contain trigonometric functions, the phenomena
are periodic or waves, similar to alternating currents. They

r

differ from the latter by containing an exponential factor e
2 L

,

which steadily decreases with increase of t. That is, the sue-

16UUI
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This frequency decreases with increasing resistance r, and

becomes zero for
(

\ =
,
that is, r

2 =
,
or the critical

\2 LI L/C C

case, where the phenomenon ceases to be oscillating.

If the resistance is small, so that the second term in equa-

tion (50) can be neglected, the frequency of oscillation is

Substituting for t by equation (48)

in equations (42) and (43) gives the general equationSj

_U

2q

r(e- e )-
= e -

and

1 (e
- e ) cos

d = 2nft

f-^-.

sin

JL /JlV
LC V2L/

'

(52)

,(53)

(48)

(50)

42. If the resistance r can be neglected, that is, if r
2

is small

compared with
,
the following equations are approximately

exact:

and
r _ __ _ _
J

'

2 nVW

(54)

(55)
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Introducing now x = 2 TT/L
= inductive reactance and

x' = ^- = capacity reactance, and substituting (55), we
2 TT/C

have

and

hence, xf = x,

that is, the frequency of oscillation of a circuit containing

inductance and capacity, but negligible resistance, is that

frequency / which makes the condensive reactance xf =
2 7T/C

equal the inductive reactance x = 2 nfL :

(56)

Then (54),

q
= 2x, (57)

and the general equations (52) and (53) are

i = s 2ar
]
i cos^ + - - sin/9

[ ; (58)
4 ic

-e ) cos +
r g~ c*~ 2a

"Bin 1 (59)
^ x

x- (56)

and by (48) and (55) :
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43. Due to the factor e
'

, successive half waves of oscilla-

tion decrease the more in amplitude, the greater the resistance r.

The ratio of the amplitude of successive half waves, or the

decrement of the oscillation, is A = e
2L

\ where t
l
= duration

of one half wave or one half cycle,
= - .

2/
A

a.o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 15. Decrement of Oscillation.

Hence, from (50),

and

Denoting the critical resistance as

2 _
4L

r
>

::

c'
we have

or,

A e
-s

-^-i
(60)

(61)

(62)
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that is, the decrement of the oscillating wave, or the decay of

the oscillation, is a function only of the ratio of the resistance

of the circuit to its critical resistance, that is, the minimum
resistance which makes the phenomenon non-oscillatory.

In Fig. 15 are shown the numerical values of the decrement A,

for different ratios of actual to critical resistance
r

i

As seen, for r > 0.21 rv or a resistance of the circuit of more

than 21 per cent of its critical resistance, the decrement A is

below 50 per cent, or the second half wave less than half the first

one, etc.
;
that is, very little oscillation is left.

Where resistance is inserted into a circuit to eliminate the

danger from oscillations, one-fifth of the critical resistance, or

r = 0.4 y, seems sufficient to practically dampen out the
G

oscillation.



CHAPTER VI.

OSCILLATING CURRENTS,

44. The charge and discharge of a condenser through an
inductive circuit produces periodic currents of a frequency

depending upon the circuit constants.

The range of frequencies which can be produced by electro-

dynamic machinery is rather limited: synchronous machines
or ordinary alternators can give economically and in units of

larger size frequencies from 10 to 125 cycles. Frequencies
below 10 cycles are available by commutating machines with

low frequency excitation. Above 125 cycles the difficulties

rapidly increase, due to the great number of poles, high periph-
eral speed, high power required for field excitation, poor regu-
lation due to the massing of the conductors, which is required
because of the small pitch per pole of the machine, etc., so that

1000 cycles probably is the limit of generation of constant

potential alternating currents of appreciable power and at fair

efficiency. For smaller powers, a few kilowatts, by using
shunted capacity to assist the excitation, and not attempting
to produce constant potential, single-phase alternators have

been built and are in commercial service giving 10,000 and even

100,000 cycles, and 200,000-cycle alternators are being designed
for wireless telegraphy and telephony.

Still, even going to the limits of peripheral speed, and sacri-

ficing everything for high frequency, a limit is reached in the

frequency available by electrodynamic generation.

It becomes of importance, therefore, to investigate whether

by the use of the condenser discharge the range of frequencies

can be extended.

Since the oscillating current approaches the effect of an

alternating current only if the damping is small, that is, the

resistance low, the condenser discharge can be used as high

frequency generator only by making the circuit of as low resist-

ance as possible.
67
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This, however, means limited power. When generating oscillat-

ing currents by condenser discharge, the load put on the circuit,

that is, the power consumed in the oscillating-current circuit,

represents an effective resistance, which increases the rapidity
of the decay of the oscillation, and thus limits the power, and,

when approaching the critical value, also lowers the frequency.
This is obvious, since the oscillating current is the dissipation

of the energy stored electrostatically in the condenser, and the

higher the resistance of the circuit, the more rapidly is this

energy dissipated, that is, the faster the oscillation dies out.

With a resistance of the circuit sufficiently low to give a fairly

well sustained oscillation, the frequency is, with sufficient

approximation,

45. The constants, capacity, C, inductance, L, and resistance, r,

have no relation to the size or bulk of the apparatus. For

instance, a condenser of 1 mf., built to stand continuously a

potential of 10,000 volts, is far larger than a 200-volt condenser

of 100 mf. capacity. The energy which the former is able to

Ce2

store is -77-= 50 joules, while the latter stores only 2 joules,2

and therefore the former is 25 times as large.

A reactive coil of 0.1 henry inductance, designed to carry

continuously 100 amperes, stores = 500 joules; a reactive

coil of 1000 times the inductance, 100 henrys, but of a current-

carrying capacity of 1 ampere, stores 5 joules only, therefore is

only about one-hundredth the size of the former.

A resistor of 1 ohm, carrying continuously 1000 amperes, is a

ponderous mass, dissipating 1000 kw.; a resistor having a

resistance a million times as large, of one megohm, may be a lead

pencil scratch on a piece of porcelain.

Therefore the size or bulk of condensers and reactors depends
not only on C and L but also on the voltage and current which
can be applied continuously, that is, it is approximately pro-

Ce2 W
portional to the energy stored,

- and
,
or since in electrical
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engineering energy is a quantity less frequently used than

power, condensers and reactors are usually characterized by
the power or rather apparent power which can be impressed

upon them continuously by referring to a standard frequency,
for which 60 cycles is generally used.

That means that reactors, condensers, and resistors are rated

in kilowatts or kilovolt-amperes, just as other electrical appa-

ratus, and this rating characterizes their size within the limits

of design, while a statement like "a condenser of 10 mf.
"
or

"a reactor of 100 mh." no more characterizes the size than a

Statement like "an alternator of 100 amperes capacity" or "a
transformer of 1000 volts.

"

A bulk of 1 cu. ft. in condenser can give about 5 to 10

kv-amp. at 60 cycles. Hence, 100 kv-amp. constitutes a very

large size of condenser.

In the oscillating condenser discharge, the frequency of oscil-

lation is such that the inductive reactance equals the condensive

reactance. The same current is in both at the same terminal

voltage. That means that the volt-amperes consumed by the

inductance equal the volt-amperes consumed by the capacity.

The kilovolt-amperes of a condenser as well as of a reactor

are proportional to the frequency. With increasing frequency,

at constant voltage impressed upon the condenser, the current

varies proportionally with the frequency; at constant alter-

nating current through the reactor, the voltage varies propor-

tionally with the frequency.
If then at the frequency of oscillation, reactor and con-

denser have the same kv-amp., they also have the same at

60 cycles.

A 100-kv-amp. condenser requires a 100-kv-amp. reactive

coil for generating oscillating currents. A 100-kv-amp. react-

ive coil has approximately the same size as a 50-kw. trans-

former and can indeed be made from such a transformer, of

ratio 1 : 1, by connecting the two coils in series and inserting

into the magnetic circuit an air gap of such length as to give

the rated magnetic density at the rated current.

A very large oscillating-current generator, therefore, would

consist of 100-kv-amp. condenser and 100-kv-amp. reactor.

46. Assuming the condenser to be designed for 10,000 volts

alternating impressed e.m.f. at 60 cycles, the 100 kv-amp. con-
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denser consumes 10 amperes: its condensive reactance is

F 1

xc
= 1000 ohms, and the capacity C= = 2.65 mf .

I 2 7tJ Xc

Designing the reactor for different currents, and therewith

different voltages, gives different values of inductance L, and

therefore of frequency of oscillation /.

From the equations of the instantaneous values of the con-

denser discharge, (46) and (47), follow their effective values, or

Vmean square,

,
-

\/2

and (63)

q

and thus the power,

Pi =e 1
i =

e

-\fe
~'
Lt

,
(64)

since for small values of r

Herefrom would follow that the energy of each discharge is

W =Jo
p,dt

=
^-

VOL. (65)

Therefore, for 10,000 volts effective at 60 cycles at the con-

denser terminals, the e.m.f. is

e =
'

10,000 \/2,

and the condenser voltage is

e,
= 10,000 r^'.

Designing now the 100-kv-amp. reactive coil for different

voltages and currents gives for an oscillation of 10,000 volts :
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Reactive Coil.
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Since the energy stored in the capacity is

W
Q
=^ joules,

the critical resistance is

hence,

r. -

7
=

0.025,
*'4

and the decrement of the oscillation is

A =
0.92,

that is, the decay of the wave is very slow at no load.

Assuming, however, as load an external effective resistance

equal to three times the internal resistance, that is, an elec-

trical efficiency of 75 per cent, gives the total resistance as

r + r' = 0.2 x\

hence,

and the decrement is

A =
0.73;

hence a fairly rapid decay of the wave.

At high frequencies, electrostatic, inductive, and radiation

losses greatly increase the resistance, thus giving lower effi-

ciency and more rapid decay of the wave.

48. The frequency of oscillation does not directly depend

upon the size of apparatus, that is, the kilovolt-ampere capacity
of condenser and reactor. Assuming, for instance, the size, in

kilovolt-amperes, reduced to
, then, designed for the same

voltage, condenser and reactor, each takes the current, that
n

is, the condensive reactance is n times as great, and therefore

the capacity of the condenser, C, reduced to
,
the inductance, L,
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is increased n-fold, so that the product CL, and thereby the

frequency, remains the same; the power output, however, of the

oscillating currents is reduced to.
n

The limit of frequency is given by the mechanical dimensions.

With a bulk of condenser of 10 to 20 cu. ft., the minimum

length of the discharge circuit cannot well be less than 10 ft.
;

10 ft. of conductor of large size have an inductance of at least

0.002 mh. = 2 X 10
~ 6

,
and the frequency of oscillation would

therefore be limited to about 60,000 cycles per second, even

without any reactive coil, in a straight discharge path.

The highest frequency which can be reached may be estimated

about as follows :

The minimum length of discharge circuit is the gap between

the condenser plates.

The minimum condenser capacity is given by two spheres,

since small plates give a larger capacity, due to the edges.

The minimum diameter of the spheres is 1.5 times their

distance, since a smaller sphere diameter does not give a clean

spark discharge, but a brush discharge precedes the spark.

With e = 10,000 V2, the spark gap length between spheres

is e= 0.3 in., and the diameter of the spheres therefore 0.45 in.

The oscillating circuit then consists of two spheres of 0.45 in.,

separated by a gap of 0.3 in.

This gives an approximate length of oscillating circuit of

3 X 10~3

0.5 in., or an inductance L = =0.125 X 10"7
henry.

The capacity of the spheres against each other may be

estimated as C = 50 X 10" 8

mf.; this gives the frequency of

oscillation as ,

/ = j=
= 2 X 10

9
,

or, 2 billion cycles.

At e = 10,000 V2 volts,

e,
= 10,000 e

2L
volts,

- t

i = 2.83
2L

amp.,

and p l
= 28.3 s

L
kv-amp.
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Reducing the size and spacing of the spheres proportionally,
and proportionally lowering the voltage, gives still higher

frequencies.

As seen, however, the power of the oscillation decreases with

increasing frequency, due to the decrease of size and therewith

of storage ability, of capacity, and of inductance.

With a frequency of billions of cycles per second, the effective

resistance must be very large, and therefore the damping rapid.

Such an oscillating system of two spheres separated by a gap
would have to be charged by induction, or the spheres charged

separately and then brought near each other, or the spheres

may be made a part of a series of spheres separated by gaps and

connected across a high potential circuit, as in some forms of

lightning arresters.

Herefrom it appears that the highest frequency of oscillation

of appreciable power which can be produced by a condenser

discharge reaches billions of cycles per second, thus is enormously

higher than the highest frequencies which can be produced by
electrodynamic machinery.
At five billion cycles per second, the wave length is about

6 cm., that is, the frequency only a few octaves lower than

the lowest frequencies observed as, heat radiation or ultra red

light.

The average wave length of visible light, 55 X 10~
6

cm.,

corresponding to a frequency of 5.5 X 1014

cycles, would require

spheres 10~ 5 cm. in diameter, that is, approaching molecular

dimensions.

OSCILLATING-CURRENT GENERATOR.

49. A system of constant impressed e.m.f., e, charging a con-

denser C through a circuit of inductance L and resistance r, with

a discharge circuit of the condenser, C, comprising an air gap
in series with a reactor of inductance L and a resistor of resist-

ance r
,
is a generator of oscillating current if the air gap is set

for such a voltage e that it discharges before the voltage of the

condenser C has reached the maximum, and if the resistance r

is such as to make the condenser discharge oscillatory, that is,
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In such a system, as shown diagrammatically in Fig. 16, as

soon, during the charge of the condenser, as the terminal voltage
at C and thereby at the spark gap has reached the value e

,
the

condenser C discharges over this spark gap, its potential dif-

ference falls to zero, then it charges again up to potential differ-

ence e
Q , discharges, etc. Thus a series of oscillating discharges

Fig. 16. Oscillating-current generator.

occur in the circuit, L ,
r

,
at intervals equal to the time required

to charge condenser C over reactor L and resistor r, up to the

potential difference e
,
with an impressed e.m.f. e.

The resistance, r, obviously should be as low as possible, to

get good efficiency of transformation; the inductance, L, must
be so large that the time required to charge condenser C to

potential e is sufficient for the discharge over L
,
r to die out

and also the spark gap e to open, that is, the conducting products
of the spark in the gap e to dissipate. This latter takes a con-

siderable time, and an air blast directed against the spark gap e
,

by carrying away the products of the discharge, permits a more

rapid recurrence of the discharge. The velocity of the air blast

(and therefore the pressure of the air) must be such as to carry

the ionized air or the metal vapors which the discharge forms

in the gap e out of the discharge path faster than the con-

denser recharges.

Assuming, for instance, the spark gap, e
,
set for 20,000 volts,

or about 0.75 in., the motion of the air blast during successive

discharges then should be large compared with 0.75 in., hence

at least 3 to 6 in. With 1000 discharges per second, this would

require an air velocity of v = 250 to 500 feet per second, with

5000 discharges per second an air velocity of v = 1250 to 2500

feet per second, corresponding to an air pressure of approximately

p = 14.7
{ (1 + 2 w

2 10
- 7

)

3 ' 5 - 1
}

lb. per sq. in., or 0.66 to 2.75

Ib. in the first, 23 to 230 lb. in the second case.
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While the condenser charge may be oscillatory or logarithmic,

efficiency requires a low value of r, that is, an oscillatory charge.

With a frequency of discharge in L
,
r very high compared

with the frequency of charge, the duration of the discharge is

short compared with the duration of the charge, that is, the

oscillating currents consist of a series of oscillations separated

by relatively long periods of rest. Thus the current in L does

not appreciably change during the time of the discharge, and at

the end of the condenser charge the current in the reactor, L,

is the same as the current in L, with which the next condenser

charge starts. The charging current of the condenser, C, in L
thus changes from i

Q
at the beginning of the charge, or con-

denser e.m.f., e =
0, to the same value i at the end of the

charge, or condenser e.m.f., e = e .

50. Counting, therefore, the time, t, from the moment when
the condenser charge begins, we have the terminal conditions :

t = 0, i = i
Q}

e
1
= at the beginning of the condenser charge.

t = t
,

i = i
, e^

= e at the end of the condenser charge.

In the condenser discharge, through circuit L
o;

r
, counting

the time t' from the moment when the condenser discharge

begins, that is, t' = t t
,
we have

t' = 0, i = 0, e
t
= e the terminal condition.

e
, thus, is that value of the voltage e at which discharge

takes place across the spark gap, and t is the time elapsing
between e

t
= and e

1
= e

,
or the time required to build Up

the voltage e sufficiently to break down the spark gap.
Under the assumption that the period of oscillation of the

condenser charge through L, r, is large compared with the

period of oscillation of the condenser discharge through L ,
r

,

the equations are:

(A) Condenser discharge :

*~^rA'tfoJ^*>, (66)

(67)

where

(68)
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(B) Condenser charge :

i =V = c 2 L 2 e - rin

11

' (69)

r2 + cf
re i

q .
,

2 . q_<+. .^ t

where

, (70)

(71)

Substituting in (69) and (70) the above discussed terminal

conditions,

it * *

gives
r . / n (y

V -. -~2Z <0
)y n

"
> 4._ dn ?

/ ( f79^in * \ ''0
^"O ~ ~ ^0 '

~ Dill _
t()

/ If &)
( 2 L q 2 L

)

and

+
re

e- e cos -

Denoting, for convenience,

r

2L

and

- = a,

and resolving (72) for i'
, gives

2e

q 1 e~
8
cos

<^> + as
8

sm(f>

and substituting (75) in (73) and rearranging,

e = e

(73)

(74)

(75)

(76)
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The two equations (75), (76) permit the calculation of two of

the three quantities i
,
ew t : the time, t

,
of condenser charge

appears in the exponential function, in s, and in the trigonometric

function, in
<j>.

Since in an oscillating-current generator of fair efficiency,

that is, when r is as small as possible, s is a small quantity,
-s can be resolved into the series

~ S = 1 ~ S + - - + (77)

Substituting (77) in (75), and dropping all terms higher than

, gives

(S2
\

1 - s + -
j
sin

<f>

q s
2

1 cos
(f) + s cos 9 cos <p + a sm

</>
as sin

cf>

a

Multiplying numerator and denominator by f 1 +
-J,

and

rearranging, gives

2e sn.

g2 + s

2- s

2e

cos
(/> + a sin

sn

+ 2 sin
2 ~ + a sin

~j

(78)

Substituting (77) in (76), dropping terms higher than s
2 and

as, multiplying numerator and denominator by f 1
+-Ji

and

rearranging, gives

2s . ,
6

+ 2 sm2 + a sin

(79)

2 -
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Substituting t in (78) and (79) gives

i--
'

'

4L-rt 4L q 2 L
and

as approximate equations giving i
Q
and e as functions of t

,
or the

time of condenser charge.

51. The time, t
, during which the condenser charges, increases

with increasing e
,
that is, increasing length of the spark gap in

the discharge circuit, at first almost proportionally, then, as

e
o approaches 2 e, more slowly.

As long as e is appreciably below 2 e, that is, about e < 1.75 e,

t is relatively short, and the charging current i, which increases

from i to a maximum, and then decreases again to i
,
does not

vary much, but is approximately constant, with an average
value very little above i

ot
so that the power supplied by the

impressed e.m.f., e, to the charging circuit can approximately
be assumed as

P.
= V (82)

The condenser discharge is intermittent, consisting of a series

of oscillations, with a period of rest between the oscillations,

which is long compared with the duration of the oscillation,

and during which the condenser charges again.

The discharge current of the condenser is, (66),

'

and since such an oscillation recurs at intervals of t seconds,

the effective value, or square root of mean square of the dis-

charge current, is

-dt. (83)
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Long before t = t
,
i is practically zero, and as upper limit of

the integral can therefore be chosen <x> instead of t .

Substituting (66) in (83), and taking the constant terms out

of the square root, gives the effective value of discharge cur-

rent as

however.

and by fractional integration,

J s'^'coa^tdt

00

1 + p-

hence, substituting in (84),

Since

we have, substituting in (85),

f~r~

V-e.y^L., (86)

and, denoting by
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the frequency of condenser charge, or the number of complete
trains of discharge oscillations per second,

(87)

that is, the effective value of the discharge current is propor-

tional to the condenser potential, e
, proportional to the square

root of the capacity, C, and the frequency of charge, fv and

inversely proportional to the square root of the resistance, r
,

of the discharge circuit; but it does not depend upon the induc-

tance L of the discharge circuit, and therefore does not depend
on the frequency of the discharge oscillation.

The power of the discharge is

Pi-tTr.-/,^- (88)

e
2C

Since -2 is the energy stored in the condenser of capacity C

at potential e
,
and /t

the frequency or number of discharges

of this energy per second, equation (88) is obvious.

Inversely therefore, from equation (88), that is, the total

energy stored in the condenser and discharging per second,

the effective value of discharge current can be directly calcu-

lated as

The ratio of effective discharge current, iv to mean charging

current, i
,
is

and substituting (80) and (81) in (89),

3 * 2

l4L> 8L
- (90)
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The magnitude of this quantity can be approximated by

neglecting r compared with -^-, that is, substituting q
= yC * G

and replacing the sine-function by the arcs. This gives

that is, the ratio of currents is inversely proportional to the

square root of the resistance of the discharge circuit, of the

capacity, and of the frequency of charge.

52. Example: Assume an oscillating-current generator, feed-

ing a Tesla transformer for operating X-ray tubes, or directly

supplying an iron arc (that is, a condenser discharge between

iron electrodes) for the production of ultraviolet light.

The constants of the charging circuit are: the impressed

e.m.f., e = 15,000 volts; the resistance, r = 10,000 ohms; the

inductance, L = 250 henrys, and the capacity, C = 2 X 10~ 8

farads = 0.02 mf.

The constants of the discharge circuit are: (a) operating
Tesla transformer, the estimated resistance, r = 20 ohms

(effective) and the estimated inductance, L = 60 X 10" fl

henry = 0.06 mh.; (b) operating ultraviolet arc, the esti-

mated resistance, r = 5 ohms (effective) and the estimated

inductance, L = 4 X 10" 6
henry = 0.004 mh.

Therefore in the charging circuit,

q
= 223,400 ohms,

'

0.0448,

=446.8,2L 2L

- = 0.025;

t.
= 0.1344

sin 446.8 <

+ 2 sin
2
223.4 < + 0.0448 sin 446.8 t

a
U.J. CQ

2 \ (92)

30,000- ^ *

2

^ + 2 sin
2 223.4 Z + 0.0448 sin 446.8

t.
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Fig. 17 shows i
Q
and e as ordinates, with the time of charge

t
Q
as abscissas.

< -=0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0X10-a Sec.

Fig. 17. Oscillating-current generator charge.

The frequency of the charging oscillation is

= 71.2 cycles per sec.;

for

0.365 amp.,

(93)

substituting in equations (69) and (70) we have

i= -2ot
jo.365 cos 446.8 + 0.118 sin 446.8 t},

in amp.,

and
e

l

= 15,000 {
1-~ 20t

[cos 446.8 -2.67 sin 446.8 ] } ,
in volts,

the equations of condenser charge.

From these equations the values of i and e
l
are plotted in

Fig. 18, with the time as abscissas.

As seen, the value i 0.365 amp., is reached again
at the time t = 0.0012, that is, after 30.6 time-degrees or about

TV of a period. At this moment the condenser e.m.f. is e
l

=

e = 22,300 volts; that is, by setting the spark gap for 22,300

volts the duration of the condenser charge is 0.0012 second,

or in other words, every 0.0012 second, or 833 times per second,

discharge oscillations are produced.
With this spark gap, the charging current at the beginning

and at the end of the condenser charge is 0.365 amp., and the
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average charging current is 0.3735 amp. at 15,000 volts, con-

suming 5.6 kw.

Assume that the e.m.f. at the condenser terminals at the end

of the charge is e = 22,300 volts; then consider two cases,

namely : (a) the condenser discharges into a Tesla transformer,

and (b) the condenser discharges into an iron arc.

1

20

18

16

14

12

5:
3

10

8
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following estimated values: r = 20 ohms; L = 60 X 10~ 6

henry,
and<7 = 2 X 10~ 8 farad.

Then

q
= 108 ohms,

=0.898 X 10",2L

- =
0.186,

0.1667 X 10
6
,

sin 0.898 XlO 6

1, amp.

2 LQ

which give

t=415 e~

and

^ = 22,300 ,-o 1667x10^
{
cos o.898 X 10 6

1+ 0.186 sin 0.898X 10' Zj ,

volts.

(94)

The frequency of oscillation is

SQS v 1 f)
6

//_ r ^T = 143
'
000 cycles per seC; (95)

Fig. 19 shows the current i and the condenser potential e
l

during the discharge, with the time t as abscissas. As seen,

the discharge frequency is very high compared with the fre-

300

25

200

1 5 a
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The effective value of the discharge current, from equation

(87), is i
l
= 14.4 amp., or nearly 40 times the charging current.

53. (b) When discharging the condenser directly, through
an ultraviolet or iron arc, in a straight path, and estimating
r = 5 ohms and L = 4 X 10~ 6

henry, we have

g
= 27.84 ohms, ^ -

0.1795,.
#0

- = 3.48 X 10, ^f- = 0.625 X 10";
2 L

Q
2 L

then,

t = 1600r- 0625xl 6
'
sin 3.48 X 10

6

,
in amp.,

and

^ = 22,300
- 0625X1 6<

{
cos 3.48 X 10

6
^ + 0.1795 sin 3.48 X 10

6

^j

in volts,

(96)

and the frequency of oscillation is

/ - 562,000 cycles per sec.; (97)

that is, the frequency is still higher, over half a million

cycles; the maximum discharge current over 1000 amperes;

however, the duration of the discharge is still shorter, the

oscillations dying out more rapidly.

The effective value of the discharge current, from (87), is

tj
= 28.88 amp., or 77 times the charging current. A hot

wire ammeter in the discharge circuit in this case showed

29 amp.
As seen, with a very small current supply, of 0.3735 amp.,

at e = 15,000 volts, in the discharge circuit a maximum voltage
of 22,300, or nearly 50 per cent higher than the impressed

voltage, is found, and a very large current, of an effective value

very many times larger than the supply current.

As a rule, instead of a constant impressed e.m.f., e, a low

frequency alternating e.m.f. is used, since it is more conven-

iently generated by a step-up transformer. In this case the

condenser discharges occur not at constant intervals of t sec-

onds, but only during that part of each half wave when the

e.m.f. is sufficient to jump the gap e
ot

and at intervals which

are shorter at the maximum of the e.m.f. wave than at its

beginning and end.
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For instance, using a step-up transformer giving 17,400 volts

effective (by the ratio of turns 1 : 150, with 118 volts im-

pressed at 60 cycles), or a maximum of 24,700 volts, then

during each half wave the first discharge occurs as soon as the

voltage has reached 22,300, sufficient to jump the spark gap,
and then a series of discharges occurs, at intervals decreasing
with the increase of the impressed e.m.f., up to its maximum,
and then with increasing intervals, until on the decreasing

wave the e.m.f. has fallen below that which, during the charg-

ing oscillation, can jump the gap e
,
that is, about 13,000 volts.

Then the oscillating discharges stop, and start again during the

next half wave.

Hence the phenomenon is of the same character as investi-

gated above for constant impressed e.m.f., except that it is

intermittent, with gaps during the zero period of impressed

voltage and unequal time intervals t
Q
between the successive

discharges.

54. An underground cable system can act as an oscillating-

current generator, with the capacity of the cables as condenser,

the internal inductance of the generators as reactor, and a short-

circuiting arc as discharge circuit.

In a cable system where this phenomenon was observed

the constants were approximately as follows: capacity of the

cable system, C = 102 mf.; inductance of 30,000-kw. in gen-

erators, L = 6.4 mh.; resistance of generators and circuit up to

the short-circuiting arc, r = 0.1 ohm and r = 1.0 ohm respec-

tively; impressed e.m.f., 11,000 volts effective, and the fre-

quency 25 cycles per second.

The frequency of charging oscillation in this case is

/ = ~= = 197 cycles per sec.
4 TTL/

since

q
= \ - r

2 = 15.8 ohms.
C

Substituting these values in the preceding equations, and

estimating the constants of the discharge circuit, gives enor-

mous values of discharge current and e.m.f.



CHAPTER VII.

RESISTANCE, INDUCTANCE, AND CAPACITY IN SERIES IN
ALTERNATING-CURRENT CIRCUIT.

65. Let, at time t = or =
0, the e.m.f.,

e = E cos (0
-

), (1)

be impressed upon a circuit containing in series the resistance, r,

the inductance, L, and the capacity, C.

The inductive reactance is x = 2 TT/L 1

and the condensive reactance is xc
=

>

2 7T/C J

where/ = frequency and 6 = 2 nft. (3)

Then the e.m.f. consumed by resistance is ri\

the e.m.f. consumed by inductance, is

di di
L

dt

= x
Je'

and the e.m.f. consumed by capacity is

, (4)

where i = instantaneous value of the current.

didi C
Hence, e = ri + x -- + xc I i dO, (5)

da J

di f*

E cos (6
-

)
= ri + x + xc li dO, (6)

da J

and hence, the difference.of potential at the condenser terminals

is

e
l
= xc I idd = E cos (6

-
)
- ri - x - (7)

u cw

88
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Equation (6) differentiated gives

E sin (0
-

Q) +
x-jj^

+ r
-^
+ xei

= 0. (8)

The integral of this equation (8) is of the general form

i = Ara9 + B cos (6
-

o-). (9)

Substituting (9) in (8), and rearranging, gives

A~ae
\a

2x ar+ xr \ + sin# \E cos On rB cosvB (xxc) sin o-j
( tj'( y \c,/j

- cos {" sin 6
Q

rB sin a- + J5 (x xc) cos
<r}

=
0,

and, since this must be an identity,

a?x ar + xc
=

0,

E cos # rB cos a- B (x xc) sin o- = 0, , (10)

# sin -- rB sin o- + B (x xc) cos a- = 0.

Substituting

4

tan 7 =

in equations (10) gives

x - xc

r s

and

=
00 + ?

= indefinite,

and the equation of current, (9), thus is

i = -cos (6
- 6 -7) + A/~

(ID

(12)

(13)
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and, substituting (12) in (7), and rearranging, the potential
difference at the condenser terminals is

. (14)

The two integration constants A
l
and A

2
are given by the

terminal conditions of the problem.

Let, at the moment of start,

0-0,

i = i
Q
= instantaneous value of current and

e
1
= e = instantaneous value of condenser potential

difference.

Substituting in (13) and (14),

ET

(15)

(#o + 7) + A, + A,
zn

and

Q

Therefore

Aj+Aj^^- -cos (6 + 7)

and

n + 2e E ,

Aj-A 2
=- - + --

rcos(<9 +7)-2^c sm(i9o+7) ,

S SZ

(16)

or,

r s .

'
e

and

S SZ

r+ s .

2 %^" e
o

-fi- -cos

(17)
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Substituting (17) in (13) and (14) gives the integral equations
of the problem.
The current is

Tfl Tjl
f _ T~ S

Q pp^
\_ J

and the potential difference at the condenser terminals is

E

where

and

r
r
- Cos

r+s

(x
-

x xc
tan 7

.

= -
>

= Vr2 - 4 x xr

(19)

(ID

The expressions of i and e
t
consist of three terms each :

(1) The permanent term, which is the only one remaining
after some time;

(2) A transient term depending upon the constants of the

circuit, r, s, xci z
, x, the impressed e.m.f., E, and its phase at

the moment of starting, but independent of the conditions

existing in the circuit before the start; and
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(3) A term depending, besides upon the constants of the

circuit, upon the instantaneous values of current and potential

difference, i
Q
and e

,
at the moment of starting the circuit, and

thereby upon the electrical conditions of the circuit before

impressing the e.m.f., e. This term disappears if the circuit is

dead before the start.

Equations (18) and (19) contain the term s = Vr2 4 x xc

=
V/7*

2 4
;
hence apply only when r

2 > 4 x x
c ,
but become

indeterminate if. r
2 =4xxc} and imaginary if r

2 < 4 x x
c ;

in the

latter cases they have to be rearranged so as to appear in real

form, in manner similar to that in Chapter V.

56. In the critical case, r
2 = 4 xxc and s = 0, equation (18),

rearranged, assumes the form

TJ1 Tfl H

i = - cos (0
- -7) + -

-cos(0 +7)-zc sin
>

(0 + f

y)
- -

cos(0 +7)[
_2 s )

However, developing in a series, and canceling all but the

first term as infinitely small, we have

-

e
2x -e

-
>

X

hence the current is

EJ ^ _JL
2x

( I-f ~\ ft )

\ \- cos (0 + 7)
- xc sin (0 + 7)

- - cos (0 + 7) (

(\_2 Jx

(20)
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and in the same manner the potential difference at condenser

terminals is

Ex, E -

[T^

~l fi

- cos (0 + 7)
- xc

r sin (0 + 7) I

- - 2 xc sin (0 + 7)

(21)

Here again three terms exist, namely: a permanent term, a

transient term depending only on E and
,
and a transient

term depending on i
Q
and e .

57. In the trigonometric or oscillatory case, r
2 < 4 a; xc ,

s be-

comes imaginary, and equations (18) and (19) therefore contain

complex imaginary exponents, which have to be eliminated,

since the complex imaginary form of the equation obviously

is only apparent, the phenomenon being real.

Substituting

q
= V4 x xc

- r
2 =

js (22)

in equations (13) and (14), and also substituting the trigono-

metric expressions

and

and separating the imaginary and the real terms, gives

(23)

E

(A, 4- A 2)
cos -^

- 9
:

j (A,
-

A,) sin 6
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and

then substituting herein the equations (16) and (22) the imagi

nary disappears, and we have the current,

-
2x

JL a [
2xc

!e

^
K

sin
2l

e
i'

(24)

and the potential difference at the condenser terminals,

Here the three component terms are seen also.

58. As examples are shown in Figs. 20 and 21, the starting
of the current i, its permanent term i

1

',
and the two transient

terms i
1
and iv and their difference, for the constants E = 1000

volts = maximum value of impressed e.m.f.; r = 200 ohms
= resistance

;
x = 75 ohms = inductive reactance, and xc

= 75

ohms = condensive reactance. We have

4 x xc
= 22,500

and r
2 = 40,000;

therefore

r
2 > 4 x xc ,
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that is, the start is logarithmic, and z = 200, s = 132, and

7 = 0.

20 60 80 100 120 140 160 180 200

Degrees

Fig. 20. Starting of an alternating-current circuit, having capacity, inductance

and resistance in series. Logarithmic start.

In Fig. 20 the circuit is closed at the moment =
0, that

is, at the maximum value of the impressed e.m.f., giving from

the equations (18) and (19), since i =
0, e =

0,

and

i = 5 {cos 6 - 1.26 s- 2 -22 ' + 0.26
-'452 '

}

e
l
= 375 {sin0 + 0.57 (e

--_
fi -o.462*)} p

20 40 100 120 140 160 180 200

Degrees

Fig. 21. Starting of an alternating-current circuit having capacity, inductance

and resistance in series. Logarithmic start.

In Fig. 21 the circuit is closed at the moment = 90, that

is, at the zero value of the impressed e.m.f., giving the equa-

tions

i = 5 {sinfl + 0.57 Or
2 '22 ' -

fi-o-")}
and

e,
= - 375 {cosfl + 0.26 *-'- 1.26 e~-)}.
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There exists no value of # which does not give rise to a

transient term.

-2

-4

E =1000 tolts

200-phiii
133.3 otii

20 80 100 120 140 180 200

Fig. 22. Starting of an alternating-current circuit having capacity, inductance

and resistance in series. Critical start.

In Fig. 22 the start of a circuit is shown, with the inductive

reactance increased so as to give the critical condition,

r
2 = 4zzc ,

but otherwise the constants are the same as in Figs. 20 and 21,

that is, E = 1000 volts; r = 200 ohms; x = 133.3 ohms, and

xc
= 75 ohms;

therefore z =
208.3,

fro o

tan 7 =
^

- = 0.2915, or 7 = 16,
ZOO

assuming that the circuit is started at the moment =
0, or

at the maximum value of impressed e.m.f.

Then (20) and (21) give

i = 4.78 cos (6
- 16) + r'75 '

(2.7
-

4.6)

and

e,= 358 sin (6
- 16) - --75

'(410# -
99).

Here also no value of exists at which the transient term

disappears.

69. The most important is the oscillating case, r
2 < 4 x xc,

since it is the most common in electrical circuits, as underground
cable systems and overhead high potential circuits, and also is

practically the only one in which excessive currents or excessive

voltages, and thereby dangerous phenomena, may occur.
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If the condensive reactance xc is high compared with the

resistance r and the inductive reactance x, the equations of

start for the circuit from dead condition, that is, t'
= and

e =
0, are found by substitution into the general equations

(24) and (25), which give the current as

E( . ,

{ sm (0
Xc f

2xTsin0 cosV/-c
L r x

(26)

and the potential difference at the condenser terminals as

cos# cos V -H

where

cos
xc

sin
, (27)

xc ,
and 7 = - 90. (28)

In this case an oscillating term always exists whatever the

value of
,
that is, the point of the wave, where the circuit is

started.

The frequency of oscillation therefore is

/o

or, approximately,

2x"
_

4X2

(29)

where/ = fundamental frequency.

Substituting x = 2nfL and zc
= -r-, we have

CL

or, approximately,

/o

(30)



98 TRANSIENT PHENOMENA

60. The oscillating start, or, in general, change of circuit

conditions, is the most important, since in circuits containing

capacity the transient effect is almost always oscillating.

The most common examples of capacity are distributed

capacity in transmission lines, cables, etc., and capacity in the

form of electrostatic condensers for neutralizing lagging currents,

for constant potential-constant current transformation, etc.

(a) In transmission lines or cables the charging current is a

fraction of full-load current i
,
and the e.m.f. of self-inductance

consumed by the line reactance is a fraction of the impressed
e.m.f. e . Since, however, the charging current is (approximately)

p
= and the e.m.f. of self-inductance = xi

,
we have

X
c

e
o < i

,
xi

X
c

hence, multiplying,
x
< 1 and x < xc .

Xc

The resistance r is of the same magnitude as x\ thus

4xxc >r\

For instance, with 10 per cent resistance drop, 30 per cent

reactance voltage, and 20 per cent charging current in the line,

assuming half the resistance and reactance as in series with the

capacity (that is, representing the distributed capacity of the

line by one condenser shunted across its center) and denoting

?-*
where e = impressed voltage, i = full-load current, we have

x = 0.5 X 0.3 p = 0.15 p,

r = 0.5 X 0.1 p = 0.05 p,

and

r -5- s -s- zc
= 1 -f- 3 -r- 100,

and

4 x xr + r
2 = 1200 -4- 1.
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In this case, to make the start non-oscillating, we must have

x < -
r, or x < 0.000125 p, which is not possible; t>r r >

which can be done only by starting the circuit through a very

large non-inductive resistance (of such size as to cut the starting

current down to less than of full-load current). Even in

this case, however, oscillations would appear by a change of

load, etc., after the start of the circuit.

(6) When using electrostatic condensers for producing watt-

less leading currents, the resistance in series with the condensers

is made as low as possible, for reasons of efficiency.

Even with the extreme value of 10 per cent resistance, or

r 4- xc
= I -f- 10, the non-oscillating condition is x < r, or

0.23 per cent, which is not feasible.

In general, if

x consumes 12 4 9 16 per cent of the con-

denser potential

difference,

r must consume > 20 28.3 40 60 80 per cent of the con-

denser potential

difference.

That is, a very high non-inductive resistance is required to

avoid oscillations.

The frequency of oscillation is approximately / =
y /

that is, is lower than the impressed frequency if xc < x (or the

permanent current lags), and higher than the impressed fre-

quency if xc > x (or the permanent current leads). In trans-

mission lines and cables the latter is always the case.

Since in a transmission line is approximately the charging
Xc

X

current, as fraction of full-load current, and ~- half the line

e.m.f. of self-inductance, or reactance voltage, as fraction of

impressed voltage, the following is approximately true :
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The frequency of oscillation of a transmission line is the

impressed frequency divided by the square root of the product
of charging current and of half the reactance voltage of the line,

given respectively as fractions of full-load current and of im-

pressed voltage. For instance, 10 per cent charging current,

20 per cent reactance voltage, gives an oscillation frequency

vui x o.i

10 f.

Fig. 23. Starting of an alternating-current circuit having capacity, inductance

and resistance in series. Oscillating start of transmission line.

61. In Figs. 23 and 24 is given as example the start

of current in a circuit having the constants, E = 35,000
cos (6 ); r = 5 ohms; x = 10 ohms, and xc

= 1000 ohms.

In Fig. 23 for = 0, or approximately maximum oscilla-

tion,

i = - 35 {sin
- 10 e- 25 ' sin 10 6}

and

e
l
= 35,000 {cos 6 - e~ 25

[cos 10 + 0.025 sin 10 0]} .

In Fig. 24 for # = 90, or approximately minimum oscilla-

tion,

i = 35 {cos
- r 25 9 cos 10 6} \

and

e,
= 35,000 {

sin + 0.1 <r 25 sin 10
}

. )

As seen, the frequency is 10 times the fundamental, and in

starting the potential difference nearly doubles.
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As further example, Fig. 25 shows the start of a circuit of a

frequency of oscillation of the same magnitude as the funda-

mental, in resonance condition, x = xc ,
and of high resistance.

60

40

20

-20

-40

-60

60

40

20

-20

-40
\s

4
\

= 35000 volts
-5-ohW-
10 oh'ma1

-\

100 ohms
gd-p-

Fig. 24. Starting of an alternating-current circuit having capacity, inductance

and resistance in series. Oscillating start of transmission line.

The circuit constants are E = 1500 volts; r = 30 ohms;
x = 20 ohms; xc

= 20 ohms, and =
7; which give

3
=

26.46; z = 30; 7 =
0, and = 0.

Fig. 25. Starting of an alternating-current circuit having capacity, inductance

and resistance in series. Oscillating start. High resistance.

Substituting in equations (24) and (25) gives

i = 50 {cos
- r - 75

[cos 0.661 Q - 1.14 sin 0.661 6]}
]

= 1000 {sin e - 1.51 e- 75 sin 0.661 6}.
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As example of an oscillation of long wave, Fig. 26 represents

the start of a circuit having the constants E = 1500 volts;

r = 10 ohms; x = 62.5 ohms; xc
= 10 ohms, and = 7;

which give q
= 49; 2 =

53.4; 7 = 79, and = - 79.

Substituting in equations (24) and (25) gives

i = 28 f cos - e

and
[cos 0.390 - 0.2 sin 0.390]}

e,
= 280 {sin 6 - 2.55 r - 8 sin 0.396

62. While in the preceding examples, Figs. 23 to 26, con-

stants of transmission lines have been used, as will be shown

in the following chapters, in the case of a transmission line

V

9
xt. 62.5 ohms

Fig. 26. Starting of an alternating-current circuit having capacity, inductance

and resistance in series. Oscillating start of long period.

with distributed capacity and inductance, the oscillation does

not consist of one definite frequency but an infinite series of

frequencies, and the preceding discussion thus approximates

only the fundamental frequency of the system. This, however,
is the frequency which usually predominates in a high power
low frequency surge of the system.

In an underground cable system the preceding discussion

applies more closely, since in such a system capacity and induc-

tance are more nearly localized : the capacity is in the under-

ground cables, which are of low inductance, and the inductance

is in the generating system, which has practically no capacity.

In an underground cable system the tendency therefore is
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either towards a local, very high frequency oscillation, or travel-

ing wave, of very limited power, in a part of the cables, or a low

frequency high power surge, frequently of destructive magnitude,
of the joint capacity of the cables, against the inductance of the

generating system.
63. The physical meaning of the transient terms can best be

understood by reviewing their origin.

In a circuit containing resistance and inductance only, but a

single transient term appears of exponential nature. In such a

circuit at any moment, and thus at the moment of start, the

current should have a certain definite value, depending on

the constants of the circuit. In the moment of start, however,the

current may have a different value, depending on the preceding

condition, as for instance the value zero if the circuit has been

open before. The current thus adjusts itself from the initial

value to the permanent value on an exponential curve, which

disappears if the initial value happens to coincide with the final

value, as for instance if the circuit is closed at the moment of

the e.m.f. wave, when the permanent current should be zero.

The approach of current to the permanent value is retarded by
the inductance, accelerated by the resistance of the circuit.

In a circuit containing inductance and capacity, at any
moment the current has a certain value and the condenser a

certain charge that is, potential difference. In the moment of

start, current intensity and condenser charge have definite

values, depending on the previous condition, as zero, if the

circuit was open, and thus two transient terms must appear,

depending upon the adjustment of current and of condenser

e.m.f. to their permanent values.

Since at the moment when the current is zero the condenser

e.m.f. is maximum, and inversely, in a circuit containing induc-

tance and capacity, a change of circuit conditions always results

in the appearance of a transient term.

If the circuit is closed at the moment when the condenser

e.m.f. should be zero, that is, about the maximum value of cur-

rent, the transient term of current cannot exceed in amplitude its

final value, since its maximum or initial value equals the value

which the current should have at this moment. If, however,

the circuit is closed at the moment where the current should be

zero and the condenser e.m.f. maximum, the condenser being
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without charge acts in the first moment like a short circuit, that

is, the current begins at a value corresponding to the impressed
e.m.f. divided by the line impedance. Thus if we neglect the

resistance and if the condenser reactance equals n2 times line

reactance, the current starts at n2
times its final rate; thus it

would, in a half wave, give n2
times the full charge of the con-

denser, or in other words, charge the condenser in - of the time

of a half wave. That is, the period of the starting current is

- and the amplitude n times that of the final current. How-
n

l

ever, as soon as the condenser is charged, in - of a period of
Ti

the impressed e.m.f., the magnetic field of the charging current

produces a return current, discharging the condenser again at

the same rate.

Thus the normal condition of start is an oscillation of such a

frequency as to give the full condenser charge at a rate which

when continued up to full frequency would give an amplitude

equal to the impressed e.m.f. divided by the line reactance.

The effect of the line resistance is to consume e.m.f. and thus

dampen the oscillation, until the resistance consumes during the

condenser charge as much energy as the magnetic field would

store up, and then the oscillation disappears and the start becomes

exponential.

Analytically the double transient term appears as the result

of the two roots of a quadratic equation, as seen above.



CHAPTER VIII.

LOW FREQUENCY SURGES IN HIGH POTENTIAL SYSTEMS.

64. In electric circuits of considerable capacity, that is, in

extended high potential systems, as long distance transmission

lines and underground cable systems, occasionally destructive

high potential low frequency surges occur; that is, oscillations

of the whole system, of the same character as in the case of

localized capacity and inductance discussed in the preceding

chapter.

While a system of distributed capacity has an infinite number
of frequencies, which usually are the odd multiples of a funda-

mental frequency of oscillation, in those cases where the

fundamental frequency predominates and the effect of the

higher frequencies is negligible, the oscillation can be approxi-
mated by the equations of oscillation given in Chapters V and

VII, which are far simpler than the equations of an oscillation

of a system of distributed capacity.

Such low frequency surges comprise the total system, not only
the transmission lines but also the step-up transformers, gen-

erators, etc., and in an underground cable system in such an

oscillation the capacity and inductance are indeed localized to

a certain extent, the one in the cables, the other in the generating

system. In an underground cable system, therefore, of the

infinite series of frequencies of oscillations which theoretically

exist, only the fundamental frequency and those very high

harmonics which represent local oscillations of sections of

cables can be pronounced, and the first higher harmonics of the

fundamental frequency must be practically absent. That is,

oscillations of an underground cable system are either

(a) Low frequency high power surges of the whole system,

of a frequency of a few hundred cycles, frequently of destructive

character, or,

(6) Very high frequency low power oscillations, local in

character, so called "static," probably of frequencies of hundred

105
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thousands of cycles, rarely directly destructive, but indirectly
harmful in their weakening action on the insulation and the

possibility of their starting a low frequency surge.

The former ones only are considered in the present chapter.
Their causes may be manifold, changes of circuit conditions, as

starting, opening a short circuit, existence of a flaring arc on the

system, etc.

In the circuit from the generating system to the capacity of

the transmission line or the underground cables, we have always

r
2 < j-; that is, the phenomenon is always oscillatory, and

(_/

equations (24) and (25), Chapter VII, apply, and for the current

we have

~n>

(1)

and for the condenser potential we have

c

Z X

(2)

65. These equations (1) and (2) can be essentially simplified

by neglecting terms of secondary magnitude.
x

c
is in high potential transmission lines or cables always very

large compared with r and x.

The full-load resistance and reactance voltage may vary
from less than 5 per cent to about 20 per cent of the impressed

e.m.f., the charging current of the line from 5 per cent to

about 20 per cent of full-load current, at normal voltage and

frequency.
In this case, xc is from 25 to more than 400 times as large as r

or x, and r and x thus negligible compared with x
c .
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It is then, in close approximation :

q
= 2 Vx x

c

= - = -90o.

107

(3)

Substituting these values in equations (1) and (2) gives the

current as

i= -- sin(0-# ) + e~2^ \\\-- sin
~| cosy

-
xc ( |_ xc J x

and the potential difference at the condenser as

l
= E cos (0

-
) + [e

- J^ cos 0J cos

T2re + 4xa:ct
. _

4VxZ 4

E

XX,

in )
Jsin y/^-

c

(2 r cos + 4 x sin

These equations consist of three terms:

x, . _ x,
/ I p " -I-

"'
e

l
~ 6

1
K

l 1 ;
.

^ ' (a ft \
I Sin (C7 UQ),

(5)

(6)
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E -~e (= 2 *
) cos 6,

cos cos V - + ''cos 6>- Ee

or, by dropping terms of secondary order,

E - ~e

Ee 2x cos 6 n cos V/

and:

or, by dropping terms of secondary order,

Vx

cos
x

(7)

(8)

(9)

(10)

Thus the ota current is approximately

e E cos 6 .

and the difference of potential at the condenser is

r
9 C I

e
t
=E cos (6

-
) +

j
(e
- cos ) cos \/^

(11)
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Of the three terms: i*
', e/; i

n
\ e/'; i"

r

, e/", the first obviously

represents the stationary condition of charging current and con-

denser potential, since the two other terms disappear for t = oo .

The second term, i", e^', represents that component of oscilla-

tion which depends upon the phase of impressed e.m.f., or the

point of the impressed e.m.f. wave, at which the oscillation

begins, while the third term, i
nf

, e/", represents the component
of oscillation which depends upon the instantaneous values of

current and e.m.f. respectively, at the moment at which the

oscillation begins, s
c

is the decrement of the oscillation.

66. The frequency of oscillation is

where / is the impressed frequency. That is, the frequency of

oscillation equals the impressed frequency times the square root

of the ratio of condensive reactance and inductive reactance of

the circuit, or is the impressed frequency divided by the square
root of inductance voltage and capacity current, as fraction of

impressed voltage and full-load current.

Since

the frequency of oscillation is

that is, is independent of the frequency of the impressed e.m.f.

Substituting

6 = 2 xfi, x
c
= ^ and x = 2 rfL

& 7T/U

in equations (8), (10), and (11), we have

t

sin - y

VCL
(12)

1C - t t

i" = V/F#
2L

cos<9 sin
VCL

t

e/'
=- Ee cos ^ cos--;
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r . , . ,

t

1'" = e

VCL

== + i V 7: sin [
;

C< T V /7 A //nr r >

-~t (

i =-27zfCEsin(d - 6 )+
2L U cos

(13)

r

2L
e,
= E cos (d

- )+
I

(e
- cos ) cos 7^=-

X
,

)

(14)

The oscillating terms of these equations are independent of

the impressed frequency. That is, the oscillating currents and

potential differences, caused by a change of circuit conditions

(as starting, change of load, or opening circuit), are independent
of the impressed frequency, and thus also of the wave shape of

the impressed e.m.f., or its higher harmonics (except as regards

terms of secondary order).

The first component of oscillation, equation (12), depends
not only upon the line constants and the impressed e.m.f., but

principally upon the phase, or the point of the impressed e.m.f.

wave, at which the oscillation starts; however, it does not

depend upon the previous condition of the circuit. Therefore

this component of oscillation is the same as the oscillation

produced in starting the transmission line, that is, connecting

it, unexcited, to the generator terminals.

There exists no point of the impressed e.m.f. wave where no

oscillation occurs (while, when starting a circuit containing
resistance and inductance only, at the point of the impressed
e.m.f. wave where the final current passes zero the stationary
condition is instantly reached).

With capacity in circuit, any change of circuit conditions

involves an electric oscillation.
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The maximum intensities of the starting oscillation occur

near the value # =
0, and are

and

Since

E 2x& sin i/l
xxf

e/'
= - #

K

cos \/_
X

(15)

7 = sin (0
-

)

is the stationary value of charging current, it follows that the

maximum intensity which the oscillating current, produced in

starting a transmission line, may reach is y times the sta-

tionary charging current, or the initial current bears to the

stationary value the same ratio as the frequency of oscillation

to the impressed frequency.
The maximum oscillating e.m.f. generated in starting a trans-

mission line is of the same value as the impressed e.m.f. Thus

the maximum value of potential difference occurring in a trans-

mission line at starting is less than twice the impressed e.m.f.

and no excessive voltages can be generated in starting a circuit.

The minimum values of the starting oscillation occur near

# = 90, and are, from equations (7),

; _
"

_ 2X COS\/^

and

-V/-#.
"c

(16)

that is, the oscillating current is of the same intensity as the

charging current, and the maximum rush of current thus is

less than twice the stationary value. The potential difference

in the circuit rises only little above the impressed e.m.f.

The second component of the oscillation, equation (13), does

not depend upon the point of .the impressed e.m.f. wave at
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which the oscillation starts, ,
nor upon the impressed e.m.f. as

a whole, E, but, besides upon the constants of the circuit, it

depends only upon the instantaneous values of current and of

potential difference in the circuit at the moment when the

oscillation starts, i
Q
and e

Q
.

Thus, if i =
0, e =

0, or in starting a transmission line,

unexcited, by connecting it to the impressed e.m.f., this term

disappears. It is this component which may cause excessive

potential differences. Two cases shall more fully be discussed,

namely :

(a) Opening the circuit of a transmission line under load, and

(6) rupturing a short-circuit on the transmission line.

67. (a) If i
Q

is the instantaneous value of full-load current,

e the instantaneous value of difference of potential at the

condenser, n is small compared with e
,
and \/~xxc

i
Q
is of the

same magnitude as e .

Writing

and substituting in equations (10), we have

**'
cos + d

and

e > = Ve/ + ia
2xxe t sin U/ ^ + d

(17)

e
that is, the amplitude of oscillation isV/%

2 +- forthe current,

and \/e
o

2 + i*x xc for the e.m.f. Thus the generated e.m.f.

can be larger than the impressed e.m.f., but is, as a rule, still of

the same magnitude, except when x
c is very large.

In the expressions of the total current and potential difference

at condenser, in equations (11), (e E cos ) is the difference

between the potential difference at the condenser and the

impressed e.m.f., at the instant of starting of the oscillation, or

the voltage consumed by the line impedance, and this is small
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if the current is not excessive. Thus, neglecting the terms with

(e E cos
Q)j equations (11) assume the form

t - - sin (d
- 6 ) + v'^'cos \/-

c

V

and

e
1
= E cos (d

- 6 ) + i

-JL0
c e

''

siny

(18)

that is, the oscillation of current is of the amplitude of full-load

current, and the oscillation of condenser potential difference is

of the amplitude i

x xc is the ratio of inductance voltage to condenser current, in

fractions of full-load voltage and current. We have, therefore,

L

Thus in circuits of very high inductance L and relatively low

capacity C, i Vx xc may be much higher than the impressed

e.m.f., and a serious rise of potential occur when opening the

circuit under load, while in low inductance cables of high capacity

i Vxxc is moderate; that is, the inductance, by tending to

maintain the current, generates an e.m.f., producing a rise in

potential, while capacity exerts a cushioning effect. Low
inductance and high capacity thus are of advantage when

breaking full-load current in a circuit.

68. (6) If a transmission line containing resistance, induc-

tance, and capacity is short-circuited, and the short-circuit

suddenly opened at time t = 0, we have, for t < 0,

and

where

and

ET

I =-COS (d
-

Q
-

y),

tan y = -;

(19)
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thus, at time t = 0,

_
E
z

(20)

Substituting these values of e and i in equations (9) gives

and

E_

z

r_
2x

7 a

2x

^- O

Xc

or, neglecting terms of secondary magnitude,

and

., E -

V = COS
z

cos (8, + y) sin 6;

(21)

that is, i
m

is of the magnitude of short-circuit current, and

e"' of higher magnitude than the impressed e.m.f., since z is

small compared with \/xx
c

.

The total values of current and condenser potential difference,

from equation (11), are

cos\/-
X xx,

and

cos (0
-

)
- Ee

\rxxc COS (0 + y) .

cos \ cosV/-
v X

(22)



HIGH POTENTIAL SYSTEMS 115

or approximately, since all terms are negligible compared with
i'" and e/",

and

TJI T_Q i

i=-e 2x
cos (0 + 7-) cosV-

2 ' X

E\fxxc
-

fc
cos (69 + 7-) sin y

-

(23)

* ju

These values are a maximum, if the circuit is opened at the

OQ
= -

r, that is, at the maximum value of the short-

urrent, and are then

moment 6 = -
7-, that is, al

circuit current, and are then

and (24)

The amplitude of oscillation of the condenser potential dif

ference is

xx;

or, neglecting the line resistance, as rough approximation,
x =

z,

C E
x

'

that is, the potential difference at the condenser is increased

above the impressed e.m.f. in the proportion of the square root

of the ratio of condensive reactance to inductive reactance, or

inversely proportional to the square root of inductance voltage

times capacity current, as fraction of the impressed voltage and

the full-load current. Thus, in this case, the rise of voltage is

excessive.

The minimum intensity of the oscillation due to rupturing

short-circuit occurs if the circuit is broken at the moment
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= 90 r, that is, at the zero value of the short-circuit current.

Then we have

r

ysiny*

(25)

that is, the potential difference at the condenser is less than twice

the impressed e.m.f.; therefore is moderate. Hence, a short-

circuit can be opened safely only at or near the zero value of the

short-circuit current.

The phenomenon ceases to be oscillating, and becomes an

ordinary logarithmic discharge, if x/r2 4 xxc is real, or

r > 2 Vxx^.

Some examples may illustrate the phenomena discussed in the

preceding paragraphs.
69. Let, in a transmission line carrying 100 amperes at full

load, under an impressed e.m.f. of 20,000 volts, the resistance

drop = 8 per cent, the inductance voltage = 15 per cent of the

impressed voltage, and the charging current = 8 per cent of full-

load current. Assuming 1 per cent resistance drop in the

step-up transformers, and a reactance voltage of 2i per cent,

the resistance drop between the constant potential generator

terminals and the middle of the transmission line is then 5 per

cent, or r = 10 ohms, and the inductance voltage is. 10 per

cent, or x = 20 ohms. The charging current of the line is 8

amperes, thus the condensive reactance xc
= 2500 ohms.

Then, assuming a sine wave of impressed e.m.f., we have

E = 20,000 V2 = 28,280 volts;

i' = - 11.3 sin (6
-

);

e{= 28,280 cos (0
-

);

i" = - 11.3
- '25

'[sin cos 11.2 6 - 11.2 cos 0, sin 11.2 6],

and e/' = - 28,280
-- 25 '

[cos cos 1 1 .2 + (0.0222 cos

+ 0.0283 sin
)
sin 11. 20]

=* -28,280
-- 25(? cos cos 11.20.
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Therefore the oscillations produced in starting the trans-

mission line are

i = - 11.3 [sin (0
-

) + r '25 e

(sin cos 11.2

- 11.2 cos sin 11.20)]

and e,
= 28,280 {

cos (0
-

)
- -'25 '

[cos cos 11.2 d

+ (0.0222 cos + 0.0283 sin
)
sin 1 1 .2 0] }

^ 28,280 [cos (0
-

)
- -- 25 ' cos cos 11.2 0].

100 60
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These values are plotted in Figs. 27 and 28, with the current, i,

in dotted and the potential difference, e ly
in drawn line. The

stationary values are plotted also, in thin lines, i and e', respec-

tively.

(a) Opening the circuit under full load, we have

i = - 11.3 sin (6
-

) + iQe--**
9 cos 11.2 6

and e
l
= 28,280 cos (6

-
) + 224 v^^'sin 11.2/9.

-100

a 10 -20

o-J-o
-10 W-20

-20 40

-100

-120

i =fl414 amp.

10 50 80 100

Fig. 29. Opening a loaded transmission line.

These values are maximum for = and non-inductive

circuit, or i =
141.4, and are

i = -11.3 sin 6 + 141.4 r '26 '
cos 11.2 6

and e
l
= 28,280cos0 + 31,600--

25 *
sin 11.20.

These values are plotted, in Fig. 29, in the same manner as

Figs. 27 and 28.

(6) Rupturing the line under short-circuit, we have

and

and therefore

z = 22.4

i = 1265 cos (0 + r);

11.3 sin (6
-

) + 1265 r'259
[cos (0 + r)

cos 11.2 + 0.1 cos dn sin 11.2 d]
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and e
1
= 28,280 Scos (0

-
)
- s

-'250
[cos cos 11.2

- 10 cos (0 -f r) sin 11.2 0]j.

These values are a maximum for = -
7-
= - 63, thus

i = - 11.3 sin (0 + 63) + 1265 e"'25d
(cos 11.2

+ 0.044 sin 11.2 0)

and e
l

= 28,280 cos (0 + 63) - 282,800 r Q '25d
(0.044 cos 11.2

- sin 11.20);

that is, the potential difference rises about tenfold, to 282,800
volts. These values are plotted in Fig. 30.

-1200
100

Fig. 30. Opening a short-circuited transmission line.

70. On an experimental 10,000-volt, 40-cycle line, when a

destructive e.m.f. was produced by a short-circuiting arc, the

author observed a drop in generator e.m.f. to about 5000 volts,

due to the limited machine capacity. The resistance of the

system was very low, about r = 1 ohm, while the inductive

reactance may be estimated as x.= 10 ohms, and the condensive

reactance as xc
= 20,000 ohms. Therefore tan f

=
10, or

approximately, 7-
= 90.

Herefrom it follows that

and

i = 707 r '05 *
cos 44.70

e
l

= 316,000 r^'sin 44.70;
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that is, the oscillation has a frequency of about 1800 cycles per

second and a maximum e.m.f. of nearly one-third million volts,

which fully accounts for its disruptive effects.

71. As conclusion, it follows herefrom:

1. A most important source of destructive high voltage

phenomena in high potential circuits containing inductance and

capacity are the electric oscillations produced by a change of

circuit conditions, as starting, opening circuit, etc.

2. These phenomena are essentially independent of the fre-

quency and the wave shape of the impressed e.m.f., but de-

pend upon the conditions under which the circuit is changed,
as the manner of change and the point of the impressed e.m.f.

and current wave at which the change occurs.

3. The electric oscillations occurring in connecting a trans-

mission line to the generator are not of dangerous potential, but

the oscillations produced by opening the transmission circuit

under load may reach destructive voltages, and the oscillations

caused by interrupting a short-circuit are liable to reach voltages

far beyond the strength of any insulation. Thus special pre-

cautions should be taken in opening a high potential circuit

under load. But the most dangerous phenomenon is a low

resistance short-circuit in open space.

4. The voltages produced by the oscillations in open-circuiting
a transmission line under load or under short-circuit are mod-
erate if the opening of the circuit occurs at a certain point of

the e.m.f. wave. This point approximately coincides with the

moment of zero current.



CHAPTER IX.

DIVIDED CIRCUIT.

72. A circuit consisting of two branches or multiple circuits

1 and 2 may be supplied, over a line or circuit 3, with an impressed

e.m.f., e .

Let, in such a circuit, shown diagrammatically in Fig 31,

rv Lv C l
and r

2 ,
L

2 ,
C

z resistance, inductance, and capacity,

respectively, of the two branch circuits 1 and 2; r
,
L

,
C =

Co

Fig. 31. Divided circuit.

resistance, inductance, and capacity of the undivided part of the

circuit, 3. Furthermore let e = potential difference at terminals

of branch circuits 1 and 2, i
t
and i

2 respectively
= currents in

branch circuits 1 and 2, and i
3
= current in undivided part of

circuit, 3.

Then i
a
= i

l
+ i

2

and e.m.f. at the terminals of circuit 1 is

of circuit 2 is

e =
di

121

(2)

(3)
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and of circuit 3 is

(4)

Instead of the inductances, L, and capacities, C, it is usually

preferable, even in direct-current circuits, to introduce the

reactances, x = 2 nfL = inductive reactance, xc
= = con-

2 7T/G

densive reactance, referred to a standard frequency, such as

/ = 60 cycles per second. Instead of the time t, then, an angle

= 2 nft (5)

is introduced, and then we have

di x di dd di

^ *

(6)

i/iift
- 2 Kfo f Id0 - Xc/i dd,

t

since

Hereby resistance, inductance, and capacity are expressed in

the same units, ohms.

Time is expressed by an angle 6 so that 360 degrees correspond
to sV of a second, and the time effects thus are directly com-

parable with the phenomena on a 60-cycle circuit.

A better conception of the size or magnitude of inductance

and capacity is secured. Since inductance and capacity are

mostly observed and of importance in alternating-current cir-

cuits, a reactor having an inductive reactance of x ohms and
i amperes conveys to the engineer a more definite meaning as

regards size: it has a volt-ampere capacity of tfx, that is, the

approximate size of a transformer of half this capacity, or of a
^
2x

-watt transformer. A reactor having an inductance of L

henrys and i amperes, however, conveys very little meaning to
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the engineer who is mainly familiar with the effect of inductance
in alternating-current circuits.

Substituting therefore (5) and (6) in equations (2), (3), (4),

gives the e.m.f. in circuit 1 as

dL
e = r

l
i
1 + x

l
-r1 + a

in circuit 2 as

dL
'

C
* =

r** +
**-fi

+ *ctJi,M', (8)

in circuit 3 as

e = e a. r { 4. x -h. _j_ x I { ^. /Q\03 '

J/j
'

CQ I 3 J v*^/
tZC7 /

hence, the potential differences at the condenser terminals are

/di<i,dd
= e -r

1
i
1

- x
t

S (10)

e2= <J *i dd
= e- r

2
i
2 -*,-^> (11)

and e
3
= x

co
I i

3
dd = e - e - r i

3
- x

-^ (12)

Differentiating equations (7), (8), and (9), to eliminate the

integral, gives as differential equations of the divided circuit:

d?ii di
l . de

d i n di n de

cPt' . di~ . de
Q

de
and + r *---

Subtracting (14) from (13) gives

d\\ di, .\ / d?i
2

di
2
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Multiplying (15) by 2, and adding thereto (13) and (14), gives,

by substituting (1), i3
= i

t + t'
2 ,

(] i fi'l

(2 x + x,) -^ + (2 r, + r^+ (2 xco + xji, +

(2 * + x,) J| + (2 r + r
2) ^ + (2 *Co + x

c>'2
= 2 ^ . (17)

These two differential equations (16) and (17) are integrated

by the functions

and -

(18)

i
2
= i

2

' + A
2
e~ ae

,

where if and i
2

are the permanent values of current, and
i" = A^~

a9 and i
2

" = A
2
e~

ae
are the transient current terms.

Substituting (18) in (16) and (17) gives

/-/2/j
/ sl/\

*

\Jj t/o (JLlci

+ A^-
a9
(a\ - ar

1 + xc)
- A

2
e~

a0
(a?x2

- ar
2 + x

c)
=

(19)

and
(Pi

' di' -

(2 r + r,) + (2'^ + xc)i

- a (2 r + r,) + (2 zco
+ x

Cl)} + A^-^ {a
2

(2 x + x
a)

- a (2r + r
2) + (2 x

co
+ x

c)} -2^- (20)

73. For =
oo, the exponential terms eliminate, and there

remain the differential equations of the permanent terms

i/ and t/, thus

(21)

and
cPt

'
di

r

(2^o + x,) -^-
+ (2r + r,) ^-

+ (2 xco
+ ajj i/+ (2 a + x

2)

^ +(2r +r)-^+(2z+zH'-2^. C22)
2 ^ r

o -t r
2 ; k ^co+ *

C2;
^
2
- *
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The solution of these equations (21) and (22) is the usual

equation of electrical engineering, giving t/ and i
2

as sine waves

if the e.m.f., e
,

is a sine wave; giving ^'
1

/ and i
2

as constant

quantities if e is constant and x
co
and either x

Ci
or x

ct
or both

vanish, and giving i{ and i
2
= if either x

co
or both x

Cl
and

x
Ct

differ from zero.

Subtracting (21) and (22) from (19) and (20) leaves as dif-

ferential equations of the transient terms i" and i"
t

e~
ae

{A, (a\ -
or, + x

ci)
'- A

2 (a?x2
- ar

2 + xj} -=
(23)

and

e-* {A, [a
2

(2 x + ,)-? (2 r
o + 'i) + (2 zco + x

ci)] + A
2

[a
2

(2 z + x
2)
- a (2r + r

2) + (2 x
co
+x

C2)]}
= 0. (24)

Introducing a new constant 5, these equations give, from (23),

A
1
= B (a?x2

- ar
2 + x

c)
and (25)

then substituting (25) in (24) gives

(a?x 2
- ar

2 + xc) [a
2

(2 x + xj
- a (2 r + r,) + (2 ^Co + xj]

+ (a
2

^,
- or

t + x
ci)[a

2

(2 x + x
2)
- a (2 r + r

2) + (2 xco

+ *c2)]
=

0, (26)

while B remains indeterminate as integration constant.

Quartic equation (26) gives four values of a, which may be all

real, or two real and two conjugate imaginary, or two pairs of

conjugate imaginary roots.

Rearranged, equation (26) gives

a4

(X QX, + x x
2 + x,x 2)

- a3

{r (x l + x
2) + r

1 (x, -f x
2)

+ r
2 (x + x^) }

+ a2

{ (r/! + r/ a + r/,) + x
Co (x 1 + x

2)

+ x
ci (x + x

2)+ x
cz (XQ+ x,)}- a {xeo (r l

+ r
2)+ x

Ci (r -f r
a)

+ ^c, (ro + r
i) }

+ (VCl
+ XA* + ^c^c.)

