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Abstract

In this paper, the issue related to the impact of investment horizon

on the CAPM functional form has been re-examined. A generalized

translog functional form for CAPM was derived in accordance with the

true investment horizon that is finite and unobservable. The securi-

ties included in the Dow Jones Industrial Index are used to test

whether the risk-return relationship generally follows trans-log type

of CAPM. It is found that the translog model improves the precision

of estimated parameters the explanatory power of the capital asset

pricing model.





Trans-log Functional Form for the Capital Asset Pricing Model
Theory and Implications

Introduction

The traditional Capital Asset Pricing Model (CAPM) provides a

theoretical and empirical foundation for examining risk-return rela-

tionship and measuring investment performance. Despite recent criti-

cisms, the CAPM remains as the cornerstone of modern financial theory.

Academic scholars and finance practitioners have used the CAPM exten-

sively to estimate -systematic risk from realized security returns for

various purposes such as market efficiency testing and capital

budgeting. However, it is known that the empirical results of the

CAPM from ex post data may not be consistent with the ex ante expec-

tation of the model. In particular, a problem of model misspecif ica-

tion can occur in estimating systematic risk when the period length of

observed data deviates from the true investment horizon of individual

investors. Also, as pointed out by Markowitz [19], the CAPM is based

on a simultaneous linear equations constraint set. Extending this

constraint into more general linear programming constraint set is non-

negative variables will generate an efficient frontier which is very

likely nonlinear. These considerations have motivated the investiga-

tion of possible nonlineari ties in the CAPM.

Jensen [14] first investigated the impact of deviation of observed

data period from true investment horizon on the estimation of system-

atic risk. He proposed a logarithmic linear model to eliminate the

impact of time horizon. Kraus and Litzenberger [16] have proposed a
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quadratic characteristic line for a three-parameter CAPM model. Sub-

sequent studies (see [9], [11], [17] and [18]) have aimed at extending

or generalizing Jensen's model to consider the nonlinearity in the

CAPM with only limited success. Recently, McDonald [20] provided an

extensive analysis of the functional form of the CAPM. He proposed a

model of variable elasticity of substitution (VES) to investigate the

nonlinearity in the CAPM. His study, based on a very large data set

and a sophisticated maximum likelihood method, concluded that the VES

model did not significantly improve the estimation of beta coef-

ficients in comparison to Lee's [17] constant elasticity of substitu-

tion (CES) model. Further, his study found that the nonlinearity in

the CAPM could not solely be attributed to the investment horizon

problem.

One important issue, however, was not fully explored in McDonald's

study. Although it was understood that the existence of investment

horizon problem could produce biased risk estimates, the extent of

this bias and the factors affecting the Jensen measure and risk estima-

tions has not been explicitly analyzed. Moreover, the discrepancy be-

tween the true and observed investment horizons would likely generate

some statistical problems and affect the functional relation of risk

and return. As noted by Box and Cox [4], these statistical problems

can affect the observed return distribution. More specifically, the

moments of the observed return distribution would likely be affected by

the data measurement problems, even though the true return distribution

remains intact. Yet, the linkage between these statistical issues and
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the functional relation of risk and return involving higher moments has

not been fully investigated.

The purpose of this paper is twofold. First, it introduces a

generalized model for the nonlinear risk and return relation . The

proposed model includes many familiar asset pricing models as special

cases. The paper specifically shows the misspecification of the tradi-

tional characteristic lines, and demonstrates how the specification of

a more appropriate functional form can help reduce the bias of Jensen

measure and risk estimates and improve the explanatory power of the

CAPM. Second, this paper provides some empirical evidence obtained

from a translog model based on a general nonlinear relation of risk and

return. There are several advantages of using this model. First, the

translog model provides a generalized functional form that is a local

2
second-order approximation to any nonlinear relationship. Second, the

translog model permits greater substitution among variables than many

other models. Third, the model can be estimated and tested by rela-

tively straightforward regression methods.

The remainder of this paper is divided into three sections. Sec-

tion I develops an estimate model for the return and risk relation.

This model is then compared to the other risk estimation models often

used by academicians and practitioners. Section II discusses data and

presents some empirical evidence. The results from several models are

compared. Section III summarizes the important findings.

I. The Model

Following Jensen [14] and Lee [17], the risk-return relationship

implied by the traditional asset pricing model can be written as
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(1) E(
H
R.) = (l-

H8j>H
R
f

+ B^W
where

E( R.) = 1 + the expected return on security j over a true invest-
ment horizon H.

E( R
f
) = 1 + the expected return on a risk-free security over a

true investment horizon H.

E( R ) = 1 + the expected return on the market portfolio over a

true investment horizon H.

3. = the systematic risk of security j in terms of true

investment horizon.

Since the observed ex post returns may deviate from the ex ante returns,

in general the following relationship holds:

(2) E(
H
R
k

)
= [E(nV ] for k = j, f, and m,

u
where ^ = t is a transformation parameter and N is the period when the

returns are observed. Substituting (2) into (1) yields

(3) E(R.)
X

= (l-uS->MRf +
h
6 - E<mR

)X
'Nj HjNf HjNm

If the values of transformation parameter X are allowed to vary with

each of the security returns, then equation (3) can be rewritten asXXX
(4) E( R.) j = (1-B.U f

+ 3.E( R )
m

.

N J
v HjNf HjNm

Equation (4) is a nonhomogeneous function which permits individual

securities to have different transformation parameters. This implies

that true investment horizon might be different among individual

securities. As Box and Cox [4] indicate, this type of transformation

can correct simultaneously for nonadditivi ty , nonconstant variance and

nonnorraalities of security returns.



