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PREFACE TO THE THIRD EDITION,

IN the preface to the second edition of my Higher

Plane Curves, I have explained the circumstances

under which I obtained Professor Cayley s valuable

help in the preparation of that volume. I have

now very gratefully to acknowledge that the same

assistance has been continued to me in the re-editing

of the present work. The changes from the preceding

edition are not so numerous here as in the case of

the Higher Plane Curves, partly because the book

not having been so long out of print required less

alteration, partly because the size to which the

volume had already swelled made it necessary to be

sparing in the addition of new matter. Prof. Cayley

having read all the proof sheets, the changes made at

his suggestion are too numerous to be particularized ;

but the following are the parts which, on now looking

through the pages, strike me as calling for special

acknowledgement, as being entirely or in great

measure derived from him; Arts.* 51 53 on the six

coordinates ofa line, the account of focal lines Art. 146,

Arts.f 314 322 on Gauss s method of representing

the coordinates of a point on a surface by two

parameters. The discussion of Orthogonal Surfaces

is taken from a manuscript memoir of Prof. Cayley s,

* These articles have been altered in the present edition.

t Now Arts. 377-384.
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Arts.* 332 337 nearly without alteration, and the

following articles with some modifications of my own.

Prof. Cayley has also contributed Arts.f 347 and 359

on Curves, Art.J 468 on Complexes, Arts. 567 to the

end of the chapter on Quartics, and Arts. 600 to

the end. Prof. Casey and Prof. Cayley had each

supplied me with a short note on Cyclides, but I

found the subject so interesting that I wished to

give it fuller treatment, and had recourse to the

original memoirs.

I have omitted the appendix on Quaternions

which was given in the former editions, the work of

Professors Kelland and Tait having now made
information on this subject very easy to be obtained.

I have also omitted the appendix on the order of

Systems of Equations, which has been transferred to

the Treatise on Higher Algebra.
I have, as on several former occasions, to acknow

ledge help given me, in reading the proof sheets, by
my friends Dr. Hart, Mr. Cathcart and Dr. Fiedler.

* Now Arts. 476^79. J Now Art. 453.

t Now Arts. 316 and 328. Now Art. 620.

Owing to the continued pressure of other en

gagements I have been able to take scarcely any
part in the revision of this fourth edition. My friend,

Mr. Cathcart, has laid me under the great obligation
of taking the work almost entirely off my hands,
and it is at his suggestion that some few changes
have been made from the last edition.

TRINITY COLLEGE DUBLIN,

Sept., 1882.
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ERRATA, &C.

FAGP.

7, note, line 5, for &quot;a,&quot;
read &quot;

a.&quot;

8, line 7, supply
&quot; = 0.&quot;

62, lines 12, 13, read &quot; ^w
l5
dw2 ,&quot;

as last terms of the, equations.

90, line 6 from bottom, and 91 line 8 from bottom read &quot;

parallelepiped.&quot;

122, 5, supply
&quot; = 0.&quot;

136, note, line 3, read &quot;M. Amiot (see Liouville
t
viu. p. 161, and X. p. 109).&quot;

214, last line but one, read &quot;

are,&quot;/or
&quot;

is.&quot;

251, to last line, Art. 286, add &quot; see Art. 607.&quot;

273, last line, read &quot;

normal,&quot; second note, end of line 2 add &quot;

of.&quot;

276, line 9 from bottom,for &quot;radius,&quot;
read &quot;axis.

1

297, 6, read &quot; + (*
-

2) dtk
~3

+,&quot;
line 6 from bottom, add &quot; see p. 588.&quot;

319, Art. 354, line 2, for
&quot;

(p. 298)&quot;
read (p. 297).&quot;

329, first line, Art. 363, read &quot; four consecutive points.&quot;

356, end of first line, add
&quot; see p. 374.&quot;

376, in figure read &quot;

d(j&amp;gt; ,&quot;for

&quot;

c^.&quot;

382, Ex. 2 the expressionfor is . .

C \ -}- fJ.

407, line 2 from bottom insert &quot;Art 285.&quot;

444, 10 read &quot;

condition.&quot;

476 3 &quot;

1 r &quot;

yr
&amp;gt; ,, ,,

1 - c-

568, 1 and 8 read &quot; Article
588,&quot; for

&quot; 577 .&quot;

Add at end of Chapter IX.

[It ought to have been stated in this Chapter, that Dr. Casey has remarked in the

Annali di Matematica, that the investigation given, Conies, p. 358, is capable of

immediate extension to space of three dimensions
;
that we can thus at once write

down an invariant relation between five quadrics whose equations are each of the form

S L? 0, and which touch another quadric also inscribed in S, and that hence the

equation of the quadric touching four others, all being inscribed in S, is

o,



ANALYTIC GEOMETRY OF THREE DIMENSIONS,

CHAPTER I.

THE POIXT.

1. WE have seen already how the position of a point

in a plane is determined, by referring it to two coordinate

axes OX, OY drawn in the plane. To determine the position

of any point P in space, we have only to add to our apparatus
a third axis OZ not in the plane (see figure next page)*

Then, if we knew the distance measured parallel to the line OZ
of the point P from the plane XOY, and also knew the x

and y coordinates of the point (7,
where PC parallel to OZ

meets the plane, it is obvious that the position of P would

be completely determined.

Thus, if we were given the three equations x = , y 5, z = c,

the first two equations would determine the point (7,
and then

drawing through that point a parallel to OZ^ and taking on it

a length PC = c, we should have the point P.

We have seen already how a change in the sign of a or

b affects the position of the point C. In like manner the sign

of c will determine on which side of the plane XO Y the line

PC is to be measured. If we conceive the plane XOYto be

horizontal, it is customary to consider lines measured upwards
as positive, and lines measured downwards as negative. In this

case, then, the z of every point above that plane is counted as

positive, and of every point below it as negative. -It is obvious

that every point on the plane has its z = 0.

B



THE POINT.

The angles between the axes may be any whatever; but

the axes are said to be rectangular when the lines OX, OY
are at right angles to each other, and the line OZ perpendicular

to the plane XOY.

2. We have stated the method of representing a point in

space, in the manner which seemed most simple for readers

already acquainted with Plane Analytic Geometry. We pro

ceed now to state the same more symmetrically. Our appa

ratus evidently consists

of three coordinate axes

OX, OY, OZ meeting
in a point 0, which, as

in Plane Geometry, is

called the origin. The

three axes are called the

axes of x, y, z respec

tively. These three axes

determine also three co

ordinate planes, namely,
the planes YOZ, ZOX,
XOY, which we shall

call the planes yz, zx,

xy, respectively. Now since it is plain that PA=CE=a,
PB=CD =

l&amp;gt;,

we may say that the position of any point P
is known if we are given its three coordinates

;
viz. PA drawn

parallel to the axis of x to meet the plane yz, PB parallel to

the axis of y to meet the plane zx, and PC parallel to the

axis of z to meet the plane xy.

Again, since OD = a, OE=b, OF=c,i\\Q point given by
the equations x a, y = b, z = c may be found by the follow

ing symmetrical construction : measure on the axis of x, the

length OD = a, and through D draw the plane PBCD parallel

to the plane yz : measure on the axis of
?/,
OE=

l&amp;gt;,

and through
E draw the plane PACE parallel to zx: measure on the axis

of z, OF -
c,

and through F draw the plane PABF parallel

to xy. the intersecti n of the three planes so drawn is the

point P, whose construction is required.
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3. The points -4, B, (7,
are called the projections of the

point P on the three coordinate planes ;
and when the axes are

rectangular they are its orthogonal projections. In what fol

lows we shall be almost exclusively concerned with orthogonal

projections, and therefore when we speak simply of projections,

are to be understood to mean orthogonal projections, unless the

contrary is stated. There are some properties of orthogonal

projections which we shall often have occasion to employ, and

which we therefore collect here, though we have given the proof

of some of them already. (See Conies, Art. 368).

The length of the orthogonal projection of a finite right line

on any plane is equal to the line multiplied by the cosine of the

angle* which it makes with the plane.

LtetPCjP C be drawn perpendicular to the plane X01
r

;

and CC f

is the orthogonal pro

jection of the line PPf
on that

plane. Complete the rectangle

by drawing PQ parallel to (70
,

and PQ will also be equal to

CC . But PQ = PP cosP PQ.

4. The projection on any

plane of any area in another

plane is equal to the original

area multiplied l&amp;gt;y

the cosine of
the angle between the planes.

* The angle a line makes with a plane is measured by the angle which the line

makes with its orthogonal projection on that plane.

The angle between two planes is measured by the angle between the perpendiculars
drawn in each plane to their line of intersection at any point of it. It may also be

measured by the angle between the perpendiculars let fall on the planes from any point.

The angle between two lines which do not intersect, is measured by the angle

between parallels to both drawn through any point.

When we speak of the angle between two lines, it is desirable to express without

ambiguity whether we mean the acute or the obtuse angle which they make with

each other. When therefore we speak of the angle between two lines (for instance

PP
}
CC in the figure), we shall understand that these lines are measured in the

directions from P to P and from C to
C&quot;,

and that PQ parallel to CC is measured in

the same direction. The angle then between the lines is acute. But if we spoke of the
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For if ordinates of both figures be drawn perpendicular to

the intersection of the two planes, then, by the last article,

every ordinate of the projection is equal to the corresponding

ordinate of the original figure multiplied by the cosine of the

angle between the planes. But it was proved (Conies, Art. 394),

that when two figures are such that the ordinates corresponding
to equal abscissae have to each other a constant ratio, then the

areas of the figures have to each other the same ratio.

5. The projection of a point on any line is the point where

the line is met by a plane drawn through the point perpen
dicular to the line. Thus, in figure, p. 2, if the axes be rect

angular, D, E, F are the projections of the point P on the three

axes.

The projection of a finite right line upon another right line

is equal to the first line multiplied l&amp;gt;y

the cosine of the angle

between the lines.

Let PP be the given line, and DD its projection on OX.

Through P draw PQ parallel to

OX to meet the plane P C D
^
and

since it is perpendicular to this

plane, the angle PQP
f
is right, and

PQ = PP cosP PQ. But PQ and

DD are equal, since they are the

intercepts made by two parallel

planes on two parallel right lines.

6. If there le any three points P, P , P&quot;,
the projection of

PP&quot; on any line will le equal to the sum of the projections on

that line of PP and P P&quot;.

Let the projections of the three points be
Z&amp;gt;,

Z&amp;gt;

,
D

,
then

if D lie between D^d
D&quot;,

DD&quot; is evidently the sum of D&

angle between PP and C C, we should draw the parallel PQ in the opposite direction,
and should wish to express the obtuse angle made by the lines with each other.

When we speak of the angles made by any line OP with the axes, we shall always
mean the angles between OP and the positive directions of the axes, viz. OX, OY, 02.
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and ZW. If D&quot; lie between D and D
,

Z&amp;gt;Z&amp;gt;&quot; is the difference

of DD and D
D&quot;]

but since the direction from D to Z&amp;gt;&quot; is

the opposite of that from D to D
,

DD&quot; is still the algebraic

sum of DD and D D&quot;. It may be otherwise seen that the

projection of P P&quot; is in the latter case to be taken with a

negative sign, from the consideration that in this case the

length of the projection is found by multiplying P P&quot; by the

cosine of an obtuse angle (see note, Art. 3). In general, if there

be any number of points P, P , P&quot;,
P&quot;

, &c., the projection

of PP&quot; on any line is equal to the sum of the projections of

PP
,
P

P&quot;,
P&quot;P&quot;

?
&c. The theorem may also be expressed in

the form that the sum of the projections on any line of the sides

of a closed polygon = 0.

7. We shall frequently have occasion to make use of the

following particular case of the preceding.

If the, coordinates of any point P be projected on any line,

the sum of the three projections is equal to the projection of the

radius vector on that line.

For consider the points 0, D, C, P (see figure, p. 2) and

the projection of OP must be equal to the sum of the pro

jections of OD(=x], DC(=y}, and CP(=z).

8. Having established those principles concerning projec

tions which we shall constantly have occasion to employ, we

return now to the more immediate subject of this chapter.

The coordinates of the point P dividing the distance between

two points P (3 yY), P&quot;
(x&quot;y&quot;z&quot;)

so that P P : PP&quot; : : m :
Z,

are

Ix -f mx&quot; ly + my&quot; lz + mz&quot;

x= ^ , y=~^j *-
,
z= ; .

I + m l + m l + m

The proof is precisely the same as that given at Comes, Art. 7,

for the corresponding theorem in Plane -Analytic Geometry.
The lines PJ/, QN in the figure there given now represent

the ordinates drawn from the two points to any one of the

coordinate planes.

If we consider the ratio I : m as indeterminate, we have the

coordinates of any point on the line joining the two given points.
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9. Any side of a triangle, P&quot; P&quot; is cut in the ratio m :
ft,

and

the line Joining this point to the opposite vertex P is cut in the

ratio m -f n :
I,

to find the coordinates of the point of section.

Ans.

Ix + mx&quot; + nx&quot; ly + my&quot; + ny
m

lz + mz&quot; + nz
m

nn -
.__ ni - &quot;_ii_&quot; ff - ,

l-\-m + n y

This is proved as in Plane Analytic Geometry (see Conies,

Art. 7). If we consider
Z, m, n as indeterminate, we have the

coordinates of any point in the plane determined by the

three points.

Ex. The lines joining middle points of opposite edges of a tetrahedron meet in

a point. The x s of two such middle points are ^ (x +
x&quot;), \ (x

&quot; +
x&quot;&quot;),

and the x
of the middle point of the line joining them is ^ (x + x&quot; + x &quot;

+#&quot;&quot;)
The other

coordinates are found in like manner, and their symmetry shews that this is also

a point on the line joining the other middle points. Through this same point will

pass the line joining each vertex to the centre of gravity of the opposite triangle.

For the x of one of these centres of gravity is ^ (x + x&quot; + x
&quot;),

and if the line join

ing this to the opposite vertex be cut in the ratio of 3 : 1, we get the same value

as before.

10. To find the distance between two points P, P
,
whose

rectangular coordinates are xf

yz ,
x f

y
ff

z&quot;.

Evidently (see figure, p. 3) PP/a = P^-J- QP \ But

QP = z
-z&quot;,

and PQ* = CC 2
is by Plane Analytic Geometry

=
(a* -a?&quot;)* +(/-/ )&quot;.

Hence

PP/2 =
(x

- x J + (/
- iff + (z

f - z
ff

}\

COR. The distance of any point x y z from the origin is

given by the equation

11. The position of a point is sometimes expressed by its

radius vector and the angles it makes with three rectangular

axes. Let these angles be a, /:?, 7. Then since the coordinates

Xj y, z are the projections of the radius vector on the three

axes, we have

And, since xz
-t y* + z

2 = p\ the three cosines (which are
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sometimes called the direction-cosines of the radius vector)

are connected by the relation

cos
2
a 4- cos

2

/3 + cos
2

7 = 1 .*

Moreover (compare Art. 7), x cos a 4- y cos/5 -f z cos 7 = p.

The position of a point is also sometimes expressed by the

following polar coordinates the radius vector, the angle 7 which

the radius vector makes with a fixed axis OZ, and the angle

COD(=&amp;lt;f&amp;gt;)
which 00 the projection of the radius vector on a

plane perpendicular to OZ (see figure, p. 4) makes with a fixed

line OX in that plane. Since then OC= p sin 7, the formulae

for transforming from rectangular to these polar coordinates are

x = p sin 7 cos
&amp;lt;, y = p sin 7 sin $, z = p cos 7.

12. The square of the area of any plane figure is equal to

the sum of the squares of its projections on three rectangular

planes.

Let the area be A^ and let a perpendicular to its plane

make angles a, /3, 7 with the three axes; then (Art. 4) the

projections of this area on the planes yz, zx, xy respectively,

are ^4cosa, A cos/5, A cos 7. And the sum of the squares

of these three = -4
s

,
since cos

2
a + cos

2

/? -f cos
2

7 = 1.

13. To express the cosine of the angle 6 between two lines

OP, OP in terms of the direction-cosines of these lines.

We have proved (Art. 10) that

* I have followed the usual practice in denoting the position of a line by these

angles, but in one point of view there would be an advantage in using instead the

complementary angles, namely, the angles which the line makes with the coordinate

planes. This appears from the corresponding formulae for oblique axes which I have

not thought it worth while to give in the text, as we shall not have occasion to use

them afterwards. Let a, ft, y be the angles which a line makes with the planes

yz, zx, xy, and let A, B, C be the angles which the axis of x makes with the plane

of yz, of y with the plane of zx, and of z with the plane of xy, then the formulae which

correspond to those in the text are

x sin A = p sin a, y sin B p sin /3, z sin C = p sin y.

These formulae are proved by the principle of Art. 7. If we project on a line perpen

dicular to the plane of yz, since the projections of y and of z on this line vanish, the

projection of x must be equal to that of the radius vector, and the angles made by x

and p with this line are the complements &quot;of A and a.
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But also PP&quot; =
/&amp;gt;

2 + p*
-
2pp cos 6.

And since p*
=

a&amp;gt;* + f + a
8

, p
2 = a?*

1 + j/

2 +
*&quot;,

we have
/&amp;gt;//

cos = xx -f ?/# + zz
,

or cos = cos a cos a + cos /3 cos /3 -f cos 7 cos7 .

COR. The condition that two lines should be at right angles

to each other is

cos a cos a + cos/3 cos/3 -f 0037 cos 7 . -$

14. The following formula is also sometimes useful :

sin
a =

(cos/3 cos 7 cos7 cos/3 )

a + (0037 cos a cos a 0037 )*

+ (cos a cos/3 cos/3 cos a )*.

This may be derived from the following elementary theorem

for the sum of the squares of three determinants (Lessons on

Higher Algebra, Art. 26), but which can also be verified at

once by actual expansion,

(bc
f - eh )* + (ca

f - Y +W -W
=

(c? + V + c
2

) (a + V* + c
/1J

)
-

(aa
f

+W + cc )\

For when a, 5, c
; &amp;lt;/,

&
,
c are the direction-cosines of two

lines, the right-hand side becomes 1 cos
2
0.

Ex. To find the perpendicular distance from a point x y z to a line through the

origin whose direction-angles are a, /3, y.

Let P be the point x y z
, OQ the given line, PQ the perpendicular, then it is

plain that PQ = OP sinPOQ; and using the value just obtained for sinPOQ, and

remembering that x OP cos a, &c., we have

PQ? = (y
1

cosy - z cos/3)
2 + (z

f

cos a x cosy)
2 + (x cos/3

-
y cos a)

2
.

15. To find the direction-cosines of a line perpendicular to

two given lines, and therefore perpendicular to their plane.
Let a /SYj &quot;$&quot;/

be the direction-angles of the given lines,

and a/37 of the required line, then we have to find a/3y from

the three equations

cos a cos a + cos/3 cos/3 +00370037 =0,

cos a cos a&quot; + cos J3 cos
/3&quot; + cos 7 cos

7&quot;

=
0,

cos a + cos
2

/3 -f cos
2

7 = 1.
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From the first two equations we can easily derive, by elimi

nating in turn cos a, cos/3, cosy,

X cos a = cos/3 0037&quot; cos/3&quot; 0037 ,

X cos /3
= cos 7 cos a&quot; 0037&quot;

cos a
,

X cos 7 = cosa cos/3&quot;- cos a&quot; cos/3 ,

where X is indeterminate
;
and substituting in the third equa

tion, we get (see Art. 14), if 6 be the angle between the two

given lines,
X* = sin

2
0.

This result may be also obtained as follows : take any two

points P, Q, or xy z, x&quot;y&quot;z&quot;,
one on each of the two given lines.

Now double the area of the projection on the plane of xy
of the triangle POQ, is (see Conies, Art. 36) xy&quot; #V, or

p p&quot; (COBOL cos/3&quot; cosa&quot; cos/3 ).
But double the area of the

triangle is
pp&quot;

sin 6, and therefore the projection on the plane
of xy is

pp&quot;
sin# cos 7. Hence, as before,

sin0 cos 7 = cosa cos/3&quot; cosa&quot; cos/3 ,

and in like manner

sin# cosa =cos/3 0037&quot; cos
/3&quot; 0037 ;

sin# cos/3 = cos 7 cosa&quot; 0037&quot; cosa .

TRANSFORMATION OF COORDINATES.

16. To transform to parallel axes through a new origin,

whose coordinates referred to the old axes, are xf

, y ,
z .

The formulae of transformation are (as in Plane Geometry)

For let a line drawn through the point P parallel to one

of the axes (for instance z] meet the old plane of xy in a point

C, and the new in a point C&quot;
;
then PC = PC + C C.

But PC is the old z, PC is the new z
;
and since parallel

planes make equal intercepts on parallel right lines, C C
must be equal to the line drawn through the new origin

parallel to the axis of z, to meet the old plane of xy.

17. To pass from a rectangular system of axes to another

system of axes having the same origin.

C
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Let the angles made by the new axes of
a?, y, z with the

old axes be a, /3, 7 ;
a

, /3 , 7 ; a&quot;, /3&quot;, 7&quot; respectively. Then

if we project the new coordinates on one of the old axes, the

sum of the three projections will (Art. 7) be equal to the

projection of the radius vector, which is the corresponding old

coordinate. Thus we get the three equations

Ycosa
4^cosa&quot;i

rcos/3 4^cos/3&quot; (A).

z =X cosy 4- 1^0037 4 Zcosy j

We have, of course, (Art. 11)

cos^a 4 cos
2

/3 -f 003*7 = 1, cosV 4 cos
2

/5 4- cosV = 1,

cosV 4 cos*/3&quot; 4 cosV = 1 (B).

Let \ /A, v be the angles between the new axes of y and z
9

of z and
a;,

of x and y respectively, then (Art. 13)

cos\ = cos a cos a&quot; 4 cos ft cos
ft&quot; 4 cos 7 cos 7

cos//,
= cosa&quot; cosa 4cos/8&quot;cosjS 4cos7

/r

cos7
j&amp;gt;

...((7).

= cosa cosa
r

4 cos/8 cos/3
7

40037 0037

18. If the new axes be also rectangular, we have therefore

cosa cos a&quot; 4 cos ft cos
/3&quot; 4 cos 7 cos

7&quot;

= 01

cosa&quot; cosa 4 cos/3&quot; cos/3 + cosy&quot; cosy =0/- ...
(Z&amp;gt;).

cosa cosa 4cos/3 cos/3 40037 0037 =oJ

When the new axes are rectangular, since a, a
,

a&quot; are

the angles made by the old axis of x with the new axes, &c.

we must have

cos
2
a 4 cosV 4 cosV = 1, cos ft 4 cos

2

/3 4 cos
2

ft&quot;
=

1,

cos
&amp;gt;2

7 4 cosY 4 cosy = 1 (E),

cos ft cosy 4- cos/3 0037 4 cos/3&quot; 0037&quot;
=

0037 cosa 40037 cosa 40037&quot; cosa&quot; =0
cosa cos ft 4 cosa cos ft 4 cosa&quot; cos/3&quot;

= 0.

and the new coordinates expressed in terms of the old are

.Z=a;cosa +ycosft 420037
&quot;j

Y=xcosa 4y cos/3 420037 &amp;gt; (G).

Z = x cosa&quot; 4 y cos
ft&quot; 4 2 cos7&quot;J



TRANSFORMATION OF COORDINATES. 11

The two corresponding systems of equations A and G may be

briefly expressed by the diagram



CHAPTER II.

INTERPRETATION OF EQUATIONS,

21. IT appears from the construction of Art. 1 that if we

were given merely the two equations x = a, y = b. and if the

z were left indeterminate, the two given equations would de

termine the point (7,
and we should know that the point P

lay somewhere on the line PC. These two equations then

are considered as representing that right line, it being the

locus of all points whose x = a^ and whose y = b. We learn

then that any two equations of the form x =
, y b represent

a right line parallel to the axis of z. In particular, the equa
tions x = 0, y = represent the axis of z itself. Similarly for

the other axes.

Again, if we were given the single equation x a^ we
could determine nothing but the point D. Proceeding, as at

the end of Art. 2, we should learn that the point P lay some

where in the plane PBCD, but its position in that plane would

be indeterminate. This plane then being the locus of all points

whose x =.
#, is represented analytically by that equation. We

learn then that any equation of the form x = a represents a

plane parallel to the plane yz. In particular, the equation
x == denotes the plane yz itself. Similarly, for the other

two coordinate planes.

22. In general, any single equation between the coordinates

represents a surface of some kind ; any two simultaneous equations

between them represent a line of some Mnd^ either straight or

curved / and any three equations denote one or more points.

I. If we are given a single equation, we may take for x

and y any arbitrary values
;

and then the given equation

solved for z will determine one or more corresponding values

of z. In other words, if we take arbitrarily any point C in

the plane of xy, we can always find on the line PC one or
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more points whose coordinates will satisfy the given equation.

The assemblage then of points so found on the lines PC will

form a surface which will be the geometrical representation

of the given equation (see Conies, Art. 16).

II. When we are given two equations, we can, by elimi

nating z and y alternately between them, throw them into

the form # = $(#), z = ^(x). If then we take for x any ar

bitrary value, the given equations will determine corresponding
values for y and z. In other words, we can no longer take

the point C anywhere on the plane of xy^ but this point is

limited to a certain locus represented by the equation y = fy(x}.

Taking the point C anywhere on this locus, we determine

as before on the line PC a number of points P, the assemblage
of which is the locus represented by the two equations. And
since the points (7,

which are the projections of these latter

points, lie on a certain line, straight or curved, it is plain that

the points P must also lie on a line of some kind, though of

course they do not necessarily lie all in any one plane.

Otherwise thus: when two equations are given, we have

seen in the first part of this article that the locus of points

whose coordinates satisfy either equation separately is a surface.

Consequently, the locus of points whose coordinates satisfy

both equations is the assemblage of points common to the

two surfaces which are represented by the two equations con

sidered separately : that is to say, the locus is the line of in

tersection of these surfaces.

III. When three equations are given, it is plain that they
are sufficient to determine absolutely the values of the three

unknown quantities a?, y, 2, and therefore that the given

equations represent one or more points. Since each equation

taken separately represents a surface, it follows hence that

any three surfaces have one or more common points of inter

section, real or imaginary.

23. Surfaces, like plane curves, are classed according to

the degrees of the equations which represent them. Since

every point in the plane of xy has its 2 = 0, if in any equation
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we make z = 0, we get the relation between the x and y
coordinates of the points in which the plane xy meets the

surface represented by the equation : that is to say, we get
the equation of the plane curve of section, and it is obvious

that the equation of this curve will be in general of the same

degree as the equation of the surface. It is evident, in fact,

that the degree of the equation of the section cannot be greater

than that of the surface, but it appears at first as if it might
be less. For instance, the equation

zx* + ay* + tfx = c
3

is of the third degree ;
but when we make z = 0, we get an

equation of the second degree. But since the original equation

would have been unmeaning if it were not homogeneous, every
term must be of the third dimension in some linear unit (see

Conies, Art. 69), and therefore when we make 3 = 0, the re

maining terms must still be regarded as of three dimensions.

They will form an equation of the second degree multiplied

by a constant, and denote (see Conies, Art. 67) a conic and

a line at infinity. If then we take into account lines at infinity,

we may say that the section of a surface of the order n

by the plane of xy will be always of the order n
;

and

since any plane may be made the plane of xy, and since

transformation of coordinates does not alter the degree of an

equation, we learn that every plane section of a surface of the

order n is a curve of the order n.

In like manner it is proved that every right line meets a

surface of the order n in n points. The right line may be

made the axis of z, and the points where it meets the surface

are found by making x 0, y = in the equation of the surface,

when in general we get an equation of the degree n to de

termine z. If the degree of the equation happened to be less

than n, it would only indicate that some of the n points where

the line meets the surface are at infinity (Conies, Art. 135).

24. Curves in space are classified according to the number
of points in which they are met by any plane. Two equations

of the degrees m and n respectively represent a curve of the

order inn. For the surfaces represented by the equations
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are cut by any plane in curves of the orders m and n

respectively, and these curves intersect in mn points.

Conversely, if the degree of a curve be decomposed in any
manner into the factors m, ??,

then the curve may be the inter

section of two surfaces of the degrees m, n respectively ;
and it

is in this case said to be a complete intersection. But not every
curve is a complete intersection : in particular we have curves,

the degree of which is a prime number, which are not plane
curves.

Three equations of the degrees m^ n, and p respectively^

denote mnp points.

This follows from the theory of elimination, since if we
eliminate y and z between the equations, we obtain an equation
of the degree mnp to determine x (see Lessons on Higher

Algebra, Arts. 73, 78). This proves also that three surfaces of
the orders

??z, w, p respectively intersect in mnp points.

25. If an equation only contain two of the variables

(
x

i y&amp;gt;) QJ tne learner might at first suppose that it represents

a curve in the plane of xy^ and so that it forms an exception
to the rule that it requires two equations to represent a curve.

But it must be remembered that the equation &amp;lt; (x, y)
= will

be satisfied not only for any point of this curve in the plane
of xy, but also for any other point having the same x and y
though a different z

;
that is to say, for any point of the

surface generated by a right line moving along this curve,

but remaining parallel to the axis of z* The curve in the

plane of xy can only be represented by two equations, namely,
s = 0, 0(a,#)=0.

If an equation contain only one of the variables, a:, we
know by the theory of equations that it may be resolved

into n factors of the form x a = 0, and therefore (Art. 21)

that it represents n planes parallel to one of the coordinate

planes.

* A surface generated by a right line moving parallel to itself is called a cylindrical
surface.



CHAPTER III.

THE PLANE AND THE EIGHT LINE.

26. IN the discussion of equations we commence of course

with equations of the first degree, and the first step is to

prove that every equation of the first degree represents a plane,
and conversely, that the equation of a plane is always of the

first degree. We commence with the latter proposition, which

may be established in two or three different ways.
In the first place we have seen (Art. 21) that the plane

of xy is represented by an equation of the first degree, viz.

2 = 0; and transformation to any other axes cannot alter the

degree of this equation (Art. 20).

We might arrive at the same result by forming the equation
of the plane determined by three given points, which we can

do by eliminating Z, m, n from the three equations given
Art. 9, when we should arrive at an equation of the first

degree. The following method, however, of expressing the

equation of a plane leads to one of the forms most useful in

practice.

27. To find the equation of a plane, the perpendicular on

which from the origin =p, and makes angles a, /3, 7 with the

axes.

The length of the projection on the perpendicular of the

radius vector to any point of the plane is of course p^ and

(Art. 7) this is equal to the sum of the projections on that

line of the three coordinates. Hence we obtain for the equa
tion of the plane

x cosa + j/ cos/3 + cosy = p.*

* In what follows we suppose the axes rectangular, but this equation is true

whatever be the axes.
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28. Now, conversely, any equation of the first degree

Ax + By + Cz -t- D =
0,

can be reduced to the form just given, by dividing it by a

factor R. We are to have A = R cos a, B - R cos/3, C= R 0037,

whence, by Art. 11, R is determined to be = J(A* + #*+ *)

Hence any equation Ax -\-By-\- Cz -f D = may be identified

with the equation of a plane, the perpendicular on which from

- D
the origin = r^ 7m j

an^ makes angles with the

axes whose cosines are A
} B, C, respectively divided by the

same square root. We may give to the square root the

sign which will make the perpendicular positive, and then the

signs of the cosines will determine whether the angles which

the perpendicular makes with the positive directions of the

axes are acute or obtuse.

29. To find the angle between two planes.

The angle between the planes is the same as the angle
between the perpendiculars on them from the origin. By the

last article we have the angles these perpendiculars make with

the axes, and thence, Arts. 13, 14, we have

AA +Bff+CCT
[* + &+C*)(A

* + B&quot; +

sin
20=

r7?n/ ~ R/

(A
z + B* + &amp;lt;7

2

) (A
* + B* + (J

f

*}

Hence the condition that the planes should cut at right angles
bAA + BB + (7(7 = 0.

They will be parallel if we have the conditions

~p rif ~D n HA fv A A 7? A 7? .Jj\j = Jj O, \j^i. = \j ^L. ^lJD = ^L AJ I

in other words, if the coefficients A, B, C be proportional to

A
, B, C

,
in which case it is manifest from the last article that

the directions of the perpendiculars on both will be the same.

30. To express the equation of a plane in terms of the in

tercepts a, Z&amp;gt;, c, which it makes on the axes.

D
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The intercept made on the axis of x by the plane

Ax + By 4 Cz 4 D =

is found by making y and z both = 0, when we have Aa 4 D = 0.

And similarly, Bb + D =
0, Cc -\~ D = 0. Substituting in the

general equation the values just found for A, 5, 6Y

,
it becomes

x v z
-4 f 4- = l.
a b c

If in the general equation any term be wanting, for instance

if .4 = 0, the point where the plane meets the axis of x is at

infinity, or the plane is parallel to the axis of x. If we have

both .4 = 0, 5=0, then the axes of x and y meet at infinity the

given plane which is therefore parallel to the plane of xy (see

also Art. 21). If we have ^4 = 0, 5=0, (7=0, all three axes

meet the plane at infinity, and we see, as at Conies, Art. 67,

that an equation 0,# + 0.?/ + 0.z + D = must betaken tore-

present a plane at infinity.

31. To find the equation of the plane determined by three

points.

Let the equation be Ax 4 By 4 Cz + D =
;
and since this

is to be satisfied by the coordinates of each of the given points,

.4, 5, (7,
D must satisfy the equations

Eliminating -4, 5, (7,
D between the four equations, the

result is the determinant

a?

= 0.

Expanding this by the common rule, the equation is

-f y \z (x&quot;

- x
&quot;)

+ z&quot;
(x&quot;

f - x
} + z&quot; (x

-
x&quot;)}

= x
(y&quot;z &quot;-y &quot;z&quot;)

+ x&quot; (y &quot;z
-
y z&quot;)

+ *&quot; (y z&quot;
-

y&quot;z).
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If we consider x, y, z as the coordinates of any fourth

point, we have the condition that four points should lie in

one plane.

32. The coefficients of #, y, z in the preceding equation

are evidently double the areas of the projections on the co

ordinate planes of the triangle formed by the three points.

If now we take the equation (Art. 27)

x cos a + y cos /3 + z cos y =p1

and multiply it by twice A (A being the area of the triangle

formed by the three points), the equation will become identical

with that of the last article, since A cos a, A cos/3, A cos 7?

are the projections of the triangle on the coordinate planes

(Art. 4). The absolute term then must be the same in both

cases. Hence the quantity

f i rr fff rrr //\ . ////// t / frr\ . /// / / n // t\np [ ti *y _ ?/ & \ _L- nt* i 11 5* ^_ ^/ -5* i /&amp;gt; i j/ ty ^ ii & \jc \y z yz)-\-x\yzyz)-\-x \y z y z
)

represents double the area of the triangle formed by the three

points multiplied by the perpendicular on its plane from the

origin ; or, in other words, six times the volume of the triangular

pyramid^ wliose base is that triangle^ and whose vertex is the

origin.*

* If in the preceding values we substitute for xf

, y ,
z

; p cos a , p cos /3 , p cos y ,

&amp;lt;tc.,
we find that sis times the volume of this pyramid = p p p

&quot;

multiplied by the

determinant

cos a
,

cos /3 ,
cos y

cos
a&quot;,

cos
(3&quot;,

cos
y&quot;

cos a
&quot;, cos/3&quot; , cosy

Now let us suppose the three radii vectores cut by a sphere whose radius is unity,

having the origin for its centre, and meeting it in a spherical triangle R R&quot;R &quot;. Then

if a denote the side R
R&quot;, and^&amp;gt;

the perpendicular on it from R &quot;

y
six times the volume

of the pyramid will be p p&quot;p&quot;
sin a

sin/&amp;gt; ;
for p p&quot;

sin a is double the area of one face

of the pyramid, and p
&quot;

sinj? is the perpendicular on it from the opposite vertex. It

follows then that the determinant above written is equal to double the function

J{sin s sin (5 a) sin (s b) sin (s c)}

of the sides of the above-mentioned spherical triangle. The same thing may be

proved by forming the square of the same determinant according to the ordinary

rule
;
when if we write

cos a&quot; COS a&quot; + cos
/3&quot; cos/3&quot; + cos

y&quot;
cos y

&quot; = cos a, &c.,
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We can at once express A itself in terms of the coordinates

of the three points by Art. 12, and must have 4:A
2

equal to

the sum of the squares of the coefficients of
a:, y, and

2, in

the equation of the last article.

33. To find the length of the perpendicular from a given point
x y z on a given plane, x cos a + y cos j3 4 z cos 7 p.

If we draw through x y z a plane parallel to the given

plane, and let fall on the two planes a common perpendicular
from the origin, then the intercept on this line will be equal
to the length of the perpendicular required, since parallel planes
make equal intercepts on parallel lines. But the length of

the perpendicular on the plane through x y z
is, by definition

(Art. 5), the projection on that perpendicular of the radius

vector to x y z
,
and therefore (Art. 27) is equal to

x cos a + y cos/3 + z
r

cosy.

The length required is therefore

x cos a 4- y
f

cos /3 + z cos 7 p.

N.B. This supposes the perpendicular on the plane through
x y z to be greater than p ; or, in other words, that x y z and

the origin are on opposite sides of the plane. If they were

on the same side, the length of the perpendicular would be

p (x cosa + 2/
cos /3 + / cos 7). If the equation of the plane

had been given in the form Ax + By + Cz +D =
Q, it is re-

we get
1, cose, cosi

cos c, 1
,

cos a

cos#, cos a, 1

which expanded is 1 + 2 cos a cos b cos c cos2a cos2 cos -
c, which is known to

have the value in question.

It is useful to remark that when the three lines are at right angles to each other

the determinant

cos a
,

cos /3 ,
cos y

cos
a&quot;,

cos
/3&quot;,

cos
y&quot;

cos a
&quot;,

cos /3 &quot;,
cos y

&quot;

has unity for its value. In fact we see, as above, that its square is

1, 0,

0, 1,

0, 0, 1
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duced, as in Art. 28, to the form here considered, and the length
of the perpendicular is found to be

Cz +D

It is plain that all points for which Ax + By -f Cz 4 D
has. the same sign as D, will be on the same side of the plane
as the origin ;

and vice versa when the sign is different.

34. To find the coordinates of the intersection of three planes.

This is only to solve three equations of the first degree
for three unknown quantities (see Lessons on Higher Algebra^

Art. 29). The values of the coordinates will become infinite

if the determinant (AB C&quot;) vanishes, or

A (B C&quot;- B&quot;C
)
+A (K C-BC&quot;) + A&quot; (BC -B C) = Q.

This then is the condition that the three planes should be

parallel to the same line. For in such a case the line of in

tersection of any two would be also parallel to this line, and

could not meet the third plane at any finite distance.

35. To find the condition that four planes should meet in a

point.

This is evidently obtained, by eliminating #, y, z between

the equations of the four planes, and is therefore the determinant

(AffC&quot;jy&quot;)i
or

A, B, &amp;lt;7,

D
A, B

, V, D
A&quot;, B&quot;, C&quot;,

D&quot;

A&quot;,
Bm

, &amp;lt;7&quot;,

D = 0.

36. To find the volume of the tetrahedron whose vertices are

any four given points.

If we multiply the area of the triangle formed by three

points, by the perpendicular on their plane from the fourth,
we obtain three times the volume. The length of the per

pendicular on the plane, whose equation is given (Art. 31), is

found by substituting in that equation the coordinates of the

fourth point, and dividing by the square root of the sum of

the squares of the coefficients of
a-, y, z. But (Art. 32) that
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square root is double the area of the triangle formed by the

three points. Hence six times the volume of the tetrahedron

in question is equal to the determinant

x
, y ,

z
,

1

r&quot; u&quot; z&quot; 1x z

/// /// ///

, y &amp;gt;

37. It is evident, as in Plane Geometry (see Conies, Art. 40),

that if Sj /$
,

$&quot; represent any three surfaces, then aS+bS
,

where a and b are any constants, represents a surface passing

through the line of intersection of 8 and &amp;gt;S&quot;

;
and that

aS+.b& + c& represents a surface passing through the points

of intersection of 8, /S&quot;,
and 8&quot;. Thus then, if Z, I/, JV denote

any three planes, aL + 5J/ denotes a plane passing through
the line of intersection of the first two, and aL+bM+cN
denotes a plane passing through the point common to all

three.&quot;)&quot;

As a particular case of the preceding aL + b denotes a plane

parallel to jC, and aL 4 bM+ c denotes a plane parallel to the

intersection of L and M (see Art. 30).

So again, four planes L, J/, N, P will pass through the

same point if their equations are connected by an identical

relation

for then any coordinates which satisfy the first three must

satisfy the fourth. Conversely, given any four planes inter

secting in a common point, it is easy to obtain such an identical

relation. For multiply the first equation by the determinant

* The volume of the tetrahedron formed by four planes, whose equations are given,

can be found by forming the coordinates of its angular points, and then substituting

in the formula given above. The result is (see Lessons on Higher Algebra, Art. 30),

that six times the volume is equal to

(AB C&quot;) (A B&quot;C&quot;

r

) (A&quot;B &quot;C) (A &quot;BC
)

where R is the determinant (AB C&quot;D
&quot;)

Art. 35, and the factors in the denominator

express the conditions (Art. 34) that any three of the planes should be parallel to

the same line.

f German writers distinguish the system of planes having a line common by the

name Biischel from the system having only one point common, which they call Biindel.
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(^ &quot;6&quot;&quot;),
the second by

-
(A&quot;ff&quot;C),

the third by (A&quot;BC \
and the fourth by

-
(ARC&quot;), and add, then (Lessons on Higher

Algebra, Art. 7) the coefficients of x, y, z vanish identically ;

and the remaining term is the determinant which vanishes

(Art. 35), because the planes meet in a point. Their equations

are therefore connected by the identical relation

L (A H C
&quot;)

-
M(A&quot;B &quot;C) + N(A &quot;BC

)

- P(AB G&quot;)
= 0.

38. Given any four planes L, M, N, P not meeting in a

point, it is easy to see (as at Conies, Art. 60) that the equation

of any other plane can be thrown into the form

And in general the equation of any surface of the degree n

can be expressed by a homogeneous equation of the degree n

between L, M, N, P (see Conies, Art. 289). For the number

of terms in the complete, equation of the degree n between three

variables is the same as the number of terms in the homogeneous

equation of the degree n between four variables.

Accordingly, in what follows, we shall use these qiiadri-

planar coordinates, whenever by so doing our equations can

be materially simplified ;
that is,

we shall represent the equation

of a surface by a homogeneous equation between four coordinates

a-, y, z, w
;
where these may be considered as denoting the

perpendicular distances, or quantities proportional to the per

pendicular distances (or to given multiples of the perpendicular

distances) of the point from four given planes x 0, y = 0,

z = 0, w = 0.

It is at once apparent that, as in Conies, Art. 70, there is also

a second system of interpretation of our equations, in which an

equation of the first degree represents a point, and the variables

are the coordinates of a plane. In fact, if LMNP denote the

coordinates of a fixed point, the above plane passes through it if

aL + bM + cNf

-f dP =
0, and the coordinates of any plane

through this point are subject only to this relation. The

quantities, a, b, c, d may be considered as denoting the perpen
dicular distances, or quantities proportional to the perpendicular
distances (or to given multiples of the perpendicular distances)
of the plane from four given points a = 0, b = 0, c = 0, d 0.



24 THE RIGHT LINE.

Ex. 1. To find the equation of the plane passing through x y z
,
and through the

intersection of the planes

Ax + By + Cz + D, A x + B y + C z + D f

(see Conies, Art. 40, Ex. 3).

Ans. (A x +B y + C z + D } (Ax + 3y + Cz + D}=(Ax +By +Cz +D} (A x+B y+C z+D ).

Ex. 2. Find the equation of the plane passing through the points ABC, figure,, p. 2.

*)C II Z
The equations of the line BC are evidently

- =
1, * -f - = 1. Hence obviously the

equation of the required plane is h 4 + - =2, since this- passes through each of the

three lines joining the three given points.

Ex. 3. Find the equation of the plane PEF in the same figure.

II Z
The equations of the line EF are x = 0,

- + - = 1 ; and forming as above the equa-
o c

77 (3 SC

tion of the plane joining this line to the point abc, we get -\ = 1.

39. If four planes which intersect in a right line be met by

any plane, the anharmonic ratio of the pencil so formed will be

constant. For we could by transformation of coordinates make

the transverse plane the plane of xy, and we should then obtain

the equations of the intersections of the four planes with this

plane by making z = in the equations. The resulting equations

will be of the form aL + M, bL + M, cL + M, dL +M
y
whose

anharmonic ratio (see Conies, Art. 59) depends solely on the

constants a, Z&amp;gt;, c, d\ and does not alter when by transformation

of coordinates L and M come to represent different lines.

THE RIGHT LINE.

40. The equations of any two planes taken together will

represent their line of intersection, which will include all the

points whose coordinates satisfy loth the equations. By elimi

nating x and y alternately between the equations we reduce

them to a form commonly used, viz.

x = mz +
, y = nz + ~b.

The first represents the projection of the line on the plane of

xz and the second that on the plane of yz. The reader will ob

serve that the equations of a right line include four independent

constants.

We might form independently the equations of the line

joining two points; for taking the values given (Art. 8) of the
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coordinates of any point on that line, solving for the ratio

m : I from each of the three equations there given, and equa

ting results, we get

y-y z-z
~

I, _ 1,&quot;

&quot;

p
f _ ?&quot;y-y z -z

for the required equations of the line. It thus appears that

the equations of the projections of the line are the same as the

equations of the lines joining the projections of two points on

the line, as is otherwise evident.

41. Two right lines in space will in general not intersect.

If the first line be represented by any two equations
=

0,

Jf=0, and the second by any other two ^=0, P=0, then if

the two lines meet in a point, each of these four planes must

pass through that point, and the condition that the lines should

intersect is the same as that already given (Art. 35).

Two intersecting lines determine a plane whose equation
can easily be found. For we have seen (Art. 37) that when
the four planes intersect, their equations satisfy an identical

relation

aL + bM+ cN+ dP= 0.

The equations therefore aL + &J/= 0, and 0^4- dP must

be identical and must represent the same plane. But the form

of the first equation shows that this plane passes through the

line L, Mj and that of the second equation shows that it passes

through the line N, P.

Ex. &quot;When the given lines are represented by equations of the form

x - mz + a, y = nz + b
j x m z 4- a

, y = n z + b
,

the condition that they should intersect is easily found. For solving for z from the

first and third equations, and equating it to the value found by solving from the

second and fourth, we get

a a b b

m m n nr

Again, if this condition is satisfied, the four equations are connected by the identical

relation

(n
- n

} {(x ~mz-a)-(x- m z - )}
=

(?
- m

) {(y
- nz - b}

-
(y
- n z - b

)},

and therefore (n n
) (x mz a) = (m m

} (y
- nz - b)

is the equation of the plane containing both lines.
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42. To find the equations of a line passing through the point
x y z, and making angles a, /:?, 7 with the axes.

The projections on the axes, of the distance of x y z from

any variable point xyz on the line, are respectively x x
,

y - y i
z z and since these are each equal to that distance

multiplied by the cosine of the angle between the line and the

axis in question, we have

x x y y z

cosa cos/8 cos 7

a form of writing the equations of the line which, although
it includes two superfluous constants, yet on account of its

symmetry between x^ ?/,
z is often used in preference to the

first form in Art. 40.

Reciprocally, if we desire to find the angles made with the

axes by any line, we have only to throw its equation into the

form
-j

= = 7T
~ when the direction-cosines of the

-4 &amp;gt; L&amp;gt;

line will be respectively A^ B, C, each divided by the square
root of the sum of the squares of these three quantities.

Ex. 1. To find the direction-cosines of x = mz + a, y = nz + b. &quot;Writing the equa
tea y b z

tions in the form = =
, ,

the direction-cosines arem n J.

4(1 + m* + re
2
) J(l + m2 + wa

) J(l + m l + rc
2
)

*

Ex, 2. To find the direction-cosines of
-j
=

,
z = 0. Ans. ,fn 2 ,

-rrr ^ , 0;
I 771 N\ * ^&quot;&quot;) *Jyt**~T~?M ^

Ex. 3. To find the direction-cosines of

Ax + By + Cz + D, A x + B y + C z + D .

Eliminating y and z alternately we reduce to the preceding form, and the

BC -B G CA -CA AB -A B ,

direction-cosines are 5 , 5 , 5 . where 722 is the sum ofK jK Jt

the squares of the three numerators.

Ex. 4. To find the equation of the plane through the two intersecting lines

aj x y y z z x x y y z z

cos a cos/3 cosy cos a cos/3 cosy
*

The required plane passes through x y z and its perpendicular is perpendicular to two

lines whose direction-cosines are given ;
therefore (Art. 15), the required equation is

(x x
} (cos /3 cos y cos y COS

/3&quot;)
+ (y

-
y } (cos y cos a cos y cos a)

+ (z z
) (cos a COS /3 cos a COS /3)

= 0.
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Ex. 5. To find the equation of the plane passing through the two parallel lines

x x _ y y _ z z x x&quot; _ y y&quot; _ z

cos a
~

cos /3 cos y cos a cos f3 cos y

The required plane contains the line joining the given points, whose direction-

cosines are proportional to x
x&quot;, y y&quot;,

z z&quot;
;
the direction-cosines of the

perpendicular to the plane are therefore proportional to

(/
-

y&quot;}
cos y - (z

-
z&quot;} cos/3, (z

-
z&quot;)

cos a - (x
r -

x&quot;}
cos y,

(x
r

x&quot;)
cos /3 (/ y&quot;}

cos ct.

These may therefore be taken as the coefficients of a;, y, z, in the required equation,

while the absolute term determined by substituting x y z for xyz in the equation is

(y z&quot;
-

y&quot;z } cos a + (z x&quot;
-

z&quot;x
}
cos ft + (x y&quot;

-
x&quot;y )

cos y .

43. To find the equations of the perpendicular from x y z

on the plane Ax + By -\-Gz-\-D. The direction-cosines of the

perpendicular on the plane (Art. 28) are proportional to A, J5, (7;

hence the equations required are

x x v y z z
fABC

44. To find the direction-cosines of the bisector of the angle

between two given lines.

As we are only concerned with directions it is of course

sufficient to consider lines through the origin. If we take

points x y z
^ x&quot;y&quot;z

f

one on each line, equidistant from the

origin, then the middle point of the line joining these points

is evidently a point on the bisector, whose equation therefore is

x y z

x + x&quot; y +
y&quot;

z+z&quot;

and whose direction-cosines are therefore proportional to

x +
x&quot;, / + / ,

z
+z&quot;;

but since x
, y ,

z
x&quot;, y&quot;^

z&quot; are evidently proportional to the

direction-cosines of the given lines, the direction-cosines of the

bisector are

cos a! -f cos
a&quot;,

cos@ -f- cos /3
r/

,
cos y -f cos

7&quot;,

each divided, by the square root of the sum of the squares of

these three quantities.

The bisector of the supplemental angle between the lines

is got by substituting for the point x
f

y
ff

z&quot; a point equidistant
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from the origin measured in the opposite direction, whose

coordinates are -
x&quot;

, #&quot;,
z&quot; and therefore the direction-

cosines of this bisector are

cos a - cos
a&quot;,

cos /3 cos
/3&quot;,

cos7 cos
7&quot;,

each divided by the square root of the sum of the squares of

these three quantities. The square roots in question are ob

viously V(22cosS); that
is,

2 cos \ 8 and 2 sinJS, if 5 is the

angle between the two lines.

N.B. The equation of the plane bisecting the angle between

two given planes is found precisely as at Conies, Art. 35, and is

(x cos a 4- y cos/3 -f z 0037 p)
=

(x cosa -f- y cos/3 -h z 0037 ^/).

45. To find the angle made with each other ly two lines

x a__y b__8 C
f xa_yb_zc

I m n I m n

Evidently (Arts. 13, 42),

- II -F mm -f- nn
=

V(^ + v? +
n&quot;) V(/&quot;+ *+ ri*)

COR. The lines are at right angles to each other if

ll
f

-f mm + nn = 0.

2C ?/ Z 1C

Ex. To find the angle between the lines 5
=

-fr-
= -r-rr, ; -rr- - y, z - 0. Am. 30.

46. To find the angle between the plane Ax + J5^ + Cz + Z^,

j a J 2? c
.

I m n

The angle between the line and the plane is the complement
of the angle between the line and the perpendicular on the

plane, and we have therefore

Al+Bm + Cn
sin 6 =

+ n + n
z

) vp1 + B* + C2

)

COR. When Al + Bm -f Cn 0, the line is parallel to the

plane, for it is then perpendicular to a perpendicular on the

plane.
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47. To find the conditions that a line x mz
-{-a, y = nz + b

should be altogether in a plane Ax -f By -4- Cz -f- D. Substitute

for x and y in the equation of the plane, and solve for
,
when

we have

Aa 4- Bb -f D
~
Am -i- Bn + C

and if both numerator and denominator vanish, the value of 2

is indeterminate and the line is altogether in the plane. We
have just seen that the vanishing of the denominator expresses

the condition that the line should be parallel to the plane ;
while

the vanishing of the numerator expresses that one of the points

of the line is in the plane, viz. the point ab where the line meets

the plane of xy.

In like manner in order to find the conditions that a right

line should lie altogether in any surface, we should substitute

for x and y in the equation of the surface, and then equate to

zero the coefficient of every power of z in the resulting equation.

It is plain that the number of conditions thus resulting is one

more than the degree of the surface.*

48. To find the equation of the plane drawn through a given

line perpendicular to a given plane.

Let the line be given by the equations

and let the plane be

A&quot;x + B&quot;y+C&quot;e + D&quot; = 0.

Then any plane through the line will be of the form

and, in order that it should be perpendicular to the plane, we
must have

(\A -f- ftA )
A&quot; + (\B 4 /* )

B&quot; + (\C + p C }
C&quot; = 0.

* Since the equations of a right line contain four constants, a right line can be

determined which shall satisfy any four conditions. Hence any surface of the second

degree must contain an infinity of right lines, since we have only three conditions to

satisfy and have four constants at our disposal. Every surface of the third degree
must contain a finite number of right lines, since the number of conditions to be
satisfied is equal to the number of disposable constants. A surface of higher degree
will not necessarily contain any right line lying altogether in the surface,
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This equation determines X :
/z,

and the equation of the required

plane is

(A A&quot; +BE -f C C&quot;) (Ax + By+Cz + D]
= (A A&quot; + BB&quot; -f

(7(7&quot;) (Ax + B y + C z + U).

When the equations of the given plane and line are given
in the form

n x x y u z z
x cosa -f y cosp 4- z 0037 = p : T = -

^-.
= -

, :

cosa cos/3 cos 7

we can otherwise easily determine the equation of the required

plane. For it is to contain the given line whose direction-angles

are a
, /3 , 7 ;

and it is also to contain a perpendicular to the

given plane whose direction-angles are a, /3, 7. Hence (Art. 15)

the direction-cosines of a perpendicular to the required plane are

proportional to

cos/3 cosy cos/3 0037 , 0037 cosa 0037 cosa ,
cosa cos/3 cosa cos/3 ,

and since the required plane is also to pass through xyz, its

equation is

(x x
} (cos/3 cos 7 cos/3 0037) -f (yy

f

] (0037 cosa - 0037 cosa)

+ (z z
} (cosa cos/3 cosa cos/3)

= 0.

49. Given two lines to find the equation of a plane drawn

through either parallel to the other.

First, let the given lines be the intersections of the planes

Z, MJ Nj P, whose equations are given in the most general
form. Then proceeding exactly as in Art. 37, we obtain the

identical relation

L(A ff G&quot;
}-M(A&quot;B&quot; C}+N(A

mBC )-P(AB
f

C&quot;]=.(AB&quot;G &quot;D\

the right-hand side of the equation being the determinant, whose

vanishing expresses that the four planes meet in a point. It is

evident then that the equations

L
(A!B&quot;G &quot;} -M(A Bm C) =0, N(A &quot;BG

)
-

P(AI?G&quot;}
=

represent parallel planes, since they only differ by a constant

quantity ;
but these planes pass each through one of the given

lines.
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Secondly, let the lines be given by equations of the form

x x y y z z
^
x- x&quot; y

-
y&quot; _z z&quot;

cos a cos/8 cos7 cosa cos/3 cos 7

Then since a perpendicular to the sought plane is perpendicular

to the direction of each of the given lines, its direction-cosines

(Art. 15) are the same as those given in the last example, and

the equations of the sought parallel planes are

(x x
} (cos 13 cos y cos /3 cos 7)+(?/ ?/ ) (cos 7 cos a cos 7 cos a)

+ (z 2 ) (cos a cos/3 cos a cos/3) = 0,

(x #&quot;)(cos/3
cos 7 cos/3 cos 7)-!- (yy&quot;) (cos 7 cos a 0037 cos a)

+ (z z&quot;) (cos a cos /3 cos a cos /3)
= 0.

The perpendicular distance between two parallel planes is equal

to the difference between the perpendiculars let fall on them

from the origin, and is therefore equal to the difference between

their absolute terms, divided by the square root of the sum of

the squares of the common coefficients of x, y, z. Thus the per

pendicular distance between the planes last found is

(x
f

x&quot;) (cos /3 cos 7 - cos /3 cosy) -f (yy&quot;) (0087 cosa cosy cosa)

-}- (/ 2&quot;) (cosa cos/3 cosa cos/3) divided by sin #,

where 6 (see Art. 14) is the angle between the directions of the

given lines. It is evident that the perpendicular distance here

found is shorter than any other line which can be drawn from

any point of the one plane to any point of the other.

50. To find the equations and the magnitude of the shortest

distance between two non-intersecting lines.

The shortest distance between two lines is a line per

pendicular to both, which can be found as follows: Draw

through each of the lines, by Art. 48, a plane perpendicular

to either of the parallel planes determined by Art. 49 * then the

intersection of the two planes so drawn will be perpendicular
to the parallel planes, and therefore to the given lines which

lie in these planes. From the construction it is evident that

the line so determined meets both the given lines. Its mag
nitude is plainly that determined in the last article. Calculating
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by Art. 48 the equation of a plane passing through a line whose

direction-angles are a, /3, 7, and perpendicular to a plane whose

direction-cosines are proportional to

cos/3 cos7-cos/3cos7 , 0037 cosa 0037 cosa ,
cosa cos/3 cosacosyS ,

we find that the line sought is the intersection of the two planes

(x x) (cos a cos 6 cos a) + (y y ) (cos /3 cos 9 cos/3)

-f (z z) (cos7 cos 6 cos 7) = 0,

(x - x&quot;) (cos a cos 9 cos a ) + (y
-

y&quot;} (cos/8
- cos 9 cos/3 )

+ (z z&quot;) (cos 7
- cos 9 cos 7 )

= 0.

The direction-cosines of the shortest distance must plainly be

proportional to

cos/3 cos7~ cos/3 0037 ,
cos 7 cosa 0037 cosa ,

cosa cos/3-cosa cos/3 .

Ex. To find the shortest distance 8 between the right line

. x cos a + y cos /3 + z cos y = p,

x cos a + y cos /3 + z cos y = p\

and that joining the points P ( , ?/ ,
2

)
and PH

(x&quot;y&quot;z&quot;).

Denoting by L, M the perpendiculars from any point xyz on the two given planes

and by L M
,

L&quot;M&quot; those from the points P ,
P&quot;

;
L + \M = is the equation of

lx + mx&quot;

any plane passing through the first right line, and
^

&c. are the coordinates of

any point on the second. Hence, if the point in which this second right line meets

L + \M= be taken infinitely remote, or having 1+ m =
0, A. can be found so as to

determine the plane through the first line parallel to the second. This gives

L + \M = L&quot; + \M&quot;.

Hence LM &quot; - L&quot;M - LM - L M is the plane through L, M required.

Again, LM&quot; - L&quot;M = LM - L M + L M&quot;
- L&quot;M

differs from the former only by a constant^ therefore is parallel to it, but also this

equation is satisfied by the coordinates of the points P and
P&quot;,

therefore it passes

through the second line.

Thus by dividing L M&quot;
- L&quot;M by the square root of the sum of squares of

coefficients of x, y and z in either of these equations, we find the required shortest

distance.

The result of reducing this expression can also be arrived at thus : LM are the

lengths of perpendiculars from P on the two given planes. They are both contained

in a plane through P at right angles to the right line LM. In like manner U M&quot; are

contained in a parallel plane through P&quot;. Now considering projections on either of

these planes, if $ be the angle between the planes L and M, double the area of the

triangle subtended by the projection of P P&quot; at the intersection of L, M multiplied

by sin $ = L M&quot; - L&quot;M . But that double area is evidently the product of the

required shortest distance 5 between the two given lines by the projection of P P&quot;.

Hence, calling the angle between the two lines, we see that

L M&quot;
- L&quot;M = (P P&quot;)

. o . sin sin
&amp;lt;j&amp;gt;.
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51. When the equations of a right line are written in the

., x x y y z z f ,.

form ?
= = to any system or coordinate axes

I m n

they appear to involve five independent quantities, viz. x y z
,

and the ratios I : m : n. But it is easily seen that xyz occur in

groups which are not independent, and the total number of

independent constants is only four, as we saw in Art. 40. In

fact, if we denote respectively by a, &, c the quantities mz ny ,

nx Iz
, ly mx

j
we have at once the relation la + nib + nc = 0,

and subject to this the equations of the right line are any two of

the four equations

ny
- mz + a = 0,

nx + Iz + b = 0,

mx ly + c = 0,

ax + by + cz =
0,

for by the above relation the remaining two can in all cases be

deduced.

We have now six quantities , 5j c, Z, m, n which serve to

determine the position of a right line provided the relation

la -f mb -|- nc = hold, and these we shall call the six coordinates

of the right line. If we examine the conditions, as in Art. 47,

that this right line may be wholly contained in the plane

Ax -f By + Cz + D =
0,

we find they are any two of the four equations

Be - Cb -H Dl =
0,

-Ac -f Ca -f Dm =
0,

Ab-Ba -f Dn =
0,

Al + Bm+ Cn =0,

from which also by the universal relation al + bm + en = 0, the

remaining two can in all cases be deduced. It is important to

observe that the quantities a, 5, c which are the functions

mz ny, nx Iz, ly mx of the coordinates x, y^ z of any point
on the right line have the same values for each point on it.

We are thus enabled to express in
03, y, z coordinates the

relation equivalent to any given relation in a, &, c. Again, if

F
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we suppose the
cc, ?/,

z axes rectangular, so that Z=cosa,
w= cos/3, n = cos7, it is easily seen, by Art. 15, that a, Z&amp;gt;,

c

are the coordinates of a point on the perpendicular through
the origin to the plane passing through the origin and the

given line, and at a distance from the origin equal to that of

the given line.

Ex. To express by the coordinates of two right lines the shortest distance between

them.

The expression found at the close of Art. 49 for the product of the shortest

distance d between two right lines by the sine of the angle at which they are

inclined may be written

x
x&quot;,

COS a, COS a

y -y&quot;, cos/3, cos/5

z
z&quot;,

cos y, cos y

if we replace cos a, &c , by I
, &c., cos a

, &c., by I&quot;,
&c. this may be written

x
,

I
,

I&quot;

y ,
m r

,
m&quot;

X
j

v
)

v

y&quot;,
m

,
m&quot;

/(//& & * tv * TV

in which we see that the coordinates of the points a?
,
&c. occur only in the groups

mentioned above.

Hence in the notation of this article, also omitting reference to sign,

6 sin = I a&quot; + m b&quot; + n c&quot; + I&quot;a + m&quot;V + ri c .

This quantity has been called by Prof. Cayley (Trans. Cambridge Phil. Soc.,

vol. XL part ii. 1868) the moment of the two lines.

52. Before proceeding to further considerations on the co

ordinates of a right line we introduce some properties of tetra-

hedra obtained by various methods, which will be useful in

the sequel.

To find the relation between the six lines joining any four

points in a plane.

Let a, &, c be the sides of the triangle formed by any three

of them ABC, and let J, e, / be the lines joining the fourth

point D to these three. Let the angles subtended at D by

, b, c be a, /3, 7; then we have cosoc = cos(/37), whence

cos
2
a + cos

2

/3 + cos
2

7 - 2 cos a cos/3 0037 = 1.

This relation will be true whatever be the position of D,
either within or without the triangle ABC. But

cosa = cos7
2de
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Substituting these values and reducing, we find for the required

relation

a2

(&amp;lt;F

-
&amp;lt;?) (&amp;lt;F -f) + V (e

z

-f) (e*
-

ff] + c
2

(/
- dz

) (f - e
2

)

+ a*tf (a
2 -

Z&amp;gt;

2 - c
2

) + 5V (&&quot;

- c
2 - a

2

)
+ cJ/

2

(c
2 - a

2 -
V) +aW=0,

a relation otherwise deduced Conies
, p. 134.

53. To express the volume of a tetrahedron in terms of its

six edges.

Let the sides of a triangle formed by any face ABC be

a, bj c; the perpendicular on that face from the remaining
vertex be p, and the distances of the foot of that perpendicular

from A, B, C be d
,
e ,/ . Then a, 5, c, cT, e ,/ are connected

by the relation given in the last article. But if
e?, ?,/be the

remaining edges d = d 2 + p
2

,
e* = e

2

+^?
2

, /
2 =/ /2

+&amp;gt;

2

;
whence

cP e
2 = cf

j - e
/2

, &c., and putting in these values, we get

- F=p
2

(26V + 2cV + 2a
2

Z&amp;gt;

2 - a
4 -

Z&amp;gt;

4 - c
4

),

where F is the quantity on the left-hand side of the equation

in the last article. Now the quantity multiplying p* is 16 times

the square of the area of the triangle ABG, and since p
multiplied by this area is three times the volume of the

pyramid, we have F= 14iF 2
.

54. To find the relation between the six arcs joining four

points on the surface of a sphere.

We proceed precisely as in Art. 52, only substituting for

the formulae there used the corresponding formulas for spherical

triangles, and if a, /3, 7, 8, s, represent the cosines of the six

arcs in question, we get

- tfo*- /3V- 7&amp;gt;
+ 2a/3Ss + 2/3yzcj&amp;gt; + 27aS

2ac(/&amp;gt;

-
2S&amp;lt;

-
2782 = 1.

This relation may be otherwise proved as follows : Let the

direction-cosines of the radii to the four points be

cos a, cos /3, cos 7,

cosa
r

, cos/8 , 0037 ,

cos
a&quot;, cos/3&quot;,

cos
7&quot;,

cos a
&quot;,

cos/3 &quot;,

cos 7 &quot;.
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Now from this matrix we can form (by the method of Lessons

on Higher Algebra, Art. 25) a determinant which shall vanish

identically, and which (substituting cos
2
a + cos

2

/3 + cos
2

7 = 1,

cos a cos a + cos /3 cos/3 + 00370037 = cos ab, &c.) is

1, cosa&, cosac, cosad

cosba, 1, cosJc, cosbd

cosca, cosc&amp;gt;, 1, cosed

cosda, cosdb, cosdc, 1 =
o,

which expanded has the value written above.

This relation might have been otherwise derived from the

properties of tetrahedra as follows :

Calling the areas of the four faces of a tetrahedron

A, B, G, D and denoting by AB the internal angle between

the planes A and B, &c. we have evidently any face equal
to the sum of the projections on it of the other three faces.

Hence we can write down

-A +BCOSAB+ c

AcosBA -B 4 C

A cos CA + BcoaCB - C 4 D cos CD = 0,

A cosDA + B cosDB + C cosDC -D =0,

from which we can eliminate the areas A, B, C, D, and get

a determinant relation between the six angles of intersection

of the four planes.

Now as these are any four planes, the perpendiculars let

fall on them from any point will meet a sphere described

with that point as centre in four quite arbitrary points, say

a, 5, c, J, and each angle as ab is the supplement of the cor

responding angle AB between the planes, hence the former

condition.

N.B. The vanishing of a determinant (see Higher Algebra,
Art 33, Ex. 1) shows that the first minors of any one row are

respectively proportional to the corresponding first minors of

any other. We see by this article that the minors of the

second determinant are proportional to the areas of the faces

of the tetrahedron.

The reader will not find it difficult to show that for any
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four points on the sphere, each first minor of the corresponding

determinant is that function of one of the four spherical triangles

formed by the points which we mentioned in the note to Art. 32

and which has been called by v. Staudt, Crelle, 24, p. 252,

1842, the sine of the solid angle that triangle subtends at the

centre of the sphere.

55. To find the radius of the sphere circumscribing a tetra

hedron.

Since any side a of the tetrahedron is the chord of the arc
2

whose cosine is a, we have a = 1 -
,
with similar expressions

for /3, 7, &c.
;
and making these substitutions, the first formula

of the last paragraph becomes

F 2a*d*b*e* + 2&W/ * + 2c
2

/&quot;W
- a4

d* - bY - c
4
/
4

4?
H

16r
8 }

whence if ad + be + cf= 2$,

we have ? .8(8- ad) (8- le) (S-cf)we nave ^ y^ ,

which has been otherwise deduced, see Higher Algebra, Art. 26.

The reader may exercise himself in proving that the shortest

distance between two opposite edges of the tetrahedron is equal

to six times the volume divided by the product of those edges

multiplied by the sine of their angle of inclination to each other,

which may be expressed in terms of the edges by the help of

the relation 2ad cos = b* -f e
2 - c

a

/*.

56.* We can establish the general formulae for transforma

tion of quadriplanar coordinates by proceeding one step farther

in finding the centre of mean position than we did in Art. 9.

We see that if in the tetrahedron whose vertices are P
t ,
P

2 ,

P
3 ,
P

4 ,
the line joining P3

to P
4
be cut in Pr

,
in the ratio n : m,

then the line joining P
f
to P

2
in P&quot; in the ratio 1 : m + n, and

lastly that joining P&quot; to P
t
in P in the ratio k : Z+ m + n, the

* The student may omit the rest of this chapter on first reading..
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perpendicular x from Pon any plane on which the perpendiculars
a?

4 ,
is

, -4- fe, + w#o + nx.
*

from P
t ,
P

2 ,
P

3 ,
P

4
are x^ a?

4 ,
is

m-\-n
nn

Now it is evident that k:k + l+m + n as the pyramid on

P
2
P

3
P

4
whose vertex is at P is to the pyramid on the same base

whose vertex is at P
1? or, as the perpendiculars from those points

on the plane P2
P

3
P
4
. We have similar values for the coefficients

ot a?
2 ,
#

3 ,
x
4
.

Now suppose we call f the perpendicular from P on the

plane Pff^ 77 that from P on the plane P
3
P

4
P

a ,
that on

the plane P
4
P

t
P

2 ,
and a&amp;gt; that on PjP2

P
3
. Also if the perpen

dicular from P
l
on P

2
P

3
P

4
be f ,

from P
2
on P

3
P

4P,, *? ,
from P

3

on P
4
P

t
P

2 , f ,
and from P

4
on P^Pg, w

,
we may write our

equation

_ fi ,
^^2 , 5a , &quot;^4

*D &quot;7r~ T 1 ^7~ i
~

fo % ^o

Evidently similar equations give the perpendiculars from P
on the other planes of reference

;
for instance,

Thus, writing down these four equations, we have the full

system requisite for a transformation of coordinates from the old

planes of
a?, y, z, w to the planes f , 77, f, &amp;lt;.

It will sometimes be convenient to use a single letter for

f : f &c., whereby our expressions will gain in compactness,
but at the expense of apparent homogeneity.

It is evident that the transformation of coordinates is quite

similar for the coordinates of planes.

57. If we denote by a?
, y ,

z
oJ w^ the perpendiculars from

the vertices on the opposite sides of the original tetrahedron,

we have obviously, if A
t J5, (7,

D be the areas of those faces,

where F denotes the volume of that tetrahedron.
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By this we may write down the solutions of the equations

in last article in the form

-^ +^ &c..

where f,, f2 , ,, f4
are the perpendiculars on the plane from

the vertices of the original tetrahedron.

Also the relation which can at once be written down by

equating the volume of the tetrahedron of reference to the sum

of the four tetrahedra which its faces subtend at any point, viz.

Ax + By + Cz + Dw = 3 F may be written

x y z w
-i- 4- . _L . 1A

J

and in like manner we have

f 77 f ft)i 4. _ _L .2 j i
&amp;lt;

T^ jT If T^ *

SQ Vo =&amp;gt;0

as the relations connecting in each system the homogeneous
coordinates with an absolute numerical quantity (cf. Conies,

Art. 63).

Ex. To express the volume of a tetrahedron by the homogeneous coordinates

of its vertices.

If we multiply the determinant expression, found Art. 36, for six times the

volume W by
cos a

, cos/3 , cosy ,

cos a
, cos/3 , cosy ,

cos
a&quot;, cos/3&quot;, cosy&quot;,

, , 0,1
which is the same as the determinant in note Art. 32, and as in the transformation

(G) Art. 18, we find

X
,
Y

,
Z

,
1

X&quot;,
Y&quot;

, Z&quot;,
1

X
&quot;,

Y
&quot;,

Z
&quot;,

1

X
&quot;, Y&quot;, Z&quot;,

1

as the product of six times the volume W by the quantity which we may call the

sine of the solid angle (XYZ) Art. 54.

Now these coordinates are measured along the axes, and we want to refer to

perpendiculars on the coordinate planes. Hence we may write the new coordinates

x = X sinp, y = Y sin q, z Z sin r, where p, q, r are the angles the axes of

X, Y, Z make with the planes YZ, r, &amp;lt;fec.
;

therefore

x&quot;,y&quot;,z&quot;,
1

x
&quot;, y &quot;,

z
&quot;,

1

&quot; &quot; &quot;

= 6W smp sin q sin r sin (XYZ],
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or by the relations

THE EIGHT LINE.

x
, y ,

2
,
W

x&quot;, y&quot; , z&quot;,
w&quot;

*
&quot;, 2/ &quot;,

z
&quot;,

w&quot;

x *, v &quot;. z *
, w?

sinp sin q sin r sin (XYZ).

&quot;We may give this another form by remarking that the determinant reduces for the

tetrahedron of reference to the continued product, which is its leading term, hence

%
Qy z w = 6 Vw sin^p sin q sin r sin (XYZ},

whence, dividing the former equation by this,

(ofyWQ _ W

57a. If we had employed quadriplanar coordinates in

Art. 40, we should have used for the coordinates of any point P
on the line joining Pl}

P
2 ,

from which, by eliminating I and
z,
we find each determinant

of the matrix
x , y , z , w

= 0.

These four determinants contain the coordinates of P,, P2 only
in the groups

which are connected by the identity

(y^ (,wa)
+ (!) (y^) -f (a;^) (^w8)

= 0.

Thus these six quantities so connected amount to four

independent ratios determining the equations, and are homo

geneous coordinates of the right line
;
we shall frequently denote

them, for brevity, by the letters

with or without two suffixes to indicate, as may sometimes be

required, the two points determining the right line; in all

cases these quantities are subject to the relation

ps + gt + ru = 0.



THE EIGHT LINE. 41

The geometrical value of these coordinates was obtained

Ex. Art. 50, where we saw that each of them, as, for instance,

(y\
z^ ls *De product of the distance PjP2 , by the sine of the angle

between the planes, which are named in
it, multiplied into tho

shortest distance of P
:
P

2
from the edge in which those planes

intersect and into the sine of the angle between that edge
and P,P9

.

Thus the equations connecting the coordinates of any point

with the coordinates of any right line passing through it are

any two of the four

yu zt + wp = 0,

xu 4- zs + wq = 0,

xt ys 4- wr = 0,

xp + yq 4 zr =
0,

from which always by ps + qt + ru = the remaining two can be

deduced. These are the equations of a line as locus or ray.

575. In like manner, Art. 38, if aft^d^ ajb&d9
be the

coordinates of two planes II,,
ri

2 ,
the coordinates of any plane

through their line of intersection are

a = \a
l
+ ft#2 ,

b = \b
l
4 fib^ c = \c

t
+ /-tc2 ,

d = \d
l
4- pd^

hence for a line regarded as envelope or axis, we have the system
of equations

a
,
b

,
c

,
d

:

=o,

which, adopting a notation in analogy with what precedes,

may be written, omitting suffixes,

5v - cr -f- d-TT = 0,

av 4- co- + J/c = 0,

ar bcr -} dp = 0,

ftTT + 1)K -f C/3
=

0,

a
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subject to

7TCT + KT -f pV = 0.

If this line contain the point P,, since then

ax
l
+ byl

+ cz
l
+ 6?^

=
0,

we may substitute for a and b in terms of c and &amp;lt;f and make

the coefficients of c and d vanish
;
and similarly for the others,

hence in this case

yj&amp;gt;

-z
l
ic+w

l
tr =

J

- X
vp -f ZjTT + W\T = 0,

xjc yjr + w
t
v = 0,

a^cr + j/jT + 3ji;
= 0.

In like manner, if in the last article we had sought for

the conditions that the ray should be contained in the plane

a, 5, c, dj we should have found

br cq -f ds = 0,

ar + cp + dt = 0,

aq bp +du = 0,

as + & + cw = 0.

Further, if we have the point P2
also on the axis, we find

p : q : r : s : t : u = ar : r : v : TT : K : pj

or in full, if the line joining Pt
to P

2
be identical with the line in

which
Ilj,

O
2 intersect, each determinant vanishes in the matrix,

Thus we see, that equations in the homogeneous coordinates

of a right line are capable of being expressed in either system,
the passage from one to the other being effected by an inter

change of the coordinates p and 5, q and
,
r and u.

N.B. These results are merely another way of presenting
the four simultaneous relations
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57 c. The determinant of the homogeneous coordinates of

four points

whose geometric value we deduced in Ex. Art. 57, may be

written out in full, as in Higher Algebra^ Art. 7
;
and it is

easily seen that the terms occur only in the groups of second

minors, which are the homogeneous coordinates of the lines

arrived at in 57 a.

Now when the line joining points 1 and 2 intersects the line

joining 3 and 4, the four points are coplanar and the determinant

vanishes.

Hence it appears that the condition that two right lines

?, t)
U

P, &amp;lt;1,

T
f

s
j

t
j
u

should intersect is

ps + sp + qt + tq + ru + ur = 0.

57 d. By what precedes we can see how to determine the lines

which meet four given right lines. For if the coordinates of the

T) Q T DOT
required line be r

^
and of the given lines

^ l J

&c.,
5

?

we have

t*.

ru

=
f

PS
4

which determine p, q, r, 5 linearly in terms of t and u, and when

these values are substituted in the universal relation

ps + qt + ru = 0,

a quadratic is found in t : u^ which determines the lines, two in

number, which are required.
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61e. In the coordinates of a line we have in transformation

to consider the transformed coordinates of two points or planes.

Ex. gr. considering

x = a^ar+ x,Y+ x
sZ+ x

4 W, xf = x,X + *
2
Y -f xjZ + x

4W,

&c., we have

y, * y* 2/3) F, Z
,
W

Y
,
Z

,
Wr

or
P=&amp;lt;

u = vn Q + *fl + i&amp;lt;8+uMT+uU,
the coefficients of the transformation evidently being the coor

dinates of the edges of the new tetrahedron referred to the old.

If we multiply these equations in order by su? wu ,

r
i4

an(^
?
we evidently solve for P in terms of the old

coordinates, and (Art. 57c) the factor on P is the modulus of

transformation
;

it is easy to complete the solution.



CHAPTER IV.

*PROPERTIES COMMON TO ALL SURFACES OF THE
SECOND DEGREE.

58. WE shall write the general equation of the second

degree

(a, 5, c, dj, g, h, 7, m, n) (a-, y, z, 1)
2 =

or ax* + by* + cz* + d+
&amp;lt;2fyz

+ 2gzx + 2kxy + 2lx + 2my -f 2?zz = 0.

This equation contains ten terms, and since its signification is

not altered, if by division we make one of the coefficients unity,
it appears that nine conditions are sufficient to determine a

surface of the second degree, or, as we shall call it for shortness,
a quadric\ surface. Thus, if we are given nine points on the

surface, by substituting successively the coordinates of each in

the general equation, we obtain nine equations which are

b c
sufficient to determine the nine unknown quantities -

,
-

, &c.
a 1 a 1

And, in like manner, the number of conditions necessary to

determine a surface of the ?i
th
degree is one less than the number

of terms in the general equation.

The equation of a quadric may also (see Art. 38) be ex

pressed as a homogeneous function of the equations of four

given planes #, y, ,
w.

(a, , c, d,/, g, h, 7, ???, n) (a:, y, z, w)* =

or a#2

-|-fo/

2
-fcz*+dw*+2fyz+ 2gzx+2hxy-)-2lxw -f 2myw+ 2nzw=Q.

For the nine independent constants in the equation last written

may be so determined that the surface shall pass through nine

* The reader will compare the corresponding discussion of the equation of the

second degree (Conies, Chap, x.) and observe the identity of the methods now pursued
and the similarity of many of the results obtained.

t In the Treatise on Solid Geometry by Messrs. Frost and Wolstenholme, surfaces

of the second degree are called conicoids.
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given points, and therefore may coincide with any given quadric.

In like manner (see Conies, Art. 69) any ordinary #, ?/,
z equa

tions may be made homogeneous by the introduction of the

linear unit (which we shall call w) ;
and we shall frequently

employ equations written in this form for the sake of greater

symmetry in the results. We shall however, for simplicity, com

mence with #, y, z coordinates.

59. The coordinates are transformed to any parallel axes

drawn through a point x y z
, by writing x -f a/, y + y

f

,
z -{- z

for x, y, z respectively (Art. 16). The result of this substitu

tion will be that the coefficients of the highest powers of the

variables (a, , c, /, #, h) will remain unaltered, that the new

absolute term will be Uf

(where U is the result of substituting

x
, y

f

)
z for

a?, y, z in the given equation), that the new coeffi-

dUf

cient of x will be 2 (ax + hy
f

4- gz
f

-f 1}
or -=-7- , and, in like

CUD

manner, that the new coefficients of y and z will be -7-7 and

dW
^

-7-7- . We shall find it convenient to use the abbreviations
dz

TT 7T ,du ,du ,du
c;, Z7W z/.

for i^,j^ ,*--.

60. We can transform the general equation to polar co

ordinates by writing x = Xp, y = jap, z = vp (where, if the axes

be rectangular, X, //,,
v are equal to cos a, cos/3, 0057 respec

tively, and if they are oblique (see note, p. 7) X, /*, y are still

quantities depending only on the angles the line makes with

the axes) when the equation becomes

+ bfju

2 + cv* -f
2//&amp;gt;tv

+ 2gv\ -f- 2/zX/*)

This being a quadratic gives two values for the length of the

radius vector corresponding to any given direction
;

in ac

cordance with what was proved (Art. 23), viz. that evert/ right

line meets a quadric in two points.

61. Let us consider first the case where the origin is on the

surface (and therefore 6? = 0), in which case one of the roots of
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the above quadratic is p = ;
and let us seek the condition that

the radius vector should touch the surface at the origin. In

this case obviously the second root of the quadratic will also

vanish, and the required condition is therefore ?X-f mp-\- nv = Q.

If we multiply by p and replace Xp, yup, vp by x, ?/, 2, this

becomes

Ix + my + nz = 0,

and evidently expresses that the radius vector lies in a certain

fixed plane. And since X, /*-,
v are subject to no restriction but

that already written, every radius vector through the origin

drawn in this plane touches the surface.

Hence we learn that at a given point on a quadric an in

finity of tangent lines can be drawn, that these lie all in one

plane which is called the tangent plane at that point ;
and that

if the equation of the surface be written in the form u^ 4- u
l
=

0,

then
?*j
= is the equation of the tangent plane at the origin.

62. We can find by transformation of coordinates the equa
tion of the tangent plane at any point xyz in the surface.

For when we transform to this point as origin, the absolute term

vanishes, and the equation of the tangent plane is (Art. 59)

or, transforming back to the old axes,

(x
- x) L\ + (y- y }

U
t + (,- z

}
U

3
= 0.

This may be written in a more symmetrical form by the intro

duction of the linear unit
?0, when, since U is now a homo

geneous function, and the point x yzw is to satisfy the equation
of the surface, we have

* u; + y /; + z u
a

f

+ w u; = u = o.

Adding this to the equation last found, we have the equation

of the tangent plane in the form

or, writing at full length,

x (ax + liy + gz + lw] + y (hx + ly
r

+fz + mw)

+fy -1- + nw
) + w (Ix -f my + nz + dw]

- 0.
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This equation, it will be observed, is symmetrical between xyzw
and x y z w

)
and may likewise be written

63. To find the point of contact of a tangent line or plane
drawn through a given point xyz w not on the surface.

The equation last found expresses a relation between xyzw,
the coordinates of any point on the tangent plane, and xy

f

z wf

its point of contact
;
and since now we wish to indicate that the

former coordinates are given and the latter sought, we have

only to remove the accents from the latter and accentuate the

former coordinates, when we find that the point of contact must

lie in the plane

which is called the polar plane of the given point. Since the

point of contact need satisfy no other condition, the tangent

plane at any of the points where the polar plane meets the

surface will pass through the given point ;
and the line joining

that point of contact to the given point will be a tangent line

to the surface. If all the points of intersection of the polar

plane and the surface be joined to the given point, we shall

have all the lines which can be drawn through that point to

touch the surface, and the assemblage of these lines forms what

is called the tangent cone through the given point.

N.B. In general a surface generated by right lines which

all pass through the same point is called a cone, and the point

through which the lines pass is called its vertex. A cylinder

(see p. 15) is the limiting case of a cone when the vertex is

infinitely distant.

64. The polar plane may be also defined as the locus of

harmonic means of radii passing through the pole. In fact, let

us examine the locus of points of harmonic section of radii

passing through the origin ;
then if p, p&quot;

be the roots of the

quadratic of Art. 60, and p the radius vector of the locus, we

are to have 211 2 (\l + /Jim + vn)
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or, returning to #, y, z coordinates,

&c + my + nz + d=
;

but this is the polar plane of the origin, as may be seen by-

making x, y ,
z

f

all = in the equation written in full (Art. 62).

From this definition of the polar plane, it is evident that if

a section of a surface be made by a plane passing through any

point, the polar of that point with regard to the section will

be the intersection of the plane of section with the polar plane
of the given point. For the locus of harmonic means of all

radii passing through the point must include the locus of

harmonic means of the radii which lie in the plane of section.

65. If the polar plane of any point A pass through B, then

the polar plane of B will pass through A.

For since the equation of the polar plane is symmetrical
with respect to xyz, x yz ,

we get the same result whether we
substitute the coordinates of the second point in the equation

of the polar plane of the first, or vice versa.

The intersection of the polar planes of A and of B will be

a line which we shall call the polar line, with respect to the

surface, of the line AB. It is easy to see that the polar line

of the line AB is the locus of the poles of all planes which

can be drawn through the line AB.

66. If in the original equation we had not only J=0, but

also
?, wi, n each = 0, then the equation of the tangent plane

at the origin, found (Art. 61), becomes illusory since every term

vanishes
;
and no single plane can be called the tangent plane

at the origin. In fact, the coefficient of p (Art. 60) vanishes

whatever be the direction of p, and therefore every line drawn

through the origin meets the surface in two consecutive points,

and the origin is said to be a double point on the surface.

In the present case, the equation denotes a cone whose

vertex is the origin, as in fact does every homogeneous equation
in

ic, ?/,
z. For if such an equation be satisfied by any co

ordinates a/, y ,
z

,
it will be satisfied by the coordinates

kx
j % ,

kz (where Jc is any constant), that is to say, by the co

ordinates of every point on the line joining x yz to the origin.

H
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This line then lies wholly in the surface, which must therefore

consist of a series of right lines drawn through the origin.

The equation of the tangent plane at any point of the cone

now under consideration may be written in either of the forms

The former (wanting an absolute term) shews that the tangent

plane at every point on the cone passes through the origin ;

the latter form shews that the tangent plane at any point
x y z touches the surface at every point of the line joining
x y z to the vertex; for the equation will represent the same

plane if we substitute lex
, ky ,

~kz for a?
, ?/ ,

z .

When the point x y z is not on the surface, the equation we
have been last discussing represents the polar of that point, and

it appears in like manner that the polar plane of every point

passes through the vertex of the cone, and also that all points
which lie on the same line passing through the vertex of a cone

have the same polar plane.

To find the polar plane of any point with regard to a cone

we need only take any section through that point, and take

the polar line of the point with regard to that section
;
then

the plane joining this polar line to the vertex will be the polar

plane required. For it was proved (Art. 64) that the polar

plane must contain the polar line, and it is now proved that the

polar plane must contain the vertex.

67. We can easily find the condition that the general equa
tion of the second degree should represent a cone. For if it

does it will be possible by transformation of coordinates to

make the new
Z, m, ??,

d vanish. The coordinates of the new

vertex must therefore (Art. 59) satisfy the conditions

f/;
=

0, Z7/
=

0, Z7
a
=

0, Z7 = 0,

which last combined with the others is equivalent to 7/
= 0.

And if we eliminate a/, y ,
z from the four equations

ax + liy +gz -f Z = 0,

hx + by +fz -tm = Q,

gx
f

+fy + cz + w = 0,

lx + my + nz -t- d
?
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we obtain the required condition in the form of the determinant

a

^, 5, /, m

9i ft c
j
n

?, m, n, d =
0,

which, written at full length, is

abed -f 2afmn -f 2bgnl + 2chlm + 2dfgh be? - cam1
dbri

1

adf*

-
bdg*

- cdh* +fl* -f g*m* + AV -
2ghmn

-
Zkfnl

-
2fglm = 0.

We shall often write this equation A = 0, and (as in Conies,

p. 153) shall call A the discriminant of the given quadric.

It will be found convenient hereafter to use the abbreviations

Aj B, C, D, 2Fj 20, 2Jff, 2L, 2M, 2^Y, to denote the differential

coefficients of A taken with respect to a, 5, c, &c. Thus

A = bed -f 2fmn l&amp;gt;n

l
cm*

B= cda -f %gnl
- an

- am -

F= amn + dgh
Q = bnl + dhf

H elm + dfg

L bgn-^chm
M=chl +afn
^= afm + bgl

- af -bg*
-

ch*,

-
adf -\-fl* hnl

bdg -f gin* flm
cdh + Jin* gmn
bcl -f If* hfn gfm,

cam + mg*fgl ghn^

abn + nh* glim hfl.

68. Let us return now to the quadratic of Art. 60, in which

d is not supposed to vanish, and let us examine the condition

that the radius vector should be bisected at the origin. It is

obviously necessary and sufficient that the coefficient of p in

that quadratic should vanish, since we should then get for p
values equal with opposite signs. The condition required
then is

IX + mfj, -f nv 0,

which multiplied by p shews that the radius vector must lie in

the plane Ix -f my -f nz 0. Hence (Art. 64) every right line

drawn through the origin in a plane parallel to its polar plane
is bisected at the origin.
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69. If, however, we had I = 0, m = 0, n 0, then every line

drawn through the origin would be bisected and the origin

would be called the centre of the surface. Every auadric has

in general one and but one centre. For if we seek by trans

formation of coordinates to make the new
Z, m, n 0, we obtain

three equations, viz.

Z7/
=

0, or ax + hy + gz +l =
0,

Z7
2
=

0, or hx + ly +fz +w =
0,

Z7
3
=

0, or gx +fy + cz + n =
0,

which are sufficient to determine the three unknowns a/, y
f

,
z .

L , M , N . r
~

-
The resulting values are x =

-^ ? y ==
~j}i

z = ~n 5
wnere A -j

N) D have the same meaning as in Art. 67.

If, however, D =
0, the coordinates of the centre become

infinite and the surface has no finite centre. If we write the

original equation w
a
+ Wj + w =

0, it is evident that D is the

discriminant of w .*
I

70. To find the locus of the middle points of chords parallel

7
. x y z

to a qiven Cine - = = -
.

X
/JL

v

If we transform the equation to any point on the locus as

origin, the new
/, w, n must fulfil the condition (Art. 68)

l\ + rap, H- nv = 0, and therefore (Art. 59) the equation of the

locus is

This denotes a plane through the intersection of the planes

17^ U
z , Utf that is to say, through the centre of the surface.

* It is possible that the numerators of these fractions might vanish at the same

time with the denominator, in which case the coordinates of the centre would become

indeterminate, and the surface would have an infinity of centres. Thus if the three

planes Ul}
Uz , U3 all pass through the same line, any point on this line will be a

centre. The conditions that this should be the case may be written

a, h, g, I

h, b, f, m
9, f, = 0,

the notation indicating that all the four determinants must =
0, which are got by

erasing any of the vertical lines, &quot;We shall reserve the fuller discussion of these

cases for the next chapter.
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It is called the diametral plane conjugate to the given direction

of the chords.

If xyz be any point on the radius vector drawn through
the origin parallel to the given direction, the equation of the

diametral plane may be written

If now we take the equation of the polar plane of kx
f

, ky ,

divide it by &, and then make k infinite, we see that the

diametral plane is the polar of the point at infinity on a line

drawn in the given direction, as we might also have inferred

Jrorn^eometrical considerations (see Conies, Art. 324). In like

manner, the centre is the pole of the plane at infinity, for if

the origin be the centre, its polar plane (Art. 64) is ^ = 0,

which (Art. 30) represents a plane situated at an infinite

distance.

In the case where the given surface is a cone, it is evident

that the plane which bisects chords parallel to any line drawn

through the vertex is the same as the polar plane of any

point in that line. In fact it was proved that all points on

the line have the same polar plane, therefore the polar of the

point at infinity on that line is the same as the polar plane

of any other point in it.

71. The plane which bisects chords parallel to the axis

of x is found, by making p = 0, v = in the equation of Art. 70,

to be

Z7j
=

0, or ax + hy + gz + l = 0,*

and this will be parallel to the axis of y, if li = 0. But this

is also the condition that the plane conjugate to the axis of y
should be parallel to the axis of x. Hence if the plane con

jugate to a given direction be parallel to a second given line,

the plane conjugate to the latter will be parallel to the former.

* It follows that the plane x = will bisect chords parallel to the axis of x, if

h = 0, g 0, I
; or, in other words, if the original equation do not contain any

odd power of x. But it is otherwise evident that this must be the case in order that

for any assigned values of y and z we may obtain equal and opposite values of x.
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When k = 0, the axes of x and y are evidently parallel to

a pair of conjugate diameters of the section by the plane of xy ;

and it is otherwise evident that the plane conjugate to one

of two conjugate diameters of a section passes through the other.

For the locus of middle points of all chords of the surface

parallel to a given line must include the locus of the middle

points of all such chords which are contained in a given plane.

Three diametral planes are said to be conjugate when each

is conjugate to the intersection of the other two, and three

diameters are said to be conjugate when each is conjugate to

the plane of the other two. Thus we should obtain a system
of three conjugate diameters by taking two conjugate diameters

of any central section together with the diameter conjugate

to the plane of that section. If we had in the equation /= 0,

&amp;lt;7

=
0,

=
0, it appears from the commencement of this article

that the coordinate planes are parallel to three conjugate
diametral planes.

When the surface is a cone, it is evident from what was

said (Arts. 66, 70) that a system of three conjugate diameters

meets any plane section in points such that each is the pole

with respect to the section of the line joining the other two.

72. A diametral plane is said to be principal if it be per

pendicular to the chords to which it is conjugate.

The axes being rectangular, and X, //.,
v the direction-

cosines of a chord, we have seen (Art. 70) that the corresponding

diametral plane is

\(ax+ hy+gz -f l)+fji(hx + by +fz + m) + v (gx+fy -f cz + n) = 0,

and this will be perpendicular to the chord, if (Art. 43) the

coefficients of
a?, y, z be respectively proportional to X, /*, v.

This gives us the three equations

\a + fih 4 vg
= &X, \k + fj,b + vf k/i, \g + fif+ vc = kv.

From these equations, which are linear in X, /, v, we can

eliminate X, /*, v, when we obtain the determinant

a
, , g

hj I- k, f
ff, f, c- =

0,
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which expanded gives a cubic for the determination of
A;,

viz.

-
(abc + 2fgh

- af - bg*
- ch

2

}
= 0.

And the three values hence found for k being successively

substituted in the preceding equations enables us to determine

the corresponding values of X, /A,
v. Hence, a quadric has

in general three principal diametral planes, the three diameters

perpendicular to which are called the axes of the surface. We
shall discuss this equation more fully in the next chapter.

Ex. To find the principal planes of

The cubic for k is

3 18/12 + 99yt 162

whose roots are 3, 6, 9. Now our three equations are

If in these we substitute k = 3, we find 2X =
/j.
= v. Multiplying by p, and sub

stituting x for X/o, (fee., we get for the equations of one of the axes 2x = y = z. And
the plane drawn through the origin (which is the centre), perpendicular to this line,

\ax + 2y + 2z = Q. In like manner the other two principal planes are 2x 2y + z 0,

2* + y
- 2z = 0.*

73. The sections of a quadric by parallel planes are similar

to each other.

Since any plane may be taken for the plane of xy, it is

sufficient to consider the section made by it,
which is found

by putting z = in the equation of the surface. But the section

by any parallel plane is found by transforming the equation
to parallel axes through any new origin, and then making z = 0.

If we retain the planes yz and zx, and transfer the plane

xy parallel to itself, the section by this plane is got at once

by writing z = c in the equation of the surface, since it is evident

that it is the same thing whether we write z + c for z, and

then make z = 0, or whether we write at once z = c.

* If U denote the terms of highest degree in the equation, and S denote

(be -/2
) *

2+ (ca
-

g&quot;-} y- + (ab
-

A*) z&quot;- + 2 (gh
-
af} yz + 2 (hf- bg} zx + 2(fg- ch} xy,

then the equation of the three principal planes, the centre being origin, is denoted

by the determinant

x, y, z

L
j. LO, c 3

=0.



And since the coefficients of x\ xy, and y* are unaltered by
this transformation, the curves are similar.

It is easy to prove algebraically, that the locus of centres

of parallel sections is the diameter conjugate to their plane,
as is geometrically evident.

74. If
/o , p&quot;

be the roots of the quadratic of Art. 60,

their product p p&quot;
is = d divided by the coefficient of p\ But

if we transform to parallel axes, and consider a radius vector

drawn parallel to the first direction, the coefficient of p
z remains

unchanged, and the product is proportional to the new d.

Hence, if through two given points A, B, any parallel chords be

drawn meeting the surface in points R, R \ $, $
,
then the

products RA.AR
,
SB.US are to each other in a constant

ratio, namely, U : U&quot; where 27
,

U&quot; are the results of sub

stituting the coordinates of A and of B in the given equation.

75. We shall conclude this chapter by shewing how the

theorems already deduced from the discussion of lines passing

through the origin might have been derived by a more general

process, such as that employed (Conies, Art. 91). For sym

metry we use homogeneous equations with four variables.

To find the points where a given quadric is met by the line

joining two given points x y z vJ, x&quot;y

ff
z&quot;w

ff
.

Let us take as our unknown quantity the ratio p : X, in which

the joining line is cut at the point where it meets the quadric,

then (Art. 8) the coordinates of that point are proportional to

\x +
/4x&quot;, \y +

/*#&quot;,
^z +

pz&quot;,
Xw + JJLW&quot;

and if we substitute these values in the equation of the surface,

we get for the determination of \ : /A, a quadratic

The coefficients of X2 and
/-i

a
are easily seen to be the results

of substituting in the equation of the surface the coordinates

of each of the points, while the coefficient of 2X// may be seen

(by Taylor s theorem, or otherwise) to be capable of being
written in either of the forms

x
U,&quot;

+ y U: + z U; +w U; ,

or x&quot; U; +
y&quot; U.; + z&quot; U, + w&quot;U

t
.
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Having found from this quadratic the values of \ : /*, sub

stituting each of them in the expressions \x
-fyLU?&quot;, &c., we

find the coordinates of the points where the quadric is met by
the given line.

76. If x y z w be on the surface, then t/ = 0, and one of

the roots of the last quadratic is /i
=

0, which corresponds to

the point x y z w
)
as evidently ought to be the case. In order

that the second root should also be
JJL
=

0, we must have P= 0.

If then the line joining x y z w to
x&quot;y&quot;z&quot;w&quot;

touch the surface

at the former point, the coordinates of the latter must satisfy

the equation

and since x y z w&quot; may be any point on any tangent line

through x y z w
)
it follows that every such tangent lies in the

plane whose equation has been just written.

77. If x y z w be not on the surface, and yet the relation

P=0 be satisfied, the quadratic of Art. 75 takes the form

\*U 4- y?V 0, which gives values of X : /u, equal with op

posite signs. Hence the line joining the given points is cut by
the surface externally and internally in the same ratio

;
that is

to say, is cut harmonically. It follows then that the locus of

points of harmonic section of radii drawn through x y z w is

the polar plane

78. In general if the line joining the two points touch

the surface, the quadratic of Art. 75 must have equal roots,

and the coordinates of the two points must be connected by
the relation U U&quot;=P\ If the point xyzw be fixed, this

relation ought to be fulfilled if the other point lie on any of

the tangent lines which can be drawn through it. Hence the

cone generated by all these tangent lines will have for its

equation UU = P2

,
where

Ex. To find the equation of the tangent cone from the point x y z to the surface

x* y
2 z2 /* *

y&quot;

1
z&quot;

1 A/*7 2
z&quot;- ,\ fxx yu zz ,\

2

-+f;+-,= l. 4ns. ( +^ + -^-1 ) -,+ p; + --l)- - +TT + -7-1a- b- c~ \a- o- c2 J\a- b- c- ) \a- b- c2
)

I
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79. To find the condition that the plane ax -f j3?/ -f 72 + &w

should touch the surface given by the general equation.

First, if x, y^ z, w be the coordinates of the pole of this

plane, and k an indeterminate multiplier, we have (Art. 63)

in general

ka = ax + hy 4 gz +

b = x + -\-cz-\-

mw

Jco* = Ix

ly +fz

my -\-nz-\-

to determine the pole of the given plane. Solving for x, y, 2, w
from these equations, we find

= It (Ad + Hj3 + Gy + LS),

=Jc(Ga+F/3+ Cy+NS),

= k (La. -+ M/3 + Ny + DS),

where A, A, 7?, (7,
&c. have the same meaning as in Art. 67.

Now if these values satisfy the equation QLX + /3y+ 724 8w= 0,

we get by eliminating them

-f 2ZaS + 2MfiS -f 2^7$ = 0,

which is the required relation that this plane should touch the

surface.

The result of eliminating k, x, y, z, w from the four equa
tions first written, and ax -f /% + 72 + Bw = may evidently be

written in the determinant form

ex, 0, 7, 8

a, a, A, 0, Z

, hj b, /, m = 0.

7, ,?, /, c, n

o, t, T?Z, ft,
a

Each of these is a form in which we may write the condition

which must be satisfied by the coordinates of a plane if the plane

touch the surface (see Art. 38) ;
that is to say, the tangential
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equation of the surface, or the equation of the surface as an

envelope of planes.

80. To find the condition that the surface should be touched

ty any line

ax + /3y + 72 + Bw = 0, ax 4- $ y + y z -f S w = 0.

If the line touches, the equation of the tangent plane at the

point of contact will be of the form

(a + Xa
) ) y -f &c. = 0.

If then we write in the first four equations of the last article

cc + Xa for a, &c., and then between these equations and the

two equations of the line, eliminate &, A*X, x, ?/, 2, W, we have

the result in the determinant form

a, , 7, 5

/ /O/ / /

a, /3, 7, 8

a, a
, a, h, g, I

&i P i
h

i ^7 / m
7, 7

&amp;gt; 9, /, c, n

= 0.

This is plainly of the second degree in the coefficients of the

quadric, and is also a quadratic function of the determinants

cc/3

r

/3a
r

, &c., that is, of the six coordinates of the line.

If in the condition of Art. 79 we write a-f Xa for a, &c.,

and then form the condition that the equation in X should have

equal roots, the result will be the condition as just written

multiplied by the discriminant (Ex. 2, Art. 33, Higher Algebra}.

For the two planes which can be drawn through a given line

to touch a quadric, will coincide either if the line touches the

quadric, or if the surface has a double point.

80a.* Given the six coordinates of any right line (p^ q, r,

s, t, u) to determine the coordinates of its polar line (Art. 65).

The rest of this chapter may be omitted on first reading.
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Since the polar line is the intersection of the polar planes

of the two points determining the ray (Art. 57a),

Z7&amp;gt;
+ u;y +

r&amp;gt;
+

z/&amp;gt;,

Ufx+Ufy+Uj t+Ufw,
its coordinates as an axis (Art. 575) are

Now if we expand

m / , ,

-
y

-w

as in Art. 57e, and the others likewise, we get, by a trans

formation of line coordinates, from the ray coordinates of one

line the axial coordinates of its polar line, since all the coefficients

are the second minors of a determinant of the fourth order in

this case a symmetrical one, viz. the discriminant of the quadric.

As it is sometimes convenient to have abbreviations to denote

these second minors of the discriminant in the determinant form

of Art. 67, we shall adopt a double suffix notation, thus writing

the axial coordinates or their corresponding ray coordinates in

the form
TT = a..p + c

= a^p + aM + a^r + a^s + aj, + a^u = t
,

P =

*

Now, if we multiply these equations in order by &amp;gt;, q, r,

* The following are the values of the coefficients au ,
aJ2,

&c. as they stand in thee oow
above equations :

fc-/2
, fffch, hf-bff, hn-gm, bn -fm, fn -

cm,

fg ch
,

ca g* , ^rA a/, ^/ an
, /7 hn

,
cl gn,

hf bff , gh a/, a5 hz
,
am hi

,
km bl

, gm fl,

hn gm, gl an, am hi, ad P
,

hd ml
, gd nl,

bn fm, fl hn, hm bl, hd ml, bd m2
, fd nm,

fn cm, cl - gn, gm fl, gd nl
, fd nm, cd n*.
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5, ?,
u and add, the quantity on the right side vanishes if the

line intersect its polar line (57 c) ;
but this happens only when

the given line is a tangent to one of the plane sections through

itself, that is, when it touches the surface. In this case, there

fore, each of the lines touches the surface in their common

point.

Thus the condition that the right line should touch is

an^
2 + &c + aX + 2ai2^^ + + ^a^tu

=
0, or briefly * = 0.

This can also be derived from the condition in Art. 78, which

may be written

u
x w

)
Z

9
W

=
0,

and reduced by the process of this article, the quantity on the

left is found to be ^.

805. The same problem may be treated as follows if the

right line be given as the intersection of two planes

ouc + fty -1-72-1- Bwj OLX -|- ft y 4-
&amp;lt;y

z + S w.

Forming the coordinates of the right line joining their poles

(Art. 79) we have, for instance, omitting a common multiplier,

,_ H, ,
F

t
M

p -
G,F,C,N

which we may write

q = &c.

, 7, 8

14
&amp;lt;r

= a

= r
, &c.,

where jBCF* = an ,
&c. But, Higher Algebra, Art. 33, this

= A (ad
- I

2

)
= Aa^, and so for each of the others. We thus

see how to solve the six equations in the last article. To find

P) for instance, we must multiply in order by aw ,
aM ,

aM ,
a

14,

a
24 ,

and add
;

this gets

As before, this right line (axis) meets the polar right line
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(axis) when each touches the surface
;
thus the relation that this

may happen may be written in any of the forms

.+ 2aMTi; = 0,

f...+ ...=0,
or

44 H

SOc. To determine the points of contact of tangent planes

through the line (p, &amp;lt;?, r, s, , u) to the quadric.

The coordinates of the plane determined by three points

scyzwj x^zjfftf #
2#2

2
2
w

2
are found by solving between the

equations
ax +

&quot;by
-f cz + dw =

0,

ax
l
+ byi

-f cz
t
+ d^w = 0,

ax
t + byz 4- cz2 + d^ =

0,

and with 6 an undetermined multiplier we may write them,

introducing the coordinates^?, &amp;lt;?, r, 5, ^,
u of the line 1, 2

yu zt -f wp = 0a,

xt +wr =

These may be regarded as equations determining the coor

dinates of any plane passing through the right line by means of

the coordinates of any definite point not upon the right line,

through which the plane is to pass.

Now if in the equations just written we assume that a : b : c : d

are the values of U^ : U
z

: U
3

: U for the point ;
this amounts to

enquiring what is the point whose polar plane passes through
the point itself and through the given right line. In other

words, the point of contact of a tangent plane through the given
line.

Thus, by eliminating x, ?/, 2, w we get, to determine 0, the

biquadratic
0a

,
Oh -

u, 6g + t,
61 -p

6h + u, 6b
, 0f-8, 0m -q

Qg - t
, 0f + 5, 0c

,
0n -r

01 + 0m + 0n + r 0d

which evidently reduces to a pure quadratic, and this is found
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to be 6
2A + * = 0. Substituting 6 from this equation, we de

termine the coordinates x, y, z, w of the point of contact by-

solving between any three of the four following equations

Oa.x+(6h- u] y + (6g + t)z+ (61 -p) w = 0,

(6h + u)x+&c. =0, &c.

The two points of contact arise from the double sign

Now if we solve the quadratic of Art. 75 we find under the

radical the quantity,
-

,
as noticed in Art. SOa. Hence we

may draw the following inferences as to the reality of the

intersections of a right line with a quadric, and of the tangent

planes which may be drawn through it,
viz. we have taking

A positive, ^positive; intersections imaginary, contacts imaginary ;

for A positive, ^ negative ;
intersections real, contacts real

;

for A negative, 4* positive ;
intersections imaginary, contacts real;

for A negative, ^negative; intersections real, contacts imaginary.

As the contacts coincide if ^ = this establishes once more the

relation that the line may touch.

SQd. We have thus found that whether considered as a

ray or as an axis the coordinates of any line touching a surface

of the second degree satisfy a relation of the second order.

We saw already (Art. 57c) that in like manner the coordinates

of any line which meets a given line satisfy a relation of the

first order. But in neither case is the relation the most general

one of its order which can subsist between those six coordinates.

In fact, we saw that instead of the coordinates of the fixed

right line being perfectly arbitrary, the universal relation of

line coordinates must subsist between them. And again, the

relation of the second degree just found instead of containing

the full number (21) of independent constants, has that number

of coefficients indeed, but all of them are functions of the

10 coefficients in the equation of the quadric surface touched.

Pliicker has applied the term complex of lines to the entire

system of lines which satisfy a single relation. In the case

of the complex of lines which satisfy a homogeneous relation of

the first degree between the six ray coordinates of a line, by
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supposing fixed one of the points determining any ray, we

evidently get the equation of a plane through that point. If

we replace the ray coordinates by the axial coordinates, on

supposing one of the planes determining the line fixed, we
have the equation of a point in that plane. In like manner,
for a relation of the second degree, the ray coordinates give,

for a fixed point, a cone of the second degree with the fixed

point as vertex, and, the axial coordinates, taking a fixed plane

through the axis, give a conic section in that plane. In

particular if the relation be that establishing contact between

the right line and a quadric surface, the cone becomes the

tangent cone from the special point, and the conic the conic

of intersection of the special plane.

80e. To find the conditions that a right line be wholly con

tained in the surface.

It should be observed that whereas in plane quadrics we
cannot have in the quadratic of Art. 75 each of the coefficients

zero without a certain relation holding between the coefficients

of the conic, in quadric surfaces the vanishing of those co

efficients implies no such relation. In fact, if we write down

U =
0, P= 0, U&quot; = in full, as

*

U, x&quot; + U; y&quot;
+ U, z&quot; + U4

w&quot; = 0,

we see (as in Art. 57b) that they imply only the identity

of the line joining the two points with its polar line. Thus as

the quadratic in X :
/z,

is now indeterminate the line is wholly
contained in the surface.

We noticed (Art. 80a) regarding the condition for contact

that ^ U TJ&quot; P 2
. Hence, differentiating ^ in succession with

regard to each of the coefficients of the quadric, as each result is

of the form 6U +
&amp;lt;j&amp;gt;

U&quot;-}- %P, we see, that for a line to be wholly
contained in the quadric, its coordinates satisfy each of the ten

relations ,- = 0. &c., rT^=0, &c.. and these amount to no more
da 7

dj

than three independent relations.



CHAPTER V.

CLASSIFICATION OF QUADRICS.

81. OUR object in this chapter is the reduction of any equa
tion of the second degree in three variables to the simplest form

of which it is susceptible, and the classification of the different

surfaces which it is capable of representing.

Let us commence by supposing the quantity which we called

D (Art. 67) not to be = 0. By transforming the equation to

parallel axes through the centre, the coefficients
Z, m, n are

made to vanish, and the equation becomes

ax* -f by
9 + cs

2 + 2fyz + 2gzx + 2hxy + d =
0,

where d is the result of substituting the coordinates of the

centre in the equation of the surface. Remembering that

U = x
f

U; + y Uj + z
1

Z7
a + w Z7/,

and that the coordinates of the centre make Z7/, U
}
U

a

vanish, it is easy to calculate that

,, _ IL + mM+ nN+ dD _ A
~s~

=

:D&amp;gt;

where A, Z&amp;gt;, L, M^ JNThave the same meaning as in Art. 67.

82. Having by transformation to parallel axes made the

coefficients of x, y, z vanish, we can next make the co

efficients of yz, zx, and xy vanish by changing the direction

of the axes, retaining the new origin ;
and so reduce the

equation to the form

It is easy to shew from Art. 17 that we have constants

enough at our disposal to effect this reduction, but the method

we shall follow is the same as that adopted, Conies, Art. 157,

K
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namely, to prove that there are certain functions of the co

efficients which remain unaltered when we transform from one

rectangular system to another, and by the help of these relations

to obtain the actual values of the new a, Z&amp;gt;,

c.

Let us suppose that by using the most general transfor

mation which is of the form

x = \x 4- fty 4- v5, y = \x + py 4 vz^ z \x 4 py 4- vz,

the function ax2
4- ly* + cz* 4 %fyz 4 2gzx + Zlixy

becomes ay? 4 I y* 4 c z* 4- 2fyz 4 2gzx + Zh xy,

which we write for shortness JJ U. And if both systems of

coordinates be rectangular, we must have

a? + if + z* =? +? + ?,

which we write for shortness S= 8. Then if Jc be any constant,

we must have JcS U=kS U. Now if the first side be

resolvable into factors, so must also the second. The discrimi

nants of JcS U and of JcS U must therefore vanish for the

same values of Jc. But the first discriminant is

-
(ale 4 tyffh

- af - If - c
2

).

Equating, then, the coefficients of the different powers of Tc

to the corresponding coefficients in the second, we learn that

if the equation be transformed from one set of rectangular
axes to another, we must have

a 4 1 4- c = a + V + c,

lc + ca + ab -/ -f -h* = Vc
f

4- ca
f

4 a b -/&quot;
- g

2 -
K*,

ale + tyffh
- af -

lg
z - ch* = a b c + Zf g h - a/ 2 -

Z//
2 - cV *

83. The above three equations at once enable us to trans

form the equation so that the new /, &amp;lt;?,

h shall vanish, since

* There is no difficulty in forming the corresponding equations for oblique co

ordinates. We should then substitute for S (see Art. 19),

x- + y
1+ z2 + lyz cos X + 2z;r cos [*. + 2xy cos v,

and proceeding exactly as in the text, we should form a cubic in k, the coefficients of

which would bear to each other ratios unaltered by transformation.
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they determine the coefficients of the cubic equation whose

roots are the new a, 5, c. This cubic is then

-
(ale + 2fyk

- af
2 -

by*
-

ctf)
=

0,

which may also be written

(a
-

a}(a
-
b)(a- c) -f (a- a)

-
g&amp;gt; (a

-
b)
- tf (at- c)

-
2fgh = 0.

We give here Cauchy s proof that the roots of this equation

are all real. The proof of a more general theorem, in which

this is included, will be found in Lessons on Higher Algebra,
Lesson VI.

Let the cubic be written in the form

(a
-

a) {(a
-

b) (a
-

c) -/ }
-/ (a -b)-h* (a

-
c)
-
Zfyh = 0.

Let a, /3 be the values of a which make (ab) (a c) /^O,
and it is easy to see that the greater of these roots a is greater

than either b or c, and that the less root y3 is less than either,f

Then if we substitute in the given cubic a =
a, it reduces to

and since the quantity within the brackets is a perfect square
in virtue of the relation (a b) (a c) =/*, the result of sub

stitution is essentially negative. But if we substitute a =
/3,

the result is

which is also a perfect square, and positive. Since then, if

we substitute a = co
,
a =

a, a =
/3, a = co

,
the results are

alternately positive and negative, the equation has three real

roots lying within the limits just assigned. The three roots are

the coefficients of x\ y\ z* in the transformed equation, but it is

of course arbitrary which shall be the coefficient of x* or of y\
since we may call whichever axis we please the axis of x.

84. Quadrics are classified according to the signs of the

roots of the preceding cubic.

* This is the same cubic as that found, Art. 72, as the reader will easily see ought
to be the case.

t &quot;We may see this either by actually solving the equation, or by substituting suc

cessively a = 00, a =
b, a c, a = as, when we get results +, , -, +, shewing

that one root is greater than b. and the other less than c.
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I. First, let all the roots be positive, and the equation can

be transformed to

The surface makes real intercepts on each of the three axes,

and if the intercepts be a, J, c, it is easy to see that the equation

of the surface may be written in the form

x* y* z*
-I- 4- 1

i T 5 T a *

a b c

As it is arbitrary which axis we take for the axis of
a?,

we

suppose the axes so taken that a the intercept on the axis

of x may be the longest, and c the intercept on the axis of z

may be the shortest.

The equation transformed to polar coordinates is

1 cos
2
a cos

2

/3 cos
2

7

j^

=
~~tf~ ~1T ~?~~

which (remembering that cos
u
a-f cos*/3-f cos

2

7 = 1) may be

written in either of the forms

from which it is easy to see that a is the maximum and c

the minimum value of the radius vector. The surface is con

sequently limited in every direction, and is called an ellipsoid.

Every section of it is therefore necessarily also an ellipse.

Thus the section by any plane z ~k is-5 4- TJ = 1 ? , and we
a b c

shall obviously cease to have any real section when h is greater

than c. The surface therefore lies altogether between the planes

e = c. Similarly for the other axes.

If two of the coefficients be equal (for instance, a = 5), then

f I suppose in what follows that d ( ^ ,
Art. 81

J
is negative. If it were positive

we should only have to change all the signs in the equation. If it were = the

surface would represent a cone&quot; (Art. 67).
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all sections by planes parallel to the plane of xy are circles,

and the surface is one of revolution, generated by the revolution

of an ellipse round its axis major or axis minor, according as

it is the two less or the two greater coefficients which are

equal. These surfaces are also sometimes called the prolate

and the oblate spheroid.

If all three coefficients be equal, the surface is a sphere.

85. II. Secondly, let one root of the cubic be negative.

We may then write the equation in the form

x2

y* z
2

L Z l

a2 +
b* c

2
&amp;gt;

where a is supposed greater than J, and where the axis of z

evidently does not meet the surface in real points. Using
the polar equation

1 cos
2
a cos

2

/3 cos
2

7

p*

=

~~oT ~W~ ~~?~

it is evident that the radius vector meets the surface or not

according as the right-hand side of the equation is positive

or negative ;
and that putting it = 0, (which corresponds to

p = co
)
we obtain a system of radii which separate the diameters

meeting the surface from those that do not. We obtain thus

the equation of the asymptotic cone

x* f z*_ 4. -Z = A
i i_-i

~ v *

a o o

Sections of the surface parallel to the plane of xy are ellipses ;

those parallel to either of the other two principal planes are

hyperbolas. The equation of the elliptic section by the plane
x* if k*

z = k being -^ + f^ = 1 -f -, ,
we see that a real section is found3 a o c

whatever be the value of &, and therefore that the surface

is continuous. It is called the Hyperboloid of one sheet.

If a = b, it is a surface of revolution.

86. III. Thirdly, let two of the roots be negative, and

the equation may be written

f!_2!_*!_i
o* b c&quot;

~
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The sections parallel to two principal planes are hyperbolas,
while that parallel to the plane of yz is an ellipse

**
L__I__ __ 1
T 2

~&quot;

2 *

b c a

It is evident that this will not be real so long as It is within

the limits + a, but that any plane x = k will meet the surface

in a real section provided k is outside these limits. No

portion of the surface will then lie between the planes x = a^
but the surface will consist of two separate portions outside

these boundary planes. This surface is called the Hyperloloid

of two sheets. It is of revolution if b = c.

By considering the surfaces of revolution, the reader can

easily form an idea of the distinction between the two kinds

of hyperboloids. Thus, if a common hyperbola revolve round

its transverse axis, the surface generated will evidently consist

of two separate portions ;
but if it revolve round the conjugate

axis it will consist but of one portion, and will be a case of

the hyperboloid of one sheet.

IV. If the three roots of the cubic be negative, the equation

a? y* z*

? + ? + ?
=

can evidently be satisfied by no real values of the coordinates.

V. When the absolute term vanishes, we have the cone as

a limiting case of the above. Forms I. and IV. then become

z*

which can be satisfied by no real values of the coordinates, while

forms II. and III. give the equation of the cone in the form222
~~a

&quot;

TS
~~

&quot;&quot;?

==
&quot;

a b c

The forms already enumerated exhaust all the varieties of

central surfaces.

Ex. 1. 7x*+ 6/+ 5z2 - 4yz
- 4xy = 6.

The discriminating cubic is a 3- 18a 2 + 9 9a - 162 = 0,

and the transformed equation x* + 2y
2 + Bz2 = 2, an ellipsoid.
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Ex. 2. 1 la;2+ 10y
2+ 622 - 12xy

-
8yz + 4zx = 12.

Discriminating cubic a 3 - 27 2 + 180a - 324 = 0.

Transformed equation x- + 2#
2+ 6z2 4, an ellipsoid.

Ex. 3 . 7x2 - 13/ + Qz- + 2xy+ 1 2yz
- I2zx = 84.

Discriminating cubic a 3 343a 2058 = 0.

Transformed equation a;
2 + 2/

2 3z2=+ 12,

a hyperboloid of one or of two sheets, according to the sign of the last term.

Ex. 4. 2z2 + 3#
2 + 4z*+ 6xy + 4yz + Szx = 8.

Discriminating cubic is a 3 9a 2 3a + 20 = 0.

By Des Cartes s rule of signs this equation has two positive and one negative root,

and therefore represents a hyperboloid of one sheet.

87. Let us proceed now to the case where we have D = 0.

In this case we have seen (Art. 69) that it is generally im

possible by any change of origin to make the terms of the

first degree in the equation to vanish. But it is in general

quite indifferent whether we commence, as in Art. 69, by

transforming to a new origin, and so remove the coefficients

of #, y, z, or whether we first, as in this chapter, transform

to new axes retaining the same origin, and so reduce the terms

of highest degree to the form ax* + l) y* + cz*. When Z&amp;gt;
=

0,

the first transformation being impossible, we must commence

with the latter. And since the absolute term of the cubic of

Art. 83 is Dj one of its roots, that is to say, one of the three

quantities a
,
&

,
c
f
must in this case = 0. The terms of the

second degree are therefore reducible to the form ax*b y
z
.

This is otherwise evident from the consideration that D = Q

is the condition that the terms of highest degree should be

resolvable into two real or imaginary factors, in which case

they may obviously be also expressed as the difference or sum

of two squares. In this way the equation is reduced to the form

ax* Vif + 11 x + 2m y + 2nz + d=Q.

&quot;VVe can then, by transforming to a new origin, make the co

efficients of x and y to vanish, but not that of 2, and the equation
takes the form

ax* j + 2w + d = 0.

I. If n = 0. The equation then does not contain 0, and

therefore (Art. 25) represents a cylinder which is elliptic or

hyperbolic, according as a and V have the same or different

signs. Since the terms of the first degree are absent from



72 CLASSIFICATION OF QUADRICS.

the equation the origin is a centre, but so is also equally

every other point on the axis of 2, which is called the axis

of the cylinder. The possibility of the surface having a line of

centres is indicated by both numerator and denominator vanishing
in the coordinates of the centre, Art. 69, note.

If it happened that not only ri but also d =
0, the surface

would reduce to two intersecting planes.

II. If n
f
be not =0, we can by a change of origin make

the absolute term vanish, and reduce the equation to the form

ax2
b y* -f 2nz = 0.

Let us first suppose the sign of b to be positive. In this

case, while the sections by planes parallel to the planes of xz

or yz are parabolas, those parallel to the plane of xy are ellipses,

and the surface is called the Elliptic Paraboloid. It evidently

extends only in one direction, since the section by any plane
z k is ax* -f &y = 2kn

,
and will not be real unless the

right-hand side of the equation is positive. When therefore

n is positive, the surface lies altogether on the negative side

of the plane of xy, and when n is negative, on the positive side.

III. If the sign of b be negative, the sections by planes

parallel to that of xy are hyperbolas, and the surface is called

a Hyperbolic Paraboloid. This surface extends indefinitely in

both directions. The section by the plane of xy is a pair of

right lines
;

the parallel sections above and below this plane

are hyperbolas having their transverse axes at right angles to

each other, and their asymptotes parallel to the pair of lines

in question, the section by the plane of xy forming the transition

between the two series of hyperbolas : the form of the surface

resembles a saddle or mountain pass.

IV. If b = 0, that is,
if two roots of the discriminating cubic

vanish, the equation takes the form

V + Zm y -f 2n z + d= 0,

but by changing the axes of y and z in their own plane, and

taking for new coordinate planes the plane m y + n z and a

plane perpendicular to it through the axis of #, the equation



CLASSIFICATION OF QUADRICS. 73

is brought to the form

which (Art. 25) represents a cylinder whose base is a parabola.

V. If we have also m =
0, n =

0, the equation aV + d=

being resolvable into factors would evidently denote a pair of

parallel planes.

88. The actual work of reducing the equation of a paraboloid

to the form aV 4 b y* 4- 2nz = is shortened by observing that

the discriminant is an invariant
;

that is to say, a function of

the coefficients which is not altered by transformation of co

ordinates (Higher Algebra, Art. 120, also noticing that since

we are transforming from one set of rectangular axes

to another the modulus of transformation is unity, as

seen above Note to Art. 32). Now the discriminant of

ax* + b y* -f 2n z is simply a b n*, which is therefore equal to

the discriminant of the given equation. And as a and l&amp;gt; are

known, being the two roots of the discriminating cubic which

do not vanish, n is also known. The calculation of the dis

criminant is facilitated by observing that it is in this case a

perfect square (Higher Algebra, Art. 37). Thus let us take the

example

5x* - y* -f z* + zx + xy -f 2x -f 4y -f 6z = 8.

Then the discriminating cubic is X3
5X* 14X = whose roots

are 0, 7, and 2. We have therefore a =
7, & = 2. The

discriminant in this case is (I + 2wi 3n)
2

,
or putting in the

actual values Z=l, 7rc= 2, w= 3 is 16. Hence we have 14tt
2=

16,
/^ fj2j

n =
, , and the reduced equation is lx* - 2y

a = : .

V(14) V(U)
If we had not availed ourselves of the discriminant we

should have proceeded, as in Art. 72, to find the principal planes

answering to the roots 0, 7
3

2 of the discriminating cubic, and

should have found

x + 2y 3z = 0, 4ic -f y + 2z = 0, x 2y z = 0.

L
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Since the new coordinates are the perpendiculars on these

planes, we are to take

from which we can express #, ?/,
z in terms of the new co

ordinates, and the transformed equation becomes

which, finally transformed to parallel axes through a new origin,

gives the same reduced equation as before.

If in the preceding example the coefficients
?, m, n had been

so taken as to fulfil the relation ? + 2m 3n = 0, the discriminant

would then vanish, but the reduction could be effected with even

greater facility, as the terms in #, y, z could then be expressed
in the form

Thus the equation

5x2 -
y* + z* + Gzx + 4## + 2# 4 2# + 23 = 8

may be written in the form

(4o; + 2/ + 22)
2 -

(a?- 2#-2)
2 + 2 (4oj + ^+2s)-2(x-2j/-s) = 24,

which, transformed as before, becomes

21a?* - 6/ + 2a; V(21)
-
2y V(6) = 24,

and the remainder of the reduction presents no difficulty.



CHAPTER VI.

PROPERTIES OF QUADRIC3 DEDUCED FROM SPECIAL

FORMS OF THEIR EQUATIONS.

CENTRAL SURFACES.

89. WE proceed now to give some properties of central

x* y* z*

quadrics derived from the equation ., 4 rr, + -5 = 1. This will
a b c

include properties of the hyperboloids as well as of the ellipsoid

if we suppose the signs of b
2 and of c

2
to be indeterminate.

The equation of the polar plane of the point xyz (or of the

tangent plane, if that point be on the surface) is (Art. 63)

L - i

a* ~V
&quot;

c*

The length of the perpendicular from the origin on the tangent

plane is therefore (Art. 33) given by the equation

&&quot;

- - - __ .

4 I 14
~

4 s

p a b c

And the angles a, /3, 7 which the perpendicular makes with the

axes are given by the equations

px
f

Q py
f

pzcosa=^ , 008/3=^, 0037 = ^-5- ,a b c

as is evident by multiplying the equation of the tangent plane

by^?, and comparing it with the form

x cosa + y cos/3 + z cosy =p.

From the preceding equations we can also immediately get

an expression for the perpendicular in terms of the angles it

makes with the axes, viz.

p
2 = a2

cos
2
a + 2

cos @ + c
2
cos

2

7.

90. To find the condition that the plane ouc

should touch the surface.
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Comparing this with the equation ^ + ^ 4- -=- = 1 . we
a o c

have at once

x aa. y
f

Iff z cy

and the required condition is

In the same way, the condition that the plane ax + /By + yz
OC 11 2J

should touch the cone -5 + ?* 3=0 is
a b c

These might also be deduced as particular cases of Art. 79.

91. The normal is a perpendicular to the tangent plane

erected at the point of contact. Its equations are obviously

Let the common value of these be jR, then we have

Ex By Bzf

/y. __ /Y/ . _ ni _ nf J ft __ nr
^^ ~~ u ) fj

^^ V ~~
7 &amp;gt;t ,

& ^^
&amp;lt;*&quot;

~~ u

Squaring, and adding, we find that the length of the normal
T&amp;gt;

between x y z
,
and any point on it xyz is . But if xyz be

taken as the point where the normal meets the plane of xy, we
have z = 0, and the last of the three preceding equations gives

II = c
v
. Hence the length of the intercept on the normal

between the point of contact and the plane of xy is - .

92. The sum of the squares of the reciprocals of any three

rectangular diameters is constant. This follows immediately
from adding the equations

1 cos
2
a cos

v
/3 cos

2

7

/o*
a2

&* c
a

1 cos&quot; a cos&quot;/3 cos
2

7

2_.&quot;

_L
C09

*
a

&quot;

cos
ff&quot;

cos
2

7
/&quot;

=
a&quot;

4 V &amp;lt;?
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whence, since cos
2
a -I- cos

2
a + cos

2
a&quot;
=

1, &c., we have

I .1 _i III
-, +

J,
+ ^ ~

-t + p + -

93. In like manner the sum of the squares of three perpen
diculars on tangent planes, mutually at right angles, is constant,

as appears from adding the equations

p
z = a

2
cos

2

a + b* cos*/3 + c
2

003*7,

jp*
= a2

cos
8
a + &*cos

f +c2

cosY,

/ = a cos a&quot; -I- Z&amp;gt;

2
cos

2 &quot;

+ c
2
cos

7&quot;.

Hence the locus of the intersection of three tangent planes

which cut at right angles is a sphere ;
since the square of its

distance from the centre of the surface is equal to the sum

of the squares of the three perpendiculars, and therefore to

CONJUGATE DIAMETERS.

94. The equation of the diametral plane conjugate to the

diameter drawn to the point x y z on the surface is

,
. rtX

=0, (Art. 70).

xx zz
f

It is therefore parallel to the tangent plane at that point.

Since any diameter in the diametral plane is conjugate to that

drawn to the point x y z
^
it is manifest that when two diameters

are conjugate to each other, their direction-cosines are connected

by the relation

cos a cos a cos8 cos B

Since the equation of condition here given is not altered if

we write kd\ kb
2

,
Jcc* for a2

, J&quot;, c*,
it is evident that two lines

a;
2

y* z*
which are conjugate diameters for any surface -f

j-9
+ =

1,

are also conjugate diameters for any similar surface

x* y* z&amp;gt;

_i- &quot; _L If
2 -f 75 a K *

a o c

And by making k we see in particular that any surface and

its asymptotic cone have common systems of conjugate diameters.
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Following the analogy of methods employed in the case of

conies, we may denote the coordinates of any point on the

ellipsoid by a cosX, b cos/4, c cosv, where X, /^, v are the

direction-angles of some line
;

that is to say, are such that

cos
2
A, + cos

2

//. + cos
2
v 1. In this method the two lines answer

ing to two conjugate diameters are at right angles to each

other; for writing pcosa = acosX, p cos a = a cos X
, &c., the

relation above written becomes

cosX cosX + cos yu,
cos // + cos v cos/ = 0.

95. The sum of the squares of a system of three conjugate

semi-diameters is constant.

For the square of the length of any semi-diameter x *+y *-\-z
f*

is,
when expressed in terms of X, //,, j/,

a
2
cos

2X + 5
2
cos

2

yu. + c* cos
2

v,

which, when added to the sum of

a
2
cos

2X + 2
cos

2/ + c
2
cos

2 /
,

a2
cos

2
X&quot; + b

z

cosV + c
2
cos

2/
,

the whole is equal to a2 + b
2

+ c
2

;
since X, /*, v, &c. are the

direction angles of three lines mutually at right angles.

96. The parallelepiped whose edges are three conjugate semi-

diameters has a constant volume.

For if xyz , x&quot;y&quot;z&quot;,
&c. be the extremities of the diameters,

the volume is (Art. 32)

or abc
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For if c be the semi-diameter to the point of contact, and 6 the

angle it makes with p, the volume of the parallelepiped under

the conjugate diameters a
,
I

,
c
f
is ab c cos#, but c cos& =p.

97. The theorems just given may also with ease be deduced

from the corresponding theorems for conies.

For consider any three conjugate diameters a
,
5

,
c

,
and let

the plane of a V meet the plane of xy in a diameter A, and let

C be the diameter conjugate to A in the section ab
,
then we

have A + C 2 =
a&quot;

2 + V*
;

therefore a 2
4 V* 4 c

* = Az + C 2
4 c

2
.

Again, since ^4 is in the plane xy, then if B is the diameter con

jugate to A in the section by that plane, the plane conjugate to

A will be the plane containing B and containing the axis c, and

(7,
c are therefore conjugate diameters of the same section as

B, c. Hence we have A2
4 C 4 c* =A + B 2

4 o
v

;
and since,

finally, -4
2+ J6 2=a24^2

,
the theorem is proved. Precisely similar

reasoning proves the theorem about the parallelepipeds.

We might further prove these theorems by obtaining, as in

the note, Art. 82, the relations which exist when the quantity

X? V* Z
2

X* II* Z*

~/2 + f/3 4 ,
&amp;gt;

in oblique coordinates is transformed to , + f^ H
a o c a b &
in rectangular coordinates. These relations are found to be

a2 4&2 + c =a/2 4&/2
4-c

/2

,

aV+cV+a ^JV 1

sin X 4-cV sin&amp;gt; 4 a&quot;

2
b&quot;

2

sinV,

a^c* =a /5J V2

(l- cos
a \ - cos

2

/* cosV4 2 cos\ cos/* cos
v).

The first and last equations give the properties already ob

tained. The second expresses that the sum of the squares of

the parallelograms formed by three conjugate diameters, taken

two by two, is constant, or that the sum of squares of reciprocals

of perpendiculars on tangent planes through three conjugate
vertices is constant.

98. The sum of the squares of the projections of three con-

jugate diameters on any fixed right line is constant.

Let the line make angles a, /3, 7 with the axes, then the

projection on it of the semi-diameter terminating in the point

xy z is x cos a 4 y cos/3 4 z cos 7, or, by Art. 94, is

a cosX cosa 4 b cosfi cos/5 4 c cosy 0037.
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Similarly, the others are

a cosX cos a 4- b cosjj, cos/9 4- c cos/ 0037,

a cosV cos a -f b
cos/i&quot;

cos + c cos v&quot; cosy ;

and squaring and adding, we get the sum of the squares

a2
cos

2
a 4- b* cos

2

/9 4- c* cos
2

7.

99. The sum of the squares of the projections of three con

jugate diameters on any fixed plane is constant.

If d, d ,
d&quot; be the three diameters, 0, #

,
0&quot; the angles made

by them with the perpendicular on the plane, the sum of the

squares of the three projections is d2
sin

s

04-^
/si

sin^ 4- d&quot;

z
sin

2

0&quot;,J- 1 / /

which is constant, since d* cos
2# + d r*

cos
2 + d&quot;* cos*0&quot; is con

stant by the last article
;
and d 2 + d z

4- d&quot;* by Art, 95.

100. To find the locus of the intersection of three tangent planes
at the extremities of three conjugate diameters.

The equations of the three tangent planes are

x v z
- cosX -f

Z-
COS/A 4-

- cos v = 1,
a b c

x ., 11 ,
z ,- cos X 4- f- cos it 4-
- cos v = 1,

a b c

x 11 z
- cos \&quot; 4- r cos u,&quot; 4- - cos v&quot; \ .

a b c

Squaring and adding, we get for the equation of the locus222x y z~
4&quot; Va 4 5=0.a b c

101. To find the lengths of the axes of the section made by

any plane passing through the centre.

We can readily form the quadratic, whose roots are the

reciprocals of the squares of the axes, since we are given the

sum and the product of these quantities. Let a, /9, 7 be the

angles which a perpendicular to the given plane makes with

the axes, R the intercept by the surface on this perpendicular ;

then we have (Art. 92)

1 1 JL 1 1 I
a/* + T2 4- ^ -

a
, 4-

p,
4-

c
. ,
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1 1 /111 cos
a
a cos

a

/9 cos*7\
whence +

j-^
=

( -5 + 75 + -3
-

* ^ j
&amp;gt;12 2 ^ /&quot;&amp;gt; 2

7-1 pnsiVy POS /*) Pfm f\i_ // \^Uo Lfc V^*JO KJ l^Ui3 /
while (Art. 96] ^ =

-^-5
= -7^- + -7-^ + -^rrr -

The quadratic required is therefore

1 1 /sin*a sin
2

/? sin
2

7\ cos
2
a cos

2

/3

This quadratic may also be written in the form

Ta T H a i~
= 0.

cos
2
a

This equation may be otherwise obtained from the principles

explained in the next article.

102. Through a given radius OH of a central quadric we can

in general draw one section ofwhich OR shall be an axis.

Describe a sphere with OR as radius, and let a cone be

drawn having the centre as vertex and passing through the

intersection of the surface and the sphere, and let a tangent

plane to the cone be drawn through the radius OR, then OR
will be an axis of the section by that plane. For in it OR is

equal to the next consecutive radius (both being radii of the

same sphere) and is therefore a maximum or minimum
; or,

again, the tangent line at R to the section is perpendicular to

OR, since it is also in the tangent plane to the sphere. OR is

therefore an axis of the section.

The equation of the cone can at once be formed by sub

tracting one from the other, the equations

when we get

If then any plane x cos a + y cos/5-1- z cosy have an axis in

length =
r, it must touch this cone, and the condition that it

should touch
it,

is (Art. 90)

aa - r
z +

~b
r̂ r

c -r*
~~

which is the equation found in the last article.