- 0. (27)

Let o
17
a

2 ,
a

3 ,
a4 be the four roots of this quartic equation (27) ;
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then

and

i
2
= i

B

TRANSIENT PHENOMENA

B - a/ 2 + x
c)

xc

B 4 (a*x2
- a4r2 +

^ + B a 2x - a

(28)

(29)

where the integration constants Bv B
2 ,
B

3
and B 4 are deter-

mined by the terminal conditions: the currents and condenser

potentials at zero time, 6 = 0.

The quartic equation (27) usually has to be solved by approxi-
mation.

74. Special Cases: Continuous-current divided circuit, with

resistance and inductance but no capacity, e = constant.

Fig. 32. Divided continuous-current circuit without capacity.

In such a circuit, shown diagrammatically in Fig. 32, equations

(7), (8), and (9) are greatly simplified by the absence of the

integral, and we have

e~ '& + *&> (30)

and e
Q
= e -\

(30) and (31) combined give

di.

1

-

. 3

'd0

-

(31)

(32)

(33)
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Substituting (1), i
3
= i

1 + iv in (32), multiplying it by 2 and

adding thereto (30) and (31), gives

2 e =
(2 r + r

t)
t

1 + (2 r + r
2) *,+ (2 z + x

t ) ^

Equations (33) and (34) are integrated by

and F (35)

Substituting (35) in (33) and (34) gives

(VV - r2V) + e-^Ufa- ax,)
- A

2 (r2
- ax

2)l
=

and

2 e =
(2 r + r

t ) i/ + (2 r + r
a) i/ + e~ ai

{A l [(2 r + r
f)

- a (2 z + x,)] + A
2 [(2 r + r

2)- a (2 x + *,)]}. ,

These equations resolve into the equations of permanent

state, thus

and (2 r + r,) i/ + (2 r + r
a) t/

= 2 e .

J

Hence, t/
= 6

-^

(36)

and t'
2

' = e -j?

where r2 = r r
t
+ r/2 + r

t
r
2 , (37)

and the transient equations having the coefficients

A (r nv\- A (r -- nr "I

Ai yt *f*v A
2 vr2

ax
2/

and

A
t [(2 r + r

t)
- a (2 x + xj] + A

2 [(2 r + r
2)

- a (2 z + x
a)]

= 0.



128 TRANSIENT PHENOMENA

Herefrom it follows that

and

and

A
2
= B (r 1

-
axj,

a2

x,)]

-
a[r (x l

+ x
2)

=
0,

x
2)

5 - indefinite.

Substituting the abbreviations,

(38)

(39)

(40)

and

\ + V 2 + rjr 2
= r

2

,

r (^i + s
a) + r

i (^o + ^2) + r
2 (* + ^i)

=
ZG (

r
i + r

2)

^2 (r

gives (39)

hence two roots,

and

where

=
0;

2X2

2
=
"r^

- 4 rV.

(4D

(42)

(43)

(44)

The two roots of equation (42), a
x
and a

2 ,
are always real, since

in (f

s
4 > 4 rV,

as seen by substituting (41) therein.

The final integral equations thus are

and

2x2

*+<f

-2

(45)
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B^ and B
2
are determined by the terminal conditions, as the

currents ^ and t'
2
at the start, 6 = 0.

Let, at zero time, or =
0,

and

then, substituting in (45), we have

(46)

4-
l 1

and (47)

and herefrom calculate B
l
and

2
.

75. For instance, in a continuous-current circuit, let the

impressed e.m.f., e == 120 volts; the resistance of the undivided

part of the circuit, r 20 ohms; the reactance, x = 20 ohms;
the resistance of one of the branches, r

l

= 20 ohms; the reactance,

x
l
= 40 ohms, and the resistance of the other branch, r

2
=

5 ohms, the reactance, x
2
= 200 ohms.

Thus one of the branches is of low resistance and high react-

ance, the other of high resistance and moderate reactance.

The permanent values of the currents, (r
2 =

600), are

and
t/

= 1 amp. i

i
2
= 4 amp.

(a) Assuming now the resistance r suddenly decreased from

r
o
= 20 ohms to r = 15 ohms, we have the permanent values

of current as

and
t/

= 1.265 amp.

if
= 5.06 amp.

The previous values of currents, and thus the values of currents

at the moment of start,
=

0, are

i* = 1 amp. 1

and r

i
2
= 4 amp. J
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therefrom follow the equations of currents, by substitution in

the preceding,

i,
= 1.265 + 0.455

-<>'< 3e - 0.720 e~
'^ 6

1

and
i
2
- 5.06 - 1.038 r '0633 * _ 0.022 e"

'586
'. J

(6) Assuming now the resistance r suddenly raised again
from r = 15 ohms to r = 20 ohms, leaving everything else

the same, we have

ij
= 1.265 amp. ~]

and
t'
2
= 5.06 amp.; J

and then

i,
= 1 - 0.528 e-

'06970 + 0.793 r '674 '
1

and
i
a
= 4 + 1.018 s-

- 069 + 0.042
-' 6740

. J

(c) Assuming now the resistance r suddenly raised from

r = 20 ohms to r = 25 ohms, gives

i,
= 0.828 - 0.374 e

- Q ' 9 e + 0.546
-' 7640

1

and

i
2
= 3.312 + 0.649 r Q 'm39 + 0.039 r - 764

'. j

(^) Assuming now the resistance r lowered again from r =
25 ohms to r = 20 ohms, gives

i,
= 1 + 0.342 r - 069 - 0.514 r '6740

^
and L

i
a
= 4 - 0.660 g-

- 06970 _ 0.028
-- 674

'. J

76. In Fig. 33 are shown the variations of currents i
l
and iv

resultant from a sudden variation of the resistance r from 20

to 15, back to 20, to 25, and back again to 20 ohms. As seen,

the readjustment of current iv that is, the current in the induc-

tive branch of the circuit, to its permanent condition, is very
slow and gradual. Current iv however, not only changes very

rapidly with a change of r
,
but overreaches greatly; that is, a

decrease of r causes i
l
to increase rapidly to a temporary value

far in excess of the permanent increase, and then gradually i
t
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falls back to its normal, and inversely with an increase of r .

Hence, any change of the main current is greatly exaggerated
in the temporary component of current i\; a permanent change
of about 20 per cent in the total current results in a practically

instantaneous change of the branch current iv by about 50 per
cent in the present instance.

Thus, where any effect should be produced by a change of

current, or of voltage, as a control of the circuit effected thereby,

the action is made far more sensitive and quicker by shunting
the operating circuit iv of as low inductance as possible, across

t=-0 20 40

Fig. 33. Current in divided continuous-current circuit resulting from sudden

variations in resistance.

a high inductance of as low resistance as possible. The sudden

and temporary excess of the change of current i
l
takes care of

the increased friction of rest in setting the operating mechanism

in motion, and gives a quicker reaction than a mechanism

operated directly by the main current.

This arrangement has been proposed for the operation of arc

lamps of high arc voltage from constant potential circuits.

The operating magnet, being in the circuit iv more or less

anticipates the change of arc resistance by temporarily over-

reaching.

77. The temporary increase of the voltage, e, across the

branch circuit, iv corresponding to the temporary excess current

of this circuit, may, however, result in harmful effects, as de-

struction of measuring instruments by the temporary excess

voltage.
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Let, for instance, in a circuit of impressed continuous e.m.f.,

^ = 600 volts, as an electric railway circuit, the resistance of

the circuit equal 25 ohms, the inductive reactance 44 ohms.

This gives a permanent current of i
7 = 24 amperes.

Let now a small part of the circuit, of resistance r
a
= 1 ohm,

but including most of the reactance x,
= 40 ohms as a motor

series field winding be shunted by a voltmeter, and r
l
= 1000

ohms = resistance, x
x
= 40 ohms = reactance of the volt-

meter circuit.

In permanent condition the voltmeter reads ,V X 600 = 24

volts, but any change of circuit condition, as a sudden decrease

or increase of supply voltage ev results in the appearance of a

temporary term which may greatly increase the voltage impressed

upon the voltmeter.

In this divided circuit, the constants are: undivided part of

the circuit, rt
= 24 ohms; xt = 4 ohms; first branch, voltmeter

(practically non-inductive), rt
= 1000 ohms, x4

= 40 ohms;
second branch, motor field, highly inductive, r,

= 1 ohm, x,
=

40 ohms.

(a) Assuming now the impressed e.m.f., ev suddenly dropped
from e%

= 600 volts to e%
= 540 volts, that is, by 10 per cent,

gives the equations

ad
i,
= 0.0216 - 0.0806

-"" + 0.0830
-*-lf

|

t,
= 21.6 + 2.407

-* - 0.007
-*Jf

.

(5) Assuming now the voltage, ev suddenly raised again from

et
= 540 volts to c.

= 600 volts, gives the equations

i,
= 0.024 + 0.0806 -- 0.0830

-

and

i,
= 24 - 2.407 e-*

402 * + 0.007

.0830
-s -lf

l

r*'1 '
.

Tbe voltage, e, across the voltmeter, or on circuit 1, is

e = r^ + *i^r
= 1000 1/ =F 77.9 e~

9jm
6.2 r** 9

,

where
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Hence, in case (a), drop of impressed voltage, ev by 10 per cent,

e = 21.6 - 77.9 -""+ 6.2

and in (6), rise of impressed voltage,

e = 24.0 + 77.9 -"""- 6.2

This voltage, e, in the two cases, is plotted in Fig. 34. As
seen, during the transition of the voltmeter reading from 21.6

to 24.0 volts, the voltage momentarily rises to 95.7 volts, or

Fig. jve apparatus in series with cdrcuit of high
mniirtann*

four times its permanent value, and during the decrease of

permanent voltage from 24.0 to 21.6 volts the voltmeter momen-

tarily reverses, going to 50.1 volts in reverse direction.

In a high voltage direct-current circuit, a voltmeter shunted

across a low resistance, if this resistance is highly inductive, is in

danger of destruction by any sudden change of voltage or current

in the circuit, even if the permanent value of the voltage is well

within the safe range of the voltmeter.

CAPACITY SHUNTING A PART OF A OONTINUOU^CURRENT
CIRCUIT.

78. A circuit of resistance r
t
and inductive reactance x

l
is

shunted by the condensive reactance xc, and supplied over the

resistance r and the inductive reactance x. by a continuous

impressed e.m.f., ^, as shown diagrammatically in Fig. 35.
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In the undivided circuit,

di. di

In the inductive branch,

In the condenser branch,

e = x
c

I i
2
dd.

(48)

(49)

(50)

L ,

Fig. 35. Suppression of pulsations in direct-current circuits by series induc-

tance and shunted capacity.

Eliminating e gives, from (48) and (49),

fl'l {11

and from (49) and (50),

(52)

Differentiating (52), to eliminate the integral,

(53)
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Substituting (53) in (51), and rearranging,

1 ( di
e
o
=

fro + r
i) h + - fror i + Vo + 3e*i) -Z

i + r^o) ^ + X
O*I-JJT \

>

a differential equation of third order.

This resolves into the permanent term

<> =
0*0 + O \',

hence, i,'
= ^ , (55)

TQ H- r
t

and a transient term

t,"
- 4-; (56)

that is,

^ - V + A~^ = ^ + Ae- ae
. (57)

r + r
t

Equation (57) substituted in (54) gives as equation of a,

*c fro + r
i)
~ a fror i + A + %) + 2

fro^i + ri^o)
- a'^i =

>

or

^L+i1
) = (58)

while A. remains indefinite as integration constant.

Equation (58) has three roots, av a
2 ,
and a

3 ,
which either are

all three real, when the phenomenon is logarithmic, or, one

real and two imaginary, when the phenomenon is oscillating.

The integral equation for the current in branch 1 is

* e

(59)

the current in branch 2 is by (53)

(60)
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and the potential difference at the condenser is

/dfLi
2
dd=r

l
i
l + z,^

1

"'. (61)

In the case of an oscillatory change, equations (59), (60), and

(61) appear in complex imaginary form, and therefore have to

be reduced to trigonometric functions.

The three integration constants, A v A
2 ,

and A
3 ,

are deter-

mined by the three terminal conditions, at 6 =
0, i

l
=

if,

i
z
=

if, e = e.

79. As numerical example may be considered a circuit having
the constants, e = 110 volts; r = 1 ohm; x = 10 ohms;
r

l
= 10 ohms; x^

= 100 ohms, and xc
= 10 ohms.

In other words, a continuous e.m.f. of 110 volts supplies,

over a line of r = 1 ohm resistance, a circuit of r
l
= 10 ohms

resistance. An inductive reactance x = 10 ohms is inserted

into the line, and an inductive reactance x
l
= 100 ohms in the

load circuit, and the latter shunted by a condensive reactance of

xc
= 10 ohms.

Then, substituting in equation (58),

a3 - 0.2 a2 + 1.11 a - 0.11 = 0.

This cubic equation gives by approximation one root, a
t
=

0.1,

and, divided by (a 0.1), leaves the quadratic equation

a2 - 0.1 a + 1.1 =
0,

which gives the complex imaginary roots a
2
= 0.05 1.047 /

and a
3
= 0.05 + 1.047 j; then from the equation of current,

by substituting trigonometric functions for the exponential
functions with imaginary exponent, we get the equation for the

load current as

i,
=

if + A^-*'
10 + --05 '

(B l
cos 1.047 6 + B

2
sin 1.047 0),

the condenser potential as

e=W if + e-
'050

{(5^ + 104.7 B
2)

cos 1.047 d - (104.7 B l

- 5
2)

sin 1.047/9},
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and the condenser current as

i
a
= 10.9 r - 05 '

{B, cos 1.047 + B
2
sin 1.047 6}.

At e = 110 volts impressed, the permanent current is if
= 10

amp., the permanent condenser potential is ef = 100 volts, and

the permanent condenser current is if
= 0.

Assuming now the voltage, e
, suddenly dropped by 10 per

cent, from e = 110 volts to e = 99 volts, gives the permanent
current as if

= 9 amp. At the moment of drop of voltage,
=

0, we have, however, i
l
=

if
= 10 amp.; e = e' = 100

volts, and t'
2
=

0; hence, substituting these numerical values

into the above equations of iv e, iv gives the three integration
constants :

A, =
1; B i

=
0, and B

2
=

0.0955;

therefore the load current is

i,
= 9 + r' ie + 0.0955 r '05 '

sin 1.047 0,

the condenser current is

i
2
= 1.05 r '05 '

sin 1.0470,

and the condenser, or load, voltage is

e = 90 + e-
'06 *

(10 cos 1.047 + 0.48 sin 1.047 0).

Without the condenser, the equation of current would be

i=9 + r'ie
.

In this combination of circuits with shunted condensive

reactance x
c ,

at the moment of the voltage drop, or =
0, the

rate of change of the load current is, approximately,

^ = [_ O.lr ' 1 ' + 0.0955 X 1.047r-
05e

cos 1.047 0]
=

0,
do

while without the condenser it would be

|
= [_ o.l r "]. = -0.1.

80. By shunting the circuit with capacity, the current in the

circuit does not instantly begin to change with a change or

fluctuation of impressed e.m.f.
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In Fig. 36 is plotted, with 6 as abscissas, the change of the

current, i
lt

in per cent, resulting from an instantaneous change
of impressed e.m.f., e

Q ,
of 10 per cent, with condenser in shunt

to the load circuit, and without condenser.

As seen, at = 172, both currents, i
t
with the condenser

and i without condenser, have dropped by the same amount,

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.0

o.s

0.6

0.4

0.2
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pulsation of impressed e.m.f., e
,
of a frequency of 120 cycles re-

appears in the load current iv reduced to 1 per cent of its value.

In cases where from a source of e.m.f., e
,
which contains a

slight high frequency pulsation as the pulsation corresponding
to the commutator segments of a commutating machine a

current is desired showing no pulsation whatever, as for instance

for the operation of a telephone exchange, a very high inductive

reactance in series with the circuit, and a condensive reactance

in shunt therewith, entirely eliminates all high frequency pulsa-

tions from the current, passing only harmless low frequency

pulsations at a greatly reduced amplitude.
81. As a further example is shown in Fig. 37 the pulsation

of a non-inductive circuit, x
l
=

0, of the resistance r
l
= 4 ohms,

shunted by a condensive reactance x
c
= 10 ohms, and supplied

over a line of resistance r = 1 ohm and inductive reactance

x = 10 ohms, by an impressed e.m.f., e = 110 volts.

Due to x
l
= equation (58) reduces to

1

or, substituting numerical values,

a2 - 2.6 a + 1.25 =

and a
t ='0.637, a

2
= 1.963;

that is, both roots are real, or the phenomenon is logarithmic.

We now have

l\-ty + A/--
7'+A 4

r'- B

',

i
a
= - 0.255 A^-

'63 - 0.785 A^-
1 '"*'

,

and e - r,i,
=- 4 (i,' + Af-*'"

1 ' + A/-
1 ' 963

').

The load current is

i/
= 22 amp.

A reduction of the impressed e.m.f., e
, by 10 per cent, or from

110 to 99 volts, gives the integration constants A
l
= 3.26 and

A
2

= -
1.06; hence,

i,
= 19.8 + 3.26 e-

'637 ' - 1.06 r 1 '** 9
,

and e = 4 ir
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Without a condenser, the equation of current would be

i = 19.8 + 2.2
--50

.

In Fig. 37 is shown, with 6 as abscissas, the drop of current

i
l
and i, in per cent.

Although here the change is logarithmic, while in the former

paragraph it was trigonometric, the result is the same a very

great reduction, by the condenser, of the drop of current imme-

diately after the change of e.m.f. However, in the present case

Fig. 37. Suppression of pulsations in nori-inductive direct-current circuits by
series inductance and shunted capacity. Effect of 10 per cent drop of

voltage.

the change of the circuit is far more rapid than in the preceding

case, due to the far lower inductive reactance of the present case.

For instance, after 6 =
0.1, the drop of current, with condenser,

is 0.045 per cent, without condenser, 0.5 per cent. At 6 =
0.2,

the drop of current is 0.23 and 0.95 per cent respectively. For

longer times or larger values of 6, the difference produced by the

condenser becomes less and less.

This effect of a condenser across a direct-current circuit, of

suppressing high frequency pulsations from reaching the circuit,

requires a very large capacity.



CHAPTER X.

MUTUAL INDUCTANCE.

82. In the preceding chapters, circuits have been considered

containing resistance, self-inductance, and capacity, but no

mutual inductance; that is, the phenomena which take place
in the circuit have been assumed as depending upon the impressed
e.m.f. and the constants of the circuit, but not upon the

phenomena taking place in any other circuit.

Of the magnetic flux produced by the current in a circuit

and interlinked with this circuit, a part may be interlinked with

a second circuit also, and so by its change generate an e.m.f. in

the second circuit, and part of the magnetic flux produced by

Fig. 38. Mutual inductance between circuits.

the current in a second circuit and interlinked with the second

circuit may be interlinked also with the first circuit, and a

change of current in the second circuit, that is, a change of

magnetic flux produced by the current in the second circuit,

then generates an e.m.f. in the first circuit.

Diagrammatically the mutual inductance between two circuits

can be sketched as shown by M in Fig. 38, by two coaxial coils,

while the self-inductance is shown by a single coil L, and the

resistance by a zigzag line.

141
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The presence of mutual inductance, with a second circuit,

introduces into the equation of the circuit a term depending

upon the current in the second circuit.

If i^
= the current in the circuit and r

1
= the resistance of

the circuit, then r^\
= the e.m.f. consumed by the resistance

of the circuit. If L
1
= the inductance of the circuit, that is,

total number of interlinkages between the circuit and the number
of lines of magnetic force produced by unit current in the circuit,

we have

di

L{j
= e.m.f. consumed by the inductance,

ctt

where, t = time.

If instead of time t an angle 6 = 2 nft is introduced, where /
is some standard frequency, as 60 cycles,

di
x. 3^ = e.m.f. consumed by the inductance,

au

where x
1
= 2 nfL^

= inductive reactance.

If now M = mutual inductance between the circuit and

another circuit, that is, number of interlinkages of the circuit

with the magnetic flux produced by unit current in the second

circuit, and i
2
= the current in the second circuit, then

M~= e.m.f. consumed by mutual inductance in the first
at

circuit,

M - = e.m.f. consumed by mutual inductance in the second
at

circuit.

Introducing xm = 2 nfM = mutual reactance between the

two circuits, we have

di
xm -^= e.m.f. consumed by mutual inductance in the first

do

circuit,

di
xm = e.m.f. consumed by mutual inductance in the second

au

circuit.
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If now e^
= the e.m.f. impressed upon the first circuit and

e
2
= the e.m.f. impressed upon the second circuit, the equations

of the circuits are

dL di7

e,
= r^ + x^- + xm^ + x

ci

and

r

J
i
l
dO (1)

-*2^+^^+*C2 /V^, (2)

where r
1
= the resistance, x

l
= 2 7r/L 1

= the inductive re-

actance, and x
ci
= = the condensive reactance of the

first circuit; r
2
= the resistance, x

2
= 2 rfL 2

= the inductive

reactance, x
ca
= = the condensive reactance of the

second circuit, and xm = 2 nfM = mutual inductive reactance

between the two circuits.

83. In these equations, x
l
and x

2
are the total inductive

reactance, L l
and L

2
the total inductance of the circuit, that is,

the number of magnetic interlinkages of the circuit with the

total flux produced by unit current in the circuit, the self-

inductive flux as well as the mutual inductive flux, and not

merely the self-inductive reactance and inductance respectively.

In induction apparatus, such as transformers and induction

machines, it is usually preferable to separate the total reactance z,

into the self-inductive reactance, x
81 referring to the magnetic

flux interlinked with the inducing circuit only, but with no

other circuit, and the mutual inductive reactance, xm , usually

represented as a susceptance, which refers to the mutual induc-

tive component of the total inductance; in which case

x = xs + xm . This is not done in the present case.

Furthermore it is assumed that the circuits are inductively

related to each other symmetrically, or reduced thereto; that

is, where the mutual inductance is due to coils enclosed in the

first circuit, interlinked magnetically with coils enclosed in the

second circuit, as the primary and the secondary coils of a

transformer, or a shunt and a series field winding of a generator,
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the two coils are assumed as of the same number of turns, or

reduced thereto.

ri, No. turns second circuit
If a = = =rr

---
:

-r
,
the currents in the

n
A

No. turns first circuit

second circuit are multiplied, the e.m.fs. divided by a, the resis-

tances and reactances divided by a2

,
to reduce the second circuit

to the first circuit, in the manner customary in dealing with

transformers and especially induction machines.*

If the ratio of the number of turns is introduced in the equa-

tions, that is, in the first equation xm substituted for xm ,
in the

KI
79

second equation xm for xm ,
and the equations then are

n
2

and
di~ n. di.

Since the solution and further investigation of these equations

(3), (4) are the same as in the case of equations (1) and (2), except
that n

l
and n

2 appear as factors, it is preferable to eliminate n
l

and n
2 by reducing one circuit to the other by the ratio of turns

M
a =

,
and then use the simpler equations (1), (2).n

i

84. (A) Circuits containing resistance, inductance, and mutual

inductance but no capacity.

In such a circuit, shown diagrammatically in Fig. 38, we have

di. di~

~ *

and e
2
= r

2
i
2 + x

2

2 + xm ^ (6)

Differentiating (6) gives

de
2 _

di
2

d?i
2

d2i
l

~dd~~
T2 dd^

x
*~dF~

VXm ^ ]

* See the chapters on induction machines, etc., in
"
Theory and Calcula-

tion of Alternating Current Phenomena."
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from (5) follows

/^ / v* *"~

,

^ ~^r "'

and, differentiated,

fo
*

Substituting (8) and (9) in (7) gives

de
l

de
2 _ . di

l

+ <*,*,-*->, (10)

and analogously,

de
2 de^

+ (*,*,
- ^2

) ^ (ID

Equations (10) and (11) are the two differential equations of

second order, of currents i\ and iv
If e/, i/ and e/, i

2

'
are the permanent values of impressed

e.m.fs. and of currents in the two circuits, and e/', if and
e
2", if are their transient terms, we have,

e
2
- c/ + el',

Since the permanent terms must fulfill the differential equations

(10) and (11),

de' de' . di/W + x
*^g-

x'W"
= Wl + (r 'X2 + T

>
X

*} ^9
(Pi '

+ (x i
X

2
-Xm*)^ (12)

and

del */ ,
r + "*" ^ " rr ' +

(13)
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subtracting equations (12) and (13) from (10) and (11) gives

the differential equations of the transient terms,

de," def x
di"

Wi" + x
*~dd-

~ Xm
^dd"'

= W" + (ri*3 + Vi) ~^T

cPi
"

+ (xA - xm>) -^ (14)

and

*
'*

dd
"m

dd
f1 '

2
"
2 ' V1~2 ' '

2^
dd

(Pi,

2
r

l
e
2 + x

1

- xm -
rjT2

i
2 + (r^ -f T

2Xj)
-

(15)

These differential equations of the transient terms are the

same as the general differential equations (10) and (11) and

the differential equations of the permanent terms (12) and (13).

85. If, as is usually the case, the impressed e.m.fs. contain no
transient term, that is, the transient terms of current do not

react upon the sources of supply of the impressed e.m.fs. and
affect them, we have

e^ = and - e
a

" =
0;

hence, the differential equations of the transient terms are

di (Pi= rjj + (r,x2 + r
2x,) + (x,x2

- xm
2
) (16)

and are the same for both currents i" and i
2", that is, the

transient terms of currents differ only by their integration

constants, or the terminal conditions.

Equation (16) is integrated by the function

i = Ae- a9
. (17)

Substituting (17) in (16) gives

A - a
'{ rir2

- a (r,x2 + r
2xj + a2

(x,x2
- xm

2

)}
- 0;

hence,

A indefinite, as integration constant, and

_ r 2 ' rr _ r 2
*^W *t/ 1*x/2 *W
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The exponent a is given by a quadratic equation (18). This

quadratic equation (18) always has two real roots, and in this

respect differs from the quadratic equation appearing in a circuit

containing capacity, which latter may have two imaginary roots

and so give rise to an oscillation.

Mutual induction in the absence of capacity thus always

gives a logarithmic transient term; thus,

a = (r^2 + T^ } \ ;

(T^ r

f
+ * T^Xm

(19)
>//y/y /y

* \
Z/ ^jU/2 .t/fn /

As seen, the term under the radical in (19) is always positive,

that is, the two roots a
l
and a

2 always real and always positive,

since the square root is smaller than the term outside of it.

Herefrom then follows the integral equation of one of the

currents, for instance iv as

o -- <>'
' 4_ A ff

~ a
i
d 4- A e

- a*9 f90\
*i T i P -Aj* r ^1

2 i \^)

and eliminating from the two equations (5) and (6) the term

dL

pji + (x^x2
- xm

2
)

- + xme2
- x

2e^ , (21)
Tx2m

leaving the two integration constants A
l
and A

2
to be deter-

mined by the terminal conditions, as =
0,

and i
2
= i

2
.

86. If the impressed e.m.fs. e
1
and e

2
are constant, we have

hence, the equations of the permanent terms (12) and (13) give

thus:

and

^ and tV
- -

; (22)
T T

(23)

where, A/ and A
2

follow from A
l
and A

2 by equation (21).
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If the mutual inductance between the two circuits is perfect,

that is,

xm
2 =

x,xv (24)

- r 2
^m

equation (18) becomes, by multiplication with -
r^2 -r /^

a
=r X

r

+\x ; (25)

that is, only one transient term exists.

As example may be considered a circuit having the following

constants: e
t
=" 100 volts; e

2
=

0; r
t
= 5 ohms; r

2
= 5 ohms;

x
l
= 100 ohms; x

2
= 100 ohms, and xm = 80 ohms. This

gives

i' = 20 amp. and i
2
=

0,

and

a2 - 0.278 a + 0.00695 =
0;

the roots are a
t
= 0.0278 and a

2
= 0.251

and

By equation (21),

^=-25 + 1.25^ + 9^;

hence,

For 6 = let if
= 18 amp., or the current 10 per cent below

the normal, and if
=

0; then substituted, gives:

18 = 20 + A
l + A

2
and = A

l

- A
2 ,

hence, A^ = A
2
=

1;

and we have

i
l
= 20 (--

0278 * + -' 2510
)

and i
2
=- (e--

0278 - -- 251

').
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87. An interesting application of the preceding is the inves-

tigation of the building up of an overcompounded direct-current

generator, with sudden changes of load, or the building up, or

down, of a compound wound direct-current booster.

While it would be desirable that a generator or booster, under

sudden changes of load, should instantly adjust its voltage to the

change so as to avoid a temporary fluctuation of voltage, actually

an appreciable time must elapse.

A 600-kw. 8-pole direct-current generator overcompounds
from 500 volts at no load to 600 volts at terminals at full load

of 1000 amperes. The circuit constants are: resistance of

armature winding, r = 0.01 ohm; resistance of series field

winding, r
2

' = 0.003 ohm; number of turns per pole in shunt

field winding, n
1

=
1000, and magnetic flux per pole at 500

volts, 4> = 10 megalines. At 600 volts full load terminal voltage

(or voltage from brush to brush) the generated e.m.f. is e + irQ
= 610 volts.

From the saturation curve or magnetic characteristics of the

machine, we have:

At no load and 500 volts :

5000 ampere-turns, 10 megalines and 5 amp. in shunt field

circuit.

At no load and 600 volts :

7000 ampere-turns and 12 megalines.

At no load and 610 volts:

7200 ampere-turns and 12.2 megalines.

At full load and 600 volts:

8500 ampere-turns, 12.2 megalines and 6 amp. in shunt

field.

Hence the demagnetizing force of the armature, due to the

shift of brushes, is 1300 ampere-turns per pole.

At 600 volts and full load the shunt field winding takes

6 amperes, and gives 6000 ampere-turns, so that the series field

winding has to supply 2500 ampere-turns per pole, of which

1300 are consumed by the armature reaction and 1200 magnetize.
At 1000 amp. full load the series field winding thus has 2.5

turns per pole, of which 1.3 neutralize the armature reaction

and ft
2

1.2 turns are effective magnetizing turns.
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The ratio of effective turns in series field winding and in shunt

field winding is a = ^ = 1.2 X 10"
3
. This then is the reduc-

n,
tion factor of the shunt circuit to the series circuit.

It is convenient to reduce the phenomena taking place in the

shunt field winding to the same number of turns as the series

field winding, by the factors a and a2

respectively.
If then 6 = terminal voltage of the armature, or voltage

impressed upon the main circuit consisting of series field winding
and external circuit, the same voltage is impressed upon the

shunt field winding and reduced to the main circuit by factor

, gives e
,
= ae = 1.2 X W~3

e.

Since at 500 volts impressed the shunt field current is 5

amperes, the field rheostat must be set so as to give to the shunt

500
field circuit the total resistance of r/ = - - = 100 ohms.

5

Reduced to the main circuit by the square of the ratio of

turns, this gives the resistance,

fi
= av/ = 144 X 10~ 6 ohms.

An increase of ampere-turns from 5000 to 7000, corresponding
to an increase of current in the shunt field winding by 2 amperes,
increases the generated e.m.f. from 500 to 600 volts, and the

magnetic flux from 10 to 12, or by 2 megalines per pole. In

the induction range covered by the overcompounding from 500

to 600 volts, 1 ampere increase in the shunt field increases the

flux by 1 megaline per pole, and so, with n
l
= 1000 turns, gives

109
'

magnetic interlinkages per pole, or 8 X 109

interlinkages
with 8 poles, per ampere, hence 80 X 109

interlinkages per unit

current or 10 amperes, that is, an inductance of 80 henrys.
Reduced to the main circuit this gives an inductance of 1.2

2 X
10~ 6 X 80 = 115.2 X 10~ 6

henrys. This is the inductance due
to the magnetic flux in the field poles, which interlinks with

shunt and series coil, or the mutual inductance, M = 115.2 X
10~ 6

henrys.

Assuming the total inductance L
t
of the shunt field winding

as 10 per cent higher than the mutual inductance M, that is,

assuming 10 per cent stray flux, we have

L
x
= 1.1 M = 126.7 X 10~

6

henrys.
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In the main circuit, full load is 1000 amp. at 600 volts. This

gives the effective resistance of the main circuit as r = 0.6 ohm.

The quantities referring to the main circuit may be denoted

without index.

The total inductance of the main circuit depends upon the

character of the load. Assuming an average railway motor load,

the inductance may be estimated as about L = 2000 X 10~
6

henrys.
*

In the present problem the impressed e.m.fs. are not constant

but depend upon the currents, that is, the sum i + iv where

t\
= shunt field current reduced to the main circuit by the

ratio of turns.

The' impressed e.m.f., e, is approximately proportional to the

magnetic flux <, hence less than proportional to the current, in

consequence of magnetic saturation. Thus we have

e = 500 volts for 5000 ampere-turns,

5000
or i + i l

- = 4170 amp. and
\.2i

e = 600 volts for 7200 ampere-turns,

7200
or i + it

= - - = 6000 amp. ;

\.2i

hence, 1830 amp. produce a 'rise of voltage of 100, or 1 amp.

100 1
raises the voltage by

1830 18.3

6000
At 6000 amp. the voltage is - = 328 volts higher than at

lo.o

amp., that is, the voltage in the range of saturation between

500 and 600 volts, when assuming the saturation curve in this

range as straight line, is given by the equation

The impressed e.m.f. of the shunt field is the same, hence,

reduced to the main circuit by the ratio of turns, a = 1.2 X 10~
3
,

is

e, =
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Assuming now as standard frequency, / = 60 cycles per sec.,

the constants of the two mutually inductive circuits shown

diagrammatically in Fig. 38 are :
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Equation (31) is integrated by

i = i' + A-*.

Substituting this in (31) gives

Ara0
{a?

- 0.828 a + 0.00115} + {0.00115 iQ
-

1.15}
-=

0,

hence, i = 1000, A is indefinite, as integration constant, and

a2 - 0.828 a + 0.00115 - 0;

thus a = 0.414 0.4126,

and the roots are

a
t

= 0.0014 and a
2
= 0.827.

Therefore

i = 1000 + A/-
-0014 ' + A/"

' 827
'. (32)

Substituting (32) in (29) gives

i,
- 5000 + 9.932 A/"

- 0014 '- 0.85 A
2
r ' 827

'. (33)

Substituting in (32) and (33) the terminal conditions =
0,

i = 0, and i
l

= 4170, gives

At + A
2
= -- 1000 and 9.932 A

t

- 0.85 A
2

= -
830,

that is,

A
t

= - 156 and A
2
= - 844.

Therefore

i = 1000 - 156 e-' 9 - 844 r ' 827 '

(34)

and

i\
= 5000 - 1550 r - 00140 + 720 r ' 827fl

; (35)

or the shunt field current t\ reduced back to the number of turns

of the shunt field by the factor a 1.2 X 10~3
is

i/
= 6 - 1.86 r ' 140 + 0.86 r ' 827

, (36)
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and the terminal voltage of the machine is

e 272+^,
18.3

0.8270

or> e = 600 - 93.2 e~
{ - 6.8

~ l " y
. (37)

As seen, of the two exponential terms one disappears very

quickly, the other very slowly.

Introducing now instead of the angle 6 = 2 nft the time, t,

gives the main current as

i = 1000 - 156
-'53 ' - 844 r*1"

the shunt field current as

i> = 6- 1.86
--53 < + 0.86

and the terminal voltage as

e = 600 - 93.2
-' 53 < - 6.8 e-

(38)

89. Fig. 39 shows these three quantities, with the time, t, as

abscissas.

1=0.010.02

i 6

900 4.8 f

800 4.6

700 4.4

600 4.2]

500 6.

400 5.8
1

300 5.6

200 5.4

100 5.2]

1000 5.

900 4.81

800 4.6

700 4.4

600 L.

4.o

= Termina

i --MUncn

Seconds
0.04 0.05 0.06 0.07 0.08

voltiige

currei

3 ohms
at.

ohms

^
-96-mhM r

t=-12345678
Seconds

Fig. 39. Building-up of over-compounded direct-current generator from

600 volts no load to 600 volts load.

The upper part of Fig. 39 shows the first part of the curve

with 100 times the scale of abscissas as the lower part. As seen,

the transient phenomenon consists of two distinctly different
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periods: first a very rapid change covering a part of the range

of current or e.m.f., and then a very gradual adjustment to the

final condition.

So the main current rises from zero to 800 amp. in 0.01 sec.,

but requires for the next 100 amp., or to rise to a total of 900

amp., about a second, reaching 95 per cent of full value in 2.25

sec. During this time the shunt field current first falls very

rapidly, from 5 amp. at start to 4.2 amp. in 0.01 sec., and then,

after a minimum of 4.16 amp., at t = 0.015, gradually and very

slowly rises, reaching 5 amp., or its starting point, again after

somewhat more than a second. After 2.5 sec. the shunt field

current has completed half of its change, and after 5.5 sec. 90

per cent of its change.
The terminal voltage first rises quickly by a few volts, and

then rises slowly, completing 50 per cent of its change in 1.2

sec., 90 per cent in 4.5 sec., and 95 per cent in 5.5 sec.

Physically, this means that the terminal voltage of the machine

rises very slowly, requiring several seconds to approach station-

ary conditions. First, the main current rises very rapidly, at a

rate depending upon the inductance of the external circuit, to

the value corresponding to the resistance of the external circuit

and the initial or no load terminal voltage, and during this

period of about 0.01 sec. the magnetizing action of the main

current is neutralized by a rapid drop of the shunt field current.

Then gradually the terminal voltage of the machine builds up,

and the shunt field current recovers to its initial value in 1.15

sec., and then rises, together with the main current, in corre-

spondence with the rising terminal voltage of the machine.

It is interesting to note, however, that a very appreciable

time elapses before approximately constant conditions are

reached.

90. In the preceding example, as well as in the discussion of

the building up of shunt or series generators in Chapter II, the

e.m.fs. and thus currents produced in the iron of the magnetic

field by the change of the field magnetization have not been

considered. The results therefore directly apply to a machine

with laminated field, but only approximately to one with solid

iron poles.

In machines with solid iron in the magnetic circuit, currents

produced in the iron act as a second electric circuit in inductive
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relation to the field exciting circuit, and the transition period

thus is slower.

As example may be considered the excitation of a series

booster with solid and with laminated poles; that is, a machine

with series field winding, inserted in the main circuit of a feeder,

for the purpose of introducing into the circuit a voltage propor-
tional to the load, and thus to compensate for the increasing

drop of voltage with increase of load.

Due to the production of eddy currents in the solid iron of the

field magnetic circuit, the magnetic flux density is not uniform

throughout the whole field section during a change of the mag-
netic field, since the outer shell of the field iron is magnetized by
the field coil only, while the central part of the iron is acted upon

by the impressed m.m.f. of the field coil and the m.m.f. of the

eddy currents in the outer part of the iron, and the change of

magnetic flux density in the interior thus lags behind that of

the outside of the iron. As result hereof the eddy currents in

the different layers of the structure differ in intensity and in

phase.
A complete investigation of the distribution of magnetism in

this case leads to a transient phenom-
enon in space, and is discussed 'in

Section III. For the present purpose,
where the total m.m.f. of the eddy
currents is small compared with that

of the main field, we can approxi-
mate the effect of eddy currents in

the iron by a closed circuit second-

ary conductor, that is, can assume

uniform intensity and phase of

secondary currents in an outer layer
Fig ' 40 '

t

Section

f

a mag '

,, , , .

J
,
,

,
. ., ,, netic circuit.

of the iron, that is, consider the outer

layer of the iron, up to a certain depth, as a closed circuit

secondary.
Let Fig. 40 represent a section of the magnetic circuit of the

machine, and assume uniform flux density. If < = the total

magnetic flux, lr
= the radius of the field section, then at a

distance I from the center, the magnetic flux enclosed by a

/ l\
2

circle with radius I is f
J

4>, and the e.m.f. generated in the
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/ l\
2

at distance I from the center is proportional to f

J
4>,that

/l\
2

is,e
= a (

j
4>. The current density of the eddy currents in

this zone, which has the length 2
Til, is therefore proportional to

e bl
-

,
or is i = <. This current density acts as a m.m.f . upon

2i Til lr

/l\
2

the space enclosed by it, that is, upon f
j

of the total field

section, and the magnetic reaction of the secondary current at

/l\
2

distance I from the center therefore is proportional to i f
j

,
or

vr / x

is & = $, and therefore the total magnetic reaction of the

eddy currents is

At the outer periphery of the field iron, the generated e.m.f.

is e
t
= a<, the current density therefore i

l
=

y<f;
and the

ir

f*

magnetic reaction $
^
=

<l>, and therefore
lr

that is, the magnetic reaction of the eddy currents, assuming
uniform flux density in the field poles, is the same as that of the

currents produced in a closed circuit of a thickness
-j,

or one-

fourth the depth of the pole iron, of the material of the field pole

and surrounch'ng the field pole, that is, fully induced and fully

magnetizing.
The eddy currents in the solid material of the field poles thus

can be represented by a closed secondary circuit of depth
-^

surrounding the field poles.

The magnitude of the depth of the field copper on the spools
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is probably about one-fourth the depth of the field poles. Assum-

ing then the width of the band of iron which represents the

eddy current circuit as about twice the width of the field coils

since eddy currents are produced also in the yoke of the

machine, etc. and the conductivity of the iron as about 0.1

that of the field copper, the effective resistance of the eddy
current circuit, reduced to the field circuit, approximates five

times that of the field circuit.

Hence, if r
2

resistance of main field winding, r
l
= 5 r

2
=

resistance of the secondary short circuit which represents the

eddy currents.

Since the eddy currents extend beyond the space covered by
the field poles, and considerably down into the iron, the self-

inductance of the eddy current circuit is considerably greater

than its mutual inductance with the main field circuit, and thus

may be assumed as twice the latter.

91. As example, consider a 20Okw. series booster covering
the range of voltage from to 200, that is, giving a full load

value of 1000 amperes at 200 volts. Making the assumptions
set forth in the preceding paragraph, the following constants

are taken: the armature resistance = 0.008 ohms and the

series field 'winding resistance^ 0.004 ohm; hence, the short

circuit or eddy current resistance r
l
= 0.02 ohm. Further-

more let M = 900 X 10~
6

henry = mutual inductance between

main field and short-circuited secondary; hence, xm = 0.34 ohm
= mutual reactance, and therefore, assuming a leakage flux of

the secondary equal to the main flux, L l
= 1800 X 10~ 6

henry
and x

l
= 0.68 ohm.

The booster is inserted into a constant potential circuit of 550

volts, so as to raise the voltage from 550 volts no load to 750

volts at 1000 amperes.
The total resistance of the circuit at full load, including main

circuit and booster, therefore is r = 0.75 ohm.
The inductance of the external circuit may be assumed as

L = 4500 X 10~ 6

henrys; hence, the reactance at/ = 60 cycles

per sec. is x = 1.7 ohms. The impressed e.m.f. of the circuit is

e = 550 + e', ef being the e.m.f. generated in the booster.

Since at no load, for i = 0, e
7 =

0, and at full load, for i = 1000,

e' = 200, assuming a straight line magnetic characteristic or

saturation curve, that is, assuming the effect of magnetic satura-
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tion as negligible within the working range of the booster, we
have

e = 550 + 0.2 (i + ij.

This gives the following constants :
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As transient and permanent terms must each equal zero,

i = 1000 and a2 - 0.458 a + 0.0106 =
0,

wherefrom a = 0.229 0.205;

the roots are o
4
= 0.024 and a

2
= 0.434;

then we have

i = 1000 + A<e--
6 + -0.4340

and

2.45 A
1(

-0.0240 - 0.55 A 2
e
-0.4340

and

With terminal conditions =
0, i = 0, and i

l
=

0,

A
l

= - 183 and A
2
= - 817.

It6 = 2xft = 377.5 J, we have

i = 1000 - 183 e- 71- 817 e~mt
,

^ = - 450 {
e
-.o7 _

-i64^

e = 750 -127e- 9 -07<- 73~ 164<
.

0.01 0.02 0.03 0.04 O.Oo 0.06 O.OT 0.08 0.09 0.10

(47)

(48)

(49)

Fig. 41. Building up of feeder voltage by series booster.

In the absence of a secondary circuit, or with laminated field

poles, equation (39) would assume the form i
t
=

0, or

550 + 0.2 1 - 0.75i 1.7;
ad

(50)

hence,

and

or

and

= 0.323 (1000
-

i)
ad

i = 1000 (1
- 0.323

'

i = 1000(1 - e- 122
')!

e = 750 - 200- 122<
;J

(51)
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that is, the e.m.f., e, approaches final conditions at a more rapid

rate.

Fig. 41 shows the curves of the e.m.f., e, for the two conditions,

namely, solid field poles, (49), and laminated field poles, (51).

(B) Mutual inductance in circuits containing self-inductance

and capacity.

92. The general equations of such a pair of circuits, (3) and

(4), differentiated to eliminate the integral give

^l = x i + r ^l + x ?il + Xm^ (52)

and

and the potential differences at the condensers, from (3) and (4),

are

and
(* di, di.

, /v. | . /Ek^i)
'2~JZ

~ Xm Jn {)

If now the impressed e.m.fs., e
l
and ev contain no transient

term, that is, if the transient values of currents i
l
and i

2
exert

no appreciable reaction on the source of e.m.f., and if {/ and i
2

are the permanent terms of current, then, substituting t/ and

i
2

'
in equations (52) and .(53), and subtracting the result of this

substitution from (52) and (53), gives the equations of the

transient terms of the currents \ and i
2 ,
thus :

di. tfi. d?i
2

^ = + r- + x
l
-+xm (56)

and

di
2

d?i2 cPi
l

+ x + xm >

(57)

de dc~
If the impressed e.m.fs., e

t
and e

2 ,
are constant, -r- and
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equal zero, and equations (52) and (53) assume the form (56)

and (57); that is, equations (56) and (57) are the differential

equations of the transient terms, for -the general case of any

e.m.fs., e^ and e
2 ,

which have no transient terms, and are the

general differential equations of the case of constant impressed

e.m.fs., e
l
and er

From (56) it follows that

d?i
2 . di

l (Pi^
Xm

~d(P

~~ ~
Xcih

~
TI

~dd

~
XlW2

'

Differentiating equation (57) twice, and substituting therein

(58), gives

2X d4
i , N (Pi ,- xm

2

) + (r,x2 + r
2xj + (xci

x
2, 2 2 ci2 C2 , ta

+ (Vi + VJ ^ + x
c
x

C2
i = 0. (59)

This is a differential equation of fourth order, symmetrical in

r^x^ and r
2
x

2
x
C2 ,

which therefore applies to both currents,

i
l
and ir
The expressions of the two currents i

l
and i

2
therefore differ

only by their integration constants, as determined by the ter-

minal conditions.

Equation (59) is integrated by

i = As"* (60)

and substituting (60) in (59) gives for the determination of the

exponent a the quartic equation

(x& - xm
2

)
a4 -

(r^2 + r
2xj a3 + (xci

x
2

-
(xci

r
2 + x^) a + x

Cl
x

C2
=

0,

or

2^1 ~3 i

X
Cta -\-

,x2
- xm

2

The solution of this quartic equation gives four values of a,

and thus gives

*-**
9

. (62)
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The roots, a, may be real, or two real and two imaginary, or

all imaginary, and the solution of the equation by approxima-
tion therefore is difficult.

In the most important case, where the resistance, r, is small

compared with the reactances x and xc and which is the only
case where the transient terms are prominent in intensity and

duration, and therefore of interest as in the transformer and
the induction coil or Ruhmkorff coil, the equation (61) can be

solved by a simple approximation.
In this case, the roots, a, are two pairs of conjugate imaginary

numbers, and the phenomenon oscillatory.

The real components of the roots, a, must be positive, since

the exponential s~
a9 must decrease with increasing 0.

The four roots thus can be written :

(63)

where a and /? are positive numbers.

In the equation (61), the coefficients of a3 and a are small,

since they contain the resistances as factor, and this equation
thus can be approximated by

a4 + e <*a2 + c

2
=

0; (64)
x

hence,

'

x
ci
x2_

that is, a2
is negative, having two roots,

6
t

= - /V and 6,
- -

/?/.

This gives the four imaginary roots of a as first approximation :
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If av a
2 ,
a

g ,
a 4 are the four roots of equation (61), this equation

can be written

/(a) =
( a- oj (a

- a
a) (a

- a
3) (a

- a
4)
-

0;

or, substituting (63),

/(a) =
{(a

-
a,Y + ft'} {(a

-
2)

2 + ft
2

}

=
0, (67)

and comparing (67) with (61) gives as coefficients of a3 and of a,

2 (a, 4- 2)
= ?

and (68)

and since
/?j

2 and /?2

2
are given by (65) and (66) as roots of equa-

tion (64), a v a
2 , fv /?2 ,

and hereby the four roots av a
2 ,
a

3 ,
a

4
of

equation (61) are approximated by (64), (65), (66), (68).

The integration constants A v A 2 ,
A3 ,

A
4 now follow from the

terminal conditions.

93. As an example may be considered the operation of an

inductorium, or Ruhmkorff coil, by make and break of a direct-

current battery circuit, with a condenser shunting the break, in

the usual manner.

Let e
l
= 10 volts = impressed e.m.f.; r

1
= 0.4 ohm =

resistance of primary circuit, giving a current, at closed circuit

and in stationary condition, of i = 25 amp.; r
2
= 0.2 ohm =

resistance of secondary circuit, reduced to the primary by the

square of the ratio of primary -=- secondary turns
;
x

l
= 10 ohms

= primary inductive reactance; x
2
= 10 ohms = secondary

inductive reactance, reduced to primary; xm = 8 ohms = mutual

inductive reactance; x
Ci
= 4000 ohms = primary condensive

reactance of the condenser shunting the break of the interrupter

in the battery circuit, and x
C2
= 6000 ohms = secondary

condensive reactance, due to the capacity of the terminals and

the high tension winding.

Substituting these values, we have

BI
= 10 volts i = 25 amp.

r
t
= 0.4 ohm x

l
= 10 ohms x

Ci
= 4000 ohms

r
2
= 0.2 ohm x

2
= 10 ohms x

C2
= 6000 ohms

xm = 8 ohms.

(69)
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These values in equation (61) give

/ (a)
= a 4 - 0.167 a3 + 2780 a2 - 89 a + 667,000 = 0, (70)

and in equation (64) they give

ft (a)
= a4 + 2780 a2 + 667,000 =

and

or

hence,

and

=-(1390 1125)

= -2515,

= -265;

ft
= 50.15

= 16.28.

From (68) it follows that

ai + a
2
= 0.0833

and 265 a^ + 2515 a 2
= 44.5;

hence, a
l

-
0.073,

a
2
= 0.010.

Introducing for the exponentials with imaginary exponents the

trigonometric functions give

.! cos 50.15 d + A
2
sin 50.15 d

}

sin 16.280

(71)

^ cos 50.150 + C
2
sin 50.150}

>!
cos 16.28 6 + D

2
sin 16.28

where the constants C and D depend upon A and B by equations

(56), (57), or (58), thus:

Substituting (71) into (58),

=0 (58)

gives an identity, from which, by equating the coefficients of
-* cos bd and e.'

00 sin bd to zero, result four equations, in the

coefficients

A, B, C, D,

A, B, C, D2,
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from which follows, with sufficient approximation,

A! = -0.95^
A

2
= -0.98(7

2

B
l
= + 1.57 A

2
= + 1.57 A;

hence,

\ = - 0.96
-0-073^

ci
cos 50.15 -f C2

sin 50.15

+ 1.57 -io0
j
A cos 16.28 + D

2
sin 16.28

and substituting (71) and (73) in the equations of the condenser

potential, (54) and (55), gives

e,
f = 10 + 79 s~ OJm9

{C2
cos 50.15 - Ct

sin 50.15

(72)

- 385 --010

'{
Z)

2
cos 16.28 - D

l
sin 16.28

(74)
e
2

' = 118 -- e

{C2
cos 50.15 - (7

X
sin 50.15 0}

+ 367--010

'{A cos 16.280 - A sin
16.280}

94. Substituting now the terminal conditions of the circuit :

At the moment where the interrupter opens the primary

circuit the current in this circuit is \ = --
- = 25 amp. The

condenser in the primary circuit, which is shunted across the

break, was short-circuited before the break, hence of zero poten-
tial difference. The secondary circuit was dead. This then

gives the conditions = 0;^ = 25, ?'2
= 0, e^ = 0, and e/ = 0.

Substituting these values in equations (71), (73), (74) gives

25= -0.95 C, + 1.58 A
=

'

Ci + A
= 10 + 79 C

a
- 385 D

2

= 118(7, +367ZX
hence

C,= - 10

(7
2
= - 0.05 =*

A = + 10

0.016 =* 0,D
2
=
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and

i,
= 9.6 s- 9 cos 50.15 + 15.7

- Moe cos 16.28 6

(75)

i
2
= -10 - 073 ' cos 50.15 (9 + 10 --010 ' cos 16.28

e/ = 10 + 790 --073 ' sin 50.15 6 + 3850 --010 '
-sin 16.28 6

Approximately therefore we have

i\
= 9.6 --073e cos 50.15 + 15.7 --010 ' cos 16.28

i
a
= - 10

{

--0730 cos 50.15 - - mo0 cos 16.28
}

e/ = 3850 fi-
OJMO sin 16.28

< - -3670
- 010 ' sin 16.28 6.

The two frequencies of oscillation are 3009 and 977 cycles

per sec., hence rather low.

The secondary terminal voltage has a maximum of nearly

4000, reduced to the primary, or 400 times as large as corre-

sponds to the ratio of turns.

In this particular instance, the frequency 3009 is nearly

suppressed, and the main oscillation is of the frequency 977.



CHAPTER XL

GENERAL SYSTEM OF CIRCUITS.

(A) Circuits containing resistance and inductance only.

95. Let, upon a general system or network of circuits con-

nected with each other directly or inductively, and containing

resistance and inductance, but no capacity, a system of e.m.fs.,

e
y
be impressed. These e.m.fs. may be of any frequency or

wave shape, or may be continuous or anything else, but are

supposed to be given by their equations. They may be free of

transient terms, or may contain transient terms depending upon
the currents in the system. In the latter case, the dependency
of the e.m.f. upon the currents must obviously be given.

Then, in each branch circuit,

^5 ~=0, (1)

where e = total impressed e.m.f.; r. = resistance; L = induc-

tance, of the circuit or branch of circuit traversed by current i,

and M s
= mutual inductance of this circuit with any circuit in

inductive relation thereto and traversed by current is .

The currents in the different branch circuits of the system

depend upon each other by Kirchhoff's law,

D i - (2)

at every branching point of the system.

By equation (2) many of the currents can be eliminated by
expressing them in terms of the other currents, but a certain

number of independent currents are left.

Let n = the number of independent currents, denoting these

currents by i-K ,
where K =

1, 2, . . . n. (3)

Usually, from physical considerations, the number of inde-

pendent currents of the system, n, can immediately be given.
168
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For these n currents iK ,
n independent differential equations

of form (1) can be written down, between the impressed e.m.fs.

e
y
or their combinations, and currents which are expressed by

the n independent currents iK . They are given by applying

equation (1) to a closed circuit or ring in the system.
These equations are of the form

eq ~r V
'*~?

K c^ =

|
(4)

where q
=

1, 2, ... n,

where the n2
coefficients b q are of the dimension of resistance ) ,-\

and the n2
coefficients cK

q of the dimension of inductance.
)

^

These n simultaneous differential equations of n variables iK

are integrated by the equations

'

A?,-*, (6)

1

where iK
f
is the stationary value of current iK ,

reached for t = <x> .

Substituting (6) in (4) gives

M^-^O. (7)
1

For t = oo
,
this equation becomes

These n equations (8) determine the stationary components
of the n currents, iK'.

Subtracting (8) from (7) gives, for the transient components
of currents iK ,

the n equations
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Reversing the order of summation in (10) gives

A-o =0- (11)

The n equations (11) must be identities, that is, the coefficients

of
~ aJ must individually disappear. Each equation (11) thus

gives m equations between the constants a, A, b, c, for i = 1,

2, . . . m, and since n equations (11) exist, we get altogether mn
equations of the form

where

-0,

q
=

1, 2, 3,. . . n and i = 1, 2, 3,. . . m.

(12)

In addition hereto, the n terminal conditions, or values of

current iK
"

for t = 0: iK , give by substitution in (9) n further

equations,

(13)

There thus exist (mn + n) equations for the determination

of the mn constants A* and the m constants a
i}

or altogether

(mn + m) constants. That is,

and

where

m = n

n

i*
= i' + 2)

1
' A * ~ a

*>

i

Af

<;

and

(14)

(15)

(16)

(17)

(18)
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Each of the n sets of n linear homogeneous equations in

A* (16) which contains the same index i gives by elimination

of A
t

"
the same determinant :

-a^ 1

, bf-atf, b^-

Thus the n values of a
t
are the n roots of the equation of nth

degree (19), and determined by solving this equation.

Substituting these n values of a
t
in the equations (16) gives

n2
linear homogeneous equations in A/, of which n (n 1) are

independent equations, and these n (n 1) independent equa-
tions together with the n equations (17) give the n2

linear

equations required for the determination of the n2 con-

stants A*.

The problem of determining the equations of the phenomena
in starting, or in any other way changing the circuit conditions,

in a general system containing only resistance and inductance,

with n independent currents and such impressed e.m.fs., e
y ,

that the equations of stationary condition,

can be solved, still depends upon the solution of an equation of

nth degree, in the exponents a
t
of the exponential functions

which represent the transient term.

96. As an example of the application of this method may
be considered the following case, sketched diagrammatically in

Fig. 42:

An alternator of e.m.f. E cos (6
-

) feeds over resistance

r
l
the primary of a transformer of mutual reactance xm . The

secondary of this transformer feeds over resistances r
2
and rs

the primary of a second transformer of mutual reactance xmo ,

and the secondary of this second transformer is closed by resist-

ance r4 . Across the circuit between the two transformers and

the two resistances r
2
and r3 ,

is connected a continuous-current
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e.m.f., e
,
as a battery, in series with an inductive reactance x.

The transformers obviously must be such as not to be saturated

magnetically by the component of continuous current which

traverses them, must for instance be open core transformers.

Fig. 42. Alternating-current circuit containing mutual and self-inductive

reactance, resistance and continuous e.m.f.

Let iv iv iw i
s ,

i4
= currents in the different circuits; then, at

the dividing point P, by equation (2) we have

hence, i
Q
= i

3
i
2 ,

leaving four independent currents iv i
2 ,

i
3 , i^.

This gives four equations (4) :