-5-

Equation (4) can be approximated by the following translog func-

tion (see the Appendix for the derivation)

:

(5) In E(R.) = 3. .In R + 3 In E( R ) + 3 In R In E( R )
N j ljNf 2j Nm 3j Nf N m

+ 3,. [In R ]

2
+ B [In E( R )]

2

4j N f 5j N m

As usual, the coefficients can be normalized for convenience in

approximating any arbitrary function. A convenient normalization is

that 3 + B„. = 1. Given this normalization, equation (5) can be

restated in terms of excess returns:

(6) in E(
N
R.) - ln

N
R
f

- B^ [In «„*,>-!« /f
J + «

3J
In /f

In E^)

+ B
4
.[ln

N
R
f

I

2
+ B

5
.[lnE(

N
R
n )]

2

The parameters of equation (6) are related to the original parameters

in equation (4) in the following manner:

X

(6a) 3 = 3. t2
2j H j A

.

J

4
<6c) 8

4j
-l/2

H
B
j
a-H

BJ>^

X
2

(6d) B
5j

" 1/2 ^O-hY
»J

Equation (6) states that the excess return of an asset depends not

only on the excess return of the market portfolio but also on a multi-

plicative term involving In „R, and In R , and the squared terras of
N f N m
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the returns on the riskless asset and market portfolio. Inclusion of

the multiplicative term permits greater substitution between the

riskless asset and market portfolio. The squared terms capture the

effect of systematic skewness as Kraus and Litzenberger [16] suggested.

The proposed relation in (6) is more general, however, since the co-

skewness of individual securities with the riskless asset is also per-

mitted.

To see the above argument more clearly, take the derivation of (6)

with respect to In lTR._ and In E(„
TR ):

N f N m

9 In E(R.)
< 6e > S in

N
R
f

]

-
2 - 6

2j
+

*3j
ln EW + 26

4j
ln

N*f

3 In E(R.)

N m
» 1. E(V) * 8

2j
+ 6

3j
ln A + 2B

5j
ln E(

N
RJ-

Equations (6e) and (6f) measure the elasticity of E( R.) with respect

t0
N
R
f

anci E
^m

R ^ respectively. This contrasts to the log-linear CAPM

where the corresponding values are (1-8 ) and 8 .

An estimate model derived from equation (6) in terms of ex post

return can be defined as

(7) ln R.„ - ln R. = 3_. + 8. .(In R - ln R )
Jt ft Oj 2j mt ft

+ 8_. InR, ln R. + 8. .(In R_ )
2

3j mt ft 4j ft

+ S_.(ln R J 2
+ e. .

5j mt jt

where, by analogy to the production function, 8 is the efficiency
* ^j

term; (1-3 ) and 8 are the distribution parameters for ln R and
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ln R ; tL .
, 3. . and 3 r . are substitution parameters; and £. is the

mt' 3j ' 4j 5j jt

stochastic disturbance term. Equation (7) is a nonlinear characteristic

line for j security. Kraus and Litzenberger [16a, 16b] have shown

that different types of characteristic line imply different types of

CAPM. Therefore, our analyses in this section on different types of

characteristic line can be regarded as analyzing different types of CAPM.

Similar to the traditional Jensen's measure, 8^. can be used to

evaluate the performance of an individual security. Also, if equation

(7) is a correct risk-return relation, then omiting the multiplicative

and squared term will mean that residuals contain these effects. There-

fore, the residuals from the traditional log-linear or linear market

model may exhibit hetroscedasticity as shown in Giaccotte and Ali [13].

The assumption on the differential transformation parameters is

consistent with the theory of rational choices. For instance, dif-

ferent transformation parameters may be associated with different true

investment horizon of individual assets. Investors' determination of

optimal investment horizon is generally affected by several crucial

factors. The first important factor is transaction cost. The

existence of considerable economies of scale implies that large

investors are likely to have a shorter investment horizon than small

investors. The increasing difference between the transaction costs of

large and small investors has been evidenced since the commission rate

deregulation in May 1975.

The heterogeneity in investor's expectation may also affect the

3
optimal investment horizon. Investors who possess different fore-

casts concerning the future prospects of individual assets will likely
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invest in different securities and have different insights on the

market and individual securities timing. Thus, the securities owned

by different investor groups possibly will exhibit distinguished

investment horizons.

Another factor that plays an important role is the size of the

issuing firms. The size of firm is related to the amount of infor-

mation available to investors. As noted by Zeghal [27] and Barry and

Brown [2], more information is produced and disseminated about large

firms by external producers of information, such as brokers, financial

analysts, institutional investors, and business writers. Also larger

firms provide more information than smaller firms due to the economies

of scale in the production and dissemination of information. The

amount of information is likely to affect the optimal investment hori-

zon. It is not implausible to assume that investors owning the

securities of larger firms to have a shorter investment horizon.

Given more information available, large firms' securities will

generally have higher liquidity and their market values will be closer

to the true values. These are the advantages that may help investors

shorten the time needed to complete a transaction. In the light of

equation (6a), the effect of firm size on the beta estimates can be
X

analyzed. It can be argued that T~~ will be larger than or equal to one

J

for large firms, and will generally be smaller than one for small

firms. Therefore, when 3 is estimated using the traditional market

model, it will tend to be overestimated for large firms and underesti-

mated for small firms. In general,



-9-

(8) 3 > 3 if X
H>

T
H,

i J
X

even though 3. =3.. And, -v— is an important information for syste-
J

i

matic risk estimates. Thus the anomaly of higher average returns to

small firm securities unaccounted for by the estimates of systematic

risk (e.g. Reinganum [23]) may be attributed to the specification bias

of the traditional linear characteristic line.

The translog function provides a generalized model for examining

the risk-return relationship. It can be shown that the characteristic

lines used in several previous studies to estimate systematic risks

are all special cases of the proposed translog relationship. In the

following, various restrictions are imposed on the translog function

to derive some characteristic functions most familiar in the

literature.

(A) 8
3

.
- B

4
.