M
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In like manner we can find the axes of any section of a

quadric given by an equation of the form

ax? 4 by* 4 cz* 4 2fyz 4 Zgzx 4 2hxy = 1.

The cone of intersection of this quadric with any sphere

is (a -\)x*+(b- X) y* 4 (c
-
X) z* 4 Zfyz 4 Zgzx 4 2A## = 0,

and we see, as before, that if X be the reciprocal of the square
of an axis of the section by the plane x cos a + y cos/3+-z cos 7,

this plane must touch the cone whose equation has just been

given. The condition that the plane should touch this cone

(Art. 79) may be written

a X, h, #, cos a

h, b X, /, cos/3

9, /) c~\ COS 7
cos a, cos/3, cos 7,

=
o,

which expanded is

X2 - X
{(b 4 c) cos

a
a 4- (c -f a) cos

2

/3 -f (a + 5) cos*y

2/cos/3 cos 7 2^ cos 7 cos a 2A cos a cos/3}

+ (c -/*) cos*a 4 (ca -/) cos
2

/3 4 (a&
- A

2

)
cos

2

7

4 2 (^ -
of) cos/8 cos7 4 2 (hf lg] cos 7 cos a

4 2 (^ cA) cos a cos/3 = 0.

CIRCULAR SECTIONS.

103. We proceed to investigate whether it is possible to

draw a plane which shall cut a given ellipsoid in a circle. As
it has been already proved (Art. 73) that all parallel sections

are similar curves, it is sufficient to consider sections made by

planes through the centre. Imagine that any central section

is a circle with radius r, and conceive a concentric sphere

described with the same radius. Then we have just seen

that
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represents a cone having the centre for its vertex and passing

through the intersection of the quadric and the sphere. But

if the surfaces have a plane section common, this equation must

necessarily represent two planes, which cannot take place unless

the coefficient of either x\ y\ or 2
2
vanish. The plane section

must therefore pass through one or other of the three axes.

Suppose for example we take r = b, the coefficient of y vanishes,

and there remains

which represents two planes of circular section passing through
the axis of y.

The two planes are easily constructed by drawing in the

plane of xz a semi-diameter equal to b. Then the plane con

taining the axis of^, and either of the semi-diameters which

can be so drawn, is a plane of circular section.

In like manner, two planes can be drawn through each of

the other axes, but in the case of the ellipsoid these planes will

be imaginary ;
since we evidently cannot draw in the plane of

xy a semi-diameter = c, the least semi-diameter in that section

being =Z&amp;gt;; nor, again, in the plane of yz a semi-diameter =a,
the greatest in that section being = b.

In the case of the hyperboloid of one sheet, c
2
is negative,

and the sections through a are those which are real. In the

hyperboloid of two sheets, where both &
2 and c

2
are negative,

if we take r
2 = - c

2

(b* being less than c
2

),
we get the two real

sections,
1

These two real planes through the centre do not meet the

surface, but parallel planes do meet it in circles. In all cases

it will be observed that we have only two real central planes

of circular section, the series of planes parallel to each of which

afford two different systems of circular sections.

104. Any two surfaces whose coefficients of a:
2

, y
9

,
a
2

,
differ

only by a constant, have the same planes of circular section. Thus

Cz*=l, and (A + H) x2 + (B + H] if + (C + H}z
z=l
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have the same planes of circular section, as easily appears
from the formula in the last article.

The same thing appears by throwing the two equations into

the form

-z
= A cos

2
a + B cos /:? + C cos

2

?,

-i = A cos a -t B cos
2

/3 + C cos
2

? + H,

from which it appears that the difference of the squares of the

reciprocals of the corresponding radii vectores of the two sur

faces is constant. If then in any section the radius vector of

the one surface be constant, so must also the radius vector of

the other. The same consideration shews that any plane cuts

both in sections having the same axes, since the maximum or

minimum value of the radius vector will in each correspond
to the same values of a, /3, 7.

Circular sections of a cone are the same as those of a hyper-
boloid to which it is asymptotic.

105. Any two circular sections of opposite systems lie on the

same sphere.

The two planes of section are parallel each to one of the

planes represented by
1\ .A 1\ /!

l_

jf r*J \IP r*J \c* r*

Now since the equation of two planes agrees with the

equation of two parallel planes as far as terms of the second

degree are concerned, the equation of the two planes must

be of the form

1\ ,/] 1\ ,/l 1
x-

-y-

where w
t represents some plane. If then we subtract this from

the equation of the surface, which every point on the section

must also satisfy, we get

which represents a sphere.
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106. All parallel sections are, as we have seen, similar. If

now we draw a series of planes parallel to circular sections, the

extreme one will be the parallel tangent plane which must

meet the surface in an infinitely small circle. Its point of

contact is called an uinbilic. Some properties of these points

will be mentioned afterwards. The coordinates of the real

umbilics are easily found. We are to draw in the section,

whose axes are a and c,
a semi-diameter = &, and to find the

coordinates of the extremity of its conjugate. Xow the for

mula for conies 5
2 = a

2

eV, applied to this case, gives us

7 , a c o

b = a
2

x*
a

a&quot; a -tf 1 *
& -c*

whence -5 = ,

-
r, : similarly = -

* 2 &quot; * 2
c a - c

There are accordingly in the case of the ellipsoid four real

umbilics in the plane of xz, and four imaginary in each of the

other principal planes.

RECTILINEAR GENERATORS.

107. We have seen that when the central section is an

ellipse all parallel sections are similar ellipses, and the section

by a tangent plane is an infinitely small similar ellipse. In

like manner when the central section is a hyperbola, the section

by any parallel plane is a similar hyperbola, and that by the

tangent plane reduces itself to a pair of right lines parallel to

the asymptotes of the central hyperbola. Thus if the equation
referred to any conjugate diameters be

T* 11* ?*
. + U- - L. = i

and we consider the section made by any plane parallel to the

plane of xz (y
=

/3), its equation is

a* c
*

5
/a

*

And it is evident that the value /3 = Z&amp;gt; reduces the section to
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a pair of right lines. Such right lines can only exist on the

hyperboloid of one sheet,* since if we had the equationMO O

ar y _ z*

^-^=1 + ^,

the right-hand side of the equation could not vanish for any real

value of z. It is also geometrically evident that a right line

cannot exist either on an ellipsoid, which is a closed surface,

or on a hyperboloid of two sheets, no part of which, as we

saw, lies in the space included between several systems of two

parallel planes, while any right line will of course in general

intersect them all.

108. Throwing the equation of the hyperboloid of one sheet

into the form

a
2

it is evident that the intersection of the two planes

a c

lies on the surface
;
and by giving different values to X we get

a system of right lines lying in the surface
; while, again, we

get another system by considering the intersection of the planes

x z / y\ k fx z\ y--- = X 1+f ,
X - + - =l-f .

a c \ bj \a cj b

What has been just said may be stated more generally as

follows : If a, /3, 7, 8 represent four planes, then the equation

ay = (3$ represents a hyperboloid of one sheet, which may be

generated as the locus of the system of right lines cc= X/3, \7= S,

or of the system a = XS, XY = /3.

Considering four lines in either system as a = X/3, \y = S, we

have two pencils of planes which we see by Art. 39 are equi-

anharmonic; hence the hyperboloid of one sheet may be

regarded as the locus of lines of intersection of two homographic

pencils of planes.

* It will be understood that the remarks in the text apply only to real right,

lines : every quadric surface has upon it an infinity of right lines, real or imaginary,

and (not being a cone) it is a skew surface. See footnote, Art. 112.
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In the case of the equation

x* / z*__L ^__ _ = 1

a
2 V c*

the lines may be also expressed by the equations

X Z II Z- = - cos 9 + sin 6, 7 = - sin 6 cos 9.
a c be

109. Any two lines belonging to opposite systems lie in the

same plane.

Consider the two lines

a X/3j Xy 5,

a-X S,
X y-,3.

Then it is evident that the plane a - X/3 + XX y \ S contains

both, since it can be written in either of the forms

cc-X/3-f X (Xy- 8), a-X S + X(X y-).
It is evident in like manner that no two lines belonging to

tie same system lie in the same plane. In fact, no plane of

the form (a XyS) -f k (A/y
-

S) can ever be identical with

(a X /3) + k (X y 8) if X and X are different. In the same

way we see that both the lines

X Z ~ n y z - n n- = - cos 6 sin 0. ? = _ sm u + cos 0.
a c 6 c

X Z
- = - cos
a c

6 -f sin
d&amp;gt;, ^ = - sin &amp;lt;f&amp;gt;

- cos 6.
c

which belong to different systems, lie in the plane

-cosJ(^+^)-fTsini(^4^)=-
CZ c/ C

Now this plane is parallel to the second line of the first

system
X Z 11 Z
- = - cos d&amp;gt; sin d&amp;gt;,7 = sin d&amp;gt; + cos &amp;lt;i.

a c be
but it does not pass through it,

for the equation of a parallel

plane through this line will be found to be

-
cos| (0 + &amp;lt;/&amp;gt;)

+ 1 sin i (0 -f
&amp;lt;/&amp;gt;)=-

cos i (0
-

*) + BinJ (0
-

),
ft O C
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which differs in the absolute term from the equation of the

plane through the first line.

110. We have seen that any tangent plane to the hyper-
boloid meets the surface in two right lines intersecting in the

point of contact, and of course touches the surface in no other

point. If through one of these right lines we draw any other

plane, we have just seen that it will meet the surface in a new

right line, and this new plane will touch the surface in the

point where these two lines intersect. Conversely, the tangent

plane to the surface at any point on a given right line in the

surface will contain the right line, but the tangent plane will

in general be different for every point of the right line. Thus,
take the surface

a?&amp;lt;/&amp;gt;

=
yty, where the line xy lies on the surface,

and
(f&amp;gt;

and
-vjr represent planes (though the demonstration would

equally hold if they were functions of any higher degree).

Then using the equation of the tangent plane

(x
- x

) US + (y- y ) U; + (,- z
) Z7,

=
0,

and seeking the tangent at the point x = 0, y = 0, 3 = 2
,
we find

xfi = y^r ^
where

(/&amp;gt;

and ^ are what
(/&amp;gt;

and
t/r

become on sub

stituting these coordinates. And this plane will vary as z varies.

It is easy also to deduce from this that the anharmonic ratio

of four tangent planes passing through a right line in the surface

is equal to that of their four points of contact along the line.

All this is different in the case of the cone. Here every

tangent plane meets the surface in two coincident right lines.

The tangent plane then at every point of this right line is the

same, and the plane touches the surface along the whole length

of the line.

And generally, if the equation of a surface be of the form

x(f&amp;gt;
+ y*ty 0,

it is seen precisely, as above, that the tangent plane at every

point of the line xy is x 0.

111. It was proved (Art. 107) that the two lines in which

the tangent plane cuts a hyperboloid are parallel to the asymp
totes of the parallel central section

;
but these asymptotes are

evidently edges of the asymptotic cone to the surface. Hence
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every right line which can lie on a hyperboloid is parallel to

some one of the edges of the asymptotic cone. It follows also

that three of these lines (unless two of them are parallel) cannot

all be parallel to the same plane ; since, if they were, a parallel

plane would cut the asymptotic cone in three edges, which

is impossible, the cone being only of the second degree.

112. We have seen that any line of the first system meets

all the lines of the second system. Conversely, the surface

may be conceived as generated by the motion of a right line

which always meets a certain number of fixed right lines.*

Let us remark, in the first place, that when we are seeking

the surface generated by the motion of a right line, it is

necessary that the motion of the right line should be regulated

by three conditions. In fact, since the equations of a right

line include four constants, four conditions would absolutely

determine the position of a right line. When we are given

one condition less, the position of the line is not determined,

but it is so far limited that the line will always lie on a certain

surface-locus, whose equation can be found as follows : Write

down the general equations of a right line x mz-^-p^ y=nz + q;

then the conditions of the problem establish three relations

between the constants m, w, p, q. And combining these three

relations with the two equations of the right line, we have

five equations from which we can eliminate the four quantities

m
t
n

i PJ 3 5
anc* the resulting equation in

jr, y, z will be the

equation of the locus required. Or, again, we may write the

equations of the line in the form

x x
_ y y _z- z

cosa cos/3 cosy
J

then the three conditions give three relations between the con

stants x
, y, z, a, , 7, and if between these we eliminate

a, /3, 7, the resulting equation in a/, ?/ ,
z is the equation of the

required locus, since x tfz may be any point on the line.

* A surface generated by the motion of a right line is called a ruled surface. If

every generating line is intersected by the next consecutive one, the surface is called

a developable or torse. If not, it is called a skew surface or scroll. The hyperboloid

of one sheet, and indeed every quadric surface (not being a cone or cylinder) belongs

to the latter class
;
the cone and cylinder to the former.

N
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We see then, that it is a determinate problem to find the

surface generated by n right line which moves so as always

to meet three iixec! right lines.* For, expressing, by Art. 41,

the condition that the moveable right line shall meet each of

the tixed lines, we obtain the three necessary relations between

???, 7i, PJ g&amp;gt;. Geometrically also we can see that the motion of

the line is completely regulated by the given conditions. For

a lino would be completely determined if it were constrained

to pass through a given point and to meet two fixed lines,

since we need only draw planes through, the given point and

each of tho fixed lines, when the intersection of these planes

would determine the line required. If, then, the point through
which the line is to pass, itself moves along a third fixed line,

we have a determinate series of right lines, the assemblage of

which forms a surface-locus.

113. Let us then solve the problem suggested by the last

article, viz. to find the surface generated by a right line which

always meets three fixed right lines, no two of which are in

the same plane. In order that the work may be shortened

as much as possible, let us first examine what choice of

axes we must make in order to give the equations of the

fixed right lines the simplest form.

And it occurs at once that we ought to take the axes, one

parallel to each of the three given right lines.f The only

question then is, where the origin can most symmetrically be

placed. Suppose now, that through each of the three right

lines we draw planes parallel to the other two, we get thus

three pairs of parallel planes forming a parallelepiped, of which

the given lines will be edges. And if through the centre of

this parallelepiped we draw lines parallel to these edges, we
shall have the most symmetrical axes. Let then the equations

of the three pairs of planes be

x
, y = &, z

GJ

* Or three fixed curves of any kind.

f We could not do this indeed if the thrco given right lines happened to be all

parallel to the same plane. This case will be considered in the next section. It will

not occur when the locus is a hyperboloid of one sheet, see Art. 111.
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then the equations of the three fixed right lines will be

y = b, z = c] z = Cj x = a] x = a, y = b.

The equations of any line meeting the first two fixed lines are

z + c = \(y b)] 2 - c =
/-t (# -f a) j

which will intersect the third if c + pa + \b =
;

or replacing

for \ and
/j,

their values,

c (x 4 a) (y
-

b) + a (2
-

c) (y
-

I) -f I (z + c) (x -}- a),

which reduced is

ayz + bzx -f cxy + ale 0.

On applying the criterion of Art. 86, this is found to represent

a hyperboloid of one sheet, as is otherwise evident, since it

represents a central quadric, and is known to be a ruled

surface. The problem might otherwise be solved thus :

Assuming for the equations of the moveable line

-x _y-y _z-

the following three conditions are obtained by expressing that

this intersects each of the fixed lines,

y
f

b _z + c z c _x + a x a _y + b

cos/3 COSY COSY
&quot;

cosa cosa cos/5
*

We can eliminate a, /3, 7 by multiplying the equations

together, and get for the equation of the locus,

which reduces to ayz 4- bzx + cxy + abc = the same equation as

before.

The last written form of the equation expresses that this

hyperboloid is the locus of a point, the product of whose dis

tances from three concurrent faces of a parallelepiped is equal

to the product of its distances from the three opposite faces.

The following is another general solution of the same pro

blem : Let the first two lines be the intersections of the planes

a, (3 ; 7, 8
;
then the equations of the third can be expressed in

the form a = Ay + .Z?8, @ = Cy + DS. The moveable line, since

it meets the first two lines, can be expressed by two equations

of the form a = X/3, 7 = /*8. Substituting these values in the
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equations of the third line, we find the condition that it and

the moveable line should intersect, viz.

And eliminating X and
yu,

between this and the equations of the

nioveable line, we get for the equation of the locus,

A third general solution is as follows: taking (p^ q^ ?\,

S
i5

fu Z
0&amp;gt; (P& )? (P& )

as ^e s ^x coordinates of the given

lines respectively, and writing for shortness (pqr) to denote the

determinant p*(%J\ 9.^ +&c., and so in other cases, then

it can be shewn that the equation of the hyperboloid passing

through the three given lines is

(ptu) x* 4- (qus) y* 4- (rst) z* 4- (pqr) w2

4- \_(pqt] (rpu)] xw 4- \_(qst) 4- (rus )] yz

+ \_(qru) (pqs)] yw + [(rtu) + (pst)^\ zx

+ [(rps) (qrt )J zw -f \_(pus) 4- (qtu)] xy 0.

114. Four right lines belonging to one system cut all lines

belonging to the other system in a constant anharmonic ratio.

For through the four lines and through any line which

meets them all we can draw four planes; and therefore any

other line which meets the four lines will be divided in a

constant anharmonic ratio (Art. 39).

Conversely, if two non-intersecting lines are divided homo-

graphically in a series of points, that is to say, so that the

anharmonic ratio of any four points on one line is equal to

that of the corresponding points on the other, then the lines

joining corresponding points will be generators of a hyper

boloid of one sheet.

Let the two given lines be
cc, /S ; 7, 8. Let any fixed line

which meets them both be a = V/3, 7 = pS then, in order that

any other line a = A/3, 7=/*S should divide them homographically,

we must have ( Conies, Art. 57) -7 = . and if we eliminate X
A,

fju

between the equations a= A/3, A
r

7= //AS, the result is A /ity
=

/u/aS.

NON-CENTRAL SURFACES.

115. The reader is recommended to work out for himself

the properties of paraboloids which are analogous to the results
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of the preceding articles of this chapter. In particular he may
show* that :

The sum or difference of the principal parameters of any

two conjugate diametral sections of a paraboloid is constant

according as it is elliptic or hyperbolic.

The sum or difference of the parameters of any two conju

gate diametral sections at a given point of a paraboloid is

constant, according as it is elliptic or hyperbolic.

If from the extremity of any diameter of a paraboloid a line

of constant length be measured and a conjugate plane drawn

cutting the paraboloid, the volume under any two conjugate

diameters of the section and this line is constant.

We proceed to determine the circular sections of the para

boloid given by the equation

a? if 1z
+ _^

* Taa o c

Consider a circular section through the origin, and describe a

sphere through it having, at the origin, the same tangent plane

(z) as the paraboloid; then (Art. 61) the equation of the sphere

must be of the form

And the cone of intersection of this sphere with the paraboloid is

This will represent two planes if one of the terms vanishes.

It will represent two real planes in the case of the elliptic

paraboloid, if we take ~=1, for the equation then becomes
ct/

I
2
z* = (a

2
6
2

) 2/

2
. But in the case of the hyperbolic paraboloid

there is no real circular section, since the same substitution

would make the equation of the two planes take the imaginary

Indeed, it can be proved in general that no section of the

hyperbolic paraboloid can be a closed curve, for if we take its

intersection with any plane z = ax -f fBy + 7, the projection on

* See Professor Allman, On some Properties of the Paraboloids, Quarterly Journal

ofPure and Applied Mathematics, 1874.
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,, , a? if 2 (ax 4- By + 7) , . , . .,

the plane of xy is -j
- ^ = i-^-^ which is necessarily

Oj C

a hyperbola.

116. From the general theory explained in Art. 108, it is

plain that the hj perbolie paraboloid may also have right lines

X* II* 3

lying altogether in the surface. For the equation 75
= -

(Art. 87) is included in the general form ay = /3S}
and the

surface contains the two systems of right lines

x y k
(x ^ y\ z

- f = X, X[-T f = -.
a b \a bj c

The first equation shews that every line on the surface must

y i/

be parallel to one or other of the two fixed planes
-

j-

=
;

and in this respect is the fundamental difference between right

lines on the paraboloid and on the hyperboloid (see Art. 111).

It is proved, as in Art. 109, that any line of one system
meets every line of the other system, while no two lines of

the. same system can intersect.

We give now the investigation of the converse problem, viz.

to find the surface generated by a right line which always meets

three fixed lines which are all parallel to the same plane. Let

the plane to which all are parallel be taken for the plane of xy,

any line which meets all three for the axis of #, and let the

axes of x and y be taken parallel to two of the fixed lines.

Then their equations are

The equations of any line meeting the first two fixed lines are

a = X(s-a), y = A*(*-&),

which will intersect the third if

X (c
-

a] mfjt, (c &),

and the equation of the locus is

(a
-

c} x (z
-

b) -m(b-c}y(z- a),

which represents a hyperbolic paraboloid, since the terms of

highest degree break up into two real factors.
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In like manner we might investigate the surface generated

by a right line which meets two fixed lines and is always parallel

to a fixed plane. Let it meet the lines

a? = 0, z a\ # = 0, z = a,

and be parallel to the plane

#cosa-j-^ co/3 + z cos7=^?.

Then the equations of the line are

x = \ (z ), y ^(z-
ir a],

which will be parallel to the given plane if

cos 7 : \ cos a -;- fj,
cos ft 0.

The equation of the required locus is therefore

0037 (z
2 - a

2

) -f x cos a (z + a) + y cos/3 (z
-

a)
=

0,

which is a hyperbolic paraboloid, since the terms of the second

degree break up into two real factors.

A hyperbolic paraboloid is the limit of the hyperboloid of

one sheet, when the generator in one of its positions may lie

altogether at infinity.

We have seen (Art. 107) that a plane is a tangent to a

surface of the second degree when it meets it in two real or

imaginary lines; and (Art. 87) that a paraboloid is met by
the plane at infinity in two real or imaginary lines. Hence

a paraboloid is always touched by the plane at infinity.

117. In the case of the hyperbolic paraboloid any three

right lines of one system cut all the right lines of the other

in a constant ratio. For since the generators are all parallel

to the same plane, we can draw, through any three generators,

parallels to that plane, and all right lines which meet three

parallel planes are cut by them in a constant ratio.

Conversely, if two finite non-intersecting lines be divided,

each into the same number of equal parts, the lines joining

corresponding points will be generators of a hyperbolic para
boloid. By doing this with threads, the form of this surface

can be readily exhibited to the eye.

To prove this directly, let the line which joins two corre

sponding extremities of the given lines be the axis of z$ let
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the axes of x and y be taken parallel to the given lines, and

let the plane of xy be half-way between them. Let the lengths

of the given lines be a and &, then the coordinates of two

corresponding points are

z = c, x //,, y 0,

s = -
c, # = 0, y fjJ)^

and the equations of the line joining these points are

x 11

\-^= LL 2cx uaz Liac.
a o

whence, eliminating /-t,
the equation of the locus is

a o

which represents a hyperbolic paraboloid.

SURFACES OF REVOLUTION.

118. Let it be required to find the conditions that the

general equation should represent a surface of revolution. In

this case the equation can be reduced (see Art. 84), if the surface

x* ^^
z

be central, to the form -J + ^T, -5
= + !, and if the surface

a a
~

c

x* ij
1

2#
be non-central to the form -= + *-* = --

. In either case then
a a c

when the highest terms are transformed so as to become the

sum of squares of three rectangular coordinates, the coefficients

of two of those squares are equal. It would appear then that

the required condition could be at once obtained by forming
the condition that the discriminating cubic should have equal

roots. Since, however, the roots of the discriminating cubic are

always real, its discriminant can be expressed as the sum

of squares (see Higher Algebra^ Art. 44), and will not vanish (the

coefficients of the given equation being supposed to be real)

unless two conditions are fulfilled, which can be obtained more

easily by the following process. We want to find whether

it is possible so as to transform the equation as to have

ax* + Inf + GZ* 4- 2fy* + ^cjzx + 2hxy = A (X
2 + Y3

)
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but we have (Art. 19)

It is manifest then that by taking X = A, we should have the

following quantity a perfect square :

(ax* + by* -f cz* -f 2/#z 4- tyzx + 2hxy)
- X (X* -f y* + s

a

),

and it is required to find the conditions that this should be

possible.

Now it is easy to see that when

Ax* + By* + Cz* + iFyz + 2 Gzx 1 ZHxy

is a perfect square, the six following conditions are fulfilled :*

the three former of which are included in the three latter. In

the present case then these latter three equations are

Solving for X from each of these equations we see that the

reduction is impossible unless the coefficients of the given equa
tion be connected by the two relations

all , Jif faa-2-r=b-~ = c--i- .

,/ 9 h

If these relations be fulfilled, and if we substitute any of these

common values for X in the function

(a
-

X) x2

-f (b
-

X) / -F (c
-

X) z* + tfyz + 2gzx +

it becomes, as it ought, a perfect square, viz.

and since the plane Z=0 represents a plane perpendicular to the
/y 77 &

axis of revolution of the surface, it follows that . + - + - =
/ 9 h

represents a plane perpendicular to that axis.

In the special case where the common values vanish which

have been just found for X, the highest terms in the given

* That is to say, the reciprocal equation vanishes identically.
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equation form a perfect square, and the equation represents

either a parabolic cylinder or two parallel planes (see IV.

and V.j Art. 87). These are limiting cases of surfaces of re

volution, the axis of revolution in the latter case being any
line perpendicular to both planes. The parabolic cylinder is

the limit of the surface generated by the revolution of an ellipse

round its minor axis, when that axis passes to infinity.

119. If one of the quantities /, g, h vanish, the surface

cannot be of revolution unless a second also vanish. Suppose
that we have/and g both =0, the preceding conditions become

/&amp;gt;

a h-. = l) h l- =
c,

/ 9
f

from which, eliminating the indeterminate -
,
we get

(a-c)(b-c)=tf.

This condition might also have been obtained at once by

expressing that

(a
-

X) x* + (b
-

X) y
2 + (c

-
X) z

l + Zhxy

should be a perfect square, and it is plain that we must have

X = c
; (a c) (b c)

= 7i
2

.

120. The preceding theory might also be obtained from the

consideration that in a surface of revolution the problem of

finding the principal planes becomes indeterminate. For since

every section perpendicular to the axis of revolution is a circle,

any system of parallel chords of one of these circles is bisected

by the plane passing through the axis of revolution and through
the diameter of the circle perpendicular to the chords, a plane

which is perpendicular to the chords. It follows that every

plane through the axis of revolution is a principal plane. Now
the chords which are perpendicular to these diametral planes are

given (Art. 72) by the equations

(a-\)x+ hy-tgz = Q, lix+(l)-\}y+fz= Q, ##+/?/+ (c-XJ 2=0,

which, when X is one of the roots of the discriminating cubic,

represent three planes meeting in one of the right lines required.

The problem then will not become indeterminate unless these
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equations all represent the same plane, for which we have the

conditions

a X h g a X h . g
h

=
b-X / g

=
f
=
~c-\

which, expanded, are the same as the conditions found already.

LOCI.

121. We shall conclude this chapter by a few examples of

the application of Algebraic Geometry to the investigation of

Loci.

Ex. 1. To find the locus of a point whose shortest distances from two given non-

intersecting right lines are equal.

If the equations of the lines are written in their general form, the solution of this is

obtained immediately by the formula of Art. 15. We may get the result in a simple
form by taking for the axis of z the shortest distance between the two lines, and,

choosing for the other axes the lines bisecting the angle between parallels to the

given lines through the point of bisection of this shortest distance
;
then their equa

tions are of the form
z c, y mx

;
z c, y mx,

and the conditions of the problem give

or cz (1 + m2
) + mxy 0.

The locus is therefore a hyperbolic paraboloid.

If the shortest distances had been to each other in a given ratio, the locus would

have been

{(1 + A) z + (1
-

X) c} {(1
-

X) z + (1 + X) c}

+ rr^r K 1 + *) y + (i
-

*) m*} U 1 - X) y + (i + X) mx] = o,
1.

&quot;T
&quot;^

which represents a hyperboloid of one sheet.

Ex. 2. To find the locus of the middle points of all lines parallel to a fixed plane
and terminated by two non-intersecting lines.

Take the plane x = parallel to the fixed plane, and the plane z = 0, as in the last

example, parallel to the two lines and equidistant from them
;
then the equations of

the lines are

z c, y mx + n; z c, y m x + ri .

The locua is then evidently the right line which is the intersection of the planes

2 = 0, 2y = (m + m ) x + (n + n
).

Ex. 3. To find the surface of revolution generated by a right line turning round a

fixed axis which it does not intersect.

Let the fixed line be the axis of z, and let any position of the other be x = mz + n,

y =. m z + n . Then since any point of the revolving line describes a circle in a plane

parallel to that of xy, it follows that the value of x2 + y
2 is the same for every point in

such a plane section, and it is plain that the constant value expressed in terms of z is

(mz + rif + (m z + n }-. Hence the equation of the required surface is

x2 + y
2 = (mz + nf + (m z + n

)

2
,

which represents a hyperboloid of revolution of one sheet.



100 LOCI.

Ex. 4. Two lines passing through the origin move each in a fixed plane, remaining
perpendicular to each other, to find the surface (necessarily a cone) generated by a

right line, also passing through the origin perpendicular to the other two.

Let the direction-angles of the perpendiculars to the fixed planes be a, 6, c
;
a

,
b

,
c

,

and let those of the variable line be a, (3, y ;
then the direction-cosines of the intersec

tions with the fixed planes, of a plane perpendicular to the variable line, will (Art. 15)

be proportional to

cos ft cose cosy cos b, cos y cos a cos a cos c, cos a cos b &quot;cos (3 cos a,

cos ft cos c cos y cos b
,

cos y cos a cos a cos c
,

cos a cos b cos ft cos a
,

and the condition that these should be perpendicular to each other is

(cos ft cos c cos y cos b) (cos ft cos c cos y cos b
)

+ (cos y cos a cos a cos 0] (cos y cos a cos a cos c )

+ (cos a cos b cos /3 cos a) (cos a cos b cos/3 cos a )
=

which represents a cone of the second degree.

Ex. 5. Two planes mutually perpendicular pass each through a fixed line ; to find

the surface generated by their line of intersection.

Take the axes as in Ex. 1. Then the equations of the planes are

X (z c) + y mx
;
X (z + c) + y + mx =

0,

which will be at right angles if XV + 1 m2 =
;
and putting in for X, X their

values from the pair of equations, we get

y
2 - m*x- + (1

- m2
} (z

2 - c2
)

-
0,

which represents a hyperboloid of one sheet.

Both the hyperboloid of this Example and of Ex. 1 are such that two pairs of

generators are perpendicular to the planes of circular sections. Such hyperboloids

of one sheet have been called orthogonal hyperboloids (Schroter, Crelle s Jour. Yol. 85).

In either case, if the lines intersect, making c = 0, the locus reduces to a cone.

^ + f-I-^ lisorthog nalif ^-^ + ^
= -

Ex. 6. To find the locus of a point, whence three tangent lines, mutually at right

angles, can be drawn to the quadric + ~ + = 1.

If the equation were transformed so that these lines should become the axes of co

ordinates, the equation of the tangent cone would take the form Ayz + Bzx + Cxy = 0,

Bince these three lines are edges of the cone. But the untransformed equation of the

tangent cone is, see Art. 78,

x 2
y

2 z 2
\ fx2 v2 z2 \ fxx yi/ zz \

2
- -4- -i-

J_ J
I 1- L-

J_
I ^7* I

- -
|

-I - -
J_ I .

And we have seen (Art. 82) that if this equation be transformed to any rectangular

system of axes, the sum of the coefficients of a;
2
, y

2
,
and z2 will be constant. We have

only then to express the condition that this sum should vanish, when we obtain as

equation of the required locus,

(
I

)
+ ~

(
I

)
+ ~~( I

)

~
^&quot; ~*~

&quot;2

*

Ex. 7. To find the equation of the cone whose vertex is x y z and which stands on

the conic in the plane of xy, + ~ = 1.

The equations of the line joining any point a/3 of the base to the vertex are

a (z z) = z x x z, ft (z z}
= z y y z.
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Substituting these values in the equation of the base, we get for the required cone

The following method may be used in general to find the equation of the cone

whose vertex is x y z w
,
and base the intersection of any two surfaces U, V. Substitute

in each equation for x, x + Xx
;
for y, y + \y , &amp;lt;fcc.,

and let the results be

-
&amp;lt;5

2f + &c. = 0, V+\5V-\ -&amp;lt;5

2F+&c. = 0,

then the result of eliminating X between these equations will be the equation of the

required cone. For the points where the line joining x y z w to xyzw meets the surface

U are got from the first of these two equations ;
those where the same line meets the

surface V are got from the second
;
and when the eliminant of the two equations

vanishes they have a common root, or the point xyzw lies on a line passing through
x y z w and meeting the intersection of the surfaces.

Ex. 8. To find the equation of the cone whose vertex is the centre of an ellipsoid

and base the section made by the polar of any point x y z .

x2
y
2 z2 /xx yy zz \*Ana. -7+7; + -$

=
(-S- + TS-+-7a2 o2 c2 \a2 o2 c2 /

x2
t/
2 z2

Ex. 9. To find the locus of points on the quadric -= + %- + = 1 the normals at
a2 o2 c2

which intersect the normal at the point x y z .

Ans. The points required are the intersection of the surface with the cone.

a2
(y z - z y) (x

- x ) + b2 (z x - x z} (y
-
y ) + c2 (x y - y x) (z

- z
)
= 0.

Ex. 10. To find the locus of the poles of the tangent planes of one quadric with

respect to another.

We have only to express the condition that the polar of x y z w
,
with regard to

the second quadric, should touch the first, and have therefore only to substitute

Ult
U2,

Z73 ,
Z74,

for a, /3, y, S in the condition given Art. 79. The locus is therefore

a quadric.

Ex. 11. To find the cone generated by perpendiculars erected at the vertex of a

given cone to its several tangent planes.

Let the cone be Lx2+My2 + Xz2= 0, and any tangent plane is Lx x + Afy y+ Nz z =
cc fy z

the perpendicular to which through the origin is -=, = ~r- = -
. If then the com-

OC 1J Z
mon value of these fractions be called p, we have x = -=^-

, y = --
,
z

,
substitu-

-Z//o

&quot;

Atlp A/p

ting these values in Lx 2 + My 2 + Nz 2 = 0, we get y +
f/
+ ^ - - Tte form

of the equation shews that the relation between the cones is reciprocal, and that

the edges of the first are perpendicular to the tangent planes to the second. It

can easily be seen that this is a particular case of the last example.
If the equation of the cone be given in the form

ox2 + by
2 + cz2 + 2fyz + 2gzx + Ihxy = 0,

the equation of the reciprocal cone will be the same as that of the reciprocal curve in

plane geometry, viz.
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Ex. 12. A line moves about so that three fixed points on it move on fixed planes ;

to find the locus of any other point on it.

Let the coordinates of the locus point P be a, /3, y ;
and let the three fixed planes

be taken for coordinate planes meeting the line in points A, JB, C. Then it is easy

to see that the coordinates of A are 0, j^- /3, -^ y, where the ratios AB : PB,

AC : PC are known. Expressing then, by Art. 10, that the distance PA is constant,

the locus is at once found to be an ellipsoid.

Ex. 13. A and are two fixed points, the latter being on the surface of a sphere.

Let the line joining any other point D on the sphere to A meet the sphere again in Df

.

Then if on OD a portion OP be taken = AD
,
find the locus of P. [Sir W, K.

Hamilton] .

We have AD* =A02+ OD2-2AO.OD cos AOD. But AD varies inversely as the

radius vector of the locus, and OD is given, by the equation of the sphere, in terms of

the angles it makes with fixed axes. Thus the locus is easily seen to be a quadric of

which is the centre.

Ex. 14. A plane passes through a fixed line, and the lines in which it meets two

fixed planes are joined by planes each to a fixed point ;
find the surface generated by

the line of intersection of the latter two planes.

Ex. 15. The four faces of a tetrahedron pass each through a fixed point. Find

the locus of the vertex if the three edges which do not pass through it move each in a

fixed plane.

The locus is in general a surface of the third degree having the intersection of the

three planes for a double point. It reduces to a cone of the second degree when the

four fixed points lie in one plane.

Ex. 16. Find the locus of the vertex of a tetrahedron, if the three edges which pass

through that vertex each pass through a fixed point, if the opposite face also pass

through a fixed point and the three other vertices move in fixed planes.

Ex. 17. A plane passes through a fixed point, and the points where it meets three

fixed lines are joined by planes, each to one of three other fixed lines
;
find the locus of

the intersection of the joining planes.

Ex. 18. The sides of a polygon in space pass through fixed points, and all the

vertices but one move in fixed planes ;
find the curve locus of the remaining vertex.

Ex. 19. All the sides of a polygon but one pass through fixed points, the

extremities of the free side move on fixed lines, and all the other vertices on fixed

planes, find the surface generated by the free side.

Ex. 20. The plane through the extremities of conjugate diameters of an ellipsoid

envelopes the ellipsoid + ~ + = 4 and touches it in the centre of the section.
a2 o2 c2

l
~ )/- --S

Ex. 21. The condition that a system of generators of the hyperboloid +
j-2 &amp;gt;

= ^

may admit of three such generators mutually at right angles is found to be

1 1 1 .
1

= 0.
a2 b2 c2

Such hyperboioids have been called equilateral hyperboloids. (Schroter, Ober-

Jlachen zweiter Ordnung, p. 197, 1880).
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CHAPTER VII.

METHODS OF ABRIDGED NOTATION.

THE PRINCIPLE OF DUALITY AND RECIPROCAL POLARS.

122. &quot;\YE shall in this chapter give examples of the appli

cation to quadrics of methods of abridged notation. It is

convenient, however, first to shew that every figure we

employ admits of a two-fold description, and that every theorem

we obtain is accompanied by another reciprocal theorem.

In fact, the reader can see without difficulty that the whole

theory of Reciprocal Polars explained (Conies, Chap. XV.) is

applicable to space of three dimensions. Being given a fixed

quadric 2, and any surface $, we can generate a new surface s

by taking the pole with regard to 2 of every tangent plane

to S. If we have thus a point on s corresponding to a tangent

plane of /S, reciprocally the tangent plane to s at that point

will correspond to the point of contact of the tangent plane

to S. For the tangent plane to s contains all the points on s

consecutive to the assumed point ;
and to it must correspond

the point through which pass all the tangent planes of S con

secutive to the assumed tangent plane ;
that is to say, the point

of contact of that plane. Thus to every point connected with

one surface corresponds a plane connected with the other, and

vice versa ; and to a line (joining two points) corresponds a line

(the intersection of two planes). For example the degree of
5,

being measured by the number of points in which an arbitrary
line meets

it,
is equal to the number of tangent planes which

can be drawn to S through an arbitrary right line. Thus the

reciprocal of a quadric is a quadric, since two tangent planes
can be drawn to a quadric through any arbitrary right line

(Art. 80).

123. In order to shew what corresponds to a curve in space
we shall anticipate a little of the theory of curves of double
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curvature to be explained hereafter. A curve in space may be

considered as a series of points in space 1, 2, 3, &c., arranged

according to a certain law. If each point be joined to its next

consecutive point, we shall have a series of lines 12, 23, 34, &c.,

each line being a tangent to the given curve. The assemblage of

these lines forms a surface, and a developable surface (see note,

Art. 112), since any line 12 intersects the consecutive line 23.

Again, if we consider the planes 123, 234, 345, &c., containing

every three consecutive points, we shall have a series of planes

which are called the osculating planes of the given curve, and

which are tangent planes to the developable generated by its

tangents. Now when we reciprocate, it is plain that to the

series of points, lines, and planes will correspond a series of

planes, lines, and points; and thus, that the reciprocal of a

series of points forming a curve in space will be a series of

planes touching a developable. If the curve in space lies all

in one plane, the reciprocal planes will all pass through one

point, and will be tangent planes to a cone.

Thus the series of points common to two surfaces forms a

curve. Reciprocally the series of tangent planes common to two

surfaces touches a developable which envelopes both surfaces.

To the series of tangent planes (enveloping a cone] which can be

drawn to the one surface through any point, corresponds the

series of points on the other which lie in the corresponding plane :

that is to say, to a plane section of one surface corresponds a

tangent cone of the reciprocal. It easily follows hence, that to a

point and its polar plane with respect to a quadric, correspond
a plane and its pole with respect to the reciprocal quadric.

124. The reciprocals are frequently taken with regard to a

sphere whose centre is called the origin of reciprocation, and

as at Conies (Art. 307) mention of the sphere may be omitted,

and the reciprocals spoken of as taken with regard to this origin.

To the origin will evidently correspond the plane at infinity;

and to the section of one surface by the plane at infinity will

correspond the tangent cone which can be drawn to the other

through the origin. Thus, then, when the origin is without a

quadric, that is to say, is such that real tangent planes can be
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drawn from it to the surface, the reciprocal surface will have

real points at infinity, that is to say, will be a hyperboloid;

when the origin is inside, the reciprocal is an ellipsoid ;
when

the origin is on the surface, the reciprocal will be touched by
the plane at infinity, or what is the same thing (as we shall pre-

sently see) the reciprocal is a paraboloid.

The reciprocal of a ruled surface (that is to say, of a surface

generated by the motion of a right line) is a ruled surface.

For to a right line corresponds a right line, and to the surface

generated by the motion of one right line will correspond the

surface generated by the motion of the reciprocal line.* Hence

to a hyperboloid of one sheet always corresponds a hyperboloid

of one sheet unless the origin be on the surface when the reci

procal is a hyperbolic paraboloid.

125. When reciprocals are taken with regard to a sphere,

any plane is evidently perpendicular to the line joining the

corresponding point to the origin. Thus to any cone corre-

spends a plane curve, and the cone whose base is that curve

and vertex the origin has an edge perpendicular to every

tangent plane of the first cone, and vice versa. In general two

cones (which may or may not have a common vertex) are said

to be reciprocal when every edge of one is perpendicular to a

tangent plane of the other (see Ex. 11, Art. 121). For example,

it appears from the last article, that the tangent cone from the

origin to any surface is in this sense reciprocal to the asymp
totic cone of the reciprocal surface.

The sections
l&amp;gt;y any plane of two reciprocal cones, having a

common vertex^ are polar reciprocals ivith regard to the foot of
the perpendicular on that plane from the common vertex. For,

let the plane meet an edge of one cone in a point P, and the

* Prof. Cayley has remarked, that the degree of any ruled surface is equal to the

degree of its reciprocal. The degree of the reciprocal is equal to the number of

tangent planes which can be drawn through an arbitrary right line. Now it will be

formally proved hereafter, but is sufficiently evident in itself, that the tangent plane
at any point on a ruled surface contains the generating line which passes through that

point. The degree of the reciprocal is therefore equal to the number of generating

lines which meet an arbitrary right line. But this is exactly the number of toiuts in

which the arbitrary line meets the surface, since every point on a generating line is a

point on the surface.

P
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perpendicular tangent plane to the other in the line QE ;
let M

be the foot of the perpendicular on the plane from the vertex 0;
then it is easy to see that the line PM is perpendicular to QE ;

and if it meet it in $, then since the triangle POS is right*

angled, the rectangle PM.MS is equal to the constant OM*.

The curve therefore which is the locus of the point P is the

same as that got by letting fall from M perpendiculars on the

tangents QE, and taking on each perpendicular a portion in

versely as its length.

The following illustrates the application of the principle here

established : Through the vertex of any cone of the second degree

can be drawn two lines, called focal lines, such that the section of

the cone by a plane perpendicular to either line is a conic, having

for a focus the point where the plane meets the focal line. For

form a reciprocal cone by drawing through the vertex lines

perpendicular to the tangent planes of the given cone
;

then

this cone has two planes of circular section (Art. 104) ; and,

by the present article, the section of the given cone by a plane

parallel to either is a conic having for a focus the foot of the

perpendicular on that plane from the vertex. What has been just

proved may be stated, the focal lines of a cone are perpendi
cular to the planes of circular section of the reciprocal cone.

126. The reciprocal of a sphere with regard to any point

is a surface generated by the revolution of a conic round the

transverse axis. This may be proved as at Conies, Art. 308.

It is easily proved that if we have any two points A and B,
the distances of these two points from the origin are in the same

ratio as the perpendiculars from each on the plane corresponding
to the other (Conies, Art. 101). Now the distance of the centre

of a fixed sphere from the origin, and the perpendicular from

that centre on any tangent plane to the sphere are both

constant. Hence, any point on the reciprocal surface is such

that its distance from the origin is in a constant ratio to the

perpendicular let fall from it on a fixed plane; namely, the

plane corresponding to the centre of the sphere. And this

locus is manifestly a surface of revolution, of which the origin

is a focus
;
and the plane in question a directrix plane,
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By reciprocating properties of the sphere we thus get pro

perties of surfaces of revolution round the transverse axis. The

left-hand column contains properties of the sphere, the right-

hand those of the surfaces of revolution.

Ex. 1. Any tangent plane to a

sphere is perpendicular to the line

joining its point of contact to the

centre.

Ex. 2. Every tangent cone to a

sphere is a right cone, the tangent

planes all making equal angles with

the plane of contact,

The line joining focus to any

point on the surface is perpendi
cular to the plane through the focus

and the intersection with the direc*

trix plane of the tangent plane at

the point.

The cone whose vertex is the

focus and base any plane section is

a right cone whose axis is the line

joining the focus to the pole of the

plane of section.

A particular case of Ex. 2 is
&quot;

Every plane section of a

paraboloid of revolution is projected into a circle on the tangent

plane at the vertex.&quot;

Ex. 3. Any plane is peipendi*
cular to the line joining the centre to

its pole.

Ex. 4. Any plane through the

centre is perpendicular to the con

jugate diameter.

Ex. 5. The cone whose base is

any plane section of a sphere has

circular sections parallel to the plane

of section.

Ex. 6. Every cylinder envelop

ing a sphere is right.

Ex. 7. Any two conjugate* right

lines are mutually perpendicular.

Ex. 8. Any quadric enveloping a

sphere is a surface of revolution;

and its asymptotic cone therefore is

a right cone.

The line joining any point to the

focus is perpendicular to the plane

joining the focus to the intersection

with the directrix plane of the polar

plane of the point.

Any plane through the focus is

perpendicular to the line joining the

focus to its pole.

Any tangent cone has for its

focal lines the lines joining the ver*

tex of the cone to the two foci.

Every section passing through
the focus has this focus for a focus.

Any two conjugate lines are such

that the planes joining them to the

focus are at right angles.

If a quadric envelope a surface of

revolution, the cone enveloping the

former, whose vertex is a focus of

the latter, is a cone of revolution.

* The polar planes with respect to a quadric of all the points of a line pass

through a right line, which we call the conjugate line, or polar line (Art. C5).
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127. The equation of the reciprocal of a central surface

with regard to any point is found as at Conies, Art. 319. For

the length of the perpendicular from any point on the tangent

plane is (see Art. 89)

kz

p= =
^/(a

a
cos

2
a+52

cos
2

/3-}-c? cos* 7)
-

(x cosa+/ cos/3+s 0037),
P

and the reciprocal is therefore

(xx
f + yy + ss* + #) = aV + IY + cV.

Thus the reciprocal with regard to the centre is

a quadric whose axes are the reciprocals of the axes of the

given one.

We have given (Ex. 10, Art. 121) the method in general of

finding the equation of the reciprocal of one quadric with

regard to another. Thus the reciprocal with regard to the

sphere X* + y* -f =
7^, is found by substituting #, y, 2, 1? for

a, /3, 7, 8 in the tangential equation, Art. 79
; or, more symme

trically, the tangential equation itself may be considered as the

equation of the reciprocal with regard to xz + y* -f z* + w* =
;

cc, /3, 7, S being the coordinates.

The reciprocal of the reciprocal of a quadric is evidently the

quadric itself. If we actually form the equation of the re

ciprocal of the reciprocal Aa? + Eft* + &c., the new coefficient of

x2 \*BCD + 2FMN- BN* -CM2 - DF\ which, when we sub

stitute for
.Z?, (7, &c., their values will be found to be aA2

. And
A2

will in like manner be a factor in every term, so that the

reciprocal of the reciprocal is the given equation multiplied by
the square of the discriminant (see Lessons on Higher Algebra^

Art. 33).

128. The principle of duality may be established indepen

dently of the method of reciprocal polars, by shewing in ex

tension of the remarks made above, Art. 38, (see Conies^

Art. 299) that all the equations we employ admit of a two

fold interpretation ;
and that when interpreted as equations in

tangential coordinates, they yield theorems reciprocal to thoso

which they give according to the mode of interpretation hitherto
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adopted. We may call a, /9, 7, 8 the tangential coordinates

of the plane ax 4- fty 4 72 + $w. Now the condition that this

plane may pass through a given point, being

ax + /% 4- 73 4 Su/ = 0,

conversely, any equation of the first degree in a, /3, 7, 8,

is the condition that this plane may pass through a point whose

coordinates are proportional to A, B, (7, D] and the equation

just written may be regarded as the tangential equation of that

point. If the tangential coordinates of two planes are a, /3, 7, 8
;

a
, /3 , 7 ,

V it follows, from Art. 37, that a + a
, /3 + A-/3 ,

&c.

are the coordinates of a plane passing through the line of inter

section of the two given planes. And again, it follows from

Art. 8, that if L = 0, M= be the tangential equations of two

points, L 4- kM = denotes a point on the line joining the two

given ones; and similarly (Art. 9), that L + kM+ kN denotes a

point in the plane determined by the three points L, J/, N.

Again, any equation in a, /3, 7, 8 may be considered as

the tangential equation of a surface touched by every plane

ax 4- fty 4- 7^ 4- 8w whose coordinates satisfy the given equa
tion. If the equation be of the nih

order, the surface will be

of the nilL

class, or such that n tangent planes (fulfilling the

given relation) can be drawn through any line. For if we
substitute in the given equation a 4*

&quot;,
$ +

A-/3&quot;,
&c. for a, /?,

&c., we get an equation of the nth. degree in A
1

, determining
n planes satisfying the given relation, which can be drawn

through the intersection of the planes a /SyS , a^V S&quot;.

129. The general tangential equation of the second degree

Atf 4- /3
2
4 &amp;lt;V 4- D& + 2^7 4- 2 ya 4- 2Sa

4- 2ZaS + 2J//3S + 2^78 =

can be discussed by precisely the same methods as are used above

(Arts. 75-80). If we substitute a +
A-a&quot;,

&c. for a, &c., we get

a quadratic in
,
which may be written S + 2A-P4- k*S&quot; = 0. If

the plane a /3y8 touch the surface in question, 8 =
0, and one

of the roots of the quadratic is A- = 0. The second root will

be also 7v = 0, provided that P= 0. In other words, the co-
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ordinates of any tangent plane consecutive to a /^Y^ must

satisfy the condition

Ja T- ^v-
dot. dp dy do

But this equation being of the first degree represents a point,

viz. the point of contact of a /^V^ j through which every con

secutive tangent plane must pass.

We may regard the relation just obtained as one connecting

the coordinates of a tangent plane with those of any plane

passing through its point of contact, and from the symmetry
of this relation, we infer (as in Art. 63) that if a

, /3 , 7 ,
$ be the

coordinates of any plane, those of the tangent plane at every

point of the surface which lies in that plane, must fulfil the

condition

d8

But this equation represents a point through which all the

tangent planes in question must pass; in other words, it re

presents the pole of the given plane.

We can, by following the process pursued in Art. 79, deduce

from the general tangential equation of the second degree the

corresponding equation to be satisfied by its points. If the

tangential equation of any point on the surface be

x u + y fi + z y + w S = 0,

and a/3y$ the coordinates of the corresponding tangent plane,

we infer from the equations already obtained, that if X be ail

indeterminate multiplier, we must have

\wf = Lz + M0 + Ny + DS.

Solving these equations for 0^78, we get the coordinates of the

polar plane of any assumed point ;
and expressing that these

coordinates satisfy the given tangential equation, we get the

relation to be satisfied by the #, y^ z, w of any point on the

surface, a relation only differing by the substitution of capital

for small letters from that found in Art. 79.

It seems unnecessary to give further examples how all the

preceding discussions may be adapted to the corresponding
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equations in tangential coordinates. In what follows, we have

only to suppose that the abbreviations denote equations in tan

gential coordinates, when we get direct proofs of the reciprocals

of the theorems actually obtained.

130. If Z7and V represent any two quadrics, then U+\V
represents a quadric passing through every point common to

U and F, and if X be indeterminate it represents a series

of quadrics having a common curve of intersection. Since

nine points determine a quadric (Art. 58), U+ X F is the most

general equation of the quadric passing through eight given

points (see Higher Plane Curves, Art. 29). For if U and F be

two quadrics, each passing through the eight points, U+\V
represents a quadric also passing through the eight points, and

the constant X can be so determined that the surface shall pass

through any ninth point, and can in this way be made to co

incide with any given quadric through the eight points. It

follows then that all quadrics which pass through eight points

have besides a whole series of common points, forming a com
mon curve of intersection; and reciprocally, that all quadrics
which touch eight given planes have a whole series of common

tangent planes determining a fixed developable which envelopes
the whole series of surfaces touching the eight fixed planes.

It is evident also that the problem to describe a quadric

through nine points may become indeterminate. For if the

ninth point lie anywhere on the curve which, as we have just

seen, is determined by the eight fixed points, then every quadric

passing through the eight fixed points will pass through the

ninth point, and it is necessary that we should be given a ninth

point, not on this curve, in order to be able to determine the

surface. Thus if U and F be two quadrics through the eight

points, we determine the surface by substituting the coordinates

of the ninth point in Z7+XF=0; but if these coordinates

make U= 0, F= 0, this substitution does not enable us to de

termine X.

Given seven points [or tangent planes] common to a

series of quadrics, then an eighth point [or tangent plane]
common to the whole system is determined.
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For let U, V, W be three quadrics, each of which passes

through the seven points, then U+XV+pW may represent

any quadric which passes through them
;

for the constants X, p

may be so determined that the surface shall pass through

any two other points, and may in this way be made to co

incide with any given quadric through the seven points. But

U+ \V+ pW represents a surface passing through all points

common to
Z7, F, IF, and since these intersect in eight points,

it follows that there is a point, in addition to the seven given,

which is common to the whole system of surfaces.

We see thus, that though it was proved in the last article

that eight points in general determine a curve of double curva

ture common to a system of quadrics, it is possible that they

may not. For we have just seen that there is a particular case

in which to be given eight points is only equivalent to being

given seven. When we say therefore that a quadric is deter

mined by nine points, and that the intersection of two quadrics

is determined by eight points, it is assumed that the nine or

eight points are perfectly unrestricted in position.*

132. If a system of quadrics have If a system of quadrics be in-

a common curve of intersection, the scribed in the same developable,

polar plane of any fixed point passes the locus of the pole of a fixed plane

through a fixed right line. is a right line.

For if P and Q be the polar planes of a fixed point with

regard to U and F respectively, then P+\Q is the polar of

the same point with respect to Z7+XF.
In particular, the locus of the centres of all quadrics in

scribed in the same developable is a right line.

133. If a system of quadrics have a common curve of

intersection [or be inscribed in a common developable], the

polars of a fixed line generate a hypcrboloid of one sheet.

* The reader who has studied Higher Plane Curves, Arts. 29 34, will have no

difficulty in developing the corresponding theory for surfaces of any degree. Thus if

we are given one less than the number of points necessary to determine a surface of the

nth
degree, we are given a series of points forming a curve through which the surface

must pass ;
and if we are given two less than the number of points necessary to deter

mine the surface, then we are given a certain number of other points [namely as many
as will make the entire number up to 3

J through which the surface must also pass,
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Let the polars of two points in the line be P-fX$, P
then it is evident that their intersection lies on the hyper-

134. If a system of quadrics have a common curve, the locus

of the pole of a fixed plane is a curve in space of the third

degree. For, eliminating X between P+ X$, P +X&amp;lt;/, P&quot;+X$&quot;,

the polars of any three points, each determinant of the system

P P P&quot;
JT,

j:
,

JT

Q, Q , Q&quot;

vanishes. Now the intersection of the surfaces represented by

PQf = QP , PQ&quot;= QP\ is a curve of the fourth degree, but

this includes the right line P$, which is not part of the inter

section of PQ&quot;= QP&quot;,
P

Q&quot;
= Q P&quot;. There is therefore only

a curve of the third degree common to all three.

Reciprocally, if a system be inscribed in the same develop

able, the polar of a fixed point envelopes the developable which

is the reciprocal of a curve of the third degree, being (as will

afterwards be shewn) a developable of the fourth order.

135. Given seven points on a Given seven tangent planes to

quadric, the polar plane of a fixed a quadric, the pole of a fixed plane

point passes through a fixed point. moves in a fixed plane.

For evidently the polar of a fixed point with regard to

Z7+XF+yLtTFwill be of the form P+\Q + pB, and will there

fore pass through a fixed point.*

136. Since the discriminant contains the coefficients in the

fourth degree, it follows that we have a biquadratic equation

to solve to determine X, in order that 27+XFmay represent

a cone, and therefore that through the intersection of two quadrics

four cones may l&amp;gt;e described. The vertex of each of these cones

is the common intersection of the four planes,

Z/. + XP;, zr. + xi
,, Di + xr,, u

t + \vt,

* Dr. Hesse has derived from this theorem a construction for the quadric passing

through nine given points. Crelle, Yol. XXIV. p. 36. Cambridge and Dublin Mathe
matical Journal, Yol. iv. p. 41. See also soma further developments of the same

prpblem by Mr. Townsead, ib. Yol. IV. p. 241.

Q



114 METHODS OF ABRIDGED NOTATION.

when X satisfies the biquadratic just referred to, and the four

vertices are got by substituting its four roots in succession in

any three of these equations ; they are therefore the four points

common to the surfaces found by making each of the determinants

o;, u
s,
u

3 ,
u

t

V V V VY
\) *2&amp;gt;

K
35 *4

There are four points whose polars are the same with respect

to all quadrics passing through a common curve of intersection,

namely the vertices of the four cones just referred to. For to

express the conditions that

should represent the same plane, we find the very same set of

determinants. In like manner there are four planes whose poles

are the same with respect to a set of quadrics inscribed in the

same developable.

137. If the surface V break up into two planes, the form

U+\V= 0, becomes U-}- \LM=Q, a case deserving of separate

examination.* In general, the intersection of two quadrics is

a curve of double curvature of the fourth degree, which may in

some cases (Art. 134) break up into a right line and a cubic, but

the intersection with U of any of the surfaces U+\LM
} evidently

reduces to the two conies in which U is cut by the planes L and M.

Anypoint on the lineLM has the same polar plane with regard to all

surfaces of the system U+ \LM.~\ For if P be the polar of any

point with regard to 27, its polar with regard to U+\LM will be

P+ X (LM +ML
)
which reduces to P, when =0, M =0. Thus,

* The case where U also breaks up into two planes has been discussed, Art. 108.

f There are two other points whose polar planes are the same with regard to all the

quadrics, and which therefore (Art. 136) will be vertices of cones containing both the

curves of section. It is only necessary that P, the polar plane of one of these points

with regard to U, should be the same plane as LM + LM the polar with regard
to LM. Since then the polar plane of the point with regard to U passes through
LM, the point itself must lie on the polar line of LM with regard to U, that is to say,

on the intersection of the tangent planes where LM meets U. Let this polar line

meet U in AA
,
and LM in BB

,
then the points required will be FF

,
the foci of the

involution determined by AA ,
BB . For since FF form a harmonic system either

with AA or with BB
,
the polar plane of Neither with regard to U or LM passes

through F ,
and vice versd.
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in particular, at each of the two points where the line LM meets

Uj all the surfaces have the same tangent plane. The form,

then, U+ \L3f, may be regarded as denoting a system of quadrics

having double contact with each other. Conversely, if two

quadrics have double contact, their curve of intersection breaks

up into simpler curves. For if we draw any plane through the

two points of contact and through any point of their intersec

tion, this plane will meet the quadrics in sections having three

points common, and having common also the two tangents
at the points of contact

;
these sections must therefore be

identical, and the curve of intersection breaks up into two plane

curves unless the line joining the points of contact be a

generator of each surface in which case the rest of the curve

of intersection is a curve of the third degree.

In like manner all surfaces of the system are enveloped by
two cones of the second degree. For take the point where

the intersection of the two given common tangent planes is cut

by any other common tangent plane ;
then the cones having

this point for vertex, and enveloping each surface, have common
three tangent planes and two lines of contact, and are therefore

identical. The reciprocals of a pair of quadrics having double

contact will manifestly be a pair of quadrics having double con

tact, and the two planes of intersection of the one pair will corre

spond to the vertices of common tangent cones to the other pair.

138. If there be a plane curve common to three quadrics, each

pair must have also another common plane curve, and the three

planes of these last common curves pass through the same line.

Let the quadrics be U, U-\- LM, U+ LN, then the last two

have evidently for their mutual intersection two plane sections

made by L, M N.

139. Similar quadrics belong to the class now under dis

cussion. Two quadrics are similar and similarly placed when

the terms of the second degree are the same in both (see

Conies, Art. 234). Their equations then are of the form U= 0,

U+cL = 0. We see then that two such quadrics intersect

in general in one plane curve, the other plane of intersec

tion being at infinity. If there be three quadrics, similar and
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similarly placed, their three finite planes of intersection pass

through the same right line.

Spheres are all similar quadrics, and therefore are to be

considered as having- a common section at infinity, which section

will of course be an imaginary circle.

A plane section of a quadric will be a circle if it passes

through the two points in which its plane meets this imaginary
circle at infinity. We may see thus immediately of how many
solutions the problem of finding the circular sections of a quadric
is susceptible. For the section of the quadric by the plane at

infinity meets the section of a sphere by the same plane in four

points, which can be joined by six right lines, the planes passing

through any one of which meet the quadric in a circle. The
six right lines may be divided into three pairs, each pair inter

secting in one of the three points whose polars are the same

with respect to the section of the quadric and of the sphere.

And it is easy to see that these three points determine the

directions of the axes of the quadric.

An umbilic (Art. 106) is the point of contact of a tangent

plane which can be drawn through one of these six right lines.

There are in all therefore twelve umbilics, though only four

are real. If a tangent plane be drawn to a quadric through

any line, the generators in that tangent plane evidently pass,

one through each of the points where the line meets the surface.

Thus, then, the umbilics must lie each on some one of the eight

generators, which can be drawn through the four points at

infinity common to the quadric and any sphere. Or, as Sir

W. Hamilton has remarked, the twelve umbilics lie three by three

on eight imaginary right lines.

A surface of revolution is one which has double contact at in

finity with a sphere. For an equation of the form x*+ y*+az
2=b

can be written in the form

(J +y + - r
2

) + {(a
-

1)
-

(b
- r

2

)]
=

0,

and the latter part represents two planes. It is easy to see

then why in this case there is but one direction of real circular

sections, determined by the line joining the points of contact

of the sections at infinity of a sphere and of the quadric.
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140. If the two planes L, M coincide, the form Ui-\LM
becomes Z7-f XZ2

,
which denotes a system of surfaces touching

U at every point of the section of U by the plane L. Two

quadrics cannot touch in three points without their touching all

along a plane curve. For the plane of the three points meets

the quadrics in sections having common those three points and

the tangents at them. The sections are therefore identical.

The equation of the tangent cone to a quadric given Art. 78, is a

particular case of the form U= U. Also two concentric and

similar quadrics (/&quot;,
Uc2

)
are to be regarded as having plane

contact with each other, the plane of contact being at infinity.

Any plane obviously cuts the surfaces U and U I? in two

conies having double contact with each other, and if the section

of one reduce to a point-circle, that point must plainly be the

focus of the other. Hence when one quadric has plane contact

with another, the tangent plane at the umbilic of one cuts the

other in a conic of which the umbilic is the focus ; and if one

surface be a sphere, every tangent plane to the sphere meets

the other surface in a section of which the point of contact

is the focus.

Or these things may be seen by taking the origin at the

umbilic and the tangent plane for the plane of xy, when on

making z = 0, the quantity U L2
reduces to x2 + y* f, and

denotes a conic of which the origin is the focus, and I the

directrix.

Two quadrics having plane contact with the same third quadric
intersect each other in plane curves. Obviously U Z/

2

,
U JJ/

a
.

have the planes L~M, L -f M for their planes of intersection.

141. The equation aU + bM*+ cN2 + dP\ where
, J/, N, P

represent planes, denotes a quadric such that any one of these

four planes is the polar of the intersection of the other three.

For aU + bM2 + cN2
denotes a cone having the point LMN

for its vertex
;
and the equation of the quadric shews that this

cone touches the quadric, P being the plane of contact. The
four planes form what I shall call a self-conjugate tetrahedron

with regard to the surface. It has been proved (Art. 136)
that given two quadrics there are always four planes whose
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poles with regard to both are the same. If these be taken

for the planes Z,, J/, N, P, the equations of both can be

transformed to the forms

aU + bM* + cNz + JP2 =
0, aU + b M* + c JV + d P* = 0.

It may also be seen, h priori, that this is a form to which

it must be possible to bring the system of equations of two

quadrics. For L, M, N, P involve implicitly three constants

each
;
and the equations written above involve explicitly three

independent constants each. The system therefore includes

eighteen constants, and is therefore sufficiently general to ex

press the equations of any two quadrics.

We are misled, however, if we conclude in like manner that

the equations of any three quadrics may be written in the form

+ IM* +cN* + dP* +eQl =
0,

aU + IM1
f c N* + dP2

-f e Q* = 0,

a&quot;U + V M* + c&quot;N* + d&quot;P
z 4 e&quot; Q* = 0,

where Z, Jf, N, P, Q are five planes whose equations are con

nected by the relation

L + M+N+ P+ # = 0.

For though, since Z, M, N, P, Q involve implicitly three

constants each, and the equations written above involve explicitly

four independent constants each, the system thus appears to

include twenty-seven constants, it has not really so many. For,
as we shall show in a subsequent chapter, a relation must subsist

among them, and the system is consequently not general enough
to express the equations of any three quadrics.

142. The lines joining the vertices of any tetrahedron to the

corresponding vertices of its polar tetrahedron with regard to a

quadric belong to the same system of generators of a hyperboloid

of one sheet, and the intersections of corresponding faces of the

two tetrahedra possess the same property.

Taking the fundamental tetrahedron and its polar, the

vertices of the polar tetrahedron (Art. 79) are proportional
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to the horizontal rows in

A, H, G, L,

H, S, F, M,

G, F, C, N,

L, Mt N, D,

Thus the equations of the four lines we are considering are

y z w z w x

H =~

~a
==

~L F^M^H*
w x y x y z

Now the condition that any line

ax + j3y + yz + Siv = 0, ax + fy + y z + & w = 0,

should intersect the first of the four, is, by eliminating x between

the last two equations, found to be

H(aff - /3a) + G (ay
-
ya) + L (a&

- 8a
)
=

0,

and the conditions that it should intersect each of the other

three, are in like manner found to be

i y a) + F(yj3 y /3) 4- N(y& y S)
=

0,

L (&a S a) + M (S/3 S
/3) + N($&amp;gt;y

8
r

y)
= 0.

But these four conditions added together vanish identically.

Any right line therefore which intersects the first three will

intersect the fourth, which
is,

in other words, the thing to be

proved.*

We find the equation of the hyperboloid by any of the

methods in Art. 113, for example, by expressing that the line

wx w x wit wy wz wz ~ ,
,, A

,

- = = meets the first three of these
s t u

lines. For then

Hw-Ly _
Gw-Lz Fw-Mz _ Hw-Mx Gw-Nx _ Fw-Ny

t u u s s t

* This theorem is due to M. Chusles. The proof here given is by Mr. Ferrers,

Quarterly Journal of Mathematics. (Yol. I., p. 241).
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from which by multiplication, s, t,
u are eliminated in the form

(Fw-Mz}(Gw-Nx}(Hw-Lij] = (Fw-Ny}(Gw-Lz}(Hw-Mx\
or (HN- OM) (Fwx + Lyz] + (FL - HN) ( Qwy 4- Max)

+ (
GM- FL} (Hwz + Nxy) = 0.

142a. This hypcrboloidal relation between the four joining
lines has been established by Mr. M Cay by the following con

siderations.

First, considering any solid angle formed by three planes ;

their poles in regard to any quadric determine a plane, and in

it these three poles form a triangle which is conjugate, in regard

to the curve of section, to the triangle which the solid angle

cuts out in the same plane.

Now conjugate triangles are in perspective, hence the three

planes, each through an edge of the solid angle, and the pole

of its opposite face, all pass through a right line.

If then we have two tetrahedra, polars with regard to a

quadric, having the vertices obcd^ a b c
d&quot;,

we see that at any
one (a) of their eight vertices a right line may be found in the

manner described
;
and since this line is common to the three

planes abb
,
ace

,
add it meets the connecting lines bb

, cc, dd
f

also, since it passes through (a) it meets aa. In this way,

taking each of the eight vertices, we have eight lines each of

which meets ad
,
bb

,
cc

,
dd . The relation is thus demonstrated.

N.B. It appears from what has been stated that, when three

planes are given and two points assumed which are to be poles

to two of them in regard to any quadric, the pole of the third

is limited to a certain plane locus.

Ex. 1. Given three planes and their poles in regard to a quadric, the locus of the

centre is a right line (Mr. M Cay).

Ex. 2. The four perpendiculars from the vertices on the opposite faces in any
tetrahedron are generators of one system, and the four perpendiculars to the faces at

their orthocentres are generators of the other system of an equilateral hyperboloid.*

In the tetrahedron, whose vertices are a, b, c, d, let the opposite faces be

A, B, C, D, and the perpendicular from a on A, x
,

from b on B, yQ ,
&c.

Also let the feet of these perpendiculars be a, /3, y, 8. Then since in a spherical

* The equilateral hyperboloid is defined as one which admits of three generators

mutually at right angles, see Ex. 21 Art. 121. Schroter, as there referred to p. 205

gives these theorems. The first part of the theorem was given by Steiner, Crelle 2,

p. 98. The second part of the theorem and the determination of the centre Ex. 3

are referred by Baltzer to Joachimsthal, Grunert Archiv, 32, p. 109. Ex. 4 is referred

to Monge, Corresp. sur T Ecole Polytech. II. p. 2C6.
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triangle the perpendiculars intersect, the planes through each edge of the solid angle

(a) perpendicular to the opposite face intersect in a right line. This right line

therefore, meets the perpendiculars y ,
z

,
w

,
and as it passes through (a), also x

In like manner at each other vertex we have a right line meeting those four right

lines. They, therefore, belong to the same system of generators of a hyperboloid.

Again, taking through ?/ a parallel plane to x
,
this plane is orthogonal both to

B and also to A, and, therefore, to their edge of intersection cd. Therefore this

plane passes through a perpendicular of the triangle A.

Eepeating this we see that the plane e through z parallel to x passes through
the perpendicular from c on bd in the same triangle A. Thus the intersection e

,

which i? parallel to x
,

is the perpendicular to ^4 at its orthocentre. This line te. is

manifestly a generator of the second system of the above hyperboloid, which contains

the four perpendiculars of the tetrahedron.

Further, the plane A intersects this hyperboloid in a conic, which passes through
bed and the orthocentre of A, which is, therefore, an equilateral hyperbola ;

the

generators parallel to the asymptotes of this hyperbola and the generator ar are an

orthogonal system, therefore the hyperboloid is equilateral.

The reader will easily perceive that this example is included in the general

theorem.

Ex. 3. If in a tetrahedron a plane be taken through the middle of each edge

normal to the opposite edge, these six planes intersect in a point, the centre of the

above equilateral hyperboloid.

Ex. 4. In a tetrahedron the line joining the centre of the circumscribed sphere and

the centre of the above equilateral hyperboloid is bisected by the centre of gravity of

the tetrahedron.

143. The second part of the theorem stated in Article 142

is only the polar reciprocal of the first, but, as an exercise, we

give a separate proof of it.

Taking the fundamental tetrahedron and its polar as before,

the equations of the four lines are

x = 0, hy + gz + Iw =
0,

y = 0, hx+fz + mw = Qj

z = 0, gx +fy + mo 0,

w 0, Ix + my + nz = 0.

Now the conditions that any line

ax -H (By + yz + $w = 0, ax -f ft y + y z + & w = 0,

should intersect each of these are found to be (Art. 5 7 b)

hv gr-{ ?7T = 0, hv+fa + mtc = 0,

gr fcr + np = Q, ITT mic np 0,

and, as before, the theorem is proved by the fact that these

R
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conditions when added vanish identically. The equation of the

hyperboloid is found to be

x*ghl + y*hfm + z*fgn 4- w*lmn

-f (fyz -f Ixw) (gm + Jin] -f (gzx + myw) (hn -\-fl]

+ (Jixy + nzw) (fl + gm}.

As a particular case of these theorems the lines joining each

vertex of a circumscribing tetrahedron to the point of contact

of the opposite face are generators of the same hyperboloid.

144. Pascal s theorem for conies may be stated as follows :

&quot; The sides of any triangle intersect a conic in six points lying
in pairs on three lines which intersect each the opposite side of

the triangle in three points lying in one right line.
1 M. Chasles

has stated the following as an analogous theorem for space
of three dimensions :

&quot; The edges of a tetrahedron intersect a

quadric in twelve points, through which can be drawn four

planes, each containing three points lying on edges passing

through the same angle of the tetrahedron
;

then the lines

of intersection of each such plane with the opposite face of

the tetrahedron are generators of the same system of a certain

hyperboloid.&quot;

Let the faces of the tetrahedron be #, ?/, 2, w^ and the quadric

g

/, 1\ / 1\ / l\
[

t + 7 xiv (m -\ iiw - (n + - ziv.
V tj \ mj &quot;

V nj

then the four planes may be written

x liy-^- gz -f Iw, y lix+fz -f mw^

z = gx +fy -f me, w = Ix + my + nz,

whose intersections with the planes a?, y, z, w, respectively, are

a system of lines proved in the last article to be generators of

the same hyperboloid.

144a. The conception of a Brianchon s hexagon may be

extended to space, and we may denote by this name any

hexagon whose diagonals meet in a point. Now it is evident
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that if this be the case, each pair of opposite sides of the

hexagon intersect
; and, conversely, if in any skew hexagon

each pair of opposite sides intersect, the diagonals are concurrent.

Thus three alternate sides of such a hexagon are met each

by the other three, hence the odd sides belong to one set

of generators of a hyperboloid of one sheet and the even

to the other. Conversely, any hexagon whose sides lie in a

hyperboloid is a Brianchon s hexagon.*
It is further not difficult to see that if any hexagon U in

space and a point (a) are given, and through (a) three right

lines are drawn cutting the opposite sides of the hexagon in

pairs, their intersections on consecutive sides of 7 are consecutive

vertices of a Brianchon s hexagon F, having (a) as its Brianchon

point. This hexagon V inscribed in U determines uniquely a

hyperboloid on which it lies. But again this hyperboloid is cut

by the sides of the given hexagon U in six other points, which

in the same order are the vertices of a second Brianchon s

hexagon inscribed in the given one and lying on the same

hyperboloid, but having a different Brianchon point.

144&. Considering further this conception of a Brianchon s

hexagon, there is at each vertex a tangent plane, and this

contains the two sides which meet in that vertex. Now, taking
an opposite pair of these six planes, viz. the plane containing

the lines 1, 2 and the plane containing the lines 4, 5
;
since

1 meets 4 and 2 meets 5, the line of intersection of these two

tangent planes is the same as the line joining the point 1, 4 to

2, 5. In like manner, the axis of 2, 3 with 5, 6 is the same as

the ray from 2, 5 to 3, 6
;
and the axis of 3, 4 with 6, 1 is the

same as the ray from 3, 6 to 1, 4. Hence, the three axes of

intersection of opposite tangent planes at six points are coplanar.
Their plane may be considered a Pascal plane to the same

hexagon. Thus, in three dimensions both properties meet in

the same figure. In fact

* See a posthumous paper of O. Hesse in the 85th vol. of the Journal founded by
Crelle

; where, after giving the algebraical treatment of the above geometrically
evident statements, Hesse also treats algebraically the question of the two inscribed

Brianchon s hexagons derived by aid of an arbitrary point from any skew hexagon.
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If the surface and the tangent planes be cut by an arbitrary

plane (-4), since each tangent plane contains two generators,

it will meet (^4) in the chord joining two points on the conic

of section, and what we have called the Pascal plane will meet

(A] in the Pascal line of the inscribed hexagon.
But if the whole figure be looked at from any f}oint (a) to

which the contour of the surface affords a real tangent cone,

each generator of the surface determines a tangent plane to

this cone, and the planes through opposite edges of this cir

cumscribed hexagon have a common line of intersection, the

ray to the Brianchon point.

Ex. Analytically we may consider the quadric yz = wx, and take the odd sides of

the form (1) x = A^, z = X^, and the even (2) x = X2z, y = X2?0. These two lines

meet in the point whose coordinates are proportional to X^, X2 , A.,, 1, and the

equation of the tangent plane at it is 12
= x \y X2z + \\w = 0. The Brianchon

point will then evidently be the intersection of the planes

y X42 + \i\jW = 0,

its equation therefore is

x -

x X^ X22 + X5X2to 0,

x Xgt/ X6z + X8X6t0 = 0,

a, b, c, d

1, X^ X4 ,
X

t

and the equation of what we call the Pascal plane, may be written

x i
y&amp;gt;
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Also since for any undetermined quantities x, y, z, w

PB,

XX,

-X,

-X,

x.x.

= 0,

&amp;gt;
&amp;gt; (^1

-
^3) (

X
2 ^s)

0, 0, (X 4 -X )(X 5
-X

3)

every point xyzw is coplanar with the three points 1,2; 4, 5
;
and that whose coordi

nates are the determinants in the second matrix. Therefore these last three points

must be collinear
;
which is a verification that the diagonals in our hexagon intersect.
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CHAPTER VIIL

FOCI AND CONFOCAL SURFACES.*

145. WHEN U represents a sphere, the equation of a

quadric having double contact with
it, U=LM expresses, as

at Conies, Art. 260, that the square of the tangent from any

point on the quadric to the sphere is in a constant ratio to the

rectangle under the distances of the same point from two fixed

planes. The planes L and M are evidently parallel to the

planes of circular section of the quadric, since they are planes

of its intersection with a sphere ;
and their intersection is there

fore parallel to an axis of the quadric (Arts. 103, 139). We
have seen (Conies, Art. 261) that the focus of a conic may be

considered as an infinitely small circle having double contact

with the conic, the chord of contact being the directrix. In

like manner we may define a focus of a quadric as an infinitely

small sphere having double contact with the quadric, the chord

of contact being then the corresponding directrix. That is to

say, the point a/3y is a focus if the equation of the quadric can

be expressed in the form

(x
-

a)
2 + (y

-
13)

*

-f (z
-

7)
2 =

&amp;lt;/&amp;gt;,

where &amp;lt; is the product of the equations of two planes. W^e

must discuss separately, however, the two cases, where these

planes are real and where they are imaginary. In the one

case the equation is of the form U=LM, in the other U=U+M2
.

In the first case, the directrix (the line LM) is parallel to that

axis of the surface through which real planes of circular section

can be drawn
;
for example, to the mean axis if the surface

be an ellipsoid. In the second case the line LM is parallel to

one of the other axes.

* The properties treated of in this chapter were first studied in detail by
M. Chasles and by Professor Mac Cullagh, who about the same time independently

arrived at the principal of them. M. Chasles results will be found in the notes to

his Aper^u Historiyue, published in 1837.
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AVe can shew directly that the line LM is parallel to an

axis of the surface. For if the coordinate planes x and y be

any two planes mutually at right angles passing through LM
then since L and M are both of the form \x + py, the quantities

LM and U + M* will be both of the form ax* 4
&amp;lt;2hxy

4 ly\

And, as in plane geometry, it is proved that by turning round

the coordinate planes x and y, this quantity can be made

to take the form px
2

qy\ The equations then, U LM,
U= L? 4 If2

,
written in full, are of the form

(x
-

a)
2 + (y

-
)&quot;

+ (z
-

7)&quot; =pnf qy\

and since the terms yz, zx, xy do not enter into the equation,

the axes of coordinates are parallel to the axes of the surface.

146. A focus of a plane curve has been defined (Higher
Plane Curves^ Art. ]3Sj as the point of intersection of two

tangents, passing each through one of the circular points at

infinity. The definition just given of a focus of a quadric may
be stated in an analogous form. When the origin is a focus we
have just seen that the equation of the quadric may be written

in the form U=LM, where U
9
or (x- a)

2 4 (y &)* + (z 7)*,

denotes a cone whose vertex is the focus, and wrhich passes

through the imaginary circle at infinity. The form of the

equation shews (Art. 137) that this cone has double contact

with the quadric in the points where the line LM meets it.

The tangent plane to the surface at either point of contact

will then be a tangent plane to the cone, and will therefore

&amp;gt;ass through a tangent line of the circle at infinity. We may
thus define a focus as a point through which can be drawn

ro lines
cr,

each touching the surface and meeting the imaginary
iircle at infinity, and such that the tangent plane to the surface

through either also touches the circle at infinity. This definition

not restricted to the case of a quadric, but applies to a surface

of any order.

Starting from this definition, if we desire to find the foci of

any surface, we should consider the tangent planes to the surface

drawn through the tangent lines of the circle at infinity : these

form a singly infinite series of planes, and will envelope a

developable surface. The intersection of two consecutive such
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planes, will be a line
cr,

and will be a generator of the developable.

A focus, being a point through which pass two lines
cr,

that is to

say, two generators of the developable, must be a double point

on the developable. Now we shall see hereafter that a develop

able has in general a series of double points forming a nodal

curve or curves
;
we infer, therefore, that the foci of a surface

in general are not detached points, but a series of points forming
a curve or curves. We shall shew directly, in the next article,

that this is so in the case of a quadric. It is evident from this

definition that two surfaces will have the same series of foci,

if the developable, just spoken of, passing through the tangent

lines of the circle at infinity and enveloping the surface, be

common to both.

147. Let us then directly examine whether a given central

quadric necessarily has a focus, and whether it has more than

one. For greater generality instead of taking the directrix for

the axis of z, we take any parallel line, and the equation of

the last article becomes

(x
-

a)* + (y- /3Y 4
-

7)
2 = p (x

- a
)

51 + q(y- 7 5*

and we are about to enquire whether any values can be assigned

to a, /3, 7, a
, /3 , p, ^, which will make this identical with a

given equation
a2

rf z*
L L J 1

A* G~
Now first, in order that the origin may be the centre, we have

7 = 0, a=pa, ft = qft
f

] by the help of which equations, elimi

nating a
, /3 ,

the form written above becomes

(1 -p) x* + (I
-

q] f + z&amp;gt;
=1 a* + ^

G A-G G B-G
whence 1 P = -^ip = i J I~? ==

&quot;DJ^
=

B

+
P &amp;lt;L

/3
2

^^o^-^-a
* When p and q have opposite signs the planes of contact of the focus with

the quadric are real, while they are imaginary when p and q have the same sign.
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Thus it appears that the surface being given, the constants p
and q are determined, but that the focus may lie anywhere
on the conic

| B- C

which accordingly is called & focal conic of the surface.

Since we have purposely said nothing as to either the signs

or the relative magnitudes of the quantities A^ B} (?,
it follows

that there is a focal conic in each of the three principal planes,

and also that this conic is confocal with the corresponding

principal section of the surface; the conies

A A-G B-G~
being plainly confocal. Any point a/3 on a focal conic being
taken for focus, the corresponding directrix is a perpendicular
to the plane of the conic drawn through the point

/ r\f r~^ / u- -L
&amp;gt;

/&amp;gt; / -L s f^j
ry _ A&amp;lt; __ j^* /y h&amp;lt; L_

&quot;^

P &quot;

q
~ A-C P ~ B-C

These values may be interpreted geometrically by saying that

the foot of the directrix is the pole, with respect to the principal

section of the surface, of the tangent to the focal conic at the

point a/3. For this tangent is

_i nr ,

A-C B-C~ A B J

xz
v*

which is manifestly the polar of a! /3 with regard to -r +
-^&amp;gt;

1.
^ JLJ

Hence, from the theory of plane confocal conies, the line

joining any focus to the foot of the corresponding directrix is

normal to the focal conic. The feet of the directrices must

evidently lie on that conic which is the locus of the poles of

the tangents of the focal conic with regard to the corresponding

principal section of the quadric. The equation of this conic is

Z A-C ,B-G
fgf I -jy* 1 .

A*
* y B*

for if we eliminate a, ft from the equation of the focal conic

and the equations connecting a/3, a /3 ,
we obtain this relation

S
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to be satisfied by the latter pair of coordinates. The directrices

themselves form a cylinder of which the conic just written is

the base.

148. Let us now examine in detail the different classes of

central surfaces, in order to investigate the nature of their focal

conies and to find to which of the two different kinds of foci the

points on each belong. It is plain that the equation

~T
&quot;&quot;?&amp;gt; ~rv

== *A-C B-G
will represent an ellipse when C is algebraically the least of

the three quantities A, B, (7; a hyperbola when C is the

middle, and will become imaginary when C is the greatest.

Of the three focal conies therefore of a central quadric, one

is always an ellipse, one a hyperbola, and one imaginary. In

the case of the ellipsoid, for example, the equations of the focal

ellipse and focal hyperbola are respectively

x* y
z

x*

The corresponding equations for the hyperboloid of one sheet

are found by changing the sign of c
8

,
and those for the hyper

boloid of two sheets by changing the sign both of b* and c*.

Further, we have seen that foci belong to the class whose planes

of contact are imaginary, or are real, according as p and q have

the same or opposite signs, and that p=(A C}:A,q=(BC) .B.

Now if C be the least of the three, in these fractions both nume

rators are positive, and the denominators are also positive in

the case of the ellipsoid and hyperboloid of one sheet, but in

the case of the hyperboloid of two sheets one of the denomi

nators is negative. Hence, the points on the focal ellipse are

foci of the class whose planes of contact are imaginary in the

cases of the ellipsoid and of the hyperboloid of one sheet, but

of the opposite class in the case of the hyperboloid of two sheets.

Next, let C be the middle of the three quantities ;
then the two

numerators have opposite signs, and the denominators have the

same sign in the case of the ellipsoid, but opposite signs in the
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case of either hyperboloid. Hence the points of the focal

hyperbola belong to the class whose planes of contact are real

in the case of the ellipsoid, and to the opposite class in the case

of either hyperboloid. It will be observed then that all the real

foci of the hyperboloid of one sheet belong to the class whose

planes of contact are imaginary ;
but that the focal conies of

the other two surfaces contain foci of opposite kinds, the ellipse

of the ellipsoid and the hyperbola of the hyperboloid being
those whose planes of contact are imaginary. This is equi

valent to what appeared (Art. 145) that foci having real planes of

contact can only lie in planes perpendicular to that axis of a

quadric through which real planes of circular section can be drawn.

149. Focal conies with real planes of contact intersect the

surface in real points, while those of the other kind do not.

In fact, if the equation of a surface can be thrown into the

form U= L* + J/*, and if the coordinates of any point on the

surface make Z7=0, they must also make L = 0, 3/=0; that is

to say, the focus must lie on the directrix. But in this case

the surface could only be a cone. For taking the origin at

the focus, the equation x* +y
2

4- ^ L2 + M*, where L and M
each pass through the origin, would contain no terms except
those of the highest degree in the variables, and would there

fore represent a cone (Art. 66).

The focal conic on the other hand, which consists of foci of

the first kind, passes through the umbilics. For if the equa
tion of the surface can be thrown into the form UL^I^ and

the coordinates of a point on the surface make t/=0, they
must also make either L or J/=0. But since the surface passes

through the intersection of
Z7, L] if the point U lies on L, the

plane L intersects the surface in an infinitely small circle
;
that

is to say, is a tangent at an umbilic.

From the fact that focal conies which consist of foci having
real planes of contact pass through the umbilics, Professor

Mac Cullagh gave them the name uinbilicar focal conies.

150. The section of the quadric by a plane passing through
a focus and the corresponding directrix is a conic having the

same point and line for focus and directrix. For, taking the
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origin at the focus, the equation is either x* + y* +
* = LM, or

x* +y* + !?=!? + M*. And if we make z = 0, the equation of

the section is a? + y* Im or = ? + m2

,
where

?,
m are the sections

of L, Jf by the plane z. But if this plane pass through LM,
these sections coincide, and the equation reduces to x2 + y*

= Z
51

,

which represents a conic having the origin for the focus and I

for the directrix. Since the plane joining the focus and directrix

is normal to the focal conic (Art. 147) ;
we may state the

theorem just proved, as follows : Every plane section normal to

a focal conic has for a focus the point where it is normal to the

focal conic.

x*
*

151. If the given quadric were a cone -7 + % + 77
=

0,

the reduction of the equation to the form U L* M2

proceeds

exactly as before, and it is proved that the coordinates of the

focus must fulfil the condition .
-
y + -^

=
0, which re-

j G Jj G

presents either two right lines or an infinitely small ellipse,

according as A C and B C have opposite or the same signs.

In other words, in this case the focal hyperbola becomes two

right lines, while the focal ellipse contracts to the vertex of the

x* y* z*
cone. For the cone s + 75 5=0, the equation of the focal

a o c

111 8 g 75 T&quot;O ; y
== &quot;

a o o + c

The focal lines of the cone, asymptotic to any hyperboloid,

are plainly the asymptotes to the focal hyperbola of the surface.

The foci on the focal lines are all of the class whose planes

of contact are imaginary ;
but the vertex itself, besides being

in two ways a focus of this kind, may also be a focus of the

other kind, for the equation of the cone just written takes any
of the three forms

or
a

The directrix, which corresponds to the vertex considered as

a focus, passes through it.
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The line joining any point on a focal line to the foot of

the corresponding directrix is perpendicular to that focal line.

This follows as a particular case of what has been already proved

for the focal conies in general, but may also be proved directly.

The coordinates of the foot of the directrix have been proved
AOL BQ

to be a = ^ 77, /# = -^
-r-

y ,
the equation of the line joining

this point to a/3 is

a R (
I J__\

B-C*
~

A-c y ~~

&quot;P\B-c~~ A-C)&amp;gt;

and the condition that this should be perpendicular to the focal
2 02

line fix = ay is -3
-

-^ -f ^ -^
=

0, which we have already

seen is satisfied.

In like manner, as a particular case of Art. 150, the section

of a cone by a plane perpendicular to either of its focal lines

is a conic of which the point in the focal line is a focus. The
focal lines of this article are therefore identical with those de

fined (Art. 125).

152. The focal lines of a cone are perpendicular to the cir

cular sections of the reciprocal cone (see Art. 125).

For the circular sections of the cone Ax2 + By* -f Cz* = 0,

are (see Art. 103) parallel to the planes

and the corresponding focal lines of the reciprocal cone

x* y* z* . x* y*

-j
+ % + -77= 0, are, as we have just seen, _ + ^ =

0,

and the lines represented by the latter equation are evidently

perpendicular to the planes represented by the former.

153. The investigation of the foci of the other species of

quadrics proceeds in like manner. Thus for the paraboloids

x* y*
included in the equation . -f -^

= %z
;

this equation can be
./I J3

written in either of the forms
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a?
where ^-^ = 27 - ,

where

It thus appears that a paraboloid has two focal parabolas,

which may easily be seen to be each confocal with the corre

sponding principal section. The focus belongs to one or other

of the two kinds already discussed, according to the sign of

the fraction (A B) : A. In the case of the elliptic paraboloid

therefore, where both A and B are positive, if A be the

greater, then the foci in the plane xz are of the class whose

planes of contact are imaginary, while those in the plane yz

are of the opposite class. But since if we change the sign

either of A or of B, the quantity (A- B): A remains positive, we

see that all the foci of the hyperbolic paraboloid belong to the

former class, a property we have already seen to be true of the

hyperboloid of one sheet.

It remains true that the line joining any focus to the foot

of the corresponding directrix is normal to the focal curve, and

that the foot of the directrix is the pole with regard to the

principal section of the tangent to the focal conic. The feet

of the directrices lie on a parabola, and the directrices them

selves generate a parabolic cylinder.

To complete the discussion it remains to notice the foci of

the different kinds of cylinders, but it is found without the

slightest difficulty that when the base of the cylinder is an

ellipse or hyperbola there are two focal lines
; namely, lines

drawn through the foci of the base parallel to the generators

of the cylinder ; while, if the base of the cylinder is a parabola,

there is one focal line passing in like manner through the focus

of the base.

154. The geometrical interpretation of the equation U= LM
has been already given. We learn from it this property of foci

whose planes of contact are real, that the square of the distance

of any point on a quadric from such a focus is in a constant
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ratio to the product of the perpendiculars let fall from the point
on the, quadric, on two planes drawn through the corresponding

directrix, parallel to the planes of circular section. The corre

sponding property of foci of the other kind, which is less

obvious, was discovered by Professor Mac Cullagh. It is, that

the distance of any point on the quadricfrom such a focus is in

a constant ratio to its distance from the corresponding directrix,

the latter distance being measured parallel to either of the planes

of circular section.

Suppose, in fact, we try to express the distance of the point

x y z from a directrix parallel to the axis of z and passing

through the point whose x and y are a
, /3 ,

the distance being
measured parallel to a directive plane z = mx. Then a parallel

plane through xy
f

z, viz. z z = m (x x
)
meets the directrix

in a point whose x and y of course are a
, y6 ,

while its z is

given by the equation z z m (a x). The square of the

distance required is therefore

(x
- a Y + (/

-
) + m2

(of
- a

)

2 = (/ - /3 )

2 + (1 +
2

) (*
- a ).

In the equation then of Art. 147,

(x
-

a)
2
-f (y

-
)* + z =p(x- a / + q(y- /3 )

2

,

where p and q are both positive, and p is supposed greater
than q, the right-hand side denotes q times the square of the

distance of the point on the quadric from the directrix, the

distance being measured parallel to the plane z = mx where

7?2
2 = (p q} : q. By putting in the values of p and q, given

in Art. 147, it may be seen that this is a plane of circular

section, but it is evident geometrically that this must be the

case. For consider the section of the quadric by any plane

parallel to the directive plane, and since evidently the distances

of every point in such a section are measured from the same

point on the directrix, the distance therefore of every point in

the section from this fixed point is in a constant ratio to its

distance from the focus. But when the distances of a variable

point from two fixed points have to each other a constant

ratio, the locus is a sphere. The section therefore is the inter

section of a plane and a sphere ;
that

is,
a circle.

An exception occurs when the distance from the focus is
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tobe equal to the distance from the directrix. Since the locus

of a point equidistant from two fixed points is a plane, it

appears as before, that in this case the sections parallel to the

directive plane are right lines. By referring to the previous

articles, it will be seen (see Art. 153) that the ratio we are

considering is one of equality (q
=

1) only in the case of the

hyperbolic paraboloid, a surface which the directive plane could

not meet in circular sections, seeing that it has not got any.

Professor MacCullagh calls the ratio of the focal distance to

that from the directrix, the modulus of the surface, and the foci

having imaginary planes of contact, he calls modular foci.*

155. It was observed (Art. 137) that all quadrics of the

form ULM are enveloped by two cones, and when U repre

sents a sphere, these are cones of revolution as every cone

enveloping a sphere must be. Further, when U reduces to a

point-sphere, these cones coincide in a single one, having that

point for its vertex
;
and we may therefore infer that the cone

enveloping a quadric and having any focus for its vertex is one

of revolution.

This theorem being of importance, we give a direct alge

braical proof of it. First, it will be observed, that any equa
tion of the form x* -f y

1
4- z

2 = (ax + fo/ + czf represents a right

cone. For if the axes be transformed, remaining rectangular,

but so that the plane denoted by ax + ~by + cz may become one

of the coordinate planes, the equation of the cone will become

X 2 + Y* -f- Z* = XJT2

,
which denotes a cone of revolution, since

the coefficients of Y* and Z* are equal.

* In the year 1836 Professor MacCullagh published this modular method of

generation of quadrics. In 1842 I published the supplementary property possessed

by the non-modular foci. Not long after, M. Amyot independently noticed the same

property, but owing to his not being acquainted with Professor Mac Cullagh s method

of generation, M. Amyot failed to obtain the complete theory of the foci. Professor

MacCullagh has published a detailed account of the focal properties of quadrics,

which will be found in the Proceedings of the Royal Irish Academy, vol. II., p. 446 :

reprinted at p. 260 of his Collected Works, Dublin, 1880. Mr. Townsend also has

published a valuable paper (Cambridge and Dublin Mathematical Journal, vol. ill.,

pp. 1, 97, 148) in which the properties of foci, considered as the limits of spheres

having double contact with a quadric, are very fully investigated.
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But now if we form, by the rule of Art. 78, the equation

of the cone whose vertex is the origin and circumscribing

x2 + y* + z
z -U - J/ a

,
where

L = ax + ly + cz + d, M= ax + Vy 4 cz + d
,

it is found to be

(d* + &amp;lt;P) (x
2 + y* + z*-U - M*) + (dL + d M

)
=

0,

or (d* + dfz

] (x* +y -h z
2

)

-
(d L - dM}

2 =
0,

which we have seen represents a right cone.

COR. Since, in reciprocation, the circumscribing cone whose

vertex is the origin corresponds to the asymptotic cone of the

reciprocal surface, it follows from this article, that the reciprocal

of a quadric with regard to any focus is a surface of revolution.

A few additional properties of foci easily deduced from the

principles laid down are left as an exercise to the reader.

Ex. 1. The polar of any directrix is the tangent to the focal conic at the corre

sponding focus.

Ex. 2. The polar plane of any point on a directrix is perpendicular to the line

joining that point to the corresponding focus.

Ex. 3. If a line be drawn through a fixed point cutting any directrix of a quadric,

and meeting the quadric in the points A, ;
then if F be the corresponding focus,

tan ^AFO . tan \EFO is constant. This is proved as the corresponding theorem for

plane conies. Conies, Art. 226, Ex. 8.

Ex. 4. This remains true if the point move on any other quadric having the

same focus, directrix, and planes of circular section.

Ex. 5. If two such quadrics be cut by any line passing through the common direc

trix, the angles subtended at the focus by the intercepts are equal.

Ex. 6. If a line through a directrix touch one of the quadrics, the chord intercepted

on the other subtends a constant angle at the focus.

156. The product of the perpendiculars from the two foci

of a surface of revolution round the transverse axis, on any

tangent plane, is evidently constant. 2s ow if we reciprocate

this property with regard to any point by the method used in-

Art. 126, we learn that the square of the distance from the

origin of any point on the reciprocal surface is in a constant

ratio to the product of the distances of the point from two

fixed planes.

T
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It appears from Art. 126, Ex. 5, that the two planes are

planes of circular section of the asymptotic cone to the new

surface, and therefore of the new surface itself. The intersection

of the two planes is the reciprocal of the line joining the two

foci
;
that is to say, of the axis of the surface of revolution.

The property just proved,* belongs as we know (Art. 154) to

every point on the umbilicar focal conic
;
hence the reciprocal of

any quadric with regard to an umbilicar focus, is a surface

of revolution round the tranverse axis
;

but with regard to a

modular focus is a surface of revolution round the conjugate
axis.

By reciprocating properties of surfaces of revolution, we

obtain properties of any quadric with regard to focus and

corresponding directrix. It is to be noted, that the axis of the

figure of revolution of either kind is the reciprocal of the

directrix corresponding to the given focus
;

and is parallel to

the tangent to the focal conic at the given focus (see Art. 147).

The left-hand column contains properties of surfaces of re

volution, the right-hand of quadrics in general.

Ex. 1. The tangent cone whose The cone whose vertex is a focus

vertex is any point on the axis is and base any section whose plane

a right cone whose tangent planes passes through the corresponding
make a constant angle with the directrix, is a right cone, whose axis

plane of contact, which plane is is the line joining the focus to the

perpendicular to the axis. pole of the plane of section, and this

right line is perpendicular to the

plane through focus and directrix.

Ex. 2. Any tangent plane is at The line joining a focus to any

right angles with the plane through point on the surface is at right

the point of contact and the axis. angles to the line joining the focus

to the point where the corresponding

tangent plane meets the directrix.

Ex. 3. The polar plane of any The line joining a focus to any

point is at right angles to the plane point is at right angles TO the

containing that point and the axis. line joining the focus to the point

where the polar plane meets the

directrix.

* It was in this way I was first led to this property, and to observe the distinction

between the two kinds of foci.
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Ex. 4. Any two conjugate lines Any two conjugate lines pierce

are such that the planes joining a plane through a directrix parallel

them to the focus are at right to circular sections, in two points

angles. (Ex. 7, Art. 126). which subtend a right angle at the

corresponding focus.

Ex. 5. If a cone circumscribe a The cone whose base is any plane
surface of revolution, one principal section of a quadric and vertex any

plane is the plane of vertex and focus has for one axis the line join-

axis, ing focus to the point where the

. plane meets the directrix.

Ex. 6. The cone whose vertex The cone is a right cone whose

is a focus and base any plane sec- vertex is a focus and base the sec

tion is a right cone. (Ex. 2, tion made by any tangent cone on

Art. 126). a plane through the corresponding
directrix parallel to those of the

circular sections.

FOCAL CONICS AND CONFOCAL SURFACES.

157. In the preceding section an account has been given

of the relations which each focus of a quadric considered

separately bears to the surface. We shall in this section give

an account of the properties of the conies which are the as

semblage of foci, and of the properties of confocal surfaces.

And we commence by pointing out a method by which we

should be led to the consideration of the focal conies of a quadric

independently of the method followed in the last section.

Two concentric and coaxal conies are said to be confocal

when the difference of the squares of the axes is the same for

both. Thus given an ellipse i + j*
=

1, any conic is confocal

with it whose equation is of the form

x*
I . -\ 2 &quot; 7.2

, ).%a A o A,

If we give the positive sign to X2

,
the confocal conic will be

an ellipse ;
it will also be an ellipse when X2

is negative as

long as it is less than b*. When X2
is between b* and a? the

confocal curve is a hyperbola, and when X&quot; is greater than a2

the curve is imaginary. If X2 = b\ the equation reducing itself

to y*
=

0, the axis of x itself is the limit which separates con-
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focal ellipses from hyperbolas. But the two foci belong to

this limit in a special sense. In fact, through a given point
x y can in general be drawn two conies confocal to a given

one, since we have a quadratic to determine X2

,
viz.

a/
2

y
fz

or X4 - X2

(a
2 + tf - x 2 -

y&quot;

2

) + a
2b2 - b

zx * - a2

y
* = 0.

When y = this quadratic becomes (X
2-

Z&amp;gt;

2

) (X
2- a2 + x 2

)
=

0,

and one of its roots is X2 = b
z

;
but if we have also x 2 a2

b
2

the second root is also X2 =
Z&amp;gt;

2

,
and therefore the two foci are

in a special sense points corresponding to the value X 2 =52
. If

x2

y
2 y2

in the equation 5 + ** =
1, we make X2 = &

2

, 7 2 a
=

0,
ft At U X (3 X

a?
2

we get the equation of the two foci 75
= 1.

Qi ~~

158. Now in like manner two quadrics are said to be

confocal if the differences of the squares of the axes be the

x2

if z
2

same for both. Thus given the ellipsoid -5 + ?* + =
1, any

Qi C

surface is confocal whose equation is of the form

x2

y*_ z
2

+ 4&quot; =

If we give X2
the positive sign, or if we take it negative and

less than c
2

,
the surface is an ellipsoid. A sphere of infinite radius

is the limit of all ellipsoids of the system, being what the equa
tion represents when X2 = co . When X2

is negative and between

c
2 and b* the surface is a hyperboloid of one sheet. When

it is between b2 and a
2

it is a hyperboloid of two sheets. When
X2 = c

2
the surface reduces itself to the plane z = 0, but if we

make in the equation X2 = c
2

, ^ z
=

0, the points on the conic
A* ~ C

y? ?/
2

thus found, viz. -5 5 + ~-
^
=

1, belong in a special sense

to the limit separating ellipsoids and hyperboloids. In fact,

in general through any point x y z can be drawn three surfaces

confocal to a given one; for regarding X2
as the unknown
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quantity, we have evidently a cubic for the determination of