E
M

-e-

=0,

Xm , _ ~\ X (
~~~

,dd

x\**- ^1"^
\ JQ JQ I

~ U
?

(20)

and

(21)

If now i/, i
2', i',, t/ are the permanent terms of current, by

substituting these into (21) and subtraction, the equations of

the transient terms rearranged are :
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1

2
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di
2__ nt I If n I /v.* 7rt I ' * 1^'*'

do

di n

0,

=
0,

^'4W
0.

(22)

These equations integrated by

.-a, a
(23)

give for the determination of the exponents c^ the determinant

(19):

r,
- axm

ax r3 ax - axmo
-axmo

=
0; (24)

or, resolved,

- a

- axr
x
r4 (ra + ra) + r

1
r
a
r
8
r4
= 0.

Assuming now the numerical values,

r
t

= 1

(25)

r, 1

xm = 10

X
Q
= 10
= 100

r4
= 10

equation (25) gives

/ = a4 + 11 a3 - 0.11 a2 - 0.2 a + 0.001 = 0.

The sixteen coefficients,

A?, i = 1, 2, 3, 4, ft = 1, 2, 3, 4,

are now determined by the 16 independent linear equations (12)

and (13).

(27)
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(B) Circuits containing resistance, self-inductance, mutual in-

ductance and capacity.

97. The general method of dealing with such a system is the

same as in (A).

Kirchhoff's equation (1) is of the form

i

dt = 0. (28)

Eliminating now all the currents which can be expressed
in terms of other currents, by means of equation (2), leaves

n independent currents :

iK ,
K =

1, 2, . . . n.

Substituting these currents iK in equations (28) gives n inde-

pendent equations of the form

n n 7 n

e
q
- X" &A -

X" c '-ir
-

X" &ff

/
* dt = - (29)

i i i

Resolving these equations for / iK dt gives

e/ = i fi*= 2> + I>- + 2;c^ (so)

as the equations of the potential differences at the condensers.

Differentiating (29) gives

where q = 1, 2, . . . n.

By the same reasoning as before, the solution of these equa-
tions (31) can be split into two components, a permanent term,

(32)

and a transient term, which disappears for t = oo
,
and is given

by the n simultaneous differential equations of second order,

thus :
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These equations are integrated by
m

IK ^ ^^ l
i
^ ' *

1

Substituting (34) in (33) gives

where q
=

1, 2, . . . n,

* =
1, 2, . . . n,

and i = 1, 2, . . . m.

Reversing in these n equations the order of summation,

175

(34)

(35)

(36)

=
0, (37)

and this gives, as identity, the mn equations for the determina-

tion of the constants :

where
(38)

q
=

1, 2, . . . n and i = 1, 2, . . . m.

In addition to these mn equations (38), two sets of terminal

conditions exist, depending respectively on the instantaneous

current and the instantaneous condenser potential at the moment
of start.

The current is

and the condenser potential of the circuit q is

hence, for i = 0,

o _ v /
i \V A *

* - 1K
' '

Zu ** 1

(39)

'

; (40)

(41)
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where K =
1, 2, . . . n,

and e* = e
q
- . 6.V -

c,< ^ , (42)
i i

where, q
=

1, 2 ... n;

or, substituting (39) in (40), and then putting t = 0,

)

1
'

4"(&.
- OA4

). (43)
1 1

As seen, in (41) and (43), the first term is the instantaneous

value of the permanent current i'K and condenser potential e
q
'.

These two sets of n equations each, given by the terminal

conditions of the current, i'K
= iK (42), and condenser potential,

e
q

' = e
q (43), together with the mn equations (38), give a total

of (mn + 2 n) equations for the determination of the mn con-

stants A* and the m constants a
i} that is, a total of (mn + m)

constants.

From
mn + 2 n = mn -f m

it follows that

m = 2 n. (44)

We have, then, 2 n constants, a
i} giving the coefficients in the

exponents of the 2 n exponential transient terms, and 2 n2

coefficients, A*, and for their determination 2n2
equations,

Af (g*
-

aj>* + afcf) = 0, (45)
i

n equations,

t = i, (46)

and n equations,

x^
i i
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where ft*! ;

y J<=o

177

(48)

or the difference between the condenser potential required by
the permanent term and the actual condenser potential at time

t =
}
where

q
=

1, 2, 3, . . . n,

and

K =
1, 2, 3, . . . n,

i = 1, 2, 3, . . . 2 n.

(49)

Eliminating A* from the equations (45) gives for each of the

2 n sets of n equations which have the same a
t
- the determinant :

g3
n -

=

0.(50)

The 2 n values of a, thus are the roots of an equation of 2 nth

order.

Substituting these values of a
t
- in equations (45), (46), (47),

leaves 2 n (n 1) independent equations (45) and 2 n inde-

pendent equations (46) and (47), or a total of 2 n2
linear equa-

tions, for the determination of the 2 n2 constants Af t
which now

can easily be solved.

The roots of equation (50) may either be real or may be com-

plex imaginary, and in the latter case each pair of conjugate
roots gives by elimination of the imaginary form an electric

oscillation.

That is, the solution of the problem of n independent circuits

leads to n transient terms, each of which may be either an

oscillation or a pair of exponential functions.

98. The preceding discussion gives the general method of the

determination of the transient phenomena occurring in any

system or net work of circuits containing resistances, self-indue-
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tances and mutual inductances and capacities, and impressed and

counter e.m.fs. of any frequency or wave shape, alternating or con-

tinuous.

It presupposes, however,

(1) That the solution of the system for the permanent terms

of currents and e.m.fs. is given.

(2) That, if the impressed e.m.fs. contain transient terms

depending upon the currents in the system, these transient

terms of impressed or counter e.m.fs. are given as linear functions

of the currents or of their differential coefficients, that is, the

rate of change of the currents.

(3) That resistance, inductance, and capacity are constant

quantities, and for instance magnetic saturation does not appear.
The determination of the transient terms requires the solution

of an equation of 2 nth degree, which is lowered by one degree
for every independent circuit which contains no capacity.

Thus, for instance, a divided circuit having capacity in either

branch leads to a quartic equation. A transmission line loaded

with inductive or non-inductive load, when representing the

capacity of the line by a condenser shunted across its middle,

leads to a cubic equation.



CHAPTER XII.

MAGNETIC SATURATION AND HYSTERESIS IN ALTERNAT-
ING-CURRENT CIRCUITS.

99. If an alternating e.m.f. is impressed upon a circuit con-

taining resistance and inductance, the current and thereby the

magnetic flux produced by the current immediately assume
their final or permanent values only in case the circuit is closed

at that point of the e.m:f. wave at which the permanent current

is zero. Closing the circuit at any other point of the e.m.f. wave

produces a transient term of current and of magnetic flux. So
for instance, if the circuit is closed when the current i should

have its negative maximum value - 7
,
and therefore the

magnetic flux and the magnetic flux density also be at their

negative maximum value - ^> and - (B that is, in an
inductive circuit, near the zero value of the decreasing e.m.f.

wave during the first half wave of e.m.f. the magnetic flux,

which generates the counter e.m.f., should vary from 4> to

+ <I>
,
or by 2 4>

; hence, starting with 0, to generate the same
counter e.m.f., it must rise to + 2 <l>

,
that is, twice its permanent

value, and so the current i also rises, at constant inductance L,
from zero to twice its maximum permanent value, 2 7 . Since

the e.m.f. consumed by the current during the variation from

to 2 7 is greater than during the normal variation from 7

to + 7
,
less .e.m.f. is to be generated by the change of magnetic

flux, that is, the magnetic flux does not quite rise to 2 4>
,
but

remains below this value the more, the higher the resistance of

the circuit. During the next half wave the e.m.f. has reversed,
but the current is still mostly in the previous direction, and the

generated e.m.f. thus must give the resistance drop, that is, the

total variation of magnetic flux must be greater than 2 4>
,

the more, the higher the resistance. That is, starting at a value

somewhat below 2 4>
,

it decreases below zero, and reaches a

negative value. During the third half wave the magnetic flux,

starting not at zero as in the first half wave, but at a negative
179
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value, thus reaches a lower positive maximum, and thus grad-

ually, at a rate depending upon the resistance of the circuit, the

waves of magnetic flux 4>, and thereby current i, approach their

final permanent or symmetrical cycles.

100. In the preceding, the assumption has been made that

the magnetic flux, <, or the flux density, (B, is proportional to

the current, or in other words, that the inductance, L, is con-

stant. If the magnetic circuit interlinked with the electric

circuit contains iron, and especially if it is an iron-clad or closed

magnetic circuit, as that of a transformer, the current is not

proportional to the magnetic flux or magnetic flux density, but

increases for high values of flux density more than proportional,

that is, the flux density in the iron reaches a finite limiting value.

In the case illustrated above, the current corresponding to

double the normal maximum magnetic flux, 3>
,
or flux density,

, may be many times greater than twice the normal maximum

current, 7 . For instance, if the maximum permanent current

is 7 = 4.5 amperes, the maximum permanent flux density,
(B =

10,000, and the circuit closed, as above, at that point of

the e.m.f. wave where the flux density should have its negative

maximum, & =
10,000, but the actual flux density is 0,

during the first half wave of e.m.f., the flux density, when

neglecting the resistance of the electric circuit, should rise from

to 2 (B =
20,000, and at this high value of saturation the

corresponding current maximum would be, by the magnetic

cycle, Fig. 43, 200 amperes, that is, not twice but 44.5 times

the normal value. With such excessive values of current, the

e.m.f. consumed by resistance would be in general considerable,

and the e.m.f. consumed by inductance, and therefore the

variation of magnetic flux density, considerably decreased, that

is, the maximum magnetic flux density would not rise to 20,000,

but remain considerably below this value. The maximum
current, however, would be still very much greater than twice

the normal maximum. That is, in an iron-clad circuit, in

starting, the transient term of current may rise to values very
much higher than in air magnetic circuits. While in the latter

it is limited to twice the normal value, in the iron-clad circuit,

if the magnetic flux density reaches into the range of magnetic

saturation, very much higher values of transient current are

found. Due to the far greater effect of the resistance with such
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excessive values of current, the transient term of current during
the first half waves decreases at a more rapid rate

;
due to the

lack of proportionality between current and magnetic flux

density, the transient term does not follow the exponential law

any more.

101. In an iron-clad magnetic circuit, the current is not only
not proportional to the magnetic flux density, but the same

magnetic flux density can be produced by different currents, or

with the same current the flux density can have very different

values, depending on the point of the hysteresis cycle. Therefore

the magnetic flux density for zero current may equal zero, or, on

the decreasing branch of the hysteresis cycle, Fig. 43, may be

+ 7600, or, on the increasing branch, 7600. Thus, when

closing the electric circuit energizing an iron-clad magnetic

circuit, as a transformer, at the moment of zero current, the

magnetic flux density may not be zero, but may still have a high

value, as remanent magnetism. For instance, closing the

circuit at the point of the e.m.f. wave where the permanent
wave of magnetic flux density would have its negative maximum

value, OJ = --
10,000, the actual density at this moment may

be <$>
r
= + 7600, the remanent magnetism of the cycle. During

the first half wave of impressed e.m.f. the variation of flux

density by 2 (B
,
as required to generate the counter e.m.f., when

neglecting the resistance, would bring the positive maximum of

flux density up to (B
r + 2 (B = 27,600, requiring 1880 amperes

maximum current, or 420 times the normal current. Obviously,

no such rise could occur, since the resistance of the circuit would

consume a considerable part of the e.m.f., and so lower the flux

density by reducing the e.m.f. consumed by inductance.

It is obvious, however, that excessive values of transient

current may occur in transformers and other iron-clad magnetic
circuits.

102. When disconnecting a transformer, its current becomes

zero, that is, the magnetic flux density is left at the value of the

remanent magnetism (Br ,
and during the period of rest more

or less decreases spontaneously towards zero. Hence, in con-

necting a transformer into circuit its flux density may be any-
where between + ($>r and - (Br . The maximum magnetic flux

density during the first half cycle of impressed e.m.f. therefore is

produced if the circuit is closed at the moment where the per-
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manent value of the flux density should be a maximum, (B
,

and the actual density in this moment is the remanent magnetism
in opposite direction, T (Br ,

and the maximum value of

density which could occur then is ((Br + 2 (B ). If therefore

the maximum magnetic flux density <B in the transformer is

such that <Br + 2 (B is still below saturation, the transient term

of current cannot reach abnormal values. At & =
16,000, the

flux density is about at the bend of the saturation curve, and

the current still moderate. Estimating (Br
= 0.75 (B as approx-

imate value, (Br + 2 (B = 16,000 thus gives ffi
= 5800, or

37,500 lines of magnetic flux per square inch.

In 125-cycle transformers, (B is below 5800 or not much above,
for reasons of heating, and this phenomenon of excessive tran-

sient currents in starting thus does not appear. At 60 cycles,

(B is usually above this value, and under unfavorable conditions

considerable transient current may be observed. However,
for (Br

=
0, the limit is (B =

8000, or 51,600 lines per square

inch; and since in 60-cycle transformers the flux density rarely

exceeds this value to a great extent, and in starting the remanent

magnetism is rarely very high, this phenomenon of an excessive

transient current is not very marked. At 25 cycles, however,

higher densities are used and -the transient starting current

may then reach formidable values.

103. Since the relation between the current, i, and the mag-
netic flux density, (B, is empirically given by the magnetic cycle

of the material, and cannot be expressed with sufficient accuracy

by a mathematical equation, the problem of determining the

transient starting current of a transformer cannot be solved in

general, but must be investigated in the individual case by

constructing the curves of current and magnetic flux density.

Let the normal magnetic cycle .of a transformer be represented

by the dotted curve in Figs. 43 and 44; the characteristic points

are: the maximum values, OS = 10,000; the remanent

values, (Br
= 7600, and the maximum exciting current,

im = 4.5 amp.
At very high values of flux density an appreciable part of the

total magnetic flux $ may be carried through space, outside of

the iron, depending on the construction of the transformer.

The most convenient way of dealing with such a case is to

resolve the magnetic flux density, (B, in the iron into the
"
metallic
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600 WIOCO- -1400- -1800- -2200

Fig. 43. Magnetic cycle of a transformer starting with low stray field.

Fig. 44. Magnetic cycle of a transformer starting with high stray field.
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flux density," ($>'
= & - X, which reaches a finite limiting

value, and the density in space, oe. The total magnetic flux

then consists of the flux carried by the molecules of the iron,

$>' = A'(B', where A' is the section of the iron circuit, and the

space flux, $" = A"3C, where A" is the total section interlinked

with the electric circuit, including iron as well as other space.

If then A" = &A/, that is, the total space inside of the coil is

k times the space filled by the iron, we have

$ - A' (&' + te),

or the total magnetic flux even in a case where considerable

stray field exists, that is, magnetic flux can pass also outside of

^m
-55
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Fig. 45. Starting current of a transformer. Low stray field.

the iron, can be calculated by considering only the iron section

as carrying magnetic flux, but using as curve of magnetic flux

density not the usual curve,

(B = &' + 3C,

but a curve derived therefrom,

(B = &' + AflC,

where k = ratio of total section to iron section.

This, for instance, is the usual method of calculating the

m.m.f. consumed in the armature teeth of commutating machines

at very high saturations.
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In investigating the transient transformer starting current,
the magnetic density curve thus is corrected for the stray field.

Figs. 43 and 45 correspond to k =
3, or a total effective air

section equal to three times the iron section, that is, (fc
= (&' +

3oe.

Figs. 44 and 46 correspond to k =
25, or a section of stray

field equal to 25 times the iron section, that is, & = (&' + 25 JC.

22

,16

12

-2

L

-CO

45

250-25

200-20

150-15

100-10

50-5

-5

100 200 300 400 500 600 700

Degrees

Fig. 46. Starting current of a transformer. High stray field.

104. At very high values of current the resistance consumes

a considerable voltage, and thus reduces the e.m.f. generated

by the magnetic flux, and thereby the maximum magnetic flux

and transient current. The resistance, which comes into con-

sideration here, is the total resistance of the transformer primary
circuit plus leads and supply lines, back to the point where the

voltage is kept constant, as generator, busbars, or supply main.

Assuming then at full load of im = 50 amperes effective in the

transformer, a resistance drop of 8 per cent, or the voltage con-

sumed by the resistance, as er
= 0.08 of the impressed e.m.f.

Let now the remanent magnetic flux density be &r
= + 7600,

and the circuit be closed at the moment =
0, where the flux
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density should be <& = <B = 10,000; then the impressed
e.m.f. is given by

e = - E sin = E ^ (cos 0). (1)
au

It is, however,
(KB

e = A + Ci, (2)

where A and C are constants; that is, the impressed e.m.f., e, is

consumed by the self-inductance, or the e.m.f. generated by the

changing magnetic density, which is proportional to
,
and by

the voltage consumed by the resistance, which is proportional

to the current i.

Combining (1) and (2) gives

p
However, at full load, we have -^ = effective impressed

v2
e.m.f. and im = 50 amperes = effective current; hence

Cim = 50C = e.m.f. consumed by resistance,

and since this equals e
r
= 0.08 of impressed e.m.f.,

V2

0.08
or E imV2 50

From (3) follows

:
= 0.00113. (4)

d<S>=^dcosd -^dO (5)A A
and

It IT

- | f*d cos -
'% f*idd;A J n 4^nA



MAGNETIC SATURATION AND HYSTERESIS 187

hence, for i = 0, or negligible resistance drop, that is, permanent
condition,

.-'|'-io,poa
(6)

Multiplying (4) and (6) gives

? = ^7= = H-3, (7)

and substituting (6) and (7) in (5) gives

d& = (Bdcos0 - i

= 10,000 d cos - 11.3 idB. (8)

Changing now from differential to difference, that is, replacing,

as approximation, d by A, gives

eJB
A(B = (B

n
A cos d -i 7^^-^d

lmV2
= 10,000 A cos - 11.3 t'A0. (9)

Assuming now

A0 = 10 = 0.175 (10)

gives for the increment of magnetic flux density during 10

change of angle the value

ACS - 10,000 A cos - 2 i (11)

and & = <B' + A(B

= &' + 10,000 A cos d - 2 i. (12)

From equation (12) the instantaneous values of magnetic
flux density ,

and therefrom, by the magnetic cycles, Figs. 43

and 44, respectively, the values of current i are calculated, by

starting, for =
0, with the remanent density CB' = (B

r
= 7600,

adding thereto the change of cosine, 10,000 A cos 0, which gives

a value (B
t
= &' + 10,000 A cos 0, taking the corresponding

value of i from the hysteresis cycle, Figs. 43 and 44, subtracting
2 i from (B

t ,
and then correcting i for the value corresponding to

<B =
(Bj

- 2 i.

The quantity 2 i is appreciable only during the range of the

curve where i is very large.
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105. The following table is given to illustrate the beginning
of the calculation of the curve for low stray field.

STARTING CURRENT OF A TRANSFORMER.
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The first column gives angle 0,

The second column gives cos d,

The third column gives A(B
t
= 10 A cos 0, in kilolines per

sq. cm.,

The fourth column gives 0^
= (B + Afl^,

The fifth column gives i,

The sixth column gives D 1
= 2 i X'lCT3

,
and

The seventh column gives (B = (B
t

Dv
i in the fifth column being chosen, by trial, so as to corre-

spond, on the hysteresis cycles, not to <&v but to (B = (B
t

Dr
These values are recorded as magnetic cycles on Figs. 43 and

44, and as waves of flux density, current, etc., in Figs. 45 and 46.

The maximum values of successive half waves are :

A. Low Stray Field.

fc= 3
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by general equations, but require numerical investigation by
the use of the magnetic cycles of the iron.

These transient terms lead to excessive current values only if

the normal magnetic flux density exceeds half the saturation

value of the iron, and so are most noticeable in 25-cycle circuits.

A !\ l\

YYVV
Fig. 47. Starting current of a 25-cycle transformer.

As illustration is shown, in Fig. 47, an oscillogram of the

starting current of a 25-cycle transformer having a resistance

in the supply circuit somewhat smaller than in the above

instance, thus causing a still longer duration of the transient

term of excessive current.

These starting transients of the ironclad inductance at high

density are unsymmetrical waves, that is> successive half waves

have different shapes, and when resolved into a trigonometric

series, would give even harmonics as well as the odd harmonics.

Thus the first wave of Fig. 45 can, when neglecting the tran-

sient factor, be represented by the series:

i = + 108.3 - 183.8 cos (0 + 28.0)

+ 112.4 cos 2 (0 + 29.8)
- 53.1 cos 3 (6 + 33.3)

+ 27.2 cos 4 (0 + 39.1)
- 18.4 cos 5 (0 + 38.1)

+ 13.6 cos 6 (0 + 33.4)
- 8.1 cos 7 (0 + 32.7)

or, substituting: 6 = ft + 150, gives:

e = E sin (ft + 150)

i = 108.3 + 183.8 cos (/?
-

2.0) + 112.4 cos 2 (p
-

0.2)

+ 53.1 cos 3 0? + 3.3) + 27.2 cos 4
(/? + 9.1)

+ 18.4 cos 5 (/? + 8.1) + 13.6 cos 6 (p + 3.4)

+ 8.1 cos 7
(/? + 2.7).



CHAPTER XIII.

TRANSIENT TERM OF THE ROTATING FIELD.

106. The resultant of n
p equal m.m.fs. equally displaced

from each other in space angle and in time-phase is constant in

intensity, and revolves at constant synchronous velocity. When

acting upon a magnetic circuit of constant reluctance in all

directions, such a polyphase system of m.m.fs. produces a

revolving magnetic flux, or a rotating field. (" Theory and

Calculation of Alternating Current Phenomena," 4th edition,

Chapter XXXIII, paragraph 368.) That is, if n
p equal mag-

netizing coils are arranged under equal space angles of -

n
p

electrical degrees, and connected to a symmetrical np phase

system, that is, to np equal e.m.fs. displaced in time-phase by
360

-
degrees, the resultant m.m.f. of these np coils is a constant

np

and uniformly revolving m.m.f., of intensity SF = &, where $
Zi

is the maximum value (hence the effective value) of the
\ V2 I

m.m.f. of each coil.

In starting, that is, when connecting such a system of mag-

netizing coils to a polyphase system of e.m.fs., a transient term

appears, as the resultant magnetic flux first has to rise to its

constant value. This transient term of the rotating field is the

resultant of the transient terms of the currents and therefore

the m.m.fs. of the individual coils.

107. If, then, $ = nl = maximum value of m.m.f. of each

coil, where n = number of turns, and / = maximum value of

current, and r =
space-phase angle of the coil, the instantaneous

value of the m.m.f. of the coil, under permanent conditions, is

f-frCOS^-T), (1)

191
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and if the time 6 is counted from the moment of closing the

circuit, the transient term is, by Chapter IV,

/" = -
gr

~
x cos T} (2)

where Z = r jx.

The complete value of m.m.f. of one coil is

/i
=

/' + /" = & {cos(0
-

r) -r-'cosr}. (3)

In an np-phase system, successive e.m.fs. and therefore currents

are displaced from each other by of a period, or an angle ,

np n
p

and the m.m.f. of coil, i, thus is

( / 2n \ - r~6 I 2?r \)
ff
= $ < cos (0 T i e x cos

(
r H-- i]>. (4)

( \ n I \ n np

/ 2 TT \

2ji cos T H
--

i)
=

0;
\ nv I

The resultant of np such m.m.fs. acting together in the same

direction would be

(5)

that is, the sum of the instantaneous values of the permanent
terms as well as the transient terms of all the phases of a sym-
metrical polyphase system equals zero.

In the polyphase field, however, these m.m.fs. (4) do not act

in the same direction, but in directions displaced from each

other by a space angle equal to the time angle of their phasenp
displacement.

108. The component of the m.m.f., fit acting in the direction

(0
-

T), thus is

27T .>

// =
ft cos

(
- T - ~

i),
(6)

\ nn i
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and the sum of the components of all the np m.m.fs., in the

direction (0
-

r), that is, the component of the resultant m.m.f.

of the polyphase field, in the direction (0
-

T), is

np

f = X< fi

I

Transformed, this gives

$ (
np

/ 4 TT \
"*

/ =
;

! 5/ cos
(0 +

- 2 r - -
i) + V c

^ I i^ \ "^n /

-Htf
Hp

I
cos

ft

- s x Vt cos ( # n 2 T

r. "P
47r

and as the sums containing
- - i equal zero, we have
np

os(0-0 ) -cos0 , (8)

and for 6 = oo
f that is as permanent term, this gives

/ =^SFcos(0-0 ); (9)

ft

hence, a maximum, and equal to -~
&, that is, constant, for

=
0, that is, uniform synchronous rotation. That is, the

resultant of a polyphase system of m.m.fs., in permanent con-

dition, rotates at constant intensity and constant synchronous

velocity.

Before permanent condition is reached, however, the resultant

m.m.f. in the direction # =
6, that is, in the direction of the

synchronously rotating vector, in which in permanent condition



194 TRANSIENT PHENOMENA

the m.m.f . is maximum and constant, is given during the transient

period, from equation (8), by

(10)

that is, it is not constant but periodically varying.
As example is shown, in Fig. 48, the resultant m.m.f. / in the

direction of the synchronously revolving vector, =
6, for the

1600

fnoo

6 800

a

400
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dropping behind the position of uniform synchronous rotation,

by equation (13), and only for =
oo, equation (12) becomes

cot # = cot 6, or # =
6, that is, uniform synchronous rotation.

The speed of rotation of the maximum m.m.f. is given from

equation (12) by differentiation as

dQ

^_0=
dd

'

dQ'

where Q = sin (6 ) + x sin
;

_ - a

cos {0
-

)
- - x

sin

hence, S =
-^ ~, (14)

cos (0
-

)
- e~ xfl cos

or approximately,

1 - x COS 6

(15)

For =
oo, equation (14) becomes S =

1, or uniform syn-

chronous rotation, but during the starting period the speed

alternates between below and above synchronism.
From (13) follows

--
COS x

and

sin d
sin =

(R

where

(16)

\
(R = V os - e z + sn = - ' cos e

(17)
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110. The maximum value of the resultant m.m.f., at time-

phase 6, and thus of direction 6
Q
as given by equation (13) or

(16), (17), is derived by substituting (16), (17) into (8), as:

-2 *os0 + e *, (18)

hence is not constant, but pulsates periodically, with gradually

decreasing amplitude of pulsation, around the mean value $.
2i

For 6 =
0, or at the moment of start, it is, by (13),

- r-e
cos 6 - *

'
sinfl Q

hence, differentiating numerator and denominator,

r --
sin 6 + -s x

X
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hence, after differentiating numerator and denominator twice,

this value becomes definite.

So =
^; (20)

that is, the rotating field starts at half speed.
As illustration are shown, in Fig. 49, the maximum value of

the resultant polyphase m.m.f., fm ,
and its displacement in

+40

'

-40

,400

Inten'sit^/

= 1000

/\

\f

position |(0 ili
+ 8ilmil

2 2 2 22
Fig. 49. Start of rotating field.

position from that of uniform synchronous rotation, 6, for

the same constants as before, namely: np = 3; *F = 667, and
Z = r - jx

= 0.32 - 4 /; hence,

fm = 1000 Vl - 2
- C '

COS +
- C

,

with the time-phase angle ^ as abscissas, for the first three cycles.

111. As seen, the resultant maximum m.m.f. of the poly-

phase system, under the assumed condition, starting at zero

in the moment of closing the three-phase circuit, rises rapidly
- within 60 time-degrees to its normal value, overreaches

and exceeds it by 78 per cent, then drops down again below

normal, by 60 per cent, rises 47 per cent above normal, drops
37 per cent below normal, rises 28 per cent above normal, and

thus by a series of oscillations approaches the normal value.

The maximum value of the resultant m.m.f. starts in position
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85 time-degrees ahead, in the direction of rotation, but has in

half a period dropped back to the normal position, that is, the

position of uniform synchronous rotation, then drops still fur-

ther back to the maximum of 40 deg., runs ahead to 34 deg.,

drops 23 deg. behind, etc.

It is interesting to note that the transient term of the rotat-

ing field, as given by equations (10), (13), (18), does not contain

the phase angle, that is, does not depend upon the point of the

wave, =
r, at which the circuit is closed, while in all preced-

ing investigations the transient term depended upon the point
of the wave at which the circuit was closed, and that this tran-

sient term is oscillatory. In the preceding chapter, in circuits

containing only resistance and inductance, the transient term

has always been gradual or logarithmic, and oscillatory phenom-
ena occurred only in the presence of capacity in addition to in-

ductance. In the rotating field, or the polyphase m.m.f., we
thus have a case where an oscillatory transient term occurs in

a circuit containing only resistance and inductance but not

capacity, and where this transient term is independent of the

point of the wave at which the circuits were closed, that is, is

always the same, regardless of the moment of start of the phe-
nomenon.

The transient term of the polyphase m.m.f. thus is independ-
ent of the moment of start, and oscillatory in character, with

an amplitude of oscillation depending only on the reactance

factor, ,
of the circuit.



CHAPTER XIV.

SHORT-CIRCUIT CURRENTS OF ALTERNATORS.

112. The short-circuit current of an alternator is limited by
armature reaction and armature self-inductance; that is, the

current in the armature represents a m.m.f. which with lagging

current, as at short circuit, is demagnetizing or opposing the

impressed m.m.f. of field excitation, and by combining therewith

to a resultant m.m.f. reduces the magnetic flux from that corre-

sponding to the field excitation to that corresponding to the

resultant of field excitation and armature reaction, and thus

reduces the generated e.m.f. from the nominal generated e.m.f.,

e
OJ

to the virtual generated e.m.f., er The armature current

also produces a local magnetic flux in the armature iron and pole-
faces which does not interlink with the field coils, but is a true

self-inductive flux, and therefore is represented by a reactance xr
Combined with the effective resistance, rv of the armature

winding, this gives the self-inductive impedance Z
l
= r

l

or z
t

= Vr* + x*. Vectorially subtracted from the virtual

generated e.m.f., ev the voltage consumed by the armature

current in the self-inductive impedance Z
l then gives the ter-

minal voltage, e.

At short circuit, the virtual generated e.m.f., ev is consumed

by the armature self-inductive impedance, zr As the effective

armature resistance, rv is very small compared with its self-

inductive reactance, xv it can be neglected compared thereto,
and the short-circuit current of the alternator, in permanent
condition, thus is

As shown in Chapter XXII, "Theory and Calculation of

Alternating Current Phenomena," the armature reaction can be

represented by an equivalent, or effective reactance, z
2 ,
and the

self-inductive reactance, xv and the effective reactance of

199
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armature reaction, x
2J
combine to form the synchronous react-

ance, X
Q
= x

l + x
2 ,
and the short-circuit current of the alterna-

tor, in permanent condition, therefore can be expressed by

where e = nominal generated e.m.f.

113. The effective reactance of armature reaction, xv differs,

however, essentially from the true self-inductive reactance, xv
in that x

l
is instantaneous in its action, while the effective

reactance of armature reaction, xv requires an appreciable time

to develop: x
2 represents the change of the magnetic field flux

produced by the armature m.m.f. The field flux, however, can-

not change instantaneously, as it interlinks with the field exciting

coil, and any change of the field flux generates an e.m.f. in the

field coils, changing the field current so as to retard the change
of the field flux. Hence, at the first moment after a change of

armature current, the current change meets only the reactance,

xv but not the reactance x
2

. Thus, when suddenly short-cir-

cuiting an alternator from open circuit, in the moment before

the short circuit, the field flux is that corresponding to the

impressed m.m.f. of field excitation and the voltage in the arma-

ture, i.e., the nominal generated e.m.f., e (corrected for mag-
netic saturation). At the moment of short circuit, a counter

m.m.f., that of the armature reaction of the short-circuit

current, is opposed to the impressed m.m.f. of the field excitation,

and the magnetic flux, therefore, begins to decrease at such a

rate that the e.m.f. generated in the field coils by the decrease

of field flux increases the field current and therewith the m.m.f.

so that when combined with the armature reaction it gives a

resultant rn.m.f. producing the instantaneous value of field flux.

Immediately after short circuit, while the field flux still has full

value, that is, before it has appreciably decreased, the field m.m.f.

thus must have increased by a value equal to the counter m.m.f.

of armature reaction. As the field is still practically unchanged,
the generated e.m.f. is the nominal generated voltage, e

,
and

the short-circuit current is
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and from this value gradually dies down, with a decrease of the

field flux and of the generated e.m.f., to

Hence, approximately, when short-circuiting an alternator,

in the first moment the short-circuit current is

x'

while the field current has increased from its normal value i to

the value

Field excitation + Armature reaction
m

Field excitation

gradually the armature current decreases to

and the field current again to the normal value i .

Therefore, the momentary short-circuit current of an alternator

bears to the permanent short-circuit current the ratio

,vo

that is,

Armature self-inductance + Armature reaction

Armature self-inductance

In machines of high self-inductance and low armature reaction,

as uni-tooth high frecfUency alternators, this increase of the

momentary short-circuit current over the permanent short-

circuit current is moderate, but may reach enormous values in

machines of low self-inductance and high armature reaction, as

large low frequency turbo alternators.

114. Superimposed upon this transient term, resulting from

the gradual adjustment of the field flux to a change of m.m.f., is

the transient term of armature reaction. In a polyphase

alternator, the resultant m.m.f. of the .armature in permanent
conditions is constant in intensity and revolves with regard to

the armature at uniform synchronous speed, hence is stationary
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with regard to the field. In the first moment, however, the

resultant armature m.m.f . is changing in intensity and in velocity,

approaching its constant value by a series of oscillations, as

discussed in Chapter XIII. Hence, with regard to the field, the

transient term of armature reaction is pulsating in intensity and

oscillating in position, and therefore generates in the field coils

Field Current

Armature Current

Fig. 50. Three-phase short-circuit current of a turbo-alternator.

an e.m.f. and causes a corresponding pulsation in the field

current and field terminal voltage, of the same frequency as

the armature current, as shown by the oscillogram of such a

three-phase short-circuit, in Fig. 50. This pulsation of field

current is independent of the point in the wave, at which the

short-circuit occurs, and dies out gradually, with the dying out

of the transient term of the rotating m.m.f.

In a single-phase alternator, the armature reaction is alter-

nating with regard to the armature, hence pulsating, with double

frequency, with regard to the field, varying between zero and its
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maximum value, and therefore generates in the field coils a

double frequency e.m.f., producing a pulsation of field current

of double frequency. This double-frequency pulsation of the

field current and voltage at single-phase short-circuit is pro-

portional to the armature current, and does not disappear
with the disappearance of the transient term, but persists also

after the permanent condition of short-circuit has been reached,

Armature
current

"Field

current

' BHBnSSMMttHKattMMMNMBflUffiHMHMMHBB
Fig. 61. Single-phase short-circuit current of a three-phase turbo-alternator.

merely decreasing with the decrease of the armature current.

It is shown in the oscillogram of a single-phase short-circuit on

a three-phase alternator, Fig. 51.

Superimposed on this double frequency pulsation is a single-

frequency pulsation due to the transient term of the armature

current, that is, the same as on polyphase short-circuit. With

single-phase short-circuit, however, this normal frequency pul-

sation of the field depends on the point of the wave at which

the short-circuit occurs, and is zero, if the circuit is closed at

the moment when the short-circuit current is zero, as in Fig. 51,

and a maximum when the short-circuit starts at the maximum

point of the current wave. As this normal frequency pulsation

gradually disappears, it causes the successive waves of the

double frequency pulsation to be unequal in size at the

beginning of the transient term, and gradually become equal,

as shown in the oscillogram, Fig. 52.

The calculation of the transient term of the short-circuit

current of alternators thus involves the transient term of the
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armature and the field current, as determined by the self-

inductance of armature and of field circuit, and the mutual

inductance between the armature circuits and the field circuit,

and the impressed or generated voltage; therefore is rather

complicated; but a simpler approximate calculation can be

A

Armature
current

Field
current

62.5 amp.

Fig. 52. Single-phase short-circuit current of a three-phase turbo-alternator.

given by considering that the duration of the transient term is

short compared with that of the armature reaction on the field.

(A) Polyphase alternator.

115. Let np = number of phases; 6 = 2nft =
time-phase

angle; n = number of field turns in series per pole; n^ number
of armature turns in series per pole; Z = r jx

= self-inductive

impedance of field circuit; Z l
= r

t jx l

= self-inductive impe-
dance of armature circuit; p = permeance of field magnetic cir-

cuit; a = 2 7ifn 1
10~8 = induction coefficient of armature; E =

Tji

exciter voltage; / = - = field exciting current, in permanent
*

condition; i = field exciting current at time 0; i'
= field

exciting current immediately after short-circuit; i = armature

2 re-

current at time 6, and k
t
= - = transformation ratio of field
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to resultant armature. Counting the time angle 6 from the

moment of short circuit, 6 =
0, and letting 6' = time-phase

angle of one of the generator circuits at the moment of short

circuit, we have,

SF = n / = field excitation, in permanent or stationary con-

dition, (1)

^o = P&o = PnJo = magnetic flux corresponding thereto,

and

C " aP*o = aapnJ . (2)

= nominal generated voltage, maximum value, at = 0.

Hence, r

= momentary short-circuit current at time 0, and

= resultant armature reaction thereof.

Assume this armature reaction as opposite to the field excita-

tion,

37 - Vo; (5)

as is the case at short circuit.

The resultant m.m.f. of the magnetic circuit at the moment
of short-circuit is

F - F -
JFi . (6)

At this moment, however, the field flux is still <

,
and the result-

ant m.m.f. is given by (1) as

!F = JF = n / . (7)

Substituting (4), (5), (7) in (6) gives

hence,

,

1

= -
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Writing *
2=, (9)

we have i = --Z-J 7
; (10)

that is, at the moment of short circuit the field exciting current

rises from 7 to i, and then gradually dies down again to 7 at
r

Q

a rate depending on the field impedance Z ,
that is, by e

^
,
as

discussed in preceding chapters. Hence, it can be represented

by

x,

The resultant armature m.m.f., or armature reaction, is

npnj
~2~

thus the magnetic flux which would be produced by it is

pnpnj
-

~T~'

and therefore the voltage generated by this flux is

apnpnj
~2~

hence,

Voltage corresponding to the m.m.f. of armature current.

Armature current

that is, x
2

is the equivalent or effective reactance of armature

reaction.

In equations (10) and (11) the external self-inductance of the

field circuit, that is, the reactance of the field circuit outside of

the machine field winding, has been neglected. This would
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introduce a negative transient term in (11), thus giving equation

(11) the approximate form

0-0 _
(12)

where #
3
= self-inductive reactance of the field circuit outside

of alternator field coils.

The more complete expression requires consideration when
x

3
is very large, as when an external reactive coil is inserted in

the field circuit.

In reality, x2 is a mutual inductive reactance, and x
3
can be

represented approximately by a corresponding increase of xr
116. If / = maximum value of armature current, we have

hence,

and

and

npnj = armature m.m.f.,

. npnj
00 o

= resultant m.m.f.,

E = ap&

= e.m.f. maximum generated thereby,

(13)

(14)

= armature current, maximum.

Substituting (13) in (14) gives

npapn
xj =

and

or, by (9),

n^apn^ x^ + x2

2
"

'

I=* n
-*i,

(15)

(16)
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where = k
t

= transformation ratio of field turns to
n

resultant armature turns; hence,

T I"!i h,
t
i

(

, +
(17)

Substituting (11) in (17) thus gives the maximum value of the

armature current as

TO

9x
t
+ x

2
x

l

the instantaneous value of the armature current as

(18)

i = k
t
l

{
cos (6 -.*)>- ** cos V

, (19)
X. (X. + ,)1 v 1 ' 2'

and by equation (10) of Chapter XIII, the armature reaction as

f

-*9\
. + xjs x

)( . -^e n )
?

?-r L
< I - e *' cos f

, (20)

where x^ + x
2
= x is the synchronous reactance of the alter-

nator.

For 6 =
oo, or in permanent condition, equations (18), (19),

(20) assume the usual form:

and

i = k
t
! -2

cos (0
x

ff

(21)

117. As an example is shown, in Fig. 53, the instantaneous

value of the transient short-circuit current of a three-phase

alternator, with the time angle 6 as abscissas, and for the con-

stants: the field turns, n = 100; the normal field current,

7 = 200 amp.; the field impedance, Z = r
Q
-

jx
= 1.28 -

160 j ohms; the armature turns, n^
=

25, and the armature
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impedance, Z
l

= r
l

-
jx^

- 0.4 - 5 / ohms. For the phase

angle, 0' =
0, the transformation ratio then is

np n l
3

and the equivalent impedance of armature reaction is

=
15,

and we have

7= 400(1 + 3s-
'008

'), (18)

i = 400 (1 + 3
-- 008

') (cos
- -- 08

'), (19)

and / = 15,000 (1 + 3 e--
008

') (1
- e'

'080
cos 0). (20)

1600

800

-800

-1600

4Q06 + 3C

\y

!OS

Fig. 53. Short-circuit current of a three-phase alternator.

(B) Single-phase alternator.

118. In a single-phase alternator, or in a polyphase alternator

with one phase only short-circuited, the armature reaction is

pulsating.

The m.m.f. of the armature current,

i = 7 cos (0
-

6'), (22)

of a single-phase alternator, is, with regard to the field,

hence, for position angle
= time angle 0, or synchronous

rotation,

^=7(1 + cos 2 (0-0')}; (23)
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that is, of double frequency, with the average value,

(24)

pulsating between and twice the average value.

The average value (24) is the same as the value of the poly-

phase machine, for np = 1.

Using the same denotations as in (A), we have:

(1) JF = Vo, (25)

(26)

Denoting the effective reactance of armature reaction thus :

x
2 =^JT> (27)

and substituting (27) in (26) we obtain

fri =-Vofl + cos 2 (0
-

0')}
= -X/o {1 + cos 20'}; (28)

x
l

x
l

hence, by (6),

Vo = Vo - -XU1 + cos 2
6'}

i

and

t'
= -2

/ \\ H cos 2 Q' i , (29)

and the field current,

r a

X -f X ~*
( X )

x
l x^ + a:

2

119. If / = maximum value of armature current,

aF
t =|'/ {1 + cos 2(0 -0')} (31)

= armature m.m.f.;
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hence,

SF = Vo -
fri (32)

= resultant m.m.f.

Since, however,

(33)
*i *!

and, by (27),

we have, by (33)

17 = 7. (34)
ap 2 x

2

Substituting (30), (31), and (34) into (32) gives

7 = n
2 x

or, substituting,

k
t

= 2 = transformation ratio, (35)n
i

and rearranging, gives

' -*^ "j ?l!:

as the maximum value of the armature current.

This is the same expression as found in (18) for the poly-

phase machine, except that now the reactances have different

values.
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Herefrom it follows that the instantaneous value of the armature

current is

~
*

6

) ( -10 )
' ! cos (0

-
6')

- e ** cos 6'
{ , (37)

and, by (31), the armature reaction is

(38)

For =
oo, or permanent condition, equations (30), (36), (37),

and (38) give

v-VU* cos 2 (0
- 00 1 ,

X, + X,

cos (0
-

00,

and cos2(0-00}.

(39)

As seen, the field current i is pulsating even in permanent

condition, the more so the higher the armature reaction x
2

compared with the armature self-inductive reactance xr
120. Choosing the same example as in Fig. 52, paragraph

117, but assuming only one phase short-circuited, that is, a single-

phase short circuit between two terminals, we have the effective

armature series turns, n
v

= 25 V3 = 43.3; the armature impe-

dance, Z
l
= r

l

-
jx^

= 0.8 10 /; 6' =
0; the transformation

ratio, kt
=

4.62, and the effective reactance of armature reaction

o

x
2
= x =15; herefrom,

7 = 555(1 + 1.5e-- op8
'), (36)

i = 555 (1 + 1.5
--008

') (cos
- r*'080

), (37)

and / - 12,000 (1 + 1.5--008fl
) (1 + cos 2 0); (38)
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and the field current is

i
Q
= 200 (1 + 1.5

-- 008 '

) (1 + 0.6 cos 2 6). (30)

In this case, in the open-circuited phase of the machine, a

high third harmonic voltage is generated by the double frequency

pulsation of the field, and to some extent also appears in the

short-circuit current.
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PERIODIC TRANSIENTS





PEKIODIC TRANSIENTS

CHAPTER I.

INTRODUCTION.

1. Whenever in an electric circuit a sudden change of the

circuit conditions is produced, a transient term appears in the

circuit, that is, at the moment when the change begins,
the circuit quantities, as current, voltage, magnetic flux, etc., cor-

respond to the circuit conditions existing before the change, but

do not, in general, correspond to the circuit conditions brought
about by the change, and therefore must pass from the values

corresponding to the previous condition to the values corre-

sponding to the changed condition. This transient term may be

a gradual approach to the final condition, or an approach by a

series of oscillations of gradual decreasing intensities.

Gradually after indefinite time theoretically, after relatively

short time practically the transient term disappears, and

permanent conditions of current, of voltage, of magnetism, etc.,

are established. The numerical values of current, of voltage, etc.,

in the permanent state reached after the change of circuit con-

ditions, in general, are different from the values of current,

voltage, etc., existing in the permanent state before the change,
since they correspond to a changed condition of the circuit.

They may, however, be the same, or such as can be considered

the same, if the change which gives rise to the transient term
can be considered as not changing the permanent circuit con-

ditions. For instance, if the connection of one part of a circuit,

with regard to the other part of the circuit, is reversed, a transient

term is produced by this reversal, but the final or permanent
condition after the reversal is the same as before, except that

the current, voltage, etc., in the part of the circuit which has been

reversed, are now in opposite direction. In this latter case,

the same change can be produced again and again after equal
217
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intervals of time t
,
and thus the transient term made to recur

periodically. The electric quantities i, e, etc., of the circuit,

from time t = to t = t
Q ,

have the same values as from time

t = t to t = 2 t
of
from t = 2 t to t = 3 t

ot etc., and it is sufficient

to investigate one cycle, from t = to t = t .

In this case, the starting values of the electrical quantities

during each period are the end values of the preceding period,

or, in other words, the terminal values at the moment of start

of the transient term, t = 0, i = i and e = e
,
are the same as

the values at the end of the period t = t
,

i = i' and e =
e'\

that is, i
Q
= i'

j
e =

e', etc.
; where, the plus sign applies

for the unchanged, and the minus sign for the reversed part of the

circuit.

2. With such periodically recurrent changes of circuit con-

ditions, the period of recurrence t may be so long, that the

transient term produced by a change has died out, the permanent
conditions reached, before the next change takes place. Or,
at the moment where a change of circuit conditions starts, a

transient term, the transient term due to the preceding change,
has not yet disappeared, that is, the time, t

,
of a period is shorter

than the duration of the transient term.

In the first case, the terminal or starting values, that is, the

values at the moment when the change begins, are the same as

the permanent values, and periodic recurrence has no effect on

the character of the transient term, but the phenomenon is cal-

culated as discussed in Section I, as single transient term,
which gradually dies out.

If, however, at the moment of change, the transient term of

the preceding change has not yet vanished, then the starting or

terminal values of the electric quantities, as i and e
,
also contain

a transient term, namely, that existing at the end of the preced-

ing period. The same term then exists also at the end of the

period, or at t = t . Hence in this case, the terminal conditions

are given, not as fixed numerical values, but as an equation
between the electric quantities at time t = and at time t = t

;

or, at the beginning and at the end of the period, and the inte-

gration constants, thus, are calculated from this equation.
3. In general, the permanent values of electric quantities

after a change are not the same as before, and therefore at least

two changes are required before the initial condition of the
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circuit is restored, and the cycle can be repeated. Periodically

recurring transient phenomena, thus usually consist of two or

more successive changes, at the end of which the original con-

dition of the circuit is reproduced, and therefore the series of

changes can be repeated. For instance, increasing the resistance

of a circuit brings about a change. Decreasing this resistance

again to its original value brings about a second change, which
restores the condition existing before the first change, and thus

completes the cycle. In this case, then, the starting values of

the electric quantities during the first part of the period equal
the end values during the second part of the period, and the

starting values of the second part of the period equal the end
values of the first part of the period. That is, if a resistor is

inserted at time t = 0, short circuited at time t = t
1}
and inserted

again at time t = t
,
and e and i are voltage and current respec-

tively during the first, e
1
and i

l during the second part of the

period, we have

/e/t, Q
= A!/^; A,/, =<1

- /e/t=k ,

and

AA=o =
AiA-ioJ Ai/=, = AA=i-

If during the times ^ and t
-

t
t
the transient terms have

already vanished, and permanent conditions established, so that

the transient terms of each part of the period depend only upon
the permanent values during the other part of the period, the

length of time t
l
and t has no effect on the transient term, that

is, each change of circuit conditions takes place and is calculated

independently of the other change, or the periodic recurrence.

A number of such cases have been discussed in Section I, as

for instance, the effect of cutting a resistor in and out of a

divided inductive circuit, paragraph 75, Fig. 33. In this case,

four successive changes are made before the cycle recurs: a

resistor is cut in, in two steps, and cut out again in two

steps, but at each change, sufficient time elapses to reach

practically permanent condition.

In general, and especially in those cases of periodic transient

phenomena, which are of engineering importance, successive

changes occur before the permanent condition is reached, or

even approximated after the preceding change, so that frequently
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the values of the electric quantities are very different throughout
the whole cycle from the permanent values which they would

gradually assume; that is, the transient term preponderates
in the values of current, voltage, etc., and the permanent term

occasionally is very small compared with the transient term.

4. Periodic transient phenomena are of engineering impor-
tance mainly in three cases: (1) in the control of electric circuits;

(2) in the production of high frequency currents, and (3) in the

rectification of alternating currents.

1. In controlling electric circuits, etc., by some operating

mechanism, as a potential magnet increasing and decreasing the

resistance of the circuit, or a clutch shifting brushes, etc., the

main objections are due to the excess of the friction of rest over

the friction while moving. This results in a lack of sensitiveness,

and an overreaching of the controlling device. To overcome

the friction of rest, the deviation of the circuit from normal

must become greater than necessary to maintain the motion of

the operating mechanism,, and when once started, the mechanism

overreaches. This objection is eliminated by never allowing

the operating mechanism to come to rest, but arranging it in

unstable equilibrium, as a
"
floating system," so that the con-

dition of the circuit is never normal, but continuously and

periodically varies between the two extremes, and the resultant

effect is the average of the transient terms, which rapidly and

periodically succeed each other. By changing the relative

duration of the successive transient terms, any resultant inter-

mediary between the two extremes can thus be produced. On
this principle, for instance, operated the controlling solenoid of

the Thomson-Houston arc machine, and also numerous auto-

matic potential regulators.

2. Production of high frequency oscillating currents by period-

ically recurring condenser discharges has been discussed under
"
oscillating current generator," in Section I, paragraph 44.

Non-sinusoidal high frequency alternating currents are pro-
duced by an arc, when made unstable by shunting it with a

condenser, as discussed before.

The Ruhmkorff coil or inductorium also represents an appli-

cation of periodically recurring transient phenomena, as also

does Prof. E. Thomson's dynamostatic machine.

3. By reversing the connections between a source of alter-



INTRODUCTION 221

nating voltage and the receiver circuit, synchronously with the

alternations of the voltage, the current in the receiver circuit is

made unidirectional (though more or less pulsating) and there-

fore rectified.

In rectifying alternating voltages, either both half waves of

voltage can be taken from the same source, as the same trans-

former coil, and by synchronous reversal of connections sent in

the same direction into the receiver circuit, or two sources of

voltage, as the two secondary coils of a transformer, may be

used, and the one half wave taken from the one source, and sent

into the receiver circuit, the other half wave taken from the

other source, and sent into the receiver circuit in the same

direction as the first half wave. The latter arrangement has

the disadvantage of using the alternating current supply source

less economically, but has the advantage that no reversal, but

only an opening and closing of connections, is required, and is

therefore the method commonly applied in stationary rectify-

ing apparatus.
6. In rectifying alternating voltages, the change of connec-

tions between the alternating supply and the unidirectional

receiving circuit can be carried out as outlined below :

(a) By a synchronously moving commutator or contact

maker, in mechanical rectification. Such mechanical rectifiers

may again be divided, by the character of the alternating supply

voltage, into single phase, quarter phase and three phase, and

by the character of the electric circuit, into constant potential
and constant current rectifiers. Mechanical rectification by a

commutator driven by a separate synchronous motor has not yet
found any industrial application. Rectification by a commuta-
tor driven by the generator of the alternating voltage has found

very extended and important industrial use in the excitation of

the field, or a part of the field (the series field) of alternators and

synchronous motors, and especially in the constant-current arc

machine. The Brush arc machine is a quarter-phase alternator

connected to a rectifying commutator on the armature shaft,

and the Thomson-Houston arc machine is a star-connected

three-phase alternator connected to a rectifying commutator on

the armature shaft. The reason for using rectification in these

machines, which are intended to produce constant direct current

at very high voltage, is that the ordinary commutator of the
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continuous-current machine cannot safely commutate, even at

limited current, more than 30 to 50 volts per commutator

segment, while the rectifying commutator of the constant-

current arc machine can control from 2000 to 3000 volts per

segment, and therefore rectification is superior to commutation

for very high voltages at limited current, as explained by the

character of this phenomenon, discussed in Chapter III.

(b) The synchronous change of circuit connection required

by the rectification of alternating e.m.fs. can be brought about

without any mechanical motion in so-called "arc rectifiers,"

by the characteristic properties of the electric arc, to be a good
conductor in one, an insulator in the opposite direction. By
thus inserting an arc in the path of the alternating circuit,

current can exist and thus a circuit be established for that half

wave of alternating voltage, which sends the current in the

same direction as the current in the arc, while for the reversed

half wave of voltage the arc acts as open circuit. As seen, the

arc cannot reverse, but only open and close the circuit, and so

can rectify only one half wave, that is, two separate sources of

alternating voltage, or two rectifiers with the same source of

voltage, are required to rectify both half waves of alternating

voltage.

(c) Some electrolytic cells, as those containing aluminum as

one terminal, offer a low resistance to the passage of current in

one direction, but a very high resistance, or practically interrupt
the current, in opposite direction, due to the formation of a non-

conducting film on the aluminum, when it is the positive terminal.

Such electrolytic cells can therefore be used for rectification in

a similar manner as arcs.

The three main classes of rectifiers thus are: (a) mechanical

rectifiers; (b) arc rectifiers; (c) electrolytic rectifiers.

Still other methods of rectification, as by the unidirectional

character of vacuum discharges, of the conduction in some

crystals, etc., are not yet of industrial importance.



CHAPTER II.

CIRCUIT CONTROL BY PERIODIC TRANSIENT PHENOMENA.

6. As an example of a system of periodic transient phenomena,
used for the control of electric circuits, may be considered an

automatic potential regulator operating in the field circuit of

the exciter of an alternating current system.

Let, r = 40 ohms = resistance and L = 400 henrys =

inductance of the exciter field circuit.

A resistor, having a resistance, r
l
= 24 ohms, is inserted in

series to r
,
L in the exciter field, and a potential magnet, con-

trolled by the alternating current system, is arranged so as to

short circuit resistance, rv if the alternating potential is below,
to throw resistance r

l
into circuit again, if the potential is

above normal.

With a single resistance step, rv in the one position of the

regulator, with r
x
short circuited, and only r as exciter field

winding resistance, the alternating potential would be above

normal, that is, the regulator cannot remain in this position,

but as soon after short circuiting resistance r
l
as the potential

has risen sufficiently, the regulator must change its position
and cut resistance T\ into the circuit, increasing the exciter field

circuit resistance to r + rr This resistance now is too high,

would lower the alternating potential too much, and the regula-
tor thus cuts resistance r

l
out again. That is, the regulator

continuously oscillates between the two positions, corresponding
to the exciter field circuit resistances r and (r + r

t) respec-

tively, at a period depending on the momentum of the moving
mass, the force of the magnets, etc., that is, approximately
constant. The time of contact in each of the two positions,

however, varies: when requiring a high field excitation, the

regulator remains a longer time in position r
,
hence a shorter

time in position (r + r
t ), before the rising potential throws it

over into the next position; while at light load, requiring low

field excitation, the duration of the period of high resistance,
223
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(TO _|_ rj }
is greater, and that of the period of low resistance, r

,

less.

7. Let, ^ = the duration of the short circuit of resistance r
x ;

t
2
= the time during which resistance r

x
is in circuit, and t =

t, + tr

During each period t
,
the resistance of the exciter field,

therefore, is r for the time tv and (r + rj for the time ty

Furthermore, let, i
1

= the current during time tv and i
2
=

the current during time tr

During each of the two periods, let the time be counted

anew from zero, that is, the transient current i
l
exists during the

time < t < tv through the resistance r
,

the transient

current, iv during the time < t < t
2 , through the resistance

<>o + rj.
This gives the terminal conditions :

and (1)

that is, the starting point of the current, iv is the end value of

the current, iv and inversely.

If now, e = voltage impressed upon the exciter field circuit,

the differential equations are :

and

e = (T,

di.

(2)

or,

di
l

rt
-,

r
o

dt.

(3)
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Integrated,

and
ro +

(4)

Substituting the terminal conditions (1) in equations (4),

gives for the integration constants c
l
and c

2
the equations,

e e

+ 'I

and

herefrom,

and

c t
= -

(ro

"o- T- L

erl-e

(5)

Substituting (5) in (4),

and

1 +
_ rp+ri

L

(6)

If, e = 250 volts; t
Q
= 0.2 sec., or 5 complete cycles per sec.;

\
=

0.15, and t
2
= 0.05 sec.; then

i,
= 6.25 {1

- 0.128 r-li
\

and
i = 3.91 1 + 0.391 fi

-- 16 '

(7)
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8. The mean value of current in the circuit is

1 ( Ck

I'-T-rr J VB
h + t

2 '^o

This integrated gives,

(8)

r + r
lt

(9)

and, if

and (10)

are the two extreme values of permanent current, corresponding

respectively to the resistances r and (r + rj, we have

(11)

that is, the current, i, varies between i/ and i
2

'
as linear function

of the durations of contact, ^ and ty
The maximum variation of current during the periodic change

is given by the ratio of maximum current and minimum current;

or,

and is

where,

and

r (l -e-"
r (l

-

(12)

(13)

(14)
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Substituting

x2 x3

1-. = ,__ + __ + ..., (15)

by using only term of first order;

gives (16)

q
=

1; J

that is, the primary terms eliminate, and the difference between

i
t
and i

2
is due to terms of secondary order only, hence very

small.

Substituting

1
-"."-*-!_; (17)

that is, using also terms of second order, gives

(18)

or, approximately,

q =1 +
r

r

^2

rs
> (19)

and, substituting (14),

g-i +
L J

1

*+ O ; (2)

that is, the percentage variation of current is

Equation (21) is a maximum for

and, then, is

9-1 =
; (23)
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or, in the above example, (r l
= 24; L = 400; tQ

=
0.2);

q
- 1 =

0.003;

that is, 0.3 per cent.

The time t of a cycle, which gives 1 per cent variation of

current, q 1 =
0.01, is

t = ^ (?
-

1), (24)
'

1

= f sec.

The pulsation of current, 0.3 per cent respectively 1 per cent,
thus is very small compared with the pulsation of the resistance,
r

t
= 24 ohms, which is 46 per cent of the average resistance

r -f
~ = 52 ohms.



CHAPTER III.

MECHANICAL RECTIFICATION.

9. If an alternating-current circuit is connected, by means

of a synchronously operated circuit breaker or rectifier, with a

second circuit in such a manner, that the connection between

the two circuits is reversed at or near the moment when the

alternating voltage passes zero, then in the second circuit

current and voltage are more or less unidirectional, although

they may not be constant, but pulsating.

If i = instantaneous value of alternating current, and i =

instantaneous value of rectified current, then we have, before

reversal, i =
i, and after reversal, i =

i\ that is, during

the reversal of the circuit one of the currents must reverse.

Since, however, due to the self-inductance of the circuits, neither

current can reverse instantly, the reversal occurs gradually,

so that for a while during rectification the instantaneous value

of the alternating and of the rectified current differ from each

other. Thus means have to be provided either to shunt the

difference between the two currents through a non-inductive

bypath, or, the difference of the two currents exists as arc over

the surface of the rectifying commutator.*

The general phenomenon of single-phase rectification thus

is : The alternating and the rectified circuit are in series. Both

circuits are closed upon themselves at the rectifier, by the

resistances, r and r
, respectively. The terminals are reversed.

The shunt-resistance circuits are opened, leaving the circuits

in series in opposite direction.

Special cases hereof are:

1. If r = r =
0, that is, during rectification both circuits are

short circuited. Such short-circuit rectification is feasible only

in limited-current circuits, as on arc lighting machines, or in

*
If the circuit is reversed at the moment when the alternating current

passes zero, due to self-inductance of the rectified circuit its current differs

from zero, and an arc still appears at the rectifier.

229
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cases where the voltage of the rectified circuit is only a small part
of the total voltage, and thus the current not controlled thereby,
as when rectifying for the supply of series fields of alternators.

2. r = r = oo
,
or open circuit rectification. This is feasible

only if the rectified circuit contains practically no self-inductance,

but a constant counter e.m.f., e, (charging storage batteries),

so that in the moment when the alternating impressed e.m.f.

falls to e, and the current disappears, the circuit is opened, and

closed again in opposite direction when after reversal the alter-

nating impressed e.m.f. has reached the value, e.

In polyphase rectification, the rectified circuit may be fed

successively by the successive phases of the system, that is

shifted over from a phase of falling e.m.f. to a phase of rising

e.m.f., by shunting the two phases with each other during the

time the current changes from the one to the next phase. Thus
the Thomson-Houston arc machine is a star-connected three-

phase constant-current alternator with rectifying commutator.

The Brush arc machine is a quarter-phase machine with rectify-

ing commutator.

In rectification frequently the sine wave term of the current

is entirely overshadowed by the transient exponential term,
and thus the current in the rectified circuit is essentially of an

exponential nature.

As examples, three cases will be discussed:

1. Single-phase constant-current rectification; that is, a

rectifier is inserted in an alternating-current circuit, and the

voltage consumed by the rectified circuit is small compared with

the total circuit voltage; the current thus is not noticeably
affected by the rectifier. In other words, a sine wave of current

is sent over a rectifying commutator.

2. Single-phase constant-potential rectification; that is, a

constant-potential alternating e.m.f. is rectified, and the impe-
dance between the alternating voltage and the rectifying com-

mutator is small, so that the rectified circuit determines the

current wave shape.
3. Quarter-phase constant-current rectification as occurring

in the Brush arc machine.
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i. Single-phase constant-current rectification.

10. A sine wave of current, i sin 0, derived from an e.m.f.

very large compared with the voltage consumed in the recti-

fied circuit, feeds, after rectification,

a circuit of impedance Z = r jx.

This circuit is permanently shunted

by a circuit of resistance rr
Rectification takes place over short-

circuit from the moment n
2

to

TT + 0jj that is, at n -
2
the rectified

and the alternating circuit are closed

upon themselves at the rectifier, and
this short-circuit opened, after rever-

sal, at TT + 6
lf

as shown by the dia-

grammatic representation of a two-

pole model of such a rectifier in Fig.

54. In this case the space angles
TT -f TJ and TT r

2
and the time angles

TT -f O
l
and TT

-
2
are identical.

This represents the conditions ex-

isting in compound-wound alter-

nators, that is, alternators feeding a series field winding

through a rectifier.

Let, during the period from O
l
to n -

2 ,
i = current in

impedance Z, and i
l
= current in resistance r

lt
then:

i + i
1
= i sin 0.

However,
di

Fig. 54. Single-phase current

rectifier commutator.

(1)

^
1
r

1
=^r (2)

and substituting (1) in (2) gives the differential equation :

di
i (r +r 1) + x~ - i r

l
sin =

0,
au

(3)

(4)

which is integrated by the function :

i = Ae- ae + Bsin (6
-

8).

Substituting (4) in (3) and arranging, gives :

A (r + r
l

-
ax) e~ a& + [B ( [r + rj cos d + x sin 8)

-
i/J sin

-
[(r + rj sin d - x cos d] B cos =

0, (5)
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which equation must be an identity, thus :

and

and herefrom:

r + r
l

ax =
0,

B ( [r + rj cos d + x sin d)
- i r

l

=

(r + PJL)
sin d x cos d =

0,

tand =

and

where

hence:

r+r,

B = i

V(r+ rj'

(6)

z = V(r + r,)
2 + x2

; (7)

(8)

During the time of short-circuit, from TT
2
to TT + t ,

if

i' = current in impedance Z, we have

di'

hence:

(9)

(10)

The condition of sparkless rectification is, that no sudden

change of current occur anywhere in the system. In consequence
hereof we must have :

i = i' = i sin at the moment 6 = x 6
2 ,

and, at the moment 6 = n + 6V i' must have reached the same
value as i and i sin at the moment =

r
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This gives the two double equations :

and (11)

or, substituting (8) and (9),

- r + ri
(IT -^ r - - (* - *2)

A e
* + ^o-

1
sin (d + a)

= A'e
* = 1 sin ^

2 (12)
z

and

^ - i -i sin -
OJ = A'e = i sin <9r (13)

These four equations (12) (13) determine four of the five

quantities, A, A'
,
Ov 2 ,

rv leaving one indeterminate.

Thus, one of these five quantities can be chosen. The deter-

mination of the four remaining quantities, however, is rather

difficult, due to the complex character of equations (12) (13),

and is feasible only by approximation, in a numerical example.
11. EXAMPLE: Let an alternating current of effective value

of 100 amp., that is, of maximum value t'
=

141.4, be rectified

for the supply of a circuit of impedance Z = 0.2 - 2 j, shunted

by a non-inductive circuit of resistance rr
Let the series connection of the rectified and alternating

circuits be established 30 time-degrees after the zero value of

alternating current, that is, d
1
= 30 deg.

= - chosen.

Then, from equation (13), we have

A'e
x = i sin Bv

hence, substituting r, x, Ov i
, gives

A' = 102.

From equation (12),

and, substituting,

sm0
2
- 0.527
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approximately

sin
2
= 0.527 and 6

2
= 32;

thus

sin 6
2
= 0.527

3 '2 =
0.558, and 6

2
= 34;

thus

sin 6
2
= 0.527

3 '4 =
0.559, and

2
= 34.

From equations (12) and (13) it follows :

As x + i
Q

sin (8 + 2)
= i sin

2 ,

Ae x ' - i - sin (^
-

0J = i sin
4 ;

2

eliminating A gives

2
- r

t
sin (5

'T* 7*
I

/y

substituting sin 8 = -, cos 5 = -
*-> ^

2 =
(r + rj

2 + x2

,
and

z ,z

substituting for r, x, 6V 6
2 , gives after some changes :

1.5- 1.04 r
e
-M ,.

1.1 -
r,

calculating by approximation,

assuming r
x
=

0.5,

0.603 =
0.612;

assuming r
s

=
0.51,

0.597 -
0.602;

assuming r^
=

0.52,

0.591 - 0.592;

hence, r
l
=

0.52,

and z =
2.124,

5 = 70.
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Substituting these values in (12) or (13) gives

A =-
113;

hence, as final equations, we have

i = 112
-- 36 ' + 34.6 sin (6

-
70),

i' = 102
--10

,

i = 141.4 sin 0,

and i
t
= i -

i',

which gives the following results :



236 TRANSIENT PHENOMENA

to the resistances; that is, in a rectified circuit, self-inductance

does not greatly affect the intensity of the current, but only its

character as regards fluctuations.

1W
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-20

-30

-40
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which is integrated by

i\
= A, + B

,
sin (0

-

237

(2)

Fig. 56. Single-phase constant-potential rectifying commutator.

Equation (2) substituted in (1) gives

e sin - e - (r + r ) [A, + B^~^
9 + C, sin (6

-
9,)]

-
(x +x )[- a^Bf-*' + C, cos (0

-
dj]

= 0;

or, transposing,

-
[ + e + (r + r ) AJ + Bf

a*
[a, (x + x )

-
(r + r )]

+ sin 6 [e
-

(r + r ) C l
cos ^ -

(x + x ) C t
sin ^J

+ Ci cos [(r + r ) sin 9
t
-

(x + x ) cos dj =
0;

herefrom it follows that

e + (r +rJA t
=

0,

a, (x + x )
-

(r + r )
=

0,

e
Q
-

(r + r ) (7
1
cos ^ -

(x + X
Q) C, sin ^ =

0,

and

(r + r ) sin 9^
-

(x + x ) cos ^
1
=

0;
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and

tan d
t
=

x+x
(

x+x,
r +r f

and, substituting in (2),

(3)

r +r.
r +

r+r

tan dj
=

2 + (x

(a:

(4)

2. During the time from n - 6
2
to n + Ov if t

2
= current in

the direct circuit, i
a
= current in alternating circuit, we have

Alternating-current circuit:

di-i
3 (r + r,)

- x
Q
- =

0, (5)

which is integrated the same as in (1), by

_ r + ^

Be x i
sn - x cos

(r
(6)
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Direct-current circuit:

-6-;
2 (r+r2)-z^ =

0, (7)

integrated by
_r_+_T20

*'.
- -

r-^72
+ B *

s

~

<8)

At ^ = TT <9
2 , however, we must have

and i'
2
at = n + 6

l
must be equal to

t\ at # =
t ,
and opposite to i

3
at # = it +

(9)

These terminal conditions represent four equations, which

suffice for the determination of the three remaining integration

constants, B lf
B

2 ,
B

s ,
and one further constant, as 6

l
or 6

2 ,
or

r
t
or r

2 ,
or e; that is, with the circuit conditions Z9, Z, rv r

2 ,
c

,
e

chosen, the moment ^ depends on i9
2
and inversely.

13. Special case:

Z =
0, r

2
=

0, e = 0; (10)

that is, the alternating e.m.f. eQ sin 6 is connected to the circuit

of impedance Z = r - jx during time 6^ to n - 6
2 ,
and closed

by resistance rv while the rectified circuit is short-circuited,

during time TT #
2
to n + Or

The equations are :

1. Time^ to n - 6
2

:

e
+ -^ [r sin 6 - x cos 6].

T -j- 37

2. Time TT - (9 to n +

e sin
io=

(11)
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The terminal conditions now assume the following forms :

At = 7T
-

9f

sin S
2 -f- x cos

2)
= B

2

en

at = TT + O
l
and

X respectively (12)

These four equations suffice for the determination of the two

integration constants B
1
and B

2 ,
and two of the three rectifica-

tion constants, Ov 2J
rv so that one of the latter may be chosen.

Choosing 2 ,
the moment of beginning reversal, the equations

(12) transposed and expanded give,

sin

sin <9
2

4- x2

(13)

Bj _?>nVi<'-.
^*i

and
- B,

-
(r sin

2 + x cos

which give 6
lt

rv B 2 ,
B

l
: 6

l
is calculated by approximation.

Assuming, as an example,

e = 156 sin 6 (corresponding to 110 volts effective),

Z = 10-30f,
and ^

^ -
s
= 30,
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and

by equations (13) we have :

log sin
1

= - 0.3765 - 0.1448 0,

O
l
- 21.7,

r,
-

7.63,

B
2
=

24.4,

5, -
12.8;and

thus

(15)

and

which gives:

= 12.8 e

~
3 + 1.56 (sin 6 - 3 cos 0),

_
= 24.4 r 3,

= 20.5 sin 0,

(16)

0,
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As seen, in this case the exponential or transient term of

current largely preponderates over the permanent or sinusoidal

term.

40 60 80 100 :

Degrees
140 160 180

Fig. 57. Single-phase e.m.f. rectification.

In Fig. 57 is shown the rectified current in drawn line, the

value it would have without self-inductance, and the value the

alternating current would have, in dotted lines.

3. Quarter-phase constant-current rectification.

14. In the quarter-phase constant-current arc machine, as

the Brush machine, two e.m.fs., E 1
= e cos 6 and E

2
= e sin #,

are connected to a rectifying commutator, so that while the first

E^ is in circuit E2
is open-circuited. At the moment Ov E2

is

connected in parallel, as shown diagrammatically in Fig. 58,

with Ev and the rising e.m.f. in E
2 gradually shifts the current

i away from E
1
into E

2 ,
until at the moment

2 , E^ is dis-

connected and E
2
left in circuit.

Assume that, due to the superposition of a number of such

quarter-phase e.m.fs., displaced in time-phase from each other,

and rectified by a corresponding number of commutators offset

against each other, and due to self-inductance in the external

circuit, the rectified current is practically steady and has the

value i . Thus up to the moment 6
t
the current in E

1
is i

,
in
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E
2
is 0. From 6

1
to 6

2
the current in E

2 may be i; thus in E
l
it

is i'
2
= i'

- t. After
2 ,
the current in E

l
is 0, in E

2
it is i .

A change of current occurs only during the time from O
l
to

2 ,

and it is only this time that needs to be considered.

Fig. 58. Quarter-phase constant-current rectifying commutator.

Let Z = r jx
= impedance per phase, where x = 2 njL ;

then at the time t and the corresponding angle = 2 njt the

difference of potential in E
l
is

d
(i'

-
t) 1

6 cos I? (i i) r L

di
= e cos -

(ia
-

i) r + x
;

the difference of potential in E
2
is

di
e sin - ir - x ;

(1)

and, since these two potential differences are connected in

parallel, they are equal

e (sin
- cos 6) + v -2ir -2x- = 0. (2)

at/
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The differential equation (2) is integrated by

i = A + Bs- ae
+Ccos(0 -); (3)

thus -Csm(0 -

and substituting in. (2),

e (sin
- cos 0) + i r - 2 Ar - 2 Bn'^ -2Cr cos (0

-
d)

+ 2 aBx~ ae +2Cx sin (6
-

d)
= Q-

or, transposed,

(i
- 2 A) r + 2 Bs~ *(ax

-
r) + sin d [e

- 2 Cr sin 8

+ 2Cx cos d]
- cos 6 [e + 2 Cr cos d + 2 Cx sin d]

=
0;

thus

i - 2 A =
0,

ax r = 0,

e - 2 Cr sin d + 2 Cx cos 5 = 0,

and e + 2 Cx sin d + 2 Cr cos d =
0,

and herefrom, letting
- = tan <r, we have
r

e = - 2Czsm(<r -
d),

e = - 2 (72 cos (<r
-

d),

r
a = -;

tan r =
- r

x + r

and

C = -

tan (<r
-

}
=

1,

C = =

(4)
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These values substituted in (3) give

t - + Be~* - = cos (0
-

d),
\/2 (r

5 + r
2

)

tan d =
(5)

At =
t ,

i = 0, and we have

= + Be *
1 - -= cos (d,

-
d)]

2 V2 (x
2 + r

2

)

hence,

Be~*
' =

f (d,
-

3) -; (6)
\/2 (z

2 + r
2

)
2

substituting in (5), we have the equations of current in the two

coils as follows :

e ('

\/2(z
a +

e
cos (#

C^+r2

)

(7)

V2 (x
2 + r

2

)^
'

and

+ - - cos (0
-

5).
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At d = 6
2 ,

i = i
;
thus

r
2

)

cos (0 3
-

5)
=

0;x 2

V2(x
2 + r

2

)

by e x
1

an

connecting moments d
l
and

2 ,
as follows:

or, multiplied by e x
1

and rearranged ;
we have the condition

V2 (x
2 + r

2

) (

=0
and

io

2

- 2

cos (# 2 -) . (8)

Rearranged equation (8) gives

where tan d
x +r

By approximation, from this equation the value of 6
2 ,

corre-

sponding to a given Ov is derived.

15. Example :

e = 2000, i =
10, and Z = 10 - 40 j.

Thus d = 31 = 0.54 radians
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and i = 5 + [34.3 cos (d l
- 31) -

5] e~
(

- 34.3 cos (0
- 31),

/ (0 2 )
= e

-25 '2
[1 + 6.86 cos (0 a

- 31)]

= '2501
[6.86 cos (0,

- 31) -
1].

Substituting for Ov 30 = -
t ,
45 =

j ,
and 60 =

^ , respec-
u 4 o

tively, gives:

and

,0
jr..

.*, i = 5 + 29.3e~ *V
"

*> - 34.3 cos (^-31)
6 ~~

- 31)-, i= 5+ 28.3

,
i = 5 + 25 . 1

3

_34 .3 cos (^-
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The actual curves of an arc machine differ, however, very

greatly from those of Fig. 59. In the arc machine, inherent regu-
lation for constant current is produced by opposing a very high
armature reaction to the field excitation, so that the resultant

m.m.f., or m.m.f. which produces the effective magnetic flux, is

.40 5D 90 100 110 120

16



CHAPTER IV.

ARC RECTIFICATION.

I. THE ARC.

16. The operation of the arc rectifier is based on the charac-

teristic of the electric arc to be a good conductor in one direction

but a non-conductor in the opposite direction, and so to permit

only unidirectional currents.

In an electric arc the current is carried across the gap between

the terminals by a bridge of conducting vapor consisting of the

material of the negative or the cathode, which is produced and

constantly replenished by the cathode blast, a high velocity
blast issuing from the cathode or negative terminal towards the

anode or positive terminal.

An electric arc, therefore, cannot spontaneously establish

itself. Before current can exist as an arc across the gap between

two terminals, the arc flame or vapor bridge must exist, i.e.,

energy must have been expended in establishing this vapor

bridge. This can be done by bringing the terminals into contact

and so starting the current, and then by gradually withdrawing
the terminals derive the energy of the arc flame by means of the

current, from the electric circuit, as is done in practically all arc

lamps. Or by increasing the voltage across the gap between the

terminals so high that the electrostatic stress in the gap repre-
sents sufficient energy to establish a path for the current, i.e., by
jumping an electrostatic spark across the gap, this spark is fol-

lowed by the arc flame. An arc can also be established between

two terminals by supplying the arc flame from another arc, etc.

The arc therefore must be continuous at the cathode, but may
be shifted from anode to anode. Any interruption of the cathode

blast puts out the arc by interrupting the supply of conducting

vapor, and a reversal of the arc stream means stopping the

cathode blast and producing a reverse cathode blast, which, in

general, requires a voltage higher than the electrostatic striking
249
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voltage (at arc temperature) between the electrodes. With an

alternating impressed e.m.f. the arc if established goes out at

the end of the half wave, or if a cathode blast is maintained

continuously by a second arc (excited by direct current or

overlapping sufficiently with the first arc), only alternate half

waves can pass, those for which that terminal is negative from

which the continuous blast issues. The arc, with an alternating

impressed voltage, therefore rectifies, and the voltage range of

rectification is the range between the arc voltage and the electro-

static spark voltage through the arc vapor, or the air or residual

gas which may be mixed with it. Hence it is highest with the

mercury arc, due to its low temperature.
The mercury arc is therefore almost exclusively used for arc

rectification. It is enclosed in an evacuated glass vessel, so as

to avoid escape of mercury vapor and entrance of air into the

arc stream. Due to the low temperature of the boiling point of

mercury, enclosure in glass is feasible with the mercury arc.

II. MERCURY ARC RECTIFIER.

17. Depending upon the character of the alternating supply,
whether a source of constant alternating potential or constant

alternating current, the direct-current circuit receives from the

rectifier either constant potential or constant current. Depend-

ing on the character of the system, thus constant-potential
rectifiers and constant-current rectifiers can be distinguished.

They differ somewhat from each other in their construction and

that of the auxiliary apparatus, since the constant-potential
rectifier operates at constant voltage but varying current, while

the constant-current rectifier operates at varying voltage. The

general character of the phenomenon of arc rectification is, how-

ever, the same in either case, so that only the constant-current

rectifier will be considered more explicitly in the following

paragraphs.
The constant-current mercury arc rectifier system, as used

for the operation of constant direct-current arc circuits from an

alternating constant potential supply of any frequency, is sketched

diagrammatically in Fig. 60. It consists of a constant-current

transformer with a tap C brought out from the middle of the

secondary coil AB. The rectifier tube has two graphite anodes
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a, 6, and a mercury cathode c, and usually two auxiliary mercury
anodes near the cathode c (not shown in diagram, Fig. 60),

which are used for excitation, mainly in starting, by establishing

between the cathode c and the two auxiliary mercury anodes,

from a small low voltage constant-potential transformer, a pair

of low current rectifying arcs. In the constant-potential rectifier,

generally one auxiliary anode only is used, connected through
a resistor r with one of the main anodes, and the constant-

Fig. 60. Constant-current

mercury arc rectifier.

Fig. 61. Constant-potential

mercury arc rectifier.

current transformer is replaced by a constant-potential trans-

former or compensator (auto-transformer) having considerable

inductance between the two half coils II and III, as shown in

Fig. 61. Two reactive coils are inserted between the outside

terminals of the transformer and rectifier tube respectively, for

the purpose of producing an overlap between the two rectifying

arcs, ca and cb, and thereby the required continuity of the arc

stream at c. Or instead of separate reactances, the two half coils

II and III may be given sufficient reactance, as in Fig. 61. A
reactive coil is inserted into the rectified or arc circuit, which

connects between transformer neutral C and rectifier neutral c,

for the purpose of reducing the fluctuation of the rectified current

to the desired amount.

In the constant-potential rectifier, instead of the transformer

ACS and the reactive coils Aa and Ba, generally a compensator
or auto-transformer is used, as shown in Fig. 61, in which the
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two halves of the coil, AC and BC, are made of considerable

self-inductance against each other, as by their location on

different magnet cores, and the reactive coil at c frequently
omitted. The modification of the equations resulting herefrom is

obvious. Such auto-transformer also may raise or lower the

impressed voltage, as shown in Fig. 61.

The rectified or direct voltage of the constant-current rectifier

is somewhat less than one-half of the alternating voltage supplied

by the transformer secondary AB, the rectified or direct current

somewhat more than double the effective alternating current

supplied by the transformer.

In the constant-potential rectifier, in which the currents are

larger, and so a far smaller angle of overlap is permissible, the

direct-current voltage therefore is very nearly the mean value

of half the alternating voltage, minus the arc voltage, which is

about 13 volts. That is, if e = effective value of alternating

voltage between rectifier terminals ab of compensator (Fig. 61),

2\/2
hence - e = mean value, the direct current voltage is

e = e.- 13.
7T

III. MODE OF OPERATION.

18. Let, in Figs. 62 and 63, the impressed voltage between
the secondary terminals AB of an alternating-current trans-

former be shown by curve I. Let C be the middle or center of

the transformer secondary AB. The voltages from C to A and
from C to B then are given by curves II and III.

If now A,B,C are connected with the corresponding rectifier

terminals a, 6,cand at c a cathode blast maintained, those currents

will exist for which c is negative or cathode, i.e., the current

through the rectifier from a to c and from b to c, under the

impressed e.m.fs. II and III, are given by curves IV and V, and
the current derived from c is the sum of IV and V, as shown in

curve VI.

Such a rectifier as shown diagrammatically in Fig. 62 requires
some outside means for maintaining the cathode blast at c, since

the current in the half wave 1 in curve VI goes down to zero at
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the zero value of e.m.f. Ill before the current of the next half

wave 2 starts by the e.m.f. II.

It is therefore necessary to maintain the current of the half

wave 1 beyond the zero value of its propel-

ling impressed e.m.f. Ill until the current of

the next half wave 2 has started, i.e., to

overlap the currents of the successive half

waves. This is done by inserting reactances

into the leads from the transformer to the

rectifier, i.e., between A and a, B and b respec-

tively, as shown in Fig. 60. The effect of

this reactance is that the current of half wave

1, V, continues beyond the zero of its im-

pressed e.m.f. Ill i.e., until the e.m.f. Ill has

died out and reversed, and the current of the

half wave 2, IV, started by e.m.f. II; that is,

the two half waves of the current overlap,

and each half wave lasts for more than half

a period or 180 degrees.

The current waves then are shown in curve

VII. The current half wave 1 starts at the zero value of its

e.m.f. Ill, but rises more slowly than it would without react-

Fig. 62. Constant-

current mercury
arc rectifier.

I
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current half wave 1 beyond the e.m.f. wave, i.e., beyond 180

degrees, by time-degrees, so that it overlaps the next half

wave 2 by time-degrees.

Hereby the rectifier becomes self-exciting, i.e., each half wave

of current, by overlapping with the next, maintains the cathode

blast until the next half wave is started.

The successive current half waves added give the rectified or

unidirectional current curve VIII.

During a certain period of time in each half wave from the zero

value of e.m.f. both arcs ca and cb exist. During the existence

of both arcs there can be no potential difference between the

rectifier terminals a and b, and the impressed e.m.f. between the

rectifier terminals a and b therefore has the form shown in curve

IX, Fig. 63, i.e., remains zero for # time-degrees, and then with

the breaking of the arc of the preceding half wave jumps up to

its normal value.

The generated e.m.f. of the transformer secondary, however,
must more or less completely follow the primary impressed e.m.f.

wave, that is, has a shape as shown in curve I, and the difference

between IX and I must be taken up by the reactance. That is,

during the time when both arcs exist in the rectifier, the a. c.

reactive coils consume the generated e.m.f. of the transformer

secondary, and the voltage across these reactive coils, therefore,

is as shown in curve X. That is, the reactive coil consumes

voltage at the start of the current of each half wave, at x in

curve X, and produces voltage near the end of the current, at y.

Between these times, the reactive coil has practically no effect and

its voltage is low, corresponding to the variation of the rectified

alternating current, as shown in curve XI. That is, during this

intermediary time the alternating reactive coils merely assist the

direct-current reactive coil.

Since the voltage at the alternating terminals of the rectifier,

a, 6, has two periods of zero value during each cycle, the rectified

voltage between c and C must also have the same zero periods,

and is indeed the same curve as IX, but reversed, as shown in

curve XII.

Such an e.m.f. wave cannot satisfactorily operate arcs, since

during the zero period of voltage XII the arcs go out. The

voltage on the direct-current line must never fall below the

"counter e.m.f." of the arcs, and since the resistance of this
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circuit is low, frequently less than 10 per cent, it follows that the

total variation of direct-current line voltage must be below

10 per cent, i.e., the voltage practically constant, as shown by the

straight line in curve XII. Hence a high reactance is inserted

into the direct-current circuit, which consumes the excess voltage

during that part of curve XII where the rectified voltage is

above line voltage, and supplies the line voltage during the

period of zero rectified voltage. The voltage across this reactive

coil, therefore, is as shown by curve XIII.

IV. CONSTANT-CURRENT RECTIFIER.

19. The angle of overlap of the two arcs is determined by
the desired stability of the system. By the angle and the

impressed e.m.f. is determined the sum total of e.m.fs. which
has to be consumed and returned by the a. c. reactive coil, and
herefrom the size of the a. c. reactive coil.

From the angle also follows the wave shape of the rectified

voltage, and therefrom the sum total of e.m.f. which has to be

given by the d. c. reactive coil, and hereby the size of the d. c.

reactive coil required to maintain the d. c. current fluctuation

within certain given limits.

The efficiency, power factor, regulation, etc., of such a mercury
arc rectifier system are essentially those of the constant-current

transformer feeding- the rectifier tube.

Let / =
frequency of the alternating-current supply system,

i = mean value of the rectified direct current, and a = the pulsa-
tion of the rectified current from the mean value, i.e., i (1 + a)

the maximum and i (1
-

a) the minimum value of direct cur-

rent. A pulsation from a mean of 20 to 25 per cent is permissible
in an arc circuit. The total variation of the rectified current

then is 2 ai
OJ i.e., the alternating component of the direct current

has the maximum value ai
,
hence the effective value i_ i (or

for a = 0.2, 0.141 1 ) and the frequency 2/. Hysteresis and eddy
losses in the direct-current reactive coil, therefore, correspond
to an alternating current of frequency 2f and effective value

a
- i

,
or about 0.141 -i

Q , i.e., are small even at relatively high

densities.
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In the alternating-current reactive coils the current varies,

unidirectionally, between and i (1 + a), i. e., its alternating

i and the effec-component has the maximum value

tive value- = i
Q (or, for a = + 0.2, 0.425 i ) and the fre-

JU

quency/. The hysteresis loss, therefore, corresponds to an

alternating current of frequency / and effective value %>

or about 0.425 i .

With decreasing load, at constant alternating-current supply,

the rectified direct current slightly increases, due to the increas-

ing overlap of the rectifying arcs, and to give constant direct

current the transformer must therefore be adjusted so as to

regulate for a slight decrease of alternating-current output with

decrease of load.

V. THEORY AND CALCULATION.

20. In the constant-current mercury-arc rectifier shown dia-

grammatically in Fig. 64, let e sirr 6 = sine wave of e.m.f. im-

pressed between neutral and outside of

alternating-current supply to the rec-

tifier; that is, 2 e sin 6 = total secondary

generated e.m.f. of the constant-current

transformer; Z
1
= r

1

--
jx 1

= imped-
ance of the reactive coil in each anode

circuit of the rectifier (" alternating-

current reactive coil")? inclusive of the

internal self-inductive impedance be-

tween the two halves of the transformer

secondary coil; t\ and i
2
= anode cur-

rents, counted in the direction from

anode to cathode; ea = counter e.m.f.

Fig. 64. Constant-current of rectifying arc, which is constant; Z =
mercury arc rectifier. r jx

= impedance of reactive coil

in rectified circuit (" direct-current re-

active coil"); Z 2
= r

2
~

JX2
= impedance of load or arc-lamp

circuit; e/ = counter e.m.f. in rectified circuit, which is con-
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stant (equal to the sum of the counter e.m.fs. of the arcs in the

lamp circuit) ;
# = angle of overlap of the two rectifying arcs,

or overlap of the currents i
t
and i

2 ;
i = rectified current during

the period, < < ,
where both rectifying arcs exist, and i

' =

rectified current during the period, < 6 < n, where only one

arc or one anode current i
1
exists.

Let e = e
Q

' + ea.

= total counter e.m.f. in the rectified cir-

cuit and Z = r jx
=

(r t + r + r
2)
-

j (x l + x -f x
2)
= total

impedance per circuit; then we have

(a) During the period when both rectifying arcs exist,

o < e < ,

% = h + v C1 )

In the circuit between the e.m.f. 2 e sin d, the rectifier tube,

and the currents \ and iv according to Kirchhoff's law, it is,

Fig. 64,

di di
2esin0 - v\ -^-+^2+^1- = 0- (2)

In the circuit from the transformer neutral over e.m.f. e sin 6,

current iv rectifier arc ea and rectified circuit i'
,
back to the

transformer neutral, we have

di~ . di . di

esmO-r^-x^ -ea
-

r,i
- x

-^-
r
2
i - x

2
-

e,'
-

or,

e sin d - r
l
i

l

- x^ -
(r + r

a)
i -

(x + x
2) -^

- e = 0. (3)

(6) During the period when only one rectifying arc exists,

< e < x,

h = V;

hence, in this circuit,

di
' di

'

e sin -vY - x^ -
(r + r

2)
i
Q

' -
(x + x

2)
-

-e. = 0. (4)
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Substituting (1) in (2) and combining the result (5) of this

substitution with (3) gives the differential equations of the rec-

tifier:

2 e sin + r, (i
- 2 i,} + X^'fa

- 2 ij -
0, (5)

and

2 e + (2 r - rj i + (2x- xj -
0,

di
'

e sin 6 e n'' x - = 0.

(6)

(7)

In these equations, i
Q
and ^ apply for the time, < <

,

ij for the time, < d < n.

21. These differential equations are integrated by the func-

tions

i
n -2i, = Ae~ a9 + A' sin (6

-
/?), (8)

L=B*- +B', (9)

and (10)

Substituting (8), (9), and (10) into (5), (6), and (7) gives

three identities :

2 e sin.fl+A
7

[r, sin (0-0) +x, cos (6-p)}+Ae-
ae

(r^-ax^) =0.

2 e +B'(2 r-rj +5e
-M

[(2 r-rj -b (2 x-xj] = 0,

and

esmd-e -C"[rsm(d- r)+xcos(0- r)]-C'r-Ce-
c9
(r-cx)=0',

hence,

and

r,
-

ax,
-

0,

(2 r - r
t )
- b (2 x -

x,)
=

0,

r ex = 0.

e + C'r =
0,

2 e + A' (r 1
cos /? + x

1
sin /?)

=
0,

A 7

(r t
sin /?

- x
l
cos /?)

=
0,

e C" (r cos
7- + sin

?-)
=

0,

C" (r sin ^
- x cos ?)

= 0.

(11)
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Writing
? = v/r 2 4- r 2
z

\
~ r

i r *t. i

tan <*,=,

and

tan a: = -
r

(12)

(13)

Substituting (12) and (13) gives by resolving the 9 equations

(11) the values of the coefficients a, b, c, A', J5', C", C", ft r :

(14)

r
c = ->

x

r a,

2e

B'-
2e

2r-r
1

C" = +-,
z

and thus the integral equations of the rectifier are

and

io-Zi, =A
~ ae - -sin (0 -a,),

2r -
r.

r 2

(15)

(16)

(17)

(18)

(19)

(20)
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where a, b, c are given by equations (14), a and a
l by equations

(12) and (13), and A, J3, C are integration constants given by the

terminal conditions of the problem.
22. These terminal conditions are :

=
o,

f

and

(21)

That is, at = the anode current i
l
= 0. After half a

period, or n = 180, the rectified current repeats the same

value. At 6 =
,
all three currents iv iw i

Q

'
are identical.

The four equations (21) determine four constants, A, B, C, .

Substituting these constants in equations (18), (19), (20)

gives the equations of the rectified current i
,

i
Q',

and of the

anode currents i^ and i
2
= i iv determined by the constants

of the system, Z, Zv e
,
and by the impressed e.m.f., e.

In the constant-current mercury-arc rectifier system of arc

lighting, e, the secondary generated voltage of the constant-

current transformer, varies with the load, by the regulation of

the transformer, and the rectified current, i
Q ,

i
', is required to

remain constant, or rather its average value.

Let then be given as condition of the problem the average
value i of the rectified current, 4 amperes in a magnetite or

mercury arc lamp circuit, 5 or 6.6 or 9.6 amperes in a carbon

arc lamp circuit.

Assume as fair approximation that the pulsating rectified

current i
,
i
Q

r has its mean value i at the moment, 6 = 0. This

then gives the additional equation

Kol.-o
-

*> (22)

and from the five equations (21) and (22) the five constants

A, B, (7, ,
e are determined.

Substituting (22), (18), (19), (20) inequations (21) gives

A
'

A = i --- sin a

C =S*i + --sma
r z

(23)
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_ sn a _
z

l
2 r -

(24)

Substituting (23) in (24) gives

2 e( )

j

' 9
sin a

l

- sin (a l
# ) > = i

z 1 \ )

2r -

and

--*
(25)

^ r TJ f )

w ~*o) sin + sin (a 6
]

2 r - r
t ( ) r <

and eliminating e from these two equations gives

) t(2r-r,){ \

(27)

Equation (27) determines angle ,
and by successive substitu-

tion in (26), (23), e, A, B, C are found.

Equation (27) is transcendental, and therefore has to be solved

by approximation, which however is very rapid.

As first approximation, a = 6 = c = 0; a=a 1
= 90 or -

2i

and substituting these values in (27) gives

cosfl, 2* V W + W
1 - cos d

l
z

l
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and

(28)

This value of O
l
substituted in the exponential terms of equa-

tion (27) gives a simple trigonometric equation in
,
from which

follows the second approximation 2 , and, by interpolation, the

final value,

23. For instance, let e = 950, i = 3.8, the constants of the

circuit being Z
l
= 10 - 185 / and Z = 50 - 1000 /.

Herefrom follows

a =
0.054, b =

0.050, and c = 0.050, (14)

A
= 86.9 and a = 87.1. (15)

From equation (28) follows as first approximation, #
t
= 47.8;

as second approximation, #
2
= 44.2.

Hence, by (29),
= 44.4.

Substituting a in (26) gives e = 2100,

hence, the effective value of transformer secondary voltage,

2 eJ = 2980 volts
V2

and, from (23),

A = --
18.94, B =

24.90, C = 24.20.

Therefore, the equations of the currents are

i = 24.90s-
-0500 -

21.10,

V= 24.20 e-
' 050 * - 19.00 +2.11 sin (6

-
87.1),

i,
= 12.45 e-

'050 * + 9.47
--0540 - 10.58 + 11.35 sin (0

-
86.9),

and
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The effective or equivalent alternating secondary current of

the transformer, which corresponds to the primary load current,

that is, primary current minus exciting current, is

V V-t Vt

From these equations are calculated the numerical values of

rectified current i
ot

t' ', of anode current iv and of alternating

current i'
,
and plotted as curves in Fig. 65.

\

\

Fig. 65. Current waves of constant-current mercury arc rectifier.

24. As illustrations of the above phenomena are shown in

Fig. 66 the performance curves of a small constant-current rec-

tifier, and in Figs. 67 to 76 oscillograms of this rectifier.

Interesting to note is the high frequency oscillation at the ter-

mination of the jump of the potential difference cC (Fig. 60)

which represents the transient term resulting from the electro-

static capacity of the transformer. At the end of the period of

overlap of thetwo rectifying arcs one of the anode currents reaches
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Fig. 66. Results from tests made on a constant-current mercury arc rectifier.

\
Fig. 67. Supply e.m.f. to constant-current rectifier.

A A A
,/ V V V

Fig. 68. Secondary terminal e.in.f. of transformer.

Fig. 69. E.m.f. across a.c. reactive coils.

r\
. ,

i/
Fig. 70. Alternating e.m.f. impressed upon rectifier tube.
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w\r\r\r\
Fig. 71. Unidirectional e.m.f. produced between rectifier neutral and

transformer neutral.

V
Fig. 72. E.m.f. across d.c. reactive coils.

Fig. 73. Rectified e.m.f. supplied to arc circuit.

Fig. 74. Primary supply current.

Fig. 75. Current in rectifying arcs.

Fig. 76. Rectified current in arc circuit.
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zero and stops, and so its L abruptly changes; that is, asud-
ctt

den change of voltage takes place in the circuit aACDc or

bBCDc. Since this 'cuit contains distributed capacity, that

of the transformer C' ^BC respectively, the line, etc., and

inductance, an oscillatk
^.-.esults

of a frequency depending upon
the capacity and inductance, usually a few thousand cycles per

second, and of a voltage depending upon the impressed e.m.f.;

that is, the L of the circuit. An increase of inductance L
dt

di
increases the angle of overlap and so decreases the

,
hence does

CLL

not greatly affect the amplitude, but decreases the frequency of

this oscillation. An increase of at constant L, as resulting
dt

from a decrease of the angle of overlap by delayed starting of

the arc, caused by a defective rectifier, however increases the

amplitude of this oscillation, and if the electrostatic capacity is

high, and therefore the damping out of the oscillation slow, the

Fig. 77. E.m.f. between rectifier anodes.

oscillation may reach considerable values, as shown in oscillo-

gram, Fig. 77, of the potential difference db. In such cases, if

the second half wave of the oscillation reaches below the zero

value of the e.m.f. wave db, the rectifying arc is blown out and

a disruptive discharge may result.
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VI. EQUIVALENT SINE WAVES.

25. The curves of voltage and current in the mercury-arc
rectifier system, as calculated in the p

!n
eding from the con-

stants of the circuit, consist of succe, , Sections of exponential
or of exponential and trigonometric c

In general, such wave structures, built up of successive sections

of different character, are less suited for further calculation.

For most purposes, they can be replaced by their equivalent
sine waves, that is, sine waves of equal effective value and equal

power.
The actual current and e.m.f. waves of the arc rectifier thus

may be replaced by their equivalent sine waves, for general

calculation, except when investigating the phenomena resulting

from the discontinuity in the change of current, as the high

frequency oscillation at the end and to a lesser extent at the

beginning of the period of overlap of the rectifying arcs, and

similar phenomena.
In a constant-current mercury arc rectifier system, of which

the exact equations or rather groups of equations of currents

and of e.m.fs. were given in the preceding, let % = the mean
value of direct current; e

Q
= the mean value of direct or rectified

voltage; i = the effective value of equivalent sine wave of

secondary current of transformer feeding the rectifier; e = the

effective value of equivalent sine wave of total e.m.f. generated
^>

in the transformer secondary coils, hence,
- = the effective
ft

equivalent sine wave of generated e.m.f. per secondary trans-

former coil, and # = the angle of overlap of rectifying arcs.

The secondary generated e.m.f., e, is then represented by a

sine wave curve I, Fig. 78, with e \/2 as maximum value.

Neglecting the impedance voltage of the secondary circuit

during the time when only one arc exists and the current changes
are very gradual, the terminal voltage between the rectifier

anodes, ev is given by curve II, Fig. 78, with e V2 as maximum
value. This curve is identical with e, except during the angle

of overlap #
,
when e^ is zero. Due to the impedance of the)

reactive coils in the anode leads, curve II differs slightly from I,

but the difference is so small that it can be neglected in deriving
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the equivalent sine wave, and this impedance considered after-

wards as inserted into the equivalent sine-wave circuit.

The rectified voltage, e
2 ,

is then given by curve III, Fig. 78,

e /
e

with a maximum value of - v 2 =
/=-

and zero value during

the angle of overlap ,
or rather a value = ea ,

the e.m.f. con-

sumed by the rectifying arc (13 to 18 volts).

ii

in

IV

VI

VII

viii

Fig. 78. E.m.f. and current curves in a mercury arc rectifier system.

The direct voltage e
,
when neglecting the effective resistance

of the reactive coils, is then the mean value of the rectified

voltage, e
2 ,

of curve III, hence is

en
= elf.=

:
-

/ SI

v/2 *V*
sin d dd
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_ e (1 + cos )
m

y>
fy C/.
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If ea
= the mercury arc voltage, r = the effective resistance of

reactive coils and i = the direct current, more correctly it is

The effective alternating voltage between the rectifier anodes

is the Vmean square of ev curve II, hence is

2 - sin 2

27T

and the drop of voltage in the reactive coils in the anode leads,

caused by the overlap of the arcs, thus is

- sin 2
(

2x

26. Let i
v = the maximum variation of direct current from

mean value i'
, hence, i

2
= i + i

f =' the maximum value of

rectified current, and therefore also the maximum value of

anode current.

The anode current thus has a maximum value iv and each

half wave has a duration TT + ,
as shown by curve IV, Fig. 78.

The direct current, i
,
is then given by the superposition or

addition of the two anode currents shown in curves V, and is

given in curve VI.
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The effective value of the equivalent alternating secondary
current of the transformer is derived by the subtraction of the

two anode currents, or their superposition in reverse direction,

as shown by curves VII, and is given by curve VIII.

Each impulse of anode current covers an angle n + ,
or

somewhat more than one half wave.

Denoting, however, each anode wave by n, that is, considering
each anode impulse as one half wave (which corresponds to a

Ifower frequency -), then, referred to the anode impulse
x + V

as half wave, the angle of overlap is

TT

0, =
1 ^ ,

71 -j-

The direct current, i
,
is the mean value of the anode current

curves V, VI, and, assuming the latter as equivalent sine waves

of maximum value i
2
= i + i'

',
the direct current, i

,
is

sin d' dd'
u

1 i/o

2L
-

0,

2 (n + ) L

and

or,

and the pulsation of the direct current, i
f = i

2
i

,
is

7T
2

)

The effective value of the secondary current, as equivalent

sine wave in one transformer coil, is the \/ mean squiare of curves

VII, VIII, or, assuming this current as existing in both trans-

former secondary coils in series actually it alternates, one half
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wave in one, the other in the other transformer coil is half this

value, or

=
7? V ~<r I / an*^ + f"[sin #" + si
2 71 U (

^ JQ

" + sin (^ - 6
i

4V^sf-^'+Asin 0'sm(02 ?
71
-

1 (
J J

V / 1 7~I r~~ Y 1

= -2 y- -r-)^ + tf'cos^ -sin (2^ - 6m
2 TT

t
( 2 L Jo

- + .0 t
cos

X
- sin 0j >

;

or, substituting

^2
=

*0
2

-0,) + 0, cos 0,
- sin 0,

or, substituting

i<
~~~