-

Equation (5) reduces to the following estimate model:

(9) InR., = 3* + 3 InR + 3 InR + 3 (InR )

2
+ e..

jt Oj lj ft 2j mt 5j mt 1

The above estimate model is very similar to the quadratic character-

istics line proposed by Kraus and Litzenberger [16a]. If the com-

pounding rates are used in their model, the risk estimates in (9) will

4
be the same as those obtained from the quadratic characteristic line.

(B) e =0=3=0
3j 4j 5j

These restrictions result in the familiar two index model



-10-

(10) lnR.„ = 3.. + 8.. InR. + 3_.lnR „ + v_
(
.

Jt Oj lj ft 2j rat jt

As noted by Merton [22], the interest rate changing stochastically

over time affects the investment opportunity set. Therefore,

investors are compensated in terms of expected returns for bearing

market systematic risk and for bearing the risk of unfavorable shifts

in the investment opportunity set.

.

(c) 1/2 3
3

.
- 3

4
.
- B

5j

This is equivalent to imposing a homogeneity condition on the

risk-return relation; that is, X X With these restrictions,
m i

the following estimate model is obtained:

(11) InR. - lnR£ = a. + 8*(lnR -InR. ) + Y.(lnR -InR. )

2
+ w. .

Jt ft j j
v mt ft

7
j

v mt ft
7 jt

This is the CES model proposed in Lee [17]. The Y. is the systematic

skewness coefficient in Lee [17]. The constant investment horizon

parameters imply a symmetry restriction on the translog function.

(D) Constant R
f

and stationary return distribution

Under this condition, equation (4) can be simplified to generate

the following estimate model:

X. X

(12) R.J - a + G.r
m

+ v!
Jt H j mt jt

When X. = X =1 the traditional linear market model is obtained.
J m

When X and X both approach zero, it can be shown that equation (12)
J m

becomes the log-linear market model (see McDonald [20], Spitzer [25])
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(E) Nonstationary return distribution

Kraus and Litzenberger [16a] have demonstrated that under a

changing riskless rate, the moments of risky assets return are not

intertemporal constants. However, under the assumptions of propor-

tional stochastic growth and either constant relative risk aversion or

stationary distribution of per capital end-of-period wealth, they

suggested a transformed return variable to resolve the nonstationari ty

problem. This variable is essentially a deflated excess return

defined as

(13a) r.
t

= (R
jt

-R
fc

)/R
£t

(13b) r
mt " (R

mt-
R
ft

)/R
ft

The transformed variables can be used to estimate the beta system-

atic risk by the following regression:

(14) r. = <*. + 6.r
..

+ ul .

jt J J mt jt

However this function can be shown to be equivalent to the case when

X = \ = \ = 1 in equation (4).
J f m M

In sum, by imposing various restrictions on the transformed func-

tion and the translog function, several familiar characteristic lines

can be obtained. Thus the proposed risk-return relation as in

equation (4) and approximated by equation (6) provides a generalized

model to estimate systematic risks when there exists nonstationary

return distribution and when investors' utility function involves the

higher moment such as skewness.
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In the following section, data used to estimate systematic risks

are described and some empirical results are reported. In addition,

the performance of the translog model is compared with that of the

alternative models.

II. Data and Empirical Results

Monthly returns for all the securities included in Dow Jones

Industrial Average (DJIA) covering the period 1969-82 were collected

from the Compustat tape. One security, American Express, was finally

excluded from the sample due to missing observations in the earlier

years. The study period was further divided into two subperiods.

This resulted in a data base of 29 securities, each with 84 monthly

observations. The market rate of return used is the New York Stock

Exchange monthly value-weighted index. The monthly treasury bill rate

was used as a proxy for the risk-free rate.

The correlation coefficient matrix for the explanatory variables

in the translog model is displayed in Table I. In general, the corre-

lation coefficients are fairly stable over time. The sign of the

correlation between variables is consistent in two periods with only

2
one exception (the correlation between lnR_ InR and lnR^ ). As

ft mt ft

shown in the table, the variable InR,. InR is highly correlated with
ft mt

the excess return of the market portfolio (.98 and .94 for the first

and second period, respectively). This problem can be attributed to

the fact that R
f

is smaller and relatively stable over time. The

extremely high correlation between these two variables causes a very

severe mul ticollineari ty problem. To cope with this problem, the
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variable InR InR.. is orthogonal i zed. This procedure involves
mt ft

regressing InR lnRr against the excess market return and obtaining
mt rt

residuals from the regression. The residuals (RES) retain a portion

of information in InR InR,. that is not correlated with the excess
mt ft

market return. This residual variable is then used to estimate the

coefficient of 3_. in equation (7).

o
The results of the translog regressions are reported in Table II.

All the estimates of 3 coefficients are significant. In addition,

the coefficients associated with the quadratic terras are also signifi-

cant for numerous cases.

In the first period, there are five securities with significant

3_, five securities with significant 3, and six securities with signif-

icant 3 . Out of 29 securities examined, 15 securities have at least

one significant coefficient associated with the multiplicative and

squared terms. The translog regression results in the second period

even perform better. There are 13 securities with significant 3 five

with significant 3 and five securities with significant 3 . All

together, 18 securities have at least one of these three coefficients

that are significant. For those securities with significant coef-

ficients associated with the multiplicative and squared terras, the

estimation of systematic risks and Jensen performance measures (3 's)

using the traditional CAPM is subjected to specification bias.

The results of the log-linear characteristic line are reported in

Table III for comparison. Note that the values of R-square are much

larger for the translog regressions. In general, the values of

adjusted R-square will increase when the Student's t for the additional
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parameter introduced is larger than one. For most of the securities

included, at least one of the estimated coefficients associated with

the higher power terms have the student's t values greater than one.

Thus, the proposed translog model improves the explanatory power of

the CAPM. Therefore, it will be a more appropriate model for fore-

casting the security rates of return.

In parallel to McDonald's study, the results of the CES model as

approximated by equation (11) are reported in Table IV. As noted

earlier, the CES model proposed by Lee [17] is equivalent to the

translog model with the restrictions of 3 = 3 = -1/26 . These

restrictions are required to satisfy the condition of homogeneity.