it
j namely,

at*

a
&quot;\
* W \ * *

CL ~&quot;&quot; /v c/
~~~ /V C/

**~ /v

or a/
2

(5
2 - X2

) (c
2 - X2

) 4- y* (c
2 - X2

) (a
2 - X2

) + z
2

(a
2- X2

) (Z&amp;gt;

2 - X2

)

If z = 0, one of the roots of this cubic is X2 = c
2

,
the other two

being given by the equation
2 /7,a -v 2\ i

. 2 / 2 -\ a\ /-.2 -\2\ /Z.2 -v 2\
a? (o A, ) + y (a A, )

= (a A, ) (o A, j.
\ / %J \ J \ *

* /

and a root of this equation will also be X54 = c
2

,
if

2
85

The points on the focal ellipse therefore belong in a special

sense to the value X2 = c
2
. In like manner the plane y

separates hyperboloids of one sheet from those of two, and to

this limit belongs in a special sense the hyperbola in that

/y.
8 y*

plane -= ^ + r-&amp;gt;

= 1. The focal conic in the third principal
a o c o

plane is imaginary.

159. The three quadrics which can be drawn through a given

point confocal to a given one are respectively an ellipsoid^ a

hyperboloid of one sheet, and one of two. For if we substitute

in the cubic of the last article successively

we get results successively -f I
,
w^hich prove that the equa

tion has always three real roots, one of which is less than c
8

,

the second between c
2 and &

2

,
and the third between b* and a

2

5

and it was shown in the last article that the surfaces corre

sponding to these values of X2
are respectively an ellipsoid, a

hyperboloid of one sheet, and one of two.

160. Another convenient way of solving the problem to

describe through a given point quadrics confocal to a given

one, is to take for the unknown quantity the primary axis

of the sought confocal surface. Then since we are given
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a* 5
2 and a

2 - c
2
which we shall call hz and &

2

,
we have the

equation

^ y* g
&quot;

a 24 a/2
-/*

2 +
a&quot;-

2
=

or a 6 - a
4

(A
2 + tf + x * + /2 + s

2

)

+ a/2

{hW + x z

(V + tf) +/
2 2 + 2

/2A2

}

- a/W = 0.

From this equation we can at once express the coordinates

of the intersection of three confocal surfaces in terms of their

axes. Thus if a
2

,
a&quot;

2

,
a

&quot;2
be the roots of the above equation,

the last term of it gives us at once x z
h

2
k* = a W&quot;

2

,
or

r-i //a /

a a a

And by parity of reasoning, since we might have taken ff or c*

for our unknown, we have

~~

(6
a - a2

) (6
2 - c

2

)

~

(&amp;lt;?

-
a&quot;) (c*

- 6
a

)

*

N.B. In the above we suppose &
&quot;, &&quot;*, &c., to involve their

signs implicitly. Thus c&quot;

2

belonging to a hyperboloid of one

sheet is essentially negative, as are also 5&quot;

/2 and c
&quot;2

.

161. The preceding cubic also enables us to express the

radius vector to the point of intersection in terms of the axes.

For the second term of it gives us

a/* +^ + z
* + (

a _ 5
2

) -f (a*
- c

2

j
=

a&quot; + a&quot;

2 + a&quot;

2

,

or x* + y
2 + z

2 = a 2 + 6
/2 + c

///2
.

This expression might also have been worked out directly from

the values given for x&quot;\ ?/

2

,
2
/2

in the last article, by a process

which may be employed in reducing other symmetrical functions

of these coordinates. For on substituting the preceding values

and reducing to a common denominator, x * +y* + z* becomes

aW&quot;* (V - c
2

) + Vb
m

V&quot;* (c*
- a2

) +We &quot;*

(a*
- &

2

)

* These expressions enable us easily to remember the coordinates of the umbilics.

The umbilics are the points (Art. 149) where e.g. an ellipsoid is met by its foca*

hyperbola. But for the focal hyperbola a /2= a &quot;-- a- b-. The coordinates are therefore
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But the numerator obviously vanishes if we suppose either

J
a = c

2

,
c
a = a2

,
a2 = b

z
. It is therefore divisible by the de

nominator. The division then is performed as follows : Any
term, for example a W&quot;V, when divided by a2 - b2

(or by
its equal a* -

Z&amp;gt;&quot;

2

) gives a quotient a&quot;V&quot;V,
and a remainder

b &quot;a&quot;V&quot;V. This remainder divided by a&quot;

2 -
b&quot;

2

gives a quotient

Z&amp;gt; V&quot;V and a remainder & W&quot;V, which divided in like manner

by a &quot;*-b
&quot;*

gives a quotient 6
2

&quot;V and a remainder b&quot;b&quot;*b
&quot;*&amp;lt;?,

which is destroyed by another term in the dividend. Proceeding

step by step in this manner we get the result already obtained.

162. Two confocal surfaces cut each oilier everywhere at

right angles.

Let x y z be any point common to the two surfaces, p and^/
the lengths of the perpendiculars from the centre on the tangent

plane to each at that point, then (Art. 89) the direction-cosines

of these two perpendiculars are
// / r // /// n i rr f

p x py p z
^ p x p y p z

* * *&amp;gt; * &quot;**

And the condition that the two should be at right angles,

is, (Art. 13)
ft 2 2 \x

, y
,

z
1 o

d&quot;a&quot;* V*b&quot;* cV/8

J

:

But since the coordinates x y z satisfy the equations of both

surfaces we have
r /a 2 si 2 xx y z x 11 z_ I J___i _ _ 1 _ I _ _ I _ 1

r% ^&quot;^7/21 Z
~~

&quot;i
rr*i L//1

~
&quot;2

~
-1

a 6 c a o c

And if we subtract one of these equations from the other,

and remember that a&quot;* a 2 =
&&quot;* b

z =
c&quot;

2
c

2

,
the remainder is

|
i

.

_ QV1
b&quot;b&quot;*

c*c&quot;*}

which was to be proved.

At the point therefore where three confocals intersect, each

tangent plane cuts the other two perpendicularly, and the

tangent plane to any one contains the normals to the other two.

163. If a plane be drawn through the centre parallel to any

tangent plane to a quadric^ the axes of tlie section made by that
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plane are parallel to the normals to the two confocals through

the point of contact.

It has been proved that the parallels to the normals are at

right angles to each other, and it only remains to be proved
that they are conjugate diameters in their section. But (Art. 94)

the condition that two lines should be conjugate diameters is

cos a cos a cos /3 cos /3 cos 7 cos 7
~~cT~ ~Tr~ ~7r

~
*

The direction-cosines then of the normals being

we have to prove that

, ( xf*

y
z ^

P P &quot;*
+ *&quot;*&quot; * 4 &quot;*

But the truth of this equation appears at once on subtracting

one from the other the equations which have been proved in

the last article,

a/
2

_ ___=
1 //a- + * &quot;*

&quot;*&quot;

/JI
&quot;

164. To find the lengths of the axes of the central section of a

quadric by a plane parallel to the tangent plane, at the point x yz .

From the equation of the surface the length of a central

radius vector whose direction-angles are a, /3, 7 is given by
the equation

1 cos a cos
5

/3
,

i _ _ i

2 ^ If* 1 *pa o c

Put for a, /3, 7 the values given in the last article, and we find

for the length of one of these axes,

1 ., f xf* v*
.
rri J i y

i

2 //4 I 7 /a 7 //4
~

Now we have the equations,

_^!_ _/L g/2

+ // + ==

. _
a

//4 + pi
+

c
//4

==
//
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Subtracting we have

y
f*

z
*

1

aV4
b&quot;

2
b&quot;* c&amp;gt;V4

~
/&quot; (a&quot;

-
a&quot;*)

And substituting this value in the expression already found

for p* we get p
z = a* a&quot;

2
. In like manner the square of the

other axis is a 2 a
&quot;2

.

Hence, if two confocal quadrics intersect, and a radius of

one be drawn parallel to the normal to the other at any point

of their curve of intersection, this radius is of constant length.

165. Since the product of the axes of a central section by
the perpendicular on a parallel tangent plane is equal to abc

(Art. 96), we get immediately expressions for the lengths

/,/ ,/&quot;.
We have

,

,*_ a
P

(a&quot;

fi a 2

) (a&quot;*
a&quot;*)

These values might have been also obtained by substituting

in the equation

1 /r*
r2

?/
2 z 2

/jj
~~&quot;

/4 l&quot; 7/4 H 1
ff\ /~ r\ f*LJ \Jv L/ \j

the values already found for a/
2

, ;z/

2

,
z

* and reducing the re

sulting value for^/
2

by the method of Art. 161.

The reader will observe the symmetry which exists between

these values for p
2

,
&amp;gt;&quot;

2

, p
//2

,
and the values already found for

a/
2

, y*, z
2

. If the three tangent planes had been taken as

coordinate planes, p , p&quot;, p&quot;
would be the coordinates of the

centre of the surface. The analogy then between the values for

P I P ? P&quot; &amp;gt;

an(^ those for x
, ?/ ,

2
, may be stated as follows : With

the point x y z as centre three confocals may be described

having the three tangent planes for principal planes and inter

secting in the centre of the original system of surfaces. The

axes of the new system of confocals are a
, a&quot;,

a
&quot;;

Z&amp;gt;

,
V

,
l&amp;gt;&quot;

;

c
, c&quot;,

c
/r/

. The three tangent planes to the new system are the

three principal planes of the original system.
u
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If a central section through x yz be parallel to one of these

principal planes (the plane of yz for instance) in the surface to

which this latter is a tangent plane, it appears from Art. 164

that the squares of its axes are a*
2

,
a2

c
2

. It follows then

that the directions and magnitudes of the axes of the section are

the same, no matter where the point x y z be situated. The

squares of the axes are equal, with signs changed, to the squares

of the axes of the corresponding focal conic.

166. If D be the diameter of a quadric parallel to the

tangent line at any point of its intersection with a confocal,

and p the perpendicular on the tangent plane at that point,

then pD is constant for every point on that curve of intersec

tion. For the tangent line at any point of the curve of inter

section of two surfaces is the intersection of their tangent planes

at that point, which in this case (Art. 162) is normal to the third

confocal through the point. Hence (Art. 164) D* = a* &amp;lt;/&quot;

2

,

aVc 2

and therefore (Art. 165) p
2D &amp;gt;2 =

2
-

r/5I
which is constant if

a a

a
,

a&quot; be given.

167. To find the locus of the pole of a given plane with regard

to a system of confocal surfaces.

Let the given plane be Ax-}- By + Cz= 1, and its pole fj?;

then we must identify the given equation with

x%
,

yn *Z ,

-
- f1f &quot;

whence - = A,^ = B, = G.

Eliminating V between these equations we find, for the equa
tions of the locus,

i^rf.la.flWlWABC
The locus is therefore a right line perpendicular to the given

plane.

The theorem just proved implicitly contains the solution of

the problem,
&quot; to describe a surface confocal to a given_one to
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touch a given plane.&quot; For, since the pole of a tangent plane

to a surface is its point of contact, it is evident that but one

surface can be described to touch the given plane, its point of

contact being the point where the locus line just determined

meets the plane. The theorem of this article may also be

stated &quot; The locus of the pole of a tangent plane to any

quadric, with regard to any confocal, is the normal to the first

surface.&quot;

168. To find an expression for the distance between the point

of contact of any tangent plane, and its pole with regard to any

confocal surface.

Let x y z be the point of contact of a tangent plane to the

surface whose axes are
, 5, c

; ?? the pole of the same

plane with regard to the surface whose axes are a
,

5
,

c .

Then, as in the last article, we have

a
_ _ .

&quot;

b*
~

V* c
~

c
2

c
a -c1 t+ f ^^ / / / &amp;lt;-* / /

whence f-a? =
5 x . rj y= ^ y . L Z ^* ^-.* 7 7 A* / / * JlC

squaring and adding
2 /a 2

z

a&quot; -a
whence D -

,
where p is the perpendicular from the centre

on the plane.

169. The axes of any tangent cone to a quadric are the

normals to the three confocals which can be drawn through the

vertex of the cone.

Consider the tangent plane to one of these three surfaces

which pass through the vertex x y z
\

then the pole of that

plane with regard to the original surface lies (Art. 65) on the

polar plane of x y z, and (Art. 167) on the normal to the ex

terior surface. It is therefore the point where that normal

meets the polar plane of x y z
,
that is to say, the plane of

contact of the cone.

It follows, then (Art. 64), that the three normals meet
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this plane of contact in three points, such that each is the

pole of the line joining the other two with respect to the

section of the surface by that plane. But since this is also

a section of the cone, it follows (Art. 71) that the three normals

are a system of conjugate diameters of the cone, and since they

are mutually at right angles they are its axes.

170. If at any point on a quadric a line be drawn touching

the surface and through that line two tangent planes to any

confocal, these two planes will make equal angles with the

tangent plane at the given point on the first quadric. For, by
the last article, that tangent plane is a principal plane of the

cone touching the confocal surface and having the given point

for its vertex, and the two tangent planes will be tangent

planes of that cone. But two tangent planes to any cone

drawn through a line in a principal plane make equal angles

with that plane.

The focal cones (that is to say, the cones whose vertices are

any points and which stand on the focal conies) are limiting

cases of cones enveloping confocal surfaces, and it is still true

that the two tangent planes to a focal cone drawn through any

tangent line on a surface make equal angles with the tangent

plane in which that tangent line lies. If the surface be a cone

its focal conic reduces to two right lines, and the theorem just

stated in this case becomes, that any tangent plane to a cone

makes equal angles with the planes containing its edge of

contact and each of the focal lines. This theorem, however,
will be proved independently in Chap. X.

171. It follows, from Art. 169, that if the three normals be

made the axes of coordinates, the equation of the cone must

take the form Ax* + By* 4- Cz* = 0. To verify this by actual

transformation will give us an independent proof of the theorem

of Art. 169, and a knowledge of the actual values of A, B, G
will be useful to us afterwards.

The equation of the tangent cone given, Art. 78, is

fx *

y
*

z&quot; V/a* y* \ (xx yy
f

zz
f

\
2

+ -n + - - M - + w + ^ ~ 1 =
(

+ &~ + - !
)

\ a b c ) \a be / \ a
&quot;

&amp;lt; /
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If the axes be transformed to parallel axes passing through the

vertex of the cone, this equation becomes, as is easily seen,

x* y
2 z* \ (a? y* z\ fxx yy

f
zz \*

.
i & i

. _ i&amp;gt;
[ __L z__i__ i

/ _ i &amp;lt;LJ___i_ _ I

* H *

Now to transform to the three normals as axes, we have to

substitute the direction-cosines of these lines in the formulas

of Art. 17, and we see that we have to substitute

p x p x p
mx

tor x, jr x + TTjf y +a- a ~ &quot; a
fff

p&quot;y

r

p
m
y

f

:

/VJ
I L J

-y
I X 7

u O

f p z p
f

z
f

p
fff
z

lor z, ^ a + -^ ?/ + -^ z.

172. In order more easily to see the result of this substitu

tion the following preliminary formula? will be useful :

nf* vi &Tf _I_^_L 1 C%

PI 2 2
/&amp;gt;* 77 21

then since -^ + 77^+ ~^~l=^j

we have -^ + ^r, + 4^ =
-75 ^

CL CL f) fa o o ct -- ^y

C
/a

7/
/a

2
/2

/S
In like manner 2 //2 + ^ + -^-7^

= -^ ,

a;
2

if z&quot;* S
VV Vti* dW (a

2

-a&quot;) (a&quot;

2 -a 2

)

xf*

y
z

z
*

I

Lastly, since + ^ + _ =

and
2 /2

we _ _
oV 5

4^ cV (a*- a&quot;)*

* It may be observed that this quantity S is equal to

(q
2 _ gt) (

q &quot;2 _ g2) (a
&quot; 2 _ a )

&amp;lt;&amp;gt;lo
o 5

a-o-c2

for a2 - a 2
,
a2 - a&quot;

2
,
a2 - a &quot;2 are the roots of the cubic of Art. 158, whose absolute

term is a-bWS.
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173. When now we make the transformation directed, in

the left-hand side of the equation of Art. 171, the coefficient

of xl
is found to be

f a-
2 ~ 2

P r

and that of xy is

The left-hand side therefore of the transformed equation is

/ r rf ii rt&quot;z \* ( T* i? ?z
^a* P X

v
P y

, _
P z

\ a\.
x

i

y ,.
/2 2 * ffi a ^^ ///a -i I

*^
i /a 2 &quot;^ //ss 2 ///2 i i

\a a a a a a ) (a a a a a a]

-r&amp;gt; ,1 &amp;gt;,
w&amp;gt; yy

f
zz

13ut the quantity T + -^ + ^ treated m like manner becomes
a o c

P X
4. v&quot;y P&quot;

Z
\

a
&amp;gt;*

-&amp;lt;?-*- a&quot;* - c?
+

a &quot;* - aV
*

Its square therefore destroys the first group of terms on the

other side of the equation, and the equation of the cone becomes

,
i u i

a/a aa
a

fi az a //2 a2

which is the required transformed equation of the tangent cone.

174. As a particular case of the preceding may be found

the equation of either focal cone (Art. 170); that is to say, the

cone whose vertex is any point xyz and which stands on the

focal ellipse or focal hyperbola. These answer to the values

a2
c
2

,
a2

b* for the square of the primary axis; the equa
tions therefore are

x2

y* z*

-72 4-
~771J

+ -7772
-

0,GOG
^ It

2 ?*1C ft K
i_

& i A
f i I7/2 I 7//2 1

})&quot;

ri
~

These equations might also have been found, by forming, as in

Ex. 7, Art. 121, the equations of the focal cones, and then

transforming them as in the last articles.

It may be seen without difficulty that any normal and the

corresponding tangent plane meet any of the principal planes
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in a point and line which are pole and polar with regard to

the focal conic in that plane. This is a particular case of

Art. 169.

The formulae employed in the articles immediately preced

ing enable us to transform to the same new axes any other

equations.

Ex. 1. To transform the equation of the quadric itself to the three normals through

any point x y z as axes. The equation transformed to parallel axes becomes

x1 2 z2 n fxx yu zz \- + z; + - + + 2( + M +
)

= -

a- o- c- \a~ o- c2 J

And when the axes are turned round, we get

/ p x.C I

&quot;

V2 - a2
p&quot;y p &quot;z

,
\ 2 a;

2
y
2

* y
4. _ 4- 1 I

&quot;

. _ - ____ - ._
a&quot;

2 - a2 a &quot;2 - a2 J a 2 - a2
^

a&quot;
2 - a2

^
a &quot;2 - a2

The quantity under the brackets on the left-hand side of the equation is evidently the

transformed equation of the polar plane of the point.

Ex. 2. The preceding equation is somewhat modified if the point x y z is on the

surface. The equation transformed to parallel axes is

x- y
2 z2 _ fxx yy zz \ A

~2 + fe + ~2 + 2
(

+ ll + T ~
a2 o- c1 \a2 o2 c2 /

(x 2
y

2
z&quot;*\

1
Let now p* 1 + - + I =

;

la
6 66 cb J y

2

then the equation, transformed to the three normals as axes, is

y?_ y
2 z2 2p ary Zp&quot;xz 2x _

y5 + a2 -
a&quot;-

+
o^a&quot;2

~
p (a

2 - a 2
) ~js (a

2 -
a&quot;

2
)

+
p

~

It is to be observed that y is the diameter parallel to the normal at the point x y z
,

JL
1 1 _ !_ J_^

y- a2 - a 2
+

a2 -
a&quot;

2
~
a2
+ ^ +

c2

and the transformed equation may be otherwise written

a a 2 a2 a 2

Ex. 3. To transform the equation of the reciprocal surface with regard to any point
to the three normals through the point. The equation is (Art. 127)

(xx
r + yy + zz + &2

)
2 = a-x2 + &2y- + C2z2

,

and the transformed equation is found to be

(a
2 -

a-} x? +
(a&quot;

2 - a 2
) y- + (a

&quot;2 - a2
) z2 + 2k2 (p x +p&quot;y+p &quot;z]

+ V - 0.

175. To return to the equation of the tangent cone (Art. 173).
Its form proves that all cones having a common vertex and cir

cumscribing a series of confocal surfaces are coaxal and confocal.

For the three normals through the common vertex are axes to

every one of the system of cones
;
and the form of the equation

shows that the differences of the squares of the axes are hide-
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pendent of a2
. The equations of the common focal lines of the

cones are (Art. 151)
2 !i

/y &amp;lt;5&amp;gt;

i-O fj

IT^^a^-a^ 5 ^ =

But it was proved (Art. 164) that the central section of the

hyperboloid of one sheet which passes through x
f

y
f

z
f

is

a&quot;* -a *
a&quot;

2 -

and the section of the hyperboloid by the tangent plane itself is

similar to this, or is also

Hence the focal lines of the system of cones are the generating

lines of the hyperboloid which passes through the point a theorem

due to Chasles, Liouville^ XI. 121, and also noticed by Jacobi

(Crelle, Vol. xil. p. 137).

This may also be proved thus : Take any edge of one of the

system of cones, and through it draw a tangent plane to that

cone and also planes containing the generating lines of the

hyperboloid ;
these latter planes are tangent planes to the hyper

boloid, and therefore (Art. 170) make equal angles with the

tangent plane to the cone. The two generators are therefore

such that the planes drawn through them and through any

edge of the cone make equal angles with the tangent plane to

the cone; but this is a property of the focal lines (Art. 170).

COR. 1. The reciprocals of a system of confocals, with

regard to any point, have the same planes of circular section.

For the reciprocals of the tangent cones from that point have

the same planes of circular section (Art. 152), and these reci

procals are the asymptotic cones of the reciprocal surfaces.

COR. 2. If a system of confocals be projected orthogonally

on any plane, the projections are confocal conies. The pro

jections are the sections by that plane of cylinders perpendicular

to it,
and enveloping the quadrics. And these cylinders may

be considered as a system of enveloping cones whose vertex

is the point at infinity on the common direction of their

generators.
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176. Two confocal surfaces can be drawn to touch a given line.

Take on the line any point xy z
;

let the axes of the three

surfaces passing through it be a
,
a

,
a

&quot;,

and the angles the

line makes with the three normals a, /5, 7. Then it appears,

from Art. 173, that a is determined by the quadratic

cos
J
a cos

2

/9 cos
2

y
2 r //2 2 I ///8 2

a a a a a

If a and a be the roots of this quadratic, the two cones

x* y* z* x*
&quot;

a 4 + &quot;*~

have the given line as a common edge, and it is proved, pre

cisely as at Art. 162, that the tangent planes to the cones

through this line are at right angles to each other. And since

the tangent planes to a tangent cone to a surface, by definition

touch that surface, it follows that the tangent planes drawn

through any right line to the two confocals which it touches are

at right angles to each other.

The property that the tangent cones from any point to

two intersecting confocals cut each other at right angles is

sometimes expressed as follows : two confocals seen from any

point appear to intersect everywhere at right angles.

177. If through a given line tangent planes be drawn to a

system of confocals^ the corresponding normals generate a hyper-
bolic paraboloid.

The normals are evidently parallel to one plane ; namely,
the plane perpendicular to the given line

;
and if we consider

any one of the confocals, then, by Art. 167, the normal to any

plane through the line contains the pole of that plane with

regard to the assumed confocal, which pole is a point on the

polar line of the given line with regard to that confocal. Hence,

every normal meets the polar line of the given line with regard
to any confocal. The surface generated by the normals is

therefore a hyperbolic paraboloid (Art 116). It is evident that

the surface generated by the polar lines, just referred to, is

the same paraboloid, of which they form the other system of

generators.

x
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The points in which this paraboloid meets the given line

are the two points where this line touches confocals.

A special case occurs when the given line is itself a normal

to a surface U of the system. The normal corresponding to

any plane drawn through that line is found by letting fall a

perpendicular on that plane from the pole of the same plane
with regard to U (Art. 167), but it is evident that both pole

and perpendicular must lie in the tangent plane to U to which

the given line is normal. Hence, in this case all the normals

lie in the same plane.

From the principle that the anharmonic ratio of four planes

passing through a line is the same as that of their four poles with

regard to any quadric, it is found at once that any four of the

normals divide homographically all the polar lines correspond

ing to the given line with respect to the system of surfaces. In

the special case now under consideration, the normals will

therefore envelope a conic, which conic will be a parabola, since

the normal in one of its positions may lie at infinity ; namely,

when the surface is an infinite sphere (Art. 158). The point

where the given line meets the surface to which it is normal

lies on the directrix of this parabola.

178. If a, /3, 7 be the direction-angles, referred to the three

normals through the vertex, of the perpendicular to a tangent

plane of the cone of Arts. 171, &c., since this perpendicular lies

on the reciprocal cone, a, /5, 7 must satisfy the relation

(a&quot;

- a
2

)
cos

2
a + (a

/a - a2

)
cos

2

/3 + (a
&quot;2 - a

2

)
cos

2

7 - 0,

or a 2
cos

2
a + a&quot;

2
cos

2

/3 + a&quot;&quot; cos
2

7 = a*.

This relation enables us at once to determine the axis of the

surface which touches any plane, for if we take any point on

the plane, we know a
, a&quot;,

a&quot; for that point, as also the angles

which the three normals through the point make with the plane,

and therefore a
2

is known.

179. If the relation of the last article were proved inde

pendently, we should, by reversing the steps of the demon

stration, obtain a proof without transformation of coordinates
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of the equation of the tangent cone (Art. 173). The following

proof is due to M. Chasles : The quantity

a&quot;

2
cos

v
a + a&quot;

2
cos

2

/3 4- a
&quot;2

cos*?

is the sum of the squares of the projections on a perpen
dicular to the given plane of the lines a

,
a

,
a

1

. We have

seen (Art. 165) that these are the axes of a surface having
x y z for its centre and passing through the original centre.

And it was proved in the same article that three other con

jugate diameters of the same surface are the radius vector

from the centre to x y z
^ together with two lines parallel to

two axes of the surface and whose squares are a
2

&
2

,
a2

c*.

It was also proved (Art. 98) that the sum of the squares of

the projections on any line of three conjugate diameters of a

quadric is equal to that of any other three conjugate diameters.

It follows then that the quantity

a&quot; cos
2
a + a&quot;

2
cos + a///2

cos y
is equal to the sum of the squares of the projections on the

perpendicular from the centre on the given plane, of the radius

vector, and of two lines whose magnitude aud direction are

known. The projections of the last two lines are constant,

while the projection of the radius vector is the perpendicular

itself which is constant if x y z belong to the given plane.

It is proved then that the quantity

a/2
cos

2
a + a&quot;* cos

2

/3 + a
&quot;2

cos y

is constant while the point x y z moves in a given plane ;
and

it is evident that the constant value is the a* of the surface

which touches the given plane, since for it we have

cosa = l, cos/3 = 0, cos7 = 0.

180. The locus of the intersection of three planes mutually at

right angles, each of which touches one of three confocals is a sphere.

This is proved as in Art. 93.

Add together

p
z = a2

cos
2
a + 5

2
cos

2

y8 -f c
2

cos
2

?,

= a
2 cosV + Z&amp;gt;

2
cos* + c

2

p&quot;*

= a&quot;* cosV 4 b&quot;

2
cos

2

/3&quot; + c
m
cosy,

when we get p
2 = a

2 + b
9 + c

2
4

(a&quot;

- a
2

) + (a&quot;*

- a
2

),
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where p is the distance from the centre of the intersection of

the planes.

Again, by subtracting one from the other, the two equations

p*= a? cos
v
a+ b* cos

2

/3 + c* cos
2

7, p*= a* cos
2
a+ 5

2
cos

2

/3+ c
2
cos

2

y ,

we learn that the difference of the squares of the perpendiculars
on two parallel tangent planes to two confocals is constant and

equal a* - a 2
.

It may be remarked that the reciprocal of the theorem of

Art. 93 is that if from any point there be drawn three radii

vectores to a quadric, mutually at right angles, the plane joining

their extremities envelopes a surface of revolution. If be on

the quadric, the plane passes through a fixed point.

181. Two cones having a common vertex envelope two con

focals ; to find the length of the intercept made on one of their

common edges by a plane through the centre parallel to the tangent

plane to a confocal through the vertex. The intercepts made

on the four common edges are of course all equal, since the

edges are equally inclined to the plane of section which is

parallel to a common principal plane of both cones.

Let there be any two confocal cones

--- ---
a

9 P 7&quot;

&quot;

&amp;gt; a a

p* 7&quot;

then for their intersection, we have

z*

aV
(&quot;

- 7
3

) /3
a

/3
/a

(7
2 - a

) 7V (a
2 -

and if the common value of these be X3

,
we have

a3 + y + = X2

(a
3 -

&quot;) (/3

2 - 7
2

) (a
2 - 7

3

)
.

Putting in the values of a
2

, /3
3

, 7
3 from the equations of the

tangent cones (Art. 176), and determining X3

by the equation
/ai ! &amp;gt;a

(see Art. 165) x9

=.^ ,/a
, ,a 77/37? we get for the square

( a ~~&quot;
a&amp;gt; } (a ~~ a

j

of the required intercept
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If then the confocals be all of different kinds this value shews

that the intercept is equal to the perpendicular from the centre

on the tangent plane at their intersection.

In the particular case where the two cones considered are

the cones standing on the focal ellipse, and on the focal hyper

bola, we have a
2 = c? c

u

,
a

2 = a*
5&quot;,

and the intercept reduces

to a . Hence, if through any point on an ellipsoid be drawn

a chord meeting loth focal conies, the intercept on this chord by

a plane through, the centre parallel to the tangent plane at the

point will be equal to the semi-axis-major of the surface. This

theorem, due to Prof. MacCullagh, is analagous to the theorem

for plane curves, that a line through the centre parallel to a

tangent to an ellipse cuts off on the focal radii portions equal

to the semi-axis-major.

182. M. Chasles has used the principles just established to

solve the problem to determine the magnitude and direction of

the axes of a central quadric being given a system of three

conjugate diameters.

Consider first the plane of any two of the conjugate dia

meters, and we can by plane geometry determine in magnitude
and direction the axes of the section by that plane. The

tangent plane at P, the extremity of the remaining diameter,

will be parallel to the same plane. Now the centre of the

given quadric is the point of intersection of three confocals

determined as in Art. 165, having the point P for their

centre. If now we could construct the focal conies of this new

system of confocals, then the two focal cones, whose common
vertex is the centre of the original quadric, determine by their

mutual intersection four right lines. The six planes containing
these four right lines intersect two by two in the directions of

the required axes, while (Art. 181) planes through the point
P parallel to the principal planes, cut off on these four lines

parts equal in length to the axes.

The focal conies required are immediately constructed. We
know the planes in which they lie and the directions of their axes.

The squares of their semi-axes are to be a
2

a&quot;

a

,
a 2

a&quot;*
;
a2 a 2

,

a 2
a&quot;

14

. But now the squares of the semi-axes o*f the given
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section are az
a \ a? a&quot;

z

(Art. 164), and these latter axes

being known, the axes of the focal conies are immediately found.

183. If through any point P on a quadric a chord be

drawn, as in Art. 181, touching two confocals, we can find

an expression for the length of that chord. Draw a parallel

semi-diameter through the centre, the length of which we shall

call E. Now if through P there be drawn a plane conjugate
to this diameter, and a tangent plane, they will intercept

(counting from the centre) portions on the diameter whose

product = E
2
. But tLe portion intercepted by the conjugate

plane is half the chord required, and the portion intercepted

by the tangent plane is the intercept found (Art. 181). Hence

2ffV{(a
r*-aa

)(q
/2 -a 2

)}^ /ZY *

a o c

When the chord is that which meets the two focal conies
;

a
2 = a

2 - c\ a 2 =
a&quot;

z - l \ and (7=
a

184. To find the locus of the vertices of right cones which

can envelope a given surface.

x* if z
2

In order that the equation ^ + -~ 5 + -77/2 a
=

a a a a a a

may represent a right cone, two of the coefficients must be

equal ;
that is to say, a&quot; a

,
or

&quot; =
a&quot;

1

,
or in other words,

for the point x y
f

z
f
the equation of Art. 158 must have two

equal roots, but from what was proved as to the limits within

which the roots lie, it is evident that we cannot have equal

roots except when X is equal to one of the principal semi-axes,

or when x yz is on one of the focal conies. This agrees with

what was proved (Art. 155).

It appears, hence, as has been already remarked, that the

reciprocal of a surface, with regard to a point on a focal conic,

is a surface of revolution
;
and that the reciprocal, with regard

to an umbilic, is a paraboloid of revolution. For an umbilic

is a point on a focal conic (Art. 149), and since it is on the

surface the reciprocal with regard to it is a paraboloid.

Another particular case of this theorem is, that two right

cylinders can be circumscribed to a central quadric, the edges
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of the cylinders being parallel to the asymptotes of the focal

hyperbola. For a cone whose vertex is at infinity is a cylinder.

As a particular case of the theorem of this article, the cone

standing on the focal ellipse will be a right cone only when

its vertex is on the focal hyperbola, and vice versa. This

theorem of course may be stated without any reference to the

quadrics of which the two conies are focal conies; that the

locus of the vertices of right cones which stand on a given conic

is a conic of opposite species in a perpendicular plane. If the

x* if
equation of one conic be + j

= 1
}

that of the other will

x2 z

*

It was proved (Ex. 8, Art. 126) that if a quadric circumscribe

a surface of revolution, the cone enveloping the former whose

vertex is a focus of the latter is of revolution. From this

article then we see that the focal conies of a quadric are the

locus of the foci of all possible surfaces of revolution which

can circumscribe that quadric.

185. It appears from what has been already said that the

focal ellipse and hyperbola are in planes at right angles to each

other, and such that the vertices of each coincide with the foci

of the other. Two conies so related are each (so to speak) a

locus of foci of the other
;

viz. any pair of fixed points F, G on

the one conic may be regarded as foci of the other, the sum or

difference of the distances FP^ GP to a variable point P on the

other, being constant.

Taking the equations of the conies

and introducing the parameters 0, &amp;lt;,

as at Conies, Arts. 229, 232,
the coordinates of a point on each conic may be expressed,

a cos 0, b sin 0, ;
sec

&amp;lt;j&amp;gt; V(
a

&
2

), 0, b tan &amp;lt;

;

and the square of the distance between these points is

a2
cos

y

&amp;lt;9-2acos&amp;lt;9sec&amp;lt; V(a*-&
2

)+ (a
2

-Z&amp;gt;

2

)
sec

2
&amp;lt;+^sin

2

or a* gec
2

$ - 2a cos 6 sec &amp;lt; VV -
&*) + (

2 -
&) cos

2 6

=
{a sec&amp;lt;/&amp;gt;

- cos0
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And, plainly, the sum or difference of two distances

{asec$ cos#V(a
2 - &

a

)l&amp;gt; [
a sec&amp;lt; cos0 V(

2
&
2

)}

is independent of
(j&amp;gt; ;

and of two distances

[a sec
&amp;lt;f&amp;gt;

cos 6 *J(a
2

5
2

)}, [a sec&amp;lt;/&amp;gt;

cos Q V(
2

&
2

)}

is independent of 6.

Attending to the signs the theorem is this, that if we take

two fixed points F^ G on the ellipse, the difference FP OP is

constant, being = + a when P is a point on one branch of the

hyperbola, and a when P is on the other. In particular, when

F, G are the vertices of the ellipse we have the ordinary focal

property of the hyperbola. Again, taking F, G two points on

different branches of the hyperbola, the sum FP-\- GP is con

stant, and when F, G are the vertices of the hyperbola we have

the ordinary focal property of the ellipse. If F, G be taken

instead on the same branch of the hyperbola, it is the difference

between FP and GP which is constant
;
and ifF and G coincide

at a vertex, we have merely the identity FP FP= 0, and not

a new property of the ellipse in piano.

186. The following examples will serve further to illustrate

the principles which have been laid down :

Ex. 1 . To find the locus of the intersection of generators to a hyperboloid which

cut at right angles.

The section parallel to the tangent plane which contains the generators must

be an equilateral hyperbola, so that (Art. 164) (a&quot;

2 -a 2
) + (a&quot;

2-a &quot;2
)
= 0. But

(Art. 161) the square of the radius vector to the point is

a 2 + &quot;2 + c &quot;2 _
(
a &quot;2 _ a 2)

_
(a

&quot;2 _ a
&quot;2)

t

We have, therefore, the locus a sphere, the square of whose radius is equal to

a&quot;
2 + 6&quot;

2
+c&quot;

2
. Otherwise thus: If two generators are at right angles, their plane

together with the plane of each and of the normal at the point, are a system of three

tangent planes to the surface, mutually at right angles, whose intersection lies on the

sphere r2 = a&quot;
2 + Z&amp;gt;&quot;

2
+c&quot;

2
(Art. 93).

Ex. 2. To find the locus of the intersection of three tangent lines to a quadric

mutually at right angles (see Ex. 6, Art. 121).

Let a, /3, y be the angles made by one of these tangents with the normals through
the locus point, and since each of these tangents lies in the tangent cone through
that point, we have the conditions

cos2 a cos2
/3 cos2 y _

2 -a2
+

a&quot;
2-a2 + a &quot;2 -a2

~

cos2 a cos2 ft cos2 y _
a 2-a2

+
a&quot;

2 -a2 + a &quot;2 -a2
~

cos2 a&quot; cos2
/3&quot;

cos2
y&quot; _

a2~2
+
a&quot;2_ a2

+
a &quot;2 -a2

~
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Adding, we have -^-^ +^-^ +^^ = 0.

But a2-a 2
,
a2 -a&quot;

2
,
a2 -a &quot;2 are the three roots of the cubic of Art. 158 which

arranged in terms of X2 is

X6 + X&amp;lt; (x
2 + y

2 + e2 - a2 - i2 - c2)
- X2

{(5
2 + c2

)
x2 + (c

2 + a2
) y* + (a

2 + i2) z2

_
Q.

And the sum of the reciprocals of the roots will vanish when the coefficient of X2 = 0.

This, therefore, gives us the equation of the locus required.

Ex. 3. The section of an ellipsoid by the tangent plane to the asymptotic cone

of a confocal hyperboloid is of constant area.

The area (Art. 96) is inversely proportional to the perpendicular on a parallel

tangent plane, and we have

/&amp;gt;

2 = a2 cos2 a + i2 cos2 /3 + c2 cos2y.

But since the perpendicular is an edge of the cone reciprocal to the asymptotic cone

of the hyperboloid, we have

= a 2 cos2a + i 2 cos2/3 + c 2 cos2y,

whence j?
2 = a2 - a 2

.

Ex. 4. To find the length of the perpendicular from the centre on the polar plane

of x y t in terms of the axes of the confocals which pass through that point.

Ant. If a 2 - a2 = h\ a&quot;
2 - a2 =

jfc, a &quot;2 - a2 = P,

l_k*W(l 1 1 1 1 11

pi
~
aWc2 \a2

^
b*
^

c2
^

h*
*

It
2-

J
2/

*

187. Two points, one on each of two confocal ellipsoids,

are said to correspond if

x__X y _
Y z_Z

a~ A^ b
= ~~

B&amp;gt; c
= ~

C

It is evident that the intersection of two confocal hyper-
boloids pierces a system of ellipsoids in corresponding points;

2 2 //2

for from the value (Art. 160) #
2 = -

^ 2 2
-

^- ,
the quantity

3.2
(a o

) (a c)
is constant as long as the hyperboloids, having a/2

,
a&quot;

*
for

fl

axes, are constant.

It will be observed that, the principal planes being limits

of confocal surfaces, points on the principal planes determined

a/* X* y* Y2

by equations of the form = = -=-7, ^-2 = -^
-

$, Z=Q,
a a c o o c

correspond to any point x
f

yz on a surface, and when x
f

yz
f
is

in the principal plane, the corresponding point is on the focal

conic.

Y
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188. The points on the plane of xy, which correspond to

the intersection of an ellipsoid with a series of confocal surfaces,

form a series of confocal conies, of which the points corre

sponding to the umbilics are the common foci.

Eliminating z
z
between the equations

?! _L 4. - 1 L #!, ?1
a2

~
h
&
2

~

c
2

&quot;

a 8 &quot;*&quot;

&&quot; c&quot;

~

we find
(&amp;lt;r-c&amp;gt;* (#-&amp;lt;?)?_~~ ~

2
~ - 1

whence the corresponding points are connected by the relation

I -i

This is evidently an ellipse for the intersections with hyper
boloids of one sheet, and a hyperbola for the intersections with

hyperboloids of two.

The coordinates of the umbilics are

2 2
^ ^

2 (\

the points corresponding to which are

X* =
a*-1&amp;gt;\ F=0,

which are therefore the foci of the system of confocal conies.

Curves on the ellipsoid are sometimes expressed by what

are called elliptic coordinates; that is to say, by an equation

of the form
&amp;lt;/&amp;gt; (a , a&quot;)

=
0, expressing a relation between the

axes of the confocal hyperboloids which can be drawn through
the point. Now since it appears from this article that a is half

the sum and a&quot; half the difference of the distances of the

points corresponding to the points of the locus from the points

which correspond to the umbilics, we can from the equation

&amp;lt;j) (a, a
}

obtain an equation &amp;lt; (p + p, p p) = 0, from which

we can form the equation of the curve on the principal plane

which corresponds to the given locus.

189. If the intersection of a sphere and a concentric ellipsoid

be projected on either plane of circular section by lines parallel

to the least (or greatest) axis, the projection will be a circle.
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This theorem is only a particular case of the following :

&quot;

if any two quadrics have common planes of circular

section, any quadric through their intersection will have the

same
;&quot;

a theorem which is evident, since if by making z = in

U and in V, the result in each case represents a circle, making
2 = in U+kV, must also represent a circle.

It will be useful, however, to investigate this particular

theorem directly. If we take as axes the axis of y which is

a line in the plane of circular section and a perpendicular to

it in that plane, the y will remain unaltered, and the new

C
2 = the old ic

2

-f s
2

. But since by the equation of the plane

r . , . , c
2 a2

b
2

2 Z&amp;gt;

2 a2
c
2

ot circular section z&quot;
= . , or, the new x~ = . -72 * %
a o c a o c&quot;

But for the intersection of

_
we have ^ x* -\

a

which, on substituting for ic
2

,

2 - 2 a2

2 , 5
2 -c5

.
,

.
-z
x becomes (x -f y

1

)
= r - c ._

It will be observed that to obtain the projection on the

planes of circular sections we left y unaltered, and substituted

f 2 b
2 - c

2 a2

tor x
, , . x&quot;. &amp;gt;ut to obtain the points correspondingCt G

2

to any point, as in Art. 187, we substitute for ic
2

, -^.-

t
a;

2

,

and for y~, -y*. Now the squares of the former coordinates
o ~* c

have to those of the latter the constant ratio (b
2 - c

2

)
: b

2
. Hence

we may immediately infer from the last article that the pro
jection of the intersection of two confocal quadrics on a

plane of circular section of one of them is a conic whose foci

are the similar projections of the umbilics; and, again, that

given any curve
&amp;lt;f&amp;gt; (a, a&quot;)

on the ellipsoid we can obtain the

algebraic equation of the projection of that curve on the plane
of circular section.



164 FOCAL CONICS AND CONFOCAL SURFACES.

190. The distance between two points^ one on each of two

confocal ellipsoids is equal to the distance between the two corre

sponding points.

We have

Now (Art. 161)

But for the corresponding points

= A* + l
n + c&quot;

2

,
x * + T,

2 + s
2 = a8 + B*

The sum of the squares therefore of the central radii to the

two points is the same as that for the two corresponding points.

But the quantities xX, yY, zZ are evidently respectively equal
to xX ,y Y ,z Z ,

since aX =Ax, Ax =aX, &c. The theorem

of this article, due to Sir J. Ivory, is of use in the theory of

attractions.

Ex. Similarly it may be shewn that if P,, P2 be points on a generator of

.2
7
,2 22

g.2 ?
,2 ZZ

&quot;2

+ w ~ T= and ^i p* points on a generator of
^ + f^ + z

=
1, such that

CL C CL C

x y y sc

= -1
, ,

- =
, , &c., the distance P,P is equal to the distance of the correspond-

a a a a

ing points Pj P2 on tne second hyperbola,

191. In order to obtain a property of quadrics analogous

to the property of conies that the sum of the focal distances

is constant, Jacobi states the latter property as follows : Take

the two points C and G f
on the ellipse at the extremity of the

axis-major, then the same relation p 4- p
f

2a which connects

the distances from C and G f
of any point on the line joining

these points, connects also the distances from the foci of any

point on the ellipse. Now, in like manner, if we take on the

principal section of an ellipsoid the three points (A, B, C) which

correspond in the sense explained (Art. 187) to any three points

(, Z&amp;gt;, c) on the focal ellipse, the same relation which connects

the distances from the former points of any point (D) in their

plane will also connect the distances from the latter points of any
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point (d) on the surface.* In fact, by Art. 190, the distances

of the points on the confocal conic from a point on the surface

will be equal to the distances of the point on the principal plane

which corresponds to the point on the surface, from the three

points in the principal section.f

192. Conversely, let it be required to find the locus of

a point whose distances from three fixed points are connected

by the same relation as that which connects the distances from

the vertices of a triangle, whose sides are a, 5, c, to any point

in its plane. Let p, p , p&quot;
be the three distances, then (Art. 52)

the relation which connects them is

a*
2 - - 2 - &quot;* + v &quot; - - - -2 + c

2 - - 2 -2 - &quot;

But p
2 -

p
2

,
&c. being only functions of the coordinates of the

first degree, the locus is manifestly only of the second degree.

That any of the points from which the distances are measured

is a focus, is proved by shewing that this equation is of the form

U+ J/=0, where Uis the infinitely small sphere whose centre

is this point. In other words, it is required to prove that the

result of making p
3 = in the preceding equation is the product

of two equations of the first degree. But that result is

a&quot; (p
2 -

&amp;lt;?) (p&quot;*

-
b*) + (b^ - cV &quot;) (p

* -
p&quot;

2 + b* - c
2

)
= 0.

* In a note by Joachimsthal. published since his death, Crelle 73, p. 207, it is shown,
with a similar analogy to the ellipse, that the normal to the ellipsoid is constructed

by measuring from d on da, db, dc lengths da
,
db

,
dc which would represent equili

brating forces if measured from D along DA, DB, DC. The resultant of da
,
db

,
dc?

is the normal of the ellipsoid.

f Mr Townsend has shewn from geometrical considerations (Cambridge and
Dublin Mathematical Journal, vol. III. p. 154) that this property only belongs to

points on the modular focal conies, and in fact the points in the plane y which

correspond to any point x y z on an ellipsoid are imaginary, as easily appears from
the formula of Art. 189. Mr. Townsend easily derives Jacobi s mode of generation
from Mac Cullagh s modular property. For if through any point on the surface we
draw a plane parallel to a circular section, it will cut the directrices corresponding
to the three fixed foci in a triangle of invariable magnitude and figure, and the

distances of the point on the surface from the three foci will be in a constant ratio

to its distances from the vertices of this triangle. And a similar triangle can be

formed with its sides increased or diminished in a fixed ratio, the distances from the

vertices of which to the point x y z shall be equal to its distances from the foci.
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Let now the planes represented by p
2

p
2 - c

2

, p&quot;

2

p
2 - tf be

L and .M, then the result of making p
2 = in the equation is

a*LM+ (PL - c*M
) (L-M} = 0,

or 5
2 2 - 2fo J/ cosA + c

2Jf2 =
0,

where A is the angle opposite a in the triangle abc. But this

breaks up into two imaginary factors, shewing that the point
we are discussing is a focus of the modular kind.

193. If several parallel tangent planes touch a series of

confocals, the locus of their points of contact is an equilateral

hyperbola.

Let a, /:?, 7 be the direction-angles of the perpendicular on

the tangent planes. Then the direction-cosines of the radius

a2
cos a &

2

cos/3 c
2

cos7
vector to any point of contact are - -

,
--

,
-- -

:

rp rp rp
as easily appears by substituting in the formula a2

cosa = p.c

(Art. 89), r cos a for xf
and solving for cos a . Forming then,

by Art. 15, the direction-cosines of the perpendicular to the

plane of the radius vector and the perpendicular on the^tangent

plane, we find them to be

(&
2 -c2

) cosff cos 7 (c
2

a
2

) 0037 cos a (a
2

&
2

)
cos a cos/3

rp sn rp sn&amp;lt;&amp;gt; rp su&amp;lt;

where
&amp;lt;j&amp;gt;

is the angle between the radius vector and the per

pendicular. Now the denominator is double the area of the

triangle of which the radius vector and perpendicular are sides.

Double the projections, therefore, of this triangle on the co

ordinate planes are

(&
2 -c2

) cos/3 cos 7, (c
2 -a2

) 0037 cos a, (a
8

ft
8

)
cos a cos.

Now these projections being constant for a system of confocal

surfaces, we learn that for such a system, both the plane of

the triangle and its magnitude is constant. If then CM be

the perpendicular on the series of parallel tangent planes and
PM the perpendicular on that line from any point of contact

P, we have proved that the plane and the magnitude of the

triangle GPM are constant, and therefore the locus of P is an

equilateral hyperbola of which CM is an asymptote.
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193a. Writing down the equations of the normals to

x* ?/ z*
i j I 1

A
&quot;

h B^ C~

at two points, we find as the condition that they may intersect

A (x
f -

x&quot;} tfz&quot;

-
y&quot;z } + B(y ~

y&quot;}
(z x&quot;

-
z&quot;x

}

+ C(z -z&quot;)(x y&quot;-x&quot;y}
=

*,

or, calling a, /3, 7 the direction angles of the line which joins the

points, and
a,, /8l7 7, those of the perpendicular to the central

plane containing the two points, the condition becomes

A cosa cosa
t
+ Bcosj3 co$/3l

+ C cosy 0037^0.
This relation obviously still holds if A, B, C be replaced by
kA + Z, kB+l, kC+L Hence, we see that if the normals at

the two points of intersection of any right line with any central

quadric intersect, the normals at its two points of intersection

with any confocal, or with a similar and similarly placed con

centric quadric likewise intersect.*

As a special case of this, we may consider the three confocals

w, v, w which meet in any point P. The normal at P to u

meets u again in Q, therefore meets the normal at Q. Hence,
if normals be drawn to v at the points in which it is met by PQ
they must intersect, and, in like manner, the normals at the

points where PQ meets w, intersect. But the line PQ is a

tangent line both to v and to w. Hence, normals to either

surface taken at consecutive points along their common curve

intersect. A curve possessing this property is defined to be a

line of curvature on either surface.

CURVATURE OF QUADRICS.

194. The general theory of the curvature of surfaces will

be explained in Chap. XI., but it will be convenient to state

here some theorems on the curvature of quadrics which are

immediately connected with the subject of this chapter.

If a normal section be made at any point on a quadric, its

radius of curvature at that point is equal to ft* : p, where ft is the

* See a paper by Mr. F. Purser, Quarterly Journal of Mathematics, p. 66, vol. viil.
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semi-diameter parallel to the trace of the section on the tangent

plane, and p is the perpendicular from the centre on the tangent

plane.

We repeat the following proof by the method of infini

tesimals from Conies, Art. 398, which see.

Let P, Q be any two points on a quadric; let a plane

through Q parallel to the tangent plane at P meet the central

radius CP in E, and the normal at P in $, then the radius

of a circle through the points P, Q having its centre on PS
is PQ* : 2PS. But if the point Q approach indefinitely near to P,

QP is in the limit equal to QE] and if we denote CP and

the central radius parallel to QB by a and ft,
and if P f

be

the other extremity of the diameter CP, then (Art. 74)

/3
2

: a *
:: QE* : PE . EP (= 2a . PE) ;

2/3
a

. PE j3
2 PE

therefore QE* =--, and the radius of curvature = . -^ .

a a Jrfo

But if from the centre we let fall a perpendicular CM on the

tangent plane, the right-angled triangle CMP is similar to

PES, and PE : PS : : a
f

: p. And the radius of curvature is

a., ,
. . , , ,

therefore -7 . =
; which was to be proved.

a p p
If the circle through PQ have its centre not on PS, but on

any line PS
, making an angle 6 with PS, the only change

is that the radius of the circle is Jl, ,
S being still on the

ftJtr.o

plane drawn through Q parallel to the tangent plane at P.

But PS evidently =PS cos 9. The radius of curvature is

PQ2

therefore
^-po cos

^&amp;gt;

or &e value for the radius of curvature

of an oblique section is the radius of curvature of the normal

section through PQ, multiplied by cos 6.

195. These theorems may also easily be proved analytically.

It is proved ( Conies, Art. 241) that if ax* + 2hxy + ty* + 2gx =
be the equation of any conic, the radius of curvature at the

origin is g
-=- b. If then the equation of any quadric, the plane

of xy being a tangent plane, be

ax* + 2hxy + by* + 2gzx -f 2fyz + CZ* + 2nz = 0,
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the radii of curvature by the sections y 0, x = are respec

tively n : a, n : b. But if the equation be transformed to

parallel axes through the centre, the terms of highest degree

remain unaltered, and the equation becomes

ax* + Zhxy + ly* + Zgzx + 2fyz -f cz
1 = D.

The squares of the intercepts on the axes of # and y are D : a, D : b.

This proves that the radii of curvature are proportional to the

squares of the parallel semi-diameters of a central section. And

since, by the theory of conies, the radius of curvature of that

section which contains the perpendicular on the tangent plane

is ft* :p, the same is the form of the radius of every other section.

The same may be proved by using the equation of the

quadric transformed to any normal and the normals to two

confocals as axes (see Ex. 2, Art. 174) 3
viz.

a? y* z* Zp xy Zp xz ^x -c\~

7* a* a a
a* a&quot;* p (a* a

) p (a
2

a&quot;

2

} p

The radii of curvature of the sections by the planes z = 0, y =

are respectively . . The numerators are the
p p

squares of the semi-axes of the section by a plane parallel to

the tangent plane (Art. 164).

The equation of the section made by a plane making an

angle with the plane of y is found by first turning the

axes of coordinates round through an angle 6, by substituting

ycosO zsmOj ysind + zcosQ for y and z, and then making
1 8*

the new z = 0. Then, if the new coefficient of?/
2
is , , is the

ft p
corresponding radius of curvature. But this coefficient is at

once found to be

cos
?

sin*0

a* -

and this coefficient of y
2

is evidently the inverse square of that

semi-diameter of the central section, which makes an angle
with the axis y.

196. It follows from the theorem enunciated in Art. 194,
that at any point on a central quadric the radius of curvature

z
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of a normal section has a maximum and minimum value, the

directions of the sections for these values being parallel to the

axis-major and axis-minor of the central section by a plane

parallel to the tangent plane.

These maximum and minimum values are called the prin

cipal radii of curvature for that point, and the sections to

which they belong are called the principal sections. It appears

(from Art. 163) that the principal sections contain each the

normal to one of the confocals through the point. The inter

section of a quadric with a confocal is a curve such that at

every point of it the tangent to the curve is one of the prin

cipal directions of curvature. Such a curve is called a line

of curvature on the surface, and this definition agrees with that

of Art. 193.

In the case of the hyperboloid of one sheet the central

section is a hyperbola, and the sections whose traces on the

tangent plane are parallel to the asymptotes of that hyperbola
will have their radii of curvature infinite

;
that is to say, they

will be right lines, as we know already. In passing through
one of those sections the radius of curvature changes sign ;

that

is to say, the direction of the convexity of sections on one

side of one of those lines is opposite to that of those on the

other.

197. The two principal centres of curvature are the two

poles of the tangent plane with regard to the two confocal surfaces

which pass through the point of contact. For these poles lie

on the normal to that plane (Art. 167), and at distances from
2 ft 2 //2

it = .-. and- (Art. 168), but these have been just

proved to be the lengths of the principal radii of curvature.

We can also hence find, by Art. 168, the coordinates of the

centres of the two principal circles of curvature, viz.

_ _~ * ~
a

198. If at each point of a quadric we take the two principal

centres of curvature, the locus of all these centres is a surface

of two sheets, which is called the surface of centres.
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We shall shew how to find its equation in the next chapter,

but we can see h priori the nature of its sections by the

principal planes. In fact, one of the principal radii of cur

vature at any point on a principal section is the radius of

curvature of the section itself, and the locus of the centres

corresponding is evidently the evolute of that section. The
other radius of curvature corresponding to any point in the

section by the plane of xy is c* \p, as appears from the for

mula of Art. 194, since c is an axis in every section drawn

through the axis of z. From the formulas of Art. 197 the
2 _ 2 T2 _ a

coordinates of the corresponding centre are ^ a/, y \

that is to say, they are the poles with regard to the focal

conic of the tangent at the point xy to the principal section.

The locus of the centres will be the reciprocal of the principal

section, taken with regard to the focal conic, viz.

The section then by a principal plane of the surface (which is

of the twelfth degree) consists of the evolute of a conic, which

is of the sixth degree, and of the conic
(it

will be found)

three times over, this conic being a cuspidal line on the surface.

The section by the plane at infinity is of a similar nature to

those by the principal planes. It may be added, that the

conic touches the evolute in four points (real for the principal

plane through the greatest and least axes, or umbilicar plane)

and besides cuts it in four points.

199. The reciprocal of the surface of centres is a surface of
thefourth degree.

It will appear from the general theory of the curvature of

surfaces, to be explained in Chap. XI., that the tangent plane
to either of the confocal surfaces through xyz is also a tangent

plane to the surface of centres. The reciprocals of the intercepts

which the tangent plane makes on the axes are given by the

equations
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The relation

._ + _ ,l-ooV +
Fb* cV

gives between
, 17, f the relation

and the relation

__L 11__l_ _ 1

a *
b&quot; c*

give3 (a f + &V + cT -
1)
=

(a&quot;

-
a&quot;) (f + ^ + ?).

Eliminating a&quot; a \ we have

(F + v* + ?V = +3 + 5 (T +
u c

+ cT -

But it is evident (as at Higher Plane Curves, Art. 21) that f, 97, f

may be understood to be coordinates of the reciprocal surface
;

since, if f , -?;, ^ be the coordinates of the pole of the tangent

plane with regard to the sphere #* +y -f s
a =

1, the equation

x% + 3/77 + z%= 1 being identical with that of the tangent plane,

f, 97, f will be also the reciprocals of the intercepts made by
the tangent plane on the axes.

* This equation was first given, as far as I am aware, by Dr. Booth, Tangential

Coordinates, Dublin, 1840.
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CHAPTER IX.

INVARIANTS AND COVARIANTS OF SYSTEMS OF QUADRICS.

200. IT was proved (Art. 136) that there are four values

of X for which \U+ V represents a cone. The biquadratic

which determines X is obtained by equating to nothing the dis

criminant of \U+ V. We shall write it

X4A + X3 + X2
cf&amp;gt; + X0 + A = 0.

The values of X, for which XZ7+ V represents a cone, are

evidently independent of the system of coordinates in which

U and V are expressed. The coefficients A, 0, &c. are there

fore invariants whose mutual ratios are unaltered by transforma

tion of coordinates. The following exercises in calculating

these invariants include some of the cases of most frequent

occurrence.

Ex. 1. Let both quadrics be referred to their common self-conjugate tetrahedron

(Art. 141). We may take

U = ax2 + by- + cz- + die-, V = x2 + y- + z2 + up,

(see Art. 141, and Conies, Ex. 1, Art. 371), then

A = abed, 6 = bed + cda + dab + abc, 4&amp;gt; = be + ca + ab + ad + bd + cd,

Q -a + b + c + d, A = 1.

Ex. 2. Let V, as before, be x2 +
y&quot;

2 + z* + ic-, and let U represent the general

equation. The general value of 9 is

a A + b + c C + d D + 2f F + 2g G + 2h H + WL + 2mM+ 2n N,

where A, ,
&c. have the same meaning as in Art. 67. In the present case therefore

Q = A + JB+C+D, G = a + b + c + d;

we have also $ = be -f2 + ca g* + ab - h2 + ad I- + bd m? + cd n2.

Similarly, if U is axz + by- + cz- + dw*, and V is the general equation,

6 is a bcd + b cda + c dab 4- d abc, is aA + bB + cC + dU.

Ex. 3. Let U and V represent two spheres,

a;2 + yl + 22 _ ^ (x _ a)2 + (y
_

0)2 + (
z _ y)2

_^
and let the distance between the centres be D, (a

2 + ft
2 + y

2 = -D2), then

A=- P -, A = -p 2
,
9 = D- - 3p

2 - p
2

,
6 = IT- - f - 3p

2
,

4&amp;gt;
= 2Z&amp;gt;

2 -
3/a

2 - 3p
2
,

and the biquadratic which determines X is

(X + l)
2
{- PW + (D*

- pi- p *) X - P
2
}
= 0.
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Ex, 4. Let U represent
x
- + y- +

Z--i while Fis the spherecr o*- c*

(x
-

a)
! + (y

-
flf + (z- y)2

- p .

Since AZ7+ F admits of being written in the form AX* + BY2 + CZ2 + DW2
,

it

is easily seen that the biquadratic found by equating to nothing the discriminant
of \U + V may be written

2

,

P
,

r2
_

,

P
2

2 ^ ~
&quot;&quot;&quot;&quot;

Ex. 5. Let C&quot; represent the paraboloid az2 + by
2 + 2n and F the sphere as in

the last example.
Ans. A = abn2

,
A = p

2
,

Q --n? (a + b) + 2abny, 6 = aa? + b(P + 2ny - (a + b) /o
2
,

$ = ab (a
2 + /3

2 -
p
2
) + 2 (a + 4) ny - w2

;

and the biquadratic may be written by a similar method

Ex. 6. In general the value of 4&amp;gt; is

(be -/2
) (a d

1 - I
2
) + (ca

- g
2
) (I d - m 2

) + (ab
- h2

) (c d* - n 2
)

+ (ad
- I2

) (b c -f 2
) + (bd

- m2
) (c a

f - g
2
) + (cd

- w2
) (a V - 7i

2
)

+ 2 (gm - hn) (g m
1 - h ri] + 2 (hn -fl) (h ri -/ /

) + 2 (fl
- gm] (f l - g m )

+ 2 (mh - Ib) (I c
-

rig ) + 2 (nf- me) (rn a - I h
) + 2 (Ig

-
na) (rib

1 - mf)
+ 2 (m h1 - I V) (lc -ng) + 2 (nf - m c

) (ma - Ih) + 2 (Ig
1 - ria

) (nb
- mf)

+ 2 (fd
- mn) (g h - af) + 2 (gd

-
nl) (hf - b g ) + 2 (hd - Im) (f g - c h )

+ 2 (fd - m ri) (gh
-

af) + 2 (g d
r - n l

) (hf
-

bg) + 2 (h d - I m
) (fg

-
ch).

Thus $ is a function of the same quantities which occur in the condition (Art. 80a)
that a line should touch a quadric. This condition is a quadratic function of the six

coordinates of the line
;
and if we write the coefficients which affect the squares of the

coordinates in that condition au ,
o22 ...a66 ,

and those which affect the double rectangles

ia&amp;gt; is&amp;gt;

&c
-&amp;gt; writing the corresponding quantities for the second quadric cn ,

c22, &c.,

then 4&amp;gt; is an &amp;lt;?44 + o22c55 + 33c66 + attcn + a56c22 + a66c33 + 2aucu + &c. In like

manner, writing the discriminant in any of the three forms,
A - ana44 + a12a45 + a 13a46 + a2

14 + a 15a42 + a 16a43

if by the substitution of a + \a &c. for a &c., au become an + \bn + \Vn &c.,

different methods of writing the invariants are found.

201. To examine the geometrical meaning of the condition

and of the condition 4&amp;gt;
= 0. It appears, from Art. 200, Ex. 2,

that when U is referred to a self-conjugate tetrahedron,

= bcda -f cdab 4- dale + abed
,
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which will vanish when a
,
&

,
c

,
d all vanish. Hence will

vanish whenever it is possible to inscribe in V a tetrahedron which

shall be self-conjugate with regard to U. In like manner will

vanish for this form of U whenever A
,
B

,
C

,
D vanish. But

A = is the condition that the plane x shall touch V. Hence

will vanish whenever it is possible to find a tetrahedron self-conju

gate with regard to U whosefaces touch V. By the first part of this

article = is also the condition that it may be possible to

inscribe in U a tetrahedron self-conjugate with regard to V.

Hence when one of these things is possible, so is the other also.

4&amp;gt;
= will be fulfilled, if the edges of a self-conjugate tetra

hedron, with respect to either, all touch the other.

Ex. 1. The vertices of two self-COBjugate tetrahedra, with respect to a quadric

form a system of eight points, such that every quadric through seven will pass through
the eighth (Hesse, Crelle, vol. XX., p. 297).

Let any quadric be described through the four vertices of one tetrahedron, and

through three vertices of the second, whose faces we take for x, y, z, w. Then

because the quadric circumscribes the first tetrahedron, 6 = 0, ora + b + c + d = Q

(Art. 200, Ex. 2) ;
and because it passes through three vertices of xyzw, we have

a = 0, b = 0, c =
;

therefore d =
0, or the quadric goes through the remaining

vertex. It is proved, in like manner, that any quadric which touches seven of the

faces of the two tetrahedra touches the eighth.

Ex. 2. If a sphere be circumscribed about a self-conjugate tetrahedron, the length
of the tangent to it from the centre of the quadric is constant. For (Art. 200, Ex. 4)

the condition 6=0 gives the square of the tangent a- + ft
1 + y

2
p- = a- + b2 + c~.

This corresponds to M. Faure s theorem (Conies, Art. 375, Ex. 2). It may be other

wise stated :
&quot; The sphere which circumscribes a self-conjugate tetrahedron cuts

orthogonally the sphere which is the intersection of three tangent planes at right

angles&quot; (Art. 93).

Ex. 3. If a hyperboloid - + ^- + - = 1 be such that - + r + - = 0, then the
a b c a b c

centre of a sphere inscribed in a self-conjugate tetrahedron lies on the surface. This

follows from the condition = (Art. 200, Ex. 4).

Ex. 4. The locus of the centre of a sphere circumscribing a tetrahedron, self-

conjugate with regard to a paraboloid, is a plane (Art. 200, Ex. 5).

202. To find the condition that two quadrics U, V should

touch each other. As in the case of conies (Conies, Art. 372)

the biquadratic of Art. 200 will have two equal roots when
the quadrics touch. This is most easily proved by taking
the origin at the point of contact, and the tangent plane for

the coordinate plane z. Then, for both the quadrics, we
Lave c = 0, 1= 0, m =

;
and since, if we substitute these values
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in the discriminant (Art. 67), it reduces to n* (h*
-
ab\ the bi

quadratic becomes

(\n + n? {(\h -f 7/)
2 -

(\a + a) (\b + V)}
=

0,

which has two equal roots. The required condition is there

fore found by equating to zero the discriminant of the biquadratic

of Art. 200.

Ex. 1. To find the condition that two spheres may touch. The biquadratic for

this case (Art. 200, Ex. 3) has always two equal roots. This is because two spheres

having common a plane section at infinity, always have double contact at infinity

(Art. 137). The condition that they should besides have finite contact is got by

expressing the condition that the other two factors of the biquadratic should be

equal and is
(Z&amp;gt;

2 - r2 - r 2
)
2 = 4rV2

,
whence D - r r *

Ex. 2. Find the locus of the centre of a sphere of constant radius touching a

central quadric. The equation got by forming the discriminant with respect to X

of the biquadratic of Art. 200, Ex. 4, is of the twelfth degree in a, (3, y. &quot;When we

make p 0, it reduces to the quadric taken twice, together with the equation of

the eighth degree considered below (Art 221). The problem considered in this

example is the same as that of finding the equation of the surface parallel to the

quadric (see Conies, Ex. 3, Art. 372) ; namely, the surface generated by measuring

from the surface on each normal a constant length equal to
,0.

The equation is of

the sixth degree in
p&quot;

2
,
and gives the lengths of the six normals which can be drawn

from any point xyz to the surface (Conies, Art. 372, Ex. 3). To find the section of the

surface by one of the principal planes, we use the principle that the discriminant with

respect to X of any algebraic expression of the form (X a) &amp;lt; (X) is the square of

&amp;lt; (a) multiplied by the discriminant of
&amp;lt;p (X). If then we make z in the

equation, the discriminant of

X2 V2 p
2

is the conic --
1- y

! - 1 + ,a c o c c

taken twice, this curve being a double line on the surface, together with the dis

criminant of the function within the brackets
;
this latter representing the curve of

the eighth order, parallel to the principal section of the ellipsoid.

Ex. 3. The equation of the surface parallel to a paraboloid is found in like

manner by forming the discriminant of the biquadratic of Ex. 5, Art. 200. The

result represents a surface of the tenth degree, and when p = 0, reduces to the

paraboloid taken twice, together with the surface of the sixth degree considered

below (Art. 222). The equation is of the fifth degree in p
2

, shewing that only five

normals can be drawn from any point to the surface. It is seen, as in the last

example, that the section by either principal plane is a parabola taken twice, together

with the curve parallel to a parabola.

203. It is to be remarked that when two surfaces touch,

the point of contact is a double point on their curve of

*
Generally the biquadratic (Art. 200) will have two pairs of equal roots when

the quadrics have a generator common, the conditions for this may be written down
as in Art. 214 Higher Algebra.
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intersection. In general, two surfaces of the ?&amp;gt;i

th and ?*
th

degrees

respectively intersect in a curve of the mnih order. And at

each point of the curve of intersection there is a single tangent

line, namely the intersection of the tangent planes at that point

to the two surfaces. For any plane drawn through this line

meets the surfaces in two curves which touch : such a plane

therefore passes through two coincident points of the curve of

intersection. But if the surfaces touch, then every plane through
the point of contact meets them in two curves which touch,

and every such plane therefore passes through two coincident

points of the curve of intersection. The point of contact is

therefore a double point on this curve.

And we can shew that, as in plane curves, there are two

tangents at the double point. For there are two directions

in the common tangent plane to the surfaces, any plane through
either of which meets the surfaces in curves having three points

in common.

Take the tangent plane for the plane of #y, and let the

equations of the surfaces be

z + ax* + Zhxy -f by
9 + &c.,

z 4 aV -f &quot;2h xy -f b y* + &c.,

then any plane y f^x cuts the surfaces in curves which oscu

late (see Conies, Art. 239), if

a -f 2h/j, + bjjf
= a + Zh

jjL + b /S.

The two required directions then are given by the equation

(a
-
a) x*+2(h- h

} xy + (b- b
} f = 0.

The same may be otherwise proved thus. It will be shown

hereafter precisely as at Higher Plane Curves, Arts. 36, 37, that

if the equation of a surface be u^ -f u
t2
+ u

3
+ &c. = 0, the origin

will be on the surface, and u
t
will include all the right lines

which meet the surface in two consecutive points at the origin ;

while if u
1

is identically 0, the surface has the origin for a

double point, and u
2
includes all the right lines which meet the

surface at the origin in three consecutive points. Now in the

case we are considering, by subtracting one equation from the

other, we get a surface through the curve of intersection, viz.

(a
-
a) x

2 + 2 (k
- h

) xy + (b
- b

) f + &c.,

AA
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in which surface the origin is a double point, and the two

lines just written are two lines which meet the surface in

three consecutive points.

204. When these lines coincide there is a cusp or stationary

point (see Higher Plane Curves, Art. 38) on the curve of inter

section. We shall call the contact in this case stationary

contact. The condition that this should be the case, the axes

being assumed as above, is

(a -a ) (6- V) = (h-h )*.

Now if we compare the biquadratic for X, given Art. 202,

remembering also that in the form we are now working with,

we have n = ri, we shall see that when this condition is

fulfilled, three roots of the biquadratic become equal to 1.

The conditions then for stationary contact are found by forming
the conditions that the biquadratic should have three equal roots,

viz. these conditions are $=0, 2
7

=0, S and T being the two

invariants of the biquadratic.

205. Every sphere whose centre is on a normal to a quadric,

and which passes through the point where the normal meets

the surface, of course touches the surface. But it will have

stationary contact when the length of the radius of the sphere

is equal to one of the principal radii of curvature (Art. 196).

Let us take the tangent plane for plane of xy, and the two

directions of maximum and minimum curvature (Art. 196) for

the axes of x and y. Then since these directions are parallel

to the axes of parallel sections, the term xy will not appear in

the equation, which will be of the form z -j- ax
2 + by* -f &c. = 0.

By the last article, any sphere z -f \(x? +#
a + z*} will have

stationary contact with this if (X a] (\ &)=0, for we have

h and ti each = 0. We must therefore have X equal either to

a or I). Now if we make y = 0, the circle z + a (x
2
-f z*) is

evidently that which osculates the section z -j- ax
2 + &c.

; and,

in like manner, the circle z + b (y
2

-f z*) osculates z + by* + &c.

206. To find the equation of the surface of centres of a

quadric. If we form, for the biquadratic of Ex. 4, Art. 200,

the two equations $=0, T= 0, we have two equations con-



SYSTEMS OF QUADRICS. 179

necting a, /?, 7, the coordinates of the centre of curvature of

any principal section, and p its radius. One of these equations

is a quadratic and the other a cubic in p* ;
and if we eliminate

p
2
between them, we evidently have the equation of the locus

of the centres of curvature of all principal sections. The

problem may also be stated thus : If U and U be any two

algebraical equations of the same degree and k a variable

parameter, it is generally possible to determine k so that the

equation U+kU = Q may have two equal roots. But it is

iiot possible to determine
A*,

so that the same equation may
have three equal roots, unless a certain invariant relation subsist

between the coefficients of U and U . Now the present problem
is a particular case of the general problem of finding such an

invariant relation. It is in fact to find the condition that it

may be possible to determine k so that the following biquadratic
in \ may have three equal roots :

The following are the leading terms in the resulting equation :

the remaining terms can be added from the symmetry of the

letters. We use the abbreviations b
2

c
2 =

a, c
2

a2 =
/3,

a* b* = 7 ;
and further we write #, y, z instead of ax^ by^ cz :

aV 2

4 3 (a
2 4 /3

2

) aV / + 3 (a
4
4 3a

2

/3
2 + /3

4

) aV/
f 3 (2a

4 4 3a
2

/3
2 + 3aV -

7/3V) aVyV

+ 3 (a
6 + 6a

4

/3
2 + 3aV + 3a*j8* +^V - 21a

8

/SV)
6yV\ / tX

-f 9 (a
4

/3* + /3
4
a
2 + /S

4

7
2 + ffy* + 7

4
a

2 + 7V - 14a /3
2

7
2

)
ic

4

y
4
s
4

- 3 (ff + 7
2

)
a
6
^;

10 - 3 (2/3
4
-f 3/3

2

7
2 + 3/3V - 77V} aV/

- 3 (#
6 + 6/3

4
a
2 + 3/3V + 3/S

2
a
4 + a

4

7
2 - 21a2

/3
2

7
2

) aV/
+ 3

4 3 (/S

6 + 6/8V 4 3/3V 4 3/3
2

7
4 + aV -

21a&quot;/3V) V/
4- 9 (a

4

/3
J 4 a

s

/8* 4 /3V -f V + 7
4

a&quot; + 7V ~ ]
2

/3V) a
2

/3Vy
4
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-3}4a
8 -7a6

(/3
J

-r-7
2

)

- 198a
4

/3y + 68a
2

/3y (&* + y
2

) -f 42)8V} aV
6

-r 7
- 3

(7
6 + 67

4

/3
2
-f 37V + 37

2

/3
4 + a

&amp;gt;2

/3
4 - 21a

2

/3V) a
4

/3V

+ 3 [14 (a
4

/3
2 + a

2

/3
4 +0Y + /3V -f 7

4
a
2
-f 7V)

+ 3 (27
4 + 37V

- 3 (/3

2 + 7
2

)
a6
^

4

7V + a
6

/Sy = t
O.

If we make in this equation z = 0, we obtain

(aV + /Sy - a
2

^)
a

((^
2 4 #

2 - 7
2

)

3 + 27ajyy}, see Art. 1 98.

The section by the plane at infinity is of a similar kind to that

by the principal planes, the highest terms in the equation being

In like manner we find the surface of centres of the paraboloid
ax9 + by

9 + 2nx. If we write

ab=m, a+b=p, ab=q, bx
2

+ay
z

=V, x*+y
2

=p*, qz*+pnz +
2=W

}

the equation is

8
{&amp;lt;fz

V+ qn (6V + a /) + 2wi*w IF}
3 + 27 T= 0,

where

T= fn F
4 - 16mVw TT*y + Gm^Vz F

3 - 56m 2V Vx*y*W V* + 6wY?iV F 2-
162m*q*n*x*y*p*

The section by either plane ic or
?/,

is a parabola, counted three

times, and the evolute of a parabola.

207. To find the condition that two quadrics shall be such that

a tetrahedron can be inscribed in one having two pairs of opposite

edges on the surface of the other.* The one quadric then can

* This problem and its reciprocal appear to answer to the plane problem of

finding the condition that a triangle can be inscribed in one conic and circumscribed

about another. Mr. Purser (Quarterly Journal, vol. viii., p. 149) has determined the

envelope of the fourth face of a tetrahedron whose other three faces touch a quadric U
when two pairs of its opposite edges are generators of another quadric F to be a

quadric passing through the curve of intersection of the given quadrics.
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have its equation thrown into the form Fyz + Lxw = 0, while

the coefficients a, 5, c, d are wanting in the equation of the

other. We have, then,

= 2 (fl- gm-hn) (Fl+Lf).
And the required condition is

Similarly the condition that it may be possible to find a tetra

hedron having two pairs of opposite edges on the surface of

one, and whose four faces touch the other, is

4A 4&amp;gt;
= 3 + 8A&quot;0.

This may be derived from the equation examined in the next

article.

208. To find the general form of the equation of a quadric
which touches the four faces x, y, z, w of the tetrahedron of

reference. The reciprocal quadric will pass through the four

vertices of the tetrahedron, and its equation will be of the

form

2fyz + 2gzx + 2hxy + Zlxw -f Zmyw + Znzw = 0.

The equation of the reciprocal of this is (Arts. 67, 79)

2f??ino? + 2gnl@* 4 2hlmy* + 2fgh$*

-f 2 (fl
- gm -

hn] (l/3y +/aS) + 2 (gm
- hn -fl} (mya + g/38)

+ 2 (hn -fl-gm] (na/3 -f hyS) = 0.

If now we write for a J(fmn), *J(gnl), y *J(hIm),

x, y, z
}
w respectively, this equation becomes

fl qm Jin . .* --r- (yz -f xw]
\/(ghmn)

gm hn fl . hnfl-gm

Now it is easy to see that these three coefficients are re

spectively -2cos^l, -2cos, -
2cos(7, where A, B, C are

the angles of a plane triangle whose sides are
V(/0&amp;gt; V(^),

*J(hn). Hence, the general form of the equation of a quadric

touching the four planes of reference is

^a + y
9
-f *

2 + w -
2p (yz -f xw) - 2q (zx -f yw)

- 2r (xy + zw) = 0,
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where
jp, &amp;lt;?,

r are the cosines of the angles of a plane triangle,

or, in other words, are subject to the condition 1 2pqr=p
2

-tf+r*.
It may be seen otherwise that the surface whose equation has

been written is actually touched by the four planes ;
for the

condition just stated is the condition of the vanishing of the

discriminant of the conic obtained by writing a?, y, z, or w = 0,

in the equation of the quadric. The section therefore by each

of the four planes being two real or imaginary lines, each of

these planes is a tangent plane.

209. If V represents a cone we have A =
0, and we proceed

to examine the meaning in this case of 0, 4&amp;gt;,

. For simplicity

we may take the origin as the vertex of F, or 1
9
m

,
n

,
df

all = 0.

We have then = d
(7&amp;gt;
V + 2//A -V/ 2-y2 -cT2

),
or

vanishes either if the cone break up into two planes, or if the

vertex of the cone be on the surface U. Let the cone whose

vertex is the origin and which circumscribes
/&quot;,

viz.

d (ax
2 + fry

2 + cz* + Zfyz -f 2gzx -\- %hxy) (Ix + my + nz)
a

be written

a;e
2 + b/ + ez* + 2fyz + 2gzx + 2\\xy

=
0,

then 4&amp;gt; may be written

a (JV _/*) + b (c a
-
g *) 4- c (a V - A&quot;

2

)

+ 2f (sfh
f - af] + 2g (hf - Vg } + 2h (// - cT).

Hence, by the theory of the invariants of plane conies (Conies^

Art 375) &amp;lt;t&amp;gt;

= expresses the condition that it shall be possible

to draw three tangent lines to U from the vertex of the cone K,

which shall form a system self-conjugate with regard to V. In

like manner

dQ = a (be
- f

*) + V (ca
- g

2

) -I- &c.,

or vanishes whenever three tangent planes to U can be drawn

from the vertex of the cone V which shall form a system self-

conjugate with regard to V. The discriminant of the cubic in

X will vanish when the cone V touches U.

When V represents two planes, both A r
and & vanish.

Let the two planes be x and y^ then V reduces to 2h xi/j and 3&amp;gt;
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reduces to h
*

(n
2

cd],
&amp;lt; will vanish therefore in this case when

the intersection of the two planes touches U. We have 0=2//.Z7,

(see Art. 67) and its vanishing expresses the condition that the

two planes should be conjugate with respect to U] or, in other

words, that the pole of either, with regard to
Z7,

should lie on

the other. For (see Art. 79) the coordinates of the pole

of the plane x are proportional to A, H, 6r, ,
and the pole

will therefore lie in the plane y when H= 0. The condition
2 = 4A4&amp;gt; is satisfied if either of the two planes touches U.

210. The plane at infinity cuts any sphere in an imaginary
circle the cone standing on which, and whose vertex is the

origin, is x2

-f ?/

2 + z
z = 0. Further, since this cone is also an

infinitely small sphere, any diameter is perpendicular to the

conjugate plane. If now we form the invariants of x* + y
2 + z

Z

)

and the quadric given by the general equation, we get
=

0,

or A + B 4- C= 0, as the condition that the origin shall be a

point whence three rectangular tangent planes can be drawn

to the surface, and 4&amp;gt;
=

0, or

ad-T2 +bd- m* + cd - n
2 =

0,

as the condition that the origin shall be a point whence three

rectangular tangent lines can be drawn to the surface. In

particular if the origin be the centre and therefore
Z, ??i,

n all = 0,

and (the surface not being a cone) d not = 0, the cubic is

the same as that worked out (Art. 82). The condition 3&amp;gt;
=

reduces to a -f b -f c = 0, as the condition that it shall be possible

to draw systems of three rectangular asymptotic lines to the

surface
;
and the condition =

0, gives

as the condition that it shall be possible to draw systems
of three rectangular asymptotic planes to the surface. These

two kinds of hyperboloids answer to equilateral hyperbolas in

the theory of plane curves (see Ex. 3, Art. 201) ;
the former

were called equilateral hyperboloids, (Ex. 21, p. 102). But

orthogonal hyperboloids (Ex. 5, p. 100) are of a distinct kind,

answering in a similar manner to circles in the theory of plane
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curves, and the relation among the coefficients can be found by

investigating when the pole of one of the chords of intersection

at infinity of x* + ?/

2 + z* and the general cone with regard to

the former lies on the latter curve.

Ex. Every equilateral hyperbola which passes through three fixed points passes

through a fourth
;
what corresponds in the theory of quadrics ? It will be seen

that the truth of the plane theorem depends on the fact that the condition that the

general equation of a conic shall represent an equilateral hyperbola is linear in the

coefficients. Thus, then, every rectangular hyperboloid (viz. hyperboloid fulfilling

such a relation as a+ b+ c 0) which passes through seven points passes through a fixed

curve, and which passes through six fixed points passes through two other fixed points.

For the conditions that the surface shall pass through seven points together with the

given relation enable us to determine all the coefficients of the quadric except one.

Its equation therefore containing but one indeterminate is of the form U + kV which

passes through a fixed curve. And when six points are given the equation can be

brought to the form 17 + kV + IW which passes through eight fixed points.

211. Since any tangent plane to the cone aj
a +y + *

is

xx + yy
f

-h zz 0, where x + ?/

2 + %
*

0, and since any parallel

plane passes through the same line at infinity, we see that

a2
4- /3

2
-f-

7&quot;

= is the condition that the plane ax + fty + 72+8
shall pass through one of the tangent lines to the imaginary
circle at infinity through which all spheres pass. And therefore

a* + ft* -f 7*
= may be said to be the tangential equation of

this circle. The invariants formed with a
2
4- /3

a

-f 7* and the

tangential equation of the surface are

0- A2

( + 5 + c), & = &(bc-f + ca-g* + ab-
/**),

the geometrical meaning of which has been stated in the last

article.

The condition that two planes should be at right angles
viz. oca -f /3/3 + 77 =

(Art. 29), being the same as the con

dition that two planes should be conjugate with regard to

a2 + /3
2 + 7

2

,
we see that two planes at right angles are con

jugate with regard to the imaginary circle at infinity ; or, what

is the same thing, their intersections with the plane infinity

are conjugate in regard to the circle.

212. In general, the tangential equation of a curve in space

expresses the condition that any plane should pass through one

of the tangents of the curve. For instance, the condition



SYSTEMS OF QUADRICS. 185

(Art. 80) that the intersection of the planes ax + j3y -f 72 + 8w,

OLX-\- $ y 4- y z + & w should touch a quadric, may be considered

as the tangential equation of the conic in which the quadric

is met by the plane ax -f ft y 4- y z + B IV.

The reciprocal of a plane curve is a cone (Art. 123), and since

an ordinary equation of the second degree whose discriminant

vanishes represents a cone, so a tangential equation of the second

degree whose discriminant vanishes represents a plane conic

From such a tangential equation Ao? + Eft* + &c. we can derive

the ordinary equations of the curve, by first forming the reci

procal of the given tangential equation according to the ordinary

rules, (BCD 4- &c.) x* 4- &c., when we shall obtain a perfect

square, viz. the square of the equation of the plane of the curve.

And the conic is determined, by combining with this the equation.

tf (EG- F2

) 4-y (CA-CP) + z* (AB -
H*)

+ 2yz (
GH- AF) + 2zx (HF- BG) + 2xy (FG - CH) = 0,

which represents the cone joining the conic to the origin.

213. To find the equation of the cone which touches a quadric

U along the section made in it by any plane ax 4- (3y + &amp;lt;yz
+ Sw.

The equation of any quadric touching U along this plane section

being kU-\- (ax + /3y + yz + Sw)~
=

0, it is required to deter

mine k so that this shall represent a cone. We find in this

case
&amp;lt;f&amp;gt;, ,

A all = 0. And if we denote by a the quantity
AOL* -f B@? + &c. (Art. 79), the equation to determine k has

three roots =
0, the fourth root being given by the equation

&A + cr = 0. The equation of the required cone is therefore

&amp;lt;rU= A (OLX + f3y + yz + Bio)*. When the given plane touches

U) we have &amp;lt;r
=

0, Art. 79, and the cone reduces to the tangent

plane itself, as evidently ought to be the case. Under the

problem of this article is included that of finding the equation of

the asymptotic cone to a quadric given by the general equation.

214. The condition &amp;lt;r
=

0, that ax -f /% + 72 + Sw should

touch
Z7,

is a contravariant (see Conies, Art. 380) of the third

order in the coefficients. If we substitute for each coefficient

a, a + Xa
, &c., we shall get the condition that ax 4 $y + yz + Sw

shall touch the surface U+\V, a condition which will be of

B B
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the form cr + Xr + XV + XV = 0. The functions
&amp;lt;r, &amp;lt;/, T, T

each contain a, /3, &c. in the second degree, and the coefficients

of U and V in the third degree. In terms of these functions

can be expressed the condition that the plane ax + &y + 72 + 8w

should have any permanent relation to the surfaces U, V\ as

for instance that it should cut them in sections w, ?;,
connected

by such permanent relations as can be expressed by relations

between the coefficients of the discriminant of u + Xv. Thus if

we form the discriminant with respect to X of o- + Xr + X2
r

/+XV,
we get the condition that ax -f /??/ + &amp;lt;yz

+ Sw should meet the

surfaces in sections which touch
; or, in other words, the con

dition that this plane should pass through a tangent line of the

curve of intersection of U and V. This condition is of the

eighth order in a, /9, 7, S, and of the sixth order in the coeffi

cients of each of the surfaces. Thus, again, r = expresses the

condition that the plane should cut the surfaces in two sections

such that a triangle self-conjugate with respect to one can be

inscribed in the other, &c.

The equation cr = may also be regarded as the tangential

equation of the surface Z7; and, in like manner, T = 0, T =
are tangential equations of quadrics having fixed relations to

U and V. Thus, from what we have just seen, r = is the

envelope of a plane cutting the surface in two sections having
to each other the relation just stated. And the discriminant of

cr + XT -f XV + XV is the tangential equation of the curve of

intersection of Z7and V.

Or, again, &amp;lt;r
= may be regarded as the equation of the

surface reciprocal to U with regard to x* -f i/

2 + + wz

(Art. 127).

And, in like manner, cr + XT -f XV + XV is the equation of the

surface reciprocal to 27+XF. Since, if X varies, / + XFde-

notes a series of quadrics passing through a common curve,

the reciprocal system touches a common developable, which is

the reciprocal of the curve UV. And the discriminant of

a + XT + XV + XV may be regarded at pleasure as the tan

gential equation of the curve /F, or as the equation of the

reciprocal developable. This equation is,
as was remarked

above, of the eighth degree in the new variables, and of the

sixth in the coefficients of each surface.
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When A = 0, cr is the square of a linear function of a, /8, 7, 8;

and when the surface consists of two planes it is easily seen by

putting in the values of the coefficients, that each first minor

of A vauishesj and therefore in this case cr vanishes identically.

215. We can reciprocate the process employed in the last

article. If a- = 0, & = be the tangential equations of two

quadrics, we can form the equation in ordinary coordinates

answering to a- + \cr . This will be of the form

and will represent a system of quadrics all touching a common

developable, whose equation is found by forming the discri

minant of the equation last written. Thus, for example, using

the canonical forms, let

U= ax2 + lif -f cz* + dw\ V= ax* + bf + cV + d w*

then cr = Atf + 3/3* + C-f + J)S\ a = Atf + BP + C y* 4- D S*,

where A =
bed, B = cda, &c., and the reciprocal of cr + X&amp;lt;/ is

{BCD** + &c.} + X {(BCD -f CDS + DEC
)
x* -f &c.}

-f \*{(B C D + C D B + D B C) x*+ &c.) + \s

{ffC D x*+&c.}=0.

Putting in the values for B, C, D, &c., we find

while the coefficient of X is

A {aa! (b c d + c d b + &amp;lt;?b c)
xz + &c.}.

Just as all contravariants of the system &amp;lt;r,

cr can be ex

pressed in terms of two fixed contravariants T, T together with

cr,
cr

,
so all covariants of the system 7,

V can be expressed in

terms of the two fixed covariants T^ T together with
7,
V and

the invariants (Art. 200). Eeciprocating what was stated in the

last article we can see that the quadric T is the locus of a point

whence cones circumscribing U and V are so related that three

edges of one can be found, which form a self-conjugate system
with regard to the second, and three tangent planes of the second

which form a self-conjugate system with regard to the first.

If we please we may use instead of T and Tf

the quadric S,

which is the locus of the poles with respect to V of all the
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tangent planes to
Z7,

and S the locus of the poles with respect
to 27 of all the tangent planes to V (see Ex. 10, Art. 121). By
the help of the canonical form we can see what relations connect

S and S with T and T. Thus we easily find

S = bcda *x* + cdabY -f dabc
2
z* + abcd W.

But T = aa (led + cdl
f

+ dbc
)
x* + &c.

=
(bcda + cdab + dale -f abed ) (ax* + &c.)

-
(bcda

2
x* + &c.),

hence T = QV- S, and in like manner T=Q U- S . It ap

pears thus that Uj S j
T have a common curve of intersection.

Ex. 1. To find the locus of a point whose polar planes with respect to U touch

U + \V. We have then in a- + XT + XV + XV to substitute U
l}
U2 ,

U
3) U^ for

a
t ftt T&amp;gt;

^- The result is expressible in terms of the covariants by means of the

canonical forms U = x1 + y
1 + z 2 + iv2

,
V = ax2 + by* + cz* + dw2

. For the result ia

z2 + Ac. + X {(b + c + d) x&quot;

2 + &c.) + X2
{(be + cd + db) x* + &c.} + Xs

(bcdx* + Ac.) = 0,

or AU+\(QU- AF) + X2
(I&amp;gt;Z7-

T
) + \3

(V U- T) = 0.

In like manner the locus of points, whose polar planes with respect to V touch

U+XV, is

J=BV- r + \(*7- 7
7

) + X2
(6 F- AT) +X3A F=0.

Ex. 2. To find the locus of a point whose polar planes with respect to U and V
are a conjugate pair with regard to U-\-\V. In the same manner that the con

dition that two points should be conjugate with respect to Fis ax x&quot; + by y&quot;
+ &amp;lt;fec. = 0,

BO the condition that two planes should be conjugate is Aaa + Bfifl + &c. 0.

Applying this to the case where a, (3 are U^ U2 ,
&c

,
we get for the canonical form

ax* + Ac. + X {(b + c + d] ax2 + &c.} + X2
{(be + cd + db) ax 1 + &c.} + \3abcd (a;

2 +
&amp;lt;fec.)

or AF+Xr + X 2r+X3A 7=0.

Ex. 3. To find the discriminant of T. Ans. AA {B 2$ - A (06 - AA
)}.

216. What has been stated in the last article enables us

to write down the equation of the developable circumscribing

two given quadrics Z7,
V. We have seen that its equation is

the discriminant of the cubic A* 7+ XATf VA T 4-X
3A/2

F,

where if

U= ax* + by
9 + cz

2 + dw\ T= aa (b c d+ c d b + d l c) x
l

-f &c.

Clearing the discriminant of the factor A*A 8

,
the result is

27 A* A&quot; U2
F* + 4A UT 3

-f 4A VT = T2
T&quot;

2 + ISAA TT 27F,

an equation of the eighth degree in the variables, and the tenth

in the coefficients of each of the quadrics. By making U= 0,

we see that the developable touches U along the curve UT,
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and that it meets U again in the curve of intersection of U
with T * - 4A VT. We shall presently see that the latter locus

represents eight right lines, real or imaginary generators of the

quadric U.

It is otherwise evident what is the curve of contact of the

developable with U. For the point of contact with U of a

common tangent plane to UV is the pole with regard to U
of a tangent plane to F, and therefore is a point on the surface

S f

;
and we have proved, in the last article, that the curves

US
,
TZJare the same.

The section of the developable by one of the principal planes

(w) is most easily obtained by reverting to the process whence

the equation was formed. The common tangent developable

of x* + y* + z* + w\ ax* -f by* + cz* + dw* is the discriminant of

ax* bu* cz* dw*
r + r-=f-7 -f r - + ; -7=0.
A* -{- a A,-rD /VT~C /V-r(Z

Hence, as in Art. 202, Ex. 2, if we make w 0, the discriminant

will be
ax* b* cz*

-f

,a d b d c d,

multiplied by the discriminant of

ax* bif cz*
.

i
J

i

\-\-a \-t-b A, + c*

In order to obtain the latter discriminant, differentiate with

regard to X, when we have

ax* bu* cz
z aV Z&amp;gt;V cV

L ^_ _l_ I 4-~
(\ I A\2

~
/-V i \* 1 (^ I ^\ ^ (\ i A. -i

T /\ i I\&quot;~
V

1

(X+a)*

cz*, 7 7whence 7-
-- = b - c,

^ = c - a,
--

-3
= a - & :

(X + a)* (X + 6/ (X + c)*

and, substituting in the given equation, the result is

x \J{a(b c]}+y ^{b (c
-

a}} z *J{c(a b)} 0.

The section therefore is a conic counted twice and four right
lines.

217. To find the condition that a given line should pass

through the curve of intersection of two quadrics U and V.

Suppose that we have found, by Arts. 80, &c., the condition,
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^=0, that the line should touch Z7,
and that we substitute in it for

each coefficient a, a+\a, the condition becomes ^-f-X^+XV^Ofj
and if the line have any arbitrary position, we can by solving

this quadratic for X, determine two surfaces passing through
the curve of intersection UV and touching the given line. But

if the line itself pass through Z7F, then it is easy to see that

these two surfaces must coincide, for the line cannot, in general,

be touched by a surface of the system anywhere but in the

point where it meets UV. The condition therefore which we

are seeking is ^2 =4^ . It is of the second order in the

coefficients of each of the surfaces and of the fourth in the

coefficients of each of the planes determining the right line :

these (see Art. 80) enter through the combinations a/3 cc /3,

&c., viz. the equation contains, and that in the fourth degree,

the six coordinates of the line of intersection of the two planes.

In the case where the two quadrics are ax2 + by* + cz
z
-f duf^

ax2 + b y* + c z* + d w*, and the right line is ax + &y + 72 + w,

afx+ P y+ yz+ S w, the quantity * is (see Art. 80) ^ab(y^-yS)\

by which notation we mean to express the sum of the six terms

of like form, such as cd (aft
- a /3)

2

,
&c. When the line is

expressed by its ray coordinates (p. 40) the relation which holds for

contact is bcp* + ca&amp;lt;f+
abr*+ ads

2 + bdi*+ cdu =
0, which is satis

fied by each of the complex of lines which touch the quadric Z7(see

Art. 80^). Then ^ is S(6c +6 c)/&amp;gt;

2

,and its vanishing is the relation

for the complex of all lines which are cut harmonically by the

quadrics U and F, as it is easily seen that *
t

=U V&quot;+ U&quot; V-2PQ
in the notation of Art. 75. Also ^

t

2 -4W is

S (bcjp* -f 22 (be ) (ac&amp;gt;Y + 22 {(aV) (cd ) + (ac ) (bd )} pV,

and vanishes for the complex of right lines intersecting the

common curve.

218. To find the equation of the developable generated by the

tangent lines of the curve common to U and V.

If we consider any point on any tangent to this curve, the

polar plane of this point with regard to either U or V passes

evidently through the point of contact of the tangent on which

it lies. The intersection therefore of the two polar planes

meets the curve UV. We find thus the equation of the
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developable required, by substituting in the condition of the

last article, for a, /?, &c., a
, , &c., the differential coefficients

7, Z7
2 , &c., Fj, F2 ,

&c. This developable will be of the eighth

degree in the variables and of the sixth in the coefficients

of each surface. When we use the canonical form of the

quadrics, it then easily appears that the result is

2 (abj (cd f z w* + 22 (aV) (ac) (cdj (bdJyVw* -f

x{(aV)(cd )-(ad )(bc^{(ad )(bc^

When we make in the above equation w = we obtain a perfect

square, hence each of the four planes a?, y, z, w meets the de

velopable in plane curves of the fourth degree which are double

lines on the surface.* This
is,

a prior i^
evident since it is plain

from the symmetry of the figure, that through any point in

one of these four planes through which one tangent line of

the curve UV passes, a second tangent can also be drawn.

By the help of the canonical form the previous result can

be expressed in terms of the covariaut quadrics when the de

velopable is found to be

4 (0 UV-r U-A F2

) (0 UV- TV- A Uz

)
= (* UV- TU-T V}\

The curve UV is manifestly a double linef on the locus re

presented by this equation, as we otherwise know it to be, and

the locus meets U again in the line of the eighth order deter

mined by the intersection of U with T 2 -4ATF. This is the

same line as that found in Art. 216.

* See Cambridge and Dublin Mathematical Journal, vol. III., p. 171, \vhere, though
only the geometrical proof is given, I had arrived at the result by actual formation

of the equation of the developable. See Ibid, vol. u., p. 68. The equations were
also -worked out by Air. Cayley, Ibid, vol. v., pp. 50, 51.

t It is proved, as at Higher Plane Curves, Art. 51, (see also Art. 110 of this volume)
that when the equation of a surface is U 2

(j&amp;gt;

+ UV\f/ + F 2^ = 0, then UV is a double
line on the surface, the two tangent planes at any point of it being given by the equation
2

&amp;lt;/&amp;gt;

+ uvty + v-\ = 0, where u, v are the tangent planes at that point to U and F,
and &amp;lt; is the result of substituting in

&amp;lt;/&amp;gt;

the coordinates of this point, &c. Applying
this to the above equation it is immediately found that the two tangent planes are given
by the equation (TU - T V}- = 0, where in T, T the coordinates of the point are

supposed to be substituted. Thus the two tangent planes at every point of the double
curve coincide, and the curve is accordingly called a cuspidal curve on the surface.
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219. We can shew geometrically (as was stated Art. 216)

that a generator of the quadric U at each of the eight points

of intersection of the three surfaces
7, F, $

, (or Z7, F, T) is

also a generator of the developable, and that therefore these

eight lines form the locus of the eighth order, 7,
Tf~ 4ATF.

For the surface S being the locus of the poles with regard

to U of the tangent planes to F, the tangent plane to V at

one of the eight points in question is also a tangent plane to U,

and therefore passes through one of the generators to U at the

same point. This generator is therefore the line of intersection

of the tangent planes to U and F, and therefore is a generator

of the developable in question.

220. The calculation in Art. 218 may also be made as

follows : When we write in the determinant of Art. 80 for a,

a + \a &c., and for a, f3 &c. 7J,
U

3 &c., for a
, /3 &c. F

a ,
F

2 &c.,

we can reduce it by subtracting from the first column the sum of

the third multiplied by x, of the fourth, fifth, and sixth multiplied

respectively by ?/, 2, and w, and then, removing the terms X F, &c.

in the first column by means of F, &c. in the second
;
when

we deal similarly with the rows, the determinant becomes

(/+XF) ~S-V* (A+X0 + X** + X3
-F X

4A ),

where S is the value of the determinant of Art. 79, when

a &c. are replaced by a + \a &c. and a &c. by Fj &c. But

the last result of Ex. 1, Art. 215, determined the value of ~S.

Putting in that value we find, as it should be, that X occurs

in no higher power than the second, and the determinant

becomes

(QUV- T U- AF*) +x(d&amp;gt;7F- TU- TV]
+ X2

(
UV- TV- A U*) = 0.

Thus then we see that 0Z7F= T U+ AFMs the condition

that the intersection of the two polar planes should touch 17]

while $&amp;gt;UV= TU+ TV is the condition that it should be cut

harmonically by the surfaces U, F; and again the equation of

the developable is

-TU- TV}\
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220a. The equation of this developable has been otherwise

derived by Mr. W. E. Eoberts as follows : When the line

whose ray coordinates are p, q, r, 5, ,
u is a generator of

aa? + by
2 + cs

2 + dw2 =
0,

we have (Art. 80c)

0= cq
2 +brz

+ds* ,

=
cp

2
-f ar* 4 eft

2

,

=
lp* + a^

2 + &amp;lt;fo

2

,

= as
2
-f fo

a + cu
2

,

which are equivalent to the four equations

o i. Wft o o L?v ,, Cti q T . . 2 rt

w2 = s
2

-j
. q* = t

2
. r

z = u*:, as
2 + U* + cw

2 = 0.
6c ca 7 ao

Now a generator of any one of the system of quadrics

through the curve common to U and F is a line which meets

that curve in two points ;
hence the line whose coordinates

are related as follows :

j (c+Xc )

1

is a generator of Z7+XFand a chord of the curve of intersection of

Z7= ax* -i- by* + cz* -f dw* =
0,

F= V + 6 + cV + tfw* = 0.

220J. Again, when a line touches the curve C7F, it touches

both Z7and F, hence, in this case

Icp* +ca&amp;lt; +abr* + ads2

+bdt? +cdu* =0,

b cp* + ca&amp;lt;f
-f a b r* 4-aW + 6^ -f c cfM* = 0,

therefore by the fourth relation in last article

(led -f \b c d) p
2 + (cad + \cad) f + (aM + \ab d] r

2 =
0,

or, replacing p
2

, ^
2

,
/

, by their values in s
2

, $*,
w55

,

+ \b c d) (a -f- Xa )*
5
8
+ (cad + \cad) (b + \bj t

2

-f (aftef 4 Xa W) (c + Xc
)

2 w8 =
0,

cc
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solving between this and

(a + \a) s* +(b + \b
)
? + (c + Xc

)
u2 =

0,

we get /,
2

, u\ and accordingly also p\ &amp;lt;

,
r
2
.

Omitting a common factor, the results may be written

p*
=

(be ) (ad } (a + Xa
) (d -f Xef

J,

?
2 = K) (W) (5 + Xi

) (d + Xd
),

r* = (aV) (cd } (c + Xc
) (d + Xtf),

* =(Jc ) (ad ) (ft + X5
) (c + Xc

),

f
2 =

(ca
r

) (5^) (c + Xc
) (a -f Xo ),

=
(ab ) (cd ) (a + \a) (b -f X5

r

),

and evidently admit ofps + qt + ru= Q being identically satisfied.

220c. From these expressions in the parameter X, for the

coordinates of any generator, the equation of the developable

may be found in ordinary coordinates by the usual method.

For any point on the line we must have, for instance,

px + qy -f rz = 0,

but we have also Z7+ XV 0, hence the surface is

x{(lc } (ad ) (aV-a U)}* + y {(cot) (M] (IV- VU)}*

and the section by the plane z = is seen at once to be a

double curve which is a trinodal quartic ;
and similarly for the

other planes of reference. Again, this equation of the surface

evidently, on rationalisation, becomes of the form

whence UV is a double line on it; also, making U=Q,\/V
becomes a factor, and the eight right lines forming the remain

ing intersection with Z7are at once found.

220d. If the line pqr, &c. be contained in the plane

ax + f3y + 72 + $&amp;gt;w
= its coordinates satisfy as + &t + yu = &c.

(Art. 57ft). If the consecutive line also lie in this plane

ds _ dt du
a ^ +^^T +7^- =0.
d\ d\ d\
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By these, determining a, /3, 7, it is seen that the following

are symmetrical expressions for the coordinates of the plane

of two consecutive generators of the developable, or of two

consecutive tangents to the common curve Z7P, omitting a

common factor,

a? (ab
r
) (ac) (ad )

=
(a + Xa

j

3

,

/5
2

(Ic) (bd ) (ba )
=

(b + XZ&amp;gt;

)

3

,

7
2

(cd
f

) (ca
f

) (cb )
= (c+Xc )

3

,

S
2

(da ) (db ) (dc)
=

(d + \d f,

also the expressions

jc* (ab
r

) (ac) (ad )
= a + pa ,

y* (be ) (bd) (ba )
= b+nb ,

z* (cd
f

) (ca ) (cb )
=C + /AC ,

w*(da )(db ) (dc)

are easily seen to be those for the coordinates of any point on

the curve UV.

221. The equation ax*+ by~+ cz*+ \ (x*+y*+ z*)
= 1 denotes

(Art. 104) a system of concentric quadrics having common

planes of circular section. And the form of the equation shews

that the system in question has common the imaginary curve

in which the point sphere #2
-f y* 4- z* meets any quadric of the

system. Again, since the tangential equation of the system
of confocal quadrics

=

is aa
2 + b{3* + c7

3 + X (a
2 + /3

2

-f 7
2

)
=

1,

it follows reciprocally that a system of confocal quadrics is

touched by a common imaginary developable (see Art. 146) ;

namely, that enveloped by the tangent planes drawn to any
surface of the system, through the tangent lines to the ima

ginary circle at infinity. The equation of this developable is

found by forming the discriminant with regard to X of the
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equation of the system of quadrics. If we write b-cpj
c - a q, a b = r

l)

the equation is

(x* + y
2

-f z
2

)

2

(p
2x4 + q

y

y* 4 rV - 20ryV -
2rp2V -

2pqx
2

y
2

)

+ 2/ (#
-

r) ic
6 + 2

2

(r -p) / + 2r
2

(p-q)z*

+ 2p (pr
-
3/) a4/- 2^ (qr

-
3/) aty*- 2p (pq

- 3r
2

)
x4

z*

+ 2r (qr
-

3p*) x
2
z
4 + 2q (qp

- 3r
2

) ?/V
- 2r (rp

-
3q

2

)
z
4

y*

+ 2 (p q) (q r) (r p) otyV + (p* 6p
2

qr) x
4

+ (^*
-
6/^r) y

4 + (r
4 -

6r*pq) z
4
4- 2pq (pq

- 3r
a

) ofy*

+ 2qr (qr
-
3p

2

) y
2
z

2

-f 2rp (rp
-

3q
2

)
z
2x2 + 2p*qr (r

-
q] x*

+ 2q
2

rp (p r) y* -f 2r*pq (q p] z
2 + p^fr

2 = 0.

It may be deduced from this equation, or as in Art. 202,

that the focal conies, and the imaginary circle at infinity, are

double lines on the surface.

222. In like manner, if a- be the tangential equation of a

quadric, and if we form the reciprocal of cr + X (a
2 + /3

2 + 7
2

),

we get

A2U+ XA [{a (I + c)
-

g*
- h

2

}
x* -f {b (c + a)

- V -f
2

} f
+ {c (a + 5) -f -cf] z*+{d(a +&+ &amp;lt;?)-

Z - TW
-W&quot;}

+ 2yz (af- gli] + 2*a? (lg
-

hf) 4 2^j/ (ch
-
fg]

-h 2ic {(5 + c) I - hm -
gn] + 2y {(c + a) m -/w - hi]

(a:

2
4/ -f 2

V

) -fA -f 5+ C- 2Lx - 2My - 2Nz} +X
3= 0.

This is the equation of a series of confocal surfaces, and its

discriminant with respect to X will represent the developable

considered in the last article. If we write the coefficients of

X and X2

respectively T and
Z&quot;,

then T=0 denotes the locus

of points whence three rectangular lines can be drawn to touch

the given quadric, and J&quot; = the locus of points whence three

rectangular tangent planes can be drawn to the same quadric.

x2

y
2

If the paraboloid
--

\-j--\-2z
be treated in the same way,

we obtain, as the equation of a system of confocal surfaces,
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and the developable which they all touch
is,

if we write a b r^

4 (x* + /) (x
2 +/ + z*) + Ife* (^ + y + **) (x

9 - /)

a.?
2
4-

&quot;

+ 16rV + 32rVV -f ?/

2

+ 1 6 (a + b) r*z (x
2 + y~ + a&quot;)

- 1 2r*z (ax
2 + bif)

+ I2rabz (x*
- /) + 4/V (a

a
4 4a5 4- b*) + r* (6V + a*/)

+ 2aftr (ax
2 -

by*) + r*ab (a+b)z +aW = 0.

The locus of intersection of three rectangular tangent planes

to the paraboloid is the plane 2z = a -f 5, and of three rect

angular tangent lines is the paraboloid of revolution

x~ + z/

2 + 2 (a + b) z = a&.

223. We shall now shew that several properties of confocal

surfaces are particular cases of properties of systems inscribed

in a common developable. It will be rather more convenient

to state first the reciprocal properties of systems having a

common curve.

Since the condition that a quadric should touch a plane

(Art. 79) involves the coefficients in the third degree, it follows

that of a system of quadrics passing through a common curve,

three can be drawn to touch a given plane, and reciprocally,

that of a system inscribed in the same developable, three can

be described through a given point. It is obvious that in the

former case one can be described through a given point, and

in the latter, one to touch a given plane. In either case, two

can be described to touch a given line
;
for the condition that

a quadric should touch a right line (Art. 80) involves the co

efficients of the quadric in the second degree.

It is also evident geometrically, that only three quadrics

of a system having a common curve can be drawn to touch

a given plane. For this plane meets the common curve in four

points, through which the section by that plane of every surface

of the system must pass. Now, since a tangent plane meets

a quadric in two right lines, real or imaginary, (Art. 107)

these right lines in this case can be only some one of the three

pairs of right lines which can be drawn through the four points.
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The points of contact which are the points where the lines of

each pair intersect, are (Conies, Art. 146, Ex. 1) each the pole
of the line joining the other two with regard to any conic passing

through the four points. Hence (Art. 71) if the vertices of one

of the four cones of the system be joined to the three points,

the joining lines are conjugate diameters of this cone.

224. Now let there be a system of quadrics of the form

$ + X(a;
2 +y

J + 2
!

),
since x^ + y^ + z* is a cone, the origin is

one of the four vertices of cones of the system. And since

3? -f j/

2
-H z* is an infinitely small sphere, any three conjugate

diameters are at right angles, and we conclude that three

surfaces of the system can be drawn to touch any plane, and

that the lines joining the three points of contact to the origin

are at right angles to each other. Moreover as a system of

concentric and confocal quadrics is reciprocal to a system of the

form $+X (#
2

-f- #
a
-f *),

we infer that three confocal quadrics

can be drawn through any point and that they cut at right

angles.

Again (Art. 132) the polar planes of any point with regard

to a system of the form 8 + X (x* 4- #
2 + *) pass through a right

line, the plane joining which to the origin is perpendicular to

the line joining the given point to the origin ;
as is evident

from considering the particular surface of the system x* + y* + z*.

Reciprocally then the locus of the poles of a given plane with

regard to a system of confocals is a line perpendicular to that

plane.

225. We have seen that &amp;lt;r + X (a* -f fP -f 7*) is the tangential

equation of a system of confocals : and when the discriminant

of this equation vanishes it represents one of the focal conies.

We can therefore find the tangential equation of the focal

conies of a given surface by determining X from the equation

Z&amp;gt;X

8 + (be + ca + ab -f -f -
h*) AX

2 + (a + b + c) A&quot;X + A3 = 0.

Thus, let the surface be

Ix* + 6/ + 5z* - tyz
- xy -f lOz -f y 4- 6z + 4 = 0,

we have A = 972, and the cubic is

1 62X
3
4 99VA + 18A*X + A8 =

0,
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whose factors are 3X 4 A, 6X 4 A, 9X 4 A, whence X = 108, 162,

or 324.

The tangential equation of the given surface divided by 6 is

a
&amp;gt;2_

8/3
8

-ll7
2

4278*426/374467a434a/3-54a8- 54/38- 5478= 0.

Thus then the tangential equations of the three focal conies are

obtained by altering the first three terms of the equation last

written into

19a* 4 10/3* 4 77
8

,
28a

2 4 19/3
2 4 167

2

,
55a

2
4 46/3* 4 437

a

,

respectively. Their ordinary equations are found, as in Art.

212, to be the intersections of

2x - 2y 4 z 4 w, llx* 4 44#
2 4 Hz* - 32yz 4 2zx - Qxy ;

x 4 2y 4 2z 4 5w, 67#a 4 68/ 4 83-3* - 24?/2
- Q2zx - 32xy ;

2x 4 y - 2z + to,
5x* - 3y

2 4 9^ 4 2yz
- IQzx 4 2xy.

226. In order to find in quadriplanar coordinates the tan

gential equation of a surface confocal to a given one, it is

necessary to find the equivalent in quadriplanar coordinates to

the equation a
2 4 /3

2 4 7
2 = 0.* It is evident that if

a;, y, 2, w re

present any four planes, and if their equations referred to any
three rectangular axes be XcosA+ Y cosJ3+ Z cosC=p, &c.,

then the coefficient of X in ax 4 fty 4 72 4 $w is

a cos^l 4 cosA + 7 cos A&quot; 4 8 cos
A&quot;,

and the sum of the squares of the coefficients of X, I
7

,
Z is

a
a 4 * 4 7

a
4 S

2 -
2/ity cos (yz)

-
2&amp;lt;ya

cos (gj?)
- 2oc cos (o?y)

- 2a8 cos (xw)
-

2/38 cos (yw] 2y$ cos (zw),

where (yz) denotes the angle between the planes ?/, z, &c.

This quantity, equated to nothing is the tangential equation
of the imaginary circle at infinity. The processes of the last

articles then can be repeated by substituting the quantity just

written for a
2 4 ft* 4 7

2
. We thus find, without difficulty, the

condition that the general equation in quadriplanar coordinates

should represent a paraboloid, or either class of rectangular

* This condition evidently expresses that the length is infinite of the perpendicular
let fall from any point on any of the planes which satisfy the equation.
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hyperboloid ;
the equations of the loci of points whence systems

of three tangent planes or tangent lines are at right angles ;

the equations of the focal conies, &c.

227. We have seen (Art. 211) that the condition in rect

angular coordinates aa + /3/3 + 77 =
0, that the planes ax -f &c.,

QLX + &c. should be at right angles, expresses that the planes

should be conjugate with respect to the imaginary circle at

infinity. It follows that the condition of perpendicularity in

quadriplanar coordinates is

a {a cos (xy] 7 cos (xz) S cos (xw)}

+ j3 {
a cos (xy) + /3

- 7 cos (yz) 3 cos (yw}} -f &c. = 0.

Any theorems concerning perpendiculars may be generalized

projectively by substituting any fixed conic for the imaginary

circle at infinity ;
and thus, instead of a perpendicular line and

plane, we get a line and plane which meet the plane of the

fixed conic in a point and line which are pole and polar with

respect to that conic (see Conies, Art. 356). The theorems may
be extended further (see Conies, Art. 385) by substituting for the

fixed conic a fixed quadric, when instead of a line perpendicular

to a plane, we should have a line passing through the pole of

the plane with regard to the fixed quadric. These latter ex

tensions, however, are theorems suggested, not proved.

Ex. Any tangent plane to a sphere Any plane section of a quadric is met

is perpendicular to the corresponding in a conjugate line and point, by any
radius. tangent plane and the line joining its

point of contact to the pole of the plane

of section.

228. The tangential equation of a sphere, in rectangular

coordinates, is written down at once by expressing that the

distance of the centre from any tangent plane is constant. The

equation is therefore

(on + fry +^ + S)
2 = r

2

(a
51

4- P + 7
2

)-

If then on
, y , z, w be the coordinates of the centre of a

sphere, the tangential equation of the sphere in quadriplanar

coordinates must be

(ax + fry + 72 + Stt/)
2 = r

2

{a*+ *+ 7 + 8*- 2a cos (xy)
-

&c.}.
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If the sphere touch the four planes #, y, 2, w, the coefficients

of a
2

, /S
2

, 7
2

,
& must vanish, and the tangential equation of

such a sphere must therefore be

There are therefore eight spheres which touch the faces of a

tetrahedron. Taking all positive signs, we get the tangential

equation of the inscribed sphere

{3y cos
2

J (yz) + ya cos
2

J (zx) + a/3 cos
2

1 (xy)

+ aS cos
2

^ (xw) + /38 cos
a

| (yw) + yS cos
2

^ (zw)
= 0.

The corresponding quadriplauar equation is obtained from this

as in Art. 208.

229. The equation of the sphere circumscribing a tetra

hedron may be most simply obtained as follows : Let the

four perpendiculars on each face from the opposite vertex be

x& y& z
tf
W

Q
^ow tne equation in piano of the circle circum

scribing any triangle abc may be written in the form

z (caYzx (aVfxy = g

where x^ X
Q ,
&c. denote perpendiculars on the sides of a triangle

the lengths of which are
(Z&amp;gt;c),

&c. But it is evident that for

any point in the face ?#,
the ratio x : X

Q
is the same whether

x and X
Q
denote perpendiculars on the plane x or on the line

xw. We are thus led to the equation required, viz.

(bcf yz (ca)* zx (abY xy (adYxw
}

(bd^yw (cdYzw

!/0
W

For this is a quadric whose intersection with each of the four

faces is the circle circumscribing the triangle of which that

face consists. If this equation be reduced to rectangular co

ordinates it will be found that the coefficients of #2

, y\ z* are

each = 1. Hence if we substitute the coordinates of any

point, we get
- the square of the tangent from that point to

the sphere.

COR. The square of the distance between the centres of the

inscribed and circumscribing spheres is

+ + H- H- H-

D D



202 INVARIANTS AND COVARIANTS OF

230. The equation of any other sphere can only differ from

the preceding by terms of the first degree, which must be of

4.1, c f n * \ f & y z w\ , ,
the form (ax + fiy -f vz + Siv)

--
f- + - + ,

the second

factor denoting the plane at infinity (Art. 57). If then we add to

the equation of the last article the product of these two factors,

identify with the general equation of the second degree and

eliminate the indeterminate constants, we obtain the conditions

that the general equation of the second degree in quadriplanar
coordinates a#2

4 by* + &c. may represent a sphere, viz.

(ca)* (ab)*

(adf (bdf (cdf

231. It was shewn (Art. 214) that by forming the con

dition that ax -f @y + 72? + Sw should touch 7+\F, we get
an equation in X whose coefficients are the invariants in

piano A, A
, 0, of the sections of U and V by the given

plane. It was also shewn (Conies, Art. 382) that if we form

the invariants of any conic and the pair of circular points at

infinity,
= is the condition that the curve should be a

parabola,
r = the condition that it shauld be an equilateral

hyperbola, and 2 = 40 the condition that the curve should

pass through either circular point at infinity. Applying then

these principles to any quadric in rectangular coordinates and

the tangential equation of the imaginary circle a
2 + /3

2 + 7%
we get for the condition,

=
0, that any section should be

a parabola,

(be -/*} a
2 + (ca

- g
1

} /3
2 + (ab

- A
2

) 7
2

for the condition = that it should represent an equilateral

hyperbola

(b + c) a
2 + (c -f a) /S

2 + (a -f b) 7
2 - 2/#y

-
2^ya

- Shaft = 0,

while
2 = 40 (a

2 + ff + 7&quot;)
is the condition that the plane

should pass through any of the four points at infinity common

to the quadric and any sphere.
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232. We know from the theory of conies that if a = be

the tangential equation of a conic, and a = the tangential

equation of the two circular points at infinity in its plane,

cr 4 \c/ = is the tangential equation of any confocal conic.

Now the tangential equation of the pair of points where the

imaginary circle a
24 /3

24 y
2
is met by the plane ax 4 $ y 4 y z 4 & tc

is evidently (a
2 + /3

2
4 y

2

) (a
2 + /3

2 4
y&quot;)

-
(aa 4 0/3 4 77? = -

Thus then the tangential equation of all conies confocal to the

section by ax 4 jB y 4 y 4 8 io of a22 4 ^2 4 cz* 4
&amp;lt;ft0*,

is

a? {((*7/r 4 &amp;lt;%&quot;
4 foS&quot;

2

) 4 X (/T 4 y
2

)}

4 /3
a

{(&amp;lt;*Za

2 4 day
* 4 acS&quot;

2

) 4 X (a
2 4 y

/2

)}

4 y* {(Ida
2
4 c?a/3

24 a58
2

J 4 X
(a&quot;

4 /3
2

)}

4 S
2

(
Jca

* 4 c,3
2 4 aby&quot;

2

) -2(ad + X) Py {3y

-2(bd + \) yYya -2(cd + X) a /3 a/3

- 25ca
/

3
r

a8 - 2cat3 S /3S
- Zaby S yS = 0.

If we form the reciprocal of this according to the ordinary

rules, we get the square of ax 4 ft y 4 y z 4 & w multiplied by
2* 4 X20 4 X2

(a
2 4 /3

2 4
y&quot;)

where 2 is the condition that

a x 4 /3
r

j/ 4 y z 4 S M? should touch the given quadric, and
,

have the same signification as in the last article. By equating
the second factor to nothing we obtain the values of X which

give the tangential equations of the foci of the plane section

in question.

Ex. 1. To find the foci of the section of 4x2 + y-
- 4z* + 1 by x + y + z. The

equation for \ is found to be 3 A.
2 + 2\ = 16, whence X = 2 or = . The equation

of the last article, for the values a =
ft
= y =

1, and the given values of a, b, c, d, is

a2
(-3 + 2X) + 2X/3

2 + (5 + 2X) y
2 - 16(52 - 2 (4 + X) /3y

- 2 (1 + X) ya + 2 (4
-

X) a/3 = 0.

Substituting X = 2 it becomes (a + 2/3 3y)
2

16&amp;lt;5

2
,
whence the coordinates of the

foci are i i, + 4, + f. The other value of X gives the imaginary foci.

Ex. 2. To find the locus of the foci of all central sections of the quadric

ax2 + by- + cz2 + 1. Making 6 = 0, the equation for X is found to be

a 2
/3

2 y 2

+ + =
a + X b + X c + X

By the help of this relation the tangential equation of the foci is reduced to the form

(313 yy \ 2 bca!&quot;- +
caft&quot;

1- +
a + X b + X c + Xy (a + X) (6 + X) (c + X)

Thus then the coordinates of the foci are

a ft y _ bca * + cap
* +

&quot;
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Solving for a
, /3 , y from the first three equations and substituting in the equation

for \, we get

(ax
2 + If + cz2

) + X (x
2 + y* + z2) = ;

solving for X and substituting in the value for w2
,
we get the equation of the locus, viz.

(z
2+#2+22

)[foz
2{(a-%2+(a-cX2

}
2+^

= w2
{(a

-
6) y

2 + (a
-

c] z2} {(b
-

c} z2 + (b
-

a) a2
} {(c

-
a) x2 + (c

-
b) y

2
},

a surface of the eighth degree having the centre of the given quadric as a multiple

point.

The left-hand side of the equation may be written in the simpler form

(z
2 + y

1 + z2
) (ax

2 + by
2 + cz2

) [a (b
-

c)
2

ij
2z2 + b (c

-
a)

2 z2x2 + c (a
-

b)
2 x2

y
2
}.

For a discussion of this surface see a paper by M. Painvin, Nouvelles Annales,

Second Series ill. 481.

From the property that if a point be a focus of a plane section of a quadric,

the plane is a cyclic plane of the tangent cone from the point ;
Mr. M Cay

writes down immediately this locus in the coordinate system of Art. 160.

In fact the equation of the tangent cone (173) being

x2 y
z z2

a2 - a *
+
a2 -

a&quot;
2
+
tf~^a &quot;*

~

one of its pairs of cyclic planes is

2 - &quot;2 &quot;2 - &quot;2

But, for central sections, since the coordinates of the centre satisfy this equation,

we may replace x by p and z by p &quot;. Art. 165. Substituting these values, we get

a 2b *c 2 a &quot;2b
&quot;2c

&quot;2

7.2 - (7/2
.(1).

It is easily derived from this by the cubic equation of Art. 158, taking a2 a 2 = \2
,

2S
a2 - a &quot;2 = v2

,
and /x

2 the third root, that p? =- t

-
,
where p

2 = x2 + y
2 + z2

,
and

o + 1

*C 77^ Z^
S = + - + -x 1

;
and this value of u2 substituted in the cubic gives an equation

a2 b* c2

of the eighth degree in x, y, z as above. It is similarly seen that each side of (1), also

_ a&quot;
2

b&quot;
2

c&quot;
2

~
a2 -

a&quot;
2

Ex. 3. To find the locus of foci of sections parallel to an axis (say a = 0). The

equation which must break up into factors is in this case

a2 {(c + X) /3
2 + (b + X) y

2 + bco 2
} + ft

2
{(a + X) y

2 + act 2
} + y

2
{(a + X) /3

2 + abd 2
}

+ &amp;lt;5

2a (c/3
/2 + by

2
)
- 2 (a + X) fi y py - 2ca/3 6 /35

- 2aby 3 yd = 0.

The condition that the resolution into factors shall be possible is

(a + X) (by
2 + c(3

2
) + abco 2 = 0.

Subject to this condition the equation becomes

*
((c + X) ff + ( + X) y +

W&amp;gt;)
=

{
+ VL +^ I

,
be (a + A.)

u
I b c a + XJ

whence /3
=

by, y = cz, ad = (a + X) w, substituting which values in the equation

of condition we have (a + X) w2 + acz&quot; + aby
2 =

;
whence again substituting in

be (a + \)x
2 =(c + X) ft

2 + (b + X) y
2 + bco 2

,
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we get for the required locus

(%2 + ex*-} [P (a
-

c] f + c2- (a
-

V) zz - abex*} = w- (6
2

(
-

c) y
1 + c

n-
(a
-

b) z2
}.

It is obvious that the methods of this and the preceding article can be applied to

equations in quadriplanar coordinates.

233. Given four quadrics the locus of a point whose polar

planes with respect to all four meet in a point is a surface of
the fourth degree, which we call the Jacobian of the system of

quadrics (see Conies, Art. 388). Its equation in fact is evidently

got by equating to nothing the determinant formed with the

four sets of differential coefficients U
} , 7, Z7

3 ,
Z7

4 ;
F

l5
F

2 ,
&c.

It is evident that when the polars of any point with regard

to U, V, TF, T meet in a point, the polar with respect to

\Z7-f //,F+ vW -\-irT will pass through the same point. The

Jacobian is also the locus of the vertices of all cones which

can be represented by \U+ pV-{- vTF-f TrT. Thus, then, given

six points the locus of the vertices of all cones of the second

degree which can pass through them is a surface of the fourth

degree. For if T, U, F, TF be any quadrics through the six

points, every quadric through them can be represented by

\U+pV+ vU+irT, since this last form contains the three

independent constants which are necessary to complete the

determination of the surface. It is geometrically obvious that

this quartic surface passes through each of the fifteen lines join

ing any two of the given points, and also through each of the

ten lines which are the intersections of two planes passing

through the given points.

If in any case \U+ //, F+ v TF-f- TT Tcan represent two planes,

the intersection of those planes lies on the Jacobian.

If the four surfaces have a common self-conjugate tetra

hedron the Jacobian reduces to four planes. For let the

surfaces be ax 2

+ by* + cz
z + dw\ ax* + Vy* + &c., &c., then we

have
Z7j
=

ax, F,
= ax, &c., and it is easy to see that the

Jacobian is xyzw multiplied by the determinant (ab c d&quot;
}.

If one of the quantities U be a perfect square U, L is a

factor in f7, Z7
2 , &c., and the Jacobian consists of a plane and

a surface of the third order. If the surfaces have common
four points in a plane, it is evident geometrically that this

plane is part of the Jacobian
;
and if they have a plane section
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common to all, this plane counts doubly in the Jacobian, which

is only a surface of the second degree besides. Thus the

Jacobian of four spheres is a sphere cutting the others at

right angles.

COR. If a surface of the system XU+ ^V+ vW touch T,

the point of contact is evidently a point on the locus considered

in this article, and therefore lies somewhere on the curve of

intersection of T with the Jacobian. Again, if a surface of

the system \U+ pV touch the curve of intersection of T7

, W\
that is to say, if at one of the points where \U+fj,V meets

T, TF, the tangent plane to the first pass through the inter

section of the tangent planes to the two others, the point of

contact is evidently a point on the Jacobian of the system.

It follows that sixteen surfaces of the system X U+ ju,
V can be

drawn to touch
r

l\ W for since three surfaces of degrees

rw, w, p meet in mnp points, the Jacobian, which is of the fourth

degree, meets the intersection of the two quadrics T, W in

sixteen points.

234. To reduce a pair of quadrics /,
V to the canonical

form x* -f y* -f z* + ?&amp;lt;?

2

,
ax* -f by* + cz* + dw*. In the first place

the constants a, &, c, d are given by the biquadratic

AX4 - 0X3 + &amp;lt;J&amp;gt;X

2 - X + A = 0.

Then solving the equations

a&amp;gt;*+y

a + s
51 + u&amp;gt;*=

Z7,
a (be + cd + db) x* + &c. = T,

a(b+c + d)x* + &c.= T
,
ax* + &c. =

F,

we find x\ y*,
2

, iv*,
in terms of the known functions

7, V
Tj T . Strictly speaking we ought to commence by dividing

V and V by the fourth root of A, in order to reduce them to

a form in which the discriminant of U shall be 1. But it will

come to the same thing if leaving U and V unchanged we
divide by A, T and Tf

as calculated from the coefficients of

the given equation.

Ex. 1. To reduce to the canonical form

5x2 - ll?y
2 - llz2 - Qw- + 24yz + 22zx - 2Qxy + 8yw + 4zw = 0,

25.c2 - Wy- - 15z- - 5? 2 + o$yz + Wzx - 3Qxy
- Wxw + Wyio + ISzw - 0.



SYSTEMS OF QUADRICS. 207

The reciprocals of these equations are

550a2
+1036/3

2
+850y

2-324 2
+2120/3y+ SOOya - 520a/3

- 180ao + 2088/95+ 1980y5 = 0,

395002+800/32+ 2750y
2-

9720&amp;lt;5
2 + 11200/3y + 4900ya - 4160a/3+ 25920/3o + 16200yo = 0.

And the biquadratic is

8100 {X*
- 10\3 + 35X2 _ 50X + 24} = ;

whence a, 6, c, d are 1, 2, 3, 4. We then calculate T and T by the formula

T=x*{B (ab
-

h*) +C (ac
-

g*} +D (ad- 1*) +1F (af-gh)+ 2Jf (am- hi) +W(an -gl) }

+ 2yz {A
r

(af- gJi) + D (df- mn] + M (mf- bn] + N (nf- cm)

+ G (fg- cJi] + H (fh-bg) + F (/
2 -

be] + L (2//- mg - nh}} + &c.,

and dividing T and T so calculated by A (= 8100), we write

X2 + F 2 + Z 2 + TF2

672 + 24yz

= 25X2 - 10/ - 1522 _ 5MT2 + SSyz* + 4&zx - BOxy - Wxw + lOyia + I8zw,

16F 2 + 21Z 2 + 24TT 2

= 161x2 -
100#

2 - 13522 - 55w2 + 306^2 + 32zx -
250xy - 7Qxw + 70yw +

26Z 2 + 38F 2 + 42Z 2 + 44W*

= 280x2 - 300/ - 36022 - 170w2 + Tilyz + 776zx - 628^ - WSxw + ISOyw + 252z?0.

Then from 24fT- F+ T -
T, we get

And, in like manner,

Y* = -(x + 2y-Zz + 2zp)
2

,
Z 2 = (3x

- y + z - a?)
2

,
IF 2 = (x + y + z + w}

2
.

Ex. 2. It having been shewn that x-, y
2

. z-, ic* can be expressed in terms of

V
t F, T, T

,
it follows that the square of the Jacobian of these four surfaces can also

be expressed as a function of them. &quot;We find thus

J 2 = AT* - QT 3T + QT-T*1 - G TT 3 - 9T 4

+ v {(02
_

2A&amp;lt;I&amp;gt;)
T 3 +

(6&amp;lt;J&amp;gt;

- 39 A) T&quot;-T + (06 - 4AAO TT * - A e7&quot;
s
}

+ u {(e
2 - 2^

4&amp;gt;)

T&quot;
3 + (e * - 30A ) T*T+ (96 - 4AA ) TT 2 - A0T 3

}

+ AT
{(&amp;lt;J&amp;gt;

2 - 299 + 2AA
)
T 2 - (6 * - 39A ) TT + *AT 2

}

+ A U*
{(4&amp;gt;

2 - 299 + 2AA )
T&quot;

2 - (0* - 3A90 TT + A*T 2
}

+ T {(Qi - 2Ar
4&amp;gt;)

7 JA2 -
(9 3&amp;gt;

2 - 299^ + 59 A A - 9$A
)
F 2rA

+ (9
2* - 2*2A - 99 A + 4A A2

) &
rVU* - AA 29CT5

+ 7&quot; ((02
_ 9A*) Z7 3A 2 - (9$

2 - 29 92 + 59AA - 9 r

*A) T 2 P
TA

+ (0 2$ _ 9*2A - 99 rA r + 4AA 2
)
^^F 2 - A2A 9 F 8

}

+ A 3A 2 F* + A2^ 3^ 4 - Z7F*A2 {B
s - 39 l&amp;gt;A

r+ 39A 72
}
- T 3 FA 2

{9
s - 39*A+ 39 A2

f

+ AAT 2 72 ^ _ 3$AA + 302A + 39 2A - 399 *}.

Ex. 3. The formulae for the coordinates of a point on the curve T7V, given

Art. 220J, evidently result from the determination of this Article, We proceed to

treat similarly the tangential equations.
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&quot;Writing down the four contravariants (214) in the form

a2
. Vc d + /3

2
. c d a + = o-

,

a2 . (bc d
1 + cd V + db c

) + /3
2

( )+ =
T&amp;gt;,

a2 . (cdV + dbc + bed ) + /3
2

( ) + = T
,

a2 . #c^ + (P. cda + = o-
,

these give, when solved for a2
, /3

2
, y

2
,
52

,

(a* ) (oc ) (ad )
a2 = aV - a2aV + aa V - a 3

&amp;lt;r,

(fee.

Hence, for any tangent plane common to U and V,

(ab ) (oc ) (arf )
a2 = aa (aV - ar ), &c.

The coordinates of the line in which this intersects a consecutive common tangent

plane, i. e. the coordinates of a generator of the circumscribed developable are derived

from these by taking the consecutive tangent plane

da _ a di ad-r dft _ b dT bd^
~~~

/ f j ~~7\~ 7 / 7/5 iVCj
a (IT CIT /3 VT br

whence, by taking the difference of these two and substituting for a, /3, we get the

value for the coordinate

p
2 = aa (ab ) (cd

1

) (C T - or ) (d -r - tfr
)&amp;gt;

and for the other coordinates values corresponding, omitting a common factor.

From these the tangential equation of the circumscribed developable may be found.

235. If we form the discriminant of X U-\- /* V+ v W, the

coefficients of the several powers of X, /-t,
v will evidently be

invariants of the system Z7, F, W. There are three invariants

however of this system, (which we shall call A*, /, J) which

* In the former editions it had been supposed that the equations of any three

quadrics could be reduced to the form

U a x 2 + b y- + c z- + d u~ + e v&quot;

1
,

V =a x2 + b y
z + c z- + d u- + e i;

2
,

W = a&quot;x* + b&quot;y* + c&quot;z
2 + d&quot;u? + e&quot;y

2
,

a form containing 12 independent constants expressed and 15 implicitly, or, in all,

the right number 27 (see Art. 141). Doubt was cast on the validity of this argument
when Clebsch observed that a similar argument does not hold good for plane

quartics. The form

ax4 + by* + cz4 + du4 + ev4
,

contains the right number of constants for representing a general quartic ; yet for

this form it is easily shown that an invariant vanishes which in general is not =

(see Hiyher Plane Curves, Art. 294). The same thing is true of the form

a b c d e
- + - +- + - + -,
x y z u v

which though containing the right number of constants will not represent a quartic

in general, but only one for which a certain invariant relation is fulfilled. Fralim
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deserve special attention as being also invariants of any three

quadrics of the system \U+pV+ vW; or, what is the same

thing, as being also conibinants.

The invariant A vanishes, when each of the three quadrics

Z7, F, W is the polar quadric of a point with regard to a

surface of the third degree. In fact it is easy to see that, taking

two points 1, 2 and a cubic surface, the polar plane of 1 with

respect to the polar quadric of 2 must be the same as the polar

plane of 2 with regard to the polar quadric of 1. Supposing
then

Z7, F, W to be the polar quadrics of points 1, 2, 3

respectively, and expressing that the polar plane of 1 in

respect of V is identical with that of 2 in respect of
Z7,

we get

by comparing coefficients of
or, y, z, w four equations linear

in x^ y^ cc
2 ,

&c. Similarly two other sets of four are got by

comparing the surfaces
7&quot;, JF; F, W. Eliminating then linearly

the twelve unknown variables x^ y^ &c., #
2 , &c., the result

of elimination can be written at once in the determinant form
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but as this is a skew symmetrical determinant of even order,
it is a perfect square, thus the condition in question is of the

second order only, in the coefficients of each of the surfaces.

Reducing this determinant by assuming two of the surfaces in

the forms

a x* -f b
f

y* + c z* -f d i#
2

,

a&quot;x*+b&quot;y*+&amp;lt;f
z* + d&quot;w\

which is always admissible
;

it is found to be in this case

, (b a&quot;) h, (c a&quot;) g, (d a&quot;}
I

(a b&quot;}h,

;

, (c O/j (&amp;lt;*V }

(ac&quot;}g, (b c&quot;)f, , (#c&quot;)n

(a
f

d&quot;}l, (Vd
ff

)m, (c d&quot;)n,

which is also skew symmetrical and is the square of

(Vc&quot;} (ad&quot;]fl + (c a&quot;) (I d&quot;) gm + (a b&quot;} (cd&quot;)
kn.

In this form it is easily seen that A vanishes if
Z7, F, W

each admit of being written as sum of five squares. In fact

we can in this case eliminate one variable between each

pair of equations reducing two to the forms just written,

making each of them the sum of four squares ;
and the third

becomes, by replacing the fifth variable from the universal

linear relation,

ax2 + by* + cz* + div* -\-e(x-}-y-\-z + w^f = 0,

whence fl = gm = hn = e\ and these values substituted in the

expression just found for A evidently make it vanish.

And, therefore, if Z7, V, W be three quadrics of this form the discriminant of

\U+ nV+ vW is got by writing X + pa + va&quot; for a, &c., in the above. And according

to what has been just stated this is only a ternary quartic of a special form. If

then we write down the invariant condition that the discriminant of XU + pV + vW
considered as a ternary quartic in X, p, v should be capable of being reduced to the

special form just mentioned, we have at the same time the condition that these

quadrics should be such that their equations may be written as the sum of squares

of the same five linear functions. Toeplitz (Math. Anna!, XI.) gave the form of A

definitely as in the text, and also by determining its symbolical expression showed

that it can be expressed in terms of the functions of the coefficients which occur in

the conditions that a right line should touch U, V, W respectively. The condition

that a line should touch a surface may be expressed symbolically (see Arts. 80, 217)

as (12a/3)
2

. The symbolical function (12o/3) (12o /3 ) expresses that two lines are

harmonic conjugates with regard to a surface, and is a function of the same coefficients

of the quadric. And, if taking a, /3; a
, /3 as symbols with respect to two other

surfaces we multiply by (a/3a /3 ) we get the symbol which expresses A.
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236. The invariant which we call / vanishes, whenever

any four of the points of intersection of /, V, W lie in a

plane, (a condition which implies that the other four points

of intersection lie in a plane), or, in other words, whenever it is

possible to find values of X, /z, v,
which will make \U+ p F+ vW

represent two planes. Xow in this case the tangential equation

vanishes (Art. 214), hence, writing for
,
\a + pa + va&quot;,

&c.

in
&amp;lt;r,

let the result be denoted by o^X
3

-I- o^V/* + ^Q^^ + = 0,

the ten coefficients of this quadric in a, /3, 7, 8, therefore vanish,

whence we can write down the required condition as the

determinant of the tenth order got by eliminating X, /A,
v

;

but each coefficient is of the third order in the original

coefficients, hence this invariant, involving symmetrically each

surface, must be of the tenth degree in the coefficients of each

surface (compare Conies, 3S9a). That / is of the tenth degree
in the coefficients of each surface may be otherwise seen

as follows: Let
Z7,

7
, F, W be four quadrics passing

each through the same six points; then since through these

points twenty planes [ten pairs of planes] can be drawn,
it follows that the problem to determine X, /-t,

v so that

U+\U + /*F+ vW may represent two planes, admits of ten

solutions. But X might also be determined by forming the

invariant / of the system Z7, F, TF, and then substituting

for each coefficient a of
/,

a -f Xa . And since there are ten

values of X, the result of substitution must contain X in the

tenth degree ;
and therefore / must contain the coefficients

of U in the same degree.

237. The invariant which we call J vanishes, whenever any
two of the eight points of intersection of the surfaces 7, F, TF

coincide.* Thus, if at any point common to the three surfaces,

their three tangent planes pass through a common line, the

consecutive point on this line will also be common to all the

surfaces. Such a point will also be the vertex of a cone of

the system \U+ pV+ vW. For take the point as origin, and

if the tangent planes be #, y t
ax -f &y, the equations of the

* This invariant is called by Professor Cayley the tact-invariant of a system of

three quadrics, as that considered Art. 202 is the tact-invariant of a system of two.
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surfaces are x + w
2 , y -f v^ ax + by + w^ where w

2 ,
v
2 , w^ de

note terms of the second degree. And it is evident that

aU4-bV TFis a cone having the origin for its vertex.

The invariant J is of the sixteenth degree in the coefficients

of each of the surfaces. For if in J we substitute for each coeffi

cient a of Uj a-\- Xa where a is the corresponding coefficient of

another surface 7, it is evident that the degree of the result

in X is the same as the number of surfaces of the
system&quot;

U+ XUf
which can be drawn to touch the curve of intersection

of F, W] that is to say, sixteen (Cor., Art. 233).

238. If ax* + by* -f cz
z + du* + ev

2

represent a cone, the co

ordinates of the vertex satisfy the four equations got by diffe

rentiating with respect to #, y, z^ u
;
that is to say, (remem

bering that x + y + z + u + vis supposed to =0) ax ev, by = ev,

&c. The coordinates of the vertex may then be written

-
,

= .
-

, -^ ,
-

, substituting: which values in the condition
a 1

b
7

c a e
J

connecting a?, ?/, 2, w, v, we obtain the discriminant of the

surface, viz. 11111
- + r + - + ^H-- = 0.
a o c a e

Thus, then, when the equations of Z7, F, W admit of being
written in the form here used, the discriminant \U+ pV+ j/TFis

\a + pa + vdf \b + fib + vb
ff

and when XZ7+/^F+ vW represents a cone, if we substitute the

coordinates of its vertex in the equation of each of the surfaces

in succession, we get

a b &quot;A
c. = 0,

(Xa + pa 4
vet&quot;? (\b +^ + vl

But these equations are the differentials of the discriminant

with respect to X, yu, v. Hence we derive the theorem that in the

case in question if we form the discriminant of X U+ JA F-f v W,
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and then the discriminant of this again with respect to X, /*, v

J will be a factor in the result. It may be shewn easily

that / must also be a factor in this result, and the result is

in fact PJ*

238a. Given three quadrics the locus of a point whose polar

planes with respect to all three meet in a line is a curve of

the sixth order, which may be called the Jacobian curve of

the system. For such a point must evidently satisfy all the

equations got by equating to nothing the determinants of the

system of differential coefficients U^ &c., of Z7, V
l &c., of J

7

, &c.,

ua u* ua u
t

V VV
i g

W W W WK K &quot; *

V V
31

r
4

but equating to zero any two of these determinants as (123) and

(124) we get two surfaces of the third order which have common
the cubic curve (Art. 134) whose equations are got by the

vanishing of

V., W.\1 1

^.i r,, IF,

and this does not belong to the other cubic surfaces. Hence
there is only a sextic curve common.

* An analogous theorem, due to Professor Cayley, is that if U and V be homo

geneous functions of two variables of the nth degree; and if we form the discri

minant of U+\ V and then the discriminant of this with respect to X, the result

will be AIFC 3 where A is the result of elimination between U and V; B (of the

degree 2 (n 2) (n 3) in both sets of coefficients) vanishes whenever X can be so

determined that U + \V shall have two pairs of equal factors; and C (of the degree
3 (n 2) vanishes whenever A can be determined so that U + \ V shall have three

equal factors. In like manner, if U and V be homogeneous functions of three varia

bles, the discriminant with regard to X of the discriminant of U+\V is still AB?C*,
where A (of the degree 3 re (n

-
1) in each set of coefficients) is the condition that U

and V should touch, B vanishes whenever it is possible to determine X so that

U+\V may have two double points; and (7, so that it may have a cusp. Lastly,
when U, V, W are three conies, the discriminant with respect to X, n, v of the dis

criminant of \U+ nV + vW is A&, where A = is the condition that the three
curves should intersect and B = is the condition that \U + pV + vVS should ever

be a perfect square.
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238b. If we express the relation that the right line joining
the points 1 and 2 may be cut in involution by three quadrica

Uj F, TF, writing the quadratic of Art. 75 in the form

that relation is

U , U
111 22

F
12 ,

F
TF TF

12)
r

21

but this may be written in the form

VY
111

WV
=

0,

=
a

,~b ,c ,d ,

a

a&quot; h&quot; r&quot; /7&quot; fa
,
u

,
c

,
a ,/

and it can be seen without difficulty that each determinant in

the second matrix consists of powers and products of the six

coordinates of the right line 1, 2. Hence we have the relation

in question as a complex of the third order the coefficients of

which are linear in the coefficients of each quadric. Employing
a usual method of squaring, we find by multiplying

^n )

*ii &amp;gt;

w...

where

U.
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.
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IF TF
12)

&quot;F
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00)
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is the condition for the line to touch U, &c. and
*

01
for it to.be cut harmonically by U and F, &c. (Art. 217).

Hence it is seen that the squares and products of the coefficients

in M can be expressed by the combinations of the original
coefficients which arise from the second minors of the dis

criminant Ex. 6, Art. 200. Again, the complex M is the

same for any three surfaces of the system \U+ yuF-f vW. Also
M=0 if for such a surface we have \U

}1
+ f*Vn 4 vWn

=
0,

^ ^12 + A* F, 8 + v TFJ 2
=

0, \ Z7M + ^ FM + v JFM = 0, hence (Art. 80c)
it contains all the right lines which are contained in surfaces

of the system. This complex M may be also written in axial

coordinates: Toeplitz has noticed that when the products of

corresponding coefficients of both forms is summed, the inva
riant A is the result.
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CHAPTER X.

CONES AND SPHERO-COXICS.

239. IF a cone of any degree be cut by any sphere, whose

centre is the vertex of the cone, the curve of section will

evidently be such that the angle between two edges of the cone

is measured by the arc joining the two corresponding points

on the sphere. When the cone is of the second degree, the

curve of section is called a sphero-conic. By stating many of

the properties of cones of the second degree as properties of

sphero-conics, the analogy between them and corresponding

properties of conies becomes more striking.*

Strictly speaking, the intersection of a sphere with a cone

of the ?i
th

degree is a curve of the 2nth
degree : but when the

cone is concentric with the sphere, the curve of intersection

may be divided, in an infinity of ways, into two symmetrical
and equal portions, either of which may be regarded as analo

gous to a plane curve of the ?i
th

degree. For if we consider

the points of the curve of intersection which lie in any hemi

sphere, the points diametrically opposite evidently trace out

a perfectly symmetrical curve in the opposite hemisphere.!

* See M. Chasles s Memoir on Sphero-conics (published in the Sixth Yolume of the

Transactions of the Royal Academy at Brussels, and translated by Professor Graves,

now Bishop of Limerick, Dublin, 1837), from which the enunciations of many of

the theorems in this chapter are taken. See also M. Chasles s later papers Comptes

Rendus, March and June, 1860.

t It has been remarked (Higher Plane Curves, Art. 198) that a cone of any order

may comprise two forms of sheet, viz. (1) a twin-pair sheet which meets a concentric

sphere in a pair of closed curves, such that each point of the one curve is opposite

to a point of the other curve (of this kind are cones of the second order) ;
or (2) a

single sheet which meets a concentric sphere in a closed curve, such that each point

of the curve is opposite to another point of the curve
; (the plane affords an ex

ample of such a cone) see Mbbius, Abhandlungen der K. Sachs. GescHschqft, Vol. I.
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Thus, then, a sphero-conic may be regarded as analogous
either to an ellipse or to a hyperbola. A cone of the second

degree evidently intersects a concentric sphere in two similar

closed curves diametrically opposite to each other. One of

the principal planes of the cone meets neither curve, and if we
look at either of the hemispheres into which this plane divides

the sphere, we see a closed curve analogous to an ellipse.

The other principal planes divide the sphere into hemispheres

containing each hemisphere a half of the two opposite curves,

and in particular the principal plane not passing through the

focal lines of the cone (supra, Art. 151) divides the sphere
into two hemispheres each containing a curve consisting of

two opposite branches like the hyperbola.
The curve of intersection of any quadric with a concentric

sphere is evidently a sphero-conic.

240. The properties of spherical curves have been studied

by means of systems of spherical coordinates formed on the

model of Cartesian coordinates. Choose for axes of coordi

nates any two great circles OX, OY intersecting at right

angles, and on them let fall perpendiculars PM, PN from any

point P on the sphere. These perpendiculars are not, as in

plane coordinates, equal to the opposite sides of the quad
rilateral OMPN] and therefore it would seem that there is

a certain latitude admissible in our selection of spherical co

ordinates, according as we choose for coordinates the per

pendiculars PM, PN, or the intercepts OM, ON which they

make on the axes.

M. Gudermann of Cleves has chosen for coordinates the

tangents of the intercepts OM, ON (see Crelle s Journal,

vol. VI., p, 240), and the reader will find an elaborate discussion

of this system of coordinates in the appendix to Graves s

translation of Chasles s Memoir on Sphero-conics. It is easy

to see, however, that if we draw a tangent plane to the sphere

at the point (9, and if the lines joining the centre to the points

Mj N, P) meet that plane in points m, n, p ;
then Om, On will

be the Cartesian coordinates of the point p. But Om, On
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are the tangents of the arcs 0J/, ON. Hence the equation

of a spherical curve in Gudermann s system of coordinates

is in reality nothing but the ordinary equation of the plane

curve in which the cone joining the spherical curve to the centre

of the sphere is met by the tangent plane at the point 0.

So, again, if we choose for coordinates the sines of the per

pendiculars PJ/, PA7

,
it is easy to see, in like manner, that the

equation of a spherical curve in such coordinates is only the

equation of the orthogonal projection of that curve on a plane

parallel to the tangent plane at the point 0.

It seems, however, to us, that the properties of spherical

curves are obtained more simply and directly from the equa
tions of the cones which join them to the centre, than from

the equations of any of the plane curves into which they can

be projected.

241. Let the coordinates of any point P on the sphere be

substituted in the equation of any plane passing through the

centre (which we take for origin of coordinates), and meeting
the sphere in a great circle AB^ the result will be the length of

the perpendicular from P on that plane ;
which varies as the sine

of the spherical arc let fall perpendicular from P on the great
circle AB. By the help of this principle the equations of

cones are interpreted so as to yield properties of spherical

curves in a manner precisely corresponding to that used in

interpreting the equations of plane curves.

Thus, let a, /3 be the equations of any two planes through
the centre, which may also be regarded as the equations of the

great circles in which they meet the sphere, then (as at Conies,

Art. 54) a k/3 denotes a great circle, such that the sine of the

perpendicular arc from any point of it on a is in a constant

ratio to the sine of the perpendicular on /3; that is to say,

a great circle dividing the angle between a and /3 into parts
whose sines are in the same ratio.

Thus, again, a
A-/3, a k ft denote arcs forming with a

and $ a pencil whose anharmonic ratio is
p-.

And a-A-/?,*
a + A*/3 denotes arcs forming with a, /3 a harmonic pencil.

FF



218 CONES AN7D SPIIERO-CONICS.

It may be noted here that if A be the middle point of

an arc AB, then Bf

,
the fourth harmonic to A

, A, and j5, is

a point distant from A by 90. For if we join these points

to the centre C, CA is the internal bisector of the angle ACB^
and therefore CBf

must be the external bisector. Conversely,

if two corresponding points of a harmonic system are distant

from each other by 90, each is equidistant from the other two

points of the system.

It is convenient also to mention here that if x y z be the

coordinates of any point on the sphere, then xx -f yy -f %%

denotes the great circle having xy z for its pole. It is in

fact the equation of the plane perpendicular to the line joining

the centre to the point xy z .

242. We can now immediately apply to spherical triangles

the methods used for plane triangles (Conies, Chap. IV., &c.).

Thus, if a, /3, 7 denote the three sides, then loL m^ ny
denote three great circles meeting in a point, each of which

passes through one of the vertices : while

mfB + ny Za, ny + la m/3, la -f m/3 ny

are the sides of the triangle formed by connecting the points

where each of these joining lines meets the opposite sides of

the given triangle ;
and la. -f mft + ny passes through the inter

sections of corresponding sides of this new triangle and of the

given triangle.

The equations a = /3
= 7 evidently represent the three bi

sectors of the angles of the triangle. And if A, B, G be the

angles of the triangle, it is easily proved that, as in plane

triangles, a cos A =
j3 cos B = y cos C denote the three perpen

diculars. It remains true, as at Conies, Art. 54, that if the

perpendiculars from the vertices of one triangle on the sides

of another meet in a point, so will the perpendiculars from the

vertices of the second on the sides of the first.

The three bisectors of sides are a sin A = /3 sin B = y sin C.

The arc a sin A + ft sin B + y sin C passes through the three

points where each side is met by the arc joining the middle

points of the other two; or, again, it passes through the
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point oil each side 90 distant from its middle point, for

a sin A ft sin B meet 7 in two points which are harmonic

conjugates with the points in which a, ft meet
it,

and since

one is the middle point the other must be 90 distant from it

(Art. 2-41). It follows from what has been just said, that the

point where a sin A -f ft sin B + y sin C meets any side is the

pole of the great circle perpendicular to that side at its middle

point, and hence, that the intersection of the three per

pendiculars of this kind (that is to say, the centre of

the circumscribing circle) is the pole of the great circle

a sin A 4- ft sin B+ y sin C. The equations of the lines joining

the vertices of the triangle to the centre of the circumscribing

circle are found to be

^ ft 7
sin i (B + G-A)~ sin (6

T+ A -
B)

~
sin (A + B -

C)

243. The condition that two great circles ax -f by -f cz,

ax + Vy + cz should be perpendicular is manifestly

aa +W + cc = 0.

The condition that aa 4- bft -f 07, a a. + b ft + cy should be per

pendicular is easily found from this by substituting for a, ft, 7
their expressions in terms of x, y, z. The result is exactly the

same as for the corresponding case in the plane, viz.

aa+bb -\-cc-(bc-\-b c) cos A -
(ca -fc a) cos ,5- (ab +ba) cos (7=0.

In like manner the sine of the arc perpendicular to aa + bft + 07,

and passing through a given point is found by substituting the

coordinates of that point in aa + bft 4- cy and dividing by the

square root of

a2 + b~ -f c
2

2bc cos A 2ca cos B 2ab cos C.

244. Passing now to equations of the second degree, we

may consider the equation ay = )/i.3
2

either as denoting a cone

having a and 7 for tangent planes, while ft passes through
the edges of contact, or as denoting a sphero-conic, having
a and 7 for tangents, and ft for their arc of contact. The

equation plainly asserts that the product of the sines of per

pendiculars from any point of a sphero-conic on two of its
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tangents is in a constant ratio to the square of the sine of the

perpendicular from the same point on the arc of contact.

In like manner the equation a.y
= k/38 asserts that the pro

duct of the sines of the perpendiculars from any point of a

sphero-conic on two opposite sides of an inscribed quadrilateral

is in a constant ratio to the product of sines of perpendiculars

on the other two sides. And from this property again may be

deduced, precisely as at Conies, Art. 259, that the anharmonic

ratio of the four arcs joining four fixed points on a sphero-

conic to any other point on the curve is constant. In like

manner almost all the proofs of theorems respecting plane

conies (given Conies, Chap, xiv.) apply equally to sphere-

conies.

245. If a, /3 represent the planes of circular section (or

cyclic planes] of a cone, the equation of the cone is of the

form a?
2 + y* + z*=ka.f3 (Art. 103), which interpreted, as in the

last article, shews that the product of the sines of perpen
diculars from any point of a sphero-conic on the two cyclic arcs

is constant. Or, again, that,
&quot; Given the base of a spherical

triangle and the product of cosines of sides, the locus of vertex

is a sphero-conic, the cyclic arcs of which are the great circles

having for their poles the extremities of the given base.&quot; The

form of the equation shews that the cyclic arcs of sphero-conics

are analogous to the asymptotes of plane conies.

Every property of a sphero-conic can be doubled by con

sidering the sphero-conic formed by the cone reciprocal to

the given one. Thus (Art. 125) it was proved that the cyclic

planes of one cone are perpendicular to the focal lines of the

reciprocal cone. If then the points in which the focal lines

meet the sphere be called the foci of the sphero-conic, the

property established in this article proves that the product
of the sines of the perpendiculars let fall from the two foci

on any tangent to a sphero-conic is constant.

246. If any great circle meet a sphero-conic in two points

P, Q, and the cyclic arcs in points A, B, then AP = BQ.
This is deduced from the property of the last article in



COXES AND SPHERO-CONICS. 221

the same way as the corresponding property of the plane

hyperbola is proved. The ratio of the sines of the perpen

diculars from P and Q on a is equal to the ratio of the sines

of perpendiculars from Q and P on /3. But the sines of

the perpendiculars from P and Q on a are in the ratio

sin AP : sin A Q, and therefore we have

sin AP : sin A Q : : sin BQ : sin BP,

whence it may easily be inferred that AP = BQ.

Reciprocally, the two tangents from any point to a sphero-

conic make equal angles with the arcs joining that point to

the two foci.

247. As a particular case of the theorem of Art. 246 we
learn that the portion of any tangent to a sphero-conic intercepted

between the two cyclic arcs is bisected at the point of contact.

This theorem may also be obtained directly from the equation

of a tangent, viz.

2 (xx + yy + zz
}
= k (oL/3 + a/3 }.

The form of this equation shews that the tangent at any point

is constructed by joining that point to the intersection of its

polar (xx +yy + zz
,
see Art. 241) with a/3 + /8 a which is the

fourth harmonic to the cyclic arcs a, /3, and the line joining

the given point to their intersection. Since then the given

point is 90 distant from its harmonic conjugate in respect of

the two points where the tangent at that point meets the

cyclic arcs, it is equidistant from these points (Art. 241).

Reciprocally, the lines joining any point on a sphero-conic

to the two foci make equal angles with the tangent at that

point.

248. From the fact that the intercept by the cyclic arcs

on any tangent is bisected at the point of contact, it may at

once be interred by the method of Infinitesimals (see Conies,

Art. 396) that every tangent to a sphero-conic forms with the

cyclic arcs a triangle of constant area, or a triangle the sum of

whose base angles is constant. This may also be inferred tri-

gonometrically from the fact that the product of sines of per-
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pendiculars on the cyclic arcs is constant. For if we call the

intercept on the tangent c, and the angles it makes with the

cyclic arcs A and B, the sines of the perpendiculars on a

and ft are respectively sin^c sin ^4, sin|c sin.Z?. But consider

ing the triangle of which c is the base and A and B the base

angles, then, by spherical trigonometry,

sin
2

^c sin^. sinj5= cosS cos (8- (7).

But G is given, therefore S, the half sum of the angles, is given.

Reciprocally, the sum of the arcs joining the two foci to

any point on a sphero-conic is constant. Or the same may be

deduced by the method of infinitesimals (see Conies, Art. 392)

from the theorem that the focal radii make equal angles with

the tangent at any point.*

249. Conversely, again, we can find the locus of a point

on a sphere, such that the sum of its distances from two

fixed points on the sphere may be constant. The equation

cos (p + p }
= cos a may be written

cos
2

p 4- cos
2

p 2 cos/? cosp cos a = sin
2
a.

If then a and ft denote the planes which are the polars of

the two given points, since we have a = cos/?, the equation

of the locus is

a
2 + /3

2 - 2 a/3 cos a = sin
2 a

(x&quot;
+ tf + z*} .

In order to prove that the planes a and /3 are perpendicular

to focal lines of this cone, it is only necessary to shew that

sections parallel to either plane have a focus on the line per

pendicular to it. Thus let a
,

a&quot; be two planes perpendicular

*
Here, again /

we can see that a sphero-conic may be regarded either as an

ellipse or hyperbola. The focal lines each evidently meet the sphere in two dia

metrically opposite points. If we choose for foci two points within one of the

closed curves in which the cone meets the sphere, then the sum of the focal dis

tances is constant. But if we substitute for one of the focal distances FP, the

focal distance from the diametrically opposite point, then since F P 180 FP,

we have the difference of the focal distances constant.

In like manner we may say that a variable tangent makes with the cyclic arcs

angles whose difference is constant, if we substitute its supplement for one of the

angles at the beginning of this article.
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to each other and to a, and therefore passing through the

line which we want to prove a focal line. Then since

&quot;*

the equation of the locus becomes

sin
2
a (a* + a&quot;

2

)
=

(/3
- a cos a)

2
.

If, then, this locus be cut by any plane parallel to a, a
/2 + a

is the square of the distance of a point on the section from

the intersection of a
a&quot;,

and we see that this distance is in a

constant ratio to the distance from the line in which a cos a

is cut by the same plane. This line is therefore the directrix

of the section, the point a a&quot; being the focus.

We see thus also that the general equation of a cone having
the line xy for a focal line is of the form x^+ y

z

(ax -f by + czf
whence again it follows that the sine of the distance of any point
on a sphero-conicfrom a focus is in a constant ratio to the sine

of the distance of the same point from a certain directrix arc.

250. Any two variable tangents meet the cyclic arcs in four

points which lie on a circle. For if L, M be two tangents
and R the chord of contact, the equation of the sphero-conic

may be written in the form LM=I 2
but this must be iden

tical with a/3 = x* + y* -\- z
2
. Hence a/3 LM is identical with

x* + 3/

2 + s
a ~ ^- The latter quantity represents a small circle,

having the same pole as R, and the form of the other shews that

that circle circumscribes the quadrilateral aLftM.

Reciprocally, the focal radii to any two points on a sphero-
conic form a spherical quadrilateral in which a small circle can

be inscribed. From this property, again, may be deduced the

theorem that the sum or difference of the focal radii is con

stant, since the difference or sum of two opposite sides of such

a quadrilateral is equal to the difference or sum of the re

maining two.

251. From the properties just proved for cones can be

deduced properties of quadrics in general. Thus the product

of the sines of the angles that any generator of a hyperboloid
makes with the planes of circular section is constant. For the

generator is parallel to an edge of the asymptotic cone whose
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circular sections are the same as those of the surface. Again,
since the focal lines of the asymptotic cone are the asymptotes
of the focal hyperbola, it follows from Art. 248 that the sum

or difference is constant of the angles which any generator of

a hyperboloid makes with the asymptotes to the focal hyper
bola. Again, given one axis of a central section of a quadric^

the sum or difference is given of the angles which its plane
makes with the planes of circular section. For (Art. 102) given
one axis of a central section its plane touches a cone concyclic

with the given quadric, and therefore the present theorem

follows at once from Art. 249.

We get an expression for the sum or difference of the angles,

in terms of the given axis, by considering the principal sec

tion containing the greatest and least axes of the quadric.

We obtain the cyclic planes by inflecting in that section,

semi-diameters OB, OB each = b.

Then the planes containing these

lines and perpendicular to the

plane of the figure are the cyclic

planes. Now if we draw any
semi-diameter a

f

making an angle

a with OC, we have

cos
2
a sin

2
a

a

But a is obviously an axis of the section which passes

through it and is perpendicular to the plane of the figure,

and (if a be greater than b] a is evidently half the sum of

the angles BOA ,
B OA which the plane of the section makes

with the cyclic planes. If a be less than &, OA falls between

OB, OB
,
and a is half the difference of BOA, B OA. But

this sum or difference is the same for all sections having the

same axis. Hence, if a
,
b be the axes of any central section,

making angles, 0, with the cyclic planes, we have

1 cos
2

i(0-0 )
sin

2i(0-0 )

7 f i &quot;2

a

cos i (0 + )
sin

2

i(0+0 )
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Subtracting, we have

1

-,

or, ^e difference of the squares of the reciprocals of the axes of

a central section is proportional to the product of the sines of

the angles it makes with the cyclic planes.

252. We saw (Art. 246) that, given two sphero-conics

having the same cyclic arcs, the intercept made by the outer

on any tangent to the inner is bisected at the point of contact
;

and hence, by the method of infinitesimals, that tangent cuts

off from the outer a segment of constant area (Conies, Art. 396).

Again, if two sphero-conics have the same foci, and if

tangents be drawn to the inner from any point on the outer,

these tangents are equally inclined to the tangent to the outer

at that point. Hence, by infinitesimals (see Conies, Art. 399),

the excess of the sum of the two tangents over the included

arc of the inner conic is constant. This theorem is the reci

procal of the first theorem of this article, and it is so that

it was obtained by Dr. Graves (see his Translation of Chasles s

Memoir, p. 77).

253. To find the locus of the intersection of two tangents to

a sphero-conic which cut at right angles. This
is, in other words,

to find the cone generated by the intersection of two rect-

x2

y* z*

angular tangent planes to a given cone + ^ + -^ = 0. Let
U3. Jj O

the direction-angles of the perpendiculars to the two tangent

planes be a /SY) a&quot;/3&quot;7&quot;;
then they fulfil the relations

A cosV+ JB cos
2

/3 + C cosV=0, A cosV + B cos^-f C 003*7&quot;= 0.

But if a, /3, 7 be the direction-cosines of the line perpendicular
to both, we have cos*a = 1 cosV cosV, &c. Therefore

adding the two preceding equations, we have for the equation
of the locus,

Ax* + By* -t- Cz
2 = (A + B+C) (x* + y* + O,

a cone concyclic with the reciprocal of the given cone. Reci-
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procally, the envelope of a chord 90 in length is a sphero-

conic, confocal with the reciprocal of the given cone.

254. To find the locus of the foot of the perpendicular front

the focus of a sphero-conic on the tangent. The work of this

question is precisely the same as that of the corresponding

problem in plane conies, and the only difference is in the inter

pretation of the result. Let the equation of the sphero-conic

(Art. 249) be x2
-f y

z = f where t = ax + ly + c, then the equa
tion of the tangent is

ocx
f

4 yy =
ttf,

and of a perpendicular to it through the origin is

(x at
) y (y bt

f

)
x = 0.

Solving for x
, y ,

and tf from these two equations, and sub

stituting in xfz + y
2&quot; =

tf

2

,
we get for the locus required,

(x
2 + y

2

} {(d
2
H- I)

2 -
1) (x

2 + y
2

)
+ 2cz (ax + by) + cV} = 0.

The quantity within the brackets denotes a cone whose circular

sections are parallel to the plane &.

255. It may be inferred from Art. 242 that the quantity

a sinA -f j3 sinB -f 7 sin C

has not, as in plano^ a fixed value for the perpendiculars

from any point. It remains then to ask how the three per

pendiculars from any point on three fixed great circles are

connected. But this question we have implicitly answered

already, for the three perpendiculars are each the complement
of one of the three distances from the three poles of the sides

of the triangle of reference. If then a, 5, c be the sides;

A, B, G the angles of the triangle of reference, then a, /3, 7
the sines of the perpendiculars on the sides from any point

are connected by the following relation, which is only a trans

formation of that of Art. 54,

a
2
sin

2
^. + yS

2
sin^-f 7* sin

2 G

-f 2/^7 sinB sin G cos a 4 27a sin G sinA cos ~b + 2a/3 sinA sinB cos c

= 1 - cosM - cos*B cos
2G - 2 cos A cosB cos G.
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The equation in this form represents a relation between the

sines of the arcs represented by a, ft, 7. If we want to get

a relation between the perpendiculars from any point of the

sphere on the planes represented by a, ft, 7, we have evidently

only to multiply the right-hand side of the preceding equation

by r\ and that equation in a, ft, 7 will be the transformation

of the equation xz + y
z
-f = /*

a
.

Hence, it appears that if we equate the left-hand side of

the preceding equation to zero, the equation will be the same

as x* + y* + z* = 0, and therefore denotes the imaginary circle

which is the intersection of two concentric spheres ;
that is to

say, the imaginary circle at infinity (see Art. 139).

256. This equation may be used to find the equation of the

sphere inscribed in a given tetrahedron, whose faces are

a, ft, 7, 8. If through the centre three planes be drawn

parallel to a, ft, 7, the perpendiculars on them from any point

will be a. r, ft r, 7 r. The equation of the sphere is

therefore

(a
-

r)
2
am*A + (0

-
rf sm

2B + &c,

= r*
(
1 - cos

2A - cos
2B -

cos&quot; C - 2 cosA cosB cos 0).

But if L, M, N, P denote the areas of the four faces, we have

a + J/,3 + -YV + PS = (L + J/+ N+ P) r.

Hence, by eliminating ?, we arrive at a result reducible to the

form of Art. 228.

257. The equation of a small circle (or right cone) is easily

expressed. The sine of the distance of any point of the circle

from the polar of the centre is constant. Hence, if a be that

polar, the equation of the circle is a
2 = cos

2

p (x
2 4 ?/

2 + z
2

).

All small circles then being given by equations of the form

S=of, their properties are all cases of those of conies having
double contact with the same conic.

The theory of invariants may be applied to small circles.

Let two circles $, $ be

x&amp;gt; + if + - a
2
sec

&amp;gt;,

a* -f y* -f z* - ft
2

secy,
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and let us form the condition that \S+S should break up
into factors. This cubic being

X3A + X2 + X + A =
0,

we have A = tan
2

p, A = tan
2

/,
= sec

2

p secV sin
2

Z&amp;gt;
- 2 tan

2

p - tan
2

/,
= sec

2

p sec
2

/ sin D - 2 tan
2

/ - tan
2

p,

where Z) is the distance between the centres.

Now the corresponding values for two circles in a plane are

- r\

Hence, if any invariant relation between two circles in a plane

is expressed as a function of the radii and of the distance

between their centres, the corresponding relation for circles

on a sphere is obtained by substituting for r, /, D; tanp, tan/,
and seep sec/ sinZ).

Thus the condition that two circles in a plane should touch

is obtained by forming the discriminant of the cubic equation,

and is either D = Q or D = rr. The corresponding equation

therefore for two circles on a sphere is

tan p tan/ = secp seep sin
Z&amp;gt;,

or sinZ) = sin
(/o

+ /j.

Again, if two circles in a plane be the one inscribed in,

the other circumscribed about, the same triangle, the invariant

relation is fulfilled @2 = 4A0
,
which gives for the distance

between their centres the expression D
z = JR

2 %Rr.

The distance therefore between the centres of the inscribed

and circumscribed circles of a spherical triangle is given by
the formula

sec Psec2

/?
sin

2
Z&amp;gt;
= tan

2P- 2 tan P tan p.

So, in like manner, we can get the relation between two

circles inscribed in, and circumscribed about, the same spherical

polygon.

258. The equation of any small circle (or right cone) in

trilinear coordinates must (Art. 255) be of the form

a
2 sinM + /3- sin&quot;+ 7* sin

2 C

+2/37 sinB sin C cos a + 27a sin C sinA cos b + 2a/3 sinA sin B cose

=
(fa -f mf} + nj)\
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If now the small circle circumscribe the triangle a/3y, the

coefficients of a
2

, /3
2

,
and y* must vanish, and we must therefore

have la. + m/3 + ny = a sin A + /3 sin B + y sin C. Hence, as was

proved before, this represents the polar of the centre of the

circumscribing circle. Substituting the values sin A, sinZ?, sin 6*

for
Z, ?n, ft,

the equation of the small circle becomes

{3y tan^a -f yy. tan ^b -f a/3 tan|c = 0.

The equation of the inscribed circle turns out to be of

exactly the same form as in the case of plane triangles, viz.

cos^A V(a) cosj^ V() cos\G \l(y]
= 0.

The tangential equation of a small circle may either be derived

by forming the reciprocal of that given at the commencement

of this article, or directly from Art. 243, by expressing that the

perpendicular from the centre on Xa -f yu,/3 -f vy is constant.

We find thus for the tangential equation of the circle whose

centre is a/3 y and radius p

sm p (X
2 + ft

2
4- v* 2/jLV cosA - 2vX cos5 2X/4 cos C)

a form also shewing (see Art. 257) that every circle has double

contact with the imaginary circle at infinity.

259. As a concluding exercise on the formulae of this

chapter, we investigate Dr. Hart s extension of Feuerbach s

theorem for plane triangles, viz. that the four circles which

touch the sides are all touched by the same circle.