IT v -L H~ cos sin
2 2V2

where = ratio of effective value to mean value of sine wave.
2V2

27. An approximate representation by equivalent sine waves,
if e = the mean value of direct terminal voltage, i .= the mean
value of direct current, is therefore as follows:

The secondary generated e.m.f. of the transformer is
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the secondary current of the transformer is

2 <

the pulsation of the direct current is

7T
2

cos sin
x + 6 Ti + 6,

the anode voltage of the rectifier is

2 # - sin 2 #
c

and herefrom follows the apparent efficiency of rectification, -V
61

the power factor, the efficiency, etc.

70 80

Fig. 79. E.m.f. and current ratio and secondary power factor of constant-

current mercury arc rectifier.

From the equivalent sine waves, e and i, of the transformer

secondary, and their phase angle, the primary impressed e.m.f.

and the primary current of the transformer, and thereby the
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power factor, the efficiency, and the apparent efficiency of the

system, are calculated in the usual manner.

In the secondary circuit, the power factor is below unity

essentially due to wave shape distortion, less due to lag of cur-

rent.

As example are shown, in Fig. 79, with the angle of overlap
e 2i

as abscissas, the ratio of voltages,
-

;
the ratio of currents, ;

2e
o %

i'

the current pulsation, -> and the power factor of the secondary
t
o

circuit.
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TRANSIENTS IN SPACE

CHAPTER I.

INTRODUCTION.

1. The preceding sections deal with transient phenomena in

time, that is, phenomena occurring during the time when a

change or transition takes place between one condition of a cir-

cuit and .another. The time, t, then is the independent variable,

electric quantities as current, e.m.f., etc., the dependent variables.

Similar transient phenomena also occur in space, that is, with

space, distance, length, etc., as independent variable. Such

transient phenomena then connect the conditions of the electric

quantities at one point in space with the electric quantities at

another point in space, as, for instance, current and potential
difference at the generator end of a transmission line with those

at the receiving end of the line, or current density at the surface

of a solid conductor carrying alternating current, as the rail

return of a single-phase railway, with the current density at the

center or in general inside of the conductor, or the distribution

of alternating magnetism inside of a solid iron, as a lamina of an

alternating-current transformer, etc. In such transient phenom-
ena in space, the electric quantities, which appear as functions

of space or distance, are not the instantaneous values, as in the

preceding chapters, but are alternating currents, e.m.fs., etc.,

characterized by intensity and phase, that is, they are periodic

functions of time, and the analytical method of dealing with

such phenomena therefore introduces two independent variables,

time t and distance I, that is, the electric quantities are periodic
functions of time and transient functions of space.
The introduction of the complex quantities, as representing the

alternating wave by a constant algebraic number, eliminates
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278 TRANSIENT PHENOMENA

the time t as variable, so that, in the denotation by complex

quantities, the transient phenomena in space are functions of

one independent variable only, distance Z, and thus lead to the

same equations as the previously discussed phenomena, with

the difference, however, that here, in dealing with space phenom-

ena, the dependent variables, current, e.m.f., etc., are complex

quantities, while in the previous discussion they appeared as

instantaneous values, that is, real quantities.

Otherwise the method of treatment and the general form of

the equations are the same as with transient functions of time.

2. Some of the cases in which transient phenomena in space

are of importance in electrical engineering are :

(a) Circuits containing distributed capacity and self-induc-

tance, as long-distance energy transmission lines, long-distance

telephone circuits, multiple spark-gaps, as used in some forms

of high potential lightning arresters (multi-gap arrester), etc.

(b) The distribution of alternating current in solid conductors

and the increase of effective resistance and decrease of effective

inductance resulting therefrom.

(c) The distribution of alternating magnetic flux in solid iron,

or the screening effect of eddy currents produced in the iron, and

the apparent decrease of permeability and increase of power

consumption resulting therefrom.

(d) The distribution of the electric field of a conductor

through space, resulting from the finite velocity of propagation
of the electric field, and the variation of self-inductance and

mutual inductance and of capacity of a conductor without

return, as function of the frequency, in its effect on wireless

telegraphy.

(e) Conductors conveying very high frequency currents, as

lightning discharges.



CHAPTER II.

LONG-DISTANCE TRANSMISSION LINE.

3. If an electric impulse is sent into a conductor, as a trans-

mission line, this impulse travels along the line at the velocity
of light (approximately), or 188,000 miles per second. If the

line is open at the other end, the impulse there is reflected and
returns at the same velocity. If now at the moment when the

impulse arrives at the starting point a second impulse, of

opposite direction, is sent into the line, the return of the first

impulse adds itself, and so increases the second impulse; the

return of this increased second impulse adds itself to the third

impulse, and so on; that is, if alternating impulses succeed each

other at intervals equal to the time required by an impulse to

travel over the line and back, the effects of successive impulses
add themselves, and large currents and high e.m.fs. may be

produced by small impulses, that is, low impressed alternating

e.m.fs., or inversely, when once started, even with zero impressed

e.m.f., such alternating currents traverse the lines for some time,

gradually decreasing in intensity by the energy consumption in

the conductor, and so fading out.

The condition of this phenomenon of electrical resonance

thus is that alternating impulses occur at time intervals equal
to the time required for the impulse to travel the length of the

line and back; that is, the time of one half wave of impressed
e.m.f. is the time required by light to travel twice the length of

the line, or the time of one complete period is the time light

requires to travel four times the length of the line; in other

words, the number of periods, or frequency of the impressed

alternating e.m.fs., in resonance condition, is the velocity of

light divided by four times the length of the line; or, in free

oscillation or resonance condition, the length of the line is one

quarter wave length.
279



280 TRANSIENT PHENOMENA

If then I = length of line, S = speed of light, the frequency of

oscillations or natural period of the line is

'
"4?

or, with I given in miles, hence S = 188,000 miles per second, it is

, 47,000
/o
=

j- cycles. (2)

To get a resonance frequency as low as commercial frequencies,

as 25 or 60 cycles, would require Z == 1880 miles for / = 25

cycles, and Z = 783 miles for./,
- 60 cycles.

It follows herefrom that many existing transmission lines are

such small fractions of a quarter-wave length of the impressed

frequency that the change of voltage and current along the line

can be assumed as linear, or at least as parabolic; that is, the line

capacity can be represented by a condenser in the middle of the

line, or by condensers in the middle and at the two ends of the

line, the former of four times the capacity of either of the two
latter (the first approximation giving linear, the second a para-
bolic distribution).

For further investigation of these approximations see "Theory
and Calculation of Alternating-Current Phenomena/' 4th edition,

pages 225 to 233.

If, however, the wave of impressed e.m.f. contains appreciable

higher harmonics, some of the latter, may approach resonance

frequency and thus cause trouble. For instance, with a line of

150 miles length, the resonance frequency is / = 313 cycles per

second, or between the 5th harmonic and the 7th harmonic, 300

and 420 cycles of a 60-cycle system; fairly close to the 5th har-

monic.

The study of such a circuit of distributed capacity thus

becomes of importance with reference to the investigation of

the effects of higher harmonics of the generator wave.

In long-distance telephony the important frequencies of

speech probably range from 100 to 2000 cycles. For these fre-
er

quencies the wave length varies from = 1880 miles down to
L

94 miles, and a telephone line of 1000 miles length would thus
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contain from about one-half to 11 complete waves of the im-

pressed frequency. For long-distance telephony the phenomena
occurring in the line thus can be investigated only by consider-

ing the complete equation of distributed capacity and inductance

as so-called "wave transmission" and the phenomena thus

essentially differ from those in a short energy transmission line.

4. Therefore in very long circuits, as in lines conveying alter-

nating currents of high value at high potential over extremely

long distances, by overhead conductors or underground cables,

or with very feeble currents at extremely high frequency, such

as telephone currents, the consideration of the line resistance,

which consumes e.m.fs. in phase with the current, and of the

line reactance, which consumes e.m.fs. in quadrature with the

current, is not sufficient for the explanation of the phenomena
taking place in the line, but several other factors have to be taken

into account.

In long lines, especially at high potentials, the electrostatic

capacity of the line is sufficient to consume noticeable currents.

The charging current of the line condenser is proportional to the

difference of potential and is one-fourth period ahead of the

e.m.f. Hence, it either increases or decreases the main current,

according to the relative phase of the main current and the e.m.f.

As a consequence the current changes in intensity, as well as

in phase, in the line from point to point; and the e.m.fs. con-

sumed by the resistance and inductance, therefore, also change
in phase and intensity from point to point, being dependent

upon the current.

Since no insulator has an infinite resistance, and since at high

potentials not only leakage but even direct escape of electricity

into the air takes place by
" brush discharge," we have to rec-

ognize the existence of a current approximately proportional
and in phase with the e.m.f. of the line. This current represents

consumption of power, and is therefore analogous to the e.m.f.

consumed by resistance, while the condenser current and the

e.m.f. of inductance are wattless or reactive.

Furthermore, the alternating current passing over the line pro-
duces in all neighboring conductors secondary currents, which
react upon the primary current and thereby introduce e.m.fs.

of mutual inductance into the primary circuit. Mutual induc-

tance is neither in phase nor in quadrature with the current,
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and can therefore be resolved into a power component of mutual

inductance in phase with the current, which acts as an increase

of resistance, and into a reactive component in quadrature with

the current, which decreases the self-inductance.

This mutual inductance is not always negligible, as, for

instance, its disturbing influence in telephone circuits shows.

The alternating potential of the line induces, by electrostatic

influence, electric charges in neighboring conductors outside of

the circuit, which retain corresponding opposite charges on the

line wires. This electrostatic influence requires the expenditure

of a current proportional to the e.m.f. and consisting of a

power component in phase with the e.m.f. and a reactive com-

ponent in quadrature thereto.

The alternating electromagnetic field of force set up by the

line current produces in some materials a loss of power by mag-
netic hysteresis, or an expenditure of e.m.f. in phase with the cur-

rent, which acts as an increase of resistance. This electro-

magnetic hysteresis loss may take place in the conductor proper

if iron wires are used, and may then be very serious at high fre-

quencies such as those of telephone currents.

The effect of eddy currents has already been referred to under
" mutual inductance," of which if is a power component.
The alternating electrostatic field of force expends power in

dielectrics by what is called dielectric hysteresis. In concentric

cables, where the electrostatic gradient in the dielectric is com-

paratively large, the dielectric hysteresis may at high potentials

consume considerable amounts of power. The dielectric hystere-

sis appears in the circuit as consumption of a current whose

component in phase with the e.m.f. is the dielectric power current,

which may be considered as the power component of the charging

current.

Besides this there is the apparent increase of ohmic resistance

due to unequal distribution of current, which, however, is usually

not large enough to be noticeable at low frequencies.

Also, especially at very high frequency, energy is radiated into

space, due to the finite velocity of the electric field, and can be

represented by power components of current and of voltage

respectively.

5. This gives, as the most general case and per unit length
of line,
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E.m.fs. consumed in phase with the current, I, and =
r/, repre-

senting consumption of power, and due to resistance, and its

apparent increase by unequal current distribution; to the power

component of mutual inductance: to secondary currents; to the

power component of self-inductance: to electromagnetic hysteresis;

and to electromagnetic radiation.

E.m.fs. consumed in quadrature with the current, I, and =
xl,

reactive, and due to self-inductance and mutual inductance.

Currents consumed in phase with the e.m.f., E, and = gE,

representing consumption of power, and due to leakage through
the insulating material, including brush discharge; to the power

component of electrostatic influence; to the power component of

capacity, or dielectric hysteresis, and to electrostatic radiation.

Currents consumed in quadrature with tJw e.m.f., E, and = bE,

being reactive, and due to capacity and electrostatic influence.

Hence we get four constants per unit length of line, namely:
Effective resistance, r; effective reactance, x; effective conduc-

tance, g, and effective susceptance, b = - b
c (bc being the

absolute value of susceptance). These constants represent the

coefficients per unit length of line of the following: e.m.f.

consumed in phase with the current; e.m.f. consumed in quadra-
ture with the current; current consumed in phase with the e.m.f.,

and current consumed in quadrature with the e.m.f.

6. This line we may assume now as supplying energy to a

receiver circuit of any description, and determine the current and
e.m.f. at any point of the circuit.

That is, an e.m.f. and current (differing in phase by any
desired angle) may be given at the terminals of the receiving

circuit. To be determined are the e.m.f. and current at any
point of the line, for instance, at the generator terminals; or

the impedance, Z
t
= r

l

-
jxv or admittance, Y

l
=

g 1 + jb lt

of the receiver circuit, and e.m.f., E ,
at generator terminals are

given; the current and e.m.f. at any point of circuit to be deter-

mined, etc.

7. Counting- now the distance, I, from a point of the line

which has the e.m.f.

+ je,
f

and the current
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and counting I positive in the direction of rising power and

negative in the direction of decreasing power, at any point I, in

the line differential dl the leakage current is

Egdl

and the capacity current is

-
jEb dl;

hence, the total current consumed by the line differential dl is

dl = E (g
-

jb) dl

= EY dl,

%-YE. (1)

In the line differential dl the e.m.f. consumed by resistance is

Irdl,

the e.m.f. consumed by inductance is

-
jlxdl;

hence, the total e.m.f. consumed by the line differential dl is

dE = I (r
-

jx) dl

= IZ dl,

f-Zl. (2)

These fundamental differential equations (1) and (2) are sym-
metrical with respect to / and E.

Differentiating these equations (1) and (2) gives

dl
(3)

d*E
and



LONG-DISTANCE TRANSMISSION LINE 285

and substituting (1) and (2) in (3) gives the differential equa-
tions of E and I

,
thus :

%-YZB (4)

and
;r

=FZ -- (5)

These differential equations are identical, and consequently I and
E are functions differing by their integration constants or by their

limiting conditions only.

These equations are of the form

f -

and are integrated by
V -

where e is the basis of the natural logarithms, = 2.718283.

Choosing equation (5), which is integrated by

7 -- At, (6)

and differentiating (6) twice gives

and substituting (6) in (5), the factor As vl
cancels, and we have

V2 = ZY,
or

V -= VZY, (7)

hence, the general integral,

/ =
A,e

+ vl - A
2

- vl
.

(8)

By equation (1),

E
ld'

Y~dl'

and substituting herein equation (8) gives

E -A, + A*-" , (9)
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or, substituting (7),

E =\/A 1
e
+vl

+A,e-vi .

(10)

The integration constants A
1
and A

2
in (8), (9), (10), in

general, are complex quantities. The coefficient of the exponent,

F, as square root of the product of two complex quantities, also

is a complex quantity, therefore may be written

V = a -
jp, (11)

and substituting for F, Z and Y gives

(a
-

j/?)
2 =

(r
-

jx) (g
-

jb),

or

(a
2 -

/?

2

)
- 2 jap

=
(rg

-
xb)

-
j (rb + gx),

and this resolves into the two separate equations

a2

ft
2 =

rg xb )

2 aQ = rb + \
(12)

since, when two complex quantities are equal, their real terms as

well as their imaginary terms must be equal.

Equations (12) sauared and added give

(a
2 + /?

2

)
2 =

(rg
-

xb)
2 + (rb + xg)*

=
(r

2 + z2

) tf + 6
2

)

hence,
2 + P =

*0, (13)

and from (12) and (13),

a = \^(zy + rg
-

xb)
and (14)

ft
= V%(zy -

rg + xb). I

(15)

Equations (8) and (10) now assume the form

and

E =
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Substituting for the exponential function with an imaginary

exponent the trigonometric expression

e
m - cos 02 j sin pi, (16)

equations (15) assume the form

/ = 4 l

+a
'(cos0/

-
/sin /#)

- 4 2

~ a
'(cos0Z + / sin pi)

/z(
E =\ -\Af +al

(cos pi
-

/ sin 00 +4 2
e
~ a

'(cos pi +/ sin 00

where A
l
and A

2
are the constants of integration.

The distribution of current / and voltage E along the circuit,

therefore, is represented by the sum of two products of expo-
nential and trigonometric functions of the distance I. Of these

terms, the one, with factor As +al
,
increases with increasing dis-

tance /, that is, increases towards the generator, while the other,

with factor A^-*
1

,
decreases towards the generator and thus

increases with increasing distance from the generator. The

phase angle of the former decreases, that of the latter increases

towards the generator, and the first term thus can be called the

main wave, the second term the reflected wave.

At the point / = 0, by equations (17) we have

7 - A A*
o

"~
.1

~~
*lv

and the ratio

^- = m (cos T + / sin r),A
i

where r may be called the angle of reflection, and m the ratio of

amplitudes of reflected and main wave at the reflection point.
8. The general integral equations of current and voltage dis-

tribution (17) can be written in numerous different forms.

Substituting A
2
instead of + A

2 ,
the sign between the

terms reverses, and the current appears as the sum, the voltage
as difference of main and reflected wave.
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Rearranging (17) gives

/ = (Aie

+t* - A
2
e~ al

) cos pi
-

j (A l
e
+al + A

2
e~ al

) sin/?/

and

E ==

Substituting (7) gives

and substituting

and

or

and

(18)

= ---
Y V Y'

(19)

*- B"
- v

changes equations (17) to the forms,

7=7 \B
l
e
+al

(co8pl-j sin pi) -B^'"
1

(cos pi +j sin.pl) I

and

or

f
+al

(cos pl-j sin
al

(cos ^ +j sin pi) ,

(20)

I = Y \ C^
+aZ

(cos pi j sin pi)
-C

2
e

al

(cos pi +j sin pi)

> +aZ
(cos pl-j sin pi) +C2

e~

I =

and

sn

(21)
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Substituting in (17)

4,

VY VY
gives

-D
2

- aZ

(cos/?Z+/sin 0Z)

and

(23)

(22)

Reversing the sign of Z, that is, counting the distance in the

opposite direction, or positive for decreasing power, from the

generator towards the receiving circuit, and not, as in equations

(17) to (22), from the receiving circuit towards the generator,

exchanges the position of the two terms; that is, the first term,

or the main wave, decreases with increasing distance, and lags;

the second term, or the reflected wave, increases with the dis-

tance, and leads.

Equations (47) thus assume the form

/ -= 4l

- a<

(cos pi + j sin pi)
- A

2
e
+ai

(cos pi
-

j sin pi)

and

fz (E= y -
J41

e- rf

(cos0Z + /sin0Z) +A2
s
+al

(cospl-jsinpl)

and correspondingly equations (18) to (22) modify.
9. The two integration constants contained in equations (17)

to (23) require two conditions for their determination, such as

current and voltage at one point of the circuit, as at the generator
or at the receiving end; or current at one point, voltage at the

other; or voltage at one point, as at the generator, and ratio of

voltage and current at the other end, as the impedance of the

receiving circuit.

Let the current and voltage (in intensity as well as phase, that

is, as complex quantities) be given at one point of the circuit,

and counting the distance Z from this point, the terminal con-

ditions are

2-0,

r- '{
-

s' + ?v>

and E = E = e + jeQ
'.

(24)
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Substituting (24) in (17) gives

and

hence,

and

=
V/f(4 +

4,);

and substituted in (17) gives

_ 1

~2
-

jsin/?/)

+ /sin/?/)

and

- / V E- (cos /?Z sn

(25)

If then 7 and ^O
are the current and voltage respectively at

the receiving end or load end of a circuit of length 1
Q , equations

(25) represent current and voltage at any point of the circuit,

from the receiving end Z = to the generator end I = 1 .

If 7 and E are the current and voltage at the generator

terminals, since in equations (17) I is counted towards rising

power, in the present case the receiving end of the line is repre-

sented by I = Z
;
that is, the negative values of I represent

the distance from the generator end, along the line. In this

case it is more convenient to reverse the sign of /, that is, use

equations (22) and the distribution of current and voltage at

distance I from the generator terminals. 7
,
E are then given by
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=
\

and

v f)*~

o V |)
*
+^

o V f)
~ a'

(cos fti + j sin

~ Sn

(26)

10. Assume that the character of the load, that is, the impe-
771 T

dance,
-
1

=Z.=r, /

jx., or admittance, 77 =F= = &+$*,
Ti i i

of the receiving circuit and the voltage E at the generator end

of the circuit be given.

Let / = length of circuit, and counting distance I from the

generator end, for I = we have

E = E-

this substituted in equation (23) gives

However, for I

(27)

E 7 .

J
= Z

substituting (23) herein gives

Z = y/^4 t
e
-^

(cos fflp+ j sin (cos ^ -
j sin ffl )

F A lS
-*

(cos/?/ + j sin/?Z )- 4/ +afo
(cos/?Z

-
/si

hence, substituting (19) and expanding,

or A
VZ*~ Z

:-^A c

VZ - Z'

4 2
-

4, vz
l ' ; "

(cos 2
/?/. + / sin
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and denoting the complex factor by
V7 - 7

C = l
t
- 2

"'"(cos 2 pi. + j sin fa), (28)

4,
= QA V

which may be called the reflection constant, we have

and by (27),

4j =

K<> ~IY
(29)

and

hence, substituted in (22),

/ =

and

E = - U~ a/

(cos /?Z + y sin /?/) + Cs +aZ
(cos /M

-
j sin /?Z)

(30)

11. As an example, consider the problem of delivering, in a

three-phase system, 200 amperes per phase, at 90 per cent power
factor lag at 60,000 volts per phase (or between line and neutral)

and 60 cycles, at the end of a transmission line 200 miles in

length, consisting of two separate circuits in multiple, each

consisting of number 00 B. and S. wire with 6 feet distance

between the conductors.

Number 00 B. and S. wire has a resistance of 0.42 ohms per

mile, and at 6 feet distance from the return conductor an

inductance of 2.4 mh. and capacity of 0.015 mf. per mile.

The two circuits in multiple give, at 60 cycles, the following

line constants per mile: r = 0.21 ohm, L = 1.2 X 10" 3

henry,
and C = 0.03 X 10" 6

farad; hence,

x = 2 TT/L
=

0.45,

z = 0.21 - 0.45 y,

z =
0.50,

and, neglecting the conductance (g
=

0),

b = 27T/C
= IIXHT 8

,

Y = -- 11 x 10-
6

y,

y = 11 X 10~
6

,
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a = 0.524 X 10~ 3

,

P ** 2.285 X 10"
3

,

V =
(0.524

-
2.285?) 10- 3

,

= ^ =
(4.53

- 0.9 j) 10~
3

Zi

p
= ^=

(0.208 + 0.047 /) 10 +
3
.

293

(31)

Counting the distance I from the receiving end, and choosing
the receiving voltage as zero vector, we have

E = E = e = 60,000 volts,

and the current of 200 amperes at 90 per cent power factor,

87
j,

and substituting these values in equations (25) gives

/ = (226 + 14.4 j) e+ al

(cos pl-j sin pi)
-
(46-72.6 j) e~

al

(cos ftl + j sin /#), in amperes,
and

"=
(46.7 + 13.3 ?>

+aZ
(cos pi- /sin (13.3- 13.3 j)

(32)

(cos /?Z + j sin /?/), in kilovolts,

where a and /? are given by above equations (31).

From equations (32) the following results are obtained.

Receiving end of line,

7 = 180 + 87 /

E= 60 X 103

Middle of line,

7 = 177+ 18 /

I =0
i = 200 amp.
e = 60,000 volts

I = 100

i = 178 amp.
E= (66.2

- 6.9 /) 103 e = 66,400 volts

Generator end of line,

/= 165.7 - 56 /

E= (69
- 15 /) 103

I = 200

i = 175 amp.
e = 70,700 volts

tan 0,
= 0.483 6,

= 26

0,=
power factor, 0.90 lag

tan 6
l
= + 0.102 6

l
= 6

tan 2 =-0.104 62
= - 6

d,
-

2 =J~^ 12

power factor, cos 6 = 0.979 lag.

tan0
t
=-0.338 0,

= -19
tan 2

= - 0.218 2
= -12

O
l

-
2
= = - 7

power factor, cos = 0.993 lead.
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As seen, the current decreases from the receiving end to the

middle of the line, but from there to the generator remains prac-

tically constant. The voltage increases more in the receiving
half of the line than in the generator half. The power-factor is

practically unity from the middle of the line to the generator.
12. It is interesting to compare with above values the values

derived by neglecting the distributed character of resistance,

inductance, and capacity.

From above constants per mile it follows, for the total line of

200 miles length, r = 42 ohms, x = 90 ohms, and 6 = 2.2

X 10~ 3

mho; hence,

Z = 42 - 90 /

and F = - 2.2 j 10- 3
.

(1) Neglecting the line capacity altogether, with 7 and E
Q at

the receiver terminals, at the generator terminals we have

and

hence,

/!
= 180 + 87; t\

= 200 amp. tan
1
= 0.483 6

l =+ 26

E,= (75.4
-

12.6/) 103
e,
= 76,400 volts tan 62

= - 0.167 6 2
= - 9

O
l
- 6 2

= d =+ 34

power factor, cos 6 = 0.83 lag.

These values are extremely inaccurate, voltage and current

at generator too high and power factor too low.

(2) Representing the line capacity by a condenser at the

generator end, that is, adding the condenser current at the

generator end,

(
- f.-> y ?i

and

^i
= ^o + ^o( ;

hence,

7,
= 152 - 89 / t,

= 176 amp. tan
l
=- 0.585

t
= -30

E,= (75A - 12.6 /)10
3 e

l

= 76,400 volts tan 2
= -0.167 2

= - 9

0,
-

2
= e =- 2iQ

power factor, cos = 0.93 lead.
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As seen, the current is approximately correct, but the voltage
is far too high and the power factor is still low, but now leading.

(3) Representing the line capacity by a condenser at the

receiving end, that is, adding the condenser current at the load,

/,
=

7. + FA
and

E
l
= E

t + Z
t
I

l ;

hence,

7,
= 180 - 45 / t\

= 186 amp. tan 6,=- .250
l
= - 14

EI = (63.5
- 18.1 /) 103 e

l
= 66,000 volts tan 2

= - .285 62
= -16

6
l
-62

= 6 = + 2

power factor, cos 6 = 1.00

In this case the voltage e
l

is altogether too low, the current

somewhat high, but the power factor fairly correct.

(4) Taking the average of the values of (2) and of (3) gives

/,
= 166 - 67 / i\

= 179 amp. tan
l
= - 0.403

l
= - 22

E
l
= (69.4

- 15.3 /) 103 e
l
= 71,100 volts tan a

= - 0.220 2
= - 12

1

- 62
= = - 10

power-factor, cos 6 = 0.985 lead.

As seen by comparing these average values with the exact

result as derived above, these values are not very different, but

constitute a fair approximation in the present case. Such a

close coincidence of this approximation with the exact result can,

however, not be counted upon in all instances.

13. In the equations (17) to (23) the length

1.-J-
(33)

2x
is a complete wave length, which means that in the distance

the phases of the components of current and of e.m.f. repeat, and

that in half this distance they are just opposite.

Hence, the remarkable condition exists that in a very long
line at different points the currents are simultaneously in oppo-
site directions and the e.m.fs. are opposite.
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The difference of space phase T between current I and e.m.f.

E at any point I of the line is determined by the equation

Tjl

m (cos r + j sin r)
=
j > (34)

where w is a constant.

Hence, r varies from point to point, oscillating around a

medium position, r^ ,
which it approaches at infinity.

This difference of phase, TW ,
towards which current and

e.m.f. tend at infinity, is determined by the expression

m (COST.+ /sin rJ = -
,

M -h = oo

or, substituting for E and 7 their values from equations (23), and

since e~ al =
0, and A

t
e
al

(cos jtt j sin pi) cancels,

>/~Z V -
m (cos r^ + j sin rj == \ = - =

hence, tan r^
= ~^L .

(35)
ag + po

14. This angle, r^
=

0; that is, current and e.m.f. come
more and more in phase with each other when

ab pg 0; that is,

<* + P = 9 + &, or

2ap 2gb

substituting (12) gives

gr
- bx ^ g* -V

gx + br
~

2gb

hence, expanding, r -r- x =
g -?- 6; (36)

that is, J/ie ratio of resistance to inductance equals the ratio of

leakage to capacity.
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This angle, r^
= 45; that is, current and e.m.f. differ by

one-eighth period if + ab fig
= ag + J3b, or

which gives rg + xb =
0, (37)

which means that two of the four line-constants, either g and x

or g and 6, must be zero.

The case where g
= =

x, that is, a line having only resistance

and distributed capacity but no self-inductance, is approxi-

mately realized in concentric or multiple-conductor cables, and

in these the space-phase angle tends towards 45 degrees lead for

infinite length.

15. As an example are shown the characteristic curves of a

transmission line of the relative constants,

r : x : g : b = 8 : 32 : 1.25 X 1(T4
: 25 X 10~4 and e = 25,000,

i = 200 at the receiving circuit, for the conditions

(a) Non-inductive load in the receiving circuit, Fig. 80.

(6) Wattless receiving circuit of 90 time-degrees lag, Fig. 81.

(c) Wattless receiving circuit of 90 time-degrees lead, Fig. 82.

These curves are determined graphically by constructing the

topographic circuit characteristics in polar coordinates as

explained in "The Theory and Calculation of Alternating-

Current Phenomena," fourth edition, Chapter VII, paragraphs
42 to 44, and deriving corresponding values of current, potential

difference, and phase angle therefrom.

As seen from these diagrams, for wattless receiving circuit,

current and e.m.f. oscillate in intensity inversely to each other,

with an amplitude of oscillation gradually decreasing when

passing from the receiving circuit towards the generator, while

the space-phase angle between current and e.m.f. oscillates

between lag and lead with decreasing amplitude. Approximately
maxima and minima of current coincide with minima and

maxima of e.m.f. and zero phase angles.

For such graphical constructions, polar coordinate paper and

two angles a and d are desirable, the angle a being the angle

between current and change of e.m.f., tan a = - =
4, and the
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Fig. 80. Current, e.m.f. and space-phase angle between current and e.m.f.

in a transmission line. Non-inductive load.
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Fig. 81. Current, e.m.f. and space-phase angle between current and e.m.f.

in a transmission line. Inductive load.
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angle 3 the angle between e.m.f. and change of current, tan d =

- = 20 in above instance.
9
With non-inductive load, Fig. 80, these oscillations of intensity

have almost disappeared, and only traces of them are noticeable

in the fluctuations of the space-phase angle and the relative

values of current and e.m.f. along the line.

Towards the generator end of the line, that is, towards rising

power, the curves can be extended indefinitely, approaching
more and more the conditions of non-inductive circuit. Towards

decreasing power, however, all curves ultimately reach the

conditions of a wattless receiving circuit, as Figs. 81 and 82, at

the point where the total energy input into the line has been

consumed therein, and at this point the two curves for lead and
for lag join each other as shown in Fig. 83, the one being a

prolongation of the other, and the power in the line reverses.

Thus in Fig. 83 energy flows from both sides of the line towards

the point of zero power marked by 0, where the current and e.m.f.

are in quadrature with each other, the current being leading
with regard to the power from the left and lagging with regard
to the power from the right side of the diagram.

16. It is of interest to investigate some special cases of such

circuits of distributed constants.

(A) Open circuit at the end of the line.

Assuming a constant alternating e.m.f. E
l impressed upon a

circuit at one end while the other end of the circuit is open.

Counting the distance I from the open end of the line, and

denoting the length of the line by Z
,
for I = 0,

i
=

/o
=

o,

and for I = L,

hence, substituting in equations (17),

= A,
- A

2,

4i
+*(cs#o-^ ;

hence, A
2
= A

l
= A
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Fig. 82. Current, e.m.f. and space-phase angle between current and e.m.f.

in a transmission line. Anti-inductive load.

En
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Fig. 83. Current, e.m.f. and space-phase angle between current and e.m.f.

in a transmission line.
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and

e
+tU

(cos/?/,,
-

j sin/?/ ) + -"<
(cos /H

-
j sin /?/ )

hence, substituting in (17),

T 771

and

77? 77T

.

~
. 1

cos -
') sin

cospl -j (
+a* - e-^sin

pl
-

j (e
+al - e- al

)smftt
-

J
- ff-^o} sie ") sin /?Z

(38)

At Z = 0, or the open end of the line, by equations (38),

and

2E,

--) -sin ft
(39)

The absolute values of / and E follow from equations (38)

and (39) :

p Jy_ v/lV V
sn

T
Tj

1 \/ *L

which expanded gives

and

and

; J + 2cos2/?/

+ 2 cos

(40)

2 cos 2 /#
(41)
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As function of I, the e.m.f. E or the current 7 is a maximum or

minimum for

-2al 2 COS 2
/?/

=
Oj

hence,

- 2ttZ

)
= 2 ft sin 2 01. (42)

For Z = 0, and since a is a small quantity, the left side of (42)

also is small, and for values of sin 2 fll approximating zero, that

is, in the neighborhood of I = --
}
or where fil is a multiple

Z p

of a quadrant, equation (42) becomes zero. At fil
= 2 n-, or

the even quadrants, E is a maximum, / a minimum, at

01
~

(2 n 1)
-

,
or the odd quadrants, E is a minimum, 7 a

maximum.
The even quadrants, therefore, are nodes of current and wave

crests of e.m.f., and the odd quadrants are nodes of e.m.f. and
crests of current.

A maximum voltage point, or wave crest, occurs at the open
end of the line at / = 0, and is given by equation (41). As func-

tion of the length 1 of the line this is a maximum for

t~ 2al* + 2 cos 2 /?/
-

0,

or a (e
+2al - e

- 2
*>)

= 2 /? sin 2 0Z ,

or approximately at

(43)

that is, when the line is a quarter wave length or an odd multiple
thereof.



LONG-DISTANCE TRANSMISSION LINE 303

Substituting in (41), /?/
= -

gives (44)

-f
- 2a<o _ 2

Since

for small values of al we have

2l,

and

EO=^> (46)

which is the maximum voltage that can occur at the open end

of a line with voltage E l impressed upon it at the other end.

Since, approximately,

P= Vxb

by (44) we have

(47)

the frequency which at the length of line Z produces maximum

voltage at the open end.

For the constants in the example discussed in paragraph 11

we have 1 = 200 miles, r = 0.21 ohm, L = 1.2 X 10~3

henry,
C = 0.03 X 1Q- 6

farad, g
=

0, / = 208 cycles per sec., x =

1.57 ohms, z =-- 1.58 ohms, b = 39 X 10"6
mho, a = 0.53 X

10-3

,
and # = 9.3 Er

(B) Line grounded at the end.
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17. Let the circuit be grounded or connected to the return

conductor at one end, I = 0, and supplied by a constant impressed
e.m.f. E

1
at the other end, I = 1

Q
.

Then for I = 0,
771 __ 777 f~\

and for I = 1
,

hence, substituting in (17),

and

hence,

4i
= ~~

4z =
4)

and

*^- ~x~ i ? 7_ \

and, substituting in (17),

(e
+al +

~ al
) cos/?Z

-
j (e

+al-- al
) sin

:

* *

~ a0 cos - -
a +

-

cos ?Z - g
+af +

- aZ
sin

(48)

- -
cos -

At the grounded end, I = 0,

j = = (49)

(s
a^

s
a
^j cos pl Q j(^ ~t~ ) sin pLQ

Substituting (49) in (48) gives

/ = J /
{ (fi

+* + e-^) cos ^Z
-

j (e
+ai - e~ ai

) sin pi}

+tl= \ I
Q
-

(e+ -e-0 cos /?Z
-

j (e
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In this case nodes of voltage and crests of current appear at

I = and at the even quadrants, pl
= 2n -

,
and nodes of current

2

and crests of voltage appear at the odd quadrants, [ft
= (2n 1)

-
&

(C) Infinitely long conductor.

18. If an e.m.f. E
Q

is impressed upon an infinitely long con-

ductor, that is, a conductor of such length that of the power

input no appreciable part reaches the end, we have, for I = 0,

E = E

and for I = oo,

E = and / =
0;

hence, substituting in (23) gives

and

A
2
=

hence,

fy
I
= E V 77

~ al

(cos pi + j sin pi)

(51)
and

E = E^-*
1
(cos pi + j sin pi).

From (51) it follows that

7 Y'

that is, an infinitely long conductor acts like an impedance,

Z.-V/^-r,-/*,,

and the current at every point of the conductor thus has the same

space-phase angle to the voltage,

tan
,
= -1 -

T<
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The equivalent impedance of the infinite conductor is

7 a -
//?

z, YY~g-jb
.flg-ab

and the space-phase angle is

If
<7
= and x =

0, we have

'and

tan a
t
=

1,

or

t
= 45;

that is, current and e.m.f. differ by one-eighth period.

This is approximately the case in' cables, in which the dielectric

losses and the inductance are small.

An infinitely long conductor therefore shows the wave propa-

gation in its simplest and most perspicuous form, since the

reflected wave is absent.

(D) Generator feeding into a closed circuit.

19. Let / = be the center of the circuit; then

E
l

= - E_
t
and I

t
=

/_,;

hence, E = at I = 0,

and the equations are the same as those of a line grounded at the

end I = 0, which have been discussed under (B).

(E) Line of quarter wave length.

20. Interesting is the case of a line of quarter wave length.

Let the length 1 of the line be one quarter wave of the im-

pressed e.m.f.

fl.
-

\
(54)
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To illustrate the general character of the phenomena, we may
as first approximation neglect the energy losses in the circuit,

that is, assume the resistance r and the conductance g as neg-

ligible compared with x and 6,

r = =
g.

These values substituted in (14) give

a = and = Vxb. (55)

Counting the distance I from the end of the line 1 we have for

=
0,

E
Q
= e + je

'

and
=

and at the beginning of the line for I 1
,

and

and by (54) and (55),

L =
~2Vxb

Substituting (56), (57), and (54) in (17) gives

(56)

(57)

(58)

and

or

B. - VI (4, + 4.)
= Vs (4, +

and

^=-/V^(4-4 2)--yV-(4 1 -4 2);

hence, eliminating A x
and A

2 gives the relations between the

electric quantities at the generator end of the quarter-wave line,

Ev I v and at the receiving end, Ew 7 :
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and

and the absolute values are

and

(59)

(60)

which means that if the supply voltage E 1
is constant, the output

current 7 is constant and lags 90 space-degrees behind the

input voltage; if the supply current I
I

is constant, the output

voltage E is constant, and lags 90 space-degrees, and inversely.
A quarter-wave line of negligible losses thus converts from

constant potential to constant current, or from constant cur-

rent to constant voltage. (Constant-potential constant-current

transformation.)

Multiplying (60) gives

or E --

hence, if 7 =
0, that is, the line is open at the end, E = oo

,
and

with a finite voltage supply to a line of quarter-wave length, an
infinite (extremely high) voltage is produced at the other end.

Such a circuit thus may be used to produce very high voltages.
Since x = I x = total reactance and b = I b = total sus-

ceptance of the circuit, by (58) we have

(61)

or the condition of quarter-wave length.
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Substituting x = 2 7r/L and 6 = 2 7r/(7 ,
we have

1

or f

16/
2 '

1

(62)

(63)

the condition of quarter-wave transmission.

21. If the resistance, r, and the conductance, g, of a quarter-

wave circuit are not negligible, substituting (56), (54) and (57)

in (17) we have, for I = 0,

-
and

and for I = L

and

From (64) it follows that

and

and substituting in (65) and rearranging we have

a*0 \ c~ a*0 c+ a^0 _ c- aT T

(64)

(65)

(66)

and (67)
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or,

__
- 2al

and (68)

or, analogous to equation (59),

v z

and (69)

In these equations the second term is usually small, due to

the factor (e
+a* e~

a
*), and the first term represents constant

potential-constant current transformation.

22. In a quarter-wave line, at constant impressed e.m.f. Ev
the current output 1 is approximately constant and lagging 90

degrees behind E
l ;

it falls off slightly, however, with increasing

load, that is, increasing 7 v due to the second term in equation

(68); the voltage at the end of the line, E
,

at constant

impressed voltage, is approximately proportional to the load,

but does not reach infinity at open circuit, but a finite, though

high, limiting value.

Inversely, at constant current input the voltage output is

approximately constant and the output current proportional

to the load.

The deviation from constancy, at constant Ev of 7
,
or at

constant I v of EQ , therefore, is due to the second term, with

factor (e
+^- -'a

*).

Substituting (54),

an

hence, al is usually a very small quantity, and e~ ak = s ? 2 thus

can be represented by the first terms of the series :



LONG-DISTANCE TRANSMISSION LINE 311

lM2

+ ^LM + ,

a: TT

hence,

and

and, by (69),

and

2

2

If r and
gi
are small compared with x and 6,

ft
= VJ (ay

-
rg + xb)

= \/2>

and a =
/ + rg

-
xb) ;

substituting, by the binomial theorem,

fc
2
)
= x6

j [l
+ Q'J

(70)

zy
= l +

gives

bx/r

and
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The quantity

a

may be called the time constant of the circuit.

The equations of quarter-wave transmission thus are

(72)

and

and the maximum voltage Ea , at the open end of the circuit, at

constant impressed e.m.f. Ev is

and E =
, (73)

and the current input is

where, approximately,

\I
Z

-\V 17 ~V 7Y T c (75)

23. Consider as an example a high potential coil of a trans-

former with one of its terminals connected to a source of high

potential, for testing its insulation to ground, while the other

terminal is open.
Assume the following constants per unit length of circuit:

r = 0.1 ohm, L = 0.02 mh., C = 0.01 X 10- 6
farad, and g

= 0;

then, with a length of circuit 1
Q
=

100, the quarter-wave fre-

quency is, by (47),

/ = -= = 177 cycles per sec.,
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or very close to the third harmonic of a 60-cycle impressed

voltage.

If, therefore, the testing frequency is low, 59 cycles, the circuit

is a quarter wave of the third harmonic.

Assuming an impressed e.m.f. of 50,000 volts and 59 cycles,

containing a third harmonic of 10 per cent, or E
l
= 5000 volts at

177 cycles, for this harmonic, we have x = 22.2 ohms and

6 - 11.1 X 10- 6
ohm; hence, u = 0.00225

and

therefore at E
l
= 5000 volts, E

?

= 1,415,000 volts;

that is, infinity, as far as insulation strength is concerned.

Quarter-wave circuits thus may be used, and are used, to pro-

duce extremely high voltages, and if a sufficiently high frequency
is used 100,000 cycles and more, as in wireless telegraphy, etc.

- the length of the circuit is moderate.

This method of producing high voltages has the disadvantage

that it does not give constant potential, but the high voltage is

due to the tendency of the circuit to regulate for constant current,

which means infinite voltage at infinite resistance or open circuit,

but as soon as current is taken off the high potential point the

voltage falls. The great advantage of the quarter-wave method

of producing high voltage is its simplicity and ease of insula-

tion; as the voltage gradually builds up along the circuit,

the high voltage point or end of circuit may be any distance

away from the power supply, and thus can easily be made
safe.

24. As a quarter-wave circuit converts from constant poten-

tial to constant current, it is not possible, with constant voltage

impressed upon a circuit of approximately a quarter-wave length,

to get constant voltage at the other or receiving end of the circuit.

Long before the circuit approaches quarter-wave length, and as

soon as it becomes an appreciable part of a quarter wave, this

tendency to constant current regulation makes itself felt by great

variations of voltage with changes of load at the receiving end of

the circuit, constant voltage being impressed upon the generator
end ; that is, with increasing length of transmission lines the volt-

age regulation at the receiving end becomes seriously impaired
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hereby, even if the line resistance is moderate, and the operation

of apparatus which require approximate constancy of voltage

but do not operate on constant current as most synchronous

apparatus becomes difficult.

Hence, at the end of very long transmission lines the voltage

regulation becomes poor, and synchronous machines tend to

instability and have to be provided with powerful steadying

devices, giving induction motor features, and with a line

approaching quarter-wave length, voltage regulation at the

receiving end ceases.

In this case the constant potential-constant current trans-

formation may be used to produce constant or approximately

constant voltage at the load, by supplying constant current to

the line; that is, the transmission line is made a quarter-wave

length by modifying its constants, or choosing the proper fre-

quency, the generators are designed to regulate for constant

current and thus give a voltage varying with the load, and are

connected in series (with constant current generators series con-

nection is stable, parallel connection unstable) and feed constant

current, at variable voltage, into the quarter-wave line. At

the receiving end of the line, constant voltage then exists with

varying load, or rather a voltage, which slightly falls off with the

load, due to the power loss in the line. To maintain constant

receiver voltage at all loads, then, would require a slight increase

of generator current with increase of load, that is, increase of

generator voltage, which can be produced by compounding

regulated by the voltage.

In such a quarter-wave transmission the voltage at the receiv-

ing end then remains constant, while the current output from the

line increases from nothing at no load. At the generator end the

current remains approximately constant, increasing from no load

to full load by the amount required to take care of the line loss,

while the voltage at the generators increases from nearly nothing
at no load, with increasing load, approximately proportional

thereto.

25. There is, however, a serious limitation imposed upon

quarter-wave transmission by considerations of voltage; to use

the transmission line economically the voltage throughout it

should not differ much, since the insulation of the line depends
on the maximum, the efficiency of transmission, however, on the
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average voltage, and a line in which the voltage at the two ends

is very different is uneconomical.

To use line copper and line insulation economically, in a

quarter-wave transmission, the voltages at the two ends should

be approximately equal at maximum load. These voltages are

related to each other and to the current by the line constants, by

equations (72).

By these equations (neglecting the term with u), reduced to

absolute values, we have approximately

-V?,
and

and if e
l

= e
,

hence, the power is

= V

or

e* = Po V -
; (76)

y

hence, the voltage e required to transmit the power pQ without

great potential differences in the line depends on the power p
and the line constants, and inversely.

26. As an example of a quarter-wave transmission may be

considered the transmission of 60,000 kilowatts over a distance

of 700 miles, for the supply of a general three-phase distribution

system, of 95 per cent power factor, lag.

The design of the transmission line is based on a compromise
between different and conflicting requirements: economy in

first cost requires the highest possible voltage and smallest con-

ductor section, or high power loss in the line
; economy of opera-

tion requires high voltage and large conductor section, or low

power loss; reliability of operation of the line requires lowest
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permissible voltage and therefore large conductor section or

high power loss; reliability of operation of the receiving system

requires good voltage regulation and thus low line resistance,

etc., etc.

Assume that the maximum effective voltage between the line

conductors is limited to 120,000, and that there are two sepa-
rate pole lines, each carrying three wires of 500,000 circular

mils cross section, placed 6 feet between wires, and provided
with a grounded neutral.

If there were no energy losses in the line and no increase of

capacity due to insulators, etc., the speed of propagation would
be the velocity of light, S = 188,000 miles per second, and the

quarter-wave frequency of a line of 1 = 700 miles would be

S
/ = =67 cycles per sec.

;

4
LQ

hence, fairly close to the standard frequency of 60 cycles.

The loss of power in the line, and thus the increase of induc-

tance by the magnetic field inside of the conductor (which would
not exist in a conductor of perfect conductivity or zero resistance

loss), the increase of capacity by insulators, poles, etc., lowers the

frequency below that corresponding to the velocity of light and

brings it nearer to 60 cycles.

In a line as above assumed the constants per mile of double

conductor are: r = 0.055 ohm; L = 0.001 henry, and C =
0.032 X 10~ 6

farad, and, neglecting the conductance, g
=

0, the

quarter-wave frequency is

/ = = = 63 cycles per sec.

Either then the frequency of 63 cycles per second, or slightly
above standard, may be chosen, or the line inductance or line

capacity increased, to bring the frequency down to 60 cycles.

Assuming the inductance increased to L = 0.0011 henry
gives / = = 60 cycles per second, and the line constants then are
= 700 miles; / = 60 cycles per second; r = 0.055 ohm; L =

0.0011 henry; C = 0.032 X 10~ 6
farad, and g

=
0; hence,

x = 0.415 ohm; z = 0.42 ohm; Z = 0.055 - 0.415 j ohm;
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6 = 12.1 X 10" 6
mho; y = 12.1 X 10~ 6

mho, and Y = -
j 12.1

X 10~ 6
mho, and

v/
- =

186,
y

0.066,

p = 2.247 X 10-3

a = up = 0.148 X 10-3
.

At 60,000 kilowatts total input, or 20,000 kilowatts per line,

120 000
and 120,000 volts between lines, or - '-1 = 69,000 volts per

line, and about 95 per cent power factor, the current input at

full load is 306 amp. per line (of two conductors in multiple).

To get at full load p = 20 X 106
watts, approximately the

same voltage at both ends of the line, by equation (67), we must

have

y

or e = 61,000 volts.