Table IV shows that most of the 3 estimates are significant, while the

Y coefficients are significant for five and seven cases for the first

and second period, respectively. The results are similar to those

found in Lee [17] and McDonald [20].

Table V provides the summary statistics of the parameter esti-

mates. For the translog model, the standard deviations of the cross-

sectional 3 and 3 are relatively higher. The greater dispersion of

3 and 3 estimates is attributed to the smaller values of squared

terms. Similar to the mean values of 3* and 3 in the CES and log-

linear models, the average of 3 is close to one as expected. There-

fore, the minor differences in the mean values for 3 ,
3* and 3 do not

convey significant information for the corresponding risk estimates

for individual securities. To provide more details on the differences

of systematic risks (3 3* and 3) for individual securities, Table VI

summarizes the mean, maximum and minimum of the differences and absolute

difference in the estimated coefficients. The discrepancy between 3
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and 3* appear inconsequential. However, the deviations of 3 from 3

and 3* are larger. The mean absolute difference, a better measure for

bias, indicate that on average the deviations are around .05 to .07,

roughly 5 percent to 7.5 percent errors. For individual securities,

the maximum difference is around .13 to .79. These figures appear to

be not trivial.

The intercept estimates from these alternative model are now com- .

pared and analyzed. For the log-linear model, there is only one and

three estimated intercepts significant different from zero for the

first and second period, respectively. For the CES model, there are

one and eight estimated intercepts significantly different from zero

and for the translog model , these are four and seven estimated inter-

cepts significantly different from zero. The number of significant

intercepts is substantially smaller for the log-linear model. These

figures suggest that the Jensen measures estimated from the traditional

log-linear market model are likely biased.

To complete the analysis , two likelihood ratio tests are per-

formed. The first test concerns whether the proposed translog model

satisfies the homogeneity condition. The second test checks whether

the translog model is significantly different from the log-linear

market model. Test statistics are reported in Table VII. To perform

the first test, the restrictions that 3, = 3,. = -1/23- are imposed.

The critical value for F(2, 79, 5%) is equal to 3.15. Out of 29

securities, three and six securities indicate significant differences

from homogeneity for the first and second period, respectively. To

perform the second test, the denominator and numerator of the ratios

of squared residual errors are divided by the associated degree of
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freedom. The critical F value corresponding to the restriction that

the sum of coefficients 8~ to 8 is zero is equal to 3.92. Out of 29

securities, there are 15 and 19 cases in two respective periods that

have F values exceed the critical value. Consequently, for a large

proportion of securities studied in this sample, the translog model

provides results that are significantly different from the log-linear

model. These results tend to support Markowitz's [19] arguments about

the nonlinear CAPM.

III. Summary and Concluding Remarks

In this paper, the issue related to the impact of investment horizon

on the CAPM functional form has been re-examined. A generalized

translog functional form for CAPM was derived in accordance with the

true investment horizon that is finite and unobservable. The securities

included in the Dow Jones Industrial Index are used to test whether the

risk-return relationship generally follows trans-long type of CAPM. It

is found that the translog model improves the precision of estimated

parameters and the explanatory power of the capital asset pricing model.

For a large number of securities, there are systematic risks associated

with the multiplicative and squared terms of returns on the riskless

asset and market portfolio. The linearity assumption of the CAPM has

been rejected for a very large proportion of securities studied in this

paper. It is also found that for most of the securities studied the

proposed translog model appears to satisfy the condition of homogeneity

given symmetry. Implications of the new model derived in this paper to

test the capital asset pricing model will be done in the future research.
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Footnotes

Jensen [14, 15], Black, Jensen and Scholes [3], Merton [21, 22]

have discussed the importance of investment horizon on the capital

asset pricing process.

2
The translog function does not employ additivily and homogeneity

as part of the maintain hypothesis. For many production and invest-

ment frontiers employed in the econometric studies, the translog fron-

tiers provide accurate global approximations.

3
Elton and Gruber [10] have recently discussed the effect of

heterogeneous expectations on the form of the CAPM. Markowitz [19]

also has shown that hetrogeneous expectations is an important issue

for testing the CAPM.

4
Kraus and Litzenberger [16a] proposed the following quadratic

characteristic line:

R. - R = c_. + cfR -R ) + c..(R -R )

2
+ e..

l f Oi li m f 2i mm l

This function can be simplified as

R. = b_ + b.R. + b R + b_R
2

l If 2m 3m

—2
where b_ = c_ . + c„.R

Oi 2i m

b
i

" 2 " cn
b
2 " CH " 2C2l\

b
3 " C

21-
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If X = X = X = A equation (11) can also be obtained by
j m f

expanding log E( R.) around X=0, and dropping the terms involving

powers of -X greater than one.

Rubinstein [24] has also shown that the expected value of trans-

formed variable would be constant over time under the similar con-

ditions.

When X's ar'e the same, equation (4) can be rewritten as

E(
H
R/ J „ „ w E(

H
Rm

)A
™

H f f
H J Of ° ]

E(
N
R
J

) J - H
R
f

f E(
H
R
m ) m -

H
R
f

f

X ~ h i X

H
R
f

f '
H
R
f

Setting X = X = X. = 1 yields:
m r j

E(hV ~HR
f

m g(

E(
H
R
m> - H

R
f
)

H
R
f H

R
f

8
The values included in the parentheses in all the tables are t

statistics.
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Appendix

Taking the logarithm of (4) yields the following generalized risk

and return relationship:

(A.l) X. In E( XTR.) = ln[(l-3) exp (X InRj + exp (X In E(
KT
R )].

j N j iNr m N m

Let

(A. 2) <J)
= In E(R) =~ ln[(l-3) exp (X InR.) + 3 exp (X In E(„R )]NjAj rNf m N m
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N f j
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R.) + 3 exp (X lnE( XTR ))fNf m Nm
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Expanding $ around R, = 1 and R = 1 gives the following relation:
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TABLE I