It is easier to work with the tangential equations. The

tangential equations of circles which touch the sides of the

triangle of reference must want the terms X2

, yu,

a

,
v

2

,
and there

fore evidently are

cosB-

or nv cos
2

J^l-f vX cos
2

^j5 + X//, cos
&amp;lt;2

|(7=0 ....... (1),

(juvcos^A-v\ sin ^-X^ sin
&amp;gt;2

^(7=0 ....... (2),

-
fJLV sin^-f vX cos^-X/i sin

2

^C
f=0 ....... (3),

O=0 ....... (4),
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all which four are touched by the circle (5)

X2
-f pi? + v* - 2fiv cosA - 2vX cosB -

2X/i, cosC
7

=
{X cos (B-C) + p cos (G- A}+v cos (A - B)}\

For the centres of similitude of the circles (1) and (5) are given

by the tangential equations

(X -f //. + v) {X cos(B- G)+jj,cos(C-A) +v cos (A -
B}}

=
0,

one of them therefore is

X sin
2

i (B- C) -f //, sin i (G- A) + v sin
2!

(A - B).

And (Conies, Art. 127) the condition that this point should be

on the circle (1) is

cos^ sin^(-0)H-cosi#sm^(G
7

-^) + cosJ(7sin|(^-)=0,

which is satisfied. The coordinates of the point of contact are

accordingly

Bin*i (B- C), sin
2 ! (C-A), sin

2 ! (A- B).

It is proved, in like manner, that the circle (5) touches the

three other circles.

260. The coordinates of the centre of Dr. Hart s circle

have been proved to be cos (B (7), cos (G A), cos(A-B).
This point therefore lies on the line joining the point whose

coordinates are cos^BcosC, cosCcosA, cosAcosB to the point

whose coordinates are sinB sin 0, sin G sin A, sinA sin B; that

is to say, (Art. 242) on the line joining the intersection of per

pendiculars to the intersection of bisectors of sides. Since

cos^-cos(5- &amp;lt;7)

= 2smJ(4 + 5- &amp;lt;7)smJ (C+A-B);
the centre lies also on the line joining the point coaA, cosJ9,

cosG to the point

*m(8-B)am(S-C), sm(S-C)sm(S-A), am(8-A)sm(S-B}.

The first point is the intersection of lines drawn through each

vertex making the same angle with one side that the per

pendicular makes with the other
;

the second point is the in

tersection of perpendiculars let fall from each vertex on the

line joining the middle points of the adjacent sides. The centre

of Dr. Hart s circle is thus constructed as the intersection of

two known lines.

S
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261. The problem might also have been investigated by
the direct equation. We write a sin^l = #, &c., so that the

equation of the imaginary circle at infinity is U= 0, where

U= x2
4- y

z
4- 2

s
-f

&amp;lt;2yz
cos a + 2zx cos b 4- 2xy cose.

Then the equation of the inscribed circle is

U= [x cos (s a) 4- y cos (s b} + z cos (5 c)}
58

,

where 2s = a + b + c. For this equation expanded is

x2
sin

2

(5- a) +y* sin
2

(5 5) + z
2
sin

a

(5 c) 2?/s sin (5 b} sin (5 c)

2zx sin (s c} sin (s a) 2#y sin (s a) sin (s b)
= 0.

U is not altered if we change the sign of either a, Z, or c.

Consequently we get three other circles also touching x, y^ z

if we change the signs of either a, &, or c in the equation of

the inscribed circle. All four circles will be touched by
f\i f*c\Q -*-/

1

* r*r\Q /~t # r*r\Q -^-/t f*r\ Q -*
ii l-/wo o O v&amp;gt;Uo o Wf /v ^wO o vv V&amp;gt;VJO c

I t/ t I A ^

cos^a cos^ cos-^c

This last equation not being altered by changing the sign

of a, 5, or c, it is evident that if it touches one it touches all.

Now one of its common chords with the inscribed circle is

cosic) f cosic cosia
, 17
( cosJ6

.

cos 5-c

which reduced is

x
+ 2 + : =o

I / \ / \ I / \ f 7\ v&amp;lt;

sin(5 b) sin(s c) sin( c) sin(s-a) sin(5 a) siu(s t

But the condition that the line Ax + By -f Cz shall touch

*J(ax}-\- *J(by}+ J(cz] is 4-^+-^. Applying this condition,
^L Jj \j

the line we are considering will touch the inscribed circle if

sin (s a) {sin (s b) sin (s- c}}

4-sin(s b) }sin(s c)- sin(s a)}4 sin(s c) (sin (5 a) sin(s b)}=0 ;

a condition which is evidently fulfilled. It will be seen that the

condition is also fulfilled that the common tangent in question

should touch V(#) 4- \f(y) + VM ?
tna^ is to say, the sphero-conic
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\vhicb touches at the middle points of the sides
;
a fact remarked

by Sir Wm. Hamilton, and which leads at once to a construction

for that tangent as the fourth common tangent to two conies

which have three known tangents common.

The polar of the centre of Dr. Hart s circle has been thus

proved to be

. . ~ . ^ . ~
a amA --^ - +/3sm#-- -,-,-

- + 7 sin G--
T =0,

o cos^c

or a tan|a-f

which may be also written

a cos (8-A)+0 cos (8- B] + 7 cos (8- C) = 0,

forms which lead to other constructions for the centre of this

circle.

The radius of the circle touching three others whose centres

are known, and whose radii are r, /, r&quot; may be determined by

substituting r + R, r + R, r&quot; + R for d, e, f in the formulae of

Arts. 52, 54, and solving for R. Applying this method to the

three escribed circles I have found that the tangent of the

radius of Dr. Hart s circle is half the tangent of the radius of

the circumscribing circle of the triangle.
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CHAPTER XI.

GENERAL THEORY OF SURFACES.

OTRODUCTOET CHAPTER.

262. BESEEVTSG for a future chapter a more detailed ex

amination of the properties of surfaces in general, we shall

in this frh*ptr give an account of snch parts of the general

theory as can be obtained with least trouble.

Let the general equation ofa surface be written in the form

A

or, as we shall write it often for shortness,

where u
t
means the aggregate of terms of the second degree,

&c. Then it is evident that M, consists of one term, u
l
of three,

s of six, &c. The total number of terms in the equation ia

therefore the sum of w +1 terms of the series 1, 3, 6, 10, &c.,

. , (*+l)(*+ 2)(*+ 3)
that is to say,

=- --
.

The number of conditions necessary to determine a surface

- A, m, .
, ., .,. *(w*+6ii-l-ll)

.of the n degree is one leas than this, or = -;
-

.

6

The equation above written can be thrown into the form

of a polar equation by writing p cos 2, p cos/9, p cosy for

x, jf, z, when we obviously obtain an equation of the *
degree,

which will determine n values of the radius vector answering
to any assigned values of the direction-angles a, /?, 7.
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263. If now the origin be on the surface, we have u = 0,

and one of the roots of the equation is always p = 0. But a

second root of the equation will be p = if a, /?, 7 be con

nected by the relation

B cosa 4- C cos/3 4- D
cos&amp;lt;y

= 0.

Now multiplying this equation by p it becomes Bx + Ci/-\-Dz=Q,
and we see that it expresses merely that the radius vector must

lie in the plane u^ 0. No other condition is necessary in order

that the radius should meet the surface in two coincident

points. Thus we see that in general through an assumed

point on a surface we can draw an infinity of radii vectored

which will there meet the surface in two coincident points that

is to say, an infinity of tangent lines to the surface ; and these

lines lie all in one plane, called the tangent plane, determined

ly the equation u
l

= 0.

264. The section of any surface made by a tangent plane
is a curve having the point of contact for a double point*

Every radius vector to the surface, which lies in the tangent

plane, is of course also a radius vector to the section made

by that plane; and since every such radius vector (Art. 263)
meets the section at the origin in two coincident points, the

origin is, by definition, a double point (see Higher Plane

Carves, Art. 37).

We have already had an illustration of this in the case

of hyperboloids of one sheet, which are met by any tangent

plane in a conic having a double point, that is to say, in

two right lines. And the point of contact of the tangent

plane to a quadric of any other species is equally to be con

sidered as the intersection of two imaginary right lines.

From this article it follows conversely, that any plane

* I had supposed that this remark was first made by Cayley : Gregory s Solid

Geometry, p. 132. I am informed, however, by Professor Cremona that the point

had been previously noticed by the Italian geometer, Bedetti, in a memoir read before

the Academy of Bologna, 1841. The theorem is a particular case of that of Art. 203.

Observe that the tangents at the double point are the inflexional tangents of Art. 265,

and that these may be considered as identical with the asymptotes of the indicatrix

Art. 266. There is thus an anticipation of the theorem by Dupin (1813).
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meeting a surface in a curve having a double point touches

the surface, the double point being the point of contact. If

the section have two double points, the plane will be a double

tangent plane ;
and if it have three double points, the plane

will be a triple tangent plane. Since the equation of a plane

contains three constants, it is possible to determine a plane

which will satisfy any three conditions, and therefore a finite

number of planes can in general be determined which will

meet a given surface in a curve having three double points :

that is to say, a surface has in general a determinate number

of triple tangent planes. It will also have an infinity of double

tangent planes, the points of contact lying on a certain curve

locus on the surface. The degree of this curve, and the

number of triple tangent planes will be subjects of investi

gation hereafter.

265. Through an assumed point on a surface it is generally

possible to draw two lines which shall there meet the surface

in three coincident points.

In order that the radius vector may meet the surface in

three coincident points, we must not only, as in Art. 263,

have the condition fulfilled

B cos a -f- C cos/3 + 2) cos 7 = 0,

but also E cos
2
a +F cos

2

ft + G cos?y

+ 2H cos/3 cos7 + 2K cos7 cosa + 2L cosacos/3 = 0.

For if these conditions were fulfilled, A being already supposed
to vanish, the equation of the /i

th
degree which determines p,

becomes divisible by p
3

,
and has therefore three roots = 0.

The first condition expresses that the radius vector must lie

in the tangent plane w
t
. The second expresses that the radius

vector must lie in the surface w
2
=

0, or

Ex2 + Fy* + Gz* + 2Hyz + ZKzx + 2Lxy = 0.

This surface is a cone of the second degree (Art. 66) and

since every such cone is met by a plane passing through its

vertex in two right lines, two right lines can be found to

fulfil the required conditions.

Every plane (besides the tangent plane) drawn through
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either of these lines meets the surface in a section having
the point of contact for a point of inflexion. For a point of

inflexion is a point, the tangent at which meets the curve

in three coincident points (Higher Plane Curves, Art. 46). On
this account we shall call the two lines which meet the surface

in three coincident points, the inflexional tangents at the point.*

The existence of these two lines may be otherwise perceived
thus. We have proved that the point of contact is a double

point in the section made by the tangent plane. And it has

been proved (Higher Plane Curves, Art. 37) that at a double

point can always be drawn two lines meeting the section (and

therefore the surface) in three coincident points.

266. A double point may be one of three different kinds,

according as the tangents at it are real, coincident, or imaginary.

Accordingly the contact of a plane with a surface may be of

three kinds according as the tangent plane meets it in a section

having a node, a cusp, or a conjugate point ; or, in other

words, according as the inflexional tangents are real, coincident,

or imaginary.
If instead of the tangent plane we consider with Dupin, a

parallel plane indefinitely near thereto, the section of the surface

by this plane may be regarded as a curve of the second order,

which (as the theorem is usually but inaccurately stated) may
be an ellipse, hyperbola, or parabola / this curve of the second

order is called the Indicatrix.^ Analytically, if taking the

given point of the surface for origin, we take the normal for

the axis of 2, and the axes of x, y in the tangent plane ;
then

considering a?, y as infinitesimals of the first order, and conse

quently z as an infinitesimal of the second order, the equation
of the surface, regarding z as a given constant, gives the equa
tion of the section, and if herein we neglect infinitesimals of

an order superior to the second, this reduces itself to an equation

* They are called by German writers the &quot;

Haupt-tangenten.&quot;

t Dupin, see the Developpements de Geometric (1813), p. 49, is quite correct, he

says : &quot;En general, une courbe du second degre, dont le centre P nous est donne, ne

peut etre qu une ellipse ou une hyperbole. Elle peut cependant etre une parabole :

alors elle se presente sous la forme de deux lignes droites parallcles equidistantes

iU leaf centre&quot;
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of the form z + ax* -j- 2hxy + by*
=

0, an equation of the second

order representing the indicatrix; viz. according as ab h* is

positive, negative, or zero, this is an ellipse, hyperbola or pair

of parallel lines.* Geometrically, the section of the surface is

either a closed curve, such as the ellipse ; or, attending only to the

curve in the neighbourhood of the given point, it consists of

two arcs having their convexities turned towards each other,

and which may be considered as portions of the two branches of

a hyperbola ;
or the convexity vanishes, and the arcs are

infinitesimal portions of two parallel right lines.

If points on a surface be called elliptic, hyperbolic, or para

bolic, according to the nature of the indicatrix, we shall pre

sently shew that in general the parabolic points form a curve

locus on the surface, this curve separating the elliptic from the

hyperbolic points.

In the case of a surface of the second order, taking the axes

as above, the equation of the surface is

z -[- ax* -f 2kxy -f by* + 2gxz + 2fyz + cz* = 0,

which equation, if we regard therein x and y as infinitesimals

of the first order, and therefore z as infinitesimal of the second

order, reduces itself to z + ax1 + 2hxy + by*
=

0, viz. z being

regarded as a constant, this is an equation of the form already
mentioned as that of the indicatrix for a surface of any order

whatever. The original equation, regarding therein z as a

given constant, is the equation of the section of the surface

by a plane parallel to the tangent plane, but it is not the proper

equation of the indicatrix. To further explain this, suppose that

the surface were of the third or any higher order, then besides

the terms written down, there would have been in the equation
terms (#, y)

3

,
&c.

;
to obtain the indicatrix as a curve of the

second order, we must of necessity neglect these terms of the

third order, and there is therefore no meaning in taking into

* This is sometimes expressed as follows : When the plane of xy is the tangent

plane, and the equation of the surface is expressed in the form z (p (x, y\ we have

/ d^z \ 2
an elliptic, hyperbolic, or parabolic point, according as

( )
is less, greater than,

2 d?z\ \dxdyJ

33
fd 2

z\ (d?z\
or equal to

^ T-^J [33!
It will be easily seen that this is equivalent to the state

ment in the text.
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account the terms %gxz + Ifyz also of the third order, or the

term cz* which is of the fourth order.*

In the case where the indicatrix is a hyperbola, then sup

posing the parallel plane to coincide with the tangent plane,

this hyperbola becomes a pair of real lines
;

viz. these are the

inflexional tangents of Art. 265. And generally the two in

flexional tangents may be regarded as the asymptotes (real

or imaginary) of the indicatrix considered as lying in the

tangent plane; they have been on this account termed the

asymptotic lines of the point of the surface. If from any point
of the surface we pass along one of these lines to a consecutive

point, and thence along the consecutive line to a second point

on the surface, and so on, we obtain a curve
;
and we have

thus on the surface two series of curves, which are the asymp
totic curves. In the case of a quadric surface, these are the

two series of right lines on the surface.

267. Knowing the equation of the tangent plane when
the origin is on the surface, we can, by transformation of

coordinates, find the equation of the tangent plane at any

point. It is proved, precisely as at Art. 62, that this equation

may be written in either of the forms

tV dW dU aw
or x -j-r 4 y -r-r + z ~rr + w T^ ~

dx 7

dy dz dw

268. Let it be required now to find the tangent plane at

a point, indefinitely near the origin, on the surface

z -f ax* + 2hxy + by* + Zgxz + tyyz + cz* + &c. = 0.

We have to suppose x
, y so small that their squares may be

neglected ; while, since the consecutive point is on the tangent

plane, we have z =
; or, more accurately, the equation of

the surface shews that z
f

is a quantity of the same order as

the squares of xf

and y . Then, either by the formula of the

last article, or else directly by putting x + x
^ y+y for x

* See Messenger of Mathematics, Vol. v, (1870), p. 187.
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and v, and taking the linear part of the transformed equation,

the equation of a consecutive tangent plane is found to be

s + 2 (ax + Tiy }
x + 2 (hx + ly] y = 0.

Now (see Conies, Art. 141) (ax
f + fo/ )

# + (hx + ?/ ) ?/ denotes

the diameter of the conic ax* + 2hxy + by
2 =

1, which is con

jugate to that to the point a/?/ . Hence any tangent plane is

intersected by a consecutive tangent plane in the diameter of the

indicatrix conjugate to the direction in which the consecutive

point is taken.

This, in fact, is geometrically evident from Dupin s point

of view. For if we admit that the points consecutive to the

given one lie on an infinitely small conic, we see that the tan

gent plane at any of them will pass through the tangent line to

that conic; and this tangent line ultimately coincides with

the diameter conjugate to that drawn to the point of contact
;

for the tangent line is parallel to this conjugate diameter and

infinitely close to it.

Thus, then, all the tangent lines which can be drawn at

a point on a surface may be distributed into pairs, such that the

tangent plane at a consecutive point on either will pass through
the other. Two tangent lines so related are called conjugate

tangents.

In the case where the two inflexional tangents are real,

the relation between two conjugate tangents may be otherwise

stated. Take the inflexional tangents for the axes of x and y,

which is equivalent to making a and & = in the preceding

equation; then the equation of a consecutive tangent plane is

z + 2h (xy + yx] = 0. And since the lines x, y^ xy + y x,

x y yx form a harmonic pencil, we learn that a pair of

conjugate tangentsform ,
with the inflexional tangents^ a harmonic

pencil. This is in fact the theorem that a pair of conjugate
diameters of a conic are harmonics in regard to the asymptotes.

269. In the case where the origin is a parabolic point,

the equation of the surface can be thrown into the form

z + ay~ + &c. = 0, and the equation of a consecutive tangent

plane will be z + lay y = 0. Hence the tangent plane at every

point consecutive to a parabolic point passes through the in-
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flexional tangent; and if the consecutive point be taken in

this direction, so as to have y 0, then the consecutive tangent

plane coincides with the given one. Hence the tangent plane
at a parabolic point is to be considered as a double tangent

plane, since it touches the surface in two consecutive points.*
In this way parabolic points on surfaces may be considered

as analogous to points of inflexion on plane curves: for we
have proved (Higher Plane Curves, Art. 46) that the tangent
line at a point of inflexion is in like manner to be regarded
as a double tangent. A further analogy between parabolic

points and points of inflexion will be afterwards stated.

It is necessary to have a name to distinguish double

tangent planes which touch in two distinct points, from those

now under consideration, where the two points of contact coin

cide. We shall therefore call the latter stationary tangent

planes, the word expressing that the tangent plane being

supposed to move round as we pass from one point of the

surface to another, in this case it remains for an instant in

the same position. For the same reason we have called the

tangent lines at points of inflexion in plane curves, stationary

tangents.

270. If on transforming the equation to any point on a

surface as origin we have not only U
Q
=

0, but also all the terms

in Wj
=

0, so that the equation takes the form

ax* + by
2 + GZ* 4 2fyz + 2gzx + 2hxy + u

s + &c. = 0,

then it is easy to see, in like manner, that every line through
the origin meets the curve in two coincident points ;

and the

origin is then called a double or conical point. It is easy
to see also that a line through the origin there meets the

surface in three coincident points, provided that its direction-

cosines satisfy the equation

a cos
2
a + b cos*/? -f c cos

2

7

+ 2/ cos/3 cos7-i-2&amp;lt;7 cos^ cosa + 2h cosa cos/3 = 0.

* I believe this was first pointed out in a paper of mine, Cambridge and Dublin

Mathematical Journal, vol. in., p. 45.



GENERAL THEORY OF SURFACES. 241

In other words, through a conical point on a surface can be

drawn an infinity of lines which will meet the surface in three

coincident points^ and these will all lie on a cone of the second

degree whose equation is w
2
= 0. Further, of these lines six will

meet the surface in four coincident points; namely, the lines

of intersection of the cone u
2
with the cone of the third degree

u
s
= 0.

Double points on surfaces might be classified according to

the number of these lines which are real, or according as two

or more of them coincide, but we shall not enter into these

details. The only special case which it is important to mention

is when the cone u
&amp;gt;2

resolves itself into two planes ;
and this

again includes the still more special case when these two

planes coincide; that is to say, when u
2

is a perfect square.

271. Every plane drawn through a conical point may, in

one sense, be regarded as a tangent plane to the surface, since

it meets the surface in a section having a double point, but

in a special sense the tangent planes to the cone u
2
are to be

regarded as tangent planes to the surface, and the sections

of the surface by these planes will each have the origin as a

cusp. To a conical point, then, on a surface (which is a point

through which can be drawn an infinity of tangent planes),

will in general correspond on the reciprocal surface a plane

touching the surface in an infinity of points, which will in

general lie on a conic. If, however, the cone u
z
resolves itself

into two planes, the point is in the strict sense a double point,

and there corresponds to it on the reciprocal surface a double

tangent plane having two points of contact.

272. The results obtained in the preceding articles, by taking

as our origin the point wTe are discussing, we shall now extend

to the case where the point has any position whatever. Let us

first remind the reader (see p. 29) that since the equations of a

right line contain four constants, a finite number of right lines

can be determined to fulfil four conditions (as, for instance,

to touch a surface four times), while an infinity of lines can

be found to satisfy three conditions (as, for instance, to touch

II
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a surface three times), these right lines generating a certain

surface, and their points of contact lying on a certain locus.

In a subsequent chapter we shall return to the problem to

determine in general the number of solutions when four con

ditions are given, and to determine the degree of the surface

generated, and of the locus of points of contact, when three

conditions are given. In this chapter we confine ourselves to

the case when the right line is required to pass through a

given point, whether on the surface or not. This is equivalent

to two conditions
;
and an infinity of right lines (forming a

cone) can be drawn to satisfy one other condition, while a

finite number of right lines can be drawn to satisfy two other

conditions.

We use Joachimsthal s method employed, Conies, Art. 290,

Higher Plane Curves, Art. 59, and Art. 75 of this volume.

If the quadriplanar coordinates of two points be x y zw ,

x y z
w&quot;,

then the points in which the line joining them is

cut by the surface are found by substituting in the equation
of the surface, for x, \xf

-f
/ise&quot;,

for y, \y
f + py

ff

,
&c. The

result will give an equation of the w
tb

degree in X :
/*,

whose

roots will be the ratios of the segments in which the line joining

the two given points is cut by the surface at any of the points

where it meets it. And the coordinates of any of the points

of meeting are \ x + p x&quot;
,
\ y + pfy ,

\ z + fJi z&quot;,
\ w -f ti w&quot;,

where X : tf is one of the roots of the equation of the w
th

degree.

All this will present no difficulty to any reader who has mastered

the corresponding theory for plane curves. And, as in plane

curves, the result of the substitution in question may be written

x&quot;w + X-VA U + ix&quot;-yA* u
f

+ &c. = o,

where A represents the operation

d d d d

Following the analogy of plane curves we shall call the surface

represented by

* As at Art. 59, Uv Uz,
U3 , U^ denote the differential coefficients of U with

regard to x, y, z, w.
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the first polar of the point xyzw. We shall call

, d , d , d , d \
a

TT
T- + y -T + z T + w J-) U=
ax ay dz dwj

the second polar, and so on
;
the polar plane of the same point

being

Each polar surface is manifestly also a polar of the point xy z w
with regard to all the other polars of higher degree.

If a point be on a surface all its polars touch the tangent

plane at that point ;
for the polar plane with regard to the

surface is the tangent plane ;
and this must also be the polar

plane with regard to the several polar surfaces. This may
also be seen by taking the polar of the origin with regard to

U
Q
W* -f u

l

io
H~l

-f u
2
wn

~&quot; + &c.,

where we have made the equation homogeneous by the in

troduction of a new variable w. The polar surfaces of the origin

are got by differentiating with regard to this new variable.

Thus the first polar is

wi/X&quot;

1

+(&quot;-!) X&quot;

2 + (
n ~ 2

)
MX~

3
+ &c

-&amp;gt;

and if U
Q
=

0, the terms of the first degree, both in the surface

and in the polar, will be u
v

.

273. If now the point xyzw be on the surface, U vanishes,

and one of the roots of the equation in \ :
/j,

will be
//,
= 0.

A second root of that equation will be
/JL
=

0, and the line

will meet the surface in two coincident points at the point

x y z w
) provided that the coefficient of X&quot;

1

^ vanish in the

equation referred to. And in order that this should be the

case, it is manifestly sufficient that
x&quot;y&quot;ss&quot;w&quot;

should satisfy the

equation of the plane

It is proved, then, that all the tangent lines to a surface which

can be drawn at a given point lie in a plane whose equation
is that just written. By subtracting from this equation, the

identity
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we get the ordinary Cartesian equation of the tangent plane, viz.

(x-x ) U; + (y-y ) U.; + (z-z } U,
= 0.

Hence, again, by Art. 43, can immediately be deduced the

equations of the normal, viz.

ix x y y _z
- z

274. The right line will meet the surface in three con

secutive points, or the equation we are considering will have

for three of its roots
//,
=

0, if not only the coefficients of \n
and

V~V vanish, but also that of Xn
~*/*

8

;
that is to say, if the line

we are considering not only lies in the tangent plane, but

also in the polar quadric,

d d d d \
2

7++f+
Now (Art. 272) when a point is on a surface all its polars

touch the surface. The tangent plane therefore, touching the

polar quadric, meets it in two right lines, real or imaginary,
which are the two inflexional tangents to the surface.

(Art. 265).

275. Through a point on a surface can be drawn (n + 2) (n 3)

tangents which will also touch the surface elsewhere.

In order that the line should touch at the point x y zw ,

we must, as before, have the coefficients of V and \n ~ l

jj,
=

;

in consequence of which the equation we are considering be

comes one of the (n 2/
h

degree, and if the line touch the

surface a second time, this reduced equation must have equal

roots. The condition that this should be the case involves

the coefficients of that equation in the degree n 3
;

one term,
for instance, being (&

2 U .U)
n~3

. By considering that term we
see that this discriminant involves the coordinates x y z w in

the degree (n
-

2) (n 3), and xyzw in the degree (n + 2) (n 3).

When therefore xyzw
f

is fixed, it denotes a surface which

is met by the tangent plane in (n + 2) (n 3) right lines.

Thus, then, we have proved that at any point on a surface

an infinity of tangent lines can be drawn: that these in general
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lie In a plane ;
that two of them pass through three consecutive

points, and (n + 2) (n 3) of them touch the surface again.

276. Let us proceed next to consider the case of tangents

drawn through a point not on the surface. Since we have

in the preceding articles established relations which connect

the coordinates of any point on a tangent with those of the

point of contact, we can, by an interchange of accented and

unaccented letters, express that it is the former point which

is now supposed to be known, and the latter sought.

Thus, for example, making this interchange in the equation

of Art. 273, we see that the points of contact of all tangent

lines (or of all tangent planes) which can be drawn through
x y zw lie on the first polar, which is of the degree (n l): viz.

xU^yU^zU^wf

U,
= ^

And since the points of contact lie also on the given surface,

their locus is the curve of the degree n(n 1), which is the

intersection of the surface with the polar.

277. The assemblage of the tangent lines which can be

drawn through x y z w form a cone, the tangent planes to which

are also tangent planes to the surface. The equation of this

cone is found by forming the discriminant of the equation of

the n
th

degree in X (Art. 272). For this discriminant expresses
that the line joining the fixed point to xyzw meets the surface

in two coincident points ;
and therefore xyzw may be a point

on any tangent line through xyzw. The discriminant is easily

seen to be of the degree n (n 1), and it is otherwise evident

that this must be the degree of the tangent cone. For its

degree is the same as the number of lines in which it is met

by any plane through the vertex. But such a plane meets the

surface in a curve to which n (n ]
) tangents can be drawn

through the fixed point, and these tangents are also the tangent
lines which can be drawn to the surface through the given point.

278. Through a point not on the surface can in general be

drawn n (n 1) (n 2) inflexional tangents. We have seen

(Art. 274) that the coordinates of any point on an inflexional
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tangent are connected with those of its point of contact by
the relations 7 = 0, AZ7 =

0, A 2
Z7 = 0. If, then, we consider

the xyzw of any point on the tangent as known, its point of

contact is determined as one of the intersections of the given

surface
Z7,

which is of the nih
degree, with its first polar A

/,

which is of the (n l)
th

,
and with the second polar A2

7,
which

is of the (n 2)
th

. There are therefore n(n i)(ri 2) such

intersections. If the point be on the surface, this number is

diminished by six.

279. Through a point not on the surface can in general be

drawn \n (n 1) (n 2) (n 3) double tangents to it. The points

of contact of such lines are proved by Art. 275 to be the

intersections of the given surface, of the first polar, and of the

surface represented by the discriminant discussed in Art. 275,

and which we there saw contained the coordinates of the point

of contact in the degree (n 2)(n 3). There are therefore

n (n l)(n 2) ( 8) points of contact; and since there are

two points of contact on each double tangent, there are half

this number of double tangents. If the point be on the surface,

the double tangents at the point (Art. 275) count each for two,

and the number of lines through the point which touch the

surface in two other points is

Thus, then, we have completed the discussion of tangent

lines which pass through a given point. We have shewn that

their points of contact lie on the intersection of the surface

with one of the degree n -
1, that their assemblage forms a

cone of the degree n (n 1), that n(n l) (n 2) of them are

inflexional, and \n (n 1) (n 2) (n 3) of them are double.

These latter double tangents are also plainly double edges

of the tangent cone, since they belong to the cone in virtue of

each contact. Along such an edge can be drawn two tangent

planes to the cone, namely, the tangent planes to the surface

at the two contacts.

The inflexional tangents, however, are also to be regarded

as double tangents to the surface : since the line passing through
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three consecutive points is a double tangent in virtue of joining
the first and second, and also of joining the second and third.

The inflexional tangents are therefore double tangents whose

points of contact coincide. They are therefore double edges
of the tangent cone

;
but the two tangent planes along any

such edge coincide. They are therefore cuspidal edges of

the cone. We have proved, then, that the tangent cone which

is of the degree n (n 1) has n (n 1) (n 2) cuspidal edges,

and \n (n 1
) (n 2) (n 3) double edges ; that is to say, any

plane meets the cone in a section having such a number of

cusps and such a number of double points.

280. It is proved precisely as for plane curves (Higher Plane

Curves, Art. 132), that if we take on each radius vector a length

whose reciprocal is the nth
part of the sum of the reciprocals

of the n radii vectores to the surface, then the locus of the

extremity will be the polar plane of the point ;
that if the

point be on the surface, the locus of the extremity of the mean

between the reciprocals of the n 1 radii vectores will be the

polar quadric, &c.

By interchanging accented and unaccented letters in the

equation of the polar plane, it is seen that the locus of the

poles of all planes which pass through a given point is the

first polar of that point. The locus of the pole of a plane

which passes through two fixed points is hence seen to be a

curve of the (n I)
2

degree, namely, the intersection of the

two first polars of these points. We see also that the first

polar of every point on the line joining these two points must

pass through the same curve. And in like manner the first

polars of any three points on a plane determine by their in

tersection (n I)
3

points, any one of which is a pole of the

plane, and through these points the first polar of every other

point on the plane must pass.

281. From the theory of tangent lines drawn through a

point we can in two ways derive the degree of the reciprocal

surface. First, the number of points in which an arbitrary

line meets the reciprocal is equal to the number of tangent
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planes which can be drawn to the given surface through a

given line. Consider now any two points A and B on that

line, and let C be the point of contact of any tangent plane

passing through AB. Then, since the line AC touches the

surface, C lies on the first polar of A and for the like reason

it lies on the first polar of B. The points of contact, therefore,

are the intersection of the given surface, which is of the nih

degree, with the two polar surfaces, which are each of the degree

(/? 1). The number of points of contact, and therefore the

degree of the reciprocal, is n(n- I)
2
.

282. Otherwise thus : let a tangent cone be drawn to the

surface having the point A for its vertex; then since every

tangent plane to the surface drawn through A touches this

cone, the problem is,
to find how many tangent planes to the

cone can be drawn through any line AB] or if we cut the

cone by any plane through B, the problem is to find how many

tangent lines can be drawn through B to the section of the

cone. But the class of a curve whose degree is n (n
-

1), which

has n(n-l)(n 2) cusps, and \n (n l)(n- 2) (n
-

3) double

points, is

n (n
-

1) {n (n
-

1)
-

1}
- 3n (n

-
1) (n

-
2)

- n (n
-

1) (n
-

2) (n
-

3)
= n (n

- 1
)

2
.

Generally the section of the reciprocal surface by any plane

corresponds to the tangent cone to the original surface through

any point. And it is easy to see that the degree of the tangent

cone to the reciprocal surface (as well as to the original surface)

through any point is n (n
-

1).

283. Returning to the condition that a line should touch

a surface

xut+yuj+zuj + wu^o,
we see that if all four differentials be made to vanish by the

coordinates of any point, then every line through the point

meets the surface in two coincident points, and the point is

therefore a double point. The condition that a given surface

may have a double point is obtained by eliminating the vari-
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ables between the four equations U^
=

0, &c., and the function

equated to zero is called the discriminant of the given surface

(Lessons on Higher Algebra, Art. 105). The discriminant being

the result of elimination between four equations, each of the

degree n 1, contains the coefficients of each in the degree

(n I)
3

,
and is therefore of the degree 4 (n I)

3
in the coeffi

cients of the original equation.

It is obvious from what has been said, that when a surface

has a double point, the first polar of every point passes through
the double point.

The surfaces represented by U^ ?7
2 ,

&c. may happen not

merely to have points in common, but to have a whole curve

common to all four surfaces. This curve will then be a double

curve on the surface U, and every point of it will be a double

point, such that the tangent cone resolves itself into a pair of

planes. Now we saw (Art. 264) that the surface represented

by the general Cartesian equation of the wth
degree will, in

general, have an infinity of double tangent planes; the re

ciprocal surface therefore will, in general, have an infinity of

double points, which will be ranged on a certain curve. The

existence then of these double curves is to be regarded among
the &quot;

ordinary singularities&quot; of surfaces.

When the point xyzw is a double point, Uf
and AE7

vanish identically ;
and any line through the double point meets

the surface in three consecutive points if it satisfies the equation
AaU =

0, which represents a cone of the second degree.

284. The polar quadric of a parabolic point on a surface

is a cone.

The polar quadric of the origin with regard to any surface

u
n
wn
+

u^w&quot;

1 + ujo
n~* + &c. = 0,

(where, as in Art. 272, we have introduced w so as to make
the equation homogeneous) is found by differentiating n 2

times with respect to w. Dividing out by (n 2) (n 3). ..3,

and making w = l, the polar quadric is

n (n
-

1) M
O + 2 (n

-
1) u, 4- 2un

= 0.

KK
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Now the origin being a parabolic point, we have seen, Art. 266,
that the equation is of the form

e+Cy* + 2Dzx 4 2Ezy 4 Fz* 4 &c.,

or, in other words, u =
0, and u

2
is of the form u^vl

4 w*.

The polar quadric then is

z(n-\+ 2Dx 4 2Ey 4 Fz) 4 Cy*=Q.

But any equation represents a cone when it is a homogeneous
function of three quantities, each of the first degree. The

equation just written therefore represents a cone whose vertex

is the intersection of the three planes, 2, n I 4 ^Dx 4 %Ey 4 Fz,
and y. The two former planes are tangent planes to this cone,

and y the plane of contact.

285. It follows from the last article, that the locus of

points whose polar quadrics are cones meets the given surface

in its parabolic points. This locus is found by writing down

the discriminant of A 2
7 = 0. If #, 5, &c., denote the second

differential coefficients .
,.. ,

.
,., , &c., this discriminant will

ax ay
be a determinant formed with these coefficients, the developed
result being (Art. 67)

abed 4 2afmn 4 Vbgnl 4 2chlm 4 Zdfyli bcl* cam 1
a~bn* adf*

- Idf - cdh
2 4 IT + y + tftf - 2mngh - 2nlhf- Zlmfg = 0.

This denotes a surface of the degree 4 (n
-

2), which we shall

call the Hessian of the given surface. In the same manner

then, as the intersection of a plane curve with its Hessian de

termines the points of inflexion, so the intersection of a surface

with its Hessian determines a curve of the degree 4rc (n 2),

which is the locus of parabolic points (see Art. 269).

286. It follows from what has been just proved that through

a given point can lie drawn kn(n \}(n-%) stationary tangent

planes (see Art. 269). For since the tangent plane passes

through a fixed point, its point of contact lies on the polar

surface, whose degree is n 1
;

and the intersection of this

surface with the surface
Z7,

and the surface determined in the



GENERAL THEORY OF SURFACES. 251

last article as the locus of points of contact of stationary tangent

planes, determine n (n
-

1) (n
-

2) points.

Otherwise thus: the stationary tangent planes to the surface

through any point are also stationary tangent planes to the

tangent cone through that point, and if the cone be cut by

any plane, these planes meet it in the tangents at the points

of inflexion of the section. But the number of points of in

flexion on a plane curve is determined by the formula (Higher

Plane Curves, Art. 82)
I K = 3 (v fl).

But in this case, Art. 282, we have v = n (n 1)*, ^ = n (n 1) ;

therefore v
//,
= n (n

-
1) (n

-
2), K = n (n

-
1) (n

-
2). Hence,

as before, t,
= 4?z (n 1) (n 2).

The number of double tangent planes to the cone is de

termined by the formula

2(T -S) = (v- /,)( + /,-9),
where (Art. 282)

28 = n (n
- 1

) (n
-

2) (n
-

3) ; (v + p - 9)
= ?^

3 - n* - 9.

Hence 2r = n (n
-

1) (n
-

2) (n
3 - ri

z + n- 12).

It follows then, that through any point can be drawn T double

tangent planes to the surface, where r is the number just de

termined. It will be proved hereafter, that the points of contact

of double tangent planes lie on the intersection of the surface

with one whose degree is (n
-

2) (n
3

n* + n 12).

287. If a right line lie altogether in a surface it loill touch

the Hessian and therefore the parabolic curve (Cambridge and

Dublin Mathematical Journal^ vol. IV., p. 255).

Let the equation of the surface be
xcf&amp;gt;

4- yty
=

0, and let

us seek the result of making x and y = in the equation of

the Hessian, so as thus to find the points where the line meets

&amp;lt;FU d2U d 2U
that surtace. JNow, evidently, -j-s , -j 5 , -^ 7- ,

all containJ dz dw J dzdw f

x or y as a factor, and therefore vanish on this supposition.

And if we make c = 0, c? = 0, n = in the equation of the

Hessian, it becomes a perfect square (fl ginf^ shewing that

the right line touches the Hessian at every point where it

meets it. If we make ic = 0, ?/
= in fl gm^ it reduces to
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dd&amp;gt; d\!f dd&amp;gt; T . . .
-i-----2- __L

. it 13 evident that when the tangent planedz aw dw dz

touches all along any line, straight or curved, this line lies

altogether in the Hessian, and not only so, but in the case of a

straight line, it can be shewn that the surface and the Hessian

touch along this line.* The reader can verify this without

difficulty, with regard to the surface
x(f&amp;gt;

+ y^.

CURVATURE OF SURFACES.

288. We proceed next to investigate the curvature at any

point on a surface of the various sections which can be made

by planes passing through that point.

In the first place let it be premised that if the equation of

a curve be u
t
-f u

t2
+ u

3 -f &c. = 0, the radius of curvature at the

origin is the same as for the conic w
t
+ u^ For it will be

remembered that the ordinary expression for the radius of

curvature includes only the coordinates of the point and the

values of the first and second differential coefficients for that

point. But if we differentiate the equation not more than twice,

the terms got from differentiating w
3 ,

w
4 ,

&c. contain powers
of x and y, and will therefore vanish for x = 0, y 0. The
values therefore of the differential coefficients for the origin are

the same as if they were obtained from the equation u
:
4 u

2
= 0.

It follows hence that the radius of curvature at the origin

(the axes being rectangular) of y + ax2 + 2bxy + cy
2 + &c. =

is (see Conies. Art. 241) : or this value can easily be found
2a ^

directly from the ordinary expression for the radius of curva

ture (Higher Plane Curves, Art. 100).

289. Let now the equation of a surface referred to any

tangent plane as plane of xy, and the corresponding normal

as axis of 2, be

* + Axz + ZBxy + Cy* + 2Dxz -f
&amp;lt;2Eyz

-fW + &c. = 0,

and let us investigate the curvature of any normal section, that

*
Cayley,

&quot; On Reciprocal Surfaces,&quot; Phil Trans., vol. 159, 1869, see p. 208.
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is, of the section by any plane passing through the axis of z.

Thus, to find the radius of curvature of the section by the

plane xz, we have only to make y = in the equation, and

we get a curve whose radius of curvature is half the reciprocal

of A. In like manner the section by the plane yz has its

radius of curvature = half the reciprocal of C. And in order

to find the radius of curvature of any section whose plane makes

an angle 9 with the plane xz, we have only to turn the axes of

x and y through an angle (by substituting x cos 6 y sin 9

for
cc,

and x sin# + y cos# for
?/, Conies, Art. 9) ;

and by then

putting y = it appears, as before, that the radius of curvature

is half the reciprocal of the new coefficient of x2

;
that is to say,

- = A cos*0 + 2B cos sin 9 + C sin
2
0.

290. The reader will not fail to observe that this expression
for the radius of curvature of a normal section is identical in

form with the expression for the square of the diameter of a

central conic in terms of the angles which it makes with the

axes of coordinates. Thus if p be the semi-diameter answering
to an angle 9 of the conic Ax2 + 2Bxy + Q/

2 =
^-,
we have R p*.

It may be seen, otherwise, that the radii of curvature are

connected with their directions in the same manner as the

squares of the diameters of a central conic. For we have

seen that the radii of curvature depend only on the terms in

u^ and w
2

. The radii of curvature therefore of all the sections

of w, + w
2 -I- us -+ &c. are the same as those of the sections of

the quadric u
l
+ u

3 ;
and it was proved (Art. 194) that these are

all proportional to the squares of the diameters of the central

section parallel to the tangent plane.

It is plain that the conic, the squares of whose radii are pro

portional to the radii of curvature, is similar to the indicatrix.

291. &quot;NYe can now at once apply to the theory of these

radii of curvature all the results that we have obtained for

the diameters of central conies. Thus we know that the

quantity A cos
2 + %B cos 9 sin 9 + C sm*# admits of a maxi

mum and minimum value
;

that the values of 9 which corre-
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spond to the maximum and minimum are always real, and

belong to directions at right angles to each other; and that

those values of 6 are given by the equation (see Conies^ Art. 155)

B cos*0 - (.4
-

C) cos sin 6-B sin*0 = 0.

Hence, at any point on a surface there are among the normal

sections, one for which the value of the radius of curvature

is a maximum and one for which it is a minimum
;
the direc

tions of these sections are at right angles to each other; and

they are the directions of the axes of the indicatrix. They

plainly bisect the angles between the two inflexional tangents.

We shall call these the principal sections, and the correspond

ing radii of curvature the principal radii.

If we turn round the axes of x and y so as to coincide

with the directions of maximum and minimum curvature just

determined, it is known that the quantity Ax* + iBxy + Cy*
will take the form A x* + B y*. Now the formula of Art. 289,

when the coefficient of xy vanishes, gives the following

expression for the half reciprocal of any radius of curvature

-^ = u4 cos
2

&amp;lt;9+ sin&quot;#. But evidently A and B are the

values of this half reciprocal corresponding to 6 = 0, and 6 = 90.

Hence any radius of curvature is expressed in terms of the

two principal radii p and p ,
and of the angle which the direction

of its plane makes with the principal planes, by the formula

1 cos
2

&amp;lt;9 sin
2

,__ i . &
r&amp;gt;

&quot;~

h, p p

It is plain (as in Conies, Art. 157) that A and B
,
or

, t -,
zp ~p

are given by a quadratic equation, the sum of these quantities

being A + G and their product AC B\
When p = p ,

all the other radii of curvature are also =
p.

The form of the equation then is z -f A (x? + y*) + &c. = 0, or

the indicatrix is a circle. The origin is then an umbilic.

From the expressions in this article we deduce at once, as

in the theory of central conies, that the sum of the reciprocals

of the, radii of curvature of two normal sections at rialit angles

* This formula (with the inferences drawn from it) is due to Euler.
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to each other is constant ; and again, if normal sections be made

through a pair of conjugate tangents (see Art. 268) the sum

of their radii of curvature is constant.

292. It will be observed that the radius of curvature, being

proportional to the square of the diameter of a central conic,

does not become imaginary, but only changes sign, if the

quantity A cos
2 9 4- 2B cos sin 0+ C sin

2
9 becomes negative.

Now if radii of curvature directed on one side of the tangent

plane are considered as positive, those turned the other way
must be considered as negative ;

and the sign changes when

the direction is changed in which the concavity of the curve

is turned.

At an elliptic point on a surface
;
that is to say, when B*

is less than AC, the sign of A cos
2 + 22? cos 6 sin 6 -f C sin

2
#

remains the same for all values of
;
and therefore at such

a point the concavity of every section through it is turned in

the same direction.

At a hyperbolic point, that is to say, when B* is greater,

than AC, the radius of curvature twice changes sign, and the

concavity of some sections is turned in an opposite direction

to that of others. The surface, in fact, cuts the tangent plane
in the neighbourhood of the point, and the inflexional tangents
mark the directions in which the surface crosses the tangent

plane and divide the sections whose concavity is turned one

way from those in which it is turned the other way.* And when

we have chosen a hyperbola, the squares of whose diameters

are proportional to one set of radii, then the other set of radii

are proportional to the squares of the diameters of the con

jugate hyperbola.

293. Having shewn how to find the radius of curvature

of any normal section, we shall next shew how to express,

in terms of this, the radius of curvature of any oblique section,

inclined at an angle $ to the normal section, but meeting the

* The illustration of the summit of a mountain pass, or of a saddle, will enable

the reader to conceive how a surface may in two directions sink below the tangent

plane, and on the other sides rise above it
;
a mountain summit is an instance of an

elliptic point.
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tangent plane in the same line. Thus we have seen that the

radius of curvature of the normal section made by the plane

2/
= is half the reciprocal of A. Now let us turn the axes

of?/ and z round in their plane through an angle &amp;lt;p (which is

done by substituting z cos$-?/ sin^ for 0, and z sin
&amp;lt;f&amp;gt;

+ y cos&amp;lt;

for y}. If we now make the new y = 0, we shall get the

equation (still to rectangular axes) of the section by a plane

making an angle $ with the old plane y = 0, but still passing

through the old axis of x and this equation will plainly be

= 3 cos $ + Ax
2
-f 2 (B sin

&amp;lt;f&amp;gt;

+ D cos $) xz

4- (
C sin

a
+ 2E sin

&amp;lt;f&amp;gt;

cos &amp;lt; 4-F cos
J

&amp;lt;/&amp;gt;)

z
2
-f &c.

and by the same method as before the radius of curvature is

cos
found to be --TJ r is

=jftcos&amp;lt;,
where E is the radius

of curvature of the corresponding normal section. This is

MEUNIER S THEOREM, that the radius of curvature of an oblique

section is equal to the projection on the plane of this section of

the radius of curvature of a normal section passing through the

same tangent line. Thus we see that of all sections which can

be made through any line drawn in the tangent plane, the

normal section is that whose radius of curvature is greatest ;

that is to say, the normal section is that which is least curved

and which approaches most nearly to a straight line.

Meunier s theorem has been already proved in the case

of a quadric (Art. 194), and we might therefore, if we had

chosen, have dispensed with giving a new proof now; for

we have seen that the radius of curvature of any section of

tr
t+ tf,

+ ft,+ &C. is the same as that of the corresponding

section of the quadric u^ -f u
z
.

294. It was proved (Art. 203) that if two surfaces u
l
+u

t
+&c.

J

u +^2
+ &c. touch, their curve of intersection has a double point,

the two tangents at which are the intersections of the plane u^

with the cone w
2

v
a
. When the plane touches the cone, the

surfaces have what we have called stationary contact. It is

also proved, as at Art. 205, that a sphere has stationary contact

with a surface when the centre is on the normal and the radius
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equal to one of the principal radii of curvature. In fact, the

condition for stationary contact between

z 4 ax* 4 2hxy 4 by* + &c., z 4 ax2 4 2h xy 4 b y
2 4 &c.

Is (a-a )(b-b )
= (h-hj,

which, when h and li both vanish, implies either a = a
f
or b = b .

The surface therefore 2 4 &amp;lt;4a?

2 + By* 4 &c. will have stationary

contact with the sphere 2rz + xz + y
2 + z* if r =

j
or ^ ;

but

these are the values of the principal radii.

295. The principles laid down in the last article enable

us to find an expression for the values of the principal radii

at any point the axes of coordinates having any position.

If we transform the equation to any point x y z on the

surface as origin, it becomes

dU dU dU lid d d \x -j-r + y ~T~? + z TT + T^( X -r~ +y ~T- + Z
~J- \ax ay dz 1.2 \ ax dy dz J

or, denoting the first differential coeflScients by Z, I/, N, and

the1 second by a, &, e, &c.,

2 (Lx 4- My + Nz] + ax* + ly* + cz
2 + 2fyz -+ 2^aa;+ 2Aicy+ &c. = 0.

The equation then of any sphere having the same tangent

plane is, assuming the axes to be rectangular,

2 (Lx 4 My + Nz) + X (x* 4 y* 4 *)
=

0,

and this sphere will have stationary contact with the quadric if

X be determined so as to satisfy the condition that Lx 4 My 4 Nz
shall touch the cone

(a -\)x
2

+(b- X) y
2 4 (c

-
X) z* 4 Zfyz 4 2#z;e 4 Zhxy = 0.

This condition is

a X, A, &amp;lt;7,

.Zy

A, J-X, /, M
9,

L* =
0,

which expanded is

LL
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or X is given by the quadratic

(L* + M* + N z

)\*-{(b + c}U + (c + a}M*+ (a

- 2fMN-
4- (be -f2

)
U 4- (ca

-
g

2

}
M* + (al

- h
2

)
N 2

4- 2 (ffh
-
af) MN+ 2 (Jif- Iff) NL + 2 (fg

-
ch) LM = 0.

Now if r be the radius of the sphere

X (x
2 + f 4- *) + 2 (ia? -F My + Nz) = 0,

2 Z,4-Jlf* + -AT*
we have r =-

s
-

. We therefore fand the principal

,.. , , . . , .
.,

,.
radii by substituting

5- tor X in the preceding

quadratic.

The absolute term in the equation for X may be simplified

by writing for Z, M, N their values from the equations

(n 1) L = ax +% + gz + lw^ &c.,

77&quot;
2

when the absolute term reduces to -
^ where ZT is the

Hessian, written at full length, Art. 285. We might have seen

a priori that, for any point on the Hessian, the absolute term

must vanish. For since the directions of the principal sections

bisect the angles between the inflexional tangents ;
when the

inflexional tangents coincide, one of the principal sections coin

cides with their common direction, and the radius of curvature

of this section is infinite, since three consecutive points are

on a right line. Hence one of the values of X (which is

the reciprocal of r) must vanish. By equating to zero the

coefficient of X in the preceding quadratic, we obtain the

equation of a surface of the degree 3rc 4, which intersects

the given surface in all the points where the principal radii

are equal and opposite: that is to say, where the indicatrix

is an equilateral hyperbola.

The quadratic of this article might also have been found

at once by Art 102, which gives the axes of a section of the

quadric
ax* + ly

2

4 cz
z
4- 2fy* 4- tyzx 4- ^hxy

- 1

made parallel to the plane Lx 4- My
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296. From the equations of the last article we can find

the radius of curvature of any normal section meeting the

tangent plane in a line whose direction-angles are given.

For the centre of curvature lies on the normal, and if we

describe a sphere with this centre, and radius equal to the

radius of curvature, it must touch the surface, and its equa
tion is of the form

2 (Lx + My + Nz) + \ (x* 4- y* 4- *)
= 0.

The consecutive point on that section of the surface which we
are considering satisfies this equation, and also the equation
u

l
4- ut

=
0, that is

2 (Lx 4- My + Nz) 4- ax
2
-f by

9 + cz* -f 2fyz + 2gzx + 2hxy = 0.

Subtracting, we find

_ ax* 4- &y + cz* 4- 2fyss 4- Vgzx 4- 2hxy
x* + y* + z*

And since this equation is homogeneous, we may write for

;r, z/,
s the direction-cosines of the line joining the consecutive

point to the origin. As in the last article \ = --
.

Hence

$*a+b cos
z

/34-c cos*74-2/ cos/3 00374- 2gcosy cosa4-2A cosacos/3
*

The problem to find the maximum and minimum radius of

curvature
is, therefore, to make the quantity

ax3
4- by

3 + cz* 4- 2fyz 4- Zgzx 4- 2hxy

a maximum or minimum, subject to the relations

And thus we see, again, that this is exactly the same problem
as that of finding the axes of the central section of a quadric

by a plane Lx + My 4- Nz.

297. In like manner the problem to find the directions of
the principal sections at any point is the same as to find the

directions of the axes of the section by the plane Lx 4- My + Nz
of the quadric ax* 4- by* 4- cz* 4- 2fyz 4- 2gzx 4- 2hxy = 1.
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Now given any diameter of a quadric, one section can

be drawn through it having that diameter for an axis
;

the

other axis being obviously the intersection of the plane perpen
dicular to the given diameter with the plane conjugate to it.

Thus, if the central quadric be U= 1, and the given diameter

pass through x y z
,
the diameter perpendicular and conjugate

is the intersection of the planes

xx + yy +zz =
Q) x ^ + y 7 + z

fU
s
= 0.

If the former diameter lie in a plane Lx + My + Nz\ the

latter diameter traces out the cone which is represented by
the determinant obtained on eliminating x y z from the three

preceding equations : vi?.

(Mz-Ny] U^(Nx-Lz} U
z +(Ly-Mx] Z7

3
= 0.

And this cone must evidently meet the plane Lx -f My -f Nz
in the axes of the section by that plane, Thus, then, the

directions of the principal sections are determined as the inter

section of the tangent plane Lx + My -f Nz with the cone

(Mz
-
Ny] (ax + Jiy + gz] -f (Nx - Lz] (hx -f ly +fz)

-r (Ly
- MX) (gx +fy + cz)

=
0,

or (Mg - Nh) x* 4 (Nh - Lf) y* + (Lf- Mg} z*

298. The methods used in Art. 295 enable us also easily

to find the conditions for an umbilic.* If the plane of xy be

* It might be imagined that we could obtain a single condition for an umbilic by

expressing that the quadratic (Art. 295) for the determination of the principal radii of

curvature shall have equal roots. But, as at Art. 83, this quadratic, having its roots

always real, is one of the class discussed Higher Algebra, Art. 44, the discriminant

of which can be expressed as a sum of squares. If we make these squares separately

vanish, we obtain two conditions, which are more easily found as in the text.

In plane geometry, the problem of finding when ax* + 2hxy + by&quot;

1 1 repre

sents a circle may be solved by taking the quadratic which gives the maximum
or minimum values of x1 + y

1 = p, viz. (ap
-

1) (bp
-

1)
- h2

p
2 = 0, and forming the

condition that the quadratic shall have equal roots, viz. (a #)
2 + 4/i2 = 0. Now thia

single condition is not the condition that the curve shall be a circle, for either of the

factors a b 2hi separately equated to zero only expresses that the curve passes

through one of the circular points at infinity. But if we have both factors simul

taneously = 0, that is to say, if we have a b = 0, h = 0, the curve passes through

both circular points and is a circle. And the theory in regard to the umbilics is
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the tangent plane at an umbilic, the equation of the surface

is of the form

z + A (x* + /) + 2Dxz + %Eyz + Fz* 4 &c. =
;

and if we subtract from it the equation of any touching

sphere, viz.

it is evidently possible so to choose X (namely, by taking it

= A) that all the terms in the remainder shall be divisible

by z. We see, thus, that if u
t
4 u

2
4 &c. represent the surface,

and w, -f Xv
2 any touching sphere, it is possible, when the

origin is an umbilic, so to choose X that w
2

\v
2 may contain

Wj as a factor. We see, then, by transformation of coordinates

as in Art. 295, that any point x y z will be an umbilic if it

is possible so to choose X that

(a
-

X) x* +(b-\}y
z + (c- X) z* + Zfyz 4 2gzx 4 2hxy

may contain as a factor Lx 4 My 4 Nz. If so, the other factor

must be

a X b X c X
~TT ~W yJ( ~N~

Multiplying out and comparing the coefficients of yz^ zx,

we get the conditions

Eliminating X between these equations, we obtain for an umbilic

the two conditions

bN* + cM* - 2/MN cU + aN* - ZcjLN _ aM* + ILZ - 2hLM

almost identical : the points on the surface for which the two radii of curvature are

equal are points such that for each of them one of the inflexional tangents meets the

imaginary circle at infinity ;
an umbilic is a point such that both the inflexional

tangents meet the circle at infinity. The first-mentioned points form on the surface

an imaginary locus having the umbilics for double points.
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Since there are only two conditions to be satisfied, a surface

of the nih
degree has in general a determinate number of

umbilics; for the two conditions, each of which represents a

surface, combined with the equation of the given surface, de

termine a certain number of points. It may happen, however,
that the surfaces represented by the two conditions intersect

in a curve which lies (either wholly or in part) on the given
surface. In such a case there will be on the given surface

a line, every point of which will be an umbilic. Such a

line is called a line of spherical curvature.

299. Before applying the conditions of the last article, the

form in which we have written them requires that the following
considerations should be attended to.

These equations appear to be satisfied by making L =
0,

lN* + cM*-2fMNa =-T vjg
-

;
whence we might conclude that the

surface L must always pass through umbilics on the given
surface. Now it is easy to see geometrically that this is not

the case, for L (or Z7J is the polar of the point yzw with

respect to the surface, so that if L necessarily passed through
umbilics it would follow by transformation of coordinates that

the first polar of every point passes through umbilics. On

referring to the last article, however, it will be seen that the

investigation tacitly assumes that none of the quantities X, J/, N
vanish

;
for if any of them did vanish, some of the equations

which we have used would contain infinite terms. Supposing
then L to vanish, we must examine directlv the condition that

/ r

My + Nz may be a factor in

(a
-

\) x* + (b-\}y* + (c
-

X) z
2
-f 2fyz + 2gzx + 2hxy.

We must evidently have \ = a, and it is then easily seen that

,, , ... .

we must, as before, have a =-^ =-=5^
-

, while inN + M*

addition, since the terms 2gzx + 2hxy must be divisible by

My + Nzj we must have Mg = Nh. Combining then with the

two conditions here found, L =
0, and the equation of the

surface, there are four conditions which, except in special

cases, cannot be satisfied by the coordinates of any points.
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If we clear of fractions the conditions given in the last

article, it will be found that they each contain either .L, J/,

or N as a factor. And what we have proved in this article

is that these factors may be suppressed as irrelevant to the

question of urabilics.

Again, it can be shown that, introducing homogeneous coor

dinates as in Art. 295, the numerators of the above fractions

multiplied by (n 1)*, are respectively

n(n-l)(bc -/
2

)
U- (Dx* + Aw* - 2Lxw),

n(n-l)(ca- g
z

)
U- (Dy* + Bw* - 2Myw),

n(n-l) (ab- h*) U- (Dz
2 + Cw* - 2Nzw),

where A, B, C, D, L, M, N are the functions of a, &, c, &c. de

fined in Art. 67. Hence our equations are satisfied for U= by
w = 0, Z&amp;gt;

=
0, but these are the points of inflexion of the

intersection of U with the plane at infinity, which are also

irrelevant to the question of umbilics.*

We now proceed to draw some other inferences from what

was proved (Art. 294) ; namely, that the two principal spheres
have stationary contact with the surface.

300. When two surfaces have stationary contact, they touch

in two consecutive points.

* From what has been said we can infer the number of umbilics which a surface

of the n degree will in general possess. We have seen that the umbilics are deter

mined as the intersection of the given surface with a curve whose equations are of

A B C
the form

,
=

t
=

-^-,
. Now if A, B, C be of the degree /, and A

,
B

,
C of the

A. JD C

degree m, then AB BA
,
AC CA are each of the degree l + m, and intersect in

a curve of the degree (I + m)
2

. But the intersection of these two surfaces includes

the curve AA of the degree hn which does not He on the surface BC CB . The

degree therefore of the curve common to the three surfaces is I
2 + Im + m2

. In the

present case / = Bn 4, m = 2re 2, and the degree of the curve would seem to be

19re2 46rc + 28. But we have seen that the system we are discussing includes three

curves such as

L, o (Jf
2 + ^V 2

)
- (6A

T 2 + cJ/ 2 -
2/J/tf )

which do not pass through umbilics. Subtracting therefore from the number just

found 3 (n 1) (Bn 4), we see that the umbilics are determined as the intersection

of the given surface with a curve of the degree (10
2 25 + 16), but from the

number of points thus found we must subtract Bn (n 2) for the inflexions on the

intersection of the given surface with the plane at infinity. Thus the number of

umbilics is n (lOrc
2 28n + 22). (Voss, Math. Annalen IX. 1876). In particular, when

n = 2, then the number is twelve, viz. there are four umbilics in each of the principal

planes.



264 CURVATUKE OF SURFACES.

The equations of the two surfaces being

z + ax2 + 2hxy -f by* + &c. = 0, z + V + 2h xy -f Vy* + &c.
f

the tangent planes at a consecutive point are (Art. 262}

z + 2 (ax -f Jiy }
x + 2 (hx + by ) y = 0,

^4-2 (ax + A ?/ )
ic + 2 (AV + b

f

y
f

) y = 0.

That these may be identical, we must have

ax +% = aV + Ay, hx + ?/
= AV -f- b y \

and eliminating a/ : y between these equations, we have

(a-a )(b-b )
= (h-hj,

which is the condition for stationary contact.

The sphere, therefore, whose radius is equal to one of the

principal radii, touches the surface in two consecutive points ;

or two consecutive normals to the surface are also normals to

the sphere, and consequently intersect in its centre. Now we

know that in plane curves the centre of the circle of curvature

may be regarded as the intersection of two consecutive normals

to the curve. In surfaces the normal at any point will not

meet the normal at a consecutive point taken arbitrarily. But

we see here that if the consecutive point be taken in the

direction of either of the principal sections, the two consecutive

normals will intersect, and their common length will be the

corresponding principal radius. On account of the importance

of this theorem we give a direct investigation of it.

301. To find in what cases the normal at any point on a

surface is intersected by a consecutive normal. Take the tangent

plane for the plane of xy, and let the equation of the surface be

z + Ax2- + 2Bxy + Cy* -H %Dxz + ZEyz + Fz* + &c. = 0.

Then we have seen (Art. 268) that the equation of a consecutive

tangent plane is

z -f 2 (Ax + By] x + 2 (Bx 4- Cy ) y = 0,

and a perpendicular to this through the point x y will be

x x y y
Bx + Cy

&amp;gt;

= 2z.
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This will meet the axis of z (which was the original normal) if

_
Ax + By Bx + Cy&quot;

The direction therefore of a consecutive point whose normal

meets the given normal is determined by the equation

+ (C-A) x y - By
* = 0.

But this is the same equation (Art. 291) which determines the

directions of maximum and minimum curvature. At any point

on a surface therefore there are two directions, at right angles
to each other, such that the normal at a consecutive point

taken on either intersects the original normal. And these

directions are those of the two principal sections at the point.

Taking for greater simplicity the directions of the principal

sections as axes of coordinates; that is to say, making B = Q

in the preceding equations, the equations of a consecutive normal

, x x y y . .

become ,
= &amp;gt;7

,
=

2z, whence it is easy to see that the

normals corresponding to the points y 0, x = intersect the

axis of z at distances determined respectively by 2Az + 1=0,
2 Cz + 1 = 0. The intercepts therefore on a normal by the two

consecutive ones which intersect it are equal to the principal

radii.*

We may also arrive at the same conclusions by seek

ing the locus of points on a surface, the normals at which meet

a fixed normal which we take for axis of z. Making x = 0,

?/
= in the equation of any other normal, we see that the

* M. Bertrand, in his theory of the curvature of surfaces, calculates the angle
made by the consecutive normal with the plane containing the original normal

and the consecutive point x y . Supposing still the directions of the principal sec

tions to be axes of coordinates, the direction-cosines of the consecutive normal are

proportional to 2Ax
, 2(7y ,

while those of a tangent line perpendicular to the radius

vector are proportional to y ,
x

,
0. Hence the cosine of the angle between these

two lines, or the sine of the angle which the consecutive normal makes with the

normal section, is proportional to 2(CA) x y ; or, if a be the angle which the

direction of the consecutive point makes with one of the principal tangents, is

proportional to (C A] sin 2a. &quot;When a = 0, or = 90, this angle vanishes, and the

consecutive normal is in the plane of the original normal.

MM



266 CURVATURE OF SURFACES.

point where it meets the surface must satisfy the condition

U
z
x = U

}y. The curve where this surface meets the given
surface has the extremity of the given normal for a double

point, the two tangents at which are the two principal tangents

to the surface at that point. (See Ex. 9, p. 101).

The special case where the fixed normal is one at an

umbilic deserves notice. The equation of the surface being of

the form z + A (x* + #
2

) + &c. = 0, the lowest terms in the equa
tion xU^ yU^ when we make 2 = 0, will be of the third

degree, and the umbilic is a triple point on the curve locus.

Thus while every normal immediately consecutive to the normal

at the umbilic meets the latter normal, there are three directions

along any of which the next following normal will also meet

the normal at the umbilic.*

302. A line of curvature^ on a surface is a line traced on

it, such that the normals at any two consecutive points of it

intersect. Thus, starting with any point M on a surface, we

may go on to either of the two consecutive points JV, N ,
whose

normals were proved to intersect the normal at M. The normal

at JV, again, is intersected by the consecutive normals at two

points, P, P
,

the element NP being a continuation of the

element MN while the element NP is approximately per

pendicular to it. In like manner we might pass from the point

P to another consecutive point Q, and so have a line of curva

ture MNPQ. But we might evidently have pursued the same

* Sir W. R. Hamilton has pointed out (Elements of Quaternions, Art. 411) how
this is verified in the case of a quadric. He has proved that the two imaginary

generators (see Art. 139) through any umbilic are lines of curvature, the third line of

curvature through the umbilic being the principal section in which it lies. In fact,

for a point on a principal section, the cone (Ex. 9, p. 101) breaks up into two planes.

The normal therefore at such a point only meets the normals at the points of the

principal section, and at the points of another plane section. For the umbilic the

latter plane is a tangent plane and the section reduces to the imaginary generators.

The normals along either lie in the same imaginary plane. At every point on either

generator, distinct from the umbilic, the two directions of curvature coincide with the

line, which is perpendicular to itself (Conies, p. 351). There is, however, some

speciality as regards the theory of the umbilics of a quadric.

t The whole theory of lines of curvature, umbilics, &c. is due to Monge. See his

&quot;Application de 1 Analjse a la Geometric,&quot; p. 124, Liouville s edition.
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process had we started in the direction 3N . Hence, at any

point M on a surface can be drawn two lines of curvature
;

these cut at right angles and are touched by the two &quot;

prin

cipal tangents&quot; at J/. A line of curvature will ordinarily not

be a plane curve, and even in the special case where it is

plane it need not coincide with a principal normal section at M,

though it must touch such a section. For the principal section

must be normal to the surface, and the line of curvature may be

oblique.

A very good illustration of lines of curvature is afforded

by the case of the surfaces generated by the revolution of any

plane curve round an axis in its plane. At any point P of

such a surface one line of curvature is the plane section passing

through P and through the axis, or, in other words, is the

generating curve which passes through P. For, all the normals

to this curve are also normals to the surface, and, being in

one plane, they intersect. The corresponding principal radius

at P is evidently the radius of curvature of the plane section

at the same point. The other line of curvature at P is the

circle which is the section made by a plane drawn through
P perpendicular to the axis of the surface

;
for the normals

at all the points of this section evidently intersect the axis

of the surface at the same point, and therefore intersect each

other. The intercept on the normal between P and the axis

is plainly the second principal radius of the surface.

The generating curve which passes through P is a prin

cipal section of the surface, since it contains the normal and

touches a line of curvature
;
but the section perpendicular to the

axis
is,

in general, not a principal section because it does not

contain the normal at P. The second principal section at that

point would be the plane section drawn through the normal at

P and through the tangent to the circle described by P. The

example chosen serves also to illustrate Meunier s theorem
;

for the radius of the circle described by P (which, as we have

seen, is an oblique section of the surface) is the projection on

that plane of the intercept on the normal between P and the

axis, and we have just proved that this intercept is the radius

of curvature of the corresponding normal section.
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303. It was proved (Art. 297) that the direction-cosines of

the tangent line to a principal section fulfil the relation

(Mcosy JV cos/3) (a cosa+^cos/9-f^ 0037)

-f (N COBOL - L 0087) (h cosa-f b cos/3 -}-/ cosy)

+ (L cos/3 M cos a) (# cosa+/cos/3-f c 0057) = 0.

Now the tangent line to a principal section is also the tangent

to the line of curvature
; while, if ds be the element of the

arc of any curve, the projections of that element upon the

three axes being dx, dy, dz, it is evident that the cosines of

, , , . , 7 , .11 dx dy dz
the angles which as makes with the axes are -y- , -^ , -7- .

The differential equation of the lines of curvature is therefore

got by writing dx, dy, dz for cos a, cos/3, 0037 in the preceding

formula.

This equation may also be found directly as follows (see

Gregory s Solid Geometry, p. 256) : Let a, /3, 7 be the co

ordinates of a point common to two consecutive normals.

Then, if xyz be the point where the first normal meets

the surface, by the equations of the normal we have

a x 8 y &amp;lt;y

z . n ,1 i e= = u =
S-jf ; or, if we call the common value ot

these fractions 0, we have

But if the second normal meet the surface in a point x + dx,

y 4- dy, z + dz, then, expressing that a/37 satisfies the equations

of the second normal, we get the same results as if we differen

tiate the preceding equations, considering a/37 as constant, or

dx -f Ld6 + 6dL = 0, dy + Mdd 4- 0dM= 0, dz + Ndd 4- 0dN= 0,

from which equations eliminating 6, dd, we have the same

determinant as in Art. 297, viz.

dx, dy, dz

L, M, N
dL, dM, dN = 0,

Of course

, dM=Jidx+ldy+fdz,
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Ex. To find the differential equation of the lines of curvature of the ellipsoid

Here we have

L = JIT =. N dL = , d3I ^ dN= .

a2 b2 c2 a2 b- c2

Substituting these values in the preceding equation it becomes, when expanded,

(b
2 - c2

) xdydz + (c
2 - a2) ydzdx + (a

2 - b2
) zdxdy = 0.

Knowing, as we do, that the lines of curvature are the intersections of the ellipsoid

with a system of concentric quadrics (Art. 1 96), it would be easy to assume for the

integral of this equation Ax2 + By2 + Cz2 = 0, and to determine the constants by
actual substitution. If we assume nothing as to the form of the integral we can

eliminate z and dz by the help of the equation of the surface, and so get a differ

ential equation in two variables which is the equation of the projection of the lines

of curvature on the plane of xy. Thus, in the present case, multiplying by and
C&quot;

reducing by the equation of the ellipsoid and its differential, we have

{(b
2 - c2

) xdy + (c
2 - a2

) ydx] {^ +^j
= (a

2 - b2
)
jl

-
g
-

f-*
1 dx dy,

O / TO y2N A2 /y2 1\2\

or writing
- = A,

-
\-

-r- = B,

the integral of which (see Boole s Differential Equations, Ex. 3, p. 135) is, with C an

arbitrary constant,

^1__ = 1

B BC AC+i
or the lines of curvature are projected on the principal plane into a series of conies

whose axes a
,
b are connected by the relation

a -,

(g*
- c2} b 2

(b
2 - c2)

a2
(a

2 - b2
)

+
b2 (b

2 - a2
)

~

It is not difficult to see that this coincides with the account given of the lines of

curvature in Art. 196.

304. The theorem that confocal quadrics intersect in lines

of curvature is a particular case of a theorem due to Dupin,
which we shall state as follows : If three surfaces intersect at

right angles, and if each pair also intersect at right angles at

their next consecutive common point, then the directions of the

intersections are the directions of the lines of curvature on each.

Take the point common to all three surfaces as origin, and
the three rectangular tangent planes as coordinate planes ; then
the equations of the surfaces are of the form

x + ay* + ^byz + c^&quot; + 2dzx + &c. = 0,

y + aV 4 Zb zx -f cV -f 2d zy+ &c. = 0,

z + aV + Wxy +
c&quot;y*

+ &c. = 0.
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At a consecutive point common to the first and second surfaces,

we must have x = 0, y = 0, z /, where z is very small. The

consecutive tangent planes are

2b z x + (] + Zd z)y + 2aYz = 0.

Forming the condition that these should be at right angles and

only attending to the terms where z is of the first degree, we

have b + b = Q.

In like manner, in order that the other pairs of surfaces

may cut at right angles at a consecutive point, we must have

V + 1) =
0, W + b = 0, and the three equations cannot be ful

filled unless we have 5, 6
,

l&amp;gt;&quot; each separately
=

;
in which

case the form of the equations shows (Art. 301) that the axes

are the directions of the lines of curvature on each. Hence

follows the theorem in the form given by Dupin ;* namely, that

if there be three systems of surfaces, such that every surface of one

system is cut at right angles by all the surfaces of the other two

systems, then the intersection of two surfaces belonging to different

systems is a line of curvature on each. For, at each point of

it,
it

is, by hypothesis, possible to draw a third surface cutting

both at right angles.

305. A line of curvature is, by definition, such that the

normals to the surface at two consecutive points of it intersect

each other. If, then, we consider the surface generated by all

the normals along a line of curvature, this will be a developable

surface (Note, p. 89) since two consecutive generating lines in

tersect. The developable generated by the normals along a line

of curvature manifestly cuts the given surface at right angles.

*
Developpements de Geometric, 1813. p. 330. The demonstration here given

is by Professor W. Thomson : see Gregory s Solid Geometry, p. 263. Cambridge
Mathematical Journal, Vol. iv., p. 62. See also the proof by R. L. Ellis, Gregory s

Examples, p. 215. A closely connected theorem is the following :

If two surfaces cut at right angles, and if their intersection is a line of curvature

on one, it is also a line of curvature on the other.

This may be proved as in the text
;

viz. taking the origin at any point on the

intersection of the two surfaces, then if they cut at right angles b + b = 0. Hence if

b = 0, then also b = 0, which proves the theorem. The theorem is also true if the

surfaces cut at any constant angle,
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The locus of points where two consecutive generators of

a developable intersect is a curve whose properties will be

more fully explained in the next chapter, it is called the

cuspidal edge of that developable. Each generator is a tan

gent to this curve, for it joins two consecutive points of the

curve; namely, the points where the generator in question

is met by the preceding and by the succeeding generator (see

Art. 123).

Consider now the normal at any point M of a surface
;

through that point can be drawn two lines of curvature

MNPQ, &c., MN FQ ,
&c.: let the normals at the points

M, N) P, Q, &c., intersect in
(7, Z&amp;gt;, E, &c., and those at

M, N ,
P

, Q in tf
,

Z&amp;gt;

,
E

;
then it is evident that the curve

CDEj &c., is the cuspidal edge of the developable generated by
the normals along the first line of curvature, while C D E is

the cuspidal edge of the developable generated by the normals

along the second. The normal at J/, as has just been ex

plained, touches these curves at the points 7, G\ which are

the two centres of curvature corresponding to the point M.

What has been proved may be stated as follows. The

cuspidal edge of the developable generated by the normals

along a line of curvature is the locus of one of the systems of

centres of curvature corresponding to all the points of that line.

306. The assemblage of the centres of curvature
(7, C

answering to all the points of a surface is a surface of two

sheets, called the surface of centres (see Art. 198). The curve

CDE lies on one sheet while C D E lies on the other sheet.

Every normal to the given surface touches both sheets of the

surface of centres : for it has been proved that the normal at

M touches the two curves CDE, G D E
,
and every tangent

line to a curve traced on a surface is also a tangent to the

surface.

Now if from a point, not on a surface, be drawn two con

secutive tangent lines to the surface, the plane of those lines is

manifestly a tangent plane to the surface
;

for it is a tangent

plane to the cone which is drawn from the point touching the

surface. But if two consecutive tangent lines intersect on the
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surface, it cannot be inferred that their plane touches the

surface. For if we cut the surface by any plane whatever^

any two consecutive tangents to the curve of section (which)
of course, are also tangent lines to the surface) intersect on the

curve, and yet the plane of these lines is supposed not to touch

the surface.

Consider now the two consecutive normals at the points

J/, N, these are both tangents to both sheets of the surface

of centres. And since the point C in which they intersect is on

the first sheet but not necessarily on the second, the plane of

the two normals is the tangent plane to the second sheet of

the surface of centres.

The plane of the normals at the points M, Nf
is the tangent

plane to the other sheet of the surface of centres. But because

the two lines of curvature through M are at right angles to

each other, it follows that these two planes are at right angles
to each other. Hence, the tangent planes to the surface of centres

at the two points (7,
C

,
where any normal meets

it, cut each

other at right angles.

307. It is manifest that for every umbilic on the given surface

the two sheets of the surface of centres have a point common ;

or, in other words, the surface of centres has a double point ;

and if the original surface have a line of spherical curvature,

the surface of centres will have a double line. The two sheets

will cut at right angles everywhere along this double line.

This, however, is not the only case where the surface of centres

has a double line. A double point on that surface arises not

only when the two centres which belong to the same normal

coincide, but also when two different normals intersect, and the

point of intersection is a centre of curvature for each. It was

shewn, Arts. 2989, that a surface of the w
tu

degree possesses

ordinarily a definite number of umbilics, and, therefore, in

general not a line of spherical curvature. Hence a double line

of the first kind is not among the ordinary singularities of the

surface of centres. But that surface will in general have a

double line of the second kind. Through any point several

normals can be drawn to a surface : every point on the surface
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of centres is a centre of curvature for one of these normals,

each point of a certain locus on the surface will be a centre of

curvature for two normals, and there will even be a definite

number of points each a centre of curvature for three normals.*

308. It is convenient to define here a geodesic line on a

surface, and to establish the fundamental property of such

aline; namely, that its osculating plane (see Art. 123) at any

point is normal to the surface. A geodesic line is the form

assumed by a strained thread lying on a surface and joining

any two points on the surface. It is plain that the geodesic

is ordinarily the shortest line on the surface by which the two

points can be joined, since, by pulling at the ends of the

thread, we must shorten it as much as the interposition of the

surface will permit. Now the resultant of the tensions along
two consecutive elements of the curve, formed by the thread,

lies in the plane of those elements, and since it must be de

stroyed by the resistance of the surface, it is normal to the

surface; hence, the plane of two consecutive elements of the geo

desic contains the normals to the surface.^

* The possibility of double lines of the second kind -was overlooked by Monge
and by succeeding geometers ;

and. oddly enough, first came to be recognized in con

sequence of Prof. Kummer s having had a model made of the surface of centres of an

ellipsoid (see Monatsberichte of the Berlin Academy, 1862). Instead of finding the

sheets, as he expected, to meet only in the points corresponding to the umbilics, he

found that they intersected in a curve, and that they did not cut at right angles along
this line. Of course when the existence of the double line was known to be a

fact its mathematical theory was evident. Clebsch had, on purely mathematical

grounds, independently arrived at the same conclusion in an elaborate paper on the

normals to an ellipsoid, of equal date with Kummer s paper, though of later pub
lication. A discussion of the surface of centres of an ellipsoid, founded on Clebsch s

paper, will be given in Chapter xiv.

f I have followed Monge hi giving this proof, the mechanical principles which,

it involves being so elementary that it seems pedantic to object to the introduction

them. For the benefit of those who prefer a purely geometrical proof, one or two
are added in the text. For readers familiar with the theory of maxima and minima
it is scarcely necessary to add that a geodesic need not be the absolutely shortest line

by which two points on the surface may be joined. Thus, if we consider two points

on a sphere joined by a great circle, the remaining portion of that great circle, ex

ceeding 180, is a geodesic, though not the shortest line connecting the points. The

geodesic, however, will always be the shortest line if the two points considered be

taken sufficiently near.

NK



274 CURVATURE OF SURFACES.

The same thing may also be proved geometrically. In the

first place, if two points A, C in different planes be connected

by joining each to a point B in the intersection of the two

planes, the sum of AB and BG will be less than the sum of

any other joining lines AB
,
B C, if AB and BG make equal

angles with TT
,
the intersection of the planes. For if one

plane be made to revolve about TT until it coincide with the

other, AB and BG become one right line, since the angle TEA
is supposed to be equal to T BG\ and the right line AC is

the shortest by which the points A and G can be joined.

It follows, that if AB and BG be consecutive elements

of a curve traced on a surface, that curve will be the shortest

line connecting A and G when AB and BG make equal

angles with BT, the intersection of the tangent planes at A
and G.

We see, then, that AB (or its production) and BG are con

secutive edges of a right cone having BT for its axis. Now
the plane containing two consecutive edges is a tangent plane

to the cone; and since every tangent plane to a right cone

is perpendicular to the plane containing the axis and the line

of contact, it follows that the plane ABC (the osculating plane

to the geodesic) is perpendicular to the plane AB, BT, which

is the tangent plane at A. The theorem of this article is thus

established.

M. Bertrand has remarked (Liouville, t. XIII., p. 73, cited

by Cayley, Quarterly Journal, vol.
I., p. 186) that this funda

mental property of geodesies follows at once from Meunier s

theorem (see Art. 293). For it is evident, that for an inde

finitely small arc, the chord of which is given, the excess in

length over the chord is so much the less as the radius of

curvature is greater. The shortest arc, therefore, joining two

indefinitely near points A, B, on a surface is that which has

the greatest radius of curvature, and we have seen that this

is the normal section,

309. Returning now to the surface of centres, I say that

the curve GDE (Art. 306), which is the locus of points of inter

section of consecutive normals along a line of curvature, is
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a geodesic on the sheet of the surface of centres on which it

lies. For we saw (Art. 306) that the plane of two consecutive

normals to the suriace (that is to say, the plane of two

consecutive tangents to this curve) is the tangent plane to the

second sheet of the surface of centres and is perpendicular to

the tangent plane at C to that sheet of the surface of centres

Dn which C lies. Since, then, the osculating plane of the curve

CDE is always normal to the surface of centres, the curve is

a geodesic on that surface.

310. We have given the equations connected with lines of

curvature on the supposition that the equation of the surface

is presented, as it ordinarily is, in the form &amp;lt; (#, y, z}
= 0.

As it is convenient, however, that the reader should be able

to find here the formulae which have been commonly employed,
we conclude this chapter by deriving the principal equations

in the form given by Monge and by most subsequent writers,

viz. when the equation of the surface is in the form z = &amp;lt; (#, ?/).

We use the ordinary notations

ds =pdx + qdy, dp = rdx + sdy, dq = sdx + tdy.

We might derive the results in this form from those found

already ;
for since U= $ (a?, y] z = 0, we have

dU_ dD_ dU_
~d^~^ ~dy~^ ~te~~

with corresponding expressions for their second differential

coefficients. We shall, however, repeat the investigations for

this form as they are usually given.

The equation of a tangent plane is

z-z =p(x- x) + q(y- y )&amp;gt;

and the equations of the normal are

(x x)+p(z z) = ) y y +
&amp;lt;i(

z - z
}
= o.

If then a/?7 be any point on the normal, and xyz the point

where it meets the surface, we have
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And if a/?7 also satisfy the equations of a second normal, the

differentials of these equations must vanish, or

dx +pdz (7 z) dp, dy 4 qdz = (7 z] dq ;

whence, eliminating (7 2), we have the equation of condition

(dx +pdz) dq = (dy + qdz] dp.

Putting in for dz, dp, dq their values already given, and

arranging, we have

{(1 + 2&quot;) -pgt} + {(1 + 2&quot;)

-
(1 +/) *}

-
{(

This equation determines the projections on the plane of xy of

the two directions in which consecutive normals can be drawn

so as to intersect the given normal.

311. From the equations of the preceding article we can

also find the lengths of the principal radii. The equations

dx -\-pdz
= (7 2) dp, dy + qdz = (7

-
z) dq,

when transformed as above become

{1 +p* (7 z} r] dx + {pq (7 2) s] dy 0,

whence eliminating dx : dy, we have

Now 7 z is the projection of the radius of curvature on the

axis of z
;
and the cosine of the angle the normal makes with

that radius beiner r--r,

-^ we have.* *

fi=(y-z) V(H-/ + &amp;lt;? ).

Eliminating then 7 z by the help of the last equation, R is

given by the equation

J2
2

(rt
-

**)
- E {(I +

a

)
r - 2pqs + (I +/) t] V(l +p* + f)

312. From the preceding results can be deduced Joachim-

sthal s theorem (see Crelle, vol. xxx., p. 347) that if a line

of curvature be a plane curve, its plane makes a constant



CURVATURE OF SURFACES. 277

angle with the tangent plane to the surface at any of the

points where it meets it. Let the plane be 3 = 0, then the

equation of Art. 310

(dx + pdz) dq = (dy -f qdz] dp
becomes dxdq = dydp. But we have also pdx + qdy = 0, con

sequently pdp -f qdq = ; p
2 + f = constant. But p* + is the

square of the tangent of the angle which the tangent plane

makes with the plane xy, since cos7=

Otherwise thus (see Liouville, vol. XI., p. 87) : Let J/J/
,

M M&quot; be two consecutive and equal elements of a line of

curvature, then the two consecutive normals are two perpen
diculars to these lines passing through their middle points /, 1

,

and C the point of meeting of the normals is equidistant from

the lines J/J/
,

1TJ/&quot;. But if from C we let fall a perpen
dicular CO on the plane MM M&quot;^

will be also equidistant

from the same elements; and therefore the angle CIO= CI O.

It is proved then that the inclination of the normal to the plane
of the line of curvature remains unchanged as we pass from

point to point of that line.

More generally let the line of curvature not be plane. Then
as before, the tangent planes through J/J/ and through M M&quot;

make equal angles with the plane MM M&quot;. And evidently

the angle which the second tangent plane makes with a second

osculating plane M M&quot;H&quot; differs from the angle which it

makes with the first by the angle between the two osculating

planes. Thus we have Lancret s theorem, that along a line

of curvature the variation in the angle between the tangent plane
to the surface and the osculating plane to the curve is equal to

the angle between the two osculating planes.

For example, if a line of curvature be a geodesic it must

be plane. For then the angle between the tangent plane and

osculating plane does not vary, being always right ;
therefore

the osculating plane itself does not vary.

313. Finally, to obtain the radius of curvature of any
normal section. Since the centre of curvature a/3y lies on

the normal, we have
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Further, we have

(a -*)+( -^+(7-*) = ^.

And since this relation holds for three consecutive points of the

section which is osculated by the circle we are considering,

we have

(a
-

x] dx + (ft y] dy + (7
-

z] dz =
0,

(a
-

x) d*x + (0-y) d*y + (7
-

)
d2

z = dx* + dy* + dz*.

Combining this last with the preceding equations, we have

OL-X __/3 y _ &amp;lt;y z_ R _ dx* + dy* + dz*

p q I V(l +P* + &amp;lt;)

~
pd*x + ^y - d*z

&quot;

But differentiating the equation dz pdx + qdy ,
we have

qd
2

y = rdx* + 2sdxdy

, 73 7/1 * , *\
dx* + dy* + ( pdx + qdy}*whence R = + V(l + P + Q )
-r~^-r^-Vr^-* ;
rdx* + 2*efojrfy + tdy*

The radius of curvature, therefore, of a normal section whose

projection on the plane of xy is parallel to y mx is

r

The conditions for an umbilic are got by expressing that this

value is independent of m^ and are
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CHAPTER XII.

CURVES AND DEVELOPABLES.

SECTION I. PROJECTIVE PROPERTIES.

314. IT was proved (p. 13) that two equations represent

a curve in space. Thus the equations 7=0, F=0 represent

the curve of intersection of the surfaces
7,

V.

The degree of a curve in space is measured by the number

of points in which it is met by any plane. Thus, if
Z7, V be

of the mth and ?z
th

degrees respectively, the surfaces which they

represent are met by any plane in curves of the same degrees,

which intersect in mn points. The curve UV is therefore of

the 7?i7i
th

degree.

By eliminating the variables alternately between the two

given equations, we obtain three equations

which are the equations of the projections of the curve on

the three coordinate planes. Any one of the equations taken

separately represents the cylinder whose edges are parallel to

one of the axes, and which passes through the curve (Art. 25).

The theory of elimination shows that the equation (?/, z)
=

obtained by eliminating x between the given equations is of

the ??27i
th

degree. And it is also geometrically evident that

any cone or cylinder* standing on a curve of the r
tb

degree
is of the 7*

th

degree. For if we draw any plane through the

vertex of the cone [or parallel to the generators of the cylinder]

this plane meets the cone in r lines
; namely, the lines joining

the vertex to the r points where the plane meets the curve.

* A cylinder is plainly the limiting case of a cone, -whose vertex is at infinity.
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315. Now, CODY \f we are given any curve in space

and desire to represent it by equations, we need only take the

three plane curves which are the projections of the curve on

the three coordinate planes; then any two of the equations

$ (y, r)
=

0, ifr (*, x) = Q, x (* JO = W1tt represent the given

curve, Bat ordinarily these will not form the simplest system

of equations by which the curve can be represented. For \f

r be the degree of the curve, these cylinders being each of

the i* degree, any two intersect in a curve of r* degree ;
that

is to say, not merely in the curve we are considering but in

an extraneous curve of the degree t* r. And if we wish

not only to obtain a system of equations satisfied by the

points of the given curve, but also to exclude all extraneous

pc-in:?. vre c:;:?: preserve tha sysiem tt :::ree yr:;ec:
:

.o::s: for

the projection on the third plane of the extraneous curve in

which the first two cylinders intersect will be different from

die projection of the given curve.

It May be possible by combining the equations of the three

projections to arrive at two equations U 0, V 0, which shall

be satisfied for the points of the given curve, and for no other.

But it is not generally true that every curve in space is the

complete intersection of two surfaces. To take the simplest

example, consider two quadrics having a right line common,

as, for example, two cones having a common edge. The

intersection of these surfaces, which is in general of the fourth

degree, must consist of the common right line, and of a curve

of the third degree. Now since the only factors of 3 are 1

and 3, a curve of the third degree cannot be the complete
intersection of two surfaces unless it be a plane curve; but

the curve we are considering cannot be a plane curve,* for

if so any arbitrary line in its plane would meet it in three

points, but such a line could not meet either quadric in more

points than two, and therefore could not pass through three

points of their curve of intersection.

IB vixxt foDows, I use the void &quot;

curve&quot; to denote

anfimfly K not a plane carve, and I add the adjective

\
-

: : . 5::.:-. -. :.. :-._-.=
._

: ..: : .-. : . ^ --.-.
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316. The question thus arises how to represent in general a,

curve in space, by equations. Several answers may be given.

(A). Generalizing the method at the beginning of the last

article, we may consider a set of surfaces 7=0, V= 0, TF= 0,

&c. (where U, F, IF, ... are rational and integral func

tions of the coordinates], all passing through the given curve.

This being so, if J/, JV, P, &c. are also rational and integral

ftinctions of the coordinates, then MU+ -3TF4-PJF-K..=0 is

a surface passing through the curve. If any one of the original

equations can be thus represented by means of the other

equations, e.g. if we have identically U= JVF-fPTF-1- ..., we

reject this equation ;
and if we have through the curve any

surface whatever T=0 which is not thus representable (viz.

if Tis not of the form T=MU+NV+ PTT-f ...), then we

join on the equation T= to the original system; and so on:

if,
as may happen, the adjunction of any new equation renders

a former equation superfluous, such former equation is to be

rejected. We thus arrive at a complete system of surfaces

passing through the given curve, viz. such a system is 27=0,

F=0, TF=0, ... where these functions are not connected by

any such equation as U=SV+ PTF+..., and where every other

surface which passes through the curve is expressible in the

form MU+ ^F-}-PTF-K..=0. It is not easy to prove, but it

may safely be assumed, that for a curve of any given order

whatever, the number of equations in such a complete system is

finite. And we have thus the representation of a curve in space

by means of a complete system of surfaces passing through it.

(B}. Taking as vertex an arbitrary point, the cone passing

through a given curve of the order m is, as we have seen,

of the order 771
;
and it is such that each generating line meets

the curve once only. Hence we can on each generating line

of a cone of the order m determine a single point in such-

wise that the locus of these points is a curve of the order m.

It would at first sight appear that we might thus determine

the curve as the intersection of the cone by a surface of the

order
it, having at the vertex of the cone an

( l)-ple

point; for then each generating line of the cone meets the

surface in the vertex counting [n 1} times, and in one other

DO
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point. But the curve of intersection is not then in general a

curve of the order ?w, but is a curve of the order mn having
a singular point at the vertex. To cause this curve to

be of the order
y/z,

the surface of the order n with the

(n l}-ple point must be particularised; such a surface has

through the multiple point n(n l) right lines
;

and if any
one or more of these lines are on the cone, the complete in

tersection of the cone and surface will include as part of itself

such line or lines, and there will be a residual curve of an

order less than mn^ and which may reduce itself to m
;

viz. the

complete intersection of the cone and surface will then consist

of m (n 1) lines through the vertex (or rather of lines counting
this number of times), and of a residual curve of the order

m. The analytical representation of the curve (using quad-

riplanar coordinates) is by means of two equations the cone

(a?, y, z)
m =

0, and the monoid
(a?, ?/, z}

n
+ w (a?, y, z)

n~l = par
ticularised as above.*

((7). The coordinates of any point of a curve in space may
be given as functions of a single parameter 0. They cannot

in general be thus expressed as rational functions of 0, for

this would be a restriction on the generality of the curve in

space (the curve would in fact be unicursal) ;
but if we imagine

two parameters #, $ connected by an algebraic equation, then

the coordinates of the point of the curve in space may be taken

to be rational functions of 0, &amp;lt;f). Or, what is the same thing,

V
writing ^

and
p instead of 0, &amp;lt;/&amp;gt;,

we have between f, 77,
an

equation ( , 77, f)

m =
0, and then (using for the curve in space

quadriplanar coordinates) cr, T/, 2, w proportional to rational

and integral functions (f, 77, f)
M

;
we thus determine the curve

in space, by expressing the coordinates of any point thereof

rationally in terms of the coordinates of a point of the plane

curve (f , 77, )

m = 0.

(D). A curve in space will be determined if we determine

all the right lines which meet it
;

viz. if we establish between

the six coordinates of a right line the relation which expresses

that the line meets the curve. Such relation is expressed by

* See Cayley, Comptes Rendus, t. LIV. (1862), pp. 55, 396, 672.
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a single equation (p, q, r, s, , u)
m = between the coordinates

of a right line. But the difficulty is that, not every such

equation, but only an equation of the proper form, expresses

that the right line meets a determinate curve in space. Thus

the general linear relation (p, q, ?*, s, #, u)
1 = is not the equation

of any line in space ;
the particular form

ps -f qt + ru + sp + tq + ur =
0,

where (p , q j /, s
, ^, u) are constants such that p s +qt -\-r u=Q

is the equation of a right line, viz. of the line the six coordinates

of which are (p , c[, /, s
, , u) ;

in fact, the equation obviously

expresses that the line (p, q, r, 5, , u) meets this line.

317. If a curve be either the complete or partial inter

section of two surfaces
7, F, the tangent to the curve at any

point is evidently the intersection of the tangent planes to the

two surfaces, and is represented by the equations

When we use rectangular axes, the direction-cosines of the

tangent are plainly proportional to MN H N^ NL N L,
L^l

f - L M, where Z, JJ/,
&c. are the first differential coefficients.

An exceptional case arises when the two surfaces touch, in

which case the point of contact is a double point on their

curve of intersection. All this has been explained before (see

Art. 203). As a particular case of the above, the projection of

the tangent line to any curve is the tangent to its projection ;

and when the curve is given as the intersection of the two

cylinders y =-
&amp;lt;f&amp;gt; (0), x y^(z)^ the equations of the tangent are

f
d&amp;lt;f&amp;gt; f ^ r

This may be otherwise expressed as follows: Consider any
element of the curve ds-, it is projected on the axes of co

ordinates into dxj dy, dz. The direction-cosines of this element

,, dx dy dz ,
,

are tneretore -j- ,

~
, -7- ,

and the equations or the tangent are

x x
f

y y
f

z z

dx dy dz

ds ds ds
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Since the sum of the squares of the three cosines is equal to

unity, we have ds* = dx* + dy* + dz*.

We shall postpone to another section the theory of normals,
radii of curvature, and in short everything which involves

the consideration of angles, and in this section we shall

only consider what may be called the projective properties of

curves.

318. The theory of curves is in a great measure identical

with that of developables, on which account it is necessary to

enter more fully into the latter theory. In fact it was proved

(Art. 123) that the reciprocal of a series of points forming a

curve is a series of planes enveloping a developable. We there

showed that the points of a curve regarded as a system of

points 1, 2, 3, &c. give rise to a system of lines; namely, the

lines 12, 23, 34, &c. joining each point to that next consecutive,

these lines being the tangents to the curve
;
and that they also

give rise to a system of planes, viz. the planes 123, 234, &c.

containing every three consecutive points of the system, these

planes being the osculating planes of the curve. The as

semblage of the lines of the system forms a surface whose

equation can be found when the equation of the curve is given.

For, the two equations of the tangent line to the curve involve

the three coordinates x, y ,
3

,
which being connected by two

relations are reducible to a single parameter; and by the

elimination of this parameter from the two equations, we obtain

the equation of the surface. Or, in other words, we must

eliminate xy z between the two equations of the tangent and

the two equations of the curve. We have said (Art. 123)

that the surface generated by the tangents is a developable,

since every two consecutive positions of the generating line

intersect each other. The name given to this kind of surface

is derived from the property that it can be unfolded into a

plane without crumpling or tearing. Thus, imagine any series

of lines Aa, Bb^ &amp;lt;7c, Dd^ &c. (which for the moment we take

at finite distances from each other) and such that each inter

sects the consecutive in the points #, 5, c, &c.
;
and suppose

a surface to be made up of the faces AaB, j?5(7, CcD, &c.,
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then It is evident that such a surface could be developed into

a plane by turning the face AaB round aB as a hinge until

it formed a continuation of BbC; by turning the two, which

we had thus made into one face, round cC until they formed

a continuation of the next face, and so on. In the limit when

the lines Aa, Bb, &c. are indefinitely near, the assemblage of

plane elements forms a developable which, as just explained,

can be unfolded into one plane.

The reader will find no difficulty in conceiving this from

the examples of developables with which he is most familiar,

viz. a cone or a cylinder. There is no difficulty in folding

a sheet of paper into the form of either surface and in un

folding it again into a plane. But it will easily be seen to

be impossible to fold a sheet of paper into the form of a sphere

(which is not a developable surface) ; or, conversely, if we cut

a sphere in two it is impossible to make the portions of the

surface lie smooth in one plane.

But in order to exhibit better the form of a developable

surface, as also its cuspidal curve afterwards referred to, take

two sheets of paper, and cutting out from these two equal

circular annuli (e.g. let the radii of the two circles be 3 inches

and 4^ inches), and placing these one upon the other, gum
them together along the inside edge by means of short strips

of muslin or thin paper 5
wre have thus a double annulus,

which, so long as it remains complete, can only be bent in the

same way as if it were single ;
but cutting through the double

annulus along a radius, and taking hold of the two extremities,

the whole can be opened out into two sheets of a developable

surface, of which the inner circle, bending into a curve of double

curvature, is the cuspidal curve or edge of regression.*

It is to be added, that if we draw on each of the two sheets

the tangents to the inner circle, and consider each tangent as

formed of two halves separated by the point of contact, then

when the paper is bent into a developable surface as above,

a set of half-tangents on the one sheet will unite writh a set

* Thomson and Tait (1867), p. 97. Prof. Cayley mentions that he believes the

construction is due to Prof. Blackburn.
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of half-tangents on the other sheet to form the generating
lines on the developable surface

;
while the remaining two sets

of half-tangents will unite to form on the developable surface

a set of curves of double curvature, each touching a generating
line at a point of the cuspidal curve, in the manner that a plane
curve touches its tangent at a point of inflexion.

319. The plane AaB containing two consecutive gene

rating lines is evidently, in the limit, a tangent plane to the

developable. It is obvious that we might consider the surface

as generated by the motion of the plane AaB according to

some assigned law, the envelope of this plane in all its positions

being the developable. Now if we consider the developable

generated by the tangent lines of a curve in space, the equa
tions of the tangent at any point xyx are plainly functions

of those coordinates, and the equation of the plane containing

any tangent and the next consecutive (in other words, the

equation of the osculating plane at any point xy z) is also

a function of these coordinates. But since x y z are connected

by two relations, namely, the equations of the curve, we can

eliminate any two of them, and so arrive at this result, that

a developable is the envelope of a plane whose equation contains

a single variable parameter. To make this statement better

understood we shall point out an important difference between

the cases when a plane curve is considered as the envelope of

a moveable line, and when a surface in general is considered as

the envelope of a moveable plane.

320. The equation of the tangent to a plane curve is a

function of the coordinates of the point of contact
;
and these

two coordinates being connected by the equation of the curve,

we can either eliminate one of them, or else express both in

terms of a third variable so as to obtain the equation of the

tangent as a function of a single variable parameter. The

converse problem, to obtain the envelope of a right line whose

equation includes a variable parameter has been discussed,

Higher Plane Curves, Art. 86. Let the equation of any tan

gent line be u = 0, where u is of the first degree in x and y,
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and the constants are functions of a parameter t. Then
the line answering to the value of the parameter t + h is

u 4- -r- - -f- -TT 4- &c. ; and the point of intersection of these
at I df 1.2

,...,. . du h a?u
f,

two lines is given by the equations u = 0, -j- + T r -TT + &c. = 0.
/ - J. . 2&amp;gt;

1 1 1

And, in the limit, the point of intersection of a line with the

next consecutive (or, in other words, the point of contact of

any line with its envelope) is given by the equations w = 0,

-,- = 0. If from these two equations we eliminate t we obtain

the locus of the points of intersection of each line of the system
with the next consecutive

;
that is to say, the equation of the

envelope of all these lines. It is easy to prove that the result

of this elimination represents a curve to which u is a tangent.

We get that result, if in u we replace t by its value, in terms of

x and
2/,

derived from the equation
= 0. Now, if we differen-

. du fdu\ du dt , du fdu\ du dt
tiate, we have y-

=
(-r -f -^ -=- and ^ =

(-,-
1 + -y- j- ,ax \dxj at ax ay \ay/ at ay

. fdu\ fdu\ -. .
,

where ( -=-
J ,

( -5- 1 are the differentials or u on the supposition

that t is constant. And since = it is evident that -5- . -y-
dt ax ay

are the same as on the supposition that t is constant. It follows

that the eliminant in question denotes a curve touched by u.

If it be required to draw a tangent to this curve through

any point, we have only to substitute the coordinates of that

point in the equation u = 0, and determine t so as to satisfy

that equation. This problem will have a definite number of

solutions, and the number will plainly be the number of tan

gents which can be drawn to the curve from an arbitrary

point ;
that is to say, the class of the curve. For example,

the envelope of the line

where o, 6, c, d, are linear functions of the coordinates, is

plainly a curve of the third class.
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321. Now let us proceed in like manner with a surface.

The equation of the tangent plane to a surface is a function

of the three coordinates, which being connected by only one

relation (viz. the equation of the surface), the equation of the

tangent plane, when most simplified, contains two variable

parameters. The converse problem is to find the envelope of

a plane whose equation u contains two variable parameters

s,
t. The equation of any other plane answering to the

values s + h, t + Jc will be

du . du

as at] 1.2

Now, in the limit, when li and k are taken indefinitely small,

they may preserve any finite ratio to each other k = \h. We
see thus that the intersection of any plane by a consecutive

one is not a definite line, but may be any line represented by
du du , . . ,

the equations u = Q,
-T- + X-^- = 0, where X is indeterminate.
as at

But we see also that all planes consecutive to u pass through
, , . du du

the point given by the equations u 0, -7- = 0, -y- = 0.

From these three equations we can eliminate the parameters

5, ,
and so find the locus of all those points where a plane of

the system is met by the series of consecutive planes. It is

proved, as in the last article, that the surface represented by
this eliminant is touched by u. If it be required to draw a

tangent plane to this surface through any point, we have only

to substitute the coordinates of that point in the equation u = 0.

The equation then containing two indeterminates 5 and t can

be satisfied in an infinity of ways ; or, as we know, through
a given point an infinity of tangent planes can be drawn to

the surface, these planes enveloping a cone.

Suppose, however, that we either consider t as constant,

or as any definite function of 5, the equation of the tangent

plane is reduced to contain a single parameter, and the envelope

of those particular tangent planes which satisfy the assumed con

dition is a developable. Thus, again, we may see the analogy

between a developable and a curve. When a surface is con-
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sidered as the locus of a number of points connected by a given

relation, if we add another relation connecting the points we
obtain a curve traced on the given surface. So when we con

sider a surface as the envelope of a series of planes connected

by a single relation, if we add another relation connecting the

planes we obtain a developable enveloping the given surface.

322. Let us now see what properties of developables are to

be deduced from considering the developable as the envelope

of a plane whose equation contains a single variable parameter.

In the first place it appears that through any assumed point

can be drawn, not, as before, an infinity of planes of the system

forming a cone, but a definite number of planes. Thus, if it

be required to find the envelope of at
3 + Sbi* -f Set + d, where

a, &amp;gt;, c, d represent planes, it is obvious that only three planes

of the system can be drawn through a given point, since on

substituting the coordinates of any point we get a cubic for t.

Again, any plane of the system is cut by a consecutive plane

in a definite line
; namely, the line u 0, -j-

=
;

and if we

eliminate t between these two equations, we obtain the sur

face generated by all those lines, which is the required

developable.

It is proved, as at Art. 320, that the plane u touches the

developable at every point which satisfies the equations w = 0,

-j-
=

; or, in other words, touches along the whole of the line

of the system corresponding to u. It was proved (Art. 110)
that in general when a surface contains a right line the tangent

plane at each point of the right line is different. But in the

case of the developable the tangent plane at every point is

the same. If x be the plane which touches all along the line

the equation of the surface can be thrown into the form
=

(see Art. 110).*

* It seems unnecessary to enter more fully into the subject of envelopes in general,
since what is said in the text applies equally if u, instead of representing a plane,
denote any surface whose equation includes a variable parameter. Monge calls the

PP
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323. Let us now consider three consecutive planes of the

system, and it is evident, as before, that their intersection satisfies

the equations u 0, -^-
=

0, --7-5
= 0. For any value of #,

the

point is thus determined where any line of the system is met

by the next consecutive. The locus of these points is got by

eliminating t between these equations. We thus obtain two

equations in a?, ?/, 2, one of them being the equation of the

developable. These two equations represent a curve traced

on the developable. Thus it is evident that, starting with the

definition of a developable as the envelope of a moveable plane,

we are led back to its generation as the locus of tangents to

a curve. For the consecutive intersections of the planes form

a series of lines, and the consecutive intersections of the lines

are a series of points forming a curve to which the lines are

tangents. We shall presently show that the curve is a cuspidal

edge* on the developable.

324. Four consecutive planes of the system will not meet

in a point unless the four conditions be fulfilled u = 0, -y-
=

0,

. =
0, -j-g

= 0. It is in general possible to find certain

-

curve u = 0, -=-=., in which any surface of the system is intersected by the con-
ctt

secutive, the characteristic of the envelope. For the nature of this curve depends

only on the manner in which the variables x, y, z enter into the function u, and not

on the manner in which the constants depend on the parameter. Thus, when

represents a plane, the characteristic is always a right line, and the envelope is the

locus of a system of right lines. When u represents a sphere, the characteristic

being the intersection of two consecutive spheres is a circle, and the envelope is the

locus of a system of circles. And so envelopes in general may be divided into families

according to the nature of the characteristic.

* Monge has called this the &quot; arete de rebroussement,&quot; or &quot;

edge of regression&quot; of

the developable. There is a similar curve on every envelope, namely, the locus of

points in which each &quot;

characteristic&quot; is met by the next consecutive. The part of

the characteristic on one side of this curve generates one sheet of the envelope, and

that on the other side generates another sheet. The two sheets touch along this

curve which is their common limit, and is a cuspidal edge of the envelope. Thus, in

the case of a cone, the parts of the generating lines on opposite sides of the vertex

generate opposite sheets of the cone, and the cuspidal edge in this case reduces itself

to a single point, namely, the vertex.
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values of
t,

for which these equations will be satisfied. For

if we eliminate a, y, z, we get the condition that the four

planes, whose equations have been just written, shall meet in a

point. Since this condition expresses that a function of t is

equal to nothing, we shall in general get a determinate

number of values of t for which it is satisfied. There are

therefore in general a certain number of points of the system

through which four planes of the system pass ; or, in other

words, a certain number of points in which three consecutive

lines of the system intersect. We shall call these, as at Higher
Plane Curves, p. 25, the stationary points of the system ;

since

in this case the point determined as the intersection of two

consecutive lines coincides with that determined as the inter

section of the next consecutive pair.

Reciprocally, there will be in general a certain number of

planes of the system which may be called stationary planes.

These are the planes which contain four consecutive points

of the system; for, in such a case, the planes 123, 234 evidently

coincide.

325. We proceed to show how, from Pllicker s equations con

necting the ordinary singularities of plane curves,* Prof. Cayleyf
has deduced equations connecting the ordinary singularities of

developables. We shall first make an enumeration of these

singularities. We speak of the &quot;

points of the
system,&quot;

the
&quot;

lines of the
system,&quot;

and the &quot;

planes of the
system&quot;

as

explained (Art. 123).

Let m be the number of points of the system which lie in

any plane ; or, in other words, the degree of the curve which

generates the developable.

* These equations are as follow : see Higher Plane Curves, p. 65. Let /* be the

degree of a curve, v its class, o the number of its double points, T that of its double

tangents, K the number of its cusps, i that of its points of inflexion
;
then

v -
fJL (fj.

-
1)
- 2a - SAC

; ft
= v (v

-
1)
- 2r - 3i,

t=3/i(/i-2) - 65-8/c; K = 3v(v
-

2)
- 6r - Si.

Whence also t - K = 3 (v
-

p) ;
2 (T

-
3) = (v

-
p) (v + /u

-
9).

t See Liouville s Journal, vol. X. p. 245
; Cambridge and Dublin Mathematical

Journal, vol. v. p. 18.
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Let n be the number of planes of the system which can be

drawn through an arbitrary point. We have proved (Art. 322)

that the number of such planes is definite. We shall call this

number the class of the system.

Let r be the number of lines of the system which intersect

an arbitrary right line. It is plain that if we form the con--

dition that w, -=-, and any assumed right line may intersect,
ctt

the result will be an equation in
,
which gives a definite

number of values of t. Let r be the number of solutions

of this equation. We shall call this number the rank of

the system, and we .shall show that all other singularities

of the system can be expressed in terms of the three just

enumerated.

Let a be the number of stationary planes, and /3 the number

of stationary points (Art. 324).

Two non-consecutive lines of the system may intersect.

When this happens we call the point of meeting a &quot;

point

on two
lines,&quot;

and their plane a &quot;

plane through two lines.&quot;

Let x be the number of &quot;

points on two lines&quot; which lie

in a given plane, and y the number of &quot;

planes through two

lines&quot; which pass through a given point.

In like manner we shall call the line joining any two points

of the system a &quot; line through two
points,&quot;

and the intersection

of any two planes a c line in two
planes.&quot;

Let g be the number

of &quot; lines in two planes&quot;
which lie in a given plane, and h the

number of u lines through two
points&quot;

which pass through a

given point. The number h may also be called the number of

apparent double points of the curve; for to an eye placed at

any point, two branches of the curve appear to intersect if any
line drawn through the eye meet both branches.

The developable has other singularities which will be deter

mined in a subsequent chapter, but these are the singularities

which Pliicker s equations (note, p. 291) enable us to determine.

326. Consider now the section of the developable by any

plane. It is obvious that the points of this curve are the traces

on its plane of the &quot;lines of the system,&quot;
while the tangent
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lines of the section are the traces on its plane of the &quot;

planes

of the system.&quot;
The degree of the section is therefore r,

since it is equal to the number of points in which an arbitrary

line drawn in its plane meets the section, and we have such

a point whenever the line meets a &quot; line of the system.&quot;

The class of the section is plainly n. For the number of

tangent lines to the section drawn through an arbitrary point

is evidently the same as the number of
&quot;planes

of the system
5

drawn through the same point.

A double point on the section will arise whenever two
&quot;

lines of the system
&quot; meet the plane of section in the same

point. The number of such points by definition is x. The

tangent lines at such a double point are usually distinct, because

the two planes of the system corresponding to the lines of the

system intersecting in any of the points x are commonly different.

The number of double tangents to the section is in like

manner g ;
since a double tangent arises whenever two planes

of the system meet the plane of section in the same line.

The m points of the system which lie in the plane of section

are cusps of the section. For each is a double point as being
the intersection of two lines of the system; and the tangent

planes at these points coincide, since the two consecutive lines,

intersecting in one of the points ra, lie in the same plane of

the system. This proves, what we have already stated, that

the curve whose tangents generate the developable is a cuspidal

edge on the developable ;
for it is such that every plane meets

that surface in a section which has as cusps the points where

the same plane meets the curve.

Lastly, we get a point of inflexion (or a stationary tangent)
wherever two consecutive planes of the system coincide. The
number of the points of inflexion is therefore a.

We are to substitute, then, in Pliicker s formulae,

/*
=

r, v = n, S = x, r=&amp;lt;7,
K m^ i = a.

And we have

n = r (r 1) 2x 3?n; r= n (n
-

1)
- 2g- 3a,

a = 3r (r
-

2)
- Qx - 8m

;
m = 3n (n

-
2)
-
Qg

-
8a,
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whence also

?7i a = 3 (r n] ;
2 (x g)

=
(r n) (r + n 9).

327. Another system of equations is found by considering

the cone whose vertex is any point and which stands on the

given curve. It appears at once by considering the section

of a cone by any plane that the same equations connect the

double edges, double tangent planes, &c. of cones, which connect

the double points, double tangents, &c. of plane curves.

The edges of the cone which we are now considering are

the lines joining the vertex to all the points of the system ;

and the tangent planes to the cone are the planes connecting
the vertex with the lines of the system, for evidently the plane

containing two consecutive edges of the cone must contain the

line joining two consecutive points of the system.

The degree of the cone is plainly the same as the degree of

the curve, arid is therefore m.

The class of the cone is the same as the number of tangent

planes to the cone which pass through an arbitrary line drawn

through the vertex. Now since each tangent plane contains

a line of the system, it follows that we have as many tangent

planes passing through the arbitrary line as there are lines

of the system which meet that line. The number sought is

therefore r.*

A double edge of the cone arises when the same edge of

the cone passes through two points of the system, or 8 = h.

The tangent planes along that edge are the planes joining

the vertex to the lines of the system which correspond to

each of these points.

A double tangent plane will arise when the same plane

through the vertex contains two lines of the system, or r = y.

A stationary or cuspidal edge of the cone will only exist

when there is a stationary point in the system, or K = /3.

* It is easy to see that the class of this cone is the same as the degree of the

developable which is the reciprocal of the points of the given system. Hence, the

degree of the developable generated by the tangents to any curve is the name as the degree

of the developable which is the reciprocal of the pointt of that curve, see note p. 105.
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/7 = V

Lastly, a stationary tangent plane will exist when a plane

containing two consecutive lines of the system passes through g __ c

the vertex, or i = n.
5 -

Thus we have
yit
=

7w, v = r,
S = A, r = y, # =

/3,
t = n. (,

-
f

Hence, by the formulae (note, p. 291), y _ G

f
~ o

r = ? (TW 1) 27* 3/3 ;
wz = r (r 1) 2jy 3/z,

= w -
2)

- 6A - 8/3 ; /3 = 3r (r
-

2)
-
6y
- 8rc.

Whence also

(
w - yg)

= 3 (r
- m) ;

Z (y h}
=

(r m)(r + m -
9).

And combining these equations with those found in the last

article, we have also

a j3 = 2 (n m) ;
x y n m

;
2 (^ A)

=
(n m} (n + m 7).

Pliicker s equations enable us, when three of the singularities

of a plane curve are given, to determine all the rest. Now
three quantities r, z,

n are common to the equations of this

and of the last article. Hence, iclien any three of the singu
larities ichich we have enumerated^ of a curve in space^ are

given, all the rest can be found.

328. It is to be observed that, besides the singularities

which we have enumerated, a curve may have others which

may claim to be counted as ordinary singularities. It may,
for example, besides its apparent double points, have H actual

double points or nodes
; viz., considering the curve as generated

by the motion of a variable point, we have a node if ever the

point comes twice into the same position. Reciprocally, the

system may have G double planes; viz., considering the de

velopable as the envelope of a plane, if in the course of its

motion the plane comes twice into the same position, we have

a double plane. These singularities will be taken into account

if,
in the formulae of Art. 326, we write T=^+ G- instead of

r =
&amp;lt;7,

and in the formulae of Art. 327, write B = h-\-H. In

like manner, the system may have v stationary lines, or lines

containing three consecutive points of the system. Such a
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line meets in a cusp the section of the developable by any

plane, and accordingly, in Art. 326, instead of having K m^
we have K = m + v

; and, in like manner, in Art. 327, instead

of i = w, we have i n + v. Once more, the system may have

o&amp;gt; double lines, or lines containing each two pairs of consecutive

points of the system. Taking these into account we have, in

Art. 326, 8 = x +
&&amp;gt;,

and in Art. 327, T = y + co.

329. To illustrate this theory, let us take the developable

which is the envelope of the plane

a? + TcbF
1 + p (&

-
1) ci*&quot;* + &c. = 0,

where t is a variable parameter, a, &, c, &c. represent planes,

and k is any integer.

The class of this system is obviously &, and the equation

of the developable being the discriminant of the preceding

equation, its degree is 2 (k 1) ;
hence r = 2 (k 1).

Also it is easy to see that this developable can have no

stationary planes. For, in general, if we compare coefficients

in the equations of two planes, three conditions must be satisfied

in order that the two planes may be identical. If then we

attempt to determine t so that any plane may be identical

with the consecutive one, we find that we have three conditions

to satisfy, and only one constant t at our disposal.

Having then n = k, r = 2 (k- 1), a = 0, the equations of the

last two articles enable us to determine the remaining singu

larities. The result is

m = 3(&-2); /3
= 4(-3); x = 2 (*-2) (k- 3) ;

3); 0r
= J (k- 1) (-2) ;

h = J (9
2 - 53^ + 80).

The greater part of these values can be obtained independently,

see Higher Plane Curves^ p. 71. But in order to economize

space we do not enter into details.

330. The case considered in the last article, which is that

when the variable parameter enters only rationally into the

equation, enables us to verify easily many properties of de^
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velopables. Since the system u = 0, -y-
= is obviously re

ducible to

f- (k 1) bt*~* + &c. = 0, b?~
J + (k 1) c*~

2
-f &c. = 0,

7 72

and the system u = 0,
-=- =

0, -^ = is reducible to

a?~* + (A;
-

2) bt
k
~3 + &c. = 0, IF* -f (A

-
2) c^

s
-f &c. = 0,

c**
2

+(A--2) ^~3
-f &c. = 0;

it follows that a is itself a plane of the system (namely, that

corresponding to the value =
oo), ab is the corresponding line,

and abc the corresponding point. Now we know from the

theory of discriminants (see Higher Algebra, Art. Ill) that the

equation of the developable is of the form a&amp;lt; + b
2

^jr
=

0, where

i/r
is the discriminant of u when in it a is made = 0. Thus we

verify what was stated (Art. 322) that a touches the develop

able along the whole length of the line ab. Further, ^ is

itself of the form
b&amp;lt;f&amp;gt;

+ c
2

-v//.
If now we consider the section

of the developable by one of the planes of the system (or, in

other words, if we make a = Q in the equation of the develop

able), the section consists of the line ab twice and of a curve

of the degree r 2
;
and this curve (as the form of the equation

shows) touches the line ab at the point abc, and consequently
meets it in r 4 other points. These are all

&quot;

points on two

lines,&quot; being the points where the line ab meets other lines

of the system. And it is generally true that if r be the rank

of a developable each line of the system meets r - 4 other lines

of the system. The locus of these points forms a double curve

on the developable, the degree of this curve is a:, and other

properties of it will be given in a subsequent chapter,

where we shall also determine certain other singularities of

the developable.

We add here a table of the singularities of some special

sections of the developable. The reader, who may care to

examine the subject, will find no great difficulty in establishing

them. I have given the proof of the greater part of them,

Cambridge and Dublin Mathematical Journal
,

vol. V., p. 24.

QQ
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See also Prof. Cayley s Paper, Quarterly Journal^ vol. XI.,

p. 295.

Section by a plane of the system

/u = r - 2, v n 1, i = a, K = m 3, T = g n + 2, d = x 2; + 8.

Cone whose vertex is a point of the system

/jL
rn 1, i/ = r 2, i = n 3, K =

(3, T - # 2r -f 8, 5_^-wt + 2.

Section by plane passing through a line of the system

/*=? 1, i/ =
,

t = a + 1, K = m 2, T g 1, = a; r + 4.

Cone whose vertex is on a line of the system

H = m, v = r-l, t = n-2, K = ft + 1, T = ?/
-

7&amp;lt; + 4, &amp;lt;5
= A-1.

Section by plane through two lines

)u
= r 2, j/ = w, i = a + 2, K = ra 4, T = g 2,

= a; - 2r + 9.

Cone whose vertex is a point on two lines

fjL
= m, v - r - 2, i = n - 4, /c = /3 + 2, r - y

- 2r + 9, * = A - 2.

Section by a stationary plane

/*
= r 3, v = n - 2, = -!, = w -

4, T = ^-27i + 6, 5 = o;-3r + 13,

Cone whose vertex is a stationary point

fi = m-2, v = r - 3, c = -
4, K-/3-1, r = y

- 3r + 13, &amp;lt;$
= A-2w + 6.

In the preceding we have not taken account of the sin

gularities G, H, v, e, having shewn in Art. 328 how to modify
the formulae so as to include them. The following formulae of

Prof. Cayley s relate to these singularities :

Section by a plane G

fjL
=r4, v = n-2, i = a, K=m-6 + v, T-g -2n + 6 + G - 1, S = x-4r + 2Q + ia.

Cone whose vertex is a point H
fn
= m~2, v = r-4, i = n-6+u, ic = j8, T =y-4r + 20 + 01,

- h-2m + 6 + H-l.

Section by plane through stationary line v

)ti=r-2, v = n, t = a + 2, K = m 3 + v l, T-^-2 + C, -x-2r + 9 + &amp;lt;a.

Cone whose vertex is on stationary line u

yn
= m, v = r 2, i=n 3 + v l, K = ft + 2, T = ?/-2r + 9 +

a&amp;gt;,

a = A-2 + 5&quot;.

Section by tangent plane at contact of line v

fjL
= r 3, v-n 1, t = a+l, /c = nt -4 + v - 1, Tr:^ -n +1 + G, & = x

Cone whose vertex is contact of line v

/ji
= ml, v = r 3, i = n 4 + i/ 1, *c = /8 + l, T-y 37*+ 14+ w, 3 = A

Section by plane through double tangent w

)u
= r-2, v = n, t = a + 2, /c = m - 4 + u, T =

&amp;lt;5r-2+G
r

,
5= a; - 2r - 10 + w - 1.

Cone whose vertex is on double tangent w
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Section by tangent plane at one of the contacts of line o&amp;gt;

/u
= r-3, v = n- 1, t = a+l, K =m5 + v, r = g n + l + G, = z 3r+ 15-f w - 1.

Cone whose vertex ia a contact of line &amp;lt;a

SECTION II. CLASSIFICATION OF CURVES.

331. The following enumeration rests on the principle that

a curve of the degree r meets a surface of the degree p in

pr points. This is evident when the curve is the complete
intersection of two surfaces whose degrees are m and n.

For then we have r = mn and the three surfaces intersect in

mnp points. It is true also by definition when the surface

breaks up into p planes.* We shall assume that, in virtue

of the law of continuity, the principle is generally true.

The use we make of the principle is this. Suppose that

we take on a curve of the degree r as many points as are

sufficient to determine a surface of the degree p\ then if the

number of points so assumed be greater than pr, the surface

described through the points must altogether contain the curve
;

for otherwise the principle would be violated.

We assume in this that the curve is a proper curve of the

degree r, for if we took two curves of the degrees m and n

(where wz + 7i = r), the two together might be regarded as a

complex curve of the degree r, and if either lay altogether on

any surface of the degree p, of course we could take on that

curve any number of points common to the curve and surface.

All this will be sufficiently illustrated by the examples which

follow.

332. There is no line of the first degree but the right line.

For through any two points of a line of the first degree and

any assumed point we can describe a plane which must alto-

* Dr. Hart remarks that since every twisted curve of degree r is a partial

intersection of two cones of r 1 degree, the complete intersection being the twisted

curve together with the line joining vertices of cones and a curve of degree r (r 3) :

this principle is proved for twisted cubics. For, the two quadric cones intersect

any surface of degree n in 4n points of which n lie on the line joining vertices so that

3n lie on the twisted cubic.
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gether contain the line, since otherwise we should have a line

of the first degree meeting the plane in more points than one.

In like manner we can draw a second plane containing the

line, which must therefore be the intersection of two planes ;

that is to say, a right line,

There is no proper line of the second degree but a conic.

Through any three points of the line we can draw a plane,

which the preceding reasoning shows must altogether contain

the line. The line must therefore be a plane curve of the

second degree.

The exception noted at the end of the last article would

occur if the line of the second degree consisted of two right

lines not in the same plane ;
for then the plane through three

points of the system would only contain one of the right lines.

In what follows we shall not think it necessary to notice this again,

but shall speak only of proper curves of their respective orders.

333. A curve of the third degree must either be a plane

cubic or the partial intersection of two quadrics^ as explained.

Art. 315.*

For through seven points of the curve and any two other

points describe a quadric; and, as before, it must altogether

contain the curve. If the quadric break up into two planes,

the curve may be a plane curve lying in one of the planes.

As we may evidently have plane curves of any degree we
shall not think it necessary to notice these in subsequent cases.

If then the quadric do not break up into planes, we can draw

a second quadric through the seven points, and the intersection

of the two quadrics includes the given cubic. The complete

intersection being of the fourth degree, it must be the cubic

together with a right line
;

it is proved therefore that the

only non-plane cubic is that explained, Art. 315.

* Non-plane curves of the third degree appear to have been first noticed by
Mbbius in his Barycentric Calculus, 1827. Some of their most important properties

are given by M. Chasles in Note xxxiu. to his Aperqu Uistorique, 1837, and in a

paper in Liouville s Journal for 1857, p. 397. More recently the properties of these

curves have been treated by M. Schrbter, Crelk, vol. LVI., and by Professor Cremona,

of Milan, Crelle, vol LVIII., p. 138. Considerable use has been made of the latter

paper in the articles which immediately follow.
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334. The cone containing a curve of the mth

degree and
whose vertex is a point on the curve, is of the degree m 1

hence the cone containing a cubic, and whose vertex is on the

curve, is of the second degree. We can thus describe a twisted

cubic through six given points. For we can describe a cone
of the second degree of which the vertex and five edges are

given, since evidently we are thus given five points in the
section of the cone by any plane, and can thus determine that
section. If then we are given six points a, 5, c, d, e, /, we
can describe a cone having the point a for vertex, and the
lines ab, ac, ad, ae, af for edges ;

and in like manner a cone

having b for vertex and the lines ba, be, bd, be, bf for edges.
The intersection of these cones consists of the common edge ab
and of a cubic which is the required curve passing through
the six points.

The theorem that the lines joining six points of a cubic
to any seventh are edges of a quadric cone, leads at once to
the following by Pascal s theorem :

&quot; The lines of intersection
of the planes 712, 745; 723, 756; 734, 761 lie in one

plane.&quot;

Or, in other words,
&quot; the points where the planes of three con

secutive angles 567, 671, 712 meet the opposite sides lie in
one plane passing through the vertex 7.&quot;* Conversely if this

be true for two vertices of a heptagon it is true for all the
rest

;
for then these two vertices are vertices of cones of the

second degree containing the other points, which must there
fore lie on the cubic which is the intersection of the cones.

335. A cubic traced on a hyperboloid of one sheet meets all its

generators of one system once, and those of the other system twice.

Any generator of a quadric meets in two points its curve
of intersection with any other quadric, namely, in the two points
where the generator meets the other quadric. Now when the
intersection consists of a right line and a cubic, it is evident
that the generators of the same system as the line, since they
do not meet the line, must meet the cubic in the two points

* M. Cremona adds, that when the six points are fixed and the seventh variable
this plane passes through a fixed chord of the cubic.
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while the generators of the opposite system, since they meet

the line in one point, only meet the cubic in one other point.

Conversely we can describe a system of hyperboloids through
a cubic and any chord which meets it twice. For, take

seven points on the curve, and an eighth on the chord joining

any two of them
;

then through these eight points an infinity

of quadrics can be described. But since three of these points

are on a right line, that line must be common to all the

quadrics, as must also the cubic on which the seven points lie.

336. The question to find the envelope of at* 3bt* + 3ct d

(where a, 5, c, d represent planes and t is a variable parameter)
is a particular case of that discussed, Art. 329. We have

r = 4, w = w = 3, a = /3 = 0, x = y = 0, g = h l,

Thus the system is of the same nature as the reciprocal system^

and all theorems respecting it are consequently two-fold. The

system being of the third degree must be of the kind we are

considering; and this also appears from the equation of the

envelope

for it is easy to see that any pair of the surfaces ad be, ff - ac,

c
2

bd, have a right line common, while there is a cubic

common to all three, which is a double line on the envelope.

It appears from the table just given that every plane con

tains one &quot;

line in two
planes,&quot;

or that the section of the

developable by any plane has one double tangent ; while, re

ciprocally through any point can be drawn one line to meet

the cubic twice
;
the cone therefore, whose vertex is that point,

and which stands on the curve, has one double edge; or, in

other words, the cubic is projected on any plane into a cubic

having a double point.

The three points of inflexion of a plane cubic are in one

right line. Now it was proved (Art. 327) that the points of in

flexion correspond to the three planes of the system which can

be drawn through the vertex of the cone. Hence the three

points of the system, which correspond to the three planes which
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can be drawn through any point 0, lie in one plane passing

through that point.*

Further, it is known that when a plane cubic has a conjugate

point, its three points of inflexion are real
;
but that when the cubic

has a double point, the tangents at which are real, then two of

the points of inflexion are imaginary. Hence, if the chord which

can be drawn through any point meet the cubic in two real

points, then two of the planes of the system which can be drawn

through are imaginary. Reciprocally, if through any line

two real planes of the system can be drawn, then any plane

through that line meets the curve in two imaginary points, and

only one real one.f

337. These theorems can also be easily established alge

braically ;
for the point of contact of the plane at* 3b? + Set d^

being given by the equations at = 5, bt = c, ct = J, may be denoted

by the coordinates a = l, b =
t,

c = t
&amp;gt;2

,d = t
3

. Now the three

values of t answering to planes passing through any point are

given by the cubic a t
3

3&
2 + 3c7- d =

0, whence it is evident,

from the values just found, that the points of contact lie in the

plane ad 3b c4 3cb d a = 0. But this plane passes through
the given point. Hence the intersection ofthreeplanes ofthe system

lies in the plane of the corresponding points. The equation just

written is unaltered if we interchange accented and unaccented

letters. Hence, if a point A be in the plane of points of contact,

corresponding to any point B, B will be in the plane in like

manner corresponding to A. And again, the planes which thus

correspond to all the points of a line AB pass through a fixed

right line, namely, the intersection of the planes corresponding
to A and B. The relation between the lines is evidently reci

procal. To any plane of the system will correspond in this

sense the corresponding point of the system ;
and to a line in

two planes corresponds a chord joining two points.

The three points where any plane Aa + Bb + Cc + Dd
meets the curve have their s given by the equation
D + Ct

2 + Bt + A =
0, and when this is a perfect cube, the

*
Chasles, Liouville, 1857. Schroter, CreUe, vol. LVI.

f Joachimsthal, CreUe, vol. LVI. p. 45. Cremona, CreUe, vol. LVIII. p. 146.
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plane is a plane of the system. From this it follows at once, as

Joachimsthal has remarked, that any plane drawn through the

intersection of two real planes of the system meets the curve

in but one real point. For, in such a case, the cubic just written

is the sum of two cubes and has but one real factor.

338. We have seen (Art. 134) that a twisted cubic is the

locus of the poles of a fixed plane with regard to a system
of quadrics having a common curve. More generally, such

a curve is expressed by the result of the elimination of X
between the system of equations \a a

,
\b b

,
\c c. Now

since the anharmonic ratio of four planes, whose equations

are of the form \a a\ \ a = a
, &c., depends only on the

coefficients X, V, &c. (see Conies, Art. 59), this mode of

obtaining the equation of the cubic may be interpreted as

follows : Let there be a system of planes through any line ad
r

,

a homographic system through any other line bb
,
and a third

through cc
,

then the locus of the intersection of three corre

sponding planes of the systems is a twisted cubic. The lines

aa
j
bb

)
cc are evidently lines through two points, or chords

of the cubic. Reciprocally, if three right lines be homographically

divided^ the plane of three corresponding points envelopes the

developable generated by a twisted cubic, and the three right lines

are &quot; lines in two
planes&quot;

of the system.

The line joining two corresponding points of two homo

graphically divided lines touches a conic when the lines are

in one plane, and generates a hyperboloid when they are not.

Hence, given a series of points on a right line and a homo-

graphic series either of tangents to a conic or of generators

of a hyperboloid, the planes joining each point to the corre

sponding line envelope a developable, as above stated,

Ex. If the four faces of a tetrahedron pass through fixed lines, and three ver

tices move in fixed lines, the locus of the remaining vertex is a twisted cubic.

Any number of positions of the base form a system of planes which divide homo

graphically the three lines on which the corners of the base move, whence it

follows that the three planes which intersect in the vertex are corresponding planes

of three homographic systems.

339. From the theorems of the last article it follows, con

versely, that
&quot; the planes joining four fixed points of the system
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to any variable *
line through two points form a* constant anhar-

monic
system,&quot;

and that &quot; four fixed planes of the system divide

any line in two planes in a constant anharmonic ratio.&quot; It

is very easy to prove these theorems independently. Thus

we know that the section of the developable by any plane A of

the system,* consists of the corresponding line a of the system

twice, together with a conic to which all other planes of the

system are tangents. Thus, then, the anharmonic property of

the tangents to a conic shows that four of these planes cut

any two lines in two planes, AB, A C in the same anharmonic

ratio
; and, in like manner, A C is cut in the same ratio as CD.

As a particular case of these theorems, since the lines of

the system are both lines in two planes and lines through
two points ; four fixed planes of the system cut all the lines of

the system in the same anharmonic ratio ; and the planes joining

four fixed points of the system to all the lines of the system are

a constant anharmonic system.

Many particular inferences may be drawn from these

theorems, as at Conies, p. 2%, which see.

Thus consider four points a, /3, 7, &; and let us express-

that the planes joining them to the lines
, &, and

cc/3,
cut

the line 78 homographically. Let the planes A t
B meet 78 in

points tj
t . Let the planes joining the line a to /3, and the

line b to a meet 78 in k, k . Then we have

[tkyo]
=

[k t yS]
=

{kk yo}.

If the points ,
k coincide, it follows from the first equation

that the points &, t coincide, and from the second that the

points ,
t

, 7, 8 are a harmonic system. Thus we obtain

Prof. Cremona s theorem, that if a series of chords meet the

line of intersection of any plane A with the plane joining the

corresponding point a to any line b of the system, then they
will also meet the line of intersection of the plane B with

the plane joining /3 to a
;
and will be cut harmonically where

they meet these two lines and where they meet the curve.

* It is often convenient to denote the planes of the system by capital letters, the

corresponding lines by italics, and the corresponding points by Greek letters.

RR
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The reader will have no difficulty in seeing when it will

happen that one of these lines passes to infinity, in which case

the other line becomes a diameter.

340. We have seen that the sections of the developable

by the planes of the system are conies. The line of intersection

of two planes of the system is a common tangent to the two

corresponding conies. Thus the planes touching two conies,

themselves having the line in which their planes intersect

as a common tangent, are osculating planes of a twisted cubic.

We may investigate the locus of the centres of these conies,

or more generally the locus of the poles with respect to these

conies of the intersections of their planes with a fixed plane.

Since in every plane we can draw a &quot; line in two
planes&quot;

we may suppose that the fixed plane passes through the inter

section of two planes of the system A^ B.

Now consider the section by any other plane (7; the traces

on that plane of A and B are tangents to that section, and

the pole of any line through their intersection lies on their

chord of contact, that is to say, lies on the line joining the

points where the lines of the system a, b meet C. But since

all planes of the system cut the lines a, b homographically,
the joining lines generate a hyperboloid of one sheet, of which

a and b are generators. However then the plane be drawn

through the line AB, the locus of poles is on this hyperboloid.

But further, it is evident that the pole of any plane through
the intersection of A, B lies in the plane which is the harmonic

conjugate of that plane with respect to those tangent planes.

The locus therefore which we seek is a plane conic. It appears

also from the construction that since the poles when any plane

A + \B is taken for the fixed plane, lie on a conic in the

planed \B\ conversely, the locus when the latter is taken

for fixed plane is a conic in the former plane.*

341. In conclusion, it is obvious enough that cubics may
be divided into four species according to the different sections

* The theorems of this article are taken from Prof. Cremona s paper.
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of the curve by the plane at infinity. Thus that plane may
either meet the curve in three real points ;

in one real and

two imaginary points ;
in one real and two coincident points,

that is to say, a line of the system may be at infinity ;
or

lastly, in three coincident points, that is to say a plane of

the system may be altogether at infinity. These species have

been called the cubical hyperbola, cubical ellipse, cubical hyper
bolic parabola, and cubical parabola. It is plain that when

the curve has real points at infinity, it has branches proceeding
to infinity, the lines of the system corresponding to the points

at infinity being asymptotes to the curve. But when the

line of the system is itself at infinity, as in the third and fourth

cases, the branches of the curve are of a parabolic form pro

ceeding to infinity without tending to approach to any finite

asymptote. Since the quadric cones which contain the curve

become cylinders when their vertices pass to infinity, it is

plain that three quadric cylinders can be described containing
the curve, the edges of the cylinders being parallel to the

asymptotes. Of course in the case of the cubical ellipse two

of these cylinders are imaginary : in the case of the hyper
bolic parabola there are only two cylinders, one of which is

parabolic, and in the case of the cubical parabola there is

but one cylinder which is parabolic. The cubical ellipse may
be conceived as lying on an elliptic cylinder, one generating
line of which is the asymptote ;

the curve is a continuous line

winding once round the cylinder, and approaching the asymptote
on opposite sides at its two extremities.