Assuming therefore at the receiving end the voltage of 110,000

between the lines, or, 63,500 volts per line, and choosing the

output current as zero vector, and counting the distance from

the receiving end towards the generator, we have for / = 0,

.

~
. 0>

and the voltage, at 95 per cent power factor, or Vl 0.95
2

= 0.312 inductance factor, is

E = E = e (0.95
- 0.312 j)

= 60,300
-

19,800 j.

Substituting these values in equations (72) gives

. \JE 1

- 0.104 (60,300
-

19,800 j)}
* =

186 + 12 j

60,300
-

1 9,800 /
= (186 + 12 j) {j I,

- 0.104 i };
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hence, JE 1
= (186 + 12 j) i

Q + (6250
- 2060 j)

and .

(^ 60,300 -19,800f + Q^ ^

= 317 - 128 j + 0.104 i
,

and the absolute values are

and

e,
= V(186 i + 6250)

2 + (12 t -
2060)'

\ = V(317 + 0.104 i, 1282

70L^

Cos. 0-1

80 32

70 28

500 50 20

400 40 16

300 30 12

100 10 4

6 10 14 18

Power Output per Phase Po
.Megawatts

26

Fig. 84. Long-distance quarter-wave transmission.

herefrom the power output and input, efficiency, power factor,

etc., can be obtained.

In Fig. 84, with the power output per phase as abscissas, are

shown the following quantities : voltage input e
1
and output e

,
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in drawn lines; amperes input t\ and output t
,
in dotted lines;

power input p l
and output p ,

in dash-dotted lines, and efficiency

and power factor in dashed lines.

As seen, the power factor at the generator is above 93 per cent

leading, and the efficiency reaches nearly 85 per cent.

At full load input of 20,000 kilowatts per phase, and 95 per

cent power factor, lagging, of the output, the generator voltage

is 58,500, or still 8 per cent below the output voltage of 63,500.

The generator voltage equals the output voltage at 10 per cent

overload, and exceeds it by 14 per cent at 25 per cent overload.

To maintain constant voltage at the output side of the line,

the generator current has to be increased from 342 amperes at

no load to 370 amperes at full load, or by 8.2 per cent, and

inversely, at constant-current input, the output voltage would

drop off, from no load to full load, by about 8 per cent. This,

with a line of 15 per cent resistance drop, is a far closer voltage

regulation than can be produced by constant potential supply,

except by the use of synchronous machines for phase control.



CHAPTER III.

THE NATURAL PERIOD OF THE TRANSMISSION LINE.

27. An interesting application of the equations of the long

distance transmission line given in the preceding chapter can be

made to the determination of the natural period of a transmis-

sion line; that is, the frequency at which such a line discharges

an accumulated charge of atmospheric electricity (lightning), or

oscillates because of a sudden change of load, as a break of circuit,

or in general a change of circuit conditions, as closing the circuit,

etc.

The discharge of a condenser through a circuit containing self-

inductance and resistance is oscillating (provided the resistance

does not exceed a certain critical value depending upon the

capacity and the self-inductance) ;
that is, the discharge current

alternates with constantly decreasing intensity. The frequency
of this oscillating discharge depends upon the capacity C and

the self-inductance L of the circuit, and to a much lesser extent

upon the resistance, so that, if the resistance of the circuit is not

excessive, the frequency of oscillation can, by neglecting the

resistance, be expressed with fair, or even close, approximation

by the formula

An electric transmission line represents a circuit having

capacity as well as self-inductance ;
and thus when charged to a

certain potential, for instance, by atmospheric electricity, as by
induction from a thunder-cloud passing over or near the line,

the transmission line discharges by an oscillating current.

Such a transmission line differs, however, from an ordinary

condenser in that with the former the capacity and the self-

inductance are distributed along the circuit.

In determining the frequency of the oscillating discharge of

such a transmission line, a sufficiently close approximation is

320
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obtained by neglecting the resistance of the line, which, at the

relatively high frequency of oscillating discharges, is small com-

pared with the reactance. This assumption means that the

dying out of the discharge current through the influence of the

resistance of the circuit is neglected, and the current assumed

as an alternating current of approximately the same frequency
and the same intensity as the initial waves of the oscillating

discharge current. By this means the problem is essentially

simplified.

28. Let 1 = total length of a transmission line; I = the dis-

tance from the beginning of the line; r = resistance per unit

length; x = reactance per unit length
= 2 nfL, where L =

inductance per unit length; g
= conductance from line to return

(leakage and discharge into the air) per unit length; b = capacity

susceptance per unit length
= 2 nfC, where C =

capacity per

unit length.

Neglecting the line resistance and line conductance,

r = and g
=

0,

the line constants a and
/?, by equations (14), Chapter II, then

assume the form

a = and ft
= Vxb, (1)

and the line equations (17) of Chapter II become

/ = (A A

- A
2)

cos pi
-

j (Aj + A,) sin pi

and

E = V^ (A, + A
2)cos fl

-
/ (4i

- 42)
sin pi

or writing

4i
~ 4 2

=
<7i and 4i + 4 2

= Q

and substituting

c
we have

and l * 2

(3)
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A free oscillation of a circuit implies that energy is neither

supplied to the circuit nor abstracted from it. This means that

at both ends of the circuit, I = and I = 1
Q ,
the power equals zero.

If this is the case, the following conditions may exist:

(1) The current is zero at one end, the voltage zero at the

other end.

(2) Either the current is zero at both ends or the voltage is

zero at both ends.

(3) The circuit has no end but is closed upon itself.

(4) The current is in quadrature with the voltage. This case

does not represent a free oscillation, since the frequency depends
also on the connected circuit, but rather represents a line supply-

ing a wattless or reactive load.

In free oscillation the circuit thus must be either open or

grounded at its ends or closed upon itself.

(1) Circuit open at one end, grounded at other end.

29. Assuming the circuit grounded at I = 0, open at / = Z
,

we have for I = 0,

# = #o =
0,

and for I = Z
,

! -I.i-D;

hence, substituting in equations (3), at I 0,

hence,
7 = C, cos 81

and

(4)

and at I = Z
,

!
cos /?Z

=
0,

and since C
t
cannot be zero without the oscillation disappearing

altogether,

cos# =
0; (5)

hence,

# = (2n-l), (6)
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where n =
1, 2, 3 ... or any integer and

11 = (2n- l)~l. (7)
Z L

Substituting (1) in (6) gives

ft -V*;-V^, (8)
z L

o

or substituting for x and b, x = 2 Tr/L and 6 = 2 7r/<7, gives

or

is the frequency of oscillation of the circuit.

The lowest frequency or fundamental frequency of oscillation

is, for n =
1,

and besides this fundamental frequency, all its odd multiples or

higher harmonics may exist in the oscillation

f** (2n-l)/r (11)

Writing L = Z L = total inductance, and C = 1 C = total

capacity of the circuit, equation (9) assumes the form

(12)

The fundamental frequency of oscillation of a transmission

line open at one end and grounded at the other, and having a

total inductance L and a total capacity (7
, is, neglecting energy

losses,

fl
= ~

rr-TT
'
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while the frequency of oscillation of a localized inductance L
and localized capacity (7

,
that is, the frequency of discharge of

a condenser CQ through an inductance L
,
is

/ =^= d3)

The difference is due to the distributed character of L and C
in the transmission line and the resultant phase displacement

between the elements of the line, which causes the inductance

and capacity of the line elements, in their effect on the frequency,

not to add but to combine to a resultant, which is the projection
2

of the elements of a quadrant, on the diameter, or - times the
n

sum, just as, for instance, the resultant m.m.f. of a distributed

2
armature winding of n turns of i amperes is not ni but - ni.

7t

Hence, the effective inductance of a transmission line in free

oscillation is

L>
2
ILL - -
L L

n

and the effective capacity is (14)

and using the effective values L ' and C ', the fundamental

frequency, equation (11), then appears in the form

2*^fLJc^
'

that is, the same value as found for the condenser discharge.

In comparing with localized inductances and capacities, the

distributed capacity and inductance, in free oscillation, thus are

represented by their effective values (13) and (14).

30. Substituting in equations (4),

C
l
=

<>i + jcv (16)

gives

I = (c l
+ jc 2)

cos ftl

and (17)
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By the definition of the complex quantity as vector represen-
tation of an alternating wave the cosine component of the wave
is represented by the real, the sine component by the imaginary

term; that is, a wave of the form c
t
cos 2 nft + c

2
sin 2 nft is

represented by c
l
+ jc 2J

and inversely, the equations (17), in

their analytic expression, are

i = (c t
cos 2 nft + c

2
sin 2 xft) cos ftl

and V/Ze -\n (c 2
cos 2 nft

- c
1
sin 2 rft] sin pi.

Substituting (7) and (11) in (18), and writing

= 2 rfj, and r = ^~
2

*0

gives

i ==
{cjcos (2n- 1)6 + c

2
sin (2n- 1)0} cos (2n -I) r

= ccos (2n -
1) (0

-
r) cos (2 n -

l)r

and

(18)

(19)

e = Vc 2
cos (2 w-l)^-c 1

- \ - c sin (2 n -
1) (0

-
r) sin (2 n -

l)r,

(20)

where

tan (2 n -
1) r

= J and c = (21)

In the denotation (19), represents the time angle, with the

complete cycle of the fundamental frequency of oscillation as

one revolution or 360 degrees, and r represents the distance

angle, with the length of the line as a quadrant or 90 degrees.

That is, distances are represented by angles, and the whole line

is a quarter wave of the fundamental frequency of oscillation.

This form of free oscillation may be called quarter-wave oscillation.

The fundamental or lowest discharge wave or oscillation of

the circuit then is

i
l
= c cos (0 fj) cos T

and
e

l
= - \ c sin (0 sn r.

(22)
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With this wave the voltage is a maximum at the open end of

the line, I = Z
,
and gradually decreases to zero at the other end

or beginning of the line, I = 0.

The current is zero at the open end of the line, and gradually

increases to a maximum at I = 0, or the grounded end of the

line.

Thus the relative intensities of current and potential along

the line are as represented by Fig. 85, where the current is shown

as 7, the voltage as E.

Fig. 85. Discharge of current and e.in.f. along a transmission line open at

one end. Fundamental discharge frequency.

The next higher discharge frequency, for n =
2, gives

i
3
= c

3
cos 3 (0 7-3)

cos 3 r

and = - c
3 V - sin 3 (0

-
r3)

sin 3 T.

(23)

Here the voltage is again a maximum at the open end of the

line, I = 1
,
or r = - = 90, and gradually decreases, but reaches

zero at two-thirds of the line, I =
2L

or -=60, then
o

increases again in the opposite direction, reaches a second but

opposite maximum at one-third of the line, I =
-| ,

or r = = 30,
o o

and decreases to zero at the beginning of the line. There is thus

a node of voltage at a point situated at a distance of two-thirds

of the length of the line.

The current is zero at the end of the line, / = Z
,
rises to a

maximum at a distance of two-thirds of the length of the line,

decreases to zero at a distance of one-third of the length of the

line, and rises again to a second but opposite maximum at the
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beginning of the line, I = 0. The current thus has a node at a

point situated at a distance of one-third of the length of the line.

Fig. 86. Discharge of current and e.m.f. along a transmission

line open at one end.

The discharge waves, n =
2, are shown in Fig. 86, those with

n =
3, with two nodal points, in Fig. 87.

\

A /

Fig. 87. Discharge of current and e.m.f. along a transmission

line open at one end.

31. In case of a lightning discharge the capacity C is the

capacity of the line against ground, and thus has no direct

relation to the capacity of the line conductor against its return.

The same applies to the inductance L .

If d = diameter of line conductor, lh
= height of conductor

above ground, and 1 = length of conductor, the capacity is

1.11 X 10- 8
Z

?;- 4L
.

,mmf.

the self-inductance is

inmh.

(24)
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.
The fundamental frequency of oscillation, by substituting (24)

in (10), is

1 7.5 X IP.'
' (25)

that is, the frequency of oscillation of a line discharging to ground
is independent of the size of line wire and its distance from the

ground, and merely depends upon the length, /
,
of the line, being

inversely proportional thereto.

We thus get the numerical values,

Length of line

100 miles

16 X 10
6
cm.

hence frequency,

= 4700 2350 1570 1175 940 783 587 470 cycles per sec.

As seen, these frequencies are comparatively low, and especially

with very long lines almost approach alternator frequencies.

The higher harmonics of the oscillation are the odd multiples
of these frequencies.

Obviously all these waves of different frequencies represented
in equation (20) can occur simultaneously in the oscillating dis-

charge of a transmission line, and, in general, the oscillating

discharge of a transmission line is thus of the form

n cn cos (2 n 1) (0 pn) cos (2 n 1) T,

=-\/iixe = ~ VS 2> cn sin (2 n -
1) (6

-
rj sin (2 n -

1) r.

(26)

A simple harmonic oscillation as a line discharge would require
a sinoidal distribution of potential on the transmission line at the

instant of discharge, which is not probable, so that probably all

lightning discharges of transmission lines or oscillations produced

by sudden changes of circuit conditions are complex waves of

many harmonics, which in their relative magnitude depend upon
the initial charge and its distribution that is, in the case of the

lightning discharge, upon the atmospheric electrostatic field of

force.
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The fundamental frequency of the oscillating discharge of a

transmission line is relatively low, and of not much higher mag-
nitude than frequencies in commercial use in alternating-current

circuits. Obviously, the more nearly sinoidal the distribution

of potential before the discharge, tfye more the low harmonics

predominate, while a very unequal distribution of potential,

that is a very rapid change along the line, causes the higher har-

monics to predominate.
32. As an example the discharge of a transmission line may be

investigated, the line having the following constants per mile :

r - 0.21 ohm; L = 1.2 X 10~3

henry; C = 0.03 X 10~6
farad,

and of the length Z = 200; hence, by equations (10), (19),

/!
= 208 cycles per sec.;

= 1315 t, and T = 0.00785 Z, when

charged to a uniform voltage of e = 60,000 volts but with no

current in the line before the discharge, and the line then

grounded at one end, Z = 0, while open at the other end, Z = Z .

Then, for t = or 6 =
0, i = for all values of r except T = 0;

hence, by (26),

cos (2 n 1) -jTn
=

0,

and thus

(2=-l)y.-? (27)

and

cos (2 n -
1) (e

-
rn)

= sin (2 n -
1) 0,

sin (2 n -
1) (0

-
Tn)

= - cos (2 n -
1) 0;

hence,

i = lL,
n cn sin (2 n -

1) cos (2 n -
1) T

and

e = \ - ^ncn cos (2 n -
1) 6 sin (2 n -

1) r.

(28)

Also for t = 0, or =
0, e = e for all values of T except T = 0;

hence, by (28),

" c.ffln <2 -1)'
1

- .(29)
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From equation (29), the coefficients cn are determined in the

usual manner of evaluating a Fourier series, that is, by multiply-

ing with sin (2 m 1) r (or cos (2m -
1) r) and integrating:

ren sin (2 m 1) r dr =

\^2, ncn I sin (2n - l)rsin (2m- 1) r dr.
C j JQ

Since

J sin (2 n 1) r sin (2 m 1) r dr

rcos
2 (n

- m) r - cos 2 (n + m 1) r

J - dT
'

which is zero forn = m, while for m = n the term

X
17

cos 2
(rz.

- m) r
7

T 71
"

dr n

-*-J. ^
=

2

and

cos (2 n -
1) Tl* 2 e

we have

and

c = -
4 g

- V/~: (30)
(2n - !)^VL ?

hence,

4 . /CA sin (2 n -
1) cos (2 TI - 1) r

* -

C ( . sin 3 6 cos 3 T sin 5 6 cos 5 r

(31)

_ ( . sin 3 6 cos 3 r sin 5 6 cos 5 r )= 382 < sin cos r H - + - + > ,

in amperes,
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and

4 A cos (2 n -
1) sin (2 n -

1) r

TT i 2/1 1

cos 3 # sin 3 r cos 5 # sin 5 r >

cos sm T -| 1 h J
o 5 )

(32)

_ ( cos 3 6 sin 3 r cos 5 sin 5 r )= 76,400 ]
cos sm r + - + [-{

o 5 )

in volts.

33. As further example, assume now that this line is short-

circuited at one end, I = 0, while supplied with 25-cycle alter-

nating power at the other end, I = /
,
and that the generator

voltage drops, by the short circuit, to 30,000, and then the line

cuts off from the generating system at about the maximum value

of the short-circuit current, that is, at the moment of zero value

of the impressed e.m.f.

At a frequency of/ = 25 cycles, the reactance per unit length
of line or per mile is

x = 2 TT/OL = 0.188 ohm

and the impedance is

z = Vr2 + x* = 0.283 ohm,

or, for the total line,

z = I z = 56.6 ohms;

hence, the approximate short-circuit current

e 30,000

and its maximum value is

i - 530 X \/2 = 750 amp.

Therefore, in equations (26), at time t = 0, or =
0, e=

for all values of T except T =
; hence,

Zi

sin (2 n -
1) yn =

0,

or, yn -
0,
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and thus

i = ^n cn cos (2 n. 1) 6 cos (2 n 1) r

and (33)

e= -y5]ncn sin(2n - 1)# sin (2 ri - l)r.

However, at t = 0, or 6 =
0, for all values of r except T = ^,

'

hence, substituting in (33),

A
t'
-

2/n
cn cos (2 n -

1) r. (34)

From equation (34), the coefficients cn are determined in the

same manner as in the preceding example, by multiplying with

cos (2 n 1) r and integrating, as

hence,

i =

(2n-l)*'

cos (2n - l)0cos(2n -
1) r

2n - 1

(35)

4 i' ( cos 3 6 cos 3 r cos 5 cos 5 r
= - cos cos T -

(36)

( cos 3 6 cos 3 T cos 5 cos 5 r
956 ) cos cos T + -

in amperes,

and

4i n -
1) sin (2 n -

1) T

4 t* [L ( . sin 3 /9 sin 3 T si

-V- Utfmnr- -^ - + -

2n - 1

sin 5 (9 sin 5 T- +

(37)

( , sin 3 6 sin 3 r sin 5 6 sin 5 T )

= 191,200 ) sin 6 sin T - -+ +{
in volts.
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The maximum voltage is reached at time 6 = -
,
and is

e =

and since the series

4 i IL . sin 3 r sin 5 r

sin 3 T sin 5 r
sm T + -

the maximum voltage is

e = i V/^ = 300,000 volts.

As seen, very high voltages may be produced by the interrup-
tion of the short-circuit current.

(2a) Circuit grounded at both ends.

34. The method of investigation is the same as in paragraph

29; the terminal conditions are, for I = 0,

E= 0,

and for I = I,

Substituting Z = into equations (3) gives

hence,
/ =

C, cos /M,

sn

Substituting Z = Z in (38) gives

& - o - -
jev

hence,

sin H
Q
=

0, or /?
=

TITT,

(38)

(39)
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and, in the same manner as in (1),

pi
= n^l = nr; (40)

that is, the length of the line, Z
, represents one half wave, or

r =
TT,

or a multiple thereof.

n

21 VLC 2VL C

and the fundamental frequency of oscillation is

1

21 VLC
and

(41)

(42)

(43)

that is, the line can oscillate at a fundamental frequency fv for

which the length, 1
OJ

of the line is a half wave, and at all multiples
or higher harmonics thereof, the even ones as well as the odd ones.

This kind of oscillation may be called a half-wave oscillation.

35. Unlike the quarter-wave oscillation, which contains only
the odd higher harmonics of the fundamental wave, the half-

wave oscillation also contains the even harmonics of the funda-

mental frequency of oscillation.

Substituting O t

= c
l + j'c 2

into (38) gives

and
jc 2)

cos

(44)

and replacing the complex imaginary by the analytic expression,

that is, the real term by cos 2 nft, the imaginary term by sin 2 nft,

gives

i
{
c

x
cos 2 nft + c

2
sin 2 nft] cos pi

and

e -s/i
-

{c 2
cos 2 nft

- c
l
sin 2 sin pl }
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and substituting

we have (45)

2 nft
=

nO]

then (44) gives, by (40) :

i = (c 1
cos nO + c

2
sin nO) cos nr

and

or writing

and

e = \ -
(ca cos 7i# c

t
sin nd) sin nr;* C

c
t
= c cos nj \

c
2
= c sin n/-

J

i = c cos n (0 r) cos nr

(46)

(47)

- c y sin n (0 7-)
s

(48)

gives

and

e = c V sin n (U r) sin nr,

and herefrom the general equations of this half-wave oscillation are

co

t = 7, 7i c cos n (0 r) cos

and

e = y X cn sin n (0 fn) sin

(49)

(26) Circuit open at both ends.

36. For Z = we have

hence,

and

and

= - sn

(50)

while for I = L, 7=0;
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sin /?Z
=

0, or /?Z (51)

that is, the circuit performs a half-wave oscillation of funda-
mental frequency,

1

(52)

and all its higher harmonics, the even ones as well as the odd ones

have a frequency

/ - A, (53)

and the final equations are

>

v

i = n c n sin n (0 f) sin nr

and

where

=
y ~ Zj

n cn cos n (6 f) cos

and T = -I.
^0

(54)

(55)

(3) Circuit closed upon itself.

37. If a circuit of length 1 is closed upon itself, then the free

oscillation of such a circuit is characterized by the condition that

current and voltage at I = 1 are the same as at I = 0, since I = 1

and I = are the same point of the circuit.

Substituting this condition in equations (3) gives

= = cos - sn
and

- E = C, = C 2
cos /?Z

-
j^! sin /?Z ;

herefrom follows

(56)

- cos

o, (i
- cos

)
= -

yCa
sin ^ ,

>

= -
jc, sin ^ , y

hence,

or

- cos = - sn

(57)

(58)
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hence,
= 2 (59)

that is, the circuit must be a complete wave or a multiple
thereof.

The free oscillation of a circuit which is closed upon itself is a

full-wave oscillation
, containing a fundamental wave of frequency

and all the higher harmonics thereof, the even ones as well as the

odd ones,

/ - nfr (61)

Substituting in (3),

and

gives

and

<7i
= c

i + K

V 2
~~

cos

=
, + i

= c' + je," J

(c 2

" -
yc 2

cos sn
(62)

Substituting the analytic expression,

c/ + jc/'
=

c/ cos 2 TT/^ + c/' sin 2
TT/J^, etc.,

also

and

where
27T

(63)

(64)

that is, the length of the circuit, I = Z
,

is represented by the

angle r = 2 x, or a complete cycle, this gives
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/ =
(c/ cos nd + c/' sin nd) cos nr

sin nr

and

= V n

(c 2

"
cos nO cJ sin

or writing

:/ cos nO + c
2

"
sin nff) cos n#

cos nd - c/ sin n#) sin nr} ,

c/
= a cos n/-

c/
7 = a sin n/-

c/
= 6 cos n%

c" = 6 sin n^

(65)

gives

and

' = a cos n (6 -f)
cos nr b sin n (0 %) sin nr

\ -
{
b cos n (6 %) cos nr - a sin n (6

-
;-)

sin nr
j

.

C

(66)

Thus in its most general form the full-wave oscillation gives

the equations

i = n
{
an cos n (6 j-n) cos m: bn sin n (0 %n) sin nr

^
where

~n cos nr -

=

(0
-

fn) sin nr},

(67)

(68)

and an , fn and 6n , /n are groups of four integration constants.

38. With a short circuit at the end of a transmission line, the

drop of potential along the line varies fairly gradually and

uniformly, and the instantaneous rupture of a short circuit -

as by a short-circuiting arc blowing itself out explosively
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causes an oscillation in which the lower frequencies predominate,

that is, a low-frequency high-power surge. A spark discharge

from the line, a sudden high voltage charge entering the line

locally, as directly by a lightning stroke, or indirectly by induc-

tion during a lightning discharge elsewhere, gives a distribution

of potential which momentarily is very non-uniform, changes

very abruptly along the line, and thus gives rise mainly to very

high harmonics, but as a rule does not contain to any appre-

ciable extent the lower frequencies; that is, it causes a high-

frequency oscillation, more or less local in extent, and while of

high voltage, of rather limited power, and therefore less destruc-

tive than a low-frequency surge.

At the frequencies of the high-frequency oscillation neither

capacity nor inductance of the transmission line is perfectly

constant: the inductance varies with the frequency, by the

increasing screening effect or unequal current distribution in

the conductor; the capacity increases by brush discharge over the

insulator surface, by the increase of the effective conductor

diameter due to corona effect, etc. The frequencies of the very

high harmonics are therefore not definite but to some extent

variable, and since they are close to each other they overlap;

that is, at very high frequencies the transmission line has no

definite frequency of oscillation, but can oscillate with any

frequency.
A long-distance transmission line has a definite natural period

of oscillation, of a relatively low fundamental frequency and its

overtones, but can also oscillate with any frequency whatever,

provided that this frequency is very high.

This is analogous to waves formed in a body of water of

regular shape : large standing waves have a definite wave length,

depending upon the dimensions of the body of water, but very
short waves, ripples in the water, can have any wave length, and

do not depend on the size of the body of water.

A further investigation of oscillations in conductors with

distributed capacity, inductance, and resistance requires, how-

ever, the consideration of the resistance, and so leads to the

investigation of phenomena transient in space as well as in time,

which are discussed in Section IV.

39. In the equations discussed in the preceding, of the free

oscillations of a circuit containing uniformly distributed resist-
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ance, inductance, capacity ,
and conductance, the energy losses

in the circuit have been neglected, and voltage and current

therefore appear alternating instead of oscillating. That is,

these equations represent only the initial or maximum values of

the phenomenon, but to represent it completely an exponential

function of time enters as factor, which, as will be seen in Section

IV, is of the form

(69)

where u = ~
(7, + f )

mav be called the "time constant" of the
2 \C LI

circuit.

While quarter-wave oscillations occasionally occur, and are of

serious importance, the occurrence of half-wave oscillations and

especially of full-wave oscillations of the character discussed

before, that is, of a uniform circuit, is less frequent.

When in a circuit, as a transmission line, a disturbance or

oscillation occurs while this circuit is connected to other cir-

cuits as the generating system and the receiving apparatus
-

as is usually the case, the disturbance generally penetrates into

the circuits connected to the circuit in which the disturbance

originated, that is, the entire system oscillates, and this oscilla-

tion usually is a full-wave oscillation; that is, the oscillation of

a circuit closed upon itself; occasionally a half-wave oscillation.

For instance, if in a transmission system comprising generators,

step-up transformers, high-potential lines, step-down trans-

formers, and load, a short circuit occurs in the line, the circuit

comprising the load, the step-down transformers, and the lines

from the step-down transformers to the short circuit is left

closed upon itself without power supply, and its stored energy is,

therefore, dissipated as a full-wave oscillation. Or, if in this

system an excessive load, as the dropping out of step of a syn-

chronous converter, causes the circuit to open at the generating

station, the dissipation of the stored energy in this case that

of the excessive current in the system occurs as a full-wave

oscillation, if the line cuts off from the generating station on the

low-tension side of the step-up transformers, and the oscillating

circuit comprises the high-tension coils of the step-up trans-

formers, the transmission line, step-down transformers, and load.

If the line disconnects from the generating system on the high-
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potential side of the step-up transformers, the oscillation is a

half-wave oscillation, with the two ends of the oscillating circuit

open.
Such oscillating circuits, however, representing the most

frequent and most important case of high-potential disturbances

in transmission systems, cannot be represented by the preced-

ing equations since they are not circuits of uniformly distributed

constants but complex circuits comprising several sections of

different constants, and therefore of different ratios of energy

consumption and energy storage, -and ^- During the free
Ju C

oscillation of such circuits an energy transfer takes place be-

tween the different sections of the circuit, and energy flows from

those sections in which the energy consumption is small com-

pared with the energy storage, as transformer coils and highly
inductive loads, to those sections in which the energy consump-
tion is large compared with the energy storage, as the more

non-inductive parts of the system. This introduces into the equa-
tions exponential functions of the distance as well as the time,
and requires a study of the phenomenon as one transient in

distance as well as in time. The investigation of the oscillation

of a complex circuit, comprising sections of different constants, is

treated in Section IV.



CHAPTER IV.

DISTRIBUTED CAPACITY OF HIGH-POTENTIAL
TRANSFORMERS.

40. In the high-potential coils of transformers designed for

very high voltages phenomena resulting from distributed

capacity occur.

In transformers for very high voltages 100
;
000 volts and

more, or even considerably less in small transformers the high-

potential coil contains a large number of turns, a great length of

conductor, and therefore its electrostatic capacity is appreciable,

and such a coil thus represents a circuit of distributed resistance,

inductance, and capacity somewhat similar to a transmission

line.

The same applies to reactive coils, etc., wound for very high

voltages, and even in smaller reactive coils at very high frequency.

This capacity effect is more marked in smaller transformers,

where the size of the iron core and therewith the voltage per
turn is less, and therefore the number of turns greater than in

very large transformers, and at the same time the exciting cur-

rent and the full-load current are less; that is, the charging

current of the conductor more comparable with the load current

of the transformer or reactive coil.

However, even in large transformers and at moderately high

voltages, capacity effects occur in transformers, if the frequency
is sufficiently high, as is the case with the currents produced in

overhead lines by lightning discharges, or by arcing grounds

resulting from spark discharges between conductor and ground,
or in starting or disconnecting the transformer. With such

frequencies, of many thousand cycles, the internal capacity of

the transformer becomes very marked in its effect on the dis-

tribution of voltage and current, and may produce dangerous

high-voltage points in the transformer.

The distributed capacity of the transformer, however, is differ-

ent from that of a transmission line.

342
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In a transmission line the distributed capacity is shunted

capacity, that is, can be represented diagrammatically by con-

densers shunted across the circuit from line to line, or, what

amounts to the same thing, from line to ground and from ground
to return line, as shown diagrammatically in Fig. 88.

ll.lllUllll-UllJ- 111 II I
TTTTTTTTTTTTTTTTTTTTTT

Fig. 88. Distributed capacity of a transmission line.

The high-potential coil of the transformer also contains shunted

capacity, or capacity from the conductor to ground, and so each

coil element consumes a charging current proportional to its

potential difference against ground. Assuming the circuit as insu-

lated, and the middle of the transformer coil at ground potential,

the charge consumed by unit length of the coil increases from

zero at the center to a maximum at the ends. If one terminal

of the circuit is grounded, the charge consumed by the coil

increases from zero at the grounded terminal to a maximum at

the ungrounded terminal.

In addition thereto, however, the transformer coil also con-

tains a capacity between successive turns and between successive

layers. Starting from one point of the conductor, after a certain

C 3

HP

r
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first point at a different and greater distance in the next adjacent

layer.

A transformer high-potential coil can be represented dia-

grammatically as a conductor, Fig. 89. C
l represents the capacity

against ground, C
2 represents the capacity between adjacent

turns, and C
3
the capacity between adjacent layers of the coil.

The capacities C
2
and C

a
are not uniformly distributed but

more or less irregularly, depending upon the number and arrange-
ment of the transformer coils and the number and arrangement
of turns in the coil. As approximation, however, the capacities

C
2
and (7

3
can be assumed as uniformly distributed capacity

between successive conductor elements. If I = length of con-

ductor, they may be assumed as a capacity between I and / + dl,

or as a capacity across the conductor element dl.

This approximation is permissible in investigating the general
effect of the distributed capacity, but omits the effect of the

irregular distribution of C
2
and C

3 ,
which leads to local oscilla-

tions of higher frequencies, extending over sections of the circuit,

and of lesser power.
41. Let then, in the high-potential coil of a high-voltage trans-

former, e = the e.m.f. generated per unit length of conductor,

as, for instance, per turn; Z = r
'

jx
= the impedance per unit

length; Y =
g jb

= the capacity admittance against ground

per unit length of conductor, and Y' = pY= the capacity

admittance, per unit length of conductor, between conductor

elements distant from each other by unit length, as admittance

between successive turns. Y' is assumed to represent the total

effective admittance representing the capacity between successive

turns, successive layers, and successive coils, as represented by
the condensers C

2
and C

3
in Fig. 89.

The charging current of a conductor element dl, due to the

admittance Y', is made up of the charging currents against the

next following and that against the preceding conductor element.

Let 1
Q
=

length of conductor; I = distance along conductor;
E =

potential at point I, or conductor element dl, and I = cur-

rent in conductor element dl] then

dE
dE = dl = the potential difference between successive

Q/i

conductor elements or turns.
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Y7
dl = the charging current between one conductor ele-

ment and the next conductor element or turn.

Y' 77
dl = the charging current between one con-

dl

ductor element and the preceding conductor element or turn,

hence,

dl = the charging current of one conductor element due

to capacity between adjacent conductors or turns.

If now the distance I is counted from the point of the con-

ductor, which is at ground potential, YEdl = the charging cur-

rent of one conductor element against ground, and

^Idl

is the total current consumed by a conductor element.

However, the e.m.f. consumed by impedance equals the e.m.f.

consumed per conductor element; thus

dE = Zldl

This gives the two differential equations :

and e - - = ZI. (2)

Differentiating (2) and substituting in (1) gives

transposing,
- E

dP 1
'

(3)
P ZY

ffE
or = -

a*E, (4)
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J_a" =
/y-j

P ~ZY
(5)

1
If -== is small compared with p, we have, approximately,

2 -
(6)

and E = A cos aZ -f B sin aZ, (7)

and since, for Z = 0, E =
0, if the distance Z is counted from the

point of zero potential, we have

E = B sin aZ,

and the current is given by equation (2) as

1 ( dE )

(8)

(9)

substituting (8) in (9) gives

I = \ e aB cos aZ (10)

42. If now 1
1

= the current at the transformer terminals,
I = Z

,
we have, from (10),

and

ZI
j
= e aB cos aZ

B -
a cos a

substituting in (8) and (10),

E =(e -
ZI,)

sin al

a cos aL

and
L \ cos al

f
-

1 "

Z C -

' l

cosaZ,

(12)

for 7j
=

0, or open circuit of the transformer, this gives

sin al
E = e

and

a cos aZ
(

cos aZ
/ = e

f

cos

Z \cos

(13)
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The e.m.f., E, thus is a maximum at the terminals,

the current a maximum at the zero point of potential, I = 0,

where



CHAPTER V.

DISTRIBUTED SERIES CAPACITY.

43. The capacity of a transmission line, cable, or high-poten-
tial transformer coil is shunted capacity, that is, capacity from

conductor to ground, or from conductor to return conductor, or

shunting across a section of the conductor, as from turn to turn

or layer to layer of a transformer coil.

In some circuits, in addition to this shunted capacity, dis-

tributed series capacity also exists, that is, the circuit is broken

at frequent and regular intervals by gaps filled with a dielectric

or insulator, as air, and the two faces of the conductor ends thus

constitute a condenser in series with the circuit. Where the

elements of the circuit are short enough so as to be represented,

approximately, as conductor differentials, the circuit constitutes

a circuit with distributed series capacity.
An illustration of such a circuit' is afforded by the so-called

"
multi-gap lightning arrester," as shown diagrammatically in

Fig. 90, which consists of a large number of metal cylinders p, q

. . .
,
with small spark gaps between the cylinders, connected

between line L and ground G. This arrangement, Fig. 90, can

be represented diagrammatically by Fig. 91. Each cylinder has

a capacity (7 against ground, a capacity C against the adja-

cent cylinder, a resistance r, usually very small, and an

inductance L.

If such a series of n equal spark gaps is connected across a
&

constant supply voltage e
,
each gap has a voltage e = . If,

Tl

however, the supply voltage is alternating, the voltage does not

divide uniformly between the gaps, but the potential difference

is the greater, that is, the potential gradient steeper the nearer

the gap is to the line L, and this distribution of potential becomes

the more non-uniform the higher the frequency; that is, the

greater the charging current of the capacity of the cylinder

against ground. The charging currents against ground, of all

848
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the cylinders from q to the ground G, Figs. 90 and 91, must pass
the gap between the adjacent cylinders p and g; that is, the

charging current of the condenser represented by two adjacent

-00000000000000-1

Fig. 90. Multi-gap lightning arrester.

cylinders p and q is the sum of all the charging currents from

qtoG', and as the potential difference between the two cylinders

p and q is proportional to the charging current of the condenser

'filMI i

T

Fig. 91. Equivalent circuit of a multi-gap lightning arrester.

formed by these two cylinders, C, this potential difference

increases towards L, being, at each point proportional to the

vector sum of all the charging currents, against ground, of all

the cylinders between this point and ground.
The higher the frequency, the more non-uniform is the poten-

tial gradient along the circuit and the lower is the total supply

voltage required to bring the maximum potential gradient, near

the line L, above the disruptive voltage, that is, to initiate the

discharge. Thus such a multigap structure is discriminating

regarding frequency; that is, the discharge voltage with increas-
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ing frequency, does not remain constant, but decreases with

increase of frequency, when the frequency becomes sufficiently

high to give appreciable charging currents. Hence high fre-

quency oscillations discharge over such a structure at lower

voltage than machine frequencies.

For a further discussion of the feature which makes such a

multigap structure useful for lightning protection, see A. I. E. E.

Transactions, 1906, pp. 431, 448, 1907, p. 425, etc.

44. Such circuits with distributed series capacity are of great

interest in that it is probable that lightning flashes in the clouds

are discharges in such circuits. From the distance traversed by

lightning flashes in the clouds, their character, and the disruptive

strength of air, it appears certain that no potential difference

can exist in the clouds of such magnitude as to cause a disruptive

discharge across a mile or more of space. It is probable that

as the result of condensation of moisture, and the lack of uni-

formity of such condensation, due to the gusty nature of air

currents, a non-uniform distribution of potential is produced
between the rain drops in the cloud; and when the potential

gradient somewhere in space exceeds the disruptive value, an

oscillatory discharge starts between the rain drops, and grad-

ually, in a number of successive discharges, traverses the cloud

and equalizes the potential gradient. A study of circuits

containing distributed series capacity thus leads to an under-

standing of the phenomena occurring in the thunder cloud during
the lightning discharge.*

Only a general outline can be given in the following.

45. In a circuit containing distributed resistance, conductance,

inductance, shunt, and series capacity, as the multigap lightning

arrester, Fig. 90, represented electrically as a circuit in Fig. 91,

let r = the effective resistance per unit length of circuit, or per
circuit element, that is, per arrester cylinder; g

= the shunt

conductance per unit length, representing leakage, brush dis-

charge, electrical radiation, etc.; L = the inductance per unit

length of circuit; C = the series capacity per unit length of cir-

cuit, or circuit element, that is, capacity between adjacent arrester

cylinders, and <7 = the shunt capacity per unit length of circuit,

or circuit element, that is, capacity between arrester cylinder and
* See paper, "Lightning and Lightning Protection," N.E.L.A., 1907.

Reprinted and enlarged in " General Lectures on Electrical Engineering," by
Author.
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ground. If then / = the frequency of impressed e.m.f., the

series impedance per unit length of circuit is

Z'=r-j(x-xc); (1)

the shunt admittance per unit length of circuit is

Y - g
-

jb, (2)

where

x = 2 nfL,

1

b - 2 xfC t ;

or the absolute values are

(3)

z = Vr2 + (x~xcy
and (4)

y =

If the distance along the circuit from line L towards ground
G is denoted by Z, the potential difference between point I and

ground by E, and the current at point I by 7, the differential

equations of the circuit are *

f-Z7 (5)

and

. l- 3^ <6>

Differentiating (5) and substituting (6) therein gives

(7)
tM

Equation (7) is integrated by

where

a = VYZ = a -
//?, (9)

= ^\{yz + gr b (x x
c)}

and
J- (10)

/?
=

* Section III, Chapter II, paragraph 7.
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Substituting (10) in (8) and eliminating the imaginary expo-
nents by the substitution of trigonometric functions,

E = A,-
al

(cos pi + j sin pi) + A
2
e
+al

(cos pi
-

j sin pi). (11)

46. However, if n = the total length of circuit from line L to

ground G, or total number of arrester cylinders between line and

ground, for I = n,

E =
0, (12)

and for I = 0,

E = e = the impressed e.m.f, (13)

Substituting (12) and (13) into (11) gives

=
Ajfi

*
(cos pn + j sin pri) + A

2
e
+an

(cos pn-
-

j sin pri)

and

e
o
=

i ~t~ ^jJ

hence,

1
""

1 - - 2an
(cos 2 ph f j sin 2 /?n)

'

(14)

A
2
= - A^"

2 "*1

(cos 2pn + j sin 2 /?n),

and the potential difference against ground is

c'-
a
'(cos pl+j sin pi)

- -*(2*- f )

[cos /? (2 n-Z) +/ sin p(2n-l)]
1 - ~ 2 *n

(cos 2pn + j sin 2 /?n)

(15)

From equation (5), substituting (15) and (9), we have

(cos pl+ j sin pl)+e~
a(2n - l)

[cos p(2n-l) +j sin ft (2 n-Z)]

1 _ - 2aw
(cos 2pn + j sin

(16)

Reduced to absolute terms this gives the potential difference

against ground as

4/ j-
s ll + e -2-C2-o._ 2e : tw

cos2/?(n -Z)6==eoV r- -^i^ o.- 2<m^ r^-^: (17)
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the current as

"
! +' "+2e- :

-"cos2/?(tt-0
1 +-- 2.-- COB

and the potential gradient, or potential difference between adja-

cent cylinders, is

For an infinite length of line, n = <*>
,
that is, for a very large

number of lightning arrester cylinders, where e~ 2an is negligible,

as in the case where the discharge passes from the line into the

arrester without reaching the ground, equations (17), (18), (19)

simplify to

-V"1

, (20)

(21)
1

and

e> = e xc \J
y-t-*l

\ (22)

that is, are simple exponential curves.

Substituting (4) and (3) in (21) and (22) gives

c 2 +
(23)

C2

j[l
-

(2^/

and

; = 27r/Ce'; (24)

or, approximately, if r and
</
are negligible, we have

e'

and

-
v cir--

47. Assume, as example, a lightning arrester having the fol-

lowing constants: L = 2 X 10~8
henry; C = 10~13

farads;
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C = 4 X 10~n farads; r = 1 ohm; g
= 4 X 10- 6

mho;/ - 108 =
100 million cycles per second; n = 300 cylinders, and e = 30,000

volts; then from equation (3), x = 12.6 ohms, x
c
= 39.7 ohms, and

b = 62.8 X 10- 6
mhos;

from equation (1),

Z = 1 + 27.1 / ohms;

from equation (2),

Y =
(4
- 62.8 j)10-

6
mho;

from equation (4),

z = 27.1 ohms and y = 62.9 X 10~6
mho;

from equation (10),

a = 0.0021 and /?
= 0.0412;

from equation (17),

e = 35,500 Vr 21 + 0.08 e*-
0042 ' - 0.568 cos (24.72 -0.0824 Q;

from equation (18),

i = 54 V -
-0042 ' + 0.08 e^

'0042 1 + 0.568 cos (24.72
- 0.0824 /),

and from equation (19),

e' - 2140 v^ -0042 ' + 0.08 e^-0042 ' +0.568 cos (24.72
- 0.0824 I) .

Hence, at I = 0, e = 30,000 volts, i - 64.6 amperes, and
ef = 2560 volts; and at I = 300, e =

0, i = 57.5 amperes, arid

^ = 2280 volts.

With voltages per gap varying from 2280 to 2560, 300 gaps

would, by addition, give a total voltage of about 730,000, while

the actual voltage is only about one-twenty-fourth thereof; that

is, the sum of the voltages of many spark-gaps in series may be

many times the resultant voltage, and a lightning flash may pass

possibly for miles through clouds with a total potential of only
a few hundred million volts. In the above example the 300

cylinders include 7.86 complete wave-lengths of the discharge.
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ALTERNATING MAGNETIC FLUX DISTRIBUTION.

48. As carrier of magnetic flux iron is used, as far as possible,

since it has the highest permeability or magnetic conductivity.
If the magnetic flux is alternating or otherwise changing rapidly,

an e.m.f. is generated by the change of magnetic flux in the iron,

and to avoid energy losses and demagnetization by the currents

produced by these e.m.fs. the iron has to be subdivided in the

direction in which the currents would exist, that is, at right

angles to the lines of magnetic force. Hence, alternating

magnetic fields and magnetic structures desired to respond very

quickly to changes of m.m.f. are built of thin wires or thin iron

sheets, that is, are laminated.

Since the generated e.m.fs. are proportional to the frequency
of the alternating magnetism, the laminations must be finer

the higher the frequency.
To fully utilize the magnetic permeability of the iron, it there-

fore has to be laminated so as to give, at the impressed frequency,

practically uniform magnetic induction throughout its section,

that is, negligible secondary currents. This, however, is no

longer the case, even with the thinnest possible laminations,
at extremely high frequencies, as oscillating currents, lightning

discharges, etc., and under these conditions the magnetic flux

distribution in the iron is not uniform, but the magnetic flux

density, (B, decreases rapidly, and lags in phase, with increasing

depth below the surface of the lamination, so that ultimately

hardly any magnetic flux exists in the inside of the laminations,
but practically only a surface layer carries magnetic flux. The

apparent permeability of the iron thus decreases at very high

frequency, and this has led to the opinion that at very high fre-

quencies iron cannot follow a magnetic cycle. There is, however,
no evidence of such a

"
viscous hysteresis," but it is probable

that iron follows magnetically even at the highest frequencies,

traversing practically the same hysteresis cycle irrespective of

355



356 TRANSIENT PHENOMENA

the frequency, if the true m.m.f., that is, the resultant of the

impressed m.m.f. and the m.m.f. of the secondary currents in

the iron, is considered. Since with increasing frequency, at

constant impressed m.m.f., the resultant m.m.f. decreases, due

to the increase of the demagnetizing secondary currents, this

simulates the effect of a viscous hysteresis.

Frequently also, for mechanical reasons, iron sheets of greater
thickness than would give uniform flux density have to be used

in an alternating field.

Since rapidly varying magnetic fields usually are alternating,

and the subdivision of the iron is usually by lamination, it will

be sufficient to consider as illustration of the method the dis-

tribution of alternating magnetic flux in iron laminations.

49. Let Fig. 92 represent the section of a lamination. The

alternating magnetic flux is assumed to pass in a direction

perpendicular to the plane of the paper.
Let n = the magnetic permeability, A = the

electric conductivity, I = the distance of a layer
dl from the center line of the lamination, and
2 1 = the total thickness of the lamination. If

then / = the current density in the layer dl,

and E = the e.m.f.'per unit length generated in

the zone dl by the alternating magnetic flux, we
have

The magnetic flux density (Bj at the surface

I = 1 of the lamination corresponds to the
Fig. 92. Alter-

jmpresseci or external m.m.f. The' density (B
natmg magnetic ,, 77 , ,,

fluxdistribution
m the zone dl corresponds to the impressed

in solid iron. m.m.f. plus the sum of all the m.m.fs. in the

zones outside of dl, or from I to Z .

The current in the zone dl is

(2)

(3)

(4)

and produces the m.m.f.

3C= 0.4 TrlE/ dZ,

which in turn would produce the magnetic flux density
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that is, the magnetic flux density (B at the two sides of the zone

dl differs by the magnetic flux density d& (equation (4)) pro-
duced by the m.m.f. in zone dl, and this gives the differential

equation between (B, E, and I,

= 0.4 nlpE. (5)

The e.m.f. generated at distance I from the center of the

lamination is due to the magnetic flux in the space from I to 1
Q

.

Thus the e.m.fs. at the two sides of the zone dl differ from each

other by the e.m.f. generated by the magnetic flux ($>dl in this

zone.

Considering now (B, E, and I as complex quantities, the e.m.f.

dE, that is, the difference between the e.m.fs. at the two sides of

the zone dl, is in quadrature ahead of ($>dl, and thus denoted by

dE = -
j 2 TT/CB 10- 8

dl, (6)

where / = the frequency of alternating magnetism.
This gives the second differential equation

d

j[
- -j2^/(BlO-

8
. (7)

50. Differentiating (5) in respect to I, and substituting (7)

therein, gives

.0- 8
(B, (8)

or, writing
c
2 = /a

2 = 0.4 Tr
2/^ 10-8

, (9)

a2 = 0.4 rfXn 10-8
, (10)

we have

-

This differential equation is integrated by

<B = Ac-<"; (12)

this equation substituted in (11) gives

^=-2^; (13)
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hence,
v = (1

-
j) c (14)

and

Since must have the same value for Z as for + Z, being

symmetrical at both sides of the center line of the lamination,

A.
j

:= A.
2

==
-A,

hence,

CB
= AO-K'-^' + e-'

1

-^}; (15)

or, substituting

gives

(B = A{(s
+c '+ e~ cl

) cos cZ - j

+cZ - ~ cz

) sin c/}. (17)

51. Denoting the flux density in the center of the lamination,

for I = 0, by (B from (17) we have

(B = 2 A;

hence,
A = i . (18)

and

fc = <B
j

coscZ - y sin d > . (19)

Denoting the flux density at the outside of the lamination,

for Z = Z
,
that is, the density produced by the external m.m.f.,

by CB I;
substituted in (19), we have

cos cZ -
y
- - sin cZ

( , (20)
t Zi )

and substituting (20) in (19),

<B = A (<
+a + <-") cos d -

; (+" - -") and
; (21)1

(
+ci

-f
~ c

*) cos cZ j (
+ci

e
cl

) sin cZ

The mean or apparent value of the flux density, i.e., the average

throughout the lamination, is

i r i

(22)
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Using equation (15) as the more convenient for integration

gives

(23)

and substituting herein (16), (18) and (20), gives

) cos c i
j sm c i >

)cLl 2 2 *]

(24)
so /"> "^ o c c o\r*n<3/'J V (f "^ c

-4- /?
c 'o"\ cjiri //U6. ^t t y UVJo

Ct<Q j v* i / SHI C*!

The absolute values of the flux densities are derived as square
root of the sum of the squares of real and imaginary terms in

equations (19), (20), (21), and (24), as

^2Ve
+2d + e

-*' I + 2cos2d, (25)
o

CB
1

= > e +2^ + -2^o + 2cos2c/
, (26)

(B =

and

2 cos 2

(28)

52. Where the thickness of lamination, 2 Z
,
or the frequency/,

is so great as to give cZ a value sufficiently high to make e~ cl
,

or the reflected wave, negligible compared with the main wave

e
+cl

,
the equations can be simplified by dropping s~ cl

. In this

case the flux density, (B, is very small or practically nothing in

the interior, and reaches appreciable values only near the surface.

It then is preferable to count the distance from the surface of the
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lamination into the interior, that is, substitute the independent
variable

s = 1 -
I. (29)

Dropping
~ c* and s~ cl

in equation (21) gives

e
cl

(cos cl f sin d)
/r> /T>

x /

1
e
cl

(cos cl
Q j sin cl

Q)

= (B^-^o-^jcosc (Z
-

1) + ysinc (Z
-

Z)};

hence,

(B
=

i
*~ cs

(cos cs + y sin cs); (30)

or the absolute value is

(B =(B
1
e- c

', (31)

and at the center of the lamination,

(B =
$1

~ cZ
(cos cZ + y sin cZ ),J sm cy ,

i

From equation (24) the mean value of flux density follows

when dropping
~ cl

as negligible, thus:

*- =
oArf' (33)

or the absolute value is

(34)

53. As seen, the preceding equations of the distribution of

alternating magnetic flux in a laminated conductor are of the

same form as the equations of distribution of current and voltage
in a transmission line, but more special in form, that is, the

attenuation constant a and the wave length constant /? have

the same value, c. As result, the distribution of the alternating

magnetic flux in the lamina depends upon one constant only, cl
Q

.

The wave length is given by

cZ = 2 *
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ihence

and by (9)

10,000

and the attenuation during one wave length, or decrease of

intensity of magnetism, per wave length, is

- 2 - =
0.0019,

and per half-wave length is

e
- - = 0.043.

At the depth -j
below the surface, the magnetic flux lags 90

degrees and has considerably decreased; at the depth -^
it lags

Zi

180 degrees, that is, is opposite in direction to the flux at the

surface of the lamination, but is very small, the intensity being
less than 5 per cent of that at the surface, and at the depth lw

the flux is again in phase with the surface flux, but its intensity

is practically nil, less than 0.2 per cent of the surface intensity;

that is, the penetration of alternating flux into the laminated

iron is inappreciable at the depth of one wave length.

By equations (33) and (34), the total magnetic flux per unit

width of lamination is

the absolute value is 2 l
Q
&m =

c"

that is, the same as would be produced at uniform density in a

thickness of lamination

2

or absolute value,
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which means that the resultant alternating magnetism in the

lamination lags 45 degrees, or one-eighth wave behind the im-

pressed m.m.f., and is equal to a uniform magnetic density

penetrating to a depth

L-~ (36)

lp , therefore, can be called the depth of penetration of the

alternating magnetism into the solid iron.

Since the only constant entering into the equation is cl
,
the

distribution of alternating magnetism for all cases can be repre-

sented as function of cl .

If cl
Q

is small, and therefore the density in the center of the

lamination <B comparable with the density (&
1
at the outside,

the equations (19), (20), and (24) respectively (25), (26), and (28)

are preferably used; if cl is large, and the flux density B in the

center of the lamination is negligible, the equations (30) to (34)

are preferably used.

54. As an example, let /*
= 1000 and A = 105

;
then a =

1.98,

and for / = 60 cycles per second, c = a^/J = 15.3; hence, the

thickness of effective layer of penetration is

L = - = 0.046 cm = 0.018 inches.

In Fig. 93 is shown, with cl as abscissas, the effective value of

the magnetic flux, which from equation (25) is

& = Ve + '

2ci + e~'2d + 2cos2cZ,
Z

and also the space-phase angle between (B and (B
,
which from

equation (19) is

cl _ -cl

tan T
O
=
^ __ cl

tan d. (37)

In Fig. 94 is shown, with cs as abscissas, the effective value

of the magnetic flux, which from equation (31) is

CB = (B- 08
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and also the space-phase angle between (B and <$> v which from

equation (30) is

tan T
I
= tan cs. (38)

The thickness of the equivalent layer is marked in Fig. 94.

\
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1.0

a
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
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hence, substituting for c from equation (9),

104 3570
(40)

that is, the penetration of an alternating magnetic flux into a

solid conductor is inversely proportional to the square root of

the electric conductivity, the magnetic permeability, and the

frequency.
The values of penetration, lp ,

in centimeters for various

materials and frequencies are given below.

Frequency.
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1

lw 2 V2n 8.9

or 40.5 degrees.

The speed of propagation is

31,600 \/J

(42)

(43)

that is, the speed of propagation is inversely proportional to the

square root of the electric conductivity and of the magnetic per-

meability, but directly proportional to the square root of the

frequency. This gives a curious instance of a speed which

increases with the frequency. Numerical values are given below.
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58. As illustration, for iron of 14 mils thickness, or 1 = 0.018

centimeters, and the constants
JJL

= 1000 and A = 105
,
that is

a =
1.98, the absolute value of the effective permeability is

and

hence,

(46)

that is, the effective or apparent permeability at very high

frequencies decreases inversely proportional to the square root

of the frequency. In the above instance the apparent per-

meability is :

At low frequency, JJL

=
1000;

at 10,000 cycles, //
= 198;

at 1,000,000 cycles, //
=

19.8;

at 100 million cycles, //
=

1.98, and

at 392 million cycles, //
==

1,

or the same as air, and at still higher frequencies the presence
of iron reduces the magnetic flux.

It is interesting to note that with such a coarse lamination

as a 14-mil sheet, even at the highest frequencies of millions of

cycles, an appreciable apparent permeability is still left; that is,

the magnetic flux is increased by the presence of iron
;
and the

effect of iron in increasing the magnetic flux disappears only at

400 million cycles, and beyond this frequency iron lowers the

magnetic flux. However, even at these frequencies, the presence
of iron still exerts a great effect in the rapid damping of the

oscillations by the lag of the mean magnetic flux by 45 degrees.

Obviously, in large solid pieces of iron, the permeability //

falls below that of air even at far lower frequencies.

Where the penetration of the magnetic flux lp is small com-

pared with the dimensions of the iron, its shape becomes im-

material, since only the surface requires consideration, and so
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in this case any solid structure, no matter what shape, can be

considered magnetically as its outer shell of thickness lp when

dealing with rapidly alternating magnetic fluxes.

At very high frequencies, when dealing with alternating

magnetic circuits, the outer surface and not the section is, there-

fore, the dominating feature.

The lag of the apparent permeability represents an energy

component of the e.m.f. of self-induction due to the magnetic

flux, which increases with increasing frequency, and ultimately
becomes equal to the reactive component.



CHAPTER VII.

DISTRIBUTION OF ALTERNATING-CURRENT DENSITY IN
CONDUCTOR.

59. If the frequency of an alternating or oscillating current

is high, or the section of the conductor which carries the current

is very large, or its electric conductivity or its magnetic per-

meability high, the current density is not uniform throughout
the conductor section, but decreases towards the interior of the

conductor, due to the higher e.m.f. of self-inductance in the

interior of the conductor, caused by the magnetic flux inside of

the conductor. The phase of the current inside of the conductor

also differs from that on the surface and lags behind it.

In consequence of this unequal current distribution in a large

conductor traversed by ^alternating currents, the effective resist-

ance of the conductor may be far higher than the ohmic resist-

ance, and the conductor also contains internal inductance.

In the extreme case, where the current density in the interior

of the conductor is very much lower than on the surface, or even

negligible, due to this "screening effect/' as it has been called,

the current can be'assumed to exist only in a thin surface layer

of the conductor, of thickness lp ;
that is, in this case the effective

resistance of the conductor for alternating currents equals the

ohmic resistance of a conductor section equal to the periphery
of the conductor times the

"
thickness of penetration."

Where this unequal current distribution throughout the con-

ductor section is considerable, the conductor section is not fully

utilized, but the material in the interior of the conductor is more
or less wasted. It is of importance, therefore, in alternating-

current circuits, especially in dealing with very large currents, or

with high frequency, or materials of very high permeability, as

iron, to investigate this phenomenon.
An approximate determination of this effect for the purpose

of deciding whether the unequal current distribution is so small

as to be negligible in its effect on the resistance of the conductor,
369
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or whether it is sufficiently large to require calculation and

methods of avoiding it, is given in
"
Alternating-Current Phe-

nomena," Chapter XIV, paragraph 133.

An appreciable increase of the effective resistance over the

ohmic resistance may be expected in the following cases :

(1) In the low-tension distribution of heavy alternating cur-

rents by large conductors.

(2) When using iron as conductor, as for instance iron wires

in high potential transmissions for branch lines of smaller power,
or steel cables for long spans in transmission lines.

(3) In the rail return of single-phase railways.

(4) When carrying very high frequencies, such as lightning

discharges, high frequency oscillations.

In the last two cases, which probably are of the greatest impor-

tance, the unequal current distribution usually is such that

practically no current exists at the conductor center, and the

effective resistance of the track rail even for 25-cycle alternating

current thus is several times greater than the ohmic resistance,

and conductors of low ohmic resistance may offer a very high
effective resistance to a lightning stroke.

By subdividing the conductor into a number of smaller

conductors, separated by some distance from each other, or by
the use of a hollow -conductor, or a flat conductor, as a bar or

ribbon, the effect is reduced, and for high-frequency discharges,

as lightning arrester connections, flat copper ribbon offers a very
much smaller effective resistance than a round wire. Strand-

ing the conductor, however, has no direct effect on this phenom-
enon, since it is due to the magnetic action of the current, and

the magnetic field in the stranded conductor is the same as in

a solid conductor, other things being equal. That is, while eddy
currents in the conductor, due to external magnetic fields, are

eliminated by stranding the conductor, this is not the case with

the increase of the effective resistance by unequal current dis-

tribution. Stranding the conductor, however, may reduce

unequal current distribution indirectly, especially with iron as

conductor material, by reducing the effective or mean per-

meability of the conductor, due to the break in the magnetic
circuit between the iron strands, and also by the reduction of

the mean conductivity of the conductor section. For instance,

if in a stranded conductor 60 per cent of the conductor section
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is copper, 40 per cent space between the strands, the mean

conductivity is GO per cent of that of copper. If by the sub-

division of an iron conductor into strands the reluctance of the

magnetic circuit is increased tenfold, this represents a reduction

of the mean permeability to one-tenth. Hence, if for the con-

ductor material proper n =
1000, A = 105

,
and the conductor

section is reduced by stranding to 60 per cent, the permeability

to one-tenth, the mean values would be

fjL

= 100 and ^ = 0.6 X 105
,

and the factor V7/T, in the equation of current distribution, is

reduced from VT == 10,000 to VI^ = 2450, or to 24.5 per

cent of its previous value. In this case, however, with iron as

conductor material, an investigation must be made on the cur-

rent distribution in each individual conductor strand.

Since the simplest way of reducing the effect of unequal current

distribution is the use of flat conductors, the most important case

is the investigation of the alternating-current distribution

throughout the section of the flat conductor. This also gives

the solution for conductors of any shape when the conductor

section is so large that the current penetrates only the surface

layer, as is the case with a steel rail of a single-phase railway.

Where the alternating current penetrates a short distance only

into the conductor, compared with the depth of penetration the

curvature of the conductor surface can be neglected, that is, the

conductor surface considered as a flat surface penetrated to

the same depth all over. Actually on sharp convex surfaces the

current penetrates somewhat deeper, somewhat less on sharp
concave surfaces, so that the error is more or less compensated.

60. In a section of a flat conductor, as shown diagrammatically
in Fig. 92, page 356, let A = the electric conductivity of conductor

material; u = the magnetic permeability of conductor material;

I = the distance counted from the center line of the conductor,

and 2 1 = the thickness of conductor.

Furthermore, let E = the impressed e.m.f. per unit length of

conductor, that is, the voltage consumed per unit length in the

conductor after subtracting the e.m.f. consumed by the self-

inductance of the external magnetic field of the conductor; thus,

if E
l

= the total supply voltage per unit length of conductor
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and E
2
= the external reactance voltage, or voltage consumed

by the magnetic field outside of the conductor, between the con-

ductors, we have

Let

7=^4- ji2
= current density in conductor element dl,

& = ^ + y& 2
= magnetic density in conductor element dl,

E = e.m.f. consumed in the conductor element dl by the self-

inductance due to the magnetic field inside of the conductor;

then the current Idl in the conductor element represents the

m.m.f. or field intensity,

which causes an increase of the magnetic density (B between the

two sides of the conductor element dl by

(2)

The e.m.f. consumed by self-inductance is proportional to the

magnetic flux and to the frequency, and is 90 time-degrees ahead

of the magnetic flux.

The increase of magnetic flux (B dl, in the conductor element dl,

therefore, causes an increase in the e.m.f. consumed by self-

inductance between the two sides of the conductor element by

dE = + 2 j7r/te 10- 8
dl, (3)

where / = the frequency of the impressed e.m.f.

Since the impressed e.m.f. E equals the sum of the e.m.f. con-

sumed by self-inductance E and the e.m.f. consumed by the

resistance of the conductor element -, we have
A

?.-?+! w
/

Differentiating (4) gives

dE=-\dI, (5)
A
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and substituting (5) in (3) gives

dl - - 2 ]Vr/U& 10~ 8 dl (6)

The two differential equations (6) and (2) are in
,
7

,
and

Z,

which by eliminating &, give the differential equation between
7 and I: differentiating (6) and substituting (2) therein gives

. (7)

or writing

c
2 = a2

/ = 0.4 7T
2 10- 8

Itf, (8)

where

a2 = 0.4 Tr
2 10- 8

1?, (9)

gives

^=-2 ,<>/. (10)

This differential equation (10) is integrated by

/ - As- 1

, (11)

and substituting (11) in (10) gives

*- -2/c
2

,

v =c(l r :'i); (12)

hence,

I = Af +c(l-W + ^
2

- c <1 -^'. (13)

Since / gives the same value for +1 and for
Z,

4i
= 4 2

=
4; (14)

hence,

7 "-^T^-^-f
~ c(l -j}l

\. (15)

Substituting

e ^' = coscZ jsincZ (16)

gives

/= 45(e
+^ + e -rf) coscZ -

j (e
+cl - e~ cl

) sincZj, (17)

and for Z = Z
,
or at the conductor surface,

Iml
=

A{(e
+cl + e- c

') cos cZ -
j (e

+cl - ~ cl

<>) sincZJ. (18)
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At the conductor surface, however, no e.m.f. of self-inductance

due to the internal field exists, and

/o - ^o- (19)

Substituting (19) in (18) gives the integration constant A, and

this substituted in (17) gives the distribution of current density

throughout the conductor section as

+Cl - oi - +ci - cl

(
+c/0 + s

cl

) cos cl j (s
+cl - ~ cl

) sin cl
(

The absolute value is given as the square root of the sum of

squares of real and imaginary terms,

The current density in the conductor center, I = 0, is

2 XE
j = m_^ A^Q

(g+cio + e -e^ cog ^ _
j (

+cl _ -cl
j gin c

or the absolute value is

2^
7 _

'

61. It is seen that the distribution of alternating-current

density throughout a solid flat conductor gives the same equa-
tion as the distribution of alternating magnetic density through
an iron rail, equations of the same character as the equation of

the long distance transmission line, but more special in form.

The mean value of current density throughout the conductor

section,
1 f*ln

(24)

which is derived in the same manner as in Chapter V, 51, is

AE
{ (

+cl(> -~ c/0
) cos cl

Q
--

j (
+cl +

~ cl

) sin d
\

j ___ rsr . .

M._
g-os) sinc/

j

(25)
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and the absolute value is

~i - - 2 cL , o o7 *

(26)

Therefore, the increase of the effective resistance R of the

conductor over the ohmic resistance RQ is

cos cl -
j (g

+ c*Q- g
- c

*Q) sin cZ

(1-j) cZ (e
+c'- -^) cosc/ -

j (
+^+ -

(28)

or the absolute value is

2 ^+ -2^ _ 2 cos 2 cZ

62. If cl
Q
is so large that

~ cl can be neglected compared with

e
+cl

,
then in the center of the conductor / is negligible, and for

values of I near to Z
,
or near the surface of the conductor, from

equation (20) we have

e
+cl

(cos d j sin d)
' +cl

(cosd -
j'sincZ )

= IE
Q

c(*~ /o)

{cos c (Z
- Z )

-
j sin c (Z

-
Z )}.

Substituting
^ = Z -

I, (30)

where s is the depth below the conductor surface, we have

/ = AE
Q
e~ cs

(cos cs + j sin cs), (31)

and the absolute value is

7-^.e ; (32)

the mean value of current density is
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and the absolute value is

/\J
Q ^"

d
Q
V2*

hence, the resistance ratio, since the current density at the sur-

face, or density in the absence of a screening effect, is 1 = AE
Q

:

ifl '}d
R I m

= cZ -
jdw (35)

and the absolute value is

- =
<*. ^2; . (so)

that is, the effective resistance R of the conductor, as given by

equation (28), and, for very thick conductors, from equation

(35), appears in the form

R = R
Q K - jw a), (37)

which for very thick conductors gives for m
l
and m

2
the values

63. As the result of the unequal current distribution in the

conductor, the effective resistance is increased from the ohmic

resistance R to the value

R = R mv

R = cl R
,

and in addition thereto an effective reactance

X = R
Q
m

2 ,

or

X = d R
,

is produced in the conductor.

In the extreme case, where the current does not penetrate
much below the surface of the conductor, the effective resistance

and the effective reactance of the conductor are equal and are

where R n is the ohmic resistance of the conductor.
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It follows herefrom that only -r of the conductor section is
cl

Q

effective; that is, the depth of the effective layer is

i -!..!
*~d-~c'

or, in other words, the effective resistance of a large conductor

carrying an alternating current is the resistance of a surface

layer of the depth

(39)

and in addition thereto an effective reactance equal to the

effective resistance results from the internal magnetic field of

the conductor.

Substituting (8) in (39) gives

n VGA
or

5030~' (40)

It follows from the above equations that in such a conductor

carrying an alternating current the thickness of the conducting

layer, or the depth of penetration of the current into the con-

ductor, is directly proportional, and the effective resistance and

effective internal inductance inversely proportional, to the square
root of the electric conductivity, of the magnetic permeability,

and of the frequency.
From equation (40) it follows that with a change of conduc-

tivity A of the material the apparent conductance, and therewith

the apparent resistance of the conductor, varies proportionally

to the square root of the true conductivity or resistivity.

Curves of distribution of current density throughout the sec-

tion of the conductor are identical with the curves of distribution

of magnetic flux, as shown by Figs. 93, 94, 95 of Chapter VI.

64. It is interesting to calculate the depth of penetration
of alternating current, for different frequencies, in different

materials, to indicate what thickness of conductor may be

employed.
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Such values may be given for 25 cycles and 60 cycles as the

machine frequencies, and for 10,000 cycles and 1,000,000 cycles

as the limits of frequency, between which most high frequency

oscillations, lightning discharges, etc., are found, and also for

1,000,000,000 cycles as about the highest frequencies which

can be produced. The depth of penetration of alternating
current in centimeters is given below.

Material
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even at one million cycles be used in a thickness up to one-half

inch without increase of effective resistance.

The maximum diameter of conductor which can be used with

alternating currents without giving a serious increase of the

effective resistance by unequal current distribution is given
below.

At 25 cycles:

Steel wire 0.30 cm. or 0.12 inch

Copper 2.6 cm. or 1 inch

Aluminum 3.3 cm. or 1.3 inches

At 60 cycles :

Steel wire 0.20 cm. or 0.08 inch

Copper 1.6 cm. or 0.63 inch

Aluminum 2.1 cm. or 0.83 inch

At lightning frequencies, up to one million cycles :

Copper 0.013 cm. or 0.005 inch

Aluminum 0.016 cm. or 0.0065 inch

German silver 0.055 cm. or 0.022 inch

Cast silicon 1.1 cm. or 0.44 inch

Salt solution 22 cm. or 8.7 inches

River water . . All sizes.

APPENDIX

Transient Unequal Current Distribution.

65. The distribution of a continuous current in a large con-

ductor is uniform, as the magnetic field of the current inside

of the conductor has no effect on the current distribution, being
constant. In the moment of starting, stopping, or in any way
changing a direct current in a solid conductor, the correspond-

ing change of its internal magnetic field produces an unequal
current distribution, which, however, is transient.