Correlation Matrix of Independent Variables

2 2
InR -InR. RES InR. InR lnR£ InR

mt ft ft mt ft mt

Period 1

InR -lnR,-^
mt ft

1

RES .00

lnR
2

ft
-.36 .15 1

lnR
mt

.05 -.13 .28 1

lnR
ft

lnR
mt

.98 .18 .32 .02

Period 2

InR -InR,. 1
mt ft

RES .00

lnR
2

ft
-.26

2
InR

mt
.25

InR,. InR
ft mt

.94

12 1

32 .08 1

,33 -.21 .13



TABLE II

Regression Results of the Translog Model

R
2 Adjusted

Period 1 (1969-75)

1. -0.033** 1.077*** -0.051 14.976** -2.976* .463 .436
(-2.135) (8.171) (-0.042) (2.512) (-1.791)

2. -0.026 1.025***
(-1.651) (7.603)

2.899** 8.258 1.497
(2.309) (1.354) (0.878)

.472 .445

3. -0.004 0.718*** 0.589 1.486 1.532 .381 .349
(-0.310) (6.302) (0.810) (0.289) (1.063)

4. -0.014 1.128*** 0.735 10.116* -1.614 .485 .459
(-0.869) (8.367) (0.586) (1.659) (-0.947)

5. 0.012 1.111*** 0.400 -3.263 -0.593 .600 .580
(0.892) (9.717) (0.376) (-0.631) (-0.411)

6. 0.000 1.100*** 0.064 0.847 -0.146 .390 .360
(0.040) (6.561) (0.042) (0.112) (-0.069)

7. 0.026
(1.594)

0.650*** 1.278 -9.608 -1.264
(4.696) (0.992) (-1.534) (-0.722)

.323 .289

8. -0.020
(-1.353)

1.177*** -0.518 11.029* -0.357
(9.410) (-0.445) (1.949) (-0.226)

.541 .518

9. 0.025 0.782*** 2.524** -7.985 0.370
(1.595) (5.891) (2.042) (-1.330) (0.221)

.407 .377

10. 0.015 0.755*** 1.038 -2.952 0.538
(1.318) (7.846) (1.158) (-0.678) (0.442)

.504 .479

11. 0.023* 0.636*** 1.175 -9.100* 1.859
(1.802) (5.908) (1.172) (-1.808) (1.365)

.423 .393

12. 0.020 0.867***
(1.169) (5.809)

0.034 -7.839 0.579
(0.025) (-1.162) (0.307)

.379 .348

13. 0.004 0.833***
(0.270) (6.628)

0.656 -3.476 0.750
(0.561) (-0.611) (0.472)

.419 .390

14. -0.017 1.120***
(-1.056) (8.196)

-0.832 9.979
(-0.654) (1.614)

-3.423* .475
(-1.980)

.449

15. -0.041** 1.231***
(-2.505) (8.849)

-0.231 18.666*** -3.189** .500
(-0.179) (2.965) (-1.811)

.475



TABLE II (continued)

Regression Results of the Translog Model

8 B
2

8
3 \ B

5
R
2

Adjusted
R2

16. -0.009
(-0.494)

1.039***

(6.490)

-0.286
(-0.192)

5.423
(0.749)

0.235
(0.116)

.371 .339

17. -0.021
(-1.278)

0.936***
(6.640)

0.922***
(5.182)

-2.335*
(-1.778)

-3.654**
(-2.205)

12.371*
(1.939)

11.020
(1.369)

-0.852
(-0.478)

-6.463***
(-2.871)

.373

.310

.341

18. -0.013
(-0.646)

.275

19. -0.014
(-1.008)

0.595***
(4.962)

0.401
(0.359)

3.929
(0.724)

0.056
(0.037)

.255 .217

20. 0.015
(1.235)

0.785***
(7.302)

-0.658
(-0.658)

-7.367
(-1.515)

0.890
(0.654)

.497 .471

21. 0.013
(1.095)

1.027***

(9.888)
0.279
(0.289)

-6.442
(-1.370)

2.071
(1.576)

.630 .611

22. 0.026
(1.244)

0.718***
(4.016)

-1.887
(-1.134)

-15.071*
(-1.864)

1.364
(0.603)

.296 .259

23. -0.001
(-0.139)

0.901***
(8.001)

-0.987
(-0.942)

3.970
(0.779)

-3.315**
(-2.326)

.485 .459

24. -0.012
(-.622)

0.932***

(5.549)

-3.025*
(-1.935)

6.619
(0.872)

-2.737
(-1.288)

.315 .280

25. -0.013
(-0.569)

1.088***

(5.304)
-2.127
(-1.115)

7.374
(0.795)

-2.180
(-0.841)

.282 .246

26. 0.034***

(2.661)

0.834***

(7.659)
0.544
(0.537)

-9.977**
(-2.026)

-1.498
(-1.088)

.537 .516

27. -0.009
(-0.887)

0.678***
(8.001)

-0.479
(-0.607)

3.148
(0.821)

1.278
(1.191)

.487 .460

28. 0.010
(0.839)

1.014***
(9.531)

-0.444
(-0.449)

-1.073
(-0.223)

-2.441*
(-1.814)

.587 .567

29. -0.010
(0.503)

1.082***
(6.284)

-1.216
(0.758)

3.792
(0.487)

-0.159
(-0.073)

.363 .330



TABLE II (continued)

Regression Results of the Translog Model

s
o

3
2

8
3 *4 *5 R

2
Adj usted

R2

Peri od 2 (1976-82)

1. -.002
(-.444)

1.241***

(5.037)

.544

(.639)

-1.436
(-.625)

-2.555
(-.721)

.288 .252

2. -.001
(-.149)

.607***

(4.359)

-.705
(-1.464)

.472

(.363)

-.781

(-.390)
.235 .196

3. .008
(1.017)

.488***

(4.328)