It follows, from Art. 336, that in the case of the cubical

ellipse the plane at infinity contains a real line in two planes,
which is imaginary in the case of the cubical hyperbola. That
is to say, in the former case, but not in the latter, two planes
of the system can be parallel. From the anharrnonic property
we infer that in the case of the cubical parabola three planes
of the system divide in a constant ratio all the lines of the

system. In this case all the planes of the system cut the

developable in parabolas. The system may be regarded as

the envelope of xf - 3yt* + 3zt - d where d is constant. For

further details we refer to Prof. Cremona s Memoir.
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342. We proceed now to the classification of curves of higher

orders. We have proved (Art. 331) that through any curve

can be described two surfaces, the lowest values of whose

degrees in each case there is no difficulty in determining. It

is evident then, on the other hand, that if commencing with

the simplest values of
//,

and v we discuss all the different

cases of the intersection of two surfaces whose degrees are

p and v, we shall include all possible curves up to the rth order,

the value of this limit r being in each case easy to find when

/* and v are given. With a view to such a discussion we
commence by investigating the characteristics of the curve of

intersection of two surfaces.* We have obviously m =
jj,v,

and if the surfaces are without multiple lines and do not touch,

as we shall suppose they do not, their curve of intersection has

no multiple points (Art. 203), and therefore /3 = 0. In order to

determine completely the character of the system, it is necessary

to know one more of its singularities, and we choose to seek

for r, the degree of the developable generated by the tangents.

Now this developable is got by eliminating x y z between the

four equations

/
=(), F =0, USx+U^+U^+Ui w^O, F&amp;gt;+F2y+F3 *+F&amp;gt;=0.

These equations are respectively of the degrees /&amp;gt;&, v, p 1,

v 1 : and since only the last two contain xyz^ these variables

enter into the result in the degree

fJLV (V 1) + fJLV (ft 1)
=

fJLV (/Lt + V - 2).

Otherwise thus: the condition that a line of the system
should intersect the arbitrary line

&amp;lt;yz
4

w&amp;gt;,

a x + $ y + &amp;lt;y

z + S wax

s

a ,/3 , 7,

V V V V* r V *
3?

=
0,

* The theory explained in the remainder of this section is taken from my paper

dated July, 1849, Cambridge and Dublin Mathematical Journal, vol. v. p. 23.
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which is evidently of the degree p -f v 2. This denotes a

surface which is the locus of the points, the intersections of

whose polar planes with respect to U and V meet the arbitrary

line. And the points where this locus meets the curve TJV

are the points for which the tangents to that curve meet the

arbitrary line.

Having then wz = /*v, yS
=

0, r = pv (p + v 2), we find, by
Art. 327,

tt = 3yuv(/4 + v-3), a = 2/*v(3/z. + 3v-10), 2/i= fj,v(p- 1) (v- 1)

2g = fJLV {fiv (3/A + 3v - 9)
2 - 22 (p + v) + 71),

2oj = /iv {,uv (/i -f v - 2)
2 - 4

(/* + v) -f 8),

2# = /AV {/4V (/A + v -
2)&quot;

- 1
(fi + v) + 28}.

343. We verify this result by determining independently
h the number of u

lines through two
points&quot;

which can pass

through a given point, that is to say, the number of lines

which can be drawn through a given point so as to pass

through two points of the intersection of U and V. For this

purpose it is necessary to remind the reader of the method

employed, p. 101, in order to find the equation of the cone whose

vertex is any point and which passes through the intersection

of U and V. Let us suppose that the vertex of the cone is

taken on the curve, so as to have both U and V= for the co

ordinates of the vertex. Then it appears, from p. 101, that the

equation of the cone is the result of eliminating \ between

These equations in \ are of the degrees /* 1, v - 1
; 8Z7, S

3

Z7,

&c., contain the coordinates x yz, xyz in the degrees p 1
}

1

/* -2, 2, &c. A. specimen term of the result is (SU^V^ 1

.

Thus it appears that the result contains the variables xyz in

the degree v H-V(/A l)=/tv- 1; while it contains xyz
in the degree (/*- 1) (v-1). Every edge of this cone of the

degree /-tv 1, whose vertex is a point on the curve, is of
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course a &quot;

line through two
points.&quot;

If now in this result

we consider the coordinates of any point xyz on the cone

as known and x y z as sought, this equation of the degree

(/jb 1) (v 1) combined with the equations 7 and V determines

the &quot;

points
&quot;

belonging to all the &quot;

lines through two points
&quot;

which can pass through the assumed point. The total number

of such points is therefore pv (p 1) (v 1), and the number of

lines through two points is of course half this. The number

of points thus determined has been called (Art. 325) the number

of apparent double points on the intersection of the two surfaces.

344. Let us now consider the case when the curve UV
has also actual double points ;

that is to say, when the two

surfaces touch in one or more points. Now, in this case, the

number of apparent double points remains precisely the same

as in the last article, and the cone, standing on the curve

of intersection and whose vertex is any point, has as double

edges the lines joining the vertex to the points of contact in

addition to the number determined in the last article. It

is easy to see that the investigation of the last article does

not include the lines joining an arbitrary point to the points

of contact. That investigation determines the number of cases

when the radius vector from any point has two values the

same for both surfaces, but the radius vector to a point of

contact has only one value the same for both, since the point

of contact is not a double point on either surface. Every

point of contact then adds one to the number of double edges
on the cone, and therefore diminishes the degree of the de

velopable by two. This might also be deduced from Art. 342,

since the surface generated by the tangents to the curve of

intersection must include as a factor the tangent plane at a

point of contact, since every tangent line in that plane touches

the curve of intersection.

If the surfaces have stationary contact at any point (Art. 204)

the line joining this point to the vertex of the cone is a cuspidal

edge of that cone. If, then, the surfaces touch in t points of

ordinary contact and in /3 of stationary contact, we have

fl
=

/3, 2h = pv (p
-

1) (v
-

I) + 2t,
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and the reader can calculate without difficulty how the other

numbers in Art. 342 are to be modified.

We can hence obtain a limit to the number of points at

which two surfaces can touch if their intersection do not break

up into curves of lower order; for we have only to subtract the

number of apparent double points from the maximum number of

double points which a plane curve of the degree fiv can have

(Higher Plane Curves
,
Art. 42).

345. We shall now show that when the curve of inter

section of two surfaces breaks up into two simpler curves,

the characteristics of these curves are so connected that, when

those of the one are known, those of the other can be found.

It was proved (Art. 343) that the points belonging to the
&quot;

lines through two points
&quot; which pass through a given point

are the intersection of the curve UV with a surface whose

degree is
(/z 1) (v 1). Suppose now that the curve of inter

section breaks up into two whose degrees are m and ??/, where

m + m =
fJLV)

then evidently the &quot;two
points&quot;

on any of these

lines must either lie both on the curve
??z,

both on the curve

m
)
or one on one curve and the other on the other. Let the

number of lines through two points of the first curve be ^,

those for the second curve A
,
and let H be the number of lines

which pass through a point on each curve, or, in other words,
the number of apparent intersections of the curves. Considering
then the points where each of the curves meets the surface

of the degree (/A 1) (v 1), we have obviously the equations

m
(fju -l)(v-l) = 2h + H, m (p

-
1) (v

-
1)
= 2A + H,

whence 2(h- Ji)
= (m

- m
) (p

-
1) (v

-
1).

Thus when m and h are known m and Ji can be found. To
take an example which we have already discussed, let the

intersection of two quadrics consist in part of a right line

(for which ??i =l, 7/ = 0), then the remaining intersection must

be of the third degree m 3, and the equation above written

determines It = 1.

346. In like manner it was proved (Art. 342) that the

locus of points, the intersection of whose polar planes with
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regard to U and V meets an arbitrary line, is a surface of

the degree p + v 2. The first curve meets this surface in

the t points where the curves m and m intersect (since U
and V touch at these points) and in the r points for which

the tangent to the curve meets the arbitrary line. Thus, then,

m(ij, + v- 2) =r + t,
m (p -f v - 2)

= / + *,

(m - m } (fjb + v - 2)
= r - /,

an equation which can easily be proved to follow from that

in the last article.

The intersection of the cones which stand on the curves

TW, m consists of the t lines to the points of actual meeting
of the curves and of the H lines of apparent intersection

;
and

the equation H+ t = mm is easily verified by using the values

just found for H and
, remembering also that mf

y^v m,
r = m(m 1) 2h.

347. Having now established the principles which we shall

have occasion to employ, we resume our enumeration of the

different species of curves of the fourth order. Every quartic

curve lies on a quadric. For the quadric determined by nine

points on the curve must altogether contain the curve (Art. 331).

It is not generally true that a second quadric can be described

through the curve
;
there are therefore two principal families

of quarticSj viz. those which are the intersection of two quadrics,

and those through which only one quadric can pass.* We
commence with the curves of the first family. The character

istics of the intersection of two quadrics which do not touch

are (Art. 342)

=
4, rc = 12, r = 8, a =16, =0, #=16, # = 8, #=38, h=2.

Several of these results can be established independently.

Thus we have given (Art. 218) the equation of the developable

generated by the tangents to the curve, which is of the eighth

degree. It is there proved also that the developable has in

each of its four principal planes a double line of the fourth

* The existence of this second family of quartics was first pointed out in the

Memoir already referred to.
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order, whence x = 16. It has been mentioned (p. 189) that the

developable circumscribing two quadrics has, as double lines, a

conic in each of the principal planes. The number y = 8 is thus

accounted for. Again, it is shown, p. 191, that the equation

of the osculating plane is Ta= T v (u and v being the tangent

planes to 7 and Fat the point), which contains the coordinates

of the point of contact in the third degree. If, then, it be

required to draw an osculating plane through any assumed

point, the points of contact are determined as the intersections

of the curve UV with a surface of the third degree, the

problem therefore admits of twelve solutions; thus n = l2.

Lastly, every generator of a quadric containing the curve

is evidently a &quot;line through two
points&quot; (Art. 345). Since,

then, we can describe through any assumed point a quadric
of the form U-\- XF, the two generators of that quadric which

pass through the point are two &quot;lines through two
points&quot;;

or h = 2. The lines through two points may be otherwise found

by the following construction, the truth of which it is easy to

see : Draw a plane through the assumed point 0, and through
the intersection of its polar planes with respect to the two

quadrics, this plane meets the quartic in four points which

lie on two right lines intersecting in 0.

A quartic of this species is determined by eight points

(Art. 130).

348. Secondly, let the two quadrics touch, then (Art. 344)

the cone standing on the curve has a double edge more than

in the former case, and the developable is of a degree less

by two. Hence

w =
4, ft = 6, r = 6

; # = 6,^ = 3; a = 4, /3 = ;
a: = 6, ?/

= 4.

Thirdly, the quadrics may have stationary contact at a point,

when we have

771 = 4, w = 4, r = 5; ^ = 2,^ = 2; a=l, /3 = 1
;

# = 2, y = 2.

This system, as noticed by Prof. Cayley, may be expressed
as the envelope of

at* + 6c? -f dt 4- e,

where t is a variable parameter. The envelope is

(ae + 3c
2

)

3 = 27 (ace -ad
2 - c

3

)

2

,

ss
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which expanded contains a as a factor and so reduces to the

fifth degree. The cuspidal edge is the intersection of ae + 3c
2

,

4ce - 3d\

Since a cone of the fourth degree cannot have more than

three double edges, two quadrics cannot touch in more points

than one, unless their curve of intersection break up into

simpler curves. If two quadrics touch at two points on the

same generator, this right line is common to the surfaces,

and the intersection breaks up into a right line and a cubic.

If they touch at two points not on the same generator, the

intersection breaks up into two plane conies whose planes
intersect in the line joining the points (see Art. 137).

349. If a quartic curve be not the intersection of two

quadrics it must be the partial intersection of a quadric and

a cubic. We have already seen that the curve must lie on a

quadric, and if through thirteen points on it, and six others which

are not in the same plane,* we describe a cubic surface, it must

contain the given curve. The intersection of this cubic with

the quadric already found must be the given quartic together

with a line of the second degree, and the apparent double

points of the two curves are connected by the relation h A =2,
as appears on substituting in the formula of Art. 345 the values

m =
4, m 2, fj,

=
3, v 2. When the line of the second degree

is a plane curve (whether conic or two right lines), we have

A = 0; therefore ^-2, or the quartic is one of the species

already examined having two apparent double points. It is

easy to see otherwise, that if a cubic and quadric have a plane

curve common, through their remaining intersection a second

quadric can be drawn
;

for the equations of the quadric and

cubic are of the form zw = w
a , zv^

=
UJK, which intersect on

v
z
= xw. If, however, the cubic and quadric have common

two right lines not in the same plane, this is a system having

one apparent double point, since through any point can be

* This limitation is necessary, otherwise the cubic might consist of the quadric

and of a plane. Thus, if a curve of the fifth order lie in a quadric it cannot be proved

that a cubic distinct from the quadric can contain the given curve
;

see Cambridge

and Dublin Mathematical Journal, vol. v, p. 27,
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drawn a transversal meeting both lines. Since then A =l,
h = 3

;
or these quartics have three apparent double points, and

are therefore essentially distinct from those already discussed,

which cannot have more than two. The numerical character

istics of these curves are precisely the same as those of the

first species in Art. 348, the cone standing on either curve

having three double edges, the difference being that one of

the double edges in one case proceeds from an actual double

point, while in the other they all proceed from apparent double

points.

This system of quartics is the reciprocal of that given by
the envelope of at* + bt

3 + Set* + dt + e. Moreover, this latter

system has, in addition to its cuspidal curve of the sixth

order, a nodal curve of the fourth, which is of the kind now
treated of.

It is proved, as in Art. 335, that these quartics are met

in three points by all the generators of the quadric on which

they lie, which are of the same system as the lines common
to the cubic and quadric ;

and are met once by the generators

of the opposite system. The cone standing on the curve,

whose vertex is any point of
it,

is then a cubic having a double

edge, that double edge being one of the generators, passing

through the vertex, of the quadric which contains the curve.

Thus, while any cubic may be the projection of the inter

section of two quadrics, quartics of this second family can

only be projected into cubics having a double point. The

quadric may be considered as the surface generated by all

the &quot;

lines through three
points&quot;

of the curve. It is plain,

from what has been stated, that every quartic, having three

apparent double points, may be considered as the intersection

of a quadric with a cone of the third order having one of the

generators of the quadric as a double edge.

350. Prof. Cayley has remarked that it is possible to

describe through eight points a quartic of this second family.

We want to describe through the eight points a cone of the

third degree having its vertex at one of them, and having
a double edge, which edge shall be a generator of a quadric
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through the eight points. Now it follows, from Art. 347, that

if a system of quadrics be described through eight points, all

the generators at an}
7 one of them lie on a cone of the third

degree, which passes through the quartic curve of the first

family determined by the eight points. Further, if $, $
,

$&quot;

be three cubical cones having a common vertex and passing

through seven other points, \S + v&amp;lt;S + vS is the general

equation of a cone fulfilling the same conditions
;
and if it have

a double edge, \8
l
-i /*$/-!- ?$,&quot;, passes through that edge.

Eliminating then X, /*, v between the three differentials, the

locus of double edges is the cone of the sixth order

8. (W- ,&quot;. ) + 8, (8, B,&quot;-
S

S&quot;S, ) + S
3 ($ ,&quot;- S,&quot;S;)

= 0.

The intersection then of this cone of the sixth degree with

the other of the third determines right lines, through any of

which can be described a quadric and a cubic cone fulfilling

the given conditions. It is to be observed, however, that the

lines connecting the assumed vertex with the seven other points

are simple edges on one of these cones and double edges on

the other, and these (equivalent to fourteen intersections) are

irrelevant to the solution of the problem. Four quartics, there

fore, can be described through the points.

351. Prof. Cayley has directed my attention to a special case

of this second family of quartics which I had omitted to notice.

It is, when the curve has a linear inflexion of the kind noticed,

Art. 328
;

that is to say, when three consecutive points of

the curve are on a right line. Such a point obviously cannot

exist on a quartic of the first family ;
for the line joining the

three points must then be a generator of both quadrics, whose

intersection would therefore break up into a line and a cubic,

and would no longer be a quartic. Let us examine then in what

case three consecutive planes of the system at*+ kbt*+ Gcf+^dt-ke

can pass through the same line. If such a case occurs, we may
suppose that we have so transformed the equation that the

singular point in question may answer to t= GO
;
the three planes

a, &, c, must therefore pass through the same line
;

or c must

be of the form \a + fib. But we may then transform the equation

further by writing for
#,

t + #, and determining 6 so that the
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quantity multiplying b in the coefficient of t* shall vanish. The

system then is the envelope of a plane at
4 + bt

z + Q\a(? -+ dt -f e.

A still more special case is when \ vanishes, or when the plane

reduces to a? + bt
3 + dt -f e

;
it is obvious then, that we have

two points of linear inflexion
;
one answering to t = co

,
the other

to = 0. The developable in this latter case is

which has for its edge of regression the intersection of ae

with ad? + eb
;
but this consists of a curve of the fourth degree

with the lines ab, de. This system then is one whose reciprocal

is of the same nature
;

for we have m = n = 4, h = k = 3,

aj = y = 4. And the section of the developable by any plane has

six cusps, viz. the four points where the plane meets the cuspidal

edge, and the two where it meets the double generators 5, de.

In the case previously noticed where c does not vanish but is equal

to Xa, there is but one point of linear inflexion
;
the envelope in

question is, then, the reciprocal of a system for which ra = 4,

n = 5
?

r = 6, ^ = 3, k = 4, x = 5, y = 4. Another special case

to be considered is when a curve has a double tangent ;
such

a line being doubly a line of the system is a double line on

the developable. But this does not occur in quartic* curves.

* For other properties of curves of the fourth order, see papers by M. Chasles,

Comptes jRendus, vols. Liv. and LV.
;
and by M. Cremona, Memoirs of the Bologna

Academy, 1861.

To complete the enumeration of curves up to the fourth order, it would be

necessary to classify, according to their apparent double points, improper systema
made up of simpler curves of lower orders. Thus we have, for m =

2, h = 1, two lines

not in the same plane j
m = 3, h 1, a conic and a line once meeting it

;
h = 2, a conic

and line not meeting it
;
h = 3, three lines, no two of which are in the same plane j

m = 4, h = 2, a plane cubic and line once meeting it, or a twisted cubic and line

twice meeting it, or two conies having two points common
;
m = 4, h = 3, a plane

cubic and line not meeting it, or a twisted cubic and line once meeting it. or two

conies having one point common ;
m = 4. h = 4, a twisted cubic and non-intersecting

line, or two non-intersecting conies
;
h = 5, a conic and two lines meeting neither the

conic nor each other
;
h 6, four lines, no two of which are in the same plane.

An interesting quartic curve, Sylvester s &quot;Twisted Cartesian&quot; (see Phil. Mag.,

1866, pp. 287, 380), may here be mentioned specially: viz. the locus of a point
whose distances from three fixed foci are connected by the relations

lp + mp + np&quot;
= a, I p + m p + n

p&quot;

= b.

This curve has an infinity of foci lying in a plane cubic which is the locus of foci

of conies which pass through four points lying on a circle
;

and may be repre

sented as the intersection of a sphere and a parabolic cylinder.
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352. The enumeration in regard to curves of the fifth order

is effected in the memoir already cited. It is easy to see

that besides plane quintics we have, I., quintics which are the

partial intersection of a quadric and a cubic, the remaining
intersection being a right line. These quintics have four ap

parent double points, and may besides have two actual nodal

or cuspidal points. We may have, II., quintics with five

apparent double points, and which may, besides, have one actual

nodal or cuspidal point ;
these curves being the partial inter

section of two cubics, and the remaining intersection a quartic

of the second class. We may have, III., quintics with six

apparent double points being the partial intersection of two

cubics, the remaining intersection being an improper quartic

with four apparent double points. To these may be added,

IV., quintics with six apparent double points which are the

partial intersection of a quadric and a quartic surface; the

remaining intersection being three lines not in the same plane.

353. Instead of proceeding, as we have done, to enumerate

the species of curves arranged according to their respective

orders, we might have arranged our discussion according to the

order of the developables generated, and have enumerated the

different species of the developables of the fourth, fifth, &c., orders.

This is the method followed by Chasles, who has enumerated

the species of developables up to the sixth order (Comptes

Rendus, vol. LIV.), and by Schwarz (Crelle, vol. LXIV., p. 1)

who has carried on his enumeration to the seventh order.

Schwarz s discussion contains the answer to the following ques
tion started by Prof. Cayley : the equation considered, Art. 329,

where the parameter enters rationally, denotes a single plane
whose envelope is a class of developables which Prof. Cayley
calls planar developables ;

on the other hand, if the parameter
entered by radicals, the equation rationalized would denote a

system of planes whose envelope would therefore be called a

multiplanar developable : now it is proposed to ascertain con

cerning each developable, what is, in this sense, the degree of its

planarity. M. Schwarz has answered this question by shewing
that the developables of the first seven orders are all planar.
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In fact when a developable is planar, the planes, lines and

points of the system are expressible rationally by means of a

parameter; and therefore every section of the developable is

unicursal (Higher Plane Curves, Art. 44), as is also the

cuspidal edge and every cone standing on it. It may be

verified by the equations of Arts. 326-7, that

any of these expressions denoting the deficiency either of the

section (Art. 326) or of the cone (Art. 327). When this

deficiency vanishes, the developable is planar ;
when it = 1 it

is biplanar, &c. And this number is the same for any curve

in space, and for any other derived from it by linear trans

formation.

354. The discussion of the possible characteristics of a de

velopable of given order, .depends on the principle (p. 298)

that the section by a plane of the system is a curve of degree

r 2 having m 3 cusps. Thus, if the developable be of the

fifth order the section by a plane of the system is a cubic; and

as this can have no more than one cusp, the edge of regression

is at most of the fourth degree. And it cannot be of lower

degree, since we have already seen that twisted cubics generate

developables only of the fourth order. Hence the only de-

velopables* of the fifth order are those, considered Art. 348,

generated by a curve of the fourth order.

In the same manner the section of a developable of the

sixth order by a plane of the system is a quart ic, which may
have one, two, or three cusps. We have therefore m =

4, 5,

or 6; and, in like manner, n is confined within the same limits;

and therefore, p. 298, the section by the plane of the system is

at most of the fifth class. Now a curve of the fourth degree
with one cusp must have two other double points if it is only
of the fifth class: and, if it have two cusps, it must have one

other double point. In any case, therefore, this quartic is

* The properties of these developables are treated of by Professor Cremona,

Comptes Rendus, vol. Liv., p. 604.
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unicursal and the developable is planar. The case when
the quartic has only one cusp (or m = 4) has been already

considered. The edge of regression has a nodal point ;
and

the system is the reciprocal of the system which envelopes

at* + 4fo
3

-I- Get* + dt -f \a = 0,

where there is a double plane of the system answering to t =
and also to t = co .

If, again, the quartic section have three cusps, it is of the

third class, and therefore for the developable n = 4. This then

is also a case already discussed, Art. 349, the developable being
the envelope of

at* +M + Get
2

-f dt + e = 0.

Lastly, when the quartic has two cusps, it must, as we have

seen, also have a double point, and therefore be of the fourth

class. Hence n = 5. From the preceding formulae the charac

teristics of a system for which m = n = 5, r = 6, are g h = ^^

x = y = 5, a = /3 = 2
; and, if we take the two stationary planes

answering to t = co
,

t = 0, the system is the envelope of

at
5 + 5\at* + Wet3 + 1 Odt

2
-f 5## +/= 0.

M. Schwarz has noticed that the stationary tangent planes

may be replaced by a triple tangent plane ;
that is to say, the

system may be the envelope of

at
5 + 5\a 4

+ Wpat
3 + Wdf + Set +/= 0.

I have not examined with any care the theory of the effects

of triple points of the curve of intersection of two surfaces on

the number of its apparent double points. But (considering

the case where X and p vanish in the equation last written) if

we make b and e = in the equations which I have given

(Cambridge and Dublin Mathematical Journal, v. 158) for the

edge of regression of the developable which results as the

envelope of a quintic, the edge of regression is found to be the

intersection of 2e
a

3c?/, with of* 12d 2
e. And this intersection

is the right line ef with a curve of the fifth order, having the

point def for a triple point. For this being a double point on

each surface is a quadruple point on their curve of intersection
;

and since the right line passes through the point def^ the re

maining curve has a triple point at that point.
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355. We shall conclude this section by applying some of

the results already obtained in it,
to the solution of a problem

which occasionally presents itself: &quot;Three surfaces whose

degrees are /u, v, p, have a certain curve common to all three
;

how many of their pvp points of intersection are absorbed

by the curve ? In other words, in how many points do the

surfaces intersect in addition to this common curve?&quot; Now
let the first two surfaces intersect In the given curve, whose

degree is w, and in a complementary curve pv m, then the

points of intersection not on the first curve must be included

in the (pv m] p intersections of the latter curve with the

third surface. But some of these intersections are on the

curve
??i,

since it was proved (Art. 346) that the latter curve

intersects the complementary curve in m (p + v 2) r points.

Deducting this number from
(/JLV

-
m) p we find that the sur

faces intersect in ftvp m(fjL-i-v + p 2) + r points which are

not on the curve m
;

or that the common curve absorbs

wi(/*-fv + /? 2)
- r points of intersection.

Ex. Applying this formula to the intersections of three cubics having a common
curve of degree m, the number of residual points not on the curve m is 27 7m + r.

Now supposing the surfaces have four right lines common, this at first seems to

give m = 4, h = Q, hence r = and the number of residual points 1. But it is easily

seen that the cubic surfaces hi this case have also common the two transversals

of the four right lines, and these have also an apparent double point ; hence,

the values should have been taken m -
6, h = 7, and these give the number of

remaining points of intersection = 1 . .

If the common curve be two conies, the line in which their planes intersect is

also contained in the surfaces and thus m =
5, h = 4 give 4 remaining intersections.

In precisely the same way we solve the corresponding

question if the common curve be a double curve on the sur

face p. We have then to subtract from the number (/-tv m) /?,

2 {m (/j, + v 2) r} points, and we find that the common curve

diminishes the intersections by m (p + 2/j, + 2i/ 4) 2r points.

These numbers, expressed in terms of the apparent double

points of the curve
?/z,

are

m
(v&amp;gt;
+ v + p

- m -
1) + 2h and m (p + 2//, + 2v - 2m - 2) + 4A.

356. The last article enables us to answer the question :

If the intersection of two surfaces is in part a curve of degree

7?z,
which is a double curve on one of the surfaces, in how

TT
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many points does it meet the complementary curve of inter

section ?&quot; Thus, in the question last considered, the surfaces

/-t, p intersect in a double curve m and a complementary curve

fj,p
2m and the points of intersection of the three surfaces

are got by subtracting from (/up
- 2m) v the number of inter

sections of the double curve with the complementary. Hence

(fjip
- 2m) v i = fAvp m (p + 2/j, -t- 2v 4) 4- 2r,

whence i = m (p + 2fj, 4) 2r.

We can verify this formula when the curve m is the complete

intersection of two surfaces
7, F, whose degrees are k and L

Then p is of the form AU* + BUV+CV2 where A is of the

degree p 2k, &c., and
fju

is of the form DU-\- EV where D
is of the degree p k. The intersections of the double curve

with the complementary are the points for which one of the

tangent planes to one surface at a point on the double curve

coincides with the tangent plane to the other surface. They
are therefore the intersections of the curve UV with the surface

AE*-BDE+CD* which is of the degree p+2f*- 2(k + l).

The number of intersections is kl {p + 2/uu 2 (k 4- I)}
which

coincides with the formula already obtained on putting ld m^
U (k + I - 2)

= r.

357. From the preceding article we can shew how, when
two surfaces partially intersect in a curve which is a double

curve on one of them, the singularities of this curve and its

complementary are connected. The first equation of Art. 346

ceases to be applicable because the surface fju -f v 2 altogether

contains the double curve, but the second equation gives us

m (p + v - 2)
= 2i -f r = / -f 2m (p -f 2v - 4)

-
4r,

whence 4r / = (2m m) (//, + v 2) -f 2m (v 2).

In like manner we find that the apparent double points of

the two curves are connected by the relation

Sh - 2h = (2m - m ) (//,
-

1) (v
-

1)
- 2m (v -I).

Thus, when a quadric passes through a double line on a cubic

the remaining intersection is of the fourth degree, of the sixth

rank, and has three apparent double points.
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SECTION III. NON-PROJECTIVE PROPERTIES OF CURVES.

358. As we shall more than once in this section have

occasion to consider lines indefinitely close to each other, it

is convenient to commence by shewing how some of the

formulae obtained in the first chapter are modified when the

lines considered are indefinitely near. We proved (Art. 14)

that the angle of inclination of two lines is given by the

formula

sin* 6 = (cos@ cos 7 cos ft cos 7)
2
-f (cos 7 cos a cos 7 cos a)*

+ (cos a cos/3 cos a cos/3)
a
.

When the lines are indefinitely near we may substitute for

cosa
,
cosa-f 8 cosa, &c., and put sin#= 80, when we have

8#J =
(cos /3 8 cos 7 cos 7 8 cos 0)* + (cos 7 8 cos a cos a 8 cos 7)*

-f (cosa 8 cos/3 - cos/3 8 cosa)
2
.

/ nv) in

If the direction-cosines of any line be -,-,-, where
r

7
r

1
r

1

f + m* -f ri* = r
2

,
the preceding formula gives

r*SP = (mSn
- nSm)

2
-f (ntl-lBn)

2 + (18m
-
m$lf.

Since we have
cos

2
a + cos

2

/3 -l- cos
2

7 = 1,

cosa 8 cosa + cos/3 8 cos/3 + 0037 8 0037 = ;

if we square the latter equation and add it to the expression
for 80

2

,
we get another useful form

8&amp;lt;9

2 =
(5 cosa)

2
-f (8 cos)

2 + (8 cos7)
2

.

It was proved (Art. 15) that cos/3 COS7 cos/3 0037, &c.

are proportional to the direction-cosines of the perpendicular
to the plane of the two lines. It follows then, that the direc

tion-cosines of the perpendicular to the plane of the consecutive

lines just considered are proportional to 7n$n
?*8??z, n%lln,

l$m
?/z8/, the common divisor being r~Bd.

Again, it was proved (Art. 44) that the direction-cosines of

the line bisecting the external angle made with each other by
two lines are proportional to

cos a - cos a
,

cos ft
- cos /3 ,

cos 7 cos 7 ,
&c.
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Hence, when two lines are indefinitely near, the direction-cosines

of a line drawn in their plane, and perpendicular to their

common direction, are proportional to & cosa, 8 cos/5, 8 cosy,

the common divisor being 80.

359. We proved (Art. 317) that the direction-cosines of

dx dii dz .
., .., . ,

a tangent to a curve are ^- . -, . -=-
, while, if the curve be

as as as

given as the intersection of two surfaces, these cosines are

proportional to MN - M N, NL -N L, LM -L M, where

Lj M) &c. denote the first differential coefficients.

An infinity of normal lines can evidently be drawn at any

point of the curve. Of these, two have been distinguished by

special names
;

the normal which lies in the osculating plane
is commonly called the principal normal; and the normal

perpendicular to that plane, which being normal to two con

secutive elements of the curve, has been called by M. Saint-

Venant the binomial. At any point of the curve, the tangent,

the principal normal, and the binormal form a system of three

rectangular axes.

All the normals lie in the plane perpendicular to the tangent

line, viz.

(x x
)
dx +(y- y) dy + (z- z

}
dz =

in the one notation
;
or in the other

(MN -M N) (x
- x

}
+ (NU - N L) (y

-
y )

+ (LM
f - L M] (z

- z
)
= 0.

360. Let us consider now the equation of the osculating

plane. Since it contains two consecutive tangents of the curve,

its direction-cosines (Art. 358) are proportional to

dyd*z dzdz

y, dzd*x dxd*z, dxd*y dyd x,

quantities which, for brevity, we shall call JT, Y, Z. The equa
tion of the osculating plane is therefore

X(x-x )
+ Y(y-y ) + Z(z-z )=0.

The same equation might have been obtained (by Art. 31)
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by forming the equation of the plane joining the three con

secutive points
/ / / 7 f r

i 7 i 7

xy z x + dx
, y + ay ,

z -+ dz
;

x
r

+ 2dx -f TV, y + 2dy -f d*y ,
/ -4- 2fe -f d?Y.

In applying this formula, we may simplify it by taking one

of the coordinates at pleasure as the independent variable, and

so making cFx, d?y or d2
z = 0.

361. In order to be able to illustrate by an example the

application of the formulae of this section, it is convenient here

to form the equations and state some of the properties of the

helix or curve formed by the thread of a screw. The helix may
be defined as the form assumed by a right line traced in any

plane when that plane is wrapped round the surface of a right

cylinder.* From this definition the equations of the helix are

easily obtained. The equation of any right line y = mx ex

presses that the ordinate is proportional to the intercept which

that ordinate makes on the axis of x. if now the plane of

the right line be wrapped round a right cylinder, so that the

axis of x may coincide with the circular base, the right line

will become a helix, and the ordinate of any point of the

curve will be proportional to the intercept measured along the

circle, which that ordinate makes on the circular base, counting
from the point where the helix cuts the base. Thus the coordi

nates of the projection on the plane of the base of any point of

the helix are of the form a; = acos#, ^ = sin^, where a is

the radius of the circular base. But the height z has been

just proved to be proportional to the arc 6. Hence, the equa
tions of the helix are

x = a cos y , y = a sin 7- ,
whence also x2 + y*

= a
2
.

We plainly get the same values for x and y when the arc in

creases by 2-7T,
or when z increases by 27rh

;
hence the interval

between the threads of the screw is 27rh.

*
Conversely, a helix becomes a right line when the cylinder on which it is

traced is developed into a plane; and is, therefore, a geodesic on the cylinder

(Art. 308).
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m

ti

Since we have

j a . z
7 +& y a z x

dx = j sm j-
dz =

j-
dz. &amp;lt;hi

= = cos y dz = = dz,
n, ii n n li n

a* + h* dz
we have ds* = ^ d. It follows that -r- is constant, or

Ii ds

the angle made by the tangent to the helix with the axis

of z (which is the direction of the generators of the cylinder)

is constant. It is easy to see that this is the same as the

angle made with the generators by the line into which the

helix is developed when the cylinder is developed into a

plane.

The length of the arc of the curve is evidently in a constant

ratio to the height ascended.

The equations of the tangent are (Art. 317)

x x z z
/ / 7

y x h

If then x and y be the coordinates of the point where the

tangent pierces the plane of the base, we have from the pre

ceding equations

(x
- xj + (y-y T = (of + 2/

2

) J = ^f ,

or the distance between the foot of the tangent and the pro

jection of the point of contact is equal to the arc which

measures the distance along the circle of that projection from

the initial point. This also can be proved geometrically, for

if we imagine the cylinder developed out on the tangent plane,

the helix will coincide with the tangent line, and the line

joining the foot of the tangent to the projection of the point

of contact will be the arc of the circle developed into a right

line. Thus, then, the locus of the points where the tangent

meets the base is the involute of the circle.

The equation of the normal plane is

y x xy = h(z z}.

To find the equation of the osculating plane we have

1 1-22
h h
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whence the equation of the osculating plane is

h(y x-x y) + a*(z-z)=Q.

The form of the equation shows that the osculating plane makes

a constant angle with the plane of the base.

We leave it as an exercise to the reader to find the

tangent, normal plane, and osculating plane of the intersection

of two central quadrics.

362. We can give the equation^ of the osculating plane

a form more convenient in practice when the curve is defined

as the intersection of two sih|^^s 7,
V. Since the osculating

plane passes through the tang^it line, its equation must be

of the form

X (Lx + My + Nz + Piv)
= p (L aH-M y + N z + P w],

where Lx + &c. is the tangent plane to the first surface,

L x + &c. to the second. This equation is identically satisfied

by the coordinates of a point common to the two surfaces, and

by those of a consecutive point ; and, on substituting the coor

dinates of a second consecutive point, we get

p = Ld*x+Md*y+Nd*z+Pd*w, X = L d 2x+M d*y+N d*z+P d 2
w.

But differentiating the equation

Ldx + Mdy + Ndz -f Pdw = 0,

we get Ltfx -f Mtfy + Nd
l
z + Pd2w = - Z7

,

where Uf = adx2 + Idy* + cdz* + ddw*

+ Zfdydz + Zgdzdx + tfidxdy -f Sldxdw + Zmdydw -f 2ndzdw,

where a, 5, &c. are the second differential coefficients. Now
dxj &c. satisfy the equations

Ldx -f Mdy + Ndz + Pdw = 0, L dx + M dy + N dz + P dw =
;

and since we may either, as in ordinary Cartesian equations,
take w as constant

;
or else

a;,
or y, or z\ or, more generally,

must take some linear function of these coordinates as constant
;

we may therefore combine with the two preceding equations
the arbitrary equation

adx -f ftdy -f ydz + Sdiv 0.
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Now i.t can easily be verified that if we substitute in the

equation of any quadric, the coordinates of the intersection

of three planes

Lx 4- My + Nz 4 Pw, L x 4 M y 4 N z 4 P WJ ax+/3y+yz + Sw,

the result U will be proportional to the determinant (cf. p. 59)

a
Ti^ &amp;lt;7, Z, Z/, L

,
a

, &, /, W, I/, Jf
,

g, /, c, ft, JV, N , 7

ft, ft, df, P, P
,

5
Z,

L, N P
Z

,
I/

,
N

,
P

a, , 7, 8

This determinant may be reduced by subtracting from the

fifth column multiplied by (m 1) the sum of the first four

columns, multiplied respectively by a?, y,z,w\ when the whole

of the fifth column vanishes, except the last row, which becomes

(ax 4 /3y 4 yz 4 &w). In like manner we may then subtract

from the fifth row, multiplied by (m 1), the sum of the first

four rows multiplied respectively by #, y, z, w, when, in like

manner, the whole of the fifth row vanishes, except the last

column, which is (ax 4- j3y 4 yz 4 &w). Thus the determinant

(ax 4 /3y + 72; 4 810}* , T ,

h, g, f,
Lreduces to

(m
-

1)-
a,

h
y /, w,

,
P

L
,
M

,
N

,
P

If we call the determinant last written $, and the corresponding
determinant for the other equation /S&quot;,

the equation of the

osculating plane is

,
(n IJ

4P^=
1)

z + P w)*

* This equation is due to Dr. Hesse, see Crelle s Journal, vol. XLI.
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This equation has been verified in the case of two
quadrics,

see note, p. 191.

Ex. 1. To find the osculating plane of

ax1 + If + cz1 + dw*, a x* + b y* + c t* + d w*.

Ans. (aV - ba
} (ac

- ca
} (ad

- da
)
x 3x + (ba

- b a) (be
- b c] (bd

1 - b d) y *y

+ (ca
- c a) (cV

- c b} (cd
- c d) z 3z + (da

- d a) (db
- d b} (dc

f - d c] w w = 0.

Ex. 2. To find the osculating plane of the line of curvature

2 2 2
y
z z1

-z i
i

&quot;2

T
. 2
~ *

Ane -- 4-A H
c&quot; zz

363. The condition that four points should lie in one plane,

or, in other words, that a point on the curve should be the

point of contact of a stationary plane, is got by substituting

in the equation of the plane through three consecutive points,

the coordinates of a fourth consecutive point. Thus, from the

equation of Art. 31, the condition required is the determinant

d*x(dyd*z-dzd*y)+d*y(dzd*x-dxd*z) + d*z(dxd*y- dyd*x] =0.

If a curve in space be a plane curve, this condition must

be fulfilled by the coordinates of every point of it.

For a curve given as the intersection of two surfaces

Uj V, Clebsch determined as follows (see Crelle, LXin. 1) the

condition for a point of osculation. Writing for brevity

S=(m-lYT1
S =(n- I)

2 ?
7

,
the equation given in the last

article for the osculating plane is

(
T L- TL] x+ (

TM-TM
) y + (

T N-TN
)
z +

(
T P- TP f

) w=0,

and the equation of a consecutive osculating plane differs from

this by terms

(
TdL + LdT- TdL -L dT)x + &c. = 0.

Thus, in order that the two planes may coincide, introducing
an arbitrary differential dt^ we must have the four equations

TdL + LdTf - TdL - L dT=
(
TL - TL

} dt, &c.

If, now, we write

T=AL + BM + CN + DP, T = A L + B M+ CfN+ D P,
u u
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where A, B, &c. are proportional to minors of the determinant

Sj and where in fact

A _ i
dT p_ dT

~-~ ~-

we must have

AL -f BM+ CN+ DP= 0, AdL -f BdM+ CdN+ DdP= 0,

AL + &c. = 0, J.UL + &c. = 0;

for, if in the determinant S we substitute for the last column

either L, J/, A7
, P, or cL, dM, dN, ?P, it is easy to see that

the determinant vanishes. Multiply then the four equations

last considered by A, J9, (7,
D respectively, and add, and we

have, after dividing by T,

which we may write

where by d(T) we mean the differential of T considered

merely as a function of L
,
M

,
JV

,
P f

a, Z&amp;gt;,

&c. being regarded
as constants. Similarly we have dT -f \d (T

1

)
= T dt. Let us

now write at full length for dT, T^dx + T^dy -f &c.
;
and elimi

nating dx, dy, dz, dw, dt between the two equations just obtained,

and the three conditions which connect dx, dy, dz, dw^ we
obtain the required condition in the form of a determinant

=0.

L, M, N, P,

-Z/, M
,

N
, P,

, J0,
-

7, ^
Now T is a function of #, y, 2, w? of the degree 3m -\-2n- 8,

but when regard is paid only to the xyzw, which enter into

Is
,
M

, &c., (T) is of the degree 2(n- 1) ; if, therefore, we

multiply the first four columns by #, y, 2, w respectively, and

subtract them from 3 (m + n 3) times the last column, the first

four terms of the last column vanish, and the equation just
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written may be reduced by cancelling the fifth row and column

of the determinant. The condition that we have just obtained

is of the degree 6m + Qn 20 in the variables as might be

inferred from the value of a, Art. 342. If the surfaces U
and V are quadrics, and therefore the coefficients a, 5, &c.

really constant, (TJ, (TJ, &c. are identical with T^ T^ &c.,

and the condition that we have obtained is the result of

equating to zero the Jacobian of the four surfaces T^ T
,&quot;

364. We shall next consider the circle determined by three

consecutive points of the curve, which, as in plane curves, is

called the circle of curvature. It obviously lies in the oscu

lating plane : its centre is the intersection of the traces on

that plane, by two consecutive normal planes ;
and its radius

is commonly called the radius of absolute curvature, to dis

tinguish it from the radius of spherical curvature, which is

the radius of the sphere determined by four consecutive points

on the curve, and which will be investigated presently. If

through the centre of a circle a line be drawn perpendicular
to its plane, any point on this line is equidistant from all the

points of the circle, and may be called a pole of the circle.

Now the intersection of two consecutive normal planes evidently

passes through the centre of the circle of curvature, and ia

perpendicular to its plane. Monge has therefore called the lines

of intersection of pairs of consecutive normal planes the polar
lines of the curve. It is evident that all the normal planes

envelope a developable of which these polar lines are the

generators, and which accordingly has been called the polar

developable surface. We shall presently state some properties

of this surface. The polar line is evidently parallel to the line

called the Binormal (Art. 359).

365. In order to obtain the radius of curvature, we shall

first calculate the angle of contact, that is to say, the angle
made with each other by two consecutive tangents to the

mi. v .
,. , , . dx du dz

curve, ihe direction-cosines of the tangent being -j- , -j- ,
-r

,
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it follows, from Art. 358, that dO, the angle between two con

secutive tangents, is given by either of the formulae

ds J \ ds) \ ds.

where X= dyd*z
-

dzd*y, &c.

The truth of the latter formula may be seen geometrically;
for the right-hand side of the equation denotes the square of

double the triangle formed by three consecutive points (Art. 32) ;

but two sides of this triangle are each ds, and the angle between

them is d0, hence double the area is ds*d0.

If now ds be the element of the arc, the tangents at the

extremities of which make with each other the angle d6, then

since the angle made with each other by two tangents to a

circle is equal to the angle that their points of contact subtend

at its centre, we have pdd = ds. And the element of the arc

and the two tangents being common to the curve and the

circle of curvature, the radius of curvature is given by the

formula

ds . J&amp;lt;?

p=-7a i
whence p =

ds ) \ ds ) \ ds

ds*
or p = -^r, =HF

Ex. To find the radius of curvature of the helix. Using the formulae of Art. 361,
o _l_ ^2

we find p = j
or the radius of curvature is constant.

* By performing the differentiations indicated, another value for dO* is found

without difficulty,

This formula may also be proved geometrically. Let AB, EC be two consecutive

elements of the curve
;
AD a line parallel and equal to BC

;
then since the projections

of EC on the axes are dx + d2
x, dy + d*y, dz + d2

z, it is plain that the projections
on the axes of the diagonal BD are d2

x, d2
y, d2

z, whence BDz = (d
2
x)

2+
(&amp;lt;%)

2 + (d
2
z)

2
.

But BD projected on the element of the arc is d?s, and on a line perpendicular to it is

da dO
;
whence

(d
2
*)

2 + (ds rf0)
2 ^

(rf
2
*)

2
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366. Having thus determined the magnitude of the radius

of curvature, we are enabled by the formulas of Art. 358 also

to determine its position. For the direction-cosines of a line

drawn in the plane of two consecutive tangents, and perpen

dicular to their common direction, are, by that article,

..dx jdy ..dz

1 -.dx 1 ..dy I _.dz ds ds ds

If #
, y ,

z be the coordinates of a point on the curve,

and ic, ty, z those of the centre of curvature, then the projec

tions of the radius of curvature on the axes are x x, y yt

z z but they are also p cosa, p cos/3, p cosy. Putting in

then for cosa, cosyS, cosy their values just found, the coordinates

of the centre of curvature are determined by the equations

, dx ~dii ..dz

d-j- d-f- d-j-
f as , as , as

x - x = p .,y-y = p ,,-z =p.
367. When a curve is given as the intersection of two

surfaces which cut at right angles, an expression for the radius

of curvature can be easily obtained. Let r and r be the

radii of curvature of the normal sections of the two surfaces,

the sections being made along the tangent to the curve
;
and

let
&amp;lt;f&amp;gt;

be the angle which the osculating plane makes with

the first normal plane: then, by Meuuier s theorem, we have

1 1 1

p = r cos
&amp;lt;,

and also p = r sin
&amp;lt;p,

whence -5 + -^ .

The same equations determine the osculating plane by the

r
formula tan 6 = .

r

If the angle which the surfaces make with each other be
G&amp;gt;,

the corresponding formula is

sin
2

o&amp;gt; 112 cosct)

p r r rr

We can hence obtain an expression for the radius of cur

vature of a curve given as the intersection of two surfaces.



3,34 CURVES AND DEVELOPABLES.

We may write L1 + M* + N 2 = R\ L 4 M * + N&quot; = 2

;
and

we have

LL +MM +NN
cosco =

. _ (MN -M N)* + (NU -N L)* -f

We must then substitute in the formula of Art. 296,

MN -M N NL - N L LM f - L M
cos = ^, w .

, cos/3 =

The denominator of that formula becomes

a, h) g, L, Lf

h, b, /, M, M

L, M, JV,

77, Mf

,
N

which reduced, as in Art. 362, becomes
(m -

1)
5 8: giving

r = (m - I)* . .. .
,

, similarly r =

Whence -5
=

-. -r

p (m 1)

-f

(n I)
4 R*R* sin

6
eo (m

- 1
)&quot; (n

-
l)

a

In the notation of Art. 363 this may be written

sin
6

a&amp;gt;

368. Let us now consider the angle made with each other

by two consecutive osculating planes, which we shall call the

angle of torsion, and denote by drj. The direction-cosines of

the osculating plane being proportional to X, I
7
, Z, the second

formula of Art. 358 gives

Jdr)*=( YdZ-ZdYy+(ZdX-XdZ)*+(XdY-
TT&quot; 7 72 J 7iJ ^7 J J*%

= dzd?x dxd*z, dZ= dxd*y
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Therefore (Lessons on Higher Algebra, Art. 31)

YdZ-ZdY=Mdx,
where H is the determinant

X&amp;lt;Fx+ Ytfy+Ztfz.

Hence (X
9 + Y* + Z*}* dif = M*ds\ -

. . ,;
}

.

Mds
dr) -x*+Y + Z*

This formula may be also proved geometrically. For M
denotes six times the volume of the pyramid made by four

consecutive points, while X 2 + Y* + Z* denotes four times the

square of the area of the triangle formed by three consecutive

points. Now if A be the triangular base of a pyramid, A an

adjacent face making an angle 97 with the base, s the side com

mon to the two faces, and p the perpendicular from the vertex

on s, so that 2A =
sp, then for the volume of the pyramid

we have 3 V Ap sin 77 and 6 Vs = 2Aps sin 77
= AA sin rj.

Now, in the case considered, the common side is ds, and in

the limit A =A
;
hence 6 Yds = A2

dij. Q.E.D.

Following the analogy of the radius of curvature which is

ds ds
-

, the later French writers denote the quantity* by the
du . drj

letter
?*,

and call it the radius of torsion ; but the reader will

observe that this is not, like the radius of curvature, the radius

of a real circle intimately connected with the curve.

369. In the same manner, however, as we have considered

an osculating circle determined by three consecutive points of

the system, we may consider an osculating right cone deter

mined by three consecutive planes of the system, and we

proceed to determine its vertical angle. Imagine that a

sphere is described having as centre the point of the system
in which the three planes intersect

;
let the lines of the system

passing through that point meet the sphere in A and B\
and let the corresponding planes meet the same sphere in

AT, BT, then, if we describe a small circle of the same sphere

* The quantity
~ is also sometimes called the &quot; second curvature&quot; of the curve.
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touching A T, BI\ and escribed to AB^ the cone whose vertex

is the centre, and which stands on that small circle, will

evidently osculate the given curve. The problem then
is, being

given dri the angle between two consecutive tangents to a

small circle of a sphere, and dO the corresponding arc of the

circle to find H its radius.

Let
(f&amp;gt;

be the external angle between two tangents to a

circle, s the length of the two tangents, then H the radius of

the circle is given by the formula tan
^&amp;lt;f&amp;gt; tanZT=sin^5. Now,

taking C the centre of the small circle and t the foot of the

perpendicular from it on AB, we have tan
^(j&amp;gt;

tanH=s&amp;gt;mAtj
and tan

J&amp;lt;

tan H sin Bt, where in the limit
&amp;lt;j&amp;gt;

differs by
an infinitely small quantity from $.

Now, since also in the limit AB measures the angle between

consecutive lines of the system and
&amp;lt;/&amp;gt;

measures that between

consecutive planes of the system, we have then

TJ dd r
tan H=

-7-
= - .*

di) p

370. Imagine that through every line of the system there

is drawn a plane perpendicular to the corresponding osculating

plane, this is called a rectifying plane, and the assemblage of

these planes generates a developable which is called the recti

fying developable. The reason of the name is, that the given
curve is obviously a geodesic on this developable, since its

osculating plane is, by construction, everywhere normal to the

surface. If, therefore, the developable be developed into a

plane, the given curve will become a right line.

The intersection of two consecutive planes of the rectifying

developable is the rectifying line. Now, since the plane passing

through the edge of a right cone perpendicular to its tangent

plane passes through its axis, it follows that the rectifying

plane passes through the axis of the osculating cone considered

in the last article
; and, therefore, that the rectifying line is

the axis of that osculating cone. The rectifying line may be

* It has been proved by M. Bertrand that when the ratio r : p is constant, the

curve must be a helix traced on a cylinder; and by Puiseux, that when r and p
are both constant, the cylinder has a circular base, Liouville s Monge^ p. 554.
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therefore constructed by drawing in the rectifying plane a

line making with the tangent line an angle H^ where H has

the value determined in the last article.

The rectifying surface is the surface of centres of the original

developable formed by the lines of the system. In fact it was

proved (Art. 306) that the normal planes to a surface along
the two principal tangents touch the surface of centres

;
but

the generating line itself is in every point of it one of the

principal tangents ;
the rectifying plane, therefore, touches the

surface of centres which is the envelope of all these rectifying

planes. The centre of curvature at any point on a developable
of the other principal section, namely, that perpendicular to the

generating line, is the point where its plane meets the corre

sponding rectifying line
;

for evidently the traces on this plane
of two consecutive rectifying planes are two consecutive normals

to the section. Hence if I be the distance of any point on the

developable from the cuspidal edge measured along the generator,

the radius of curvature of the transverse section is It&nH.

When I vanishes, this radius of curvature vanishes, as it ought,
the point being a cusp.

In the case of the helix the rectifying surface is obviously
the cylinder on which the curve is traced.

371. Tofind tlie angle between two successive radii ofcurvature.*

Let AB, BC be traces on any

sphere with radius unity, of planes

parallel to the osculating and

normal planes, then the central

radius to B is the direction of the

radius of curvature. If AB
,
B C

be consecutive positions of the os-

dilating and normal planes, B is in the direction of the con

secutive radius of curvature, and BB measures the angle
between them. 2s ow the triangle BOB being a very small

right-angled triangle, we have BB * = BO* + OB *.

* The reader will find simple geometrical investigations of this and other formulae

connected with curves of double curvature in a paper by Mr. Routh
? Quarterly Journal

of Mathematics, vol. vn. p. 37.

XX
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But since the angle ABC is right, BO measures BAB
,
which

is drj, the angle between two consecutive osculating planes,

and OB measures OCB
,
which is dO, the angle between

two consecutive normal planes. The required angle is there

fore given by the formula BB =
drj

2 + d&\ where dr] and

dd have the values already found. The series of radii of

curvature at all the points of a curve generate a surface on

the properties of which we have not space to dwell. It is

evidently a skew surface (see note, p. 89), since two consecutive

radii do not in general intersect (see Art. 374, infra).

Ex. 1. To find the equation of the surface of the radii of curvature in the case

of the helix.

The radius of curvature being the intersection of the osculating and normal planes
has for its equations (Art. 361) x y y x, z z

,
from which we are to eliminate

x y z by the help of the equations of the curve. And writing the equations of the

helix x = a cos nz, y = a sin nz, the required surface is y cos nz = x sin nz.

Ex. 2. To find the equation of the developable generated by the tangents of

a helix. The equations of the tangent being

x a cos nz net sin nz (z z
), y a sin nz = na cos nz (z z },

the result of eliminating z is found to be

r
(a^+ _ a )*i

r
(3.2 + yt

_ a2)i-|x cos \ nz + -
} + y sin nz + )

= a.
{ all a j

Since this equation becomes impossible when x2 + y
z

&amp;lt; a2
,
it is plain that no part of

the surface lies within the cylinder on which the helix is traced.

372. We shall now speak of the polar developable generated

by the normal planes to the given curve. Fourier has remarked,
that the &quot;

angle of torsion
&quot;

of the one system is equal to the
&quot;

angle of contact&quot; of the other, as is sufficiently obvious since

the planes of this new system are perpendicular to the lines

of the original system, and vice versa. The reader will bear

in mind, however, that it does not follow from this that the

dO p -11 df]

-j-
ot one system is equal to the -y- of the other, because the

ds is not the same for both.

Since the intersection of the normal planes at two con

secutive points K, K of the curve is the axis of a circle of

which K and K are points (Art. 364), it follows that if any

point D on that line be joined to K and K\ the joining lines

are equal and make equal angles with that axis.



NON-PROJECTIVE PROPERTIES OF CURVES. 339

It is plain that three consecutive normal planes intersect

in the centre of the osculating sphere ;
hence the cuspidal edge

of the polar developable is the locus of centres of spherical cur

vature.

In the case of a plane curve this polar developable reduces

to a cylinder standing on the evolute of the curve.

373. Every curve has an infinity of evolutes lying on the

polar developable;* that is to say, the given curve may be

generated in an infinity of ways by the unrolling of a string

wound round a curve traced on that developable. Let MM
,

M
M&quot;,

&c. denote the successive elements of the curve, K, K ,

&c. the middle points of these elements, then the planes drawn

through the points K perpendicular to the elements are the

normal planes. The lines AB, A B
,
&c. being the lines in

which each normal plane is intersected by the consecutive,
these lines are the generators of the polar developable, and

hence tangents to the cuspidal edge RS of that surface. Draw

now at pleasuref any line KD in the first normal plane,

meeting the first generator in D\ join DK f
which being in

the second normal plane will meet the second generator A B ,

say in D . In like manner, let K&quot;D meet A&quot;B&quot; in Z&amp;gt;&quot;. We
get thus a curve DD D&quot; traced on the polar developable which

is an evolute of the given curve. For the lines DK, D K ,
&c.

the tangents to the curve DD D&quot;
,

are normals to the curve

* See Monge, p. 396.

t This figure is taken from Leroy s Geometry of Three Dimensions.
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KK
K&quot;,

and the lengths DK=DK ,
DK = D

K&quot;,
&c. (see

Art. 372). If therefore DKbe a part of a thread wound round

DD D&quot;
,

it is plain that as the thread is unwound the point K
will move along the given curve.

Since the first line DK was arbitrary, the curve has an

infinity of evolutes. A plane curve has thus an infinity of

evolutes lying on the cylinder whose base is the evolute in the

plane of the curve. For example, in the special case where

this evolute reduces to a point ;
that is, when the curve is a

circle, the circle can be described by moving round a thread

of constant length fastened to any point on the axis passing

through the centre of the circle

In the general case, all the evolute curves DD
D&quot;,

&c. are

geodesies on the polar developable.

For we have seen (Art. 308) that a curve is a geodesic when
two successive tangents to it make equal angles with the inter

section of the corresponding tangent planes of the surface
;

and it has just been proved (Art. 372), that DK, DK ,
which

are two successive tangents to the evolute, make equal angles
with AB which is the intersection of two consecutive tangent

planes of the developable. An evolute may then be found

by drawing a thread as tangent from K to the polar develop

able, and winding the continuation of that tangent freely round

the developable.

374. The locus of centres of curvature is a curve on the polar

developable, but generally is not one of the system of evolutes.

Let the first osculating plane MM M&quot; meet the first two normal

planes in KG, K f

G, then O is the first centre of curvature;

and, in like manner, the second centre is Gr

,
the point of inter

section of K G
,

K&quot;C
f

,
the lines in which the second oscu

lating plane M M&quot;M.
fff

is met by the second and third normal

planes. Now the radii K G, K f G f
are distinct, since they

are the intersections of the same normal plane by two different

osculating planes, K G f
will therefore meet the line AB in a

point / which is distinct from C. Consequently, the two radii

of curvature KG, K C situated in the planes P, P
f

have no

common point in AB the intersection of these planes; two
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consecutive radii therefore do not intersect, unless in the case

where two consecutive osculating planes coincide.

The centres of curvature then not being given by the suc

cessive intersections of consecutive radii, these radii are not

tangents to the locus of centres. Any radius therefore KG
would not be the continuation of a thread wound round CC

C&quot;,

and the unwinding of such a thread would not give the curve

KK
K&quot;, except in the case where the latter is a plane curve.*

375. To find the radius of the sphere through four con

secutive points. Let R be the radius of any sphere, p the

radius of a section by a plane making an angle rj with the

normal plane at any point ; then, by Meunier s theorem,

R COST; = p ;
and for a consecutive plane making an angle

77 + 877. we have So = R sin 77877. Hence Rz = p
2 + ( -7- )

.

\di)/

We have then only to give in this expression to p and drj

the values already found.

~j-
is obviously the length of the perpendicular distance

from the centre of the sphere to the plane of the circle of

curvature.

376. To find the coordinates of the centre of the osculating

sphere.

Let the equation of any normal plane be

(a. x)dx+(/3 y] dy + (7 z] dz = 0,

where xyz is the point on the curve, and a./3y any point on

* The characteristics of the polar developable may be investigated by arguments
similar to those used Higher Plane Curves. Arts. 111. &amp;lt;tc. They are = m + r, a 0,

r = 3m + n, m =om + a, where m, n, &c., having the same meaning as in Art. 325, are

the characteristics of the given curve, and m
,
n

,
&c. the corresponding characteristics

of the polar developable. &quot;When, as is here supposed, there is nothing special in the

character of the points at infinity of the given curve, the normal planes corresponding

to these points are altogether at infinity; and the corresponding generators of the

polar developable are common to three consecutive planes. The plane at infinity

meets the polar dtvelopables in m lines, each reckoned three times, and a curve of

the Htu order.
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the plane ;
then the equation of a consecutive normal plane

combined with the preceding gives

(a
-

x) d*x + (/3
-
y} d

l

y + (7
-

z) d*z - ds*.

And the equation of the third plane gives

(a
-

x) dx + (&-y] d*y + (7 - z) d
s
z = 3dsd

2
s.

Let us denote, as before, dyd
2
z dzd*y, &c. by JT, F, Z\

dyd
A
z -

dzd^j &c. by X
,
Y

, Z\ and the determinant

Xd3x+ Ydy

y + Zdz
z by M. Then, solving the preceding equa

tions, we have

M(OL-X) = - X ds* + SXdstfs, M(/3
-

y}
= - Y ds

2 + 3 Ydsd2

s,

M(y -z) = - Z ds
2 + SZdstfs.

By squaring and adding these equations, we obtain another

expression for E^ which is what the value in the last article

becomes when for p and -7- we substitute their values.
arj

We add a few other expressions, the greater part of which

admit of simple geometrical proofs, the details of which want

of space obliges us to omit.

Ex. 1. If or be the arc of the curve which is the locus of centres of absolute

curvature,
da&quot;

1 - dp
2 + p^dr)&quot;

2
;

or d&amp;lt;r =

Ex, 2. If Z be the length of the arc of the locus of centres of spherical curvature

dZ = r
; where d = -/- is the distance between the centres of the osculating circle

d d-i]

and osculating sphere. From this expression we immediately get values for the

radii of curvature and of torsion of this locus, remembering that the angle of torsion

is the angle of contact of the original, and vice versa.

Ex. 3. The angle between two consecutive rectifying lines is dH.

Ex. 4. The angle v//
between two consecutive Rs, is given by the formula

* The reader will find further details on the subjects treated of in this section in

a Memoir by M. de Saint-Yenant, Journal de VEcole Poll/technique, Cahier xxx.,
who has also collected into a table about a hundred formulas for the transformation

and reduction of calculations relative to the theory of non-plane curves; and in a

paper by M. Frenet, Liouville, vol. xvn., p. 437. I abridge the following historical

sketch from M. de Saint-Venant s Memoir :

&quot; Curve lines not contained in the same

plane have been successively studied by Clairaut (Recherches sur les courbes a double

courbure, 1731), who has brought into use the title by which they have been com

monly known (previously, however, employed by Pitot) and who has given expressions

for the projections of these curves, for their tangents, normals, arc, &c.
; by Monge

(Memoire sur les developpees, $c. presented in 1771, and inserted in vol. x., 1785,

of the Savants eirangers, as well as in his Application de I*Analyse a la Geometric )
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SECTION IV. CURVES TRACED ON SURFACES.

377. The coordinates x, y, z of a point on a surface may
be expressed as functions of two parameters p, q and conversely

if the coordinates x, y, z are thus expressed as functions of two

parameters, these expressions determine the surface, for by the

elimination of the parameters we obtain between the coordinates

a?, y}
z the equation 7=0 of the surface; and when a definite

value is assigned to either p or j, the point xyz is restricted

to a definite curve on the surface. This mode of representation

of a surface is, peculiarly appropriate for the discussion of the

theory of curvature, and it has been used for that purpose

by Gauss.* We proceed to give an account of his investi

gations, but before doing so must explain his notation and

establish the connexion of this method with that by which

curvature was treated in Chapter xi. We have
a;, y, z given

functions of p, q and the partial differential coefficients of

X, ?/,
z in regard to these variables are expressed as follows :

dx = adp + adq, dy = bdp -f b dq, dz = cdp -f cdq,

d*x = adp* + 2afdpdq +
a.&quot;dq\

dl

y = #?/
d2

z = ydp* + 2y dpdq

who gave expressions for the normal plane, centre and radius of curvature, evolutes,

polar lines and polar developable, centre of osculating sphere, for the criterion for

points of simple inflexion where four consecutive points are in a plane, and for

points of double inflexion where three consecutive points are in a right line
; by

Tinseau (Solution de quelques problemes, $c. presented in 1774, Savants ctrangers,
vol. IX., 1780) who was the first to consider the osculating plane and the developable

generated by the tangents; by Lacroix (Calcul DifferentieT) who was the first to

render the formulae symmetrical by introducing the differentials of the three co

ordinates
;
and by Lancret (Memoire sur les courbes a double cmtrbure, read 1802,

and inserted vol. I., 1805, of Savants etrangers de 1 Institut) who calculated the

angle of torsion, and introduced the consideration of the rectifying lines and rectify

ing surface.&quot; The reader will find some interesting and novel researches respecting
curves of double curvature in Sir Wm. Hamilton s Elements of Quaternions ; as, for

instance, the theory of the osculating twisted cubic which passes through six con
secutive points of the curve.

* See his Memoir Disquisitiones circa superficies curvas,&quot; Cornm. Gott. recent.,

t. vi. (1827), reprinted in the appendix to Liouville s Edition of Monge, and in his

Works, iv. p. 219.
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Gauss also writes

be cb = A, ca ac = Bj ab ~ba G,

a z

which obviously lead to the relation J 2 + 2 + C*

and to these notations it is convenient to join V2 = EG F\

/3+Cy =E J
Aa! + Bff + Cy =Ff

,
Aoi&quot; + $&quot; + Cy&quot;

= G
,

j
F

)
G denoting respectively the determinants

a, ,
c

1
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Now this equation may be written (Higher Algebra, Art. 24)

adx 4 bdy 4 cdz, adx 4 b
f

dy 4 c dz
_

adA 4 bdB 4 cdC, adA 4 b dB+ cdC

since it is what is denoted by

an / /7O&quot; /77/ /79!
,
f

,
C Ot*t/

, &quot;-^ )
vf* /-w

a
r

,
5

r

,
c dA, dB, dC

=

Calculating the quantity adx 4 bdy 4 cofe, by substituting for dx,

adp 4 aV^, &c., it is found to be Edp 4 Fdq. Similarly

a dx 4 b dy 4 c tfe = Fdp 4 6^&amp;lt;f^.

Again, differentiating the identities

we find adA + bdB+cdC=- (Ada 4 Bdb 4 Cdc
),

aWJ. 4 W5 + c dC=- (Ada
f 4 5^5 4 Ctfc

),

which, substituting for c?a = a^p 4 aWg , &c., become respectively

-(E dp + Fdg) and -(F dp+ G dq). Whence, finally, the

equation of the lines of curvature is

Edp 4 Fdq, Fdp 4 Gdq \

dp + F dq, F dp+G dq I

J

or, as this may also be written,

df, dpdq, dp*

E, F
,
G

Ff

= 0.

379. The equations Q = dx -} Ad\ + \dA, &c., of the last

article may be written, putting dA A^dp 4 Ajlq, &c.,

=
(a 4 X-4J dp 4 (a 4 X^

2) c?^ 4 Ad\,
=

(b + X5J c?p 4 (& 4 X52 ) ^ 4
= (c 4 XC,) rfp 4 (c 4 XC2 ) ^ 4

which equations, by the elimination of dp, dq, d\, give for the

determination of X a quadratic equation corresponding to that

of Art. 295. Taking p for the radius of curvature, we have

p -tf-aO +fo-y)
1+(-) ,

=F 2

X&quot;,
or say X =&amp;gt; p : 7;

and writing down the equation in question with this value

Y Y
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substituted for X, the equation is

aV+Aj, bV+B
tp, cV+Cj

zp, b V+Bj, =
0,

A
,

B
,

C

a quadratic equation for determining the radius of curvature.

This equation may be treated as before. It becomes

EV+ p (A^a + BJ&amp;gt;
4 C

tc), FV+ p (AJ 4
BJ&amp;gt;

4 C/) = 0.FV+ p (A^a 4 BJ&amp;gt;
4 C7

ac),
G V+ p (A,a 4

BJ&amp;gt;
4

&amp;lt;?/)

In which, by the last article, the coefficients of p are E f

^
F

,

G
j
whence the equation for the radii of curvature is

E p-EV, Fp-FV
F p-FV, Gp- OV

~~

380. By what precedes we have a quadratic equation for the

direction of the lines of curvature, and a quadratic equation

for the value of p; but it is- obvious that, selecting at pleasure

either of the two lines of curvature, the corresponding value

of p should be linearly determined. The required formula is

at once obtained from the equations
= dx + Ad\ 4XcL4, &c.,

of Art. 378, by multiplying them by dx, dy, dz respectively

and adding; then substituting for \ its foregoing value p : F,

we have

V(dx* 4 dif 4 dz*) 4 p (dxdA 4 dydB 4 dzdC) =
0,

where, by what precedes, dx
2

4 dy* 4 dz* = Edp* 4 2Fdpdq 4 Gd&amp;lt;f.

But, by the equation of the surface Adx+Bdy+ Cdz = 0, we have

dA dx 4 dBdy + dCdz = - (Ad*x 4 Bd*y 4 Cd*z),

which, substituting from Art. 377,

= - (E dp* + ZF dpdq 4 Q df),

whence the equation is

p (E dp* 4 ZFdpdq 4 G- df)
- V(Edp* 4 2Fdpdg + Gdf] = 0.

In this, considering dp 4- dq as having at pleasure one

or other of the values given by the differential equation of

the lines of curvature, the equation gives linearly the cor

responding value of the radius of curvature.

But writing the equation in the form

(pE - VE) df 4 2
(PF

f - VF] dpdq + (pG - VG) d&amp;lt;
=

0,
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and attending to the equation for the determination of p, it

appears that the equation may be expressed in either of the

forms

(PE
f

-VE}dp + (pF
f - VF) dq = 0,

(pF -VF] dp + (pG -VG) dq = ;

or, which is the same thing, the equations of Arts. 378 and 379

may be expressed in the more complete forms

p ,
E dp +F dq, Fdp+ Grdq

V, E dp + F dq, F dp+G dq
=

dq, PE - VE, pF -VF
-dq, PF -VF, p& - VG

~

The first of these gives the quadratic equation for the curves

of curvature, and (linearly) the value of p for each curve
;

the

second gives the quadratic equation for the radius of curvature,

and (linearly) the direction of the curvature for each value of

the radius. It also appears that the quadratic equations for p
and for dp -r dq are linear transformations the one of the other.

381. Returning to the equation

p (E dp* + Wdpdq + G- df) = V (Ed/ + 2Fdpdq + Qdp*)

of the preceding article, it is to be observed that (the ratio

dp-t-dq being arbitrary) this is the equation which deter

mines the radius of curvature of the normal section through
the consecutive point (p + dp, q + dq). The centre of curva

ture of this section
is, in fact, given as the intersection of the

normal at (p, q) by the plane drawn through the middle point
of the line joining the two points (p, q), (p + dp, q + dq) at

right angles to this line. Taking f , ??, f for current coordinates,
the equations of the normal are, as before,

whence (f
-

x)
2 + (17

-
y}

2 + (f
-

z}*
= X2 V 2 = p\

p being a distance measured along the normal
;
the equation of

the plane in question is

(f
- x ~\&x - ld*x - &c.) (dx + \d*x + &c.) +...= 0,

*

or, substituting for x, T)-y, %-z the values
, ,
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the equation, omitting higher infinitesimals, becomes

which, observing that Adx + Bdy -f Cdz = 0, is

p (Ad*x + Bd y -f Cd z)
- V(da? + tfy

2
-f da?)

=
0,

or, substituting for dx, ..., c?
2

#, ... their values, it is

p (E d/ + ZF dpdq + G df)
- V(Edp

i

-\ ZFdpdq + Gdf) = 0,

the above-mentioned equation.*

The formula explains the meaning of the coefficients

E f

,
F

,
G

;
it shews that the equation

E df + ZF dpdq + G d&amp;lt;f

=

determines the directions of the inflexional tangents at the

point (p, q). It may be observed that if j =
0, 6r = 0, this

equation becomes dpdq = 0, we then have p const,, g = const.,

as the equations of the &quot; inflexion
curves,&quot; or curves which at

each point thereof coincide in direction with an inflexional

tangent.

382. We may imagine the parameters p, q so determined

that the equations of the two sets of lines of curvature shall

be p = const, and q = const, respectively. When this is so the

differential equation of the lines of curvature will be dpdq = ;

and this will be the case if F= 0, F =
;
we thus obtain F 0,

F as the conditions in order that the equations of the

lines of curvature may be p const, and q = const. Or, writing
the conditions at full length, they are

dx dx dy dv dz dz
i _^L __ i =0

dp dq dp dq dp dq



CURVES TRACED ON SURFACES. 349

where it may be noticed that the first equation merely expresses

that the curves p = const, and q
= const, intersect at right

angles.

383. If, as above, F= 0, F
f =

0, then the quadratic equation

for p is

(PE -VE)(pG
f

-VG) = 0,

and from the equations of Art. 380, putting successively dp = 0,

PY3

dq = Q, it appears that the value p = ^7- belongs to the line

VE
of curvature p = const., and the value p= -- to the line of

curvature % const.

384. The above determinant-equation F = may be re

placed by three equations

d*x dx dx

dpdq dp dq

where X, /^,
are indeterminate coefficients; multiplying first

by -TJ- , -/- , -7- , and adding, we have an equation containing
dp

7

dp dp
^

only X, and which is

and similarly multiplying by y- ,

-~-
, -y- ,

and adding, we obtain

It thus appears, that p const., q = const., being the equations

of the curves of curvature, the coordinates #, ?/,
z considered

as functions of p, q satisfy each the partial differential equation

d*u lldEdu 1 1 dGdu_~~
o ~T?~T^ ~J^

~~
o ~71 &quot;XT ~j~~

~
)

dpdq 2 Edq dp 2 G dp dq

385. Entering now upon Gauss s theory of the curvature

of surfaces,! it is to be remembered that in plane curves

* See Lame Leqons sur les ccordonntes curvilignes. Paris, 1859, p. 89.

t See his Memoir referred to in Note to Art. 377.



350 CURVES AND DEVELOPABLES.

we measure the curvature of an arc of given length by
the angle between the tangents, or between the normals, at

its extremities
;

in other words, if we take a circle whose radius

is unity, and draw radii parallel to the normals at the ex

tremities of the arc, the ratio of the intercepted arc of the

circle to the arc of the curve affords a measure of the cur

vature of the arc. In like manner, if we have a portion of

a surface bounded by any closed curve, and if we draw radii

of a unit sphere parallel to the normals at every point of the

bounding curve, the area of the corresponding portion of the

sphere is called by Gauss the total curvature of the portion

of the surface under consideration. And if at any point of

a surface we divide the total curvature of the superficial element

adjacent to the point by the area of the element itself, the

quotient is called the measure of curvature for that point.

386. We proceed to express the measure of curvature by
a formula. Since the tangent planes at any point on the

surface, and at the corresponding point on the unit sphere,

are by hypothesis parallel, the areas of any elementary portions

of each are proportional to their projections on any of the

coordinate planes. Let us consider, then, their projections on

the plane of xy, and let us suppose the equation of the surface

to be given in the form z
&amp;lt;/&amp;gt; (x, y].

If then
a?, y, z be the coordinates of any point on the surface,

JT, Y, Z those of the corresponding point on the unit sphere,

x + dX) x + Sx, X+dX, X+SX, &c., the coordinates of two

adjacent points on each, then the areas of the two elementary

triangles formed by the points considered are evidently in the

ratio

dXS Y- dYSX: dxty
- dyx.

But dX, dY, SJT, SY are connected with dx, dy, &c., by
the same linear transformations, viz.

dX , dX , ,- dY , dY ,

dX. . dY
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whence, by the theory of linear transformations, or by actual

multiplication,

dXSY- dY8X= (dxty
-

dytx)
~ -

,\dx dy dy dx J
J

, , . dXdY dX dY . ,

thus the quantity ^--=--- =- -= is the measure of curvature.
ax dy dy ax

Now X, F, Z, being the projections on the axes of a unit line

parallel to the normal, are proportional to the cosines of the angles
which the normal makes with the axes. We have, therefore,

Y-&quot;

dX (1 + f] s - pqt

dY_(\+/}s-pqr dY^
dx

~

(14-^4^)! dy
&quot;

dXdY dXdY (rt-s
2

}

d& dy dy dx
(

whence

But from the equation of Art. 311, it appears that the value

just found for the measure of curvature is -j^~, . where R and RHH
are the two principal radii of curvature, at the point.

387. It is easy to verify geometrically the value thus found.

For consider the elementary rectangle whose sides are in the

directions of the principal tangents. Let the lengths of the

sides be X, X
r

,
and consequently its area XV. Now the normals

at the extremities of X intersect, and if they make with each
other an angle 0, we have 6 = \\R where R is the corresponding
radius of curvature. But the corresponding normals of the

sphere make with each other, by hypothesis, the same angle,
and their length is unity. Denoting, therefore, by fi the length
of the element en the sphere corresponding to X, we have
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In like manner we Lave -^ = //-,
and -7

=
-^-^7 ,

which
jK A.A&amp;lt;

was to be proved.

388. From the formula of Art. 379, it appears that the value

of the measure of curvature is

(EG -
IE G -
{

but Gauss obtains this expression in a very different form, as a

function of only E, F^ 6r, and their differential coefficients in

regard to p, q. To obtain this result we have to express in

this form the function EfG Ffz

;
that is, the function

a

a

x

&quot;

a

a

a

7
c

Now if these products be expanded according to the ordinary

rule for multiplication of determinants, they give the difference

between the two determinants*

aa

a a

&quot;

a

aaf +

4
77&quot;,

a&quot; +W 4 c7&quot;,

a a&quot; 4 V&&quot; 4 c
y&quot;

4 C7 ,
a

2 4 &
2 + c

2

,
aa 4 bb 4- cc

-f- c 7 , aa + bb + cc , a
2 + &

2 + c
2

1 / /

cy ,
a
2 + b* 4 c

2

,
aa 4 bb 4 cc

?V,
aa 4 ^^ 4 cc

,
a 2 4 &

* 4 c
2

389. Now it is easy to show that the terms in these deter

minants are functions of E, F, G and their differentials. Ee-

ferring to the definitions of a, &, c, a, a
, a&quot;,

&c. (Art. 377) it is

obvious that

da da da
-r =^-,
dgr dp

7
a = da

-r- ,

aq

* I owe to Mr. Williamson the remark, that the application of this rule exhibits

the result in a form which manifests the truth of Gauss s theorem.



CURVES TRACED ON SURFACES. 353

whence, since

ax
. dE

cy = * -y- ,
aa

7

dE= * -7- ,J

dq

i 7-//O i 1 &quot;
i 7//Q&quot; L x/~/aa+op +7=3-1 ,

a a + p +07 =

aa

aa

&&quot;

/ dF . f

c 7 = j- - (aa
dp

-,

/ /\ ot-L7
- d Cr

cy) = - -
4

-

~dp *a

It will be seen that these equations express in terms of E, F, G
every term in the preceding determinants except the leading

one in each. To express these, differentiate, with regard to
,

the equation last written, and we have

&quot;

P/Q&quot;
&quot; _ d*F

1
d 2E f , doL ,,d{3 , dy\

aa + pp 4- 7Y =
~? T 2 ? a [& ~r~ T b r

j~~ ~r c -= I .

a^a^ f/2 &amp;gt; dq dq dq/

Again, differentiate, with regard to p, the equation

, dGf
t 1 /O i 1aa +bj3 +07 =

d Cr . ad.

and we have

Now because -j- =-7- , &c., the quantities within the brackets

in the last two equations are equal. And since the leading

term in each determinant is multiplied by the same factor, in

subtracting the determinants we are only concerned with the

difference of these terms, and the quantity within the brackets

disappears from the result. The function in question is thus

equal to the difference of the determinants

d*F
~~

2
dpdq

*
dc dq

dE

dp

_
dp dq

F

a

zz
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d*G

dq
2

dE
*2

1
2

JP

#

We get the measure of curvature by dividing the quantity

now found by (EG jF
2

)

2

,
and the result is thus a function of

F) Fj G and their differentials. Gauss s theorem is therefore

proved. It may be remarked that the expression involves only

second differential coefficients of E, F, G, that is third differ

ential coefficients of the coordinates
; these, however, really

disappear, since the original expression E G F f*
involves only

second differential coefficients of the coordinates.

We add the actual expansion of the determinants, though
not necessary to the proof. Writing the measure of curvature

&, we have

dq

rJ&amp;lt;E?rf#

&amp;gt; dq

dFdFdEdG dEdF_ ,_ _ O__ I A

[dp dq dq dp dq dq dp dq

dFdG}___ L

dp dp )

FdG dFdF fdE\
2

~j
~T~ * ~T~ ,

H I ;

dp dp dp dq \dq /

-2
d*F d*i

^ T 7~
V^a

dp dq

(Liouville s Monge, p. 523).*

390. The foregoing theorem, that the measure of curvature

is a function of E, F, G and their differentials, shews that if

a surface supposed to be flexible, but not extensible, be trans-

* MM. Bertrand, Dignet, and Puiseux (see Liouville, vol. Xin. p. 80
; Appendix

to Monge, p. 583) have established Gauss s theorem by calculating the perimeter and

area of a geodesic circle on any surface, whose radius, supposed to be very small, is e.

7T5^ TTS^

They find for the perimeter 2-Trs
,
and for the area Trs2 -

. And of course

the supposition that th ; se are unaltered by deformation implies that RR is constant.
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formed in any manner
;
that is to say, if the shape of the surface

be changed, yet so that the distance between any two points

measured along the surface remains the same, then the measure

of curvature at every point remains unaltered. We have an

example of this change in the case of a developable surface

which is such a deformation of a plane ;
and the measure of

curvature vanishes for the developable, as well as for the

plane, one of the principal radii being infinite. To see that

the general theorem is true, observe that the expression of an

element of length on the surface is

ds
9 = Ed/ + 2Fdpdq + Odf.

Let a/, y ,
z denote the point of the deformed surface corre

sponding to any point #, y, z of the original surface. Then

x
, y j

z are given functions of #, y, z, and can therefore also

be expressed in terms of p, q ;
and the element of any arc of

the deformed surface can be expressed in the form

But the condition that the length of the arc shall be unaltered

by transformation, manifestly requires that E = E^ F=F^
Gr = Gr

l j hence, any function of E, F, 6r, and, in particular the

value of the measure of curvature, is unaltered by the deformation

in question.

391. We may consider two systems of curves traced on

the surface, for one of which p is constant, and for the other q;

so that any point on the surface is the intersection of a pair

of curves, one belonging to each system. The expression then

ds* = Edp* + 2Fdpdq + Gd&amp;lt;f
shews that *J(E) dp is the element

of the curve, passing through the point, for which q is constant;

and *J(G) dq is the element of the curve for which p is

constant. If these two curves intersect at an angle &&amp;gt;,

then

since ds is the diagonal of a parallelogram of which \J(E) dp^

*J(G-}dq are the sides, we have *J(EG) co$a) = F, while the

area of the parallelogram is dada sino&amp;gt; = *J(EG F 2

) dpdq.
If the curves of the system p cut at right angles those of

the system q, we must have F 0.^

A particular case of these formulas is when we use geodesic
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polar coordinates, in which case, as we shall subsequently shew,

we always have an expression of the form ds* = dp* 4- P2
dco*.

Now if in the formula of article 389 we put F 0, E constant,

it becomes

dp
and if we put

= P ,
* = .-, we have

an equation which must be satisfied by the function P on any

surface, if Pdco expresses the element of the arc of a geodesic

circle. Mr. Roberts verifies (Cambridge and Dublin Mathe

matical Journal, vol. III., p. 161) that this equation is satisfied

by the function y cosecw on a quadric.

392. Gauss applies these formulae to find the total curvature,

in his sense of the word, of a geodesic triangle on any surface.

The element of the area being Pdcodp, and the measure of

] J 2p d*P
curvature being p-^ , by twice integrating -^ dpdco

the total curvature is found. Integrating first with respect

to p. we get (
C 7- )

dco. Now if the radii are measured
V dp J

from one vertex of the given triangle, the integral is plainly

to vanish for p = ;
and it is plain also that for p = we must

dP
have -7

= 1
;
for as p tends to vanish, the length of an element

perpendicular to the radius tends to become pda). Hence the

first integral is dco 1 1 -=
)

.

This may be written in a more convenient form as follows :

Let 6 be the angle which any radius vector makes with the

element of a geodesic arc ab. Now
since aaPdw^ bb =(P-\-dP) dw and

if cb aa^ we have cb = dPdcoj and

dP
the angle cab = -y- dw. But cab

f

is

dp

evidently the diminution of the angle
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in passing to a consecutive point ;
hence d6 =

j
dco. The

integral just found is therefore dco + dO, which integrated a

second time is a) + Q 6
f

,
where o&amp;gt; is the angle between the

two extreme radii vectores which we consider, and &
,

0&quot; are

the corresponding values of 6. If we call A, B, C the internal

angles of the triangle formed by the two extreme radii and

by the base, we have a&amp;gt;
= A, Q

f

B^ 6&quot; = TT 0, and the total

curvature is A -f B + C TT. Hence the excess over 180 of

the sum of the angles of a geodesic triangle is measured by
the area of that portion of the unit sphere which corresponds to

the directions of the normals along the sides of the given

triangle.

The portion on the unit sphere corresponding to the area

enclosed by a geodesic returning upon itself is half the sphere.

For if the radius vector travel round so as to return to the

point whence it set out, the extreme values of & and 6&quot; are

equal, while co has increased by 2?r. The measure of cur

vature is therefore 2?r, or half the surface of the sphere.*

Gauss elsewhere applies the formulae to the representation of

one surface on another, and in particular to the representation
of a surface on a plane, in such manner that the infinitesimal

elements of the one surface are similar to those of the other
;

a condition satisfied in the stereographic projection and in

other representations of the sphere.

393. It remains to say something of the properties of curves

considered as belonging to a particular surface. Thus the

sphere we know has a geometry of its own, where great circles

take the place of lines in a plane ; and, in like manner, each

surface has a geometry of its own, the geodesies on that surface

answering to right lines.f

* For some other interesting theorems, relative to the deformation of surfaces,

see Mr. Jellett s paper &quot;On the Properties of Inextensible Surfaces,&quot; Transactions

of the Royal Irish Academy, vol. xxii. Memoirs have also appeared by MM. Bour

and Bonnet, on the Theory of Surfaces applicable to one another, to one of which

was awarded the Prize of the French Academy in 1860.

f The geometry of curves traced upon the hyperboloid of one sheet has been
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We have already by anticipation giv
yen the fundamental

property of a geodesic (Art. 308). The differential equation
is immediately obtained from the property there proved, that

the normal lies in the plane of two successive elements of the

curve and bisects the angle between them
;

hence L, Jf, N,
which are proportional to the direction-cosines of the normal,

must be proportional to d -=-
,
d~

,
d -r ,

which are the
CIS CIS CIS

direction-cosines of the bisector (Art. 358). Thus &quot;

if the tan

gents to a geodesic make a constant angle with a fixed plane,
the normals along it will be parallel to that plane, and vice

versa (Dickson, Cambridge and Dublin Mathematical Journal^
vol. V., p. 168). For from the equation

dx 7 dy dz
a -=- + o-r +C-T- = constant,
as as as

which denotes that the tangents make a constant angle with

a fixed plane, we can deduce

aL + IM+ cN= 0,

which denotes that the normals are parallel to the same plane.

394. If through any point on a surface there be drawn two

indefinitely near and equal geodesies, the line joining their ex

tremities is at right angles to both.*

studied nearly in the same manner by Pliicker, Crelle, vol. XLIII. (1847), and by
Chasles (Comptes Rendus, vol. LIU. 1861, p. 985), the coordinates made use of being

the intercepts made by the two generators through any point on two fixed generators

taken for axes. It is easy to shew that in this method the most general equation

of a plane section is of the form

Axy + Bx + Cy + D =
0,

and generally that the order of any curve is equal to the sum of the highest powers

of x and y in its equation, whether these highest powers occur in the same term

or not. The curves are distinguished into families according to the number of

intersections of the curve by the generating lines of the two kinds respectively.

Thus, for a quartic curve of the first kind, or quadriquadric, each generating line

of either kind meets the curve in 2 points; but for a quartic curve of the second

kind, or excubo- quartic, each generating line of the one kind meets the curve in

3 points, and each generating line of the other kind in 1 point.
* This theorem is due to Gauss, who also proves it by the Calculus of Variations ;

see the Appendix to Liouville a Edition of Monge, p. 528.
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Let AB = AC, and let us suppose the angle at B not to

be right, but to be =0. Take BD=BC sec0,

and then, because all the sides of the tri

angle BCD are infinitely small, it may be

treated as a plane triangle and the angle

DOB is a right angle. We have therefore

DC&amp;lt;DB, AD+DC&amp;lt;AB, and therefore

&amp;lt;AC. It follows that AC is not the

shortest path from A to
(7, contrary to hypothesis. Or the

proof may be stated thus : The shortest line from a point A
to any curve on a surface meets that curve perpendicularly.

For if not, take a point D on the radius vector from A and

indefinitely near to the curve; and from this point let fall

a perpendicular on the curve, which we can do by taking

along BC a portion =BDcos0 and joining the point so found

to D. We can pass then from D to the curve more shortly

by going along the perpendicular than by travelling along
the assumed radius vector, which is therefore not the shortest

path.

Hence, if every geodesic through A meet the curve per

pendicularly, the length of that geodesic is constant. It is

also evident, mechanically, that the curve described on any
surface by a strained cord from a fixed point is everywhere

perpendicular to the direction of the cord.

395. The theorem just proved is the fundamental theorem

of the method of infinitesimals, applied to right lines (Conies^

pp. 369, &c.). All the theorems therefore which are there

proved by means of this principle will be true if instead of

right lines we consider geodesies traced on any surface. For

example,
&quot;

if we construct on any surface the curve answering
to an ellipse or hyperbola ;

that is to say, the locus of a point
the sum or difference of whose geodesic distances from two

fixed points on the surface is constant
;

then the tangent at

any point of the locus bisects the angle between the geodesies

joining the point of contact to the fixed
points.&quot;

The converse

of this theorem is also true. Again,
&quot;

if two geodesic tangents
to a curve, through any point P, make equal angles with the
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tangent to a curve along which P moves, then the difference

between the sum of these tangents and the intercepted arc of

the curve which they touch is constant&quot; (see Conies, Art. 399).

Again,
&quot;

if equal portions be taken on the geodesic normals

to a curve, the line joining their extremities cuts all at right

angles,&quot; or,
&quot;

if two different curves both cut at right angles

a system of geodesies they intercept a constant length on each

vector of the series.&quot; We shall presently apply these principles

to the case of geodesies traced on quadrics.

396. As the curvature of a plane curve is measured by the

ratio which the angle between two consecutive tangents bears

to the element of the arc, so the geodesic curvature of a curve

on a surface is measured by the ratio borne to the element

of the arc by the angle between two consecutive geodesic

tangents. The following calculation of the radius of geodesic

curvature, due to M. Liouville,* gives at the same time a proof

of Meunier s theorem.

Let mn, np be two consecutive and equal elements of the

curve. Produce nt = mn, and let fall tq perpendicular to the

surface
; join nq and qp. Then, since nt makes an infinitely

small angle with the surface, its projection nq is equal to it. nq
is the second element of the normal

section, and is also the second element

of the geodesic production of win. If

now be the angle of contact tnp y

and 6 be tnq the angle of contact

of the normal section, we have tv = 6ds*
-L i

tq
= &ds. Now the angle qtp (= &amp;lt;)

is the angle between the osculating plane of the curve and

the plane of normal section, and since tq tp cos $, we have

= 0cos&amp;lt; and
-^
=

,
which is Meunier s theorem; It

i p

being the radius of curvature of the normal section and p that

of the given curve.

Now, in like manner, pnq being 0&quot; the geodesic angle of

* Appendix to Monge, p. 576.
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. /V/ 7 1 f

contact, we have pq u as and pq = fy?
sin

&amp;lt;p,

or - =

The geodesic* radius of curvature is therefore p cosec&amp;lt;. It is

easy to see that this geodesic radius is the absolute radius of

curvature of the plane curve into which the given curve would

be transformed, by circumscribing a developable to the given
surface along the given curve, and unfolding that developable

into a plane.

397. The theory of geodesies traced on quadrics depends
on Jacobi s first integral of the differential equation of these

lines; intimately connected herewith we have Joachimsthal s

fundamental theorem, that at every point on such a curve pD
is constant, where, as at Art. 166, p is the perpendicular from

the centre on the tangent plane at the point, and D is the

diameter of the quadric parallel to the tangent to the curve

at the same point. This may be proved by the help of the

two following principles: (1) If from any point two tangent
lines be drawn to a quadric, their lengths are proportional to

the parallel diameters. This is evident from Art. 74
;
and (2)

If from each of two points A, B on the quadric perpendi
culars be let fall on the tangent plane at the other, these

perpendiculars will be proportional to the perpendiculars from

the centre on the same planes. For the length of the per

pendicular from x y z&quot; on the tangent plane at x y z is

. / // / // / // NXX V
?/

Z Z \ , , ,. , e , , ,

p I + ~jr -i
--

5
-- 1

j ,
and the perpendicular from xy z

\ & & & J
, / rr r // / //

i i ////// r (x x y y z % \
on the tangent plane at x y z is p I j- + ~^~ 4-

- - 1
J

.

\ a c/ c /

If now from the points A, B there be drawn lines AT, BT
to any point T on the intersection of the tangent planes at

A and B, and if AT make an angle i with the intersection

of the planes, the angle between the planes being w, then the

perpendicular from A to the intersection of the planes is AT
sin/, and from A on the other plane is ATsmismto. In

* I have not adopted the name &quot;second geodesic curvature&quot; introduced by
M. Bonnet. It is intended to express the ratio borne to the element of the arc

by the angle which the normal at one extremity makes with the plane containing
the element and the normal at the other extremity.

AAA
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like manner the perpendicular from B on the tangent plane at

A is BT sin/ sin o&amp;gt;. If, therefore, the lines A T, BT make equal

angles with the intersection of the planes, the lines A T, BT
are proportional to the perpendiculars from A and B on the two

planes. But A T and BT are proportional to D and D
,
and

the perpendiculars are as the perpendiculars from the centre

p and p. Hence Dp Dp. But it was proved (Art. 308)

that if AT) TB be successive elements of a geodesic, they make

equal angles with the intersection of the tangent planes at

A and B. Hence, the quantity pD remains unchanged as we

pass from point to point of the geodesic. Q. E. D.*

398. On account of the importance of the preceding theorem

we wish also to shew how it may be deduced from the differ

ential equations of a geodesic.f Differentiating the equation

U M* N*
=l

(where jL,3/,jVare the differential coefficients and jft^Z/ +JJP-fJ\H.\ * / / /

doc
and then substituting for Z, &c., ^-7-, &c. (Art. 393), we get

dx\ 7 {L\ , (dy\ , (M\ 7 fdz\ , fffi
~T~ -| T&amp;gt; H&quot;*l

&quot;

l-^-ITFri^^lT&quot; I*l &quot;3

dsj \MJ \dsj \MJ \asj \M,

It is to be remarked, that this equation is also true for a

line of curvature
;
for since L : j?, &c. are the direction-cosines of

the normal, the direction-cosines of a line in the same plane

with two consecutive normals, and perpendicular to them, are

(Art. 358) proportional to jfVj.&c. Hence the -=- . &c. of
\J 7 ds 7

a line of curvature are proportional to
&amp;lt;Mj5\i

&c. But if

now we differentiate

dx2

dy
2

dz
z

_

* This proof is by Graves, Crelle, vol. XLTI. p. 279.

t See Jacobi, Crelle, vol. xix. (1839), p. 309
; Joachimsthal, Crelle, vol. XXVI.

p. 155
; Bonnet, Journal de TEcole Polytecknique, vol. XIX. p. 138

; Dickson, Cam

bridge and Dublin Mathematical Journal, vol. v. p. 168
; Jacobi, Vorlesungen iiber

Dynamik, p. 212. The theory of geodesic lines on a spheroid of revolution, in

particular an oblate spheroid, was considered by Legendre.
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dx
and substitute for

-^-,
&c. the values just given, we have again

the equation

dx\ 7 (L\ 7 fdy\ j /J/\
,

7 (dz\ j (N

If we actually perform the differentiations, and reduce the result

by the differential equation of the surface Ldx -f Mdy 4- Ndz 0,

and its consequence

dLdx + dMdy + dNdz = - (LTx + Md*y 4 Nd z),

we get

(dL dx 4 dMdy + dNdz ) (dR ds -
Rd*s)

4- (dLd*x -f dMd*y + dNd z) Rds = 0,*

dLd*x . _
dLdx + dMdy + dNdz R ds

399. The preceding equation is true for a geodesic or for

a line of curvature on any surface, but when the surface is

only of the second degree, a tirst integral of the equation can

be found. In fact, we have

dLd*x + dMd y + dNd*a = d (dLdx 4- dJIdy + dNdz).

This may be easily verified by using the general equation of

a quadric, or, more simply, by using the equation

when L =
, M ^ , N= -= ; euv = 5

a&quot;
o 3

c
^ a^

(&amp;gt;
c-

by substituting which values the equation is at once estab

lished.

* Dr. Gehring has remarked (see Hesse, Vorlesungen, p. 325) that this equation

multiplied by Rds, subject as before to the condition Ldx Md + Ndz = 0, may be

resolved into the product of the two determinants

So that for quadrics the determinant of the lines of

curvature is the integrating factor of the geodesies.

dx, dy, dz

L, M, N
dL, dM, L

dx, dy, dz

d?x, d&quot;-y,
d?z

L, M, N
Dr. Hesse shews that the integral so arrived at belongs exclusively to the latter.
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The equation of the last article then consists of terms, each

separately integrable. Integrating, we have

ft* (dLdx 4- dMdy + dNdz) = Cds\

Now, from the preceding values,

jr-^ + L .i** 4 74 4 -2 7

a b c p

dL dx dMdy dNdz 1 dx* 1 dif \ dz
l

jll} (1 4- -. 4- 4- 4-

ds ds ds ds ds ds a
1
ds* b

*

ds
2

&amp;lt;? ds*

But the right-hand side of the equation denotes the reciprocal

of the square of a central radius whose direction-cosines are

dx dy dz

ds ds ds

The geometric meaning therefore of the integral we have

found is pD constant.*

400. The constant pD has the same value for all geodesies

which pass through an umbilic.

For at the umbilic the p is of course common to all, being

ac : b
; and, since the central section parallel to the tangent

plane at the umbilic is a circle, the diameter parallel to the

tangent line to the geodesic is constant, being always equal

to the mean axis b. Hence, for a geodesic passing through an

umbilic we have pD = ac.

Let now any point on a quadric be joined by geodesies to

two umbilics, since we have just proved that pD is the same

for both geodesies, and, since at the point of meeting the p is

the same for both, the D for that point must also have the

same value for both
;

that is to say, the diameters are equal

* Dr. Hart proves the same theorem as follows: Consider any plane section of

an ellipsoid, let ra be the perpendicular from the centre of the section on the

tangent line, d the diameter of the section parallel to that tangent, i the angle
the plane of the section makes with the tangent plane at any point. Then along the

section isd is constant, and it is evident that pD is in a fixed ratio to tadsini.

Hence along the section pD varies as sini and will be a maximum where the

plane meets the surface perpendicularly. But a geodesic osculates a series of normal

sections
; therefore, for such a line pD is constant, its differential always vanishing.

Cambridge and Dublin Mathematical Journal, vol IV. p, 84.
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which are drawn parallel to the tangents to the geodesies at

their point of meeting. But two equal diameters of a conic

make equal angles with its axes
;
and we know that the axes

of the central section of a quadric parallel to the tangent plane

at any point are parallel to the directions of the lines of cur

vature at that point. Hence, the geodesies joining any point

on a quadric to two umbilics make equal angles with the lines

of curvature through that point,*

It follows that the geodesies joining any point to the two

opposite umbilics, which lie on the same diameter, are con

tinuations of each other, since the vertically opposite angles

are equal which these geodesies make with either line of

curvature through the point.

It follows also (see Art. 395) that the sum or difference is

constant of the geodesic distances of all the points on the same

line of curvature from two uinbilics. The sum is constant when

the two umhilics chosen are interior with respect to the line

of curvature
;

the difference, when for one of these umbilics

we substitute that diametrically opposite, so that one of the

umbilics is interior, the other exterior to the line of curvature.

If A, A be two opposite umbilics, and B another umbiiic,

since the sum PA + PB is constant, and also the difference

PA - PB, it follows that PA + PA is constant
;

that is to

say, all the geodesies which connect two opposite umbilics are

of equal length. In fact, it is evident that two indefinitely near

geodesies connecting the same two points on any surface must

be equal to each other.

401. The constant pD has the same value for all geodesies

which touch the same line of curvature.

It was proved (Art. 166) that pD has a constant value all

along a line of curvature
;

but at the points where either

geodesic touches the line of curvature both p and D have the

same value for the geodesic and the line of curvature.

Hence, then, a system of lines of curvature has properties

completely analogous to those of a system of confocal conies

* This theorem and its consequences developed in the following articles are due

to Mr. Michael Roberts, Liouville. vol. XI. p. 1.
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in a plane ;
the umbilics answering to the foci. For example,

two geodesic tangents drawn to one from- any point on another

make equal angles with the tangent at that point. Graves s

theorem for plane conies holds also for lines of curvature, viz.

that the excess of the sum of two tangents to a line of cur

vature over the intercepted arc is constant, while the intersection

moves along another line of curvature of the same species (see

Conies, Art. 399).

402. The equation pD= constant has been written in another

convenient form.* Let
&amp;lt;/,

a&quot; be the primary semi-axes of two

confocal surfaces through any point on the curve, and let i be

the angle which the tangent to the geodesic makes with one of

the principal tangents. Then, since a58

a
2

,
a8

a&quot;* (Art. 164)

are the semi-axes of the central section parallel to the tangent

plane, any other semi-diameter of that section is given by the

equation

cos
2
* sin

2
*

a
2

-a&quot;*

a-a-a ,.
while, again, = *-^- (Art. 165).

p* a o c

The equation, therefore, pD constant is equivalent to

(a
2

a
2

)
cos

2
* + (a? d

*}
sinV= constant,

or to a z
cos

2
* + a&quot;

2
sin

2
* = constant.

403. The locus of the intersection of two geodesic tangents to

a line of curvature, which cut at right angles, is a sphero-conic.

This is proved as the corresponding theorem for plane conies.

If a
,

a&quot; belong to the point of intersection, we have

a
2
cos** + a&quot;

2
sin

2
* = constant, a

2
sin

2
* + a&quot;

2
cos

2

* = constant,

hence a 2 + a&quot;

2 = constant
;

and therefore (Art. 161) the distance of the point of intersection

from the centre of the quadric is constant. The locus of inter

section is therefore the intersection of the given quadric with

a concentric sphere. The demonstration holds if the geodesies

* By Liouvillc, vol. IX. p. 401.
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are tangents to different lines of curvature
; and, as a par

ticular case, the locus of the foot of the geodesic perpendicular

from an umbilic on the tangent to a line of curvature is a

sphero-conic.

404. To find the locus of intersection of geodesic tangents

to a line of curvature which cut at a given angle (Besge,

Liouville, vol. XIV. p. 247).

The tangents from any point whose a
,

a&quot; are given, to

a given line of curvature, are determined by the equation

a a cosV+ a&quot;* sinV= /3 ;
and since they make equal angles with

either of the principal tangents through that point, i the angle

they make with one of these tangents is half the angle they
make with each other. We have therefore

2 = 4/3 (a
2 + a//sl

)

- 4a
/V * -

4/3
2

.

This is reduced to ordinary coordinates by the equations

(Arts. 160, 161)

-a* a&quot;a&quot;*
=

whence it appears that the locus required is the intersection

of the quadric with a surface of the fourth degree.*

405. It was proved (Art. 176) that two confocals can be

drawn to touch a given line
;

that if the axes of the three

surfaces passing through any point on the line be a, a
,
a

,

and the angles the line makes with the three normals at the

point be a, /3, 7, then the axis-major of the touched confocal

is determined by the quadratic

cos
2
a cos

2

/? cos*y
5 2 /z i ~//a

a a a a a a

Let us suppose now that the given line is a tangent to the

* Mr. Michael Roberts has proved (Liouville, vol. XV. p. 291) by the method

of Art. 188, that the projection of this curve on the plane of circular sections is

the locus of the intersection of tangents, cutting at a constant angle, to the conic

into which the line of curvature is projected.
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quadric whose axis is
,
we have then cos a = 0, since the line

is of course at right angles to the normal to the first surface
;

and we have cos /3
= sin 7, since the tangent plane to the sur

face a contains both the line and the other two normals. The

angle 7 is what we have called i in the articles immediately

preceding. The axis then of the second confocal touched by
the given line is determined by the equation

sinY
- r\r nri pnaV 4- ///a ainV aa

2//.&amp;gt; v/ \}L \J/ \s\jo (/ ]~ t/ii oiii ir a~ r f & f* & i*~~ a ci ~~ a

If, then, we write the equation of a geodesic (Art. 402)

a 2 cosV+ a&quot;* sinV = a
2

,
we see from this article that that equa

tion expresses that all the tangent lines along the same geodesic

touch the confocal surface whose primary axis is a.*

The geodesic itself will touch the line of curvature in which

this confocal intersects the original surface
;

for the tangent
to the geodesic at the point where the geodesic meets the

confocal is,
as we have just proved, also the tangent to the

confocal at that point. The geodesic, therefore, arid the inter

section of the confocal with the given surface have a common

tangent.

The osculating planes of the geodesic are obviously tangent

planes to the same confocal, since they are the planes of two

consecutive tangent lines to that confocal.

The value of pD for a geodesic passing through an

umbilic is ac (Art. 400) ;
and the corresponding equation

is, therefore, a 2
cosV + a&quot;* sinV= a* - V2

. Now the confocal,

whose primary axis is \/(a* 6
y

),
reduces to the umbilical* focal

conic. Hence, as a particular case of the theorems just proved,
all tangent lines to a geodesic which passes through an umbilic

intersect the umbilicar focal conic.

Conversely, if from any point on that focal conic recti

linear tangents be drawn to a quadric, and those tangents

produced geodetically on the surface, the lines so produced
will pass through the opposite umbilic

;
the whole lengths

from to the umbilic being equal.

* The theorems of this article are tuken from M. Chasles s Memoir, Liouville,

vol. XI. p. 5,
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406. From the fact (proved Art. 176) that tangent planes

drawn through any line to the two confocals which touch it

are at right angles to each other, we might have inferred

directly, precisely as at Art. 309, that tangent lines to a

geodesic touch a confocal. For the plane of two consecutive

tangents to a geodesic being normal to the surface is tangent
to the confocal touched by the first tangent. The second

tangent to the geodesic, therefore, touches the same confocal;

as, in like manner, do all the succeeding tangents. Having
thus established the theorem of the last article, we could, by

reversing the steps of the proof, obtain an independent de

monstration of the theorem pD = constant.

407. The developable circumscribed to a quadric along a

geodesic lias its cuspidal edge on another quadric^ which is the

same for all the geodesies touching the same line of curvature.

For any point on the cuspidal edge is the intersection of

three consecutive tangent planes to the given quadric, and

the three points of contact, by hypothesis, determine an oscu

lating plane of a geodesic which (Art. 405) touches a fixed

confocal. The point on the cuspidal edge is the pole of this

plane with respect to the given quadric; but the pole with

respect to one quadric of a tangent plane to another lies on

a third fixed quadric.

408. M. Chasles has given the following generalization of

Mr. Roberts theorem, Art. 400. If a thread fastened at two

fixed points on one quadric A be strained by a pencil moving

along a confocal B (so that the thread of course lies in geo
desies where it is in contact with the quadrics and in right

lines in the space between them), then the pencil will trace

a line of curvature on the quadric B. For the two geodesies
on the surface B, which meet in the locus point P, evidently
make equal angles with the locus of P; but these geodesies

have, as tangents, the rectilinear parts of the thread which

both touch the same confocal; therefore (Art. 405) the pD is

the same for both geodesies, and hence the line bisecting the

angle between them is a line of curvature.

BBB
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A particular case of this theorem
is,

that the focal ellipse

of a quadric can be described by means of a thread fastened

to two fixed points on opposite branches of the focal hyperbola.

409. Elliptic Coordinates. The method used (Arts. 403-4)
in which the position of a point on the ellipsoid is defined by
the primary axes of the two hyperboloids intersecting in that

point, is called the method of Elliptic Coordinates (see Art. 188).

As it is more convenient to work with unaccented letters,

I follow M. Liouville* in denoting the quantities which we

have hitherto called a
,

a&quot; by the letters /*, v
;

and in this

notation the equations of the lines of curvature of one system
are of the form

/z,
=

constant, and those of the other v = constant.

The equation of a geodesic (Art. 402) becomes

yu,

2 cosV -f v
2
sinV = //

a

;

and when the geodesic passes through an umbilic, we have

At
/2 =a2 - b*=*h*. It will be remembered (Arts. 159, 160) that

jj,
lies between the limits k and A, and v between the limits

h and 0.

Throwing the equation of a geodesic into the form

we see that it is satisfied (whatever be //) by the values

/A
2 =va

,
tanV= 1. Hence it follows, that the same pair of

imaginary tangents, drawn from an umbilic, touch all the lines

of curvature,t a further analogy to the foci of plane conies.

* This method is evidently a particular case of that explained Art. 377. In

Prof. Cayley s Memoir on Geodesies (Proceedings of London Mathematical Society,

1872, p. 199) he uses the coordinates in a slightly different form
;

viz. if any point

on the quadric h 4- H = 1 is the intersection with it of the two confocals
a o c

_1_
J

-1_ . 1 _L_
&amp;gt; L

i . .. &quot;^ - .. -M ~i~ T Ta+p b+p c+p a+q b+q c+q
then p and

&amp;lt;?

are the two coordinates : p = const., q = const, denote lines of curvature
;

and we have, by Art. 160, expressions for x, y, z in terms of p and q. The diffe

rential equation of the right lines of the surface is

dp dq
-|-

, . . . Q^
\{(a +P) (b +P] (c +P)}

~~
J{(a + ?) (b + ?) (c + q)}

In the ordinary case where the surface is an ellipsoid and a &amp;gt; b &amp;gt; c, the coordinates p
and q may be distinguished by supposing p to range between the limits - a, b,

and q between b, c.

f Mr. Roberts, LiouviUe, vol. xv. p. 289.
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410. To express in elliptic coordinates the element of the

arc of any curve on the surface. Let us consider, first, the

element of any line of curvature, p = constant. Let that line be

met by the two consecutive hyperboloids, whose axes are v and

v + dv
j then, since it cuts them perpendicularly, the intercept

between them is equal to the difference between the central per

pendiculars on parallel tangent planes to the two hyperboloids.

But (Art. 180) (p&quot;
+

dp&quot;)*

-
p&quot;

2 =
(v + dv? - V* or

p&quot;dp&quot;
= vdv.

Now we have proved that
dp&quot; dcr, the element of the arc

we are seeking, and

m a&quot;*b&quot;*c&quot;

2

_
P =

(a
2 -

a&quot;*) (a
2 -

a&quot;

2

)

=

(a*
-

/) (jf
-

v*)

, , (a -VH^-O ,
Hence da =

j
y _ ^ ^ _ ^

dv . .

In like manner, the elerneut of the arc of the line of curva

ture v = constant is given by the formula

~& -V) (V -&
Now, if through the extremities of the element of the arc ds

of any curve we draw lines of curvature of both systems, we
form an elementary rectangle of which dcr, dv are the sides

and ds the diagonal. Hence

_ (-,, ) ( -,) , . . (a -^^ -O d- * r d

411. In like manner we can express the area of any portion

of the surface bounded by four lines of curvature
;

two lines

2 ,
and two v

l3 v,.
For the element of the area is

the integral of which is

-
A&quot;) (^

- AO
v
a

V(a
a - v

J

* The area of the surface of the ellipsoid was thus first expressed by Legendre

Traite det Fonctions EUiptiques, vol. I. p. 352.
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So, in like manner, we can find the differential equation of the

orthogonal trajectory of a curve whose differential equation is

Md/jt, + Ndv = 0. For the orthogonal trajectory to Pda + Qdcr is

plainly ^
-

~-
;

since dcr^ da are a system of rectangular
(j/

coordinates. But Mdfju + Ndv can be thrown without difficulty

into the form Pdcr 4- Qdcr by the equations of the last article.

The equation of the orthogonal trajectory is thus found to be

a
51 ^ d/j, a

2
v
2 dv

(/^
- #) (A*

-
/**}

Jtf (A*
-

v&quot;). (F
-

V*) JV

412. The first integral of a geodesic yu,

2 cosV + v* sinV= //
a

can be thrown into a form in which the variables are separated,

and the second integral can be obtained. That equation gives

tan i=
-v

But tan t - -~
da

&quot;

whence, equating, we have

V (a* fji

2

) d/j, V (a* v
8

)
dv

-
J (fi* //*) (ft* h*) (k*

-
/A&quot;) &amp;gt;J{(j^ v*} (h* v

2

) (k
z

v*)}

the terms of which can be integrated separately.*

If the geodesic passes through the umbilics, we have fjP^K*

(Art. 409), and the equation of the geodesic is

5\ ^ TTi a. //72 S\ dV Q-
..*\ r 1L ..*i . /f 7_ _.*\

413. To find an expression for the length of any portion of

a geodesic. The element of the geodesic is the hypotenuse of

a right-angled triangle, of which dcr, dcr are the sides, and whose

* This is equivalent to Jacobi s first integral of the differential equation of the

geodesic lines, see Art. 397
;
see also Hesse, Vorlesungen, p. 328. The reader is

recommended also to refer to the method of integration employed by Weierstrass,

Monatsberichte der Berliner Akademie, 1861, p. 98(5. The above equation in the

notation used by Prof. Cayley is

(b+p)(c+p) (6 + p) (^H?) (6 + q)(e+ q] (0 +
where is the constant of integration. This is nearly the form given by Jacob!

in the Vorlesungen iiber Dynamik, referred to in note to Art. 398.
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base angle is i. Hence we have ds = sin idcr cos idcr
;
and

putting in sini= JT-JJ srr
&amp;gt;

cos i= -7^5 ^- ,
and giving

yfii v
} v (A

6 ~~ v
)

,
cfo- the values of Art. 410, we have

If p be the element of a line through the umbilics, we have

-v2

-v*

It is to be noted, that when we give to the radical in the last

article the sign +, we must give that in this article the sign -.

This appears by forming (Art. 411) the differential equation of

the orthogonal trajectory to a geodesic through an urabilic, an

equation which must be equivalent to dp = (Art. 394).

414. In place of denoting the position of any point on an

ellipsoid by the elliptic coordinates
//,, v, we might use geodesic

polar coordinates having the pole at an umbilic, and denote a

point by p its geodesic distance from an umbilic, and by &amp;lt;o the

angle which that radius vector makes with the line joining the

umbilics. Now the equation (Art. 413) of a geodesic passing

through an umbilic gives the sum of two integrals equal to a

constant. This constant cannot be a function of p, since it

remains the same as we go along the same geodesic : it must

therefore be a function of only ;
and if we pass from any

point to an indefinitely near one, not on the same geodesic
radius vector, we shall have

We shall determine the form of the function by calculating its

value for a point indefinitely near the umbilic, for which n= v= h.

The limit of the left-hand side of the equation then becomes

i* h*\ ( dfM dv \ XT .,,

-5 Tt) x limit of T. TT, + ^i ) -Now, it we put
v h J \yU, k~ k V /

= ^ 4 17,
y = h-

s, the quantity whose limit we want to find
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is = which, as in and tend to vanish, becomes
2/nj + rf 2hz - s

2

., r . 1 fdrj dz\ p 1 71 T;
the limit of or or =- a log -

.

2h \ 77 ) 2h

Now since the angle external to the vertical angle of the

triangle formed by the lines joining any point to two umbilics

is bisected by the direction of the line of curvature, that external

angle is double the angle i in the formula tf cosV-f v* sinV= hz
.

In the limit when the vertex of the triangle approaches the

umbilic, the external angle of the triangle becomes to,
and

we have at the umbilic

(h + rj}*
cos

2
IGO + (-)

2

sin^co =
2

,

and in the limit tan
2 Aw=- .

Using this value, the limit of the left-hand side of the equation is

We have therefore

(^
2 -

A&quot;) V(**
~

A**) (A&quot;

-
v&quot;) V(AJ&quot;

- O A V v* 1 -
*&quot;/

sin w

And the constant which occurs in the integrated equation of

a geodesic through an umbilic is of the form

,

s 4&amp;lt;o+

415. If P, Q be two consecutive points on a curve, and if

PP be drawn perpendicular to the geodesic radius vector OQ,
it is evident that PQ* = PP /a

-f P Q*. Now since (Art. 394)

OP= OP
,
we have P Q = dp^ while PPf

being the element

of an arc of a geodesic circle, for which p is constant (or

dp = 0), must be of the form Pdco. Hence the element of the

arc of a curve on any surface can be expressed by a formula

ds
z =

dp* + P*da)*. We propose now to examine the form of

the function P for the case of radii vectores drawn through
an umbilic of an ellipsoid. Let us consider the line of cur

vature p = fjf. We have then (Art. 413)

(^-0_K-,3
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And by the same article

a
2 -

whence P*da&amp;gt;* =
~

dv\
(h -v

2

)(k -vi

}

But (Art. 414), when
JJL

is constant,

dto

(h*
-

v*) V(
2 - v

2

)
h V \# -W sin

Putting in this value for dv, we have

A2

(A;

2 - A2

)
sin

2
o&amp;gt;

&quot;

(b
z - a2

) (5
8 - c

2

)
sin

2
a&amp;gt; sin

3
CD

(Art. 160); therefore P=?/cosec&&amp;gt;.

In this investigation it is not necessary to assume the result

of the last article. If we substitute for the right-hand side of

the equation in the last article an undetermined function of
o&amp;gt;,

it is proved in like manner that P=
?/$(&&amp;gt;).

We determine

then the form of the function by remembering that in the neigh
bourhood of the umbilic the surface approaches to the form

of a sphere. Now on a sphere the formula of rectification

is ds* = dp* -t- sin
2

pc?w
2
. Hence P=sin/o. But in the sphere

y = sin p sin o&amp;gt;. The function therefore which multiplies y is

cosecw.

416. Consider now the triangle formed by joining any

point P to the two umbilics 0, . Then for the arc OP we
have the function P = ?/cosecco, and for the arc O P, connecting
P with the other umbilic, we have the function P y coseco/;

and P: P :: sinw : sineo, an equation analogous to that which

expresses that the sines of the sides of a spherical triangle

are proportional to the sines of the opposite angles, since P
and P in the rectification of arcs on the ellipsoid answer to

sin/?, sin// on the sphere.

417. Again, if P be any point on a line of curvature we
know (Art. 400) dp dp =

0, where p and p are the distances

from the two umbilics. Now if 6 be the angle which the

radius vector OP makes with the tangent, the perpendicular
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element Pdw is evidently dptanO. But the radius vector (7P
makes also the angle with the tangent. Hence, we have

r&amp;gt;-&amp;gt; TW 7 /

Pdco P dw =
0, or^ - -,

-&amp;gt;

=
0,sin sin CD

whence tanjw tan^&/ is constant when the sum of sides of the

triangle is given; and tan^w is to tan^o/ in a given ratio

when the difference of sides of the triangle is given. Thus,

then, the distance between two umbilics being taken as the

base of a triangle, when either the product or the ratio of

the tangents of the halves of the base angles is given, the

locus of vertex is a line of curvature.*

From this theorem follow many corollaries : for instance,
&quot;

if

a geodesic through an umbilic meet a line of curvature in

points P, P then (according to the species of the line of curva

ture) either the product or the ratio of tan \PO 0, tan^P is

constant.&quot; Again,
a

if the geodesies joining to the umbilics

any point P on a line of curvature meet the curve again in P
,

P&quot;,
the locus of the intersection of the transverse geodesies

O P
,

OP&quot; will be a line of curvature of the same
species.&quot;

418. Mr. Eoberts s expression for the element of an arc

perpendicular to an

umbilical geodesic has

been extended as fol

lows by Dr. Hart:

Let OT, OT be two

consecutive geodesies

touching the line of

curvature formed by
the intersection of the

surface with a confocal

J5, dco the angle at

which they intersect
;

then the tangent at

any point T of either

* This theorem, as well as those on which its proof depends (Art. 414, &amp;lt;fec.),
is

due to Mr. M. Roberts, to whom this department of Geometry owes so much

(Liouville, vols. xm. p. 1, and XY, p. 275),
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geodesic touches B in a point P (Art. 405} ;
and if TT f

be taken

conjugate to J!P, the tangent plane at T f

passes through TP
(Art. 268), and the tangent line to the geodesic at T f

touches

the confocal B in the same point P. We want now to express
in the form Pd&amp;lt;o the perpendicular distance from T f

to TP.

Let the tangents at consecutive points, one on each geodesic,

intersect in P f

and make with each other an angle d$ . Let

normals to the surface on which the geodesies are drawn

at the points T^ T^ meet the tangents PT, PT f
at the

points T^ T/, then since the difference between T^T{, T
9
T

9

is infinitely small of the third order, PT2d(p and P
T{l&amp;lt;j&amp;gt;

are

equal, to the same degree of approximation. But PT^ P T
t

are proportional to D and I/, the diameters of the surface

B drawn parallel to the two successive tangents to the geo
desic. Hence

Dd&amp;lt;t&amp;gt;

D dfi. This quantity therefore remains

invariable as we proceed along the geodesic ;
but at the point

0, d(j&amp;gt;

= dco
;

if therefore D
d
be the diameter of B parallel to

the tangent at to the geodesic, Dd(f)
= D

Q
da)

;
and there

fore the distance we want to express PTd(f&amp;gt;
=~ tdw, where

t (=PT) is the length of the tangent from T to the confocal B;

or ~ t is a mean between the segments of a chord of B drawn

through T parallel to the tangent at 0. When the geodesic

passes through an umbilic, the surface B reduces to the plane

of the uinbilics, and ~ t becomes the line drawn through T

to meet the plane of the umbilics parallel to the tangent at 0,

which is Mr. Roberta s expression.

Hence, // a geodesic polygon circumscribe a line of curva

ture^ and if all the angles but one move on lines of curvature^

this also loill move on a line of curvature, and the perimeter

of the polygon will be constant when the lines of curvature

are of the same species. The proof is identical with that

given for the corresponding property of plane conies (Conies,

Art. 401).*

* See Cambridge and Dublin Mathematical Journal, vol. IV. p. 192.

CCG
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419. If a geodesic joining any umbilic to that diametrically

opposite, and making an angle CD with the plane of the um-

bilics, be continued so as to return to the first umbilic, it will

not, as in the case of the sphere, then proceed on its former

path, but after its return will make with the plane of the um-

bilics an angle different from co. In order to prove this we

shall investigate an expression for 0, the angle made with

the plane of the umbilics by the osculating plane at any point

of that geodesic.

It is convenient to prefix the following lemma: In a

spherical triangle let one side and the ad

jacent angle remain finite while the base

diminishes indefinitely, it is required to find

the limit of the ratio of the base to the

difference of the base angles measured in

the same direction. The formula of spherical

i / A -r\ i s-&amp;lt;

trigonometry cos \ (A + B )
= sin \ G

COS

COS

i

gives us in the

limit c?# = cosa6?\|r. But evidently sinaaty = sin#e?&amp;lt;. Hence

dB
d&amp;lt;l&amp;gt;

sin B tana

Now we know (Art. 405) that the tangent line at any point

of a geodesic passing through an umbilic, if produced, goes to

meet the plane of the umbilics in a point on the focal hyper

bola; and the osculating plane of the geodesic at that point
will be the plane joining the point to the corresponding tangent
of the focal hyperbola. We know also (Art. 184) that the

cone circumscribing an ellipsoid, and whose vertex is any point
on the focal hyperbola, is a right cone.

Let now PP f

be an element of an umbilical geodesic pro
duced to meet the focal

hyperbola in H. Let

P P&quot; be the consecutive

element meeting the focal

hyperbola in H f

;
then

if Eh, H h
f

be two con

secutive tangents to the

focal hyperbola,
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P H h will be two consecutive osculating planes. Imagine
now a sphere round H

,
and consider the spherical triangle

formed by radii to the points h, h
,
P . Then if

d(f&amp;gt;
be the

angle liH Ji^ the angle of contact of the focal hyperbola ;
if 6

be the angle between the osculating plane and hH li the plane

of the umbilics, while hH P f
is a the semi-angle of the cone

;

the spherical triangle becomes that considered in our lemma,
, . dO dd&amp;gt;

and we have - ^ = .

sin tana

In order to integrate this equation we must express d&amp;lt;f&amp;gt;

in

terms of a; and this we may regard as a problem in plane

geometry, for a is half the angle included between the tangents

from H to the principal section in the plane of the umbilics,

while
d&amp;lt;f&amp;gt;

is the angle of contact of the focal hyperbola at the

same point. Now if a
,
b

; a&quot;,
5&quot; be the axes of an ellipse

and hyperbola passing through H, confocal to an ellipse whose

axes are a, 5; and if 2a be the angle included between the

tangents from H to the latter ellipse, we have (see Conies,
a __ rr*

p. 189) tan
2
a = -^--2

. Differentiating, regarding a&quot; as
a ^~ CL

constant (since we proceed to a consecutive point along the

same confocal hyperbola), we have da = tana -7^. But
CL

~~
Q&amp;gt;

if, j9, p
f

be the central perpendiculars on the tangents at H
to the ellipse and hyperbola, we have ada=pda (Art 410),

where da- is the element of the arc of the focal hyperbola, and

if p be the radius of curvature at the same point, da = pd$.
a b d6, ,

Jout p -7 . Hence, aa = tana r-oraa = tana .

p pad
But a

2 = a
2 + (a

2 - a /2

)
cot

2

a, V* = V -f (a
2 - a//2

)
cot

2
a.

.
d($&amp;gt;

a&quot;b&quot;doi.

3

tana
=

V(a
2 -

a&quot;

8 + a* tan a) V(a
2 -

a&quot;* + b* tan
2

a)

*

In the case under consideration the axes of the touched

ellipse are a, c
;
while the squares of the axes of the confocal

hyperbola are a
a -

#*, 6
a

c
2

. Hence we have the equation

dd a8 -&2

sin0 V(&
2 + a

2

tan&quot;a) V(6* + c
2
tan a)
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Integrating tins, and taking one limit of the integral at

the umbilic where we have 9
&&amp;gt;,

and a = JTT, we have

y
tan

f
q - -ca

g tan ^

W
J^ V(6

a + a2
tan

2

a) *J(V + c
a
tan a)

*

If, then, / be the value of this integral, we have

tan J0 = k tan \ &amp;lt;w,

where k = e1.

Now this integral obviously does not change sign between

the limits ^TT, that is to say, in passing from one umbilic

to the other. If, then, a/ be the value of 6 for the umbilic

opposite to that from which we set out, at this limit / has

a value different from zero, and k a value different from unity ;

and we have tanJ&/ = # tan^o) ;
&&amp;gt; is therefore always different

from &). And in like manner the geodesic returns to the original

umbilic, making an angle o&amp;gt;&quot; such that tan | a/ =? k2
tan \ a&amp;gt;,

and

so it will pass and repass for ever, making a series of angles

the tangents of whose halves are in continued proportion.*

420. If we consider edges belonging to the same tangent

cone, whose vertex is any point H on the focal hyperbola, a

(and therefore k) is constant; and the equation tan^# = /v tan|-&)

gives ~ = -
. Now since the osculating plane of the

sin V sin w

geodesic is normal to the surface, and therefore also normal

to the tangent cone, it passes through the axis of that cone.

If, then, we cut the cone by a plane perpendicular to the axis,

11

the section is evidently a circle whose radius is -jSL. and the

dd dco
S

element of the arc is ~^ , or ~ . Now this element, being
sin u sin a)

the distance at their point of contact of two consecutive sides

of the circumscribing cone, is what we have called (Art. 415)

Pdcoj and we have thus, from the investigation of the last

article, an independent proof of the value found for P (Art. 415).

421. Lines of level. The inequalities of level of a country
can be represented on a map by a series of curves marking

* The theorems of this article are Dr. Hart s, Cambridge and Dublin Mathematical

Journal, vol. iv. p. 82; but in the mode of proof I have followed Mr. William

Roberts, Liouville, 1857, p. 213.
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the points which are on the same level. If a series of such

curves be drawn, corresponding to equi-different heights, the

places where the curves lie closest together evidently indicate

the places where the level of the country changes most rapidly ;

the curve through the summit of a pass, or at the point

of out-flow of a lake, has this point for a node, &c., &c.*

Generally, the curves of level of any surface are the sections

of that surface by a series of horizontal planes, which we may
suppose all parallel to the plane of xy. The equations of the

horizontal projections of such a series are got by putting z = c

in the equation of the surface
;
and a differential equation common

to all these projections is got by putting dz = Q in the differential

equation of the surface, when we have

We can make this a function of x and y only, by eliminating

the 2, which may enter into the differential coefficients, by the

help of the equation of the surface.

Lines ofgreatest slope. The line of greatest slope through any

point is the line which cuts all the lines of level perpendicularly ;

and the differential equation of its projection therefore is

Ujly
- Ufa = 0.

The line of greatest slope is often defined as such that the

tangent at every point of it makes the greatest angle with

the horizon. Now it is evident that the line in any tangent

plane which makes the greatest angle with the horizon is

that which is perpendicular to the horizontal trace of that

plane. And we get the same equation as before by expressing
that the projection of the element of the curve (whose direction-

cosines are proportional to dx, dy] is perpendicular to the trace

whose equation is U
} (x x

)
+ U

z (y y }
U

9
z = O.f

* See Reech, sur les surfaces fermees, Jour, de VEc. Polyt. t. xxi. (1858), p. 169.

Cayley on Contour and Slope Lines, Phil. Jfag., vol. xviii., 1859, p. 264.

t It is evident that the differential equation of the curve, which is always per

pendicular to the intersection of the tangent plane, [whose direction-cosines are as

L
} M, A

7

] by a fixed plane whose direction-cosines are a, b, c, is

dx, dy, dz

L, M, N
a, b, c = 0.
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Ex. 1 . To find the line of greatest slope on the quadric Ax* + By* + Cz* = D.

The differential equation is Ax dy = Bydx, which, integrated, gives ( )
= (-,

\
f\x / \y J

where the constant has been determined by the condition that the line shall pass

through the point x = x
, y y . The line of greatest slope is the intersection of

the quadric by the cylinder whose equation has just been written, and will be a curve

of double curvature, except when x y lies in one of the principal planes when the

equation just found reduces to x = or y = 0.

Ex. 2. The coordinates of any point on the hyperboloid of one sheet may be

x 1 + XfJL y \- u. z 1 - Xu a2 - 2b* - & . ,

written - = T
&quot;

, ? = ^ ,

- = * ,
show that if p = 5 ,

the lines
a \ + n* b \ + ju c \ + /u a2 + o2

of curvature are determined by the equations (cf. note p. 370)

-A
. A\ ~ **

Ex. 3. Express in the same system of coordinates the differential equation of

geodesies on the surface.



CHAPTER XIII.

FAMILIES OF SURFACES.

SECTION I. PARTIAL DIFFERENTIAL EQUATIONS.

422. Let the equations of a curve

&amp;lt;t&amp;gt; (x, y, z, cn c
2...cj

=
0, ^ (a;, y, z, c,,

c
2...cj =0,

include w parameters, or undetermined constants
;

then it is

evident that if n equations connecting these parameters be

given, the curve is completely determined. If, however, only

nl relations between the parameters be given, the equa
tions above written may denote an infinity of curves

;
and the

assemblage of all these curves constitutes a surface whose

equation is obtained by eliminating the n parameters from the

given n -f I equations ;
viz. the nl relations, and the two

equations of the curve. Thus, for example, if the two equa
tions above written denote a variable curve, the motion of

which is regulated by the conditions that it shall intersect nl
fixed directing curves, the problem is of the kind now under

consideration. For, by eliminating #, y, z between the two

equations of the variable curve, and the two equations of any
one of the directing curves, we express the condition that these

two curves should intersect, and thus have one relation between

the n parameters. And having n l such relations we find

the equation of the surface generated in the manner just stated.

We had (Art. 112) a particular case of this problem.

Those surfaces for which the form of the functions $ and
&amp;gt;|r

is the same are said to be of the same family, though the

equations connecting the parameters may be different. Thus,
if the motion of the same variable curve were regulated by
several different sets of directing curves, all the surfaces

generated would be said to belong to the same family. In

several important cases, the equations of all surfaces belonging
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to the same family can be included in one equation involving

one or more arbitrary functions, the equation of any individual

surface of the family being then got by particularizing the form

of the functions. If we eliminate the arbitrary functions by

differentiation, we get a partial differential equation, common
to all surfaces of the family, which ordinarily is the expression

of some geometrical property common to all surfaces of the

family, and which leads more directly than the functional equa
tion to the solution of some classes of problems.

423. The simplest case is when the equations of the variable

curve include but two constants.* Solving in turn for each of

these constants, we can throw the two given equations into

the form u
c,,

v = c
2 ;

where u and v are known functions of

x, y, z. In order that this curve may generate a surface, we
must be given one relation connecting c,,

c
2 ,

which will be of

the form
c,
=

(/&amp;gt; (ca) ;
whence putting for

c,
and c

2
their values,

we see that, whatever be the equation of connection, the equa
tion of the surface generated must be of the form u =

&amp;lt;$&amp;gt; (v).

We can also, in this case, readily obtain the partial diffe

rential equation, which must be satisfied by all surfaces of the

family. For if 7=0 represents any such surface, U can only

differ by a constant multiplier from u $ (v). Hence, we have

\U u
&amp;lt;/&amp;gt; (v), and differentiating

with two similar equations for the differentials with respect to

y and z. Eliminating then \ and &amp;lt; (v), we get the required

partial differential equation in the form of a determinant

= 0.

In this case u and v are supposed to be known functions of the

coordinates; and the equation just written establishes a relation

of the first degree between Z7
t , U^ U

3
.

If the equation of the surface were written in the form

* If there were but one constant, the elimination of it would give the equation of

a definite surface, not of a family of surfaces.
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z $ (xj y]
=

;
we should have U

3
= 1

, Z7J
=

p, U
y
= -q,

where p and q have the usual signification, and the partial

differential equation of the family is of the form Pp + Qq = R,

where P, ,
R are known functions of the coordinates. And,

conversely, the integral of such a partial differential equation,

which (see Boole s Differential Equations, p. 323) is of the form

u =
&amp;lt;f&amp;gt; (v), geometrically represents a surface which can be gene

rated by the motion of a curve whose equations are of the

form w =
o,,

v = c^

The partial differential equation affords the readiest test

whether a given surface belongs to any assigned family. We
have only to give to U^ Z7

2 ,
U

3 ,
their values derived from the

equation of the given surface, which values must identically

satisfy the partial differential equation of the family if the

surface belong to that family.
i

424. If it be required to determine a particular surface of

a given family u =
&amp;lt;f&amp;gt; (u), by the condition that the surface shall

pass through a given curve, the form of the function in this

case can be found by writing down the equations u =
c,,

v = c
2,

and eliminating a:, y, z between these equations and those of

the fixed curve, we thus find a relation between
c,

and o
2 ,

or between u and v, which is the equation of the required
surface. The geometrical interpretation of this process is,

that

we direct the motion of a variable curve M =
C,,

v = c
2 by the

condition that it shall move so as always to intersect the given
fixed curve. All the points of the latter are therefore points
on the surface generated.

If it be required to find a surface of the family u =
&amp;lt;f&amp;gt;(v)

which shall envelope a given surface, we know that at every

point of the curve of contact
t/j, 7, U3

have the same value

for the fixed surface, and for that which envelopes it. If

then, in the partial differential equation of the given family,
we substitute for Z7

X ,
Z7

2 ,
U

3
their values derived from the equa

tion of the fixed surface, we get an equation which will be

satisfied for every point of the curve of contact, and which

therefore, combined with the equation of the fixed surface, deter

mines that curve. The problem is, therefore, reduced to that

DDD
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considered in the first part of this article
; namely, to describe

a surface of the given family through a given curve. All this

theory will be better understood from the following examples
of important families of surfaces belonging to the class here

considered
;

viz. whose equations can be expressed in the form

425. Cylindrical Surfaces. A cylindrical surface is gene
rated by the motion of a right line, which remains always

parallel to itself. Now the equations of a right line include

four independent constants
;

if then the direction of the right

line be given, this determines two of the constants, and there

remain but two undetermined. The family of cylindrical sur

faces belongs to the class considered in the last two articles.

Thus, if the equations of a right line be given in the form

x lz+p, y = mz + q I and m which determine the direction

of the right line are supposed to be given ;
and if the motion

of the right line be regulated by any condition (such as that

it shall move along a certain fixed curve, or envelope a certain

fixed surface) this establishes a relation between p and
&amp;lt;?,

and

the equation of the surface comes out in the form

xlz = $(y mz).

More generally, if the right line is to be parallel to the

intersection of the two planes ax + ly + C2, ax -f b y 4- c z, its

equations must be of the form

ax + ~by + cz = a, ax -f ~b y 4 cz /?,

and the equation of the surface generated must be of the form

ax + ~by -f cz = $ (a x 4- ~b y + cz).

Writing ax 4- by 4 cz for u, and a x 4 b y 4- cz for v in the

equation of Art. 423, we see that the partial differential equa
tion of cylindrical surfaces is

(be
- cb

) 0; + (ca
-
ac) U2

+ (ob
r - la

}
U

s
=

0,

or (Ex. 3, p. 26) U^ cosa + U
2 cos/3 -f U

3 cosy = 0, where a, /3, 7
are the direction-angles of the generating line. Kemembering
that Z7 17^ U

3
are proportional to the direction-cosines of the

normal to the surface, it is obvious that the geometrical meaning
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of this equation is,
that the tangent plane to the surface is

always parallel to the direction of the generating line.

Ex. 1. To find the equation of the cylinder whose edges are parallel to x = h,

y = mz, and which passes through the plane curve 2 = 0, &amp;lt; (x, y) = 0.

Ans.
(f&amp;gt; (x h, y mz) = 0.

Ex. 2. To find the equation of the cylinder whose sides are parallel to the

intersection of ax + by + cz, a x + b y + c z, and which passes through the intersec

tion of ax + ($y + yz = S, F (x, y, z) 0. Solve for x, y, z between the equations

ax + by + cz = u, a x + b y + c z = v, ax + (3y + yz o, and substitute the resulting

values in F (x. y, z)
= 0.

Ex. 3. To find the equation of a cylinder, the direction-cosines of whose edges

are
/, TO, ,

and which passes through the curve U =
0, V = 0. The elimination

may be conveniently performed as follows : If x
, y ,

z be the coordinates of the

point where any edge meets the directing curve, x, y, z those of any point on

x x __y y __zthe edge, we have
;

= - *- = - . Calling the common value of these
I m n

functions 6, we have

x = x Id, y
1

y m0, z z nQ.

Substitute these values in the equations U = 0, V = 0, which x y z must satisfy,

and between the two resulting equations eliminate the unknown 0, the result will be

the equation of the cylinder.

Ex. 4. To find the cylinder, the direction-cosines of whose edges are
Z, TO, n,

and which envelopes the quadric Ax 2- + By- + Cz2 = 1. From the partial differential

equation, the curve of contact is the intersection of the quadric with

Alx + Bmy + Cnz = 0.