As in this case the distribution of current is transient in time

as well as in space, the problem properly belongs in Section IV,
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but may be discussed here, due to its close relation to the

permanent alternating-current distribution in a solid conductor.

Choosing the same denotation as in the preceding paragraphs,
but denoting current and e.m.f. by small letters as instantaneous

values, equations (1), (2), and (4) of paragraph 61 remain the

same:

dW = OAxidl, (1)

, (2)

e =e+-, (4)

where e =
voltage impressed upon the conductor (exclusive

of its external magnetic field) per unit length, e = voltage con-

sumed by the change of internal magnetic field, i = current

density in conductor element dl at distance I from center line

of flat conductor, p = the magnetic permeability of the con-

ductor, and \ = the electric conductivity of the conductor.

Equation (3), however,

dE = 2 JTcfB 1(T 8
dl,

changes to

de = -^W-dl (3)
at

when introducing the instantaneous values; that is, the integral

or effective value of the e.m.f. E consumed by the magnetic
flux density is proportional and lags 90 time-degrees behind

(B, while the instantaneous value i is proportional to the rate of

change of (B, that is, to its differential quotient.

Differentiating (3) with respect to dl gives

and substituting herein equation (2) gives

=-0.4
*

10-. (6)

Differentiating (4) twice with respect to dl gives

ffe 1 tfi-* (7)
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and substituting (7) into (6) gives

'

T (8)

as the differential equation of the current density i in the con-

ductor.

Substituting

c
2 = 0.4 n^ 1(T8

(9)

gves

This equation (10) is integrated by

i =A + Be- a2t ~ bl

, (11)

and substituting (11) in (10) gives the relation

hence,
b =

jca, (12)

and substituting (12) in (11), and introducing the trigonometric

expressions for the exponential functions with complex imagi-

nary exponents,

i = A + e- a*'

(C 1
cos cal + C

2
sin cal), (13)

where

C
l
=B

l
+ B

2
and C

2
-

j (B,
- 5

a).

Assuming the current distribution as symmetrical with the

axis of the conductor, that is, i the same for + I and for I,

gives

C
2 =0;

hence,

i = A + C~ att cos cal (13)

as the equation of the current distribution in the conductor.

It is, however, for t = <*>
,
or for uniform current distribution,
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hence, substituting in (13),

and

A = e

(14)

At the surface of the conductor, or for I = Z
,
no induction by

the internal magnetic field exists, but the current has from the

beginning the final value corresponding to the impressed e.m.f.

e
,
that is, for I = 1

,

and substituting this value in (14) gives

e
Q
X = e

Q
\ + Ce~ aH

cos cat

hence,

and

or

cal f

cos caL =

(2 K -
1) 7T

a = (2 K
-

1) 7T

2cL
"~

J

(15)

(16)

where K is any integer.

There exists thus an infinite series of transient terms, exponen-
tial in the time, t, and trigonometric in the distance, I, one of

fundamental frequency, and with it all the odd harmonics, and
the equation of current density, from (14), thus is

; (2 * -
1) ca

t
Z

(2 /c - 1) ^

where

2d,

(17)

(18)

The values of the integration constants CK are determined

by the terminal conditions, that is, by the distribution of current
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density at the moment of start of the transient phenomenon,
or t = 0.

For i = 0,

, ^ ^ (2 K -

2l
n .

(19)

Assuming that the current density i was uniform throughout
the conductor section before the change of the circuit con-

ditions which led to the transient phenomena as would be

expected in a direct-current circuit, from (19) we have

00 (^ If 1 ^ T/

2}* CK cos - =
(e Q

X i' )
= constant, (20)

and the coefficients CK of this Fourier series are derived in the

usual manner of such series, thus:

C. = 2 avgf-
L

(e A i ) cos

4 . -;o), (21)
7T

where avg [!(*)]**** denotes the average value of the function

F(x) between the limits x=x^ and x = x2

and equation (17) then assumes the form

(22)

This then is the final equation of the distribution of the

current density in the conductor.

If now
Zj
= width of the conductor, then the total current in

the conductor, of thickness 2 1
Q,

is

idl

or

(23)
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For the starting of current, that is, if the current is zero,

t*
=

0, in the conductor before the transient phenomenon, this

gives

(24)

While the true ohmic resistance, r
, per unit length of the

conductor is

r =m> (25)

the apparent or effective resistance per unit length of the con-

ductor during the transient phenomenon is

V c
1

fi

-
(2 < - i)oi* (26)

and in the first moment, for t = 0, is

since the sum is

1

'

7T
2

(2*
-

I)
2

.8

The effective resistance of the conductor thus decreases from

oo at the first moment, with very great rapidity due to the

rapid convergence of the series to its normal value.

66. As an example may be considered the apparent resist-

ance of the rail ret irn of a direct-current railway during the

passage of a car over the track.

Assume the car moving in the direction away from the

station, and the current returning through the rail, then the

part of the rail behind the car carries the full current, that ahead

of the car carries no current, and at the moment where the car

wheel touches the rail the transient phenomenon starts in this

part of the rail. The successive rail sections from the wheel

contact backwards thus represent all the successive stages of

the transient phenomenon from its start at the wheel contact

to permanent conditions some distance back from the car.
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Assume the rail section as equivalent to a conductor of

8 cm. width and 8 cm. height, or Z
t =8, Z = 4, and the car

speed as 40 miles per hour, or 1800 cm. per second.

Assume a steel rail and let the permeability p.
= 1000 and

the electric conductivity X = 105
.

Then c - v/0.4 npl 10~ 8 = N/1.2566 =
1.121,

a
x

2 - 0.122.

Since i =
0, the current distribution in the conductor, by

(22), is

+
\ X" S7T1

^ >122(2 't ~ 1)2 '
cos 0.393 (2* -

= e A {1- 1.27 [e-
-122 *

cos 0.393Z-Je-
uo 'cosl.l8i + t

cos 1.96 Z
- + ...]},

the ohmic resistance per unit length of rail is

r =
Q =0.156 X 10"6 ohms per cm.
* V/

and the effective resistance per unit length of rail, by (26), is

0.156 X 1Q~ 6

At a velocity of 1800 cm. per second, the distance from the

wheel contact to any point p of the rail, Z', is given as function

of the time t elapsed since the starting of the transient phenom-
enon at point p by the passage of the car wheel over it, by the

expression V = 1800 t, and substituting this in the equation of

the effective resistance r gives this resistance as function of the

distance from the car, after passage,

=_ 0.156 X IP"6_=

1 - 0.81 [fi-**
10" 1

'

+ l -612xlO-*' + ^ -1700xlO-r + ^ ^ ]

ohms per cm.

As illustration is plotted in Fig. 96 the ratio of the effective

resistance of the rail to the true ohmic resistance, , and with



386 TRANSIENT PHENOMENA

the distance from the car wheel, in meters, as abscissas, from the

equation

r 1

r 1-0.81 ,- 0.0068 1'
- 0.0612 /'

- 0.34 I'

As seen from the curve, Fig. 96, the effective resistance of the

rail appreciably exceeds the true resistance even at a consider-

able distance behind the car wheel. Integrating the excess of

effective resistance over the ohmic resistance shows that

7.0

6.0

5.0

.4.0

3.0

2.0

100 200 300

Distance from Car, Meters

Fig. 96. Transient resistance of a direct-current railway rail return.

Car speed 18 meters per second.

the excess of the effective or transient resistance over the ohmic

resistance is equal to the resistance of a length of rail of about

300 meters, under the assumption made in this instance, and at

a car speed of 40 miles per hour. This excess of the transient

rail resistance is proportional to the car speed, thus less at lower

speeds.



CHAPTER VIII.

VELOCITY OF PROPAGATION OF ELECTRIC FIELD.

67. In the theoretical investigation of electric circuits the

velocity of propagation of the electric field through space is

usually not considered, but the electric field assumed as instan-

taneous throughout space; that is, the electromagnetic com-

ponent of the field is considered as in phase with the current, the

electrostatic component as in phase with the voltage. In reality,

however, the electric field starts at the conductor and propa-

gates from there through space with a finite though very high

velocity, the velocity of light; that is, at any point in space

the electric field at any moment corresponds not to the condi-

tion of the electric energy flow at that moment but to that at a

moment earlier by the time of propagation from the conductor

to the point under consideration, or, in other words, the electric

field lags the more, the greater the distance from the conductor.

Since the velocity of propagation is very high about 3 X 1010

centimeters per second the wave of an alternating or oscillating

current even of very high frequency is of considerable length ;
at

60 cycles the wave length is 0.5 X 109
centimeters, and even at

a million cycles the wave length is 30,000 centimeters, or about

1000 feet, that is, very great compared with the distance to

which electric fields usually extend.

The important part of the electric field of a conductor extends

to the return conductor, which usually is only a few feet distant;

beyond this, the field is the differential field of conductor and

return conductor. Hence, the intensity of the electric field has

usually already become inappreciable at a distance very small

compared with the wave length, so that within the range in

which an appreciable field exists this field is practically in phase
with the flow of energy in the conductor, that is, the velocity of

propagation has no appreciable effect.

Thus, the finite velocity of propagation of the electric field

requires consideration only:
387
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(a) At extremely high frequencies, hundreds of millions of

cycles per second, as given by Hertzian resonators.

(6) In high frequency discharges having no return circuit or

no well defined return circuit, as lightning discharges. In this

case the effective resistance of radiation may be so large com-

pared with the ohmic resistance, even when considering the

unequal current distribution in the conductor (ChapterVII), that

the effect of the conductor material practically disappears. In

the conductors forming the discharge path of lightning arresters

this phenomenon therefore requires serious consideration.

(c) With high frequencies, in the case where the field at a

considerable distance from the conductor is of importance as in

wireless telegraphy.
In wireless telegraphy the electric field of the sending antennae

propagating through space impinges upon the receiving antennae

and there is observed by its electromagnetic and electrostatic

effect.

68. The electric field of an infinitely long conductor without

return conductor decreases inversely proportionally to the dis-

tance, and therefore is represented by
^r

#-j, CD

where ^ is the intensity of the electric field at unit distance from

the conductor.

The electric field of a finite conductor of length 1Q decreases

inversely proportionally to the distance I and also proportionally

to the angle subtended by the conductor 1 from the distance /,

and since this angle, for great distances, is inversely proportional

to the distance I, the electric field of a finite conductor of length /

without return conductor is represented by

Since the electric field of the return conductor is opposite to

that of the conductor, it follows that the electric field of an

infinitely long conductor, with the return conductor at distance

L, by equation (1) is

V V
* =-77- -17 > (3)
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where l
r = ^ cos r is the projection of the distance l

t
between

the conductors upon the direction I, that is, I' is the difference

in the distance of the two conductors from the point I.

For large distances I, equation (3), becomes

V9
#- (4)

In the same manner, from equation (2) it follows that the

decrease of the electric field of the conductor of finite length 1
,

with its return conductor at the distance lv that is, of a recti-

linear circuit of the dimensions of 1
Q
and /t :

I** V*

(>-&"' >(>+$.
hence,

,
y* ,-v

f- -p
(5)

69. Since infinitely long conductors, (1) and (4), are of

theoretical interest only, practically available are the cases (2)

and (5).

The electric field of a closed circuit decreases with the cube

of the distance, hence much more rapidly than that of a con-

ductor without a return conductor, which decreases only with

the square of the distance. Hence, where, as in wireless teleg-

raphy, action at great distance is required, only conductors

without return conductor can be used. To establish consider-

able currents in such open conductors requires high frequen-

cies, so that the current is absorbed by the capacity of the

conductor or the capacity attached to its end. No conductor f

parallel to the ground can be treated as conductor without :

return conductor, since secondary currents in the ground and !

also in the higher strata of the atmosphere act as return con-

ductor with regard to the electric field. The practical reali-

zation of a conductor without return thus requires a vertical

position of the conductor, and for this reason in wireless teleg-

raphy the vertical sending and receiving antennae are necessary,

and the transmission is far more successful across the ocean

than across the land, since in the latter case every tree, moun-



390 TRANSIENT PHENOMENA

tain, etc., acts inductively as return conductor, and thus

increases the rapidity of the decrease of the electric field.

In such a case the use of high frequency and of conductors

without return conductor, hence with electric fields decreasing

relatively slowly with the distance, requires an introduction of

the velocity of propagation into the circuit equations.

As illustrations will be discussed :

(A) The inductance of a finite section of an infinitely long con-

ductor without return conductor.

(B) The mutual inductance between two finite conductors

without return conductors, at considerable distance from

each other.

((7) The capacity of a sphere in free space.

(D) The capacity of a sphere against ground, in space.

Cases A and B deal with the electromagnetic, C and D with the

electrostatic component of the electric field.

A. Inductance of a length I of an infinitely long conductor without

return conductor.

70. The inductance of a length I of a straight conductor is

usually given by the equation

L =
2Zlog^XlO-

9
, (6)

lr

where V = the distance of return conductor, lr
= the radius of the

conductor, and the total length of the conductor is assumed as

infinitely great compared with I and I'. This is approximately
the case with the conductors of a long distance transmission line.

For infinite distance l
f
of the return conductor, that is, a

conductor without return conductor, equation (6) gives L = oo
;

that is, a finite length of an infinitely long conductor without

return conductor has an infinite inductance L and inversely,

zero capacity C.

In equation (6) the magnetic field is assumed as instantaneous,
that is, the velocity of propagation of the magnetic field is

neglected. With alternating currents traversing the conductor

this is permissible when the distance to the return conductor

is a negligible fraction of the wave length; that is, if Z' is

negligible compared with -, where S = the speed of light and
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/ = the frequency of alternating current. It obviously is not

permissible in a conductor having no return conductor.

If a conductor conveying an alternating current has no return

conductor, its circuit is closed by electrostatic capacity, either

the distributed capacity of the conductor or capacity connected

to the ends of the conductor. To produce in such a case con-

siderable currents, either the conductor must be very long or

the frequency and e.m.f. very high.

No conductor extending parallel to the ground, as a telegraph

or transmission wire, can be considered as having no return con-

ductor, since even if the conductor is isolated from the ground

secondary currents produced in the ground (and in the higher

regions of the atmosphere) act inductively as return currents.

Hence the case of the conductor without return conductor can

physically be realized only by a conductor perpendicular to the

ground, as the sending and receiving antennse of a wireless tele-

graph station, and even then completely only on the ocean,

where there are no other vertical conductors in the space, as

trees, mountains, etc., which may act as inductive returns.

Since a vertical conductor is limited in length, very high fre-

quencies are required, and therefore the wave is of moderate

length, that is, the velocity of propagation of the magnetic (and

electrostatic) field must be considered when investigating the

self-induction and the mutual induction of such a conductor.

The magnetic field at a distance I from the conductor and at

time t corresponds to the current in the conductor at the time

t
-

t', where if is the time required for the electric field to

travel the distance I, that is, t' = -, where $ = the speed of light;
o

or, the magnetic field at distance I and time t corresponds to the

current in the conductor at the time t
-

.

71. Representing the time t by angle 6 = 2 nft, where /==
the frequency of the alternating current in the conductor, and

denoting
2f Q _

TCj A TL ,^_.

S lw
where

a

lw = - = the wave length of electric field,
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the field at distance I and time angle 6 corresponds to time angle
6 al, that is, lags in time behind the current in the conductor

by the phase angle al

Let

i = I cos 6 =
current, absolute units. (8)

The magnetic induction at distance I then is

A =?-^cos(tf -al); (9)
i

hence, the total magnetic flux surrounding the conductor, from

distance I to infinity is

r27 cos (0
-

al) dl

/

cos

prm fii

j

dl cannot be integrated in finite form, but represents
i

a new function which in its properties is intermediate between

the sine function

/cos al dl = sin al
a

and the logarithmic function

and thus may be represented by a new symbol,

sine logarithm = sil.

/sinIn the same manner dl is related to - cos al and
a

to log I.

Introducing therefore for these two new functions the symbols

=
Jf5^U
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gives

$ = 2 7/
{
cos sil al + sin col a/

}
. (13)

The e.m.f. consumed by this magnetic flux, or e.m.f. of induc-

tance, then is

dt dd

hence,

e = 4 nfll {
cos col al sin sil al

} ;

and since the current is

i = I cos 0,

(14)

the e.m.f. consumed by the magnetic field beyond distance I, or

e.m.f. of inductance, contains a component in phase with the

current, or power component,

e,
== 4 TT///O col al cos 0, (15)

and a component in quadrature with the current, or reactive com-

ponent,

e
2
= 4 nfll sil a/ sin 0, (16)

which latter leads the current by a quarter period.

The reactive component e
2
is a true self-induction, that is, rep-

resents a surging of energy between the conductor and its electric

field, but no power consumption. The effective component e
lt

however, represents a power consumption

p = e
t
i

= 4 nfPl col al cos
2# (17)

by the magnetic field of the conductor, due to its finite velocity;

that is, it represents the power radiated into space by the conductor.

The energy component e
t gives rise to an effective resistance,

r = % = 4 ;r/7 col al, (18)
^

and the reactive component gives rise to a reactance,

4K/4 sil al, (19)
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When considering the finite velocity of propagation of the

electric field, self-inductance thus is not wattless, but contains

an energy component, and so can be represented by an impe-

dance,

Z = r - jx

= 4 TT/TO (col al - j sil al) 1(T 9 ohms. (20)

The inductance would be given by

Ij = -

= 2 1
{
sil al + j col al

}
10~9

henrys, (21)

and the power radiated by the conductor is

p = i*r.

72. The functions

Ji I

and

col al = J t ^p dl

can in general not be expressed in finite form, and so have to be

recorded in tables.* Close approximations can, however, be

derived for the two cases where / is" very small and where I is

very large compared with the wave length lw of the electric field,

and these two cases are of special interest, since the former rep-

resents the total magnetic field of the conductor, that is, its self-

inductance, and the latter the magnetic field interlinked with a

distant receiving conductor, that is, the mutual inductance

between sending and receiving conductor.

It is

silO =00,

(22)

sil oo = 0,

col 00= 0.

Tables of these and related functions are given in the appendix, page 545.
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And it can be shown that for small values of al, that is, such

values of I as are only a small fraction of a wave length, the

approximations hold:

=
log

-
0-5772,

col al = -
,

(23)

and for large values of I, that is, values of I which make al equal
to a considerable number of wave lengths, we have

2 sin al .,
7 2 sin al

- < sil al < - T-I

TTTi! 7T^

2 cos al
i 7 2 cos al

- < colal < -
,

TLUi XH2

where n
1
and n

2
are the two successive quadrants between which

al lies. For instance, for

al = 40,

since

40 = 25.5 X ^ ,

2i

n,
- 25,

^ =
26,

sin a = sin 1.5 X \
= + 0.707,

J

cos al = cos 1.5 X \
= -

0.707,
2

and

0.01725 < sil 40^< 0.01805,

- 0.01805 < col 40 < -- 0.01725.

As seen, for larger values of al sil al has the same sign as the

sine function, col al the same sign as the cosine function.

73. From equations (20) and (21) then follow, for I = lr,
the

self-inductive impedance and the self-inductance of the con-

ductor, where lr
= the radius of sending conductor, and since lr
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is very small compared with the wave length lw ,
the values (23)

can be used, and give

Self-inductive impedance :

Z = 4 7r// ^ -
j (log4 -

0.5772)
j
1(T9

ohms, (25)
( A alr

and effective self-inductance:

L = 2 I, \ log-i-
- 0.5772 + j^ \

1(T9
henrys. (26)

( alr
2 )

As an example let a current of i= 100 amperes be impressed

upon a sending antenna of / = 100 feet = 3 X 103

centimeters,

consisting of a cylindrical conductor of radius lr
= 0.4 inch = 1

centimeter, at a frequency of /= 200,000 cycles, then

lw = 1.5 X 105

= 0.94 mile,

a = 4.19 X 10~5
;

hence,

L= (57.2 + 9.4 j) 10~6
henrys,

Z= (11.8
- 71.8 j) ohms,

or, absolute,

z = 72.8 ohms.

Hence, the voltage required by i = IjOO amperes is

e = 7280 volts,

and the power radiated into space during the oscillation is

p = tfr = 118 kilowatts.

74. Since the effective resistance of the total electromagnetic

radiation, from the conductor surface to infinity, is, by (25),

-
9
, (27)

it follows that the effective resistance, of electromagnetic radia-

tion of a conductor is proportional to the frequency and to the

length of the conductor, but independent of its size or shape, and

the radiated power is

p = 2 Tr
2/^ 10-, (28)
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or proportional to the frequency. Thus while the radiated power
is moderate at commercial frequencies, it becomes considerable

at very high frequencies, and then requires consideration.

For instance, at i = 100 amperes per 100 feet = 3000 centi-

meters of conductor, the radiated power is

At 60 cycles ............. 3.5 watts;

At 10,000 cycles .......... 5.9 kilowatts;

At 106

cycles ............ 5900 kilowatts.

The imaginary component of self-inductance L, that is, the

term in L which represents the power radiation, is

Z ?r 10~9
henrys; (29)

hence independent of conductor size, shape, and material, of fre-

quency, current, etc.

The imaginary or reactive component of the impedance,

x = 4 nfllog- - 0.5772 10~9
ohms,

\ Cwj* /

is approximately, neglecting 0.5772 against log ,
and substitut-

ed,.

ing equation (7),
o

x = 4 7r/7 log
^ 10~9 ohms

j- -log/)nir i

10~9 ohms. (30)

Hence, with increasing frequency /, the reactance x increases,

but less than proportional to the frequency, due to the appearance
of the term log /in equation (30).

For instance, with the constants Z = 100 feet = 3 X 103
,

lr
= 0.4 inch =

1, at the speed of light, S = 3 X 1010
,
we have

/= 102 104 106 108
,

x = 0.0667 4.94 319 14,550.

B. Mutual inductance of two conductors of finite length at con-

siderable distance from each other.
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75. Let Zj and 1
2
be the length of the sending and of the receiv-

ing conductor respectively.

By equation (2), the electric field of a conductor of length lv at

a considerable distance I, is given by

hence, for current

i = I cos 6

CB = IJ C S

/
- gQ

(32)

is the electromagnetic component of the field at distance I.

The magnetic flux intercepted by the receiving conductor of

length 1
2J

at distance ld from the sending conductor, and
assumed to be inductively parallel thereto, then is

p.!./
eoe(fl -a!)

J^ Z
2

(34)

n cos a^ 77 r sin al )

cos
^ -y-

dl + sin
J^ -y- dl

j

. (33)

By partial integration,

rcos
a . r . 1 cos aZ

- dl = / cos al a- = --- a col al,
I II

rsin
al _ T

00

1 sin a^
dl = J sin al dj

= ---
f- a sil al;

hence,

7 7 T ( /i / cos a^ i 7 \ n /sin ald _ \ )

$ =
Z^2

7 ) cos ^
f-j-

-a col ay + sm ^ f p^ + a sil ald \ i

(35)

and the mutual inductance is

_ \ ./sin aL \ )- a col aU+ jf
-
-f asil ald \ ( 10~9

henrys;

(36)

cos
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the mutual impedance,

* - a col ald)\* '

X 10~9
ohms, (37)

or, absolute,

sin ald . )

2
( cos ald

+

cola?>= 1.661X10-'

=1.665X10-

Ld

X 10~ 9 ohms. (38)

76. As an example, let

^ = 1
2
= 100 feet

- 3 X 10
3

,

ld
- 100 miles = 15.9 X 106

,

/ = 200,000 cycles;

hence,
a = 4.19 X 10-5

,

ald
= 666

= 424.5
xj;

and

sin ald
= sin 0.5 *- =

0.707,
Zi

71

cos ald
= cos 0.5 =

0.707,

then, by (24),

= 1.661 X 10~3

= 1.665 X 10-3

,
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hence, approximately,

sil ald
= 0.1663 X 10~3

,

col ald
= 0.1663 X 10~3

,

and

LM = (- 0.227 + 1.026 j) 10~9
henrys,

Z = (0.387 + 0.086 /) 10~3

ohms,

or, absolute,

Lm = 1.051 X 10-' henrys,

z = 0.3964 X 10~3 ohms.

Hence, with an oscillating current of 100 amperes in the sending

antenna, the oscillating voltage generated in the receiving an-

tenna, 100 miles distant, is

e = iz

= 0.03964 volts.

C. Capacity of a sphere in space.

77. The electrostatic field of a sphere in free space decreases

with the square of the distance Z; hence,

* =
y> (39)

where l
r
= the radius of the sphere and e = the voltage of the

sphere.

Therefore, if e = E cos (40)

is the potential or voltage of the sphere, the electrostatic field at

distance I is

P

or, neglecting l
r compared with Z,

y_lrEax(0-al)^
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and the potential, or voltage at distance I, is

e = J Vdl

_^~^4 (42)

hence, expanded,

e = 1$
jeostfJ/-^ dl + sintff^< };

(43)

by equations (34) this gives

i ( * /cos l \ * /sm al i\ 1=
lrE \ cosdl -- acolan + smflf _ -fasilaH

|
; (44)e =

hence, for I = l
r ,

e = E cos 6.

The inductive capacity thus is

e . ( /cos al A . /sin a A )K =
w^Tff

= Mh a co1 az
)
+ H-T-+ a Sl1 a

9 1
; (45)

hence, at distance ^

, ( /cos aZ _ \ /sin aL _ \ )K = l
r ] (

=
- a col a/

)
+ j (-7 + a sil aU

; (46)
( ^ ^o / ^

^o /)

or the absolute value is

(47)^< + osil< J

/
^0

78. For instance, let lr
= 10 feet = 300 centimeters; Z =

100 miles = 15.9 X 106
centimeters, and / = 200,000 cycles per

second; then (see example in section B) we have

k = 10.5 X 10-;

hence, with e = 10,000 volts impressed upon the sending sphere,

the voltage induced statically in the receiving sphere, at 100 miles

distance, is

e = ke = 0.105 volts.

D. Sphere at a distance l^ from ground.



402 TRANSIENT PHENOMENA

79. If lr is the radius of a sphere, at a distance ^ from ground
and at a potential difference e from ground, the ground, as zero

potential surface, can be replaced by the image of the sphere,

that is, by a sphere of radius lr) elevation Z, and potential

difference e.

The electrostatic field of such a system of spheres, at dis-

tance Z and elevation Z
2 ,

then is the difference of the fields of

the two spheres, thus :

f==
elr___elr

J 2

hence, if Z is large compared with l
l
and Z

2,

4 ILLe
(48)

and the induced potential, at distance Z and elevation Z
2 ,

is

2dl. (49)

The potential difference of the sending sphere at elevation Z
t
is

e = E cos 0. (50)

This voltage e, at considerable distances Z, is very small; that

is, the purpose of the condenser at the top of wireless sending and

receiving antennae seems not so much to send out or receive elec-

trostatic fields, as to afford a capacity return for the oscillating

current in the conductor, and thus produce a large current, hence

a powerful electromagnetic field.



CHAPTER IX.

HIGH-FREQUENCY CONDUCTORS.

80. As the result of the phenomena discussed in the preceding

chapters, conductors intended to convey currents of very high

frequency, as lightning discharges, high frequency oscillations of

transmission lines, the currents used in wireless telegraphy, etc.,

cannot be calculated by the use of the constants derived at low

frequency, but effective resistance and inductance, and therewith

the power consumed by the conductor, and the voltage drop,

may be of an entirely different magnitude from the values which

would be found by using the usual values of resistance and induc-

tance. In conductors such as are used in the connections and

the discharge path of lightning arresters and surge protectors, the

unequal current distribution in the conductor (Chapter VII) and

the power and voltage consumed by electric radiation, due to the

finite velocity of the electric field (Chapter VIII), require con-

sideration.

The true ohmic resistance in high frequency conductors is

usually entirely negligible compared with the effective resistance

resulting from the unequal current distribution, and still greater

may be, at very high frequency, the effective resistance repre-

senting the power radiated into space by the conductor. The
total effective resistance, or resistance representing the power
consumed by the current in the conductor, thus comprises the

true ohmic resistance, the effective resistance of unequal current

distribution, and the effective resistance of radiation.

The power consumed by the effective resistance of unequal
current distribution in the conductor is converted into heat in

the conductor, and this resistance thus may be called the
"
thermal resistance" of the conductor, to distinguish it from the

radiation resistance. The power consumed by the radiation

resistance is not converted into heat in the conductor, but is

dissipated in the space surrounding the conductor, or in any
other conductor on which the electric wave impinges. That is,

403
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at very high frequency, the total power consumed by the effective

resistance of the conductor does not appear as heating of the

conductor, but a large part of it may be sent out into space as

electric radiation, which accounts for the power exerted upon
bodies near the path of a lightning stroke, as "side discharge."

The inductance is reduced by the unequal current distribution

in the conductor, which, by deflecting most of the current into

the outer layer of the conductor, reduces or practically eliminates

the magnetic field inside of the conductor. The lag of the mag-
netic field in space, behind the current in the conductor, due to

the finite velocity of radiation, also reduces the inductance to

less than that from the conductor surface to a distance of one-

half wave. An exact determination of the inductance is, how-

ever, not possible; the inductance is represented by the electro-

magnetic field of the conductor, and this depends upon the

presence and location of other conductors, etc., in space, on the

length of the conductor, and the distance from the return con-

ductor. Since very high frequency currents, as lightning dis-

charges, frequently have no return conductor, but the capacity
at the end of the discharge path returns the current as

"
dis-

placement current," the extent and distribution of the magnetic
field is indeterminate. If, however, the conductor under con-

sideration is a small part of the total discharge as the ground
connection of a lightning arrester, a small part of the discharge

path from cloud to ground and the frequency very high, so

that the wave length is relatively short, and the space covered by
the first half wave thus is known to be free of effective return

conductors, the magnitude of the inductance can be calculated

with fair approximation by assuming the conductor as a finite

section of a conductor without return conductor.

Here then, as in many cases, for the two extremes low fre-

quency, where unequal current distribution and radiation are

negligible, and very high frequency, where the current traverses

only the outer layer and the total effect, contained within one

wave length, is within a moderate distance of the conductor
the constants can be calculated; but for the intermediary case,
of moderately high frequency, the conductor constants may be

anywhere between the two limits, i.e., the low frequency values

and the values corresponding to an infinitely long conductor

without return conductor.
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Since, however, the magnitude of the conductor constants,

as derived from the approximate equations of unequal current

distribution and of radiation, are usually very different from the

low frequency values, their determination is of interest even in

the case of intermediate frequency, as indicating an upper limit

of the conductor constants.

81. Using the following symbols, namely,

Z = the length of conductor,

A = the sectional area,

l
Ci
= the circumference at conductor surface, that is, following

all the indentations of the conductor,

Z
Cj
= the shortest circumference of the conductor, that is, cir-

cumference without following its indentations,

lr
= the radius of the conductor,

ld
= the distance from the return conductor,

X = the conductivity of conductor material,

fi.

= the permeability of conductor material,

/ = the frequency,

S = the speed of light
= 3 X 1010

cm., and (1)

a = = the wave length constant,o

the true ohmic resistance is

the ohmic reactance, low frequency value is

*o
= 2 7r/7

1

2 loge f +
^l

10~9

ohms; (3)

or, reduced to common logarithms by dividing by log e,

x = 2 TT/Z f4.6 log^ + |) 10~9 ohms. (4)
\ l>r **

The equivalent depth of penetration of the current into the con-

ductor, from Chapter VII, (40), is

104 5030
(5)
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hence, the effective resistance of unequal current distribution, or

thermal resistance of the conductor, is, approximately,

(6)

and the effective reactance of the internal flux is

10- ohms. (7)

The effective resistance resulting from the finite velocity of the

electric field, or radiation resistance, by assuming the conductor

as a section of an infinitely long conductor without return con-

ductor, from Chapter VIII, (25), is

r
2
= 2 l^flO-* 1.97 IJ1Q-* ohms, (8)

and the effective reactance of the external field of finite section of an

infinitely long round conductor without return conductor, from

Chapter VIII, (25), is

z
2
= 4 7r/Z flog. 4-

-
0.5772) 10-9

. (9)
\ aL I

Assuming now that the external magnetic field of a conductor

of any shape is equal to that of a round conductor having the

same minimum circumference, as is approximately the case, that

is, substituting

42
= 2^r (10)

in equation (9), and also substituting (1), gives

x
2
= 4

Tr/J^log^
-

0.5772)
10-9

= 1.26 Z

/(log
e ^-

-
0.5772)

10-8
; (11)

or, reduced to common logarithms by dividing by log e, and

substituting for S,

z*
- 5 IJ (1

- 0.547 log IJ) 10- ohms 1

= 0.547 IJ (9.15
-

logZCi/) 10-" ohms. J



HIGH-FREQUENCY CONDUCTORS 407

82. The total impedance of the conductor for high frequencies

is, therefore,

r
t
= kty 10-*-

L98
V^1Q-

v- A v- A

.jSVy^
1.97 Z / 10~8

,

1.98^
10~4 =

^-0.5772)10-,
= 0.547 Z / (9.15 -log U-)10-

8
;

while the conductor impedance for low frequencies is

(13)

(2-88
log

l

f
+ 0.314

/<)
io-8

.

(14)

Although the true ohmic resistance r is independent of the

frequency, the thermal resistance r
l
is proportional to the square

root and the radiation resistance r
2 to the first power of the fre-

quency. With increasing frequency, the resistance r
l
is at first

appreciable, while r
2
is still negligible, and appears only at still

higher frequencies, and ultimately, at the highest frequency,
becomes the dominant factor. Since r

2
does not contain the

conductor dimensions, it follows that at very high frequencies

size, shape, and material of the conductor are immaterial in their

effect on the total effective resistance r.

The low frequency reactance, X
Q ,

is proportional to the fre-

quency; the internal reactance, xv is proportional only to the

square root of the frequency; that is, with increasing frequency
the internal field of the conductor has less and less effect on its

reactance. The radiation reactance, x
2 ,

increases proportionally
with the frequency for moderate frequencies, but for higher fre-

quencies increases at a lesser rate as soon as the negative term
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in x
2
becomes appreciable; it ultimately reaches a maximum and

then decreases again, but the latter at such high frequencies as

to be of no practical importance. Besides, for extremely high

frequencies, thousands of millions of cycles, equation (12) does

not apply, as it is only the first term of a series, and the further

terms begin to become appreciable.

83. As examples, the following may be considered:

(1) A copper wire No. 4 B. and S. gauge of 0.204 inch = 0.518

centimeter diameter.

(2) An iron wire of the same size, d = 0.204 inch = 0.518

centimeter.

(3) A copper ribbon of 3 inches width and one-eighth inch

thickness, or the dimensions 7.6 by 0.317 centimeters.

(4) A wrought-iron pipe of 2 inches = 5.06 centimeters exter-

nal diameter and one-eighth inch = 0.317 centimeter thickness

of walls, that is, of nearly the same circumference as the copper
ribbon in (3).

Assuming the following constants :

copper, p =
1, X = 6.2 X 10s

;

wrought iron, p =
2000, ^ = 1.1 X 105

,

we have

A
lc

{

= 1C2
=
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In x, the distance from the return conductor has been

chosen as ld
= 6 feet = 182 centimeters. The values of x* for

iron are not realized; they are due to the excessive field in the

conductor, caused by its high permeability, but can be realized

only at extremely low frequency and small currents; at larger

currents, magnetic saturation greatly reduces the reactance, so

that in iron conductors the internal reactance is a function of the

current and decreases with increase of current. In conductors

of the size above discussed, even at 25 cycles the unequal current

distribution in the conductor is so great as to make equation (14)

inapplicable, and the reactance is given by

z = 4 7r// loge

l

f X 10~9 + xv (15)
ir

where x
l
is the internal reactance of equation (7).

84. In Fig. 97 are plotted values of the resistances r
,
rv r

2

and of the reactances x*, x
2 ,

xv x
2 ,
for the four conductors illus-

trated, for frequencies from one cycle to 1000 million cycles.

As it is not possible to represent directly quantities varying over

such a wide range, in Fig. 97 as abscissas are used the logarithms
of the frequency, and as ordinates the logarithms of the ohmic

resistance or reactance per meter = 100 centimeters length of

conductor; that is, a geometric scale is used. This means that

each scale section is a change by factor 10, and since, as discussed

above, these quantities can be determined only in their general

magnitude, a value one scale section below another one, there-

fore, is negligible compared with the latter one, being only one-

tenth of it.

The following conclusions may be drawn from the curves

shown in Fig. 97.

(1) In copper wire No. 4, the true ohmic resistance prepon-
derates up to 100 cycles. At 100 cycles the reactance x rises

beyond the resistance, and the true ohmic resistance becomes

negligible in the impedance at 1000 cycles. At 3000 cycles the

screening effect, or the unequal current distribution in the con-

ductor, becomes appreciable and increases its heating at con-

stant value of current. The radiation resistance r
2
would equal

the ohmic resistance r at about 500 cycles if at this low fre-

quency the case of an infinitely long conductor without return
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Fig. 97. High-frequency conductors.
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conductor could be realized. At 500,000 cycles, the radiation

resistance r
2 equals the external reactance x

2 ,
and since the

internal resistance r
l
at high frequencies is equal to the internal

reactance x
1
at 500,000 cycles, the total effective resistance r

equals the total effective reactance x, that is, the current lags 45

degrees; and at still higher frequencies the lag of the current

decreases still further, and the radiation resistance preponder-
ates.

(2) In iron wire No. 4, the true ohmic resistance r ceases to be

the main term even at frequencies below 10 cycles, and the

screening effect or the unequal current distribution in the con-

ductor is marked at 10 cycles. The internal reactance x*, which

corresponds to uniform current density, thus ceases to represent
the actual conditions at frequencies even below 10 cycles. Up
to about one million cycles, the internal resistance r

t
and internal

reactance x
l preponderate. At about one million cycles, all

four quantities internal resistance rv representing power
converted into heat in the conductor, radiation resistance r

2,

representing power radiated by the conductor, internal reactance

xv representing the magnetic field in the conductor, the external

reactance xv representing the magnetic field outside of the

conductor are approximately equal and the current lags 45

degrees. Above one million cycles, radiation resistance r
2
and

external reactance x
2 preponderate, and as they are independent

of the conductor material above one million cycles, the iron wire

thus becomes nearly as good or poor a conductor as copper
wire.

Similar relations exist between the larger conductors (3)

and (4).

(3) Three-inch by one-eighth inch copper ribbon. Above
10 cycles, the reactance is greater than the resistance, and above

2000 cycles unequal current distribution is marked. At 50,000

cycles, the radiation resistance equals the external reactance,

and the current lags 45 degrees, and at still higher frequencies
the radiation resistance preponderates, and the current lags less

than 45 degrees.

(4) Two-inch iron pipe, one-eighth inch walls. The internal

reactance xf here has no meaning, as it would correspond to a

2-inch iron rod. The ohmic resistance r ceases to be applicable,
and unequal current distribution begins already at one cycle per
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second. At about 30 cycles the external reactance rises beyond
the ohmic resistance

;
at 5000 cycles beyond the internal reactance

and resistance. At 30,000 cycles the current lags 45 degrees, and

less than 45 degrees at higher frequencies. .At 100,000 cycles

r
1
and x

l
are small compared with r

2
and xv and the conductor

material thus ceases to have an effect on the voltage drop; that

is, above 100,000 cycles a large iron conductor gives practically

the same voltage drop, at the same current, as a copper conductor

of the same circumference; that is, iron is nearly as good a con-

ductor as copper, when considering a finite section of an infinitely

long conductor without return conductor, that is, approximately,
when dealing with oscillatory high frequency discharges, as

lightning.

It is interesting to note the high power component of impe-
dance existing at high frequencies and mainly due to the radia-

tion resistance, which causes a rapid decay of the oscillation, due

to the high power factor. The internal constants r
1
and x

1
are

equal, and in the most important range of high frequencies,

from 10,000 to 1,000,000 cycles, the external constants r
2
and

x
2
are not very different from each other and their plotted curves

intersect at some certain frequency. That is, at high frequen-

cies, the power radiated into space increases at such a rapid
rate that the circuit never becomes highly reactive. This,

however, applies only under the consideration assumed here;

under different conditions the radiation power may be sufficiently

limited to give a large angle of lag of the current and therefore a

slower decay of the oscillating discharge, that is, a more sustained

oscillation. In general, however, these results show that even

at high frequencies and in iron conductors the angle of lag may
be moderate.

It is interesting to note that with increasing frequency the

conductor material decreases in importance, and even soft iron

becomes as good as copper in the voltage drop in the conductor,
and at still much higher frequencies even the size and shape of

the conductor become less important, and ultimately all con-

ductors act practically alike.

85. From the data of the preceding table and Fig. 97 the*

total effective resistance, reactance, impedance, and the power
factor per meter length of conductor for high frequency dis-

charge are given on p. 413.
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TRANSIENTS IN TIME AND SPACE





TRANSIENTS IN TIME AND SPACE

CHAPTER I.

GENERAL EQUATIONS.

1. The energy relations of an electric circuit can be charac-

terized, as discussed in Section III, by the four constants,

namely :

r = effective resistance, representing the power or rate of

energy consumption depending upon the current, tfr; or the

power component of the e.m.f. consumed in the circuit, that is,

with an alternating current, the voltage, ir, in phase with the

current.

L = effective inductance, representing the energy storage
i
2L

depending upon the current,
-

,
as electromagnetic component

&

of the electric field; or the voltage generated due to the change

of the current, L
,
that is, with an alternating current, the

at

reactive voltage consumed in the circuit -
jxi, where x = 2 nfL

and / =
frequency.

g
= effective (shunted) conductance, representing the power

or rate of energy consumption depending upon the voltage, e*g;

or the power component of the current consumed in the circuit,

that is, with an alternating voltage, the current, eg, in phase with

the voltage.

C = effective capacity, representing the energy storage
e*C

depending upon the voltage, ,
as electrostatic component of

the electric field; or the current consumed by a change of the

de
voltage, C ,

that is, with an alternating voltage, the (leading)
dt

reactive current consumed in the circuit - jbe, where 6 = 2

and / = frequency.
417
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In the investigation of electric circuits, these four constants,

r, L, g, C, usually are assumed as located separately from each

other, or localized. Although this assumption can never be per-

fectly correct, for instance, every resistor has some inductance

and every reactor has some resistance, nevertheless in most

cases it is permissible and necessary, and only in some classes of

phenomena, and in some kinds of circuits, such as high-frequency

phenomena, voltage and current distribution in long-distance,

high-potential circuits, cables, telephone circuits, etc., this

assumption is not permissible, but r, L, g, C must be treated as

distributed throughout the circuit.

In the case of a circuit with distributed resistance, inductance,

conductance, and capacity, as r, L, g, C, are denoted the effec-

tive resistance, inductance, conductance, and capacity, respec-

tively, per unit length of circuit. The unit of length of the circuit-

may be chosen as is convenient, thus : the centimeters in the high-

frequency oscillation over the multigap lightning arrester circuit,

or a mile in a long-distance transmission circuit or high-potential

cable, or the distance of the velocity of light, 300,000 km., etc.

The permanent values of current and e.m.f. in such circuits

of distributed constants have, for alternating-current circuits,

been investigated in Section III, where it was shown that they
can be treated as transient phenomena in space, of the complex

variables, current / and e.m.f. E.

Transient phenomena in circuits with distributed constants,

and, therefore, the general investigation of such circuits, leads to

transient phenomena of two independent variables, time t and

space or distance /; that is, these phenomena are transient in

time and in space.

The difficulty met in studying such phenomena is that they
are not alternating functions of time, and therefore can no longer

be represented by the complex quantity.
It is possible, however, to derive from the constants of the

circuit, r, L, g, C, and without any assumption whatever regard-

ing current, voltage, etc., general equations of the electric cir-

cuits, and to derive some results and conclusions from such

equations.
These general equations of the electric circuit are based on the

single assumption that the constants r, L, g, C remain constant

with the time t and distance I, that is, are the same for every unit
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length of the circuit or of the section of the circuit to which the

equations apply. Where the circuit constants change, as where

another circuit joins the circuit in question, the integration con-

stants in the equations also change correspondingly.

Special cases of these general equations then are all the phe-
nomena of direct currents, alternating currents, discharges of

reactive coils, high-frequency oscillations, etc., and the difference

between these different circuits is due merely to different values

of the integration constants.

2. In a circuit or a section of a circuit containing distributed

resistance, inductance, conductance, and capacity, as a trans-

mission line, cable, high-potential coil of a transformer, telephone
or telegraph circuit, etc., let r = the effective resistance per unit

length of circuit; L = the effective inductance per unit length
of circuit; g

= the effective shunted conductance per unit

length of circuit; C = the effective capacity per unit length of

circuit; t = the time, I = the distance, from some starting

point; e =- the voltage, 'and i = the current at any point I and

at any time t\ then e and i are functions of the time t and the dis-

tance I.

In an element dl of the circuit, the voltage e changes, by de,

by the voltage consumed by the resistance of the circuit element,
ri dl, and by the voltage consumed by the inductance of the cir-

cuit element, L dl. Hence,

de _ di

In this circuit element dl the current i changes, by di, by the

current consumed by the conductance of the circuit element,

gedl, and by the current consumed by the capacity of the circuit

de
element, C dl. Hence,

Differentiating (1) with respect to t and (2) with respect to I,

and substituting then (1) into (2), gives
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and in the same manner,

+ K7. (4)

These differential equations, of the second order, of current i

and voltage e are identical; that is, in an electric circuit current

and e.m.f. are represented by the same equations, which differ

by the integration constants only, which are derived from the

terminal conditions of the problem.

Equation (3) is integrated by terms of the form

i = Ae~ al ~ bt
. (5)

Substituting (5) in (3) gives the identity

a2 =
rg
-

(rC + gL) b + LCb2

= (bL
-

r) (bC
-

g). (6)

In the terms of the form (5) the relation (6) thus must exist

between the coefficients of I and t.

Substituting (5) into (1) gives

L- -', (7)
tit

and, integrated,

a

The integration constant of (8) would be a function of t
}
and

since it must fulfill equation (4), must also have the form (5)

T O
for the special value a = 0, hence, by (6), b = - or b = -JJandL C

therefore can be dropped.

In their most general form the equations of the electric circuit

are

Ane-
fl" | -w

}, (9)

\

bnL ~ r
A ne-^

l

-^\ f (10)

an
2 -

(bnL - r] (bnC -
g)

=
0, (11)
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where An and an and bn are integration constants, the last two

being related to each other by the equation (11).

3. These pairs of integration constants, An and (an ,
6n), are

determinated by the terminal conditions of the problem.
Some such terminal conditions, for instance, are :

Current i and voltage e given as a function of time at one

point 1
Q
of the circuit at the generating station feeding into

the circuit or at the receiving end of the transmission line.

Current i given at one point, voltage e at another point
as voltage at the generator end, current at the receiving end of

the line.

Voltage given at one point and the impedance, that is, the

complex ratio- -

,
at another point voltage at the gen-

amperes
erator end, load at the receiving end of the circuit.

Current and voltage given at one time t as function of the

distance I distribution of voltage and current in the circuit

at the starting moment of an oscillation, etc.

Other frequent terminal conditions are:

Current zero at all times at one point Z the open end of the

circuit.

Voltage zero at all times at one point 1 the grounded or the

short-circuited end of the circuit.

Current and voltage, at all times, at one point Z of the circuit,

equal to current and voltage at one point of another circuit

connecting point of one circuit with another one.

As illustration, some of these cases will be discussed below.

The quantities i and e must always be real; but since an and

bn appear in the exponent of the exponential function, an and

bn may be complex quantities, in which case the integration

constants A n must be such complex quantities that by com-

bining the different exponential terms of the same index n, that

is, corresponding to the different pairs of a and b derived from

the same equation (10), the imaginary terms in An and

bnL - r
A n cancel.

an

In the exponential function

-al-bt
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writing
a = h + jk and b = p + jq, (12)

we have
-al-bt = e -hl-pt -j(kl+qt)

and the latter term resolves into trigonometric functions of the

angle
kl + qt.

kl + qt
= constant (13)

therefore gives the relation between I and t for constant phase
of the oscillation or alternation of the current or voltage.
With change of time t the phase thus changes in position I

in the circuit, that is, moves along the circuit.

Differentiating (13) with respect to t gives

**+*>
or

that is, the phase of the oscillation or alternation moves along

the circuit with the speed *., or, in other words,

(15)

is the speed of propagation of the electric phenomenon in the cir-

cuit.

(If no energy losses occur, r =
0, g

=
0, in a straight con-

ductor in a medium of unit magnetic and dielectric constant,

that is, unit permeability and unit inductive capacity, S is the

velocity of light.)

4. Since (11) is a quadratic equation, several pairs or corre-

sponding values of a and b exist, which, in the most general case,

are complex imaginary. The terms with conjugate complex

imaginary values of a and b then have to be combined for the

elimination of their imaginary form, and thereby trigonometric
functions appear; that is, several terms in the equations (9) and
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(10), which correspond to the same equation (11), and thus can

be said to form a group, can be combined with each other.

Such a group of terms, of the same index n, is defined by the

equation (11),

a 2 =
(bnL -

r) (bnC -
g).

For convenience the index n may be dropped in the investiga-

tion of a group of terms of current and voltage, thus :

a2 = (bL
-

r) (bC
-

g),

and the following substitutions may be made :

a =

a = h + jk,

a
l
= h

l + jkv

b = p + jq,

from which

h = h
}
VLC and

k =
k, VLC.

Substituting (18) in (16),

(h, + jk,)
2 =

\(p + jq)
-

y] \(p + jq)
- l.

L/J oj

(16)

(17)

(18)

(19)

(20)

Carrying out and separating the real and the imaginary terms,

equation (20) resolves into the two equations thus :

and

Substituting

-.*(".--$

(21)

-C--A
2VL C/'

(22)

(23)
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and

into (21) gives

or

and

or

TRANSIENT PHENOMENA

p = S + u

n u* O/Y
ri

i
K

i
6
*/>

s
2 -

(f
= h* k? + m2

,

sg
= /i

1
A:

1
.

|

J

(24)

(25)

(26)

Adding four times the square of the second equation to the square
of the first equation of (25) and (26) respectively, gives

2 -
(f
-

7ft
2

)
2 + 4 V

= V(s
2 + cf

- m2

)
2 + 4 2m2

(27)

and

+ q
2 = (h*

- k* + m2

)

2 + 4 V&i
2

x

2 + A?!

2
f m2

)
2 - 4

A;,

2 2

and substituting (19), gives, by (25), (26) and (27), (28)

(28)

k =

?
= V(s

i + <f
- TO

2

)

2 + 4 <fm\

(29)

or

V(h* + It? + LCntf --4

(30)
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If, however (+ h + jk) and (u + s + jq) satisfy equation (16),

then any other one of the expressions

( h jk) and (u s jq)

also satisfies equation (16), providing also the second equation of

(25) or (26) is satisfied,

hk =
sq] (31)

that is, if s and q have the same sign, h and k must have the same

sign, and inversely, if s and q have opposite signs, h and k must
have opposite signs.

This then gives the corresponding values of a and b :

(1) a = + h + jk

+ h -
jk

(2) a = -h -
jk

- h + jk

(3) a = - h + jk

- h -
jk

(4) a = + h -
jk

+ h + jk

b = u s jq

u s + jq

b = u s jq

u - s + jq

b = u + s jq

u + s + jq

b = u + s jq

u 4- s + ia

(32)

or eight pairs of corresponding values of a and b.

5. Substituting the values (1) of (32) into one group of

terms of equations (9) and (10),

i = Ae- al ~ bi

and

bL -r -al-bt

a

(33)

gives

4- A '-(*-

and substituting for the exponential functions with imaginary

exponents their trigonometric expressions by the equation

cos x
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gives
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i
l
= s

' (u s)t
\A 1 [cos (qt kl) + j sin (qt

-

+ A / [cos (qt kl) j sin (qt
-

=
-w-(M-a)<| (A^ + AI) cos (qt kl)+j (A l A/) sin (g ,

hence, A x
and A/ must be conjugate complex imaginary quan-

tities, and writing

C, = A, + A/
and

C/ =
j (^ - A/)

gives

Substituting in the same manner in the equation of e, in (33),

gives

(u s jq) L r

(34)

jk

-
j A;

-M-^-rtt ([^ -s-jq)L- r] (h
-

jk) + i(at _ kl)

. ( h2 + k2

[(u-8 + jq) L-r](h + jk) ,,_

l

hence expanding, and substituting the trigonometric expressions

f(u
s) L r] h

h? + k*

, s}L r\h qkL

_ .[(M-S) L-r] k+ qhL\

tf+ k* I

.[(u-s)L-r] k + qkL A /[cos (qt
-

kl)
-

j sin (qt
-

kl)]l , (36)

and introducing the denotations

= qkL + h [r
-

(u
-

s) L] _ qk + h (m + s)

h2 + k2
h
2

-f k2

, = k [r
-

(u
-

s) L]
-

ghL _ k (m + s)
-

qh
1=

h2 + tf h2
-f k2

(37)
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and substituting (37) in (36), gives

e
i
= - hl - (u

- s)t
{(-c l + jc/) AJcos ($ -/c/) + /sin

+ (
- c

t
-

jc/) A/ [cos ($
- &) -

j sin ($
-

kl}} }

=
--(u-.)*{[_ Cj (4 i + AI

/

)+ jCi'(A 1

-
A/)] cos (qt

-
kl)

+ [- /c^- A/)- c/(A t + A/)]sin(^
-

kl)\. (38)

Substituting the denotations (34) into (38) gives

e,
= -"-<->'{ (c/C/

-
C/7J cos (qt- kl)

-(c/Y + c/CJ sin (0 -A;/)}. (39)

The second group of values of a and b in equation (32) differs

from the first one merely by the reversal of the signs of h and k,

and the values i
2
and e

2
thus are derived from those of ^ and e

l

by reversing the signs of h and k.

Leaving then the same denotations c
t
and c/ would reverse

the sign of e
2 , or, by reversing the sign of the integration con-

stants C, that is, substituting

C
2
=-

(A, + A,')
and (40)

, }

~~
^-2 /> ^

the sign of ^
2 reverses; that is,

t
a
- - +w - (w - s)/

{C2
cos (

and

kl) +C2

'
sin (41)

cos

(42)

The third group in equation (32) differs from the first one by
the reversal of the signs of h and s, and its values i

3
and e

3 there-

fore are derived from i
l
and e

l by reversing the signs of h and s.

Introducing the denotations

qk
- h (m -

c, =
h2 + k2

k (m s) + qh

h2 + tf

L,

and

(43)

C
t

' -
j (A t

- (44)
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i
3
=

fi
+-<+><

{C 3
cos (qt

-
kl) + C

3

'
sin (qt

-
kl) } (45)

428

gives

and

e
3
= e+*-<+><

{ (c a'C s

' - c
2
C

3)
cos (qt

-
kl)

~
(c 2
C

8

' + c
2
'C

3)
sin (qt

-
kl)}. (46)

The fourth group in (32) follows from the third group by the

reversal of the signs h and k
}
and retaining the denotations c

2

and c
2

'

;
but introducing the integration constants,

C4
= -

(A. + A/)
}

and L
(47)

gives

i4
= - e~ hl - (u+s}i

{C4 cos (qt + kl) + Ct

'
sin (qt + kl)} (48)

and

e = cos
-

(c 2
C4

' + c
a

7C4) sin (^ + (49)

6. This then gives as the general expression of the equations of
the electric circuit:

cos sn _

sn

and

cos (qt
-

kl) + C/ sin (qt
-

kl) } (i3)

cos (^ + kl) + C/ sin (qt + M) }] (g

i(c i
G

i
-

CjC/i) cos (gf
-

/c/)

-
(c/C t + c^/) sin (qt

-
kl) } (e,)

-
(Ci'C2 + c^/) sin ($ + A;Z) } (e 2)

[c2'C3
c
2
C

3)
cos (qt kl)

'c
2
C4

'
c
2
C4) cos (qt + A;Z)

(50)

(51)
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where Cv C/, Cv C{, Cv C,', C4> C/ and two of the four values

s, g, hj k are integration constants, depending on the terminal

conditions, and

qk + h (m + s) _

, _ k(m + s)
-

qh
i

:

# + #

<?& /& (m s)

(m -
s) + g/t T

and

-.(- 1)

and /i, A; and s, </
are related by the equations

h = VLC \/i j/2,
2 + s

2 -
(f
- m2

},

A; =
and

m2

},

R* = V(s
2 + q

2 - m2

)
2 + 4 <fm

2

\

hence, h2 + # =
LC/2^,

or

s =

and

hence,

- 4

(52)

(53)

(54)

(55)

(56)

(57)
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Writing

TRANSIENT PHENOMENA

D (qt kl)
= C cos (qt kl) + C' sin (qt kl) (58)

and

H (qt kl)
=

(c'C"
-

cC) cos (qt kl)
-

(c'O + cC') sin (qt kl),

equations (50) and (51) can be written thus:

(qt-kl)
-

and

(59)

(60)

(e
f

)

(61)



CHAPTER II.

DISCUSSION OF GENERAL EQUATIONS.

7. In the preceding chapter the general equations of current

and voltage were derived for a circuit or section of a circuit

having uniformly distributed and constant values of r, L, g, C.

These equations appear as a sum of groups of four terms each,

characterized by the feature that the four terms of each group
have the same values of s, q, h, k.

Of the four terms of each group, iv iv i
3 ,

i4 or ev ev e
s ,

e4

respectively (equations (50) and (51)), two contain the angles

(qt kl): iv e
1
and i

z ,
e
3 ;

and two contain the angles (qt + kl):

i
2 ,

e
2
and i

4 ,
e4 .

In the terms iv e^ and i
z ,

e
3 ,

the speed of propagation of the

phenomena follows from the equation

qt
- kl = constant,

thus:

ti q

dt r.*
1

hence is positive, that is, the propagation is from lower to higher

values of I, or towards increasing I.

In the terms iv e
2
and i4 ,

e 4 ,
the speed of propagation from

qt + kl = constant

is

dl_ _q
Jt~ ~k

hence is negative, that is, the propagation is from higher to

lower values of I, or towards decreasing I.

Considering therefore iv e
l
and i

3J
e
3
as direct or main

waves, iv e
2
and i4 ,

e4 are their return waves, or reflected waves,

and iv e
2
is the reflected wave of iv e^ i4 ,

e4 is the reflected wave

of iv ey
431
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Obviously, i
2J

e
2
and i^ e may be considered as main waves,

and then iv e
t
and i

3 ,
e
3
are reflected waves. Substituting (

-
I)

for (+ I) in equations (50) and (51), that is, looking at the

circuit in the opposite direction, terms i
2 ,

e
2
and iv e

1
and terms

i4 , 64 and iv e
3 merely change places, but otherwise the equations

remain the same, except that the sign of i is reversed, that is,

the current is now considered in the opposite direction.

Each group thus consists of two waves and their reflected

waves: ^ - i
2
and e

t + e
2

is the first wave and its reflected

wave, and i
3
- i4 and e

3 + e4 is the second wave and its

reflected wave.

In general, each wave and its reflected wave may be con-

sidered as one unit, that is, we can say: i
f = i

l
i
2
and e' =

e^ + e
2

is the first wave, and i" = i
3

i4 and e" = e
3 + e4 is

the second wave.

In the first wave, i', e', the amplitude decreases in the direction

of propagation, e~w for rising, e
+hl

for decreasing I, and the

wave dies out with increasing time t by e
-<-*>* = ~ ut +st

f

In the second wave, i", e
ft

',
the amplitude increases in the

direction of propagation, e
+w for rising, s~ hl

for decreasing I,

but the wave dies out with the increasing time t by
-( tt + s><

= s""* e~ st

,
that is, faster than the first wave.

If the amplitude of the wave remained constant throughout
the circuit as would be the case in a free oscillation of the

circuit, in which the stored energy of the circuit is dissipated,

but no power supplied one way or the other that is, if h =
0,

from equation (56) s = 0; that is, both waves coincide and form

one, which dies out with the time by the decrement e~ ut
.

It thus follows: In general, two waves, with their reflected

waves, traverse the circuit, of which the one, i", e", increases in

amplitude in the direction of propagation, but dies out corre-

spondingly more rapidly in time, that is, faster than a wave of

constant amplitude, while the other, i', e'
,
decreases in amplitude

but lasts a longer time, that is, dies out slower than a wave of

constant amplitude. In the one wave, i", e"
',

a decrease of

amplitude takes place at a sacrifice of duration in time, while in

the other wave, i', e', a slower dying out of the wave with the

time is produced at the expense of a decrease of amplitude during
its propagation, or, in i", e" duration in time is sacrificed to

duration in distance, and inversely in i', e'.
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It is interesting to note that in a circuit having resistance,

inductance, and capacity, the mathematical expressions of the

two cases of energy flow; that is, the gradual or exponential
and the oscillatory or trigonometric, are both special cases of

the equations (60) and (61), corresponding respectively to

q
=

o, k = and to h =
0, s = 0.

8. In the equations (50) and (51)

qt
= 2x

gives the time of a complete cycle, that is, the period of the wave,

and the frequency of the wave is

/ = -L
2

kl = 27T

gives the distance of a complete cycle, that is, the wave length,

W 7 7

k

(u s) t = 1 and (u + s) t = 1

give the time,

*/'- and t"= -*,

during which the wave decreases to - = 0.3679 of its value, and

hi = 1

gives the distance,

over which the wave decreases to - = 0.3679 of its value;

that is, q is the frequency constant of the wave,

f --
I

I:

''
(62)> 2V ~'
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k is the wave length constant,

(63)

(u
-

s) and (u -f s) are the time attenuation constants of the wave,

1

)

(64)

U + S

and h is the distance attenuation constant of the wave,

L -I. (65)

9. If the frequency of the current and e.m.f. is very high,

thousands of cycles and more, as with traveling waves, lightning

disturbances, high-frequency oscillations, etc., q is a very large

quantity compared with s, u, m, h, k, and k is a large quantity

compared with h, then by dropping in equations (50) to (61) the

terms of secondary order the equations can be simplified.

From (54),

^ = V(s
2 + q

2 - m2

)

2 + 4 q
2m2 = V(q

2 + m2
)
2+ 2 s

2

(q
2 - m2

)

=
q
2 + m2 + s

2

=
q
2

-f m2 + s
2

-m
(f

-
q -m =

+rn2

} =VLO(q
2 + m2

)=qVLO,

h2 + tf = (s
2 + q

2
) LC =

q
2

LC,

j
(66)

and

+ h (m + s) _qL
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qk h (m s) qL IL
=

A' + yfc

2
~ L="T \C'

, _ k (m + s)
-

qh J _ q VLC (m + s)
-

qs VLC
q
2LC

r _m /L~V'
f __

k (m -
s) + qh q VTC (m -

s) + qs VTC
h2 + k2

that is,

and

Writing

q
2LC

\/i

C
l

- C
2

q

<r =

(67)

(68)

where <r is the reciprocal of the frequency of propagation (velocity

of light), we have

h =
o-s,

k =
o-q,

(69)

and
m

c

q

(70)

and introducing the new independent variable, as distance,

we have

and
hi = si;.

(71)

(72)
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hence, the wave length is given by

qX
= 2n

as

V-^j (73)

and since the period is

it follows that by the introduction of the denotation (71) dis-

tances are measured with the velocity of propagation as unit

length, and wave length /, and period t thus have the same
numerical values.

Substituting now in equations (50) and (51) gives

D
2 [q (t+X)] (i

f

)

D 4 [q (t+ X)]}(i
ff

) (74)

and

e = e-e+'^ffjg (t-X)]+ e
+s + H

2 [q(t+ X)] (e')

where

fe (t *)]
= C cos q (t X) + C' sin q (t X)

and

H[q (t /I)]
- \-C'- C^q (t X)

ng(/ >l). (76)

10. As seen from equations (74) and (75), the waves are

products of
~ ut and a function of (t

-
X) for the main wave,

(t + X) for the reflected wave, thus :

*\ + *'.
= *~ utL (t

- V
}

and (77)

i
2 + i4

= e~ ut
f2 (t + A);J
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hence, for constant (t
-

X) on the main waves, and for constant

(t + X) on the reflected waves, we have

and (78)

that is, during its passage along the circuit the wave decreases

by the decrement e~ ut
,
or at a constant rate, independent of

frequency, wave length, etc., and depending merely on the

circuit constants r, L, g, C. The decrement of the traveling

wave in the direction of its motion is

and therefore is independent of the character of the wave, for

instance its frequency, etc.

11. The physical meaning of the two waves i' and e' can best

be appreciated by observing the effect of the wave when travers-

ing a fixed point X of the circuit.

Consider as example the main wave only, i' = i^ + i
a ,

and

neglect the reflected waves, for which the same applies.

From equation (74),

i = e *-("-*> DJg (t
-

;)] + e+ s*-(u+s D
3 [q(t

-
/I)]; (79)

or the absolute value is

(80)

where D
t
and D

3
have to be combined vectorially.

Assuming then that at the time t = 0, 7 =
0, for constant X

we have

/ = D (-<-> -
fi -<"+>), (81)

the amplitude of 7 at point L
Since (81) is the difference of two exponential functions of

different decrement, it follows that as function of the time t, I

rises from to a maximum and then decreases again to zero, as

shown in Fig. 98, where

7
3
- De

-

r- -
1*

and the actual current i is the oscillatory wave with 7 as envelope.
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The combination of two waves thus represents the passage of

a wave across a given point, the amplitude rising during the

arrival and decreasing again after the passage of the wave.

Fig. 98. Amplitude of electric traveling wave.

12. If h and so also s equal zero, i'
,
e
r and i"

',
e" coincide in

equations (74) and (75), and C
l
and C

3
thus can be combined

into one constant Bv C2
and C4 into one constant J5

2 ,
thus :

C
3
= Bv

Ct
- Bv

C
s

' = B
t',

(82)

and (74), (75) then assume the form

i = s
-ut ^ j[

JB
1
cos q(t- X) + / sin q(t

-
X)]

-
[B 2

cos q(t + *) + B
2

'
sin q (t + A)] } , (83)

(84)

These equations contain the distance X only in the trigono-
metric but not in the exponential function; that is, i and e

vary in phase throughout the circuit, but not in amplitude; or,
in other words, the oscillation is of uniform intensity throughout
the circuit, dying out uniformly with the time from an initial

maximum value; however, the wave does not travel along the
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circuit, but is a stationary or standing wave. It is an oscillatory

discharge of a circuit containing a distributed r, L, g, C, and

therefore is analogous to the oscillating condenser discharge

through an inductive circuit, except that, due to the distributed

capacity, the phase changes along the circuit. The free oscilla-

tions of a circuit such as a transmission line are of this character.

For A = 0, that is, assuming the wave length of the oscillation

as so great, hence the circuit as such a small fraction of the wave

length, that the phase of i and e can be assumed as uniform

throughout the circuit, the equations (83) and (84) assume the

form

i = -^{B cos qt + B
Q

'
sin qt\

and (85)

these are the usual equations of the condenser discharge through
an inductive circuit, which here appear as a special case of a

special case of the general circuit equations.
If q equals zero, the functions D and H in equations (74) and

(75) become constant, and these equations so assume the form

and

e =

(86)

where

B=^0'-C. (87)

This gives expressions of current and e.m.f. which are no

longer oscillatory but exponential, thus representing a gradual

change of i and e as functions of time and distance, corresponding
to the gradual or logarithmic condenser discharge. For A = 0,

these equations change to the equations of the logarithmic con-

denser discharge.
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These equations (86) are only approximate, however, since in

them the quantities s, u, h have been neglected compared with

q, assuming the latter as very large, while now it is assumed as

zero.

13. If, however,

that is,

or

L C

r -H g
= L H- C,

(89)

or, in words, the power coefficients of the circuit are proportional
to the energy storage coefficients, or the time constant of the

electromagnetic field of the circuit, , equals the time constant
L

of the electrostatic field of the circuit, -^ ,
then

u = = = time constant of the circuit, (90)L C

and from equation (54)

R* = s
2 + (f,

h = VWs =
as,

k = VWq =
aq,

and from equation (52)

=
L . /L

c/ m
0,

(91)

and

/ =
0;

(92)
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hence, substituting in equations (50) and (51),

e L (_+s( A) T~)
r~ /* i\"i + s (t + A) T~)

r~ /* i J\T

I
*

i Li \ / J "^2 LI \ / J

+ c-'<'-
A > D.b (f

-
X)]

- -'+*> DJg (t + i)]} (93)

and

+ *~ J A) z)
3 b(^->i)] +

-
< '>D4 fe(r-f

(94)

These equations are similar to (74) and (75), but are derived

here for the case m =
0, without assumptions regarding the

relative magnitude of #and the other quant ities :

"
distortionless

circuit."

These equations (93) and (94) therefore also apply for q
=

0,

and then assume the form

S ^- A
)]-[C2

+S(' +A) +C4

- S(^ A)
]},(95)

e=-

+ [C 2
e
+8 + + C 4

- S(<+A)
]}. (96)

These equations (95) and (96) are the same as (86), but in the

present case, where m =
0, apply irrespective of the relative

values of the quantities s, etc.

Therefore in a circuit in which m = a transient term may
appear which is not oscillatory in time nor in space, but

changing gradually.
If the constant h in equations (50) and (51) differs from zero,

the oscillation (using the term oscillation here in the most general

sense, that is, including also alternation, as an oscillation of zero

attenuation) travels along the circuit, but it becomes stationary,
as a standing wave, for h =

0; that is, the distance attenuation

constant h may also be called the propagation constant of the

wave.

h = thus represents a wave which does not propagate or

move along the circuit, but stands still, that is, a stationary or

standing wave.



CHAPTER III.

STANDING WAVES.

14. If the propagation constant of the wave vanishes,

h =
0,

the wave becomes a stationary or standing wave, and the equa-
tions of the standing wave are thus derived from the general

equations (50) to (61), by substituting therein h =
0, which

gives

R 2 = V(k
2 - LCm2

)

2

; (97)

hence, if k2 > LCm2

,

R 2 = tf- LCm2

;

and if /c
2 < LCm2

,

R 2 = LCm2 '- tf.

Therefore, two different cases exist, depending upon the rela-

tive values of Ar* and LCm2

,
and in addition thereto the inter-

mediary or critical case, in which k2 = LCm2
.