-.517
(1.327)

-.436
(-.414)

.953
(.587)

.265 .228

4. -.023*** 1.412***
(-2.638) (11.553)

-.156
(-.371)

1.694
(1.486)

1.594
(.907)

.669 .652

5. -.011
(-1.355)

.658***

(5.767)
-.585

(-1.483)
-.076
(-.072)

4.664***

(2.841)
.457 .429

6. -.006
(-.500)

1.257***

(6.956)
.185

(.297)
.007

(.004)

-.309
(-.119)

.422 .392

7. -.015
(1.599)

.874***

(6.871)
-.430
(-.978)

.022
(.019)

3.794**
(2.074)

.482 .456

8. -.024**
(-2.938)

.880***

(7.962)
-.410

(-1.075)
1.732*

(1.679)
3.056*
(1.921)

.537 .503

9. -.016
(-1.531)

.683***

(4.754)

-1.127**
(-2.267)

1.524
(1.136)

.846
(.409)

.293 .257

10. -.011
(-1.414)

.585***

(5.327)

-.642*
(-1.691)

1.172
(1.144)

.663

(.420)

.317 .283

11. .006

(.823)

.759***

(7.436)
.316

(.897)

-.926
(-.972)

-.100
(-.069)

.478 .451

12. .010

(.812)

1.048***

(6.082)

1.441**
(2.419)

-1.462
(-.909)

1.286
(.519)

.416 .386

13. .001

(.103)

.969***

(6.686)

1.399***
(2.792)

-.863
(-.638)

1.945
(.933)

.463 .436

14. -.014
(-1.392)

.994***

(6.901)

-1.110**
(-2.230)

2.481*
(1.847)

-.106
(-.051)

.420 .391

15. -.016
(-1.512)

1 .192***
(7.889)

.462
(.885)

2.507*
(1.779)

-2.422
(-1.115)

.460 .432



TABLE II (continued)

Regression Results of the Translog Model

j Adjusted
3 3 3 3 3 R R2
_0 _2 _3 _4 _5

16. -.023* 1.291*** -.436 .470 3.873 .462 .435
(-1.733) (6.997) (-.684) (.273) (1.459)

17. -.032** 1.123*** -.729 2.492 .896 .351 .319
(-2.298) (5.994) (-1.126) (1.426) (.333)

18. .004 .903*** -.937* -1.057 .851 .372 .340
(.375) (5.640) (-1.693) (-.708) (.370)

19. .004 .689*** .028 -.538 -2.079 .271 .234
(.437) (4.976) (.059) (-.417) (-1.043)

20. .008 .698*** -.634* -1.185 .088 .423 .393
(.998) (6.312) (-1.659) (-1.148) (.056)

21. -.009 .916*** -.906** .974 2.634* .597 .576
(-1.250) (8.966) (-2.567) (1.023) (1.793)

22. .000 1.402*** -.699 .798 .228 .533 .510
(.003) (8.697) (-1.255) (.531) (.098)

23. .008 .684*** -1.542*** -1.000 -2.008 .343 .310
(.825) (4.963) (-3.237) (-.778) (-1.013)

24. .036** .984*** -1.273 -8.102*** -5.091 .376 .344
(2.081) (4.126) (-1.544) (-3.642) (-1.484)

25. .007 1.167*** -.116 -1.146 1.915 .608 .588
(.780) (9.465) (-.273) (-.997) (1.080)

26. -.032*** .856*** -1.251*** 3.423*** .526 .394 .364
(-3.141) (6.183) (-2.613) (2.650) (.264)

27. -.001 .260*** -.767*** .287 -.170 .197 .156
(-.166) (3.193) (-2.723) (.379) (-.146)

28. -.022* .819** -1.034** 1.869 2.204 .371 .339
(-2.097) (5.634) (-2.059) (1.379) (1.054)

29. .003 .919*** -1.436** .600 -4.909* .280 .244
(.281) (5.079) (-2.297) (.356) (-1.886)



TABLE III

Regression Results of the Log-Linear Model
Adjusted

Intercept 6 Rf R2

Period 1 (1969-75)

1. -.002 .939*** .411

(-.370) (7.571)

2. -.001 .961*** .404

(-.213) (7.463)

3. .003 .711*** .364

(.668) (6.852)

4. .008 1.036*** .459

(1.301) (8.350)

5. .002 1.137*** .596

(.425) (10.998)

6. .002 1.093*** .390

(.346) (7.252)

7. -.001 .727*** .281
(-.268) (5.672)

8. .007 1.082*** .518

(1.283) (9.392)

9. .005 .851*** .368
(.884) (6.912)

10. .008** .782*** .494

(2.006) (8.960)

11. .004 . 720*** .390
(.849) (7.240)

12. .001 .935*** .360
(.288) (6.917)

13. -.003 .865*** .415
(-.535) (7.634)

14. -.000 1.023*** .443
(-.001) (8.084)

15. -.001 1.061*** .438
(-.192) (8.007)

.404

.397

.356

.453

.591

.383

.273

.512

.360

.488

.382

.368

.408

.436

.431



TABLE III (continued)

Regression Results of the Log-Linear Model
Adjusted

Intercept § Rf R 2

.358

.318

.203

.237

.469

.610

.232

.441

.266

.257

.485

.457

.560

.349

16. .005 .994*** .365

(.713) (6.879)

17. .008 .828*** .326

(1.263) (6.308)

18. -.001 .805*** .213

(-.171) (4.714)

19. -.004 .562*** .247

(-.750) (5.187)

20. -.001 .851*** .475
(-.200) (8.627)

21. .002 1.090*** .614

(.439) (11.440)

22. -.009 .851*** .241

(-1.079) (5.110)

23. .000 .855*** .448

(.011) (8.165)

24. -.002 .865*** .274
(-.282) (5.576)

25. -.000 1.017*** .266
(-.034) (5.459)

26. .004 .913*** .491

(.952) (8.898)