Proceeding then, as in the last example, the equation of the cylinder is found to be

(At* + En? + Cn2
) (Ax

2 + By2 + Cz2 -
1)
= (Alx + Bmy + Cnz)

2
.

426. Conical Surfaces. These are generated by the motion

of a right line which constantly passes through a fixed point.

Expressing that the coordinates of this point satisfy the equa
tions of the right line, we have two relations connecting the

four constants in the general equations of a right line. In this

case, therefore, the equations of the generating curve contain

but two undetermined constants, and the problem is of the kind

discussed, Art. 423.

Let the equations of the generating line be

x &amp;lt;* z

I m n

where a, /3, 7 are the known coordinates of the vertex of the

cone, and
?, 772,

n are proportional to the direction-cosines of the

generating line; and where the equations, though apparently
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containing three undetermined constants, actually contain only

two, since we are only concerned with the ratios of the quan
tities

Z, 772,
71.

Writing the equations then in the form

x a._l y -*-
ft _m

z y n z y TI

we see that the conditions of the problem must establish a

relation between I : n and m :
??,

and that the equation of the

cone must be of the form =
&amp;lt;f&amp;gt;

(

-
)

.

z - y \z-yj
It is easy to see that this is equivalent to saying that the

equation of the cone must be a homogeneous function of the

three quantities x a, y /3,
z y ;

as may also be seen directly

from the consideration that the conditions of the problem must

establish a relation between the direction-cosines of the gene
rator

;
that these cosines being* Z: V{(^+ w

2 + w2

)), &c., any

equation expressing such a relation is a homogeneous function

of
Z, 7?i, 7i,

and therefore of x a, y /3,
z y, which are pro~

portional to
Z, TTI,

n.

When the vertex of the cone is the origin, its equation is

cc I ii\

of the form - = 6 I
-

] ; or, in other words, is a homogeneous
z \zj

function of #, y^ z.

The partial differential equation is found by putting

C QL 1J ~ o
,
v -

,
in the equation of Art. 423, and whenu =

z y zy
cleared of fractions is

z-y, 0, -(aj-a)

0, z - 7,
-

(y
-

ft)
=

0,

or

This equation evidently expresses that the tangent plane at

any point of the surface must always pass through the fixed

point a/3y.

We have already given in Ex. 7, p. 101, the method of

forming the equation of the cone standing on a given curve
;
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and (Art. 277) the method of forming the equation of the cone

which envelopes a given surface.

427. Conoidal Surfaces. These are generated by the motion

of a line which always intersects a fixed axis and remains

parallel to a fixed plane. These two conditions leave two of

the constants in the equations of the line undetermined, so that

these surfaces are of the class considered (Art. 423). If the axis

is the intersection of the planes a, /3,
and the generator is to

be parallel to the plane 7, the equations of the generator are

a = Cj/3, 7 = c
2 ,

and the general equation of conoidal surfaces

is obviously -\ =
&amp;lt;j&amp;gt; (7).*

The partial differential equation is (Art. 423)

O.y /y/*? firy rt fi Rrt nQ
Jv&l

(^/J i) r-^^9. ^r- Q? r- ^a ^^s

I-.
=

0,

where a =
a.^x 4- a.^y -f a.

3
z + a

4 ,
&c. The left-hand side of the

equation may be expressed as the difference of two deter

minants 13 ( Cfe7t)
- a

( Ufy3 ]
= 0.

This equation may be derived directly by expressing that

the tangent plane at any point on the surface contains the gene

rator; the tangent plane, therefore, the plane drawn through
the point on the surface, parallel to the directing plane, and

the plane a/3 a/3 joining the same point to the axis, have

a common line of intersection. The terms of the determinant

just written are the coefficients of #, y, z in the equations of

these three planes.

In practice we are almost exclusively concerned with right

conoids; that is, where the fixed axis is perpendicular to the

directing plane. If that axis be taken as the axis of 2, and

the plane for plane of xy, the functional equation is y = xcj&amp;gt; (2),

and the partial differential equation is xU^+yUz
= Q.

The lines of greatest slope (Art. 421) are in this case always

* In like manner the equation of any surface generated by the motion of a

line meeting two fixed lines a/3, yo must be of the form ^-(t&amp;gt; ( y )
.

p \o/
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projected into circles. For in virtue of the partial differential

equation just written, the equation of Art. 421,

Ujlx
- Ufy =

0,

transforms itself into xdx + ydy 0, which represents a series

of concentric circles. The same thing is evident geometrically ;

for the lines of level are the generators of the system ;
and

these being projected into a series of radii all passing through

the origin, are cut orthogonally by a series of concentric

circles.

Ex. 1. To find the equation of the right conoid passing through the axis of

z and through a plane curve, whose equations are x a^F (y, z) = 0. Eliminating

then x, y, z between these equations and y = c^, z = c2 ,
we get F (c^i, c2) = ;

or the required equation is F (
,
z\ = 0.

\x J

Wallis s cono-cuneus is when the fixed curve is a circle [a;
= a, y

2 + 2 = r2].

Its equation is therefore a2
?/
2 + x-z2 = r2x2

.

Ex. 2. Let the directing curve be a helix, the fixed line being the axis of the

cylinder on which the helix is traced. The equation is that given Ex. 1. Art. 371.

This surface is often presented to the eye, being that formed by the under surface

of a spiral staircase.

428. Surfaces of Revolution. The fundamental property of

a surface of revolution is that its section perpendicular to its

axis must always consist of one or more circles whose centres

are on the axis. Such a surface may therefore be conceived

as generated by a circle of variable radius whose centre

moves along a fixed right line or axis, and whose plane is

perpendicular to that axis. If the equations of the axis be

x-a.y fiz-y, . i

-j
= - - = -

,
then the generating circle in any posi

tion may be represented as the intersection of the plane per

pendicular to the axis Ix + my + nz =c
l?

with the sphere whose

centre is any fixed point on the axis,

These equations contain but two undetermined constants; the

problem, therefore, is of the class considered (Art. 423), and the

equation of the surface must be of the form

(x
-

a)
2
-f (y

-
/3)

a + (z
-

y)*
=

c/&amp;gt; (Ix -f my + nz).
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&quot;\Yhen the axis of z is the axis of revolution, we may take the

origin as the point a/37, and the equation becomes

x* + y* + z* = $(z], or z = ^(^
2 + /).

The partial differential equation is found by the formula of

Art. 423 to be

I,
m n

x - a, y - /3,
z - 7 =0,

or

+ {n(x-OL)-l(z-y)} U9 +{l(y-/3)-m(x-a)} U
3
= Q.

When the axis of z is the axis of revolution, this reduces to

The partial differential equation expresses that the normal

always meets the axis of revolution. For, if we wish to ex

press the condition that the two lines

x a. y /3 z 7~ ~ x z z

should intersect, we may write the common value of the equal
fractions in each case, 6 and 6 . Solving then for x, y, z, and

equating the values derived from the equations of each line,

we have

, 7+ nd = z + U/ ;

whence, eliminating #, #
,
the result is the determinant already

found

a)

?ft,

y-
n

-7 = 0.

429. The equation of the surface generated by the revo

lution of a given curve round a given axis is found (Art. 424)

by eliminating a?, y, z between

Ix + my + nz =
, (x

-
a)

2

+(y @)
2 + (z 7)*

=
v,

and the two equations of the curve
5 replacing then u and v by

their values. We have already had an example of this (Ex. 3,

p. 99), and we take, as a further example,
&quot;

to find the surface
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generated by the revolution of a circle [y = 0, (x a)* + = r
2

]

round an axis in its plane [the axis of
].&quot;

Putting z = Wj x2 + y
2 =

v, and eliminating between these

equations and those of the circle, we get

-a + u = r, or

which, cleared of radicals, is

(aj* + ?/

2
4- z* + a* - r*)

2 = 4a
2

(a
2 + y

9

).

It is obvious that when a is greater than r, that is to say, when

the revolving circle does not meet the axis, neither can the

surface, which will be the form of an anchor ring, the space

about the axis being empty. On the other hand, when the

revolving circle meets the axis, the segments into which the axis

divides the circle generate distinct sheets of the surface, inter

secting in points on the axis z = ij(r* c?}) which are nodal

points on the surface.

The sections of the anchor ring by planes parallel to the

axis are found by putting y = constant in the preceding equa
tion. The equation of the section may immediately be thrown

into the form SS = constant, where S and S represent circles.

The sections are Cassinians of various kinds (see tig. Higher
Plane Curves, p. 44). It is geometrically evident, that as the

plane of section moves away from the axis, it continues to cut

in two distinct ovals, until it touches the surface \_y
= a

r~\

when it cuts in a curve having a double point [Bernoulli s

Lemniseate] ;
after which it meets in a continuous curve.

Ex. Verify that x3 + y
3 + z3

Sxyz r3 is a surface of revolution.

Ans. The axis of revolution is x y z.

430. The families of surfaces which have been considered

are the most interesting of those whose equations can be ex

pressed in the form u = (f)(v). We now proceed to the case

when the equations of the generating curve include more than

two parameters. By the help of the equations connecting
these parameters, we can, in terms of any one of them, express
all the rest, and thus put the equations of the generating curve

into the form
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The equation of the surface generated is obtained by elimi

nating c between these equations ; and, as has been already

stated, all surfaces are said to be of the same family for which

the form of the functions jFand/is the same, whatever be the

forms of the functions $, -\/r,
&c. But since evidently the

elimination cannot be effected until some definite form has

been assigned to the functions
&amp;lt;, i/r, &c., it is not generally

possible to form a single functional equation including all sur

faces of the same family; and we can only represent them,
as above written, by a pair of equations from which there

remains a constant to be eliminated. We can, however, elimi

nate the arbitrary functions by differentiation, and obtain a

partial differential equation, common to all surfaces of the same

family ;
the order of that equation being, as we shall presently

prove, equal to the number of arbitrary functions $, -vjr,
&c.

It is to be remarked, however, that in general the order of

the partial differential equation obtained by the elimination of

a number of arbitrary functions from an equation is higher than

the number of functions eliminated. Thus, if an equation in

clude two arbitrary functions $, A/T,
and if we differentiate with

respect to x and ^, which we take as independent variables,

the differential equations combined with the original one form

system of three equations containing four unknown functions a

&amp;lt;, i/r, &amp;lt;/&amp;gt; , &amp;gt;//.
The second differentiation (twice with regard

to a, twice with regard to
?/,

and with regard to x and y)

gives us three additional equations ; but, then, from the system
of six equations it is not generally possible to eliminate the

six quantities $, i/r, $ , ^ , &amp;lt;&quot;, ^&quot;.
We must, therefore, pro

ceed to a third differentiation before the elimination can be

effected. It is easy to see, in like manner, that to eliminate

7i arbitrary functions we must differentiate 2?i 1 times. The
reason why, in the present case, the order of the differential

equation is less, is that the functions eliminated are all functions

of the same quantity.

431. In order to show this, it is convenient to consider first

the special case, where a family of surfaces can be expressed

by a single functional equation. This will happen when it is

EEE
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possible by combining the equations of the generating curve

to separate one of the constants so as to throw the equations
into the form w = c,; F(x, y, z, c,,

c
a ...cj

= 0. Then express

ing, by means of the equations of condition, the other constants

in terms of c the result of elimination is plainly of the form

F{XJ y, z, u, &amp;lt;t&amp;gt; (M), ^ (w), &c.}
= 0.

Now, if we denote by F^ the differential with respect to x of

the equation of the surface, on the supposition that u is con

stant, and similar differentials in
?/,

z by F^ F ,
we have

dF dF

But, in these equations, the derived functions $ , i/r , &c., only
JTfi

enter in the term -j- : they can. therefore, be all eliminated
du

together, and we can form the equation, homogeneous in

which contains only the original functions
&amp;lt;, i/r,

&c. If we

write this equation V 0, we can form from
it,

in like manner,
the equation

=
0,

which still contains no arbitrary functions but the original

&amp;lt;, i|r, &c., but which contains the second differential coefficients

of
f/,

these entering into F,, F
2 ,
F

3
. From the equation last

found we can in like manner form another, and so on
;

and

from the series of equations thus obtained (the last being of

the 7i
tn

order of differentiation) we can eliminate the n functions

fi\ A if* c\r r*U/a ^i* VJCv

If we omit the last of these equations we can eliminate all

but one of the arbitrary functions, and according to our choice

of the function to be retained, can obtain n different equations

of the order n 1
}

each containing one arbitrary function.
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These are the first integrals of the final differential equation

of the n
m

order. In like manner we can form \n(n \) equa

tions of the second order, each containing two arbitrary func

tions, and so on.

432. If we take x and y as the independent variables, and

as usual write dz = pdx + qdy, dp = rdx -f sdy, &c., the process

of forming these equations may be more conveniently stated

as follows :
&quot; Take the total differential of the given equation

on the supposition that u is constant,

F
t
dx +F

zdy +F3 ( pdx + qdy] = ;

put dy = mdx, and substitute for m its value derived from the

differential of u = 0, viz.

u^dx + u^dy + u
3 (pdx -f qdy)

= 0.&quot;

For, if we differentiate the given equation with respect to

x and y, we get

-fa(

dF

dF
and the result of eliminating -j

from these two equations is

the same as the result of eliminating m between the equations

F
l
-fpF3 + m (F2 + qF3 )

=
0, u

v -\-pus
-f m (u2 + qua]

= 0.

It is convenient in practice to choose for one of the equations

representing the generating curve its projection on the plane
of xy ; then, since this equation does not contain z, the value

of m derived from it will not contain p or ^, and the first

differential equation will be of the form

p -f qm = 7?,

R being also a function not containing^ or q. The only terms

then containing r, 5,
or t in the second differential equation are

those derived from differentiating p + qm, and that equation
will be of the form

r + 2sm + tm* = $,

where S may contain #, y, z, p, q, but not r, 5, or t. If now
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we had only two functions to eliminate, we should solve for

these constants from the original functional equation of the

surface, and from p 4- qm = R ;
and then substituting these values

in m and in 8, theform of the final second differential equation

would still remain
r -f 2W 4 tm * = $

where m and /S&quot; might contain #, y, z, p, q. In like manner

if we had three functions to eliminate, and if we denote the

partial differentials of z of the third order by a, /3, 7, 8, the

partial differential equation would be of the form

a + 3mj3 4 3tfi*y + m*$ = T.

And so on for higher orders. This theory will be illustrated

by the examples which follow.

433. Surfaces generated l}y
lines parallel to a fixed plane.

This is a family of surfaces which includes conoids as a par

ticular case. Let us, in the first place, take the fixed plane

for the plane of xy. Then the equations of the generating

line are of the form =
0,, y cjc 4 c

3
. The functional equa

tion of the surface is got by substituting in the latter equation

for c
,

&amp;lt;

(2), and for c
3 , ty (z). Since in forming the partial

differential equation we are to regard z as constant, we may
as well leave the equations in the form z = c

1} y c^x 4 c
3
.

These give us

p 4 qm = 0, m = c
2
.

According as we eliminate c
s

or c
a ,

these equations give us

P + 2C2
=

Oj Px + ^y yca * There are, therefore, two equations

of the first order, each containing one arbitrary function, viz.

P+q$ (*}
=

j px + qy = q^r (z).

To eliminate arbitrary functions completely, differentiate

p + qm = 0, remembering that since m = c
2 ,

it is to be regarded

as constant, when we get

r 4 2sm + tm* = 0,

and eliminating m by means of p -1- qm = 0, the required equa
tion is



PARTIAL DIFFERENTIAL EQUATIONS. 397

Next let the generating line be parallel to ax + by -f cz
;

its

equations are

ax -f by + cz = c
l5 y = c

2
x + c

s ;

and the functional equation of the family of surfaces is got by

writing for c
2
and c

s ,
functions of ax -f by + cz. Differentiating,

we have
a + cp + m (b + cq)

=
0, m = c

2
.

The equations got by eliminating one arbitrary function are

therefore

a -f cp 4- (^ + cq) (j&amp;gt; (ax -\-by-}- cz]
=

0,

(a + cp) x-\- (b + eg) y = (b + c^) &amp;gt;/r (aa? + by + cz) .

Differentiating a -I- bm + c (p + mq) = 0, and remembering that

m is to be regarded as constant, we have

r + 2sm + tm* = 0,

and introducing the value of m already found,

(b 4- cq)
z
r 2(a + cp)(b + cq) s + (a + cp)

2
1 = 0.

434. This equation may also be arrived at by expressing

that the tangent planes at two points on the same generator

intersect, as they evidently must, on that generator. Let

a, /3, 7 be the running coordinates, a?, y^ z those of the point

of contact; then any generator is the intersection of the tan

gent plane

7 - z =p (a
-

x) + q (/3
-

y),

with a plane through the point of contact parallel to the fixed

plane
a

(OL
-

x) 4 I (B
-

y) -f c (7
-

z)
=

0,

whence (a + cp) (a x) + (b + cq) (& y)
= 0.

Now if we pass to the line of intersection of this tangent plane

with a consecutive plane, a, $, 7 remain the same, while

x
i y-i

z
t Pi 9.

vary* Differentiating the equation of the tangent

plane, we have

(rdx + sdy) (a
-

x) -f- (sdx + tdy) (@ y)
= 0.

And eliminating a x, ft y^

(b + cq) (rdx + sdy) (a + cp) (sdx + tdy).
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But since the point of contact moves along the generator which

is parallel to the fixed plane, we have

adx + ~bdy + cdz = 0, or (a + cp) dx 4- (b + cq) dy 0.

Eliminating then dx^ dy from the last equation, we have, as before,

(b + eg)* r-2(a + cp) (b + eg) s + (a + cp)* t = 0.

435. Surfaces generated by lines which meet a fixed axis.

This class also includes the family of conoids. In the first

place let the fixed axis be the axis of z then the equations
of the generating line are of the form y = c,x, z = c

&amp;gt;2

x + c
3 ;

and

the equation of the family of surfaces is got by writing in the

latter equation for c
2
and c

3 , arbitrary functions of y : x. Differ

entiating, we have m = c^ p + mq=c^ whence

:;) i
and z-px-qy =

c/

Differentiating again, we have r + 2sm + tin
2 =

0, and putting

y
for m its value = c

t
=

,
the required differential equation is

x

rx* + Zsxy + ty*
= 0.

This equation may also be obtained by expressing that two

consecutive tangent planes intersect in a generator. As, in

the last article, we have for the intersection of two consecutive

tangent planes

(rdx -f sdy] (a x) + (sdx -f tdy) (ft y}
= 0.

But any generator lies in the plane ay = /3#, or (a x)y= (fty} x.

Eliminating therefore,

x (rdx + sdy] -f y (sdx + tdy)
= 0.

dii B 11

But -T- = = -
. Therefore, as before, rx* + 2sxy + tof 0.

dx a. x

More generally, let the line pass through a fixed axis a/3,

where a = ax -f by + cz -\- d, ft = a x -f ~b y + c z + d f

. Then the

equations of the generating line are a = Cj/3, y = c
2
x -f c

3 ,
and the

equation of the family of surfaces is y = x&amp;lt;p -5 + ^ . Differ

entiating, we have

m = c
2,
a + cp + m (b + cq)

= c
l [a

f + c p + m (V + eg]}.
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Differentiating again, we have r -f 2sm 4- tm* = 0, and putting

in for m from the last equation, the required partial differential

equation is

{(a + cp)
-

(a 4 c a}
J

t+\(b + cq] 0- (V + c q) a]
2
r

- 2 {(a -f cp) /3-(a + cp} a} {(b + cq)
-

(V + cq) a] s = 0.

436. If the equation of a family of surfaces contain n

arbitrary functions of the same quantity, and if it be required

to determine a surface of the family which shall pass through

n fixed curves, we write down the equations of the generating

curve u = c^ F(x, y, z, c,,
c
2 , &c.)

=
0, and expressing that the

generating curve meets each of the fixed curves, we have a

sufficient number of equations to eliminate c^ c
2 ,

&c. Thus,

to find a surface of the family x + y$(z) + ty (z)
= which shall

pass through the fixed curves
3/
=

, F(x, z)=0 y = a^

F
l (Xj z) 0. The equations of the generating line being z c

t ,

x = ycti
-|-c3 ,

we have, by substitution,

or, replacing for c
l5

c
3 ,

their values,

and by eliminating c
2
between these the required surface is found.

Ex. Let the directing curves be

we eliminate c2 between

{x + c, (a
-

y)}
2

,

g2 _ , , , m.^^lj
62

+
c2
~

l
&quot;

2 ^ yjr
&quot;

Solving for c2 from each, we hare

*
i(c*-z*)-x

C X

a-y a +y
The result is apparently of the eighth degree, but is resolvable into two conoids

distinguished by giving the radicals the same or opposite signs in the last equation.

437. We have now seen, that when the equation of a family
of surfaces contains a number of arbitrary functions of the same

quantity, it is convenient, in forming the partial differential
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equation, to substitute for the equation of the surface, the two

equations of the generating curve. It is easy to see, then,

that this process is equally applicable when the family of

surfaces cannot be expressed by a single functional equation.

The arbitrary functions which enter into the equations (Art. 430)

are all functions of the same quantity, though the expression of

that quantity in terms of the coordinates is unknown. If then

differentiating that quantity gives dy mdx^ we can eliminate

the unknown quantity m^ between the total differentials of the

two equations of the generating curve, and so obtain the partial

differential equation required. In practice it is convenient to

choose for one of the equations of the generating curve, its

projection on the plane xy.

For example, let it be required to find the general equation

of ruled surfaces : that is to say, of surfaces generated by the

motion of a right line. The equations of the generating line

are z c^c-\ c
3 , y = cjc -i c

4 ,
and the family of surfaces is ex

pressed by substituting for c
2 ,

c
3 ,

c
4 arbitrary functions of c

t
.

Differentiating, we have p + mq = c^ m = c
2
. Differentiating

the first of these equations, m being proved to be constant by
the second, we have r 4- 2sm + tm* = 0. As this equation still

includes m or c
2 ,

the expression for which, in terms of the

coordinates is unknown, we must differentiate again, when we
have a + 30m + 3ym* + $m3 =

0, where a, /3, 7, 8 are the third

differential coefficients. Eliminating m between the cubic and

quadratic just found, we have the required partial differential

equation. It evidently resolves itself into the two linear equa
tions of the third order got by substituting in turn for m in

the cubic the two roots of the quadratic.

This equation might be got geometrically by expressing that

the tangent planes at three consecutive points on a generator

pass through that generator. The equation pdx + qdy = dz is

a relation between^?, &amp;lt;?, !, which are proportional to the direc

tion-cosines of a tangent plane, while dx, dy, dz are proportional

to the direction-cosines of any line in that plane passing through
the point of contact. If, then, we pass to a second tangent plane,

through a consecutive point on the same line, we are to make

Pi q vary while the mutual ratios of dx, dy, dz remain constant.
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This gives rdx* 4- Zsdxdy + tdy*
= 0. To pass to a third tan

gent plane, we differentiate again, regarding dx : dy constant
;

and thus have adx3 + 3/3dx
2

dy + Sydxdy* 4 &dy
3 = 0. Elimi

nating dx : dy between the last two equations, we have the

same equation as before.

The first integrals of this equation are found, as explained

(Art. 431), by omitting the last equation and eliminating all

but one of the constants. Thus we have the equation

p + mq = Ctf
from which it appears that one of the integrals is

p + mq = (j&amp;gt; (??i),
where m is one of the roots of r + 2sm -f im* = 0.

The
c
other two first integrals are

y mx =
i/r (m), and z px mqx = % (m).

The three second integrals are got by eliminating m from

any pair of these equations.

438. Envelopes. If the equation of a surface include n

parameters connected by n 1 relations, we can in terms of

any one express all the rest, and throw the equation into

the form

, &c.}.

Eliminating c between this equation and =
0, which we shall

etc

write ^=0, we find the envelope of all the surfaces obtained by

giving different values to c. The envelopes so found are said

to be of the same family as long as the form of the function F
remains the same, no matter how the forms of the functions

&amp;lt;, T/T,
&c. vary. The curve of intersection of the given surface

with F is the characteristic (see p. 290) or line of intersection

of two consecutive surfaces of the system. Considering the

characteristic as a moveable curve from the two equations of

which c is to be eliminated, it is evident that the problem of

envelopes is included in that discussed Art. 430, &c. If the

function F contain n arbitrary functions
&amp;lt;/&amp;gt;, -v/r, &c., then since F

contains 6
, ^ , &c., it would seem, according to the theory

previously explained, that the partial differential equation of

the family ought to be of the 2nth order. But on examining
the manner in which these functions enter, it is easy to see that

FFF
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the order reduces to the nih
. In fact, differentiating the

equation z F, we get

* = F&amp;lt;

+
Tc

c q =F*
+ Tc^ that is P = F

&amp;gt;

+ c
&amp;gt;

jF
&quot;

2 = *&quot; + ***

but since J^
r =

0, we have p = F^ q
= F^ where, since F

l
and i 2̂

are the differentials on the supposition that c is constant, these

quantities only contain the original functions
&amp;lt;, ty and not the

derived $ , ty . From this pair of equations we can form

another, as in the last article, and so on, until we come to

the nth
order, when, as easily appears from what follows, we

have equations enough to eliminate all the parameters.

439. We need not consider the case when the given equation

contains but one parameter, since the elimination of this between

the equation and its differential gives rise to the equation of

a definite surface and not of a family of surfaces. Let the

equation then contain two parameters a, 6, connected by an

equation giving b as a function of a, then between the three

equations z = F, p = F^ q
= F# we can eliminate a, ,

and the

form of the result is evidently /(ce, ?/ r z^p, q)
= 0.

For example, let us examine the envelope of a sphere of

fixed radius, whose centre moves along any plane curve in the

plane of xy. This is a particular case of the general class of

tubular surfaces which we shall consider presently.

Now the equation of such a sphere being

(i-aj*^^-^)*+ * =*,
and the conditions of the problem assigning a locus along which

the point a/3 is to move, and therefore determining /3 in terms

of a, the equation of the envelope is got by eliminating a

between

(x
- a

y+{y-&amp;lt;t&amp;gt; (a)}
2 + * = r

, (x
-

a) + [y
-

(a)) &amp;lt;*&amp;gt; (a)
= 0.

Since the elimination cannot be effected until the form of the

function
c/&amp;gt;

is assigned, the family of surfaces can only be ex

pressed by the combination of two equations just written.

We might also obtain these equations by expressing that the

surface is generated by a fixed circle, which moves so that

its plane shall be always perpendicular to the path along which
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its centre moves. For the equation of the tangent to the

locus of a/3 is

And the plane perpendicular to this is

(*-a) + fo-$(a)}f (a)
=

0,

as already obtained. To obtain the partial differential equa

tion, differentiate the equation of the sphere, regarding a, /3 as

constant, when we have x a. +pz = 0, y /3 + qz 0. Solving
for a; a, y ft and substituting in the equation of the sphere,

the required equation is

We might have at once obtained this equation as the geo
metrical expression of the fact that the length of the normal

is constant and equal to r, as it obviously is.

440. Before proceeding further we wish to show how the

arbitrary functions which occur in the equation of a family

of envelopes can be determined by the conditions that the

surface in question passes through given curves. The tangent

line to one of the given curves at any point of course lies in

the tangent plane to the required surface
;

but since the en

veloping surface has at any point the same tangent plane as

the enveloped surface which passes through that point, it

follows that each of the given curves at every point of it

touches the enveloped surface which passes through that point.

If, then, the equation of the enveloped surface be

z = F(x,y, c
1?

c
2
...c

n),

the envelope of this surface can be made to pass through n 1

given curves
;

for by expressing that the surface, whose equa
tion has been just written, touches each of the given curves,

we obtain n 1 relations between the constants
c,,

c
2 , &c.,

which, combined with the two equations of the characteristic,

enable us to eliminate these constants. For example, the

family of surfaces discussed in the last article contains but

two constants and one arbitrary function, and can therefore
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be made to pass through one given curve. Let it then be

required to find an envelope of the sphere

(a;-a)
2 + (y-/3)

2 + z
2
==r

2

,

which shall pass through the right line x = mz, y = 0. The

points of intersection of this line with the sphere being given

by the quadratic

(z- a
)

2

+/3
2 + s

2 = r
2

,
or (1+ m

2

)z* -2mza + a*-f
U -V =

0,

the condition that the line should touch the sphere is

(lW)(a
2 + /3

2 -r2)=V.
We see thus, that the locus of the centres of spheres touching

the given line is an ellipse. The envelope required, then, is

a kind of elliptical anchor ring, whose equation is got by

eliminating a, /3 between

(
x _ ay + (y - py + z

* = r^ (i + m*] (
a
* + p _

/) = WV,
(x a)da+(y /3) d/3 = 0, ado. + (1 + wi

a

) fid/3 = 0,

from which last two equations we have

(1 + ?tt
2

) /? (x
-

a)
= a (y

-
/9).

The result is a surface of the eighth degree.

441. Again, let it be required to determine the arbitrary

function so that the envelope surface may also envelope a

given surface. At any point of contact of the required sur

face with the fixed surface z=f(x,y\ the moveable surface

z = F(x, y, c
l7

c
2 , &c.) which passes through that point, has

also the same tangent plane as the fixed surface. The values

then of p and q derived from the equations of the fixed surface

and of the moveable surface must be the same. Thus we have

fi
= F^ f2

= F^ an^ if between these equations and the two

equations z = F, z =/, which are satisfied for the point of

contact, we eliminate x, y, z, the result will give a relation

between the parameters. The envelope may thus be made
to envelope as many fixed surfaces as there are arbitrary

functions in the equation. Thus, for example, let it be re

quired to determine a tubular surface of the kind discussed

in last article, which shall touch the sphere x +y^+z^R*. This
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surface must then touch (x a)
a

4- (y /3)
2 + z* r*. &quot;We have

therefore x\y\ z = x-a. . y $ \ z\ conditions which imply
2 = 0, fix = a.y. Eliminating x and y by the help of these

equations, between the equation of the fixed and moveable

sphere, we get 4 (a
2 + ff

2

)
E2 = (E

2 - r
2

+ a* -f ff)*. This gives

a quadratic for a
2 + /3

a

,
whose roots are (E r}

2

; showing
that the centre of the moveable sphere moves on one or other

of two circles, the radius being either Er. The surface

required is therefore one or other of two anchor rings, the

opening of the rings corresponding to the values just assigned.

442. We add one or two more examples of families of en

velopes whose equations include but one arbitrary function. To
find the envelope of a right cone whose axis is parallel to the

axis of z, and whose vertex moves along any assigned curve

in the plane of xy. Let the equation of the cone in its

original position be z
2 = m*

(a:

2 + y*} ;
then if the vertex be

moved to the point a, /3,
the equation of the cone becomes

z* = m* {(# cc)

2
-f (y /3)*},

and if we are given a curve

along which the vertex moves, /3 is given in terms of a.

Differentiating, we have pz = m* (x- a), qz m* (y /3) ;
and

eliminating, we have p
2

-f f = m
8
. This equation expresses

that the tangent plane to the surface makes a constant angle
with the plane of xy, as is evident from the mode of generation.

It can easily be deduced hence, that the area of any portion
of the surface is in a constant ratio to its projection on the

plane of xy.

443. The families of surfaces, considered (Arts. 439, 442),

are both included in the following :
&quot; To find the envelope of a

surface of any form which moves without rotation, its motion

being directed by a curve along which any given point of the

surface moves.&quot; Let the equation of the surface in its original

position be z = F(x,y], then if it be moved without turning
so that the point originally at the origin shall pass to the

position a/Sy, the equation of the surface will evidently be

z-
&amp;lt;y

= F(x a.j y- y@). If we are given a curve along which

the point a/3y is to move, we can express a, /3 in terms of 7,
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and the problem is one of the class to be considered in the

next article, where the equation of the envelope includes two

arbitrary functions. Let it be given, however, that the directing

curve is drawn on a certain known surface^ then, of the two

equations of the directing curve, one is known and only one

arbitrary, so that the equation of the envelope includes but

one arbitrary function. Thus, if we assume /3 an arbitrary

function of a, the equation of the fixed surface gives 7 as a

known function of a, /3. It is easy to see how to find the partial

differential equation in this case. Between the three equations

z - 7 = F(x -*iy-P)ip = Fi(x-*iy - ), q=Fz (x-a, y-P)i

solve for x v.,y ft,
z 7, when we find

If, then, the equation of the surface along which aj3y is to move

be F (a, /3, 7)
=

0, the required partial differential equation is

r (*-/(*, z),y- /(;, 2), -7(i, 2))=o-

The three functions f, y,
r

y, are evidently connected by the

relation d&quot;f=pdf+ qfrf.

It is easy to see that the partial differential equation just

found is the expression of the fact, that the tangent plane at

any point on the envelope is parallel to that at the corre

sponding point on the original surface.

Ex. To find the partial differential equation of the envelope of a sphere of con

stant radius whose centre moves along any curve traced on a fixed equal sphere

a;
2 + y

1 + z1 = r2.

The equation of the moveable sphere is (a; a)
2 + (y /3)

2 + (z y)
2 = r2

,
whence

x ~ a +P (
z ~ 7)

~
&amp;gt; y

-
ft + 9 (z

-
7) = &amp;gt;

and we have

pr or r
x-a =- -, y-p =-- ,z--y=- .

(1 + p
2 +

&amp;lt;Z

2
)* (1 +p2 + q

2
)* (1 +p* + 2

2
)*

If we write 1 + p1 + &amp;lt;

/o
2 it is easy to see, by actual differentiation, that the

relation is fulfilled

The partial differential equation is

(xp +pr}
2 + (i/p + qr)

z + (zp r)
2 = pV2

,

or (z
2 + 2/

2 + z2
) (1 +p2 + qrf + 2 (px + gy

-
z) r = 0.
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444. We now proceed to investigate the form of the partial

differential equation of the envelope, when the equation of the

moveable surface contains three constants connected by two

relations. If the equation of the surface be z = F(x, y, a, 5, c),

then we have p = F^ q
= F

2
. Differentiating again, as in

Art. 432, we have

and eliminating ???,
the required equation* is

(r-Fn)(t-FJ = (,-FJ.
The functions F^ F^ F

22
contain a, , c, for which we are

to substitute their values in terms of p, q, x, y, z derived from

solving the preceding three equations, when we obtain an equa
tion of the form

fir + 2Ss+Tt + U(rt-s
2

)
=

V,

where E^ $, T, /,
V are connected by the relation

ET+ UV=S\

445. The following examples are among the most important
of the cases where the equation includes three parameters.

Developable Surfaces. These are the envelope of the plane
z ax + by 4- c, where for b and c we may write &amp;lt; (a) and

\fr (a).

Differentiating, we have p = a, q J, whence q = [p). Any
surface therefore is a developable surface if p and q are con

nected by a relation independent of
ic, y, z. Thus the family

(Art. 442) for which p* + &amp;lt;f

= mZ

)
is a family of developable

surfaces. We have also z px qy = ty (p), which is the other

first integral of the final differential equation. This last is

got by differentiating again the equations p =
a, q

=
5, when

we have r -f sm = 0, s -f tm = 0, and eliminating m^ rt s
a =

0,

which is the required equation.

By comparing Arts. 295, 311, it appears that the condition

r = sMs satisfied at every parabolic point on a surface. The

* I owe to Professor Boole my knowledge of the fact, that when the equation
of the moveable surface contains three parameters, the partial differential equation
is of the form stated above. See his Memoir, Phil. Trans., 1862, p. 437.
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same thing may be shewn directly by transforming the equation

rt s
2 = into a function of the differential coefficients of Z7

?

by the help of the relations

when the equation rt s
2 = is found to be identical with the

equation of the Hessian. We see, accordingly, that every point

on a developable is a parabolic point, as is otherwise evident, for

since (Art. 330) the tangent plane at any point meets the

surface in two coincident right lines, the two inflexional

tangents at that point coincide. The Hessian of a developable

must therefore always contain the equation of the surface itself

as a factor. The Hessian of a surface of any degree n being
of the degree 4rc 8, that of a developable consists of the

surface itself, and a surface of 3n 8 degree which we shall

call the Pro-Hessian.

In order to find in what points the developable is met by
the Pro-Hessian, I form the Hessian of the developable surface

of the rth degree, see Arts. (329, 330) xu + y\ = Q, and find that

we get the developable itself multiplied by a series of terms in

(d*u dLu ( dlu V
which the part independent of x and y is v \ -r-.- -=

( ^ =-
}f

(dz aw \dzdwj

This proves that any generator xy meets the Pro-Hessian in

the first place, where xy meets v
;

that is to say, twice in the

point on the cuspidal curve (m), and in r 4 points on the nodal

curve (a;)
Art. 330

;
and in the second place, where the generator

meets the Hessian of u considered as a binary quantic ;
that is

to say, in the Hessian of the system formed by these r 4 points

combined with the point on (m) taken three times; in which

Hessian the latter point will be included four times. The

intersection of any generator with the Pro-Hessian consists

of the point on (m) taken six times, of the r 4 points on

(#), and of 2 (r 5) other points, in all 3r 8 points.*

* Prof. Cayley has calculated the equation of the Pro-Hessian (Quarterly Journal,

vol. vi. p. 108) in the case of the developables of the fourth and fifth orders, and of
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446. Tubular Surfaces. Let it be required to find the

differential equation of the envelope of a sphere of constant

radius, whose centre moves on any curve. We have, as in

Art. 443,

whence 1 +/?
a + (z

-
7) r + m [pq + (z

-
7) s] 0,

pq + (z
-

7) s 4- m {1 + (f + (z
-

7) t]
= 0.

And therefore

-p

Substituting for z - 7 its value -*
-^ from the first three

equations, this becomes

which denotes, Art. 311, that at any point on the required

envelope one of the two principal radii of curvature is equal

to J%, as is geometrically evident.

447. We shall briefly show what the form of the differ

ential equation is when the equation of the surface whose

envelope is sought contains four constants. We have, as

before, in addition to the equation of the surface, the three

equations p =F} , q = F^ (r
-Fu ) (t

- FJ = (s- FJ. Let us,

for shortness, write the last equation pr = &amp;lt;r

2

,
and let us write

a-Fnl
= A, /3

-Fm = ,y- Fm =C,S-FW = J); then, differ-

entiating pr = a\ we have

(A + Bm) r + (C+ Dm) p
- 2 (B -f Cm) &amp;lt;r

= 0.

Substituting for m from the equation a + rra = 0, and remember

ing that pr = o-*, we have

AT* - 3B&amp;lt;TT

2 + 3 &amp;lt;Vr
-

Z&amp;gt;&amp;lt;r

3 =
0,

that of the sixth order considered, Art. 348. The Pro-Hessian of the developable of the

fourth order is identical with the developable itself. In the other two cases the

cuspidal curve is a cuspidal curve also on the Pro-Hessian, and is counted six

times in the intersection of the two surfaces. I suppose it may be assumed that

this is generally true. The nodal curve is but a simple curve on the Pro-Hessian,

and therefore is only counted twice in the intersection.

GGG
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in which equation we are to substitute for the parameters im

plicitly involved in it, their values derived from the preceding

equations. The equation is, therefore, of the form

a + m

where m and U are functions of a?, ?/, 0, p, q, r, s, t. In like

manner we can form the differential equation when the equa
tion of the moveable surface includes a greater number of

parameters.

448. Having in the preceding articles explained how

partial differential equations are formed, we shall next show

how from a given partial differential equation can be de

rived another differential equation satisfied by every charac

teristic of the family of surfaces to which the given equation

belongs (see Monge, p. 53). In the first place, let the given

equation be of the first order; that is to say, of the form

f (x, y, 2, p, q]
= 0. Now if this equation belong to the en

velope of a moveable surface, it will be satisfied, not only by
the envelope, but also by the moveable surface in any of its

positions. This follows from the fact, that the envelope touches

the moveable surface, and therefore that at the point of contact

x
i Vt z

i Pi 9.
are the same for both. Now if

a?, ?/,
z be the

coordinates of any point on the characteristic, since such a

point is the intersection of two consecutive positions of the

moveable surface, the equation f(x, y, z, p, &amp;lt;?)

= will be

satisfied by these values of
a?, ?/, z, whether p and q have the

values derived from one position of the moveable surface or

from the next consecutive. Consequently, if we differentiate

the given equation, regarding p and q as alone variable, then

the points of the characteristic must satisfy the equation

Pdp+ Qdq = 0.

Or we might have stated the matter as follows: Let the

equation of the moveable surface be z = F(x, y, a), where

the constants have all been expressed as functions of a single

parameter a. Then (Art. 438) we have p F
l (x^ y, a),

q = F2 (xj y, a), which values of p and q may be substituted in

the given equation. Now the characteristic is expressed by
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combining with the given equation its differential with respect

to a; and a only enters into the given equation in consequence
of its entering into the values for p and q. Hence we have,

as before, P^+&amp;lt;2^ = o.
da.

*
da.

Now since the tangent line to the characteristic at any point
of it lies in the tangent plane to either of the surfaces which

intersect in that point, the equation dz =pdx + qdy is satisfied,

whether p and q have the values derived from one position of

the moveable surface or from the next consecutive. We have

therefore
y-

dx -f
-~

dy 0. And combining this equation with

that previously found, we obtain the differential equation of the

characteristic Pdy Qdx 0.

Thus, if the given equation be of the form Pp 4 Qq = JR,

the characteristic satisfies the equation Pdy Qdx = 0, from

which equation, combined with the given equation and with

dz =pdx + qdy, can be deduced Pdz = Bdx, Qdz = Rdy. The

reader is aware (see Boole s Differential Equations, p. 323) of

the use made of those equations in integrating this class of

equations. In fact, if the above system of simultaneous equa
tions integrated give u = c

l ,
v = c^ these are the equations of

the characteristic or generating curve in auy of its positions,

while in order that v may be constant whenever u is constant

we must have u =
&amp;lt;$&amp;gt; (v).

Ex. Let the equation be that considered (Art. 439), viz. z- (i + p- + j
2
)
= rz

,
then

any characteristic satisfies the equaiion pdy - qdx, which indicates (Art. 421) that

the characteristic is always a line of greatest slope on the surface, as is geome
trically evident.

449. The equation just found for the characteristic generally
includes p and

,
but we can eliminate these quantities by

combining with the equation just found the given partial dif

ferential equation and the equation dz=pdx -f qdy. Thus, in the

last example, from the equations z
2

(I +p* + q*)
= r\ qdx =pdy ^

we derive

z
2

(dx
2 + df + dz

r

]
= r* (dx* -f dy }.

The reader is aware that there are two classes of differential

equations of the first order, one derived from the equation of
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a single surface, as, for instance, by the elimination of any
constant from an equation U= 0, and its differential

Ufa + U^dy + U?
dz = 0.

An equation of this class expresses a relation between the

direction-cosines of every tangent line drawn at any point on

the surface. The other class is obtained by combining the

equations of two surfaces, as, for instance, by eliminating three

constants between the equations Z7=0, F=0, and their differ

entials. An equation of this second class expresses a relation

satisfied by the direction-cosines of the tangent to any of the

curves which the system Z7, V represents for any value of the

constants. The equations now under consideration belong to

the latter class. Thus the geometrical meaning of the equation

chosen for the example is, that the tangent to any of the curves

denoted by it makes with the plane of xy an angle whose

cosine is z : r. This property is true of every circle in a vertical

plane whose radius is r
;
and the equation might be obtained

by eliminating by differentiation the constants a, /3, m, between

the equations

(x
-

a)
2

+(y- ft)* + z* = rt

,
x - a + m (y

-
ft]
= 0.

450. The differential equation found, as in the last article,

is not only true for every characteristic of a family of surfaces,

but since each characteristic touches the cuspidal edge of the

surface generated, the ratios dx : dy : dz are the same for

any characteristic and the corresponding cuspidal edge ;
and

consequently the equation now found is satisfied by the cuspidal

edge of every surface of the family under consideration. Thus,
in the example chosen, the geometrical property expressed by
the differential equation not only is true for a circle in a

vertical plane, but remains true if the circle be wrapped on

any vertical cylinder; and the cuspidal edge of the given

family of surfaces always belongs to the family of curves thus

generated.

Precisely as a partial differential equation in p, q (express

ing as it does a relation between the direction-cosines of the

tangent plane) is true as well for the envelope as for the par

ticular surfaces enveloped, so the total differential equations here
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considered are true both for the cuspidal edge and the series

of characteristics which that edge touches. The same thing

may be stated otherwise as follows: the system of equations

U= 0, -7- = 0, which represents the characteristic when a is re

garded as constant, represents the cuspidal edge when a is an

unknown function of the variables to be eliminated by means

of the equation -7-^-
= 0. But the equations U= 0, -^

=

evidently have the same differentials as if a were constant, when

a is considered to vary, subject to this condition.

Thus, in the example of the last article, if in the equations

(x
-

a)
2
+ (y /8)

2 + z* = r
2

, (x a) + m (y
-

/3)
=

0, we write

/3 = $(a), w = $ (a), and combine with these the equation
1 -f &amp;lt;

(
a

)

2 = (y
-

ft) $&quot; (
a

),
the differentials of the first and

second equations are the same when a is variable in virtue

of the third equation, as if it were constant
;
and therefore the

differential equation obtained by eliminating a, /3,
m between

the first two equations and their differentials, on the supposition

that these quantities are constant, holds equally when they

vary according to the rules here laid down. And we shall

obtain the equations of a curve satisfying this differential

equation by giving any form we please to
&amp;lt;f&amp;gt; (a), and then

eliminating a between the equations

(x
- a

y+(y-&amp;lt;t&amp;gt; (a)}
2 + z* = r\ (x

-
a) 4 $ (a) {y

-
&amp;lt;f&amp;gt; (a)}

=
0,

l + (f (a)! {y-*())**
* It is convenient to insert here a remark made by Mr. M. Roberts, viz. that if

in the equation of any surface we substitute for x, x + Xdx, for y, y + \dy, for 2,

z + \dz, and then form the discriminant with respect to X, the result will be the

differential equation of the cuspidal edge of any developable enveloping the given,

surface. In fact it is evident (see Art. 277) that the discriminant expresses the

condition that the tangent to the curve represented by it touch the given surface.

Thus the general equation of the cuspidal edge of developables circumscribing a

sphere is

(x- + y
2 + z-- a-) (dx

2 + df + dz2) = (xdx + ydy + zdzf,

or (ydz zdy)- + (zdx xdz}~ + (xdy ydx}
2 = a- (dx- + dy

1 + dz-).

In the latter form it is evident that the same equation is satisfied by a geodesic

traced on any cone whose vertex is the origin. For if the cone be developed into

a plane, the geodesic will become a right line
;
and if the distance of that line from

the origin be a, then the area of the triangle formed by joining any element ds to

the origin is half ads, but this is evidently the property expressed by the preceding

equation.
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451. In like manner can be found the differential equation of

the characteristic, the given partial differential equation being of

the second order (see Monge, p. 74). In this case we can have

two consecutive surfaces, satisfying the given differential equa

tion, and touching each other all along their line of intersection.

For instance, if we had a surface generated by a curve moving
so as to meet two fixed directing curves, we might conceive

a new surface generated by the same curve meeting two new

directing curves, and if these latter directing curves touch the

former at the points where the generating curve meets them,
it is evident that the two surfaces touch along this line. In

the case supposed, then, the two surfaces have #, y, , p, q
common along their line of intersection and can differ only

with regard to r, s, t. Differentiate then the given differential

equation, considering these quantities alone variable, and let

the result be Edr + Sds + Tdt = 0. But, since p and q are con

stant along this line, we have drdx + dsdy = 0, dsdx + dtdy = 0.

Eliminating then dr^ ds, dt, the required equation for the

characteristic is

Edy
1 - Sdxdy + Tdx* = 0.

In the case of all the equations of the second order, which

we have already considered, this equation turns out a perfect

square. When it does not so turn out, it breaks up into

two factors, which, if rational, belong to two independent
characteristics represented by separate equations; and if not,

denote two branches of the same curve intersecting on the point

of the surface which we are considering.

452. In fact, when the motion of a surface is regulated by
a single parameter (see Art. 321), the equation of its envelope,

as we have seen, contains only functions of a single quantity,

and the differential equation belongs to the simpler species

just referred to. But if the motion of the surface be regulated

by two parameters, its contact with its envelope being not a

curve, but a point, then the equation of the envelope will

in general contain functions of two quantities, and the differ

ential equation will be of the more general form. As an

illustration of the occurrence of the latter class of equations in
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geometrical investigations, we take the equation of the family
of surfaces which has one set of its lines of curvature parallel

to a fixed plane, y = tnx. Putting dy = mdx in the equation

of Art. 310, the differential equation of the family is

=0.

As it does not enter into the plan of this work to treat of

the integration of such equations, we refer to Monge, p. 161,

for a very interesting discussion of this equation. Our object

being only to show how such differential equations present

themselves in geometry, we shall show that the preceding

equation arises from the elimination of a, /3 between the fol

lowing equation and its differentials with respect to a and /3 :

(x
-

a)* + (y- 13? + {z-&amp;lt;f&amp;gt;(
a + mp)}*

= ^ (

Differentiating with respect to a and
/5,

we have

(x a) + (z- $) &amp;lt;

= m

whence (x
-

a) 4 m (y
-

/3) 4 (1 4 m*} (z
-

$) &amp;lt;j&amp;gt;

= 0.

But we have also

whence (x a) 4 m (y $} + (p + mq) (z &amp;lt;j))=
0.

And, by comparison with the preceding equation, we have

p -I- mq = (I + m*) &amp;lt;j&amp;gt; (a + mft). If, then, we call a + m/3, 7, the

problem is reduced to eliminate 7 between the equations

x + my - 7 + (p + mq) {z
-

&amp;lt;

(7)}
=

0, p + mq = (1 4 m
z

)
&amp;lt; (7).

Differentiating with regard to x and y, we have

(1 + p
2 + mpq) + (r+ ma] {z-$ (7)}

=
{1 + (p + mq} $ } 7l ,

{7/2 (1 4 &amp;lt;f) +pq} + (s + mt) {z-t (7)}
=

{1 + (p + mq) &amp;lt;j&amp;gt; } 7,,

but from the second equation

r4w : *+ fltf :: 7t : %.

Hence, the result is

(1 4 p* 4 mpq) (s 4 mt)
= {m (I 4 &amp;lt;f) +pq] (r 4 ww),

as was to be proved.
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SECTION II. COMPLEXES, CONGRUENCES, RULED SURFACES.*

453. The preceding families of cylindrical surfaces, conical

surfaces and conoidal surfaces, are all included in the more general

family of ruled surfaces
;

but it is natural to consider these

from a somewhat different point of view. We start with the

right line, as a curve containing four parameters. Considering
these as arbitrary, we have the whole system of lines in space ;

but we may imagine the parameters connected by a single

equation, or by two, three, or four equations (more accurately,

by a one-fold, two-fold, three-fold or four-fold relation). In

the last case we have merely a system consisting of a finite

number of right lines, and this may be excluded from con

sideration
;

the remaining cases are those of a one-fold, two

fold, and three-fold relation, or may be called those of a triple,

double, or single system of right lines.

A. The parameters have a one-fold relation. We have

here what Pliicker has termed a &quot;

complex
&quot;

of lines. As

examples, we have the system of lines which touch any given
surface whatever, or which meet any given curve whatever,

but it is important to notice, as has been already remarked

in Art. SOd and in Art. 316 (D), that these are particular cases

only ;
the lines belonging to a complex do not in general touch

one and the same surface, or meet one and the same curve.

We may, in regard to a complex, ask how many of the

lines thereof meet each of three given lines, and the number

in question may be regarded as the &quot; order
&quot;

of the complex.
B. The parameters have a two-fold relation. We have

here a &quot;

congruency&quot; of lines. A well-known example is that

* In Sir W. R. Hamilton s second supplement on Systems of Rays. Transactions

of the Royal Irish Academy, vol. XVI., were first investigated the properties of a

congruency other than that formed by the normals to a surface. As to the theory of

complexes and congruences see Plucker s posthumous work, Neue Geometrie des

Raumes gegrilndet auf die Betrachtung der geraden Linie ah Raumelement, Leipzig,

1868, edited by Dr. Klein
;

also Rummer s Memoirs, Crelle LVII. p. 189
;
and &quot; Ueber

die algebraischen Strahlensysteme, in s Besondere iiber die der ersten und zweiten

Ordnung,&quot; Berl. Abh. 1866, pp. 1120 ;
and various Memoirs by Klein and others

As regards ruled surfaces see M. Chasles s Memoir, Quetelet s Correspondance, t. XI.

p. 50, and Prof. Cayley s paper, Cambridge and Dublin Mathematical Journal, vol. vil.

p. 171
;

also his Memoir,
&quot; On Scrolls otherwise Skew Surfaces,&quot; Philosophical Tran

sactions, 1863, p, 453, and later Memoirs.
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of the normals of a given surface. Each of these touches at

two points (the centres of curvature) a certain surface, the

centre-surface or locus of the centres of curvature of the

given surface, and the normals are thus bitangents of the

centro-surface. And so, in general, we have as a congruency
of lines the system of the bitaugents of a given surface. But

more than this, every congruency of lines may be regarded as

the system of the bitangents of a certain surface, for each line

of the congruency is in general met by two consecutive lines,

and the locus of the points of intersection is the surface in

question. The surface may, however, break up into two

separate surfaces, and the original surface, or each or either of

the component surfaces may degenerate into a curve
;
we have

thus as congruencies the systems of lines,

(1) the bitangents of a surface,

(2) lines
&quot;

through two
points&quot;

of a curve,

(3) common tangents of two surfaces,

(4) tangents to a surface from the points of a curve,

(5) common transversals of two curves,

the last four cases being, as it were, degenerate cases of the

first, which is the general one.

We may, in regard to a congruency, ask how many of the

lines thereof meet each of two given lines? the number in

question is the &quot;

order-class&quot; of the congruency. But imagine
the two given lines to intersect

;
the lines of the congruency

are either the lines which pass through the point of intersection

of the two given lines, or else the lines which lie in the common

plane of the two given lines, and the questions thus arise :

(1) How many of the lines of the congruency pass through a

given point? the number is the &quot;order&quot; of the congruency.

(2) How many of the lines of the congruency lie in a given

plane? the number is the &quot;

class&quot; of the congruency. The sum
of these numbers is the order-class, as above defined.

C. Relation between the parameters three-fold. We have

here a
&quot;regulus&quot;

of lines or ruled-surface, that generated by
a series of lines depending on a single variable parameter.
The &quot;

order&quot; of the system is the number of lines of the system
which meet a given right line.

HHH
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454. In accordance with Pliicker s work on the right line

considered as an element of space, we must therefore first

consider the properties of a complex ;
that is to say, of a system

of lines which satisfy a single relation between the six coordi

nates. If this relation be of the wtb
degree, the complex is of

the wth
degree ;

all the lines of it which pass through a given

point form a cone of the wth
order, and those which lie in a

given plane, envelope a curve of the rc
th class (see Art. SOd). If,

for instance, the complex be of the first order, all the lines which

pass through a given point lie in a given plane ; and, reciprocally,

those which lie in a given plane pass through a given point.

To each line in space corresponds a conjugate line, the points

of the one line corresponding to the planes which pass through
the other. Any line which meets two conjugate lines will be a

line of the complex. When five lines of such a complex are

given, it is evident, by counting the number of constants, that the

complex is determined; and what has just been said enables

us to construct geometrically the plane answering to any point.

For, taking any four lines of the complex, the two lines which

meet these four are conjugate lines, and the line passing through
the assumed point and meeting the conjugate lines is a line of

the complex. A second line is determined in like manner, and

the two together determine the plane.

If we consider a series of parallel planes, to each corresponds

a single point, and the locus of these points is therefore a line

of the first order, which right line may be called the diameter

of the system of planes. To the plane infinity corresponds a

point at infinity, and through this point all the diameters pass ;

that is to say, they are parallel. One of the diameters is

perpendicular to the corresponding plane, and this diameter may
be called the axis of the complex. If the axis and a line of

the complex be given, the complex is determined; and the

complex in fact consists of the different positions which this

line can assume whether by rotation round the axis or by
translation in a direction parallel to the axis. When the line

meets the axis we have the limiting case of a complex consisting

of all lines which meet a given one. It will be remembered

(Art. 57c) that the condition that a complex shall be of this nature

is that its coefficients shall satisfy the equation AF+G+CH=0.
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455. We have a congruency of the first order when we

have two equations each of the first degree between the six

coordinates
; or, in other words, the congruency consists of the

lines common to two given complexes. We may evidently for

either of the two given equations Ap-\-Sq-}-&c.
=

Q^ A p+&c. Q)

substitute any equation of the form (A + kA )p + &c. =
;
and

then determine k, so that this equation shall express that every

line of the congruency meets a given line. We have thus

a quadratic equation for &, and it appears that the con

gruency consists of the system of lines which meet two fixed

directing lines. Any four lines then determine a congruency
of this kind

5
for (see Art. 57d) we have two transversals which

meet all four lines,* and the congruency consists of all the

lines which meet the two transversals. An exception occurs

when these two transversals unite in a single one
; or, what

is the same thing, when the quadratic equation just mentioned

has two equal roots. The lines of the congruency, then, all

meet the single transversal; but, of course, another condition

is required ;
and by considering the transversal as the limit

of two distinct lines we arrive at the condition in question,

in fact the congruency consists of lines each meeting a given

line, and such that considering the common point of the given
line and a line of the congruency, and the common plane of

* The hyperboloid determined by any three of the lines (see Art. 113) meets the

fourth in two points through which the transversals pass. If the hyperboloid touches

the fourth line, the two transversals reduce to a single one, and it is evident that

the hyperboloid determined by any three others of the four lines also touches the

remaining one. This remark, I believe, is Prof. Cayley s. If we denote the condition

that two lines should intersect by (12), then the above condition that four lines

should be met by only one transversal is expressed by equating to nothing the

determinant
-

(12), (13), (14)

(21),
-

(23), (24)

(31), (32),
-

(34)

(41), (42), (43),
-

The vanishing of the determinant formed in the same manner from five lines is the

condition that they may all meet a common transversal. The vanishing of the

similar determinant for six lines expresses that they all belong to a linear complex,
which has been called the &quot; involution of six lines

;&quot;

and occurs when the lines can

be the directions of six forces in equilibrium. The reader will find several interesting

communications on this subject by Messrs. Sylvester and Cayley, and by M. Chasles,

in the Comptes Rendus for 1861, Premier Scmestre.
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the same two lines, the range of points corresponds homo-

graphically with the pencil of planes.

Let us pass now to a complex of the second order; that

is to say, the system of lines whose six coordinates are

connected by a relation of the second degree. Then, from

what has been said, all the lines of the complex which lie

in a given plane envelope a conic, and those which pass

through a given point form a cone of the second order. We
may consider the assemblage of conies corresponding to a

system of parallel planes, and obtain thus, what Plticker calls,

an equatorial surface of the complex ; or, more generally, the

assemblage of conies corresponding to planes which all pass

through a given line, obtaining thus, Pliicker s complex

surface. It is easy to see that the given line will be a

double line on the surface, and that the surface will be of

the fourth order, its section by one of the planes consisting

of the line twice, and of the conic corresponding to the plane.

The surface will be of the fourth class, and Pllicker shows

also that it has eight double points.

456. We here briefly indicate the method by which it is

established, that the lines of a congruency are in general

bitangents of a surface. Let the equations of a right line be

x x y y z-zf

. , . . ^ .

r-7
= -r- =

,
then x

, y ,
z

,
X

, /j, ,
v may each be

A.
yLt

V

regarded as functions of two parameters p, ^, as in Gauss s

method (Art. 377). If we take a second line and consider the

line joining a point x + X //, y -f /LI //,
z

f + vp to a point
x&quot; -f \V

&amp;gt; y&quot;
-f fjf p&quot;,

z + i/y on the second line, then the

conditions, that the joining line may be perpendicular to both

lines, give

V (x
r -

x&quot;)
+ fi (y

f -y ) + V (z
-

z&quot;)
+ p

-
p&quot;

cos =
0,

X&quot; (a/
-

a&quot;) + / (y
f -

y&quot;}
+ v&quot; (z

-
z&quot;}

-
p&quot;

-f p cos 6 = 0,

where 6 is the angle between the lines. And if we take the

lines indefinitely near, we can derive from these equations

8a $X
/

P= &quot;
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which determines the point where one line is met by the

shortest distance from a consecutive line. If we substitute in

the above for Sx
, aSp + a Sq, &c., we get for p a value of

the form

* + ZFSpSq + GSq* Ef

writing t for the ratio Bp : $q. Since the denominator of this

function represents the sum of three squares it cannot change

sign, and p therefore cannot become infinite, but will lie

between a certain maximum and minimum value
;

that is to

say, the points on any line of a congruency where it is met

by the shortest distance to an adjacent line of the congruency

range on a certain determinate portion of the line, the extreme

points being called by Sir \V. Hamilton the virtual foci.* He
has proved also that the planes containing the shortest distances

corresponding to the two extreme values lie at right angles

to each other
;

and that if p t , p 2
be the extreme values, that

corresponding to another whose shortest distance makes an

angle 6 with one of these is given by the formula

p = p v
cos

2
# -f pz sin

8
0.

The value of the shortest distance itself between two adjacent

lines is given by an expression similar in form to that already

given for p. It is plain, then, that there are two values of t for

which the shortest distance will vanish, or that each line of the

congruency is in general intersected by two of those adjacent

to it. The locus of the points of intersection will be the surface

to which the lines are bitangent, and is called the &quot;

focal

surface&quot; of the congruency ;
but this surface may degenerate

into a curve, or it may break up into two surfaces, either or

each of which may degenerate into a curve as already mentioned.

Besides these focal surfaces there are also connected with the

congruency and completely determined by it the surfaces on

which the extreme points of the shortest distances lie and the

surface described by the common centre of both portions of

the ray.

* First &quot;Supplement&quot; Trans. R. I. A. vol. xvi. part I. p. 52.
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457. For instance, the degeneration which has been just

mentioned of necessity takes place when the congruency is

of the first order. In this case, since through each point

only one line of the congruency can in general be drawn,
a point cannot be the intersection of two of the lines unless

it be a point through which an infinity of the lines can

be drawn; and if the locus of points of intersection were a

surface, every point of the surface would be a singular point,

which is absurd. The locus is therefore a curve. If it be a

proper curve, it must by definition be such that the cone

standing on
it,

whose vertex is an arbitrary point, shall have

one and but one apparent double line. This is the case when

the curve is a twisted cubic, and there is no higher curve which

has only one apparent double point. The only congruency then,

of the first order, consisting of a system of lines meeting a

proper curve twice, is when the curve is a twisted cubic. We
might, however, have a congruency of lines meeting two directing

curves, and if these curves be of the orders ra, m\ and have a

common points, the order of the congruency will be mm a.

The only congruency of the first order of this kind is when

the directing lines are a curve of the wth
order, and a right

line meeting it n 1 times.

458. On account of the importance of ruled surfaces, we

add some further details as to this family of surfaces.

The tangent plane at any point on a generator evidently

contains that generator, which is one of the inflexional tangents

(Art. 265) at that point. Each different point on the gene
rator has a different tangent plane (Art. 110), which may be

constructed as follows : We know that through a given point

can be drawn a line intersecting two given lines
; namely, the

intersection of the planes joining the given point to the given

lines. Now consider three consecutive generators, and through

any point A on one draw a line meeting the other two. This

line, passing through three consecutive points on the surface,

will be the second inflexional tangent at -4, and therefore the

plane of this line and the generator at A is the tangent plane

at A. In this construction it is supposed that two consecutive

generators do not intersect, which ordinarily they will not do.
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There may be on the surface, however, singular generators

which are intersected by a consecutive generator, and in this

case the plane containing the two consecutive generators is a

tangent plane at every point on the generator. In special

cases also two consecutive generators may coincide, in which

case the generator is a double line on the surface.

459. The anharmonic ratio of four tangent planes passing

through a generator is equal to that of their four points of con

tact. Let three fixed lines A, B, G be intersected by four

transversals in points ada&quot;d
n

,
bb

b&quot;b&quot;\
cc c&quot;c&quot;. Then the an

harmonic ratio [bb b&quot;b
&quot;}

=
{ccW&quot;}, since either measures the

ratio of the four planes drawn through A and the four trans

versals. In like manner [ccc c&quot;}

=
\ada&quot;a&quot;\

either measuring
the ratio of the four planes through B (see Art. 114). Now
let the three fixed lines be three consecutive generators of the

ruled surface, then, by the last article, the transversals meet

any of these generators A in four points, the tangent planes

at which are the planes containing A and the transversals.

And by this article it has been proved that the anharmonic

ratio of the four planes is equal to that of the points where

the transversals meet A.

460. It is well known that a series of planes through any
line and a series through it at right angles to the former

constitute a system in involution, since the anharmonic ratio

of any four is equal to that of their four conjugates. It

follows then, from the last article that the system formed by the

points of contact of any plane, and of a plane at right angles

to
it,

form a system in involution
; or, in other words, the

system of points where planes through any generator touch the

surface, and where they are normal to the surface form a system
in involution. The centre of the system is the point where the

plane which touches the surface at infinity is normal to the

surface
; and, by the known properties of involution, the rect

angle under the distances from this point of the points where

any other plane touches and is normal, is constant.

461. The normals to any ruled surface along any generator

generate a hyperbolic paraboloid. It is evident that they are
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all parallel to the same plane, namely, the plane perpendicular

to the generator. We may speak of the anharmonic ratio

of four lines parallel to the same plane, meaning thereby that

of four parallels to them through any point. Now in this

sense the anharmonic ratio of four normals is equal to that

of the four corresponding tangent planes, which (Art. 459) is

equal to that of their points of contact, which again (Art. 460)

is equal to that of the points where the normals meet the

generator. But a system of lines parallel to a given plane

and meeting a given line generates a hyperbolic paraboloid,

if the anharmonic ratio of any four is equal to that of

the four points where they meet the line. This proposition

follows immediately from its converse, which we can easily

establish.

The points where four generators of a hyperbolic paraboloid

intersect a generator of the opposite kind are the points of

contact of the four tangent planes which contain these gene

rators, and therefore the anharmonic ratio of the four points

is equal to that of the four planes. But the latter ratio is

measured by the four lines in which these planes are inter

sected by a plane parallel to the four generators, and these

intersections are lines parallel to these generators.

462. The central points of the involution (Art. 460) are,

it is easy to see, the points where each generator is nearest

the next consecutive
;

that is to say, the point where each

generator is intersected by the shortest distance between it

and its next consecutive. The locus of the points on the

generators of a ruled surface, where each is closest to the

next consecutive, is called the line of striction of the surface.

It may be remarked, in order to correct a not unnatural

mistake (see Lacroix, vol. III. p. 668), that the shortest distance

between two consecutive generators is not an element of the

line of striction. In fact, if Aa, Bb, Cc be three consecutive

generators, ab the shortest distance between the two former,

then b c the shortest distance between the second and third

will in general meet Eb in a point b
f

distinct from
Z&amp;gt;,

and

the element of the line of striction will be ab and not ab.
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Ex. 1. To find the line of striction of the hyperbolic paraboloid

* y*_
a* b*

~

Any pair of generators may be expressed by the equations

+ = Xz, *-| = l,
a b a b X

ar v x v 1

a
+ f=^ ;-!&quot;;

3G t/

Both being parallel to the plane j- ,
their shortest distance is perpendicular to

this plane, and therefore lies in the plane

a2 - b2 1
which intersects the first generator in the point z -

r. T
a2 + o- Xp.

When the two generators approach to coincidence, we have for the coordinates of

the point where either is intersected by their shortest distance

_
Z ~

a2 + 62 X2 a 6
~

a2 + b2 X

andhence ( + **)
. + = (a*

- *) -
,
or + = 0.

The line of striction is therefore the parabola in which this plane cuts the surface,

The same surface considered as generated by the lines of the other system has another

line of striction lying in the plane

_-o
a b*~

Ex. 2. To find the line of striction of the hyperboloid

Ans. It is the intersection of the surface with

.here A = + ,
B =

, C= -

463. Given any generator of a ruled surface, we can de

scribe a hyperboloid of one sheet, which shall have this gene
rator in common with the ruled surface, and which shall also

have the same tangent plane with that surface at every point
of their common generator. For it is evident from the con

struction of Art. 458 that the tangent plane at every point
on a generator is fixed, when the two next consecutive gene
rators are given, and consequently that if two ruled surfaces

have three consecutive generators in common, they will touch

in
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all along the first of these generators. Now any three non-

intersecting right lines determine a hyperboloid of one sheet

(Art. 112); the hyperboloid then determined by any generator
and the two next consecutive will touch the given surface as

required.

In order to see the full bearing of the theorem here enun

ciated, let us suppose that the axis of z lies altogether in any
surface of the w

th

degree, then every term in its equation must

contain either x or y ;
and that equation arranged according

to the powers of x and y will be of the form

where un_^ v
n_}

denote functions of z of the (n l)
tb

degree, &c.

Then (see Art. 110) the tangent plane at any point on the axis

will be u
n_jx + v

n_$ = 0, where u
n_^

denotes the result of sub

stituting in w
n_,

the coordinates of that point. Conversely, it

follows that any plane y = mx touches the surface in n - 1

points, which are determined by the equation u
n_^ + mvn_l

= 0.

If however u ,, v have a common factor u . so that the
n i 911 vi

terms of the first degree in x and y may be written

uf (u^^x -f v
n_ t_^y] 0, then the equation of the tangent plane

will be u
n_ _^x + v n_ _ }y = 0, and evidently in this case any

plane y mx will touch the surface only in n p 1 points.

It is easy to see that the points on the axis for which u
fl

=

are double points on the surface. Now what is asserted in the

theorem of this article
is,

that when the axis of z is not an

isolated right line on a surface, but one of a system of right

lines by which the surface is generated, then the form of the

equation will be

w
n_a (ux + vy) + &c. = 0,

so that the tangent plane at any point on the axis will be the

same as that of the hyperboloid ux 4 vy, viz. ux + vy = 0. And

any plane y = mx will touch the surface in but one point. The

factor u indicates that there are on each generator n 2

points which are double points on the surface.

464. We can verify the theorem just stated, for an im

portant class of ruled surfaces, viz., those of which any
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generator can be expressed by two equations of the form

at
m
+ br1 + ct

m-* + &c. = 0, a t* + bT1 + c F* + &c. = 0,

where a, a
, 5, 5

,
&c. are linear functions of the coordinates, and t

a variable parameter. Then the equation of the surface obtained

by eliminating t between the equations of the generator (see

Higher Algebra, Arts. 85, 86), may be written in the form of a

determinant, of which when m n the first row and first column

are identical, being (& ), (ac ) (a^ ), &c., or when
m&amp;gt;n,

the first

row is as before and the first column consists of n such consti

tuents, a and zeros. Now the line aa is a generator, namely,
that answering to = co

;
and we have just proved that either a

or a will appear in every term, both of the first row and of the

first column. Since, then, every term in the expanded determi

nant contains a factor from the first row and a factor from the

first column, the expanded determinant will be a function of,

at least, the second degree in a and a
, except that part of it

which is multiplied by (& ),
the term common to the first row

and first column. But that part of the equation which is only
of the first degree in a and a determines the tangent at any

point of aa
;

the ruled surface is therefore touched along that

generator by the hyperboloid ab ba = 0.

If a and b (or a and b
) represent the same plane, then

the generator aa intersects the next consecutive, and the plane
a touches along its whole length. If we had b = A*a, b ka\
the terms of the first degree in a and a would vanish, and

aa would be a double line on the surface.

465. Returning to the theory of ruled surfaces in general,

it is evident that any plane through a generator meets the

surface in that generator and in a curve of the (n l)
th

degree

meeting the generator in n 1 points. Each of these points

being a double point in the curve of section is (Art. 264) in

a certain sense a point of contact of the plane with the surface.

But we have seen (Art. 463) that only one of them is properly

a point of contact of the plane ;
the other n 2 are fixed points

on the generator, not varying as the plane through it is

changed. They are the points where this generator meets
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other non-consecutive generators, and are points of a double

curve on the surface. Thus, then, a skew ruled surface in general

has a double curve which is met by every generator in n 2 points.

It may of course happen, that two or more of these n 2

points coincide, and the multiple curve on the surface may be

of higher order than the second. In the case, considered in the

last article, it can be proved (see Higher Algebra, Lesson XVIII.,

on the Order of Eestricted Systems of Equations) that the mul

tiple curve is of the order \ (m + n 1} (m -f n 2), and that

there are on it ^ (m + n 2) (m + n 3) (m 4- n 4) triple points.

A ruled surface having a double line will in general not

have any cuspidal line unless the surface be a developable,

and the section by any plane will therefore be a curve having
double points but not cusps.

466. Consider now the cone whose vertex is any point,

and which envelopes the surface. Since every plane through
a generator touches the surface in some point, the tangent

planes to the cone are the planes joining the series of gene
rators to the vertex of the cone. The cone will in general,

not have any stationary tangent planes ;
for such a plane would

arise when two consecutive generators lie in the same plane

passing through the vertex of the cone. But it is only in

special cases that a generator will be intersected by one con

secutive
;
the number of planes through two consecutive gene

rators is therefore finite
;
and hence, one will, in general, not

pass through an assumed point. The class of the cone, being

equal to the number of tangent planes which can be drawn

through any line through the vertex, is equal to the number

of generators which can meet that line, that is to say, to the

degree of the surface (see note p. 105). We have proved now
that the class of the cone is equal to the degree of a section

of the surface
;
and that the former has no stationary tangent

planes as the latter has no stationary or cuspidal points. The

equations then which connect any three of the singularities

of a curve prove that the number of double tangent planes

to the cone must be equal to the number of double points

of a section of the surface
; or, in other words, that the number
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of planes containing two generators which can be drawn

through an assumed point, is equal to the number of points of

intersection of two generators which lie in an assumed plane.*

467. We shall illustrate the preceding theory by an enume

ration of some of the singularities of the ruled surface generated

by a line meeting three fixed directing curves, the degrees of

which are m
l7
w

2 ,
??z

3.f

The degree of the surface generated is equal to the number

of generators which meet an assumed right line
;

it is there

fore equal to the number of intersections of the curve m
l
with

the ruled surface having for directing curves the curves m^ mz

and the assumed line
;

that is to say, it is m
l
times the degree

of the latter surface. The degree of this again is, in like

manner, ??2
2
times the degree of the ruled surface whose directing

curves are two right lines and the curve ??z
3 ,

while by a repe

tition of the same argument, the degree of this last is 2m
3

.

It follows that the degree of the ruled surface when the

generators are curves m^ w2 ,
wz

3 ,
is 2?n

lm^m3
.

The three directing curves are multiple lines on the surface,

whose orders are respectively m2
m

3 ,
m

&
m^ ml

m^ For through

any point on the first curve pass m
t
m

3 generators, the inter

sections, namely, of the cones having this point for a common

vertex, and resting on the curves ?w
a ,

??i
g

.

468. The degree of the ruled surface, as calculated by the

last article, will admit of reduction if any pair of the directing

curves have points in common. Thus, if the curves m^ m
3

have a point in common, it is evident that the cone whose

vertex is this point, and base the curve m
1

will be included

in the system, and that the order of the ruled surface proper
will be reduced by m^ while the curve m

l
will be a multiple line

of degree only ??i.2
???

3
1. And generally if the three pairs made

out of the three directing curves have common respectively

cc, /3, 7 points, the order of the ruled surface will be reduced

* These theorems are Prof. Cayley s. Cambridge and Dublin Mathematkaljournal,
vol. vli., p. 171.

t I published a discussion of this surface, Cambridge and Lublin Mathematical

Journal, vol. vin., p. 45.
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by nZjtt + mfi -f ?^
37,* while the order of multiplicity of the

directing curves will be reduced respectively by a, /3, 7. Thus,
if the directing lines be two right lines and a twisted cubic,

the surface is in general of the sixth order, but if each of the

lines intersect the cubic, the order is only the fourth. If each

intersect it twice, the surface is a quadric. If one intersect it

twice and the other once, the surface is a skew surface of the

third degree on which the former line is a double line.

Again, let the directing curves be any three plane sections

of a hyperboloid of one sheet. According to the general theory
the surface ought to be of the sixteenth order, and let us see

how a reduction takes place. Each pair of directing curves

have two points common
; namely, the points in which the

line of intersection of their planes meets the surface. And the

complex surface of the sixteenth order consists of six cones of

the second order, together with the original quadric reckoned

twice. That it must be reckoned twice, appears from the fact

that the four generators which can be drawn through any point

on one of the directing curves are two lines belonging to the

cones and two generators of the given hyperboloid.

In general, if we take as directing curves three plane sec

tions of any ruled surface, the equation of the ruled surface

generated will have, in addition to the cones and to the original

surface, a factor denoting another ruled surface which passes

through the given curves. For it will generally be possible

to draw lines, meeting all three curves which are not gene
rators of the original surface.

469. The order of the ruled surface being 27?z
t
w

2
w

3,
it

follows, from Art. 465, that any generator is intersected by

Sw^/yttg
- 2 other generators. But we have seen that at

the points where it meets the directing curves, it meets

(mjn3
1

)
+ (wigfw, 1) + (wt 1

m
a 1) other generators. Conse

quently it must meet 2m
l
m

z
m

3 (ra2
w

3
+ w

3
w

t
-I- m

}m^\ -f I gene

rators, in points not on the directing curves. We shall establish

this result independently by seeking the number of generators

* My attention was called by Prof. Cayley to this reduction, which takes place

when the directing curves have points in common.
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which can meet a given generator. By the last article, the

degree of the ruled surface whose directing curves are the curves

m^ m^ and the given generator, which is a line resting on both,

is
2w2j??i2

m
l

m
z

. Multiplying this number by ??2
3 ,
we get the

number of points where this new ruled surface is met by the

curve ???
3

. But amongst these will be reckoned (m t
?w

8 1) times

the point where the given generator meets the curve ???
3

. Sub

tracting this number, then, there remain

points of the curve wz
3 , through which can be drawn a Hue to

meet the curves m^ ??z
2 ,

and the assumed generator. But this

is in other words the thing to be proved.

470. \Ye can examine in the same way the order of the

surface generated by a line meeting a curve m
l twice, and

another curve m
z
once. It is proved, as in Art. 467, that the

order is m
z
times the order of the surface generated by a line

meeting m l twice, and meeting any assumed right line. Now
if k

1
be the number of apparent double points of the curve

TTZ,,

that is to say, the number of lines which can be drawn through
an assumed point to meet that curve twice, it is evident that the

assumed right line will on this ruled surface be a multiple
line of the order h^ and the section of the ruled surface by a

plane through that line will be that line \ times, together with

the
Jr/z, (m t 1) lines joining any pair of the points where the

plane cuts the curve m^ The degree of this ruled surface will

then be ^4 Jm t (?n t I), and, as has been said, the degree
will be 7?i

2
times this number, if the second director be a curve

??z
2
instead of a right line.

The result of this article may be verified as follows : Con
sider a complex curve made up of two simple curves m^ w?

2 ;

then a line which meets this system twice must either meet

both the simple curves, or else must meet one of them twice.

The number of apparent double points of the system is

^i &quot;*&quot; ^2 + m i
m

z 5* anc^ tne order of the surface generated by a

* Where I use h in these formulae Prof. Cayley uses r, the rank of the system,

substituting for h from the formula r = m (m 1) 2h, And when the system is

a complex one, we have simply R = r
t + r2 .
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line me

twice, is

I .

line meeting a right line, and meeting the complex curve

twice is

x
-f m

a) (m v
+ m

z
-

1) +

= (XK -
1) + \] + (XK

471. The order of the surface generated by a line which meets

a curve three times may be calculated as follows, when the

curve is given as the intersection of two surfaces U, V: Let

x y z w be any point on the curve, xyzw any point on a gene
rator through x y z w

;
and let us, as in ArtAJJ43J_

form the two

equations 5 U + 4\8* T + &c. = 0, SF + iS
2V + &cT^oT

Now if the generator meet the curve twice again, these

equations must have two common roots. If then we form the

conditions that the equations shall have two common roots, and

between these and U =
0, V =

0, eliminate x y z w
,
we shall

have the equation of the surface
; or, rather that equation

three times over, since each generator corresponds to three

different points on the curve UV. But since U and V do not

contain xyzw, the order of the result of elimination will be the

product of pq the order of ~U
f

,
V by the weight of the other

two equations; (see Higher Algebra, Lesson xvm.). If, then,

we apply the formulae given in that Lesson for finding the

weight of the system of conditions that two equations shall

have two common roots, putting m = p 1, n = q l,
\ = 0,

X ==
p^ fj,

=
0, fif q, the result is \ (pq 2) {2pq 3 ( p + q) -f 4},

and the order of the required surface is this number mul

tiplied by ^pq. But the intersection of
27, F is a curve

(see Art. 343), for which mpq^ 2h =pq (p
-

1) (q 1), whence

pq (p + q) m* -\-rn- 2h. Substituting these values, the order

of the surface expressed in terms of m and h is

J (m
-

2) (Qh + m -
m*}, or (m - 2) h - %m (m \}(m- 2),

a number which may be verified, as in the last article.

472. The ruled surfaces considered in the preceding articles

have all a certain number of double generators. Thus, if a line

meets the curve m
l twice, and also the curves m

z
and m

z ,
it

belongs doubly to the system of lines which meet the curves
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w
t ,

ra
2 ,
m

3
and is a double generator on the corresponding

surface. But the number of such lines is evidently equal to the

number of intersections of the curve m
3
with the surface gene

rated by the lines which meet m
l twice, and also m^ that is

to say, is m
2
)n

3 {^m l (ml l) + h
} }

the total number of double

generators is therefore

\m^m^ (m }
+ m^ -f ms

-
3) +^m^ + hjn/n l

-f h^m^.
In like manner the lines which meet m t three times, and also ma

I / 2

belong triply to the system of lines which meet ??z
t twice, and also

m^ and the number of such triple generators is seen by the last

article to be m
z (wi, 2) h v

- km i
m

.2 (
m

i

~
1) (m \

~ 2 )- The surface

has also double generators whose number we shall determine

presently, being the lines which meet both m^ and ?/z
2
twice.

Lastly, the lines which meet a curve four times are multiple

lines of the fourth order on the surface generated by the lines

which meet the curve three times. We can determine the

number of such lines when the curve is given as the intersection

of two surfaces, but will first establish a principle which admits

of many applications.

473. Let the equations of three surfaces
Z7, V, W contain

xyzw in the degrees respectively X, X
, X&quot;,

and xyzw in

degrees /JL, /* , // ,
and let the XX X&quot; points of intersection of

these surfaces all coincide with xy z w
;
then it is required to

find the order of the further condition which must be fulfilled

in order that they may have a line in common. When this

is the case, any arbitrary plane a.x -f jSy + 73 + Sw must be

certain to have a point in common with the three surfaces

(namely, the point where it is met by the common line), and

therefore the result of elimination between
/&quot;, F, TF and the

arbitrary plane must vanish. This result is of the degreeXW in a#yS, and ^X X/r

-f /X&quot;X + / XX in x y z uf. The first

of these numbers (see Higher Algebra, Lesson xviil.) we call

the order, and the second the weight of the resultant. Now,
since the resultant is obtained by multiplying together the

results of substituting in ax + /3?/ + yz + Sw, the coordinates

of each of the points of intersection of
/&quot;, F, TF, this re

sultant must be of the form fl (ax 4 $y + yz + Sw/)
xx x

&quot;. The

KKK
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condition a.x + /By + 72 + SM&amp;gt;
=

O, merely indicates that the

arbitrary plane passes through x y z w
,

in which case it passes

through a point common to the three surfaces, whether they
have a common line or not. The condition, therefore, that they
shall have a common line is n =

;
and this must be of the

degree
\ -\ &quot; i &quot;v

/-\ f-\ -\ f -v -\ -v &quot; .

IMX A- + //,XX-fyu,XX XX X

that is to say, the degree of the condition is got by subtracting the

orderfrom the weight of the equations f/, V, W.

474. Now let x y z w be any point on the curve of inter

section of two surfaces
Z7, F, xyzw any other point ; and, as

in Art. 471, let us form the equations SU+ ^X8
2
Z7-f &c. = 0,

SF-f -|XS
2 F+&c. = 0. Ifaj yVt// be a point through which a

line can be drawn to meet the curve in four points, and xyzw

any point whatever on that line, these two equations in X will

have three roots common. And, therefore, if we form the three

conditions that the equations should have three roots common,
these conditions considered as functions of xyzw, denote surfaces

having common the line which meets the curve in four points.

But if xy z w had not been such a point, it would not have been

possible to find any point xyzw distinct from x y z w
,
for which the

three conditions would be fulfilled
; and, therefore, in general the

conditions denote surfaces having no point common but x y z w .

The order, then, of the condition which x y z w must fulfil, if it be

a point through which a line can be drawn to meet the curve in

four points, is, by the last article, the difference between the

weight and the order of the system of conditions, that the

equations should have three common roots. But (see Higher

Algebra^ Lesson xviil.) the weight of this system of con

ditions is found by making mp \, n = q 1, X=p, ^ ^
X = // = 0, to be

+q)- 13pq
- 66 (p + q) + 108} ;

while the order of the same system is

J {p
3

q
3

-3p
2

q
2

(p ti+^f+Zpqdi + qf-Zpq (p + q) + 13^-36}.
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The order, then, of the condition n = to be fulfilled by
x yz w, being the difference of these numbers, is

The intersection of the surface LT with the given curve deter

mines the points through which can be drawn lines to meet in

four points ;
and the number of such lines is therefore J of the

number just found multiplied by pq. As before, putting pq = m,

pq (p + q)
= m* -f m 2/z, the number of lines meeting in four

points is found to be

& {- m
4 + 18?/z

3 - 7lm* -f ISm - Smh -f 132A + 12/i
2

}.*

From th s number can be derived the number of lines which

meet both of two curves twice. For, substitute in the formula

just written m
l

4- m
2

for m, and h
l
-f h

z
-f m^m^ for A, and we

have the number of lines which meet the complex curve four

times. But from this take away the number of lines which

meet each four times, and the number given (Art. 472) of those

which meet one three times and the other once
;
and the re

mainder is the number of lines which meet both curves twice, viz.

*A + i ??z
i 2K ~

!) (
m

t
~

!)

475. Besides the multiple generators, the ruled surfaces we

have been considering have also nodal curves, being the locus

of points of intersection of two different generators. I do not

know any direct method of obtaining the order of these nodal

curves
j
but Prof. Cayley has succeeded in arriving at a solution

of the problem by the following method. Let m be one of

the curves used in generating one of the surfaces we have been

considering, M the degree of that surface, &amp;lt;

(in] the degree
of the aggregate of all the double lines on that surface

;
then

if we suppose m to be a complex curve made up of two simple
curves m

t
and ??2

2 ,
the surface will consist of two surfaces

MM J/
2 having as a double line the intersection of J/

x
and J/,,

* It may happen, as Prof. Cayley has remarked, that the surface II may altogether

contain the given curve, in which case an infinity of lines can be drawn to meet

in four points. Thus the curve of intersection of a ruled surface by a surface of the

p^ order is evidently such that every generator of the ruled surface meets the CUTVQ

inp points.
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in addition to the double lines on each surface. Thus, then,

(j&amp;gt; (m) must be such as to satisfy the condition

Using, then, the value already found for M
t

in terms of m^
solving this functional equation, and determining the constants

involved in it by the help of particular cases in which the

problem can be solved directly, Prof. Cayley arrives at the

conclusion, that the order of the nodal curve, distinct from the

multiple generators, is in the case of the surface generated by
a line meeting three curves m^ wi

2 , m^

^m 1
m

z
m

a {4:m^m2
m

3
-
(mjn a

+ ms
m

1
+ mjrn^

- 2 (ml
+ w

2
+ m s)

+ 5},

in the case of the surface generated by a line meeting ml
twice

and m
2 once, is

* [\\K -
2) (m,

-
3) +XK -

1) (m,
-

2) (m,
-

3)}

and in the case of the surface generated by a line meeting m l

three times, is

J^X (m^
-

5)
-^ (wi/

-
5m,

3 + 5m? - 49^ + 120)

* - 270m/ + 868m/
-

SECTION III. ORTHOGONAL SURFACES.

476. We have already given a proof of Dupin s theorem

regarding orthogonal surfaces in Art. 304
;
as this theorem has

led to investigations on systems of orthogonal surfaces, we

proceed to present the proof under a different and somewhat

more geometrical form as follows. Imagine a given surface,

and on each normal measure off from the surface an in

finitesimal distance I (varying at pleasure from point to point

of the surface, or say an arbitrary function of the position

of the point on the surface] : the extremities of these distances

form a new surface, which may be called the consecutive

surface; and to each point of the given surface corresponds a

point on the consecutive surface, viz. the point on the normal

at the distance Z; hence, to any curve or series of curves on

the given surface corresponds a curve or series of curves on
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the consecutive surface. Suppose that we have on the given
surface two series of curves cutting at right angles, then we
have on the consecutive surface the corresponding two series of

curves, but these will not in general intersect at right angles.

Take A a point on the given surface
; AB^ AC elements of

the two curves through
A

; AA, BB, GG the

infinitesimal distances

on the three normals
;

then we have on the

consecutive surface the

point A ,
and the ele

ments A R, AC of

the two corresponding

curves; the angles at

A are by hypothesis each of them a right angle; the angle
BAG is not in general a right angle, and it may be shown

that the condition of its being so, is that the normals BB\
AA shall intersect, or that the normals GG f

,
AA shall

intersect, for it can be shown that if one pair intersect, the

other pair also intersect. But the normals intersecting, AB, AC,
will be elements of the lines of curvature, and the two series

of curves on the given surface will be the lines of curvature

of this surface.

477. Take #, j/,
z for the coordinates of the point A ; a, /3, 7

for the direction-cosines of AA
; a,, /3t , yt

for those of

and a
2 , /32) 72

for those of A C. Write also

Then it will be shown that the condition for the intersection

of the normals AA, BB is

the condition for the intersection of the normals AA^ CC is

a,8s + /S^/3 + 7,8,7
=

0,
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and that these are equivalent to each other, and to the con

dition for the angle B A Gf

being a right angle.

Taking Z,
Z
t ,

Z
2
for the lengths AA , AB, A C, the coordinates

of A
, It, C measured from the point A, are respectively

(Za, Iff,
Z7), (fo, 1&, Z

l7l , (Z2a2 ,
Z
2#2 ,

Z
272).

The equations of the normal at A may be written

.X=cc+0a, Y=y+0/3, Z=z + 0y,

where X, Y&quot;,

Z are current coordinates, and 6 is a variable

parameter. Hence for the normal at B passing from the co

ordinates
ic, ?/,

z to #+ Z^, y+Zj/Sj, z + Z/y,,
the equations

are

and if the two normals intersect in the point (-3T, F, Z&quot;),
then

a, + a8
t
+

&amp;lt;9^a

=
0,

^ + 7^0 + 0^7=0.

Eliminating 6 and ^0, the condition is

= 0;

7,j 7,

or since a
2 , /32 , 72

= fa -
^7, 7a,

- %, a^ - a^,

this is a^a + ft^/S + 7^7 = 0.

Similarly the condition for the intersection of the normals

AA, CC is

aAa + / 2
+ 7A7 = 0.

We have next to show that

a,a,a + /8A/8 + 7,8,7
=

a,S,a + ,8,0 + 7,8,7.

In fact, this equation is

(ct.8,
-

,S2) a + (BA -
/3A) /8 + (7,8,

- %82) 7 = 0,

which we proceed to verify.
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In the first term the symbol 2
S

1 a^ is

tliis is (a2
/3

1

- a^2)
d
y
+ (%.,

- 7i) ^. 5

2 (*& + &,dv + 7 -
,

(a2
/3

1

- a^2)
d
y
+ (%

or, what is the same thing, it is

#*.-7
and the equation to be verified is

K - #*J 7 = 0.

ITT V- -^ ^ ^
Writing a,/3, 7 = 5 , S , g,

where if ?=/(#, y, 2) is the equation of the surface, X, F,

the derived functions
-j- , -j- , -^- ,

and R = *J(X*+ Y
2 + ^ 2

),

the function on the left-hand consists of two parts ;
the first is

2 IOW.
- K) *+ OK -

?.)
F+K

that is
-J {a(^-J,F)4^(4JS:-^)+ 7 (

which vanishes
;
and the second is

which also vanishes
;
that is, we have identically

a
2S,a + /8,8,/S + 7,8,7

= ,, + WJ3 + 7,8,7,

and the vanishing of the one function implies the vanishing of

the other.

Proceeding now to the condition that the angle B A C f

shall be a right angle, the coordinates of B are what those of

^1 become on substituting in them x + lp^ y + 7,/8,, ^+^7j in

place of x,y,z^ that
is,

these coordinates are

x -f la + ^a, + Z,^ (?a), &c.,

or, what is the same thing, measuring them from A as origin,

the coordinates of B are

l
t (a, + ?S

t
a

, (7, + ,7 +



440 FAMILIES OF SURFACES.

and similarly those of C measured from the same origin A are

Hence the condition for the angle to be right is

(a, + Z8,a + aS,Z) (a, + ISp + aSJ)

+ (0, 4 78,0 + 08.Z) (/32 + Z8.0 + /382Z)

+ (7, + B,7 + 73^) (7Z
+% + 78,Z)

= 0.

Here the terms independent of
/,

S
t 7, SJ vanish

;
and writing

down only the terms which are of the first order in these

quantities, the condition is

7, (% + 7V) =
0,

where the terms in
S,?,

S
2
Z vanish

;
the remaining terms divide

by ?,
and throwing out this factor, the condition is

(a,S2a + /3,S2/3 + 7,8,7) + (a^a + 0,8,0 + 7^,7) = 0.

By what precedes, this may be written under either of the

forms

and the theorem is thus proved.
Now in any system of orthogonal surfaces taking for the

given surface of the foregoing demonstration any surface of one

family, we have not only on the given surface, but also on the

consecutive surface of the family, two series of curves cutting

at right angles ;
and the demonstrated property is that the two

series of curves on the given surface (that is on any surface

of the family) are the lines of curvature of the surface. And
the same being of course the case as to the surfaces of the other

two families respectively, we have Lupin s theorem.

478. In regard to the foregoing proof, it is important to

remark that there is nothing to show, and it is not in fact

in general the case, that A B
^
A C are elements of the lines
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of curvature on the consecutive surface. The consecutive

surface (as constructed with an arbitrarily varying value of
I)

is in fact any surface everywhere indefinitely near to the

given surface
;
and since by hypothesis AA

f

and BE intersect

and also AA
,
CC intersect, then AB and ABf

intersect, and

also AC and A C
;
the theorem, if it were true, would be, that

taking on the given surface any point A, and drawing the normal

to meet the consecutive surface in A
,
then the tangents AB, AC

of the lines of curvature at A meet respectively the tangents

AB f

,
AC of the lines of curvature through A and it is

obvious that this is not in general the case
;

that it shall be

so, implies a restriction on the arbitrary value of the function L

Prof. Cayley has shown that when the position of the point A
on the given surface is determined by the parameters p, q, which

are such that the equations of the curves of curvature are

p = const., q
= const, respectively, then the condition is that I

shall satisfy the same partial differential equation as is satisfied

by the coordinates x, ?/,
z considered as functions of p, q, viz.

the equation (Art. 384)

d*u 1 1
dE_

du \
dpdq~ 2^dq~dp~ 2~G~dp dq

The above conclusion may be differently stated : taking

r=f(xj y, z) a perfectly arbitrary function of (#, y^ 2), the

family of surfaces r =/(#, y, z), does not belong to a system
of orthogonal surfaces

;
in order that it may do so the foregoing

property must hold good ;
viz. it is necessary that taking a

point A on the surface r, and passing along the normal to the

point A on the consecutive surface r + dr, the tangents to the

lines of curvature at A shall respectively meet the tangents
to the lines of curvature at A . And this implies that r

y

considered as a function of x, y, z, satisfies a certain partial

differential equation of the third order, Prof. Cayley s inves

tigation of which will be given presently.*

* The remark that r is not a perfectly arbitrary function of (x, y, z) was first

made by Bouquet, Liouv. t. XI. p. 446 (1846), and he also showed that in the par
ticular case where r is of the form r f (x) + &amp;lt; (y) + \\r (z), the necessary condition

was that r should satisfy a certain partial differential equation of the third order;
this equation was found by him, and in a different manner by Serret, Liouv. t. xn.

LLL
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479. Dupin s theorem, and the notion of orthogonal surfaces

are the foundation of Lamp s theory of curvilinear coordinates.*

^Representing the three families of orthogonal surfaces by

p = &amp;lt;l&amp;gt;(X) y, z}y q
= ty(x, y, z) r=f(x, y, 2), then conversely

a;, y, z are functions of p, q, r which are said to be the

curvilinear coordinates of the point. It will be observed that

regarding one of the coordinates, say r, as an absolute constant,

then p, q are parameters determining the position of the point

on the surface rf(x^ y, z), such as are used in Gauss theory

of the curvature of surfaces
;
and by Dupin s theorem it appears

that on this surface the equations of the lines of curvature

are p = const, q = const, respectively ;
whence also (Art. 384)

x, y, z each satisfy the differential equation

d*u L!^^f_!J^?^f
dp dq 2 E dq dp 2 G dp dq

(and the like equations with q, r and r, p in place of p, q

respectively) a result obtained by Lame, but without the

geometrical interpretation.

Conversely we may derive another proof of Dupin s theorem

from these considerations
; taking #, y, z as given functions of

Pi 2? r
)
an(^ writing

dx dx dv dy dz dz ,

T ~r +
-5 / + TT -r = [p* d&amp;gt;

dp dq dp dq dp dq

dx d 2x dy d*y dz d*z _ r
, ~

dp dq dr dp dqdr dp dqdr

p. 241 (1847). That the same is the case generally was shown by Bonnet (Comptes

rendus, Liv. 556, 1862), and a mode of obtaining this equation is indicated by

Darboux, Ann. de T ecole normale, t. ill. p. 110 (1866), his form of the theorem

is that in the surface r=f(x,y, z), if a, /3, y are the direction-cosines of a line

of curvature at a given point of the surface, then the function must be such that

the differential equation adx + (3dy + ydz = shall be integrable by a factor. The

condition as given in the text is in the form given by Levy, Jour, de T ecole polyt.,

XLIII. (1870) ;
he does not obtain the partial differential equation, though

U7* dlT

he finds what it becomes on writing therein = 0, -p =
;
the actual equation

dx dy

(which of course includes as well this result, as the particular case obtained by
MM. Bouquet and Serret) was obtained by Prof. Cayley, Comptes rendus, t. LXXV.

(1872) ;
but in a form which (as he afterwards discovered) was affected with an

extraneous factor.

* Lame, Comptes rendus, t. vi. (1838), and Liouv., t. T. (1840), and various later

Memoirs; also Lerona sur ks coordonnees curvilignes, Paris, 1859.
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the conditions for the intersections at right angles may be written

and the first two equations give

dx
t dy dz _ dy dz dz dy t

dz dx dx dz
^
dx dy dy dx

dr dr dr dp dq dp dq dp dq dp dq dp dq dp dq
*

Moreover, by differentiating the three equations with respect

* Pi Qi r respectively, we find

that is
L -i- -f. _l * l_ X. J- _J / l_ A.

... . . dx dy
equations, substituting in it for -,

, -j-

values, becomes

dx dy dz

dp c//&amp;gt;

J

c/p

dx dy dz

dq
^

dq
^

dq

The last of these

*
dr

=
0,

dpdq dpdq
J

dpdq

and the equation [^?, q\
= is

dx dx dy dy dz dz

dp dq dp dq dp dq

These equations are therefore satisfied by the values of
a:, y, z

in terms ofp^ q, r
;
and regarding in them r as a given constant

but
/?, q as variable parameters, the values in question represent

a determinate surface of the family r =/(#, y, z] ;
and it thus

appears that this surface is met in its lines of curvature by
the surfaces of the other two families.

480. We proceed now to the investigation of Prof. Cayley s

differential equation already referred to. Let P be a point
on a surface belonging to an orthogonal system, PiV the normal,

PT^ PT
2

the principal tangents or directions of curvature,

then, by Dupiu s theorem, the tangent planes to the two

orthotomic surfaces are NPT^ NPT
2
. Take now a surface

passing through a consecutive point P on the normal, and if

the surface be a consecutive one of the same orthogonal family,

the planes NPTV ,
NPT

2
must also meet its tangent plane at Pf
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in the two principal tangents P T{, P T^. This is the con

dition which we are about to express analytically.

Take rf(x, y, z)
= for the equation of the family of

the orthogonal system, the given surface being that correspond

ing to a given value of the parameter r
;
and let the differential

coefficients of f (or what is the same thing, of r considered

as a function of #, y, z) be L, M^ N of the first order, and

, Z&amp;gt;, c, y, &amp;lt;7,

h of the second order
;
and then the point P being

taken as origin, the equation of the tangent plane at that

point is Lx + My + Nz = 0, which we shall call for shortness

T=
;

while the inflexional tangents are determined as the

intersections of T with the cone

(a, 6, c,/, g,K$x,y, z)
u =

0,

which we shall call 7=0. The two principal tangents are

determined as being harmonic conjugates with the inflexional

tangents, and also as being at right angles, that is to say,

harmonic conjugates with the intersection of the plane T with

x* +y + s* = 0, or F=0. Suppose now that we had formed

the equation of the pair of planes through the normal, and

through the inflexional tangents at P
,
and that this was

(&quot;, J&quot;, c&quot;, /&quot;, g&quot;,
h Jf, y, )

=
0, or W= 0,

then the planes NPT^ NPT2
must be harmonic conjugates with

these also, so that the resulting condition is obtained by ex

pressing that the three cones
7, F, W intersect the plane T in

three pairs of lines which form a system in involution.

Now we have here evidently to deal with the same analy

tical problem as that considered, Conies, Art. 388c, viz. to find

the conditions that three conies shall be met by a line in

three pairs of points forming an involution. The general con

dition there given is applied to the present case by writing

a = V = c = 1, f g
f = h

f =
0, and in the determinant form is

a
f

) 5&quot;, c&quot;,
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We see then that the form of the required condition is

3a&quot; + Kb&quot; + Vc&quot; + 2JF/&quot; -f 2%&quot; + 2A&quot; = *

where &, 23, &c. are the minors of the above written deter

minant, and it still remains to determine
a&quot;,

b&quot;

,
&c.

481. It may be observed, in the first instance, that the

equation of the pair of planes passing through the normal,

and the first pair of inflexional tangents is got by elimi

nating between T+0r =
0, 7+2110+ Z7 = 0, where T f

isZ + JW + JV, n is

x (aL + JiM+gN] +y(hL+ IM+fN) + z (gL +/JW+ cN),

and [7 is aU + W/ * + cN z + 2/3/iV+ 20rJVL + 2hLM.

The equation of the pair of planes is therefore

Now the consecutive point P7
is a point on the normal

whose coordinates may be taken as \Z, A.AT, XJV, \ being
an infinitesimal whose square may be neglected, and the cor

responding differential coefficients for the new point are

Z+XSZ, J/+XSJ/, lY+XSiV, a + XSa, &c., where 8 denotes

the operation

T d
-&amp;gt; r d ,,- d

L-r+ M-T- + N-r
ax, ay dz

Hence the equation of the tangent plane at P7

,
referred to that

point as origin, is Ux +M y + N z = 0, or T-\- \$T= 0, where

BT means x&L+y%M-\ z&N, and it is to be observed, that BT
is the same as what we have just called fl. And the equation
of the cone which determines the inflexional tangents is

U + \&U=Q. The equations of this plane and cone referred

to the original axes are T+ X (8T-T )
=

0, U+\ (SU- 2D) = 0,

* Professor Cayley has also shown, that if from any surface a new surface be de

rived by taking on each normal an infinitesimal distance = p, where p is a given

function of x, y, z, the condition that the new surface shall belong to the same

orthogonal system is

and that this condition is equivalent to that given in the text.
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but it will be seen presently that the terms added on account of

a change of origin do not affect the result. In order to form

the equation of the pair of planes through the normal and

through these inflexional tangents, we have to eliminate 6

between

Z7+ X (BU- 211) + 20 (n + &c.) +
2

(
U + &c.) = 0.

Now since we are about to express the condition that the

resulting equation shall denote a surface intersecting T in a

pair of lines belonging to an involution, to which the intersec

tion of U by T also belongs, we need not attend to any terms

in the result which contain either T or 7; nor need we attend

to any terms which contain more than the first power of X.

The terms then, of which alone we need take account, are

- T] + T
n
(8Z7- n) = o,

or dividing by 2&quot;,
T B Z7- 2 [I&quot;

= 0.

We have thus a&quot; = (L* +M2 +N2

}
8a- 2 (S)

2

, &c,, and the

required condition is

(L
Z + M

= 2

Prof. Cayley has shewn that the condition originally obtained

by him in a form equivalent to that just written, contains an

irrelevant factor, the right-hand side of the equation being
divisible by U 4- M* -f N\ This we proceed to show.

482. We may in the first place remark, that since the

united points or foci of an involution given by the two equa

tions u = (a, k, Qjjr, y)
z

,
v = (a ,

k
, Vx, y)

2

,
are determined

by the equation
l) 2

=0, Conies, Art. 342
;

if u and v be

given as functions of x, y, z, where Lx + My + Nz 0, and

therefore ut
= -, TT ~r &c.. we find immediately that the

1 dx N dz J
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foci of the involution are given by the equation

447

L, M, N = 0.

Thus then, or as in Art 297, the two principal tangents are de

termined as the intersections of the tangent plane with the cone

ax + hy -H gz, hx + ly +fz, gx +fy -f cz

x
&amp;gt; y &amp;gt;

z

L
,

M
,

N =0.

We shall write this equation

that is to say,

It is useful to remark that the conic derived from two

others, according to the rule just stated, viz. which is the

Jacobian of two conies and of an arbitrary line, is connected

with each of the two conies by the invariant relation = 0;
that is to say, the two relations are

where A, B, &c. are the reciprocal coefficients lc /*, &c.
;

and A & + &c. = 0, which, in the particular case under con

sideration, reduces to a + b + c = 0, which is manifestly true.

Again, referring to the condition, Art. 480, that three conies

Uj V, W should be met by a line in three pairs of points form

ing an involution, it is geometrically evident that if W be a

perfect square (\x + py -f vz)*, this condition can only be satisfied

if \x-\-fjby-\-vz passes through one of the foci of the involution,

and hence we are led to write down the following identical

equation which can easily be verified :

L, M, N
Mil n

, W rt * f-v-

where in u^ &c. we are to write for
a?, y, z, jj,N vM, vL -
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\M pL that is to say, in the case we are at present con

sidering, the determinant is

, M, N,

fj,N- vM, vL - XJV, \M-

aL + hM +ffN ,
hi/ + lMf

+fN , gL +fM
where we have written Z

,
&c. for pN vM

}
&c. This deter

minant may be otherwise written

L, M, N
L

,
Mf

,
N

X, Z, a
,

h
, g

p, M, h, b
, /

&quot;&amp;gt; &, 9, f
&amp;gt;

c

But in the particular case where X = ^L aL 4 hM+ gN, &c.,

this determinant may be reduced by subtracting the last three

columns multiplied respectively by Z, M, N from the first;

then observing that LL -I- MM -f jVA7/ = 0, we see that, as we
undertook to shew, the determinant is divisible by U+ M*+ J\7a

,

the quotient being

Z
,
M

,
N

L, a
,

h
, g

, h, I, f
&amp;gt; 9, /i c

483. The quotient is obtained in a different and more con

venient form by the following process given by Professor Cayley.
The following identities may be verified, &, &c., a, &c. having
the meaning already explained :

& = a (L
2 +M 2 + N*) + 2L (NBM- MSN),

i3 = b (U +M -f ^2

) 4 2M(L$N - ML),
= c (L* + Jfa +^2

) -f 2^ (JfSi -UM),
dF = f (i* + IT2 + #*) + Jf

(
J/8L - UM) + ^(ZS^V - JVSZ),

= g (X
2 +M2 +^2

) + N( NBM- MSN) i L (MBL - LBM) y

& = h (U + Jf
* +^2

) + Z (ZSjY
-m

) + J^(NBM- MSN).
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Hence we have

7
) (U + Jl/ -f .Y

2

)

+ (LSL + MSM + NSN) (A
TOf- J/8.Y),

with corresponding values for

and hence immediately

(a, a&amp;gt;, , jp, &amp;lt;s, ?fl8L, sj

= (Z
2 + J/&amp;lt; 4

N&amp;gt;) (a, b, c, f, g, h8, SJ/, 8.V) .

Hence the equation, Art. 481, omitting the factor U + M* +N Z

,

becomes

-f

= 2 (a, b, c, f, g,

484. There is still another form in which the result may be

expressed. Writing, as usual, in the theory of conies, ~bcf*=A,
&c., the determinant at which we arrived at the end of Art. 482

is, when expanded,
- {ALL +BMM + CNN + F(MN +M N]

-f G (NU +N L) + H(LM + L M}}.
Now, from last article

2LL = a - (U + J/2 + N2

) a, &c.,

HN +MN= - (U + IP +N9

) f, &c.,

and remembering that As, + &c. = 0, the expanded determinant

last written is seen to be

and thus eventually the differential equation is given in the form

-f &amp;lt;Sc +

= 2

485. As a particular case of this equation of Prof. Cayley s

may be deduced that which Bouquet had given (Lioumlle^ XI.,

446) for the special case where the equation of the system of

surfaces is r = X+ Y+Z, where X, Y, Z are each functions

of x, y^ z respectively only. In this case then we have

L = JT, M= F
,
N= Z

,
a =

Z&quot;,
b =

F&quot;,
c = Z&quot;

,/= .?
= A =

5

M II 11
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A =
Y&quot;Z&quot;,

B=
Z&quot;X&quot;,

C=
X&quot;Y&quot;,

^=# = #=05
=

(
F&quot;

-
Z&quot;)

X Y Z
,

ft =
(Z&quot;

-
X&quot;}

X Y Z
,

-
Y&quot;)X Y Z ;

and the differential equation being divisible by X YZ is

reduced to

X X &quot;

(
Y&quot;

-
Z&quot;}

+ Y Ym
(Z&quot;

-
X&quot;) + ZZ

&quot;

(X&quot;

-
Y&quot;)

+ 2
(

Y&quot;
-

Z&quot;) (Z&quot;

-
X&quot;} (X&quot;

-
Y&quot;}

= 0.

486. Even when the equation of condition is satisfied by
an assumed equation it does not seem easy to determine the two

conjugate systems. Thus M. Bouquet observed that the con

dition just found is satisfied when the given system is of the

form
aj&quot;yy

=
r, but he gave no clue to the discovery of the

conjugate systems. This lacuna was completely supplied by
M. Serret, who has shewn much ingenuity and analytical

power in deducing the equations of the conjugate systems, when

the equation of condition is satisfied. The actual results are,

however, of a rather complicated character. We must con

tent ourselves with referring the reader to his memoir, only

mentioning the two simplest cases obtained by him, and which

there is no difficulty in verifying h posteriori. He has shewn

that the three equations,

yi- r
x

V^ 4 O + V(rf + * )=,

represent a triple system of conjugate orthogonal surfaces. The

surfaces (r) are hyperbolic paraboloids. The system (p) is

composed of the closed portions, and the system (q) of the

infinite sheets, of the surfaces of the fourth order,

^ _
y&amp;gt;y

_
2p

2

(z* 4 / + 2ic
2

) +/ = 0.

M. Serret has observed that it follows at once from what has

been stated above, that in a hyperbolic paraboloid, of which

the principal parabolas are equal, the sum or difference of the

distances of every point of the same line of curvature from

two fixed generatrices is constant.
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He finds also (in a somewhat less simple form) the following

equations for another system of orthogonal surfaces,

q = (x + ft&amp;gt; + o&amp;gt;* + a + a + o&amp;gt;st,

r =
(a;

2 +
o&amp;gt;/

+
o&amp;gt;V)f

-
(a* -f

o&amp;gt;y
+ o&amp;gt;z

8

)*,

where w is a cube root of unity.

An interesting system of orthogonal surfaces, and very

analogous to the system of confocal quadric surfaces, is given

by M. Darboux in his Memoir above referred to, namely,

the system of bicircular quartics

4cf + a\ 4c?
2+&\ 2 4cP + cX

^ + y +
*&amp;gt;
+x + ~-y+3 +d =0

&amp;gt;

where a, 5, c, d are given constants, and in place of X we are to

write successively the three parameters p^ q, r. The formulas

for X, y, z in terms of p, q, r, are

/s ,7a\ 2
At (a+p) (a + q] (a + r)

(a b) (a c)

,
. , _ __

where, writing for shortness,

-p] (2d
-

q) (2d - r)
= =

we put M =

If d= GO
,
the system of surfaces is

Ta
7V

8

y ,

which is in effect the system of confocal quadrics: a slight

change of notation would make the constant term become 1.

Mr. W. Roberts, expressing in elliptic coordinates the con

dition that two surfaces should cut orthogonally, has sought
for systems orthogonal to L + M+N=r, where

, J^, ^V are
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functions of the three elliptic coordinates respectively. He
has thus added some systems of orthogonal surfaces to those

previously known (Comptes rendus, September 23, 1861). Of

these perhaps the most interesting, geometrically, is that whose

equation in elliptic coordinates is pv = ccA, and for it

he has given the following construction: Let a fixed point

in the line of one of the axes of a system of confocal ellipsoids

be made the vertex of a series of cones circumscribed to them.

The locus of the curves of contact will be a determinate

surface, and if we suppose the vertex of the cones to move

along the axis, we obtain a family of surfaces involving a

parameter. Two other systems are obtained by taking points

situated on the other axes as vertices of circumscribing cones.

The surfaces belonging to these three systems will intersect,

two by two, at right angles.

It may be readily shewn that the lines of curvature of the

above-mentioned surfaces (which are of the third order) are

circles, whose planes are perpendicular to the principal planes

of the ellipsoids. Let A, B be two fixed points, taken re

spectively upon two of the axes of the confocal system. To

these points two surfaces intersecting at right angles will corre

spond, and the curve of their intersection will be the locus

of points M on the confocal ellipsoids, the tangent planes at

which pass through the line AB. Let P be the point where

the normal to one of the ellipsoids at M meets the principal

plane containing the line AB, and because P is the pole of

AB in reference to the focal conic in this plane, P is a given

point. Hence the locus of M, or a line of curvature, is a

circle in a plane perpendicular to the principal plane con

taining AB.
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CHAPTER XIV.

SURFACES DERIVED FROM QUADRICS.

487. BEFORE proceeding to surfaces of the third degree
we think it more simple to treat of surfaces derived from

quadrics, the theory of which is more closely connected with

that explained in preceding chapters. We begin by defining

and forming the equation of Fresnel s Wave Surface*

If a perpendicular through the centre be erected to the

plane of any central section of a quadric, and on it lengths be

taken equal to the axes of the section, the locus of their ex

tremities will be a surface of two sheets, which is called the

Wave Surface. Its equation is at once derived from Arts. 10],

102, where the lengths of the axes of any section are ex

pressed in terms of the angles which a perpendicular to its

plane makes with the axes of the surface. The same equa
tion then expresses the relation which the length of a radius

vector to the wave surface bears to the angles which it

makes with the axes. The equation of the wave surface is

therefore

aa
;c

s by cV
1

^ I = o
:

&amp;gt; 12 2 t ~i Ja__ /&amp;gt;
r\ ^^ /&amp;gt;* /* ^_ -&amp;gt;*

/ (J / O/
where r

2 = a;
2 + ^

2
+ a&quot;. Or, multiplying out,

{oV (Z&amp;gt;

2 + c
2

) + &&amp;gt;

2

(c
a + a*) + cV (a

2 + b
2

)} + oVc
1 = 0.

* See Fresnel, Memoires de I Institut, vol. vu., p. 136, published 1827.
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From the first form we see that the intersection of the wave

surface by a concentric sphere is a sphero-conic.

488. The section by one of the principal planes (e.g.
the

plane z) breaks up into a circle and ellipse

(x* 4 f -
(?) (oV 4 &y -

c?V}.

This is also geometrically evident, since if we consider any
section of the generating quadric, through the axis of 2, one

of the axes of that section is equal to c, while the other axis

lies in the plane xy. If, then, we erect a perpendicular to

the plane of section, and on it take portions equal to each

of these axes, the extremities of one portion will trace out a

circle whose radius is
c, while the locus of the extremities of

the other portion will plainly be the principal section of the

generating quadric, only turned round through 90. In each

of the principal planes the surface has four double points ;

namely, the intersection of the circle and ellipse just men
tioned. If a/, y be the coordinates of one of these intersec

tions, the tangent cone (Art. 270) at this double point has

for its equation

4 (xx + yy - c
2

) (d xx
f + Vyy - a*b

z

) -f z* (a?
- c

2

) (6*
- c

2

)
= 0.

The generating quadric being supposed to be an ellipsoid, it

is evident that in the case of the section by the plane z
}
the

circle whose radius is c, lies altogether within the ellipse

whose axes are a, Z&amp;gt;;

and in the case of the section by the

plane tc,
the circle whose radius is

,
lies altogether without

the ellipse whose axes are &, c. Real double points occur

only in the section by the plane y] they are evidently the

points corresponding to the circular sections of the generating

ellipsoid.

The section by the plane at infinity also breaks up into

factors x* -f y* + 2
2

,
aV 4- tfy* + cV, and may therefore also be

considered as an imaginary circle and ellipse, which in like

manner give rise to four imaginary double points of the surface

situated at infinity. Thus the surface has in all sixteen nodal

points, only four of which are real.
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489. The wave surface is one of a class of surfaces which

may be called apsidal surfaces. Any surface being given, if

we assume any point as pole, draw any section through that

pole, and on the perpendicular through the pole to the plane
of section take lengths equal to the apridal (that is to say,

to the maximum or minimum) radii of that section
;
then the

locus of the extremities of these perpendiculars is the apsidal

surface derived from the given one. The equation of the

apsidal surface may always be calculated, as in Art. 101. First

form the equation of the cone whose vertex is the pole, and

which passes through the intersection with the given surface

of a sphere of radius r. Each edge of this cone is proved

(as at Art 102) to be an apsidal radius of the section of the

surface by the tangent plane to the cone. If, then, we form

the equation of the reciprocal cone, whose edges are perpen
dicular to the tangent planes to the first cone, we shall obtain

all the points of intersection of the sphere with the apsidal

surface. And by eliminating r between the equation of this

latter cone and that of the sphere, we have the equation of the

apsidal surface.

490. If OQ be any radius vector to the generating surface,

and OP the perpendicular to the

tangent plane at the point Q, then

OQ will be an apsidal radius of

the section passing through OQ
and through OR which is sup

posed to be perpendicular to the

plane of the paper POQ. For

the tangent plane at Q passes

through PQ and is perpendicular to the plane of the paper;
the tangent line to the section QOR lies in the tangent plane,
and is therefore also perpendicular to the plane of the paper.
Since then OQ is perpendicular to the tangent line in the

section QOR, it is an apsidal radius of that section.

It follows that OT, the radius of the apsidal surface corre

sponding to the point $, lies in the plane POQ, and is per

pendicular and equal to OQ.
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491. The perpendicular to the tangent plane to the apsidal

surface at T lies also in the plane POQ, and is perpendicular
and equal to OP.*

Consider first a radius OT f
of the apsidal surface, inde

finitely near to T, and lying in the plane TOR, perpendicular
to the plane of the paper. Now OT is by definition equal

to an apsidal radius of the section of the original surface by
a plane perpendicular to OT\ and this plane must pass through

OQ. Again, an apsidal radius of a section is equal to the

next consecutive radius. The apsidal radius therefore of a

section passing through OQ, and indefinitely near the plane

QOR, will be equal to OQ. It follows, then, that OT= OT
,

and therefore that the tangent at T to the section TOR is

perpendicular to OT, and therefore perpendicular to the plane

of the paper. The perpendicular to the tangent plane at T
must therefore lie in the plane of the paper, but this is the

first part of the theorem which was to be proved.

Secondly, consider an indefinitely near radius OT&quot; in the

plane of the paper; this will be equal to an apsidal radius

of the section ROQ, where OQ is indefinitely near to OQ.

But, as before, this apsidal radius being indefinitely near to

OQ will be equal to it,
and therefore OT&quot; will be equal

as well as perpendicular to OQ. The angle then T&quot;TO is

equal to QQO, and therefore the perpendicular OS is equal
and perpendicular to OP.

It follows from the symmetry of the construction, that if

a surface A is the apsidal of B, then conversely B is the apsidal

of A.

492. The polar reciprocal of an apsidal surface, with respect

to the origin 0, is the same as the apsidal of the reciprocal, with

respect to 0, of the given surface.

For if we take on OP, OQ portions inversely proportional
to them, we shall have Op, Oq, a radius vector and corre

sponding perpendicular on tangent plane of the reciprocal of

* These theorems are due to Prof. Mac Cullagh, Transactions of the Royal Irish

Academy, vol. xvi. in his collected works, p. 4. &amp;lt;fcc.
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the given surface. And if we take portions equal to these

on the lines OS, OT which lie in their plane, and are respec

tively perpendicular to them, then, by the last article, we

shall have a radius vector and corresponding perpendicular on

tangent plane of the apsidal of the reciprocal. But these

lengths being inversely as OS, OTare also a radius vector, and

perpendicular on tangent plane of the reciprocal of the apsidal.

The apsidal of the reciprocal is therefore the same as the

reciprocal of the apsidal.

In particular, the reciprocal of the wave surface generated

from any ellipsoid is the wave surface generated from the

reciprocal ellipsoid.

We might have otherwise seen that the reciprocal of a

wave surface is a surface also of the fourth degree, for the

reciprocal of a surface of the fourth degree is in general of

the thirty-sixth degree (Art. 281) ;
but it is proved, as for plane

curves, that each double point on a surface reduces the degree

of its reciprocal by two
;
and we have proved (Art. 488) that

the wave surface has sixteen double points.

To a nodal point on any surface (which is a point through
which can be drawn an infinity of tangent planes, touching
a cone of the second degree) answers on the reciprocal surface

a tangent plane, having an infinity of points of contact, lying

in a conic. From knowing then, that a wave surface has four

real double points, and that the reciprocal of a wave surface

is a wave surface, we infer that the wave surface has four

tangent planes which touch all along a conic. We shall now
show geometrically that this conic is a circle.*

493. It is convenient to premise the following lemmas :

LEMMA I.
&quot; If two lines intersecting in a fixed point, and

at right angles to each other, move each in a fixed plane, the

* Sir &quot;W. E. Hamilton first showed that the wave surface has four nodes, the

tangent planes at which envelope cones, and that it has four tangent planes
which touch along circles. Transactions of the Royal Irish Academy, vol. xvi. (1837),

p. 132. Dr. Lloyd experimentally verified the optical theorems thence derived,

Ibid. p. 145. The geometrical investigations which follow are due to Professor

MacCullagh, Ibid. p. 248. See also Pliicker, &quot;Discussion de la forme generate des

ondes lumineuses,&quot; CreUe. t. xtx. (1839), pp. 1-44 and 91, 92.

N NN
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plane containing the two lines envelopes a cone whose sections

parallel to the fixed planes are
parabolas.&quot;

The plane of the

paper is supposed to be parallel to one of the fixed planes,

and the other fixed plane is supposed to pass through the

line MN. The fixed point in which the two lines intersect

is supposed to be above the paper, P being the foot of the

perpendicular from it on the plane

of the paper. Now let OB be one

position of the line which moves in

the plane OMN, then the other line

OA, which is parallel to the plane

of the paper being perpendicular to

OB and to OP, is perpendicular to

the plane OBP. But the plane
&quot;**

OAB intersects the plane of the

paper in a line BT parallel to OA, and therefore perpendicular

to BP. And the envelope of BT is evidently a parabola of

which P is the focus and MN the tangent at the vertex.

LEMMA II. &quot;If a line OC be drawn perpendicular to

GAB, it will generate a cone whose circular sections are

parallel to the fixed
planes&quot; (Ex. 4, p. 100). It is proved, as

in Art. 125, that the locus of C is the polar reciprocal, with

respect to P, of the envelope of BT. The locus is therefore

a circle passing through P.

LENMA III. &quot; If a central radius of a quadric moves in a

fixed plane, the corresponding perpendicular on a tangent plane

also moves in a fixed
plane.&quot; Namely, the plane perpendicular

to the diameter conjugate to the first plane, to which the

tangent plane must be parallel.

494. Suppose now (see figure, Art. 490) that the plane

OQR (where OR is perpendicular to the plane of the paper)

is a circular section of a quadric, then T is the nodal radius

of the wave surface, which remains the same while OQ moves

in the plane of the circular section
;

and we wish to find

the cone generated by OS. But OS is perpendicular to OR
which moves in the plane of the circular section and to OP
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which moves in a fixed plane by Lemma III., therefore OS
generates a cone whose circular sections are parallel to the

planes FOR, QOR. Now T is a fixed point, and T8 is

parallel to the plane FOR, therefore the locus of the point

S is a circle.

The tangent cone at the node is evidently the reciprocal of

the cone generated by OS, and is therefore a cone whose

sections parallel to the same planes are parabolas.

Secondly, suppose the line OP to be of constant length,

which will happen when the plane POR is a section perpen
dicular to the axis of one of the two right cylinders which

circumscribe the ellipsoid, then the point S is fixed, and it is

proved precisely, as in the first part of this article, that the

locus of T is a circle.

495. The equations of Art. 251 give immediately another

form of the equation of the wave surface. It is evident

thence, that if 0, 6
f

be the angles which any radius vector

makes with the lines to the nodes, then the lengths of the

radius vector are, for one sheet,

_ _

p*

=

~~J~ a*

and for the other

c
2

a*

,., I 1 /I IN . a . a,

while --r = --- sin 6 sm 6 .

P p&quot;
Vc

2

aV

It follows hence also that the intersections of a wave surface

with a series of concentric spheres are a series of confocal

sphero-conics. For, in the preceding equations, if p or p be

constant, we have 6 6 constant.

496. The equation of the wave surface has also been ex

pressed as follows by Mr. W. Roberts in elliptic coordinates.

The form of the equation
2 2 792 52a x by c z

L 7 _L - _
2 &amp;lt;^ ^ 2 A i a v

~~ V 1

a r* b r c - r*
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shows that the equation may be got by eliminating r
2 between

the equations

cc
a

y* z*
+ V 7 2 + i

-a=li and
&quot;

^a r ft r c

Giving r* any series of constant values, the first equation
denotes a series of confocal quadrics, the axis of z being the

primary axis, and the axis of x the least
;
and for this system

#* = b* c
2

,
k* = a? c

2
. Since r

2
is always less than a&quot; and

greater than c
2

,
the equation always denotes a hyperboloid, which

will be of one or of two sheets according as r* is greater or less

than b*. The intersections of the hyperboloids of one sheet

with corresponding spheres generate one sheet of the wave

surface, and those of two sheets the other.

Now if the surface denote a hyperboloid of one sheet, and

if X, p, v denote the primary axes of three confocal surfaces

of the system now under consideration which pass through any

point, then the equation gives us r
2

c
2 =

/**, but (Art. 161)

r =V + if + v*-tf-tf,
whence the equation in elliptic coordinates is

V + i/&quot;
= c + A + &* = &quot; + F-c8

.

In like manner the equation of the other sheet is

X2 + yu
2 = a2

+Z&amp;gt;

2 -c2
.

The general equation of the wave surface also implies

$ + v* a? + 5
2

c
2

,
but this denotes an imaginary locus.

Since, if X is constant, /uu
is constant for one sheet and v

for the other, it follows that if through any point on the

surface be drawn an ellipsoid of the same system, it will meet

one sheet in a line of curvature of one system, and the other

sheet in a line of curvature of the other system.
If the equations of two surfaces expressed in terms of

X, /A, v, when differentiated give

Pd\ + Qdp + Edv = 0, P d\ + Q dfju + Kdv = 0,

the condition that they should cut at right angles is (cf. Art. 411)

2 2 2 2 2 2

(X- ft (X
2- v

2

) (X
2-

if) (S- v
2

) (X
2- v

2

) (//- v
2

)

which is satisfied if P 0,
=

0, R = Q. Hence any surface
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v = constant cuts at right angles any surface whose equation is of

the form &amp;lt; (X, /i)
= 0. The hyperboloid therefore, v = constant,

cuts at right angles one sheet of the wave surface, while it

meets the other in a line of curvature on the hyperboloid.

497. The plane of any radius vector of the wave surface and

the corresponding perpendicular on the tangent plane, makes equal

angles with the planes through the radius vector and the nodal

lines. For the first plane is perpendicular to OR (Art. 490)

which is an axis of the section QOR of the generating ellipsoid

and the other two planes are perpendicular to the radii of

that section whose lengths are 5, the mean axis of the ellipsoid,

and these two equal lines make equal angles with the axis.

The planes are evidently at right angles to each other, which

are drawn through any radius vector, and the perpendiculars

on the tangent planes at the points where it meets the two

sheets of the surface.

Reciprocating the theorem of this article, we see that the

plane determined by any line through the centre and by one

of the points where planes perpendicular to that line touch

the surface, makes equal angles with the planes through the

same line and through perpendiculars from the centre on the

planes of circular contact (Art. 494).

498. If the coordinates of any point on the generating

ellipsoid be xyz ^
and the primary axes of confocals through

that point a
, a&quot;;

then the squares of the axes of the section

parallel to the tangent plane are a
2

a
/a

,
a

2
a&quot;

a

,
which we

shall call p
2

, p
2
. These, then, give the two values of the

radius vector of the wave surface, whose direction-cosines are

**- * r * ^r . We shall now calculate the length and the
a b* c

2

direction-cosines of the perpendicular on the tangent plane at

either of the points where this radius vector meets the surface.

It was proved (Art. 491) that the required perpendicular is

equal and perpendicular to the perpendicular on the tangent

plane at the point where the ellipsoid is met by one of the

axes of the section
;
and the direction-cosines of this axis are
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^r ? ^/Jr ) ^r The coordinates of its extremity are then

these several cosines multiplied by /?,
and the direction-cosines

of the corresponding perpendicular of the ellipsoid are

P

where = Py + +

Now if the quantity within the brackets be multiplied by

(a
2 a

/2

)

2

,
we see at once that it will become -= + -

. Hence
P P

P2 py
This then gives the length of the perpendicular on the

tangent plane at the point on the wave surface which we are

considering. Its direction-cosines are obtained from the con

sideration that it is perpendicular to the two lines whose

direction-cosines are respectively

Forming, by Art. 15, the direction-cosines of a line perpendicular

to these two, we find, after a few reductions,

pp a&quot;* pp

In fact, it is verified without difficulty, that the line whose

direction-cosines have been just written is perpendicular to

the two preceding.

It follows hence also, that the equation of the tangent

plane at the same point is

(
l

&quot;I
72
)

In like manner the tangent plane at the other point where

the same radius vector meets the surface is

XX l - + yy l _ + tf l _ =pp .
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499. If 6 be the angle which the perpendicular on the

tangent plane makes with the radius vector, we have P= p cos#
;

v
but we have, in the last article, proved P2 = -/ -^ Hence.

p
14 1414

- tan
v#=~-. This expression may be trans-

P+P P
formed by means of the values given for p and p (Art. 165).

We have therefore

z 1 i J: I x. zx

PP P (P -P )

(i_fL\ (i_(
Whence tan*0 = -

P

In this form the equation states a property of the ellipsoid, and

the expression is analogous to that for the angle between the

normal and central radius vector of a plane ellipse, viz.

In the case of the wave surface it is manifest that tan 9 vanishes

only when p = a, 5, or c, and becomes indeterminate when

p=p=b.

V
500. The expression tan# = leads to a construction for

the perpendiculars on the tangent planes at the points where

a given radius vector meets the two sheets of the surface.

The perpendiculars must lie in one or other of two fixed

planes (Arts. 497, 498), and if a plane be drawn perpendicular
to the radius vector of the wave surface at a distance p, it is

evident from the expression for tan #, that p is the distance to

the radius vector from the point where the perpendicular on

the tangent plane meets this plane. Thus we have the con

struction,
&quot; Draw a tangent plane to the generating ellipsoid

perpendicular to the given radius vector, from its point of

contact let fall perpendiculars on the two planes of Art. 497,

then the lines joining to the centre the feet of these perpen
diculars are the perpendiculars required.&quot;
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We obtain by reciprocation a similar construction, to de

termine the points where planes parallel to a given one touch

the two sheets of the surface.

Ex. 1. To transform the equation of the surface, as at p. 151, so as to make the

radius vector to any point on the surface the axis of z, and the axes of the corre

sponding section of the generating ellipsoid the axes of x and y.

Ans. (z
2 + y

2 + z2) {p
2z2 + (p

2 + p
2
)
x2 + ( p&quot;

2 + p
2
) if + 2pp xz + 2pp&quot;yz + 2p p&quot;xy}

-p2z2 (p
2 + p

2
)
- x2

(p
2
p
2 +p 2

p
2 +

p&quot;

2
p
2 + p

2
p

2
)

-
yi (p

2
p

2 +p 2
p

2 +
p&quot;

2
p
2 + p

2
p

2
)
-

2j&amp;gt;p p *xz - 2pp&quot;p
2
yz +p2

p
2
p

2 = 0.

It is easy to see that if we make x and y in the equation thus transformed,

we get for x2 the values p
2 and p

2 as we ought. If we transform the equation to

parallel axes through the point z = p, the linear part of the equation becomes

2pp (p
2 -

p
2
} (pz + p x\

from which the results already obtained as to the position of the tangent plane may
be independently established.

Ex. 2. To transform similarly the equation of the reciprocal of the wave surface

obtained by writing for a, &c., in the equation of the wave surface.

Ans. (x
2 + y

2 + z2
) {pyW + p

2
p
2
y
2 -

2pp p
2xz -

2pp&quot;p
2
yz + z2 (p

2
p

2 +
p&quot;

2
p
2 + /o

2
/o

2
)}

- X4
(p

2
+p&quot;

2 + p
2
) x2 - X4

(p
2 +p 2 + p

2
) y

2 - X4
(p

2 +
p&quot;

2 + p
2 + p

2
}
z2

+ 2\.*p p&quot;xy + 2\*pp xz + 2\*pp&quot;yz + A.
8 = 0.

&quot;We know that the surface is touched by the plane pz = \2
,
and if we put in this

value for z, we find, as we ought, a curve having for a double point the point y = 0,

ppx = p \2
. If in the equation of the curve we make y = 0, we get

from which we learn that that chord of the outer sheet of the wave surface which

joins any point on the inner sheet to the foot of the perpendicular from the centre

on the tangent plane is bisected at the foot of the perpendicular. The inflexional

tangents are parallel to

{p
2
p

2 + P* (f&amp;gt;

2 ~
P
2
}} *

2 -
2p p&quot;p

2
xy + {p

2
p
2 + p

2
(p

2 -
p
2
)} y

2
,

a result of which I do not see any geometrical interpretation.*

* I have no space for a discussion what the lines of curvature on the wave

surface are not, though a hasty assertion on this subject in Crelle s Journal has led

to interesting investigations by M. Bertrand, Comptes Rendus, Nov. 1858
;
Combescure

and Brioschi, Tortolini s Annali di Matematica, vol. II., pp. 135, 278. It is worth

while to cite an observation of Brioschi, that if in the plane Ix + my + nz &amp;lt;

;

Z, m, n, be functions of two variables p, q, as in Art. 377, then the plane will

envelope a surface in which curves of the families p = constant, q = constant, will,
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501. The Surface of Centres. We have already shown

(Art. 206) how to obtain the equation of the surface of centres

of a quadric. We consider the problem under a somewhat

more general form, as it has been discussed by Clebsch (Crelle^

vol. LXII., p. 64), some of whose results we give, working with

the canonical form
;
and we refer to his paper for fuller details

and for his method of dealing with the general equation. By
the method of Art. 227, we may consider the normal to a surface

as a particular case of the line joining the point of contact

of any tangent plane to the pole of that plane with respect

to a certain fixed quadric. The problem then of drawing a

normal to a quadric from a given point may be generalized as

follows : Let it be required to find a point xyzw on a quadric

U, (ax
2 + by* + cz* + dfo?

8

),
such that the pole, with respect to

another quadric F, (x* + y* + z* + w2

),
of the tangent plane to

U at xyzw, shall lie on the line joining xyzw to a given point

xy z w. The coordinates of any point on this latter line may
be written in the form x Xce, y \y, z \z, w \io, and

expressing that the polar plane of this point, with regard to F,

shall be identical with the polar plane of xyzw^ with respect

to
Z7, we get the equations

And since xyzw is a point on
f/,

X is determined by the equation

ax* &quot;

cz dw *

-f rj -f 7 ^ = 0.

When X is known, x, y, z, w are determined from the preceding

system of equations, and since the equation in X is of the sixth

degree, the problem admits of six solutions. If we form the

at their intersection, be touched by conjugate tangents of the surface, if the condition

be fulfilled,

/, m, n, rp

/ m
lt nj, &amp;lt;p l

?2 ,
m2 ,

n2 ,
&amp;lt;f&amp;gt;t

h& mW n
!2&amp;gt; &amp;lt;^12

=

where the suffixes 1, 2, denote differentiation with respect to u and v respectively j

while the curves will cut at right angles if

(P + m* + n*) (y, + m^j -f n,n,) = (fy -f mm 1 + nn,) (//, + mm^ + nn,).

000
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discriminant, with regard to X, of this equation, we get the

locus of points x y z w for which two values of X coincide,

and rejecting a factor x 2

y
2
zW2

(which indicates that two values

coincide for all points on the principal planes), we shall have

a surface of the twelfth degree answering to the surface of

centres.

502. The problem of finding the surface of centres itself is

easily made to depend on an equation of like form
;

for (Art. 197)

the coordinates of a centre of curvature answering to any point

x yz on an ellipsoid are

X
/O / -7 /O / /O /0V Z&amp;gt;

V cV
o

a2

Solve for #
, ?/ ,

z from these equations, and substitute in the

equations satisfied by x y z
^
viz.

x *

y
*

z
* x *

y&quot;

2
z

*

__L -L__L . _ 1 -__L _^__I__ O
a* b

z
(? aV +

VV*
* cV2

now write for a
a

,
a? - h

2

, &c.j and we get

_c_+ ~
aV fe c

la -A
1

)
11

(^
2 -

aV fey cV
I

^_ j = o
/ _2 1^\3 ^^

/ LZ 7i!\3 T / 2 I- \3
v *

These two equations represent a curve of the fourth degree,

which is the locus of the centres of curvature answering to

points on the intersection of the given quadric with a given

confocal. The surface of centres is got by eliminating A
2
be

tween the equations ;
or (since the second equation is the differ

ential of the first with respect to A2

) by forming the discriminant

of the first equation.

503. I first showed, in 1857 (Quarterly Journal^ vol. II.,

p. 218), that the problem of finding the surface of centres was

reducible to elimination between a cubic and a quadratic, and

Clebsch has proved that the same reduction is applicable to

the problem considered in its most general form. Jn fact, let

A denote the discriminant of /iZJ+XF; which for the canonical
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form (Art. 141), is
(a//, + X) (bp -f X) (cp -f X) (dp + X), and let ft

denote the reciprocal of /u,7+XF, viz.