These three cases require separate consideration.

is a circuit constant, while k is the wave length constant, that is,

the higher k the shorter the wave length.
A. Short waves,

k2 > LCm2

, (99)

hence,

R 2 = k2 - LCm2

(100)

and

q
= V^ - \

442
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or approximately, for very large k,

Herefrom then follows

and

VLC

l=
k

c
'

mL
c,

- T -c,

-1 -

2
"

k

c'=---c'
2

k

(102)

(103)

Substituting now h = and (101), (103) in equations (50),

(51), the two waves i', e' and i", e" coincide, and all the expo-
nential terms reduce to e~ ut

', hence, substituting

and

gives

, + Cv

2 + C4 ,

i + C*',

2

f + 4,

(104)

= t

{[B^ cos (qt
-

kl) + BS sin (qt
-

kl)]

-
[B 2

cos (qt + kl) + B
2

'
sin (qt + kl)]} (105)

and

L
C =

k f-qBJ cos (qt-kl)-(mB, + qB,'} sin (qt-kl)]

+ [(mB 2'-qB 3)
cos (qt + Jd)-(mB 2+ qBJ) sin (qt+ kl)]}. (106)

Equations (105) and (106) represent a stationary electrical oscil-

lation or standing wave on the circuit.

B. Long waves,

k2 < LCm2

] (107)
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hence,
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R2

2 = LCm2 - k2

,

s =

(108)

(109)

or approximately, for very small values of &,

1 r

herefrom then follows

(HO)

c
i
= c

2
=

0,

and

(m + s) L
~T~

(m s) L
(111)

Substituting now h = Oand (109), (111) into (50) and (51), the
two waves H

',
e' and i", e" remain separate, having different expo-

nential terms, e~ (u - s and t^"** but in each of the two waves
the main wave and the reflected wave coincide, due to the
vanishing of q.

Substituting then

= C- C

and

gives

(112)

sinkl]

(113)
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and

*{[(* + s) /
+s< + (m -

s) 2

' ~ 8<

] cos W

+ [(m + s) B 1

+rf + (m - s) B 2
e~ st

] sin kl}

s
')sinA;Z] (114)

+ (BlS
+ - B

2
e~ st

)smkl]}

Equations (113) and (114) represent a gradual or exponential
circuit discharge, and the distribution still is a trigonometric
function of the distance, that is, ^ wave distribution, but dies out

gradually with the time, without oscillation.

C. Critical case,

hence,

o,

=
0,

(115)

(116)

and
c
2
=

0,

raL (117)

and all the main waves and their reflected waves coincide when

substituting h = 0, (116), (117) in (50) and (51).

Hence, writing

and

gives

B = C,
- C

2 + C
3
-

C, 1

B' = CY 4- C2

' + C,
7 + C/

J

i = fi-"
1

{B cos kl - B' sin Id]

(118)

(119)
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and

e = y
-M<

{5' cos kl + B sin

In the critical case, (119) and (120), the wave is distributed

as a trigonometric function of the distance, but dies out as a

simple exponential function of the time.

15. An electrical standing wave thus can have two different

forms: it can be either oscillatory in time or exponential in time,

that is, gradually changing. It is interesting to investigate the

conditions under which these two different cases occur.

The transition from gradual to oscillatory takes place at

k* = m2

LC; (121)

for larger values of k the phenomenon is oscillatory; for smaller,

exponential or gradual.

Since k is the wave length constant, the wave length, at which

the phenomenon ceases to be oscillatory in time and becomes a

gradual dying out, is given by (63) as

27T

2, (122)

m Vie

In an undamped wave, that is, in a circuit of zero r and zero g,

in which no energy losses occur, the speed of propagation is

and if the medium has unit permeability and unit inductivity, it

is the speed of light,

S = 3 X 1010
. (124)

In an undamped circuit, this wave length l
Wo

would correspond
to the frequency,
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hence, from (62),

'-,Vr.- <125>

The frequency at the wave length l
Wo

is zero, since at

this wave length the phenomenon ceases to be oscillatory ;
that is,

due to the energy losses in the circuit, by the effective resistance r

and effective conductance g, the frequency / of the wave is

reduced below the value corresponding to the wave length lw ,

the more, the greater the wave length, until at the wave length
l
Wo

the frequency becomes zero and the phenomenon thereby

non-oscillatory. This means that with increasing wave length
the velocity of propagation of the phenomenon decreases, and

becomes zero at wave length l
Wo

.

If m2LC =
0,

k = and l
Wo
= oo

;

that is, the standing wave is always oscillatory.

If m?LC =
oo,

k = oo and l
Wo
=

0;

that is, the standing wave is always non-oscillatory, or gradually

dying out.

In the former case, m?LC =
0, or oscillatory phenomenon,

substituting for m2

,
we have

and

r _L
g c'

or

rC gL =
(distortionless circuit).

In the latter case, m2LC = oo
,
or non-oscillatory or exponen

tial standing wave, we have

r \ Q\ =00
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and since neither r, g, L, nor C can be equal infinity it fol-

lows that either L = or C = 0.

Therefore, the standing wave in a circuit is always oscillatory,

regardless of its wave length, if

rC - gL =
0, (126)

or

- =
J (127)

that is, the ratio of the energy coefficients is equal to the ratio

of the reactive coefficients of the circuit.

The standing wave can never be oscillatory, but is always

exponential, or gradually dying out, if either the inductance L or

the capacity vanishes
;
that is, the circuit contains no capacity

or contains no inductance.

In all other cases the standing wave is oscillatory for waves

shorter than the critical value L = -
,
whereV

-
9 V }

> (128)

and is exponential or gradual for standing waves longer than the

critical wave length l
Wo ;

or for k < k
o
the standing wave is

exponential, for k > ka it is oscillatory.

The value kQ
= m VLC thus takes a similar part in the theory

of standing waves as the value r
2 = 4 L C in the condenser

discharge through an inductive circuit; that is, it separates
the exponential or gradual from trigonometric or oscillatory
conditions.

The difference is that the condenser discharge through an
inductive circuit is gradual, or oscillatory, depending on the
circuit constants, while in a general circuit, with the same circuit

constants, usually gradual as well as oscillatory standing waves
exist, the former with greater wave length, or

m VLC > k, (129)

the latter with shorter wave length, or

m VLC < k. (130)
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An idea of the quantity k
,
and therewith the wave length lu ,

o ,

at which the frequency of the standing wave becomes zero, or

the wave non-oscillatory, and of the frequency / , which, in an

undamped circuit, will correspond to this critical wave length l
Wo ,

can best be derived by considering some representative numerical

examples.
As such may be considered:

(1) A high-power high-potential overhead transmission line.

(2) A high-potential underground power cable.

(3) A submarine telegraph cable.

(4) A long-distance overhead telephone circuit.

(1) High-power high-potential overhead transmission line.

16. Assume energy to be transmitted 120 miles, at 40,000

volts between line and ground, by a three-phase system with

grounded neutral. The line consists of copper conductors, wire

No. 00 B. and S. gage, with 5 feet between conductors.

Choosing the mile as unit length,

r = 0.41 ohm per mile.

The inductance of a conductor is given by

= I (2 loge

l

f
10~

9

,
in henrys, (131)

where I = the length of conductor, in cm.; lr
= the radius of

conductor; ld
= the distance from return conductor, and /*

=

the permeability of conductor material. For copper, fi
= 1.

As one mile equals 1.61 X 105
cm., substituting this, and

reducing the natural logarithm to the common logarithm, by the

factor 2.3026, gives

L = f0.7415 log ^
+ 0.0805\ in mh. per mile. (132)

,
For lr

= 0.1825 inch and ld
= 60 inches,

L = 1.95 mh. per mile.

The capacity of a conductor is given by

C = I I - *=\ 109
,
in farads, (133)
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where S = 3 X 1010 = the speed of light, and d = the allow-

ance for capacity of insulation, tie wires, supports, etc., assumed

as 5 per cent.

Substituting ,
and reducing to one mile and common loga-

rithm, gives

mf.; (134)

logflr

hence, in this instance,

C = 0.0162 mf.

Estimating the loss in the static field of the line as 400 watts

per mile of conductor gives an effective conductance,

which gives the line constants per mile as r = 0.41 ohm; L =
1.95X10-3

henry; g
= 0.25 X 10~

6

mho, and C = 0.0162 X lO"
6

farad.

Herefrom then follows

:>-i.S-.S-'*
a- = VLC = V31.6 X 10~6 = 5.62 X lO"

6

,

& = ra\/57 = 545 X 10~
6

;

hence, the critical wave length is

^o
=:
IT

= 11500 miles,
/c

and in an undamped circuit this wave length would correspond
to the frequency of oscillation,

- m
/ =

^~
= 15.7 cycles per See.
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Since the shortest wave at which the phenomenon ceases to be

oscillatory is 11,500 miles in length, and the longest wave which

can originate in the circuit is four times the length of the circuit,

or 480 miles, it follows that whatever waves may originate in this

circuit are by necessity oscillatory, and non-oscillatory currents

or voltages can exist in this circuit only when impressed upon it

by some outside source, and then are of such great wave length
that the circuit is only an insignificant fraction of the wave, and

great differences of voltage and current of non-oscillatory nature

cannot exist.

Since the difference in length between the shortest non-

oscillatory wave and the longest wave which can originate in the

circuit is so very great, it follows that in high-potential long-

distance transmission circuits all phenomena- which may result

in considerable potential differences and differences of current

throughout the circuit are oscillatory in nature, and the solution

case (A) is the one the study of which is of the greatest

importance in long-distance transmissions.

With a length of circuit of 120 miles, the longest standing wave
which can originate in the circuit has the wave length

lw = 480 miles,

and herefrom follows

k = - = 0.0134

and

ft 0.01342

LC 31.6 X 10-
12

hence, in the expression of q in equation (101),

= V 5.7 X 10 6 - 0.00941 X 10e
,

Ar
5

m2
is negligible compared with

;
that is,
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or

/ = = 380 cycles per sec.
2 7T

Hence, even for the longest standing wave which may origi-

nate in this transmission line, q
= 2380 is such a large quantity

compared with m =* 97 that m can be neglected compared with

q, and for shorter waves, the overtones of the fundamental wave,
this is still more the case; that is, in equations (105) and (106)

the terms with m may be dropped. In equation (106)
~ thus
fc

become common factors, and since from equation (135)

by substituting m = and (136) in (105) and (106) we get the

general equations of standing waves in long-distance transmission

lines, thus :

i = e-* {[B l
cos (qt

-
kl) + / sin (qt

-
kl)]

-
[B 2

cos (qt + kl) +. 2

'
sin (qt + kl)]}, (137)

= -
\Jp~

ut

{ [#i cos (qt
-

kl) + / sin (qt
-

kl)]

+ [ 2
cos (qt + kl) + 2

'sin (qt+ kl)]}, (138)

or

e = e -rf{ [A l
cos (qt + kl) + A/ sin (qt + kl)]

+ [A 2
cos (qt

-
kl) + A

2

'
sin (qt

-
kl)]}, (139)

fc
i =

y ^
~ ui

{[A, cos (qt + kl) + A/ sin (qt + kl)]

-
[A 2

cos (qt
-

kl) + A
2

'
sin (qt

-
kl)]}, (140)

where

2 > A' -
V 5/, etc.

(2) High-potential underground power cable.

17. Choose as example an underground power cable of 20
miles length, transmitting energy at 7000 volts between con-
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ductor and ground or cable armor, that is, a three-phase three-

conductor 12,000-volt cable.

Assume the conductor as stranded and of a section equiva-
lent to No. 00 B. and S. G.

Calculating the constants in the same manner, except that

the expression for the capacity, equation (119), multiplies with

the dielectric constant or specific capacity of the cable insula-

tion, and that f ig verv small, about three or less; or taking the
^r

values of the circuit constants from tests of the cable, we get

values of the magnitude, per mile of single conductor, r = 0.41

ohm; L = 0.4 X 10~ 3

henry; g = 10~ 6

mho, corresponding to a

power factor of the cable-charging current, at 25 cycles, of

1 per cent; C = .6 X 10~ 6
farad.

Herefrom the following values are obtained : u =
513, m =

512,

* -- VLC - 15.5 X 10~ 6
,
k = m VLC = 7.95 X 10~3

,
and the

critical wave length is l
Wo
= 790 miles, and the frequency of an

undamped oscillation, corresponding to l
Wo ,

is / = 81.5 cycles

per second.

As seen, in an underground high-potential cable the critical

wave length is very much shorter than in the overhead long-

distance transmission line. At the same time, however, the

length of an underground cable circuit is very much shorter than

that of a long-distance transmission line, so that the critical wave

length still is very large compared with the greatest wave length
of an oscillation originating in the cable, at least ten times as

great. Which means that the discussion of the possible phe-
nomena in any overhead line, under (1), applies also to the under-

ground high-potential cable circuit.

In the present example the longest standing wave which may
originate in the cable has the wave length

lw = 80 miles,

which gives

k = 0.0785

and

-4= - 5070,
VLC
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or about ten times as large as m, so that m can still be neglected

in equation (87), and we have

= 5070,
VLC

or / = 810 cycles per second,

and the general equations of the phenomenon in long-distance

transmission lines, (123) to (125), also apply as the general equa-
tions of standing waves in high-potential underground cable

circuits.

(3) Submarine telegraph cable.

18. Choosing the following values: length of cable, single

stranded-conductor, ground return, = 4000 miles; constants per
mile of conductor: r = 3 ohms, L = 10~3

henry, g
= 10~6 mho

?

and C = 0.1 X 10~ 6
farad, we get u = 1500; m = 1500; <r - VLC

= 10 X 10~6
,
and k = m VLC = 15 X 10~3

,
from which the

critical wave length is l
Wo
= 418 miles, and the corresponding

frequency fo
= 239 cycles per second.

From the above it is seen that in a submarine cable the critical

wave length l
Wo

is relatively short, so that in long submarine

cables standing waves may appear which are not oscillatory in

time but die out gradually, that is, are shown by the equation
of case B. In such cables, due to their relatively high resist-

ance, the damping effect is very great; u = 1500, and standing

waves, therefore, rapidly die out.

In the investigation of the submarine cable, the complete
equations must therefore be used, and q cannot always be

assumed as large compared with m and u, except when dealing
with local oscillations.

(4) Long-distance overhead telephone circuit.

19. Consider a telephone circuit of 1000 miles length, metallic

return, consisting of two wires No. 4 B. and S. G., 24 inches

distant from each other.

Calculating in the same way as discussed under (1), the follow-

ing constants per mile of conductor are obtained: r = 1.31 ohms,
L = 1.84 X 10~3

henry, and C = .0172 X 10~6 farad.

As conductance, g, we may assume

(a) g =
0; that is, very perfect insulation, as in dry weather.

(6) g = 2.5 X HT6
;
that is, slightly leaky line.
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(c) g
= 12 X 10~ 6

;
that is, poor insulation, or a leaky line.

(d) g
= 40 X 10~ 6

;
that is, extremely poor insulation, as

during heavy rain.

The condition may also be investigated where the line is

loaded with inductance coils spaced so close together that in

their effect we can consider this additional inductance as uni-

formly -distributed. Let the total inductance per unit length

be increased by the loading coils to

L,
= 9 X 10-3

h,

or about five times the normal value.

Denoting then the constants of the loaded line by the index 1,

we have:

Quantity
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In other words, a moderate amount of distributed leakage

improves a long-distance telephone line, an excessive amount of

leakage spoils it. An increase of inductance, by loading the line,

improves the line if the leakage is small, but may spoil the line

if the leakage is considerable. The amount of leakage up to

which improvement in the telephone line occurs is less in a

loaded than in an unloaded line
;
that is, a loaded telephone line

requires a far better insulation than an unloaded line.



CHAPTER IV.

TRAVELING WAVES.

20. As seen in Chapter III, especially in electric power cir-

cuits, overhead or underground, the longest existing standing
wave has a wave length which is so small compared with the

critical wave length where the frequency becomes zero that

the effect of the damping constant on the frequency and the

wave length is negligible. The same obviously applies also to

traveling waves, generally to a still greater extent, since the

lengths of traveling waves are commonly only a small part of the

length of the circuit. Usually, therefore, in the discussion of

traveling waves, the effect of the damping constants on the fre-

quency constant q and the wave length constant k can be

neglected, that is, frequency and wave length assumed as inde-

pendent of the energy loss in the circuit.

Usually, therefore, the equations (74) and (75) can be
applied

in dealing with the traveling wave.

In these equations the distance traveled by the wave per
second is used as unit length by the substitution

/I
=

<rl,

where <r = VLC,

as this brings t and X into direct comparison and eliminates h

and k from the equations by the equation (72).

With this unit length the critical value of k, k = m VTU,
by substituting (69) and (68), gives q

= m, and the condition

of the applicability of equations (74) and (75), therefore, is that

q be a large quantity compared with q
= m.

In this case is a small quantity, and thus can usually be

neglected in equations (76) and (75), except when C and C' are

very different in magnitude.
467
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This gives, under the limiting conditions discussed above, the

general equations of the traveling wave, thus:

i = - ut

{

+('-*)
[(7^ cos q (t X) + (7/ sin q (t X)]

- + s + x )

[C2
cos q (t + X) + C

2

'
sin q (t + X)]

+ <-*>
[C3

cos q(t- X)+ C
3

'
sin q (t

-
/I)]

- <-* ('+A)
[C4 cos g (t + ;) + C/ sin q (t + ^)] } (141)

and

v/I-- [Cj cos g (^ ^) 4- C/ sin q (t X)]

[C2
cos q (t + X) + C

2

7
sin g + ^)]

[C 8
cos g ft

-
A) 4- C8

7
sin g (*

-
A)]

[(74 cos g (^ + X) + (7/ sin g (t + A)] } ,

(142)

or

cos q(t

-
/I)]

+ X)]

(143)

and

[A 2
cos q (t

-

[A 3
cos g (t +

[A 4 cos g (t

A/ sin g (*

A/ sin q (t

A sin q (t

where

and

^ -
o-Z,

a- = vie.

(144)

(145)

In these equations (141) to (144) the sign of ^ may be reversed,
which merely means counting the distance in opposite direction.



TRAVELING WAVES 459

This gives the following equations:

i = - ut

{

+ s (f A)
[B l

cos q (t X) + .B/ sin q (t X)]

4-
~

s(<
~ A)

[5 3
cos g ( .A) + jB

s

7
sin q (t X)]

and

e - -"-"
i
cos - + sn T

+ e
+s(t+

[B 2
cos g (t + X) + 5/ sin q (t + X)]

+
- s -*)

[J5 8
cos g (t

-
X) + B

z

'
sin q (t

-
/I)]

.

+ e
-*f(<+x)

[54 cos g (< + ^)+ 54

7
sin q (t + ^)]},

(147)

or

[A 2
cos g (t + X) + A

a

7
sin q (t + X)]

[A 3
cos ?(->!)+ ^

3

r
sin q (t

-
X)]

[^I 4 cosg ( + ;)+ A/sin q (t + ;)]} (148)

and

[A 3
cos ?(* + ;)+ A/ sin q (t + X)]

[A 3
cos g (

-
X) + A

3

'
sin g (t

-
X)]

[A 4 cos q(t + X)+ AJ sin q(t+ X)]}.

(149)

In these equations (141) to (149) the values A, B, C, etc., are

integration constants, which are determined by the terminal

conditions of the problem.
The terms with (t

-
X) may be considered as the main wave,

the terms with (t + X) as the reflected wave, or inversely, depend-

ing on the direction of propagation of the wave.

21. As the traveling wave, equations (141) to (149), consists

of a main wave with variable (t
-

X) and a reflected wave of the

same character but moving in opposite direction, thus with the

variable (t + X), these waves may be studied separately, and
afterwards the effect of their combination investigated.
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Thus, considering at first one of the waves only, that with the

variable (t
-

X), from equations 148 and 149 we have

[A l cosq(t
- X)+ A/singft -

X)]

+ --*>
[A 3

cos q (t
-

X) + A
z

'
sin q (t

-
X)}}

e~ ut

{ (A ie
+8('- x) + A

3

- S('- A)
) cos q(t- X)

+ (A 1
's
+a('- A) + A

8
'e ('- A)

) sin (t
-

X)}

(150)

and

that is, in a single traveling wave current and voltage are in

phase with each other, and proportional to each other with an

effective impedance

(152)

This proportionality between e and i and coincidence of phase

obviously no longer exist in the combination of main waves

and reflected waves, since in reflection the current reverses with

the reversal of the direction of propagation, while the voltage
remains in the same direction, as seen by (148) and (149).

In equation (150) the time t appears only in the term (t X)

except in the factor e~ ut
,
while the distance X appears only in the

term (t X). Substituting therefore

hence

f .<* V-M;

that is, counting the time differently at any point X, and counting
it at every point of the circuit from the same point in the phase of

the wave from which the time t is counted at the starting point
of the wave, X =

0, or, in other words, shifting the starting point
of the counting of time with the distance X, and substituting in

(150), we have
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e = (A j
cos qtt + A / sin g^)

stl

(A 3
cos

'' *

(Aj COS

g-"1

(A 3
cos

A
3

'
sin

A / sin

A
3
sin

(153)

The latter form of the equation is best suited to represent the

variation of the wave, at a fixed point ^ in space, as function of

the local time t
L
.

Thus the wave is the product of a term -uA which decreases

with increasing distance ^, and a term

e - e~ utl

{e
+stl

(A 1
cos qtt + A/ sin q$

+ e~ stl
(A 3

cos qtt + A/ sin qtt ) }

(154)

which latter term is independent of the distance, but merely a

function of the time t
t
when counting the time at any point of the

line from the moment of the passage of the same phase of the

wave.

Since the coefficient in the exponent of the distance decrement
~ uA

contains only the circuit constant,

but does not contain s and q or the other integration constants,

resubstituting from equations (71) to (68),

x = ai = i VLO,
we have

uX = u \/LC I

where I is measured in any desired length.
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Therefore the attenuation constant of a traveling wave is

},
'(155)

and hence the distance decrement of the wave,

depends upon the circuit constants r] L, g, C only, but does not

depend upon the wave length, frequency, voltage, or current;

hence, all traveling waves in the same circuit die out at the same

rate, regardless of their frequency and therefore of their wave

shape, or, in other words, a complex traveling wave retains its

wave shape when traversing a circuit, and merely decreases in

amplitude by the distance decrement e~w\ The wave attenua-

tion thus is a constant of the circuit.

The above statement obviously applies only for waves of con-

stant velocity, that is, such waves in which q is large compared
with s, u, and m, and therefore does not strictly apply to ex-

tremely long waves, as discussed in 13.

22. By changing the line constants, as by inserting inductance

L in such a manner as to give the effect of uniform distribution

(loading the line), the attenuation of the wave can be reduced,
that is, the wave caused to travel a greater distance / with the

same decrease of amplitude.
As function of the inductance L, the attenuation constant (155)

is a minimum for

=o-
dL

hence,

rO - gL =
0,

or

(156)

and if the conductance g
= we have L = <x>

; hence, in a per-

fectly insulated circuit, or rather a circuit having no energy losses

depending on the voltage, the attenuation decreases with increase
of the inductance, that is, by "loading the line," and the more
inductance is inserted the better the telephonic transmission.
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In a leaky telephone line increase of inductance decreases the

attenuation, and thus improves the telephonic transmission, up
to the value of inductance,

L = -, (157)
9

and beyond this value inductance is harmful by again increasing

the attenuation.

For instance, if a long-distance telephone circuit has the

following constants per mile: r = 1.31 ohms, L = 1.84 X 10~3

henry, g
= 1.0 X 1Q-" mho, and C = 0.0172 X 10~ 6

farad, the

attenuation of a traveling wave or impulse is

u =
0.00217;

hence, for a distance or length of line of 1
Q
= 2000 miles,

e-nA = -4.34 =
0.0129;

that is, the wave is reduced to 1.29 per cent of its original value.

The best value of inductance, according to (157), is

L = -C = 0.0225 henry,
i/

and in this case the attenuation constant becomes

u,
= 0.00114,

and thus

e-A = -2 .24 = 0.1055,

or 10.55 per cent of the original value of the wave; which means

that in this telephone circuit, by adding an additional inductance

of 22.5 - 1.84 = 20.7 mh. per mile, the intensity of the arriving

wave is increased from 1.29 per cent to 10.55 per cent, or more

than eight times.

If, however, in wet weather the leakage increases to the value

g
= 5 x 10~8

,
we have in the unloaded line

U
Q
= 0.00282 and e~^ = 0.0035,

while in the loaded line we have

u = 0.00341 and e~ u l = 0.0011,
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and while with the unloaded line the arriving wave is still 0.35

per cent of the outgoing wave, in the loaded line it is only 0.11

per cent; that is, in this case, loading the line with inductance

has badly spoiled telephonic communication, increasing the

decay of the wave more than threefold. A loaded telephone line,

therefore, is much more sensitive to changes of leakage g, that is,

to meteorological conditions, than an unloaded line.

23. The equation of the traveling wave (153),

e
+*

(A l
cos qtt + A/ sin gt t)

e~ st
i(A 3

cos gti + A
3

'
sin qtt) } ,

e = e
-t*

e
-*

{

+

can be reduced to the form

e = e-^jj^fi-^ (fi
+*i - e -*i) Smqth

+ Ef-*** (e
+^ - e-'S cos qtk } , (158)

where

k = ^
-

7i
= *

~ * - ?i 1

and L (159)

By substituting (159) in (158); expanding, and equating (158)

with (153), we get. the identities

(160)

Eje~
8yi cos qy^ E

2
e~ sy* sin qy 2

= A v

E^'^1 sin qy { + E
2

~ sy*

cosqy2
= A/,

E^+ Syi cos qy^ E
2
e +Sy* sin qy 2

= - A
3 ,

^iS
4"^1 sin gy t + #

2
e+SY cos gy 2

= -A/,

and these four equations determine the four constants Ev E2 ,

Any traveling wave can be resolved into, and considered as

consisting of, a combination of two waves:
the traveling sine wave.

-*V) sin
qt^ (161)

and the traveling cosine wave,

e
2
= E

2
e~^ -'.

(e
+^ - e -*4) cos ^. (162)
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Since q is a large quantity compared with u and s, the two

component traveling waves, (161) and (162), differ appreciably

from each other in appearance only for very small values of th

that is, near t
ti

= and t
lt

= 0. The traveling sine wave rises

in the first half cycle very slightly, while the traveling cosine wave

rises rapidly; that is, the tangent of the angle which the wave
de

makes with the horizontal, or
, equals with the sine wave and

has a definite value with the cosine wave.

All traveling waves in an electric circuit can be resolved into

constituent elements, traveling sine waves and traveling cosine

waves, and the general traveling wave consists of four component

waves, a sine wave, its reflected wave, a cosine wave and its

reflected wave.

The elements of the traveling wave, the traveling sine wave ev

and the traveling cosine wave e
2
contain four constants: the

intensity constant, E\ the attenuation constant, u, and u

respectively; the frequency constant, q, and the constant, s.

The wave starts from zero, builds up to a maximum, and then

gradually dies out to zero at infinite time.

The absolute term of the wave, that is, the term which repre-

sents the values between which the wave oscillates, is

+stl - e~ s
^. (163)

The term e may be called the amplitude of the wave. It is a

maximum for the value of t
l} given by

<

which gives

_
(u

_ 8) ,-<*->> + (U + S)

hence,

u s

and
1 u + s

2s u s
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and substituting this value into the equation of the absolute

term of the wave, (163), gives
u

9 Q hi 4- <?\ 2s/W + SN
(165)V3^? \u -

The rate of building up of the wave, or the steepness of the wave

front, is given by

n-o
as

G. = Ee~^[- (u
-

s)
-<M-^< + (u + s)

= 2s#- MA
; (166)

that is, the constant s, which above had no interpretation,

represents the rapidity of the rise of the wave.

Referring, however, the rise of the wave to the maximum
value em of the wave, and combining (165) with (166), we have

u+s

G - em ^ - (167)

(u
-

s)
2s

The rapidity of the rise of the wave is a maximum, that is,

t
t
a minimum, for the value of s, in equation (164), given by

ds

which gives

u + s 2 us
log u

hence, s = 0, or the standing wave, which rises infinitely fast,

that is, appears instantly.
The smaller therefore s is, the more rapidly is the rise of the

traveling wave, and therefore s may be called the acceleration

constant of the traveling wave.

24. In the components of the traveling wave, equations (161)

and (162), the traveling sine wave,

e
l
= #-*-"' (+*' - e -*) sin^z (161),
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and the traveling cosine wave, (162),

e
2
= Ez~ u^- utl

(e
+sil - e-*) cos fa

with the amplitude,

e = Ee~ u^- ut<

(e
+st> - e~ stl

), (168)

we have

e
l
= e sin qlt

1

and (169)

e
2
= e cos qtt

. J

If ^ =
0, e =

0; that is, t
t

is the time counted from the

beginning of the wave.

It is

t
t
= t

- X - r,

or, if we change the zero point of distance, that is, count the

distance X from that point of the line at which the wave starts

at time t = 0, or, in other words, count time t and distance X

from the origin of the wave,

t
t
= t

-
;,

and the traveling wave thus may be represented by the amplitude,

the sine wave,

e
l
= Ee~ ut

(s
+stl s~ stl

) sin qti
= e

Q
sin qti\

the cosine wave,

e
2
= Es~ wt

(s
+stl e~ stl

) cos qti
= e cos qtt ',

(170)

and ti
= t X can be considered as the distance, counting

backwards from the wave front, or the temporary distance; that

is, distance counted with the point X, which the wave has just

reached, as zero point, and in opposite direction to X.

Equation (170) represents the distribution of the wave along
the line at the moment t.

As seen, the wave maintains its shape, but progresses along
the line, and at the same time dies out, by the time decrement
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Resubstituting,

ti
= t

-
X,

the equation of the amplitude of the wave is

(171)

As function of the distance X, the amplitude of the traveling

wave, (171), is a maximum for

dX

which gives

X = 0;

that is, the amplitude of the traveling wave is a maximum at all

times at its origin, and from there decreases with the distance.

This obviously applies only to the single wave, but not to a

combination of several waves, as a complex traveling wave. -

For X = 0,

and as function of the time t this amplitude is a maximum,
according to equations (163) to (165), at

and is

1 u + s

2s u s

2s /u +
(172)

At any other point X of the circuit, the amplitude therefore

is a maximum, according to equation (164), at the time

and is

tm -

em = E
2*-*

/^yVw2 - s
2 w - s/

(173)
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25. As an example may be considered a traveling wave having
the constants u =

115, s = 45, q
= 2620, and E =

100, hence,

where t
t
= t L

In Fig. 99 is shown the amplitude e
Q
as function of the dis-

tance X, for the different values of time,

t = 2, 4, 8, 12, 16, 20, 24, and 32 X 10~ 3
,

v

16, 2^

Distin

4 6 8 10 12 14 16 18 20 22 24

Fig. 99. Spread of amplitude of electric traveling wave.

with the maximum amplitude em ,
in dotted line, as envelope of

the curve of e
Q

. -

As seen, the amplitude of the wave gradually rises, and at the

same time spreads over the line, reaching the maximum at the

starting point A = at the time t = 9.2 X 10~3
sec., and then

decreases again while continuing to spread over the line, until it

gradually dies out.

It is interesting to note that the distribution curves of the

amplitude are nearly straight lines, but also that in the present
instance even in the longest power transmission line the wave has

reached the end of the line, and reflection occurs before the

maximum of the curve is reached. The unit of length A is the

distance traveled by the wave per second, or 188,000 miles, and

during the rise of the wave, at the origin, from its start to the

maximum, or 9.2 X 10~3

sec., the wave thus has traveled 1760

miles, and the reflected wave would have returned to the origin

before the maximum of the wave is reached, providing the cir-

cuit is shorter than 880 miles.
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2 4 6 8 10 12 14 16 18 20 22 21

34 36 38 40 42 44 46 48

Fig. 100. Passage of traveling wave at a given point of a transmission line

U.5

*(qti

1.0

+ 45)

2 5.2621

2.0 2.5

\

\

SOX 10'
a Sec.

Fig. 101. Beginning of electric traveling waves.
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With s = 1 it would be t = 8.7 X 10"3
sec., or nearly the

same, and with s = 0.01 it would be t = 3.75 X 10~3
sec., or,

in other words, the rapidity of the rise of the wave increases very
little with a very great decrease of s.

Fig. 100 shows the passage of the traveling wave, e
l
= e sin qtb

across a point X of the line, with the local time t
t
as abscissas

and the instantaneous values of e
l
as ordinates. The values are

given for ^ = 0, where t
t

=
t] for any other point of the line X

the wave shape is the same, but all the ordinates reduced by the

factor
~115 * in the proportion as shown in the dotted curve in

Fig. 99.

Fig. 101 shows the beginning of the passage of the traveling

wave across a point X = of the line, that is, the starting of a

wave, or its first one and one-half cycles, for the trigonometric
functions differing successively by 45 degrees, that is,

e = e sin t

cos qtt

= e sin (qtt +
^

= 6 cos + = e sin

The first curve of Fig. 101 therefore is the beginning of Fig. 100.

In waves traveling over a water surface shapes like Fig. 101

can be observed.

For the purpose of illustration, however, in Figs. 100 and 101

the oscillations are shown far longer than they usually occur;

the value q
= 2620 corresponds to a frequency / = 418 cycles,

while traveling waves of frequencies of 100 to 10,000 times as

high are more common.

Fig. 102 shows the beginning of a wave having ten times the

attenuation of that of Fig. 101, that is, a wave of such rapid

decay that only a few half waves are appreciable, for values of

the phase differing by 30 degrees.

26. A specially interesting traveling wave is the wave in

which

s = u, (174)
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since in this wave the time decrement of the first main wave and

its reflected wave vanishes,

e---* =
1; (175)

that is, the first main wave and its reflected wave are not tran-

sient but permanent or alternating waves, and the equations of

12 16

\

oanfqti

^edooaqtj

+ 60

h

+ 60

20

Time t

=,1150

\

LiM

X

Fig. 102. Passage of a traveling wave at a given point of a line.

the first main wave give the equations of the alternating-current
circuit with distributed r, L, g, C, which thus appear as a special
case of a traveling wave.

Since in this case the frequency, and therewith the value of q,

are low and comparable with u and s, the approximations made
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in the previous discussion of the traveling wave are not per-

missible, but the general equations (50) and (51) have to be used.

Substituting therefore in (50) and (51),

s = u,

gives

i = [~
hl

{C l
cos (qt

-
kl) + C/ sin (qt

-
kl) }

- e
+hl

\C2
cos (qt + kl) + C/ sin (qt + kl)}]

- r2ut
[~

hl

{C4 cos (qt + kl) + C4

'
sin (qt + kl) }

- +hl

and

- e {C3
cos (qt

-
kl) + <7

3

'
sin (qt

-
kl)}] (176)

-
(c/C, + c/7/) sin (qt

-
kl) }

l

{ (c/CY- c
t
C

2)
cos (qt + kl)

hl

{ (c 2
'C4

- C
2
C4) cos (qt + kl)

+ c, - c23 cos $ -
;

-(C/C 3 + c
2
(7

3Osin(^-^)}]. (177)

In these equations of current i and e.m.f. e the first term

represents the usual equations of the distribution of alternating

current and voltage in a long-distance transmission line, and can

by the substitution of complex quantities be reduced to a form

given in Section III.

The second term is a transient term of the same frequency;
that is, in a long-distance transmission line or other circuit of

distributed r, L, g t C, when carrying alternating current under an

alternating impressed e.m.f., at a change of circuit conditions, a

transient term of fundamental frequency may appear which has

the time decrement, that is, dies out at the rate

In this decrement the factor
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is the usual decrement of a circuit of resistance r and inductance

Lj while the other factor,

may be attributed to the conductance and capacity of the circuit,

and the total decrement is the product,

A further discussion of the equations (176) and (177) and the

meaning of their transient term requires the consideration of

the terminal conditions of the circuit.

27. The alternating components of (176) and (177),

i
o
= s- ja

{C 1
cos (qt

-
kl) + C/ sin (qt

-
kl) }

- e
+hl

{C2
cos (qt + kl) + C/ sin (qt + kl) } (178)

and

/> . * fit \ (f+ '* * /> (i \ r*r\cy (nl 1/*7\ /*/ '/^ ^l_ /> / f\ 01 T~I /'/v/ 7^7\ (.

t/fl
c i I O- vy

.|

'

O^vy -. / l^\_/o \tyt
/ IVv J V^i ^ i ~1~ ^|^-/

-i / olll I Ul> fi/L ) I

(179)

are reduced to their usual form- in complex quantities by resolv-

ing the trigonometric function into functions of single angles,

qt and kl, then dropping cos qt, and replacing sin qt by the imagi-

nary unit j. This gives

i = s~ hl

{ (C l
cos kl Of sin kl) cos qt'

+ (C/ cos kl + Cj sin A;Z) sin ^}
e
+hl

{ ((72 cos kl + C
2

7
sin A;Q cos qt

+ (C2
cos kl C

2
sin A^Z) sin qt } ;

hence, in complex expression,

/ = e~ hl

{ (C 1
+ yc/) cos &Z (C/ yCJ sin

A;Z}

- e
+w

{ (Ca + yCa

7

) cos kl + (C/
-

yCa)
sin &}, (180)

and in the same manner,

+ [c/ (c, + yc/) + Cl (C/- ycj] sin w}

-
[c/ (Ca + yc/) + c\ (C/

-
j(7

2

2)] sin JW
}

. (181)
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However, from equation (52),

qk + h (m + s) T _ j ,
k (m + s) qh

since

q
= 2

and

lr

1/r

and

we have

s 4- m =

and

c/ =

xk + rh

h2 + k2
=

h2 + k2

rk 2 TT/L/Z, rk xh

h2 + k2
=

h2 + k2 '

where x = 2 TT/L
= reactance per unit length.

From equation (54),

R 2 = V(s
2 + q

2 - m2

)
2 + 4<fm

2

;

hence, substituting (182) and (184) and also

b = 2 TtfC,

we have

1

zy

LC'

where

and
z = Vr* + x2

--= impedance per unit length

y = Vg2 + b
2 = admittance per unit length.

(182)

(183)

(184)

(185)

(186)
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From the above it follows that

and

h = VLC Vi {R* + s
2 -

q
2 - m2

= v'i (y + rg
-

xb)

k =
\(zy

-
rg + xb).

If we now substitute

(187)

and

or

and

where

and

A' = - *y Y, \

/
-

jtf,
= + JB, VY,

Z = r - jx

(188)

(189)

(190)

Y =g- y&;

in (180) and (181) we have

7 =vT [B^ (coskl-jsmkl)+B 2
e- hl

(coskl+ j sinkl)} (191)

and

- B
2
e~ hl

(cos &Z + y sin jfcZ) } , (192)

and substituting (183) gives

h (r-jx)+k(x+ jr) _ (r-jx) (h+jk) r-jx
i ' j i

~
Ti i Ti TT> ; 7~9

=
T T- v^y^y

*7
*

,
1 jv^ A *

_JI A* Aj /i /^
IV

\ /v l(j ~\~ A/ ft
Jfi/

However,

T- k2

)
-

2jhk

= V(rg -
xb)

-
jV(zy)

2 -
(rg

- xb}
2

= V (rg
-

xb)
-

j V (r
2 + x2

) (g
2 + b

2

)
-

(rg
-

(rg
-

xb)
-

j Vr^b
2 + x2

g
2 + 2 rgxb

V(rg -
xb)

-
j (rb + xy)

= V(r -
jx) (jgf

-
y&);

or A -
y/b

= VZF (194)
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substituted in (193) gives

and (195) substituted in (192) gives

E= VZ {B^
+hl

(coskl-jsmkl) -B 2
e~ hl

(cos JW-f /sin kl)},

(196)

where B
l
and B

2
are the complex imaginary integration constants.

Writing
h = a and k =

f),

B, = D
l and B2

= -D2

the equations (191) and (196) become identical with the equa-

tions of the long-distance transmission line derived in Section III,

equations (22) of paragraph 8.

It is interesting to note that here the general equations of

alternating-current long-distance transmission appear as a special

case of the equations of the traveling wave, and indeed can be

considered as a section of a traveling wave, in which the accelera-

tion constant s equals the exponential decrement u.



CHAPTER V.

FREE OSCILLATIONS.

28. The general equations of the electric circuit, (50) and (51),

contain eight terms: four waves: two main waves and their

reflected waves, and each wave consists of a sine term and a

cosine term.

The equations contain five constants, namely: the frequency

constant, g; the wave length constant, &; the time attenuation

constant, u\ the distance attenuation constant, h, and the time

acceleration constant, s
; among these, the time attenuation, u

y
is

a constant of the circuit, independent of the character of the wave.

By the value of the acceleration constant, s, waves may be sub-

divided into three classes, namely: s = 0, standing waves, as

discussed in Chapter III; u > s > 0, traveling waves, as dis-

cussed in Chapter IV; s = u, alternating-current and e.m.f.

waves, as discussed in Section III.

The general equations contain eight integration constants C
and C', which have to be determined by the terminal condi-

tions of the problem.

Upon the values of these integration constants C and C'

largely depends the difference between the phenomena occurring
in electric circuits, as those due to direct currents or pulsating

currents, alternating currents, oscillating currents, inductive dis-

charges, etc., and the study of the terminal conditions thus is of

the foremost importance.
29. By free oscillations are understood the transient phe-

nomena occurring in an electric circuit or part of the circuit to

which neither electric energy is supplied by some outside source

nor from which electric energy is abstracted.

Free oscillations thus are the transient phenomena resulting
from the dissipation of the energy stored in the electric field of

the circuit, or inversely, the accumulation of the energy of the

electric field; and their appearance therefore presupposes the

possibility of energy storage in more than one form so as to allow

478
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an interchange or surge of energy between its different forms,

electromagnetic and electrostatic energy. Free oscillations occur

only in circuits containing both capacity C and inductance, L.

The absence of energy supply or abstraction defines the free

oscillations by the condition that the power p = ei at the two

ends of the circuit or section of the circuit must be zero at all

times, or the circuit must be closed upon itself.

The latter condition, of a circuit closed upon itself, leads to a

full-wave oscillation, that is, an oscillation in which the length of

the circuit is a complete wave or a multiple thereof. With a cir-

cuit of uniform constants as discussed here such a full-wave

oscillation is hardly of any industrial importance. While the

most important and serious case of an oscillation is that of a

closed circuit, such a closed circuit never consists of a uniform

conductor, but comprises sections of different constants generat-

ing system, transmission line and load, thus is a complex circuit

comprising transition points between the sections, at which par-

tial reflection occurs.

The full-wave oscillation thus is that of a complex circuit,

which will be discussed in the following chapters.

Considering then the free oscillations of a circuit having two
ends at which the power is zero, and representing the two ends

of the electric circuit by I = and I 1
,
that is, counting the

distance from one end of the circuit, the conditions of a free

oscillation are

I = 0, p = 0.

I = *
, P = 0.

Since p =
ei, this means that at I = and I = 1 either e or i

must be zero, which gives four sets of terminal conditions:

(1) e = at I = 0; i = at I = Z .

(2) i = at I = 0; e = at I = Z .

(3) e = at I = 0; e = at I = Z .

(4) i = at I = 0; i = at I = L.

(197)

Case (2) represents the same conditions as (1), merely with the

distance I counting from the other end of the circuit a line

open at one end and grounded at the other end. Case (3) repre-
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sents a circuit open at both ends, and case (4) a circuit grounded
at both ends.

30. In either of the different cases, at the end of the circuit

I = 0, either e = 0, or i = 0.

Substituting I = into the equations (50) and (51) gives

e
o
=

fi
-<-

>'{[
C/ (C/ + C

2')
-

c, (C, + C
2)] cos qt

r ' (c1 '
-i- r f \ r (C1

-\- r v
i (L2 V3 ' U 4 / 2 V3 ' U 4A

-
[ea

'

(C8 + C4) + c
2 (C,

7 + C/)] sin qt} (198)

and

i = s~ (u ~ s)<
{ (Cj C

2)
cos qt + (C/ C/) sin qt}

+ e~ (u+sn
{(C3

-C4)cosqt+(C3

' -C4')smqt}. (199)

If neither g nor s equals zero,

for e =
0,

c/ (C/ + <7
2')

- c
t (C t + C

a)
=

I
and c/ (C, + C

2) + c
t (C/ + C

a

7

) =0; J

hence,

\' \ _ '/
i (200)

and for i =
0,

n - r r - r 1
tf ' V. j ^4 :

~^3J

c'.c' c/-c" J

(201)

Substituting in (50) and (51),

i = e~ (u ~ s^
{Cj [e~

hl
cos (g kl) s

+hl cos (g^ + kl)]

+ C/ [s~
w

sin (g^
-

kl) s
+hl

sin (qt + kl)]}

+ -(+)
JC 3 [

+w cos (gi
-

kl) e~ hl
cos (g^ + kl)]

+ C/ [
+w

sin (qt
-

kl) e~ hl
sin (qt + kl)]} (202)
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and

e = f-<-><
{ (c/C/- C/7J [e~

u
cos (?*-&/)

T +w cos (qt + kl)]

-
(c/C 4 + c.C/) [e-

w
sin (#

- &)

=F
+w

sin(^ + kl)]\

Ca/(7a
/_

C2c3) [

+ cos (#-&)
=F e~w cos (qt+ kl)]

2
'0

3 + c
2 3')[e

+hl
sm(qt-kl)

~ hl sm (qt + kl)]}, (203)

where the upper sign refers to e = 0, the lower sign to i = for

I = 0.

31. In a free oscillation, either e or i must be zero at the other

end of the oscillating circuit, or at I = 1 .

Substituting, therefore, / = Z in equations (202) and (203),

and resolving and arranging the terms by functions of t
}
the

respective coefficients of

must equal zero, either in equation (202), if i = at I = 1
,
or in

equation (203), if 6 = at I = Z
, provided that, as assumed

above, neither s nor q vanishes.

This gives, for i = at / = Z
,
from equation (202),

C. (e~
M

e
+hl

) cos kL - C/(e~
M

=F e
+

) sin kL = 0,1

[ (204)
C, (e~

Mo
q=

+w
) sin kl + (7/(e-^ e~ hl

) cos /cZ =
0, J

and analogously for C
3
and C

3
'.

In equations (204), either Cv C/, (7
3 , Cg' vanish, and then the

whole oscillation vanishes, or, by eliminating C
v
and C/ from

equations (204), we get

C0g2^ + (
-o T +o)a sin

2 ^ = .

hence,

osW =

and -



482 TRANSIENT PHENOMENA

hence, for the upper sign, or if e = for I = 0,

h = and cos klQ
=

0,

thus:
(206)

and for the lower sign, or if i = for I = 0,

1 (207)
L = mi. 1

In the same manner it follows, for e = at I = 1
Q ,
from equa-

tion (203), if e = for Z = 0,

thus:

and if i = for I = 0,

thus:

h =
0, sin kl =

kl nn.
(208)

and cos kl =
0,

(2 n + 1) TT (209)

From equations (206) to (209) it thus follows that h =
0, that

is, the free oscillation of a uniform circuit is a standing wave.
Also

(2 n
(210)

if e = at one, i = at the other end of the circuit, and

kl,
- nn (211)

if either e = at both ends of the circuit or i = at both ends of
the circuit.

32. From (210) it follows that

or an odd multiple thereof; that is, the longest wave which can
exist in the circuit is that which makes the circuit a quarter-
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wave length. Besides this fundamental wave, all its odd multi-

ples can exist. Such an oscillation may be called a quarter-wave

oscillation.

The oscillation of a circuit which is open at one end, grounded
at the other end, is a quarter-wave oscillation, which can contain

only the odd harmonics of the fundamental wave of oscillation.

From (211) it follows that

or a multiple thereof; that is, the longest wave which can exist

in such a circuit is that wave which makes the circuit a half-

wave length. Besides this fundamental wave, all its multiples,

odd as well as even, can exist. Such an oscillation may be called

a half-wave oscillation.

The oscillation of a circuit which is open at both ends, or

grounded at both ends, is a half-wave oscillation, and a half-wave

oscillation can also contain the even harmonics of the funda-

mental wave of oscillation, and therefore also a constant term

forn = Oin (211).

It is interesting to note that in the half-wave oscillation of a

circuit we have a case of a circuit in which higher even harmonics

exist, and the e.m.f. and current wave, therefore, are not sym-
metrical.

From h =
follows, by equation (56),

s=0, if k2 > LCm\ ]

and (212)

9
=

0, if k2 < LCm\
J

The smallest value of k which can exist from equation (210) is

and, as discussed in paragraph (15), this value in high-potential

high-power circuits usually is very much larger than LCm2

,
so

that the case q
= is realized only in extremely long circuits,

as long-distance telephone or submarine cable, but not in trans-

mission lines, and the first case, s = 0, therefore, is of most

importance.
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Substituting, therefore, h = and s = into the equation

(52) gives

*-y-h-.
and

m
(213)

and substituting into equations (202) and (203) of the free oscilla-

tion gives

i = e~ ut
{A 1 [cos (qt kl) cos (qt + kl)]

+ A
2 [sin (qt

-
kl) sin (qt + kl)]} (214)

and

e = --* {(mA 2
-

qAj) [cos (qt-kl) =F cos (qt + kl)]

^ qA 2) [sin ($-fcQ =F sin (qt + . (215)

where: A, = C, + C, andA = C/ + <7
3
'.

'

Since k and therefore # are large quantities, m can be neglected

compared with q, and

k =

hence

and the equation (215) assumes, with sufficient approximation,
the form

t

{A, [cos (^
-

kl) =F cos (g^ + kl)]

-A
2 [sin (g/

-
kl) =F sin (^+ kl)]}, (216)

where the upper sign in (214) and (216) corresponds to e = at
I = 0, the lower sign to i = at I = 0, as is obvious from the

equations.
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Substituting

A, = A cos Y and A
2
= A sin

7- (217)

into (214) and (216) gives the equations of the free oscillation,

thus :

and

e =

i = A~ W
'{COS (qt-kl-f) =F cos (qt + kl -

-~^{cos (qt-kl-f) T cos (qt + kl -
7-)}.

(218)

With the upper sign, or for e = at I = 0, this gives

i = 2 A~^ cos kl cos (qt r)

and

e=
-2AV/|e-"

sin kl sin (qt f) .

(219)

With the lower sign, or for i = at I = 0, this gives

i = 2 As~ w'
sin &/ sin ($

-
7-)

and

e = 2 A\f -e- "* cosklcos (qt
-

(220)

33. While the free oscillation of a circuit is a standing wave,
the general standing wave, as represented by equations (139) and

(140), with four integration constants A v A,', A v A
2',

is not

necessarily a free oscillation.

To be a free oscillation, the power ei, that is, either e or i, must
be zero at two points of the circuit, the ends of the circuit or sec-

tion of circuit which oscillates.

At a point ^ of the circuit at which e = 0, the coefficients of

cos qt and sin qt in equation (139) must vanish. This gives

(A, + A
2)

cos kl, + (A/
-
A/) sin ^ = Ol

and
-

(A,
-

A,) sin kl, + (A/ + A/) cos^ = 0.
J

Eliminating sin kl, and cos kl, from these two equations gives

(A?
- ,4

2

2

) + (A* - A*) =
0,

or (222)
A* + A-A> +A,
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as the condition which must be fulfilled between the integration

constants.

The value Z
x
then follows from (221) as

4 ' 4_ 4
-t
"

2

At a point Z
2
of the circuit at which i = the coefficients of

cos qt and sin qt in equation (140) must vanish. This gives, in

the same manner as above,

(A* - A?) + (A* - A") =
0,

that is, the same conditions as (221), and gives for 1
2
the value

tfln

+ 4 A f I A t
A.

2 Aj -t- /1
2

From (223) and (224) it follows that

I*
= ~ lAr J (225)

That is, the angles kl
l
and kl

2
differ by one quarter-wave

length or an odd multiple thereof.

Herefrom it then follows that if the integration constants of a

standing wave fulfill the conditions

A
t

2 + A/
2 = A* + A* = B\ (226)

the circuit of this wave contains points lv distant from each other

by a half-wave length, at which e = 0, and points Z
2 ,
distant from

each other by a half-wave length, at which i = 0, and the points
1
2
are intermediate between the points lv that is, distant there-

from by one quarter-wave length. Any section of the circuit,

from a point ^ or 1
2
to any other point Z

t
or 1

2 ,
then is a freely

oscillating circuit.

In the free oscillation of the circuit the circuit is bounded by
one point Z

t
and one point 1

2 ;
that is, the e.m.f. is zero at one end

and the current zero at the other end of the circuit, case (1) or (2)

of equation (197), and the circuit is then a quarter-wave or an
odd multiple thereof, or the circuit is bounded by two points Z

t

or by two points Z
2 ,
and then the voltage is zero at both ends of

the circuit in the former case, number (3) in equation (197), or
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the current is zero at both ends of the circuit in the latter case,

number (4) in equation (197), and in either case the circuit is one

half-wave or a multiple thereof.

Choosing one of the points ^ or 1
2
as starting point of the dis-

tance, that is, substituting I ^ or I 1
2 respectively, instead

of
/, in the equations (139) and (140), with some transformation

these equations convert into the equations (219) or (220). In

other words, the equation (226), as relation between the integra-
tion constants of a standing wave, is the necessary and sufficient

condition that this standing wave be a free oscillation.

34. A single term of a free oscillation of a circuit, with the dis-

tance counted from one end of the circuit, that is, one point of

zero power, thus is represented by equations (219) or (220),

respectively.

Reversing the sign of Z, that is, counting the distance in the

opposite direction, and substituting B = 2 A y
-

,
these

equations assume a more convenient form, thus:

for

and

and for

and

e = at I = 0,

e = Be'"* sin kl sin (qt
-

y)

s~ ut
cos kl cos (qt y),

j

i = at I = 0,

e = Be~"* cos kl cos
(gtf y)

(227)

(228)
:~^sin &Zsin (qt

-
y).

Introducing again the velocity of propagation as unit distance,

J /T-7 1

(229)

from equation (66) and (229) we get:

kl = X Vq2 + m2
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hence, if m is small compared with q }

Id = qX, (230)

and substituting (229) in (230) gives

k =
<rq

= qVLC, (231)

and from (210) and (211), for a quarter-wave oscillation, we have

(2 n + 1) TT

and

for a half-wave oscillation,

21,

(2n +

2LVW '

(232)

L>VW

(233)

Denoting the length of the circuit in a quarter-wave oscillation

by

and the length -of the circuit in a half-wave oscillation by

(234)

(235)

the wave length of the fundamental or lowest frequency of

oscillation is

>1 = 4 ^ = 2 J
a ; (236)

or the length of the fundamental wave, with the velocity of prop-
agation as distance unit, in a quarter-wave oscillation is

(237)and in a half-wave oscillation is

*,
= 2 Z VW.
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Substituting (237) into (232) and (233) for a quarter-wave

oscillation gives

and
2 7T

q
= (2 n + 1) ,

(238)

and for a half-wave oscillation gives

and

Writing now

27T
(239)

(240)

that is, representing a complete cycle of the fundamental fre-

quency, or complete wave in time, by 6 = 2 TT, and a complete
wave in space by t = 2

TT,
from (239) and (240) we have

kl

(241)

where n may be any integer number with a half-wave oscillation,

but only an odd number with a quarter-wave oscillation.

35. Substituting (241) into (227) and (228) gives as the

complete expression of a free oscillation the following equation

A. Quarter-wave oscillation.

(a) e = at I = (or r = 0)

e =

and

n sin (2n+ I)T sin [(2 n + 1)
-

r

(242)
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(b) i = at Z = (or T = 0)

00

= ~ ut Bn cos (2 n + 1) T cos [(2 n + 1)
-

rn]

and

i =
\/T

~ Ut

i>#n sin (2 n + 1) r sin [(2 n + 1)6- Tn].
T

*- o

5. Half-wave oscillation.

(a) e = at I = (or r = 0)

n J5n sin TIT sin (nd yn)

(243)

and
/(7

i = V T s
~ ut S n -^n cos nr cos (r&0

-
/-J;T L o

(6) t = at I = (or r = 0)

(244;

and

e = s~ n cos nr cos

t i/
5 -v *:; ,* ^* ==

V 7 e 2,
n #r> sm nr sin (w0

-
jj,* L Y

where

(245)

k

o

2^VW (240)

^ = 4 Z v L(7 in a quarter-wave
t (237)= 2 Z v LC in a half-wave oscillation, J

and MV~ w< = e
~

.-^T. (246)

^ is the wave length, and thus the frequency, of the funda-

mental wave, with the velocity of propagation as distance unit.

It is interesting to note that the time decrement of the free

oscillation, e~ ut
,
is the same for all frequencies and wave lengths,
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and that the relative intensity of the different harmonic compo-
nents of the oscillation, and thereby the wave shape of the

oscillation, remains unchanged during the decay of the oscillation.

This result, analogous to that found in the chapter on traveling

waves, obviously is based on the assumption that the constants

of the circuit do not change with the frequency. This, however,
is not perfectly true. At very high frequencies r increases, due

to unequal current distribution in the conductor, as discussed

in Section III, L slightly decreases hereby, g increases by the

energy losses resulting from brush discharges and from electro-

static radiation, etc., so that, in general, at very high frequency

an increase of y and ^, and therewith of u, may be expected;
Li C

that is, very high harmonics would die out with greater rapidity,

which would result in smoothing out the wave shape with increas-

ing decay, making it more nearly approach the fundamental and

its lower harmonics.

36. The equations of a free oscillation of a circuit, as quarter-

wave or half-wave, (242) to (245), still contain the pairs of inte-

gration constants Bn and yn , representing, respectively, the

intensity and the phase of the nth harmonic.

These pairs of integration constants are determined by the ter-

minal conditions of time
;
that is, they depend upon the amount

and the distribution of the stored energy of the circuit at the

starting moment of the oscillation, or, in other words, on the

distribution of current and e.m.f. at t = 0.

The e.m.f., e
,
and the current, i

,
at time t = 0, can be ex-

pressed as an infinite series of trigonometric functions of the

distance Z; that is, the distance angle T, or a Fourier series of such

character as also to fulfill the terminal conditions in space, as dis-

cussed above, that is, e = 0, and i = 0, respectively, at the

ends of the circuit.

The voltage and current distribution in the circuit, at the

starting moment of the oscillation, t = 0, or, 6 = 0, can be

represented by the Fourier series, thus:

cos nr "*" ttn sm

and

i =
JTn (bn cos nr + 6n

'
sin nr),

o

(247)
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where

an
1 f27r

-
/ e n cos nrdr = 2 avg [e cos TIT-JO ,

71 ^0

sin WT dr = 2 avg [e sin nr]
2

*,

(248)

and analogously for b.

The expression avg [Fgj denotes the average value of the

function F between the limits at
and a

2
.

Since these integrals extend over the complete wave 2 TT, the

wave thus has to be extended by utilizing the terminal conditions

regarding T, but the wave is symmetrical with regard to I =

and with regard to I = 1
,
and this feature in the case of a quarter-

wave oscillation excludes the existence of odd values of n in

equations (247) and (248).

37. Substituting in equations (242) to (245),

t = 0,

'

=
0,

and then equating with (247), gives, from (242),

00
oo

e
Q 2^n

Bn sin (2 n + 1) T sin fn
= V n [an cos (2 n + I)T

o o

f a/ sin (2 n + 1) r]

and

i = \ j Vn 5n cos (2n + 1) T cos
?-n

= V [6n cos (2 n + 1) T

^o o

+ &/ sin (2 n + 1) r];

hence,

<*n
=

0, 6n
' =

0,

m
Bn sin

?-n
= an

' and v -5n cos
j-n
= bn.*

iv
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Equation (242) gives the constants

an =
0; bn

' =
0,

493

(249)

tan^n =-~ y^;
71

in the same manner equation (243) gives the constants

a>n
=

0; bn =
0,

Bn

(250)

Equation (244) gives the same values as (242), and (245) the

same values as (243).

Examples.

38. As first example may be considered the discharge of a

transmission line : A circuit of length Z is charged to a uniform

voltage E, while there is no current in the circuit. This circuit

then is grounded at one end, while the other end remains

insulated.

Let the distance be counted from the grounded end, and the

time from the moment of grounding, and introducing the deno-

tations (235).

The terminal conditions then are:

(a) T = e =
0,

T = 0.

(6) at 6 =

e = for T = 0; e = E for T^ 0,

i = for T 7^ 0; i = indefinite for r = 0.
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The distribution of e.m.f., ew and current, i
,
in the circuit, at

the starting moment 6 =
0, can be expressed by the Fourier

series (247), and from (248),

On' = 2 avg [E sin (2 TT+ l)r]
=

71 TT L) TC

and

and from (249),

hence,

and tan - =

and substituting (252) into (242),

4 E sin (2 n + 1) r cos (2 n +

and

I = cos(2n+
n L

From (240) it follows that

i

d = 2x gives the period,

and the frequency,

i
= 4

(251)

(252)

(253)

and T = 2 re ^ves the wave length,

of the fundamental wave, or oscillation of lowest frequency and

greatest wave length.
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Choosing the same line constants as in paragraph 16, namely :

Z = 120 miles; r = 0.41 ohm per mile; L = 1.95X10"3

henry

per mile; g
= .25 X 10~

6 mho per mile, and C = 0.0162 X 10~
6

farad per mile, we have

u =
113,

and
147

-- 0485 '

and the fundamental frequency of oscillation is

fl
= 371 cycles per second.

If now the e.m.f. to which the line is charged is

E = 40,000 volts,

substituting these values in equations (253) gives

e = 51,000
-- 0485<J

{sin r cos 6 + J sin 3 r cos 3 6

sin 5 T cos 5 6 + ...}, in volts

{
cos T sin + j-

cos 3 T sin 3

+ | cos 5 r sin 5 + ...}, in amp.

The maximum value of e is

e = E = 40,000 volts,

and the maximum current of i is

i = I = 115.5 amp.

Since

^\ sin (2 n 1) a cos (2 n 1) b

?* ^^
7T

= 0,if b--<a<b,
2

and

_, _,

(251)

(255)
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applying (255) to (254) we have at any point T of the line, at the

time 6 given by

< 6 < T: e = Ez""*", i = 0.

T < < T + -
: e = 0; i = h~~^.

T + 7T<d<T + .

T + < <T + 2 TT; e = Je~ M
'; i = 0, etc.

At any moment of time 6 one part of the line has voltage

e = Ee~'u*' and zero current, and the other part of the line has

current i = h~ ut and zero voltage, and the clividing line between

the two sections of the line is at T = 6
,
hence moves

z

along the line at the rate T = 6.

39. As second example may.be considered the discharge of a

live line into a dead line: A circuit of length lv charged to

a uniform voltage E, but carrying no current, is connected to a

circuit of the same constants, but of length 1
2J
and having neither

voltage nor current, otherwise both circuits are insulated.

Let the total length of the circuit be denoted by

and let the time be counted from the moment where the circuits

Z
t
and 1

2
are connected together, the distance from the beginning

of the live circuit lv whose other end is connected to the dead

circuit ly
Introduce again the denotations (240), and represent the total

length of the line 2 I = ^ + 1
2 by r = TT, then write

*.

As the voltage is E from r = to r = rv and from T = r
t
to

T =
TT, the mean value of voltage, or the voltage which will be left

on the line after the transient phenomenon has passed, is
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and the terminal conditions of voltage and current are

0-0
e = E - e for < r < T

I;

e = - e for r
x < T < TT,

i = 0.

Proceeding then in the same manner as in paragraph 34, in the

present case the equations (245) and (248) apply, and

2 ( fTl Cn
}

an = - { J (E e ) cos nddd J e
Q
cos nO dd }

_ 2 E sin nr
l

hence,

and

2 E ( r
l ut *, sin nr . )

e = } + e Xn 1 cos TIT cos no v
,

5

(256)

^
_ % / ~ ut

L ^ n

Choosing the same line constants as in paragraph 35, and

assuming

Z
x
= 120 miles and 1

2
= 80 miles,

we have

I = 100 miles and r
t
= 0.6 TT.

Let E = 40,000 volts, ut = 0.0404 0, and the fundamental

frequency of oscillation, fv = 445 cycles per second
;
then

e = 24,000+ 25,500 e"
'0404 '

{
sin 108 cos T cos 6+ i sin 216

'

cos 2 r cos 2 + J sin 348 cos 3 T cos 3 +
}
volts

and

i = 73.5 e-o-^'jsm 108 sin T sin + J sin 216 sin 2 r

sin 2 0+ J sin 348 sin 3 T sin 3 +
} amp.

(257)



CHAPTER VI.

TRANSITION POINTS AND THE COMPLEX CIRCUIT.

40. The discussions of standing waves and free oscillations in

Chapters III and V, and traveling waves in Chapter IV, apply

directly only to simple circuits, that is, circuits comprising a con-

ductor of uniformly distributed constants r, L, g, and C. Indus-

trial electric circuits, however, never are simple circuits, but are

always complex circuits comprising sections of different con-

stants, generator, transformer, transmission lines, and load,

and a simple circuit is realized only by a section of a circuit, as

a transmission line or a high-potential transformer coil, which is

cut off at both ends from the rest of the circuit, either by open-

circuiting, i = 0, or by short-circuiting, e = 0. Approximately,
the simple circuit is realized by a section of a complex circuit,

connecting to other sections of 'very different constants, so that

the ends of the circuit can, approximately, be considered as

reflection points. For instance, an underground cable of low L
and high (7, when connected to a large reactive coil of high L
and low C, may, approximately, at its ends be considered as

having reflection points i = 0. A high-potential transformer

coil of high L and low C, when connected to a cable of low L
and high (7, may at its ends be considered as having reflection

points e = 0. In other words, in the first case the reactive coil

may be considered as stopping the current, in the latter case the

cable considered as short-circuiting the transformer. This

approximation, however, while frequently relied upon in engi-

neering practice, and often permissible for the circuit section in

which the transient phenomenon originates, is not permissible in

considering the effect of the phenomenon on the adjacent sections

of the circuit. For instance, in the first case above mentioned,
a transient phenomenon in an underground cable connected to

a high reactance, the current and e.m.f. in the cable may approx-
imately be represented by considering the reactive coil as a

reflection point, that is, an open circuit, since only a small current

498
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exists in the reactive coil. Such a small current in the reactive

coil may, however, give a very high and destructive voltage in the

reactive coil, due to its high L, and thus in the circuit beyond the

reactive coil. In the investigation of the effect of a transient

phenomenon originating in one section of a complex circuit, as

an oscillating arc on an underground cable, on other sections

of the circuit, as the generating station, even a very great

change of circuit constants cannot be considered as a reflection

point. Since this is the most important case met in industrial

practice, as disturbances originating in one section of a complex
circuit usually develop their destructive effects in other sections

of the circuit, the investigation of the general problem of a com-

plex circuit comprising sections of different constants thus

becomes necessary. This requires the investigation of the

changes occurring in an electric wave, and its equations, when

passing over a transition point from one circuit or section of a

circuit into another section of different constants.

41. The equations (50) to (57), while most general, are less

convenient for studying the transition of a wave from one circuit

to another circuit of different constants, and since in industrial

high-voltage circuits, at least for waves originating in the circuits,

q and k are very large compared with s and h, as discussed in

paragraph 16, s and h may be neglected compared with q and k.

This gives, as discussed in paragraph 9,

h =
o-s,

k =
<rq,

G,

r /_ r /___i/C
l

C
2

' V ~

(258)

where

er = \/LC, (259)

and substituting

A = <rZ, (260)

that is,

W =
qX '

\ (261)
W =

8l, I
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gives

i = e""* (t
"*'r~^

[(?! cos q (X t) + C/ sin q (A t)]

cos q (A + + C
2

'
sin ^ (^ -f- 0]

[C8
cos g (J

- + C
8

7
sin g (A

-
0]

_ - ,. , j)

[^ cos q y + t) + cj sin q(l + t)]} (262)

and

ry / ) /\ i /^Y /
* / 5 ^\1

_ 72
cos 5 (^ + + ^2

7

? (^ + 0]

+ e
+s (A -<}

[Ca
cos g (/I

- + C
s

7
sin g (^

-
0]

[C4 cos q (A + + C/ sin g (^ + t)]}.

Substituting now

C> + (7/
2

C
2

2

C
3

2

(263)

(264)

f = tan
,

TT
= tan r,U

3

C '

-+ = tan ^

(265)

gives

(266)
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and

(267)

42. In these equations (266) and (267) ^ is the distance

coordinate, using the velocity of propagation as unit distance,

and at a transition point from one circuit to another, where the

circuit constants change, the velocity of propagation also changes,
and thus, for the same time constants s and q, h and k also change,
and therewith kl, but transformed to the distance variable I, qX
remains the same; that is, by introducing the distance variable X,

the distance can be measured throughout the entire circuit, and

across transition points, at which the circuit constants change,
and the same equations (266) and (267) apply throughout the

entire circuit. In this case, however, in any section of the circuit,

(268)

where L
t
and C

t are the inductance and the capacity, respect-

ively, of the section i of the circuit, per unit length, for instance,

per mile, in a line, per turn in a transformer coil, etc.

In a complex circuit the time variable t is the same throughout
the entire circuit, or, in other words, the frequency of oscillation,

as represented by q, and the rate of decay of the oscillation, as

represented by the exponential function of time, must be the

same throughout the entire circuit. Not so, however, with the

distance variable Z; the wave length of the oscillation and its rate

of building up or down along the circuit need not be the same,
and usually are not, but in some sections of the circuit the wave

length may be far shorter, as in coiled circuits as transformers,
due to the higher L, or in cables, due to the higher C. To extend

the same equations over the entire complex circuit, it therefore

becomes necessary to substitute for the distance variable / another

distance variable X of such character that the wave length has the

same value in all sections of the complex circuit. As the wave

length of the section i is = > this is done by changing the

unit distance by the factor cr = VLf!^ The distance unit of
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the new distance variable ^ then is the distance traversed by the

wave in unit time, hence different in linear measure for the

different sections of the circuit, but offers the advantage of

carrying the distance measurements across the entire circuit

and over transition points by the same distance variable A.

This means that the length ^ of any section i of the complex
circuit is expressed by the length ^ =

a-^.