27. .002 .656*** .464

(.609) (8.427)

28. .001 1.014*** .565

(.346) (10.339)

29. -.000 1.049*** .357
(-.117) (6.753)



TABLE III (continued)

Regression Results of the Log-Linear Model

Intercept 6 R-

Adjusted
R 2

Period 2 (1976-82)

1. -.017 1.235***

(-1.719) (5.525)

2. -.000 .580**

(-.001) (4.582)

3. .007 .518***

(1.634) (5.017)

4. -.009* 1.393***

(-1.901) (12.407)

5. -.002 .745***

(-.518) (6.665)

6. -.007 1.251***

(-1.002) (7.720)

7. -.007 942***

(-1.367) (7.886)

8. -.006 .887***
(-1.386) (8.390)

9. -.004 .656***
(-.761) (4.860)

10. -.002 .564***

(.545) (5.555)

11. -.000 .783***
(-.014) (8.467)

12. .003 1.113***
(.466) (6.934)

13. -.000 1.029***
(-.108) (7.555)

14. .001 .922***

(.203) (6.804)

15. -.005 1.077***
(-.844) (7.662)

271

203

234

652

351

420

431

461

223

273

466

369

410

360

417

.262

.194

.225

.648

.343

.413

.424

.455

.214

.264

.460

.361

.403

.353

.410



TABLE III (continued)

Regression Results of the Log-Linear Model
Adjusted

Intercept § Rf R2

.435 .428

.320 .312

.334 .326

.256 .247

.384 .377

.514 .508

.521 .515

.239 .230

.208 .198

.596 .591

.284 .275

.113 .103

.293 .285

.220 .211

16. -.012* 1.349***

(-1.690) (7.955)

17. -.013 1.070***

(-1.784) (6.223)

18. -.000 # 949***

(-.119) (6.418)

19. -.003 .666***

(-.574) (5.314)

20. .000 .733***

(.125) (7.163)

21. .002 .936***

(.496) (9.319)

22. .005 1.384***

(.876) (9.455)

23. -.002 .675***

(-.367) (5.083)

24. -.026** 1.118***
(-2.476) (4.647)

25. .003 1.234***

(.684) (11.001)

26. -.008 .770***

(-1.438) (5.705)

27. .001 .249***

(.159) (3.245)

28. -.005 .806***

(-.950) (5.842)

29. -.002 .813***
(-.283) (4.816)

*** Significance at 1% level



TABLE IV

Regression Results of the CES Model
Adjusted

Intercept B Y R2 R ?

Period 1 (1969-75)

1. .001 .927*** -1.602 .418 .404

(.234) (7.444) (-1.012)

2. -.005 .973*** 1.675 .412 .397

(-.729) (7.528) (1.020)

3. -.000 .722*** 1.492 .374 .358

(0.045) (6.939) (1.129)

4. .010 1.030*** -.831 .461 .448

(1.373) (8.227) (-.523)

5. .004 1. 129*** -.965 .598 .588

(.750) (10.850) (-0.730)

6. .002 1.092*** -.081 .390 .375

(.312) (7.172) (-.042)

7. .004 .710*** -2.379 .300 .283

(.562) (5.548 (-1.464)

8. .005 1.088*** .746 .519 .507

(.804) (9.356) (.505)

9. .007 .845*** -.847 .370 .354

(1.031) (6.801) (-.537)

10. .008 .783*** .066 .494 .482

(1.648) (8.872) (.059)

11. .002 .726*** .796 .392 .377

(.376) (7.240) (.625)

12. .002 .934*** -.141 .368 .353

(.285) (6.837) (-.081)

13. -.003 .868*** .303 .415 .401

(-.561) (7.575) (.208)

14. .005 1.005*** -2.339 .457 .444

(.785) (7.967) (-1.459)

15. .002 1.051*** -1.434 .443 .430

(.294) (7.878) (-.846)



TABLE IV (continued)

Regression Results of the CES Model
Adjusted

Intercept 6 Y R2 R 2

16. .003 1.000*** .782 .367 .351

(.370) (6.854) (.422)

17. .006 .834*** .729 .328 .311

(.826) (6.289) (.433)

18. .010 .770*** -4.720** .258 .239

(1.047) (4.596) (-2.217)

19. -.004 .564*** .334 .247 .229

(-.757) (5.157) (.240)

20. -.001 .853*** .345 .476 .463

(-.314) (8.566) (.273)

21. -.001 1.100*** 1.422 .621 .611

(-.261) (11.526) (1.173)

22. -.010 .853*** .256 .241 .223

(-.993) (5.072) (.167)

23. .007 .835*** -2.746** .476 .463

(1.139) (8.098) (-2.096)

24. .001 .854*** -1.534 .280 .262

(.179) (5.465) (-.772)

25. .002 1.009*** -1.086 .268 .250
(.217) (5.366) (-.455)

26. .011* .894*** -2.502* .513 .501

(1.863) (8.825) (-1.943)

27. -.001 .669*** 1.651* .482 .469

(-.386) (8.640) (1.679)

28. .007 1.000*** -2.441* .586 .575

(1.366) (10.290) (-1.984)

29. -.001 1.052*** .421 .357 .341

(-.212) (6.703) (.211)



TABLE IV (continued)

Regression Results of the CES Model
Adjusted

Intercept B_ Y R 2 R 2

Period 2 (1976-82)

1. -.009 1.242*** -3.673
(-.834) (5.569) (-1.175)

2. -.000 .579*** .494

(-.148) (4.547) (.277)

3. .004 .514*** 1.658

(.776) (4.993) (1.148)

4. -.013** 1.389*** 2.178
(-2.359) (12.434) (1.391)

5. -.013** .734*** 5.431***

(-2.455) (7.063) (3.727)

6. -.006 1.252*** -.596
(-.705) (7.680) (-.261)

7. -.016** .933*** 4.362***
(-2.638) (8.106) (2.702)