-f X) (C/JL + X) (d/u, -f X) a
2
-!- (c/* + X) (efyt + X) (a/*, + X) #*+ &c.

ft &amp;lt;c

2
?/

2

then we have = ^ r- + 7

^
^ + &c.

A ap -f X op + \

Now, if we differentiate the right-hand side of this equation

with respect to p, and then make p 1, we obtain the equation

(Art. 501) which determines X, which therefore may be written

n
ft = A
dp

This last equation, which is the Jacobian of ft and A, being

the result of eliminating m between A -f ??*Xft and its differential,*

will be verified when A + raXft has two equal roots. Its differ-

.
,

.
, A , r . ..

ential a^ain ft ,-s- = A^r-? beinsr the result ot elimination
dp

2

d^
between A + ??iXft and its second differential, will be verified

when A -f wiXft has three equal factors. But both Jacobian and

its differential vanish when both A and ft vanish. Thus then,

as was stated (Note p. 213), the discriminant of the Jacobian

of two algebraic functions A, 12,
contains as a factor the result

of elimination between A and ft
;
and as another factor, the

condition that it shall be possible to determine m, so that

A + wzXft may have three equal factors. In the present case

the elirninant of A, ft, gives the factor xz

y*z?w\ and it is the

other condition which gives the surface answering to the surface

of centres. And this condition is formed, as in Art. 206, by

eliminating m between the 8 and T of the biquadratic A + znXft.

504. The discriminant of any algebraic function

must evidently be divisible by a
;
and if after the division we

make a=0, it can be proved that the remaining factor is ^r(a)

&amp;lt;f&amp;gt; (a)
3

multiplied by the discriminant of $ (X). Thus, then, the

section of Clebsch s surface by the principal plane w is the conic

* The factor X is introduced to make Q as well as A a biquadratic function in /u :
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a#a M cz* . . . . .

7 M* + n ,. u + ; TW taken three times, together with
(a d] (b-d) (c~d)
the curve of the sixth degree, which is the reduced discriminant of

ax* by* cz*
_i_ 9

. . \ v I

(b+Xf (c + \)*

Clebsch has remarked that this conic and curve touch each

other, and the method we have adopted leads to a simple proof

of this. For evidently the discriminant of

ax* ~bif cz*
i

3 i f)~
/ , -\ \s

~~ v
)

(a + X)
a

(b 4- X)
2

(c + X)
5

may be regarded as the envelope of all conies which can be

represented by this equation, and therefore touches every parti

cular conic of the system in the four points where it meets the

conic represented by the differential of the equation with re

gard to X, viz.

atf fy* =0
/ . ^ \ 8 &quot;1 / 7 . -x \H ~i / . *v\.H

&quot;&quot;&quot;&quot;

\ f \ / \ f

The coordinates of these points are ax* = (a + X)
3

(b c),

by*=(b + \y(e a)) cz* = (c + X)
3

(a
-

b) ;
and the equations of

the common tangents at them to the conic and its envelope are

:-a}b]

In the case under consideration X = d. If, then, we use the

abbreviations

(a-b}(a-c}(a-d} = -A\ (b- a) (b-c) (b -d) = - B\

(c
- a}(c-b)(c-d} = - C\ (d- a] (d- b} (d- c)

= - D\

the equations of the common tangents to the conic, and the

envelope curve, are

xat y& zd*
,

&amp;lt;

3 _ f)

A - B C
~

The reasoning used in this article can evidently be applied to

other similar cases. Thus, the surface parallel to a quadric

(p. 176, Ex. 2) is met by a principal plane in a curve of the eighth

order and a conic, taken twice, which touches that curve in four

points; and again, the four right lines (Art, 216, p. 189) touch

the conic in their plane.
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505. Besides the cuspidal conies in the principal planes, there

are other cuspidal conies on the surface, which are found by

investigating the locus of points for which the equation of the

sixth degree (Art. 501) has three equal roots. Differentiating

that equation twice with regard to X, we arrive at a system of

equations reducible to the form

1

^
1 [.

i + X)
4

(b + X) (c + X) (d + X)
i&amp;gt; T.,I&amp;gt; V y 7 ; *

a a; o ?/ c 2 a wr
r* / j i -\~&amp;gt;

x)
4

(y+x/ (c+x)
4

_i_ t i

~\ \4 ( L i \ \* , i &quot;v
-i

The result of eliminating X between these three equations

will be a pair of equations denoting a curve locus. Now, solving
these equations, we get

(a+ X)*~ V
r ~&quot;/v~ &amp;lt; l\l*^*/J

(^
. \)

4
~

(c a) (a- a) (c- a), &c.

whence a + X, 5 + X, &c. are proportional to a*a&4*j &c.

Substituting from these in the equation (Art. 501)

ax* by* cz* dw*
I tr I I =

we get

whence we learn that the locus which we are investigating
consists of curves situated in one or other of eight planes ;

and

that these planes meet the principal planes in the common tangents
to the conic and envelope curve considered in the last article.*

* The existence of these eight planes may be also inferred from the consideration

that the reciprocal of the surface of centres has an equation of the form (Art. 199)

U* VW, and has therefore as double points the eight points of intersection

of U, V
}
W, The surface of centres then has eight imaginary double tangent

planes, which touch the surface in conies (see Art. 271). The origin of these planes is

accounted for geometrically, as M. Darboux has shown, by considering the eight

generators of the quadric which meet the circle at Infinity (Art. 139). The normals

along any of these all He in the plane containing the generator and the tangent to

the circle at infinity at the point where it meets it, and they envelope a conic in that

plane. In like manner a cuspidal plane curve on the centro-surface will arise every
time that a surface contains a right line which meets the circle at infinity,
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But if we eliminate X between the three equations

so as to form a homogeneous equation in #, #, 2,
we get

aU* (b
-

c) x* + #5* (c
-

a) #* + c* (7* (a
-

5) a* = 0,

which denotes a cone of the second degree touched by the planes

x, y, z. Hence, the cuspidal curves in the eight planes are

conies which touch the cuspidal conies in the principal planes.

506. There will be a nodal curve on the surface answering to

the points for which the equation of Art. 501 has two pairs

of equal roots. Now we saw (Art. 503) that the condition for

a single pair of equal roots is got by eliminating m between a

quadratic and a cubic equation, namely, the S and T of the

biquadratic A -f m\l. If we write these equations

a + bm + cm2 =
0, A + Bm + Cm* + Dmz =

0,

it will be found that the degrees in #, ?/, ,
w of these coefficients

are respectively 0, 2, 4 0, 2, 4, 6
;
and the result of elimination

is,
as we know, of the twelfth degree. Now the condition that

the equation of Art. 501 may have two pairs of equal roots, is

simply that this cubic and quadratic may have two common

values of m. Generally, if the result of eliminating an inde

terminate m between two equations denotes a surface, the system

of conditions that the equations shall have two common roots

will represent a double curve on that surface. Thus the result

of eliminating m between two quadratics

a+bm + cm*, a + b
fm + c w2

is (ac
- ca

)

2
4- (ba -ab ) (be cb

)
= Q.

But if we remember that a (be cb
f

)
= b (ac

f

ca) -f c (ba ab
f

),

this result may be written

a (ac
- ca

)

1 - b (ac
- ca

) (ba
- ab

f

) + c (ba
- abj = 0,

showing that the intersection of ac ca
,
ba ob

f

(which must

separately vanish if the equations have both roots common), is a

double curve on the surface.

And to come to the case immediately under consideration, if

we have to eliminate between

a + bm + cm9 =
0, A + Bm + Cmz + Dm3 =

0,
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we may substitute for the second equation that derived by

multiplying the first by A, the second by a, and subtracting, viz.

and thus, as has been just shown, the result of elimination may
be written aP2 - bPQ + cQ* = 0, where

P= bcA - acB + a
2

D, Q = (ac- b*) A + abB- a*C.

&quot;We thus see that the curve PQ is a double curve on the surface

of centres
;

but since P is of the sixth degree and Q of the

fourth, the nodal curve PQ is of the twenty-fourth. Further

details will be found in Clebsch s paper already referred to.*

507. It is convenient to give here an investigation of some

of the characteristics of the centro-surface of a surface of the mth

order.f We denote by n the class of the surface, or the degree
of its reciprocal, which, when the surface has no multiple points,

is m (m l)
a

(see Art. 281); and we denote by a the number

of tangent lines to the surface which both pass through a given

point and lie in a given plane, which is in the same case m (m 1),

Art. 282, this characteristic being the same for a surface and

for its reciprocal.

Let us first examine the number of normals to a given surface

(bitangents to the centro-surface, see Art. 306) which can be

drawn through a given point. This is solved as the corresponding

problem for plane curves. (See Higher Plane Curves, p. 94
y

and Cambridge and Dublin Mathematical Journal, vol.
II.).

Taking the point at infinity, the number of finite normals which

can be drawn through it is the same as the number of tangent

planes which can be drawn parallel to a given one
;

that is to

say, is n. To this number must be added the number of normals

which lie altogether at infinity. Now it is easy to see that

* See also a Memoir by Prof. Cayley (Cambridge Philosophical Transactionst

vol. xii.) in which this surface is elaborately discussed. He uses the notation ex

plained, note, Art. 409, when the equations of Art. 197 become

- /SyaV (a
2 + _p) (a

2 + q),
- ya%2 = (b

2 + p)* (6
2 + $),

-
a/3c

2z2 = (e
2 +p}3

(c* + q),

a, /3, 7 having the same meaning as in Art. 206.

t This investigation is derived from a communication by M. Darboux to the

French Academy, Comptes Rendus, t. LXX. (1870), p. 1328.
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the normal corresponding to any point of the surface at infinity

lies altogether at infinity, and is the normal to the section by
the plane infinity, in the extended sense of the word normal,

Higher Plane Curves, Art. 109. The number of such normals

that can be drawn through a point in the plane is m -f a (Higher

Plane Curves, Art. Ill), since a is the order of the reciprocal

of a plane section. The total number of normals therefore that

can be drawn through any point is m + n + a] or, when the

surface has no multiple points, is m3 m* + m.

Next let us examine the number of normals which lie in a

given plane. The corresponding tangent planes evidently pass

through the same point at infinity, viz. the point at infinity on

a perpendicular to the given plane. And the corresponding

points of contact are evidently the intersections by the given

plane of the curve of contact of tangents from that point, and

are therefore in number a or m (m 1).

The normals to a surface constitute a congruency of lines

(see Art. 453), and the two numbers just determined are the

order and class of that congruency.

508. To find the locus of points on a surface, the normals

at which meet a given line,

ax -f by + cz -f d= 0, ax +
l&amp;gt;y

4- cz -f $ 0.

Substituting in these equations the values for the coordinates of

a point on the normal (Art. 273), x = x + 0U
} , y = y +QU#

z = z +6U
3 ,

and eliminating the indeterminate 6, we see that

the point of contact lies on the curve of intersection of the

given surface with

(ax + by + cz + d) (a Ut
+ VU2 + c U

s )

=
(a x + Vy + c z -f d ) (aU. + lUt + cU

a) ,

a surface also of the mth
order, and containing the given line.

The section of this curve by any plane through that line con

sists of the a points whose normals lie in the plane, and the

m points where the line meets the surface.

509. We can hence determine the class of the centro-surface.

A tangent plane to that surface contains two infinitely near
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normals to the given surface (Art. 306) ;
and therefore the

tangent planes to the centro-s-urface which pass through a

given line will touch the locus determined in the last article.

Now the number of planes which can be drawn to touch the

curve of intersection of two surfaces of the mih
order, being equal

to the rank of the corresponding developable, is (Arts. 325, 342)

m 2

(2??i 2) ; but, since in this case the line through which

the tangent planes are drawn meets the curve in m points,

this number must be diminished by 2m. The class of the

centre-surface therefore is 2m (m* m 1).

510. Darboux* investigates as follows the order of the

centro-surface. Let ^ and v be the two numbers determined

in Art. 507, viz. the order and class of the congruency formed

by the normals
;

let M and N be the order and class of the

centro-surface.

Now take any line and consider the correspondence between

two planes drawn through it such that a normal in one plane
intersects a normal in the other. Drawing the first plane

arbitrarily, any of the v normals in that plane may be taken

for the first normal, and at the point where it meets the

arbitrary line, /JL
1 other normals may be drawn

;
we see then

that to any position of one plane correspond v
(//. 1) positions

of the other. It follows then, from the general theory of

correspondence, that there will be 2v (/* 1) cases of coincidence

of the two planes. Now let us denote by x the number of

points on the line such that the line is coplanar with two of the

normals at the point ;
then the cases of coincidence obviously

answer either to points x or to points on the centro-surface,

since for each of the latter points two of the normals drawn

from it coincide. We have then

2r(/*-l)-*-fcJtf;

But in like manner consider the correspondence between

points on the line such that a normal from one is coplanar with

* Similar investigations were also made independently by Lothar Marcks. (See

Math. Annalen, vol. v.). The investigation may be regarded as establishing a general

relation (which seems to be due to Klein) between the order and class of a congruency,
and the order and class of its

&quot; focal surface
&quot;

(see Art. 456).

PPP
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a normal from the other, and we have

2yU (V
-

1)
= X + .2V,

whence M N= 2
(/* v)

and putting in the values already obtained for
/t, v, JV, we have

Jf=2m(m-l) (2m- 1).

511. The number thus found for the order of the centro-

surface may be verified by considering the section of that

surface by the plane infinity. Consider first the section of the

surface itself by the plane infinity ;
the corresponding normals

lie at infinity, and their envelope will (Higher Plane Curves,

Art. 112) be a curve of the order 3a + . And besides (as in

Art. 198) the centre-surface will include the polar reciprocal

of the section with regard to the circle at infinity. The order

of this will be a, and it will be counted three times. Consider

now the finite points of the surface. In order that one of these

should have an infinitely distant centre of curvature, two con

secutive normals must be parallel, and therefore the point must

be on the parabolic curve. It is easy to see that the normals along

the intersection of the surface by another whose order is m
,

generate a surface of the order mV
;

therefore the normals

along the parabolic curve generate a surface whose order is

4m2

(m 2). But the section of this surface by the plane

infinity includes the 4m (m 2) normals at the points where

the parabolic curve itself meets the plane infinity. The curve

locus therefore at infinity answering to finite points on the para

bolic curve is of the order 4w (m 1) (m 2). The total order

then of the section of the centre-surface by the plane infinity, is

3m (m 1) + 3m (m 1) + 4m (m 1) (m 2),

or 2m (m 1) (2m 1) as before.

51 la. In general 28 bitangents can be drawn to the centre-

surface of a quadric from any point. In fact the reciprocals

are bitangents in a plane section of the reciprocal surface

which is of the fourth degree. Mr. F. Purser* has shown

*
Quarterly Journal of Mathematics, vol. XIII., p. 338.
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that these 28 lines resolve into three groups, the six normals

which can be drawn from the point to the surface, the six

pairs of generators of the six quadrics of the system

V &y cV
-f

.
y

. ^ _- \

which pass through the point, and the ten synnormals through the

point. To explain what these last are
;
the six feet of normals

from any point to a quadric may be distributed in ten ways into

pairs of threes, each three determining a plane. The two planes of

a pair are simply related and besides each plane touches a surface

of the fourth class, or, in other words, the pole of such a plane
with regard to the quadric moves on a surface of the fourth

degree, to which the name normopolar surface has been

given. The analysis which establishes this, easily shows that

three intersecting normals to the quadric at points of such

a plane section meet in a point which describes a definite

right line when the plane section remains unaltered, which

locus line corresponding to any two correlated planes satisfying

the condition of the fourth order, is called a synnormal.
There are therefore ten synnormals through a point.*

512. Parallel Surfaces. We have discussed, p. 176, the

problem of finding the equation of a surface parallel to a

quadric, and we investigate now the characteristics of the parallel

to a surface of the w
m

order. We confine ourselves to the case

when the surface has no special relation to the plane or circle at

infinity. The same principles are used as in the corresponding

investigation for plane curves, which see Higher Plane Curves^

p. 101. The order of the parallel is found by making k the

modulus = in its equation, which will not affect the terms of

* In 1862 M. Desboves published his &quot; Theorie nouvelle des normales aux surfaces

du second ordre,&quot; in which the locus line and the related surface are discussed under

the names synnormal and normopolar surface. Mr. Purser independently arrived

at the same results (Quarterly Journal, vol. vin., p. G6) and showed the equivalence

of the relation of the fourth order with the invariant relation in piano that three

feet of normals from a point to a quadric form a triangle inscribed in one and

circumscribed to another given conic; and gave a construction for any synnormal

through a point.
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highest degree in the equation. The result will represent the

original surface counted twice, together with the developable

enveloped by the tangent planes* to the surface drawn through

the tangent lines of the circle at infinity, this developable

answering to the tangents from the foci of a plane curve

(Art. 146). Now it will be seen (Chap. xvn. post.} that the

rank of a developable enveloping a surface and a curve is

nrn -f a/, where a, w, are characteristics of the surface and w
,
/

of the curve. In the present case m r = 2, and the rank of

the developable is 2 (n + a). The order of the parallel surface

is therefore 2 (m -f n -f a) or 2 (m
3 m* + m) ;

in other words it

is double the number of normals that can be drawn from a

point to the surface (Art. 507).

513. If the equation of the tangent plane to a surface be

cnx + /3y + 72 -f S = 0, and if the surface be given by a tangential

equation between a, /3, 7, S, then the corresponding equation of a

parallel surface is got by writing in this equation for S, 8 -f kp,

where p
2 = a? + ft

2 +
&amp;lt;y

2
. This equation cleared of radicals will

ordinarily be of double the degree of the primitive equation ;

hence, the class of a parallel is in general double the class

of the primitive. More generally, &quot;to a cylinder enveloping

the primitive corresponds a cylinder enveloping the parallel

surface, and being the parallel of the former cylinder. Hence

the characteristics of the general tangent cone to the parallel

are derived from those of the general tangent cone to the

primitive by the rules for plane curves (Higher Planes Curves,

Art. Mia). Thus then, since (Art. 279 et sey.) we have for the

tangent cone to the primitive,

K, 3m (m 1) (in 2), i 4m (m l)(m- 2),

we have for the tangent cone to the parallel (Higher Plane

Curves^ 1, e.)

K = 2m (m 1) (4m 5), i = Sm (m I) (m 2).

* It is to be noted that every parallel to any of these planes coincides with the

plane itself. The paper of Mr. S. Roberts which I use in this article is in

Proceedings of the London Mathematical Society, 1873.



PARALLEL SURFACES. 477

Again, the reciprocal of a parallel surface is of the order 2??,

having a cuspidal curve of the order S?n (m 1) (m 2), aud

a nodal of the order

m (m
-

1) (2??i

4 - 6??i
3 + 6m2 - 16m + 25).

The parallel surface will ordinarily have nodal and cuspidal

curves. In fact, since the equation of the parallel surface may
also be regarded as an equation determining the lengths of the

normals from any point to the surface, if we form the dis

criminant of this with regard to k (see Conies, p. 337), it will

include a factor which will represent a surface locus, from each

point of which two distinct normals of equal length can be

drawn to the surface. Such a point will be a double point

on the parallel surface whose modulus is equal to this length.

In like manner, each parallel surface will have a determinate

number of triple points. The discriminant just mentioned will

also include a factor representing the surface of centres
;
and

plainly to those points on the primitive at which a principal

radius of curvature is equal to the modulus, will correspond

points on the surface of centres which will form a cuspidal
curve on the parallel surface. Mr. Roberts determines the

order of the cuspidal curve as double that of the surface of

centres, and confirms his result by observing, that in the

limiting case k = co
,
the locus of points on the surface of centres

for which a principal radius of curvature =
&, is the section of

the surface of centres by the plane infinity, counted twice, since

k may be oo . The singularities of the parallel surface here

assigned are sufficient to determine the remainder by the help
of the general theory of reciprocal surfaces hereafter to be

explained.

In the case of the parallel to a quadric, it appears from what
has been stated, that the reciprocal is of the fourth order, and

having no cuspidal curve, but having a nodal conic. The

parallel itself is of the twelfth order
;

its cuspidal curve is of the

twenty-fourth order, being the complete intersection of a quartic
with a sextic surface. The nodal curve is of the twenty-sixth

order, and includes five conies, one in each of the principal

planes, and two in the plane infinity, namely, the section of the

quadric itself and the circle at infinity. The remainder of the
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nodal curve consists of 16 right lines, each meeting the circle at

infinity.*

514. Pedals. The locus of the feet of perpendiculars let

fall from any fixed point on the tangent planes of a surface,

is a derived surface to which French mathematicians have

given a distinctive name,
&quot;

podaire,&quot;
which we shall translate

as the pedal of the given surface. From the pedal may,
in like manner, be derived a new surface, and from this

another, &c., forming a series of second, third, &c., pedals.

Again, the envelope of planes drawn perpendicular to the radii

vectores of a surface, at their extremities, is a surface of which

the given surface is a pedal, and which we may call the first

negative pedal. The surface derived in like manner from this is the

second negative pedal, and so on. Pedal curves and surfaces have

been studied in particular by Mr. W. Roberts, Liouville, vols. x.

and XII., by Dr. Tortolini, and by Dr. Hirst, Tortolini s Annali,

vol. II., p. 95
;

see also the corresponding theory for plane

curves, Higher Plane Curves, Art. 121. We shall here give

some of their results, but must omit the greater part of them

which relate to problems concerning rectification, quadrature,

&c., and do not enter into the plan of this treatise. If Q be

the foot of the perpendicular from on the tangent plane

at any point P, it is easy to see that the sphere described on

the diameter OP touches the locus of Q; and consequently

the normal at any point Q of the pedal passes through the

middle point of the corresponding radius vector OP. It imme

diately follows hence, that the perpendicular OR on the tangent

plane at Q lies in the plane POQ, and makes the angle

&amp;lt;QOR
= POQ, so that the right-angled triangle QOR is similar

to POQ] and if we call the angle QOR, a, so that the first

perpendicular OQ is connected with the radius vector by the

equation p = pcosa, then the second perpendicular OR will be

p cos
2

a, and so on.f

* The parallel to a curve in space might also have been discussed. This is a

tubular surface.

f Thus the radius vector to the wth
pedal is of length p cos&quot;a, and makes with the

radius vector to the curve the angle no. Using this definition of the method of
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It is obvious that if we form the polar reciprocals of a curve

or surface A and of its pedal B, we shall have a curve or surface a

which will be the pedal of b
; hence, if we take a surface S

and its successive pedals $,, $2 ,
&quot;$ *ne reciprocals will be

a series
,
S ^, _2 ,

.$ _, those derived in the latter case

being negative pedals.

It is also obvious that the first pedal is the inverse of the

polar reciprocal of the given surface (that is to say, the surface

derived from it by substituting in its equation, for the radius

vector, its reciprocal) ;
and that the inverse of the series S

19

S
t ,

...Sn will be the series S
,
S ^, ... __,.

515. Inverse Surfaces. As we may not have the oppor

tunity to return to the general theory of inversion, we give in

this place the following statement (taken from Hirst, Tortolini^

vol. II., p. 165) of the principal properties of inverse surfaces

(see Higher Plane Curves, Arts. 122, 281).

(1) Three pairs of corresponding points on two inverse

surfaces lie on the same sphere, (and two pairs of corresponding

points on the same circle) which cuts orthogonally the unit

sphere whose centre is the origin.

(2) By the property of a quadrilateral inscribed in a circle

the line ab joining any two points on one curve makes the

same angle with the radius vector Oa, that the line joining
the corresponding points ab makes with the radius vector Ob .

In the limit then, if ab be the tangent at any point a, the

corresponding tangent on the inverse curve makes the same

angle with the radius vector.

-
(3) In like manner for surfaces, two corresponding tangent

planes are equally inclined to the radius vector, the two cor

responding normals lying in the same plane with the radius

vector, and forming with it an isosceles triangle whose base

is the intercepted portion of the radius vector.

derivation, Mr. Roberts has considered fractional derived curves and surfaces.

Thus for n = %, the curve derived from the ellipse is Cassini s oval. At)

analogous surface may be derived from the ellipsoid.
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(4) It follows immediately from (2), that the angle which two

curves make with each other at any point is equal to that which

the inverse curves make at the corresponding point.

(5) In like manner it follows from (3), that the angle which

two surfaces make with each other at any point is equal to that

which the inverse surfaces make at the corresponding point.

(6) The inverse of a line or plane is a circle or sphere

passing through the origin.

(7) Any circle may be considered as the intersection of a

plane, and a sphere A through the origin. Its inverse, there

fore, is another circle, which is a sub-contrary section of the

cone whose vertex is the origin, and which stands on the given
circle.

(8) The centre of the second circle lies on the line joining

the origin to a, the vertex of the cone circumscribing the sphere

A along the given circle. For a is evidently the centre of

a sphere B which cuts A orthogonally. The plane, therefore,

which is the inverse of A cuts B the inverse of B orthogonally,

that is to say, in a great circle, whose centre is the same as

the centre of B . But the centres of B and of B f

lie in a right

line through the origin.

(9) To a circle osculating any curve, evidently corresponds

a circle osculating the inverse curve.

(10) For inverse surfaces, the centres of curvature of two

corresponding normal sections lie in a right line with the origin.

To the normal section a. at any point m corresponds a curve

a situated on a sphere A passing through the origin ;
and

the osculating circle c of a is the inverse of c the osculating

circle of a. If now a
t
be the normal section which touches

of at the point m , then, by Meunier s theorem, the centre of

c is the projection on its plane of the centre of c
1
the oscu

lating circle of ar But the normal mc
l evidently touches the

sphere A at m
,
so that c

l
is the vertex of the cone circum

scribed to A along c
,
and theorem (10) therefore follows from

theorem (8).

(11) To the two normal sections at m whose centres of

curvature occupy extreme positions on the normal at m
:

will
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evidently correspond two sections enjoying the same pro

perty ;
therefore to the two principal sections on one surface

correspond two principal sections on the other, and to a line

of curvature on one, a line of curvature on the other.*

In the case where the surface has no special relation to the

plane or circle at infinity it is easy to see, as at Higher Plane

Curves, p. 106, that the inverse of a surface is of the order 2wz,

and class 3m + 2a -f n = m3 + 2?n, that it passes m times through
the origin and m times through the circle at infinity; and

hence that the order and class of the first pedal are 2?z,

m + 2a + 3n, and of the first negative pedal 3?&amp;gt;z + 2a + n and 2m.

x*
516. The first pedal of the ellipsoid 2 + j? + -5

=
!, being

the inverse of the reciprocal ellipsoid, has for its equation

This surface is Fresnel s
&quot; Surface of Elasticity.

&quot; The inverse

of a system of confocals cutting at right angles is evidently a

system of surfaces of elasticity cutting at right angles ;
the

lines of curvature therefore of the surface of elasticity are

determined as the intersection with it of two surfaces of the

same nature derived from concyclic quadrics.

The origin is evidently a double point on this surface, and

the imaginary circle in which any sphere cuts the plane at

infinity is a double line on the surface.

517. Prof. Cayley first obtained the equation of the first

negative pedal of a quadric, that is to say, of the envelope

* Dr. Hart s method of obtaining focal properties by inversion (explained Higher
Plane Curves, Art. 281) is equally applicable to curves in space and to surfaces. The
inverse of any plane curve is a curve on the surface of a sphere, and in particular

the inverse of a plane conic is the intersection of a sphere with a quadric cone. And
as shown (Higher Plane Curves, Art. 281) from the focal property of the conic

p + p = const, is inferred a focal property of the curve in space lp + mp + np&quot;
= 0.

So, in like manner, the inverse of a bicircular quartic is a curve in space with similar

focal properties. (See Casey on Cyclides and Sphero-Quartics. Phil. Trans., vol. 161
;

Darboux Sur tine classe remarquable de courbes et de surfaces algebriques). A surface

which is its own inverse with regard to any point has been called an anallaymatie
surface.

QQQ
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of planes drawn perpendicular to the central radii at their

extremities. It is evident that if we describe a sphere passing

through the centre of the given quadric, and touching it at

any point xyz ,
then the point xyz on the derived surface

which corresponds to x y z is the extremity of the diameter

of this sphere, which passes through the centre of the quadric.

We thus easily find the expressions

t

where t = x

Solving these equations for #
, y\ z and substituting their

values in the two equations
ft fi /2

xx + yy + zz ^x^ + y^ + z
*, 4.8^4 %=1,doc

X* if Z*
we get + +

a? y* z*

Now the second of these equations is the differential, with

respect to
,

of the first equation ;
and the required surface

is therefore represented by the discriminant of that equation,

which we can easily form, the equation being only of the fourth

degree. If we write this biquadratic

it will be found that A and B do not contain a?, #, z, while

(7, .D, E contain them, each in the second degree. Now the

discriminant is of the sixth degree in the coefficients, and is

of the form A$ + Wty ; consequently it can contain
a?, y^ z

only in the tenth degree. This therefore is the degree of the

surface required.

It appears, as in other similar cases, that the section by one

of the principal planes z consists of the discriminant of

-
-, 2 - =-

a o
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which is a curve of the sixth degree, and is the first negative

pedal of the corresponding principal section of the ellipsoid,

together with the conic, counted twice, obtained by writing
t = 2c

2

j
in the last equation. This conic, which is a double curve

on the surface, touches the curve of the sixth degree in four

points. The double points on the principal planes evidently
answer to points on the ellipsoid, for which t = x &quot; 4 y

* + z
2 = 2a

2

or 2b
2
or 2c

2
. There is a cuspidal conic at infinity, and, besides,

a finite cuspidal curve of the sixteenth degree.

The reader will find (Philosophical Transactions, 1858, and

Tortolini, vol. II., p. 168) a discussion by Prof. Cayley of the

different forms assumed by the surface and by the cuspidal and

nodal curves according to the different relative values of a
2

,
Z&amp;gt;

2

,
c\

518. Mr. W. Roberts has solved the problem discussed

in the last article in another way, by proving that the problem
to find the negative pedal of a surface is identical with that

of forming the equation of the parallel surface. The former

problem is to find the envelope of the plane

xx + yy 4 zz = x 2 + y
2
4 z \

where as
, y ,

z satisfy the equation of the surface. The second

problem, being that of finding the envelope of a sphere whose

centre is on the surface and radius =
A*,

is to find the envelope of

or 2xx 4 2yy + 2zz = x2
4 y* 4 z* - k* + x* + y

2 + z
2
.

Now in finding this envelope the unaccented letters are treated

as constants, and it is evident that both problems are particular

cases of the problem to find, under the same conditions, the

envelope of

ax 4 ly 4 cz = x&quot;

2
+ y

2 + z&quot;

2 + d.

It is also evident that if we have the equation of the parallel

surface, we have only to write in it for U\ x
2

4 y* 4 z
2

,
and

then \x, Jy, \z for
a:, y, z

;
when we have the equation of the

negative pedal. Thus having obtained (p. 176) the equation
of the parallel to a quadric, we can find, by the substitutions

here explained, the equation of the first negative, the origin
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being anywhere, as easily as when the origin is the centre.

Further, if we write for &, k + k
,
and then make the same

substitution for &, we obtain the hrst negative, the origin being

anywhere, of the parallel to the quadric, a problem which it

would probably not be easy to solve in any other way.

Having found, as above, the equation of the first negative

of a quadric, we have only to form its inverse, when we have

the equation of the second positive pedal of the reciprocal

quadric (Art. 514).

Ex. 1. To find the envelope of planes drawn perpendicularly at the extremities

of the radii vectores to the plane ax + by + cz + d.

Here the parallel surface consists of a pair of planes, whose equation is

(ax + by + cz + rf)
2 = &2

,
that of the envelope is therefore

(ax + by + cz + 2d)
2 = x2 + y

2 + z2.

Ex. 2. To find, in like manner, the first negative of the sphere

(*-a)
2 +(y-/3) 2 + (z-y)

2 = r2.

The parallel surface consists of the pair of concentric spheres

(x
-

a)
2 + (y

-
/3)

2
-f (z

-
y)

2 = (r *).

The envelope is therefore

(x
-

2a)
2 + (y

-
2/3)

2 + (z
-

2y) = {2r J(*
2 + y* + *2)}

9
,

which denotes a quadric of revolution.
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CHAPTER XV.

SURFACES OF THE THIRD DEGREE.

519. THE general theory of surfaces, explained Chap. XI.,

gives the following results, when applied to cubical surfaces.

The tangent cone whose vertex is any point, and which en

velopes such a surface, is,
in general, of the sixth degree, having

six cuspidal edges and no ordinary double edge. It is con

sequently of the twelfth class, having twenty-four stationary,

and twenty-seven double tangent planes. Since then through

any line twelve tangent planes can be drawn to the surface,

any line meets the reciprocal in twelve points ;
and the reciprocal

is, in general, of the twelfth degree. Its equation can be

found as at Higher Plane Curves^ Art. 91. The problem is the

same as that of finding the condition that the plane

ax + fty + 70 -f Bw

should touch the surface. Multiply the equation of the surface

by S
3

,
and then eliminate &w by the help of the equation of

the plane. The result is a homogeneous cubic in
a;, y, z,

containing also a, /9, 7, S in the third degree. The discriminant

of this equation is of the twelfth degree in its coefficients,

and therefore of the thirty-sixth in a, $, 7, 8
;
but this consists of

the equation of the reciprocal surface multiplied by the

irrelevant factor S
24

. The form of the discriminant of a homo

geneous cubical function in #, */,
z is 64$ 3 + T 8

(Higher Plane

Curves, Art. 224). The same, then, will be the form of the re

ciprocal of a surface of the third degree, S being of the fourth,

and T of the sixth degree in a, $, 7, S; (that is to say, S
and T are contravariants of the given equation of the above

degrees). It is easy to see that they are also of the same

degrees in the coefficients of the given equation.
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520. Surfaces may have either multiple points or multiple

lines. When a surface has a double line of the degree p,

then any plane meets the surface in a section having p double

points. There is, therefore, the same limit to the degree of

the double curve on a surface of the n
th

degree that there is

to the number of double points on a curve of the n* degree.

Since a curve of the third degree can have only one double

point, if a surface of the third degree has a double line, that

line must be a right line.* A cubic having a double line is

necessarily a ruled surface, for every plane passing through

this line meets the surface in the double line, reckoned twice,

and in another line; but these other lines form a system of

generators resting on the double line as director. If we make

the double line the axis of z, the equation of the surface will

be of the form

(ax
5 + 3bx*y + Sexy* + dy

3

) + z (ax* + 2b xy + cy*)

4(aV + 2&&quot;^ + c y) = 0,

which we may write u
s
+ zu^ + v,2

= 0. At any point on the

double line there will be a pair of tangent planes z w
2
+ v

2
= 0.

But as z varies this denotes a system of planes in involution

(Conies, Art. 342). Hence the tangent planes at any point on the

double line are two conjugate planes of a system in involution.

There are two values of z
,
real or imaginary, which will

make z u
z
4- vz

a perfect square ;
there are, therefore, two points

on the double line at which the tangent planes coincide
;
and

any plane through either of them meets the surface in a section

having this point for a cusp. If the values of these squares

be X* and F 2

,
it is evident that u

2
and v

z
can each be expressed

in the form IX* + m Y 2
. If, then, we turn round the axes so

as to have for coordinate planes the planes Jf, T, that is to

say, the tangent planes at the cuspidal points, then every term

* If a surface have a double or other multiple line, the reciprocal formed by
the method of the last article would vanish identically j

because then every plane

meets the surface in a curve having a double point, and, therefore, the plane

ax + fiy + yz + Sw is to be considered as touching the surface, independently of

any relation between a, /3, y, d. The reciprocal can be found in this case by

eliminating x, y, z, w between u = 0, a = u
lt ft

=
t&amp;lt;2, y = ws ,

d = 4.
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in the equation will be divisible by either x* or ?/

2

,
and the

equation may be reduced to the form zx* = wy*.*

In this form it is evident that the surface is generated by
lines y = \x, z = \*w, intersecting the two directing lines xy,

zw and the generators join the points of a system on zw

to the points of a system in involution on xy, homographic
with the first system. Any plane through zw meets the surface

in a pair of right lines, and is to be regarded as touching the

surface in the two points where these lines meet zw. Thus,

then, as the line xy is a line, every point of which is a double

point, so the line zw is a line, every plane through which is

a double tangent. The reciprocal of this surface, which is

that considered Art. 468, is of like nature with itself.

The tangent cone whose vertex is any point, and which

envelopes the surface, consists of the plane joining the point

to the double line, reckoned twice, and a proper tangent cone

of the fourth order. When the point is on the surface the

cone reduces to the second order.

521. There is one case, to which my attention was called

by Prof. Cayley, in which the reduction to the form zxz = wy*
is not possible. If u^ and v

2 ,
in the last article, have a common

factor, then choosing the plane represented by this for one of

the coordinate planes, we can easily throw the equation of

the surface into the form ?/

3 + x (zx -f icy]
= 0.

The plane x touches the surface along the whole length of

the double line, and meets the surface in three coincident right
lines. The other tangent plane at any point coincides with

the tangent plane to the hyperboloid zx + wy. This case may
be considered as a limiting case of that considered in the last

* It is here supposed that the planes X, Y, the double planes of the system in

involution, are real. &quot;We can always, however, reduce to the form w (x
2

y-) + 2zxy,
the upper sign corresponding to real, and the lower to imaginary, double planes.
In the latter case the double line is altogether really&quot;

in the surface, every

plane meeting the surface is a section having the point where it meets the line

for a real node. In the former case this is only true for a limited portion of the

double line, sections which meet it elsewhere having the point of meeting for a con

jugate point, the two cuspidal points marking these limits on the double line.

A right line, every point of which is a cusp, cannot exist on a cubic unless when
the surface is a cone.
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article; viz., when the double director xy coincides with the

single one wz. The following generation of the surface may
be given : Take a series of points on xy, and a homograph ic

series of planes through it, then the generator of the cubic

through any point on the line lies in the corresponding plane,

and may be completely determined by taking as director a

plane cubic having a double point where its plane meets the

double line, and such that one of the tangents at the double

point lies in the plane which corresponds to the double point

considered as a point in the double line.*

522. The argument which proves that a proper cubic curve

cannot have more than one double point does not apply to

surfaces. In fact, the line joining two double points, since it

is to be regarded as meeting the surface in four points, must

lie altogether in the surface
;
but this does not imply that the

surface breaks up into others of lower dimensions. The con

sideration of the tangent cone, however, supplies a limit to the

number of double points on the surface. We have seen

(Art. 279) that the tangent cone is of the sixth degree, and

has six cuspidal edges, and it is known that a curve of the sixth

degree having six cusps can have only four other double points.

Since, then, every double point on the surface adds a double edge
to the tangent cone, a cubical surface can at most have four

double points.

It is necessary to distinguish the various kinds of node which

the surface may possess. (A) At an ordinary nodef (Art. 283)

the tangent plane is replaced by a quadric cone. The line

joining the node to any assumed point, is, as has been said,

a double edge of the tangent cone from the latter point ;
and

since to the tangent cone from any point corresponds a plane

section of the reciprocal surface, this double edge evidently

reduces by two the order of the reciprocal, or the class of the

given surface. (B) The quadric cone may degenerate into a

* The reader is referred to an interesting geometrical memoir on cubical ruled

surfaces by Cremona,
&quot; Atte del Reale Institute Lombardo,&quot; vol. II., p. 291.

t Prof. Cayley calls the kind of node here considered a cnic-node, and it is

referred to accordingly as C.,.
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pair of planes. Such a node may be called a binode; the

planes the biplanes, and their intersection the edge. In the case

first considered, it is easy to see that the tangent planes to

any tangent cone along its double edge are the planes drawn

through this line to touch the nodal cone. AVhen, therefore,

the nodal cone reduces to two planes, these tangent planes

coincide, and the line to the binode is a cuspidal edge of the

tangent cone. A binode, therefore, ordinarily reduces the class

of the surface by three. A cubic cannot have more than three

binodes, since a proper sextic cone cannot have more than nine

cuspidal edges. But there may be special cases of binodes.

(I) At an ordinary binode B
z
the edge does not lie on the

surface
;
but if it does, the binode is special B^ and reduces the

class of the surface by four. Thus, let xyz be the binode, cc, y
the biplanes, the general equation of the surface will be of the

form u
3
-f xy = 0, where u

3
c z

3
-f Sc^x + 3c

2
2
2

?/ + &c. The
case where C

Q
= is the special one under consideration. This

kind of binode may be considered as resulting from the union of

two conical nodes. (2) In the special case last considered, the

surface is touched along the edge by a plane cjc + c^, which

commonly is distinct from one of the biplanes j
but it may

coincide with one of them, that is to say, we may have either

c, or c, = 0. In this case, the binode BK reduces the class of
I i I o

the surface by five. Such a point may be considered as re

sulting from the union of a conical node and binode. (3) Lastly,

we may have either x or y a factor in u
3,
and we have then

a binode B
Q ,

which may be regarded as resulting from the

union of three conical nodes, and which reduces the class of the

surface by six. In this case the edge is said to be oscular*

(C) The two biplanes may coincide, when we have what may
be called a unode U# which reduces the class of the surface by
six

;
the equation then being reducible to the form w

3 -f a
2 = 0.

* In general, if a surface is touched along a right line by a plane, the right line

counts twice as part of the complete intersection of the surface by the plane, the

remaining intersection being of the order n 2. The line may, however, count three

times, the remaining intersection being only of the order n 3. Prof. Cayley calls

the line torsal in the first case, oscular in the second. He calls it scrolar if the surface

merely contain the right line, in which case there is ordinarily a different tangent

plane at each point of the line.

RRR



490 SURFACES OF THE THIRD DEGREE.

The uniplane x meets the surface in three right lines, which

are commonly distinct
;
but either, two of these may coincide,

or all three may coincide, when we have special cases of unodes,

U^ Us
which reduce the class of the surface by seven and eight

respectively. U
K may be regarded as equivalent to three

conical nodes, U7
to two conical and a binode, Z7

8
to two binodes

and a conical.

523. Distinguishing cubic surfaces according to the singu

larities described in the preceding articles, we can enumerate

twenty-three possible forms of cubics, which are exhibited in

the following table :

I, 2, 3, 4, 5, 6, 7, 8, 9, 10,

class 12, 10, 9, 8, 8, 7, 7, 6, G, 6,

singularities 0, (7
2 ,

J?
8 ,

2 Ca B4J
B

z
+ &amp;lt;7

2 ,
Ba 3 &amp;lt;7

2 ,
2

3 ,
B

4 + &amp;lt;7

2 ,

II, 12, 13, 14, 15, 16, 17, 18,

class 6, 6, 5, 5, 5, 4, 4, 4,

singularities B& ,
U

6 , Bj 20,, 5 4-&amp;lt;7
2 ,

Z7
7l 40,, 2

3
4- 0,, 54+20,,

19, 20, 21,

class 4, 4, 3,

singularities B
&
+ (7

2 , U# 3#
3
.

These are the various possible combinations of nodal points ;

and the number twenty-three is completed by the two kinds of

ruled surfaces or scrolls described Arts. 520, 521, each of

which is of the third class.*

,
Ex. 1. What is the degree of the reciprocal of xfiz = w3 ?

Ans. There are three biplanar points in the pla,ne w, and the reciprocal is a cubic.

Ex. 2. What is the reciprocal of -+- + -+^- = 0?
x y z w

Ans. This represents a cubic having the vertices of the pyramid xyzio for double

points ;
and the reciprocal must be of the fourth degree.

* The effect of the nodes C.2 ,
J23 ,

L
T

S on the class of the surface was pointed out

by me, Cambridge and Dublin Mathematical Journal, 1847, vol. II., p. 65
;
and the

twenty-seven right lines on the surface were accounted for in each case where we
have any combination of these nodes, Cambridge and Dublin Mathematical Journal,

1849, vol. iv., p. 252. The special cases Bv B5 ,
B6 ,

U
7 ,
U8 were remarked by Schlafli,

Phil. Trans, 1863, p. 201. See also Prof. Cayley s Memoir on Cubic Surfaces,

Phil. Trans., 1869. pp. 231-326.
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The equation of the tangent plane at any point x y z w can be thrown into the

ence it follows t

ax + (3y + yz +

form 7- + T* + -f -f. = 0, whence it follows that the condition that
3

should be a tangent plane is

(la^+(m^ + (ny^+(pc^ =
0,

an equation which, cleared of radicals, is of the fourth degree.* Generally the re

ciprocal of ax* + by* + cz* + dwn is of the form

Cy&quot;

1 + D8 1 = 0,

(Hiyher Plane Curves, p. 73).

The tangent cone to this surface, whose vertex is any point on the surface,

being of the fourth degree, and having four double edges, must break up into

two cones of the second degree.

A cubic having four double points is also the envelope of

aa~ + b(F + cy~ + 2l(3y + 2mya + 2na(3,

where a, b, c, I, m, n represent planes ;
and a : y, /3 : y are two variable parameters.

It is obvious that the envelope is of the third degree ;
and it is of the fourth class

;

since if we substitute the coordinates of two points we can determine four planes

of the system passing through the line joining these points.

Generally the envelope of aa* + b(3
H + &c. is of the degree 3 ( I)

2 and of the

class n-. The tangent cone from any point is of the degree 3n (n 1). It has a

cuspidal curve whose order is the same as the order of the condition that U + \.V

may represent a plane curve having a cusp, U and V denoting plane curves of the

wth order; or, in other words, is equal to the number of curves of the form

U+ \V+ fj.W which can have a cusp. The surface has a nodal curve whose

order is the same as the number of curves of the form U+ \V + f*.W which can

have two double points. For these numbers, see Hightr Algebra, Lesson xvm.

524. The equation of a cubic having no multiple point may
be thrown into the form ax* -f by* + cz* -f dv

3 + ew* = 0, where

#, y, z, v, w represent planes, and where for simplicity we

suppose that the constants implicitly involved in
cc, y, &c. have

been so chosen, that the identical relation connecting the equa
tions of any live planes (Art. 38) may be written in the form

x + y + z + v+ w = Q. In fact, the general equation of the third

degree contains twenty terms, and therefore nineteen independent

*
&quot;Writing x, y, z,w in. place of la, mft, ny, ^j&amp;lt;5 respectively, the equation of the

reciprocal surface is

^) + 4(y) + ^) + ^) =
o,

which rationalised is

(3? + y- + z- + w- 2yz 2zx 2xy 2xio 2yw 1zw)
z

G-lxyzw = 0,

the surface commonly known as Steiner s quartic. It has three double lines meeting
in a point ; every tangent plane cuts it in two conies, &c. : its properties have been

studied by Kummer, Weierstrass, Schroter, Cremona (see Crelle, vols. G3. 64), and
more recently in a memoir by F. Gerbaldi, Turin, 1881.
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constants, but the form just written contains five terms and,

therefore, four expressed independent constants, while, besides,

the equation of each of the five planes implicitly involves three

constants. The form just written, therefore, contains the same

number of constants as the general equation. This form given

by Mr. Sylvester in 1851 (Cambridge and Dublin Mathematical

Journal, vol. VI., p. 199) is very convenient for the investi

gation of the properties of cubical surfaces in general.*

525. If we write the equation of the first polar of any point

with regard to a surface of the n
n

order,

xL + /If+ z N+ w P= 0,

then, if it have a double point, that point will satisfy the

equations

ax
r +% 4 gz + lw =

0, hx + ly + fz -f mw =
0,

gx
f

-f// + cz + nwf =
0, Ix + my -f nz + dwf =

0,

where a, &, &c. denote second differential coefficients corre

sponding to these letters, as we have used them in the general

equation of the second degree. Now, if between the above

equations we eliminate x y z w
,
we obtain the locus of all points

which are double points on first polars. This is of the degree
4 (n 2), and

is,
in fact, the Hessian (Art. 285). If we eliminate

the xyzw which occur in a, &, &c., since the four equations
are each of the degree (n 2), the resulting equation in x y z w
will be of the degree 4 (n 2)

3

,
and will represent the locus of

* It was observed (Higher Plane Curves, Art. 25) that two forms may apparently
contain the same number of independent constants, and yet that one may be less

general than the other. Thus, when a form is found to contain the same number
of constants as the general equation, it is not absolutely demonstrated that the general

equation is reducible to this form
;
and Olebsch has noticed a remarkable exception in

the case of curves of the fourth order (see note, Art. 235). In the present case, though
Mr. Sylvester gave his theorem without further demonstration, he states that he was in

possession of a proof that the general equation could be reduced to the sum of five cubes,

and in but a single way. Such a proof has been published by Clebsch (Crelle, vol. Lix.,

p. 193). See also Gordan Math. Annalen. v. 341
;
and on the general theory of cubic

surfaces Cremona, Crelle, vol. 68
; Sturm, Synthetische Untersuchunffen iiber Fliichen

dritter Ordnung. Clebsch erroneously ascribes the theorem in the text to Steiner,

who gave it in the year 1856 (Crelle, vol. Lin., p. 133) ;
but this, as well as Steiner s

other principal results, had been known in this country a few years before.
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points whose first polars have double points. Or, again, H is

the locus of points whose polar quadrics are cones, while the

second surface, which (see Higher Plane Curves, Art. 70) may be

called the Steinerian, is the locus of the vertices of such cones.

In the case of surfaces of the third degree, it is easy to see that

the four equations above written are symmetrical between xyzw
and xy z w

; and, therefore, that the Hessian and Steinerian

are identical. Thus, then, if the polar quadric of any point A
with respect to a cubic be a cone whose vertex is B, the polar

quadric ofB is a cone whose vertex is A. The points A and B
are said to be corresponding points on the Hessian (see Higher
Plane Curves, Art. 175, &c.).

526. The tangent plane to the Hessian of a cubic at A is the

polar plane ofB with respect to the cubic. For if we take any

point A consecutive to A and on the Hessian, then since the

first polars of A and A are consecutive and both cones, it

appears (as at Higher Plane Curves, Art. 178) that their inter

section passes indefinitely near B, the vertex of either cone;
therefore the polar plane of B passes through AA and, in

like manner, it passes through every other point consecutive

to A. It is, therefore, the tangent plane at A. And the

polar plane of any point A on the Hessian of a surface of any

degree is the tangent plane of the corresponding point B on the

Steinerian. In particular, the tangent planes to U along the para
bolic curve are tangent planes to the Steinerian ; that is to say,

in the case of a cubic the developable circumscribing a cubic

along the parabolic curve also circumscribes the Hessian. If

any line meet the Hessian in two corresponding points A, B,
and in two other points C, D, the tangent planes at A, B inter

sect along the line joining the two points corresponding to C, D.

527. We shall also investigate the preceding theorems by
means of the canonical form. The polar quadric of any point
with regard to ax3 + by

3 + cz
3
-f dv

3 + ew* is got by substituting

for w its value (x -t- y + z + v) ,
when we can proceed according

to the ordinary rules, the equation being then expressed in

terms of four variables. We thus find for the polar quadric
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ax x* + by y
i

4- cz z* + dvv* + ew w* 0. If we differentiate this

equation with respect to #, remembering that dw = -
dx, we

get axx ew w
;
and since the vertex of the cone must satisfy

the four differentials with respect to
a?, y, z, v, we find that

the coordinates a/, y ,
z

,
v

,
wf

of any point A on the Hessian

are connected with the coordinates
a?, ?/, 2, v, w; of J5, the

vertex of the corresponding cone, by the relations

axx =
l&amp;gt;yy

= cz z dvv = ew w.

And since we are only concerned with mutual ratios of co

ordinates, we may take 1 for the common value of these quan

tities and write the coordinates of B, -. . -=. , -. , -r-. , 7 .

ax by
J
cz dv 7 ew

Since the coordinates of B must satisfy the identical relation

x }- y + z + v + w = 0, we thus get the equation of the Hessian11111
T 2~ T 4

7&quot; ^jax by cz dv ew

or bcdeyzvw + cdeazvwx + deabvwxy + eabcwxyz + abcdxyzv = 0.

This form of the equation shows that the line vio lies altogether

in the Hessian, and that the point xyz is a double point on the

Hessian
;
and since the five planes x, y, z, V, w give rise to

ten combinations, whether taken by twos or by threes, we have

Sylvester s theorem that the five planes form a pentahedron
whose ten vertices are double points on the Hessian and whose

ten edges lie on the Hessian. The polar quadric of the point

xyz is dv v* -1- ewV, which resolves itself into two planes inter

secting along vWj any point on which line may be regarded
as the point B corresponding to xyz ; thus, then, there are ten

points whose polar quadrics break up into pairs of planes ; these

points are double points on the Hessian^ and the intersections of
the corresponding pairs of planes are lines on the Hessian. It

is by proving these theorems independently* that the reso

lution of the given equation into the sum of five cubes can

be completely established.

* It appears from Higher Algebra, Lesson xvui., that a symmetric determinant

of p rows and columns, each constituent of which is a function of the nth order in

the variables, represents a surface of the np degree having %p (p
2

1) n3 double

points; and thus that the Hessian of a surface of the w1
degree always has

10 (n
-

2)
3 double points.
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The equation of the tangent plane at any point of the

Hessian may be written

x y z v 10
i

y i
. _L i/it rj * & i* **/u i i /a 2 7 2 /a

v
)ax

fry
cz av ew

which, if we substitute for x . , . &c., becomes
ax

ax zx + by*y + cz
2
z -f efo^t + CH^W = 0,

but this is the polar plane of the corresponding point with

regard to U.

528. If we consider all the points of a fixed plane, their

polar planes envelope a surface, which (as at Higher Plane

Curves, Art. 184) is also the locus of points whose polar quadrics
touch the given plane. The parameters in the equation of the

variable plane enter in the second degree ;
the problem is

therefore that considered (Ex. 2, Art. 523) and the envelope is

a cubic surface having four double points. The polar planes
of the points of the section of the original cubic by the fixed

plane are the tangent planes at those points, consequently this

polar cubic of the given plane is inscribed in the developable
formed by the tangent planes to the cubic along the section by
the given plane (Higher Plane Curves, Art. 185). The polar

plane of any point A of the section of the Hessian by the

given plane touches the Hessian (Art. 526), and
is, therefore, a

common tangent plane of the Hessian and of the polar cubic

now under consideration. But the polar quadric of B, being
a cone whose vertex is A, is to be regarded as touching the

given plane at A hence B is also the point of contact of the

polar plane of A with the polar cubic. We thus obtain a

theorem of Steiner s that the polar cubic of any plane touches

the Hessian along a certain curve. This curve is the locus of

the points B corresponding to the points of the section of

the Hessian by the given plane. Now if points lie in any
plane lx+ my + nz+pv-t qw, the corresponding points lie on

the surface of the fourth order \-
- h + nr + Also

ax by cz av ew
the intersection of this surface with the Hessian is of the

sixteenth order, and includes the ten right lines xy} zw, &c.
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The remaining curve of the sixth order is the curve along

which the polar cubic of the given plane touches the Hessian.

The four double points lie on this curve
; they are the points

whose polar quadrics are cones touching the given plane.

529. If on the line joining any two points x y z
,
xff

y&quot;z&quot; ,

we take any point x +
Xce&quot;, &c., it is easy to see that its

polar plane is of the form Pn + 2XP12
-f X^2 ,

where Pn ,
P

22

are the polar planes of the two given points, and P
18

is the

polar plane of either point with regard to the polar quadric

of the other. The envelope of this plane, considering X

variable, is evidently a quadric cone whose vertex is the inter

section of the three planes. This cone is clearly a tangent

cone to the polar cubic of any plane through the given line,

the vertex of the cone being a point on that cubic. If the

two assumed points be corresponding points on the Hessian, PI2

vanishes identically ;
for the equation of the polar plane, with

respect to a cone, of its vertex vanishes identically. Hence the

polar plane of any point of the line joining two corresponding

points on the Hessian passes through the intersection of the tangent

planes to the Hessian at these points* In any assumed plane

we can draw three lines joining corresponding points on the

Hessian
;

for the curve of the sixth degree considered in the

last article meets the assumed plane in three pairs of corre

sponding points. The polar cubic then of the assumed plane

will contain three right lines
;
as will otherwise appear from

the theory of right lines on cubics, which we shall now explain.

530. We said, note, p. 29, that a cubical surface necessarily

contains right lines, and we now enquire how many in general

lie on the surface.f In the first place it is to be observed that

* Steiner says that there are one hundred lines such that the polar plane of

any point of one of them passes through a fixed line, but I believe that his theorem

ought to be amended as above.

f The theory of right lines on a cubical surface was first studied in the year

1849, in a correspondence between Prof. Cayley and me, the results of which were

published, Cambridge and Dublin Mathematical Journal, vol. IV., pp. 11.8, 252.

Prof. Cayley first observed that a definite number of right lines must lie on the

surface
;
the determination of that number as above, and the discussions in Art. 533

were supplied by me.
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if a right line lie on the surface, every plane through it is a

double tangent plane because it meets the surface in a right

line and conic
;
that is to say, in a section having two double

points. The planes then joining any point to the right lines

on the surface are double tangent planes to the surface, and

therefore also double tangent planes to the tangent cone whose

vertex is that point. But we have seen (Art. 519) that the

number of such double tangent planes is twenty-seven.

This result may be otherwise established as follows: let

us suppose that a cubic contains one right line, and let us

examine in how many ways a plane can be drawn through
the right line, such that the conic in which it meets the

surface may break up into two right lines. Let the right

line be wz let the equation of the surface be wV=zV] let

us substitute w = ^z, divide out by z, and then form the dis

criminant of the resulting quadric in
a?, y, z. JSTow in this

quadric it is seen without difficulty that the coefficients of

a;
2

, xy, and y* only contain p in the first degree ;
that those of

xz and yz contain
//,

in the second degree, and that of z* in

the third degree. It follows hence that the equation obtained

by equating the discriminant to nothing is of the fifth degree
in

/it ;
and therefore that through any right line on a cubical

surface can be drawn Jive planes, each of which meets the surface

in another pair of right lines ; and, consequently, every right

line on a cubic is intersected by ten others. Consider now the

section of the surface by one of the planes just referred to.

Every line on the surface must meet in some point the section

by this plane, and therefore must intersect some one of the

three lines in this plane. But each of these lines is inter

sected by eight in addition to the lines in the plane ;
there

are therefore twenty-four lines on the cubic besides the three

in the plane ;
that is to say, twenty-seven in all.

We shall hereafter show how to form the equation of a

surface of the ninth order meeting the given cubic in those

lines.

531. Since the equation of a plane contains three inde

pendent constants, a plane may be made to fulfil any three

SSS
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conditions, and therefore a finite number of planes can be

determined which shall touch a surface in three points. We
can now determine this number in the case of a cubical surface.

We have seen that through each of the twenty-seven lines

can be drawn five triple tangent planes: for every plane

intersecting in three right lines touches at the vertices of the

triangle formed by them, these being double points in the

section. The number 5 x 27 is to be divided by three, since

each of the planes contains three right lines; there are therefore

in allforty-five triple tangent planes.

532. Every plane through a right line on a cubic is obviously

a double tangent plane ; and the pairs of points of contact form
a system in involution. Let the axis of z lie on the surface,

and let the part of the equation which is of the first degree
in x and y be (az* + bz + c) x + (a z* + b z + c

) y ;
then the two

points of contact of the plane y = px are determined by the

equation

(az
2 + bz + c) + p (a z* 4 b z + c)

=
0,

but this denotes a system in involution (Conies, Art. 342). It

follows hence, from the known properties of involution, that

two planes can be drawn through the line to touch the surface

in two coincident points ;
that is to say, which cut it in a line

and a conic touching that line. The points of contact are

evidently the points where the right line meets the parabolic

curve on the surface. It was proved (Art. 287) that the right

line touches that curve. The two points then, where the line

touches the parabolic curve, together with the points of

contact of any plane through it,
form a harmonic system.

Of course the two points where the line touches the parabolic

curve may be imaginary.

533. The number of right lines may also be determined

thus. The form ace = bdf (where a, &, &c. represent planes)

is one which implicitly involves nineteen independent constants,

and therefore is one into which the general equation of a

cubic may be thrown.* This surface obviously contains nine

* It will be found in one hundred and twenty ways.
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lines (ab, cd, &c.). Any plane then a = yib which meets the

surface in right lines meets it in the same lines in which it

meets the hyperboloid /jice
=

df. The two lines are therefore

generators of different species of that hyperboloid. One meets

the lines cd, ef, and the other the lines cf, de. And, since

H has three values, there are three lines which meet ab, cd, ef.

The same thing follows from the consideration that the hyper
boloid determined by these lines must meet the surface in

three more lines (Art. 345).

Now there are clearly six hyperboloids, ab, cd, ef ab, cf, de,

&c. which determine eighteen lines in addition to the nine

with which we started, that is to say, as before, twenty-seven
in all.

If we denote each of the eighteen lines by the three which

it meets, the twenty-seven lines may be enumerated as follows :

there are the original nine ab, ad, af, cb, cd, cf, eb, ed, ef,

together with (ab.cd.ef)^ (ab.cd.ef)^ (ab.cd.ef) 3 ,
and in like

manner three lines of each of the forms ab.cf.de, ad.bc.ef,

ad.be.cf, af.bc.de, af.be.cd. The five planes which can be

drawn through any of the lines ab are the planes a and b,

meeting respectively in the pairs of lines ad, of; be, be
,
and

the three planes which meet in (ab.cd.ef)^ (ab.cf.de)^;

(ab.cd.ef^ (ab.cf.de) 2 ; (ab.cd.ef)^, (ab.cf.de) 3
. The five

planes which can be drawn through any of the lines (ab.cd.ef)^
cut in the pairs of lines, ab, (ab.cf.de)^, cd, (af.cd.be)^

ef, (ad.bc.ef ) 1 ;
and in (ad.be. cf)2 , (af.bc.de\; (ad.be.cf)3 ,

(af.bc.de)^

534. Prof. Schlafli has made a new arrangement of the

lines (Quarterly Journal of Mathematics, vol. II. p. 116), which

leads to a simpler notation, and gives a clearer conception

how they lie. Writing down the two systems of six non-

intersecting lines

ab, cd, ef, (ad.be. cf}^ (ad.be. cf}^ (ad.be. cf)^

cf, be, ad, (ab.cd.ef)^ (ab.cd.ef]^ (ab.cd.ef}3 ,

it is easy to see that each line of one system does not intersect

the line of the other system, which is written in the same
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vertical line, but that it intersects the five other lines of the

second system. We may write then these two systems

which is what Schliifli calls a &quot;

double-six.&quot; It is easy to see

from the previous notation that the line which lies in the

plane of a
t ,

&amp;gt;

2 ,
is the same as that which lies in the plane of

2 ,
5r Hence the fifteen other lines may be represented by

the notation
c, 2 ,

c
34 , &c., where c

J2
lies in the plane of a

t ,
&
2,

and there are evidently fifteen combinations in pairs of the

six numbers 1, 2, &c. The five planes which can be drawn

through c,2
are the two which meet in the pairs of lines

are evidently thirty planes which contain a line of each of the

systems a, &, c
;
and fifteen planes which contain three c lines.

It will be found that out of the twenty-seven lines can be

constructed thirty-six
&quot;

double-sixes.&quot;

535. We can now geometrically construct a system of

twenty-seven lines which can belong to a cubical surface. We
may start by taking arbitrarily any line a

t
and five others

which intersect
it,

Z&amp;gt;

2 ,
Z&amp;gt;

3 ,
Z&amp;gt;

4 ,
5
5 ,

Z&amp;gt;

6
. These determine a cubical

surface, for if we describe such a surface through four of the

points where a, is met by the other lines and through three

more points on each of these lines, then the cubic determined

by these nineteen points contains all the lines, since each line

has four points common with the surface. Now if we are

given four non-intersecting lines, we can in general draw two

transversals which shall intersect them all
;

for the hyperboloid

determined by any three meets the fourth in two points through

which the transversals pass (see Art. 57 d and note p. 419).

Through any four then of the lines J
8 ,

5
4 ,

b
sJ

b
&
we can draw

in addition to the line
,
another transversal

2 ,
which must also

lie on the surface since it meets it in four points. In this

manner we construct the five new lines
2 , 3 , 4 , 5 ,

a
&

. If we

then take another transversal meeting the four first of these

lines, the theory already explained shows that it will be a line b
t

which will also meet the fifth. We have thus constructed a&amp;gt;
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&quot;double-six.&quot; We can then immediately construct the remain

ing lines by taking the plane of any pair af&amp;gt;^
which will be

met by the lines &
t ,
a

2
in points which lie on the line c

J2
.

536. M. Schlafli has made an analysis of the different

species of cubics according to the reality of the twenty-seven
lines. He finds thus five species : A. all the lines and planes

real
;

B. fifteen lines and fifteen planes real
;

C. seven lines

and five planes real
;

that is to say, there is one right line

through which five real planes can be drawn, only three of

which contain real triangles ;
D. three lines and thirteen planes

real : namely, there is one real triangle through every side of

which pass four other real planes : and, E. three lines and

seven planes real.

I have also given (Cambridge and Dublin Mathematical

Journal, vol. IV. p. 256) an enumeration of the modifications

of the theory when the surface has one or more double points.

It may be stated generally, that the cubic has always twenty-
seven right lines and forty-five triple tangent planes, if we
count a line or plane through a double point as two, through
two double points as four, and a plane through three such

points as eight. Thus, if the surface has one double point,

there are six lines passing through that point, and fifteen

other lines, one in the plane of each pair. There are fifteen

treble tangent planes not passing through the double point.

Thns 2x6 + 15 = 27; 2x15 + 15 = 45.

Again, if the surface have four double points, the lines are

the six edges of the pyramid formed by the four points (6 x 4),

together with three others lying in the same plane, each of

which meets two opposite edges of the pyramid. The planes

are the plane of these three lines 1, six planes each through
one of these lines and through an edge (6 x 2), together with

the four faces of the pyramid (4x8).
The reader will find the other cases discussed in the paper

just referred to, and in a later memoir by Schlafli in the Philo

sophical Transactions for 1863.

537. It is known that in a plane cubic the polar line, with

respect to the Hessian, of any point on the curve, meets on
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the curve the tangent at that point. Clebsch has given as

the corresponding theorem for surfaces, The polar plane, with

respect to the Hessian, of any point on the cubic, meets the tangent

plane at that point, in the line which joins the three points of

inflexion of the section by the tangent plane. It will be re

membered that the section by a tangent plane is a cubic

having a double point, and therefore having only three points

of inflexion lying on a line. If w be this line, xy the double

point, the equation of such a curve may be written

Writing the equation of the surface (the tangent plane being 2),

3? + y
z + xyw + zu = 0, where u is a complete function of the

second degree u = dz* -f lxw + bmyw + Snzw + &c., of which

we have only written the terms we shall actually require ;
and

working out the equation of the Hessian, we find the terms

below the second degree in x, y, z to be d*w* + d(n 2lm) zw
3
.

The polar plane then of the Hessian with respect to the point

xyz is 4dw + (n 2lm) z, which passes through the intersection

of zw, as was to be proved.

If the tangent plane z = pass through one of the right lines

on the cubic, the section by it consists of the right line x and

a conic, and may be written xs
4 xyw = ; and, as before, the

polar plane of the point xyz with respect to the Hessian passes

through the line w, a theorem which may be geometrically

stated as follows : When the section by the tangent plane is a

line and a conic, the polar plane, with respect to the Hessian, of
either point in which the line meets the conic, passes through the

tangent to the conic at the other point. If the tangent plane

passes through two right lines on the cubic, the section reduces

to xyw, and the polar plane still passes through w, that is to say,

through the third line in which the plane meets the cubic. If

the point of contact is a cusp, it is proved in like manner that

the line through which the polar plane passes is the line joining

the cusp to the single point of inflexion of the section.

The conclusions of this article may be applied with a slight

modification to surfaces of higher degree than the third : for

if we add to the equation of the surface with which we have
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worked, terms of higher degree in xyz than the third, these

will not affect the terms in the equation of the Hessian which

are below the second degree in
a?, ?/,

z. And the theorem is

that the polar plane, with respect to the Hessian, of any point

on a surface intersects the tangent plane at that point, in the

line joining the points of inflexion of the section, by the tangent

plane, of the polar cubic of the same point.

INVARIANTS AND COVARIANTS OF A CUBIC.

538. We shall in this section give an account of the

principal invariants, covariants, &c., that a cubic can have.

We only suppose the reader to have learned from the Lessons

on Higher Algebra, or elsewhere, some of the most elementary

properties of these functions. An invariant of the equation

of a surface is a function of the coefficients, whose vanishing

expresses some permanent property of the surface, as for

example that it has a nodal point. A covariant, as for

example the Hessian, denotes a surface having to the original

surface some relation which is independent of the choice of

axes. A contravariant is a relation between a, $, 7, 8,

expressing the condition that the plane ax + /3y+ yz + $w shall

have some permanent relation to the given surface, as for

example that it shall touch the surface. The property of

which we shall make the most use in this section is that

proved (Lessons on Higher Algebra^ Art. 139), viz. that if we

substitute in a contravariant for a, , &c., -j- , , &c., and
CLX CL11

then operate on either the original function or one of its

covariants, we shall get a new covariant, which will reduce to

an invariant if the variables have disappeared from the result.

In like manner, if we substitute in any covariant for x, y, &c.,
d d p ,

-j- , -j-r , &c., and operate on a contravariant, we get a new

contravariant or invariant.

Now, in discussing these properties of a cubic we mean to

use Sylvester s canonical form, in which it is expressed by the

sum of five cubes. We have calculated for this form the
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Hessian (Art. 527), and there would be no difficulty in calcu

lating other covariants for the same form. It remains to show

how to calculate contravariants in the same case. Let us

suppose that when a function U is expressed in terms of four

independent variables, we have got any contravariant in a, /?,

7, S
;

and let us examine what this becomes when the function

is expressed by five variables connected by a linear relation.

But obviously we can reduce the function of five variables to

one of four, by substituting for the fifth its value in terms

of the others, viz. w = (x + y + z -\- v). To find then the

condition that the plane ax + fty + 72 -f Sv + zw may have any

assigned relation to the given surface, is the same problem as

to find that the plane (a e) x 4 (/3
-

e) y + (7
-

e)
z + (8 s) v

may have the same relation to the surface, its equation being

expressed in terms of four variables
;

so that the contravariant

in five letters is derived from that in four by substituting

a e, ft s, 7 ,
S e respectively for a, $, 7, 8. Every

contravariant in five letters is therefore a function of the

differences between
oc, /3, 7, 8, e. This method will be better

understood from the following example :

Ex. The equation of a quadric is given in the form

ax&quot;
2 + by

2 + cz&quot;

2 + dv2 + ew2 = 0,

where x+y + z + v + w = Q; to find the condition that ax + (3y + yz + Sv + tio

may touch the surface. If we reduce the equation of the quadric to a function of

four variables by substituting for w its value in terms of the others, the coefficients

of #2
, y

1
,
z2

,
v2 are respectively a + e, b + e, c + e, d + e, while every other coefficient

becomes e. If now we substitute these values in the equation of Art. 79, the con

dition that the plane ax + fiy + yz + dv may touch, becomes

a2 (bed + bee + cde + dbe) + fP (cda + cde + dae + ace) + y2
(dab + dae + abe + bde)

+ (5
2
(abc + abe + bee + cae} 2e (adfiy + bdya + cda.fi + bead + ca@8 + abyS) = 0.

Lastly, if we write in the above for a, (3, &c., a i, (3 t, &amp;lt;fec.,
it becomes

bed (a
-

t)
2 + cda (|3

-
t)

2 + dab (y
-

e)
2 + abc (S

-
e)

2 + bee (a
-

)
2 + cae (/3

-
&amp;lt;3)

2

+ abe (y
-

(5)
2 + ade (/3

-
y)

2 + bde (a
-

y)
2 + cde (a.

-
/3)

2 =
0,

a contravariant which may be briefly written Ecde (a /3)
2 = 0.

539. We have referred to the theorem that when a con

travariant in four letters is given, we may substitute for

a, /3, 7, 8 differential symbols with respect to #, y^ 2, w ;
and

that then by operating with the function so obtained on any
covariant we get a new covariant. Suppose now that we operate
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on a function expressed in terms of five letters x, y, z, v, w.

Since x appears in this function both explicitly and also

where it is introduced in W, the differential with respect to

d dw d .
.

- . . . .

x is -v- + ---
j- , or, in virtue ot the relation connecting w

with the other variables. -^
---7- . Hence, a contravariant in

djc aw
four letters is turned into an operating symbol in five by

substituting for

But we have seen in the last article that the contravariant

in five letters has been obtained from one in four, by writing

for a, a
e, &c. It follows then immediately that if in any

contravariant in Jive letters we substitute for a, $, 7, 3, e,

d d d d d , 7
. z

j- , -7- , -7- , -7- , -7 ,
i/;e obtain an operating symbol^ witfi

which operating on the original function, or on any covariant,

we obtain a new covariant or invariant. The importance of

this is that when we have once found a contravariant of the

form in five letters we can obtain a new covariant without

the laborious process of recurring to the form in four letters.

Ex. We have seen that &quot;Lcde (a ft}- is a contravariant of the form

ax2 + by
2 + cz2 + dv2 + ew2.

/ fi fJ \ -

If then we operate on the quadric with Z,cde (- -5-
J

,
the result, which only differs

by a numerical factor from

bcde + cdea + deab + eabc + abed,

is an invariant of the quadric. It is in fact its discriminant, and could have been

obtained from the expression, Art. 67, by writing, as in the last article, a + e, b + er

c + e, d + e for a, b, c, d, and putting all the other coefficients equal to e.

540. In like manner it is proved that we may substitute

in any covariant function for
a?, y, z, v, w, differential symbols

with regard to a, /5, 7, 5, s, and that operating with the function

so obtained on any contravariant we get a new contravariant.

In fact if we first reduce the function to one of four variables,
and then make the differential substitution, which we have a

TTT
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right to do, we have substituted for

d d d d , (d d d d
x. y, 2, v. w : -7- , -75 , -y- , -^ ,

and -
( j- + -jo + -j- + -j7

da. d/3 c/7 do J

\e?a a/3 #7 a

But since the contravariant in five letters was obtained from

that in four by writing a for a, &c., it is evident that the

differentials of both with regard to a, /3, 7, S are the same,

while the differential of that in five letters with respect to s

is the negative sum of the differentials of that in four letters

with respect to a, /3 7 7, S. But this establishes the theorem.

By this theorem and that in the last article we can, being

given any covariant and contravariant, generate another, which

again, combined with the former, gives rise to new ones with

out limit.

541. The polar quadric of any point with regard to the

cubic axs + by
3 + cz

5 + dv
3 + ew* is

axx* + by y* -f cz z* + dv v* + eww* = 0.

Now the Hessian is the discriminant of the polar quadric.

Its equation therefore, by Ex., Art. 539, is ^bcdeyzvw = 0, as

was already proved, Art. 527. Again, what we have called

(Art. 528) the polar cubic of a plane

ax -I- fty -f 72 + $v + EW,

being the condition that this plane should touch the polar

quadric is (by Ex., Art 538) ^cdezvw (a /9)
2 = 0. This is

what is called a mixed concomitant, since it contains both

sets of variables
a?, y, &c., and a, /3, &c.

If now we substitute in this for a, /3, &c., -j- , -7- , &c.,

and operate on the original cubic, we get the Hessian; but

if we operate on the Hessian we get a covariant of the fifth

order in the variables, and the seventh in the coefficients, to

which we shall afterwards refer as 4&amp;gt;

In order to apply the method indicated (Arts. 539, 540) it

is necessary to have a contravariant
;
and for this purpose I

have calculated the contravariant
&amp;lt;7,

which occurs in the equation
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of the reciprocal surface, which, as we have already seen, is

of the form 64&amp;lt;7

3 = r
a
. The contravariant a expresses the

condition that any plane ax 4- @y + &c. should meet the surface

in a cubic for which Aronhold s invariant S vanishes. It is

of the fourth degree both in a, $, &c., and in the coefficients

of the cubic. In the case of four variables the leading term

is a
4

multiplied by the S of the ternary cubic got by making
# = in the equation of the surface. The remaining terms

are calculated from this by means of the differential equation

(Lessons on Higher Algebra, Art. 150). The form being found

for four variables, that for five is calculated from it as in

Art. 538. I suppress the details of the calculation, which,

though tedious, present no difficulty. The result is

o-=2a&crf(a-e)(/3-e}(y-e)(8-e) [1].

For facility of reference I mark the contravariants with

numbers between brackets, and the covariants by numbers

between parentheses, the cubic itself and the Hessian being
numbered (1) and (2). &quot;We can now, as already explained,
from any given covariant and contravariant, generate a new

one, by substituting in that in which the variables are of lowest

dimensions, differential symbols for the variables, and then

operating on the other. The result is of the difference of

their degrees in the variables, and of the sum of their degrees
in the coefficients. If both are of equal dimensions, it is in

different with which we operate. The result in this case is

an invariant of the sum of their degrees in the coefficients.

The results of this process are given in the next article.

542. (a) Combining (1) and [1], we expect to find a con

travariant of the first degree in the variables, and the fifth

in the coefficients
;
but this vanishes identically.

(b) (2) on [1] gives an invariant to which we shall refer

as invariant A,
A = 2&WV - ZabcdeZabc.

If A be expressed by the symbolical method explained

(Lessons on Higher Algebra, XIV., xix), its expression is

(1235) (1246) (1347) (2348) (5678)
2
.
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(c) Combining [1] with the square of (1) we get a covariant

quadric of the sixth order in the coefficients

abode (ax
2 + If + cz* + dv* + ew2

)
............. (3),

which expressed symbolically is (1234) (1235) (1456) (2456).

(d) (3) on [1] gives a contravariant quadric

oWdVS (a
-

/3)
2
............ ... ...... [2].

(e) [2] on (1) gives a covariant plane of the eleventh order

in the coefficients

d*b*c
2d 2

e* (ax + ly + cz + dv + ew) ............. (4) .

(/) (3) n [2] gives an invariant B^

a
3
b
3
c
s
d*e

3

(a+b + c + d+e).

(g) Combining with (3) the mixed concomitant (Art. 541)

we get a covariant cubic of the ninth order in the coefficients

abcde^cde (a + b) zvw .................... (5) .

(h) Combining (5) and [Ij we have a linear contravariant

of the thirteenth order in the coefficients

abode?, (a -b) (a- /3) {(a + b) c?dV - abcde (cd + de-t ec)} . . .[3].

It seems unnecessary to give further details as to the steps

by which particular concomitants are found, and we may there

fore sum up the principal results.

543. It is easy to see that every invariant is a symmetric
function of the quantities a, &, c, d^ e. If then we denote the

sum of these quantities, of their products in pairs, &c., by

j} y g, r, Sj tj every invariant can be expressed in terms of

these five quantities, and therefore in terms of the five following

fundamental invariants, which are all obtained by continuing
the process exemplified in the last article

whence also C 2 - AE= 4zV.

We can, however, form skew invariants which cannot be

rationally expressed in terms of the five fundamental invariants,

although their squares can be rationally expressed in terms of

these quantities. The simplest invariant of this kind is got
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by expressing in terms of its coefficients the discriminant

of the equation whose roots are a, 5, c, d, e. This, it will

be found, gives in terms of the fundamental invariants

A, B, Cj D, E an expression for tf

36

multiplied by the product
of the squares of the differences of all the quantities a, &, &c.

This invariant being a perfect square, its square root is an

invariant F of the one-hundredth degree. Its expression in

terms of the fundamental invariants is given ; Philosophical

Transactions, 1860, p. 233.

The discriminant of the cubic can easily be expressed in

terms of the fundamental invariants. It is obtained by elimi

nating the variables between the four differentials with respect

to
,r, ^, 2, v, that is to say,

ax* by*
= cz

z = dv* = ew*.

Hence ic
2

, #
a

,
&c. are proportional to bcde, cdea, &c. Sub

stituting then in the equation x + y + z + v + w = 0, we get the

discriminant

*J(bcde) + *J(cdea] + v(deab) -f *J(eabc) + */(abcd)
= 0.

Clearing of radicals, the result, expressed in terms of the

principal invariants, is

(A
2 -

645)* = 16384 (D + 2A C).

544. The cubic has four fundamental covariant planes of

the orders 11, 19, 27, 43 in the coefficients, viz.

L = t^ax, L = t
z

Zbcdex, L f = t
b

2o?x, L&quot;

f = t2as
x.

Every other covariant, including the cubic
itself, can, in

general, be expressed in terms of these four, the coefficients

being invariants. The condition that these four planes should

meet in a point, is the invariant F of the one hundredth

degree.

There are linear contravariants, the simplest of which, of the

thirteenth degree, has been already given; the next being of

the twenty-first,
42 (a -b)(a-/3)j the next of the twenty-

ninth, t
b
^cde (a -b)(oi- ), &c.

There are covariant quadrics of the sixth, fourteenth, twenty-

second, &c. orders
;
and contravariants of the tenth, eighteenth,

&c.j the order increasing by eight.
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There are covariant cubics of the ninth order 2cde(a-\- b}zvw,
and of the seventeenth,

3

2aV, &c.

If we call the original cubic
7,

and this last covariant F,

since if we form a covariant or invariant of C/+XF, the

coefficients of the several powers of \ are evidently covariants

or invariants of the cubic : it follows that, given any covariant

or invariant of the cubic we are discussing, we can form from

it a new one of the degree sixteen higher in the coefficients,

by performing on it the operation

., d 79 d d
r&amp;gt;

d d\V + b ^; + c
-j-
+ (t jj+ eVda do dc ad de/

Of higher covariants we only think it necessary here to mention

one of the fifth order, and fifteenth in the coefficients i^xyzvw^

which gives the five fundamental planes ;
and one of the ninth

order, the locus of points whose polar planes with respect to

the Hessian touch their polar quadrics with respect to U. Its

equation is expressed by the determinant, Art. 79, using a, /3, &c.

to denote the first differential coefficients of the Hessian with

respect to the variables, and a, Z&amp;gt;,

&c. the second differential

coefficients of the cubic.

The equation of a covariant, whose intersection with the

given cubic determines the twenty-seven lines, is =
4H3&amp;gt;,

where 4&amp;gt; has the meaning explained, Art. 541. I verified

this form, which was suggested to me by geometrical con

siderations, by examining the following form, to which the

equation of the cubic can be reduced, by taking for the planes

x and y the tangent planes at the two points where any of

the lines meet the parabolic curve, and two determinate planes

through these points for the planes w, z,

z*y + w*x -f 2xyz -f 2xyw + ax*y + by*x + cx*z + dy*w = 0.

The part of the Hessian then which does not contain either

x or y is zV] the corresponding part of 4&amp;gt; is 2(cz
bjfdw5

)^

and of is - 8w*z
z

(cz
5 + dw5

). The surface -
4H3&amp;gt; has

therefore no part which does not contain either x or
?/,

and

the line xy lies altogether on the surface, as in like manner



INVARIANTS AND COVARIANTS OF A CUBIC. 511

do the rest of the twenty-seven lines * Clebsch obtained the

same formula directly, by the symbolical method of calculation,
for which we refer to the Lessons on Higher Algebra.

* This section is abridged from a paper which I contributed to the Philosophical

Transactions, 1860, p. 229. Shortly after the reading of my memoir, and before its

publication, there appeared two papers in Crelle s Journal, vol. LVIII., by Professor

Clebsch, in which some of my results were anticipated ;
in particular the expression

of all the invariants of a cubic in terms of five fundamental, and the expression

given above for the surface passing through the twenty-seven lines. The method,
however, which I pursued was different from that of Professor Clebsch, and the

discussion of the covariants, as well as the notice of the invariant F, I believe were
new. Clebsch has expressed his last four invariants as functions of the coefficients of

the Hessian. Thus the second is the invariant (1234)
4 of the Hessian, &c.
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CHAPTER XVI.

SURFACES OF THE FOURTH ORDER.

545. THE theory of quartic surfaces in general has hitherto

been little studied. The quartic developable, or torse, has

been considered, Art. 367. Other forms of quartics, to which

much attention has been paid, are the ruled surfaces or scrolls

which have been discussed by Chasles, Cayley,* Schwarz,
and Cremona

;
and quartics with a nodal conic which

have been studied, in their general form, by Kummer,t
Clebsch, Korndorfer, and others; and in the case where the

nodal curve is the circle at infinity (under the names of cyclides

and anallagmatic surfaces) by Casey, Darboux, Moutard, and

others. In fact, in the classification of surfaces according to

their order, the extent of the subject increases so rapidly

with the order, that the theory for example of the particular

kind of quartics last mentioned may be regarded as co-extensive

with the entire theory of cubics.

546. The highest singularity which a quartic can possess

is a triple line, which is necessarily a right line. Every such

surface is a scroll, for it evidently contains an infinity of

right lines, since every plane section through the triple line

consists of that line counted thrice and another line. The

equation may be written in the form u
4
= zu

3 + wv^ where

U0 w
3 ,

v
s
are functions of the fourth and third orders respectively

* See his memoirs on Scrolls, Phil. Trans., 1864, p. 559; and 1869, p. Ill, and

the references there given.

f Kummer, Berlin JUonatsberichte, July, 1863
; Crelle, LXIV. (1864) ; Clebsch,

Crelle, LXIX. (1868) ; Korndorfer, Math. Annalen, in.
; Casey and Darboux, as cited,

p. 481, See also the list of memoirs on the sajme subject given in Darboux s work.
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in x and y, and xy denotes the triple line. The three tangent

planes at any point on the triple line are given by the equa

tion zu
z

4- w v
3

0. Forming the discriminant of this equation,

we see that there are in general four points on the triple line,

at which two of its tangent planes coincide. We may take

z and w as planes passing each through one of these points, and

x and y as the corresponding double tangent planes, when the

equation becomes u^ z (ax
3 + bx

z

y] + w (cxy* + dy*). Further,

by substituting for z, z 4- ax + /%, and for w, w +
&amp;lt;yx

+ &/, we
can evidently determine a, /3, 7, S, so as to destroy the terms

a:
4

, x*y, y*x, y* in w
4 ;

and so, finally, reduce the equation

to the form mx y*
= z (ax* + bx*y] -f w (cxy* + dy

A

). The planes

z, w evidently touch the surface along the whole lengths of the

lines zy, MX, respectively ;
and we see that the surface has four

torsal generators, see note, p. 489. The surface may be gene
rated according to the method of Art. 467, the directing curves

being the triple line, and any two plane sections of the surface
;

that is to say, the directing curves are two plane quartics, each

with a triple point, and the line joining the triple points,

the quartics also having common the points in which each is

met by the intersection of their planes. But the generation

is more simple if we take each plane section as one made by
the plane of two generators which meet in the triple line.

This will be a conic in addition to these lines
;
and the scroll

is generated by a Hue whose directing curves are two conies,

and a right line meeting both conies.

The equation of a quartic with a triple line may also be

obtained by eliminating, between the equations of two planes,

a parameter entering into one in the first, into the other in the

third degree ;
for instance,

\x + y = 0, X3
w + X2

y + \w + z =
;

that is to say, the generating line is the intersection of one of

a series of planes through a fixed line with the corresponding

one of a series of osculating planes to a twisted cubic, or tan

gent planes to a quartic torse. The four points where the

torse meets the fixed line are the four torsal points already

considered.

uuu
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547. Returning to the equation

Y = z (ax* + ~bx*y] + w (cxy* + dy*}

there is an important distinction according as w does or

does not vanish
; or, in the form first given, according as

u
4

is or is not capable of being expressed in the form

(OLX + ??/)
M

3
+

(&amp;lt;yx
+ by] V

B
. When m vanishes (II) the surface

contains a right line zw which does not meet the triple line;

otherwise (I) there is no such line. The existence of such a

line implies a triple line on the reciprocal surface and vice versa.

In fact, we have seen that every plane through the triple line

contains one generator ;
to it will correspond in the reciprocal

surface a line through every point of which passes one gene

rator; that is to say, which is a simple line on the surface.

Conversely, if a quartic scroll contain a director right line, every

plane through it meets the surface in a right line and a cubic,

and touches the surface in the three points where these inter

sect. Every plane through the right line therefoie being a

triple tangent plane, there will correspond on the reciprocal

surface a line every point of which is a triple point. In the

case, therefore, where m vanishes the equation of the reciprocal

is reducible to the same general form as that of the original.

In the general case (I) we can infer as follows the nature of the

nodal curve in the reciprocal. At each point on the triple

line can be drawn three generators. Consider the section made

by the plane of any two
;

this will consist of two right lines

and a conic through their intersection
;

and the plane will

touch the surface at the two points where the lines are met

again by the conic. Hence, at each point of the triple line

three bitangent planes can be drawn to the scroll
;

and re

ciprocally every plane through the corresponding line meets

the nodal curve of the reciprocal surface in three points. We
infer then that this curve is a skew cubic, and we shall confirm

this result by actually forming the equation of the reciprocal

surface. It will be observed how the argument we have used

is modified when the scroll has a simple director line, the

three generators at any point of the triple line then lying

all in one plane. If we substitute y = \x in the equation
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of the scroll, we see that any generator is given by the

equations

y = \Xj m\*x = z(a + b\) + w (cX
2
-f c?X

3

),

and joins the points

x = a + &X, y = \ (a -f b\) ,
z = m\*, w = Q,

x = c-\- c?X, y = X (c + d\}j 2 = 0, w m.

The reciprocal line is therefore the intersection of

(x + \y) (a + bX) + m\
2
z = 0, (x + \y) (c + d\) + mw -

0,

and the equation of the reciprocal is got by eliminating X

between these equations. But if we consider the scroll gene
rated by the intersection of corresponding tangent planes to

two cones

\*x + \y -f z 0, Xa
w + \v + w = 0,

this will be a quartic (xw uzf = (yw zv) (xv yu] which has

a twisted cubic for a nodal line, since the three quadrics

represented by the members of this equation have common a

twisted cubic, as is evident by writing their equations in the

form - = -= . In the case actually under consideration,x y z

the equation of the reciprocal is

\n?zw + mczx + mbyw + (be ad) xy\
z

= {mdzx + mczy + (be ad) y*} [mbxw 4- amyw + (be ad) x
2

}.

This equation would become illusory if m vanished
;
and we must

in that case (II) revert to the original form of the equations

of a generator, which gives y = Xaj, (a + b\) z + \* (c + d\) w = 0.

The generator of the reciprocal scroll will be \y + x = 0,

X2

(c -I- d\) z = (a + b\) w, and the reciprocal is obviously of like

nature with the original.

The two classes of scrolls we have examined each include

two subforins according as either b or c, or both, vanish. In

these cases the triple line has either one or two points at which

all three tangent planes coincide. According to the mode of

generation, noticed at the end of last article, the fixed line

touches the torse, and either one pair or two pairs of the torsal

points coincide.
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548. Besides the two classes of quartic scrolls with a triple

line, already mentioned, we count the following :

III. u
s
and v

s may have a common factor, which answers to

the case ad be in the equation already given: which is then

reducible to the form

mxy = (ax + by) (zx* + wy*)

In this case also, in the method of Art. 546, the fixed line

touches the torse. The generator of the scroll in one position

coincides with the fixed line, ax + by being the corresponding

tangent plane which osculates along its whole length. Also

the equation of the reciprocal scroll being

(mzw + axz -4- bywf = zw (ay + foe)
2

,

we see that it has as nodal lines the plane conic ay 4- foe,

mzw + axz + byw, and the right line zw which intersects that conic.

This class contains as subform, the case where ua + \va includes
w \ m

a perfect cube. The equation may then be reduced to the form

my* = x (zx* -f ivy*), the reciprocal of which is (xz mw*f y*zw.

IV. Again, u
3
and v

3 may have a pair of common factors and

the equation is reducible to the form x^y
2

=(ax
i

-^bxy-\-cy
i

)(xz-\-yw)^

an equation which is easily seen by the same method, as before,

to have a reciprocal of like form with itself.

V. Lastly, u
3
and v

3 may have common a square factor, the

equation then taking the form

x
*2/*
=

(
ax + tyY (xz + yw),

which is also its own reciprocal.* In this case two of the

three sheets, which meet in the triple line, unite into a single

cuspidal sheet. The case where u
s
and v

s
have three common

factors need not be considered, as the surface would then be

a cone.

549. We come now to quartic scrolls with only double lines.

If a quartic have a non-plane nodal line, it will ordinarily be a

scroll. For take any fixed point on the nodal line, and there

is only one condition to be fulfilled in order that the line

* The first four classes enumerated answer to Cayley s ninth, third, twelfth, sixth,

respectively ;
the last might be regarded as a subform of that preceding, but I have

preferred to count it as a distinct class.
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joining this to any variable point on the nodal line may lie

altogether in the surface, a condition which we can ordinarily

fulfil by means of the disposable parameter which regulates

the position of the variable point. There being thus an infinite

series of right lines, the surface is a scroll. But a case

of exception occurs, when the surface has three nodal right lines

meeting in a point. Here the section by the plane of any
two consists of these lines, each counted twice, and there is

no intersecting line lying in the surface. This is Steiner s

quartic mentioned note p. 491. We consider now the other cases

of quartics with nodal lines, commencing with those in which

the line is of the third order. The case where the nodal lines

are three right lines, no two of which are in the same plane,

need not be considered, since it is easy to see that then the

quartic is nothing else than the quadric, counted twice, gene
rated by a line meeting these three director lines.

Let us commence with the case where the nodal line is a

twisted cubic (VI and VII). Such a cubic may be represented

by the three equations xz y
2 =

0, xw yz = 0, yw =
;

the planes x and w being any two osculating planes of the

cubic. The coordinates of any point on it may be taken as

x : y : z : w = \3
: X2

: X : 1. If the three quantities xz y*,

xw-yZ) yw z
2
are called a, /3, 7 respectively, any quartic which

has the cubic for a nodal line will be represented by a quad
ratic function of a, yS, 7, say

act
2 + b{3* + C7

2 + 2f/3y + 2gyx + 2ha@ = 0.

Now consider the line joining two points on the cubic X, /JL

the coordinates of any point on it will be of the form \3
-f 0^^

X2

+0//, X-f#^, 1 + 6. If we substitute these values in a, y&, 7,

they become, after dividing by the common factor 6 (\ /&)&quot;,

X/A, \ + /i,
1. Consequently the condition that the line should

lie on the surface is

a\V + b (\ + /Lt)

2 + c + 2/(\ -*-/*) + 2g\p + 2h\fj, (\ + /*)
= 0.

Thus if either point be given, we have a quadratic to determine

the position of the other
;
and we see that the surface is a scroll,

and that through each point of the nodal line can be drawn

two generators, each meeting the cubic twice. The six coordi-
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nates (Art. 57 a) of the line joining the points X, p are easily

seen to be (omitting a common factor \ p)

Xz + \fj, + //,

2

, (X -f- /A),
1

, X/i,
-

X/A (X + /*,), Vyu,
2

,

and as the condition just found is linear in these coordinates,
we may say that a quartic scroll is generated by a line meeting
a twisted cubic twice and whose six coordinates are connected

by a linear relation, or, in other words, by the lines of an
&quot; involution of six lines

&quot;

(see note, p. 419), which join two points

on a twisted cubic.

In fact, if
/&amp;gt;, q, r, s, ,

u be the six coordinates, we have

the relation

Ip + 2fq + cr + (b + 2g) s - 2ht + au = Q.

We saw (Art. 57c) that a particular case of the linear relation

between the six coordinates of a line is the condition that it

shall intersect a fixed line
;
and from what was there said, and

from what has now been stated, it follows immediately that

all the generators of the scroll will meet a fixed line, provided
the quantities multiplying^, ,

&c. in the preceding equation be

themselves capable of being the six coordinates of a line
;
that

is to say (VII), provided the condition be fulfilled,

When this condition is fulfilled, it appears, from Art. 547, that

the reciprocal of the scroll will have a triple line, the reciprocal

in fact belonging to the first class of scrolls with a triple line

there considered.

550. In order to find the equation of the reciprocal in the

general case VI, we observe that to the generator joining the

points, whose coordinates are X3

,
X2

, X, 1
; //,

3

, yu,

2

, /*, 1, will cor

respond on the reciprocal scroll the generator whose equations are

o?X
3 + ?/X

2 + zX + w = 0, ocjjL

3 + yp* -f zfi + w = 0,

and the equation of the reciprocal is got by eliminating X, /*

between these equations and the relation already given con

necting X, /Lt.
This elimination has been performed by Prof.

Cayley ;
the work is too long to be here given, but the result

is that the equation of the reciprocal scroll is of the same form

and with the same coefficients as the original ;
so that the
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scroll which has been defined as generated by a line in invo

lution twice meeting a skew cubic may also be defined as

generated by a line in involution lying in two osculating planes

of a skew cubic. Thus then the fundamental division of scrolls

with nodal skew cubic is into scrolls whose reciprocals are of like

form (VI), and scrolls whose reciprocals have a triple line (VII).

It is to be noted that the general form of the equation of the

reciprocal contains as a factor the quantity 6
2 + 2bg 4/h + ac,

the vanishing of which implies that the scroll belongs to the

latter class. The two classes of scrolls may be generated by
a line twice meeting a skew cubic, and also meeting, in the

one case, a conic twice meeting the cubic in the other, a

right line.*

551. If we put X =
//,

in the equation just given, we obtain

the points at which a generator will coincide with a tangent
to the cubic

;
and this equation being of the fourth degree we

see that the intersection of the scroll with the torse 4ay /3
2 =

0,

of which the cubic is the cuspidal edge, is made up of the cubic

together with four common generators. There will be four

points on the cubic, at which the two tangent planes to the

scroll coincide,t these points being obtained by arranging the

condition already obtained

// (aX
2 + 2h\ + b) + 2fj, {k\* + (b+g)\ +/} + &X* 4- 2/X + c = 0,

and forming the discriminant

(aX* + 27^X + J) (5X* -f 2/X + c)
=

[h\* +(b + g)\ +/J
2
.

We might have so chosen our planes of reference that one of

these four points should correspond to X = 0, the other ex

tremity of the generator through that point being p = co
,
and

in this case f= 0, 5 = 0; or the equation of the scroll may
always be transformed to the form

aa
2 + cy

2 + 2gya + Shaft = 0.

Or, again, by choosing the planes of reference so that two of

* These classes, my sixth and seventh, answer to Cayley s tenth and eighth.

f Points on a double line at which the two tangent planes coincide are called by
Prof. Cayley pinch points,
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the four points may be X = 0, X = oc
,

the equation may be

changed to the form
(act. 4 b/3 4 cy)* = &m

2

ya.

We have a subform of the scroll, if either a or c = in this

equation ;
for in this case two of the four cuspidal points on

the nodal curve coincide, the generator at this point being also

a generator of the torse, and there is a common tangent

plane to scroll and torse along this line.

A third of the pinch points would unite if we had b = m
;

and if along with this condition we have both a and c = 0, the

surface is the torse /3
a

kya. 0.

552. The next species of scrolls to be considered is when

the nodal curve consists of a conic and right line (VIII and IX).
The line necessarily meets the conic, which includes every point

of the section of the scroll by its plane. This scroll may be

generated by a line meeting two conies which have common
the points in which each is met by the intersection of their

planes, and also a line meeting one of the conies. It is

easy to see that the most general equation of the scroll can be

reduced to the form

(xz y
2

)

2 4 myw (xz y
2

) 4 W* (axy 4 by
2

)
=

0,

where xz y*, w is the nodal conic, xy the double line, and

yz is one position of the generator. Take then any point on

the conic, whose coordinates are X2

, X, 1, ;
and any point

Z = IMV on the line xy^ and the line joining these points will lie

altogether on the surface if

XV -f m\/jL 4 X 4 b = 0.

Thus two generators pass through any point of either nodal

line or nodal conic. The reciprocal is got by eliminating be

tween Xa
ic 4 \y 4 z = 0, pz 4 w = Oj and the preceding equation,

and is

(bxz w*)* y (b%z
- w2

) (by 4 mw az) 4 xz (by 4 mw azf 0,

which for b not equal is a scroll of the same kind having the

nodal conic, bxz wz

, &quot;by
4 mw ax, and the nodal line zw, this

is VIII. If, however, b = 0, we have the case IX
;
the reci

procal quartic has here a triple line, and is of the third class
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already considered.* There is one pinch point on the conic

and two on the line. There is a subform when w* = 4&, that

is to say, when the equation is of the form

(xz
- y

2 + myw)* aw*xy&amp;lt;)

in which case there is but one pinch-point, and that on the line.

553. The next case is where the conic degenerates into

a pair of lines, in other words, where there are two non-inter

secting double lines, and a third cutting the other two. This

class is a particular case of that next to be considered, viz.

where the scroll is generated by a line meeting two non-

intersecting right lines. If in any case two positions of the

generator can coincide we have a double generator, and the

scroll is that now under consideration. Thus, for example,
the scroll generated by a line meeting two lines not in the

same plane and also a conic is (Art. 467) of the fourth order

and has the two right lines as double lines
;
but two positions

of the generator coincide with the line joining the points where

the directing lines meet the plane of the conic, which is ac

cordingly a third double line on the scroll. The general

equation may be written as in last article.

ceV + mxzyw + w* (axy + by*)
=

;

the line x = Xy, z /JLW will be a generator if

and the reciprocal is

yV + mxzyw + xz* (bx ay)
=

0,

that is to say, is of the same nature as the original. This is

Cayley s second species. As before, the form (xz yw}*=axyw*
may be regarded as special.

554. Next let us take the general case (Cayley s first species)
where there are two non-intersecting double lines. This scroll

may be generated by a line meeting a plane binodal quartic,
and two lines, one through each node. When the quartic has

* These two species, my eighth and ninth, are Cayley s seventh and eleventh

respectively.

XXX
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a third node we have the species of last article. The most

general equation is

x* (az
2 + 2hzw + bu?) -f 2zy (az* + 2h zw -f iV)

+ y (
aV + 2A&quot;sto + & V) =

0,

the reciprocal of which is easily shown to be of like form.

There are obviously four pinch-points on each line, and subforms

may be enumerated according to the coincidence of two or more
of these points.

But again, in the generation by the binodal quartic just

mentioned two of the nodes may coalesce in a tacnode
;

and

we have then a scroll with two coincident double lines (Cayley s

fourth species), the general equation of which may be written

U
4 + (yw

-
xz] u

2
+ (yw xzf 0,

where u^ u
t2

are a binary quartic and quadratic in x and y;
and the reciprocal is of like form. Once more this class of

scrolls also admits of a double generator. This will be the

case if any factor y ax of u
z

enters twice into w
4
. In that

case it is obvious that the line y ax, aw z is a double line

on the surface. This is Cayley s fifth species. Every quartic

scroll may be classed under one of the species which we
have enumerated.

555. The only quartics with nodal lines which have not been

considered are those which have a nodal right line or a nodal

conic. In either case the surface contains a finite number

of right lines. For take an arbitrary point on the nodal line,

and an arbitrary point on any plane section of the surface,

and the line joining them will only meet the surface in one

other point. We can, by Joachimsthal s method, obtain a simple

equation determining the coordinates of that point in terms

of the coordinates of the extreme points. In order that the

line should lie altogether on the surface, both members of this

equation must vanish
;

that is to say, two conditions must be

fulfilled. And since we have two parameters at our disposal

we can satisfy the two conditions in a finite number of ways.*

* The same argument proves that if a surface of the wth order have a multiple
line of the (n 2)

tu order of multiplicity, the surface will contain right lines. If the
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In the case where the quartic has a nodal right line ccy, sub

stituting y \x in the equation, and proceeding, as in Art. 530,

we find that eight planes can be drawn through the nodal

line which meet the surface, each in two other right lines,

and thus that there are sixteen right lines on the surface besides

the nodal line.

556. We do not attempt to give a complete account of

the different kinds of nodal lines on a quartic, the varieties

being very numerous, but merely indicate some of the cases

which would need to be considered in a complete enumeration.*

The general equation of a quartic with a nodal right line

may be written

w
4
+ zu

3
+ wv

3 + s\ + zwu^ + w*v
2
=

0,

where w
4,
w

3 ,
&c. are functions in x and y of the order indicated

by the suffixes. Now, attending merely to the varieties in the

last three terms, and numbering the general case (1), we have

the following additional cases; (2) the three quantities 2 , u^ v.t

may have a common factor. In this case one of the tangent

planes is the same along the double line, and one of the sixteen

lines on the surface coincides with that line
; (3) the last terms

may be divisible by a factor not containing x or y, and so be

reducible to the form (az + bw) (zu2
-|- wv

9 ) ; (4) there may be

both a factor in x and y and also in z and w^ the terms being
reducible to the form (ax -f by] (az + b lo) (xz + yw) ; (5) we may
have

2 ,
&

2 ,
v
2 only differing by numerical factors, in which case

there are two fixed tangent planes along the double line, and

the case may be distinguished when the factor in z and w is a

perfect square, that is to say, we have the two cases : (5a) the

terms of the second degree reducible to the form xyzw, and (5b)

reducible to the form xyz* ; (6) the three terms may break up

multiple line be a right line it is easily proved, as in Art. 530, that the number of other

right lines is 2 (3n 4). If the multiple line be not plane, or if the surface possess in

addition any other multiple line, the surface is generally a scroll. See a paper by
R. Sturm, Math. Annalen, t. IV. (1871).

* On the subject of multiple right lines on a surface the reader may consult a

memoir by Zeuthen, Math. Annakn, iv. (1871).
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into the factors (xz yw] (zu }
+ wvj ; (7) the terms may form

a perfect square (xz + ywfi in which case the line is cuspidal,

the two tangent planes at each point coinciding but varying
from point to point; (8) the cuspidal tangent plane may be

the same for every point, the three terms being reducible to

the form (8a), x*zw, or (85), seV. This enumeration does not

completely exhaust the varieties; and we have not taken into

consideration the varieties resulting from taking into account

the preceding terms, as for instance, if a factor xz -f yw divide

not only the last three terms but also the terms zu
9
+ wv .

From the theory of reciprocal surfaces afterwards to be given
it appears that a quartic with an ordinary double line is of

the twentieth class, and that when the line is cuspidal the

class reduces to the twelfth. It would need to be examined

whether the class might not have intermediate values for

special forms of the double line, and, again, what forms of the

double line intervene between the cuspidal and the tacnodal

for which we have seen that the surface is a scroll, the class

being the fourth.

557. A quartic with a nodal line may have also double

points. Two of the eight planes which meet the surface in

right lines will coincide with the plane joining the nodal line

to one of the nodal points. It is easy to write down the

equation of a quartic with a nodal line and four nodal

points. For let
/, F, W represent three quadrics having

a right line common and consequently four common points,

then any quadratic function of
7, F, W represents a quartic

on which the line and points are nodal.

There are in the case just mentioned four planes, each

passing through the nodal line and a nodal point, each such

plane meeting the surface in the nodal line twice, and in two

lines intersecting in the nodal point. There are at most four

planes containing a nodal point, but any such plane may meet

the surface in the nodal line twice, and in a two-fold line having

upon it two nodal points ;
the surface may thus have as many

as eight nodal points. The quartic with eight nodes and a

nodal line is Pliicker s Complex Surface (Art. 455), and its
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equation is

x, a, h, g

y, ^ 6, f
!&amp;gt; ffj f, c =

0,

^ ./here a, ,
h are of form (2, w;)

2

; /, g of form
(2;, w?)

1

,
and

c is constant. There are through the nodal line four planes,

the section by each of them being a two-fold line, and on each

such two-fold line there are two nodes.

Suppose that the pairs of nodes are 1,2; 3, 4
; 5, 6

; 7, 8 :

so that 12, 34, 56, 78 each meet the nodal line. For a node 1,

the circumscribed sextic cone is jP^ = 0, where P is the plane

through the double line this should contain the lines 12, 13,

14, 15, 16, 17, 18 each twice; but P contains the line 12, and

therefore P* contains it twice
; hence, U

4
should contain the

remaining six lines each twice, that
is, it breaks up into four

planes ASCD which intersect in pairs in the six lines. Taking
in like manner Pf*AB C D = for the sextic cone belonging
to the node 2, the eight nodes lie by fours in the eight

planes A, B, (7, D, A ,
B

,
C

,
D

,
and through each of the

nodes there pass four of these planes; it is easy to construct

geometrically such a system of eight points lying by fours in

eight planes ;
the figure may be conceived of as a cube divested

of part of its symmetry.
A special case would arise if one or more of the nodal points

were to coincide with the nodal line. Thus the equation

ax*+bx
3

y+ cx*y*+dxy\y-mw) + ey* (y-mwY+(Ax
3+ Bx*y + Cxy*) z

\-Difz (y mw) + (A x3
-f B x*y] w + C xyw (y mw]

H- (or
2 + fixy + 7/) z

2 + (ax
2 + fi xy] zw + afxV =

0,

represents a quartic having the line xy as nodal and the point

x, z, y mw as a nodal point ;
and if in the above we make

m =
0, the point will lie on xy. The kind of nodal line here

indicated appears to be different from any of those previously
considered.

558. Let us take next the case where there are two inter

secting nodal lines. The equation then is

#y + Zmxyzw + w
2
u

z
=

0,



526 SURFACES OF THE FOURTH ORDER.

where u
y

is a quadratic function of
a?, y, z, w. Proceeding

as before we find immediately that four planes, besides the

plane w, can be drawn through each of the nodal lines to

meet the surface in right lines
;
and thus that there are sixteen

lines on the surface, eight meeting each nodal line. It is easy
also to see that each line of one system meets four lines of

the other system. Besides the nodal lines, the surfaces may
have four nodal points. The theory of this case is included

in that which we have next to consider, namely, where the

nodal line is a conic.

559. In this case any arbitrary plane meets the surface in

a binodal quartic ;
if the plane be a tangent plane the quartic

will be trinodal
;

if the plane be doubly a tangent plane the

quartic will break up into two conies.* If the plane touch

three times, the section must have an additional double point ;

that is to say, one of the conies must break up into two right

lines
5
and since a surface has in general a definite number of

triple tangent planes we see, as we have already inferred from

other considerations, that the surface contains a definite number

of right lines. This number is sixteen, as may be shown by
the method indicated, Art. 555, but we do not delay on the

details of the proof, as we shall have occasion afterwards to

show how the theorem was originally inferred by Clebsch.

Each of the sixteen lines is met by five others, the relation

between the lines being connected by Geiser and Darboux, with

the 27 lines of a cubic surface, as follows, if on a cubic surface

we disregard any one line and the ten lines which meet
it,

then the sixteen remaining lines are, in regard to their mutual

intersections related to each other as the sixteen lines on the

quartic.

In fact this is easily shown by the method of inversion in

the case where the nodal conic is the circle at infinitv, a case
j i

to which the general form can always be reduced by homographic
transformation. The inverse of such a quartic, the centre of

* It was from this point of view these surfaces were studied by Kummer, viz. as

quartics on which lie an infinity of conies.
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inversion being any point on the surface, is a cubic also passing

through the circle at infinity. Of the twenty-seven right

lines on this cubic, one lies in the plane at infinity, ten meet

that line, and the remaining sixteen meet the circle at infinity ;

and these last, and these only, are inverted into right lines

on the quartic.

The lines may be grouped in
u double

fours,&quot;
such that in

a double four each line of the one four meets three lines of

the other four; but no two lines of the same four meet each

other. There are in all twenty double fours, each line therefore

entering into ten of them.

560. In what follows, we suppose the surface to be a cyclide,

as the term is used by Casey and Darboux, that is to say,

having the circle at infinity as the nodal conic : and in order

to generalize the results, it is only necessary in the equations

of the nodal line, iv = 0, x* 4- y* + z* = 0, to suppose x, y, z,

w to be any four planes ;
while in the special case w is at infinity,

and
c, y, z are ordinary rectangular coordinates. The properties

of the cyclide may be studied in exactly the same manner

as the properties of bicircular quartics were treated, Higher
Plane Curves, Arts. 251, 272, &c. Consider any quartic

whose equation may be written (JT, Y&quot;, Z, TF)
a =

0, where

X, Yj Zj W represent quadrics, and we equate to zero a

complete quadratic function of these quantities. By a linear

transformation of these quantities we may reduce this equation

as the general ^equation of the second degree was reduced,

and so bring it to either of the forms aX* + I Y* -f cZ2 + JTP=0,
or XY=ZW*, only in the latter case the separate factors are

not necessarily real. From the latter form it is apparent

that there are on such a quartic at least two singly infinite

series of quadriquadric curves, and that through two curves

belonging one to each system can be drawn a quadric

* It has been shown by Dr. Yalentiner, Zeuthen Tidsskrift (4), in., that the form

of the equation of a quartic here considered is not of the greatest generality, and in

fact that any surface of the wth degree which contains the complete curve of inter

section of two surfaces must be a special surface when n exceeds 3. The equation

of a quartic which contains a quadriquadric curve depends on only 33 independent

constants.
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\liX-\Z pW+ F=0, touching the surface in the eight

points where these curves intersect. And, generally, the quadric

aX-f pY+yZ-t SFFwill touch the quartic, provided a, /3, 7, 8

satisfy the familiar relation of Art. 79. All quadrics included

in this form have a common Jacobian on which will lie all

possible vertices of cones involved in the system. Thus,

through each of the quadriquadric curves just spoken of, can

be drawn four cones whose vertices lie on the Jacobian.

A special case is when the equation of the quartic can be

expressed in terms of three quadrics only (JT, Y, Z)* = 0.

This cannot happen unless the quartic have double points, since

all points common to the three quadrics JT, Y, Z are double

points on the quartic. In this case the equation can be brought

by linear transformation to either of the forms aJT
2
-f bYz+ e^=0,

or XZ= Y*. Such a quartic is evidently the locus of the system
of curves Y=\X, Z=\Y, and the quadric VJT- 2\Y -}- Z
touches the quartic along the whole length of this curve. The

generators of any quadric of this system are bitangents to the

quartic.

561. To apply this to the cyelide, it is easy to see that

if JT, Y, Z, TFbe four spheres, the equation (T, F, Z, TF)
2 =

is general enough to represent any cyclide. Since the Jacobian

of four spheres is the sphere which cuts them at right angles,

all spheres of the system a.X+/BY-\- &amp;lt;yZ-\-
8W cut a fixed

sphere orthogonally. Further, the coordinates of the centre of

any such sphere are easily seen to be proportional to linear

functions of a, /3, 7, 8
; and, reciprocally, these quantities are

proportional to linear functions of these coordinates. Thus the

condition of contact (Art. 79) being of the second degree in

a, /3, 7, 8, establishes a relation of the second degree in these

coordinates. Hence we have a mode of generation for cyclides

corresponding to that given for bicircular quartics (Higher Plane

Curves, Art. 273), viz. a cyclide is the envelope of a sphere
whose centre moves on a fixed quadric .F, and which cuts a

fixed sphere J orthogonally. From this mode of generation

several consequences immediately follow. First, the cyclide is

its own inverse with regard to the sphere J\ for any sphere
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which cuts J orthogonally is its own inverse in respect to it,

so that the generating sphere not being changed by inversion,

neither is the envelope. Thus, the cyclide is an anallagmatic

surface, see note, p. 481. Secondly, the intersection of F and J
is a focal curve of the cyclide ;

for the Jacobian J is the locus of

all point-spheres belonging to the system a.X+ /3Y+yZ+ STF;
and therefore, from the mode of generation, every point of the

curve FJ is a point-sphere having double contact with the

quartic ;
that is to say, is a focus. Thirdly, in the case where

the centre of the enveloped sphere is at infinity on -F, the

sphere reduces to a plane through the centre of J (or more

strictly to that plane, together with the plane infinity), It

follows then, that if a cone be drawn through the centre of J
whose tangent planes are perpendicular to the edges of the

asymptote cone of F^ these tangent planes are double tangent

planes to the quartic, which they meet therefore each in two

circles, while the edges of this cone are bitangent lines to the

quartic.

562. We have thus far considered the equation of the

cyclide expressed in terms of four quadrics; but it is even

more obvious, that the equation can be expressed in terms of

three quadrics. In fact, the equation of a quartic having for

nodal line the intersection of the quadric U by the plane P,

may obviously be written U* = P*V. Or, again, if we write

down the following most general equation of a quartic, having
as a nodal line the intersection of x2 + y* -f z

2

,
and 10,

(x
2 + y* 4- z

2

}

2 + 2w^ (x
2 + y

2 + z
2

) + w\ =
;

this can obviously at once be written in the above form as,

(x
2 + y* + z

2 + wu$ = w\.
We can simplify this equation by transformation to parallel

axes through a new origin, so as to make the u
l disappear,

and we may suppose the axes of coordinates to be parallel to the

axes of the quadric v
a ,

so that v
2
does not contain the terms

yz, zx, xy. It appears then from what has been said, that the

cyclide, the general equation being reduced to the form

(x* -f y* + s
8

)

8 = ax* + by* -f cz* + 2lx + 2my + 2nz + d=V,
YYY
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is the envelope of the quadric V+ 2X (x* -f if -f z*} 4- X2 =
0, every

quadric of this system touching the quartic at every point where

it meets it. The discriminant of this quadric equated to zero

gives
P m2

n*

a -f 2X o + 2X c+ 2X

and this equation being a quintic in X, we see that there are

five values of X for which this quadric reduces to a cone, and

therefore five cones whose edges are bitangents to the quartic.

Taking this in connection with what was stated at the end

of the last article, it may be inferred that there are five spheres J,

each of which combined with a corresponding quadric .F gives a

mode of generating the cyclide. And this may be shown directly

by investigating the condition that the sphere x* -j- if -f z
z u

t

should have double contact with the cyclide, or meet it in

two circles. For, substituting in the equation of the cyclide

we get Wj
2 =

F, and if we add this to X (x
2

-f y
y
+ z

2

wj and

determine X by the condition that the sum shall represent two

planes, we get the same quintic as before for X; and we find

also that the centre of the sphere must satisfy the equation

X a X b X c

from which we see that there are five series of double tangent

spheres ;
that the locus of the centre of the spheres of each

series is a quadric, and that the five quadrics are confocal.

It appears from what has been said that through any point

can be drawn ten planes cutting the cyclide in circles, namely,
the pairs of tangent planes which can be drawn through the

point to the five cones.

563. The five-fold generation may be shown in another

way. If we suppose the quadric locus of centres F to be

identical with the sphere J which is cut orthogonally, we

evidently get for the cyclide / itself counted twice. Again, if

we have two cyclides both expressed in the form
(JT, I

7

, Z^ Wf=Q,
it appears from the theory of quadrics that by substituting for

X, F, Zj W linear functions of these quantities both can be

expressed in the form aX* + b Y 2 + cZ 2 + dW\ Thus then it



SURFACES OF THE FOURTH ORDER. 531

is possible to express the equation of any cyclide in the form

a JT* -I- & F 2 + c Z* + d lV\ while at the same time we have

an identical equation J 2 = aX* + bY* + cZ* + dlV*. For the

actual transformation we refer to Casey, p. 599, Darboux, p. 135,

but we can show in another way what this identical equation

is. Multiply by the ordinary rule the two determinants

;, 2#, 2z, p*1
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It may be noted in passing, that in virtue of this identity, the

equation W= may be written in the form

IX- W\ 2 /Y- W\ 2

(Z- W\* (V- W\*- + --7- + --77 + -777- =0,
\ r ) \ r J \ T I \ r J

showing that the sphere W meets the four others in four planes,

which form a self-conjugate tetrahedron with respect to W. To
return to the cyclide, it having been proved that its equation

may be written in the form

and that it may be generated as the envelope of a sphere cutting

W orthogonally, we may, by the
help of the identity just given,

eliminate any other of the quantities X^ Y^ &c., and write for

example the equation in the form a Y* + VZ* + c V* + d W* =
0,

and generate the cyclide as the envelope of a sphere cutting

X orthogonally.

564. The condition that two surfaces whose equations are

expressed in terms of the five spheres X, Y, Z, F, W should

cut each other orthogonally, admits of being simply expressed.

It is in, the first instance

/
d4&amp;gt;

dX \ (dty dX x \

T T&quot;
+ &C TT^T- + &c -

\dXdx J \dXdx J

K xr-- + &c. + &c. = 0.
\

.

)
J

jj . r

\dXdy J \dXdy
This equation is reduced by the two following identities, which

are easily verified,

dX\*--+ -- +-T- -;-
-

\dx J \dy J \dz J

dXdY dXdY dXdY
&amp;gt;, ViV ,---=--

1- -y
---h - ---=- ^ (JL + J:

J.
ax ax dy dy dz dz

The condition may then be written
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The first two groups of terms vanish, because and
t/r,

which are

satisfied by the coordinates of the point in question, are homo

geneous functions of JT, Y, &c. The condition therefore is

r
dX dX l dY dY c. =

We may simplify the equations by writing X instead ofX : r, &c.,

so that the identity connecting the five spheres becomes

X*+ Y* + Z* + V*+ TF 2 =
0,

and the condition for orthogonal section

._*dXdX^ dYdY
a condition exactly similar in form to that for ordinary co

ordinates.

565. We can now immediately, after the analogy of quadrics,

form the equation of an orthogonal system of cyclides. For

write down the equation

X* Y* Z* V W*
\a \ b Xc \ d \ e

in which X is a variable parameter ; and, in the first place, it

is easy to see that three cyclides of the system can be drawn

through any assumed point : for the equation in X, though in

form of the fourth degree, is in reality only of the third, the

coefficient of X4

vanishing in virtue of the identical equation.

And from the condition just obtained, it follows at once, in the

same manner as for confocal quadrics, that any two surfaces of

the system cut each other at right angles.* These cyclides are

confocal, there being a common focal curve on each of the

five spheres. It is evident from what has been proved, that

confocal cyclides cut each other in their lines of curvature.

566. The mode of generating cyclides as the envelope of

a sphere admits of being stated in another useful form. All

*
Casey and Darboux seem to have independently made this beautiful extension

to three dimensions of Dr. Hart s theorem for the corresponding plane curves,

Higher Plane Curves, Art. 278.
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spheres whose centres lie in a fixed plane, and which meet a

given sphere orthogonally, pass through two fixed points, there

being two linear relations connecting the coefficients. And it

is easy to see what the fixed points are, for since the spheres

cut at right angles every sphere through the intersection of

the fixed sphere and the plane, they contain the two point-

spheres of that system, or the limit points ( Conies^ Art. Ill) of the

plane and the fixed sphere, these points being real only when

the sphere and plane do not intersect in a real curve. In the

case, then, where the centre of the moveable sphere lies in a

fixed surface, it follows, obviously, that the envelope may be

described as the locus of the limit points of each tangent plane

to the fixed surface and of the fixed sphere. We are thus led

to a mode of transformation in which to a tangent plane of

one surface answer two points on another; or, if we take the

reciprocal of the first surface, it is a (1, 2) transformation,
in which to one point on one surface answer two on the other.

Pr. Casey has easily proved, p. 598, that the results of sub

stituting the coordinates of one of these limit points in the

equations of the spheres of reference are proportional to the

perpendiculars let fall from the centres of these spheres on

the tangent plane. Thus, if the surface locus of centres be

given by a tangential equation between the perpendiculars

from the four centres $ (X, /*, v, p)
=

0, the derived surface is

&amp;lt; (X, F, Z, W) =
;

and if the first be the equation of a

quadric, the second will be the corresponding cyclide.

567. From the construction which has been given an analysis

has been made by Casey and Darboux of the different forms

of cyclides according to the different species of the quadric locus

of centres, and the nature of its intersection with the fixed

sphere. We only mention the principal cases, remarking in

the first place that the spheres whose centres lie along any

generator of the quadric all pass through the same circle, namely,
that which has for its anti-points the intersections of the line

and the sphere. The circle in question is part of the envelope,
which may, therefore, be regarded as the locus of the circles

answering to the several right lines of the quadric, there being,
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of course, two series of circles answering to the two series of

right lines.

Now if the quadric be a cone, these circles all lie on the

same sphere, that which has its centre at the vertex of

the cone and which cuts the given sphere orthogonally, and

the cyclide may be regarded as degenerating into the spherical

curve which is the envelope of those circles, that curve being
the intersection of the sphere by a quadric, which curve has

been called a sphero-quartic. Strictly speaking, the cyclide locus

of these circles is an annular surface flattened so as to coincide

with the spherical area, which is bounded by the sphero-quartic

curve. The properties of these sphero-quartics have been in

vestigated in detail by Casey and Darboux. These curves

may be inverted into plane bicircular quartics, and therefore

(see note, p, 481) have four foci, the distances from which to

any point of the curve are connected by linear relations.

If the quadric be a paraboloid the cyclide degenerates into

a cubic surface passing through the circle at infinity. If the

quadric be a sphere the cyclide is the surface of revolution

generated by a Cartesian oval round its axis : but Darboux

has given the name Cartesian to the more general cyclide

generated when the quadric is a surface of revolution.

The cyclide may have one, two, three, or four double points.

The nodal cyclides present themselves as the inverse of quadrics,

the inverse of the general quadric being a cyclide with one node,

that of the general cone one with two, of the general surface of

revolution one with three, of the cone of revolution one with four.

The last mentioned, or tetranodal cyclide, is the surface to

which the name cyclide was originally given by Dupin, and

may therefore be called Dupin s Cyclide. According to its

original conception this was the envelope of the spheres, each

touching three given spheres ; or, more accurately, we have thus,

four cyclides, for the tangent-spheres in question form four

distinct series, those of each series enveloping a cyclide. The

spheres of each series are distinguished as having their centres

in a given plane ;
and we have thus a more precise definition,

that the cyclide is the envelope of a series of spheres each

having its centre in a given plane and touching two given
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spheres. But all such spheres have their centres on a conic;

and we thus arrive at a better definition
;

viz. the cyclide is

the envelope of a series of spheres each having its centre on

a given conic and touching a given sphere.

In the last definition the given sphere is not unique but it

forms one of a singly infinite series
;

in fact, we may, without

altering the cyclide, replace the original sphere by any sphere
of the series

;
the new series of spheres have their centres on

a conic. It is to be added that instead of the series of spheres

having their centres on the first conic, we may obtain the same

cyclide as the envelope of a series of spheres having their

centres on the second conic, and touching a sphere having its

centre at any point of the first conic.

The two conies have their planes at right angles, and are

such, that two opposite vertices of each conic are foci of the

other conic
;

these conies are focal conies of a system of

confocal quadric surfaces, one of them is an ellipse and the

other a hyperbola.

The relation of the ellipse and hyperbola is such, that

taking

(1) Two fixed points on the ellipse, the difference of the

distances of these from a variable point on the hyperbola is

constant,
= + c if the variable point is on one branch, c if

it is on the other branch of the hyperbola (the value of c of

course depending on the position of the two fixed points).

(2) Two fixed points on the hyperbola, if on different

branches, the sum, but if on the same branch, the difference

of their distances from a variable point on the ellipse is con

stant, the value of this constant, of course, depending on the

position of two fixed points.

And using these properties, we see at once how the same

surface can be obtained as the envelope of a series of spheres

having their centre on either conic, and touching a sphere

having its centre at any point of the other conic.

Dupin s Cyclide is also the envelope of a series of spheres

having their centres on a conic, and cutting at right angles
a given sphere ;

for instead of the quadric surface in the con

struction for the general cyelide, we have here a conic.
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568. Passing now to quartic surfaces without singular

lines, they may have any number of nodes (ordinary conical

points) up to 16
;

each such node diminishes the class by 2,

so that for the surface with 16 nodes the class is 36- 2 16, =4.

Some of the nodes may be replaced by, or may coalesce into,

binodes or unodes, but the theory has not been investigated.

The general cone of contact to a quartic is, by Art. 279,

of the twelfth degree, having twenty-four cuspidal and twelve

nodal lines, and sixteen is the greatest number of additional

nodal lines it can possess without breaking up into cones of

lower dimensions. When the surface has sixteen nodes, the

cone of contact from each node is of the sixth degree, and

has the lines to the other fifteen as nodal lines
;
from which it

follows that this cone breaks up into six planes.

569. It is to be observed that the equation of a quartic

surface contains thirty-four constants, that
is,

the surface may
be made to satisfy thirty-four conditions; and that if a given

point is to be a node of the surface, this is = 4 conditions.

It would, therefore, at first sight appear that we could with

eight given points as nodes determine a quartic surface con

taining two constants
;

but this is not so. We have through
the eight points two quadric surfaces 7=0, V=0 (every other

quadric surface through the eight points being in general of the

form 7+\F=0) and the form with two constants is in fact

U2 +aUV+ /3F
2 =

0, which breaks up into two quadric surfaces,

each passing through the eight points. It thus appears that

we can find a quartic surface with at most seven given points
as nodes.

570. The cases of a surface with 1, 2, or 3 nodes may be

at once disposed of; taking for instance the first node to be

the point (1, 0, 0, 0), the second the point (0, 1, 0, 0), and

the third the point (0, 0, 1, 0), we can at once write down
an equation Z7=0, with 30, 26, or 22 constants, having the

given node or nodes. We might in the same manner take

the fourth node to be (0, 0, 0, 1) and write down the equation
with 18 constants

; but, in the case of four nodes and in reference

to those which follow, it becomes interesting to consider how the

zzz
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equation can be built up with quadric functions representing

surfaces which pass through the given nodes. In the case of

4 given nodes we have six such surfaces P=0, =
0, .5 = 0,

$=0, jT=0, Z7=0, every other quadric surface through the

four points being obtained by a linear combination of these
;

and we have thence the quartic equation (P, Q, R^ 8, T, 27)
a

=0,

containing apparently twenty constants. The explanation is

that the six functions, although linearly independent, are con

nected by two quadric equations, and the number of constants

is thereby reduced to 20 2, =18, which is right.

In the case of 5 given nodes we have through these the

five quadric surfaces P= 0, Q 0, R =
0, 8 = 0, T= 0, and we

have the quartic surface (P, , RI $&amp;gt; Tj
J =

0, containing, as it

should do, 14 constants.

571. In the case of 6 given nodes, we have through these

the four quadric surfaces P=0, $ = 0, P =
0, $=0, and the

quartic surface (P, Q, R, 8)* = contains only 9 constants
;

there is in fact through the six points a quartic surface,

the Jacobian of the four functions, /(P, (), R, 8) = 0, not

included in the foregoing form, and the general quartic surface

with the six given nodes is

(P, Q,R,S}* + ej(P, Q,R,S) = 0,

containing, as it should do, 10 constants.

The foregoing surface /(P, #, P, 8) = 0, where P=0, &amp;lt;?=0,

jR = 0, $=0 are any quadric surfaces through the six given

points, or are any quadric surfaces having six common

points, is a very remarkable one
;

it is in fact the locus of the

vertices of the quadric cones which pass through the six points.

It hereby at once appears that the surface has upon it 15 + 10, =25

right lines, namely, the 15 lines joining each pair of

the six points, and the 10 lines each the intersection of the

plane through three of the points with the plane through the

remaining three points.

In the case of 7 given nodes we have through these three

quadric surfaces P=0, $ = 0, J2 = 0; but forming herewith the

equation (P, Q, Rf -
0, this contains only five constants

;
that

it is not the general surface with the seven given nodes appears
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also by the consideration that it has, in fact, an eighth node,

for each of the intersections of the three quadric surfaces is a

node on the surface. We can without difficulty find a quartic

surface not included in the form, but having the seven given
nodes : for instance, this may be taken to be y = 0, where v
is made up of a cubic surface having four of the points as

nodes and passing through the remaining three points, and

of the plane through these three points. And the general

equation then is

(P, &amp;lt;2,
Rf + 6V = 0,

containing, as it should do, 6 constants.

572. Passing to the surfaces with 8 nodes, only seven of

these can be given points ;
the eighth may be the remaining

common intersection of the quadric surfaces tbi ough the seven

points, and we thus have a form of surface

(P, &amp;lt;3,fi)

2 =
o, /,-;!.,,;. ,

with eight nodes, the common intersection of three quadric

surfaces
;

this is the octadic eight-nodal quartic surface.

Among the surfaces of the form in question are included the

reciprocals of several interesting surfaces, for example, order six,

parabolic ring ;
order eight, elliptic ring ;

order ten, parallel

surface of paraboloid, and first central negative pedal of ellipsoid ;

order twelve, centro-surface of ellipsoid and parallel surface of

ellipsoid the surfaces include also the general torus or surface

generated by the revolution of a conic round a fixed axis

anywhere situated.

There is, however, another kind of 8-nodal surface for

which the eighth node is any point whatever on a certain

surface determined by means of the seven given points ;
and

this is called the octo-dianome.

The last-mentioned surface may be made to have another

node, which is any point whatever on a certain curve determined

by means of the eight nodes
;
we have thus the eunea-dianome

;

and finally this may be made to have a new node, one of a

certain system of twenty-two points determined by means of

the nine nodes
5

this is the deca-dianome. But starting with
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seven given points as nodes, the number of nodes of the quartic
surface is at most =10.

A kind of lO^nodal surface is the svmmetroid, which is
i 1

represented by means of a symmetrical determinant

a, h,
=

0,

h, &, /, m

0i /&amp;gt;

C
J
n

I, m, ft,
d

where the several letters represent linear functions of the co

ordinates
;
such a surface has ten nodes, for each of which the

circumscribed sextic cone breaks up into two cubic cones; and

thus the ten nodes form a system of points in space, such that

joining any one of them with the remaining nine, the nine

lines are the intersections of two cubic cones
;

these are called

an ennead, and the ten points are said to form an enneadic

system.

Some of the kinds of surfaces with 11, 12, and 13 nodes,

and the surfaces with 14, 15, and 16 nodes were considered by
Kummer. Reverting to the consideration of the circumscribed

cone having its vertex at a node, observe that for a surface with

16 nodes, this is a sextic cone with fifteen nodal lines, or it must

break up into six planes, say the sextic cone is (1, 1, 1, J, 1, 1) ;

and the form being unique, this must be the case for the cone

belonging to each node of the surface, say the surface is the

sixteen^nodal 16 (1, 1, 1, 1, 1, 1).

Similarly, in the case of 15 nodes, the sextic cone has

fourteen nodal lines, or it breaks up into a quadricone and four

planes, say it is (2, 1, 1, 1, 1) ;
which form being also unique,

the surface is the 15^nodal 15 (2, 1, 1, 1, 1).

In the case of 14 nodes, the cone has thirteen nodal lines,

it must be either a nodal cubic cone and three planes, or else

two quadricones and two planes ;
that is (3, 1, 1, 1) or (2, 2, 1, 1).

It is found that there is only one kind of surface, having eight

nodes of the first sort and six nodes of the second sort
; say

this is the fourteen-nodal 8 (3, 1, 1, 1) + 6 (2, 2, I, 1).

In the case of 13 nodes, the cones are (43 , 1, 1), (3,, 2, 1),

(3, 1, 1, 1), or (2, 2, 2), viz. (43 , 1, 1) is a three-nodal quartic
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cone and two planes, and so (3,, 2, 1) is a nodal cubicone, a

quadricone, and a plane. It is found that there are two forms

of surface, the 13-(a)-nodal

3 (48 , 1,1} + 1(3, I, 1,1) + 9
(3,, 2,1),

and the 13-(/3)-nodal 13 (2, 2, 2).

The like principles apply to the cases of twelve, eleven, &c.

nodes, but the number of kinds has not been completely
ascertained.

573. We only consider the 16-nodal quartic, the equation

of which in general can be exhibited. Write for shortness

P- + &quot;- p -^+y. i p-^+y L~
a
+

/3
+
7 ? -* T 1

~
a

&quot;

P&quot; i
where a+/3 + 7 = 0, a! + j3 + 7 =

0, a&quot; +
&quot; + i =

0,

X =a
(7yy-/3 /3&quot;z),

Y =/3 (aV s-y /a;), Z =7 (^ yS ^-a a y),

X =a
(7&quot;7j/ -/S&quot;^ ),

F = ff (a! ous-y&quot;vx ),
Z =7 (/3&quot;/3^

Z&quot;=a&quot;(77y - Pffz ),
F&quot;= ^ (aa

- 77 a), ^&quot;=7&quot; OS/S a

= aa a&quot;
-

zx*} +777

C a

where

zx

- 7)a a&quot;+(7
- *}$ $&quot; + (a.

- f})W
f f \ ff -If f\ OS/ ft iff /T\ //

7 ) a a + (7 a)/3/3+(a /3 ) 77
&quot; -

7&quot;)
* +

(7&quot;

-
&quot;} Pff +

(&quot;

-
p&quot;) 77

[ 08
-

7) OS
-
7) 08&quot;- 7&quot;J

+ (7
-

a)(7- a
) (7&quot;- a&quot;)

values which give identically

then the equation of the surface may be written in the irrational

form

which rationalized is Aw* + 2Bw + (7,

and is one of four hundred and eighty like forms.
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For each node the sextic cone is made up of six planes, but

we thus obtain in all only sixteen planes; for each of these

planes is a singular plane touching the surface along a conic,

on which conic are contained six nodes of the surface. The

coordinates of the sixteen nodes and the equations of the sixteen

planes can easily be obtained. For instance, the planes are

X, 7, Z, W, P, P , P&quot;,
X- w, X -

w, X&quot;
-

w, Y- w, &c.

574. The 16-nodal quartic includes as a particular case

Prof. Cayley s tetrahedroid, obtained by him as a mere homo-

graphic transformation of the wave surface. In this case the

sixteen planes pass in fours through the summits of a tetrahedron.

To obtain its equation independently of the general case, write

down the general equation of a quartic met by each of the

four coordinate planes in two conies having for common con

jugate points the vertices of the tetrahedron of reference which

lie in that plane. The equation so formed contains in general

a term xyzw and represents a surface without nodes : but if

we add the further condition that this term shall vanish, the

surface at once acquires sixteen nodes, each of the intersections

of the two conies in each of the four planes becoming a node.

The equation may be written

,
cc

2

, ?/

2

,
3
Z

,
w*

x2

) ,
A

, g ,
I

v 7 f\ .

ti h ( ) i vn
i % & */ / in/U 1 I 1 v I

ffj /&amp;gt;

Z, ro, =0,*

*&amp;gt; y\ z\ w*\
or, what is the same thing,

(A, B, C, D, F, a, H, L, M,
where the coefficients are those of the reciprocal of a quadric

wanting the terms x\ y* z*,
w*. The equation expanded is

(see Art. 208)

mnfx* + nlgy
4

-f bnhz
4

+fghw*

+ X (ly
z
z

z

+fxW) + p (m^x
z

-f gyW] + v (waty* + hzV) = 0,

where X = If mg nh, p = If-}- ma nh, v If mg + nh.

* The deduction of this form from that of the general 16-nodal is a process

of some difficulty ;
and it is to be noted that the x, y, &c. here used are not the same

coordinates as those used in that equation.
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And the nodes may be exhibited by writing the equation in

the following or one of the three corresponding forms

(2mnfx* + nvy* 4 m^z
2

+/Xw
2

)

2

= y (1, 1, 1,
-

1,
-

1,
- IJyX z*m, ti&amp;gt;/) ;

where y = PJ* 4 m*g* 4 tftf - 2mngh - &amp;gt;2nlhf- 2hnfg.

These last equations serve to show that the sections by a

plane of the tetrahedron are two conies as above mentioned
;

thus writing in the first of them w = it becomes

(2mnfx* + nvy* + mpz*}*
= A {y*n

- zVf,

a pair of conies.