The introduction of the distance variable A also has the advan-

tage that in the determination of the constants r, L, g, C of the

different sections of the circuit different linear distance measure-

ments I may be used. For instance, in the transmission line,

the constants may be given per mile, that is, the mile used as

unit length, while in the high-potential coil of a transformer the

turn, or the coil, or the total transformer may be used as unit of

length I, so that the actual linear length of conductor may be

unknown. For instance, choosing the total length of conductor

in the high-potential transformer as unit length, then the length

of the transformer winding in the velocity measure ^ is >1
=

\/L C
,
where L total inductance, C = total capacity of

transformer.

The introduction of the distance variable ^ thus permits the

representation in the circuit of apparatus as reactive coils, etc.,

in which one of the constants is very small compared with the

other and therefore is usually neglected and the apparatus
considered as "massed inductance,'

7

etc., and allows the investi-

gation of the effect of the distributed capacity of reactive coils

and similar matters, by representing the reactive coil as a finite

(frequently quite long) section ^ of the circuit.

43. Let y*
,
Av >^

2 ,
... kn be a number of transition points at

which the circuit constants change and the quantities may be

denoted by index 1 in the section from ^ to Xv by index 2 in the

section from X
l
to X

2 ,
etc.

At X = ^ it then must be i
1
= i

2 ,
e

1

= e
2 ;

thus substituting
A = ^ into equations (266) and (267) gives

cos q 2(^+t-d2
.

(269)
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Herefrom it follows that

,
=

<?,; (270)

that is, the frequency must be the same throughout the entire

circuit as is obvious, and

u
2

s
2
= w

x
s
t

. (271)

Since u
2 ^ uv only one of the two waves can exist, the A B,

or the C D, and since these two wavee differ from each other

only by the sign of s, by assuming now that s may be either

positive or negative we can select one of the two waves, for

instance, the second wave, but use A, B, a, /? as denotations of

the integration constants.

44. The equations (266) and (267) now assume the form

=

and

or

and

cos [q (/I
-

t)
-

a]

cos [q (^
- -

a]

cos [q (A t) a]

(272)

-t)- a]

" 8 *
cos [q

(273)

or, using equations (262) and (263) instead of (266) and (267),

the corresponding equations are of the form

~ ut
\

and

e = V-

[A cos q (X
-

t) + B sin q (/I
-

t)]

[C cos q(l + t) + D sin q (I + 0]}

[A cos? (A
-

+ > sin

(274)
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or

e~
s^
[C cos q (A + + D sin q (X +'01}

and

j~f

e =\/--(u+s {s
+s
*[Acosq()(

- t)+Bsinq(l-t)]

(275)

where s may be positive or negative.

From equation (269) it then follows that

u
l + s

l
= u

2 + s
2
= M

3 + s
3
=

. . .
= un + sn = w

, (276)

where w
17
w

2 ,
w

3 , etc., wn are the time constants of the individual

sections of the complex circuit, ^ ( 7 + ^ )>
an<^ u

o
may ^e callet^

2 \L LI

the resultant time decrement of the complex circuit.

45. Equation (269), by canceling equal terms on both sides,

then assumes the form

A
1
e
+'>*' cos [q (^- t)

-
J
- 5^ '* cos [g (^, + - &] =

A
2
^
+S2^ cos b (A

-
21
- ^

2
^" S2Al cos [q (^ + t)

-
ft],

and, resolved for cos <# and sin qt, this gives the identities

coB (q^
- aj - 5^-'^ cos (^ x

-
ft)

cos (g/l,
-

2)
- 5

2

-
S2;i cos (q^

-
ft),

sin (q^
- a

t ) + J?^-'
1^ sin (g^

-
/? x )

=

sin fe^ 1

-
a) + 5

2

~
S2yl1 sin (^,

-
ft). (277)

These identities resulted by equating i
t
= i

2
from equation

(272). In the same manner, by equating e
l
and e

2
from equation

(272) there result the two further identities

[Af**** cos (q^
-

a,) + B
lS
-^ cos (ql,

-
ft)}

cos (g^
-

2) + J5,e-^ cos (q^
-

ft) },
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sn
I,

- a
2)
- Bf^ sin fort,

- &) }. (278)

Equations (277) and (278) determine the constants of any
section of the circuit, A 2 ,

B
2 ,

a
2 , /?2 ,

from the constants of the

next section of the circuit, A v Bv a v /?r

Let

cos

sin

-
a) == A';

-
a) = A";

-
/?)

= B'
,

-v&\ a

Then

2c
2
A

2

' =
(c, + c

2 ) A/ + (c,
- c

2)fi/,

2c.fi/ -
(c l

+ c,)B l

' + (c 1 -cJA t',

2c
2
A

2

" =
(c l

+ c,)A 1

"
-(c, -c,)B,',

and since by (279) :

A'2 + etc.,

substituting herein (281),

4 c
2

2A
2

2 +2S! '1 ' =
(c, + c

2 )
2 A

t

2
e
+2"^ + (c,- c

2)

(279)

(280)

(281)

(282)

(283)
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and

tan
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c
t
-c

a B! 2 j sinCg^-ft)
JL i *

/ \

sm

1 i

Cl~ C
2 i -2^ COS (g^- ft)

*"l r ~r~ ^ ^ \

tan

sn

cos -

tan (g^- ft).

(284)

In the same manner, equating, for ^ = ^, in equations (275)

the current t\, corresponding to the section from >1 to Xv with

the current iv corresponding to the section from ^ to \v and also

the e.m.fs., e
2
= ev gives the constants in equations (275) and

(274), of one section, ^ to Xv expressed by those of the next

adjoining section, X to A
it

as

where

cos 2

sin 2

cos 2

sin 2

sin 2 g^) }

cos 2 g/lj }

sin 2 g/lj }

cos 2 g/ij }

(285)

_-
(286)

(287)
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46. The general equation of current and e.m.f. in a complex
circuit thus also consists of two terms, the main wave A in

equations (272), (273), and its reflected wave B.

The factor e
-(+^ = e-^ jn equations (273) and (275) repre-

sents the time decrement, or the decrease of the intensity of

the wave with the time, and as such is the same throughout the

entire circuit. In an isolated section, of time constant u, the

time decrement, from Chapters III and V, is, however, e~ ut
;
that

is, with the decrement e~ ut the wave dies out in the isolated sec-

tion at the rate at which its stored energy is dissipated by the

power lost in resistance and conductance. In a section of the

circuit connected to other sections the time decrement e~ U(* does

not correspond to the power dissipation in the section; that is,

the wave does not die out in each section at the rate as given by
the power consumed in this section, or, in other words, power
transfer occurs from section to section during the oscillation of

a complex circuit.

If s is negative, u is less than u, and the wave dies out in that

particular section at a lesser rate than corresponds to the power
consumed in the section, or, in other words, in this section of the

complex circuit more power is consumed by r and g than is sup-

plied by the decrease of the' stored energy, and this section,

therefore, must receive energy from adjoining sections. Inversely,

if s is positive, u > u, the wave dies out more rapidly in that

section than its stored energy is consumed by r and g] that is,

a part of the stored energy of this section is transferred to the

adjoining sections, and only a part occasionally a very small

part dissipated in the section, and this section acts as a store

of energy for supplying the other sections of the system.
The constant s of the circuit, therefore, may be called energy

transfer constant, and positive s means transfer of energy from the

section to the rest of the circuit, and negative s means reception
of energy from other sections. This explains the vanishing of s

in a standing wave of a uniform circuit, due to the absence of

energy transfer, and the presence of s in the equations of the

traveling wave, due to the transfer of energy along the circuit,

and in the general equations of alternating-current circuits.

It immediately follows herefrom that in a complex circuit

some of the s of the different sections must always be positive,

some negative.
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In addition to the time decrement s~ (u + s)i = ~uot the waves in

equations (273) and (275) also contain the distance decrement
+sl

for ^e mam wave, e~ s*
for the reflected wave. Negative s

therefore means a decrease of the main wave for increasing X, or

in the direction of propagation, and a decrease of the reflected

wave for decreasing X, that is, also in the direction of propagation;

while positive s means increase of main wave as well as reflected

wave in the direction of propagation along the circuit. In

other words, if s is negative and the section consumes more

power than is given by its stored energy, and therefore receives

power from the adjoining sections, the electric wave decreases

in the direction of its propagation, or builds down, showing
the gradual dissipation of the power received from adjoining

sections. Inversely, if s is positive and the section thus supplies

power to adjoining sections, the electric wave increases in this

section in the direction of its propagation, or builds up.

In other words, in a complex circuit, in sections of low

power dissipation, the wave increases and transfers power
to sections of high power dissipation, in which the wave

decreases.

This can still better be seen- from equations (272) and (274).

Here the time decrement e~ ut
represents the dissipation of stored

energy by the power consumed in the section by r and g. The

time distance decrement, e
+s ^-'> for the main wave,

~ s ^ +<) for

the reflected wave, represents the decrement of the wave for con-

stant U -
t) or (A + t) respectively; that is, shows the change

of wave intensity during its propagation. Thus for instance,

following a wave crest, the wave decreases for negative s and

increases for positive s, in addition to the uniform decrease by
the time constant e~ ut '

} or, in other words, for positive s the

wave gathers intensity during its progress, for negative s it loses

intensity in addition to the loss of intensity by the time con-

stant of this particular section of the circuit.

47. Introducing the resultant time decrement U
Q
of the com-

plex circuit, the equations of any section, (273) and (275), can

also be expressed by the resultant time decrement of the entire

complex circuit, uw and the energy transfer constant of the

individual section; thus

s = u -
u, (288)
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and

e

(289)

or

- ~ sA
[C cos q (J + + D sin q (A + 0]}

,j
(290)

e = -

The constants A, B, C, D are the integration constants, and

are such as given by the terminal conditions of the problem, as

by the distribution of current and e.m.f. in the circuit at the

starting moment, for t = 0, or at one particular point, as A = 0.

48. The constants u and q depend upon the circuit conditions.

If the circuit is closed upon itself as usually is the case with an

electrical transmission or distribution circuit and A is the total

length of the closed circuit, the equations must give for A = A
the same values as for ^ = 0, and therefore q must be a complete

cycle or a multiple thereof, 2 nn; that is,

? = 2-- (291)

and the least value of q }
or the fundamental frequency of oscilla-

tion, is

4.
- v (292)
A

and

q
= nq . (293)

If the complex circuit is open at both ends, or grounded at both

ends, and thus performs a half-wave oscillation, and A t
= total

length of the circuit,

q,
= and q

= nq , (294)
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and if the circuit is open at one end, grounded at the other end,
thus performing a quarter-wave oscillation, and A2

= total length
of circuit, it is

3 = (2ra
"

1) 5' (295)

while, if the length of the complex circuit is very great compared
with the frequency of the oscillation, q may have any value;
that is, if the wave length of the oscillation is very short com-

pared with the length of the circuit, any wave length, and there-

fore any frequency, may occur. With uniform circuits, as trans-

mission lines, this latter case, that is, the response of the line to

any frequency, can occur only in the range of very high fre-

quencies. Even in a transmission line of several hundred miles
7

length the lowest frequency of free oscillation is fairly high, and

frequencies which are so high compared with the fundamental

frequency of the. circuit that, considered, as higher harmonics

thereof, they overlap (as discussed in the above), must be

extremely high of the magnitude of million cycles. In a com-

plex circuit, however, the fundamental frequency may be very
much lower, and below machine frequencies, as the velocity of

propagation
- - may be quite low in some sections of the cir-

VLC
curt, as in the high-potential coils of large transformers, and the

presence of iron increases the inconstancy of L for high frequen-

cies, so that in such a complex circuit, even at fairly moderate

frequencies, of the magnitude of 10,000 cycles, the circuit may
respond to any frequency.

49. The constant U
Q
is also determined by the circuit constants.

Upon u depends the energy transfer constant of the circuit sec-

tion, and therewith the rate of building up in a section of low

power consumption, or building down in a section of high power
consumption. In a closed circuit, however, passing around the
entire circuit, the same values of e and i must again be reached,
and the rates of building up and building down of the wave in the
different sections must therefore be such as to neutralize each
other when carried through the entire circuit; that is, 'the total

building up through the entire complex circuit must be zero.

This gives an equation from which un is determined.
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In a complex circuit having n sections of different constants

and therefore n transition points, at the distances

A (296)

where An+i
=

^i + A, and A = the total length of the circuit,

the equations of i and e of any section i are given by equations

(290) containing the constants A& B
i}
C

i}
D

t
-.

The constants A, B, C, D of any section are determined by
the constants of the preceding section by equations (285) to

(287). The constants of the second section thus are determined

by those of the first section, the constants of the third section

by those of the second section, and thereby, by substituting for

the latter, by the constants of the first section, and in this manner,

by successive substitutions, the constants of any section i can be

expressed by the constants of the first section as linear func-

tions thereof.

Ultimately thereby the constants of section (n + 1) are

expressed as linear functions of the constants of the first section :

A n+l - afA
l + af'Bt + a'"^ +

Bn+l
= VA, + b"B, + b'"C t +

Cn+l cfA, + cf'B, + c"'C l +

Dn+1
=

(297)

where a', a", of"
',
a""

', b', b", etc., are functions of st and ^.

The (n + l)st section, however, is again the first section, and

it is thereby, by equations (290) and (296),

Bn+l
=

(298)

and substituting (298) into (297) gives four symmetrical linear

equations in 'A
lt
B ly C lt

D
lt

from which these four constants

can be eliminated, as n symmetrical linear equations with
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n variables are dependent equations, containing an identity,

thus:

>t + (&//
_ e -<^) B, + amC, + ft""/^ r 0;

c^i + c^i + (c
r// - + 'SlA

) C t + c""/), =
0;

d'Ai + d"Bi + d'"Ci + (d""
- e

+s
^) D, =

0,

and herefrom

(299)

d'" (d""
- +s'

A
)

= 0. (300)

Substituting in this determinant equation for st
- the values

from (276)

Si
= u -

Ui (301)

gives an exponential equation in uw thus :

F (u Qy
u

if.^Ci) =
0, (302)

from which the value U
Q ,

or the resultant time decrement of the

circuit, is determined.

In general, this equation (302) can be solved only by approxi-

mation, except in special cases.



CHAPTER VII.

POWER AND ENERGY OF THE COMPLEX CIRCUIT.

50. The free oscillation of a complex circuit differs from that

of the uniform circuit in that the former contains exponential
functions of the distance A which represent the shifting or

transfer of power between the sections of the circuit.

Thus the general expression of one term or frequency of current

and voltage in a section of a complex circuit is given by equations

(290);

- ~ SA
[C cos q (A + + D sin q (J + t)]}

and
/7

+SA
[A cos q (A t) -fB sin q (A )]

where q
= nq , q

=
,
A = total length of circuit, expressed

in the distance coordinate A = o-l
t

I being the distance coordinate

of the circuit section in any measure, as miles, turns, etc., and

r, L, g, C the circuit constants per unit length of I,

a- = VIC,

u =
-(-= + ) = time constant of circuit section,2 YL/ C '

U
Q
= u + s = resultant time decrement of complex circuit,

s = u - u = energy transfer constant of circuit section.

613



514 TRANSIENT PHENOMENA

The instantaneous value of power at any point X of the circuit

at any time t is

p = ei

[A cos q(X-t) + B sin q (X
-

t)]
2

[C cos q (X + + D sin g (J + O]
2

}

+ [e
+2sA

(A
2 - 2

) cos 2q (X-t) -e~
2s*

(C
2 -D2

) cos 2 g (l + t)]

+ 2 [ABe
+ * s*sm 2 g (X-t) -CD e

- 2 '*
sin 2-g (A + *)]} ; (303)

that is, the instantaneous value of power consists of a constant

term and terms of double frequency in (X
-

t) and (A + t) or

in distance A and time t.

Integrating (303) over a complete period in time gives the

effective or mean value of power at any point X as

p = r*M
{

fi
+ 2

(A
2 + J5

2

)
- s- 2s

(C
2 + >

2

) } ; (304)
.2 * C

that is, the effective power at any point of the circuit is the

difference between the effective power of the main wave and

that of the reflected wave, and also, the instantaneous power
at any time and any point of the circuit is the difference between

the instantaneous power of the main wave and that of the

reflected wave.

The effective power at any point of the circuit gradually
decreases in any section with the resultant time decrement of

the total circuit,
-2uot

f
and varies gradually or exponentially

with the distance A, the one wave increasing, the other decreasing,

so that at one point of the circuit or circuit section the effective

power is zero
;
which point of the circuit is a power node, or point

across which no energy flows. It is given by

e
+2sA

(A
2 + B2

)
= e~ 2s *

(C
2 + D2

),

or

A2 + B2

C2 + D2
(305)
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The difference of power between two points of the circuit, ^
and A 2 ,

that is, the power which is supplied or received (depend-

ing upon its sign) by a section X' = A2 X
l of the circuit, is given

by equation (304) as

- (~
2S^ - - 28

^) (C
2 + D2

)}. (306)

If P is > 0, this represents the power which is supplied by the

section X to the adjoining section of the circuit; if P < 0, this is

the power received by the section from the rest of the complex
circuit.

If sX2 and s^ are small quantities, the exponential function

can be resolved into an infinite series, and all but the first term

dropped, as of higher orders, or negligible, and this gives the

approximate value

= 2 s (; 2
_ jg = 2 SA'; (307)

hence,

^o -
#y%'-** [A* + B2 + O* + D2

} ; (308)

that is, the power transferred from a section of length A' to the

rest of the circuit, or received by the section from the rest of the

circuit, is proportional to the length of the section, A', to its trans-

fer constant, s, and to the sum of the power of main wave and

reflected wave.

51. The energy stored by the inductance L of a circuit element

dXj that is, in the magnetic field of the circuit, is

'LV
dw l =-^~A

where U = inductance per unit length of circuit expressed by
the distance coordinate A.

Since L = the inductance per unit length of circuit, of distance

coordinate Z, and X =
<?l,

u L
Li =

VLC



516 TRANSIENT PHENOMENA

hence,

j 4 / "2 J 5 /QAH\
dw^ = ~ V 7>

^ (ouyj

In general, the circuit constants r, L, 0, C, per unit length,

I = 1 give, per unit length, X = 1, the circuit constants

L. . . 5
j

or

Vic
'

VLC c VLC

Substituting (290) in equation (309) gives

(310)

+ e~ 2sA
[C cos q (X + + D sin (4 + Of

- 2 [A cos q (A
- + B sin (4

-
0]

[C cos q (A + + D sin (J + 01}

+ [e
+2

*(A
a - 2

) cos 2 g (A -0
+ fi-^C8 - D2

) cos 2 ^ (4 + 0]

+ 2 [Ae +2sA sin 2 (4
- + CDe~ 2sX

sin 2 g (4 + 0]

- 2 [(AC - BD) cos 2 04 + (AD + BC) sin 2 g/l]

- 2 [(AC + D) cos 2qt+ (AD - BC) sin 2qt]}.

(311)

Integrating over a complete period in time gives the effective

energy stored in the magnetic field at point A as

aw j j. i*u/j 7

7T == ^ I TT~ Ctfr

(A

- 2 [(AC - BD) cos 2qX+ (AD + BC) sin 2 ql]}, (312)
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and integrating over one complete period of distance A, or one

complete wave length, this gives

(313)

The energy stored by the inductance L, or in the magnetic
field of the conductor, thus consists of a constant part,

dl

a part which is a function of (X t) and (X + t),

(A
2 - B2

) cos 2 q (X
-

t)

(C
2 - D2

) cos 2 q (X + 0]

n2g(/l -

n2g(yl + 01} , (315)

a part which is a function of the distance X only but not of time t,

cos 2 ^ + (AD + BC) sin 2^
(316)

and a part which is a function of time only but not of the

distance ^,

1

2

(317)

and the total energy of the electromagnetic field of circuit element

dX at time t is

Aw'rr
1 /7

"~ = V
~ 2

""'{ (4(7+BI)) cos 2 9' + (^0-JSC) sin 2 qt\,

dX d^ dl dX dX

52. The energy stored in the electrostatic field of the conductor

or by the capacity C is given by

CV
dw2

=
dl\
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or, substituting (310),

and substituting in (319) the value of e from equation (290)

gives the same expression as (311) except that the sign of the

last two terms is reversed
;
that is, the total energy of the electro-

static field of circuit element dX at time t is

dw2 dwn dw' dw" dw'"

~df
=
~df

+
~dT

+
~dA~

+
~dT' (32 ^

and adding (318) and (320) gives the total stored energy of the

electric field of the conductor,

dw dw, dw2 cydw^
dw'

and integrated over a complete period of time this gives

2^=

dw" dw"'
The last two terms, and

,
thus represent the energy

which is transferred, or pulsates, between the electromagnetic

and the electrostatic field of the circuit; and the term repre-

sents the alternating (or rather oscillating) component of stored

energy.
53. The energy stored by the electric field in a circuit section

^, between A, and A2 ,
is given by integrating

- - between A 2 and A I}
U/A

as

-
(
-2J, _

^-2.^ (C
a + >

2) I

.

(323)

or, substituting herein the approximation (307),

1 ... II

2
W = 2 2 2 2

(324)
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Differentiating (324) with respect to t gives the power sup-

plied by the electric field of the circuit as

P = _ = uj> e-^ {A
2 + B* + C* + D2

}, (325)
at

or, more generally,

p = 2.

y
-2^

{ (
+2S2 _ -f2) (A

a + 2)

_
(e
-ad, _ e -a^) (C

8 + D2

)}. (326)

54. The power dissipated in the resistance r'dX = - r of a
VLC

conductor element dX is

dp?
= Mdl (327)

2r

hence, substituting herein equation (318) gives the power con-

sumed by resistance of the circuit element dX as

^ 2r
(flfojo

du/ _<W dul" )

d^
"
L \ d\

""

d/l

"~

d^
'"

^ Y

and the power consumed by the conductance g'dX
= ,_ rf^

of a conductor element dX is

dp"=g'<?dX (329)

-**
hence the power consumed by conductance of circuit element dX

is

^PL = ^1
\
^o , &;[_ , du/^ du/^

)

and the total power dissipated in the circuit element dX is



520 TRANSIENT PHENOMENA

where, as before,

h (332)

and integrating over a complete period

ffi._4J^44 (333)
dX dX dX

the power dissipated in the circuit thus contains a constant term,

4 u -
,
and a term which is a periodic function of the distance X,

(JLA

4 m -

,
of double frequency.

dX

Averaged over a half-wave of the circuit, or a multiple thereof,

the second term disappears, and

dX dX
'

or, substituting (314),

, (334)

thus the power dissipated in a section A' = X 2 X
l of the circuit

is, by integrating between limits X\ and X21

p "=
^~ \T!*~*** {Z S * G

+ (fi

-2^ _ 2s^ ( (72 + ^2) |^ (335)

or, approximately,

2^
{A

2 + B* + (T
2 + D2

}. (336)

55. Writing, therefore,

#2 = (A
2 + B2 + C2 + >

2

) / , (337)



POWER AND ENERGY OF THE COMPLEX CIRCUIT 521

the energy stored in the electric field of the circuit section of length X is

^; (338)
2

the power supply to the conductor by the decay of the electric field of

the circuit is

P = V'#2 ~ 2w
'; (339)

the power dissipated in the circuit section X' by its effective resist-

ance and conductance is

P = ul'IPe-* 1

*, (340)

and the power transferred from the circuit section A' to the rest of

the circuit is

P =
sl'IPe-*"*', (341)

u
that is. = ratio of power dissipated in the section to that

u

supplied to the section by its stored energy of the electric field.

o

= fraction of power supplied to the section by its electric
u

field, which is transferred from the section to adjoining sections

(or, if s < 0, received from them).
o

- = ratio of power transferred to other sections to power

dissipated in the section.

u -f- u -s- s thus is the ratio of the power supplied to the sec-

tion by its electric field, dissipated in the section, and transferred

from the section to adjoining sections.

These relations obviously are approximate only, and applicable

to the case where the wave length is short.

56. Equation (306), of the power transferred from a section

to the adjoining section, can be arranged in the form

(A
2 + B2

)
- e- 2

(C
2 + D2

)]

(A
2 + B2

)
- - 2sA '

((T
2 + Z)

2

)]} ; (342)

that is, it consists of two parts, thus :

P
o

> - li/5f-** {
e
+ 2^

(A
2 + 2

)
- e-

2 '*
(C

2 + D2

)}, (343)
2

"
C
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which is the power transferred from the section to the next fol-

lowing section, and

p* = + y
e-**

{
e+a., (A

2 + ff)_ e
-*

(C
2 + >

2) } ? (344)

which is the power received from the preceding section, and the

difference between the two values,

^o -
P,'

~ p f

> (345)

therefore, is the excess of the power given out over that received,

or the resultant power supplied by the section to the rest of the

circuit.

An approximate idea of the value of the power transfer con-

stant can now be derived by assuming H2
as constant throughout

the entire complex circuit, which is approximately the case.

In this case, as the total power transferred between the sections

must be zero, thus:

hence, substituting (341),

2X-V
=

> (346)

and, since
O fit

, ^ /)/* ^o #

w A =
5)1^'; (347)

that is, the resultant circuit decrement multiplied by the total

length of the circuit equals the sum of the time constants of the

sections multiplied with the respective length of the section, or, if

?!, ?2 ?i
= length of the circuit section, as fraction of the

total circuit length A,

KO
=

Dfct*t
, (348)

Whether this expression (348) is more general is still unknown.
57. As an example assume a transmission line having the

following constants per wire :r l
= 52;L X

= 0.21 jg^
= 40 X 10~

6

,

and C l
= 1.6 X 1Q-6

.

Further assume this line to be connected to step-up and step-
down transformers having the following constants per trans-
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former high-potential circuit: r2
=

5, L 2
=

3; g2
= 0.1 X 10

6

,

and C 2
= 0.3 X 10~

6

;
then

A/ = a
1
= vT/7i = 0.58 X 10~

3

,
J 2

' = *
2
= 0.95 X 10~3

,

u, = 136, u 2
-= 1.

The circuit consists of four sections of the lengths

V = 0-58 X 10~3

,
A 2
'= 0.95 X 10~3

, V =0.58X 10~3

, V= 0.95X 10~3

;

hence a total length

A - 3.06 X 10-3

,

and the resultant circuit decrement is

M =
^A 51.6 + 0.59 - 52.2;

hence, s
l
= - 83.8 and s

2
= + 51.2.

If now the current in the circuit is i = 100 amperes, the e.m.f.

e = 40,000 volts, the total stored energy is

W = ;
2

(L, + L
2) + e* (C, + C

2)

= 32,000 + 3000 = 35,000 joules,

and from equation (338) then follows, for t = 0,

2 - 35,000,

= 22.8X10',

which gives u =
52.2,

IP = 22.8 X 106
,

W = 35,000.
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Thus, of the total power produced in the transformers by the

decrease of their electric field, only 22 kw. are dissipated as heat

in the transformer, and 1110 kw. transferred to the transmission

line. While the power available by the decrease of the electric

field of the transmission line is only 690 kw., the line dissipates

energy at the rate of 1800 kw., receiving 1110 kw. from the

transformers.



CHAPTER VIII.

REFLECTION AND REFRACTION AT TRANSITION POINT.

58. The general equation of the current and voltage in a sec

tion of a complex circuit, from equations (290), is

- - sA
[C cos q 0* + + D sin q (A + 0]}

e = C
-

Uot
{e

+8*
[A cos g (J

- + # sin g (A
- 0]

where

A = <rl = distance variable with velocity as unit;

(290)

C'

u = u + s = resultant time decrement;

1 / f \

u =
-\j- + 7^)

= time constant, and
2 \/v C/

s = energy transfer constant of section.

At a transition point ^ between section 1 and section 2 the

constants change by

(285)
B

2
=~ s^ l

{a 1
e +8l

*1B
l
+ b

1
e~'1*1

(C l
sin2 q^ l

D
l
cos 2$is)}

(A t
cos 2 <^ 1+# 1

sin 2 g^J }

(A 1
sin 2 gAj 5j cos 2 5^) } ,

where

Oi
= ?i_L^ and 6j

= ^i_Z_^ .
(286)

625
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Choosing now the transition point as zero point of X, so that

>l< is section 1, A>0 is section 2, equations (285) assume the

form A
2
=

B
2
=

C
2
=

D
2
=

b
l
Cv

(349)

From equations (349) and (286) it follows that

c
2 (A*

- C
2

2

)
= c

t (A*
-

C,
2

)
1

and (350)

c
2 (B

2 - D 2
)
=

c, (B
2 - D 2

). J

If now a wave in section 1, A B, travels towards transition

point A = 0, at this point a part is reflected, giving rise to the

reflected wave C D in section 1, while a part is transmitted and

appears as main wave A B in section 2. The wave C D in sec-

tion 2 thus would not exist, as it would be a wave coming towards

A = from section 2, so not a part of the wave coming from

section 1. In other words, we can consider the circuit as com-

prising two waves moving in opposite direction :

(1) A main wave AJ$V giving a transmitted wave A
2
B

2
and

reflected wave CJ)r
(2) A main wave C

2
D

2 , giving a transmitted wave C/D/ and

reflected wave A
2
B

2
.

The waves moving towards the transition point are single main

waves, AJ$i and C
2
D

2 ,
and the waves moving away from the

transition point are combinations of waves reflected in the sec-

tion and waves transmitted from the other section.

69. Considering first the main wave moving towards rising A:

in this C
2
= = D

2 , hence, from (349),

and (351)

and herefrom

and

C
2
~ C

1 A

-,+c,

(352)
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which substituted in (349) gives

and

2c,
-, , 1

.

a, a, Cl + c

Then for the main wave in section 1,

= -v +,A ^ cog _ +B sin

(353)

and

sing (A- t)}.

(354)

When reaching a transition point A = 0, the wave resolves into

the reflected wave, turned back on section 1, thus:

and (355)

The transmitted wave, which by passing over the transition

point enters section 2, is given by

and

e = c

(356)

D
The reflection angle, tan (t/)

= ~
,
is supplementary to the

B
impact angle, tan (ij

= + -~, and transmission angle, tan (i'2)

Reversing the sign of ^ in the equation (355) of the reflected

wave, that is, counting the distance for the reflected wave also in

the direction of its propagation, and so in opposite direction as
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in the main wave and the transmitted wave, equations (355)

become

C
2+ C

1

(357)

and then

or

c,

2 ' "1 V
1J

(358)

(1) In a single electric wave, current and e.m.f. are in phase
with each other. Phase displacements between current and

e.m.f. thus can occur only in resultant waves, that is, in the com-

bination of the main and the reflected wave, and then are a

function of the distance ^, as the two waves travel in opposite

direction.

(2) When reaching a transition point, a wave splits up into a

reflected wave and a transmitted wave, the former returning in

opposite direction over the same section, the latter entering the

adjoining section of the circuit.

(3) Reflection and transmission occur without change of the

phase angle ;
that is, the phase of the current and of the voltage

in the reflected wave and in the transmitted wave, at the transi-

tion point, is the same as the phase of the main wave or incoming
wave. Reflection and transmission with a change of phase angle
can occur only by the combination of two waves traveling in

opposite direction over a circuit; that is, in a resultant wave,
but not in a single wave.

(4) The sum of the transmitted and the reflected current

equals the main current, when considering these currents in their

respective direction of propagation.
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The sum of the voltage of the main wave and the reflected

wave equals the voltage of the transmitted wave.

The sum of the voltage of the reflected wave and the voltage
of the transmitted wave reduced to the first section by the ratio

g
of voltage transformation

, equals the voltage of the main wave.
c

\ c

(5) Therefore a voltage transformation by the factor
c

i

IT Q
= V rT 7- occurs at the transition point; that is, the trans-

T C
2
L

i

mitted wave of voltage equals the difference between main wave

and reflected wave multiplied by the transformation ratio :

c
c

i

e
2
=

(e^ e"). As result thereof," in passing from one section
C
2

of a circuit to another section, the voltage of the wave may
^ .

decrease or may increase. If > 1, that is, when passing from
c

i

a section of low inductance and high capacity into a section of

high inductance and low capacity, as from a transmission line

into a transformer or a reactive coil, the voltage of the wave is

s*

increased; if < 1, that is, when passing from a section of high
c

i

inductance and low capacity into a section of low inductance

and high capacity, as from a transformer to a transmission line,

the voltage of the wave is decreased.

This explains the frequent increase to destructive voltages,

when entering a station from the transmission line or cable, of an

impulse or a wave which in the transmission line is of relatively

harmless voltage.

The ratio of the transmitted to the reflected wave is given by

2 VLjC, 2

and

2c
2

L
2 C,

(359)
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60. Example:
Transmission line

L
t
= 1.95 X 1(T3

C
t
= 0.0162 X 10-'

c
t
= 346

^7,
= 0.56

i*

And in the opposite direction

Transformer

0.4 X 10-6

1580

.-?
" 2 '56

J-
-0.56.

The ratio -^becomes a maximum, = GO, for -1

=77, but in
e

i
c

i ^2
this case e/'

=
0; that is, no reflection occurs, and the reflected

wave equals zero, the transmitted wave equals the incoming
wave.

hence, becomes a maximum for c
2
=

0, or c^
= oo and

then =
2; in which case e

2
= 0.

2c,

c
2 +

hence, becomes a maximum for c
t

(360)

0, or c
2
= oo and then =

2;

in which case i
2
= 0. From the above it is seen that the maxi-

mum value to which the voltage can build up at a single transi-

tion point is twice the voltage of the incoming wave, and this

occurs at the open end of the circuit, or, approximately, at a

point where the ratio of inductance to capacity very greatly
increases.

hence, becomes a maximum, and equal to 1, for c
l
=

0,

or c
2
= oo.

< = C
2
~

Cj

i
c
2 + c

t

has the same value as the current-ratio.

(361)
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61. Consider now a wave traversing the circuit in opposite

direction; that is, C
2
D

2
is the main wave, A ^B 2

the reflected

wave, C
1
D

1
the transmitted wave, and A

l
= = B^ In equa-

tion (349) this gives

C
2
=

and

hence,

ft = -ft

and

+
l "I

B, Ac,--^!),..J ~ & - I _ ^ D.

(362)

that is, the same relations as expressed by equations (352) and

(353) for the wave traveling in opposite direction.

The equations of the components of the wave then are :

Main wave:

2
cos q

{C2
cos q

sn q

D
2
sin

}

} ;

(363)

Transmitted wave:

sn

sn
^(364)

Reflected wave:

i
2
= if-*+**

{(72 cosg (>l /) D
2 sin^ (^ 0}

-

(365)
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or, in the direction of propagation, that is, reversing the sign of ^ :

1

If-**$-'* {C. cos0 (/+0+^2 sing (/+ }
I (.* i \ r , J. \ /

)

C.

cos sn q

(366)

62. The compound wave, that is, the resultant of waves pass-

ing the transition point in both directions, then is

(367)

4 & & & s j

In the neighborhood of the transition point, that is, for values

^ which are sufficiently small, so that e
+8* and e~ s* can be dropped

as being approximately equal to 1, by substituting equations

(354) to (356) and (363) to (366) into (367) we have

= ~
Uot cos - + B

l
sin q(l-t)}'

'*

{A l
cos q (A + -

#1 sin q(l + t)}
'1 + C

2

'-^
{C2 cosq (J + 0+ D

a
sin g(^+ 0}];

-
Wo'

[{A^osg (j
_ Q + J5

t sing (^
-

}

'

2 + c
x

'l
" C

2

t
t p

~
\
C

2
cos q (A t) D

2
sin q (A t) }

'1 ~l~ C
2

2,c, -
{
A

l
cos ^ (^ t) + -Bj sin q (^ } ] 5

(368)
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lot

[{C2
cos q (X + t) + D

2
sin q (* + )}

cos -t - sn

In these equations the first term is the main wave, the second
term its reflected wave, and the third term the wave transmitted
from the adjoining section over the transition point.

Expanding and rearranging equations (368) gives

2 e
~ w '

*!
=

-f

1
[{(c^!

- c
aCJ cos ^ + C

2 (#1- 2)
sin ^} cosqt

-
{ (c l

B
l + c

2
D

2)
cos qX

- c
2 (A l+ C

2)
sin qt} sin qt];

2c<

2 s~ Uot
(369)

c
i (B i

-
#2) sin ql }

cos qt
2

-
{ (c l

B
l + c

2
D

2)
cos ql-c l (A l + C

2)
sin g;} sin qt];

cos

e
2
"

--

-

^Lt ci^i+ ki;cos2x+^c 1
tf

1+ e
2
LJ

2;sin2>ijccC
l + C

2

-
{
c

l (B l

-D
2)
cos qX

-
(c A l

- c
2
C

2)
sin qX \

si]

63. This gives the distance phase angle of the waves:

tan i o = C
2 {i ~

^2) cs $ + (A l
+ C

2)
sin qt}

^

(c^Ai
- c

2
C

2)
cos qt (c l

B
l
+ c

2
D

2)
sin qt

'

(c 1
A

l

- c
2
C

2)
cos qt

-
(c l
B

l + c
2
D

2) siuqt
'

no

(370)

tan i
2

hence,

tan^ c
2

T L
/2
'u

l

(c.B. + c,D 2) cos qt + (c.^ -
i

fo n p
V 1 "* V 1 1

tan e, (/^/^\ /T- T-

c
2 {(A l + C

2) cos^ -

c
2
(?

2)
sin ^

o _ (cJS^ + c
2
D

2)
cos $ -f (CjAj c

2
(7

2)
I tl

'
I t/O

"
if ^ ~A ^ ^ , -^v ^ ^

cos

sin 9<

- D
2)

sin (
}

(371)

(372)
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hence,

tan62 _ C /LA.

that is, at a transition point the distance phase angle of the wave

changes so that the ratio of the tangent functions of the phase

angle is constant, and the ratio of the tangent functions of the

phase angle of the voltages is proportional, of the currents

inversely proportional to the circuit constants c = y

In other words, the transition of an electric wave or impulse
from one section of a circuit to another takes place at a constant

ratio of the tangent functions of the phase angle, which ratio is a

constant of the circuit sections between which the transition

occurs.

This law is analogous to the law of refraction in optics, except
that in the electric wave it is the ratio of the tangent functions,

while in optics it is the ratio of the sine functions, which is con-

stant and a characteristic of the media between which the tran-

sition occurs.

Therefore this law may be called the law of refraction of a wave

at the boundary between two circuits, or at a transition point.

The law of refraction of an electric wave at the boundary
between two media, that is, at a transition point between two
circuit sections, is given by the constancy of the ratio of the

tangent functions of the incoming and refracted wave.



CHAPTER IX.

INDUCTIVE DISCHARGES.

64. The discharge of an inductance into a transmission line

may be considered as an illustration of the phenomena in a

complex circuit comprising sections of very different constants;

that is, a combination of a circuit section of high inductance and

small resistance and negligible capacity and conductance, as a

generating station, with a circuit of distributed capacity and

inductance, as a transmission line. The extreme case of such a

discharge would occur if a short circuit at the busbars of a gen-

erating station opens while the transmission line is connected

to the generating station.

Let r = the total resistance and L = the total inductance of

the inductive section of the circuit; also let g = 0, C= 0, and

L =
inductance, <7 =

capacity, r =
resistance, g = conduc-

tance of the total transmission line connected to the inductive

circuit.

In either of the two circuit sections the total length of the

section is chosen as unit distance, and, translated to the velocity

measure, the length of the transmission line is

and the length of the inductive circuit is

~T =
0; (374)

that is, the inductive section of zero capacity has zero length
when denoted by the velocity measure X, or is a "massed induc-

tance."

It follows herefrom that throughout the entire inductive

section X = 0, and current i
1
therefore is constant throughout this

section.

Choosing now the transition point between the inductance and

the transmission line as zero of distance, A = 0, the inductance

635
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is massed at point ^ = 0, and the transmission line extends from

X = to X = V
Denoting the constants of the inductive section by index 1,

those of the transmission line by index 2, the equations of the two

circuit sections, from (290), are

Cj) cos qt -(5 1 + 7)
1)sin^},l

-
A-DJsing*}; j

(376)

i
2
= -

Uot

{s
+sA

[A 2
cos q (X

-
t) + B

2
sin g (^

-
t)]

s~ s*
[C9 cos q (A + t) + Z), sin (^ + )"]}.L / Z\ / ^ 1\ x -!)^

e
2
= c

a
e-rt

{[
+^

[A 2
cos g (^

- + J5
2
sin q (I

-
t)]

+
~ sA

[C a
cos g (^ + + D

2
sin q (Jl + 0]},

and the constants of the second section are related on those of

the first section by the equations (285) :

A - n A 4- 7) n C1

Aj -
!/!.! "I' Oil/ti ^

2

D D ^\ T\ T\D n ==
U/fJJ-i t/

1
iy

i
. -^'5

where

,=VC
-'

(286)

+
(349)

and

(287)

65. In the inductive section having the constants L and r,

that is, at the point A = of the circuit, current i
l
and voltage

e
t
must be related by the equation of inductance,

(377)

Substituting (375) in (377), and expanding, gives

c
i { (A i + CJ cos qt

-
(B^

- DJ sin qt]
=

(r + w L) { (A t

-
C,) cos qt

-
(B^ + D,) sin qt}

+ ^L { (A l

- CJ sin ^ + (B 1 + DJ cos qt},
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and herefrom the identities

Cl (A, + C,)
=

(r + ^) (^i
~

Ci) + ^ (*i + *>i),

Cl (B,-D,) =
(r + u L) (5, + ig - gL (A x

-
CJ.

Writing

and

gives

c
x (A A + CJ =

(r + w ^) M + 3LN
]

and
|

c, (5,
- D

x)
=

(r + w L) A^ - gLM, J

which substituted in (349) gives

A
2
=

{ (c + r + w ) ^ + ^^ }
^ - (M + p^V),

J5
2
= 1

{ (c + r + u L) N - qLM} ~*:(N - pM),
z c

537

(378)

(379)

(380)

-

Z C

-
(c
- r -

-f (c
- r- m L)

- M),

JV),

(381)

where in the second expression terms of secondary order have

been dropped.

P
qL

Then substituting in (375) gives the equations of massed

inductance :

i
t

= e
~M

{
M cos qt

- N sin qt }

(382)

If at t = 0, j

=
0, that is, if at the beginning of the transient

discharge the voltage at the inductance is zero, as for instance

the inductance had been short-circuited, then, substituting in
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(382), and denoting by i the current at the moment t = 0, or at

the moment of start, we have

t = 0, i\= %,! = 0; hence,

M = i

(383)

and
r T -}- u Li

h = V~"u*

1 cos <# + -r
2" sm ^

gL

+ (r + V')
2

,

(384)

In this case

i
A
*=2'

2 + (r + u QL)
2 + c (r

\ -
\J s f /

(385)

+ (r + ^ L)
2 - c (r +

66. In the case that the transmission line is open at its end,
at point A = ^

,

>l
= 1

?-*-?'
i.

hence, this substituted in (376), expanded and rearranged as
function of cos qt and sin qt, gives the two identities

+sA
(A, cos g; o+ B

2
sin ga o )

fi
-^

(C2
cos q* +D 2

sin ^,
and

c+fc//
(386)

Squared and added these two equations (386) give

(A? + 2

)
. ,- 2 ^o C 2 + D 2> (387)
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Divided by each other and expanded equations (386) give

(Af, - B
2DJ sin 2 gA

- (A 2
D

2 + B
2
C

2)
cos 2 qX Q

. (388)

Substituting (381) into equations (387) and (388) gives
2

^{(qL)
2 + (c+ r+ u L)

2

}=e-*
s

**{(qL)
2

+(c-r-uQL)
2

} (389)

{ (qL)
2 + (r + u,L)

2 - c
2

\
sin 2 qX Q

= 2 cgL cos 2 ^ . (390)

Since 2 s^ is a small quantity, in equation (389) we can sub-

stitute

hence, rearranging (389) and substituting

s = u u

gives

c (r + u L) - (u
- u ) ;

{ (qL)
2

+(r + u L)
2 + c

2

}

= 0. (391)

Since (r + u L) is a small quantity compared with c
2

(qL)
2

,
it

can be neglected, and equations (390) and (391) assume the form

{ (qL)
2 - c

2

}
sin 2 gA

= 2 cqL cos 2 q* Q (392)

c (r + u,L)
-

(u
- U

Q)
*

{ (qL)
2 + c

2

}

=
0, (393)

and, transformed, equation (392) assumes the form

2cqL
tan 2

or

or

(qL)
2 - c

2 '

q
= - - tan ql , (394)

q = + -f cot g^ ,L

hence tan 2 q^ is positive if #L > c, as is usually the case.

Expanded for u
, equation (393) assumes the form

+cL
or

(
L+ r

-)V wl

u cL + ^
{ (qL)

2 + c
2

}

s = -
(u

- u ).

(395)
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From equations (394) q is calculated by approximation, and

then from (395) u and s.

As seen, in all these expressions of q, uw s, etc., the integration

constants M and N eliminate; that is, the frequency, time atten-

uation constant, power transfer, etc., depend on the circuit con-

stants only, but not on the distribution of current and voltage

in the circuit.

67. At any point X of the circuit, the voltage is given by equa-

tion (376), which, transposed, gives

e = c- w
o<{

+^
[(4 2

cos q% + %
2
sin qX) cos qt

+ (A 2
sin qX B

2
cos qX) sin qt]

+ e~ sA
[(C2

cos qX + D
2
sin qX) cos qt

(C2
sin qX D

2
cos qX) sin qt] } ,

or approximately,

e = cs~
u <*

{[(A 2 + C
2)

cos qX + (B2 + D
2)

sin qX] cos qt

+ [(A 2
- C

2)
sin g^

-
(B2

- D
2) cos ^] sin qt}.

Similarly to equation (381),

A
2 + C

2
=

pN',

A
2
-C

2
= M;

B* + D
2
= N;

(396)

where

then

T)

cos ^A+c sin gd) (JV cos ^ + M sin ^),

(cos ^ _ sin cos g
- N sin $);

^1

(N cos qt + M sin $),

(M cos qt-N sin g).

(397)

(398)
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If

hence,

e,
= for t = 0,

N =
0;

h = V ~^ cos $>

'2
"

, <1
L n

(cos qX
- - sin g/) cos

c

c sn

Writing

(M
2

the effective values of the quantities are

I
2
=

E
2
= I e~ u<*

(qL cos q\ + c sin gA). .

Herefrom it follows that

/
2
= for A = ^ by the equation

cos aA n
- q- sin gA

=
0,

or

while

gives

that is,

q - z
co

- -

^L cos ql + c sin gA
=

0;

(399)

(400)

(401)

(402)

(403)

at
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At the open end of the line ^ =

tuting (402) into (401) is

the voltage E 2 by substi-

cos
If
+

At the grounded end of the line X =

stituting (403) into (401), is

7 ~ U(jt,V

(404)

the current 7
2 , by sub-

(405)

An inductance discharging into the transmission line thus

gives an oscillatory distribution of voltage and current along the

line.

68. As example may be considered the three-phase high-

potential circuit, comprising a generating system of r = 2 ohms
and L = 0.5 henry per phase and connected to a long-distance

transmission line of r = 0.4 ohm, L = 0.002 henry, gQ
= 0.2 X

10~6
mho, (7 = 0.016 X 10~6 farad per mile of conductor or

phase, and of 1
Q
= 80 miles length.

c =\/- = c
2 = 125,300;

<T
O
= VL C - 5.66 X 10-6

;

^o
=

Zo"o
= 0.453 X 10-3

;

l/rn

L
= 7 8

'

and herefrom, substituting in equations (394) and (395),

q
= - 708 tan (0.0259 q) (zero voltage)
= + 708 cot (0.0259 q) (zero current),

u 0.618 (f 10-
6 + 1.28

H =
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By equation (401) the effective values of the first six har-

monics are given as

(1) Quarter-wave: 100.35.

q,
= 3875;

u =
95.8;

7 =
if-"* (cos qX

- 5.48 sin qX)',

E == 1939 v'^ (cos qX + 0.182 sin qX).

(2) Half-wave: 185.64.

q2
= 7168;

U
Q
=

102.8;

7 = if-"* (cos qX
- 10.14 sin qX);

E = 3585 i
Q
r^ (cos ^ + 0.098 sin qX).

(3) Three-quarter wave: 273.83.

qz
--

10,572;

u =
104.5;

7 = v~^ (cos g^
- 14.90 sin qX);

E = 5287 i e- Uot
(cos ^>i + 0.067 sin qX).

(4) Full wave: 362.89.

?4 14,010;

w =
105.1;

7 = v~^ (cos qX
- 19.8 sin qX);

E = 7005 v~^ (cos qX + 0.050 sin qX).

(5) Five-quarter wave: 452.32.

<?5 17,463;

w =
105.5;

7 = v' 7* '

(cos qX
- 24.65 sin gfl;

E = 8732 1>-^ (cos qX + 0.040 sin gj).
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(6) Three-half wave: 541.94.

& =
20,920;

U
Q
=

105.6;

7 =
if-** (cos qX- 29.6 sin gd);

jE/ = 10,460 v~Wo<
(cos g>l + 0.033 sin qX).
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VELOCITY FUNCTIONS OF THE ELECTRIC FIELD

IN the study of the propagation of the electric field through

space (wireless telegraphy and telephony), a number of new

functions appear (Section III, Chapter VIII).

. By the following equations these functions are defined, and

related to the
"
Sine-Integral" Si x, the

"
Cosine-Integral" Ci x,

and the
"
Exponential Integral," Ei x, of which tables were

calculated by J. W. L. Glaisher (Philosophical Transactions of

the Royal Society of London, 1870, Vol. 160) :

col x = du

u* u5 u7 du

l_v? }_u?
l

3\3
+55~7

|2 [4 |6=
cosxj--^+p-p+-...

j

fl |3 |S |7
H-sinz --^ +^-^5

I

71 /^ sin u

2"Jo
du.

545
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sil x= I du

APPENDIX

rx
cos u

ll x=
~>1~

(

Jx

C*\i-- --- 1-^

1 u2 1 u* 1

IX4

l |3 |5 |7

-^+i=-^
a;
2 a^ x6 x8

l 2 |4 |5

--%4^-tyX X3 X5 X7

fx^du;
where

r= 0.5772156 . . .

/<? t* / _

Explx= -dt*=
(Jx u J_ x u

u du

u

1 M2
1 M3 1 /

where

l 1 2J

r-x^
J ~v^

du
'

x4 x5

q is given by : expl q
= as : q

= 0.37249680 .
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Expl ( f
-u

du
U

du

/. 1 u2
1 u3 1 u4=

/logtt u +
2 T^- Q 1^+4 17- +

/ ^
|^S

O |O T:
|T:

1 x2 1 x3 1 14

du.

Tables of these four functions, reduced from the Glaisher

tables, are given in the following for 6 decimals, and their

first part plotted in Fig. 103.

These functions have the following properties:

col =
^

sil -= + oc

expl
= + oo

expl q
=

col =

sil oo =0

expl ( + oo
)
= - oo

expl ( co)=0

col x has maxima at the even, sil x at the odd quadrants,
and these maxima are alternately positive and negative; that is,

col ^2s =max.

sil o(2s l)=max.

=
integer number.
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.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

BIG. 103.
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For large values of s, the numerical values of these maxima

approach the values:

for: s>40, the approximation is correct to the 6th decimal.

For small values of x, the approximations hold :

si\x = log- -0.5772156,

For large values of x, it is :

2 sin x 2 sin x

2 cos x 2 cos- < col x <

where n\ and n2 are the two successive quadrants, between

which x lies. For instance :

sin x = sin 1.5^"= 0.707,

cos x = cos 1.5^-= 0.707,
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and 0.01725 <sil x< 0.01805,

-0.01805 < col x< -0.01725.

It is, approximately, for large values of x, if :

col x = co\ ucos v,

sil x= sil pr-ucos v,

where

and u is the nearest even quadrant to x, for col x, and the nearest

odd quadrant to x, for sil x, and col
^
u or sil

^
u are given by

Table VII.

For instance :

vi= -0.785 v2 = +0.785

col 26 = -0.0245 sil 25 = 0.0254
_ l

'cos (-0.785) =0.707 cos 0.785 = 0.707

col 40 = -0.01730 sil 40 - 0.01795

From the series expressions of these functions follows:

col ( x) =n col x

sil ( x) =sil x

expl (jx)
= sil x + y col x- /
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. 7T

expl ( jx)=su x] col + 7 o

col (jx) =
|iexpl x-expl ( x)\ +/TT

1
sil (jx) =^-{expl x + expl ( x)}
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TABLE I

Col x and sil x from 0.00 to 1.00

X
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TABLE I Continued

553

X
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TABLE II

Expl x and expl (-x) from 0.00 to 1.00

X
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TABLE II Continued

555

X
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TABLE III

Col x and sil x from 0.0 to 5.0

X
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TABLE IV

expl x and expl ( x) from 0.0 to 5.0

X
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TABLE V

Col x, sil x, expl x, and expl ( x) from to 15

X
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TABLE VI

col x and sil x

X
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TABLE VII

7T' 7t

MAXIMA AND MINIMA OF col x and sil x

X
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Acceleration constant of traveling wave 466

Air blast, action in oscillating-current generator 75

pressure required in oscillating-current generator 75

Alternating-current circuit and transient term of fundamental frequency 473

distribution in conductor 369

transformer operating oscillating-current generator 87

transmission, equations of traveling wave 477

wave as traveling wave without attenuation 472

Alternator control by periodic transient term of field excitation 223

Aluminum cell rectifier 222

effective penetration of alternating current 378

Amplitude of traveling wave 465

of wave 438

Arc, and spark 249

continuity at cathode 249

lamp, control by inductive shunt to operating mechanism 131

machine 230

as rectifier 221

current control 220

properties 249

rectification 249

rectifiers 222

resistivities 9

starting 249

Arcing ground on lines and cables, as periodic transient phenomenon . . 23

Armature reactance, reaction and short-circuit current of alternator 199

Attenuation of alternating magnetic flux in iron 361

constants 434

of traveling wave, and loading 462

Booster, response to change of load 158

Brush arc machine 221, 230, 242, 248

Building up of direct-current generator 32

of overcompounded direct-current machine 49

Cable, high-potential underground, standing waves 452

opening under load 112, 118

short-circuit oscillation 113, 118

starting 111,117
transient terms and oscillations 98, 102

561
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PAGE

Capacity, also see Condenser.

and inductance, equations 48

and velocity of propagation 400, 401

distributed series 348

energy of complex circuit 517

in mutual inductive circuit 161

of electric circuit 112

range in electric circuit 13

representing electrostatic component of electric field 5

shunting direct-current circuit 133

specific, numerical values 11

suppressing pulsations in direct-current circuit 134

Cast iron, effective penetration of alternating current 378

Cathode of arcs 249

Charge of condenser 51

of magnetic field 27

Circuit, complex, see Complex circuit.

control by periodic transient phenomena 220, 223

electric, speed of propagation in 422

Closed circuit transmission line 306

Col al 392, 394

Commutation and rectification 222

as transient phenomenon 40

Commutator, rectifying 229

Complex circuit, of waves 498

power and energy 513

resultant time decrement 504

traveling wave 468

Compound wave at transition point 532

Condenser, also see Capacity.

charge, inductive 18

noninductive 18

circuit of negligible inductance 55

equations 48

oscillation, effective value of voltage, current and power. ... 70

efficiency, decrement and output 72

frequency 62

general equations 60

size and rating 69

starting on alternating voltage 94

voltage in inductive circuit 49

Conductance, shunted, effective 12

Conductors at high frequency 403

Constant-current mercury arc rectifier 250

rectification 221, 230

potential-constant-current transformation by quarter-wave line 308

mercury arc rectifier 251

rectification 221, 230
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PAGE

Control of circuits by periodic transient phenomena 220

Conversion by quarter-wave circuits 313

Copper, effective penetration of alternating currents 378

ribbon, effective high frequency impedance 408

wire, effective high frequency impedance 408

Cosine wave, traveling 434

Critical case of condenser charge and discharge 53

resistance of condenser oscillation 66

start of condenser on alternating voltage 95

Current density, in alternating-current conductor 372

effective, of oscillating-current generator 81

transformation at transition point of wave 529

Damping of condenser oscillation 66, 72

Decay of continuous current in inductive circuit 17

of wave of condenser oscillation 72

Decrement of condenser oscillation 65, 72

resultant time, of complex circuit 504

Destructive voltages in cables and transmission lines 120

Dielectric constant, numerical values 11

strength, numerical values 11

Dielectric also see Electrostatic.

Direct-current generator, self-excitation 32

railway, transient effective resistance 379

Disappearance of transient term in alternating-current circuit 43

Discharge of condenser , . 51

Geissler tube 9

inductive, as wave 535

into transmission line '. 542

of motor field 29

Disruptive strength, numerical values 11

voltage in opening direct-current circuit 26

Distance attenuation constant 434

in velocity measure . 435

Distortionless circuit 441, 447

Distributed series capacity 348

Distribution of alternating-current density in conductor 369

of alternating magnetic flux in iron 355

Divided circuit, general equations 122

continuous-current circuit without capacity 126

Dynamostatic machine 220

Effective current of condenser discharge 70

voltage and power of oscillating-current generator. . . 81

layer of alternating-current conductor 377

penetration of alternating current in conductor 376, 378

power of complex circuit 514

of cpndenser oscillation '70

reactance of armature reaction 200
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PAGE

Effective resistance of alternating-current distribution in conductor, 370, 376

voltage of condenser oscillation 70

Efficiency of condenser oscillation 72

Electric circuit, general equations 428

field, velocity of propagation 387

Electrolytes, resistivities 8

Electrolytic rectifiers 222

Electromagnetic, also see Magnetic.

axis of electric field 4

Electrostatic, also see Dielectric.

axis of electric field 4

energy of complex circuit 517

field, energy of 7

Elimination of pulsations in direct-current circuit by capacity 134

Energy of complex circuit 513

condenser discharge 70

electric field 4, 7

transfer in complex circuit 507, 521

constant of complex circuit 507

Equations, general, of electric circuit 428

Even harmonics of half-wave oscillations 483

Excitation of motor field 27

Exponential curve of starting current 45

Field current at armature short-circuit . t 202

electric, of conductor 3

energy of 4

velocity of propagation 387

excitation, transient term 27

exciting current, rise and decay 17

regulation of generator by periodic transient terms 223

resultant polyphase , 192

Flat conductor, unequal current distribution 371

Floating system of control 220
Fluctuations of current in divided circuit 129

voltage of direct-current generator with load 149

Free oscillations 432, 478

and standing waves 482

Frequency, absence of effect on circuit oscillation 10

and starting current of transformer 182

constant of wave 433

limit of condenser oscillation 73

of condenser oscillation 62, 68
field current at armature short-circuit 203
oscillation of condenser, transmission line, cable. ... 99, 338

recurrence of discharge in oscillating-current generator. . 81

wave 433

range of condenser oscillation 71

electromagnetic induction 67
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PAGE
Full-wave oscillation of complex circuit 508

transmission line 330
Fundamental frequency of oscillation, cables and transmission lines 103, 105

Gas pipe, effective high frequency impedance 408
General circuits with inductance and capacity 174

without capacity 168

equations of electric circuit 428

Generator, direct-current over-compounded, building up 149

self-excitation 32

oscillating current 74
German silver, effective penetration of alternating current 378
Gradual approach to permanent value 21

or logarithmic condenser charge and discharge 53

term, also see Logarithmic.

Graphite, effective penetration of alternating current 378
Grounded transmission line 303

Half-wave oscillation 483, 490

of complex circuit 509

transmission line 333

rectification 221

Harmonics, even, of half-wave oscillation 483

Hertzian oscillators 388

High frequency alternators, momentary short-circuit current 201

conductor 370, 403

discharge 388

oscillating currents by periodic transient terms 220

oscillations of cables and transmission lines 103, 105

power surge of low-frequency 105

stray field and starting current of transformer 189

Impact angle at transition point of wave 527

Impedance of conductor at high frequency 407

effective high frequency 408, 413

of radiation 396

traveling wave 460

Inductance and shunted capacity suppressing pulsations in direct-cur-

rent circuit 134

effective, of radiation 394

energy of complex circuit 515

in telephone lines 455, 462

massed, in circuit 537

of conductor without return 390

electric circuit 12

range in electric circuit 13

representing magnetic component of electric field 5
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PAGE

Induction, magnetic, and starting current of transformer 180

motor circuit, starting 44

Inductive discharges into transmission line 542

shunt to non-inductive circuit 129

Inductorium, equations 164

Infinitely long conductor 305

Input, see Power.

Instantaneous power in complex circuit 514

Insulators, resistivities 9

Iron arc operated by oscillating-current generator 82

effective penetration of alternating current 348

wire, current distribution 370

and pipe, effective high frequency impedance 408

Laminated iron, alternating magnetic flux 355

pole series booster, response to voltage change 158

Layer, effective, of alternating-current conductor 377

Leakage in telephone lines 455, 463

Length of wave 433

Lighting circuit, starting 27, 44

Lightning arrester, multigap 348

conductors 370

discharges 388

in thunder cloud 350
Limit condition of condenser equations 50

of frequency of condenser oscillations 73

Loading of telephone lines 455, 462
Local oscillations of cables and lines 103, 105

Logarithmic decrement of con^jnser oscillation 65
or gradual condenser charge and discharge 53

start of condenser on alternating voltage 95
Low frequency surge in cables and lines 103, 105

stray field and starting current of transformer 189

Loxodromic spiral of starting current 46

Magnetic, also see Electromagnetic.

density and starting current of transformer 180

energy of complex circuit 515

field, energy of 6

flux, alternating, in iron 355, 361, 363, 365, 366, 367
materials 10

saturation, numerical values 10

Magnet poles, solid, as mutual inductive circuit 155
Main axes of electric field 46

wave at transition point 531
Massed inductance and electric wave 537
Mechanical rectification 221, 229

Mercury arc rectifier 250
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PAGE

Metallic conductors, resistivities 8

magnetic induction 10

Minimum wave length of oscillating currents 74

Motor circuit, alternating, starting 44

field, excitation 27

Multigap lightning arrester '. 348

Mutual impedance and velocity of propagation 399

inductance, equations 143

and velocity of propagation 397

inductive circuit with capacity 161

without capacity 144

of solid magnet poles 155

reactance : 143

Nominal generated e.m.f. and short-circuit current 200

Noninductive condenser circuit 54

shunt to inductive circuit 129

Nonoscillatory, see Gradual or Logarithmic.

Open-circuit rectification 230

Opening of cable or transmission line under load 112, 118

of continuous-current circuit 26

Open transmission line 299

Oscillating-current generator 69, 74

and charging current 85

high-frequency currents by periodic transient terms 220

Oscillation, also see Condenser discharge.

free, of circuit 432, 478

of rotating field in starting 197

transmission line 322, 333, 336, 338

Oscillatory approach to permanent value 21

case of alternating circuit 93

or trigonometric condenser charge and discharge 53

start of condenser on alternating voltage 95

Oscillograms of mercury arc rectifier 264

of transformer starting current 190

Output, also see Power.

effective, of oscillating-current generator 81

Overcompounded direct-current generator, building up 149

Overlap of rectifying arcs 251

Overreaching of condenser charge 19

in noninductive branch of inductive circuit 131

Oversaturated transformer flux of starting current 181

Penetration, effective depth of, 405

of alternating current in conductor 376, 378

magnetic flux in iron 361, 363, 365

Period of recurrence 218

wave . . 433



568 INDEX

PAGE

Periodic transient terms 22, 218

Permanent term of alternating-current circuit 91

values of electric quantities 16

Permeability 9

apparent,, of iron for alternating currents 355, 367

Phase difference in transmission line 296

of wave and transient term 45, 91

Physical meaning of transient term 103

Polyphase alternator short circuit 202, 204

m.m.f
.,

resultant 192

rectification 230

Potential regulation by periodic transient terms 223

Power of complex circuit 513

component of high frequency impedance 412

gradient of electric circuit 3

electric field 48

output, effective, of oscillating-current generator 81

radiated by conductor 394, 397

transfer in complex circuit 521

constant of complex circuit 507

Propagation constant of wave 441

speed of, of wave 422

field 387

Pulsation of rotating field in starting 197

Pyroelectrolytes, resistivities 9

Quarter-phase rectification 230

Quarter-wave circuit 313

oscillation 483, 489

of complex circuit 509

transmission line 322

transformer 312

transmission line 306, 315

Quartic equation of divided circuit 126

Radiation, effective resistance 393

power of conductor 393, 397
resistance of conductor 403

Rail, effective penetration of alternating current 378
return of single-phase system 370
transient effective resistance 379

Railway, direct-current, transient rail resistance 379

motor, self-excitation as generator 38

single-phase, rail return 370

Rating of capacity and inductance 122

resistors, reactors, condensers 69
Ratio of currents,

1

oscillating-current generator 82

Reactance, effective, of external field . . 406
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Reactance, effective (continued),

of internal field 406

of armature reaction 200

mutual inductive 143

Reaction, armature, and short-circuit current 199

Reactor, size and rating 69

Rectification, and commutation 222

arc 249

by periodic transient terms 22, 221

constant-current 230, 242

potential 230, 236

mechanical 229

open-circuit 230

polyphase 230

quarter-phase 230, 242

reversal or change of circuit connections 221

short-circuit 230

single-phase 229, 231, 236

Rectifier, mercury arc 250

oscillograms 264

Rectifying commutator 222, 229

Recurrent transient terms 218

Reflected waves 431

at transition point 527, 531

Reflection angle at transition point 527

of wave 525

Refraction law of wave 534

of wave 525

ratio at transition point 534

Regulation of potential by periodic transient terms . 223

Remanent magnetism in starting transformer 181

Resistance, and starting current of transformer 185

effective, of alternating-current conductor 370, 376

of electric circuit 12

radiation, of conductor 393, 403

range in electric circuits 13

representing power gradient of electric field 6

specific, see Resistivity.

thermal, of conductor 403

Resistivity, numerical values 8

Resistor, size and rating 69

Resonators, Hertzian 388

Resultant polyphase m.m.f 192

time decrement of complex circuit 504

Rise of continuous current in inductive circuit 17

voltage by transformation at transition point 529

Rotating field, polyphase 192

Ruhmkorff coil, equations 164
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Salt solution, effective penetration of alternating current 378

Saturation, magnetic, numerical values 10

and transformer starting current 180

Screening effect of alternating currents 378

Self-excitation of direct-current generator 32

railway motor as generator 38

series generator 38

shunt generator 37

Self-inductance in direct-current circuits 26

and short-circuit current of alternator 199

Series capacity, distributed 348

generator, self-excitation 38

motor, self-excitation as generator 38

Short-circuit current of alternator 199, 201

oscillation of cables and lines 113, 118

rectification 229

Shunt generator, self-excitation 32

motor field excitation, change 27

Sil al 392, 394

Silicon, effective penetration of alternating current 378

Sine wave traveling 434

Single-phase alternator short-circuit 202

railway rail return 370

rectification 229

Solid magnet poles as mutual inductive circuit 155, 158

Space induction, magnetic 10

Spark discharge in cables and lines as periodic transient phenomenon. . 23

of condenser as periodic transient phenomenon 22

Speed, effect on discharge of motor field 29

propagation in electric circuit 422

of alternating magnetic flux in iron 366

Standing waves 439, 442

and free oscillations 482

Starting current of transformer, calculation 188

and frequency 182

magnetic saturation 180

remanent magnetism 181

resistance 185

stray field 184

oscillograms 190

of alternating current 43

continuous current 27

polyphase or rotating field 192, 197

oscillation of cables and lines Ill, 117

Static, see Electrostatic.

phenomena 13, 105

Stationary waves 439, 442

Steel, effective penetration of alternating current 378
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Stored energy of complex circuit 515

Stranded conductor, effective resistance of current distribution 370

Stray field and starting current of transformer 184

Suppression of pulsations of direct current by capacity and inductance. 134

Synchronous reactance and short-circuit current 200

rectifier 221

Telegraph, wireless 388

cable, submarine, standing waves 454

Telephone 281

circuit, long distance, standing waves 454

Terminal conditions of condenser equations 50

Tesla transformer and oscillating-current generator 82

Thermal resistance of conductor 403

Third harmonic of short-circuit current 213

Thomson arc machine 221, 230

Thunder cloud, lightning discharge in 350

Time attenuation constant 434

constant, resultant, of complex circuit 504

decrement, resultant, of complex circuit 504

local, of traveling wave 460

Tirrill regulator 223

Transfer constant of energy, of complex circuit 507

of energy in oscillation of complex circuit 507, 521

Transformation ratio at transition point of wave 529

of voltage and current at transition point 529

Transformer, alternating, operating oscillating-current generator 87

distributed capacity 342

quarter-wave oscillation 312

starting 44

and magnetic saturation 180

Transient rail resistance with direct current 386

terms, conditions of their appearance 21, 23

of alternating-current circuit 91

capacity and inductance, physical meaning 103

fundamental frequency in alternating-current circuit 473

periodic 22

unequal current distribution 379

Transition period at change of circuit condition 16

points of wave 498

Transmission angle at transition point 527

line, characteristic curves 297

closed 306

constants 282

conversion by 308, 313

equations 284, 287

approximate 294

free oscillation . . 322
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Transmission line (continued),

frequency 100, 280, 320, 338

full-wave oscillation 336

general equations of standing waves 449, 452

grounded 303

half-wave oscillation 333

inductive discharges 542

infinitely long 305

natural period 280, 320

open 299

opening under load 112, 118

phase difference 296

quarter-wave 306, 313, 315

oscillation 322

radiation 283

resonance frequency 279

with higher harmonics 280

short-circuit oscillation 113, 118

starting 111,117
transient terms and oscillations 98, 102

Transmitted wave at transition point 527, 531

Traveling sine and cosine waves 434

waves, general equations 458

without attenuation, as alternating waves 472

Trigonometric or oscillatory condenser charge and discharge 53

term, see Oscillatory.

Turbo alternators, short-circuit current 201

Unequal alternating-current distribution in conductor 370

transient-current distribution in conductor , 379

Velocity, also see Speed.
measure o.f distance 435

of propagation of electric field 387

Voltage control by transient terms 223

drop, high frequency conductor 413

transformation at transition point of wave 529

variation of direct-current generator, with load 149

Voltmeter across inductive circuit, pulsation 132

Water, effective penetration of alternating current 378

Wave of alternating magnetism in iron 359

direct or main, and reflected 431

length of alternating magnetic flux in iron 361, 365

constant 434

minimum, of oscillating current 74

transmission 281

Wireless telegraphy 388

X-ray apparatus, equations 82
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