8. -.014*** .879*** 4.009***
(-2.719) (8.655) (2.814)

9. -.010 .650*** 2.986
(-1.497) (4.859) (1.592)

10. -.006 .560*** 1.946
(-1.195) (5.545) (1.373)

11. .001 .785*** -.820
(.323) (8.450) (-.630)

12. .006 1.116*** -1.421
(.728) (6.923) (-.629)

13. .000 1.030*** -.581
(.071) (7.518) (-.303)

14. -.003 .918*** 2.257
(.461) (6.786) (1.191)

15. -.000 1.982*** -2.515
(-.037) (7.725) (-1.280)

.283 .265

.204 .184

.247 .228

.660 .652

.446 .432

.421 .407

.478 .465

.509 .497

.247 .228

.290 .272

.469 .455

.372 .357

.411 .396

.371 .356

.428 .414



TABLE IV (continued)

Regression Results of the CES Model

16. -.022** 1.340*** 4.551* .460 .447

17. -.019** 1.064*** 2.612 .330 .313

18. -.005 .944*** 2.097 .342 .326

19. .001 .671*** -2.176 .270 .252

20. -.001 .731*** .841 .387 .372

21. -.006 .928*** 4.230*** .567 .557

22. .002 1.381*** 1.532 .524 .513

Intercept 6* Y

-.022** 1.340*** 4.551*
(-2.491) (8.032) (1.947)

-.019** 1.064*** 2.612
(-2.089) (6.197) (1.085)

-.005 .944*** 2.097
(-.639) (6.388)' (1.012)

.001 .671*** -2.176

(.172) (5.364) (-1.241)

-.001 .731*** .841

(-.205) (7.115) (.584)

-.006 .928*** 4.230***
(-1.240) (9.726) (3.163)

.002 1.381*** 1.532
(.344) (9.405) (.745)

-.002 .675*** .327

(-.402) (5.046) (.175)

-.017 1.128*** -4.701
(-1.363) (4.711) (1.401)

-.000 1.231*** 1.776
(-.021) (10.984) (1.131)

-.015** .763*** 3.310*
(-2.176) (5.728) (1.772)

-.001 .246*** 1.140
(-.430) (3.217) (1.061)

-.014** .798*** 4.227**
(-2.014) (5.919) (2.236)

.002 .817*** -2.279
(.272) (4.839) (-.963)

Adjusted
R2 R2

23. -.002 .675*** .327 .239 .221

(-.402) (5.046) (.175)

24. -.017 1.128*** -4.701 .227 .208
(-1.363) (4.711) (1.401)

25. -.000 1.231*** 1.776 .602 .592
(-.021) (10.984) (1.131)

26. -.015** .763*** 3.310* .310 .293
(-2.176) (5.728) (1.772)

27. -.001 .246*** 1.140 .125 .104
(-.430) (3.217) (1.061)

28. -.014** .798*** 4.227** .335 .318

(-2.014) (5.919) (2.236)

29. .002 .817*** -2.279 .229 .210

* Significance at 10% level
** Significance at 5% level
*** Significance at 1% level



TABLE V

Summary Statistics of Parameter Estimates

Period 1 (1969-75)
Standard

Period 2 (1976-82)
Standard

Translog Mean Deviation Mean Deviation

6
2

.923 .181 .909 .279

8
3

-.202 1.471 -.451 .751

*4 1.684 8.656 .148 2.087

B
5

-.696 2.012 .396 2.351

R
2

.433 .406

CES

8* .902

y -.504

R
2

.410

Log-Linear

e .906

R
2

.403

.145 .940 .345

1.569 1.144 2.629

.371

.146 .912 .283

.354



Table VI

Summary Statistics of Differences in Beta Risk Estimates

Period 1

Mean Max Min Mean
Period 2

Max Min

3 -3*
2

|3
2
-e*

.020 .180 -.135

.069 .180 .004

-.032

.069

.102 -.790

.790 .001

3 -3
2

|3 -3
|

.017 .170 -.133

.067 .170 .000

-.003

,046

.115 -.134

.134 .006

3-3*

1

3-3*

004 .035 -.013

,009 .035 .001

-.028

,035

.011 -.905

.905 .000



TABLE VII

Summary of F Statistics

Translog vs. CES Translog vs. Log-Linear

Period 1 Period 2 Period 1 Period 2

1. 3.35* .29 7.67* 1.99

2. 4.74* 1.09 10.41* 2.19

3. .64 1.12 2.14 3.36

4. 1.99 1.18 3.98* 3.80

5. .21 1.09 .84 15.91*

6. .09 1.08 .01 .01

7. 1.44 .21 4.91* 7.46*

8. 2.13 1.45 4.27* 11.03*

9. 2.68 2.57 5.37* 7.55*

10. 1.20 1.76 1.80 5.30*

11. 2.15 .68 4.31* 1.36

12. .87 2.99 1.50 6.46*

13. .35 4.06* .35 8.13*

14. 1.49 3.43* 5.06* 8.24*

15. 4.59* 2.33 9.76* 6.22*

16. .32 .20 .64 3.96*

17. 2.93 1.41 5.86* 3.84

18. 3.07 1.94 11.23* 4.71*

19. .38 .18 .77 1.85

20. 1.92 2.61 3.37 5.22*

21. 1.93 2.14 3.61 15.66*

22. 3.05 .82 5.91* 1.91



TABLE VII (continued)

Summary of F Statistics

Transilog vs. CES Translog vs. Log-Linear

Period 1

(1969-75)
Period 2

(1976-82)
Period 1

(1969-75)
Period 2

(1976-82)

23. .87 6.34* 5.70* 12.73*

24. 2.06 9.49* 4.72* 21.37*

25. .85 .70 1.84 2.33

26. 2.11 5.56* 7.99* 14.46*

27. .38 4.32* 3.87 8.65*

28. .24 2.35 3.92* 9.74*

29. .37 2.92 .74 6.51*

*Significant at 5 percent level.