To deduce the ordinary form of the equation of the wave-

surface write

I = a/?7 (by
-

c/5), m afty (ca. 07), n = a(3y (aft
-

/= &aa (by cyS), g = kl@ (COL ay), h = key (aft

equations which serve to determine the ratios a : b : c : a : ft : y : k

in terms of
?, ??z, TI,/, g, h. The equation of the surface then

becomes

aj3y (ax* -f by
9 + cz

2

) (ax* -f fly* + yz*) + tfabcw*

- Jcaa (by + c/5) xV -
kl/3 (COL + ay)yW - key (aft + la) zV= 0,

which putting in X, Y, Z for - A
I(^\ ,

^
A /(f) ,

-
A /fy)w V w WV vfe/- ^V w

respectively, and aa
2

, /Si
a

, 7c
2
for a, 5, c, becomes

(JP + 72 +^ (
a jf + tf Y^ 4- c

2^2

) + a*5V

-
(
J
2
4- c

2

)
a JP -

(c
2
4 a

2

)
Z&amp;gt;

2 F2 -
(a

2
-f I*) tZ* = 0,

the equation of the wave-surface.
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CHAPTER XVII.

GENERAL THEORY OF SURFACES.

575. WE shall in this chapter proceed, in continuation of

Art. 287, with the general theory of surfaces, and shall first

give for surfaces in general a few theorems proved for quadrics

(Art. 233, &c.).

The locus of the points whose polar planes with regard to

four surfaces U, V, W, T (whose degrees are m, n, p, q) meet

in a poin^ is a surface of the degree m + n + p + q 4;
the Jacobian of the system. For its equation is evidently

got by equating to nothing the determinant whose consti

tuents are the four differential coefficients of each of the four

surfaces. If a surface of the form \U+/j,V+vW touch T,

the point of contact is evidently a point on the Jacobian, and

must lie somewhere on the curve of the degree q (m+n+p+q 4)

where the Jacobian meets T. In like manner, pq(m+n+p+q-4)
surfaces of the form \U+ fiV can be drawn so as to touch

the curve of intersection of T7

, W\ for the point of contact

must be some one of the points where the curve TW meets

the Jacobian.

It follows hence, that the tact-invariant of a system of three

surfaces Z7, F, W (that is to say, the condition that two of the

mnp points of intersection may coincide), contains the coefficients

of the first in the degree np (2m -f n + p 4) ;
and in like manner

for the other two surfaces. For, if in this condition we sub

stitute for each coefficient a of Z7, + Xa
,
where a is the

corresponding coefficient of another surface U of the same

degree as
7,

it is evident that the degree of the result in X is

the same as the number of surfaces of the form U+ X7
,
which

can be drawn to touch the curve of intersection of
F&quot;,

W.*

* Moutard, Terquem s Annaks, vol. XIX. p, 58.
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I had arrived at the same result otherwise thus : (see

Quarterly Journal, vol I. p. 339). Two of the points of inter

section coincide if the curve of intersection UV touch the

curve UW. At the point of contact then the tangent planes
to the three surfaces have a line in common

;
and these planes

therefore have a point in common with any arbitrary plane
ax + $y + 72 4- 8w. Thus the point of contact annuls the

determinant, which has for one row, a, /3, 7, 8; and for the

other three, the four differentials of each of the three surfaces.

The condition that this determinant may vanish for a point
common to the three surfaces is got by eliminating between the

determinant and
7, F, TF. The result will contain a, /3, 7, 8

in the degree mnp ;
and the coefficients of U in the degree

np (in -f n+p 3) 4- mnp. But this result of elimination contains

as a factor the condition that the plane ax + fty + yz -t- 8w

may pass through one of the points of intersection of
7, F, TF.

And this latter condition contains a, /3, 7, 8 in the degree rnnp^
and the coefficients of U in the degree np. Dividing out this

factor, the quotient, as already seen, contains the coefficients of

U in the degree

np (2m + n +p- 4).

576. The locus of points whose polar planes with regard
to three surfaces have a right line common

is,
as may be

inferred from the last article, the Jacobian curve denoted by
the system of determinants

0;, ua ua u
t

V V V V
1)

Y
Zl

*
3} 4

TF, TF, TF, TF = 0.
1) -il 3&amp;gt;

But this curve (see Higher Algebra, Art. 257) is of the order

(m* + ri* +p
* + mn + np -f^ ^O)

where m is the order of U^ &c., that is to say, ?/i = m
1, &c.

If a surface of the form A.U+ fj,
V touch TF, the point of contact

is evidently a point on the Jacobian curve, and therefore the

number of such surfaces which can be drawn to touch TF is

equal to the number of points in which this curve meets TF,

that is to say, is p times the degree of that curve. Eeasoning
AAAA
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then, as in the last article, we see that the tact-invariant of two

surfaces
7, F, that is to say, the condition that they should

touch, contains the coefficients of U in the degree

(rc

2 -r2mV-f 3m 2

),

or n (r? + 2mn + 3m* 4n - 8m + 6).

This number may be otherwise expressed as follows : if the

order and class of V be M and N, and the order of the tangent
cone from any point be R, then the degree in which the coeffi

cients of 7 enter into the tact-invariant is

We add, in the form of examples, a few theorems to which

it does not seem worth while to devote a separate article.

Ex. I. Two surfaces U, V of the degrees m, n intersect
;
the number of tangents

to their curve of intersection, which are also inflexional tangents of the first surface,

is mn (3m -f 2n 8) .

The inflexional tangents at any point on a surface are generating lines of the polar

quadric of that point ; any plane therefore through either tangent touches that polar

quadric. If then we form the condition that the tangent plane to V may touch the

polar quadric of U, which condition involves the second differentials of U in the

third degree, and the first differentials of V in the second degree, we have the equa
tion of a surface of the degree (3m+2n 8) which meets the curve of intersection

in the points, the tangents at which are inflexional tangents on U.

Ex. 2. In the same case to find the degree of the surface generated by the

inflexional tangents to U at the several points of the curve UV.
This is got by eliminating x y z w between the equations

U = 0, F =
0, At7 = 0, A 2 / = 0,

which are in x y z w of the degrees respectively m, n, m l, m 2, and in xyzw of

the degrees 0, 0, 1, 2. The result is therefore of the degree mn (3m - 4).

Ex. 3. To find the degree of the developable which touches a surface along its

intersection with its Hessian. The tangent planes at two consecutive points on the

parabolic curve intersect in an inflexional tangent (Art. 269) ; and, by the last

example, since n = 4. (m 2), the degree of the surface generated by these inflexional

tangents is 4m (m- 2) (3m -4). But since at every point of the parabolic curve the

two inflexional tangents coincide, and therefore the surfaces generated by each of

these tangents coincide, the number just found must be divided by two, and the

degree required is 2m (m 2) (3m 4).

Ex. 4. To find the characteristics, as at p. 298, of the developable circum
scribed along any plane section to a surface whose degree is m. The section of the

developable by the given plane is the section of the given surface, together with the

tangents at its 3m (m 2) points of inflexion. Hence we easily find

H = 6m (m - 2), v = m (m - 1), r = m (3m - 5). =
0, /3

= 2m (5m - 1 1), &c.
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Ex. 5. To find the characteristics of the developable which touches a surface of

the degree m along its intersection with a surface of degree n.

Ans. v = mn (m 1), a 0, r = mn (3m, + n 6), whence the other singularities

are found as at p. 298.

Ex 6. To find the characteristics of the developable touching two given surfaces,

neither of which has multiple Hues.

Ans. v = mn (m I)
2
(n I)

2
;
a = 0, r = mn (m - 1) (n 1) (m + n -

2).

Ex. 7. To find the characteristics of the curve of intersection of two developables.

The surfaces are of degrees r and r
,
and since each has a nodal and cuspidal curve

of degrees respectively x and m, x and m
,
therefore the curve of intersection has

rx + r x and rm + r m actual nodal and cuspidal points. The cone therefore which

stands on the curve, and whose vertex is any point, has nodal and cuspidal edges in

addition to those considered at Art. 343
;
and the formulae there given must then be

modified. We have as there /u
= rr

;
but the degree of the reciprocal of this cone is

p = rr (r + r -
2)
- r (2x + 3m

)
- r (2x + 3m),

or, by the formulas of Art. 327, p = rri + nr . In like manner

v ar + a r + 3rr .

Ex. 8. To find the characteristics of the developable generated by a line meeting
two given curves. This is the reciprocal of the last example. We have therefore

v - rr
, p = rm + mr

, fj.
= /& .+ /3V + 3rr .

Ex. 9. To find the characteristics of the curve of intersection of a surface and

a developable. The letters M, N, R relate to the surface as in the present article
;

m, n, r to the developable. Ans. n = Mr, p rR + nM, v = aM + 3rR.

Ex. 10. To find the characteristics of a developable touching a surface and also

a given curve. Ans.
/JL
= py + 3rR, p = rR + mX, v = Nr.

577. The theory of systems of curves given in Higher Plane

Curves, p. 372, obviously admits of extension to surfaces. Let

it be supposed that we are given one less than the number

of conditions necessary to determine a surface of the n* order
;

the surfaces satisfying these conditions form a system whose

characteristics are /*, v, p ;
where

//.
is the number of sur

faces of the system which pass through any point, v is

the number which touch any plane, and p the number

which touch any line. It is obvious that the sections of the

system of surfaces by any plane form a system of curves

whose characteristics are /A, p ;
and the tangent cones drawn

from any point form a system whose characteristics are
/o,

v.

Several of the following theorems answer to theorems already

proved for curves.

(1) The locus of the poles of a fixed plane with regard to

surfaces of the system is a curve of double curvature of the
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order v. The locus is a curve, since the plane itself can only

be met by the locus in a finite number of points v. Taking the

plane at infinity, we find, as a particular case of the above, the

locus of the centre of a quadric satisfying eight conditions.

Thus, when eight points are given, the locus is a curve of the

third order
;
when eight planes, it is a right line.

(2) The envelope of the polar planes of a fixed point, with

regard to all the surfaces of the system, is a developable of the

class jju.

(3) The locus of the poles with regard to surfaces of the system,

of all the planes which pass through a fixed right line, is a surface

of the degree p. There are evidently p and only p points of

the locus, which lie on the assumed line. The theorem may
otherwise be stated thus: understanding by the polar curve of

a line with respect to a surface, the curve common to the first

polars of all the points of the line
; then, the polar curves of a

fixed line with regard to all the surfaces of the system lie on a

surface of the degree p.

(4) Reciprocally, The polar planes of all the points of a line,

with respect to surfaces of the system, envelope a surface of the

class p.

(5) The locus of the points of contact of lines drawn from a

fixed point to surfaces of the system is a surface of the order

fjb + p-) having the fixed point as a multiple point of order /*.

This is proved as for curves. The problem may otherwise be

stated :
&quot; To find the locus of a point such that the tangent

plane at that point to one of the surfaces of the system which

passes through it shall pass through a fixed
point.&quot;

Hence

we may infer the locus of points where a given plane is cut

orthogonally by surfaces of the system. It is the curve in which

the plane is cut by the locus surface
//, + p, answering to the

point at infinity on a perpendicular to the given plane.

(6) The locus ofpoints of contact, with surfaces of the system,

of planes passing through a fixed line, is a curve of the order

v + p meeting the fixed line in p points. This also may be stated

as the locus of points, the tangent planes at which to surfaces of

the system passing through it contain a given line.
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(7) The locus of a point such that its polar plane with regard
to a given surface of degree m, and the tangent plane at that point
to one of the surfaces of the system passing through it, intersect in a

line which meets a fixed right line, is a surface of the degree

mp -f p. The locus evidently meets the fixed line in the p

points where it touches the surfaces of the system, and in the

m points where it meets the fixed surface, these last being

multiple points on the locus of the order p.

(8) If in the preceding case the line of intersection is to lie in a

given plane, the locus will be a curve of the order m(m\}^+mp-{v.
The v points where the fixed plane is touched by surfaces of

the system are points on the locus
;
and also the points where

the section of the fixed surface by the fixed plane is touched

by the sections of the surfaces of the system. But the

number of these last points is fim (m 1) + mp.
The locus just considered meets the fixed surface in

7/1 [m (m 1) fj, + mp + v] points. But it is plain that these must

either be the pm (m 1) + mp points just mentioned, or else

points where surfaces of the system touch the fixed surface.

Subtracting, then, from the total number the number just

written, we find that

(9) The number of surfaces of the system which touch a

fixed surface is fj,m (m 1)* -f- pm (m 1) + vm
; or, more gener

ally, if n be the class of the surface, and r the order of the

tangent cone from any point, the number is pn -t- rp -f vm.

We can hence determine the number of surfaces of the form

XU+ V which can touch a given surface. For if U and V
are of the degree m, these surfaces form a system for which

/A=l, v = 3(w I)
2

, p = 2(m 1). If, then, n be the degree
of the touched surface, the value is

n(n- I)
51 + 2w (n

-
1) (m

-
1) 4- 3n (m

-
1)*,

the same value as that given, Art 576. This conclusion may
otherwise be arrived at by the following process.

578. If there be in a plane two systems of points having

a (n, m) correspondence, that
is,

such that to any point

of the first system correspond in of the second, and to any
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point of the second correspond n of the first: and, moreover
,

if any right line contains r pairs of corresponding points, then

the number of points of either system which coincide with points

corresponding to them is m -f n + r. Let us suppose that the co

ordinates of two corresponding points xy, x y ,
are connected by

a relation of the degrees /-t, //, in xy, xf

y respectively ;
and

by another relation of the degrees v, v
;
then if xy be given,

there are evidently JJLV values of xy, hence n JJLV. In like

manner m = pv . If we eliminate x, y between the two equa

tions, and an arbitrary equation ax + by + c = 0, we obtain a

result of the degree pv -f pv in x y ; showing that if one point
describe a right line, the other will describe a curve of the degree

pv + /-iV, which will, of course, intersect the right line in the

same number of points, hence r = //,/ + pv. But if we suppose
x

f

and y
f

respectively equal to x and y, we have
(//, -f //) (v + /)

values of x and y ;
a number obviously equal to m 4- n + r.

579. Let us now proceed to investigate the nature of the

locus of points, whose polar planes with respect to surfaces of

the system coincide with their polars with respect to a fixed

surface
;
and let us examine how many points of this locus

can lie in an assumed plane. Let there be two points A and a

in the plane, such that the polar plane of A with respect to

the fixed surface coincides with the polar plane of a with

respect to surfaces of the system. Now, first, if A be given,
its polar plane with regard to the fixed surface is given;
and the poles of that plane with respect to surfaces of the

system lie, by theorem (]), on a curve of the order v. This

curve will meet the assumed plane in the points a which corre

spond to A, whose number therefore is v. On the other hand, if

a be given, its polar planes with respect to surfaces of the system

envelope, by theorem (2), a developable whose class is
//, ;

but

the polar planes of the points of the given plane with regard
to the fixed surface envelope a surface whose class is (m \

)

2

;*

this surface and the developable have common
/u, (m I)

2

tangent

planes, which will be the number of points A corresponding to a.

* It was mentioned (p. 491) that if the equation of a plane contain two

parameters in the degree n, its envelope will be of the class n 2
.



GENERAL THEORY OF SURFACES. 551

Lastly, let A describe a right line, then its polar planes with

respect to the fixed surface envelope a developable of the class

m I but with respect to the surfaces of the system, by theorem

(3), envelope a surface of the class p. There may, therefore, be

p(m 1) planes whose poles on either hypothesis lie on the

assumed line. Hence, last article, the number of points A which

coincide with points a is ^(m I)
2 + p (m 1) + v. The locus,

then, of points whose polar planes with respect to the system,

and with respect to a fixed surface, coincide, will be a curve of

the degree just written, and it will meet the fixed surface in

the points where it can be touched by surfaces of the system.

580. We add a few more theorems given by De Jonquieres.

(10) The locus of a point such that the line joining it to a,

fixed point, and the tangent plane at it to one of the surfaces of the

system which pass through it,
meet the plane of a fixed curve in a

point and line which are pole and polar with respect to that curve,

is a curve of the degree pm (m 1) + pm -f v. This is proved as

theorem (8). Let the fixed curve be the imaginary circle at

infinity, and the theorem becomes the locus of the feet of the

normals drawn from a fixed point to the surfaces of the system is

a curve of the degree 2/j, + 2/&amp;gt;
4 v.

(11) If there be a system of plane curves, whose characteristics

are
//,, v, the locus of a point such that its polar with regard to a

fixed curve of degree m, and the tangent at it to one of the

curves of the system which pass through it,
cut a given finite

line harmonically, is a curve whose degree is mp + v. Consider

.in how many points the given line meets the locus, and evidently

its v points of contact with curves of the system are points on

the locus. But, reasoning as in other cases, we find that there

will be m points on the line, whose polars with respect to the fixed

curve divide the given line harmonically. And since these are

points on the locus for each of the ft curves which pass through

them, the degree of the locus is mii+ v. Taking for the finite

line the line joining the two imaginary circular points at infinity,

it follows that there are m (m/j, + v} curves of the system which

cut a given curve orthogonally. De Jonquieres finds that in

like manner the locus of a point such that its polar plane with
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regard to a fixed surface, and the tangent plane at that point to

one of the surfaces of the system, meet the plane of a fixed

conic in two lines conjugate with respect to the conic, is a surface

of the order m^ + p. And consequently that a surface of this

order meets the fixed surface in points where it is cut orthogo

nally by surfaces of the system.

(12) If from each of two fixed points Q, Q
f

tangents be

drawn to a system of plane curves of the nih
class, the locus of

the intersections of the tangents of one system with those of the

other is a curve of the order v (2n 1). For consider any curve

touching the line QQ ,
then one point of the locus will be the

point of contact, and n - 1 of the others will coincide with each

of the points Q, Q . And since there may be v such curves, each

of the points Q, Q ,
is a multiple point of the order (n 1) v,

and the line QQ meets the locus in v (2n 1) points. Let the

points QQ
r

be the two circular points at infinity, and it follows

that the locus of foci of curves of the system is a curve of

degree v(2n 1). If we investigate, in like manner, the locus of

the intersection of cones drawn to a system of surfaces from two

fixed points QQ ,
it is evident, from what has been said, that any

plane through QQ meets the locus in a curve whose order is

p(2n 1) ;
but the line QQ is a multiple line of degree p,

being common to both cones in every case where the line

QQ touches a surface of the system. The order of the locus

therefore is 2np ;
and accordingly, 4p is the order of the locus

of foci of sections of a system of quadrics by planes parallel to

a fixed plane.*

* Cliasles has given the theorem that if there be a system of conies whose

characteristics are
/JL,

v, then 2i/ p. conies of the system reduce to a pair of lines,

and 2/x v to a pair of points. It immediately follows hence, as Cremona has

remarked, that if there be a system of quadrics, whose characteristics are M, v, p,

of which o- reduce to cones and &amp;lt;r to plane conies, then considering the section

of the system by any plane, we have v = 2p
-

p, cr = 2,u
-

p, and, reciprocally,

o = 2 1/ |0.
These theorems, however, are obviously subject to modifications if it

can ever happen that a surface of the system can reduce to a pair of planes or

a pair of points. Thus in the simple case of the system through six points and

touching two planes, the ten pairs of planes through the six points are to be

regarded as surfaces of the system, since a pair of planes is a quadric which touches

every plane. For the same reason the problem to describe a quadric through six
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581. The theory of the transformation of curves and of the

correspondence of points on curves (explained Higher Plane

Curves, Chap. VIII.) is evidently capable of extension to space

of three dimensions, but only a very slight sketch can here be

given of what has been done on this subject. The reader

may consult Cremona, Memoire de geometric pure sur Ics

surfaces du troisieme ordre, Crelle, LXVin. pp. 1-96 (1868) ;

Clebsch, Ueber die Abbildung algebraischer Flachen insbeson-

dere der vierten und funften Ordnung, Math. Annalen^ I. pp. 253

316 (1868) ; Cayley, On the rational transformation between

two spaces, Proc. Lond. Math. Soc., III. pp. 127180 (1870);

and other papers by the same authors, and by Darboux, Klein,

Korndorfer, Nother, Zeuthen, and others.

It will be recollected that a unicursal curve is a curve, the

points of which have a (1, 1) correspondence with those of a line
;

or, analytically, we can express the coordinates #, ?/,
z of a point

of it as proportional to homogeneous functions, of the same

order
?rz,

of two parameters X, p. Similarly, a unicursal surface

is a surface, the points of which have a (1, 1) correspondence with

those of a plane ; or, analytically, we can express the coordinates

#, y, z, w of any of its points as proportional to homogeneous

functions, of the same order m, of three parameters X, /*, v.

When the points of a surface have thus a (1, 1) correspondence
with those of a plane, it is evident that every curve on the

surface corresponds in the same manner to a curve in the plane,

which latter curve may, therefore, be taken as a representation

(Abbildung] of the former curve.

582. It is geometrically evident that quadrics and cubics are

unicursal surfaces. If we project the points of a quadric on

a plane by means of lines passing through a fixed point

on the surface, we obtain at once a (1, 1) correspondence
between the points of the quadric and of the plane. In the

points to touch three planes does not. as might be thought, admit of 27 but only

of 17 solutions, the ten pairs of planes counting among the apparent solutions.

I have attempted to enumerate the number of quadrics which satisfy nine con

ditions, Quarterly Journal, vin. 1 (1866). The same problem has been more com

pletely dealt with by Chasles and Zeuthen (see Comptes Rendus, Feb. 1866, p. 405).

BBBB
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case of the cubic, taking any two of the right lines on the

surface, any point on the surface may be projected on a plane

by means of a line meeting the two assumed lines, and we have

in this case also a (1, 1) correspondence between the points of

the surface and of the plane. From the construction in the

case of the quadric can easily be derived analytical expressions

giving x, y, z, w as quadratic functions of three parameters.

And such expressions can be obtained in several other ways :

for instance, coordinate systems have been formed by Pliicker

and Chasles (see p. 358) determining each point on the surface by
means of the two generators which pass through it. And, indeed,

the method by which the generators are expressed by means of

parameters (Art. 108) at once suggests a similar expression for

the coordinates of a point (see p. 382) on the surface. Thus,
on the quadric xw = yz, the systems of generators are \x = py,

HW = \z \x vz, vw X?/, whence the coordinates of any point

on the quadric may be taken
yiiv, Xv, X//,, X

2
. The construction

we have indicated in the case of a cubic may also be used to

furnish expressions for the coordinates in terms of parameters ;

but other methods effect the same object more simply. For

instance, Clebsch has used the theorem that any cubic may be

generated as the locus of the intersection of three corresponding

planes, each of which passes through a fixed point. If A, B^ (7;

A
,
B

,
G

; A&quot;, R&quot;,
G&quot; represent planes, we evidently obtain the

equation of a cubic by eliminating X, yu.,
v between the equations

\A + fiB+vC=0, \A + pB + v6^ = 0, \4&quot; + A*fl&quot; + v0&quot; = 0;

and if we take X, //.,
v as parameters, we can evidently, by

solving these three equations for
a?, ?/, z, w, which they implicitly

contain, obtain expressions for the coordinates of any point on

the cubic, as cubic functions of the three parameters.

583. It will be more simple, however, if we proceed by a

converse process. Let us suppose that we are given a system

of equations x : y : z : w P : Q : M : 8, where P, Q, R^ S are

functions, of the mth

order, of three parameters X, /^,
v. This

system of equations evidently represents a surface, the equation

of which can be found by eliminating X, /-t,
v from the equations,

when there results a single equation in #, ?/, z, w. If X, /-t,
v
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be taken as the coordinates of a point in a plane, the given

system of equations establishes a (1, 1) correspondence between

the points of the surface and of the plane. P= 0, &c., denote

curves of the m order in that plane. Let us first examine

the order of the surface represented by the system of equations,

or the number of points in which it is met by an arbitrary line

ax + by -f cz + dw, ax+ b y -f cz -f d w. To these points evidently

correspond in the plane the intersections of the two curves

aP+ bQ + cR + dS=0, a P + b Q + c R + d S=Q,

whence it follows that the order of the surface is in general

?7z
2
. If, however, the curves P, Q, R, S have a common points,*

the two curves have besides these only m* a other points of

intersection, and accordingly this is the order of the surface.

Then to any plane section of the surface will correspond in

the plane a curve aP+ bQ }- cR + dS passing through the a

points: these two curves will have the same deficiency, and

we are thus in each case enabled to determine whether a plane
section of the surface contains double points, that is to say,

whether the surface contains multiple lines. To the section

of the surface, by a surface of the &
m

order, axk + &c.= cor

responds in the plane a curve aPk + &c. = of the order mk, and

on this each of the a points is a multiple point of the order k.

Again, the given system of equations determines a point on the

surface corresponding to each point of the plane, except in the

case of any of the a points. For each of these, the expressions
for

a?, y, z, w vanish, and their mutual ratios become indeter

minate : to one of these points then corresponds on the surface

not a point, but a locus, which will ordinarily be a right line

on the surface. To a curve of degree p on the plane will

correspond on the surface a curve the order of which (that

is to say, the number of points in which it is met by an arbitrary

plane) is the same as the number of points in which the given

plane curve is. met by a curve aP + b Q -I- cR + dS. This

number will be, in general, mp, but it will be reduced one

* For simplicity, we only notice the case where the common points are ordinary

points, but of course some of them may be multiple points.
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for each passage of the given curve through one of the a

points.

584. In conformity, then, with the theory thus explained, let

P, Q, J?, S be quadratic functions of \, //-, v\ then P= 0, &c

represent conies; and in order that the corresponding surface

should be a quadric, it is necessary and sufficient that the conies

P, Qj Rj S should have two common points A, B. Then to

any point in the plane ordinarily corresponds a point on the

surface, except that to the points A, B correspond right lines

on the surface. To a plane section of the quadric corresponds
in general a conic passing through AB\ but this conic may
in some cases break up into the line AB, together with another

line; and in fact the previous theory shows that to every right

line in the plane thus corresponds in general a conic on the

quadric. If, however, the line in the plane pass through either

of the points A^ By
the corresponding locus on the quadric is

only of the first degree, and we are thus by this method led

to see the existence of two systems of lines on the surface,

the lines of one system all meeting a fixed line A, those of

the other a fixed line B,

585. If the conies P, , R^ S have but one common point A,
the surface is a cubic; but as each plane section of the cubic

corresponds to a conic, and is therefore unicursal, it must have

a double point, and the cubic surface has a double line. And
since to every line through the point A corresponds a line on

the surface, we see that the cubic is a ruled surface. In like

manner, if P, Q, R^ S have no common point, the surface is

a quartic ;
but every plane section being unicursal, the quartic

lias a nodal curve of the third order
;

this is Steiner s surface

already referred to.

586. Again, let P, Q, R, S be cubic functions of X, ytt,
v

;
in

order that the surface represented should be a cubic, the curves

P, Q, Rj S must have six common points. Then the deficiency

of the curve aP+&c. being unity, this is also the deficiency

of a plane section of the cubic
;

that is to say, the surface has

no double line. To the six points will correspond six non-
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intersecting lines on the surface
;

these will be one set of the

lines of a Schlafli s double-six.

To a line in the plane corresponds on the surface a skew

cubic curve, but if the line pass through one of the six

points, the corresponding curve will be a conic, and if the line

join two of the six points, the corresponding curve will be a

right line. We thus see that there are on the surface, in

addition to the six lines with which we started, fifteen others,

each meeting two of the six lines. Again, to a conic in the

plane corresponds in general a sextic curve on the surface, but

this will reduce to a line if the conic pass through five of the

six points. We have thus six other lines on the surface,

each meeting five of the original six
;

and thus the entire

number is made up of 27 = 6 + 15 + 6.

Suppose, however, P, Q, j?, S to be still cubic functions,

but that the curves represented by them have only five common

points, then, by the previous theory, the surface represented
is a quartic, but the deficiency of a plane section being unity,

the quartic must have a nodal conic. There will be on the

quartic right lines, viz. five corresponding to the five common

points, one corresponding to the conic through these points,

and ten to the lines joining each pair of the points; or sixteen

in all (see Art. 559). This is the method in which Clebsch

arrived at this theory (Crelle^ vol. 69).

587. The &quot;

deficiency&quot; of a plane curve of the order n with

B double points and K cusps is =(n \}(n 2) S- K, it is

equal to the number of arbitrary constants contained (homo

geneously) in the equation of a curve of the order n 3, which

passes through the 8 + K double points and cusps ;
and it was

found by Clebsch that there is a like expression for the
&quot;

deficiency
&quot;

of a surface of the order n having a nodal and

a cuspidal curve
;

it is equal to the number of arbitrary con

stants contained (homogeneously) in the equation of a surface

of the order (n 4), which passes through the nodal and cuspidal

curves of the given surface.* Prof. Cayley thence deduced the

* More generally, if the surface has an i-ple curve and also^-ple points, then

it is found by Dr. Mother that the deficiency is equal to the number of constants,
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expression

where 5, are the order and class of the nodal curve, c, r those

of the cuspidal curve, t the number of triple points on the nodal

curve, /3, 7, i the number of intersections of the two curves

(/3 of those which are stationary points on the nodal curve,

7 stationary points on the cuspidal curve, i not stationary on

either curve), and 6 the number of singularities of a certain

other kind. In the case where there is only a double curve

without triple points the formula is

Thus in the several cases,

Quadric surface n 2, b = 0, q 0.

General cubic surface n = 3, b 0, q = 0.

Quartic with nodal right line w = 4, 5 = 1, ^ = 0.

nodal conic w = 4, 5 = 2, ^ = 2.

Quintic with nodal curve,

a pair of non-intersecting right lines n = 5, 5 = 2, q = 0.

nodal skew cubic n = 5, 5 = 3, q = 4,

and in all these cases we find D or the surface is unicursai.

CONTACT OF LINES WITH SURFACES.

588. We now return to the class of problems proposed in

Art. 272, viz. to find the degree of the curve traced on a surface

by the points of contact of a line which satisfies three conditions.

The cases we shall consider are : (A) to find the curve traced

by the points of contact of lines which meet in four con

secutive points ; (B) when a line is an inflexional tangent at

one point, and an ordinary tangent at another, to find the

degree of the curve formed by the former points, and
(
G

)
that

of the curve formed by the latter; (D) to find the curve

traced by the points of contact of triple tangent lines. To

as above, in the equation of a surface of the order n 4, which passes (i 1) times

through the i-ple curve (has this for an (i 1) pie line), and (j 2) times through
each j-ple point (has this for a (j 2) pie point).
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these may be added :
(a.)

to find the degree of the surface

formed by the lines A
; (b) to find the degree of that formed

by the lines considered in (B) and (G) ; (c) to find the degree
of that generated by the triple tangents.

Now to commence with problem A : if a line meet a surface

in four consecutive points we must at the point of contact not

only have Z7 =0, but also AZ7 =0, A*6r =0, A 3 6r =0. The

tangent line must then be common to the surfaces denoted by
the last three equations.

But since the six points of intersection of these surfaces are

all coincident with x y z w
,
the problem is a case of that treated

in Art. 473. Since then, by that article, the condition n =
0,

that the three surfaces should have a common line, is of the degree
\ &quot;v

ff
&amp;lt; ^ &quot;A i -\ -\ &quot; -v -v -v &quot;

A, A,
fJb -f A- \/jb + AA, /

- XX A,
J

substituting

X = l, X =
2, X&quot; = 3; /A

= w-l, A*
= w-2, /*&quot;

= ?z-3;

we find that IT is of the degree (11??- 24). The points of con

tact then of lines which meet the surface in four consecutive

points lie on the intersection of the surface with a derived surface
S of the degree lln- 24.*

The intersection of this surface S with the given surface U
is a curve of the order n (lln 24), &quot;the flecnodal curve&quot; of U-

at any point of this curve the tangent plane of U meets U
in a curve having at the point a flecnode, or double point

having there an inflexion on one branch
;

the tangent to this

inflected branch is of course the osculating (4-pointic) tangent.

589. We proceed to give Clebsch s calculation, determining
the equation of this surface S which meets the given surface

* I gave this theorem in 1849 (Cambridge and Dublin Journal, vol. IV. p. 260).

I obtained the equation in an inconvenient form (Quarterly Journal, vol. I. p. 336) j

and in one more convenient (Philosophical Transactions, 1860, p. 229) which I shall

presently give. But I substitute for my own investigation the very beautiful piece

of analysis by which Professor Clebsch performed the elimination indicated in the

text, Crelle, vol. LVIII. p. 93. Prof. Cayley has observed that exactly in the same

manner as the equation of the Hessian is the transformation of the equation rt s2

which is satisfied for eveiy point of a developable, so the equation S = is the

transformation of the equation (Art. 437) which is satisfied for every point on a ruled

surface.
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at the points of contact of lines which meet it in four consecu

tive points. It was proved, in last article, that in order to obtain

this equation it is necessary to eliminate between the equations
of an arbitrary plane and of the surfaces A 7

,
A2

27
,
A3 7 .

This elimination is performed by solving for the coordinates of

the two points of intersection of the arbitrary plane, the tangent

plane ACT, and the polar quadric A2
7

; substituting these

coordinates successively in A 3
/

,
and multiplying the results

together. Let the four coordinates of the point of contact be

a?,,
o?

2 , a?,,
#

4 ;
the running coordinates y^ y^ y^ y^ ;

the differ

ential coefficients w,,
w

2 ,
w

3 ,
u
4 ;

the second and third differential

coefficients being denoted in like manner by suffixes, as

M
ia , w, 23

. Through each of the lines of intersection of A 7
,

Az

tT, we can draw a plane, so that by suitably determining

*i 2 , 8 , ^ we can, in an infinity of ways, form an equation

identically satisfied

We shall suppose this transformation effected
;

but it is not

necessary to determine the actual values of
,, &c., for it

will be found that these quantities disappear from the result.

Let the arbitrary plane be c,^ + c
2 3/2 + C

3y3 + c
4ty4 ,

then it is

evident that the coordinates of the intersections of the arbitrary

plane, the tangent plane w
t ^, + w

2 ?/2 + u
zy^ -f w4 ?/4 ,

and A2
Z7

,

are the four determinants of the two systems

U

P* P*
These coordinates have now to be substituted in A3

7
,
which

we write in the symbolical form (a t y l
+ 2ya

+ a
3^3

+ a
4#4)

8

5

where a, means -=
, &c., so that, after expansion, we may

substitute for any term ^, 2 3^,y2 3/3?
u

\y&

dent then that the result of substituting the coordinates of

the first point in A 3
7

r

may be written as the cube of the

symbolical determinant ^a^u^p^ where, after cubing, we are

to substitute third differential coefficients, for the powers of the
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a s as has been just explained. In like manner, we write the

result of substituting the coordinates of the second point

(S&jCgM^J
3

,
where b

t
is a symbol used in the same manner

as a^ The eliminant required may therefore be written

The above result may be written in the more symmetrical form

For, since the quantities #, b are after expansion replaced by

differentials, it is immaterial whether the symbol used originally

were a or b and the left-hand side of this equation when

expanded is merely the double of the last expression. We
have now to perform the expansion, and to get rid of p and

q by means of equation (I). We shall commence by thus

banishing p and q.

590. Let us write

F== 2acM

The eliminant is F* + 3 =
0, or (F+ Gf-ZFG(F+ )=0.

We shall separately examine F+ G, and FG, in order to get
rid of p and q. If the determinants in F were so far ex

panded as to separate the p and q which they contain we
should have

G = (ntPl + n
2p2

+ n
3p3 + n

tpj (m& + m9qt + maqa
+ m&),

where, for example, m
4

is the determinant Sa^.,^, and n
4

is

^^ic2wa*
^^ then

, ^ be any two suffixes, the coefficient of

n F+ G is
(/&amp;gt;#;+/&amp;gt;#)

And we may write

where both 4 andj are to be given every value from 1 to 4.

* The recison why we use a different symbol for
-y ,

&c. in the second deter-
QfJCm

minant is because if we employed the same symbol, the expanded result would

evidently contain sixth powers of a, that is to say, sixth differential coefficients.

We avoid this by the employment of different symbols, as in Prof. Cayley s
&quot;

Hyper-
determinant Calculus&quot; (Lessons on Higher Algebra, Lesson XIT.), with which the

method here used is substantially identical.

cccc
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But, by comparing coefficients in equation (I), we have

whence F+ G = 222w,-^^ 4 22w .w,- (ttUj 4 tjU t}.

Now it is plain that if for every term of the form p tqj

we substitute t
tUj-{- tjUfJ

the result is the same as if in F and

G we everywhere altered p and q into t and u. But, if in

the determinants Sa^w^, 25,c2
M

3^4
we alter q into w, the

determinants would vanish as having two columns the same.

The latter set of terms therefore in F+ G disappears, and we
have \ (F+ G) = SSm,*^.

Now, if we remember what is meant by m^ n^ this double

sum may be written in the form of a determinant

u
115

*41?

ll
C
3 J

C
3

For since this determinant must contain a constituent from each

of the last three rows and columns it is of the first degree in

M,,, &c., and the coefficient of any term wu is

2/7 c u ^J) c u 4 2^? c 11 2& c w 1 or (TH ft 4 wz ti /.

In the determinant just written the matrix of the Hessian

is bordered vertically with a, c,
u

;
and horizontally with J, c, u.

As we shall frequently have occasion to use determinants of

this kind we shall find it convenient to denote them by an

abbreviation, and shall write the result that we have just

arrived at,

, ,
u

591. The quantity FG is transformed in like manner. It

is evidently the product of

(m t p, + m i2p2
-f m Bpa

+ w 4 ^?4) (M& + m^ + m^ 4 m
4q^

and (w ljPl 4 v?a
+ ^

3P3
+ W

4PJ (w,?, + w^a
4 ^

3^3
4 w

4 4).
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if the first line be multiplied out, and for every term

(P&2 +P&) we substitute its value derived from equation (I),

it appears, as before, that the terms including t vanish, and it

becomes 22wyw ;
-M

|

.

;-, which, as before, is equivalent to

where the notation indicates the determinant formed by border

ing the matrix of the Hessian both vertically and horizontally

with a, c, u. The second line is transformed in like manner
;

and we thus find that (F+ G}
z - 3FG (F+ G) = transforms

into

&quot;

^ u\
, c, u~

&quot;
I \ 7

c, w/ \a, c, iJ \^, c,

It remains to complete the expansion of this symbolical ex

pression, and to throw it into such a form that we may be

able to divide out c.x. + c.x9 -f c.x, + CAXA . We shall for short-II T6 & oo 44
ness write a, 6, c, instead of a

l
x

l
+ a

t
x

t
+ a

3
x

3
-f a4

a?
4, 5^ + &c.,

CjOJj + &C.

592. On inspection of the determinant, Art. 590, which we
C M

,
it appears that sincehave called

i |^
.

f i \ jf

this determinant may be reduced by multiplying the first four

columns by x^ x^ x
zJ
#
4,

and subtracting their sum from the

last column multiplied by (w-1), and similarly for the rows;
when it becomes

r\

/&quot;\

/-v

/-v

0, 0, -b

0, 0, -c
2)

0, 0, 0, 0, -, -c,

which partially expanded is

(

1
f 2 AA /c\ , /c\ 7

/

7W1 C
7

~ ac U ~M + a^
-!)&quot; I W W w
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where denotes the matrix of the Hessian bordered with
( 7 )

\bj

a single line, vertically of a s and horizontally of & s.

In like manner we have

Now as it will be our first object to get rid of the letter a,

we may make these expressions a little more compact by

writing cb^ l}c^ d^ &c., when it is easy to see that

d \ 7 2M+ & )j
j \cj

Thus

f
c
\ f

b
\ ifc

\ f
a
\ f

a
\ i(a\U =c U~HoJ ; y =c

W&quot;Hoj-

and the equation of the surface, as given at the end of last

article, may be altered into

a c a G
-a 7 )\/

(
c
\l~]H.

wjj

593. We proceed now to expand and substitute for each term

a
\
a^i &c

&amp;gt;

tne corresponding differential coefficient. Then, in

the first place, it is evident that

a
3 = n (n

-
1) (n

-
2) u =

; a\ = (n~l)(n-2] w,, &c.

Hence a
2

(

a
]
=

(w
-

1) (w
-

2) f

W
) .

\c/ \c/

But the last determinant is reduced, as in many similar cases,

by subtracting the first four columns multiplied respectively by

a?,,
a?

2 ,
o?

8 ,
C
4
from the fifth column, and so causing it to vanish,

except the last row. Thus we have
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Again, f
J

is (SQQ Lessons on Higher Algebra, Art. 34)= 2-^
aman.W du

nlH

We have therefore

a\ /a
Lastly, it is necessary to calculate af

)
( J. Now if Umn

denote the minor obtained from the matrix of the Hessian by

erasing the line and column which contain wnm ,
it is easy to see

that a ( ) ( 7 )

= (n 2) 2&&0iWV?&amp;lt;n where the numbers
\c J \aj

m
i
n

i Pi 9.
are eacn to receive in turn all the values 1, 2, 3, 4.

But (see Lessons on Higher Algebra^ Art. 33)

TT TT - TT TT TJ ^P?ump ^nq Vmn Upq LJ.
-^

.

uUmn

Substituting this, and remembering that S Umnumn = 4ZT, we have

a\ a
a J ,

cj \d] \d

Making then these substitutions we have

f /a\ fc\] ( o /a\ fa\ 2 fc
\c(, }-a(. Me2 -2ac + a

2

( \d) \d)} ( \aj \cj \cj

But attending to the meaning of the symbols d^ &c., we see

that d or d^xl
+ d^ + d

3
x

3 + djc^ vanishes identically. If then

we substitute in the equation which we are reducing the values

just obtained, it becomes divisible by c
3

,
and is then brought

to the form

594. To simplify this further we put for d its value, when it

becomes

j
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Now this is exactly the form reduced in the last article,

except that we have b instead of a, and a in place of d. We
can then write down

while the remaining part of the equation becomes

But (last article) the last term in both these can be reduced to

12 (n 2)
2 H*c (

J
. Subtracting, then, the factor c

2
divides out

again, and we have the final result cleared of irrelevant factors,

expressed in the symbolical form

595. It remains to show how to express this result in the

ordinary notation. In the first place we may transform it by
the identity (see Lessons on Higher Algebra^ Art. 33)

b

whereby the equation becomes

Now ( ) ( ) ( 7 ) expresses the covariant which we have before
\aj \aj \bj

called 0. For giving to Umn the same meaning as before, the sym
bolical expression expanded may be written 2 UmnUpqUrsumnrupqsJ
where each of the. suffixes is to receive every value from 1

to 4. But the differential coefficient of H with respect to x
r

can easily be seen to be 2 Umnumnr j
so that is S Urt -, -=

,

QttXsp CtJSg

which
is, in another notation, what we have called 0, p. 510.

The covariant S is then reduced to the form
4ZT&amp;lt;f&amp;gt;,

where

fb\ (a, bf\ (a, b\ _ Tj

\a&amp;gt;) \U bJ
~
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where U
pq&amp;gt;rs

denotes a second minor formed by erasing two

rows and two columns from the matrix of the Hessian, a form

scarcely so convenient for calculation as that in which I had

written the equation, Philosophical Transactions, 1860, p. 239.

For surfaces of the third degree Clebsch has observed that &amp;lt;

reduces, as was mentioned before, to 2UmnHmH ,
where HMV

denotes a second differential coefficient of H.

596. The surface S touches the surface H along a certain

curve. Since the equation S is of the form -
H&amp;lt;b = 0,

it is sufficient to prove that touches H. But since is got

by bordering the matrix of the Hessian with the differentials

of the Hessian, = is equivalent to the symbolical expression

f 1 = 0. But, by an identical equation already made use of,

we have

H

where c is arbitrary. Hence touches H along its intersection
TT\

} . It is proved

then that S touches H, and that through the curve of contact

an infinity of surfaces can pass of the degree In 15.

597. The equation of the surface generated by the 4-pointic

tangents is got by eliminating x y z w between Z7 =
0, A?7 =

0,

A 2 7 =
0, A 3

Z7 = 0; which result, by the ordinary rule, is of

the degree

Now this result expresses the locus of points, whose first,

second, and third polars intersect on the surface
; and, since if

a point be anywhere on the surface, its first, second, and third

polars intersect in six points on the surface, we infer that

the result of elimination must be of the form U 6M=0. The

degree ofM is therefore

2ft(n-3)(3n-2),
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598. We can in like manner solve problem B of article 577.

For the point of contact of an inflexional tangent we have

U =
0, A U =

0, A
2 U =

;
and if it touch the surface again,

we have besides JF =
0, where W is the discriminant of the

equation of the degree n 3 in X :
//,,

which remains when the

first three terms of the equation, p. 242, vanish. For W f
then

we have X&quot; = (n + 3) (n
-

4), // =
(n
-

3) (n
-

4) ;
and having,

as in Art. 577 and last article, X= l, ft
=n-l

;
X =

2, //= /i-2,

we find for the degree of n

2 (n
-

3) (n
-

4) + (n
-

2) (n + 3) (n
-

4)

4 2 (n
-

1) (n + 3) (n
-

4)
- 2 (n + 3) (w

-
4).

The degree, then, of the surface which passes through the

points B is (n
-

4) (3w
a + 5w - 24).

The equation of the surface generated by the lines (b)

which are in one place inflexional and in another ordinary

tangents, is found by eliminating x yz w between the four

equations Z7 = 0, AZ7 =
0, Aa

Z7 =
0, W = 0; and, from what

has been just stated as to the degree of the variables in each

of these equations, the degree of the resultant is

n(n-2)(n- 3) (n
-

4) -f 2n (n -l}(n- 3) (n
-

4)

+ n (n
-

1) (n
-

2) (n + 3) (n
-

4)
= n (n

-
4) (n

s + 3rc
2 - 20w + 1 8).

But it appears, as in the last article, that this resultant contains

as a factor U in the power 2 (n + 3) (n
-

4). Dividing out

this factor, the degree of the surface (b) remains

n (n
-

3) (n
-

4) (n
2
+ 6n - 4).

599. In order that a tangent at the point x y z w may
elsewhere be an inflexional tangent, we must have A U =

0,

(an equation for which X= ], /j,
= n - 1), and, besides, we must

have satisfied the system of two conditions, that the equation

of the degree n -2 in X :
yit,

which remains when the first

two terms vanish of the equation, p. 242, may have three

roots all equal to each other. If then X
, p ; V, /j,&quot;

be the

degrees in which the variables enter into these two conditions,

the order of the surface which passes through the points (C)

is, by Art. 473, X&amp;gt;&quot;
+ X&quot;/* + (n

-
2) X X&quot;. But (see Higher
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Algebra on the order of restricted systems of equations)

X X&quot; = (n
-

4) (?z

2 + w + 6), X&amp;gt;&quot;
+XV =

(w
-

2) (n
-

4) (n + 6).

The order of the surface C is, therefore,

The locus of the points of contact of triple tangent lines

is investigated in like manner, except that for the conditions

that the equation just considered should have three roots all

equal, we substitute the conditions that the same equation
should have two distinct pairs of equal roots. But (see Higher

Algebra] for this system of conditions we have

X X&quot; = i
(
n - 4) (n

-
5) (ii

z + 3n + 6),

X&amp;gt;&quot;
+XV =

(n
~

2) (n
-

4) (n
-

5) (n + 3).

The order of the surface which determines the points (Z&amp;gt;)

is, therefore, (w
-

2) (n
-

4) (n
-

5) (n
2 + 5w + 12).

To find the surface generated by the triple tangents we
are to eliminate xyz w between U =

0, A U =
0, and the two

conditions, the order of the result being

/*y + n (n
- i

) (xy + xv) ;

but since this result contains as a factor UW, in order to find

the degree of the surface (c) we have to subtract rcX X&quot; from the

number just written. Substituting the values last given for

X
X&quot;, X&amp;gt;&quot;

+ XV j
an(* for ^y , J- (n

-
2} (n

-
3) (n

-
4) (n

-
5),

we get, for the order of the surface
(c), after dividing by three,

Jrc (n
-

3) (n
-

4) (n
-

5) (n* + 3&amp;gt;i
-

2).

The following examples are solved by the numbers found

in Art. 588 and the last three articles :

Ex. 1. To find the degree of the curve formed by the points of simple intersection

of the four-point tangents.

The complete curve of intersection with U of the ruled surface M whose degree
is a consists of the curve of points of simple intersection, whose order we call a

1} and
of the curve of fourfold points, whose order we call at . We have manifestly
4a4 + a

x
= na. Putting in their values a = 2n (n 3) (on

-
2), 4

= n (lln 24), we
find a

t
= 2n (n

-
4) (3?i

2 + n - 12).

Ex. 2. To find the degree of the curve formed by the points of simple intersection

of inflexional tangents which touch the surface again.

DDDD
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The complete curve of intersection of the ruled surface b with U consists of the

curve of points at which the tangents are inflexional, of order b3 ;
of that of the

ordinary contacts, of order b2 and of that of the simple intersections, of order
&amp;gt;,.

Among these we have the obvious relation nb = 3b3 + 2#2 + b
l ; putting in their

values

b - n
(
-

3) (n
-

4) (n? + 6n - 4), b3 = n (n
-

4) (3w
2 + 5 -

24),

b2 = n (n
-

2) (n - 4) (n
2 + 2n + 12),

we find #, = n (n
-

4) (n
-

5) (ra
3 + 6 2 - n - 24).

Ex. 3. To find the degree of the curve formed by the points of simple intersection

of triple ordinary tangent lines.

Here with a similar notation nc = 2c2 + c
t ,
whence as

c = in (w-3)(w-4)(ra-5)(w
2 + 3-2) and c2= %n(n-2) (n

-
4) (n 5) (n

? + 5n + 12),

we have c
l
= $n (n

-
4) (n

-
5) (n

-
6) (n

3 + 3n? - 2n - 12).

600. There remains to be considered another class of

problems, the determination of the number of tangents which

satisfy four conditions. The following is an enumeration

of these problems. To determine : (a) the number of points

at which both the inflexional tangents meet in four con

secutive points ; (0) the number of lines which meet in five

consecutive points ; (7) the number of lines which are doubly

inflexional (fourpoint) tangents in one place, and ordinary

tangents in another
; (8) of lines inflexional in two places ;

(e) inflexional in one place and ordinary tangents in two others
;

() of lines which touch in four places.

The first of these problems has been solved, as follows,

by Glebsch, Crelle, vol. LXIII. p. 14, but with an erroneous

result, as has been shown by Dr. Schubert, Math. Ann.,

vol. XI. p. 375. It was proved, Art. 537, that the points of

inflexion of the section by the tangent plane at any point

on a surface, of the polar cubic of that point, lie on the

plane xH}
+ yHz

+ zH3 + wl!
4

. Let it be required now to find

the locus of points x y zw on a surface such that the line

joining x y z w to one of these points of inflexion may meet

any assumed line : this is,
in other words, to find the condition

that coordinates of the form \x + JJLX, \y + py, &c. (where

xyzw is the intersection of the assumed line with the tangent

plane) may satisfy the equation of the polar with respect to

the Hessian A//
,
and also of the polar cubic A 3

7 . Now
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the result of substitution in &H is 4 (n
-

2) \H + ft&H = 0.

When we substitute in A3
Z7

,
the coefficient of X3

vanishes

because x y zw is on the surface, and that of X* vanishes

because xyzw is in the tangent plane. The result is then

3 (n 2)XA
2U +fj,&*U =0. Eliminating X: p between these two

equations, we have 4# A 3
Z7 = 3A# A 2

Z7, where in A3

Z7, &c.

we are to substitute the coordinates of the intersection of an

arbitrary line with the tangent plane ;
that is to say, the

several determinants of the system

wu u
&quot;&amp;gt;*&amp;gt;

u
&amp;lt;

a, , 7, 8
/ ,O/ t &amp;lt;t

a, ff% 7, 6

By this substitution A 3 U becomes in x y z w of the degree
n 3 + 3 (n 1)

= 4n 6, and H being of the degree 4 (n 2),

the equation is of the degree tin - 14. This, then, is the degree
of the locus required.

Now the points at which two fourpoint tangents can be

drawn belong to this locus. At any one of these points

the doubly inflexional tangents evidently both lie on the

polar cubic of that point, and their plane will therefore inter

sect that cubic in a third line which, as we saw (Art. 537),

lies in the plane AZT. Every point on that line is to be con

sidered as a point of inflexion of the polar cubic
;
and therefore

the plane through the point xyzw and any arbitrary line must

pass through a point of inflexion. The points then, whose

number we are investigating, and which are evidently double

points on the curve US, are counted doubly among the

ft (lift 24) (8n 14) intersections of the curve US with the

locus determined in this article. Let us examine now what

other points of the curve US can belong to the locus. At

any point on this curve the fourpoint tangent lies in the polar

cubic, the section of which by the tangent plane consists

of this line and a conic
;
and since all the points of inflexion of

such a system lie in the line, the fourpoint tangent itself
is,

in this case, the only line joining x y z w to a point of

inflexion. And we have seen, Art. 597, that the number of such

tangents which can meet an assumed line is 2n (n 3) (3n 2).



572 GENERAL THEORY OF SURFACES.

Now Schubert first pointed out in applying his method of

enumeration to the present problem, as we shall immediately

show, that these lines must be counted three times. We have,

then, the equation

2oc + 6n (n
-

3) (3w
-

2)
= n

(1
In - 24) (8n

-
14),

whence a = 5n (7rc
2 -28n + 30),

which is the solution of the problem proposed.

601. To find the points on a surface where a line can be

drawn to meet in five consecutive points, we have to form the

condition that the intersection of A U
,
A2

CT, and an arbitrary

plane should satisfy A4
7

,
as well as A3U . Clebsch

applied to A4 7 the same symbolical method of elimination

which has been already applied to A3
Z7 . He succeeded in

dividing out the factor c
6 from this result

;
but in the final

form which he found, and for which I refer to his memoir,

there remain c symbols in the second degree, and the result

being of the degree 14w 30 in the variables, all that can be

concluded from it is that through the points which I have

called ft (Art. 600) an infinity of surfaces can be drawn of the

degree 14w 30. We can say, therefore, that the number of

such points does not exceed n (1 \ n - 24) (14n
-

30).

602. The numerical solution of the problems proposed in

Art. 600 accomplished by Dr. Schubert* are derived from the

principle of correspondence, which may be stated as follows :

Take any line and consider the correspondence between two

planes through it,
such that when the first passes through a

given point there are p points which determine the second,

and when the second passes through a given point q points

determine the first, and, moreover, such that there are g pairs

of corresponding points whose connecting lines meet an arbitrary

right line, then the number of planes of the system which

* Gatt. Nachr., Feb. 1876
;
Math. Ann., x. p. 102, xr. pp. 348-378. See also his

Kalkiil der abzaMenden Geometrie (1879), pp. 236-7, 216.



CONTACT OF LINES WITH SURFACES. 573

contain a pair of corresponding points is p + q* but since of

these there are g whose connecting lines meet the arbitrary

line, the remaining p + q (J
contain coinciding pairs of points

of the systems.

We proceed in the first place to establish the value already
stated for a. The points of contact of the inflexional tangents
which meet an arbitrary given right line I are easily shown

as in p. 546, to lie on the intersection of U with a surface

of the degree 3n 4. This surface meets the flecnodal curve

(see notation in Examples, Art. 599) in (3n 4) a
4 points, which

consist of the a points of contact of fourpoint tangents which

meet the line
/,

and the d=
(3&amp;gt;i- 4) 4

a flecnodes, whose

ordinary inflexional tangent meets I.

Accordingly, we may suppose a pencil of rays in a plane
such that to each ray which meets a fourpoint tangent corresponds
one which meets the other inflexional tangent at the same

flecnode. In such a pencil there will be a + d = (3n 4) a
4

rays meeting as well a fourpoint tangent as also the other

inflexional tangent at its flecnode. But these rays include

the
4 rays to the points of the flecnodal curve in the plane

of the pencil and (n I]
a

4
which lie in the tangent planes

through the vertex of the pencil to U at flecuodes. Thus

there remain

a + d o
4
-

(n 1) a
4
= 2 (n 2) a4

rays having the above property. These must be the rays

which intersect tangents which have fourfold contact at parabolic

points. It is not difficult to show otherwise from Art. 596 by
the usual algebraical methods that there are

2n(n-2) (lln-24)

points on a surface of the degree n in which coincident

inflexional tangents have a fourpoint contact.

The d tangent lines generate a ruled surface intersecting

U in a curve of degree nd which consists of the curve of

threefold points whose degree is a-
4
and of that of ordinary

intersections of degree /. These give

a + 3a = nd.
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Now applying the principle of correspondence, to each of the

a
4 points in a plane correspond n 3 simple intersections of the

tangents at them with U and to each of the points / corresponds
a single flecnode. But the surface generated by d lines meets

any right line in d points through each of which pass n 3 lines

connecting a point a/ with a point #
4

. Hence putting (n 3) d

is the number of coincidences of a flecnode arid one of the

simple points on the ordinary inflexional tangent. Now we

saw that in 2(n 2)a4
fourfold points the two osculating

tangents coincide, hence the difference

o/ -f (n
-

3) a
t

-
(n
-

3) d - 2 (n
-

2) a
4
=

(Sn
-

14) o4
- 3a

is double the number of biflecnodal points, as in Art. 600.

603. Next to determine /3. A fivepoint contact arises

from a fourpoint contact by the coincidence of one additional

simple point of intersection. To each of the a
4 points in

a plane correspond n - 4 simple intersections of the osculating

tangents at them with U\ and to each of the points t

in the plane corresponds a single fourfold point. Hence

the number p + q for these two systems is (n 4) a
4 + a

t
.

But the surface M meets any right line in a points through

each of which passes a line connecting the n 4 points a,
to

the corresponding a
4 ;

hence in this case g is (n 4) a. Ac

cordingly, the number of coincidences of a point a
t
with a

point a
4

is

/3
=

(n
-

4) 4
+ a

t

-
(n
-

4) a = (n- 8) 4+4a = 5n (w-4) (In- 12).

The same number is found from the analogous relation

since the union of a threepoint with an ordinary contact also

leads to a fivepoint one.

Again, fourpoint tangents having another ordinary contact

may arise either through coincidence of two simple intersections
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on a fourpoint tangent, giving in a similar manner by the

principle of correspondence

7 = 2 (n 5) a, (n 5) (n 4) a
;

or, through the coincidence of a simple intersection with the

threepoint contact of an inflexional tangent which touches else

where, giving

7=(-6)&, + &
1 -(n-5)&;

or, lastly, by the coincidence of two contacts of a triple ordinary

tangent, giving

7 = 4c
2

6c.

Each method leads to

7 = 2n (n
-

4) (n
-

5) (3&amp;gt;i

-
5) (n + 6).

Tangents inflexional in two places arise from the coinci

dences of an ordinary intersection with an ordinary contact on

an inflexional tangent, thus

(n -5)bz + b
l

-
(n -5)5 = 2S,

which gives

S = \ n (n
-

4) (n
-

5) (?i

3 + 3tf + 29w - 60).

Inflexional tangents having two further ordinary contacts

arise from coincidences of two simple intersections among those

on inflexional tangents having one other ordinary contact, thus

2s = 2 (w
-

6) Jj
-

(n
-

5) (n
-

6) b

or, from coincidence of a simple intersection with one of the

ordinary contacts among those on tangents having three such,

whence

s = (w
-

6) c
8
+ 3c,

- 3 (n
-

6) c

= \n (n
-

4) (n
-

5) (n
-

6) (n
5 + 9w2 + 20n - 60).

Finally, four ordinary contacts arise from coincidence of two

simple intersections in the case of a tangent line having three

ordinary contacts. Whence

4f=2(rc-7)c1 -(tt-6)(n-7)c;

f= -i^n (n
-

4) (n
-

5) (n
-

6) (n
-

7j (n
3
+ 6?i

a
-f In - 30).
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CONTACT OF PLANES WITH SURFACES.

604. We can discuss the cases of planes which touch a

surface in the same algebraic manner as we have done those of

touching lines. Every plane which touches a surface meets it in

a section having a double point ;
but since the equation of a

plane includes three constants, a determinate number of tan

gent planes can be found which will fulfil two additional

conditions. And if but one additional condition be given, an

infinite series of tangent planes can be found which will satisfy

it,
those planes enveloping a developable, and their points of

contact tracing out a curve on the surface. It may be re

quired either to determine the number of solutions when two

additional conditions are given, or to determine the nature of

the curves and developables just mentioned, when one additional

condition is given. Of the latter class of problems we shall

consider but two, the discussion of the case when the plane

meets the surface in a section having a cusp, and that when

it meets it in a section having two double points. Other cases

have been considered by anticipation in the last section, as

for example, the case when a plane meets in a section having
a double point, one of the tangents at which meets in four

consecutive points.

605. Let the coordinates of three points be xy z w,

x&quot;y&quot;z

f
w&quot;

, xyzw ;
then those of any point on the plane through

the points will be \x 4 px
f
4- vx, \y -f

py&quot;
-f vy^ &c.

;
and if

we substitute these values for xyzw in the equation of the

surface, we shall have the relation which must be satisfied for

every point where this plane meets the surface. Let the result

of substitution be [U] = 0, then [Z7] may be written

X&quot; 0&quot; + X&quot;&amp;gt;A,,U + X&quot;-VA IT + JX&quot;-* (/*A /y + vA)
aU + &c. = 0,

ft O&amp;gt; fid/ if Cl&amp;gt; ii CL

where A,,=s ^H-y ^-M ^ +

d d d d
1 *V 7 f T 7 jy ~

-T~i T^ M/ 7 /

ax ay dz aw

The plane will touch the surface if the discriminant of this

equation in X, /i, v vanish. If we suppose two of the points
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fixed and the third to be variable, then this discriminant will

represent all the tangent planes to the surface which can be

drawn through the line joining the two fixed points.

\Ye shall suppose the point x y zw to be on the surface,

and the point x&quot;y&quot;z&quot;w

f

to be taken anywhere on the tangent

plane at that point; then we shall have t/ = 0, A
//
27 = 0,

and the discriminant will become divisible by the square of

A 27 . For of the tangent planes which can be drawn to a

surface through any tangent line to that surface, two will

coincide with the tangent plane at the point of contact of

that line. If the tangent plane at x y z w be a double tan

gent plane, then the discriminant we are considering, instead

of being, as in other cases, only divisible by the square of

the equation of the tangent plane, will contain its cube as a

factor. In order to examine the condition that this may be

so, let us, for brevity, write the equation [U] as follows, the

coefficients of Xn

,
\n~l

/j, being supposed to vanish,

T\n~l

v + |\&quot;-

2

(Ap* H- 2 B^v + CV2

) + &c. = 0.

T represents the tangent plane at the point we are considering,

C its polar quadric, while A = is the condition that
x&quot;y&quot;z&quot;w&quot;

should lie on that polar quadric. Now it will be found that

the discriminant of [U] is of the form

TA (B*
- A C)

2
4 T&amp;gt;

=
0,

where $ is the discriminant when T vanishes as well as U
and A

/x
?7 . In order that the discriminant may be divisible

by 713

,
some one of the factors which multiply T* must either

vanish or be divisible by T.

606. First, then, let A vanish. This only denotes that the

point x y z w&quot; lies on the polar quadric of x y z w
; or, since

it also lies in the tangent plane, that the point x y z w&quot; lies

on one of the inflexional tangents at x y z w . Thus we learn

that if the class of a surface be p, then of the p tangent

planes which can be drawn through an ordinary tangent line

two coincide with the tangent plane at its point of contact,

and there can be drawn p 2 distinct from that plane ;
but

that if the line be an inflexional tangent, three will coincide

EEEE
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with that tangent plane, and there can be drawn only p - 3

distinct from it. If we suppose that
x&quot;y&quot;z&quot;w&quot;

has not been

taken on an inflexional tangent, A will not vanish, and we may
set this factor aside as irrelevant to the present discussion.

We may examine, at the same time, the conditions that T
should be a factor in B* AC, and in &amp;lt;.

The problem which arises in both these cases is the fol

lowing : Suppose that we are given a function V, whose degrees
in x y z w

,
in

x&quot;y&quot;z&quot;w&quot; ,
and in xyzw are respectively (X, //,, //.).

Suppose that this represents a surface, having as a multiple

line of the order yu, the line joining the first two points; or,

in other words, that it represents a series of planes through
that line

;
to find the condition that one of these planes should

be the tangent plane T, whose degrees are (n 1, 0, 1). If so,

any arbitrary line which meets T will meet V, and therefore

if we eliminate between the equations T= O
l
V= 0, and the

equations of an arbitrary line

ax + by -f cz -f- dw 0, ax + Vy + cz + d w 0,

the resultant It must vanish. This is of the degree yu,
in abed,

in a b c d
)
and in xff

y&quot;z&quot;w&quot;,
and of the degree ^(n l)-f A,

in x yz w . But evidently if the assumed right line met the

line joining x y z w
, x&quot;y

f
z

ffw f

,
R would vanish even though T

were not a factor in V. The condition (Jf=0), that the two

lines should meet, is of the first degree in all the quantities

we are considering ;
and we see now that R is of the form

M^R . R remains a function of xyzw alone, and is of the

degree //, (n 2) 4- X.

607. To apply this to the case we are considering, since

the discriminant of [U] represents a series of planes through

xy z w, x&quot;y&quot;z&quot;w\
it follows that B* AC and $ both represent

planes through the same line. The first is of the degree

{2 (n
-

2), 2, 2}, while
&amp;lt;t&amp;gt;

is of the degrees (n
-

2) (n
2 -

6),

ft
3 2n2 + w 6, n

3
2n* -F n 6, as appears by subtracting the

sum of the degrees of T\ A, and (B*
- AC}* from the degrees

of the discriminant of [?7], which is of the degree n (n 1)*

in all the variables. It follows then from the last article that

the condition (H = 0) that T should be a factor in B*-AC
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is of the degree 4 (n 2), and the condition (K 0) that T
should be a factor in

&amp;lt;f&amp;gt;

is of the degree (n
-

2) (n
3

n* + n 12).

At all points then of the intersection of U and H the tangent

plane must be considered double. H is no other than the

Hessian
;

the tangent plane at every point of the curve UH
meets the surface in a section having a cusp, and is to be

counted as double (Art. 269). The curve UK is the locus of

points of contact of planes which touch the surface in two

distinct points (Art. 286). It is called by Prof. Cayley the

node-couple curve.

608. Let us consider next the series of tangent planes
which touch along the curve UH. They form a developable
whose degree is p = 2n (n -2) (3/z

-
4), Ex. 3, Art. 576. The

class of the same developable, or the number of planes of the

system which can be drawn through an assigned point, is

v = 4n (n I) (n 2). For the points of contact are evidently

the intersections of the curve UH with the first polar of

the assigned point. We can also determine the number of

stationary planes of the system. If the equation of 7, the

plane z being the tangent plane at any point on the curve UH,
be z -f y* -i- i/

3 + &c. = 0, it is easy to show that the direction

of the tangent to UH is in the line
j~l

= 0. Now the tan-
cue

gent planes to U are the same at two consecutive points

proceeding along the inflexional tangent y. If then u
3

do

not contain any term a.
3

(that is to say, if the inflexional tan

gent meet the surface in four consecutive points), the direction

of the tangent to the curve UH is the same as that of the

inflexional tangent ;
and the tangent planes at two consecutive

points on the curve UH will be the same. The number of

stationary tangent planes is then equal to the number of inter

sections of the curve UH with the surface S. But since the

curve touches the surface, Art. 596, we have

a= 2w(n-2)(lln-24).

From these data all the singularites of the developable which

touches along UH can be determined, p being the r, v the
?z,
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and a the same as at p. 292, we have

p = n(n- 2) (28w-60), v= 4w(w-l) (n-2), p= 2w(w-2)(3w-4),

a = 2/1 (w
-

2) (llw
-

24),
= n (n

-
2) (70rc

-
160) ;

20 = n (n
-

2) (16n
4 - 64rc

3 + 80w* - 108/2 + 156),

2 = w (w
-

2) (784?i*
- 4928/1

3 + 10320n
2 - 7444rc -f 548).

The developable here considered answers to a cuspidal line

on the reciprocal surface, whose singularities are got by inter

changing p, and v, a and /5, &c. in the above formulae.

The class of the developable touching along 72&quot;,
which is

the degree of a double curve on the reciprocal surface, is seen

as above to be n (n 1) (n 2) (w
3

w
a

-f n 12). Its other

singularities will be obtained in the next section, where we

shall also determine the number of solutions in some cases where

a tangent plane is required to fulfil two other conditions.

THEORY OF RECIPROCAL SURFACES.

609. Understanding by ordinary singularities of a sur

face, those which in general exist either on the surface or

its reciprocal, we may make the following enumeration of

them. A surface may have a double curve of degree b and

a cuspidal of degree c. The tangent cone, determined as in

Art, 277, includes doubly the cone standing on the double

curve and trebly that standing on the cuspidal curve, so that

if the degree of the tangent cone proper be a, we have

a-f 2b + 3c = n(n-l).

The class of the cone a is the same as the degree of the

reciprocal. Let a have S double and K cuspidal edges. Let

It have k apparent double points, and t triple points which

are also triple points on the surface
;
and let c have h apparent

double points. Let the curves b and c intersect in 7 points,

which are stationary points on the former, in /3 which are

stationary points on the latter, and in i which are singular

points on neither. Let the curve of contact a meet b in p

points, and c in a points. Let the same letters accented denote

singularities of the reciprocal surface.
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610. We saw (Art. 279) that the points where the curve

of contact meets A 2

7, give rise to cuspidal edges on the

tangent cone. But when the line of contact consists of the

complex curve a + 2b + 3c, and when we want to determine

the number of cuspidal edges on the cone a, the points where

b and c meet tfU are plainly irrelevant to the question.

Neither shall we have cuspidal edges answering to all the

points where a meets A 2

t/, since a common edge of the cones

a and c is to be regarded as a cuspidal edge of the complex

cone, although not so on either cone considered separately.

The following formulae contain an analysis of the intersections

of each of the curves a, &, c, with the surface A 2

7,

a(n- 2)
= K + p+ 2&amp;lt;r

(A).

The reader can see without difficulty that the points indicated

in these formulae are included in the intersections of A2
Z7

with a, b, GJ respectively ;
but it is not so easy to see the

reason for the numerical multipliers which are used in the

formulae. Although it is probably not impossible to account

for these constants by a priori reasoning, I prefer to explain

the method by which I was led to them inductively.*

611. We know that the reciprocal of a cubic is a surface

of the twelfth degree, which has a cuspidal edge of the twenty-

fourth degree, since its equation is of the form 64&amp;gt;S

3 = T\
where S is of the fourth and T of the sixth degree (p. 485).

Each of the twenty-seven lines (p. 497) on the surface answers

to a double line on the reciprocal. The proper tangent

cone, being the reciprocal of a plane section of the cubic,

is of the sixth degree, and has nine cuspidal edges. Thus we

have a =
6, 6 = 27, c = 24, w

x

=12, a + 2b + 3c = 12.11. The

* The first attempt to explain the effect of nodal and cuspidal lines on the degree

of the reciprocal surface was made in the year 1847, in two papers which I con

tributed to the Cambridge and Dublin Mathematical Journal, vol. II. p. 65, and

IV. p. 188. It was not till the close of the year 1849, however, that the discovery

of the twenty-seven right lines on a cubic, by enabling me to form a clear conception

of the nature of the reciprocal of a cubic, led me to the theory in the form here

explained. Some few additional details will be found in a memoir which I contributed

to the Transactions of the Royal Irish Academy, vol. XXIII. p. 461.
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intersections of the curves c and l&amp;gt; with the line of contact of

a cone a through any assumed point, answer to tangent planes
to the original cubic, whose points of contact are the inter

sections of an assumed plane with the parabolic curve C/7/,

and with the twenty-seven lines. Consequently there are

twelve points v and twenty-seven points p
f

;
one of the latter

points lying on each of the lines, of which the nodal line of

the reciprocal surface is made up.

Now the sixty points of intersection of the curve a with

the second polar, which is of the tenth degree, consist of

the nine points /e
,
the twenty-seven points /o ,

and the twelve

points a . It is manifest, then, that the last points must

count double, since we cannot satisfy an equation of the form

9a + 27 + 12c = 60, by any integer values of
, Z&amp;gt;,

c except

1, 1, 2. Thus we are led to the first of the equations (A).

Consider now the points where any of the twenty-seven
lines b meets the same surface of the tenth order. The points

fi answer to the points where the twenty-seven right lines

touch the parabolic curve
;
and there are two such points on

each of these lines (Art. 287). There are also five points t

on each of these lines (Art. 530), and we have just seen that

there is one point p. Now, since the equation a -I- 2b 4 5c 10,

can have only the systems of integer solutions (1, 2, 1) or

(3, 1, 1), the ten points of intersection of one of the lines

with the second polar must be made up either p + 2/3 + ,
or

3// + /3 + ,
and the latter form is manifestly to be rejected.

But, considering the curve V as made up of the twentv-seven

lines, the points t
f

occur each on three of these lines : we are

then led to the formula V (n
f -

2)
= p + 2/3 + 3* .

The example we are considering does not enable us to

determine the coefficient of 7 in the second formula A, because

there are no points 7 on the reciprocal of a cubic.

Lastly, the two hundred and forty points in which the curve

c meets the second polar are made up of the twelve points cr
,

and the fifty-four points /3 . Now the equation 12a-f 545 = 240

only admits of the systems of integer solutions (11, 2), or (2, 4),

and the latter is manifestly to be preferred. In this way we
are led to assign all the coefficients of the equations (A) except
those of 7.
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612. Let us now examine in the same way the reciprocal

of a surface of the n* order, which has no multiple points.

We have then n=n (n
-

1)*, n- 2 = (n
-

2) (?z

2+ 1), a = n (n
-

1) ;

and for the nodal and cuspidal curves we have (Art 286)

V = \ n (n
-

1) (n
-

2) (n
3 -n* + n- 12), c = 4?z (n

-
1) (n

-
2).

The number of cuspidal edges on the tangent cone to the

reciprocal, answering to the number of points of inflexion on

a plane section of the original, gives us K= 3 (n 2). The

points p and a answer to the points of intersection of an

assumed plane with the curves UK and UH (Art. 607) ;

hence p = n (n
-

2) (n
3 - ri* -f n - 1 2), a = n (n

-
2). Substitute

these values in the formula a (n 2)
= K + p

f

+ 2c-
,
and it is

satisfied identically, thus verifying the first of formulae (A).

We shall next apply the same case to the third of the

formulae (A). It was proved (Art. 608) that the number of

points ft is 2n (n 2) (ll?z 24). Now the intersections of the

nodal and cuspidal curves on the reciprocal surface answer to

the planes which touch at the points of meeting of the curves

UH, and UK on the original surface. If a plane meet the

surface in a section having an ordinary double point and a cusp,

since from the mere fact of its touching at the latter point it is

a double tangent plane, it belongs in two ways to the system
which touches along UK] or, in other words, it is a stationary

plane of that system. And, since evidently the points ft
f
are

to be included in the intersections of the nodal and cuspidal

curve, the points 7, H^ K must either answer to points ft

or points y . Assuming, as it is natural to do, that the

points ft count double among the intersections of Z7ZZ/T,

we have

y = n {4 (n
-

2)} . [(n
-

2) (n
3 - n* + n- 12)}

- 4w (n
-

2) (lln
-

24)

= 4?z (n
-

2) (n
-

3) (n
3
+ 3?i - 16).

But if we substitute the values already found for c
,
n

, e/, ft ,

the quantity c (n 2) 2cr 4/3 becomes also equal to the

value just assigned for y . Thus the third of the formulae A
is verified. It would have been sufficient to assume that the

points ft count p times and that the points y count
/JL times

among the intersections of UHK, and to have written that
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formula provisionally c (n 2)
= 2cr -f A&/9 + XY, when, proceeding

as above, it would have been found that the formula could not

be satisfied unless X = 1, /JL
= 4.

It only remains to examine the second of the formulae (A).

We have just assigned the values of all the quantities involved

in it except t . Substituting then these values, we find that the

number of triple tangent planes to a surface of the n* degree
is given by the formula

6 = n (n
-

2) (n*
- 4n6 + lnb - 45w4 + lUri* - lUri* 4 548rc - 960),

which verifies, as it gives t 45 when n = 3.

613. It was proved (Art. 279) that the points of contact

of those edges of the tangent cone which touch in two distinct

points lie on a certain surface of the degree (n 2)(w 3).

Now when the tangent cone is, as before, a complex cone

a + 2#-f3c, it is evident that among these double tangents
will be included those common edges of the cones ab, which

meet the curves a, b in distinct points ; and, similarly, for the

other pairs of cones. If then we denote by [ab] the number
of the apparent intersections of the curves a and b, that is

to say, the number of points in which these curves seen

from any point of space seem to intersect, though they do

not actually do so, the following formula will contain an

analysis of the intersections of a, 5, c, with the surface of

the degree (n 2)(n- 3) :

a (n
-

2) (n
-

3)
= 28 + 3 [ac] + 2 [ab],

b (n
-

2) (n
-

3)
= 4& + [ab] + 3 [ic],

c (n
-

2) (n
-

3)
= Sh + [ac] + 2 [be].

Now the number of apparent intersections of two curves is at

once deduced from that of their actual intersections. For if

cones be described having a common vertex and standing on

the two curves, their common edges must answer either to

apparent or actual intersections. Hence,

*[ab] ab 2p, [ac]
= ac 3cr, [be]

= bc 3j32y i.

* If the surface have a nodal curve, but no cuspidal, there will still be a deter

minate number i of cuspidal points on the nodal curve, and the above equation
receives the modification [ab] = ab 2p t. In determining, however, the degree of

the reciprocal surface the quantity [ab~\ is eliminated.
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Substituting these values, we have

a (n
-

2) (n
-

3)
= 25 + 2ab + 3ac - 4p - 9&amp;lt;r

)

b (n
-

2) (w
-

3)
= 4 + a6 + 3fc - 9/8

- 67 - 3{- 2p [...().

c(n-2) (n
-

3) = 6h + ac + 2bc - 6/3 - 47 - 2z - So- J

The first and third of these equations are satisfied identically

if we substitute for /3, 7, p, cr, &amp;lt;c.,
the values used in the last

article, to which we are to add 2& = n (n- 2) (ri* 9), i = 0,

and the value of ti got from (Art. 608),

2h = n (n
-

2) (1 6&amp;gt;i

4 -
64&amp;gt;i

3 + 80?z
8 - lOSrc + 156).

The second equation enables us to determine k by the equation

8 = n (n
-

2) (n
10 - 6?i

9
4- 16&amp;gt;z

8 - 54?i
7

+ 164n6 - 288
5 + 547w4 - 105871

3 + 1068n* - 1214w -|- 1464) ;

from this expression the rank of the developable, of which b is

the cuspidal edge, can be calculated by the formula

jra*-y-2tf-6*-3 /.

Putting in the values already obtained for these quantities

we find

R = n (n
-

2) (n
-

3) (n
2 + 2n- 4).

This is then the rank of the developable formed by the planes

which have double contact with the given surface.

614. From formula A and B we can calculate the diminu

tion in the degree of the reciprocal caused by the singularities

on the original surface enumerated Art. 609. If the degree of

a cone diminish from m to m
Z,

that of its reciprocal diminishes

from m (m 1) to (m- 1) (m
- I 1) ;

that is to say, is reduced

by Z(2?72- I
1). Now the tangent cone to a surface is in

general of the degree n (n 1), and we have seen that when
the surface has nodal and cuspidal lines this degree is reduced

by 2b + 3c. There is a consequent diminution in the degree
of the reciprocal surface

D =
(2b + 3c) (2w

2 - 2n - 25 - 3c - 1)..

But the existence of nodal and cuspidal curves on the surface

causes also a diminution in the number of double and cuspidal

edges in the tangent cone. From the diminution in the degree
FFFF



586 GENERAL THEORY OF SURFACES.

of the reciprocal surface just given must be subtracted twice

the diminution of the number of double edges, and three times

that of the cuspidal edges. Now, from formula A, we have

K = (a
- b - c) (n

-
2) + 6/3 + 47 + 3/.

But, since if the surface had no multiple lines, the number of

cuspidal edges on the tangent cone would be (a + 2b + 3c) (n
-

2),

the diminution of the number of cuspidal edges is

K= (3b + 4c) (w
-

2)
-

6/3
- 47 - 3t.

Again, from the first system of equations in last article, we have

(a
- 2b - 3c) (n

-
2) (n

-
3)
= 28 - Sk - I8h - 12

[ftc],

and putting for [be] its value

28 = (a
- 2b - 3c) (n- 2) (n- 3) + 8k + ISh + I2bc - 36/3-24y-12z.

But if the surface had no multiple lines, 28 would

=
(a + 2b + 3c) (n

-
2) (n

-
3).

The diminution then in the number of double edges is given

by the formula

2#= (46 + 6c) (n
-

2) (n
-

3)
- Sk - ISh - 12bc + 36/3+ 247 + 12.

Thus the entire diminution in the degree of the reciprocal

D 3JT 2H
is, when reduced,

w (75+ 12c) -4&
2 -9e2 - 8&-15c + Sk + ISA - 18/3

-
127

- 12* -f 9*.

615. The formulae Bj reduced by the formula

a + 2&+3c = ft(- 1),

become a
(

4rc -f 6) = 28- a2

4p 90- 1

ft (- 4n + 6)
= 4& - 2&

2 -
9/3

- 67 - 3t - 2p
|

... (C).

c (- 47i + 6)
= 6A - 3c* - 6/3

- 47 - 2t*-3oJ

To each of these formulae we add now four times the corre

sponding formula A
;
and we simplify the results by writing

for a
2 a- 28- 3/c, n the degree of the reciprocal surface, by

giving R the same meaning as in Art. 613, and by writing for

c
a _ c _ 2h - 3^3, S the order of the developable generated by
the curve c

;
we thus obtain the formulae in the more convenient

shape,
n - a K cr

= 2/3-^3-3 (D).
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From the first of equations A and D we may also obtain

the equation

the truth of which may be seen from the consideration that a,

the curve of simple contact from any one point, intersects the

first polar of any other point, either in the ri points of contact

of tangent planes passing through the line joining the two

points, or else in the p points where a meets &, or the cr points

where it meets c, since every first polar passes through the

curves &, c.

616. The effect of multiple lines in diminishing the degree
of the reciprocal may be otherwise investigated. The points

of contact of tangent planes, which can be drawn through a

given line, are the intersections with the surface of the curve

of degree (n I)
2

,
which is the intersection of the first polars

of any two points on the line. Now, let us first consider the

case when the surface has only an ordinary double curve of

degree b. The first polars of the two points pass each through
this curve, so that their intersection breaks up into this curve

b and a compleraental curve d. Now, in looking for the points

of contact of tangent planes through the given line, in the

first place, instead of taking the points where the complex
curve b -f d meets the surface, we are only to take those in

which d meets
it,

which causes a reduction bn in the degree
of the reciprocal. But, further, we are not to take all the

points in which d meets the surface : those in which it meets

the curve b have to be rejected ; they are in number
2b (n 2) r (Art. 346) where r is the rank of the system b.

Now, these points consist of the r points on the curve b,

the tangents at which meet the line through which we are

seeking to draw tangent planes to the given surface, and of

2b(n-2} 2r points at which the two polar surfaces touch.

These last are cuspidal points on the double curve b that is

to say, points at which the two tangent planes coincide, and

they count for three in the intersections of the curve d with

the given surface, since the three surfaces touch at these points ;

while the r points being ordinary points on the double line
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only count for two. The total reduction then is

nb + 2r + 3 {2b (n
-

2)
-

2r}
= l(ln- 12)

-
4r,

which agrees with the preceding theory.
If the curve &, instead of being merely a double curve,

were a multiple curve on the surface of the order p of mul

tiplicity, I have found for the reduction of the degree of the

reciprocal (see Transactions of the Royal Irish Academy ^
vol.

XXIII. p. 485)

l(p-l) (3p -f 1) n - 2fcp (p
2

-l)-p (p-l) r,

for the reduction in the number of cuspidal edges of the cone

of simple contact

and for twice the reduction in the number of its double edges

-l) (4p-6)r.*

617. The theory just explained ought to enable us to

account for the fact that the degree of the reciprocal of a

developable reduces to nothing. This application of the theory
both verifies the theory itself and enables us to determine some

singularities of developables not given, Arts. 325, &c. We use

the notation of the section referred to. The tangent cone to a

developable consists of n planes; it has therefore no cuspidal

edges and ^n (n 1) double edges. The simple line of contact

(a) consists of n lines of the system each of which meets the

cuspidal edge m once, and the double line x in (r 4) points

(see Art. 330). The lines m and x intersect at the a points of

contact of the stationary planes of the system ;
for since there

three consecutive lines of the system are in the same plane, the

intersection of the first and third gives a point on the line
&amp;lt;r.f

* The method of this article is not applied to the case where the surface has a

cuspidal curve in the Memoir from which I cite, and I have not since attempted
to repair the omission.

J-
It is only on account of their occurrence in this example that I was led to

include the points i in the theory.
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We have then the following table. The letters on the left-

hand side of the equations refer to the notation of this Chapter
and those on the right to that of Chapter xn. :

n = r, a =
ri)

b = x, c = m,

p = n(r-4), &amp;lt;r
=

H, /c = 0,
=

/3,
h h, t = a; n =

0, S=r;
and the quantities t, 7, R remain to be determined. On sub

stituting these values in formulas A and
Z&amp;gt;,

Arts. 610, 615, we

get the system of equations

x r-2=nr-4 + 2

77i
(
r - 2)

= 2n -f 4/3 + 7,
.(E).

2JR = 2n (r
-

4)
-

/3
-

3a,

3r + 7TC = 5tt 2a + /3,

The first and fourth of these equations are identically true, and

the sixth is verified by the equations of Arts. 326, 327. The

three remaining equations determine the three quantities, whose

values have not before been given, viz. t the number of &quot;

points

on three lines
&quot;

of the system ; 7 the number of points of the

system through each of which passes another non-consecutive

line of the system ;
and R the rank of the developable of

which x is the cuspidal edge. These quantities being deter

mined, we can by an interchange of letters write down the

reciprocal singularities, the number of &quot;

planes through three

lines,&quot;
&c.

Ex. 1. Let it be required to apply the preceding theory to the case considered

Art. 329. Call ^ the number of apparent double points on b, Art. 609, &amp;lt;tc.

Ans. y = 6 (k
-

3) (k
-

4), 3t = 4 (k
-

3) (k
-

4) (k
-

5),

k
l
= (k- 3) (2k

3 - 18k2 + 57 -
65), R = 2 (k

-
1) (k

-
3).

And for the reciprocal singularities

y = 2 (k
-

2} (k
-

3), Bf = 4 (A
-

2) (k
-

3) (k
-

4),

A/ = (k
-

2) (k
-

3) (2
2 - 10A + 11), K = 6 (k

-
3)*.

Ex. 2. Two surfaces intersect the sum of whose degrees is p and their product q.

Ans. y = q (pq -2q 6q+ 16).

This follows from the table, p. 309, but can be proved directly by the method used

(Arts. 343, 471), see Transactions of the Royal Irish Academy, vol. XXIII. p. 469,

R 3q (2) 2) (7 (p 3) 1}.
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Ex. 3. To find the singularities of the developable generated by a line resting

twice on a given curve. The planes of this system are evidently
&quot;

planes through
two lines

&quot; of the original system : the class of the system is therefore y ;
and the

other singularities are the reciprocals of those of the system whose cuspidal edge
is x, calculated in this article. Thus the rank of the system, or the order of the

developable, is given by the formula

2R = 2m(r-4)-a- 3/3.

618. Since the degree of the reciprocal of a ruled surface

reduces always to the degree of the original surface (p. 105)

the theory of reciprocal surfaces ought to account for this re

duction. I have not obtained this explanation for ruled surfaces

in general, but some particular cases are examined and ac

counted for in the Memoir in the Transactions of the Royal
Irish Academy already cited. I give only one example here.

Let the equation of the surface be derived, as in Art. 464, from

the elimination of t between the equations

a? + bt*-
1 + &c. = 0, a t

1

-f IT1 + &c. = 0,

where a, a
,
&c. are any linear functions of the coordinates.

Then if we write k + 1 =
JJL,

the degree of the surface is
/u,

having a double line of the order J (p- 1) (p 2), on which

are (/* 2) (p
-

3) (fju 4) triple points. For the apparent
double points of this double curve we have

2& = JO*-2)(/*-3)(^-5/* + 8);

and the developable generated by that curve is of the order

2
(/u. 2) (fji 3). It will be found then that we have

values which agree with what was proved, Art. 614, that

the number of cuspidal edges in the tangent cone is diminished

by 36 (p 2) 3, while the double edges are diminished by
2b (p 2) (//, 3) 4&. In verifying the separate formulas B
the remark, note, Art. 613, must be attended to.

I have also tried to apply this theory to the surface, which

is the envelope of the plane aa.
n
+ 6/3

n
-+ c^

n
-|- &c.

,
where

a, /3, 7 are arbitrary parameters, but have only succeeded when
n 3. We have here (see Art. 523, Ex. 2) n = 12, n =

9, a = 18
;

b being the number of cubics with two double points (that is, of

systems of conic and line) which can be drawn through seven

points, is 21
;

c is 24, since the cuspidal curve is the intersection
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of the surfaces of the fourth and sixth order represented by
the two invariants of the given cubic equation for the same

reason ^=180 and S = c* - c- 2h -3/3= 192 - 3/S
;

t being the

number of cubics with three double points (that is,
of systems

of three right lines) which can be drawn through six points,

is 15. The reciprocal of envelopes of the kind we are con

sidering can have no cuspidal curve. This consideration gives

/e = 27, 8 = 108. The formulae A and D then give

180 = 27 + p + 2cr, 210 = p + 2^ + 87 + 45, 240 = 2&amp;lt;r + 4/3 + 7,

9-18 = 27-0-, 2^ = 2p-/3, 3(192-3) + 24 = 5&amp;lt;7 + /3.

These six equations determine the five unknowns and give one

equation of verification. We have

p = Sl, o- = 36,
=

42, 7 = 0, ^ = 60.

619. It may be mentioned here that the Hessian of a ruled

surface meets the surface only in its multiple lines, and in the

generators each of which is intersected by one consecutive.

For, Art. 463, if xy be any generator, that part of the equa
tion which is only of the first degree in x and y is of the form

(xz + yw) &amp;lt;f&amp;gt;. Then, Art. 287, the part of the Hessian which

does not contain x and y is

dwj dz

which reduces to
&amp;lt;/&amp;gt;

4
. But xy intersects

&amp;lt;/&amp;gt; only in the points

where it meets multiple lines. But if the equation be of the

form ux + vy* (Art. 287) the Hessian passes through xy. Thus

in the case considered in the last article, the number of lines

which meet one consecutive are easily seen to be 2
(/j, 2) ;

and the curve UH, whose order is 4//, (p 2), consists of these

lines, each counting for -two and therefore equivalent to 4 (p- 2)

in the intersection, together with the double line equivalent

to 4
(p, 1) (p 2). Again, if a surface have a multiple line

whose degree is m, and order of multiplicity p^ it will be a

line of order 4(p- 1) on the Hessian, and will be equivalent

to 4mp (p
-

1) on the curve UH. Now the ruled surface

generated by a line resting on two right lines and on a curve

m (which is supposed to have no actual multiple point) is of



592 GENERAL THEORY OF SURFACES,

order 2w, having the right lines as multiples of order m,

having \m (m 1) 4- h double generators, and 2r generators
which meet a consecutive one. Comparing then the order of

the curve UH with the sum of the orders of the curves of

which it is made up, we have

16m (m - 1)
= 8m (m

- 1
) + km (m

-
1) -f 8^ -j- 4r,

an equation which is identically true.

ADDITION BY PROF. CAYLEY ON THE THEORY OF RECIPROCAL

SURFACES.

620. In further developing the theory of reciprocal surfaces

it has been found necessary to take account of other singula

rities, some of which are as yet only imperfectly understood.

It will be convenient to give the following complete list of

the quantities which present themselves :

w, order of the surface.

a, order of the tangent cone drawn from any point to the

surface.

8, number of nodal edges of the cone.

#, number of its cuspidal edges.

p, class of nodal torse.

&amp;lt;7,

class of cuspidal torse.

Z&amp;gt;,

order of nodal curve.

kj number of its apparent double points.

fi number of its actual double points.

tj number of its triple points.

jj number of its pinch-points.

q^ its class.

c, order of cuspidal curve.

h, number of its apparent double points.

0, number of its points of an unexplained singularity.

%, number of its close-points.

ft), number of its off-points.

r, its class.

/3, number of intersections of nodal and cuspidal curves,

stationary points on cuspidal curve.
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7, number of intersections, stationary points on nodal curve.

ij number of intersections, not stationary points on either

curve.

(7, number of cnicnodes of surface.

.Z?,
number of binodes.

And corresponding reciprocally to these :

w
,

class of surface.

a
,

class of section by arbitrary plane.

5
,

number of double tangents of section.

#
,

number of its inflexions.

p ,
order of node^couple curve.

&amp;lt;/,

order of spinode curve.

,
class of node-couple torse.

&
,

number of its apparent double planes.

/ ,
number of its actual double planes.

,
number of its triple planes.

y, number of its pinch-planes.

q }
its order.

c
,

class of spinode torse.

A
,

number of its apparent double planes.

0\ number of its planes of a certain unexplained singularity.

X, number of its close-planes.

a/, number of its off- planes.

/, its order.

/3 ,
number of common planes of node-couple and spinode

torse, stationary planes of spinode torse.

7 ,
number of common planes, stationary planes of node-

couple torse.

*
,

number of common planes, not stationary planes of either

torse.

(7
,
number of cnictropes of surface.

.B
,
number of its bitropes.

In all 46 quantities.

621. In part explanation, observe that the definitions of p
and a- agree with those given, Art. 609 : the nodal torse is the

torse enveloped by the tangent planes along the nodal curve
;

if

GGGG
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the nodal curve meets the curve of contact a, then a tangent

plane of the nodal torse passes through the arbitrary point,

that is, p will be the number of these planes which pass through
the arbitrary point, viz. the class of the torse. So also the

cuspidal torse is the torse enveloped by the tangent planes along

the cuspidal curve
;
and cr will be the number of these tangent

planes which pass through the arbitrary point, viz. it will be the

class of the torse. Again, as regards p
f

and cr : the node-couple

torse is the envelope of the bitangent planes of the surface, and

the node-couple curve is the locus of the points of contact of

these planes ; similarly, the spinode torse is the envelope of the

parabolic planes of the surface, and the spinode curve is the

locus of the points of contact of these planes; viz. it is the

curve UH of intersection of the surface and its Hessian
;

the

two curves are the reciprocals of the nodal and cuspidal torses

respectively, and the definitions of //, cr correspond to those of

p and cr.

622. In regard to the nodal curve
ft,
we consider ~k the number

of its apparent double points (excluding actual double points) ; f
the number of its actual double points (each of these is a point

of contact of two sheets of the surface, and there is thus at the

point a single tangent plane, viz. this is a plane / ,
and we

thus have/ =/) ;
t the number of its triple points; and j the

number of its pinch-points these last are not singular points of

the nodal curve per se^ but are singular in regard to the curve

as nodal curve of the surface; viz. a pinch-point is a point at

which the two tangent planes are coincident. The curve is

considered as not having any stationary points other than the

points 7, which lie also on the cuspidal curve
;
and the expres

sion for the class consequently is q = I* b 2k 2f 87 Qt.

623. In regard to the cuspidal curve c we consider h the

number of its apparent double points ;
and upon the curve,

not singular points in regard to the curve per se, but only in

regard to it as cuspidal curve of the surface, certain points in

number 0, ^, co respectively. The curve is considered as not

having any actual double or other multiple points, and as not

having any stationary points except the points /3,
which lie also
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on the nodal curve
;
and the expression for the class consequently

is r = c* c 2h - 3/3.

624. The points 7 are points where the cuspidal curve with

the two sheets (or say rather half-sheets) belonging to it are

intersected by another sheet of the surface
;
the curve of inter

section with such other sheet belonging to the nodal curve of

the surface has evidently a stationary (cuspidal) point at the

point of intersection.

As to the points /3,
to facilitate the conception, imagine the

cuspidal curve to be a semi-cubical parabola, and the nodal

curve a right line (not in the plane of the curve) passing

through the cusp ;
then intersecting the two curves by a series

of parallel planes, any plane which
is, say, above the cusp, meets

the parabola in two real points and the line in one real point,

and the section of the surface is a curve with two real cusps
and a real node

;
as the plane approaches the cusp, these ap

proach together, and, when the plane passes through the cusp,

unite into a singular point in the nature of a triple point

(= node + two cusps) ;
and when the plane passes below the

cusp, the two cusps of the section become imaginary, and

the nodal line changes from crunodal to acnodal.

625. At a point i the nodal curve crosses the cuspidal curve,

being on the side away from the two half-sheets of the surface

acnodal, and on the side of the two half-sheets crunodal, viz.

the two half-sheets intersect each other along this portion of

the nodal curve. There is at the point a single tangent plane,

which is a plane i
\
and we thus have ii.

626. As already mentioned, a cnic-node C is a point where,

instead of a tangent plane, we have a tangent quadri-cone ;

and at a binode B the quadri-cone degenerates into a pair

of planes. A cnictrope C is a plane touching the surface along

a conic
;

in the case of a bitrope -B
,
the conic degenerates into

a flat conic or pair of points.

627. In the original formulae for a (n 2), I (n
-

2), c (n
-

2),

we have to write K - B instead of *, and the formulae are further
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modified by reason of the singularities 6 and co. So in the

original formulae for a (n 2) (n- 3), b(n- 2)(n-3)j c(w 2)(n 3),

we have instead of 8 to write 8
&amp;lt;7-3w;

and to substitute

new expressions for [a], [ac], [&c], viz. these are

[ac]
= ac 3c7 ^

The whole series of equations thus is

(1) a = a.

/ =/
(3) i =i.

(4) a = n (n
-

1)
- 25 - 3c.

(5) * = 3n (w
-

2)
- 65 - 8c.

(6) 8 =^ (n- 2) (n*- 9)
-

(n
2-n- 6} (2& + 3c)

(7) a (w
-

2)
= K - B+ p + 2&amp;lt;r + SG&amp;gt;.

(8) & (n
-

2)
= p + 2/3 + 37 4- 3t.

(9) c (w
-

2)
= 2(7 + 4/3 + 7 + + w.

(10) a(n-2)(w-3)
= 2 (8

- (7- 3) + 3 (ac
- 3o- - x - 3) + 2 (aJ

-

(11) I (n-2)(n-3)
= 4^ -f

(12) c (n-2)(n-3)

(13) q = b*-b-2k- 2/- 3y - 6#.

(14) r=c2 -c -2^-3/9.

Also, reciprocal to these

(15) a = n (n
-

1)
- 25 - 3c .

(16) /c = 3n (w
-

2)
- 66 - Sc.

(17) 8 =K (n
-

2) (n
2 -

9)
-

(n
2 - n -

6) (2J + 3c
r

)
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(18) a (n
-

2)
= * - B + p + 2o- + 3o&amp;gt; .

(19) 5 (n -2) = p +2,3 + 37 +3 .

(20) c (n
-

2)
= 2er -f 4/3 + 7 + & + to .

(21) a (w -2)(n -3)
= 2 (8 -C -3 ) -f 3 (aV - So- - x -

3a&amp;gt;
) +2 (a &

-2/&amp;gt; -/}.

(22) & (n
-

(23) c
/

(n
/

-2)(n -3)
= 6A + (aV-3a

/-x
/-3 /

)
+ 2(ftV

(24) 2
= J

/2 - V - 2k - 2/ - 87 - 6i
r

.

(25) r = c
/a -c/ -2A/

-3/3
/

,

together with one other independent relation, in all 26 relations

between the 46 quantities.

628. The new relation may be presented under several

different forms, equivalent to each other in virtue of the

foregoing 25 relations
;
these are

(26) 2 (n
-

1) (n
-

2) (n
-

3)
- 12 (n

-
3) (b + c)

+ 6# -f 6r4 24J+42/3 + 307- |0 = S;

(27) 26?i- 120-4(7-10^+ -7/-8x + J0-4 = S,

in each of which two equations 2 is used to denote the same

function of the accented letters that the left-hand side is of

the unaccented letters.

(28) /3
/

+ J0
/ = 2n(w-2)(lln-24)

+ (- 66?z + 184) b

+ (- 93n + 252) c

4 22 (2/3 -f 37 -f
3&amp;lt;)

+ 27(4/3 + 7+0)

- 240- 28 - 27^-38% - 73w

+ 46T/ + 105 + If + $x
- 4ft) -
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Or, reciprocally,

(29) /3 +

+ (- 66rc + 184) V
+ (- 93ra + 252) c

+ 22 (2/3 + 37 + 30

- 24 Gf - 285 -
27/

-
38^ -

73o&amp;gt;

+ 4(7 + 105+ Ij + BX -4&amp;lt;w.

Where the equation (26) in fact expresses that the surface

and its reciprocal have the same deficiency ;
viz. the expression

for the deficiency is

(30) Deficiency
=

| (n
-

1} (n
-

2) (n
-

3)
-

(n
-

3) (b + c)

629. The equation (28) (due to Prof. Cayley) is the correct

form of an expression for /3 ,
first obtained by him (with some

errors in the numerical coefficients) from independent considera

tions, but which is best obtained by means of the equation (26) ;

and (27) is a relation presenting itself in the investigation. In

fact, considering a as standing for its value n (n 1) 2b - 3c,

we have from the first 25 equations

6 I a

3nc-/c

a(n-2)~ K + B-p-2(T-3a)
b(n-2)- p-2/3- 3y-3t

c(w-2)-2&amp;lt;r-4/:?-7-#-ft&amp;gt;

n + /c- 0--2C- 4#-2-3-

+ 2

-2
-4
-6
+ 2

-3
-2

= 2
= 2

=2
=2
=2
=2
=2
=2

and multiplying these equations by the numbers set opposite to

them respectively, and adding, we find

- 2n* + 12/i&quot; + 4n + b (12w
-

36) + c (I2n
-

48)

-
Qq

- 6r - 4(7- 105- 41/3
- 30y - 24* - Ij- 8% + 20 - 4w = 2,
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and adding hereto (26) we have the equation (27) ;
and from

this (28), or by a like process, (29), is obtained without much

difficulty. As to the 8 2-equations or symmetries, observe that

the
first, third, fourth, and fifth are in fact included among

the original equations (for an expression which vanishes is in

fact = 2j ;
we have from them moreover 3n c = 3a //, and

thence 3n c K = 3a K #
,
which is = 2, or we have thus

the second equation ;
but the sixth, seventh, and eighth equations

have yet to be obtained.

630. The equations (15), (16), (17) give

n = a (a 1) 2S -
3/c,

c = 3a (a
-

2)
- 68 - 8*,

I = \a (a
-

2) (a
2 -

9)
-

(a
2 - a - 6) (28 + 3/c)

4 28 (8
-

1) + 6S/c + \K (K
-

1) ;

from (7), (8), (9) we have

(a-b-c) (n-2) = K- B- 6/3- 47 - 3t- +
2o&amp;gt;,

(a
- 2b - 3c) (71

-
2) (n

-
3)
=

2 (S
-

C) - $k - ISA - Qbc + 18 -f 127 + 6t -
6o&amp;gt;,

and substituting these values for K and S, and for a its value

= n (n 1) 2b 3c we obtain the values of ?/, c
,
b

\
viz. the

value of n is

n = n (n
-

I)
2 - n (Ib -{ 12c) + 4Z&amp;gt;

2 + 85 -f 9c
2

-F 15c

- 8A- - 1 8A -f- 18/8 -h 127 + 12* - 9^

Observe that the effect of a cnicnode C is to reduce the class

by 2, and that of a binode ^ to reduce it by 3.

631. We have

(
n -2)(n-3)=n

2 -n + (- 4n + 6)
= a + 2b + 3c + (- 4n -f 6),

and making this substitution in the equations (10), (11), (12),

which contain (n 2) (n- 3), these become

a (- n + 6)
= 2 (8

-
C)
- a

2 -
p
- 9cr - 2j

-
3#

- 15,
b (- 4w -f 6)

= 4& - 26* - 9/3 - 67 - 3i - 2p -j,

c (- 4?z + 6)
= 6A - 3c

2 -
6/3

- 47 - 2i - So- - ^ - 3o&amp;gt;,
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(the foregoing equations (C)] ;
and adding to each equation four

times the corresponding equation with the factor (n 2), these

become

a8 ~2a = 2(8- C) 4 4 (ie-B)
- a- -2j-Zx - 3&&amp;gt;,

Iff - 25 = 4& - ff 4 67 4 12* - 3* + 2/9 -y,

3c* - 2c = 6A 4 10/3 + 40 - 2i 4 So- - x 4 ft&amp;gt;.

Writing in the first of these o
a 2a = n + 28 + 3/e a, and

reducing the other two by means of the values of q, r, the

equations become

#-o-.-2/- 3# - 3 o&amp;gt;

,

= 5(7 + + 40 + w,

which give at once the last three of the 8 2-equations.

The reciprocal of the first of these is

viz. writing herein

a = w(w- 1) -2-3c and /e = 3w(n-2)- 6&- 8c,

this is o- = 4n(n-2)-8&-llc-2/-3x
/ -2(7/ -4j5 /

-3co
r

,

giving the order of the spinode curve
;

viz. for a surface of the

order n without singularities this is =4rc (n 2), the product of

the orders of the surface and its Hessian.

632. Instead of obtaining the second and third equations as

above, we may to the value of b
(

4/z + 6) add twice the value

of b(n 2); and to twice the value of c( 4?z-}-6) add three

times the value of c (n 2), thus obtaining equations free from

p and a respectively ;
these equations are

I (- 2n 4- 2)
= 4& - 2&* - 5/3

- 3i -f 6-./,

c (- 5n + 6)
= 1 2h - 6c&quot;

- 5y - 4t - 2^ 4 30- 3w,

equations which, introducing therein the values of q and r, may
also be written

c (5n
-

12) + 30 = 6r + 18/3 4 5? 4 4i 4 2^ 4 3w.
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Considering as given, n the order of the surface
;
the nodal curve

with its singularities &, , /, t
;

the cuspidal curve and its sin

gularities c, h
;
and the quantities /3, 7, i which relate to the

intersections of the nodal and cuspidal curves
;

the first of the

two equations gives y, the number of pinch-points, being sin

gularities of the nodal curve quoad the surface
;
and the second

equation establishes a relation between #, %, ,
the numbers

of singular points of the cuspidal curve quoad the surface.

In the case of a nodal curve only, if this be a com

plete intersection P=0, $ = 0, the equation of the surface is

(Aj Z?, C\P, j

a =
0, and the first equation is

b (- 2n -f 2)
= 4 - 2&* + Qt -j-

or, assuming =
0, say y=2 (n 1) b 2//

2

-f 4, which may be

verified
;
and so in the case of a cuspidal curve only, when this

is a complete intersection P=0, $ = 0, the equation of the

surface is (A, B, CJP, &amp;lt;?)

a =
0, where AC-B* = MP+NQ;

and the second equation is

c (- 5n + 6)
= I2h - 6c

2 - 2^ + 30 -
3&amp;lt;,

or, say 2^ -j- 3w = (5n 6) c 6c
2 + 127* + 3#, which may also be

verified.

633. We may in the first instance out of the 46 quantities

consider as given the 14 quantities

n : J, A-,/, t :c,li,6,x & % * :
&amp;lt;?&amp;gt; 5,

then of the 26 relations, 17 determine the 17 quantities

a, 8, *, p, &amp;lt;r:j, q : r, a&amp;gt;

f

and there remain the 9 equations

(18), (19), (20), (21), (22), (23), (24), (25), (28),

connecting the 15 quantities
f f i r t v f ~Lt & f f & ? /~1 f T?

P i
^ ? *^i iJ i / s *

t ^t Xt i f P 1 1 C ,B .

Taking then further as given the 5 quantitiesy, ^ ,
&&amp;gt;

,
C

,
B

,

equations (18) and (21) give /o ,
o-

,

equation (19) gives 2 4 87 -f 3/
,

n (
2

) 4^+ 7 +^
,

i&amp;gt; (28) /9 + itf ,

IIHHH
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so that taking also t as given, these last three equations deter

mine /3 , 7 ,
&

;
and finally

equation (22) gives &
,

ii (23) A
,

it

n (25) ,i *&quot;,

viz. taking as given in all 20 quantities, the remaining 26 will

be determined.

614. In the case of the general surface of the order
ft,

without singularities, we have as follow ;

n n,

a = ft
(ft
-

1),

8 =Jw(n-l)(n-2)(w-3),
K = n(n l) (ft 2),

n = n (n 1)*,

a = n
(T?
-

1),

= \n (ft
-

1) (ft
-

2) (ft

3 - ft
2 + ft - 12),

K = $n (ft
-

2) (ft

10 - 6ft
9 + 16ft

8 - 54ft
7 + 164ft

6 - 288ft
5

+ 547ft
4 - 1058ft

3 4 1068ft - 1214ft + 1464),

t =
Jft (ft

-
2) (n

7 - 4ft
6 + 7ft

5 - 45ft
4 + 1 14ft

3 - 1 1 1ft
2+ 548ft- 960),

p = ft
(ft -2) (ft

3
-ft

2

+ ra-12),

c = 4ft (ft- 1) (ft -2),

Ji =\n(n- 2) (16ft
4 - 64ft

3 + 80rc
2 - 108rc + 156),

/ = 2ft
(ft
-

2) (3ft
-

4),

cr =4ft
(ft -2),

/3 = 2ft
(ft -2) (lift -24),

V = 4ft (n
-

2) (ft
-

3) (rc

3 - 3ft + 16),

the remaining quantities vanishing.
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615. The question of singularities has been considered

under a more general point of view by Zeuthen, in the memoir
&quot; Recherche des singularites qui ont rapport a une droite

multiple d une
surface,&quot;

Math. Annalen, t. IV. pp. 1-20, 1871.

He attributes to the surface :

A number of singular points, viz. points at any one of which

the tangents form a cone of the order
//.,

and class v, with

y + 77 double lines, of which y are tangents to branches of the

nodal curve through the point, and z + stationary lines, whereof

z are tangents to branches of the cuspidal curve through the

point, and with u double planes and v stationary planes ;

moreover, these points have only the properties which are

the most general in the case of a surface regarded as a

locus of points; and S denotes a sum extending to all such

points. [The foregoing general definition includes the cnic-

nodes i = v = 2 = r = z = =u = v = and the binodes

And, further, a number of singular planes, viz. planes any
one of which touches along a curve of the class /& and order v\

with y
r

+ T) double tangents, of which y are generating lines of

the node-couple torse, z + % stationary tangents, of which z

are generating lines of the spinode torse, u double points and

v cusps ;
it

is, moreover, supposed that these planes have only

the properties which are the most general in the case of a

surface regarded as an envelope of its tangent planes ;
and 2

denotes a sum extending to all such planes. [The definition

includes the cnictropes (//
= v = 2, y

f = if = z
f = f = u = v =

0),

and the bitropes (//,
=

2, if = 1, v = y = &c. = 0)].

616. This being so, and writing

the equations (7), (8), (9), (10), (11), (12), contain in respect of

the new singularities additional terms, viz. these are

a (n
-

2) =...+ 2 [x (p
-

2)
-

ij
-

2f],

a (n
-

2) (j|
-

3) =...+ 2 [x (- 4/4 4 7) + 277 + 4?],

b (n
-

2) (n
-

3) =...+ S [y (- 4/i + 8)]
- 2 (4w + 3t&amp;gt;

),

c (n
-

2) (n
-

3) =...+- 2 [ (- 4/4 +9)]
- 2 (2i/),
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and there are of course the reciprocal terms in the reciprocal

equations (18), (19), (20), (21), (22), (23). These formulae are

given without demonstration in the memoir just referred to:

the principal object of the memoir, as shown by its title, is the

consideration not of such singular points and planes, but of the

multiple right lines of a surface; and in regard to these, the

memoir should be consulted.
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Abbildung, 553.

Allman, on paraboloids, 93

Amiot, on non-niodular foci of quadrics,
136.

Anallagmatic surfaces, 481, 512, 529.

Anchor ring, its properties. 392, 404, 539.

Anharmonic ratio, of four planes, 24, 86, 88.

Of four generators of a quadric, 92.

Of sphero-conics, 220.

Of four fixed tangent planes of quar-
tic developable, 305.

Of four tangent planes to any ruled

surface, 423.

Apparent, double points, 292.

Intersection of curves, 311.

Apsidal surfaces, 455.

Area of surface of ellipsoid, 371.

Asymptotic lines on surfaces, 238.

Axes, of a quadric found, 66.

How found when three conjugate
diameters are given, 157.

Of central section of a quadric, 80,

82, 144.

Of tangent cone to a quadric, 147.

Bedetti, on section of surface by its tan

gent plane, 234.

Bertrand, his theory of the curvature of

surfaces, 265.

On fundamental property of geo
desies, 274.

On curves of double curvature, 336.

On the proof of a theorem of G-auss ,354.
On the lines of curvature of the
wave surface, 464.

Besge, on geodesic tangents to a line of

curvature. 367,

Biflecnodes, number of, 574.

Binodes. 489.

Binormal, 324.

Biplanes. 489.

Bitangent, lines, 244, 246, 420, 474.

Planes, 251, 579.

Blackburn on representation of curves, 285.

Bonnet, on surfaces applicable to one
another, 357.

On orthogonal surfaces, 442.

On second geodesic curvature, 361,
362.

Boole, his method of finding axes of a

quadric, 66.

On integration of equation of lines

of curvature of an ellipsoid, 269.

1

Boole, on the envelope of surfaces whose
equations contain parameters, 4^7.

Booth, on centro-surface of quadric, 172.

Bouquet, on the condition that a surface

should belong to a triple orthogonal
system, 441. 449.

Bour, on surfaces applicable to one

another, 357.

Brianchon-hexagon and point, 123.

Brioshci, on lines of curvature of wave
surface, 464.

Canonical form, reduction of equations of

two quadrics to their, 206.

Of equation of a cubic, 491.

Cartesian surfaces, 535.

Cartesians, twisted, 317.

Casey, on obtaining focal properties by
inversion, 481.

On cyelides, 481, 527, (fee.

Cauchy s proof that discriminating cubic
has only real roots, 67.

Cayley, on moment of two lines, 34.

On equality of degree of ruled surface
with that of reciprocal, 105.

On developable of tangents to curve
common to two quadrics, 190.

On tact-invariants. 211.

On discriminants of discriminants, 213.

On the section of a surface by its

tangent plane, 234.

On contact of Hessian with surface,252.
On the fundamental property of

geodesies, 274.

On differential equation of orthogonal
systems, 441.

On representation of curves, 282.

On singularities of developables, 291.

On singularities of curves. 298.

On quintic developables. 313.

On description of quartic curves

through eight points, 315.

Distinguishes planar and rnultiplanar

developables. 318.

On geodesies, 370.

On contour and slope lines, 381.

On equations of Pro-Hessians, 408.

On ruled surfaces, 416, 429, 430, 431,
435, 512.

On centro-surface, 471.

Obtains equation of first negative
pedal of a quadric. 481.

On cubical ruled surface, 487.
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Cayley, on scrolar and oscular lines, 489.

On species of cubics, 490.

On right lines on a cubic, 496.

On involution of six lines, 419.

On generalization of wave surface, 542.

On differential equation of ruled

surfaces, 559.

On reciprocal surfaces, 592.

On transformation and correspond
ence, 553.

On deficiency of surfaces, 557.

Centre-surface of a quadric, 170, 465.
Its reciprocal, 172.

Its equation formed, 178.
Sections by principal planes, 171, 468.

Its cuspidal and nodal lines, 469, 470.

Extension of problem by Clebsch, 465.

Centre-surface, in general, 271.

Tangent planes at points where nor
mal meets cut at right angles, 272.

When has double lines, 272.

Its characteristics, 471.

Of a developable, 337.

Characteristic, of envelopes, 290, 401.

Their differential equations, 410.

Characteristics, of curves which to

gether make up intersection of two
surfaces, how connected, 322.

of developable, 319.
of systems of surfaces, 547.

Chasles, on lines joining corresponding
vertices of conjugate tetrahedra, 119.

On analogues to Pascal s theorem, 122.

On foci and confocal quadrics, 126, &c.
On focal lines of tangent cones to a

quadric, 152.

On the axes of these tangent cones, 155.

On finding the axes of a quadric, 157.

On sphero-conics, 215.

On curves of third order, 300.

On curves of fourth order, 317.

On enumeration of developables, 318.

On curves on a hyperboloid, 358, 554.
On geodesies of ellipsoids, 368, &c.
On ruled surfaces, 416, 512.

On involution of six lines, 419,
On systems of surfaces, 552.

Circular sections of a quadric, 82.

The problem considered geometri
cally, 116.

Sum or difference of angles made with

by any plane depends on axes of sec

tion, 224.

Clairaut, on name &quot; curves of double cur

vature,&quot; 342.

Clebsch, on double lines of surface of

centres, 273.

On condition that four consecutive

points of a curve should lie in a

plane, 329.

On surface of centres, and normals
from any point to a quadric, 465, &c.

On reduction of a cubic to its ca
nonical form, 492.

On intersection of tangent plane and

polar with respect to Hessian, 502.

Clebsch, on surface passing through 27 lines

of a cubic, 511.

Its equation calculated, 559.

On quartics with nodal conies, 512, 557,
On doubly inflexional tangents, 559.

On number of points at which two
doubly inflexional tangents can be

drawn, 570.

On representation of curves on sur

faces, 553.

On generation of cubic surfaces, 554.

Cnicnodes, 488, 240, 248.

Combescure, on lines of curvature of

wave surface, 464.

Combinants of quadrics, 209.

Complexes, 63, 190, 214. 416.

Complex surface, 420, 524.

Condition, that two planes cut at right
angles, 17.

That right lines should lie completely
in surface, 29, 64.

That two lines intersect, in terms of
six coordinates, 43.

That a plane or line should touch
a quadric, 58, 59.

That & tetrahedron self-conjugate
with respect to one quadric may
be inscribed in another, 175.

That two quadrics should touch, 175.

That a tetrahedron may be inscribed

in one quadric having two pairs of

opposite edges on another, 180.

That three asymptotic lines or planes
should be rectangular, 183.

That line should pass through in

tersection of two quadrics, 189.

That equation in quadriplanar co

ordinates represent a sphere, 202.

That section of quadric be a parabola
or equilateral hyperbola, 202.

That three quadrics may be polars to

same cubic, 209.

Thattwo intersections of three quadrics

may coincide, 211.

That four points of intersection of

three quadrics be coplanar, 211.

How many necessary to determine a

surface, 233.

That three quadrics should meet a
line in involution, 214.

That four consecutive points of a
curve should lie in a plane, 329.

That intersecting surfaces should have
a common line, 433.

That four lines should be met by
only one transversal, 419.

That five lines may have a common
transversal, 419.

That two surfaces should touch, 546.

Cone, defined, 48.

Equation of a, with given vertex and

resting on a given curve, 101.

Properties of, 215, &c., 387.

Equation of right cone. 227.

Confocal quadrics, surfaces inscribed in a
common developable, 128.
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Confocal quadrics, properties of, hence de

rived, 197.

Cut at right angles, 143.

And also appear to do so, 153.

General form of equation, 196.

Congruencies, 416.

Order and class how connected. 473.

Formed by normals to a surface, 417.

Of bitangents to focal surface, 421.

Conical points on surfaces, 240, 248, 488.

Conicoids, 45.

Conjugate tangents, 239.

Lines of quadric, 107.

Contact, of two surfaces a double point on
their intersection, 177, 234, 283, 310.

Of lines with surfaces, 558.

Of planes with surfaces, 576.

Contravariants of systems of quadrics, 185.

Of cubics, 485, 504.

Corresponding points on confocals, 161.

Correspondence, 473. 549, 553, 572.

Covariants of quadrics, 187.

Cremona, on section of a surface by its

tangent plane, 234.

On curves of third order, 300, &amp;lt;fec.

On curves of fourth order, 317.

On developables of fifth order, 319.

On cubical ruled surfaces, 488.

On Steiner s quartic, 491.

On cubics, 492.

On ruled quartics, 512.

On transformation and correspond
ence, 553.

Cubic twisted, 300, &amp;lt;fec.

Different species of, 306.

Curvature of quadrics, 167.

Of surfaces in general, 252.

Lines of curvature, 167, 170, 266.

their differential equations. 268, 344.

their property, if plane, 277.

the same for two orthogonal sur

faces, 270.

their differential equation integrated
for quadrics, 269.

if geodesic is plane, 277.

Gauss s theory of curvature, 350. &amp;lt;fcc.

Second curvature of curves, 335.

Geodesic curvature, 360.

Lines of wave surface, 464.

Curve in space how represented by equa
tions, 281.

Cuspidal edge, of developables and

envelopes, 271, 290.

Of polar developable, 339.

Its differential equation, 413.

Cyclic planes of cone, 220.

Cyclides, 481, 512, 527, &c.

Cylinders, defined, 15.

Limiting case of cones, 48, 279.

Their differential equation, 386.

Darboux, on orthogonal surfaces, 442, 451.

On centre-surface of quadric, 469.

On centre-surface in general, 471, 473.

On cyclides, 481, 527, &amp;lt;fec.

On transformation of surfaces, 553.

De Jonquieres, on systems of surfaces, 551.

Deficiency of curve in space, 319, of sur

face. 557.

Desboves on normals to quadrics, 475.

Developable defined, 89, 104.

Circumscribing two quadiics, 188, 208.

Generated by tangent lines of their

common curve, 190.

How these developables meet the

quadric, 191.

Imaginary, which touches a system
of confocals, 195.

Generated by normals along a line of

curvature, 271.

General theory of, 284, &c.

Pliicker-Cayley equations of, 293, 295.

Of same degree, as developable gene
rated by reciprocal curve, 294.

Planar and multiplanar, 318.

Polar of curves, its singularities, 341.

Differential equation of, 407.

Which touches along parabolic curve,
its degree and singularities, 546, 579.

Which touches a surface along a

given curve, 546.

Generated by a line meeting two
given curves, 547.

By a line meeting a given curve

twice, 590.

Generated by curve of intersection of

two given surfaces, 308.

Enveloping two given surfaces, 547.

Enveloped by bitangent planes. 580.

Theory of their reciprocals, 588.

Dickson, on geodesies, 358, 362.

Diguet, on the proof of a theorem of

Gauss s, 354.

Distance, between centres of inscribed and

circumscribing circles of spherical

triangles, 228.

Discriminant, of a quadric, 51.

Of a surface in general, 249.

Of discriminants, 213.

Double, points on surfaces, 240, 457,488,595.
On curves, 310.

Curves are ordinary singularities, 249.

on developables. 297.

on surface of centres, 272, 470.

on ruled surfaces, 428.

Generators on ruled surfaces, 432.

Points, apparent, on common curve
of two surfaces, 292, 310.

Tangent lines, how many pass through
a point, 244, 246.

Tangent planes, locus of their points
of contact. 251, 579.

Sixes, Schlafli s, 500.

Dupin, on indicatrix and elliptic, &c.,

points. 234, 236.

On cyclide, 535.

On conjugate tangents, 239.

On orthogonal surfaces, 269, 436, &c.

Elasticity, surface of, 481.

Elliptic coordinate?, 162, 370. -460.

Ellis, on Dupin s theorem, 270.
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Envelope of a plane containing one para
meter, 286.

entering rationally, 296.

Of a plane containing two parameters.
288.

entering rationally, 491, 590.
General theory of, 401.

Equilateral hyperboloids, 102, 120, 183.

Euler. on curvature of surfaces, 254.

Evolutes of curves, 339, &c.

Families of surfaces, 383, &c.

Faure, extension of his theorem on self-

conjugate triangles, 175.

Ferrer s proof of theorem of Chasles, 119.

Feuerbach s theorem on circles touching
sides of a triangle, 229.

Flecnodal curve, 559.

Focal conies of quadrics, 129, 139.

tangential equation in general, 199.

Curves, general definition of, 128.

Lines of cones. 106, 133.

Properties obtained by inversion, 481.

Foci, general definition of, 127.

Of section normal to focal conic, 132.

Of plane section of a quadric, co
ordinates of, 203.

Fourier, on polar developable of curves,
338.

Frenet, on curves of double curvature, 342.

Fresnel, on wave surface, 453.

On surface of elasticity, 481.

Frost and Wolstenholme s treatise on Solid

Geometry, 45.

Gauss s theorems on geodesies, 358.

On curvature of surfaces, 343, &c., 356.

Gehring, on differential equation of geo
desies, 363.

Geiser, on right lines of nodal quartics, 526.

Geodesies, fundamental property, 273, 358.

Their differential equation, 362.

On centre-surface, 275.

On ellipsoid, 364, &c.

Curvature, 360.

Polar coordinates. 356, 373.

Gerbaldi, on Steiner s quartic, 491.

Gordan, on cubics, 492.

Graves, his translation of Chasles on

sphero-conics, 215.

Theorem on arcs of sphero-conics, 225.

extended to geodesies, 366.

Proof of Joachimsthal s theoi-em, 362.

Gregory s solid geometry, 234, 268, 270.

Gudermann, on spherical coordinates, 216.

Hamilton, Sir Wm. K., his method of

generating quadrics, 102.

His theorem that umbilics lie in threes

on eight lines, 116.

On circles which touch three great

circles, 232.

On lines of curvature at umbilics, 266.

On curves of double curvature, 343.

On nodal points of wave surface, 457.

On congruencies. 4 16.

Hart, his extension of Feuerbach s theo

rem, 229.

On twisted cubics, 299.
Proof of Joachimsthal s theorem, 364.
On geodesies, 376, 380.
On obtaining focal properties by in

version, 481.

Theorem that confocal plane circular
cubics cut orthogonally, 533.

Helix and Helicoid, 325, 332, 338, 390.

Hesse, on the construction of a quadric
through nine points, 113.

On Brianchon s hexagon, 123.

Theorem as to the vertices of two
self-conjugate tetrahedra, 175.

On osculating plane of curves, 328.
On integration of equation of geodesic
on ellipsoid, 372.

On geodesies, 363.
Hessian of a surface. 250.

Touched by every right line on the

surface, 251.
Has double points, 494.
Of a developable, 408.
Of cubic identical with Steinerian,

493.

Of a ruled surface, 591.

Hirst, on pedal surfaces, 478.
On inverse surfaces, 479.

Homographic correspondence ; surface

generated by line joining correr

spending points on two lines, or

enveloped by plane joining corre

sponding points on three, 92, 304.
Locus of intersection of three corr

responding planes, 554.

Imaginary circle at infinity, its equation.
184, 199, 227.

Generators of quadric, 116, 469.
Indicatrix. 236.

Inextensible surfaces, 357.
Inflexion linear on curves, 295,

On quartics, 316.

Inflexional tangents of surfaces, 230.
How many pass through a point, 245.
How many tangents to a given curve
on a surface are inflexional, 546.

Intersection of two surfaces, its singu
larities, 308.

Of three surfaces, common curve equi*
valent to how many points, 321.

Invariants and covariants of quadrics,
173, &c.

Of a cone and quadric, 182.

Of sections of quadrics, 202.

Of a system of three quadrics, 208.
Of circles on a sphere, 228.

Of a cubic, 503.

Inverse surfaces, 479.

Inversion applied to obtaining focal pro
perties, 481.

To study of cyclides, 528.

Involution of tangent and normal planes
to a ruled surface, 423.

Of six lines, 419, 518,
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Ivory s theorem on distance between cor

responding points of confocals, 164.

Jacobi, on focal lines to tangent cones of

quadrics, 152.

His mode of generating quadrics, 164.

Integrates equation of geodesies on
an ellipsoid, 361, 362, 372.

Jacobian of four quadrics, 205.

Curve, 213.

Of four surfaces. 544.

Jellett, on inextensible surfaces, 357.

Joachimsthalj his method of finding inter

section of a line with a surface.

56. 242, 522.

On tetrahedra, 120.

On normal to ellipsoid, 165.

His theorem on plane lines of curva

ture, 276.

On curves of the third order, 303.
On geodesies of an ellipsoid, 361.

Klein, edits PIticker s work on lines, 416.

On relation between order and class

of congruency, 473.

On transformation and correspond
ence, 553.

Korndorfer on quartics withnodal lines, 5 1 2 1

On representation of curves, 553.

Kummer, on double lines of surfaces of

centres, 273.

On Steiner^s quartic, 491.
On quartics, 540; with nodal conic,

512, 526.

On congruences, 416.

Lacroix, contributions of to the theory of
curves of double curvature, 343.

On lines of striction, 424.

Lame, curvilinear coordinates, 349, 442.
Lancret s theorem, 277.

On curves of double curvature, 343.

Legendre, on area of ellipsoid, 371.

Level, lines of, 380.

Levy, on orthogonal surfaces, 442.

Line, six coordinates of, 33, 60, 193,
28;&amp;gt;,

518.

Liouville, his calculation of radius of

geodesic curvature, 360.
His mode of writing equation of geo

desies of an ellipsoid, 366.
On elliptic coordinates, 370.

Lloyd, on conical refraction, 457.
Locus of intersection of three rectangular

tangent lines to a quadric, 100, 160,
J i/O.

Of three rectangular tangent planes,

77, 196.

If the planes each touch one of three

confocals, 155.

Of points on quadric whose normals
meet a fixed normal, 101, 167

;
on

any surface, 265.

Of centres of quadrics satisfying eight
conditions, 112. 548.

Of pole of plane with regard to a
series of confocals, 146.

Locus of vertices of right cones circum

scribing a quadric, 158.

Of intersection of rectangular gene
rators of a hyperboloid, 160.

Of points of contact of parallel tan

gent planes to confocals. 166.
Of centres of spheres circumscribing

self-conjugate tetrahedron, 175.
Of foci of central sections of a q uadric,

203.

Of foci of sections parallel to a given
line, 204.

Of vertices of cones through six points,
205.

Of intersection of rectangular tan

gents to a sphero-conic, 225.
Of points of contact of double tangent

planes to a surface, 579.
Of curves of contact from points on
axes to system of confocal ellipsoids,
452.

Of intersection of three homographi-
cally corresponding planes, 55 1 .

Mac Cullagh, on foci and confocal surfaces,
126.

On modular property of foci, 135.
On bifocal chords, 157.

On apsidal surfaces and wave sur

face, 456, &amp;lt;fec.

Marcks, on order of centro-surface, 473.
M Cay s proof of theorem of Chasles. 120.

On foci of sections of quadric, 204.
Meunier s theorem, 168, 256, 267, 360.

Used to prove fundamental property
of geodesies, 274.

Mbbius, on intersection of cones and
spheres, 215.

On twisted cubics, 300.
Modular property of foci, 135.

Monge, on lines of curvature, 266, 273.
On geodesies, 273.

On tetrahedron, 120.

On envelopes, 289, 290.
On polar lines of curves, 331.
On evolutes, 339.

On curves of double curvature, 342.
On families of surfaces, 410, 414, 415.

Monoid, defined, 282.

Moutard, on anallagmatic surfaces, 512.
On condition that surfaces should

touch, 544. 546.

Node couple curve, 579.

Normal to a surface, its equations, 244.
Plane to a curve, 324.

To confocals through given line gene
rate paraboloid, 153.

To any ruled surface along a gene
rator, 423.

When intersects consecutive, 264.
Extension of notion of, 465.
To a quadric, Clebsch on, 465.
How many can be drawn from a

point to a surface, 472.

Normopolar surface, 475.

IIII
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Nbther, on deficiency of surfaces, 553, 557.

Order of condition that three surfaces
should have a common line, 434.

Orthogonal hyperboloid, 100, 183.

Surfaces, Dupin s theorem on, 269,
436, &c.

On systems of, 441, &c.

Cayley s differential equation of, 443.
Confocal quadrics are, 143.

Confocal cyelides are, 533.
Osculation of two surfaces, condition for,

329.

Osculating plane, 104, 283 324.

Sphere of a curve, 331, 341.

llight cone of a curve, 335.
Oscular lines on a surface, 489.

Painvin, on foci of sections of a quadric,
204.

Parabolic, points defined, 237.

Tangent planes at, count double, 240.
Polar quadrics of, are cones, 249.

Paraboloid, its equation reduced, 71.

Parallel to a quadric, 176, 477.
Its sections by principal planes, 468.
To a surface in general, 475.
To a curve, 478.

Pascal, theorem of, 122.

Plane, 123.

Pedal surfaces, 478.

Perpendicularity, generalization of the re?

lation, 200, 465.
Condition of for two circles on sphere,

219.

Pinch points, 519, 594,
Pliicker s relations between singularities

of plane curves, 291.
On curves on a hyperboloid, 358, 554.
On complexes, &c., 63, 416.

On wave surface, 457.
On complex surface, 420, 524.

Polar, of points on a surface, 243.
Of line to a quadric, 49, 60.

Developable of a curve, 331, 338.

Curve of a line, 548.
Pole of plane with regard to quadric,

coordinates of, 58.

Principal planes of quadric, equation of,
55.

Pro-Hessians, 408.

Projections of lines of curvature on planes
of circular sections, 163.

Puiseux, on curves of double curvature,
336.

On the proof of Gauss s theorem, 354.

Purser, F., envelope of face of tetrahedron,
180.

On intersecting normals to quadric,
167.

On bitangents to centre-surface, 474.

Quadrics, 45.

Having double contact, 115, 314.

Touching four planes or going through
four points, 181.

Quadriplanar coordinates, 23, 199.
Conditions general equation in, may

represent a sphere, 202.

Quartic curves, two families of, 312.

Quartic surfaces, 512, &c.
Nodal quartics, 537.

Quintic curves, species of, 318.

Radii of curvature, principal, their lengths,

257, 276.

Of any normal section, 259, 278.

Of a curve of double curvature, 33 1, 333.

Rank of system, 292.

Reciprocal surfaces, 103.

Cones, their sections, 101, 105.

Of double points on surfaces, 241,

Of a surface, its degree, 248.

Of ruled surface and of developable,
of same degree, 105, 294, 590.

Of apsidal surface, 456.

Of cubic surfaces, 485.

Of cubic surface with double line,

487.

General theory of, 580.

How affected by double and multiple

lines, 587.

Rectilineal generators of a quadric, 85.

Rectifying developable of curves, 336.

Reech, on closed surfaces, 381.

Revolution, surface of, conditions quadric
should be, 96.

This problem considered geometri
cally, 116.

Reciprocal of quadric. when a, 137.

Generated by revolution of right line,

99.

Differential equation of family of

surfaces of, 390.

Right lines on a cubic, 29, 496.

On a surface touch the Hessian. 251,

On quartic with nodal lines, 523, 527.

Roberts, M., his theorems on geodesies on
an ellipsoid, 356, 365, 376.

On differential equation of cuspidal

edge of enveloping developable, 413.

Roberts, S., on parallel surfaces, 476.

Roberts, W., on geodesies of an ellipsoid,

380.

On orthogonal surfaces, 451.

On equation of wave surface in elliptic

coordinates, 459.

On pedal surfaces, 478.

On negative pedals, 483.

Roberts, W. R., on curve of intersection

of two quadrics, 193.

Routh, on curves of double curvature, 337.

Ruled surfaces, 89, 422, &c., 590.

Their differential equation, 400, 559.

Reciprocals of same degree, 105, 428.

Generated by a line meeting three

directing curves, 429.

By a line meeting a curve three

times, 432.

Double generators on, 433.

Cubical, 486.

Quartic, 512522,
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Saint Venant, on curves, 324, 342.

Sehlafli, on reduction of degree of reci

procal by nodal points, 490.

On right lines on a cubic, 499.

Analysis of different species of cubics,

490, 501.

Schroter, on orthogonal and equilateral

hyperboloids, 100, 102, 120.

On curves of the third order, 300.

On Steiner s quartic surface, 491.

Schubert, on fourpoint inflexional tan

gents, 570.

On fivepoint contact, 574.

Schwarz, on developables, 318, 320.

Scrolls, 89, 512.

Serret, on orthogonal surfaces, 441, 450.

Slope, line of greatest, 381, 389, 411.

Sphere circumscribing tetrahedron, its

radius, 37.

Its equation, 201.

Inscribed in a tetrahedron, 201, 227.

Cutting four spheres at right angles,
206.

Principal spheres, have stationary
contact, 264.

Spherical curvature, line of, 262.

Sphero-conics, 215.

Sphero-quartics, 535.

Spinode torse and curve, 594.

Stationary contact, 178.

Implies contact in two consecutive

points, 263.

Principal spheres, have stationary
contact, 178, 257.

Points on twisted curve, 292.

Conditions for stationary contact of
two surfaces, 329.

Tangent planes to a surface, 240.
How many pass through a point, 250.

y. Staudt. sine of solid angle, 37.

Steiner, on perpendiculars in tetrahedron,
120.

Quartic surface cut by every tangent
plane in two conies, 491, 517, 556.

On cubical surfaces, 492, 495, 496.

Steinerians, 493.

Striction, lines of, 424.

Sturm, on cubics, 492.
On multiple lines, 523.

Sylvester, on canonical form of a cubic,

492, 494.

On twisted cartesians, 317.

On involution of six lines, 419.

Symmetroid, 540.

Synnormal explained, 475.

Systems of quadrics through a common
curve, 111.

Inscribed in a common developable
111.

Of surfaces whose equations include
one indeterminate, 547.

Tact-invariant of two quadrics, 175; of
three quadrics, 211.

Of any two surfaces, 546
; of any

three surfaces, 544.

Tait on curves, 285.

Tangent to a curve, 283.

Tangent cone to a quadric, its equation,

57, 148.

To any surface, its equation and

singularities, 245, 247.

Tangential equation, of quadric, 58, 109.

Of imaginary circle at infinity, 184,
199.

Of a curve in space, 184.

Of a sphere, 200.

Of the centre-surface of a quadric,
172.

Tetrahedroid, 542.

Tetrahedron, intersection of lines joining
middle points of sides, 6.

Volume of, formed by four points or

four planes, 21, 22.

in terms of edges, 35.

in quadriplanar coordinates, 89.

Sphere circumscribed to, 37.

Relation between perpendiculars in,

120.

Self-conjugate with regard to a

quadric, 117, 175.

Lines joining corresponding vertices

of two conjugates, how connected,
118.

Thomson s proof of Dupin s theorem, 270.

On curves, 285.

Tinseau, on curves of double curvature,
343.

Toeplitz. on a combinant of three quadrics,

210, 214.

Torsal lines on a surface, 489.

Torse, 89.

Torsion, angle of, 334.

Tortolini, on pedal surfaces, 478.

Torus, 539.

Townsend, on quadric through nine points,
113.

On foci of quadric, 136.

On Jacobi s mode of generating quad
rics, 165.

Triple tangent lines to a surface, 560.

Planes, an ordinary singularity of sur

faces, 235.

For cubic, 498.

Their number in general, 584.
Tubular surfaces, 402, 409, 478.

Umbilics of quadric defined, 85.

Their coordinates, 142.

Lie in threes on right lines, 116.

Section of enveloping quadric by tan

gent plane at, 117.

Conditions for, 260, 278.

Their number in general, 263.

Three lines of curvature pass through,
266.

Umbilicar foci, 131.

Unicursal curve, 282.

Surface, 553.

Unodes, 489.

Yalentiner, on general quartic, 527.
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Voss, on umbilics, 263,

Wallis s cono-cuneus, 390.

Wave surface, 453, &c.

Generalization of, 542.

Weierstrass, on integration of equation of

geodesies, 372.

Weierstrass, on Steiner s quartic, 491.

Williamson, on Gauss s investigation of
lines of curvature, 348, 352.

Zeuthen, on multiple lines, 523.
On singularities of surfaces, 603.
On systems of surfaces, 553.

THE END.

W. METCALFE AXD SON, PRINTERS, CAMBRIDGE.
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